

Mathematical Structures
for Computer Science

This page intentionally left blank

Mathematical Structures
for Computer Science

7
Edit ion

Discrete MatheMatics anD its applications

Judith L. Gersting
Indiana University-Purdue University at Indianapolis

W. H. Freeman and Company

A Macmillan Higher Education Company

To my 01102 favorite

discrete structures:

(Adam ` Francine),

(Jason ` Cathryn) S

(Sammie ` Johnny)

Senior Publisher: Ruth Baruth
Executive Editor: Terri Ward
Senior Editor: Roland Cheyney
Assistant Editor: Liam Ferguson
Marketing Manager: Steve Thomas
Media Editor: Laura Judge
Senior Project Editor: Georgia Lee Hadler
Copy Editor: Penelope Hull
Production Coordinator: Susan Wein
Text Designer: Patrice Sheridan
Cover Designer: Victoria Tomaselli
Illustrations: Network Graphics
Composition: codeMantra
Printing and Binding: RR Donnelley

library of congress control number: 2013951442

ISBN-13: 978-1-4292-1510-7
ISBN-10: 1-4292-1510-0

© 2014, 2007, 2003, 1999, 1993, 1987, 1982 by W. H. Freeman and Company
All rights reserved

Printed in the United States of America
First printing

W. H. Freeman and Company
41 Madison Avenue, New York, NY 10010
Houndmills, Basingstoke RG21 6XS, England
www.whfreeman.com

www.whfreeman.com

Contents in Brief

Preface xiii
Note to the Student xvi

CHAPTEr 1 Formal Logic 001

CHAPTEr 2 Proofs, Induction, and Number Theory 097

CHAPTEr 3 Recursion, Recurrence Relations, and Analysis of
Algorithms 157

CHAPTEr 4 Sets, Combinatorics, and Probability 221

CHAPTEr 5 Relations, Functions, and Matrices 327

CHAPTEr 6 Graphs and Trees 475

CHAPTEr 7 Graph Algorithms 553

CHAPTEr 8 Boolean Algebra and Computer Logic 617

CHAPTEr 9 Modeling Arithmetic, Computation, and Languages 685

APPEndix A Derivation Rules for Propositional and Predicate Logic 803

APPEndix B Summation and Product Notation 805

APPEndix C The Logarithm Function 809

Answers to Practice Problems 813

Answers to Odd-Numbered Exercises 851

Answers to Self-Tests 949

Index 959

This page intentionally left blank

Contents

CHAPTEr 1 Formal Logic 1

1.1 STATEMENTS, SYMBOLIC
REPRESENTATION, AND
TAUTOLOGIES 2

Connectives and Truth Values 2
Tautologies 8
Logical Connectives in the
Real World 10
An Algorithm 12

special interest page
Can “And” Ever Be “Or”? 15

SECTiOn 1.1 Review 16
ExErCiSES 1.1 16

1.2 PROPOSITIONAL LOGIC 25
Valid Arguments 25
Derivation Rules for
Propositional Logic 28
Deduction Method and Other Rules 32
Verbal Arguments 33

SECTiOn 1.2 Review 35
ExErCiSES 1.2 35

1.3 QUANTIFIERS, PREDICATES, AND
VALIDITY 39

Quantifiers and Predicates 39
Translation 42
Validity 48

SECTiOn 1.3 Review 50
ExErCiSES 1.3 50

1.4 PREDICATE LOGIC 58
Derivation Rules for Predicate Logic 58

Universal Instantiation 59
Existential Instantiation 60

Universal Generalization 61
Existential Generalization 62

More Work with Rules 62
Verbal Arguments 67
Conclusion 68

SECTiOn 1.4 Review 69
ExErCiSES 1.4 69

 1.5 LOGIC PROGRAMMING 73

Prolog 73
Horn Clauses and Resolution 75
Recursion 79
Expert Systems 81

SECTiOn 1.5 Review 82
ExErCiSES 1.5 82

1.6 PROOF OF CORRECTNESS 84

Assertions 85
Assignment Rule 87
Conditional Rule 90

SECTiOn 1.6 Review 92
ExErCiSES 1.6 92

Chapter 1 Review 95
On the Computer 96

CHAPTEr 2 Proofs, induction, and
number Theory 97

2.1 PROOF TECHNIQUES 98

Theorems and Informal Proofs 98
To Prove or Not to Prove 99
Exhaustive Proof 100
Direct Proof 101
Contraposition 103
Contradiction 104

Serendipity 106
Common Definitions 107

SECTiOn 2.1 Review 107
ExErCiSES 2.1 107

2.2 INDUCTION 110

First Principle of Induction 110
Proofs by Mathematical
Induction 112
Second Principle of Induction 118

SECTiOn 2.2 Review 122
ExErCiSES 2.2 122

2.3 MORE ON PROOF OF
CORRECTNESS 129

Loop Rule 129
Euclidean Algorithm 133

special interest page
Making Safer Software 136

SECTiOn 2.3 Review 137
ExErCiSES 2.3 137

2.4 NUMBER THEORY 143

The Fundamental Theorem
of Arithmetic 144
More on Prime Numbers 148
Euler Phi Function 149

SECTiOn 2.4 Review 152
ExErCiSES 2.4 152

Chapter 2 Review 155
On the Computer 156

CHAPTEr 3 recursion, recurrence
relations, and Analysis
of Algorithms 157

3.1 RECURSIVE DEFINITIONS 158

Recursively Defined Sequences 158
Recursively Defined Sets 162
Recursively Defined Operations 165
Recursively Defined Algorithms 166

SECTiOn 3.1 Review 171
ExErCiSES 3.1 171

3.2 RECURRENCE RELATIONS 180

Linear First-Order Recurrence
Relations 180

Expand, Guess, and Verify 180
A Solution Formula 182

Linear Second-Order
Recurrence Relations 188
Divide-and-Conquer
Recurrence Relations 193

SECTiOn 3.2 Review 197
ExErCiSES 3.2 197

3.3 ANALYSIS OF ALGORITHMS 203

The General Idea 203
Analysis Using Recurrence
Relations 206
Upper Bound
(Euclidean Algorithm) 210

special interest page
Of Trees % and Pancakes 211

SECTiOn 3.3 Review 212
ExErCiSES 3.3 212

Chapter 3 Review 217
 On the Computer 218

CHAPTEr 4 Sets, Combinatorics,
and Probability 221

4.1 SETS 222

Notation 222
Relationships Between Sets 224
Sets of Sets 227
Binary and Unary Operations 228
Operations on Sets 230
Set Identities 233
Countable and Uncountable Sets 236

SECTiOn 4.1 Review 239
ExErCiSES 4.1 239

4.2 COUNTING 252

Multiplication Principle 252
Addition Principle 254
Using the Principles Together 255
Decision Trees 257

viii Contents

Contents ix

SECTiOn 4.2 Review 258
ExErCiSES 4.2 259

4.3 PRINCIPLE OF INCLUSION AND
EXCLUSION; PIGEONHOLE
PRINCIPLE 263

Principle of Inclusion and
Exclusion 264
Pigeonhole Principle 269

SECTiOn 4.3 Review 269
ExErCiSES 4.3 270

4.4 PERMUTATIONS AND
COMBINATIONS 272

Permutations 272
Combinations 274
Eliminating Duplicates 277
Permutations and Combinations
with Repetitions 279
Generating Permutations
and Combinations 280

special interest page
Archimedes and the Stomachion 286

SECTiOn 4.4 Review 288
ExErCiSES 4.4 288

4.5 BINOMIAL THEOREM 294

Pascal’s Triangle 294
Binomial Theorem and Its Proof 296
Applying the Binomial Theorem 298

SECTiOn 4.5 Review 299
ExErCiSES 4.5 299

4.6 PROBABILITY 301

Introduction to Finite
Probability 301
Probability Distributions 304
Conditional Probability 306
Bayes’ Theorem 308
Expected Value 310
Binomial Distributions 313
Average Case Analysis of
Algorithms 314

SECTiOn 4.6 Review 315
ExErCiSES 4.6 315

Chapter 4 Review 323
 On the Computer 324

CHAPTEr 5 relations, Functions,
and Matrices 327

5.1 RELATIONS 328

Binary Relations 328
Properties of Relations 332
Closures of Relations 334
Partial Orderings 336
Equivalence Relations 339

SECTiOn 5.1 Review 344
ExErCiSES 5.1 345

5.2 TOPOLOGICAL SORTING 356

SECTiOn 5.2 Review 361
ExErCiSES 5.2 362

5.3 RELATIONS AND DATABASES 365

Entity-Relationship Model 365
Relational Model 366
Operations on Relations 369
Null Values and Three-valued Logic 373
Database Integrity 375

SECTiOn 5.3 Review 376
ExErCiSES 5.3 376

5.4 FUNCTIONS 381

Definition 381
Properties of Functions 388

Onto Functions 388
One-to-One Functions 389
Bijections 390

Composition of Functions 390
Inverse Functions 392
Permutation Functions 394
How Many Functions 397
Equivalent Sets 401

SECTiOn 5.4 Review 402
ExErCiSES 5.4 402

x Contents

5.5 ORDER OF MAGNITUDE 412

Function Growth 412
More on Analysis of Algorithms 415
The Master Theorem 417
Proof of the Master Theorem 419

SECTiOn 5.5 Review 421
ExErCiSES 5.5 421

5.6 THE MIGHTY MOD FUNCTION 423

Hashing 424
Computer Security 427

Cryptography 427
Hashing for Password
Encryption 433

Miscellaneous Applications 435
Identification Codes 435
Generating and Decomposing
Integers 437
Modular Arithmetic Designs 438

SECTiOn 5.6 Review 440
ExErCiSES 5.6 440

5.7 MATRICES 446

Terminology 446
Matrix Operations 448
Gaussian Elimination 453
Boolean Matrices 458

special interest page
Solve Millions of Equations, Faster than Gauss 460

SECTiOn 5.7 Review 461
ExErCiSES 5.7 461

Chapter 5 Review 470
 On the Computer 472

CHAPTEr 6 Graphs and Trees 475

6.1 GRAPHS AND THEIR
REPRESENTATIONS 476

Definitions of a Graph 476
Applications of Graphs 479
Graph Terminology 481
Isomorphic Graphs 484
Planar Graphs 487
Computer Representation
of Graphs 492

Adjacency Matrix 492
Adjacency List 494

special interest page
isomorphic Protein Graphs 497

SECTiOn 6.1 Review 498
ExErCiSES 6.1 498

6.2 TREES AND THEIR
REPRESENTATIONS 509

Tree Terminology 509
Applications of Trees 511
Binary Tree Representation 513
Tree Traversal Algorithms 514
Results about Trees 519

SECTiOn 6.2 Review 521
ExErCiSES 6.2 521

6.3 DECISION TREES 529

Searching 529
Lower Bounds on Searching 532
Binary Tree Search 533

Sorting 535

SECTiOn 6.3 Review 536
ExErCiSES 6.3 536

6.4 HUFFMAN CODES 539

Problem and Trial Solution 539
Huffman Encoding Algorithm 542
Justification 544
Application of Huffman Codes 546

SECTiOn 6.4 Review 547
ExErCiSES 6.4 548

Chapter 6 Review 551
 On the Computer 552

CHAPTEr 7 Graph Algorithms 553

7.1 DIRECTED GRAPHS AND BINARY
RELATIONS; WARSHALL’S
ALGORITHM 554

Directed Graphs and
Binary Relations 555
Reachability 557
Warshall’s Algorithm 562

Contents xi

SECTiOn 7.1 Review 566
ExErCiSES 7.1 566

7.2 EULER PATH AND HAMILTONIAN
CIRCUIT 571

Euler Path Problem 571
Hamiltonian Circuit Problem 576

SECTiOn 7.2 Review 577
ExErCiSES 7.2 577

7.3 SHORTEST PATH AND MINIMAL
SPANNING TREE 581

Shortest-Path Problem 581
Minimal Spanning Tree Problem 587

special interest page
Pathfinding 589

SECTiOn 7.3 Review 591
ExErCiSES 7.3 591

7.4 TRAVERSAL ALGORITHMS 596

Depth-First Search 596
Breadth-First Search 598
Analysis 601
Applications 601

SECTiOn 7.4 Review 604
ExErCiSES 7.4 604

7.5 ARTICULATION POINTS AND
COMPUTER NETWORkS 607

The Problem Statement 607
The Idea behind the Algorithm 608
The Algorithm Itself 610

SECTiOn 7.5 Review 612
ExErCiSES 7.5 612

Chapter 7 Review 614
 On the Computer 615

CHAPTEr 8 Boolean Algebra and
Computer Logic 617

8.1 BOOLEAN ALGEBRA STRUCTURE 618

Models or Abstractions 619
Definition and Properties 620
Isomorphic Boolean Algebras 626

What is Isomorphism? 626
Isomorphism as Applied
to Boolean Algebra 628

SECTiOn 8.1 Review 631
ExErCiSES 8.1 631

8.2 LOGIC NETWORkS 638

Combinational Networks 638
Basic Logic Elements 638
Boolean Expressions 639
Truth Functions 640
Networks and Expressions 641
Canonical Form 642
Minimization 645
Programmable Logic
Devices 647

A Useful Network 648
Other Logic Elements 650
Constructing Truth Functions 652

special interest page
Pruning Chips and Programs 654

SECTiOn 8.2 Review 655
ExErCiSES 8.2 655

8.3 MINIMIzATION 663

Minimization Process 663
Karnaugh Map 665

Maps for Three and
Four Variables 666
Using the karnaugh Map 668

Quine–McCluskey Procedure 673

SECTiOn 8.3 Review 677
ExErCiSES 8.3 678

Chapter 8 Review 683
 On the Computer 684

CHAPTEr 9 Modeling Arithmetic,
Computation, and
Languages 685

9.1 ALGEBRAIC STRUCTURES 686

Definitions and Examples 686
Basic Results about Groups 695
Subgroups 698
Isomorphic Groups 702

xii Contents

SECTiOn 9.1 Review 708
ExErCiSES 9.1 708

9.2 CODING THEORY 714
Introduction 714
Background: Homomorphisms
and Cosets 715
Generating Group Codes 717
Decoding Group Codes 723

SECTiOn 9.2 Review 727
ExErCiSES 9.2 727

9.3 FINITE-STATE MACHINES 728

Definition 729
Examples of Finite-State Machines 729
Recognition 733
Regular Sets and Kleene’s Theorem 735
Machine Minimization 737

Unreachable States 737
Minimization Procedure 739

Sequential Networks and
Finite-State Machines 744

special interest page
FSMs Behind the Game 749

SECTiOn 9.3 Review 750
ExErCiSES 9.3 750

9.4 TURING MACHINES 759

Definition 760
Turing Machines as Set
Recognizers 764
Turing Machines as Function
Computers 767

Church–Turing Thesis 769
Decision Problems and
Uncomputability 771

Examples of Decision
Problems 772
Halting Problem 773

Computational Complexity 776

SECTiOn 9.4 Review 778
ExErCiSES 9.4 779

9.5 FORMAL LANGUAGES 782

Classes of Grammars 789
Formal Languages and
Computational Devices 792
Context-Free Grammars 793

SECTiOn 9.5 Review 795
ExErCiSES 9.5 795

Chapter 9 Review 799
 On the Computer 800

Appendix A Derivation Rules for
Propositional and Predicate
Logic 803

Appendix B Summation and Product
Notation 805

Appendix C The Logarithm Function 809
 Answers to Practice Problems 813
 Answers to Odd-Numbered

Exercises 851
 Answers to Self-Tests 949

 Index 959

Preface

A course in discrete structures (discrete mathematics) played an important role
in Curriculum 68, the very first ACM Computer Science Curriculum Guide:
“This course introduces the student to those fundamental algebraic, logical, and
combinatoric concepts from mathematics needed in the subsequent computer
science courses and shows the applications of these concepts to various areas
of computer science.”1 Fast forward 45 years or so (through mobile comput-
ing, wireless networks, robotics, virtual reality, 3-D graphics, the Internet …)
to the joint ACM/IEEE-CS Computer Science Curricula 2013, where—still—
discrete structures are of fundamental importance. “The material in discrete
structures is pervasive in the areas of data structures and algorithms but ap-
pears elsewhere in computer science as well. For example, an ability to create
and understand a proof—either a formal symbolic proof or a less formal but
still mathematically rigorous argument—is important in virtually every area of
computer science, including (to name just a few) formal specification, verifica-
tion, databases, and cryptography. Graph theory concepts are used in networks,
operating systems, and compilers. Set theory concepts are used in software
engineering and in databases. Probability theory is used in intelligent systems,
networking, and a number of computing applications.”2

This Seventh Edition was guided by Curricula 2013, and virtually all of the
Core Tier 1 and Tier 2 topics for discrete structures from that document are includ-
ed. Covering all those topics can fill a one-semester course, but there is certainly
enough material in this edition to make for a very respectable two-semester course.

However much we as instructors may see the value in this foundational
course, it is a difficult experience for many students, who often view it as a series
of unconnected topics with little or no application to the rest of their chosen field
of study. In the big picture, these topics are bound together by themes of

• importance of logical thinking
• power of mathematical notation
• usefulness of abstractions

but such themes are best appreciated in hindsight. Telling students, “You will
need ideas from this course in many of your future computer science courses,”
is also of little motivation. That’s why it is important to carve out time in your
course syllabus (for either a one-semester or two-semester course) for some of
the applications of this material. Here are topics in this edition that you may

1Communications of the ACM, Vol. 11, Issue 3 (March 1968), pp. 151–197.
2Computer Science Curricula 2013, Pre-release version, http://cs2013.com

http://cs2013.com

xiv Preface

choose from, according to your interests and the interests of your students. Yes,
students will probably see most of these topics in more detail in later computer
science courses, but a quick introduction now can keep their interest and make
your claim of relevance more credible.

Section 1.5 Logic programming
Sections 1.6 and 2.3 Proof of correctness
Section 3.3 Analysis of algorithms
Section 5.3 Relations and databases
Section 5.6 The mighty mod function
Section 6.4 Huffman codes
Section 8.2 Logic networks
Section 9.2 Coding theory

In addition, there is a Special Interest Page in each chapter that highlights
interesting applications culled from “the real world.”

n E w i n TH E S E v E nTH E d iT iOn

• The former Chapters 2 and 3 have been reorganized as Chapters 2, 3, and
4 for better clarity and sequencing

• New sections or subsections have been added:

probability
• Bayes’ Theorem
• Binomial Distribution

order of Magnitude (new section)
• The Master Theorem
• Proof of the Master Theorem

Matrices
• Gaussian Elimination

coding theory (new section)
• Introduction
• Background: Homomorphisms and Cosets
• Generating Group Codes
• Decoding Group Codes

• “Special interest pages”—one per chapter—have been introduced to add
relevance and interest to the material being presented.

• Answers to all odd-numbered exercises, as opposed to answers to fewer,
selected exercises, appear in the back of the book. When an exercise asks

Preface xv

for a proof, the complete proof is given. Otherwise, the answer is just
the answer, not necessarily the solution. A Student Solutions Manual with
solutions for odd-numbered exercises from the book is available from the
Web site at www.whfreeman.com/gersting. The student manual also in-
cludes two sample tests per chapter. A complete Solutions Manual is avail-
able to instructors from the publisher.

• Many new exercises have been added, particularly with an eye toward
pairing odd-numbered exercises with similar even-numbered exercises.

• Of course, student learning aids such as chapter objectives, practice prob-
lems, reminders, section reviews, and chapter reviews remain.

wE B S iTE

Online Study Guide

A Web site for the book may be found at www.whfreeman.com/gersting. The Web
pages contain representative new example problems (not contained in the text) for
many of the end-of-section Techniques. Each Technique that has a corresponding
Web page example is marked with the icon W .

Each example on the Web first states the problem. Then succeeding pages
develop the solution, much as the student would be expected to write it. As the stu-
dent navigates the pages, the solution unfolds step-by-step. A compressed audio
file is also part of each Web page after the initial problem statement. The audio file
contains a first-person stream-of-consciousness thought process about that step of
the solution—why it occurred to the narrator to try this, why it looked promising,
what knowledge was being called on to suggest that this step should come next,
and so on. The point is, students see perfect and complete worked-out proofs in
the textbook and often see them performed by the instructor. Yet when a student
goes home and tries to produce such a solution by himself or herself, he or she is
unsure where to start or how to think about the problem or how to see any pat-
tern to enable a guess as to what to do next. Consequently the student gives up in
frustration. The purpose of the audio narration is to share the “secret picture” that
mathematicians use to solve problems.

To access the problems, after you go to www.whfreeman.com/gersting, select
a chapter section, then select a sample problem and follow its step-by-step process
with the “Next” button.

PowerPoint Slides

Instructors who visit the web site will also have access to PowerPoint slides
 accompanying each section of the text.

www.whfreeman.com/gersting
www.whfreeman.com/gersting
www.whfreeman.com/gersting

xvi Preface

ACk nOwLE dG M E nT S

My thanks to the reviewers of this addition, as well to reviewers of earlier edi-
tions, all of whose help is greatly appreciated.

Elizabeth Adams, James Madison University
kemal Akkaya, Southern Illinois University
Charles Ashbacher, Mount Mercy College
Barnabas Bede, DigiPen Institute of Technology
Terry J. Bridgeman, Colorado School of Mines
David Casperson, University of Northern British Columbia
Adrienne Decker, SUNY Buffalo
Steve Donaldson, Samford University
Mordechai S. Goodman, Dominican University
Michael A. Gray, American University
Jerrold R. Griggs, University of South Carolina
Joseph Hobart, Okanagan College
Mark Jacobson, University of Northern Iowa
Lisa A. Jamba, University of Northern Florida

Tim Lin, Cal Poly
David Lugenbuhl, Western Carolina University
Damian Lyons, Fordham University
Mariana Maris, Arizona State University
Mikel D. Petty, University of Alabama in Huntsville
Amar Raheja, Cal Poly
J. Ben Schafer, University of Northern Iowa
Ali Shaykhian, Florida Institute of Technology
Shunichi Toida, Old Dominion University
William J. Weber, Southeast Missouri State University
Eric Westlund, Luther University
Hua Yan, Borough of Manhattan Community College
Yu zhang, Texas A&M Corpus Christi

The folks at W.H. Freeman were very helpful in shepherding this edition
to completion, especially Penny Hull (veteran of many previous editions), Terri
Ward, Roland Cheyney, Liam Ferguson, Georgia Lee Hadler, and Vicki Tomaselli.

Thanks to Russell Kackley for the audio files on the Web site.
My deepest thanks go to my husband, John, ever my most ardent supporter

and dearest friend.

nOTE TO TH E STu d E nT

As you go through this book, you’ll encounter many new terms and new ideas.
Try reading with pencil and paper at hand and work the Practice problems as you
encounter them. They are intended to reinforce or clarify some new terminology
or method just introduced; answers are given at the back of the book. Pay atten-
tion also to the Reminders that point out common pitfalls or provide helpful hints.

Be sure to visit the Web site at www.whfreeman.com/gersting for detailed,
worked-out solutions to additional example problems tied to the Techniques in
each section. The Web site solutions are accompanied by audio files that explain
each step. A Student Solutions Manual with solutions for odd-numbered exercises
from the book is available from the Web site. The student manual also includes two
sample tests per chapter.

You may find at first that the thought processes required to solve the exercises
in the book are new and difficult. Your biggest attribute for success will be persever-
ance. Here’s what I tell my students: “If you do not see at first how to solve a problem,
don’t give up, think about it some more; be sure you understand all the terminology
used in the problem, play with some ideas. If no approach presents itself, let it be
and think about it again later. Repeat this process for days on end. When you finally
wake up in the middle of the night with an idea, you’ll know you are putting in the
right amount of effort for this course.” Mathematical results don’t spring fully formed
from the foreheads of mathematical geniuses; well, maybe from mathematical ge-
niuses, but for the rest of us, it takes work, patience, false starts, and perseverance.

Enjoy the experience!

www.whfreeman.com/gersting

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Use the formal symbols of propositional logic.
• Find the truth value of an expression in propositional logic.
• Construct formal proofs in propositional logic, and use such proofs to deter-

mine the validity of English language arguments.
• Use the formal symbols of predicate logic.
• Find the truth value in some interpretation of an expression in predicate logic.
• Use predicate logic to represent English language sentences.
• Construct formal proofs in predicate logic, and use such proofs to determine

the validity of English language arguments.
• Understand how the programming language Prolog is built on predicate logic.
• Mathematically prove the correctness of programs that use assignment state-

ments and conditional statements.

You have been selected to serve on jury duty for a criminal case. The attorney for the
defense argues as follows:

If my client is guilty, then the knife was in the drawer. Either the knife was not in the
drawer or Jason Pritchard saw the knife. If the knife was not there on October 10,
it follows that Jason Pritchard did not see the knife. Furthermore, if the knife was
there on October 10, then the knife was in the drawer and also the hammer was in
the barn. But we all know that the hammer was not in the barn. Therefore, ladies
and gentlemen of the jury, my client is innocent.

 Question: Is the attorney’s argument sound? How should you vote?

It’s much easier to answer this question if the argument is recast in the notation
of formal logic. Formal logic strips away confusing verbiage and allows us to
concentrate on the underlying reasoning being applied. In fact, formal logic—the
subject of this chapter—provides the foundation for the organized, careful method
of thinking that characterizes any reasoned activity—a criminal investigation, a
scientific experiment, a sociological study. In addition, formal logic has direct
applications in computer science. The last two sections of this chapter explore
a programming language based on logic and the use of formal logic to verify
the correctness of computer programs. Also, circuit logic (the logic governing

1Formal Logic

Chapter

2 Formal Logic

computer circuitry) is a direct analog of the statement logic of this chapter. We
will study circuit logic in Chapter 8.

 S e c t I o n 1 . 1 StatementS, SymboliC RepReSentation,
and tautologieS

Formal logic can represent the statements we use in English to communicate facts
or information. A statement (or proposition) is a sentence that is either true or
false.

 eXAMPLe 1 Consider the following:

 a. Ten is less than seven.
 b. Cheyenne is the capital of Wyoming.
 c. She is very talented.
 d. There are life forms on other planets in the universe.

Sentence (a) is a statement because it is false. Sentence (b) is a statement because
it is true. Sentence (c) is neither true nor false because “she” is not specified; there-
fore (c) is not a statement. Sentence (d) is a statement because it is either true or
false; we do not have to be able to decide which.

Connectives and Truth Values

In English, simple statements are combined with connecting words like and to
make more interesting compound statements. The truth value of a compound
statement depends on the truth values of its components and which connecting
words are used. If we combine the two true statement, “Elephants are big,” and,
“Baseballs are round,” we would consider the resulting statement, “Elephants are
big and baseballs are round,” to be true. In this book, as in many logic books,
capital letters near the beginning of the alphabet, such as A, B, and C, are used to
represent statements and are called statement letters; the symbol ` is a logical
connective representing and. We agree, then, that if A is true and B is true, A ` B
(read “A and B”) should be considered true.

pRaCtiCe 1 1

a. If A is true and B is false, what truth value would you assign to A ` B?
b. If A is false and B is true, what truth value would you assign to A ` B?
c. If A and B are both false, what truth value would you assign to A ` B?

The expression A ` B is called the conjunction of A and B, and A and B are
called the conjuncts of this expression. Table 1.1 summarizes the truth value of
A ` B for all possible truth values of the conjuncts A and B. Each row of the table

1Answers to practice problems are in the back of the text.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 3

represents a particular truth value assignment to the statement let-
ters, and the resulting truth value for the compound expression is
shown.

Another connective is the word or, denoted by the symbol ~. The
expression A ~ B (read “A or B”) is called the disjunction of A and B,
and A and B are called the disjuncts of this expression. If A and B are
both true, then A ~ B would be considered true, giving the first line
of the truth table for disjunction (Table 1.2).

tAbLe 1.2

A B A ~ B

T T T

T F

F T

F F

tAbLe 1.1

A B A ` B

T T T

T F F

F T F

F F F

pRaCtiCe 2 Use your understanding of the word or to complete the truth table for disjunction,
Table 1.2.

Statements may be combined in the form “if statement 1, then statement 2.” If
A denotes statement 1 and B denotes statement 2, the compound statement would
be denoted by A S B (read “A implies B”). The logical connective here is implica-
tion, and it conveys the meaning that the truth of A implies or leads to the truth of
B. In the implication A S B, A stands for the antecedent statement and B stands
for the consequent statement.

The truth table for implication is less obvious than that for conjunction or
disjunction. To understand its definition, let’s suppose your friend remarks, “If I
pass my economics test, then I’ll go to the movie Friday.” If your friend passes the
test and goes to the movie, the remark was true. If your friend passes the test but
doesn’t go to the movie, the remark was false. If your friend doesn’t pass the test,
then—whether he or she goes to the movie or not—you could not claim that the
remark was false. You would probably want to give the benefit of the doubt and say
that the statement was true. By convention, A S B is considered true if A is false,
regardless of the truth value of B.

pRaCtiCe 3 Summarize this discussion by writing the truth table for A S B.

tAbLe 1.3

A B A S B B S A (A S B) ` (B S A)

T T T T T

T F F T F

F T T F F

F F T T T

The equivalence connective is symbolized by 4. Unlike conjunction,
disjunction, and implication, the equivalence connective is not really a funda-
mental connective but a convenient shortcut. The expression A 4 B stands for
(A S B) ` (B S A). We can write the truth table for equivalence by constructing,
one piece at a time, a table for (A S B) ` (B S A), as in Table 1.3. From this truth
table, A 4 B is true exactly when A and B have the same truth value.

The connectives we’ve seen so far are called binary connectives because
they join two expressions together to produce a third expression. Now let’s consider
a unary connective, a connective acting on one expression to produce a second

4 Formal Logic

expression. Negation is a unary connective. The negation of A— symbolized by
A′—is read “not A.”

pRaCtiCe 4 Write the truth table for A′. (It will require only two rows.)

Table 1.4 summarizes the truth values for all of the logical connectives. This
information is critical to an understanding of logical reasoning.

tAbLe 1.4

A B A ` B A ~ B A S B A 4 B A′

T T T T T T F

T F F T F F

F T F T T F T

F F F F T T

ReMIndeR

A only if B means
A S B

Because of the richness of the English language, words that have differ-
ent shades of meaning are nonetheless represented by the same logical connec-
tive. Table 1.5 shows the common English words associated with various logical
connectives.

tAbLe 1.5

english Word Logical connective Logical expression

and; but; also; in addition;
moreover

Conjunction A ` B

or Disjunction A ~ B

If A, then B.
A implies B.
A, therefore B.
A only if B.
B follows from A.
A is a sufficient condition
for B.
B is a necessary condition
for A.

Implication A S B

A if and only if B.
A is necessary and
 sufficient for B.

Equivalence A 4 B

not A
It is false that A ...
It is not true that A ...

Negation A′

Suppose that A S B is true. Then, according to the truth table for implication,
the consequent, B, can be true even though the antecedent, A, is false. So while
the truth of A leads to (implies) the truth of B, the truth of B does not imply the
truth of A. The phrase “B is a necessary condition for A” to describe A S B simply

 Section 1.1 Statements, Symbolic Representation, and Tautologies 5

tAbLe 1.6

Statement correct negation Incorrect negation

It will rain tomorrow. It is false that it will rain
 tomorrow.

It will not rain tomorrow.

Peter is tall and thin. It is false that Peter is tall
and thin.

Peter is not tall or he is
not thin.

Peter is short or fat.

Peter is short and fat.

Too strong a statement.
Peter fails to have both
properties (tallness and
thinness) but may still
have one property.

The river is shallow or
 polluted.

It is false that the river is
shallow or polluted.

The river is neither shallow
nor polluted.

The river is deep and
 unpolluted.

The river is not shallow or
not polluted.

Too weak a statement.
The river fails to have
 either property, not just
fails to have one property.

means that if A is true, then B is necessarily true, as well. “A only if B” describes
the same thing, that A implies B.

 eXAMPLe 2 The statement, “Fire is a necessary condition for smoke,” can be restated, “If there
is smoke, then there is fire.” The antecedent is “there is smoke,” and the conse-
quent is “there is fire.”

pRaCtiCe 5 Name the antecedent and consequent in each of the following statements. (Hint: Rewrite
each statement in if-then form.)

a. If the rain continues, then the river will flood.
b. A sufficient condition for network failure is that the central switch goes down.
c. The avocados are ripe only if they are dark and soft.
d. A good diet is a necessary condition for a healthy cat.

 eXAMPLe 3 Expressing the negation of a statement must be done with care, especially for a
compound statement. Table 1.6 gives some examples.

pRaCtiCe 6 Which of the following represents A′ if A is the statement “Julie likes butter but hates
cream”?

a. Julie hates butter and cream.
b. Julie does not like butter or cream.
c. Julie dislikes butter but loves cream.
d. Julie hates butter or likes cream.

6 Formal Logic

We can string statement letters, connectives, and parentheses (or brackets)
together to form new expressions, as in

(A S B) ` (B S A)

Of course, just as in a computer programming language, certain syntax rules
(rules on which strings are legitimate) prevail; for example,

A)) `` S BC

would not be considered a legitimate string. An expression that is a legitimate
string is called a well-formed formula, or wff. To reduce the number of parenthe-
ses required in a wff, we stipulate an order in which connectives are applied. This
order of precedence is

 1. connectives within parentheses, innermost parentheses first
 2. ′
 3. `, ~
 4. S

 5. 4

This means that the expression A ~ B′ stands for A ~ (B′), not (A ~ B)′. Similarly,
A ~ B S C means (A ~ B) S C, not A ~ (B S C). However, we often use paren-
theses anyway, just to be sure that there is no confusion.

In a wff with a number of connectives, the connective to be applied last is the
main connective. In

A ` (B S C)′

the main connective is `. In

((A ~ B) ` C) S (B ~ C′)

the main connective is S. Capital letters near the end of the alphabet, such as P, Q,
R, and S, are used to represent wffs. Thus P could represent a single statement let-
ter, which is the simplest kind of wff, or a more complex wff. We might represent

((A ~ B) ` C) S (B ~ C′)

as

P S Q

if we want to hide some of the details for the moment and only concentrate on the
main connective.

Wffs composed of statement letters and connectives have truth values that
depend on the truth values assigned to their statement letters. We write the
truth table for any wff by building up the component parts, just as we did for
(A S B) ` (B S A). The main connective is addressed in the last column of the
table.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 7

tAbLe 1.7

A B B′ A ~ B′ A ~ B (A ~ B)′ A ~ B′ S (A ~ B)′

T T F T T F F

T F T T T F F

F T F F T F T

F F T T F T T

If we are making a truth table for a wff that contains n different statement
letters, how many rows will the truth table have? From truth tables done so far,
we know that a wff with only one statement letter has two rows in its truth table,
and a wff with two statement letters has four rows. The number of rows equals the
number of true-false combinations possible among the statement letters. The first
statement letter has two possibilities, T and F. For each of these possibilities, the
second statement letter has two possible values. Figure 1.1a pictures this as a two-
level “tree” with four branches showing the four possible combinations of T and F
for two statement letters. For n statement letters, we extend the tree to n levels, as
in Figure 1.1b. The total number of branches then equals 2n. The total number of
rows in a truth table for n statement letters is also 2n.

 eXAMPLe 4 The truth table for the wff A ~ B′ S (A ~ B)′ is given in Table 1.7. The main con-
nective, according to the rules of precedence, is implication.

T F

T F T F

F F
T F

T T
T F

Statement letters

1

2

Choices

2 = 21 branches

4 = 22 branches

(a)

T F

T F

T F T F

T F

T F T F

Statement letters

1

2

Choices

2 = 21 branches

4 = 22 branches

3

…… …

8 = 23 branches

n 2n branches

(b)Figure 1.1

8 Formal Logic

This tree structure also tells us how to enumerate all the T–F com-
binations among the n statement letters when setting up a truth table. If
we read each level of the tree from bottom to top, it says that the T–F
values for statement letter n (which will compose the last column of the
truth table) alternate, those for statement letter n − 1 alternate every
two values, those for statement letter n − 2 alternate every four values,
and so forth. Thus a truth table for three statement letters would begin
as shown in Table 1.8. The values for statement letter C alternate, those
for statement letter B alternate in groups of two, and those for state-
ment letter A alternate in groups of four, resulting in something like a
sideways version of the tree. (Reading the rows from the bottom up and
using 1 for T and 0 for F shows that we are simply counting up from zero
in binary numbers.)

tAbLe 1.8

A B C

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

pRaCtiCe 7 Construct truth tables for the following wffs.

a. (A S B) 4 (B S A) (Remember that C 4 D is true precisely when C and D have the same
truth value.)

b. (A ~ A′) S (B ` B′)
c. [(A ` B′) S C′]′
d. (A S B) 4 (B′S A′)

Tautologies

A wff-like item (d) of Practice 7, whose truth values are always true, is called a
tautology. A tautology is “intrinsically true” by its very structure; it is true no
matter what truth values are assigned to its statement letters. A simpler example
of a tautology is A ~ A′; consider, for example, the statement “Today the sun will
shine or today the sun will not shine,” which must always be true because one
or the other of these must happen. A wff like item (b) of Practice 7, whose truth
values are always false, is called a contradiction. A contradiction is “intrinsically
false” by its very structure. A simpler example of a contradiction is A ` A′; con-
sider “Today is Tuesday and today is not Tuesday,” which is false no matter what
day of the week it is.

Suppose that P and Q represent two wffs, and it happens that the wff
P 4 Q is a tautology. If we did a truth table using the statement letters in P
and Q, then the truth values of the wffs P and Q would agree for every row of
the truth table. In this case, P and Q are said to be equivalent wffs, denoted by
P 3 Q. Thus P 3 Q states a fact, namely, that the particular wff P 4 Q is a
tautology. Practice 7(d) has the form P 4 Q , where P is the wff (A S B) and
Q is the wff (B′ S A′), and P 4 Q was shown to be a tautology. Therefore,
(A S B) 3 (B′ S A′).

We will list some basic equivalences, prove one or two of them by construct-
ing truth tables, and leave the rest as exercises. We represent any contradiction by
0 and any tautology by 1.

ReMIndeR

A, B, C stand for single
statement letters; P, Q,
R, S stand for wffs.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 9

Some Tautological Equivalences

1a. A ~ B 3 B ~ A 1b. A ` B 3 B ` A (commutative properties)

2a. (A ~ B) ~ C 3 A ~ (B ~ C) 2b. (A ` B) ` C 3 A ` (B ` C) (associative properties)

3a. A ~ (B ` C) 3 3b. A ` (B ~ C) 3 (distributive properties)
 (A ~ B) ` (A ~ C) (A ` B) ~ (A ` C)

4a. A ~ 0 3 A 4b. A ` 1 3 A (identity properties)

5a. A ~ A′ 3 1 5b. A ` A′ 3 0 (complement properties)

Note that 2a allows us to write A ~ B ~ C with no need for parentheses because
the grouping doesn’t matter; similarly, 2b allows us to write A ` B ` C.

 eXAMPLe 5 The truth table in Table 1.9a verifies equivalence 1a, the commutative property for
disjunction, and that in Table 1.9b verifies 4b, the identity property for conjunc-
tion. Note that only two rows are needed for Table 1.9b because 1 (a tautology)
cannot take on false truth values.

The equivalences in the list are grouped into five pairs. In each pair, one
equivalence can be obtained from the other by replacing ` with ~, ~ with `, 0
with 1, or 1 with 0. Each equivalence in a pair is called the dual of the other. Thus,
1a and 1b (commutativity of disjunction and commutativity of conjunction) are
duals of each other. This list of equivalences appears in a more general setting in
Chapter 8.

Two additional equivalences that are very useful are De Morgan’s laws,
named for the nineteenth-century British mathematician Augustus De Morgan,
who first stated them. This theorem is easy to prove (see Exercises 26e and 26f).

A 1 A ` 1 A ` 1 4 A

T T T T

F T F T

tAbLe 1.9

A B A ~ B B ~ A A ~ B 4 B ~ A

T T T T T

T F T T T

F T T T T

F F F F T

(a) (b)

pRaCtiCe 8 Verify equivalence 5a.

10 Formal Logic

Each is the dual of the other. De Morgan’s laws help in expressing the negation of
a compound statement, as in Practice 6.

Think of these tautological equivalences as patterns; in order to use one
of them, you must match its pattern exactly. For example, you can’t say that
(A ` B) ~ C 3 A ` (B ~ C) by either of the associative properties because nei-
ther of these properties uses both conjunction and disjunction.

Suppose that P and Q are equivalent wffs. Then in any wff where P appears, P
can be replaced by Q with no change in the overall truth values. It’s like replacing
a $20 bill in your wallet with two $10 bills—the total value of your money hasn’t
changed.

 tHeoReM De Morgan’s Laws

 (A ~ B)′ 3 A′ ` B′ and (A ` B)′ 3 A′ ~ B′

Logical Connectives in the real world

Web search engines allow exploration of the vast resources available on the Web,
but a little care in your search query can help focus the results more quickly. For
example, if you enter

used cars

in a Web search engine, you may get back references to any Web site containing
either the word used or the word cars; this could include sites for antique dealers
and sites for the latest auto racing results. Entering the phrase

“used cars”

in quotes restricts the search, on most search engines, to Web sites containing this
exact phrase. Most search engines also allow you to enter an expression using log-
ical connectives as your search query, which can help make the query even more
specific. To further narrow your used car search, for example, you could enter

 eXAMPLe 6 From Practice 7(d), A S B is equivalent to B′ S A′. The wff (A S B) S B should
therefore be equivalent to (B′ S A′) S B. This equivalence is verified by Tables
1.10a and 1.10b.

A B A′ B′ B′ S A′ (B′ S A′) S B
T T F F T T

T F F T F T

F T T F T T

F F T T T F

A B A S B (A S B) S B)

T T T T

T F F T

F T T T

F F T F

(a) (b)

tAbLe 1.10

 Section 1.1 Statements, Symbolic Representation, and Tautologies 11

“used cars” AND (Ford OR Buick)

This would tend to limit your search to sites that mention only particular brands
of used cars, although you could still wind up with a link to Jim Bob Ford’s Loan
Shark Agency, which will lend you money for any used car. The query

“used cars” AND (Ford OR Buick) AND NOT trucks

would eliminate sites mentioning trucks. Many search engines use + (a plus sign)
in place of AND, and − (a minus sign) in place of AND NOT.

The logical connectives AND, OR, and NOT are also available in many pro-
gramming languages, as well as on programmable graphing calculators. These
connectives, in accordance with the truth tables we have defined, act on com-
binations of true or false expressions to produce an overall truth value. Such
truth values provide the decision-making capabilities fundamental to the flow of
control in computer programs. Thus, at a conditional branch in a program, if the
truth value of the conditional expression is true, the program will next execute
one section of code; if the value is false, the program will next execute a different
section of code. If the conditional expression is replaced by a simpler, equivalent
expression, the truth value of the expression and hence the flow of control of
the program is not affected, but the new code is easier to understand and may
execute faster.

 eXAMPLe 7 Consider a statement in a computer program that has the form

if ((outflow > inflow) and not ((outflow > inflow) and (pressure < 1000)))
do something;

else
do something else;

Here the conditional expression has the form

A ` (A ` B)′

where A is “outflow > inflow” and B is “pressure <1000.” This expression can be
simplified by replacing some wffs with equivalent wffs.

A ` (A ` B)′ 3 A ` (A′ ~ B′) (De Morgan’s laws)
 3 (A ` A′) ~ (A ` B′) (tautology 3b)
 3 0 ~ (A ` B′) (tautology 5b)
 3 (A ` B′) ~ 0 (tautology 1a)
 3 A ` B′ (tautology 4a)

The statement form can therefore be written

if ((outflow > inflow) and not (pressure < 1000))
do something;

else
do something else;

12 Formal Logic

Finally, the truth tables for conjunction, disjunction, and negation are implemented
by electronic devices called “gates” (AND gate, OR gate, inverter, respectively)
that are fundamental building blocks in computer circuitry. We’ll see in Chapter
8 (Boolean Algebra and Computer Logic) how to combine these gates into more
complex logic networks to carry out specific tasks.

an algorithm

To test whether a wff is a tautology, we can always write its truth table. For n
statement letters, 2n rows will be needed for the truth table. Suppose, however,
that the wff has implication as its main connective, so that it has the form P S Q
where P and Q are themselves wffs. Then we can use a quicker procedure than
constructing a truth table to determine whether P S Q is a tautology. We assume
that P S Q is not a tautology, and we see whether this leads to some impossible
situation. If it does, then the assumption that P S Q is not a tautology is also im-
possible, and P S Q must be a tautology after all.

To assume that P S Q is not a tautology is to say that it can take on false
values, and, by the truth table for implication, P S Q is false only when P is
true and Q false. By assigning P true and Q false, we determine possible truth
values for the wffs making up P and Q. We continue assigning the truth values so
determined until all occurrences of statement letters have a truth value. If some
statement letter is assigned both true and false values by this process, we have an
impossible situation, so the wff P S Q must be a tautology. Otherwise, we have
found a way to make P S Q false, and it is not a tautology.

What we have described is a set of instructions—a procedure—for carry-
ing out the task of determining whether P S Q is a tautology. This procedure
can be executed by mechanically following the instructions; in a finite amount
of time, we will have the answer. In computer science terms, the procedure is an
algorithm.

 defInItIon aLgoriThM
An algorithm is a set of instructions that can be mechanically executed in a finite
amount of time in order to solve some problem.

Algorithms constitute the very heart of computer science, and we will have
much to say about them throughout this book. You are probably already aware that
the major task in writing a computer program for solving a problem consists of
devising an algorithm (a procedure) to produce the problem solution.

Algorithms are often described in a form that is a middle ground between
a purely verbal description in paragraph form (as we gave for deciding whether
P S Q is a tautology) and a computer program (that, if executed, would actu-
ally carry out the steps of the algorithm) written in a programming language.
This compromise form to describe algorithms is called pseudocode. An algorithm
written in pseudocode should not be hard to understand even if you know nothing
about computer programming. The only thing to note about the pseudocode used
in this book is that lines preceded by double slashes (//) are explanatory com-
ments, not part of the algorithm itself.

Following is a pseudocode form of the algorithm to determine whether P S Q
is a tautology.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 13

The algorithm first assigns the truth values “true” to P and “false” to Q, con-
sistent with the assumption that P S Q is not a tautology. The algorithm then
enters a loop, where a sequence of steps is repeated until some condition is met.
Within the loop, truth assignments continue to be made to smaller and smaller
components of the original P and Q until all occurrences of individual statement
letters have truth values. Then the algorithm tests whether a contradiction has
 occurred, and writes out the information about whether P S Q is a tautology.

 ALgoRItHM TAuTologyTesT

TautologyTest (wff P; wff Q)

//Given wffs P and Q, decides whether the wff P S Q is a tautology.

//Assume P S Q is not a tautology
P = true //assign T to P
Q = false //assign F to Q

repeat
for each compound wff already assigned a truth value,
 assign the truth values determined for its components

until all occurrences of statements letters have truth values

if some letter has two truth values
then //contradiction, assumption false

 write (“P S Q is a tautology.”)
else //found a way to make P S Q false

write (“P S Q is not a tautology.”)
end if

end TautologyTest

 eXAMPLe 8 Consider the wff (A S B) S (B′ S A′). This matches the pattern needed in or-
der to use algorithm TautologyTest, namely P S Q, where P is A S B and Q is
B′ S A′. Following the algorithm, we first assign truth values

A S B true and B′ S A′ false

Moving on to the loop, the assignment of false to the compound statement B′ S A′ 
determines the further assignments

B′ true and A′ false

or

B false and A true

Now working with P, A true and A S B true determines the assignment

B true

14 Formal Logic

At this point all occurrences of statement letters have truth values, as follows:

 A–T B–T B–F A–T

 (A S B) S (B′ S A′)

 T F

This terminates the loop. In the final step of the algorithm, B now has an as-
signment of both T and F, so the algorithm decides that (A S B) S (B′ S A′)
is a tautology. Actually, we learned this earlier (in Practice 7(d)) by building a
truth table.

Algorithm TautologyTest decides whether wffs of a certain form, namely,
those where the main logical connective is S, are tautologies. However, the pro-
cess of building a truth table and then examining all the truth values in the final
column constitutes an algorithm to decide whether an arbitrary wff is a tautology.
This second algorithm is therefore more powerful because it solves a more general
problem, but algorithm TautologyTest is usually faster for those wffs to which it
applies.

ReMIndeR

Algorithm TautologyTest
applies only when the
main connective is S.

Special intereSt page

Can “And” Ever Be “Or”?

In 2003, OfficeMax sued the United States government
(the Internal Revenue Service) for a return of excise
tax that OfficeMax had paid for telephone service.
This was not a trivial financial matter–OfficeMax had
paid over $380,000.00 in telephone excise tax. To un-
derstand the nature of the argument, we need a brief
history of the federal tax on telephone service.

The first telephone tax was enacted by Congress in
1898 (22 years after the invention of the telephone by
 Alexander Graham Bell). The tax was intended to help
pay the federal debt incurred by the Spanish-American
War, and it was repealed, as planned, in 1902. Over sub-
sequent years, the telephone tax came and went with
fluctuating rates as the government incurred debt. Res-
urrected again in 1932, the tax, in one form or another,
has been in effect ever since. In 1965, Congress defined
local phone service and “toll telephone service” (long-
distance calls) as two categories of taxable service, and it
set the tax rate at 3%. Of interest to this discussion is the
definition Congress gave at this time of “toll telephone
service,” which states in part that it is “a telephonic qual-
ity communication for which there is a toll charge which
varies in amount with the distance and elapsed transmis-
sion time of each individual communication.” Keep in
mind that in 1965, there was essentially only a single
telephone service provider in the United States, namely
AT&T, and at that time AT&T charges were based on both
the duration and the distance of each call. By the 1990s,
AT&T had been broken up and there were a number of
competitive telephone companies. In addition, telephone
companies began to charge a flat rate per minute for na-
tionwide long-distance calls. The phone companies col-
lected the federal excise tax from their customers and
passed the tax on to the federal government.

OfficeMax used MCI as its phone service provider
from 1999 to 2002, during which time MCI collected the
excise tax from OfficeMax. In 2003, OfficeMax sued the
federal government for a refund of the excise taxes MCI
had collected on the basis that MCI was not providing
“toll telephone service” as defined by Congress in 1965
because MCI was charging a rate based not on time and
distance but only on time. Here is the issue: What exact-
ly is the meaning of the word “and” in “varies in amount
with the distance and elapsed transmission time”?

OfficeMax argument: “And” means the conjunc-
tive “and,” as the truth table for “and” is defined in

formal logic. For the tax to apply, the phone company
had to charge its customers a rate based on both time
and distance.

Internal Revenue Service argument: Elsewhere
in this same legislation, Congress did use “and” in a
disjunctive sense when it defined “communication ser-
vices” as “local telephone service, toll telephone ser-
vice, and teletypewriter exchange service.” Because
these three are mutually exclusive, “and” here could
not have a conjunctive meaning.

The majority opinion of the United States Court
of Appeals for the Sixth Circuit, in 2005, agreed with
OfficeMax. Its reasoning was (1) dictionary defini-
tions, legal usage guides, and case law assert that “and”
is generally conjunctive, (2) the conjunctive usage is
consistent with the billing mechanism used by the only
telephone company in existence at the time the law was
written, (3) the disjunctive interpretation would allow
the possibility of a telephone charge based solely on dis-
tance, which is a ridiculous idea that Congress surely
did not intend, and (4) lower courts had found in favor of
OfficeMax. In short, the IRS lost this case and a num-
ber of similar cases, and in 2006 it announced that
phone service that is charged on time and not distance
is not taxable. (The 3% excise tax on local telephone
service is still in effect.)

One must, however, appreciate the humor of the
dissenting opinion in the OfficeMax case: “A host sep-
arately asked two prospective guests what they liked to
drink. One said, “I like bourbon and water.” The other
said, “I like beer and wine.” When the second guest
arrived at the event, the host served the guest a glass of
beer mixed with wine. “What′s that awful drink?” said
the guest, to which the host answered, “You said you
liked beer and wine.” Sometimes we apparently do use
“and” in a disjunctive sense. So here is a legal—and
financial—case that hinged on the truth table for the
logical connective AND. How cool is that?!

OFFICEMAX, INC., Plaintiff-Appellee, v. UNITED
STATES of America, Defendant-Appellant,
No. 04-4009, United States Court of Appeals,
Sixth Circuit, Argued: July 29, 2005, Decided and
Filed: November 2, 2005, 428 F.3d 583. Online at
http://law.justia.com/cases/federal/appellate-courts/
F3/428/583/565375/

Chapter 1

http://law.justia.com/cases/federal/appellate-courts/F3/428/583/565375/
http://law.justia.com/cases/federal/appellate-courts/F3/428/583/565375/

16 Formal Logic

S e c t I o n 1 . 1 Review

tecHnIQueS

• Construct truth tables for compound wffs.
• Recognize tautologies and contradictions.

MAIn IdeAS

• Wffs are symbolic representations of statements.

• Truth values for compound wffs depend on the
truth values of their components and the types of
connectives used.

• Tautologies are “intrinsically true” wffs—true for
all truth values.

W
W

eXeRcISeS 1.1

 1. Which of the following sentences are statements?
 a. The moon is made of green cheese.
 b. He is certainly a tall man.
 c. Two is a prime number.
 d. The game will be over by 4:00.
 e. Next year interest rates will rise.
 f. Next year interest rates will fall.
 g. x2 − 4 = 0
 2. What is the truth value of each of the following statements?
 a. 8 is even or 6 is odd.
 b. 8 is even and 6 is odd.
 c. 8 is odd or 6 is odd.
 d. 8 is odd and 6 is odd.
 e. If 8 is odd, then 6 is odd.
 f. If 8 is even, then 6 is odd.
 g. If 8 is odd, then 6 is even.
 h. If 8 is odd and 6 is even, then 8 < 6.
 3. Given the truth values A true, B false, and C true, what is the truth value of each of the following wffs?
 a. A ` (B ~ C) c. (A ` B)′ ~ C
 b. (A ` B) ~ C d. A′ ~ (B′ ` C)′
 4. Given the truth values A false, B true, and C true, what is the truth value of each of the following wffs?
 a. A S (B ~ C) c. C S (A′ ` B′)
 b. (A ~ B) S C d. A ~ (B′ S C)
 5. Rewrite each of the following statements in the form “If A, then B.”
 a. Healthy plant growth follows from sufficient water.
 b. Increased availability of information is a necessary condition for further technological advances.
 c. Errors were introduced only if there was a modification of the program.
 d. Fuel savings implies good insulation or storm windows throughout.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 17

 6. Rewrite each of the following statements in the form “If A, then B.”
 a. Candidate Lu winning the election will be a sufficient condition for property taxes to increase.
 b. The user clicks Pause only if the game level changes.
 c. The components are scarce, therefore the price increases.
 d. Healthy hair is a necessary condition for good shampoo.
 7. Common English has many ways to describe logical connectives. Write a wff for each of the following

expressions.
 a. Either A or B b. Neither A nor B
 8. Common English has many ways to describe logical connectives. Write a wff for each of the following

expressions.
 a. B whenever A c. A indicates B
 b. A is derived from B d. A exactly when B
 9. Several forms of negation are given for each of the following statements. Which are correct?
 a. The answer is either 2 or 3.
 1. Neither 2 nor 3 is the answer.
 2. The answer is not 2 or not 3.
 3. The answer is not 2 and it is not 3.
 b. Cucumbers are green and seedy.
 1. Cucumbers are not green and not seedy.
 2. Cucumbers are not green or not seedy.
 3. Cucumbers are green and not seedy.
 c. 2 < 7 and 3 is odd.
 1. 2 > 7 and 3 is even. 3. 2 ≥ 7 or 3 is odd.
 2. 2 ≥ 7 and 3 is even. 4. 2 ≥ 7 or 3 is even.
 10. Several forms of negation are given for each of the following statements. Which are correct?
 a. The carton is sealed or the milk is sour.
 1. The milk is not sour or the carton is not sealed.
 2. The carton is not sealed and also the milk is not sour.
 3. If the carton is not sealed, then the milk will be sour.
 b. Flowers will bloom only if it rains.
 1. The flowers will bloom but it will not rain.
 2. The flowers will not bloom and it will not rain.
 3. The flowers will not bloom or else it will not rain.
 c. If you build it, they will come.
 1. If you build it, then they won’t come.
 2. You don’t build it, but they do come.
 3. You build it, but they don’t come.
 11. Write the negation of each statement.
 a. If the food is good, then the service is excellent.
 b. Either the food is good or the service is excellent.

18 Formal Logic

 c. Either the food is good and the service is excellent, or else the price is high.
 d. Neither the food is good nor the service excellent.
 e. If the price is high, then the food is good and the service is excellent.
 12. Write the negation of each statement.
 a. The processor is fast but the printer is slow.
 b. The processor is fast or else the printer is slow.
 c. If the processor is fast, then the printer is slow.
 d. Either the processor is fast and the printer is slow, or else the file is damaged.
 e. If the file is not damaged and the processor is fast, then the printer is slow.
 f. The printer is slow only if the file is damaged.
 13. Using the letters indicated for the component statements, translate the following compound statements

into symbolic notation.
 a. A: prices go up; B: housing will be plentiful; C: housing will be expensive
 If prices go up, then housing will be plentiful and expensive; but if housing is not expensive, then it will

still be plentiful.
 b. A: going to bed; B: going swimming; C: changing clothes
 Either going to bed or going swimming is a sufficient condition for changing clothes; however, chang-

ing clothes does not mean going swimming.
 c. A: it will rain; B: it will snow
 Either it will rain or it will snow but not both.
 d. A: Janet wins; B: Janet loses; C: Janet will be tired
 If Janet wins or if she loses, she will be tired.
 e. A: Janet wins; B: Janet loses; C: Janet will be tired
 Either Janet will win or, if she loses, she will be tired.
 14. Using the letters indicated for the component statements, translate the following compound statements

into symbolic notation.
 a. A: the tractor wins; B: the truck wins; C: the race will be exciting.
 Whether the tractor wins or the truck wins, the race will be exciting
 b. A: snow; B: rain; C: yesterday was cloudy
 Yesterday was cloudy but there was neither snow nor rain.
 c. A: Koalas will be saved; B: climate change is addressed; C: rising water levels
 Koalas will be saved only if climate change is addressed; furthermore, failure to address climate change

will cause rising water levels.
 d. A: the city’s economy will improve; B: a strong school system
 The city’s economy will improve conditional upon a strong school system.
 e. A: the city’s economy will improve; B: a strong school system
 A strong school system is a necessary condition for the city’s economy to improve.
 15. Let A, B, and C be the following statements:
 A Roses are red.
 B Violets are blue.
 C Sugar is sweet.
 Translate the following compound statements into symbolic notation.
 a. Roses are red and violets are blue.
 b. Roses are red, and either violets are blue or sugar is sweet.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 19

 c. Whenever violets are blue, roses are red and sugar is sweet.
 d. Roses are red only if violets aren’t blue or sugar is sour.
 e. Roses are red and, if sugar is sour, then either violets aren’t blue or sugar is sweet.
 16. Let A, B, and C, and D be the following statements:
 A The villain is French.
 B The hero is American.
 C The heroine is British.
 D The movie is good.
 Translate the following compound statements into symbolic notation.
 a. The hero is American and the movie is good.
 b. Athough the villain is French, the movie is good.
 c. If the movie is good, then either the hero is American or the heroine is British.
 d. The hero is not American, but the villain is French.
 e. A British heroine is a necessary condition for the movie to be good.
 17. Use A, B, and C as defined in Exercise 15 to translate the following statements into English.
 a. B ~ C′ e. (B ` C′)′ S A
 b. B′ ~ (A S C) f. A ~ (B ` C′)
 c. (C ` A′) 4 B g. (A ~ B) ` C′
 d. C ` (A′ 4 B)
 18. Use A, B, and C as defined in Exercise 16 to translate the following statements into English.
 a. B S A′ e. A 4 (B ~ C)
 b. B ` C ` D′ f. D′ S (A ~ C)′
 c. B S (C ~ A) g. (C S D) ` (A S B′)
 d. (A ~ C) S B′
 19. Using letters H, K, A for the component statements, translate the following compound statements into

symbolic notation.
 a. If the horse is fresh, then the knight will win.
 b. The knight will win only if the horse is fresh and the armor is strong.
 c. A fresh horse is a necessary condition for the knight to win.
 d. The knight will win if and only if the armor is strong.
 e. A sufficient condition for the knight to win is that the armor is strong or the horse is fresh.
 20. Using letters A, T, E for the component statements, translate the following compound statements into

symbolic notation.
 a. If Anita wins the election, then tax rates will be reduced.
 b. Tax rates will be reduced only if Anita wins the election and the economy remains strong.
 c. Tax rates will be reduced if the economy remains strong.
 d. A strong economy will follow from Anita winning the election.
 e. The economy will remain strong if and only if Anita wins the election or tax rates are reduced.
 21. Using letters F, B, S for the component statements, translate the following compound statements into

symbolic notation.
 a. Plentiful fish are a sufficient condition for bears to be happy.
 b. Bears are happy only if there are plentiful fish.

20 Formal Logic

 c. Unhappy bears means that the fish are not plentiful and also that there is heavy snow.
 d. Unhappy bears are a necessary condition for heavy snow.
 e. The snow is heavy if and only if the fish are not plentiful.
 22. Using letters P, C, B, L for the component statements, translate the following compound statements into

symbolic notation.
 a. If the project is finished soon, then the client will be happy and the bills will be paid.
 b. If the bills are not paid, then the lights will go out.
 c. The project will be finished soon only if the lights do not go out.
 d. If the bills are not paid and the lights go out, then the client will not be happy.
 e. The bills will be paid if and only if the project is finished soon, or else the lights go out.
 f. The bills will be paid if and only if either the project is finished soon or the lights go out.
 23. Construct truth tables for the following wffs. Note any tautologies or contradictions.
 a. (A S B) 4 A′ ~ B d. A ` B S A′
 b. (A ` B) ~ C S A ` (B ~ C) e. (A S B) S [(A ~ C) S (B ~ C)]
 c. A ` (A′ ~ B′)′
 24. Construct truth tables for the following wffs. Note any tautologies or contradictions.
 a. A S (B S A) d. [(A ~ B) ` C′] S A′ ~ C
 b. A ` B 4 B′ ~ A′  e. A′ S (B ~ C′)
 c. (A ~ B′) ` (A ` B)′
 25. Verify the equivalences in the list on page 9 by constructing truth tables. (We have already verified

1a, 4b, and 5a.)
 26. Verify by constructing truth tables that the following wffs are tautologies. Note that the tautologies in parts

b, e, f, and g produce equivalences such as (A′)′ 3 A.
 a. A ~ A′ e. (A ~ B)′ 4 A′ ` B′ (De Morgan’s law)
 b. (A′)′ 4 A f. (A ` B)′ 4 A′ ~ B′ (De Morgan’s law)
 c. A ` B S B g. A ~ A 4 A
 d. A S A ~ B
 27. Prove the following tautologies by starting with the left side and finding a series of equivalent wffs that

will convert the left side into the right side. You may use any of the equivalencies in the list on page 9 or
the equivalencies from Exercise 26.

 a. (A ` B′) ` C 4 (A ` C) ` B′
 b. (A ~ B) ` (A ~ B′) 4 A
 c. A ~ (B ` A′) 4 A ~ B
 28. Prove the following tautologies by starting with the left side and finding a series of equivalent wffs that

will convert the left side into the right side. You may use any of the equivalencies in the list on page 9 or
the equivalencies from Exercise 26.

 a. (A ` B′)′ ~ B 4 A′ ~ B
 b. A ` (A ` B′)′ 4 A ` B
 c. (A ` B)′ ` (A ~ B′) 4 B′
 29. We mentioned that (A ` B) ~ C cannot be proved equivalent to A ` (B ~ C) using either of the associative

tautological equivalences, but perhaps it can be proved some other way. Are these two wffs equivalent?
Prove or disprove.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 21

 30. Let P be the wff A S B. Prove or disprove whether P is equivalent to any of the following related wffs.
 a. the converse of P, B S A
 b. the inverse of P, A′ S B′
 c. the contrapositive of P, B′ S A′
 31. Write a logical expression for a Web search engine to find sites pertaining to dogs that are not retrievers.
 32. Write a logical expression for a Web search engine to find sites pertaining to oil paintings by Van Gogh or

Rembrandt but not Vermeer.
 33. Write a logical expression for a Web search engine to find sites pertaining to novels or plays about AIDS.
 34. Write a logical expression for a Web search engine to find sites pertaining to coastal wetlands in Louisiana

but not in Alabama.
 35. Consider the following pseudocode.

repeat
 i = 1
 read a value for x
 if ((x < 5.0) and (2x < 10.7)) or ("5x > 5.1) then
 write the value of x
 end if
 increase i by 1
until i > 5

 The input values for x are 1.0, 5.1, 2.4, 7.2, and 5.3. What are the output values?
 36. Suppose that A, B, and C represent conditions that will be true or false when a certain computer program

is executed. Suppose further that you want the program to carry out a certain task only when A or B is true
(but not both) and C is false. Using A, B, and C and the connectives AND, OR, and NOT, write a statement
that will be true only under these conditions.

 37. Rewrite the following statement form with a simplified conditional expression, where the function odd(n)
returns true if n is odd.

if not((Value1 < Value2) or odd(Number))
or (not(Value1 < Value2) and odd(Number)) then
 statement1
else
 statement2
end if

 38. You want your program to execute statement 1 when A is false, B is false, and C is true, and to execute
statement 2 otherwise. You wrote

if not(A and B) and C then
 statement 1
else
 statement 2
end if

 Does this do what you want?
 39. Verify that A S B is equivalent to A′ ~ B.
 40. a. Using Exercise 39 and other equivalences, prove that the negation of A S B is equivalent to

A ` B′
 b. Write the negation of the statement “If Sam passed his bar exam, then he will get the job.”

22 Formal Logic

 41. Use algorithm TautologyTest to prove that the following expressions are tautologies.
 a. [B′ ` (A S B)] S A′
 b. [(A S B) ` A] S B
 c. (A ~ B) ` A′ S B
 42. Use algorithm TautologyTest to prove that the following expressions are tautologies.
 a. (A ` B) ` B′ S A
 b. (A ` B′) S (A S B)′
 c. (A ` B)′ ~ B′ S A′ ~ B′
 43. A memory chip from a digital camera has 25 bistable (ON-OFF) memory elements. What is the total num-

ber of ON-OFF configurations?
 44. In each case, construct compound wffs P and Q so that the given statement is a tautology.
 a. P ` Q
 b. P S P′
 c. P ` (Q S P′)
 45. From the truth table for A ~ B, the value of A ~ B is true if A is true, if B is true, or if both are true. This

use of the word “or,” where the result is true if both components are true, is called the inclusive or. It is
the inclusive or that is understood in the sentence, “We may have rain or drizzle tomorrow,” which might
also be expressed as, “We may have rain or drizzle or both tomorrow.” Another use of the word “or” in
the English language is the exclusive or, sometimes written XOr, in which the result is false when both
components are true. The exclusive or is understood in the sentence, “At the intersection, you should turn
north or south,” (but obviously not both). Exclusive or is symbolized by A ! B. Write the truth table for
the exclusive or.

 46. Prove that A ! B 4 (A 4 B)′ is a tautology. Explain why this makes sense.

Exercises 47–50 show that defining four basic logical connectives (conjunction, disjunction, implication, and
negation) is a convenience rather than a necessity because certain pairs of connectives are enough to express
any wff. Exercises 51–52 show that a single connective, properly defined, is sufficient.

 47. Every compound statement is equivalent to a statement using only the connectives of conjunction and ne-
gation. To see this, we need to find equivalent wffs for A ~ B and for A S B that use only ` and ′. These
new statements can replace, respectively, any occurrences of A ~ B and A S B. (The connective 4 was
defined in terms of other connectives, so we already know that it can be replaced by a statement using
these other connectives.)

 a. Show that A ~ B is equivalent to (A′ ` B′)′
 b. Show that A S B is equivalent to (A ` B′)′
 48. Show that every compound wff is equivalent to a wff using only the connectives of ~ and ′. (Hint: See

Exercise 47.)
 49. Show that every compound wff is equivalent to a wff using only the connectives of S and ′. (Hint: See

Exercise 47.)
 50. Prove that there are compound statements that are not equivalent to any statement using only the

 connectives S and ~.
 51. The binary connective 0 is called the Sheffer stroke, named for the American logic professor Henry Shef-

fer, who proved in 1913 that this single connective is the only one needed. The truth table for 0 is given
here. Sheffer also coined the term “Boolean algebra,” the topic of Chapter 8, where we will see that this
truth table represents the NAND gate.

 Section 1.1 Statements, Symbolic Representation, and Tautologies 23

A B A 0 B
T T F

T F T

F T T

F F T

 52. The binary connective T is called the Peirce arrow, named for American philosopher Charles Peirce (not
for the antique automobile). The truth table for T is given here. In Chapter 8 we will see that this truth table
represents the NOR gate

A B A T B

T T F

T F F

F T F

F F T

 53. Propositional wffs and truth tables belong to a system of two-valued logic because everything has one of
two values, False or True. Three-valued logic allows a third value of Null or “unknown” (Section 5.3 dis-
cusses the implications of three-valued logic on databases). The truth tables for this three-valued system
follow.

A B A ` B A B A ~ B A A′

T T T T T T T F

T F F T F T F T

T N N T N T N N

F T F F T T

F F F F F F

F N F F N N

N T N N T T

N F F N F N

N N N N N N

 a. Viewing N as “unknown”, explain why it is reasonable to define T ` N = N, F ~ N = N, and
N′ = N.

 Suppose the statement, “Flight 237 is on time,” is true, the statement, “Runway conditions are icy,” is
false, and the truth value of the statement, “Flight 51 is on time,” is unknown. Find the truth values of the
following statements.

 b. Runway conditions are not icy and flight 51 is on time.
 c. Flight 51 is on time and flight 237 is not.
 d. Flight 51 is not on time or runway conditions are not icy.
 54. Propositional wffs and truth tables belong to a system of two-valued logic because everything has one of

two values, F or T, which we can think of as 0 or 1. In fuzzy logic, or many-valued logic, statement letters
are assigned values in a range between 0 and 1 to reflect some “probability” to which they are false or
true. A statement letter with a truth value of 0.9 is “mostly true” or “has a high probability of being true”
while a statement letter with a truth value of 0.05 “has a very high probability of being false.” Fuzzy logic

 Show that every compound wff is equivalent to a wff using only the
connective 0 . (Hint: Use Exercise 47 and find equivalent statements
for A ` B and A′ in terms of 0 .)

 Show that every compound statement is equivalent to a statement
using only the connective T. (Hint: See Exercise 51.)

24 Formal Logic

is used to manage decisions in many imprecise situations such as robotics, manufacturing, or instrument
control. Truth values for compound statements are determined as follows.

 A′ has the truth value 1 − A.
 A ` B has the truth value that is the minimum of the values of A and of B.
 A ~ B has the truth value that is the maximum of the values of A and B.
 a. Explain why these are reasonable assignments for the truth values of A′, A ` B, and A ~ B.
 Suppose the statement, “Flight 237 is on time,” is estimated to have a truth value of 0.84 and the state-

ment, “Runway conditions are icy,” is estimated to have a truth value of 0.12. Find the truth values of the
following statements.

 b. Runway conditions are not icy.
 c. Runway conditions are icy and flight 237 is on time.
 d. Runway conditions are icy or flight 237 is not on time.
 55. In a three-valued logic system as described in Exercise 53, how many rows are needed for a truth table

with n statement letters?
 56. In 2003, then U.S. Secretary of Defense Donald Rumsfeld won Britain’s Plain English Campaign 2003

Golden Bull Award for this statement: “Reports that say that something hasn’t happened are always inter-
esting to me, because as we know, there are known knowns, there are things we know we know. We also
know there are known unknowns; that is to say we know there are some things we do not know. But there
are also unknown unknowns—the ones we don’t know we don’t know.”

 What possibility did Secretary Rumsfeld omit?
 57. Four machines, A, B, C, and D, are connected on a computer network. It is feared that a computer virus

may have infected the network. Your security team makes the following statements:
 a. If D is infected, then so is C.
 b. If C is infected, then so is A.
 c. If D is clean, then B is clean but C is infected.
 d. If A is infected, then either B is infected or C is clean.
 Assuming that these statements are all true, what can you conclude? Explain your reasoning.
 58. The Dillies have five teenaged children, two boys named Ollie and Rollie, and three girls named Mellie,

Nellie, and Pollie. Each is a different number of years old, from 13 to 17. There are three bedrooms for the
children in the Dillie house, so two share the yellow room, two share the white room, and one alone has
the smaller green room. Can you match each one’s name and age, and tell who sleeps where?

 a. No one shares a room with a sibling of the opposite sex.
 b. Pollie is exactly one year older than Mellie.
 c. The two teenagers who share the yellow room are two years apart in age.
 d. The two who share the white room are three years apart in age.
 e. Rollie is somewhat older than Ollie but somewhat younger than the sibling who has the green room. 2

 Determine who sleeps in each room and what their ages are. Explain your reasoning.
 59. An advertisement for a restaurant at an exclusive club in Honolulu says, “Members and nonmembers

only.” Give two possible interpretations of this statement.
 60. The following newspaper headline was printed during a murder trial:

“I am a liar” says murder defendant!
 Can the jury reach any conclusion from this statement?

2Scott Marley, Dell Logic Puzzles, April, 1998

 Section 1.2 Propositional Logic 25

3For more puzzles about “knights” and “knaves,” see What Is the Name of This Book? by the logician—and magician—Raymond Smullyan
(Prentice-Hall, 1978).

In Exercises 61–64, you are traveling in a certain country where every inhabitant is either a truthteller who
always tells the truth or a liar who always lies.3

 61. You meet two of the inhabitants of this country, Percival and Llewellyn. Percival says, “At least one of us
is a liar.” Is Percival a liar or a truth teller? What about Llewellyn? Explain your answer.

 62. Traveling on, you meet Merlin and Meredith. Merlin says, “If I am a truth teller, then Meredith is a truth
teller.” Is Merlin a liar or a truth teller? What about Meredith? Explain your answer.

 63. Next, you meet Rothwold and Grymlin. Rothwold says, “Either I am a liar or Grymlin is a truth teller.” Is
Rothwold a liar or a truth teller? What about Grymlin? Explain your answer.

 64. Finally, you meet Gwendolyn and Merrilaine. Gwendolin says, “I am a liar but Merrilaine is not.” Is
Gwendolyn a liar or a truth teller? What about Merrilaine?

 S e c t i o n 1 . 2 ProPositional logic

The argument of the defense attorney at the beginning of this chapter made a
number of (supposedly true) statements and then asked the jury to draw a specific
conclusion based on those statements. In Section 1.1, we used the notation of for-
mal logic to represent statements in symbolic form as wffs; because statements
are sometimes called propositions, these wffs are also called propositional wffs.
Now we want to use tools from formal logic to see how to reach logical conclu-
sions based on given statements. The formal system that uses propositional wffs
is called propositional logic, statement logic, or propositional calculus. (The
word calculus is used here in the more general sense of “calculation” or “reason-
ing,” not “differentiating” or “integrating.”)

Valid Arguments

An argument can be represented in symbolic form as

P1 ` P2 ` P3 ` … ` Pn S Q

where P1, P2, … , Pn are the given statements, called the hypotheses, of the argu-
ment, and Q is the conclusion of the argument. As usual, the P’s and the Q rep-
resent wffs, not merely statement letters. When should this be considered a valid
argument? This question can be stated in several equivalent ways:

• When can Q be logically deduced from P1, … , Pn?
• When is Q a logical conclusion from P1, … , Pn?
• When does P1, … , Pn logically imply Q?
• When does Q follow logically from P1, … , Pn?

and so forth.

26 Formal Logic

An informal answer is that Q is a logical conclusion from P1, … , Pn whenever
the truth of P1, … , Pn implies the truth of Q. In other words, when the implication

P1 ` P2 ` P3 ` … ` Pn S Q

is true. (Of course, this implication is true if any of the hypotheses is false, but
in an argument we usually care about what happens when all the hypotheses are
true.) Furthermore, this implication should be true based on the relationship of the
conclusion to the hypotheses, not on any incidental knowledge we may happen to
have about Q.

 eXAMPLe 9 Consider the following argument:

George Washington was the first president of the United States. Thomas
 Jefferson wrote the Declaration of Independence. Therefore, every day has
24 hours.

This argument has the two hypotheses

 1. George Washington was the first president of the United States.
 2. Thomas Jefferson wrote the Declaration of Independence.

and the conclusion

Every day has 24 hours.

Even though each of the individual hypotheses, as well as the conclusion, is a true
statement, we would not consider this argument valid. The conclusion is merely an
isolated true fact, not at all related to or “following from” the hypotheses.

A valid argument should therefore be true based entirely on its internal struc-
ture; it should be “intrinsically true.” Therefore we make the following formal
definition.

 defInItIon VaLiD arguMenT
The propositional wff

P1 ` P2 ` P3 ` … ` Pn S Q

is a valid argument when it is a tautology.

The argument in Example 9 would be symbolized as

A ` B S C

which is clearly not a tautology.

 eXAMPLe 10 Consider the following argument. If George Washington was the first president of
the United States, then John Adams was the first vice president. George Washing-
ton was the first president of the United States. Therefore John Adams was the first
vice president.

 Section 1.2 Propositional Logic 27

This argument has the two hypotheses:

	 1.	 If	George	Washington	was	 the	first	president	of	 the	United	States,	 then	
John	Adams	was	the	first	vice	president.

	 2.	 George	Washington	was	the	first	president	of	the	United	States.

and	the	conclusion

John	Adams	was	the	first	vice	president.

A	symbolic	representation	of	this	argument	has	the	form

(A S B) ` A S B

A	truth	table	or	algorithm	TautologyTest	establishes	that	this	argument	is	a	tautol-
ogy.	The	argument	is	valid;	its	form	is	such	that	the	conclusion	follows	inevitably	
from	the	hypotheses.	In	fact,	this	form	of	argument,	known	by	its	Latin	name	of	
modus ponens	(“method	of	assertion”),	is	one	of	the	rules	of	reasoning	we	will	use	
to	build	propositional	logic.

To test whether a wff P1 ` P2 ` P3 ` … ` Pn S Q	is	a	tautology,	we	could	
build	a	truth	table	or	use	algorithm	TautologyTest.	Instead,	we	will	turn	to	formal	
logic,	which	uses	a	system	of	derivation rules that	manipulate	wffs	in	a	truth-
preserving	manner.	You	begin	with	the	hypotheses	P1,	…	,	Pn	(assumed	true)	and	
attempt	to	apply	the	manipulation	rules	in	such	a	way	as	to	end	up	with	the	conclu-
sion Q	(which	must	then	also	be	true	because	truth	is	preserved	under	the	rules).

 Definition Proof sequence
A proof sequence	is	a	sequence	of	wffs	in	which	each	wff	is	either	a	hypothesis	
or	the	result	of	applying	one	of	the	formal	system’s	derivation	rules	to	earlier	
wffs	in	the	sequence.

Using	formal	logic	to	prove	that	Q	is	a	valid	conclusion	from	P1,	…	,	Pn,	we	
must	produce	a	proof	sequence	of	the	form

P1 (hypothesis)
P2 (hypothesis)
 (
Pn (hypothesis)
wff1	 (obtained	by	applying	a	derivation	rule	to	earlier	wffs)
wff2	 (obtained	by	applying	a	derivation	rule	to	earlier	wffs)
 (
Q	 (obtained	by	applying	a	derivation	rule	to	earlier	wffs)

The	derivation	 rules	 for	a	 formal	 system	must	be	carefully	chosen.	 If	 they	
are	too	powerful,	then	they	won’t	be	truth	preserving	and	we’ll	be	able	to	deduce	
anything	at	all	 from	a	given	set	of	hypotheses.	If	 they	are	 too	weak,	 there	will	
be	logical	conclusions	that	we	won’t	be	able	to	prove	from	given	hypotheses.	We	
want	a	formal	logic	system	that	is	correct (only	valid	arguments	should	be	prov-
able)	and	complete (every	valid	argument	 should	be	provable).	 In	addition,	 the	

28 Formal Logic

derivation rules should be kept to a minimum in order to make the formal system
manageable. We would like the system to have the smallest set of rules that still
allows it to be complete.

Derivation rules for Propositional Logic

The derivation rules for propositional logic fall into two categories, equivalence
rules and inference rules. Equivalence rules allow individual wffs to be rewrit-
ten, while inference rules allow new wffs to be derived from previous wffs in the
proof sequence.

equivalence rules state that certain pairs of wffs R and S are equivalent.
Remember from Section 1.1 that R 3 S means that R 4 S is a tautology and
that S can be substituted for R in any wff with no change to the truth value of that
wff. Equivalence rules are therefore truth-preserving; a true wff remains true if
such a substitution is done within it.

Table 1.11 lists the equivalence rules we will use in our formal system for
propositional logic. (Additional rules could be formulated based on other tautolo-
gies, but we are trying to keep our rule set to a minimum.) Each is given a name
to make it easier to identify its use in a proof sequence. We saw the commutative
and associative rules, as well as De Morgan’s laws, in Section 1.1. There they were
given for statement letters only, here they are given for any wffs P, Q, R, but they
are still tautologies.

pRaCtiCe 9 Prove the implication rule.
That is, prove that

(P S Q) 4 (P′ ~ Q)

is a tautology.

tAbLe 1.11

equivalence Rules

expression equivalent to name/Abbreviation for Rule

P ~ Q
P ` Q

Q ~ P
Q ` P

Commutative—comm

(P ~ Q) ~ R
(P ` Q) ` R

P ~ (Q ~ R)
P ` (Q ` R)

Associative—ass

(P ~ Q)′
(P ` Q)′

P′ ` Q′
P′ ~ Q′

De Morgan’s Laws—De
 Morgan

P S Q P′ ~ Q Implication—imp

P (P′)′ Double negation—dn

P 4 Q (P S Q) ` (Q S P) Definition of equivalence—equ

 eXAMPLe 11 Suppose that one hypothesis of a propositional argument can be symbolized as

(A′ ~ B′) ~ C

 Section 1.2 Propositional Logic 29

Then a proof sequence for the argument could begin with the following steps:

1. (A′ ~ B′) ~ C hyp (hypothesis)
2. (A ` B)′ ~ C 1, De Morgan
3. (A ` B) S C 2, imp

The justification given for each step is not a required part of the proof sequence,
but it does confirm that the step is a legitimate one. Step 1 is a hypothesis. Step 2 is
derived from step 1 by applying one of De Morgan’s Laws. Step 3 is derived from
step 2 by using the implication rule that P S Q is equivalent to P′ ~ Q, where P is
the wff A ` B, and Q is the wff C.

The equivalence rules allow substitution in either direction. That is, in Ex-
ample 11 we replaced A′ ~ B′ with (A ` B)′, but in some other proof sequence,
using the same rule, we might replace (A ` B)′ with A′ ~ B′.

inference rules say that if one or more wffs that match the first part of the
rule pattern are already part of the proof sequence, we can add to the proof se-
quence a new wff that matches the last part of the rule pattern. Table 1.12 shows
the propositional inference rules we will use, again along with their identifying
names.

tAbLe 1.12

Inference Rules

from can derive name/Abbreviation for Rule

P, P S Q Q Modus ponens—mp

P S Q, Q′ P′ Modus tollens—mt

P, Q P ` Q Conjunction—con

P ` Q P, Q Simplification—sim

P P ~ Q Addition—add

Unlike equivalence rules, inference rules do not work in both directions. We
cannot “reverse” the addition rule in Table 1.12; from P ~ Q, we cannot infer
either P or Q.

 eXAMPLe 12 Suppose that A S (B ` C) and A are two hypotheses of an argument. A proof se-
quence for the argument could begin with the following steps:

1. A S (B ` C) hyp
2. A hyp
3. B ` C 1, 2, mp

The justification at step 3 is that steps 1 and 2 exactly match the pattern required
for modus ponens, where P is A and Q is B ` C. Modus ponens says that Q can be
derived from P and P S Q.

30 Formal Logic

The inference rules are also truth-preserving. For example, suppose that P
and P S Q are both true wffs in a proof sequence. Then Q is deducible from these
two wffs by modus ponens. If P and P S Q are both true, then—by the truth table
for implication—Q is also true.

The derivation rules, like the tautological equivalencies of Section 1.1, repre-
sent recipes or patterns for transforming wffs. A rule can be applied only when the
wffs exactly match the pattern.

pRaCtiCe 10 Give a next step and a justification for a proof sequence that begins

1. (A ` B′) S C hyp
2. C′ hyp

ReMIndeR

To use a derivation rule,
wffs must exactly match
the rule pattern.

 eXAMPLe 13 Suppose that (A S B) ~ C and A are two hypotheses of an argument. A proof
 sequence for the argument could begin with the following steps:

1. (A S B) ~ C hyp
2. A hyp

Unlike Example 12, however, nothing further can be done. Modus ponens requires
the presence of wffs matching the pattern P and P S Q. In P S Q, the main con-
nective is an implication. The wff (A S B) ~ C has disjunction, not implication, as
its main connective. Modus ponens does not apply, nor does anything else.

Now we are ready to work our way through a complete proof of an argument.

 eXAMPLe 14 Using propositional logic, prove that the argument

A ` (B S C) ` [(A ` B) S (D ~ C′)] ` B S D

is valid.
We must produce a proof sequence that begins with the hypotheses and ends

with the conclusion. There are four hypotheses, so this gives us lots of “ammuni-
tion” to use in the proof. The beginning of the proof is easy enough because it just
involves listing the hypotheses:

1. A hyp
2. B S C hyp
3. (A ` B) S (D ` C′) hyp
4. B hyp

Our final goal is to arrive at D, the conclusion. But without even looking ahead,
there are a couple of fairly obvious steps we can take that may or may not be helpful.

5. C 2, 4, mp
6. A ` B 1, 4, con
7. D ~ C ′ 3, 6, mp

At least at this point we have introduced D, but it’s not by itself. Note that from
step 5 we have C, which we haven’t made use of. If only we had C S D, we’d be

 Section 1.2 Propositional Logic 31

home free. Ah, look at the form of step 7; it’s a disjunction, and the implication rule
says that we can transform a disjunction of a certain form into an implication. The
disjunction must have a negated wff on the left. We can do that:

8. C′ ~ D 7, comm
9. C S D 8, imp

so

10. D 5, 9, mp

As in Example 14, proof sequences involve a certain amount of rewriting just
because you can and a certain amount of keeping an eye on the desired goal and
what it would take to get there. Although not as mechanical as constructing a truth
table, the strict rules of the game nevertheless provide a more or less mechanical
way to construct the proof sequence. There are only a certain number of legitimate
things that can be done at any one point in the sequence. If one choice seems to
lead down a blind alley, go back and make another. Also, there may be more than
one correct proof sequence; as a relatively trivial instance, steps 6 and 7 could
have been done before step 5 in Example 14.

An analogy with programming, if not taken too literally, may be helpful. In
traditional programming, you have known input, a desired output, and you write
code to transform the given input into the desired output. You figure out the se-
quence of statements that will accomplish this transformation, and each program
statement in that sequence must conform to the exact syntax rules of the program-
ming language you are using, be it C++, Java, Python, or whatever. In proposi-
tional logic, you have known “input” (the hypotheses), a desired “output” (the
conclusion), and you write “code statements” (a sequence of wffs) to transform
the hypotheses into the conclusion. The sequence of code statements, or at least
their justification, must conform to the exact syntax of the derivation rules for
propositional logic.

pRaCtiCe 11 Using propositional logic, prove the validity of the argument.

[(A ~ B′) S C] ` (C S D) ` A S D

tAbLe 1.13

derivation Hints

1. Modus ponens is probably the most intuitive inference rule. Think often about
trying to use it.

2. Wffs of the form (P ` Q)′ or (P ~ Q)′ are seldom helpful in a proof sequence. Try
using De Morgan’s laws to convert them into P′ ~ Q′ and P′ ` Q′, respectively,
which breaks out the individual components.

3. Wffs of the form P ~ Q are also seldom helpful in a proof sequence because
they do not imply either P or Q. Try using double negation to convert P ~ Q to
(P′)′ ~ Q, and then using implication to convert to P′ S Q.

32 Formal Logic

Deduction Method and other rules

Suppose the argument we seek to prove has the form

P1 ` P2 ` P3 ` … ` Pn S (R S S)

where the conclusion is itself an implication. Instead of using P1, … , Pn as the hy-
potheses and deriving R S S, the deduction method lets us add R as an additional
hypothesis and then derive S. In other words, we can instead prove

P1 ` P2 ` P3 ` … ` Pn ` R S S

This change is to our advantage because it gives us one more hypothesis, i.e.,
 additional ammunition for the proof, and it simplifies the desired conclusion.

The deduction method approach agrees with our understanding of implica-
tion, but Exercise 55 at the end of this section provides a formal justification.

ReMIndeR

Use the deduction method
when the conclusion of
what you want to prove is
an implication.

 eXAMPLe 15 Use propositional logic to prove

[A S (A S B)] S (A S B)

Using the deduction method, we get two hypotheses instead of one, and we want
to derive B.

1. A S (A S B) hyp
2. A hyp
3. A S B 1, 2, mp
4. B 2, 3, mp

pRaCtiCe 12 Use propositional logic to prove

(A S B) ` (B S C) S (A S C)

The formal system we have described is correct and complete. Every argu-
ment we can prove is a tautology (the system is correct), and every implication that
is a tautology is provable (the system is complete). We can easily argue for correct-
ness because each of the derivation rules is truth-preserving. Completeness would
be more difficult to prove, and we will not do so.

Correctness and completeness say that the set of derivation rules we have
used is exactly right—not too strong, not too weak. Nonetheless, many formal
systems for propositional logic use additional truth-preserving inference rules.
We can prove these additional rules using our original rule set. Once such a
rule is proved, it can be used as justification in a proof sequence because, if
required, the single step invoking this rule could be replaced with the proof
sequence for the rule. Nothing more can be proved by the addition of these
rules, but the proof sequences might be shorter. (See Exercises 1.2 for a list of
additional rules.)

 Section 1.2 Propositional Logic 33

 eXAMPLe 16 The rule of hypothetical syllogism (hs) is

From P S Q and Q S R, one can derive P S R.

This rule is making the claim that

(P S Q) ` (Q S R) S (P S R)

is a valid argument. The proof sequence for this argument looks just like that for
Practice 12. Because it is a legitimate derivation rule, hypothetical syllogism can
be used to justify a step in a proof sequence.

 eXAMPLe 17 Use propositional logic to prove

(A′ ~ B) ` (B S C) S (A S C)

The following proof sequence will do.

1. A′ ~ B hyp
2. B S C hyp
3. A S B 1, imp
4. A S C 2, 3, hs

Without use of the new rule, we could still have produced a proof sequence by
 essentially proving the new rule as part of this proof:

1. A′ ~ B hyp
2. B S C hyp
3. A S B 1, imp
4. A hyp
5. B 3, 4, mp
6. C 2, 5, mp

Additional rules thus can shorten proof sequences but at the expense of having to
remember additional rules!

pRaCtiCe 13 Prove

(A S B) ` (C′ ~ A) ` C S B

Verbal arguments

An argument in English (an attorney’s trial summary, an advertisement, or a
 political speech) that consists of simple statements can be tested for validity by a
two-step process:

 1. Symbolize the argument using propositional wffs.
 2. Prove that the argument is valid by constructing a proof sequence for it

using the derivation rules for propositional logic.

34 Formal Logic

The first step, translating the argument from verbal to symbolic form, is often
the most difficult. Look for keys in the verbal representation of the argument.
“If… then” and “either… or” indicate implication and disjunction, respectively. A
period (or sometimes a semicolon) signifies the end of a hypothesis. The separate
hypotheses are joined by conjunctions. “Therefore” is a big key word; it indicates
the end of the hypotheses and announces that the conclusion is about to be stated.

 eXAMPLe 18 Consider the argument, “If interest rates drop, the housing market will improve.
Either the federal discount rate will drop or the housing market will not improve.
Interest rates will drop. Therefore the federal discount rate will drop.” Using

I Interest rates drop.
H The housing market will improve.
F The federal discount rate will drop.

the argument is

(I S H) ` (F ~ H′) ` I S F

A proof sequence to establish validity is

1. I S H hyp
2. F ~ H′ hyp
3. I hyp
4. H′ ~ F 2, comm
5. H S F 4, imp
6. I S F 1, 5, hs
7. F 3, 6, mp

 eXAMPLe 19 Is the following argument valid? “My client is left-handed, but if the diary is not
missing, then my client is not left-handed; therefore, the diary is missing.” There
are only two simple statements involved here, so we symbolize them as follows:

L My client is left-handed.
D The diary is missing.

The argument is then

L ` (D′ S L′) S D

The validity of the argument is established by the following proof sequence.

1. L hyp
2. D′ S L′ hyp
3. (D′)′ ~ L′ 2, imp
4. D ~ L′ 3, dn
5. L′ ~ D 4, comm
6. L S D 5, imp
7. D 1, 6, mp

 Section 1.2 Propositional Logic 35

Formal logic is not necessary to prove the validity of propositional arguments. A
valid argument is represented by a tautology, and truth tables provide a mechanical
test for whether a wff is a tautology. So, what was the point of all of this? In the next
section we will see that propositional wffs are not sufficient to represent everything
we would like to say, and we will devise new wffs called predicate wffs. There is no
mechanical test for the predicate wff analogue of tautology, and in the absence of such
a test, we will have to rely on formal logic to justify arguments. We have developed
formal logic for propositional arguments as a sort of dry run for the predicate case.

In addition, the sort of reasoning we have used in propositional logic carries
over into everyday life. It is the foundation for logical thinking in computer science,
mathematics, the courtroom, the marketplace, and the laboratory. Although we have
approached logic as a mechanical system of applying rules, enough practice should
ingrain this way of thinking so that you no longer need to consult tables of rules, but
can draw logical conclusions and recognize invalid arguments on your own.

The argument says that if the hypotheses are true, then the conclusion will be true.
The validity of the argument is a function only of its logical form and has nothing
to do with the actual truth of any of its components. We still have no idea about
whether the diary is really missing. Furthermore, the argument “Skooses are pink,
but if Gingoos does not like perskees, then skooses are not pink; therefore Gingoos
does like perskees,” which has the same logical form, is also valid, even though it
does not make sense.

S e c t I o n 1 . 2 Review

tecHnIQueS

• Apply derivation rules for propositional logic.
• Use propositional logic to prove the validity of a

verbal argument.

MAIn IdeAS

• A valid argument can be represented by a wff of
the form P1 ` P2 ` P3 ` … ` Pn S Q that is a
 tautology.

• A proof sequence in a formal logic system is a se-
quence of wffs that are either hypotheses or derived
from earlier wffs in the sequence by the derivation
rules of the system.

• The propositional logic system is complete and
correct; valid arguments and only valid arguments
are provable.

W
W

eXeRcISeS 1.2

For Exercises 1–4, what inference rule is illustrated by the argument given?

 1. If Martina is the author, then the book is fiction. But the book is nonfiction. Therefore Martina is not the
author.

 2. If the business declares bankruptcy, then all assets must be confiscated. The business declared bankruptcy.
It follows that all assets must be confiscated.

pRaCtiCe 14 Use propositional logic to prove that the following argument is valid. Use statement letters
S, R, and B.

If security is a problem, then regulation will be increased. If security is not a problem, then business on the Web
will grow. Therefore if regulation is not increased, then business on the Web will grow.

36 Formal Logic

 3. The dog has a shiny coat and loves to bark. Consequently, the dog loves to bark.
 4. If Paul is a good swimmer, then he is a good runner. If Paul is a good runner, then he is a good biker.

Therefore if Paul is a good swimmer, then he is a good biker.

For Exercises 5–8, decide what conclusion, if any, can be reached from the given hypotheses and justify your
answer.

 5. If the car was involved in the hit-and-run, then the paint would be chipped. But the paint is not chipped.
 6. Either the weather will turn bad or we will leave on time. If the weather turns bad, then the flight will be

canceled.
 7. If the bill was sent today, then you will be paid tomorrow. You will be paid tomorrow.
 8. The grass needs mowing and the trees need trimming. If the grass needs mowing, then we need to rake the

leaves.
 9. Justify each step in the proof sequence of

 A ` (B S C) S (B S (A ` C))

 1. A 4. C
 2. B S C 5. A ` C
 3. B
 10. Justify each step in the proof sequence of

 B ` [(B ` C) S A′] ` (B S C) S A′

 1. B 4. C
 2. (B ` C) S A′ 5. B ` C
 3. B S C 6. A′
 11. Justify each step in the proof sequence of

 [A S (B ~ C)] ` B′ ` C′ S A′

 1. A S (B ~ C) 4. B′ ` C′
 2. B′ 5. (B ~ C)′
 3. C′ 6. A′
 12. Justify each step in the proof sequence of

 A′ ` B ` [B S (A ~ C)] S C

 1. A′ 5. (A′)′ ~ C
 2. B 6. A′ S C
 3. B S (A ~ C) 7. C
 4. A ~ C

In Exercises 13–24, use propositional logic to prove that the argument is valid.

 13. (A ~ B′)′ ` (B S C) S (A′ ` C)
 14. A′ ` (B S A) S B′
 15. (A S B) ` [A S (B S C)] S (A S C)
 16. [(C S D) S C] S [(C S D) S D]
 17. A′ ` (A ~ B) S B

 Section 1.2 Propositional Logic 37

 18. [A S (B S C)] ` (A ~ D′) ` B S (D S C)
 19. (A′ S B′) ` B ` (A S C) S C
 20. (A S B) ` [B S (C S D)] ` [A S (B S C)] S (A S D)
 21. [A S (B S C)] S [B S (A S C)]
 22. (A ` B) S (A S B′)′
 23. (A S C) ` (C S B′) ` B S A′
 24. [A S (B ~ C)] ` C′ S (A S B)

Use propositional logic to prove the validity of the arguments in Exercises 25–33. These will become additional
derivation rules for propositional logic, summarized in Table 1.14.

 25. (P ~ Q) ` P′ S Q
 26. (P S Q) S (Q′ S P′)
 27. (Q′ S P′) S (P S Q)
 28. P S P ` P
 29. P ~ P S P (Hint: Instead of assuming the hypothesis, begin with a version of Exercise 28; also make use

of Exercise 27.)
 30. [(P ` Q) S R] S [P S (Q S R)]
 31. P ` P′ S Q
 32. P ` (Q ~ R) S (P ` Q) ~ (P ` R) (Hint: First rewrite the conclusion.)
 33. P ~ (Q ` R) S (P ~ Q) ` (P ~ R) (Hint: Prove both P ~ (Q ` R) S (P ~ Q) and P ~ (Q ` R) S

(P ~ R); for each proof, first rewrite the conclusion.)

tAbLe 1.14

More Inference Rules

from can derive name/Abbreviation for Rule

P S Q, Q S R P S R [Example 16] Hypothetical syllogism—hs

P ~ Q, P′ Q [Exercise 25] Disjunctive syllogism—ds

P S Q Q′ S P′ [Exercise 26] Contraposition—cont

Q′ S P′ P S Q [Exercise 27] Contraposition—cont

P P ` P [Exercise 28] Self-reference—self

P ~ P P [Exercise 29] Self-reference—self

(P ` Q) S R P S (Q S R) [Exercise 30] Exportation—exp

P, P′ Q [Exercise 31] Inconsistency—inc

P ` (Q ~ R) (P ` Q) ~ (P ` R) [Exercise 32] Distributive—dist

P ~ (Q ` R) (P ~ Q) ` (P ~ R) [Exercise 33] Distributive—dist

For Exercises 34–42, use propositional logic to prove the arguments valid; you may use any of the rules in Table
1.14 or any previously proved exercise.

 34. A′ S (A S B)

38 Formal Logic

 35. (P S Q) ` (P′ S Q) S Q
 36. (A′ S B′) ` (A S C) S (B S C)
 37. (A′ S B) ` (B S C) ` (C S D) S (A′ S D)
 38. (A ~ B) ` (A S C) ` (B S C) S C
 39. (Y S Z′) ` (X′ S Y) ` [Y S (X S W)] ` (Y S Z) S (Y S W)
 40. (A ` B) ` (B S A′) S (C ` B′)
 41. (A ` B)′ ` (C′ ` A)′ ` (C ` B′)′ S A′
 42. (P ~ (Q ` R)) ` (R′ ~ S) ` (S S T′) S (T S P)

In Exercises 43–54, write the argument using propositional wffs (use the statement letters shown). Then, using
propositional logic, including the rules in Table 1.14, prove that the argument is valid.

 43. If the program is efficient, it executes quickly. Either the program is efficient, or it has a bug. However, the
program does not execute quickly. Therefore, it has a bug. E, Q, B

 44. If Jane is more popular, then she will be elected. If Jane is more popular, then Craig will resign. Therefore,
if Jane is more popular, she will be elected and Craig will resign. J, E, C

 45. If chicken is on the menu, then don’t order fish, but you should have either fish or salad. So, if chicken is
on the menu, have salad. C, F, S

 46. The crop is good, but there is not enough water. If there is a lot of rain or not a lot of sun, then there is
enough water. Therefore, the crop is good and there is a lot of sun. C, W, R, S

 47. If the ad is successful, then the sales volume will go up. Either the ad is successful or the store will close.
The sales volume will not go up. Therefore, the store will close. A, S, C

 48. If DeWayne is not tall then Jayden is not DeWayne’s brother. If DeWayne is tall then Trevor is DeWayne’s
brother. Therefore, if Jayden is DeWayne’s brother, then Trevor is DeWayne’s brother. D, J, T

 49. Russia was a superior power, and either France was not strong or Napoleon made an error. Napoleon did
not make an error, but if the army did not fail, then France was strong. Hence, the army failed and Russia
was a superior power. R, F, N, A

 50. It is not the case that if electric rates go up, then usage will go down, nor is it true that either new power plants
will be built or bills will not be late. Therefore, usage will not go down and bills will be late. R, U, P, B

 51. If Jose took the jewelry or Mrs. Krasov lied, then a crime was committed. Mr. Krasov was not in town. If
a crime was committed, then Mr. Krasov was in town. Therefore, Jose did not take the jewelry. J, L, C, T

 52. If the birds are flying south and the leaves are turning, then it must be fall. Fall brings cold weather. The
leaves are turning but the weather is not cold. Therefore, the birds are not flying south. B, L, F, C

 53. If a Democrat is elected then taxes will go up. Either a Democrat will be elected or the bill will pass.
Therefore, if taxes do not go up, then the bill will pass. D, T, B

 54. Either Emily was not home or if Pat did not leave the tomatoes, then Sophie was ill. Also, if Emily was not
home, then Olivia left the peppers. But it is not true that either Sophie was ill or Olivia left the peppers.
Therefore, Pat left the tomatoes and Olivia did not leave the peppers. E, P, S, O

 55. a. Use a truth table to verify that A S (B S C) 4 (A ` B) S C is a tautology.
 b. Prove that A S (B S C) 3 (A ` B) S C by using a series of equivalences.
 c. Explain how this equivalence justifies the deduction method that says: to prove

P1 ` P2 ` … ` Pn S (R S S), deduce S from P1, P2, … , Pn, and R.
 56. The argument of the defense attorney at the beginning of this chapter was

If my client is guilty, then the knife was in the drawer. Either the knife was not in the drawer or Jason
Pritchard saw the knife. If the knife was not there on October 10, it follows that Jason Pritchard

 Section 1.3 Quantifiers, Predicates, and Validity 39

didn’t see the knife. Furthermore, if the knife was there on October 10, then the knife was in the
drawer and also the hammer was in the barn. But we all know that the hammer was not in the barn.
Therefore, ladies and gentlemen of the jury, my client is innocent.

 Use propositional logic to prove that this is a valid argument.

 S e c t I o n 1 . 3 QuantifieRS, pRediCateS, and validity

quantifiers and Predicates

Propositional wffs have rather limited expressive power. For example, we would
consider the sentence “For every x, x > 0” to be a true statement about the
positive integers, yet it cannot be adequately symbolized using only statement
letters, parentheses, and logical connectives. It contains two new features, a
quantifier and a predicate. Quantifiers are phrases such as “for every” or “for
each” or “for some” that tell in some sense how many objects have a certain
property. The universal quantifier is symbolized by an upside down A, 4, and
is read “for all,” “for every,” “for each,” or “for any.” Thus the example sentence
can be symbolized by

(4x)(x > 0)

A quantifier and its named variable are always placed in parentheses. The second
set of parentheses shows that the quantifier acts on the enclosed expression, which
in this case is “x > 0.”

The phrase “x > 0” describes a property of the variable x, that of being posi-
tive. A property is also called a predicate; the notation P(x) is used to represent
some unspecified predicate or property that x may have. Thus, our original sen-
tence is an example of the more general form

(4x)P(x)

The truth value of the expression (4x)(x > 0) depends on the domain of ob-
jects in which we are “interpreting” this expression, that is, the collection of ob-
jects from which x may be chosen. This collection of objects is called the domain
of interpretation. We have already agreed that if the domain of interpretation con-
sists of the positive integers, the expression has the truth value true because every
possible value for x has the required property of being greater than zero. If the
domain of interpretation consists of all the integers, the expression has the truth
value false, because not every x has the required property. We impose the condi-
tion that the domain of interpretation contain at least one object so that we are not
talking about a trivial case.

An interpretation of the expression (4x)P(x) would consist of not only the col-
lection of objects from which x could take its value but also the particular property
that P(x) represents in this domain. Thus an interpretation for (4x)P(x) could be
the following: The domain consists of all the books in your local library, and P(x)
is the property that x has a red cover. In this interpretation, (4x)P(x) says that ev-
ery book in your local library has a red cover. The truth value of this expression,
in this interpretation, is undoubtedly false.

40 Formal Logic

The predicates we have seen so far, involving properties of a single variable,
are unary predicates. Predicates can be binary, involving properties of two vari-
ables, ternary, involving properties of three variables, or, more generally, n-ary,
involving properties of n variables.

The existential quantifier is symbolized by a backward E, E, and is read
“there exists one,” “for at least one,” or “for some.” Thus the expression

(E x)(x > 0)

is read “there exists an x such that x is greater than zero.”
Again, the truth value of this expression depends on the interpretation. If the

domain of interpretation contains a positive number, the expression has the value
true; otherwise, it has the value false. The truth value of (E x)P(x), if the domain
consists of all the books in your local library and P(x) is the property that x has a
red cover, is true if there is at least one book in the library with a red cover.

ReMIndeR

all, every, each, any—use 4
some, one, at least one—
use E

pRaCtiCe 16

a. Construct an interpretation (i.e., give the domain and the meaning of P(x)) in which (4x)P(x)
has the value true.

b. Construct an interpretation in which (4x)P(x) has the value false.
c. Can you find one interpretation in which both (4x)P(x) is true and (E x)P(x) is false?
d. Can you find one interpretation in which both (4x)P(x) is false and (E x)P(x) is true?

 eXAMPLe 20 The expression (4x)(E y)Q(x, y) is read “for every x there exists a y such that
Q(x, y).” Note that there are two quantifiers for the two variables of the binary
property. In the interpretation where the domain consists of the integers and Q(x, y)
is the property that x < y, this just says that for any integer, there is a larger integer.
The truth value of the expression is true. In the same interpretation, the expression
(E y)(4x)Q(x, y) says that there is a single integer y that is larger than any integer x.
The truth value here is false.

pRaCtiCe 15 What is the truth value of the expression (5x)P(x) in each of the following interpretations?

a. P(x) is the property that x is yellow, and the domain of interpretation is the collection of
all daffodils.

b. P(x) is the property that x is yellow, and the domain of interpretation is the collection of all flowers.
c. P(x) is the property that x is a plant, and the domain of interpretation is the collection of all

flowers.
d. P(x) is the property that x is either positive or negative, and the domain of interpretation consists

of the integers.

Example 20 illustrates that the order in which the quantifiers appear is
important.

 Section 1.3 Quantifiers, Predicates, and Validity 41

In expressions such as (4x)P(x) or (E x)P(x), x is a dummy variable; that is, the
truth values of the expressions remain the same in a given interpretation if they
are written, say, as (4y)P(y) or (E z)P(z), respectively. Similarly, the truth value
of (4x)(E y)Q(x, y) is the same as that of (4z)(E w)Q(z, w) in any interpretation.
However, (4x)(E x)Q(x, x) says something quite different. In the interpretation of
Example 20, for instance, (4x)(E x)Q(x, x) says that for every integer x, there is an
integer x such that x < x. This statement is false, even though (4x)(E y)Q(x, y) was
true in this interpretation. We cannot collapse separate variables together into one
without changing the nature of the expression we obtain.

Constants are also allowed in expressions. A constant symbol (a, b, c, 0, 1, 2,
etc.) is interpreted as some specific object in the domain. This specification is part
of the interpretation. For example, the expression (4x)Q(x, a) is false in the inter-
pretation where the domain consists of the integers, Q(x, y) is the property x < y,
and a is assigned the value 7; it is not the case that every integer is less than 7.

Now we can sum up what is required in an interpretation.

 defInItIon inTerPreTaTion
An interpretation for an expression involving predicates consists of the following:

a. A collection of objects, called the domain of the interpretation, which must
include at least one object

b. An assignment of a property of the objects in the domain to each predicate in
the expression

c. An assignment of a particular object in the domain to each constant symbol in
the expression

Expressions can be built by combining predicates with quantifiers, grouping
symbols (parentheses or brackets), and the logical connectives of Section 1.1. As
before, an expression must obey rules of syntax to be considered a well-formed
formula. Well-formed formulas containing predicates and quantifiers are called
predicate wffs to distinguish them from propositional wffs, which contain only
statement letters and logical connectives.

The expression P(x)(4x) `)E y is not a well-formed formula. Examples of
predicate wffs are

 P(x) ~ Q(y) (1)
 (4x)[P(x) S Q(x)] (2)
 (4x)((E y)[P(x, y) ` Q(x, y)] S R(x)) (3)

and

 (E x)S(x) ~ (4y)T(y) (4)

“Grouping symbols” such as parentheses and brackets identify the scope of a
quantifier, the section of the wff to which the quantifier applies. (This is analo-
gous to the scope of an identifier in a computer program as the section of the
program in which that identifier has meaning.) There are no quantifiers in wff (1).
In (2), the scope of the quantifier (4x) is P(x) S Q(x). In (3), the scope of (E y) is
P(x, y) ` Q(x, y), while the scope of (4x) is the entire expression in parentheses

42 Formal Logic

following it. In (4), the scope of (E x) is S(x) and the scope of (4y) is T(y); paren-
theses or brackets can be eliminated when the scope is clear.

If a variable occurs somewhere in a wff where it is not part of a quantifier and
is not within the scope of a quantifier involving that variable, it is called a free
variable. For example, y is a free variable in

(4x)[Q(x, y) S (E y)R(x, y)]

because of the first occurrence of y, which is neither the variable of a quantifier nor
within the scope of a quantifier using y. A wff with free variables may not have a
truth value at all in a given interpretation. For example, in the interpretation where
the domain is all of the integers, the predicate P(x) means “x > 0”, and 5 means (of
course) the integer 5, the wff

P(y) ` P(5)

has no truth value because we don’t know which element of the domain y refers to.
Some elements of the domain are positive and others are not. The wff

P(y) ~ P(5)

is true in this interpretation even though we don’t know what y refers to because
P(5) is true. In both of these wffs y is a free variable.

 eXAMPLe 21 In the wff

(4x)(E y)[S(x, y) ` L(y, a)]

the scope of (E y) is all of S(x, y) ` L(y, a). The scope of (4x) is (E y)[S(x, y) ` L(y, a)].
Consider the interpretation where the domain consists of all the cities in the United
States, S(x, y) is the property “x and y are in the same state,” L(y, z) is the property
“y’s name begins with the same letter as z’s name,” and a is assigned the value Albu-
querque. So the interpretation of the entire wff is that for any city x there is a city y in
the same state that begins with the letter A. The wff is true in this interpretation. (At
least it is true if every state has a city beginning with the letter A.)

Translation

Many English language statements can be expressed as predicate wffs. For ex-
ample, “Every parrot is ugly,” is really saying, “For any thing, if it is a parrot,

pRaCtiCe 17 What is the truth value of the wff

(E x)(A(x) ` (4y)[B(x, y) S C(y)])

in the interpretation where the domain consists of all integers, A(x) is “x > 0,” B(x, y) is “x > y,” and
C(y) is “y ≤ 0”? Construct another interpretation with the same domain in which the statement has the
opposite truth value.

 Section 1.3 Quantifiers, Predicates, and Validity 43

then it is ugly.” Letting P(x) denote “x is a parrot” and U(x) denote “x is ugly,” the
statement can be symbolized as

(4x)[P(x) S U(x)]

Other English language variations that take the same symbolic form are, “All par-
rots are ugly,” and, “Each parrot is ugly.” Notice that the quantifier is the univer-
sal quantifier and the logical connective is implication; 4 and S almost always
belong together. The wff (4x)[P(x) ` U(x)] is an incorrect translation because it
says that everything in the domain—understood here to be the whole world—
is an ugly parrot. This says something much stronger than the original English
statement.

Similarly, “There is an ugly parrot,” is really saying, “There exists something
that is both a parrot and ugly.” In symbolic form,

(E x)[P(x) ` U(x)]

Variations are, “Some parrots are ugly,” and, “There are ugly parrots.” Here the
quantifier is the existential quantifier and the logical connective is conjunction; E
and ` almost always belong together. The wff (E x)[P(x) S U(x)] is an incorrect
translation. This wff is true as long as there is anything, call it x, in the domain
(the whole world) that is not a parrot, because then P(x) is false and the implication
is true. Indeed, this wff is true if there are no parrots in the world at all!

To translate an English statement into a wff, it may help to first write an in-
termediate English language statement and then symbolize that statement. We did
this with the parrot examples.

The word “only” seems particularly troublesome in translations because its
placement in a sentence can completely change the meaning. For example, the
English statements

 1. John loves only Mary.
 2. Only John loves Mary
 3. John only loves Mary.

say three entirely different things. Using the predicate symbols J(x) for “x is John,”
M(x) for “x is Mary,” and L(x, y) for “x loves y,” they can be rewritten as

 1. If John loves any thing, then that thing is Mary.
or
 1. For any thing, if it is John then, if it loves anything, that thing is Mary.

(4x)(J(x) S (4y)(L(x, y) S M(y))

 2. If any thing loves Mary, then that thing is John.
or
 2. For any thing, if it is Mary then, if anything loves it, that thing is John.

(4x)(M(x) S (4y)(L(y, x) S J(y))

 3. If John does any thing to Mary, then that thing is love.
or

ReMIndeR

Think
4 S

and
E `

44 Formal Logic

 3. For any thing, if it is John then, for any other thing, if that thing is Mary,
then John loves it.

(4x)(J(x) S (4y)(M(y) S L(x, y))

In each case, the consequent of the implication is the word following “only” in the
original English statement.

 eXAMPLe 22 Given the predicate symbols

D(x) is “x is a dog”
R(x) is “x is a rabbit”
C(x, y) is “x chases y”

Table 1.15 shows examples of an English statement, an intermediate English state-
ment, and a wff translation. Note that in wff 2, the connective associated with E
is ` and the connective associated with 4 is S. In wff 3, the first version shows
two implications associated with the two 4 quantifiers. The second version is
equivalent because of the tautology [A ` B S C] 4 [A S (B S C)]. This ver-
sion may appear to violate the rule that universal quantifiers should be used with
implication, not conjunction, but this tautology provides another way to write two
implications. The second version also shows more clearly that “dogs,” the word
following “only,” is the conclusion.

tAbLe 1.15

english Statement Intermediate Statement Wff

1. All dogs chase
all rabbits.

For any thing, if it is a dog,
then for any other thing, if
that thing is a rabbit, then
the dog chases it.

(4x)[D(x) S (4y)(R(y) S C(x,y))]

2. Some dogs
chase all rabbits.

There is some thing that
is a dog and, for any other
thing, if that thing is a rab-
bit, then the dog chases it.

(E x)[D(x) ` (4y)(R(y) S C(x,y))]

3. Only dogs chase
rabbits.

For any thing, if it is a rabbit
then, if anything chases it,
that thing is a dog.
For any two things, if one is
a rabbit and the other chas-
es it, then the other is a dog.

(4y)[R(y) S (4x)(C(x,y) S D(x))]

(4y)(4x)[R(y) ` C(x,y) S D(x)]

Often more than one wff exists that is a correct representation of an English state-
ment, as seen with statement (3) in Table 1.15. Also wff (2) is equivalent to

(E x)[D(x) ` (4y)([R(y)]′ ~ C(x, y))]

because of the implication equivalence rule that says (R S C) 4 (R′ ~ C), even
though here R and C are predicates instead of just statement letters.

 Section 1.3 Quantifiers, Predicates, and Validity 45

In addition, it is legitimate to “slide” a quantifier over a predicate that does not
involve the variable of that quantifier. Because D(x) does not involve y, we could
slide the universal quantifier in wff (2) to the front (but not past the existential
quantifier), giving the equivalent wff

 (E x)(4y)[D(x) ` (R(y) S C(x, y))] (a)

In wff (a), we still have grouping symbols around R(y) S C(x,y). Without the
grouping symbols, this wff becomes

 (E x)(4y)[D(x) ` R(y) S C(x, y)] (b)

which, according to the order of precedence of connectives, is equivalent to

(E x)(4y)[(D(x) ` R(y)) S C(x, y)]

A quick truth table exercise shows that D ` (R S C) is not equivalent to
(D ` R) S C, so wff (b) is not equivalent to wff (a) and thus does not represent
statement (2) in the table.

Translation from an English statement into a predicate wff is a little harder
than translation into a propositional wff, partly because of the added expressive-
ness of the verbal form and partly because there can be multiple correct predicate
wffs. Here is a summary of translation tips:

• Look for the key words that signify the type of quantifier:
 for all, for every, for any, for each: use a universal quantifier
 for some, there exists: use an existential quantifier.

• English sometimes uses “understood” universal quantifiers. For example,
“Dogs chase rabbits,” is understood to mean, “All dogs chase all rabbits.”

• If you use a universal quantifier, the connective that goes with it is almost
always implication.

• If you use an existential quantifier, the connective that goes with it is
 almost always conjunction.

• Whatever comes after the word “only” is the conclusion of an implication;
that is, it comes after “then” in an “if–then” statement.

• You are most apt to arrive at a correct translation if you follow the order
of the English words.

 eXAMPLe 23 Let’s do a couple of examples in great detail. The first is

All giraffes are tall.

The property of being a giraffe and the property of being tall are unary predicates.
We’ll use G(x) for “x is a giraffe” and T(x) for “x is tall”. Following the sentence
structure, we first see “All,” which tells us that there’s a universal quantifier, so the
wff begins with

(4x)(…)

46 Formal Logic

All what? All giraffes, so

(4x)(G(x) …)

Because of the universal quantifier, we expect to use the implication connective,
so now we have

(4x)(G(x) S …)

Thinking of the implication as an “if–then,” we have “if a giraffe, then … .” Then
what? Then it's tall. The final wff is

(4x)(G(x) S T(x))

The second example is

Only giraffes are taller than elephants.

The property of being a giraffe and the property of being an elephant are unary
predicates, and we’ll use G(x) and E(x) to represent them. But “taller than” is a
property that compares two things, so it’s a binary predicate; T(x, y) will mean “x
is taller than y”. There are no obvious quantifier key words, so we understand that
we are talking about all giraffes and all elephants (universal quantifiers). The word
“giraffes” follows the word “only,” so the property of being a giraffe is going to
be the conclusion of an implication and the overall form will be “if xxx, then a
giraffe.” Indeed, if something is taller than an elephant, then it’s a giraffe. Putting
in the universal quantifiers, “if any thing is taller than any elephant, then that thing
is a giraffe,” or (even more tortured English), “for any thing, if it is an elephant,
then for any other thing, if it’s taller than the elephant, then it’s a giraffe.” Now we
can pretty much translate directly into a wff. “For any thing, if it is an elephant,
then” becomes

(4x)(E(x) S …)

and, “for any other thing, if it's taller than the elephant, then,” adds a second im-
plication to the wff:

(4x)(E(x) S (4y)(T(y, x) S …))

Notice that we introduced y here, a second variable, because we’ve already given
x the elephant property. Also, we’ve written T(y, x), not T(x, y), because we want
this new thing to be taller than the elephant, and our definition of the taller predi-
cate was that the first variable was taller than the second. We are ready for the final
conclusion—this new thing is a giraffe.

(4x)(E(x) S (4y)(T(y, x) S G(y)))

As in Table 1.15(3), a tautology allows us to also write this wff as

(4x)(4y)(E(x) ` T(y, x) S G(y))

“For any two things, if one is an elephant and the other is taller than the elephant,
then the other thing is a giraffe.”

With some practice, you won’t have to go quite this slowly!

 Section 1.3 Quantifiers, Predicates, and Validity 47

PRACTICE 19 Using the predicate symbols F(x) for “x is a fruit,” V(x) for “x is a vegetable,” and S(x,y) for
“x is sweeter than y,” write wffs that express the following statements. (The domain is the
whole world.)

a. Some vegetable is sweeter than all fruits.
b. Every fruit is sweeter than all vegetables.
c. Every fruit is sweeter than some vegetable.
d. Only fruits are sweeter than vegetables.

Negating statements with quantifiers, as in negating compound statements,
requires care. The negation of the statement, “Everything is beautiful,” is, “It is
false that everything is beautiful,” or, “Something is nonbeautiful.” Symbolically,

[(4x)A(x)]′ is equivalent to (E x)[A(x)]′

Note that, “Everything is nonbeautiful,” or (4x)[A(x)]′, says something stronger
than the negation of the original statement.

The negation of, “Something is beautiful,” is, “Nothing is beautiful,” or,
“ Everything fails to be beautiful.” Symbolically,

[(E x)A(x)]′ is equivalent to (4x)[A(x)]′

In English, the statement, “Everything is not beautiful,” would often be misinter-
preted as, “Not everything is beautiful,” or, “There is something nonbeautiful.”
However, this misinterpretation, symbolized by (E x)[A(x)]′, is not as strong as the
negation of the original statement.

PRACTICE 20 Which of the following statements expresses the negation of, “Everybody loves somebody
sometime”?

a. Everybody hates somebody sometime.
b. Somebody loves everybody all the time.
c. Everybody hates everybody all the time.
d. Somebody hates everybody all the time.

PRACTICE 18 Using the predicate symbols S(x) for “x is a student,” I(x) for “x is intelligent,” and M(x)
for “x likes music,” write wffs that express the following statements. (The domain is the
 collection of all people.)

a. All students are intelligent.
b. Some intelligent students like music.
c. Everyone who likes music is a stupid student.
d. Only intelligent students like music.

48 Formal Logic

Validity

The truth value of a propositional wff depends on the truth values assigned to the
statement letters. The truth value of a predicate wff depends on the interpretation.
Choosing an interpretation for a predicate wff is thus analogous to choosing truth
values in a propositional wff. However, there are an infinite number of possible
interpretations for a predicate wff and only 2n possible rows in the truth table for
a propositional wff with n statement letters.

A tautology is a propositional wff that is true for all rows of the truth table.
The analogue to tautology for predicate wffs is validity—a predicate wff is valid
if it is true in all possible interpretations. The validity of a wff must be derived
from the form of the wff itself, since validity is independent of any particular in-
terpretation; a valid wff is “intrinsically true.”

An algorithm exists to decide whether a propositional wff is a tautology—
construct the truth table and examine all possible truth assignments. How can we
go about deciding validity for predicate wffs? We clearly cannot look at all pos-
sible interpretations, because there are an infinite number of them. As it turns out,
no algorithm to decide validity for any wff exists. (This does not mean simply that
no algorithm has yet been found—it means that it has been proved that there is no
such algorithm.) We must simply use reasoning to determine whether the form of
a particular wff makes the wff true in all interpretations. Of course, if we can find
a single interpretation in which the wff has the truth value false or has no truth
value at all, then the wff is not valid.

Table 1.16 compares propositional and predicate wffs.

tAbLe 1.16

Propositional Wffs Predicate Wffs

Truth values True or false, depending on
truth value assignments to
statement letters

True, false, or perhaps (if the
wff has a free variable) neither,
depending on interpretation

“Intrinsic truth” Tautology—true for all truth
value assignments

Valid wff—true for all
 interpretations

Methodology Algorithm (truth table) to
determine whether wff is a
 tautology

No algorithm to determine
whether wff is valid

Now let’s try our hand at determining validity for specific wffs.

 eXAMPLe 24 a. The wff

(4x)P(x) S (E x)P(x)

is valid. In any interpretation, if every element of the domain has a certain prop-
erty, then there exists an element of the domain that has that property. (Remember
that the domain of any interpretation must have at least one object in it.) Therefore,

 Section 1.3 Quantifiers, Predicates, and Validity 49

whenever the antecedent is true, so is the consequent, and the implication is there-
fore true.

b. The wff

(4x)P(x) S P(a)

is valid because in any interpretation, a is a particular member of the domain and
therefore has the property that is shared by all members of the domain.

c. The wff

(4x)[P(x) ` Q(x)] 4 (4x)P(x) ` (4x)Q(x)

is valid. If both P and Q are true for all the elements of the domain, then P is true
for all elements and Q is true for all elements, and vice versa.

d. The wff

P(x) S [Q(x) S P(x)]

is valid, even though it contains a free variable. To see this, consider any inter-
pretation, and let x be any member of the domain. Then x either does or does not
have property P. If x does not have property P, then P(x) is false; because P(x)
is the antecedent of the main implication, this implication is true. If x does have
property P, then P(x) is true; regardless of the truth value of Q(x), the implication
Q (x) S P(x) is true, and so the main implication is also true.

e. The wff

(E x)P(x) S (4x)P(x)

is not valid. For example, in the interpretation where the domain consists of the
integers and P(x) means that x is even, it is true that there exists an integer that is
even, but it is false that every integer is even. The antecedent of the implication is
true and the consequent is false, so the value of the implication is false.

We do not necessarily have to go to a mathematical context to construct an
interpretation in which a wff is false, but it is frequently easier to do so because
the relationships among objects are relatively clear.

pRaCtiCe 21 Is the wff valid or invalid? Explain.

(4x)[P(x) ~ Q(x)] S (4x)P(x) ~ (4x)Q(x)

50 Formal Logic

S e c t I o n 1 . 3 Review

tecHnIQueS

• Determine the truth value of a predicate wff in a
given interpretation.

• Translate English language statements into predi-
cate wffs, and vice versa.

• Recognize a valid wff and explain why it is valid.
• Recognize a nonvalid wff and construct an inter-

pretation in which it is false or has no truth value.

MAIn IdeAS

• The truth value of predicate wffs depends on the
interpretation considered.

• Valid predicate wffs are “intrinsically true”—true
in all interpretations.

W

W

W

eXeRcISeS 1.3

 1. What is the truth value of each of the following wffs in the interpretation where the domain consists of the
integers, O(x) is “x is odd,” L(x) is “x < 10,” and G(x) is “x > 9”?

 a. (E x)O(x) c. (E x)[L(x) ` G(x)]
 b. (4x)[L(x) S O(x)] d. (4x)[L(x) ~ G(x)]
 2. What is the truth value of each of the following wffs in the interpretation where the domain consists of the

integers, A(x) is “x < 5” and B(x) is “x < 7”?
 a. (E x)A(x) c. (4x)[A(x) S B(x)]
 b. (E x)[A(x) ` B(x)] d. (4x)[B(x) S A(x)]
 3. What is the truth value of each of the following wffs in the interpretation where the domain consists of the

integers?
 a. (4x)(E y)(x + y = x) e. (4x)(4y)(x < y ~ y < x)
 b. (E y)(4x)(x + y = x) f. (4x)[x < 0 S (E y)(y > 0 ` x + y = 0)]
 c. (4x)(E y)(x + y = 0) g. (E x)(E y)(x2 = y)
 d. (E y)(4x)(x + y = 0) h. (4x)(x2 > 0)
 4. What is the truth value of each of the following wffs in the interpretation where the domain consists of the

real numbers?
 a. (4x)(E y)(x = y2) c. (E x)(4y)(x = y2)
 b. (4x)(4y)(x = y2) d. (E x)(E y)(x = y2)
 5. Give the truth value of each of the following wffs in the interpretation where the domain consists of

the states of the United States, Q(x, y) is “x is north of y,” P(x) is “x starts with the letter M,” and a is
“Massachusetts.”

 a. (4x)P(x)
 b. (4x)(4y)(4z)[Q(x, y) ` Q(y, z) S Q(x, z)]
 c. (E y)(E x)Q(y, x)
 d. (4x)(E y)[P(y) ` Q(x, y)]
 e. (E y)Q(a, y)
 f. (E x)[P(x) ` Q(x, a)]
 6. Give the truth value of each of the following wffs in the interpretation where the domain consists of

people, M(x, y) is “x is the mother of y”, F(x) is “x is female”, M(x) is “x is male.”
 a. (4x)(E y)(M(y, x)) d. (E x)(E y)(M(x, y) ` M(y))
 b. (E x)(4y)(M(x, y)) e. (E x)(4y)(M(x, y) S F(y))
 c. (4x)(4y)(M(x, y) S M(y))

 Section 1.3 Quantifiers, Predicates, and Validity 51

 7. For each wff, find an interpretation in which it is true and one in which it is false.
 a. (4x)([A(x) ~ B(x)] ` [A(x) ` B(x)]′)
 b. (4x)(4y)[P(x, y) S P(y, x)]
 c. (4x)[P(x) S (E y)Q(x, y)]
 8. For each wff, find an interpretation in which it is true and one in which it is false.
 a. (E x)[A(x) ` (4y)B(x, y)]
 b. [(4x)A(x) S (4x)B(x)] S (4x)[A(x) S B(x)]
 c. (E x)[P(x) ~ Q(x)] ` (4x)[P(x) S Q(x)]
 9. Identify the scope of each of the quantifiers in the following wffs and indicate any free variables.
 a. (4x)[P(x) S Q(y)] c. (E x)[(4y)P(x, y) ` Q(x, y)]
 b. (E x)[A(x) ` (4y)B(y)] d. (E x)(E y)[A(x, y) ` B(y, z) S A(a, z)]
 10. Explain why each of the following expressions is written incorrectly.
 a. (E)(Q(x) ` P(x)
 b. (4y)(Q(y) P(y))
 c. (4x)(4y)Q(x) S P(y)
 11. Which of the following sentences are equivalent to the statement

 All circles are round.

 a. If it’s round, it’s a circle.
 b. Roundness is a necessary property of circles.
 c. Something that isn’t round can’t be a circle.
 d. Some round things are circles.
 12. Which of the following sentences are equivalent to the statement

 Cats are smarter than dogs.

 a. Some cats are smarter than some dogs.
 b. There is a cat that is smarter than all dogs.
 c. All cats are smarter than all dogs.
 d. Only cats are smarter than dogs.
 e. All cats are smarter than any dog.
 13. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 D(x): x is a day
 S(x): x is sunny
 R(x): x is rainy
 M: Monday
 T: Tuesday
 a. All days are sunny.
 b. Some days are not rainy.
 c. Every day that is sunny is not rainy.
 d. Some days are sunny and rainy.

52 Formal Logic

 e. No day is both sunny and rainy.
 f. It is always a sunny day only if it is a rainy day.
 g. No day is sunny.
 h. Monday was sunny; therefore, every day will be sunny.
 i. It rained both Monday and Tuesday.
 j. If some day is rainy, then every day will be sunny.
 14. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 B(x): x is a ball
 R(x): x is round
 S(x): x is a soccer ball

 a. All balls are round.
 b. Not all balls are soccer balls.
 c. All soccer balls are round.
 d. Some balls are not round.
 e. Some balls are round but soccer balls are not.
 f. Every round ball is a soccer ball.
 g. Only soccer balls are round balls.
 h. If soccer balls are round, then all balls are round.
 15. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 M(x): x is a man
 W(x): x is a woman
 T(x): x is tall

 a. All men are tall.
 b. Some women are tall.
 c. All men are tall but no woman is tall.
 d. Only women are tall
 e. No man is tall.
 f. If every man is tall, then every woman is tall.
 g. Some woman is not tall.
 h. If no man is tall, then some woman is not tall.
 16. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 A(x): x is an animal
 B(x): x is a bear
 H(x): x is hungry
 W(x): x is a wolf

 a. Bears are animals.
 b. No wolf is a bear.

 Section 1.3 Quantifiers, Predicates, and Validity 53

 c. Only bears are hungry.
 d. If all wolves are hungry, so are bears.
 e. Some animals are hungry bears.
 f. Bears are hungry but some wolves are not.
 g. If wolves and bears are hungry, so are all animals.
 h. Some wolves are hungry but not every animal is hungry.
 17. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 P(x): x is a person
 T(x): x is a time
 F(x, y): x is fooled at y

 a. You can fool some of the people all of the time.
 b. You can fool all of the people some of the time.
 c. You can’t fool all of the people all of the time.
 18. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 L(x): x is a lion
 R(x): x roars
 P(x): x is a predator
 Z(x): x is a zebra
 E(x, y): x eats y

 a. All lions are predators.
 b. Some lions roar.
 c. Only lions roar.
 d. Some lions eat all zebras.
 e. All lions eat all zebras.
 19. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 G(x): x is a game
 M(x): x is a movie
 F(x, y): x is more fun than y

 a. Any movie is more fun than any game.
 b. No game is more fun than every movie.
 c. Only games are more fun than movies.
 d. All games are more fun than some movie.
 20. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 C(x): x is a child
 T(x): x is a toy

54 Formal Logic

 V(x): x is a vegetable
 W(x, y): x wants y
 a. Every child wants toys.
 b. Only children want toys.
 c. Some child wants only toys.
 d. No child wants vegetables.
 21. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 J(x): x is a judge
 L(x): x is a lawyer
 W(x): x is a woman
 C(x): x is a chemist
 A(x, y): x admires y
 a. There are some women lawyers who are chemists.
 b. No woman is both a lawyer and a chemist.
 c. Some lawyers admire only judges.
 d. All judges admire only judges.
 e. Only judges admire judges.
 f. All women lawyers admire some judge.
 g. Some women admire no lawyer.
 22. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 C(x): x is a Corvette
 F(x): x is a Ferrari
 P(x): x is a Porsche
 S(x, y): x is slower than y

 a. Nothing is both a Corvette and a Ferrari.
 b. Some Porsches are slower than only Ferraris.
 c. Only Corvettes are slower than Porsches.
 d. All Ferraris are slower than some Corvettes.
 e. Some Porsches are slower than no Corvette.
 f. If there is a Corvette that is slower than a Ferrari, then all Corvettes are slower than all Ferraris.
 23. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)

 B(x):x is a bee
 F(x): x is a flower
 L(x, y): x loves y
 a. All bees love all flowers. d. Every bee hates only flowers.
 b. Some bees love all flowers. e. Only bees love flowers.
 c. All bees love some flowers. f. Every bee loves only flowers.

 Section 1.3 Quantifiers, Predicates, and Validity 55

 g. No bee loves only flowers. j. Every bee hates some flowers.
 h. Some bees love some flowers. k. Every bee hates all flowers.
 i. Some bees love only flowers. l. No bee hates all flowers.
 24. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as

a predicate wff. (The domain is the whole world.)
 S(x): x is a spy novel
 L(x): x is long
 M(x): x is a mystery
 B(x, y): x is better than y
 a. All spy novels are long.
 b. Not every mystery is a spy novel.
 c. Only mysteries are long.
 d. Some spy novels are mysteries.
 e. Spy novels are better than mysteries.
 f. Some mysteries are better than all spy novels.
 g. Only spy novels are better than mysteries.
 25. Give English language translations of the following wffs if
 L(x, y): x loves y
 H(x): x is handsome
 M(x): x is a man
 P(x): x is pretty
 W(x): x is a woman
 j: John
 k: Kathy
 L(x, y): x loves y
 a. H(j) ` L(k, j)
 b. (4x)[M(x) S H(x)]
 c. (4x)(W(x) S (4y)[L(x, y) S M(y) ` H(y)])
 d. (E x)[M(x) ` H(x) ` L(x, k)]
 e. (E x)(W(x) ` P(x) ` (4y)[L(x, y) S H(y) ` M(y)])
 f. (4x)[W(x) ` P(x) S L(j, x)]
 26. Give English language translations of the following wffs if
 M(x): x is a man
 W(x): x is a woman
 i: Ivan
 p: Peter
 W(x, y): x works for y
 a. (E x)(W(x) ` (4y)(M(y) S [W(x, y)]′))
 b. (4x)[M(x) S (E y)(W(y) ` W(x, y))]
 c. (4x)[M(x) S (4y)(W(x, y) S W(y))]

56 Formal Logic

 d. (4x)(4y)(M(x) ` W(y, x) S W(y))
 e. W(i, p) ` (4x)[W(p, x) S (W(x))′])
 f. (4x)[W(x, i) S (W(x))′]
 27. Three forms of negation are given for each statement. Which is correct?
 a. Some people like mathematics.
 1. Some people dislike mathematics.
 2. Everybody dislikes mathematics.
 3. Everybody likes mathematics.
 b. Everyone loves ice cream.
 1. No one loves ice cream.
 2. Everyone dislikes ice cream.
 3. Someone doesn’t love ice cream.
 c. All people are tall and thin.
 1. Someone is short and fat.
 2. No one is tall and thin.
 3. Someone is short or fat.
 d. Some pictures are old or faded.
 1. Every picture is neither old nor faded.
 2. Some pictures are not old or faded.
 3. All pictures are not old or not faded.
 28. Three forms of negation are given for each statement. Which is correct?
 a. Nobody is perfect.
 1. Everyone is imperfect.
 2. Everyone is perfect.
 3. Someone is perfect.
 b. All swimmers are tall.
 1. Some swimmer is not tall.
 2. There are no tall swimmers.
 3. Every swimmer is short.
 c. Every planet is cold and lifeless.
 1. No planet is cold and lifeless.
 2. Some planet is not cold and not lifeless.
 3. Some planet is not cold or not lifeless.
 d. No bears are hungry.
 1. Only bears are hungy.
 2. All bears are hungry.
 3. There is a hungry bear.
 29. Write the negation of each of the following statements.
 a. Some Web sites feature audio.
 b. Every Web site has both audio and video.
 c. Every Web site has either audio or video.

 Section 1.3 Quantifiers, Predicates, and Validity 57

 d. Some Web sites have neither audio nor video.
 e. Every Web site either has text or else has both audio and video.
 30. Write the negation of each of the following statements.
 a. Only students eat pizza.
 b. Every student eats pizza
 c. Some students eat only pizza.
 31. Write the negation of each of the following statements.
 a. Some farmer grows only corn.
 b. All farmers grow corn.
 c. Corn is grown only by farmers.
 32. Write the negation of each of the following statements
 a. Some child fears all clowns.
 b. Some children fear only clowns.
 c. No clown fears any child.
 33. Explain why each wff is valid.
 a. (4x)(4y)A(x, y) 4 (4y)(4x)A(x, y)
 b. (E x)(E y)A(x, y) 4 (E y)(E x)A(x, y)
 c. (E x)(4y)P(x, y) S (4y)(E x)P(x, y)
 d. A(a) S (E x)A(x)
 e. (4x)[A(x) S B(x)] S [(4x)A(x) S (4x)B(x)]
 34. Give interpretations to prove that each of the following wffs is not valid:
 a. (E x)A(x) ` (E x)B(x) S (E x)[A(x) ` B(x)]
 b. (4x)(E y)P(x, y) S (E x)(4y)P(x, y)
 c. (4x)[P(x) S Q(x)] S [(E x)P(x) S (4x)Q(x)]
 d. (4x)[A(x)]′ 4 [(4x)A(x)]′
 35. Decide whether each of the following wffs is valid or invalid. Justify your answer.
 a. (E x)A(x) 4 ((4x)[A(x)]′)′
 b. (4x)P(x) ~ (E x)Q(x) S (4x)[P(x) ~ Q(x)]
 36. Decide whether each of the following wffs is valid or invalid. Justify your answer.
 a. (4x)A(x) S ((E x)[A(x)]′)′
 b. (4x)[P(x) S Q(x)] ` (E x)[P(x) ~ Q(x)] S (E x)[P(x) ` Q(x)]
 c. (4x)[P(x) ~ Q(x)] S (4x)P(x) ~ (E y)Q(y)
 37. From Example 24c, we know that (4x)[P(x) ` Q(x)] 4 (4x)P(x) ` (4x)Q(x) is valid. From Prac-

tice 21, we know that (4x)[P(x) ~ Q(x)] 4 (4x)P(x) ~ (4x)Q(x) is not valid. From Exercise 34a, we
know that (E x)[P(x) ` Q(x)] 4 (E x)P(x) ` (E x)Q(x) is not valid. Explain why (E x)[P(x) ~ Q(x)] 4
(E x)P(x) ~ (E x)Q(x) is valid.

 38. A predicate wff is in prenex normal form if all the quantifiers appear at the front of the wff. Write each of
the following expressions as an equivalent wff in prenex normal form.

 a. (4x)P(x) ` (4y)Q(y)
 b. (4x)(P(x) S (4y)[Q(y) S W(x, y)])
 c. (E x)P(x) ` (E x)Q(x)

58 Formal Logic

 S e c t I o n 1 . 4 pRediCate logiC

We can imagine arguments of the form

P1 ` P2 ` P3 ` … ` Pn S Q

where the wffs are built from predicates and quantifiers as well as logical connec-
tives and grouping symbols. For a valid argument, Q must follow logically from
P1, … , Pn based solely on the internal structure of the argument, not on the truth
or falsity of Q in any particular interpretation. In other words, the wff

P1 ` P2 ` P3 ` … ` Pn S Q

must be valid—true in all possible interpretations. No equivalent of the truth table
exists to easily prove validity, so we turn to a formal logic system called predicate
logic. We again use a system of derivation rules to build a proof sequence lead-
ing from the hypotheses to the conclusion. The rules should once more be truth-
preserving, so that if in some interpretation, all the hypotheses are true, then the
conclusion will also be true in that interpretation. The system will then be correct
(only valid arguments will be provable). We also want the system to be complete
(every valid argument should be provable), yet at the same time the rule set should
be minimal.

Derivation rules for Predicate Logic4

The equivalence rules and inference rules of propositional logic are still part of
predicate logic. An argument of the form

P ` (P S Q) S Q

is still valid by modus ponens, even if the wffs involved are predicate wffs.

 eXAMPLe 25 Use predicate logic to prove the validity of the argument

(4x)R(x) ` [(4x)R(x) S (4x)S(x)] S (4x)S(x)

A proof sequence is

 1. (4x)R(x) hyp
 2. (4x)R(x) S (4x)S(x) hyp
 3. (4x)S(x) 1, 2, mp

However, there are many arguments with predicate wffs that are not tautolo-
gies but are still valid because of their structure and the meaning of the univer-
sal and existential quantifiers (see Example 24). The overall approach to proving
these arguments is to strip off the quantifiers, manipulate the unquantified wffs,

4A complete list of derivation rules for propositional and predicate logic is given in Appendix A.

 Section 1.4 Predicate Logic 59

and then put the quantifiers back in. The new rules of inference provide mecha-
nisms to strip off and insert quantifiers. Hence there are four new rules—one each
to strip off the universal and existential quantifier, respectively, and one each to
insert the universal and existential quantifier, respectively. The four rules are given
in Table 1.17; their details will be explained shortly. In Table 1.17, the notation P(x)
does not imply that P is a unary predicate with x as its only variable; it simply
means that x is one of the variables in the predicate P. Thus P(x) might actually be
something like (E y)(4z)Q(x, y, z).

Table 1.17

Inference Rules

From Can Derive Name/abbreviation for Rule Restrictions on Use

(4x)P(x) P(t), where t is a variable or
constant symbol

Universal instantiation—ui If t is a variable, it must not fall
within the scope of a quantifier
for t.

(E x)P(x) P(a) where a is a constant
symbol not previously used
in proof sequence

Existential instantiation—ei Must be the first rule used that
introduces a.

P(x) (4x)P(x) Universal generalization—ug P(x) has not been deduced from
any hypotheses in which x is a
free variable nor has P(x) been
deduced by ei from any wff in
which x is a free variable.

P(x) or P(a)
where a is
a constant
symbol

(E x)P(x) Existential generalization—eg To go from P(a) to (E x)P(x), x must
not appear in P(a).

Now let’s examine these rules more closely, particularly the necessity for their
restrictions.

Universal Instantiation
The universal instantiation rule says that from (4x)P(x) we can derive P(x),
P(y), P(z), P(a), and so on, thus stripping off a universal quantifier. The justifica-
tion is that if P is true for every element of the domain, we can name such an ele-
ment by an arbitrary variable name like x, y, or z, or we can specify a particular
constant in the domain, and P is still true for all of these things.

 eXaMPle 26 Universal instantiation can be used to prove one of the classical “syllogisms” of
the Greek philosopher and scientist Aristotle, who lived from 384 to 322 b.c.e. and
who first developed a system of formal logic.

The argument has the form, “All humans are mortal. Socrates is human. There-
fore Socrates is mortal.” Using the notation

H(x) is “x is human.”
s is a constant symbol (Socrates)
M(x) is “x is mortal.”

60 Formal Logic

pRaCtiCe 22 Prove the argument

(4x)[P(x) S R(x)] ` [R(y)]′S [P(y)]′

Existential Instantiation
The existential instantiation rule allows us to strip off an existential quantifier.
It says that from (E x)P(x) we can derive P(a) or P(b) or P(c) provided that these
are new constant symbols. The justification is that if P is true for some element
of the domain, we can give that element a specific name, but we cannot assume
anything else about it.

Without the restriction on universal instantiation, a hypothesis of the form
(4x)(E y)P(x, y) could lead to the wff (E y)P(y, y); here y has been substituted for x
within the scope of a quantifier on y. This would be invalid. For example, in the
domain of the integers, if P(x, y) means “y > x,” then (4x)(E y)P(x, y) is true (for
every integer there is a bigger integer) but (E y)P(y, y) is false (no integer has the
property that it is bigger than itself).

the argument is

(4x)[H(x) S M(x)] ` H(s) S M(s)

and a proof sequence is

(4x)(H(x) S M(x)) hyp
H(s) hyp
H(s) S M(s) 1, ui
M(s) 2, 3, mp

In step 3, a constant symbol has been substituted for x throughout the scope of the
universal quantifier, as allowed by universal instantiation.

 eXAMPLe 27 The following expressions would be legitimate steps in a proof sequence:

 1. (4x)[P(x) S Q(x)] hyp
 2. (E y)P(y) hyp
 3. P(a) 2, ei
 4. P(a) S Q(a) 1, ui
 5. Q(a) 3, 4, mp

In step 3, the specific element with property P was given the name a. In step 4,
ui was then used to say that an implication that is universally true in the domain
is certainly true for this a. Steps 3 and 4 cannot be reversed. If ui is first used on
hypothesis 1 to name a constant a, there is then no reason to assume that this par-
ticular a is the one that is guaranteed by hypothesis 2 to have property P.

 Section 1.4 Predicate Logic 61

The effect of the restriction on existential instantiation is that you should look
at all your hypotheses and, if you plan to use ei on any of them, do it first.

Universal Generalization
Universal generalization allows a universal quantifier to be inserted. This must
be done pretty carefully, however. If we know that P(x) is true and that the x is
absolutely arbitrary, i.e., that x could be any element of the domain, then we can
conclude (4x)P(x). But if x is supposed to represent some specific element of the
domain that has property P, then we can’t generalize that every element of the
domain has property P.

There are two restrictions on universal generalization. Without the first re-
striction, the sequence

 1. P(x) hyp
 2. (4x)P(x) 1, incorrect ug; x was free in the hypothesis.

would be a proof of the wff P(x) S (4x)P(x), but this is not a valid wff. Element x
of the domain may have property P, but that does not mean that every element of
the domain has property P. In the hypothesis, x is naming some fixed if unspeci-
fied element of the domain. For instance, in the interpretation where the domain
consists of automobiles and P(x) means “x is yellow,” some particular car may be
yellow but it is certainly not true that all cars are yellow.

Without the second restriction, the sequence

 1. (4x)(E y)Q(x, y) hyp
 2. (E y)Q(x, y) 1, ui
 3. Q(x, a) 2, ei
 4. (4x)Q(x, a) 3, incorrect ug; Q(x, a) was deduced by ei from the wff

in step 2, in which x is free.

 eXAMPLe 28 Use predicate logic to prove

(4x)[P(x) S Q(x)] ` (4x)P(x) S (4x)Q(x)

Here is a proof sequence.

 1. (4x)[P(x) S Q(x)] hyp
 2. (4x)P(x) hyp
 3. P(x) S Q(x) 1, ui
 4. P(x) 2, ui Note that there is no restriction on ui about

 reusing a name.
 5 Q(x) 3, 4, mp
 6. (4x)Q(x) 5, ug

The use of universal generalization at step 6 is legitimate because x was not a
free variable in any hypothesis nor was ei used anywhere in the proof. The vari-
able x in steps 3 and 4 is just an arbitrary name, representative of any element
in the domain.

ReMIndeR

Use existential instan-
tiation early in the proof
sequence.

62 Formal Logic

would be a proof of the wff (4x)(E y)Q(x, y) S (4x)Q(x, a). This is also not a valid
wff. For instance, in the interpretation where the domain consists of the integers
and Q(x, y) means that x + y = 0, then it is the case that for every integer x there
is an integer y (the negative of x) such that x + y = 0. However, if a is a particular
fixed element in the domain, then it will not be true that adding that same integer
a to every x will always produce zero.

pRaCtiCe 23 Prove the argument

(4x)[P(x) ` Q(x)] S (4x)[Q(x) ` P(x)].

Existential Generalization
The last rule allows insertion of an existential quantifier. From P(x) or P(a) we can
derive (E x)P(x); something has been named as having property P, so we can say
that there exists something that has property P.

 eXAMPLe 29 Prove the argument (4x)P(x) S (E x)P(x).
Here is a proof sequence.

 1. (4x)P(x) hyp
 2. P(x) 1, ui
 3. (E x)P(x) 2, eg

Without the restriction on existential generalization, from P(a, y) one could
derive (E y)P(y, y); here the quantified variable y, which replaced the constant sym-
bol a, already appeared in the wff to which existential generalization was applied.
But the argument P(a, y) S (E y)P(y, y) is not valid. In the domain of integers, if
P(x, y) means “y > x” and a stands for 0, then if y > 0, this does not mean that
there is an integer y that is greater than itself.

More work with rules

As is the case with propositional logic rules, predicate logic rules can be applied
only when the exact pattern of the rule is matched (and, of course, when no
restrictions on use of the rule are violated). In particular, notice that the instan-
tiation rules strip off a quantifier from the front of an entire wff that is in the
scope of that quantifier. Both of the following would be illegal uses of existential
instantiation:

 1. (E x)P(x) ~ (E x)Q(x) hyp

 2. P(a) ~ Q(a) 1, incorrect ei. The scope of the first existential quan-
tifier in step 1 does not extend to the whole rest of
the wff.

 Section 1.4 Predicate Logic 63

 1. (4x)(E y)Q(x, y) hyp
2. (4x)Q(x, a) 1, incorrect ei. The existential quantifier in step 1 is not at

the front.

Similarly, the rules to insert a quantifier put the quantifier in the front of a wff that
is then entirely within its scope.

The new derivation rules all have restrictions, but in practice, you are most
likely to violate the ei restriction. Pay special attention to this restriction and be
sure that when you substitute a constant using ei, it’s not a previously used constant.

Even though we have added only four new derivation rules, the rule set is
complete and correct. We can prove every valid argument and only valid argu-
ments using these rules. Application of the rules, as in the case of propositional
logic, is somewhat mechanical because there are only a limited number of options
at each step. Again, the general plan of attack is usually as follows:

• Strip off the quantifiers.
• Work with the separate wffs.
• Insert quantifiers as necessary.

 eXAMPLe 30 Using predicate logic, prove the argument

(4x)[P(x) ` Q(x)] S (4x)P(x) ` (4x)Q(x)

In Example 24(c) we noted that this wff is valid, so if all valid arguments are prov-
able, we should be able to find a proof sequence. As usual, the hypothesis gives us
a starting point.

 1. (4x)[P(x) ` Q(x)] hyp

Stripping off the universal quantifier that appears in step 1 will yield access to
P(x) ` Q(x), which can then be separated. The universal quantifier can then be
inserted separately on each of those two wffs using universal generalization. The
conclusion (4x)P(x) ` (4x)Q(x) will follow. A proof sequence is

 1. (4x)[P(x) ` Q(x)] hyp
 2. P(x) ` Q(x) 1, ui
 3. P(x) 2, sim
 4. Q(x) 2, sim
 5. (4x)P(x) 3, ug
 6. (4x)Q(x) 4, ug
 7. (4x)P(x) ` (4x)Q(x) 5, 6, con

Neither restriction on universal generalization has been violated because x is not
free in the hypothesis and existential instantiation has not been used.

pRaCtiCe 24 Using predicate logic, prove the following argument. (Hint: The deduction
method still applies.)

(4y)[P(x) S Q(x, y)] S [P(x) S (4y)Q(x, y)]

64 Formal Logic

As an extension to the deduction method, we can insert a “temporary”
 hypothesis into a proof. If some wff T is introduced into a proof sequence as a
temporary hypothesis, and eventually a wff W is deduced from T and other hy-
potheses, then the wff T S W has been deduced from the other hypotheses and
can be inserted in the proof sequence.

 eXAMPLe 31 The argument

[P(x) S (4y)Q(x, y)] S (4y)[P(x) S Q(x, y)]

is valid. In the following proof sequence, P(x) is introduced at step 2 as a tempo-
rary hypothesis, which allows us to deduce Q(x, y) at step 4. The indented steps
show that these wffs depend on the temporary hypothesis. At step 5, the temporary
hypothesis is “discharged,” as the dependency of Q(x, y) on the temporary hy-
pothesis is explicitly acknowledged as an implication. Of course, the entire wff at
step 5, P(x) S Q(x, y), still depends on the hypothesis of step 1. At step 6, neither
restriction on universal generalization is violated because y is not a free variable
in step 1 (the only hypothesis at this point) and existential instantiation is not used
in the proof.

 1. P(x) S (4y)Q(x, y) hyp
 2. P(x) temporary hyp
 3. (4y)Q(x, y) 1, 2, mp
 4. Q(x, y) 3, ui
 5. P(x) S Q(x, y) temp. hyp discharged
 6. (4y)[P(x) S Q(x, y)] 5, ug

Notice how the temporary hypothesis gives us enough ammunition to make some-
thing happen. Without this technique, it would be difficult to know what to do after
step 1.

The technique of introducing a temporary hypothesis is seldom needed.
Again, think of this as an extension to the deduction method. If the desired con-
clusion is of the form P S Q, the deduction method says we can assume P as a
 hypothesis and deduce Q as the conclusion. If the desired conclusion is of the form
(4x)(P(x) S Q(x)) or (E x)(P(x) S Q(x)), then the deduction method does not apply,
but P(x) can be used as a temporary hypothesis.

Practice 24 and Example 31 show that the wff

(4y)[P(x) S Q(x, y)] 4 [P(x) S (4y)Q(x, y)]

is valid. It says that the universal quantifier can “slide over” subwffs that do not
contain the quantified variable; in this case, (4y) is passed over P(x). A similar
result holds for the existential quantifier. We noted this feature in Example 22, and
here is the formal justification. This is one reason why there may be two or more
equivalent ways of expressing English language sentences as predicate wffs, as in
Exercises 13 through 24 of Section 1.3.

 Section 1.4 Predicate Logic 65

The proofs of Example 32 are rather difficult because they require con-
siderably more imagination than most and an unexpected use of a temporary

pRaCtiCe 25 Prove the argument

(4x)[(B(x) ~ C(x)) S A(x)] S (4x)[B(x) S A(x)]

In Section 1.3 we observed that, based on our understanding of negation and
the meaning of the quantifiers, [(E x)A(x)]′ is equivalent to (4x)[A(x)]′. We should
be able to formally prove that

[(E x)A(x)]′ 4 (4x)[A(x)]′

is a valid wff.

 eXAMPLe 32 Prove that
[(E x)A(x)]′ 4 (4x)[A(x)]′

is valid. We must prove the implication in each direction.

 a. [(E x)A(x)]′ 4 (4x)[A(x)]′

The hypothesis alone gives us little to work with, so we introduce a (somewhat
surprising) temporary hypothesis. A proof sequence is

 1. [(E x)A(x)]′ hyp
 2. A(x) temporary hyp
 3. (E x)A(x) 2, eg
 4. A(x) S (E x)A(x) temporary hyp discharged
 5. [A(x)]′ 1, 4, mt
 6. (4x)[A(x)]′ 5, ug

 b. (4x)[A(x)]′ S [(E x)A(x)]′

This proof also requires a temporary hypothesis. It is even more surprising than
case (a) because we assume the exact opposite of the conclusion we are trying to
reach.

 1. (4x)[A(x)]′ hyp
 2. (E x)A(x) temporary hyp
 3. A(a) 2, ei
 4. [A(a)]′ 1, ui
 5. [(4x)[A(x)]′]′ 3, 4, inc
 6. (E x)A(x) S [(4x)[A(x)]′]′ temporary hyp discharged
 7. [((4x)[A(x)]′)′]′ 1, dn
 8. [(E x)A(x)]′ 6, 7, mt

66 Formal Logic

hypothesis. As a result, however, we do have the following equivalence, to which
we’ve given a name:

[(E x)A(x)]′ 4 (4x)[A(x)]′ (Negation—neg)

This equivalence might be useful in a proof sequence. As an extension of the
equivalence rules, whenever P 4 Q is valid, Q can be substituted for P within an
expression in a proof sequence.

 eXAMPLe 34 Is the wff

(E x)P(x) ` (E x)Q(x) S (E x)[P(x) ` Q(x)]

a valid argument? Prove or disprove.
If something in a domain has property P and something has property Q, that

does not mean that some one thing has both property P and Q. For example, in the
domain of integers, if P(x) means “x is even” and Q(x) means “x is odd,” then the
hypotheses are true, but the conclusion is false because there is no single integer
that is both even and odd. One interpretation in which the wff is false is enough to
disprove it.

 eXAMPLe 33 Is the wff

(4x)[P(x) ~ Q(x)] S (E x)P(x) ~ (4x)Q(x)

a valid argument? Prove or disprove.
Let’s first consider whether the wff seems valid. If so, we should try to find a

proof sequence for it; if not, we should try to find an interpretation in which it is
not true. This wff says that if every element of the domain has either property P
or property Q, then at least one element must have property P or else all elements
have property Q. This seems very reasonable, so we’ll try to find a proof.

First we’ll use an equivalence to rewrite the conclusion in a more useful form.
Changing the ~ to an implication will allow use of the deduction method. Thus we
want to prove

(4x)[P(x) ~ Q(x)] S [[(E x)P(x)]′ S (4x)Q(x)]

A proof sequence is

1. (4x)[P(x) ~ Q(x)] hyp
2. [(E x)P(x)]′ hyp
3. (4x)[P(x)]′ 2, neg
4. [P(x)]′ 3, ui
5. P(x) ~ Q(x) 1, ui
6. Q(x) 4, 5, ds
7. (4x)Q(x) 6, ug

 Section 1.4 Predicate Logic 67

Verbal arguments

To prove the validity of a verbal argument, we proceed much as before. We cast
the argument in symbolic form and show that the conclusion can be deduced from
the hypotheses. If the argument involves predicate wffs, then the derivation rules
of predicate logic are available.

It is useful, however, to see where a potential proof sequence goes wrong. We
begin with the two hypotheses and then remove one of the existential quantifiers.

1. (E x)P(x) hyp
2. (E x)Q(x) hyp
3. P(a) 1, ei

Now here’s the problem. The next step would be to remove the existential quan-
tifier from the wff at step 2, but, according to the rules for ei, we have to name the
object that has property Q by some different name, not a. So we could eventually
get to a wff in the proof sequence that looks like

P(a) ` Q(b)

but this does us no good. Existential generalization could not be used to replace
both constant symbols with a single variable. At best, we could arrive at

(E y)(E x)[P(x) ` Q(y)]

which is not what we want.

 eXAMPLe 35 Show that the following argument is valid: “Every laptop has an internal disk
drive. Some laptops have a DVD drive. Therefore some laptops have both an in-
ternal disk drive and a DVD drive.” Using

L(x) is “x is a laptop.”
I(x) is “x has an internal disk drive.”
D(x) is “x has a DVD drive.”

the argument is

(4x)[L(x) S I(x)] ` (E x)[L(x) ` D(x)] S (E x)[L(x) ` I(x) ` D(x)]

pRaCtiCe 26 Is the wff a valid argument? Prove or disprove.

(E x)R(x) ` [(E x)[R(x) ` S(x)]]′ S (E x)[S(x)]′

68 Formal Logic

Note that if we attempt to symbolize this argument in propositional logic, we get
A ` B S C, which is not a valid argument. Propositional logic is simply not ex-
pressive enough to capture the interrelationships among the parts of this argument
that serve to make it valid.

A proof sequence is

 1. (4x)[L(x) S I(x)] hyp
 2. (E x)[L(x) ` D(x)] hyp
 3. L(a) ` D(a) 2, ei
 4. L(a) S I(a) 1, ui
 5. L(a) 3, sim
 6. I(a) 4, 5, mp
 7. L(a) ` D(a) ` I(a) 3, 6, con
 8. L(a) ` I(a) ` D(a) 7, comm
 9. (E x)[L(x) ` I(x) ` D(x)] 8, eg

Once again, it is the form of the argument that matters, not the content.

pRaCtiCe 27 Show that the following argument is valid: “All rock music is loud music. Some rock music
exists, therefore some loud music exists.” Use predicates R(x) and L(x).

Conclusion

We’ve now finished our study of formal logic. What has been accomplished?
The goal of formal logic, often called symbolic logic, is to make arguments as
meaningless as possible! The symbolic notation of propositional and predicate
logic allows us to symbolize arguments. An argument cast in symbolic notation
removes any possibility that we will be swayed by our opinions or our external
knowledge about the topic of the argument, and we can concentrate solely on its
structure to determine its logical validity. Furthermore, the derivation rules allow
the proof of an argument’s validity to be produced by symbol manipulation. A
proof requires no external knowledge, only a careful adherence to the forms and
restrictions of the rules. In theory, then, producing a proof sequence should be
almost mechanical. Again, one objective of practice with this mechanical process
of applying rules is that it will ultimately transform into a habit of logical thinking
in everyday life.

Nonetheless, you may still feel that it is difficult to produce a proof sequence.
Practice does make the process easier, because after a while, you become familiar
with the various forms an argument might take and you recognize which rules
you should try to apply. At any rate, you should at least find it easy at this point to
check whether a proposed proof sequence is logically correct.

Philosophers through the ages believed logical thinking to be one of the high-
est achievements of human existence. One additional example, however, will
show how even the most careful application of logic can be frustrated.

 Section 1.4 Predicate Logic 69

In addition to logical thinking in its pure sense, the notions of formal rules of
inference have two very direct applications to computer science. An entire system
of programming, and some programming languages, are based on applying rules
of inference. We will see such a language in Section 1.5. Similarly, rules of infer-
ence can be applied to formally prove program correctness, leading to increased
confidence that code is error-free. We’ll look at some of the inference rules for
program correctness in Section 1.6.

 eXAMPLe 36 The hunting grounds of a medieval king were forbidden to commoners, and any-
one caught poaching the royal deer was subject to death. The hapless poacher was,
however, granted a means to choose the manner of death. He (or she) was allowed
to make a final statement. If the statement were judged to be true, death would be
by beheading with a sword; if false, death would come by arrow shot from the
bow of the best royal marksman. One day a particularly clever poacher was ap-
prehended and allowed the usual final statement. The poacher said, “I will be shot
to death by an arrow.”

The king’s court faced a conundrum. If the poacher were shot to death by an
arrow, then the statement he made would prove to be true, in which case he should
have been beheaded. But if he were beheaded, then the statement he made would
be false, in which case he should have been shot by an arrow. Unable to decide the
manner of death, the court appointed the clever poacher to the post of king’s press
secretary, where he served happily for many years.

This sort of paradox—a riddle with no solution—has to be carefully constructed,
and we will not spend any more time reflecting on the potential shortcomings of
classical logic systems that it may reveal.

S e c t I o n 1 . 4 Review

tecHnIQueS

• Apply derivation rules for predicate logic.
• Use predicate logic to prove the validity of a ver-

bal argument.

MAIn IdeA

• The predicate logic system is correct and com-
plete; valid arguments and only valid arguments
are provable.

W
W

eXeRcISeS 1.4

For Exercises 1–6, decide what conclusion, if any, can be reached from the given hypotheses and justify your
answer.
 1. All flowers are plants. Pansies are flowers.
 2. All flowers are plants. Pansies are plants.
 3. All flowers are red or purple. Pansies are flowers. Pansies are not purple.
 4. Some flowers are purple. All purple flowers are small.
 5 Some flowers are red. Some flowers are purple. Pansies are flowers.
 6. Some flowers are pink and have thorns. All thorny flowers smell bad. Every flower that smells bad is a

weed.

70 Formal Logic

 7. Justify each step in the following proof sequence of

(E x)[P(x) S Q(x)] S [(4x)P(x) S (E x)Q(x)]

 1. (E x)[P(x) S Q(x)]
 2. P(a) S Q(a)
 3. (4x)P(x)
 4. P(a)
 5. Q(a)
 6. (E x)Q(x)
 8. Justify each step in the following proof sequence of

(E x)P(x) ` (4x)(P(x) S Q(x)) S (E x)Q(x)

 1. (E x)P(x)
 2. (4x)(P(x) S Q(x))
 3. P(a)
 4. P(a) S Q(a)
 5. Q(a)
 6. (E x)Q(x)
 9. Consider the wff

(4x)[(E y)P(x, y) ` (E y)Q(x, y)] S (4x)(E y)[P(x, y) ` Q(x, y)]

 a. Find an interpretation to prove that this wff is not valid.
 b. Find the flaw in the following “proof” of this wff.

 1. (4x)[(E y)P(x, y) ` (E y)Q(x, y)] hyp
 2. (4x)[P(x, a) ` Q(x, a)] 1, ei
 3. (4x)(E y)[P(x, y) ` Q(x, y)] 2, eg
 10. Consider the wff

(4y)(E x)Q(x, y) S (E x)(4y)Q(x, y)

 a. Find an interpretation to prove that this wff is not valid.
 b. Find the flaw in the following “proof” of this wff.

 1. (4y)(E x)Q(x, y) hyp
 2. (E x)Q(x, y) 1, ui
 3. Q(a, y) 2, ei
 4. (4y)Q(a, y) 3, ug
 5. (E x)(4y)Q(x, y) 4, eg

In Exercises 11–16, prove that each wff is a valid argument.

 11. (4x)P(x) S (4x)[P(x) ~ Q(x)]
 12. (4x)P(x) ` (E x)Q(x) S (E x)[P(x) ` Q(x)]
 13. (E x)(E y)P(x, y) S (E y)(E x)P(x, y)
 14. (4x)(4y)Q(x, y) S (4y)(4x)Q(x, y)

 Section 1.4 Predicate Logic 71

 15. (4x)P(x) ` (E x)[P(x)]′ S (E x)Q(x)
 16. (4x)[S(x) S (E y)(P(x,y) ` T(y))] ` (E x)(C(x) ` S(x)) S (E x)(E y)(C(x) ` T(y) ` P(x, y))

In Exercises 17–30, either prove that the wff is a valid argument or give an interpretation in which it is false.

 17. (E x)[A(x) ` B(x)] S (E x)A(x) ` (E x)B(x)
 18. (E x)[R(x) ~ S(x)] S (E x)R(x) ~ (E x)S(x)
 19. (E x)P(x) ` (E x)(E y)Q(x, y) S (E x)(E y)[P(x) ` Q(x, y)]
 20. (4x)[P(x) S Q(x)] S [(4x)P(x) S (4x)Q(x)]
 21. (4x)(P(x))′ S (4x)(P(x) S Q(x))
 22. [(4x)P(x) S (4x)Q(x)] S (4x)[P(x) S Q(x)]
 23. (E x)(4y)Q(x, y) S (4y)(E x)Q(x, y)
 24. (4x)P(x) ~ (E x)Q(x) S (4x)[P(x) ~ Q(x)]
 25. (4x)[A(x) S B(x)] S [(E x)A(x) S (E x)B(x)]
 26. (4y)[Q(x, y) S P(x)] S [(E y)Q(x, y) S P(x)]
 27. [P(x) S (E y)Q(x, y)] S (E y)[P(x) S Q(x, y)]
 28. (4x)(P(x) ~ Q(x)) ` (E x)Q(x) S (E x)P(x)
 29. (E x)[P(x) ` Q(x)] ` (4y)[Q(y) S R(y)] S (E x)[P(x) ` R(x)]
 30. (4x)(4y)[(P(x) ` S(x, y)) S Q(y)] ` (E x)B(x) ` (4x)(B(x) S P(x)) ` (4x)(E y)S(x, y) S (E x)Q(x)
 31. The Greek philosopher Aristotle (384–322 b.c.e.) studied under Plato and tutored Alexander the Great. His

studies of logic influenced philosophers for hundreds of years. His four “perfect” syllogisms are identified
by the names given them by medieval scholars. For each, formulate the argument in predicate logic nota-
tion and then provide a proof.

 a. “Barbara”
All M are P
All S are M
Therefore all S are P

 b. “Celarent”
No M are P
All S are M
Therefore no S are P

 c. “Darii”
All M are P
Some S are M
Therefore some S are P

 d. “Ferio”
No M are P
Some S are M
Therefore some S are not P

Using predicate logic, prove that each argument in Exercises 32–42 is valid. Use the predicate symbols
shown.

 32. Some plants are flowers. All flowers smell sweet. Therefore, some plants smell sweet. P(x), F(x), S(x)

72 Formal Logic

 33. Every crocodile is bigger than every alligator. Sam is a crocodile. But there is a snake, and Sam isn’t
 bigger than the snake. Therefore, something is not an alligator. C(x), A(x), B(x, y), s, S(x)

 34. There is an astronomer who is not nearsighted. Everyone who wears glasses is nearsighted. Furthermore,
everyone either wears glasses or wears contact lenses. Therefore, some astronomer wears contact lenses.
A(x), N(x), G(x), C(x)

 35. Every member of the board comes from industry or government. Everyone from government who has a
law degree is in favor of the motion. John is not from industry, but he does have a law degree. Therefore,
if John is a member of the board, he is in favor of the motion. M(x), I(x), G(x), L(x), F(x), j

 36. There is some movie star who is richer than everyone. Anyone who is richer than anyone else pays more
taxes than anyone else does. Therefore, there is a movie star who pays more taxes than anyone. M(x),
R(x, y), T(x, y)

 37. Everyone with red hair has freckles. Someone has red hair and big feet. Everybody who doesn’t
have green eyes doesn’t have big feet. Therefore someone has green eyes and freckles. R(x), F(x),
B(x), G(x)

 38. Cats eat only animals. Something fuzzy exists. Everything that’s fuzzy is a cat. And everything eats some-
thing. So animals exist. C(x), E(x, y), A(x), F(x)

 39. Every computer science student works harder than somebody, and everyone who works harder than any
other person gets less sleep than that person. Maria is a computer science student. Therefore, Maria gets
less sleep than someone else. C(x), W(x, y), S(x, y), m

 40. Every ambassador speaks only to diplomats, and some ambassador speaks to someone. Therefore, there is
a diplomat. A(x), S(x, y), D(x)

 41. Some elephants are afraid of all mice. Some mice are small. Therefore there is an elephant that is afraid of
something small. E(x), M(x), A(x, y), S(x)

 42. Every farmer owns a cow. No dentist owns a cow. Therefore no dentist is a farmer. F(x), C(x), O(x, y), D(x)
 43. Prove that

[(4x)A(x)]′ 4 (E x)[A(x)]′

 is valid. (Hint: Instead of a proof sequence, use Example 32 and substitute equivalent expressions.)
 44. The equivalence of Exercise 43 says that if it is false that every element of the domain has property A,

then some element of the domain fails to have property A, and vice versa. The element that fails to have
property A is called a counterexample to the assertion that every element has property A. Thus a counter-
example to the assertion

(4x)(x is odd)

 in the domain of integers is the number 10, an even integer. (Of course, there are lots of other counterex-
amples to this assertion.) Find counterexamples in the domain of integers to the following assertions. (An
integer x > 1 is prime if the only factors of x are 1 and x.)

 a. (4x)(x is negative)
 b. (4x)(x is the sum of even integers)
 c. (4x)(x is prime S x is odd)
 d. (4x)(x prime S (−1)x = −1)
 e. (4x)(x prime S 2x − 1 is prime)

 Section 1.5 Logic Programming 73

 S e c t I o n 1 . 5 logiC pRogRamming

The programming languages with which you are probably familiar, such as C++
or Java, are known as procedural languages. Much of the content of a program
written in a procedural language consists of instructions to carry out the algo-
rithm the programmer believes will solve the problem at hand. The program-
mer, therefore, is telling the computer how to solve the problem in a step-by-step
fashion.

Some programming languages, rather than being procedural, are declarative
languages or descriptive languages. A declarative language is based on predi-
cate logic; such a language comes equipped with its own rules of inference. A
program written in a declarative language consists only of statements— actually
predicate wffs—that are declared as hypotheses. Execution of a declarative pro-
gram allows the user to pose queries, asking for information about possible
conclusions that can be derived from the hypotheses. After obtaining the user’s
query, the language turns on its “inference engine” and applies its rules of in-
ference to the hypotheses to see which conclusions fit the user’s query. The
program, remember, contains only the hypotheses, not any explicit instructions
as to what steps to perform in what order. The inference engine of the language
acts behind the scenes, so to speak, to construct a proof sequence. It is the me-
chanical nature of applying inference rules that makes this “automated theorem
proving” possible.

Prolog

The programming language Prolog, which stands for PROgramming in LOGic,
is a declarative programming language. The set of declarations that constitutes
a Prolog program is also known as a prolog database. Items in a Prolog data-
base take on one of two forms, known in Prolog as facts and rules. (Prolog rules,
however, are just another kind of fact and should not be confused with a rule of
inference.)

prolog facts allow predicates to be defined by stating which items in some
domain of interpretation satisfy the predicates. As an example, suppose we wish to
create a Prolog program that describes food chains in a given ecological region. We
might begin with a binary predicate eat. We then describe the predicate by giving
the pairs of elements in the domain that make eat true. Thus we might have the facts

eat(bear, fish)
eat(bear, fox)
eat(deer, grass)

in our database. (The exact details of Prolog statements vary from one Prolog
implementation to another, so in this section we are only giving the spirit of the
language by using a Prolog-like pseudocode.) Here “bear,” “fish,” “fox,” “deer,”
and “grass” are constants because they represent specific elements in the domain.
Because the domain itself is never specified except by describing predicates, at
this point we may take the domain to consist of “bear,” “fish,” “fox,” “deer,” and

74 Formal Logic

“grass.” It is up to the user to maintain a consistent understanding and use of the
predicates in a Prolog program. Thus

eat(bear, fish)

can be used either to represent the fact that bears eat fish or the fact that fish eat
bears!

We impose the convention that eat(X, Y) means “X eats Y.” We could add
descriptions of two unary predicates, animal and plant, to the database by adding
the facts

animal(bear)
animal(fish)
animal(fox)
animal(deer)
plant(grass)

Armed with this Prolog program (database), we can pose some simple queries.

 eXAMPLe 37 The query

?animal(bear)

merely asks if the fact animal(bear) is in the database. Because this fact is in the
database, Prolog would respond to the query by answering yes. (This is a one-step
proof sequence—no rules of inference are required). Further dialogue with Prolog
could include

?eat(deer, grass)
yes
?eat(bear, rabbit)
no

Queries may include variables, as shown in the next example.

 eXAMPLe 38 The query

?eat(bear, X)

produces

fish
fox

as a response. Prolog has answered the query by searching the database for all
facts that match the pattern eat(bear, X), where X is a variable. The answer “fish”
is given first because the rules are searched in order from top to bottom.

 Section 1.5 Logic Programming 75

Queries may contain the logical connectives and, or, and not.

pRaCtiCe 28 Given the database

eat(bear, fish)
eat(bear, fox)
eat(deer, grass)
animal(bear)
animal(fish)
animal(fox)
animal(deer)
plant(grass)

what will be Prolog’s response to the query

?eat(X, Y) and plant(Y)

The second type of item in a Prolog database is a prolog rule. A rule is a de-
scription of a predicate by means of an implication (the implication arrow in the rule
goes from right to left). For example, we might use a rule to define a predicate of prey:

prey(X) <= eat(Y, X) and animal(X)

This statement says that X is a prey if it is an animal that is eaten. If we add this
rule to our database, then in response to the query

?prey(X)

we would get

fish
fox

horn Clauses and resolution

How do Prolog facts and rules relate to more formal predicate logic? We can de-
scribe the facts in our database as wffs:

E(b, fi)
E(b, fo)
E(d, g)
A(b)
A(fi)
A(fo)
A(d)
P(g)

and the rule by the wff

E(y, x) ` A(x) S Pr(x)

76 Formal Logic

Universal quantifiers are not explicitly part of the rule as it appears in a Prolog
program, but Prolog treats the rule as being universally quantified

(4y)(4x)[E(y, x) ` A(x) S Pr(x)]

and repeatedly uses universal instantiation to strip off the universal quantifiers
and allow the variables to assume in turn each value of the domain.

Both facts and rules are examples of Horn clauses. A horn clause is a wff
composed of predicates or the negations of predicates (with either variables or
constants as arguments) joined by disjunctions, where at most one predicate is
unnegated. Thus the fact

E(d, g)

is an example of a Horn clause because it consists of a single unnegated predicate.
The wff

[E(y, x)]′ ~ [A(x)]′ ~ Pr(x)

is an example of a Horn clause because it consists of three predicates joined by
disjunction where only Pr(x) is unnegated. By De Morgan’s law, it is equivalent to

[E(y, x) ` A(x)]′ ~ Pr(x)

which in turn is equivalent to

E(y, x) ` A(x) S Pr(x)

and therefore represents the rule in our Prolog program.
The single rule of inference used by Prolog is called resolution. Two Horn

clauses in a Prolog database are resolved into a single new Horn clause if one
contains an unnegated predicate that matches a negated predicate in the other
clause. The new clause eliminates the matching term and is then available to use
in answering the query. For example,

 A(a)
[A(a)]′ ~ B(b)

resolves to B(b). This says that from

A(a), [A(a)]′ ~ B(b)

which is equivalent to

A(a), A(a) S B(b)

Prolog infers

B(b)

ReMIndeR

Prolog’s resolution rule
looks for a term and its
negation to infer one Horn
clause from two.

 Section 1.5 Logic Programming 77

which is just an application of modus ponens. Therefore Prolog’s rule of inference
includes modus ponens as a special case.

In applying the resolution rule, variables are considered to “match” any
constant symbol. (This is the repeated application of universal instantiation.) In
any resulting new clause, the variables are replaced with their associated con-
stants in a consistent manner. Thus in response to the query ?prey(X), Prolog
searches the database for a rule with the desired predicate Pr(x) as the conse-
quent. It finds

[E(y, x)]′ ~ [A(x)]′ ~ Pr(x)

It then proceeds through the database looking for other clauses that can be re-
solved with this clause. The first such clause is the fact E(b, fi). These two clauses
resolve into

[A(fi)]′ ~ Pr(fi)

(Note that the constant fi has replaced x everywhere.) Using this new clause, it
can be resolved with the fact A(fi) to conclude Pr(fi). Having reached all conclu-
sions possible from resolution with the fact E(b, fi), Prolog backtracks to search
for another clause to resolve with the rule clause; this time around it would find
E(b, fo).

As a more complex example of resolution, suppose we add the rule

hunted(X) <= prey(X)

to the database. This rule in symbolic form is

[Pr(x)] S H(x)

or, as a Horn clause,

[Pr(x)]′ ~ H(x)

It resolves with the rule defining prey

[E(y, x)]′ ~ [A(x)]′ ~ Pr(x)

to give the new rule

[E(y, x)]′ ~ [A(x)]′ ~ H(x)

The query

?hunted(X)

will use this new rule to conclude

fish
fox

78 Formal Logic

 eXAMPLe 39 Suppose that a Prolog database contains the following entries:

eat(bear, fish)
eat(fish, littlefish)
eat(littlefish, algae)
eat(raccoon, fish)
eat(bear, raccoon)
eat(bear, fox)
eat(fox, rabbit)
eat(rabbit, grass)
eat(bear, deer)
eat(deer, grass)
eat(wildcat, deer)

animal(bear)
animal(fish)
animal(littlefish)
animal(raccoon)
animal(fox)
animal(rabbit)
animal(deer)
animal(wildcat)

plant(grass)
plant(algae)
prey(X) <= eat(Y, X) and animal(X)

Then the following dialog with Prolog could take place:

?animal(rabbit)
yes

?eat(wildcat, grass)
no

?eat(X, fish)
bear
raccoon

?eat(X, Y) and plant(Y)
littlefish algae
rabbit grass
deer grass

?prey(X)
fish
littlefish
fish

 Section 1.5 Logic Programming 79

raccoon
fox
rabbit
deer
deer

Note that fish is listed twice as satisfying the last query because fish are eaten by
bear (fact 1) and by raccoon (fact 3). Similarly, deer are eaten by both bear and
wildcat.

pRaCtiCe 29

a. Formulate a Prolog rule that defines the predicate predator.
b. Adding this rule to the database of Example 39, what would be the response to the query

?predator(X)

recursion

Prolog rules are implications. Their antecedents (remember that these will appear
on the right side of the rules) may depend on facts, as in

prey(X) <= eat(Y, X) and animal(X)

or on other rules, as in

hunted(X) <= prey(X)

The antecedent of a rule may also depend on that rule itself, in which case the rule
is defined in terms of itself. A definition in which the item being defined is itself
part of the definition is called a recursive definition.

As an example, suppose we wish to use the ecology database of Example 39 to
study food chains. We can then define a binary relation infoodchain(X, Y), mean-
ing “Y is in X’s food chain.” This, in turn, means one of two things:

 1. X eats Y directly

or

 2. X eats something that eats something that eats something … that eats Y.

Case 2 can be rewritten as follows:

 2′. X eats Z and Y is in Z’s food chain.

Case 1 is simple to test from our existing facts, but without (2′), infoodchain
means nothing different from eat. On the other hand, (2′) without (1) sends us

80 Formal Logic

down an infinite path of something eating something eating something and so on,
with nothing telling us when to stop. Recursive definitions always need a stopping
point that consists of specific information.

The Prolog rule for infoodchain incorporates (1) and (2′):

infoodchain(X, Y) <= eat(X, Y)
infoodchain(X, Y) <= eat(X, Z) and infoodchain(Z, Y)

It is a recursive rule because it defines the predicate infoodchain in terms of
infoodchain.

A recursive rule is necessary when the predicate being described is passed on
from one object to the next. The predicate infoodchain has this property:

infoodchain(X, Y) ` infoodchain(Y, Z) S infoodchain(X, Z)

 eXAMPLe 40 After the infoodchain rule is added to the database of Example 39, the following
query is made:

?infoodchain(bear, Y)

The response follows (numbers are added for reference purposes):

 1. fish 7. fish
 2. raccoon 8. littlefish
 3. fox 9. algae
 4. deer 10. rabbit
 5. littlefish 11. grass
 6. algae 12. grass

Prolog applies the simple case of

infoodchain(bear, Y) <= eat(bear, Y)

first, obtaining answers 1 through 4 directly from the facts eat(bear, fish), eat(bear,
raccoon), and so on. Moving to the recursive case,

infoodchain(bear, Y) <= eat(bear, Z) and infoodchain(Z, Y)

a match of eat(bear, Z) occurs with Z equal to “fish.” Prolog then looks for all
solutions to the relation infoodchain(fish, Y). Using first the simple case of infood-
chain, a match occurs with the fact eat(fish, littlefish). This results in response 5,
littlefish. There are no other facts of the form eat(fish, Y), so the next thing to try
is the recursive case of infoodchain(fish, Y):

infoodchain(fish, Y) <= eat(fish, Z) and infoodchain(Z, Y)

A match of eat(fish, Z) occurs with Z equal to “littlefish.” Prolog then looks for
all solutions to the relation infoodchain(littlefish, Y). Using the simple case of

 Section 1.5 Logic Programming 81

 infoodchain, a match occurs with the fact eat(littlefish, algae). This results in re-
sponse 6, algae. There are no other facts of the form eat(littlefish, Y), so the next
thing to try is the recursive case of infoodchain(littlefish, Y):

infoodchain(littlefish, Y) <= eat(littlefish, Z) and infoodchain(Z, Y)

A match of eat(littlefish, Z) occurs with Z equal to “algae.” Prolog then looks for
all solutions to the relation infoodchain(algae, Y). A search of the entire database
reveals no facts of the form eat(algae, Y) (or eat(algae, Z)), so neither the simple
case nor the recursive case of infoodchain(algae, Y) can be pursued further.

bear
bear
bear
bear
bear

fish
raccoon
fox
deer
fish

fish littlefish

 littlefish algae

Figure 1.2 shows the situation at this point. Prolog has reached a dead-end with
infoodchain(algae, Y) and will backtrack up the path. Because there are no other
facts of the form eat(littlefish, Z), the search for solutions to infoodchain(littlefish,
Y) terminates. Then, because there are no other facts of the form eat(fish, Z), the
search for solutions to infoodchain(fish, Y) terminates. Backing up still further,
there is another match of eat(bear, Z) with Z equal to “raccoon” that will generate
another search path.

Figure 1.2

In Example 40, once Prolog began to investigate infoodchain(fish, Y), all que-
ry answers that could be obtained from exploring this path (responses 5 and 6)
were generated before other answers (responses 7–12). Exploring as far as possible
down a given path and then backtracking up that path before exploring other paths
is called a depth-first search strategy.

pRaCtiCe 30 Trace the execution of the Prolog program of Example 40 and explain why responses 7–12
occur.

expert systems

Many interesting applications programs have been developed, in Prolog and sim-
ilar logic programming languages, that gather a database of facts and rules about
some domain and then use the database to draw conclusions. Such programs are
known as expert systems, knowledge-based systems, or rule-based systems.

82 Formal Logic

The database in an expert system attempts to capture the knowledge (“elicit
the expertise”) of a human expert in a particular field, including both the facts
known to the expert and the expert’s reasoning path in reaching conclusions
from those facts. The completed expert system not only simulates the human
expert’s actions but can be questioned to reveal why it made certain choices and
not others.

Expert systems have been built that simulate a medical specialist’s diagnosis
from a patient’s symptoms, a factory manager’s decisions regarding valve control
in a chemical plant based on sensor readings, the decisions of a fashion buyer for a
retail store based on market research, the choices made by a consultant specifying
a computer system configuration based on customer needs, and many more. The
challenging part of building an expert system lies in extracting all pertinent facts
and rules from the human expert.

S e c t I o n 1 . 5 Review

tecHnIQueS

• Formulate Prolog-like facts and rules.
• Formulate Prolog-like queries.
• Determine the answer(s) to a query using a Prolog

database.

MAIn IdeA

• A declarative language incorporates predicate wffs
and rules of inference to draw conclusions from
hypotheses. The elements of such a language are
based on predicate logic rather than instructions
that carry out an algorithm.

W
W

eXeRcISeS 1.5

Exercises 1–8 refer to the database of Example 39; find the results of the query in each case.

 1. ?animal(wildcat)
 2. ?plant(raccoon)
 3. ?eat(bear, littlefish)
 4. ?eat(fox, rabbit)
 5. ?eat(raccoon, X)
 6. ?eat(X, grass)
 7. ?eat(bear, X) and eat(X, rabbit)
 8. ?prey(X) and not eat(fox, X)
 9. Formulate a Prolog rule that defines “herbivore” to add to the database of Example 39.
 10. If the rule of Exercise 9 is included in the database of Example 39, what is the response to the query

?herbivore(X)

 11. After infoodchain is added to the database of Example 39, add the facts eat(wolf, fox) and eat(wolf, deer).
What is the result of the query

?eat(wolf, X) and not eat(X, grass)

 12. After the modifications in Exercise 11, what is the result of the query

?infoodchain(wolf, X)

 Section 1.5 Logic Programming 83

 13. A Prolog database contains the following, where boss(X, Y) means “X is Y’s boss” and supervisor(X, Y)
means “X is Y’s supervisor”:

 boss(mike, joan)
 boss(judith, mike)
 boss(anita, judith)
 boss(judith, kim)
 boss(kim, enrique)
 boss(anita, sam)
 boss(enrique, jefferson)
 boss(mike, hamal)

 supervisor(X, Y) 6= boss(X, Y)
 supervisor(X, Y) 6= boss(X, Z) and supervisor (Z, Y)

 Find the results of the following queries:
 a. ?boss(X, sam)
 b. ?boss(judith, X)
 c. ?supervisor(anita, X)
 14. Using the Prolog database from Exercise 13, what are the results of the following queries?
 a. ?boss(hamal, X)
 b. ?supervisor(X, kim)
 15. Suppose a Prolog database exists that gives information about authors and the books they have written.

Books are classified as fiction, biography, or reference.
 a. Write a query to ask whether Mark Twain wrote Hound of the Baskervilles.
 b. Write a query to find all books written by William Faulkner.
 c. Formulate a rule to define nonfiction authors.
 d. Write a query to find all nonfiction authors.
 16. Suppose a Prolog database exists that gives information about states and capital cities. Some cities are big,

others small. Some states are eastern, others are western.
 a. Write a query to find all the small capital cities.
 b. Write a query to find all the states with small capital cities.
 c. Write a query to find all the eastern states with big capital cities.
 d. Formulate a rule to define cosmopolitan cities as big capitals of western states.
 e. Write a query to find all the cosmopolitan cities.
 17. Suppose a Prolog database exists that gives information about a family. Predicates of male, female, and

parentof are included.
 a. Formulate a rule to define fatherof.
 b. Formulate a rule to define daughterof.
 c. Formulate a recursive rule to define ancestorof.
 18. Suppose a Prolog database exists that gives information about the parts in an automobile engine. Predicates

of big, small, and partof are included.
 a. Write a query to find all small items that are part of other items.
 b. Write a query to find all big items that have small subitems.
 c. Formulate a recursive rule to define componentof.

84 Formal Logic

 19. Suppose a Prolog database exists that gives information about the ingredients in the menu items of a res-
taurant. Predicates of dry, liquid, perishable, and ingredientof are included.

 a. Write a query to find all the dry ingredients of other ingredients.
 b. Write a query to find all perishable ingredients that contain liquid subingredients.
 c. Formulate a recursive rule to define foundin.
 20. Suppose a Prolog database exists that gives information about flights for AA (Always Airborne) airline.

Predicates of city and flight are included. Here flight(X, Y) means that AA has a direct (nonstop) flight
from city X to city Y.

 a. Write a query to find all cities you can get to on a direct flight from Indianapolis.
 b. Write a query to find all cities that have direct flights to San Francisco.
 c. Formulate a recursive rule to define route where route(X, Y) means that you can get from city X to city

Y using AA but it might not be a direct flight.

Exercises 21–22 refer to a “Toy Prolog interpreter” that can be found online at http://www.csse.monash.edu.
au/~lloyd/tildeLogic/Prolog.toy. The syntax used in this section matches that of this online version except that
in the online version each statement and query must end with a period. Here is a shortened version of Example
39 as entered into the code window, followed by the response to the query:
 eat(bear, fish).
 eat(fish, littlefish).
 eat(littlefish, algae).
 eat(raccoon, fish).
 eat(bear, raccoon).
 eat(bear, fox).
 animal(bear).
 animal(fish).
 animal(littlefish).
 animal(raccoon).
 animal(fox).
 prey(X) <= eat(Y, X) and animal(X).
 ?prey(X).

 --- running ---

 prey(fish) yes
 prey(littlefish) yes
 prey(fish) yes
 prey(raccoon) yes
 prey(fox) yes

In addition, you can look at and run the online sample program to be sure you understand the syntax rules.

 21. Using the online Toy Prolog program, enter the Prolog database of Exercise 13. Run the queries from
Exercises 13 and 14 and compare the results with your previous answers.

 22. Using the online Toy Prolog program, create a database for Exercise 20. Run the queries from Exercise
20. Also run a query using the route predicate.

 S e c t I o n 1 . 6 pRoof of CoRReCtneSS

As our society becomes ever more dependent on computers, it is more and
more important that the programs computers run are reliable and error-free.
Program verification attempts to ensure that a computer program is correct.

http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy
http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy

 Section 1.6 Proof of Correctness 85

“Correctness” has a narrower definition here than in everyday usage. A pro-
gram is correct if it behaves in accordance with its specifications. However, this
does not necessarily mean that the program solves the problem that it was in-
tended to solve; the program’s specifications may be at odds with or not address
all aspects of a client’s requirements. program validation, which we won’t
discuss further, attempts to ensure that the program indeed meets the client’s
original requirements. In a large program development project “program V &
V” or “software quality assurance” is considered so important that a group of
people separate from the programmers is often designated to carry out the as-
sociated tasks.

Program verification may be approached both through program testing and
through proof of correctness. program testing seeks to show that particular
input values produce acceptable output values. Program testing is a major part
of any software development effort, but it is well-known folklore that “testing
can prove the presence of errors but never their absence.” If a test run under a
certain set of conditions with a certain set of input data reveals a “bug” in the
code, then the bug can be corrected. But except for rather simple programs,
multiple tests that reveal no bugs do not guarantee that the code is bug-free,
that there is not some error lurking in the code waiting to strike under the right
circumstances.

As a complement to testing, computer scientists have developed a more math-
ematical approach to “prove” that a program is correct. proof of correctness uses
the techniques of a formal logic system to prove that if the input variables satisfy
certain specified predicates or properties, the output variables produced by ex-
ecuting the program satisfy other specified properties.

To distinguish between proof of correctness and program testing, consider
a program to compute the length c of the hypotenuse of a right triangle, given
positive values a and b for the lengths of the legs. Proving the program correct
would establish that whenever a and b satisfy the predicates a > 0 and b > 0,
then after the program is executed, the predicate a2 + b2 = c2 is satisfied. Test-
ing such a program would require taking various specific values for a and b,
computing the resulting c, and checking that a2 + b2 equals c2 in each case.
However, only representative values for a and b can be tested, not all possible
values.

Again, testing and proof of correctness are complementary aspects of pro-
gram verification. All programs undergo program testing; they may or may not
undergo proof of correctness as well. Proof of correctness is labor-intensive, hence
expensive; it generally is applied only to small and critical sections of code rather
than to the entire program.

assertions

Describing proof of correctness more formally, let us denote by X an arbitrary
collection of input values to some program or program segment P. The actions
of P transform X into a corresponding group of output values Y; the notation
Y = P(X) suggests that the Y values depend on the X values through the actions
of program P.

A predicate Q(X) describes conditions that the input values are supposed to
satisfy. For example, if a program is supposed to find the square root of a posi-
tive number, then X consists of one input value, x, and Q(x) might be “x > 0.”

86 Formal Logic

A predicate R describes conditions that the output values are supposed to satisfy.
These conditions will often involve the input values as well, so R has the form
R(X, Y) or R[X, P(X)]. In our square root case, if y is the single output value, then
y is supposed to be the square root of x, so R(x, y) would be “y2 = x.” Program P
is correct if the implication

 (4X)(Q(X) S R[X, P(X)]) (1)

is valid. In other words, whenever Q is true about the input values, R should be
true about the input and output values. For the square root case, (1) is

(4x)(x > 0 S [P(x)]2 = x)

The implication (1) is standard predicate wff notation, but the traditional program
correctness notation for (1) is

 {Q}P{R} (2)

{Q}P{R} is called a hoare triple, named for the British computer scientist
 Anthony Hoare. Condition Q is called the precondition for program P, and condi-
tion R is the postcondition. In the Hoare notation, the universal quantifier does
not explicitly appear; it is understood.

Rather than simply having an initial predicate and a final predicate, a program
or program segment is broken down into individual statements si, with predicates
inserted between statements as well as at the beginning and end. These predicates
are also called assertions because they assert what is supposed to be true about
the program variables at that point in the program. Thus we have

 {Q}
 s0
 {R1}
 s1
 {R2}
 (
 sn−1
 {R}

where Q, R1, R2, … , Rn = R are assertions. The intermediate assertions are often
obtained by working backward from the output assertion R.

P is provably correct if each of the following implications holds:

 {Q}s0{Rl}
 {Rl}sl{R2}
 {R2}s2{R3}
 (
 {Rn−1}sn−1 {R}

A proof of correctness for P consists of producing this sequence of valid
implications, that is, producing a proof sequence of predicate wffs. Some new
rules of inference can be used, based on the nature of the program statement si.

 Section 1.6 Proof of Correctness 87

assignment rule

Suppose that statement si is an assignment statement of the form x = e, that is, the
variable x takes on the value of e, where e is some expression. The Hoare triple to
prove correctness of this one statement has the form

{Ri} x = e {Ri+l}

For this triple to be valid, the assertions Ri and Ri+1 must be related in a particular way.

 eXAMPLe 41 Consider the following assignment statement together with the given precondition
and postcondition:

{x – 1 > 0}
 x = x – 1

{x > 0}

For every x, if x – 1 > 0 before the statement is executed (note that this says that
x > 1), then after the value of x is reduced by 1, it will be the case that x > 0.
Therefore,

{x – 1 > 0} x = x – 1 {x > 0}

is valid.

In Example 41, we just reasoned our way through the validity of the wff represented
by the Hoare triple. The point of predicate logic is to allow us to determine validity
in a more mechanical fashion by the application of rules of inference. (After all,
we don’t want to just “reason our way through” the entire program to convince
ourselves of its correctness; the programmer already did that when the program
was written!)

The appropriate rule of inference for assignment statements is the assignment
rule, given in Table 1.18. It says that if the precondition and postcondition are
appropriately related, the Hoare triple can be inserted at any time in a proof sequence
without having to be inferred from something earlier in the proof sequence. This
makes the Hoare triple for an assignment statement akin to a hypothesis in our
previous proofs. And what is the relationship? In the postcondition, locate all
instances of the variable to which an assignment is being made in the assignment
statement right above the postcondition. For each of those instances, substitute the
expression being assigned. The result will be the precondition.

tAbLe 1.18

from can derive name of Rule Restrictions on use

{Ri}si{Ri+l} assignment 1. si has the form x = e.
2. Ri is Ri+1 with e substituted

everywhere for x.

88 Formal Logic

 eXAMPLe 42 For the case of Example 41,

{x − 1 > 0}
 x = x − 1

{x > 0}

the triple

{x − 1 > 0} x = x − 1 {x > 0}

is valid by the assignment rule. The postcondition is

x > 0

Substituting x − 1 for x throughout the postcondition results in

x − 1 > 0 or x > 1

which is the precondition. Here we didn’t have to think at all; we just checked that
the assignment rule had been followed.

Certainly Example 41 seems easier than Example 42, and for such a trivial
case you may be tempted to skip use of the assignment inference rule and just
talk your way through the code. Resist this temptation. For one thing, real-world
usage isn’t this trivial. But more to the point, just as in our previous formal logic
systems, you want to rely on the rules of inference instead of on some possibly
flawed thought process.

pRaCtiCe 31 According to the assignment rule, what should be the precondition in the following
program segment?

{precondition}
x = x − 2

{x = y}

Because the assignment rule tells us what a precondition should look like
based on what a postcondition looks like, a proof of correctness often begins with
the final desired postcondition and works its way back up through what the earlier
assertions should look like according to the assignment rule. Once it has been
determined what the topmost assertion must be, a check is done to see that this
assertion is really true.

ReMIndeR

To use the assignment
rule, work from the bottom
to the top.

 eXAMPLe 43 Verify the correctness of the following program segment to exchange the values of
x and y:

temp = x
x = y
y = temp

 Section 1.6 Proof of Correctness 89

At the beginning of this program segment, x and y have certain values. Thus
we may express the actual precondition as x = a and y = b. The desired postcondi-
tion is then x = b and y = a. Using the assignment rule, we can work backward
from the postcondition to find the earlier assertions (read the following from the
bottom to the top).

{y = b, x = a}
temp = x

{y = b, temp = a}
x = y

{x = b, temp = a}
y = temp

{x = b, y = a}

The first assertion agrees with the precondition; the assignment rule, applied
repeatedly, assures us that the program segment is correct.

pRaCtiCe 32 Verify the correctness of the following program segment with the precondition and post-
condition shown:

hx = 3}
y = 4
z = x + y

hz = 7j

Sometimes the necessary precondition is trivially true, as shown in the next
example.

 eXAMPLe 44 Verify the correctness of the following program segment to compute y = x − 4.

y = x
y = y − 4

Here the desired postcondition is y = x − 4. Using the assignment rule to work
backward from the postcondition, we get (again, read bottom to top)

{x − 4 = x − 4}
y = x

{y − 4 = x − 4}
y = y − 4

{y = x − 4}

The precondition is always true; therefore, by the assignment rule, each successive
assertion, including the postcondition, is true.

90 Formal Logic

Conditional rule

A conditional statement is a program statement of the form

if condition B then
P1

else
P2

end if

When this statement is executed, a condition B that is either true or false is
 evaluated. If B is true, program segment P1 is executed, but if B is false, program
segment P2 is executed.

A conditional rule of inference, shown in Table 1.19, determines when a
Hoare triple

{Q}si{R}

can be inserted in a proof sequence if si is a conditional statement. The Hoare
triple is inferred from two other Hoare triples. One of these says that if Q is true
and B is true and program segment P1 is executed, then R holds; the other says that
if Q is true and B is false and program segment P2 is executed, then R holds. This
simply says that each branch of the conditional statement must be proved correct.

tAbLe 1.19

from can derive name of Rule Restrictions on use

{Q ` B} P1 {R},
{Q ` B9} P2 {R}

{Q}si{R } conditional si has the form
if condition B then

P1

else
P2

end if

 eXAMPLe 45 Verify the correctness of the following program segment with the precondition and
postcondition shown.

{n = 5}
if n >= 10 then

y = 100
else

y = n + 1
end if

{y = 6}

Here the precondition is n = 5, and the condition B to be evaluated is n >= 10. In
order to apply the conditional rule, we must first prove that

{Q ` B} P1 {R}

 Section 1.6 Proof of Correctness 91

or

{n = 5 and n ≥ 10} y = 100 {y = 6}

holds. Remember that this stands for an implication, which will be true because its
antecedent, n = 5 and n ≥ 10, is false. We must also show that

{Q ` B′} P2 {R}

or

{n = 5 and n < 10} y = n + 1 {y = 6}

holds. Working back from the postcondition, using the assignment rule, we get

{n + 1 = 6 or n = 5}
y = n + 1
{y = 6}

Thus

{n = 5} y = n + 1 {y = 6}

is true by the assignment rule and therefore

{n = 5 and n < 10} y = n + 1 {y = 6}

is also true because the condition n < 10 adds nothing new to the assertion. The
conditional rule allows us to conclude that the program segment is correct.

pRaCtiCe 33 Verify the correctness of the following program segment with the precondition and
postcondition shown.

{x = 4}
if x < 5 then

y = x − 1
else

y = 7
end if

{y = 3}

 eXAMPLe 46 Verify the correctness of the following program segment to compute max(x, y), the
maximum of two distinct values x and y.

{x ∙ y}
if x >= y then

max = x
else

max = y
end if

92 Formal Logic

The desired postcondition reflects the definition of the maximum, (x > y and
max = x) or (x < y and max = y). The two implications to prove are

{x ∙ y and x ≥ y} max = x {(x > y and max = x) or (x < y and max = y)}

and

{x ∙ y and x < y} max = y {(x > y and max = x) or (x < y and max = y)}

Using the assignment rule on the first case (substituting x for max in the postcondi-
tion) would give the precondition

(x > y ` x = x) ~ (x < y ` x = y)

Since the second disjunct is always false, this is equivalent to

(x > y ` x = x)

which in turn is equivalent to

x > y or x ∙ y and x ≥ y

The second implication is proved similarly.

In Chapter 2, we will see how to verify correctness for a loop statement,
where a section of code can be repeated many times.

As we have seen, proof of correctness involves a lot of detailed work. It is a
difficult tool to apply to large programs that already exist. It is generally easier
to prove correctness while the program is being developed. Indeed, the list of
assertions from beginning to end specifies the intended behavior of the program
and can be used early in its design. In addition, the assertions serve as valuable
documentation after the program is complete.

S e c t I o n 1 . 6 Review

tecHnIQueS

• Verify the correctness of a program segment that
includes assignment statements.

• Verify the correctness of a program segment that
includes conditional statements.

MAIn IdeA

• A formal system of rules of inference can be used
to prove the correctness of program segments.

W

W

eXeRcISeS 1.6

In the following exercises, * denotes multiplication.

 1. According to the assignment rule, what is the precondition in the following program segment?
 {precondition}

 x = x + 1
 {x = y − l}

 Section 1.6 Proof of Correctness 93

 2. According to the assignment rule, what is the precondition in the following program segment?
 {precondition}

 x = 2 * x
 {x > y}
 3. According to the assignment rule, what is the precondition in the following program segment?
 {precondition}

 x = 3 * x − 1
 {x = 2 * y − 1}
 4. According to the assignment rule, what is the precondition in the following program segment?
 {precondition}

 y = 3x + 7
 {y = x + 1}
 5. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {x = 1}

 y = x + 3
 y = 2 * y

 {y = 8}
 6. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {x > 0}

 y = x + 2
 z = y + 1

 {z > 3}
 7. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {x = 0}

 z = 2 * x + 1
 y = z − 1

 {y = 0}
 8. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {x < 8}

 z = x − 1
 y = z – 5

 {y < 2}
 9. Verify the correctness of the following program segment to compute y = x(x − 1).
 y = x − 1
 y = x * y
 10. Verify the correctness of the following program segment to compute y = 2x + 1.
 y = x
 y = y + y
 y = y + 1
 11. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {y = 0}

 if y < 5 then
 y = y + 1

 else
 y = 5

 end if
 {y = 1}

94 Formal Logic

 12. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {x = 7}

 if x <= 0 then
 y = x

 else
 y = 2 * x

 end if
 {y = 14}
 13. Verify the correctness of the following program segment with the precondition and postcondition shown.
 {x ≠ 0}

 if x > 0 then
 y = 2 * x

 else
 y = (−2) * x

 end if
 {y > 0}
 14. Verify the correctness of the following program segment to compute min(x, y), the minimum of two dis-

tinct values x and y.
 {x ≠ y}

 if x <= y then
 min = x

 else
 min = y

 end if
 15. Verify the correctness of the following program segment to compute |x|, the absolute value of x, for a

nonzero number x.
 {x ≠ 0}

 if x >= 0 then
 abs = x

 else
 abs = −x

 end if
 16. Verify the correctness of the following program segment with the assertions shown.
 {z = 3}

 x = z + 1
 y = x + 2

 {y = 6}
 if y > 0 then

 z = y + 1
 else

 z = 2 * y
 end if

 {z = 7}

 Chapter 1 Review 95

algorithm (p. 12)
antecedent (p. 3)
assertion (p. 86)
assignment rule (p. 87)
binary connective (p. 3)
binary predicate (p. 40)
complete formal logic system

(p. 27)
conclusion (p. 25)
conditional rule of inference

(p. 90)
conditional statement (p. 90)
conjunct (p. 2)
conjunction (p. 2)
consequent (p. 3)
contradiction (p. 8)
correct formal logic system

(p. 27)
correct program (p. 85)
De Morgan’s laws (p. 10)
declarative language (p. 73)
depth-first search (p. 81)
derivation rule (p. 27)
descriptive language (p. 73)
disjunct (p. 3)
disjunction (p. 3)
domain (p. 41)
dual of an equivalence (p. 9)

equivalence (p. 3)
equivalence rule (p. 28)
equivalent wffs (p. 8)
existential generalization (p. 62)
existential instantiation (p. 60)
existential quantifier (p. 40)
expert system (p. 81)
free variable (p. 42)
Hoare triple (p. 86)
Horn clause (p. 76)
hypothesis (p. 25)
implication (p. 3)
inference rule (p. 29)
interpretation (p. 41)
knowledge-based system (p. 81)
logical connective (p. 2)
main connective (p. 6)
n-ary predicate (p. 40)
negation (p. 4)
postcondition (p. 86)
precondition (p. 86)
predicate (p. 39)
predicate logic (p. 58)
predicate wff (p. 41)
procedural language (p. 73)
program testing (p. 85)
program validation (p. 85)
program verification (p. 84)

Prolog database (p. 73)
Prolog fact (p. 73)
Prolog rule (p. 75)
proof of correctness (p. 85)
proof sequence (p. 27)
proposition (p. 2)
propositional calculus (p. 25)
propositional logic (p. 25)
propositional wff (p. 25)
pseudocode (p. 12)
recursive definition (p. 79)
resolution (p. 76)
rule-based system (p. 81)
scope (p. 41)
statement (p. 2)
statement letter (p. 2)
statement logic (p. 25)
tautology (p. 8)
ternary predicate (p. 40)
unary connective (p. 3)
unary predicate (p. 40)
universal generalization (p. 61)
universal instantiation (p. 59)
universal quantifier (p. 39)
valid argument (p. 26, 58)
valid predicate wff (p. 48)
well-formed formula (wff) (p. 6)

c H A P t e R 1 Review

teRMInoLogy

SeLf teSt

Answer the following true–false questions without looking back in the chapter.
section 1.1
1. A contradiction is any propositional wff that is not

a tautology.
2. The disjunction of any propositional wff with a tau-

tology has the truth value true.
3. Algorithm TautologyTest determines whether any

propositional wff is a tautology.
4. Equivalent propositional wffs have the same truth

values for every truth value assignment to the
 components.

5. One of De Morgan’s laws states that the negation of
a disjunction is the disjunction of the negations (of
the disjuncts).

section 1.2
1. An equivalence rule allows one wff to be substi-

tuted for another in a proof sequence.
2. If a propositional wff can be derived using modus

ponens, then its negation can be derived using mo-
dus tollens.

3. Propositional logic is complete because every tau-
tology is provable.

4. A valid argument is one in which the conclusion is
always true.

5. The deduction method applies when the conclusion
is an implication.

96 Formal Logic

o n t H e c o M P u t e R

For Exercises 1–5, write a computer program that pro-
duces the desired output from the given input.

1. Input: Truth values for two statement letters A and B
 Output: Corresponding truth values (appropriately

labeled, of course) for

A ` B, A ~ B, A S B, A 4 B, A′

2. Input: Truth values for two statement letters A and B
 Output: Corresponding truth values for the wffs

A S B′ and B′ ` [A ~ (A ` B)]

3. Input: Truth values for three statement letters A, B,
and C

 Output: Corresponding truth values for the wffs

A ~ (B ` C′) S B′ and A ~ C′ 4 (A ~ C)′

4. Input: Truth values for three statement letters
A, B, and C, and a representation of a simple

 propositional wff. Special symbols can be used for
the logical connectives, and postfix notation can be
used; for example,

A B ` C ~ for (A ` B) ~ C

 or

A′ B ` for A′` B

 Output: Corresponding truth value of the wff
5. Input: Representation of a simple propositional wff

as in the previous exercise
 Output: Decision on whether the wff is a tautology
6. Using the online Toy Prolog program that can be

found at http://www.csse.monash.edu.au/~lloyd/
tildeLogic/Prolog.toy, enter the Prolog database of
Example 39 and perform the queries there. Note
that each database entry requires a period. Also add
the recursive rule for infoodchain and perform the
query

?infoodchain(bear, Y)

section 1.3
1. A predicate wff that begins with a universal

 quantifier is universally true, that is, true in all in-
terpretations.

2. In the predicate wff (4x)P(x, y), y is a free variable.
3. An existential quantifier is usually found with the

conjunction connective.
4. The domain of an interpretation consists of the

values for which the predicate wff defined on that
 interpretation is true.

5. A valid predicate wff has no interpretation in which
it is false.

section 1.4
1. The inference rules of predicate logic allow ex-

istential and universal quantifiers to be added or
 removed during a proof sequence.

2. Existential instantiation should be used only after
universal instantiation.

3. P(x) ` (E x)Q(x) can be deduced from (4x)
[P(x) ` (E y)Q(y)] using universal instantiation.

4. Every provable wff of propositional logic is also
provable in predicate logic.

5. A predicate wff that is not valid cannot be proved
using predicate logic.

section 1.5
1. A Prolog rule describes a predicate.
2. Horn clauses are wffs consisting of single negated

predicates.
3. Modus ponens is a special case of Prolog resolu-

tion.
4. A Prolog recursive rule is a rule of inference that is

used more than once.
5. A Prolog inference engine applies its rule of infer-

ence without guidance from either the programmer
or the user.

section 1.6
1. A provably correct program always gives the right

answers to a given problem.
2. If an assertion after an assignment statement is

y > 4, then the precondition must be y ≥ 4.
3. Proof of correctness involves careful development

of test data sets.
4. Using the conditional rule of inference in proof

of correctness involves proving that two different
Hoare triples are valid.

5. The assertions used in proof of correctness can also
be used as a program design aid before the program
is written, and as program documentation.

http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy
http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Attack the proofs of conjectures using the techniques of direct proof, proof by
contraposition, and proof by contradiction.

• Recognize when a proof by induction is appropriate and carry out such a proof
using either the first or second principle of induction.

• Mathematically prove the correctness of programs that use loop statements.
• Test whether a given positive integer is prime; if not, find its prime factorization.
• Work with number theoretic ideas of prime factorization, greatest common

divisor, and the Euler phi function.

The nonprofit organization at which you volunteer has received donations of 792 bars
of soap and 400 bottles of shampoo. You want to create packages to distribute to
homeless shelters such that each package contains the same number of shampoo
bottles and each package contains the same number of bars of soap.

 Question: How many packages can you create?

This problem is solvable by trial and error, but it’s much easier to use an ancient
algorithm that is discussed in this chapter.

First, however, we consider how to prove “real-world” arguments as opposed
to the formal arguments of Chapter 1. It is helpful to have an arsenal of techniques
for attacking a proof. Direct proof, proof by contraposition, and proof by
 contradiction are examined in Section 2.1. Many of the proofs given in this section
are simple “number theory” results, that is, results about integers, such as “The
product of two even integers is even.”

Section 2.2 concentrates on mathematical induction, a proof technique with
particularly wide application in computer science. In Section 2.3 we see how,
 using induction, proof of correctness can be extended to cover looping statements.
Finally, Section 2.4 explores some further number theory results, particularly
 concerning prime numbers.

2Proofs, Induction, and
Number Theory

Chapter

97

98 Proofs, Induction, and Number Theory

 S e c t i o n 2 . 1 Proof TeChniques

Theorems and Informal Proofs

The formal arguments of Chapter 1 have the form P S Q, where P and Q may
represent compound statements. The point there was to prove that an argument
is valid—true in all interpretations by nature of its internal form or structure,
not because of its content or the meaning of its component parts. However, we
often want to prove arguments that are not universally true but just true within
some context. Meaning becomes important because we are discussing a particular
subject—graph algorithms, or Boolean algebra, or compiler theory, or whatever—
and we want to prove that if P is true in this context, then so is Q. If we can do
this, then P S Q becomes a theorem about that subject. To prove a theorem about
subject XXX, we can introduce facts about XXX into the proof; these facts act
like additional hypotheses. Note that as we add more hypotheses, the universe of
discourse shrinks; we are no longer considering universally valid arguments, only
arguments that are true within the context in which the hypotheses hold.1

It may not be easy to recognize which subject-specific facts will be helpful or
to arrange a sequence of steps that will logically lead from P to Q. Unfortunately,
there is no formula for constructing proofs and no practical general algorithm or
computer program for proving theorems. Experience is helpful, not only because
you get better with practice, but also because a proof that works for one theorem
can sometimes be modified to work for a new but similar theorem.

Theorems are often stated and proved in a somewhat less formal way than
the propositional and predicate arguments of Chapter 1. For example, a theorem
may express the fact that every object in the domain of interpretation (the subject
 matter under discussion) having property P also has property Q. The formal
 statement of the theorem would be (4x)[P(x) S Q(x)]. But the theorem would be
informally stated as P(x) S Q(x). If we can prove P(x) S Q(x) where x is treated
as an arbitrary element of the domain, universal generalization would then give
(4x)[P(x) S Q(x)].

As another example, we may know that all objects in the domain have some
property; that is, something of the form (4x)P(x) can be considered as a subject-
specific fact. An informal proof might proceed by saying, “Let x be any element
of the domain. Then x has property P.” (Formally, we are making use of universal
instantiation to get P(x) from (4x)P(x).)

Similarly, proofs are usually not written a step at a time with formal justifica-
tions for each step. Instead, the important steps and their rationale are outlined
in narrative form. Such a narrative, however, can be translated into a formal
proof if required. In fact, the value of a formal proof is that it serves as a sort of
 insurance—if a narrative proof cannot be translated into a formal proof, it should
be viewed with great suspicion.

1In the world of “pure predicate logic,” which is a correct and complete formal system, every true (valid)
argument is provable. But in these more restrictive contexts, not everything that is “true” is necessarily
provable, no matter how clever we are in adding additional hypotheses or “axioms.” In other words, these
systems may not be complete. At the age of 25, the German logician Kurt Gödel proved in 1931 that, using
reasonable hypotheses, even elementary arithmetic is an incomplete system. This result shocked the math-
ematical community of the time, which had been depending on axiomatic systems since the days of Euclid.

 Section 2.1 Proof Techniques 99

To Prove or Not to Prove

A textbook will often say, “Prove the following theorem,” and the reader will
know that the theorem is true; furthermore, it is probably stated in its most pol-
ished form. But suppose you are doing research in some subject. You observe a
number of cases in which whenever P is true, Q is also true. On the basis of these
experiences, you may formulate a conjecture: P S Q. The more cases you find
where Q follows from P, the more confident you are in your conjecture. This pro-
cess illustrates inductive reasoning, drawing a conclusion based on experience.

No matter how reasonable the conjecture sounds, however, you will not be
satisfied until you have applied deductive reasoning to it as well. In this pro-
cess, you try to verify the truth or falsity of your conjecture. You produce a proof
of P S Q (thus making it a theorem), or else you find a counterexample that
 disproves the conjecture, a case in which P is true but Q is false. (We were using
deductive reasoning in predicate logic when we either proved that a wff was valid
or found an interpretation in which the wff was false.)

If you are simply presented with a conjecture, it may be difficult to decide
which of the two approaches you should try—to prove the conjecture or to dis-
prove it! A single counterexample to a conjecture is sufficient to disprove it. Of
course, merely hunting for a counterexample and being unsuccessful does not
constitute a proof that the conjecture is true.

ReMinDeR

One counterexample is
enough to disprove a
conjecture.

PrACTiCe 1 Provide counterexamples to the following conjectures.

a. All animals living in the ocean are fish.
b. Every integer less than 10 is bigger than 5. ■

 eXAMPLe 1 For a positive integer n, n factorial is defined as n(n − 1)(n − 2) c1, and is denoted
by n!. Prove or disprove the conjecture, “For every positive integer n, n! ≤ n2.”

Let’s begin by testing some cases:

n n! n2 n! ≤ n2

1 1 1 yes

2 2 4 yes

3 6 9 yes

So far, this conjecture seems to be looking good. But for the next case,

n n! n2 n! ≤ n2

4 24 16 no

we have found a counterexample. The fact that the conjecture is true for n = 1, 2,
and 3 does nothing to prove the conjecture, but the single case n = 4 is enough to
disprove it.

100 Proofs, Induction, and Number Theory

If a counterexample is not forthcoming, perhaps the conjecture is true and we
should try to prove it. What techniques can we use to try to do this? For the rest of
this section, we’ll examine various methods of attacking a proof.

Exhaustive Proof

While “disproof by counterexample” always works, “proof by example” seldom
does. The one exception to this situation occurs when the conjecture is an asser-
tion about a finite collection. In this case, the conjecture can be proved true by
showing that it is true for each member of the collection. proof by exhaustion
means that all possible cases have been exhausted, although it often means that
the person doing the proof is exhausted as well!

tAbLe 2.1

number Divisible by 6 Divisible by 3
 1 no

 2 no

 3 no

 4 no

 5 no

 6 yes: 6 = 1 × 6 yes: 6 = 2 × 3

 7 no

 8 no

 9 no

10 no

11 no

12 yes: 12 = 2 × 6 yes: 12 = 4 × 3

13 no

14 no

15 no

16 no

17 no

18 yes: 18 = 3 × 6 yes: 18 = 6 × 3

19 no

20 no

 eXAMPLe 2 Prove the conjecture, “If an integer between 1 and 20 is divisible by 6, then it is
also divisible by 3.” (“Divisible by 6,” means, “evenly divisible by 6,” that is, the
number is an integral multiple of 6.)

Because there is only a finite number of cases, the conjecture can be proved
by simply showing it to be true for all the integers between 1 and 20. Table 2.1 is
the proof.

 Section 2.1 Proof Techniques 101

Direct Proof

In general (where exhaustive proof won’t work), how can you prove that P S Q
is true? The obvious approach is the direct proof—assume the hypothesis P and
deduce the conclusion Q. A formal proof would require a proof sequence leading
from P to Q.

Example 4 shows a formal proof that if two numbers are even (that’s the
 hypothesis P), then their product is even (that’s the conclusion Q). Recall that an
even number is a number that is an integral multiple of 2, for example, 18 is even
because 18 = 2(9). An odd number is 1 more than an integral multiple of 2, for
example, 19 = 2(9) + 1.

PrACTiCe 2

a. Prove the conjecture “For any positive integer less than or equal to 5, the square of the integer
is less than or equal to the sum of 10 plus 5 times the integer.”

b. Disprove the conjecture “For any positive integer, the square of the integer is less than or equal
to the sum of 10 plus 5 times the integer.”

 eXAMPLe 3 Prove the conjecture, “It is not possible to trace all the lines in Figure 2.1 without
lifting your pencil and without retracing any lines.”

There is only a finite number of different ways to trace
the lines in the figure. By careful bookkeeping, each of the
possibilities can be attempted, and each will fail. In Chap-
ter 7, we will learn a much less tedious way to solve this
problem than proof by exhaustion.Figure 2.1

■

 eXAMPLe 4 Consider the conjecture

x is an even integer ` y is an even integer S the product xy is an even integer

A complete formal proof sequence might look like the following:

 1. x is an even integer ` y is an even integer hyp
 2. (4x)[x is even integer S number fact (definition
 (Ek)(k an integer ` x = 2k)] of even integer)
 3. x is even integer S (Ek)(k an integer ` x = 2k) 2, ui
 4. y is even integer S (Ek)(k an integer ` y = 2k) 2, ui
 5. x is an even integer 1, sim
 6. (Ek)(k is an integer ` x = 2k) 3, 5, mp
 7. m is an integer ` x = 2m 6, ei
 8. y is an even integer 1, sim
 9. (Ek)(k an integer ` y = 2k) 4, 8, mp
10. n is an integer and y = 2n 9, ei
11. x = 2m 7, sim
12. y = 2n 10, sim

102 Proofs, Induction, and Number Theory

We’ll never again do a proof like the one in Example 4, and you won’t have
to either! A much more informal proof would be perfectly acceptable in most
circumstances.

13. xy = (2m)(2n) 11, 12, substitution of equals
14. xy = 2(2mn) 13, multiplication fact
15. m is an integer 7, sim
16. n is an integer 10, sim
17. 2mn is an integer 15, 16, number fact
18. xy = 2(2mn) ` 2mn is an integer 14, 17, con
19. (Ek)(k an integer ` xy = 2k) 18, eg
20. (4x)((Ek)(k an integer ` x = 2k) S number fact (definition
 x is even integer) of even integer)
21. (Ek)(k an integer ` xy = 2k) S 20, ui
 xy is even integer
22. xy is an even integer 19, 21, mp

It is understood that x and y are arbitrary, but this could be stated by expressing the
conjecture as

(4x)(4y)(x is an even integer ` y is an even integer S
the product xy is an even integer)

Universal generalization can be applied twice to the result we already have in order
to put the universal quantifiers on the front.

The proof in Example 5 does not explicitly state the hypothesis (that x and
y are even), and it makes implicit use of the definition of an even integer. Even
in informal proofs, however, it is important to identify the hypothesis and the
 conclusion, not just what they are in words but what they really mean, by apply-
ing appropriate definitions. If we do not clearly understand what we have (the
 hypothesis) or what we want (the conclusion), we cannot hope to build a bridge
from one to the other. That’s why it is important to know definitions.

 eXAMPLe 5 Following is an informal direct proof that the product of two even integers is even.
Let x = 2m and y = 2n, where m and n are integers. Then xy = (2m)(2n) =

2(2mn), where 2mn is an integer. Thus xy has the form 2k, where k is an integer, and
xy is therefore even.

Notice that we set x = 2m for some integer m (the definition of an even
number), but we set y = 2n. In the formal proof of Example 4, the restriction
on the use of ei required that we use a different multiple of 2 for y than we used
for x. Informally, if we were also to set y = 2m, we would be saying that x and
y are the same integers, which is a very special case.

 Section 2.1 Proof Techniques 103

Contraposition

If you have tried diligently but failed to produce a direct proof of your conjecture
P S Q, and you still feel that the conjecture is true, you might try some variants
on the direct proof technique. If you can prove the theorem Q′ S P′, you can
conclude P S Q by making use of the tautology (Q′ S P′) S (P S Q). Q′ S P′
is the contrapositive of P S Q, and the technique of proving P S Q by doing a
direct proof of Q′ S P′ is called proof by contraposition. (The contraposition
rule of inference in propositional logic (Table 1.14) says that P S Q can be derived
from Q′ S P′.)

 eXAMPLe 6 Prove that if the square of an integer is odd, then the integer must be odd.
The conjecture is n2 odd S n odd. We do a proof by contraposition, and prove

n even S n2 even. Let n be even. Then n2 = n(n) is even by Example 5.

 eXAMPLe 7 Prove that if n + 1 separate passwords are issued to n students, then some student
gets ≥ 2 passwords.

Here the conclusion Q has the form (Ex)R(x), so Q′ is [(Ex)R(x)]′, which is
equivalent to (4x)[R(x)]′. The contrapositive Q′ S P′ is, “If every student gets
< 2 passwords, then it is false that n + 1 passwords were issued.” Suppose every
student has < 2 passwords; then every one of the n students has at most 1 pass-
word. The total number of passwords issued is at most n, not n + 1, so it is false
that n + 1 passwords were issued.

Example 7 is an illustration of the pigeonhole principle, which we will see in
Chapter 4.

Practice 7 of Chapter 1 showed that the wffs A S B and B S A are not
 equivalent. B S A is the converse of A S B. If an implication is true, its converse
may be true or false. Therefore, you cannot prove P S Q by looking at Q S P.

PrACTiCe 4 Write the contrapositive of each statement in Practice 5 of Chapter 1.
■

 eXAMPLe 8 The implication “If a > 5, then a > 2” is true, but its converse, “If a > 2, then
a > 5,” is false.

PrACTiCe 3 Give a direct proof (informal) of the theorem “If an integer is divisible by 6, then twice
that integer is divisible by 4.”

■

104 Proofs, Induction, and Number Theory

Theorems are often stated in the form “P if and only if Q,” meaning P if Q
and P only if Q, or Q S P and P S Q. To prove such a theorem, you must prove
both an implication and its converse. Again, the truth of one does not imply the
truth of the other.

PrACTiCe 5 Write the converse of each statement in Practice 5 of Chapter 1.

ReMinDeR

“If and only if” requires
two proofs, one in each
direction.

The second part of the proof of Example 9 uses proof by cases, a form of
exhaustive proof. It involves identifying all the possible cases consistent with the
given information and then proving each case separately.

Contradiction

In addition to direct proof and proof by contraposition, you might use the tech-
nique of proof by contradiction. (Proof by contradiction is sometimes called
indirect proof, but this term more properly means any argument that is not a direct
proof.) As we did in Chapter 1, we will let 0 stand for any contradiction, that is,
any wff whose truth value is always false. (A ` A′ would be such a wff.) Once

■

 eXAMPLe 9 Prove that the product x y is odd if and only if both x and y are odd integers.
We first prove that if x and y are odd, so is xy. A direct proof will work. Suppose

that both x and y are odd. Then x = 2n + 1 and y = 2m + 1, where m and n are inte-
gers. Then xy = (2n + 1)(2m + 1) = 4nm + 2m + 2n + 1 = 2(2nm + m + n) + 1.
This has the form 2k + 1, where k is an integer, so xy is odd.

Next we prove that if xy is odd, both x and y must be odd, or

xy odd S x odd and y odd

A direct proof would begin with the hypothesis that xy is odd, which leaves us little
more to say. A proof by contraposition works well because we’ll get more useful
information as hypotheses. So we will prove

(x odd and y odd)′ S (xy odd)′

By De Morgan’s law (A ` B)′ 3 A′ ~ B′, we see that this can be written as

 x even or y even S xy even (1)

The hypothesis “x even or y even” breaks down into three cases. We consider each
case in turn.

 1. x even, y odd: Here x = 2m, y = 2n + 1, and then xy = (2m)(2n + 1) =
2(2mn + m), which is even.

 2. x odd, y even: This works just like case 1.
 3. x even, y even: Then xy is even by Example 5.

This completes the proof of (1) and thus of the theorem.

 Section 2.1 Proof Techniques 105

more, suppose you are trying to prove P S Q. By constructing a truth table, we
see that

(P ` Q′ S 0) S (P S Q)

is a tautology, so to prove the theorem P S Q, it is sufficient to prove P ` Q′ S 0.
Therefore, in a proof by contradiction you assume that both the hypothesis and
the negation of the conclusion are true and then try to deduce some contradiction
from these assumptions.

 eXAMPLe 10 Let’s use proof by contradiction on the statement, “If a number added to itself
gives itself, then the number is 0.” Let x represent any number. The hypothesis
is x + x = x and the conclusion is x = 0. To do a proof by contradiction, assume
x + x = x and x ∙ 0. Then 2x = x and x ∙ 0. Because x ∙ 0, we can divide
both sides of the equation 2x = x by x and arrive at the contradiction 2 = 1. Hence,
(x + x = x) S (x = 0).

 eXAMPLe 11 A well-known proof by contradiction shows that !2 is not a rational number.
Recall that a rational number is one that can be written in the form p/q where p
and q are integers, q ∙ 0, and p and q have no common factors (other than ± 1).

Let us assume that !2 is rational. Then !2 = p/q, and 2 = p2/q2, or 2q2 = p2.
Then 2 divides p2, so—because 2 is itself indivisible—2 must divide p. This means
that 2 is a factor of p; hence 4 is a factor of p2 , and the equation 2q2 = p2 can be
written as 2q2 = 4x, or q2 = 2x. We see from this equation that 2 divides q2 and
hence 2 divides q. At this point, 2 is a factor of q and a factor of p, which con-
tradicts the statement that p and q have no common factors. Therefore !2 is not
rational.

Example 10 notwithstanding, a proof by contradiction most immediately
comes to mind when you want to prove that something is not true. It’s hard to
prove that something is not true; it’s much easier to assume it is true and obtain
a contradiction.

ReMinDeR

To prove that something
is not true, try proof by
contradiction.

The proof of Example 11 involves more than just algebraic manipulations. It
is often necessary to use lots of words in a proof.

Proof by contradiction can be a valuable technique, but it is easy to think we
have done a proof by contradiction when we really haven’t. For example, suppose
we assume P ` Q′ and are able to deduce Q without using the assumption Q′. Then
we assert Q ` Q′ as a contradiction. What really happened here is a direct proof
of P S Q, and the proof should be rewritten in this form. Thus in Example 10,
we could assume x + x = x and x ∙ 0, as before. Then we could argue that from

PrACTiCe 6 Prove by contradiction that the product of odd integers is not even. (We did a direct
proof of an equivalent statement in Example 9.)

■

106 Proofs, Induction, and Number Theory

x + x = x we get 2x = x and, after subtracting x from both sides, x = 0. We then
have x = 0 and x ∙ 0, a contradiction. However, in this argument we never made
use of the assumption x ∙ 0; we actually proved directly that x + x = x implies
x = 0.

Another misleading claim of proof by contradiction occurs when we assume
P ` Q′ and are able to deduce P′ without using the assumption P. Then we assert
P ` P′ as a contradiction. What really happened here is a direct proof of Q′ S P′,
and we have constructed a proof by contraposition, not a proof by contradiction.
In both this case and the previous one, it is not that the proofs are wrong, just that
they are not proofs by contradiction.

Table 2.2 summarizes useful proof techniques we have discussed so far.

tAbLe 2.2

Proof technique Approach to Prove P S Q Remarks

Exhaustive proof Demonstrate P S Q for all
possible cases.

May be used only to prove
a finite number of cases.

Direct proof Assume P, deduce Q. The standard approach—
usually the thing to try.

Proof by contraposition Assume Q′, deduce P′. Use this if Q′ as a hypoth-
esis seems to give more
ammunition than P would.

Proof by contradiction Assume P ` Q′, deduce a
contradiction.

Use this when Q says
something is not true.

Serendipity

Serendipity means a fortuitous happening, or good luck. While this isn’t really
a general proof technique, some of the most interesting proofs come from clever
observations that we can admire, even if we would never have thought of them
ourselves. We’ll look at two such proofs, just for fun.

 eXAMPLe 12 A tennis tournament has 342 players. A single match involves 2 players. The win-
ner of a match plays the winner of a match in the next round, while losers are
eliminated from the tournament. The 2 players who have won all previous rounds
play in the final game, and the winner wins the tournament. Prove that the total
number of matches to be played is 341.

The hard way to prove this result is to compute 342/2 = 171 to get the num-
ber of matches in the first round, resulting in 171 winners to go on to the second
round. For the second round, 171/2 = 85 plus 1 left over; there are 85 matches
and 85 winners, plus the 1 left over, to go on to the third round. The third round
has 86/2 = 43 matches, and so forth. The total number of matches is the sum of
171 + 85 + 43 + c.

The clever observation is to note that each match results in exactly 1 loser, so
there must be the same number of matches as losers in the tournament. Because
there is only 1 winner, there are 341 losers and therefore 341 matches.

 Section 2.1 Proof Techniques 107

 eXAMPLe 13 A standard 64-square checkerboard is arranged in 8 rows of 8 squares each. Adja-
cent squares are alternating colors of red and black. A set of 32 1 × 2 tiles, each
covering 2 squares, will cover the board completely (4 tiles per row, 8 rows). Prove
that if the squares at diagonally opposite corners of the checkerboard are removed,
the remaining board cannot be covered with 31 tiles.

The hard way to prove this result is to try all possibilities with 31 tiles and see
that they all fail. The clever observation is to note that opposing corners are the
same color, so the checkerboard with the corners removed has two less squares of
one color than of the other. Each tile covers one square of each color, so any set
of tiles must cover an equal number of squares of each color and cannot cover the
board with the corners removed.

S e c t i o n 2 . 1 review

tecHniQueS

• Look for a counterexample.
• Construct direct proofs, proofs by contraposition,

and proofs by contradiction.

MAin iDeAS

• Inductive reasoning is used to formulate a con-
jecture based on experience. Deductive reasoning

is used either to refute a conjecture by finding a
 counterexample or to prove a conjecture.

• In proving a conjecture about some subject, facts
about that subject can be used.

• Under the right circumstances, proof by contra-
position or contradiction may work better than a
direct proof.

W

eXeRciSeS 2.1

 1. Write the contrapositive of each statement in Exercise 5 of Section 1.1.
 2. Write the converse of each statement in Exercise 5 of Section 1.1.

Common Definitions

Many of the examples in this section and many of the exercises that follow involve
elementary number theory, that is, results about integers. It’s useful to work in
number theory when first starting to construct proofs because many properties of
integers, such as what it means to be an even number, are already familiar. The
following definitions may be helpful in working some of these exercises.

• A perfect square is an integer n such that n = k 2 for some integer k.
• A prime number is an integer n > 1 such that n is not divisible by any

integers other than 1 and n.
• A composite number n is a nonprime integer; that is, n = ab where a and

b are integers with 1 < a < n and 1 < b < n.
• For two numbers x and y, x < y means y − x > 0.
• For two integers n and m, n divides m, n 0 m, means that m is divisible by

n—that is, m = k(n) for some integer k.
• The absolute value of a number x, 0 x 0 , is x if x ≥ 0 and is −x if x < 0.

108 Proofs, Induction, and Number Theory

 3. Provide counterexamples to the following statements.
 a. Every geometric figure with four right angles is a square.
 b. If a real number is not positive, then it must be negative.
 c. All people with red hair have green eyes or are tall.
 d. All people with red hair have green eyes and are tall.
 4. Provide counterexamples to the following statements.
 a. If a and b are integers where a 0 b and b 0 a, then a = b.
 b. If n2 > 0 then n > 0.
 c. If n is an even number, then n2 + 1 is prime.
 d. If n is a positive integer, then n3 > n!.
 5. Provide a counterexample to the following statement: The number n is an odd integer if and only if

3n + 5 is an even integer.
 6. Provide a counterexample to the following statement: The number n is an even integer if and only if

3n + 2 is an even integer.
 7. a. Find two even integers whose sum is not a multiple of 4.
 b. What is wrong with the following “proof” that the sum of two even numbers is a multiple of 4?
 Let x and y be even numbers. Then x = 2m and y = 2m, where m is an integer, so x + y = 2m + 2m = 4m,

which is an integral multiple of 4.
 8. a. Find an example of an odd number x and an even number y such that x − y = 7.
 b. What is wrong with the following “proof” that an odd number minus an even number is always 1?
 Let x be odd and y be even. Then x = 2m + 1, y = 2m, where m is an integer, and x − y = 2m + 1 − 2m = 1.

For Exercises 9–46, prove the given statement.

 9. If n = 25, 100, or 169, then n is a perfect square and is a sum of two perfect squares.
 10. If n is an even integer, 4 ≤ n ≤ 12, then n is a sum of two prime numbers.
 11. For any positive integer n less than or equal to 3, n! < 2n.
 12. For 2 ≤ n ≤ 4, n2 ≥ 2n.
 13. The sum of two even integers is even (do a direct proof).
 14. The sum of two even integers is even (do a proof by contradiction).
 15. The sum of two odd integers is even.
 16. The sum of an even integer and an odd integer is odd.
 17. An odd integer minus an even integer is odd.
 18. If n is an even integer, then n2 − 1 is odd.
 19. The product of any two consecutive integers is even.
 20. The sum of an integer and its square is even.
 21. The square of an even number is divisible by 4.
 22. For every integer n, the number 3(n2 + 2n + 3) − 2n2 is a perfect square.
 23. If a number x is positive, so is x + 1 (do a proof by contraposition).
 24. If n is an odd integer, then it is the difference of two perfect squares.
 25. The number n is an odd integer if and only if 3n + 5 = 6k + 8 for some integer k.
 26. The number n is an even integer if and only if 3n + 2 = 6k + 2 for some integer k.

 Section 2.1 Proof Techniques 109

 27. For x and y positive numbers, x < y if and only if x2 < y2.
 28. If x2 + 2x − 3 = 0, then x ∙ 2.
 29. If n is an even prime number, then n = 2.
 30. The sum of three consecutive integers is divisible by 3.
 31. If two integers are each divisible by some integer n, then their sum is divisible by n.
 32. If the product of two integers is not divisible by an integer n, then neither integer is divisible by n.
 33. If n, m, and p are integers and n 0 m and m 0 p, then n 0 p.
 34. If n, m, p, and q are integers and n 0 p and m 0 q, then nm 0 pq.
 35. The square of an odd integer equals 8k + 1 for some integer k.
 36. The sum of the squares of two odd integers cannot be a perfect square. (Hint: Use Exercise 35.)
 37. The product of the squares of two integers is a perfect square.
 38. The difference of two consecutive cubes is odd.
 39. For any two numbers x and y, 0 x + y 0 ≤ 0 x 0 + 0 y 0.
 40. For any two numbers x and y, 0 xy 0 = 0 x 0 0 y 0.
 41. The value A is the average of the n numbers x1, x2, … , xn. Prove that at least one of x1, x2, … , xn is greater

than or equal to A.
 42. Suppose you were to use the steps of Example 11 to attempt to prove that "4 is not a rational number. At

what point would the proof not be valid?

 43. Prove that "3 is not a rational number.

 44. Prove that "5 is not a rational number.

 45. Prove that "3 2 is not a rational number.
 46. Prove that log2 5 is not a rational number (log2 5 = x means 2x = 5).

For Exercises 47–72, prove or disprove the given statement.

 47. 0 is an even number.
 48. 91 is a composite number.
 49. 297 is a composite number.
 50. 83 is a composite number.
 51. The difference between two odd integers is odd.
 52. The difference between two even integers is even.
 53. The product of any three consecutive integers is even.
 54. The sum of any three consecutive integers is even.
 55. The sum of an integer and its cube is even.
 56. The number n is an even integer if and only if n3 + 13 is odd.
 57. The product of an integer and its square is even.
 58. Any positive integer can be written as the sum of the squares of two integers.
 59. The sum of the square of an odd integer and the square of an even integer is odd.
 60. If n is a positive integer that is a perfect square, then n + 2 is not a perfect square.

 61. For a positive integer n, n +
1
n ≥ 2.

110 Proofs, Induction, and Number Theory

 62. If n, m, and p are integers and n 0 mp, then n 0 m or n 0 p.
 63. For every prime number n, n + 4 is prime.
 64. For every positive integer n, n2 + n + 3 is not prime.
 65. For n a positive integer, n > 2, n2 − 1 is not prime.
 66. For every positive integer n, 2n + 1 is prime.
 67. For every positive integer n, n2 + n + 1 is prime.
 68. For n an even integer, n > 2, 2n − 1 is not prime.
 69. The sum of two rational numbers is rational.
 70. The product of two rational numbers is rational.
 71. The product of two irrational numbers is irrational.
 72. The sum of a rational number and an irrational number is irrational.

For Exercises 73–75, use the following facts from geometry and the accompanying figure.

 • The interior angles of a triangle sum to 180°.
 • Vertical angles (opposite angles formed when two lines intersect) are the same size.
 • A straight angle is 180°.
 • A right angle is 90°.

1

2

3 4
6 5

 73. Prove that the measure of angle 5 plus the measure of angle 3 is 90°.
 74. Prove that the measure of angle 4 is the sum of the measures of angles 1 and 2.
 75. If angle 1 and angle 5 are the same size, then angle 2 is a right angle.
 76. Prove that the sum of the integers from 1 through 100 is 5050. (Hint: Instead of actually adding all the

numbers, try to make the same clever observation that the German mathematician Karl Friederick Gauss
[1777–1855] made as a schoolchild: Group the numbers into pairs, using 1 and 100, 2 and 99, etc.)

 S e c t i o n 2 . 2 induCTion

First Principle of Induction

There is one final proof technique especially useful in computer science. To
illustrate how the technique works, imagine that you are climbing an infinitely
high ladder. How do you know whether you will be able to reach an arbitrarily
high rung? Suppose we make the following two assertions about your climbing
abilities:

 1. You can reach the first rung.
 2. Once you get to a rung, you can always climb to the next one up. (Notice

that this assertion is an implication.)

 Section 2.2 Induction 111

If both statement 1 and the implication of statement 2 are true, then by
statement 1 you can get to the first rung and therefore by statement 2 you can
get to the second; by statement 2 again, you can get to the third rung; by state-
ment 2 again you can get to the fourth; and so on. You can climb as high as you
wish. Both assertions here are necessary. If only statement 1 is true, you have
no guarantee of getting beyond the first rung, and if only statement 2 is true,
you may never be able to get started. Let’s assume that the rungs of the ladder
are numbered by positive integers—1, 2, 3, and so on.

Now think of a specific property a number might have. Instead of “reach-
ing an arbitrarily high rung,” we can talk about an arbitrary, positive integer
having that property. We use the shorthand notation P(n) to mean that the posi-
tive integer n has the property P. How can we use the ladder-climbing tech-
nique to prove that for all positive integers n, we have P(n)? The two assertions
we need to prove are

 1. P(1) (1 has property P.)
 2. For any positive integer k, P(k) S P(k + 1). (If any number has

property P, so does the
next number.)

If we can prove both assertions 1 and 2, then P(n) holds for any positive inte-
ger n, just as you could climb to an arbitrary rung on the ladder.

The foundation for arguments of this type is the first principle of mathemati-
cal induction.

ReMinDeR

To prove something true

for all n ≥ some value,
think induction.

The first principle of mathematical induction is an implication. The con-
clusion is a statement of the form, “P(n) is true for all positive integers n.”
Therefore, whenever we want to prove that something is true for every positive
integer n, it is a good bet that mathematical induction is an appropriate proof
technique to use.

To know that the conclusion of this implication is true, we show that the two
hypotheses, statements 1 and 2, are true. To prove statement 1, we need only show
that property P holds for the number 1, usually a trivial task. Statement 2 is also
an implication that must hold for all k. To prove this implication, we assume for
an arbitrary positive integer k that P(k) is true and show, based on this assump-
tion, that P(k + 1) is true. Therefore P(k) S P(k + 1) and, using universal gener-
alization, (4k)[P(k) S P(k + 1)]. You should convince yourself that assuming that
property P holds for the number k is not the same as assuming what we ultimately
want to prove (a frequent source of confusion when one first encounters proofs of
this kind). It is merely the way to proceed with a direct proof that the implication
P(k) S P(k + 1) is true.

In doing a proof by induction, establishing the truth of statement 1, P(1), is
called the basis, or basis step, for the inductive proof. Establishing the truth of
P(k) S P(k + 1) is called the inductive step. When we assume P(k) to be true

f S P(n) true for all positive integers n

 PRinciPLe FIrST PrINCIPlE oF MaThEMaTICal INDuCTIoN

1. P(1) is true
2. (4k)[P(k) true S P(k + 1) true]

112 Proofs, Induction, and Number Theory

so as to prove the inductive step, P(k) is called the inductive assumption, or
 inductive hypothesis.

All the proof methods we have talked about in this chapter are techniques
for deductive reasoning—ways to prove a conjecture that perhaps was for-
mulated by inductive reasoning. Mathematical induction is also a deductive
technique, not a method for inductive reasoning (don’t get confused by the ter-
minology here). For the other proof techniques, we can begin with a hypothesis
and string facts together until we more or less stumble on a conclusion. In fact,
even if our conjecture is slightly incorrect, we might see what the correct con-
clusion is in the course of doing the proof. In mathematical induction, however,
we must know right at the outset the exact form of the property P(n) that we
are trying to establish. Mathematical induction, therefore, is not an exploratory
proof technique—it can only confirm a correct conjecture.

Proofs by Mathematical Induction

Suppose that the ancestral progenitor Smith married and had two children. Let’s
call these two children generation 1. Now suppose each of those two children had
two children; then in generation 2, there were four offspring. This trend contin-
ued from generation unto generation. The Smith family tree therefore looks like
 Figure 2.2. (This figure looks exactly like Figure 1.1b, where we looked at the
 possible T–F values for n statement letters.)

Generation

1

2

Offspring

2 = 21

4 = 22

3

…… …

8 = 23

Figure 2.2

It appears that generation n contains 2n offspring. More formally, if we let P(n)
denote the number of offspring at generation n, then we guess that

P(n) = 2n

We can use induction to prove that our guess for P(n) is correct.
The basis step is to establish P(1), which is the equation

 P(1) = 21 = 2

This is true because we are told that Smith had two children. We now assume that
our guess is correct for an arbitrary generation k, k ≥ 1; that is, we assume

P(k) = 2k

and try to show that

P(k + 1) = 2k+1

 Section 2.2 Induction 113

In this family, each offspring has two children; thus the number of offspring at
generation k + 1 will be twice the number at generation k, or P(k + 1) = 2P(k).
By the inductive assumption, P(k) = 2k, so

P(k + 1) = 2P(k) = 2(2k) = 2k+1

and so indeed

P(k + 1) = 2k+1

This completes our proof. Now that we have set our mind at ease about the
Smith clan, we can apply the inductive proof technique to less obvious problems.

 eXAMPLe 14 Prove that the equation

 1 + 3 + 5 + c+ (2n − 1) = n2 (1)

is true for any positive integer n. Here the property P(n) is equation (1). (Notice
that P(n) is a property of n, or—in language from Chapter 1—a unary predicate. It
is a statement about n, expressed here as an equation. Thus it is incorrect to write
something like P(n) = 1 + 3 + 5 + g+ (2n − 1).)

The left side of this equation is the sum of all the odd integers from 1 to
2n − 1. The right side is a formula for the value of this sum. Although we can
verify the truth of this equation for any particular value of n by substituting that
value for n, we cannot substitute all possible positive integer values. Thus a proof
by exhaustion does not work. A proof by mathematical induction is appropriate.

The basis step is to establish P(1), which is equation (1) when n has the value
1. When we substitute 1 for n in the left side of equation (1), we get the sum of all
the odd integers starting at 1 and ending at 2(1) − 1 = 1. The sum of all the odd
numbers from 1 to 1 equals 1. When we substitute 1 for n in the formula on the
right side of this equation, we get (1)2. Therefore

P(1):   1 = 12

This is certainly true. For the inductive hypothesis, we assume P(k) for an arbitrary
positive integer k, which is equation (1) when n has the value k, or

 P(k):  1 + 3 + 5 + c+ (2k − 1) = k2 (2)

(Note that P(k) is not the equation (2k − 1) = k2, which is true only for k = 1.)
Using the inductive hypothesis, we want to show P(k + 1), which is equation (1)
when n has the value k + 1, or

 P(k + 1):   1 + 3 + 5 + c+ 32(k + 1) − 1 4 0 (k + 1)2 (3)

(The question mark over the equals sign is to remind us that this is the fact we want
to prove, as opposed to something we already know.)

114 Proofs, Induction, and Number Theory

The key to an inductive proof is to find a way to relate what we want to show—
P(k + 1), equation (3)—to what we have assumed—P(k), equation (2). The left
side of P(k + 1) can be rewritten to show the next-to-last term:

1 + 3 + 5 + c+ (2k − 1) + 32(k + 1) − 1 4
This expression contains the left side of equation (2) as a subexpression. Because
we have assumed P(k) to be true, we can substitute the right side of equation (2)
for this subexpression. Thus,

1 + 3 + 5 + c+ 32(k + 1) − 1 4
 = 1 + 3 + 5 + c+ (2k − 1) + 32(k + 1) − 1 4
= k2 + 32(k + 1) − 1 4
= k2 + 32k + 2 − 1 4
= k2 + 2k + 1
= (k + 1)2

Therefore,

1 + 3 + 5 + c+ 32(k + 1) − 1 4 = (k + 1)2

which verifies P(k + 1) and proves that equation (1) is true for any positive
integer n.

Table 2.3 summarizes the three steps necessary for a proof using the first
principle of induction.

Any “summation” induction problem works exactly the same way. Write the summa-
tion including the next-to-last term, and you will find the left side of the P(k) equation
and can use the inductive hypothesis. After that, it’s just a question of algebra.

 ExamplE 15 Prove that

1 + 2 + 22 + c+ 2n = 2n+1 − 1

for any n ≥ 1.

Again, induction is appropriate. P(1) is the equation

 1 + 2 = 21+1 − 1 or 3 = 22 − 1

TablE 2.3

To prove by First principle of Induction

Step 1 Prove base case.

Step 2 Assume P(k).

Step 3 Prove P(k + 1).

 Section 2.2 Induction 115

The following summation formula is the most important one because it oc-
curs so often in the analysis of algorithms. If you don’t remember anything else,
you should remember this formula for the sum of the first n positive integers.

Not all proofs by induction involve formulas with sums. Other algebraic iden-
tities about the positive integers, as well as nonalgebraic assertions like the num-
ber of offspring in generation n of the Smith family, can be proved by induction.

PrACTiCe 7 Prove that for any positive integer n,

1 + 2 + 3 + c+ n =
n(n+1)

2 ■

ReMinDeR

To prove

P(k) S P(k + 1), you have
to discover the P(k) case
within the P(k + 1) case.

which is true. We take P(k)

1 + 2 + 22 + c+ 2k = 2k+1 − 1

as the inductive hypothesis and try to establish P(k + 1):

1 + 2 + 22 + c+ 2k+1 0 2k+1+1 − 1

Rewriting the sum on the left side of P(k + 1) reveals how the inductive as-
sumption can be used:

1 + 2 + 22 + c+ 2k+1

 = 1 + 2 + 22 + c+ 2k + 2k+1

= 2k+1 − 1 + 2k+1 (from the inductive hypothesis P(k))
= 2(2k+1) − 1 (adding like terms)
= 2k+1+1 − 1

Therefore,

1 + 2 + 22 + c+ 2k+1 = 2k+1+1 − 1

which verifies P(k + 1) and completes the proof.

 eXAMPLe 16 Prove that for any positive integer n, 2n > n.
P(1) is the assertion 21 > 1, which is surely true. Now we assume P(k), 2k > k,

and try to conclude P(k + 1), 2k+1 > k + 1. Now, where is P(k) hidden in here?
Aha—we can write the left side of P(k + 1), 2k+1, as 2k # 2, and there’s the left side
of P(k). Using the inductive hypothesis 2k > k and multiplying both sides of this
inequality by 2, we get 2k # 2 > k # 2. We complete the argument

2k+1 = 2k # 2 > k # 2 = k + k ≥ k + 1 (because k ≥ 1)

or

2k+1 > k + 1

116 Proofs, Induction, and Number Theory

For the first step of the induction process, it may be appropriate to begin at 0
or at 2 or 3 instead of at 1. The same principle applies, no matter where you first
hop on the ladder.

 eXAMPLe 17 Prove that n2 > 3n for n ≥ 4.
Here we should use induction and begin with a basis step of P(4). (Testing

values of n = 1, 2, and 3 shows that the inequality does not hold for these values.)
P(4) is the inequality 42 > 3(4), or 16 > 12, which is true. The inductive hypoth-
esis is that k2 > 3k and that k ≥ 4, and we want to show that (k + 1)2 > 3(k + 1).

 (k + 1)2 = k2 + 2k + 1
 > 3k + 2k + 1 (by the inductive hypothesis)
 ≥ 3k + 8 + 1 (because k ≥ 4)
 = 3k + 9
 > 3k + 3 (because 9 > 3)

 = 3(k + 1)

In this proof we used the fact that 3k + 9 > 3k + 3. Of course, 3k + 9 is
greater than lots of things, but 3k + 3 is what gives us what we want. In an induc-
tion proof, because we know exactly what we want as the result, we can let that
guide us as we manipulate algebraic expressions.

PrACTiCe 8 Prove that for all n > 1,

2n+1 < 3n
■

 eXAMPLe 18 Prove that for any positive integer n, the number 22n – 1 is divisible by 3.
The basis step is to show P(1), that 22(1) − 1 = 4 − 1 = 3 is divisible by 3.

Clearly this is true.
We assume that 22k – 1 is divisible by 3, which means that 22k – 1 = 3m for

some integer m, or 22k = 3m + 1 (this little rewriting trick is the key to these
“ divisibility” problems). We want to show that 22(k+1) – 1 is divisible by 3.

 22(k+1) − 1 = 22k+2 − 1
 = 22 # 22k − 1
 = 22(3m + 1) − 1 (by the inductive hypothesis)
 = 12m + 4 − 1
 = 12m + 3
 = 3(4m + 1) where 4m + 1 is an integer

Thus 22(k+1) − 1 is divisible by 3.

Misleading claims of proof by induction are also possible. When we prove
the truth of P(k + 1) without relying on the truth of P(k), we have done a di-
rect proof of P(k + 1) where k + 1 is arbitrary. The proof is not invalid, but it

 Section 2.2 Induction 117

should be rewritten to show that it is a direct proof of P(n) for any n, not a proof
by induction.

An inductive proof may be called for when its application is not as obvious as
in the above examples. The problem statement may not directly say “prove some-
thing about nonnegative integers.” Instead, there is some quantity in the statement
to be proved that can take on arbitrary nonnegative integer values.

 eXAMPLe 19 A programming language might be designed with the following convention re-
garding multiplication: A single factor requires no parentheses, but the product “a
times b” must be written as (a)b. So the product

a # b # c # d # e # f # g

could be written in this language as

((((((a)b)c)d )e) f)g

or, for example,

((a)b)(((c)d )(e) f)g

depending on the order in which the products are formed. The result is the same
in either case.

We want to show that any product of factors can be written with an even number
of parentheses. The proof is by induction on the number of factors (this is where the
nonnegative integer comes in—it represents the number of factors in any product of
factors). For a single factor, there are 0 parentheses, an even number. Assume that
for any product of k factors there is an even number of parentheses. Now consider
a product P of k + 1 factors. P can be thought of as r times s where r has k factors
and s is a single factor. By the inductive hypothesis, r has an even number of pa-
rentheses. Then we write r times s as (r)s. This adds 2 more parentheses to the even
number of parentheses in r, giving P an even number of parentheses.

Here’s an important observation about the proof in Example 19: There are no
algebraic expressions! The entire proof is a verbal argument. For some proofs, we
can’t rely on just the crutch of nonverbal mathematical manipulations; we have to
use words.

 eXAMPLe 20 A “tiling” problem gives a nice illustration of induction in a geometric setting.
An angle iron is an L-shaped piece that can cover 3 squares on a checkerboard
(Figure 2.3a). The problem is to show that for any positive integer n, a 2n × 2n
 checkerboard with one square removed can be tiled—completely covered—by
angle irons.

The base case is n = 1, which gives a 2 × 2 checkerboard. Figure 2.3b shows the
solution to this case if the upper right corner is removed. Removing any of the other
three corners works the same way. Assume that any 2k × 2k checkerboard with one
square removed can be tiled using angle irons. Now consider a checkerboard with

118 Proofs, Induction, and Number Theory

Second Principle of Induction

In addition to the first principle of induction, which we have been using,

 1. P(1) is true
 2. (4k)[P(k) true S P(k + 1) true]

there is a second principle of induction.

f S P(n) true for all positive integers n

 PRinciPLe SECoND PrINCIPlE oF MaThEMaTICal INDuCTIoN

 1′. P(1) is true
 2′. (4k)[P(r) true for all r,

1 ≤ r ≤ k S P(k + 1) true]
¶ S P(n) true for all positive integers n

dimensions 2k+1 × 2k+1. We need to show that it can be tiled when one square is re-
moved. To relate the k + 1 case to the inductive hypothesis, divide the 2k+1 × 2k+1

checkerboard into four quarters. Each quarter will be a 2k × 2k checkerboard, and
one will have a missing square (Figure 2.3c). By the inductive hypothesis, this

checkerboard can be tiled. Remove a corner from each of the other three checker-
boards, as in Figure 2.3d. By the inductive hypothesis, the three boards with the holes
removed can be tiled, and one angle iron can tile the three holes. Hence the original
2k+1 × 2k+1 board with its one hole can be tiled.

(d)(c)(b)(a)

Figure 2.3

These two induction principles differ in statements 2 and 2′. In statement 2,
we must be able to prove for an arbitrary positive integer k that P(k + 1) is true
based only on the assumption that P(k) is true. In statement 2′, we can assume
that P(r) is true for all integers r between 1 and an arbitrary positive integer k in
order to prove that P(k + 1) is true. This seems to give us a great deal more “am-
munition,” so we might sometimes be able to prove the implication in 2′ when we
cannot prove the implication in 2.

What allows us to deduce (4n)P(n) in either case? We will see that the two in-
duction principles themselves, that is, the two methods of proof, are equivalent. In
other words, if we accept the first principle of induction as valid, then the second
principle of induction is valid, and conversely. In order to prove the equivalence
of the two induction principles, we’ll introduce another principle, which seems so
obvious as to be unarguable.

 Section 2.2 Induction 119

 PRinciPLe PrINCIPlE oF WEll-orDErINg
Every collection of positive integers that contains any members at all has a
 smallest member.

We will see that the following implications are true:

second principle of induction S first principle of induction
first principle of induction S well-ordering

well-ordering S second principle of induction

As a consequence, all three principles are equivalent, and accepting any one of
them as true means accepting the other two as well.

To prove that the second principle of induction implies the first principle of
induction, suppose we accept the second principle as valid reasoning. We then
want to show that the first principle is valid; that is, that we can conclude P(n) for
all n from statements 1 and 2. If statement 1 is true, so is statement 1′. If statement
2 is true, then so is statement 2′, because we can say that we concluded P(k + 1)
from P(r) for all r between 1 and k, even though we used only the single condi-
tion P(k). (More precisely, statement 2′ requires that we prove P(l) ` P(2) ` g
` P(k) S P(k + 1), but P(l) ` P(2) ` g` P(k) S P(k), and from statement 2,
P(k) S P(k + 1), so P(1) ` P(2) ` g` P(k) S P(k + 1).) By the second prin-
ciple of induction, we conclude P(n) for all n. The proofs that the first principle
of induction implies well-ordering and that well-ordering implies the second
 principle of induction are left as exercises in Section 4.1.

To distinguish between a proof by the first principle of induction and a proof
by the second principle of induction, let’s look at a rather picturesque example that
can be proved both ways.

 eXAMPLe 21 Prove that a straight fence with n fence posts has n – 1 sections for any n ≥ 1 (as
in Figure 2.4a).

Fence with 4 fenceposts, 3 sections Fence with 1 fencepost, 0 sections

(a) (b)

Fence with last post and
last section removed

Fence with 1 section removed

(c) (d)

Figure 2.4

120 Proofs, Induction, and Number Theory

Example 21 allowed for either form of inductive proof because we could
either reduce the fence at one end or split it at an arbitrary point. The problem of
Example 19 is similar.

Let P(n) be the statement that a fence with n fence posts has n – 1 sections, and
prove P(n) true for all n ≥ 1.

We’ll start with the first principle of induction. For the basis step, P(1) says that
a fence with only 1 fence post has 0 sections, which is clearly true (Figure 2.4b).
 Assume that P(k) is true:

a fence with k fence posts has k – 1 sections

and try to prove P(k + 1):

(?) a fence with k + 1 fence posts has k sections

Given a fence with k + 1 fence posts, how can we relate that to a fence with
k fence posts so that we can make use of the inductive hypothesis? We can chop
off the last post and the last section (Figure 2.4c). The remaining fence has k fence
posts and, by the inductive hypothesis, k – 1 sections. Therefore the original fence
had k sections.

Now we’ll prove the same result using the second principle of induction. The
basis step is the same as before. For the inductive hypothesis, we assume

for all r, 1 ≤ r ≤ k, a fence with r fence posts has r – 1 sections

and try to prove P(k + 1):

(?) a fence with k + 1 fence posts has k sections

For a fence with k + 1 fence posts, split the fence into two parts by removing
one section (Figure 2.4d). The 2 parts of the fence have r1 and r2 fence posts, where
1 ≤ r1 ≤ k, 1 ≤ r2 ≤ k, and r1 + r2 = k + 1. By the inductive hypothesis, the 2
parts have, respectively, r1 – 1 and r2 – 1 sections, so the original fence has

(r1 − 1) + (r2 − 1) + 1 sections

(The extra 1 is for the one that we removed.) Simple arithmetic then yields

r1 + r2 − 1 = (k + 1) − 1 = k sections

This proves that a fence with k + 1 fence posts has k sections, which verifies
P(k + 1) and completes the proof using the second principle of induction.

 eXAMPLe 22 We again want to show that any product of factors can be written in this program-
ming language with an even number of parentheses, this time using the second prin-
ciple of induction. The base case is the same as in Example 19: A single factor has
0 parentheses, an even number. Assume that any product of r factors, 1 ≤ r ≤ k,
can be written with an even number of parentheses. Then consider a product

 Section 2.2 Induction 121

Most problems do not work equally well with either form of induction; the
fence post and the programming language problem were somewhat artificial.
Generally, the second principle of induction is called for when the problem
“splits” most naturally in the middle instead of growing from the end.

P with k + 1 factors. P can be written as (S)T, a product of two factors S and T,
where S has r1 factors and T has r2 factors. Then 1 ≤ r1 ≤ k and 1 ≤ r2 ≤ k, with
r1 + r2 = k + 1. By the inductive hypothesis, S and T each have an even number
of parentheses, and therefore so does (S)T = P.

 eXAMPLe 23 Prove that for every integer n ≥ 2, n is a prime number or a product of prime numbers.
We will postpone the decision of whether to use the first or the second prin-

ciple of induction; the basis step is the same in each case and need not start with
1. Obviously here we should start with 2. P(2) is the statement that 2 is a prime
number or a product of primes. Because 2 is a prime number, P(2) is true. Jumping
ahead, for either principle we will be considering the number k + 1. If k + 1 is
prime, we are done. If k + 1 is not prime, then it is a composite number and can be
written as k + 1 = ab. Here k + 1 has been split into two factors. Maybe neither
of these factors has the value k, so an assumption only about P(k) isn’t enough.
Hence, we’ll use the second principle of induction.

So let’s start again. We assume that for all r, 2 ≤ r ≤ k, P(r) is true—r is
prime or the product of primes. Now consider the number k + 1. If k + 1 is
prime, we are done. If k + 1 is not prime, then it is a composite number and
can be written as k + 1 = ab, where 1 < a < k + l and 1 < b < k + l. (This
is a nontrivial factorization, so neither factor can be 1 or k + 1.) Therefore
2 ≤ a ≤ k and 2 ≤ b ≤ k. The inductive hypothesis applies to both a and b, so a
and b are either prime or the product of primes. Thus, k + 1 = ab is the product
of prime numbers. This verifies P(k + 1) and completes the proof by the second
principle of induction.

The proof in Example 23 is an existence proof rather than a constructive
proof. Knowing that every nonprime number has a factorization as a product
of primes does not make it easy to find such a factorization. (We will see in
 Section 2.4 that there is, except for the order of the factors, only one such
factorization.) Some encryption systems for passing information in a secure
fashion on the Web depend on the difficulty of factoring large numbers into
their prime factors (see the discussion on public-key encryption in Section 5.6).

 eXAMPLe 24 Prove that any amount of postage greater than or equal to 8 cents can be built using
only 3-cent and 5-cent stamps.

Here we let P(n) be the statement that only 3-cent and 5-cent stamps are need-
ed to build n cents worth of postage, and prove that P(n) is true for all n ≥ 8. The
basis step is to establish P(8), which is done by the equation

8 = 3 + 5

122 Proofs, Induction, and Number Theory

ReMinDeR

Use the second principle
of induction when the
k + 1 case depends on
results farther back than k.

As a general rule, the first principle of mathematical induction applies
when information about “one position back” is enough, that is, when the truth
of P(k) is enough to prove the truth of P(k + 1). The second principle applies
when information about “one position back” isn’t good enough; that is, you
can’t prove that P(k + 1) is true just because you know P(k) is true, but you can
prove P(k + 1) true if you know that P(r) is true for one or more values of r that
are “farther back” than k.

S e c t i o n 2 . 2 review

tecHniQueS

• Use the first principle of induction in proofs.
• Use the second principle of induction in proofs.

MAin iDeAS

• Mathematical induction is a technique to prove
properties of positive integers.

• An inductive proof need not begin with 1.
• Induction can be used to prove statements about

quantities whose values are arbitrary nonnegative
integers.

• The first and second principles of induction each
prove the same conclusion, but one approach may
be easier to use than the other in a given situation.

W
W

For reasons that will be clear momentarily, we’ll also establish two additional
cases, P(9) and P(10), by the equations

 9 = 3 + 3 + 3
10 = 5 + 5

Now we assume that P(r) is true, that is, r can be written as a sum of 3s and 5s, for
any r, 8 ≤ r ≤ k, and consider P(k + 1). We may assume that k + 1 is at least 11,
because we have already proved P(r) true for r = 8, 9, and 10. If k + 1 ≥ 11, then
(k + 1) – 3 = k – 2 ≥ 8. Thus k – 2 is a legitimate r value, and by the inductive
hypothesis, P(k – 2) is true. Therefore k – 2 can be written as a sum of 3s and 5s,
and adding an additional 3 gives us k + 1 as a sum of 3s and 5s. This verifies that
P(k + 1) is true and completes the proof.

PrACTiCe 9

a. Why are the additional cases P(9) and P(10) proved separately in Example 24?
b. Why can’t the first principle of induction be used in the proof of Example 24? ■

eXeRciSeS 2.2

 1. For all positive integers, let P(n) be the equation

2 + 6 + 10 + c+ (4n − 2) = 2n2

 a. Write the equation for the base case P(1) and verify that it is true.
 b. Write the inductive hypothesis P(k).
 c. Write the equation for P(k + 1).
 d. Prove that P(k + 1) is true.

 Section 2.2 Induction 123

 2. For all positive integers, let P(n) be the equation

2 + 4 + 6 + c+ 2n = n(n + 1)

 a. Write the equation for the base case P(1) and verify that it is true.
 b. Write the inductive hypothesis P(k).
 c. Write the equation for P(k + 1).
 d. Prove that P(k + 1) is true.

In Exercises 3–26, use mathematical induction to prove that the statements are true for every positive integer n.
[Hint: In the algebra part of the proof, if the final expression you want has factors and you can pull those factors
out early, do that instead of multiplying everything out and getting some humongous expression.]

 3. 1 + 5 + 9 + c+ (4n − 3) = n(2n − 1)

 4. 1 + 3 + 6 + c+
n(n + 1)

2
=

n(n + 1)(n + 2)
6

 5. 4 + 10 + 16 + c+ (6n − 2) = n(3n + 1)

 6. 5 + 10 + 15 + c+ 5n =
5n(n + 1)

2

 7. 12 + 22 + c+ n2 =
n(n + 1)(2n + 1)

6

 8. 13 + 23 + c+ n3 =
n2(n + 1)2

4

 9. 12 + 32 + c+ (2n − 1)2 =
n(2n − 1)(2n + 1)

3

 10. 14 + 24 + c+ n4 =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30

 11. 1 # 3 + 2 # 4 + 3 # 5 + c+ n(n + 2) =
n(n + 1)(2n + 7)

6

 12. 1 + a + a2 + c+ an−1 =
an − 1
a − 1

 for a ∙ 0, a ∙ 1

 13.
1

1 # 2
+

1
2 # 3

+
1

3 # 4
+ c+

1
n(n + 1)

=
n

n + 1

 14.
1

1 # 3
+

1
3 # 5

+
1

5 # 7
+ c+

1
(2n − 1)(2n + 1)

=
n

2n + 1

 15. 12 − 22 + 32 − 42 + c+ (−1)n+1n2 =
(−1)n+1(n)(n + 1)

2
 16. 2 + 6 + 18 + c+ 2 # 3n−1 = 3n − 1

 17. 22 + 42 + c+ (2n)2 =
2n(n + 1)(2n + 1)

3
 18. 1 # 21 + 2 # 22 + 3 # 23 + c+ n # 2n = (n − 1)2n+1 + 2

 19. 1 # 2 + 2 # 3 + 3 # 4 + c+ n(n + 1) =
n(n + 1)(n + 2)

3

124 Proofs, Induction, and Number Theory

 20. 1 # 2 # 3 + 2 # 3 # 4 + c+ n(n + 1)(n + 2) =
n(n + 1)(n + 2)(n + 3)

4

 21.
1

1 # 4
+

1
4 # 7

+
1

7 # 10
+ c+

1
(3n − 2)(3n + 1)

=
n

3n + 1
 22. 1 # 1! + 2 # 2! + 3 # 3! + c+ n # n! = (n + 1)! − 1 where n! is the product of the positive integers

from 1 to n.

 23. 1 + 4 + 42 + c+ 4n =
4n+1 − 1

3

 24. 1 + x + x2 + c+ xn =
xn+1 − 1

x − 1
 where x is any integer > 1

25. 1 + 4 + 7 + 10 + c+ (3n − 2) =

n(3n − 1)
2

26. 1 + 3x # 2 − (x − 1) 4 + 3x # 3 − (x − 1) 4 + c+ 3x # n − (x − 1) 4 =

n 3xn − (x − 2) 4
2

where x is any integer ≥ 1

 27. A geometric progression (geometric sequence) is a sequence of terms where there is an initial term a and
each succeeding term is obtained by multiplying the previous term by a common ratio r. Prove the formula
for the sum of the first n (n ≥ 1) terms of a geometric sequence where r ∙ 1:

a + ar + ar2 + c+ arn−1 =
a − arn

1 − r
 28. An arithmetic progression (arithmetic sequence) is a sequence of terms where there is an initial term a and

each succeeding term is obtained by adding a common difference d to the previous term. Prove the formula
for the sum of the first n (n ≥ 1) terms of an arithmetic sequence:

a + (a + d) + (a + 2d) + c+ 3a + (n − 1)d 4 =
n
2
32a + (n − 1)d 4

 29. Using Exercises 27 and 28, find an expression for the value of the following sums.
 a. 2 + 2 # 5 + 2 # 52 + c+ 2 # 59

 b. 4 # 7 + 4 # 72 + 4 # 73 + c+ 4 # 712

 c. 1 + 7 + 13 + c+ 49
 d. 12 + 17 + 22 + 27 + c+ 92
 30. Prove that

(−2)0 + (−2)1 + (−2)2 + c+ (−2)n =
1 − 2n+1

3
 for every positive odd integer n.
 31. Prove that n2 > n + 1 for n ≥ 2.
 32. Prove that n2 ≥ 2n + 3 for n ≥ 3.
 33. Prove that n2 > 5n + 10 for n > 6.
 34. Prove that 2n > n2 for n ≥ 5.

In Exercises 35–40, n! is the product of the positive integers from 1 to n.

 35. Prove that n! > n2 for n ≥ 4.

 Section 2.2 Induction 125

 36. Prove that n! > n3 for n ≥ 6.
 37. Prove that n! > 2n for n ≥ 4.
 38. Prove that n! > 3n for n ≥ 7.
 39. Prove that n! ≥ 2n−1 for n ≥ 1.
 40. Prove that n! < nn for n ≥ 2.
 41. Prove that (1 + x)n > 1 + xn for n > 1, x > 0.

 42. Prove that aa
b
b

n+1

< aa
b
b

n

for n ≥ 1 and 0 < a < b.

 43. Prove that 1 + 2 + c+ n < n2 for n > 1.

 44. Prove that 1 +
1
4

+
1
9

+ c+
1
n2 < 2 −

1
n for n ≥ 2

 45. a. Try to use induction to prove that

1 +
1
2

+
1
4

+ c+
1
2n < 2 for n ≥ 1

 What goes wrong?
 b. Prove that

1 +
1
2

+
1
4

+ c+
1
2n = 2 −

1
2n for n ≥ 1

 thus showing that

1 +
1
2

+
1
4

+ c+
1
2n < 2 for n ≥ 1

 46. Prove that

1 +
1
2

+
1
3

+ c+
1
2n ≥ 1 +

n
2
 for n ≥ 1

 (Note that the denominators increase by 1, not by powers of 2.)

For Exercises 47–58, prove that the statements are true for every positive integer.

 47. 23n − 1 is divisible by 7.
 48. 32n + 7 is divisible by 8.
 49. 7n − 2n is divisible by 5.
 50. 13n − 6n is divisible by 7.
 51. 2n + (−1)n+1 is divisible by 3.
 52. 25n+1 + 5n+2 is divisible by 27.
 53. 34n+2 + 52n+1 is divisible by 14.
 54. 72n + 16n − 1 is divisible by 64.
 55. 10n + 3 # 4n+2 + 5 is divisible by 9.
 56. n3 − n is divisible by 3.
 57. n3 + 2n is divisible by 3.
 58. xn − 1 is divisible by x − 1 for x ∙ 1.

126 Proofs, Induction, and Number Theory

 59. Prove DeMoivre’s Theorem:

(cos θ + i sin θ)n = cos nθ + i sin nθ

 for all n ≥ 1. Hint: Recall the addition formulas from trigonometry:

cos(α + β) = cos α cos β − sin α sin β
sin(α + β) = sin α cos β + cos α sin β

 60. Prove that

sin θ + sin 3θ + c+ sin(2n − 1)θ =
sin2 nθ
sin θ

 for all n ≥ 1 and all θ for which sin θ ∙ 0.
 61. Use induction to prove that the product of any three consecutive positive integers is divisible by 3.
 62. Suppose that exponentiation is defined by the equation

x
j # x = x

j+1

 for any j ≥ 1. Use induction to prove that xn # xm = xn+m for n ≥ 1, m ≥ 1.
(Hint: Do induction on m for a fixed, arbitrary value of n.)

 63. According to Example 20, it is possible to use angle irons to tile a 4 × 4 checkerboard with the upper right
corner removed.Sketch such a tiling.

 64. Example 20 does not cover the case of checkerboards that are not sized by powers of 2. Determine whether
it is possible to tile a 3 × 3 checkerboard.

 65. Prove that it is possible to use angle irons to tile a 5 × 5 checkerboard with the upper left corner removed.
 66. Find a configuration for a 5 × 5 checkerboard with one square removed that is not possible to tile; explain

why this is not possible.
 67. Consider n infinitely long straight lines, none of which are parallel and no three of which have a common

point of intersection. Show that for n ≥ 1, the lines divide the plane into (n2 + n + 2)∙2 separate regions.
 68. A string of 0s and 1s is to be processed and converted to an even-parity string by adding a parity bit to the

end of the string.(For an explanation of the use of parity bits, see Example 30 in Chapter 9.) The parity
bit is initially 0. When a 0 character is processed, the parity bit remains unchanged. When a 1 character
is processed, the parity bit is switched from 0 to 1 or from 1 to 0. Prove that the number of 1s in the final
string, that is, including the parity bit, is always even. (Hint: Consider various cases.)

 69. What is wrong with the following “proof” by mathematical induction? We will prove that for any positive
integer n, n is equal to 1 more than n. Assume that P(k) is true.

k = k + 1

 Adding 1 to both sides of this equation, we get

k + 1 = k + 2

 Thus,

P(k + 1) is true

 70. What is wrong with the following “proof” by mathematical induction?

We will prove that all computers are built by the same manufacturer. In particular, we will prove
that in any collection of n computers where n is a positive integer, all the computers are built by the
same manufacturer. We first prove P(1), a trivial process, because in any collection consisting of

 Section 2.2 Induction 127

one computer, there is only one manufacturer. Now we assume P(k); that is, in any collection of k
computers, all the computers were built by the same manufacturer. To prove P(k + 1), we consider
any collection of k + 1 computers. Pull one of these k + 1 computers (call it HAL) out of the col-
lection. By our assumption, the remaining k computers all have the same manufacturer. Let HAL
change places with one of these k computers. In the new group of k computers, all have the same
manufacturer. Thus, HAL’s manufacturer is the same one that produced all the other computers, and
all k + 1 computers have the same manufacturer.

 71. An obscure tribe has only three words in its language, moon, noon, and soon. New words are composed by
juxtaposing these words in any order, as in soonnoonmoonnoon. Any such juxtaposition is a legal word.

 a. Use the first principle of induction (on the number of subwords in the word) to prove that any word in
this language has an even number of o’s.

 b. Use the second principle of induction (on the number of subwords in the word) to prove that any word
in this language has an even number of o’s.

 72. A simple closed polygon consists of n points in the plane joined in pairs by n line segments; each point is
the endpoint of exactly 2 line segments. Following are two examples.

(a) (b)
 a. Use the first principle of induction to prove that the sum of the interior angles of an n-sided simple

closed polygon is (n − 2)180° for all n ≥ 3.
 b. Use the second principle of induction to prove that the sum of the interior angles of an n-sided simple

closed polygon is (n − 2)180° for all n ≥ 3.
 73. The Computer Science club is sponsoring a jigsaw puzzle contest. Jigsaw puzzles are assembled by fitting

2 pieces together to form a small block, adding a single piece to a block to form a bigger block, or fitting
2 blocks together. Each of these moves is considered a step in the solution. Use the second principle of
induction to prove that the number of steps required to assemble an n-piece jigsaw puzzle is n − 1.

 74. OurWay Pizza makes only two kinds of pizza, pepperoni and vegetarian. Any pizza of either kind comes
with an even number of breadsticks (not necessarily the same even number for both kinds). Any order of 2
or more pizzas must include at least 1 of each kind. When the delivery driver goes to deliver an order, he
or she puts the completed order together by combining 2 suborders—picking up all the pepperoni pizzas
from 1 window and all the vegetarian pizzas from another window. Prove that for a delivery of n pizzas,
n ≥ 1, there are an even number of breadsticks included.

 75. Consider propositional wffs that contain only the connectives `, ~, and S (no negation) and where wffs
must be parenthesized when joined by a logical connective. Count each statement letter, connective, or
parenthesis as one symbol. For example, ((A) ` (B)) ~ ((C) ` (D)) is such a wff, with 19 symbols. Prove
that any such wff has an odd number of symbols.

 76. In any group of k people, k ≥ 1, each person is to shake hands with every other person. Find a formula for
the number of handshakes, and prove the formula using induction.

128 Proofs, Induction, and Number Theory

 77. Prove that any amount of postage greater than or equal to 2 cents can be built using only 2-cent and 3-cent
stamps.

 78. Prove that any amount of postage greater than or equal to 12 cents can be built using only 4-cent and
5-cent stamps.

 79. Prove that any amount of postage greater than or equal to 14 cents can be built using only 3-cent and
8-cent stamps.

 80. Prove that any amount of postage greater than or equal to 42 cents can be built using only 4-cent and
15-cent stamps.

 81. Prove that any amount of postage greater than or equal to 64 cents can be built using only 5-cent and
17-cent stamps.

 82. Your bank ATM delivers cash using only $20 and $50 bills. Prove that you can collect, in addition to $20,
any multiple of $10 that is $40 or greater.

Exercises 83–84 require familiarity with ideas from calculus. Exercises 1–26 give exact formulas for the sum

of terms in a sequence that can be expressed as ∙
n

m=1
f (m). Sometimes it is difficult to find an exact expression

for this summation, but if the value of f (m) increases monotonically, integration can be used to find upper and
lower bounds on the value of the summation. Specifically,

3

n

0

f (x)dx ≤ ∙
n

m=1
f (m) ≤ 3

n+1

1

f (x)dx

Using the following figure, we can see (on the left) that 3

n

0

f (x)dx underestimates the value of the summation

while (on the right) 3

n+1

1

f (x)dx overestimates it.

0 1 2 3 4

f(1) f(2) f(3) f(4)

f(x)

 1 2 3 4 5

f(1) f(2) f(3) f(4)

f(x)

 83. Show that 3

n

0

2x dx ≤ ∙
n

m=1
2m ≤ 3

n+1

1

2x dx (see Exercise 2).

 84. Show that 3

n

0

x2dx ≤ ∙
n

m=1
m2 ≤ 3

n+1

1

x2dx (see Exercise 7).

 Section 2.3 More on Proof of Correctness 129

 S e c t i o n 2 . 3 More on Proof of CorreCTness

In Section 1.6, we explained the use of a formal logic system to prove mathemati-
cally the correctness of a program. Assertions or predicates involving the program
 variables are inserted at the beginning, at the end, and at intermediate points between
the program statements. Then proving the correctness of any particular program
statement si involves proving that the implication represented by the Hoare triple

 {Q} si {R} (1)

is true.Here Q and R are assertions known, respectively, as the precondition and
postcondition for the statement. The program is provably correct if all such impli-
cations for the statements in the program are true.

In Chapter 1, we discussed rules of inference that give conditions under
which implication (1) is true when si is an assignment statement and when si is a
 conditional statement. Now we will use a rule of inference that gives conditions
under which implication (1) is true when si is a loop statement. We have deferred
consideration of loop statements until now because mathematical induction is
used in applying this rule of inference.

loop rule

Suppose that si is a loop statement in the form

while condition B do
P

end while

where B is a condition that is either true or false and P is a program segment.
When this statement is executed, condition B is evaluated. If B is true, program
segment P is executed and then B is evaluated again. If B is still true, program
segment P is executed again, then B is evaluated again, and so forth. If condition
B ever evaluates to false, the loop terminates.

The form of implication (1) that can be used when si is a loop statement
 imposes (like the assignment rule did) a relationship between the precondition and
the postcondition. The precondition Q holds before the loop is entered; strangely
enough, one requirement is that Q must continue to hold after the loop terminates
(which means that we should look for a Q that we want to be true when the loop
terminates). In addition, B′—the condition for loop termination—must be true
then as well. Thus (1) will have the form

 {Q} si {Q ` B′} (2)

 eXAMPLe 25 Consider the following pseudocode function, which is supposed to return the value
x * y for nonnegative integers x and y.

130 Proofs, Induction, and Number Theory

Assertion Q must be true before the loop is entered. If implication (2) is to
hold, Q must remain true after the loop terminates. Because it may not be known
exactly when the loop will terminate, Q must remain true after each iteration
through the loop, which will include the final iteration. Q represents a predicate,
or relation, among the values of the program variables. If this relation holds among
the values of the program variables before a loop iteration executes and holds
among the values after the iteration executes, then the relation among these vari-
ables is unaffected by the action of the loop iteration, even though the values
themselves may be changed. Such a relation is called a loop invariant.

Product (nonnegative integer x; nonnegative integer y)
Local variables:
integers i, j

i = 0
j = 0
while i ∙ x do
 j = j + y
 i = i + 1
end while
//j now has the value x * y
return j

end function Product

This function contains a loop; the condition B for continued loop execution is
i ∙ x. The condition B′ for loop termination is therefore i = x. When the loop
terminates, it is claimed in the comment that j has the value x * y. Thus, on loop
termination, we want

Q ` B′ = Q ` (i = x)
and we also want

j = x * y

To have both

Q ` (i = x) and j = x * y

Q must be the assertion

j = i * y

(Notice that Q is a predicate, that is, it states a relationship between variables in
the program. It is never part of an equation such as Q = j.) To match the form of
(2), the assertion j = i * y would have to be true before the loop statement. This is
indeed the case because right before the loop statement, i = j = 0.

It would seem that for this example we have a candidate assertion Q for impli-
cation (2), but we do not yet have the rule of inference that allows us to say when
(2) is a true implication. (Remember that we discovered our Q by “wishful think-
ing” about the correct operation of the function code.)

 Section 2.3 More on Proof of Correctness 131

The loop rule of inference allows the truth of (2) to be inferred from an im-
plication stating that Q is a loop invariant. Again, for Q to be a loop invariant it
must be the case that if Q is true and condition B is true, so that another loop itera-
tion is executed, then Q remains true after that iteration, which can be expressed
by the Hoare triple {Q ` B} P {Q}. The rule is formally stated in Table 2.4.

To use this rule of inference, we must find a useful loop invariant Q—one that
asserts what we want and expect to have happen—and then prove the implication

5Q ` B6 P 5Q6

Here is where induction comes into play. We denote by Q(n) the statement that
a proposed loop invariant Q is true after n iterations of the loop. Because we do
not necessarily know how many iterations the loop may execute (that is, how long
condition B remains true), we want to show that Q(n) is true for all n ≥ 0. (The
value of n = 0 corresponds to the assertion upon entering the loop, after zero loop
iterations.)

 eXAMPLe 26 Consider again the pseudocode function of Example 25. In that example, we
guessed that Q is the relation

j = i * y

To use the loop rule of inference, we must prove that Q is a loop invariant.
The quantities x and y remain unchanged throughout the function, but values

of i and j change within the loop. We let in and jn denote the values of i and j,
respectively, after n iterations of the loop. Then Q(n) is the statement jn = in * y.

We prove by induction that Q(n) holds for all n ≥ 0. Q(0) is the statement

j0 = i0 * y

which, as we noted in Example 25, is true, because after zero iterations of the loop,
when we first get to the loop statement, both i and j have been assigned the value
0. (Formally, the assignment rule could be used to prove that these conditions on i
and j hold at this point.)

Assume Q(k): jk = ik * y
Show Q(k + 1): jk+1 = ik+1 * y

tAbLe 2.4

From can Derive name of Rule Restrictions on use

{Q ` B} P {Q} {Q} si {Q ` B′} loop si has the form
while condition B do

P
end while

132 Proofs, Induction, and Number Theory

Between the time j and i have the values jk and ik and the time they have the values
jk+1 and ik+1, one iteration of the loop takes place. In that iteration, j is changed by
adding y to the previous value, and i is changed by adding 1. Thus,

 jk+1 = jk  +  y (3)
 ik+1  =  ik  +  1 (4)

Then

 jk+1 = jk + y (by (3))
 = ik * y + y (by the inductive hypothesis)
 = (ik + 1)y
 = ik+1 * y (by (4))

We have proved that Q is a loop invariant.
The loop rule of inference allows us to infer that after the loop statement is

exited, the condition Q ` B′ holds, which in this case becomes

j = i * y ` i = x

Therefore at this point the statement

j = x * y

is true, which is exactly what the function is intended to compute.

Example 26 illustrates that loop invariants say something stronger about the
program than we actually want to show; what we want to show is the special case
of the loop invariant on termination of the loop. Finding the appropriate loop in-
variant requires working backward from the desired conclusion, as in Example 25.

We did not, in fact, prove that the loop in this example actually does ter-
minate. What we proved was partial correctness—the program produces the
correct answer, given that execution does terminate. Because x is a nonnegative
integer and i is an integer that starts at 0 and is then incremented by 1 at each pass
through the loop, we know that eventually i = x will become true.

PrACTiCe 10 Show that the following function returns the value x + y for nonnegative integers x and y
by proving the loop invariant Q: j = x + i and evaluating Q when the loop terminates.

Sum (nonnegative integer x; nonnegative integer y)
Local variables:
integers i, j

i = 0
j = x
while i ≠ y do

j = j + 1
i = i + 1

end while
// j now has the value x + y
return j

end function Sum ■

 Section 2.3 More on Proof of Correctness 133

The two functions of Example 25 and Practice 10 are somewhat unrealistic;
after all, if we wanted to compute x * y or x + y, we could no doubt do it with a
single program statement. However, the same techniques apply to more meaning-
ful computations, such as the Euclidean algorithm.

Euclidean Algorithm

The Euclidean algorithm was described by the Greek mathematician Euclid over
2300 years ago, although it may have been known even earlier. At any rate, it is
one of the oldest known algorithms.This algorithm finds the greatest common
divisor of two positive integers a and b with a > b. The greatest common divisor
of a and b, denoted by gcd(a, b), is the largest integer n such that n 0 a and n 0 b. For
example, gcd(12, 18) is 6 and gcd(420, 66) = 6.

First, let’s dispense with two trivial cases of the gcd(a, b) that do not require
the Euclidean algorithm.

 i. gcd(a, a) = a. Clearly a 0 a and no larger integer divides a.
 ii. gcd(a, 0) = a. Again, a 0 a and no larger integer divides a, but also a 0 0

because 0 is a multiple of a: 0 = 0(a)

The Euclidean algorithm works by a succession of divisions. To find gcd(a, b),
assuming that a > b, you first divide a by b, getting a quotient and a remainder.
More formally, at this point a = q1b + r1, where 0 ≤ r1 < b. Next you divide the
divisor, b, by the remainder, r1, getting b = q2r1 + r2, where 0 ≤ r2 < r1. Again di-
vide the divisor, r1, by the remainder, r2, getting r1 = q3r2 + r3, where 0 ≤ r3 < r2.
Clearly, there is a looping process going on, with the remainders getting succes-
sively smaller. The process terminates when the remainder is 0, at which point the
greatest common divisor is the last divisor used.

A pseudocode version of the algorithm follows, given in the form of a func-
tion to return gcd(a, b).

 Algorithm EuclidEan algorithm

GCD (positive integer a; positive integer b)
//a > b
Local variables:
integers i, j

i = a
j = b

 ExAmplE 27 To find gcd(420, 66) the following divisions are performed:

 6 2 1 3
 66q420 24q66 18q24 6q18

 396 48 18 18
 24 18 6 0

The answer is 6, the divisor used when the remainder became 0.

134 Proofs, Induction, and Number Theory

while j ≠ 0 do
compute i = q j + r, 0 ≤ r < j
i = j
j = r

end while
// i now has the value gcd(a, b)
return i;

end function GCD

We intend to prove the correctness of this function, but we will need one ad-
ditional fact first, namely,

 (4 integers a, b, q, r) 3(a = qb + r) S (gcd(a, b) = gcd(b, r)) 4 (5)

To prove (5), assume that a = qb + r and suppose that c divides both a and b so
that a = q1c and b = q2c. Then

r = a − qb = q1c − qq2c = c (q1 − qq2)

so that c divides r as well. Therefore anything that divides a and b also divides b
and r. Now suppose d divides both b and r so that b = q3d and r = q4d. Then

a = qb + r = qq3d + q4d = d(qq3 + q4)

so that d divides a as well. Therefore anything that divides b and r also divides a
and b. Because (a, b) and (b, r) have identical divisors, they must have the same
greatest common divisor.

 eXAMPLe 28 Prove the correctness of the Euclidean algorithm.
Using function GCD, we will prove the loop invariant Q: gcd(i, j) = gcd(a, b)

and evaluate Q when the loop terminates. We use induction to prove Q(n):
gcd(in, jn) = gcd(a, b) for all n ≥ 0. Q(0) is the statement

gcd(i0, j0) = gcd(a, b)

which is true because when we first get to the loop statement, i and j have the val-
ues a and b, respectively.

Assume Q(k): gcd(ik, jk) = gcd(a, b)
Show Q(k + 1): gcd(ik+1, jk+1) = gcd(a, b)

By the assignment statements within the loop body, we know that

ik+1 = jk
jk+1 = rk

 Section 2.3 More on Proof of Correctness 135

Then

gcd(ik+1, jk+1) = gcd(jk, rk)
 = gcd(ik, jk) by (5)
 = gcd(a, b) by the inductive hypothesis

Q is therefore a loop invariant. At loop termination, gcd(i, j) = gcd(a, b) and j = 0,
so gcd(i, 0) = gcd(a, b). But gcd(i, 0) is i, so i = gcd(a, b). Therefore function
GCD is correct.

136 Proofs, Induction, and Number Theory

speCial interest page

Making Safer Software

Proof of correctness seeks to verify that a given com-
puter program or segment of a program meets its speci-
fications. As we have seen, this approach relies on
formal logic to prove that if a certain relationship (the
precondition) holds among the program variables before
a given statement is executed, then after execution an-
other relationship (the postcondition) holds. Because of
the labor-intensive nature of proof of correctness, its use
is typically reserved for critical sections of code in im-
portant applications.

The B method is a set of tools that does two things:

1. Supports formal project specification by means
of an abstract model of the system to be devel-
oped. This support includes both automatic gen-
eration of lemmas that must be proven in order
to guarantee that the model reflects the system
requirements and automatic proof tools to prove
each lemma or flag it for human verification
assistance.

2. Translates the abstract model into a code-ready
design, again using lemmas to ensure that the
design matches the abstract model. The final
level can then be translated into code, often us-
ing the Ada programming language, described
by its proponents as “the language designed for
building systems that really matter.”

One of the most interesting applications of proof
of correctness, based on the B method, is the develop-
ment of software for the Paris Météor train. This is part
of the Paris metro train system designed to carry up to
40,000 passengers per hour and per direction with an
interval between trains as low as 85 seconds on peak
hours. The safety-critical part of the software includes
the running and stopping of every train, opening and

closing of doors, electrical traction power, routes,
speed of trains, and alarms from passengers. By the
end of the project, 27,800 lemmas had been proven,
with 92% proven automatically (with no human inter-
vention). But here is the amazing part: the number of
bugs in the Ada code found by testing on the host com-
puter, the target computer, on site, and after the system
was put into operation was—0. Zero, nada, none. Very
impressive indeed.

Other formal method systems have been used for
critical software projects, such as

• Development of a left ventricular assist device
that helps the heart pump blood in those with
congestive heart failure. The eventual goal is an
artificial heart.

• “Conflict detection and resolution algorithms”
for safety in air traffic control

• Development of the Tokeneer ID Station soft-
ware to perform biometric verification of a hu-
man seeking access to a secure computing en-
vironment. Tokeneer is a hypothetical system
promoted by NSA (National Security Agency) as
a challenge problem for security researchers.

Formal Verification of Large Software Systems, Yin, X.,
and Knight, J., Proceedings of the NASA Formal
Methods Symposium, April 13–15, 2010, Washington
D.C., USA.

http://libre.adacore.com/academia/projects-single/echo
http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html
“Météor: A Successful Application of B in a Large Project,”

Behm, P., Benoit, P., Faivre, A., and Meynadier, J.,
World Congress On Formal Methods in the Develop-
ment of Computing Systems, Toulouse, France, 1999,
vol. 1709, pp. 369–387.

Chapter 2

http://libre.adacore.com/academia/projects-single/echo
http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html

 Section 2.3 More on Proof of Correctness 137

eXeRciSeS 2.3

 1. Let Q: x2 > x + 1 where x is a positive integer. Assume that Q is true after the k th iteration of the follow-
ing while loop; prove that Q is true after the next iteration.

while (x > 5) and (x < 40) do
 x = x + 1
end while

 2. Let Q: x! > 3x where x is a positive integer. Assume that Q is true after the k th iteration of the following
while loop; prove that Q is true after the next iteration.

while (x > 10) and (x < 30) do
 x = x + 2
end while

In Exercises 3–6, prove that the pseudocode program segment is correct by proving the given loop invariant Q
and evaluating Q at loop termination.
 3. Function to return the value of x! for x ≥ 1.

Factorial (positive integer x)
Local variables:
integers i, j
 i = 2
 j = 1
 while i ≠ x + 1 do
 j = j * i
 i = i + 1
 end while
 //j now has the value x!
 return j
end function Factorial

Q: j = (i − 1)!

 4. Function to return the value of x 2 for x ≥ 1.
Square (positive integer x)
Local variables:
integers i, j
 i = 1
 j = 1
 while i ≠ x do
 j = j + 2i + 1
 i = i + 1
 end while

S e c t i o n 2 . 3 review

tecHniQueS

• Verify the correctness of a program segment that
includes a loop statement.

• Compute gcd(a, b) using Euclid’s algorithm.

MAin iDeAS

• A loop invariant, proved by induction on the num-
ber of loop iterations, can be used to prove correct-
ness of a program loop.

• The classic Euclidean algorithm for finding the
greatest common divisor of two positive integers is
provably correct.

W

138 Proofs, Induction, and Number Theory

 //j now has the value x 2

 return j
end function Square

Q: j = i 2

 5. Function to return the value of x y for x, y ≥ 1.

Power (positive integer x, positive integer y)
Local variables:
integers i, j
 i = 1
 j = x
 while i ≠ y do
 j = j ∗ x
 i = i + 1
 end while
 //j now has the value x y

 return j
end function Power

Q: j = x i

 6. Function to compute and write out quotient q and remainder r when x is divided by y, x ≥ 0, y ≥ 1.

Divide (nonnegative integer x; positive integer y);
Local variables:
nonnegative integers q, r
 q = 0
 r = x
 while r ≥ y do
 q = q + 1
 r = r – y
 end while
 //q and r are now the quotient and remainder
 write(“The quotient is” q “and the remainder is” r)
end function Divide

Q: x = q ∗ y + r

For Exercises 7–12 use the Euclidean algorithm to find the greatest common divisor of the given numbers.

 7. (308, 165)
 8. (2420, 70)
 9. (735, 90)
 10. (8370, 465)
 11. (1326, 252)
 12. (1018215, 2695)
 13. Following is the problem posed at the beginning of this chapter.

The nonprofit organization at which you volunteer has received donations of 792 bars of soap and
400 bottles of shampoo. You want to create packages to distribute to homeless shelters such that
each package contains the same number of shampoo bottles and each package contains the same
number of bars of soap. How many packages can you create?

 Explain why the solution to this problem is the gcd(792, 400).

 Section 2.3 More on Proof of Correctness 139

 14. Concerning the question posed in Exercise 13:
 a. Use the Euclidean algorithm to find the number of packages.
 b. How many bottles of shampoo are in each package?
 c. How many bars of soap are in each package?

In Exercises 15–21, prove that the program segment is correct by finding and proving the appropriate loop in-
variant Q and evaluating Q at loop termination.

 15. Function to return the value x ∗ y n for n ≥ 0.

Computation (integer x; integer y; nonnegative integer n)
Local variables:
integers i, j
 i = 0
 j = x
 while i ≠n do
 j = j ∗ y
 i = i + 1
 end while
 //j now has the value x ∗ y n
 return j
end function Computation

 16. Function to return the value x – y for x, y ≥ 0.

Difference (nonnegative integer x; nonnegative integer y)
Local variables:
integers i, j
 i = 0
 j = x
 while i ≠ y do
 j = j – 1
 i = i + 1
 end while
 //j now has the value x – y
 return j
end function Difference

 17. Function to return the value (x + 1) 2 for x ≥ 1.

IncrementSquare (positive integer x)
Local variables:
integers i, j
 i = 1
 j = 4
 while i ∙ x do
 j = j + 2i + 3
 i = i + 1
 end while
 //j now has the value (x + 1) 2

 return j
end function IncrementSquare

140 Proofs, Induction, and Number Theory

 18. Function to return the value 2n for n ≥ 1.
TwosPower (positive integer n)
Local variables:
integers i, j
 i = 1
 j = 2
 while i ∙ n do
 j = j ∗ 2
 i = i + 1
 end while
 //j now has the value 2n

 return j
end function TwosPower

 19. Function to return the value x ∗ n! for n ≥ 1.
AnotherOne (integer x; positive integer n)
Local variables:
integers i, j
 i = 1
 j = x
 while i ∙ n do
 j = j ∗ (i + 1)
 i = i + 1
 end while
 //j now has the value x ∗ n!
 return j
end function AnotherOne

 20. Function to return the value of the polynomial anxn + an–1 xn–1 + g+ a1x + a0 at a given value of x.

Polly (real an; … ; real a0; real x)
Local variables:
integers i, j
 i = n
 j = an
 while i ∙ 0 do
 j = j ∗ x + ai–1
 i = i – 1
 end while
 //j now has value of the polynomial evaluation
 return j
end function Polly

 21. Function to return the maximum value from the first n entries a[1], a[2], … , a[n], n ≥ 1, in an array of
distinct integers.

ArrayMax (integers n, a[1], a[2], … , a[n])
Local variables:
integers i, j
 i = 1

 Section 2.3 More on Proof of Correctness 141

 j = a[1]
 while i ∙ n do
 i = i + 1
 if a[i] > j then j = a[i]
 end while
 //j now has the value of the largest array element
 return j
end function ArrayMax

 22. Following are four functions intended to return the value a[1] + a[2] + g+ a[n] for n ≥ 1 (the sum of
the first n entries in an array of integers). For those that do not produce correct results, explain what goes
wrong. For those that do produce correct results, do a proof of correctness.

 a. ArraySumA (integers n, a[1], a[2], … , a[n])
Local variables:
integers i, j
 i = 0
 j = 0
 while i ≤ n do
 i = i + 1
 j = j + a[i]
 end while
 //j now has the value a[1] + a[2] + g+ a[n]
 return j
end function ArraySumA

 b. ArraySumB (integers n, a[1], a[2], … , a[n])
Local variables:
integers i, j
 i = 1
 j = 0
 while i ≤ n do
 j = j + a[i]
 i = i + 1
 end while
 //j now has the value a[1] + a[2] + g+ a[n]
 return j
end function ArraySumB

 c. ArraySumC (integers n, a[1], a[2], … , a[n])
Local variables:
integers i, j
 i = 0
 j = 0
 while i ≤ n do
 j = j + a[i]
 i = i + 1
 end while
 //j now has the value a[1] + a[2] + g+ a[n]
 return j
end function ArraySumC

142 Proofs, Induction, and Number Theory

 d. ArraySumD (integers n, a[1], a[2], … , a[n])
Local variables:
integers i, j
 i = 1
 j = a[1]
 while i ≤ n do
 j = j + a[i + 1]
 i = i + 1
 end while
 //j now has the value a[1] + a[2] + g+ a[n]
 return j
end function ArraySumD

Exercises 23–28 concern a variation of the Euclidean algorithm more suited to computer implementation. The
original GCD algorithm relies on repeated integer divisions to compute remainders. The following variation,
called the binary GCD algorithm, also uses divisions, but only by 2, plus subtraction and testing for parity (odd-
ness or evenness). Given that the numbers are stored in the computer in binary form, these operations are simple
and often done using built-in circuits. Testing for even/odd can be done using bitwise conjunction of N & 1,
which results in 1 if and only if N is odd. Given an even N, division by 2 is easily accomplished by a 1-bit right
shift operation, where all bits are shifted one place to the right (the rightmost bit disappears), and the leftmost
bit is set to 0. (Multiplication by 2 is a 1-bit left shift.) Subtraction involves the 2’s complement. As a result, the
binary gcd algorithm, which avoids regular division, runs faster than the Euclidean algorithm, even though it
does more (but simpler) steps. The binary GCD algorithm relies on three facts:

 1. If both a and b are even, then gcd(a, b) = 2gcd(a/2, b/2).
 2. If a is even and b is odd, then gcd(a, b) = gcd(a/2, b).
 3. If a and b are both odd, and a ≥ b, then gcd(a, b) = gcd((a − b)/2, b).

 23. To prove that if both a and b are even, then gcd(a, b) = 2gcd(a/2, b/2), let a and b be even integers. Then
2 is a common factor of both a and b, so 2 is a factor of gcd(a, b). Let 2c = gcd(a, b). Then

a = n(2c) and b = m(2c)

a/2 = nc and b/2 = mc

 so c 0 a/2 and c 0 b/2. Finish this proof by showing that c = gcd(a/2, b/2).

 24. To prove that if a is even and b is odd, then gcd(a, b) = gcd(a/2, b), note that because b is odd, 2 is not a
factor of b, hence not a factor of gcd(a, b). Therefore all contribution to gcd(a, b) comes from b and a/2,
and gcd(a, b) = gcd(a/2, b). Write an equation for gcd(a, b) when a is odd and b is even.

 25. We want to prove that if a and b are both odd, and a ≥ b, then gcd(a, b) = gcd((a − b)/2, b). If a and
b are both odd and a ≥ b, then gcd(a, b) = gcd(a − b, b) because, from the regular Euclidean algorithm,
gcd(a, b) begins with a = qb + r, 0 ≤ r < b and gcd(a − b, b) begins with a – b = (q − 1)b + r, 0 ≤ r < b.
The next step in either case is to divide b by r, so the two final answers will be the same. Finish this proof
by showing that gcd(a − b, b) = gcd((a – b)/2, b).

 Section 2.4 Number Theory 143

 26. To find gcd(420, 66) using the binary GCD algorithm takes the following steps (compare with Example 27).
You can do these steps in your head!

420 66 Fact 1 Save the 2 factor to multiply at the end
210 33 Fact 2
105 33 Fact 3
36 33 Fact 2
18 33 Fact 2
9 33 Fact 3 [Because gcd(a, b) = gcd(b, a), it doesn’t matter whether the

larger number is first or second or whether the even number is
first or second.]

9 12 Fact 2
9 6 Fact 2
9 3 Fact 3
3 3 Fact 3
0 3

 One number is now 0, so the other number is a factor in the gcd, therefore gcd(420, 66) = 2*3 = 6 (the
factor of 2 comes from the very first step).

 Use the binary GCD algorithm to find gcd(24, 20).

 27. Use the binary GCD algorithm to find gcd(308, 165) [see Exercise 7].
 28. Use the binary GCD algorithm to find gcd(2420, 70) [see Exercise 8].

 S e c t i o n 2 . 4 nuMber Theory

In Section 2.1 we proved several elementary number theory results, such as “The
product of two even integers is even.” These proofs relied on basic definitions and
the standard proof techniques (direct proof, proof by contraposition, and proof by
contradiction). Now that we have some additional ammunition, we can prove more
number theory results. Number theory is fun because conjectures can be stated
easily—after all, only integers are involved—yet sometimes it can be quite dif-
ficult to prove. As an extreme case, Fermat’s last theorem states that there are no
positive integers x, y, and z for which

xn + yn = zn

for any integer n > 2. (There are solutions for n = 2, such as 32 + 42 = 52.) Pierre
de Fermat stated this result around 1637 but—although many false “proofs” were
published in the interim—it took until 1995 before a proof was found, using very
complicated mathematics, by Dr. Andrew Wiles of Princeton University. We are
interested in number theory, however, because of its usefulness in computer secu-
rity (see Section 5.6).

144 Proofs, Induction, and Number Theory

The Fundamental Theorem of arithmetic

We’ll start by expanding on a result we proved using the second principle of math-
ematical induction in Example 23, Section 2.2: For every integer n ≥ 2, n is a
prime number or a product of prime numbers.

In fact, a stronger statement can be made.

 tHeoReM ThE FuNDaMENTal ThEorEM oF arIThMETIC
For every integer n ≥ 2, n is a prime number or can be written uniquely (ignoring
ordering) as a product of prime numbers.

The new part is that there is only one way to factor a composite number
into prime factors if we ignore the order in which we write the factors. Thus we
consider

2(3)(3) = 3(2)(3)

to be the same factorization of 18. We intuitively accept the uniqueness idea—
how else could you factor 18 into prime factors? A formal proof requires quite a
bit of preparation, and it begins with revisiting the idea of the greatest common
divisor of two positive integers.

The Euclidean algorithm to find gcd(a, b) was given in Section 2.3. It turns out
that if a and b are positive integers, then gcd(a,b) can always be written as a linear
combination of a and b; that is,

gcd(a, b) = ia + jb for some integers i and j

Although it’s easy to verify in Example 29 that 3(420) − 19(66) indeed has the
value 6, the coefficient values of 3 and −19 seem mysterious. They are not just
pulled out of the air, however; in fact they are derived from the successive divi-
sions done by the Euclidean algorithm.

ReMinDeR

A prime number is an
integer > 1 that is divisible
only by itself and 1.

 eXAMPLe 29 In Section 2.3 we learned, using the Euclidean algorithm, that gcd(420, 66) = 6.
And 6 can be written as a linear combination of 420 and 66:

6 = 3(420) − 19(66)

 eXAMPLe 30 The successive divisions performed by the Euclidean algorithm in finding
gcd(420, 66) can be written as follows (see Example 27 in Section 2.3):

 420 = 6 # 66 + 24
 66 = 2 # 24 + 18
 24 = 1 # 18 + 6
 18 = 3 # 6 + 0

 Section 2.4 Number Theory 145

The Euclidean algorithm gives us a way to express gcd(a, b) as a linear combi-
nation of a and b, but there is another way to characterize this linear combination.

 tHeoReM oN gCD(a, b)
Given positive integers a and b, gcd(a, b) is the linear combination of a and b
that has the smallest positive value.

To prove this result, we need to make use of the principle of well-ordering
that we mentioned in Section 2.2, namely, that every collection of positive inte-
gers that contains any members at all has a smallest member. The collection we
have in mind consists of all positive linear combinations of a and b, and certainly
such numbers exist (as a trivial example, 1 # a + 1 # b). By the principle of well-
ordering, there is a least such number c = ia + jb where i and j are integers. The
theorem claims that c = gcd(a, b), that is, that c 0 a, c 0 b, and c is the largest integer
that divides both a and b.

To prove that c 0 a, we’ll use a proof by contradiction. Suppose c | a. Then
when we divide a by c there is a nonzero remainder

a = mc + r with m an integer and 0 < r < c

Rewriting this equation,

 r = a − mc
 = a − m(ia + jb)
 = (1 − mi)a − (mj)b

which makes r a positive linear combination of a and b, that is, r is a member of
our collection, but r < c, which is a contradiction because c was the least member
of this collection. Therefore c 0 a. In the same way we can show that c 0 b. Conse-
quently c is a common divisor of a and b; by Practice 11, c is the greatest common
divisor of a and b, which completes the proof of the theorem.

Rewriting the first three equations from the bottom up,

 6 = 24 − 1 # 18
 18 = 66 − 2 # 24
 24 = 420 − 6 # 66

Now we use these equations in a series of substitutions:

 6 = 24 − 1 # 18 = 24 − 1 # (66 − 2 # 24) (substituting for 18)
 = 3 # 24 − 66
 = 3 # (420 − 6 # 66) − 66 (substituting for 24)
 = 3 # 420 − 19 # 66

which reveals the linear combination of 420 and 66 that gives the value 6.

146 Proofs, Induction, and Number Theory

Recall that a prime number is an integer p > 1 that is not divisible by any
integers other than 1 and p. If a is an integer that is a multiple of a prime p,
then clearly p 0 p and p 0 a, so gcd(a, p) = p. But if a is not a multiple of p, then
gcd(a, p) = 1 because nothing else divides p. Therefore all integers are either
 multiples of p or are relatively prime to p.

Suppose that p is a prime number that divides the product ab of integers a and b.
Because p is “irreducible,” p must divide either a or b. More formally, if p does not
divide a, that is, a is not a multiple of p, then a is relatively prime to p, gcd(a, p) = 1,
and there exist integers i and j such that

1 = ia + jp

Multiplying this equation by b,

b = (ia)b + (jp)b = i (ab) + (jp)b

Because p 0 ab, ab can be written as kp, where k is an integer, so the previous
 equation becomes

b = i(kp) + (jp)b = (ik + jb)p ik + jb an integer

so that p 0 b. This proves the following theorem.

 tHeoReM oN DIvISIoN by PrIME NuMbErS
Let p be a prime number such that p 0 ab where a and b are integers. Then either
p 0 a or p 0 b.

PrACTiCe 11

a. Prove that if d is a positive integer such that d 0 a and d 0 b, then d 0 c, where c = ia + jb.
b. Prove that if d 0 c, then c ≥ d. ■

PrACTiCe 12 The integers 21 and 16 are relatively prime. Find i and j such that i (21) + j(16) = 1.
■

PrACTiCe 13 Extend the theorem on division by prime numbers as follows: Let p be a prime num-
ber such that p 0 a1a2 … ak where each ai is an integer. Then p 0 aj for some j, 1 ≤ j ≤ k.
(Hint: You want to prove that this is true for every positive integer k—What proof technique
should you use?)

■

 DeFinition rElaTIvEly PrIME
Two integers a and b are relatively prime if gcd(a, b) = 1.

From the theorem on gcd(a, b), it follows that a and b are relatively prime if
and only if there exist integers i and j such that

ia + jb = 1

 Section 2.4 Number Theory 147

Finally we are ready to prove that the factorization of a composite number
n > 2 into prime factors is unique (save for ordering). If n is a composite number,
then n can be written as a product of primes:

n = p1 p2 gpr where p1 ≤ p2 ≤ g≤ pr and each pi is a prime number

Now suppose that n can also be written as

n = q1q2 cqs where q1 ≤ q2 ≤ g≤ qs and each qi is a prime number

Then

p1 p2 cpr = q1q2 cqs

We are assuming that these two representations are different, but they might still
have some factors in common on both sides of the equation; let’s assume these
have been divided out. Then

p1 0 p1 p2 cpr

so

p1 0 q1q2 cqs

By Practice 13, p1 0 qi for some i, 1 ≤ i ≤ s. However, qi is a prime number, divis-
ible only by itself and 1, which would mean that p1 = qi. This is a contradiction
because we already eliminated common factors.

 eXAMPLe 31 To find the unique factorization of 825 as a product of primes, we can start by
simply dividing 825 by successively larger primes (2, 3, 5, and so on).

2 | 825
825 = 3 # 275 = 3 # 5 # 55 = 3 # 5 # 5 # 11 = 3 # 52 # 11

Similarly,

455 = 5 # 7 # 13

From these factorizations we can see that gcd(825, 455) = 5. Decomposing two
positive integers into their respective prime number factorizations is another way
(besides the Euclidean algorithm) to determine their greatest common divisor.

PrACTiCe 14 Find the unique factorization of 1176 as a product of primes.
■

PrACTiCe 15 Find gcd(420, 66) by unique factorization into products of primes (see Example 27).
■

148 Proofs, Induction, and Number Theory

We have now completed the proof of the fundamental theorem of arithmetic.
Note, however, that this is an existence result. It says that for any integer n ≥ 2
that is not prime, there exists a unique factorization as a product of primes. But
this does not tell us

 a. how to decide whether n is prime.
 b. if n is not prime, how to find the prime factors of n.

Neither of these problems has an efficient algorithmic solution. The approach in
Example 31 of dividing a number n by successively larger primes accomplishes
both tasks—if there are prime factors of n, they will be discovered and if there
are none, then n is prime. However, this approach becomes very labor intensive
when n is large.

More on Prime Numbers

Anything with a title as imposing as the fundamental theorem of arithmetic must
be fairly important. We can use this theorem to discover several more results
about prime numbers.

Given a positive integer n, suppose we test for prime factors by dividing n by
successively larger primes. Clearly we can stop with the largest prime less than or
equal to n, but in fact we can stop with the largest prime less than or equal to !n.
If n can be factored in a nontrivial way as n = st, then s and t cannot both be greater
than !n because then their product would be greater than n. Therefore one of s
and t, let’s say s, must be less than or equal to.!n. By the fundamental theorem of
arithmetic, s is either prime or can be written as a product of primes. In either case,
there is a prime factor less than or equal to !n, which proves the following theorem.

 tHeoReM oN SIzE oF PrIME FaCTorS
If n is a composite number, then it has a prime factor less than or equal to !n.

 eXAMPLe 32 Given n = 1021, let’s find the prime factors of n or determine that n is prime. The
value of !1021 is just less than 32. So the primes we need to test are 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31. None divides 1021, so 1021 is prime.

How many prime numbers are there? An infinite number.

 tHeoReM oN INFINITy oF PrIMES (EuClID)
There is an infinite number of prime numbers.

Proof: Assume that there is a finite number of primes, listed as p1, p2, … , pk .
Consider the number s = p1 p2 cpk + 1. The integer s is greater than any of the
primes p1, … , pk , which we assumed is the total list of primes, therefore s is not
prime. Thus s is composite and, by the fundamental theorem of arithmetic, s can
be factored as a product of (some of) the prime numbers. Suppose that pj is one of
the prime factors of s, that is, s = pj (m) for some integer m. Then

1 = s − p1p2 cpk = pj(m) − p1 cpk = pj(m − p1 cpj−1 pj+1 cpk)
Therefore pj 0 1, which is a contradiction. End of Proof

 Section 2.4 Number Theory 149

Although Euclid’s theorem says that there is always another prime number
ahead as we march through the positive integers, the distribution of primes among
the integers is erratic. Contrary to what one might think, the primes do not get
farther and farther apart. Even among the small primes, 23 and 29 are farther
apart than 29 and 31.

 eXAMPLe 33 In Example 11, we did a proof by contradiction that !2 is not a rational number.
The same argument works for !3 and !5 (2, 3, and 5 are all prime numbers).

We can generalize this result from a single prime to any integer x that is the
product of an odd number of primes. Assume that by the fundamental theorem of
arithmetic, x = p1p2 c p2k+1 (In this example, we are not using any exponents, so
some of these primes could be identical; that is, 75 = 3*5*5). Again doing a proof
by contradiction, assume that !p1p2

c
 p2k+1 = a/b where a and b are integers,

b ∙ 0, and a and b are relatively prime. Then

p1p2 c p2k+1 =
a2

b2

a2 = p1p2
c p2k+1b2

By the fundamental theorem, a can be written as a product of one or more primes,
but a2 will add another factor of each of a’s primes, resulting in a product of an even
number of primes. Similarly, b2 is the product of an even number of primes. Therefore
p1

p2
c

 p2k+1b2 is the product of an odd number and an even number (which gives
an odd number) of prime factors. Contradiction: a2 has an even number of prime
factors while p1

p2
c

 p2k+1b2 has an odd number of prime factors, yet by the fun-
damental theorem, factorization is unique.

The search for prime numbers and information about primes has generated
much interest. As of June 2013, the largest known prime number is 257,885,161 − 1,
which is a number with 17,425,170 decimal digits. If we consider that for a reason-
able type size it takes about 1 inch to print 10 digits, then it would take more than
27 miles just to print out a number of this size!

One of the oldest conjectures about prime numbers—still unsolved—is Gold-
bach’s conjecture, formulated in 1742: Every even integer greater than 2 is the
sum of two prime numbers.

Euler Phi Function

 DeFinition EulEr PhI FuNCTIoN
For n an integer, n ≥ 2, the euler phi function of n, φ(n), is the number of posi-
tive integers less than or equal to n and relatively prime to n. (φ(n) is pronounced
“fee” of n.)

150 Proofs, Induction, and Number Theory

Notice that n will never be relatively prime to n, so this definition could have
been stated as, “the number of positive integers less than n and relatively prime to
n,” but it turns out to be convenient to include equality.

For small n, it is easy to compute φ(n) by a brute-force approach of just try-
ing values < n to find how many are relatively prime to n. But there is actually a
formula to compute φ(n), which we’ll derive now.

 eXAMPLe 34 The first few values of φ(n), together with the numbers that give those values, are

 φ(2) = 1 (the number 1)
 φ(3) = 2 (the numbers 1, 2)
 φ(4) = 2 (the numbers 1, 3)
 φ(5) = 4 (the numbers 1, 2, 3, 4)
 φ(6) = 2 (the numbers 1, 5)
 φ(7) = 6 (the numbers 1, 2, 3, 4, 5, 6)

PrACTiCe 16 If p is a prime number, prove that φ (p) = p − 1.

 eXAMPLe 35 Using the fundamental theorem of arithmetic, write the positive integer n in its
factored form as a product of primes, where if the same prime p occurs m times, it
is written as pm. Suppose, for example, that

n = pm1
1 pm2

2 pm3
3

To compute φ(n), we’ll count all the positive integers ≤ n, of which there are n,
and throw out those that are not relatively prime to n, Now let Ai , 1 ≤ i ≤ 3, be
defined as the collection of all positive integral multiples of pi that are ≤ n; these
numbers share a common factor of pi with n and so are not relatively prime to n.
The integral multiples of pi that are ≤ n are pi, 2pi, 3pi, … , n. How many numbers
are in this list? Exactly the number of times you can divide n by pi, or n/pi. So,
denoting the size of Ai by 0 Ai 0 , we know that 0 Ai 0 = n/pi. If we combine A1, A2, and
A3, that will be all integers ≤ n that are not relatively prime to n. How many such
integers are there? We can’t just add 0 A1 0 + 0 A2 0 + 0 A3 0 = n/p1 + n/p2 + n/p3 because
there could be some numbers that appear in more than one of the three collec-
tions, and would therefore be counted twice. Numbers that appear in both Ai and
Aj , i ∙ j, are integral multiples of both pi and pj, so there will be n/(pi pj) of them.
We’ll subtract those for all i, j combinations. But by doing this, we have subtracted
any numbers in all three collections three times, which means they now are not
counted at all, so we have to add back the n/(p1 p2 p3) numbers that are in all three
collections.2 Therefore

2This lengthy discussion is an instance of the principle of inclusion and exclusion, discussed in Chapter 4.

■

 Section 2.4 Number Theory 151

 φ(n) = n − a

n
p1

+
n
p2

+
n
p3

−
n

p1
p2

−
n

p2 p3
−

n
p1 p3

+
n

p1
p2 p3

b

 = na1 −
1
p1

−
1
p2

−
1
p3

+
1

p1 p2
+

1
p2 p3

+
1

p1 p3
−

1
p1 p2 p3

b

 = nap1 p2 p3 − p2 p3 − p1
p3 − p1

p2 + p3 + p1 + p2 − 1
p1

p2 p3
b (adding

fractions)

 = na (p1 − 1)(p2 − 1)(p3 − 1)
p1 p2 p3

b (check this by multiplying out the
numerator)

 =
n

p1
p2 p3

 (p1 − 1)(p2 − 1)(p3 − 1)

 = pm1−1
1 pm2−1

2 pm3−1
3 φ(p1)φ(p2)φ(p3) (1)

Equation (1) expresses φ(n) in terms of the Euler phi function of its prime factors,
which are known to us (see Practice 16).

Equation (1) in Example 34 gives the formula for φ(n) where n has 3 distinct
prime factors. It is easy to extend this equation to the more general case where n
has an arbitrary number of prime factors. If

n = pm1
1 pm2

2 c pmk
k

then

 φ(n) = pm1−1
1 pm2−1

2 c pmk−1
k 3φ(p1)φ(p2) c φ(pk) 4 (2)

 eXAMPLe 36 For n = 133848 = 23 # 32 # 11 # 132,

φ(n) = 22 # 3 # 13 3φ(2)φ(3)φ(11)φ(13) 4 = 4 # 3 # 13 31 # 2 # 10 # 12 4 = 37440

PrACTiCe 17 For n = 34 # 5 # 72, compute φ(n).
■

Equation (2) requires that we know the prime factorization of n, so it does not
avoid the difficulty we noted earlier of factoring large values of n.

152 Proofs, Induction, and Number Theory

tecHniQueS

• Write the gcd(a, b) as a linear combination of a and b.
• Test whether a given positive integer is prime or, if

not, find its prime factorization.
• Compute the Euler phi function φ(n) for a positive

integer n.

MAin iDeAS

• Every integer ≥ 2 is prime or can be uniquely fac-
tored into prime numbers (fundamental theorem of
arithmetic).

• Two integers a and b are relatively prime if a linear
combination of a and b can be found that equals 1.

• If n is not prime, it has a prime factor no greater
than !n.

• An infinite number of prime numbers exist.
• There is no efficient algorithm to decide whether a

positive integer n is prime, or to find the prime fac-
tors of n if n is not itself prime.

• Given n written as a product of primes, there is a
formula to compute φ(n), the number of positive
integers ≤ n and relatively prime to n.

eXeRciSeS 2.4

Exercises 1–6 refer to Exercises 7–12 in Section 2.3

 1. Write gcd(308, 165) as a linear combination of 308 and 165.
 2. Write gcd(2420, 70) as a linear combination of 2420 and 70.
 3. Write gcd(735, 90) as a linear combination of 735 and 90.
 4. Write gcd(8370, 465) as a linear combination of 8370 and 465.
 5. Write gcd(1326, 252) as a linear combination of 1326 and 252.
 6. Write gcd(1018215, 2695) as a linear combination of 1018215 and 2695.

For Exercises 7–12, test whether n is prime and, if not, find its decomposition as a product of primes.

 7. n = 1729
 8. n = 1789
 9. n = 1171
 10. n = 1177
 11. n = 8712
 12. n = 29575

Exercises 13–18 refer to Exercises 7–12 in Section 2.3

 13. Find gcd(308, 165) by unique factorization into products of primes.
 14. Find gcd(2420, 70) by unique factorization into products of primes.
 15. Find gcd(735, 90) by unique factorization into products of primes.
 16. Find gcd(8370, 465) by unique factorization into products of primes.
 17. Find gcd(1326, 252) by unique factorization into products of primes.
 18. Find gcd(1018215, 2695) by unique factorization into products of primes.
 19. The least common multiple of two positive integers a and b, lcm(a, b) is the smallest integer n such that

a 0 n and b 0 n. Like the gcd(a, b), the lcm(a, b) can be found from the prime factorizations of a and b.
Describe (in words) the gcd and the lcm in terms of the prime factors of a and b.

 20. Prove that for any positive integers a and b, a # b = gcd(a, b) # lcm(a, b). (Hint: consider both a and b in
their factored form as a product of primes.)

S e c t i o n 2 . 4 review

W

 Section 2.4 Number Theory 153

For Exercises 21–24, find the gcd and lcm of the two numbers given.

 21. a = 22 # 3 # 11, b = 2 # 3 # 112 # 13
 22. a = 24 # 52 # 73, b = 5 # 72

 23. a = 3 # 53 # 112, b = 32 # 5 # 11 # 17
 24. a = 5 # 11 # 232, b = 53 # 113

 25. Prove that for any positive integers a and b, gcd(a, b) = gcd(a, a + b).
 26. Prove that gcd(n, n + 1) = 1 for all positive integers n.
 27. Find an example where n 0 ab but n | a and n | b. Does this violate the theorem of division by prime

numbers?
 28. The division of a full circle into 360° probably dates back to the early Persian calendar from around

700 b.c. that used 360 days in a year, so one day represented a rotation of 1/360 of other stars around the
North Star. But it was also chosen because it is divisible by so many factors, avoiding the need to deal with
fractions. Find the distinct nontrivial (but not necessarily prime) factors of 360.

 29. Prove that there exist three consecutive odd positive integers that are prime numbers.
 30. Prove that for any positive integer n, there exist n consecutive composite numbers. [Hint: Start with

(n + 1)! + 2]

For Exercises 31–34, find φ(n) together with the numbers that give those values.

 31. n = 8
 32. n = 9
 33. n = 10
 34. n = 11
 35. By Practice 16, if p is prime then φ(p) = p − 1. Prove that this is an “if and only if” condition by proving

that if φ(n) = n – 1 for a positive integer n > 1, then n is prime.
 36. For any prime number p and any positive integer k, φ(pk) = pk−1φ(p). Although this result follows directly

from Equation (2) in this section, give a direct proof using the definition of the Euler phi function.
 37. Compute φ(24) and state the numbers being counted. (Hint: See Exercise 36.)
 38. Compute φ(33) and state the numbers being counted. (Hint: See Exercise 36.)

For Exercises 39–42, compute φ(n).

 39. n = 117612 = 22 # 35 # 112

 40. n = 233206 = 2 # 17 # 193

 41. n = 1795625 = 54 # 132 # 17
 42. n = 1,690,541,699 = 74 # 113 # 232

 43. If p and q are prime numbers with p ≠ q, then φ(pq) = φ(p)φ(q). Although this result follows directly
from Equation (2) in this section, give a direct proof using the definition of the Euler phi function.

 44. Prove that if r and s are relatively prime, then φ(rs) = φ(r) φ(s).
 45. Prove that for n and m positive integers, φ(nm) = nm−1φ(n).
 46. Except for n = 2, all the values of φ(n) in Example 34 are even numbers. Prove that φ(n) is even for all

n > 2.
 47. A particular class of prime numbers is known as Mersenne primes, named for a French monk and math-

ematician of the seventeenth century who studied them. Mersenne primes are numbers of the form 2p − 1
where p is a prime, but not all numbers of this form are primes. For example, 211 − 1 = 23 # 89 is not

154 Proofs, Induction, and Number Theory

prime. The largest known prime number as of June 2013 is 257,885,161 − 1, a Mersenne prime. There hap-
pens to be a particularly efficient algorithm for testing numbers of the form 2p − 1 for primality, which is
why almost all of the largest known primes are Mersenne primes. In recent years, most of these Marsenne
primes have been discovered (and verified) by the GIMPS (Great Internet Mersenne Prime Search) dis-
tributed computing project, a worldwide group of volunteers who collaborate over the Internet to test for
Mersenne primes.

 Find the first 4—the 4 smallest—Mersenne primes.

 48. Goldbach’s conjecture states that every even integer greater than 2 is the sum of two prime numbers.
Verify Goldbach’s conjecture for

 a. n = 8
 b. n = 14
 c. n = 28

 49. A perfect number is a positive integer n that equals the sum of all divisors less than n. For example, 6 is a
perfect number because 6 = 1 + 2 + 3. Perfect numbers are related to Mersenne primes (see Exercise 47)
in that if p is a prime and 2p − 1 is a prime, then 2p−1(2p − 1) is a perfect number. (This result was proved
by Euclid around 300 b.c.). For example, 6 = 21(22 − 1).

 a. Prove that 28 is a perfect number by writing it as the sum of its divisors.
 b. Write 28 in the form 2p−1(2p − 1).

 50. a. Prove that 496 is a perfect number (see Exercise 49) by writing it as the sum of its divisors.
 b. Write 496 in the form 2p−1(2p − 1).

 51. An algorithm exists to find all prime numbers less than some given positive integer n. This method, called
the Sieve of Eratosthenes, was discovered by Eratosthenes, a student of Plato. To carry out this algorithm,
list all integers from 1 through n − 1. Then make repeated passes through the list, on the first pass crossing
out all multiples of 2 that are greater than 2. On the second pass cross out all multiples of 3 that are greater
than 3. On the next pass, cross out all multiples of 5 that are greater than 5, and so forth for all primes less
than !n. The numbers remaining when this process terminates are the primes less than n. Use the Sieve
of Eratosthenes to find all prime numbers less than 100.

 52. a. Compute the square of 11.
 b. Compute the square of 111.
 c. Prove that any n-digit number consisting of all 1’s, when squared, produces the number

123 … (n − 1)n(n − 1) … 321. A number that reads the same forward and backward is called a
palindrome.

 53. Sudoku puzzles are popular number-based puzzles. A game con-
sists of a 9 × 9 grid made up of nine 3 × 3 blocks. Each row
and each column of the game must contain exactly one of the 9
digits 1 − 9; furthermore, each 3 × 3 block must contain exactly
one of the digits 1 through 9. Following is a sample puzzle, used
by permission from Web Sudoku at http://www.websudoku.com,
where you can generate puzzles at any of four levels of difficulty.
Try completing this puzzle.

2

2

2

2

2

2
5

5

5

5
3

3
3

3

8

8

8
8

8

9

9
9

4

4

4

4

6

1

1

1

1

7

7

7

7

http://www.websudoku.com

 Chapter 2 Review 155

c H A P t e R 2 review

teRMinoLogy

absolute value (p. 107)
basis step (p. 111)
composite number (p. 107)
contrapositive (p. 103)
converse (p. 103)
counterexample (p. 99)
deductive reasoning (p. 99)
direct proof (p. 101)
divides (p. 107)
Euclidean algorithm

(p. 133)
Euler phi function (p. 149)
even number (p. 101)
Fermat’s last theorem (p. 143)

first principle of mathematical
 induction (p. 111)

fundamental theorem of arithmetic
(p. 144)

greatest common divisor (p. 133)
inductive assumption (p. 112)
inductive hypothesis (p. 112)
inductive reasoning (p. 99)
inductive step (p. 111)
linear combination (p. 144)
loop invariant (p. 130)
loop rule of inference (p. 131)
n factorial (p. 99)
number theory (p. 107)

odd number (p. 101)
partial correctness (p. 132)
perfect square (p. 107)
prime number (p. 107)
proof by cases (p. 104)
proof by contradiction (p. 104)
proof by contraposition (p. 103)
proof by exhaustion (p. 100)
rational number (p. 105)
relatively prime (p. 146)
second principle of mathematical

induction (p. 118)
well-ordering principle (p. 119)

section 2.1
1. A conjecture can never be proved merely by prov-

ing a finite number of cases.
2. A proof by contradiction of P S Q begins by as-

suming both P and Q′.
3. In the statement of the theorem, “twice an odd inte-

ger is even,” an existential quantifier is understood.
4. To prove the conjecture, “If Laramie is the capital,

then Wyoming is the state,” it is sufficient to prove,
“If Wyoming is the state, then Laramie is the capital.”

5. To prove, “A if and only if B,” requires a proof of
A S B and a proof of B S A.

section 2.2
1. Induction is an appropriate proof technique for

proving a statement about all the positive integers.
2. The basis step of an inductive proof requires prov-

ing a property true for n = 1.
3. If the truth of P(k + 1) depends on the truth of

other previous values besides P(k), then the second
principle of induction should be used.

4. The key to a proof by the first principle of induc-
tion is to see how the truth of P at the value k + 1
depends on the truth of P at value k.

5. The equation k3 = k2(k+1)2/4 is the inductive hy-
pothesis in an inductive proof of the statement

13 + 23 + c+ n3 = n2(n + 1)2∕4

section 2.3
1. A loop invariant remains true until the loop is ex-

ited, at which point it becomes false.
2. Partial correctness of a loop statement in a program

means that the loop behaves correctly for some in-
put values but not for others.

3. The second principle of induction is used to prove
loop invariants because the loop can be executed an
arbitrary number of times.

4. If a loop statement has the form

while (condition B)
 P
end while

 then the loop invariant Q will be B′.
5. When computing the gcd(42, 30) by the Euclidean

algorithm, the computation of dividing 30 by 12 is
carried out.

section 2.4
1. gcd(a,b) can always be written as a linear combina-

tion of a and b.
2. Two integers a and b are relatively prime if there

exist integers i and j such that ia + jb = p where p
is a prime number.

3. If a positive integer n is not a prime number, then it
has at least one prime factor > !n.

4. φ(n) is a prime number for any integer n ≥ 2.
5. φ(p) = p − 1 for any prime number p.

SeLF-teSt

Answer the following true-false questions without looking back in the chapter.

156 Proofs, Induction, and Number Theory

For Exercises 1–5, write a computer program that pro-
duces the desired output from the given input.

1. Input: Number n of terms in a geometric progres-
sion (see Exercise 27, Section 2.2), the initial term
a, and the common ratio r

 Output: Sum of the first n terms using
a. iteration
b. formula of Exercise 27, Section 2.2

2. Input: Number n of terms in an arithmetic progres-
sion (see Exercise 28, Section 2.2), the initial term
a, and the common difference d
Output: Sum of the first n terms using
a. iteration
b. formula of Exercise 28, Section 2.2

3. Input: Number n
Output: Sum of the first n cubes using
a. iteration, using only multiplication and addi-

tion; output the number of multiplications and
additions used

b. formula of Exercise 8, Section 2.2, using only
multiplication, addition, and division; output
the number of multiplications, additions, and
divisions used

4. Input: None
Output: Table showing every integer n, 8 ≤ n ≤ 100,
as the sum of 3s and 5s (see Example 24)

5. Input: Value for n
Output: Value for φ(n)

6. The formula 4n < n! is true for all n ≥ N. Write a
program to determine N and then prove the result
by induction.

7. The formula 2n > n3 is true for all n ≥ N. Write a
program to determine N and then prove the result
by induction.

o n t H e c o M P u t e R

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Understand recursive definitions of sequences, collections of objects, and op-
erations on objects.

• Write recursive definitions for certain sequences, collections of objects, and
operations on objects.

• Understand how recursive algorithms execute.
• Write recursive algorithms to generate sequences defined recursively.
• Find closed-form solutions for certain types of recurrence relations.
• Analyze algorithms by counting the number of executions of a basic unit of

work, either directly or by solving a recurrence relation.

You are serving on the city council’s Board of Land Management, which is consider-
ing a proposal by a private contractor to manage a chemical disposal site. The mate-
rial to be stored at the site degrades to inert matter at the rate of 5% per year. The
contractor claims that, at this rate of stabilization, only about one-third of the original
active material will remain at the end of 20 years.

 Question: Is the contractor’s estimate correct?

It is possible to check this estimate by doing some brute-force calculations: If
there is this much initially, then there will be that much next year, so much the fol-
lowing year, and so on through the 20 years. But a quick and elegant solution can
be obtained by solving a recurrence relation; recurrence relations are discussed in
Section 3.2.

Section 3.1 explores recursion, which is closely related to mathematical in-
duction (discussed in the previous chapter) and is important in expressing many
definitions and even algorithms. Some sequences defined recursively can also
be defined by a formula. Finding such a formula involves solving a recurrence
relation; solution methods for several types of recurrence relations are devel-
oped in Section 3.2. Recurrence relations are an important tool in the analysis of
algorithms, which mathematically determines the amount of work a particular
algorithm must do. Analysis of algorithms is the topic of Section 3.3.

3Recursion, Recurrence Relations,
and Analysis of Algorithms

Chapter

157

158 Recursion, Recurrence Relations, and Analysis of Algorithms

 S e c t I o n 3 . 1 ReCuRsive Definitions

A definition in which the item being defined appears as part of the definition
is called a recursive definition. At first this seems like nonsense—how can we
define something in terms of itself? This works because there are two parts to a
recursive definition:

 1. A basis, where some simple cases of the item being defined are explicitly
given

 2. An inductive or recursive step, where new cases of the item being defined
are given in terms of previous cases

Part 1 gives us a place to start by providing some simple, concrete cases;
part 2 allows us to construct new cases from these simple ones and then to con-
struct still other cases from these new ones, and so forth. (This seems analogous
to proofs by mathematical induction. In a proof by induction, there is a basis step,
namely, to show that P(1)—or P at some other initial value—holds, and there is
an inductive step where the truth of P(k + 1) is deduced from the truth of P at pre-
vious values. This similarity is why the term inductive definition is sometimes
used instead of recursive definition.)

Recursion is an important idea that can be used to define sequences of ob-
jects, more general collections of objects, and operations on objects. (The Prolog
predicate in-food-chain of Section 1.5 was defined recursively.) Even algorithms
can be recursive.

Recursively Defined Sequences

A sequence S (an infinite sequence) is a list of objects that are enumerated in
some order; there is a first such object, then a second, and so on. S(k) denotes
the k th object in the sequence. The list goes on forever, so a sequence therefore
consists of

S(1), S(2), … , S(k), …

Subscript notation is often used to denote the elements in a sequence, as in

S1 , S2 , … , Sk , …

The letter S is just a “dummy variable,” so a sequence could also be denoted by

a1 , a2 , … , ak , … or w1 , w2 , … , wk …

and so forth.1
A sequence is defined recursively by explicitly naming the first value (or the

first few values) in the sequence and then defining later values in the sequence in
terms of earlier values.

1A more formal definition of a sequence is given in Chapter 5, Example 27.

Section 3.1 Recursive Definitions 159

	 example 1 The sequence S is defined recursively by

	 1. S(1) = 2
 2. S(n) = 2S(n − 1) for n ≥ 2

By statement 1, S(1), the first object in S, is 2. Then by statement 2, the second ob-
ject in S is S(2) = 2S(1) = 2(2) = 4. By statement 2 again, S(3) = 2S(2) = 2(4) = 8.
Continuing in this fashion, we can see that S is the sequence

2, 4, 8, 16, 32, …

A rule like that of statement 2 in Example 1, which defines a sequence value
in terms of one or more earlier values, is called a recurrence relation.

■

PRaCtiCe 1 The sequence T is defined recursively as follows:

1. T(1) = 1
2. T(n) = T(n − 1) + 3 for n ≥ 2
Write the first five values in the sequence T.

 example 2 The Fibonacci sequence of numbers, introduced in the thirteenth century by an
Italian merchant and mathematician, is defined recursively by

 F(1) = 1
 F(2) = 1
 F(n) = F(n − 2) + F(n − 1) for n > 2

Here the first two values of the sequence are given, and the recurrence relation
defines the nth value for n > 2 in terms of the two preceding values. It’s best to
think of the recurrence relation in its most general form, which says that F at any
value—except 1 and 2—is the sum of F at the two previous values.

The Fibonacci sequence is famous because of its many interesting properties.
Here is a small list (without proofs):

 a. Every positive integer can be written uniquely as a sum of 1 or more dis-
tinct, nonconsecutive Fibonacci numbers. For example 11 = 3 + 8, where
3 = F(4) and 8 = F(6).

 b. gcd(F(p), F(q)) = F(gcd(p, q)). For example, if p = 6 and q = 9, then
F(6) = 8, F(9) = 34, and gcd(8, 34) = 2. Also, gcd(6, 9) = 3 and F(3) = 2.

 c. Every two consecutive Fibonacci numbers are relatively prime, that
is, their greatest common divisor equals 1. As a result, the Euclidean
 algorithm to find gcd(a, b) does the maximum amount of work when
a and b are two consecutive Fibonacci numbers.

PRaCtiCe 2 Write the first eight values of the Fibonacci sequence.
■

160 Recursion, Recurrence Relations, and Analysis of Algorithms

Other mathematical properties of the Fibonacci sequence are given in
Example 3 and in the exercises at the end of this section. But it’s not only
 mathematicians who are interested in the Fibonacci sequence. Fibonacci num-
bers often occur in nature. The number of petals on a daisy is often a Fibonacci
 number. Viewing a pine cone from its base, the seeds appear to be arranged in
clockwise and counterclockwise spirals. Counting the number of each kind of
spiral often gives two consecutive Fibonacci numbers (here 8 and 13). The same is
true for seeds in flowers such as sunflowers, or for spirals on pineapples.

And in the worlds of art and architecture, the golden ratio is thought to create
aesthetically pleasing proportions. The golden ratio is

1 + "5
2

≈ 1.6180339

and is the value approached by the ratio of two consecutive Fibonacci numbers 	
F(n + 1)/F(n) for larger and larger values of n.

	 example 3 Prove that in the Fibonacci sequence

F(n + 4) = 3F(n + 2) − F(n) for all n ≥ 1

Because we want to prove something true for all n	≥	1, it is natural to think
of a proof by induction. And because the value of F(n) depends on both F(n − 1)
and F(n − 2), the second principle of induction should be used. For the basis step
of the inductive proof, we’ll prove two cases, n = 1 and n = 2. For n = 1, by sub-
stituting 1 for n in the equation we want to prove, we get

F(5) = 3F(3) − F(1)

or (using values computed in Practice 2)

5 = 3(2) − 1

which is true. For n = 2,

F(6) = 3F(4) − F(2)
or

8 = 3(3) − 1

which is also true. Assume that for all r, 1 ≤ r ≤ k,

F(r + 4) = 3F(r + 2) − F(r).

1

2

3

5

6

7 8

4

1 2

3

5

6
78

9

10

11

12

13

4

Section 3.1 Recursive Definitions 161

Now show the case for k + 1, where k + 1 ≥ 3. (We’ve already proved the
case for n = 1 and the case for n = 2.) Thus we want to show

F(k + 1 + 4) 0 3F(k + 1 + 2) − F(k + 1)

or

F(k + 5) 0 3F(k + 3) − F(k + 1)

From the recurrence relation for the Fibonacci sequence, we have

 F(k + 5) = F(k + 3) + F(k + 4) (F at any value is the sum of F at
the two previous values)

and by the inductive hypothesis, with r = k − 1 and r = k, respectively,

F(k + 3) = 3F(k + 1) − F(k − 1)

and

F(k + 4) = 3F(k + 2) − F(k)

Therefore

 F(k + 5) = F(k + 3) + F(k + 4)
 = 33F(k + 1) − F(k − 1) 4 + 33F(k + 2) − F(k) 4
 = 3 3F(k + 1) + F(k + 2) 4 − 3F(k − 1) + F(k) 4
 = 3F(k + 3) − F(k + 1) (using the recurrence relation again)

This completes the inductive proof.

PRaCtiCe 3 In the inductive proof of Example 3, why is it necessary to prove n = 2 as a special case?
■

 example 4 The formula

F(n + 4) = 3F(n + 2) − F(n) for all n ≥ 1

of Example 3 can also be proved without induction, using just the recurrence rela-
tion from the definition of Fibonacci numbers. The recurrence relation

F(n + 2) = F(n) + F(n + 1)

can be rewritten as

 F(n + 1) = F(n + 2) − F(n) (1)

162 Recursion, Recurrence Relations, and Analysis of Algorithms

Recursively Defined Sets

The objects in a sequence are ordered—there is a first object, a second object, and
so on. A set of objects is a collection of objects on which no ordering is imposed.
Some sets can be defined recursively.

	 example 5 In Section 1.1 we noted that certain strings of statement letters, logical connec-
tives, and parentheses, such as (A ` B)′ ~ C, are considered legitimate, while
other strings, such as ` ` A′′B, are not legitimate. The syntax for arranging such
symbols constitutes the definition of the set of propositional well-formed formulas,
and it is a recursive definition.

 1. Any statement letter is a wff.
 2. If P and Q are wffs, so are (P ` Q), (P ~ Q), (P S Q), (P′) and (P 4 Q).2

Using the rules of precedence for logical connectives established in Section 1.1,
we can omit parentheses when doing so causes no confusion. Thus we write
(P ~ Q) as P ~ Q, or (P′) as P′; the new expressions are technically not wffs by
the definition just given, but they unambiguously represent wffs.

By beginning with statement letters and repeatedly using rule 2, any proposi-
tional wff can be built. For example, A, B, and C are all wffs by rule 1. By rule 2,

(A ` B) and (C′)

are both wffs. By rule 2 again,

((A ` B) S (C′))

is a wff. Applying rule 2 yet again, we get the wff

(((A ` B) S (C′))′)

Eliminating some pairs of parentheses, we can write this wff as

((A ` B) S C′)′

2Sometimes there is a final rule added to the effect that there are no applicable rules besides those already
given, which means that if something can’t be generated using the rules already given, then it does not belong
to the set being described. We’ll assume that when we stop writing rules, there are no more applicable rules!

Then

 F(n + 4) = F(n + 3) + F(n + 2)
 = F(n + 2) + F(n + 1) + F(n + 2) (rewriting F(n + 3))
 = F(n + 2) + 3F(n + 2) − F(n) 4 + F(n + 2) (rewriting F(n + 1)

 = 3F(n + 2) − F(n)
 using (1))

Section 3.1 Recursive Definitions 163

PRaCtiCe 4 Show how to build the wff ((A ~ (B′)) S C) from the definition in Example 5.
■

■

PRaCtiCe 5 A recursive definition for the set of people who are ancestors of James could have the
following basis:

James’s parents are ancestors of James.

Give the inductive step.

Strings of symbols drawn from a finite “alphabet” set are objects that are
commonly encountered in computer science. Computers store data as binary
strings, strings from the alphabet consisting of 0s and 1s; compilers view program
statements as strings of tokens, such as key words and identifiers. The collection
of all finite-length strings of symbols from an alphabet, usually called strings over
an alphabet, can be defined recursively (see Example 6). Many sets of strings with
special properties also have recursive definitions.

	 example 6 The set of all (finite-length) strings of symbols over a finite alphabet A is denoted
by A*. The recursive definition of A* is

 1. The empty string λ (the string with no symbols) belongs to A*.
 2. Any single member of A belongs to A*.
 3. If x and y are strings in A*, so is xy, the concatenation of strings x and y.

Parts 1 and 2 constitute the basis, and part 3 is the recursive step of this definition.
Note that for any string x, xλ = λx = x.

PRaCtiCe 6 If x = 1011 and y = 001, write the strings xy, yx, and yxλx.
■

■

PRaCtiCe 7 Give a recursive definition for the set of all binary strings that are palindromes, strings
that read the same forward and backward.

	 example 7 Suppose that in a certain programming language, identifiers can be alphanumeric
strings of arbitrary length but must begin with a letter. A recursive definition for the
set of such strings is

 1. A single letter is an identifier.
 2. If A is an identifier, so is the concatenation of A and any letter or digit.

A more symbolic notation for describing sets of strings that are recursively
 defined is called Backus–Naur form, or BNF, originally developed to define the

164 Recursion, Recurrence Relations, and Analysis of Algorithms

programming language ALGOL. In BNF notation, items that are defined in terms of
other items are enclosed in angle brackets, while specific items that are not further
broken down do not appear in brackets. The vertical line 0 denotes a choice, with the
same meaning as the English word or. The BNF definition of an identifier is

<identifier> ::5 <letter> 0 <identifier> <letter> 0 <identifier> <digit>
<letter> ::5 a 0 b 0 c 0 c 0 z
<digit> ::5 1 0 2 0 c 0 9

Thus the identifier me2 is built from the definition by a sequence of choices such as

<identifier> can be <identifier> <digit>
 which can be <identifier>2
 which can be <identifier> <letter>2
 which can be <identifier>e2
 which can be <letter>e2
 which can be me2

As a further connection between recursion and induction, there is a form of
induction called structural induction that can be applied to recursively defined
sets. Suppose we have a recursively defined set S and there is some property P(x)
that may or may not hold for x a member of S. If we can prove

 1. Property P holds for all members of S described in the basis.
 2. If property P holds for some members of S, then it holds for new members

of S constructed from these members using the recursive step.

then property P holds for all members of S.

	 example 8 A set S of strings is defined recursively by

	 1. λ belongs to S.
 2. If x belongs to S, so do 1x0 and 0x1.

We can use structural induction to prove that every string in S consists of an
equal number of 0s and 1s. The basis, rule 1, identifies only a single string in S,
namely λ, which consists of an equal number of 0s and 1s (zero 0s and zero 1s).
Assume that string x consists of an equal number of 0s and 1s. Using rule 2, the two
new strings that can be constructed from x each add a single 1 and a single 0, so the
number of 0s and the number of 1s has each been increased by 1 and they are still
equal. By structural induction, every string in S has an equal number of 0s and 1s.

Notice that not all strings with an equal number of 0s and 1s belong to S. For
example there is no way to generate the string 1001 using the given rules.

Ordinary mathematical induction proves properties about integer values, and
the integers are ordered: 1, 2, … , k, k + 1, … . A set, however, isn’t necessarily
ordered. If we consider the set S defined in Example 8, it looks like

Section 3.1 Recursive Definitions 165

and structural induction helps us deal with this “spread” of values in the set.

Recursively Defined Operations

Certain operations performed on objects can be defined recursively, as in Examples
9 and 10.

 example 9 A recursive definition of the exponentiation operation an on a nonzero real number
a, where n is a nonnegative integer, is

	 1. a0 = 1
 2. an = (an −	1)a for n	≥	1

	 example 10 A recursive definition for multiplication of two positive integers m and n is

 1. m(1) = m
 2. m(n) = m(n − 1) + m for n ≥	2

■

PRaCtiCe 8 Let x be a string over some alphabet. Give a recursive definition for the operation xn
(concatenation of x with itself n times) for n	≥	1.

In Section 1.1, we defined the operation of logical disjunction on two statement
letters. This definition can serve as the basis step for a recursive definition of the
disjunction of n statement letters, n	≥	2:

 1. A1 ~ A2 defined as in Section 1.1
 2. A1 ~ c~ An = (A1 ~ c~ An−1) ~ An for n > 2 (2)

Using this definition, we can generalize the associative property of disjunction
(tautological equivalence 2a) to say that in a disjunction of n statement letters,
grouping by parentheses is unnecessary because all such groupings are equivalent
to the general expression for the disjunction of n statement letters. In symbolic
form, for any n with n	≥	3 and any p with 1 ≤ p ≤ n − 1,

(A1 ~ c~ Ap) ~ (Ap+1 ~ c~ An) 3 A1 ~ c~ An

This equivalence can be proved by induction on n. For n = 3,

 A1 ~ (A2 ~ A3) 3 (A1 ~ A2) ~ A3 (by equivalence 2a)
	 	 	 	 		= A1 ~ A2 ~ A3 (by equation (2))

01

λ

10

1100 0100 1010 0011

166 Recursion, Recurrence Relations, and Analysis of Algorithms

Assume that for n = k and 1 ≤ p ≤ k − 1,

(A1 ~ c~ Ap) ~ (Ap+1 ~ c~ Ak) 3 A1 ~ c~ Ak

Then for n = k + 1 and 1 ≤ p ≤ k,

(A1 ~ c~ Ap) ~ (Ap+1 ~ c~ Ak+1)
 = (A1 ~ c~ Ap) ~ 3(Ap+1 ~ c~ Ak) ~ Ak+1 4 (by equation (2))
 3 3(A1 ~ c~ Ap) ~ (Ap+1 ~ c~ AK) 4 ~ Ak+1 (by equivalence 2a)
 3 (A1 ~ c~ Ak) ~ Ak+1 (by inductive hypothesis)
 = A1 ~ c~ Ak+1 (by equation (2))

Recursively Defined Algorithms

Example 1 gives a recursive definition for a sequence S. Suppose we want to
write a computer program to evaluate S(n) for some positive integer n. We can use
 either of two approaches. If we want to find S(12), for example, we can begin with
S(1) = 2 and then compute S(2), S(3), and so on, much as we did in Example 1,
 until we finally get to S(12). This approach no doubt involves iterating through
some sort of loop. A pseudocode function S that uses this iterative algorithm
 follows. The basis, where n = 1, is handled in the first clause of the if statement;
the value 2 is returned. The else clause, for n > 1, does some initializing and then
goes into the while loop that computes larger values of the sequence until the
 correct upper limit is reached. You can trace the execution of this algorithm for a
few values of n to convince yourself that it works.

 algorIthm

S(positive integer n)
//function that iteratively computes the value S(n)
//for the sequence S of Example 1
Local variables:
integer i //loop index
CurrentValue //current value of function S

if n = 1 then
return 2

else
i = 2
CurrentValue = 2
while i <= n do

CurrentValue = 2 * CurrentValue
i = i + 1

end while

//CurrentValue now has the value S(n)
return CurrentValue

end if
end function S

Section 3.1 Recursive Definitions 167

The second approach to computing S(n) uses the recursive definition of S
directly. Following is a version of the recursive algorithm, written again as a
pseudocode function.

The body of this function consists of a single if-then-else statement. To un-
derstand how the function works, let’s trace the execution to compute the value
of S(3). The function is first invoked with an input value of n = 3. Because n is
not 1, execution is directed to the else clause. At this point, activity on computing
S(3) must be suspended until the value of S(2) is known. Any known information
relevant to the computation of S(3) is stored within computer memory on a stack,
to be retrieved when the computation can be completed. (A stack is a collection
of data where any new item goes on top of the stack, and only the item on top of
the stack at any given time can be accessed or removed from the stack. A stack is
thus a LIFO—last in, first out—structure.) The function is invoked again with an
input value of n = 2. Again, the else clause is executed, and computation of S(2)
is suspended, with relevant information stored on the stack, while the function is
invoked again with n = 1 as input.

This time the first clause of the if statement applies, and the functional value, 2,
can be computed directly. This final invocation of the function is now complete, and
its value of 2 is returned to the second-to-last invocation, which can now remove
any information relevant to the n = 2 case from the stack, compute S(2), and return
the result to the previous (initial) invocation. Finally, this original invocation of S
is able to empty the stack and complete its calculation, returning the value of S(3).

What are the relative advantages of iterative and recursive algorithms for doing
the same task? In this example, the recursive version is certainly shorter because it
does not have to manage a loop computation. Describing the execution of the recur-
sive version makes it sound more complex than the iterative version, but all steps are
carried out automatically. One need not be aware of what is happening internally
except to note that a long series of recursive invocations can use a lot of memory
by storing information relevant to previous invocations on the stack. If too much
memory is consumed, a “stack overflow” can result. Besides using more memory,
recursive algorithms can require many more computations and can run more slowly
than nonrecursive ones (see Exercise 3 in On the Computer at the end of this chapter).

Nonetheless, recursion provides a natural way to think about many problems,
some of which would have very complex nonrecursive solutions. The problem of
computing values for a sequence that has itself been defined recursively is well-
suited to a recursive solution. Many programming languages support recursion.

 algorIthm

S(positive integer n)
//function that recursively computes the value S(n)
//for the sequence S of Example 1

if n = 1 then
return 2

else
return 2 * S(n − 1)

end if
end function S

168 Recursion, Recurrence Relations, and Analysis of Algorithms

A recursive algorithm invokes itself with “smaller” input values. Suppose a
problem can be solved by solving smaller versions of the same problem, and the
smaller versions eventually become trivial cases that are easily handled. Then
a recursive algorithm can be useful, even if the original problem was not stated
 recursively.

To convince ourselves that a given recursive algorithm works, we don’t have to
start with a particular input and go down through smaller and smaller cases to the
trivial case and then back up again. We did this when discussing the computation
of S(3), but that was just to illustrate the mechanics of a recursive computation.
Instead, we can verify the trivial case (like proving the base case in an induction
proof) and verify that if the algorithm works correctly when invoked on smaller
input values, then it indeed solves the problem for the original input values (this
is similar to proving P(k + 1) from the assumption P(k) in an inductive proof).

■

PRaCtiCe 9 Write the body of a recursive function to compute T(n) for the sequence T defined in
Practice 1.

	 example 11 In Example 10, a recursive definition was given for multiplying two positive
 integers m and n. A recursive pseudocode function for multiplication based on this
definition follows.

 algorIthm

Product(positive integer m; positive integer n)
//Function that recursively computes the product of m and n

if n = 1 then
return m;

else
return Product(m, n − 1) + m

end if
end function Product

remInDer

Think of a recursive
algorithm whenever you
could solve the problem
from solutions to smaller
versions of the problem.

	 example 12 One of the most common tasks in data processing is to sort a list L of n items into
increasing or decreasing numerical or alphabetical order. (The list might consist of
customer names, for example, and in sorted order “Valdez, Juanita” should come
after “Tucker, Joseph.”) The selection sort algorithm—a simple but not particularly
efficient sorting algorithm—is described in pseudocode in the accompanying box.

This function sorts the first j items in L into increasing order; when the func-
tion is initially invoked, j has the value n (thus, the first invocation ultimately sorts
the entire list). The recursive part of the algorithm lies within the else clause; the
algorithm examines the section of the list under consideration and finds the loca-
tion i such that L[i] is the maximum value. It then exchanges L[i] and L[j], after
which the maximum value occurs at position j, the last position in the part of the
list being considered. L[j] is now correct and should never change again, so this

Section 3.1 Recursive Definitions 169

process is repeated on the list L[1] through L[j − 1]. If this part of the list is sorted
correctly, then the entire list will be sorted correctly. Whenever j has the value 1,
the part of the list being considered consists of only one entry, which must be in
the right place. The entire list is sorted at that point.

 algorIthm SelectionSort

SelectionSort(list L; positive integer j)
//recursively sorts the items from 1 to j in list L into increasing order

if j = 1 then
sort is complete, write out the sorted list

else
find the index i of the maximum item in L between 1 and j
exchange L[i] and L[j]
SelectionSort(L, j − 1)

end if
end function SelectionSort

Other recursive sorting algorithms are discussed in the exercises of Section 3.3.

	 example 13 Now that we have sorted our list, another common task is to search the list for a
particular item. (Is Juanita Valdez already a customer?) An efficient search tech-
nique for a sorted list is the recursive binary search algorithm, which is described
here in pseudocode.

 algorIthm BinarySearch

BinarySearch(list L; positive integer i; positive integer j; itemtype x)
//searches sorted list L from L[i] to L[j] for item x

if i > j then
write(“not found”)

else
find the index k midway between i and j
if x = midpoint item L[k] then

write(“found”)
else

if x < midpoint item L[k] then
BinarySearch(L, i, k − 1, x)

else
BinarySearch(L, k + 1, j, x)

end if
end if

end if
end function BinarySearch

170 Recursion, Recurrence Relations, and Analysis of Algorithms

This algorithm searches the section of list L between L[i] and L[j] for item x;
initially i and j have the values 1 and n, respectively. The first clause of the major if
statement is the basis step that says x cannot be found in an empty list, one where
the first index exceeds the last index. In the major else clause, the midpoint item in
a section of the list must be found. (If the section contains an odd number of items,
there is indeed a midpoint item; if the section contains an even number of items,
it is sufficient to take as the “midpoint” item the one at the end of the first half of
the list section.) Comparing x with the midpoint item either locates x or indicates
which half of the list to search next, the half before the midpoint or the half after
the midpoint.

	 example 14 Let’s apply the binary search algorithm to the list

3, 7, 8, 10, 14, 18, 22, 34

where the target item x is the number 25. The initial list is not empty, so the mid-
point item is located and determined to have the value 10. Then x is compared with
the midpoint item. Because x > 10, the search is invoked on the second half of the
list, namely, the items

14, 18, 22, 34

Again, this list is nonempty, and the midpoint item is 18. Because x > 18, the
 second half of this list is searched, namely, the items

22, 34

In this nonempty list, the midpoint item is 22. Because x > 22, the search continues
on the second half of the list, namely,

34

This is a one-element list, with the midpoint item being the only item. Because
x < 34, a search is begun on the “first half” of the list; but the first half is empty.
The algorithm terminates at this point with the information that x is not in the list.

This execution requires four comparisons in all; x is compared, in turn, to 10,
18, 22, and 34.

PRaCtiCe 10 In a binary search of the list in Example 14, name the elements against which x is
compared if x has the value 8.

■

We have now seen a number of recursive definitions. Table 3.1 summarizes
their features.

Section 3.1 Recursive Definitions 171

S e c t I o n 3 . 1 Review

technIQueS

• Generate values in a sequence defined recursively.
• Prove properties of the Fibonacci sequence.
• Recognize objects in a recursively defined collec-

tion of objects.
• Give recursive definitions for particular sets of

 objects.
• Give recursive definitions for certain operations on

objects.
• Write recursive algorithms to generate sequences

defined recursively.

maIn IDeaS

• Recursive definitions can be given for sequences of
objects, sets of objects, and operations on objects
where basis information is known and new infor-
mation depends on already known information.

• Recursive algorithms provide a natural way to
solve certain problems by invoking the same task
on a smaller version of the problem.

table 3.1

recursive Definitions

What Is being Defined characteristics

Recursive sequence The first one or two values in the sequence are known; later items in the sequence are
defined in terms of earlier items.

Recursive set A few specific items are known to be in the set; other items in the set are built from
combinations of items already in the set.

Recursive operation A “small” case of the operation gives a specific value; other cases of the operation are
defined in terms of smaller cases.

Recursive algorithm For the smallest values of the arguments, the algorithm behavior is known; for larger
values of the arguments, the algorithm invokes itself with smaller argument values.

W

exercISeS 3.1

For Exercises 1–12, write the first five values in the sequence.

 1. S(1) = 10
 S(n) = S(n − 1) + 10 for n	≥	2
 2. C(1) = 5
 C(n) = 2C(n − 1) + 5 for n	≥	2
 3. A(1) = 2

 A(n) =
1

A(n − 1)
 for n	≥	2

 4. B(1) = 1
 B(n) = B(n − 1) + n2 for n	≥	2
 5. S(1) = 1

 S(n) = S(n − 1) +
1
n for n	≥	2

 6. T(1) = 1
 T(n) = nT(n − 1) for n	≥	2

172 Recursion, Recurrence Relations, and Analysis of Algorithms

 7. P(1) = 1
 P(n) = n2 P(n − 1) + (n − 1) for n	≥	2
 8. A(1) = 2
 A(n) = nA(n − 1) + n for n	≥	2
 9. M(1) = 2
 M(2) = 2
 M(n) = 2M(n − 1) + M(n − 2) for n > 2
 10. D(1) = 3
 D(2) = 5
 D(n) = (n − 1)D(n − 1) + (n − 2)D(n − 2) for n > 2
 11. W(1) = 2
 W(2) = 3
 W(n) = W(n − 1)W(n − 2) for n > 2
 12. T(1) = 1
 T(2) = 2
 T(3) = 3
 T(n) = T(n − 1) + 2T(n − 2) + 3T(n − 3) for n > 3

In Exercises 13–18, prove the given property of the Fibonacci numbers directly from the definition.

 13. F(n + 1) + F(n − 2) = 2F(n) for n	≥	3
 14. F(n) = 5F(n − 4) + 3F(n − 5) for n	≥	6
 15. F(n) = 3F(n − 3) + 2F(n − 4) for n	≥	5
 16. [F(n + 1)]2 = [F(n)]2 + F(n − 1)F(n + 2) for n	≥	2
 17. F(n + 3) = 2F(n + 1) + F(n) for n	≥	1
 18. F(n + 6) = 4F(n + 3) + F(n) for n	≥	1

In Exercises 19–22, prove the given property of the Fibonacci numbers for all n	≥	1. (Hint: The first principle
of induction will work.)

 19. F(l) + F(2) +	c+ F(n) = F(n + 2) − 1
 20. F(2) + F(4) +	c+ F(2n) = F(2n + 1) − 1
 21. F(1) + F(3) +	c+ F(2n − 1) = F(2n)
 22. [F(1)]2 + [F(2)]2 +	c+ [F(n)]2 = F(n)F(n + 1)

In Exercises 23–26, prove the given property of the Fibonacci numbers using the second principle of induction.

 23. Exercise 17
 24. Exercise 18
 25. F(n) < 2n for n	≥	1

 26. F(n) > a3
2
b

n−1

 for n	≥	6

Section 3.1 Recursive Definitions 173

 27. Write a pseudocode recursive algorithm for a function to compute F(n), the nth Fibonacci number.

 28. Walk through your recursive algorithm from Exercise 27 to compute F(6).
 a. How many times is the function invoked?
 b. How many times is F(4) computed?
 c. How many times is F(3) computed?
 d. How many times is F(2) computed?

Exercises 29 and 30 concern a proof of correctness of the following iterative algorithm for a function to compute
F(n), the nth Fibonacci number.

F(positive integer n)
//function that iteratively computes the value of
//the nth Fibonacci number
Local variables:
positive integer i //loop index
positive integers p, q, r //terms in Fibonacci sequence

if n = 1 then
return 1

else
if n = 2 then

return 1
else

i = 2
p = 1 //p = lagging term in Fibonacci sequence
q = 1 //q = leading term in Fibonacci sequence
while i < n do

r = p + q //form the next term as the
 //sum of the two previous terms
p = q //bump up p
q = r //bump up q
i = i + 1

end while
//q now has the value F(n)
return q

end if
end if

end function F

 29. a. In the iterative Fibonacci algorithm, the condition B for loop continuation is i < n, so B′ is i ≥ n, but
what is the exact value of i when the loop terminates?

 b. When the loop exits, you want q = F(n); what do you want for the value of p at that point?

 30. a. Write the loop invariant Q for the iterative Fibonacci algorithm.
 b. Prove that Q is a loop invariant.

174 Recursion, Recurrence Relations, and Analysis of Algorithms

 31. The values p and q are defined as follows:

 p =
1 + "5

2
 and q =

1 − "5
2

 a. Prove that 1 + p = p2 and 1 + q = q2.
 b. Prove that

F(n) =
pn − qn

p − q

 c. Use part (b) to prove that

F(n) =
"5

5
 a1 + "5

2
b

n

−
"5

5
 a1 − "5

2
b

n

 is a closed-form solution for the Fibonacci sequence.
 32. The Lucas sequence is defined by

L(1) = 1
L(2) = 3
L(n) = L(n − 1) + L(n − 2) for n	≥	2

 a. Write the first five terms of the sequence.
 b. Prove that L(n) = F(n + 1) + F(n − 1) for n	≥	2 where F is the Fibonacci sequence.

For Exercises 33–36, decide whether the sequences described are subsequences of the Fibonacci sequence, that
is, whether their members are some or all of the members, in the right order, of the Fibonacci sequence.3

 33. The sequence A(n), where A(n) = 1 + (the sum of the first n terms of the Fibonacci sequence), n	≥	1. The
first four values are 2, 3, 5, 8, which—so far—form a subsequence of the Fibonacci sequence.

 34. The sequence B(n), where B(n) = (n − 1)2n−2 + 1, n	≥	1. The first four values are 1, 2, 5, 13, which—so
far—form a subsequence of the Fibonacci sequence.

 35. The sequence C(n), where C(n) is the number of ways in which n coins can be arranged in horizontal rows
with all the coins in each row touching and every coin above the bottom row touching two coins in the row
below it, n	≥	1. The first five values are 1, 1, 2, 3, 5, which—so far—form a subsequence of the Fibonacci
sequence.

n = 1 n = 2 n = 3

n = 5

n = 4

 36. The sequence D(n), where D(n) describes the number of ways to paint the floors on an n-story building
where each floor is painted yellow or blue and no two adjacent floors can be blue (although adjacent floors

3Exercises 33–36 are taken from “Mathematical Recreations” by Ian Stewart, Scientific American, May 1995.

Section 3.1 Recursive Definitions 175

can be yellow), n	≥	1. The first four values are 2, 3, 5, 8, which—so far—form a subsequence of the
Fibonacci sequence. For example, D(3) = 5 because a three-story building can be painted

 Y Y Y B B
 Y Y B Y Y
 Y B Y B Y

 (Hint: think about a recursive expression for D(n + 1).)
 37 a. The original problem posed by Fibonacci concerned pairs of rabbits. Two rabbits do not breed until

they are 2 months old. After that, each pair of rabbits produces a new pair each month. No rabbits ever
die. Let R(n) denote the number of rabbit pairs at the end of n months if you start with a single rabbit
pair. Show that R(n) is the Fibonacci sequence.

 b. Write 27 and 62 as the sum of distinct nonconsecutive Fibonacci numbers.
 38. a. The sequence of Catalan numbers is defined recursively by

C(0) = 1
C(1) = 1

C(n) = ∙
n

k=1
 C(k − 1)C(n − k) for n	≥	2

 Compute the values of C(2), C(3), and C(4) using this recurrence relation.
 b. Frank and Jody are both candidates for president of the County Council. The number of votes cast equals

2n, where n votes are cast for Frank and n for Jody. Votes are counted sequentially. The ballot problem
asks: In how many ways can the votes be counted so that Jody’s total is never ahead of Frank’s total?
The answer, as it turns out, is C(n), the nth Catalan number. For example, if n = 5, one possible counting
sequence that meets this requirement is

FFJJFJFFJJ

 Using n = 3, write down all the satisfactory counting sequences and compare the result to the Catalan
number C(3).

 39. A sequence is recursively defined by

S(1) = 2
S(2) = 2
S(3) = 6
S(n) = 3S(n − 3) for n	≥	3

 Prove that S(n) is an even number for n	≥	1.
 40. A sequence is recursively defined by

T(5) = 6
T(6) = 10
T(n) = 2T(n − 2) + 2 for n ≥ 7

 Prove that T(n) ≥ 2n for n	≥	7.

176 Recursion, Recurrence Relations, and Analysis of Algorithms

 41. A sequence is recursively defined by

S(0) = 1
S(1) = 1
S(n) = 2S(n − 1) + S(n − 2) for n	≥	2

 a. Prove that S(n) is an odd number for n	≥	0.
 b. Prove that S(n) < 6S(n − 2) for n	≥	4.

 42. A sequence is recursively defined by

T(0) = 1
T(1) = 2
T(n) = 2T(n − 1) + T(n − 2) for n	≥	2

 Prove that T(n) ≤ A52Bn for n	≥	0.
 43. Write a recursive definition for a geometric progression with initial term a and common ratio r (see

 Exercise 27, Section 2.2.).
 44. Write a recursive definition for an arithmetic progression with initial term a and common difference d (see

Exercise 28, Section 2.2.).
 45. In an experiment, a certain colony of bacteria initially has a population of 50,000. A reading is taken every

2 hours, and at the end of every 2-hour interval, there are 3 times as many bacteria as before.
 a. Write a recursive definition for A(n), the number of bacteria present at the beginning of the nth time

period.
 b. At the beginning of which interval are there 1,350,000 bacteria present?
 46. An amount of $500 is invested in an account paying 1.2% interest compounded annually.
 a. Write a recursive definition for P(n), the amount in the account at the beginning of the nth year.
 b. After how many years will the account balance exceed $570?

 47. A set T of numbers is defined recursively by

 1. 2 belongs to T.
 2. If x belongs to T, so does x + 3 and 2 * x.

 Which of the following numbers belong to T?
 a. 6 b. 7 c. 19 d. 12

 48. A set M of numbers is defined recursively by

 1. 2 and 3 belong to M.
 2. If x and y belong to M, so does x * y.

 Which of the following numbers belong to M?
 a. 6 b. 9 c. 16 d. 21 e. 26 f. 54 g. 72 h. 218

Section 3.1 Recursive Definitions 177

 49. A set S of strings of characters is defined recursively by

 1. a and b belong to S.
 2. If x belongs to S, so does xb.

 Which of the following strings belong to S?
 a. a b. ab c. aba d. aaab e. bbbbb
 50. A set W of strings of symbols is defined recursively by

 1. a, b, and c belong to W.
 2. If x belongs to W, so does a(x)c.

 Which of the following strings belong to W ?
 a. a(b)c b. a(a(b)c)c c. a(abc)c d. a(a(a(a)c)c)c e. a(aacc)c
 51. A set S of integers is defined recursively by

 1. 0 and 3 belong to S.
 2. If x and y belong to S, so does x + y.

 Use structural induction to prove that every integer in S is a multiple of 3.
 52. A set T of strings is defined recursively by

 1. pqq belongs to T.
 2. If x and y belong to T, so do pxqq, qqxp, and xy.

 Use structural induction to prove that every string in T has twice as many q’s as p’s.
 53. Give a recursive definition for the set of all unary predicate wffs in x.
 54. Give a recursive definition for the set of all well-formed formulas of integer arithmetic, involving integers

together with the arithmetic operations of +, −, *, and /.
 55. Give a recursive definition for the set of all odd integers.
 56. Give a recursive definition for the set of all strings of well-balanced parentheses.
 57. Give a recursive definition for the set of all binary strings containing an odd number of 0s.
 58. Give a recursive definition for the set of all binary strings containing an even number of 1s.
 59. Give a recursive definition for the set of all binary strings ending with 0.
 60. Give a recursive definition for the set of all binary strings with an equal number of 0s and 1s.
 61. Use BNF notation to define the set of positive integers.
 62. Use BNF notation to define the set of decimal numbers, which consist of an optional sign (+ or −),

 followed by one or more digits, followed by a decimal point, followed by zero or more digits.
 63. Give a recursive definition for x R, the reverse of the string x.
 64. Give a recursive definition for 0 x 0 , the length of the string x.
 65. Give a recursive definition for the factorial operation n! for n ≥ 1.

178 Recursion, Recurrence Relations, and Analysis of Algorithms

 66. Give a recursive definition for the addition of two nonnegative integers m and n.
 67. a. Write a recursive definition for the operation of taking the maximum of n integers a1, … , an, n	≥	2.
 b. Write a recursive definition for the operation of taking the minimum of n integers a1, … , an, n	≥	2.
 68. a. Give a recursive definition for the conjunction of n statement letters in propositional logic, n	≥	2.
 b. Write a generalization of the associative property of conjunction (tautological equivalence 2b of

Section 1.1) and use induction to prove it.
 69. Let A and B1, B2, … , Bn be statement letters. Prove the finite extension of the distributive equivalences of

propositional logic:

A ~ (B1 ` B2 `	c` Bn) 3 (A ~ B1) ` (A ~ B2) `	c` (A ~ Bn)

 and

A ` (B1 ~ B2 ~ c~ Bn) 3 (A ` B1) ~ (A ` B2) ~ c~ (A ` Bn)

 for n	≥	2.
 70. Let B1, B2, … , Bn be statement letters. Prove the finite extension of De Morgan’s laws:

(B1 ~ B2 ~ c~ Bn)′ 3 B′1 ` B′2 ` c` B′n

 and

(B1 ` B2 ` c` Bn)′ 3 B′1 ~ B′2 ~ c~ B′n

 for n	≥	2.

In Exercises 71–76, write the body of a recursive function to compute S(n) for the given sequence S.

 71. 1, 3, 9, 27, 81, …
 72. 2, 1, 1/2, 1/4, 1/8, …
 73. 1, 2, 4, 7, 11, 16, 22, …
 74. 2, 4, 16, 256, …
 75. a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, …
 76. p, p − q, p + q, p − 2q, p + 2q, p − 3q, …
 77. What value is returned by the following recursive function Mystery for an input value of n?

Mystery (positive integer n)
if n = 1 then

return 1
else

return Mystery(n − 1) + 1
end if

end function Mystery
 78. The following recursive function is initially invoked with an i value of 1. L is a list (array) of 10 integers.

What does the function do?
g(list L; positive integer i; integer x)

if i > 10 then
return 0

else

Section 3.1 Recursive Definitions 179

if L[i] = x then
return 10

else
return g(L, i + 1, x)

end if
end if

end function g
	 79. Informally describe a recursive algorithm to reverse the entries in a list of items.
 80. Informally describe a recursive algorithm to compute the sum of the digits of a positive integer.
 81. Informally describe a recursive algorithm to compute the greatest common divisor of two positive integers

a and b where a	>	b. (Hint: The solution is based on the Euclidean algorithm, discussed in Section 2.3. In
particular, make use of expression (5) on page 134.)

 82. The famous Towers of Hanoi puzzle involves 3 pegs with n disks of varying sizes stacked in order from
the largest (on the bottom) to the smallest (on the top) on 1 of the pegs. The puzzle requires that the disks
end up stacked the same way on a different peg; only one disk at a time can be moved to another peg, and
no disk can ever be stacked on top of a smaller disk. Informally describe a recursive algorithm to solve the
Towers of Hanoi puzzle.

 83. Simulate the execution of algorithm SelectionSort on the following list L; write the list after every
 exchange that changes the list.

4, 10, −6, 2, 5

 84. Simulate the execution of algorithm SelectionSort on the following list L; write the list after every
 exchange that changes the list.

9, 0, 2, 6, 4

 85. The binary search algorithm is used with the following list; x has the value “Chicago.” Name the elements
against which x is compared.

Boston, Charlotte, Indianapolis, New Orleans, Philadelphia, San Antonio, Yakima

 86. The binary search algorithm is used with the following list; x has the value “flour.” Name the elements
against which x is compared.

butter, chocolate, eggs, flour, shortening, sugar

 87. Do a proof of correctness for the iterative function given in this section to compute S(n) of Example 1,
S(n) = 2n.

 88. The Online Encyclopedia of Integer Sequences (OEIS) was originated and maintained for many years by
Neil Sloane, a mathematician at AT&T who has also written several books about sequences. The OEIS
Foundation now manages the database, which contains more than 200,000 sequences of integers that have

180 Recursion, Recurrence Relations, and Analysis of Algorithms

been submitted and studied by many people. (See oeis.org). There is even a YouTube movie about the OEIS!
Recaman’s sequence (number A005132 in the OEIS catalog) is a recursive sequence defined as follows:

a(1) = 1
 For n > 1,

 a(n) =	 •
 a(n − 1) − n if that number is positive and not already in the sequence,
 otherwise
a(n − 1) + n

	 a. Confirm that the first few terms of this sequence are 1, 3, 6, 2, 7, 13.
 b. It has been conjectured that every nonnegative integer will eventually appear in this sequence. Find the

index of this sequence at which the following numbers appear: 10, 12, 23.

 S e c t I o n 3 . 2 ReCuRRenCe Relations

We developed two algorithms, one iterative and one recursive, to compute a
 value S(n) for the sequence S of Example 1. However, there is a still easier way to
 compute S(n). Recall that

 S(1) = 2 (1)
 S(n) = 2S(n − 1) for n	≥	2 (2)

Because
S(1) = 2 = 21

S(2) = 4 = 22

S(3) = 8 = 23

S(4) = 16 = 24

and so on, we can see that
 S(n) = 2n (3)

Using Equation (3), we can plug in a value for n and compute S(n) without hav-
ing to compute—either explicitly, or, through recursion, implicitly—all the lower
values of S first. An equation such as (3), where we can substitute a value and get
the output value back directly, is called a closed-form solution to the recurrence
relation (2) subject to the basis step (1). Finding a closed-form solution is called
solving the recurrence relation.

Recurrence relations can be used to describe a variety of things, from chemi-
cal degradation (see the opening problem for this chapter) to the amount in an
interest-bearing account, from the growth of species to the spread of a computer
virus. Clearly, it is nice to find a closed-form solution to a recurrence relation
whenever possible.

Linear First-Order Recurrence Relations

Expand, Guess, and Verify
One technique for solving recurrence relations is an “expand, guess, and verify”
approach that repeatedly uses the recurrence relation to expand the expression for
the nth term until the general pattern can be guessed. Finally the guess is verified
by mathematical induction.

Section 3.2 Recurrence Relations 181

	 example 15 Consider again the basis step and recurrence relation for the sequence S of
Example 1:

 S(1) = 2 (4)
 S(n) = 2S(n − 1) for n	≥	2 (5)

Let’s pretend we don’t already know the closed-form solution and use the expand,
guess, and verify approach to find it. Beginning with S(n), we expand by using the
recurrence relation repeatedly. Keep in mind that the recurrence relation is a recipe
that says S at any value can be replaced by two times S at the previous value. We
apply this recipe to S at the values n, n − 1, n − 2, and so on:

S(n) = 2S(n − 1)
= 2[2S(n − 2)] = 22S(n − 2)
= 22 [2S(n − 3)] = 23S(n − 3)

By looking at the developing pattern, we guess that after k such expansions, the
equation has the form

S(n) = 2kS(n − k)

This expansion of S values in terms of lower S values must stop when n − k = 1,
that is, when k = n − 1. At that point,

S(n) = 2n−1S[n − (n − 1)]
= 2n−1S(l) = 2n−1(2) = 2n

which expresses the closed-form solution.
We are not yet done, however, because we guessed at the general pattern.

We now confirm our closed-form solution by induction on the value of n. The
 statement we want to prove is therefore S(n) = 2n for n	≥	1.

For the basis step, S(l) = 21. This is true by equation (4). We assume that
S(k) = 2k. Then

 S(k + 1) = 2S(k) (by equation (5))
	 = 2(2k) (by the inductive hypothesis)
	 = 2k+1

This proves that our closed-form solution is correct.

■

PRaCtiCe 11 Find a closed-form solution for the recurrence relation, subject to the basis step, for
sequence T:

1. T(l) = 1
2. T(n) = T(n − 1) + 3 for n	≥	2
(Hint: Expand, guess, and verify.)

remInDer

Don’t get hung up on “n”
and “n − 1” in the recur-
rence relation. Think of it
as “S at some value is 2
times S at the previous
value.”

182 Recursion, Recurrence Relations, and Analysis of Algorithms

A Solution Formula
Some types of recurrence relations have known solution formulas. A recurrence
relation for a sequence S(n) is linear if the earlier values of S appearing in the
definition occur only to the first power. The most general linear recurrence rela-
tion has the form

S(n) = f1(n)S(n − 1) + f2(n)S(n − 2) +	c+ fk(n)S(n − k) + g(n)

where the fi’s and g can be expressions involving n. The recurrence relation has
constant coefficients if the fi’s are all constants. It is first-order if the nth term
depends only on term n − 1. Linear first-order recurrence relations with constant
coefficients therefore have the form

 S(n) = cS(n − 1) + g(n) (6)

Finally, a recurrence relation is homogeneous if g(n) = 0 for all n.
We will find the solution formula for equation (6), the general linear first-

order recurrence relation with constant coefficients, subject to the basis that S(1)
is known. We will use the expand, guess, and verify approach. The work here is a
generalization of what was done in Example 15. Repeatedly applying equation (6)
and simplifying, we get

S(n) = cS(n − 1) + g(n)
= c[cS(n − 2) + g(n − 1)] + g(n)
= c2S(n − 2) + cg(n − 1) + g(n)
= c2 [cS(n − 3) + g(n − 2)] + cg(n − 1) + g(n)
= c3S(n − 3) + c2 g(n − 2) + cg(n − 1) + g(n)

f

After k expansions, the general form appears to be

S(n) = ckS(n − k) + ck−1g(n − (k − 1)) + c+ cg(n − 1) + g(n)

If the sequence has a base value at 1, then the expansion terminates when
n − k = 1 or k = n − 1, at which point

S(n) = cn−1S(1) + cn−2g(2) +	c+ cg(n − 1) + g(n)

	 = cn−1S(1) + cn−2g(2) +	c+ c1g(n − 1) + c0g(n) (7)

We can use summation notation to write part of this expression more compactly.
The uppercase Greek letter sigma, ∙, stands for summation. The notation

∙
q

i=p
 (expression)

says to substitute into the expression successive values of i, the index of
 summation, from the lower limit p to the upper limit q, and then sum the results.
(See Appendix B for further discussion of summation notation.) Thus, for example,

∙
n

i=1
(2i − 1) = 1 + 3 + 5 + c+ (2n − 1)

Section 3.2 Recurrence Relations 183

In Example 14, Section 2.2, we proved by induction that the value of this summa-
tion is n2.

In summation notation, Equation (7) becomes

S(n) = cn−1S(1) + ∙
n

i=2
cn− ig(i)

Induction can be used, much as was done in Example 15, to verify that this for-
mula is the solution to recurrence relation (6) (see Exercise 26).

Therefore, the solution to the recurrence relation (6) is

 S(n) = cn−1S(1) + ∙
n

i=2
cn− ig(i) (8)

This is not yet a closed-form solution, however, because we must find an expres-
sion for the summation. Usually it is either trivial to find the sum or we found its
value in Section 2.2 using mathematical induction. (If we can’t find an expression
for the summation, we are really no better off than before. We must iterate through
the summation to find the desired value as opposed to iterating through the recur-
rence relation to get the desired value.)

The work we’ve done here gives a general solution—Equation (8)—once and
for all for any recurrence relation of the form shown in (6); this work need not be
repeated. All that is necessary is to match your problem to equation (6) to find the
value for c and the formula for g(n) and then plug these results into the expression
in (8). The g(n) in Equation (6) is the usual notation for a function of n; although
we will study functions formally in Chapter 5, you can think of g(n) as giving a
“recipe” for what to do with its argument n. If, for example,

g(n) = 2n

then g doubles whatever its argument value is:

 g(3) = 2(3) = 6 g(27) = 2(27) = 54 and g(i) = 2i

This last value, 2i, would be used in Equation (8) if g(n) = 2n.

You now have a choice of two alternative ways to solve a linear, first-order recur-
rence relation with constant coefficients. Table 3.2 summarizes these approaches.

	 example 16 The sequence S(n) of Example 15,

S(1) = 2
S(n) = 2S(n − 1) for n ≥ 2

is a linear, first-order, homogeneous recurrence relation with constant coefficients.
In other words, it matches equation (6) with c = 2 and g(n) = 0. Because g(n) = 0,
the g function evaluates to 0 no matter what the argument is. From formula (8), the
closed-form solution is

S(n) = 2n−1(2) + ∙
n

i=2
0 = 2n

which agrees with our previous result.

184 Recursion, Recurrence Relations, and Analysis of Algorithms

Table 3.2

To Solve Recurrence Relations of the Form S(n) ∙ cS(n ∙ 1) ∙ g(n) Subject to basis S(1)

Method Steps

Expand, guess, verify 1. Repeatedly use the recurrence relation until you can guess a pattern.
2. Decide what that pattern will be when n − k = 1.
3. Verify the resulting formula by induction.

Solution formula 1. Match your recurrence relation to the form

S(n) = cS(n − 1) + g(n) to find c and g(n).

2. Use c, g(n), and S(1) in the formula

S(n) = cn−1S(1) + ∙
n

i=2
cn− ig(i)

3. Evaluate the resulting summation to get the final expression.

	 eXaMPle 17 Find a closed-form solution to the recurrence relation

S(n) = 2S(n − 1) + 3 for n ≥ 2

subject to the basis step

S(1) = 4

We’ll use the solution formula method. Comparing our recurrence relation

S(n) = 2S(n − 1) + 3

with the general form S(n) = cS(n − 1) + g(n), we see that

 c = 2 g(n) = 3

The fact that g(n) = 3 says that g has a constant value of 3 no matter what the value
of its argument; in particular, g(i) = 3. Substituting into the general solution form

S(n) = cn−1S(1) + ∙
n

i=2
cn− ig(i)

we get

S(n) = 2n−1(4) + ∙
n

i=2
2n− i(3)

= 2n−1(22) + 3 ∙
n

i=2
2n− i

= 2n+1 + 3 32n−2 + 2n−3 + c+ 21 + 20 4
 = 2n+1 + 3 32n−1 − 1 4 (from Example 15, Section 2.2)

Section 3.2 Recurrence Relations 185

So the value of S(5), for example, is 26 + 3(24 − 1) = 64 + 3(15) = 109.
Alternatively, by the expand, guess, and verify technique, we expand

S(n) = 2S(n − 1) + 3
 = 2[2S(n − 2) + 3] + 3 = 22S(n − 2) + 2 # 3 + 3
 = 22[2S(n − 3) + 3] + 2 # 3 + 3 = 23S(n − 3) + 22 # 3 + 2 # 3 + 3

(

The general pattern seems to be

S(n) = 2kS(n − k) + 2k−1 # 3 + 2k−2 # 3 + c+ 22 # 3 + 2 # 3 + 3

which, when n − k = 1 or k = n − 1, becomes

S(n) = 2n−1S(1) + 2n−2 # 3 + 2n−3 # 3 + c+ 22 # 3 + 2 # 3 + 3
 = 2n−1(4) + 3[2n−2 + 2n−3 + c+ 22 + 2 + 1]
 = 2n+1 + 3[2n−1 − 1] (from Example 15, Section 2.2)

Finally, we must prove by induction that S(n) = 2n+1 + 3[2n−1 − 1].

Base case: n = 1: S(1) = 4 = 22 + 3[20 − 1], true
Assume S(k) = 2k+1 + 3[2k−1 − 1]
Show S(k + 1) = 2k+2 + 3[2k − 1]

S(k + 1) = 2S(k) + 3 (by the recurrence relation)
= 2(2k+1 + 3[2k−1 − 1]) + 3 (by the inductive hypothesis)
= 2k+2 + 3 # 2k − 6 + 3 (multiplying out)
= 2k+2 + 3[2k − 1]

Practice 12 Rework Practice 11 using Equation (8).
■

	 example 18 Find a closed−form solution to the recurrence relation

T(n) = T(n − 1) + (n + 1) for n	≥	2

subject to the basis step

T(1) = 2

Using the solution formula method and comparing the recurrence relation
with the general form from Equation (6), S(n) = cS(n − 1) + g(n), we find
that c = 1 and g(n) = n + 1. We’ll substitute into the solution equation (8)

S(n) = cn−1S(1) + ∙
n

i=2
cn− ig(i), where g(i) will be i + 1.

remInDer

When expanding, be sure
to pick up all the pieces
of the recurrence relation
recipe, like the + 3 in this
example.

186 Recursion, Recurrence Relations, and Analysis of Algorithms

T(n) = (1)n−1(2) + ∙
n

i=2
(1)n− i(i + 1)

= 2 + ∙
n

i=2
(i + 1)

= 2 + (3 + 4 + c+ (n + 1))

 =
(n + 1)(n + 2)

2
− 1 (from Practice 7, Section 2.2)

	 example 19 Consider the problem of reading data from a computer disk drive.4 The circular
drive is organized as a series of concentric tracks, divided into sectors. Each sector
contains a block of data (Figure 3.1).

The time to read a particular block of data into memory has three components:

 1. Seek time—the time to position the read head over the proper track. This
time varies depending on the relative position of the read head and the
proper track when the read request is generated. In the best case, the read
head is already over the proper track and the seek time is 0. At the worst
case, assuming there are n tracks, the read head might be over track 1 and
have to move to track n, which would be n − 1 units, where a unit is the
distance between adjacent tracks. We can assume that the seek time would
be some multiple of the number of units.

 2. Latency time—the time for the proper sector to rotate underneath the read
head. This time also varies, depending on whether the correct sector is just
coming under the read head (minimum latency time) or whether it has just
gone by and a full rotation must occur (maximum latency time).

 3. Transfer time—the time to read a block once it is positioned under the read
head, usually a constant amount of time for all blocks.

The problem is to find the average seek time, actually the average number A(n) of
units. The assumptions are that there are n tracks, the read head is positioned over
some track i, and the read head is equally likely to have to move to any track j.

Figure 3.1

4This example is based on work found in “Research Problem for Undergraduate Students which Spans
Hardware Issues, Mathematical Methods and Programming: Average Seek Time of a Computer Disk,” by
Jan Plaza, http://faculty.plattsburgh.edu/jan.plaza/teaching/papers/seektime.html

http://faculty.plattsburgh.edu/jan.plaza/teaching/papers/seektime.html

Section 3.2 Recurrence Relations 187

Table 3.3 shows the number of units in going from one track to another, where
a row is the source track and a column is the destination track. For example, if the
read head is currently over track 3 and must end up over track n, then n − 3 units are
required, as shown by the entry in row 3, column n. The entry in row n, column 3 is
the same because it takes the same number of units to move in the opposite direction.

table 3.3

1 2 3 c n − 1 n

1 0 1 2 c n − 2 n − 1

2 1 0 1 c n − 3 n − 2

3 2 1 0 c n − 4 n − 3
c c c c

n − 1 n − 2 n − 3 n − 4 c 0 1

n n − 1 n − 2 n − 3 c 1 0

Destination
trackSource

track

Table 3.3 illustrates the n2 different possible track moves. We find the average
number A(n) of units for these n2 cases by computing the total number of units
shown in the table, T(n), and then dividing by n2. To compute T(n), note that
T(n) = T(n − 1) + (the total of the last row plus the last column) and that the last
row plus the last column contribute

2[1 + 2 + 3 + c+ (n − 1)] = 2 c (n − 1)n
2

d (using Practice 7, Section 2.2)

= (n − 1)n
so that

T(n) = T(n − 1) + (n − 1)n

The base case is T(1) = 0 (no seek time for a 1-track disk). This is a linear,
 first-order recurrence relation with constant coefficients. We can solve it using
Equation (8), where c = 1 and g(n) = (n − 1)n. The solution is

 T(n) = 0 + ∙
n

i=2
(i − 1)i

	 = 1 # 2 + 2 # 3 + 3 # 4 + c+ (n − 1)n

	 =
(n − 1)n(n + 1)

3
 (from Exercise 19, Section 2.2)

Therefore the average number of units is

A(n) =
(n − 1)n(n + 1)

3
 / n2 =

n3 − n2 + n2 − n
3n2 =

n3 − n
3n2 =

n2 − 1
3n

 =
n
3

−
1
3n

Because the best case is 0 and the worst case is n − 1, we might have expected the
average case to be close to n/2, but in fact it is slightly less than n/3.

188 Recursion, Recurrence Relations, and Analysis of Algorithms

Linear Second-Order Recurrence Relations

In a first-order recurrence relation, the nth term depends only on the previous
term. In a second-order recurrence relation, the nth term depends on the two
previous terms. Linear second-order homogeneous recurrence relations with con-
stant coefficients therefore have the form

 S(n) = c1 S(n − 1) + c2 S(n − 2) (9)

The Fibonacci sequence is an example (Exercise 37 asks for a solution):

F(1) = 1
F(2) = 1
F(n) = F(n − 1) + F(n −	2) for n > 2

	 example 20 Not every recurrence relation fits the pattern of Equation (6). Consider the recur-
rence relation

T(1) = 1
T(n) = 2nT(n − 1) for n ≥ 2

Although this is a linear, first-order recurrence relation, it does not have constant
coefficients. Equation (8) does not apply. To find a closed-form solution, we have
to go back to the expand, guess, and verify technique.

T(n) = 2nT(n − 1)
= 2n 32(n − 1)T(n − 2) 4 = 22n(n − 1)T(n − 2)
= 22n(n − 1) 32(n − 2)T(n − 3) 4 = 23n(n − 1)(n − 2)T(n − 3)

In general, it seems that

T(n) = 2kn(n − 1)(n − 2) … (n − (k − 1))T(n − k)

When n − k = 1, then k = n − 1 and

T(n) = 2n−1n(n − 1)(n − 2) … (2)T(1) = 2n−1n(n − 1)(n − 2) … (2)(1) = 2n−1n!

This is our guess at a closed-form solution, which we verify by induction on n.

Base case, T(1): T(1) = 21−11! = 20(1) = 1, true
Assume T(k): T(k) = 2k−1k!
Show T(k + 1): T(k + 1) = 2k(k +	1)!

 T(k + 1) = 2(k + 1)T(k) (by the recurrence relation)
	 = 2(k + 1)2k−1k! (by the inductive hypothesis)
	 =	2k(k + 1)!

Therefore our closed-form solution guess was correct.

Section 3.2 Recurrence Relations 189

In such a sequence, we must have two “base case” values, that is, two known
 values of the sequence in order to generate subsequent values.

We’d like to find a general solution formula for recurrence relations like (9).
If we drop the second term, we of course have a linear first-order homogeneous
recurrence relation with constant coefficients:

S(n) = c1S(n − 1)

From Equation (8), we know that the solution to this recurrence relation has the form

S(n) = cn−1
1 S(1)

Let’s express this solution as

 S(n) = prn−1 (10)

where r (that is, c1) is the solution (root) of the linear equation

 t − c1 = 0 (11)

and p (that is, S(1)) satisfies equation (10) for the initial condition n = 1:

S(1) = pr1−1 = pr0 = p

This viewpoint suggests a way in which we might conjecture a solution to
equation (9). Since we now have two terms in the equation itself, let’s add a second
term to (10) and represent a potential solution as

 S(n) = prn−1
1 + qrn−1

2 (12)

where r1 and r2 are two distinct roots of (extending (11) to a quadratic equation)

 t2 − c1t − c2 = 0 (13)

The p and q will have to be chosen to satisfy the two initial conditions:

S(1) = pr1−1
1 + qr1−1

2 = p + q
S(2) = pr2−1

1 + qr2−1
2 = pr1 + qr2

or, simplifying,

 p + q = S(1)
 pr1 + qr2 = S(2)

(14)

Of course, this is just a wild leap of speculation on our part, so we must now verify
that Equation (12) is a closed-form solution to recurrence relation (9).

We are trying to prove that

S(n) = prn−1
1 + qrn−1

2

(where r1, r2, p, and q are as described) is a solution to

S(n) = c1S(n − 1) + c2S(n − 2)

190 Recursion, Recurrence Relations, and Analysis of Algorithms

for all n ≥ 1. The “for all n ≥ 1” phrase suggests a proof by mathematical induc-
tion. Because S(n) has to “reach back” two values to compute the current value,
we should use the second principle of induction.

Base Cases:

When n = 1, the proposed solution gives

S(1) = pr1−1
1 + qr1−1

2 = p + q

When n = 2, the proposed solution gives

S(2) = pr2−1
1 + qr2−1

2 = pr1 + qr2

Both are trivially true because we chose p and q to meet these very conditions.
Assume that for all r, 1 ≤ r ≤ k, S(r) = pr

r−1
1 + qr

r−1
2 . Show that

S(k + 1) = prk
1 + qrk

2. Before we proceed, note that because r1 and r2 are solutions
of the equation t2 − c1t − c2 = 0, it is true that

 r

2
1 − c1r1 − c2 = 0 or r

2
1 = c1r1 + c2

 r

2
2 − c1r2 − c2 = 0 or r

2
2 = c1r2 + c2

(15)

Now

S(k + 1) = c1S(k) + c2S(k − 1) (by the recurrence relation)
 = c1(prk−1

1 + qrk−1
2) + c2(prk−2

1 + qrk−2
2) (by the inductive

 = prk−2
1 (c2 + c1r1) + qrk−2

2 (c2 + c1r2) hypothesis, applied twice)

 = prk−2
1 r2

1 + qrk−2
2 r2

2 (by Equation (15))
 = prk

1 + qrk
2

which is the desired result. This confirms that Equation (12) is a solution to
 Equation (8).

 The key to the solution is the quadratic equation

t 2 − c1t − c2 = 0

which is called the characteristic equation of the recurrence relation

S(n) = c1S(n − 1) + c2S(n − 2)

	 example 21 Solve the recurrence relation

S(n) = 2S(n − 1) + 3S(n − 2) for n	≥	3

subject to the initial conditions

S(1) = 3
S(2) = 1

Section 3.2 Recurrence Relations 191

In this recurrence relation, c1 = 2 and c2 = 3. To find the closed-form solution, we
form the characteristic equation

t2 − 2t − 3 = 0

which has roots r1 = 3, r2 = −1. Equation (12) gives the solution form:

S(n) = p3n−1 + q(−1)n−1

where from Equation (14) p and q satisfy

p + q = 3
p(3) + q(−1) = 1

Solving this system of equations results in p = 1, q = 2. Therefore the closed-form
solution is

S(n) = 3n−1 +	2(−1)n−1

Practice 13

a. Using the base cases and the recurrence relation, compute the first five terms of the sequence
S(n) of Example 21.

b. Check that the closed-form solution formula in Example 21 produces the correct first five terms. ■

Although it would seem at this point that we have the solution method in
hand for any linear second-order homogeneous recurrence relations with constant
 coefficients, such is not the case. Consider the system of Equation (14):

p + q = S(1)
pr1 + qr2 = S(2)

We can solve the first equation for p—

p = S(1) − q

Practice 14 Solve the recurrence relation

T(n) = 6T(n − 1) −5T(n − 2) for n	≥	3

subject to the initial conditions

T(1) = 5
T(2) = 13 ■

192 Recursion, Recurrence Relations, and Analysis of Algorithms

—and then substitute in the second equation to solve for q:

[S(1) − q]r1 + qr2 = S(2)
q(r2 − r1) = S(2) − S(1)r1

q =
S(2) − S(1)r1

r2 − r1

Now what happens if the characteristic equation t2 − c1t − c2 = 0 happens
to have one repeated root, that is, r1 = r2? Oops—we can’t solve this system of
equations. The solution form when the characteristic equation has a repeated root
r looks like

S(n) = prn−1 + q(n − 1)r n−1 for all n ≥ 1

where p and q satisfy the equations

p = S(1)
pr + qr = S(2)

This can be proved by induction in a manner similar to the distinct roots case
(see Exercise 44).

	 example 22 Solve the recurrence relation

S(n) = 8S(n − 1) − 16S(n − 2) for n	≥	3

subject to the initial conditions

S(1) = 1
S(2) = 12

In this recurrence relation, c1 = 8 and c2 = −16. To find the closed-form solution,
we form the characteristic equation

t2 − 8t + 16 = 0
(t − 4)2 = 0

which has a repeated root r = 4. The solution is

S(n) = p4n−1 + q(n − 1)4n−1

where

 p = 1
 p(4) + q(4) = 12

Solving this system of equations, p = 1 and q = 2, so the solution is

S(n) =	4n−1 + 2(n − 1)4n−1 = (2n − 1)4n−1

Section 3.2 Recurrence Relations 193

Table 3.4 summarizes the solution steps for a linear second-order homoge-
neous recurrence relation with constant coefficients:

Divide-and-Conquer Recurrence Relations

Still another recurrence relation form occurs when the value of S(n) depends not
on the previous term or on the two previous terms, but on the value halfway back

in the sequence, S an
2
b

table 3.4

to Solve recurrence relations of the Form S(n) ∙ c1 S(n ∙ 1) ∙ c2 S(n ∙ 2)
Subject to Initial conditions S(1) and S(2)

1. Solve the characteristic equation t 2 − c1t − c2 = 0
2. If the characteristic equation has distinct roots r1 and r2, the solution is

S(n) = pr
n−1
1 + qr

n−1
2

where

p + q = S(1)

pr1 + qr2 = S(2)

3. If the characteristic equation has a repeated root r, the solution is

S(n) = prn −	1 + q(n − 1)rn −	1

where

p = S(1)

pr + qr = S(2)

The proofs for case 2 and case 3 are unchanged if the roots of the characteristic
equation turn out to be complex numbers. In other words, the solution formulas still
work.

Such recurrence relations will occur in the analysis of certain “divide-
and-conquer” algorithms, algorithms that solve a problem by breaking it into
smaller versions, each half the size of the original (see the next section). Hence
such recurrence relations are called divide-and-conquer recurrence relations.
The general form is

 S(n) = cSan
2
b + g(n) for n ≥ 2, n = 2m (16)

	 example 23 Consider the sequence with the following values:

S(1) = 2, S(2) = 4, S(4) = 8, S(8) = 16, S(16) = 32, …

We are looking at only selected terms of the sequence, namely S(n) where n is a

power of 2. For these terms, we can see that S(n) = 2San
2
b

194 Recursion, Recurrence Relations, and Analysis of Algorithms

where c is a constant and g can be an expression involving n. It’s convenient to
look only at values of n that are powers of 2 because then cutting n in half over
and over always results in an integer. As we will see in the next section, this is not
a significant restriction.

To solve a divide-and-conquer recurrence relation, we go back to the expand,
guess, and verify approach. Also, the solution will involve the logarithm function;
for a review of the logarithm function and its properties, see Appendix C.

	 example 24 Solve the recurrence relation

C(n) = 1 + Can
2
b for n ≥ 2, n = 2m

subject to the basis step

C(1) = 1

Expanding, we get

C(n) = 1 + Can
2
b

	 = 1 + a1 + Can
4
bb

	 = 1 + 1 + a1 + Can
8
bb

(

and the general term seems to be

C(n) = k + Ca n
2kb

The process stops when n/2k = 1 or 2k = n, which means k = log2 n. (We’ll omit
the base 2 notation from now on—log n will mean log2 n. See Appendix C for a
brief discussion of logarithms.) Then

C(n) = log n + C(l) = 1 + log n

Now we will use induction to verify that C(n) = 1 + log n for all n ≥ 1,
n = 2m. This is a somewhat different form of induction, because the only values of
interest are powers of 2. We still take 1 as the basis step for the induction, but then
we prove that if our statement is true for a value k, it is true for 2k. The statement
will then be true for 1, 2, 4, 8, … , that is, for all nonnegative integer powers of 2,
which is just what we want.

For the base case,

C(1) = 1 + log 1 = 1 + 0 = 1, true

Section 3.2 Recurrence Relations 195

Assume that C(k) = 1 + log k. Then

 C(2k) = 1+ C(k) (by the recurrence relation)
	 = 1 + 1 + log k (by the inductive hypothesis)
	 = 1 + log 2 + log k (log 2 = 1)
	 = 1 + log 2k (property of logarithms)

This calculation completes the inductive proof.

We’d like to find a closed-form solution for (16) subject to the basis that S(1)
is known. We could use the expand, guess, and verify approach to find the general
solution, but instead we will do a transformation on (16) to convert it to a first-
order recurrence relation with constant coefficients, use the solution formula we
already have for such a recurrence relation, and then reverse the transformation.
Figure 3.2 shows this round-about approach.

Equation (16) assumes that n = 2m with n ≥ 2. From this it follows that
m = log n and m ≥ 1. Substituting 2m for n in equation (16) results in

 S(2m) = cS(2m−1) + g(2m) (17)

Now, letting T(m) represent S(2m) in Equation (17), we get

 T(m) = cT(m − 1) + g(2m) for m ≥ 1 (18)

Equation (18) is a linear, first-order equation with constant coefficients; from
Equation (8), we obtain the solution

 T(m) = cm−1T(1) + ∙
m

i=2
cm− ig(2i) (19)

subject to the basis condition that T(l) is known. Because Equation (18) holds for
m = 1, we know that

T(1) = cT(0) + g(2)

Figure 3.2

B. First-order
 recurrence relation,
 constant coef�cients Solution to B

Solution to AA. Divide & conquer
 recurrence relation

196 Recursion, Recurrence Relations, and Analysis of Algorithms

Making this substitution in (19) results in

 T(m) = cmT(0) + ∙
m

i=1
cm− ig(2i) (20)

Now reversing the substitution T(m) = S(2m), (20) becomes

S(2m) = cmS(20) + ∙
m

i=1
cm− ig(2i)

Finally, letting 2m = n or m = log n, we get

 S(n) = clog nS(1) + ∙
log n

i=1
c(log n)− ig(2i) (21)

Equation (21) thus represents the solution for the recurrence relation (16). As
before, to use this general solution you need only match your recurrence relation
to (16) to determine c and g(n), then substitute into Equation (21). Again as be-
fore, g(n), gives a recipe for what to do with an argument n; in Equation (21), the
argument is 2i. If you can evaluate the resulting summation, you will then have a
closed-form solution. Table 3.5 outlines the solution steps.

remInDer

In the summation part
of the general solution
 formula, c is raised to the
(log n) − i power, not
(log n) − 1

table 3.5

to Solve recurrence relations of the Form S(n) ∙ cSan
2
b ∙ g(n) for n # 2,

n ∙ 2m Subject to Initial condition S(1)

1. Match your recurrence relation to the form

S(n) = cSan
2
b + g(n)

to find c and g(n).

2. Use c, g(n) and S(1) in the formula

S(n) = clog nS(1) + ∙
 log n

i=1
c(log n)− ig(2i)

3. Evaluate the resulting summation to get the final expression.

 example 25 The recurrence relation

C(1) = 1

C(n) = 1 + Can
2
b for n ≥ 2, n = 2m

matches Equation (16), with c = 1 and g(n) = 1. Because g(n) = 1, the g function
evaluates to 1 no matter what the argument is. The solution, according to formula
(21), is

C(n) = 1log nC(1) + ∙
log n

i=1
1(log n)− i(1)

= 1 + (log n)(1) = 1 + log n

which agrees with our previous result from Example 24.

Section 3.2 Recurrence Relations 197

	 example 26 Solve the recurrence relation

T(1) = 3

T(n) = 2T an
2
b + 2n

This is a match for Equation (16), where c = 2 and g(n) = 2n. Therefore
g(2i) = 2(2i). Substituting into Equation (21)—the solution of Equation (16)—
gives the following result, where we use the fact that 2log n = n.

T(n) = 2log nT(1) + ∙
log n

i=1
2log n− i2(2i)

= 2log n(3) + ∙
log n

i=1
2log n+1

= n(3) + (2log n+1)log n

= 3n + (2log n # 2)log n

= 3n + 2n log n

Practice 15 Show that the solution to the recurrence relation

S(1) = 1

S(n) = 2San
2
b + 1 for n ≥ 2, n = 2m

is 2n − 1. (Hint: See Example 15 in Section 2.2 and note that 2log n = n.) ■

exercISeS 3.2

In Exercises 1–12, solve the recurrence relation subject to the basis step.

 1. S(1) = 5
 S(n) = S(n − 1) + 5 for n ≥ 2
 2. B(1) = 5
 B(n) = 3B(n − 1) for n ≥ 2

S e c t I o n 3 . 2 Review

technIQueS

• Solve recurrence relations by the expand, guess,
and verify technique.

• Solve linear, first-order recurrence relations with
constant coefficients by using a solution formula.

• Solve linear, second-order homogeneous recurrence
relations with constant coefficients by using the
characteristic equation.

• Solve divide-and-conquer recurrence relations by
using a solution formula.

maIn IDea

• Certain recurrence relations have closed-form
 solutions.

W

W

198 Recursion, Recurrence Relations, and Analysis of Algorithms

 3. F(1) = 2
 F(n) = 2F(n − 1) + 2n for n ≥ 2
 4. T(1) = 1
 T(n) = 2T(n − 1) + 1 for n ≥ 2
 (Hint: See Example 15 in Section 2.2.)
 5. A(1) = 1
 A(n) = A(n − 1) + n for n ≥ 2
 (Hint: See Practice 7 in Section 2.2.)
 6. S(1) = 1
 S(n) = S(n − 1) + (2n − 1) for n ≥ 2
 (Hint: See Example 14 in Section 2.2.)
 7. T(1) = 1
 T(n) = T(n − 1) + n2 for n ≥ 2
 (Hint: See Exercise 7 in Section 2.2.)
 8. P(1) = 2
 P(n) = 2P(n − 1) + n2n for n ≥ 2
 (Hint: See Practice 7 in Section 2.2.)
 9. F(1) = 1
 F(n) = nF(n − 1) for n ≥ 2
 10. S(1) = 1
 S(n) = nS(n − 1) + n! for n ≥ 2
 11. A(1) = 1
 A(n) = 2(n − 1)A(n − 1) for n ≥ 2
 (Hint: 0! is defined to equal 1.)
 12. P(1) = 2
 P(n) = 3(n + 1)P(n − 1) for n ≥ 2
 13. At the beginning of this chapter the contractor claimed:

The material to be stored at the chemical disposal site degrades to inert matter at the rate of 5% per
year. Therefore only about one-third of the original active material will remain at the end of 20 years.

 a. Write a recurrence relation T(n) for the amount of active material at the beginning of year n. Assume
that T(1) = X, a specific but unknown amount.

 b. Solve the recurrence relation.
 c. Compute T(21) to check the contractor’s claim; note that the end of 20 years is the beginning of the

21st year.
 14. A colony of bats is counted every 2 months. The first four counts are 1200, 1800, 2700, and 4050.
 a. Assuming that this growth rate continues, write a recurrence relation for the number of bats at count n.
 b. Solve the recurrence relation.
 c. What will the 12th count be?
 15. Spam e-mail containing a virus is sent to 1,000 e-mail addresses. After 1 second, a recipient machine

broadcasts 10 new spam e-mails containing the virus, after which the virus disables itself on that
machine.

Section 3.2 Recurrence Relations 199

 a. Write a recurrence relation for the number of e-mails sent at the start of the nth second.
 b. Solve the recurrence relation.
 c. How many e-mails are sent at the end of 20 seconds (that is, at the beginning of the 21st second)?
 16. Total natural gas consumption in the state of New Jersey was 614,908 million cubic feet in 2008 and

653,459 million cubic feet in 2010.
 a. Assuming a constant annual percentage growth rate r, write a recurrence relation (in terms of r) for the

total natural gas consumption in New Jersey in year n.
 b. Solve the recurrence relation (in terms of r).
 c. Using the given data, compute the value of r.
 d. What will be the total natural gas consumption in New Jersey in the year 2020?
 17. A loan of $5,000 is charged a 12% annual interest rate. An $80 payment is made each month.
 a. Write a recurrence relation for the loan balance remaining at the beginning of month n.
 b. Solve the recurrence relation. (See Exercise 27 of Section 2.2 for the formula for the sum of a geometric

sequence.)
 c. How much is left of the loan balance at the beginning of the 19th month?
 18. In an account that pays 3% annually, $1,000 is deposited. At the end of each year, an additional $100 is

deposited into the account.
 a. Write a recurrence relation for the amount in the account at the beginning of year n.
 b. Solve the recurrence relation. (See Exercise 27 of Section 2.2 for the formula for the sum of a geometric

sequence.)
 c. What is the account worth at the beginning of the 8th year?
 19. The shellfish population in a bay is estimated to have a count of about 1,000,000. Studies show that

 pollution reduces this population by about 2% per year, while other hazards are judged to reduce the
population by about 10,000 per year.

 a. Write a recurrence relation for the shellfish population at the beginning of year n.
 b. Solve the recurrence relation. (See Exercise 27 of Section 2.2 for the formula for the sum of a geometric

sequence.)
 c. What is the approximate shellfish population at the beginning of year 10?
 20. A certain protected species normally doubles its population each month. The initial population is 20,

but by the beginning of the next month, 1 specimen has died of an infection. In successive months, the
 infection kills 2, then 4, then 8, and so forth.

 a. Write a recurrence relation for the size of the population at the beginning of month n.
 b. Solve this recurrence relation.
 c. What is the size of the population at the beginning of month 7?
 21. A computer virus that spreads by way of e-mail messages is planted in 3 machines the first day. Each

day, each infected machine from the day before infects 5 new machines. By the end of the second day, a
software solution has been found to counteract the virus, and 1 machine is clean at that point. Each day
thereafter, 6 times as many machines are clean as were clean the day before.

 a. Write a recurrence relation for the total number of infected machines on day n.
 b. Solve this recurrence relation.
 c. How many days will it be before the effects of the virus are completely gone?
 22. This problem concerns the Towers of Hanoi puzzle (see Exercise 82 in Section 3.1).
 a. Based on the recursive algorithm of Exercise 82 in Section 3.1, find a recurrence relation M(n) for the

number of disk moves required to solve the Towers of Hanoi puzzle for n disks.

200 Recursion, Recurrence Relations, and Analysis of Algorithms

 b. Solve this recurrence relation. (Hint: See Exercise 15 in Section 2.2.)
 c. Go through the steps of the solution algorithm for n = 3 and record the number of disk moves required.

Compare this number with the result from part (b) with n = 3.
 d. The mythical origin of the Towers of Hanoi puzzle concerns 64 golden disks that a group of monks are

moving from one tower to another. When their task is complete, the world will end. Assuming that the
monks can move 1 disk per second, calculate the number of years to complete the task.

 23. Early members of the Pythagorean Society defined figurate numbers to be the number of dots in certain
geometrical configurations. The first few triangular numbers are 1, 3, 6, and 10:

1 3 6 10

 Find and solve a recurrence relation for the nth triangular number. (Hint: See Practice 7 in Section 2.2.)
 24. The first few square numbers (see the previous Exercise) are 1, 4, 9, and 16:

161 94

 Find and solve a recurrence relation for the nth square number. (Hint: See Example 14 in Section 2.2.)
 25. The first few pentagonal numbers (see Exercise 23) are 1, 5, 12, and 22:

1 5 12 22

 Find and solve a recurrence relation for the nth pentagonal number. (Hint: See Exercise 28 of Section 2.2
for the formula for the sum of an arithmetic sequence.)

 26. Use induction to verify that equation (8) of this section is the solution to the recurrence relation (6) subject
to the basis condition that S(1) is known.

In Exercises 27–34, solve the recurrence relation subject to the initial conditions.

 27. T(1) = 5
 T(2) = 11
 T(n) = 5T(n − 1) − 6T(n − 2) for n ≥ 3

Section 3.2 Recurrence Relations 201

 28. A(1) = 7
 A(2) = 18
 A(n) = 6A(n − 1) − 8A(n − 2) for n ≥ 3
 29. S(1) = 4
 S(2) = −2
 S(n) = −S(n − 1) + 2S(n − 2) for n ≥ 3
 30. P(1) = 5
 P(2) = 17
 P(n) = 7P(n − 1) − 12P(n − 2) for n ≥ 3
 31. F(1) = 8
 F(2) = 16
 F(n) = 6F(n − 1) − 5F(n − 2) for n ≥ 3
 32. T(1) = −1
 T(2) = 7
 T(n) = −4T(n − 1) − 3T(n − 2) for n ≥ 3
 33. B(1) = 3
 B(2) = 14
 B(n) = 4B(n − 1) − 4B(n − 2) for n ≥ 3
 34. F(1) = −10
 F(2) = 40
 F(n) = −10F(n − 1) − 25F(n − 2) for n ≥ 3

In Exercises 35 and 36, solve the recurrence relation subject to the initial conditions; the solutions involve
complex numbers.

 35. A(1) = 8
 A(2) = 8
 A(n) = 2A(n − 1) −2A(n − 2) for n ≥ 3
 36. S(1) = 4
 S(2) = −8
 S(n) = −4S(n − 1) − 5S(n − 2) for n ≥ 3
 37. Solve the Fibonacci recurrence relation

F(1) = 1
F(2) = 1

 F(n) = F(n − 1) + F(n − 2) for n > 2

 Compare your answer with Exercise 31 of Section 3.1.
 38. Find a closed-form solution for the Lucas sequence

L(1) = 1
L(2) = 3

 L(n) = L(n − 1) + L(n − 2) for n ≥ 3

202 Recursion, Recurrence Relations, and Analysis of Algorithms

 39. Houses in a new development go on sale initially for an average price of $200,000. At the beginning of
month 2, the average sale price has risen to $250,000. At the beginning of each succeeding month, the
average price increase is half what it was the previous month.

 a. Write and solve a recurrence relation for M(n), the average sale price at the beginning of month n.
 b. At the beginning of which month is the average price within $2,000 of $300,000?
 40. A contaminated soil site is tested monthly for the presence of a particular microorganism. Initially,

950 microorganisms per cubic foot of soil are found; at the beginning of month 2, there are 1,000 organ-
isms per cubic foot. Left untreated, the growth rate of this microorganism increases by 25% per month.

 a. Write and solve a recurrence relation for O(n), the number of organisms present per cubic foot at the
beginning of month n.

 b. At the end of what month does the number of organisms first exceed 5,000 per cubic foot?
 41. Prove that the number of binary strings of length n with no two consecutive 0s is given by the Fibonacci

sequence term F(n + 2). (Hint: Write a recurrence relation; consider strings of length n that end in 1 and
those that end in 0.)

 42. a. Find a recurrence relation for the number of binary strings of length n that have two consecutive 1s.
 b. How many binary strings of length 4 have two consecutive 1s? What are these strings?
 43. Consider the recurrence relation S(n) = c1S(n − 1) as a linear second-order homogeneous recurrence

 relation with constant coefficients where c2 = 0. Solve this recurrence relation using its characteristic
equation, and prove that the solution is the same as that of Equation (8).

 44. Prove that

S(n) = prn−1 + q(n − 1)rn−1

where

p = S(1)
pr + qr = S(2)

 is a solution to the recurrence relation S(n) = c1S(n − 1) + c2S(n − 2) for all n ≥ 1 if r is a repeated root
of the characteristic equation.

In Exercises 45–48, solve the recurrence relation subject to the basis step. (Hint: See Example 15 in Section 2.2,
and note that 2log n = n.)

 45. P(1) = 1

 P(n) = 2Pan
2
b + 3 for n	≥	2, n = 2m

 46. T(1) = 3

 T(n) = Tan
2
b + n for n ≥ 2, n = 2m

 47. S(1) = 1

 S(n) = 2San
2
b + n for n ≥ 2, n = 2m

 48. P(1) = 1

 P(n) = 2Pan
2
b + n2 for n ≥ 2, n = 2m

Section 3.3 Analysis of Algorithms 203

 S e c t I o n 3 . 3 analysis of algoRithms

The General Idea

Often more than one algorithm can perform the same task. Because we assume that
all these algorithms perform correctly, we need some other basis of comparison to
decide which algorithm to use in a given situation. Several criteria could be used
to judge which is the “best” algorithm. We might ask, for example, which is easi-
est to understand, which makes the most efficient use of machine memory when
implemented as computer code, or which runs most efficiently. One might expect
that to judge whether an algorithm is “running efficiently” means standing by with
a stopwatch while the computer code executes. But the stopwatch approach may tell
us more about the speed of the processor than it does the inherent efficiency of the
algorithm. Even timing the code for competing algorithms on the same processor
and using the same input data can give a misleading picture of what might happen
when the input data set is larger.

Instead, we evaluate the time efficiency of an algorithm by estimating the
number of operations it must perform. We count only the operations that are
basic to the task at hand, not “housekeeping” operations that make just a small
 contribution to the total work required.

The study of the efficiency of algorithms, that is, the number of operations
they perform, is called analysis of algorithms. Various techniques for algorithm
analysis have been developed. Sometimes a rather straightforward analysis can be
done simply by inspecting the algorithm.

 example 27 Following is an algorithm to write out, for each student on a grade roster, the sum
of m quiz grades minus the lowest grade. The outer loop goes through each of the
n students; the inner loop goes through the quizzes for the current student. For each
student, the successive quiz grades are added and the lowest grade is ultimately
subtracted from the sum of all the grades. These additions and subtractions seem
fundamental to how the algorithm works, so we will count the work contributed by
these arithmetic operations.

for i = 1 to n do
low = roster[i].quiz[1]
sum = roster[i].quiz[1]

for j = 2 to m do
sum = sum + roster[i].quiz[j] //A
if roster[i].quiz[j] < low then

low = roster[i].quiz[j]
end if

end for
sum = sum − low //S
write(“Total for student”, i, “is”, sum)

end for

Subtraction occurs at the line marked //S, which is executed once for each
pass through the outer loop (once for each student), a total of n times. Addition,

204 Recursion, Recurrence Relations, and Analysis of Algorithms

 however, occurs at the line marked //A. This is done within the inner loop, which
executes m − 1 times for each student, that is, for each of the n passes of the outer
loop. The total number of additions is therefore n(m − 1). The total number of
 arithmetic operations is n + n(m − 1) = nm. Of course the value of this expression
depends on n (the number of students) and m (the number of quizzes). The quanti-
ties n and m measure the amount of input data; virtually any algorithm’s work will
change with the input size.

The algorithm also does some “housekeeping” work. Values are assigned
to variables, comparisons are done (to find the lowest quiz grade for each stu-
dent), and for the loop indices i and j have to be incremented. But the number of
times these operations are done also depends on the number of times through the
loops, so their effect might be to multiply the nm result by some constant factor. In
 comparing algorithms A and B, we’re usually looking for bigger differences than
just a constant multiple, which is why we ignore the housekeeping details.

Now suppose the task is to search a sorted list of n words or numbers for a
particular target value x. We already have one algorithm to perform this task, the
binary search algorithm from Section 3.1. Another algorithm for the same task, the
sequential search algorithm, simply compares x with each entry in the list in turn
until either x is found or the list is exhausted. (This algorithm actually works on any
list, sorted or not.) A pseudocode description of the sequential search algorithm is
given in the following box.

 algorIthm SequentialSearch

SequentialSearch(list L; integer n; itemtype x)
//searches a list L of n items for item x
Local variable:
integer i //marks position in the list
 i = 1
 while L[i] ∙ x and i < n do
 i = i + 1
 end while
 if L[i] = x then
 write(“Found”)
 else
 write(“Not found”)
 end if
end function SequentialSearch

Both binary search and sequential search work by comparing elements from
the list with the target value x until a match is found. In fact it is difficult to imag-
ine how any possible search algorithm could avoid such comparisons, so these
 comparisons will be the basic operation to count in analyzing these two algorithms.

Section 3.3 Analysis of Algorithms 205

The sequential search algorithm does the maximum amount of work (number
of comparisons) when x is the last item in the list or when x does not appear in
the list at all. In either case, all elements are compared to x, so n comparisons are
done. This is the “worst case” for this algorithm, and the work depends on the size
n of the input (the length of the list). The minimum amount of work is done when
x is the very first item in the list; only one comparison is made. This is the “best
case” for this algorithm. (In the algorithm of Example 27, the same number of
arithmetic operations is always done; there is no best or worst case.)

There are many possibilities between the best case and the worst case. If x falls
in the exact middle of the list, the search would require roughly n/2 comparisons.
It would be helpful to obtain some measure of the “average” amount of work done.
This measure would require some way to describe the average list being searched
and the average relationship of a target item x to that list. Exercises 35 and 36
in this section explore some aspects of average case analysis for the sequential
search algorithm. For most algorithms, however, average behavior is very difficult
to determine. To compare the efficiency of algorithms, therefore, we often content
ourselves with the worst-case count of the number of operations required.

 example 28 Given a long string of text characters, can we find the first instance of a particular
substring or “pattern” within the text? This problem has a number of important
 applications, such as

• looking for specific strings in an HTML document that might be governed
by a style rule of a Cascading Style Sheet.

• using the UNIX grep command to search a file for a specified string, or the
“Find” command in any text editor or word processor.

• looking for specific gene sequences within a strand of DNA.

DNA is a long molecule that is basically a chemically bonded chain of smaller
molecules called nucleotides. There are four nucleotides, abbreviated as A, C, G,
and T. Thus a section of DNA might be represented as the sequence

…TAATCATGGTCATAGCTGTTTCCTGTGTGAAATTG…

DNA is stored within the cells of living organisms on chromosomes; various
sections of these chromosomes are identified as genes. Genes, through their
DNA “instructions,” create proteins that control specific functions or traits with-
in the organism (hair color, blood type, and so on). Thus our entire genetic code
requires only four symbols! “Mapping the human genome”, that is, determining
the entire DNA sequence of humans, was a huge scientific undertaking, essen-
tially completed in 2003, although the work of identifying specific genes and
their particular function is ongoing. It is known, for example, that the disease
cystic fibrosis is caused by a mutation in a particular gene (DNA sequence) that
is composed of about 230,000 nucleotides.

The most intuitive (although not the most efficient) string pattern-matching
algorithm compares the pattern (a string of length m) against the text (a string of
length n with n ≥ m), starting with the first character of the text and marching
through the pattern.

206 Recursion, Recurrence Relations, and Analysis of Algorithms

T1 T2 T3 … Tm Tm+1 … Tn

 ` ` ` `

P1 P2 P3 … Pm

If all m characters match, the pattern has been found. If there is a mismatch at some
point between the text and the pattern, the pattern slides over one character in the
text, and the matching process begins again.

T1 T2 T3 … Tm Tm+1 … Tn

 ` ` `

 P1 P2 P3 … Pm

The last segment of text where the pattern could possibly occur is the last m
 elements of the text. This segment begins at Tn−m+1, as shown below.

T1 T2 T3 … Tn−m+1 Tn−m+2 … Tn−m+m = Tn

 ` ` `

 P1 P2 … Pm

For example, if the text is 23 characters long and the pattern is 5 characters long,
then the last piece of text that can possibly hold the pattern is T19T20T21T22T23.

The unit of work in this algorithm is comparisons between a text character and
a pattern character. The best case occurs when the pattern is found as the first m
characters of the text, which requires m comparisons. The worst case is when the
pattern does not occur in the text at all, and the pattern “window” slides all the way
over to Tn−m+1. From each of those n − m + 1 starting points, the pattern fails
to be found, but the worst case is if the pattern almost matches and only the last
character fails. For example, consider the text and pattern shown:

Text: TTTTTTTTTTTTT

Pattern: TTTTTS

This example requires m comparisons (the first m − 1 are matches and only the
mth comparison fails) at each of the n − m + 1 starting positions, making the total
number of comparisons m(n − m + 1).

Analysis Using Recurrence Relations

In this section we will analyze algorithms that are defined recursively. Because
much of the activity of a recursive algorithm takes place “out of sight” in the
many invocations that can occur, an analysis using the direct counting technique
of Example 27 won’t work. Analysis of recursive algorithms usually involves
 solving a recurrence relation.

Section 3.3 Analysis of Algorithms 207

 EXAMPLE 29 We can recast the sequential search algorithm from an iterative version
 (repeating some action over and over in a loop) to a recursive version. The base
case says that you check whether you have run off the end of the list and if not,
you check for the target x at the first position in the list. If you find it, fine, if not,
then you invoke the algorithm again on the rest of the list. Here is pseudocode
for the recursive function to search the list from L[i] to L[n]; the function is
invoked initially with i = 1.

 ALgorithM SequentialSearchrecurSive

SequentialSearchRecursive(list L; integer i, n; itemtype x)
//searches list L from L[i] to L[n] for item x

if i > n then
write(“not found”)

else
if L[i] = x then

write(“found”)
else

SequentialSearchRecursive(L, i + 1, n, x)
end if

end if
end function SequentialSearchRecursive

Figure 3.3 gives a visual representation of the recursive sequential search algorithm.
Each time the algorithm is invoked, the new list to be searched is only 1 element shorter
than the previous list, so in the worst case the algorithm has to work quite hard.

Search
here;

if fail,
not in list

Search
here;

if fail,
search here

Search
here;

if fail,
search here

if fail,
search here

Search
here;

Search
here;

Search
here;

if fail,
search here

if fail,
search here

Figure 3.3

208 Recursion, Recurrence Relations, and Analysis of Algorithms

Let C(n) represent the maximum number of comparisons required for an
 n-element list. This is a symbolic expression for an answer we are assuming we
don’t already know, but will learn by solving the recurrence relation. By this no-
tation, C(n − 1) symbolically represents the maximum number of comparisons
 required to search the rest of the list after the first position. The recurrence relation is

 C(1) = 1 (1 comparison to search a 1-element list)
 C(n) = 1 + C(n − 1) for n	≥	2 (1 comparison against the first element,
 then however many comparisons

 are required for the rest of the list)

This is a first-order, linear recurrence relation with constant coefficients. By
 Equation (8) in Section 3.2, the solution is

C(n) = (1)n−1(1) + ∙
n

i=2
(1)n− i(1) = 1 + (n − 1) = n

This agrees with our previous analysis for the worst case.

	 example 30 Now let’s do a worst-case analysis of the binary search algorithm. Recall that binary
search is a recursive algorithm that operates on a list that is sorted in increasing
order. It first does one comparison of the target with the midpoint value of the list.
If this comparison fails, then the process is repeated on the right half or the left half
of the list, depending on whether the target value is greater than or less than the
midpoint value. Figure 3.4 illustrates one possible worst-case path.

Search
here;

if fail,
not in list

Search
here;

Search
here;

if fail, test
for smaller or larger

Search
here;

if fail, test
for smaller or larger

if fail, test
for smaller or larger

Figure 3.4

Binary search is a divide-and-conquer algorithm, where the problem is
 decomposed recursively into significantly smaller subproblems. If the original list
is n elements long, then half the list is at worst n/2 elements long. (In the 8-element
list of Example 14, for instance, when 10 is the midpoint value, the right “half” of
the list has 4 elements but the left “half” has only 3.) Cutting the list in half makes
much faster progress than reducing the list by one element, as in sequential search,
so we expect the worst case of binary search to require less work.

Section 3.3 Analysis of Algorithms 209

Let C(n) stand for the maximum number of comparisons required to do a

 binary search on an n-element list. Then Can
2
b stands for the maximum number

of comparisons required to search a list half that size. If we are to keep cutting the
list in half, it is convenient to consider only the case where we get an integer value
each time we cut in half, so we will assume that n = 2m for some m ≥ 0.The recur-
rence relation for C(n) is

C(1) = 1 (1 comparison to search a
1- element list)

C(n) = 1 + Can
2
b for n ≥ 2, n = 2m (1 comparison against the middle

element, then however many
comparisons are required for half
the list)

This recurrence relation was solved in the previous section (Examples 24 and 25).
The solution is

C(n) = 1 + log n

By the preceding example, the maximum number of comparisons required
to do a binary search on an n-element ordered list, with n = 2m, is 1 + log n.
In Example 14, n was 8, and four comparisons (1 + log 8) were required in the
worst case (x not in the list). A sequential search would require eight comparisons.
Because

1 + log n < n for n = 2m, n ≥ 4

binary search is almost always more efficient than sequential search. However,
the sequential search algorithm does have one big advantage—if the list being
searched is unsorted, the sequential search algorithm works, but the binary search
algorithm does not. If we first sort the list and then use the binary search algo-
rithm, we must then consider the work involved in sorting the list. Exercises 13–34
at the end of this section ask you to count the operations required to sort a list by
several different algorithms.

■

Practice 16 Fill in the following table for the worst-case number of comparisons required for
 sequential search and binary search on a list of the indicated size.

n Sequential Search binary Search

64

1024

32768

Although we have computed the work for binary search only on a list of size n
where n is a power of 2, this gives us a range for the work required for values of n

210 Recursion, Recurrence Relations, and Analysis of Algorithms

that fall between powers of 2. That’s why limiting n to powers of 2 in our analysis
is not particularly significant.

Upper Bound (Euclidean Algorithm)

The Euclidean algorithm, as presented in Section 2.3, uses a while loop to do
 successive divisions to find gcd(a, b) for positive integers a and b, a > b. To
 analyze the Euclidean algorithm, we must first decide on the operation we are
counting. Because the Euclidean algorithm does repeated divisions, we’ll take the
division operation as our unit of work. Because a > b, we can take a as a measure
of the size of the input values (which we usually denote by n). We want to find E(a),
where this denotes the amount of work (the number of divisions) required to find
gcd(a, b) in the worst case.

A recursive version of the Euclidean algorithm can also be written (see
Exercise 81, Section 3.1); the key to the recursive version is to recognize that
gcd(a, b) involves finding gcd(b, r), where r is the remainder on dividing a by
b. We’ve just seen a case where the operations of a recursive algorithm (binary
search) could be expressed neatly as a recurrence relation where the input size gets
halved after each operation. A recurrence relation would express E(a) in terms of
E at smaller values. But what are these smaller values? To find gcd(a, b) we find
gcd(b, r), so it is clear that the input size is getting smaller, but in what way? Con-
sider Example 27 of Section 2.3, where to find gcd(420, 66) the following divisions
were performed:

 6 2 1 3
 66q420 24q66 18q24 6q18
 396 48 18 18

 24 18 6 0

Here the successive values being divided are 420, 66, 24, 18. The change from
420 to 66 is much larger than cutting in half, while the change from 24 to 18 is less.

In fact, we won’t find a recurrence relation or an exact expression for E(a). But
we will at least find an upper bound for E(a). An upper bound is a ceiling on the
amount of work an algorithm does; the algorithm can require no more steps than
the upper bound, but it may not require that many.

To find this upper bound, we will show that if i > j and i is divided by j with
remainder r, then r < i/2. There are two cases:

 1. If j ≤ i/2, then r < i/2 because r < j.
 2. If j > i/2, then i = 1 * j + (i − j); in other words, the quotient is 1 and r is

i − j, which is < i/2.

In the Euclidean algorithm, the remainder r at any step becomes the dividend
(the number being divided) two steps later. So the successive dividends are at least
halved every two divisions. The value a can be halved log n times, therefore at
most 2 log n divisions are done. Thus

 E(a) ≤ 2 log a (1)

The value of 2 log a for a = 420 is almost 18, whereas it took only 4 divisions
to find gcd(420, 66). Evidently this upper bound estimate is rather loose, like
 saying that every student in this class is under 12 feet in height. An improved (that
is, lower) upper bound is derived in Exercises 37–40 at the end of this section.

Section 3.3 Analysis of Algorithms 211

Special iNtereSt page

Of Trees % and Pancakes

Of Trees %

Mapping the evolutionary “tree of life” has been
the subject of research since Charles Darwin. Until
 recently, this research sought to find similarities be-
tween species based on structural properties such
as skeletons, but today scientists search for similari-
ties in DNA and other genetic evidence. This field of
 research, called phylogenetics, can involve aligning
the molecular sequences of many thousands of species,
and the work becomes an enormous computational
problem. Researchers at the University of Texas have
developed a software package called SATé (and a new
and improved SATé-II)—Simultaneous Alignment
and Tree Estimation—that uses a divide-and-conquer
algorithm. Huge data sets are divided into small data
sets, alignments are found for the small sets, and then
the results are combined to determine an overall align-
ment (and a likely tree) for the full data set. The re-
sulting full alignment isn’t foolproof, and the software
repeats this process many times, creating new align-
ments and trees. A statistical “maximum likelihood”
method selects the best result by comparison with
known answers. This approach has been proven to
produce results comparable to other, slower methods,
or to produce more accurate results in the same amount
of time.

Sequence alignment and evolutionary t ree-building
tools have applications to areas other than tracing the
path of historical evolution. For example, the Centers
for Disease Control use them to detect how a newly
emerging virus differs from previous viruses in order
to plan the best counterattack.

http://www.tacc.utexas.edu/news/feature-stories/2012/
tree-of-life

http://www.ncbi.nlm.nih.gov/pubmed/22139466

% and Pancakes

A problem posed in the American Mathematical
Monthly in 1975 by Jacob Goodman concerned a
waiter in a café where the cook produced a stack of
pancakes of varying sizes. The waiter, on the way to
delivering the stack to the customer, attempted to ar-
range the pancakes in order by size, with the largest
on the bottom. The only action available was to stick
a spatula into the stack at some point and flip the en-
tire stack above that point. The question is: What is the
maximum number of flips ever needed for any stack
of n pancakes? This number, Pn , is known as the nth
pancake number.

Here’s a fairly simple algorithm to arrange the pan-
cakes. Put the spatula under the largest pancake, and flip.
This puts the largest pancake on top. Put the spatula at
the bottom of the unordered section (in this case at the
bottom) and flip. This puts the largest pancake on the
bottom, where it belongs. Repeat with the rest of the pan-
cakes. Each pancake therefore requires two flips, which
would give a total of 2n flips required. But the last two
pancakes require at most one flip; if they are already
in order, no flips are needed, and if they are out of or-
der, only one flip is needed. So this algorithm requires
at most 2(n − 2) + 1 = 2n − 3 flips in the worst case,
which means that Pn ≤ 2n − 3. Are there other algo-
rithms that require fewer flips in the worst case?

A faculty member at Harvard University posed
this question to his class; several days later, a sopho-
more from the class came to his office with a better
 algorithm. This algorithm, which requires at most
(5n + 5)/3 flips, was published in the journal Discrete
Mathematics in 1979. The authors were William Gates
(the student) and Christos Papadimitriou.

Yes, THAT William Gates.

From SCHNEIDER/GERSTING. Invitation to Computer
Science, 6/E. © 2013 South-Western, a part of Cengage
Learning, Inc. Reproduced by permission.
www.cengage.com/permissions

Chapter 3

http://www.tacc.utexas.edu/news/feature-stories/2012/tree-of-life
http://www.tacc.utexas.edu/news/feature-stories/2012/tree-of-life
http://www.ncbi.nlm.nih.gov/pubmed/22139466
www.cengage.com/permissions

212 Recursion, Recurrence Relations, and Analysis of Algorithms

exercISeS 3.3

 1. Modify the algorithm of Example 27 so that in addition to dropping the student’s lowest quiz grade, the
highest quiz grade is counted twice (like the old version, your new algorithm should do no operations
besides addition and subtraction).

 2. What is the total number of arithmetic operations done in the algorithm of Exercise 1?
 3. The following algorithm adds all the entries in a square n × n array A. Analyze this algorithm where the

work unit is the addition operation.

sum = 0
for i = 1 to n do
 for j = 1 to n do
 sum = sum + A[i, j]
 end for
end for
write (“Total of all array elements is”, sum)

 4. The following algorithm adds all the entries in the “upper triangular” part of a square n × n array A.
 Analyze this algorithm where the work unit is the addition operation.

sum = 0
for k = 1 to n do
 for j = k to n do
 sum = sum + A[k, j]
 end for
end for
write (“Total of all upper triangular array elements is”, sum)

 5. Analyze the following algorithm where the work unit is the output statement. Assume that n = 2m for
some positive integer m.

integer j, k
 for k = 1 to n do

j = n;
 while j ≥ 2 do

 write j
 j = j/2

 end while
end for

S e c t I o n 3 . 3 Review

technIQue

• Do a worst-case analysis of an algorithm either
directly from the algorithm description or from a
recurrence relation.

maIn IDeaS

• Analysis of an algorithm estimates the number of
basic operations that the algorithm performs, which
is dependent on the size of the input.

• Analysis of recursive algorithms often leads to re-
currence relations.

• Lacking an exact expression for the number of op-
erations an algorithm performs, it may be possible
to find an upper bound.

Section 3.3 Analysis of Algorithms 213

 6. Analyze the following algorithm where the work unit is the output statement. (Hint: One of the exercises
in Section 2.2 might be helpful).

integer i
real d, x;
for i = 1 to n do

d = 1.0/i;
x = i;

 while x > 0 do
 write x
 x = x − d;
 end while
end for

Exercises 7 and 8 involve n! = n(n − 1)(n − 2) c1.

 7. a. Write the body of an iterative function to compute n! for n ≥ 1.
 b. Analyze this function where the work unit is the multiplication operation.

 8. a. Write a recursive function to compute n! for n ≥ 1.
 b. Write a recurrence relation for the work done by this function where multiplication is the unit of work.
 c. Solve the recurrence relation of part b.
 d. Compare your answer in part c to your result in Exercise 7b.

Exercises 9 and 10 involve evaluating a polynomial anxn + an−1xn−1 + c+ a0 for a specific value of x.

 9. A straightforward algorithm to evaluate a polynomial is given by the following function:

Poly(real an, real an−1, … , real a0, real c, integer n)
//evaluates polynomial anxn + an−1xn−1 + c+ a0 for x = c
Local variables:
integer i
real sum = a0
real product = 1

 for i = 1 to n do
 product = product * c
 sum = sum + ai * product
 end for

return sum
end function Poly

 a. Walk through this algorithm to compute the value of 2x3 − 7x2 + 5x − 14 for x = 4.
 b. The algorithm involves both additions and multiplications; analyze this algorithm where those operations

are the work units.

 10. An alternative to the polynomial evaluation algorithm in Exercise 9 is an algorithm called Horner’s
 method. Horner’s method relies on an alternative expression for a polynomial, for example

2x3 − 7x2 + 5x − 14 = −14 + x(5 + x(−7 + x(2)))

214 Recursion, Recurrence Relations, and Analysis of Algorithms

Horner(real an, real an−1, … , real a0, real c, integer n)
//evaluates polynomial anxn + an−1xn−1 + c+ a0 for x = c
//using Horner’s method
Local variables:
integer i
real result = an

 for i = 1 to n do
 result = result * c + an−i

 end for
 return result

end function Horner

 a. Walk through this algorithm to compute the value of 2x3 − 7x2 + 5x − 14 for x = 4.
 b. Analyze this algorithm where addition and multiplication operations are the work units.
 c. In evaluating a polynomial of degree n = 98 for some value of x, how many operations have been saved

by using Horner’s method over the method of Exercise 9?

 11. For the algorithm of Example 27, count the total number of assignments and comparisons done in the best
case (least work) and the worst case (most work); describe each of these cases.

 12. a. Write a function to convert a binary string bnbn−1 … b1b0 to its decimal equivalent.
 b. Test your function on the binary string 10011
 c. Describe the worst case for this algorithm and find the number of multiplications and additions done in

this case.
 d. Describe the best case for this algorithm and find the number of multiplications and additions done in

this case.

Exercises 13 and 14 relate to a recursive sorting algorithm called BubbleSort.

 13. Algorithm BubbleSort works by making repeated passes through a list; on each pass, adjacent elements
that are out of order are exchanged. At the end of pass 1, the maximum element has “bubbled up” to the
end of the list and does not participate in subsequent passes. The following algorithm is called initially
with j = n.

BubbleSort(list L; integer j)
//recursively sorts the items from 1 to j in list L into increasing order

if j = 1 then
sort is complete, write out the sorted list

else
for i = 1 to j − 1 do

if L[i] > L[i + 1] then
exchange L[i] and L[i + 1]

end if
end for
BubbleSort(L, j − 1)

end if
end function BubbleSort

Section 3.3 Analysis of Algorithms 215

 a. Walk through algorithm BubbleSort to sort the list 5, 6, 3, 4, 8, 2.
 b. Write a recurrence relation for the number of comparisons of list elements done by this algorithm to sort

an n-element list.
 c. Solve this recurrence relation.
 14. In algorithm BubbleSort, suppose we include exchanges of list elements as a work unit, in addition to

comparisons between list elements.
 a. Describe the worst case and find the number of comparisons and exchanges done in this case.
 b. Describe the best case and find the number of comparisons and exchanges done in this case.
 c. Assume that on the average exchanges between elements must be done about half the time. Find the

 number of comparisons and exchanges done in this case.

Exercises 15–18 refer to the recursive algorithm SelectionSort of Section 3.1.

 15. In one part of algorithm SelectionSort, the index of the maximum item in a list must be found. This requires
comparisons between list elements. In an n-element (unsorted) list, how many such comparisons are needed
in the worst case to find the maximum element? How many such comparisons are needed in the average case?

 16. Defining the basic operation as the comparison of list elements and ignoring the amount of work required
to exchange list elements, write a recurrence relation for the amount of work done by selection sort on an
n-element list. (Hint: Use the result from Exercise 15.)

 17. Solve the recurrence relation of Exercise 16.
 18. Assume that the exchange of L[i] and L[j] takes place even if i = j. Write an expression for the total

 number of comparisons and exchanges done to sort an n-element list.

Exercises 19–24 relate to a recursive sorting algorithm called MergeSort, which is described as follows: A one-
element list is already sorted; no further work is required. Otherwise, split the list in half, sort each half using
MergeSort (this is the recursive part), and then merge the two halves back into one sorted list.

 19. The merge part of algorithm MergeSort requires comparing elements from each of two sorted lists to see
which goes next into the combined, sorted list. When one list runs out of elements, the remaining elements
from the other list can be added without further comparisons. Given the following pairs of lists, perform
a merge and count the number of comparisons to merge the two lists into one.

 a. 6, 8, 9 and 1, 4, 5
 b. 1, 5, 8 and 2, 3, 4
 c. 0, 2, 3, 4, 7, 10 and 1, 8, 9
 20. Under what circumstances will the maximum number of comparisons take place while merging two sorted

lists? If the lengths of the lists are r and s, what is the maximum number of comparisons?
 21. Write a recurrence relation for the number of comparisons between list elements done by algorithm

MergeSort in the worst case. Assume that n = 2m.
 22. Solve the recurrence relation of Exercise 21.
 23. Use the results of Exercises 18 and 22 to compare the worst-case behavior of SelectionSort (counting

 comparisons and exchanges) and MergeSort (counting comparisons) for n = 4, 8, 16, and 32 (use a
 calculator or spreadsheet).

 24. Use the results of Exercises 14 and 22 to compare the worst-case behavior of BubbleSort (counting
 comparisons and exchanges) and MergeSort (counting comparisons) for n = 4, 8, 16, and 32 (use a
 calculator or spreadsheet).

Exercises 25–34 relate to a recursive sorting algorithm called QuickSort, which is described as follows: A
 one-element list is already sorted; no further work is required. Otherwise, take the first element in the list, call it the

216 Recursion, Recurrence Relations, and Analysis of Algorithms

pivot element, then walk through the original list to create two new sublists, L1 and L2. L1 consists of all elements
that are less than the pivot element and L2 consists of all elements that are greater than the pivot element. Put the
pivot element between L1 and L2. Sort each of L1 and L2 using QuickSort (this is the recursive part). Eventually
all lists will consist of 1 element sublists separated by previous pivot elements, and at this point the entire original
list is in sorted order. This is a little confusing, so here is an example, where pivot elements are shown in brackets:

 Original list: 6, 2, 1, 7, 9, 4, 8
 After 1st pass: 2, 1, 4, [6], 7, 9, 8
 After 2nd pass: 1, [2], 4, [6], [7], 9, 8
 After 3rd pass: 1, [2], 4, [6], [7], 8, [9] Sorted

 25. Illustrate QuickSort as above using the list 9, 8, 3, 13.
 26. Illustrate QuickSort as above using the list 8, 4, 10, 5, 9, 6, 14, 3, 1, 12, 11.
 27. How many comparisons between list elements are required for pass 1 of QuickSort in the example list?
 28. How many comparisons between list elements are required for pass 1 of QuickSort on an n-element list?
 29. Suppose that for each pass, each pivot element splits its sublist into two equal-length lists, each approxi-

mately half the size of the sublist (which is actually very difficult to achieve). Write a recurrence relation
for the number of comparisons between list elements in this case.

 30. Solve the recurrence relation of Exercise 29.
 31. Suppose that for each pass, each pivot element splits its sublist (which has k elements) into one empty list

and one list of size k − 1. Write a recurrence relation for the number of comparisons between list elements
in this case.

 32. Solve the recurrence relation of Exercise 31.
 33. Unlike the situation described in Exercise 29 where each pivot element splits the sublist in half for the next

pass, the situation described in Exercise 31 can easily occur. Describe a characteristic of the original list
that would cause this to happen.

 34. Exercise 29 describes the best case of QuickSort and Exercise 31 describes the worst case of QuickSort
with respect to comparisons between list elements.

 a. To which sorting algorithm (SelectionSort, BubbleSort, MergeSort) is the best case of QuickSort
 comparable in the number of comparisons required?

 b. To which sorting algorithm (SelectionSort, BubbleSort, MergeSort) is the worst case of QuickSort
 comparable in the number of comparisons required?

Exercises 35 and 36 refer to algorithm SequentialSearch. It is not hard to do an average case analysis of the
sequential search algorithm under certain assumptions. Given an n-element list and a target value x for which
we are searching, the basic operation is a comparison of list elements to x, hence an analysis should count how
many times such an operation is performed “on the average.” The definition of “average” is shaped by our
 assumptions.

 35. Assume that x is in the list and is equally to be found at any of the n positions in the list. Fill in the rest of
the table giving the number of comparisons for each case.

position at Which x occurs number of comparisons

1 1

2

3

(
n

Chapter 3 Review 217

 Find the average number of comparisons by adding the results from the table and dividing by n. (Hint: See
Practice 7 of Section 2.2—we told you that you should remember this!)

 36. Find the average number of comparisons under the assumption that x is equally likely to be at any of the
n positions in the list or not in the list.

Exercises 37–40 concern a better upper bound for the number of divisions required by the Euclidean algorithm
in finding gcd(a, b). Assume that a and b are positive integers with a > b.

 37. Suppose that m divisions are required to find gcd(a, b). Prove by induction that for m ≥ 1, it is true that
a ≥ F(m + 2) and b ≥ F(m + 1), where F(n) is the Fibonacci sequence. (Hint: To find gcd(a, b), after the
first division the algorithm computes gcd(b, r).)

 38. Suppose that m divisions are required to find gcd(a, b), with m ≥ 4. Prove that

a3
2
b

m+1

< F(m + 2) ≤ a

(Hint: Use the result of Exercise 37 here and Exercise 26 of Section 3.1.)
 39. Suppose that m divisions are required to find gcd(a, b), with m ≥ 4. Prove that m < (log1.5 a) − 1.

(Hint: Use the result of Exercise 38.)
 40. a. Compute gcd(89, 55) and count the number of divisions required.
 b. Compute the upper bound on the number of divisions required for gcd(89, 55) using Equation (1).
 c. Compute the upper bound on the number of divisions required for gcd(89, 55) using the result of

 Exercise 39.
 d. The eighteenth-century French mathematician Gabriel Lamé proved that an upper bound on the number

of division done by the Euclidean algorithm to find gcd(a, b) where a > b is 5 times the number of
decimal digits in b. Compute the upper bound on the number of divisions required for gcd(89, 55) using
Lamé’s theorem.

c h a p t e r 3 Review

termInology

analysis of algorithms (p. 203)
Backus−Naur form (BNF)

(p. 163)
binary search algorithm (p. 169)
binary string (p. 163)
characteristic equation of a

recurrence relation (p.190)
closed−form solution (p. 180)
concatenation (p. 163)
constant coefficient recurrence

relation (p. 182)
divide-and-conquer algorithm

(p. 208)
divide-and-conquer recurrence

relation (p. 193)

empty string (p. 163)
Fibonacci sequence (p. 159)
first-order recurrence relation

(p. 182)
homogeneous recurrence relation

(p. 182)
index of summation (p. 182)
inductive definition (p. 158)
linear recurrence relation

(p. 182)
palindrome (p. 163)
recurrence relation (p. 159)
recursive definition (p. 158)
second-order recurrence relation

(p. 188)

selection sort algorithm (p. 168)
sequence (infinite sequence)

(p. 158)
sequential search algorithm

(p. 204)
solving a recurrence relation

(p. 180)
structural induction (p. 164)
summation notation (p. 182)
upper bound (p. 210)

218 Recursion, Recurrence Relations, and Analysis of Algorithms

SelF-teSt

Answer the following true-false questions without looking back in the chapter.

Section 3.1
1. A sequence defined by

 S(l) = 7
 S(n) = 3S(n − 1) + 2 for n ≥ 2

contains the number 215.
2. A collection T of numbers is defined recursively by

1. 6 and 8 belong to T
2. If X and Y belong to T, so does X + 2Y
Every even number ≥ 18 belongs to T.

3. Recursive algorithms are valuable primarily because
they run more efficiently than iterative algorithms.

4. In the recursive algorithm SelectionSort, changing
one line of the algorithm to

“find the index i of the minimum item in L
between 1 and j ”

sorts the list L in decreasing order.
5. In applying the binary search algorithm to the list

2, 5, 7, 10, 14, 20

where x = 8 is the target item, x is never compared
to 5.

Section 3.2
1. A closed-form solution to a recurrence relation is

obtained by applying mathematical induction to the
recurrence relation.

o n t h e c o m p u t e r

For Exercises 1–7, write a computer program that
 produces the desired output from the given input.

1. Input: Binary string
Output: Message indicating whether the input
string is a palindrome (see Practice 7)
Algorithm: Use recursion.

2. Input: String of characters x and a positive integer n
Output: Concatenation of n copies of x
Algorithm: Use recursion.

(Some programming languages provide built-
in string manipulation capabilities, such as
 concatenation.)

3. Input: Positive integer n
Output: nth value in the Fibonacci sequence using
a. iteration.
b. recursion.

2. S(n) = 2S(n − 1) + 3S(n − 2) + 5n is a linear,
first-order recurrence relation with constant
c oefficients.

3. S(n) = cn−1S(1) + ∙
n

i=2
cn− ig(i) is a closed-form

solution to any linear first-order recurrence relation
with constant coefficients.

4. The solution to the recurrence relation S(n) =
c1S(n − 1) + c2S(n − 2) involves solving the char-
acteristic equation t2 − c1t − c2 = 0.

5. Divide-and-conquer algorithms lead to recurrence
relations that are not first-order.

Section 3.3
1. Analysis of an algorithm generally finds the amount

of work done in the worst case because it is too
 difficult to analyze an average case.

2. In the worst case, the string pattern-matching
 algorithm requires n + m comparisons, where
n = the text size and m = the pattern size.

3. Binary search is more efficient than sequential
search on a sorted list of more than three elements.

4. The recursive version of the sequential search
 algorithm is a divide-and-conquer algorithm.

5. An upper bound for the Euclidean algorithm gives
a ceiling on the number of divisions required to find
gcd(a, b).

Chapter 3 Review 219

Now insert a counter in each version to indicate the
total number of addition operations done. Run each
version for various values of n and, on a single graph,
plot the number of additions as a function of n for each
version.

4. Input: Two positive integers a and b with a > b
Output: gcd(a, b) using
a. the iterative version of the Euclidean algorithm
b. a recursive version of the Euclidean algorithm

5. Input: Unsorted list of 10 integers
Output: Input list sorted in increasing order
Algorithm: Use the recursive selection sort of
 Example 12.

6. Input: Sorted list of 10 integers and an integer x
Output: Message indicating whether x is in the list
Algorithm: Use the binary search algorithm of
 Example 13.

7. Input: Text string, pattern string
Output: Location of beginning of pattern string in
text string, or a message that the pattern string is
not found within the text string
Algorithm: See Example 28.

8. The value (1 + "5)∙2, known as the golden ratio,
is related to the Fibonacci sequence by

lim
nS∞

F(n + 1)
F(n)

=
1 + "5

2
Verify this limit by computing F(n + 1)/F(n) for
n = 10, 15, 25, 50, and 100 and comparing the
 result with the golden ratio.

9. Compare the work done by sequential search and bi-
nary search on an ordered list of n entries by comput-
ing n and 1 + log n for values of n from 1 to 100.
Present the results in graphic form.

This page intentionally left blank

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Use the notation of set theory.
• Find the power set of a finite set.
• Find the union, intersection, difference, complement, and Cartesian product

of sets.
• Identify binary and unary operations on a set.
• Prove set identities.
• Recognize that not all sets are countable.
• Apply the multiplication principle and the addition principle to solve counting

problems.
• Use decision trees to solve counting problems.
• Use the principle of inclusion and exclusion to find the number of elements in

the union of sets.
• Use the pigeonhole principle to decide when certain events must occur.
• Use the formulas for permutations and combinations of r objects, with and

without repetition, from a set of n distinct objects.
• Find the number of distinct permutations of n objects that are not all distinct.
• Generate all permutations of n distinct objects, and all combinations of r out

of n distinct objects.
• Find the probability of an event given that all outcomes are equally likely, that

a probability distribution has been assigned to the outcomes, or that another
event has already occurred.

• Compute the expected value of a quantity with an assigned probability
 distribution.

• Use the binomial theorem to expand (a + b)n.

You survey the 87 computer users who subscribe to your electronic newsletter in
preparation for the release of your new software product. The results of your survey
reveal that 68 have a Windows-based system available to them, 34 have a Linux
system available, and 30 have access to a Mac. In addition, 19 have access to both
Windows and Linux systems, 11 have access to both Linux systems and Macs, and
23 can use both Macs and Windows.

 Question: How many of your subscribers have access to all three types of systems?

4Sets, Combinatorics,
and Probability

Chapter

221

222 Sets, Combinatorics, and Probability

This is an example of a counting problem; you want to count the number of ele-
ments in a certain collection or set—the set of all subscribers with access to all
three systems. A formula that easily solves this counting problem is developed in
Section 4.3.

Set theory is one of the cornerstones of mathematics. Many concepts in math-
ematics and computer science can be conveniently expressed in the language of
sets. Operations can be performed on sets to generate new sets. Although most sets
of interest to computer scientists are finite or countable, there are sets with so many
members that they cannot be enumerated. Set theory is discussed in Section 4.1.

It is often of interest to count the number of elements in a finite set. This may
not be a trivial task. Section 4.2 provides some ground rules for counting the num-
ber of elements in a set consisting of the outcomes of an event. Counting the ele-
ments in such a set can be made manageable by breaking the event down into a se-
quence of subevents or into disjoint subevents that have no outcomes in common.
Some specialized counting principles appear in Section 4.3. Section 4.4 provides
formulas for counting the number of ways to arrange objects in a set and to select
objects from a set, as well as algorithms to generate all the possible arrangements
or selections. Section 4.5 discusses the binomial theorem, an algebraic result that
can also be viewed as a consequence of the counting formulas. Finally, Section 4.6
extends “counting” to the more general idea of probability.

 S e c t i o n 4 . 1 SetS

Definitions are important in any science because they contribute to precise commu-
nication. However, if we look up a word in the dictionary, the definition is expressed
using other words, which are defined using still other words, and so on. Thus, we
have to have a starting point for definitions where the meaning is taken to be under-
stood; our starting point in this discussion will be the idea of a set, a term that we
will not formally define. Instead, we will simply use the intuitive idea that a set is a
collection of objects. Usually all of the objects in a set share some common property
(aside from that of belonging to the same set!); any object that has the property is a
member of the set, and any object that does not have the property is not a member.
(This is consistent with our use of the word set in Section 3.1, where we talked about
the set of propositional well-formed formulas, the set of all strings of symbols from
a finite alphabet, and the set of identifiers in some programming language.)

Notation

We use capital letters to denote sets and the symbol [to denote membership
in a set. Thus a [A means that object a is a member, or element, of set A, and
b o A means that object b is not an element of set A. Braces are used to indicate
a set.

 example 1 If A = {violet, chartreuse, burnt umber}, then chartreuse [A and magenta o A.

No ordering is imposed on the elements in a set; therefore {violet, chartreuse,
burnt umber} is the same as {chartreuse, burnt umber, violet}. Also, each element
of a set is listed only once; it is redundant to list it again.

Section 4.1 Sets 223

PraCtiCe 1 Describe each of the following sets by listing its elements.

a. {x 0 x is an integer and 3 < x ≤ 7}
b. {x 0 x is a month with exactly 30 days}
c. {x 0 x is the capital of the United States} ■

PraCtiCe 2 Describe each of the following sets by giving a characterizing property.

a. {1, 4, 9, 16}
b. {the butcher, the baker, the candlestick maker}
c. {2, 3, 5, 7, 11, 13, 17, …} ■

Two sets are equal if they contain the same elements. (In a definition, “if”
 really means “if and only if”; thus two sets are equal if and only if they contain
the same elements.) Using predicate logic notation,

A = B means (4x)[(x [A S x [B) ` (x [B S x [A)]

In describing a particular set, we have to identify its elements. For a finite set (one
with n elements for some nonnegative integer n), we might do this by simply listing
all the elements, as in set A of Example 1. Although it is impossible to list all ele-
ments of an infinite set (one that is not finite), for some infinite sets we can indicate
a pattern for listing elements indefinitely. Thus, we might write {2, 4, 6, …} to
express the set S of all positive even integers. (Although this is a common prac-
tice, the danger exists that the reader will not see the pattern that the writer has in
mind.) S can also be defined recursively by giving an explicit member of S and then
describing other members of S in terms of already known members. For example,

 1. 2 [S
 2. If n [S, then (n + 2) [S

But the clearest way to describe this particular set S is to describe the
characterizing property of the set elements in words and write

S = {x 0 x is a positive even integer}

read as “the set of all x such that x is a positive even integer.”
We’ve now given three ways to describe a set:

 1. List (or partially list) its elements.
 2. Use recursion to describe how to generate the set elements.
 3. Describe a property P that characterizes the set elements.

Later in this section we’ll see that there are sets for which the first approach won’t
work; often the second approach is difficult to use. The third method is usually
the best choice.

The notation for a set S whose elements are characterized as having property
P is {x 0 P(x)}. Property P here is a unary predicate; this term was introduced in
Chapter 1. For any given x, P(x) is either true or false. In fact, the formal logic
notation of Chapter 1 again comes to the rescue to clarify what we mean by a
characterizing property of a set’s elements:

S = {x 0 P(x)} means (4x)[(x [S S P(x)) ` (P(x) S x [S)]

In words, every element of S has property P and everything that has property P
is an element of S.

224 Sets, Combinatorics, and Probability

It is convenient to name certain standard sets so that we can refer to them
easily. We will use

ℕ = set of all nonnegative integers (note that 0 [ℕ)
ℤ = set of all integers
ℚ = set of all rational numbers
ℝ = set of all real numbers
ℂ = set of all complex numbers

Sometimes we will also want to talk about the set with no elements (the empty set,
or null set), denoted by [or { }. For example, if S = {x 0 x [ℕ and x < 0}, then
S = [. Note that [, the set with no elements, is not the same as {[}, which is a
set with a single element where the single element is the empty set.

PraCtiCe 3 Describe each set.

a. A = {x 0 x [ℕ and (4y)(y [{2, 3, 4, 5} S x ≥ y)}
b. B = {x 0 (E y)(E z)(y [{1, 2} and z [{2, 3} and x = y + z)} ■

PraCtiCe 4 Complete the definition: A is a subset of B if

(4x)(x [A S __________) ■

Relationships Between Sets

For A = {2, 3, 5, 12} and B = {2, 3, 4, 5, 9, 12}, every member of A is also a
 member of B. When this happens, A is said to be a subset of B.

 example 2 Suppose that a set A is described as

A = {x 0 (E y)(y [{0, 1, 2} and x = y3)}

Because y is not a free variable here, this is still of the form A = {x 0 P(x)}. The
members of A can be found by letting y assume each of the values 0, 1, and 2 and
then taking the cube of each such value. Therefore A = {0, 1, 8}. For

B = {x 0 x [ℕ and (E y)(y [ℕ and x ≤ y)}

choosing y = 0 gives x = 0; choosing y = 1 gives x = 0 or 1; choosing y = 2 gives
x = 0, 1, or 2; and so on. In other words, B consists of all nonnegative integers
that are less than or equal to some nonnegative integer, which means that B = ℕ.
For the set

C = {x 0 x [ℕ and (4y)(y [ℕ S x ≤ y)}

0 is the only nonnegative integer that is less than or equal to every nonnegative
integer, so C = {0}.

Section 4.1 Sets 225

If A is a subset of B, we denote the relationship by A # B. If A # B but A ∙ B (there
is at least one element of B that is not an element of A), then A is a proper subset
of B, denoted by A (B.

■
PraCtiCe 5 Use formal logic notation to define A (B.

 example 3 Let

A = 51, 7, 9,156
B = 57, 96
C = 57, 9, 15, 206

Then the following statements (among others) are all true:

 B # C 15 [C
 B # A {7, 9} # B

 B (A {7} (A
 A h C [# C

The last statement ([# C ) is true because the statement (4x)(x [[S x [C ) is
true because x [[is always false.

ReminDeR

Be sure you understand
the difference between
the symbols [(element of)
and # (subset of).

Suppose that B = {x 0 P(x)} and that A # B. Because every element of A is
also an element of B, and P is a property characterizing all elements of B, then
every element in A also has property P(x). The elements of A “inherit” property
P. In fact, to prove that A # B, we pick an arbitrary x [A and show that P(x)

PraCtiCe 6 Let

 A = {x 0 x [ℕ and x ≥ 5}
 B = {10, 12, 16, 20}
 C = {x 0 (E y)(y [ℕ and x = 2y)}

Which of the following statements are true?

 a. B # C g. {12} [B
 b. B (A h. {12} # B
 c. A # C i. {x 0 x [ℕ and x < 20} h B
 d. 26 [C j. 5 # A
 e. {11, 12, 13 } # A k. {[} # B
 f. {11, 12, 13} (C l. [o A ■

226 Sets, Combinatorics, and Probability

holds. If A is a proper subset of B, A’s elements will usually have some additional
characterizing property not shared by all elements of B. (This is the same notion
of “inheritance” that prevails when a child type, or subtype, or derived type is de-
fined in an object-oriented programming language. The child type inherits all of
the properties and operations from the parent type with the addition of specialized
local properties or operations as needed.)

 example 4 Let

B = {x 0 x is a multiple of 4}

and let

A = {x 0 x is a multiple of 8}

Then we have A # B. To prove it, let x [A; note that x is a completely arbitrary
member of A. We must show that x satisfies the characterizing property of B;
in other words, we must show that x is a multiple of 4. Because we have x [A, x
satisfies the characterizing property of A; that is, x is a multiple of 8 and thus
we can write x = m # 8 for some integer m. This equation can be written as
x = m # 2 # 4 or x = k # 4, where k = 2m, so k is an integer. This shows that x is a
multiple of 4, and therefore x [B.

There are numbers (like 12) that are multiples of 4 but not multiples of 8, so
A (B. Another way to describe A is

A = {x 0 x = k # 4 and k is an even number}

In this form it is clear that A’s elements have inherited the characterizing property
of B—being a multiple of 4—but that there is an additional restriction that makes
A less general than B.

PraCtiCe 7 Let

A = {x 0 x [ℝ and x2 − 4x + 3 = 0}
B = {x 0 x [ℕ and 1 ≤ x ≤ 4}

Prove that A (B. ■

We know that A and B are equal sets if they have the same elements. We can
restate this equality in terms of subsets: A = B if and only if A # B and B # A.
Proving set inclusion in both directions is the usual way to establish the equality
of two sets.

Section 4.1 Sets 227

 example 5 We will prove that {x 0 x [ℕ and x2 < 15} = {x 0 x [ℕ and 2x < 7}.
Let A = {x 0 x [ℕ and x2 < 15} and B = {x 0 x [ℕ and 2x < 7}. To show that

A = B, we show A # B and B # A. For A # B, we must choose an arbitrary
 member of A—that is, anything satisfying the characterizing property of A—and
show that it also satisfies the characterizing property of B. Let x [A. Then x is a
nonnegative integer satisfying the inequality x2 < 15. The nonnegative integers
with squares less than 15 are 0, 1, 2, and 3, so these integers are the members of A.
The double of each of these nonnegative integers is a number less than 7. Hence,
each member of A is a member of B, and A # B.

Now we show B # A. Any member of B is a nonnegative integer whose
double is less than 7. These numbers are 0, 1, 2, and 3, each of which has a square
less than 15, so B # A.

Sets of Sets

For a set S, we can form a new set whose elements are all of the subsets of S. This
new set is called the powerset of S, ℘(S).

 example 6 For S = {0, 1}, ℘(S) = {[, {0}, {1}, {0, 1}}. Note that the members of the power
set of a set are themselves sets.

For any set S, ℘(S) will always have at least [and S itself as members, since
[# S and S # S are always true.

PraCtiCe 8 For A = {1, 2, 3}, what is ℘(A)?
■

In Practice 8, A has 3 elements and ℘(A) has 8 elements. Try finding ℘(S) for
other sets S until you can guess the answer to the following practice problem.

ReminDeR

To find ℘(S), start with [.
Then add sets taking 1 ele-
ment from S at a time, then
2 elements at a time, then
3 at a time, and so forth.

PraCtiCe 9 If S has n elements, then ℘(S) has ______ elements. (Does your answer work for
n = 0, too?)

■

There are several ways we can show that for a set S with n elements, ℘(S) will
have 2n elements. The following proof uses induction. For the basis step of the
induction, we let n = 0. The only set with 0 elements is [. The only subset of [
is [, so ℘([) = {[}, a set with 1 = 20 elements. We assume that for any set with
k elements, the power set has 2k elements.

228 Sets, Combinatorics, and Probability

Now let S have k + 1 elements and put one of these elements, call it x, aside.
The remaining set has k elements, so by our inductive assumption, its power set has
2k elements. Each of these elements is also a member of ℘(S). The only members of
℘(S) not counted by this procedure are those including element x. All the subsets in-
cluding x can be found by taking all those subsets not including x (of which there are
2k) and throwing in the x; thus, there will be 2k subsets including x. Altogether, there
are 2k subsets without x and 2k subsets with x, or 2k + 2k = 2 # 2k = 2k+1 subsets.
Therefore, ℘(S) has 2k+1 elements.

Analogy with the truth tables of Section 1.1 is another way to show that ℘(S)
has 2n elements for a set S with n elements. There we had n statement letters and
showed that there were 2n true-false combinations among these letters. But we can
also think of each true-false combination as representing a particular subset, with
T indicating membership and F indicating nonmembership in that subset. (For
example, the row of the truth table with all statement letters F corresponds to the
empty set.) Thus, the number of true-false combinations among n statement letters
equals the number of subsets of a set with n elements; both are 2n.

Binary and Unary Operations

By itself a set is not very interesting until we do something with its elements. For
example, we can perform several arithmetic operations on elements of the set
ℤ. We might subtract two integers, or we might take the negative of an integer.
 Subtraction acts on two integers; it is a binary operation on ℤ. Negation acts on
one integer; it is a unary operation on ℤ.

To see exactly what is involved in a binary operation, let’s look at subtraction
more closely. For any two integers x and y, x − y produces an answer and only one
answer, and that answer is always an integer. Finally, subtraction is performed on
an ordered pair of numbers. For example, 7 − 5 does not produce the same result
as 5 − 7. An ordered pair is denoted by (x, y), where x is the first component of the
ordered pair and y is the second component. Order is important in an ordered pair;
thus, the sets {1, 2} and {2, 1} are equal, but the ordered pairs (1, 2) and (2, 1) are
not. You are probably familiar with ordered pairs used as coordinates to locate a
point in the plane. The point (1, 2) is different from the point (2, 1). Two ordered
pairs (x, y) and (u, v) are equal only when it is the case that x = u and y = v.

■
PraCtiCe 10 Given that (2x − y, x + y) = (7, −1), solve for x and y.

■
PraCtiCe 11 Let S = {3, 4}. List all the ordered pairs (x, y) of elements of S.

We will generalize the properties of subtraction on the integers to define a
binary operation + on a set S. The symbol + is merely a placeholder; in any spe-
cific discussion, it will be replaced by the appropriate operation symbol, such as
a subtraction sign.

Section 4.1 Sets 229

 Definition BiNaRy OPeRatiON
+ is a binary operation on a set S if for every ordered pair (x, y) of elements of S,
x + y exists, is unique, and is a member of S.

In other words, if + is a binary operation on S, then for any two values x and
y in S, x + y produces one and only one answer, and that answer belongs to S.
That the value x + y always exists and is unique. It is described by saying that
the binary operation + is well-defined. The property that x + y always belongs to
S is described by saying that S is closed under the operation +. Uniqueness does
not mean that the result of a binary operation occurs only once; it means that for
a given x and y, there is only one result. For subtraction, there are many x and y
values such that x − y = 7, but for a given x and y, like x = 5 and y = 2, there is
only one answer for x − y.

 example 7 Addition, subtraction, and multiplication are all binary operations on ℤ. For
 example, when we perform addition on the ordered pair of integers (x, y), x + y
exists and is a unique integer.

 example 8 The logical operations of conjunction, disjunction, implication, and equivalence
are binary operations on the set of propositional wffs. If P and Q are propositional
wffs, then P ` Q, P ~ Q, P S Q, and P 4 Q are unique propositional wffs.

A candidate + for an operation can fail to be a binary operation on a set S in
any of three ways: (1) There are elements x, y [S for which x + y does not exist; (2)
there are elements x, y [S for which x + y gives more than one result; or (3) there
are elements x, y [S for which x + y does not belong to S.

 example 9 Division is not a binary operation on ℤ because x ÷ 0 does not exist.

 example 10 Define x + y on ℕ by

x + y = e 1 if x ≥ 5
 0 if x ≤ 5

Then, by the first part of the definition for +, 5 + 1 = 1, but by its second part,
5 + 1 = 0. Thus, + is not well-defined on ℕ because the result of 5 + 1 is not
unique.

 example 11 Subtraction is not a binary operation on ℕ because ℕ is not closed under subtrac-
tion. (For example, 1 − 10 o ℕ.)

230 Sets, Combinatorics, and Probability

For # to be a unary operation on a set S, it must be true that for any x [S,
x# is well-defined and S is closed under #; in other words, for any x [S, x# exists,
is unique, and is a member of S. We do not have a unary operation if any of these
conditions is not met.

 example 12 Let x# be defined by x# = −x so that x# is the negative of x. Then # is a unary
 operation on ℤ but not on ℕ because ℕ is not closed under #.

 example 13 The logical connective of negation is a unary operation on the set of propositional
wffs. If P is a propositional wff, then P′ is a unique propositional wff.

From these examples it is clear that whether + (or #) is a binary (or unary)
 operation can depend not only on its definition but also on the set involved.

PraCtiCe 12 Which of the following candidates are neither binary nor unary operations on the given
sets? Why not?

a. x + y = x ÷ y; S = set of all positive integers
b. x + y = x ÷ y; S = set of all positive rational numbers
c. x + y = xy; S = ℝ
d. x + y = maximum of x and y; S = ℕ
e. x# =!x; S = set of all positive real numbers
f. x# = solution to equation (x#)2 = x; S = ℂ ■

So far, all our binary operations have been defined by means of a descrip-
tion or an equation. Suppose S is a finite set, S = {x1, x2, … , xn}. Then a binary
 operation + on S can be defined by an n × n table, where element i, j (ith row and
jth column) denotes xi + xj.

 example 14 Let S = {2, 5, 9}, and let + be defined by the table

+ 2 5 9

2 2 2 9

5 5 9 2

9 5 5 9

Thus, 2 + 5 = 2 and 9 + 2 = 5. Inspecting the table, we see that + is a binary
 operation on S.

Operations on Sets

Most of the operations we have seen operate on numbers, but we can also op-
erate on sets. Given an arbitrary set S, we can define some binary and unary

Section 4.1 Sets 231

operations on the set ℘(S). S in this case is called the universal set or the
universe of discourse. The universal set defines the context of the objects
being discussed. If S = ℤ, for example, then all subsets will contain only integers.

A binary operation on ℘(S) must act on any two subsets of S to produce a
unique subset of S. There are at least two natural ways in which this can happen.

 example 15 Let S be the set of all students at Silicon U. Then the members of ℘(S) are sets of
students. Let A be the set of computer science majors, and let B be the set of busi-
ness majors. Both A and B belong to ℘(S). A new set of students can be defined
that consists of everybody who is majoring in either computer science or business
(or both); this set is called the union of A and B. Another new set can be defined
that consists of everybody who is majoring in both computer science and business.
This set (which might be empty) is called the intersection of A and B.

We can use Venn diagrams (named for the nineteenth-century British math-
ematician John Venn) to visualize the binary operations of union and intersection.
The shaded areas in Figures 4.1 and 4.2 illustrate the set that results from perform-
ing the binary operation on the two given sets.

 Definition UNiON aNd iNteRSeCtiON Of SetS
Let A, B [℘(S). The union of A and B, denoted by A c B, is {x 0 x [A or x [B}.
The intersection of A and B, denoted by A d B, is {x 0 x [A and x [B }.

 example 16 Let A = {1, 3, 5, 7, 9} and B = {3, 5, 6, 10, 11}. Here we may consider A and B
as members of ℘(ℕ). Then A c B = {1, 3, 5, 6, 7, 9, 10, 11} and A d B = {3, 5}.
Both A c B and A d B are members of ℘(ℕ).

■
PraCtiCe 13 Let A, B [℘(S) for any set S. Is it always the case that A d B # A c B?

We will define one unary operation on ℘(S).

figure 4.1 figure 4.2

232 Sets, Combinatorics, and Probability

 Definition COmPlemeNt Of a Set
For a set A [℘(S), the complement of A, A′, is {x 0 x [S and x o A}.

■
PraCtiCe 14 Illustrate A′ in a Venn diagram.

 example 17 In Section 1.1 we discussed the use of logical connectives to formulate Web search
queries. A query such as

“used cars” AND (Ford OR Buick) AND NOT trucks

is asking the search engine to return a set of pages (or more properly, a set of links
to pages). If

 U = set of used car pages
 F = set of Ford pages
 B = set of Buick pages
 T = set of truck pages

then

U d (F c B) d T′

represents the set of Web pages that is the desired result of the query.

Another binary operation on sets A and B in ℘(S) is set difference: A − B =
{x 0 x [A and x o B}. This operation can be rewritten as A − B = {x 0 x [A and
x [B′} and, finally, as A − B = A d B′.

■
PraCtiCe 15 Illustrate A − B in a Venn diagram.

Two sets A and B such that A d B = [are said to be disjoint. Thus, A − B
and B − A, for example, are disjoint sets.

 example 18 Let

 A = {x 0 x is an even nonnegative integer}
 B = {x 0 (E y)(y [ℕ and x = 2y + 1)}
 C = {x 0 (E y)(y [ℕ and x = 4y)}

be subsets of ℕ. Because B represents the set of nonnegative odd integers, A and B
are disjoint sets. Also, every nonnegative integer is either even or odd, so A c B = ℕ.
These two facts also tell us that A′ = B. Every multiple of 4 is an even number,
so C is a subset of A, from which it follows that A c C = A. C is in fact a proper
subset of A, and A − C = {x 0 (E y)(y [ℕ and x = 4y + 2)}.

Section 4.1 Sets 233

■

PraCtiCe 16 Let

 A = {1, 2, 3, 5, 10}
 B = {2, 4, 7, 8, 9}
 C = {5, 8, 10}

be subsets of S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Find

a. A c B b. A − C c. B′ d (A c C )

We will define one final operation using elements of ℘(S).

 Definition CaRteSiaN PROdUCt
Let A and B be subsets of S. The Cartesian product (cross product) of A and B,
denoted by A × B, is defined by

A × B = {(x, y) 0 x [A and y [B}

Thus, the Cartesian product of two sets A and B is the set of all ordered pairs
whose first component comes from A and whose second component comes from B.
The cross product is not a binary operation on ℘(S). Although it acts on an or-
dered pair of members of ℘(S) and gives a unique result, the resulting set is not,
in general, a subset of S. The elements are not members of S but ordered pairs of
members of S. So the resulting set is not a member of ℘(S). The closure property
for a binary operation fails to hold.

Because we will often be interested in the cross product of a set with itself, we
will abbreviate A × A as A2; in general, we use An to mean the set of all ordered
n-tuples (x1, x2, … , xn) of elements of A.

■

PraCtiCe 17 Let A = {1, 2} and B = {3, 4}.

a. Find A × B. b. Find B × A. c. Find A2. d. Find A3.

Set identities

There are many set equalities involving the operations of union, intersection,
difference, and complementation that are true for all subsets of a given set S.
Because they are independent of the particular subsets used, these equali-
ties are called set identities. Some basic set identities follow. The names and
forms of these identities are very similar to the tautological equivalences of
Section 1.1 (check back and compare). We will see in Chapter 8 that this
 similarity is not a coincidence.

234 Sets, Combinatorics, and Probability

■
PraCtiCe 18 Prove identity 4a.

Basic set identities

 1a. A c B = B c A 1b. A d B = B d A (commutative
 properties)

 2a. (A c B) c C = A c (B c C ) 2b. (A d B) d C = A d (B d C ) (associative
properties)

 3a. A c (B d C ) = (A c B) d (A c C ) 3b. A d (B c C ) = (A d B) c (A d C ) (distributive
properties)

 4a. A c [= A 4b. A d S = A (identity
properties)

 5a. A c A′= S 5b. A d A′= [(complement
properties)

(Note that 2a allows us to write A c B c C with no need for parentheses; 2b allows
us to write A d B d C.)

 example 19 Let’s prove identity 3a. We might draw Venn diagrams for each side of the equa-
tion and see that they look the same. However, identity 3a is supposed to hold for
all subsets A, B, and C, and whatever one picture we draw cannot be completely
general. Thus, if we draw A and B disjoint, that’s a special case, but if we draw A
and B not disjoint, that doesn’t take care of the case where A and B are disjoint.
To do a proof by Venn diagrams requires a picture for each possible case, and the
more sets involved (A, B, and C in this problem), the more cases there are. To avoid
drawing a picture for each case, let’s prove set equality by proving set inclusion in
each direction. Thus, we want to prove

A c (B d C ) # (A c B) d (A c C )

and also

(A c B) d (A c C ) # A c (B d C )

To show that A c (B d C ) # (A c B) d (A c C ), we let x be an arbitrary member
of A c (B d C ). Then we can proceed as follows:

x [A c (B d C ) S x [A or x [(B d C )
 S x [A or (x [B and x [C )
 S (x [A or x [B) and (x [A or x [C )
 S x [(A c B) and x [(A c C )
 S x [(A c B) d (A c C )

To show that (A c B) d (A c C ) # A c (B d C ), we reverse the above argument.

Section 4.1 Sets 235

Once we have proved the set identities in this list, we can use them to prove
other set identities. Just as the tautological equivalences of propositional logic
represent recipes or patterns for transforming wffs, the set identities represent
patterns for transforming set expressions. And, as with tautologies, the set identity
can be applied only when the set expression exactly matches the pattern.

The dual for each set identity in our list also appears in the list. The dual is
obtained by interchanging c and d and interchanging S and [. The dual of the
identity in Example 20 is

[A d (B c C )] c ([A′ d (B c C )] c (B c C )′) = S

which we could prove true by replacing each basic set identity used in the proof of
Example 20 with its dual. Because this method always works, any time we have
proved a set identity by using the basic identities, we have also proved its dual.

 example 20 We can use the basic set identities to prove

[A c (B d C )] d ([A′ c (B d C )] d (B d C )′) = [

for A, B, and C any subsets of S. In the following proof, the number to the right is
that of the basic set identity used to validate each step. The first step uses identity
2b because the expression

[A c (B d C )] d ([A′ c (B d C )] d (B d C )′)

matches the right side of 2b, A d (B d C ) where A is [A c (B d C )], B is
[A′ c (B d C )], and C is (B d C )′

[A c (B d C )] d ([A′ c (B d C )] d (B d C )′)
 = ([A c (B d C )] d [A′ c (B d C )]) d (B d C )′ (2b)
 = ([(B d C ) c A] d [(B d C ) c A′]) d (B d C )′ (la twice)
 = [(B d C ) c (A d A′)] d (B d C )′ (3a)
 = [(B d C ) c [] d (B d C )′ (5b)
 = (B d C ) d (B d C )′ (4a)
 = [(5b)

ReminDeR

You must match the
 pattern of a set identity in
order to use it. In the set
identities, A, B, and C can
represent any sets.

PraCtiCe 19

a. Using the basic set identities, establish the set identity

[C d (A c B)] c [(A c B) d C′] = A c B

 (A, B, and C are any subsets of S.)
b. State the dual identity that you now know is true. ■

236 Sets, Combinatorics, and Probability

Countable and Uncountable Sets

In a finite set S, we can always designate one element as the first member, s1,
 another element as the second member, s2, and so forth. If there are k elements in
the set, then these can be listed in the order we have selected:

s1, s2, … , sk

This list represents the entire set S. The number of elements in a finite set is the
cardinality of the set, so this would be a set of cardinality k, denoted by 0S 0 = k.

If the set is infinite, we may still be able to select a first element s1, a second
 element s2, and so forth, so that the list

s1, s2, s3, …

represents all elements of the set. Every element of the set will eventually appear
in this list. Such an infinite set is said to be denumerable. Both finite and denu-
merable sets are countable sets because we can count, or enumerate, all of their
elements. Being countable does not mean that we can state the total number of
elements in the set; rather, it means that we can say, “Here is a first one,” “Here
is a second one,” and so on, through the set. There are, however, infinite sets that
are uncountable. In an uncountable set, the set is so big that there is no way to
count out the elements and get the whole set in the process. Before we prove that
uncountable sets exist, let’s look at some denumerable (countably infinite) sets.

Table 4.1

Method Comment

Draw a Venn diagram Not a good plan because no one diagram fits all cases
and it will not prove the general identity.

Establish set inclusion
in each direction

Take an arbitrary member of one side and show it
belongs to the other side, and conversely.

Use already proved
identities

Be sure to match the pattern of the identity you want to
use.

Table 4.1 summarizes the approaches to proving set identities.

	 exaMple 21 The set	ℕ	is denumerable.
To prove denumerability, we need only exhibit a counting scheme. For the set	

ℕ	of nonnegative integers, it is clear that

0, 1, 2, 3, …

is an enumeration that will eventually include every member of the set.

■
Practice 20 Prove that the set of even positive integers is denumerable.

Section 4.1 Sets 237

 example 22 The set ℚ+ of positive rational numbers is denumerable.
We assume that each positive rational number is written as a fraction of

 positive integers. We can write all such fractions having the numerator 1 in one
row, all those having the numerator 2 in a second row, and so on:

1/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5

To show that the set of all fractions in this array is denumerable, we will thread
an arrow through the entire array, beginning with 1/1; following the arrow gives
an enumeration of the set. Thus the fraction 1/3 is the fourth member in this
 enumeration:

1/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5

Therefore the set represented by the array is denumerable. Note that our path
through the array must “spread out” from one corner. If we begin to follow just the
first row or just the first column, for example, we will never finish it to get on to
other rows (or columns).

To obtain an enumeration of ℚ+, we use the enumeration of the set shown
but eliminate any fractions not in lowest terms. This avoids the problem of listing
both 1/2 and 2/4, for example, which represent the same positive rational. The
 enumeration of ℚ+ thus begins with

1/1, 2/1, 1/2, 1/3, 3/1, 4/1, …

For example, we have eliminated 2/2, which reduces to 1/1.

■
PraCtiCe 21 What is the 11th fraction in the above enumeration? What is the 1lth positive rational?

Now let’s show that there is an uncountable (not countable) infinite set. The
proof technique that seems appropriate to prove that set A does not have property
B is to assume that A does have property B and look for a contradiction. The
proof in Example 23 is a very famous proof by contradiction known as Cantor’s
 diagonalization method, after Georg Cantor, the nineteenth-century German
mathematician known as the “father of set theory.”

238 Sets, Combinatorics, and Probability

	 ExamplE 23 We will show that the set of all the real numbers between 0 and 1 is uncountable.
We will write such numbers in decimal form; thus any member of the set can

be written as

0.d1d2d3 …

Now let us assume that our set is countable. Therefore some enumeration of the
set exists. A number such as 0.24999999 … can be written in alternative form as
0.2500000 … (see Exercise 102 for an explanation of why these are alternative
 representations of the same number). To avoid writing the same element twice in
our enumeration, we will choose (arbitrarily) to always use the former representa-
tion and not the latter. We can depict an enumeration of the set as follows, where
dij is the jth decimal digit in the ith number in the enumeration:

0.d11d12d13

0.d21d22d23

0.d31d32d33

We now construct a real number p = 0.p1p2 p3 … as follows: pi is always chosen
to be 5 if dii ∙ 5 and 6 if dii = 5. Thus p is a real number between 0 and 1. For
instance, if the enumeration begins with

0.342134 . . .
0.257001 . . .
0.546122 . . .
0.716525 . . .

then d11 = 3, d22 = 5, d33 = 6, and d44 = 5, so p1 = 5, p2 = 6, p3 = 5, and p4 = 6.
Thus p begins with 0.5656 … .

If we compare p with the enumeration of the set, p differs from the first number
at the first decimal digit, from the second number at the second decimal digit, from
the third number at the third decimal digit, and so on.

0. 3 4 2 1 3 4 . . .
0. 2 5 7 0 0 1 . . .
0. 5 4 6 1 2 2 . . .
0. 7 1 6 5 2 5 . . .

Therefore p does not agree with any of the representations in the enumeration. Fur-
thermore, because p contains no 0s to the right of the decimal, it is not the alterna-
tive representation of any of the numbers in the enumeration. Therefore p is a real
number between 0 and 1 different from any other number in the enumeration, yet
the enumeration was supposed to include all members of the set. Here, then, is the
contradiction, and the set of all real numbers between 0 and 1 is indeed uncount-
able. (You can see why this proof is called a “diagonalization method.”)

Section 4.1 Sets 239

Although it is interesting and perhaps surprising to learn that there are
 uncountable sets, we are usually concerned with countable sets. A computer, of
course, can manage only finite sets. In the rest of this chapter, we too, limit our
attention to finite sets and various ways to count their elements.

exeRciSeS 4.1

 1. Let S = {2, 5, 17, 27}. Which of the following expressions are true?
 a. 5 [S b. 2 + 5 [S c. [[S d. S [S
 2. Let B = {x 0 x [ℚ and −1 < x < 2}. Which of the following expressions are true?
 a. 0 [B b. −1 [B c. −0.84 [B d. "2 [B
 3. How many different sets are described here? What are they?
 {2, 3, 4} [

 {x 0 x is the first letter of cat, bat, or apple} {x 0 x is the first letter of cat, bat, and apple}
 {x 0 x [ℕ and 2 ≤ x ≤ 4} {2, a, 3, b, 4, c}
 {a, b, c} {3, 4, 2}
 4. How many different sets are described here? What are they?
 {x 0 x = F(n) ` n [{5, 6, 7}} [F(n) is a Fibonacci number]
 {x 0 x 0 24} [x divides 24]
 {1, 2, 3, 4}
 {5, 8, 13}
 {x 0 x [ℕ ` 0 < x ≤ 4}
 {x 0 x [φ(5)} [φ(n) is the Euler phi function]
 {12, 2, 6, 24, 8, 3, 1, 4}
 {x 0 x is a digit in the decimal equivalent of the Roman numeral MCCXXXIV}

S e c t i o n 4 . 1 review

tecHniQueS

• Describe sets by a list of elements and by a
 characterizing property.

• Prove that one set is a subset of another.
• Find the power set of a set.
• Check that the required properties for a binary or

unary operation are satisfied.
• Form new sets by taking the union, intersection,

complement, and cross product of sets.
• Prove set identities by showing set inclusion in

each direction or using the basic set identities.
• Demonstrate the denumerability of certain sets.
• Use the Cantor diagonalization method to prove

that certain sets are uncountable.

main iDeaS

• Sets are unordered collections of objects that can
be related (equal sets, subsets, etc.) or combined
(union, intersection, etc.).

• Certain standard sets have their own notation.
• The power set of a set with n elements has 2n elements.
• Basic set identities exist (in dual pairs) and can be

used to prove other set identities; once an identity is
proved in this manner, its dual is also true.

• Countable sets can be enumerated, and uncountable
sets exist.

W

W

240 Sets, Combinatorics, and Probability

 5. Describe each of the following sets by listing its elements:
 a. {x 0 x [ℕ and x2 < 25}
 b. {x 0 x [ℕ and x is even and 2 < x < 11}
 c. {x 0 x is one of the first three U.S. presidents}
 d. {x 0 x [ℝ and x2 = −1}
 e. {x 0 x is one of the New England states}
 f. {x 0 x [ℤ and 0 x 0 < 4} (0 x 0 denotes the absolute value function)
 6. Describe each of the following sets by listing its elements:
 a. {x 0 x [ℕ and x2 − 5x + 6 = 0}
 b. {x 0 x [ℝ and x2 = 7}
 c. {x 0 x [ℕ and x2 − 2x − 8 = 0}
 7. Describe each of the following sets by giving a characterizing property:
 a. {1, 2, 3, 4, 5}
 b. {1, 3, 5, 7, 9, 11, …}
 c. {Melchior, Gaspar, Balthazar}
 d. {0, 1, 10, 11, 100, 101, 110, 111, 1000, …}
 8. Describe each of the following sets:
 a {x 0 x [ℕ and (E q)(q [{2, 3} and x = 2q)}
 b. {x 0 x [ℕ and (E y)(E z)(y [{0, 1} and z [{3, 4} and y < x < z)}
 c. {x 0 x [ℕ and (4y)(y even S x ∙ y)}
 9. Given the description of a set A as A = {2, 4, 8 …}, do you think 16 [A?
 10. What is the cardinality of each of the following sets?
 a. S = {a, {a, {a}}}
 b. S = {{a}, {{a}}}
 c. S = {[}
 d. S = {a, {[}, [}
 e. S = {[, {[, {[}}, {[, {[, {[}}}}
 11. Let

 A = {2, 5, 7}
 B = {1, 2, 4, 7, 8}
 C = {7, 8}

 Which of the following statements are true?
 a. 5 # A d. 7 [B
 b. C # B e. {2, 5} # A
 c. [[A f. [# C
 12. Let

 A = {x 0 x [ℕ and 1 < x < 50}
 B = {x 0 x [ℝ and 1 < x < 50}
 C = {x 0 x [ℤ and 0 x 0 ≥ 25}

Section 4.1 Sets 241

 Which of the following statements are true?
 a. A # B e. "3 [B
 b. 17 [A f. {0, 1, 2} # A
 c. A # C g. [[B
 d. −40 [C h. {x 0 x [ℤ and x2 > 625} # C
 13. Let

 R = {1, 3, π, 4.1, 9, 10} T = {1, 3, π}
 S = {{1}, 3, 9, 10} U = {{1, 3, π}, 1}

 Which of the following statements are true? For those that are not, why not?
 a. S # R e. {1} # T
 b. 1 [R f. {1} # S
 c. 1 [S g. T (R
 d. 1 # U
 14. Let

 R = {1, 3, π, 4.1, 9, 10} T = {1, 3, π}
 S = {{1}, 3, 9, 10} U = {{1, 3, π}, 1}

 Which of the following statements are true? For those that are not, why not?
 a. {1} [S e. T o R
 b. [# S f. T # R
 c. T # U g. S # {1, 3, 9, 10}
 d. T [U
 15. Let

 A = {a, {a}, {{a}}} B = {a} C = {[, {a, {a}}}

 Which of the following statements are true? For those that are not, where do they fail?
 a. B # A f. {a, {a}} [A
 b. B [A g. {a, {a}} # A
 c. C # A h. B # C
 d. [# C i. {{a}} # A
 e. [[C
 16. Let

 A = {[, {[, {[}}} B = [C = {[} D = {[, {[}}

 Which of the following statements are true? For those that are not, where do they fail?
 a. C # A f. C = B
 b. C [A g. C # D
 c. B [A h. C [D
 d. B # A i. D # A
 e. B [C

242 Sets, Combinatorics, and Probability

 17. Let

A = {(x, y) 0 (x, y) lies within 3 units of the point (1, 4)}

 and

B = {(x, y) 0 (x − 1)2 + (y − 4)2 ≤ 25}

 Prove that A (B.
 18. Let

A = {x 0 x [ℝ and x2 − 4x + 3 < 0}

 and

B = {x 0 x [ℝ and 0 < x < 6}

 Prove that A (B.
 19. Program QUAD finds and prints solutions to quadratic equations of the form ax2 + bx + c = 0. Program

EVEN lists all the even integers from −2n to 2n. Let Q denote the set of values output by QUAD and E
denote the set of values output by EVEN.

 a. Show that for a = 1, b = −2, c = −24, and n = 50, Q # E.
 b. Show that for the same values of a, b, and c, but a value for n of 2, Q h E.
 20. Let A = {x 0 cos(x/2) = 0} and B ={x 0 sin x = 0}. Prove that A # B.
 21. Which of the following statements are true for all sets A, B, and C?
 a. If A # B and B # A, then A = B. d. [[{[}
 b. {[} = [e. [# A
 c. {[} = {0}
 22. Which of the following statements are true for all sets A, B, and C?
 a. [[A
 b. {[} = {{[}}
 c. If A (B and B # C, then A (C.
 d. If A ∙ B and B ∙ C, then A ∙ C.
 e. If A [B and B h C, then A o C.
 23. Prove that if A # B and B # C, then A # C.
 24. Prove that if A′ # B′, then B # A.
 25. Prove that for any integer n ≥ 2, a set with n elements has n (n − 1)/2 subsets that contain exactly two

elements.
 26. Prove that for any integer n ≥ 3, a set with n elements has n(n − 1)(n − 2)/6 subsets that contain exactly

three elements. (Hint: Use Exercise 25.)
 27. Find ℘(S) for S = {a}.
 28. Find ℘(S) for S = {a, b}.
 29. Find ℘(S) for S = {1, 2, 3, 4}. How many elements do you expect this set to have?
 30. Find ℘(S) for S = {[}.

Section 4.1 Sets 243

 31. Find ℘(S) for S = {[, {[}, {[, {[}}}.
 32. Find ℘(℘(S)) for S = {a, b}.
 33. What can be said about A if ℘(A) = {[, {x}, {y}, {x, y}}?
 34. What can be said about A if ℘(A) = {[, {a}, {{a}}}?
 35. Prove that if ℘(A) = ℘(B), then A = B.
 36. Prove that if A # B, then ℘(A) # ℘(B).
 37. Solve for x and y.
 a. (y, x + 2) = (5, 3) b. (2x, y) = (16, 7) c. (2x − y, x + y) = (−2, 5)
 38. a. Recall that ordered pairs must have the property that (x, y) = (u, v) if and only if x = u and y = v.

Prove that {{x}, {x, y}} = {{u}, {u, v}} if and only if x = u and y = v. Therefore, although we know that
(x, y) ∙ {x, y}, we can define the ordered pair (x, y) as the set {{x}, {x, y}}.

 b. Show by an example that we cannot define the ordered triple (x, y, z) as the set {{x}, {x, y}, {x, y, z}}.
 39. Which of the following candidates are binary or unary operations on the given sets? For those that are not,

where do they fail?
 a. x + y = x + 1; S = ℕ
 b. x + y = x + y − 1; S = ℕ

 c. x + y = S = ℤ

 d. x# = ln x; S = ℝ
 40. Which of the following candidates are binary or unary operations on the given sets? For those that are not,

where do they fail?
 a. x# = x2; S = ℤ
 b.

e x − 1 if x is odd
 x if x is even

+ 1 2 3

1 1 2 3

2 2 3 4

3 3 4 5

S = {1, 2, 3}

 c. x + y = that fraction, x or y, with the smaller denominator; S = set of all fractions.
 d. x + y = that person, x or y, whose name appears first in an alphabetical sort; S = set of 10 people with

different names.
 41. Which of the following candidates are binary or unary operations on the given sets? For those that are not,

where do they fail?

 a. x + y = e 1/x if x is positive
 1/ (−x) if x is negative

S = ℝ

 b. x + y = xy (concatenation); S = set of all finite-length strings of symbols from the set { p, q, r}
 c. x# = :x; where :x; denotes the greatest integer less than or equal to x; S = ℝ
 d. x + y = min(x, y); S = ℕ
 42. Which of the following candidates are binary or unary operations on the given sets? For those that are not,

where do they fail?
 a. x + y = greatest common multiple of x and y; S = ℕ
 b. x + y = x + y; S = the set of Fibonacci numbers

244 Sets, Combinatorics, and Probability

 c. x# = the string that is the reverse of x; S = set of all finite-length strings of symbols from the set { p, q, r}
 d. x + y = x + y; S = ℝ − ℚ
 43. How many different unary operations can be defined on a set with n elements? (Hint: Think about filling

in a table.)
 44. How many different binary operations can be defined on a set with n elements? (Hint: Think about filling

in a table.)
 45. We have written binary operations in infix notation, where the operation symbol appears between the two

operands, as in A + B. Evaluation of a complicated arithmetic expression is more efficient when the op-
erations are written in postfix notation, where the operation symbol appears after the two operands, as in
AB+. Many compilers change expressions in a computer program from infix to postfix form. One way to
produce an equivalent postfix expression from an infix expression is to write the infix expression with a
full set of parentheses, move each operator to replace its corresponding right parenthesis, and then elimi-
nate all left parentheses. (Parentheses are not required in postfix notation.) Thus,

A * B + C

 becomes, when fully parenthesized,

((A * B) + C )

 and the postfix notation is AB * C+. Rewrite each of the following expressions in postfix notation:
 a. (A + B) * (C − D)
 b. A ** B − C * D (**denotes exponentiation)
 c. A * C + B/(C + D * B)
 46. Evaluate the following postfix expressions (see Exercise 45):
 a 2 4 * 5 + b. 5 1 + 2/1 − c. 3 4 + 5 1 − *
 47. Let

 A = { p, q, r, s}
 B = {r, t, v}
 C = { p, s, t, u}

 be subsets of S = { p, q, r, s, t, u, v, w}. Find
 a. B d C b. A c C c. C′ d. A d B d C
 48. Let

 A = { p, q, r, s}
 B = {r, t, v}
 C = { p, s, t, u}

 be subsets of S = { p, q, r, s, t, u, v, w}. Find
 a. B − C b. (A c B)′ c. A × B d. (A c B) d C′

Section 4.1 Sets 245

 49. Let

 A = {2, 4, 5, 6, 8}
 B = {1, 4, 5, 9}
 C = {x 0 x [ℤ and 2 ≤ x < 5}

 be subsets of S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Find
 a. A c B e. A − B
 b. A d B f. A′
 c. A d C g. A d A′
 d. B c C

 50. Let

 A = {2, 4, 5, 6, 8}
 B = {1, 4, 5, 9}
 C = {x 0 x [ℤ and 2 ≤ x < 5}

 be subsets of S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Find
 a. (A d B)′ e. (C ′ c B)′
 b. C − B f. B × C
 c. (C d B) c A′ g. (B − A) c C
 d. (B − A)′ d (A − B)

 51. Let

 A = {a, {a}, {{a}}}
 B = {[, {a}, {a, {a}}}
 C = {a}

 be subsets of S = {[, a, {a}, {{a}}, {a, {a}}}. Find
 a. A d C d. [d B f. A′ d B
 b. B d C′ e. (B c C ) d A g. {[} d B
 c. A c B

 52. Let

 A = {x 0 x is the name of a former president of the United States}
 B = {Adams, Hamilton, Jefferson, Grant}
 C = {x 0 x is the name of a state}

 Find
 a. A d B b. A d C c. B d C

246 Sets, Combinatorics, and Probability

 53. Let S = A × B where A = {2, 3, 4} and B = {3, 5}. Which of the following statements are true?
 a. A # S d. (5, 4) [S
 b. 3 [S e. [# S
 c. (3, 3) [S f. {(2, 5)} # S

 54. Let

 A = {x 0 x is a word that appears before dog in an English language dictionary}
 B = {x 0 x is a word that appears after canary in an English language dictionary}
 C = {x 0 x is a word of more than four letters}

 Which of the following statements are true?
 a. B # C
 b. A c B = {x 0 x is a word in an English language dictionary}
 c. cat [B d C ′
 d. bamboo [A − B

 55. Consider the following subsets of ℤ:

 A = {x 0 (E y)(y [ℤ and y ≥ 4 and x = 3y)}
 B = {x 0 (E y)(y [ℤ and x = 2y)}
 C = {x 0 x [ℤ and 0 x 0 ≤ 10}

 Using set operations, describe each of the following sets in terms of A, B, and C.
 a. set of all odd integers
 b. {−10, −8, −6, −4, −2, 0, 2, 4, 6, 8, 10}
 c. {x 0 (E y)(y [ℤ and y ≥ 2 and x = 6y)}
 d. {−9, −7, −5, −3, −1, 1, 3, 5, 7, 9}
 e. {x 0 (E y)(y [ℤ and y ≥ 5 and x = 2y + 1)} c {x 0 (E y)(y [ℤ and y ≤ −5 and x = 2y − 1)}

 56. Let

 A = {x 0 x [ℝ and 1 < x ≤ 3}
 B = {x 0 x [ℝ and 2 ≤ x ≤ 5}

 Using set operations, describe each of the sets shown in terms of A and B.

 a.

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

 b.

 c.

Section 4.1 Sets 247

 57. Consider the following subsets of the set of all students:

 A = set of all computer science majors
 B = set of all physics majors
 C = set of all science majors
 D = set of all female students

 Using set operations, describe each of the following sets in terms of A, B, C, and D:
 a. set of all students not majoring in science
 b. set of all female physics majors
 c. set of all students majoring in both computer science and physics
 d. set of all male computer science majors
 58. Consider the following subsets of the set of all students:

 A = set of all computer science majors
 B = set of all physics majors
 C = set of all science majors
 D = set of all female students

 Using set operations, describe each of the following sets in terms of A, B, C, and D:
 a. set of all male students who are not physics majors
 b. set of all science majors who are not computer science majors
 c. set of all students who are female or science majors
 d. set of all students who are science majors but are neither computer science nor physics majors
 59. Write the set expression for the desired results of the Web search query for sites pertaining to dogs that are

not retrievers (Exercise 31, Section 1.1). Assume that D = set of dog pages, R = set of retriever pages.
 60. Write the set expression for the desired results of the Web search query for sites pertaining to oil paintings

by Van Gogh or Rembrandt but not Vermeer (Exercise 32, Section 1.1). Assume that O = set of oil paint-
ing pages, G = set of Van Gogh pages, R = set of Rembrandt pages, V = set of Vermeer pages.

 61. Write the set expression for the desired results of the Web search query for sites pertaining to novels or
plays about AIDS (Exercise 33, Section 1.1). Assume that N = set of novel pages, P = set of play pages,
A = set of AIDS pages.

 62. Write the set expression for the desired results of the Web search query for sites pertaining to coastal
 wetlands in Louisiana but not in Alabama (Exercise 34, Section 1.1). Assume that C = set of coastal
 wetlands pages, L = set of Louisiana pages, A = set of Alabama pages.

 63. Which of the following statements are true for all sets A, B, and C?
 a. A c A = A d. (A′)′ = A
 b. B d B = B e. A − B = (B − A)′
 c. (A d B)′ = A′ d B′ f. (A − B) d (B − A) = [
 64. Which of the following statements are true for all sets A, B, and C?
 a. If A d B = [, then A (B. d. [d {[} = [
 b. B × A = A × B e. (A − B) c (B − C ) = A − C
 c. [× A = [f. (A − C ) d (A − B) = A − (B c C )

248 Sets, Combinatorics, and Probability

 65. Which of the following statements are true for all sets A, B, and C?
 a. A c (B × C ) = (A c B) × (A c C )
 b. A × (B d C ) = (A × B) d (A × C )
 c. A × [= [
 66. Which of the following statements are true for all sets A, B, and C?
 a. ℘(A) × ℘(A) = ℘(A2)
 b. A × (B × C ) = (A × B) × C
 c. ℘(A × B) = ℘(A) × ℘(B)
 67. For each of the following statements, find general conditions on sets A and B to make the statement true:
 a. A c B = A c. A c [= [e. A c B # A d B
 b. A d B = A d. B − A = [f. A × B = B × A
 68. For any finite set S, 0 S 0 denotes the number of elements in S. If 0 A 0 = 3 and 0 B 0 = 4, find
 a. 0 A × B 0
 b. 0 A2 0
 c. 0 B2 0
 d. the maximum possible value for 0 A d B 0
 e. the minimum possible value for 0 A c B 0
 69. Prove that (A d B) # A where A and B are arbitrary sets.
 70. Prove that A # (A c B) where A and B are arbitrary sets.
 71. Prove that ℘(A) d ℘(B) = ℘(A d B) where A and B are arbitrary sets.
 72. Prove that ℘(A) c ℘(B) # ℘(A c B) where A and B are arbitrary sets.
 73. Prove that if A c B = A − B, then B = [. (Hint: Do a proof by contradiction.)
 74. Prove that if (A − B) c (B − A) = A c B, then A d B = [. (Hint: Do a proof by contradiction.)
 75. Prove that if C # B − A, then A d C = [.
 76. Prove that if (A − B) c B = A, then B # A.
 77. Prove that A # B if and only if A d B′ = [.
 78. Prove that (A d B) c C = A d (B c C ) if and only if C # A.

Exercises 79 and 80 refer to a binary operation on sets called the symmetric difference, which is defined by
A ! B = (A − B) c (B − A).

 79. a. Draw a Venn diagram to illustrate A ! B.
 b. For A = {3, 5, 7, 9} and B = {2, 3, 4, 5, 6}, what is A ! B?
 c. Prove that A ! B = (A c B) − (A d B) for arbitrary sets A and B.
 80. a. For an arbitrary set A, what is A ! A? What is [! A?
 b. Prove that A ! B = B ! A for arbitrary sets A and B.
 c. For any sets A, B, and C, prove that (A ! B) ! C = A ! (B ! C ).
 81. Verify the basic set identities on page 234 by showing set inclusion in each direction. (We have already

done 3a and 4a.)
 82. A and B are subsets of a set S. Prove the following set identities by showing set inclusion in each direction.
 a. (A c B)′ = A′ d B′
 b. (A d B)′ = A′ c B′

f De Morgan’s laws

Section 4.1 Sets 249

 c. A c (B d A) = A
 d. (A d B′)′ c B = A′ c B
 e. (A d B) c (A d B′) = A
 f. [A d (B c C )]′ = A′ c (B′ d C′)

 83. A, B, and C are subsets of a set S. Prove the following set identities using the basic set identities listed in
this section. Give a reason for each step. State the dual of each of these identities.

 a. (A c B) d (A c B′) = A
 b. ([(A d C ) d B] c [(A d C ) d B′]) c (A d C )′ = S
 c. (A c C ) d [(A d B) c (C′ d B)] = A d B

 84. A is a subset of a set S. Prove the following set identities:
 a. A c A = A d. A c S = S
 b. A d A = A e. (A′)′ = A
 c. A d [= [

 85. A, B, and C are subsets of a set S. Prove the following set identities by using previously proved identities,
including those in Exercises 82–84. Give a reason for each step.

 a. A d (B c A′) = B d A
 b. (A c B) − C = (A − C ) c (B − C )
 c. (A − B) − C = (A − C ) − B

 86. A, B, and C are subsets of a set S. Prove the following set identities by using previously proved identities,
including those in Exercises 82–84. Give a reason for each step.

 a. [(A′ c B′) d A′]′ = A
 b. (A − B) − C = (A − C ) − (B − C )
 c. A − (A − B) = A d B
 d. (A c B) − (A d B) = (A − B) c (B − A)

 87. The operation of set union can be defined as an n-ary operation for any integer n ≥ 2.
 a. Give a definition similar to that for the union of two sets for A1 c A2 c cc An.
 b. Give a recursive definition for A1 c A2 c cc An.

 88. Using the recursive definition of set union from Exercise 87(b), prove the generalized associative property
of set union, which is that for any n with n ≥ 3 and any p with 1 ≤ p ≤ n − 1,

(A1 c A2 c cc Ap) c (Ap+1 c Ap+2 c cc An) = A1 c A2 c cc An

 89. The operation of set intersection can be defined as an n-ary operation for any integer n ≥ 2.
 a. Give a definition similar to that for the intersection of two sets for A1 d A2 d cd An.
 b. Give a recursive definition for A1 d A2 d cd An.

 90. Using the recursive definition of set intersection from Exercise 89(b), prove the generalized associative
property of set intersection, which is that for any n with n ≥ 3 and any p with 1 ≤ p ≤ n − 1,

(A1 d A2 d cd Ap) d (Ap+1 d Ap+2 d cd An) = A1 d A2 d cd An

250 Sets, Combinatorics, and Probability

 91. Prove that for subsets A1, A2, … , An and B of a set S, the following generalized distributive properties hold,
where n ≥ 2. (See Exercises 87 and 89.)

 a. B c (A1 d A2 d cd An) = (B c A1) d (B c A2) d cd (B c An)
 b. B d (A1 c A2 c cc An) = (B d A1) c (B d A2) c cc (B d An)
 92. Prove that for subsets A1, A2, … , An of a set S, the following generalized De Morgan’s laws hold, where

n ≥ 2. (See Exercises 82, 87, and 89.)
 a. (A1 c A2 c cc An)′ = A′1 d A′2 d cd A′n
 b. (A1 d A2 d cd An)′ = A′1 c A′2 c cc A′n
 93. The operations of set union and set intersection can be extended to apply to an infinite family of sets. We

may describe the family as the collection of all sets Ai, where i takes on any of the values of a fixed set I.
Here, I is called the index set for the family. The union of the family, d i[I

 Ai, is defined by

d i[I
 Ai = {x 0 x is a member of some Ai}

 The intersection of the family, t i[I
 Ai, is defined by

t i[I
 Ai = {x 0 x is a member of each Ai}.

 a. Let I = {1, 2, 3, …}, and for each i [I, let Ai be the set of real numbers in the interval (−1/i, 1/i).
What is d i[I

 Ai? What is t i[I
 Ai?

 b. Let I = {1, 2, 3 …}, and for each i [I, let Ai be the set of real numbers in the interval [−1/i, 1/i].
 What is d i[I

 Ai? What is t i[I
 Ai?

 94. According to our use of the word “set,” if C is a subset of the universal set S, then every element of S either
does or does not belong to C. In other words, the probability of a member x of S being a member of C is
either 1 (x is a member of C ) or 0 (x is not a member of C ). C is a fuzzy set if every x [S has a probability
p, 0 ≤ p ≤ 1, of being a member of C. The probability p associated with x is an estimate of the likelihood
that x may belong to C when the actual composition of C is unknown. Set operations can be done on fuzzy
sets as follows: If element x has probability p1 of membership in C and probability p2 of membership in D,
then the probability of x being a member of C c D, C d D, and C′ is, respectively, max(p1, p2), min(p1, p2),
and 1 − p1. (If we consider the statements x [C and x [D as propositional wffs A and B, respectively, with
certain probabilistic truth values, then the probability of x [C c D is the probability that A ~ B is true. The
rules for fuzzy set operations then parallel the rules for fuzzy logic, discussed in Exercise 54, Section 1.1.)

Let S be a set of possible disease-causing agents, S = {genetics, virus, nutrition, bacteria, environment}.
The fuzzy sets AIDS and ALZHEIMERS are defined as AIDS = {genetics, 0.2; virus, 0.8; nutrition, 0.1;
bacteria, 0.4; environment, 0.3} and ALZHEIMERS = {genetics, 0.7; virus, 0.4; nutrition, 0.3; bacteria,
0.3; environment, 0.4}.

 a. Find the fuzzy set AIDS c ALZHEIMERS.
 b. Find the fuzzy set AIDS d ALZHEIMERS.
 c. Find the fuzzy set (AIDS)′.

Exercises 95 and 96 complete the proof, begun in Section 2.2, that the second principle of induction, the first
principle of induction, and the principle of well-ordering are all equivalent.

 95. The principle of well-ordering says that every nonempty set of positive integers has a smallest member.
Prove that the first principle of mathematical induction, that is,

 1. P(1) is true
 2. (4k)[P(k) true S P(k + 1) true] f S P(n) true for all positive integers n

Section 4.1 Sets 251

 implies the principle of well-ordering. (Hint: Assume that the first principle of mathematical induction
is valid, and use proof by contradiction to show that the principle of well-ordering is valid. Let T be a
nonempty subset of the positive integers that has no smallest member. Let P(n) be the property that every
member of T is greater than n.)

 96. Prove that the principle of well-ordering (see Exercise 95) implies the second principle of mathematical
induction. Hint: Assume that the principle of well-ordering is valid, and let P be a property for which

 1.′ P(1) is true
 2.′ (4k)[P(r) true for all r, 1 ≤ r ≤ k S P(k + 1) true]

 Let T be the subset of the positive integers defined by

T = {t 0 P(t) is not true}

 Show that T is the empty set.
 97. Prove that the set of odd positive integers is denumerable.
 98. Prove that the set ℤ of all integers is denumerable.
 99. Prove that the set of all finite-length strings of the letter a is denumerable.
 100. Prove that the set of all finite-length binary strings is denumerable.
 101. Prove that the set ℤ × ℤ is denumerable.
 102. In Example 23, the claim was made that 0.249999999 … is the same number as 0.250000000 … . The first

representation is a nonterminating decimal, and a calculus-type argument can be made that “in the limit”
these are the same values. Here is a slightly different argument:

 a. Let n = 0.249999 … .
 Compute 100n by multiplying both sides of this equation by 100.
 Subtract n from 100n to give a value for 99n.
 Solve the resulting equation for n.
 b. Let m = 0.250000 … .
 Compute 100m by multiplying both sides of this equation by 100.
 Subtract m from 100m to give a value for 99m.
 Solve the resulting equation for m.
 c. Compare the values of n and m.
 103. Use Cantor’s diagonalization method to show that the set of all infinite sequences of positive integers is

not countable.
 104. Use Cantor’s diagonalization method to show that the set of all infinite strings of the letters {a, b} is not

countable.
 105. Explain why the union of any two denumerable sets is denumerable.
 106. Explain why any subset of a countable set is countable.
 107. Sets can have sets as elements (see Exercise 13, for example). Let B be the set defined as follows:

B = {S 0 S is a set and S o S}

 Argue that both B [B and B o B are true. This contradiction is called Russell’s paradox, after the famous
philosopher and mathematician Bertrand Russell, who stated it in 1901. (A carefully constructed axiomat-
ization of set theory puts some restrictions on what can be called a set. All ordinary sets are still sets, but
peculiar sets that get us into trouble, like B in this exercise, seem to be avoided.)

252 Sets, Combinatorics, and Probability

 S e c t i o n 4 . 2 Counting

Combinatorics is the branch of mathematics that deals with counting. Count-
ing questions are important whenever we have finite resources (How much stor-
age does a particular database consume? How many users can a given computer
configuration support?) or whenever we are interested in efficiency (How many
computations does a particular algorithm involve?).

Counting questions often boils down to finding how many members there are
in some finite set, that is, what is the cardinality of the set. This seemingly trivial
question can be difficult to answer. We have already answered some “how many”
questions—How many rows are there in a truth table with n statement letters, and
how many subsets are there in a set with n elements? (Actually, as we’ve noted,
these questions can be thought of as the same question.)

multiplication Principle

We solved the truth table question by drawing a tree of possibilities. This tree sug-
gests a general principle that can be used to solve many counting problems. Before
we state the general principle, we look at another tree example.

 example 24 A child is allowed to choose one jellybean out of two jellybeans, one red and one
black, and one gummy bear out of three gummy bears, yellow, green, and white.
How many different sets of candy can the child have?

We can solve this problem by breaking the task of choosing candy into two
sequential tasks of choosing the jellybean and then choosing the gummy bear.
The tree of Figure 4.3 shows that there are 2 × 3 = 6 possible outcomes: {R, Y},
{R, G}, {R, W}, {B, Y}, {B, G}, and {B, W}.

{R, Y} {R, G} {R, W} {B, Y} {B, G} {B, W}

Y G W Y G W

R B
Choose jellybean.

Choose gummy bear.

In this problem the sequence of events could be reversed; the child could
choose the gummy bear first and the jellybean second, resulting in the tree of
Figure 4.4, but the number of outcomes is the same (3 × 2 = 6). Thinking of a se-
quence of successive events helps us solve the problem, but the sequencing is not
a part of the problem since the set {R, Y} is the same as the set {Y, R}.

{Y, R} {Y, B} {G, R} {G, B} {W, R} {W, B}

R B R

G

B R B

Y W
Choose gummy bear.

Choose jellybean.

Both these trees are “balanced” in the sense that the second level has a fixed num-
ber of outcomes regardless of the outcome at the previous level.

figure 4.3

figure 4.4

Section 4.2 Counting 253

Example 24 illustrates that the total number of outcomes for a sequence
of events can be obtained by multiplying the number of outcomes for the first
event by the number of outcomes for the second. This idea is summarized in the
 multiplication principle.

 pRinciple mUltiPliCatiON PRiNCiPle
If there are n1 possible outcomes for a first event and n2 possible outcomes for
a second event, there are n1 × n2 possible outcomes for the sequence of the two
events.

The multiplication principle can be extended by induction to apply to a
 sequence of any finite number of events. (See Exercise 73 at the end of this sec-
tion.) The multiplication principle is useful whenever we want to count the total
number of possible outcomes for a task that can be broken down into a sequence
of successive subtasks.

ReminDeR

Use the multiplication
principle when there is a
sequence of events.

 example 25 The last part of your telephone number contains four digits. How many such
 four-digit numbers are there?

We can construct four-digit numbers by performing a sequence of subtasks:
choose the first digit, then the second, the third, and finally the fourth. The first
digit can be any one of the 10 digits from 0 to 9, so there are 10 possible outcomes
for the first subtask. Likewise, there are 10 different possibilities each for the sec-
ond digit, the third, and the fourth. Using the multiplication principle, we multiply
the number of outcomes for each subtask in the sequence. Therefore there are
10 # 10 # 10 # 10 = 10,000 different numbers.

If an element cannot be used again—that is, if repetitions are not allowed—
the number of possible outcomes for successive events will be affected.

 example 26 Referring to Example 25, how many four-digit numbers are there if the same digit
cannot be used twice?

Again we have the sequence of subtasks of selecting the four digits, but no
repetitions are allowed. There are 10 choices for the first digit, but only 9 choices
for the second because we can’t use what we used for the first digit, and so on.
There are 10 # 9 # 8 # 7 = 5040 different numbers.

 example 27 a. How many ways are there to choose three officers from a club of
25 people?

 b. How many ways are there to choose three officers from a club of 25 people
if someone can hold more than one office?

In (a), there are three successive subtasks with no repetitions. The first subtask,
choosing the first officer, has 25 possible outcomes. The second subtask has 24 out-
comes, the third 23 outcomes. The total number of outcomes is 25 # 24 # 23 = 13,800.
In (b), the same three subtasks are done in succession, but repetitions are allowed.
The total number of outcomes is 25 # 25 # 25 = 15,625.

254 Sets, Combinatorics, and Probability

 example 28 When you order pizza at your favorite pizza place, you have the choice of thin
crust, regular crust, or deep-dish; small, medium, or large; and pepperoni, sausage,
barbeque, extra cheese, or vegetable. How many different pizzas can be ordered?

Again, there is a sequence of tasks: choose the crust, choose the size, and
choose the topping. The total number of outcomes is 3 # 3 # 5 = 45.

■
PraCtiCe 22 If a man has four suits, eight shirts, and five ties, how many outfits can he put together?

 example 29 For any finite set S, 0 S 0 denotes the number of elements in S. If A and B are finite
sets, then

0 A × B 0 = 0 A 0 # 0 B 0

A × B consists of all ordered pairs with first component from A and second com-
ponent from B. Forming such ordered pairs can be thought of as the sequence of
tasks of choosing the first component, for which there are 0 A 0 outcomes, and then
choosing the second component, for which there are 0 B 0 outcomes. The result fol-
lows from the multiplication principle.

addition Principle

Suppose we want to select a dessert from three pies and four cakes. In how many
ways can this be done? There are two events, one with three outcomes (choosing
a pie) and one with four outcomes (choosing a cake). However, we are not do-
ing a sequence of two events here, since we are getting only one dessert, which
must be chosen from the two disjoint sets of possibilities. The number of different
outcomes is the total number of choices we have, 3 + 4 = 7. This illustrates the
addition principle.

 pRinciple additiON PRiNCiPle
If A and B are disjoint events with n1 and n2 possible outcomes, respectively, then
the total number of possible outcomes for event “A or B” is n1 + n2.

The addition principle can be extended by induction to the case of any finite
number of disjoint events. (See Exercise 74 at the end of this section.) The addi-
tion principle is useful whenever we want to count the total number of possible
outcomes for a task that can be broken down into disjoint cases.

 example 30 A customer wants to purchase a vehicle from a dealer. The dealer has 23 autos and
14 trucks in stock. How many selections does the customer have?

The customer wants to choose a car or truck. These are disjoint events; choosing
an auto has 23 outcomes and choosing a truck has 14. By the addition principle,
choosing a vehicle has 23 + 14 = 37 outcomes. Notice the requirement that the
outcomes for events A and B be disjoint sets. Thus, if a customer wanted to pur-
chase a vehicle from a dealer who had 23 autos, 14 trucks, and 17 red vehicles in
stock, we could not conclude that the customer had 23 + 14 + 17 choices!

ReminDeR

Use the addition principle
only when the events are
disjoint—have no com-
mon outcomes.

Section 4.2 Counting 255

 example 31 Let A and B be disjoint finite sets. Then 0 A c B 0 = 0 A 0 + 0 B 0.
Finding 0 A c B 0 can be done by the disjoint cases of counting the number of

elements in A, 0 A 0, and the number of elements in B, 0 B 0. By the addition principle,
we sum these two numbers.

 example 32 If A and B are finite sets, then

0 A − B 0 = 0 A 0 − 0 A d B 0

and

0 A − B 0 = 0 A 0 − 0 B 0 if B # A

To prove the first equality, note that

 (A − B) c (A d B) = (A d B′) c (A d B)
 = A d (B′ c B)
 = A d S
 = A

so that A = (A − B) c (A d B). Also, A − B and A d B are disjoint sets; therefore,
by Example 31,

0 A 0 = 0 (A − B) c (A d B) 0 = 0 A − B 0 + 0 A d B 0

or

0 A − B 0 = 0 A 0 − 0 A d B 0

The second equation follows from the first, because if B # A then A d B = B.

Using the Principles together

Frequently the addition principle is used in conjunction with the multiplication
principle.

 example 33 Referring to Example 24, suppose we want to find how many different ways the
child can choose the candy, rather than the number of sets of candy the child can
have. Then choosing a red jellybean followed by a yellow gummy bear is not the
same as choosing a yellow gummy bear followed by a red jellybean. We can con-
sider two disjoint cases—choosing jellybeans first or choosing gummy bears first.
Each of these cases (by the multiplication principle) has six outcomes, so (by the
addition principle) there are 6 + 6 = 12 possible ways to choose the candy.

256 Sets, Combinatorics, and Probability

Often a counting problem can be solved in more than one way. Although the
possibility of a second solution might seem confusing, it provides an excellent
way to check our work; if two different ways of looking at the problem produce
the same answer, it increases our confidence that we have analyzed the problem
correctly.

 example 34 How many four-digit numbers begin with a 4 or a 5?
We can consider the two disjoint cases—numbers that begin with 4 and num-

bers that begin with 5. Counting the numbers that begin with 4, there is 1 out-
come for the subtask of choosing the first digit, then 10 possible outcomes for the
subtasks of choosing each of the other three digits. Hence, by the multiplication
principle there are 1 # 10 # 10 # 10 = 1000 ways to get a four-digit number beginning
with 4. The same reasoning shows that there are 1000 ways to get a four-digit num-
ber beginning with 5. By the addition principle, there are 1000 + 1000 = 2000 total
 possible outcomes.

■

PraCtiCe 23 If a woman has 7 blouses, 5 skirts, and 9 dresses, how many different outfits does she
have?

 example 35 Consider the problem of Example 34 again. We can avoid using the addition princi-
ple by thinking of the problem as four successive subtasks, where the first subtask,
choosing the first digit, has two possible outcomes—choosing a 4 or choosing a 5.
Then there are 2 # 10 # 10 # 10 = 2000 possible outcomes.

 example 36 How many three-digit integers (numbers between 100 and 999 inclusive) are even?
One solution notes that an even number ends in 0, 2, 4, 6, or 8. Taking these

as separate cases, the number of three-digit integers ending in 0 can be found by
choosing the three digits in turn. There are 9 choices, 1 through 9, for the first digit;
10 choices, 0 through 9, for the second digit; and 1 choice for the third digit, 0.
By the multiplication principle, there are 90 numbers ending in 0. Similarly, there
are 90 numbers ending in 2, 4, 6, and 8, so by the addition principle, there are
90 + 90 + 90 + 90 + 90 = 450 numbers.

Another solution takes advantage of the fact that there are only 5 choices for
the third digit. By the multiplication principle, there are 9 # 10 # 5 = 450 numbers.

For this problem, there is a third solution of the “serendipity” type we dis-
cussed in Section 2.1. There are 999 − 100 + 1 = 900 three-digit integers in the
range specified. Half are even and half are odd, so 450 of them must be even.

 example 37 Suppose the last four digits of a telephone number must include at least one re-
peated digit. How many such numbers are there?

Although it is possible to do this problem by using the addition principle direct-
ly, it is difficult because there are so many disjoint cases to consider. For example,
if the first two digits are alike but the third and fourth are different, there are
10 # 1 # 9 # 8 ways this can happen. If the first and third digit are alike but the second

Section 4.2 Counting 257

and fourth are different, there are 10 # 9 # 1 # 8 ways this can happen. If the first two
digits are alike and the last two are also alike but different from the first two, there are
10 # 1 # 9 # 1 such numbers. Obviously, there are many other possibilities.

Instead, we solve the problem by noting that numbers with repetitions and
numbers with no repetitions are disjoint sets whose union equals all four-digit
numbers. By Example 31 we can find the number with repetitions by subtracting
the number with no repetitions (5040, according to Example 26) from the total
number (10,000, according to Example 25). Therefore, there are 4960 numbers
with repetitions.

 example 38 A computer (or tablet, or camera, or cell phone) that wishes to connect to the In-
ternet must have an IP (Internet Protocol) address assigned to it. This allows the
device to be “found” over the Internet, much as a postal address allows a building
to be “found” via regular mail. The version of IP known as IPv4 uses an address
that is a 32-bit, or 4-byte, number (1 byte equals 8 bits). The first part of the ad-
dress, called the netid, identifies the network that the machine is part of and the
rest, called the hostid, identifies the machine itself. Note that this is a hierarchical
addressing scheme. A router trying to decide where to send a data packet looks at
the netid to determine the network. The hostid bytes need never be consulted until
the data packet has reached the correct network. U.S. postal addresses are hierar-
chical in the opposite order, with the most specific information first.

How many different IPv4 addresses are there? Each of the 32 bits can be set to
0 or 1, so by the multiplication principle, there are 2 # 2 # 2 # c # 2 = 232 different
bit patterns. Looking at a more abstract view, assume that a particular IP address
uses 16 bits for the netid and 16 bits for the hostid. Again using the multiplication
principle, this would give 216 # 216 = (again) 232 unique IP addresses. This number
is roughly 4.3 billion, which seems large enough to satisfy the world’s needs. But
no − the pool of IPv4 addresses allotted to some regions of the world began to run
out in 2011 and more would do so in another year or two. Hence the switch to IPv6.

An IPv6 address is 128 bits, divided into 64 bits for the network prefix that
identifies a particular network and the last 64 bits for the interface ID that identifies
the unique node on the network. While the gross structure of an IPv6 address there-
fore sounds just like an IPv4 address only bigger, there are details that make the
IPv6 scheme more efficient. And exactly how big is the pool of IPv6 addresses?
Using the same reasoning as before, there are 2128 unique addresses. This number
is roughly 3.4 × 1038, or 340 trillion trillion trillion, enough, it is said, for every
star in the known universe to have the equivalent of its very own IPv4 internet.

The World IPv6 Launch occurred on June 6, 2012, but it was not like turning
on a switch. Many major companies already supported IPv6 and IPv4 will con-
tinue to be supported over a few years of transition.

decision trees

Trees such as those in Figures 4.3 and 4.4 illustrate the number of outcomes of an
event based on a series of possible choices. Such trees are called decision trees.
We will see in Chapter 6 how decision trees are used in analyzing algorithms,
but for now we use them to solve additional counting problems. The trees of
Figures 4.3 and 4.4 led to the multiplication principle because the number of

258 Sets, Combinatorics, and Probability

outcomes at any one level of the tree is the same throughout that level. In
Figure 4.4, for example, level 2 of the tree shows two outcomes for each of the
3 branches formed at level 1. Less regular decision trees can still be used to solve
counting problems where the multiplication principle does not apply.

 example 39 Tony is pitching pennies. Each toss results in heads (H) or tails (T). How many
ways can he toss the coin 5 times without having 2 heads in a row?

T

H T

T

TH

H
T
H
T
H

H
T
H
T
T

H
T
T
T
H

H
T
T
H
T

H
T
T
T
T

HT T

TH

T

T
H
T
T
H

T
H
T
H
T

T
H
T
T
T

HT T

TH

H T

T

TH

T
T
H
T
H

T
T
H
T
T

T
T
T
T
H

T
T
T
H
T

T
T
T
T
T

HT T

TH

H T

H T
Toss 1

Toss 2

Toss 5

Toss 4

Toss 3

Figure 4.5 shows the decision tree for this problem. Each coin toss has 2 outcomes;
the left branch is labeled H for heads, the right branch is labeled T for tails. When-
ever an H appears on a branch, the next level can only contain a right (T) branch.
There are 13 possible outcomes, shown at the bottom of the tree.

figure 4.5

■
PraCtiCe 24 Explain why the multiplication principle does not apply to Example 39.

■

PraCtiCe 25 Draw the decision tree for the number of strings of X ’s, Y ’s, and Z ’s with length 3 that do
not have a Z following a Y.

S e c t i o n 4 . 2 review

tecHniQue

• Use the multiplication principle, the addition prin-
ciple, and decision trees for counting the number of
objects in a finite set.

main iDeaS

• The multiplication principle is used to count
the number of possible out comes for a sequence of
events, each of which has a fixed number of outcomes.

• The addition principle is used to count the number
of possible outcomes for disjoint events.

• The multiplication and addition principles are often
used together.

• Decision trees can be used to count the number
of outcomes for a sequence of events where the
number of outcomes for a given event is not con-
stant but depends on the outcome of the preced-
ing event.

W

Section 4.2 Counting 259

exeRciSeS 4.2

 1. A frozen yogurt shop allows you to choose one flavor (vanilla, strawberry, lemon, cherry, or peach),
one topping (chocolate shavings, crushed toffee, or crushed peanut brittle), and one condiment (whipped
cream or shredded coconut). How many different desserts are possible?

 2. In Exercise 1, how many dessert choices do you have if you are allergic to strawberries and chocolate?
 3. A video game is begun by making selections from each of 3 menus. The first menu (number of players)

has 4 selections, the second menu (level of play) has 8, and the third menu (speed) has 6. In how many
configurations can the game be played?

 4. A multiple choice exam has 20 questions each with 4 possible answers and 10 additional questions each
with 5 possible answers. How many different answer sheets are possible?

 5. A user’s password to access a computer system consists of 3 letters followed by 2 digits. How many dif-
ferent passwords are possible?

 6. On the computer system of Exercise 5, how many passwords are possible if uppercase and lowercase let-
ters can be distinguished?

 7. A telephone conference call is being placed from Central City to Booneville by way of Cloverdale. There
are 45 trunk lines from Central City to Cloverdale and 13 from Cloverdale to Booneville. How many dif-
ferent ways can the call be placed?

 8. A, B, C, and D are nodes on a computer network. There are 2 paths between A and C, 2 between B and
D, 3 between A and B, and 4 between C and D. Along how many routes can a message from A to D
be sent?

 9. How many nine-digit Social Security numbers are possible?
 10. An apartment building purchases a new lock system for its 175 units. A lock is opened by punching in a

two-digit code. Has the apartment management made a wise purchase?
 11. A palindrome is a string of characters that reads the same forward and backward. How many five-letter

English language palindromes are possible?
 12. How many three-digit numbers less than 600 can be made using the digits 8, 6, 4, and 2?
 13. A binary logical connective can be defined by giving its truth table. How many different binary logical

connectives are there?
 14. Three seats on the county council are to be filled, each with someone from a different party. There are 4

candidates running from the Concerned Environmentalist party, 3 from the Limited Development party,
and 2 from the Friends of the Spotted Newt party. In how many ways can the seats be filled?

 15. In the original BASIC programming language, an identifier must be either a single letter or a letter
followed by a single digit. How many identifiers are possible?

 16. A president and vice-president must be chosen for the executive committee of an organization. There are
17 volunteers from the Eastern Division and 24 volunteers from the Western Division. If both officers
must come from the same division, in how many ways can the officers be selected?

 17. A dinner special allows you to select from 5 appetizers, 3 salads, 4 entrees, and 3 beverages. How many
different dinners are there?

 18. In Exercise 17, how many different dinners are there if you may have an appetizer or a salad but not both?
 19. A new car can be ordered with a choice of 10 exterior colors; 7 interior colors; automatic or three-speed

or five-speed transmission; with or without air conditioning; with or without power steering; and with or
without the option package that contains the power door lock and the rear-window defroster. How many
different cars can be ordered?

 20. In Exercise 19, how many different cars can be ordered if the option package comes only on a car with an
automatic transmission?

260 Sets, Combinatorics, and Probability

 21. In one state, automobile license plates must have two digits (no leading zeros) followed by one letter
followed by a string of two to four digits (leading zeros are allowed). How many different plates are
 possible?

 22. A Hawaiian favorite fast food is the “loco moco,” invented at a Hilo restaurant. It consists of a bed of rice
under a meat patty with egg on top, the whole thing smothered in brown gravy. The rice can be white or
brown, the egg can be fried, scrambled, or poached, and the meat can be hamburger, Spam, Portuguese sau-
sage, bacon, turkey, hot dog, salmon, or mahi. How many different loco mocos can be ordered?

 23. A customer at a fast-food restaurant can order a hamburger with or without mustard, ketchup, pickle,
or onion; a fish sandwich with or without lettuce, tomato, or tartar sauce; and a choice of 3 kinds of soft
drinks or 2 kinds of milk shakes. How many different orders are possible if a customer can order at most
1 hamburger, 1 fish sandwich, and 1 beverage but can order less?

 24. How many unique ways are there to stack two 2 × 4 Lego bricks of the same color? Two stacks that look
the same if you merely rotate them are considered to be the same arrangement. Here is one such stack, the
original on top and the same stack after rotating 180°.

 25. What is the value of Count after the following pseudocode has been executed?
Count = 0
for i = 1 to 5 do

for Letter = ‘A’ to ‘C’ do
Count = Count + 1

end for
end for

 26. What is the value of Result after the following pseudocode has been executed?
Result = 0
for Index = 20 down to 10 do

for Inner = 5 to 10 do
Result = Result + 2

end for
end for

Exercises 27–32 concern the set of three-digit integers (numbers between 100 and 999 inclusive).

 27. How many are divisible by 5?
 28. How many are divisible by 4?
 29. How many are not divisible by 5?
 30. How many are divisible by 4 or 5?
 31. How many are divisible by 4 and 5?
 32. How many are divisible by neither 4 nor 5?

Section 4.2 Counting 261

Exercises 33–42 concern the set of binary strings of length 8 (each character is either the digit 0 or the digit 1).

 33. How many such strings are there?
 34. How many begin and end with 0?
 35. How many begin or end with 0?
 36. How many have 1 as the second digit?
 37. How many begin with 111?
 38. How many contain exactly one 0?
 39. How many begin with 10 or have a 0 as the third digit?
 40. How many are palindromes? (See Exercise 11.)
 41. How many contain exactly seven 1s?
 42. How many contain two or more 0s?

In Exercises 43–48, 2 dice are rolled, 1 black and 1 white.

 43. How many different rolls are possible? (Note that a 4-black, 1-white result and a 1-black, 4-white result
are two different outcomes.)

 44. How many rolls result in “snake eyes” (both dice showing 1)?
 45. How many rolls result in doubles (both dice showing the same value)?
 46. How many rolls result in a total of 7 or 11?
 47. How many rolls occur in which neither die shows the value 4?
 48. How many rolls occur in which the value on the white die is greater than the value on the black die?

In Exercises 49–54, a customer is ordering a new desktop computer system. The choices are 21-inch, 23-inch,
or 24-inch monitor (optional); 1 TB or 2 TB hard drive; 6 GB or 8 GB of RAM; 16X DVD or Blu-ray disk
optical drive; Intel, AMD, or NVIDIA video card; inkjet, laser, or laser color printer; 1-, 2-, or 3-year warranty.

	 49	How	many	different	machine	configurations	are	possible?
 50. How many different machines can be ordered with a 2 TB hard drive?
 51. How many different machines can be ordered with a 21-inch monitor and an inkjet printer?
 52. How many different machines can be ordered if the customer decides not to get a new monitor?
 53. How many different machines can be ordered with a 21-inch monitor, a 1 TB hard drive, and an inkjet

printer?
 54. How many different machines can be ordered if the customer does not want a 3-year warranty?

Exercises 55–58 refer to the Konami code, a sequence of 10 keystrokes using 6 different characters:
c c T T d S d S B	A.	This	code	was	inadvertently	left	by	the	developer	in	the	first	release	of	a	video	game;	
when entered on the video game console as the title screen is open, it surreptitiously adds assets to the player’s
on-screen avatar. This code or versions of it have been retained in many video games.

 55. How many 10-character codes can be created using these 6 characters?
 56. How many 10-character codes can be created if the BA sequence must be the last 2 characters?
 57. How many 10-character codes can be created if only 2 down-arrow characters can be used and they must

be paired together wherever they appear?
 58. How many 10-character codes can be created if only the arrow characters are used?

262 Sets, Combinatorics, and Probability

In Exercises 59–68, a hand consists of 1 card drawn from a standard 52-card deck with flowers on the back and
1 card drawn from a standard 52-card deck with birds on the back. A standard deck has 13 cards from each of
4 suits (clubs, diamonds, hearts, spades). The 13 cards have face value 2 through 10, jack, queen, king, or ace.
Each face value is a “kind” of card. The jack, queen, and king are “face cards.”

 59. How many different hands are possible? (Note that a flower-ace-of-spades, bird-queen-of-hearts and a
flower-queen-of-hearts, bird-ace-of-spades are two different outcomes.)

 60. How many hands consist of a pair of aces?
 61. How many hands contain all face cards?
 62. How many hands contain exactly 1 king?
 63. How many hands consist of two of a kind (2 aces, 2 jacks, and so on)?
 64. How many hands have a face value of 5 (aces count as 1, face cards count as 10)?
 65. How many hands have a face value of less than 5 (aces count as 1, face cards count as 10)?
 66. How many hands do not contain any face cards?
 67. How many hands contain at least 1 face card?
 68. How many hands contain at least 1 king?
 69. Draw a decision tree to find the number of binary strings of length 4 that do not have consecutive 0s.

(Compare your answer with the one for Exercise 41 of Section 3.2.)
 70. Draw a decision tree (use teams A and B) to find the number of ways the NBA playoffs can happen, where

the winner is the first team to win 4 out of 7.
 71. Voting on a certain issue is conducted by having everyone put a red, blue, or green slip of paper into a hat.

Then the slips are pulled out one at a time. The first color to receive two votes wins. Draw a decision tree
to find the number of ways in which the balloting can occur.

 72. In Example 39, prove the following facts, where C(n) = the total number of nodes in the decision tree at
level n, H(n) = the total number of nodes at level n resulting from an H toss, T(n) = the total number of
nodes at level n resulting from a T toss.1

 a. C(n) = H(n) + T(n)
 b. H(n) = T(n − 1)
 c. T(n) = H(n − 1) + T(n − 1)
 d. H(n) = H(n − 2) + T(n − 2)
 e. C(n) = C(n − 2) + C(n − 1) for n ≥ 3
 f. C(n) = F(n + 1) where F(n) is the nth Fibonacci number
 73. Use mathematical induction to extend the multiplication principle to a sequence of m events for any inte-

ger m, m ≥ 2.
 74. Use mathematical induction to extend the addition principle to m disjoint events for any integer m, m ≥ 2.
 75. Consider the product of n factors, x1

x2
cxn. Such an expression can be fully parenthesized to indicate

the order of multiplication in a number of ways. For example, if n = 4, there are five ways to parenthesize:
x1

(x2
(x3

x4))
x1

((x2
x3) # x4)

(x1
x2) # (x3

x4)
(x1

(x2
x3)) # x4

((x1
x2) # x3) # x4

1This problem was suggested by Mr. Tracy Castile, a former University of Hawaii at Hilo student.

Section 4.3 Principle of Inclusion and Exclusion; Pigeonhole Principle 263

 a. Write a recurrence relation for P(n), the number of ways to parenthesize a product of n factors, n ≥ 1.
Assume that P(1) = 1. (Hint: Note that for n > 2, the last multiplication to be performed can occur in
any of n − 1 positions.)

 b. Prove that

P(n) = C(n − 1)

 where C(0), C(1), … is the sequence of Catalan numbers (see Exercise 38 of Section 3.1).
 76. A simple closed convex polygon consists of n points in the plane joined in pairs by n line segments; each

point is the endpoint of exactly 2 line segments, and any line connecting 2 nonadjacent points lies wholly
within the polygon.

 a. Show that an (n + 2)-sided simple closed convex polygon can be triangulated (divided into triangular
regions) using n − 1 lines. (The figures show two different triangulations of a 6-sided polygon,
where n = 4).

 (Hint: Use a pair of straight lines to shave off 2 corners; consider the cases where n is even and the cases
where n is odd.)

 b. Write a recurrence relation for T(n), the number of different triangulations of an (n + 2)-sided polygon.
Assume that T(0) = 1. (Hint: Fix one edge of the polygon as the base of a triangle whose tip rotates
around the polygon, as shown. Use the sides of the triangle to divide the polygon into 2 polygonal sec-
tions with (k + 1) sides and (n − k + 2) sides.)

k = 1 k = 2 k = 3 k = 4
Trivial
2-sided
polygon

Trivial
2-sided
polygon

 c. Prove that T(n) = C(n), where C(0), C(1), … is the sequence of Catalan numbers (see Exercise 38 of
Section 3.1).

 S e c t i o n 4 . 3 PrinCiPle of inCluSion and exCluSion;
Pigeonhole PrinCiPle

In this section we discuss two more counting principles that can be used to solve
combinatorics problems.

264 Sets, Combinatorics, and Probability

Principle of inclusion and exclusion

To develop the principle of inclusion and exclusion, we first note that if A and B
are any subsets of a universal set S, then A − B, B − A, and A d B are mutually
disjoint sets (see Figure 4.6). For example, if x [A − B, then x o B, therefore
x o B − A and x o A d B.

Also, something can be said about the union of these three sets.

figure 4.6

From Example 31 (extended to three disjoint finite sets),

 0 (A − B) c (B − A) c (A d B) 0 = 0 A − B 0 + 0 B − A 0 + 0 A d B 0 (1)

From Example 32,

0 A − B 0 = 0 A 0 − 0 A d B 0

and

0 B − A 0 = 0 B 0 − 0 A d B 0

Using these expressions in Equation (1), along with the result of Practice 26, we get

0 A c B 0 = 0 A 0 − 0 A d B 0 + 0 B 0 − 0 A d B 0 + 0 A d B 0

or

 0 A c B 0 = 0 A 0 + 0 B 0 − 0 A d B 0 (2)

Equation (2) is the two-set version of the principle of inclusion and exclusion.
The name derives from the fact that when counting the number of elements in
the union of A and B, we must “include” (count) the number of elements in A and
the number of elements in B, but we must “exclude” (subtract) those elements in
A d B to avoid counting them twice.

■
PraCtiCe 26 What is another name for the set (A − B) c (B − A) c (A d B)?

Section 4.3 Principle of Inclusion and Exclusion; Pigeonhole Principle 265

PraCtiCe 27 How does Equation (2) relate to Example 31 of Section 4.2?
■

 example 40 A pollster queries 35 voters, all of whom support referendum 1, referendum 2, or
both, and finds that 14 voters support referendum 1 and 26 support referendum 2.
How many voters support both?

If we let A be the set of voters supporting referendum 1 and B be the set of
voters supporting referendum 2, then we know that

 0 A c B 0 = 35 0 A 0 = 14 0 B 0 = 26

From Equation (2),

 0 A c B 0 = 0 A 0 + 0 B 0 − 0 A d B 0
 35 = 14 + 26 − 0 A d B 0
 0 A d B 0 = 14 + 26 − 35 = 5

so 5 voters support both.

Equation (2) can easily be extended to three sets, as follows:

0 A c B c C 0 = 0 A c (B c C ) 0
 = 0 A 0 + 0 B c C 0 − 0 A d (B c C) 0
 = 0 A 0 + 0 B 0 + 0 C 0 − 0 B d C 0 − 0 (A d B) c (A d C ) 0
 = 0 A 0 + 0 B 0 + 0 C 0 − 0 B d C 0 − (0 A d B 0 + 0 A d C 0 − 0 A d B d C 0)
 = 0 A 0 + 0 B 0 + 0 C 0 − 0 A d B 0 − 0 A d C 0 − 0 B d C 0 + 0 A d B d C 0

Therefore the three-set version of the principle of inclusion and exclusion is

 0 A c B c C 0 = 0 A 0 + 0 B 0 + 0 C 0 − 0 A d B 0 − 0 A d C 0 − 0 B d C 0 + 0 A d B d C 0 (3)

PraCtiCe 28 Justify each of the equalities used in deriving Equation (3).
■

In addition to the formal derivation of Equation (3) that we just did, a sort of
geometric argument for 0 A c B c C 0 is suggested by Figure 4.7 on the next page.
When we add 0 A 0 + 0 B 0 + 0 C 0 , we are counting each of 0 A d B 0 , 0 A d C 0 , and 0 B
d C 0 twice, so we must throw each of them away once. When we add 0 A 0 + 0 B 0
+ 0 C 0 , we are counting 0 A d B d C 0 three times, but in subtracting 0 A d B 0 ,
0 A d C 0 , 0 B d C 0 we have thrown it away three times, so we must add it back once.

266 Sets, Combinatorics, and Probability

A B

C

S

figure 4.7

 example 41 A group of students plans to order pizza. If 13 will eat sausage topping, 10 will eat
pepperoni, 12 will eat extra cheese, 4 will eat both sausage and pepperoni, 5 will
eat both pepperoni and extra cheese, 7 will eat both sausage and extra cheese, and
3 will eat all three toppings, how many students are in the group?

Let
 A = {students who will eat sausage}
 B = {students who will eat pepperoni}
 C = {students who will eat extra cheese}

Then 0 A 0 = 13, 0 B 0 = 10, 0 C 0 = 12, 0 A d B 0 = 4, 0 B d C 0 = 5, 0 A d C 0 = 7, and
0A d B d C 0 = 3. From Equation (3),

0 A c B c C 0 = 13 + 10 + 12 − 4 − 5 − 7 + 3 = 22

We can also solve this problem by filling in all the pieces in a Venn diagram.
Working from the middle outward, we know there are 3 people in 0 A d B d C 0
 (Figure 4.8a). We also know the number in each of 0 A d B 0, 0 B d C 0, and 0 A d C 0,
so with a little subtraction we can fill in more pieces (Figure 4.8b). We also know
the size of A, B, and C, allowing us to complete the picture (Figure 4.8c). Now the
total number of students, 22, is obtained by adding up all the numbers.

A B

C

3

A B

C

3

1

4 2

A B

C

3

3

1

4 2

45

(a) (b) (c)

Although we are about to generalize Equation (3) to an arbitrary number of sets,
the Venn diagram approach gets too complicated to draw with more than three
sets.

figure 4.8

Section 4.3 Principle of Inclusion and Exclusion; Pigeonhole Principle 267

 example 42 A produce stand sells only broccoli, carrots, and okra. One day the stand served
207 people. If 114 people purchased broccoli, 152 purchased carrots, 25 purchased
okra, 64 purchased broccoli and carrots, 12 purchased carrots and okra, and 9 pur-
chased all three, how many people purchased broccoli and okra?

Let

 A = {people who purchased broccoli}
 B = {people who purchased carrots}
 C = {people who purchased okra}

Then 0 A c B c C 0 = 207, 0 A 0 = 114, 0 B 0 = 152, 0 C 0 = 25, 0 A d B 0 = 64, 0 B d C 0 = 12,
and 0 A d B d C 0 = 9. From Equation (3),

 0 A c B c C 0 = 0 A 0 + 0 B 0 + 0 C 0 − 0 A d B 0 − 0 A d C 0 − 0 B d C 0 + 0 A d B d C 0
 207 = 114 + 152 + 25 − 64 − 0 A d C 0 − 12 + 9
 0 A d C 0 = 114 + 152 + 25 − 64 − 12 + 9 − 207 = 17

In Equation (2), we add the number of elements in the single sets and subtract
the number of elements in the intersection of two sets. In Equation (3), we add the
number of elements in the single sets, subtract the number of elements in the in-
tersection of two sets, and add the number of elements in the intersection of three
sets. This seems to suggest a pattern: If we have n sets, we should add the number
of elements in the single sets, subtract the number of elements in the intersection
of two sets, add the number of elements in the intersection of three sets, subtract
the number of elements in the intersection of four sets, and so on. This leads us to
the general form of the principle of inclusion and exclusion:

In Equation (4) the notation

∙
1≤ i< j≤n

 0 Ai d Aj 0

for example, says to add together the number of elements in all the intersections of
the form Ai d Aj where i and j can take on any values between 1 and n as long as i < j.

 pRinciple Of iNClUSiON aNd exClUSiON
Given the finite sets A1, c, An, n ≥ 2, then

0 A1 c c c An 0 = ∙
1≤ i≤n

 0 Ai 0 − ∙
1≤ i< j≤n

 0 Ai d Aj 0

+ ∙
1≤ i< j<k≤n

 0 Ai d Aj d Ak 0

 − c+ (−1)n+1 0 A1 d cd An 0 (4)

268 Sets, Combinatorics, and Probability

For n = 3, this gives 0 A1 d A2 0 (i = 1, j = 2), 0 A1 d A3 0 (i = 1, j = 3), and 0 A2 d A3 0
(i = 2, j = 3). This agrees with Equation (3), where A1 = A, A2 = B, and A3 = C.

To prove the general form of the principle of inclusion and exclusion, we use
mathematical induction. Although the idea of the proof is straightforward, the
notation is rather messy. The base case, n = 2, is just Equation (2). We assume
that Equation (4) is true for n = k and show that it is true for n = k + 1. We write

 0 A1 c c c Ak + 1 0
 = 0 (A1 c c c Ak) c Ak + 1 0
 = 0 (A1 c c c Ak) 0 + 0 Ak + 1 0

 − 0 (A1 c c c Ak) d Ak + 1 0 (by Equation (2))

 = ∙
1≤ i≤k

 0 Ai 0 − ∙
1≤ i< j≤k

 0 Ai d Aj 0 + ∙
1≤ i< j<m≤k

 0 Ai d Aj d Am 0

 − c+ (−1)k+1 0 A1 d c d Ak 0 + 0 Ak + 1 0
 − 0 (A1 d Ak + 1) c c c (Ak d Ak + 1) 0

(by the inductive hypothesis and the distributive property)

= ∙
1≤ i≤k+1

 0 Ai 0 − ∙
1≤ i< j≤k

 0 Ai d Aj 0 + ∙
1≤ i< j<m≤k

 0 Ai d Aj d Am 0

− c+ (−1)k+1 0 A1 d cd Ak 0

 − a ∙
1≤ i≤k

 0 Ai d Ak + 1 0 − ∙
1≤ i< j≤k

 0 Ai d Aj d Ak + 1 0 + c+

+ (−1)k ∙
1≤ i< j< c<m≤k

 0 (Ai d Ak + 1) d (Aj d Ak + 1) d c d (Am d Ak + 1) 0

+ (−1)k+1 0 A1 d cd Ak + 1 0b

(by combining terms ➀ from above and using the inductive hypothesis on the k sets
A1 d Ak + 1, A2 d Ak + 1, … , Ak d Ak + 1)

= ∙
1≤ i≤k+1

 0 Ai 0 − ∙
1≤ i< j≤k +1

 0 Ai d Aj 0 + ∙
1≤ i< j<m≤k +1

 0 Ai d Aj d Am 0

− c− (−1)k+1 0 A1 d cd Ak + 1 0

(by combining like-numbered terms from above)

= ∙
1≤ i≤k+1

 0 Ai 0 − ∙
1≤ i< j≤k +1

 0 Ai d Aj 0 + ∙
1≤ i< j<m≤k +1

 0 Ai d Aj d Am 0

− c+ (−1)k+2 0 A1 d cd Ak + 1 0

This completes the proof of Equation (4). A different proof of the principle of in-
clusion and exclusion can be found in Exercise 23 of Section 4.5.

➀

➀

➁ ➂

➁ ➂

➃

('''''''''')''''''''''*
k − 1 terms

➃

Section 4.3 Principle of Inclusion and Exclusion; Pigeonhole Principle 269

Pigeonhole Principle

The pigeonhole principle acquired its quaint name from the following idea: If
more than k pigeons fly into k pigeonholes, then at least 1 hole will end up with
more than 1 pigeon. Although this seems immediately obvious, we can belabor the
point. Suppose each of the k pigeonholes contains at most 1 pigeon. Then there are
at most k pigeons, not the more-than-k pigeons that supposedly flew in.

Now we’ll state the pigeonhole principle in a less picturesque way.

 pRinciple PigeONhOle PRiNCiPle
If more than k items are placed into k bins, then at least 1 bin contains more than
1 item.

By cleverly choosing items and bins, a number of interesting counting prob-
lems can be solved (see Example 7 of Chapter 2).

 example 43 How many people must be in a room to guarantee that 2 people have last names
that begin with the same initial?

There are 26 letters of the alphabet (bins). If there are 27 people, then there are
27 initials (items) to put into the 26 bins, so at least 1 bin will contain more than
1 last initial.

■

PraCtiCe 29 How many times must a single die be rolled in order to guarantee getting the same value
twice?

 example 44 Prove that if 51 positive integers between 1 and 100 are chosen, then one of them
must divide another.

Let the integers be n1, …, n51. Each integer ni ≥ 2 can be written as a product
of prime numbers (fundamental theorem of arithmetic), every prime number except
2 is odd, and the product of odd numbers is odd. Therefore for each i, ni = 2kibi,
where ki ≥ 0 and bi is an odd number. Furthermore, 1 ≤ bi ≤ 99, and there are 50
odd integers between 1 and 99 inclusive, but there are 51 b values. By the pigeon-
hole principle, bi = bj for some i and j, so ni = 2kibi and nj = 2kjbi. If ki ≤ k j, then ni
divides nj; otherwise, nj divides ni.

S e c t i o n 4 . 3 review

tecHniQueS

• Use the principle of inclusion and exclusion to find
the number of elements in the union of sets.

• Use the pigeonhole principle to find the minimum
number of elements to guarantee two with a
duplicate property.

main iDea

• The principle of inclusion and exclusion and the
piegeonhole principle are additional counting
mechanisms for sets.

W

270 Sets, Combinatorics, and Probability

exeRciSeS 4.3

 1. All the guests at a dinner party drink coffee or tea; 13 guests drink coffee, 10 drink tea, and 4 drink both
coffee and tea. How many people are guests at the dinner party?

 2. In a group of 42 tourists, everyone speaks English or French; there are 35 English speakers and 18 French
speakers. How many speak both English and French?

 3. After serving 137 customers, a cafeteria notes at the end of the day that 56 orders of green beans were
sold, 38 orders of beets were sold, and 17 customers purchased both green beans and beets. How many
customers bought neither beans nor beets?

 4. A bike show will be held for mountain bikes and road bikes. Of the 24 people who register for the show, 17
will bring road bikes and 5 will bring both road bikes and mountain bikes. How many will bring mountain
bikes?

 5. Quality control in a factory pulls 40 parts with paint, packaging, or electronics defects from an assembly
line. Of these, 28 had a paint defect, 17 had a packaging defect, 13 had an electronics defect, 6 had both
paint and packaging defects, 7 had both packaging and electronics defects, and 10 had both paint and
electronics defects. Did any part have all three types of defect?

 6. In a group of 24 people who like rock, country, and classical music, 14 like rock, 17 like classical, 11 like
both rock and country, 9 like rock and classical, 13 like country and classical, and 8 like rock, country, and
classical. How many like country?

 7. Nineteen different mouthwash products make the following claims: 12 claim to freshen breath, 10 claim
to prevent gingivitis, 11 claim to reduce plaque, 6 claim to both freshen breath and reduce plaque, 5 claim
to both prevent gingivitis and freshen breath, and 5 claim to both prevent gingivitis and reduce plaque.

 a. How many products make all three claims?
 b. How many products claim to freshen breath but do not claim to reduce plaque?
 8. From the 83 students who want to enroll in CS 320, 32 have completed CS 120, 27 have completed

CS 180, and 35 have completed CS 215. Of these, 7 have completed both CS 120 and CS 180, 16 have
completed CS 180 and CS 215, and 3 have completed CS 120 and CS 215. Two students have completed
all three courses. The prerequisite for CS 320 is completion of one of CS 120, CS 180, or CS 215. How
many students are not eligible to enroll?

 9. A survey of 150 college students reveals that 83 own automobiles, 97 own bikes, 28 own motorcycles, 53
own a car and a bike, 14 own a car and a motorcycle, 7 own a bike and a motorcycle, and 2 own all three.

 a. How many students own a bike and nothing else?
 b. How many students do not own any of the three?
 10. Among a bank’s 214 customers with checking or savings accounts, 189 have checking accounts, 73 have

regular savings accounts, 114 have money market savings accounts, and 69 have both checking and regu-
lar savings accounts. No customer is allowed to have both regular savings and money market savings
accounts.

 a. How many customers have both checking and money market savings accounts?
 b. How many customers have a checking account but no savings account?
 11. At the beginning of this chapter you surveyed the 87 computer users who subscribe to your electronic

newsletter in preparation for the release of your new software product.

The results of your survey reveal that of the 87 subscribers, 68 have a Windows-based system available
to them, 34 have a Linux system available, and 30 have access to a Mac. In addition, 19 have access
to both Windows and Linux systems, 11 have access to both Linux systems and Macs, and 23 can use
both Macs and Windows.

Section 4.3 Principle of Inclusion and Exclusion; Pigeonhole Principle 271

 Use the principle of inclusion and exclusion to determine how many subscribers have access to all three
types of systems.

 12. You are developing a new bath soap, and you hire a public opinion survey group to do some market re-
search for you. The group claims that in its survey of 450 consumers, the following criteria were named
as important factors in purchasing bath soap:

Odor 425
Lathering ease 397
Natural ingredients 340
Odor and lathering ease 284
Odor and natural ingredients 315
Lathering ease and natural ingredients 219
All three factors 147

 Should you have confidence in these results? Why or why not?
 13. a. How many integers n, 1 ≤ n ≤ 100, are multiples of either 2 or 5?
 b. How many integers n, 1 ≤ n ≤ 100, are not multiples of either 2 or 5?
 14. How many integers n, 1 ≤ n ≤ 1000, are not multiples of either 3 or 7?
 15. a. Write the expression for 0 A c B c C c D 0 from Equation (4).
 b. Write an expression for the number of terms in the expansion of 0 A1 c cc An 0 given by Equation (4).
 16. Patrons of a local bookstore can sign up for advance notification of new book arrivals in genres of interest.

In the first month of this service, 32 sign up for mysteries, 34 for spy novels, 18 for westerns, and 41 for
science fiction. Of these, 17 sign for both mysteries and spy novels, 8 for both mysteries and westerns,
19 for mysteries and science fiction, 5 for spy novels and westerns, 20 for spy novels and science fiction,
and 12 for westerns and science fiction. In addition, 2 sign up for mysteries, spy novels and westerns, 11
for mysteries, spy novels and science fiction, 6 for mysteries, westerns, and science fiction, and 5 for spy
novels, westerns, and science fiction. Finally, 2 people sign up for all four categories. How many people
signed up for service in the first month?

 17. How many cards must be drawn from a standard 52-card deck to guarantee 2 cards of the same suit?
 18. How many cards must be drawn from a standard 52-card deck to guarantee a black card?
 19. If 12 cards are drawn from a standard deck, must at least 2 of them be of the same denomination (type)?
 20. How many cards must be drawn from a standard 52-card deck to guarantee 2 queens?
 21. A computerized dating service has a list of 50 men and 50 women. Names are selected at random; how

many names must be chosen to guarantee one name of each gender?
 22. A computerized housing service has a list of 50 men and 50 women. Names are selected at random; how

many names must be chosen to guarantee two names of the same gender?
 23. How many people must be in a group to guarantee that 2 people in the group have the same birthday (don’t

forget leap year)?
 24. In a group of 25 people, must there be at least 3 who were born in the same month?
 25. Prove that if four numbers are chosen from the set {1, 2, 3, 4, 5, 6}, at least one pair must add up to 7.

(Hint: Find all the pairs of numbers from the set that add to 7.)
 26. How many numbers must be selected from the set {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} to guarantee that at

least one pair adds up to 22? (See the hint for Exercise 25).
 27. Let n be a positive number. Show that in any set of n + 1 numbers, there are at least two with the same

remainder when divided by n.

272 Sets, Combinatorics, and Probability

 S e c t i o n 4 . 4 PermutationS and CombinationS

Permutations

Example 26 in Section 4.2 discussed the problem of counting all possibilities for
the last four digits of a telephone number with no repeated digits. In this problem,
the number 1259 is not the same as the number 2951 because the order of the
four digits is important. An ordered arrangement of objects is called a permuta-
tion. Each of these numbers is a permutation of 4 distinct objects chosen from
a set of 10 distinct objects (the digits). How many such permutations are there?
The answer, found by using the multiplication principle, is 10 # 9 # 8 # 7—there are
10 choices for the first digit, then 9 for the next digit because repetitions are not al-
lowed, 8 for the next digit, and 7 for the fourth digit. The number of permutations
of r distinct objects chosen from n distinct objects is denoted by P(n, r). Therefore
the solution to the problem of the four-digit number without repeated digits can be
expressed as P(10, 4).

A formula for P(n, r) can be written using the factorial function. For a positive
integer n, n factorial is defined as n(n − 1)(n − 2) c1 and denoted by n!; also, 0!
is defined to have the value 1. From the definition of n!, we see that

n! = n(n − 1)!

and that for r < n,

n!
(n − r)!

 =
n(n − 1) c (n − r + 1)(n − r)!

(n − r)!
 = n(n − 1) c (n − r + 1)

Using the factorial function,

P(10, 4) = 10 # 9 # 8 # 7

 =
10 # 9 # 8 # 7 # 6 # 5 # 4 # 3 # 2 # 1

6 # 5 # 4 # 3 # 2 # 1
=

10!
6!

=
10!

(10 − 4)!

In general, P(n, r) is given by the formula

P(n, r) =
n!

(n − r)!
 for 0 ≤ r ≤ n

 example 45 The value of P(7, 3) is

7!
(7 − 3)!

=
7!
4!

=
7 # 6 # 5 # 4 # 3 # 2 # 1

4 # 3 # 2 # 1
= 7 # 6 # 5 = 210

 example 46 Three somewhat special cases that can arise when computing P(n, r) are the two
“boundary conditions” P(n, 0) and P(n, n), and also P(n, 1). According to the
formula,

Section 4.4 Permutations and Combinations 273

P(n, 0) =
n!

(n − 0)!
=

n!
n!

= 1

This formula can be interpreted as saying that there is only one ordered arrange-
ment of zero objects—the empty set.

P(n, 1) =
n!

(n − 1)!
= n

This formula reflects the fact that there are n ordered arrangements of 1 object.
(Each arrangement consists of the 1 object, so this merely counts how many ways
to get the 1 object.)

P(n, n) =
n!

(n − n)!
=

n!
0!

= n!

This formula states that there are n! ordered arrangements of n distinct objects,
which merely reflects the multiplication principle—n choices for the first
 object, n − 1 choices for the second object, and so on, with 1 choice for the nth
object.

 example 47 The number of permutations of 3 objects, say a, b, and c, is given by
P(3, 3) = 3! = 3 # 2 # 1 = 6. The 6 permutations of a, b, and c are

abc, acb, bac, bca, cab, cba

Note that we could have solved Example 48 just by using the multiplication
principle—there are 8 choices for the first letter, 7 for the second, and 6 for the
third, so the answer is 8 # 7 # 6 = 336. P(n, r) simply gives us a new way to think
about the problem, as well as a compact notation.

 example 48 How many three-letter words (not necessarily meaningful) can be formed from the
word “compiler” if no letters can be repeated? Here the arrangement of letters mat-
ters, and we want to know the number of permutations of 3 distinct objects taken
from 8 objects. The answer is P(8, 3) = 8!/5! = 336.

 example 49 Ten athletes compete in an Olympic event. Gold, silver, and bronze medals are
awarded; in how many ways can the awards be made?

This problem is essentially the same as the one in Example 48. Order mat-
ters; given 3 winners A, B, and C, the arrangement A−gold, B−silver, C−bronze
is different than the arrangement C−gold, A−silver, B−bronze. So we want the
number of ordered arrangements of 3 objects from a pool of 10, or P(10, 3). Using
the formula for P(n, r), P(10, 3) = 10!/7! = 10 # 9 # 8 = 720.

274 Sets, Combinatorics, and Probability

PraCtiCe 30 In how many ways can a president and vice-president be selected from a group of
20 people?

■

PraCtiCe 31 In how many ways can 6 people be seated in a row of 6 chairs?
■

Counting problems can have other counting problems as subtasks.

Combinations

Sometimes we want to select r objects from a set of n objects, but we don’t care
how they are arranged. Then we are counting the number of combinations of r
distinct objects chosen from n distinct objects, denoted by C(n, r). For each such
combination, there are r! ways to permute the r chosen objects. By the multipli-
cation principle, the number of permutations of r distinct objects chosen from
n objects is the product of the number of ways to choose the objects, C(n, r),
multiplied by the number of ways to arrange the objects chosen, r! Thus,

C(n, r) # r! = P(n, r)

or

C(n, r) =
P(n, r)

r!
=

n!
r!(n − r)!

 for 0 ≤ r ≤ n

Other notations for C(n, r) are

nCr, C
n
r , a n

r
b

 example 50 A library has 4 books on operating systems, 7 on programming, and 3 on data
structures. Let’s see how many ways these books can be arranged on a shelf, given
that all books on the same subject must be together.

We can think of this problem as a sequence of subtasks. First we consider
the subtask of arranging the 3 subjects. There are 3! outcomes to this subtask,
that is, 3! different orderings of subject matter. The next subtasks are arranging
the books on operating systems (4! outcomes), then arranging the books on
programming (7! outcomes), and finally arranging the books on data structures
(3! outcomes). Thus, by the multiplication principle, the final number of arrange-
ments of all the books is (3!)(4!)(7!)(3!) = 4,354,560.

 example 51 The value of C(7, 3) is

7!
3!(7 − 3)!

 =
7!

3!4!
=

7 # 6 # 5 # 4 # 3 # 2 # 1
3 # 2 # 1 # 4 # 3 # 2 # 1

 =
7 # 6 # 5
3 # 2 # 1

= 7 # 5 = 35

From Example 45, the value of P(7, 3) is 210, and C(7, 3) # (3!) = 35(6) = 210 =
P(7, 3).

Section 4.4 Permutations and Combinations 275

(b)(a)

C [n, r]

P[n, r]
n

r]n

r]

figure 4.9

 example 52 The special cases for C(n, r) are C(n, 0), C(n, 1), and C(n, n). The formula for C(n, 0),

C(n, 0) =
n!

0!(n − 0)!
= 1

reflects the fact that there is only one way to choose zero objects from n objects:
Choose the empty set.

C(n, 1) =
n!

1!(n − 1)!
= n

Here the formula indicates that there are n ways to select 1 object from n objects.

C(n, n) =
n!

n!(n − n)!
= 1

Here we see that there is only one way to select n objects from n objects, and that
is to choose all of the objects.

In the formula for C(n, r), suppose n is held fixed and r is increased. Then r!
increases, which tends to make C(n, r) smaller, but (n − r)! decreases, which tends
to make C(n, r) larger. For small values of r, the increase in r! is not as great as
the decrease in (n − r)!, and so C(n, r) increases from 1 to n to larger values. At
some point, however, the increase in r! overcomes the decrease in (n − r)!, and
the values of C(n, r) decrease back down to 1 by the time r = n, as we calculated
in Example 52. Figure 4.9a illustrates the rise and fall of the values of C(n, r) for a
fixed n. For P(n, r), as n is held fixed and r is increased, n − r and therefore (n − r)!
decreases, so P(n, r) increases. Values of P(n, r) for 0 ≤ r ≤ n thus increase from
1 to n to n!, as we calculated in Example 46. See Figure 4.9b; note the difference
in the vertical scale of Figures 4.9a and 4.9b.

 example 53 How many 5-card poker hands are possible with a 52-card deck? Here order does
not matter because we simply want to know which cards end up in the hand. We
want the number of ways to choose 5 objects from a pool of 52, which is a combi-
nations problem. The answer is C(52, 5) = 52!/(5!47!) = 2,598,960.

276 Sets, Combinatorics, and Probability

Unlike earlier problems, the answer to Example 53 cannot easily be obtained
by applying the multiplication principle. Thus, C(n, r) gives us a way to solve new
problems.

 example 54 Ten athletes compete in an Olympic event; 3 will be declared winners. How many
sets of winners are possible?

Here, as opposed to Example 49, there is no order to the 3 winners, so we
are simply choosing 3 objects out of 10. This is a combinations problem, not a
permutations problem. The result is C(10, 3) = 10!/(3!7!) = 120. Notice that
there are fewer ways to choose 3 winners (a combinations problem) than to
award gold, silver, and bronze medals to 3 winners (a permutations problem—
Example 49).

Remember that the distinction between permutations and combinations lies
in whether the objects are to be merely selected or both selected and ordered.
If ordering is important, the problem involves permutations; if ordering is not
important, the problem involves combinations. For example, Practice 30 is a per-
mutations problem—2 people are to be selected and ordered, the first as president,
the second as vice-president—whereas Practice 32 is a combinations problem—
3 people are selected but not ordered.

In solving counting problems, C(n, r) can be used in conjunction with the
multiplication principle or the addition principle.

PraCtiCe 32 How many committees of 3 are possible from a group of 12 people?
■

ReminDeR

In a counting problem,
first ask yourself if order
matters. If it does, it’s a
permutations problem. If
not, it’s a combinations
problem.

 example 55 A committee of 8 students is to be formed from a class consisting of 19 freshmen
and 34 sophomores.

 a. How many committees of 3 freshmen and 5 sophomores are possible?
 b. How many committees with exactly 1 freshman are possible?
 c. How many committees with at most 1 freshman are possible?
 d. How many committees with at least 1 freshman are possible?

Because the ordering of the individuals chosen is not important, these are com-
binations problems.

For part (a), we have a sequence of two subtasks, selecting freshmen and
selecting sophomores. The multiplication principle should be used. (Thinking of a
sequence of subtasks may seem to imply ordering, but it just sets up the levels of
the decision tree, the basis for the multiplication principle. There is no ordering of
the students.) Because there are C(19, 3) ways to choose the freshmen and C(34, 5)
ways to choose the sophomores, the answer is

C(19, 3) # C(34, 5) =
19!

3!16!
34!
5!29!

= (969)(278,256)

Section 4.4 Permutations and Combinations 277

For part (b), we again have a sequence of subtasks: selecting the single fresh-
man and then selecting the rest of the committee from among the sophomores.
There are C(19, 1) ways to select the single freshman and C(34, 7) ways to select
the remaining 7 members from the sophomores. By the multiplication principle,
the answer is

C(19, 1) # C(34, 7) =
19!

1!(19 − 1)!
34!
7!(34 − 7)!

= 19(5,379,616)

For part (c), we get at most 1 freshman by having exactly 1 freshman or by
having 0 freshmen. Because these are disjoint events, we use the addition prin-
ciple. The number of ways to select exactly 1 freshman is the answer to part (b).
The number of ways to select 0 freshmen is the same as the number of ways to
select the entire 8-member committee from among the 34 sophomores, C(34, 8).
Thus the answer is

C(19, 1) # C(34, 7) + C(34, 8) = some big number

We can attack part (d) in several ways. One way is to use the addition princi-
ple, thinking of the disjoint possibilities as exactly 1 freshman, exactly 2 freshmen,
and so on, up to exactly 8 freshmen. We could compute each of these numbers and
then add them. However, it is easier to do the problem by counting all the ways the
committee of 8 can be selected from the total pool of 53 people and then eliminat-
ing (subtracting) the number of committees with 0 freshmen (all sophomores).
Thus the answer is

C(53, 8) − C(34, 8)

ReminDeR

“At least” counting prob-
lems are often best solved
by subtraction.

The factorial function grows large quickly. A number like 100! cannot be
computed on most calculators (or on most computers unless double−precision
arithmetic is used), but expressions like

100!
25!75!

can nevertheless be computed by first canceling common factors.

eliminating duplicates

We mentioned earlier that counting problems can often be solved in different ways.
Unfortunately, it is also easy to find so-called solutions that sound eminently rea-
sonable but are incorrect. Usually they are wrong because they count something
more than once (or sometimes they overlook counting something entirely).

 example 56 Consider again part (d) of Example 55, the number of committees with at least 1
freshman. A bogus solution to this problem goes as follows: Think of a sequence
of two subtasks, choosing a freshman and then choosing the rest of the committee.

278 Sets, Combinatorics, and Probability

There are C(19, 1) ways to choose 1 freshman. Once a freshman has been selected,
that guarantees that at least 1 freshman will be on the committee, so we are free to
choose the remaining 7 members of the committee from the remaining 52 people
without any restrictions, giving us C(52, 7) choices. By the multiplication prin-
ciple, this gives C(19, 1) # C(52, 7). However, this is a bigger number than the
correct answer.

The problem is this: Suppose Derek and Felicia are both freshmen. In one of
the choices we have counted, Derek is the one guaranteed freshman, and we pick
the rest of the committee in such a way that Felicia is on it along with 6 others. But
we have also counted the option of making Felicia the guaranteed freshman and
having Derek and the same 6 others be the rest of the committee. This is the same
committee as before, and we have counted it twice.

Practice 33 A committee of 2 to be chosen from 4 math majors and 3 physics majors must include at
least 1 math major. Compute the following 2 values.

a. C(7, 2) − C(3, 2) (correct solution: all committees minus those with no math majors)
b. C(4, 1) # C(6, 1) (bogus solution: choose 1 math major and then choose the rest of the committee)

The expression C(4, 1) # C(6, 1) − C(4, 2) also gives the correct answer because C(4, 2) is the number
of committees with 2 math majors, and these are the committees counted twice in C(4, 1) # C(6, 1). ■

 ExamplE 57 a. How many distinct permutations can be made from the characters in the
word FLORIDA?

 b. How many distinct permutations can be made from the characters in the
word MISSISSIPPI?

Part (a) is a simple problem of the number of ordered arrangements of seven
distinct objects, which is 7!. However, the answer to part (b) is not 11! because the
11 characters in MISSISSIPPI are not all distinct. This means that 11! counts some
of the same arrangements more than once (the same arrangement meaning that we
cannot tell the difference between MIS1S2ISSIPPI and MIS2S1ISSIPPI.)

Consider any one arrangement of the characters. The four S’s occupy certain
positions in the string. Rearranging the S’s within those positions would result in
no distinguishable change, so our one arrangement has 4! look-alikes. In order to
avoid overcounting, we must divide 11! by 4! to take care of all the ways of mov-
ing the S’s around. Similarly, we must divide by 4! to take care of the four I’s and
by 2! to take care of the two P’s. The number of distinct permutations is thus

11!
4!4!2!

In general, suppose there are n objects of which a set of n1 are indistinguish-
able from each other, another set of n2 are indistinguishable from each other, and
so on, down to nk objects that are indistinguishable from each other. The number
of distinct permutations of the n objects is

n!
(n1!)(n2!)

c
 (nk!)

Section 4.4 Permutations and Combinations 279

PraCtiCe 34 How many distinct permutations are there of the characters in the word MONGOOSES?
■

Permutations and Combinations with Repetitions

Our formulas for P(n, r) and C(n, r) assume that we arrange or select r objects out
of the n available using each object only once. Therefore r ≤ n. Suppose, however,
that the n objects are available for reuse as many times as desired. For example, we
construct words using the 26 letters of the alphabet; the words may be as long as
desired with letters used repeatedly. Or we may draw cards from a deck, replacing
a card after each draw; we may draw as many cards as we like with cards used
repeatedly. We can still talk about permutations or combinations of r objects out
of n, but with repetitions allowed, r might be greater than n.

Counting the number of permutations of r objects out of n distinct objects
with repetition is easy. We have n choices for the first object and, because we can
repeat that object, n choices for the second object, n choices for the third, and so
on. Hence, the number of permutations of r objects out of n distinct objects with
repetition allowed is nr.

To determine the number of combinations of r objects out of n distinct objects
with repetition allowed, we use a rather clever idea.

 example 58 A jeweler designing a pin has decided to use five stones chosen from a supply of
diamonds, rubies, and emeralds. How many sets of stones are possible?

Because we are not interested in any ordered arrangement of the stones, this is
a combinations problem rather than a permutations problem. We want the number
of combinations of five objects out of three objects with repetition allowed. The
pin might consist of 1 diamond, 3 rubies, and 1 emerald, for instance, or 5 dia-
monds. We can represent these possibilities by representing the stones chosen by
5 asterisks and placing markers between the asterisks to represent the distribution
among the three types of gem, diamonds, rubies, and emeralds. For example, we
could represent the choice of 1 diamond, 3 rubies, and 1 emerald by

*0***0*
while the choice of 5 diamonds, 0 rubies, and 0 emeralds would be represented by

*****0 0
Although we wrote the asterisks and markers in a row, there is no ordering implied.
We are just looking at seven slots holding the five gems and the two markers, and
the different choices are represented by which of the seven slots are occupied by
asterisks. We therefore count the number of ways to choose five items out of seven,
which is C(7, 5) or

7!
5!2!

280 Sets, Combinatorics, and Probability

In general, if we use the same scheme to represent a combination of r objects out
of n distinct objects with repetition allowed, there must be n − 1 markers to indi-
cate the number of copies of each of the n objects. This gives r + (n − 1) slots to
fill, and we want to know the number of ways to select r of these. Therefore we
want

C(r + n − 1, r) =
(r + n − 1)!

r!(r + n − 1 − r)!
=

(r + n − 1)!
r!(n − 1)!

This agrees with the result in Example 58, where r = 5, n = 3.

We have discussed a number of counting techniques in this chapter. Table 4.2
summarizes the techniques you can apply in various circumstances, although there
may be several legitimate ways to solve any one counting problem.

Practice 35 Six children get one lollipop each from among a selection of red, yellow, and green lol-
lipops. How many sets of lollipops are possible? (We do not care which child gets which.)

■

Table 4.2

You Want to Count the Number of … Technique to Try

Subsets of an n-element set Use formula 2n.

Outcomes of successive events
Multiply the number of outcomes for
each event.

Outcomes of disjoint events
Add the number of outcomes for each
event.

Outcomes given specific choices at
each step

Draw a decision tree and count the
number of paths.

Elements in overlapping sections of
 related sets

Use principle of inclusion and exclusion
formula.

Ordered arrangements of r out of n
 distinct objects

Use P(n, r) formula.

Ways to select r out of n distinct
objects

Use C(n, r) formula.

Ways to select r out of n distinct
objects with repetition allowed Use C(r + n − 1, r) formula.

Generating Permutations and Combinations

In a certain county, lottery ticket numbers consist of a sequence (a permutation)
of the 9 digits 1, 2, …, 9. The ticket printing company may or may not know that
9! = 362,880 distinct ticket numbers are possible, but it certainly needs a way to

Section 4.4 Permutations and Combinations 281

generate all possible ticket numbers. Or the county council (a group of 12 mem-
bers) wants to form a subcommittee of 4 members but wants to pick the combina-
tion of council members it feels can best work together. The council could ask
someone to generate all C(12, 4) = 495 potential subcommittees and examine
the membership of each one. We see that in some situations, simply counting the
number of permutations or combinations is not enough; it is useful to be able to
list all the permutations or combinations.

 example 59 Example 47 asked for the number of permutations of the three objects a, b, and c.
The answer is given by the formula P(3,3) = 3! = 6. However Example 47 went
on to list the six permutations:

abc, acb, bac, bca, cab, cba

This list presents the six permutations using lexicographical ordering, that is, the
order in which they would be found in a dictionary if they were legitimate words.
Thus abc precedes acb because although both words begin with the same first
character, for the second character, b precedes c. If we had three integers, say 4, 6,
and 7, instead of three alphabetical characters, the lexicographical ordering of all
six permutations would present values in increasing numerical order:

467, 476, 647, 674, 746, 764

PraCtiCe 36 Arrange the following list of permutations in lexicographical order:

scary, yarsc, scyra, cysar, scrya, yarcs ■

Words that are close in lexicographical order have the maximum number of
matching leftmost characters or, equivalently, differ in the fewest rightmost char-
acters. We use this characteristic to develop a process to generate all permutations
of the integers {1, …, n} in lexicographical order.

 example 60 Consider the set {1, 2, 3, 4, 5}. The smallest numerical value (the first permutation)
is given by the increasing order of all the integers, namely,

12345

To generate the next number in lexicographical order, we want to retain as many
of the leftmost digits as possible. Clearly we can’t keep the leftmost four digits be-
cause this also determines the fifth digit. To keep the leftmost three digits, 123 − −,
we must be able to rearrange the remaining two digits to represent a larger value
than they do now. Reading 12345 from right to left, we find in the last two digits
that 4 < 5, which means we can reverse the 4 and the 5 to get

12354

282 Sets, Combinatorics, and Probability

which is the next permutation in the list. That’s all that can be done with the last
two digits; in particular, since 54 is a decreasing sequence, we can’t use these two
values to generate anything larger.

For the next number, we keep 12 − − − and consider how to arrange the last
three digits. Reading 12354 from right to left, we find in the last three digits that
3 < 5, but we know that everything from 5 to the right is a decreasing sequence.
The next permutation should replace 3 with the next largest value to its right.
Reading from right to left in the number 12354, the first value larger than 3, in
this case 4, is the least value larger than 3. Swapping 3 and 4 gives 12453, which
puts 4 in the correct order; the digits to the right are now in descending order, so
reversing them gives

12435

which is the next permutation.

 example 61 To continue Example 60, let’s jump ahead. Suppose we have just generated
 permutation

25431

and we want the next permutation. Reading from right to left, everything increases
until we get to 2, where we have 2 < 5. Starting again from right to left, we stop
at the first (and smallest) value greater than 2, which is 3. Swapping 2 and 3 gives
35421, giving the correct first digit. The digits after 3 are in descending order, so
reversing them involves swapping 5 and 1, and also swapping 4 and 2, giving the
next permutation

31245

 algoRitHm Permutation Generator

PermGenerator(integer n ≥ 2)

//generates in lexicographical order all permutations
//of the integers in the set {1, …, n}
Local variables:
integers i, j //indices of permutation elements
integer k //for loop counter
integers d1, d2, …, dn //left to right elements of a permutation

From the preceding examples, we can construct an algorithm to generate all
permutations of the integers from 1 to n in lexicographical order.

Section 4.4 Permutations and Combinations 283

//create and write out smallest permutation
for k = 1 to n do

dk = k
end for
write d1d2…dn

//create and write out remaining permutations
for k = 2 to n! do

//look right to left for first break in increasing sequence
i = n – 1
j = n
while di > dj do //still increasing right to left

i = i – 1
j = j – 1

end while
//now di < dj, need to replace di with next largest integer

//look right to left for smallest value greater than di
j = n
while di > dj do

j = j – 1
end while
//now dj is smallest value > di

swap di and dj

//reverse the digits to the right of index i
i = i + 1
j = n
while i < j do

swap di and dj
i = i + 1
j = j − 1

end while

write d1d2…dn
end for

end function PermGenerator

PraCtiCe 37 Walk through the steps in the algorithm that generate the next permutation following
51432.

■

Another algorithm for generating (not in lexicographical order) all permuta-
tions of the integers {1, … , n} is suggested in Exercise 7 of On the Computer at
the end of this chapter. Both of these algorithms can also be used to generate all

284 Sets, Combinatorics, and Probability

permutations of any n distinct elements; simply assign each of the n elements a
unique integer from 1 to n, generate the permutations of the integers, and then
reverse the assignment.

Our second problem is to generate the C(n, r) combinations of r distinct in-
tegers chosen from {1, … , n}. Such a combination does not involve order, it is
merely a subset of r elements. Nonetheless we will represent the subset {3, 5, 7}
as the sequence 357, and generate the subsets in lexicographical order. Once we
generate 357, we can’t also generate 375 or 753 or any of the other permutations of
the elements in this set. Each legitimate representation is an increasing sequence.

 example 62 Consider the lexicographical ordering of the combinations of 4 integers from
{1, … , 7}. If the combination

2346

has just been generated, then the next combination would be

2347

obtained by incrementing the last digit of the sequence. However, in 2347, the last
digit is already at its maximum allowable value. Moving to the left, the 4 can be
bumped up to 5, but then the last digit has to be reduced to its minimum value,
which is 6 (one more than 5). Therefore,

2356

is the next combination. The next two values are

2357, 2367

at which point both 7 and 6 are at their maximum values. The 3 can be bumped up,
but the two digits to its right have to be reset to their lowest possible values. The
next few values are

2456, 2457, 2467, 2567 …

Based on the ideas of Example 62, given a combination sequence the algo-
rithm should bump up the rightmost digit that is not at its maximum allowable
value. The sequence of digits to the right of the newly incremented digit v should
have the values v + 1, v + 2, and so on. The initial (smallest) combination is
12 … r.

Section 4.4 Permutations and Combinations 285

 algoRitHm Combination Generator

CombGenerator(integer n ≥ 2, integer r ≥ 1)
//generates in lexicographical order all combinations
//of r integers from the set {1, …, n}
Local variables:
integers i, j //indices of combination elements
integer k //for loop counter
integer max //maximum allowable value for a digit
integers d1, d2, …, dr //left to right elements of a combination

//create and write out smallest combination
for k = 1 to r do

dk = k
end for
write d1d2 … dr

//create and write out remaining combinations
for k = 2 to C(n, r) do

//look right to left for first non-max value
max = n
i = r
while di = max do //look left

i = i − 1
max = max − 1

end while
//now di < max, need to increment di

di = di + 1

//reset values right of di
for j = i + 1 to r do

dj = dj−1 + 1
end for
write d1d2…dr

end for
end function CombGenerator

PraCtiCe 38 Using this algorithm, find the next combination of five items from {1, … , 9} after 24589.
■

286 Sets, Combinatorics, and Probability

speCial interest page

archimedes and the Stomachion

Archimedes was one of the greatest mathematicians
of the ancient world. He lived about 287−212 b.c.e. in
Syracuse (a Greek city-state in current-day Sicily). It
is thought that he studied for a time in Alexandria
(Egypt) with students of Euclid. At any rate, he was
greatly interested in geometry, and he thought his
most important work was the discovery of a formula
for the volume of a sphere. He also approximated the
value of π and grasped the ideas of integral calculus
by approximating the area under a curve by breaking
it up into a series of rectangles. His contributions to
 mechanics, engineering, physics, and astronomy are
also amazing. Some of his inventions helped defend
the city of Syracuse from Roman invaders.

Archimedes wrote a treatise about the Stoma-
chion, which is a puzzle apparently known even
before Archimedes’ time. The puzzle consists of 14
polygons that fill a 12 × 12 square. It is constructed
by marking off unit intervals along the edges of the
square and connecting them to create a grid. Each in-
tersection of two grid lines, or of a grid line with the
square’s border, is called a lattice point. The polygons
are formed by lines that connect certain lattice points.
The 14 pieces and their areas (each an integer) are
shown here, and these areas add up to 144, the area
of the square. (A modern result, Pick’s theorem, says
that the area of such a polygon is given by the formula
A = I + B/2 − 1, where I = the number of lattice
points enclosed within the polygon and B = the num-
ber of lattice points on the border of the polygon. You
can test this theorem on the diagram here, which is
from the Stomachion construction Web page.)

12

12

12 12 3

3 21

12

966

6

24
6

That Archimedes’ work on the Stomachion is
available today, at least in part, is quite a story. No
original writings of Archimedes exist today, but copies
were made throughout the ages. One such copy is an
ancient parchment (goatskin) manuscript that was
written sometime in the 900s. It survived for 300 cen-
turies but in 1229 it was torn apart, washed, folded, and
written over as a prayer book (early recycling!). Then
it disappeared for hundreds of years, to be discovered
in the library of a Greek Orthodox monastery in Con-
stantinople in 1906 by a Danish classics scholar who
noted the written-over characters and deciphered what
he could, enough to recognize that it was a work by
Archimedes. It contained information on the Stoma-
chion. The object of the puzzle, it was thought, was to
use the pieces to construct interesting shapes (a bird,
an elephant, etc.), much like the better-known tangram
puzzle. Pretty trivial stuff to occupy the mind of Ar-
chimedes, it seemed.

The parchment prayer book again disappeared
after World War I until it was put up for auction by a
French family in 1998. Purchased by an anonymous
American buyer for $2 million, it was handed over to
scientists for further study. By this time, the parch-
ment was in terrible shape, with missing pages, holes
and tears, and covered with mold, to say nothing of
the overwriting. Modern technology has revealed
more of the original text, which brought about a new
interpretation of the Stomachion puzzle.

Dr. Reviel Netz, a mathematics historian at Stan-
ford, has concluded that Archimedes was trying to
count how many ways the pieces could be combined
to form the original square. This is essentially a
combinatorics problem. Is it a simple problem? No,
as it turns out. Dr. Netz posed this problem to two
 husband-and-wife teams of combinatorics experts,
who worked six weeks to prove that the number is
17,152. If you ignore issues of symmetry, such as ro-
tations and reflections, the answer is 536, which was
confirmed via a computer program written by the
computer scientist Dr. William Cutler.

Chapter 4

Section 4.4 Permutations and Combinations 287

Combinatorics had been considered a modern
branch of mathematics, of much interest in com-
puter science but supposedly unknown to the ancient
Greeks. Archimedes’ Palimpsest (a “palimpsest” is a
written-over manuscript) gives combinatorics a much
earlier foundation.

“Archimedes,” Encyclopedia Britannica,
http://www. britannica.com/EBchecked/topic/32808/
Archimedes

“In Archimedes’ Puzzle, a New Eureka Moment,” The New
York Times, December 14, 2003,

http://www.nytimes.com/2003/12/14/us/in-
archimedes-puzzle-a-new-eureka-moment.
html?pagewanted=all&src=pm

Reading Between the Lines, Smithsonian.com,
http://www.smithsonianmag.com/science-nature/

archimedes.html?c=y&page=1
Stomachion construction,
http://www.math.nyu.edu/~crorres/Archimedes/

Stomachion/construction.html
A Tour of Archimedes’ Stomachion, Chung, F., and

 Graham, R.,
http://www.math.ucsd.edu/~fan/stomach/

http://www.nytimes.com/2003/12/14/us/in-archimedes-puzzle-a-new-eureka-moment.html?pagewanted=all&src=pm
http://www.nytimes.com/2003/12/14/us/in-archimedes-puzzle-a-new-eureka-moment.html?pagewanted=all&src=pm
http://www.nytimes.com/2003/12/14/us/in-archimedes-puzzle-a-new-eureka-moment.html?pagewanted=all&src=pm
http://www.smithsonianmag.com/science-nature/archimedes.html?c=y&page=1
http://www.smithsonianmag.com/science-nature/archimedes.html?c=y&page=1
http://www.math.nyu.edu/~crorres/Archimedes/Stomachion/construction.html
http://www.math.nyu.edu/~crorres/Archimedes/Stomachion/construction.html
http://www.math.ucsd.edu/~fan/stomach/
http://www.britannica.com/EBchecked/topic/32808/Archimedes
http://www.britannica.com/EBchecked/topic/32808/Archimedes
www.Smithsonian.com

288 Sets, Combinatorics, and Probability

exeRciSeS 4.4

 1. Compute the value of the following expressions.
 a. P(7, 2) b. P(8, 5)
 2. Compute the value of the following expressions.
 a. P(6, 4) b. P(n, n − 1)
 3. How many batting orders are possible for a 9-man baseball team?
 4. The 14 teams in the local Little League are listed in the newspaper. How many listings are possible?
 5. How many different ways can 10 flavors of ice cream be arranged in an ice cream store display case?
 6. How many different ways are there to arrange 6 candidate names on a ballot?
 7. How many permutations of the characters in COMPUTER are there? How many of the permutations end

in a vowel?
 8. In how many ways can 6 people be seated in a circle of 6 chairs? Only relative positions in the circle can

be distinguished.
 9. In how many ways can first, second, and third prize in a pie-baking contest be given to 15 contestants?
 10. a. Stock designations on an exchange are limited to 3 letters. How many different designations are there?
 b. How many different designations are there if letters cannot be repeated?
 11. In how many different ways can 19 people be seated in a row?
 12. In how many different ways can 11 men and 8 women be seated in a row?
 13. In how many different ways can 11 men and 8 women be seated in a row if the men all sit together and the

women all sit together?
 14. In how many different ways can 11 men and 8 women be seated in a row if no 2 women are to sit together?
 15. In how many different ways can 11 men and 8 women be seated around a circular table? (Only relative

positions in the circle can be distinguished.)
 16. In how many different ways can 11 men and 8 women be seated around a circular table if no 2 women are

to sit together? (Only relative positions in the circle can be distinguished.)

S e c t i o n 4 . 4 review

tecHniQueS

• Find the number of permutations of r distinct
objects chosen from n distinct objects.

• Find the number of combinations of r distinct
objects chosen from n distinct objects.

• Use permutations and combinations in conjunction
with the multiplication principle and the addition
principle.

• Find the number of distinct permutations of n
objects that are not all distinct.

• Find the number of permutations of r objects
out of n distinct objects when objects may be
repeated.

• Find the number of combinations of r objects out
of n distinct objects when objects may be repeated.

• Generate all permutations of the integers {1, … , n}
in lexicographical order.

• Generate all combinations of r integers from the set
{1, … , n}.

main iDeaS

• There are formulas for counting various permuta-
tions and combinations of objects.

• Care must be taken when analyzing a counting
problem to avoid counting the same thing more
than once or not counting some things at all.

• Algorithms exist to generate all permutations of
n objects and all combinations of r out of n objects.

W

Section 4.4 Permutations and Combinations 289

 17. Compute the value of the following expressions.
 a. C(10, 7) b. C(9, 2) c. C(8, 6)
 18. Compute C(n, n − 1). Explain why C(n, n − 1) = C(n, 1).
 19. Quality control wants to test 25 microprocessor chips from the 300 manufactured each day. How many

different batches of test chips are possible?
 20. A soccer team carries 18 players on the roster; 11 players make a team. How many different teams are

possible?
 21. How many juries of 5 men and 7 women can be formed from a panel of 17 men and 23 women?
 22. How many different sets of 4 novels and 3 plays can be created from a collection of 21 novels and

11 plays?

Exercises 23–26 deal with the following situation: Of a company’s personnel, 7 people work in design, 14 in
manufacturing, 4 in testing, 5 in sales, 2 in accounting, and 3 in marketing. A committee of 6 people is to be
formed to meet with upper management.

 23. How many committees with 1 member from each department are possible?
 24. How many committees with exactly 2 members from manufacturing are possible?
 25. How many committees with no representative from accounting and exactly 1 representative from market-

ing are possible?
 26. How many committees with at least 2 representatives from manufacturing are possible?

Exercises 27–32 concern a 5-card hand from a standard 52-card deck. A standard deck has 13 cards from each
of 4 suits (clubs, diamonds, hearts, spades). The 13 cards have face value 2 through10, jack, queen, king, or ace.
Each face value is a “kind” of card. The jack, queen, and king are “face cards.”

 27. How many hands contain 4 queens?
 28. How many hands contain all diamonds?
 29. How many hands contain 3 spades and 2 hearts?
 30. How many hands contain cards from all 4 suits?
 31. How many hands consist of all face cards?
 32. How many hands contain exactly 2 spades and exactly 2 hearts?

Exercises 33–42 concern 5-card poker hands from a standard 52-card deck.

	 33.	How	many	hands	contain	a	royal	straight	flush	(that	is,	the	10,	jack,	queen,	king,	ace	of	one	suit)?
	 34.	How	many	hands	contain	a	straight	flush	(that	is,	5	consecutive	cards	of	the	same	suit,	where	aces	can	be	

low	or	high)	that	is	not	a	royal	straight	flush	(see	Exercise	33)?
	 35.	How	many	hands	contain	four	of	a	kind	(such	as	4	jacks	plus	a	fifth	card)?
 36. How many hands contain a full house (that is, three of a kind plus a pair of another kind)?
	 37.	How	many	hands	contain	a	flush	(that	is,	5	cards	of	the	same	suit)	that	is	not	a	straight	flush	or	a	royal	

straight	flush	(see	Exercises	33	and	34)?
 38. How many hands contain a straight (that is, 5 consecutive cards, where aces can be low or high) that is not

a	straight	flush	or	a	royal	straight	flush	(see	Exercises	33	and	34)?
 39. How many hands contain three of a kind (that is, exactly 3 cards of the same kind plus 2 other cards that

are not a pair)?
	 40.	How	many	hands	contain	2	pairs	(that	is,	2	pairs	of	2	different	kinds	plus	a	fifth	card	of	some	third	kind)?
 41. How many hands contain 1 pair (that is, exactly 2 cards of the same kind)?

290 Sets, Combinatorics, and Probability

 42. If the joker is added to the deck and functions as a fifth ace (of any suit), how many hands contain a royal
straight flush (that is, the 10, jack, queen, king, ace of one suit)?

For Exercises 43–48, 14 copies of a code module are to be executed in parallel on identical processors or-
ganized into two communicating clusters, A and B. Cluster A contains 16 processors and cluster B contains
32 processors.

 43. How many different sets of processors can be used?
 44. How many different sets of processors can be used if all modules must execute on cluster B?
 45. How many different sets of processors can be used if 8 modules are to be processed on cluster A and 6 on

cluster B?
 46. How many different sets of processors can be used if cluster A has 3 failed processors and cluster B has

2 failed processors?
 47. How many different sets of processors can be used if exactly 2 modules are to execute on cluster B?
 48. How many different sets of processors can be used if all modules are to be executed either on cluster A or

on cluster B?

For Exercises 49–52, a set of 4 coins is selected from a box containing 5 dimes and 7 quarters.

 49. Find the number of sets of 4 coins.
 50. Find the number of sets in which 2 coins are dimes and 2 are quarters.
 51. Find the number of sets composed of all dimes or all quarters.
 52. Find the number of sets with 3 or more quarters.

Exercises 53–56 concern a computer network with 60 switching nodes.

 53. The network is designed to withstand the failure of any 2 nodes. In how many ways can such a failure
occur?

 54. In how many ways can 1 or 2 nodes fail?
 55. If 1 node has failed, in how many ways can 7 nodes be selected without encountering the failed node?
 56. If 2 nodes have failed, in how many ways can 7 nodes be selected to include exactly 1 failed node?

In Exercises 57–60, a congressional committee of 3 is to be chosen from a set of 5 Democrats, 3 Republicans,
and 4 independents.

 57. How many committees are possible?
 58. How many committees with at least 1 independent are possible?
 59. How many committees that do not include both Democrats and Republicans are possible?
 60. How many committees with at least 1 Democrat and at least 1 Republican are possible?

In Exercises 61–66, the states of California, Arizona, New Mexico, Utah, and Nevada each send a team of
6 delegates to the Southwestern States annual conference. A subcommittee of 9 is to be formed to discuss water
rights.

 61. How many committees are possible?
 62. How many committees with no delegates from New Mexico are possible?
 63. How many committees with exactly 1 delegate from New Mexico are possible?
 64. How many committees with at most 1 delegate from New Mexico are possible?

Section 4.4 Permutations and Combinations 291

 65. How many committees with at least 2 delegates from Nevada are possible?
 66. How many committees with at most 4 delegates total from Arizona and California are possible?

In Exercises 67–70, a hostess wishes to invite 6 dinner guests from a list of 14 friends.

 67. How many sets of guests are possible?
 68. How many sets of guests are possible if 6 friends are boring and 6 friends are interesting, and the hostess

wants to have at least 1 of each?
 69. How many sets of guests are possible if 2 of the friends dislike each other and neither will come if the

other is present?
 70. How many sets of guests are possible if 2 of the friends are very fond of each other and one won’t come

without the other?
	 71.	Twenty-five	people,	including	Simon	and	Yuan,	are	candidates	to	serve	on	a	committee	of	5.	How	many	

committees	that	include	Simon	or	Yuan	are	possible?
 72. A student must select 5 classes for the next semester from among 12, but one of the classes must be either

American history or English literature. How many sets of classes are possible?
 73. How many 5-card hands from a standard 52-card deck contain exactly 4 aces and exactly 1 club?
 74. How many 5-card hands from a standard 52-card deck contain exactly 3 jacks and exactly 2 hearts?
 75. How many distinct permutations of the characters in ERROR are there? (Remember that the various R’s

cannot be distinguished from one another.)
 76. How many distinct permutations of the characters in LOLLAPALOOZA are there?
 77. a. How many distinct permutations of the characters in the word HAWAIIAN are there?
 b. How many of the permutations begin with H?
 78. a. How many distinct permutations of the characters in the word APALACHICOLA are there?
 b. How many of the permutations have both L’s together?
 79. A bookstore displays a shelf of 5, 3, and 4 copies, respectively, of the top 3 bestsellers. How many distin-

guishable arrangements of these books are there if books with the same title are not distinguishable?
	 80.	The	United	Group	for	Divisive	Action	uses	secret	code	words	that	are	permutations	of	5	characters.	You	

learn that there are only 10 code words. What can you say about repeated characters in the code words?
 81. At a dinner party for 5, a tray of 5 servings of appetizers is prepared. An appetizer could be escargots, egg

rolls, or nachos. How many different trays could the kitchen produce?
 82. A florist	has	a	large	number	of	roses,	carnations,	lilies,	and	snapdragons	in	stock.	How	many	different	

bouquets	of	one	dozen	flowers	can	be	made?
 83. A cheese shop carries a large stock of 34 kinds of cheese. By the end of the day, 48 cheese sales have been

made, and the items sold must be restocked. How many different restocking orders are possible?
 84. One “game package” consists of 12 bingo cards. How many different game packages are there if there are

15 kinds of cards and repetitions are allowed?
 85. A hardware shipping order contains 6 items, where each item is either a gallon of paint, a hammer, or a

drill.
 a. How many different shipping orders are possible?
 b. How many different shipping orders are possible if no paint is shipped?
 c. How many different shipping orders are possible if each order must contain at least 1 gallon of paint,

1 hammer, and 1 drill?

292 Sets, Combinatorics, and Probability

 86. At a birthday party, a mother prepares a plate of cookies for 8 children. There are plenty of chocolate chip,
peanut butter, and oatmeal cookies, but each child gets only 1 cookie.

 a. How many different plates can be prepared?
 b. How many different plates can be prepared if at least 1 of each kind of cookie is given out?
 c. How many different plates can be prepared if no one likes oatmeal cookies?
 d. How many different plates can be prepared if 2 children insist on getting peanut butter?
 e. How many different plates can be prepared if the dog got into the kitchen and ate all the chocolate chip

cookies except 2?
 87. On Halloween, 10 identical apples are distributed to 7 children.
 a. How many distributions are possible? (Hint: One possible distribution is that child 1 gets 3 apples,

child 2 gets 0 apples, child 3 gets 2 apples, child 4 gets 0 apples, child 5 and child 6 get 1 apple
each, and child 7 gets 3 apples. Although the problem says apples are distributed to children, think of
 assigning a child’s name to each apple; a child’s name can go to more than 1 apple.)

 b. How many distributions are possible if each child is to receive at least 1 apple?
 88. Eight identical antique pie safes are sold at a furniture auction to 3 bidders.
 a. In how many ways can the pie safes be distributed among the bidders? (See the hint for Exercise 87.)
 b. In how many ways can the pie safes be distributed if bidder A gets only 1 pie safe?
 89. How many distinct nonnegative integer solutions are there to the equation

x1 + x2 + x3 + x4 = 10

 where the solution

x1 = 3, x2 = 1, x3 = 4, x4 = 2

 and the solution

x1 = 4, x2 = 2, x3 = 3, x4 = 1

 are distinct? (Hint: Think of this problem as distributing 10 pennies to 4 children; then see the hint in
Exercise 87.)

 90. How many distinct nonnegative integer solutions are there to the equation

x1 + x2 + x3 = 7

 in which x1 ≥ 3? (See the hint for Exercise 89.)
 91. Prove that for n ≥ 1, P(n, n) = P(n, n − 1). (The proof does not require induction, even though it sounds

like a very likely candidate for induction.)
 92. Prove that for n ≥ 2, P(n, 1) + P(n, 2) = n2.
 93. Prove that for any n and r with 0 ≤ r ≤ n, C(n, r) = C(n, n − r). Explain why this is intuitively true.
 94. Prove that for any n and r with 0 ≤ r ≤ n, C(n, 2) = C(r, 2) + C(n − r, 2) + r(n − r).
 95. Prove the identity

C(n, r)C(r, k) = C(r, k)C(n − k, r − k) for r ≤ n and k ≤ r

 Give a combinatorial argument.

Section 4.4 Permutations and Combinations 293

 96. Prove Vandermonde’s identity:

C(n + m, r) = ∙
r

k=0
C(n, k)C(m, r − k)

 (Hint: use a combinatorial argument, picking r elements from the union of two disjoint sets of size n and
m, respectively.)

 97. The recurrence relation for the sequence of Catalan numbers is

C(0) = 1
C(1) = 1

C(n) = ∙
n

k=1
C(k − 1)C(n − k) n ≥ 2

 Although we will not prove it, a closed-form solution to this recurrence relation is

C(n) =
1

n + 1
 C(2n, n)

 (Note that C(n) denotes a value in the Catalan sequence and C(2n, n) denotes the number of combinations
of n objects from 2n objects.) Compute C(2), C(3), and C(4) using this formula and compare the results
with the recurrence relation results (see Exercise 38 of Section 3.1).

 98. a. A turtle begins at the upper left corner of an n × n grid and makes his way to the lower right corner.
Along the way, he can move only right or down. The accompanying figure shows two possible paths in
a 4 × 4 grid. How many possible paths can the turtle take?

 (Hint: Each path can be described by a sequence of R’s (right moves) and D’s (down moves). Find the
number of ways to distribute the R’s in such a sequence.)

 b. Relate the answer to part (a) to the sequence of Catalan numbers (see Exercise 97).

 99. Arrange the following permutations of the numbers {1, … , 6} in lexicographical order:

163542, 345621, 643125, 634521, 163452, 356421

 100. Arrange the following permutations of the numbers {1, … , 5} in reverse lexicographical order:

32541, 35142, 53124, 42531, 32154, 42315

294 Sets, Combinatorics, and Probability

In Exercises 101–104, use algorithm permutation generator to generate the next permutation after the given
permutation in the set of all permutations of the numbers {1, … , 7}.

 101. 7431652
 102. 4365127
 103. 3675421
 104. 2756431
 105. In generating all combinations of five items from the set {1, … , 9}, find the next five values in the list

after 24579.
 106. In generating all combinations of four items from the set {1, … , 6}, find the next five values in the list

after 1234.
 107. Describe an algorithm to generate all permutations of the integers {1, … , n} in reverse lexicographical

order.
 108. Describe an algorithm to generate all permutations of r elements from the set {1, … , n}.

 S e c t i o n 4 . 5 binomial theorem

The expression for squaring a binomial is a familiar one:

(a + b)2 = a2 + 2ab + b2

This is a particular case of raising a binomial to a nonnegative integer power n.
The formula for (a + b)n involves combinations of n objects. Before we prove this
formula, we’ll look at a historically interesting array of numbers that suggests a
fact we will need in the proof.

Pascal’s triangle

Pascal’s triangle is named for the seventeenth-century French mathematician
Blaise Pascal (for whom the programming language Pascal was also named), al-
though it was apparently known several centuries earlier. Row n of the triangle
(n ≥ 0) consists of all the values C(n, r) for 0 ≤ r ≤ n. Thus the triangle looks like
this:

C(0, 0)
C(1, 0) C(1, 1)

C(2, 0) C(2, 1) C(2, 2)
C(3, 0) C(3, 1) C(3, 2) C(3, 3)

C(4, 0) C(4, 1) C(4, 2) C(4, 3) C(4, 4)
C(5, 0) C(5, 1) C(5, 2) C(5, 3) C(5, 4) C(5, 5)

C(n, 0) C(n, 1) ... C(n, n 1) C(n, n)

Row
0
1
2
3
4
5

n

Section 4.5 Binomial Theorem 295

If we compute the numerical values of the expressions, we see that Pascal’s tri-
angle has the form

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Observing this figure, it is clear that the outer edges are all 1s. But it also seems
that any element not on the outer edge can be obtained by adding together the two
elements directly above it in the preceding row (for example, the first 10 in row
five is below the first 4 and the 6 of row four). If this relationship is indeed always
true, it means that

 C(n, k) = C(n − 1, k − 1) + C(n − 1, k) for 1 ≤ k ≤ n − 1 (1)

Equation (1) is known as Pascal’s formula.
To prove Pascal’s formula, we begin with the right side:

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)! 3n − 1 − (k − 1) 4! +
(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!
k!(n − 1 − k)!

=
k(n − 1)!
k!(n − k)!

+
(n − 1)!(n − k)

k!(n − k)!

(multiplying the first term by k/k and the second term by (n − k)/(n − k))

 =
k (n − 1)! + (n − 1)!(n − k)

k!(n − k)!

(adding fractions)

=
(n − 1)! 3k + (n − k) 4

k!(n − k)!

(factoring the numerator)

 =
(n − 1)!(n)
k!(n − k)!

=
n!

k!(n − k)!
= C(n, k)

296 Sets, Combinatorics, and Probability

Another, less algebraic way to prove Pascal’s formula involves a counting ar-
gument; hence it is called a combinatorial proof. We want to compute C(n, k),
the number of ways to choose k objects from n objects. There are two disjoint
 categories of such choices—item 1 is one of the k objects or it is not. If item 1 is
one of the k objects, then the remaining k − 1 objects must come from the remain-
ing n − 1 objects exclusive of item 1, and there are C(n − 1, k − 1) ways for this
to happen. If item 1 is not one of the k objects, then all k objects must come from
the remaining n − 1 objects, and there are C(n − 1, k) ways for this to happen.
The total number of outcomes is the sum of the number of outcomes from these
two disjoint cases.

Once we have Pascal’s formula for our use, we can develop the formula for
(a + b)n, known as the binomial theorem.

Binomial theorem and its Proof

In the expansion of (a + b)2, a2 + 2ab + b2, the coefficients are 1, 2, and 1, which
is row 2 in Pascal’s triangle.

Looking at the coefficients in the expansion of (a + b)2, (a + b) 3, and (a + b)4
suggests a general result, which is that the coefficients in the expansion of (a + b)n
look like row n in Pascal’s triangle. This is indeed the binomial theorem.

PraCtiCe 39 Compute the expansion for (a + b)3 and (a + b)4 and compare the coefficients with rows 3
and 4 of Pascal’s triangle.

■

 tHeoRem BiNOmial theORem
For every nonnegative integer n,

(a + b)n = C(n, 0)anb0 + C(n, 1)an−1b1 + C(n, 2)an−2b2

+ c+ C(n, k)an−kbk + c+ C(n, n − 1)a1bn−1 + C(n, n)a0bn

= ∙
n

k=0
C(n, k)an−kbk

Because the binomial theorem is stated “for every nonnegative integer n,” a proof
by induction seems appropriate. For the basis step, n = 0, the theorem states

(a + b)0 = C(0, 0)a0b0

which is

1 = 1

Since this is certainly true, the basis step is satisfied.

ReminDeR

The expansion of (a + b)n
starts with anb0. From
there the power of a goes
down and the power of b
goes up, but for each term
the powers of a and b add
up to n. The coefficients
are all of the form
C(n, the power of b).

Section 4.5 Binomial Theorem 297

As the inductive hypothesis, we assume that

(a + b)k = C(k, 0)akb0 + C(k, 1)ak−1b1 + c+ C(k, k − 1)a1bk−1 + C(k, k)a0bk

Now consider

(a + b)k+1 = (a + b)k(a + b) = (a + b)ka + (a + b)kb
 = 3C(k, 0)akb0 + C(k, 1)ak−1b1 + c+ C(k, k − 1)a1bk−1

+ C(k, k)a0bk 4a + 3C(k, 0)akb0 + C(k, 1)ak−1b1

+ c+ C(k, k − 1)a1bk−1 + C(k, k)a0bk 4b

(by the inductive hypothesis)

= C(k, 0)ak+1b0 + C(k, 1)akb1 + c+ C(k, k − 1)a2bk−1

+ C(k, k)a1bk + C(k, 0)akb1 + C(k, 1)ak−1b2

+ c+ C(k, k − 1)a1bk + C(k, k)a0bk+1

= C(k, 0)ak+1b0 + 3C(k, 0) + C(k, 1) 4akb1 + 3C(k, 1) + C(k, 2) 4ak−1b2

+ c+ 3C(k, k − 1) + C(k, k) 4a1bk + C(k, k)a0bk+1

(collecting like terms)

= C(k, 0)ak+1b0 + C(k + 1, 1)akb1 + C(k + 1, 2)ak−1b2

+ c+ C(k + 1, k)a1bk + C(k, k)a0bk+1

(using Pascal’s formula)

= C(k + 1, 0)ak+1b0 + C(k + 1, 1)akb1 + C(k + 1, 2)ak−1b2

+ c+ C(k + 1, k)a1bk + C(k + 1, k + 1)a0bk+1

(because C(k, 0) = 1 = C(k + 1, 0) and C(k, k) = 1 = C(k + 1, k + 1))

This completes the inductive proof of the binomial theorem.
The binomial theorem also has a combinatorial proof. Writing (a + b)n

as (a + b)(a + b) c(a + b) (n factors), we know that the answer (using the distribu-
tive law of numbers) is the sum of all values obtained by multiplying each term in
a factor by a term from every other factor. For example, using b as the term from k
factors and a as the term from the remaining n − k factors produces the expression
an−kbk. Using b from a different set of k factors and a from the n − k remaining fac-
tors also produces an−kbk. How many such terms are there? There are C(n, k) different
ways to select k factors from which to use b; hence there are C(n, k) such terms. After
adding these terms together, the coefficient of an−kbk is C(n, k). As k ranges from 0
to n, the result of summing the terms is the binomial theorem.

Because of its use in the binomial theorem, the expression C(n, r) is also
known as a binomial coefficient.

298 Sets, Combinatorics, and Probability

applying the Binomial theorem

 example 63 Using the binomial theorem, we can write the expansion of (x − 3)4. To match
the form of the binomial theorem, think of this expression as (x + (−3))4 so that b
equals −3. Remember that a negative number raised to a power is positive for an
even power, negative for an odd power. Thus

(x − 3)4 = C(4, 0)x4(−3)0 + C(4, 1)x3(−3)1 + C(4, 2)x2(−3)2

+ C(4, 3)x1(−3)3 + C(4, 4)x0(−3)4

= x4 + 4x3(−3) + 6x2(9) + 4x(−27) + 81
= x4 − 12x3 + 54x2 − 108x + 81

PraCtiCe 40 Expand (x + 1)5 using the binomial theorem.
■

PraCtiCe 41 What is the fifth term in the expansion of (x + y)7?
■

The binomial theorem tells us that term k + 1 in the expansion of (a + b)n
is C(n, k)an−kbk. This allows us to find individual terms in the expansion without
computing the entire expression.

By using various values for a and b in the binomial theorem, certain identities
can be obtained.

 example 64 Let a = b = 1 in the binomial theorem. Then

(1 + 1)n = C(n, 0) + C(n, 1) + c+ C(n, k) + c+ C(n, n)

or

 2n = C(n, 0) + C(n, 1) + c+ C(n, k) + c+ C(n, n) (2)

This result says that the sum of all the entries in row n of Pascal’s triangle equals
2n. Actually, Equation (2) can be proved on its own using a combinatorial proof.
The number C(n, k), the number of ways to select k items from a set of n items, can
be thought of as the number of k-element subsets of an n-element set. The right
side of Equation (2) therefore represents the total number of all the subsets (of all
sizes) of an n-element set. But we already know that the number of such subsets
is 2n.

Section 4.5 Binomial Theorem 299

exeRciSeS 4.5

 1. Expand the expression using the binomial theorem.
 a. (a + b)5

 b. (x + y)6

 c. (a + 2)5

 d. (a − 4)4

 2. Expand the expression using the binomial theorem.
 a. (2x + 3y) 3

 b. (3x − 1)5

 c. (2p − 3q)4
 d. (3x + ½)5

In Exercises 3–10, find the indicated term in the expansion.

 3. The fourth term in (a + b)10

 4. The seventh term in (x − y)12

 5. The sixth term in (2x − 3)9

 6. The fifth term in (3a + 2b)7

 7. The last term in (x − 3y)8

 8. The last term in (ab + 3x)6

 9. The third term in (4x − 2y)5

 10. The fourth term in (3x − ½)8

 11. Use the binomial theorem (more than once) to expand (a + b + c)3.
 12. Expand (1 + 0.1)5 in order to compute (1.1)5.
 13. What is the coefficient of x3y4 in the expansion of (2x − y + 5)8?
 14. What is the coefficient of x5y 2z 2 in the expansion of (x + y + 2z)9?
 15. Prove that

C(n + 2, r) = C(n, r) + 2C(n, r − 1) + C(n, r − 2) for 2 ≤ r ≤ n

 (Hint: Use Pascal’s formula.)
 16. Prove that

C(k, k) + C(k + 1, k) + c+ C(n, k) = C(n + 1, k + 1) for 0 ≤ k ≤ n

 (Hint: Use induction on n for a fixed, arbitrary k, as well as Pascal’s formula.)

S e c t i o n 4 . 5 review

tecHniQue

• Use the binomial theorem to expand a binomial.
• Use the binomial theorem to find a particular term

in the expansion of a binomial.

main iDeaS

• The binomial theorem provides a formula for ex-
panding a binomial without multiplying it out.

• The coefficients of a binomial raised to a nonnega-
tive integer power are combinations of n items as
laid out in row n of Pascal’s triangle.

W
W

300 Sets, Combinatorics, and Probability

 17. Use the binomial theorem to prove that

C(n, 0) − C(n, 1) + C(n, 2) − c+ (− 1)nC(n, n) = 0

 18. Use the binomial theorem to prove that

C(n, 0) + C(n, 1)2 + C(n, 2)22 + c+ C(n, n)2n = 3n

 19. Use the binomial theorem to prove that

C(n, n) + C(n, n − 1)2 + C(n, n − 2)22 + c+ C(n, 1)2n−1 + C(n, 0)2n = 3n

 20. Prove the result of Exercise 19 directly from Exercise 18.

 21. (Requires calculus)
 a. Expand (1 + x)n.
 b. Differentiate both sides of the equation from part (a) with respect to x to obtain

n(l + x)n−1 = C(n, 1) + 2C(n, 2)x + 3C(n, 3)x2 + c+ nC(n, n)xn−1

 c. Prove that

C(n, 1) + 2C(n, 2) + 3C(n, 3) + c+ nC(n, n) = n2n−1

 d. Prove that

C(n, 1) − 2C(n, 2) + 3C(n, 3) − 4C(n, 4) + c+ (−1)n−1nC(n, n) = 0

 22. (Requires calculus)
 a. Prove that

2n+1 − 1
n + 1

= C(n, 0) +
1
2

 C(n, 1) +
1
3

 C(n, 2) + c+
1

n + 1
 C(n, n)

 b. Prove that

1
n + 1

= C(n, 0) −
1
2

 C(n, 1) +
1
3

 C(n, 2) + c+ (−1)n
1

n + 1
 C(n, n)

 (Hint: Integrate both sides of the equation from part (a) of Exercise 21.)

 23. The general form of the principle of inclusion and exclusion is

0 A1 c cc An 0 = ∙
1≤ i≤n

 0 Ai 0 − ∙
1≤ i< j≤n

 0 Ai d Aj 0

 + ∙
1≤ i< j<k≤n

 0 Ai d Aj d Ak 0

 − c+ (−1)n+1 0 A1 d cd An 0 (1)

Section 4.6 Probability 301

 This exercise provides an alternate to the inductive proof given in Section 4.3 of the principle of inclusion
and exclusion. Equation (1) is correct if for any x in {A1 c cc An}, x is counted exactly once by the right
side of the equation.

 a. Suppose x is an element of k of the n sets {A1, … , An}. Let B equal the set of Ai s of which x is a member.
Then x is counted once in the right side of (1) for each of the intersections that include only sets from
B. Show that in the intersections of m sets from {A1, … , An}, 1 ≤ m ≤ k, there are C(k, m) that include
only sets from B.

 b. Using the result of part (a), write a sum of terms that represents the number of times x is counted in the
right side of (1).

 c. Use Exercise 17 to show that this sum of terms equals 1.
 24. Pascal’s triangle has many interesting properties. If you follow diagonal paths through the triangle and

sum the values on each path, the result is the Fibonacci sequence (see (a) below). The values along the
diagonals are easier to understand if the rows of the triangle are written one row per line with each row
beginning one position to the right of the previous row (see (b) below). Then the diagonals are the table
columns.

1
1 1

1
1

1
1 5 10 10...

5 1
4 6 4 1

3 3 1
2 1

1
1

2
3

5
8

6

7

8

5

4

3

2

1

0

0 1

1

1

1 2 1

2 3 4 5 6 7 8

1 1 2 3 5 8 13 21 34

1

1 3

1

3

1 4

1

6 4 1

5 10 10

1 6 15

1 7

1

 a. Prove that the values in column n, n ≥ 2, read from bottom to top, are given by the expression

∙
n∙2

k=0
C(n − k, k) if n is even and by ∙

(n−1)∙2

k=0
C(n − k, k) if n is odd.

 b. Prove that the sum of the values in column n, n ≥ 0, equals F(n + 1).

 S e c t i o n 4 . 6 Probability

introduction to finite Probability

Probability is an extension of the combinatorics (counting) ideas we have already
been using. If some action can produce Y different outcomes and X of those Y
outcomes are of special interest, we may want to know how likely it is that one of
the X outcomes will occur. Probability had its beginnings in gaming or gambling,
and we have pretty good intuition for simple cases.

(a) (b)

302 Sets, Combinatorics, and Probability

 example 65 What is the probability of

 a. getting “heads” when a coin is tossed?
 b. getting a 3 with a roll of a die?
 c. drawing either the ace of clubs or the queen of diamonds from a standard

deck of cards?

For (a), tossing a coin results in 2 different possible results, heads or tails, but only
the heads result is of interest. The probability of getting heads is “one out of two”
or 1/2. For (b), the roll of a standard 6-sided die has 6 possible results—any of the
numbers 1, 2, 3, 4, 5, or 6 might come up. The 3 is exactly one of these possibili-
ties, so the probability of rolling a 3 is 1/6. For (c), because a standard card deck
contains 52 cards, the action of drawing one card has 52 possible results. Two of
these are successful results (ace of clubs or queen of diamonds), so the probability
of succeeding in this task is 2/52 or 1/26.

On closer examination, our intuitive answers rely on certain assumptions. We
assume that the coin is a “balanced” coin, equally likely to come up heads or tails.
We assume that the die is not “loaded” and that the deck of cards is not “stacked.”
In other words, we assume that each of the possible outcomes is equally likely;
otherwise our probability of success would be different. (Loaded dice and stacked
decks are the motivation for many Western movie gunfights.)

The set of all possible outcomes of an action is called the sample space S of
the action. Any subset of the sample space is called an event. If S is a finite set
of equally likely outcomes, then the probability P(E) of event E is defined to be

P(E) =
0 E 0
0 S 0

(Remember that 0 A 0 denotes the size of a finite set A.)

 example 66 Two coins, A and B, are tossed at the same time; each coin is a fair coin, equal-
ly likely to come up heads (H) or tails (T). The sample space of this action is
S = {HH, HT, TH, TT}. Here HT denotes that A comes up heads and B comes up
tails, while TH denotes that A comes up tails and B comes up heads; these are two
different outcomes. Let the event E be the set {HH}. The probability of E—that is,
the probability of having both coins come up heads2—is

P(E) =
0 E 0
0 S 0 =

0 5HH6 0
0 5HH, HT, TH, TT6 0 =

1
4

= 0.25

2An event, while technically a set, is also used to describe the action whose outcomes are the members of
this set. Here the event E is the set {HH}, but we also speak of the event as the action of tossing two coins
and having both come up heads.

■
PraCtiCe 42 Find the probability of drawing an ace from a standard deck of cards.

Section 4.6 Probability 303

Because events are sets, they can be combined using set operations. Suppose
that E1 and E2 are two events from the same sample space S. If we are interested
in the outcomes in either E1 or E2 or both, this will be the event E1 c E2. If we are
interested in the outcomes in both E1 and E2, this will be the event E1 d E2. And if
we are interested in all the outcomes that are not in E1, this will be E1′.

 example 67 Employees from testing, development, and marketing participate in a drawing in
which one employee name is chosen. There are 5 employees in testing (2 men and
3 women), 23 in development (16 men and 7 women), and 14 in marketing (6 men
and 8 women).

The sample space has 42 names, that is, 0 S 0 = 42. Let W be the event that a
name drawn belongs to a woman. Then 0 W 0 = 3 + 7 + 8 = 18. Therefore, the
probability P(W) that the name drawn belongs to a woman is 0 W 0 / 0 S 0 = 18/42 =
3/7. Let M be the event that a name drawn belongs to someone from marketing. Then
0 M 0 = 14. Thus, the probability P(M) that the name drawn belongs to someone from
marketing is 0 M 0 / 0 S 0 = 14/42 = 1/3. The event that the name drawn belongs to a
woman in marketing is W d M. Because there are 8 women in marketing, 0 W d M 0
= 8, and the probability P(W d M) that the name drawn belongs to a woman from
marketing is 8/42 = 4/21. Finally, the event that a name drawn belongs to either a
woman or to someone from marketing is W c M, and 0 W c M 0 = 3 + 7 + 14 = 24.
Hence P(W c M) = 24/42 = 4/7.

Probability involves finding the size of sets, either of the sample space or of
the event of interest. Therefore many of our previous counting techniques come
into play. We may need to use the addition or multiplication principles, the prin-
ciple of inclusion and exclusion, or the formula for the number of combinations of
r things from n objects. (In Example 67, we could have found the size of the union
of the women and the marketing people by using the principle of inclusion and
exclusion: 0W c M 0 = 0W 0 + 0 M 0 − 0W d M 0 = 18 + 14 − 8 = 24.)

PraCtiCe 43 In Example 67, what is the probability of drawing the name of a male from development?
Of drawing a name from testing or development?

■

 example 68 At a party, each card in a standard deck is torn in half and both halves are placed in
a box. Two guests each draw a half-card from the box. What is the probability that
they draw two halves of the same card?

There are 52 # 2 = 104 half-cards in the box. The size of the sample space is
the number of ways to pick two objects from 104, that is, 0 S 0 = C(104,2). Let H be
the event that the halves match. There are 52 ways that the halves can match, so
0 H 0 = 52. The probability is therefore

P(H) =
0 H 0
0S 0 =

52
C(104,2)

=
52

104!
2!102!

=
52

104 # 103
2

=
52

52 # 103
=

1
103

> 0.0097

304 Sets, Combinatorics, and Probability

Using our definition

P(E) =
0 E 0
0 S 0

we can make some observations about probability for any events E1 and E2 from a
sample space S of equally likely outcomes (Table 4.3). These observations are also
called probability axioms.

Table 4.3

Observation Justification

1. 0 ≤ P(E1) ≤ 1 E1 # S so 0 ≤ 0 E10 and 0 E10 ≤ 0 S 0

2. The probability of an impossibility is 0 E1 = [so 0 E1 0 = 0

3. The probability of a “sure thing” is 1 E1 = S so 0 E1 0 = 0 S 0

4. P(E1′) = 1 − P(E1) 0 E1′ 0 = 0 S 0 − 0 E1 0

5. P(E1 c E2) = P(E1) + P(E2) − P(E1 d E2) See following discussion

6.
If E1 and E2 are disjoint events, then
P(E1 c E2) = P(E1) + P(E2)

Follows from observation 5

Observation 5 requires a bit of explanation. From the principle of inclusion
and exclusion,

0 E1 c E2 0 = 0 E1 0 + 0 E2 0 − 0 E1 d E2 0
So

P(E1 c E2) =
0E1 c E2 0

0 S 0 =
0E1 0 + 0E2 0 − 0E1 d E2 0

0 S 0 =
0E1 0
0 S 0 +

0E2 0
0 S 0 −

0E1 d E2 0
0 S 0 = P(E1) + P(E2) − P(E1 d E2)

Probability Distributions

If an action produces outcomes that are not all equally likely, one way to handle
the situation is by introducing an appropriate number of repetitions of some of the
outcomes.

	 example 69 Suppose a fair die is rolled. There are 6 possible outcomes, so 0 S 0 = 6. Let T be the
event of rolling a 3; there is only one successful outcome, so 0 T 0 = 1. Therefore the
probability of rolling a 3, just as in Example 65b, is

P(T) =
0 T

0
0 S
0 =

1
6

> 0.167

The probability of rolling a 4 is the same.

Section 4.6 Probability 305

Now suppose the die is loaded so that a 4 comes up three times more often
than a 1, 2, 3, 5, or 6. We can describe the set of outcomes for the loaded die by

{1, 2, 3, 41, 42, 43, 5, 6}

The size of the sample space is now 0 S 0 = 8 and the probability of rolling a 3 is now

P(T) =
0 T 0
0 S 0 =

1
8

= 0.125

This is a lower probability than before because the loaded die is not as likely to
come up with a 3. However, if F is the event of rolling a 4, then there are three
successful outcomes from the sample space. Therefore, the probability of rolling
a 4 is now

P(F) =
0 F 0
0 S 0 =

3
8

= 0.375

which is higher than before because the loaded die is more likely to come up
with a 4.

Another way to look at problems where not all outcomes are equally likely is
to assign a probability distribution to the sample space. Rather than artificially
enlarging the sample space by creating duplicates of outcomes that occur more
frequently, simply consider each distinct outcome in the original sample space as
an event and assign it a probability. If there are k different outcomes in the sam-
ple space and each outcome xi is assigned a probability p(xi), the following rules
apply:

 1. 0 ≤ p(xi) ≤ 1

 2. ∙
k

i=1
p(xi) = 1

The first equation must hold because any probability value must fall within this
range. The second equation must hold from observation 6 in Table 4.3; the union
of all of these k disjoint outcomes is the sample space S, and the probability of S
is 1.

Now consider some event E # S. The probability of event E is then given by

 P(E) = ∙
xi[E

p(xi) (1)

In other words, we can add up all the probabilities for the individual outcomes
in E. This also follows from observation 6 in Table 4.3; E is the union of all its
distinct outcomes. The definition of P(E) as 0 E 0 / 0 S 0 when the outcomes are equally
likely is a special case of this definition where p(xi) = 1/ 0 S 0 for each xi in E.

306 Sets, Combinatorics, and Probability

 example 70 For the loaded die of Example 69, the appropriate probability distribution is

xi 1 2 3 4 5 6

p(xi) 1/8 1/8 1/8 3/8 1/8 1/8

As in Example 69, the probability of rolling a 3 is 1/8 and the probability of rolling
a 4 is 3/8. Let E be the event that a 2 or a 4 is rolled. These are disjoint outcomes,
so by Equation (1), P(E) = p(2) + p(4) = 1/8 + 3/8 = 4/8 = 0.5.

PraCtiCe 44 The sample space S = {a, b, c}. Assume p(a) = 0.2 and p(b) = 0.3.

a. What is p(c)?
b. What is the probability of getting an outcome of a or c? ■

Conditional Probability

A fair coin is tossed twice. The sample space is

{HH, HT, TH, TT}

The probability of getting two tails is clearly 1/4, but let us belabor this conclusion.
Let E1 be the event that the first toss results in T, so E1 = {TH, TT}; let E2 be the
event that the second toss results in T, so E2 = {HT, TT}. Then getting two tails is
the event E1 d E2 = {TT}. The desired probability is

P(two tails) =
0 E1 d E2 0

0 S 0 =
1
4

Suppose, however, that we already know that the first toss resulted in T. Does
this fact change the probability of getting two tails? Surely so, because we already
have half of what we want. The outcome of interest is still E1 d E2 = {TT}, but
the sample space is now limited to that meeting the condition that E1 has indeed
occurred. That is, because we are assuming that event E1 has occurred, our sample
space now becomes E1 itself, namely {TH, TT}. Let E2 0 E1 denote the event that E2
occurs given that E1 has already occurred. Then

P(E2 0 E1) =
0 E1 d E2 0

0 E1 0
=

1
2

In terms of probabilities, P(E1 d E2) = 1/4, P(E1) = 2/4, and

P(E1 d E2)
P(E1)

=
1∙4
2∙4

= 1∙2 = P(E2 0 E1)

This suggests the following definition.

Section 4.6 Probability 307

 Definition CONditiONal PROBaBility
Given events E1 and E2, the conditional probability of E2 given E1, P(E2 0 E1), is

P(E2 0 E1) =
P(E1 d E2)

P(E1)

PraCtiCe 45 In the problem of tossing a fair coin twice, what is the probability of getting two heads
given that at least one of the tosses results in heads? (Hint: Let E2 be the event of two heads and E1 be
the event of at least one head.)

■

 example 71 In a drug study of a group of patients, 17% responded positively to compound A,
34% responded positively to compound B, and 8% responded positively to both.
The probability that a patient responded positively to compound B given that he or
she responded positively to A is

P(B 0 A) =
P(A d B)

P(A)
=

0.08
0.17

> 0.47

If P(E2 0 E1) = P(E2), then E2 is just as likely to happen whether E1 happens or
not. In this case E1 and E2 are said to be independent events and we have

P(E2
0 E1) =

P(E1 d E2)
P(E1)

= P(E2)

or

 P(E1 d E2) = P(E1) # P(E2) (2)

Equation (2) can be extended to any finite number of independent events and can
also be used to test whether events are independent.

 example 72 The events of tossing a coin and coming up heads one time (E1) and heads the next
(E2) are independent events because

P(E1 d E2) = 1/4
P(E1) = 1/2, P(E2) = 1/2

so Equation (2) is satisfied. If we toss a fair coin repeatedly and the coin lands 4 or
5 or 6 times in a row heads up, we may feel that tails is “due to come up,” in other
words, that at the next toss the coin has a better than 50% probability of coming up
tails, but in fact that’s not the case. It is true that the probability of getting longer
and longer runs of heads decreases from 1/4 (two heads) to 1/8 (three heads) to
1/16 (four heads), and so forth, yet on each successive toss, the probability of get-
ting a head is still 1/2.

308 Sets, Combinatorics, and Probability

At this point we have what might be called an addition rule and a multiplica-
tion rule for probability, loosely related to the addition principle and the multi-
plication principle for counting. If we want the probability of event E1 or event
E2, that is, P(E1 c E2), we can add the respective probabilities—but only if the
events are disjoint. If we want the probability of event E1 and event E2, that is,
P(E1 d E2), we can multiply the respective probabilities—but only if the events
are independent.

Bayes’ theorem

Bayes’ theorem allows us to squeeze an additional probability out of a certain set
of known probabilities. Before we state the theorem, let’s look at an example.

 example 73 A grocery store receives an order from Supplier A that consists of 57% lettuce and
43% spinach. It also receives an order from Supplier B that consists of 39% lettuce
and 61% spinach. Before the orders are unloaded, a clerk randomly selects an order
box and pulls out a package of produce to show to the produce manager. Later the
grocer is notified that spinach from Supplier B is contaminated. If the clerk pulled out
a package of spinach, what is the probability that it came from Supplier B?

Let E1 be the event that the package came from Supplier A and E2 be the event
that the package came from Supplier B. Let F be the event that the package was
spinach. The sample space looks something like

{AL1, AL2, AL3, …, AS1, AS2,AS3, …, BL1, BL2,BL3, …, BS1, BS2, BS3 …}

E1 and E2 are disjoint events and E1 c E2 = S.
We know that

 P(E1) = 1/2 (equally likely that either box was chosen)
 P(E2) = 1/2
 P(F 0 E1) = 43/100 (percentage of spinach in Supplier A order)
 P(F 0 E2) = 61/100 (percentage of spinach in Supplier B order)

and we want

 P(E2 0 F) (probability the package came from Supplier B
given that it was spinach)

Although we know that the probability of the clerk choosing the Supplier B order
box is 0.5, we suspect that P(E2 0 F) is greater than 0.5 because the item was spinach
and Supplier B has a higher percentage of spinach than Supplier A. It turns out that
we can compute this probability by sufficient fiddling with the probabilities we do
have.

From the definition of conditional probability,

P(E2 0 F) =
P(F d E2)

P(F)
 or P(F d E2) = P(E2 0 F)P(F)

ReminDeR

P(E1c E2) = P(E1)+P(E2)
only when E1 and E2 are
disjoint events. P(E1 d E2)
= P(E1) # P(E2) only when
E1 and E2 are independent
events.

Section 4.6 Probability 309

P(F

0 E2) =

P(E2 d F)
P(E2)

 or P(E2 d F) = P(F 0 E2)P(E2)

Because F d E2 = E2 d F, P(F d E2) = P(E2 d F) and therefore

P(F d E2) = P(F 0 E2)P(E2) [and a similar equation for P(F d E1)]

and

P(E2 0 F) =
P(F d E2)

P(F)
=

P(F 0 E2)P(E2)
P(F)

F is another event in (that is, subset of) S, and

F = F d S = F d (E1 c E2) = (F d E1) c (F d E2)

so F is the union of disjoint events, and

 P(F) = P(F d E1) + P(F d E2) = P(F 0 E1)P(E1)+ P(F 0 E2)P(E2)

 =
43
100

1
2

+
61
100

1
2

=
43 + 61

200
=

104
200

Finally,

P(E2 0 F) =
P(F 0 E2)P(E2)

P(F)
=

(61∙100)(1∙2)
104∙200

=
61∙200
104∙200

= 61∙104 > 0.587

As we suspected, the probability that the spinach came from the contaminated
batch is greater than 0.5.

The general statement of Bayes’ theorem (see Exercise 89) follows.

 tHeoRem BayeS’ theORem
Let E1, … , En be disjoint events from a sample space S whose union equals S. If
F is another event from S, then the probability of event Ei, 1 ≤ i ≤ n, given event
F, is

P(Ei 0 F) =
P(F 0 Ei)P(Ei)

∙
n

k=1
P(F 0 Ek)P(Ek)

PraCtiCe 46 In Example 73, what is the probability that the package came from Supplier A if it was
lettuce?

■

310 Sets, Combinatorics, and Probability

expected Value

A student takes three tests; the set of grades received is S = {g1, g2, g3}. The
 student computes the average test grade A(g) by

 A(g) =
g1 + g2 + g3

3

This assumes that the three tests are equally weighted. If we write

A(g) =
1
3

 (g1 + g2 + g3) = g1a1
3
b + g2a1

3
b + g3a1

3
b

we can also see that A(g) is the sum of the product of each test grade times the
amount of its contribution to the total grade. If the last test counts twice as much
as the other two, then the “weighted average” grade would be

A(g) =
1
4

 (g1 + g2 + 2g3) = g1a1
4
b + g2a1

4
b + g3a2

4
b

If we consider S as the sample space and assign the probability distribution

xi g1 g2 g3

p(xi) 1/4 1/4 2/4

then

 A(g) = ∙
3

i=1
gi

p(gi) (3)

We want to take the weighted average idea of Equation (3) and make it a
bit more general. For the test grades, the sample space S consisted of numerical
values. If the values in the sample space are not numerical, we may find a func-
tion X that associates a numerical value (a real number) with each element in the
sample space. Such a function is called a random variable.3 Given a sample space
S = {x1, x2, …, xn} to which a random variable X and a probability distribution
p have been assigned, the expected value or weighted average of the random
variable is

E(X) = ∙
n

i=1
X(xi)p(xi)

3The term “random variable” is a misnomer because X is neither random nor a variable—it’s a function that
associates with each value xi in S a real number X(xi)

Section 4.6 Probability 311

 example 74 A fair coin is tossed three times. The sample space S is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let the random variable X assign to each outcome in S the number of heads in that
outcome, which will be an integer value between 0 and 3. Because this is a fair
coin, each member of S occurs with equal probability, which determines the prob-
ability distribution. Hence we can write

xi HHH HHT HTH HTT THH THT TTH TTT

X(xi) 3 2 2 1 2 1 1 0

p(xi) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The expected value of X, that is, the expected number of heads in three tosses, is

E(X) = ∙
8

i=1
X(xi)p(xi)

= 3(1/8) + 2(1/8) + 2(1/8) + 1(1/8) + 2(1/8) + 1(1/8) + 1(1/8) + 0(1/8)
= 12(1/8) = 3/2 = 1.5

This seems intuitively correct; because the coin is fair, we would expect to get
heads about half the time, or 1.5 times out of 3. (Of course, we really can’t get half
a head, but if we get heads about half the time, then we expect to get 4 heads out of
8 tosses, or 64 heads out of 128 tosses, and so forth.) Note how the expected value
is a “predictor” of future outcomes.

Now suppose the coin is weighted in such a way that it is three times more
likely to come up heads. In other words, the probability of a head is 3/4 while the
probability of a tail is 1/4. The elements in the sample space are no longer equally
likely, but we can compute their probability distribution. We know that the succes-
sive tosses are independent events, so the probability of each outcome in S can be
obtained by multiplying the probability of each toss. The probability of HTT, for
example, is

a3
4
b a1

4
b a1

4
b =

3
64

The new table looks like

xi HHH HHT HTH HTT THH THT TTH TTT

X(xi) 3 2 2 1 2 1 1 0

p(xi) 27/64 9/64 9/64 3/64 9/64 3/64 3/64 1/64

and the new expected value for X is

312 Sets, Combinatorics, and Probability

E(X) = ∙
8

i=1
X(xi)p(xi)

= 3(27/64) + 2(9/64) + 2(9/64) + 1(3/64) + 2(9/64) + 1(3/64) + 1(3/64) + 0(1/64)
= 144/64 = 2.25

The expected number of heads is now higher because the coin is much more likely
than before to come up heads.

PraCtiCe 47 Given the following table for a sample space, a random variable X, and a probability
 distribution p, find the expected value for X.

xi x1 x2 x3 x4

X(xi) 5 2 3 7

p(xi) 2/8 3/8 2/8 1/8
■

Expected value has a property called linearity. If X1 and X2 are two random
variables on the same sample space S and a and b are real numbers, then

 E(X1 + X2) = E(X1) + E(X2) (4)
 E(aX1 + b) = aE(X1) + b (5)

Keep in mind that for any xi in S, X1(xi) and X2(xi) are both numerical values that
can be added, so the random variable X1 + X2 just means that (X1 + X2)(xi) =
X1(xi) + X2(xi). Similarly, if a and b are real numbers, then aX1 + b just means
that (aX1 + b)(xi) = aX1(xi) + b. Then Equation (4) is true because

E(X1 + X2) = ∙
n

i=1
(X1 + X2)(xi)p(xi) = ∙

n

i=1
(X1(xi) + X2(xi))p(xi)

= ∙
n

i=1
X1(xi)p(xi) + ∙

n

i=1
X2(xi)p(xi) = E(X1) + E(X2)

Equation (4) extends to any finite sum of random variables. Equation (5) is true

because (note that ∙
n

i=1
p(xi) = 1)

E(aX1 + b) = ∙
n

i=1
(aX1 + b)(xi)p(xi) = ∙

n

i=1
(aX1(xi) + b)p(xi)

= a ∙
n

i=1
X1(xi)p(xi) + b ∙

n

i=1
p(xi) = aE(X1) + b(1)

Use of linearity can sometimes simplify the calculation of an expected value (see
Exercise 94).

Section 4.6 Probability 313

Binomial distributions

Consider an event that has only two possible outcomes, success or failure. The
probability of success is p and the probability of failure q = 1 − p. Our well-
known coin toss would fit this description because there are only two possible
outcomes. Such an event is called a Bernoulli trial or Bernoulli experiment
after the eighteenth-century Swiss mathematician Jacob (or James) Bernoulli.
However, a single Bernoulli trial is not of much interest; instead we want to talk
about a finite series of Bernoulli trials, each of which has the same probability p of
success (hence the same probability q = 1 − p of failure). Because the probability
of success does not vary, the various trials are mutually independent events.

Without specifically describing the sample space S, we can define a random
variable X as the number of successful outcomes that occur in the n trials. X can
range from 0 (no successful outcomes) to n (all successful outcomes). We can de-
termine the probability of k successful outcomes out of n trials as follows:

Assume the k successes (and (n − k) failures) occur in some specific pattern.
For example if k = 3 and n = 4, one pattern would look like S-F-S-S. The prob-
ability of a success is p, the probability of a failure is q. Because the n trials are
mutually independent, we can multiply their probabilities, giving pkqn−k. But this
is only one pattern of k successes; how many patterns are there? Exactly the num-
ber of ways we can select k out of n items, C(n, k). So the probability of k success-
ful outcomes out of n trials is

P(k) = C(n, k)pkqn−k

We have therefore determined a probability distribution for the various values of
X, as shown in this table:

X = k 0 1 2 c k c n

P(k) C(n, 0) p0qn C(n,1)pqn−1 C(n,2)p2qn−2 C(n,k)pkqn−k C(n,n)pnq0

Look at the values in this probability distribution. They are the terms in the expan-
sion of (q + p)n. Hence this is called a binomial distribution.

Notice that because q + p = 1, the sum of the probability distribution terms
equals 1n = 1. This makes sense because the various values of X are all disjoint so
the probability of their union is the sum of their individual probabilities. But the
union covers all possible outcomes, so its probability is 1.

 example 75 A fair coin is tossed three times, with heads being considered a success, tails being
considered a failure. Here n = 3 and p = q = 1/2. The binomial distribution is

k 0 1 2 3

P(k) (1/2)3 = 1/8 3(1/2)(1/2)2 = 3/8 3(1/2)2(1/2) = 3/8 (1/2)3 = 1/8

Note that this table contains the same information as the table in Example 74,
 except that here we don’t care about the order in which the heads occur.

To compute E(X),

E(X) = 0(1/8) + 1(3/8) + 2(3/8) + 3(1/8) = 12/8 = 1.5

again agreeing with the result in Example 74.

314 Sets, Combinatorics, and Probability

PraCtiCe 48 From the expected value in Example 75, we “expect” to get 100 heads if we toss a fair coin
200 times. Find the actual probability of getting 100 heads out of 200 trials.

■

average Case analysis of algorithms

Previously, we have done primarily worst-case analysis of algorithms (Section 3.3).
Expected value may help give an average case analysis of an algorithm, i.e., tell
us the expected “average” amount of work performed by an algorithm. As in any
algorithm analysis, the first step is to identify a suitable “unit of work” based on
the nature of the algorithm. Then let the sample space S be the set of all possible
inputs to the algorithm. We’ll assume that S is finite; while there may be an infinite
number of distinct input values, we can group together those with the same work
unit characteristics. Let the random variable X assign to each member of S the
number of work units required to execute the algorithm on that input. And let p
be a probability distribution on S (here is where we make assumptions about what
constitutes “average” input). Then

E(X) = ∙
n

i=1
X(xi)p(xi)

gives the expected number of work units.

 example 76 Consider the sequential search algorithm (Section 3.3). The work unit is the num-
ber of comparisons of a target element x against the n elements in a list. Assume
that the target element is in the list and is equally likely to be any of the n elements
of the list (see Exercise 35 of Section 3.3). This assumption gives the table

xi L1 L2
c Ln

X(xi) 1 2 c n

p(xi) 1/n 1/n c 1/n

Then

E(X) = ∙
n

i=1
X(xi)p(xi)

= ∙
n

i=1
ia1

nb =
1
n ∙

n

i=1
i =

1
n (1 + 2 + c+ n) =

1
n

n(n + 1)
2

=
n + 1

2

The average number of comparisons to find a target in the list, with a uniform
probability distribution, is a little more than half the length of the list.

Section 4.6 Probability 315

S e c t i o n 4 . 6 Review

techniqueS

• Compute the probability of an event when all out-
comes of an action are equally likely.

• Compute the probability of an event when a prob-
ability distribution has been assigned to the sample
space.

• Compute the conditional probability of an event
given that another event has already occurred.

• Determine whether two events are independent.
• Given a sample space with a random variable x and

a probability distribution, compute the expected
value E(X).

Main ideaS

• An event is a subset of the set of all possible out-
comes of some action.

• For equally likely outcomes, the probability of an
event is the ratio of the number of outcomes in the
event to the number of all possible outcomes.

• In the conditional probability of event E2 given that
event E1 has already taken place, the sample space
is reduced to E1.

• Events E1 and E2 are independent if and only if the
conditional probability of E2 given E1 is the same
as the probability of E2.

• In the simplest form of Bayes’ theorem, the prob-
ability of event A given event B can be computed
from the probability of A, the probability of B, and
the probability of B given A.

• Given a sample space to which a random variable
and a probability distribution have been assigned,
the expected value of the random variable is a pre-
dictor of its future value.

• An average case analysis of an algorithm is the
 expected value of work units over the sample
space of all inputs; the probability distribution re-
flects the assumptions being made about “ average”
input.

W

W

exerciSeS 4.6

Exercises 1−6 concern three coins tossed at the same time, each equally likely to come up heads or tails.

 1. What is the size of the sample space?
 2. What is the probability of getting 1 head and 2 tails?
 3. What is the probability of getting all tails?
 4. What is the probability that no coin comes up heads?
 5. What is the probability of getting all tails or all heads?
 6. What is the probability of getting all tails and all heads?

In Exercises 7−14, a pair of fair dice is rolled.

 7. What is the size of the sample space?
 8. What is the probability of getting “snake eyes” (two 1s)?
 9. What is the probability of getting doubles (the same number on each die)?
 10. What is the probability of getting a 1 on at least one die?
 11. What is the probability of getting a total of 7 on the two dice?
 12. What is the probability of getting two consecutive values, such as 3−4, on the two dice?
 13. What is the probability of getting a total on the two dice greater than 10?
 14. What is the probability of getting a total on the two dice that is an odd number?

316 Sets, Combinatorics, and Probability

Exercises 15−18 concern 3 people participating in a race, with each participant equally likely to either finish
the race or drop out of the race.

 15. What is the size of the sample space?
 16. What is the probability of exactly 1 participant finishing the race?
 17. What is the probability of no one finishing the race?
 18. What is the probability of at least 2 of the participants finishing the race?

Exercises 19−24 concern a single card drawn from a standard 52-card deck. A standard deck has 13 cards from
each of 4 suits (clubs, diamonds, hearts, spades). The 13 cards have face value 2 through 10, jack, queen, king,
or ace. Each face value is a “kind” of card. The jack, queen, and king are “face cards.”

 19. What is the probability of drawing a diamond?
 20. What is the probability of drawing a queen?
 21. What is the probability of drawing the queen of diamonds?
 22. What is the probability of drawing a queen or a diamond?
 23. What is the probability of drawing a black card?
 24. What is the probability of drawing a card with a value less than 4 (aces count low)?

Exercises 25−36 concern 2-card hands from a standard 52-card deck. A standard deck has 13 cards from each of
4 suits (clubs, diamonds, hearts, spades). The 13 cards have face value 2 through 10, jack, queen, king, or ace.
Each face value is a “kind” of card. The jack, queen, and king are “face cards.”

 25. What is the size of the sample space?
 26. What is the probability that both cards are the same suit?
 27. What is the probability that neither card is a spade?
 28. What is the probability that both cards are spades?
 29. What is the probability that exactly 1 card is a spade?
 30. What is the probability that at least 1 card is a spade?
 31. What is the probability that both cards are face cards?
 32. What is the probability that exactly 1 card is a face card?
 33. What is the probability that both cards are spade face cards?
 34. What is the probability that both cards are either face cards or spades?
 35. How does the answer to Exercise 30 relate to the answers for Exercises 28 and 29?
 36. How does the answer to Exercise 30 relate to the answer for Exercise 27?

Exercises 37−40 concern possible games in the Hoosier lottery, the Indiana state lottery.

 37. In the Daily 3 game, three numbers between 0 and 9 will be drawn in succession (repetitions allowed).
The player marks three numbers on a game card and has a choice of how to play, straight (the player’s
numbers will match the three numbers drawn in exact order) or box (the player’s numbers will match the
three drawn in any order).

 a. What is the size of the sample space?
 b. What is the probability of a straight?
 c. What is the probability of a box if 3 distinct numbers are drawn?
 d. What is the probability of a box if 2 of the numbers drawn are the same?

Section 4.6 Probability 317

 38. In the Daily4 game, four numbers between 0 and 9 will be drawn in succession (repetitions allowed). The
player marks four numbers on a game card and has a choice of how to play, straight (the player’s numbers
will match the four numbers drawn in exact order) or box (the player’s numbers will match the four drawn
in any order).

 a. What is the size of the sample space?
 b. What is the probability of a straight?
 c. What is the probability of a box if four distinct numbers are drawn?
 d. What is the probability of a box if two of the numbers drawn are the same?
 e. What is the probability of a box if two distinct pairs of numbers are drawn?
 f. What is the probability of a box if three of the numbers drawn are the same?

 39. In the Cash5 game, five different numbers between 1 and 39 will be drawn in succession. The player
marks five different numbers between 1 and 39 on a game card.

 a. What is the size of the sample space?
 b. What is the probability of matching all five numbers in any order?
 c. What is the probability of matching exactly four of the five numbers in any order?
 d. What is the probability of matching exactly three of the five numbers in any order?

 40. In the Powerball game, five different numbers between 1 and 59 will be drawn in succession, and then one
number (the Powerball number) between 1 and 35 will be drawn. The player marks five different numbers
between 1 and 59 and one number between 1 and 35 on a game card.

 a. What is the size of the sample space?
 b. What is the probability of matching all five numbers in any order plus matching the Powerball number?
 c. What is the probability of matching none of the five numbers but matching the Powerball number?

Exercises 41−50 concern 5-card poker hands from a standard 52-card deck. A standard deck has 13 cards from
each of 4 suits (clubs, diamonds, hearts, spades). The 13 cards have face value 2 through 10, jack, queen, king,
or ace. Each face value is a “kind” of card. The jack, queen, and king are “face cards.” (See Exercises 33−41
of Section 4.4. for the definitions of terms.)

 41. What is the probability of a royal straight flush?
 42. What is the probability of a straight flush that is not a royal straight flush?
 43. What is the probability of four of a kind?
 44. What is the probability of a full house?
 45. What is the probability of a flush that is not a straight flush or a royal straight flush?
 46. What is the probability of a straight that is not a straight flush or a royal straight flush?
 47. What is the probability of three of a kind?
 48. What is the probability of two pairs?
 49. What is the probability of a pair?
 50. Explain why, in poker,
 a. a straight flush beats a full house.
 b. four of a kind beats a straight.

318 Sets, Combinatorics, and Probability

Exercises 51−56 relate to the well-known “birthday problem.” Consider a room containing n persons, each of
whom has a birthday equally likely to fall on day 1−365 of the year (ignoring leap years).

 51. What is the size of the sample space of all possible assignments of birthdays to people?
 52. Let E be the event that no 2 persons in the room have the same birthday. Find an expression for P(E).
 53. Let B be the event that 2 or more persons in the room share the same birthday. Find an expression for P(B).
 54. Let C be the event that exactly 2 persons in the room share the same birthday. Find an expression for P(C ).
 55. Which has the larger probability, B or C, and why?
 56. Use a spreadsheet or calculator to determine that 23 is the minimum number of people in the room to give

a probability of least 1/2 that 2 or more people share the same birthday.

Exercises 57−62 refer to the gambling game of roulette. A roulette wheel contains 18 black slots and 18 red
slots that are numbered (not sequentially) 1−36. There are two green slots numbered 0 and 00. The dealer spins
the wheel and spins a ball into the wheel in the opposite direction. Bets are made on which slot the ball will fall
into as the wheel slows to a stop. The ball is equally likely to fall into any slot.

 57. What is the size of the sample space?
 58. What is the probability that the ball lands in a red slot (a “red” bet)?
 59. What is the probability that the ball lands in a specific numbered slot (a “straight up” bet)?
 60. What is the probability that the ball lands on one of three specific numbers (a “street” bet)?
 61. What is the probability that the ball lands on one of four specific numbers (a “corner” bet)?

 62. What is the probability that the ball lands on an odd number three times in a row?
 63. A woman in Lake Havasu City, Arizona, gave birth to twin girls on September 22, 2006. This happened

to be the same date as the woman’s birthday—and the same date as her mother’s birthday. What is the
probability that three generations share the same birthday?

 64. The NCAA men’s Division I college basketball championship (known as “March Madness”) is a single-
elimination tournament held in March of each year. The tournament begins with 68 teams. The structure
of the tournament is as follows; the loser of each game is eliminated:

 What is the probability of correctly picking the championship team? (Assume that all teams are equally
likely to win their respective games.)

name of the Round number of teams number of games

The First Four 8 4

Round of 64 64 32

Round of 32 32 16

Sweet Sixteen 16 8

Elite Eight 8 4

Final Four 4 2

Championship Game 2 1

Section 4.6 Probability 319

 65. Bridge is a card game played by four players with a standard 52-card deck. All 52 cards are dealt to the
four players at the beginning of each hand. In 1963, women playing bridge in Kankakee, Illinois, discov-
ered that after the deal, each player held the 13 cards of a single suit. What is the probability of one player
being dealt an entire suit?

 66. Referring to Exercise 65, what is the probability of each of the four players being dealt an entire suit?

 67. E1 and E2 are events from the same sample space; P(E1) = 0.37, P(E2) = 0.45, and P(E1 d E2) = 0.14.
 a. Find the probability that E2 does not occur.
 b. Find the probability that either E1 or E2 occurs.
 c. Find the probability that neither E1 nor E2 occurs.

 68. An 8-letter password is automatically generated from the 26 lowercase letters of the English alphabet.
Each letter is equally likely to be used, and letters can be repeated.

 a. What is the size of the sample space?
 b. Find the probability that the word does not contain an “e.”
 c. Find the probability that the word contains at least one “e.”
 d. Find the probability that the word contains a single “e.”
 e. Find the probability that the word contains both a single “h” and a single “x.”
 f. Find the probability that the word contains either a single “h” or a single “x.”

 69. A loaded die has the following probability distribution:

 When the die is rolled, let E1 be the event that the number rolled is odd, let E2 be the event that the number
rolled is 3 or 6, and let E3 be the event that the number rolled is 4 or more.

 a. Find P(E1).
 b. Find P(2).
 c. Find P(E3).
 d. Find P(E2 d E3).
 e. Find P(E1 c E3).

 70. A congressional race has a Democratic, a Republican, and an Independent candidate in a district where
past voting patterns indicate that a Democrat is twice as likely to be elected as a Republican, and that a
Republican is four times as likely to be elected as an Independent.

 a. Find the appropriate probability distribution.
 b. What is the probability that a Democrat will be elected?
 c. What is the probability that a Republican will not be elected?

 71. At a certain school, 72% of the students play one or more sports. The percentage of students who play
one or more sports and who graduate is 67%. Find the probability that a student graduates given that the
student plays one or more sports.

xi 1 2 3 4 5 6

p(xi) 0.2 0.05 0.1 0.2 0.3 0.15

320 Sets, Combinatorics, and Probability

 72. On a particular manufacturing job, the probability that there will be a shortage of copper is 0.37. The prob-
ability that there will be a shortage of both copper and aluminum is 0.28. Find the probability of a shortage
of aluminum given a shortage of copper.

 73. In Example 71,
 a. What is the probability that a patient responds positively to compound A given that he or she responds

positively to B?
 b. What is the probability that a patient responds positively to either compound A or compound B?
 c. What is the probability that a patient does not respond positively to either compound?
 74. A food magazine surveys the preferences of its readers who like Asian food. The findings follow.

47% like Thai food (E1)
39% like Indian food (E2)
78% like Chinese food (E3)
23% like both Thai and Indian food
31% like both Indian and Chinese food
29% like both Thai and Chinese food

 a. Extend observation 5 in Table 4.3 to the case of three events, E1, E2, and E3.
 b. Find the probability that a reader likes all three types of food.
 c. Find the probability that a reader likes Chinese food given that the reader likes Indian food.

For Exercises 75−80, a student takes a true−false quiz with four questions, each equally likely to be either T or F.

 75. What is the probability of getting exactly one question wrong?
 76. What is the probability of getting Question 1 correct?
 77. What is the probability of getting three or more questions correct?
 78. What is the probability of getting the first two questions correct?
 79. What is the probability of getting the first two questions correct given that the answer to Question 1 is

correct?
 80. What is the probability of getting all four questions correct given that the answers to the first two questions

are correct?

For Exercises 81−88, a family has 3 children; boys and girls are equally likely offspring.

 81. What is the probability that the oldest child is a boy?
 82. What is the probability that the youngest two children are girls?
 83. What is the probability of 2 boys and 1 girl?
 84. What is the probability of no girls?
 85. What is the probability of at least 1 girl?
 86. What is the probability of 3 girls?
 87. What is the probability of 3 girls given that the first 2 are girls?
 88. What is the probability of at least 1 boy and at least 1 girl given that there is at least 1 boy?

Section 4.6 Probability 321

 89. Prove Bayes’ theorem. The proof parallels what was done in Example 73. Let E1, …, En be disjoint events
from a sample space S whose union equals S. If F is another event from S, then Bayes’ theorem says that
the probability of event Ei, 1 ≤ i ≤ n, given event F, is

P(Ei 0 F) =
P(F 0 Ei)P(Ei)

∙
n

k=1
P(F 0 Ek)P(Ek)

 a. Use the definition of P(Ei 0 F) and P(F 0 Ei) to prove that

P(Ei 0 F) =
P(F 0 Ei)P(Ei)

P(F)

 b. Prove that

P(F) = ∙
n

k=1
P(F d Ek)

 c. Use the definition of P(F 0 Ei) and the result from part (b) to prove that

P(F) = ∙
n

k=1
P(F 0 Ei)P(Ei)

 d. Using parts (a) and (c), prove Bayes’ theorem.
 90. Toys for boys and for girls are donated to a benefit event by two groups. The Lakeville Do-Gooders

 donated 5 toys for boys and 7 for girls. The Southside Champions Club donated 6 toys for boys and 5 for
girls. The master of ceremonies pulls the first toy out of a bin and it’s a toy for a boy. Find the probability
that it was donated by the Do-Gooders.

 91. An online pharmacy sells an over-the-counter drug, medication X, that is used for a variety of purposes.
The pharmacy has data that say that 18% of its customers are HIV positive, 9% of its HIV-positive cus-
tomers buy medication X, and 3% of the customers who are not HIV positive buy medication X. Find the
probability that a customer who buys medication X is HIV positive. The pharmacy can use this data to
shape its marketing/advertising plan.

 92. Of the high blood pressure patients in a particular clinic, 62% are treated with medication X, the remainder
with medication Y. It is known that 1.4% of patients using medication X suffer from fainting spells, as do
2.9% of the patients using medication Y. A patient known by the clinic to have high blood pressure suffers
a fainting spell, but she does not remember which medication she is on. Which medication is she most
likely to be taking? (Hint: Let E1 and E2—treated with X and treated with Y, respectively—be events in
the sample space of all patients with high blood pressure in the clinic, and let F be the event of fainting;
find P(X 0 F) and P(Y 0 F).)

 93. a. A fair die is rolled once. Let the random variable X equal the value that comes up. Find the expected
value of X, E(X).

 b. The die is now “loaded” so that a 2 comes up twice as often as any other number. Find the new expected
value of X.

 c. Your answer to part (b) should be (greater than, less than) your answer to part (a). Explain why.

322 Sets, Combinatorics, and Probability

 94. Two fair dice are rolled. The sample space S contains the 36 combinations of two numbers. For each mem-
ber (r, s) of S, the random variable X(r, s) = r + s.

 a. Write a table showing the values for X and the probability of those values; instead of 36 columns each
with probability 1/36, do a column for each distinct value of X and show the probability of that value.

 b. Find the expected value of the sum of the numbers that come up when two fair dice are rolled.
 c. Find the expected value of the sum of the numbers that come up when two fair dice are rolled. This

time let the sample space S consist of the ordered pairs (r, s) that can appear on the two dice. Use two
different random variables over this sample space, where X1 = the value of the first component of the
ordered pair and X2 = the value of the second component of the ordered pair. Make use of the linearity
property from Equation (4).

 95. At a gambling casino, a ball will be drawn from a bin containing 43 red balls, 27 green balls, and 8 blue
balls. A player marks a game card with the color he or she believes will be picked. The prize money for
guessing the correct color is

 Red $3.00
 Green $6.00
 Blue $10.00

 The price of the game card is $5.00. Find the expected value of the prize money.
 96. A directory on a computer’s hard disk contains 12 files, 3 of which have viruses. If a file with a virus is

selected, the virus is detected and another file is then selected. Find the expected number of files that must
be selected in order to get a virus-free file.

 97. Bit strings are sent across a computer network in packets of length 10. The probability of a bit getting cor-
rupted (that is, a 0 gets changed to a 1 or vice versa) is 0.01. These bit errors are independent.

 a. Find the probability that in a single packet there are no bit errors. (Hint: It’s OK to call a bit error a
“success.”)

 b. Find the probability that there are no more than two bit errors.
 c. Find the probability that there is at least one bit error.
 98. Of the items produced in a certain manufacturing facility, 5% are defective. If 8 items are chosen at ran-

dom, find the probability that
 a. 1 is defective.
 b. 2 are defective.
 c. none is defective.
 d. at least 1 is defective.
 e. at most 1 is defective.
 99. A student has failed to study for a true−false test and guesses at every one of the 10 questions. If the pass-

ing grade is 8 correct answers, what is the probability that the student will pass the quiz?
 100. A baseball player has a probability p = 0.04 of hitting a home run for each at bat. Find the minimum

number of at bats he must take so that there is at least an 80% probability of hitting a home run (that is, at
least 1 home run).

 101. Find the average number of comparisons to search for a target element x using the sequential search al-
gorithm under the assumption that x is equally likely to be at any of the n positions in the list or not in the
list.

 102. Find the average number of comparisons to search for a target element x using the sequential search algo-
rithm under the assumption that x is not in the list 80% of the time, but if x is in the list it is equally likely
to be at any of the n positions.

c H a p t e R 4 review

teRminologY

addition principle (p. 254)
Bayes’ theorem (p. 309)
Bernoulli trial (p. 313)
Bernoulli experiment (p. 313)
binary operation (p. 229)
binomial coefficient (p. 297)
binomial distribution (p.313)
binomial theorem (p. 296)
Cantor’s diagonalization method

(p. 237)
cardinality of a set (p. 236)
Cartesian product (cross product)

of sets (p. 233)
closed set under an operation

(p. 229)
combination (p. 274)
combinatorial proof (p. 296)
combinatorics (p. 252)
complement of a set (p. 232)
conditional probability (p. 307)
countable set (p. 236)

decision tree (p. 257)
denumerable set (p. 236)
disjoint sets (p. 232)
dual of a set identity (p. 235)
empty set (p. 224)
equal sets (p. 223)
event (p. 302)
expected value (p. 310)
finite set (p. 223)
independent events (p. 307)
infinite set (p. 223)
intersection of sets (p. 231)
lexicographical ordering (p. 281)
linearity of expected value

(p. 312)
multiplication principle (p. 253)
n factorial (p. 272)
null set (p. 224)
ordered pair (p. 228)
Pascal’s formula (p. 295)
Pascal’s triangle (p. 294)

permutation (p. 272)
pigeonhole principle (p. 269)
power set (p. 227)
principle of inclusion and

exclusion (p. 267)
probability axioms (p. 304)
probability distribution (p. 305)
probability of an event (p. 302)
probability of an event E (p. 305)
proper subset (p. 225)
random variable (p. 310)
sample space (p. 302)
set difference (p. 232)
subset (p. 224)
unary operation (p. 230)
uncountable set (p. 236)
union of sets (p. 231)
universal set (p. 231)
universe of discourse (p. 231)
weighted average (p. 310)
well-defined operation (p. 229)

Self-teSt

Answer the following true−false questions.

Section 4.1
1. The empty set is a proper subset of every set.
2. If A and B are disjoint sets, then (A − B) c (B − A)

= A c B.
3. If a set has n elements, then its power set has 2n

elements.
4. If a binary operation + on a set S is well-defined,

then x + y [S for all x and y in S.
5. Cantor’s diagonalization method is a way to prove

that certain sets are denumerable.

Section 4.2
1. According to the multiplication principle, the number

of outcomes for a sequence of tasks is the product of
the number of outcomes for each separate task.

2. The addition principle finds the total number of
branches of a decision tree.

3. The addition principle requires the tasks at hand to
have disjoint sets of outcomes.

4. The multiplication principle says that the number of
elements in A × B equals the number of elements in
A times the number of elements in B.

5. Any problem that requires a decision tree for its
 solution cannot be solved by the multiplication
principle.

Section 4.3
1. The principle of inclusion and exclusion requires

that A and B be disjoint sets in order to find the
number of elements in A c B.

2. The principle of inclusion and exclusion applied
to two sets says that the number of elements in
the union minus the number of elements in the
intersection is the sum of the number of elements
in each set.

Chapter 4 Review 323

324 Sets, Combinatorics, and Probability

3. The principle of inclusion and exclusion applies to
the union of any number of sets as long as at least
one of them is finite.

4. The pigeonhole principle is a way to count the
number of elements in the union of disjoint sets, or
“pigeonholes.”

5. The piegeonhole principle guarantees that if there
are 8 people in a room, at least 2 must have been
born on the same day of the week.

Section 4.4
1. A permutation is an ordered arrangement of

objects.
2. The number of combinations of r objects out of n,

r > 1, is fewer than the number of permutations of
r objects out of n.

3. To find the number of ways a subset of r objects can
be selected from n objects, use the formula P(n, r).

4. The number of permutations of the letters in a word
with three sets of re peated letters is n!/3.

5. The formula C(r + n − 1, r) computes the number
of combinations of r ob jects out of n objects where
objects may be used repeatedly.

Section 4.5
1. Pascal’s triangle consists of rows that represent the

number of ways to arrange r out of n objects for
various r.

2. Pascal’s formula says that an “interior” number
in Pascal’s triangle is the sum of the two numbers
directly above it in the triangle.

3. In the expansion of a binomial to the nth power, the
kth term is found in row k of Pascal’s triangle.

4. A combinatorial argument is one that is based on
counting techniques.

5. The coefficient of the seventh term in the expansion
of (a + b)12 is given by the expression C(12, 6).

Section 4.6
1. The probability of an event always falls in the range

between 0 and 1.
2. In a sample space with n equally likely outcomes,

the probability distribution is 1/n for each
outcome.

3. To find the probability of several events occur-
ring, multiply the probabilities of the individual
events.

4. A random variable is a variable whose value
is randomly assigned using a random number
generator.

5. If E1 and E2 are disjoint events whose union
equals the sample space, then Bayes’ theorem
allows you to derive the conditional probability
P(E1 0 F) if you know P(F 0 E1), P(F 0 E2), P(E1)
and P(E2).

o n t H e c o m p u t e R

For Exercises 1−10, write a computer program that
produces the desired output from the given input.

1. Input: Elements in a finite set S
 Output: Elements in ℘(S)
 Algorithm: Use recursion.

2. Input: Arithmetic expression in postfix notation
(see Exercise 45 in Sec tion 4.1)

 Output: Value of the expression

3. Input: Arithmetic expression in infix notation (see
Exercise 45 in Section 4. 1)

 Output: Postfix form of the expression
 Do this problem in two ways:

a. Assume that the input is fully parenthesized.
b. Do not assume that the input is fully parenthe-

sized, but apply the proper order of precedence
of operators within the program (order of prece-
dence of operators is parenthesized expressions
first, then exponentiation, then multiplication and
division, then addition and subtraction).

4. Input: Values for n and r, 0 ≤ r ≤ n
 Output: Value of P(n, r)

5. Input: Values for n and r, 0 ≤ r ≤ n
 Output: Value of C(n, r)

6. Input: Value for n
 Output: All values of C(n, r), 0 ≤ r ≤ n

Chapter 4 Review 325

 7. Input: Value for n
 Output: All permutations of the integers 1, … , n
Here is an outline for an alternative to the algorithm
given in Section 4.4 to generate the n! permutations
of the integers {1, … , n}. Use a recursive algorithm.
Once a permutation A of the integers 1, … , k − 1
exists, permutations of the integers 1, … , k can be
obtained by inserting integer k into every possible
 position in A. Every time k = n, any permutation so
obtained can be written out. Initiate the process by
sending 1 to an empty permutation list. For the case
n = 3, for example, this algorithm successively
traverses the branches of the tree and prints out the
leaves.

1

2, 1 1, 2

3, 2, 1 2, 3, 1 2, 1, 3 3, 1, 2 1, 3, 2 1, 2, 3

 8. Input: Values for a, b, and n
 Output: Value of (a + b)n

 a. Use the binomial theorem to compute your
 result.

 b. Compute a + b and raise this value to the
nth power; compare your answer with that of
part (a).

 9. Input: Values for a, b, n, and r, 1 ≤ r ≤ n + 1
 Output: rth term in the expansion of (a + b)n

10. Input: A random variable and a probability distri-
bution for a finite sample space.

 Output: The expected value of the random variable.

11. Write a program that allows the user to enter a
value for n, 1 ≤ n ≤ 10, and then queries the user
for the values needed on the right side of Equation
(4) of Section 4.3 (the principle of inclusion and
exclusion) and computes the value of

0 A1 c c c An 0

12. Write a program to generate a given number of
rows of Pascal’s triangle. Do this problem in two
ways.
a. Use the definition of Pascal’s triangle (and

 perhaps use your answer to compute Exercise
5 as a function).

b. Use recursion and Pascal’s formula.

13. Benford’s law, also called the first-digit law,
states that in many (but not all) large numerical
data sets, the first digit is not equally likely to be
1 through 9. In fact, the probability that the first
digit equals 1, p(1), is about 30%, and the prob-
ability for each successive value of the first digit
goes down until p(9) is about 4.6%. The formula
for Benford’s law is

p(d) = log10a1 +
1
d
b

 Evidence based on Benford’s law is admissible in
court and has been used to help detect fraudulent
data in accounting, economics, scientific research,
and other areas.
a. Use the given formula to compute the prob-

ability of occurrence in the first digit of digits
1−9.

b. Write a program to generate the first 200 Fibo-
nacci numbers and determine whether the first
digits follow Benford’s law.

This page intentionally left blank

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Identify ordered pairs related by a binary relation.
• Test a binary relation for the reflexive, symmetric, transitive, and antisymmet-

ric properties.
• Find the reflexive, symmetric, and transitive closures of a binary relation.
• Recognize partial orderings and construct Hasse diagrams for them.
• Recognize an equivalence relation on a set and describe how it partitions the

set into equivalence classes.
• Draw a PERT chart from a task table.
• Find the minimum time-to-completion and a critical path in a PERT chart.
• Extend a partial ordering on a finite set to a total ordering by doing a topologi-

cal sort.
• Understand the entity-relationship model and the relational model for an

enterprise.
• Perform restrict, project, and join operations in a relational database.
• Create relational database queries in the languages of relational algebra, SQL,

and relational calculus.
• Determine whether a binary relation is a function.
• Test a function for the onto and one-to-one properties.
• Create composite functions.
• Decide whether a function has an inverse function and what the inverse

 function is.
• Manipulate cycle notation for permutation functions.
• Compute the number of functions, onto functions, and one-to-one functions

from one finite set to another.
• Understand order of magnitude as a relative measure of function rate of growth.
• Build a hash table using a modulo hash function.
• Encode and decode messages using RSA public key encryption.
• Use the mod function to compute check digits for various identification codes.
• Perform matrix arithmetic on matrices of appropriate dimensions.
• Solve systems of linear equations using Gaussian elimination.
• Perform Boolean arithmetic operations on Boolean matrices of appropriate

 dimensions.

5Relations, Functions,
and Matrices

Chapter

327

328 Relations, Functions, and Matrices Section 5.1 Relations 329

Your company has developed a program for use on a small parallel processing
 machine. According to the technical documentation, the program executes processes
P1, P2, and P3 in parallel; these processes all need results from process P4, so they
must wait for Process P4 to complete execution before they begin. Processes P7 and
P10 execute in parallel but must wait until processes P1, P2, and P3 have finished.
Process P4 requires results from P5 and P6 before it can begin execution. P5 and
P6 execute in parallel. Processes P8 and P11 execute in parallel, but P8 must wait
for Process P7 to complete and P11 must wait for process P10 to complete. Process
P9 must wait for results from P8 and P11. You have been assigned to convert the
 software for use on a single processor machine.

 Question: In what order should the processes be executed?

Here various pairs of processes are related to one another by a “prerequisite”
 relation. This is a special case of a binary relation, a relationship between pairs of
elements within a set. We will study the various properties of binary relations in
Section 5.1. One type of binary relation is called a partial ordering; elements re-
lated by a partial ordering can be represented graphically. Another type of binary
relation is an equivalence relation; elements related by an equivalence relation can
be grouped into classes.

A topological sort extends a partial ordering to a total ordering. For a par-
tial ordering of prerequisite tasks, a corresponding total ordering identifies the
sequential order in which the tasks would have to be done, which is the solution
to the parallel processing conversion problem. Topological sorting is presented in
Section 5.2.

A generalization of a binary relation forms the basis for relational databases,
considered in Section 5.3. Using operations of restrict, project, and join on the
relations in a database, we can make various queries of the database.

A function is a special kind of binary relation. Functions, as well as relations,
describe a number of real-world situations. Functions can also have special prop-
erties, as discussed in Section 5.4. Order of magnitude, presented in Section 5.5,
provides a way to compare the growth rate of two functions and is useful in the
analysis of algorithms. A simple function called the modulo function has a sur-
prising number of applications, ranging from encryption algorithms for computer
security to the basis for artistic design patterns. Some of these applications are
mentioned in Section 5.6.

In Section 5.7, we consider matrices and develop an arithmetic for manipulat-
ing them. Matrices provide a mechanism for solving systems of linear equations.
We will later use matrices to represent relations and graphs.

 S e c t I o n 5 . 1 Relations

Binary Relations

If we learn that two people, Henrietta and Horace, are related, we understand that
there is some family connection between them—that (Henrietta, Horace) stands
out from other ordered pairs of people because there is a relationship (cousins, sis-
ter and brother, or whatever) that Henrietta and Horace satisfy. The mathematical

328 Relations, Functions, and Matrices Section 5.1 Relations 329

analogue is to distinguish certain ordered pairs of objects from other ordered pairs
because the components of the distinguished pairs satisfy some relationship that
the components of the other pairs do not.

 example 1 Remember (Section 4.1) that the Cartesian product of a set S with itself, S × S
or S2, is the set of all ordered pairs of elements of S. Let S = 51, 2, 36; then

S × S = 5(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)6

If we were interested in the relationship of equality, then (1, 1), (2, 2), (3, 3) would
be the distinguished elements of S × S, that is, the only ordered pairs whose com-
ponents are equal. If we were interested in the relationship of one number being
less than another, we would choose (1, 2), (1, 3), and (2, 3) as the distinguished
ordered pairs of S × S.

In Example 1, we could pick out the distinguished ordered pairs (x, y) by say-
ing that x = y or that x < y. Similarly, the notation x r y indicates that the ordered
pair (x, y) satisfies a relation r. The relation r may be defined in words or by an
equation or simply by listing the ordered pairs that satisfy r.

As in Example 2, one way to define the binary relation r is to specify a subset
of S × S. Formally, this is the definition of a binary relation on a set.

 example 2 Let S = 51, 2, 46 . On the set S × S = 5(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4),
(4, 1), (4, 2), (4, 4)6, a relation r can be defined by x r y if and only if x = y∙2,
abbreviated x r y 4 x = y∙2 Thus (1, 2) and (2, 4) satisfy r. Alternatively, the
same r could be defined by saying that 5(1, 2), (2, 4)6 is the set of ordered pairs
satisfying r.

 DefInItIon BinaRy Relation on a Set S
A binary relation on a set S is a subset of S × S (a set of ordered pairs of
 elements of S).

Now that we know that a binary relation r is a subset, we see that

x r y 4 (x, y) [r

Generally, a binary relation is defined by describing the relation rather than by list-
ing the ordered pairs. The description gives a characterizing property of elements
of the relation; that is, it is a binary predicate satisfied by certain ordered pairs.
A binary relation implies a yes/no result—an ordered pair either does or does not
satisfy the binary predicate and either does or does not belong to the relation.

330 Relations, Functions, and Matrices Section 5.1 Relations 331

 example 3 Let S = 51, 26 . Then S × S = 5(1, 1), (1, 2), (2, 1), (2, 2)6 . Let r on S be given
by the description x r y 4 x + y is odd. Then (1, 2) [r and (2, 1) [r. The
 ordered pair (1, 1) o r because 1 + 1 is not odd. Similarly (2, 2) o r.

 example 4 Let S = 51, 26 . Then S × S = 5(1, 1), (1, 2), (2, 1), (2, 2)6 . If r is defined on S by
r = 5(1, 1), (2, 1)6 , then 1 r 1 and 2 r 1 hold, but not, for instance, 1 r 2. Here r
seems to have no obvious verbal description.

In this section we will be concerned almost exclusively with binary relations
on a single set, but more generally, relations can be defined on multiple sets.

 DefInItIon RelationS on Multiple SetS
Given two sets S and T, a binary relation from S to T (also called a binary
 relation on S × T) is a subset of S × T . Given n sets S1, S2, … , Sn, n > 2, an
n-ary relation on S1 × S2 × c× Sn is a subset of S1 × S2 × c× Sn.

 example 5 Let S = 51, 2, 36 and T = 52, 4, 76 . Then the set

5(1, 2), (2, 4), (2, 7)6

consists of elements from S × T . It is a binary relation from S to T.

■

PRaCtiCe 1 For each of the following binary relations r on N, decide which of the given ordered
 pairs belong to r.

a. x r y 4 x = y + 1; (2, 2), (2, 3), (3, 3), (3, 2)
b. x r y 4 x divides y; (2, 4), (2, 5), (2, 6)
c. x r y 4 x is odd; (2, 3), (3, 4), (4, 5), (5, 6)
d. x r y 4 x > y2; (1, 2), (2, 1), (5, 2), (6, 4), (4, 3)

If r is a binary relation on S, then r will consist of a set of ordered pairs of the
form (s1, s2). A given first component s1 or second component s2 can be paired in
various ways in the relation. The relation is one-to-one if each first component and
each second component appears only once in the relation. The relation is one-to-
many if some first component s1 appears more than once; that is, one s1 is paired
with more than one second component. It is many-to-one if some second compo-
nent s2 is paired with more than one first component. Finally, it is many-to-many
if at least one s1 is paired with more than one second component and at least one
s2 is paired with more than one first component. Figure 5.1 illustrates these four
possibilities. Note that not all values in S need be components in ordered pairs of r.

330 Relations, Functions, and Matrices Section 5.1 Relations 331

S S S S

S S S S

One-to-one One-to-many

Many-to-one Many-to-many
Figure 5.1

These ideas extend to relations from a set S to a set T. The relation of Example 5
is one-to-many because the first component 2 appears more than once; 2 from set
S is associated with both 4 and 7 from set T.

Suppose B is the set of all binary relations on a given set S. If r and s belong
to B, then they are subsets of S × S. As such, we can perform set operations
of union, intersection, and complementation that result in new subsets of S × S,
that is, new binary relations, which we will denote by r c s, r d s, and r′,
 respectively. Thus

x (r c s) y 4 x r y or x s y
x (r d s) y 4 x r y and x s y
x r′ y 4 not x r y

PRaCtiCe 3 Let r and s be two binary relations on N defined by x r y 4 x = y and x s y 4 x < y.
Give verbal descriptions for parts (a), (b), and (c); give a set description for part (d).

a. What is the relation r c s?
b. What is the relation r′?
c. What is the relation s′?
d. What is the relation r d s? ■

■

PRaCtiCe 2 Identify each of these relations on S, where S = 52, 5, 7, 96, as one-to-one, one-to-many,
many-to-one, or many-to-many.

a. 5(5, 2), (7, 5), (9, 2)6
b. 5(2, 5), (5, 7), (7, 2)6
c. 5(7, 9), (2, 5), (9, 9), (2, 7)6

332 Relations, Functions, and Matrices Section 5.1 Relations 333

The following facts about the operations c , d and ′ on relations are immedi-
ate consequences of the basic set identities found in Section 4.1. The set S2 (which
is, after all, a subset of S2) is being viewed here as a binary relation on S.

 la. r c s = s c r lb. r d s = s d r
2a. (r c s) c g = r c (s c g) 2b. (r d s) d g = r d (s d g)
3a. r c (s d g) = (r c s) d (r c g) 3b. r d (s c g) = (r d s) c (r d g)
4a. r c [= r 4b. r d S2 = r
5a. r c r′ = S2 5b. r d r′ = [

properties of Relations

A binary relation on a set S may have certain properties. For example, the
 relation r of equality on S, (x, y) [r 4 x = y, has three properties: (1) for
any x [S, x = x, or (x, x) [r; (2) for any x, y [S, if x = y then y = x, or
(x, y) [r S (y, x) [r; and (3) for any x, y, z [S, if x = y and y = z, then
x = z, or 3(x, y) [r and (y, z) [r 4 S (x, z) [r. These three properties make
the equality relation reflexive, symmetric, and transitive.

RemInDeR

Reflexive—Every x is
related to itself.
Symmetric—If x is related
to y, then y is related to x.
Transitive—If x is related
to y and y is related to z,
then x is related to z.

 DefInItIon ReFlexive, SyMMetRic, and tRanSitive RelationS
Let r be a binary relation on a set S. Then

r is reflexive means (4x)(x [S S (x, x) [r)
r is symmetric means (4x)(4y)(x [S ` y [S ` (x, y) [r S (y, x) [r)
r is transitive means (4x)(4y)(4z)(x [S ` y [S ` z [S `
 (x, y) [r ` (y, z) [r S (x, z) [r)

 example 6 Consider the relation ≤ on the set N. This relation is reflexive because for any
nonnegative integer x, x ≤ x. It is also a transitive relation because for any non-
negative integers x, y, and z, if x ≤ y and y ≤ z, then x ≤ z. However, ≤ is
not symmetric; 3 ≤ 4 does not imply 4 ≤ 3. In fact, for any x, y [N, if both
x ≤ y and y ≤ x, then x = y. This characteristic is described by saying that ≤ is
 antisymmetric.

 DefInItIon antiSyMMetRic Relation
Let r be a binary relation on a set S. Then r is antisymmetric means

(4x)(4y)(x [S ` y [S ` (x, y) [r ` (y, x) [r S x = y)

 example 7 Let S = `(N). Define a binary relation r on S by A r B 4 A # B. Then r is reflexive
because every set is a subset of itself. Also, r is transitive because if A is a subset of
B and B is a subset of C, then A is a subset of C. Finally, r is antisymmetric because
if A is a subset of B and B is a subset of A, then A and B are equal sets.

332 Relations, Functions, and Matrices Section 5.1 Relations 333

All four relational properties involve the implication connective. The univer-
sal quantifiers mean that the implications must be true for arbitrary choices of
variables. Recall that to prove an implication true, we assume that the antecedent
is true and prove that the consequent must also be true. For the reflexive property,
the antecedent just chooses an arbitrary element in S; the consequent says that
this element must be related to itself. For a relation r on a set to be reflexive, then,
every element in the set must be related to itself, which specifies certain ordered
pairs that must belong to r.

However, in the symmetric, transitive, and antisymmetric properties, the an-
tecedent does not say only that the elements are in S. To prove that a relation is
symmetric, for example, we must show that if x and y are arbitrary elements in S
and if in addition x is related to y, then it must be the case that y is related to x. This
says that if certain ordered pairs are found in r, then certain other ordered pairs
must also be in r in order for r to be symmetric. In other words, knowledge of the
set S is critical to determining whether reflexivity holds, while to determine the
other properties, it is sufficient just to look at the ordered pairs in r.

At any rate, the question of whether a given relation on a set S has a certain prop-
erty requires a yes or no answer. The property either holds or it doesn’t.

RemInDeR

Antisymmetric—If x is re-
lated to y and y is related
to x, then x = y.

PRaCtiCe 4 Let S = 51, 2, 36 .
a. If a relation r on S is reflexive, what ordered pairs must belong to r?
b. If a relation r on S is symmetric, what ordered pairs must belong to r? (This is a trick question; see

the answer at the back of the book.)
c. If a relation r on S is symmetric and if (a, b) [r, then what other ordered pair must belong to r?
d. If a relation r on S is antisymmetric and if (a, b) and (b, a) belong to r, what must be true?
e. Is the relation r = 5(1, 2)6 on S transitive? (Hint: Remember the truth table for implication.) ■

The properties of symmetry and antisymmetry for binary relations are not
precisely opposites. Antisymmetric does not mean “not symmetric.” A relation
is not symmetric if some (x, y) belongs to the relation but (y, x) does not. More
formally, not symmetric means

((4x)(4y) 3x [S ` y [S ` (x, y) [r S (y, x) r 4)′
 4 (Ex)(Ey) 3x [S ` y [S ` (x, y) [r S (y, x) r 4′
 4 (Ex)(Ey) 3(x [S ` y [S ` (x, y) [r)′ ~ (y, x) [r 4′
 4 (Ex)(Ey) 3(x [S ` y [S ` (x, y) [r) ` (y, x) o r 4

Relations can therefore be symmetric and not antisymmetric, antisymmetric and
not symmetric, both, or neither.

The equality relation on a set S is both symmetric and antisymmetric. However,
the equality relation on S (or a subset of this relation) is the only relation having
both these properties. To illustrate, suppose r is a symmetric and antisymmet-
ric relation on S, and let (x, y) [r. By symmetry, it follows that (y, x) [r. But
by antisymmetry, x = y. Thus, only equal elements can be related. The relation
r = 5(1, 2), (2, 1), (1, 3)6 on the set S = 51, 2, 36 is neither symmetric—(1, 3) be-
longs but (3, 1) does not—nor antisymmetric—(1, 2) and (2, 1) belong, but 1 ∙ 2.

334 Relations, Functions, and Matrices

closures of Relations

If a relation r on a set S fails to have a certain property, we may be able to extend
r to a relation r* on S that does have that property. By “extend,” we mean that the
new relation r* will contain all the ordered pairs in r plus the additional ordered
pairs needed for the desired property to hold. Thus r # r*. If r* is the smallest
such set, then r* is called the closure of r with respect to that property.

PRaCtiCe 5 Test each binary relation on the given set S for reflexivity, symmetry, antisymmetry, and
transitivity.

a. S = N; x r y 4 x + y is even
b. S = Z+(positive integers); x r y 4 x divides y
c. S = set of all lines in the plane; x r y 4 x is parallel to y or x coincides with y
d. S = N; x r y 4 x = y2

e. S = 50, 16; x r y 4 x = y2

f. S = 5x 0 x is a person living in Peoria6; x r y 4 x is older than y
g. S = 5x 0 x is a student in your class6; x r y 4 x sits in the same row as y
h. S = 51, 2, 36; r = 5(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)6 ■

 example 8 The discussion on recursion in Prolog (Section 1.5) noted that a recursive rule
should be used when the predicate being described is one that is inherited from one
object to the next. The predicate in-food-chain used there has this property because

in-food-chain-(x, y) ` in-food-chain (y, z) S in-food-chain (x, z)

Now we see that this is simply the transitive property.

 DefInItIon cloSuRe oF a Relation
A binary relation r* on a set S is the closure of a relation r on S with respect to
property P if

 1. r* has property P.
 2. r # r*.
 3. r* is a subset of any other relation on S that includes r and has property P.

We can look for the reflexive closure, the symmetric closure, and the transi-
tive closure of a relation on a set. Of course, if the relation already has a property,
it is its own closure with respect to that property.

 example 9 Let S = 51, 2, 36 and r = 5(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)6. Then r is not reflex-
ive, not symmetric, and not transitive. The closure of r with respect to reflexivity is

r* = 5(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (2, 2), (3, 3)6

Section 5.1 Relations 335

This relation is reflexive and contains r. Furthermore, any reflexive relation on S
would have to contain the new ordered pairs we’ve added—(2, 2) and (3, 3)—so
no smaller reflexive relation can exist; that is, any reflexive relation containing r
must have the relation above as a subset.

The closure of r with respect to symmetry is

r* = 5(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (2, 1), (3, 2)6

Here it is also clear that we have added just those new pairs required—(2, 1) and
(3, 2)—for the relation to be symmetric.

For both reflexive closure and symmetric closure, we only had to inspect the
ordered pairs already in r to find out what ordered pairs we needed to add (assum-
ing we knew what the set S was). The reflexive or symmetric closure of the rela-
tion could be found in one step. Transitive closure may require a series of steps.
Inspecting the ordered pairs in our example r, we see that we need to add (3, 2)
(because of (3, 1) and (1, 2)), (3, 3) (because of (3, 1) and (1, 3)), and (2, 1) (be-
cause of (2, 3) and (3, 1)). This gives the relation

5(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (2, 1)6

However, this relation is still not transitive. Because of the new pair (2, 1) and the
old pair (1, 2), we need to add (2, 2). This gives the relation

5(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (2, 1), (2, 2)6

which is transitive and also the smallest transitive relation containing r. It is the
transitive closure of r.

As in Example 9, one way to find the transitive closure of a relation is to inspect
the ordered pairs in the original relation, add new pairs if necessary, inspect the
resulting relation, add new pairs if necessary, and so on, until a transitive relation is
achieved. This is a rather ad hoc procedure, and we will give a better algorithm in
Chapter 7. There we will also see that the transitive closure of a binary relation is
related to “reachability in a directed graph,” which has many applications.

PRaCtiCe 6 Does it make sense to look for the antisymmetric closure of a relation on a set? Why or why
not?

■

PRaCtiCe 7 Find the reflexive, symmetric, and transitive closure of the relation

5(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a)6

on the set S = 5a, b, c, d6 . ■

336 Relations, Functions, and Matrices

For the rest of this section we will concentrate on two types of binary relations
that are characterized by which properties (reflexivity, symmetry, antisymmetry,
and transitivity) they satisfy.

partial orderings

 DefInItIon paRtial oRdeRing
A binary relation on a set S that is reflexive, antisymmetric, and transitive is
called a partial ordering on S.

From previous examples and Practice 5, we have the following instances of
partial orderings:

On N, x r y 4 x ≤ y.
On `(N), A r B 4 A # B.
On Z+, x r y 4 x divides y.
On 50, 16, x r y 4 x = y2.

If r is a partial ordering on S, then the ordered pair (S, r) is called a partially
 ordered set (also known as a poset). We will denote an arbitrary, partially ordered
set by (S, d); in any particular case, d has some definite meaning such as “less
than or equal to,” “is a subset of,” “divides,” and so on. (The symbol for a generic
partial ordering, d, is designed to resemble the inequality symbol #, which, as
we’ve just noted, is a partial ordering on the set N or on any other set in which a
less-than-or-equal-to relation makes sense.)

Let (S, d) be a partially ordered set, and let A # S. Then d is a set of or-
dered pairs of elements of S, some of which may be ordered pairs of elements
of A. If we select from d the ordered pairs of elements of A, this new set is called
the restriction of d to A and is a partial ordering on A. (Do you see why the
three required properties still hold?) For instance, once we know that the relation
“x divides y” is a partial ordering on Z+, we automatically know that “x divides y” is
a partial ordering on 51, 2, 3, 6, 12, 186 .

We want to introduce some terminology about partially ordered sets. Let
(S, d) be a partially ordered set. If x d y, then either x = y or x ∙ y. If x d y
but x ∙ y, we write x a y and say that x is a predecessor of y or y is a successor
of x. A given y may have many predecessors, but if x a y and there is no z with
x a z a y, then x is an immediate predecessor of y.

PRaCtiCe 8 Consider the relation “x divides y” on 51, 2, 3, 6, 12, 186 .
a. Write the ordered pairs (x, y) of this relation.
b. Write all the predecessors of 6.
c. Write all the immediate predecessors of 6. ■

If S is finite, we can visually depict a partially ordered set (S, d) by using
a hasse diagram. Each of the elements of S is represented by a dot, called a

node, or vertex, of the diagram. If x is an immediate predecessor of y, then the
node for y is placed above the node for x and the two nodes are connected by a
straight-line segment.

 example 10 Consider ̀ (51, 26) under the relation of set inclusion. This is a partially ordered set,
a restriction of the partially ordered set (`(N), #). The elements of `(51, 26) are
[, 516, 526 , and 51, 26 . The binary relation # consists of the following ordered
pairs:

([, [), (516, 516), (526, 526), (51, 26, 51, 26), ([, 516),
([, 526), ([, 51, 26), (516, 51, 26), (526, 51, 26)

The Hasse diagram of this partially ordered set appears in Figure 5.2. Note that
although [is not an immediate predecessor of 51, 26 , it is a predecessor of 51, 26
(shown in the diagram by the chain of upward line segments connecting [with
51, 26).

PRaCtiCe 9 Draw the Hasse diagram for the relation “x divides y” on 51, 2, 3, 6, 12, 186 .
■

RemInDeR

Two nodes in a Hasse
diagram should never be
joined by a horizontal line.

Figure 5.2

{1}

{1, 2}

{2}

Ø

The Hasse diagram of a partially ordered set conveys all the information
about the partial ordering. We can reconstruct the set of ordered pairs making up
the partial ordering just by looking at the diagram. The lines in the diagram tell
us immediate (predecessor, successor) pairs. We can fill in the rest by using the
reflexive and transitive properties. Thus, given the Hasse diagram in Figure 5.3 of
a partial ordering d on a set 5a, b, c, d, e, f 6 , we can conclude that d is the set

5(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (a, c), (a, d), (a, e), (d, e)6

Section 5.1 Relations 337

b c

e

d

a
f

Figure 5.3

338 Relations, Functions, and Matrices

Two elements of S may be unrelated in a partial ordering of S. In Example 10,
516 and 526 are unrelated; so are 2 and 3, and 12 and 18 in Practice 9. In Figure 5.3,
f is not related to any other element. A partial ordering in which every element of
the set is related to every other element is called a total ordering, or chain. The
Hasse diagram for a total ordering on a four-element set looks like Figure 5.4.
The relation ≤ on N is a total ordering, although we can’t draw a Hasse diagram
because N is an infinite set.

Figure 5.4
…

…

Again, let (S, d) be a partially ordered set. If there is a y [S with y d x for
all x [S , then y is a least element of the partially ordered set. A least element,
if it exists, is unique. To show its uniqueness, assume that y and z are both least
elements. Then y d z because y is least and z d y because z is least; by anti-
symmetry, y = z. An element y [S is minimal if there is no x [S with x a y
. In the Hasse diagram, a least element is below all others, while a minimal
element has no elements below it. Similar definitions apply for greatest element
and maximal elements.

PRaCtiCe 10 Define greatest element and maximal element in a partially ordered set (S, d).
■

 example 11 In the partially ordered set of Practice 9, 1 is both least and minimal; 12 and 18 are
both maximal, but there is no greatest element.

A least element is always minimal and a greatest element is always maximal,
but the converses are not true (see Example 11). In a totally ordered set, however,
a minimal element is the least element and a maximal element is the greatest
 element.

PRaCtiCe 11 Draw the Hasse diagram for a partially ordered set with four elements in which there are
two minimal elements but no least element, two maximal elements but no greatest element,
and each element is related to exactly two other elements.

■

Partial orderings satisfy the properties of reflexivity, antisymmetry, and tran-
sitivity. Another type of binary relation, which we study next, satisfies a different
set of properties.

Section 5.1 Relations 339

equivalence Relations

 DefInItIon equivalence Relation
A binary relation on a set S that is reflexive, symmetric, and transitive is called an
equivalence relation on S.

RemInDeR

A partial ordering is anti-
symmetric; an equivalence
relation is symmetric.

We have already come across the following examples of equivalence relations:

On any set S, x r y 4 x = y.
On N, x r y 4 x + y is even.
On the set of all lines in the plane, x r y 4 x is parallel to y or coincides with y.
On 50, 16, x r y 4 x = y2.
On 5x 0 x is a student in your class6, x r y 4 x sits in the same row as y.
On 51, 2, 36, r = 5(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)6 .

We can illustrate an important feature of an equivalence relation on a set
by looking at S = 5x 0 x is a student in your class6, x r y 4 “x sits in the same row
as y.” Let’s group together all those students in set S who are related to one an-
other. We come up with Figure 5.5. We have partitioned the set S into subsets in
such a way that everyone in the class belongs to one and only one subset.

Figure 5.5

row 1 row 3

row 2
row 4

row 5

S

 DefInItIon paRtition oF a Set
A partition of a set S is a collection of nonempty disjoint subsets of S whose
union equals S.

Any equivalence relation, as we will see, partitions the set on which it is
defined. The subsets making up the partition, often called the blocks of the parti-
tion, are formed by grouping together related elements, like the students in the
classroom.

For r an equivalence relation on a set S and x [S, we let 3x 4 denote the set
of all members of S to which x is related, called the equivalence class of x. Thus,

3x 4 = 5 y 0 y [S ` x r y6

(Because r is symmetric, we could just as well have said that 3x 4 = 5 y 0 y [S
` y r x6 .)

340 Relations, Functions, and Matrices

 example 12 In the case where x r y 4 “x sits in the same row as y,” suppose that John, Chuck,
Jose, Judy, and Ted all sit in row 3. Then 3John 4 = 5John, Chuck, Jose, Judy, Ted6.
Also 3John 4 = 3Ted 4 = 3Judy 4 , and so on. These are not distinct classes, but the
same class with multiple names. An equivalence class can take its name from any
of the elements in it.

Now we state the result about equivalence relations and partitions. For some
practice with formal theorems and proofs, we give this result as a formal theorem,
then analyze the structure of the proof and complete part of the proof.

 theoRem on equivalence RelationS and paRtitionS
An equivalence relation r on a set S determines a partition of S, and a partition of
a set S determines an equivalence relation on S.

Partial Proof : The theorem makes two separate statements:

 a. An equivalence relation on S determines a partition of S.
 b. A partition of S determines an equivalence relation on S.

To prove part (a), we must show that the distinct equivalence classes of members
of S under equivalence relation r satisfy the definition of a partition. To satisfy the
definition of a partition, we must show that

 i. the union of these distinct classes equals S.
 ii. the distinct classes are disjoint.

To prove part (a. i), we must show something about the union of the distinct
equivalence classes formed by r. Equivalence classes are sets of elements of S, so
their union is a set; let’s denote this set by U. We must show that U = S, which is
a set equality. To prove this set equality, we will prove set inclusion in each direc-
tion; in other words,

 1. U # S
 2. S # U

For this part of the proof, we are finally down to two small statements that are
easy to prove, as follows:

a.i.1: Let x [U . Then x belongs to an equivalence class. Every equivalence
class is a subset of S, so x [S.

a.i.2: Let x [S. Then x r x (reflexivity of r); thus, x [3x 4, and every member
of S belongs to some equivalence class, hence to the union of classes U.

This completes the proof of part (a.i). For part (a.ii), let 3x 4 and 3z 4 be two
equivalence classes. We want to show that distinct classes are disjoint, or

 3x 4 ∙ 3z 4 S 3x 4 d 3z 4 = [(a.ii)

Section 5.1 Relations 341

If we assume that 3x 4 ∙ 3z 4, we must then show that 3x 4 d 3z 4 does not contain any-
thing, which might be hard to do. So instead, we’ll prove the contrapositive of a. ii:

 3x 4 d 3z 4 ∙ [S 3x 4 = 3z 4 (contrapositive of a.ii)

Therefore, we assume that 3x 4 d 3z 4 ∙ [and that there is a y [S such that
y [3x 4 d 3z 4 . What does this tell us?

y [3x 4 d 3z 4 (assumption)
y [3x 4, y [3z 4 (definition of d)
x r y, z r y (definition of 3x 4 and 3z 4)
x r y, y r z (symmetry of r)
x r z (transitivity of r)

Now we can show that 3x 4 = 3z 4 by proving set inclusion in each direction:

 3. 3z 4 # 3x 4
 4. 3x 4 # 3z 4

To show (3), 3z 4 # 3x 4 , let q [3z 4 (we know 3z 4 ∙ [because y [3z 4 .) Then

z r q (definition of 3z 4)
x r z (from above)
x r q (transitivity of r)
q [3x 4 (definition of 3x 4)
3z 4 # 3x 4 (definition of #)

Practice 12 asks for a proof of (4), 3x 4 # 3z 4 . Once this proof is supplied, it
completes (3) and (4), which leads to the conclusion 3x 4 = 3z 4 . This completes the
proof of the contrapositive of part (a. ii) and therefore proves part (a. ii), which in
turn completes the proof of part (a). Whew!

Practice 13 asks for a proof of part b.
End of Partial Proof

PRaCtiCe 12 For the foregoing argument, supply the proof that 3x 4 # 3z 4 .
■

PRaCtiCe 13 Prove part (b) of the theorem. Given a partition of a set S, define a relation r by

x r y 4 x is in the same block of the partition as y

and show that r is an equivalence relation on S, that is, show that r is reflexive, symmetric, and transitive. ■

 example 13 The equivalence relation on N given by

x r y 4 x + y is even

342 Relations, Functions, and Matrices

partitions N into two equivalence classes. If x is an even number, then for any even
number y, x + y is even and y [3x 4 . All even numbers form one class. If x is an
odd number and y is any odd number, x + y is even and y [3x 4 . All odd numbers
form the second class. The partition can be pictured as in Figure 5.6. Notice again
that an equivalence class may have more than one name, or representative. In this
example, 32 4 = 38 4 = 31048 4 , and so on; 31 4 = 317 4 = 3947 4 , and so on.

evens

odds

N

Figure 5.6

Partitioning a set into equivalence classes is helpful because it is often conve-
nient to go up one level of abstraction and treat the classes themselves as entities.
We will conclude this section with two important examples where this is the case
(you actually saw the first example somewhere around the fourth grade).

PRaCtiCe 14 For each of the following equivalence relations, describe the corresponding equivalence
classes.

a. On the set of all lines in the plane, x r y 4 x is parallel to y or x coincides with y.
b. On the set N, x r y 4 x = y.
c. On 51, 2, 36, r = 5(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)6. ■

 example 14 Let S = 5a∙b 0 a, b [Z, b ∙ 06 . S is therefore the set of all fractions. The fractions
1∙2 and 2∙4 are different fractions—they have different numerators and different
denominators, but they are said to be “equivalent.” Formally, a∙b is equivalent
to c∙d , denoted by a∙b ∼ c∙d , if and only if ad = bc. We will show that the bi-
nary relation ∼ on S is indeed an equivalence relation. First, a∙b ∼ a∙b because
ab = ba. Also, if a∙b ∼ c∙d then ad = bc, or cb = da and c∙d ∼ a∙b. Hence,
∼ is reflexive and symmetric. To show that ∼ is transitive, let a∙b ∼ c∙d and
c∙d ∼ e∙f . Then ad = bc and cf = de. Multiplying the first equation by f and the
second by b, we get adf = bcf and bcf = bde. Therefore, adf = bde, or af = be
(why is it legitimate to divide by d here?). Thus, a∙b ∼ e∙f , and ∼ is transitive.
Some sample equivalence classes of S formed by this equivalence relation are

c1
2
d = ec,

−3
−6

,
−2
−4

,
−1
−2

,
1
2

,
2
4

,
3
6

, cf

c 3
10

d = ec,
−9
−30

,
−6
−20

,
−3
−10

,
3
10

,
6
20

,
9
30

, cf

The set Q of rational numbers can be regarded as the set of all equivalence
classes of S. A single rational number, such as 31∙2 4 , has many fractions represent-
ing it, although we customarily use the reduced fractional representation. When
we add two rational numbers, such as 31∙2 4 + 33∙10 4 , we look for representatives

Section 5.1 Relations 343

from the classes having the same denominator and add those representatives. Our
answer is the class to which the resulting sum belongs, and we usually name the
class by using a reduced fraction. Thus, to add 31∙2 4 + 33∙10 4 , we represent 31∙2 4
by 5∙10 and 33∙10 4 by 3∙10. The sum of 5∙10 and 3∙10 is 8∙10, and 38∙10 4 is
customarily named 34∙5 4 . This procedure is so familiar that it is generally writ-
ten as 1∙2 + 3∙10 = 4∙5; nonetheless, equivalence classes of fractions are being
 manipulated by means of representatives.

 example 15 We will define a binary relation of congruence modulo 4 on the set Z of inte-
gers. An integer x is congruent modulo 4 to y, symbolized by x ≡ 4 y, or x ≡ y
(mod 4), if x − y is an integral multiple of 4. Congruence modulo 4 is an
 equivalence relation on Z. To construct the equivalence classes, note that 30 4 , for
example, will contain all integers differing from 0 by a multiple of 4, such as 4, 8,
−12, and so on. The distinct equivalence classes are

30 4 = 5…, −8, −4, 0, 4, 8, …6
31 4 = 5…, −7, −3, 1, 5, 9, …6
32 4 = 5…, −6, −2, 2, 6, 10, …6
33 4 = 5…, −5, −1, 3, 7, 11, …6

There is nothing special about the choice of 4 in Example 15; we can give a
definition for congruence modulo n for any positive integer n.

 DefInItIon congRuence Modulo n
For integers x and y and positive integer n,

x ≡ y (mod n) if x − y is an integral multiple of n

This binary relation is an equivalence relation on Z for any positive inte-
ger n (see Exercise 46). This equivalence relation and the resulting equivalence
classes can be used for integer arithmetic on a computer. An integer is stored as
a sequence of bits (0s and 1s) within a single memory location. Each computer
allocates a fixed number of bits for a single memory location (this number varies
depending on the architecture of the computer—how its memory space is laid
out). The larger the integer, the more bits required to represent it. Therefore each
machine has some limit on the size of the integers it can store. Suppose that n − 1
is the maximum size and that x and y are integer values with 0 ≤ x ≤ n − 1,
0 ≤ y ≤ n − 1. If the sum x + y exceeds the maximum size, it cannot be stored.
As an alternative, the computer may perform addition modulo n and find the
remainder r when x + y is divided by n.

344 Relations, Functions, and Matrices

The equation

x + y = qn + r, 0 ≤ r < n

symbolizes this division, where q is the quotient and r is the remainder. This
 equation may be written as

(x + y) − r = qn

which shows that (x + y) − r is an integral multiple of n, or that (x + y) ≡ r
(mod n). The integer r may not be x + y, but it is in the equivalence class 3x + y 4 ,
and since 0 ≤ r < n, it is also in the range of integers that can be stored. (The
system may or may not issue an integer overflow message if x + y is too large to
store and addition modulo n must be used.) The situation is analogous to your car’s
odometer, which records mileage modulo 100,000; when mileage reaches 102,758,
for example, it is displayed on the odometer as 2,758.

PRaCtiCe 15 What are the equivalence classes corresponding to the relation of congruence modulo 5
on Z?

■

PRaCtiCe 16 If 4 is the maximum integer that can be stored on a (micromicro) computer, what will
be stored for the value 3 + 4 if addition modulo 5 is used?

Table 5.1 summarizes important features of partial orderings and equivalence
relations.

table 5.1

partial orderings and equivalence Relations

type of binary Relation Reflexive Symmetric antisymmetric transitive Important feature

Partial ordering Yes No Yes Yes
Predecessors and
 successors

Equivalence relation Yes Yes No Yes Determines a partition

S e c t I o n 5 . 1 Review

technIQueS

• Test an ordered pair for membership in a binary
 relation.

• Test a binary relation for reflexivity, symmetry,
 antisymmetry, and transitivity.

• Find the reflexive, symmetric, and transitive
 closure of a relation.

• Draw the Hasse diagram for a finite partially
 ordered set.

• Find least, minimal, greatest, and maximal elements
in a partially ordered set.

• Find the equivalence classes associated with an
equivalence relation.

W W

■

Section 5.1 Relations 345

exeRcISeS 5.1

 1. For each of the following binary relations r on N, decide which of the given ordered pairs belong to r.
 a. x r y 4 x + y < 7; (1, 3), (2, 5), (3, 3), (4, 4)
 b. x r y 4 x = y + 2; (0, 2), (4, 2), (6, 3), (5, 3)
 c. x r y 4 2x + 3y = 10; (5, 0), (2, 2), (3, 1), (1, 3)
 d. x r y 4 y is a perfect square; (1, 1), (4, 2), (3, 9), (25, 5)
 2. For each of the following binary relations r on Z, decide which of the given ordered pairs belong to r.
 a. x r y 4 x 0 y; (2, −6), (3, 5), (8, 4), (4, 8)
 b. x r y 4 x and y are are relatively prime; (5, 8), (9, 16), (6, 8), (8, 21)
 c. x r y 4 gcd(x, y) = 7; (28, 14), (7, 7), (10, 5), (21, 14)
 d. x r y 4 x2 + y2 = z2 for some integer z; (1, 0), (3, 9), (2, 2), (−3, 4)
 e. x r y 4 x is a number from the Fibonacci sequence; (4, 3), (7, 6), (7, 12), (20, 20)
 3. Decide which of the given items satisfy the relation.
 a. r a binary relation on Z, x r y 4 x = −y; (1, − 1), (2, 2), (−3, 3), (−4, −4)
 b. r a binary relation on N, x r y 4 x is prime; (19, 7), (21, 4), (33, 13), (41, 16)
 c. r a binary relation on Q, x r y 4 x ≤ 1∙y; (1, 2), (−3, −5), (−4, 1∙2), (1∙2, 1∙3)
 d. r a binary relation on N × N, (x, y) r (u, v) 4 x + u = y + v; ((1, 2), (3, 2)), ((4, 5), (0, 1))
 4. Decide which of the given items satisfy the relation.
 a. r a binary relation on S × C, where S = 5states in the United States6, C = 5cities in the United States6,

x r y 4 y is the capital of x; (Indiana, Indianapolis), (Illinois, Chicago), (Kansas, Kansas City),
(Kentucky, Louisville), (North Dakota, Bismarck)

 b. r a binary relation on A × P, where A = 5artists6 , P = 5paintings6 , x r y 4 x painted y; (DaVinci,
Mona Lisa), (Grant Wood, American Gothic), (Remington, Ridden Down), (Picasso, Blue Dancers),
(van Gogh, Starry Night)

 c. r a binary relation on C × M, where C = 5composers6 , M = 5music6 , x r y 4 x composed y;
(Bernstein, West Side Story), (Presley, Blue Suede Shoes), (Gershwin, Rhapsody in Blue), (Beethoven,
Moonlight Sonata), (Rogers and Hammerstein, Phantom of the Opera)

 d. r a binary relation on A × B, where A = 5authors6 , B = 5books6 , x r y 4 x wrote y; (Hemingway,
The Old Man and the Sea), (Sawyer, Huckleberry Finn) (Poe, Moby Dick), (Orwell, 1984), (Tolstoy,
Crime and Punishment)

 5. For each of the following binary relations on R, draw a figure to show the region of the plane it describes.
 a. x r y 4 y ≤ 2
 b. x r y 4 x = y − 1
 c. x r y 4 x2 + y2 ≤ 25
 d. x r y 4 x ≥ y

maIn IDeaS

• A binary relation on a set S is formally a subset of
S × S; the distinctive relationship satisfied by the
relation’s members often has a verbal description
as well.

• Operations on binary relations on a set include
union, intersection, and complementation.

• Binary relations can have properties of reflexivity,
symmetry, transitivity, and antisymmetry.

• Finite partially ordered sets can be represented
graphically.

• An equivalence relation on a set S determines a
partition of S, and conversely. The blocks of the
partition are equivalence classes, which may them-
selves be treated as entities.

346 Relations, Functions, and Matrices

 6. For each of the accompanying figures, give the binary relation on R that describes the shaded area.

3

2

1

–1
1 2 3–2–3

–2

–3

x

y

–1

3

2 (0, 2)

(2, 0)
1

–1
–1 1 2 3–2–3

–2

–3

x

y

2

1

–1
–1 1 2–2–3

–2

x

y

(2, 0)

(0, –1)

x
(–2, 0)

(0, 1)

y

 7. Identify each relation on N as one-to-one, one-to-many, many-to-one, or many-to-many.
 a. r = 5(1, 2), (1, 4), (1, 6), (2, 3), (4, 3)6
 b. r = 5(9, 7), (6, 5), (3, 6), (8, 5)6
 c. r = 5(12, 5), (8, 4), (6, 3), (7, 12)6
 d. r = 5(2, 7), (8, 4), (2, 5), (7, 6), (10, 1)6
 8. Identify each of the following relations on S as one-to-one, one-to-many, many-to-one, or many-to-many.
 a. S = N
 x r y 4 x = y + 1
 b. S = set of all women inVicksburg
 x r y 4 x is the daughter of y
 c. S = `(51, 2, 36)
 A r B 4 0A 0 = 0B 0
 d. S = R
 x r y 4 x = 5
 9. Let r and s be binary relations on N defined by x r y 4 “x divides y,” x s y 4 5x ≤ y. Decide which of

the given ordered pairs satisfy the following relations.
 a. r c s; (2, 6), (3, 17), (2, 1), (0, 0)
 b. r d s; (3, 6), (1, 2), (2, 12)
 c. r′; (1, 5), (2, 8), (3, 15)
 d. s′; (1, 1), (2, 10), (4, 8)

a.

b.

c.

d.

Section 5.1 Relations 347

 10. Both r and s are binary relations from P to C where P = 5people in theUnited States6 , C = 5cities in the
United States6 , x r y 4 x lives in y, and x s y 4 x works in y. Describe each of the following relations.

 a. r d s c. r d s′
 b. r c s d. r′ d s

 11. Let S = 51, 2, 36 . Test the following binary relations on S for reflexivity, symmetry, antisymmetry, and
transitivity.

 a. r = 5(1, 3), (3, 3), (3, 1), (2, 2), (2, 3), (1, 1), (1, 2)6
 b. r = 5(1, 1), (3, 3), (2, 2)6
 c. r = 5(1, 1), (1, 2), (2, 3), (3, 1), (1, 3)6
 d. r = 5(1, 1), (1, 2), (2, 3), (1, 3)6

 12. Let S = 50, 1, 2, 4, 66 . Test the following binary relations on S for reflexivity, symmetry, antisymmetry,
and transitivity.

 a. r = 5(0, 0), (1, 1), (2, 2), (4, 4), (6, 6), (0, 1), (1, 2), (2, 4), (4, 6)6
 b. r = 5(0, 1), (1, 0), (2, 4), (4, 2), (4, 6), (6, 4)6
 c. r = 5(0, 1), (1, 2), (0, 2), (2, 0), (2, 1), (1, 0), (0, 0), (1, 1), (2, 2)6
 d. r = 5(0, 0), (1, 1), (2, 2), (4, 4), (6, 6), (4, 6), (6, 4)6
 e. r = [

 13. Test the following binary relations on the given sets S for reflexivity, symmetry, antisymmetry, and transitivity.
 a. S = Q
 x r y 4 0x 0 ≤ 0y 0
 b. S = Z
 x r y 4 x − y is an integral multiple of 3
 c. S = N
 x r y 4 x # y is even
 d. S = N
 x r y 4 x is odd
 e. S = set of all squares in the plane
 S1r S2 4 length of side of S1 = length of side of S2

 14. Test the following binary relations on the given sets S for reflexivity, symmetry, antisymmetry, and
 transitivity.

 a. S = set of all finite-length strings of characters
 x r y 4 number of characters in x = number of characters in y
 b. S = 50, 1, 2, 3, 4, 56
 x r y 4 x + y = 5
 c. S = `(51, 2, 3, 4, 5, 6, 7, 8, 96)
 A r B 4 0A 0 = 0B 0
 d. S = `(51, 2, 3, 4, 5, 6, 7, 8, 96)
 A r B 4 0A 0 ∙ 0B 0
 e. S = N × N
 (x1, y1) r (x2, y2) 4 x1 ≤ x2 and y1 ≥ y2

348 Relations, Functions, and Matrices

 15. Which of the binary relations of Exercise 13 are equivalence relations? For each equivalence relation,
describe the associated equivalence classes.

 16. Which of the binary relations of Exercise 14 are equivalence relations? For each equivalence relation,
describe the associated equivalence classes.

 17. Test the following binary relations on the given sets S for reflexivity, symmetry, antisymmetry, and
 transitivity.

 a. S = Z
 x r y 4 x + y is a multiple of 5
 b. S = Z
 x r y 4 x < y
 c. S = set of all finite-length binary strings
 x r y 4 x is a prefix of y
 d. S = set of all finite-length binary strings
 x r y 4 x has the same number of 1s as y
 18. Test the following binary relations on the given sets S for reflexivity, symmetry, antisymmetry, and

 transitivity.
 a. S = Z
 x r y 4 x = ky for some integer k
 b. S = Z
 x r y 4 there is a prime number p such that p 0 x and p 0 y
 c. S = `(51, 2, 3, 4, 5, 6, 7, 8, 96)
 A r B 4 A d B = [

 d. S = `(51, 2, 3, 4, 5, 6, 7, 8, 96)
 A r B 4 A = B′
 19. Let S be the set of people in the United States. Test the following binary relations on S for reflexivity, sym-

metry, antisymmetry, and transitivity.
 a. x r y 4 x is at least as tall as y.
 b. x r y 4 x is taller than y.
 c. x r y 4 x is the same height as y.
 d. x r y 4 x is a child of y.
 20. Let S be the set of people in the United States. Test the following binary relations on S for reflexivity,

 symmetry, antisymmetry, and transitivity.
 a. x r y 4 x is the husband of y.
 b. x r y 4 x is the spouse of y.
 c. x r y 4 x has the same parents as y.
 d. x r y 4 x is the brother of y.
 21. For each case, think of a set S and a binary relation r on S (different from any in the examples or prob-

lems) satisfying the given conditions.
 a. r is reflexive and symmetric but not transitive.
 b. r is reflexive and transitive but not symmetric.
 c. r is not reflexive or symmetric but is transitive.
 d r is reflexive but neither symmetric nor transitive.

Section 5.1 Relations 349

 22. Let r and s be binary relations on a set S.
 a. If r and s are reflexive, is r c s reflexive? Is r d s reflexive?
 b. If r and s are symmetric, is r c s symmetric? Is r d s symmetric?
 c. If r and s are antisymmetric, is r c s antisymmetric? Is r d s antisymmetric?
 d. If r and s are transitive, is r c s transitive? Is r d s transitive?
 23. Find the reflexive, symmetric, and transitive closure of each of the relations in Exercise 11.
 24. Find the reflexive, symmetric, and transitive closure of each of the relations in Exercise 12.
 25. Given the following binary relation

S = set of all cities in the country
x r y 4 Take-Your-Chance Airlines flies directly from x to y

 describe in words what the transitive closure relation would be.
 26. Two additional properties of a binary relation r are defined as follows:

r is irreflexive means: (4x)(x [S S (x, x) o r)
r is asymmetric means: (4x)(4y)(x [S ` y [S ` (x, y) [r S (y, x) o r)

 a. Give an example of a binary relation r on set S = 51, 2, 36 that is neither reflexive nor irreflexive.
 b. Give an example of a binary relation r on set S = 51, 2, 36 that is neither symmetric nor asymmetric.
 c. Prove that if r is an asymmetric relation on a set S, then r is irreflexive.
 d. Prove that if r is an irreflexive and transitive relation on a set S, then r is asymmetric.
 e. Prove that if r is a nonempty, symmetric, and transitive relation on a set S, then r is not irreflexive.
 27. Does it make sense to look for the irreflexive closure of a relation? (See Exercise 26.) Why or why not?
 28. Does it make sense to look for the asymmetric closure of a relation? (See Exercise 26.) Why or why not?
 29. Let S be an n-element set. How many different binary relations can be defined on S? (Hint: Recall the

formal definition of a binary relation.)
 30. Let r be a binary relation on a set S. For A # S, define

[A = 5x 0 x [S ` (4y)(y [A S x r y)6
A[= 5x 0 x [S ` (4y)(y [A S y r x)6

 a. Prove that if r is symmetric, then [A = A[.
 b. Prove that if A # B then [B # [A and B[# A[.
 c. Prove that A # ([A)[.
 d. Prove that A # [(A[).
 31. Draw the Hasse diagram for the following partial orderings.
 a. S = 5a, b, c6
 r = 5(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)6
 b. S = 5a, b, c, d6
 r = 5(a, a), (b, b), (c, c), (d, d), (a, b), (a, c)6
 c. S = 5[, 5a6, 5a, b6, 5c6, 5a, c6, 5b66
 A r B 4 A # B

350 Relations, Functions, and Matrices

 32. For Exercise 31, name any least elements, minimal elements, greatest elements, and maximal elements.
 33. Let (S, d) be a partially ordered set, and let A # S. Prove that the restriction of d to A is a partial

 ordering on A.
 34. a. Draw the Hasse diagram for the partial ordering “x divides y” on the set 52, 3, 5, 7, 21, 42, 105, 2106 .

Name any least elements, minimal elements, greatest elements, and maximal elements. Name a totally
ordered subset with four elements.

 b. Draw the Hasse diagram for the partial ordering “x divides y” on the set 53, 6, 9, 18, 54, 72, 108, 1626.
Name any least elements, minimal elements, greatest elements, and maximal elements. Name any
unrelated elements.

 35. Draw the Hasse diagram for each of the two partially ordered sets.
 a. S = 51, 2, 3, 5, 6, 10, 15, 306 b. S = `(51, 2, 36)
 x r y 4 x divides y A r B 4 A # B
 What do you notice about the structure of these two diagrams?
 36. For each Hasse diagram of a partial ordering in the accompanying figure, list the ordered pairs that belong

to the relation.

d

a

e

b

f

c

5

1

4

3221

3 4

5

 37. Let (S, r) and (T, s) be two partially ordered sets. A relation m on S × T is defined by
(s1, t1) m (s2, t2) 4 s1

r

s2 and t1

s

t2. Show that m is a partial ordering on S × T .

 38. Let r be a binary relation on a set S. Then a binary relation called the inverse of r, denoted by r−1, is
defined by x r−1 y 4 y r x.

 a. For r = 5(1, 2), (2, 3), (5, 3), (4, 5)6 on the set N, what is r−1?
 b. Prove that if r is a reflexive relation on a set S, then r−1 is reflexive.
 c. Prove that if r is a symmetric relation on a set S, then r−1 is symmetric.
 d. Prove that if r is an antisymmetric relation on a set S, then r−1 is antisymmetric.
 e. Prove that if r is a transitive relation on a set S, then r−1 is transitive.
 f. Prove that if r is an irreflexive relation on a set S (see Exercise 26), then r−1 is irreflexive.
 g. Prove that if r is an asymmetric relation on a set S (see Exercise 26), then r−1 is asymmetric.
 39. Prove that if a binary relation r on a set S is reflexive and transitive, then the relation r d r−1 is an

 equivalence relation (see Exercise 38 for the definition of r−1).
 40. a. Let (S, r) be a partially ordered set. Then r−1 can be defined as in Exercise 38. Show that (S, r−1) is a

partially ordered set, called the dual of (S, r).

a. b. c.

Section 5.1 Relations 351

 b. If (S, r) is a finite, partially ordered set with the Hasse diagram shown, draw the diagram of the dual of
(S, r).

 c. Let (S, r) be a totally ordered set and let X = 5(x, x) 0 x [S6 . Show that the setdifference r−1 − X
equals the set r′.

 41. A computer program is to be written that will generate a dictionary or the index for a book. We will
assume a maximum length of n characters per word. Thus, we are given a set S of words of length at most
n, and we want to produce a linear list of these words arranged in alphabetical order. There is a natural
total ordering d on alphabetic characters (a a b, b a c, etc.), and we will assume our words contain
only alphabetic characters. We want to define a total ordering d on S called a lexicographical ordering
that will arrange the members of S alphabetically. The idea is to compare two words X and Y character by
character, passing over equal characters. If at any point the X character alphabetically precedes the corre-
sponding Y character, then X precedes Y; if all characters in X are equal to the corresponding Y characters
but we run out of characters in X before characters in Y, then X precedes Y. Otherwise, Y precedes X.

Formally, let X = (x1, x2, … , xj) and Y = (y1, y2, … , yk) be members of S with j ≤ k. Let b (for
blank) be a new symbol, and fill out X with k − j blanks on the right. X can now be written (x1, x2, …, xk).
Let b precede any alphabetical character. Then X d Y if

 x1 ∙ y1 and x1 d y1

 or

 x1 = y1, x2 = y2, …, xm = ym(m ≤ k)
 xm+1 ∙ ym+1 and xm+1 d ym+1

 Otherwise, Y d X .
Note that because the ordering d on alphabetical characters is a total ordering, if Y d X by “other-

wise,” then there exists m ≤ k such that x1 = y1, x2 = y2,…, xm = ym, xm+1 ∙ ym+1 and ym+1 d xm+1.
Show that d on S as defined above is a total ordering.

 42. Apply the total ordering described in Exercise 41 to the words boo, bug, be, bah, and bugg. Note why each
word precedes the next.

 43. Exercise 41 discusses a total ordering on a set of words of length at most n that will produce a linear list
in alphabetical order. Suppose we want to generate a list of all the distinct words in a text (for example,
a compiler must create a symbol table of variable names). As in Exercise 41, we assume that the words
contain only alphabetical characters because there is a natural precedence relation already existing
(a a b, b a c, and so on). If numeric or special characters are involved, they must be assigned a

352 Relations, Functions, and Matrices

precedence relation with alphabetical characters (the collating sequence must be determined). If we
list words alphabetically, it is a fairly quick procedure to decide whether a word currently being pro-
cessed is new, but to fit the new word into place, all successive words must be moved one unit down
the line. If the words are listed in the order in which they are processed, new words are simply tacked
onto the end and no rearranging is necessary, but each word being processed has to be compared with
each member of the list to determine if it is new. Thus, both logical linear lists have disadvantages.

We describe a structure called a binary search tree; using this structure, a search process called a
binary tree search can usually determine quickly whether a word is new and, if it is, no juggling is re-
quired to fit it into place, thus eliminating the disadvantages of both linear list structures described earlier.
 Suppose we want to process the phrase “when in the course of human events.” The first word in the text
is used to label the first node of a graph. Once a node is labeled, it drops down a left and right arc, putting
two unlabeled nodes below the one just labeled.

when

when

When the next word in the text is processed, it is compared with the first node. When the word being pro-
cessed alphabetically precedes the label of a node, the left arc is taken; when the word follows the label
alphabetically, the right arc is taken. The word becomes the label of the first unlabeled node it reaches.
(If the word equals a node label, it is a duplicate, so the next word in the text is processed.) This procedure
continues for the entire text. Thus,

when

in

 then
when

in

the

 then
when

in

course the

Section 5.1 Relations 353

 until finally
when

in

course

human

events

of

the

 By traversing the nodes of this graph in the proper order (described by always processing the left nodes
below a node first, then the node, then the right nodes below it), an alphabetical listing “course, events,
human, in, of, the, when” is produced.

 a. This type of graph is called a tree. (Unlabeled nodes and arcs to unlabeled nodes usually are not
shown.) Turned upside down, the graph can be viewed as the Hasse diagram of a partial ordering d.
What would be the least element? Would there be a greatest element? Which of the following ordered
pairs would belong to d: (in, of), (the, of), (in, events), (course, of)?

 Here the tree structure contains more information than the partial ordering, because we are inter-
ested in not only whether a word w1 precedes a word w2 in the partial ordering sense but also whether
w2 is to the left or right of w1.

 b. Build a binary search tree for the phrase “Old King Cole was a merry old soul.” Eliminate unla-
beled nodes. Considering the upside-down graph as the Hasse diagram of a partial ordering, name the
 maximal elements.

 44. The alphabetical ordering defined in Exercise 41 can be applied to words of any finite length. If we define
A* to be the set of all finite-length “words” (strings of characters, not necessarily meaningful) from the
English alphabet, then the alphabetical ordering on A* has all words composed only of the letter A preced-
ing all other words. Thus, all the words in the infinite list

a, aa, aaa, aaaa, …
 precede words such as “b” or “aaaaaaab.” Therefore this list does not enumerate A*, because we can

never count up to any words with any characters other than a. However, the set A* is denumerable. Write
a partial enumeration of A* by ordering words by length (all words of length 1 precede all words of length
2, and so on) and then alphabetically ordering words of the same length.

 45. a. For the equivalence relation r = 5(a, a), (b, b), (c, c), (a, c), (c, a)6 , what is the set [a]? Does it have
any other names?

 b. For the equivalence relation r = 5(1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (3, 1), (3, 2), (2, 3), (3, 3), (4, 4),
(5, 5), (4, 5), (5, 4)6 what is the set [3]? What is the set [4]?

 46. Prove that for any positive integer n, congruence modulo n is an equivalence relation on the set Z.
 47. For the equivalence relation of congruence modulo 2 on the set Z, what is the set [1]?
 48. For the equivalence relation of congruence modulo 5 on the set Z, what is the set [−3]?
 49. Assume that x ≡ y (mod n) and z ≡ w (mod n) for some positive integer n. Prove that
 a. x + z ≡ y + w (mod n)
 b. x − z ≡ y − w (mod n)
 c. x # z ≡ y # w (mod n)
 d. xs ≡ ys (mod n) for s ≥ 1, n ≥ 2

354 Relations, Functions, and Matrices

 50. Let p be a prime number. Prove that x2 ≡ y2 (mod p) if and only if x ≡ y (mod p) or x ≡ −y (mod p).
 51. a. Given the partition 51, 26 and 53, 46 of the set S = 51, 2, 3, 46 , list the ordered pairs in the correspond-

ing equivalence relation.
 b. Given the partition 5a, b, c6 and 5d, e6 of the set S = 5a, b, c, d, e6 , list the ordered pairs in the cor-

responding equivalence relation.
 52. Let S be the set of all books in the library. Let r be a binary relation on S defined by x r y 4 “the color of

x’s cover is the same as the color of y’s cover.” Show that r is an equivalence relation on S and describe
the resulting equivalence classes.

 53. Let S = N and let r be a binary relation on S defined by x r y 4 x2 − y2 is even. Show that r is an equiva-
lence relation on S and describe the resulting equivalence classes.

 54. Let S = R and let r be a binary relation on S defined by x r y 4 x − y is an integer.
 a. Show that r is an equivalence relation on S.
 b. List 5 values that belong to [1.5].
 55. Let S = N × N and let r be a binary relation on S defined by (x, y) r (z, w) 4 y = w. Show that r is an

equivalence relation on S and describe the resulting equivalence classes.
 56. Let S = N × N and let r be a binary relation on S defined by (x, y) r (z, w) 4 x + y = z + w. Show that

r is an equivalence relation on S and describe the resulting equivalence classes.
 57. Let S be the set of all binary strings of length 8 and let r be a binary relation on S defined by x r y 4

y starts with the same bit value (0 or 1) as x and y ends with the same bit value (0 or 1) as x.
 a. Show that r is an equivalence relation on S.
 b. How many strings are in the set S?
 c. Into how many equivalence classes does r partition S? Explain your answer.
 d. How many strings are in each equivalence class?
 58. The documentation for the Java programming language recommends that when a boolean “equals method”

is defined for an object, it should be an equivalence relation. That is, if r is defined by x r y 4 x.equals(y)
for all objects in the class, then r should be an equivalence relation. In a graphics application, a programmer
creates an object called a point, consisting of two coordinates in the plane. The programmer defines an
equals method as follows: If p and q are any two points in the plane, then

 p.equals(q) 4 the distance from p to q is ≤ c

 where c is a small positive number that depends on the resolution of the computer display. Is the program-
mer’s equals method an equivalence relation? Justify your answer.

 59. Let S be the set of all propositional wffs with n statement letters. Let r be a binary relation on S defined
by P r Q 4 “P 4 Q is a tautology.” Show that r is an equivalence relation on S and describe the resulting
equivalence classes. (We have used the notation P 3 Q for P r Q.)

 60. Given two partitions p1 and p2 of a set S, p1 is a refinement of p2 if each block of p1 is a subset of a block
of p2. Show that refinement is a partial ordering on the set of all partitions of S.

Exercises 61–72 all deal with partitions on a set.

 61. Let Pn denote the total number of partitions of an n-element set, n ≥ 1. The numbers Pn are called Bell
numbers. Compute the following Bell numbers.

 a. P1

 b. P2

 c. P3

 d. P4

Section 5.1 Relations 355

 62. From Exercise 61, you might be looking for a closed-form formula giving the value of Pn. Although Bell
numbers have been extensively studied, no closed-form formula has been found. Bell numbers can be
computed via a recurrence relation. Let P0 have the value 1. Prove that for n ≥ 1,

Pn = ∙
n−1

k=0
C(n − 1, k)Pk

 (Hint: Use a combinatorial proof instead of an inductive proof. Let x be a fixed but arbitrary member
of a set with n elements. In each term of the sum, n − k represents the size of the partition block that
contains x.)

 63. Use the formula of Exercise 62 to compute P1, P2, P3, and P4, and compare your answers to those in
 Exercise 61.

 64. Use the formula of Exercise 62 to compute P5 and P6.
 65. Let S(n, k) denote the number of ways to partition a set of n elements into k blocks. The numbers S(n, k)

are called Stirling numbers.
 a. Find S(3, 2).
 b. Find S(4, 2).
 66. Prove that for all n ≥ 1, S(n, k) satisfies the recurrence relation

S(n, 1) = 1
S(n, n) = 1
S(n + 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1) for 1 ≤ k ≤ n

 (Hint: Use a combinatorial proof instead of an inductive proof. Let x be a fixed but arbitrary member of
a set with n + 1 elements, and put x aside. Partition the remaining set of n elements. A partition of the
original set could be obtained either by adding 5x6 as a separate block or by putting x in one of the existing
blocks.)

 67. Use the formula of Exercise 66 to rework Exercise 65.
 68. The recurrence relation of Exercise 66 is similar to Pascal’s formula, Equation (1) of Section 4.5. Use this

relation to compute the numeric values in the first five rows of Stirling’s triangle, which begins

S(1, 1)
S(2, 1) S(2, 2)

S(2, 1) S(3, 2) S(3, 3)
(

 69. Prove that

Pn = ∙
n

k=1
 S(n, k)

 70. Use the formula of Exercise 69 and Stirling’s triangle (Exercise 68) to compute P1, P2, P3, and P4.
 71. Find the number of ways to distribute 4 different-colored marbles among 3 identical containers so that no

container is empty.
 72. Find the number of ways in which 5 different jobs can be assigned to 3 identical processors so that each

processor gets at least 1 job.

356 Relations, Functions, and Matrices Section 5.2 Topological Sorting 357

 73. Binary relations on a set S are ordered pairs of elements of S. More generally, an n-ary relation on a set S
is a set of ordered n-tuples of elements of S. Decide which of the given items satisfy the relation.

 a. r a unary relation on Z, x [r 4 x is a perfect square

 25, 39, 49, 62

 b. r a ternary relation on N, (x, y, z) [r 4 x2 + y2 = z2

 (1, 1, 2), (3, 4, 5), (0, 5, 5), (8, 6, 10)

 c. r a 4-ary relation on Z, (x, y, z, w) [r 4 y = 0x 0 and w ≥ x + z2

 (−4, 4, 2, 0), (5, 5, 1, 5), (6, −6, 6, 45), (−6, 6, 0, −2)

 74. A ternary relation r is defined on the set S = (2, 4, 6, 8) by (x, y, z) [r 4 x + y = z. List the 3-tuples
that belong to r.

 75. If x is a real number, x ∙ 0, then a number y such that x # y = 1 is called the multiplicative inverse of
x. Given positive integers x and n, a positive integer y such that x # y ≡ 1 (mod n) is called the modular
multiplicative inverse of x modulo n. But

x # y ≡ 1 (mod n)
 4 x # y − 1 = kn where k is an integer
 4 xy − kn = 1
 4 1 is a linear combination of x and n
 4 gcd (x, n) = 1
 4 x and n are relatively prime

 Thus, if x and n are not relatively prime, the modular inverse of x does not exist. If they are relatively
prime, the modular inverse of x is the positive coefficient of x in the linear combination of x and n that
equals 1.

Use the Euclidean algorithm to find the modular multiplicative inverse of 21 modulo 25 (note that 21
and 25 are relatively prime).

 76. Use the Euclidean algorithm to find the modular multiplicative inverse of 68 modulo 15 (see Exercise 75).

 example 16 Ernie and his brothers run a woodworking shop in the hills of New Hampshire
that manufactures rocking chairs with padded cushion seats. The manufacturing
process can be broken down into a number of tasks, some of which have certain
other tasks as prerequisites. The following table shows the manufacturing tasks for
a rocking chair, the prerequisite tasks, and the number of hours required to perform
each task.

 S e c t I o n 5 . 2 toPologiCal soRting

If r is a partial ordering on a set S, then some elements of S are predecessors of
other elements. If S is a set of tasks that are to be done, then the idea of x as a pre-
decessor of y can be interpreted literally to mean that task x must be done before
task y. Thus partial orderings and Hasse diagrams are natural ways to represent
problems in task scheduling.

356 Relations, Functions, and Matrices Section 5.2 Topological Sorting 357

task prerequisite tasks hours to perform

 1. Selecting wood None 3. 0

 2. Carving rockers 1 4. 0

 3. Carving seat 1 6. 0

 4. Carving back 1 7. 0

 5. Carving arms 1 3. 0

 6. Selecting fabric None 1. 0

 7. Sewing cushion 6 2. 0

 8. Assembling back and seat 3, 4 2. 0

 9. Attaching arms 5, 8 2. 0

10. Attaching rockers 2, 8 3. 0

11. Varnishing 9, 10 5. 0

12. Adding cushion 7, 11 0. 5

We can define a partial ordering on the set of tasks by

x d y 4 task x = task y or task x is a prerequisite to task y

It is easy to see that this relation is reflexive, antisymmetric, and transitive. Also,

x a y 4 task x is a prerequisite to task y

In the Hasse diagram for this partial ordering, the nodes are tasks; we’ll add
to each node the information about the time to perform the task. Also, as is tradi-
tional, we’ll orient the diagram so that if x a y, then x is to the left of y rather than
below y. Thus the entire diagram runs from left to right rather than from bottom to
top. Such a diagram for task scheduling is often called a PERT(program evalu-
ation and review technique) chart, first developed for tracking the construction
of Navy submarines but useful for managing any complex project with a num-
ber of subtasks. The PERT chart for manufacturing rocking chairs is shown in
Figure 5.7, with task numbers substituted for task names and arrows pointing to
a task from its prerequisite task(s). The numbers in parentheses indicate the time
required to perform the task.

2(4.0) 10(3.0)

3(6.0)

4(7.0)

8(2.0)1(3.0)

9(2.0)5(3.0)

6(1.0) 7(2.0)
12(0.5)

11(5.0)

Figure 5.7

358 Relations, Functions, and Matrices Section 5.2 Topological Sorting 359

A project represented by a PERT chart must begin with the tasks at the left-
most edge of the PERT chart and end with the tasks at the rightmost edge. An
upper limit on the time required to complete the project can be obtained by adding
the times for performing each task, but this does not take into account the fact
that perhaps some tasks can be performed in parallel, such as tasks 2 through 5 in
Example 16. To obtain the minimum time required to complete the project, we can
move through the chart from left to right, computing for each node the minimum
time to complete the work from the beginning through the work at that node. If a
node x has multiple nodes as prerequisites, all the prerequisite tasks must be com-
pleted before we can begin work on x; thus we must add the time for task x to the
maximum completion time of the prerequisite nodes.

PRaCtiCe 17 Construct the PERT chart for building a house from the following task table.

task prerequisite tasks Days to perform

1. Clearing lot None 4

2. Pouring pad 1 3

3. Doing framing 2 7

4. Shingling roof 3 6

5. Adding outside siding 3 4

6. Installing plumbing and wiring 4, 5 6

7. Hanging windows and doors 3 5

8. Installing wallboard 6 5

9. Painting interior 7, 8 5
■

 example 17 Let’s compute the time for completing each task in Example 16.

Task 1: 3. 0
Task 2: 3. 0 + 4. 0 = 7. 0
Task 3: 3. 0 + 6. 0 = 9. 0
Task 4: 3. 0 + 7. 0 = 10. 0
Task 5: 3. 0 + 3. 0 = 6. 0
Task 6: 1. 0
Task 7: 1. 0 + 2. 0 = 3. 0
Task 8: max(time to complete task 3, time to complete task 4)
 + time to perform task 8
 = max(9. 0, 10. 0) + 2. 0 = 10. 0 + 2. 0 = 12. 0

358 Relations, Functions, and Matrices Section 5.2 Topological Sorting 359

Task 9: max(time to complete task 5, time to complete task 8)
 + time to perform task 9
 = max(6.0, 12.0) + 2.0 = 12.0 + 2.0 = 14.0
Task 10: max(time to complete task 2, time to complete task 8)
 + time to perform task 10
 = max(7.0, 12.0) + 3.0 = 12.0 + 3.0 = 15.0
Task 11: max(time to complete task 9, time to complete task 10)
 + time to perform task 11
 = max(14.0, 15.0) + 5.0 = 15.0 + 5.0 = 20.0
Task 12: max(time to complete task 7, time to complete task 11)
 + time to perform task 12
 = max(3.0, 20.0) + 0.5 = 20.0 + 0.5 = 20.5

Therefore the minimum number of hours to manufacture a rocking chair is 20.5.
From node 12, we can travel back in the chart, selecting at each point of mul-
tiple prerequisites the node that contributed the maximum value. This gives the
sequence of nodes

12, 11, 10, 8, 4, 1

or, reversing this sequence,

1, 4, 8, 10, 11, 12

The sum of the times to perform each task in this sequence is 20.5. If any of
these tasks takes longer to perform than its allotted time, the entire project will
take longer than 20.5 hours. This sequence of nodes is a critical path through the
PERT chart—performing these tasks in the allotted time is critical to completing
the entire project on time.

The critical path in a PERT chart represents the minimum time to completion
of the entire project. If a task not on the critical path takes longer than its allotted
time to perform, then the critical path may shift to include this node, because it
then becomes the bottleneck slowing down completion of the total project. In a
complex project, the critical path must continually be recomputed to determine
where best to allocate resources to move the project forward.

PRaCtiCe 18 Compute the minimum time to completion and the nodes on the critical path for the house-
building project of Practice 17.

Given a partial ordering r on a finite set, there is always a total ordering s that
is an extension of r, meaning that if x r y, then x s y. The process of topological
sorting finds such a total ordering from a partial ordering. This is indeed a sorting
process in the sense that the objects end up being totally ordered, but since they
must be partially ordered to begin with, it is a very specialized sorting process.

Recall that in a finite partially ordered set, an element is minimal if it has
no predecessors. In a finite nonempty partially ordered set, at least one minimal

■

360 Relations, Functions, and Matrices Section 5.2 Topological Sorting 361

element must exist. To see this, let x belong to the set. If x is not minimal, then
there is a y in the set with y r x, y ∙ x. If y is not minimal, then there is a z in the
set with z r y, z ∙ y, and so on. Because the set is finite, this process cannot go on
indefinitely, so one such element must be minimal. A minimal element in a Hasse
diagram has no elements below it; a minimal element in a PERT chart has no ele-
ments to its left.

The accompanying pseudocode algorithm for topological sorting operates on
a partially ordered set (S, r). Minimal elements (picked at random if there is a
choice of minimal elements at any stage) are repeatedly removed from the ordered
set until the set is empty. Each removal of a minimal element leaves a finite par-
tially ordered set, so that another minimal element may be found.

 algoRIthm TopologicalSorT

TopSort(finite set S; partial ordering r on S)
//find a total ordering on S that is an extension of r
Local variable
integer i //enumerates tasks in total ordering

i = 1
while S ∙ [

pick a minimal element xi from S;
S = S − 5xi6
i = i + 1

end while
∙∙x1 a x2 a x3 a ca xn is now a total ordering that extends r
write(x1, x2, x3, … , xn)

end function TopSort

The ordering x1 a x2 a x3 a ca xn produced by this algorithm is a total
ordering. To see that it is an extension of r, suppose that xi

r

xj. Then xi precedes

xj and xi must be chosen as a minimal element and removed from the set before xj
can be chosen as a minimal element. Therefore i < j and xi a xj.

 example 18 One topological sort of the partial ordering of Example 16 is

6, 1, 7, 2, 3, 5, 4, 8, 10, 9, 11, 12

In Figure 5.7, either 6 or 1 is minimal and may be chosen as the first element. If 6
is chosen and removed from the set, then, as shown in Figure 5.8, either 1 or 7 is
minimal. If 1 is then chosen and removed from the set (Figure 5.9), then 2, 3, 4, 5,
and 7 are all minimal and any one can be chosen next. The process continues until
all nodes have been chosen. If Ernie’s brothers all move to the city and he is left
to build rocking chairs alone, the topological sort gives an order in which he can
perform tasks sequentially.

360 Relations, Functions, and Matrices Section 5.2 Topological Sorting 361

2(4.0) 10(3.0)

3(6.0)

4(7.0)

8(2.0)1(3.0)

9(2.0)5(3.0)

7(2.0)
12(0.5)

11(5.0)

Figure 5.8

2(4.0) 10(3.0)

3(6.0)

4(7.0)

8(2.0)

9(2.0)5(3.0)

7(2.0)
12(0.5)

11(5.0)

Figure 5.9

PRaCtiCe 20 Find a topological sort for the partial ordering of Practice 17.

PRaCtiCe 19 Find another topological sort for the partial ordering of Example 16.

The algorithm given here for topological sorting is still somewhat imprecise,
as we have not given a mechanical method for finding a minimal element. Another
algorithm will be described in Section 7.4.

S e c t I o n 5 . 2 Review

technIQueS

• Construct a PERT chart from a task table.
• Find the critical path in a PERT chart.
• Do a topological sort on a partially ordered set.

maIn IDeaS

• PERT charts are diagrams of partially ordered
sets representing tasks and prerequisites among
tasks.

• A topological sort extends a partial ordering on a
finite set to a total ordering.

W

W

■

■

362 Relations, Functions, and Matrices Section 5.2 Topological Sorting 363

exeRcISeS 5.2

 1. The following tasks are required in order to assemble a bicycle. As the manufacturer, you must write a
list of sequential instructions for the buyer to follow. Will the sequential order given below work? Give
another sequence that could be used.

task prerequisite tasks

1. Tightening frame fittings None

2. Attaching handle bars to frame 1

3. Attaching gear mechanism 1

4. Mounting tire on wheel assembly None

5. Attaching wheel assembly to frame 1, 4

6. Installing brake mechanism 2, 3, 5

7. Adding pedals 6

8. Attaching seat 1

9. Adjusting seat height 7, 8

 2. Give a list of tasks and prerequisite tasks for cooking and serving a hamburger.
 3. Construct a PERT chart from the following task table.

task prerequisite tasks time to perform

A E 3

B C, D 5

C A 2

D A 6

E None 2

F A, G 4

G E 4

H B, F 1

 4. Construct a PERT chart from the following task table.

task prerequisite tasks time to perform

1 2 4

2 3 2

3 8 5

4 3 2

5 4 , 7 2

6 5 1

7 3 3

8 None 5

362 Relations, Functions, and Matrices Section 5.2 Topological Sorting 363

 5. Compute the minimum time to completion and the nodes on the critical path for the problem in Exercise 3.

 6. Compute the minimum time to completion and the nodes on the critical path for the problem in Exercise 4.

 7. For the problem in Exercise 3, great improvements in productivity have knocked down the time to per-
form task D from 6 units to 1 unit. Recompute the minimum time to completion and the nodes on the
critical path.

 8. For the problem in Exercise 4, an extra quality-control step has been added to task 4, which now requires
4 units of time to perform. Recompute the minimum time to completion and the nodes on the critical path.

 9. Do a topological sort on the partially ordered set shown.

H

G

D

A

C

F

B

E

 10. Do a topological sort on the partially ordered set shown.

E

GF

C

A

B D

 11. Find a topological sort for the problem in Exercise 3.

 12. Find a topological sort for the problem in Exercise 4.

 13. Given the following task chart for fixing an Asian dinner, find a total ordering in which the tasks can be
performed sequentially.

task prerequisite tasks

 1. Chop onions 9

 2. Wash lettuce 11

 3. Make dressing 11

 4. Do stir fry 10

 5. Toss salad 2, 3

 6. Cut up chicken None

 7. Grate ginger 9

 8. Chop bok choy 9

 9. Marinate chicken 6

10. Heat wok 1, 7, 8, 11

11. Prepare rice None

364 Relations, Functions, and Matrices Section 5.3 Relations and Databases 365

 14. A U.S. journalist, on being posted to a bureaucratic foreign country, was faced with the following tasks
before she could begin work.

task prerequisite tasks

1. Obtain a residence permit from the Public Security Bureau 2, 3, 7

2. Obtain a health certificate from the local hospital None

3. Obtain a journalist work card from the Foreign Ministry None

4. Obtain a customs certificate from the Customs Office 1, 3, 9

5. Post an announcement in the local newspaper about the pres-
ence of her news company in the country

None

6. Obtain a journalist visa from the Public Security Bureau 2, 3, 7

7. Obtain a foreign journalist housing contract from the local
housing authority

None

8. Pick up her shipment of belongings from the United States 1, 4, 6

9. Obtain a news organization permit from the Foreign Ministry. 5

 Find a total ordering in which the tasks can be performed sequentially.
 15. Recall the problem posed at the beginning of this chapter:

Your company has developed a program for use on a small parallel processing machine. According to
the technical documentation, the program executes processes P1, P2, and P3 in parallel; these processes
all need results from process P4, so they must wait for Process P4 to complete execution before they
begin. Processes P7 and P10 execute in parallel but must wait until Processes P1, P2, and P3 have
finished. Process P4 requires results from P5 and P6 before it can begin execution. P5 and P6 execute
in parallel. Processes P8 and P11 execute in parallel but P8 must wait for Process P7 to complete, and
Process P11 must wait for P10 to complete. Process P9 must wait for results from P8 and P11. You have
been assigned to convert the software for use on a single processor machine.

 Use a topological sort to determine the order in which the processes should be executed sequentially.
 16. Given the following task chart for conducting a water quality study, find a total ordering in which the tasks

can be performed sequentially.

task prerequisite tasks

 1. Plan schedule 7

 2. Collect new data 1, 10

 3. Assemble team 7

 4. Collect prior water quality data 6

 5. Obtain equipment 7

 6. Identify streams None

 7. Decide on readings needed 4, 8

 8. Review federal and state guidelines None

 9. Write report 11

10. Distribute equipment 3, 5

11. Analyze new data 2

364 Relations, Functions, and Matrices Section 5.3 Relations and Databases 365

 S e c t I o n 5 . 3 Relations and databases

A database is a storehouse of associated information about some enterprise. The
user of a database can certainly retrieve some specific fact stored in the database.
But a well-designed database is more than simply a list of facts. The user can per-
form queries on the database to retrieve information not contained in any single
fact. The whole becomes more than the sum of its parts.

To design a useful and efficient computerized database, it is necessary
to model or represent the enterprise with which the database is concerned. A
 conceptual model attempts to capture the important features and workings of
the enterprise. Considerable interaction with those who are familiar with the
enterprise may be required to obtain all the information necessary to formulate
the model.

entity-Relationship Model

One high-level representation of an enterprise is the entity-relationship model.
In this model, important objects, or entities, in the enterprise are identified,
together with their relevant attributes or properties. Then the relationships be-
tween these various entities are noted. This information is represented graphi-
cally by an entity-relationship diagram, or e-r diagram. In an E-R diagram,
rectangles denote entity sets, ellipses denote attributes, and diamonds denote
relationships.

 example 19 The Pet Lovers of America Club (PLAC) wants to set up a database. PLAC has
bought mailing lists from commercial sources, and it is interested in people who
own pets and in some basic information about those pets, such as the name, type
of pet (dog, cat, and so on), and the breed.

Figure 5.10 shows an E-R diagram for the PLAC enterprise. This diagram
says that persons and pets are the entities. Persons have the attributes of Name,
 Address, City, and State. Pets have the attributes of PetName, PetType, and Breed.
The diagram also shows that persons own pets. Thinking of the entities as sets, the
Person set and the Pet set, the relationship “owns” is a binary relation from Person
to Pet—the ownership relation is captured by (person, pet) ordered pairs. The “1”
and “N” on the connecting lines indicate that this binary relation is one-to-many;
that is, in this particular enterprise, one person can own many pets, but no pet has
multiple owners. (Pets with multiple owners would result in a many-to-many rela-
tion.) Also, in this example, some persons may own no pets, and some pets may
have no owners.

The fact that no pet has multiple owners is one of the “business rules” of
the enterprise. Such business rules are important to identify when designing
a database, because they can determine various features of the database, as we
will see.

366 Relations, Functions, and Matrices Section 5.3 Relations and Databases 367

1

N

Name Address City State

Person

Owns

Pet

BreedPetTypePetName
Figure 5.10

Relational Model

Another representation of an enterprise, called a relational model, can be devel-
oped from the E-R model. Both the entity sets and the relationships of the E-R
model become relations (in the mathematical sense) in the relational model. The
relations are described by tables. A relational database consists of collections of
such tables.

An entity set table is named for the entity set. Each row in the table contains
the values of the n attributes for a specific instance of that entity set. Thus the rela-
tional table may be thought of as a set of n-tuples (rows), and an individual row is
called a tuple. True to the idea of a set, no duplicate tuples exist, and no ordering
of the tuples is assumed. The ordering of the attributes is unimportant, except that
consistency must be maintained; that is, each column in the table contains values
for a specific attribute in all of the tuples. The number of attributes (columns)
is called the degree of the relation. The number of n-tuples (rows) is called the
cardinality of the relation; it is the cardinality (in the set-theoretic sense) of the
set of rows.

More formally, a database relation is a subset of D1 × D2 × c× Dn, where
Di is the domain from which attribute Ai takes its values. This means that the
database use of the word relation is consistent with our definition of an n-ary
relation on multiple sets (page 330). Beyond the data in the table itself, additional
information, sometimes called metadata—data about data—is needed to specify
the domain for each attribute. Is the domain the set of all possible strings, or do
these strings have to follow a specific format? Is the domain the set of integers or
does it have to be the set of integers within some specific range? Does the attribute
represent a date? If so, the domain has to specify the specific date format to be
used, for example, March 13, 2014 or 3/13/14 or 3/13/2014, and so forth. In addi-
tion, each attribute domain Di is assumed to contain a special NULL value (empty

366 Relations, Functions, and Matrices Section 5.3 Relations and Databases 367

value), so a given tuple could have a NULL value for one or more of its attributes.
Any tuple (x1, x2, …, xn) in a relation table must satisfy the n-ary predicate of the
form (4xi)(xi [Di).

 example 20 The Person relation in the PLAC database might contain the following data.

person

Name address city State

Patrick, Tom 2425 Samset Sarasota FL

Smith, Mary 1121 Ridge Rd. Rockville IL

Collier, Jon 429 Via Rivio Venice IL

Jones, Kate 345 Forest St. Cleveland OH

Smith, Bob 1201 45th St. Falls City MA

White, Janet 110 Toledo Rd. Brookville GA

Garcia, Maria 24 E. 56th St. New York City NY

The four attributes for each tuple are Name, Address, City, and State. The meta-
data specify that the domain for the Name attribute is the set of strings of the form
LastName, FirstName; the domain for the State attribute is the set of legitimate
two-character state abbreviations. The Pet relation could be

pet

petName petType Breed

Spot Dog Hound

Twinkles Cat Siamese

Lad Dog Collie

Lassie Dog Collie

Mohawk Fish Moorish idol

Tweetie Bird Canary

Tiger Cat Shorthair

Because there are no duplicate tuples in a relation, giving the value of all n
attributes of a tuple clearly distinguishes that tuple from all others. However, there
may be a minimal subset of the attributes that can be used to uniquely identify
each tuple. This subset is called the primary key of the relation; if the subset con-
sists of more than one attribute, then it is a composite primary key. In the table
describing the relation (and in the E-R diagram), the primary key is underlined in
the row of attribute names. No component of the primary key should ever have a
NULL (empty) value. This entity integrity constraint merely confirms that each

368 Relations, Functions, and Matrices Section 5.3 Relations and Databases 369

tuple must have a primary key value in order to distinguish that tuple and that all
attribute values of the primary key are needed in order to identify a tuple uniquely.

Another business rule of the PLAC enterprise is that all people have unique
names; therefore Name is sufficient to identify each tuple and was chosen as the
primary key in the Person relation. Note that for the Person relation as shown in this
example, State could not serve as a primary key because there are two tuples with
State value “IL.” However, just because Name has unique values in this instance
does not preclude the possibility of duplicate names. It is the business rule that
determines that names will be unique. (There is no business rule that says that ad-
dresses or cities are unique, so neither of these attributes can serve as the primary
key, even though there happen to be no duplicates in the Person relation shown.)

The assumption of unique names is a somewhat simplistic business rule. The
primary key in a relation involving people is often an identifying number that is a
unique attribute. This used to be a Social Security number, but due to privacy con-
cerns, institutions now often generate a local unique identifier such as a student ID
number or employee ID number, or they use a driver’s license number. Because
PetName is the primary key in the Pet relation of Example 20, we can surmise
the even more surprising business rule that in the PLAC enterprise, all pets have
unique names. A more realistic scenario would call for creating a unique attribute
for each pet, sort of a pet Social Security number, to be used as the primary key.
This key would have no counterpart in the real enterprise, so the database user
would never need to see it; such a key is called a blind key or surrogate key. Blind
keys are often generated automatically by the database system using a simple se-
quential numbering scheme.

An attribute in one relation (called the “child” relation) may have the same
domain as the primary key attribute in another relation (called the “parent” rela-
tion). Such an attribute is called a foreign key (of the child relation) into the parent
relation. A relation for a relationship (that is, for a diamond in the E-R diagram)
between entities uses foreign keys to establish connections between those entities.
There will be one foreign key in the relationship relation for each entity participat-
ing in the relationship.

 example 21 The PLAC enterprise has identified the following instance of the Owns relation-
ship. The Name attribute of Owns is a foreign key into the Person relation where
Name is a primary key; PetName of Owns is a foreign key into the Pet relation,
where PetName is a primary key. The first tuple establishes the Owns relationship
between Bob Smith and Spot; that is, it indicates that Bob Smith owns Spot.

owns

Name petName

Smith, Bob Spot

Smith, Mary Twinkles

Jones, Kate Lad

Jones, Kate Lassie

Collier, Jon Tweetie

White, Janet Tiger

368 Relations, Functions, and Matrices Section 5.3 Relations and Databases 369

Persons who do not own pets are not represented in Owns, nor are pets with
no owners. The primary key of Owns is PetName. Recall the business rule that
no pet has multiple owners. If any pet could have multiple owners, the composite
primary key Name/PetName would have to be used. Name alone cannot serve as
the primary key because people can have more than one pet (for example, Jones,
Kate, does not identify a unique tuple.)

In a one-to-one or one-to-many relationship such as our example, a separate
relationship table (like Owns), while not incorrect, is also not necessary.

 example 22 Because PetName in the Owns relation is a foreign key into the Pet relation,
the two relations can be combined (using an operation called outer join over
PetName) to form the PetOwner relation.

petowner

Name petName petType Breed

Smith, Bob Spot Dog Hound

Smith, Mary Twinkles Cat Siamese

Jones, Kate Lad Dog Collie

Jones, Kate Lassie Dog Collie

NULL Mohawk Fish Moorish idol

Collier, Jon Tweetie Bird Canary

White, Janet Tiger Cat Shorthair

This PetOwner relation can replace both the Owns relation and the Pet relation
with no loss of information. PetOwner contains a tuple with a NULL value for
Name. This tuple does not violate entity integrity because Name is not a compo-
nent of the primary key but instead is still a foreign key into Person.

operations on Relations

Two unary operations that can be performed on relations are restrict and project.
The restrict operation creates a new relation made up of those tuples of the origi-
nal relation that satisfy certain conditions. The project operation creates a new
relation made up of certain attributes from the original relation, eliminating any
duplicate tuples. The restrict and project operations can be thought of in terms
of subsets. The restrict operation creates a subset of the rows that satisfy certain
conditions; the project operation creates a subset of the columns that represent
certain attributes.

370 Relations, Functions, and Matrices Section 5.3 Relations and Databases 371

 example 23 The operation

restrict PetOwner where PetType = “Dog” giving DogOwner

results in the relation DogOwner.

Dogowner

Name petName petType Breed

Smith, Bob Spot Dog Hound

Jones, Kate Lad Dog Collie

Jones, Kate Lassie Dog Collie

The operation

project PetOwner over (Name, PetType) giving Preference

results in the relation Preference.

preference

Name petType

Smith, Bob Dog

Smith, Mary Cat

Jones, Kate Dog

NULL Fish

Collier, Jon Bird

White, Janet Cat

PRaCtiCe 21 Write the relation that results from the operation

project Person over (Name, State) giving Locale ■

Because relations are sets of n-tuples, the binary operations of union, inter-
section, and set difference can be applied to two relations with the same basic
structure. Thus in our example, two different tables containing information about
pet owners, both laid out with the same structure, could be intersected to produce
a relation containing all the common 4-tuples.

Another binary operation, join, can be performed on two relations with a
common attribute (column). Theoretically, this operation initially forms the Car-
tesian product of all n-tuples (rows) in the first relation with all k-tuples (rows) in
the second relation. It views the result as a set of (n + k)-tuples and then restricts
to the subset of those where the common attribute has the same value, writing the

370 Relations, Functions, and Matrices Section 5.3 Relations and Databases 371

result as a set of (n + k − 1)-tuples (the common attribute is written only once).
Join is therefore not really a separate operation but is defined as the result of doing
a Cartesian product followed by a restrict.

 example 24 The operation

join Person and PetOwner over Name giving Listing

results in the Listing relation.

listing

Name address city State petName petType Breed

Smith, Mary 1121 Ridge Rd. Rockville IL Twinkles Cat Siamese

Collier, Jon 429 Via Rivio Venice IL Tweetie Bird Canary

Jones, Kate 345 Forest St. Cleveland OH Lad Dog Collie

Jones, Kate 345 Forest St. Cleveland OH Lassie Dog Collie

Smith, Bob 1201 45th St. Falls City MA Spot Dog Hound

White, Janet 110 Toledo Rd. Brookville GA Tiger Cat Shorthair

The restrict, project, and join operations can be applied in various combina-
tions to formulate queries that the user wishes to perform on the database. For
example, suppose the query is

Give the names of all cats whose owners live in Illinois. (1)

If the only existing relations are Person and PetOwner, the following sequence of
operations will produce a relation that answers this query:

restrict PetOwner where PetType = “Cat” giving Results1

Results1

Name petName petType Breed

Smith, Mary Twinkles Cat Siamese

White, Janet Tiger Cat Shorthair

restrict Person where State = “IL” giving Results2

Results2

Name address city State

Smith, Mary 1121 Ridge Rd. Rockville IL

Collier, Jon 429 Via Rivio Venice IL

372 Relations, Functions, and Matrices Section 5.3 Relations and Databases 373

join Results2 and Results1 over Name giving Results3

Results3

Name address city State petName petType Breed

Smith, Mary 1121 Ridge Rd. Rockville IL Twinkles Cat Siamese

project Results3 over PetName giving FinalResults

finalResults

petName

Twinkles

This query could also be performed by first doing the join operation of Example
24 followed by the restrict and project operations, but the join table would be much
larger.

 example 25 relational algebra is a theoretical relational database language in which the re-
strict, project, and join operations can be combined. The relational algebra equiva-
lent of the sequence of operations we did to find the names of cats whose owners
live in Illinois would be the statement

project (join(restrict PetOwner where PetType = “Cat”) and
(restrict Person where State = “IL”) over Name)
over PetName giving Final_Results. (2)

sQL is an international standard relational database language; the preceding
query would appear as the following SQL statement, where the lines are numbered
only for discussion purposes:

1. seLeCt PetName
2. FrOM PetOwner, Person
3. Where PetOwner. Name = Person. Name
4. aND PetType = “Cat”
5. aND State = “IL”; (3)

SQL’s seLeCt statement can actually perform relational algebra restricts, proj-
ects, and joins, as shown here. Lines 4 and 5 represent the two restrict operations.
Line 2 represents the Cartesian product between the two relations and line 3 iden-
tifies the common attribute. Therefore lines 2 and 3 together represent the join.
Line 1 represents the project operation. AND, OR, and NOT connectives are also
available.

Instead of using the relational algebra approach, in which the restrict, project,
and join operations are used to process a query, we can use the relational calculus
approach. In relational calculus, instead of specifying the operations to be done

372 Relations, Functions, and Matrices Section 5.3 Relations and Databases 373

in order to process a query, we give a set-theoretic description of the desired result
of the query. We specify what we want, not how to get it. Sounds like Prolog (see
Section 1.5). In fact, the description of the set may involve notation from predicate
logic; remember that predicate logic is also called predicate calculus, hence the
name relational calculus. Relational algebra and relational calculus are equivalent
in their expressive power; that is, any query that can be formulated in one lan-
guage can be formulated in the other.

 example 26 The relational calculus expression for the query asking for the names of all cats
whose owners live in Illinois is

Range of x is PetOwner
Range of y is Person
5x.PetName 0 x.PetType = “Cat” and
exists y(y.Name = x.Name and y.State = “IL”)6 (4)

Here “Range of x is PetOwner” specifies the relation from which the tuple x may
be chosen, and “Range of y is Person” specifies the relation from which the tuple
y may be chosen. (The use of the term range is unfortunate. We are really talking
about domain in the same sense we talked about the domain of an interpretation in
predicate logic—the pool of potential values.) The notation “exists y” stands for
the existential quantifier (Ey).

Expressions (1) through (4) all represent the same query expressed in English
language, relational algebra, SQL, and relational calculus, respectively.

PRaCtiCe 22 Using the relations Person and PetOwner, express the following query in relational algebra,
SQL, and relational calculus form:

Give the names of all cities where dog owners live. ■

null values and three-valued logic

The value of an attribute in a particular tuple may be unknown, in which case the
attribute is assigned a NULL value. For example, we might have the tuple

Bruno, Dog, NULL

in the Pet table if Bruno is a dog of unknown breed. (Note that Bruno’s breed
might be unknown in some absolute sense, or it might simply be unknown to the
person entering the data.)

Because NULL means “unknown value,” any comparisons between a NULL
value and any other value must result in NULL. Thus

“Poodle” = NULL

results in NULL; since the NULL value is unknown, it is also unknown whether
it has the value “Poodle.”

RemInDeR

Any comparison involving
a NULL value results in
NULL.

374 Relations, Functions, and Matrices Section 5.3 Relations and Databases 375

Ordinary comparisons (does 2 = 2? does 2 = 5?) result in True or False
values, but when a NULL value is involved, the result, as we have seen, will be
NULL. This introduces a three-valued logic where expressions can have values
of True, False, or NULL. Truth tables can be written for three-valued logic (see
Exercise 53 of Section 1.1).

a B a ` B

T T T

T F F

T N N

F T F

F F F

F N F

N T N

N F F

N N N

a B a ~ B

T T T

T F T

T N T

F T T

F F F

F N N

N T T

N F N

N N N

a a′

T F

F T

N N

Most database management systems follow these rules of three-valued logic
until a final truth value decision must be made, and then a NULL value gets set to
False. But this can have unexpected consequences. For example, if Bruno is added
to the Pet table and the following SQL query is executed

seLeCtPetName
FrOM Pet
Where PetType = “Dog”
aND NOt (Breed = “Collie”);

we may expect to see Bruno’s name in the resulting relation, since Bruno’s breed
is not “Collie.” But as Bruno’s attribute values are compared with the criteria
specified in the SQL statement, we get

PetType = “Dog”AND NOT (Breed = “Collie”)
“Dog” = “Dog”AND NOT (NULL = “Collie”)
True AND NOT NULL
True AND NULL
NULL

which then is set to False, so Bruno does not satisfy this query. On second thought,
because Bruno’s breed is NULL, he might actually be a collie; this query result
reflects the fact that it cannot be said with certainty that Bruno is a noncollie dog.

But consider the SQL query

seLeCt PetName
FrOM Pet
Where PetType = “Dog”
aND Breed = NULL;

374 Relations, Functions, and Matrices Section 5.3 Relations and Databases 375

Surely this describes Bruno. However, remember that the result of any compari-
son involving NULL is NULL, so

PetType = “Dog” AND Breed = NULL
“Dog = “Dog” AND NULL = NULL
True AND NULL
NULL

which then is set to False. Contrary to intuition, Bruno does not satisfy this query
either. The only true fact about Bruno is that he is a dog.

The SQL query

seLeCtPetName
FrOM Pet
Where PetType = “Dog”
aND Breed Is NULL;

is a completely different query from the preceding one. The WHERE clause is
asking whether the Breed attribute for any tuple has the value NULL. This query
would produce the following result because Bruno is the only tuple in the Pet table
with a NULL value for Breed.

Isnull

petName

Bruno

database integrity

New information must be added to a database from time to time, obsolete infor-
mation deleted, and changes or updates made to existing information. In other
words, the database will be subjected to add, delete, and modify operations. An
add operation can be carried out by creating a second relation table with the new
information and performing a set union of the existing table and the new table.
Delete can be accomplished by creating a second relation table with the tuples to
be deleted and performing a set difference that subtracts the new table from the
existing table. Modify can be achieved by a delete (of the old tuple) followed by an
add (of the modified tuple).

These operations must be carried out so that the information in the database
remains in a correct and consistent state that agrees with the business rules. En-
forcing three “integrity rules” will help. Data integrity requires that the values
for an attribute do indeed come from that attribute’s domain. In our example, for
instance, values for the State attribute of Person must be legitimate two-letter
state abbreviations (or the NULL value). entity integrity, as we discussed earlier,
requires that no component of a primary key value be NULL. These integrity
constraints clearly affect the tuples that can be added to a relation.

referential integrity requires that any values for foreign keys of child rela-
tions into parent relations either be NULL or have values that match values in the
corresponding primary keys of the parent relations. The referential integrity con-
straint affects both add and delete operations (and therefore modify operations).

376 Relations, Functions, and Matrices Section 5.3 Relations and Databases 377

For instance, we could not add a tuple to PetOwner with a non-NULL Name value
that does not exist in the Person relation, because this would violate the Owns
relation as a binary relation on Person × Pet. Also, if the Bob Smith tuple is de-
leted from the Person relation, then the Bob Smith tuple must be deleted from the
PetOwner relation or the Name value “Bob Smith” changed to NULL (a business
rule must specify which is to occur) so that PetOwner’s foreign key Name does not
violate referential integrity. This prevents the inconsistent state of a reference to
Bob Smith in PetOwner when Bob Smith no longer exists as a “Person.”

S e c t I o n 5 . 3 Review

technIQueS

• Carry out restrict, project, and join operations in a
relational database.

• Formulate relational database queries using rela-
tional algebra, SQL, and relational calculus.

maIn IDeaS

• A relational database uses mathematical relations,
described by tables, to model objects and relation-
ships in an enterprise.

• The database operations of restrict, project, and
join are operations on relations (sets of tuples).

• Queries on relational databases can be formulated
using the restrict, project, and join operations, SQL
statements, or notations borrowed from set theory
and predicate logic.

exeRcISeS 5.3

Exercises 1–4 refer to the Person, Pet, and PetOwner relations of Examples 20 and 22.

 1. Consider the following operation:

 restrict Pet where PetType = “Cat” giving Kitties

 a. Write a query in English that would result in the information contained in Kitties.
 b. What is the cardinality of the relation obtained by performing this operation?
 c. Write an SQL query to obtain this information.
 2. Consider the following operation:

 project Person over (Name, City, State) giving Census

 a. Write a query in English that would result in the information contained in Census.
 b. What is the degree of the relation obtained by performing this operation?
 c. Write an SQL query to obtain this information.
 3. Write the results of the following operation:

 project Pet over (PetName, Breed) giving What Am I

 4. Write the results of the following operation:

 restrict PetOwner where PetType = “Bird” Or PetType = “Cat” giving SomeOwners

W

W

376 Relations, Functions, and Matrices Section 5.3 Relations and Databases 377

Exercises 5–28 are all related to the same enterprise.

 5. A library maintains a database about its books. Information kept on each author includes the author’s
name and country of origin. Information kept on each book includes the ISBN, title, publisher, and sub-
ject. Authors and books are the entities in this enterprise, and “writes” is a relationship between these enti-
ties. Sketch an E-R diagram for the enterprise. In the absence of any business rules, what must be assumed
about the binary relation “writes” regarding whether it is one-to-one, one-to-many, and so on?

 6. In a relational model of the library database, there is an author relation, a book relation, and a writes rela-
tion. Give the table heading for each of the relation tables, underlining the primary key. Business rules
state that authors are uniquely identified by name and books are uniquely identified by ISBN. Explain your
choice of primary key for the Writes relation table.

For Exercises 7–16, use the following relation tables and write the results of the operations. These tables are
sorted by primary key (or in the case of the Writes table, by the first component of the primary key), which is
not required but is useful for Exercise 25. Many database systems maintain data in sorted order by primary key
using a tree structure (see Section 5.1, Exercise 43).

author

Name country

Chan, Jimmy China

East, Jane U. S.

King, Dorothy England

Kovalsco, Bert U.S.

Lau, Won China

Nkoma, Jon Kenya

Quercos, Tom Mexico

book

iSBN Title publisher Subject

0-115-01214-1 Birds of Africa Loraine Nature

0-364-87547-X Early Tang Paintings Bellman Art

0-56-000142-8 Springtime Gardening Swift-Key Nature

0-816-35421-9 Springtime Gardening Harding Nature

0-816-53705-4 Baskets for Today Harding Art

0-816-88506-0 Autumn Annuals Harding Nature

378 Relations, Functions, and Matrices Section 5.3 Relations and Databases 379

Writes

Name iSBN

Chan, Jimmy 0-364-87547-X

East, Jane 0-56-000142-8

King, Dorothy 0-816-35421-9

King, Dorothy 0-816-88506-0

Kovalsco, Bert 0-816-53705-4

Lau, Won 0-364-87547-X

Nkoma, Jon 0-115-01214-1

 7. restrict Author where Country = “U. S.” giving Results7
 8. restrict Writes where Name = “Dorothy King” giving Results8
 9. restrict Book where Publisher = “Bellman” or Publisher = “Swift Key” giving Results9
 10. restrict Book where Publisher = “Harding” and Subject = “Art” giving Results10
 11. project Author over Name giving Results11
 12. project Author over (Name, Country) giving Results12
 13. project Book over (Publisher, Subject) giving Results13
 14. project Book over (ISBN, Title, Subject) giving Results14
 15. join Book and Writes over ISBN giving Results15
 16. join Author and Writes over Name giving Results16

For Exercises 17–23, using the relation tables given before Exercise 7, express each query in relational algebra,
SQL, and relational calculus forms. Also give the result of each query.

 17. Give the titles of all books about art.
 18. Give the titles of all books published by Harding.
 19. Give the names of all authors who publish with Harding.
 20. Give the names of all authors who have written nature books.
 21. Give the titles of all books written by U.S. authors.
 22. Give the titles, ISBNs, and publishers of all art books whose authors live in the United States.
 23. Give the authors’ names and book titles for all art books written by English authors.
 24. If the tuple

 Fleur, Suzanne NULL

 gets added to the Author table, write the results of the SQL query

 seLeCt Name
 FrOM Author
 Where Country = “U. S.”
 Or Country = NULL;

378 Relations, Functions, and Matrices Section 5.3 Relations and Databases 379

 25. Suppose a join operation over some attribute is to be done on two tables of cardinality p and q,
respectively.

 a. The first step is usually to form the Cartesian product of the two relations and then examine the result-
ing tuples to find those with a common attribute value. How many tuples result from the Cartesian
product that then have to be examined to complete the join operation?

 b. Now suppose that the two tables have each been sorted on the common attribute. Explain how the join
operation can be done more cleverly, avoid the Cartesian product, and examine (read) at most only
(p + q) rows.

 c. To accomplish a join operation of Author and Writes over Name, how many rows must be examined?
 d. To accomplish a join operation of Book and Writes over ISBN, how many rows must be examined?

(See Exercise 26 for why this operation would not be a good idea anyway.)

 26. One rule of thumb about good database design is “one fact, one place.” Suppose you try to combine the
Book and Writes tables over ISBN into a single relation as was done with the PetName and Owns relation.
This table would have a heading of the form

iSBN Title publisher Subject Name

 How would the resulting table violate the “one fact, one place” rule? How many tuples have to be updated
if the publisher “Bellman” changes its name to “Bellman-Boyd”?

For Exercises 27 and 28, suppose that an additional attribute called RoyaltyPercent with a domain of integers
between 0 and 100 is added to the Writes relation. The new Writes table appears here. Because the domain of
RoyaltyPercent is numerical, arithmetic comparisons can be done on a given RoyaltyPercent value.

Writes

Name iSBN royaltypercent

Chan, Jimmy 0-364-87547-X 20

East, Jane 0-56-000142-8 100

King, Dorothy 0-816-35421-9 100

King, Dorothy 0-816-88506-0 100

Kovalsco, Bert 0-816-53705-4 100

Lau, Won 0-364-87547-X 80

Nkoma, Jon 0-115-01214-1 100

 27. a. Write an SQL query to give the author’s name, the title and ISBN of the book, and the royalty percent
for all authors with a royalty percent of less than 100.

 b. Write the results of the query.

 28. What database integrity errors would be caused by attempting each of the following actions?
 a. Adding a tuple in the Writes table: Wilson, Jermain 0-115-01214-1 40
 b. Modifying a tuple in the Writes table: Chan, Jimmy 0-364-87547-X Sixty

380 Relations, Functions, and Matrices Section 5.4 Functions 381

Exercises 29–36 are all related to the same enterprise.

 29. A corporation sponsors a yearly campaign to solicit monetary contributions from its employees for a lo-
cal charity, and the company decides to use a database to keep track of the data. Employee data already
include employee ID, first name, last name, and department. Employees sign a contribution pledge on
a particular date, that specifies the total amount they wish to donate and the number of equal biweekly
payroll deductions (starting with the next pay period) they want to use to pay off the total. The payroll
department needs to know details about each payment, including the contribution pledge the payment is
for, the payment date and the amount deducted. An employee can make multiple pledges.

 a. Do you agree that the following “data decomposition” is consistent with the enterprise description?
If not, what should be added or what should be removed?

entity attributes

Employee EmployeeID FirstName LastName Department

Contribution ContributionID EmployeeID ContributionDate TotalAmount NumberofPayments

Payment ContributionID PaymentDate PaymentAmount

 b. Identify a primary key for each of the Employee, Contribution, and Payment entities and explain your
choice.

 30. Draw an E-R diagram based on Exercise 29.
 31. A “universal relation” contains all the data values in one relation. The table represents a report that might

be distributed to the campaign manager. The universal relation as of 1/16/2014 is shown here.

Employee
iD

First
Name

last
Name

Department
contribution
iD

contribution
Date

Total
amount

Number
of
payments

payment
Date

payment
amount

1 Mary Black Accounting 101 1/1/2013 $300.00 3 1/15/2013 $100.00

1 Mary Black Accounting 101 1/1/2013 $300.00 3 1/31/2013 $100.00

1 Mary Black Accounting 101 1/1/2013 $300.00 3 2/15/2013 $100.00

1 Mary Black Accounting 105 6/1/2013 $210.00 3 6/15/2013 $70.00

1 Mary Black Accounting 105 6/1/2013 $210.00 3 6/30/2013 $70.00

1 Mary Black Accounting 105 6/1/2013 $210.00 3 7/15/2013 $70.00

2 June Brown Payroll 107 6/1/2013 $300.00 2 6/15/2013 $150.00

2 June Brown Payroll 107 6/1/2013 $300.00 2 6/30/2013 $150.00

2 June Brown Payroll 108 1/1/2014 $600.00 12 1/15/2014 $50.00

3 Kevin White Accounting 102 1/1/2013 $500.00 2 1/15/2013 $250.00

3 Kevin White Accounting 102 1/1/2013 $500.00 2 1/31/2013 $250.00

3 Kevin White Accounting 109 1/1/2014 $500.00 2 1/15/2014 $250.00

4 Kelly Chen Payroll 104 4/15/2013 $100.00 1 4/30/2013 $100.00

6 Conner Smith Sales 103 1/1/2013 $150.00 2 1/15/2013 $75.00

6 Conner Smith Sales 103 1/1/2013 $150.00 2 1/31/2013 $75.00

380 Relations, Functions, and Matrices Section 5.4 Functions 381

 a. Given this universal relation, create and populate with data the three relation tables for the three entities
described in Exercise 29. Underline the primary key in each table.

 b. Describe any foreign keys in the relation tables.
 c. Consider the form of the Employee IDs. This is probably what kind of key?
 32. a. If Mary Black moves from the Accounting Department to the Sales Department, how many tuples must

be updated in the universal relation?
 b. The three relation tables from Exercise 31 should follow the “one fact, one place” rule (see Exercise

26). With the same change to Mary Black’s department, how many tuples must be updated in the data-
base using the three relation tables of Exercise 31?

Exercises 33–36 make use of the three relation tables from Exercise 31.

 33. Write an SQL query to give the employee ID, pay dates, and payment amounts for all pay dates with
amounts > $100. Give the result of the query.

 34. Write an SQL query to give the contribution ID, pay date, and payment amount for all payments by Mary
Black. Give the result of the query.

 35. Write an SQL query to give the first and last names and payment amount of all employees who had a
payroll deduction on 1/15/2013. Give the result of the query.

 36. Write an SQL query to reproduce the universal relation of Exercise 31 from the three relation tables.

Figure 5.11

 S e c t I o n 5 . 4 FunCtions

In this section we discuss functions, which are really special cases of binary rela-
tions from a set S to a set T. This view of a function is a rather sophisticated one,
however, and we will work up to it gradually.

definition

Function is a common enough word even in nontechnical contexts. A newspaper
may have an article on how starting salaries for this year’s college graduates have
increased over those for last year’s graduates. The article might say something
like, “The salary increase varies depending on the degree program,” or, “The
salary increase is a function of the degree program.” It may illustrate this func-
tional relationship with a graph like Figure 5.11. The graph shows that each degree
program has some figure for the salary increase associated with it, that no degree
program has more than one figure associated with it, and that both the physical
sciences and the liberal arts have the same figure, 1.5%.

Engineering Physical
science

Computer
science

Liberal arts Business

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0%

382 Relations, Functions, and Matrices Section 5.4 Functions 383

Of course, we also use mathematical functions in algebra and calculus. The
equation g(x) = x3 expresses a functional relationship between a value for x and
the corresponding value that results when the value for x is used in the equation.
Thus an x value of 2 has the number 23 = 8 associated with it. (This number
is expressed as g(2) = 8.) Similarly, g(1) = 13 = 1, g(−1) = (−1)3 = −1, and
so on. For each x value, the corresponding g(x) value is unique. If we were to
graph this function on a rectangular coordinate system, the points (2, 8), (1, 1), and
(−1, −1) would be points on the graph. If we allow x to take on any real number
value, the resulting graph is the continuous curve shown in Figure 5.12.

(–1, –1)

(1, 1)

(2, 8)
g(x)

x

The function in the salary increase example could be described as follows. We set
the stage by the diagram in Figure 5.13, which indicates that the function always
starts with a given degree program and that a particular salary increase is associ-
ated with that degree program. The association itself is described by the set of or-
dered pairs 5(engineering, 2. 25%), (physical sciences, 1. 5%), (computer science,
2. 75%), (liberal arts, 1. 5%), (business, 2. 0%)6 .

Computer science

Degree
%

2.75%

Real numbers Real numbers

g(x)

g

x

For the algebraic example g(x) = x3, Figure 5.14 shows that the function
 always starts with a given real number and associates a second real number with it.

Figure 5.12

Figure 5.13

Figure 5.14

Degree programs
Salary increases by percent

382 Relations, Functions, and Matrices Section 5.4 Functions 383

The association itself is described by 5(x, g (x)) 0 g(x) = x36 , or simply g (x) = x3.
This set includes (2, 8), (1, 1), (−1,−1), but because it is an infinite set, we cannot
list all its members; we have to describe them.

From the above examples, we can conclude that there are three parts to a
function: (1) a set of starting values, (2) a set from which associated values come,
and (3) the association itself. The set of starting values is called the domain of the
function, and the set from which associated values come is called the codomain
of the function. Thus both the domain and codomain represent pools from which
values may be chosen. (This usage is consistent with our use of the word domain
when discussing predicate wffs in Section 1.2. There the domain of an interpreta-
tion is a pool of values that variables can assume and to which constant symbols
may be assigned. Similarly, the domain Di of an attribute Ai in a database relation,
discussed in Section 5.3, is a pool of potential values for the attribute.)

The picture for an arbitrary function f is shown in Figure 5.15. Here f is a
function from S to T, symbolized f : S S T . S is the domain and T is the codo-
main. The association itself is a set of ordered pairs, each of the form (s, t) where
s [S, t [T , and t is the value from T that the function associates with the value
s from S; t = f (s). Hence, the association is a subset of S × T (a binary relation
from S to T). But the important property of this relation is that every member of
S must have one and only one T value associated with it, so every s [S will ap-
pear exactly once as the first component of an (s, t) pair. (This property does not
prevent a given T value from appearing more than once.)

Domain S Codomain T

f(s) = t

f

s

We are now ready for the formal definition of a function.

Figure 5.15

 DefInItIonS teRMinology FoR FunctionS
Let S and T be sets. A function (mapping) f from S to T, f : S S T , is a subset of
S × T where each member of S appears exactly once as the first component of
an ordered pair. S is the domain and T is the codomain of the function. If (s, t)
belongs to the function, then t is denoted by f (s); t is the image of s under
f, s is a preimage of t under f, and f is said to map s to t. For A # S, f (A) denotes
5 f (a) 0 a [A6 .

A function from S to T is a subset of S × T with certain restrictions on the
ordered pairs it contains. That is why we spoke of a function as a special kind of
binary relation. By the definition of a function, a binary relation that is one-to-
many (or many-to-many) cannot be a function. Also, each member of S must be
used as a first component.

We have talked a lot about values from the sets S and T, but as our example
of salary increases shows, these values are not necessarily numbers, nor is the as-
sociation itself necessarily described by an equation.

384 Relations, Functions, and Matrices Section 5.4 Functions 385

PRaCtiCe 23 Which of the following formulas are functions from the domain to the codomain indi-
cated? For those that are not, why not?

a. f : S S T where S = T = 51, 2, 36, f = 5(1, 1), (2, 3), (3, 1), (2, 1)6
b. g: Z S N where g is defined by g(x) = 0x 0 (the absolute value of x)
c. h: N S N where h is defined by h(x) = x − 4
d. f: S S T where S is the set of all people in your hometown, T is the set of all automobiles, and f

associates with each person the automobile that person owns
e. g: S S T where S = 52013, 2014, 2015, 20166, T = 5$20,000, $30,000, $40,000, $50,000,

$60,0006 , and g is defined by the graph in Figure 5.16.
f. h: S S T where S is the set of all quadratic polynomials in x with integer coefficients, T = Z, and

h is defined by h(ax2 + bx + c) = b + c
g. f: R S R where f is defined by f (x) = 4x − 1
h. g: N S N where g is defined by

g (x) = e x + 3 if x ≥ 5
x if x ≤ 5

2013 2014 2015
Year

2016

60

50

40

30

Pr
of

it
in

 th
ou

sa
nd

s
of

 d
ol

la
rs

20

10

0

Figure 5.16 Profits of the American Earthworm Corp. ■

PRaCtiCe 24 Let f : Z S Z be defined by f (x) = x2.

a. What is the image of −4?
b. What are the preimages of 9? ■

 example 27 When we studied recursive definitions in Section 3.1, we talked about sequences,
where a sequence S was written as

S(1), S(2), S(3), …

Changing the notation to

f (1), f (2), f (3), …

we see that a sequence is nothing but a list of functional values for a function f
whose domain is the positive integers, and this is how a sequence is often defined.

384 Relations, Functions, and Matrices Section 5.4 Functions 385

Indeed, the algorithms we gave for computing the values in such sequences were
pseudocode that computes the function.

Also in Section 3.1, we talked about recursive operations such as an where a
is a fixed nonzero real number and n ≥ 0. This is also simply a function f (n) = an
whose domain is N.

The definition of a function includes functions of more than one variable. We
can have a function f: S1 × S2 × c× Sn S T that associates with each ordered
n-tuple of elements (s1, s2, …, sn), si [Si, a unique element of T.

 example 28 f : Z × N × 51, 26 S Z is given by f (x, y, z) = xy + z. Then f (−4, 3, 1) =
(−4)3 + 1 = −64 + 1 = −63.

 example 29 In Section 4.1 we defined a unary operation on a set S as associating a unique
member of S, x#, with each member x of S. This means that a unary operation on
S is a function with domain and codomain S. We also defined a binary operation
+ on a set S as associating a unique member of S, x + y, with every (x, y) pair of

elements of S. Therefore a binary operation on S is a function with domain S × S
and codomain S.

Again, domain values and codomain values are not always numbers.

 example 30 Let S be the set of all character strings of finite length. Then the association that pairs
each string with the number of characters in the string is a function with domain S and
codomain N (we allow the “empty string,” which has zero characters).

 example 31 Any propositional wff with n statement letters defines a function with domain
5T, F6n and codomain 5T, F6 . The domain consists of all n-tuples of T-F values;
with each n-tuple is associated a single value of T or F. The truth table for the wff
gives the association. For example, if the wff is A ~ B′, then the truth table

a B B∙ a ~ B′

T T F T

T F T T

F T F F

F F T T

says that the image of the 2-tuple (F, T) under this function is F. If we call this
 function f, then f (F, T) = F.

386 Relations, Functions, and Matrices Section 5.4 Functions 387

The next example defines two functions that are sometimes useful in analyz-
ing algorithms.

PRaCtiCe 25 Let the function defined by the wff A ` (B ~ C′) be denoted by f. What is f (T, T, F)?
What is f (F, T, F)?

 example 32 The floor function :x; associates with each real number x the greatest integer less
than or equal to x. The ceiling function <x= associates with each real number x the
smallest integer greater than or equal to x. Thus :2.8; = 2, <2.8= = 3, :−4.1; = −5,
and <−4.1= = −4. Both the floor function and the ceiling function are functions
from R to Z.

PRaCtiCe 26

a. Sketch a graph of the function :x; .
b. Sketch a graph of the function <x= . ■

 example 33 For any integer x and any positive integer n, the modulo function, denoted by
f (x) = x mod n, associates with x the nonnegative remainder when x is divided by
n. We can write x as x = qn + r, 0 ≤ r < n, where q is the quotient and r is the
remainder, so the value of x mod n is r.

25 = 12 # 2 + 1 so 25 mod 2 = 1
21 = 3 # 7 + 0 so 21 mod 7 = 0
15 = 3 # 4 + 3 so 15 mod 4 = 3
−17 = (−4) # 5 + 3 so −17 mod 5 = 3 (it is true that

−17 = (−3)5 + (−2)
but remember that the
 remainder must be
 nonnegative)

Section 5.6 discusses some of the many applications of the modulo function.

The definition of a function f: S S T includes three parts—the domain set S,
the codomain set T, and the association itself. Is all this necessary? Why can’t we
simply write an equation, like g(x) = x3, to define a function?

The quickest answer is that not all functional associations can be described by
an equation (see Example 30, for instance). But there is more to it—let’s limit our
attention to situations where an equation can be used to describe the association,
such as g: R S R where g(x) = x3. Even in algebra and calculus, it is common to
say “consider the function g(x) = x3,” implying that the equation is the function.
Technically, the equation only describes a way to compute associated values. The
function h: R S R given by h(x) = x3 − 3x + 3(x + 5)−15 is the same func-
tion as g because it contains the same ordered pairs. However, the equation is
different in that it says to process any given x value differently.

■

386 Relations, Functions, and Matrices Section 5.4 Functions 387

On the other hand, the function f : Z S R given by f (x) = x3 is not the same
function as g. The domain has been changed, which changes the set of ordered
pairs. The graph of f (x) would consist of discrete (separate) points (Figure 5.17).
Most of the functions in which we are interested have this feature. Even in situa-
tions where one quantity varies continuously with another, in a digital computer
we approximate by taking data at discrete, small intervals, much as the graph of
g(x) (see Figure 5.12) is approximated by the graph of f (x) (see Figure 5.17).

(–1, –1)

(1, 1)

(2, 8)
f(x)

x

Finally, let’s look at the function k: R S C given by k(x) = x3. The equa-
tion and domain is the same as for g(x); the codomain has been enlarged, but
the change does not affect the ordered pairs. Is this function considered the same
function as g(x)? It is not, but to see why, we’ll have to wait until we discuss the
onto property of functions. Then we will see that g has the onto property while k
does not, so we do not want to consider them the same function.

In summary, a complete definition of a function requires giving its domain,
its codomain, and the association, where the association may be given by a verbal
description, a graph, an equation, or a collection of ordered pairs.

Figure 5.17

 DefInItIon equal FunctionS
Two functions are equal if they have the same domain, the same codomain, and
the same association of values of the codomain with values of the domain.

Suppose we are trying to show that two functions with the same domain and
the same codomain are equal. Then we must show that the associations are the
same. This can be done by showing that, given an arbitrary element of the domain,
both functions produce the same associated value for that element; that is, they
map it to the same place.

PRaCtiCe 27 Let S = 51, 2, 36 and T = 51, 4, 96. The function f : S S T is defined by
f = 5(1, 1), (2, 4), (3, 9)6. The function g: S S T is defined by the equation

g(n) =
∙
n

k=1
(4k − 2)

2

Prove that f = g. ■

388 Relations, Functions, and Matrices Section 5.4 Functions 389

properties of Functions

Onto Functions
Let f : S S T be an arbitrary function with domain S and codomain T (Figure
5.18). Part of the definition of a function is that every member of S has an image
under f and that all the images are members of T; the set R of all such images is
called the range of the function f. Thus, R = 5 f (s) 0 s [S6 , or R = f (S). Clearly,
R # T ; the range R is shaded in Figure 5.19. If it should happen that R = T , that
is, that the range coincides with the codomain, then the function is called an onto
function.

Domain S Codomain T

f(s) = t

f

s

Domain S Codomain T

f(s) = t

R = f(S)
f

s

Figure 5.18

Figure 5.19

 DefInItIon onto (SuRjective) Function
A function f : S S T is an onto or surjective function if the range of f equals the
codomain of f.

In every function with range R and codomain T, R # T . To prove that a given
function is onto, we must show that T # R; then it will be true that R = T . We
must therefore show that an arbitrary member of the codomain is a member of the
range, that is, that it is the image of some member of the domain. On the other
hand, if we can produce one member of the codomain that is not the image of any
member of the domain, then we have proved that the function is not onto.

RemInDeR

To show that a function
is onto, pick an arbitrary
element in the codomain
and show that it has a
preimage in the domain.

 example 34 The function g: R S R defined by g(x) = x3 is an onto function. To prove that
g(x) is onto, let r be an arbitrary real number, and let x = !3 r. Then x is a real
number, so x belongs to the domain of g and g(x) = (!3 r)3 = r. Hence, any mem-
ber of the codomain is the image under g of a member of the domain. The function
k: R S C given by k(x) = x3 is not onto. There are many complex numbers (i, for
example) that cannot be obtained by cubing a real number. Thus, g and k are not
equal functions.

388 Relations, Functions, and Matrices Section 5.4 Functions 389

One-to-One Functions
The definition of a function guarantees a unique image for every member of the
domain. A given member of the range may have more than one preimage, how-
ever. In our very first example of a function (salary increases), both physical sci-
ences and liberal arts were preimages of 1.5%. This function was not one-to-one.

 example 35 Let f : Q S Q be defined by f (x) = 3x + 2. To test whether f is onto, let q [Q.
We want an x [Q such that f (x) = 3x + 2 = q. When we solve this equation for
x, we find that x = (q − 2)∙3 is the only possible value and is indeed a member
of Q. Thus, q is the image of a member of Q under f, and f is onto. However, the
function h: Z S Q defined by h(x) = 3x + 2 is not onto because there are many
values q [Q, for example 0, for which the equation 3x + 2 = q has no integer
solution.

PRaCtiCe 28 Which of the functions found in Practice 23 are onto functions?
■

PRaCtiCe 29 Suppose a function f : 5T, F6n S 5T, F6 is defined by a propositional wff P (see Example 31).

Give the two conditions on P under each of which f will fail to be an onto function. ■

 DefInItIon one-to-one (injective) Function
A function f: S S T is one-to-one, or injective, if no member of T is the image
under f of two distinct elements of S.

The one-to-one idea here is the same as for binary relations in general, as
discussed in Section 5.1, except that every element of S must appear as a first com-
ponent in an ordered pair. To prove that a function is one-to-one, we assume that
there are elements s1 and s2 of S with f (s1) = f (s2) and then show that s1 = s2. To
prove that a function is not one-to-one, we produce a counterexample, an element
in the range with two preimages in the domain.

RemInDeR

To show that a function
f is one-to-one, assume
f(s1) = f(s2) and show that
s1 = s2.

 example 36 The function g: R S R defined by g(x) = x3 is one-to-one because if x and y are
real numbers with g(x) = g(y), then x3 = y3 and x = y. The function f : R S R
given by f (x) = x2 is not one-to-one because, for example, f (2) = f (−2) = 4.
However, the function h: N S N given by h(x) = x2 is one-to-one because if x
and y are nonnegative integers with h(x) = h(y), then x2 = y2; because x and y are
both nonnegative, x = y.

PRaCtiCe 30 Which of the functions found in Practice 23 are one-to-one functions?
■

390 Relations, Functions, and Matrices Section 5.4 Functions 391

 example 37 The floor function and the ceiling function of Example 32 are clearly not one-to-
one. This is evident also in the graphs of these functions (Practice 26), which have
a number of horizontal sections, indicating that many different domain values in R
are mapped by the function to the same codomain value in Z.

Figure 5.20 gives simple illustrations about functions and their properties. In
each case, the domain is on the left and the codomain is on the right.

Function, not one-to-one, onto Function, one-to-one, not onto Function, one-to-one, onto

Not a function Not a function Function, not one-to-one, not onto

Bijections

Figure 5.20

 DefInItIon Bijective Function
A function f: S S T is bijective (a bijection) if it is both one-to-one and onto.

RemInDeR

To prove that a function is
a bijection requires prov-
ing two things—onto and
one-to-one.

 example 38 The function g: R S R given by g(x) = x3 is a bijection. The function in part
(g) of Practice 23 is a bijection. The function f : R S R given by f (x) = x2 is
not a bijection (not one-to-one), and neither is the function k: R S C given by
k(x) = x3 (not onto).

composition of Functions

Suppose that f and g are functions with f : S S T and g: T S U . Then for any
s [S, f (s) is a member of T, which is also the domain of g. Thus, the function g
can be applied to f (s). The result is g (f (s)), a member of U (Figure 5.21). Taking
an arbitrary member s of S, applying the function f, and then applying the function
g to f (s) is the same as associating a unique member of U with s. In short, we have
created a function S S U , called the composition function of f and g and denoted
by g + f (Figure 5.22).

S T U

g(f (s))f(s)
s

Figure 5.21

390 Relations, Functions, and Matrices Section 5.4 Functions 391

S T U

g(f(s))f(s)
s

g ° f

Figure 5.22

 DefInItIon coMpoSition Function
Let f : S S T and g: T S U . Then the composition function, g + f , is a function
from S to U defined by (g + f)(s) = g (f (s)).

Note that the function g + f is applied right to left; function f is applied first
and then function g.

The diagram in Figure 5.23 also illustrates the definition of the composition
function. The corners indicate the domains and codomains of the three functions.
The diagram says that, starting with an element of S, if we follow either path g + f
or path f followed by path g, we get to the same element in U. Diagrams illustrating
that alternate paths produce the same effect are called commutative diagrams.

g

f

g ° f

S T

U
Figure 5.23

It is not always possible to take any two arbitrary functions and compose
them; the domains and ranges have to be “compatible.” For example, if f: S S T
and g:W S Z , where T and W are disjoint, then (g + f)(s) = g (f (s)) is undefined
because f (s) is not in the domain of g.

PRaCtiCe 31 Let f: R S R be defined by f (x) = x2. Let g: R S R be defined by g(x) = :x; .
a. What is the value of (g + f) (2.3)?
b. What is the value of (f + g)(2.3)? ■

From Practice 31 we see that order is important in function composition,
which should not be surprising. If you make a deposit in your checking account
and then write a large check, the effect is not the same as if you write a large check
and later make a deposit! Your bank is very sensitive to these differences.

392 Relations, Functions, and Matrices Section 5.4 Functions 393

Function composition preserves the properties of being onto and being one-
to-one. Again, let f: S S T and g: T S U , but also suppose that both f and g
are onto functions. Then the composition function g + f is also onto. Recall that
g + f : S S U , so we must pick an arbitrary u [U and show that it has a
preimage under g + f in S. Because g is onto, there exists t [T such that
g(t) = u. And because f is onto, there exists s [S such that f (s) = t. Then
(g + f)(s) = g(f (s)) = g(t) = u, and g + f is an onto function.

PRaCtiCe 32 Let f : S S T and g: T S U , and assume that both f and g are one-to-one functions.

Prove that g + f is a one-to-one function. (Hint: Assume that (g + f)(s1) = (g + f)(s2).) ■

We have now proved the following theorem.

 theoRem on coMpoSing two BijectionS
The composition of two bijections is a bijection.

inverse Functions

Bijective functions have another important property. Let f : S S T be a bijection.
Because f is onto, every t [T has a preimage in S. Because f is one-to-one, that
preimage is unique. We can associate with each element t of T a unique member of
S, namely, that s [S such that f (s) = t. This association describes a function g,
g: T S S. The picture for f and g is given in Figure 5.24. The domains and codo-
mains of g and f are such that we can form both g + f: S S S and f + g: T S T . If
s [S, then (g + f)(s) = g(f (s)) = g(t) = s. Thus, g + f maps each element of S
to itself. The function that maps each element of a set S to itself, that is, that leaves
each element of S unchanged, is called the identity function on S and denoted by
iS. Hence, g + f = iS.

S T

f(s) = ts = g(t)

f

g

Figure 5.24

PRaCtiCe 33 Show that f + g = iT .
■

392 Relations, Functions, and Matrices Section 5.4 Functions 393

We have now seen that if f is a bijection, f: S S T , then there is a function
g: T S S with g + f = iS and f + g = iT . The converse is also true. To prove
the converse, suppose f: S S T and there exists g: T S S with g + f = iS and
f + g = iT . We can prove that f is a bijection. To show that f is onto, let t [T .
Then t = iT(t) = (f + g)(t) = f (g(t)). Because g: T S S, g(t) [S, and g(t) is the
preimage under f of t. To show that f is one-to-one, suppose f (s1) = f (s2). Then
g(f (s1)) = g(f (s2)) and (g + f)(s1) = (g + f)(s2) implying iS(s1) = iS(s2), or
s1 = s2. Thus, f is a bijection.

 DefInItIon inveRSe Function
Let f be a function, f : S S T . If there exists a function g: T S S such that
g + f = iS and f + g = iT , then g is called the inverse function of f, denoted
by f −1.

We have proved the following theorem.

 theoRem on BijectionS and inveRSe FunctionS
Let f: S S T . Then f is a bijection if and only if f −1 exists.

Actually, we have been a bit sneaky in talking about the inverse function
of f. What we have shown is that if f is a bijection, this is equivalent to the ex-
istence of an inverse function. But it is easy to see that there is only one such
inverse function. When you want to prove that something is unique, the stan-
dard technique is to assume that there are two different such things and then
obtain a contradiction. Thus, suppose f has two inverse functions, f1

 −1 and f2
 −1

(existence of either means that f is a bijection). Both f1
 −1 and f2

 −1 are functions
from T to S; if they are not the same function, then they must act differently
somewhere. Assume that there is a t [T such that f1

 −1(t) ∙ f2
 −1(t). Because f is

one-to-one, it follows that f (f1
 −1(t)) ∙ f (f2

 −1(t)), or (f + f1
 −1)(t) ∙ (f + f2

 −1)(t).
But both f + f1

 −1 and f + f2
 −1 are iT , so t ∙ t, which is a contradiction. We are

therefore justified in speaking of f −1 as the inverse function of f. If f is a bijec-
tion, so that f −1 exists, then f is the inverse function for f −1; therefore, f −1 is
also a bijection.

PRaCtiCe 34 f : R S R given by f (x) = 3x + 4 is a bijection.

Describe f −1. ■

394 Relations, Functions, and Matrices Section 5.4 Functions 395

We’ve introduced a lot of terminology about functions. Table 5.2 gives an
informal summary of these terms.

table 5.2

term meaning

function Mapping from one set to another that associates with each member of the starting
set exactly one member of the ending set

domain Starting set for a function

codomain Ending set for a function

image Point that results from a mapping

preimage Starting point for a mapping

range Collection of all images of the domain

onto (surjective) Range is the whole codomain; every codomain element has a preimage

one-to-one (injective) No two elements in the domain map to the same place

bijection One-to-one and onto

identity function Maps each element of a set to itself

inverse function For a bijection, a new function that maps each codomain element back where it
came from

permutation Functions

Bijections that map a set to itself are given a special name.

 DefInItIon peRMutationS oF a Set
For a given set A, SA = 5

 f 0 f: A S A and f is a bijection6 . SA is thus the set of
all bijections of set A into (and therefore onto) itself; such functions are called
permutations of A.

If f and g both belong to SA, then they each have domain = range = A. There-
fore the composition function g + f is defined and maps A S A. Furthermore,
because f and g are both bijections, our theorem on composing bijections says
that g + f is a bijection, a (unique) member of SA. Thus, function composition is a
binary operation on the set SA.

In Section 4.4 we described a permutation of objects in a set as being an or-
dered arrangement of those objects. Is this now a new use of the word “permuta-
tion”? Not exactly; permutation functions represent ordered arrangements of the
objects in the domain. If A = 51, 2, 3, 46 , one permutation function of A, call it
f, is given by f = 5(1, 2), (2, 3), (3, 1), (4, 4)6 . We can also describe function f in
array form by listing the elements of the domain in a row and, directly beneath,
the images of these elements under f. Thus,

f = a1 2 3 4
2 3 1 4

b
The bottom row is an ordered arrangement of the objects in the top row.

394 Relations, Functions, and Matrices Section 5.4 Functions 395

A shorter way to describe the permutation f shown in array form is to use
cycle notation and write f = (1, 2, 3)—understood to mean that f maps each
element listed to the one on its right, the last element listed to the first, and an
element of the domain not listed to itself. Here 1 maps to 2, 2 maps to 3, and 3
maps to 1. The element 4 maps to itself because it does not appear in the cycle.
The cycle (2, 3, 1) also represents f. It says that 2 maps to 3, 3 maps to 1, 1 maps
to 2, and 4 maps to itself, the same information as before. Similarly, (3, 1, 2)
also represents f.

PRaCtiCe 35

a. Let A = 51, 2, 3, 4, 56 , and let f [SA be given in array form by

f = a1 2 3 4 5
4 2 3 5 1

b

Write f in cycle form.
b. Let A = 51, 2, 3, 4, 56 , and let g [SA be given in cycle form by g = (2, 4, 5, 3). Write g in
array form. ■

If f and g are members of SA for some set A, then g + f [SA, and the ac-
tion of g + f on any member of A is determined by applying function f and then
function g. If f and g are cycles, g + f is still computed the same way.

 example 39 If A = 51, 2, 3, 46 and f, g [SA are given by f = (1, 2, 3) and g = (2, 3), then
g + f = (2, 3) + (1, 2, 3). But what does this composition function look like? Let’s
see what happens to element 1 of A. Working from right to left (first f, then g),
1 S 2 under f and then 2 S 3 under g, so 1 S 3 under g + f . If we want to write
g + f as a cycle, we see that it can start with

(1, 3

and we next need to see what happens to 3. Under f, 3 S 1 and then under g,
1 S 1 (because 1 does not appear in the cycle notation for g), so 3 S 1 under
g + f . Thus we can close the above cycle, writing it as (1, 3). But what happens to
2 and 4? If we consider 2, 2 S 3 under f and then 3 S 2 under g, so 2 S 2 under
g + f . Similarly, 4 S 4 under f and 4 S 4 under g, so 4 S 4 under g + f . We con-
clude that g + f = (1, 3).

In Example 39, if we were to compute f + g = (1, 2, 3) + (2, 3), we would get
(1, 2). (We already know that order is important in function composition.) If, how-
ever, f and g are members of SA and f and g are disjoint cycles—the cycles have
no elements in common—then f + g = g + f .

396 Relations, Functions, and Matrices Section 5.4 Functions 397

Let A = 51, 2, 3, 46 and consider the cycle f [SA given by f = (1, 2). If we
compute f + f = (1, 2) + (1, 2), we see that each element of A is mapped to itself.
The permutation that maps each element of A to itself is the identity function on
A, iA, also called the identity permutation.

If A is an infinite set, not every permutation of A can be written as a cycle. But
even when A is a finite set, not every permutation of A can be written as a cycle;
for example, the permutation g + f of Practice 36(b) cannot be written as a cycle.
However, every permutation on a finite set that is not the identity permutation can
be written as a composition of one or more disjoint cycles. The permutation

a1 2 3 4 5
4 2 5 1 3

b

of Practice 36(b) is (1, 4) + (3, 5) or (3, 5) + (1, 4).

PRaCtiCe 36 Let A = 51, 2, 3, 4, 56 . Compute g + f and f + g for the following cycles in SA.

a. f = (5, 2, 3); g = (3, 4, 1). Write the answers in cycle form.
b. f = (1, 2, 3, 4); g = (3, 2, 4, 5). Write the answers in array form.
c. f = (1, 3); g = (2, 5). Write the answers in array form. ■

PRaCtiCe 37 Write

a1 2 3 4 5 6
2 4 5 1 3 6

b

as a composition of disjoint cycles.
■

Among the permutations of A, some will map certain elements of A to them-
selves, while others will so thoroughly mix elements around that no element in A
is mapped to itself. A permutation on a set that maps no element to itself is called
a derangement.

 example 40 The permutation f on A = 51, 2, 3, 4, 56 given in array form by

a1 2 3 4 5
2 5 4 1 3

b

is a derangement. Members of SA that are not derangements, if written as a cycle
or a product of cycles, will have at least one element of A that is not listed. Thus
g [SA defined as g = (1, 4) + (3, 5) maps 2 to itself, so g is not a derangement.

396 Relations, Functions, and Matrices Section 5.4 Functions 397

How Many Functions

Suppose S and T are finite sets, say 0S 0 = m and 0T 0 = n. What can we say about
the number of functions with various properties that map S to T? First, let’s just
count the number of functions f : S S T , assuming no special properties about
the functions. The multiplication principle can be used here because we can think
of defining a function by assigning an image to each of the m elements of S. This
gives us a sequence of m tasks. Each task has n outcomes because each element of
S can map to any element in T. Therefore the number of functions is

0 n × n × n × c× n 0 = nm

0
m factors

How many one-to-one functions are there from S to T? We must have m ≤ n
or we can’t have any one-to-one functions at all. (All the elements of S must be
mapped to T, and if m > n there are too many elements in S to allow for a one-
to-one mapping. Actually, this is the pigeonhole principle at work.) We can again
solve this problem by carrying out the sequence of tasks of assigning an image to
each element in S, but this time we cannot use any image we have used before. By
the multiplication principle, we have a product that begins with the factors

n(n − 1)(n − 2) c

and must contain a total of m factors, so the result is

n(n − 1)(n − 2) c 3n − (m − 1) 4 = n(n − 1)(n − 2) c (n − m + 1)

=
n!

(n − m)!
= P(n,m)

How many onto functions are there from S to T? This time we must have
m ≥ n so that there are enough values in the domain to provide preimages for
every value in the codomain. (By the definition of a function, an element in S can-
not be a preimage of more than one element in T.) Our overall plan is to subtract
the number of non-onto functions from the total number of functions, which we
know. To count the number of non-onto functions, we’ll use the principle of inclu-
sion and exclusion.

Enumerate the elements of set T as t1, … , tn. For each i, 1 ≤ i ≤ n, let Ai de-
note the set of functions from S to T that do not map anything to element ti. (These
sets are not disjoint, but every non-onto function belongs to at least one such set.)
By the principle of inclusion and exclusion, we can write

 0 A1 c cc An 0 = ∙
1≤ i≤n

 0 Ai 0 − ∙
1≤ i< j≤n

 0 Ai dA j 0 + ∙
1≤ i< j<k≤n

 0 Ai d Aj d Ak 0

 − c+ (−1)n+1
 0 A1 d c d An 0 (1)

398 Relations, Functions, and Matrices Section 5.4 Functions 399

For any i, 0Ai 0 is the number of functions that do not map anything to ti but
have no other restrictions. By the multiplication principle, we can count the num-
ber of such functions by counting for each of the m domain elements its n − 1
possible images. The result is that 0Ai 0 = (n − 1)m. Therefore the first summation
in Equation (1) adds together terms that are all of the same size. There is one such
term for each distinct individual set Ai out of the n sets, so there are C(n, 1) such
terms.

For any i and j, 0Ai d Aj 0 is the number of functions that do not map anything
to ti or tj, leaving n − 2 possible images for each of the m elements of S. Thus
0Ai d Aj 0 = (n − 2)m. The second summation adds one such term for each distinct
group of two sets out of n, so there are C(n, 2) such terms.

A similar result holds for all the intersection terms. If there are k sets in the
intersection, then there are (n − k)m functions in the intersection set and there are
C(n, k) distinct groups of k sets to form the intersection. Equation (1) can thus be
written as

0A1 c c c An 0 = C(n, 1)(n − 1)m − C(n, 2)(n − 2)m + C(n, 3)(n − 3)m

 − c+ (−1)n+1C(n, n)(n − n)m (2)

Now the expression on the left of Equation (2) represents the number of all func-
tions that fail to map to at least one of the elements of T, that is, all the non-onto
functions. If we subtract the value of this expression from the total number of
functions, which we know is nm, we will have the number of onto functions. Thus
the number of onto functions is

nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m − C(n, 3)(n − 3)m

+ c+ (−1)n−1C(n, n − 1) 3n − (n − 1) 4m + (−1)nC(n, n)(n − n)m

where we’ve added the next-to-last term. The last term is zero, so the final answer is

nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m − C(n, 3)(n − 3)m

 + … + (−1)n−1 C(n, n − 1)(1)m

We’ll summarize these results.

 theoRem on tHe nuMBeR oF FunctionS witH Finite doMainS
 and codoMainS

If 0S 0 = m and 0T 0 = n, then

 1. The number of functions f: S S T is nm.
 2. The number of one-to-one functions f: S S T , assuming that m ≤ n, is

n!
(n − m)!

 3. The number of onto functions f: S S T , assuming that m ≥ n, is

nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m − C(n, 3)(n − 3)m

 + … + (−1)n−1C(n, n − 1)(1)m

398 Relations, Functions, and Matrices Section 5.4 Functions 399

If A is a set with 0A 0 = n, then the number of permutations of A is n!. This
number can be obtained by any of three methods:

 1. A combinatorial argument (each of the n elements in the domain must map
to one of the n elements in the range with no repetitions)

 2. Thinking of such functions as permutations on a set with n elements and
noting that P(n, n) = n!

 3. Using result (2) in the previous theorem with m = n

We propose to count the number of derangements on A. Our plan is similar
to the one we used in counting onto functions. We’ll use the principle of inclusion
and exclusion to compute the number of permutations that are not derangements
and then subtract this value from the total number of permutation functions.

Enumerate the elements of set A as a1, … , an. For each i, 1 ≤ i ≤ n, let Ai
be the set of all permutations that leave ai fixed. (These sets are not disjoint, but
every permutation that is not a derangement belongs to at least one such set.) By
the principle of inclusion and exclusion, we can write

0A1 c c c An 0 = ∙
1≤ i≤n

0Ai 0 − ∙
1≤ i< j≤n

0Ai d Aj 0 + ∙
1≤ i< j<k≤n

0Ai d Aj d Ak 0

 − c+ (−1)n+1 0A1 d
c

 d An 0 (3)

For any i, 0Ai 0 is the number of permutations that leave ai fixed. By the mul-
tiplication principle we can count the number of such functions by counting for
each of the n domain elements, beginning with ai, its possible images. There is
only one choice of where to map ai because it must map to itself; the next element
can map anywhere except to ai, so there are n − 1 outcomes; the next element can
map anywhere except the two images already used, so there are n − 2 outcomes,
and so on. Continuing, there are

(1)(n − 1)(n − 2) c (1) = (n − 1)!

 example 41 Let S = 5A, B, C6 and T = 5a, b6 . Find the number of functions from S onto T.
Here m = 3 and n = 2. By our theorem on the number of functions, there are

23 − C(2, 1)(1)3 = 8 − 2 # 1 = 6

such functions.

PRaCtiCe 38 One of the six onto functions in Example 41 can be illustrated by the following diagram:
■

A

B

C

a

b

Draw diagrams for the remaining five onto functions. ■

400 Relations, Functions, and Matrices Section 5.4 Functions 401

elements in Ai for each i. Therefore the first summation in equation (3) adds to-
gether terms that are all of the same size. The number of such terms equals the
number of ways to pick one set Ai out of the n such sets, or C(n, 1).

In the second summation, the terms count the number of permutations on n
elements that leave two of those elements fixed. There are

(1)(1)(n − 2) c (1) = (n − 2)!

such functions in a given Ai d Aj, and C(n, 2) ways to choose the two sets out of
n. In general, if there are k sets in the intersection, then k elements must be held
fixed, so there are (n − k)! functions in the intersection set, and there are C(n, k)
ways to choose the k sets to form the intersection. Therefore equation (3) becomes

0A1 c c c An 0 = C(n, 1)(n − 1)! − C(n, 2)(n − 2)! + C(n, 3)(n − 3)!
 − c+ (−1)n+1C(n, n)(n − n)!

This expression represents the number of all possible nonderangement permu-
tations. We subtract this value from the total number of permutation functions,
which is n!:

n! − C(n, 1)(n − 1)! + C(n, 2)(n − 2)! − C(n, 3)(n − 3)!
 + c+ (−1)nC(n, n)(n − n)!

Rewriting this expression,

n! −
n!

1!(n − 1)!
 (n − 1)! +

n!
2!(n − 2)!

 (n − 2)! −
n!

3!(n − 3)!
 (n − 3)!

 + c+ (−1)n
n!

n!0!
 0!

 = n! −
n!
1!

+
n!
2!

−
n!
3!

+ c+ (−1)n
n!
n!

 = n! c1 −
1
1!

+
1
2!

−
1
3!

+ c+ (−1)n
1
n!
d (4)

 example 42 For n = 3, Equation (4) says that the number of derangements is

3!a1 −
1
1!

+
1
2!

−
1
3!
b =

3!
2!

−
3!
3!

= 3 − 1 = 2

Written in array form, the two derangements are

 a1 2 3
2 3 1

b and a1 2 3
3 1 2

b

400 Relations, Functions, and Matrices Section 5.4 Functions 401

equivalent Sets

 DefInItIonS equivalent SetS and caRdinality
A set S is equivalent to a set T if there exists a bijection f : S S T . Two sets that
are equivalent have the same cardinality.

The notion of equivalent sets allows us to extend our definition of cardinality
from finite to infinite sets. The cardinality of a finite set is the number of elements
in the set. If S is equivalent to T, then all the members of S and T are paired off
by f in a one-to-one correspondence. If S and T are finite sets, this pairing off can
happen only when S and T are the same size. With infinite sets, the idea of size
gets a bit fuzzy, because we can sometimes prove that a given set is equivalent to
what seems to be a smaller set. The cardinality of an infinite set is therefore given
only in a comparative sense; for example, we may say that an infinite set A has (or
does not have) the same cardinality as the set N.

PRaCtiCe 39 Describe a bijection f : Z S N, thus showing that Z is equivalent to N (Z and N have the
same cardinality) even though N (Z.

■

If we have found a bijection between a set S and N, we have established a one-to-
one correspondence between the members of S and the nonnegative integers. We
can then name the members of S according to this correspondence, writing s0 for
the value of S associated with 0, s1 for the value of S associated with 1, and so on.
Then the list

s0, s1, s2, …

includes all the members of S. Since this list constitutes an enumeration of S, S is
a denumerable set. Conversely, if S is denumerable, then a listing of the members
of S exists and can be used to define a bijection between S and N. Therefore a set
is denumerable if and only if it is equivalent to N.

For finite sets, we know that if S has n elements, then `(S) has 2n elements.
Of course, 2n > n, and we cannot find a bijection between a set with n elements
and a set with 2n elements. Therefore S and `(S) are not equivalent. This result is
also true for infinite sets.

 theoRem cantoR’S tHeoReM
For any set S, S and `(S) are not equivalent.

Proof : We will do a proof by contradiction and assume that S and `(S) are equiva-
lent. Let f be the bijection between S and `(S). For any member s of S, f (s) is a
member of `(S), so f (s) is a set containing some members of S, possibly contain-
ing s itself. Now we define a set X = 5x [S 0 x o f (x)6 . Because X is a subset of
S, it is an element of `(S) and therefore must be equal to f (y) for some y [S.

402 Relations, Functions, and Matrices Section 5.4 Functions 403

Then y either is or is not a member of X. If y [X , then by the definition of X,
y o f (y), but since f (y) = X , then y o X . On the other hand, if y o X , then since
X = f (y), y o f (y), and by the definition of X, y [X . In either case, there is a
contradiction, and our original assumption is incorrect. Therefore S and `(S) are
not equivalent. End of Proof

The proof of Cantor’s theorem depends on the nature of set X, which was care-
fully constructed to provide the crucial contradiction. In this sense, the proof is
similar to the diagonalization method (see Example 23 in Chapter 4) used to prove
the existence of an uncountable set. Indeed, the existence of an uncountable set
can be shown directly from Cantor’s theorem.

exeRcISeS 5.4

 1. The accompanying figure represents a function.

5

6

4

7

8

8

9
10

11

 a. What is the domain? What is the codomain? What is the range?
 b. What is the image of 5? of 8?
 c. What are the preimages of 9?
 d. Is this an onto function? Is it one-to-one?

 example 43 The set N is, of course, a denumerable set. By Cantor’s theorem, the set `(N) is
not equivalent to N and is therefore not a denumerable set, although it is clearly
infinite.

S e c t I o n 5 . 4 Review

technIQueS

• Test whether a given relation is a function.
• Test a function for being one-to-one or onto.
• Find the image of an element under function com-

position.
• Write permutations of a set in array or cycle

form.
• Count the number of functions, one-to-one functions,

and onto functions from one finite set to another.

maIn IDeaS

• The concept of function, especially bijective
 function, is extremely important.

• Composition of functions preserves bijectiveness.
• The inverse function of a bijection is itself a bijection.
• Permutations are bijections on a set.

W

W

402 Relations, Functions, and Matrices Section 5.4 Functions 403

 2. The accompanying figure illustrates various binary relations from R to R. Which are functions? For those
that are functions, which are onto? Which are one-to-one?

(a) (b)

(c) (d)

 3. Using the equation f (x) = 2x − 1 to describe the functional association, write the function as a set of
ordered pairs if the codomain is R and the domain is

 a. S = 50, 1, 26 .
 b. S = 51, 2, 4, 56 .
 c. S = 5"7, 1.56 .
 4. Using the equation f (x) = x2 + 1 to describe the functional association, write the function as a set of

ordered pairs if the codomain is Z and the domain is
 a. S = 51, 56 .
 b. S = 5−1, 2, −26 .
 c. S = 5−"12, 36 .
 5. If f : Z S Z is defined by f (x) = 3x, find f (A) for
 a. A = 51, 3, 56 .
 b. A = 5x 0 x [Z and (Ey)(y [Z and x = 2y)6 .
 6. If f : R S R is defined by f (x) = x2, describe
 a. f (N).
 b. f (Z).
 c. f (R).

404 Relations, Functions, and Matrices Section 5.4 Functions 405

 7. The function f: 5all English words6 S Z. In each case, find f (S).
 a. S = 5dog, cat, buffalo, giraffe6 , f (x) = the number of characters in x
 b. S = 5goose, geese, moose, Mississippi6 , f (x) = the number of double-letter pairs in x
 c. S = 5cheetah, seal, porpoise, koala6 , f (x) = the number of e’s in x

 8. The function f : 5binary strings6 S 5binary strings6 . In each case, find f (S).
 a. S = 5000, 1011, 100016 , f (x) = the second bit in x
 b. S = 5111, 100, 01116 , f (x) = the binary string that is the sum of the first and last bit
 c. S = 5001, 11, 1016 , f (x) = the binary string that is equal to x + 1

 9. True or false:
 a. An onto function means that every element in the codomain must have a unique preimage.
 b. A one-to-one function means that every element in the codomain must have a unique preimage.
 c. A one-to-one function means that no two elements in the domain map to the same element in the

 codomain.
 d. An onto function means that (the range) d (the codomain) = [.

 10. True or false:
 a. If every element in the domain has an image, it must be an onto function.
 b. If every element in the codomain has an image, it must be an onto function.
 c. If every element in the codomain has a preimage, it must be an onto function.
 d. If the domain is the larger than the codomain, it can’t be a one-to-one function.

 11. Let S = 50, 2, 4, 66 and T = 51, 3, 5, 76 . Determine whether each of the following sets of ordered pairs
is a function with domain S and codomain T. If so, is it one-to-one? Is it onto?

 a. 5(0, 2), (2, 4), (4, 6), (6, 0)6
 b. 5(6, 3), (2, 1), (0, 3), (4, 5)6
 c. 5(2, 3), (4, 7), (0, 1), (6, 5)6
 d. 5(2, 1), (4, 5), (6, 3)6
 e. 5(6, 1), (0, 3), (4, 1), (0, 7), (2, 5)6
 12. For any bijections in Exercise 11, describe the inverse function.

 13. Let S = the set of all U. S. citizens alive today. Which of the following are functions from domain S to the
codomain given? Which functions are one-to-one? Which functions are onto?

 a. Codomain = the alphabet, f (person) = initial of person’s middle name
 b. Codomain = the set of dates between January 1 and December 31, f (person) = person’s date of birth
 c. Codomain = 9-digit numbers, f (person) = person’s Social Security number

 14. Let S = the set of people at a meeting, let T = the set of all shoes in the room. Let f (x) = the left shoe x
is wearing.

 a. Is this a function?
 b. Is it one-to-one?
 c. Is it onto?

404 Relations, Functions, and Matrices Section 5.4 Functions 405

 15. Which of the following definitions describe functions from the domain to the codomain given? Which
functions are one-to-one? Which functions are onto? Describe the inverse function for any bijective
 function.

 a. f : Z S N where f is defined by f (x) = x2 + 1
 b. g: N S Q where g is defined by g(x) = 1∙x
 c. h: Z × N S Q where h is defined by h(z, n) = z∙(n + 1)
 d. f : 51, 2, 36 S 5p, q, r6 where f = 5(1, q), (2, r), (3, p)6
 e. g: N S N where g is given by g(x) = 2x

 f. h: R2 S R2 where h is defined by h(x, y) = (y + 1, x + 1)
 16. Which of the following definitions describe functions from the domain to the codomain given? Which

functions are one-to-one? Which functions are onto? Describe the inverse function for any bijective
 function.

 a. f : Z2 S N where f is defined by f (x, y) = x2 + 2y2

 b. f: N S N where f is defined by f (x) = e x∙2 if x is even
 x + 1 if x is odd

 c. g: R S R where g is defined by g(x) = 1∙ "(x + 1)

 d. f : N S N where f is defined by f (x) = e x + 1 if x is even
x − 1 if x is odd

 e h: N3 S N where h is given by h(x, y, z) = x + y − z
 f. g: N2 S N3 where g is defined by g(x, y) = (y, x, 0)
 17. Let f : R S R be defined by f (x) = xn, where n is a fixed, positive integer. For what values of n is f

 bijective?
 18. Let f : R S R be defined by f (x) = n2x, where n is a fixed, positive integer. For what values of n is f an

onto function?
 19. Let A = 5x, y6 and let A* be the set of all strings of finite length made up of symbols from A. A function

f : A* S Z is defined as follows: For s in A*, f(s) = the length of s. Is f one-to-one? Prove or disprove.
Is f onto? Prove or disprove.

 20. Let A = 5x, y6 and let A* be the set of all strings of finite length made up of symbols from A. A function
f : A* S Z is defined as follows: For s in A*, f(s) = the number of x’s minus the number of y’s. Is f one-
to-one? Prove or disprove. Is f onto? Prove or disprove.

 21. Let A = 5x, y6 and let A* be the set of all strings of finite length made up of symbols from A. A function
f : A* S A* is defined as follows: For s in A*, f(s) is the string obtained by writing the characters of s in
reverse order. Is f one-to-one? Prove or disprove. Is f onto? Prove or disprove.

 22. Let A = 5x, y6 and let A* be the set of all strings of finite length made up of symbols from A. A function
f : A* S A* is defined as follows: For s in A*, f(s) = xs (the single-character string x followed by s). Is f
one-to-one? Prove or disprove. Is f onto? Prove or disprove.

 23. Let P be the power set of 5a, b, c6 . A function f : P S Z is defined as follows: For A in P,
f(A) = the number of elements in A. Is f one-to-one? Prove or disprove. Is f onto? Prove or disprove.

 24. Let P be the power set of 5a, b6 and let S be the set of all binary strings of length 2. A function f : P S S
is defined as follows: For A in P, f (A) has a 1 in the high-order bit position (left end of string) if and
only if a is in A. f (A) has a 1 in the low-order bit position (right end of string) if and only if b is in A. Is f
 one-to-one? Prove or disprove. Is f onto? Prove or disprove.

 25. Let S = 5x 0 x [R and x ≥ 16 , and T = 5x 0 x [R and 0 < x ≤ 16 . Find a function f: S S T that is a
bijection.

406 Relations, Functions, and Matrices Section 5.4 Functions 407

 26. Let S = 5a, b, c, d6 and T = 5x, y, z6 .
 a. Give an example of a function from S to T that is neither onto nor one-to-one.
 b. Give an example of a function from S to T that is onto but not one-to-one.
 c. Can you find a function from S to T that is one-to-one?
 27. Compute the following values.
 a. :3.4;
 b. <−0.2=
 c. :0.5;
 28. Compute the following values.
 a. <−5−1. 2=
 b. <−5−<1.2= =
 c. :2 * 3.7;
 d. <1 + 1∙2 + 1∙3 + 1∙4=
 29. What can be said about x if :x; = <x=?
 30. Prove that <x= + 1 = <x + 1= .
 31. Prove that :x; = −<−x= .
 32. The ceiling function f (x) = <x=: R S Z. Prove or disprove:
 a. f is one-to-one
 b. f is onto
 33. Prove or disprove:
 a. < :x; = = x
 b. :2x; = 2:x;
 34. Prove or disprove:
 a. :x; + : y; = :x + y;
 b. :2x; = :x; + :x + 1∙2;
 35. Prove that if 2k < n < 2k+1 then k = :log n; and k + 1 = <log n= . (Here log n means log2 n.)
 36. Prove that if 2k ≤ n < 2k+1 then :log n; + 1 = <log (n + 1)= . (Here log n means log2 n.)
 37. Compute the value of the following expressions.
 a. 31 mod 11
 b. 16 mod 8
 c. 22 mod 6
 d. −7 mod 3
 38. a. List five values x such that x mod 7 = 0.
 b. List five values x such that x mod 5 = 2.
 39. Prove or disprove: For any integers x and y, x mod 10 + y mod 10 = (x + y) mod 10.
 40. Prove that x ≡ y (mod n) if and only if x mod n = y mod n. (Recall the definition of congruence modulo

n from Section 5.1.)
 41. Let S be a set and let A be a subset of S. The characteristic function of A is a function cA: S S 50, 16 with

cA(x) = 1 exactly when x [A.
 a. Let S = 51, 2, 3, 4, 56 and A = 51, 3, 56 . Give the ordered pairs that belong to cA.
 b. Prove that for any set S and any subsets A and B of S, cA d B(x) = cA(x) # cB(x).

406 Relations, Functions, and Matrices Section 5.4 Functions 407

 c. Prove that cA(x) = 1 − cA′(x).
 d. Is it true that for any set S and any subsets A and B of S, cA c B(x) = cA(x) + cB(x)? Prove or give a

counterexample.
 42. Ackermann’s function1, mapping N2 to N, is a recursive function that grows very rapidly. It is given by

A(0, n) = n + 1 for all n [N

A(m, 0) = A(m − 1, 1) for all m [N, m > 0
A(m, n) = A(m − 1, A(m, n − 1)) for all m [N, n [N, m > 0, n > 0

 a. Compute (show all steps) the value of A(1, 1).
 b. Compute (show all steps) the value of A(2, 1).
 c. The value of A(4, 0) = 13 = 222

− 3, still a small value. But A(4,1) = 2222

− 3. Compute this value.
 d. Write a likely expression for the value of A(4, 2).
 43. Another rapidly growing function is the Smorynski function, which also maps N2 to N. The definition is

 S(0, n) = nn for all n [N

 S(m, n) = S(m − 1, S(m − 1, n)) for all m [N, n [N, m > 0

 a. How does S(0, n) compare to A(0, n)? (See Exercise 40.)
 b. Find (show all steps) an expression for the value of S(1, n).
 c. A googolplex is a very large number, which if written in standard form (such as 1,000,000 …), even

in 1-point font, would take more room to write than the diameter of the known universe. Look up the
definition of the googolplex and write it as S(m, n) for a specific value of m and n.

 44. The Dwyer function also maps N2 to N and grows very rapidly, but it has a closed-form definition:

D(m, n) = n! c (2m + 1)!
2mm!

d
n

 a. Compute the values of D(1, 1), D(2, 1), D(3, 1) and D(4, 1).
 b. Verify that D(2, 1) = (2*1 + 3)D(1, 1), that D(3, 1) = (2*2 + 3)D(2, 1), and that D(4, 1) 5

(2*3 + 3)D(3, 1).
 c. Verify that D(m, 1) satisfies the recurrence relation

D(m + 1, 1) = (2m + 3) D (m, 1) with D(0, 1) = 1

 (Hint: When you evaluate D(m + 1, 1) and D(m, 1) do not divide the denominator factorial into the nu-
merator factorial. Instead, think of the numerator factorial as a product of even and odd factors.

 d. Find (use a spreadsheet) the smallest value of m for which

D(m, 1) < mm

1This is the most common of several versions of Ackermann’s function, all of which are recursive with extremely rapid growth rates. To watch the
tedious recursiveness of computations of Ackermann’s function, go to http://www. gfredericks.com/sandbox/arith/ackermann

http://www.gfredericks.com/sandbox/arith/ackermann

408 Relations, Functions, and Matrices Section 5.4 Functions 409

 45. Let S = 51, 2, 3, 46, T = 51, 2, 3, 4, 5, 66 , and U = 56, 7, 8, 9, 106 . Also, let
f = 5(1, 2), (2, 4), (3, 3), (4, 6)6 be a function from S to T, and let
g = 5(1, 7), (2, 6), (3, 9), (4, 7), (5, 8), (6, 9)6 be a function from T to U. Write the ordered pairs in the
function g + f .

 46. a. Let f : R S Z be defined by f (x) = :x;. Let g: Z S N be defined by g(x) = x2. What is (g + f)(−4.7)?
 b. Let f map the set of books into the integers where f assigns to each book the number of words in its title.

Let g: Z S Z be given by g(x) = 2x. What is (g + f) (this book)?
 c. Let f map strings of alphabetical characters and blank spaces into strings of alphabetical consonants

where f takes any string and removes all vowels and all blanks. Let g map strings of alphabetical
 consonants into integers where g maps a string into the number of characters it contains. What is (g + f)
(abraham lincoln)?

 47. Let f : N S N be defined by f (x) = x + 1. Let g: N S N be defined by g(x) = 3x. Calculate the value
of the following expressions.

 a. (g + f)(5)
 b. (f + g)(5)
 c. (g + f)(x)
 d. (f + g)(x)
 e. (f + f)(x)
 f. (g + g)(x)
 48. The following functions map R to R. Give an equation describing the composition functions g + f and

f + g in each case.
 a. f (x) = 6x3, g(x) = 2x
 b. f (x) = (x − 1)∙2, g(x) = 4x2

 c. f (x) = <x=, g(x) = :x;
 49. Let f : S S T and g: T S U be functions.
 a. Prove that if g + f is one-to-one, so is f.
 b. Prove that if g + f is onto, so is g.
 c. Find an example where g + f is one-to-one but g is not one-to-one.
 d. Find an example where g + f is onto but f is not onto.
 50. a. Let f be a function, f : S S T . If there exists a function g: T S S such that g + f = iS, then g is called a

left inverse of f. Show that f has a left inverse if and only if f is one-to-one.
 b. Let f be a function, f : S S T . If there exists a function g: T S S such that f + g = iT , then g is called

a right inverse of f. Show that f has a right inverse if and only if f is onto.
 c. Let f : N S N be given by f (x) = 3x. Then f is one-to-one. Find two different left inverse functions

for f.

 d. Let f : N+ S N+ be given by f (x) = lx
2
m . Then f is onto. Find two different right inverse functions

for f.

 51. For each of the following bijections f : R S R, find f −1.
 a. f (x) = 2x
 b. f (x) = x3

 c. f (x) = (x + 4)∙3
 52. Let f and g be bijections, f : S S T and g: T S U . Then f −1 and g−1 exist. Also, g + f is a bijection from

S to U. Show that (g + f)−1 = f −1 + g−1.

408 Relations, Functions, and Matrices Section 5.4 Functions 409

 53. Let A = 51, 2, 3, 4, 56 . Write each of the following permutations on A in cycle form.

 a. f = a1 2 3 4 5
3 1 5 4 2

b

 b. f = 5(1, 4), (2, 5), (3, 2), (4, 3), (5, 1)6
 54. Let A 5a, b, c, d6 . Write each of the following permutations on A in array form.
 a. f = 5(a, c), (b, b), (c, d), (d, a)6
 b. f = (c, a, b, d)
 c. f = (d, b, a)
 d. f = (a, b) + (b, d) + (c, a)
 55. Let A be any set and let SA be the set of all permutations of A. Let f, g, h [SA. Prove that the functions

h + (g + f) and (h + g) + f are equal, thereby showing that we can write h + g + f without parentheses to
indicate grouping.

 56. Find the composition of the following cycles representing permutations on A = 51, 2, 3, 4, 56 . Write
your answer as a composition of one or more disjoint cycles.

 a. (2, 4, 5, 3) + (1, 3)
 b. (3, 5, 2) + (2, 1, 3) + (4, 1) (By Exercise 55, we can omit parentheses indicating grouping.)
 c. (2, 4) + (1, 2, 5) + (2, 3, 1) + (5, 2)
 57. Find the composition of the following cycles representing permutations on A = 51, 2, 3, 4, 5, 6, 7, 86 .

Write your answer as a composition of one or more disjoint cycles.
 a. (1, 3, 4) + (5, 1, 2)
 b. (2, 7, 8) + (1, 2, 4, 6, 8)
 c. (1, 3, 4) + (5, 6) + (2, 3, 5) + (6, 1)
 d. (2, 7, 1, 3) + (2, 8, 7, 5) + (4, 2, 1, 8)
 58. Find the composition of the following cycles representing permutations on N. Write your answer as a

composition of one or more disjoint cycles.
 a. (3, 5, 2) + (6, 2, 4, 1) + (4, 8, 6, 2)
 b. (1, 5, 13, 2, 6) + (3, 6, 4, 13) + (13, 2, 6, 1)
 c (1, 2) + (1, 3) + (1, 4) + (1, 5)
 59. Find the composition of the following cycles representing permutations on A = 5a, b, c, d, e6 . Write your

answer as a composition of one or more disjoint cycles.
 a. (a, d, c, e) + (d, c, b) + (e, c, a, d) + (a, c, b, d)
 b. (e, b, a) + (b, e, d) + (d, a)
 c. (b, e, d) + (d, a) + (e, a, c) + (a, c, b, e)
 60. Find a permutation on an infinite set that cannot be written as a cycle.
 61. The function f written in cycle form as f = (4, 2, 8, 3) is a bijection on the set N. Write f −1 in cycle form.
 62. The “pushdown store,” or “stack,” is a storage structure that operates much like a set of plates stacked on

a spring in a cafeteria. All storage locations are initially empty. An item of data is added to the top of the
stack by a “push” instruction, which pushes any previously stored items farther down in the stack. Only
the topmost item on the stack is accessible at any moment, and it is fetched and removed from the stack
by a “pop” instruction.

Let’s consider strings of integers that are an even number of characters in length; half the characters
are positive integers, and the other half are zeros. We process these strings through a pushdown store as

410 Relations, Functions, and Matrices Section 5.4 Functions 411

follows: As we read from left to right, the push instruction is applied to any nonzero integer, and a zero
causes the pop instruction to be applied to the stack, thus printing the popped integer. Thus, processing
the string 12030040 results in an output of 2314, and processing 12304000 results in an output of 3421.
(A string such as 10020340 cannot be handled by this procedure because we cannot pop two integers from
a stack containing only one integer.) Both 2314 and 3421 can be thought of as permutations,

 a1 2 3 4
2 3 1 4

b and a1 2 3 4
3 4 2 1

b

 respectively, on the set A = 51, 2, 3, 46 .
 a. What permutation of A = 51, 2, 3, 46 is generated by applying this procedure to the string 12003400?
 b. Name a permutation of A = 51, 2, 3, 46 that cannot be generated from any string where the digits 1, 2,

3, and 4 appear in order, no matter where the zeros are placed.

 63. Let S = 52, 4, 6, 86 and T = 51, 5, 76 .
 a. Find the number of functions from S to T.
 b. Find the number of onto functions from S to T.

 64. Let S = 5P, Q, R6 and T = 5k, l, m, n6 .
 a. Find the number of functions from S to T.
 b. Find the number of one-to-one functions from S to T.

 65. a. For 0S 0 = 2, 3, and 4, respectively, use the theorem on the number of functions to show that the number
of one-to-one functions from S to S equals the number of onto functions from S to S.

 b. Argue that for 0S 0 = n, f : S S S is one-to-one if and only if f is onto.
 c. Find an infinite set S and a function f : S S S such that f is one-to-one but not onto.
 d. Find an infinite set S and a function f : S S S such that f is onto but not one-to-one.

 66. Let A = 5a, b, c, d6 . How many functions are in SA? How many of these functions are derangements?
Write all the derangements in array form.

 67. Let 0S 0 = n. In parts a-e, find the number of
 a. functions from S to S.
 b. one-to-one functions from S to S.
 c. functions from S onto S (see Exercise 65).
 d. permutations from S onto S.
 e. derangements from S onto S.
 f. Order the values obtained in parts (a) through (e) from smallest to largest and explain why this ordering

is reasonable.

 68. a. A system development project calls for five different tasks to be assigned to Maria, Jon, and Suzanne.
In how many ways can the assignment be done if each of the three workers must get at least one task?

 b. In how many ways can the projects be assigned if Maria must develop the test plan, which is one of the
five tasks, but may do other tasks as well? (Hint: Consider the two cases where Maria does and does
not do any of the other tasks.)

 69. In a programming class of seven students, the instructor wants each student to modify the program from a
previous assignment, but no student should work on his or her own program. In how many ways can the
instructor assign programs to the students?

410 Relations, Functions, and Matrices Section 5.4 Functions 411

 70. a. Find a calculus book and look up the Maclaurin series representation for the function ex.
 b. Use the answer to part (a) to find a series representation for e−1.
 c. Use a calculator to compute an approximate value for e−1 to about 5 decimal places.
 d. How can the answer to parts (b) and (c) help you approximate the number of derangements of n objects

when n is large, say, n ≥ 10? (Hint: Look at Equation (4) in this section.)
 e. Apply this approach to Exercise 69 and compare the results.
 f. Approximately how many derangements are there of 10 objects?
 71. Let f be a function, f : S S T .
 a. Define a binary relation r on S by x r y 4 f (x) = f (y). Prove that r is an equivalence relation.
 b. What can be said about the equivalence classes if f is a one-to-one function?
 c. For S = T = Z and f (x) = 3x2, what is 34 4 under the equivalence relation of part (a)?
 72. Prove that S(m, n), the number of ways to partition a set of m elements into n blocks, is equal to 1∙n!

times the number of onto functions from a set with m elements to a set with n elements. (Hint: Consider
Exercise 71.)

 73. By the definition of a function f from S to T, f is a subset of S × T where the image of every s [S under
f is uniquely determined as the second component of the ordered pair (s, t) in f. Now consider any binary
relation r from S to T. The relation r is a subset of S × T in which some elements of S may not appear
at all as first components of an ordered pair and some may appear more than once. We can view r as a
nondeterministic function from a subset of S to T. An s [S not appearing as the first component of an
ordered pair represents an element outside the domain of r. For an s [S appearing once or more as a first
component, r can select for the image of s any one of the corresponding second components.

Let S = 51, 2, 36 , T = 5a, b, c6 , and U = 5m, n, o, p6 . Let r be a binary relation on S × T and s be
a binary relation on T × U defined by

r = 5(1, a), (1, b), (2, b), (2, c), (3, c)6
s = 5(a, m), (a, o), (a, p), (b, n), (b, p), (c, o)6

Thinking of r and s as nondeterministic functions from S to T and T to U, respectively, we can form
the composition s + r, a nondeterministic function from S to U.

 a. What is the set of possible images of 1 under s + r?
 b. What is the set of possible images of 2 under s + r? of 3?
 74. Let f be a function, f: S S T .
 a. Show that for all subsets A and B of S, f (A d B) # f (A) d f(B).
 b. Show that f (A d B) = f (A) d f(B) for all subsets A and B of S if and only if f is one-to-one.
 75. Let C be a collection of sets, and define a binary relation r on C as follows: For S, T [C, S r T 4 S is

equivalent to T. Show that r is an equivalence relation on C.
 76. Group the following sets into equivalence classes according to the equivalence relation of Exercise 75.

A = 52, 46
B = N

 C = 5x 0 x [N and (Ey)(y [N and x = 2*y)6
D = 5a, b, c, d6
E = `(51, 26)
F = Q+

412 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 413

Exercises 77 and 78 involve programming with a functional language. Functional programming languages, as
opposed to conventional (procedural) programming languages such as C++, Java, or Python, treat tasks in
terms of mathematical functions. A mathematical function such as f (x) = 2x transforms the argument 5 into
the result 10. Think of a program as a big function to transform input into output. A functional programming
language contains primitive functions as part of the language, and the programmer can define new functions as
well. Functional programming languages support function composition, allowing for complex combinations of
functions. Using the functional programming language Scheme, we can define the doubling function by
 (define (double x)
 (* 2 x)

The user can then run the program and type
 (double 5)

which produces an immediate output of 10.

 77. a. Write a Scheme function to square a number.
 b. What is the output from the following user input?
 (double (square 3))

 78. Scheme also supports recursion, plus the usual control structures of procedural languages, such as condi-
tional and iterative statements.

 a. Given the Scheme function

 (define (mystery n)
 (cond ((= n 1) 1)
 (else (*n (mystery (- n 1))))))

 what is the output of
 (mystery 4)

 b. The “mystery” function is better known as _______.

 S e c t I o n 5 . 5 oRdeR oF Magnitude

Function growth

Order of magnitude is a way of comparing the “rate of growth” of different
 functions. We know, for instance, that if we compute f (x) = x and g(x) = x2 for
 increasing values of x, the g values will be larger than the f values by an ever
increasing amount. This difference in the rate of increase cannot be overcome
by simply multiplying the f values by some large constant; no matter how large a
constant we choose, the g values will eventually race ahead again. Our experience
indicates that the f and g functions seem to behave in fundamentally different
ways with respect to their rates of growth. In order to characterize this difference
formally, we define a binary relation on functions.

Let S be the set of all functions with domain and codomain the nonnegative
real numbers. We can define a binary relation on S by

f r g 4 there exist positive constants n0, c1, and c2 such that, for all x ≥ n0,
c1g(x) ≤ f (x) ≤ c2g(x)

412 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 413

Given that r is an equivalence relation, it partitions S into equivalence classes.
If f is in the same class as g, then f is said to have the same order of magnitude as g,
denoted by f = Θ(g) and pronounced “f is order g” or sometimes “f is big theta of
g.” Because of symmetry, this also means that g is the same order of magnitude as
f, or g = Θ(f). (The notation f = Θ(g) is a bit of a misuse of the equality symbol
because Θ(g) is not some function identical to f. It is just a shorthand way of say-
ing that f [3g 4 under the equivalence relation r defined above.)

 example 44 Let f and g be functions in S where f(x) = 3x2 and g(x) = 200x2 + 140x + 7

Let n0 = 2, c1 =
1

100
, and c2 = 1. Then for x ≥ 2,

1
100

 (200x2 + 140x + 7) ≤ 3x2 ≤ (1)(200x2 + 140x + 7)

or

 2x2 + 1.4x + 0.07 ≤ 3x2 ≤ 200x2 + 140x + 7 (1)

Therefore f r g.

PRaCtiCe 40

a. Verify the inequality in Equation (1) for the following values of x: 2, 3, 4, 5. (Use a calculator.)
b. In Example 44, can n0 have the value 1 if c1 and c2 remain the same?
c. Find a different set of three values n0, c1, and c2 that will also work to show that f r g in

Example 44. ■

The relation r is an equivalence relation on S. For example, to prove that
f r f , we can pick n0 = c1 = c2 = 1 and have

(1) f (x) ≤ f (x) ≤ (1) f (x)

PRaCtiCe 41

a. Prove that r is symmetric.
b. Prove that r is transitive. ■

 DefInItIon oRdeR oF Magnitude
Let f and g be functions mapping nonnegative reals into nonnegative reals. Then
f is the same order of magnitude as g, written f = Θ(g), if there exist positive
constants n0, c1, and c2 such that for x ≥ n0, c1g (x) ≤ f (x) ≤ c2g (x).

414 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 415

We will usually try to find the simplest representative of a given equivalence
class. Thus for the functions f and g of Example 44, we would say f = Θ(x2) and
g = Θ(x2). A polynomial is always the order of magnitude of its highest-degree
term; lower-order terms and all coefficients can be ignored. This is not surprising,
since for large values of x, the highest-degree term will dominate the result.

PRaCtiCe 42 Prove (by finding appropriate constants that satisfy the definition of order of magni-
tude) that f = Θ(x2) and g = Θ(x2) for the functions f and g of Example 44.

■

To understand more intuitively what these equivalence classes mean, we’ll
draw some graphs. Let h(x) [S, where h(x) = x2. Figure 5.25 shows the graph
of h(x). Now suppose we multiply the h values by the two constants c1 = 1∙2 and
c2 = 2. The functions c1h(x) and c2h(x) are shown as dotted lines in Figure 5.26.
These dotted lines form a kind of envelope around the h(x) values, roughly trac-
ing the shape of h(x). Changing the value of the constants changes the width of
the envelope but not the basic shape. If h1(x) is a function with h1 = Θ(h), then
there is some positive constant n0 and some envelope around h such that for all
domain values to the right of n0, the h1 values must fall within this envelope, as
shown in Figure 5.27. Therefore the h1 values can never stray too far from the h
values. The functions h1 and h are roughly the same size—they are the same order
of magnitude.

x

 h(x) = x2

x

h(x)c2h(x)
c1h(x)

x

h(x)
c2h(x)

c1h(x)

h1(x)

n0
Figure 5.25 Figure 5.26 Figure 5.27

 example 45 Let f (x) = x and h(x) = x2. Figure 5.28 illustrates that for the constants c1 = 1∙2
and c2 = 2, f soon falls below the envelope. Reducing the c1 constant (lowering
the bottom edge of the envelope) only postpones the problem. Formally, we can
do a proof by contradiction to show that f is not Θ(x2). Suppose f = Θ(x2). Then
there exist constants n0 and c1 with c1x2 ≤ f(x) for x ≥ n0. But this would imply
that c1x2 ≤ x or c1x ≤ 1 or x ≤ 1∙c1 for all x ≥ n0. Because c1 is fixed, we can
always choose x large enough so that x > 1∙c1, which is a contradiction. Therefore
f(x) = x is not Θ(x2).

414 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 415

x

h(x) = x2

f (x) = x

c2h(x)

c1h(x)

Figure 5.28

If we imagine functions representing various forms of transportation, then
functions that are the same order of magnitude (belong to the same equivalence
class) represent the same mode of transportation. One class represents travel on
foot, another class represents travel by automobile, a third represents travel by air.
Speeds within a given mode are about the same; ignoring coefficients and low-
order terms amounts to ignoring the difference between walking and running or
between a Jeep and a Jaguar or between a Cessna and a Boeing 787. Walking (at
any speed) is distinctly different from driving, which is distinctly different from
flying.

We can imagine a hierarchy of orders of magnitude. For example, the class
Θ(x) is a lower order of magnitude than the class Θ(x)2 because functions that are
Θ(x) eventually fall below functions that are Θ(x2). Also, the class Θ(log x) is a
lower order of magnitude than Θ(x) (see Exercise 15 at the end of this section). In
our transportation analogy, walking is slower than driving is slower than flying.

A sort of arithmetic can be developed using order of magnitude. For example,
if f1(x) = x and f2(x) = x2, then the function (f1 + f2)(x) = f1(x) + f2(x) 5
x + x2 = Θ(x2). In general, if f1 = Θ(g1) and f2 = Θ(g2), then f1 + f2 5
Θ(max (g1, g2)) (see Exercise 8). When expressed in abbreviated form,
this leads to somewhat bizarre equations such as Θ(x) + Θ(x2) = Θ(x2) or
Θ(x2) + Θ(x2) = Θ(x2).

More on analysis of algorithms

Order of magnitude is important in analysis of algorithms, which we discussed in
Section 3.3. In analyzing an algorithm, we identify the important tasks the algo-
rithm performs. Usually the number of times such tasks must be done in executing
the algorithm will depend on the size of the input. For example, searching a list of
n elements or sorting a list of n elements will require more work as n increases.
Typically, we can express input size as a nonnegative integer, so the functions that
express the amount of work will be functions with domain N. We found in Section
3.3 that a sequential search of n elements requires n comparisons in the worst case,
while a binary search requires 1 + log n comparisons in the worst case (assuming
n is a power of 2). Rather than compute the exact functions for the amount of work

416 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 417

done, it is easier and often just as useful to settle for order-of-magnitude informa-
tion. Sequential search is Θ(n) and binary search is Θ(log n) in the worst case.
Thus binary search is an order-of-magnitude improvement over sequential search.
The order of magnitude of an algorithm is also known as its computational com-
plexity because it reflects the amount of work inherent in the algorithm. Table 5.3
gives a summary of the worst-case order of magnitude for algorithms discussed in
the text and exercises of Section 3.3.

table 5.3

algorithm operation Worst-case order of magnitude

SequentialSearch on list size n comparisons Θ(n)

BinarySearch on sorted list size n comparisons Θ(log n)

Pattern matching of pattern of length m
in text of length n

comparisons Θ(mn)

Evaluation of a polynomial of degree n multiplications and additions Θ(n)

BubbleSort of list size n comparisons Θ(n2)

SelectionSort of list size n comparisons Θ(n2)

MergeSort of list size n comparisons Θ(n log n)

QuickSort of list size n comparisons Θ(n2)

To appreciate the effect of order of magnitude in evaluating algorithms,
 suppose we have two algorithms A and A′ to do the same job but they differ
in order of magnitude—say, A is Θ(n) and A′ is Θ(n2). Even if each step in a
 computation takes only 0.0001 second, this difference will affect total computation
time as n grows larger. The first two rows of Table 5.4 give total computation
times for A and A′ for various values of input length. Now suppose a third al-
gorithm A″ exists whose order of magnitude is not even given by a polynomial
function but by an exponential function, say 2n. The total computation times for
A″ are shown in the third row of Table 5.4.

table 5.4

total computation time

Size of Input n

algorithm order 10 50 100

A n 0.001 second 0.005 second 0.01 second

A′ n2 0.01 second 0.25 second 1 second

A″ 2n 0.1024 second 3570 years 4 × 1016 centuries

416 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 417

Note that the exponential case grows at a fantastic rate! Even if we assume
that each computation step takes much less time than 0.0001 second, the relative
growth rates between polynomial and exponential functions still follow this same
pattern. Because of this immense growth rate, algorithms not of polynomial order
are generally not useful for large values of n. In fact, problems for which no poly-
nomial time algorithms exist are called intractable.

Sometimes algorithms that are not polynomial in the worst case may still be
efficient for “average”—and useful—input cases.2 Nonetheless, in attempting to im-
prove efficiency, we should ask whether a different algorithm of a lower order of
magnitude exists before we worry about the details of fine-tuning a given algorithm.

If f (n) represents the work done by an algorithm on an input of size n, it may
be difficult to find a simple function g such that f = Θ(g). Remember that if we
can find such a g, then f and g are functions that eventually (for large enough n)
have roughly the same shape. But we may still be able to find a function g that
serves as an upper bound for f. In other words, while f may not have the same
shape as g, f will never grow significantly faster than g. Formally, this is expressed
by saying that f = O(g) (“f is big O of g”).

2This is the case with the well-known simplex method for solving linear programming problems, which are a
generalization of systems of linear equations to systems of inequalities—see Section 5.7.

 DefInItIon Big oH
Let f and g be functions mapping nonnegative reals into nonnegative reals. Then
f is big oh of g, written f = O(g), if there exist positive constants n0 and c such
that for x ≥ n0, f (x) ≤ cg(x).

If f = O(g), then g is a ceiling for f and gives us a worst-case picture of the
growth of f. In Section 3.3, we learned that if E(n) is the number of divisions
required by the Euclidean algorithm to find gcd(a, b), where b < a = n, then
E(n) = O(log n)

The big oh notation f = O(g) says that f grows at the same rate or at a slower
rate than g. But if we know that f definitely grows at a slower rate than g, then we
can say something stronger, namely that f is little oh of g, written f = o(g). The
relationship between big oh and little oh is this: If f = O(g), then either f = Θ(g)
or f = o(g), much like a ≤ b says that either a = b or a < b.

the Master theorem

In Section 3.2, we learned that a solution for divide-and-conquer recurrence rela-
tions of the form

S(n) = cSan
2
b + g(n) for n ≥ 2, n = 2m

is given by

S(n) = clog nS(1) + ∙
log n

i=1
c(log n)− i g(2i)

418 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 419

3A more complicated master theorem gives similar results for the case of Equation (2).

This type of recurrence relation arises in the analysis of an algorithm that splits
the input in half and operates recursively on one or more of the halves. A more
general divide-and-conquer recurrence relation divides the input into subproblems
that are each of size n∙b and then operates recursively on a of the subproblems.
Each subproblem requires S(n∙b) work with g(n) representing the work required
to divide into subproblems or recombine the results of solving the subproblems.
Such a recurrence relation would have the form

 S(n) = aS an
b
b + g(n) for n ≥ 2, n = bm (2)

We assume that n is an integral power of b so that dividing n by b over and over
always results in an integer.

A result called the master theorem gives us order-of-magnitude results via a
cookbook formula for the case when g(n) = nc. Thus, assume the recurrence rela-
tions of interest look like this:3

 S(n) = aS an
b
b + nc for n ≥ 2, n = bm (3)

 theoRem MaSteR tHeoReM
Consider the recurrence relation

 S(1) ≥ 0

 S(n) = aS an
b
b + nc for n ≥ 2

where n = bm, a, and b are integers, a ≥ 1, b > 1, and c is a nonnegative real
number. Then

 1. if a < bc S(n) = Θ(nc)
 2. if a = bc S(n) = Θ(nc log n)
 3. if a > bc S(n) = Θ(nlogb a)

 example 46 A recurrence relation of the form

S(n) = 4S an
5
b + n3 for n ≥ 2, n = 5m

matches the form of the recurrence relation shown in the master theorem where
a = 4, b = 5, and c = 3. Because 4 < 53, Case 1 applies and the master theorem
says that S(n) = Θ(n3).

418 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 419

Note that the master theorem does not give exact solutions; it gives order-of-
magnitude results. Also, the value of S(1) (a constant) plays no part in determin-
ing the result.

 example 47 The worst-case recurrence relation for comparisons done by the BinarySearch al-
gorithm on a sorted list of size n (Example 30 in Chapter 3) is

 C(1) = 1

 C(n) = Can
2
b + 1 for n ≥ 2, n = 2m

We found the exact solution to be C(n) = 1 + log n, certainly Θ(log n). We can
find this directly from the master theorem with a = 1, b = 2, c = 0. Because
a = bc, C(n) = Θ(n0 log n) = Θ(log n).

proof of the Master theorem

To prove the master theorem, we’ll go back to an expansion technique. We apply
the “recipe” of Equation (3) over and over. The recipe is that S at some value is a
times S at that value divided by b, plus that value to the c power. Therefore

S(n) = aSan
b
b + nc

= a caSa n
b2b + an

b
b

c

d + nc = a2Sa n
b2b + aan

b
b

c

+ nc

= a2 caSa n
b3b + a n

b2b
c

d + aan
b
b

c

+ nc = a3Sa n
b3b + a2a n

b2b
c

+ aan
b
b

c

+ nc

(

= akSa n
bkb + ak−1a n

bk−1b
c

+ c+ aan
b
b

c

+ nc

This expansion must stop when n∙bk = 1, or n = bk, which means k = m. At that
point, using summation notation,

S(n) = amS(1) + ∙
m−1

i=0
aia n

bib
c

= amS(1) + ∙
m−1

i=0
nca ai

bcib

 = amS(1) + nc ∙
m−1

i=0
a a

bcb
i

 (4)

Because n = bm, it follows that m = logb n, so Equation (4) can be written as

S(n) = alogb nS(1) + nc ∙
m−1

i=0
a a

bcb
i

420 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 421

and this equation in turn, using property 11 of the logarithm function (see
 Appendix C), can be written as

 S(n) = nlogb aS(1) + nc ∙
m−1

i=0
a a

bcb
i

 (5)

We’ll see the expression logb a frequently, so we’ll temporarily give it a simpler
name: Let w = logb a. Then, expanding the summation, Equation (5) can be
 written as

S(n) = nwS(1) + nc c1 + a a
bcb + a a

bcb
2

+ c+ a a
bcb

m−1

d

We can see that the expression in brackets represents the sum of the first m terms
of a geometric sequence with first term equal to 1 and common ratio r equal to
(a∙bc). If r ∙ 1, this sum (see Exercise 27 in Section 2. 2) has the value

1 − a a
bcb

m

1 − a a
bcb

and

 S(n) = nwS(1) + nc ≥
1 − a a

bcb
m

1 − a a
bcb

¥ (6)

The condition r ∙ 1 means (a∙bc) ∙ 1 or a ∙ bc. This means that Equation (6)
holds for both Case 1 and Case 3 of the master theorem, so to prove those cases
we’ll do some tiresome algebra on Equation (6).

First, note that

nca a
bcb

m

= nca a
bcb

logb n

=
ncalogb n

bc logb n
=

ncnlogb a

blogb nc =
ncnlogb a

nc = nlogb a = nw

so Equation (6) becomes

S(n) = nwS(1) +
nc − nca a

bcb
m

bc − a
bc

= nwS(1) +
bc(nc − nw)

bc − a

or

 S(n) = nwS(1) +
bc

bc − a
 nc +

bc

a − bc nw (7)

420 Relations, Functions, and Matrices Section 5.5 Order of Magnitude 421

Case 1: a < bc. From a < bc we get (taking logb of both sides)

logb a < c or w < c

In the right side of Equation (7), nc is the highest-power term and has a positive
coefficient (because bc − a > 0). Therefore S(n) = Θ(nc).
Case 3: a > bc. From a > bc we get (taking logb of both sides)

logb a > c or w > c

In the right side of Equation (7), nw is the highest-power term and has a positive
coefficient (because a − bc > 0). Therefore S(n) = Θ(nw) = Θ(nlogb a).
Case 2: a = bc. This is an easy case to prove and is left for you to do (see
Exercise 28).

S e c t I o n 5 . 5 Review

technIQueS

• Determine whether two functions are the same
 order of magnitude.

• Use the master theorem to find an order-of-
magnitude expression for the solution to certain
divide-and-conquer recurrence relations.

maIn IDeaS

• Functions can be grouped into equivalence classes
according to their order of magnitude, which is a
measure of their growth rate.

• Big theta, big oh and little oh (Θ, O, o) are
 notations for relating the growth rates of two
functions.

exeRcISeS 5.5

 1. Prove, by finding constants that satisfy the definition of order of magnitude, that f = Θ(g) if f (x) = x and
g(x) = 17x + 1.

 2. Prove, by finding constants that satisfy the definition of order of magnitude, that f = Θ(g) if
f (x) = 3x3 − 7x and g(x) = x3∙2.

 3. Prove, by finding constants that satisfy the definition of order of magnitude, that f = Θ(g) if
f (x) = 29x2 − 4x − 15 and g(x) = 15x2 + x.

 4. Prove, by finding constants that satisfy the definition of order of magnitude, that f = Θ(g) if
f (x) = !x + 100 and g(x) = "x.

 5. Prove, by finding constants that satisfy the definition of order of magnitude, that f = Θ(g) if
f (x) = x3 + log x and g(x) = x3.

 6. Prove, by finding constants that satisfy the definition of order of magnitude, that f = Θ(g) if
f (x) = log(3x2) and g(x) = log x.

 7. In this section, we noted that h1 = Θ(h) implies that from some point on, h1 is within an “envelope” of h.
Can this envelope ever be entirely above or entirely below h? Explain.

 8. Prove that if f1, is a function that is Θ(g1) and f2 is a function that is Θ(g2), then the function f1 + f2,
defined by (f1 + f2)(x) = f1(x) + f2(x), is Θ(max(g1, g2)), where (max(g1, g2))(x) = max(g1(x), g2(x)).

 9. Find the smallest integer n for which x log x is O(xn).
 10. Find the smallest integer n for which (x4 + 4x)∙(x + 2) is O(xn).

W

422 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 423

Exercises 11–18 require familiarity with ideas from calculus. As an alternative to the definition of order of
magnitude, a limit test can be used to prove that f = Θ(g):

 f = Θ(g) if lim
xS∞

f (x)
g (x)

= p where p is a positive real number

As an aid in finding the limit of a quotient, if limxS∞ f (x) = ∞ and limxS∞ g(x) = ∞ and f and g are
differentiable functions, then L’Hôpital’s rule says that

lim
xS∞

f (x)
g(x)

= lim
xS∞

f ′(x)
g′(x)

Thus 2x2 + 7 = Θ(x2) because

lim
xS∞

2x2 + 7
x2 = lim

xS∞

4x
2x

= 2

 11. Use the limit test to do Exercise 1 again.

 12. Use the limit test to do Exercise 2 again.
As another limit test, if

lim
xS∞

f(x)
g(x)

= 0

 then f = o(g).

 13. Use the second limit test to prove that x = o(x2).

 14. Use the second limit test to prove that "x = o(x).

 15. Use the second limit test to prove that log x = o(x).

 16. Use the second limit test to prove that (ln x)2 = o(x0. 5) where ln x is the natural log of x, loge x.

 17. Use both limit tests to group the following functions into classes by order of magnitude and to order those
classes. Here ln x is the natural log of x, loge x.

17 x log x, 200 log x, 2x − x2, "4 x, 10x2 − 3x + 5, 420x, 41 ln x2

 18. Use both limit tests to group the following functions into classes by order of magnitude and to order those
classes. Here ln x is the natural log of x, loge x.

x, "x, log x, x3, x log x, 2x3 + x, ex, (log x)2, ln x, x3 + log x

 19. You ask three different people to give you a worst-case order-of-magnitude expression for the work done
by a particular algorithm on an input of size n. You receive three answers:

i. O(n3)
ii. o(n3)

iii. Θ(n2)
 Which is the most useful and why?

422 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 423

 20. An algorithm to determine whether a propositional wff with n statement letters is a tautology works by
assigning, one at a time, all possible sets of truth values to the statement letters. The unit of work for this
algorithm is the examination of one set of truth values. Explain why this algorithm is Θ(2n) in the worst
case.

For Exercises 21–26, use the master theorem to determine an order-of-magnitude expression for the work done.

 21. S(n) = 2S an
4
b + n2

 22. S(n) = 4S an
3
b + n

 23. S(n) = 4S an
4
b + n

 24. S(n) = 4S an
2
b + n2

 25. S(n) = 3S an
3
b + "n

 26. S(n) = 2S an
2
b + n3

 27. The worst-case recurrence relation for comparisons done by the MergeSort sorting algorithm is

C(1) = 0

C(n) = 2Can
2
b + (n − 1) for n ≥ 2, n = 2m

 a. Use the master theorem to find an order-of-magnitude expression for the solution to the related recur-
rence relation.

C′(n) = 2C′an
2
b + n for n ≥ 2, n = 2m

 b. Compare the result of part (a) with the exact solution to C(n) (Exercise 22 of Section 3.3).
 28. Prove the master theorem for the case where a = bc. (Hint: Start with Equation (5). Also remember that a

change of base of logarithms only involves multiplication by a constant.)

 S e c t I o n 5 . 6 the Mighty Mod FunCtion

In Section 5.4 we defined the modulo n function as follows:

If x = qn + r, 0 ≤ r < n, then x mod n = r.

In other words, x mod n is the nonnegative remainder (also called the residue of x
modulo n) when x is divided by the positive integer n. This seemingly innocuous
function turns up in a surprising number of applications, some of which will be
explored in this section.

424 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 425

 example 48 Military time uses a 24-hour clock, where the hours run from 0 through 23. One
half hour before midnight in military time is 23:30. Standard time uses am and pm
for the first half of the day and the second half of the day, respectively, with the
hours in each half running from 0 through 11. One half hour before midnight in
standard time is 11:30 pm. Conversion from military time to standard time uses the
modulo 12 function:

8:00 military time: Compute 8 mod 12 = 8 gives 8:00 am standard time
16:00 military time: Compute 16 mod 12 = 4 gives 4:00 pm standard time

The am or pm designation is determined by whether the quotient in the division is
0 (am) or 1 (pm). Counting modulo 12 begins at 0 and wraps around to 0 again
when 12 is reached:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, …

This counting scheme is sometimes taught to young children as “clock arithmetic.”

Section 5.1 defined an equivalence relation called congruence modulo n:

x ≡ y (mod n) if x − y is an integral multiple of n.

Given the similar terminology, one would expect that congruence modulo n and
the modulo n function would surely be related.

PRaCtiCe 43

a. Prove that x ≡ y (mod n) if and only if (x − y) mod n = 0.
b. Prove that x ≡ y (mod n) if and only if x mod n = y mod n. ■

Exercises at the end of this section show how some arithmetic operations
using mod n can be broken down for simpler calculation. One such result
(Exercise 7) is particularly useful:

 (x # y) mod n = (x mod n # y mod n) mod n (1)

By Equation (1),

220 mod 6 = (22 mod 6 # 10 mod 6) mod 6 = (4 # 4) mod 6 = 16 mod 6 = 4

In addition, spreadsheet software usually contains a mod function that speeds up
computations.

Hashing

A hash function is a function h: S S T where the domain S is a set of text strings
or integer values, and the codomain T is the set of integers 50, 1, …, t − 16

424 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 425

where t is some relatively small positive integer. If the domain S consists of text
strings, we can imagine them encoded in some way into integer values, perhaps
by an algorithm as simple as converting each individual letter of a text string into
its position in the alphabet (a = 1, b = 2, and so on) and adding up the resulting
list of integers to get one integer value. Therefore we can assume that S consists of
integer values to begin with.

The function h therefore maps a potentially large set of integer values S into
a relatively small window of integer values T. Consequently h isn’t likely to be a
one-to-one function because there may be many values x1, x2, x3, … from S such
that h(x1) = h(x2) = h(x3), in which case we say that x1, x2, and x3 all “hashed” to
the same value. The term “hash function” came about because the domain value
x is often chopped up into pieces in the process of computing h(x). Whatever the
function h(x) does to x, the last step is almost always to apply the mod t function
so the final value of h(x) falls in the codomain 50, 1, … , t − 16 .

 example 49 S is a set of positive integers, T is the set of integers 50, … , t − 16 and the hash
function h(x) is given by

h(x) = x mod t

If t = 10, for example, then values are computed modulo 10:

 h(7) = 7 mod 10 = 7
 h(23) = 23 mod 10 = 3
 h(59) = 59 mod 10 = 9
 h(158) = 158 mod 10 = 8
 h(48) = 48 mod 10 = 8

Here 158 and 48 hash to the same value.

A hash function is often used as part of a search algorithm. We have already
discussed two search algorithms. In sequential search, n elements are stored in an
unordered (random) list and a given target value is compared one-by-one with the
list elements. In binary search, n elements are stored in a sorted list. The given
target value is compared with the midpoint of the list, the midpoint of half the list,
and so on. In a search using a hash function, n elements are stored in an array (a
one-dimensional table) called a hash table, where the array is indexed from 0
through t − 1; the table is of size t. The element x is passed as the argument to
the hash function and the resulting h(x) value gives the array index at which the
element is then stored. Later, when a search is carried out, the target value is run
through the same hash function, giving an index location in the hash table, which
is where to look for the matching stored element.

However, because the hash function is not one-to-one, things are not quite
that simple. As the search list is loaded into the hash table, different values may
hash to the same array index, producing a collision. There are several collision
resolution algorithms available. One is called linear probing—just keep going in

426 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 427

 example 50 Using the hash function of Example 49, the elements 7, 23, 59, 158 and 48 are
loaded in order into the hash table. The size of the hash table is the same as the
modulo value used (10). With linear probing, the resulting hash table looks like
Figure 5.29(a); 48 hashes to index 8 (occupied), tries index 9 (occupied), and fi-
nally finds a slot at index 0. With chaining, assuming elements are added to the
front of the list, the hash table looks like Figure 5.29(b).

0

1

2

3

4

5

6

7

8

9

48

23

7

158

59

(a) (b)

59

48 158

7

23

0

1

2

3

4

5

6

7

8

9

Figure 5.29

After the hash table is built, we can perform searches for target elements. To
search for a target element of 48, the linear collision resolution scheme would
repeat the steps used to store the 48—hash the target 48 to 8, then check index 9
and then index 0, where the element is found. The target would be compared with
three different values (158, 59, 48) to reach a successful conclusion. To search for
a target of 68, the target would hash to index 8 (no match); then the elements at
index 9 and index 0 would be checked, also with no success. Advancing to index 1,
the hash table contains an empty slot, so the search concludes (after four compari-
sons, counting comparing the target against an empty cell) that 68 is not stored in
the hash table. The chaining scheme would hash a target value of 48 to index 8
and then search (sequentially) the resulting linked list, finding the target value at
the beginning of the list after one comparison. To search for a target value of 68,
the search algorithm would search the same linked list but would get to the end,
concluding that 68 is not stored in the hash table.

the array (looping back to the top of the array when you get to the bottom) and
store element x in the next available empty slot. Another method, called chaining,
builds a linked list for each array index; the list is initially empty but eventually
contains all elements that hashed to that index value.

426 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 427

Two goals should be kept in mind in designing a hash function:

 1. Given an argument value x, h(x) can be computed quickly.
 2. The number of collisions will be reduced because h(x) does a good job of

distributing values throughout the hash table.

Use of a modulo function as the hash function accomplishes the first goal. The
second goal is harder to achieve because data can always be found that produce a
large number of collisions, but distribution seems to work better on the average if
the table size (the modulo value) is a prime number.

The average number of comparisons required to search for an element us-
ing hashing depends not on the total number n of elements in the hash table, but
rather on the ratio of n to the total table size t. If this ratio is low, then (using linear
probing) there are lots of empty slots, so you won’t have to look very far to find
a place to insert a new element into the table or, correspondingly, to search for a
target element that is in the hash table. Similarly, if this ratio is low and chaining
is used, the average length of any linked list you may have to (sequentially) search
for a target element should be short. This ratio n/t is called the load factor of the
hash table. In sequential search or binary search, more elements in the set to be
searched increases the work (number of comparisons) required. But using hash-
ing, more elements can be searched just as efficiently as fewer provided the hash
table size grows accordingly so that the load factor stays low.

computer Security

Computer security (or the more general term information assurance) is a topic
of critical interest when our economy, defense, and indeed our entire way of life
depend so much on computers and information. The mod function plays a part in
many aspects of security.

Cryptography
Children often delight in sending “secret messages” using some encoding/
decoding scheme that they know and that (they believe) their parents don’t know!

■

PRaCtiCe 44 Show the resulting hash tables if 28 is the next value stored in the hash tables of Figure
5.29(a) and (b).

 example 51 Voting records for the citizens of a certain precinct are stored in a hash table of
size 197 using the voter’s Social Security number as a key value (the value that is
hashed). Using a hash function modulo the hash table size, the index to search first
for data on a voter with Social Security number

328356770

is

328356770 mod 197 = 125

428 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 429

In the adult world, military information, financial information, and company pro-
prietary information that must be transmitted securely uses the same process. The
original information (called the plaintext) is encrypted using an encryption key,
resulting in coded text called the ciphertext. The ciphertext is transmitted and
when it is received, it can be decoded using the corresponding decryption key.
Encryption and decryption are inverse functions in the sense that

decryption (encryption (plaintext)) = plaintext

If the message is intercepted by someone with no knowledge of the decryption key,
it will not be useful unless the encryption scheme can be broken. Cryptography
is the study of various encryption/decryption schemes. The broader term
 cryptology includes not only cryptography but also the techniques used to ana-
lyze and “break” coded messages. One of the most famous examples of breaking
coded messages occurred during World War II when a British team that included
mathematician Alan Turing, working at Bletchley Park, was able to break the
supposedly invincible German “Enigma” code and decipher the plans of German
submarine movement.

Military use of cryptographic techniques can be traced back to Julius Caesar
who sent messages to his generals in the field using a scheme now known as the
Caesar cipher. Let us assume that plaintext messages use only the 26 capital let-
ters of the alphabet, that spaces between words are suppressed, and that each letter
is first mapped to its corresponding position in the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

We’ll denote this mapping as the bijection g: 5A, … , Z6 S 50, … , 256 .
Then a positive integer key value k is chosen that shifts each number k posi-
tions to the right with a “wrap-around” back to the beginning if needed (this is
the mod function). Finally, the function g−1 is applied to translate the resulting
number back into a letter. This produces the final ciphertext character c that
corresponds to an original plaintext character p. Informally, we could compute
c from p by just shifting over, in a circular fashion, k positions in the list of let-
ters, but the conversion to numbers allows us to write a mathematical function
to carry out the encoding and decoding algorithmically. The encoding function
is given by

f (p) = g−1(3g(p) + k 4 mod 26)

The decoding process is to find the number for c, shift left k positions with a
“wrap-around” back to the end if needed, then change the resulting digit back into
a character. The decoding function is

f −1(c) = g−1(3g(c) − k 4 mod 26)

428 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 429

Notice that if you intercept a message encoded using a Caesar cipher, you
need to try only 26 possible key values to break the code (actually only 25 since
k = 26 shifts each number back to itself). The Caesar cipher is not a very secure
code; it may have served well, however, in an era when not many people could
read at all. For additional security, the function g could be a less obvious bijection;
the number of possible bijections g is 26! This would mean a total of 26!*25 pos-
sibilities to try for g and k, too large a number even if you had your handy laptop
with you in Gaul. As a cryptanalyst, you would narrow down the possibilities by
making use of statistical characteristics of the language, such as individual letter
frequency, frequency of certain letter pairs, and so on.

 example 52 In a Caesar cipher with k = 3,

E encodes to g−1(34 + 3 4 mod 26) = g−1(7 mod 26) = g−1(7) = H
Y encodes to g−1(324 + 3 4 mod 26) = g−1(27 mod 26) = g−1(1) = B

And for k = 3,

H decodes to g−1(37 − 3 4 mod 26) = g−1(4 mod 26) = g−1(4) = E
B decodes to g−1(31 − 3 4 mod 26) = g−1(−2 mod 26) = g−1(24) = Y

■

PRaCtiCe 45 Decode the following ciphertext that was encoded with a Caesar cipher using a key of 7:
AOLJHAPUAOLOHA.

The Caesar cipher is a simple substitution cipher, meaning that each plain-
text character is coded consistently into the same single ciphertext character.
 Encryption techniques where a single plaintext character contributes to several
ciphertext characters (and one ciphertext character is the result of several plaintext
characters) introduce diffusion. The advantage to diffusion is that it hides the fre-
quency statistics of individual letters, making analysis of an intercepted ciphertext
message much more difficult.

Des (Data encryption standard) is an internationally standard encryption
algorithm developed in 1976. DES was developed to safeguard the security of
digital information, so we may consider the plaintext to be a string of bits (a string
of 0s and 1s). Unlike the Caesar cipher that encodes each single plaintext charac-
ter individually, DES is a block cipher. A block of 64 plaintext bits is encoded as
a unit using a 56-bit key. This results in a block of 64 ciphertext bits. However,
changing one bit in the plaintext or one bit in the key changes about half of the
resulting 64 ciphertext bits, so DES exhibits high diffusion. One might expect
this effect to require some extremely complex mathematical encoding function,
but DES actually uses many simple operations over and over. The DES algorithm
calls for 16 “rounds” to be done; the original 56-bit key is modified from one
round to the next, as is the original 64-bit plaintext block. The modifications in-
volve the following, among other things:

430 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 431

• Running bit strings through permutation functions f (i) = j such that the
new bit value at position i in the string is the old bit value at position j

• Combining bit strings from the plaintext and the key using a bitwise
exclusive-ORoperation ! (two 0s or two 1s result in a 0 bit, while a single
0 and a single 1 result in a 1 bit)

• Changing the key by splitting the bit string in half and performing a circu-
lar left shift on each half of 1 bit or 2 bits, depending on the round number

It’s easy to look at a bit string and see informally what the result of a circular
left shift will be. But, as in the case of the Caesar cipher, we’d like to put the shift
on a mathematical (algorithmic) footing, and the mod function comes into play.

 example 53 Consider a 5-bit binary string x, such as 11010. A 1-bit circular left shift of x would
involve moving bits as follows—

1 1 0 1 0

—resulting in

1 0 1 0 1

Thinking of 11010 as a binary number, each column represents a power of 2, as
opposed to the powers of 10 that our decimal numbers represent. The decimal
equivalent of x = 11010 is therefore

1 # 24 + 1 # 23 + 0 # 22 + 1 # 21 + 0 # 20 = 16 + 8 + 2 = 26

and the decimal equivalent of y = 10101 is 16 + 4 + 1 = 21.
To mathematically compute y from x, we can carry out the following steps.

While all steps are done on binary strings, we will also show the decimal equiva-
lents. Multiplication of a binary string by 2 moves the digits one column to the left,
padding the rightmost column with 0; multiplication by 2−4 moves the digits four
columns to the right, padding the four leftmost columns with 0, just as happens
when multiplying a decimal number by 10 or by 10−4, respectively.

 binary Decimal
x = 11010 26
let p = x mod 24 = 01010 10 (26 mod 16)
let q = p # 2 = 10100 20
let s = x ! p = 10000 16
let t = s # 2−4 = 00001 1
let y = q + t = 10101 21

430 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 431

Here y is the result of a 1-bit left circular shift of x. This algorithm generalizes
to an n-bit string x (p = x mod 2n−1, q = p # 2, s = x ! p, t = s # 2−(n−1), and
y = q + t). A 2-bit left circular shift can be accomplished by two 1-bit shifts.

A ciphertext that is the result of a DES encryption can be decoded into plain-
text by reversing all the steps of the encoding process, including applying the keys
for each round in the reverse order in which they were used for encoding. Because
the DES algorithm is well-known, the only “secret” part is the 56-bit key that is
used. Hence a DES ciphertext can be decrypted by a brute force technique of try-
ing all possible 56 bit keys, of which there are 256. Even assuming that on the aver-
age one would hit the right key after trying about half the possibilities, this is still
255 binary strings to generate and test in the DES algorithm. This number used to
be considered so impossibly large that DES encoding was deemed perfectly se-
cure, and the U.S. government insisted for many years that it was “unbreakable.”
But with faster computers and using parallelism, it’s possible to find the key in a
matter of hours.

In recognition of this potential weakness, a new encoding scheme called aes
(Advanced Encryption Standard) was adopted by the U.S. National Institute of
Standards and Technology in 2001 after a five-year design competition. AES is
also a block encryption scheme, but it uses a key length of 128 bits or more. (AES
also uses a form of the Euclidean algorithm, discussed in Section 2.3, the idea of
relatively prime numbers, discussed in Section 2. 4, arithmetic modulo n, illustrat-
ed in the first few exercises at the end of this section, and ideas from Section 9.1.)

A disadvantage of both DES and AES is that they are symmetric encryp-
tion (also called private key encryption) schemes. The same key is used to both
encode and decode the message; for example, in a Caesar cipher, the key is the
amount of shift k, and decoding is accomplished by shifting left instead of right.
In a private key encryption scheme, both the sender and receiver must know the
key. The problem of securely transmitting a message turns into the problem of
securely transmitting the key to be used for the encryption and decryption.

asymmetric encryption (public key encryption) schemes use different
keys for encoding and decoding. The decryption key cannot be derived in any
practical way from the encryption key, so the encryption key can be made public.
Anyone can send a message to the intended receiver in encrypted form using the
receiver’s public key, but only the intended receiver, who has the decryption key,
can decode it. The best-known asymmetric encryption scheme is the rsa public
key encryption algorithm, named for its developers Ron Rivest, Adi Shamir,
and Len Adleman. RSA uses the mod function, as well as the Euler phi function
discussed in Section 2.4, to produce secure public keys. The RSA method works
as follows:

 1. Two large prime numbers p and q (on the order of 200 digits each) are
chosen at random (such numbers can be found relatively easily), and
p # q = n is computed.

■

PRaCtiCe 46 Use the algorithm of Example 53 to compute the 1-bit circular left shift of 1011 (write the
bit strings for x, p, q, and so on).

432 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 433

 2. RSA, like DES and AES, is a block cipher, so let us assume that a block
B of text has been encoded by some invertible function g into an integer T
(much as is done in the Caesar cipher) where T is an integer, 0 < T < n.

 3. The Euler phi function w(n) is computed. Because n is the prod-
uct of two primes, we know from Equation (2) of Section 2.4 that
w(n) = (p − 1)(q − 1).

 4. A value e is chosen with 1 < e < w(n) such that e and w(n) are relatively
prime, that is, gcd (e, w(n)) = 1. (This will surely be true if e is itself a
prime number.)

 5. gcd(e, w(n)) = 1 means that 1 can be written as a linear combination of e
and w(n)

d # e + f # w(n) = 1

 or

d # e ≡ 1 mod w(n)

 The Euclidean algorithm can be used to find unique values for d (and f)
such that 1 < d < w(n).

 6. The public key is the pair of values (n, e). T is encoded by computing
T

e mod n.
 7. The private key is the pair of values (n, d), of which only the “d ” part

is secret. The received message T
e mod n is decoded by computing

(T
e mod n)d mod n.

(T
e mod n)d mod n = (T

e)d mod n by Equation (1)
= T

ed mod n with d # e ≡ 1 mod w(n)

 and it happens that this expression equals T. (The proof depends on two
classic results from number theory called Fermat’s little theorem and the
Chinese remainder theorem. See Exercises 37–41.)

 8. Then g−1(T) = B, the original text block.

Because n and e are public, anyone who could factor n into its prime factors p
and q could then reconstruct the decryption key d and decode the message. How-
ever, there is no efficient algorithm to find the prime factors of a (large) n. Hence,
while the RSA cryptosystem is not technically secure, it is practically so, although
a number of demonstration “factor attacks” have been made using many people
working together via PCs and the Internet.

Although public key encryption solves the “key distribution” problem of shared
keys between sender and receiver, it is a relatively slow encryption/decryption
 method. Hence in applications such as financial transactions over the Internet, public
key encryption is often used for secure transmission of keys for private key commu-
nication, which is then used to transmit the actual message. The user’s browser may
send a request to the Web server for the server’s public encryption key. Upon receipt,
the browser uses this public key to send an encrypted message back to the server
that contains a symmetric key for DES encryption. At this point both the browser
and the server share a secret key that has been securely transmitted, and the rest of
the transaction can be carried out using the faster DES encryption.

432 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 433

 example 54 Using RSA encryption/decryption, let p = 17 and q = 13. Then n = 221 and
w(n) = 16 # 12 = 192. Pick e = 11; e and w(n), 11 and 192, are relatively prime.
Using the Euclidean algorithm, with 11 and 192,

 192 = 17 # 11 + 5 or 5 = 192 − 17 # 11
 11 = 2 # 5 + 1 or 1 = 11 − 2 # 5

 5 = 5 # 1 + 0

from which

1 = 11 − 2 # 5 = 11 − 2 3192 − 17 # 11 4 = 35 # 11 − 2 # 192

which gives a value for d of 35. If the integer T = 8, then 8 is encoded as follows,
where the tedious modulo arithmetic can be broken down using Equation (1). The
encoding key is (n, e) and both values are used in the computation.

811 mod 221 = 83 # 83 # 83 # 82 mod 221
= 512 # 512 # 512 # 64 mod 221
= 70 # 70 # 70 # 64 mod 221
= 4900 # 4480 mod 221
= 38 # 60 mod 221
= 2280 mod 221
= 70

To decode the encrypted value 70, compute

7035 mod 221 = (702)17 # 70 mod 221 = (4900)17 # 70 mod 221
= 3817 # 70 mod 221 = (382)8 # 38 # 70 mod 221
= (1444)8 # 38 # 70 mod 221 = (118)8 # 38 # 70 mod 221
= 3(118)2 44 # 38 # 70 mod 221 = (13924)4 # 38 # 70 mod 221
= 14 # 38 # 70 mod 221 = 2660 mod 221 = 8

which was the original encoded integer
This is not a realistic example because p and q (and n) are relatively small.

But even here the computations are quite tedious. Again, a spreadsheet and its mod
function will be helpful.

■

PRaCtiCe 47 Assume you receive a ciphertext message of 166 that was encoded using your public key
(n, e) from Example 54. Decode the message to obtain the original integer T.

Hashing for Password Encryption
The user of a computer system typically has to enter a user ID and password to
authenticate him or her as a legitimate user, a person entitled to use these comput-
ing resources. The list of user IDs and corresponding passwords must be stored

434 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 435

 somewhere in the computer system, and this information is obviously sensitive.
Anyone with a copy of the password file has open access to the computer and could
even use the ID/password that has the highest level of computer privileges (such as
the system administrator ID/password). Therefore the password file, like the se-
cret messages discussed earlier, must be protected. The operating system will, by
default, store the password file with the highest level of protection so that only a
system administrator account has access. But as an added protection, the file will
be encrypted in some way. A password file might have entries something like this:

user ID encrypted pW

jgarcia ax*79%

wbriggs ee&46#

Unlike secret messages being transmitted, the password file is in constant use.
The operating system must be able to quickly authenticate a given user by check-
ing that the password the user enters matches the password stored for that user
ID. When the user ID jgarcia is entered, one approach would be to find jgarcia
in the password file, decrypt the corresponding encrypted password (ax*79% in
this case) and see if the result matches what the user entered. But this means that,
however fleetingly, a legitimate “clear” password would be stored within the com-
puter for this user ID, and might be captured by someone hacking the system at
that moment, perhaps even someone posing as the jgarcia user and guessing at the
correct password.

A better approach is to apply the encryption key (also stored in the system) to
the password entered and then check the resulting encrypted password against the
table entry of ax*79%. A match occurs only if the correct password was entered. If
a hacker’s attempt fails, he or she does gain the knowledge that what they entered
is not the jgarcia password, but that is of no help in finding the correct password.

Better still is to use a form of encryption that does not require storing an
encryption key. A hash function is often used to encrypt passwords. The ideal
cryptographic hash function h has two characteristics:

 1. Given x, it is easy to compute the hashed value h(x).
 2. Given a hashed value z, it is difficult to find a value x for which h(x) = z.

Because of these characteristics, a hash function is also called a one-way
 encryption. The password file would now have entries such as

user ID hashed pW

jgarcia h(password 1)

wbriggs h(password 2)

Property (2) means that if the password file falls into the wrong hands, it is of
little use in trying to break into the system, even if the hash algorithm being used
is known. Hence securing the password file is no longer a concern. Property (2)
also means that a cryptographic hash function is likely to be more complex than a
hash function used to build a hash table for searching, as discussed earlier. There
are many well-known encryption/hashing functions, most of which involve use of
the modulo n function where n is some power of 2.

434 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 435

There is the slight possibility that user A and user B could pick different
passwords that hash to the same value, or even that A and B pick the same pass-
word. As far as ordinary usage is concerned, this doesn’t matter; both A and B
will be authenticated as legitimate users. However, if A steals the password file
(no longer securely protected), A could notice that user B’s password hashes to
the same value as A’s, and if indeed the passwords are the same, A could log
in as B and do damage to B’s files. Most password encryption schemes append
some sort of timestamp to a password when the password is first created, and
(password + timestamp) is encrypted. If A and B choose the same password,
their timestamps (and hashed values) will differ. The timestamp is stored in
the password file along with the user ID and when the user enters his or her
password, the timestamp is appended and the result hashed and compared to
the table entry.

Miscellaneous applications

Identification Codes
Sometimes codes are used for identification purposes, not the “secret code”
 purposes we discussed earlier.

 example 55 An international standard book Number, or ISBN, is a numeric identification
code associated with a published book. The 10-digit ISBN standard was adopted
in 1970, but it was replaced by a 13-digit ISBN standard in 2007. Books published
since 2007 generally carry both a 10-digit code and a 13-digit code.

The ISBN-10 is written as four blocks of digits separated by hyphens or blanks.
Reading left to right, the first block of digits is a group identifier for a country, area,
or language area participating in the ISBN system, the second block of digits iden-
tifies the publisher within that group, and the third block is the number assigned by
the publisher to this particular work. The final block consists of a single digit from
0–9 or a single X to represent 10. If the first nine digits of the ISBN-10 are

a1a2a3a4a5a6a7a8a9

then the tenth digit, or check digit, C, is computed by the formula

C = c ∙
9

i=1
i(ai) dmod 11

—that is, sum up the product of each digit times its position in the list and to the
result apply the modulo 11 function.

For example, in the ISBN-10 0-394-80001-X, the 0 indicates the English
 language group, the 394 identifies the publisher as Random House, the 80001
identifies the title The Cat in the Hat by Dr. Seuss, and the check digit X (10) is
computed from

[1 # 0 + 2 # 3 + 3 # 9 + 4 # 4 + 5 # 8 + 6 # 0 + 7 # 0 + 8 # 0 + 9 # 1] mod 11 =
98 mod 11 = 10

The purpose of the check digit is to detect certain types of errors in the ISBN code,
such as a mistyped digit or a transposition of two digits.

436 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 437

In the ISBN-13, there is an additional block of three digits in the front that
identifies the type of industry. For a published book, this block is always 978. The
next three blocks agree with the ISBN-10, but the final block, again a check digit,
is computed differently. If the first 12 digits of the ISBN-13 are

a1a2a3a4a5a6a7a8a9a10a11a12

then the 13th digit, the check digit C, is computed from the 12 digits by the formula

c3 ∙
6

i=1
a2i + ∙

5

i=0
a2i+1 + C d mod 10 = 0

—that is, three times the sum of all the even digits + the sum of all the odd digits
plus the check digit should give a multiple of 10.

The ISBN-13 for The Cat in the Hat is 978-0-394-80001-1. The check digit C
(digit 13) is computed from

9 + 3 # 7 + 8 + 3 # 0 + 3 + 3 # 9 + 4 + 3 # 8 + 0
+ 3 # 0 + 0 + 3 # 1 + C = 99 + C

so C = 1 to make a total of 100, a multiple of 10.

PRaCtiCe 48

a. If an ISBN-10 begins with 0-534-37488, what is the check digit?
b. If digits in this number are transposed to 0-534-37848, what is the check digit? ■

 example 56 The UPC-A (Universal Product Code) is the common bar code found on all
goods in stores (food, magazines, and so on). It is an encoding of a 12-digit num-
ber, where the first digit is a sort of classification digit, the next five digits are a
manufacturer code, the next five digits are the product code, and the last digit is a
check sum digit. Each digit is assigned a 7-bit binary code, but this is not the usual
binary number representation; for example, the binary code for 5 is 0110001. The
7-bit code for any single digit is represented by a pattern of vertical bars and spaces
(space-bar-space-bar if the digit occurs in the left half of the 12-digit string, bar-
space-bar-space if it occurs in the right half). The spaces and bars can have varying
widths from 1 to 4, 1 being the thinnest and 4 the thickest. If a 5 occurs in the left half
of the 12-digit string, its binary code would be represented by a space of width 1,
a bar of width 2, a space of width 3, and a bar of width 1.

0 1 1 0 0 0 1

436 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 437

If a 5 occurs in the right half, the same binary code would be represented by
a bar of width 1, a space of width 2, a bar of width 3, and a space of width 4. In
addition, there are some extra bits inserted at each end and in the middle for a total
of 95 bits.

The check digit C (digit 12) is computed from the previous 11 digits as follows:

c3 ∙
5

i=0
a2i+1 + ∙

5

i=1
a2i + C d mod 10 = 0

—that is, three times the sum of all the odd digits plus the sum of all the even digits
plus the check digit should give a multiple of 10. This formula is similar to the one
for the ISBN-13 check digit except that for the ISBN-13 it is the even digits that
are multiplied by 3 and for the bar code it is the odd digits.

 example 57 The American Bankers Association (ABA) devised a code to represent a specific
financial institution. This number was originally designed for paper checks, and
it does appear on the bottom of paper checks, but today it is also used for such
transactions as direct deposit or electronic funds transfer. This routing number
consists of 8 digits plus a check digit. The first four digits represent Federal Re-
serve information connected with the financial institution and the second four
digits identify the institution itself. The check digit C is computed by

c3 ∙
2

i=0
a3i+1 + 7 ∙

2

i=0
a3i+2 + 1 ∙

1

i=0
a3i+3 + C d mod 10 = 0

—that is, digits 1, 4, and 7 are multiplied by 3 and added, digits 2, 5, and 8 are
multiplied by 7 and added, and digits 3 and 6 are multiplied by 1 and added. The
total plus the check digit should be a multiple of 10.

Generating and Decomposing Integers
The modulo function provides an easy way to generate integer values within some
range 0 through n − 1 for some positive integer n. Take any positive integer m and
compute m mod n. If you have a function to generate a random (or pseudorandom)
integer m, this process generates a random (or pseudorandom) integer within the
desired range. You may also want to cycle through the integers in this range in a
controlled fashion.

 example 58 You want to show a sequence of five images on your Web page. The images are
stored in an arraylike structure as Image(1), …, Image(5), and the actual image
to be displayed is stored in the variable DisplayImage, which is initialized to
Image(1):

i = 1
DisplayImage = Image(i)

438 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 439

Image(1) is the first image displayed. After that, at every clock tick (or at pre-
defined intervals), the statements

i = i mod 5 + 1
DisplayImage = Image(i)

are executed. The effect is to cycle the index i through the values 2, 3, 4, 5, 1, and
so on, and to cycle the displayed images as Image(2), Image(3), Image(4), Im-
age(5), Image(1), and so on.

The modulo function can also be used to decompose a multidigit integer into
its component digits.

 example 59 To decompose a three-digit integer into the ones, tens, and hundreds digits, one can
use the following algorithm:

temp = number
ones = temp mod 10
temp = (temp − ones)∙10

tens = temp mod 10
temp = (temp − tens)∙10
hundreds = temp

■
PRaCtiCe 49 Given the integer 375, walk through the algorithm of Example 59 to separate the digits.

Modular Arithmetic Designs
The mod function can be used to make interesting quiltlike patterns by arranging
“tile” images (small square images) in tables based on addition modulo n and then
repeating these tables to form the completed quilt image.4 addition modulo n is
defined on the set of integers 50, 1, 2, …, n − 16 by

x +n

y = (x + y) mod n

4This section on modular arithmetic designs was adapted with permission from http://britton.disted. camosun.
bc.ca/modart/jbmodart2.htm; the software used to generate the design is Cayley Quilter, available to down-
load at http://www.wou.edu/~burtonl/cquilter.html

 example 60 In this example we will use addition modulo 6. Addition modulo 6 applies to the
integers 50, 1, 2, 3, 4, 56 using the rule x +6 y = (x + y) mod 6. The addition ta-
ble follows. It shows, for example,

3 +6 4 = (3 + 4) mod 6 = 7 mod 6 = 1

http://www.wou.edu/~burtonl/cquilter.html
http://britton.disted.camosun.bc.ca/modart/jbmodart2.htm
http://britton.disted.camosun.bc.ca/modart/jbmodart2.htm

438 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 439

No values of 6 appear in the table, and each row is a circular left shift of the previ-
ous row.

6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

We will need six tile images of various geometric designs:

Tile 0 Tile 1 Tile 2 Tile 3 Tile 4 Tile 5

The tiles are then arranged in a 6 × 6 table according to the addition modulo 6
pattern, that is, the interior of the addition modulo 6 table. The top row shows im-
ages left to right of 0, 1, 2, 3, 4, 5, the next row shows images left to right of 1, 2,
3, 4, 5, 0, and so forth.

The final image is composed of four copies of the table arranged in a 2 × 2 grid
where the original table goes in the upper-left quadrant, its horizontal reflection
goes in the upper-right quadrant, and the bottom two quadrants are vertical reflec-
tions of the top half.

440 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 441

S e c t I o n 5 . 6 Review

technIQueS

• Perform calculations using the mod function.
• Build or search a hash table that uses linear probing

for collision resolution.
• Build or search a hash table that uses chaining for

collision resolution.
• Encode and decode using a Caesar cipher.
• Apply the algorithm to compute a circular left shift

of a binary string.

• Perform encryption and decryption using the RSA
public key encryption algorithm.

• Compute the check digit for the ISBN-10,
ISBN-13, UPC-A, and ABA codes.

maIn IDeaS

• The humble modulo function is useful in many im-
portant applications.

exeRcISeS 5.6

Exercises 1–8 concern modular arithmetic mod n.

 1. 25 = 11 + 14. Show by computing each expression that

25 mod 6 = (11 mod 6 + 14 mod 6) mod 6

 2. 395 = 129 + 266. Show by computing each expression that

395 mod 4 = (129 mod 4 + 266 mod 4) mod 4

 3. 262 = 74 + 188. Show by computing each expression that

262 mod 13 = (74 mod 13 + 188 mod 13) mod 13

W

W

440 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 441

 4. Prove that for any integers x and y,

(x + y) mod n = (x mod n + y mod n) mod n

 5. 486 = 18 # 27. Show by computing each expression that

486 mod 5 = (18 mod 5 # 27 mod 5) mod 5

 6 7067 = 191 # 37. Show by computing each expression that

7067 mod 8 = (191 mod 8 # 37 mod 8) mod 8

 7. Prove that for any integers x and y,

(x # y) mod n = (x mod n # y mod n) mod n

 8. Prove or disprove: For any positive integer x, (−x) mod n = −(x mod n).

 9. Using the hash function of Example 51, which of the following Social Security numbers would cause a
collision with 328356770, the Social Security number of that example?

 a. 060357896
 b. 896137243
 c. 712478993
 d. 659027781

 10. Find a set of five numbers in the range 30, 200 4 that cause 100% collision using the hash function

h(x) = x mod 13

 11. Using a hash table of size 11 and the hash function x mod 11, show the results of hashing the following
values into a hash table using linear probing for collision resolution:

1, 13, 12, 34, 38, 33, 27, 22

 12. Using the completed hash table from Exercise 11, compute the average number of comparisons needed to
perform a successful search for a value in the table.

 13. When a computer program is compiled, the compiler builds a symbol table for storing information about
the identifiers used in the program. A scheme is needed to quickly decide whether a given identifier has
already been stored in the table and, if not, to store the new identifier. A hash function is often used to
locate a position in the table at which to store information about an item.

For simplicity, assume that the items to be stored are integers, that the hash table can hold 17 items in
positions 0–16, and that the hash function h(x) is given by h(x) = x mod 17.

Linear probing is used for collision resolution.
 a. Using the hash function and collision resolution scheme described, store the sequence of values 23, 14,

52, 40, 24, 18, 33, 58, 50. Give the location in the table at which each is stored.
 b. After the table of part (a) has been filled, describe the process to search for 58 in the table. Describe the

process to search (unsuccessfully) for 41 in the table.

442 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 443

 14. Explain what problem can arise if an item stored in a hash table is later deleted.
 15. A disadvantage of hashing with linear probing for collision resolution is that elements begin to cluster

together in groups of adjacent array locations. Assume that you have a very good hashing function (it dis-
tributes elements evenly throughout the hash table). Start with an empty hash table of size t that will store
data using linear probing for collision resolution.

 a. What is the probability of hashing the first element to location p (and storing it there, since it is the first
item and there will be no collisions)?

 b. Once location p is occupied, what is the probability of storing the second item in location p + 1
(modulo the table size)?

 c. Once locations p and p + 1 are occupied, what is the probability of storing the third item in location
p + 2 (modulo the table size)?

 16. Generalize the answers to Exercise 15 to explain why using linear probing for collision resolution causes
clustering.

 17. Decode the following ciphertext messages that were encoded using a Caesar cipher with the given key.
 a. JUUBFNUUCQJCNWMBFNUU, k = 9
 b. XAEWFVMPPMKERHXLIWPMXLCXSZIWHMHKCVIERHKMQFPIMRXLIAEFI, k = 4
 c. IURSAYZGXJCOZNZNKQTOLKOTZNKROHXGXE, k = 6
 18. Using a Caesar cipher, encode the following plaintext messages.
 a. ATTACK FROM BEYOND THE RIVER, k = 5
 b. WE ARE SHORT OF SUPPLIES, k = 10
 c. BADLY NEED AMMUNITION, k = 8
 19. The following ciphertext message is intercepted; you suspect it is a Caesar cipher. Find a value of k that

decodes the message, and give the corresponding plaintext.

BUNNYWXFFNVJALQXWAXVNCXVXAAXF

 20. The following ciphertext message is intercepted; you suspect it is a Caesar cipher. Find a value of k that
decodes the message, and give the corresponding plaintext.

EQQKAGAZRMOQNAAWPGPQ

 21. Use the algorithm of Example 53 to compute the 1-bit circular left shift of the following binary strings
(write the bit strings for x, p, q, and so on).

 a. 10011
 b. 0011
 22. Use the algorithm of Example 53 to compute the 1-bit circular left shift of the following binary strings

(write the bit strings for x, p, q, etc.).
 a. 10110
 b. 1110
 23. Consider a “short form” of DES that uses 16-bit keys. Given the 16-bit key

1101000101110101

 as input to a DES round that uses a circular left shift of 2 bits, what would be the key for the next round?

442 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 443

 24. Describe how to perform a 1-bit right circular shift on a 4-bit binary string x using the left circular shift
operation.

 25. Using RSA encryption/decryption, let p = 5 and q = 3. Then n = 15 and w(n) = 4 # 2 = 8. Pick e = 3.
 a. Use the Euclidean algorithm to find the value of d.
 b. Encode T = 8 using the public key (n, e).
 c. Decode your answer to part (b) to retrieve the 8.

 26. Why is the RSA encryption of Exercise 25 a poor choice?

 27. Using RSA encryption/decryption, let p = 5 and q = 11. Then n = 55 and w(n) = 4 # 10 = 40.
Pick e = 7.

 a. Use the Euclidean algorithm to find the value of d. (Hint: If the Euclidean algorithm produces an equa-
tion 1 = x # e + f # w(n)where the value of x is negative, add and subtract the product e # w(n) to the
right side of the equation to get a positive value for d.)

 b. Encode T = 12 using the public key (n, e).
 c. Decode your answer to part (b) to retrieve the 12.
 28. Using RSA encryption/decryption, let p = 23 and q = 31. Then n = 713 and w(n) = 22 # 30 = 660.

Pick e = 17.
 a. Use the Euclidean algorithm to find the value of d.
 b. Encode T = 52 using the public key (n, e).
 c. Decode your answer to part (b) to retrieve the 52.

 29. a. All n people in a group wish to communicate with each other using messages encrypted with DES or
AES. A different secret key must be shared between each pair of users. How many keys are required?

 b. All n people in a group wish to communicate with each other using messages encrypted with a public
key encryption system. How many keys are required?

 30. Computer users are notoriously lax about choosing passwords; left to their own devices, they tend to pick
short or really obvious passwords. At Simpleton University, passwords must contain only lowercase let-
ters, and the campus computer system uses an (unrealistically simple) cryptographic hash function given
by the following algorithm:

 1. Letters in the password are converted to an integer equivalent (a S 1, b S 2, and so on).
 2. In the result of step 2, all individual digits are added (for example, 17 becomes 1 + 7) to give an

integer value x.
 3. h(x) = x mod 25

 Joe Hack has managed to steal the password table, and he notices that there is a password entry of 20 for
bsmith. Joe decides to try to hack into the system as bsmith by guessing bsmith’s password. Can you guess
bsmith’s password?

 31. a. The ISBN-10 of the sixth edition of this book is 0-7167-6864-C where C is the check digit. What is the
check digit?

 b. What is the ISBN-13 of the sixth edition?
 32. A bookstore placed an order for 2000 copies of Harry Potter and the Deathly Hallows, the seventh and

final volume in the hugely popular Harry Potter series by J. K. Rowling. When placing the order with the
publisher, the ISBN-13 978-0-545-01022-5 was used. Is this correct?

 33. Given the 11 digits 02724911637, compute the check digit for the UPC-A code.

444 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 445

 34. A taxpayer wants his tax refund to be deposited directly to his bank. He enters the bank’s routing number,
including the check digit, as

025107036

 Is this routing number correct?
 35. a. Write an algorithm to decompose a four-digit integer into the ones, tens, hundreds, and thousands

 digits.
 b. Apply this algorithm to decompose the integer 7426.
 36. The following quilt image is based on addition modulo n for what value of n?

Exercises 37–41 involve a proof of step 7 of the RSA method.

 37. Prove that if x ≡ y (mod n) and c is a constant integer, then xc ≡ yc (mod n).
 38. This exercise explores the converse of Exercise 37, which is the issue of cancellation under congru-

ence modulo n. In other words, if xc ≡ yc (mod n) for some constant integer c, is it then true that
x ≡ y (mod n)? Not always, as it turns out.

 a. Prove that if gcd(c,n) = 1, then xc ≡ yc (mod n) implies x ≡ y (mod n).
 b. Prove that xc ≡ yc (mod n) implies x ≡ y (mod n) only if gcd (c, n) = 1. To do this, it is easier to

prove the contrapositive:

If gcd (c, n) ∙ 1, then there exist integer values x and y for which xc ≡ yc (mod n) but x [y mod n.

 (Hint: Suppose c = m1k and n = m2k with k > 1. Consider x = m2k and y = m2.)
 c. Find values for x, y, c, and n where xc ≡ yc (mod n) but x [y (mod n).
 39. If p is a prime number and a is a positive integer not divisible by p, then

ap−1 ≡ 1(mod p)

444 Relations, Functions, and Matrices Section 5.6 The Mighty Mod Function 445

 This result is known as Fermat’s little theorem (as opposed to the very famous Fermat’s last theorem men-
tioned in Section 2.4).

Let S = 50, a, 2a, …, (p − 1)a6, T = 50, 1, 2, …, (p − 1)6 . Let f be given by f (ka) = (ka) mod p;
that is, f computes the residue modulo p.

 a. Prove that f is a one-to-one function from S to T.
 b. Prove that f is an onto function.
 c. Prove that 3a # 2a c (p − 1)a 4 mod p = (p − 1)! mod p
 d. Prove that ap−1 ≡ 1 (mod p)
 e. Let a = 4 and p = 7. Compute the set of residues modulo p of 54, 8, 12, …, 246 .
 f. Let a = 4 and p = 7. Show by direct computation that 46 ≡ 1(mod 7).

 40. Let m1, m2, …, mn be pairwise relatively prime positive integers (that is, gcd(mi, mk) = 1 for
1 ≤ i, k ≤ n, i ∙ k), let m = m1m2

c mn, and let a1, a2, c, an be any integers. Then there is an integer
x such that

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

(
x ≡ an (mod mn)

 and any other integer y that satisfies these relations is congruent to x modulo m. This result is known as
the Chinese remainder theorem (based on work done by the Chinese mathematician Sun-Tsu in the first
century ad). The following steps will prove the Chinese remainder theorem.

 a. Let s and t be positive integers with gcd (s, t) = 1. Prove that there exists an integer w such that
sw ≡ 1 (mod t).

 b. For each i, 1 ≤ i ≤ n, let Mi = m∙mi. Prove that gcd(Mi, mi) = 1.
 c. Prove that there is an integer xi such that Mixi ≡ 1 (mod mi) and aiMixi ≡ ai (mod mi).
 d. Prove that akMk xk ≡ 0 (mod mi) for all k ∙ i.
 e. Let x = a1M1x1 + a2M2x2 + c+ anMn xn. Prove that for 1 ≤ i ≤ n, x ≡ ai (mod mi).
 f. Let y be such that y ≡ ai (mod mi), 1 ≤ i ≤ n. Prove that x ≡ y (mod m). (Hint: Use the fundamental

theorem of arithmetic and write m as a product of distinct primes, m = pk1
1 pk2

2 … pkt
t).

 41. The remaining step in the proof of the RSA algorithm is to show that if d # e ≡ 1 mod w(n), then
T ed mod n = T .

 a. Prove that T ed can be written as T(T p−1)k(q−1) or as T(T q−1)k(p−1) for some integer k.
 b. Prove that if T is not divisible by p, then T ed ≡ T (mod p), and if T is not divisible by q, then

T ed ≡ T (mod q).
 c. Prove that if p 0 T , then T ed ≡ T (mod p) and T is not divisible by q, so T ed ≡ T (mod q) by part (b).
 d. Prove that if q 0 T , then T ed ≡ T (mod q) and T is not divisible by p, so T ed ≡ T (mod p) by part (b).
 e. From parts (b)–(d) T ed ≡ T (mod p) and T ed ≡ T (mod q) in all cases. Prove that Ted mod n = T .

446 Relations, Functions, and Matrices Section 5.7 Matrices 447

 S e c t i o n 5 . 7 Matrices

Terminology

Data about many kinds of problems can often be represented using a rectangular
arrangement of values; such an arrangement is called a matrix. Thus

A = c1 0 4
3 −6 8

d

is a matrix with two rows and three columns. The dimensions of the matrix are
the number of rows and columns; here A is a 2 × 3 matrix.

Elements of a matrix A are denoted by aij, where i is the row number of the el-
ement in the matrix and j is the column number. In the example matrix A, a23 = 8
because 8 is the element in row 2, column 3, of A.

 example 61 Average temperatures in three different cities for each month can be neatly sum-
marized in a 3 × 12 matrix. Here we interpret the 3 rows as the 3 cities and the
12 columns as the 12 months January–December. The average temperature in the
third city in April, a34, is 67.

A = £
23 26 38 47 58 71 78 77 69 55 39 33
14 21 33 38 44 57 61 59 49 38 25 21
35 46 54 67 78 86 91 94 89 75 62 51

§

 example 62 In Practice 2(c) of Section 5.1, the binary relation 5(7, 9), (2, 5), (9, 9), (2, 7)6 was
defined on the set S = 52, 5, 7, 96 . Although a set is unordered, we can impose
an ordering on the elements of S so that 2 is element 1 in S, 5 is element 2, and so
forth. The matrix R below represents this binary relation by a 1 entry in position
i, j if element i in set S is related to element j. Because (7, 9) says that element 3 is
related to element 4, element r3,4 of R equals 1.

 R = ≥
0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 1

¥

 example 63 Solutions to many problems can be obtained by solving systems of linear equa-
tions. Suppose, for example, that you are placing an order for coffee beans for your
sidewalk café. You want to order 70 pounds of beans, a mixture of Kona coffee
beans and Colombian coffee beans. You are willing to spend $1180; Kona cof-
fee costs $24 per pound, and Colombian coffee costs $14 per pound. How many
pounds of each should you order?

446 Relations, Functions, and Matrices Section 5.7 Matrices 447

The constraints in this problem are represented by the system of linear
 equations

 x + y = 70
 24x + 14y = 1180

These are linear equations because each of the two unknowns, x and y, appears
only to the first power. (Also an equation such as ax + by = c represents a straight
line when graphed on an x–y coordinate system.) The solution to this system of
equations is x = 20, y = 50 (you can easily check that this is a solution). The
matrix

a = c 1 1
24 14

d

is the matrix of coefficients for this system of linear equations. As we will see, the
matrix of coefficients can be used to solve a system of linear equations.

■

PRaCtiCe 50 In the matrix:

 a = c1 4 −6 8
3 0 1 −7

d

What is a23? What is a24? What is a13?

In a matrix, the arrangement of the entries is significant. Therefore, for two
matrices to be equal, they must have the same dimensions and the same entries
in each location.

 example 64 Let

X = £
x 4
1 y
z 0

§

Y = £
3 4
1 6
2 w

§

If X = Y, then x = 3, y = 6, z = 2, and w = 0.

We will often be interested in square matrices, in which the number of rows
equals the number of columns. If a is an n × n square matrix, then the elements
a11, a22, … , ann form the main diagonal of the matrix. If the corresponding ele-
ments match when we think of folding the matrix along the main diagonal, then
the matrix is symmetric about the main diagonal. In a symmetric matrix, aij = aji.

448 Relations, Functions, and Matrices Section 5.7 Matrices 449

A more general way to represent arrangements of data is the array. Arrays are
n-dimensional arrangements of data, where n can be any positive integer. If n = 1,
then the data are arranged in a single line, which is therefore a list or finite se-
quence of data items. This one-dimensional version of an array is called a vector.
If n = 2, the array is a matrix. If n = 3, we can picture layers of two-dimensional
matrices. For n > 3, we can formally deal with the array elements, but we can’t
really visualize the arrangement. The array data structure is available in many
high-level programming languages because it is such a useful way to represent
data in list form or tabular form. Generally, the number of elements expected in
each dimension of the array must be declared in the program. The array X of Ex-
ample 64, for instance, would be declared as a 3 × 2 array—a two-dimensional
array (matrix) with three elements in one dimension and two in the other (that is,
three rows and two columns).

Matrix operations

Although matrices are particular arrangements of individual elements, we can
treat the matrices themselves as objects, just as we can treat sets of elements as
objects. In each case we are abstracting up one level and looking at the collection
as an entity, rather than looking at the individual elements that make up the col-
lection. We defined operations on sets (union, intersection, and so forth) that made
sets useful for solving counting problems. We can define arithmetic operations on
matrices whose entries are numerical. These operations make matrices interesting
objects to study in their own right, but they also make matrices more useful for
certain tasks such as solving systems of equations.

The first operation, called scalar multiplication, calls for multiplying each
entry of a matrix by a fixed single number called a scalar. The result is a matrix
with the same dimensions as the original matrix.

 example 65 The square 3 × 3 matrix

a = £
1 5 7
5 0 2
7 2 6

§

is symmetric. The upper triangular part (the portion above the main diagonal) is a
reflection of the lower triangular part. Note that a21 = a12 = 5.

 example 66 The result of multiplying matrix

a = c1 4 5
6 −3 2

d

by the scalar r = 3 is

a = c 3 12 15
18 −9 6

d

448 Relations, Functions, and Matrices Section 5.7 Matrices 449

addition of two matrices a and b is defined only when a and b have the
same dimensions; then it is simply a matter of adding the corresponding elements.
Formally, if a and b are both n × m matrices, then C = a + b is an n × m
matrix with entries

cij = aij + bij

PRaCtiCe 51 For r = 2,

 a = £
1 7

−3 4
5 6

§ b = £
4 0
9 2

−1 4
§

find ra + b. ■

subtraction of matrices is defined by a − b = a + (−l)b.
In a zero matrix, all entries are 0. If we add an n × m zero matrix, denoted

by 0, to any n × m matrix a, the result is matrix a. We can symbolize this by the
matrix equation

0 + a = a

This equation is true because of a similar equation that holds for all the individual
numerical entries, 0 + aij = aij. Other matrix equations are also true because of
similar equations that hold for the individual entries.

 example 67 For

 a = £
1 3 6
2 0 4

−4 5 1
§ b = £

0 −2 8
1 5 2
2 3 3

§

the matrix a + b is

 a + b = £
1 1 14
3 5 6

−2 8 4
§

450 Relations, Functions, and Matrices Section 5.7 Matrices 451

One might expect that multiplication of matrices would simply involve mul-
tiplying corresponding elements in the two matrices, but the definition is more
complicated than that. The definition of matrix multiplication is based on the use
of matrices in mathematics to represent functions called linear transformations,
which map points in the real-number plane to points in the real-number plane.
Although we won’t use matrices in this way, we will use the standard definition
for matrix multiplication.

To compute a times b, a # b, the number of columns in a must equal the
number of rows in b. (This requirement means that the number of elements in a
single row of a equals the number of elements in a single column of b.) Thus we
can compute a # b if a is an n × m matrix and b is an m × p matrix. The result
is an n × p matrix. An entry in row i, column j of a # b is obtained by multiplying
all the elements in row i of a by the corresponding elements in column j of b and
adding the results. Formally, a # b = C, where

cij = ∙
m

k=1
aikbkj

 example 69 Let

 a = c2 4 3
4 −1 2

d b = £
5 3
2 2
6 5

§

a is a 2 × 3 matrix and b is a 3 × 2 matrix, so the product a # b exists and is a
2 × 2 matrix C. To find element cl1, we multiply corresponding elements of row 1
of a and column 1 of b and add the results.

2(5) + 4(2) + 3(6) = 10 + 8 + 18 = 36

c 2 4 3
4 −1 2

 d £
5 3
2 2
6 5

§ = c 36 —
— — d

Element c12 is obtained by multiplying corresponding elements of row 1 of a and
column 2 of b and adding the results.

 example 68 If a and b are n × m matrices and r and s are scalars, the following matrix
 equations are true:

 0 + a = a
 a + b = b + a
 (a + b) + C = a + (b + C)
 r (a + b) = ra + rb
 (r + s)a = ra + sa
 r (sa) = (rs)a

To prove that a + b = b + a, for instance, it is sufficient to note that
aij + bij = bij + aij for each entry in matrices a and b.

450 Relations, Functions, and Matrices Section 5.7 Matrices 451

c 2 4 3
4 −1 2

 d £
5 3
2 2
6 5

 § = c 36 29
— — d

The complete product is

c2 4 3
4 −1 2

d £
5 3
2 2
6 5

§ = c36 29
30 20

d

■

PRaCtiCe 52 Compute a # b and b # a for

a = c1 4
6 −2

d b = c3 6
3 4

d

From Practice 52 we see that even if a and b have dimensions so that both
a # b and b # a are defined, a # b need not equal b # a. There are, however, sev-
eral matrix equations involving multiplication that are true.

 example 70 Where a, b, and C are matrices of appropriate dimensions and r and s are scalars,
the following matrix equations are true:

 a # (b # C) = (a # b) # C
 a(b + C) = a # b + a # C
 (a + b)C = a # C + b # C
 ra # sb = (rs)(a # b)

Verifying these equations for matrices of particular dimensions is simple, if
tedious.

The n × n matrix with 1s along the main diagonal and 0s elsewhere is called the
identity matrix, denoted by i. If we multiply i times any n × n matrix a, we get
a as the result. The equation

i # a = a # i = a

holds.

452 Relations, Functions, and Matrices Section 5.7 Matrices 453

An n × n matrix a is invertible if there exists an n × n matrix b such that

 a # b = b # a = i

In this case b is called the inverse of a, denoted by a−1.

■

PRaCtiCe 53 Let

i = c1 0
0 1

d a = ca11 a12

a12 a22
d

Verify that i # a = a # i = a.

 example 71 Let

a = £
−1 2 −3
 2 1 0
 4 −2 5

§ b = £
−5 4 −3
10 −7 6
 8 −6 5

§

Then, following the rules of matrix multiplication, it can be shown (Practice 54)
that a # b = b # a = i, so b = a−1.

■

PRaCtiCe 54 For the matrices A and B of Example 70,

a. Compute a # b.
b. Compute b # a.

It is easy to write an algorithm for matrix multiplication by simply follow-
ing the definition. A pseudocode version of the algorithm follows, where bracket
 notation A 3i, j 4 replaces the subscript notation aij.

 algoRIthm MaTrixMulTiplicaTioN

//computes n × p matrix A # B for n × m matrix A, m × p matrix B
//stores result in C
for i = 1 to n do

for j = 1 to p do
C 3i, j 4 = 0
for k = 1 to m do

C 3i, j 4 = C 3i, j 4 + A 3i, k 4 * B 3k, j 4
end for

end for
end for
write out product matrix C

452 Relations, Functions, and Matrices Section 5.7 Matrices 453

The computational steps done in this algorithm are multiplications and ad-
ditions, one multiplication and one addition each time the statement C 3i, j 4 5
C 3i, j 4 + a 3i, k 4 * b 3k, j 4 is executed. This statement occurs within a triply nested
loop and will be executed npm times. (Although this is quite obvious, it can also
be justified by the multiplication principle as the number of possible outcomes of
choosing indices i, j, and k.) If a and b are both n × n matrices, then there are
Θ(n3) multiplications and Θ(n3) additions required. The total amount of work is
therefore Θ(n3) + Θ(n3) = Θ(n3).

Given the definition of matrix multiplication, it is hard to see how one could
avoid Θ(n3) steps in computing the product of two n × n matrices, but a suffi-
ciently clever approach does yield an improvement under certain conditions (see
Exercise 54).

gaussian elimination

In Example 63 we encountered the following system of two linear equations in
two unknowns:

 x + y = 70
 24x + 14y = 1180

The general form for a system of n linear equations in n unknowns is

a11x1 + a12x2 + c+ a1nxn = b1

a21x1 + a22x2 + c+ a2nxn = b2

(
an1x1 + an2x2 + c+ annxn = bn

with a matrix of coefficients

≥
a11 a12 … a1n

a21 a22 … a2n

(
an1 an2 … ann

¥

To solve this system of equations, we first form the augmented n × (n + 1)
 matrix by adding the column of b’s to the matrix of coefficients:

≥
a11 a12 … a1n b1

a21 a22 … a2n b2

(
an1 an2 … ann bn

¥

(The augmented matrix is simply a convenience to avoid having to write all the
unknowns.) The next step is to “transform” the augmented matrix into one where
the matrix-of-coefficients part is an upper triangular matrix, that is, all values
of this n × n matrix below the main diagonal are 0’s. The result will be a matrix
of the form

454 Relations, Functions, and Matrices Section 5.7 Matrices 455

E

c11 c12 … c1n d1

0 c22 … c2n d1

 (
0 0 … c(n−1)(n−1) c(n−1)n dn−1

0 0 … 0 cnn dn

U

Now we can turn this back into a system of equations of the form

E

c11x1 c12x2 … c1nxn d1

0 c22x2 … c2nxn d1

 (
0 0 … c(n−1)(n−1)xn−1 c(n−1)nxn dn−1

0 0 … 0 cnnxn dn

U

and solve the equations from the bottom up. We solve

cnnxn = dn

for xn. Knowing the value of xn, we can then solve the next-to-last equation

c(n−1)(n−1)xn−1 + c(n−1)nxn = dn−1

for xn−1 and so forth, back up to the top row.
But how do we do the transformation? The allowable operations to carry out

this transformation are called elementary row operations, none of which change
the solution set of the underlying equations. These operations (performed on the
augmented matrix) are

 i. Switch any two rows of the matrix.
 ii. Multiply all the elements in any one row of the matrix by a non-zero

 scalar.
 iii. Add a scalar multiple of any one row to another row.

This process for solving systems of linear equations is known as Gaussian
elimination, named for the famous German mathematician Karl Friedrich Gauss.
Gauss did not actually invent this process, however; it was demonstrated in a Chi-
nese mathematics treatise of the second century ad, and it was probably known in
China even earlier.

 example 72 Solving the system of equations

 x + y = 70
 24x + 14y = 1180

using Gaussian elimination, we first form the augmented matrix

c 1 1 70
24 14 1180

d

454 Relations, Functions, and Matrices Section 5.7 Matrices 455

 We multiply row 1 by the scalar −24 and add the result to row 2 (the third elemen-
tary row operation), giving

c1 1 70
0 −10 −500

d

The last row represents the equation

−10 y = −500

from which y = 50. The first row represents the equation

x + y = 70

and, because y = 50, this is

x + 50 = 70

so x = 20. The solution, as noted in Example 63, is x = 20, y = 50.

 example 73 Let’s apply Gaussian elimination to the system of 3 equations in 3 unknowns
shown here:

 2x − 3y + z = −22
 7x + 9y − 3z = 14
 6x + 7y + 2z = 91

The augmented matrix is

£
2 −3 1 −22
7 9 −3 14
6 7 2 91

§

A series of elementary row operations, as shown here, will convert the 3 × 3
 matrix of coefficients to upper triangular form. First, multiply row 1 by 1∙2 to
produce a 1 in the 1,1 position.

1∙2 £
2 −3 1 −22
7 9 −3 14
6 7 2 91

§

Then multiply row 1 by −7 and add it to row 2; also multiply row 1 by −6 and
add it to row 3.

 £
1 −3∙2 1∙2 −11
7 9 −3 14
6 7 2 91

§ giving £
1 −3∙2 1∙2 −11

39∙2 −13∙2 91
 16 −1 157

§ −7

−6

456 Relations, Functions, and Matrices Section 5.7 Matrices 457

Now multiply row 2 by 2/39 to produce a 1 in the 2,2 position.

2∙39 £
1 −3∙2 1∙2 −11

39∙2 −13∙2 91
 16 −1 157

§

Multiply row 2 by −16 and add it to row 3.

−16 £
1 −3∙2 1∙2 −11

 1 −1∙3 14∙3
 16 −1 157

§

resulting in

£
1 −3∙2 1∙2 −11

 1 −1∙3 14∙3
13∙3 247∙3

§

We are almost done. The bottom row represents the equation

(13∙3)z = 247∙3

from which z = 19. The second row represents the equation

y − (1∙3)z = 14∙3 or y − (1∙3)(19) = 14∙3

from which y = 11. Finally, from the top row,

 x − (3∙2)y + (1∙2)z = −11 or x − (3∙2)(11) + (1∙2)19 = −11

and x = −4. So the solution to this system of equations is x = −4, y = 11,
z = 19.

■

PRaCtiCe 55 Solve the following system of equations using Gaussian elimination.

3x − 5y = 5
7x + y = 37

Not every system of n linear equations in n unknowns has a solution. As a
simple case, consider

2x + 4y = 10
4x + 8y = 12

456 Relations, Functions, and Matrices Section 5.7 Matrices 457

If we assume that there is a solution and proceed with Gaussian elimination, we
perform the following elementary row operations:

1∙2

 c2 4 10
4 8 12

d giving c1 2 5
4 8 12

d

Then

 c1 2 5
4 8 12

d results in c1 2 5
0 −8

d

in which row 2 says that 0 = −8. This contradiction says that our assumption
about the existence of a solution is incorrect. Rewriting the two equations as

y = (−1∙2)x + 5∙2
y = (−1∙2)x + 3∙2

shows that these are two parallel lines that never intersect, so there is no (x, y) pair
that satisfies both equations.

More generally, systems of linear equations can involve m equations in n un-
knowns where n and m are not necessarily equal. Usually, if there are more equa-
tions than unknowns, the system is overconstrained and there will be no solution.
And usually, if there are more unknowns than equations, there will be an infinite
number of solutions.

 example 74 Consider the system of equations

3x − y − 5z = 9
 x + 2y − 4z = 10

In the augmented matrix, switch rows 1 and 2, then multiply row 1 by −3 and add
it to row 2:

 c1 2 −4 10
3 −1 −5 9

d giving c1 2 −4 10
−7 7 −21

d

The last row represents the equation −7y + 7z = −21 or y = z + 3. Substituting
into equation 1, we get

 x + 2(z + 3) − 4z = 10 or x = 2z + 4

Both x and y have values in terms of a parameter z, which can have any value. The
number of solutions is therefore infinite.

Despite the simple examples we have seen, neither the solutions to a system of
linear equations nor the coefficients are always integers.

−4

−3

458 Relations, Functions, and Matrices Section 5.7 Matrices 459

Boolean Matrices

In Chapter 6 we will be interested in matrices with only 0s and 1s as entries,
called boolean matrices (after George Boole, a nineteenth-century English math-
ematician; Boole also lent his name to Boolean algebra, which we will consider
later in this book). Matrix r of Example 62 is a Boolean matrix. We can define
an o peration of Boolean matrix multiplication a × b on Boolean matrices using
Boolean multiplication and Boolean addition instead of regular multiplication and
addition. These are defined as follows:

Boolean multiplication: x ` y = min(x, y)
Boolean addition: x ~ y = max(x, y)

PRaCtiCe 56 Fill-in the following operation tables for Boolean multiplication and Boolean addition.

x y x ` y

1 1

1 0

0 1

0 0

x y x ~ y

1 1

1 0

0 1

0 0
■

 example 75 Let a and b be Boolean matrices,

a = £
1 1 0
0 1 0
0 0 1

§ b = £
1 0 0
1 1 1
0 0 1

§

Now take the tables from Practice 56 and substitute T for 1 and F for 0. They
become the truth tables for conjunction and disjunction, respectively; for this rea-
son, these operations are often called boolean and (or logical and) and boolean
or (or logical or), which also explains the notation used for these operations. The
operation of Boolean matrix multiplication a × b (on Boolean matrices of ap-
propriate dimensions) is then defined by

cij = ~

m

k=1
(aik ` bkj)

We can also define two analogues of ordinary matrix addition (on Boolean
matrices of the same dimensions): A ` B, where corresponding elements are
combined using Boolean multiplication, and A ~ B, where corresponding ele-
ments are combined using Boolean addition.

458 Relations, Functions, and Matrices Section 5.7 Matrices 459

Then

a ` b = £
1 0 0
0 1 0
0 0 1

§ a ~ b = £
1 1 0
1 1 1
0 0 1

§

and the Boolean product a × b is

a × b = £
1 1 1
1 1 1
0 0 1

§

■
PRaCtiCe 57 In Example 75, does a × b = a # b?

■
PRaCtiCe 58 In Example 75, compute b × a.

460 Relations, Functions, and Matrices Section 5.7 Matrices 461

speCiaL iNterest paGe

Solve Millions of equations, Faster than gauss

Systems of linear equations are used in many areas of
application, including telecommunications, materials
analysis, transportation, economics, and medical im-
aging. Instead of systems of 3 or 4 linear equations
with 3 or 4 unknowns, such as we saw in our Example
problems, the value of n in such applications can go
into the millions or billions. In Exercise 55 of Section
5.7, we see that a worst-case analysis of Gaussian elim-
ination results in Θ(n3) computations (multiplications
and additions). Such computations on real numbers are
called floating point operations. The overall implica-
tion of an algorithm of Θ(n3) is that increasing the size
of n by a factor of 10 increases the work by a factor of
103 = 1000.

If n has a value of 1 billion, n = 109, then n3 = 1027.
Suppose we find a way to parallelize the Gaussian
elimination algorithm and run it on a fast parallel-
processing supercomputer. The Chinese Tianhe-2,
the world’s fastest supercomputer as of June 2013 can
crank out about 33.86 petaflops (33.86 × 1015 floating-
point operations per second). The worst-case solution
would be bounded above by

1027 operations
(33.86) * 1015 operations∙second

= over 936 years!

Now Θ(n3) was an upper bound, so maybe the closer
value is something like (2∙3)Θ(n3), but at any rate it’s
clear that these are time-consuming problems, and
faster solution techniques are of interest.

Gaussian elimination produces exact solutions to
systems of linear equations. Other solution methods,
called iterative solvers, produce a series of approxi-
mate solutions that approach the exact solution. This
method sounds as if it would take even longer, but most
iterative solvers start out with a sparse matrix (a matrix
with many 0 entries) for which computations will be

faster but is nonetheless a good representative of the
information in the original augmented matrix. Decid-
ing which values can be zeroed out while modifying
the values of the remaining coefficients so as to pro-
vide a good “preconditioner” for the eventual solution
is a difficult problem in itself.

A team of researchers at Carnegie Mellon Univer-
sity announced in 2010 that they had found a new al-
gorithm for creating a good preconditioner for a large
system of linear equations of a certain type, called
SDD (symmetric and diagonally dominant) systems.
In a diagonally dominant matrix, the absolute value
of the diagonal element (aii) of each row of a matrix
is bigger than the sum of the absolute values of all
other elements in that row. SDD systems turn out to
have many important applications, such as maximiz-
ing flow through a network (a computer network, a
water pipeline system, a transportation system) and
recommendation systems such as Netflix that suggest
movies you might like based on your past preferences
and other user data. The new algorithm, based on so-
phisticated mathematical techniques, is approximately
Θ(n(log n)2)), nearly linear, promising much faster so-
lutions to these massive problems.

“A Breakthrough in Algorithm Design,” Kroeker, K., Com-
munications of the ACM, September 2011.

“A Fast Solver for a Class of Linear Systems,” Koutis, I.,
Miller, G. L., and Peng, R., Communications of the
ACM, October 2012.

“Approaching Optimality for Solving SDD Linear Sys-
tems,” Koutis, I., Miller, G. L., and Peng, R., Proceed-
ings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, Las Vegas, NV,
October 23–26, 2010.

Linear Equation Breakthrough, Dr. Dobbs, http://drdobbs.
com/architecture-and-design/227900457

Chapter 5

http://drdobbs.com/architecture-and-design/227900457
http://drdobbs.com/architecture-and-design/227900457

460 Relations, Functions, and Matrices Section 5.7 Matrices 461

S e c t I o n 5 . 7 Review

technIQueS

• Add, subtract, multiply, and perform scalar multi-
plication on matrices.

• Solve systems of linear equations using Gaussian
elimination.

• Perform Boolean and, or, and matrix multiplication
on Boolean matrices.

maIn IDeaS

• Matrices are rectangular arrangements of data that
are used to represent information in tabular form.

• Matrices have their own arithmetic, with opera-
tions of addition, subtraction, multiplication, and
scalar multiplication.

• Systems of linear equations can be solved by per-
forming elementary row operations on an augment-
ed matrix (Gaussian elimination).

• Boolean matrices can be manipulated using Boolean
operations of and, or, and Boolean multiplication.

exeRcISeS 5.7

 1. For the matrix:

a = £
 1 2
 3 0

−4 1
§

 What is a12? What is a31?
 2. Find x and y if

c1 3
x x + y

d = c1 3
2 6

d

 3. Find x, y, z, and w if

cx + y 2x − 3y
z − w z + 2w

d = c 4 −7
−6 6

d

 4. If a is a symmetric matrix, find u, v, and w:

a = £
2 w u
7 0 v
1 −3 4

§

For Exercises 5–7, assume the following:

 r = 3, s = −2,

a = £
 2 1

−1 0
 3 4

§ b = £
4 1 2
6 −1 5
1 3 2

§ C = c2 4
6 −1

d D = £
4 −6
1 3
2 −1

§

 5. Compute (if possible)
 a. a + D b. a − D c. rb d. sC e. a + rD

W

W

462 Relations, Functions, and Matrices Section 5.7 Matrices 463

 6. Compute (if possible)
 a. b − rC c. r(sC) e. D # C
 b. r(a + D) d. b # a + D
 7. Compute (if possible)
 a. a # C c. b # D
 b. C # a d. C2 = C # C
 8. For

a = £
2 4 0
1 3 −1
3 −2 1

§

 compute A3 = A # a # a.
 9. For

a = c3 −1
2 5

d

b = c4 1
2 −1

d

C = c6 −5
2 −2

d

 compute (if possible)
 a. a # b and b # a
 b. a # (b # C) and (a # b) # C
 c. a # (b + C) and a # b + a # C
 d. (a + b) # C and a # C + b # C
 10. If

a = c2 3
4 1

d b = cx 3
y 2

d

 find x and y if a # b = b # a.
 11. Prove that matrix multiplication is associative; that is, prove that if a is an n × p matrix, b is a p × r

matrix and C is an r × m matrix, then a # (b # C) = (a # b) # C.
 12. a. Prove that i2 = i for any identity matrix i.
 b. Prove that in = i for any identity matrix i and any positive integer n.
 13. Let a and b be n × n matrices.
 a. Prove that if a has one row consisting of all 0’s, then so does a # b.
 b. Prove that if b has one column consisting of all 0’s, then so does a # b.

462 Relations, Functions, and Matrices Section 5.7 Matrices 463

 14. An n × n matrix a is diagonal if all elements aij with i ∙ j are 0. For example, a below is a 3 × 3 diago-
nal matrix.

a = £
2 0 0
0 5 0
0 0 −7

§

 a. Prove that if a and b are n × n diagonal matrices, then a + b is diagonal.
 b. Prove that if a is an n × n diagonal matrix and r is a scalar, then ra is diagonal.
 c Prove that if a and b are n × n diagonal matrices, then a # b is diagonal.

 15. The transpose of a matrix a, aT , is obtained by interchanging its rows and columns. Thus, if we denote
the element in row i, column j of a by a(i, j), then aT(i, j) = a(j, i).

 a. Find aT for

a = c1 3 4
6 −2 1

d

 b. Prove that if a is a square matrix, then a is symmetric if and only if aT = a.
 c. Prove that (aT)T = a.
 d. Prove that (a + b)T = aT + bT .
 e. Prove that (a # b)T = bT # aT .

 16. Prove that a # aT is symmetric for any matrix a (see Exercise 15).

 17. Find two 2 × 2 matrices a and b such that a # b = 0 but a ∙ 0 and b ∙ 0.

 18. Find three 2 × 2 matrices a, b, and C such that a # C = b # C, C ∙ 0, but a ∙ b.

 19. If a and b are n × n matrices, is it always true that (a + b)2 = a2 + 2(a # b) + b2? Will it ever be
true?

 20. The vector of real numbers U = 3u1 u2 4 can be visualized on the real-number plane as an arrow from
the origin to the point (u1, u2). The length of the arrow, also called the magnitude of the vector, is given
by 0 0U 0 0 = "u2

1 + u2
2. The dot product of two such vectors, U • v, is defined to be the real number

u1v1 + u2v2. Show that if u is the angle between U and v, 0 ≤ u ≤ p, then

cos u =
U • v

0 0U 0 0 # 0 0v 0 0

 (Hint: Use the law of cosines.)

 21. Prove that if a square matrix a is symmetric, then so is a2, where a2 = a # a.

 22. Prove that if a square matrix a is symmetric, then so is a2n
for any integer n ≥ 1.

464 Relations, Functions, and Matrices Section 5.7 Matrices 465

 23. Let

a = c1 1
1 0

d

 For n ≥ 1, let F(n) equal the nth value in the Fibonacci sequence (see Example 2 in Chapter 3); let
F(0) = 0. Prove that for any n ≥ 1, an is given by

cF(n + 1) F(n)
F(n) F(n − 1)

d

 24. a. Show that for

a = c1 3
2 2

d b = c−1∙2 3∙4
 1∙2 −1∙4

d

a # b = b # a = i, so b = a−1.
 b. Show that

a = c1 2
2 4

d

 is not invertible.
 c. Show that

a = ca11 a12

a21 a22
d

 is invertible with inverse

b =
1

a11a22 − a12a21
c a22 −a12

−a21 a11
d

 if and only if a11a22 − a12a21 ∙ 0.

 25. Prove that if a is invertible and r is a non-zero scalar, then ra is invertible with

(ra)−1 = (1∙r)a−1.

 26. Prove that if a is invertible and a # b = a # C, then b = C.

For Exercises 27–34, use Gaussian elimination to solve the systems of equations, if possible.

 27. x + 5y = 1
 2x − 3y = 15

 28. x + 5y = 38.7
 4x − 2y = −1.4

464 Relations, Functions, and Matrices Section 5.7 Matrices 465

 29. −x + 2y + z = −1
 3x − 5y − z = 5
 2x − y + 3z = 22
 30. x − y + z = 6
 x + 2y − 3z = 10
 2x + 3y + 5z = 12
 31. x + 2y − z = −1
 x − 3y + z = 2
 2x + y + 2z = 6
 32. 2x − 7y + z + 2w = 5
 x + y − 2z + 3w = 8
 4x + 2y + z − 4w = 12
 5x + 3y − z − w = 10
 33. x + 2y − z + w = −3
 2x − y + 4z + 2w = 33
 x − y + 3z − 7w = 6
 −3x + 3y + z + 4w = −12
 34. x − 2y + 3z − w = 7
 2x + 5y − 7z + 2w = 12
 4x − 3y + 12z + w = 8
 35. Find an example of a system of 3 linear equations with 2 unknowns that has a solution. Explain what hap-

pens when you use Gaussian elimination on this system.
 36. Find an example of a system of 4 linear equations with 3 unknowns that has a solution. Explain what hap-

pens when you use Gaussian elimination on this system.
 37. You purchase an ancient Egyptian medallion at the State Fair from a vendor who swears it is pure gold.

The medallion weighs 859.4 grams and its volume in cubic centimeters is 52. You suspect that the medal-
lion is actually a mixture of copper and gold. You know that copper weighs 9 grams per cubic centimeter
and that gold weighs 19.3 grams per cubic centimeter. Set up and solve a system of equations to find the
percentage of copper by volume in the medallion.

 38. Cell phone Plan A charges a flat monthly fee of $30.00 for the first 400 minutes, plus $0.07 for each
minute > 400. Plan B charges a flat monthly fee of $45.00 for the first 600 minutes, plus $0.19 for each
minute > 600. You know you will use more than 600 minutes per month.

 a. At what number of minutes do the plans cost the same amount per month, and what is that amount?
 b. Above this number of minutes, which plan is more expensive?
 39. If a is an n × n invertible matrix, the following method can be used to find a−1.
 1. Operate on a using any combination of the two following elementary row operations until the resulting

matrix is the n × n identity matrix i.
 i. Multiply all the elements in any one row of a by a non-zero scalar.
 ii. Add a scalar multiple of any row to any other row.
 2. At the same time, perform exactly the same sequence of operations on the n × n identity matrix i.
 3. The matrix that results from i after step 2 is a−1.
 Use this method to find the inverse of matrix a in Exercise 24(a).

466 Relations, Functions, and Matrices Section 5.7 Matrices 467

 40. Use the method of Exercise 39 to find the inverse of matrix a in Example 71.

 41. Consider a system of n linear equations in n unknowns, such as the one from Example 63:

 x + y = 70
 24x + 14y = 1180

 If

 a = c 1 1
24 14

d X = cx
y
d b = c 70

1180
d

 then the system of equations can be represented in matrix form by

a # X = b

 If a, the matrix of coefficients, is invertible, then we can multiply both sides of the above equation by
a−1, giving

 a−1 # (a # X) = a−1 # b
 (a−1 # a) # X = a−1 # b (matrix multiplication is associative)
 i # X = a−1 # b (definition of a−1)
 X = a−1 # b (definition of i)

 Therefore the solution to the system of equations is given by

X = a−1 # b

 Make use of Exercise 39 to find a−1, and use this approach to solve the system of equations.

In Exercises 42–46, solve the systems of equations using the method of Exercise 41.

 42. x + 2y = −4
 x + y = 5

 43. The system of Exercise 27

 44. The system of Exercise 28

 45. The system of Exercise 29

 46. The system of Exercise 30

 47. For Boolean matrices

a = £
1 0 0
1 1 0
0 1 1

§ b = £
1 0 1
0 1 1
1 1 1

§

 find a ` b, a ~ b, a × b, and b × a.

466 Relations, Functions, and Matrices Section 5.7 Matrices 467

 48. For Boolean matrices

a = £
0 0 1
1 1 0
1 0 0

§ b = £
0 1 1
0 0 0
1 0 0

§

 find a ` b, a ~ b, a × b, and b × a.
 49. For Boolean matrices

a = £
0 1 0
1 0 1
0 0 1

§ b = £
0 1 1
0 0 1
1 0 0

§

 find a ` b, a ~ b, a × b, and b × a.
 50. For Boolean matrices

a = £
1 1 0
0 1 1
0 0 1

§ b = £
1 0 1
0 1 1
1 1 1

§

 find a ` b, a ~ b, a × b, and b × a.
 51. For Boolean matrices a and b, can it ever be the case that a ~ b = a ` b? If so, when?
 52. For Boolean matrices a and b, prove that a ~ b = b ~ a and that a ` b = b ` a.
 53. How many distinct symmetric n × n Boolean matrices are there?
 54. Strassen’s algorithm reduces the amount of work to compute the product of two n × n matrices of suffi-

cient size. For simplicity, assume that n = 2m for some m ≥ 0. First consider a simple case of multiplying
two 2 × 2 matrices.

a = ca11 a12

a21 a22
d b = cb11 b12

b21 b22
d

 The product

 C = ca11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22
d (1)

 can also be written (check the calculations) as

 C = cp1 + p4 − p5 + p7 p3 + p5

p2 + p4 p1 + p3 − p2 + p6
d (2)

 where

 p1 = (a11 + a22)(b11 + b22) p2 = (a21 + a22)b11

 p3 = a11(b12 − b22) p4 = a22(b21 − b11)
 p5 = (a11 + a12)b22 p6 = (a21 − a11)(b11 + b12)
 p7 = (a12 − a22)(b21 + b22)

468 Relations, Functions, and Matrices Section 5.7 Matrices 469

 Computing the various pi quantities requires 7 multiplications and 10 additions (counting subtractions as
additions). Computing the product C once the pi quantities exist takes 0 multiplications and an additional
8 additions. In total, computing C by this method requires 7 multiplications and 18 additions. Now take
two n × n matrices a and b and partition each of them into four (n∙2 × n∙2) matrices:

a = ca11 a12

a21 a22
d b = cb11 b12

b21 b22
d

 The product C = a # b is still given by Equation (1) using aij and bij instead of aij and bij, respectively.
Therefore Equation (2) still holds, and the product C requires 7 (n∙2 × n∙2) matrix multiplications. This
is an example of a divide and conquer algorithm, where the work has been reduced to several instances
of the same problem on a significantly reduced input size (although there is an additional overhead of 18
(n∙2 × n∙2) matrix additions).

Let M(n) represent the number of multiplications required for a product of two n × n matrices. Using
Strassen’s algorithm, we can write

 M(1) = 1 (one multiplication in the product of two 1 × 1 matrices)

 M(n) = 7M an
2
b

 a. Solve this recurrence relation for M(n).
 b. If A(n) represents the number of additions required for a product of two n × n matrices, justify the

following recurrence relation:

 A(1) = 0

 A(n) = 7Aan
2
b + 18an

2
b

2

 c. Solve this recurrence relation to obtain an order-of-magnitude expression for A(n).
 d. Find an approximate order-of-magnitude value for the total work (additions and multiplications) for

matrix multiplication using Strassen’s algorithm, and compare it with the Θ(n3) work (additions and
multiplications) for traditional matrix multiplication. (Although Strassen’s algorithm is theoretically an
improvement for all values of n, the constants that are ignored in an order-of-magnitude argument mean
that in actual implementation the traditional algorithm may run faster for values of n less than about
26 = 64).

 55. The Gaussian elimination algorithm is labor-intensive. A worst-case analysis can be done simply by count-
ing, where multiplications and additions are the units of work (divisions are counted as multiplications
and subtractions are counted as additions). Consider a system of n linear equations in n unknowns.

 a. In the worst-case, the first non-zero element of each row of the augmented matrix as it is being trans-
formed into upper triangular form is not 1 and that row must be multiplied by a non-zero scalar to create
a 1. Show that this requires a total of

(n + 1)(n + 2)
2

− 3

 multiplications. (Hint: Consider Practice 7 in Chapter 2.)
 b. Aside from the multiplications required in part (a), show that

2n3 + 3n2 − 5n
6

 multiplications and
2n3 + 3n2 − 5n

6
 additions are required to transform the augmented matrix into upper triangular form.

(Hint: Consider Exercise 11 in Section 2.2.)

468 Relations, Functions, and Matrices Section 5.7 Matrices 469

 c. After the matrix has been reduced to upper triangular form, show that there are
n(n + 1)

2
 multiplica-

tions and
(n − 1)n

2
 additions to solve for the n unknowns.

 d. Explain why Gaussian elimination is Θ(n3) in the worst case.

 56. DES, discussed in Section 5.6, is an encryption algorithm that is an example of a block cipher, where a
block of bits is encoded into a block of bits. Matrices can be used to create a simple block cipher. Consider
a 2 × 2 matrix with integer entries, for example,

a = c2 7
1 4

d

 a is an invertible matrix with

a−1 = c 4 −7
−1 2

d

 because

c2 7
1 4

d # c 4 −7
−1 2

d = c 4 −7
−1 2

d # c2 7
1 4

d = c1 0
0 1

d

 Break up the message to be encrypted into blocks of two characters, and apply a function mapping the
letters of the alphabet into the integers 0–25 as follows:

a b c D e f g h I J K l m n o p Q R S t u V W x Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 Thus 3B R 4 S 31 17 4 . The heart of the encryption algorithm consists of multiplying the resulting 1 × 2
matrix by a using arithmetic modulo 26. Thus

31 17 4 # c2 7
1 4

d = 319 75 4 S 319 23 4

 and 319 23 4 S 3T X 4 . Therefore 3B R 4 is encrypted as 3T X 4 . To decrypt, convert 3T X 4 back to
319 23 4 and multiply the resulting 1 × 2 matrix by a−1, again using modulo 26 arithmetic.

319 23 4 # c 4 −7
−1 2

d = 353 −87 4 S 31 17 4

 to be converted back to the original message 3B R 4 .
 a. Using the encryption matrix a above, encrypt the block [V I].
 b. Decrypt the result from part (a) to recover [V I].
 c. Explain why the decoding process recovers the original (numerical) block.

470 Relations, Functions, and Matrices Chapter 5 Review 471

c h a p t e R 5 Review

teRmInologY

ABA routing number (p. 437)
add to a database (p. 375)
addition modulo n (p. 343, p. 438)
addition of matrices (p. 449)
AES (Advanced Encryption

Standard) (p. 431)
antisymmetric relation (p. 332)
array (p. 448)
asymmetric encryption (p. 431)
augmented matrix (p. 453)
big oh (p. 417)
big theta (p. 413)
bijection (p. 390)
binary relation from S to T (p. 330)
binary relation on a set S (p. 329)
binary relation on S × T (p. 330)
blind key (p. 368)
block (p. 339)
block cipher (p. 429)
Boolean and (logical and) (p. 458)
Boolean matrix (p. 458)
Boolean matrix multiplication

(A × B) (p. 458)
Boolean or (logical or) (p. 458)
Caesar cipher (p. 428)
Cantor’s theorem (p. 401)
cardinality of a relation (p. 366)
cardinality of a set (p. 401)
ceiling function (p. 386)
chain (p. 338)
chaining (p. 426)
ciphertext (p. 428)
circular left shift (p. 430)
closure of a relation (p. 334)
codomain (p. 383)
collision (p. 425)
commutative diagram (p. 391)
composition function (p. 391)
composite primary key (p. 367)
conceptual model (p. 365)
congruence modulo 4 (p. 343)
congruence modulo n (p. 343)
critical path (p. 359)
cryptographic hash function

(p. 434)
cryptography (p. 428)

cryptology (p. 428)
data integrity (p. 375)
database (p. 365)
degree of relation (p. 366)
delete from a database (p. 375)
derangement (p. 396)
DES (Data Encryption Standard)

(p. 429)
diffusion (p. 429)
dimensions of a matrix (p. 446)
disjoint cycles (p. 395)
domain (p. 383)
elementary row operations (p. 454)
entities (p. 365)
entity integrity (pp. 367, 375)
entity-relationship diagram (E-R

diagram) (p. 365)
entity-relationship model (p. 365)
equal functions (p. 387)
equal matrices (p. 447)
equivalence class (p. 339)
equivalence relation (p. 339)
equivalent sets (p. 401)
floor function (p. 386)
foreign key (p. 368)
function (p. 383)
Gaussian elimination (p. 454)
greatest element (p. 338)
hash function (p. 424)
hash table (p. 425)
Hasse diagram (p. 336)
identity function (p. 392)
identity matrix (p. 451)
identity permutation (p. 396)
image (p. 383)
immediate predecessor in a partial

ordering (p. 336)
intractable problem (p. 417)
inverse function (p. 393)
inverse of a matrix (p. 452)
invertible matrix (p. 452)
International Standard Book

Number (ISBN) (p. 435)
join (p. 370)
least element (p. 338)
linear equation (p. 447)

linear probing (p. 425)
little oh (p. 417)
load factor (p. 427)
main diagonal (p. 447)
many-to-many relation (p. 330)
many-to-one relation (p. 330)
mapping (p. 383)
master theorem (p. 418)
matrix (p. 446)
matrix of coefficients (p. 447)
maximal element (p. 338)
metadata (p. 366)
minimal element (p. 338)
modify a database (p. 375)
modulo function (p. 386)
multiplication of matrices (p. 450)
n-ary relation on

S1 × S2 × c× Sn (p. 330)
node (p. 337)
one-to-many relation (p. 330)
one-to-one (injective) function

(p. 389)
one-to-one relation (p. 330)
one-way encryption (p. 434)
onto (surjective) function (p. 388)
order of magnitude (p. 413)
partial ordering (p. 336)
partially ordered set (poset)

(p. 336)
partition (p. 339)
permutation function (p. 394)
PERT chart (p. 357)
plaintext (p. 428)
poset (p. 336)
predecessor in a partial ordering

(p. 336)
preimage (p. 383)
primary key (p. 367)
private key encryption (p. 431)
project (p. 369)
public key encryption (p. 431)
range (p. 388)
referential integrity (p. 375)
reflexive closure (p. 334)
reflexive relation (p. 332)
relational algebra (p. 372)

470 Relations, Functions, and Matrices Chapter 5 Review 471

relational calculus (p. 372)
relational database (p. 366)
relational model (p. 366)
residue of x modulo n (p. 423)
restrict (p. 369)
restriction of a partial ordering

(p. 336)
RSA public key encryption

algorithm (p. 431)
scalar (p. 448)
scalar multiplication (p. 448)

SELECT (p. 372)
simple substitution cipher (p. 429)
SQL (p. 372)
subtraction of matrices (p. 449)
successor in a partial ordering

(p. 336)
surrogate key (p. 368)
symmetric closure (p. 334)
symmetric encryption (p. 431)
symmetric matrix (p. 447)
symmetric relation (p. 332)

topological sorting (p. 359)
total ordering (p. 338)
transitive closure (p. 334)
transitive relation (p. 332)
tuple (p. 366)
UPC-A (Universal Product Code)

(p. 436)
upper triangular matrix (p. 453)
vector (p. 448)
vertex (p. 337)
zero matrix (p. 449)

Self-teSt

Answer the following true-false questions.

section 5.1
1. In a one-to-many binary relation, at least one first

component must appear in two different ordered
pairs.

2. If an antisymmetric binary relation contains (x, y),
then (y, x) will not belong to the relation.

3. A least element of a partially ordered set precedes
all elements except itself.

4. An equivalence relation cannot also be a partial
 ordering.

5. A partial ordering on a set determines a partition of
that set.

section 5.2
1. If a task is not on the critical path in a PERT chart,

then that task is optional.
2. A topological sort turns a partially ordered set into

a totally ordered set.
3. If x precedes y after a topological sort on a finite

partially ordered set, then x preceded y in the origi-
nal partial ordering.

4. The times to complete parallel tasks are added to-
gether in determining a critical path in a PERT chart.

5. A given set of data results in a unique topological
sort.

section 5.3
1. A relation in a relational database is a set of n tuples

of attribute values.
2. A primary key in a relation is a minimum subset of

attribute values that will uniquely identify each tuple.
3. The restrict operation can be achieved by doing a

union followed by an intersection.
4. The join operation can be achieved by doing a

 Cartesian product followed by a restrict.

5. Deleting a tuple from a relation may result in addi-
tional deletions being done in order to satisfy data
integrity.

section 5.4
1. A binary relation on S × T that is not one-to-many

or many-to-many is a function from S to T.
2. To prove that a function is onto, begin with an ar-

bitrary element of the range and show that it has a
preimage.

3. To prove that a function is one-to-one, assume
f (s1) = f (s2) for some s1 and s2 in the domain and
show that s1 = s2.

4. The composition of two permutation functions on a
set is a permutation function on the set.

5. Any one-to-one function has an inverse function.

section 5.5
1. If f is Θ(g), then beyond some point the values for

f(x) must fall between 1
2 g(x) and 2g(x).

2. If f = O(g), then either f = Θ(g) or g = o(f).
3. If f(x) = 3x2 + 15x − 2 and g(x) = 5000x3∙

(x − 1) then f = Θ(g).
4. An intractable problem is one that only has solution

algorithms of the form Θ(nc) where c ≥ 5.
5. In a recurrence relation of the form

S(n) = aS an
b
b + nc for n ≥ 2

 the order of magnitude of the solution, as deter-
mined by the master theorem, depends on the ratio
of a to bc.

472 Relations, Functions, and Matrices Chapter 5 Review 473

section 5.6
1. 37 ≡ 15 (mod 11)
2. When searching a hash table for a particular target

value, first apply the hash function to the value to
obtain the hash table index, then examine the table
entry at that index. If the table entry stored there
matches the target value, the search was successful;
if not, the search fails.

3. A Caesar cipher with a shift k = 5 will encode “W”
as “B.”

4. In the RSA algorithm, the public key is (n, e). Se-
curity derives from the difficulty of computing
w(n).

5. The check digit in the ISBN-10 0-321-18059-3 is
correct.

section 5.7
1. Two matrices that do not have the same dimensions

cannot be added.
2. If a and b are square matrices, then a # b = b # a.
3. The usual algorithm for matrix multiplication is

Θ(n3).
4. The process of Gaussian elimination reduces the

augmented matrix of a system of n linear equations
in n unknowns to the n × n identity matrix.

5. If a and b are square Boolean matrices, then
a × b = b × a, where a × b denotes the Bool-
ean product.

o n t h e c o m p u t e R

For Exercises 1–17, write a computer program that
produces the desired output from the given input.

1. Input: The elements in a finite set S and a list of
ordered pairs representing a binary relation on S
Output: Statement indicating whether the relation
is one-to-one, one-to-many, many-to-one, or many-
to-many

2. Input: The elements in a finite set S and two lists of
ordered pairs representing two binary relations on S
Output: The ordered pairs in the union and in the
intersection of the two relations, and the ordered
pairs in the complements of each relation

3. Input: The elements in a finite set S and a list of
ordered pairs representing a binary relation on S
Output: Statement of which properties—reflexive,
symmetric, transitive, and/or antisymmetric—the
relation has

4. Input: The elements in a finite set S and a list of
ordered pairs representing a binary relation on S
Output: Reflexive, symmetric, and transitive clo-
sures of the relation

5. Input: The elements in a finite set S and a list of or-
dered pairs representing a partial ordering on S
Output: A list of all minimal and maximal elements

 6. Input: The elements in a finite set S and a list of
ordered pairs representing a partial ordering on S
Output: A list of any least or greatest elements.
Note that this task is more difficult than that in Ex-
ercise 5.

 7. Input: The elements in a finite set S, a list of or-
dered pairs representing an equivalence relation
on S, and an element x of S
Output: The members of [x]

 8. Input: Array representations of relation tables and
appropriate input data for restrict, project, and join
operations
Output: Array representations of the resulting rela-
tion tables

 9. Input: The elements in a finite set S and a list of
ordered pairs representing a partial ordering on S
 Output: Sequence representing the total ordering
that results from doing a topological sort (Hint:
Reuse some of your code from Exercise 5.)

10. Input: The elements in a finite set S and in a finite
set T, and a list of ordered pairs representing a bi-
nary relation on S × T
 Output: An indication of whether the relation is a
function from S to T and if so, whether it is onto or
one-to-one or both

472 Relations, Functions, and Matrices Chapter 5 Review 473

11. Input: The number of elements in two finite sets
S and T
Output: The number of functions from S to T, the
number of one-to-one functions from S to T (or
an indication that none exist), and the number of
onto functions from S to T (or an indication that
none exist)

12. Input: Two lists of ordered pairs representing func-
tions f and g from S to S
Output: List of ordered pairs representing the com-
position function g + f

13. Input: The elements in a finite set S and two lists
that represent (in cycle form) permutations f and
g on S
Output: One or more lists that represent the com-
position function g + f in cycle or product-of-cycle
form

14. Input: The number of elements in a finite set S
Output: The number of derangements on S

15. Input: n and the entries in two n × n matrices a
and b
Output: Sum a + b and products a # b and b # a

16. Input: Dimensions of a matrix a and the entries
in a
Output: aT (see Exercise 15 in Section 5.7)

17. Input: The augmented matrix of a system of n lin-
ear equations in n unknowns with a unique set of
n solutions
Output: The n solutions, determined by using
Gaussian elimination

18. The determinant of an n × n matrix can be used
in solving systems of linear equations, as well
as for other purposes. The determinant of a can
be defined in terms of minors and cofactors. The
minor of element aij is the determinant of the
(n − 1) × (n − 1) matrix obtained from a by
crossing out the elements in row i and column j;
denote this minor by Mij. The cofactor of element
aij, denoted by Cij, is defined by

Cij = (−1)i+ jMij

The determinant of a is computed by multiplying
all the elements in some fixed row of a by their
respective cofactors and summing the results. For
example, if the first row is used, then the determi-
nant of a is given by

∙
n

k=1
(a1k)(C1k)

Write a program that, when given n and the entries
in an n × n array a as input, computes the deter-
minant of a. Use a recursive algorithm.

This page intentionally left blank

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Understand and use the many terms associated with graphs, directed graphs,
and trees.

• Appreciate the use of graphs, directed graphs, and trees as representation tools
in a wide variety of contexts.

• Prove that two given graphs are isomorphic or give a reason why they are not.
• Use Euler’s formula for a simple, connected, planar graph.
• Understand the role of the two specific graphs K5 and K3,3 in graph planarity.
• Prove elementary properties about graphs and trees.
• Use adjacency matrix and adjacency list representations for graphs and directed

graphs.
• Do preorder, inorder, and postorder tree traversal.
• Use array and pointer representations for binary trees.
• Use decision trees to represent the steps a searching or sorting algorithm car-

ries out.
• Build a binary search tree and conduct a binary tree search.
• Express lower bounds on the worst-case number of comparisons for searching

or sorting on a list with n elements.
• Find Huffman codes for characters whose frequency of occurrence is given.

You work in the Information Systems Department at World Wide Widgets (WWW), the
leading widget manufacturer. Widgets are extremely complex devices made up of an
enormous number of very simple parts. Each part is one of the following types: Bolt
(B), Component (C), Gear (G), Rod (R), or Screw (S). There are many different varia-
tions of each basic type. Part numbers consist of a leading character B, C, G, R, or S
to identify the part type, followed by an 8-digit number. Thus

C00347289
B11872432
S45003781

are all legitimate part numbers. Using the multiplication principle, there are 5 × 108
different potential part numbers! WWW maintains a data file of the part numbers
it uses, which, as it turns out, is most of the potential numbers. Most computers,

6Graphs and Trees

Chapter

475

476 Graphs and Trees

 including those at WWW, use the ASCII encoding scheme for converting characters
into binary form, under which each character requires 1 byte (8 bits) of storage. Be-
cause each different part number consists of 9 characters, the WWW parts data file
is approximately 9 × 5 × 108 bytes, or 4.5 Gb.

 Question: How can you compress this data file so that it takes less storage space?

One answer to this question involves working with binary tree structures. A tree
is a visual representation of data items and the connections between some of these
items. It is a special case of a more general structure called a graph. Graphs or
trees can be used to represent a surprising number of real-world situations—
organization charts, road maps, transportation and communications networks,
and so forth. Later we will see other uses of graphs and trees to represent logic
networks, finite-state machines, and formal-language derivations.

Graph theory is an extensive topic. Sections 6.1 and 6.2 present some of the
considerable terminology connected with graphs and trees and some elementary
results about these structures. To represent a graph or a tree in computer memory,
data must be arranged in a way that preserves all the information contained in the
visual representation. Several approaches to representing graphs and trees within
a computer are discussed.

Decision trees are graphical representations of the activities of certain types
of algorithms. In Section 6.3, decision trees are presented and used to find lower
bounds on the worst-case behavior of searching and sorting algorithms. In Sec-
tion 6.4, an algorithm is given for constructing binary trees that allow for data
compression of large files.

 S e c t i o n 6 . 1 Graphs and Their represenTaTions

Definitions of a Graph

One way to while away the hours on an airplane trip is to look at the literature in
the seat pockets. This material almost always includes a map showing the routes
of the airline you are flying, such as the one in Figure 6.1. All this route informa-
tion could be expressed in paragraph form; for example, there is a direct route be-
tween Chicago and Nashville but not between St. Louis and Nashville. However,
the paragraph would be rather long and involved, and we would not be able to
assimilate the information as quickly and clearly as we can from the map. There
are many cases where “a picture is worth a thousand words.”

Chicago

Nashville

Miami

St. Louis

DallasAlbuquerquePhoenix

Denver

Los Angeles

San Francisco

Figure 6.1

Section 6.1 Graphs and Their Representations 477

The term “graph” is often used informally for any visual representation of
data, such as that in Figure 6.1; other forms include the bar graph, picture graph,
and pie chart, which are shown in Figure 6.2. We have also talked about graphs
of functions on rectangular coordinate systems. We will use two definitions of a
graph; one relies on a visual representation like that of Figure 6.1, and the other is
a more formal definition that actually says nothing about a visual representation.

 Definition Graph
(informal) A graph is a nonempty set of nodes (vertices) and a set of arcs (edges) such that
 each arc connects two nodes.

Our graphs will always have a finite number of nodes and arcs.

2014 expenditures2012 2013 2014 2015

Profits
18%

Taxes
23%

New
equipment

25% Overhead
34%

Each figure represents
100,000

New York

PhiladelphiaPa
rt

s
pe

r
m

ill
io

n

Bar Graph Picture Graph

Pie Chart

Figure 6.2

 example 1 The set of nodes in the airline map of Figure 6.1 is EChicago, Nashville, Miami,
Dallas, St. Louis, Albuquerque, Phoenix, Denver, San Francisco, Los AngelesF.
There are 16 arcs; Phoenix-Albuquerque is an arc (here we are naming an arc by
the nodes it connects), Albuquerque-Dallas is an arc, and so on.

The informal definition of a graph works quite well if we have the visual
representation of the graph before us to show which arcs connect which nodes.
Without the picture, however, we need a concise way to convey this information.
Hence our second definition of a graph.

 example 2 In the graph of Figure 6.3, there are five nodes and six arcs. Arc a1 connects nodes
1 and 2, arc a3 connects node 2 and 2, and so forth.

1 3 4 5

a1

2a2

a3

a4

a5 a6

Figure 6.3

478 Graphs and Trees

 Definition Graph
(formal) A graph is an ordered triple (N, A, g) where

N = a nonempty set of nodes (vertices)
A = a set of arcs (edges)
g = a function associating with each arc a an unordered pair x–y of nodes

called the endpoints of a

We might want the arcs of a graph to begin at one node and end at another, in
which case we would use a directed graph.

 Definition DirecTeD Graph
A directed graph (digraph) is an ordered triple (N, A, g) where

N = a nonempty set of nodes
A = a set of arcs
g = a function associating with each arc a an ordered pair (x, y) of nodes

where x is the initial point and y is the terminal point of a.

In a directed graph, then, there is a direction associated with each arc.

 example 3 For the graph of Figure 6.3, the function g associating arcs with endpoints performs
the following mapping: g(a1) = 1–2, g(a2) = 1–2, g(a3) = 2–2, g(a4) = 2–3,
g(a5) = 1–3, and g(a6) = 3–4.

 example 4 Figure 6.4 shows a directed graph. There are 4 nodes and 5 arcs. The function g
 associating arcs with endpoints performs the mapping g(a1) = (1, 2), meaning that
arc a1 begins at node 1 and ends at node 2. Also, g(a3) = (1, 3), but g(a4) = (3, 1).

2
1

4

3

a1

a2

a5

a3

a4

Figure 6.4

Besides imposing direction on the arcs of a graph, we may want to modify the
basic definition of a graph in other ways. We often want the nodes of a graph to car-
ry identifying information, like the names of the cities in the map of airline routes.

praCTiCe 1 Sketch a graph having nodes 51, 2, 3, 4, 56, arcs 5a1, a2, a3, a4, a5, a66, and function
g(a1) = 1–2, g(a2) = 1–3, g(a3) = 3–4, g(a4) = 3–4, g(a5) = 4–5, and g(a6) = 5–5.

■

Section 6.1 Graphs and Their Representations 479

This map would be a labeled graph. We may want to use a weighted graph, where
each arc has some numerical value, or weight, associated with it. For example, we
might want to indicate the distances of the various routes in the airline map.

In this book, the term “graph” will mean an undirected graph. To refer to a
directed graph, we will always say “directed graph.”

applications of Graphs

Although the idea of a graph is very simple, an amazing number of situations
have relationships between items that lend themselves to graphical representa-
tion. Not surprisingly, there are many graphs in this book. Graphical representa-
tions of partially ordered sets (Hasse diagrams) were introduced in Chapter 5. A
PERT chart (for example, Figure 5.7) is a directed graph. The E-R diagram (for
example, Figure 5.10) is a graph. The commutative diagram illustrating composi-
tion of functions (Figure 5.23) is a directed graph. Chapter 8 will introduce logic
networks and represent them as directed graphs. Directed graphs will also be used
to describe finite-state machines in Chapter 9.

We saw that the airline route map was a graph. A representation of any net-
work of transportation routes (a road map, for example), communications lines (as
in a computer network), or product or service distribution routes such as natural
gas pipelines or water mains is a graph. The chemical structure of a molecule is
represented graphically.

praCTiCe 2 Draw the underlying graph in each of the following cases.

a. Figure 6.5 is a road map for part of Arizona.
b. Figure 6.6 is a representation of an ozone molecule with three oxygen atoms.

O

OO
Figure 6.6

Winslow

Flagstaff

Strawberry

Carefree

Payson

Apache
Junction

Sedona

Phoenix

Tempe

Casa Grande

Chandler

Mesa

Scottsdale

Rimrock

Figure 6.5 ■

480 Graphs and Trees

 example 5 A high-level view of the information flow in a state automobile licensing office
is prepared as the first step in developing a new computerized licensing system.
Figure 6.7 shows the resulting directed graph, often called a data flow diagram.

Bureau of
Motor Vehicles

State
Revenue Division

Customer

Process
application

Request
payment

Process
payment

Issue
plate

Customer request

Invoice

Payment

Receipt
Plate

Registration copy

Plate
authorization

Credit notification

Validation

Figure 6.7

 example 6 Figure 6.8 shows a graph representation of a local area network of computers in an
office complex. In this “star topology,” all machines communicate through a central
server. The graph representation highlights one of the weaknesses of such a network
design, namely its reliance on continued, dependable operation of the central server.

Figure 6.8

 example 7 Neural networks, tools used in artificial intelligence for such tasks as pattern rec-
ognition, are represented by weighted directed graphs. Figure 6.9 shows a multi-
layer network consisting of input units, output units, and a “hidden layer” of units.
Weights on the arcs of the graph are adjusted as the neural network “learns” how
to recognize certain trial patterns.

Section 6.1 Graphs and Their Representations 481

Graph Terminology

Before proceeding, we need some terminology about graphs. Surprisingly, al-
though there is a large body of literature in graph theory, the terminology is not
completely standard. Therefore other books may give slightly different variations
of some of these terms.

Two nodes in a graph are adjacent if they are the endpoints associated with an
arc. For example in the graph of Figure 6.3 (reproduced here), 1 and 3 are adjacent
nodes but 1 and 4 are not. Node 2 is adjacent to itself. A loop in a graph is an arc
with endpoints n–n for some node n; in Figure 6.3, arc a3 is a loop with endpoints
2–2. A graph with no loops is loop-free. Two arcs with the same endpoints are
parallel arcs; arcs a1, and a2 in Figure 6.3 are parallel. A simple graph is one
with no loops or parallel arcs. An isolated node is adjacent to no other node; in
Figure 6.3, 5 is an isolated node. The degree of a node is the number of arc ends
at that node. In Figure 6.3, nodes 1 and 3 have degree 3, node 2 has degree 5, node
4 has degree 1, and node 5 has degree 0.

1 3 4 5

a1

2a2

a3

a4

a5 a6

Because the function g that relates arcs to endpoints in the formal definition of
a graph is indeed a function, each arc has a unique pair of endpoints. If g is a one-to-
one function, then there is at most one arc associated with a pair of endpoints; such

Input units Hidden layer Output units

w1
1, 1

w1
1, 2

w1
2, 1

w1
1, j

w1
2, j

w1
i, 1 w1

i, 2

w1
i, j w2

j, k

w2
j, 1

w2
2, k

w2
2, 1

w2
1, k

w2
1, 1

w1
2, 2

Figure 6.9

482 Graphs and Trees

graphs have no parallel arcs. A complete graph is one in which any two distinct
nodes are adjacent. In this case, g is almost an onto function—every pair x–y of
distinct nodes is the image under g of an arc—but there does not have to be a loop at
every node. Consequently, pairs of the form x–x need not have a preimage.

A subgraph of a graph consists of a set of nodes and a set of arcs that are sub-
sets of the original node set and arc set, respectively, in which the endpoints of an
arc must be the same nodes as in the original graph. In other words, it is a graph
obtained by erasing part of the original graph and leaving the rest unchanged.
Figure 6.10 shows two subgraphs of the graph in Figure 6.3. Note that the graph in
Figure 6.10a is simple and also complete.

1 3

a1

2a2

a3

a51 3

a1 a4

2

a5

(a) (b)

Figure 6.10

A path from node n0 to node nk is a sequence

n0, a0, n1, a1, … , nk−1, ak−1, nk

of nodes and arcs where for each i, the endpoints of arc ai are ni–ni+1. In the
graph of Figure 6.3, one path from node 2 to node 4 consists of the sequence
2, al, 1, a2, 2, a4, 3, a6, 4. The length of a path is the number of arcs it contains; if
an arc is used more than once, it is counted each time it is used. The length of the
path just described from node 2 to node 4 is 4.

A graph is connected if there is a path from any node to any other node. The
graphs in Figure 6.10 are each connected, but the graph of Figure 6.3 is not con-
nected. A cycle in a graph is a path from some node n0 back to n0 where no arc
appears more than once in the path sequence, n0 is the only node appearing more
than once, and n0 occurs only at the ends. (Nodes and arcs may be repeated in a
path but not, except for node n0, in a cycle.) In the graph of Figure 6.3,

1, a1, 2, a4, 3, a5, 1

is a cycle. A graph with no cycles is acyclic.

praCTiCe 3 Refer to the graph created in Practice 1.

a. Find two nodes that are not adjacent.
b. Find a node adjacent to itself.
c. Find a loop.
d. Find two parallel arcs.
e. Find the degree of node 3.
f. Find a path of length 5.
g. Find a cycle.
h. Is this graph complete?
i. Is this graph connected? ■

Section 6.1 Graphs and Their Representations 483

Now consider the simple graph in Figure 6.12. It is not a complete graph
because it is not true that every node is adjacent to every other node. However,
the nodes can be divided into two disjoint sets, 51, 26 and 53, 4, 56 , such that
any two nodes chosen from the same set are not adjacent but any two nodes
chosen one from each set are adjacent. Such a graph is a bipartite complete
graph.

3 4

1 2

5

Figure 6.12

 ExamplE 8 Figure 6.11 illustrates the simple, complete graphs with 1, 2, 3, and 4 vertices. The
simple, complete graph with n vertices is denoted by Kn.

K1 K2 K3 K4

Figure 6.11

Practice 4 Draw K5.
■

Practice 5 Draw K3,3.
■

The concept of a path extends to a directed graph, as we might expect: A path
from node n0 to node nk in a directed graph is a sequence

n0, a0, n1, a1, … , nk−1, ak−1, nk

where for each i, ni is the initial point and ni+1 is the terminal point of ai. If a path
exists from node n0 to node nk, then nk is reachable from n0. The definition of a
cycle also carries over to directed graphs.

 DEfinition Bipartite Complete Graph
A graph is a bipartite complete graph if its nodes can be partitioned into two dis-
joint nonempty sets N1 and N2 such that two nodes x and y are adjacent if and only
if x [N1 and y [N2. If 0N1 0 = m and 0N2 0 = n, such a graph is denoted by Km,n.

Figure 6.12 therefore illustrates K2,3.

484 Graphs and Trees

We can prove some (fairly trivial) statements about graphs that follow directly
from the definitions.

 example 9 In the directed graph of Figure 6.13, there are many paths from node 1 to node 3:
1, a4, 3 and 1, a1, 2, a2, 2, a2, 2, a3, 3 are two possibilities. Node 3 is certainly
reachable from 1. Node 1, however, is not reachable from any other node. The
cycles in this graph are the loop a2 and the path 3, a5, 4, a6, 3.

1 3

4

a7

2

a2

a3a1

a4
a5

a6

Figure 6.13

 example 10 Prove that an acyclic graph is simple.
We’ll use a proof by contraposition. If a graph is not simple, it has either

parallel arcs or a loop. The parallel arcs and their endpoints, or the loop and its
endpoints, then constitute a cycle, and the graph is not acyclic.

Note that the converse to the statement in Example 10 is not true: Figure 6.10a
is a simple graph, but it contains a cycle.

praCTiCe 6

a. Prove that every complete graph is connected.
b. Find a connected graph that is not complete. ■

isomorphic Graphs

Two graphs may appear quite different in their visual representation but still be the
same graph according to our formal definition. We want to distinguish between
two graphs that have cosmetic visual differences and those that have fundamen-
tally different structures. The graphs in Figures 6.14 and 6.15 are the same—they
have the same nodes, the same arcs, and the same arc-to-endpoint function. (In
a representation of a graph, arcs can intersect at points that are not nodes of the
graph.) The graph in Figure 6.16 is essentially the same graph as well. If we rela-
beled the nodes and arcs of the graph of Figure 6.14 by the following mappings,
the graphs would be the same:

 f1:1 S a f2: a1 S e2
 2 S c a2 S e1
 3 S b
 4 S d

Section 6.1 Graphs and Their Representations 485

Structures that are the same except for relabeling are called isomorphic struc-
tures. To show that two structures are isomorphic, we must produce a relabeling
(one-to-one, onto mappings between the elements of the two structures) and then
show that the important properties of the structures are “preserved” (maintained)
under this relabeling. In the case of graphs, the elements are nodes and arcs. The
“important property” in a graph is which arcs connect which nodes.

The given mappings f1 and f2 are one-to-one, onto functions from the nodes
and arcs, respectively, of the graph in Figure 6.14 to the nodes and arcs of the graph
in Figure 6.16. Furthermore, if an arc a in the graph of Figure 6.14 has endpoints x–y,
then the arc f2(a) in the graph of Figure 6.16 has endpoints f1(x) –f1(y), and vice versa.
For example, arc a1 in Figure 6.14 has endpoints 1–3, while its corresponding arc e2 in
Figure 6.16 has endpoints a–b, which are the nodes in Figure 6.16 that correspond to
nodes 1 and 3 in Figure 6.14. We can formalize this idea.

1

3

a1

4

2

a2

Figure 6.14

a1

2 3

1 4

a2

Figure 6.15

e2a b

dc

e1

Figure 6.16

 Definition IsomorphIc Graphs
Two graphs (N1, A1, g1,) and (N2, A2, g2) are isomorphic if there are bijections
f1: N1 S N2 and f2: A1 S A2 such that for each arc a [A1, g1(a) = x–y if and
only if g2 3

f2(a) 4 = f1(x) –f1(
y).

 example 11 The graphs shown in Figure 6.17 are isomorphic. The bijections that establish the
isomorphism are partially given here:

 f1: 1 S c f2: a1 S e1
 2 S e a2 S e4
 3 S d a3 S e2
 4 S b …
 5 S a

a1 a

b

e5 e7

e8 e6

d e3

e1

c

e4

e2
e

a2
a3

a6
a5

a7

a4

a8

1

2

3

4
5

Figure 6.17

486 Graphs and Trees

Graph isomorphism is easier to establish if we restrict our attention to simple
graphs. If we can find an appropriate function f1 mapping nodes to nodes, then a
function f2 mapping arcs to arcs is trivial because there is at most one arc between
any pair of endpoints. Hence the following theorem is true.

Using these bijections, g1(a3) = 1–3 and g2 3f2(a3) 4 = g2(e2) = c–d = f1(1)–f1(3).
We can see that the arc-to-endpoint relationship is preserved under the relabeling
for the case of arc a3. To prove that the graphs are isomorphic, we would have to
complete the definition of the f2 function and then demonstrate that the arc-to-
endpoint relationship is preserved under these mappings by examining all possible
cases.

praCTiCe 7 Complete the definition of the function f2 in Example 11.
■

 tHeorem on simple Graph isomorphism
Two simple graphs (N1, A1, g1) and (N2, A2, g2) are isomorphic if there is a bijec-
tion f: N1 S N2 such that for any nodes ni and nj of N1, ni and nj are adjacent if
and only if f(ni) and f(nj) are adjacent. (The function f is called an isomorphism
from graph 1 to graph 2.)

praCTiCe 8 Find an isomorphism from the graph of Figure 6.18a to that of Figure 6.18b.

d

c

a

e

b

f

(b)(a)

6

4

2

5

3

1

Figure 6.18 ■

Proving that two graphs are isomorphic requires finding the bijection (or, for non-
simple graphs, bijections) and then showing that the adjacency property (or arc-to-end-
point relationship) is preserved. To prove that two graphs are not isomorphic, we must
prove that the necessary bijection(s) do not exist. We could try all possible bijections
(because there is a finite number of nodes and arcs, there is a finite number of bijec-
tions). However, this method would quickly get out of hand in graphs of any size at
all. Instead, we can try to find some other reason that such bijections could not exist.
Although this task is not always easy, there are certain conditions under which it is clear
that two graphs are not isomorphic (see Exercise 21). These include the following:

 1. One graph has more nodes than the other.
 2. One graph has more arcs than the other.

Section 6.1 Graphs and Their Representations 487

 3. One graph has parallel arcs and the other does not.
 4. One graph has a loop and the other does not.
 5. One graph has a node of degree k and the other does not.
 6. One graph is connected and the other is not.
 7. One graph has a cycle and the other does not.

praCTiCe 9 Prove that the two graphs in Figure 6.19 are not isomorphic.

Figure 6.19 ■

Again, graphs that are isomorphic are considered to be “the same” regardless of
cosmetic differences in how they are drawn or labeled, whereas nonisomorphic
graphs have fundamental structural differences.

planar Graphs

A planar graph is one that can be represented (on a sheet of paper, that is, in
the plane) so that its arcs intersect only at nodes. Designers of integrated circuits
want all components in one layer of a chip to form a planar graph so that no con-
nections cross. The graph of Figure 6.14 is clearly planar. However, we know that
it is isomorphic to the graph of Figure 6.15, so the graph of Figure 6.15 is also
planar. The key word in the definition of a planar graph is that it can be drawn in
a certain way.

 example 12 The two graphs of Figure 6.20 are not isomorphic. Note that each graph has six
nodes and seven arcs. Neither has parallel arcs or loops. Both are connected. Both
have three cycles, four nodes of degree 2, and two nodes of degree 3. Therefore
none of the obvious nonisomorphism tests apply. However, the graph in Figure
6.20b has a node of degree 2 that is adjacent to two nodes of degree 3; this is not
the case in Figure 6.20a, so the graphs are not isomorphic.

(a) (b)

Figure 6.20

praCTiCe 10 Prove that K4 is a planar graph. ■

488 Graphs and Trees

 example 13 Consider K5, the simple, complete graph with five vertices. We will try to construct
K5 with no intersecting arcs by starting with some of the arcs and then adding as
many new arcs as possible without crossing existing arcs. We’ll first lay out five
vertices and connect them as shown in Figure 6.21a. (Because all the vertices in Kn
are symmetric, it doesn’t matter how we label them.)

(c)

1

25

4 3

(b)

1

25

4 3

(a)

1

25

4 3

Figure 6.21

Next we connect 1 to 3 and 1 to 4, as shown in Figure 6.21b. Now 2 must be connect-
ed to both 4 and 5. This can be accomplished while still preserving the planarity of the
graph by putting these new arcs on the outside, as in Figure 6.21c. The final connec-
tion is between nodes 3 and 5. But there is no way to draw an arc from node 3 to node
5 without crossing either the 2-4 arc or one or more of the interior arcs, such as 1-4.

We did have a choice of how to place arcs 1-3 and 1-4; we made them interior
arcs. We could explore whether making these arcs exterior would change anything,
but it turns out that it does not (see Practice 11). Thus it appears that K5 is not a pla-
nar graph. However, we’d still like a proof of this with a firmer foundation—this
sounds too much like an “I can’t do it so it can’t be done” argument. Such a proof
will be given shortly.

praCTiCe 11 Show that adding arcs 1-3 and 1-4 as exterior arcs when constructing K5 still leads to a
 situation where arcs must intersect.

■

praCTiCe 12 Present a construction-type argument that K3,3 is not a planar graph. ■

One fact about planar graphs was discovered by the eighteenth-century Swiss
mathematician Leonhard Euler (pronounced “oiler”). A simple, connected, planar
graph (when drawn in its planar representation, with no arcs crossing) divides the
plane into a number of regions, including totally enclosed regions and one infinite
exterior region. Euler observed a relationship between the number n of nodes, the
number a of arcs, and the number r of regions in such a graph. This relationship is
known as euler’s formula:

 n − a + r = 2 (1)

praCTiCe 13 Verify Euler’s formula for the simple, connected, planar graph in Figure 6.18b.
■

To prove Euler’s formula, we will do a proof by induction on a, the number of arcs.
In the base case, a = 0 and the graph consists of a single node; the only region is the
exterior region (Figure 6.22a). Here n = 1, a = 0, and r = 1, and Equation (1) holds.

Section 6.1 Graphs and Their Representations 489

Now assume that the formula holds for the planar representation of any simple, con-
nected, planar graph with k arcs, and consider such a graph with k + 1 arcs. As usual,
we must somehow relate the “k + 1 instance” to a “k instance” so that we can make use
of the inductive hypothesis. Here we consider two cases for the graph with k + 1 arcs.

(b) (c)(a)

Figure 6.22

Case 1. The graph has a node of degree 1. Temporarily erasing this node and its
connecting arc (Figure 6.22b) leaves a simple, connected, planar graph with k
arcs, some number n of nodes, and some number r of regions for which (by the
inductive hypothesis)

n − k + r = 2

In the original graph, there was one more arc and one more node but the same
number of regions, so the appropriate formula is

(n + 1) − (k + 1) + r = 2

which, by the inductive hypothesis, is true.

Case 2. The graph has no nodes of degree 1. Then temporarily erase one arc that
helps define an enclosed region (Figure 6.22c). (If no arcs help define an enclosed
region, the graph is a chain and there is a node of degree 1.) This leaves a simple,
connected, planar graph with k arcs, some number n of nodes, and some number r
of regions for which (by the inductive hypothesis)

n − k + r = 2

n the original graph, there was one more arc and one more region, but the same
number of nodes, so the appropriate formula is

n − (k + 1) + (r + 1) = 2

which, by the inductive hypothesis, is true.

praCTiCe 14 In the proof of Euler’s formula, explain why in case 2 the arc to be erased must help define
an enclosed region. Give two reasons.

■

There are two consequences of Euler’s formula if we place further restrictions on
the graph. Suppose we require that the graph not only be simple, connected, and pla-
nar but also have at least three nodes. In a planar representation of such a graph, we

490 Graphs and Trees

can count the number of edges that are adjacent to (form the boundaries of) each re-
gion, including the exterior region. Arcs that are wholly interior to a region contribute
two edges to that region; for example, if we trace the boundary of the interior region
shown in Figure 6.22b, we travel six edges, including the arc out to the node of degree
1 and then back again. Arcs that separate two regions contribute one edge to each
region. Therefore, if there are a arcs in the graph, the number of region edges is 2a.

There are no regions with exactly one adjacent edge, because there are no
loops in the graph. There are no regions with exactly two adjacent edges, because
there are no parallel arcs and the graph consisting entirely of one arc joining two
nodes (which would have two edges adjacent to the exterior region) is excluded.
Therefore each region has at least three adjacent edges, so 3r is the minimum
number of region edges. Thus

2a ≥ 3r

or, from Equation (1),

2a ≥ 3(2 − n + a) = 6 − 3n + 3a

and finally

 a ≤ 3n − 6 (2)

If a final restriction that there are no cycles of length 3 is placed on the graph,
then each region has at least four adjacent edges, so 4r is the minimum number of
region edges. This leads to the inequality

2a ≥ 4r

which becomes

 a ≤ 2n − 4 (3)

These results are summarized in the following theorem.

 tHeorem on The numBer oF noDes anD arcs
For a simple, connected, planar graph with n nodes and a arcs:

 1. If the planar representation divides the plane into r regions, then

 n − a + r = 2 (1)

 2. If n ≥ 3, then

 a ≤ 3n − 6 (2)

 3. If n ≥ 3 and there are no cycles of length 3, then

 a ≤ 2n − 4 (3)

Note that inequality (3) places a tighter bound on the number of arcs than inequality
(2), but an additional condition has been imposed on the graph.

We can use this theorem to prove that certain graphs are not planar.

Section 6.1 Graphs and Their Representations 491

A graph that is planar cannot be turned into a nonplanar graph by elementary
subdivisions, and a graph that is nonplanar cannot be turned into a planar graph
by elementary subdivisions (see Exercise 32). As a result, homeomorphic graphs
are either both planar or both nonplanar. The following theorem, due to the Polish
mathematician Kazimierz Kuratowski, characterizes nonplanar graphs.

 example 14 K5 is a simple, connected graph with 5 nodes (and 10 arcs). If it were a planar graph,
inequality (2) of our theorem would hold, but 10 > 3(5) − 6. Therefore, just as our
construction argument showed, K5 is not planar. K3,3 is a simple, connected graph
with 6 nodes (and 9 arcs). It has no cycles of length 3, because this would require two
nodes in one of the two subsets to be adjacent. If it were a planar graph, inequality
(3) would hold, but 9 > 2(6) − 4. Therefore K3,3 is not planar.

praCTiCe 15 Show that inequality (2) does hold for K3,3, which shows that this inequality is a necessary
but not sufficient condition for planarity in graphs with n ≥ 3.

■

The nonplanar graphs K5 and K3,3 play a central role in all nonplanar graphs.
To state what this role is, we need one more definition.

 Definition homeomorphic Graphs
Two graphs are homeomorphic if both can be obtained from the same graph by
a sequence of elementary subdivisions, in which a single arc x–y is replaced by
two new arcs x–v and v–y connecting to a new node v.

 example 15 The graphs in parts (b) and (c) of Figure 6.23 are homeomorphic because each can
be obtained from the graph of Figure 6.23a by a sequence of elementary subdivi-
sions. (However, neither can be obtained from the other by a sequence of elemen-
tary subdivisions.)

(c)(b)(a)

Figure 6.23

 tHeorem KuraTowsKi Theorem
A graph is nonplanar if and only if it contains a subgraph that is homeomorphic
to K5 or K3,3.

We won’t prove this theorem, although one direction is easy to see. If a graph has a
subgraph homeomorphic to the nonplanar graphs K5 or K3,3, then the subgraph—
and hence the entire graph—is nonplanar.

492 Graphs and Trees

 example 16 Figure 6.24a shows the “Petersen graph.” We will prove that this graph is not
planar by finding a subgraph homeomorphic to K3,3. By looking at the top of the
graph, we can see that node a is adjacent to nodes e, f, and b, none of which are
adjacent to each other. Also, node e is adjacent to nodes d and j as well as a, and
nodes a, d, and j are not adjacent to each other. This information is incorporated
in the graph of Figure 6.24b, which is also a subgraph of K3,3. The arcs needed
to complete K3,3 are shown as dotted lines in Figure 6.24c. These arcs are not
in the Petersen graph; for example, no j–f arc is present. However, there is a
path in the Petersen graph from j to f using the intermediate node h, that is, j–h
and h–f . Similarly, there are paths j–g and g–b, d–i and i–f , and d–c and c–b.
Adding these paths to Figure 6.24b results in Figure 6.24d, which is a subgraph
of the Petersen graph and is also obtainable from Figure 6.24c by a sequence of
 elementary subdivisions.

computer representation of Graphs

We have said that the major advantage of a graph is its visual representation of
information. What if we want to store a graph in digital form? Although it is pos-
sible to store a digital image of a graph, it takes a lot of space. Furthermore, such
an image remains but a picture—the data it represents can’t be manipulated in any
way. What we need to store are these essential data that are part of the definition
of a graph—what the nodes are and which nodes have connecting arcs. From this
information a visual representation could be reconstructed if desired. The usual
computer representations of a graph involve one of two data structures, either an
adjacency matrix or an adjacency list.

Adjacency Matrix
Suppose a graph has n nodes, numbered n1, n2, … , nn. This numbering imposes
an arbitrary ordering on the set of nodes; recall that a set is an unordered collec-
tion. However, this is done merely as a means to identify the nodes—no signifi-
cance is attached to one node appearing before another in this ordering. Having
ordered the nodes, we can form an n × n matrix where entry i, j is the number of
arcs between nodes ni and nj. This matrix is called the adjacency matrix a of the
graph with respect to this ordering. Thus,

aij = p where there are p arcs between ni and nj

a

b
f

e j g

d c

hi

(a)

j a d

e f b

(b)

j a d

e f b

(c)

j
g

h c

a d

e f b

i

(d)

Figure 6.24

Section 6.1 Graphs and Their Representations 493

The adjacency matrix in Practice 16 is symmetric, which will be true for the
adjacency matrix of any undirected graph—if there are p arcs between ni and nj,
there are certainly p arcs between nj and ni. The symmetry of the matrix means
that only elements on or below the main diagonal need to be stored. Therefore, all
the information contained in the graph in Figure 6.25 is contained in the “lower
triangular” array shown, and the graph could be reconstructed from this array.
(The “upper triangular” version could also be used.)

1

1

0

1

0

1

0

0

2 0

In a directed graph, the adjacency matrix a reflects the direction of the arcs.
For a directed matrix,

aij = p where there are p arcs from ni to nj

An adjacency matrix for a directed graph will not necessarily be symmetric,
 because an arc from ni to nj does not imply an arc from nj to ni.

 example 17 The adjacency matrix for the graph in Figure 6.25 with respect to the ordering
1, 2, 3, 4 is a 4 × 4 matrix. Entry 1,1 is a 1 due to the loop at node 1. All other
elements on the main diagonal are 0. Entry 2,1 (second row, first column) is a 1
because there is one arc between node 2 and node 1, which also means that entry
1, 2 is a 1.

32

1

4

Figure 6.25

So far we have

a = D

1 1 − −
1 0 − −
− − 0 −
− − − 0

T

praCTiCe 16 Complete the adjacency matrix for Figure 6.25.
■

494 Graphs and Trees

In a simple weighted graph, the entries in the adjacency matrix can indicate
the weight of an arc by the appropriate number rather than just indicating the
 presence of an arc by the number 1.

Adjacency List
Many graphs, far from being complete graphs, have relatively few arcs. Such
graphs have sparse adjacency matrices; that is, the adjacency matrices contain
many zeros. Yet if the graph has n nodes, it still requires n2 data items to represent
the adjacency matrix (or more than n2∙2 if a triangular matrix is used), even if
many of these items are zero. Any algorithm or procedure in which every arc in
the graph must be examined requires looking at all n2 items in the matrix, since
there is no way of knowing which entries are nonzero without examining them. To
find all the nodes adjacent to a given node ni requires scanning the entire ith row
of the adjacency matrix, a total of n items.

A graph with relatively few arcs can be represented more efficiently by stor-
ing only the nonzero entries of the adjacency matrix. This representation consists
of a list for each node of all the nodes adjacent to it. Pointers are used to get us
from one item in the list to the next. Such an arrangement is called a linked list.
There is an array of n pointers, one for each node, to get each list started. This
 adjacency list representation, although it requires extra storage for the pointers,
may still be more efficient than an adjacency matrix. To find all the nodes adjacent
to ni requires traversing the linked list for ni, which may have far fewer than the
n elements we had to examine in the adjacency matrix. However, there are trade-
offs; if we want to determine whether one particular node nj is adjacent to ni, we
may have to traverse all of ni’s linked list, whereas in the adjacency matrix we
could access element i, j directly.

 example 18 Consider the directed graph of Figure 6.26.

32

4

1

Figure 6.26

The adjacency matrix is

a = ≥
1 1 0 0
0 0 1 1
0 1 0 0
0 0 1 0

¥

Section 6.1 Graphs and Their Representations 495

 example 19 The adjacency list for the graph of Figure 6.25 contains a four-element array of
pointers, one for each node. The pointer for each node points to an adjacent node,
which points to another adjacent node, and so forth. The adjacency list structure is
shown in Figure 6.27.

1

1

2

1

1

2

3

4

2

3

4

3

4

4

3

Figure 6.27

In the figure the dot indicates a null pointer, meaning that there is nothing more to be
pointed to or that the end of the list has been reached. We have dealt with parallel arcs
by listing a given node more than once on the adjacency list for ni if there is more than
one arc between ni and that node. Note that the arrow in list 1 from the 2 node to the 4
node does not mean that there is an arc from node 2 to node 4; all the elements in the
node 1 list are adjacent to node 1, not necessarily to each other.

praCTiCe 17 Draw the adjacency list representation for the graph shown in Figure 6.28.

24

3

1

Figure 6.28 ■

In an undirected graph, each arc is represented twice. If nj is on the adjacency
list of ni, then ni is also on the adjacency list of nj. The adjacency list representation
for a directed graph puts nj on the list for ni if there is an arc from ni to nj; ni would
not necessarily be on the adjacency list for nj. For a labeled graph or a weighted
graph, additional data items can be stored with the node name in the adjacency list.

 example 20 Figure 6.29a shows a weighted directed graph. The adjacency list representation
for this graph is shown in Figure 6.29b. For each record in the list, the first data
item is the node, the second is the weight of the arc to that node, and the third is the
pointer. Note that entry 4 in the array of startup pointers is null because there are
no arcs that begin at node 4.

496 Graphs and Trees496 Graphs and Trees

1

2

3

4

5

3 2

1 4

2 1

4 1

4 2

2 3

(b)(a)

4
3

52

4

1

1

3

2

2

1

Figure 6.29

In a programming language that does not support pointers, we can still achieve
the effect of an adjacency list by using a multicolumn array (or an array of records),
where one column contains the nodes and another column contains the array index
of the next node on the adjacency list—a “pseudopointer.” The disadvantage of this
approach is that the maximum amount of storage space that might be needed for an
n-node graph must be set aside for the array; once we start to fill the array, new space
cannot be dynamically created if we learn that there are still more adjacent nodes.

 example 21 The array-pointer representation of the graph of Figure 6.29a is shown in
Figure 6.30. A null pointer is indicated by an array index of 0.

1

2

3

4

5

6

7

8

9

10

11

Node PointerWeight

3

1

4

2

4

2

2

4

2

1

1

3

6

7

9

0

10

0

8

0

0

11

0

Figure 6.30

In this array, row 2, representing node 2, has a pointer to index 7. At index 7
of the array, we find node 1 with weight 4, representing the arc of weight 4 from
node 2 to node 1. The pointer to index 8 says that the adjacency list for node 2 has
more entries. At index 8, we learn that there is an arc from 2 to 4 of weight 2, and
that this completes the adjacency list for node 2.

speCial interest page

isomorphic protein Graphs

The question of whether two graphs are isomorphic
may seem to be of only academic interest, but in fact it
is an important question in modern biological research.
We are all familiar with the concept that the DNA in
our cells carries our genetic information. But each cell
also contains thousands of proteins, long chains of var-
ious kinds of amino acids. There are up to 20 different
kinds of amino acids, and the sequence of amino ac-
ids determines the three-dimensional shape of a given
protein as well as its function within the cell. Common
categories of proteins according to their functions in-
clude the following:

Enzymes: Initiate chemical processes within the
cell and form new molecules

Antibodies: Recognize and defend against foreign
particles such as bacteria

Transport: Carry molecules such as oxygen
throughout the cell and the body

Structural: Give the cell its shape and structure
Hormones: Transmit signals throughout the body

to coordinate biological processes

Proteins within a cell do not act in isolation;
rather, they interact with other proteins in the cell to
carry out complex tasks such as DNA replication or
to transport oxygen throughout the cell. Protein-to-
protein interactions (PPI) are therefore what make a
cell function, and any change, however minor, in a
given protein could affect the PPIs for that protein and
thus affect the entire cell. Knowledge of cell biology
at the PPI level is of great interest for identifying the
underlying cause of disease and development of thera-
peutics.

Now consider the various proteins within a
 given cell as nodes, and two proteins that interact as

 connected by an arc. Voilà—we have a graph! And
given the number of proteins within a cell and the num-
ber and complexity of their interactions, it is a huge
graph. A number of experiments have been done to
determine what this graph looks like in various organ-
isms, but the data gained seem to have low reliabil-
ity. This problem has promoted interest in comparing
PPIs across species to find commonalities that would
reinforce information about the functionality of those
interactions. Basically, researchers are looking for iso-
morphic graphs (or subgraphs) between cells from two
different species.

The general problem of determining whether two
graphs are isomorphic has no known polynomial-time
solution—there is no known efficient algorithm. The
performance of an inefficient algorithm might improve
if certain conditions on the graphs are met: Are they
both planar? Are they both trees? Such simplifications
are unlikely to occur in the biological world of cell pro-
teins. Consequently, various “heuristic” approaches
(read “educated guesses”) are used. One of these ap-
proaches ranks the similarities between the sequences
of amino acids forming the proteins, one from each
species, that might be considered as matching pairs
for a graph isomorphism. This ranking algorithm is
based on the iterative PageRank algorithm (invented
by Google cofounder Larry Page) that ranks Web page
x based on the number of pages that link to x and the
PageRank value of those pages.

“Comparative Analysis of Protein Networks: Hard Prob-
lems, Practical Solutions,” Atias. N., and Sharan, R.,
Communications of the ACM, May 2012.

http://www.ncbi.nlm.nih.gov/About/primer/genetics_
genome.html

http://ghr.nlm.nih.gov/handbook/howgeneswork/protein

Chapter 6

http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html
http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html
http://ghr.nlm.nih.gov/handbook/howgeneswork/protein

498 Graphs and Trees

exerciSeS 6.1

 1. Give the function g that is part of the formal definition of the directed graph shown.

a d

c
b

1

3

2

 2. Use the graph in the figure to answer the questions that follow.
 a. Is the graph simple?
 b. Is the graph complete?
 c. Is the graph connected?
 d. Can you find two paths from 3 to 6?
 e. Can you find a cycle?
 f. Can you find an arc whose removal will make the graph acyclic?
 g. Can you find an arc whose removal will make the graph not connected?
 3. Sketch a picture of each of the following graphs.
 a. Simple graph with three nodes, each of degree 2
 b. Graph with four nodes, with cycles of length 1, 2, 3, and 4
 c. Noncomplete graph with four nodes, each of degree 4
 4. Use the directed graph in the figure to answer the questions that follow.
 a. Which nodes are reachable from node 3?
 b. What is the length of the shortest path from node 3 to node 6?
 c. What is a path from node 1 to node 6 of length 8?
 5. Draw K6.
 6. Draw K3,4.
 7. For each of the following characteristics, draw a graph or explain why such a graph does not exist.
 a. Four nodes of degree 1, 2, 3, and 4, respectively
 b. Simple, four nodes of degree 1, 2, 3, and 4, respectively
 c. Four nodes of degree 2, 3, 3, and 4, respectively
 d. Four nodes of degree 2, 3, 3, and 3, respectively

S e c t i o n 6 . 1 review

tecHniQueS

• Use graph terminology.
 Prove or disprove that two graphs are isomorphic.
• Find a planar representation of a simple graph or

prove that none exists.
 Construct adjacency matrices and adjacency lists

for graphs and directed graphs.

main iDeaS

• Diverse situations can be modeled by graphs.
• Graphs can be represented in a computer by matri-

ces or by linked lists.
W

W

1

4

3

7
2

6

5a5
a2

a3 a4

a1

a6

a7

1

2
3

56

4

Section 6.1 Graphs and Their Representations 499

 8. For each of the following characteristics, draw a graph or explain why such a graph does not exist.
 a. Simple graph with seven nodes, each of degree 3
 b. Four nodes, two of degree 2 and two of degree 3
 c. Three nodes of degree 0, 1, and 3, respectively
 d. Complete graph with 4 nodes each of degree 2
 9. An acquaintanceship graph is an undirected graph in which the nodes represent people and nodes a and b

are adjacent if a and b are acquainted.
 a. The acquaintanceship graph for the IT department and the marketing department of a major corporation

is an unconnected graph. What does this imply?
 b. The following figure represents an acquaintanceship graph for residents of an apartment building. Are

Carl and Fletcher acquainted? How many people is SiuYin acquainted with?

Carl Yvonne

Fletcher

KatrinaSiuYin

Moku

Yuri

 c. The length of the shortest path between node a and node b in an acquaintanceship graph is sometimes
called the degree of separation between a and b. What is the degree of separation between Carl and Yuri?

 10. The “small world effect” states that the average degree of separation (see Exercise 9) in an acquaintance-
ship graph of the whole world is 6. In other words, a path of acquaintance relationships from you to any
other person on earth exists with, on the average, a path length of 6 (5 intermediate persons). Experiments
in delivering hard-copy letters and e-mail messages have empirically confirmed this theory.1

 a. What are the potential implications for e-mail traffic if the small world effect holds for computer networks?
 b. What are the potential implications for epidemiology if the small world effect holds for physical con-

tact between humans?
 11. The small world effect (see Exercise 10) has been found to be true between root words (that is, basic

words found in a thesaurus) in the English language, with an average degree of separation equal to 3. Here
“adjacent words” are those that are listed as synonyms in an English thesaurus. For example, “gate” and
“commotion” are related by 3 degrees of separation, as follows:

gate S door S flap S commotion

 Can you think of 3 degrees of separation between the following pairs of words?
 a. “star” and “sculpture”
 b. “burden” and “influence”
 c. “piano” and “significance”

1But more recent analyses of 721 million Facebook users, a much larger community than was available to earlier studies, suggests that the average
number of intermediaries between persons A and B is 3.74. It’s a small world indeed, at least for Facebook users.

500 Graphs and Trees

 12. An idea closely related to the average degree of separation in a graph is that of clustering. The global
clustering coefficient for a given graph is given by

C =
3 * T

t

 where T = the number of triangles in the graph and t = the number of connected node triples.

A connected node triple is a “center” node adjacent to an unordered pair of other nodes. For example, in the
graph of Exercise 2, 3–4–5 (or 5–4–3) and 4–5–6 (6–5–4) are two such triples. Nodes that make up a triangle
demonstrate transitivity; if a is adjacent to b and b is adjacent to c, then a is adjacent to c. Therefore c is a ratio of
nodes in a transitive threesome to all nodes in a threesome. (One might think of this in terms of a social network
as the probability that if you are a “friend” of mine and x is a “friend” of yours, then x is also a “friend” of mine.)

 a. Consider the graph in Figure 6.28 and the graph for Exercise 2. Which do you think has the higher
clustering coefficient?

 b. Compute the clustering coefficient for the graph in Figure 6.28
 c. Compute the clustering coefficient for the graph for Exercise 2.
 13. Which of the following graphs is not isomorphic to the others, and why?

(b) (c)(a)

 14. Which of the following graphs is not isomorphic to the others, and why?

(a) (c) (d) (e)(b)

For Exercises 15–20, decide if the two graphs are isomorphic. If so, give the function or functions that establish
the isomorphism; if not, explain why.
 15. 1

2 3

a5

a7

a6

a1

a

d

c

b

a4

4

(a) (b)

a2

e5 e4

e1 e2

e7

e3

e6

a3

Section 6.1 Graphs and Their Representations 501

 16.

5

1

2

3

4
(a)

a2 a6
a3 a4

a9

a8

a1 a7

e1

e3

e6

e7

d

c

a

b

e

e2

e4

e5

e8

e9

(b)

a5

 17.
a

be

d c

1

25

4 3
(b)(a)

 18. 1

4

2

3

6

5

(a)

a b c

f e d

(b)

 19.

(a)

1
32

65

4

(b)

a

f

cd

be

502 Graphs and Trees

 20.
21

5

6

7

8

34

(a) (b)

a
h b

f

g c

d
e

 21. Prove that two graphs are not isomorphic if one of them
 a. has more nodes than the other.
 b. has more arcs than the other.
 c. has parallel arcs and the other does not.
 d. has a loop and the other does not.
 e. has a node of degree k and the other does not.
 f. is connected and the other is not.
 g. has a cycle and the other does not.
 22. Draw all the nonisomorphic, simple graphs with two nodes.
 23. Draw all the nonisomorphic, simple graphs with three nodes.
 24. Draw all the nonisomorphic, simple graphs with four nodes.
 25. Find an expression for the number of arcs in Kn and prove that your expression is correct.
 26. Verify Euler’s formula for the following simple, connected, planar graph.

 27. Prove that K2,3 is a planar graph.
 28. Prove that the following graph is a planar graph.

 29. If a simple, connected, planar graph has six nodes, all of degree 3, into how many regions does it divide
the plane?

Section 6.1 Graphs and Their Representations 503

 30. If all the nodes of a simple, connected, planar graph have degree 4 and the number of arcs is 12, into how
many regions does it divide the plane?

 31. Does Euler’s formula (Equation (1) of the theorem on the number of nodes and arcs) hold for nonsimple
graphs? What about inequalities (2) and (3) of the theorem?

 32. What is wrong with the following argument that claims to use elementary subdivisions to turn a nonplanar
graph into a planar graph?

In a nonplanar graph there must be two arcs ai and aj that intersect at a point v that is not a node. Do
an elementary subdivision on ai with an inserted node at v and an elementary subdivision on aj with an
inserted node at v. In the resulting graph, the point of intersection is a node. Repeat this process with any
non-node intersections; the result is a planar graph.

For Exercises 33–36, determine whether the graph is planar (by finding a representation where arcs intersect
only at nodes) or nonplanar (by finding a subgraph homeomorphic to K5 or K3,3.

 33. 35.

 34. 36. 2

1

5

3

7

4

6

For Exercises 37–42, write the adjacency matrix for the given graph.

 37. 5

2

3

4

1

 39.
2

4 5

1

3

6 7

 38.

1
2

4 53

 40. 1 4 5

2 3 6

504 Graphs and Trees

 41.

3

1

2 4

 42. 1
3

42

For Exercises 43–46, draw the graph represented by the adjacency matrix.

 43.
£

0 2 0
2 0 2
0 2 0

§
 45.

E

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 1 1 1 0

U

 44.

F

0 1 0 0 0 0
1 0 1 0 0 0
0 1 1 1 0 0
0 0 1 0 0 0
0 0 0 0 0 2
0 0 0 0 2 0

V

 46.

E

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

U

 47. The adjacency matrix for an undirected graph is given in lower triangular form by

2

1

0

0

0

1

1

1

2 0

 Draw the graph.
 48. The adjacency matrix for a directed graph is given by

E

0 1 1 0 0
0 0 0 0 0
0 0 1 1 0
0 0 1 0 2
1 0 0 0 0

U

 Draw the graph.
 49. Describe the graph whose adjacency matrix is In, the n × n identity matrix.
 50. Describe the graph whose adjacency matrix is 0n, the n × n matrix of all 0’s.
 51. Describe the adjacency matrix for Kn, the simple, complete graph with n nodes.

Section 6.1 Graphs and Their Representations 505

 52. Given the adjacency matrix a for a directed graph G, describe the graph represented by the adjacency
matrix aT (see Exercise 15 in Section 5.7).

For Exercises 53–58, draw the adjacency list representation for the indicated graph.

 53. Exercise 37
 54. Exercise 38
 55. Exercise 39
 56. Exercise 40
 57. Exercise 41
 58. Exercise 42
 59. Refer to the accompanying graph.
 a. Draw the adjacency list representation.
 b. How many storage locations are required for the adjacency list? (A pointer takes

one storage location.)
 c. How many storage locations would be required in an adjacency matrix for this graph?
 60. Draw the adjacency list representation for the following weighted directed graph.

1

1

3

2

4

2

1

2

3

 61. For the directed graph of Exercise 42, construct the array-pointer representation.
 62. For the weighted directed graph of Exercise 60, construct the array-pointer representation.
 63. Draw the undirected graph represented by the following adjacency list.

2

1

1

2

1

2

3

4

3 4

3

2

2

3

4

4

3

 64. Draw the directed graph represented by the following adjacency list.

1

2

1

1

2

3

4

4

2

3

6

4

5

1

2

506 Graphs and Trees

Exercises 65–72 refer to the complement of a graph. If G is a simple graph, the complement of G, denoted G′,
is the simple graph with the same set of nodes as G, where nodes x–y are adjacent in G′ if and only if they are
not adjacent in G.

 65. Draw G′ for the graph of Figure 6.18a.
 66. Draw K 4r .
 67. Show that if two simple graphs G1 and G2 are isomorphic, so are their complements G1

r and G2r .
 68. A simple graph is self-complementary if it is isomorphic to its complement. Prove that in a self- complementary

graph with n nodes (n > 1), n = 4k or n = 4k + 1 for some integer k. (Hint: Use the result of Exercise 25.)
 69. Prove that in any simple graph G with at least two nodes, if G is not connected, then G′ is connected.

(Hint: If G is not connected, then G consists of a collection of “disjoint” connected subgraphs.)
 70. Find a simple graph G with at least two nodes where both G and G′ are connected, thus showing that the

converse of Exercise 69 is false.
 71. Given an adjacency matrix A for a simple graph G, describe the adjacency matrix for G′.
 72. Prove that if 0N 0 ≥ 11 in a simple, connected graph G, then not both G and G′ can be planar.
 73. Prove that in any simple graph G with n nodes and a arcs, 2a ≤ n2 − n.
 74. Prove that a simple, connected graph with n nodes has at least n − 1 arcs. (Hint: Show that this can be

restated as “A simple, connected graph with m arcs has at most m + 1 nodes.” Then use the second prin-
ciple of induction on m.)

 75. Prove that a simple graph with n nodes (n ≥ 2) and more than C(n − 1, 2) arcs is connected. (Hint: Use
Exercises 69 and 74.)

 76. Euler’s formula is stated for simple, connected planar graphs, but in fact the word
“simple” could be omitted.

 a. A non-simple graph is a simple graph with loops or parallel arcs added. Prove that
any simple connected planar graph remains a connected planar graph if parallel
arcs or loops are added. (Hint: Temporarily erase the parallel arcs and loops.)

 b. Prove that the graph in the figure is a planar graph.
 c. Prove that Euler’s formula holds for the graph of part (b) when drawn in its

 planar form.
 d. Prove that a connected planar graph with parallel arcs or loops obeys Euler’s formula when drawn in

its planar form.

Exercises 77–86 refer to the problem of graph colorability. The origin of graph-coloring problems is a map-
coloring problem: Suppose that a map of various countries, drawn on a sheet of paper, is to be colored so that
no two countries with a common border have the same color. (We need not worry about countries that meet
only at a point, and we will assume that each country is “connected.”) What is the minimum number of colors
required to carry out this task for any map?

 77. Show that a coloring of the accompanying map requires three colors and no more than three colors.

 78. Draw a map that requires four colors.

Section 6.1 Graphs and Their Representations 507

 79. Associated with any map is a graph, called the dual graph for the map, formed as follows: Put one node
in each region of the map and an arc between two nodes representing adjacent countries.

 a. Draw the dual graph for the map of Exercise 77.
 b. Draw the dual graph for the following map.

 c. Draw a map for which the following graph would serve as the dual.

 80. A coloring of a graph is an assignment of a color to each node of the graph in such a way that no two adja-
cent nodes have the same color. The chromatic number of a graph is the smallest number of colors needed
to achieve a coloring. Find the chromatic number of the following graphs.

a. b.

 81. At least four colors are required to solve the general map-coloring problem (see Exercise 78). Because no
one could produce a map requiring more than four colors, the conjecture was formulated that four colors
are indeed sufficient. This conjecture became known as the four-color problem. It was first proposed to
the mathematician Augustus De Morgan by one of his students in 1852, and it subsequently received
much attention. It remained unproved, however, for over a hundred years. In 1976 two mathematicians at
the University of Illinois, Wolfgang Haken and Kenneth Appel, used a computer to work through a large
number of cases in a proof by contradiction, thus verifying the four-color conjecture.

The dual graph for a map (see Exercise 79), by the way it is constructed, will always be simple, con-
nected, and planar. In addition, any simple, connected, planar graph can be viewed as the dual graph of
a map. Restate the four-color conjecture in terms of the chromatic number (see Exercise 80) of a graph.

 82. Prove that in a simple, connected, planar graph with three or more nodes, there is at least one node with
degree less than or equal to 5. (Hint: Use a proof by contradiction.)

 83. (Challenging problem) The five-color theorem states that the chromatic number for any simple, con-
nected, planar graph is at most 5. While the four-color theorem (Exercise 81) is very difficult to prove, the
five-color theorem can be proved by induction on the number of nodes in the graph. Prove the five-color
theorem, making use of the result in Exercise 82.

508 Graphs and Trees

 84. The six-color theorem can be proved as a map-coloring problem without using the dual graph. Instead
of creating the dual graph, put nodes at the intersections of boundaries and straighten the boundaries
of regions so that the problem of coloring the map shown in figure (a) is represented by the problem of
coloring the enclosed regions of the graph in figure (b). First assume that no country has a hole in
it. Then the graph will be loop-free, planar, and connected. Also, every node will have degree at
least 3.

 (a) (b)

 a. Show that the graph can be assumed to be simple by proving that if six colors are sufficient for coloring
a simple graph, they are sufficient for a graph with parallel arcs as well. (Hint: Use temporary small
countries at nodes.)

 b. Prove that in a simple, connected, planar graph with R enclosed regions, n − a + R = 1.
 c. Consider a simple, connected, planar graph and assume that every enclosed region has at least six edges

adjacent to it. Show that 2a ≤ 3n − 3.
 d. Now consider a simple, connected, planar graph where every node has degree at least 3. Show that such

a graph has at least one enclosed region with no more than five adjacent edges.
 e. Prove that six colors are sufficient to color any planar map where no country has a hole in it.
 f. Prove that six colors are sufficient to color any planar map. (Hint: Cut some temporary slits in the

map.)
 85. Five political lobbyists are visiting seven members of Congress (labeled A through G) on the same day.

The members of Congress the five lobbyists must see are
 1. A, B, D
 2. B, C, F
 3. A, B, D, G
 4. E, G
 5. D, E, F
 Each member of Congress will be available to meet with lobbyists for one hour. What is the minimum

number of time slots that must be used to set up the one-hour meetings so that no lobbyist has a conflict?
(Hint: Treat this as a graph-coloring problem.) What if lobbyist 3 discovers that she does not need to see
B and lobbyist 5 discovers that he does not need to see D?

 86. In a multiprocessor machine, six processors labeled A through F share blocks in a common data store. Two
processors cannot simultaneously write to the same block. The following table shows which processors
will write to the data store at the same time. How many distinct blocks are needed? (Hint: Treat this as a
graph-coloring problem.)

A, F, C
B, D
F, D, A
B, E
F, C, E

 Section 6.2 Trees and Their Representations 509

 S e c t i o n 6 . 2 Trees and Their represenTaTions

Tree Terminology

A special type of graph called a tree turns out to be a very useful representation
of data.

Figure 6.31 pictures two trees. Perversely, computer scientists like to draw
trees with the root at the top. An acyclic connected graph with no designated root
node is called a nonrooted tree or a free tree. (Again, terminology is nonstan-
dard. Some books define trees as acyclic, connected graphs and then call them
“rooted trees” when there is a designated root node.)

r
r

(a) (b)

Figure 6.31

A tree can also be defined recursively. A single node is a tree (with that node
as its root). If T1, T2, … , Tt are disjoint trees with roots r1, r2, … , rt, the graph
formed by attaching a new node r by a single arc to each of r1, r2, … , rt, is a
tree with root r. The nodes r1, r2 … , rt are children of r, and r is a parent of
r1, r2, … , rt. Figure 6.32 shows the final step in the recursive construction of the
tree in Figure 6.31b. It is often helpful to process a tree structure by working with
it recursively, treating the subtrees as smaller tree objects.

 Definition Tree
A tree is an acyclic, connected graph with one node designated as the root of the
tree.

r

r2r1

T1

T2

Figure 6.32

510 Graphs and Trees

Because a tree is a connected graph, there is a path from the root to any
other node in the tree; because the tree is acyclic, that path is unique. The depth
of a node in a tree is the length of the path from the root to the node; the root
itself has depth 0. The depth (height) of the tree is the maximum depth of any
node in the tree; in other words, it is the length of the longest path from the root
to any node. A node with no children is called a leaf of the tree; all non-leaves
are internal nodes. A forest is an acyclic graph (not necessarily connected);
thus a forest is a disjoint collection of trees. Figures 6.31a and 6.31b together
form a forest.

binary trees, where each node has at most two children, are of particular
interest. In a binary tree, each child of a node is designated as either the left child
or the right child. A full binary tree occurs when all internal nodes have two
children and all leaves are at the same depth. Figure 6.33 shows a binary tree of
height 4, and Figure 6.34 shows a full binary tree of height 3. A complete binary
tree is an almost full binary tree; the bottom level of the tree is filling from left to
right but may not have its full complement of leaves. Figure 6.35 shows a complete
binary tree of height 3. (Note that while a tree is a graph, a complete tree is not a
complete graph!)

r

Figure 6.33

r

Figure 6.34

r

Figure 6.35

praCTiCe 18 Answer the following questions about the binary tree shown in Figure 6.36. (Assume that

node 1 is the root.)

1

2 3

4 5

Figure 6.36

a. What is the height?
b. What is the left child of node 2?
c. What is the depth of node 5? ■

 Section 6.2 Trees and Their Representations 511

applications of Trees

Decision trees were used to solve counting problems in Chapter 4 and will be used
in Section 6.3 to help establish lower bounds on the work for certain algorithms.
Exercise 43 of Section 5.1 describes the organization of data into a binary tree
structure. By using these trees, a collection of records can be efficiently searched
to locate a particular record or to determine that a record is not in the collection.
Examples of such a search would be checking for a volume in a library, for a
patient’s medical record in a hospital, or for an individual’s credit record at the
bank. We will also look at binary tree search in Section 6.3. The derivations of
words in certain formal languages will be shown as trees in Chapter 9 (these are
the parse trees generated by a compiler while analyzing a computer program).

A family tree is usually, indeed, a tree, although if there were intermarriages,
it would be a graph but not a tree in the technical sense. (Information obtained
from a family tree is not only interesting but also useful for research in medical
genetics.) The organization chart indicating who reports to whom in a large com-
pany or other enterprise is usually a tree (Figure 6.37).

Board of
Regents

University
President

Academic Vice
President

Administrative
Vice President

Dean of Arts
and Sciences

Dean of
Business

History ChairComputer
Science Chair

Computer Science
Faculty Member

Dean of
Engineering

Dean of
Agriculture

Figure 6.37

Folders and files on your computer are organized in a hierarchical (treelike)
structure. In Figure 6.38, the CSCI 34000 tree (folder) has been expanded to show
two subtrees; the Web Materials subtree has been expanded to show additional
folders, the Activities subtree has not been expanded.

512 Graphs and Trees

 Figure 6.38

 ExamplE 22 A computer virus is spread via e-mail. Each second, 4 new machines are infected.
A 4-ary tree structure (Figure 6.39) represents the spread of the virus. By the
 multiplication principle, 4n machines have been infected after n seconds.

Figure 6.39

 ExamplE 23 Algebraic expressions involving binary operations can be represented by la-
beled binary trees. The leaves are labeled as operands, and the internal nodes
are labeled as binary operations. For any internal node, the binary operation of
its label is performed on the expressions associated with its left and right sub-
trees. Thus the binary tree in Figure 6.40 represents the algebraic expression
(2 + x) − (y * 3).

x y2 3

*+

–

Figure 6.40

Practice 19 What is the expression tree for (2 + 3) * 5?
■

 Section 6.2 Trees and Their Representations 513

Binary Tree representation

Because a tree is also a graph, the representations discussed in Section 6.1 for graphs
in general can also be used for trees. Binary trees, however, have special character-
istics that we want to capture in the representation, namely, the identity of the left
and right child. The equivalent of an adjacency matrix is a two-column array (or
an array of records) where the data values for each node are the left and right child
of that node. The equivalent of the adjacency list representation is a collection of
records with three fields containing, respectively, the current node, a pointer to the
record for the left-child node, and a pointer to the record for the right-child node.

 example 24 For the binary tree shown in Figure 6.41, the left child-right
child array representation is given in Figure 6.42a. Zeros again
indicate null pointers. The pointer representation is given in
 Figure 6.42b.

1

2 3

4 5 6

(a) (b)

1

2

3

4

5

6

2

4

0

0

0

0

3

5

6

0

0

0

Left child Right child

Figure 6.42

4 5 6

32

1

Figure 6.41

praCTiCe 20 For the binary tree in Figure 6.43

a. Give the left child-right child array representation.
b. Give the pointer representation.

1

2

43

5
Figure 6.43 ■

514 Graphs and Trees

Tree Traversal algorithms

If a tree structure is being used to store data, it is often helpful to have a systematic
mechanism for writing out the data values stored at all the nodes, which can be
accomplished by traversing the tree, that is, visiting each of the nodes in the tree
structure, The three common tree traversal algorithms are preorder, inorder, and
postorder traversal.

In the three traversal methods, it is helpful to use the recursive view of a
tree, where the root of a tree has branches down to roots of subtrees. We will
therefore assume that a tree T has a root r; any subtrees are labeled left to right as
T1, T2, … , Tt (Figure 6.44). Because we are using a recursive definition of a tree,
it will be easy to state the tree traversal algorithms in recursive form.

T2 TtT1

r2 rtr1

r

. . .

Figure 6.44

The terms preorder, inorder, and postorder refer to the order in which the root
of a tree is visited compared to the subtree nodes. In preorder traversal, the root
of the tree is visited first and then the subtrees are processed left to right, each in
preorder.

 alGoritHm Preorder

Preorder (tree T)
//Writes the nodes of a tree with root r in preorder

write(r)
for i = 1 to t do
 Preorder(Ti)
end for

end Preorder

 Section 6.2 Trees and Their Representations 515

In inorder traversal, the left subtree is processed by an inorder traversal,
then the root is visited, and then the remaining subtrees are processed from left to
right, each in inorder. If the tree is a binary tree, the result is that the root is visited
between processing of the two subtrees. In a nonbinary tree, if there is a single
subtree joined to its parent by a vertical arc, that is considered the left subtree and
there are no additional subtrees.

Finally, in postorder traversal, the root is visited last, after all subtrees have
been processed from left to right in postorder.

 alGoritHm Postorder

Postorder (tree T)
//Writes the nodes of a tree with root r in postorder

for i = 1 to t do
 Postorder(Ti)
end for
write(r)

end Postorder

 example 25 For the binary tree of Figure 6.45, the preorder traversal algorithm (root, left,
right) says to write the root first, a, and then process the left subtree. At the left
subtree, rooted at b, a preorder traversal writes the root, b, and moves again to the
left subtree, which is the single node d. This single node is the root of a tree, so
it is written out. Then d’s left subtree (empty) and d’s right subtree (empty) are
traversed. Backing up to the tree rooted at b, its left subtree has been traversed,
so now the right subtree is traversed, producing node e. The subtree rooted at

 alGoritHm Inorder

Inorder (tree T)
//Writes the nodes of a tree with root r in inorder

Inorder(T1)
write(r)
for i = 2 to t do
 Inorder(Ti)
end for

end Inorder

516 Graphs and Trees

b has now been completely traversed. Backing up to a, it is time to traverse a’s
right subtree. A preorder traversal of the tree rooted at c causes c to be written,
then traversal goes to c’s left subtree, which results in f, h, and i being written.
Backing up to c, traversing c’s right subtree produces g. The subtree rooted at c
has now been completely traversed, and the algorithm terminates. The preorder
traversal produced

a, b, d, e, c, f, h, i, g

a

cb

d e g

ih

f

Figure 6.45

 example 26 Using the tree of Figure 6.45 again, an inorder traversal (left, root, right), travels
down to the farthest left subtree, rooted at d. An inorder traversal here traverses the
left subtree (empty), writes out the root, d, then traverses the right subtree (empty).
Backing up the tree to b, b’s left subtree has been traversed, so it is time to write
out the root, b. Proceeding then to b’s right subtree, e is written. Backing up to a,
a’s left subtree has been traversed, so the root, a, is written out. Proceeding to a’s
right subtree, an inorder traversal says to go to the farthest left subtree first, which
would cause the h to be written. After that, f and i are written, then the root c, then
the right subtree of c, which is g. The nodes are therefore written as

d, b, e, a, h, f, i, c, g

A postorder traversal (left, right, root) would produce

d, e, b, h, i, f, g, c, a

 example 27 Consider the tree shown in Figure 6.46, which is not a binary tree. A preorder tra-
versal first writes the root a and then does a preorder traversal on the left subtree,
rooted at b. The preorder traversal of this subtree writes out b and then proceeds
to a preorder traversal of the left subtree of b, which is rooted at d. Node d is
written and then a preorder traversal of the left (the only) subtree of d, which
is rooted at i, is done. After writing out i, the traversal backs up to consider any
other subtrees of d; there are none.

Backing up to b, there are other subtrees of b. Processing these left to right,
nodes e and then f are written. All the subtrees of b have now been traversed; back-
ing up to node a to look for subtrees farther to the right reveals a subtree rooted at
c. The algorithm writes out the root c, then moves to its leftmost subtree rooted at

reminDer

For a binary tree:

Preorder traversal is root,
left, right.

Inorder traversal is left,
root, right.

Postorder traversal is left,
right, root.

 Section 6.2 Trees and Their Representations 517

praCTiCe 21 Do a preorder, inorder, and postorder traversal of the tree in Figure 6.47.

a

db

e

c

f g

i

h

Figure 6.47 ■

g and writes out g. Processing the subtrees of g, the nodes j and k are written; then
backing up to c, its remaining subtree is processed, producing h. Node c has no
other subtrees; backing up to a, a has no other subtrees, and the algorithm termi-
nates. The list of nodes in preorder traversal is

a, b, d, i, e, f, c, g, j, k, h

To do an inorder traversal of the tree in Figure 6.46, process left subtrees
first, leading down to node i, which has no subtrees. Therefore i is written out.
Backing up to d, the left (only) subtree of d has been traversed, so d is written out.
Since node d has no further subtrees, the algorithm backs up to b. The left subtree
of b has been processed, so b is written out and then its remaining subtrees are
traversed, writing out e and f. Backing up to a, a is written out, and then the right
subtree of a is processed, leading to nodes j, g, k, c, and h, in that order, and we are
done. Thus the inorder list of nodes is

i, d, b, e, f, a, j, g, k, c, h

The following list of nodes results from a postorder traversal:

i, d, e, f, b, j, k, g, h, c, a

a

cb

d e f g

i j k

h

Figure 6.46

518 Graphs and Trees

2Named for the Polish logician J. Lukasiewicz, who first used it.

 example 28 Example 23 showed how algebraic expressions can be represented as binary trees.
If we do an inorder traversal of the expression tree, we retrieve the original alge-
braic expression. For the expression tree of Figure 6.48, for example, an inorder
traversal gives the expression

(2 + x) * 4

where the parentheses are added as we complete the processing of a subtree. This
form of an algebraic expression, where the operation symbol appears between the
two operands, is called infix notation. Parentheses are necessary here to indicate the
order of operations. Without parentheses, the expression becomes 2 + x * 4, which
is also an infix expression but, because of the order of precedence of multiplication
over addition, is not what is intended.

2 x

4+

*

Figure 6.48

A preorder traversal of Figure 6.48 gives the expression

* + 2 x 4

Here the operation symbol precedes its operands. This form of an expression is
called prefix notation, or polish notation.2 The expression can be translated into
infix form as follows:

* + 2 x 4 S * (2 + x) 4 S (2 + x) * 4

A postorder traversal gives the expression

2 x + 4 *

where the operation symbol follows its operands. This form of an expression is
called postfix notation, or reverse polish notation (or just rpn). The expression
can be translated into infix form as follows:

2 x + 4 * S (2 + x) 4 * S (2 + x) * 4

Neither prefix nor postfix form requires parentheses to avoid ambiguity. These
notations therefore provide more efficient, if less familiar, representations of alge-
braic expressions than infix notation. Such forms can be evaluated sequentially,
with no need for “look-ahead” to locate parenthesized expressions. Compilers
 often change algebraic expressions in computer programs from infix to postfix
notation for more efficient processing.

 Section 6.2 Trees and Their Representations 519

results about Trees

Trees are fertile ground (no pun intended) for proofs by induction, either on the
number of nodes or arcs or on the height.

praCTiCe 22 Write the expression tree for

a + (b * c − d)

and write the expression in prefix and postfix notation. ■

 example 29 After drawing a few trees and doing some counting, it appears that the number
of arcs in a tree is always one less than the number of nodes. More formally, it
 appears that

A tree with n nodes has n − 1 arcs.

We will prove this statement using induction on n, n ≥ 1. For the base case, n = 1,
the tree consists of a single node and no arcs (Figure 6.49), so the number of arcs
is 1 less than the number of nodes.

n = 1, a = 0
Figure 6.49

Assume that any tree with k nodes has k − 1 arcs, and consider a tree with
k + 1 nodes. We want to show that this tree has k arcs. Let x be a leaf of the tree
(a leaf must exist since the tree is finite). Then x has a unique parent. Remove from
the tree the node x and the single arc a connecting x and its parent (Figure 6.50).

The remaining graph is still a tree and has k nodes. Therefore, by the induc-
tive hypothesis, it has k − 1 arcs, and the original graph, containing arc a, had
(k − 1) + 1 = k arcs. The proof is complete.

x

a

Figure 6.50

Notice that in the inductive proof of Example 29 we had to support the proof
with many more words than we used in some of our early inductive proofs. In
Example 15 in Chapter 2, for instance, the inductive proof that

1 + 2 + 22 + c+ 2n = 2n+1 − 1

consisted mainly of manipulating the mathematical expressions in this equation,
but now we have to do more verbal reasoning. Words are not only acceptable in a
proof, they may form the major part of the proof.

520 Graphs and Trees

The inductive proof of Example 29 differs in another way from proofs like that
of Example 15 in Chapter 2. In those proofs, there was always a single term in the
series (the last term) whose removal would lead to the “P(k) case,” the inductive hy-
pothesis. In proofs involving trees with k + 1 nodes, which node should be removed
to generate the P(k) case? Usually the node to remove is not unique, but it is not com-
pletely arbitrary either. In the proof of Example 29, for instance, removing a non-leaf
node (and the arcs attached to it) from a tree with k + 1 nodes would result in a graph
with k nodes, but not a tree with k nodes, so the inductive hypothesis would not apply.

praCTiCe 23 Prove that in any tree with n nodes, the total number of arc ends is 2n − 2. Of course this
result follows directly from Example 29 because n − 1 arcs means 2(n − 1) = 2n − 2
arc ends, but do a proof by induction on the number of nodes.

 example 30 Recall that a tree T can also be constructed recursively by hooking a root node to a
collection of subtrees T1, … , Tt (see Figure 6.44). This allows us to use structural
induction, discussed in Chapter 3, to prove certain results about trees. We’ll use
structural induction to prove the result of Example 29, namely

A tree with n nodes has n − 1 arcs.

The base case where n = 1 is the same as before. Assume that any subtree Ti with
ni nodes has ni − 1 arcs. The tree T constructed from subtrees T1, … , Tt has n
nodes where

n = 1 + ∙
t

i=1
ni

(The extra 1 is the root node.) Also, T has a arcs where

a = t + ∙
t

i=1
ai

(The extra t counts the arcs from the root of T to the t subtrees.)
By the inductive hypothesis, ai = ni − 1 for each subtree, so

a = t + ∙
t

i=1
ai = t + ∙

t

i=1
(ni − 1) = t + ∙

t

i=1
ni − ∙

t

i=1
1 = t + ∙

t

i=1
ni − t

 = ∙
t

i=1
ni = n − 1

■

praCTiCe 24 Prove that in any tree with n nodes, the total number of arc ends is 2n − 2. Use structural
induction.

■

 Section 6.2 Trees and Their Representations 521

 example 31 Sometimes a clever observation can take the place of an inductive proof. Every arc
of a tree connects one node to its parent. Each node of the tree except the root has
a parent, and there are n − 1 such nodes, therefore n − 1 arcs. Each arc has two
arc ends, so there are 2(n − 1) arc ends.

S e c t i o n 6 . 2 review

tecHniQueS

• Construct expression trees.
• Construct array and pointer representations for

binary trees.
• Conduct preorder, inorder, and postorder traversals

of a tree.

main iDeaS

• Binary trees can be represented by arrays and by
linked structures.

• Recursive procedures exist to systematically visit
every node of a tree.W

exerciSeS 6.2

 1. Which of the following graphs are trees with root r? If a graph is a tree, draw it in a more conventional
way. If not, say what property fails.

 a. r c.

r

 b. d. r

 2. Which of the following graphs are binary trees with root r? If the graph is not a binary tree, say what
property fails.

 a. r b.

r

 c.

r

 d. r

 3. Sketch a picture of each of the following trees.
 a. Tree with five nodes and depth 1
 b. Full binary tree of depth 2
 c. Tree of depth 3 where each node at depth i has i + 1 children

r

522 Graphs and Trees

 4. Answer the following questions about the accompanying graph with node a as the root.
 a. Is it a binary tree?
 b. Is it a full binary tree?
 c. Is it a complete binary tree?
 d. What is the parent of e?
 e. What is the right child of e?
 f. What is the depth of g?
 g. What is the height of the tree?

In Exercises 5–8, draw the expression tree.
 5. 3(2 * x − 3 * y) + 4 * z 4 + 1
 6. 3(x − 2) * 3 4 + (5 + 4)
 7. 1 − (2 − 33 − (4 − 5) 4)
 8. 3(6∙2) * 4 4 + 3(1 + x) * (5 + 3) 4
 9. Write the left child–right child array representation for the binary tree in the figure.

1

32

4

7

5 6

 10. Write the left child–right child array representation for the binary tree in the figure.

1

32

8 9 10 11 12 13 14 15

4 5 6 7

 11. Draw the binary tree corresponding to the left child–right child representation that follows. (1 is the root.)

Left child Right child

2 3

4 0

5 0

6 7

0 0

0 0

0 0

1

2

3

4

5

6

7

a

cb

e f g

h i

d

 Section 6.2 Trees and Their Representations 523

 12. Draw the binary tree corresponding to the left child–right child representation that follows. (1 is the root.)

Left child Right child

2 0

3 4

0 0

5 6

0 0

0 0

1

2

3

4

5

6

 13. Write the left child–right child array representation for the binary search tree that is created by processing
the following list of words: “All Gaul is divided into three parts” (see Exercise 43 of Section 5.1). Also
store the name of each node.

 14. Write the left child–right child array representation for the binary search tree that is created by processing
the following list of words: “We hold these truths to be self-evident, that all men are created equal” (see
Exercise 43 of Section 5.1). Also store the name of each node.

 15. In the following binary tree representation, the left child and parent of each node are given. Draw the
binary tree. (1 is the root.)

Left child Parent

2 0

4 1

0 1

0 2

0 2

0 3

1

2

3

4

5

6

 16. The following represents a tree (not necessarily binary) where, for each node, the leftmost child and the
closest right sibling of that node are given. Draw the tree. (1 is the root.)

Left child Right sibling

2 0

5 3

0 4

8 0

0 6

0 7

0 0

0 0

1

2

3

4

5

6

7

8

524 Graphs and Trees

 17. a. For the following tree, write the leftmost child–right sibling array representation described in
 Exercise 16.

1

2 3 4

5 6 107 8 9 11

 b. Now draw the binary tree that results from treating the answer to part (a) as a left child–right
child binary tree representation. An arbitrary tree can thus be thought of as having a binary tree
 representation.

 18. The following binary tree is the representation of a general tree (as in part (b) of Exercise 17). Draw the
tree.

1

3

2

476

8

5

9

For Exercises 19–24, write the list of nodes resulting from a preorder traversal, an inorder traversal, and a
 postorder traversal of the tree.

 19. a

b

d e f g

c

h

 20. a

b

d e f

c

g h

 Section 6.2 Trees and Their Representations 525

21. a

b c

e f g h i

d

j

 23. a

dc

b

e f g h

22. a

b c

e f g h i

d

 24. a

b c

d
e f g

h i

 25. Write in prefix and postfix notation: 3∙4 + (2 − y).
 26. Write in prefix and postfix notation: (x * y + 3∙z) * 4.
 27. Write in infix and postfix notation: − * + 2 3 * 6 x 7.
 28. Write in infix and postfix notation: − + − x y z w.
 29. Write in prefix and infix notation: 4 7 x − * z + .
 30. Write in prefix and infix notation: x 2 w + y z * − ∙.
 31. Evaluate the postfix expression 8 2 ∙ 2 3 * + .
 32. Evaluate the postfix expression 5 3 + 1 3 + ∙ 7 *.
 33. Draw a single tree whose preorder traversal is

a, b, c, d, e

and whose inorder traversal is

b, a, d, c, e

 34. Draw a single tree whose inorder traversal is

f, a, g, b, h, d, i, c, j, e

and whose postorder traversal is

f, g, a, h, i, d, j, e, c, b

 35. Find an example of a tree whose inorder and postorder traversals yield the same list of nodes.
 36. Find two different trees that have the same list of nodes under a preorder traversal.
 37. Informally describe a recursive algorithm to compute the height of a binary tree, given the root node.
 38. Informally describe a recursive algorithm to compute the number of nodes in a binary tree, given the root node.
 39. Prove that a simple graph is a nonrooted tree if and only if there is a unique path between any two nodes.

526 Graphs and Trees

 40. What is the minimum number of nodes and arcs that need to be deleted to reduce a full binary tree of
height ≥ 2 to a forest of 4 binary trees?

 41. Let G be a simple graph. Prove that G is a nonrooted tree if and only if G is connected and if the removal
of any single arc from G makes G unconnected.

 42. Let G be a simple graph. Prove that G is a nonrooted tree if and only if G is connected and the addition of
one arc to G results in a graph with exactly one cycle.

 43. Prove that a binary tree has at most 2d nodes at depth d.
 44. Prove that a tree with n nodes, n ≥ 2, has at least two nodes of degree 1.
 45. a. Draw a full binary tree of height 2. How many nodes does it have?
 b. Draw a full binary tree of height 3. How many nodes does it have?
 c. Conjecture how many nodes there are in a full binary tree of height h.
 46. Prove your conjecture from Exercise 45(c) three different ways.
 a. Use induction on the height h of the full binary tree. (Hint: Use Exercise 43.)
 b. Add up the nodes at each level of the tree (Hint: Use Exercise 43).
 c. Use structural induction.
 47. a. Prove that a full binary tree with x internal nodes has 2x + 1 total nodes.
 b. Prove that a full binary tree with x internal nodes has x + 1 leaves.
 c. Prove that a full binary tree with n nodes has (n − 1)∙2 internal nodes and (n + 1)∙2 leaves.
 48. Prove that the number of leaves in any binary tree is 1 more than the number of nodes with two children.
 49. Find an expression for the height of a complete binary tree with n nodes. (Hint: Use Exercise 45.)
 50. Prove that in the pointer representation of a binary tree with n nodes there are n + 1 null pointers.

(Hint: Use Exercise 48).
 51. Find the chromatic number of a tree (see Section 6.1, Exercise 80).
 52. Let E be the external path length of a tree, that is, the sum of the path lengths to all the leaves. Let I be the

internal path length, that is, the sum of the path lengths to all the internal nodes. Let i be the number of
internal nodes. Prove that in a binary tree where all internal nodes have two children, E = I + 2i.

 53. Let B(n) represent the number of different binary trees with n nodes.
 a. Define B(0) to have the value 1 (there is one binary tree with 0 nodes). Prove that B(n) is given by the

recurrence relation

B(1) = 1

B(n) = ∙
n−1

k=0
B(k)B(n − 1 − k)

 b. Compare the sequence B(n) to the sequence of Catalan numbers (Exercise 97, Section 4.4). Write the
closed-form expression for B(n).

 c. Compute the number of different binary trees with 3 nodes. Draw all these trees.
 d. Compute the number of different binary trees with 6 nodes.
 54. In the data structure known as a B-tree of order 5, each node of the tree can contain multiple data values,

maintained in sorted order. Between and around the data values at an internal node are arcs that lead to
children of the node. New data values are inserted into the leaf nodes of the tree, but when a leaf (or in-
ternal node) gets up to five values, it splits in two and the median value pops up to the next level of the
tree. The figure shows the tree at various points as the data values 1 through 8 are inserted into an initially
empty tree.

 Section 6.2 Trees and Their Representations 527

 a. The minimum number of data values to insert into a B-tree of order 5 to force it to have two levels is 5.
Find the minimum number of data values required to force the tree to have three levels.

 b. Prove that when a B-tree of order 5 has the minimum number of data values to force it to have n levels,
n ≥ 2, the bottom level contains 2(3n−2) nodes.

 c. Find (and justify) a general expression for the minimum number of data values required to force a

B-tree of order 5 to have n levels. aHint: 30 + 31 + c+ 3n−2 = a3n − 3
6

b .b

In Exercises 55 and 56, two trees are isomorphic if there is a bijection f: N1 S N2, where f maps the root of
one tree to the root of the other and where f (y) is a child of f (x) in the second tree when y is a child of x in the
first tree. Thus the two trees shown are isomorphic graphs but not isomorphic trees (in part (a) the root has two
children and in part (b) it does not). These are the only two nonisomorphic trees with three nodes.

r

r

(b)(a)

 55. Draw all the nonisomorphic trees with four nodes.
 56. Draw all the nonisomorphic trees with five nodes.
 57. One of the most efficient sorting algorithms is HeapSort, which sorts an array of values into increasing

order. To understand how the HeapSort algorithm works, it is best to imagine that the array elements are
stored in level order as the nodes of a binary tree. Thus the values in a 7-element array that is indexed from
0 through 6 would be stored in a binary tree with element 0 at the root, elements 1 and 2 at depth 1, and
so on.

1

3 4 5

2

6

0

A heap is a binary tree in which the value at every node is greater than the value at its two child nodes.
HeapSort is a two-phase process. The first phase is to reorganize the tree elements into a heap (more on
this later), and the second is to sort the heap. The key idea is that in a heap, the largest element is the root of
the tree; its proper place in the sorted array is at the end of the unsorted section of the array (at the lowest,
rightmost tree element not yet in its sorted position). The tree root gets thrown to the last unsorted posi-
tion, and the element that formerly occupied that position must be inserted back into the unsorted section
in such a way as to preserve the heap property. Consider the following binary tree, which is a heap—each
node value is larger than the values at the two child nodes.

1, 2, 3, 4 1, 2 1, 24, 5 4, 5

3 3, 6

7, 8

528 Graphs and Trees

f

k

m

p

c a

s

 The root value, s, belongs at the bottom right of the tree (the position of the last array element), and once
positioned there, s will never be looked at again. The previous value, m, has been temporarily displaced.

f

km p

c a s

To insert m back into the heap, there is a series of “competitions” between the displaced element and
the child nodes of the empty node so that the largest value is promoted to fill the empty slot. Here m, k,
and p compete, and p is the winner.

f

km

p

c a s

 Now m and f compete (remember that s is no longer considered), the largest value is m, and once m is
inserted, the heap has been reestablished.

f

k m

p

c a s

 a. Complete phase 2 of the process so that the array is sorted. (Hint: The next step is to throw the root
value, p, into the position currently occupied by f. The displaced value f must then be reinserted into
the tree.)

 b. For phase 1, to construct the heap, put the original random elements into the binary tree. Consider the
leaf nodes to be temporarily in place, since their relative order does not matter. Beginning with the
rightmost node in the level above the leaves and working up level-by-level to the root, temporarily
displace that node element and then insert it using the “competition” rules described. Beginning with
the array r, w, f, g, k, y, d, construct a heap.

Section 6.3 Decision Trees 529

Although we have used decision trees, we haven’t given a formal definition of
what a decision tree is.

 Definition Decision Tree
A decision tree is a tree in which the internal nodes represent actions, the arcs
represent outcomes of an action, and the leaves represent final outcomes.

Sometimes useful information can be obtained by using a decision tree to rep-
resent the activities of a real algorithm; actions that the algorithm performs take
place at internal nodes, the children of an internal node represent the next action
taken, based on the outcome of the previous action, and the leaves represent some
sort of circumstance that can be inferred upon algorithm termination. Note that,
unlike the trees we talked about in Section 6.2, a decision tree is not a data struc-
ture; that is, the nodes of the tree have no data values associated with them. Nor
are the algorithms we are representing necessarily acting on a tree structure. In
fact, we will use decision trees in this section to learn more about algorithms for
searching and sorting, and these algorithms act on lists of data items.

searching

A search algorithm either finds a target element x within a list of elements or de-
termines that x is not in the list. Such an algorithm generally works by making

 S e c t i o n 6 . 3 deCision Trees

We used decision trees in Chapter 4 to solve counting problems. Figure 6.51 shows
the tree used in Example 39 of Chapter 4 to represent the various possibilities for
five coin tosses under the constraint that two heads in a row do not occur. Each
internal node of the tree represents an action (a coin toss), and the arcs to the chil-
dren of internal nodes represent the outcomes of that action (heads or tails). The
leaves of the tree represent the final outcomes, that is, the different ways that five
tosses could occur.

T

H T

T

TH

H
T
H
T
H

H
T
H
T
T

H
T
T
T
H

H
T
T
H
T

H
T
T
T
T

HT T

TH

T

T
H
T
T
H

T
H
T
H
T

T
H
T
T
T

HT T

TH

H T

T

TH

T
T
H
T
H

T
T
H
T
T

T
T
T
T
H

T
T
T
H
T

T
T
T
T
T

HT T

TH

H T

H T
Toss 1

Toss 2

Toss 5

Toss 4

Toss 3

Figure 6.51

530 Graphs and Trees

successive comparisons of x to the list items. We have already seen two such algo-
rithms, sequential search and binary search. We can model the activities of these
algorithms by using decision trees. The nodes represent the actions of comparing x
to the list items, where the comparison of x to the ith element in the list is denoted
by x:L 3i 4.

Sequential search only distinguishes between two possible outcomes of a com-
parison of x to L 3i 4. If x = L 3i 4, the algorithm terminates because x has been found
in the list. If x ∙ L 3i 4, the next comparison performed is x:L 3i + 1 4, regardless of
whether x was less than or greater than L 3i 4. The leaves of this decision tree corre-
spond to the final outcomes, where either x is one of the list items or x is not in the list.

 example 32 Figure 6.52 shows the decision tree for the sequential search algorithm acting on a
list of five elements.

x:L[1]

x = L[1]

= ≠

x:L[2]

x = L[2]

= ≠

x:L[3]

x = L[3]

= ≠

x:L[4]

x = L[4]

= ≠

x:L[5]

x = L[5]
x ∉L

= ≠

Figure 6.52

From the decision tree for a given search algorithm, we can see that the number
of comparisons required to reach any particular outcome (leaf of the tree) is the
number of internal nodes from the root to that leaf. This number equals the length of
the path from the root to that leaf. The worst case, that is, the maximum number of
comparisons, is the maximum length of any such path, which is the depth of the tree.

Because every decision tree for sequential search looks like Figure 6.52, it is
clear that the depth of such a tree, for an n-element list, is n. This agrees with what
we already know, namely, that the worst case for sequential search on a list of n
elements is n.

The decision tree for the binary search algorithm is more interesting. Binary
search acts on a sorted list and distinguishes between three possible outcomes of
the comparison:

Section 6.3 Decision Trees 531

x = L 3i 4: algorithm terminates, x has been found
x < L 3i 4: algorithm proceeds to the left half of the list
x > L 3i 4: algorithm proceeds to the right half of the list

We will follow the usual custom and not write the leaf that corresponds to the
“middle branch,” x = L 3i 4 (see Exercise 21 for a discussion of the consequences of
this convention). If x < L 3i 4 , the next comparison the algorithm performs is found
at the left child of this node; if x > L 3i 4 , the algorithm’s next comparison is found
at the right child. If no child exists, the algorithm terminates because x is not in
the list. The tree we’ve described is a binary tree whose leaves represent all the
possible outcomes where x is not in the list. There are many more failure leaves
in binary search than in sequential search, because binary search indicates how x
fails to be in the list (e.g., x < L 31 4 or L 31 4 < x < L 32 4).

 example 33 Figure 6.53 shows the decision tree for the binary search algorithm acting on a
sorted list of eight elements.

The worst case, that is, the maximum number of comparisons, will again be
the depth of the tree, which is 4 in Figure 6.53. In Chapter 3 we solved a recurrence
relation to get the worst-case behavior for binary search where n is a power of 2
and found this to be 1 + log n (remember that we are using base 2 logarithms).
Note that 1 + log 8 = 4, so the decision tree agrees with our previous result. The
restriction of n to a power of 2 made the arithmetic of solving the recurrence re-
lation simpler. If n is not a power of 2, then the depth of the tree is given by the
expression 1 + :log n; .

< >

x > L[8]

x:L[8]

L[7] < x < L[8]

< >

x:L[6]

< >< >

x:L[7]x:L[5]

L[6] < x < L[7]L[4] < x < L[5]

<

< >

>

x:L[2]

x:L[4]

< >< >

x:L[3]x:L[1]

L[2] < x < L[3]x < L[1]

L[1] < x < L[2] L[3] < x < L[4] L[5] < x < L[6]

Figure 6.53

532 Graphs and Trees

praCTiCe 25

a. Draw the decision tree for the binary search algorithm on a sorted list of five elements.
b. Find the depth of the tree and compare to 1 + :log 5; . ■

Lower Bounds on Searching
We have used decision trees to represent the actions of two particular search al-
gorithms. Such a tree could be used to represent the actions of any algorithm that
solves the search problem by comparing the target element to the list elements.
The internal nodes of such a tree would represent the comparisons done, and the
depth of the tree would be the worst-case number of comparisons over all possible
cases. What can be said about such a tree when we don’t know the particulars of
the algorithm involved? We can say that x must be compared to every element
in the list at least once (perhaps more than once if the algorithm is quite stupid).
For if there is some list element that escapes being compared to x, the algorithm
cannot say whether that element equals x and thus cannot decide with certainty
whether x belongs to the list. Comparisons are internal nodes in the decision tree.
Therefore, if m is the number of internal nodes in the decision tree T1 for any
search algorithm acting on an n-element list, then m ≥ n.

Before proceeding further with decision trees, we need some additional facts
about binary trees in general. The number of nodes at each level in a full binary tree
follows a geometric progression: 1 node at level 0, 21 nodes at level 1, 22 nodes at level
2, and so on. In a full binary tree of depth d, the total number of nodes is therefore

1 + 2 + 22 + 23 + c+ 2d = 2d+1 − 1

(see Example 15 of Chapter 2). A full binary tree has the maximum number of
nodes for a given depth of any binary tree. This gives us fact 1:

 1. Any binary tree of depth d has at most 2d+1 − 1 nodes.

Fact 2, which we’ll prove momentarily, is

 2. Any binary tree with m nodes has depth ≥ :log m; .

To prove fact 2, we’ll use a proof by contradiction. Suppose a binary tree has m
nodes and depth d < :log m; . Then d ≤ :log m; − 1. From fact 1,

 m ≤ 2d+1 − 1 ≤ 2(:log m;−1) +1 − 1
 = 2:log m; − 1 ≤ 2log m − 1 = m − 1

or

m ≤ m − 1

—a contradiction. Therefore d ≥ :log m; .
Now back to decision trees representing search algorithms on n-element

lists. Temporarily strip the leaves from tree T1 (with m internal nodes) to create a
new tree T2 with m nodes, m ≥ n. By fact 2, T2 has depth d ≥ :log m; ≥ :log n; .

Section 6.3 Decision Trees 533

Therefore tree T1 has depth ≥ :log n; + 1. Because the depth of the decision
tree gives the worst-case number of comparisons, we can state the following
theorem.

 tHeorem on The lower BounD For searchinG
Any algorithm that solves the search problem for an n-element list by comparing
the target element x to the list items must do at least :log n; + 1 comparisons in
the worst case.

This theorem gives us a lower bound on the number of comparisons required
in the worst case for any algorithm that uses comparisons to solve the search prob-
lem. Since binary search does no more work than this required minimum amount,
binary search is an optimal algorithm in its worst-case behavior.

Binary Tree Search
The binary search algorithm requires that data already be sorted. Arbitrary data
can be organized into a structure called a binary search tree, which can then be
searched using a different algorithm called binary tree search. To build a binary
search tree, the first item of data is made the root of the tree. Successive items are
inserted by comparing them to existing nodes, beginning with the root. If the item
is less than a node, the next node tested is the left child; otherwise it is the right
child. When no child node exists, the new item becomes the child.

 example 34 The data items

5, 8, 2, 12, 10, 14, 9

are to be organized into a binary search tree. Figure 6.54 shows the successive
stages of constructing the tree.

82

5

8

12

2

5

8

12

10

2

5

8

12

10 14

2

5

8

14

12

10

9

2

5

8

5
5

Figure 6.54

534 Graphs and Trees

A binary search tree, by the way it is constructed, has the property that
the value at each node is greater than all values in its left subtree (the subtree
rooted at its left child) and less than all values in its right subtree. A binary
tree search compares item x with a succession of nodes beginning with the
root. If x equals the node item, the algorithm terminates; if x is less than the
item, the left child is checked next; if x is greater than the item, the right
child is checked next. If no child exists, the algorithm terminates because x
is not in the list. Thus the binary search tree, except for the leaves, becomes
the decision tree for the binary tree search algorithm. (Here is a case where
the algorithm itself is described in terms of a tree.) The worst-case number of
comparisons equals the depth of the tree plus 1 (for the missing leaves). How-
ever, a binary search tree for a given set of data is not unique; the tree (and
hence the depth of the tree) depends on the order in which the data items are
inserted into the tree.

The actions performed in a binary tree search certainly resemble those in
the “regular” binary search algorithm; in both cases the procedure is to make a
comparison and, if unsuccessful, to look left or right (in the tree if it is a binary
tree search or in the list if it is a binary search). It is possible to order the data for a
binary tree search such that the search tree built from these data matches the deci-
sion tree (minus the leaves) for a binary search of the same data in sorted order.
This match is illustrated in Example 35 (note that the tree was not built from data
items in sorted order). Here the binary search tree has the minimum depth and
requires the least amount of work in the worst case.

The depth of a binary search tree for a given set of data items can vary. The
depth of the tree in Figure 6.54 is 4, while that of Figure 6.55 is 2. Thus the worst-
case number of comparisons to search for an item can also vary. The tree-building
process can be modified to keep the tree more “balanced,” that is, short and wide
rather than tall and skinny; such a modification reduces the depth of the tree and
therefore the search time. Of course, we know from the theorem on the lower
bound for searching that a certain minimum amount of work is required no matter
how clever we are in building the tree.

 example 35 The data in Example 34 entered in the order

9, 12, 10, 5, 8, 2, 14

produce the binary search tree of Figure 6.55.

9

125

2 8 10 14

Figure 6.55

Section 6.3 Decision Trees 535

sorting

Decision trees can also model algorithms that sort a list of items by a sequence of com-
parisons between two items from the list. The internal nodes of such a decision tree
are labeled L 3i 4:L 3 j 4 to indicate a comparison of list item i to list item j. To simplify
our discussion, let’s assume that the list does not contain duplicate items. Then the
outcome of such a comparison is either L 3i 4 < L 3 j 4 or L 3i 4 > L 3 j 4 . If L 3i 4 < L 3 j 4,
the algorithm proceeds to the comparison indicated at the left child of this node; if
L 3i 4 > L 3 j 4, the algorithm proceeds to the right child. If no child exists, the algo-
rithm terminates because the sorted order has been determined. The tree is a binary
tree, and the leaves represent the final outcomes, that is, the various sorted orders.

praCTiCe 26

a. Construct the binary search tree for the data of Example 34 entered in the order

12, 9, 14, 5, 10, 8, 2

b. What is the depth of the tree? ■

 example 36 Figure 6.56 shows the decision tree for a sorting algorithm acting on a list of
three elements. This algorithm is not particularly astute because it ignores the
transitive property of < and therefore performs some unnecessary compari-
sons. The leaves of the tree indicate the various final outcomes, including two
cases (marked with an X) that result from contradictory information. For ex-
ample, one X results from the following inconsistent sequence of outcomes:
L 31 4 < L 32 4, L 32 4 < L 33 4, L 31 4 > L 33 4 .

< >

< >< >

L[2] < L[3] < L[1]L[2] < L[1] < L[3]

X X

<

< >

>

L[1]:L[2]

< >< >

L[1]:L[3] L[1]:L[3] L[2]:L[3] L[2]:L[3]

L[2]:L[3] L[1]:L[3]

L[1] < L[3] < L[2]L[1] < L[2] < L[3]

L[3] < L[1] < L[2] L[3] < L[2] < L[1]

Figure 6.56

praCTiCe 27 Draw the decision tree that would result if the algorithm of Example 36 were modified to
eliminate unnecessary comparisons.

■

536 Graphs and Trees

A decision tree argument can also be used to establish a lower bound on the
worst-case number of comparisons required to sort a list of n elements. As we did
for the search problem, let us see what we can say about a decision tree for sort-
ing based on comparisons, regardless of the algorithm it represents. The leaves of
such a tree represent the final outcomes, that is, the various ordered arrangements
of the n items. There are n! such arrangements, so if p is the number of leaves in
the decision tree, then p ≥ n!. The worst case will equal the depth of the tree. But
it is also true that if the tree has depth d, then p ≤ 2d (Exercise 43 of Section 6.2).
Taking the base 2 logarithm of both sides of this inequality, we get log p ≤ d or,
because d is an integer, d = <log p= . Finally, we obtain

d = <log p= ≥ <log n!=

This result proves the following theorem.

 tHeorem on The lower BounD For sorTinG
Any algorithm that sorts an n-element list by comparing pairs of items from the
list must do at least <log n!= comparisons in the worst case.

It can be shown (Exercise 23) that log n! = Θ(n log n). Therefore we have
proved that sorting n elements by comparing pairs of list items is bounded below
by Θ(n log n), whereas searching by comparing the target element to the list items
is bounded below by Θ(log n). As expected, it takes more work to sort than to
search.

S e c t i o n 6 . 3 review

tecHniQueS

• Draw decision trees for sequential search and bi-
nary search on n-element lists.

• Create a binary search tree.

main iDeaS

• Decision trees represent the sequences of possible
actions for certain algorithms.

• Analysis of a generic decision tree for algorithms
that solve a certain problem may lead to lower

bounds on the minimum amount of work needed to
solve the problem in the worst case.

• The task of searching an n-element list for a target
value x, if done by comparing x to elements in the
list, requires at least :log n; + 1 comparisons in the
worst case.

• The task of sorting an n-element list, if done by
comparing pairs of list elements, requires at least
:log n!; comparisons in the worst case.

W

W

exerciSeS 6.3

 1. Draw the decision tree for sequential search on a list of three elements.
 2. Draw the decision tree for sequential search on a list of six elements.
 3. Draw the decision tree for binary search on a sorted list of seven elements. What is the depth of the tree?
 4. Draw the decision tree for binary search on a sorted list of four elements. What is the depth of the tree?

Section 6.3 Decision Trees 537

 5. Consider a search algorithm that compares an item with the last element in a list, then the first element,
then the next-to-last element, then the second element, and so on. Draw the decision tree for searching a
six-element sorted list. What is the depth of the tree? Does it appear that this is an optimal algorithm in the
worst case?

 6. Consider a search algorithm that compares an item with an element one-third of the way through the list;
based on that comparison, it then searches either the first one-third or the second two-thirds of the list.
Draw the decision tree for searching a nine-element sorted list. What is the depth of the tree? Does it ap-
pear that this is an optimal algorithm in the worst case?

 7. a. Given the data

9, 5, 6, 2, 4, 7

 construct the binary search tree. What is the depth of the tree?
 b. Find the average number of comparisons done to search for an item that is known to be in the list

using binary tree search on the tree of part (a). (Hint: Find the number of comparisons for each of the
items.)

 8. a. Given the data

g, d, r, s, b, q, c, m

 construct the binary search tree. What is the depth of the tree?
 b. Find the average number of comparisons done to search for an item that is known to be in the list

using binary tree search on the tree of part (a). (Hint: Find the number of comparisons for each of the
items.)

 9. a. For a set of six data items, what is the minimum worst-case number of comparisons a search algorithm
must perform?

 b. Given the set of data items 5a, d, g, i, k, s6 , find an order in which to enter the data so that the corre-
sponding binary search tree has the minimum depth.

 10. a. For a set of nine data items, what is the minimum worst-case number of comparisons a search algorithm
must perform?

 b. Given the set of data items 54, 7, 8, 10, 12, 15, 18, 19, 216 , find an order in which to enter the data so
that the corresponding binary search tree has the minimum depth.

 11. An inorder tree traversal of a binary search tree produces a listing of the tree nodes in alphabetical or
 numerical order. Construct a binary search tree for “To be or not to be, that is the question,” and then do
an inorder traversal.

 12. Construct a binary search tree for “In the high and far-off times the Elephant, O Best Beloved, had no
trunk,” and then do an inorder traversal. (See Exercise 11.)

 13. Use the theorem on the lower bound for sorting to find lower bounds on the number of comparisons
 required in the worst case to sort lists of the following sizes:

 a. 4 b. 8 c. 16
 14. Contrast the number of comparisons required for selection sort and merge sort in the worst case with the

lower bounds found in Exercise 13 (see Exercise 23 in Section 3.3). What are your conclusions?

Exercises 15–20 concern the problem of identifying a counterfeit coin (one that is two heavy or too light) from
a set of n coins. A balance scale is used to weigh a group of any number of coins from the set against a like
number of coins from the set. The outcome of such a comparison is that group A weighs less than, the same as,
or more than group B. A decision tree representing the sequence of comparisons done will thus be a ternary tree,
where an internal node can have three children.

538 Graphs and Trees

	 15.	One	of	five	coins	is	counterfeit	and	is	lighter	than	the	other	four.	The	problem	is	to	identify	the	counterfeit	coin.
	 a.	 What	is	the	number	of	final	outcomes	(the	number	of	leaves	in	the	decision	tree)?
	 b.	 Find	a	lower	bound	on	the	number	of	comparisons	required	to	solve	this	problem	in	the	worst	case.
	 c.	 Devise	an	algorithm	that	meets	this	lower	bound	(draw	its	decision	tree).
	 16.	One	of	five	coins	is	counterfeit	and	is	either	too	heavy	or	too	light.	The	problem	is	to	identify	the	counter-

feit	coin	and	determine	whether	it	is	heavy	or	light.
	 a.	 What	is	the	number	of	final	outcomes	(the	number	of	leaves	in	the	decision	tree)?
	 b.	 Find	a	lower	bound	on	the	number	of	comparisons	required	to	solve	this	problem	in	the	worst	case.
	 c.	 Devise	an	algorithm	that	meets	this	lower	bound	(draw	its	decision	tree).
	 17.	One	of	four	coins	is	counterfeit	and	is	either	too	heavy	or	too	light.	The	problem	is	to	identify	the	counter

feit	coin	but	not	to	determine	whether	it	is	heavy	or	light.
	 a.	 What	is	the	number	of	final	outcomes	(the	number	of	leaves	in	the	decision	tree)?
	 b.	 Find	a	lower	bound	on	the	number	of	comparisons	required	to	solve	this	problem	in	the	worst	case.
	 c.	 Devise	an	algorithm	that	meets	this	lower	bound	(draw	its	decision	tree).
	 18.	One	of	four	coins	is	counterfeit	and	is	either	too	heavy	or	too	light.	The	problem	is	to	identify	the	counter

feit	coin	and	determine	whether	it	is	heavy	or	light.
	 a.	 What	is	the	number	of	final	outcomes	(the	number	of	leaves	in	the	decision	tree)?
	 b.	 Find	a	lower	bound	on	the	number	of	comparisons	required	to	solve	this	problem	in	the	worst	case.
	 c.	 Prove	that	no	algorithm	exists	that	can	meet	this	lower	bound.	(Hint:	The	first	comparison	can	be	made	

with	either	two	coins	or	four	coins.	Consider	each	case.)
	 19.	Devise	an	algorithm	to	solve	the	problem	of	Exercise	18	using	three	comparisons	in	the	worst	case.
	 20.	One	of	eight	coins	is	counterfeit	and	is	either	too	heavy	or	too	light.	The	problem	is	to	identify	the	counter

feit	coin	and	determine	whether	it	is	heavy	or	light.
	 a.	 What	is	the	number	of	final	outcomes	(the	number	of	leaves	in	the	decision	tree)?
	 b.	 Find	a	lower	bound	on	the	number	of	comparisons	required	to	solve	this	problem	in	the	worst	case.
	 c.	 Devise	an	algorithm	that	meets	this	lower	bound	(draw	its	decision	tree).
	 21.	In	the	decision	tree	for	the	binary	search	algorithm	(and	the	binary	tree	search	algorithm),	we	have		counted	

each	internal	node	as	one	comparison.	For	example,	the	top	of	Figure	6.53	looks	like	this:

	 	 To	get	 to	either	of	 the	child	nodes	of	 the	 root,	we	have	assumed	 that	one	comparison	has	been	done.	
	However,	the	outcome	of	the	comparison	at	each	internal	node	is	really	a	threeway	branch:

x = node element
x < node element
x > node element

	 	 Think	about	how	this	threeway	branch	would	be	implemented	in	most	programming	languages,	and	write	
a	more	accurate	expression	than	1 + :log n; 	for	the	number	of	comparisons	in	the	worst	case.

 Section 6.4 Huffman Codes 539

 22. Our existing binary search algorithm (Chapter 3, Example 13) contains the pseudocode instruction
find the index k midway between i and j

 after which the target x is compared to the list item at index k, the “midpoint item.” Suppose that this in-
struction is replaced by

 if i = j then
k = j

 else
k = i + 1

 end if

 a. Draw the decision tree that results from using the modified algorithm on a sorted list with n = 8.
 b. Give the exact number of comparisons required (see Exercise 21) in the worst case for n = 8.
 c. Give a worst-case order-of-magnitude expression for the number of comparisons required as a func-

tion of n, and justify your expression. Comment on the use of this algorithm as opposed to the original
binary search algorithm, which is Θ(log n).

 23. To prove that log n! = Θ(n log n), we can use the definition of order of magnitude (see
 Section 5 of Chapter 5) and show that there exist positive constants n0, c1, and c2 such that for
n ≥ n0, c1(n log n) ≤ log n! ≤ c2(n log n).

 a. Show that for n ≥ 1,log n! ≤ n log n. (Hint: Use the definition of n! and properties of logarithms.)
 b. Show that for n ≥ 4, log n! ≥ (1�4)(n log n). (Hint: Use the definition of n! and properties of

 logarithms, but stop at log<n�2= .)

 S e c t i o n 6 . 4 Huffman Codes

Problem and Trial Solution

Character data consist of letters of the alphabet (both uppercase and lowercase),
punctuation symbols, and other keyboard symbols such as @ and %. Computers
store character data in binary form, as a sequence of 0s and 1s, usually by fixing
some length n so that 2n is at least as large as the number of distinct characters
and then encoding each distinct character as a particular sequence of n bits. Each
character must be encoded into its fixed binary sequence for electronic storage, and
then the binary sequence must be decoded when the character is to be displayed.
The most common encoding scheme for many years was ASCII (American Stan-
dard Code for Information Interchange), which uses n = 8, so that each character
requires 8 bits to store. However, 28 = 256, so a maximum of 256 characters could
be encoded. This was enough for the English alphabet, punctuation, and special
characters, but as electronic data storage spread around the world, it was not enough
to include characters found in other languages such as Russian, Japanese, Arabic,
Greek, and many others. Unicode (in general) uses 16 bits to encode a single char-
acter, so that 216 = 65536 character encodings are now available. But whatever
value is chosen for n, each character requires the same amount of storage space.

Suppose a collection of character data to be stored in a file in binary form is
large enough that the amount of storage required is a consideration. Suppose also
that the file is archival in nature, and its contents will not often be changed. Then

540 Graphs and Trees

Practice 28 Using the variable-length code of Example 37, decode each of the following strings:

a. 11111111010100
b. 1101010101100
c. 100110001101100 ■

it may be worthwhile to invest some extra effort in the encoding process if the
amount of storage space required for the file could be reduced.

Rather than using a fixed number of bits per character, an encoding scheme could
use a variable number of bits and store frequently occurring characters as sequences
with fewer bits. To store all the distinct characters, some sequences will still have to be
long, but if the longer sequences are used for characters that occur less frequently, the
overall storage required should be reduced. This approach requires knowledge of the
particular file contents, which is why it is best suited for a file whose contents will not
be frequently changed. We will study such a data compression or data compaction
scheme here, because it is best described as a series of actions taken on binary trees.

 ExamplE 37 As a trivial example, suppose that a collection of data contains 50,000 instances
of the six characters a, c, g, k, p, and ?, which occur with the following percent
frequencies:

Character a c g k p ?
Frequency 48 9 12 4 17 10

Because six distinct characters must be stored, the fixed-length scheme would
 require at a minimum three bits for each character (23 = 8 ≥ 6). The total storage
required would then be 50,000 * 3 = 150,000 bits. Suppose instead that the fol-
lowing encoding scheme is used:

Character a c g k p ?
Encoding scheme 0 1101 101 1100 1l1 100

Then the storage requirement (number of bits) is

50,000 (0.48 * 1 + 0.09 * 4 + 0.12 * 3 + 0.04 * 4 + 0.17 * 3 + 0.10 * 3) = 108,500

which is roughly two-thirds of the previous requirement.

In the fixed-length storage scheme with n bits for each character, the long
string of bits within the encoded file can be broken up into the code for successive
characters by simply looking at n bits at a time. This makes it easy to decode the
file. In the variable-length code, there must be a way to tell when the sequence for
one character ends and the sequence for another character begins.

In Practice 28 the strings can be broken into the representation of characters
in only one way. As each new digit is considered, the possibilities are narrowed
as to which character is being represented until the character is uniquely identi-
fied by the end of that character’s representation. There is never any need to guess

 Section 6.4 Huffman Codes 541

at what the character might be and then backtrack if our guess proves wrong.
This ability to decode uniquely without false starts and backtracking comes about
 because the code is an example of a prefix code. In a prefix code, the code for any
character is never the prefix of the code for any other character. (A prefix code is
therefore an “antiprefix” code!)

 ExamplE 38 Consider the code

Character a b c
Encoding scheme 01 101 011

which is not a prefix code. Given the string 01101, it could represent either ab
(01–101) or ca (011–01). Furthermore, in processing the string 011011 digit by
digit as a computer would do, the decoding could begin with ab (01–101) and only
encounter a mismatch at the last digit. Then the process would have to go all the
way back to the first digit in order to recognize cc (011–011).

As an aside, Morse code is a variable-length code. Morse’s encoding scheme
for telegraphic communication, invented in 1838, uses strings of dots and dashes
to represent letters of the alphabet. The most frequently occurring letter of the
 alphabet in English text is the letter “e,” which is assigned the shortest code, a
single dot. The Morse code for

“hello world”

is

“.... . .-.. .-.. --- .-- --- .-. .-.. -..”

Here you can see that “e” is a single dot, that “l” is dot-dash-dot-dot, and that “r”
is dot-dash-dot. Morse code is not a prefix code, however; note that the “r” code is
the first part of the “l” code. To avoid this kind of ambiguity, Morse code inserts
a pause between the code for each letter. To decode, you wait for the pause and at
that point you have the code for exactly one letter.

In our approach to prefix codes, we will build binary trees with the characters
as leaves. Once the tree is built, a binary code can be assigned to each character
by simply tracing the path from the root to that leaf, using 0 for a left branch and 1
for a right branch. Because no leaf precedes any other leaf on some path from the
root, the code will be a prefix code. The binary tree for the code of Example 37 is
shown in Figure 6.57.

?
g

a

p

ck
Figure 6.57

542 Graphs and Trees

Suppose a code tree T exists, with leaves representing characters. For any
leaf i, its depth d(i) in T equals the number of bits in the code for the corre-
sponding character. Let f(i) denote the percentage frequency of that character
in the data to be stored, and let S be the total number of characters to be stored.
Then, just as in Example 37, the total number of bits required is given by the
expression

S * c ∙
all leaves i

(d(i)f(i)) d

We seek to build an optimal tree T, one for which the expression

 E(T) = c ∙
all leaves i

(d(i)f(i)) d (1)

is a minimum and hence the file size is a minimum.
This process could be done by trial and error, because there is only a finite

number of characters and thus only a finite number of ways to construct a tree and
assign characters to its leaves. However, the finite number quickly becomes very
large! Instead we will use the algorithm known as huffman encoding.

huffman encoding algorithm

Suppose, then, that we have m characters in a file and we know the percentage
frequency of each character. The algorithm to build the tree works by maintain-
ing a list L of nodes that are roots of binary trees. Initially L will contain m roots,
each labeled with the frequency of one of the characters; the roots will be ordered
according to increasing frequency, and each will have no children. A pseudocode
description of the algorithm follows.

 alGoritHm Huffmantree

HuffmanTree (node list L; integer m)
//Each of the m nodes in L has an associated frequency f, and L is
//ordered by increasing frequency; algorithm builds the Huffman tree

for (i = 1 to m − 1) do
create new node z
let x, y be the first two nodes in L //minimum frequency nodes
f(z) = f(x) + f(y)
insert z in order into L
left child of z = node x
right child of z = node y //x and y are no longer in L

end for
end HuffmanTree

 Section 6.4 Huffman Codes 543

When this algorithm terminates, L consists of just one node, which is the root
of the final binary tree. Codes can then be assigned to each leaf of the tree by trac-
ing the path from the root to the leaf and accumulating 0s for left branches and
1s for right branches. By the way the tree is constructed, every internal node will
have exactly two children.

 ExamplE 39 We’ll use algorithm HuffmanTree to build the tree of Figure 6.57, which is based
on the data of Example 37. L initially contains the six nodes, ordered by frequency:

4 9 10 12 17 48

Following the algorithm, we enter the for loop for the first time. The x and y nodes
are those with frequencies 4 and 9, respectively. A new node z with frequency
4 + 9 = 13 is created and inserted in order into L, with the x node as its left child
and the y node as its right child The new L looks like the following:

This process is repeated four more times. The resulting L at each stage follows:

13 17

4 9

22 48

10 12

4 9

30 48

13 17

22

10 12

4 9

3022

5248

13 17
01 21

52

3022

48 (a)

10 (?) 13 17 (p)
12 (g)

4 (k) 9 (c)

100

and then

At this point the tree is complete and the codes can be assigned. The code for c, for
example, is 1101 (right branch, right branch, left branch, right branch).

544 Graphs and Trees

Table 6.1 shows the steps in Huffman encoding/decoding for data compression.

praCTiCe 30 Find the Huffman codes for the characters of Practice 29.
■

praCTiCe 29 Construct the Huffman tree for the following characters and frequencies:

Character w q h e
Frequency 10 12 20 58 ■

table 6.1

Encoding Step 1 On the original CLEARTEXT file, perform a frequency analysis; that is, create a file
FREQUENCY that contains data of the form

a—18
b—7

and so forth.

Encoding Step 2 Using FREQUENCY, create a file CODETABLE that contains the Huffman code for each
character, i.e.,

a—001
b—1110

and so forth.

Encoding Step 3 Using CLEARTEXT and CODETABLE, create a file called CODED that contains the
compressed data.

Decoding Using CODED and CODETABLE, decode the data to recover CLEARTEXT.

The CODED file is the data-compressed version of CLEARTEXT, and presum-
ably it requires less storage space. However, the CODETABLE file must also be
stored in order to be able to decode the file.

Justification

Although the algorithm to construct the Huffman tree T is easy enough to describe,
we must justify that it gives us the minimum possible value for E(T).

First, if we have an optimal tree T for m characters, the nodes with the low-
est frequencies can always be assumed to be the left and right children of some
node. To prove this assumption, label the two nodes with the lowest frequencies
x and y. If x and y are not siblings in the tree, then find two siblings p and q at
the lowest level of the tree, and consider the case where x and y are not at that
level (Figure 6.58a). Because f(x) is one of the two smallest values, we know that
f(x) ≤ f(p). If f(x) < f(p), then interchanging x and p in the tree would result in a
new tree T′ with E(T′) < E(T) (Figure 6.58b: the larger frequency is now at a less-
er depth—see Exercise 20a), but this would contradict the fact that T was optimal.
Therefore f(x) = f(p), and x and p can be interchanged in the tree with no effect
on E(T). Similarly, y and q can be interchanged, resulting in Figure 6.58c, in which
x and y are siblings. If x or y are at the same level as p and q to begin with, they can
certainly be interchanged with p or q without affecting E(T) (Figure 6.58d).

 Section 6.4 Huffman Codes 545

x

y

p q

(a)

p

y

x q

(b)

p

q

x y p q x

(c)

y

(d)
Figure 6.58

(a)

y

T T' B' B

x

(b)

yx

(c)

frequency f(x) + f(y)frequency f(x) + f(y)

(d)

Figure 6.59

Now again let f (x) and f (y) be the minimum frequencies, and suppose we
have a tree T that is optimal for the other frequencies together with the sum
f (x) + f (y) (Figure 6.59a). This sum will be the frequency of a leaf node; cre-
ate a tree T ′ that has this node as an interior node with children x and y hav-
ing frequencies f (x) and f (y) (Figure 6.59b). T ′ will be optimal for frequencies
f (x), f (y), and the rest. The proof of this fact begins with some optimal tree B′ for
frequencies f (x), f (y), and the rest. We know such an optimal tree exists (since
it could be found by trial and error), and from the preceding paragraph, we can
assume that x and y are siblings in B′ (Figure 6.59c). Now create a tree B by strip-
ping nodes x and y from B′ and giving frequency f (x) + f (y) to their parent node,
now a leaf (Figure 6.59d). Because T is optimal for the other frequencies together
with f (x) + f (y), we have

 E(T) ≤ E(B) (1)

But the difference between E(B) and E(B′) is one arc each for x and y; that
is, E(B′) = E(B) + f (x) + f (y) (see Exercise 20b). Similarly, we have
E(T ′) = E(T) + f (x) + f (y). Thus, if we add f (x) + f (y) to both sides of (1), we get

 E(T ′) ≤ E(B′) (2)

546 Graphs and Trees

Because B′ was optimal, it cannot be the case that E(T ′) < E(B′), so E(T ′) = E(B′),
and T ′ is optimal.

Finally, a tree with a single node whose frequency is the sum of all the fre-
quencies is trivially optimal for that sum. We can repeatedly split up this sum
and drop down children in such a way that we end up with the Huffman tree.
By the preceding paragraph, each such tree, including the final Huffman tree, is
optimal.

 example 40 If we applied the process that preserves optimality to the tree of Figure 6.57, we
would begin with a single node with frequency 100 and “grow” that tree down-
ward, as shown in Figure 6.60.

100

5248

100

5248

3022

100

5248

3022

1713

100

5248

3022

1310 17

4 9

12

100

5248

3022

10 17
12 13

100

Figure 6.60

application of huffman codes

The cost of data storage has certainly declined in recent years, and the relatively low
cost makes it seem as if practically unlimited storage should be available to all. But
“relatively inexpensive” doesn’t mean “free,” and during the same period in which
data storage costs have decreased, the legal requirements on many businesses and
other organizations to keep electronic records have increased. Much of this infor-
mation is archival in nature and suitable for data compression. As just one example,
the Sarbanes–Oxley Act became United States federal law in 2002. This law was
enacted as a reaction to a series of high-profile scandals about accounting irregulari-
ties and irresponsible corporate governance that shook financial markets and public
trust. Congress authorized the Securities and Exchange Commission (SEC) to set up
rules regarding retention of documents concerned with financial audits or reviews.
The final SEC rule requires that all publicly traded companies must retain electronic
records of all financial transactions for seven years. These records are to include not
just formal documents but any e-mail, memos, working papers, and so forth, sent or
received, that contain opinions, conclusions, analyses, or financial data.

 Section 6.4 Huffman Codes 547

As a more specific application of Huffman codes, let’s look at JPEG, a
standardized image compression mechanism for photographic-quality images.
JPEG stands for Joint Photographic Experts Group, the name of the group that
developed this international standard. The need for improved image compres-
sion was largely fueled by the desire to transmit images over the Internet. There
are actually two versions of JPEG encoding, lossy and lossless, but the lossy
version is by far the more common. A lossy compression scheme means that
once the compressed data has been unencoded, it does not precisely match
the original—some information has been “lost.” In the case of lossy JPEG
 compression, data loss comes from the preprocessing of the image before Huff-
man encoding is applied; the Huffman encoding/decoding faithfully restores
the data it starts with.

JPEG compression is intended for images to be viewed by humans, and it
takes advantage of the fact that the human eye is much more sensitive to gra-
dients of light and dark than it is to small changes in color. The first step in the
JPEG process is therefore to take the color image information, which is usually
given as 24 bits per pixel, 8 bits for each of the red, green, and blue components,
and transform each pixel into components that capture the luminance (lightness/
darkness) with reduced information about the color components. Next, pixels
with similar color information are grouped together and an “average” color
value is used, while more accurate luminance data are maintained. The data
are then transformed into frequency data (that is, the data are represented as a
combination of cosine waves of varying frequencies), which in turn go through
a “quantization” process (basically rounding the results of a computation) to
end up in integer form. Higher-frequency variations, to which the human eye is
less sensitive, are lost in this process, but again the luminance data are treated
at a finer grain than the color data. Huffman encoding is applied to the result.
Areas of the image whose representations occur often will encode to smaller bit
strings.

A JPEG image file contains not only the compressed data but also the infor-
mation needed to reverse the compression process (including the information to
reverse the Huffman encoding). The resulting image has lost the high-frequency
changes and color variations that were eliminated in the stages before the Huffman
coding was applied. Parameters in the JPEG encoding process allow tradeoffs to
be made between the amount of compression to be obtained and the faithfulness
of the restored image to the original. Because of the nature of the algorithms used,
JPEG encoding has little or no effect on black-and-white line drawings where
there are no data to throw away.

S e c t i o n 6 . 4 review

tecHniQue

• Find Huffman codes, given a set of characters and
their frequencies.

main iDea

• Given the frequency of characters in a collection of
data, a binary encoding scheme can be found that
minimizes the number of bits required to store the
data but still allows for easy decoding.

W

548 Graphs and Trees

exerciSeS 6.4

 1. Is the following code a prefix code? Why or why not?

 Character m b d w
 Encoding scheme 01 100 011 101

 2. Using the code of Exercise 1, decode the string 01101.
 3. Given the codes

 Character a e i o u
 Encoding scheme 00 01 10 110 111

 decode the sequences
 a. 11011011101
 b. 1000110111
 c. 010101
 4. Given the codes

 Character b h q w %
 Encoding scheme 1000 1001 0 11 101

 decode the sequences
 a. 10001001101101
 b. 11110
 c. 01001111000
 5. Given the codes

 Character a p w ()
 Encoding scheme 001 1010 110 1111 1110

 decode the sequences
 a. 111110101101110001
 b. 1010001110
 c. 1111111100111101110
 6. Given the nonprefix codes

 Character 1 3 5 7 9
 Encoding scheme 1 111 101 10 10101

 give all possible decodings of the sequence 111110101.
 7. Write the Huffman codes for a, b, c, and d in the binary tree shown.

dc
b

a

 Section 6.4 Huffman Codes 549

 8. Write the Huffman codes for r, s, t, u in the binary tree shown.

r s

t

u

 9. a. Construct the Huffman tree for the following characters and frequencies.

 Character c d g m r z
 Frequency 28 25 6 20 3 18

 b. Find the Huffman codes for these characters.
 10. a. Construct the Huffman tree for the following characters and frequencies.

 Character b n p s w
 Frequency 6 32 21 14 27

 b. Find the Huffman codes for these characters.
 11. a. Construct the Huffman tree for the following characters and frequencies.

 Character a z t e c
 Frequency 27 12 15 31 15

 b. Find the Huffman codes for these characters.
 12. a. Construct the Huffman tree for the following characters and frequencies.

 Character ? x w e t s a
 Frequency 14 3 11 27 18 22 5

 b. Find the Huffman codes for these characters.
 c. A file consisting of 100,000 instances of these seven characters is stored using a fixed-length binary

encoding scheme. How many bits are required for each code and what is the total number of bits
needed?

 d. Storing the same file using the Huffman code of part (b), how many bits are needed?

In Exercises 13–14, the integers could represent the results of the “quantization” step in a JPEG image com-
pression, and the number of occurrences of each in the image. (Note that these are instances of occurrence
rather than percent frequencies; this simply means that the Huffman tree will not end up with the root value
equal to 100.)

 13. Construct the Huffman tree and find the Huffman codes for the following integers and occurrences.

 Integer 82 664 327 349 423 389
 Occurrences 416 97 212 509 446 74

 14. Construct the Huffman tree and find the Huffman codes for the following integers and occurrences.

 Integer 190 205 514 333 127 901 277
 Occurrences 52 723 129 233 451 820 85

550 Graphs and Trees

 15. JPEG can achieve various compression levels; the higher the compression, the lower the quality of the
reconstructed image.

 a. A compression ratio of 10:1 results in virtually imperceptible loss of image quality. A file of 850,000
bytes that is compressed with a 10:1 compression ratio results in a compressed file of what size?

 b. At a compression ratio of 25:1, some degradation is visible in the reconstructed image. A file of 850,000
bytes that is compressed with a 25:1 compression ratio results in a compressed file of what size?

 16. Explain why JPEG encoding results in less compression for gray-scale images than for full-color images.
 17. Someone does a global substitution on the text file of Exercise 11, replacing all instances of “z” with “sh.”

Find the new Huffman codes.
 18. Consider the following paragraph.

However, in my thoughts I could not sufficiently wonder at the intrepidity of these diminutive mortals
who durst venture to mount and walk upon my body, while one of my hands was at liberty, without
trembling at the very sight of so prodigious a creature as I must appear to them.3

 If this paragraph were to be compressed using a Huffman code, what single character, aside from punctua-
tion or uppercase characters, would be apt to have one of the longest codes? Which would have one of the
shortest?

 19. Recall the problem posed at the beginning of this chapter.

You work in the Information Systems Department at World Wide Widgets (WWW), the leading widget
manufacturer. Part numbers consist of a leading character B, C, G, R, or S to identify the part type, fol-
lowed by an 8-digit number. Thus

C00347289
B11872432
S45003781
are all legitimate part numbers. WWW maintains a data file of the part numbers it uses, which, as it
turns out, is most of the potential numbers.

 How can you compress this data file so it takes less storage space than the approximately 4.5 Gb required
using the ASCII encoding scheme of eight bits per character?

 a. Running a frequency count on the WWW data file reveals the following information:

Character B C G R S 0 1 2 3 4 5 6 7 8 9
Frequency 2 5 1 2 1 18 13 7 12 9 6 11 7 2 4

 Construct a Huffman code for these characters.
 b. Compute the space requirements of the compressed file as a percent of the uncompressed file.
 20. In the justification that the Huffman algorithm produces an optimal tree, the following two assertions were

made. Prove that each is true.
 a. E(T ′) < E(T)
 b. E(B′) = E(B) + f (x) + f (y)

3From Gulliver’s Travels by Jonathan Swift, London, 1726.

Chapter 6 Review 551

c H a p t e r 6 review

terminoloGy

acyclic graph (p. 482)
adjacency list (p. 494)
adjacency matrix (p. 492)
adjacent nodes (p. 481)
arc (edge) (p. 477, 478)
binary search tree (p. 534)
binary tree (p. 510)
binary tree search (p. 534)
bipartite complete graph (p. 483)
children nodes (p. 509)
complete binary tree (p. 510)
complete graph (p. 482)
connected graph (p. 482)
cycle (p. 482)
data compression (data

compaction) (p. 540)
data flow diagram (p. 480)
decision tree (p. 529)
degree of a node (p. 481)
depth of a node (p. 510)
depth (height) of a tree (p. 510)
directed graph (digraph) (p. 478)
endpoints (p. 478)
Euler’s formula (p. 488)
five-color theorum (p. 507)

forest (p. 510)
full binary tree (p. 510)
graph (p. 477, 478)
graph colorability (p. 506)
height of a tree (p. 510)
homeomorphic graphs (p. 491)
Huffman encoding (p. 542)
infix notation (p. 518)
initial point (p. 478)
inorder traversal (p. 515)
internal node (p. 510)
isolated node (p. 481)
isomorphic graphs (p. 485)
isomorphism (p. 486)
labeled graph (p. 479)
leaf (p. 510)
left child (p. 510)
length of a path (p. 482)
linked list (p. 494)
loop (p. 481)
loop-free graph (p. 481)
map-coloring problem (p. 506)
node (vertex) (p. 477, 478)
nonrooted (free) tree (p. 509)
null pointer (p. 495)

optimal algorithm (p. 533)
parallel arcs (p. 481)
parent node (p. 509)
path (pp. 482, 483)
planar graph (p. 487)
Polish notation (p. 518)
postfix notation (p. 518)
postorder traversal (p. 515)
prefix code (p. 541)
prefix notation (p. 518)
preorder traversal (p. 514)
reachable node (p. 483)
reverse Polish notation

(RPN) (p. 518)
right child (p. 510)
root of a tree (p. 509)
simple graph (p. 481)
sparse matrix (p. 494)
subgraph (p. 482)
terminal point (p. 478)
tree (p. 509)
tree traversal (p. 514)
weighted graph (p. 479)

Self-teSt

Answer the following true–false questions.

section 6.1
1. A connected graph has an arc between any two

nodes.
2. If graph G1 is isomorphic to graph G2, then a node

of degree 5 in G1 will be mapped to a node of de-
gree 5 in G2.

3. No matter how a planar graph is drawn, its arcs will
intersect only at nodes.

4. If part of the adjacency list representation of a
graph contains

2 3 4

then node 2 is adjacent to node 3 and node 3 is
adjacent to node 4.

5. The adjacency matrix of a directed graph is not
symmetric.

section 6.2
1. The depth of any node in a tree is less than or equal

to the height of the tree.
2. Because a tree is a graph, a complete tree is also a

complete graph.
3. In the left child–right child array representation of

a binary tree, any row of the array that corresponds
to a leaf will have all zero entries.

4. Postorder traversal of an expression tree results in
an algebraic expression in reverse Polish notation.

5. In preorder tree traversal, the root is always the first
node visited.

552 Graphs and Trees

Section 6.3
1. The root of a decision tree for the binary search

algorithm acting on a sorted list of 11 items would
represent the comparison of the target element with
the sixth list item.

2. Searching for any target element x in a list of n ele-
ments requires at least 1 + :log n; comparisons.

3. A binary tree search is done with a target element
of 14 on a binary search tree whose root has the
value 10; the right subtree will be searched next.

4. A binary search tree is unique for any given set of
data.

5. A decision tree for sorting n elements must have a
depth of at least n!

Section 6.4
1. The ASCII encoding scheme requires 8 bits to store

each character.
2.	 In	 a	 prefix	 code,	 each	 code	word	 is	 the	 prefix	of	

another code word.
3.	 In	a	Huffman	code,	characters	that	occur	most	fre-

quently have the most 0s in their binary string rep-
resentation.

4. The maximum number of bits for any encoded
character using a Huffman code will be the depth
of the Huffman tree.

5.	 To	be	able	to	decode	an	encoded	file,	a	frequency	
count	 from	 the	 original	file	must	 be	 stored	 along	
with	the	encoded	file.

O n t h e C O m p u t e r

For	Exercises	1–4,	write	a	computer	program	that	pro-
duces the desired output from the given input.

1. Input: Adjacency list for a graph
Output: Adjacency matrix for the graph

2. Input: Adjacency matrix for a graph
Output: Adjacency list for the graph

3. Input: Adjacency list for a graph and the name of a
node n in the graph
Output: Adjacency list for the graph with node n
and its associated arcs removed

4. Input: List of n characters and their (integer) fre-
quencies
Output: Huffman code for the characters
(Hint: Maintain a sorted linked list of records that rep-
resent the roots of binary trees. Initially there will be n
such	records,	each	with	no	children;	at	the	end,	there	
will	be	one	such	record,	the	root	of	the	Huffman	tree.)

5. Write a program that allows the user to enter a list
of integers and constructs a binary search tree with
those integers as nodes. The user can then enter one
integer	at	a	time,	and	the	program	will	do	a	binary	
tree search and indicate whether the given integer
is in the list.

6. Write a program that allows the user to enter a list
of integers and then constructs a binary search tree
with those integers as nodes. The user can then en-
ter	the	type	of	traversal	desired	(inorder,	preorder,	
or	 postorder),	 and	 the	program	will	write	 out	 the	
nodes in the appropriate order.

7.	Write	a	program	that	carries	out	the	first	three	steps	
in	Table	6.1.	That	is,	beginning	with	a	text	file,	the	
program	should	produce	a	frequency	count	file,	then	
a	code	table	file,	then	an	encoded	version	of	the	origi-
nal	file.	Write	a	second	program	that	uses	the	encod-
ed	file	and	the	code	table,	and	recreates	the	original	
file.

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Convert between adjacency matrix, adjacency relation, and directed graph
 representations.

• Use the reachability matrix of a directed graph to determine whether one node
is reachable from another.

• Compute the reachability matrix of a directed graph either directly or by using
Warshall’s algorithm.

• Test a graph for the existence of an Euler path (solve the highway inspector
problem).

• Understand the Hamiltonian circuit problem (and the traveling salesman prob-
lem) and how they are fundamentally different from the Euler path problem.

• Use Dijkstra’s algorithm to find the shortest path between two nodes in a simple,
weighted, connected graph.

• Use Prim’s algorithm to find the minimal spanning tree in a simple, weighted,
connected graph.

• Carry out depth-first search and breadth-first search in a simple, connected graph.
• Understand how depth-first search can be used to test for reachability in a di-

rected graph, perform a topological sort on a partially ordered set represented
by a directed graph, and find the connected components of an unconnected
graph.

• Identify articulation points in a simple connected graph.

You are the network administrator for a wide-area backbone network that serves your
company’s many offices across the country. Messages travel through the network by
being routed from point to point until they reach their destination. Each node in the
network therefore acts as a switching station to forward messages to other nodes ac-
cording to a routing table maintained at each node. Some connections in the network
carry heavy traffic, while others are less used. Traffic may vary with the time of day;
in addition, new nodes occasionally come on line and existing nodes may go off line.
Therefore you must periodically provide each node with updated information so that
it can forward messages along the most efficient (that is, the least heavily traveled)
route.

 Question: How can you compute the routing table for each node?

7Graph Algorithms

Chapter

553

554 Graph Algorithms

If the network described is viewed as a graph, your task as network administrator is to
find the “shortest” path from one node to another in the graph. Because graphs have so
many applications, there is a great deal of interest in finding efficient algorithms to an-
swer certain questions about graphs, directed graphs, or trees, and to perform certain
tasks on them, such as finding shortest paths. All graph algorithms use one of the con-
venient representations (adjacency matrix or adjacency list) presented in Chapter 6.

This chapter covers many of the “classical” graph algorithms. Section 7.1 first
relates directed graphs to binary relations, and reachability in a graph to the transi-
tive closure of a binary relation. Then two different algorithms pertaining to reach-
ability are given.

In Section 7.2 we will look at algorithms that answer two historically interest-
ing questions about graphs. These questions are known as the highway inspector
problem and the traveling salesman problem. The highway inspector problem asks
whether there is a path through a given graph that uses each arc exactly once,
thereby providing an efficient way for a highway inspector to check all roads with-
out going over the same road twice. The traveling salesman problem asks whether
there is a cycle in a given graph that visits each node of the graph and, if so, which
such cycle requires the minimum distance to travel. Recall that a cycle is a path
that ends where it started and does not use any other node more than once; thus
such a cycle would provide an efficient way for a salesperson to visit all cities in
the sales territory only once and end up at home.

Section 7.3 provides algorithmic solutions to the two problems of finding the
minimum path between two nodes in a simple, connected graph and of minimizing
the number of arcs used to connect all nodes in a simple, connected graph. Section 7.4
discusses algorithms for traversing simple graphs—“visiting” all the nodes in some
systematic way. Section 7.5 uses one of these traversal algorithms to detect articulation
points in a simple connected graph, points whose removal would disconnect the graph.

 S e c t i o n 7 . 1 DirecteD Graphs anD Binary relations;
Warshall’s alGorithm

In this section we confine our attention to (unweighted) directed graphs with no
parallel arcs. (In a directed graph, two arcs from node a to node b would be par-
allel, but one arc from a to b and another from b to a are not parallel arcs.) Con-
sider the adjacency matrix of the graph (assuming some arbitrary ordering of the
n nodes, which we always assume when discussing the adjacency matrix of a
graph). This will be an n × n matrix, not necessarily symmetric. Furthermore,
because there are no parallel arcs in the graph, the adjacency matrix will be a
Boolean matrix, that is, a matrix whose only elements are 0s and 1s. Conversely,
given an n × n Boolean matrix, we can reconstruct the directed graph that the
matrix represents, and it will have no parallel arcs. Thus there is a one-to-one
 correspondence, which we can picture as

Directed graphs
with n nodes,

no parallel arcs

n × n Boolean
matrices

 (1)

Now we will see how binary relations tie in to this correspondence.

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 555

Directed Graphs and Binary Relations

Suppose G is a directed graph with n nodes and no parallel arcs. Let N be the set
of nodes. If (ni, nj) is an ordered pair of nodes, then there either is or is not an arc
in G from ni to nj. We can use this property to define a binary relation on the set N:

ni r nj 4 there is an arc in G from ni to nj

This relation is the adjacency relation of the graph.

 example 1 For the directed graph of Figure 7.1, the adjacency relation is 5(1, 2), (1, 3), (3,3),
 (4, 1), (4, 2), (4,3)6 .

2

4

1

3

Figure 7.1

Conversely, if r is a binary relation on a set N, we can define a directed graph G
with N as the set of nodes, and an arc from ni to nj if and only if ni r nj. G will have
no parallel arcs.

 example 2 For the set N = 51, 2, 3, 46 and the binary relation 5(1, 4), (2, 3), (2, 4), (4, 1)6 on
N, we obtain the associated directed graph shown in Figure 7.2.

41

32

Figure 7.2

We now have another one-to-one correspondence:

Binary
relations on

n-element sets

Directed graphs
with n nodes,

no parallel arcs (2)

556 Graph Algorithms

Of course, a one-to-one correspondence means the existence of a bijection. If
function composition is carried out on the bijections in (1) and (2), the result is a
bijection that gives us a one-to-one correspondence between binary relations and
matrices. Thus we have three equivalent sets:

Binary
relations on

n-element sets

Directed graphs
with n nodes,

no parallel arcs

n × n Boolean
matrices

 (3)

An item from any of the three sets has corresponding representations in the other
two sets.

praCtiCe 1 Give the collection of ordered pairs in the adjacency relation for the following Boolean
matrix; also draw the directed graph.

≥
0 0 0 0
1 1 0 0
1 0 0 1
0 0 0 0

¥

Recall the reflexive, symmetric, antisymmetric, and transitive properties of a
binary relation on a set that we studied in Chapter 5. If a binary relation on a set
N has a certain property, it will be reflected in the corresponding graph and the
corresponding Boolean matrix. Conversely, certain characteristics of a directed
graph or of a Boolean matrix imply certain properties of the corresponding adja-
cency relation.

 example 3 If r is a reflexive relation on a set N, then for each ni [N, ni r ni. In the corre-
sponding directed graph there will be a loop at each node, and in the corresponding
Boolean matrix there will be 1s on the main diagonal.

praCtiCe 2 Explain why the corresponding binary relation is not antisymmetric for the directed
graph in Figure 6.13 reproduced here.

1

2

a2

a1

a3

a2 a6

a5

a4
3

4

■

■

In Chapter 5 we represented partial orderings on a set by using a Hasse
 diagram. How does this representation differ from the directed graph representa-
tion? The Hasse diagram is a simplification of the directed graph representation.
Suppose that G is the directed graph representation of a partial ordering. Because
a partial ordering is reflexive, G will have a loop at each node. We can eliminate
these loops in the Hasse diagram without losing any information because we
know that each node has a loop; that is, each node is related to itself. Because a
partial ordering is transitive, if a r b and b r c, then a r c. In the directed graph
there would be an arc from a to b, an arc from b to c, and an arc from a to c. In
the Hasse diagram we can eliminate the arc from a to c without losing any in-
formation if we keep the transitive property in mind. Finally, the Hasse diagram
is not a directed graph at all, but we did impose the convention that if a is an
immediate predecessor of b, then node a will appear below node b in the Hasse
diagram. Thus we could achieve a directed graph from the Hasse diagram by
making all the arc directions point upward. The antisymmetry property prevents
any potential conflict where node a should be below node b and node b should be
below node a.

In Chapter 5 we also noted set operations that could be performed on two
binary relations r and s on a set N, r c s and r d s. The relation r c s is the
union of the ordered pairs in r or s, while r d s is the intersection of the ordered
pairs in r and s. Let r and s be the Boolean matrices for r and s, respectively.
The Boolean matrix for r c s will have a 1 in position i, j if and only if there is a
1 in position i, j of r or a 1 in position i, j of s. Each entry in the Boolean matrix
for r c s is thus the maximum of the two corresponding entries in r and s, so
the Boolean matrix for r c s is r ~ s (see the discussion of Boolean matrix op-
erations in Section 5.7). Similarly, the Boolean matrix for r d s will have a 1 in
position i, j if and only if there is a 1 in position i, j of both r and s. Therefore the
Boolean matrix for r d s is r ` s.

Reachability

The “reachability” property has an interesting interpretation in each of the three
equivalent forms in (3)—directed graph, adjacency relation, and adjacency ma-
trix. We already have a definition for this term for directed graphs from Section 6.1,
which we’ll restate now.

 Definition ReAchABle NoDe
In a directed graph, node nj is reachable from node ni if there is a path from ni
to nj.

In a system modeled by a directed graph (a data flow diagram, for example)
with a “start node,” any node that is unreachable from the start node can never af-
fect the system and thus can be eliminated. If the directed graph represents some-
thing like airline routes or communication paths in a computer network, it would

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 557

 example 4 In the directed graph of Figure 7.2, node 3 is not reachable from node 4 or node 1.
Node 1 is reachable from node 2 by the path 2–4–1.

558 Graph Algorithms

be undesirable to have some node be unreachable from some other node. Thus the
ability to test reachability has very practical applications.

The adjacency matrix a of a directed graph G with n nodes and no parallel
arcs will have a 1 in position i, j if there is an arc from ni to nj. This would be a
path of length 1 from ni to nj. The adjacency matrix by itself therefore tells us
about a limited form of reachability, via length-1 paths. However, let us perform
the Boolean matrix multiplication a × a. We’ll denote this product by a(2) to
distinguish it from a2, the result of a # a using ordinary matrix multiplication.
Recalling from Section 5.7 the definition of Boolean matrix multiplication, the
i, j entry of a(2) is given by

 a(2) 3i, j 4 = ~
n

k=1
(aik ` akj) (4)

If a term such as ai2 ` a2j in this sum is 0, then either ai2 = 0 or a2j = 0 (or
both), and there is either no path of length 1 from ni to n2 or no path of length 1
from n2 to nj (or both). Thus there are no paths of length 2 from ni to nj passing
through n2. If ai2 ` a2j is not 0, then both ai2 = 1 and a2j = 1. Then there is a path
of length 1 from ni to n2 and a path of length 1 from n2 to nj, so there is a path of
length 2 from ni to nj passing through n2. A path of length 2 from ni to nj will exist
if and only if there is a path of length 2 passing through at least one of the nodes
from 1 to n, that is, if and only if at least one of the terms in the sum (4) is 1 and
therefore a(2) 3i, j 4 = 1. Therefore the entries in a(2) tell us about reachability via
length-2 paths.

ReminDeR

To compute A(2) [i, j] write
two copies of A side by
side. Run a left-hand
finger along row i of the
left copy and a right-hand
finger down column j of
the right copy. The value
is 1 if and only if both
fingers hit a 1 at the same
time.

praCtiCe 3 Find a for the graph of Figure 7.2 and compute a(2). What does the 2,1 entry indicate?

The matrix a(2) indicates the presence or absence of length-2 paths. We might
surmise that this result holds for arbitrary powers and path lengths.

 tHeoRem oN BooleAN ADjAceNcy MAtRices AND ReAchABility
If a is the Boolean adjacency matrix for a directed graph G with n nodes and no
parallel arcs, then a(m) 3i, j 4 = 1 if and only if there is a path of length m from
node ni to node nj.

Proof: A proof by induction on m is called for. We have already shown the result
true for m = 1 (and m = 2). Suppose that a(

p) 3i, j 4 = 1 if and only if there is a

path of length p from ni to nj. We know that

a(

p+1) 3i, j 4 = ~

n

k=1
(a(

p) 3i, k 4 ` akj)

which will equal 1 if and only if at least one term, say a(

p) 3i, q 4 ` aq j = 1, or

a(p) 3i, q 4 = 1 and aq j = 1. This condition will be true if and only if there is a path

■

If node nj is reachable from node ni, it is by a path of some length. Such a
path will be shown by a 1 as the i, j entry in a or a(2) or a(3) and so on, but we
cannot compute an infinite number of matrix products. Fortunately, there is a
limit to how far in this list we have to look. If there are n nodes in the graph, then
any path with n or more arcs, and therefore n + 1 or more nodes, must have a
repeated node. This is a consequence of the pigeonhole principle—there are n
“bins” (distinct nodes) into which we are putting more than n objects (the nodes
in a path with n or more arcs). The section of a path lying between the repeated
nodes is a cycle. If ni ∙ nj, the cycle can be eliminated to make a shorter path;
then if a path exists from ni to nj, there will be such a path of length at most n − 1.
If ni = nj, then the cycle could be the entire path from ni to ni with maximum
length n; although we could eliminate this cycle (noting that any node may be
considered reachable from itself), we will retain it to show that a nontrivial path
does exist from ni to ni.

Consequently, whether ni = nj or ni ∙ nj, we need never look for a path from
ni to nj of length greater than n. Therefore to determine reachability, we need only
consult element i, j in a, a(2), … , a(n). Alternatively, we can define a reachability
matrix r by

r = a ~ a(2) ~ c ~ a(n)

Then nj is reachable from ni if and only if entry i, j in r is positive.
We now see how reachability in a graph can be expressed in terms of the ad-

jacency matrix. How is reachability represented in terms of the adjacency relation
that corresponds to the graph?

If r is the adjacency relation for a graph G, we let rr denote the binary rela-
tion of reachability; that is, (ni, nj) [rr exactly when there is a path in G from
ni to nj. Then we can show that rr is the transitive closure of r. Recall from the
definition of closure of a relation that the transitive closure of r is a relation that is
transitive, contains r, and is a subset of any transitive relation containing r.

To see that rr is transitive, let (ni, nj) and (nj, nk) belong to rr. Then there is
a path in G from ni to nj and a path in G from nj to nk. Therefore there is a path
in G from ni to nk, and (ni, nk) belongs to rr. To see that rr contains r, let (ni, nj)
belong to r. Then there is an arc from ni to nj in G, which means there is a path of
length 1 from ni to nj, and (ni, nj) belongs to rr. Finally, suppose s is any transi-
tive relation on the nodes of G that includes r, and let (ni, nj) belong to rr. This
means that there is a path from ni to nj using, say, nodes ni, nx, ny, … , nw, nj. Then
there is an arc from each node in this path to the next, and the ordered pairs (ni, nx),
(nx, ny), … , (nw, nj), all belong to r, and therefore all belong to s. Because s is

praCtiCe 4 From the graph of Figure 7.2, what would you expect for the value of entry 2,1 in a(4)?
Compute a(4) and check this value.

of length p from ni to nq (by the inductive hypothesis) and there is a path of length 1
from nq to nj, which means there is a path of length p + 1 from ni to nj. End of proof.

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 559

■

560 Graph Algorithms

transitive, (ni, nj) belongs to s, and rr is a subset of s. Therefore rr is the transitive
closure of r.

To summarize, corresponding to the three equivalent representations of adja-
cency relation r, directed graph G, and adjacency matrix a, we have

 (ni, nj) belongs
 to the transitive 4 nj is reachable 4 r 3i, j 4 = 1where
 closure of r from ni in G r = a ~ a(2) ~ c ~ a(n)

 example 5 Let G be the directed graph in Figure 7.3; G has 5 nodes.

2

5

31

4

Figure 7.3

The adjacency matrix a for G is

a = E

0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 0
1 0 1 0 0

U

The adjacency relation r is r = 5(1, 2), (2, 3), (3, 1), (3, 4), (5, 1), (5, 3)6.
The successive powers of a are

 a(2) = E

0 0 1 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 0 0
1 1 0 1 0

U a(3) = E

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 1 0 0

U

 a(4) = E

0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 0
1 0 1 1 0

U a(5) = E

0 0 1 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 0 0
1 1 0 1 0

U

ReminDeR

Don’t try to compute
matrix products without
writing the two matrices
side by side; you’ll surely
make a mistake.

These matrices indicate, for example, that there is a path of length 2 from 2 to 1
because a(2) 32, 1 4 = 1 (the path is 2–3–1), and there is a path of length 4 from 5 to
3 because, a(4) 35, 3 4 = 1 (the path is 5–3–1–2–3), but there is no path of length 3
from 1 to 3 because a(3) 31, 3 4 = 0.

The reachability matrix r is the Boolean sum of a, a(2), a(3), a(4), and a(5):

r = E

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0
1 1 1 1 0

U

The 1 values in r indicate that there are paths in G from nodes 1, 2, 3, and 5 to
every node except 5, but no path from node 4 to anywhere, which can be confirmed
by looking at Figure 7.3.

We have proved that the 1 entries in r mark the ordered pairs of nodes that
belong to the transitive closure of r. The transitive closure will therefore be the
following set of ordered pairs:

5(l, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 3), (3, 4), (5, 1), (5, 2), (5, 3), (5, 4)6

Beginning with r and following the ad hoc procedure described in Chapter 5 for
finding the transitive closure of a relation, we see that to obtain transitivity, we must
first add the pairs (1, 3), (2, 1), (2, 4), (3, 2), (5, 2), and (5, 4). Reviewing the new set,
we see that we must also add (1, 1), (1, 4), (2, 2), and (3, 3). The resulting collection
of ordered pairs is transitive (and agrees with what we obtained earlier).

praCtiCe 5 Compute r for the directed graph of Figure 7.2. What information does column 2 convey?

In Chapter 5, we promised a better algorithm to find the transitive closure
of a relation. Here it is. Write the binary relation in adjacency matrix form and
compute

r = a ~ a(2) ~ c~ a(n)

How much work is required to carry out this algorithm? The expression for r
indicates that Boolean matrix operations are to be done, but matrix operations in
turn require Boolean and and Boolean or operations on matrix elements. We will
therefore use Boolean and and Boolean or as the measure of work. In Section 5.7,
we noted that ordinary matrix multiplication of two n × n matrices requires
Θ(n3) multiplications and additions; by a similar argument, Boolean matrix

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 561

■

562 Graph Algorithms

 multiplication of two n × n Boolean matrices requires Θ(n3) Boolean and/or
 operations. The algorithm to compute r requires n − 1 Boolean matrix multipli-
cations (to find the products a(2), a(3), … , a(n)). To compute n − 1 such products
require (n − 1)Θ(n3) = Θ(n4) Boolean operations. To compute C ~ D where C
and D are two n × n Boolean matrices requires n2 Boolean or operations. To com-
pute r, n − 1 such matrix operations are required, so (n − 1)n2 = Θ(n3) Boolean
or operations are performed. The total amount of work is Θ(n4) + Θ(n3) = Θ(n4).

Next we discuss a more efficient algorithm for computing the transitive
 closure of a relation (or the reachability matrix of a graph).

Warshall’s Algorithm

For a graph G with n nodes, Warshall’s algorithm computes a sequence of n + 1
matrices M0, M1, M2, … , Mn. For each k, 0 ≤ k ≤ n, Mk 3i, j 4 = 1 if and only if
there is a path in G from ni to nj whose interior nodes (i.e., nodes that are not the
endpoints of the path) come only from the set of nodes 5n1, n2, … , nk6 .

Let us examine the “end conditions.” When k = 0, the set 5n1, n2, … , n06 is
the empty set, so M0 3i, j 4 = 1 if and only if there is a path in G from ni to nj whose
interior nodes come from the empty set; that is, there are no interior nodes. The
path from ni to nj must then consist only of the endpoints and one connecting arc,
so ni and nj are adjacent nodes. Thus M0 = a. The other end condition occurs
when k = n. Then the set 5n1, n2, … , nn6 consists of all the nodes in G, so there is
really no restriction at all on the interior nodes in the path and Mn 3i, j 4 = 1 if and
only if there is a path from ni to nj, which means that Mn = r.

Therefore Warshall’s algorithm begins with a = M0 and successively com-
putes M1, M2, … , Mn = r. This computation can be defined inductively. The
base case is to let M0 = a. Now assume that Mk has been computed, and consider
how to compute Mk+1 or, more specifically, Mk+1 3i, j 4 . We have Mk+1 3i, j 4 = 1
if and only if there is a path from ni to nj whose interior nodes come only from the
set 5n1, n2, … , nk+16 . This can happen in two ways:

 1. All the interior nodes come from 5n1, n2, … , nk6 , in which case
Mk 3i, j 4 = 1. We should therefore carry forward any 1 entries in Mk into
Mk+1.

 2. Node nk+1 is an interior node. We can assume that nk+1 is an interior node
only once, because cycles can be eliminated from a path. Then there must
be a path from ni to nk+1 whose interior nodes come from 5n1, n2, … , nk6
and a path from nk+1 to nj whose interior nodes come from 5n1, n2, … , nk6 .
This means that Mk 3i, k + 1 4 = 1 and Mk 3k + 1, j 4 = 1, which is to say
that Mk 3i, k + 1 4 ` Mk 3k + 1, j 4 = 1; this condition can be tested be-
cause our assumption is that Mk has already been computed.

In the following pseudocode version of Warshall’s algorithm, the initial value
of matrix M is a. Each pass through the outer loop computes the next matrix in
the sequence M1, M2, … , Mn = r.

 algoRitHm Warshall’s algorithm

Warshall(n × n Boolean matrix M)
//Initially, M = adjacency matrix of a directed graph G with no parallel arcs

for k = 0 to n − 1 do
for i = 1 to n do

for j = 1 to n do
M 3i, j 4 = M 3i, j 4 ~ (M 3i, k + 1 4 ` M 3k + 1, j 4)

end for
end for

end for
//at termination, M = reachability matrix of G

end Warshall

This pseudocode gives a nice neat description of Warshall’s algorithm, which can
be implemented as computer code rather easily. These steps are confusing to do by
hand, however, requiring some bookkeeping to keep track of all the indices. We can
write the algorithm more informally, making it easier to do manually. Suppose again
that matrix Mk in the sequence exists and we are trying to write row i of the next
matrix in the sequence. For the various values of j, we must evaluate the expression

 M 3i, j 4 ~ (M 3i, k + 1 4 ` M 3k + 1, j 4) (5)

If entry M 3i, k + 1 4 is 0, then M 3i, k + 1 4 ` M 3k + 1, j 4 = 0 for all j. Expression
(5) then reduces to

M 3i, j 4 ~ 0 = M 3i, j 4

In other words, row i of the matrix remains unchanged. If, on the other hand,
entry M 3i, k + 1 4 is 1, then M 3i, k + 1 4 ` M 3k + 1, j 4 = M 3k + 1, j 4 for all j.
Expression (5) then becomes

M 3i, j 4 ~ M 3k + 1, j 4

In other words, row i of the matrix becomes the Boolean or of the current row i
and the current row k + 1.

Table 7.1 describes the (informal) steps to compute entries in Mk+1 from
 matrix Mk.

table 7.1

1. Consider column k + 1 in mk.
2. For each row with a 0 entry in this column, copy that row to mk+1.
3. For each row with a 1 entry in this column, or that row with row k + 1 and write

the resulting row in mk+1.

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 563

564 Graph Algorithms

 example 6 For the graph of Example 5, the initial matrix M0 is the adjacency matrix.

M0 = E

0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 0
1 0 1 0 0

U

We know M0 (so k = 0) and we want to compute M1 (k + 1 = 1). Using step 1 of
Table 7.1, we consider column 1 of M0. Using step 2 of Table 7.1, rows 1, 2, and 4
of M0 contain 0s in column 1, so these rows get copied directly to M1:

M1 = E

0 1 0 0 0
0 0 1 0 0

0 0 0 0 0
U

Now we finish up by using step 3 of Table 7.1 Row 3 of column 1 of M0 contains a
1, so row 3 of M0 is or-ed with row 1 of M0 and the result becomes the new row 3:

M1 = E

0 1 0 0 0
0 0 1 0 0
1 1 0 1 0
0 0 0 0 0

U

Row 5 of column 1 of M0 contains a 1, so row 5 is or-ed with row 1 and the result
becomes the new row 5:

M1 = E

0 1 0 0 0
0 0 1 0 0
1 1 0 1 0
0 0 0 0 0
1 1 1 0 0

U

To compute the entries in M2, consider column 2. Rows 2 and 4 (the 0 posi-
tions in column 2) will be copied unchanged. Row 1 will be or-ed with row 2 to
give the new row 1, row 3 will be or-ed with row 2 to give the new row 3, and row
5 will be or-ed with row 2 to give the new row 5:

M2 = E

0 1 1 0 0
0 0 1 0 0
1 1 1 1 0
0 0 0 0 0
1 1 1 0 0

U

M3 is computed in a similar fashion:

M3 = E

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0
1 1 1 1 0

U

M4 and M5 will be the same as M3; row 4 is all 0s, so any row that gets or-ed
with it will be unchanged, and column 5 is all 0s so all rows are copied directly. In
terms of the graph, no new 1 entries are produced because there are no paths from
4 to any node or from any node to 5. Thus M3 = M4 = M5 = R, as computed in
Example 5. Note, however, that the matrices computed by Warshall’s algorithm,
except for M0 = A and Mn = R, do not agree with the matrices that are powers of
A used in our previous algorithm for R.

Each pass through the outer loop of Warshall’s algorithm modifies in place
the matrix that existed at the end of the previous pass. Warshall’s algorithm re-
quires no additional storage for other matrices, even though we wrote down new
matrices in our example. There is one more point we need to check. Because we
are modifying the (only) matrix as we go along, during any one pass through
the outer loop, some of the entries will belong to Mk+1 while others still belong
to Mk. Specifically, on pass k + 1, we may consider M 3i, k + 1 4 ` M 3k + 1, j 4
in Expression (5), where these values have already been computed on this pass
and therefore represent Mk+ l 3i, k + 1 4 and Mk+1 3k + 1, j 4 rather than the values
Mk 3i, k + 1 4 and Mk 3k + 1, j 4 we used in our justification for this algorithm. Can
there be a case where the values Mk+1 3i, k + 1 4 and Mk+1 3k + 1, j 4 are 1, so that
a 1 value goes into Mk+1 3i, j 4 , whereas the values Mk 3i, k + 1 4 and Mk 3k + 1, j 4
are 0? No—if Mk+1 3i, k + 1 4 = 1, there is a path from ni to nk+1 with interior
nodes drawn from the set 5n1, n2, … , nk+16 . However, because nk+1 is an end-
point and cycles can be eliminated, there must also be a path with interior nodes
drawn from the set 5n1, n2, … , nk6 so that Mk 3i, k + 1 4 = 1. A similar argument
holds for Mk+1 3k + 1, j 4 .

Practice 6 Use Warshall’s algorithm (formally or informally) to compute R for the graph of Figure 7.2.
Compare your answer with that for Practice 5.

How much work does Warshall’s algorithm require as measured by the num-
ber of Boolean and/or operations? Consider the formal algorithm. The single as-
signment statement in the algorithm lies within a triply nested loop; it will be
executed n3 times. Each execution of the assignment statement requires one and
and one or; therefore, the total amount of work is 2n3 = Θ(n3). Recall that our
previous algorithm for computing R was an Θ(n4) algorithm.

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 565

■

566 Graph Algorithms

S e c t i o n 7 . 1 revieW

tecHniQueS

• Find any two of the adjacency relation, directed
graph, or adjacency matrix representation, given
the third.

• Compute the reachability matrix r for a graph G
(or, equivalently, find the transitive closure of the
adjacency relation on G) by using the formula
r = a ~ a(2) ~ c~ a(n) and by using War-
shall’s algorithm.

main iDeaS

• There is a one-to-one correspondence between a di-
rected graph G with no parallel arcs, the adjacency
relation on G, and the adjacency matrix for G (with
respect to some arbitrary ordering of the nodes).

• The reachability matrix of a graph G also represents
the transitive closure of the adjacency relation on G.

• The reachability matrix for a graph can be com-
puted with Θ(n4) Boolean and/or operations by
summing powers of the adjacency matrix a or with
Θ(n3) Boolean and/or operations by using War-
shall’s algorithm.

W

exeRciSeS 7.1

 1. Find the adjacency matrix and adjacency relation for the following graph.

32

1

 2. Find the adjacency matrix and adjacency relation for the following graph.

3

4

1

2

 3. Find the corresponding directed graph and adjacency relation for the following adjacency matrix.

a = E

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 1 1 0

U

 4. Find the corresponding directed graph and adjacency relation for the following adjacency matrix.

A = E

0 0 0 0 0
1 0 0 0 1
0 1 0 1 0
0 1 0 0 0
0 0 0 1 0

U

 5. Given the adjacency relation r = 5(1, 4), (1, 5), (1, 6), (6, 2), (6, 3), (6, 5)6 on the set N = 51, 2, 3, 4, 5, 66,
find the corresponding directed graph and adjacency matrix.

 6. Given the adjacency relation r = 5(2, 1), (3, 2), (3, 3), (3, 4), (4, 5), (6, 3), (6, 6)6 on the set N = 51, 2, 3,
4, 5, 66, find the corresponding directed graph and adjacency matrix.

 7. Let r be a binary relation defined on the set 50, 1, 2, 3, 4, 5, 66 by x r y 4 y = x + 2. Draw the associ-
ated directed graph.

 8. Let r be a binary relation defined on the set 50, ±1, ±2, ±4, ±166 by x r y 4 y = x2. Draw the associated
directed graph.

 9. Describe a property of a directed graph whose adjacency matrix is symmetric.
 10. Describe the directed graph whose adjacency matrix has all 0s on the main diagonal and 1s everywhere

else.
 11. Describe the directed graph whose adjacency matrix has all 1s in row 1 and column 1, and 0s else-

where.
 12. Describe the directed graph whose adjacency matrix has 1s in positions (i, i + 1) for 1 ≤ i ≤ n − 1, a

1 in position (n, 1), and 0s elsewhere.
 13. Describe a property of a directed graph whose adjacency relation is irreflexive (see Exercise 26,

Section 5.1).
 14. Describe a property of the adjacency matrix of a graph whose adjacency relation is antisymmetric.
 15. Adjacency relations r and s have the following associated adjacency matrices R and S. Find the adja-

cency matrices associated with the relations r c s and r d s.

R = £
1 0 1
1 1 0
0 0 1

§ S = £
1 0 0
1 0 1
0 0 1

§

 16. Adjacency relations r and s have the following associated adjacency matrices R and S. Find the adja-
cency matrices associated with the relations r c s and r d s.

R = ≥
0 1 1 0
0 0 0 1
1 1 0 0
1 0 0 1

¥ S = ≥
0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

¥

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 567

568 Graph Algorithms

 17. The two directed graphs that follow have adjacency relations r and s. Draw the graphs associated with
the relations r c s and r d s.

32

1

32

1

 18. The two directed graphs that follow have adjacency relations r and s. Draw the graphs associated with
the relations r c s and r d s.

1 2

3 4 5

1 2

3 4 5

 19. Let a be the matrix

a = £
0 1 1
1 1 1
0 0 1

§

 Find the products a2 and a(2).
 20. Let a be the matrix

a = ≥
1 1 0 1
0 0 1 0
1 0 0 1
1 0 1 0

¥

 Find the products a2 and a(2).
 21. The definition of a connected graph can be extended to directed graphs. Describe the reachability matrix

r for a connected, directed graph.
 22. Describe the directed graph with the following reachability matrix r.

r = F

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

V

 23. For the following graph, write the reachability matrix r by simply inspecting the graph.

2

34

1

 24. For the following graph, write the reachability matrix r by simply inspecting the graph.

5 4

21

3

 For Exercises 25–30, compute the reachability matrix r by using the formula r = a ~ a(2) ~ c~ a(n)

 Section 7.1 Directed Graphs and Binary Relations; Warshall’s Algorithm 569

 25. Exercise 1
 26. Exercise 2

 27. Exercise 3
 28. Exercise 4

 29. Exercise 5
 30. Exercise 6

For Exercises 31–36, compute the reachability matrix r by using Warshall’s algorithm.

 31. Exercise 1
 32. Exercise 2

 33. Exercise 3
 34. Exercise 4

 35. Exercise 5
 36. Exercise 6

 37. Given the binary relation r = 5(1, 3), (3, 2), (2, 3)6 on the set 51, 2, 36 , use Warshall’s algorithm to find
the transitive closure of r.

 38. Given the binary relation r = 5(1, 2), (2, 3), (4, 1)6 on the set 51, 2, 3, 46 , use Warshall’s algorithm to
find the transitive closure of r.

 39. Use Warshall’s algorithm to find the transitive closure of the following binary relations on the set 51, 2, 36
(see Exercise 23 in Section 5.1).

 a. r = 5(1, 3), (3, 3), (3, 1), (2, 2), (2, 3), (1, 1), (1, 2)6
 b. r = 5(1, 1), (3, 3), (2, 2)6
 c. r = 5(1, 1), (1, 2), (2, 3), (3, 1), (1, 3)6
 d. r = 5(1, 1), (1, 2), (2, 3), (1, 3)6
 40. Use Warshall’s algorithm to find the transitive closure of the following binary relations on the set

50, 1, 2, 4, 66 (see Exercise 24 in Section 5.1).
 a. r = 5(0, 0), (1, 1), (2, 2), (4, 4), (6, 6), (0, 1), (1, 2), (2, 4), (4, 6)6
 b. r = 5(0, 1), (1, 0), (2, 4), (4, 2), (4, 6), (6, 4)6
 c. r = 5(0, 1), (1, 2), (0, 2), (2, 0), (2, 1), (1, 0), (0, 0), (1, 1), (2, 2)6
 d. r = 5(0, 0), (1, 1), (2, 2), (4, 4), (6, 6), (4, 6), (6, 4)6
 e. r = [

570 Graph Algorithms

 41. The following directed graph represents a binary relation r on the nodes. Draw the directed graph that
would represent the transitive closure of r.

 42. The following directed graph represents a binary relation r on the nodes. Draw the directed graph that
would represent the transitive closure of r.

Exercises 43–46 use regular matrix multiplication to obtain information about a graph.

 43. Let G be a directed graph, possibly with parallel arcs, and let a be its adjacency matrix. Then a may not
be a Boolean matrix. Prove that the i, j entry of matrix a2 is the number of paths of length 2 from node i
to node j.

 44. Let a be the adjacency matrix of a directed graph G, possibly with parallel arcs. Prove that the i, j entry
of matrix an gives the number of paths of length n from node i to node j.

 45. For the following graph, count the number of paths of length 2 from node 1 to node 3. Check by
computing a2.

34

21

 46. For the following graph, count the number of paths of length 4 from node 1 to node 5. Check by
computing a4.

4

5

2

1

3

 Section 7.2 Euler Path and Hamiltonian Circuit 571

 S e c t i o n 7 . 2 euler path anD hamiltonian CirCuit

euler Path Problem

The Euler path problem (the highway inspector problem) originated many years
ago. Swiss mathematician Leonhard Euler (pronounced “oiler”) (1707–1783) was
intrigued by a puzzle popular among the townsfolk of Königsberg (an East Prus-
sian city later called Kaliningrad, which is in Russia). The river flowing through
the city branched around an island. Various bridges crossed the river as shown in
Figure 7.4.

b

a

c

d

Figure 7.4

The puzzle was to decide whether a person could walk through the city crossing
each bridge only once. It is possible to answer the question by trial and error, list-
ing (or walking) all possible routes, so some dedicated Königsberger could have
solved this particular puzzle. Euler solved this problem, and indeed a more general
version of the problem, by a better mechanism than trial and error. The problem
is usually represented as a graph (Figure 7.5) where the bridges are arcs and the
land masses (labeled a through d) are nodes. The more general question is to de-
termine when an Euler path exists in any graph.1

da

c

b

Figure 7.5

1Euler did not actually represent the problem as a graph, and such a representation was not connected to
Euler’s work until over 150 years later. See “The Truth about Königsberg” by Brian Hopkins and Robin
Wilson, The College Mathematics Journal, May 2004.

572 Graph Algorithms

 Definition euleR PAth
An euler path in a graph G is a path that uses each arc of G exactly once.

1 2

5
(b)(a)

4

7

1 2

4 5

3 6 3

Figure 7.6

For this discussion we will assume that all graphs are connected, since an
Euler path generally cannot exist otherwise. Whether an Euler path exists in a
given graph hinges on the degrees of its nodes. A node is even if its degree is even
and odd if its degree is odd. It turns out that every graph has an even number of
odd nodes. To see this, choose any graph and let N be the number of odd nodes in
it, N(1) the number of nodes of degree 1, N(2) the number of nodes of degree 2, and
so on. Then the sum S of the degrees of all the nodes of the graph is

 S = 1 # N(1) + 2 # N(2) + 3 # N(3) + c+ k # N(k) (1)

for some k. This sum is, in fact, a count of the total number of arc ends in the
graph. Because the number of arc ends is twice the number of arcs, S is an even
number. We will reorganize equation (1) to group together terms for odd nodes
and terms for even nodes:

 S = 2 # N(2) + 4 # N(4) + c+ 2m # N(2m)('''''''''''')''''''''''''*
even nodes

 +1 # N(1) + 3 # N(3) + c+ (2n + 1) # N(2n + 1)('''''''''''''''')''''''''''''''''*
 odd nodes

The sum of the terms representing even nodes is an even number. If we subtract it
from both sides of the equation, we get a new equation—

 S′ = 1 # N(1) + 3 # N(3) + c+ (2n + 1) # N(2n + 1) (2)

—where S′ (the difference of two even numbers) is an even number. Now if we
rewrite equation (2) as

 S′ = 1 + 1 + c+ 1(''''')''''* + 3 + 3 + c+ 3(''''')''''* + c
 N(1) terms N(3) terms

 + (2n + 1) + (2n + 1) + c+ (2n + 1)('''''''''''')''''''''''''''*
N(2n + 1) terms

praCtiCe 7 Do Euler paths exist for either graph in Figure 7.6? (Use trial and error to answer. This
is the old children’s game of whether you can trace the whole graph without lifting your
pencil and without retracing any arcs.)

■

we see that there are N terms altogether in the sum (the number of odd nodes) and
that each term is an odd number. For the sum of N odd numbers to be even, N
must be even. (Can you prove this statement?) We have thus proved the following
theorem.

 tHeoRem oN oDD NoDes iN A GRAPh
The number of odd nodes in any graph is even.

Now suppose a graph has an odd node n of degree 2k + 1 and that an Euler
path exists in the graph but does not start at n. Then for each arc we use to enter
n, there is another unused arc for leaving n until we have used k pairs of arcs. The
next time we enter n, there is no new arc on which to leave. Thus, if our path does
not begin at n, it must end at n. The path either begins at n or it does not, and in
the latter case it ends at n, so the path either begins or ends at this arbitrary odd
node. Therefore, if there are more than two odd nodes in the graph, there can be
no path. Thus, there are two possible cases where an Euler path may exist—on a
graph with no odd nodes or on one with two odd nodes.

Consider the graph with no odd nodes. Pick any node m and begin an Euler
path. Whenever you enter a different node, you will always have another arc on
which to exit until you get back to m. If you have used up every arc of the graph,
you are done. If not, there is some node m′ of your path with unused arcs. Then
construct an Euler path beginning and ending at m′, much as you did the previous
section of path, using all new arcs. Attach this cycle as a side trip on the original
path. If you have now used up every arc of the graph, you are done. If not, continue
this process until every arc has been covered.

If there are exactly two odd nodes, an Euler path can be started beginning at
one odd node and ending at the other. If the path has not covered all of the arcs,
extra cycles can be patched in as in the previous case.

We now have a complete solution to the Euler path problem.

 tHeoRem oN euleR PAths
An Euler path exists in a connected graph if and only if there are either no odd
nodes or two odd nodes. For the case of no odd nodes, the path can begin at any
node and will end there; for the case of two odd nodes, the path must begin at one
odd node and end at the other.

The theorem on Euler paths is actually an algorithm to determine whether
an Euler path exists on an arbitrary connected graph. To make it look more like
an algorithm, we’ll rewrite it in pseudocode, but first we’ll make a simplifying

 Section 7.2 Euler Path and Hamiltonian Circuit 573

praCtiCe 8 Using the preceding theorem, work Practice 7 again.

praCtiCe 9 Is the Königsberg walk possible?

■

■

574 Graph Algorithms

 assumption that the graph has no loops. If the graph G has loops, we can strip
them off and consider the modified graph H. If H has an Euler path, then so does
G—whenever we come to a node with a loop, we traverse the loop. If H has no
Euler path, then neither does G.

In the accompanying algorithm (algorithm EulerPath), the input is a connect-
ed graph with no loops represented by an n × n adjacency matrix a. The essence
of the algorithm is to count the number of nodes adjacent to each node and to
determine whether this is an odd or an even number. If there are too many odd
numbers, an Euler path does not exist. The variable total keeps track of the num-
ber of odd nodes found in the graph. The degree of any particular node, degree,
is found by adding the numbers in that node’s row of the adjacency matrix. (This
is why we exclude loops; a loop at node i adds only 1 to the adjacency matrix at
position 3i, i 4 , yet such a loop contributes 2 arc ends.) The function odd results in
a value “true” if and only if the argument is an odd integer.

 algoRitHm EulErPath

EulerPath (n × n matrix a)
//Determines whether an Euler path exists in a connected graph with
//no loops and adjacency matrix a
Local variables:
integer total //number of odd nodes so far found
integer degree //the degree of a node
integer i, j //array indices

total = 0
i = 1
while total <= 2 and i <= n do

degree = 0
for j = 1 to n do

degree = degree + a 3i, j 4 //find degree of node i (*)
end for
if odd(degree) then

total = total + 1 //another odd degree node found
end if
i = i + 1

end while

if total > 2 then
write (“No Euler path exists”)

else
write (“Euler path exists”)

end if
end EulerPath

Let us analyze algorithm EulerPath. The important operation done by the al-
gorithm is an examination of the elements of the adjacency matrix, which occurs
in the line marked at the end with an asterisk (*). In the worst case, the while loop
in the algorithm is executed n times, once for each row. Within the while loop, the
for loop, containing line (*), is executed n times, once for each column. EulerPath
is therefore an Θ(n2) algorithm in the worst case.

At the cost of some extra decision logic, we could modify the algorithm be-
cause we never have to examine the last row of the matrix. We know from the
theorem on Euler paths that the total number of odd nodes is even. If the number
of odd nodes after processing the next-to-last row is odd, then the last row must
represent an odd node; if that number is even, then the last row must represent an
even node. This modification results in (n − 1)n elements to examine in the worst
case, which is still Θ(n2).

If we represented the graph G by an adjacency list rather than an adjacency ma-
trix, then the corresponding version of the algorithm would have to count the length
of the adjacency list for each node and keep track of how many are of odd length.
There would be n adjacency lists to examine, just as there were n rows of the adja-
cency matrix to examine, but the length of each adjacency list might be shorter than
n, the length of a row of the matrix. It is possible to reduce the order of magnitude
below n2 if the number of arcs in the graph is small, but the worst case is still Θ(n2).

 example 7 The adjacency matrix for the graph of Figure 7.6a follows.

E

0 2 1 0 0
2 0 1 0 0
1 1 0 1 1
0 0 1 0 2
0 0 1 2 0

U

When the algorithm first enters the while loop, total is 0 and i is 1. Then degree is
initialized to 0. Within the for loop, the values of row 1 of the adjacency matrix are
added in turn to degree, resulting in a value for degree of 3. The odd function applied
to degree returns the value “true,” so the value of total is increased from 0 to 1; one
node of odd degree has been found. Then i is incremented to 2. Neither the bounds on
total nor the bounds on the array size have been exceeded, so the while loop executes
again, this time for row 2 of the array. Once again, degree is found to be odd, so the
value of total is changed to 2. When the while loop is executed for row 3 of the ar-
ray, the value of degree is even (4), so total does not change, and the while loop is
executed again with i = 4. Row 4 again produces an odd value for degree, so total
is raised to 3. This terminates the while loop. The bad news is written that there is no
Euler path because the number of odd nodes exceeds 2.

 Section 7.2 Euler Path and Hamiltonian Circuit 575

praCtiCe 10 Write the adjacency matrix for the Königsberg walk problem and trace the execution of
algorithm EulerPath.

■

576 Graph Algorithms

hamiltonian circuit Problem

Another famous mathematician, William Rowan Hamilton (1805–1865), posed a
problem in graph theory that sounds very much like Euler’s. He asked how to tell
whether a graph has a hamiltonian circuit.

 Definition hAMiltoNiAN ciRcuit
A Hamiltonian circuit in a graph is a cycle using every node of the graph.

(Recall that in a cycle, only the node that forms the beginning and the ending of
the cycle is repeated.)

An Euler path in a graph requires that each and every arc of the graph be used
once and only once, but nodes can be repeated. A Hamiltonian circuit requires
that each and every node of the graph be visited once and only once (except for the
start node, which is also the end node) but there can be unused arcs; no arc can be
used more than once because that would involve revisiting a node.

Like the Euler path problem, the Hamiltonian circuit problem can be solved
for a given graph by trial and error. The algorithm is as follows: Start from one
node of the graph and try some path by choosing various arcs. If the path results
in a repeated node, it is not a cycle, so throw it away and try a different path. If
the path can be completed as a cycle, then see whether it visited every node; if not,
throw it away and try a different path. Continue in this fashion until all possible
paths have been tried or a Hamiltonian circuit has been found. This will involve
some careful record keeping so that no path is tried more than once. The trial-and-
error approach is theoretically possible—but it is practically impossible! In all but
the smallest of graphs, there will simply be too many paths to try.

Euler found a simple, efficient algorithm to determine, for an arbitrary graph,
if an Euler path exists. Although the Hamiltonian circuit problem sounds very
similar to the Euler path problem, there is a basic difference. No efficient algo-
rithm has ever been found to determine if a Hamiltonian circuit exists. In fact,
there is some evidence (see Section 9.3) to suggest that no such algorithm will
ever be found.

In certain types of graphs we can easily determine whether a Hamiltonian
circuit exists. For example, an unconnected graph cannot have a Hamiltonian cir-
cuit because there would be no way to construct a path reaching all nodes. A
complete graph with n > 2 has a Hamiltonian circuit because for any node on
the path, there is always an arc to travel to any unused node and finally an arc
to return to the starting point. Exercise 37 describes an additional condition that
guarantees the existence of a Hamiltonian circuit. But in general—that is, for an
arbitrary graph—we cannot readily make a determination about the existence of
a Hamiltonian circuit.

Suppose we are dealing with a weighted graph. If a Hamiltonian circuit ex-
ists for the graph, can we find one with minimum weight? This is the traveling

praCtiCe 11 Do Hamiltonian circuits exist for the graphs of Figure 7.6? (Use trial and error to answer.)
■

 salesman problem. Once again it can be solved using trial and error by tracing all
possible paths and keeping track of the weights of those paths that are Hamilto-
nian circuits, but, again, this is not an efficient algorithm. (Incidentally, the travel-
ing salesman problem for visiting all 48 capitals of the contiguous United States
has been solved—a total of 10,628 miles is required!)

ExErcisEs 7.2

 1. Rework Example 3 of Chapter 2 using the theorem on Euler paths. Here is the graph, where the nodes
have been numbered.

1 2

5

4 3

 2. a. Add a single arc to the graph of Exercise 1 so that there is an Euler path.
 b. List the nodes in such a path.

For Exercises 3–12, determine whether the given graph has an Euler path by using the theorem on Euler paths.
If so, list the nodes in such a path.

 3.

543

1

6

2

 4. 1 2

4

3

5 6

 Section 7.2 Euler Path and Hamiltonian Circuit 577

s E c t i o n 7 . 2 Review

tEchniquE

• Using algorithm EulerPath, determine whether an
Euler path exists in a graph.

Main idEas

• There is a simple criterion for determining whether
Euler paths exist in a graph but no such criterion
for whether Hamiltonian circuits exist.

• An algorithm that is Θ(n2) in the worst case can
determine the existence of an Euler path in a con-
nected graph with n nodes.

W

578 Graph Algorithms

 5.

54

21

6

3

 6. 21

9

12

10

11

6

3

5

8 4

7

 7. 1 2 3

4 5 6 7

 8. 2

5

6

1

4

3

 9.

3
7

5

2

6

8

4

1

 10. 21

3

 11.

 12.

3 4

21

 13. Draw the adjacency matrix for the graph of Exercise 3. In applying algorithm EulerPath, what is the value
of total after the second pass through the while loop?

 14. Draw the adjacency matrix for the graph of Exercise 5. In applying algorithm EulerPath, what is the value
of total after the fourth pass through the while loop?

 15. Draw the adjacency matrix for the graph of Exercise 7. In applying algorithm EulerPath, what is the value
of i after the while loop is exited?

 16. Draw the adjacency matrix for the graph of Exercise 9. In applying algorithm EulerPath, what is the value
of i after the while loop is exited?

The definition of an Euler path extends to directed graphs. Instead of just the degree of a node as the total num-
ber of arc ends, we must now keep track of arcs coming into a node and arcs leaving a node. The total number
of arc ends coming into a node is its in-degree; the total number of arc ends leaving a node is its out-degree.
Exercises 17–20 talk about Euler paths in directed graphs.

 17. Describe two conditions on a connected directed graph, either of which would guarantee the existence of
an Euler path.

 18. Determine whether this graph has an Euler path. If so, list the nodes in such a path.

3 4

21

 19. Determine whether this graph has an Euler path. If so, list the nodes in such a path.

3 4

21

 20. Determine whether this graph has an Euler path. If so, list the nodes in such a path.

3 4

21

For Exercises 21–28, decide by trial and error whether Hamiltonian circuits exist for the graphs of the given
exercise. If so, list the nodes in such a cycle.

 Section 7.2 Euler Path and Hamiltonian Circuit 579

 21. Exercise 3
 22. Exercise 4

 23. Exercise 5
 24. Exercise 6

 25. Exercise 7
 26. Exercise 8

 27. Exercise 9
 28. Exercise 11

 29. Prove that any graph with a Hamiltonian circuit is connected.
 30. Find an example of an unconnected graph that has an Euler path. (Hint: Because this seems intuitively

contradictory, you should look for a trivial case.)

580 Graph Algorithms

 31. Consider a simple, complete graph with n nodes. Testing for a Hamiltonian circuit by trial and error could
be done by selecting a fixed starting node and then generating all possible paths from that node of length n.

 a. How many paths of length n are there if repetition of arcs and nodes is allowed?
 b. How many paths of length n are there if repetition of arcs and nodes is allowed but an arc may not be

used twice in succession?
 c. How many paths of length n are there if nodes and arcs cannot be repeated except for the starting node?

(These are the Hamiltonian circuits.)
 d. To solve the traveling salesman problem in a weighted graph, assume a fixed starting point at node 1

and generate all possible Hamiltonian circuits of length n to find one with minimum weight. If it takes
0.000001 seconds to generate a single Hamiltonian circuit, how long will this process take in a simple,
complete graph with 15 nodes?

 32. Is it possible to walk in and out of each room in the house shown in the following figure so that each door
of the house is used exactly once? Why or why not?

 33. Recall that Kn denotes the simple, complete graph of order n.
 a. For what values of n does an Euler path exist in Kn?
 b. For what values of n does a Hamiltonian circuit exist in Kn?
 34. Recall that Km, n denotes a bipartite, complete graph with m + n nodes.
 a. For what values of m and n does an Euler path exist in Km, n?
 b. For what values of m and n does a Hamiltonian circuit exist in Km, n?
 35. Prove that a Hamiltonian circuit always exists in a connected graph where every node has degree 2.
 36. Consider a connected graph with 2n odd vertices, n ≥ 2. By the theorem on Euler paths, an Euler path

does not exist for this graph.
 a. What is the minimum number of disjoint Euler paths, each traveling some of the arcs of the graph,

necessary to travel each arc exactly once?
 b. Show that the minimum number is sufficient.
 37. Ore’s theorem (Oystein Ore, 1960) states that a Hamiltonian circuit exists in any graph G with the follow-

ing properties:
 1. G is a simple graph with n nodes, n ≥ 3.
 2. For any two nonadjacent nodes x and y, degree(x) + degree(y) ≥ n.
 Ore’s Theorem is proved by contradiction in the following steps.
 a. Assume that a graph G with properties 1 and 2 above does not have a Hamiltonian circuit. Beginning

with G, add new edges to produce a simple graph H that does not have a Hamiltonian circuit but would
have such a circuit with the addition of any single new arc. Describe a process for creating H.

 b. Prove that H has a Hamiltonian path, that is, a path that visits each node exactly once.
 c. Denote the nodes on the Hamiltonian path by p = x1, x2, x3, … , xn−1, xn = q. Prove that for any node

xi, 2 ≤ i ≤ n − 1, if an arc exists in H between xi and p, then no arc exists in H between xi−1 and q.

 Section 7.3 Shortest Path and Minimal Spanning Tree 581

 d. Using the result from part (c), prove that in graph H, degree(p) + degree(q) < n.
 e. Prove that in graph G, degree(p) + degree(q) < n.
 f. Conclude from part (e) that G has a Hamiltonian circuit.
	 38.	Ore’s	theorem	(Exercise	37)	gives	a	sufficient	condition	for	a	Hamiltonian	circuit	to	exist,	but	it	is	not	a	

necessary condition. Find a simple graph G with n nodes, n ≥ 3,	that	has	a	Hamiltonian	circuit	but	for	
which condition (2) does not hold.

 S e c t i o n 7 . 3 ShorteSt Path and MiniMal SPanning tree

Shortest-Path Problem

Assume that we have a simple, weighted, connected graph, where the weights are
positive.	Then	a	path	exists	between	any	two	nodes	x and y.	Indeed,	there	may	be	
many	such	paths.	The	question	is,	How	do	we	find	a	path	with	minimum	weight?	
Because	weight	often	represents	distance,	this	problem	has	come	to	be	known	as	
the	“shortest-path”	problem.	It	 is	an	important	problem	to	solve	for	a	computer	
or	 communications	network,	where	 information	at	one	node	must	be	 routed	 to	
another	node	in	the	most	efficient	way	possible,	or	for	a	transportation	network,	
where	products	in	one	city	must	be	shipped	to	another.

The	traveling	salesman	problem	is	a	minimum-weight	path	problem	with	such	
severe restrictions on the nature of the path that such a path may not exist at all.
In	the	shortest-path	problem,	we	put	no	restrictions	(other	than	minimum	weight)	
on	the	nature	of	the	path,	and	because	the	graph	is	connected,	we	know	that	such	
a	path	exists.	For	this	reason	we	may	hope	for	an	efficient	algorithm	to	solve	the	
problem,	even	though	no	such	algorithm	is	known	for	the	traveling	salesman	prob-
lem.	Indeed	such	an	algorithm	does	exist;	it	was	published	in	1959	by	Edsger	W.	
Dijkstra,	a	prominent	computer	scientist	of	the	twentieth	century.

The	shortest-path	algorithm	known	as	Dijkstra’s algorithm	works	as	follows.	
We	want	to	find	the	minimum-distance	path	from	a	given	node	x to a given node
y.	We	build	a	set	(we’ll	call	it	IN)	that	initially	contains	only	x	but	grows	as	the	
algorithm	proceeds.	At	 any	given	 time	 IN	contains	 every	node	whose	 shortest	
path from x,	using	only	nodes	in	IN,	has	so	far	been	determined.	For	every	node	z
outside	IN,	we	keep	track	of	the	shortest	distance	d 3z 4 from x to that node, using
a	path	whose	only	non-IN	node	is	z.	We	also	keep	track	of	the	node	adjacent	to	z
on this path, s 3z 4 .

How	do	we	let	IN	grow;	that	is,	which	node	should	be	moved	into	IN	next?	
We	pick	the	non-IN	node	with	the	smallest	distance	d. Once we add that node,
call it p,	to	IN,	then	we	have	to	recompute	d	for	all	the	remaining	non-IN	nodes,	
because	there	may	be	a	shorter	path	from	x going through p	than	there	was	before	
p	belonged	to	IN.	So	we	compare	the	current	distance	of	z from x, d

3z 4 , with the
distance of p from x, d

3 p 4 , plus the distance from p to z, A 3 p, z 4 where A is the
adjacency matrix. If there is a shorter path, we must also update s 3z 4 so that p is
now	shown	to	be	the	node	adjacent	to	z on the current shortest path, that is, s 3z 4
is	the	node	just	before	z on this path from x. As soon as y	is	moved	into	IN,	IN	
stops growing. The current value of d

3 y 4 is the distance for the shortest path, and
its	nodes	are	found	by	looking	at	y, s 3 y 4, s 3s 3 y 4 4, and so forth, until we have traced
the	path	back	to	x.

A	pseudocode	form	of	the	algorithm	is	given	in	the	accompanying	box.	The	
input is the adjacency matrix for a simple, connected graph G with positive weights

582 Graph Algorithms

and nodes x and y; the algorithm writes out the shortest path between x and y and
the distance for that path. Here shortest path means minimum-weight path. We
actually assume a modified adjacency matrix a, where a 3i, j 4 is the weight of the
arc between i and j if one exists and a 3i, j 4 has the value ∞ if no arc exists (here
the symbol ∞ denotes a number larger than any weight in the graph).

 algoRitHm Dijkstra’s algorithm

Dijkstra (n × n matrix a; nodes x, y)
//Computes the shortest path between a source node x and a destination node y
//in a simple, connected graph with positive weights. a is a modified adjacency
//matrix. Writes out nodes in the shortest path from x to y, and the
//distance for that path.
Local variables:
set of nodes IN //set of nodes whose shortest path from x is known
nodes z, p //temporary nodes
array of integers d //for each node, the distance from x using nodes in IN
array of nodes s //for each node, the previous node in the shortest path
integer OldDistance // distance to compare against

//initialize set IN and arrays d and s
IN = 5x6
d 3x 4 = 0
for all nodes z not in IN do

d 3z 4 = a 3x, z 4
s 3z 4 = x

end for

//process nodes into IN
while y not in IN do

//add minimum-distance node not in IN
p = node z not in IN with minimum d 3z 4
IN = IN c 5 p6

//recompute d for non IN nodes, adjust s if necessary
for all nodes z not in IN do

OldDistance = d 3z 4
d 3z 4 = min(d 3z 4, d 3 p 4 + a 3 p, z 4)
if d 3z 4 ∙ OldDistance then

s 3z 4 = p
end if

end for
end while

 Section 7.3 Shortest Path and Minimal Spanning Tree 583

 example 8 Consider the graph in Figure 7.7 and the corresponding modified adjacency matrix
shown in Figure 7.8.

x
 1
2
3
 4
y

F

∞ 3 8 4 ∞ 10
 3 ∞ ∞ 6 ∞ ∞
 8 ∞ ∞ ∞ 7 ∞
 4 6 ∞ ∞ 1 3
∞ ∞ 7 1 ∞ 1
10 ∞ ∞ 3 1 ∞

V

 Figure 7.7 Figure 7.8

Let’s trace Dijkstra’s algorithm on this graph. At the end of the initialization phase,
IN contains only x, d contains all the direct distances (arc weights) from x to other
nodes, and x is the immediate predecessor of all nodes except x. (Because of the
∞ in position a 3x, 4 4 , there is no arc from x to 4, so s 34 4 is meaningless here but
it simplifies the initialization.)

IN = 5x6
 x 1 2 3 4 y

d 0 3 8 4 ∞ 10
s − x x x x x

//write out path nodes
write (“In reverse order, the path is”)
write (y)
z = y
repeat

write (s 3z 4)
z = s 3z 4

until z = x

// write out path distance
write (“The path distance is”, d 3 y 4)

end Dijkstra

 x 1 2 3 4 y

584 Graph Algorithms

In Figure 7.9, circled nodes are those in set IN, heavy lines show the current
 shortest paths, and the d value for each node is written along with the node label.
Figure 7.9a is the picture after initialization.

(3)1

(4)3

(3)1

(4)3 4

1 (3)

3

x

8

3 1

1

y (10)

(a)

10
6

3 (4)

2 (8)

7

4 (∞)

4
(3)

3

x

8

3 1

1

y (10)

(b)

10
6

3 (4)

2 (8)

7

4 (∞)

4

3

x

1 (3)1

(4)3

8

3 1

y (6)

(d)

10

1 1

6

2 (8)

7

(5) 4 (5)

4

3

x

y

8

3 1

(6)

(e)

10
6

2 (8)

7
4

3

x

8

3 1

1

y (7)

(c)

10
6

2 (8)

7

4 (5)

4

Figure 7.9

We now enter the while loop and search through the d values for the node of
minimum distance that is not in IN; this turns out to be node 1, with d 31 4 = 3. We
throw node 1 into IN, and in the for loop we recompute all the d values for the
remaining nodes, 2, 3, 4, and y.

 p = 1
 IN = 5x, 16
 d 32 4 = min(8, 3 + a 31, 2 4) = min(8, ∞) = 8
 d 33 4 = min(4, 3 + a 31, 3 4) = min(4, 9) = 4
 d 34 4 = min(∞, 3 + a 31, 4 4) = min(∞, ∞) = ∞
 d 3 y 4 = min(10, 3 + a 31, y 4) = min(10, ∞) = 10

There were no changes in the d values, so there were no changes in the s values
(there were no shorter paths from x by going through node 1 than by going directly
from x). Figure 7.9b shows that 1 is now in IN.

The second pass through the while loop produces the following:

p = 3 (3 has the smallest d value, namely 4, of 2, 3, 4, or y)
IN = 5x, 1, 36

ReminDeR

Distances in Dijkstra’s
algorithm are always
recomputed relative to the
node most recently added
to IN.

d 32 4 = min(8, 4 + a 33, 2 4) = min(8, 4 + ∞) = 8
d 34 4 = min(∞, 4 + a 33, 4 4) = min(∞, 4 + 1) = 5 (a change, so update s 34 4 to 3)

 d 3 y 4 = min(10, 4 + a 33, y 4) = min(10, 4 + 3) = 7 (a change, so update s 3 y 4 to 3)

 x 1 2 3 4 y

d 0 3 8 4 5 7
s − x x x 3 3

 x 1 2 3 4 y

d 0 3 8 4 5 6
s − x x x 3 4

 x 1 2 3 4 y

d 0 3 8 4 5 6
s − x x x 3 4

Shorter paths from x to the two nodes 4 and y were found by going through 3, as
reflected in Figure 7.9c.

On the next pass,

 p = 4 (d value = 5)
 IN = 5x, 1, 3, 46
 d 32 4 = min(8, 5 + 7) = 8
 d 3 y 4 = min(7, 5 + 1) = 6 (a change, update s 3 y 4)

See Figure 7.9d.
Processing the while loop again, we get

 p = y
 IN = 5x, 1, 3, 4, y6
 d 32 4 = min(8, 6 + ∞) = 8

See Figure 7.9e.
Now that y is part of IN, the while loop terminates. The path goes through

y, s 3 y 4 = 4, s 34 4 = 3, and s 33 4 = x. Thus the path uses nodes x, 3, 4, and y. (The
algorithm gives us these nodes in reverse order.) The distance for the path is
d 3 y 4 = 6. By looking at the graph in Figure 7.7 and checking all the possibilities,
we can see that this is the shortest path from x to y.

Dijkstra’s algorithm terminates when y is put into IN, even though there may
be other nodes in the graph not yet in IN (such as node 2 in Example 8). How do
we know that a still shorter path cannot be found through one of these excluded
nodes? If we continue processing until all nodes have been included in IN, the
d values then represent the shortest path from x to any node, using all the values
in IN, that is, the shortest path using any nodes of the graph. But new nodes are
brought into IN in order of increasing d values. A node z that is brought into IN
later than y must have as its shortest path from x one whose distance is at least as

 Section 7.3 Shortest Path and Minimal Spanning Tree 585

586 Graph Algorithms

great as the d value of y when y was brought into IN. Therefore there cannot be a
shorter path from x to y via z because there is not even a shorter path just between
x and z.

praCtiCe 12 Trace Dijkstra’s algorithm on the graph shown in Figure 7.10. Show the values for p and IN
and the d values and s values for each pass through the while loop. Write out the nodes of
the shortest path and the distance of the path.

Figure 7.10

When looking for the next node to bring into IN in Dijkstra’s algorithm, more
than one node p may have a minimum d value, in which case p can be selected ar-
bitrarily. There may also be more than one shortest path between x and y in a graph.

Dijkstra’s algorithm also works for directed graphs if the adjacency matrix is
in the appropriate form. And it works for unconnected graphs; if x and y are not
in the same component, then d 3 y 4 will remain ∞ throughout. After y has been
brought into IN, the algorithm will terminate, and this value of ∞ for d 3 y 4 will
indicate that no path exists between x and y.

We may think of Dijkstra’s algorithm as being a “nearsighted” algorithm. It
cannot see the entire graph at once to pick out overall shortest paths; it only picks
out shortest paths relative to the set IN at each step. Such an algorithm is called
a greedy algorithm—it does what seems best based on its limited immediate
knowledge. In this case, what seems best at the time turns out to be best overall.

How efficient is Dijkstra’s algorithm? Most of the work seems to take place
within the for loop that modifies the d and s arrays. Here the algorithm checks
all n nodes to determine which nodes z are not in IN and recomputes d 3z 4 for
those nodes, possibly also changing s 3z 4 . The necessary quantities d 3z 4, d 3 p 4 , and
a 3 p, z 4 for a given z are directly available. Therefore the for loop requires Θ(n)
operations. In addition, determining the node p to add to IN can also be done in
Θ(n) operations by checking all n nodes. With the additional small amount of
work to add p to IN, each execution of the while loop takes Θ(n) operations. In the
worst case, y is the last node brought into IN, and the while loop will be executed
n − 1 times. Therefore the total number of operations involved in the while loop
is Θ(n(n − 1)) = Θ(n2). Initialization and writing the output together take Θ(n)
operations, so the algorithm requires Θ(n + n2) = Θ(n2) operations in the worst
case.

What if we keep IN (or rather the complement of IN) as some sort of linked
list, so that all the nodes of the graph do not have to be examined to see which
are not in IN? Surely this would make the algorithm more efficient. Note that the
number of nodes not in IN is initially n − 1, and that number decreases by 1 for
each pass through the while loop. Within the while loop the algorithm thus has to

■

perform on the order of n − 1 operations on the first pass, then n − 2, then n − 3,
and so on. But, as proof by induction will show,

(n − 1) + (n − 2) + c+ 1 = (n − 1)n∙2 = Θ(n2)

Thus the worst-case situation still requires Θ(n2) operations.

Minimal spanning tree Problem

A problem encountered in designing networks is how to connect all the nodes effi-
ciently, where nodes can be computers, telephones, warehouses, pumping stations,
and so on. A minimal spanning tree may provide an economical solution, one that
requires the least cable, pipeline, or whatever the connecting medium is. For reli-
ability, however, the minimal spanning tree usually would be supplemented with
additional arcs so that if one connection were broken for some reason, an alterna-
tive route could be found.

 Definition sPANNiNG tRee
A spanning tree for a connected graph is a nonrooted tree whose set of nodes
coincides with the set of nodes for the graph and whose arcs are (some of) the
arcs of the graph.

A spanning tree thus connects all the nodes of a graph with no excess arcs (no
cycles). There are algorithms for constructing a minimal spanning tree, a span-
ning tree with minimal weight, for a given simple, weighted, connected graph.
One of these algorithms, called Prim’s algorithm, proceeds very much like Dijks-
tra’s algorithm. There is a set IN, which initially contains one arbitrary node. For
every node z not in IN, we keep track of the shortest distance d 3z 4 between z and
any node in IN. We successively add nodes to IN, where the next node added is one
that is not in IN and whose distance d 3z 4 is minimal. The arc having this minimal
distance is then made part of the spanning tree. Because there may be ties between
minimal distances, the minimal spanning tree of a graph may not be unique. The
algorithm terminates when all nodes of the graph are in IN.

The key difference in the implementation of the two algorithms comes in the
computations of new distances for the nodes not yet in IN. In Dijkstra’s algorithm,
if p is the node that has just been added to IN, distances for non-IN nodes are
 recalculated by

d 3z 4 = min(d 3z 4, d 3 p 4 + a 3 p, z 4)

that is, by comparing the current distance of z from x with the distance of p from
x plus the distance of z from p. In Prim’s algorithm, if p is the node that has just
been added to IN, distances for non-IN nodes are recalculated by

d 3z 4 = min(d 3z 4, a 3 p, z 4)

that is, by comparing the current distance of z from IN with the distance of z from p.
We won’t write out the algorithm (which, like Dijkstra’s algorithm, requires

Θ(n2) operations in the worst case and is a greedy algorithm); we will simply
 illustrate it with an example.

 Section 7.3 Shortest Path and Minimal Spanning Tree 587

588 Graph Algorithms

 example 9 We will find a minimal spanning tree for the graph of Figure 7.7. We let node 1 be
the arbitrary initial node in IN. Next we consider all the nodes adjacent to any node
in IN, that is, all nodes adjacent to 1, and select the closest one, which is node x.
Now IN = 51, x6 , and the arc between 1 and x is part of the minimal spanning tree.
Next we consider all nodes not in IN that are adjacent to either 1 or x. The closest
such node is 3, which is 4 units away from x. The arc between 3 and x is part of the
minimal spanning tree. For IN = 51, x, 36 , the next closest node is node 4, 1 unit
away from 3. The remaining nodes are added in the order y and then 2. Figure 7.11
shows the minimal spanning tree.

Figure 7.11

praCtiCe 13 Find a minimal spanning tree for the graph of Figure 7.10.

 example 10 Seismic sensing instruments are to be distributed at sites along a volcanic rift zone,
as shown in Figure 7.12a, where the distances in meters between sites are given.
(Distances between some sites are not shown because of natural hazards that would
prevent a direct connection.) The most economical way to wire the devices so that
they are all connected is to create a minimal spanning tree for the graph, as shown
in Figure 7.12b. The total length of wire involved is 975 meters.

186

321

172

404

592

987

1120

844

123
47

215

(a)

186

321

172

404

592

987

1120

844

123
47

215

(b)

 Figure 7.12

■

Special intereSt page

Pathfinding

Chapter 7
Pathfinding—as the name suggests—seeks to find a path
from point x to point y, more specifically, the shortest
path. This is a problem encountered in video games,
when entities must move to a target point while avoid-
ing obstacles. On a much larger scale, Google Maps and
other Web mapping sites allow us to enter a source x and
a destination y and, in a very short time, receive driving
directions to get from x to y.

Well, don’t we already know how to do that?
 Dijkstra’s algorithm is the classic shortest-path algo-
rithm, but it’s an Θ(n2) algorithm. In the context of a
real-time video game, quick response is essential. For
Google maps, an Θ(n2) algorithm might not be a prob-
lem for a graph with 50, 500, or 2000 nodes, but scale
up to the hundreds of thousands of cities and towns, and
you’ll want to find a way to speed up the search. This
is an important problem, and much research has been
directed toward improving shortest-path performance.

One generalization of Dijkstra’s algorithm, called
the a* algorithm, is used by many video game design-
ers. The exact techniques used by Google and other sites
aren’t publicly revealed, but the a* algorithm may well
be part of their arsenal. The a* algorithm generalizes
Dijkstra’s algorithm by adding ideas borrowed from
artificial intelligence. In fact, a*, strictly speaking, isn’t
even an algorithm because there’s a big hole where one
must plug in a “heuristic” (read an “educated guess”).
The heuristic function used varies with the specifics of
the application, and it’s the hard part of using a*.

Here’s an outline of how a* works. The general
problem is that there is a graph with a source node x
and a destination node y (for simplicity, assume that it’s
a connected graph so that a path from x to y exists), and
the arcs of the graph are weighted with known distances
between nodes. At any point in time, a “closed set”
 represents nodes that have been examined and need not
be considered further. There is also an “open set” that
represents nodes available for evaluation as the next
node along the path. Initially, only node x is in the open
set. Evaluation of a node n consists of three values that
are maintained for each node in the open set:

G = the distance to get from x to n along the path
being constructed

H = the result of the heuristic function that “guesses”
the distance to get from n to y. This is a guess because
the exact path from n to y is not yet known.
F = G + H

Pseudocode:
Put node x into the open set
Repeat the following process until y gets moved to the
closed set:

Select the node p from the open set with the lowest F
value (with some tie-breaking rule)

Move p to the closed set
For each node z that is adjacent to p and not in the

closed set (you don’t want to go back to a previ-
ous node on the path), do the following:
If z is not in the open set, move z to the open set,

compute its G, H, and F values (the G value
is just the G value for p + the weight of the
p−z arc), and set p as z’s parent node.

If z is in the open set, compute a new G value for
z by going through node p; if this value is
lower than z’s current G value, then recom-
pute z’s F value (which will also be lower
than before) and set p as z’s parent node.

Once the target node y is in the closed set, walk back
through the parents to the start node x. Reversing this
walk gives the shortest path from x to y.

Note the similarities to Dijkstra’s algorithm (DA).
There is a closed set (like the IN set of DA) that begins
with the start node and eventually includes the end
node. There is a next node p that gets moved into the
closed set (moved into IN in DA). Once p is moved into
the closed set, G values (distances from x in DA) are
recomputed to see whether going through node p is an
improvement. The algorithm terminates when the tar-
get node y is moved into the closed set (moved into IN
in DA). The path is found by walking backward from y
to x through a parent list (the s array in DA).

The difference between a* and Dijkstra’s algo-
rithm is that in a* the next node p is chosen based on
the lowest F value, whereas in Dijkstra’s algorithm p is
chosen based on the shortest distance from the source
node (which is the same as the G value). So a* uses

590 Graph Algorithms

F to make its choice and Dijkstra’s algorithm uses G,
but F = G + H . Dijkstra’s algorithm is therefore a*
with a heuristic function that always returns 0. By us-
ing a non-zero heuristic H value, a* makes smarter
choices (and therefore closes in on the shortest path
faster) provided, of course, that the heuristic function
is a good guess. If the heuristic function consistently
overestimates the distance to the target, then the path
computed will not be the shortest path. Another way
to look at the difference between a* and Dijkstra’s

 algorithm is to remember that Dijkstra’s algorithm is
a greedy algorithm—it makes its decisions based on
the local knowledge of how close adjacent nodes are to
p. a* uses global knowledge (or assumed global
knowledge) about not only how close adjacent nodes
are to p but also how far they are from the target node.

http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.heyes-jones.com/astar.html

http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.heyes-jones.com/astar.html

S e c t i o n 7 . 3 revieW

tecHniQueS

• Find a shortest path from x to y in a graph (using
Dijkstra’s algorithm).

• Find a minimal spanning tree for a graph (using
Prim’s algorithm).

main iDea

• Algorithms that are Θ(n2) in the worst case can
find a shortest path between two nodes or a mini-
mal spanning tree in a simple, positively weighted,
connected graph with n nodes.

W

W

exeRciSeS 7.3

For Exercises 1–4, use the graph that follows. Apply Dijkstra’s algorithm for the pairs of nodes given; show the
values for p and IN and the d values and s values for each pass through the while loop. Write out the nodes in
the shortest path and the distance of the path.

 1. From 2 to 5

 2. From 3 to 6

 3. From 1 to 5

 4. From 4 to 7

For Exercises 5 and 6, use the graph that follows. Apply Dijkstra’s algorithm for the pairs of nodes given; show
the values for p and IN and the d values and s values for each pass through the while loop. Write out the nodes
in the shortest path and the distance of the path.

3 2

1 1

1

2

1
1

4

a f

c d

b

e

 5. From a to e

 6. From d to a

 Section 7.3 Shortest Path and Minimal Spanning Tree 591

592 Graph Algorithms

For Exercises 7 and 8, use the directed graph that follows. Apply Dijkstra’s algorithm to the nodes given; show
the values for p and IN and the d values and s values for each pass through the while loop. Write out the nodes
in the shortest path and the distance of the path.

 7. From 1 to 7
 8. From 3 to 1
 9. a. Modify Dijkstra’s algorithm so that it finds the shortest paths from x to all other nodes in the graph.
 b. Does this change the worst-case order of magnitude of the algorithm?
 10. Give an example to show that Dijkstra’s algorithm does not work when negative weights are allowed.

Another algorithm for finding shortest paths from a single source node to all other nodes in the graph is the
Bellman–Ford algorithm. In contrast to Dijkstra’s algorithm, which keeps a set of nodes whose shortest path
(minimum-weight path) of whatever length (that is, number of hops) has been determined, the Bellman–Ford
algorithm performs a series of computations that seeks to find successively smaller-weight paths of length 1,
then of length 2, then of length 3, and so on, up to a maximum of length n − 1 (if a path exists at all, then there
is a path of length no greater than n − 1). A pseudocode description of the Bellman–Ford algorithm is given
in the accompanying box; when using this algorithm, the adjacency matrix a must have a 3i, i 4 = 0 for all i.

 algoRitHm BEllman–ForD algorithm

Bellman–Ford(n × n matrix a; node x; array of integers d; array of nodes s)
//Computes the shortest path between a source node x and all other nodes in a simple,
//weighted, connected graph. a is a modified adjacency matrix with a 3i, i 4 = 0.
//When procedure terminates, the nodes in the shortest path from x to a node y
//are y, s 3 y 4, s 3s 3 y 4 4, … , x; the distance for that path is d 3 y 4 .
Local variables:
nodes z, p //temporary nodes
array of integers t //temporary distance array created at each iteration

//initialize arrays d and s; this establishes the shortest 1-length paths from x
d 3x 4 = 0
for all nodes z not equal to x do

d 3z 4 = a 3x, z 4
s 3z 4 = x

end for

//find shortest paths of length 2, 3, etc.
for i = 2 to n − 1 do

t = d //copy current array d into array t

//modify t to hold shortest paths of length i
for all nodes z not equal to x do

//find the shortest path with one more link
p = node in G for which (d 3 p 4 + a 3 p, z 4) is minimum
t 3z 4 = d 3 p 4 + a 3 p, z 4
if p ∙ z then

s 3z 4 = p
end if

end for
d = t ; //copy array t back into d

end for
end Bellman–Ford

 Section 7.3 Shortest Path and Minimal Spanning Tree 593

For Exercises 11–14 use the Bellman–Ford algorithm to find the shortest path from the source node to any other
node. Show the successive d values and s values.
 11. Graph for Exercises 1–4, source node = 2 (compare your answer to Exercise 1)
 12. Graph for Exercises 1–4, source node = 1 (compare your answer to Exercise 3)
 13. Graph for Exercises 7–8, source node = 1 (compare your answer to Exercise 7)
 14. a. Accompanying graph, source node = 1 (compare your answer to Exercise 10)
 b. What does this say about the Bellman–Ford algorithm as opposed to Dijkstra’s algorithm?

To compute the distance for the shortest path between any two nodes in a graph, Dijkstra’s algorithm could be
used repeatedly, with each node in turn as the source node. A different algorithm, Floyd’s algorithm, can also
be used to solve this “all pairs” shortest-path problem, but while Floyd’s algorithm produces the weight of
all shortest paths, it does not calculate what the shortest paths actually are, that is, what nodes are on a given
shortest path. Floyd’s algorithm is very similar to Warshall’s algorithm. A description follows, where a is the
adjacency matrix of the graph with a 3i, i 4 = 0 for all i.

 algoRitHm FloyD’s algorithm

Floyd (n × n matrix a)
//Computes the shortest path between any two nodes in a simple, weighted,
//connected graph; a is a modified adjacency matrix with a 3i,i 4 = 0.
//Upon termination, a will contain all the shortest-path distances

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
if a 3i, k 4 + a 3k, j 4 < a 3i, j 4 then

a 3i, j 4 = a 3i, k 4 + a 3k, j 4
end if

end for
end for

end for
end Floyd

594 Graph Algorithms

For Exercises 15 and 16, use Floyd’s algorithm to find the distances for all the shortest paths. Show the successive
values of the a matrix for each pass through the outer loop.
 15. Figure 7.10
 16. Graph for Exercises 1–4

For Exercises 17–20, use Prim’s algorithm to find a minimal spanning tree for the graph in the specified figure.

 17. Graph for Exercises 1–4

 algoRitHm kruskal’s algorithm

Kruskal (n × n matrix a; collection of arcs T)
//Finds a minimal spanning tree; T is initially empty;
//at termination, T = minimal spanning tree

order arcs in G by increasing distance
repeat

if next arc in order does not complete a cycle then
add that arc into T

end if
until T is connected and contains all nodes of G

end Kruskal

 18.

 19.

 20.

Kruskal’s algorithm is another algorithm for finding a minimal spanning tree in a connected graph. Whereas
Prim’s algorithm “grows” the tree from an arbitrary starting point by attaching adjacent short arcs, Kruskal’s
algorithm adds arcs in order by increasing distance wherever they may be in the graph. Ties are resolved
 arbitrarily. The only restriction is that an arc is not added if adding it would create a cycle. The algorithm
terminates when all nodes have been incorporated into a connected structure. A (very informal) pseudocode
description follows:

For Exercises 21–24 use Kruskal’s algorithm to find the minimal spanning tree.

 Section 7.3 Shortest Path and Minimal Spanning Tree 595

 21. Graph for Exercises 1–4
 22. Graph for Exercise 18

 23. Graph for Exercise 19
 24. Graph for Exercise 20

 25. Give an example to show that adding the node closest to IN at each step, as is done in Prim’s minimal
spanning tree algorithm, will not guarantee a shortest path.

 26. Let a be the arc of lowest weight in a weighted graph. Show that a must be an arc in any minimal spanning tree.
 27. A city plans to lay out bike paths connecting various city parks. A map with the distances between the parks

is shown in the figure. (Some direct connections would have to cross major highways, so these distances
are not shown in the map.) Find which paths to pave so that all parks are connected but the cost is minimal.

3 7

2

5
2

4
6

5

4
4

3
2

 28. Assume that arc weights represent distance. Then adding new nodes and arcs to a graph may result in a
spanning tree for the new graph that has less weight than a spanning tree for the original graph. (The new
spanning tree could represent a minimal-cost network for communications between a group of cities ob-
tained by adding a switch in a location outside any of the cities.)

 a. Find a spanning tree of minimum weight for the following labeled graph. What is its weight?

 b. Put a node in the center of the square. Add new arcs from the center to the corners. Find a spanning tree
for the new graph, and compute its (approximate) weight.

 29. At the beginning of this chapter, you received the following assignment:

You are the network administrator for a wide-area backbone network that serves your company’s many offices
across the country. Messages travel through the network by being routed from point to point until they reach
their destination. Each node in the network therefore acts as a switching station to forward messages to other
nodes according to a routing table maintained at each node. Some connections in the network carry heavy traf-
fic, while others are less used. Traffic may vary with the time of day; in addition, new nodes occasionally come
on line and existing nodes may go off line. Therefore you must periodically provide each node with updated
information so that it can forward messages along the most efficient (that is, the least heavily traveled) route.

How can you compute the routing table for each node?
 You realize that you can represent the network as a weighted graph, where the arcs are the connections

between nodes and the weights of the arcs represent traffic on the connections. The routing problem then be-
comes one of finding the shortest path in the graph from any node to any other node. Dijkstra’s algorithm can
be used to give the shortest path from any one node to all other nodes (see Exercise 9), so you could use the
algorithm repeatedly with different start nodes. Or you could use Floyd’s algorithm. Discuss the advantages
and disadvantages of each approach, including an analysis of the order of magnitude of each approach.

596 Graph Algorithms

 S e c t i o n 7 . 4 traversal alGorithms

So far this chapter has considered various path questions about a graph G. Is there
a path in G from node x to node y? Is there a path through G that uses each arc
once? Is there a path through G that ends where we started and uses each node
once? What is the minimum-weight path between x and y? In this section we deal
with a simpler problem—we only want to write down all the nodes of a simple,
connected graph G in some orderly way. This means we must find a path that
visits each node at least once, but we can visit it more than once if we don’t write
it down again. We can also retrace arcs on the graph if necessary, and clearly this
would in general be necessary if we were to visit each node in a tree. This process
is called graph traversal. We already have several mechanisms for tree traversal
(Section 6.2). The two algorithms in this section generalize traversal to apply to
any simple, connected graph.

Depth-First search

In the depth-first search algorithm for graph traversal, we begin at an arbitrary
node a of the graph, mark it visited, and write it down. We then strike out on a
path away from a, visiting and writing down nodes, proceeding as far as pos-
sible until there are no more unvisited nodes on that path. We then back up the
path, at each node exploring any new side paths, until finally we retreat back to
a. We then explore any new paths remaining from a. Figure 7.13 shows a graph
after the first few nodes (marked by circles) have been visited using depth-first
search.

 Figure 7.13

For a more formal description of the depth-first search algorithm we will use
recursion, where the algorithm invokes itself in the course of its execution. In the
following algorithm, the input is a simple, connected graph G and a specified node
a; the output is a list of all nodes in G in depth-first order from a.

 Section 7.4 Traversal Algorithms 597

 algoRitHm DEPthFirst

DepthFirst(simple, connected graph G; node a)
//Writes nodes in graph G in depth-first order from node a

mark a visited
write (a)
for each node n adjacent to a do

if n not visited then
DepthFirst(G, n)

end if
end for

end DepthFirst

In the recursive step, the algorithm is invoked with a new node specified as the
starting point. We have not indicated here how to mark visited nodes or how to
find those nodes n that are adjacent to a.

 example 11 We will apply depth-first search to the graph of Figure 7.13, where a is the initial
node. We first mark that we have visited a (it’s helpful in tracing the execution of
the algorithm to circle a visited node), and then we write out a. Next we search the
nodes adjacent to a for an unvisited node. We have a choice here (b, e, h, and i); let us
select node b. (Just so we all get the same answers, let’s agree to choose the node
that is alphabetically first when we have a choice; in practice, the choice would
be determined by how the vertices were stored in the graph representation.) Then
we invoke the depth-first search algorithm beginning with node b.

We go back to the beginning of the algorithm, where the specified node is
now b rather than a. Thus we first mark b visited and write it out. Then we search
through nodes adjacent to b to find an unmarked node. Nodes a and c are adjacent
to b, but node a is marked as already visited. Node c will do, and we invoke the
depth-first search algorithm beginning with node c.

Node c is marked and written out, and we look for unmarked nodes adjacent to
c. By our alphabetical convention, we select node d from the set 5d, f 6 . Continuing
in this fashion, after visiting node d we next visit node f and then node g. When we
get to node g, we have reached a dead end because there are no unvisited adjacent
nodes. Thus the for loop of the instance of the algorithm invoked with node g is
complete. (The graph at this point looks like Figure 7.13.)

We are therefore done with the algorithm for node g, but node g was (possibly
one of) the unmarked nodes adjacent to node f, and we are still in the for loop for the
instance of the algorithm invoked with node f. As it happens, g is the only unvisited
node when we are processing f; therefore we complete the for loop and thus the algo-
rithm for node f. Similarly, backing up to node d, the algorithm finds no other adjacent
unmarked nodes, and it backs up again to the instance of the algorithm invoked with
node c. Thus, after processing node d and everything that came after it until the dead
end, we are still in the for loop for the algorithm applied to node c. We look for other
unmarked nodes adjacent to c and find one—node e. Therefore we apply depth-first
search to node e, which leads to nodes h, i, and k before another dead end is reached.
Backing up, we have a final new path to try from node h, which leads to node j. The
complete list of the nodes, in the order in which they would be written out, is
 a, b, c, d, f, g, e, h, i, k, j

ReminDeR

In a depth-first search, go
as far as possible, then
back up, catching any
paths missed on the way
down.

598 Graph Algorithms

Example 11 makes the depth-first search process sound very complex, but it is
much easier to carry out than to write down, as you will see in Practice 14.

Breadth-First search

In breadth-first search, beginning at an arbitrary node a, we first fan out from node
a to visit nodes that are adjacent to a; then we fan out from those nodes, and so on,
almost like the concentric circles of ripples in a pond. Figure 7.15 shows the first few
nodes visited in the same graph as Figure 7.13, this time using breadth-first search.

 Figure 7.15

praCtiCe 14 Write the nodes in a depth-first search of the graph in Figure 7.14. Begin with node a.

 Figure 7.14 ■

To write the breadth-first search algorithm in an elegant fashion, we will use a
queue structure. A queue is simply a line in which new arrivals are added at the back
and departures take place at the front. A checkout line in a grocery store is an example
of a queue of customers—a new customer joins the line at the back and departures
take place from the front of the line as customers are checked through. The addition of
an entry at the back of a queue is called an enqueue operation, and a departure from
the front of the queue is called a dequeue operation. Thus the notation enqueue(a, Q)
denotes adding a to the end of a queue called Q, and dequeue(Q) denotes removal of
the entry currently at the front of Q. We’ll also use a function front(Q), which returns
the value of the entry currently at the front of Q but does not remove that entry. In the
following algorithm, the input is a simple, connected graph G and a specified node a;
the output is a list of all nodes in G in breadth-first order from a.

 algoRitHm BrEaDthFirst

BreadthFirst(simple, connected graph G; node a);
//writes nodes in graph G in breadth first order from node a
Local Variable:
queue of nodes Q

initialize Q to be empty
mark a visited
write(a)
enqueue(a, Q)
while Q is not empty do

for each node n adjacent to front(Q) do
if n not visited then

mark n visited
write(n)
enqueue(n, Q)

end if
end for
dequeue(Q)

end while
end BreadthFirst

 example 12 Let’s walk through the algorithm for a breadth-first search of the graph of Figure
7.15 beginning at node a (this is the same graph on which we did the depth-first
search in Example 11). We begin by initializing an empty queue Q, marking node a
as visited, writing it out, and adding it to the queue. When we first reach the while
loop, the queue is not empty and a is the entry at the front of the queue. In the for
loop, we look for unvisited nodes adjacent to a to visit, write them out, and add
them to the back of the queue. We may have a choice of nodes to visit here; as be-
fore, and purely as a convention, we will agree to visit them in alphabetical order.
Thus the first time we complete the for loop, we have visited and written out b, e,
h, and i, in that order, and added them to the queue. The graph at this point looks

 Section 7.4 Traversal Algorithms 599

600 Graph Algorithms

like Figure 7.15. We then remove a from the front of the queue, which as a result
contains (from front to back)

b, e, h, i

In the next iteration of the while loop, b is the front element in the queue, and the
for loop searches for unvisited nodes adjacent to b. The only previously unvisited
node here is c, which gets marked as visited, written out and added to the queue.
After removing b, the queue contains

e, h, i, c

Performing the while loop again, e is at the front of the queue. A search of the
nodes adjacent to node e produces one new node, node j. The graph now looks like
Figure 7.16, and after removing e the queue contains

h, i, c, j

 Figure 7.16

When searching for nodes adjacent to h, we pick up one new node, node k. When
searching for nodes adjacent to i, no new nodes are added to the queue. When c
becomes the first element in the queue, a search for nodes adjacent to c turns up
two new nodes, d and f. After adding these to the queue (and removing c), the
queue contains

j, k, d, f

Looking for nodes adjacent to j and then to k adds no new nodes to the queue.
When the front of the queue is d, a new node g is found, and the queue (after re-
moving d) is

f, g

Processing f and then g yields no new nodes. After g is removed from the queue,
the queue is empty. The while loop—as well as the algorithm—terminates. The list
of nodes written out by this process, that is, the nodes in breadth-first order from
a, are

a, b, e, h, i, c, j, k, d, f, g

Like the depth-first search, the breadth-first search is not difficult to trace; one
must just keep track of the nodes that have been visited and the current contents
of the queue.

Analysis

How much work do the depth-first search and breadth-first searches perform?
Both algorithms look for all unvisited nodes adjacent to a given node. Suppose
the graph contains n nodes and m arcs. One of the advantages of representing a
graph as an adjacency list rather than an adjacency matrix is that this particular
operation is more efficient; to find nodes adjacent to node i requires traversing i’s
adjacency list, which may be short, rather than traversing row i of the adjacency
matrix, which must contain n entries. Therefore we will assume an adjacency list
representation of the graph.

In breadth-first search, the algorithm searches all at one time the entire ad-
jacency list of the node at the front of the queue, marking, writing out, and en-
queuing the unvisited nodes found. In the depth-first search, the algorithm may be
interrupted many times while traversing the adjacency list of a given node to go
off (by virtue of the recursion) and process sections of the adjacency lists of other
nodes. Eventually, however, every adjacency list is completely covered.

Traversing the adjacency lists of the graph drives the amount of work done in
either search. There are n adjacency lists, so the amount of work is at least Θ(n)
because each adjacency list must be checked. Because there are m arcs, the work
in traversing the total length of all the adjacency lists is at least Θ(m). Therefore
both depth-first search and breadth-first search are Θ(max(n, m)) algorithms. If
there are more arcs than nodes (the usual case), then Θ(max(n, m)) = Θ(m).

Applications

Depth-first search and breadth-first search can be used as the basis for performing
other graph-related tasks, some of which we have solved before. A nonrooted tree
structure that is a subgraph of the original graph can be associated with each search.
When traversing node i’s adjacency list, if node j is adjacent to i and is previously
unvisited, then the i–j arc is added to this subgraph. Because no arc to a previously
visited node is used, cycles are avoided and the subgraph is a nonrooted tree. Be-
cause all nodes ultimately are visited (for the first time), these trees are spanning
trees for the graph. Each tree has n − 1 arcs, the minimal number of arcs to connect
n nodes. Here we are assuming that arcs are unweighted, but if we consider them to
be weighted arcs, each with weight 1, then these trees are minimal spanning trees.

 Section 7.4 Traversal Algorithms 601

praCtiCe 15 Write the nodes in a breadth-first search of the graph in Figure 7.14, beginning with node a.
■

602 Graph Algorithms

The dark lines in Figure 7.13 are part of the depth-first search tree associated
with the search of Example 11, and the dark lines in Figures 7.15 and 7.16 are part
of the breadth-first search tree associated with the search of Example 12.

praCtiCe 16

 a. Complete the depth-first search tree for Example 11.
 b. Complete the breadth-first search tree for Example 12.

The depth-first search and breadth-first search algorithms apply equally well
to directed graphs and in the process yield a new algorithm for reachability. To
determine whether node j is reachable from node i, do a depth-first (or breadth-
first) search beginning at node i; when the algorithm terminates, check whether
node j has been visited. “All pairs” reachability, that is, which nodes are reach-
able from which nodes, can thus be determined by running depth-first or breadth-
first searches using each node in turn as the source node. This process would
require Θ(n * max(n, m)) work. If the graph is very sparse, in which case we have
max(n, m) = n, we would have an Θ(n2) algorithm for reachability. Recall that
Warshall’s algorithm (Section 7.1) was an Θ(n3) algorithm. The improvement
comes about because in a sparse graph, most adjacency lists will be short or emp-
ty, whereas Warshall’s algorithm processes entries in the adjacency matrix even if
those entries are 0s. But if the graph is not sparse, the number of arcs can be Θ(n2),
in which case Θ(n * min(n, m)) = Θ(n3), the same as Warshall’s algorithm. In ad-
dition, Warshall’s algorithm has the advantage of succinct implementation.

In Section 5.2 we defined a topological sort as a way to extend a partial order-
ing on a finite set to a total ordering. Let the partially ordered set be represented
by a directed graph. The topological sort will be achieved by counting the nodes,
so let the initial value of the count be 0. Pick a node as a source node and perform
a depth-first search from this node. Whenever the search backs up from a node for
the final time, assign that node the next counting number. When the depth-first
search algorithm terminates, pick an unvisited node (if one exists) to be the source
for another depth-first search, and continue to increment the counting number.
Continue this process until there are no unvisited nodes left in the graph. A to-
pological sort results by ordering the nodes in the reverse order of their counting
number. This process for topological sorting works because we assign the count-
ing number when we back up from a node for the final time. Its counting number
will then be higher than the numbers of all the nodes reachable from it, that is, all
the nodes of which it is a predecessor in the partial ordering,

 example 13 Figure 7.17a is a directed graph that represents a partial ordering. Choosing d
 (arbitrarily) as the source node and performing a depth-first search, we visit e and
f, at which point we must back up. Node f is assigned the counting number 1, but
we are not yet done with e, because we can go on to visit g. Backing up from g,
g is assigned the counting number 2. At this point we back up from e for the final
time and assign e the number 3 and then d the number 4. We choose a as the source
node for another search. We visit node c and then must back up, so c and a are as-
signed the numbers 5 and 6, respectively. Beginning with b as a source node, there

■

is nowhere to go, and b is assigned the number 7. There are no unvisited nodes
left in the graph, so the process stops. The numbering scheme is shown in Figure
7.17b.

 Figure 7.17

In reverse order of the counting numbers, we get

 7 6 5 4 3 2 1
 b a c d e g f

which is a topological ordering.

Now consider a graph G (undirected) that may not be a connected graph. A
connected component of G is a subgraph of G that is both connected and not a
subgraph of a larger connected subgraph. In Figure 7.19 there are three connected
components. Of course, if the original graph is connected, then it has only one
connected component.

 Figure 7.19

praCtiCe 17 Use the depth-first search algorithm to do a topological sort on the graph in Figure 7.18.
Indicate the counting numbers on the graph.

 Figure 7.18

 Section 7.4 Traversal Algorithms 603

■

604 Graph Algorithms

A depth-first or breadth-first search can be used to find the connected com-
ponents of a graph. We pick an arbitrary node as a source node and then conduct
a search. When the algorithm terminates, all visited nodes belong to one compo-
nent. We then find an unvisited node in the graph to serve as a source for another
search, which will produce a second component. We continue this process until
there are no unvisited nodes in the graph.

Although we defined reachability only for directed graphs, the concept also
makes sense for undirected, unconnected graphs. Let us consider only simple un-
directed, unconnected graphs but impose the convention that, even though there
are no loops, each node is reachable from itself. Reachability then becomes an
equivalence relation on the set of nodes of the graph; our convention imposes the
reflexive property, and symmetry and transitivity follow because the graph is un-
directed. This equivalence relation partitions the nodes of the graph into equiva-
lence classes, and each class consists of the nodes in one connected component
of the graph. Warshall’s algorithm can be applied to undirected graphs as well as
directed graphs. Using Warshall’s algorithm results in a matrix from which the
nodes making up various components of the graph can be determined, but this
requires more work than using the depth-first search.

As a final remark about depth-first search, we saw in Section 1.5 that the
 programming language Prolog, when processing a query based on a recursive
definition, pursues a depth-first search strategy (Example 40).

S e c t i o n 7 . 4 revieW

tecHniQueS

• Conduct a depth-first search of a graph.
• Conduct a breadth-first search of a graph.

main iDeaS

• Algorithms exist to visit the nodes of a graph
 systematically.

• Depth-first and breadth-first searches can serve as a
basis for other tasks.

W

W

exeRciSeS 7.4

For Exercises 1–6, write the nodes in a depth-first search of the following graph, beginning with the node specified.

 1. a 2. c 3. d 4. g 5. e 6. h

For Exercises 7–10, write the nodes in a depth-first search of the following graph, beginning with the node
specified.

 7. a 8. e 9. f 10. h
For Exercises 11–16, write the nodes in a breadth-first search of the graph for Exercises 1–6, beginning with
the node specified.

 11. a 12. c 13. d 14. g 15. e 16. h

For Exercises 17–20, write the nodes in a breadth-first search of the graph for Exercises 7–10, beginning with
the node specified.

 17. a 18. e 19. f 20. h

For Exercises 21–24, write the nodes in a depth-first search of the following graph, beginning with the node
specified.

 21. a 22. g 23. f 24. e

 Section 7.4 Traversal Algorithms 605

606 Graph Algorithms

For Exercises 25–28, write the nodes in a breadth-first search of the graph for Exercises 21–24, beginning with
the node specified.
 25. a 26. g 27. f 28. e
 29. In the computer network in the accompanying figure, the same message is to be broadcast from node C

to nodes A, E, F, and G. One way to do this is to find the shortest path from C to each of these nodes and
send out multiple copies of the same message. A more efficient approach is to send one copy out from C
along a spanning tree for the subgraph containing the nodes involved. Use the depth-first search algorithm
to find a spanning tree for the subgraph.

A C

B

E
D

F

G

 30. Using the graph for Exercise 29, use the breadth-first search algorithm to find a spanning tree for the subgraph.
 31. Use the depth-first search algorithm to do a topological sort on the following graph. Indicate the counting

numbers on the graph. Also state the starting node or nodes for the search.

 32. Use the depth-first search algorithm to do a topological sort on the following graph. Indicate the counting
numbers on the graph. Also state the starting node or nodes for the search.

 33. The data structure used to implement a breadth-first search is a queue. What is the appropriate data structure
to implement a depth-first search?

 34. Find a way to traverse a tree in level order, that is, so that all nodes at the same depth are listed from left
to right for increasing depth. (Hint: We already have a way to do this.)

 35. Describe how the depth-first search algorithm can be used in a connected (undirected) graph to detect
the presence of cycles in the graph. (While it is simple to look at Figure 7.13 and see that a–b–c–e–a, for
example, is a cycle, in a huge graph with thousands of node and arcs, a cycle may be less easy to spot, in
addition to which you might not even have a visual representation.)

 36. a. Describe the order in which nodes are visited in a breadth-first search of the bipartite complete graph Km,n.
 b. Describe the order in which nodes are visited in a depth-first search of the bipartite complete graph Km,n.

 S e c t i o n 7 . 5 artiCulation points anD Computer netWorks

the Problem statement

In a graph that represents a computer network, the nodes denote the communicat-
ing entities (end-user computers, servers, routers, and so on) and the arcs denote
the communications medium (coaxial cable, fiber optic, and so on). Such a graph
should be a connected graph, so that there is a path between every pair of nodes.
To minimize the length of cable or wire required, we would choose a minimum
spanning tree. However, if an arc in a minimum spanning tree is removed (for
example, that section of cable or wire is damaged or broken), then the graph is no
longer connected. Each arc becomes a single point of failure for the network. That
is why such a network usually contains more arcs than just those of a minimal
spanning tree. However, even in a graph sufficiently rich in arcs to withstand the
loss of a single arc, a node may be a single point of failure. If the node fails (and
thus is logically removed), the arcs of which that node is an endpoint are disabled
and the result may be a disconnected graph.

 Definition ARticulAtioN PoiNt
A node in a simple, connected graph is an articulation point if its removal
(along with its attached arcs) causes the remaining graph to be disconnected.

 example 14 Node d in the graph of Figure 7.20a is an articulation point. Removing d results in
the disconnected graph of Figure 7.20b.

a a

g g

b c b c

e

d

f e f

(a) (b)

 Figure 7.20

 Definition BicoNNecteD GRAPh
A simple, connected graph is biconnected if it has no articulation points.

 Section 7.5 Articulation Points and Computer Networks 607

608 Graph Algorithms

The presence of articulation points is clearly an undesirable feature of a net-
work. Although it is easy to spot an articulation point in a graph as small as that
of Figure 7.20a, we will develop an algorithm that will detect such points no mat-
ter how large the graph (and, of course, does not require a visual representation
of the graph). Articulation points separate the graph into biconnected compo-
nents, subgraphs that are biconnected and are not subgraphs of larger biconnected
 subgraphs. In Figure 7.20, a–b–d–c and d–e–g–f are biconnected components.

the idea behind the Algorithm

The key to this algorithm is depth-first search. We know from the previous section
that a depth-first search determines a nonrooted tree. An arc is added to the tree
whenever the search progresses to a previously unvisited node. Arcs of the graph
belonging to this tree are called tree arcs. The remaining arcs in the graph are
called back arcs.

 example 15 In Figure 7.20 a depth-first search from node a visits nodes in the order a, b, d, c,
e, g, and f. In Figure 7.21 the tree arcs are dark, and the back arcs are light.

a

g

b c

e

d

f

 Figure 7.21

The depth-first search tree passes through all nodes. To detect nodes that are
articulation points, we examine their relative positions in the tree. First consider
the single node that is the starting point of the depth-first search tree. If only one
tree arc emanates from the starting node, then as the tree continues, all other
nodes in the graph can be reached from the node at the other end of that tree arc.
Therefore, removing the starting node will not disconnect the graph. However, if
two or more tree arcs emanate from the starting node, then the only way to get
from one subtree to another is to pass back through the starting node. In this case,
removing the starting node disconnects the graph.

Thus in Figure 7.21 node a is the starting node of the depth-first search tree,
and there is a single tree arc emanating from a. Removing node a (and its two arcs)
does not disconnect the graph. Had we begun a depth-first search at node d, how-
ever, the tree would have looked like Figure 7.22. There would be two tree arcs
coming from node d, showing that d is an articulation point.

a

g

b c

e

d

f

 Figure 7.22

Consider any node n that is a leaf of the depth-first search tree (attached to the
end of a single tree arc). Such a leaf may be a leaf of the graph itself, that is, a node
of degree 1, in which case it is clearly not an articulation point. If not, then the
other arcs emanating from n were not used in the depth-first search, so the nodes
adjacent to n are reachable through alternative paths that do not go through n.
Because n is not needed on a path to any other node, its removal does not discon-
nect the graph. Therefore no leaves of the depth-first search tree are articulation
points. In Figure 7.21 node c, for example, is a leaf of the depth-first search tree;
the arc from c to a is a back arc, so node a is accessible through another route that
does not require node c. Node c can be removed without disconnecting the graph.

Now consider a node n that is not a leaf in the depth-first search tree and is
not the starting node. Because n is not a leaf, there are one or more subtrees below
n. Suppose there is a single subtree; let x be a node on this subtree. If x has a back
arc to some node that precedes n in the depth-first search (an “ancestor” of n), then
this arc provides part of an alternative path for x—and all other nodes in the sub-
tree—to be connected with the rest of the graph without using node n. In this case
n is not an articulation point. (See Figure 7.23a, where removing n and its attached
arcs does not disconnect the graph.) If there is more than one subtree below n, then
n will not be an articulation point if and only if each subtree has such an “escape
route” allowing it to connect with the rest of the graph—including the other sub-
trees—without going through n. (See Figure 6.23b; note that the back arc from y
to z does not help because it does not reach back to an ancestor of n.)

n

x

r

n
z

y

x

r

Escape route

Escape route

Escape route

(a) (b)

 Figure 7.23

 Section 7.5 Articulation Points and Computer Networks 609

610 Graph Algorithms

the Algorithm itself

The key to the algorithm, as we may guess from the foregoing discussion, is keeping
track of the destinations of the back arcs. We will assign a tree number to each node
that corresponds to the order in which that node is visited in the depth-first search.
Thus the starting node in a depth-first search has tree number 1, the next node visited
has tree number 2, and so on. In addition, we will maintain a “back number” for each
node x. The back number will be the minimum tree number of a node (the farthest
back node) reachable from x using either back arcs from x or from descendants of x in
the subtree. To incorporate information about back arcs of descendants of x, the back
number of x is adjusted when the depth-first search backs up to node x from farther
down in the tree. Node n is an articulation point whenever a subtree of n has no back
arc to an ancestor of n, and this circumstance is detected when the search backs up to
n from the subtree. Suppose the search is backing up from x to n. If the back number
of x at this point is not smaller than the tree number of n, then n is an articulation point.

The following algorithm carries out the depth-first search and builds the
depth-first search tree. It correctly handles both leaves and nonstarting-node non-
leaves of the depth-first search tree, leaving only the starting node as a special
case. It also assumes that the graph structure itself contains the tree number and
back number for each node.

 algoRitHm artPoint

ArtPoint(graph G; node n; integer TreeNumber)
//detects articulation points in G by depth-first search from n; graph G
//also maintains a tree number TN and back number BN value for each
//node;TreeNumber = 0 when first invoked.
Local variable:
node x //temporary node

mark n visited //first encountering n, assign its numbers
TreeNumber = TreeNumber + 1
TN 3n 4 = TreeNumber
BN 3n 4 = TN 3n 4
for each node x adjacent to n by a nontree edge do

if x not visited then
make n–x a tree edge
ArtPoint(G, x, TreeNumber)
//depth-first search now backing up to n from x
if BN 3x 4 >= TN 3n 4then //line 1

write(“n is an articulation point”)
else

//adjust back number of n
BN 3n 4 = min(BN 3n 4, BN 3x 4) //line 2

end if
else

//arc n–x is a back edge, adjust BN 3n 4
BN 3n 4 = min(BN 3n 4, TN 3x 4) //line 3

end if
end for

end ArtPoint

 example 16 We will trace the articulation point algorithm on the graph of Figure 7.20a, where
a is the starting node. The tree begins with arcs a–b, b–d, and d–c. Each new node
is numbered with a consecutive tree number, and its back number is set equal to
its tree number (Figure 7.24a; in the figure, the numbers in parentheses are the tree
number and the back number, respectively). While processing node c, the back
edge to a is discovered, and the back number of c is adjusted to 1, the tree number
of a (line 3 in the algorithm description). This action completes the processing of
node c, and the depth-first search backs up to d. The back number of c is less than
the tree number of d, so the back number of d is adjusted to equal that of c (line 2).
The situation at this point is shown in Figure 7.24b.

The depth-first search moves on to nodes e, g, and f (Figure 7.24c). At f the
back arc to d is found, and the back number of f is set equal to the tree number of d
(line 3). Backing up from f to g, the back number of g is adjusted to equal the back
number of f (line 2) and similarly for e (line 2 again). (See Figure 7.24d.)

a (1, 1)

g g g (6, 6)

g (6, 3) g (6, 3)

b (2, 2) c (4, 4)

e

d (3, 3)

a (1, 1)

b (2, 2) c (4, 1)

d (3, 1)

a (1, 1)

(a) (b)

(d) (e)

(c)

b (2, 2) c (4, 1)

d (3, 1)

f e f e (5, 5) f (7, 7)

e (5, 3) f (7, 3)e (5, 3)

d = articulation point

f (7, 3)

a (1, 1)

b (2, 2) c (4, 1)

d (3, 1)

a (1, 1)

b (2, 1) c (4, 1)

d (3, 1)

 Figure 7.24

Finally, in backing up from e to d, the back number of e is greater than or equal
to the tree number of d, so d is declared an articulation point (line 1). The re-
cursion backs up to node b, adjusting the back number of b, and then node a,
at which point line 1 would seem to apply (Figure 7.24e). But a is the starting
node of the search and so is not an articulation point, because there is only one
tree arc from a.

 Section 7.5 Articulation Points and Computer Networks 611

612 Graph Algorithms

S e c t i o n 7 . 5 revieW

tecHniQue

• Find articulation points in a simple, connected
graph (using algorithm ArtPoint)

main iDea

• Articulation points represent single points of fail-
ure in a computer network, but an algorithm exists
to detect their presence.

praCtiCe 18 In Figure 7.25, the depth-first search began at node a. Explain why each node is marked as
it is and how it is concluded that c is an articulation point.

c = articulation point

b (2, 1)a (1, 1)

c (3, 1)

d (4, 4)

 Figure 7.25

W

exeRciSeS 7.5

For Exercises 1–6, draw the depth-first search trees, where node a is the starting node of the depth-first search.
Identify the back arcs.

 1. b

a c

e

d

 2.

g

a

c

h

b

e
f

i

d

 3. b

a c
d

ge f h

 4.

e

a

g f
c b

 5.

da

b

gf

e

c

h

 6.

da b

ge
f

c

h

■

For Exercises 7–12, use algorithm ArtPoint to find the articulation points. Label the tree number and back
number for each node, both as first assigned and as changed. Draw the biconnected components of the graph.

 7. a

d

b

e

gf

c

 8. a

c

ed

b

 9.

a c

e
b

d

f

 10. a b

c d

e

 11.

a

b

c

d

e

f

g

h

 12. a b

c

g

h

d

e

f

i

 Section 7.5 Articulation Points and Computer Networks 613

614 Graph Algorithms

c H a p t e R 7 revieW

teRminology

adjacency relation (p. 555)
articulation point(p. 607)
back arc (p. 608)
biconnected component(p. 608)
biconnected graph(p. 607)
breadth-first search (p. 598)
connected component (p. 603)
depth-first search (p. 596)

dequeue (p. 599)
enqueue (p. 599)
Euler path (p. 572)
even node (p. 572)
graph traversal (p. 596)
greedy algorithm (p. 586)
Hamiltonian circuit (p. 576)
minimal spanning tree (p. 587)

odd node (p. 572)
queue (p. 599)
reachable node (p. 557)
reachability matrix (p. 559)
spanning tree (p. 587)
tree arc (p. 608)

Self-teSt

Answer the following true–false questions.
section 7.1
1. Any binary relation on a set N has an associated

adjacency matrix.
2. Transitive closure is the adjacency relation equiva-

lent of reachability.
3. The reachability matrix r for a directed graph G

is computed by taking the powers of the adjacency
matrix up to n2.

4. Warshall’s algorithm proceeds by computing, in
turn, the number of paths of length 1, then length 2,
and so on, between nodes.

5. Warshall’s algorithm computes symmetric closure
in the case of a symmetric adjacency relation.

section 7.2
1. A graph with four odd nodes can still be a connected

graph.
2. An Euler path exists in any graph with an even

number of odd nodes.
3. An Θ(n2) algorithm exists to test the existence of

an Euler path in a graph with n nodes.
4. A Hamiltonian circuit uses each arc and node of the

graph exactly once except for the starting and end-
ing node.

5. No algorithm to solve the Hamiltonian circuit
problem is known.

section 7.3
1. Dijkstra’s algorithm for the shortest path in a graph

maintains a set IN and adds at each step the node
closest to a node in IN.

2. A greedy algorithm is one that recursively divides
the problem into as many subproblems as possible.

3. The minimal spanning tree for a graph may not be
unique.

4. Using a linked-list representation for nodes not in
IN does not improve the order of magnitude of the
worst-case work done by Dijkstra’s algorithm.

5. The collection of all arcs that are not in a minimal
spanning tree for a graph will also form a spanning
tree, but it may not be minimal.

section 7.4
1. The depth-first search visits nodes at the bottom of

the graph first.
2. In a breadth-first search beginning with node i, all

the nodes adjacent to i are visited in order.
3. An analysis of the depth-first search and the

breadth-first search shows them to be algorithms of
the same order of magnitude.

4. Preorder traversal is the tree equivalent of the
breadth-first search, using the root as the starting node.

5. Topological sorting can be done by a succession of
breadth-first searches on a directed graph.

section 7.5
1. If node n is an articulation point in a connected

graph, then any path between any two nodes in the
graph must pass through n.

2. A biconnected graph is a simple, connected graph
with no articulation points.

3. When a node n is first reached during a depth-first
search, any other arcs from n to previously visited
nodes are back arcs.

4. A node n where every subtree of n in the depth-first
search tree has a back arc to a predecessor of n is
not an articulation point.

5. The root of a depth-first search is always an articula-
tion point in the graph because any node’s back num-
ber will be greater than or equal to its tree number.

 Chapter 7 Review 615

o n t H e c o m p u t e R

For Exercises 1–5, write a computer program that
produces the desired output from the given input.

1. Input: Adjacency matrix a for a directed graph
 Output: Reachability matrix r for the graph, comput-

ed from the formula r = a ~ a(2) ~ c~ a(n)

2. Input: Adjacency matrix a for a directed graph
 Output: Reachability matrix r for the graph, com-

puted by using Warshall’s algorithm

3. Input: Adjacency matrix a for a graph
 Output: Message indicating whether the graph has

an Euler path

4. Input: Adjacency matrix a for a simple weighted
graph or directed graph and two nodes in the graph

 Output: Distance for the shortest path between the
two nodes or a message that no path exists; verti-
ces in the shortest path if one exists (Hint: You will
need to find some way of denoting which vertices
are currently in IN.)

5. Input: Adjacency matrix a for a simple, weighted,
connected graph

 Output: Arcs (as ordered pairs) in a minimal
 spanning tree

For Exercises 6–8, first write a function that collects
information from the user about a graph and builds an
adjacency list representation of the graph; incorporate
this function in the programs requested.

6. Input: Information about a graph (see instructions
above) and a node in the graph

 Output: Nodes in a depth-first search of the graph
beginning with the given node

7. Input: Information about a graph (see instructions
above) and a node in the graph

 Output: Nodes in a breadth-first search of the graph
beginning with the given node

8. Input: Information about a graph (see instructions
above)

 Output: Articulation points in the graph

This page intentionally left blank

Chapter ObjeCtives

After studying this chapter, you will be able to:

• Determine whether a given mathematical structure is a Boolean algebra.
• Prove properties about Boolean algebras.
• Understand what it means for an isomorphism function to preserve the effects

of a binary operation or other property.
• Draw a logic network to represent a Boolean expression.
• Write a Boolean expression to represent a logic network.
• Write the truth function for a Boolean expression or logic network.
• Write a Boolean expression in canonical sum-of-products form for a given

truth function.
• Use NAND and NOR gates as well as AND, OR, and NOT gates to build logic

networks.
• Write a truth function from a description of a logical control device.
• Simplify Boolean expressions and logic networks using Karnaugh maps.
• Simplify Boolean expressions and logic networks using the Quine–McCluskey

method.

You have been hired by Rats R Us to build the control logic for the production facilities
for a new anticancer chemical compound being tested on rats. The control logic must
manage the opening and closing of two valves, A and B, downstream of the mixing
vat. Valve A is to open whenever the pressure in the vat exceeds 50 psi (pounds per
square inch) and the salinity of the mixture exceeds 45 g/L (grams per liter). Valve B is
to open whenever valve A is closed and the temperature exceeds 53°C and the acidity
falls below 7.0 pH (lower pH values mean more acidity).

 Question: How many and what type of logic gates will be needed in the circuit?

The answer to this electronics problem lies, surprisingly, in a branch of math-
ematics developed around 1850 by George Boole, an English mathematician.
Boole was interested in developing rules of “algebra” for logical thinking,
similar to the rules of algebra for numerical thinking. Derided at the time as
useless, if harmless, Boole’s work is the foundation for the electronics found in
computers today.

8Boolean Algebra and
Computer Logic

Chapter

617

618 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 619

In Section 8.1 we define Boolean algebra as a mathematical model of both
propositional logic and set theory. The definition requires every Boolean algebra
to have certain properties, from which many additional properties can be derived.
This section also discusses what it means for two instances of a Boolean algebra
to be isomorphic.

Section 8.2 establishes a relationship between the Boolean algebra structure
and the wiring diagrams for the electronic circuits in computers, calculators, in-
dustrial control devices, telephone systems, and so forth. Indeed, we will see that
truth functions, expressions made up of variables and the operations of Boolean
algebra, and these wiring diagrams are all related. As a result, we can effectively
pass from one formulation to another and still preserve characteristic behavior
with respect to truth values. We will also find that we can simplify wiring dia-
grams by using properties of Boolean algebras. In Section 8.3 we will look at two
other procedures for simplifying wiring diagrams.

 S e c t i o n 8 . 1 Boolean algeBra StruCture

Let us revisit the wffs of propositional logic and associate with them a certain
type of function. Suppose a propositional wff P has n statement letters. Then each
row of the truth table for that wff associates a value of T or F with an n-tuple of
T–F values. The entire truth table defines a function f such that f: 5T, F6n S 5T, F6.
The function associated with a tautology maps 5T, F6n S 5T6, and the function
associated with a contradiction maps 5T, F6n S 5F6.

 example 1 We’ve seen this idea before. From Example 31 in Chapter 5, the function
f: 5T, F62 S 5T, F6 for the wff A ~ B′ is given by the following truth table.

A B B∙ A ~ B′

T T F T

T F T T

F T F F

F F T T

Here f (T, F) = T and f (F, T) = F.

Suppose we agree, for any propositional wff P with n statement letters, to let
the symbol P denote not only the wff but also the corresponding function defined
by the truth table. If P and Q are equivalent wffs, then they have the same truth
tables and therefore define the same function. Then we can write P = Q rather
than P 3 Q. This simply confirms that a given function has multiple names, al-
though a given wff defines a unique function.

With this agreement, the short list of tautological equivalences from Section
1.1 can be written as follows, where ~ and ` denote disjunction and conjunc-
tion, respectively, A′denotes the negation of a statement A, 0 stands for any con-
tradiction, and 1 stands for any tautology:

618 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 619

1a. A ~ B = B ~ A lb. A ` B = B ` A (commutative properties)
2a. (A ~ B) ~ C = 2b. (A ` B) ` C = (associative properties)
 A ~ (B ~ C) A ` (B ` C)
3a. A ~ (B ` C) = 3b. A ` (B ~ C) = (distributive properties)
 (A ~ B) ` (A ~ C) (A ` B) ~ (A ` C)
4a. A ~ 0 = A 4b. A ` 1 = A (identity properties)
5a. A ~ A′ = 1 5b. A ` A′ = 0 (complement properties)

Switching gears a bit, in Section 4.1 we studied set identities among the sub-
sets of a set S (the elements of `(S)). We found the following list of set identities,
where c and d denote the union and intersection of sets, respectively, A′ is the
complement of a set A, and [is the empty set:

1a. A c B = B c A lb. A d B = B d A (commutative properties)
2a. (A c B) c C = 2b. (A d B) d C = (associative properties)
 A c (B c C) A d (B d C)
3a. A c (B d C) = 3b. A d (B c C) = (distributive properties)
 (A c B) d (A c C) (A d B) c (A d C)
4a. A c [= A 4b. A d S = A (identity properties)
5a. A c A′ = S 5b. A d A′ = [(complement properties)

These two lists of properties are similar. The disjunction of statements and the
union of sets seem to play the same roles in their respective environments. So do
the conjunction of statements and the intersection of sets. A contradiction seems
to correspond to the empty set and a tautology to S. What should we make of this
resemblance?

Models or Abstractions

We seem to have found two different examples—propositional logic and set
theory—that share some common properties. One of the hallmarks of scientific
thought is to look for patterns or similarities among various observed phenomena.
Are these similarities manifestations of some underlying general principle? Can
the principle itself be identified and studied? Could this research shed light on the
behavior of various instances of this principle? Sometimes, as seems to be the
case with propositional logic and set theory, similar mathematical properties or
behavior can be seen in different contexts. A mathematical structure is a formal
model that serves to embody or explain this commonality, just as in physics the
law of gravity is a formal model of why apples fall, the ocean has tides, and the
planets revolve around the sun.

Mathematical principles are models or abstractions intended to capture prop-
erties that may be common to different instances or manifestations. These princi-
ples are sometimes expressed as mathematical structures—abstract sets of objects,
together with operations on or relationships among those objects that obey certain
rules. (This concept may give you a clue about why this book is titled as it is.)

We can liken a mathematical structure to a human skeleton. We can think of
the skeleton as the basic structure of the human body. People may be thin or fat,
short or tall, black or white, and so on, but stripped down to skeletons they all look
pretty much alike. Although the outward appearances differ, the inward structure,
the shape and arrangement of the bones, is the same. Similarly, mathematical

620 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 621

structures represent the underlying sameness in situations that may appear out-
wardly different.

It appears reasonable to abstract the common properties (tautological equiva-
lences and set identities) for propositional wffs and set theory. Thus we will soon
define a mathematical structure called a Boolean algebra that incorporates these
properties. First, however, we note that modeling or abstracting is not an entirely
new idea to us.

 1. We used predicate logic to model reasoning and formally defined an inter-
pretation as a specific instance of predicate logic (Section 1.3).

 2. We defined the abstract ideas of partial ordering and equivalence relation,
and considered a number of specific instances that could be modeled as
posets or sets on which an equivalence relation is defined (Section 5.1).

 3. We noted that graph and tree structures can model a great variety of in-
stances (Sections 6.1 and 6.2).

Boolean algebra is just another model or abstraction for which we already have
two instances.

Definition and Properties

Let us characterize formally the similarities between propositional logic and set
theory. In each case we are talking about items from a set: a set of wffs or a set
of subsets of a set S. In each case we have two binary operations and one unary
operation on the members of the set: disjunction/conjunction/negation or union/
intersection/complementation. In each case there are two distinguished elements
of the set: 0/1 or [∙S. Finally, there are the 10 properties that hold in each case.
Whenever all these features are present, we say that we have a Boolean algebra.

 Definition BooLeAn ALgeBrA
A boolean algebra is a set B on which are defined two binary operations + and #
and one unary operation ′ and in which there are two distinct elements 0 and 1
such that the following properties hold for all x, y, z [B:

1a. x + y = y + x 1b. x # y = y # x (commutative properties)
2a. (x + y) + z = 2b. (x # y) # z = (associative properties)
 x + (y + z) x # (y # z)
3a. x + (y # z) = 3b. x # (y + z) = (distributive properties)
 (x + y) # (x + z) (x # y) + (x # z)
4a. x + 0 = x 4b. x # 1 = x (identity properties)
5a. x + x′ = 1 5b. x # x′ = 0 (complement properties)

What, then, is the Boolean algebra structure? It is a formalization that ab-
stracts, or models, the two cases we have considered (and perhaps others as well).
There is a subtle philosophical distinction between the formalization itself, the
idea of the Boolean algebra structure, and any instance of the formalization, such
as these two cases. Nevertheless, we will often use the term Boolean algebra to
describe both the idea and its occurrences. This usage should not be confusing.
We often have a mental idea (“chair,” for example), and whenever we encounter a

620 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 621

concrete example of the idea, we also call it by our word for the idea (this object
is a “chair”).

The formalization helps us focus on the essential features common to all
examples of Boolean algebras, and we can use these features—these facts from
the definition of a Boolean algebra—to prove other facts about Boolean algebras.
Then these new facts, once proved in general, hold in any particular instance of
a Boolean algebra. To use our analogy, if we ascertain that in a typical human
skeleton, “the thighbone is connected to the kneebone,” then we don’t need to
reconfirm the fact in every person we meet.

We denote a Boolean algebra by 3B, + , # , ′, 0, 1 4.

 example 2 Let B = 50, 16 (the set of integers 0 and 1) and define binary operations + and #
on B by x + y = max(x, y), x # y = min(x, y). Then we can illustrate the opera-
tions of + and # by the following tables.

+ 0 1 # 0 1

0 0 1 0 0 0

1 1 1 1 0 1

A unary operation ′ can be defined by means of a table, as follows, instead of by
a verbal description.

′

0 1

1 0

Thus 0′ = 1and 1′ = 0. Then 3B, + , # , ′, 0, 1 4 is a Boolean algebra. We can
verify the 10 properties by checking all possible cases. Thus, for property 2b, the
associativity of # , we show that

(0 # 0) # 0 = 0 # (0 # 0) = 0
(0 # 0) # 1 = 0 # (0 # 1) = 0
(0 # 1) # 0 = 0 # (1 # 0) = 0
(0 # 1) # 1 = 0 # (1 # 1) = 0
(1 # 0) # 0 = 1 # (0 # 0) = 0
(1 # 0) # 1 = 1 # (0 # 1) = 0
(1 # 1) # 0 = 1 # (1 # 0) = 0
(1 # 1) # 1 = 1 # (1 # 1) = 1

For property 4a, we show that

0 + 0 = 0
1 + 0 = 1

■
PraCtiCe 1 Verify property 4b for the Boolean algebra of Example 2.

622 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 623

Bear in mind that Example 2 illustrates a particular instance of the Boolean
algebra structure. Any Boolean algebra must, by the definition, have at least two
elements, a 0 element and a 1 element. The specific Boolean algebra in Example
2 has just those two elements, the integers 0 and 1. But if you want to do a proof
about Boolean algebras in general, you cannot assume that 0 and 1 are the only el-
ements. This means that if you know that x and y are two elements in an arbitrary
Boolean algebra and that x ∙ y, that does not mean that y = x′.

 example 3 Let S = 5a, b, c6. Then `(S) has eight elements:

[, 5a6, 5b6, 5c6, 5a. b6, 5a, c6, 5b, c6, 5a, b, c6

so using those eight elements together with the operations of union, intersec-
tion, and complementation gives an eight-element Boolean algebra. The empty
set is the 0 element, and 51, 2, 36 is the 1 element. We could show the tables
for union and intersection, but let’s just look at complementation. Remember that
x c x′ = 5a, b, c6.

′

[5a, b, c6
5a6 5b, c6
5b6 5a, c6
5c6 5a. b6

5a. b6 5c6
5a, c6 5b6
5b, c6 5a6

5a, b, c6 [

Here 5a, c6 and 5c6 are two distinct elements of this Boolean algebra, but 5a, c6 is
not 5c6′.

There are many other properties that hold in any Boolean algebra. We can
prove these additional properties by using the properties in the definition.

 example 4 The idempotent (pronounced eye′-dem-po-tent) property

x + x = x

holds in any Boolean algebra because

 x + x = (x + x) # 1 (4b)
 = (x + x) # (x + x′) (5a)
 = x + (x # x′) (3a)
 = x + 0 (5b)
 = x (4a)

622 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 623

Although ordinary arithmetic of integers has many of the properties of a Bool-
ean algebra, the idempotent property should convince you that arithmetic is not a
Boolean algebra. The property x + x = x does not hold for ordinary numbers and
ordinary addition unless x is zero.

In the proof of Example 4, we used property 5a to replace 1 with x + x′. The
properties of Boolean algebra are equalities, and either side of an equal sign can
be replaced with the other side. The Boolean algebra properties (rules) are like the
equivalence rules in logic; to apply the rule, your situation must match exactly the
pattern of the rule. For example, it is legal to replace

(y # z) + x

with

x + (y # z)

using property 1a, because (y # z) + x matches the right side of 1a where y is the
Boolean algebra element y # z, and x + (y # z) matches the left side of 1a under the
same interpretation of y. We cannot say

x + (y # z) = (x # y) + (x # z)

using either property 3a or 3b because we have mixed up the two properties. And,
strictly speaking, we cannot replace

(y # z) + x

with

(y + x) # (z + x)

and claim that we are using property 3a because in property 3a the addition is to
the left of the multiplication. We must reason as follows:

 (y # z) + x = x + (y # z) (1a)
 = (x + y) # (x + z) (3a)
 = (y + x) # (z + x) (1a twice)

However, we will sometimes make implicit use of the associative property and
write

x + y + z

with no parentheses.
Each property in the definition of a Boolean algebra has its dual as part of

the definition, where the dual is obtained by interchanging + and # , and 1 and
0. For example, x + 0 = x and x # 1 = x are duals of each other. Therefore, every
time a new property P about Boolean algebras is proved, each step in that proof can
be replaced by the dual of that step. The result is a proof of the dual of P. Thus, once
we have proved P, we know that the dual of P also holds. It’s a two-for-one deal!

ReminDeR

A Boolean algebra
property may be applied
only when your expres-
sion exactly matches the
pattern of one side of the
property.

624 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 625

More properties of Boolean algebras appear in the exercises at the end of
this section. The most important of these properties are double negation and De
Morgan’s laws:

 (x′)′ = x (double negation—Exercise 7)
 (x + y)′ = x′ # y′ (x # y)′ = x′ + y′ (De Morgan’s laws—Exercise 8)

Table 8.1 suggests hints that may help when trying to prove a Boolean algebra
property of the form

some expression = some other expression

 example 5 The dual of the idempotent property (Example 4), x # x = x, is true in any Boolean
algebra.

■

PraCtiCe 2

a. What does the idempotent property of Example 4 become in the context of propositional logic?
b. What does it become in the context of set theory?

■

PraCtiCe 3

a. Prove that the universal bound property x + 1 = 1 holds in any Boolean algebra. Give a
reason for each step.

b. What is the dual property?

Once a property about Boolean algebra is proved, we can use it to prove new
properties.

table 8.1

Hints for proving boolean algebra equalities

Usually the best approach is to start with the more complicated expression and try to show that it reduces to the
simpler expression.

Think of adding some form of 0 (like x # x′) or multiplying by some form of 1 (like x + x′).

Remember property 3a, the distributive property of addition over multiplication—it is easy to forget because it
doesn’t look like arithmetic.

Remember the idempotent property x + x = x and its dual x # x = x.

Remember the universal bound property x + 1 = 1 and its dual x # 0 = 0.

 example 6 Prove that x′ # y = x′ # y + x′ # y # z in any Boolean algebra.
Following the suggestion in Table 8.1, we start with the more complicated

expression, x′ # y + x′ # y # z. There is a “common factor” of x′ # y, so we should

624 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 625

For x an element of a Boolean algebra B, the element x′ is called the comple-
ment of x (picking up the terminology from set theory). The complement of x
satisfies

 x + x′ = 1 and x # x′ = 0

Indeed, x′ is the unique element with these two properties. To prove it, suppose x1
is an element of B with these same properties,

 x + x1 = 1 and x # x1 = 0

Then

 x1 = x1
1 (4b)

 = x1
(x + x′) (x + x′ = 1)

 = (x1
x) + (x1

x′) (3b)
 = (x # x1) + (x′ # x1) (1b)
 = 0 + (x′ # x1) (x # x1 = 0)
 = (x # x′) + (x′ # x1) (x # x′ = 0)
 = (x′ # x) + (x′ # x1) (1b)
 = x′ # (x + x1) (3b)
 = x′ # 1 (x + x1 = 1)
 = x′ (4b)

Thus x1 = x′, and x′ is unique. (Uniqueness in the context of propositional logic
means that the truth table is unique, but there can be many different wffs associ-
ated with any particular truth table.)

The following theorem summarizes our observations.

ReminDeR

To prove that something

is unique, assume that

there are two of them and

prove that they must be

the same.

use a distributive property, although it’s not clear at this point how the z is going
to disappear.

 x′ # y + x′ # y # z = x′ # y # 1 + x′ # y # z (4b)
 = x′ # y # (1 + z) (3b)
 = x′ # y # (z + 1) (1a)
 = x′ # y # (1) (universal bound—and that’s
 how z disappears)
 = x′ # y (4b)

ReminDeR

If it walks like a duck and
it quacks like a duck, it
must be a duck.
If it has the two properties
of the complement, then
by uniqueness it must be
the complement.

 tHeoRem on the UniqUeness of CoMPLeMents
For any x in a Boolean algebra, if an element x1 exists such that

 x + x1 = 1 and x # x1 = 0

then x1 = x′.

626 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 627

There are many ways to define a Boolean algebra. Indeed, in our definition
of Boolean algebra, we could have omitted the associative properties, since these
can be derived from the remaining properties of the definition. It is much more
convenient, however, to include them.

isomorphic Boolean Algebras

What Is Isomorphism?
Two instances of a structure are isomorphic if there is a bijection (called an iso-
morphism) that maps the elements of one instance onto the elements of the other
so that important properties are preserved. (Isomorphic graphs were discussed in
Section 6.1.) If two instances of a structure are isomorphic, each is a mirror image
of the other, with the elements simply relabeled. The two instances are essentially
the same. Therefore, we can use the idea of isomorphism to classify instances of a
structure, lumping together those that are isomorphic.

 example 7 Consider the two partially ordered sets

S1 = 51, 2, 3, 5, 6, 10, 15, 306; x r y 4 x divides y
S2 = `(51, 2, 36); A s B 4 A # B

The Hasse diagram of each partially ordered set appears in Figure 8. 1. These two
diagrams certainly appear to be mirror images of each other; just by looking at the
diagrams, an obvious relabeling of the nodes, as shown in Figure 8.2, suggests itself.
The important properties of a partially ordered set are which elements are related,
and the Hasse diagram displays this information. For example, Figure 8.1a shows
that 1, because of its position at the bottom of the graph, is related to every element
in S1. Is this property preserved under the relabeling of Figure 8.2? Yes, because
[is the image of 1 under that relabeling, and [is related to every element in S2.
Similarly, all the other “is related to” properties are preserved under the relabeling.

2

figure 8.1

■

PraCtiCe 4 Prove that 0′ = 1 and 1′ = 0. (Hint: 1′ = 0 will follow by duality from 0′ = 1. To show
 0′ = 1, use the theorem on the uniqueness of complements.)

626 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 627

{1, 2, 3}

Ø

30

2

6 15
10

3
5

1

{2, 3}

{3}

{1, 2}
{1, 3}

{2}
{1}

figure 8.2

More formally, the relabeling is accomplished by the following bijection f
from the set of nodes in Figure 8.1a onto the set of nodes in Figure 8.1b.

 f (1) = [f (2) = 516 f (3) = 526 f (5) = 536
 f (6) = 51, 26 f (10) = 51, 36 f (15) = 52, 36 f (30) = 51, 2, 36

The bijection f is an isomorphism from poset (S1, r) to poset (S2, s). Because this
isomorphism exists, the posets (S1, r) and (S2, s) are isomorphic. (The function
f −1 would be an isomorphism from (S2, s) to (S1, r).)

In Example 7 it was relatively easy to find an isomorphism because of the
visual representation that captured the important properties (which elements
are related). Suppose that instead of a partially ordered set, we have a struc-
ture (like a Boolean algebra) where binary or unary operations are defined on
a set. Then the important properties pertain to how these operations act. An
isomorphism must preserve the effects of performing these operations. Each
instance of two such structures that are isomorphic must be the mirror image
of the other in the sense that “operate and then map” must equal “map and then
operate.”

Figure 8.3 illustrates this general idea for a binary operation. In Figure 8.3a,
the binary operation is performed on a and b, resulting in c, then c is mapped to d.
In Figure 8.3b, a and b are mapped to e and f, on which a binary operation is
 performed, resulting in the same element d as before. Remember,

operate and map = map and operate

Still another view of this little equation appears in the commutative diagram of
Figure 8.4.

628 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 629

Isomorphism as Applied to Boolean Algebra
Now let’s determine specifically what is involved when two instances of a Boolean
algebra are isomorphic. Suppose we have two Boolean algebras, 3B, +, # , ′, 0, 1 4
and 3b, &, *, ″, f, 1 4 . This notation means that, for example, if x is in B, x′ is
the result of performing on x the unary operation defined in B, and if z is an ele-
ment of b, z″ is the result of performing on z the unary operation defined in b.
How would we define isomorphism between these two Boolean algebras? First,
we would need a bijection f from B onto b. Then f must preserve in b the effects of
the various operations in B. There are three operations, so we use three equations
to express these preservations. To preserve the operation +, we want to be able to
operate using + on two elements in B and then map the result to b, or to map the
two elements to b and operate using the corresponding operation & on the results
there. (Think “operate and map = map and operate.”) Thus, for x and y in B, we
require

f (x + y) = f (x) & f (y)

PraCtiCe 5

a. Write the equation requiring f to preserve the effect of the binary operation # .
b. Write the equation requiring f to preserve the effect of the unary operation ′. ■

b

d

e

f

c
a

Map

Operate

Operate

(a)

b

d
a

Map

Map

(b)figure 8.3

figure 8.4

628 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 629

We already know (it was one of our original inspirations) that for any set
S, `(S) under the operations of union, intersection, and complementation consti-
tutes a Boolean algebra. Example 3 talks about this type of Boolean algebra where
S = 5a, b, c6. If we pick S = 51, 26, then the elements of `(S) are [, 516, 526,
and 51, 26. The operations are given by the following tables.

c [51, 26 516 526
[[51,26 516 526
51, 26 51,26 51, 26 51, 26 51, 26
516 516 51, 26 516 51, 26
526 526 51, 26 51, 26 526

d [51, 26 516 526 ′

[[[[[[51, 26
51, 26 [51, 26 516 526 51, 26 [

516 [516 516 [516 526
526 [526 [526 526 516

A Boolean algebra can be defined on the set B = 50, 1, a, a′6 where the opera-
tions of + , # , and ′ are defined by the following tables (see Exercise 1).

+ 0 1 a a′ # 0 1 a a′ ′

0 0 1 a a′ 0 0 0 0 0 0 1

1 1 1 1 1 1 0 1 a a′ 1 0

a a 1 a 1 a 0 a a 0 a a′

a′ a′ 1 1 a′ a′ 0 a′ 0 a′ a′ a

Here is the definition of an isomorphism for Boolean algebras.

 Definition IsomorphIsm for Boolean algeBras
Let 3B, +, # , ′, 0, 1 4 and 3b, &, *, ″, f, 1 4 be Boolean algebras. A function B S b
is an isomorphism from 3B, +, # , ′, 0, 1 4 to 3b, &, *, ″, f, 1 4 if
 1. f is a bijection
 2. f (x + y) = f (x) & f (y)
 3. f (x # y) = f (x) * f (y)
 4. f (x′) = (f (x))′ ′

■
Practice 6 Illustrate properties 2, 3, and 4 in the definition by commutative diagrams.

630 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 631

We claim that the mapping f : B S `(S) given by

 f (0) = [

 f (1) = 51, 26
 f (a) = 516
 f (a′) = 526

is an isomorphism. Certainly it is a bijection. For x, y [B, we can verify each of
the equations

f (x + y) = f (x) c f (y)
f (x # y) = f (x) d f (y)

f (x′) = (f (x))′

by examining all possible cases. Thus, for example,

f (a # 1) = f (a) = 516 = 516 d 51, 26 = f (a) d f (1)

■

Practice 7 Verify the following equations.

a. f (0 + a) = f (0) c f (a)
b. f (a + a′) = f (a) c f (a′)
c. f (a # a′) = f (a) d f (a′)
d. f (1′) = (f (1))′

The remaining cases also hold. Even without testing all cases, it is pretty clear
here that f is going to work because it merely relabels the entries in the tables for
B so that they resemble the tables for `(S). In general, however, it may not be so
easy to decide whether a given f is an isomorphism between two instances of a
structure. Even harder to answer is the question of whether two given instances of
a structure are isomorphic; we must either think up a function that works or show
that no such function exists. One case where no such function exists is when the
sets involved are not the same size; we cannot have a four-element Boolean alge-
bra isomorphic to an eight-element Boolean algebra.

We just showed that a particular four-element Boolean algebra is isomor-
phic to `(51, 26). It turns out that any finite Boolean algebra is isomorphic to
the Boolean algebra of a power set. Although we state this as a theorem, we
will not prove it.

 Theorem On Finite BOOlean algeBras
Let B be any Boolean algebra with n elements. Then n = 2m for some m, and B is
isomorphic to `(51, 2, … , m6).

This theorem gives us two pieces of information. The number of elements in
a finite Boolean algebra must be a power of 2. Also we learn that finite Boolean
algebras that are power sets are—in our lumping together of isomorphic things—

630 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 631

really the only kinds of finite Boolean algebras. In a sense we have come full
circle. We defined a Boolean algebra to represent many kinds of situations; now
we find that (for the finite case) the situations, except for the labels of objects, are
the same anyway!

S e c t i o n 8 . 1 review

tecHniQueS

• Decide whether something is a Boolean algebra.
• Prove properties about Boolean algebras.
• Write the equation meaning that a function f pre-

serves an operation from one instance of a struc-
ture to another, and verify or disprove such an
equation.

main iDeaS

• Mathematical structures serve as models or ab-
stractions of common properties found in diverse
situations.

• If there is an isomorphism (a bijection that pre-
serves properties) from A to B, where A and B are
instances of a structure, then except for labels, A
and B are the same.

• All finite Boolean algebras are isomorphic to
 Boolean algebras that are power sets.

W

exeRciSeS 8.1

 1. Let B = 50, 1, a, a′6, and let + and # be binary operations on B. The unary operation ′ is defined by
the table

′

0 1

1 0

a a′

a′ a

 Suppose you know that 3B, + , # , ′, 0, 1 4 is a Boolean algebra. Making use of the properties that must
hold in any Boolean algebra, fill in the following tables defining the binary operations + and # :

+ 0 1 a a′ # 0 1 a a′

0 0

1 1

a a

a′ a′

 2. a. What does the universal bound property (Practice 3) become in the context of propositional logic?
 b. What does it become in the context of set theory?
 3. Define two binary operations + and # on the set Z of integers by x + y = max(x, y) and x # y = min(x, y).
 a. Show that the commutative, associative, and distributive properties of a Boolean algebra hold for these

two operations on Z.
 b. Show that no matter what element of Z is chosen to be 0 , the property x + 0 = x of a Boolean alge-

bra fails to hold.

632 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 633

 4. Let M2(Z) denote the set of 2 × 2 matrices with integer entries, and let + denote matrix addition and #
denote matrix multiplication. Given

A = ca b
c d

d then A′ = c−a −b
−c −d

d .

Using c0 0
0 0

d and c1 0
0 1

d as the 0 element and the 1 element, respectively, either prove that

3M2(Z), + , # , ′, 0, 1 4 is a Boolean algebra or give a reason why it is not.
 5. Let S be the set 50, 16 . Then S

2 is the set of all ordered pairs of 0s and 1s; S
2 = 5(0, 0), (0, 1), (1, 0), (1, 1)6.

Consider the set B of all functions mapping S
2 to S. For example, one such function, f (x,y), is given by

f (0, 0) = 0
f (0, 1) = 1
f (1, 0) = 1
f (1, 1) = 1

 a. How many elements are in B?
 b. For f1 and f2 members of B and (x, y) [S2, define

 (f1 + f2)(x, y) = max(f1(x, y), f2(x, y))
 (f1

f2)(x, y) = min(f1(x, y), f2(x, y))

 f ′(x, y) = e 1 if f1(x, y) = 0
0 if f1(x, y) = 1

 Suppose

 f1(0, 0) = 1 f2(0, 0) = 1
 f1(0, 1) = 0 f2(0, 1) = 1
 f1(1, 0) = 1 f2(1, 0) = 0
 f1(1, 1) = 0 f2(1, 1) = 0

 What are the functions f1 + f2, f1
f2, and f 1′?

 c. Prove that 3B, + , # , ′, 0, 1 4 is a Boolean algebra where the functions 0 and 1 are defined by

 0(0, 0) = 0 1(0, 0) = 1
 0(0, 1) = 0 1(0, 1) = 1
 0(1, 0) = 0 1(1, 0) = 1
 0(1, 1) = 0 1(1, 1) = 1

 6. Let n be a positive integer whose decomposition into prime factors has no repeated prime. Let
B = 5x 0 x is a divisor of n6. For example, if n = 21 = 3 # 7, then B = 51, 3, 7, 216. Let the following
operations be defined on B:

 x + y = lcm(x, y) x # y = gcd(x, y) x′ = n�x

632 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 633

 Then + and # are binary operations on B and ′ is a unary operation on B.
 a. For n = 21, find
 (i) 3 # 7
 (ii) 7 # 21
 (iii) 1 + 3
 (iv) 3 + 21
 (v) 3′
 b. Prove that the commutative, associative, and distributive properties hold for both + and # .
 c. Find the value of the “0” element and the “1” element, then prove properties 4 and 5 for both + and # .
 d. Consider a value for n whose decomposition has repeated primes. In particular, let n = 12 = 2 # 2 # 3.

Prove that, using the above definitions for + and # , it’s not possible to define a complement for 6 in
the set 51, 2, 3, 4, 6, 126. Therefore a Boolean algebra cannot be constructed with n = 12 using the
process described.

 7. Prove the following property of Boolean algebras. Give a reason for each step. (Hint: Remember the
uniqueness of the complement.)

 (x′)′ = x (double negation)

 8. Prove the following property of Boolean algebras. Give a reason for each step. (Hint: Remember the
uniqueness of the complement.)

(x + y)′ = x′ # y′ (x # y)′ = x′ + y′ (De Morgan’s laws)

 9. Prove the following properties of Boolean algebras. Give a reason for each step.
 a. x + (x # y) = x (absorption properties)
 x # (x + y) = x
 b. x # 3 y + (x # z) 4 = (x # y) + (x # z) (modular properties)
 x + 3 y # (x + z) 4 = (x + y) # (x + z)
 c. (x + y) # (x′ + y) = y
 (x # y) + (x′ # y) = y
 d. (x + (y # z))′ = x′ # y′ + x′ # z′
 (x # (y + z))′ = (x′ + y′) # (x′ + z′)
 e. (x + y) # (x + 1) = x + (x # y) + y
 (x # y) + (x # 0) = x # (x + y) # y
 10. Prove the following properties of Boolean algebras. Give a reason for each step.
 a. (x + y) + (y # x′) = x + y
 b. (y + x) # (z + y) + x # z # (z + z′) = y + x # z
 c. (y′ # x) + x + (y + x) # y′ = x + (y′ # x)
 d. (x + y′) # z = 3(x′ + z′) # (y + z′) 4′
 e. (x # y) + (x′ # z) + (x′ # y # z′) = y + (x′ # z)

634 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 635

 11. Prove the following properties of Boolean algebras. Give a reason for each step.
 a. x + y′ = x + (x′ # y + x # y)′
 b. 3(x # y) # z 4 + (y # z) = y # z
 c. x # y + y # x′ = x # y + y
 d. (x + y)′ # z + x′ # z # y = x′ # z
 e. (x # y′) + (y # z′) + (x′ # z) = (x′ # y) + (y′ # z) + (x # z′)
 12. Prove the following properties of Boolean algebras. Give a reason for each step.
 a. (x + y # x)′ = x′
 b. x # (z + y) + (x′ + y)′ = x
 c. (x # y)′ + x′ # z + y′ # z = x′ + y′
 d. x # y + x′ = y + x′ # y′
 e. x # y + y # z # x′ = y # z + y # x # z′
 13. Prove that in any Boolean algebra, x # y′ + x′ # y = y if and only if x = 0.
 14. Prove that in any Boolean algebra, x # y′ = 0 if and only if x # y = x.
 15. A new binary operation ! in a Boolean algebra (exclusive OR) is defined by

x ! y = x # y′ + y # x′

 Prove that
 a. x ! y = y ! x
 b. x ! x = 0
 c. 0 ! x = x
 d. 1 ! x = x′
 16. Prove that for any Boolean algebra:
 a. If x + y = 0, then x = 0 and y = 0.
 b. x = y if and only if x # y′ + y # x′ = 0.
 17. Prove that the 0 element in any Boolean algebra is unique; prove that the 1 element in any Boolean algebra

is unique.
 18. a. Find an example of a Boolean algebra with elements x, y, and z for which x + y = x + z but y ∙ z.

(Here is further evidence that ordinary arithmetic of integers is not a Boolean algebra.)
 b. Prove that in any Boolean algebra, if x + y = x + z and x′ + y = x′ + z, then y = z.
 19. Let (S, d) and (S′, d′) be two partially ordered sets. (S, d) is isomorphic to (S′, d′) if there is a bijection

f: S S S′ such that for x, y in S, x a y S f (x) a ′ f (y) and f (x) a ′ f (y) S x a y.
 a. Show that there are exactly two nonisomorphic, partially ordered sets with two elements (use

diagrams).
 b. Show that there are exactly five nonisomorphic, partially ordered sets with three elements.
 c. How many nonisomorphic, partially ordered sets with four elements are there?
 20. Find an example of two partially ordered sets (S, d) and (S′, d′) and a bijection f: S S S′ where, for x, y

in S, x a y S f (x) a ′ f (y) but f (x) a ′ f (y) S∙

x a y.

634 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 635

 21. Let S = 50, 16 and let a binary operation # be defined on S by

0 1

0 1 0

1 0 1

 Let T = 55, 76, and let a binary operation + be defined on T by

+ 5 7

5 7 5

7 5 7

 Consider 3S, # 4 and [T, +] as mathematical structures.
 a. If a function f is an isomorphism from 3S, # 4 to [T, +], what two properties must f satisfy?
 b. Define a function f: S S T and prove that it is an isomorphism from 3S, # 4 to [T, +].
 22. Consider the four-element Boolean algebra defined in Exercise 6 with n = 21. Find an isomorphism

from this Boolean algebra to the four-element Boolean algebra with set `(51, 26) that was defined in this
 section.

 23. Let R denote the real numbers and R+ the positive real numbers. Addition is a binary operation on R, and
multiplication is a binary operation on R+ . Consider [R, +] and 3R+, # 4 as mathematical structures.

 a. Prove that the function f defined by f (x) = 2x is a bijection from R to R+.
 b. Write the equation that an isomorphism from [R, +] to 3R+, # 4 must satisfy.
 c. Prove that the function f of part (a) is an isomorphism from 3R, + 4 to 3R+, # 4.
 d. What is f −1 for this function?
 e. Prove that f −1 is an isomorphism from 3R+, # 4 to [R, +].
 24. An isomorphism from the Boolean algebra with set B = 50, 1, a, a′6 to the Boolean algebra with set

`(51, 26) was defined in this section. Because the two Boolean algebras are essentially the same, an opera-
tion in one can be simulated by mapping to the other, operating there, and mapping back.

 a. Use the Boolean algebra on `(51, 26) to simulate the computation 1 # a′ in the Boolean algebra on B.
 b. Use the Boolean algebra on `(51, 26) to simulate the computation (a)′ in the Boolean algebra on B.
 c. Use the Boolean algebra on B to simulate the computation 516 c 526 in the Boolean algebra on

`(51, 26).
 25. Consider the set B of all functions mapping 50, 162 to 50, 16. We can define operations of + , # , and ′ on B by

 (f1 + f2)(x, y) = max(f1(x, y), f2(x, y))
 (f1

f2)(x, y) = min(f1(x, y), f2(x, y))

 f1′(x, y) = e 1 if f1(x, y) = 0
0 if f1(x, y) = 1

 Then 3B, +, # , ′, 0, 1 4 is a Boolean algebra of 16 elements (see Exercise 5). The following table assigns
names to these 16 functions.

636 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 637

(x, y) 0 1 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

(0, 0) 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0

(0, 1) 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0

(1, 0) 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0

(1, 1) 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1

 According to the theorem on finite Boolean algebras, this Boolean algebra is isomorphic to
3`(51, 2, 3, 46), c , d, ′, [, 51, 2, 3, 46 4. Complete the following definition of an isomorphism from B to
`(51, 2, 3, 46).

 0 S [

 1 S 51, 2, 3, 46
 f4 S 516
 f12 S 526
 f13 S 536
 f14 S 546
 26. Let P, Q, and R be three statements in propositional logic with statement letters A and B. P, Q, and R

define the following three functions from 5T, F62 to 5T, F6 . Also shown are the contradiction 0 and the
tautology 1.

A B P Q R 0 1

T T T F F F T

T F F T F F T

F T F F T F T

F F T F F F T

 a. Let B = 5P, P′, Q, Q′, R, R′, 0, 16. Then 3B, ~ , ` , ′, 0, 1 4 is a Boolean algebra. Write the 8 × 8
 tables for the ~ and ` operations and the 8 × 1 table for the ′ operation.

 b. 3`(51, 2, 36, c , d, ′, [, 51, 2, 36 4 is a Boolean algebra. Write the 8 × 8 tables for the c and d op-
erations and the 8 × 1 table for the ′ operation.

 c. Find an isomorphism from the Boolean algebra of part (a) to the Boolean algebra of part (b).
 27. Suppose that 3B, + , # , ′, 0, 1 4 and 3b, &, *, ″, f, 1 4 are isomorphic Boolean algebras and that f is an iso-

morphism from B to b.
 a. Prove that f(0) = f.
 b. Prove that f(1) = 1.
 28. According to the theorem on finite Boolean algebras, which we did not prove, any finite Boolean algebra

must have 2m elements for some m. Prove the weaker statement that no Boolean algebra can have an odd
number of elements. (Note that in the definition of a Boolean algebra, 0 and 1 are distinct elements of B,
so B has at least two elements. Arrange the remaining elements of B so that each element is paired with its
complement.)

636 Boolean Algebra and Computer Logic Section 8.1 Boolean Algebra Structure 637

 29. A Boolean algebra may also be defined as a partially ordered set with certain additional properties. Let
(B, d) be a partially ordered set. For any x, y [B, we define the least upper bound of x and y as an
 element z such that x d z, y d z, and if there is any element z* with x d z* and y d z*, then z d z*.
The greatest lower bound of x and y is an element w such that w d x, w d y, and if there is any element
w * with w* d x and w* d y, then w* d w. A lattice is a partially ordered set in which every two
 elements x and y have a least upper bound, denoted by x + y, and a greatest lower bound, denoted by x # y.

 a. Prove that in any lattice
 (i) x # y = x if and only if x d y
 (ii) x + y = y if and only if x d y
 b. Prove that in any lattice
 (i) x + y = y + x
 (ii) x # y = y # x
 (iii) (x + y) + z = x + (y + z)
 (iv) (x # y) # z = x # (y # z)
 c. A lattice L is complemented if there exists a least element 0 and a greatest element 1, and for every

x [L there exists x′ [L such that x + x′ = 1 and x # x′ = 0. Prove that in a complemented lattice L,

 x + 0 = x and x # 1 = x

 for all x [L.
 d. A lattice L is distributive if

x + (y # z) = (x + y) # (x + z)

 and

x # (y + z) = (x # y) + (x # z)

 for every x, y, z [L. By parts (b) and (c), a complemented, distributive lattice is a Boolean algebra.
Which of the following Hasse diagrams of partially ordered sets do not represent Boolean algebras?
Why? (Hint: In a Boolean algebra, the complement of an element is unique.)

2
(a) (b) (c) (d)

1

3

4

6

7

5

1

3

4

2

1

43

5

2

638 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 639

 30. a. Let n be a positive integer and consider B to be the set of all positive integer divisors of n. Prove that
(B, d) is a partially ordered set where x d y means x 0 y.

In the terminology of Exercise 29, the least upper bound of x and y is the least common multiple of x and
y, and the greatest lower bound is the greatest common divisor. (B, d) is a distributive lattice.

 b. Prove that for n = 6, (B, d) is a Boolean algebra. (Hint: 1 is the least element and 6 is the greatest
 element).

 c. For n = 8, (B, d) is not a Boolean algebra.
 (i) Show that this is true by using the definition of a Boolean algebra.

 (ii) Show that this is true by using Exercise 6.

 S e c t i o n 8 . 2 logiC networkS

Combinational networks

Basic Logic Elements
In 1938 the American mathematician Claude Shannon perceived the parallel be-
tween propositional logic and circuit logic and realized that Boolean algebra could
play a part in systematizing this new realm of electronics.

Let us imagine that the electrical voltages carried along wires fall into one
of two ranges, high or low, which we represent by 1 and 0, respectively. Voltage
fluctuations within these ranges are ignored, so we are forcing a discrete, indeed
binary, mask on an analog phenomenon. We also suppose that switches can be
wired so that a signal of 1 causes the switch to be closed and a signal of 0 causes
the switch to be open (Figure 8.5). Now we combine two such switches, controlled
by lines x1 and x2, in parallel. If either or both lines carry a 1 value, one or both
of the switches will be closed, and the output line will have a value of 1. However,
values of x1 = 0 and x2 = 0 will cause both switches to be open and thus break the
circuit, so that the voltage level on the output line will be 0. Figure 8.6 illustrates
the various cases.

x = 1 x = 0

Closed switch Open switch

figure 8.5

x2 = 1

x1 = 1

1

x2 = 1

x1 = 0

1

x1 = 0

x2 = 0x2 = 0

x1 = 1

1 0

figure 8.6

638 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 639

Table 8.2 summarizes the behavior of the circuit. Substituting T for 1 and
F for 0 in the table results in the truth table for the logical connective of disjunc-
tion. Disjunction is an example of the Boolean algebra operation + in the realm of
propositional logic. Thus we may think of the circuit more abstractly as an elec-
tronic device that performs the Boolean operation +. Similarly, conjunction and
negation are examples of the Boolean algebra operations # and ′, respectively, in
the realm of propositional logic. Other devices perform these Boolean operations.
For example, switches connected in series would serve to implement the # operation;
both switches must be closed (x1 = 1 and x2 = 1) in order to have an output of 1.
However, we’ll ignore the details of implementing the devices; suffice it to say that
technology has progressed from mechanical switches through vacuum tubes and
then transistors to integrated circuits, and now even bacteria and DNA. We will
simply represent these devices by their standard symbols.

The Or gate, Figure 8.7a, behaves like the Boolean operation +. The aND
gate, Figure 8.7b, represents the Boolean operation # . Figure 8.7c shows an
inverter, corresponding to the unary Boolean operation ′. Because of the associativ-
ity property for + and # , the OR and AND gates can have more than two inputs.

x1

x1

x2

x1 + x2

1

1

0

0

1

0

1

0

1

(a) OR gate (b) AND gate

(c) Inverter

1

1

0

x1 + x2

x2 x1 x1 + x2

1

1

0

0

1

0

1

0

1

0

0

0

x2
x1

1

0

0

1

x'1

x1

x2

x1
. x2

x1
x'1

figure 8.7

table 8.2

x1 x2 output

1 1 1

1 0 1

0 1 1

0 0 0

(The definition of a Boolean expression is another example of a recursive
definition; rule 1 is the basis step and rule 2 the inductive step.) When there
is no chance of confusion, we can omit the parentheses introduced by rule 2.
In addition, we define # to take precedence over + and ′ to take precedence
over + or #, so x1 + x2

x3 stands for x1 + (x2
x3) and x1 + x2′ stands for

x1 + (x2′); this convention also allows us to remove some parentheses. Finally, we
will generally omit the symbol # and use juxtaposition, so x1

x2 is written x1x2.

 Definition BooLeAn exPression
A boolean expression in n variables, x1, x2, … , xn, is any finite string of
 symbols formed by applying the following rules:

 1. x1, x2, … , xn, are Boolean expressions.
 2. If P and Q are Boolean expressions, so are (P + Q), (P # Q), and (P′).

Boolean Expressions

640 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 641

 ExamplE 8 x3, (x1 + x2)′x3, (x1x3 + x4′) x2, and (x1′ x2)′x1 are all Boolean expressions.

Truth Functions

 DEfinition TruTh FuncTion
A truth function is a function f such that f: 50, 16n S 50, 16 for some integer
n ≥ 1.

The notation 50, 16n denotes the set of all n-tuples of 0s and 1s. A truth
 function thus associates a value of 0 or 1 with each such n-tuple.

 ExamplE 9 The truth table for the Boolean operation + describes a truth function
f with n = 2. The domain of f is 5(1, 1), (1, 0), (0, 1), (0, 0)6, and
f (1, 1) = 1, f (1, 0) = 1, f (0, 1) = 1, and f (0, 0) = 0. Similarly, the Boolean
operation # describes a different truth function with n = 2, and the Boolean
operation ′ describes a truth function for n = 1.

■

Practice 8

a. If we are writing a truth function f: 50, 16n S 50, 16 in tabular form (like a truth table),
how many rows will the table have?

b. How many different truth functions are there that take 50, 162 S 50, 16?
c. How many different truth functions are there that take 50, 16n S 50, 16?

Any Boolean expression defines a unique truth function, just as do the sim-
ple Boolean expressions x1 + x2, x1x2, and x1′.

 ExamplE 10 The Boolean expression x1x2′ + x3 defines the truth function given in Table 8.3.
(This is just like doing the truth tables of Section 1.1.)

tablE 8.3

x1 x2 x3 x1x2′ + x3

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

640 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 641

Networks and Expressions
It’s time to see how these ideas of logic gates, Boolean expressions, and truth
functions are related. By combining AND gates, OR gates, and inverters, we can
construct a logic network representing a given Boolean expression that produces
the same truth function as that expression.

 example 11 The logic network for the Boolean expression x1x2′ + x3 is shown in Figure 8.8.

figure 8.8

■

PraCtiCe 9 Design the logic network for the following Boolean expressions.

a. x1 + x2′
b. x1(x2 + x3)′

Conversely, if we have a logic network, we can write a Boolean expression
with the same truth function.

 example 12 A Boolean expression for the logic network in Figure 8.9 is

(x1x2 + x3)′ + x3

figure 8.9

■

PraCtiCe 10

a. Write a Boolean expression for the logic network in Figure 8.10.

figure 8.10

b. Write the truth function (in table form) for the network (and expression) of part (a).

642 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 643

Logic networks constructed of AND gates, OR gates, and inverters are also
called combinational networks. They have several features that we should note.
First, input or output lines are not tied together except by passing through gates.
Lines can be split, however, to serve as input to more than one device. There are
no loops where the output of an element is part of the input to that same element.
Finally, the output of a network is an instantaneous function of the input; there are
no delay elements that capture and remember input signals. Notice also that the
picture of any network is, in effect, a directed graph.

Canonical Form
Here is the situation so far (arrows indicate a procedure that we can carry out):

truth function d Boolean expression 4 logic network

We can write a unique truth function from either a network or an expression.
Given an expression, we can find a network with the same truth function, and
conversely. The last part of the puzzle concerns how to get from an arbitrary truth
function to an expression (and hence a network) having that truth function. An
algorithm to solve this problem is explained in the next example.

 example 13 Suppose we want to find a Boolean expression for the truth function f of Table 8.4.
There are four rows in the table (rows 1, 3, 4, and 7) for which f is 1. The basic
form of our expression will be a sum of four terms

() + () + () + ()

such that the first term has the value 1 for the input values of row 1 and for no oth-
ers, the second term has the value 1 for the input values of row 3 and for no others,
and so on. Thus, the entire expression has the value 1 for these inputs and for no
others—precisely what we want. (Other inputs cause each term in the sum, and
hence the sum itself, to be 0.)

table 8.4

x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 0

642 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 643

Each term in the sum will be a product of the form abg where a is ei-
ther x1 or x1′, b is either x2 or x2′, and g is either x3 or x3′. If the input value of
xi, i = 1, 2, 3, in the row we are working on is 1, then xi itself is used; if the input
value of xi in the row we are working on is 0, then xi ′ is used. These values will
force abg to be 1 for that row and 0 for all other rows. Thus, we have

row 1: x1x2x3
row 3: x1x2′x3
row 4: x1x2′x3′
row 7: x1′x2′ x3

The final expression is

(x1x2x3) + (x1x2′ x3) + (x1x2′x3′) + (x1′x2′x3)

The procedure described in Example 13 always leads to an expression that is
a sum of products, called the canonical sum-of-products form, or the disjunc-
tive normal form, for the given truth function. The only case not covered by
this procedure is when the function has a value of 0 everywhere. Then we use an
expression such as

x1x1′

which is also a sum (one term) of products. Therefore, we can find a sum-of-
products expression to represent any truth function. A pseudocode description
of the algorithm is given in the accompanying box. For this algorithm, the input
is a truth table representing a truth function on n variables x1, x2, … , xn; the
output is a Boolean expression in disjunctive normal form with the same truth
function.

 algoRitHm Sum-Of-PROductS

Sum-Of-Products (truth table; integer n)
//the truth table represents a truth function with n arguments;
//result is the canonical sum-of-products expression for this truth function
Local variables:
sum //sum-of-products expression
product //single term in sum, a product
i //index for the columns of the table
row //index for the rows of the table

sum = empty

644 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 645

for row = 1 to 2n do
if truth value for row is 1 then

initialize product;
for i = 1 to n do

if xi = 1 then
put xi in product

else
put xi′ in product

end if
end for
sum = sum + product

end if
end for
if sum is empty then

sum = x1x1′
end if
write (“The canonical sum-of-products expression for this truth function is”, sum)

end Sum-Of-Products

Because any expression has a corresponding network, any truth function has
a logic network representation. Furthermore, the AND gate, OR gate, and inverter
are the only devices needed to construct the network. Thus, we can build a net-
work for any truth function with only three kinds of parts—and lots of wire! Later
we will see that it is necessary to stock only one kind of part.

Given a truth function, the canonical sum-of-products form just described
is one expression that has this truth function, but it is not the only possible one.
A method for obtaining a different expression for any truth function is given in
Exercise 25 at the end of this section.

 example 14 The network for the canonical sum-of-products form of Example 13 is shown in
Figure 8.11. We have drawn the inputs to each AND gate separately because it
looks neater, but actually a single x1, x2, or x3 input can be split as needed.

figure 8.11

644 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 645

Minimization
As already noted, a given truth function may be represented by more than one
Boolean expression and hence by more than one logic network composed of AND
gates, OR gates, and inverters.

■

PraCtiCe 11

a. Find the canonical sum-of-products form for the truth function
of Table 8.5.

b. Draw the network for the expression of part (a).

table 8.5

x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 1

 example 15 The Boolean expression

x1x3 + x2′

has the truth function of Table 8.5. The logic network corresponding to this expres-
sion is given by Figure 8.12. Compare this with your network in Practice 11(b)!

figure 8.12

 Definition eqUivALent BooLeAn exPressions
Two Boolean expressions are equivalent if they have the same truth functions.

We know that

x1x2x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′

646 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 647

and

x1x3 + x2′

for example, are equivalent Boolean expressions.
Clearly, equivalence of Boolean expressions is an equivalence relation on the

set of all Boolean expressions in n variables. Each equivalence class is associated
with a distinct truth function. Given a truth function, algorithm Sum-Of-Products
produces one particular member of the class associated with that function, name-
ly, the canonical sum-of-products form. However, if we are trying to design the
logic network for that function, we want to find a member of the class that is as
simple as possible. We would rather build the network of Figure 8.12 than the one
for Practice 11(b).

How can we reduce a Boolean expression to an equivalent, simpler expres-
sion? We can use the properties of a Boolean algebra because they express the
equivalence of Boolean expressions. If P is a Boolean expression containing the
subexpression (x1 + x2)(x1 + x3), for example, and Q is the expression obtained
from P by replacing (x1 + x2)(x1 + x3) with the equivalent expression x1 + (x2

x3),
then P and Q are equivalent and Q is simpler than P.

 example 16 Using the properties of Boolean algebra, we can reduce

x1x2x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′

to

x1x3 + x2′

as follows:

x1x2x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′
 = x1x2x3 + x1x2′x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′ (idempotent)
 = x1x3x2 + x1x3x2′ + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′ (1b)
 = x1x3(x2 + x2′) + x1x2′(x3 + x3′) + x1′x2′(x3 + x3′) (3b)
 = x1x3

1 + x1x2′ # 1 + x1′x2′ # 1 (5a)
 = x1x3 + x1x2′ + x1′x2′ (4b)
 = x1x3 + x2′x1 + x2′x1′ (1b)
 = x1x3 + x2′(x1 + x1′) (3b)
 = x1x3 + x2′ # 1 (5a)
 = x1x3 + x2′ (4b)

Unfortunately, one must be fairly clever to apply Boolean algebra properties to
simplify an expression. In Section 8.3 we will discuss more systematic approaches
to this minimization problem that require less ingenuity. For now, we should say

646 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 647

a bit more about why we want to minimize. When logic networks were built from
separate gates and inverters, the cost of these elements was a considerable factor
in the design, and it was desirable to have as few elements as possible. Now, how-
ever, most networks are built using integrated circuit technology, a development
that began in the early 1960s. An integrated circuit is itself a logic network rep-
resenting a certain truth function or functions, just as if some gates and invert-
ers had been combined in the appropriate arrangement inside a package. These
integrated circuits are then combined as needed to produce the desired result.
Because the integrated circuits are extremely small and relatively inexpensive, it
might seem pointless to bother minimizing a network. However, minimization is
still important because the reliability of the final network is inversely related to the
number of connections between the integrated circuit packages.

Moreover, the designers of integrated circuits are highly interested in the
minimization problem. Integrated circuits are embedded into a substrate of silicon
or other semiconductor material. The resulting chips may be tiny, yet they can
contain the equivalent of 3 billion transistors for implementing truth functions.
The distance between two gates may be as small as 45 nanometers (about 1/1000
of the width of a human hair). Minimizing the number of components and the
amount of wiring required to realize a desired truth function makes it possible to
embed more functions in a single chip.

Programmable Logic Devices
Instead of designing a custom chip to implement particular truth functions, a pLD
(programmable logic device) can be used. A PLD is a chip that is already im-
planted with an array of AND gates and an array of OR gates, together with a rect-
angular grid of wiring channels and some inverters. Once Boolean expressions in
sum-of-products form have been determined for the truth functions, the required
components in the PLD are activated. Although this chip is not very efficient and is
practical only for smaller-scale circuit logic, on the order of hundreds of gates, the
PLD can be mass-produced, and only a small amount of time (i.e., money) is then
required to “program” it for the desired functions. A FpGa (f ield-programmable
gate array) is a big brother to the PLD. The term “field-programmable” suggests
that, like a PLD, the user can configure the chip for a specific purpose. An FPGA
basically connects a number of PLDs in a reconfigurable way, and it can support
thousands of gates. Often the FPGA also contains hardwired components such as
multipliers or even processors and memory, thus producing a small reconfigurable
computer that is “programmed” in hardware rather than software.

 example 17 Figure 8.13a shows a PLD for the three inputs x1, x2, and x3. There are four output
lines, so four functions can be programmed in this PLD. When the PLD is pro-
grammed, the horizontal line going into an AND gate will pick up certain inputs,
and the AND gate will form the product of these inputs. The vertical line going
into an OR gate will, when programmed, allow the OR gate to form the sum of
certain inputs. Figure 8.13b shows the same PLD programmed to produce the truth
functions f1 from Example 13 (x1x2x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3) and f2 from
Practice 11 (x1x2x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′). The dots represent ac-
tivation points.

648 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 649

figure 8.13

A Useful network

We can design a network that adds binary numbers, a basic operation that a com-
puter must be able to perform. The rules for adding two one-bit numbers are sum-
marized in Table 8.6.

648 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 649

table 8.6

x1 x2 Sum

1 1 10

1 0 1

0 1 1

0 0 0

table 8.7

x1 x2 s

1 1 0

1 0 1

0 1 1

0 0 0

table 8.8

x1 x2 c

1 1 1

1 0 0

0 1 0

0 0 0

We can express the sum as a single sum bit s (the right-hand bit of the actual sum) to-
gether with a single carry bit c; doing this gives us the two truth functions of Tables 8.7
and 8.8, respectively. The canonical sum-of-products form for each truth function is

 s = x1′x2 + x1x2′
c = x1x2

An equivalent Boolean expression for s is

s = (x1 + x2)(x1x2)′

Figure 8.14a shows a network with inputs x1 and x2 and outputs s and c. This de-
vice, for reasons that will be clear shortly, is called a half-adder.

x1

x2

s

c

s

(a) Half-adder

(b) Full-adder

Half-adder

Half-adder

x1

ci – 1

ci

x2

x1

x2

x1

x2

figure 8.14

650 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 651

To add two n-bit binary numbers, we add column by column from the low-
order to the high-order bits. The ith column (except for the very first column) has
as input its two bits x1 and x2 plus the carry bit from the addition of column i − 1
to its right. Thus we need a device incorporating the previous carry bit as input.
Such a device can be accomplished by adding x1 and x2 with a half-adder and then
adding the previous carry bit ci−1 (using another half-adder) to the result. Again, a
sum bit s and final carry bit ci are output, where ci is 1 if either half-adder produces
a 1 as its carry bit. The full-adder is shown in Figure 8.14b. The full-adder is thus
composed of two half-adders and an additional OR gate.

To add two n-bit binary numbers, the two low-order bits, where there is no input
carry bit, can be added with a half-adder. The remaining bits are added with full-
adders. All are chained together. Figure 8.15 shows the modules required to add two
3-bit binary numbers z1 y1x1 and z2 y2x2, resulting in the answer a3a2a1a0, where the
leading bit a3 is the final carry bit and could be 0 (leading 0s are usually not written)
or 1.

Full-adder

s

z
2

a
3

a
2

a
1

a
0

y
2

x
2

z
1

y
1

x
1

cc c

s s

Full-adder Half-adder

Figure 8.15

The adder circuit shown in Figure 8.15 is called a “ripple-carry adder” because
the carry bits have to propagate right to left through each adder in turn. Although
we have assumed that gates output instantaneously, there is in fact a small time
delay in an n-bit adder due to this ripple effect that can be appreciable for large n.
Variations on the basic circuitry that speed up the addition process depend on
anticipating the higher-order carry bits.

■
Practice 12 Trace the operation of the circuit in Figure 8.15 as it adds 101 and 111.

Other Logic Elements

The basic elements used in integrated circuits are not really AND and OR gates
and inverters, but NAND and NOR gates. Figure 8.16 shows the standard sym-
bol for the NAND gate (the NOT AND gate) and its truth function. The NAND
gate alone is sufficient to realize any truth function because networks using only
NAND gates can do the job of inverters, OR gates, and AND gates. Figure 8.17
shows these networks.

650 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 651

x1 (x1 + x2)'

1

1

0

0

1

0

1

0

0

1

1

1

x2

x1

x2

figure 8.16

1Exercises 51 and 52 of Section 1.1 give truth tables for binary connectives that agree with the NAND and
NOR truth functions. There you were asked to prove that either of these two connectives is sufficient to write
any propositional wff; that is, you can write ~, `, and ′ in terms of one of these connectives.

(x'1x'2)' = x1 + x2

(x1x2)'

(x1x2)'

((x1x2)'(x1x2)')' = x1x2 + x1x2 = x1x2

(a)

(b)

(c)

(x1 x1)' = x'1
x1

x1

x1

x2

x2

x'2

x'1

figure 8.17

The NOr gate (the NOT OR gate) and its truth function appear in Figure 8.18. An
exercise at the end of this section asks you to construct networks using only NOR
gates for inverters, OR gates, and AND gates.1

652 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 653

■

PraCtiCe 13

a. Rewrite the network of Figure 8.12 with NAND elements by directly replacing the AND gate,
OR gate, and inverter, as in Figure 8.17.

b. Rewrite the Boolean expression x1x3 + x2′ for Figure 8.12 using De Morgan’s laws, and then
 construct a network using only two NAND elements.

Constructing truth functions

We know how to write a Boolean expression and construct a network from a
given truth function. Often the truth function itself must first be deduced from the
 description of the actual problem.

 example 18 At a mail-order cosmetics firm, an automatic control device is used to supervise
the packaging of orders. The firm sells lipstick, perfume, makeup, and nail polish.
As a bonus item, shampoo is included with any order that includes perfume or any
order that includes lipstick, makeup, and nail polish. How can we design the logic
network that controls whether shampoo is packaged with an order?

The inputs to the network will represent the four items that can be ordered.
We label the items

 x1 = lipstick
x2 = perfume
x3 = makeup
x4 = nail polish

The value of xi will be 1 when that item is included in the order and 0 otherwise.
The output from the network should be 1 if shampoo is to be packaged with the
order and 0 otherwise. The truth table for the circuit appears in Table 8.9. The ca-
nonical sum-of-products form for this truth function is lengthy, but the expression

x1

x1

x2

1

1

0

0

(x1 + x2)'

0

0

0

1

1

0

1

0

x2

figure 8.18

Although we can construct a NAND network for a truth function by replacing
AND gates, OR gates, and inverters in the canonical form or a minimized form
with the appropriate NAND networks, we can often obtain a simpler network by
using the properties of NAND elements directly.

652 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 653

x1x3x4 + x2 also represents the function. Figure 8.19 shows the logic network for
this expression.

table 8.9

x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 1

1 1 1 0 1

1 1 0 1 1

1 1 0 0 1

1 0 1 1 1

1 0 1 0 0

1 0 0 1 0

1 0 0 0 0

0 1 1 1 1

0 1 1 0 1

0 1 0 1 1

0 1 0 0 1

0 0 1 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

figure 8.19

■

PraCtiCe 14 A hall light is controlled by two light switches, one at each end of the hall. Find (a) a
truth function, (b) a Boolean expression, and (c) a logic network that allows the light to be
switched on or off by either switch.

In some problems the corresponding truth functions have certain undefined
values because certain combinations of input cannot occur (see Exercise 35 at
the end of this section). Under these “don’t-care” conditions, any value may be
 assigned to the output.

In a programming language where the Boolean operators AND, OR, and
NOT are available, designing the logic of a computer program may consist in part
of choosing appropriate truth functions and their corresponding Boolean expres-
sions (see Exercise 36 of Section 1.1).

654 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 655

speCiaL iNterest paGe

Pruning Chips and Programs

Computer computations (barring coding errors) are
generally viewed as the height of accuracy. Translat-
ing truth functions into circuits that produce correct
outputs for given inputs has been the theme of this
chapter. But some computer applications do not re-
quire 100% accuracy and can tolerate a certain amount
of error. Image processing is one such application be-
cause small variations in an image are imperceptible
to the human eye. (This feature of human eyesight is
used to advantage in JPEG lossy image compression,
as discussed in Section 6.4.)

Recently, researchers looking for increased ef-
ficiency in chip design have “pruned” traditional
 circuits, essentially cutting away the parts that are sel-
dom used. Pruned chips consume less energy and are
both smaller and faster than the complete chip. We can
lump these three factors—energy, space, and time—
together under the general term “efficiency.” Experi-
mental pruning of a chip’s addition circuit produced a
7.5% gain in overall efficiency. But of course there is
a tradeoff; some percentage of error is introduced in
the chip’s operation. The 7.5% efficiency gain came at
the cost of a 0.25% error rate. For specialized applica-
tions such as image processing, where small amounts
of error can be tolerated, the tradeoff seems to be a
good thing. Developers of this technology are looking
toward applications such as hearing aids, cameras, or
even tablet computers that could run on solar power.

The same approach is also being tried with soft-
ware. For example, “loop perforation” skips some of
the iterations in a loop. This is a particularly evocative
name—“perforating a loop” sounds very much like
“pruning a chip.” Other approaches may skip entire
tasks or randomly discard some input values. “Re-
laxed program” is a general title for software that has
built-in nondeterminism that can dynamically prune
(skip) some of its instructions or data. The benefit is
increased runtime efficiency. The penalty is some per-
centage of incorrect results. And the trick, of course, is
to ensure—and formally verify—that such techniques,
while increasing efficiency, keep the output within an
acceptable error range.

“Inexact Design—Beyond Fault Tolerance,” Anthes, G.,
Communications of the ACM, April, 2013.

http://news.rice.edu/2012/05/17/computing-experts-unveil-
superefficient-inexact-chip/

http://web.mit.edu/newsoffice/2010/fuzzy-logic-0103.html
“Proving Acceptability Properties of Relaxed Nondeter-

ministic Approximate Programs,” Carbin, M., Kim,
D., Misailovic, S., Rinard, M., ACM Conference on
Programming Language Design and Implementation,
June 11–16, 2012, Beijing, China.

http://web.mit.edu/newsoffice/2012/loop-perforation-0522.
html

Chapter 8

http://news.rice.edu/2012/05/17/computing-experts-unveilsuperefficient-inexact-chip/
http://news.rice.edu/2012/05/17/computing-experts-unveilsuperefficient-inexact-chip/
http://web.mit.edu/newsoffice/2010/fuzzy-logic-0103.html
http://web.mit.edu/newsoffice/2012/loop-perforation-0522.html
http://web.mit.edu/newsoffice/2012/loop-perforation-0522.html

654 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 655

S e c t i o n 8 . 2 review

tecHniQueS

• Find the truth function corresponding to a given
Boolean expression or logic network.

• Construct a logic network with the same truth func-
tion as a given Boolean expression.

• Write a Boolean expression with the same truth
function as a given logic network.

• Write the Boolean expression in canonical sum-of-
products form for a given truth function.

• Find a network composed only of NAND gates that
has the same truth function as a given network with
AND gates, OR gates, and inverters.

• Find a truth function that satisfies the description of
a particular problem.

main iDeaS

• We can effectively convert information from any of
the following three forms to any other form:

truth function 4 Boolean expression 4
logic network

• A Boolean expression can sometimes be converted
to a simpler, equivalent expression using the prop-
erties of Boolean algebra, thus producing a simpler
network for a given truth function.

W

W

exeRciSeS 8.2

For Exercises 1–4, write a truth function and construct a logic network using AND gates, OR gates, and inverters
for each of the given Boolean expressions.

 1. (x1′ + x2)x3

 2. (x1 + x2′) + x1′x3

 3. x1′x2 + (x1x2)′
 4. (x1 + x2)′x3 + x3′

For Exercises 5–8, write a Boolean expression and a truth function for each of the logic networks shown.

 5.

 6.

 7.

656 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 657

 8.

x3

x2

x1

 9. a. Write the truth function for the Boolean operation x ! y = xy′ + yx′.
 b. Draw the logic network for x ! y.
 c. Show that the network of the accompanying figure also represents x ! y. Explain why the network

illustrates that ! is the exclusive Or operation. (Recall that a bitwise exclusive-OR operation is used
in DES encoding, as discussed in Section 5.6.)

x

y

x

y

 10. a. Write the truth function for the Boolean expression

(xy′)′(yx′)′

 b. Draw the logic network for this expression.
 c. By looking at either the truth function or the logic network, what propositional logic connective does

this Boolean expression represent?

For Exercises 11–20, find the canonical sum-of-products form for the truth functions in the given tables.

 11. x1 x2 f(x1, x2)

1 1 0

1 0 0

0 1 0

0 0 1

 12. x1 x2 f(x1, x2)

1 1 1

1 0 0

0 1 1

0 0 0

 13. x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

656 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 657

14.

x1 x2 x3 f(x1, x2 , x3)

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

 15.

x1 x2 x3 f(x1, x2 , x3)

1 1 1 0

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

 16. x1 x2 x3 f(x1, x2 , x3)

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

 17. x1 x2 x3 x4 f(x1, x2 , x3 , x4)

1 1 1 1 1

1 1 1 0 0

1 1 0 1 1

1 1 0 0 0

1 0 1 1 1

1 0 1 0 0

1 0 0 1 1

1 0 0 0 0

0 1 1 1 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 0 1 0

0 0 0 0 0

 18. x1 x2 x3 x4 f(x1, x2 , x3 , x4)

1 1 1 1 1

1 1 1 0 0

1 1 0 1 1

1 1 0 0 0

1 0 1 1 1

1 0 1 0 1

1 0 0 1 0

1 0 0 0 0

0 1 1 1 1

0 1 1 0 0

0 1 0 1 1

0 1 0 0 0

0 0 1 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

658 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 659

 19. x1 x2 x3 x4 f(x1, x2 , x3 , x4)

1 1 1 1 0

1 1 1 0 0

1 1 0 1 0

1 1 0 0 0

1 0 1 1 0

1 0 1 0 1

1 0 0 1 0

1 0 0 0 0

0 1 1 1 1

0 1 1 0 0

0 1 0 1 1

0 1 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 0 1 1

0 0 0 0 0

 20. x1 x2 x3 x4 f(x1, x2 , x3 , x4)

1 1 1 1 1

1 1 1 0 1

1 1 0 1 0

1 1 0 0 1

1 0 1 1 1

1 0 1 0 0

1 0 0 1 0

1 0 0 0 0

0 1 1 1 0

0 1 1 0 1

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

 21. a. Find the canonical sum-of-products form for the truth function in the accompanying table.
 b. Draw the logic network for the expression of part (a).
 c. Use properties of a Boolean algebra to reduce the expression of part (a) to an equivalent expression

whose network requires only two logic elements. Draw the network.

x1 x2 x3 f(x1, x2 , x3)

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

 22. a. Find the canonical sum-of-products form for the truth function in the accompanying table.
 b. Draw the logic network for the expression of part (a).
 c. Use properties of a Boolean algebra to reduce the expression of part (a) to an equivalent expression

whose network requires only three logic elements. Draw the network.

658 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 659

x1 x2 x3 f(x1, x2 , x3)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 0

 23. a. Show that the two Boolean expressions

(x1 + x2)(x1′ + x3)(x2 + x3)

 and

(x1x3) + (x1′x2)

 are equivalent by writing the truth function for each.
 b. Write the canonical sum-of-products form equivalent to the two expressions of part (a).
 c. Use properties of a Boolean algebra to reduce one of the expressions of part (a) to the other.
 24. The accompanying figure shows an unprogrammed PLD for three inputs, x1, x2, and x3. Program this PLD

to generate the truth functions f1 and f3 represented by

f1: x1x2x3 + x1′x2x3′ + x1′x2′x3

f3: x1x2′x3′ + x1′x2′x3 + x1′x2′x3′

f1
x3x2x1 f2 f3 f4

Input Output

660 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 661

 25. There is also a canonical product-of-sums form (conjunctive normal form) for any truth function. This
expression has the form

()() c ()

 with each factor a sum of the form

a + b + c+ v

 where a = x1 or x1′, b = x2 or x2′, and so on. Each factor is constructed to have a value of 0 for the input
values of exactly one of the rows of the truth function having value 0. Thus, the entire expression has
value 0 for these inputs and no others. Find the canonical product-of-sums form for the truth functions of
Exercises 11–15.

 26. Consider the truth function given here. Because there are many more 1s than 0s. the canonical sum-of-
products form might seem tedious to compute. Instead, create a Boolean sum-of-products expression us-
ing the same formula as before but on the 0 rows instead of the 1 rows. This expression will give outputs of
1s for those rows and no others, exactly the opposite of what you want. Then complement the expression
(equivalent to sticking an inverter on the end of the network).

x1 x2 x3 f(x1, x2 , x3)

1 1 1 1

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 1

 a. Use this approach to create a Boolean expression for this truth function.
 b. Prove that the resulting expression is equivalent to the canonical product-of-sums form described in

Exercise 25.
 27. The 2’s complement of an n-bit binary number p is an n-bit binary number q such that p + q equals an

n-bit representation of zero (any carry bit to column n + 1 is ignored). Thus 01110 is the 2’s complement
of 10010 because

 10010
+ 01110

 (1)00000

 The 2’s complement idea can be used to represent negative integers in binary form. After all, the negative
of p is by definition a number that, when added to p, results in zero.

Given a binary number p, the 2’s complement of p is found by scanning p from low-order to high-
order bits (right to left). As long as bit i of p is 0, bit i of q is 0. When the first 1 of p is encountered, say at
bit j, then bit j of q is 1, but for the remaining bits, j < i ≤ n, qi = pi′. For p = 10010, for instance, the

660 Boolean Algebra and Computer Logic Section 8.2 Logic Networks 661

rightmost 0 bit of p stays a 0 bit in q, and the first 1 bit stays a 1 bit. The remaining bits of q, however, are
the reverse of the bits in p.

p = 1 0 0
q = 0 1 1()*

qi = pi′

1 0
1 0()*
qi = pi

 For each binary number p, find the 2’s complement of p, namely q, and then calculate p + q.
 a. 1100 b. 1001 c. 001
 28. For any bit xi in a binary number p, let ri be the corresponding bit in q, the 2’s complement of p (see

 Exercise 27). The value of ri depends on the value of xi and also on the position of xi relative to the first
1 bit in p. For the ith bit, let ci−1 denote a 0 if the bits pj, 1 ≤ j ≤ i − 1, are 0 and a 1 otherwise. A value
ci must be computed to move on to the next bit.

 a. Give a truth function for ri with inputs xi and ci−1. Give a truth function for ci with inputs xi and ci−1.
 b. Write Boolean expressions for the truth functions of part (a). Simplify as much as possible.
 c. Design a circuit module to output ri and ci from inputs xi and ci−1.
 d. Using the modules of part (c), design a circuit to find the 2’s complement of a three-bit binary number

zyx. Trace the operation of the circuit in computing the 2’s complement of 110.
 29. a. Construct a network for the following expression using only NAND elements. Replace the AND and

OR gates and inverters with the appropriate NAND networks.

x3′x1 + x2′x1 + x3′

 b. Use the properties of a Boolean algebra to reduce the expression of part (a) to one whose network
would require only three NAND gates. Draw the network.

 30. Replace the following network with an equivalent network using one AND gate, one OR gate, and one inverter.

x2

x1

x3

 31. Using only NOR elements, construct networks that can replace (a) an inverter, (b) an OR gate, and (c) an
AND gate.

 32. Find an equivalent network for the half-adder module that uses exactly five NAND gates. Draw the network.
 33. A thermostat controls a heating system that should raise the temperature above 67 °F during working

hours (between 7:00 am and 6:00 pm). The input values are

 x1 = 1 when the temperature is less than 67 °F
 x1 = 0 otherwise
 x2 = 1 when the time is less than 7:00 am or greater than 6:00 pm
 x2 = 0 otherwise

 Find a truth function, a Boolean expression, and a logic network for when the heating system should be
on (value 1) or off (value 0).

First 1

662 Boolean Algebra and Computer Logic Section 8.3 Minimization 663

 34. The space shuttle was controlled by three on-board computers; binary output from these three computers
was compared and a majority vote was required for certain actions to take place. Find a truth function, a
Boolean expression, and a logic network that outputs the majority vote of the three input values.

 35. You have just been hired at Mercenary Motors. Your job is to design a logic network so that a car can be
started only when the automatic transmission is in neutral or park and the driver’s seat belt is fastened.
Find a truth function, a Boolean expression, and a logic network. (There is a don’t-care condition to the
truth function, since the car cannot be in both neutral and park.)

 36. Mercenary Motors has expanded into the calculator business. You need to design the circuitry for the
display readout on a new calculator. This design involves a two-step process.

 a. Any digit 0, 1, … , 9 put into the calculator is first converted to binary form. Part (a) of the accompany-
ing figure illustrates this conversion, which involves four separate networks, one each for x1 to x4. Each
network has 10 inputs, but only 1 input can be on at any given moment. Write a Boolean expression and
then draw a network for x2.

 b. The binary form of the digit is then converted into a visual display by activating a pattern of seven out-
puts arranged as shown in figure (b). To display the digit 3, for example, y1, y2, y3, y5, and y7 must be
on, as in figure (c). Thus, the second step of the process can be represented by figure (d), which involves
seven separate networks, one each for y1 to y7, each with four inputs, x1 to x4. Write a truth function, a
Boolean expression, and a network for y5 and for y6.

0
1
2
3
4
5
6
7
8
9

y1
x4 x3 x2 x1

x4 x3 x2 x1

y2

y3

y4

y5

y6

y7

Logic
for

binary
encoder

Logic
for

display
readout

(d)

(c)(b)

(a)

y6 y7

y3

y2

y1

y4 y5

662 Boolean Algebra and Computer Logic Section 8.3 Minimization 663

 37. A multiplexor is a control circuit with 2n input lines (numbered 0 through 2n − 1), n selector lines, and
exactly one output line. The signal on the output line is to match the signal on one of the input lines; the
selector lines determine which of the input line signals will be propagated to the output line. Signals on
the n selector lines determine an n-bit binary number, which can range in value from 0 to 2n − 1; hence
the numeric value on the selector lines identifies exactly one input line. The arithmetic-logic unit of a com-
puter processor contains circuits for various operations (addition, subtraction, comparison, and so forth),
and when an arithmetic or comparison operation is to be done, the ALU may activate all these circuit. A
multiplexor then picks out the one desired result.

 a. Write a truth function for a multiplexor where n = 1; that is, there are 2 input lines, 1 selector line and,
of course, one output line.

 b. Draw the logic network (as simple as possible).
 38. A decoder is a control circuit with n input lines and 2n output lines (numbered 0 through 2n − 1). The pat-

tern of n bits on the input lines represents a binary number between 0 and 2n − 1. A decoder activates the
output line with the corresponding identification number by putting a 1 output on that line and 0 outputs
on all other output lines. A decoder in a computer can, for example, read input lines that represent a binary
memory address and then activate the line to that memory cell for a read operation.

 a. Write truth functions for a decoder where n = 2, that is, there are 2 input lines and 22 = 4 output lines
(hence four truth functions).

 b. Draw the logic network that incorporates all four truth functions.
 39. At the beginning of this chapter, you were

. . . hired by Rats R Us to build the control logic for the production facilities for a new anticancer
chemical compound being tested on rats. The control logic must manage the opening and closing
of two valves, A and B, downstream of the mixing vat. Valve A is to open whenever the pressure
in the vat exceeds 50 psi (pounds per square inch) and the salinity of the mixture exceeds 45 g/L
(grams per liter). Valve B is to open whenever valve A is closed and the temperature exceeds 53°C
and the acidity falls below 7.0 pH (lower pH values mean more acidity).

How many and what type of logic gates will be needed in the circuit?
 Answer this question by finding the canonical sum-of-products form for the logic circuits to control A

and B.

 S e c t i o n 8 . 3 MiniMization

Minimization Process

Remember from Section 8.2 that a given truth function is associated with an
equivalence class of Boolean expressions. If we want to design a logic network
for the function, the ideal would be to have a procedure that chooses the simplest
Boolean expression from the class. What we consider simple will depend on the
technology employed in building the network, what kind of logic elements are
available, and so on. At any rate, we probably want to minimize the total number
of connections that must be made and the total number of logic elements used. (As
we discuss minimization procedures, keep in mind that other factors may influ-
ence the economics of the situation. If a network is to be built only once, the time
spent on minimization is costlier than building the network. But if the network
is to be mass-produced, then the cost of minimization time may be worthwhile.)

664 Boolean Algebra and Computer Logic Section 8.3 Minimization 665

We have had some experience in simplifying Boolean expressions by apply-
ing the properties of Boolean algebra. However, we had no procedure to use. We
simply had to guess, attacking each problem individually. What we want now is
a mechanical procedure that we can use without having to be clever or insightful.
Unfortunately, we won’t develop the ideal procedure. However, we already know
how to select the canonical sum-of-products form from the equivalence class of
expressions for a given truth function. In this section we will discuss two proce-
dures to reduce a canonical sum-of-products form to a minimal sum-of-products
form. Therefore, we can minimize within the framework of a sum-of-products
form and reduce, if not completely minimize, the number of elements and con-
nections required.

 example 19 The Boolean expression

x1x2x3 + x1′x2x3 + x1′x2x3′

is in sum-of-products form. An equivalent minimal sum-of-products form is

x2x3 + x2x1′

Implementing a network for this form would require two AND gates, one OR gate,
and an inverter. Using one of the distributive laws of Boolean algebra, this expres-
sion reduces to

x2(x3 + x1′)

which requires only one AND gate, one OR gate, and an inverter, but it is no lon-
ger in sum-of-products form. Thus, a minimal sum-of-products form may not be
minimal in an absolute sense.

■

PraCtiCe 15 Use properties of Boolean algebra to reduce the following expressions as indicated:

a. x1x2 + x1′x2 to x2
b. x1 + x1′x2 to x1 + x2

There are two extremely useful equivalences in minimizing a sum-of- products
form. They are

x1x2 + x1′x2 = x2

and

x1 + x1′x2 = x1 + x2

The equivalence x1x2 + x1′x2 = x2 means, for example, that the expression
x1′x2x3′x4 + x1′x2′x3′x4 reduces to x1′x3′x4. Thus, when we have a sum of two products
that differ in only one factor, we can eliminate that factor. However, the canonical

664 Boolean Algebra and Computer Logic Section 8.3 Minimization 665

sum-of-products form for a truth function of, say, four variables might be quite
long and require some searching to locate two product terms differing by only one
factor. To help us in this search, we can use the Karnaugh map. The Karnaugh
map is a visual representation of the truth function so that terms in the canonical
sum-of-products form that differ by only one factor can be matched quickly.

Karnaugh Map

In the canonical sum-of-products form for a truth function, we are interested in
values of the input variables that produce outputs of 1. The Karnaugh map records
the 1s of the function in an array that forces products of inputs
differing by only one factor to be adjacent. The array form for
a two-variable function is given in Figure 8.20. Notice that the
square corresponding to x1x2, the upper left-hand square, is ad-
jacent to squares x1′x2 and x1x2′, which differ in one factor from
x1x2; however, it is not adjacent to the x1′x2′ square, which differs
in two factors from x1x2.

x�2

x2

x�1x1

Figure 8.20

 ExamplE 20 The truth function of Table 8.10 is represented by the Karnaugh map of Figure
8.21. At once we can observe 1s in two adjacent squares, so there are two terms in
the canonical sum-of-products form differing by one variable; again from the map,
we see that the variable that changes is x1. It can be eliminated. We conclude that
the function can be represented by x2. Indeed, the canonical sum-of-products form
for the function is x1x2 + x1′x2, which, by our basic reduction rule, reduces to x2.
However, we did not have to write the canonical form—we only had to look at the
map.

TablE 8.10

x1 x2 f(x1, x2)

1 1 1

1 0 0

0 1 1

0 0 0

1 1

x1 x�1

x2

x�2

Figure 8.21

■

Practice 16 Draw the Karnaugh map and use it to find a reduced expression for the function in
Table 8.11.

TablE 8.11

x1 x2 f(x1, x2)

1 1 0

1 0 0

0 1 1

0 0 1

666 Boolean Algebra and Computer Logic Section 8.3 Minimization 667

Maps for Three and Four Variables
The array forms for functions of three and four variables are shown in Figure 8.22.
In these arrays, adjacent squares also differ by only one variable. However, in
Figure 8.22a, the leftmost and rightmost squares in a row also differ by one vari-
able, so we consider them adjacent. (They would in fact be adjacent if we wrapped
the map around a cylinder and glued the left and right edges together.) In Figure
8.22b, the leftmost and rightmost squares in a row are adjacent (differ by exactly
one variable), and also the top and bottom squares in a column are adjacent.

(a) (b)

x1x2

x1x2

x3x4

x3

x1x�2

x1x�2

x3x�4

x�3

x�1x�2

x�1x�2

x�3x�4

x�1x2

x�1x2

x�3x4

figure 8.22

In three-variable maps, when two adjacent squares are marked with 1, one vari-
able can be eliminated; when four adjacent squares are marked with 1 (either in a
single row or arranged in a square), two variables can be eliminated.

The labelings for two-, three-, and four-variable maps can be done in various
ways, but they must be done so that adjacent squares differ by one variable. It’s
probably best to just memorize the labeling schemes we’ve used here.

ReminDeR

It is crucial to label the
Karnaugh map so that
adjacent squares differ by
one variable.

 example 21 In the map of Figure 8.23, the squares that combine for a reduction are shown as a
block. These four adjacent squares reduce to x3 (eliminate the changing variables
x1 and x2). The reduction uses our basic reduction rule more than once:

x1x2x3 + x1x2′x3 + x1′x2′x3 + x1′x2x3 = x1x3(x2 + x2′) + x1′x3(x2′ + x2)
= x1x3 + x1′x3

= x3(x1 + x1′)
= x3

But, again, you don’t have to go through this process; you can just look at the
Karnaugh map in Figure 8.23.

1 1 1 1

x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

figure 8.23

666 Boolean Algebra and Computer Logic Section 8.3 Minimization 667

In four-variable maps, when two adjacent squares are marked with 1, one
variable can be eliminated; when four adjacent squares are marked with 1,
two variables can be eliminated; when eight adjacent squares are marked with
1, three variables can be eliminated.

Figure 8.24 illustrates some instances of two adjacent marked squares, Figure 8.25
illustrates some instances of four adjacent marked squares, and Figure 8.26 shows
instances of eight.

1 1

1 1

1

1

1

1

x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2 x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

figure 8.24

x�3x�4

1 1

1

1

1

1

1 1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2 x�1x2

x�3x4

1

1

1

1

x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

1 1

11

x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

figure 8.25

11 1

1

1

11

11

1

1 1

1 1 11

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2 x1x2 x1x�2 x�1x�2 x�1x2

x�3x4

x3x4

x3x�4

x�3x�4

x�3x4

figure 8.26

668 Boolean Algebra and Computer Logic Section 8.3 Minimization 669

Using the Karnaugh Map
How do we find a minimal sum-of-products form from a Karnaugh map (or from
a truth function or a canonical sum-of-products form)? We must use every marked
square of the map, and we want to include every marked square in the largest com-
bination of marked squares possible, since doing so will reduce the expression as
much as possible. Surprisingly, we cannot begin by simply looking for the largest
blocks of marked squares on the map.

 ExamplE 22 In the map of Figure 8.27, the four outside corners reduce to x2x4 and the inside
square reduces to x2′x4′.

1

1 1

11

1

1

1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

Figure 8.27

■

Practice 17 Find the two terms represented by the map in Figure 8.28.

1 1

11

1

1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

Figure 8.28

 ExamplE 23 In the Karnaugh map of Figure 8.29, if we simply looked for the largest block of
marked squares, we would use the column of 1s and reduce it to x1′x2′. However,
we would still have four marked squares unaccounted for. Each of these marked
squares can be combined into a two-square block in only one way (Figure 8.30),
and each of these blocks has to be included. But when this adjustment is made,
every square in the column of 1s is used, and the term x1′x2′ is superfluous. The
minimal sum-of-products form for this map becomes

x2′x3x4 + x1′x3x4′ + x2′x3′x4′ + x1′x3′x4

668 Boolean Algebra and Computer Logic Section 8.3 Minimization 669

1

1

1

1

11

1 1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

Figure 8.29

1

1

1

1

11

1 1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

Figure 8.30

To avoid the redundancy illustrated by Example 23, we analyze the map as
follows. First, we form terms for those marked squares that cannot be combined
with anything. Then we use the remaining marked squares to find those that can be
combined only into two-square blocks and in only one way. Then among the un-
used marked squares—that is, those not already assigned to a block—we find those
that can be combined only into four-square blocks and in only one way; then we
look for any unused squares that go uniquely into eight-square blocks. At each step,
if an unused marked square can go into more than one block, we do nothing with
it. Finally, we take any unused marked squares that are left (for which there was a
choice of blocks) and select blocks that include them in the most efficient manner.

Table 8.12 shows the steps involved. Note, however, that this procedure for
handling Karnaugh maps is not, strictly speaking, an algorithm because it doesn’t
always produce the correct result. If there are many 1s in the map, thus allowing
many different blockings, even this procedure may not lead to a minimal form
(see Example 28).

Table 8.12

Steps in Using Karnaugh Maps

1. Set up the grid, using correct labeling for the number of Boolean variables.

2. Insert 1s in the table for the terms in the canonical sum-of-products expression.

3. Form terms for any isolated marked squares.

4. Combine squares uniquely into two-square blocks, if possible.

5. Combine squares uniquely into four-square blocks, if possible.

6. Combine squares uniquely into eight-square blocks, if possible.

7. Combine any remaining unused marked squares into blocks as efficiently as possible.

 exaMple 24 In Figure 8.31a we show the only square that cannot be combined into a larger
block. In Figure 8.31b, we have formed the unique two-square block for the x1x2′x3′
square and the unique two-square block for the x1′x2′x3 square. All marked squares
are covered. The minimal sum-of-products expression is

x1x2x3 + x2′x3′ + x1′x2′

670 Boolean Algebra and Computer Logic Section 8.3 Minimization 671

Formally, the last two terms are obtained by expanding x1′x2′x3′ into x1′x2′x3′ + x1′x2′x3′
and then combining it with each of its neighbors.

(a)

1 1

11

(b)

1 1

11

x1x2

x3

x1x�2 x�1x�2

x�3

x�1x2 x1x2

x3

x1x�2 x�1x�2

x�3

x�1x2

figure 8.31

 example 25 Figure 8.32a shows the unique two-square blocks for the x1′x2′x3x4 square and the
x1x2′x3′x4′ square. In Figure 8.32b the two unused squares have been combined into
a unique four-square block. The minimal sum-of-products expression is

x1x3 + x2′x3x4 + x1x2′x4′

1

(a)

1 1

1

1 1

1

(b)

1 1

1

1 1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

figure 8.32

 example 26 Figure 8.33a shows the unique two-square blocks. We can assign the remaining
unused marked square to either of two different two-square blocks; these blocks
are shown in Figure 8.33b. There are two minimal sum-of-products forms,

x1x2′x4′ + x1′x2x3 + x2′x3x4′

and

x1x2′x4′ + x1′x2x3 + x1′x3x4′

Either can be used, as they are equally efficient.

670 Boolean Algebra and Computer Logic Section 8.3 Minimization 671

1

1

11 1

1

1

11 1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

figure 8.33

 example 27 Figure 8.34a shows the unique two-square and four-square blocks. The remaining
two unused marked squares can be assigned to two-square blocks in two different
ways, as shown in parts (b) and (c). Assigning them together to a single two-square
block is more efficient because it produces a sum-of-products form with three
terms rather than four. The minimal sum-of-products expression is

x1x3 + x1′x2x3′ + x2′x3′x4′

1 1

11

1

(a) (b)

1

1

1

1 1

11

11

1

1

(c)

1 1

11

11

1

1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

figure 8.34

 example 28 Consider the map of Figure 8.35a. Here the two unique four-square blocks deter-
mined by the squares with * have been chosen. In Figure 8.35b, the remaining un-
marked squares, for which there was a choice of blocks, are combined into blocks
as efficiently as possible. The resulting sum-of-products form is

x1x3 + x1′x3′ + x3x4 + x1′x2 + x1x2′x4′

672 Boolean Algebra and Computer Logic Section 8.3 Minimization 673

Yet in Figure 8.35c, choosing a different four-square block at the top leads to a
simpler sum-of-products form,

x2x3 + x1′x3′ + x3x4 + x1x2′x4′

1 1 1 1

1 11

1

1

(a) (b)

1

1

1

1 1 1 1

11*

*

*

*

1

1

1

1

1

1

1 1 1 1

111

1

1

1

1

1

(c)

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

figure 8.35

■

PraCtiCe 18 Write the minimal sum-of-products expression for the map shown in Figure 8.36.

1

1

11 1

1

x1x2

x3x4

x1x�2

x3x�4

x�1x�2

x�3x�4

x�1x2

x�3x4

figure 8.36

If the Karnaugh map corresponds to a function with don’t-care conditions,
then the don’t-care squares on the map can be left blank or assigned the value 1,
whichever aids the minimization process.

We have used Karnaugh maps for functions of two, three, and four variables.
By using three-dimensional drawings or overlapping transparency sheets, Kar-
naugh maps for functions of five, six, or even more variables can be constructed,
but the visualization gets too complicated to be worthwhile. The next procedure
works for any number of variables.

672 Boolean Algebra and Computer Logic Section 8.3 Minimization 673

Quine–McCluskey Procedure

Remember that the key to reducing the canonical sum-of-products form for a truth
function lies in recognizing terms of the sum that differ in only one factor. In the
Karnaugh map, we see where such terms occur. A second method of reduction,
the Quine–McCluskey procedure, organizes information from the canonical sum-
of-products form into a table to simplify the search for terms differing by only
one factor.

The procedure is a two-step process paralleling the use of the Karnaugh map.
First we find groupings of terms (just as we looped together marked squares in
the Karnaugh map); then we eliminate redundant groupings and make choices for
terms that can belong to several groups.

 ExamplE 29 Let’s illustrate the Quine–McCluskey procedure by using the truth function for
Example 23. We did not write the actual truth function there, but the information
is contained in the Karnaugh map. The truth function is shown in Table 8.13. The
eight 4-tuples of 0s and 1s producing a function value of 1 are listed in Table 8.14,
which is separated into four groupings according to the number of 1s. Note that
terms of the canonical sum-of-products form differing by only one factor must be
in adjacent groupings, which simplifies the search for such terms.

TablE 8.13

x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 0

1 1 1 0 0

1 1 0 1 0

1 1 0 0 0

1 0 1 1 1

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 1 0 0 0

0 0 1 1 1

0 0 1 0 1

0 0 0 1 1

0 0 0 0 1

TablE 8.14

Number of 1s x1 x2 x3 x4

Three 1 0 1 1

Two 0 1 1 0

0 1 0 1

0 0 1 1

One 1 0 0 0

0 0 1 0

0 0 0 1

None 0 0 0 0

674 Boolean Algebra and Computer Logic Section 8.3 Minimization 675

We compare the first term, 1011, with each of the three terms of the second
group, 0110, 0101, and 0011, to locate terms differing by only one factor. Such a
term is 0011. The combination 1011 and 0011 reduces to −011 when the chang-
ing variable x1 is eliminated. We will write this reduced term with a dash in the
x1 position in the first row of a new table. The new table is Table 8.15b, where
we’ve just seen how the first row was obtained. We’ve rewritten the original
Table 8.14 as Table 8.15a, but we have also marked the two terms 1011 and 0011
in this table with a superscript 1. This superscript 1 is a pointer that indicates
the row number of the reduced term in Table 8.15b that is formed from these
two terms (numbering terms corresponds to putting loops in the Karnaugh map).

Table 8.15

Number of 1s x1 x2 x3 x4

Three 1 0 1 1 1

Two 0 1 1 0 2

0 1 0 1 3

0 0 1 1 1, 4, 5

One 1 0 0 0 6

0 0 1 0 2, 4, 7

0 0 0 1 3, 5, 8

None 0 0 0 0 6, 7, 8

We continue this process with all the terms in Table 8.15a. A numbered term
may still be used in other combinations, just as a marked square in a Karnaugh
map can be in more than one loop. When we are done, the result is the completed
Table 8.15b shown, where the terms in this table are again grouped by the num-
ber of 1s.

We now build still another table by processing the terms in Table 8.15b.
Here not only the groupings but also the dashes help organize the search pro-
cess, since terms differing by only one variable must have dashes in the same
location. Tables 8.16a and 8.16b are the same as Tables 8.15a and 8.15b, and
Table 8.16c is the new table. Again, numbers on terms in Table 8.16b that combine
serve as pointers to the reduced terms in Table 8.16c. When we have processed
all the terms in Table 8.16b, the reduction process cannot be continued. The un-
numbered terms are irreducible, so they represent the possible maximum-sized
loops on a Karnaugh map.

Number of 1s x1 x2 x3 x4

Two – 0 1 1

One 0 – 1 0

0 – 0 1

0 0 1 –

0 0 – 1

None – 0 0 0

0 0 – 0

0 0 0 –

(a) (b)

674 Boolean Algebra and Computer Logic Section 8.3 Minimization 675

number of 1s x1 x2 x3 x4

Two – 0 1 1

One 0 – 1 0

0 – 0 1

0 0 1 – 1

0 0 – 1 1

None – 0 0 0

0 0 – 0 1

0 0 0 – 1

number of 1s x1 x2 x3 x4

None 0 0 – –

(a) (b)

(c)

For the second step of the process, we compare the original terms with the
irreducible terms. We form a table with the original terms as column headers
and the irreducible terms (the unnumbered terms in the reduction tables just con-
structed) as row labels. A check in the comparison table (Table 8.17) indicates that
the original term in that column eventually led to the irreducible term in that row,
which can be determined by following the pointers.

table 8.17

1011 0110 0101 0011 1000 0010 0001 0000

–011 ✓ ✓

0–10 ✓ ✓

0–01 ✓ ✓

–000 ✓ ✓

00– – ✓ ✓ ✓ ✓

If a column in the comparison table has a check in only one row, the irreduc-
ible term for that row is the only one covering the original term, so it is an essen-
tial term and must appear in the final sum-of-products form. Thus, we see from
Table 8.17 that the terms –011, 0–10, 0–01, and –000 are essential and must be
in the final expression. We also note that all columns with a check in row 5 also
have checks in another row and so are covered by an essential reduced term al-
ready in the expression. Thus, 00– – is redundant. As in Example 23, the minimal
sum-of-products form is

x2′x3x4 + x1′x3x4′ + x1′x3′x4 + x2′x3′x4′

table 8.16

number of 1s x1 x2 x3 x4

Three 1 0 1 1 1

Two 0 1 1 0 2

0 1 0 1 3

0 0 1 1 1, 4, 5

One 1 0 0 0 6

0 0 1 0 2, 4, 7

0 0 0 1 3, 5, 8

None 0 0 0 0 6, 7, 8

676 Boolean Algebra and Computer Logic Section 8.3 Minimization 677

number of 1s x1 x2 x3 x4

Two 0 1 1 –

One – 0 1 0

1 0 – 0

0 – 1 0

In situations where there is more than one minimal sum-of-products form, the
comparison table will have nonessential, nonredundant reduced terms. A selec-
tion must be made from these reduced terms to cover all columns not covered by
essential terms.

table 8.19

0111 1010 0110 0010 1000

011– ✓ ✓

–010 ✓ ✓

10–0 ✓ ✓

0–10 ✓ ✓

We see from the comparison table that 011– and 10–0 are essential reduced terms
and that there are no redundant terms. The only original term not covered by es-
sential terms is 0010, column 4, and the choice of the reduced term for row 2 or for
row 4 will cover it. Thus, the minimal sum-of-products form, as before, is

x1′x2x3 + x1x2′x4′ + x2′x3x4′

or

x1′x2x3 + x1x2′x4′ + x1′x3x4′

(a) (b)

 example 30 We will use the Quine–McCluskey procedure on the problem presented in Example
26. The reduction tables are given in Table 8.18, and the comparison table appears
in Table 8.19.

table 8.18

number of 1s x1 x2 x3 x4

Three 0 1 1 1 1

Two 1 0 1 0 2, 3

0 1 1 0 1, 4

One 0 0 1 0 2, 4

1 0 0 0 3

676 Boolean Algebra and Computer Logic Section 8.3 Minimization 677

While the Quine–McCluskey procedure applies to truth functions with any
number of input variables, for a large number of variables, the procedure is extremely
tedious to do by hand. However, it is exactly the kind of systematic, mechanical pro-
cess that lends itself to a computerized solution. In contrast, Karnaugh maps make
use of the human ability to quickly recognize visual patterns.

If the truth function f has few 0 values and a large number of 1 values, it may
be simpler to implement the Quine–McCluskey procedure for the complement of
the function, f ′, which will have 1 values where f has 0 values, and vice versa.
Once a minimal sum-of-products expression is obtained for f ′, it can be comple-
mented to obtain an expression for f, although the new expression will not be in
sum-of-products form. (In fact, by De Morgan’s laws, it will be equivalent to a
product-of-sums form.) We can obtain the network for f from the sum-of-products
network for f ′ by tacking an inverter on the end.

The whole object of minimizing a network is to simplify the internal configu-
ration while preserving the external behavior. In Chapter 9 we will attempt the
same sort of minimization on finite-state machine structures.

PraCtiCe 19 Use the Quine–McCluskey procedure to find a minimal sum-of-products form for the truth
function in Table 8.20.

table 8.20

x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 1
■

S e c t i o n 8 . 3 review

tecHniQueS

• Minimize the canonical sum-of-products form for
a truth function by using a Karnaugh map.

• Minimize the canonical sum-of-products form for
a truth function by using the Quine–McCluskey
procedure.

main iDea

• Algorithms exist for reducing a canonical sum-
of-products form to a minimized sum-of-products
form.

W

W

678 Boolean Algebra and Computer Logic Section 8.3 Minimization 679

ExErcisEs 8.3

For Exercises 1–8, write the minimal sum-of-products form for the Karnaugh maps of the given figures.

 1. x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

1

1

1 1

1

 2. x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

1

1

1

 3. x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

1

1 1 1

1

1

 4. x1x2

x3

x1x�2

x�3

x�1x�2 x�1x2

1 1 1

 5. x1x2 x1x2 x1x2 x1x2

x3x4

' ' ''

x3x4'

x3x4''

x3x4'

1

1

1

1

11

1 1

 6. x1x2 x1x2 x1x2 x1x2

x3x4

' ' ''

x3x4'

x3x4''

x3x4'

1 1 1

1 1

 7. x1x2 x1x2 x1x2 x1x2

x3x4

' ' ''

x3x4'

x3x4''

x3x4'

1

1

1

1 1

 8. x1x2 x1x2 x1x2 x1x2

x3x4

' ' ''

x3x4'

x3x4''

x3x4'

1

1 1

1

1

1

For Exercises 9 and 10, use a Karnaugh map to find the minimal sum-of-products form for the truth functions
shown.

 9. x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

678 Boolean Algebra and Computer Logic Section 8.3 Minimization 679

 10. x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 1

1 1 1 0 1

1 1 0 1 1

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

1 0 0 1 0

1 0 0 0 1

0 1 1 1 1

0 1 1 0 1

0 1 0 1 1

0 1 0 0 1

0 0 1 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

 11. Use a Karnaugh map to find the minimal sum-of-products form for the truth function of Exercise 17,
Section 8.2.

 12. Use a Karnaugh map to find the minimal sum-of-products form for the truth function of Exercise 18,
Section 8.2.

 13. a. Use a Karnaugh map to find the minimal sum-of-products form for the truth function of Exercise 19,
Section 8.2.

 b. Draw the logic network for the reduced expression of part (a).

 14. a. Use a Karnaugh map to find the minimal sum-of-products form for the truth function of Exercise 20,
Section 8.2.

 b. Draw the logic network for the reduced expression of part (a).

 15. Use a Karnaugh map to find the minimal sum-of-products form for the following Boolean expression.

x1′x2′x3x4 + x1x2x3′x4 + x1′x2′x3′x4 + x1x2′x3x4′ + x1′x2x3x4 + x1′x2x3′x4 + x1′x2′x3x4′

 16. Use a Karnaugh map to find the minimal sum-of-products form for the following Boolean expression.

x1′x2′x3′x4′ + x1x2x3′x4 + x1′x2′x3′x4 + x1x2x3′x4′ + x1′x2x3x4 + x1x2′x3′x4′

680 Boolean Algebra and Computer Logic Section 8.3 Minimization 681

 17. Use a Karnaugh map to find
a minimal sum-of-products
expression for the network of
three variables shown in the
figure. Sketch the new net-
work.

 18. At Rats R Us, you found a standard sum-of-products form for the logic to control valves A and B
(Exercise 39, Section 8.2). Now earn yourself a raise by using Karnaugh maps to minimize these
 expressions.

 19. Use a Karnaugh map to find a minimal sum-of-products form for the truth function in the table. Don’t-
care conditions are shown by dashes.

x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 0

1 1 1 0 1

1 1 0 1 0

1 1 0 0 –

1 0 1 1 0

1 0 1 0 –

1 0 0 1 0

1 0 0 0 0

0 1 1 1 0

0 1 1 0 1

0 1 0 1 0

0 1 0 0 1

0 0 1 1 1

0 0 1 0 0

0 0 0 1 –

0 0 0 0 0

x1
x2
x3

x1
x2
x3

x1
x2
x3

x1
x2
x3

x1
x2
x3

680 Boolean Algebra and Computer Logic Section 8.3 Minimization 681

 20. Use a Karnaugh map to find a minimal sum-of-products form for the truth function in the table. Don’t-
care conditions are shown by dashes.

x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 0
1 1 1 0 1
1 1 0 1 0
1 1 0 0 –
1 0 1 1 –
1 0 1 0 0
1 0 0 1 0
1 0 0 0 0
0 1 1 1 1
0 1 1 0 0
0 1 0 1 1
0 1 0 0 0
0 0 1 1 1
0 0 1 0 0
0 0 0 1 –
0 0 0 0 0

 21. Use the Quine–McCluskey procedure to find a minimal sum-of-products form for the truth function il-
lustrated by the map for Exercise 3.

 22. Use the Quine–
McCluskey pro-
cedure to find a
minimal sum-of-
products form for
the network in
the figure. Sketch
the new network.

x1
x2
x3
x4

x1
x2
x3
x4

x1
x2
x3
x4

x1
x2
x3
x4

x1
x2
x3
x4

x1
x2
x3
x4

682 Boolean Algebra and Computer Logic

In Exercises 25–28, use the Quine–McCluskey procedure to find the minimal sum-of-products form for the
Boolean expressions.

 25. x1x2′x3x4′ + x1′x2′x3x4 + x1′x2x3x4 + x1′x2′x3′x4′ + x1′x2x3′x4′ + x1′x2′x3′x4

 26. x1x2x3x4 + x1x2′x3x4 + x1x2x3x4′ + x1x2′x3x4′ + x1′x2x3x4′ +
 x1x2x3′x4′ + x1′x2x3′x4′ + x1x2x3′x4 + x1′x2x3′x4

 27. x1x2x3x4 + x1x2x3x4′ + x1′x2x3x4′ + x1x2x3′x4′ + x1′x2′x3′x4′ +
 x1′x2x3′x4′ + x1x2′x3′x4 + x1′x2′x3′x4 + x1x2x3′x4

 28. x1′x2x3′x4x5′ + x1′x2x3x4′x5 + x1x2x3x4x5 + x1′x2′x3x4′x5 +
 x1x2′x3x4x5 + x1′x2′x3′x4′x5 + x1x2′x3x4′x5 + x1x2x3x4′x5′ +
 x1x2x3′x4x5 + x1′x2′x3′x4x5′
 29. Use the Quine–McCluskey procedure to find a minimal sum-of-products form for the truth function

 illustrated by the map in Figure 8.34.

For Exercises 23 and 24, use the Quine–McCluskey procedure to find the minimal sum-of-products form for
the truth functions in the given tables.

 23. x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 0

1 1 1 0 1

1 1 0 1 0

1 1 0 0 0

1 0 1 1 0

1 0 1 0 1

1 0 0 1 1

1 0 0 0 1

0 1 1 1 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 1

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1

 24. x1 x2 x3 x4 f(x1, x2, x3, x4)

1 1 1 1 1

1 1 1 0 0

1 1 0 1 1

1 1 0 0 0

1 0 1 1 1

1 0 1 0 0

1 0 0 1 1

1 0 0 0 1

0 1 1 1 1

0 1 1 0 0

0 1 0 1 1

0 1 0 0 1

0 0 1 1 1

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

c H a p t e R 8 review

teRminology

AND gate (p. 639)
Boolean algebra (p. 620)
Boolean expression

(p. 639)
canonical sum-of-products form

(p. 643)
combinational network (p. 642)
complement (of a Boolean algebra

element) (p. 625)
De Morgan’s laws (for a Boolean

algebra) (p. 624)
disjunctive normal form (p. 643)

double negation (for a Boolean
algebra) (p. 624)

dual (of a Boolean algebra
property) (p. 623)

equivalent Boolean expressions
(p. 645)

FPGA (p. 647)
full-adder (p. 650)
half-adder (p. 649)
idempotent property (of a Boolean

algebra) (p. 622)
inverter (p. 639)

isomorphic instances of a structure
(p. 626)

isomorphism (p. 626)
isomorphism for Boolean algebras

(p. 629)
NAND gate (p. 650)
NOR gate (p. 651)
OR gate (p. 639)
PLD (p. 647)
truth function (p. 640)
universal bound property (of a

Boolean algebra) (p. 624)

Self-teSt

Answer the following true-false questions.

section 8.1
1. In any Boolean algebra, x + x′ = 0.
2. Set theory is an instance of a Boolean algebra in

which + is set union and # is set intersection.
3. In any Boolean algebra, x + (y + x # z) = x + y.
4. The dual of the equation in the previous statement

is x # 3 y # (x + z) 4 = x # y.
5. Any two Boolean algebras with 16 elements are

isomorphic.

section 8.2
1. A logic network for the Boolean expression

(x + y)′ could be built using one AND gate and
two inverters.

2. The canonical sum-of-products form for a truth
function f: 50, 16n S 50, 16 has n terms.

3. Two single-bit binary numbers can be added using
a network consisting of two half-adders.

4. The following two logic networks represent the
same truth function:

5. The most efficient way to construct a logic net-
work for a given truth function using only NAND
gates is to construct the logic network using AND,
OR, and NOT gates and then replace each of these
elements with its equivalent form in NAND gates.

 Chapter 8 Review 683

x

y

684 Boolean Algebra and Computer Logic

o n t H e c o m p u t e R

For Exercises 1–4, write a computer program that
produces the desired output from the given input.

1. Input: n and tables defining two binary operations
and one unary operation on a set of n objects

 Output: Indication of whether the structure is a
Boolean algebra

 Algorithm: Testing the 10 properties for all cases

2. Input: n, tables defining a binary operation on each
of two sets of n elements, and a table defining a
bijection from one set to the other

 Output: Indication of whether the function is an
isomorphism

 Algorithm: Testing all possible cases

section 8.3
1. A Karnaugh map is a device to help change a

canonical sum-of-products form to a reduced sum-
of-products form.

2. The 1s in a Karnaugh map correspond to the 1
values of the truth function.

3. When using a Karnaugh map to reduce a Boolean
expression, the largest possible blocks should be
determined first because they provide the greatest
reduction.

4. In the Quine–McCluskey procedure, terms that
combine must have dashes in the same locations.

5. In the Quine–McCluskey procedure, a check in
some row of the comparison table indicates that
the term for that row is an essential term that must
appear in the reduced expression.

3. Input: n and a table representing a truth function
with n arguments

 Output: Canonical sum-of-products Boolean ex-
pression for the truth function

4. Input: n and a table representing a truth function
with n arguments

 Output: Minimal sum-of-products Boolean expres-
sion for the truth function

 Algorithm: Using the Quine–McCluskey procedure

Chapter ObjeCtives

After studying this chapter, you will be able to:

• See how algebraic structures, finite-state machines, and Turing machines are
all models of various kinds of computation, and how formal languages attempt
to model natural languages.

• Recognize certain well-known group structures.
• Prove some properties about groups.
• Understand what it means for groups to be isomorphic.
• Be able to construct group codes for single-error correction of binary m-tuples.
• Be able to decode received n-tuples for a single-error correcting perfect code.
• Trace the operation of a given finite-state machine on an input string.
• Construct finite-state machines to recognize certain sets.
• For a given finite-state machine, find an equivalent machine with fewer states

if one exists.
• Build a circuit for a finite-state machine.
• Trace the operation of a given Turing machine on an input tape.
• Construct Turing machines to perform certain recognition or computation tasks.
• Understand the Church–Turing thesis and what it implies for the Turing ma-

chine as a model of computation.
• Be aware of the P = NP question regarding computational complexity.
• Given a grammar G, construct the derivation of strings in L(G).
• Understand the relationship between different classes of formal languages and

different computational devices.

Your team at Babel, Inc., is writing a compiler for a new programming language, cur-
rently code-named ScrubOak after a tree outside your office window. During the first
phase of compilation (called the lexical analysis phase) the compiler must break down
statements into individual units called tokens. In particular, the compiler must be able
to recognize identifiers in the language, which are strings of letters, and also recog-
nize the two keywords in the language, which are if and in.

 Question: How can the compiler recognize the individual tokens in a statement?

9Modeling Arithmetic, Computation,
and Languages

Chapter

685

686 Modeling Arithmetic, Computation, and Languages686 Modeling Arithmetic, Computation, and Languages

A mathematical structure, as discussed in Chapter 8, is a formal model intended
to capture common properties or behavior found in different contexts. A structure
consists of an abstract set of objects, together with operations on or relationships
among those objects that obey certain rules. The Boolean algebra structure of
Chapter 8 is a model of the properties and behavior common to both propositional
logic and set theory. As a formal model, it is an abstract entity, an idea; proposi-
tional logic and set theory are two instances, or realizations, of this idea.

In this chapter we study other structures. In Section 9.1, algebraic structures
are defined that model various types of arithmetic such as addition of integers and
multiplication of positive real numbers. As an aside, section 9.2 looks at coding
theory, an important application of one of these algebraic structures. This type of
encoding (and decoding) is not about secrecy but about detecting and perhaps cor-
recting bit errors in data transmission or storage.

The “arithmetics” of Section 9.1 represent a limited form of computation, but
we will see models of much broader forms of computation in Sections 9.3 and 9.4.
Our initial choice for such a model, the finite-state machine, is a useful device for
certain tasks, such as the lexical analysis task facing your team at Babel. But the
finite-state machine is ultimately too limited to model computation in the general
sense. For a model that captures the notion of computation in all its generality, we
turn to the Turing machine. Using the Turing machine as a model of computation
will reveal that some well-defined tasks are not computable at all.

Finally, Section 9.5 discusses formal grammars and languages, which were
developed as attempts to model natural languages such as English. While less
than completely successful in this regard, formal grammars and languages do
serve to model many constructs in programming languages and play an important
role in compiler theory.

 S e c t i o n 9 . 1 AlgebrAiC StruCtureS

Definitions and Examples

We begin by analyzing a simple form of arithmetic, namely the addition of in-
tegers. There is a set Z of objects (the integers) and a binary operation on those
objects (addition). Recall from Section 4.1 that a binary operation on a set must be
well defined (giving a unique answer whenever it is applied to any two members
of the set) and that the set must be closed under the operation (the answer must
be a member of the set). The notation 3Z, + 4 will denote the set together with the
binary operation on that set.

In 3Z, + 4 , an equation such as

2 + (3 + 5) = (2 + 3) + 5

is true. On each side of the equation the integers remain in the same order, but the
grouping of those integers, which indicates the order in which the additions are
performed, changes. Changing the grouping has no effect on the answer. Another
type of equation that holds in 3Z, + 4 is

2 + 3 = 3 + 2

Section 9.1 Algebraic Structures 687Section 9.1 Algebraic Structures 687

Changing the order of the integers being added has no effect on the answer.
Equations such as

2 + 0 = 2
0 + 3 = 3

−125 + 0 = −125

are also true. Adding zero to any integer does not change the value of that integer.
Finally, equations such as

 2 + (−2) = 0
 5 + (−5) = 0

 −20 + 20 = 0

are true; adding the negative of an integer to the integer gives 0 as a result.
These equations represent four properties that occur so often they each have

a name.

 DefinitionS ProPErtiEs of BinAry oPErAtions
Let S be a set and let # denote a binary operation on S. (Here # does not necessarily
denote multiplication but simply any binary operation.)

 1. The operation # is associative if

(4x)(4y)(4z) 3x # (y # z) = (x # y) # z 4
 Associativity allows us to write x # y # z without using parentheses because
grouping does not matter.
 2. The operation # is commutative if

(4x)(4y)(x # y = y # x)

 3. 3S, # 4 has an identity element if

(E i)(4x)(x # i = i # x = x)

 4. If 3S, # 4 has an identity element i, then each element in S has an inverse
with respect to # if

(4x)(Ex−1)(x # x−1 = x−1 # x = i)

In the statements of the properties, the universal quantifiers range over the
set S; if the associative property holds, the equation x # (y # z) = (x # y) # z is true
for any x, y, z [S, and similarly for the commutative property. The existential
quantifier also applies to the set S, so an identity element i, if it exists, must be an
element of S, and an inverse element x−1, if it exists, must be an element of S. Note
the order of the quantifiers: In the definition of an identity, the existential quanti-
fier comes first—there must be one identity element i that satisfies the equation
x # i = i # x = x for every x in S, just like the integer 0 in 3Z, + 4 . In the definition
of the inverse element, the existential quantifier comes second—for each x, there
is an x−1, and if x is changed, then x−1 can change, just like the inverse of 2 in
3Z, + 4 is −2 and the inverse of 5 is −5. If there is no identity element, then it does
not make sense to talk about inverse elements.

688 Modeling Arithmetic, Computation, and Languages

 DefinitionS GrouP, CoMMutAtivE GrouP
3S, # 4 is a group if S is a nonempty set and # is a binary operation on S such that

 1. # is associative.
 2. an identity element exists (in S).
 3. each element in S has an inverse (in S) with respect to # .

A group in which the operation # is commutative is called a commutative
group.

Once again, the dot in the definitions is a generic symbol representing a binary
operation. In any specific case, the particular binary operation has to be defined.
If the operation is addition, for example, then the + sign replaces the generic
symbol, as in 3Z, + 4 . As an analogy with programming, we can think of the generic
symbol as a formal parameter to be replaced by an actual argument—the specific
operation—when its value becomes known. If it is clear what the binary operation
is, we may refer to “the group S” rather than “the group 3S, # 4 .”

From the discussion, it should be clear that 3Z, + 4 is a commutative group,
with an identity element of 0. The idea of a group would not be useful if there
were not a number of other instances. (Again as an analogy with programming,
one can think of a group as an abstract data type—a pattern—with many possible
instances of that data type.)

 example 1 Let R+ denote the positive real numbers, and let # denote real-number multipli-
cation, which is a binary operation on R+ . Then 3R+, # 4 is a commutative group.
Multiplication is associative and commutative. The positive real number 1 serves
as an identity because

x # 1 = 1 # x = x

for every positive real number x. Every positive real number x has an inverse with
respect to multiplication, namely the positive real number 1∙x, because

x # 1∙x = 1∙x # x = 1

■

 example 2 Let M2(Z) denote the set of 2 × 2 matrices with integer entries, and let + denote
matrix addition. Then + is a binary operation on M2(Z) (note that closure holds).
This is a commutative group because the integers are a commutative group, so
each corner of the matrix behaves properly. For example, matrix addition is com-
mutative because

PrACtiCe 1 The set in Example 1 is limited to the positive real numbers. Is 3R, # 4 a commutative group?
Why or why not?

Section 9.1 Algebraic Structures 689

 ca1,1 a1,2

a2,1 a2,2
d + cb1,1 b1,2

b2,1 b2,2
d = ca1,1 + b1,1 a1,2 + b1,2

a2,1 + b2,1 a2,2 + b2,2
d

 = cb1,1 + a1,1 b1,2 + a1,2

b2,1 + a2,1 b2,2 + a2,2
d

 = cb1,1 b1,2

b2,1 b2,2
d + ca1,1 a1,2

a2,1 a2,2
d

The matrix

c0 0
0 0

d

is an identity. The matrix

c1
2

−4
5
d

is an inverse of the matrix

c−1
−2

4
−5

d

ReminDeR

It’s important to under-
stand all this new termi-
nology. You can’t prove
that P S Q if you don’t
know what you’re starting
with or where you want
to go.

 example 3 Consider 3M2(Z), # 4 where # denotes matrix multiplication. Closure holds. It can be
shown (Exercise 2) that matrix multiplication is associative. The matrix

c1
0

0
1
d

serves as an identity because

c1
0

0
1
d # ca

c
b
d
d = ca

c
b
d
d # c1

0
0
1
d = ca

c
b
d
d

Thus 3M2(Z), # 4 is at least a monoid.

■
PrACtiCe 2 Prove that 3M2(Z), # 4 is not a commutative monoid.

PrACtiCe 3 Prove that 3M2(Z), # 4 is not a group.
■

A structure called a monoid results from dropping the inverse property in the
definition of a group; thus a monoid has an associative operation and an identity
element, but in a monoid that is not also a group, at least one element has no in-
verse. A semigroup results from dropping the identity property and the inverse
property in the definition of a group; thus a semigroup has an associative opera-
tion, but in a semigroup that is not also a monoid, no identity element exists. Many
familiar forms of arithmetic are instances of semigroups, monoids, and groups.

690 Modeling Arithmetic, Computation, and Languages

Although the requirements for a structure to be a semigroup are relatively
modest, not every arithmetic structure qualifies.

PrACtiCe 4 Prove that 3Z, − 4 is not a semigroup, where − denotes integer subtraction.
■

PrACtiCe 5 Let S be the set of noninteger rational numbers, and let # denote multiplication. Is 3S, # 4
a semigroup?

■

 example 4 Each of the following is an instance of a commutative semigroup. You should be
able to verify closure, associativity, and commutativity for each:

3N, + 4, 3N, # 4, 3Q, # 4, 3R+, + 4, 3R, + 4

 example 5 For any Boolean algebra 3B, +, #, ′, 0, 1 4, 3B, + 4 and 3B, # 4 are commutative
semigroups. Therefore for any set S, 3`(S), c 4 and 3`(S), d 4 are commutative
semigroups.

Because the requirements that must be satisfied in going from semigroup to
monoid to group keep getting stiffer, we expect some examples to drop out, but
those remaining should have richer and more interesting personalities.

Next we look at a selection of other examples of semigroups, monoids, and
groups where the elements are not just simple numbers or where the operations
are less familiar.

PrACtiCe 6 Which of the following semigroups are monoids? Name the identities.

3N, + 4, 3N, # 4, 3Q, # 4, 3R+, + 4, 3R, + 4, 3`(S), c 4, 3`(S), d 4 ■

PrACtiCe 7 Which of the monoids from the list in Practice 6 are groups?
■

 example 6 An expression of the form

anxn + an−1xn−1 + c+ a0

where ai [R, i = 0, 1, … , n, and n [N is a polynomial in x with real-number
coefficients (or a polynomial in x over R.) For each i, ai is the coefficient of xi.

Section 9.1 Algebraic Structures 691

If i is the largest integer greater than 0 for which ai ∙ 0, the polynomial is of
degree i; if no such i exists, the polynomial is of zero degree. Terms with zero
coefficients are generally not written. Thus, px4−2∙3x2 + 5 is a polynomial of
degree 4, and the constant polynomial 6 is of zero degree. The set of all polynomials
in x over R is denoted by R 3x 4 .

We define binary operations of + and # in R 3x 4 to be the familiar operations
of polynomial addition and multiplication. For polynomials f(x) and g(x) members
of R 3x 4 , the products f(x) # g(x) and g(x) # f(x) are equal because the coefficients are
real numbers, and we can use all the properties of real numbers under multiplica-
tion and addition (properties such as commutativity and associativity). Similarly,
for f (x), g(x), and h(x) members of R 3x 4, (f (x) # g(x)) # h(x) = f (x) # (g(x) # h(x)).
The constant polynomial 1 is an identity because 1 # f (x) = f (x) # 1 = f (x) for ev-
ery f (x) [R 3x 4 . Thus, 3R 3x 4, # 4 is a commutative monoid. It fails to be a group
because only the nonzero constant polynomials have inverses. For example, there
is no polynomial g(x) such that g(x) # x = x # g(x) = 1, so the polynomial x has no
inverse. (Note that while x # (1∙x) = 1, 1∙x = x−1 is not a polynomial.) However,
3R 3x 4, + 4 is a commutative group.

PrACtiCe 8

a. For f (x), g(x), h(x) [R 3x 4 , write the equations saying that R 3x 4 under + is commutative
and associative.

b. What is an identity element in 3R 3x 4, + 4?
c. What is an inverse of 7x4 − 2x3 + 4 in 3R 3x 4, + 4? ■

Polynomials play a special part in the history of group theory (the study of
groups) because much research in group theory was prompted by the very practi-
cal problem of solving polynomial equations of the form f (x) = 0, f (x) [R 3x 4 .
The quadratic formula provides an algorithm for finding solutions for every f(x)
of degree 2, and the algorithm uses only the algebraic operations of addition, sub-
traction, multiplication, division, and taking roots. Other such algorithms exist
for polynomials of degrees 3 and 4. One of the highlights of abstract algebra is
the proof that no algorithm using only these operations exists for every f(x) of
degree 5. (Notice that this statement is much stronger than simply saying that no
algorithm has yet been found; it says to stop looking for one.)

The next example uses modular arithmetic. You may recall from Section 5.1
(Example 15 and the subsequent discussion) that each computer has some limit
on the size of the integers that it can store. Although we would like a computer
to be able to exhibit the behavior of 3Z, + 4 , the best we can obtain is some finite
approximation. The approximation is achieved by performing addition modulo n.
The “answer” to the computation x + y for x, y [Z is then either the actual value
x + y if this value falls within the limit that can be stored or a remainder value
obtained by doing modular arithmetic, which is equivalent to x + y under the
equivalence relation of congruence modulo n.

692 Modeling Arithmetic, Computation, and Languages

 example 7 Let Z5 = 50, 1, 2, 3, 46 and define addition modulo 5, denoted by +5, on Z5 by
x +5 y = r, where r is the remainder when x + y is divided by 5. In other
words, x +5 y = (x + y) mod 5. For example, 1 +5 2 = 3 and 3 +5 4 = 2.
Multiplication modulo 5 is defined by x #5 y = (x # y) mod5. Thus, 2 #5 3 = 1 and
3 #5 4 = 2. Then 3Z5, +5 4 is a commutative group, and 3Z5, #5 4 is a commutative
monoid.

PrACtiCe 9

a. Complete the following tables defining +5 and #5 on Z5.

+5 0 1 2 3 4

0

1 3

2

3

4

 5 0 1 2 3 4

0

1

2 1

3 2

4

b. What is an identity in 3Z5, +5 4? In 3Z5, #5 4?
c. What is an inverse of 2 in 3Z5, +5 4?
d. Which elements in 3Z5, +5 4 have inverses?

As we did on Z5, we can define operations of addition modulo n and mul-
tiplication modulo n on the set Zn = 50, 1, … , n − 16 where n is any positive
integer. Again 3Zn, +n 4 is a commutative group and 3Zn, #n 4 is a commutative
monoid. (See Exercise 47 for the relationship between the group 3Zn, +n 4 and the
set of equivalence classes under the binary relation of congruence modulo n.)

PrACtiCe 10

a. Give the table for #6 on Z6.
b. Which elements in 3Z6, #6 4 have inverses? ■

Notice that when we use a table to define an operation on a finite set, it
is easy to check for commutativity by looking for symmetry around the main
diagonal. It is also easy to find an identity element because its row looks like
the top of the table and its column looks like the side. And it is easy to locate
an inverse of an element. Look along the row until you find a column where the
identity appears; then check to see that changing the order of the elements still
gives the identity. However, associativity (or the lack of it) is not immediately
apparent from the table.

■

Section 9.1 Algebraic Structures 693

The next two examples give us algebraic structures where the elements are
functions, mappings from a domain to a codomain.

ReminDeR

In the group 3Z2, +2 4 , the
set is 50, 16 and the op-
eration is addition modulo
2. In the group 3Z n

2, +2 4 for
any n, the set is all binary
n-tuples and the operation
is componentwise addi-
tion modulo 2.

 example 8 Let Z
n
2 be the set of all binary n-tuples with n ≥ 1. We’ll usually use a little short-

hand and write, for example, 1101 instead of (1, 1, 0, 1). Using componentwise
addition modulo 2, +2. it’s easy to see that the addition operation is associative
and commutative and that the n-tuple of all 0s is an identity. Each n-tuple has an
inverse. Therefore 3Z

n
2, +2 4 is a commutative group.

 example 9 Let A be a set and consider the set S of all functions f such that f : A S A. The
binary operation is function composition, denoted by + . Note that S is closed under
+ and that function composition is associative (see Practice 12). Thus 3S, + 4 is a

semigroup, called the semigroup of transformations on A. Actually 3S, + 4 is a
monoid because the identity function iA that takes each member of A to itself has
the property that for any f [S,

f + iA = iA + f = f

PrACtiCe 12 Prove that function composition on the set S just defined is associative.
■

 example 10 Again let A be a set and consider the set SA of all bijections f such that f : A S A
(permutations of A). Bijectiveness is preserved under function composition, func-
tion composition is associative, the identity function iA is a permutation, and for
any f [SA, the inverse function f −1 exists and is a permutation. Furthermore,

f + f −1 = f −1 + f = iA

Thus, 3SA, + 4 is a group, called the group of permutations on A.

If A = 51, 2, … , n6 for some positive integer n, then SA is called the symmet-
ric group of degree n and denoted by Sn. Thus, S3, for example, is the set of all
permutations on 51, 2, 36 . There are 3! = 6 such permutations, which we name
as follows (using the cycle notation of Section 5.4):

 al = i a2 = (1, 2) a3 = (1, 3)
 a4 = (2, 3) a5 = (1, 2, 3) a6 = (1, 3, 2)

PrACtiCe 11 In the group 3Z
5
2, +2 4 , what is

a. 01101 +2 11011?
b. −10100? ■

694 Modeling Arithmetic, Computation, and Languages

Recall that the notation (1, 2), for example, means that 1 maps to 2, 2 maps to 1,
and unnamed elements map to themselves. The composition (1, 2) + (1, 3) is done
from right to left, so

 By (1, 3) By (1, 2)

 1 S 3 S 3
 2 S 2 S 1
 3 S 1 S 2

resulting in (1, 3, 2). Thus a2 + a3 = (1, 2) + (1, 3) = (1, 3, 2) = a6.

■

PrACtiCe 13

a. Complete the group table for 3S3, + 4 .

+ a1 a2 a3 a4 a5 a6

a1

a2 a6

a3

a4

a5

a6

b. Is 3S3, + 4 a commutative group?

3S3, + 4 is our first example of a noncommutative group (although 3M2(Z), # 4 was a
noncommutative monoid).

The next example is very simple but particularly appropriate because it ap-
pears in several areas of computer science, including formal language theory and
automata theory.

 example 11 Let A be a finite set; its elements are called symbols and A itself is called an
 alphabet. A* denotes the set of all finite-length strings, or words, over A. A* can be
defined recursively (as in Example 6 in Chapter 3), where # denotes concatenation
of strings:
 a. The empty string l (the string with no symbols) belongs to A*.
 b. Any single member of A belongs to A*.
 c. If x and y are strings in A*, so is x # y.

Thus, if A = 5a, b6 , then abbaa, bbbbba, and a are all strings over A, and abbaa # a
gives the string abbaaa. From the recursive definition, any string over A contains
only a finite number of symbols. The number of symbols in a string is called its
length. The empty string l is the only zero-length string.

Section 9.1 Algebraic Structures 695

Basic results about Groups

We will now prove some basic theorems about groups. There are hundreds of
theorems about groups and many books devoted exclusively to group theory, so
we are barely scratching the surface here. The results we will prove follow almost
immediately from the definitions involved.

By definition, a group 3G, # 4 (or a monoid) has an identity element, and we
have tried to be careful to refer to an identity element rather than the identity ele-
ment. However, it is legal to say the identity because there is only one. To prove
that the identity element is unique, suppose that i1 and i2 are both identity ele-
ments. Then

i1 = i1
i2 = i2

The empty string l should not be confused with the empty set [; even if A
itself is [, then A* = 5l6 . If A is nonempty, then whatever the size of A, A* is a
denumerable (countably infinite) set. If A contains only one element, say A = 5a6 ,
then l, a, aa, aaa, … , is an enumeration of A*. If A contains more than one ele-
ment, then a lexicographical (alphabetical) ordering can be imposed on the ele-
ments of A. An enumeration of A* is then obtained by counting the empty string
first, then lexicographically ordering all strings of length 1 (there is a finite number
of these), then lexicographically ordering all strings of length 2 (there is a finite
number of these), and so forth. Note also that if A is nonempty, strings of arbitrary
length can be found in A*.

Concatenation is a binary operation on A*, and it is associative. The empty
string l is an identity because for any string x [A*,

x # l = l # x = x

Therefore, 3A*, # 4 is a monoid, called the free monoid generated by A.

PrACtiCe 14 For A = 5a, b6
a. Is 3A*, # 4 a commutative monoid?
b. Is 3A*, # 4 a group?

ReminDeR

To prove that something is
unique …

PrACtiCe 15 Justify the foregoing equality signs.
■

Because i1 = i2, the identity element is unique. Thus, we have proved the fol-
lowing theorem.

 tHeoRem on thE uniquEnEss of thE iDEntity in A GrouP
In any group (or monoid) 3G, # 4 , the identity element i is unique.

Each element x in a group 3G, # 4 has an inverse element x−1. Therefore, G contains
many different inverse elements, but for each x, the inverse is unique.

■

696 Modeling Arithmetic, Computation, and Languages

 tHeoRem on thE uniquEnEss of invErsEs in A GrouP
For each x in a group 3G, # 4, x−1 is unique.

PrACtiCe 16 Prove the preceding theorem. (Hint: Assume two inverses for x, namely y and z, and let
i be the identity. Then y = y # i = y # (x # z) = c .)

PrACtiCe 17 Write 10 as 7 +12 3 and use the theorem on the inverse of a product to find (10)−1 in the
group 3Z12, +12 4.

If x and y belong to a group 3G, # 4 , then x # y belongs to G and must have an
inverse element in G. Naturally, we expect that inverse to have some connection
with x−1 and y−1, which we know exist in G. We can show that (x # y)−1 = y−1 # x−1;
thus the inverse of a product is the product of the inverses in reverse order.

Proof: We will show that y−1 # x−1 has the two properties required of (x # y)−1.
Then, because inverses are unique, (y−1 # x−1) must be (x # y)−1.

 (x # y) # (y−1 # x−1) = x # (y # y−1) # x−1

 = x # i # x−1

 = x # x−1

 = i

Similarly, (y−1 # x−1) # (x # y) = i. Notice how associativity and the meaning of i
and inverses all come into play in this proof. End of Proof.

ReminDeR

If it walks like a duck …

We know that many familiar number systems such as 3Z, + 4 and 3R, + 4 are
groups. We make use of group properties when we do arithmetic or algebra in
these systems. In 3Z, + 4 , for example, if we see the equation x + 5 = y + 5, we
conclude that x = y. We are making use of the right cancellation law, which, we
will soon see, holds in any group.

 Definition CAnCELLAtion LAws
A set S with a binary operation # satisfies the right cancellation law if for
x, y, z [S, x # z = y # z implies x = y. It satisfies the left cancellation law if
z # x = z # y implies x = y.

 tHeoRem on thE invErsE of A ProDuCt
For x and y members of a group 3G, # 4, (x # y)−1 = y−1 # x−1.

■

■

Section 9.1 Algebraic Structures 697

Suppose that x, y, and z are members of a group 3G, # 4 and that x # z = y # z. To
conclude that x = y, we take advantage of z−1. Thus,

x # z = y # z

implies

 (x # z) # z−1 = (y # z) # z−1

 x # (z # z−1) = y # (z # z−1)
 x # i = y # i

 x = y

Hence, G satisfies the right cancellation law.

PrACtiCe 18 Show that any group 3G, # 4 satisfies the left cancellation law.

PrACtiCe 19 Solve the equation x +8 3 = 1 in 3Z8, +8 4 .

We have proved the following theorem.

 tHeoRem on CAnCELLAtion in A GrouP
Any group 3G, # 4 satisfies the left and right cancellation laws.

 tHeoRem on soLvinG LinEAr EquAtions in A GrouP
Let a and b be any members of a group 3G, # 4 . Then the linear equations a # x = b
and x # a = b have unique solutions in G.

 example 12 We know that 3Z6, #6 4 is not a group. Here the equation

4 #6 2 = 1 #6 2

holds, but of course 4 ∙ 1.

Again, working in 3Z, + 4 , we would solve the equation 6 + x = 13 by add-
ing −6 to both sides, producing a unique answer of x = (−6) + 13 = 7. The
property of being able to solve linear equations for unique solutions holds in all
groups. Consider the equation a # x = b in the group 3G, # 4 where a and b belong
to G and x is to be found. Then x = a−1 # b is an element of G satisfying the equa-
tion. Should x1 and x2 both be solutions to the equation ax = b, then a # x1 = a # x2
and, by left cancellation, x1 = x2. Similarly, the unique solution to x # a = b is
x = b # a−1.

The theorem on solving linear equations tells us something about tables for
finite groups. As we look along row a of the group operation table, does element b

■

■

698 Modeling Arithmetic, Computation, and Languages

appear twice? If so, then the table says that there are two distinct elements x1 and
x2 of the group such that a # x1 = b and a # x2 = b. But by the theorem on solving
linear equations, this double occurrence cannot happen. Thus, a given element of
a finite group appears at most once in a given row of the group table. However,
to complete the row, each element must appear at least once. A similar result
holds for columns. Therefore, in a group table, each element appears exactly once
in each row and each column. This property alone, however, is not sufficient to
insure that a table represents a group; the operation must also be associative (see
Exercise 31).

PrACtiCe 20 Assume that + is an associative binary operation on 51, a, b, c, d 6 . Complete the fol-
lowing table to define a group with identity 1,

+ 1 a b c d

1 1

a c d 1

b c d

c d a

d b c

If 3G, # 4 is a group where G is finite with n elements, then n is said to be the order
of the group, denoted by 0G 0 . If G is an infinite set, the group is of infinite order.

PrACtiCe 21

a. Name a commutative group of order 18.
b. Name a noncommutative group of order 6.

More properties of groups appear in the exercises at the end of this section.

subgroups

We know what groups are and we know what subsets are, so it should not be hard
to guess what a subgroup is. However, we will look at an example before we give
the definition. We know that 3Z, + 4 is a group. Now let A be any nonempty subset
of Z. For any x and y in A, x and y are also in Z, so x + y exists and is unique. The
set A “inherits” a well-defined operation, +, from 3Z, + 4 . The associativity prop-
erty is also inherited, because for any x, y, z [A, it is also true that x, y, z [Z
and the equation

(x + y) + z = x + (y + z)

holds. Perhaps A under the inherited operation has all the structure of 3Z, + 4 and
is itself a group. Whether this is true depends on A.

■

■

Section 9.1 Algebraic Structures 699

Suppose that A = E, the set of even integers. E is closed under addition, E
contains 0 (the identity element), and the inverse of every even integer (its nega-
tive) is an even integer. 3E, + 4 is thus a group. But suppose that A = O, the set of
odd integers. 3O, + 4 fails to be a group for several reasons. For one thing, it is not
closed—adding two odd integers produces an even integer. (Closure depends on
the set as well as the operation, so it is not an inherited property). For another, a
subgroup must have an identity with respect to addition; 0 is the only integer that
will serve, and 0 is not an odd integer.

 Definition suBGrouP
Let 3G, # 4 be a group and A # G. Then 3A, # 4 is a subgroup of 3G, # 4 if 3A, # 4 is
itself a group.

For 3A, # 4 to be a group, it must have an identity element, which we’ll denote
by iA. Of course G also has an identity element, which we’ll denote by iG. It turns
out that iA = iG, but this equation does not follow from the uniqueness of a group
identity because the element iA, as far as we know, may not be an identity for all of
G, and we cannot yet say that iG is an element of A. However, iA = iA

iA because
iA is the identity for 3A, # 4 , and iA = iA

iG because iG is the identity for 3G, # 4 . Be-
cause of the left cancellation law holding in the group 3G, # 4 , it follows that iA = iG.

To test whether 3A, # 4 is a subgroup of 3G, # 4 , we can assume the inherited
properties of a well-defined operation and associativity, and we check for the three
remaining properties required.

 tHeoRem on suBGrouPs
For 3G, # 4 a group with identity i and A # G, 3A, # 4 is a subgroup of 3G, # 4 if it
meets the following three tests:

 1. A is closed under # .
 2. i [A.
 3. Every x [A has an inverse element in A.

PrACtiCe 22 The definition of a group requires that the set be nonempty. In the theorem on sub-
groups, why isn’t there a specific test that A ∙ [?

 example 13 a. 3Z, + 4 is a subgroup of the group 3R, + 4 . Z is closed under addition, 0 [Z,
and the negative of every integer is an integer.

b. 3 51,46, #5 4 is a subgroup of the group 3 51, 2, 3, 46, #5 4 . Closure holds:

5 1 4

1 1 4

4 4 1

The identity 1 [51, 46 , and 1−1 = 1, 4−1 = 4).

■

700 Modeling Arithmetic, Computation, and Languages

If 3G, # 4 is a group with identity i, then it is true that 3 5i6, # 4 and 3G, # 4 are sub-
groups of 3G, # 4 . These somewhat trivial subgroups of 3G, # 4 are called improper
subgroups. Any other subgroups of 3G, # 4 are proper subgroups.

■

PrACtiCe 23

a. Show that 3 50, 2, 4, 66, +8 4 is a subgroup of the group 3Z8, +8 4 .
b. Show that 3 51, 2, 46, # 7 4 is a subgroup of the group 3 51, 2, 3, 4, 5, 66, # 7 4 .

PrACtiCe 24 Find all the proper subgroups of S3, the symmetric group of degree 3. (You can find
them by looking at the group table; see Practice 13.)

One point of confusing terminology: The set of all bijections on a set A into it-
self under function composition (like S3) is called the group of permutations on A,
and any subgroup of this set (such as those in Practice 24) is called a permutation
group. The distinction is that the group of permutations on a set A includes all bi-
jections on A into itself, but a permutation group may not. Permutation groups are
of particular importance, not only because they were the first groups to be studied,
but also because they are the only groups if we consider isomorphic structures to
be the same. We will see this result shortly.

There is an interesting subgroup we can always find in the symmet-
ric group Sn for n > 1. We know that every member of Sn can be written as a
composition of cycles, but it is also true that each cycle can be written as the
composition of cycles of length 2, called transpositions. In S7, for example,
(5, 1, 7, 2, 3, 6) = (5, 6) + (5, 3) + (5, 2) + (5, 7) + (5, 1). We can verify this by
computing (5, 6) + (5, 3) + (5, 2) + (5, 7) + (5, 1). Working from right to left,

1 S 5 S 7 S 7 S 7 S 7

so 1 maps to 7. Similarly,

7 S 7 S 5 S 2 S 2 S 2

so 7 maps to 2, and so on, resulting in (5, 1, 7, 2, 3, 6). It is also true that
(5, 1, 7, 2, 3, 6) = (1, 5) + (1, 6) + (1, 3) + (1, 2) + (2, 4) + (1, 7) + (4, 2).

For any n > 1, the identity permutation i in Sn can be written as
i = (a, b) + (a, b) for any two elements a and b in the set 51, 2, … , n6. This
equation also shows that the inverse of the transposition (a, b) in Sn is (a, b). Now
we borrow (without proof) one more fact: Even though there are various ways to
write a cycle as the composition of transpositions, for a given cycle the number
of transpositions will either always be even or always be odd. Consequently, we
classify any permutation in Sn, n > 1, as even or odd according to the number
of transpositions in any representation of that permutation. For example, in
S7, (5, 1, 7, 2, 3, 6) is odd. If we denote by An the set of all even permutations in
Sn, then An determines a subgroup of 3S, + 4. The composition of even permutations
produces an even permutation, and i [An. If a [An, and a as a product of
transpositions is a = a1 + a2 + c+ ak, then a−1 = ak

−1 + ak−1
−1 + c+ a1

−1. Each
inverse of a transposition is a transposition, so a−1 is also even.

■

Section 9.1 Algebraic Structures 701

The order of the group 3Sn, + 4 (the number of elements) is n! What is the order
of the subgroup 3A, + 4? We might expect half the permutations in Sn to be even and
half to be odd. Indeed, this is the case. If we let On denote the set of odd permuta-
tions in Sn (which is not closed under function composition), then the mapping
f : An S On defined by f (a) = a + (1, 2) is a bijection.

PrACtiCe 25 Prove that f : An S On, given by f (a) = a + (1, 2) is one-to-one and onto.
■

Because there is a bijection from An onto On, each set has the same number of
 elements. But An d On = [and An c On = Sn, so 0An 0 = 0Sn 0∙2 = n!∙2.

 tHeoRem on ALtErnAtinG GrouPs
For n [N, n > 1, the set An of even permutations determines a subgroup, called
the alternating group, of 3Sn, + 4 of order n!∙2.

We have now seen several examples of subgroups of finite groups. In Example
13b and Practice 23, there were three such examples, and the orders of the groups
and subgroups were

Group of order 4, subgroup of order 2
Group of order 8, subgroup of order 4
Group of order 6, subgroup of order 3

The theorem on alternating groups says that a particular group of order n! has a
subgroup of order n!∙2.

Based on these examples, one might conclude that subgroups are always half
the size of the parent group. This conclusion is not always true, but there is a
relationship between the size of a group and the size of a subgroup. This relation-
ship is stated in Lagrange’s theorem, proved by the great French mathematician
Joseph-Louis Lagrange in 1771 (we will omit the proof here).

 tHeoRem LAGrAnGE’s thEorEM
The order of a subgroup of a finite group divides the order of the group.

Lagrange’s theorem helps us narrow down the possibilities for subgroups of
a finite group. If 0G 0 = 12, for example, we would not look for any subgroups of
order 7 because 7 does not divide 12. Also, the fact that 6 divides 12 does not
imply the existence of a subgroup of G of order 6. In fact, A4 is a group of order
4!∙2 = 12, but it can be shown that A4 has no subgroups of order 6. Therefore the
converse to Lagrange’s theorem does not always hold. In certain cases the con-
verse can be shown to be true—for example, in finite commutative groups (note
that A4 is not commutative).

Finally, we consider subgroups of the group 3Z, + 4 . For n any fixed element
of N, the set nZ is defined as the set of all integral multiples of n; nZ = 5nz 0 z [Z6 .
Thus, for example, 3Z = 50, ± 3, ± 6, ± 9, … 6 .

702 Modeling Arithmetic, Computation, and Languages

Not only is 3nZ, + 4 a subgroup of 3Z, + 4 for any fixed n, but sets of the form
nZ are the only subgroups of 3Z, + 4 To illustrate, let 3S, + 4 be any subgroup of
3Z, + 4 . If S = 506 , then S = 0Z. If S ∙ 506 , let m be a member of S, m ∙ 0.
Either m is positive or, if m is negative, −m [S and −m is positive. The subgroup
S, therefore, contains at least one positive integer. Let n be the smallest positive
integer in S (which exists by the principle of well-ordering). We will now see that
S = nZ.

First, since 0, n, and −n are members of S and S is closed under +, nZ # S.
To obtain inclusion in the other direction, let s [S. Now we divide the integer
s by the integer n to get an integer quotient q and an integer remainder r with
0 ≤ r < n. Thus, s = nq + r. Solving for r, r = s + (−nq). But nq [S; there-
fore −nq [S, and s [S, so by closure of S under +, r [S. If r is positive, we
have a contradiction of the definition of n as the smallest positive number in S.
Therefore, r = 0 and s = nq + r = nq. We now have S # nZ, and thus S = nZ,
which completes the proof of the following theorem.

PrACtiCe 26 Show that for any n [N, 3nZ, + 4 is a subgroup of 3Z, + 4 .
■

 tHeoRem on suBGrouPs of 3Z, + 4
Subgroups of the form 3nZ, + 4 for n [N are the only subgroups of 3Z, + 4 .

isomorphic Groups

Suppose that 3S, # 4 and 3T, + 4 are isomorphic groups; what would this mean? From
the discussion of isomorphism in Section 8.1, isomorphic structures are the same
except for relabeling. There must be a bijection from S to T that accomplishes the
relabeling. This bijection must also preserve the effects of the binary operation;
that is, it must be true that “operate and map” yields the same result as “map and
operate.” The following definition is more precise.

 Definition GrouP isoMorPhisM
Let 3S, # 4 and 3T, + 4 be groups. A mapping f : S S T is an isomorphism from
3S, # 4 to 3T, + 4 if

 1. the function f is a bijection.
 2. for all x, y [S, f (x # y) = f (x) + f (y).

Property (2) is expressed by saying that f is a homomorphism.

PrACtiCe 27 Illustrate the homomorphism property of the definition of group isomorphism by a
 commutative diagram.

■

If isomorphic groups are really the same except for the relabeling accom-
plished by the bijection, then we would expect that the identity of one group maps

Section 9.1 Algebraic Structures 703

to the identity of the other, that inverses map to inverses, and that if one group
is commutative, so is the other. Indeed, we can prove that these expectations are
correct. (The proofs do not make use of the one-to-one property of the isomor-
phism, so an onto homomorphism also maps the identity to the identity, inverses
to inverses, and preserves commutativity.)

 Suppose, then, that f is an isomorphism from the group 3S, # 4 to the group
3T, + 4 and that iS and iT are the identities in the respective groups. Under the
function f, iS maps to an element f (iS) in T. Let t be any element in T. Then, because
f is an onto function, t = f (s) for some s [S. It follows that

 f (iS) + t = f (iS) + f (s)
 = f (iS

s) (because f is a homomorphism)
 = f (s) (because iS is the identity in S)
 = t

Therefore

f (iS) + t = t

Similarly,

t + f (iS) = t

The element f (iS) acts like an identity element in 3T, + 4 , and because the identity
is unique, f (iS) = iT .

PrACtiCe 28 Prove that if f is an isomorphism from the group 3S, # 4 to the group T, + 4, then for any
s [S, f (s−1) = −f (s) (inverses map to inverses). (Hint: Show that f (s−1) acts like the
inverse of f (s).)

■

PrACtiCe 29 Prove that if f is an isomorphism from the commutative group 3S, # 4 to the group 3T, + 4,
then 3T, + 4 is a commutative group.

■

 example 14 3R+, # 4 and 3R, + 4 are both groups. Let b be a positive real number, b ∙ 1, and let
f be the function from R+ to R defined by

f (x) = logb x

Then f is an isomorphism. To prove it, we must show that f is a bijection
(one-to-one and onto) and that f is a homomorphism (preserves the operation).
We can show that f is onto: For r [R, br

[R+ and f (br) = logb br = r. Also, f
is one-to-one: If f (x1) = f (x2), then logb x1 = logb x2. Let p = logb x1 = logb x2.
Then b

p = x1 and b
p = x2, so x1 = x2. Finally f is a homomorphism: For

x1, x2 [R+, f (x1
x2) = logb(x1

x2) = logb x1 + logb x2 = f (x1) + f (x2). Note
that logb1 = 0, so f maps 1, the identity of 3R+, # 4 to 0, the identity of 3R, + 4 .

704 Modeling Arithmetic, Computation, and Languages

Also note that

logb(1∙x) = logb1 − logb x = 0 − logb x = −logb x = −f (x)

so f maps the inverse of x in 3R+, # 4 to the inverse of f (x) in 3R, + 4 . Finally, both
groups are commutative.

Because the two groups in Example 14 are isomorphic, each is the mirror
image of the other, and each can be used to simulate a computation in the other.
Suppose, for example, that b = 2. Then 3R, + 4 can be used to simulate the com-
putation 64 # 512 in 3R+, # 4 . First, map from R+ to R:

 f (64) = log2 64 = 6
f (512) = log2 512 = 9

Now in 3R, + 4 perform the computation

6 + 9 = 15

Finally, use f −1 to map back to R+ :

f −1(15) = 215 = 32,768

(In the age bc—before calculators and computers—large numbers were multi-
plied by using tables of common logarithms, where b = 10, to convert a multipli-
cation problem to an addition problem, as addition is less prone to human error.)
Either of two isomorphic groups can always simulate computations in the other,
just as in Example 14.

 example 15 Consider the two groups 3S, # 4 and 3T, + 4 as defined by the following tables:

2 5 9

2 9 2 5

5 2 5 9

9 5 9 2

+ 0 1 4

0 0 1 4

1 1 4 0

4 4 0 1

+ 1 0 4

1 4 1 0

0 1 0 4

4 0 4 1

Both are groups of order 3, so an isomorphism is certainly possible. If f is to be
an isomorphism, it must map iS to iT . Looking at the operation tables, iS = 5 and
iT = 0, so let f (5) = 0. As a guess, let f (2) = 1 and f (9) = 4. Now let’s reorga-
nize the 3T, + 4 table:

Section 9.1 Algebraic Structures 705

This table contains exactly the same data that were in the original T table; the rows
and columns have just been shuffled. Written in this form, it’s clear that the T table
is just a relabeling (using f) of the S table, so f is indeed an isomorphism. Note that
inverses map to inverses:

f (2−1) = f (9) = 4 and −f (2) = −1 = 4
f (9−1) = f (2) = 1 and −f (9) = −4 = 1

And we can simulate the computation 9 # 2 = 5 in S by mapping to T, applying
the + operation, and mapping back to S:

 f (9) = 4, f (2) = 1
 4 + 1 = 0

f
−1(0) = 5, which is 9 # 2

 example 16 Let f: M2(Z) S M2(Z) be given by

f a ca b
c d

d b = ca c
b d

d

To show that f is one-to-one, let

f a ca b
c d

d b = f a c e f
 g h

d b

Then

ca c
b d

d = ce g
f h

d

so a = e, c = g, b = f, and d = h, or

ca b
c d

d = ce f
g h

d

To show that f is onto, let

ca b
c d

d [M2(Z)

Then

ca c
b d

d [M2(Z) and f a ca c
b d

d b = ca b
c d

d

706 Modeling Arithmetic, Computation, and Languages

Also, f is a homomorphism from 3M2(Z), + 4 to 3M2(Z), + 4 because

f a ca b
c d

d + ce f
g h

d b = f a ca + e b + f
c + g d + h

d b = ca + e c + g
b + f d + h

d

= ca c
b d

d + ce g
f h

d = f a ca b
c d

d b + f a ce f
g h

d b

The function f is therefore an isomorphism from 3M2(Z), + 4 to 3M2(Z), + 4 .

PrACtiCe 30 Let 5Z = 55z 0 z [Z6. Then 35Z, + 4 is a group. Show that f: Z S 5Z given by f (x) = 5x
is an isomorphism from 3Z, + 4 to 35Z, + 4.

■

If f is an isomorphism from 3S, # 4 to 3T, + 4 , then f −1 exists and is a bijec-
tion. Further, f −1 is also a homomorphism, this time from T to S. To see this, let
t1 and t2 belong to T and consider f −1(t1 + t2). Because t1, t2 [T and f is onto,
t1 = f (s1) and t2 = f (s2) for some s1 and s2 in S. Thus,

f −1(t1 + t2) = f −1(f (s1) + f (s2))
 = f −1(f (s1

s2))
 = (f −1 + f)(s1

s2)
 = s1

s2

 = f −1(t1) # f −1(t2)

Therefore we can speak of S and T as being simply isomorphic, denoted by S . T ,
without having to specify that the isomorphism is from S to T or vice versa.

Checking whether a given function is an isomorphism from S to T, as in
 Practice 30, is not hard. Deciding whether S and T are isomorphic may be harder.
To prove that they are isomorphic, we must produce a function. To prove that they
are not isomorphic, we must show that no such function exists. Since we can’t try
all possible functions, we use ideas such as the following: There is no one-to-one
correspondence between S and T, S is commutative but T is not, and so on.

We have noted that isomorphic groups are alike except for relabeling and
that each can be used to simulate the computations in the other. Isomorphism of
groups is really an equivalence relation, as Practice 31 shows; thus isomorphic
groups belong to the same equivalence class. Thinking of isomorphic groups as
“alike except for labeling” is consistent with the idea that elements in an equiva-
lence class represent different names for the same thing.

PrACtiCe 31

a. Let f : S S T be an isomorphism from the group 3S, # 4 to the group 3T, + 4 and g: T S U be an
 isomorphism from 3T, + 4 to the group 3U, * 4 . Show that g + f is an isomorphism from S to U.

b. Let t be a collection of groups and define a binary relation r on t by S r T 4 S . T . Show that
r is an equivalence relation on t. ■

Section 9.1 Algebraic Structures 707

We will finish this section by looking at some equivalence classes of groups
under isomorphism. Often we pick out one member of an equivalence class and
note that it is the typical member of that class and that all other groups in the class
look just like it (with different names).

A result concerning the nature of very small groups follows immediately
from Exercise 24 at the end of this section.

 tHeoRem on sMALL GrouPs
Every group of order 2 is isomorphic to the group whose group table is

1 a

1 1 a

a a 1

Every group of order 3 is isomorphic to the group whose group table is

1 a b

1 1 a b

a a b 1

b b 1 a

Every group of order 4 is isomorphic to one of the two groups whose group
tables are

1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

1 a b c

1 1 a b c

a a b c 1

b b c 1 a

c c 1 a b

We can also prove that any group is essentially a permutation group. Suppose
[G, #] is a group. We want to establish an isomorphism from G to a permutation
group; each element g of G must be associated with a permutation ag on some
set. In fact, the set will be G itself; for any x [G, we define ag(x) to be g # x. We
must show that 5ag 0 g [G6 forms a permutation group and that this permutation
group is isomorphic to G. First we need to show that for any g [G, ag is indeed
a permutation on G. From the definition ag(x) = g # x, it is clear that ag: G S G,
but it must be shown that ag is a bijection.

PrACtiCe 32 Show that ag as just defined is a permutation (bijection) on G.
■

Now we consider P = 5ag 0 g [G6 and show that P is a group under func-
tion composition. P is nonempty because G is nonempty, and associativity always
holds for function composition. We must show that P is closed and has an identity
and that each ag [P has an inverse in P. To show closure, let ag and ah [P. For
any x [G, (ag + ah)(x) = ag(ah(x)) = ag(h # x) = g # (h # x) = (g # h) # x. Thus,
ag + ah = ag

#
 h and ag

#
 h [P.

708 Modeling Arithmetic, Computation, and Languages

S e c t i o n 9 . 1 review

tecHniQueS

• Test whether a given set and operation have the
properties necessary to form a semigroup, monoid,
or group structure.

• Test whether a given subset of a group is a subgroup.
• Test whether a given function from one group to

another is an isomorphism.
• Decide whether two groups are isomorphic.

main iDeaS

• Many elementary arithmetic systems are instances
of a semigroup, monoid, or group structure.

• In any group structure, the identity and inverse
elements are unique, cancellation laws hold, and
linear equations are solvable; these and other
properties follow from the definitions involved.

• A subset of a group may itself be a group under the
inherited operation.

• The order of a subgroup of a finite group divides
the order of the group.

• The only subgroups of the group 3Z, + 4 are of the
form 3nZ, + 4 , where nZ is the set of all integral
multiples of a fixed n [N.

• If f is an isomorphism from one group to another,
f maps the identity to the identity and inverses to
inverses, and it preserves commutativity.

• If S and T are isomorphic groups, they are identical
except for relabeling, and each simulates any
 computation in the other.

• Isomorphism is an equivalence relation on groups.
• To within an isomorphism, there is only one group

of order 2, one group of order 3, and two groups of
order 4.

• Every group is essentially a permutation group.

PrACtiCe 33

a. Let 1 denote the identity of G. Show that a1 is an identity for P under function composition.
b. For ag [P, ag−1 [P; show that ag−1 = (ag)−1. ■

We now know that 3P, + 4 is a permutation group, and it only remains to show
that the function f: G S P given by f (g) = ag is an isomorphism. Clearly, f is an
onto function.

PrACtiCe 34 Show that f: G S P defined by f (g) = ag is

a. one-to-one.
b. a homomorphism. ■

We have now proved the following theorem, first stated and proved by the
English mathematician Arthur Cayley in the mid-1800s.

 tHeoRem CAyLEy’s thEorEM
Every group is isomorphic to a permutation group.

exeRciSeS 9.1

 1. a. A binary operation # is defined on the set 5a, b, c, d6 by the table on the left. Is # commutative?
Is # associative?

 b. Let S = 5p, q, r, s6 . An associative binary operation # is partly defined on S by the table on the right.
Complete the table to preserve associativity. Is # commutative?

W

Section 9.1 Algebraic Structures 709

a b c d

a a c d a

b b c a d

c c a b d

d d b a c

p q r s

p p q r s

q q r s p

r p

s s q r

 2. Show that matrix multiplication on M2(Z) is associative.
 3. Each of the following cases defines a binary operation, denoted by #, on a given set. Which are associative?

Which are commutative?

 a. On Z: x # y = e x if x is even
x + 1 if x is odd

 b. On N: x # y = (x + y)2

 c. On R+: x # y = x4

 d. On Q: x # y = xy∙2
 e. On R+: x # y = 1∙(x + y)
 4. Define binary operations on the set N that are
 a. commutative but not associative.
 b. associative but not commutative.
 c. neither associative nor commutative.
 d. both associative and commutative.

For Exercises 5–7, determine whether the structures 3S, # 4 are semigroups, monoids, groups, or none of these.
Name the identity element in any monoid or group structure.

 5. a. S = N; x # y = min(x, y)
 b. S = R; x # y = (x + y)2

 c. S = 5a"2 0 a [N6; # = multiplication
 d. S = 5a + b"2 0 a, b [Z6; # = multiplication
 e. S = 5a + b"2 0 a, b [Q, a and b not both 06; # = multiplication
 f. S = 51,−1, i, −i6; # = multiplication (where i2 = −1)
 6. a. S = 51, 2, 46; # = #

6

 b. S = 51, 2, 3, 5, 6, 10, 15, 306; x # y = least common multiple of x and y
 c. S = N × N; (x1, y1) # (x2, y2) = (x1, y2)
 d. S = N × N; (x1, y1) # (x2, y2) = (x1 + x2, y1y2)
 e. S = set of even integers; # = addition
 f. S = set of odd integers; # = addition
 7. a. S = set of all polynomials in R 3x 4 of degree ≤ 3; # = polynomial addition
 b. S = set of all polynomials in R 3x 4 of degree ≤ 3; # = polynomial multiplication

 c. S = e c1 z
0 1

d ` z [Z f ; # = matrix multiplication

 d. S = 51, 2, 3, 46; # = #
5

710 Modeling Arithmetic, Computation, and Languages

 e. S = R−5−16; x # y = x + y + xy
 f. S = 5 f 0 f : N S N6; # = function addition, that is, (f + g)(x) = f (x) + g (x)
 8. Let A = 51, 26 .
 a. Describe the elements and write the table for the semigroup of transformations on A.
 b. Describe the elements and write the table for the group of permutations on A.
 9. Given an equilateral triangle, six permutations can be performed on the triangle that will leave its image in the

plane unchanged. Three of these permutations are clockwise rotations in the plane of 120°, 240°, and 360°
about the center of the triangle; these permutations are denoted R1, R2, and R3, respectively. The triangle
can also be flipped about any of the axes 1, 2, and 3 (see the accompanying figure); these permutations are
denoted F1, F2, and F3, respectively. During any of these permutations, the axes remain fixed in the plane.
Composition of permutations is a binary operation on the set D3 of all six permutations. For example,
F3 + R2 = F2. The set D3 under composition is a group, called the group of symmetries of an equilateral
triangle. Complete the group table below for 3D3, + 4 . What is an identity element in 3D3, + 4? What is an
inverse element for F1? For R2?

+ R1 R2 R3 F1 F2 F3

R1

R2

R3

F1

F2

F3 F2

 10. The set S3, the symmetric group of degree 3, is isomorphic to D3, the group of symmetries of an equilat-
eral triangle (see Exercise 9). Find a bijection from the elements of S3 to the elements of D3 that preserves
the operation. (Hint: R1 of D3 may be considered a permutation in S3 sending 1 to 2, 2 to 3, and 3 to 1.)

 11. In each case, decide whether the structure on the left is a subgroup of the group on the right. If not, why
not? (Note that here S* denotes S − 506 .)

 a. 3Z5*, #
5 4; 3Z5, +5 4

 b. 3P, + 4; 3R 3x 4, + 4 where P is the set of all polynomials in x over R of degree ≥ 3
 c. 3Z*, # 4; 3Q*, # 4
 d. 3K, + 4; 3R 3x 4, + 4 where K is the set of all polynomials in x over R of degree ≤ k for some fixed k
 12. In each case, decide whether the structure on the left is a subgroup of the group on the right. If not,

why not?
 a. 3A, + 4; 3S, + 4 where S is the set of all bijections on N and A is the set of all bijections on N

mapping 3 to 3
 b. 3Z, + 4; 3M2(Z), + 4
 c. 3 50, 3, 66, +8 4; 3Z8, +8 4
 d. 3A, +2 4; 3Z 5

2, +2 4 where A = 500000, 01111, 10101, 110106
 13. Find all the distinct subgroups of 3Z12, +12 4 .
 14. a. Show that the subset

 al = i a3 = (1, 4) + (2, 3)
 a2 = (1, 2) + (3, 4) a4 = (1, 3) + (2, 4)

 forms a subgroup of the symmetric group S4.

Section 9.1 Algebraic Structures 711

 b. Show that the subset

 al = i a5 = (1, 2) + (3, 4)
 a2 = (1, 2, 3, 4) a6 = (1, 4) + (2, 3)
 a3 = (1, 3) + (2, 4) a7 = (2, 4)
 a4 = (1, 4, 3, 2) a8 = (1, 3)

 forms a subgroup of the symmetric group S4.
 15. Find the elements of the alternating group A4.
 16. Let A = 5p, q, r6 . Then 3A*, # 4 is the free monoid generated by A.
 a. What is ppqrp # qprr ?
 b. Let B = the set of all strings over A with an even number of q’s. Then B # A. Prove that 3B, # 4 is also

a monoid.
 17. In each case, decide whether the given function is a homomorphism from the group on the left to the one

on the right. Are any of the homomorphisms also isomorphisms?
 a. 3Z, + 4, 3Z, + 4; f (x) = 2
 b. 3R, + 4, 3R, + 4; f (x) = 0x 0
 c. 3R*, # 4, 3R*, # 4 (where R* denotes the set of nonzero real numbers); f (x) = 0x 0
 18. In each case, decide whether the given function is a homomorphism from the group on the left to the one

on the right. Are any of the homomorphisms also isomorphisms?
 a. 3R 3x 4, + 4, 3R, + 4; f (anxn + an−1xn−1 + c+ a1x + a0) = an + an−1 + c+ a0

 b. 3S3, + 4, 3Z2, +2 4; f (a) = e 1 if a is an even permutation
0 if a is an odd permutation

 c. 3Z × Z, + 4 where + denotes componentwise addition, 3Z, + 4; f (x, y) = x + 2y

 19. In each case, decide whether the given groups are isomorphic. If they are, produce an isomorphism
function. If they are not, give a reason why they are not.

 a. 3Z, + 4, 312Z, + 4 (where 12Z = 512z 0 z [Z6)
 b. 3Z5, +5 4, 35Z, + 4
 c. 35Z, + 4, 312Z, + 4
 d. 3S3, + 4, 3Z6, +6 4
 20. In each case, decide whether the given groups are isomorphic. If they are, produce an isomorphism func-

tion. If they are not, give a reason why they are not.
 a. 3 5a1x + a0

0

a1, a0 [R6, + 4, 3C, + 4

 b. 3Z6, +6 4, 3S6, + 4
 c. 3Z2, +2 4, 3S2, + 4
 d. 3Z3

2, +2 4, 3Z8, +8 4
 21. Let M2

 0(Z) be the set of all 2 × 2 matrices of the form

c1 z
0 1

d

 where z [Z.
 a. Show that 3M2

 0(Z), # 4 is a group, where # denotes matrix multiplication.

712 Modeling Arithmetic, Computation, and Languages

 b. Let a function f: M 2
0(Z) S Z be defined by

f a c1 z
0 1

d b = z

 Prove that f is an isomorphism from 3M 2
0(Z), # 4 to 3Z, + 4

 c. Use 3Z, + 4 to simulate the computation

c1 7
0 1

d # c1 − 3
0 1

d

 in 3M 2
0(Z), # 4 .

 d. Use 3M 2
0(Z), # 4 to simulate the computation 2 + 3 in 3Z, + 4 .

 22. a. Let S = 51, −16 . Show that 3S, # 4 is a group where # denotes ordinary integer multiplication.
 b. Let f be the function from the group 3Sn

, + 4 to the group 3S, # 4 given by

f (a) = e−1 if a is even
−1 if a is odd

 Prove that f is a homomorphism.
 23. In any group 3G, # 4 , show that
 a. i−1 = i
 b. (x−1)−1 = x for any x [G
 24. a. Show that any group of order 2 is commutative by constructing a group table on the set 51, a6 with 1

as the identity.
 b. Show that any group of order 3 is commutative by constructing a group table on the set 51, a, b6 with

1 as the identity. (You may assume associativity.)
 c. Show that any group of order 4 is commutative by constructing a group table on the set 51, a, b, c6 with

1 as the identity. (You may assume associativity.) There will be four such tables, but three of them are
isomorphic because the elements have simply been relabeled from one to the other. Find these three
groups and indicate the relabeling. Thus, there are two essentially different groups of order 4, and both
of these are commutative.

 25. Let 3G, # 4 be a group and let x, y [G. Define a relation r on G by x r y 4 g # x # g−1 = y for some g [G.
 a. Prove that r is an equivalence relation on G.
 b. Prove that for each x [G, 3x 4 = 5x6 if and only if G is commutative.
 26. For x a member of a group 3G, # 4 , we can define xn for any positive integer n by x1 = x, x2 = x # x, and

xn = xn−1 # x for n > 2. Prove that in a finite group 3G, # 4 , for each x [G there is a positive integer k such
that xk = i.

 27. Let 3S, # 4 be a semigroup. An element iL [S is a left identity element if for all x [S, iL
x = x. An

element iR [S is a right identity element if for all x [S, x # iR = x.
 a. Prove that if a semigroup 3S, # 4 has both a left identity element and a right identity element, then 3S, # 4

is a monoid.
 b. Give an example of a finite semigroup with two left identities and no right identity.
 c. Give an example of a finite semigroup with two right identities and no left identity.
 d. Give an example of a semigroup with neither a right nor a left identity.

Section 9.1 Algebraic Structures 713

 28. Let 3S, # 4 be a monoid with identity i, and let x [S. An element xL
−1 in S is a left inverse of x if xL

−1 # x = i.
An element xR

−1 in S is a right inverse of x if x # xR
−1 = i.

 a. Prove that if every element in a monoid 3S, # 4 has both a left inverse and a right inverse, then 3S, # 4 is a
group.

 b. Let S be the set of all functions f such that f: N S N. Then S under function composition is a monoid.
Define a function f [S by f(x) = 2x, x [N. Then define a function g [S by

 g (x) = e x∙2 if x [N, x even
1 if x [N, x odd

 Prove that g is a left inverse for f. Also prove that f has no right inverse.
 29. Let 3S, # 4 be a semigroup having a left identity iL (see Exercise 27) and the property that for every x [S,

x has a left inverse y such that y # x = iL. Prove that 3S, # 4 is a group. (Hint: y also has a left inverse in S.)
 30. An element of a semigroup 3S, # 4 is idempotent if x # x = x. Prove that a group contains exactly one

idempotent element.
 31. Prove that if 3S, # 4 is a semigroup in which the linear equations a # x = b and x # a = b are solvable for any

a, b [S, then 3S, # 4 is a group. (Hint: Use Exercise 29.)
 32. Prove that a finite semigroup that satisfies the left and right cancellation laws is a group. (Hint: Use

Exercise 29.)
 33. Prove that a group 3G, # 4 is commutative if and only if (x # y)2 = x2 # y2 for each x, y [G.
 34. Prove that a group 3G, # 4 in which x # x = i for each x [G is commutative.
 35. Let 3G, # 4 be a commutative group with identity i. For a fixed positive integer k, let Bk = 5x 0 x [G, xk = i6 .

Prove that 3Bk, # 4 is a subgroup of 3G, # 4 .
 36. Let 3G, # 4 be a commutative group with subgroups 3S, # 4 and 3T, # 4 . Let ST = 5s # t 0 s [S, t [T6 . Prove that

3ST, # 4 is a subgroup of 3G, # 4 .
 37. a. Let 3G, # 4 be a group and let 3S, # 4 and 3T, # 4 be subgroups of 3G, # 4 . Prove that 3S d T, # 4 is a subgroup

of 3G, # 4 .
 b. Will 3S c T, # 4 be a subgroup of 3G, # 4? Prove or give a counterexample.
 38. For any group 3G, # 4 , the center of the group is A = 5x [G 0 x # g = g # x for all g [G}.
 a. Prove that 3A, # 4 is a subgroup of 3G, # 4
 b. Find the center of the group of symmetries of an equilateral triangle, 3D3, + 4 (see Exercise 9).
 c. Prove that G is commutative if and only if G = A.
 d. Let x and y be members of G with x # y−1

[A. Prove that x # y = y # x.
 39. a. Let SA denote the group of permutations on a set A, and let a be a specific element of A. Prove that the

set Ha of all permutations in SA that map a to a forms a subgroup of SA.
 b. If A has n elements, what is 0Ha 0?
 40. a. Let 3G, # 4 be a group and A # G, A ∙ [. Prove that 3A, # 4 is a subgroup of 3G, # 4 if for each

x, y [A, x # y−1
[A. This subgroup test is sometimes more convenient to use than the theorem on

subgroups.
 b. Use the test of part (a) to work Exercise 35.
 41. a. Let 3G, # 4 be any group with identity i. For a fixed a [G, a0 denotes i and a−n means (a n)−1. Let

A = 5az
 0 z [Z). Prove that 3A, # 4 is a subgroup of G. (Hint: Use Exercise 40.)

 b. The group 3G, # 4 is a cyclic group if for some a [G, A = 5az 0z [Z6 is the entire group G. In this
case, a is a generator of 3G, # 4 . For example, 1 is a generator of the group 3Z, + 4; remember that
the operation is addition. Thus, 10 = 0, 11 = 1, 12 = 1 + 1 = 2, 13 = 1 + 1 + 1 = 3… .; 1−1 =
(1)−1 = −1; 1−2 = (12)−1 = −2; 1−3 = (13)−1 = −3, … . Every integer can be written as an integral

714 Modeling Arithmetic, Computation, and Languages

“power” of 1, and 3Z, + 4 is cyclic with generator 1. Prove that the group 3Z7, +7 4 is cyclic with
generator 2.

 c. Prove that 5 is also a generator of the cyclic group 3Z7, +7 4 .
 d. Prove that 3 is a generator of the cyclic group 3Z4, +4 4 .
 42. Let 3G, # 4 be a cyclic group with generator a (see Exercise 41). Show that G is commutative.
 43. a. Let 3S, # 4 be a semigroup. An isomorphism from S to S is called an automorphism on S. Let Aut(S) be

the set of all automorphisms on S, and prove that Aut(S) is a group under function composition.
 b. For the group 3Z4, +4 4 , find the set of automorphisms and show its group table under + .
 44. Let 3G, # 4 be a commutative group with identity i. Prove that the function f: G S G given by f (x) = x−1

is an isomorphism.
 45. Let f be a homomorphism from a group G onto a group H. Show that f is an isomorphism if and only if

the only element of G that is mapped to the identity of H is the identity of G.
 46. Let 3G, # 4 be a group and g a fixed element of G. Define f: G S G by f(x) = g # x # g−1 for any x [G.

Prove that f is an isomorphism from G to G.
 47. a. Consider the equivalence relation on the integers of congruence modulo n defined in Section 5.1. If

n = 5, there are 5 equivalence classes:

 30 4 = 5… , −10, −5, 0, 5, 10, …6
 31 4 = 5… , −9, −4, 1, 6, 11, …6
 32 4 = 5… , −8, −3, 2, 7, 12, …6
 33 4 = 5… , −7, −2, 3, 8, 13, …6
 34 4 = 5… , −6, −1 ,4, 9, 14, …6

 Let E5 = 5 30 4, 31 4, 32 4, 33 4, 34 4 6 . An operation + is defined on E5 by

3x 4 + 3y 4 = 3x + y 4

 For example, 32 4 + 34 4 = 32 + 4 4 = 36 4 = 31 4 (recall that an equivalence class can be named by any
of its elements). Prove that 3E5, + 4 is a commutative group.

 b. 3Z5, +5 4 is a commutative group with elements 50, 1, 2, 3, 46 (see Example 7). Prove that 3Z5, +5 4 is
isomorphic to the group 3E5, + 4 .

 c. Results a and b hold for any value of n. In the group E14, what is the inverse of [10]? What is the preim-
age of [21] under the isomorphism from Z14 to E14?

 S e c t i o n 9 . 2 Coding theory

introduction

We talked about cryptographic codes (codes for secrecy) in Chapter 5. The codes
we will talk about in this section are designed not to keep data secret but to cope
with degraded data. Data can degrade over time in a storage device or can be
corrupted over space, that is, during a transmission from one site to another over
some medium. Bits are changed from 0 to 1 or vice versa through interference
(“noise”), hardware failures, media damage, and so forth. The goal is to be able to
detect, perhaps even to correct, such errors.

Section 9.2 Coding Theory 715

As an analogy, consider voice transmission over a poor-quality cell phone
connection. The speaker says the black hat but the receiver hears the black cat.
Because the received message makes sense and could have been the transmitted
message, there is no way to detect that an error has occurred. An alternative is to
encode the message to be transmitted by repeating it. Thus the code word for the
black hat would be the black hat the black hat, and the code word for the black cat
would be the black cat the black cat. A received message of the black hat the black
cat would alert the receiver that an error has occurred in transmission. However,
the received message is equally close to either of the two code words, so there is no
way to guess the correct code word. Note that two errors could still go undetected.

Now let’s make the code word three copies of the message: the black hat the
black hat the black hat and the black cat the black cat the black cat. A received
message of the black hat the black cat the black hat would signal that either one or
two errors has occurred. If we assume it to be more likely that only one error has
occurred, we decode the message to the closest code word, the black hat the black
hat the black hat. This process is called maximum likelihood decoding and gives
us the correct code word for a received message where no more than one error has
occurred. Because we can detect up to two errors and correct the effects of one
error, we have designed a double-error detecting, single-error correcting code.

 Here we’ve seen three ideas central to coding theory: redundancy in coding,
maximum-likelihood decoding, and distance between code words. Redundancy
uses additional bandwidth or storage space, and it also increases exposure to er-
rors. Yet, as we’ve seen from our little example, it also increases the capability for
detecting and perhaps correcting such errors. You are probably familiar with the
idea of a parity bit, where at the end of a binary string one extra bit is added so
that the total number of 1s in the string, including the parity bit, is even (an even
parity bit scheme). A single bit error is detectable because it would result in an odd
number of 1s. But there’s no way to tell which bit is in error. An even number of
errors is undetectable, and any odd number of errors is indistinguishable from a
single error. This code is single-error detecting.

The codes we will examine are generalizations of the parity-bit code.
A parity-bit code adds one bit to the end of an m-tuple message to turn it into an
n-tuple code word where n = m + 1. Our code words will add additional bits to
the end of an m-tuple message to create an n-tuple code word where the additional
n − m bits are all special sorts of parity bits. These codes also rely on further
results from group theory (indeed they are called group codes), so we need some
additional background first.

Background: homomorphisms and Cosets

According to the definition, for f to be an isomorphism it must be both a bijection
and a homomorphism.

 example 17 Consider the following functions from Z to Z:

f (x) = 0
 g(x) = x + 1

The function f is a homomorphism from the group 3Z, + 4 to the group 3Z, + 4
because f (x + y) = 0 = 0 + 0 = f (x) + f (y). However, f is not a bijection,

716 Modeling Arithmetic, Computation, and Languages

so it is not an isomorphism. The function g is a bijection because g(x) = g(y)
implies x + 1 = y + 1, or x = y, so g is one-to-one; g is also onto because for
any z [Z, z − 1 [Z and g(z − 1) = z. But g is not a homomorphism because
g(x + y) = (x + y) + 1 ∙ (x + 1) + (y + 1) = g(x) + g(y). Hence g is not an
isomorphism.

What can be said about functions from a group to a group that are homomor-
phisms but not isomorphisms? More specifically, let 3G, # 4 be a group with identity
iG, 3H, + 4 be a group with identity iH , and f be a homomorphism, f : G S H . The
range of f, f (G), is a subset of H (remember that f might not be an onto function, so
it isn’t necessarily true that f (G) = H). In fact, f (G) is actually a subgroup of H.
It is easy enough to prove the three properties needed for f (G) to be a subgroup,
and the proof will show that f (iG) = iH and −f (x) = f (x−1) (Exercise 1). We can
define a binary relation r on G by

x r y 4 f (x) = f (y)

and r is an equivalence relation.

PrACtiCe 35 Prove that r is an equivalence relation on G.
■

If f is a one-to-one function, x r y would mean that f (x) = f (y) and therefore
x = y. The equivalence classes formed by r would then be trivial, each containing
only a single element of G. But in general, because f is not a bijection, it might not
be a one-to-one function. Let 3iG 4 be the equivalence class determined by r that
contains the identity of G. Because f (iG) = iH, 3iG 4 = 5x [G 0 f (x) = iH6 . This
set is called the kernel of the homomorphism f.

The kernel K is a subset of G, and in addition it is a subgroup of G. We need
to prove the three properties necessary for a subgroup:

 1. K is closed: Let x and y be elements in K. Then f (x) = f (y) = iH . And
f (x # y) = f (x) + f (y) = iH + iH = iH , so x # y is in K.

 2. iG belongs to K: Yes, because f (iG) = iH .
 3. Let x be an element in K: Then f (x) = iH . Also f (x−1) = −f (x) =

−iH = iH so x−1 is in K.

ReminDeR

Given a homomorphism f
from 3G, # 4 to 3H, + 4 , the
range f (G) is a subgroup
of 3H, + 4 and the kernel K
is a subgroup of 3G, # 4 .

 example 18 Let R* = R − 506 and let R+ be the set of all positive real numbers. Then
the function f defined by f (x) = 0x 0 is a homomorphism from the group 3R*, # 4
to the group 3R+, # 4 . The kernel K of f is 5x [R* 0 f (x) = 0x 0 = 16 . Therefore
 K = 51, −16 .

PrACtiCe 36 The function f defined by f (x) = x #3 1 is a homomorphism from the group 3Z, + 4 to the
group 3Z3, +3 4. Find the kernel K.

For our discussion of cosets, we begin with a definition.

■

Section 9.2 Coding Theory 717

 Definition CosEt
Let 3S, + 4 be a subgroup of a group 3G, + 4 . Then for x [G, sets of the form
x + S = 5x + s 0 s [S6 are called left cosets of S in G. Sets of the form
S + x = 5s + x 0 s [S6 are called right cosets of S in G.

Of course, if G is commutative, then left cosets and right cosets are identical.

 example 19 Let S = 50, 2, 4, 66 . Then 3S, +8 4 is a subgroup of 3Z8,+8 4 . The left coset
5 +8 S = 55 +8 0, 5 +8 2, 5 +8 4, 5 +8 66 = 55, 7, 1, 36 .

PrACtiCe 37

a. Verify that 5 +8 S = 1 +8 S = 3 +8 S = 7 +8 S.
b. Compute the left coset 2 +8 S. What are its other names? ■

For 3S, + 4 any subgroup of a group 3G, + 4 , we can define a binary relation r
on G as follows:

x r y 4 y belongs to x + S, x’s left coset of S in G

Then x r y, which is equivalent to y belonging to x + S, means y can be written as
x + s for some element s [S. It turns out that r is an equivalence relation on G:

Reflexive property: x r x because x = x + iG. (Because S is a subgroup of G, the
identity iG of G is an element of S.)

Symmetric property: if x r y then y = x + s for some s [S. Then, because S is
a subgroup, −s is in S and x = y + (−s), which puts x in the same coset as
y, that is y r x.

Transitive property: if x r y and y r z then y = x + s1 for some s1 [S and
z = y + s2 for some s2 [S. Therefore, z = y + s2 = (x + s1) + s2 =
x + (s1 + s2), which means z is in x’s left coset so x r z.

We have proved the following result.

 tHeoRem on CosEt PArtitions
Let 3S, + 4 be a subgroup of a group 3G, + 4 . Then the set of left cosets of S in G
forms a partition of G. One of these cosets is iG + S = S.

This coset partition will play a key role in decoding our group codes. But first,
we need to see how we actually create group codes.

Generating Group Codes

Suppose we know how to turn any m-bit binary message into an n-bit code word
where m < n, and we also know how to reverse this process. There is then a set of
n-bit code words, one for each m-bit binary string. An n-bit code word is transmit-
ted and the received message is also a binary n-tuple. Two cases can occur:

718 Modeling Arithmetic, Computation, and Languages

1. The received n-tuple is identical to one of the code words. In this case,
maximum-likelihood decoding will assume that no errors have occurred.
This is actually based on another assumption, namely that the probability
of errors occurring is very low, so that the probability of no errors is very
high. Therefore the probability that a received code word is the same code
word that was originally transmitted is more likely than that the transmit-
ted code word was scrambled into a different code word.

2. The received n-tuple does not match any code word. Maximum-likelihood
decoding suggests that the received n-tuple should be decoded as the
closest code word, as this would be the result of the fewest bit errors and
therefore has the highest probability of giving the correct result.

Keep in mind throughout this section that maximum-likelihood decoding
does not guarantee 100% accurate results; it guarantees only results with the high-
est probability of being accurate.

To determine the “closest” code word, we need to define what we mean by the
distance between binary n-tuples. Hamming distance, defined here, is named for
Richard W. Hamming, an American mathematician who pioneered the study of
error-detecting and error-correcting codes in 1950.

 Definition hAMMinG DistAnCE
Let X and Y be binary n-tuples. The hamming distance between X and Y,
H(X, Y), is the number of components in which X and Y differ. The minimum
distance of a code is the minimum Hamming distance between all possible pairs
of distinct code words.

PrACtiCe 38 For X = 01011 and Y = 11001, what is H(X, Y)?
■

Each error that occurs in the transmission of a code word adds one unit to the
Hamming distance between that code word and the received word. Suppose we
picture the code words as specific binary n-tuples distinguished from the set S of
all binary n-tuples, as in Figure 9.1. Suppose also that the minimum distance of
the code is at least d + 1. Then any time a code word X is corrupted by d or fewer
errors, it will be changed to an n-tuple X ′ that is not another code word, and the
occurrence of errors can be detected. Conversely, if any combination of d or fewer
errors can be detected, code words must be at least d + 1 apart.

d + 1

S

figure 9.1

Section 9.2 Coding Theory 719

Now suppose that the minimum distance of the code is at least 2d + 1. Then
any time a code word X is corrupted by d or fewer errors, the received word X ′
will be such that H(X, X ′) ≤ d but for any other code word Y, H(X ′, Y) ≥ d + 1.
Therefore X ′ will be correctly decoded as X, the closest code word. Conversely,
to correct any received word with d or fewer errors, the minimum distance of the
code must be at least 2d + 1 so that neighborhoods of radius d around code words
do not intersect (Figure 9.2).

S

2d + 1

figure 9.2

As a result, we see that a code is d-error detecting if and only if its minimum
distance is at least d + 1, and it is d-error correcting if and only its minimum
distance is at least 2d + 1. As one would expect, it requires a stronger condition
to correct errors than to merely detect them.

 example 20 Suppose a code has a minimum distance of 6. It can then detect any combination
of ≤ 5 errors. It can correct any combination of ≤ 2 errors. If code words X and
Y are such that H(X, Y) = 6, then there will be a word X ′ produced by 4 errors
on X that will be incorrectly decoded as Y; there will be a word X ″ produced by 3
errors on X that can be arbitrarily decoded correctly as X or incorrectly as Y. This
code is double-error correcting, 5-error detecting.

The set of code words will be a subset of the set of all binary n-tuples, Z
n
2.

We want these code words to be sufficiently widely scattered in Z
n
2 so that the

minimum distance is large enough to allow some error correction. The minimum
distance of the code is easy to compute if the code words form a subgroup of the
group 3Z

n
2, +2 4 . In this case we have a group code; the identity is the n-tuple of all

0s (we’ll call this 0n), and each code word is its own inverse. Denote by W(X) the
weight of a code word X, meaning the number of 1s it contains.

 tHeoRem on MiniMuM DistAnCE of GrouP CoDE
The minimum distance of a group code equals the minimum weight of all the
nonzero code words.

To prove this theorem, let d be the minimum distance of a group code; then
there are two distinct code words X and Y with H(X, Y) = d . Because it’s a group
code, closure holds and X +2 Y = Z is a code word. Z ∙ 0 because X and Y are
distinct. Z will have 1s in exactly those components where X and Y differ, so

720 Modeling Arithmetic, Computation, and Languages

W(Z) = H(X, Y) = d . Thus the minimum weight of the code is ≤ d . If the mini-
mum weight is < d , let M be a nonzero code word with W(M) the minimum
weight. Then (remember that 0n is a code word) H(M, 0n) = W(M) < d , which
contradicts the fact that d is the minimum distance of the code. Therefore the
minimum distance equals the minimum weight.

 example 21 The set 500000, 01111, 10101, 110106 is a group code (you can check closure,
identity, and inverses) in 3Z

5
2, +2 4 . The minimum distance of the code is 3, so it is

a single-error correcting code (3 = 2 * 1 + 1).

All well and good, but how can we produce subgroups of Z
n
2 to use as code

words, and how can we control the minimum distance of the code? Algebraic
ideas again come to our rescue. Let h be any n × r binary matrix with r < n. If
X [Z

n
2, we can perform the matrix multiplication X # h, where all additions are

done modulo 2. The result of this multiplication is a binary r-tuple.

 example 22 Let r = 3, n = 5, and

h = E

1 1 0
0 1 1
1 0 1
1 0 0
1 1 0

U

Then

(11101)E

1 1 0
0 1 1
1 0 1
1 0 0
1 1 0

U = (110)

We can think of multiplication by h as a mapping from the group :Z

n
2, +2; to

the group :Z

r
2, +2; . Moreover, this mapping is a homomorphism (see Exercise 13 at

the end of this section). We know that the kernel K of this homomorphism is a sub-
group of :Z

n
2, +2; and it consists of all those X in Z

n
2 such that X # h = 0r, the zero

of the group :Z

r
2, +2; . We’ll take K as the set of code words. Then we can easily

determine the minimum weight (minimum distance) of the code simply by look-
ing at h. If h has d distinct rows that add to 0r in :Z

r
2, +2; , say i1, … , id , we can

choose an X in Z
n
2 having 1s exactly in the i1, … , id , components. Then X # h = 0r,

so that X is a code word, and W(X) = d . On the other hand, if X is a code word
with W(X) = d and X has 1’s exactly in components i1, … , id ,, then the equation
X # h = 0r forces rows i1, … , id , of h to sum to 0r. Therefore, the minimum
weight of the code equals the minimum number of distinct rows of h that add to 0r.
In particular, to produce a single-error correcting code, we must have minimum
distance at least 3, so we would have to choose an h with no row consisting of all
0s and no two rows that are alike (these would add to 0r).

Section 9.2 Coding Theory 721

From now on, we will assume that the matrix h has the form

 h = cb
ir
d (1)

where ir is the r × r identity matrix and b is an arbitrary (n − r) × r binary
matrix. In computing the product X # h for some X [Z n

2 , we multiply elements
of X by corresponding elements of the columns of h, and then sum modulo 2. For
each column of h, the pattern of 1s in the column determines which components
of X contribute to the sum. If the sum is to be 0 (as is true when X # h = 0r), then
those selected components of X must sum to 0 and therefore must consist of an
even number of 1s. The ir portion of h has the effect that each column of h selects
a distinct component from among the last r components of X. Each of the last r
components of X therefore controls the even parity check for one of the r multipli-
cations that are done. A matrix h that matches Equation (1) is called a canonical
parity-check matrix.

For X to be a code word, the first n − r components of X can be arbitrary, but
the final r components will then be determined. The maximum number of code
words is therefore the maximum number of ways to select binary (n − r)-tuples,
or 2n−r. Let m = n − r. We can code all members of Z m

 2 in Z n
 2 by leaving the first

m components alone and then choosing the last r components so that the even
parity check works for each column of h. Such a code is called an (n, m) code.
The first m components of a code word are the information bits, and the last r
components are the check bits.

 example 23 The code words of Example 21were generated using the matrix h where

h = E

1 0 1
1 1 1
1 0 0
0 1 0
0 0 1

U

h has no row of all 0s and no two rows that are alike, but rows 1, 2, and 4 add to
(0,0,0). Again, we see that the minimum distance of this code is 3.

PrACtiCe 39 For each code word X of Example 21, verify that X # h = 03, where h is given in
Example 23.

■

 example 24 The matrix h of Example 23 is a canonical parity-check matrix where n = 5, r = 3,
and m = n − r = 2. h can thus generate 2m = 22 = 4 code words. The four
members of Z 2

 2 are 00, 01, 10, and 11. Each can be coded as a member of Z 5
 2 by

keeping the first two digits and adding the appropriate check digits. To code 10,
for instance, we have

722 Modeling Arithmetic, Computation, and Languages

(10C1C2C3)E

1 0 1
1 1 1
1 0 0
0 1 0
0 0 1

U = (000)

Multiplication by the first column of h gives 1 # 1 + 1 # C1; therefore C1 must
equal 1 to give the sum value of 0. Similarly C2 = 0 and C3 = 1. We encode 10 as
10101.

PrACtiCe 40 Use the encoding procedure of Example 24 to code 00, 01, and 11 in Z
5
2. Compare the

results with Example 21.
■

For a given n × r canonical parity-check matrix h, we know how to encode
all of Z

m
2 = Z

n−r
2 as a subgroup of Z n

 2, and we also know how to determine from h
the minimum distance of the resulting code. Now let’s turn the problem around.
Suppose we want to encode Z m

 2 for some m as, say, a single-error correcting code.
How big will the code words have to be (what is n) or, equivalently, how many
check bits must be added (what is r)? Once we know the dimensions of a parity-
check matrix h, how can we find a canonical h that generates the code? We know
that to produce a single-error correcting code, h must have no row consisting
of all 0s and no two rows that are alike. That means that in the canonical form

h = cb
ir
d , b cannot contain the row of all 0s nor can it contain any row with a

single 1 because this would match one of the rows in ir. The rows are r-tuples,
so from the 2r possible r-tuples, we have to subtract those that cannot occur in b.
b can have at most 2r−1−r rows so m, the number of rows in b, must be ≤ 2r−1−r.
If m and r are such that

m = 2r−1−r

the resulting code is called a perfect code.

 example 25 A (7, 4) code is a perfect code. Here n = 7, m = 4, r = n − m = 3, and
4 = 23 − 1 − 3. The matrix h will be a 7 × 3 matrix of the form

cb
i3
d

where the m = 4 rows of b are all of the 3-tuples with at least two 1s.

PrACtiCe 41

a. Write an h matrix for the (7, 4) perfect code.
b. A (7, 4) code can encode all of Z

4
2 in Z

7
2. Using your h from part (a), write the set of binary

4-tuples that h encodes and write the code word for each one. ■

Section 9.2 Coding Theory 723

Decoding Group Codes

Now suppose that some encoding scheme has been used to encode all members of
Z m

2 in Z n
2 . There will be 2m of these code words scattered among the 2n binary n-

tuples. These code words are known to us (remember that secrecy is not the issue
here). When an n-tuple X is received, we have a process for decoding: we decode
X as the closest code word in terms of Hamming distance, making the assumption
that the fewest errors have occurred. This process is not truly an algorithm, how-
ever; there may not be a unique closest code word, and even if there is, we might
still decode incorrectly if enough errors have occurred.

Nonetheless, let’s concentrate on how to find the closest code word(s) for a
received word X. There is certainly a brute force approach; we can create an array
of all 2m code words and when an X is received, we just compare X to each one
in turn to find the closest code word. But wait—this requires storage for an expo-
nential array size as well as an exponential sequential search process. Even for a
relatively modest m-value of 32, 232 is a very large number. But, suppose our code
is a group code generated by an n × r canonical parity-check matrix h. Then we
will ultimately be able to decode by searching an array of only 2r elements. In a
single-error correcting code with m = 32, r can be as low as 6 (m ≤ 2r − 1 − r),
and 26 = 64 is an acceptable search array.

 Here’s how this decoding works. Recall that the set of code words equals the
kernel K of the homomorphism h induces from 3Z n

2, +2 4 to the group 3Z r
2, +2 4 .

We therefore know that K is a subgroup of 3Z n
2, +2 4 and we also know that the set

of left cosets of K in 3Z n
2, +2 4 partitions the set Z n

2 . Cosets have the form X +2 K
where X [Z n

2 . Any given coset

X +2 K = 5X +2 Ci 0 Ci [K6

K has 2m elements, so the size of each coset is 2m. Because the set of left cosets
partitions Zn

2, a set of size 2n, there must be 2n∙2m = 2n − m = 2r distinct cosets.
When a word X is received, X belongs to the coset X +2 K . As we just noted,

each element Ei of this coset has the form X +2 Ci where Ci is a code word. Both Ei
and Ci are binary n-tuples, so they are each self-inverse (−Ei = Ei and − Ci = Ci).
Therefore the equation

 Ei = X +2 Ci (2)

can be written as

 X +2 Ei = Ci (3)

From (2) we can see that 1’s in Ei occur in exactly those components where
X and Ci differ. Thus the weight of Ei equals the distance between X and Ci,
and the closest code word to X is the one for which the corresponding Ei has
minimum weight. To decode X, look for the element in the coset of X having
minimum weight and, by (3), add that element to X. The result is the code word
to which we decode X. The coset element having minimum weight is called
the coset leader, and it may not be unique. If there are two “minimum-weight”
elements in a given coset, one is chosen arbitrarily as the coset leader. This just
means that no word in this particular coset can be accurately decoded because
it has too many errors.

724 Modeling Arithmetic, Computation, and Languages

 tHeoRem on synDroMEs AnD CosEts
Let h be an n × r parity-check matrix generating a group code K. Then for
X, Y [Z

n
2, X and Y are in the same left coset of K in 3Z

n
2, +2 4 if and only if X and

Y have the same syndrome.

Summary: To decode a received n-tuple X, find the coset to which X belongs and
add that coset’s leader to X.

 example 26 Consider the code of Example 21. Here n = 5 and K = 500000, 01111, 10101,
110106 . Suppose the 5-tuple X = 11011 is received. Because the set of code
words is so small, we can easily pick out the closest code word, which is 11010.
We would decode X as 11010. (From Example 23 we know that the canonical
matrix h for this code is 5 × 3, so r = 3. Knocking off the three check bits, the
original information bits were 11.)

Now let’s try our decoding procedure. The elements of X ’s coset are

 11011 +2 00000 = 11011
 11011 +2 01111 = 10100
 11011 +2 10101 = 01110
 11011 +2 11010 = 00001

The coset leader (the element of minimum weight in this coset) is clearly 00001.
Adding this to X we get

11011 +2 00001 = 11010

and we decode X to 11010, as before.

But we haven’t really solved the efficiency problem. To find all the elements
of X ’s coset requires adding all the code words to X, which still requires knowing
all 2m code words. For a better approach, we need one new idea.

 Definition synDroME
In the group code generated by an n × r parity-check matrix h, for any X [Z

n
2,

the r-tuple X # h is the syndrome of X.

The syndrome is useful because of the following theorem.

Proof: Suppose X and Y are in the same left coset of K in 3Z
n
2, +2 4 . Then

Y = X +2 Ci for some Ci [K , and Y # h = (X +2 Ci) # h = X # h +2 Ci
h (be-

cause multiplication by h is a homomorphism) = X # h +2 0r (because Ci is in
the kernel of this homomorphism) = X # h. Therefore Y # h = X # h and X and Y
have the same syndrome.

Now suppose that Y # h = X # h. Then Y # h +2 X # h = 0r, or
(Y +2 X) # h = 0r, which makes Y +2 X a code word Ci in K. If Y +2 X = Ci,
then Y = X +2 Ci and Y and X are in the same coset. End of proof.

Section 9.2 Coding Theory 725

PrACtiCe 42 Example 26 shows four members of one coset. The parity-check matrix that generated the
code for this example is

h = E

1 0 1
1 1 1
1 0 0
0 1 0
0 0 1

U

Compute the syndrome for each member of the coset. ■

Now suppose that we somehow have available a list of the 2r coset leaders. It
is then easy to find which coset leader corresponds to X by making use of the fact
from the previous theorem that X and the coset leader of X’s coset will have the
same syndrome.

 example 27 In the (5, 2) code of Example 26, n = 5, m = 2, and r = 3. The size of each coset
is 2m = 4, and there are 2r = 8 distinct cosets. Here is a list of the coset leaders
and their corresponding syndromes. The syndromes were computed using the ma-
trix h of Practice 42, and the coset leaders were found by brute force.

 Coset leaders Syndromes
 00000 000
 00001 001
 00010 010
 00011 011
 00100 100
 10000 101
 00110 110
 01000 111

A received word of 10101 is decoded by computing its syndrome:
(10101)h = 000. The coset leader sharing this same syndrome is 00000. The
received word is decoded as

10101 +2 00000 = 10101

The received word is a code word, so it is assumed that no errors have occurred.
A received word of 11000 is decoded by computing its syndrome:

(11000)h = 010.The coset leader sharing this same syndrome is 00010, so the
received word is decoded as

11000 +2 00010 = 11010

assuming that a single error has occurred.
A received word of 10011 has a syndrome of 110, so it can be decoded as

10011 +2 00110 = 10101

But because its coset leader has weight 2, we might instead generate a flag noting that
at least two errors have occurred and that decoding cannot be done with certainty.

726 Modeling Arithmetic, Computation, and Languages

At this point we have traded one difficulty for another, namely, How do we
find the list of 2r coset leaders? This isn’t always easy to do. In Example 27, the
“brute force” involved writing all 2n = 32 binary 5-tuples, computing the 32 syn-
dromes to group the 5-tuples into 8 cosets, and then reviewing the 4 members of
each coset to find the coset leader. In two cosets, there was a tie for coset leader,
and one value was picked arbitrarily in each case.

But—if the code is a perfect single-error correcting code, then the coset lead-
ers are easy to find. Recall that in a perfect code, m = 2r − 1 − r, and because
r = n − m, it is also true that n = 2r − 1. The n rows of the matrix h are r-tuples
that are the binary representations of the numbers 1, 2, … , 2r − 1 (there’s no 0r
row in h). The code word 0n is the coset leader corresponding to the syndrome 0r.
Any other syndrome is a binary r-tuple representing a digit d, 1 ≤ d ≤ 2r − 1.
The value d is also represented by a row of h, say, row q. The coset leader for this
syndrome is the binary n-tuple with a 1 in component q and 0s elsewhere. In this
case there is no ambiguity about the coset leader, and every received word is at
most distance 1 from a code word.

 example 28 A (7, 4) code is a perfect code for which r = 3. One matrix generating such a
code is

h = G

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

W

Given the syndrome 101, the row of h that represents this binary number is
row 2. The coset leader for this syndrome is therefore 0100000 (a 1 in component 2,
0s elsewhere). You can check that (0100000)h = 101. The table of coset leaders
and the corresponding syndromes is partially filled in here.

 Coset leaders Syndromes
 0000000 000
 001
 010
 011
 100
 0100000 101
 110
 111

A received word of 1001100 has a syndrome of (1001100)h = 101, so it is de-
coded as

1001100 +2 0100000 = 1101100

Section 9.2 Coding Theory 727

S e c t i o n 9 . 2 review

tecHniQueS

• Find the kernel of a given homomorphism from a
group 3G, # 4 to a group 3H, + 4 .

• Given a canonical n × r parity-check matrix h,
write the set of binary m-tuples that h encodes and
write the code word for each one.

• Given m such that Z
m
2 is to be encoded as a single-

error correcting code, find a canonical parity-check
matrix to generate the code.

• Given a canonical n × r parity-check matrix h for a
perfect code, be able to decode a received n-tuple by
computing its syndrome and finding its coset leader.

main iDeaS

• If f is a homomorphism from a group 3G, # 4 to a
group 3H, + 4 , then f (G) is a subgroup of 3H, + 4
and the kernel K (the set of all elements in G map-
ping to iH) is a subgroup of 3G, # 4 .

• If 3S, + 4 is a subgroup of the group 3G, + 4 , then
the set of left cosets of S in G forms a partition of G.

• The error-detecting and error-correcting capabili-
ties of a binary code are functions of the minimum
distance of the code.

• In a group code, the minimum distance is the mini-
mum weight of the nonzero code words.

• A parity-check matrix h can be used to generate a
group code, in which case the minimum distance of
the code can be determined from h.

• A canonical n × r parity-check matrix provides an
easy procedure to encode Zm

2 in Zn
2 where m = n − r.

• For a group code generated by an n × r parity-
check matrix h, each word X in Zn

2 is decoded
by using its syndrome to locate the coset in Zn

2 to
which X belongs and adding the coset leader to X.
If the code is a perfect code, the coset leader can be
determined from h.

W

W

exeRciSeS 9.2

 1. Let f be a homomorphism from a group 3G,# 4 to a group 3H, + 4 . Prove that 3 f (G), + 4 is a subgroup of
3H, + 4 .

 2. Let f be a homorphism from the group 3Z, + 4 to the group 3Z, + 4 given by f (x) = 2x.
 a. Verify that f is a homorphism.
 b. Is f an isomorphism? Prove or disprove.
 c. What is the subgroup 3 f (Z), + 4 of 3Z, + 4?
 3. The function f defined by f (x) = x #8 2 is a homomorphism from 3Z, + 4 to 3Z8, +8 4 . Find the kernel K.
 4. The function f defined by f (x) = x #8 4 is a homomorphism from 3Z12, +12 4to 3Z8, +8 4 . Find the kernel K.
 5. A function f: Z × Z S Z is defined by f (x, y) = x + y.
 a. Prove that f is a homomorphism from the group 3Z × Z, + 4 (where + means componentwise addi-

tion) to the group 3Z, + 4 .
 b. Find the kernel K.
 6. Let F be the set of all functions f: R S R. For f, g [F , let f + g be defined as follows: For

x [R, (f + g)(x) = f (x) + g(x).
 a. Prove that 3F, + 4 is a group.
 b. Let a [R. Define a function a: F S F by a(f) = f (a). Prove that a is a homorphism from 3F, + 4 to

3R, + 4 .
 c. Find the kernel K.
 7. Let S = 50, 4, 86 . Then 3S, +12 4 is a subgroup of 3Z12, +12 4 . Find the members of the left coset 7 +12 S.
 8. Let S = 5i,(2, 3)6 . Then 3S, + 4 is a subgroup of the symmetric group 3S3, + 4 . Find the members of the left

coset (1, 2, 3) + S and the right coset S + (1, 2, 3). Explain this result.

728 Modeling Arithmetic, Computation, and Languages

 9. Consider the canonical parity-check matrix

h = F

1 1 1
0 1 1
1 0 1
1 0 0
0 1 0
0 0 1

V

 a. Prove that the code generated by h is single-
error correcting.

 b. Write the set of binary m-tuples h encodes
and write the code word for each one.

 10. Consider the canonical parity-check matrix

h = I

1 1 0 1
0 1 1 1
0 1 0 1
1 0 0 1
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Y

 a. Prove that the code generated by h is single-
error correcting.

 b. Write the set of binary m-tuples h encodes
and write the code word for each one.

 11. Give an example of a canonical parity-check matrix that will generate a single-error correcting code for
the set of words in Z

6
2.

 12. Give a canonical parity-check matrix for a single-error correcting (15, 11) code.
 13. Let h be an n × r binary matrix mapping :Z

n
2, +2; to :Z

r
2, +2; by the operation X # h for X in Z

n
2. Prove

that this function is a homomorphism by showing that for X, Y in Z n2, (X +2Y) # h = X # h +2 Y # h.
 14. Which of the following are perfect codes? Which are single-error correcting?
 a. (5, 3) b. (12, 7) c. (15, 11)
 15. Complete the coset leader/syndrome table of Example 28.
 16. Use your table from Exercise 15 and the matrix h from Example 28 to decode the following received

words.
 a. 1010011 b. 0001110 c. 0101101

For Exercises 17 and 18, use a canonical parity-check matrix for the (15, 11) perfect code (see Exercise 12) to
decode the given received words. (Hint: Because this is a perfect code, you do not need to generate the entire
coset leader/syndrome table to solve these problems.)

 17. 011000010111001 18. 110111001010011

 S e c t i o n 9 . 3 Finite-StAte MAChineS

The algebraic structures of Section 9.1 served as models for various simple arithmetic
systems. However, we would surely agree that computation should go beyond mere
arithmetic. We would like a model that captures the general nature of computation.
Perhaps looking at a simplified version of a modern digital computer would be a start.

A computer stores information internally in binary form. At any instant, the
computer contains certain information, so its internal storage is set in certain patterns
of binary digits, which we’ll call the state of the computer at that instant. Because a
computer contains a finite amount of storage, there is a finite (although large) num-
ber of different states that the computer can assume. An internal clock synchronizes

Section 9.3 Finite-State Machines 729

the actions of the computer. On a clock pulse, input can be read, which can change
some of the storage locations and thus change the state of the machine to a new state.
What the new state is will depend on what the input was, as well as what the previous
state was. If these two factors are known, the change is predictable and nonrandom.
Because the contents of certain storage cells are available as output, the state of the
machine determines its output. In this way, over a succession of clock pulses, the
machine produces a sequence of outputs in response to a sequence of inputs.

Definition

The finite-state machine is a model that captures the characteristics of a computer.
As you read the definition, look for the following properties in the behavior of our
abstract machine:

 1. Operations of the machine are synchronized by discrete clock pulses.
 2. The machine proceeds in a deterministic fashion; that is, its actions in

response to a given sequence of inputs are completely predictable.
 3. The machine responds to inputs.
 4. There is a finite number of states that the machine can attain. At any given

moment, the machine is in exactly one of these states. Which state it will
be in next is a function of both the present state and the present input. The
present state, however, depends on the previous state and input, while the
previous state depends on its previous state and input, and so on, going all
the way back to the initial configuration. Thus, the state of the machine at
any moment serves as a form of memory of past inputs.

 5. The machine is capable of output. The nature of the output is a function of the
present state of the machine, meaning that it also depends on past inputs.

 Definition finitE-stAtE MAChinE
M = 3S, I, O, fS, fO 4 is a finite-state machine if S is a finite set of states, I is a
finite set of input symbols (the input alphabet), O is a finite set of output symbols
(the output alphabet), and fS and fO are functions where fS: S × I S S and
fO: S S O). The machine is always initialized to begin in a fixed starting state s0.

The function fS is the next-state function. It maps a (state, input) pair to a
state. Thus, the state at clock pulse ti+1, state(ti+1), is obtained by applying the
next-state function to the state at time ti and the input at time ti:

state(ti+1) = fS(state(ti), input(ti))

The next-state function is indeed a function, so for any (state, input) pair,
there is a unique next state. The function fO is the output function. When fO is
applied to a state at time ti, we get the output at time ti:

output(ti) = fO(state(ti))

Notice that the effect of applying function fO is available instantly, but the effect
of applying function fS is not available until the next clock pulse.

Examples of finite-state Machines

To describe a particular finite-state machine, we have to define the three sets and
two functions involved.

730 Modeling Arithmetic, Computation, and Languages

 example 29 A finite-state machine M is described as follows: S = 5s0, s1, s26, I = 50, 16,
O = 50, 16 . Because the two functions fS and fO act on finite domains, they can be
defined by a state table, as in Table 9.1. The machine M begins in state s0, which
has an output of 0. If the first input symbol is a 0, the next state of the machine is
then s1, which has an output of 1.

table 9.1

present state next state output

present input
0 1

s0 s1 s0 0

s1 s2 s1 1

s2 s2 s0 1

If the next input symbol is a 1, the machine stays in state s1 with an output of 1. By
continuing this analysis, we see that an input sequence consisting of the characters
01101 (read left to right) would produce the following effect:

time t0 t1 t2 t3 t4 t5

Input 0 1 1 0 1 –

State s0 s1 s1 s1 s2 s0

Output 0 1 1 1 1 0

The initial 0 of the output string is spurious—it merely reflects the starting state,
not the result of any input. In a similar way, the input sequence 1010 produces an
output of 00111.

Another way to define the functions fS and fO (in fact all of M) is by a directed
graph called a state graph. Each state of M with its corresponding output is the
label of a node of the graph. The next-state function is given by directed arcs of
the graph, each arc showing the input symbol(s) that produces that particular state
change. The state graph for M appears in Figure 9.3.

 figure 9.3

ReminDeR

Each input symbol must
appear on one and only
one transition arc from
each state.

Section 9.3 Finite-State Machines 731

PrACtiCe 43 For the machine M of Example 29, what output sequence is produced by the input sequence
11001?

PrACtiCe 44 A machine M is given by the state graph of Figure 9.4. Give the state table for M.

 figure 9.4

■

■

■

The machine of Example 29 is not particularly interesting. If finite-state ma-
chines model real-world computers, they should be able to do something. Let’s try
to build a finite-state machine that will add two binary numbers. The input will
consist of a sequence of pairs of binary digits, each of the form 00, 01, 10, or 11.
Each pair represents one column of digits of the two numbers to be added, least
significant digits first (so in this particular case, read the inputs column by column
right to left). Thus to add the two numbers

011
101

the number pairs are 11, 10, and 01. The output gives the least significant digits of
the answer first. Recall the basic facts of binary addition:

0 0 1 1
0 1 0 1
0 1 1 10

(Note that in the fourth addition a carry to the next column takes place.)

PrACtiCe 45 A machine M is described by the state table shown in Table 9.2.

a. Draw the state graph for M.
b. What output corresponds to an input sequence of 2110?

table 9.2

present state next state output

present input
0 1 2

s0 s0 s1 s1 0

s1 s1 s0 s0 1

732 Modeling Arithmetic, Computation, and Languages

A moment’s thought shows us that we can encounter four cases in adding the
digits in any given column, and we will use states of the machine to represent
these cases.

• The output should be 0 with no carry—state s0.
• The output should be 0 but with a carry to the next column—state s1.
• The output should be 1 with no carry—state s2.
• The output should be 1 with a carry to the next column—state s3.

State s0, as always, is the starting state. We have already indicated the output for
each state, but we need to determine the next state based on the present state and
the input. For example, suppose we are in state s1 and the input is 11. The output
for the present state is 0, but there is a carry, so in the next column we are adding
1 + 1 + 1, which results in an output of 1 and a carry. The next state is s3.

PrACtiCe 46 In the binary adder under construction:

a. What is the next state if the present state is s2 and the input is 11?
b. What is the next state if the present state is s3 and the input is 10? ■

After considering all possible cases, we have the complete state graph of
 Figure 9.5.

 figure 9.5

The operation of this machine in adding the two numbers 011 and 101 (read right
to left, that is, low-order digits first) can be traced as follows:

time t0 t1 t2 t3 t4

Input 11 10 01 00 –

State s0 s1 s1 s1 s2

Output 0 0 0 0 1

Section 9.3 Finite-State Machines 733

The output (written right to left) is 1000 when we ignore the initial 0, which does
not reflect the action of any input. Converting this arithmetic to decimal form, we
have computed 3 + 5 = 8. Note the symmetry of this machine with respect to the
inputs of 10 and 01, reflecting that binary addition is commutative.

PrACtiCe 47 Compute the sum of 01110110 and 01010101 by using the binary adder machine of
Figure 9.5.

■

recognition

We have already noted that a given input signal may affect the behavior of a
 finite-state machine for longer than just one clock pulse. Because of the (limited)
memory of past inputs represented by the states of a machine, we can use these
machines as recognizers. A machine can be built to recognize, say by producing
an output of 1, when the input it has received matches a certain description. We
will soon discuss more fully the capabilities of finite-state machines as recognizers.
Here we will simply construct some examples.

 example 30 When binary data are transmitted (or stored) as strings of bits, an extra bit is often
tacked onto the end of each string as a parity bit. Under an even parity scheme, the
parity bit (a 0 or a 1) is chosen so that the total number of 1s in the string, including
the parity bit, is an even number. Under an odd parity scheme, the parity bit is cho-
sen so that the total number of 1s in the string is odd. When the string is received,
its parity is checked. Assuming an even parity scheme, if the parity of the received
string is not even, then an error has occurred in transmitting the string, and a re-
quest for retransmission can be made. A parity bit therefore serves as a simple
single-error-detection mechanism. (Note that a parity bit does not detect errors in 2
bits, although it does detect errors in 3 bits.) The machine described in Figure 9.6 is
a parity check machine. When the input received through time ti contains an even
number of 1s, then the output at time ti+1 is 1; otherwise, the output is 0.

 figure 9.6

 example 31 Suppose we want to design a machine having an output of 1 exactly when the input
string received to that point ends in 101. As a special case, an input sequence con-
sisting of just 101 could be handled by progressing directly from state s0 to states
s1, s2, and s3 with outputs of 0 except for s3, which has an output of 1. This much
of the design results in Figure 9.7a. This figure shows that we want to be in state
s2 whenever the input has been such that one more 1 takes us to s3 (with an output

734 Modeling Arithmetic, Computation, and Languages

of 1); thus we should be in s2 whenever the two most recent input symbols were
10, regardless of what came before. In particular, a string of 1010 should put us in
s2; hence, the next-state function for s3 with an input of 0 is s2. Similarly, we can
use s1 to “remember” that the most recent input symbol received was 1, and that a
01 will take us to s3. In particular, 1011 should put us in s1; hence, the next-state
function for s3 with an input of 1 is s1. The rest of the next state function can be
determined the same way; Figure 9.7b shows the complete state graph.

 figure 9.7

Notice that the machine is in state s2 at the end of an input of 0110 and at the end of
an input of 011010—in fact, at the end of any input ending in 10; yet s2 cannot dis-
tinguish between these inputs. Each state of M represents a class of indistinguishable
input histories, s3 being the state representing all inputs ending in 101.

PrACtiCe 48 Draw the state graph for a machine producing an output of 1 exactly when the input string
received to that point ends in 00.

■

Now we want to see exactly what sets finite-state machines can recognize.
Remember that recognition is possible because machine states have a limited
memory of past inputs. Even though the machine is finite, a particular input signal
can affect the behavior of a machine “forever.” However, not every input signal
can do so, and some classes of inputs require remembering so much information
that no machine can detect them.

 To avoid writing down outputs, we will designate those states of a finite-
state machine with an output of 1 as final states and denote them in the state graph
with a double circle. Then we can give the following formal definition of recogni-
tion, where I* denotes the set of finite-length strings over the input alphabet.

 Definition finitE-stAtE MAChinE rECoGnition
A finite-state machine M with input alphabet I recognizes a subset S of I* if M,
beginning in state s0 and processing an input string a, ends in a final state if and
only if a [S.

Section 9.3 Finite-State Machines 735

PrACtiCe 49 Describe the sets recognized by the machines in Figure 9.8.

 figure 9.8 ■

In Practice 49d, state s3 is a “dead” state from which there is no recovery. The
appearance of a 0 in states s0, s1, or s2 irrevocably ruins the pattern the machine
is able to recognize. In contrast, the machine of Example 31 (or any machine that
recognizes strings with a certain ending) will never have a dead state because
there is always hope that subsequent input will match the ending pattern.

regular sets and Kleene’s theorem

We want a compact, symbolic way to describe sets such as those appearing in the
answer to Practice 49. We will describe such sets by using regular expressions;
each regular expression describes a particular set. First, we define what regular
expressions are; then we will see how a regular expression describes a set. We as-
sume here that I is some finite set of symbols; later I will be the input alphabet for
a finite-state machine.

 Definition rEGuLAr ExPrEssions ovEr I
regular expressions over I are the

 1. symbol [and the symbol l.
 2. symbol i for any i [I .
 3. expressions (AB), (A ~ B), and (A)* if A and B are regular expressions.

736 Modeling Arithmetic, Computation, and Languages

(This definition of a regular expression over I is still another example of a recursive
definition.)

 Definition rEGuLAr sEt
Any set represented by a regular expression according to the following conven-
tions is a regular set:

 1. [represents the empty set.
 2. l represents the set 5l6 containing the empty string.
 3. i represents the set 5i6 .
 4. For regular expressions A and B,

 a. (AB) represents the set of all elements of the form ab where a belongs
to the set represented by A and b belongs to the set represented by B.

 b. (AB) represents the union of A’s set and B’s set.
 c. (A)* represents the set of all concatenations of members of A’s set.

In our discussion, we will be a little sloppy and say things like “the regular set AB”
instead of “the set represented by the regular expression AB.” Informally, an element
in AB is an item from A followed by an item from B. An element in A ~ B is a single
item chosen from either A or B. An element in (A)* is zero or more repetitions of ele-
ments from A. We note that l, the empty string, is a member of the set represented by
A* for any A because it is the case of zero repetitions of elements from A. In writing
regular expressions, we can eliminate parentheses when no ambiguity results. The
regular expression 0* ~ 10 therefore consists of l, 0, 00, 000, 0000, … , 10.

 example 32 Here are some regular expressions and a description of the set each one represents.

 a. 1*0(01)* Any number (including none) of 1s, followed by a
single 0, followed by any number (including none)
of 01 pairs.

 b. 0 ~ 1* A single 0 or any number (including none) of 1s.
 c. (0 ~ 1)* Any string of 0s or 1s, including l.
 d. 11((10)*11)*(00*) A nonempty string of pairs of 1s interspersed with

any number (including none) of 10 pairs, followed by
at least one 0. One can see how awkward this verbal
description is and appreciate the compactness of a
regular expression description.

PrACtiCe 50 Which strings belong to the set described by the regular expression?

a. 10100010; (0*10)*
b. 011100; (0 ~ (11)*)*
c. 000111100; ((011 ~ 1l)*(00)*)* ■

PrACtiCe 51 Write regular expressions for the sets recognized by the machines of Practice 49.
■

Section 9.3 Finite-State Machines 737

A regular set may be described by more than one regular expression. For
example, the set of all strings of 0s and 1s, which we already know from Example
32(c) to be described by (0 ~ 1)*, is also described by the regular expression
3(0 ~ 1*)* ~ (01)* 4*. We might, therefore, write the equation

(0 ~ 1)* = 3(0 ~ 1*)* ~ (01)* 4*

Although we may be quite willing to accept this particular equation, it can be
difficult to decide in general whether two regular expressions are equal, that is,
whether they represent the same set. An efficient algorithm that will make this
decision for any two regular expressions has not been found.

We have introduced regular sets because, as it turns out, these are exactly the
sets finite-state machines are capable of recognizing. This result was first proved
by the American mathematician Stephen Kleene in 1956. We state his theorem
here without proof.

 tHeoRem KLEEnE’s thEorEM
Any set recognized by a finite-state machine is regular, and any regular set can be
recognized by some finite-state machine.

Kleene’s theorem outlines the limitations as well as the capabilities of finite state
machines—there are certainly many sets that are not regular. For example, con-
sider S = 50n1n

 0 n ≥ 06 where an stands for a string of n copies of a. Strings in
S have some number of 0s followed by the same number of 1s. S is not regular.
(Notice that 0*1* does not do the job.) By Kleene’s theorem, there is no finite-
state machine capable of recognizing S. Yet S seems like such a reasonable set,
and surely we humans could count a string of 0s followed by 1s and see whether
we had the same number of 1s as 0s. This lapse suggests some deficiency in our
use of a finite-state machine as a model of computation. We will investigate this
further in Section 9.4.

Machine Minimization

Although we have treated finite-state machines as abstractions, circuits that act like
finite-state machines can be built from electronic devices like the logic elements of
Section 8.2 and others. If we wish to construct a physical machine, the number of
internal states is a factor in the cost of construction. Minimization is the process
of finding, for a given finite-state machine M, a machine M′ with two properties:

 1. If M and M′ are both begun in their respective start states and are given
the same sequence of input symbols, they will produce identical output
sequences.

 2. M′ has, if possible, fewer states than M (if this is not possible, then M is
already a minimal machine and cannot be further reduced).

Unreachable States
First, let’s observe that we can remove any unreachable states of M, those states
that cannot be attained from the starting state no matter what input sequence
 occurs.

738 Modeling Arithmetic, Computation, and Languages

 example 33 Let M be given by the state table of Table 9.3. Although the state table contains the
same information as the state graph (Figure 9.9), the graph shows us at a glance
that state s2 can never be reached from the starting state s0. If we simply remove
state s2 and its associated arcs, we have the state graph of Figure 9.10 for a ma-
chine M′ with one less state than M that behaves exactly like M; that is, it gives the
same output as M for any input string.

table 9.3

present state next state output

present input
 0 1

s0 s1 s3 0

s1 s3 s0 0

s2 s1 s3 1

s3 s0 s1 1

 figure 9.9 figure 9.10

■

Because the state graph of a finite-state machine is a directed graph, it has
an associated adjacency matrix. Warshall’s algorithm (Section 7.1) can be used to
detect unreachable states.

PrACtiCe 52 What state(s) is/are unreachable from s0 in the machine of Table 9.4? Try to get your an-
swer directly from the state table.

table 9.4

present state next state output

present input
 0 1

s0 s1 s4 0

s1 s4 s1 1

s2 s2 s2 1

s3 s3 s1 0

s4 s0 s0 1

Section 9.3 Finite-State Machines 739

Minimization Procedure
Assuming now that all unreachable states have been removed from M, we will
continue to look for a reduced machine M′. The key to finding a reduced M′, if
one exists, lies in the notion of equivalent states.

 Definition EquivALEnt stAtEs
Two states si and sj of M are equivalent if for any a [I*, fO(si, a) = fO(sj, a),
where I* again denotes the set of finite-length strings over the input alphabet.

In this definition of equivalent states, the definition of the output function has
been extended to denote the sequence of output symbols obtained by repeatedly
applying fO to a sequence a of input symbols. Thus equivalent states of a machine
produce identical output strings for any input string.

PrACtiCe 53 Prove that state equivalence is an equivalence relation on the states of a machine.
■

For the time being, we will postpone the problem of how to identify equivalent
states in a given machine M. Let’s simply assume that we have somehow found
which states are equivalent and have partitioned the states of M into the correspond-
ing equivalence classes. These classes have two properties: (1) All states in the same
class have the same output, and (2) for each input symbol, all states in the same class
proceed under the next-state function to states that are all in the same class.

PrACtiCe 54 Show that properties 1 and 2 are satisfied when M is partitioned into classes of equivalent
states.

■

We define a machine M′ whose states are the equivalence classes of M. M′ has
the same input and output alphabet as M, and its start state is the class to which
s0, the start state of M, belongs. The output of a class is the output symbol com-
mon to all states of M in that class (property 1). The next state of class X under
an input symbol is that class to which all states of M in X proceed under that
input symbol (property 2). M′ is a well-defined machine. M′ produces the same
output strings when processing a given input string as does M. Also, the number
of states of M′ (equivalence classes of M) will be no greater than the number of
states of M.

The minimization problem for M thus boils down to finding the equivalent
states of M. Perhaps we should note first that the obvious approach of directly try-
ing to satisfy the definition of equivalent states will not work. Given two states si
and sj of M, we cannot actually compare the outputs corresponding to each pos-
sible input string. Fortunately, the problem is not as infinite as it sounds; we only
need to identify k-equivalent states.

 Definition K-EquivALEnt stAtEs
Two states si and sj of M are k-equivalent if for any a [I* where a has no more
than k symbols, fO(si, a) = fO(sj, a).

740 Modeling Arithmetic, Computation, and Languages

It is not hard to see that k-equivalence is an equivalence relation on the states
of M (check the reflexive, symmetric and transitive properties). It is possible to test
two states of M for k-equivalence directly, since we can actually produce the finite
number of input strings having no more than k symbols. However, it turns out
that we don’t have to do this. We can begin by finding 0-equivalent states. These
are states producing the same output for 0-length input strings, that is, states hav-
ing the same associated output symbol. Thus, we can identify the 0-equivalence
classes directly from the description of M.

 example 34 Let M be defined by the state table of Table 9.5. (Here we’ve started writing
0, 1, 2 … for states instead of s0, s1, s2, … .) The 0-equivalence classes of the
states of M are

50, 2, 56 and 51, 3, 4, 66

table 9.5

present state next state output

present input
 0 1

0 2 3 0

1 3 2 1

2 0 4 0

3 1 5 1

4 6 5 1

5 2 0 0

6 4 0 1

Our procedure to find k-equivalent states is a recursive one; we know how to
find 0-equivalent states, and we will show how to find k-equivalent states once we
have identified states that are (k − 1)-equivalent. Suppose, then, that we already
know which states are (k − 1)-equivalent. If states si and sj are k-equivalent, they
must produce the same output strings for any input string of length k or less,
which includes any string of length k − 1 or less. Thus, si and sj must at least be
(k − 1)-equivalent. But they also must produce the same output strings for any
k-length input string.

An arbitrary k-length input string consists of a single arbitrary input symbol
followed by an arbitrary (k − 1)-length input string. If we apply such a k-length
string to states si and sj (which themselves have the same output symbol), the
single input symbol moves si and sj to next states si′ and sj′; then si′ and sj′ must
produce identical output strings for the remaining, arbitrary (k − 1)-length string,
which will surely happen if si′ and sj′ are (k − 1)-equivalent. Therefore, to find k-
equivalent states, look for (k − 1)-equivalent states whose next states under any
input symbol are (k − 1)-equivalent.

Section 9.3 Finite-State Machines 741

 Definition PArtition rEfinEMEnt
Given two partitions p1 and p2 of a set S, p1 is a refinement of p2 if each block
of p1 is a subset of a block of p2.

 example 35 Consider again the machine M of Example 34. We know the 0-equivalent states.
To find 1-equivalent states, we look for 0-equivalent states with 0-equivalent next
states. For example, the states 3 and 4 are 0-equivalent; under the input symbol
0, they proceed to states 1 and 6, respectively, which are 0-equivalent states, and
under the input symbol 1 they both proceed to 5, which of course is 0-equivalent
to itself. Therefore, states 3 and 4 are 1-equivalent. Similarly, states 1 and 3 are
1-equivalent and states 4 and 6 are 1-equivalent. Therefore the class 51, 3, 4, 66 of
1-equivalent states is unchanged from the class of 0-equivalent states. But states
0 and 5, themselves 0-equivalent, proceed under the input symbol 1 to states 3
and 0, respectively, which are not 0-equivalent states. So states 0 and 5 are not
1- equivalent; the input string 1 will produce an output string of 01 from state 0
and of 00 from state 5. States 0 and 2 are 1-equivalent. Therefore the l-equivalence
classes for M are

50, 26, 556, 51, 3, 4, 66

To find 2-equivalent states, we look for 1-equivalent states with 1-equivalent
next states. States 1 and 3, although 1-equivalent, proceed under input 1 to states
2 and 5, respectively, which are not 1-equivalent states. Therefore, states 1 and
3 are not 2-equivalent. The states 0 and 2, 1 and 6, and 3 and 4, respectively, are
2-equivalent. The 2-equivalence classes for M are

50, 26, 556, 51, 66, 53, 46

The 3-equivalence classes for M are the same as the 2-equivalence classes.

In Example 35 each successive partition of the states of M into equiva-
lence classes is a refinement of the previous partition. This refinement will al-
ways happen; k-equivalent states must also be (k − 1)-equivalent, so the blocks
of the (k − 1)-partition can only be further subdivided. However, the subdivi-
sion process cannot continue indefinitely (at worst it can go on only until each
partition block contains only one state); there will eventually be a point where
(k − 1)-equivalent states and k-equivalent states coincide. (In Example 35,
2-equivalent and 3-equivalent states coincide.) Once this happens, all next states for
members of a partition block under any input symbol fall within a partition block.
Thus, k-equivalent states are also (k + 1)-equivalent and (k + 2)-equivalent,
and so on. Indeed, these states are equivalent.

The total procedure for finding equivalent states is to start with 0-equivalent
states, then l-equivalent states, and so on, until the partition no longer subdivides.
A pseudocode description of this algorithm is given. It isn’t nearly as complex as
it looks, but it does involve checking many pairs of states, just as in Example 35.

742 Modeling Arithmetic, Computation, and Languages

 agoRitHm MiniMize

Minimize (finite-state machine table M)
//produces a minimized version of M
Local variable:
boolean flag //flag for loop exit when nonequivalent states found

find 0-equivalent states of M
repeat

while untested equivalence classes remain do
select untested equivalence class
while untested state pairs in current class remain do

select untested state pair in current class
flag = false
while untried input symbols remain and not flag do

select untried input symbol
for both states in current pair, find next state

under current input symbol
if next states not equivalent then

flag = true
end if

end while
if flag then

mark current states for different classes;
end if

end while
form new equivalence classes

end while
until set of new equivalence classes = set of old equivalence classes

end Minimize

 example 36 For the machine M of Examples 34 and 35, the reduced machine M′ will have
states

 A = 50, 26
 B = 556
 C = 51, 66
 D = 53, 46

The state table for M′ (Table 9.6) is obtained from that for M. Machine M′ (starting
state A) will reproduce M’s output for any input string, but it has four states instead
of seven.

Section 9.3 Finite-State Machines 743

table 9.6

present state next state output

 present input

0 1

A A D 0

B A A 0

C D A 1

D C B 1

 example 37 We will minimize M where M is given by the state table of Table 9.7.

table 9.7

present state next state output

present input

0 1

0 3 1 1

1 4 1 0

2 3 0 1

3 2 3 0

4 1 0 1

The 0-equivalence classes of M are

50, 2, 46, 51, 36
States 0 and 2 under input 1 go to states 1 and 0, which are not 0-equivalent. The
1-equivalence classes of M are

506, 52, 46, 51, 36
No further refinement is possible. Let

A = 506
B = 52, 46
C = 51, 36

The reduced machine is shown in Table 9.8.

table 9.8

present state next state output

present input

0 1

A C C 1

B C A 1

C B C 0

744 Modeling Arithmetic, Computation, and Languages

table 9.10

present state next state output

present input

0 1

0 1 3 1

1 2 0 0

2 1 3 0

3 2 1 0

sequential networks and finite-state Machines

The output of a finite-state machine is a function of its present state, and the pres-
ent state of the machine is a function of past inputs. Thus, the states of a machine
have certain memory capabilities. In the combinational networks of Chapter 8,
which use AND gates, OR gates, and inverters, the output is virtually instanta-
neous and a function only of the present input. To build a finite-state machine we
need one additional element that provides the memory missing from our previous
logic networks.

A delay element is the simplest of a class of elements known as flip-flops. It
is regulated by a clock, has a single binary input, and its output at time t + 1 is
the input signal it received at time t. The delay element is therefore a “memory
device” that captures input for the duration of one clock pulse. Figure 9.11 repre-
sents the delay element at time t + 1, with the signal propagating from right to
left. When the delay element is receiving an input of d(t + 1), the output is the
previous input d(t).

d(t) d(t�1)

figure 9.11

PrACtiCe 55 Minimize the machines whose state tables are shown in Tables 9.9 and 9.10.

■

table 9.9

present state next state output

present input

0 1

0 2 1 1

1 2 0 1

2 4 3 0

3 2 3 1

4 0 1 0

Section 9.3 Finite-State Machines 745

 example 38 The delay element in Figure 9.12 feeds the output from the terminal AND gate of
the network back into the initial OR gate at the next clock pulse. The initial output
of the delay element is assumed to be 0. The input sequences x1 = 10010 and
x2 = 11000 (read left to right) produce the effect shown in the table.

x1
x2

figure 9.12

time t0 t1 t2 t3 t4

x1 1 0 0 1 0

x2 1 1 0 0 0

Delay output 0 0 1 1 0

Circuit output 0 1 1 0 0

When one or more delay elements are introduced into a combinational net-
work, the network is known as a sequential network. Unlike a combinational
network, loops (where output from a circuit becomes part of its input) are allowed,
provided that at least one delay element is incorporated into the loop. The delay
element prevents the confusion that results when a circuit tries to act on its current
output. Input sequences can be run through sequential networks (hence the name)
provided that the clock pulse synchronizes input signals as well as delay elements.

Any finite-state machine can be built using a sequential network. (We’ll
 assume that all input and output values are binary; if not, they can be encoded
in binary form.) The general structure of such a network is shown in Figure 9.13.
It consists of two parts: (1) a combinational network (no delay elements) and (2)
some loops containing all the delay elements.

To build the network for a given finite-state machine, we represent each
machine state as a binary number, beginning with zero (0000, 0001, 0010,
0011, 0100, and so on); the assignment of states to numbers is arbitrary. At
any moment, each delay element in the network has a 0 or 1 signal on its
output line, so the collection of these output signals is a binary number and
therefore represents one of the states of the machine. As these signals feed into
the combinational network, they represent the current state; circuits within the
combinational network compute the next state, which is the pattern of 0s and 1s
on the input lines to the delay elements.

746 Modeling Arithmetic, Computation, and Languages

……

…

OutputInput

Combinational
network

If the finite-state machine has q states, the binary numbering of the states
requires a certain number of bits. For example, to represent six different
states requires 3-bit numbers ranging from 000 to 101. To represent q different
states requires <log2 q= bits. Each bit in the binary number is the signal from a
delay element, so the network will require <log2 q= delay elements. The essence
of the construction is to translate the state table of the finite-state machine into
truth functions for the outputs and delay elements, and then to construct the logic
network for each truth function, as we did in Chapter 8.

figure 9.13

 example 39 Consider the finite-state machine of Example 29, with state table as shown in
Table 9.11.

table 9.11

present state next state output

present input

0 1

s0 s1 s0 0

s1 s2 s1 1

s2 s2 s0 1

Because there are only two input symbols and two output symbols, only one input
line x (taking on values of 0 or 1) and one output line y are needed for the network.
There are three states, so we need <log2 3= = 2 delay elements. We arbitrarily as-
sociate states with binary numbers (see Table 9.12) represented as signals on the
inputs or outputs of the delay elements.

Section 9.3 Finite-State Machines 747

table 9.12

d1 d2

s0 0 0

s1 0 1

s2 1 0

Now we use the information contained in the state table to write three truth
functions. One truth function describes the behavior of the output y(t); it is a func-
tion of the two variables d1(t) and d2(t) representing the present state. The other
two truth functions describe the behavior of d1(t + 1) and d2(t + 1), representing
the next state; these are functions of x(t), d1(t), and d2(t), the present input and the
present state. Table 9.13 shows these truth functions.

table 9.13

x(t) d1(t) d2(t) y(t) d1(t + 1) d2(t + 1)

0 0 0 0 0 1

1 0 0 0 0 0

0 0 1 1 1 0

1 0 1 1 0 1

0 1 0 1 1 0

1 1 0 1 0 0

In constructing the third line of Table 9.13, for example, x(t) = 0, d1(t) = 0,
and d2(t) = 1, meaning that the present input is 0 and the present state is s1. The
output associated with state s1 is 1, so y(t) = 1. The next state associated with
input 0 and present state s1 is s2, so d1(t + 1) = 1 and d2(t + 1) = 0. Notice that
there are some don’t-care conditions for these functions because the configuration
d1(t) = 1 and d2(t) = 1 does not occur.

The canonical sum-of-products form for each of these truth functions is

 y(t) = d1′d2 + d1d2′ (y is not a function of x)
 d1(t + 1) = x′d1′ d2 + x′ d1d2′
 d2(t + 1) = x′d1′d2′ + xd1′d2

Using a Karnaugh map and appropriate choices for the don’t-care conditions, these
expressions can be simplified to

 y(t) = d1 + d2

d1(t + 1) = x′d1 + x′d2 = x′(d1 + d2)
d2(t + 1) = xd2 + x′d1′d2′

The logic networks for these expressions go into the “combinational network”
box in Figure 9.13. Thus Figure 9.14 is a wiring diagram for the finite-state
machine.

748 Modeling Arithmetic, Computation, and Languages

x (t) y (t)

d1(t)

d2(t)

d2(t)

d1(t)

d1(t�1)

d2(t�1)

d1(t�1)

d2(t�1)

xd2

x 'd '1d'2

figure 9.14

PrACtiCe 56 Construct a sequential network for the parity check machine of Example 30.
■

Section 9.3 Finite-State Machines 749

speCial interest page

fsMs Behind the Game

Everyone is familiar with the use of storyboards in de-
signing a movie. Storyboards are sequences of illus-
trated panels that set the scene, sketch the action, and
outline the dialogue. Thumbing rapidly through pages of
such panels creates a “flipbook,” a primitive animation
of the movie. So these panels, laid end-to-end, are a one-
dimensional layout of the movie.

What differentiates a video game from a movie? A
movie (a film) is static in the sense that it always comes
out the same way; there are no variations in the scenes or
changes in the ending. A video game incorporates user
interaction, and based on user input, different outcomes
can occur at various points throughout the game. Design
of a video game requires a two-dimensional approach.

If you freeze the video game at some point where
it is waiting for user input, there is a certain scene on
the screen with particular characters in place, and these
characters may have certain attributes at this point in
time. We can consider this to be the “state” of the game
at the moment. User input is provided, and based on that
input and the current state, something happens to move
the game to a predefined new state. Sound familiar? Yes,
this is essentially a finite-state machine. “Finite state ma-
chines are the nuts and bolts of game AI.”1

Here’s an outline, written as an English paragraph,
of a simple video game: The user starts the game by

Chapter 9

1AI for Game Development, David M Bourg and Glenn Seemann, O’Reilly Media, Inc., 2004, ISBN-13: 978-0-596-00555-9

Start

Level 1

Choose
level 1

Choose
level 2

Lantern
room

Lantern Book
Find
codeword

Open treasure
chest

Slay
dragon

Plant
tree

Sword
roon

Sword

Book
room Garden

Door 2
Door 1

Games
ends

Level 2

choosing to play at level 1 or level 2. In this simple
game, the only entity is the user’s avatar, call it object
A. A user who chooses level 1 sends A into a room
where A must pick up one of three objects: a book, a
sword, or a lantern. If the book is chosen, A enters a
room where the book can be searched for a secret code
word. When the code word is found, A moves on to the
opening screen for level 2. If the sword is chosen, A en-
ters a room with a fearsome dragon. When A slays the
dragon, A receives the book and enters the book room
to search for the code word. If the lantern is chosen,
A enters a room to search for a treasure chest. When
the treasure chest is opened, it contains a sword and
A moves on to the room with the fearsome dragon. At
level 2, A chooses between door 1 and door 2. Choos-
ing door 1 ends the game. Choosing door 2 moves A
into a garden, where A must find and plant a lilac tree.
Upon planting the tree, the game ends.

A state graph for a finite-state machine to model the
game behavior described above looks something like the
diagram shown.

Ultimately this design has to be translated into
computer code. Details will vary with the program-
ming language used, of course, but in any event there
must be a way to make multiple choices from a given
state depending on the user action:

if (A.state = level1 and A.pick = lantern)
A.state = LanternRoom

else if (A.state = level1 and A.pick = sword)
A.state = SwordRoom

else if (A.state = level1 and A.pick = book)
A.state = BookRoom

else if (A.state = level2 and A.pick = Door1)
A.state = GameEnds

and so forth.
In a more complex video game there

will be many entities, and the computer code
must go through a similar decision process
for each one to program its correct action
based on its current state and user input. The
environment itself may be an entity, requir-
ing changes of background (from the lantern
room to the sword room, for example).

750 Modeling Arithmetic, Computation, and Languages

S e c t i o n 9 . 3 review

tecHniQueS

• Compute the output string for a given finite-state
machine and a given input string.

• Draw a state graph from a state table and vice versa.
• Construct a finite-state machine to act as a recog-

nizer for a certain type of input.
• Find a regular expression given the description of

a regular set.
• Decide whether a given string belongs to a given

regular set.
• Minimize finite-state machines.
• Construct sequential networks for finite-state

 machines.

main iDeaS

• Finite-state machines have a synchronous, deter-
ministic mode of operation and limited memory
capabilities.

• The class of sets that finite-state machines can rec-
ognize is the class of all regular sets; hence, their
recognition capabilities are limited.

• Unreachable states can be removed from a machine.
• After unreachable states have been removed from a

machine, a minimized version of that machine can
be found that produces the same output strings for
all input strings.

• Any finite-state machine can be built using a net-
work of AND gates, OR gates, inverters, and delay
elements.

exeRciSeS 9.3

 1. For each input sequence and machine given, compute the corresponding output sequence (starting state is
always s0).

a. 011011010

 b. abccaab

W

present state next state output

present input

a b c

s0 s2 s0 s3 a

s1 s0 s2 s3 b

s2 s2 s0 s1 a

s3 s1 s2 s0 c

Section 9.3 Finite-State Machines 751

 c. 0100110

 2. a. For the machine described in Exercise la, find all input sequences yielding an output sequence of
0011110.

 b. For the machine described in Exercise 1b, find all input sequences yielding an output sequence of
abaaca.

 c. For the machine described in Exercise 1c, what will be the output for an input sequence a1a2a3a4a5
where ai [50, 16, 1 ≤ i ≤ 5?

In Exercises 3–6, write the state table for the machine, and compute the output sequence for the given input
sequence.

 3. 00110

 5. 01011

 6. acbabc

s0/0

s2/0

s1/1

a

b

a

c

a c

b, c

b

 4. 1101100

752 Modeling Arithmetic, Computation, and Languages

In Exercises 7–10, draw the state graph for the machine, and compute the output sequence for the given input
sequence.

 7. 10001

present state next state output

present input

0 1

s0 s0 s2 1

s1 s1 s0 0

s2 s0 s1 0

 8. 0011

present state next state output

present input

0 1

s0 s2 s3 0

s1 s0 s1 1

s2 s1 s3 0

s3 s1 s2 1

 9. acbbca

present state next state output

present input

a b c

s0 s1 s1 s1 0

s1 s2 s2 s1 0

s2 s0 s2 s1 1

 10. 21021

present state next state output

present input

0 1 2

s0 s3 s1 s2 1

s1 s3 s0 s1 2

s2 s2 s1 s1 0

s3 s1 s4 s0 0

s4 s1 s4 s2 2

 11. a. Construct a finite-state machine that complements each bit of the binary input string (read left to right).
 b. Write the output for the input sequence 01011.
 12. a. Construct a finite-state machine that will compute x + 1 where x is the input given in binary form, least

significant digit first (in this case, read the input right to left). You could use the binary adder of Figure
9.5 by writing 1 as 00 … 01 with the correct number of leading 0s, but that’s much too complicated.

 b. Write the output for x = 1101.
 13. a. Construct a finite-state machine that will compute the bitwise AND of two binary input strings.
 b. Write the output for the input sequence consisting of the strings 11011 and 10010 (read left to right).
 14. a. Construct a finite-state machine that will compute the bitwise OR of two binary input strings.
 b. Write the output for the input sequence consisting of the strings 11011 and 10010 (read left to right).
 15. a. Construct a delay machine having input and output alphabet 50, 16 that, for any input sequence ala2a3…

produces an output sequence of 00ala2a3… .
 b. Explain (intuitively) why a finite-state machine cannot be built that, for any input sequence ala2a3… ,

produces the output sequence 0a10a20a3… .
 16. a. Construct a finite-state machine that will compute the 2’s complement of p where p is a binary number

input with the least significant digit first. (See Exercise 27, Section 8.2.) (In this case, read the input
right to left.)

 b. Use the machine of part (a) to find the 2’s complement of 1100 and of 1011.
 17. You are designing a Windows-based, event-driven program to handle customers for a small business.

You design the user interface with three screens. The opening screen contains an exit button to quit the
program and displays a list box of customer names. Double-clicking on one of the entries in the list box
brings up a second screen showing complete data for that customer. This screen contains a button to get
back to the opening screen. The opening screen also contains a button that brings up a form to enter the
data for a new customer. Draw the state graph for a finite-state machine that describes the high-level user
interaction with the program.

Section 9.3 Finite-State Machines 753

 18. Whenever a video disk is inserted into a DVR, the machine automatically turns on and plays the disk. At
the end of the recorded part of the disk, the machine turns off. To program the DVR, you must manually
turn it on and then select the menu function; when you are finished, you turn the machine off, but its timer
is set. At the appropriate time, the machine records, then at the appropriate time it turns itself completely
off. Draw the state graph for a finite-state machine that describes the behavior of the DVR.

 19. You have an account at First National Usury Trust (FNUT) and a card to operate their ATM (automated
teller machine). Once you have inserted your card, the ATM will allow you to process a transaction only
if you enter your correct code number, which is 417. Draw the state graph for a finite-state machine de-
signed to recognize this code number. The output alphabet should have three symbols: “bingo” (correct
code), “wait” (correct code so far), and “dead” (incorrect code). The input alphabet is 50, 1, 2, … , 96 .
To simplify notation, you may designate an arc by I−536 , for example, meaning that the machine will
take this path for an input symbol that is any digit except 3. (At FNUT, you get only one chance to enter
the code correctly.)

 20. An elevator in a three-story building services floors 1, 2, and 3. Input consists of a signal to the elevator
of an up-or-down request (U or D) together with the floor from which the signal originates. The elevator
responds to an input signal by moving to the correct floor. For example, when the elevator is on floor 1
and receives a D-3 signal, it moves to floor 3. Draw a state graph for a finite-state machine that describes
the elevator behavior.

For Exercises 21–24, determine whether the given machine recognizes the given input string.

 21. 11010

s0 s1

s2

0

0 0

1

1

1

 22. 01110111

s0 s1

00

1

1

0

1
s2

 23. 0101

s0 s1

s2

0, 1

0

0 1

1

 24. 01101

s0 s1

s3s2

0, 1

0
0

0

1

1

1

For Exercises 25–28, construct finite-state machines that act as recognizers for the input described by produc-
ing an output of 1 exactly when the input received to that point matches the description. The input and output
alphabet in each case is 50, 16 .

754 Modeling Arithmetic, Computation, and Languages

 25. a. set of all strings containing an even number of 0s
 b. set of all strings consisting of two or more 1s followed by a 0
 c. set of all strings containing two consecutive 0s and the rest 1s
 26. a. set of all strings ending with one or more 0s
 b. set of all strings where the number of 0s is a multiple of 3
 c. set of all strings containing at least four 1s
 27. a. set of all strings containing exactly one 1
 b. set of all strings beginning with 000
 c. set of all strings where the second input is 0 and the fourth input is 1
 28. a. set of all strings consisting entirely of any number (including none) of 01 pairs or consisting entirely of

two 1s followed by any number (including none) of 0s
 b. set of all strings ending in 110
 c. set of all strings containing 00
 29. A paragraph of English text is to be scanned and the number of words beginning with “con” counted.

Design a finite-state machine that will output a 1 each time such a word is encountered. The output alpha-
bet is 50, 16 . The input alphabet is the 26 letters of the English alphabet, a finite number of punctuation
symbols (period, comma, and so on), and a special character b for blank. To simplify your description,
you may use I − 5m6 , for example, to denote any input symbol not equal to m.

 30. a. In many computer languages, any decimal number N must be presented in one of the following forms:

 sd* sd*.d* d* d*.d* (1)

where s denotes the sign (s [5+, − 6), d is a digit (d [50, 1, 2, … , 96), and d* denotes a string of
digits where the string may be of any length, including length zero (the empty string). Thus, the follow-
ing would be examples of valid decimal numbers:

 +2.74 −.58 129 +

 Design a finite-state machine that recognizes valid decimal numbers by producing an output of 1. The
input symbols are +, −, . , and the 10 digits. To simplify notation, you may use d to denote any digit
input symbol.

 b. Modify the machine of part (a) to recognize any sequence of decimal numbers as defined in part (a)
separated by commas. For example, such a machine would recognize

+2.74,−.58,129,+

 The input alphabet should be the same as for the machine of part (a) with the addition of the symbol c
for comma.

 c. Suppose a decimal number must be presented in a form similar to that for part (a) except that any deci-
mal point that appears must have at least one digit before it and after it. Write an expression similar to
expression (1) in part (a) to describe the valid form for a decimal number. How would you modify the
machine of part (a) to recognize such a number?

 31. Let M be a finite-state machine with n states. The input alphabet is 506 . Show that for any input sequence
that is long enough, the output of M must eventually be periodic. What is the maximum number of inputs
before periodic output begins? What is the maximum length of a period?

Section 9.3 Finite-State Machines 755

 32. At the beginning of the chapter, we learn:

Your team at Babel, Inc., is writing a compiler for a new programming language, currently code-named
ScrubOak after a tree outside your office window. During the first phase of compilation (called the lexical
analysis phase) the compiler must break down statements into individual units called tokens. In particular,
the compiler must be able to recognize identifiers in the language, which are strings of letters, and also
recognize the two keywords in the language, which are if and in.

How can the compiler recognize the individual tokens in a statement?

 Construct a finite-state machine that operates on a stream of characters and moves into one of two final
states representing that a complete keyword has just been processed or that a complete nonkeyword identi-
fier has just been processed. Use b to denote a separating blank between tokens.

For Exercises 33–38, give a regular expression for the set recognized by the finite-state machine.

 33.

s1

0

0

1
1

s0

s2

0, 1

 34.

 35.

 36.

756 Modeling Arithmetic, Computation, and Languages

For Exercises 39–42, give a regular expression for the set recognized by the finite-state machine.

 39. present state next state output

present input

0 1

s0 s3 s1 0

s1 s1 s2 0

s2 s3 s3 1

s3 s3 s3 0

 40. present state next state output

present input

0 1

s0 s3 s1 1

s1 s1 s2 1

s2 s2 s2 0

s3 s0 s2 0

 41. present state next state output

present input

0 1

s0 s2 s1 1

s1 s3 s1 1

s2 s3 s4 0

s3 s3 s3 0

s4 s5 s3 0

s5 s2 s3 1

 42. present state next state output

present input

0 1

s0 s4 s1 1

s1 s4 s2 0

s2 s4 s3 0

s3 s3 s1 1

s4 s4 s4 0

 43. Give a regular expression for each of the following sets.
 a. set of all strings of 0s and 1s beginning with 0 and ending with 1
 b. set of all strings of 0s and 1s having an odd number of 0s
 c. 5101, 1001, 10001, 100001, …6
 44. Give a regular expression for each of the following sets.
 a. set of all strings of 0s and 1s containing at least one 0
 b. set of all strings of a’s and b’s where each a is followed by two b’s
 c. set of all strings of 0s and 1s containing exactly two 0s

 38.

s
0

s
2

1

1

s
1

0

0
0

1

 37.

s
0

s
1

0

0

0
1

1 1

0,1

s
3

s
2

Section 9.3 Finite-State Machines 757

 45. Does the given string belong to the given regular set?
 a. 01110111; (1*01)*(11 ~ 0*)
 b. 11100111; 3(1*0)* ~ 0*11 4*
 c. 011100101; 01*10*(11*0)*
 46. Does the given string belong to the given regular set?
 a. 1000011; (10* ~ 11)*(0*1)*
 b. 011110; 0*11(1* ~ 10)
 c. 101110; 3(101)*10* 4*
 47. Write a regular expression for the set of all arithmetic expressions indicating the addition or subtraction of

two positive integers.
 48. Write a regular expression for the set of all alphanumeric strings beginning with a letter, which is the set

of legal identifiers in some programming languages.
 49. Write regular expressions for each of the strings described in Exercise 25.
 50. Write regular expressions for each of the strings described in Exercise 26.
 51. Write regular expressions for each of the strings described in Exercise 27.
 52. Write regular expressions for each of the strings described in Exercise 28.
 53. a. Prove that if A is a regular set, then the set AR consisting of the reverse of all strings in A is also regular.
 b. For any string a, let a

R be the reverse string. Do you think the set 5aa
R

 0 a [I *6 is regular?
 54. Prove that if A is a regular set whose symbols come from the alphabet I, then I * − A is a regular set.

A number of programming languages define “regular expressions” somewhat differently than we have done
in this chapter. In these instances, the regular expression is meant to describe a pattern for a set of strings so
that an arbitrary string can be matched against the pattern to see whether the string belongs in the set. Examples
are (a) searching a string to see whether it matches the format of a valid e-mail address and (b) extracting all
instances of the form href = “…” from an HTML document. Perl (Practical Extraction and Report Language)
is a language strong in text processing; following are some of the syntax rules for regular expressions in Perl.

 * repeat the preceding character or group 0 or more times [this is familiar]
 ? repeat the preceding character or group 0 or 1 times
 + repeat the preceding character or group 1 or more times
 . (period)—matches any single character
 .* (period asterisk)—matches arbitrary string of any length
 \s (backslash lowercase s)—matches any whitespace character (space, tab, newline)
 \S (backslash uppercase s)—matches any nonwhitespace character

For Exercises 55–62, decide which of the given strings match the given regular expression.

 55. Regular expression: bet?er Strings: beer, beter, better, bettter
 56. Regular expression: bet*er Strings: beer, beter, better, bettter
 57. Regular expression: bet+er Strings: beer, beter, better, bettter
 58. Regular expression: b.?t Strings: bit, but, beet, bt
 59. Regular expression: b.+t Strings: bit, but, beet, bt
 60. Regular expression: b\St Strings: bit, but, beet, b t
 61. Regular expression: b\ st Strings: bit, but, beet, b t
 62. Regular expression: b\ s*t Strings: bit, bt, b t, b t

758 Modeling Arithmetic, Computation, and Languages

 67. present state next state output

present input

0 1

0 1 2 0

1 2 3 1

2 3 4 0

3 2 1 1

4 5 4 1

5 6 7 0

6 5 6 1

7 8 1 0

8 7 3 0

 63. Identify any unreachable states of M.

present state next state output

present input

0 1

s0 s2 s0 0

s1 s2 s1 1

s2 s2 s0 1

 64. Identify any unreachable states of M.

present state next state output

present input

a b c

s0 s1 s0 s3 0

s1 s1 s3 s0 1

s2 s3 s2 s1 0

s3 s1 s1 s0 0

For Exercises 65–74, minimize the given machine.

 65. present state next state output

present input

0 1

0 3 6 1

1 4 2 0

2 4 1 0

3 2 0 1

4 5 0 1

5 3 5 0

6 4 2 1

 66. present state next state output

present input

0 1

0 5 3 1

1 5 2 0

2 1 3 0

3 2 4 1

4 2 0 1

5 1 4 0

 68. present state next state output

present input

0 1

0 7 1 1

1 0 3 1

2 5 1 0

3 7 6 1

4 5 6 0

5 2 3 0

6 3 0 1

7 4 0 0

 69. present state next state output

present input

0 1

0 1 3 0

1 2 4 1

2 5 4 0

3 1 2 2

4 2 1 1

5 4 0 2

 70. present state next state output

present input

0 1

0 1 3 0

1 2 0 0

2 0 3 0

3 2 1 0

Section 9.4 Turing Machines 759

 71. present state next state output

present input

a b c

0 1 4 0 1

1 4 2 3 0

2 3 4 2 1

3 4 0 1 0

4 1 0 2 0

 72. present state next state output

present input

0 1

0 1 3 1

1 2 0 0

2 4 3 1

3 0 1 1

4 2 4 0

 73. present state next state output

present input

0 1

0 3 0 0

1 4 3 1

2 1 4 0

3 0 4 1

4 5 2 0

5 2 3 1

 74. present state next state output

present input

0 1

0 3 5 1

1 1 6 1

2 0 4 0

3 1 6 1

4 5 3 0

5 4 1 0

6 2 5 1

 75. Construct a sequential network for the finite-state machine of Exercise 8.
 76. Construct a sequential network for the finite-state machine of Exercise 1a. Make use of don’t-care condi-

tions to simplify the network.

 S e c t i o n 9 . 4 turing MAChineS

In Section 9.3, we noted that because S = 50n1n
 0 n ≥ 06 is not a regular set,

Kleene’s theorem tells us that it is not recognizable by any finite-state machine.
We didn’t actually prove that S is not a regular set, however; we only noted that
we were not able to come up with a regular expression for it. Let’s take a slightly
different approach.

Suppose S is recognized by a finite-state machine M with m states. Then all
strings from S and only strings from S lead M from its start state to a final state.
Now let us run M a number of times on successive input strings of l, 0, 02, 03 … , 0m.
At the end of processing each of these m + 1 strings, M will be in some state.
Because M has only m distinct states, there must be two strings from this list,
say 0v and 0w, v ∙ w, each of which lead M from the start state to the same state.
(This is actually a result of the pigeonhole principle of Chapter 4, where the items
are the input strings and the bins into which we put the items are the states M is
in after processing the strings.) Because M recognizes S, the input string 0v1v will
cause M to end in a final state. But because M is in the same state after processing
0w as after processing 0v, the string 0w1v, which does not belong to S, will take M
to the same final state. This contradiction proves that no finite-state machine can
recognize S.

760 Modeling Arithmetic, Computation, and Languages

We probably consider ourselves to be finite-state machines and imagine that
our brains, being composed of a large number of cells, can take on only a finite,
although immensely large, number of configurations, or states. We feel sure, how-
ever, that if someone presented us with an arbitrarily long string of 0s followed by
an arbitrarily long string of 1s, we could detect whether the number of 0s and 1s
was the same. Let’s think of some techniques we might use.

For small strings of 0s and 1s, we could just look at the strings and decide.
Thus, we can tell without great effort that 000111 [S and that 00011 o S. How-
ever, for the string

0000000000000001111111111111111

we must devise another procedure, probably resorting to counting. We would
count the number of 0s received, and when we got to the first 1, we would write
the number of 0s down (or remember it) for future reference; then we would begin
counting 1s. (This process is what we did mentally for smaller strings.)

However, we have now made use of some extra memory, because when we
finished counting 1s, we would have to retrieve the number representing the total
number of 0s to make a comparison. But such information retrieval is what the
finite-state machine cannot do; its only capacity for remembering input is to have
a given input symbol send it to a particular state. We have already seen that no
finite-state machine can “remember” 0n for arbitrarily large n because it runs out
of distinct states. In fact, if we try to solve this problem on a real computer, we
encounter the same difficulty. If we set a counter as we read in 0s, we might get an
overflow because our counter can go only so high. To process 0n1n for arbitrarily
large n requires an unlimited auxiliary memory for storing the value of our coun-
ter, which in practice cannot exist.

Another way we humans might attack the problem of recognizing S is to wait
until the entire string has been presented. Then we would go to one end of the
string and cross out a 0, go to the other end and cross out a 1, and then continue
this back-and-forth operation until we ran out of 0s or 1s. The string belongs to S
if and only if we run out of both at the same time. Although this approach sounds
rather different from the first one, it still requires remembering each of the inputs,
since we must go back and read them once the string is complete. The finite-state
machine, of course, cannot reread input.

We have come up with two computational procedures—algorithms—to de-
cide, given a string of 0s and 1s, whether that string belongs to S = 50n1n

 0 n ≥ 06 .
Both require some form of additional memory unavailable in a finite-state
 machine. Evidently, the finite-state machine is not a model of the most general
form of computational procedure.

Definition

To simulate more general computational procedures than the finite-state
machine can handle, we use a Turing machine, proposed by the British
 mathematician Alan M. Turing in 1936. A Turing machine is essentially
a finite-state machine with the added ability to reread its input and also to
erase and write over its input. It also has unlimited auxiliary memory. Thus,
the Turing machine overcomes the deficiencies we noted in finite-state ma-
chines. Unlimited auxiliary memory makes the Turing machine a hypothetical
“machine”—a model—not a real device.

Section 9.4 Turing Machines 761

A Turing machine consists of a finite-state machine and an unlimited tape
divided into cells, each cell containing at most one symbol from an allowable
finite alphabet. At any one instant, only a finite number of cells on the tape are
nonblank. We use the special symbol b to denote a blank cell. The finite-state
unit, through its read–write head, reads one cell of the tape at any given moment
(Figure 9.15).

b... ...b b b b1 1 0 0 1

↑

Finite-state unit

figure 9.15

By the next clock pulse, depending on the present state of the unit and the
symbol read, the unit either does nothing (halts) or completes three actions:

 1. Print a symbol from the alphabet on the cell read (it might be the same
symbol that’s already there).

 2. Go to the next state (it might be the same state as before).
 3. Move the read–write head one cell left or right.

We can describe the actions of any particular Turing machine by a set of
quintuples of the form (s, i, i′, s′, d), where s and i indicate the present state
and the tape symbol being read, i′ denotes the symbol printed, s′ denotes the
new state, and d denotes the direction in which the read–write head moves
(R for right, L for left).

Thus, a machine in the configuration illustrated by Figure 9.16a, if acting ac-
cording to the instructions contained in the quintuple (2, 1, 0, 1, R), would move to

b... ...

... ...

0 1 b bb 1 1 0 1 b

(a)

b 0 1 b bb 1 1 0 0 b

(b)

↑

2

↑

1

figure 9.16

 (s, i, i′, s′, d)

 Present state Present symbol Symbol printed Next state Direction of move

762 Modeling Arithmetic, Computation, and Languages

the configuration illustrated in Figure 9.16b. The symbol 1 being read on the tape
has been changed to a 0, the state of the unit has been changed from 2 to 1, and the
head has moved one cell to the right.

The term “Turing machine” is used both in the generic sense and also as
the collection of quintuples that describe the actions of any particular ma-
chine. This is the same double usage for both the name of the abstraction
and any instance of that abstraction that we mentioned for Boolean algebra in
Chapter 8.

 Definition turinG MAChinE
Let S be a finite set of states and I a finite set of tape symbols (the tape alphabet)
including a special symbol b. A turing machine is a set of quintuples of the
form (s, i, i′, s′, d) where s, s′ [S; i, i′ [I ; and d [5R, L6 and no two
quintuples begin with the same s and i symbols.

The restriction that no two quintuples begin with the same s and i symbols
ensures that the action of the Turing machine is deterministic and completely
specified by its present state and symbol read. If a Turing machine gets into a con-
figuration for which its present state and symbol read are not the first two symbols
of any quintuple, the machine halts.

Just as in the case of ordinary finite-state machines, we specify a fixed start-
ing state, denoted by 0, in which the machine begins any computation. We also
assume an initial configuration for the read–write head, namely, a position over
the farthest left nonblank symbol on the tape. (If the tape is initially all blank, the
read–write head can be positioned anywhere to start.)

 example 40 A Turing machine is defined by the set of quintuples:

(0, 0, 1, 0, R)
(0, 1, 0, 0, R)
(0, b, 1, 1, L)
(1, 0, 0, 1, R)
(1, 1, 0, 1, R)

The action of this Turing machine when processing a particular initial tape is
shown by the sequence of configurations in Figure 9.17, which also shows the
quintuple that applies at each step. Again, which quintuple applies is deter-
mined by the present state and present symbol; as a result, the order in which
quintuples are applied has nothing to do with the order in which they are pre-
sented in the machine’s definition, quintuples can be used more than once, or
may not be used at all.

Section 9.4 Turing Machines 763

b

......

......

......

......

......

......

......

0 1 1 0 b

b 1 1 1 0 b

(0, 0, 1, 0, R)

(0, 1, 0, 0, R)

b 1 0 1 0 b (0, 1, 0, 0, R)

b 1 0 0 0 b (0, 0, 1, 0, R)

b 1 0 0 1 b (0, b, 1, 1, L)

b 1 0 0 1 1 b (1, 1, 0, 1, R)

b 1 0 0 0 1 b (1, 1, 0, 1, R)

b 1 0 0 0 0 b

↑

↑

↑

↑

↑

↑

↑

↑

0

0

0

0

0

1

1

1

figure 9.17

764 Modeling Arithmetic, Computation, and Languages

Since there are no quintuples defining the action to be taken when in state 1 reading
b, the machine halts with final tape:

b 1... 0 0 0 0 b ...

The tape serves as a memory medium for a Turing machine, and in general,
the machine can reread cells of the tape. Since it can also write on the tape, the
nonblank portion of the tape can be as long as desired, although there are still only
a finite number of nonblank cells at any time. Hence the machine has available an
unbounded, though finite, amount of storage. Because Turing machines overcome
the limitations of finite-state machines, Turing machines should have consider-
ably higher capabilities. In fact, a finite-state machine is a very special case of a
Turing machine, one that always prints the old symbol on the cell read, always
moves to the right, and always halts on the symbol b.

PrACtiCe 57 Consider the following Turing machine:

(0, 0, 0, 1, R)
(0, 1, 0, 0, R)
(0, b, b, 0, R)
(1, 0, 1, 0, R)
(1, 1, 1, 0, L)

a. What is the final tape, given the initial tape

b 1... 0 b ...

 (Since it is tedious to draw all the little squares, you don’t need to do so; just write down the contents
of the final tape.)

b. Describe the behavior of the machine when started on the tape

b 1... 0 b ...

c. Describe the behavior of the machine when started on the tape

b... 0 0 b ...
■

Parts (b) and (c) of Practice 57 illustrate two ways in which a Turing machine can
fail to halt: by endlessly cycling or by moving forever along the tape.

turing Machines as set recognizers

Although the Turing machine computations we have seen so far are not particularly
meaningful, we will use the Turing machine to do two kinds of jobs. First, we’ll

Section 9.4 Turing Machines 765

use it as a recognizer, much as we considered finite-state machines as recognizers
in the previous section. We can even give a very similar definition, provided we
first define a final state for a Turing machine. A final state in a Turing machine
is one that is not the first symbol in any quintuple. Thus, on entering a final state,
whatever the symbol read, the Turing machine halts.

 Definition turinG MAChinE rECoGnition (ACCEPtAnCE)
A Turing machine T with tape alphabet I recognizes (accepts) a subset S of I* if
T, beginning in standard initial configuration on a tape containing a string α of
tape symbols, halts in a final state if and only a [S.

Note that our definition of acceptance leaves open two possible behaviors for T
when applied to a string a of tape symbols not in S. T may halt in a nonfinal state,
or T may fail to halt at all.

We can now build a Turing machine to recognize our old friend
S = 50n1n

 0 n ≥ 06 . The machine is based on our second approach to this rec-
ognition problem, sweeping back and forth across the input and crossing out
0–1 pairs.

 example 41 We want to build a Turing machine that will recognize S = 50n1n
 0 n ≥ 06 . We will

use one additional special symbol, call it X, to mark out (“erase”) the 0s and 1s
already examined. Thus the tape alphabet is I = 50, 1, b, X6 . State 6 is the only
final state. The quintuples making up T are given below. Each quintuple or group
of quintuples has a “comment” describing its function. Just like well-written com-
ments in computer code, this makes the Turing instructions much easier to under-
stand. Be sure to include comments in any Turing machine definition.

(0, b, b, 6, R) Recognizes the empty tape, which is in S.
(0, 0, X, 1, R) Erases the leftmost 0 and begins to move right.
(1, 0, 0, 1, R)
(1, 1, 1, 1, R)
(1, b, b, 2, L)
(1, X, X, 2, L)
(2, 1, X, 3, L) Erases the rightmost 1 and begins to move left.
(3, 1, 1, 3, L) Moves left over 1s.
(3, 0, 0, 4, L) Goes to state 4 if more 0s are left.
(3, X, X, 5, R) Goes to state 5 if no more 0s in string.
(4, 0, 0, 4, L) Moves left over 0s.
(4, X, X, 0, R) Finds left end of binary string and begins sweep again.
(5, X, X, 6, R) No more 1s in string; machine accepts.

Reading down the columns in Figure 9.18, we can see the key configurations (skip-
ping some routine steps) in the machine’s behavior on the tape

b... 0 0 0 1 1 1 b ...

which, of course, it should accept.

∂ Moves right in state 1 until it reaches the end of the binary
string; then moves left in state 2.

766 Modeling Arithmetic, Computation, and Languages

b X X 0 1 1 X b
↑
2

b X X X X X X b
↑
6

b X X 0 1 1 X b
↑
1

b X X X X X X b
↑
5

b X 0 0 1 1 X b
↑
0

b X X X X X X b
↑
3

b X 0 0 1 1 X b
↑
4

b X X X 1 X X b
↑
2

b X 0 0 1 1 X b
↑
4

b X X X 1 X X b
↑
1

b X 0 0 1 1 X b
↑
3

b X X 0 1 X X b
↑
0

b X 0 0 1 1 1 b
↑
2

b X X 0 1 X X b
↑
4

b X 0 0 1 1 1 b
↑
1

b X X 0 1 X X b
↑
3

b 0 0 0 1 1 1 b
↑
0

figure 9.18

PrACtiCe 58 For the Turing machine of Example 41, describe the final configuration after processing the
following input tapes:

a.
b... 0 0 1 1 1 b ...

b. b... 0 0 0 1 1 b ...

c.
b... 0 0 0 0 1 1 b ...

■

Notice how each state of the Turing machine in Example 41 is designed to
accomplish a certain task, as indicated by the comments. The job of state 1, for

Section 9.4 Turing Machines 767

example, is to move right until the end of the binary string is found, marked by
either a blank or an X, then turn the computation over to state 2. A change of state
should occur only when something significant happens. For example, a Turing
machine cannot pass right over an indeterminate number of 1s by changing state
at each move because its behavior would then be tied to a specific input tape. On
the other hand, if the machine needs to count over a certain fixed number of 1s,
then changing states at each move would accomplish this.

REMINDER

Give the states of your
Turing machine big
enough jobs to do so that
the machine will work
in general, not just for
special cases. Test using
a variety of input tapes.

Practice 59 Design a Turing machine to recognize the set of all strings of 0s and 1s ending in 00. (This
set can be described by the regular expression (0 ~ 1)*00, so you should be able to use a
Turing machine that changes no tape symbols and always moves to the right.) Be sure to
include comments.

■

Practice 60 Modify the Turing machine of Example 41 to recognize 50n12n
 0 n ≥ 06 .

■

Turing Machines as Function Computers

The second job for which we will use the Turing machine is to compute functions.
Given a particular Turing machine T and a string a of tape symbols, we begin T
in standard initial configuration on a tape containing a. If T eventually halts with
a string b on the tape, we may consider b as the value of a function evaluated at
a. Using function notation, T(a) = b. The domain of the function T consists of
all strings a for which T eventually halts. We can also think of T as computing
number-theoretic functions, functions from a subset of Nk into N for any k ≥ 1.
We will think of a string of 1s of length n + 1 as the unary representation of the
nonnegative integer n; we’ll denote this encoding of n by n. (The extra 1 in the
encoding enables us to distinguish 0 from a blank tape.) Then a tape containing
the string n1 * n2 *…* nk can be thought of as the representation of the k-tuple
(n1, n2, … , nk) of nonnegative integers. If T begun in the standard initial configu-
ration on such a tape eventually halts with a final tape that is the representation
m of a nonnegative integer m, then T has acted as a k-variable function T

k, where
T

k(n1, n2, … , nk) = m. If T begun in standard initial configuration on such a tape
either fails to halt or halts with the final tape not a representation of a nonnegative
integer, then the function T

k is undefined at (n1, n2, … , nk). There is no need to
identify final states when using the Turing machine as a function computer.

There is thus an infinite sequence T1, T
2, … , T

k, … of number-theoretic
 functions computed by T associated with each Turing machine T. For each k, the
function T

k is a partial function on Nk, meaning that its domain may be a proper
subset of Nk. A special case of a partial function on Nk is a total function on Nk,
where the function is defined for all k-tuples of nonnegative integers.

 ExaMplE 42 Let a Turing machine T be given by the quintuples

(0, 1, 1, 0, R)
(0, b, 1, 1, R)

768 Modeling Arithmetic, Computation, and Languages

If T is begun in standard initial configuration on the tape

b... 11 1 b ...

then T will halt with final configuration

b 1 1 1 1 b

1

Therefore, T defines a one-variable function T1 that maps 2 to 3. In general, T
maps n to n + 1, so T 1(n) = n + 1, a total function of one variable.

In Example 42, we began with a Turing machine and observed a particular
function it computed, but we can also begin with a number-theoretic function and
try to find a Turing machine to compute it.

 Definition Turing-CompuTable FunCTion
A Turing-computable function is a number-theoretic function computed by
some Turing machine.

A Turing-computable function f can in fact be computed by an infinite number of
Turing machines. Once a machine T is found to compute f, we can always include
extraneous quintuples in T, producing other machines that also compute f.

 eXample 43 We want to find a Turing machine that computes the function f defined as follows:

f (n1, n2) = e n2 − 1 if n2 ≠ 0
undefined if n2 = 0

Thus f is a partial function of two variables. Let’s consider the Turing machine
given by the following quintuples.

(0, 1, 1, 0, R)
(0, *, *, 1, R) f Passes right over n1 to n2

(1, 1, 1, 2, R)
(2, b, b, 3, R)

Counts first 1 in n2.
n2 = 0; halts.

Erases last 1 in n2.

(2, 1, 1, 4, R)
(4, 1, 1, 4, R)
(4, b, b, 5, L)

 ¶ Finds the right end of n2.

(5, 1, b, 6, L)
(6, 1, 1, 6, L)
(6, *, b, 7, L) f Passes left to n1, erasing *.
(7, 1, b, 7, L)
(7, b, b, 8, L)

Erases n1.
n1 erased; halts with n2 − 1 on tape.

Section 9.4 Turing Machines 769

If T is begun on the tape

b... 1 *1 11 1 1 b ...

then T will halt with final configuration

b b b b b 1 1 1 b

8

This configuration agrees with the requirement that f (1, 3) = 2. If T is begun on
the tape

b... *1 1 1 b ...

then T will halt with final configuration

b 1 1 * 1 b b

3

Because the final tape is not m for any nonnegative integer m, the function com-
puted by T is undefined at (1, 0)—just as we want. It is easy to see that this Turing
machine computes f and that f is therefore a Turing-computable function.

Practice 61 Design a Turing machine to compute the function

f (n) = bn − 2 if n ≥ 2
1 if n < 2 ■

Church–Turing Thesis

In this chapter we have talked about models of “computation” or of “computa-
tional procedures.” Although we have not defined the term, by a computational
procedure we mean an algorithm. We have talked about algorithms often in this
book and have given a number of algorithms for various tasks. Recall that our
(somewhat intuitive) definition of an algorithm is a set of instructions that can be
mechanically executed in a finite amount of time in order to solve some problem.
Given input appropriate to the task, the algorithm must eventually stop (halt) and
produce the correct answer if an answer exists. (If no answer exists, let us agree
that the algorithm can either halt and declare that no answer exists, or it can go on
indefinitely searching for an answer.)

Now we ask: Is the Turing machine a better model of a computational proce-
dure than the finite-state machine? We are quite likely to agree that any Turing
computable function f is a function whose values can be found by a computational

770 Modeling Arithmetic, Computation, and Languages

procedure or algorithm. In fact, if f is computed by the Turing machine T, then
the set of quintuples of T is itself the algorithm; as a list of instructions that can
be carried out mechanically, it satisfies the various properties in our notion of an
algorithm. Therefore, we are probably willing to accept the proposal illustrated by
Figure 9.19. The figure shows “computable by algorithm” as a “cloudy,” intuitive
idea and “Turing computable” as a mathematically precise, well-defined idea. The
arrow asserts that any Turing-computable function is computable by an algorithm.

Given the simplicity of the definition of a Turing machine, it is a little startling
to contemplate Figure 9.20, which asserts that any function computable by any
means we might consider to be an algorithm is also Turing computable. Combin-
ing Figures 9.19 and 9.20, we get the Church–Turing thesis (Figure 9.21), named
after Turing and another well-known mathematician, Alonzo Church.

Computable by
algorithm

Turing
computable

Computable by
algorithm

Turing
computable

Computable by
algorithm

Turing
computable

 figure 9.19 figure 9.20 figure 9.21

 tHeSiS ChurCh–turinG thEsis
A number-theoretic function is computable by an algorithm if and only if it is
Turing computable.

Because the Church–Turing thesis equates an intuitive idea with a mathemati-
cal idea, it can never be formally proved and must remain a thesis, not a theorem.
What, then, is its justification?

One piece of evidence is that whenever a procedure generally agreed to be
an algorithm has been proposed to compute a function, someone has been able to
design a Turing machine to compute that function. (Of course, there is always the
nagging thought that someday this might not happen.)

Another piece of evidence is that other mathematicians, several of them at
about the same time Turing developed the Turing machine, proposed other models
of a computational procedure. On the surface, each proposed model seemed quite
unrelated to any of the others. However, because all the models were formally
defined, just as Turing computability is, it was possible to determine on a formal,
mathematical basis whether any of them were equivalent. All the models, as well
as Turing computability, were proved equivalent; that is, they all defined the same
class of functions, which suggests that Turing computability embodies everyone’s

Section 9.4 Turing Machines 771

concept of an algorithm. Figure 9.22 illustrates what has been done; here solid
lines represent mathematical proofs and dashed lines correspond to the Church–
Turing thesis. The dates indicate when the various models were proposed.

Computable by
algorithm

Turing
1936

Markov
1954

Church, Kleene
Late 1930s

Post
Early 1940s

Smullyan
1961

figure 9.22

The Church–Turing thesis is now widely accepted as a working tool by re-
searchers dealing with computational procedures. If, in a research paper, a method
is set forth for computing a function and the method intuitively seems to be an
algorithm, then the Church–Turing thesis is invoked and the function is declared
to be Turing computable (or one of the names associated with one of the equiva-
lent formulations of Turing computability). This invocation means that the author
presumably could, if pressed, produce a Turing machine to compute the function,
but again, the Church–Turing thesis is so universally accepted that no one bothers
with these details anymore.

Although the Church–Turing thesis is stated in terms of number-theoretic
functions, it can be interpreted more broadly. Any algorithm in which a finite set
of symbols is manipulated can be translated into a number-theoretic function by
a suitable encoding of the symbols as nonnegative integers, much as input to a
real computer is encoded and stored in binary form. Thus, by the Church–Turing
thesis we can say that if there is an algorithm to do a symbol manipulation task,
there is a Turing machine to do it.

By accepting the Church–Turing thesis, we have accepted the Turing machine
as the ultimate model of a computational procedure. Turing machine capabilities
exceed those of any actual computer, which, after all, does not have the unlim-
ited tape storage of a Turing machine. It is remarkable that Turing proposed this
 concept in 1936, well before the advent of the modern computer.

Decision Problems and uncomputability

We have spent quite a bit of time discussing what Turing machines can do. By
the Church–Turing thesis, they can do a great deal indeed, although not very ef-
ficiently. It is even more important, however, to consider what Turing machines
cannot do. Because a Turing machine’s abilities to perform tasks exceed those of
an actual computer, if we find something no Turing machine can do, then a real
computer cannot do it either. In fact, by invoking the Church–Turing thesis, no
algorithm exists to do it, and the task is not computable. The type of task we have
in mind here is generally that of determining the truth value of each of a number
of related statements.

772 Modeling Arithmetic, Computation, and Languages

 Definition DECision ProBLEM
A decision problem asks if an algorithm exists to decide whether individual
statements from some large class of statements are true.

The solution to a decision problem answers the question of whether an
algorithm exists. A positive solution consists of proving that an algorithm ex-
ists, and it is generally given by actually producing an algorithm that works. A
negative solution consists of proving that no algorithm exists. Note that this
statement is much stronger than simply saying that a lot of people have tried
but no one has come up with an algorithm—this might simply mean that the
algorithm is hard. It must be shown that it is impossible for anyone ever to come
up with an algorithm. When a negative solution to a decision problem is found,
the problem is said to be unsolvable, uncomputable, or undecidable. This ter-
minology can be confusing because the decision problem itself—the question
of whether an algorithm exists to do a task—has been solved; what must forever
be unsolvable is the task itself.

Examples of Decision Problems
We will look at some decision problems that have been answered.

 example 44 Does an algorithm exist to decide, given integers a, b, and c, whether a2 = b2 + c2?
Clearly, this question is a solvable decision problem. The algorithm consists of
multiplying b by itself, multiplying c by itself, adding the two results, and comparing
the sum with the result of multiplying a by itself.

Obviously, Example 44 is a rather trivial decision problem. Historically, much
of mathematics has concerned itself at least indirectly with finding positive solu-
tions to decision problems, that is, producing algorithms. Negative solutions to
decision problems arose only in the twentieth century.

 example 45 One of the earliest decision problems to be formulated was Hilbert’s tenth prob-
lem, tenth in a list of problems David Hilbert posed to the International Congress
of Mathematicians in 1900. The problem is: Does an algorithm exist to decide for
any polynomial equation P(x1, x2, … , xn) = 0 with integral coefficients whether
it has integral solutions? For polynomial equations of the form ax + by + c = 0,
where a, b, and c are integers, it is known that integer solutions exist if and only
if the greatest common divisor of a and b also divides c. Thus, for particular sub-
classes of polynomial equations, there might be algorithms to decide whether in-
teger solutions exist, but the decision problem as stated applies to the whole class
of polynomial equations with integer coefficients. When this problem was posed
and for some time after, the general belief was that surely an algorithm existed and
the fact that no one had found such an algorithm merely implied that it must be
difficult. In the mid-1930s, a startling result by Kurt Gödel, described in the next
example, began to cast doubt on this view. It was not until 1970, however, that this
problem was finally shown to be unsolvable.

Section 9.4 Turing Machines 773

 example 46 The decision problem for propositional wffs asks whether an algorithm exists to
decide whether any given propositional wff is a tautology. This is a solvable de-
cision problem; the solution algorithm consists of constructing and examining the
truth table for the wff. The decision problem for predicate wffs asks whether an
 algorithm exists to decide the validity of any given predicate wff. This is an undecid-
able problem; such an algorithm does not exist, which is exactly why we resorted to
the formal derivation rules of predicate logic to help establish validity for any given
wff. Because of the completeness and correctness of predicate logic, a wff is valid
if and only if we can produce a proof sequence for it. However, this has only shifted
one decision problem to an equivalent one—there is no algorithm to decide whether
a proof sequence exists for any given predicate wff, much less a mechanical way to
know what steps to use to produce a proof sequence if one does exist.

An alternative formulation to the logic systems we discussed in Chapter 1
is to identify certain strings of symbols as axioms and to give rules of inference
whereby a new string can be obtained from old strings. Any string that is the last
one in a finite list of strings consisting of either axioms or strings obtainable by
the rules of inference from earlier strings in the list is said to be a theorem. The
decision problem for such a formal theory is: Does an algorithm exist to decide
whether a given string in the formal theory is a theorem of the theory?

The work of Church and the famous twentieth-century logician Kurt Gödel
showed that any formal theory that axiomatizes properties of arithmetic (making
commutativity of addition an axiom, for example) and is not completely trivial (not
everything is a theorem) is undecidable. Their work can be considered good news
for working mathematicians because it means that ingenuity in answering questions
in number theory will never be replaced by a mechanical procedure.

 example 47 A particular Turing machine T begun on a tape containing a string a will either
eventually halt or never halt. The halting problem for Turing machines is a deci-
sion problem: Does an algorithm exist to decide, given a Turing machine T and
string a, whether T begun on a tape containing a will eventually halt? Turing
proved the unsolvability of the halting problem in the late 1930s.

Halting Problem
We will prove the unsolvability of the halting problem after two observations.
First, it might occur to us that “run T on a” would constitute an algorithm to see
whether T halts on a. If within 25 steps of T’s computation T has halted, then
we know T halts on a. But if within 25,000 steps T has not halted, what can we
conclude? T may still eventually halt. How long should we wait? This so-called
algorithm will not always give us the answer to our question.

A second observation is that the halting problem asks for one algorithm to be
applied to a large class of statements. The halting problem asks, Does an algorithm
exist to decide, for any given (T, a) pair, whether T halts when begun on a tape
containing a? The algorithm comes first, and that single algorithm has to give the
correct answer for all (T, a) pairs. In the notation of predicate logic, the halting
problem asks about the truth value of a statement in the form

(E algorithm)(4(T, a))(…)

774 Modeling Arithmetic, Computation, and Languages

Consider the following statement, which seems very similar: Given a par-
ticular (T, a) pair, does an algorithm exist to decide whether T halts when begun
on a tape containing a? Here, the (T, a) pair comes first and an algorithm is cho-
sen based on the particular (T, a); for a different (T, a), there can be a different
algorithm. The statement has become (4(T, a))(E algorithm)(…). This problem
is solvable. Suppose someone gives us a (T, a). Two algorithms are (1) “say yes”
and (2) “say no.” Since T acting on a either does or does not halt, one of these
two algorithms correctly answers the question. This solution may seem trivial
or even sneaky, but consider again the problem statement: Given a particular
(T, a) pair, does an algorithm exist to decide, and so forth. Such an algorithm
does exist; it is either to say yes or to say no—we are not required to choose
which one is correct!

This turnabout of words changes the unsolvable halting problem into a trivi-
ally solvable problem. It also points out the character of a decision problem, asking
whether a single algorithm exists to solve a large class of problems. An unsolvable
problem has both a good side and a bad side. That no algorithm exists to solve a
large class of problems guarantees jobs for creative thinkers who cannot be re-
placed by Turing machines. But that the class of problems considered is so large
might make the result too general to be of interest.

We will state the halting problem again and then prove its unsolvability.

 Definition hALtinG ProBLEM
The halting problem asks: Does an algorithm exist to decide, given any Turing ma-
chine T and string a, whether T begun on a tape containing a will eventually halt?

 tHeoRem on thE hALtinG ProBLEM
The halting problem is unsolvable.

Proof: We want to prove that something does not exist, a situation made to order
for proof by contradiction. Therefore we assume that the halting problem is solv-
able and that a single algorithm exists that can act on any (T, a) pair as input and
eventually decide whether T running on a halts. We are asking this algorithm to
solve a task of symbol manipulation, since we can imagine the set of quintuples
of T encoded as some unique string sT of symbols; we’ll use (sT, a) to denote the
string sT concatenated with the string a. The task then becomes transforming the
string (sT, a) into a string representing a yes (the Turing machine with descrip-
tion sT halts when begun on a tape containing a) or a no (the Turing machine
with description sT does not halt when begun on a tape containing a). By the
Church–Turing thesis, because we have assumed the existence of an algorithm
that performs this task, we can assume the existence of a single Turing machine
X that performs this task. Thus X acts on a tape containing (sT, a) for any T and
a and eventually halts, at the same time telling us whether T on a halts. To be
definite, suppose that X begun on (sT, a) halts with a 1 left on the tape if and only
if T begun on a halts, and X begun on (sT, a) halts with a 0 left on the tape if and
only if T begun on a fails to halt; these are the only two possibilities. Figure 9.23
illustrates Turing machine X.

Section 9.4 Turing Machines 775

Output

Halts with 0 on tape
exactly when T never
halts on a

Halts with 1 on tape
exactly when T
eventually halts on a

Turing machine X

Input

(sT, a)

 figure 9.23

Now we add to X’s quintuples to create a new machine Y. Machine Y modifies
X’s behavior so that whenever X halts with a 1 on its tape, Y goes to a state that
moves Y endlessly to the right so that it never halts. If X halts with a 0 on its tape,
so does Y. Figure 9.24 illustrates the behavior of Y.

Output

Halts with 0 on tape
exactly when T never
halts on a

Never halts
exactly when T
eventually halts on a

Turing machine Y

Input

(sT, a)

 figure 9.24

Finally, we modify Y to get a new machine Z that acts on any input b by first
copying b (see, for example, Exercise 16) and then turning the computation over
to Y so that Y acts on (b, b). What happens if we run Z on its own description, sZ?
This situation is shown in Figure 9.25.

Output

Halts with 0 on tape
exactly when Z never
halts on sz

Never halts
exactly when Z
eventually halts on sz

Turing machine Z

Input

sz (sz, sz)

 figure 9.25

776 Modeling Arithmetic, Computation, and Languages

By the way Z is constructed, if Z acting on sZ halts, it is because Y acting on
(sZ, sZ) halts, and that happens because X acting on (sZ, sZ) halts with a 0 on the
tape; but if this happens, it implies that Z begun on sZ fails to halt! Therefore,

 Z on sZ halts S Z on sZ fails to halt (1)

This implication is very strange; let’s see what happens if Z on sZ does not
halt. By the way Z is constructed, if Z acting on sZ does not halt, neither does Y act-
ing on (sZ, sZ). Now Y acting on (sZ, sZ) fails to halt exactly when X acting on (sZ, sZ)
halts with a 1 on the tape; but this result implies that Z begun on sZ halts! Therefore

 Z on sZ fails to halt S Z on sZ halts (2)

Together, implications (1) and (2) provide an airtight contradiction, so our assump-
tion that the halting problem is solvable is incorrect. End of Proof.

The proof of the unsolvability of the halting problem depends on two ideas.
One is that of encoding a Turing machine into a string description, and the other
is that of having a machine look at and act on its own description. Notice also that
neither (1) nor (2) alone in the proof is sufficient to prove the result. Both are need-
ed to contradict the original assumption of the solvability of the halting problem.

We have previously encountered another proof of this nature, where the
 observation that makes the proof work is self-contradictory. You might want to
review here the proof of Cantor’s theorem in Chapter 5.

Computational Complexity

As a model of computation, the Turing machine has provided us with a way to
prove the existence of unsolvable (uncomputable) problems. Not only does the
Turing machine help us find the limits of computability, but it can also help us
classify problems that are computable—that have an algorithm for their solu-
tion—by the amount of work required to carry out the algorithm.

Finding the amount of work required to carry out an algorithm sounds like anal-
ysis of algorithms. We have analyzed a number of real algorithms in this book and
classified them as Θ(log n), Θ(n), Θ(n2) , or what have you. By the Church–Turing
thesis, any algorithm can be expressed in Turing machine form. In this form, the
amount of work is the number of Turing machine steps (one per clock pulse) required
before the Turing machine halts. (We assume here that we are considering only tasks
that “have answers” so that the Turing machine halts on all appropriate input.)

Turing machine computations are quite inefficient. Therefore if algorithms A
and A′ both solve the same problem, but A is expressed as a description of a Turing
machine and A′ as pseudocode for instructions in a high-level programming lan-
guage, then comparing the number of operations each algorithm performs is rather
meaningless. Therefore we will assume that all algorithms are expressed in Turing
machine form so that we can readily compare the efficiency of different algorithms.

Rather than discuss whether a Turing machine algorithm is Θ(n) or Θ(n2),
let us simply note whether it is a polynomial-time algorithm. (Only quite trivial
algorithms can be better than polynomial time, because it takes a Turing ma-
chine n steps just to examine its tape.) Problems for which no polynomial-time
 algorithms exist are called intractable. Such problems may be solvable, but only
by inefficient algorithms.

Section 9.4 Turing Machines 777

 Definition P
P is the collection of all sets recognizable by Turing machines in polynomial time.

Consideration of set recognition in our definition of P is not as restrictive as it
may seem. Because the Turing machine halts on all appropriate input, it actually
decides, by halting in a final or nonfinal state, whether the initial string was or was
not a member of the set. Many problems can be posed as set decision problems by
suitably encoding the objects involved in the problem.

For example, consider the Hamiltonian circuit problem (Section 7.2) of
 whether a graph has a cycle that uses every node of the graph. We may define
some encoding process to represent any graph as a string of symbols. Strings that
are the representations of graphs become appropriate input, and we want to de-
cide, given such a string, whether it belongs to the set of strings whose associated
graphs have Hamiltonian circuits. If we can build a Turing machine to make this
decision in polynomial time, then the Hamiltonian circuit problem belongs to P.

We noted in Section 6.2 that the Hamiltonian circuit problem is solvable by the
brute-force approach of tracing all possible paths, but this is an exponential solution
because of the number of paths. We said that there is no known efficient (polynomial)
algorithm to solve the Hamiltonian circuit problem, so we have no proof that the
Hamiltonian circuit problem belongs to P. But there is also no proof that the Hamil-
tonian circuit problem does not belong to P. Might a clever, efficient algorithm some-
day be found? To see why this is unlikely, we’ll consider a new kind of Turing machine.

Ordinary Turing machines act deterministically, due to our restriction that no
two quintuples begin with the same present state/present symbol pair. A relaxation
of this requirement results in a nondeterministic turing machine, which may
have a choice of actions at any step. A nondeterministic Turing machine recogniz-
es a string on its tape if some sequence of actions leads to halting in a final state.

 Definition NP
NP is the collection of all sets recognizable by nondeterministic Turing machines
in polynomial time. (NP comes from nondeterministic polynomial time.)

Although a set in P requires that a deterministic Turing machine be able to
make a decision (in polynomial time) about whether some string on its tape does
or does not belong to the set, a set in NP requires only that a nondeterministic
Turing machine be able to verify (in polynomial time) by a fortuitous choice of ac-
tions that an input string is in the set. Given a graph that has a Hamiltonian circuit,
for example, this fact can be confirmed in polynomial time by a nondeterministic
Turing machine that picks the correct path, so the Hamiltonian circuit problem
belongs to NP. Another way to think about a nondeterministic Turing machine is
to imagine “parallel processing.” At every clock pulse where there is a choice of
action, new versions of the machine are created, one for each possible action. For
the Hamiltonian circuit problem, there may be an exponential number of versions
created, but the one version tracing the Hamiltonian circuit can complete its path
through the graph in polynomial time.

If a Turing machine can decide in polynomial time whether an arbitrary string
belongs to a set, it can surely use the same process to verify a member of the set
in polynomial time. Therefore P 8 NP. However, it is not known whether this

778 Modeling Arithmetic, Computation, and Languages

inclusion is proper, that is, whether P (NP so that there could be NP problems—
including perhaps the Hamiltonian circuit problem—that are intractable.

The Hamiltonian circuit problem belongs to a third class of problems known
as np-complete problems, meaning that not only are they in NP, but if a poly-
nomial-time decision algorithm were ever found for any one of them, that is, if
any of them were ever found to be in P, then indeed we would have P = NP.
A large number of problems from many different fields have been found to be
 NP-complete since this idea was formulated in 1971.

 example 48 The problem of deciding, for an arbitrary propositional wff, whether it is a tau-
tology is NP-complete. No efficient algorithm has been found for its solution. A
brute-force algorithm would explore each of the possible truth assignments to the
statement letters. Like the Hamiltonian circuit problem, we see the exponential
(nonpolynomial) nature of this inefficient approach—a wff with n statement letters
has a truth table with 2n rows. A related problem called the satisfiability problem
asks for a decision as to whether there exists any truth assignment that can “sat-
isfy” the wff—make it true. This is also an NP-complete problem, and in fact was
the first problem discovered to be NP-complete. Its brute-force solution algorithm
also relies on testing all truth value assignments.

The graph-coloring problem (given an arbitrary graph and a positive integer k,
color the nodes of the graph using k colors so that all adjacent nodes are different
colors) is NP-complete. Again, no efficient algorithm has been found; the brute-
force approach says to assign colors to nodes so that adjacent nodes are different
colors, and if you run into a place where this becomes impossible, backtrack and
modify your color assignments. Basically, this says to try all possible color assign-
ments (similar to trying all truth assignments, but with kn possibilities).

The general Sudoku puzzle consists of an n2 × n2 grid made up of n × n
blocks where each row, each column, and each block must contain exactly one
of the digits 1 through n2. (See Exercise 53 in Section 2.4 for an example of the
popular n = 3 version.) This is an NP-complete problem. No efficient solution
algorithm is known; a brute-force solution tries all possible number assignments.

Once again, no polynomial-time decision algorithm has been found for any
of these or the many other NP-complete problems, and if an efficient procedure
could be found to solve any one of them, such a procedure would exist for all
other problems in NP. Therefore it is now suspected that P (NP and that all these
problems are intractable, but to prove this remains a tantalizing goal in computer
science research.

S e c t i o n 9 . 4 review

tecHniQueS

• Describe the action of a given Turing machine on a
given initial tape.

• Construct a Turing machine to recognize a given set.
• Construct a Turing machine to compute a given

number-theoretic function.

main iDeaS

• Turing machines have a deterministic mode of
 operation, the ability to reread and rewrite input,
and an unbounded auxiliary memory.

• A finite-state machine is a special case of a Turing
machine.

W
W

Section 9.4 Turing Machines 779

• Turing machines can be used as set recognizers and
as function computers.

• The Church–Turing thesis equates a function
computable by an algorithm with a Turing-
computable function. Because this thesis expresses
a relationship between an intuitive idea and a
formally defined one, it can never be proved but
has nonetheless been widely accepted.

• A decision problem asks if an algorithm exists to
decide whether individual statements from a large
class of statements are true; if no algorithm exists,
the decision problem is unsolvable.

• The halting problem is unsolvable.
• P # NP, but it is unknown whether P (NP.

exeRciSeS 9.4

For Exercises 3–26, be sure to include comments with any Turing machine definition.

 1. Consider the Turing machine

(0, 0, 0, 0, L)
(0, 1, 0, 1, R)
(0, b, b, 0, L)
(1, 0, 0, 1, R)
(1, 1, 0, 1, R)

 a. What is its behavior when started on the tape

b... 01 0 1 1 b ...

 b. What is its behavior when started on the tape

b... 10 0 1 1 b ...

 2. Consider the Turing machine

(0, 1, 1, 0, R)
(0, 0, 0, 1, R)
(1, 1, 1, 1, R)
(1, b, 1, 2, L)
(2, 1, 1, 2, L)
(2, 0, 0, 2, L)
(2, b, 1, 0, R)

 a. What is its behavior when started on the tape

b... 11 0 0 b ...

 b. What is its behavior when started on the tape

b... 1 0 1 b ...

 3. Find a Turing machine that recognizes the set of all unary strings consisting of an even number of 1s (this
includes the empty string).

780 Modeling Arithmetic, Computation, and Languages

 4. Find a Turing machine that recognizes the set of all strings of 0s and 1s containing at least one 1.
 5. Find a Turing machine that recognizes 0*10*1.
 6. Find a Turing machine to accept the set of nonempty strings of well-balanced parentheses. (Note that

(()(())) is well balanced and (()(()) is not.)
 7. Find a Turing machine that recognizes 502n1n22n

 0 n ≥ 06 .
 8. Find a Turing machine that recognizes 5w * w

R
 0 w [50, 16* and w

R is the reverse of the string w}.
 9. Find a Turing machine that recognizes 5w1 * w2 0 w1, w2 [50, 16* and w1 ≠ w26 .
 10. Find a Turing machine that recognizes the set of palindromes on {0, 1}*, that is, the set of all strings in

{0, 1}* that read the same forward and backward, such as 101.
 11. Find a bit-inverter Turing machine that replaces every 0 in a string of 0s and 1s with a 1 and every 1 with a 0.
 12. Find a Turing machine that changes a unary string to a string of the same length with alternating 1s and 0s.
 13. Find a nonhalting Turing machine that begins with a single 1 on its tape and successively generates strings

of the form 0n10n, n ≥ 1, that is, such strings appear every so often on the tape.
 14. Find a Turing machine that, given an initial tape containing a (possibly empty) string of 1s, adds a single

0 to the left end of the string if the number of 1s is even and adds two 0s to the left end of the string if the
number of 1s is odd.

 15. Find a Turing machine that converts a string of 0s and 1s representing a nonzero binary number into a
string of that number of 1s. As an example, the machine should, when started on a tape containing

b... 1 0 0 b ...

 halt on a tape containing

b... 1 1 1 1 b ...

 16. Find a Turing machine that, given an initial tape containing a nonempty string of 1s, marks the right end
of the string with a * and puts a copy of the string to the right of the *. As an example, the machine should,
when started on a tape containing

b... 1 1 1 b ...

 halt on a tape containing

b... 1 1 1 1 1 1* b ...

 17. What number-theoretic function of three variables is computed by the following Turing machine?

 (0, 1, b, 0, R)
 (0, *, b, 1, R)
 (1, 1, 1, 2, R)
 (2, *, *, 3, R)
 (3, 1, 1, 2, L)
 (2, 1, 1, 4, R)
 (4, 1, 1, 4, R)
 (4, *, 1, 5, R)
 (5, 1, b, 5, R)
 (5, b, b, 6, R)

Section 9.4 Turing Machines 781

 18. What number-theoretic function of one variable is computed by the following Turing machine?

(0, 1, 1, 1, R)
(1, b, b, 9, R)
(1, 1, 1, 2, R)
(2, b, b, 3, L)
(3, 1, b, 9, L)
(2, 1, 1, 4, R)
(4, b, b, 5, L)
(5, 1, b, 3, L)
(4, 1, 1, 6, L)
(6, 1, 1, 6, L)
(6, b, 1, 7, L)
(7, b, 1, 8, L)
(8, b, 1, 9, L)

 19. Find a Turing machine to compute the function

f (n) = b1 if n = 0
2 if n ∙ 0

 20. Find a Turing machine to compute the function

f (n) = bn if n is even
n + 1 if n is odd

 21. Find a Turing machine to compute the function

f (n) = 2n

 22. Find a Turing machine to compute the function

f (n) = bn∙3 if 3 divides n
undefined otherwise

 23. Find a Turing machine to compute the function

f (n1, n2) = n1 + n2

 24. Find a Turing machine to compute the function

f (n1, n2) = bn1 if n1 is even
n2 if n1 is odd

 25. Find a Turing machine to compute the function

f (n1, n2) = bn1 − n2 if n1 ≥ n2

0 otherwise

782 Modeling Arithmetic, Computation, and Languages

 26. Find a Turing machine to compute the function

f (n1, n2) = max(n1, n2)

 27. Do Exercise 21 again, this time making use of the machines T1 and T2 of Exercises 16 and 23, respective-
ly, as “functions.” (Formally, the states of these machines would have to be renumbered as the quintuples
are inserted into the “main program,” but you may omit this tiresome detail and merely “invoke T1” or
“invoke T2.”)

 28. Describe verbally the actions of a Turing machine that computes the function f (n1, n2) = n1
n2, that

is, design the algorithm but do not bother to create all the necessary quintuples. You may make use of
 Exercises 16 and 23.

 S e c t i o n 9 . 5 ForMAl lAnguAgeS

Suppose we come upon the English language sentence, “The walrus talks loudly.”
Although we might be surprised at the meaning, or semantics, of the sentence,
we accept its form, or syntax, as valid in the language, meaning that the various
parts of speech (noun, verb, and so on) are strung together in a reasonable way. In
contrast, we reject, “Loudly walrus the talks,” as an illegal combination of parts
of speech, or as syntactically incorrect and not part of the language. We must
also worry about correct syntax in programming languages, but in these, unlike
natural languages (English, French, and so on), legal combinations of symbols are
specified in detail. Let’s give a formal definition of language; the definition will
be general enough to include both natural languages and programming languages.

 DefinitionS ALPhABEt, voCABuLAry, worD, LAnGuAGE
An alphabet or vocabulary V is a finite, nonempty set of symbols. A word over
V is a finite-length string of symbols from V. The set V * is the set of all words
over V. (See Example 6 in Chapter 3 for a recursive definition of V*.) A language
over V is any subset of V *.

Viewing syntactically correct English language as a subset L of the set of all
strings over the usual alphabet, we feel that, “The walrus talks loudly,” belongs to
L while, “Loudly walrus the talks,” does not.

For any given language L, how can we describe L, that is, specify exactly
those words belonging to L? If L is finite, we can just list its members, but if L is
infinite, can we find a finite description of L? Not always—there are many more
languages than possible finite descriptions. Although we will consider only lan-
guages that can be finitely described, we can still think of two possibilities. We
may be able to describe an algorithm to decide membership in L; that is, given
any word in V*, we could apply our algorithm and receive a yes or no answer as
to whether the word belongs to L. Or we may be able to describe a procedure al-
lowing us only to generate members of L, that is, crank out one at a time a list of
all the members of L. We will settle for languages for which this second option is
possible and describe such a language by defining its generative process, or giving
a grammar for the language.

Section 9.5 Formal Languages 783

Before we give a formal definition of what constitutes a grammar, let’s look
again at why, “The walrus talks loudly,” seems to be an acceptable sentence by
seeing how it could be generated. Starting from the notion of sentence, we would
agree that one legitimate form for a sentence is a noun phrase followed by a verb
phrase. Symbolically,

sentence S noun-phrase verb-phrase

A legitimate form of noun phrase is an article followed by a noun,

noun-phrase S article noun

and a legitimate form of verb phrase is a verb followed by an adverb,

verb-phrase S verb adverb

We would also agree with the substitutions

 article S the
 noun S walrus
 verb S talks

 adverb S loudly

Thus we can generate the sentence, “The walrus talks loudly,” by making succes-
sive substitutions:

 sentence 1 noun-phrase verb-phrase
 1 article noun verb-phrase
 1 the noun verb-phrase
 1 the walrus verb-phrase
 1 the walrus verb adverb
 1 the walrus talks adverb
 1 the walrus talks loudly

The foregoing boldface terms are those for which further substitutions can be
made. The nonboldface terms stop or terminate the substitution process. These
ideas are incorporated in the next definition.

 Definition PhrAsE-struCturE (tyPE 0) GrAMMAr
A phrase-structure grammar (type 0 grammar) G is a 4-tuple, G = (V, VT, S, P),
where

V = vocabulary
VT = nonempty subset of V called the set of terminals
S = element of V – VT called the start symbol
P = finite set of productions of the form a S b where a is a word over V

containing at least one nonterminal symbol and b is a word over V

784 Modeling Arithmetic, Computation, and Languages

The productions of a grammar allow us to transform some words over V into
others; the productions can be called rewriting rules.

 Definition GEnErAtions (DErivAtions) in A LAnGuAGE
Let G be a grammar, G = (V, VT, S, P), and let w1 and w2 be words over V.
Then w1 directly generates (directly derives) w2, written w1 1 w2, if a S b
is a production of G, w1 contains an instance of a, and w2 is obtained from w1
by replacing that instance of a with b. If w1, w2, … , wn are words over V and
w1 1 w2, w2 1 w3, … , wn−1 1 wn, then w1 generates (derives) wn, written
w1 1* wn. (By convention, w1 1* w1.)

 example 49 Here is a very simple grammar: G = (V, VT, S, P) where V = 50, 1, S6,
VT = 50, 16, and P = 5S S 0S, S S 16 .

 example 50 In the grammar of Example 49, 00S 1 000S because the production S S 0S has
been used to replace the S in 00S with 0S. Also 00S 1* 00000S.

PrACtiCe 62 Show that in the grammar of Example 49, 0S 1* 00001.
■

 Definition LAnGuAGE GEnErAtED By A GrAMMAr
Given a grammar G, the language L generated by G, sometimes denoted L(G),
is the set

L = 5w [VT
* 0

S 1* w6

In other words, L is the set of all strings of terminals generated from the start
symbol.

Notice that once a string w of terminals has been obtained, no productions can
be applied to w, and w cannot generate any other words.

The following procedure generates a list of the members of L: Begin with
the start symbol S and systematically apply some sequence of productions until
a string w1 of terminals has been o btained; then w1 [L. Go back to S and re-
peat this procedure using a different sequence of productions to generate another
word w2 [L, and so forth. Actually, this procedure doesn’t quite work because we
might start on an infinite sequence of direct derivations that never leads to a string
of terminals and thus never contributes a word to our list. Instead, we need to run
a number of derivations from S simultaneously (parallel processing), checking on
each one after each step and adding the final word to the list of members of L for
any that terminate. That way we cannot get stuck waiting indefinitely while un-
able to do anything else.

ReminDeR

Productions may be used
in any order. The only
requirement is that the
left side of the production
must appear in the string
you are processing.

Section 9.5 Formal Languages 785

PrACtiCe 63 Describe the language generated by the grammar G of Example 49.
■

Languages derived from grammars such as we have defined are called formal
languages. If the grammar is defined first, the language will follow as an outcome
of the definition. Alternatively, the language, as a well-defined set of strings, may
be given first, and we then seek a grammar that generates it.

 example 51 Let L be the set of all nonempty strings consisting of an even number of 1s. Then
L is generated by the grammar G = (V, VT, S, P) where V = 51, S6, VT = 516 ,
and P = 5S S SS, S S 116 . A language can be generated by more than one
grammar. L is also generated by the grammar G′ = (V′, V′T, S′, P′) where
V′ = 51, S6, V′T = 516 , and P′ = 5S S 1S1, S S 116 .

PrACtiCe 64

a. Find a grammar that generates the language L = 50n10n
 0 n ≥ 06 .

b. Find a grammar that generates the language L = 50n10n
 0 n ≥ 16 . ■

Trying to describe concisely the language generated by a given grammar and
defining a grammar to generate a given language can both be quite difficult tasks.
We’ll look at another example where the grammar is a bit more complicated than
any we’ve seen so far. Don’t worry about how you might think up this grammar;
just convince yourself that it works.

 example 52 Let L = 5anbncn
 0 n ≥ 16 . A grammar generating L is G = (V, VT, S, P) where

V = 5a, b, c, S, B, C6 , VT = 5a, b, c6 , and P consists of the following productions:

 1. S S aSBC 3. CB S BC 5. bB S bb 7. cC S cc
 2. S S aBC 4. aB S ab 6. bC S bc

It is fairly easy to see how to generate any particular member of L using these pro-
ductions. Thus, a derivation of the string a2b2c2 is

S 1 aSBC
 1 aaBCBC
 1 aaBBCC
 1 aabBCC
 1 aabbCC
 1 aabbcC
 1 aabbcc

In general, L # L(G) where the outline of a derivation for any anbncn is given be-
low; the numbers refer to the productions used.

786 Modeling Arithmetic, Computation, and Languages

S 1*1 an−1S(BC)n−1

 12 an(BC)n

 1*3 anB
nC

n

 14 anbB
n−1C

n

 1*5 a
nb

nC
n

 16 a
nb

ncC
n−1

 1*7 a

nb

nc

n

We must also show that L(G) # L, which involves arguing that some productions
must be used before others and that the general derivation shown above is the only
sort that will lead to a string of terminals.

In trying to invent a grammar to generate the L of Example 52, we might
first try to use productions of the form B S b and C S c instead of productions
4 through 7. Then we would indeed have L # L(G), but L(G) would also include
words such as an(bc)n.

Formal languages were developed in the 1950s by linguist Noam Chomsky
in an attempt to model natural languages, such as English, with an eye toward
automatic translation. However, since a natural language already exists and is
quite complex, defining a formal grammar to generate a natural language is very
difficult. Attempts to do this for English have been only partially successful.

ReminDeR

“Throwing in” produc-
tions to get the language
L you want often means
that you generate more
than L. The productions
must generate exactly the
strings in L.

 example 53 We can describe a formal grammar that will generate a very restricted class of
English sentences. The terminals in the grammar are the words “the,” “a,” “river,”
“walrus,” “talks,” “flows,” “loudly,” and “swiftly,” and the nonterminals are the
words sentence, noun-phrase, verb-phrase, article, noun, verb, and adverb.
The start symbol is sentence and the productions are

sentence S noun-phrase verb-phrase
noun-phrase S article noun
verb-phrase S verb adverb
article S the
article S a
noun S river
noun S walrus
verb S talks
verb S flows
adverb S loudly
adverb S swiftly

We know how to derive, “The walrus talks loudly,” in this grammar. Here is a
derivation of, “A river flows swiftly”:

Section 9.5 Formal Languages 787

sentence 1 noun-phrase verb-phrase
 1 article noun verb-phrase
 1 a noun verb-phrase
 1 a river verb-phrase
 1 a river verb adverb
 1 a river flows adverb
 1 a river flows swiftly

A few other sentences making various degrees of sense, such as, “a walrus
flows loudly,” are also part of the language defined by this grammar. The difficulty
of specifying a grammar for English as a whole becomes more apparent when we
consider that a phrase such as, “time flies,” can be an instance of either a noun fol-
lowed by a verb or of a verb followed by a noun. This phrase is “ambiguous” (see
Exercises 35 and 36 in this section).

Programming languages are less complex than natural languages, and their
syntax often can be described successfully using formal language notation.

 example 54 A section of formal grammar to generate identifiers in some programming lan-
guage could be presented as follows:

identifier S letter
identifier S identifier letter
identifier S identifier digit
letter S a
letter S b

(
letter S z
digit S 0
digit S 1

(
digit S 9

Here the set of terminals is 5a, b, … , z, 0, 1, … , 96 and identifier is the start
symbol.

 example 55 A shorthand that can avoid a long listing of productions is called backus-naur
form (BNF). The productions of Example 54 can be given in BNF by three lines
(as in Example 7 of Chapter 3):

<identifier> ::= <letter> 0 <identifier> <letter> 0 <identifier> <digit>
<letter> ::= a 0 b 0 c 0 … 0 z
<digit> ::= 0 0 1 0 … 0 9

788 Modeling Arithmetic, Computation, and Languages

In BNF, nonterminals are identified by < >, the production arrow becomes
::=, and 0 stands for “or,” identifying various productions having the same left-
hand symbol.

In modern times, BNF notation was originally used to define the programming
language Algol (ALGOrithmic Language) in the early 1960s. However, it appears
that a similar notation was used between 400 bce and 200 bce to describe the rules
of Sanskrit grammar.2

 example 56 The markup language HTML (Hypertext Markup Language) is a specific language
for writing documents that will be transmitted across a network and displayed by a
Web browser. The browser parses and interprets the various tags that identify legal
elements of an HTML document and displays the elements accordingly. The struc-
ture of each HTML element, such as a TABLE element, is fixed; someone writing
an HTML document using TABLE elements must follow the structure of a TABLE
element as defined in HTML. XML (Extensible Markup Language) is a gener-
alized language for defining specific markup languages, that is, it’s a language
for defining languages. The elements of an XML document can have whatever
structure the user chooses; the user defines these elements in an associated DTD
(Document Type Definition). The DTD can be part of the XML document, or it can
be in a separate file referenced by the XML document (and as such, available for
a number of XML documents to use). The following DTD gives a grammar for an
XML document about manufactured parts, and defines the structure of a “PART-
SLIST” element, an “ITEM” element, and so forth.

 <!DOCTYPE PARTSLIST 5
 <!ELEMENT PARTSLIST (ITEM+)>
 <!ELEMENT ITEM (PARTNUMBER, USEDINLIST)>
 <!ELEMENT PARTNUMBER (#PCDATA)>
 <!ELEMENT USEDINLIST (USEDIN*)>
 <!ELEMENT USEDIN (MAKE, MODEL)>
 <!ELEMENT MAKE (#PCDATA)>
 <!ELEMENT MODEL (#PCDATA)>
 6>

The DTD uses notation similar to that for regular expressions, where * means
zero or more instances, + means one or more instances, and ? means zero instances
or one instance. So in the preceding DTD, a PARTSLIST consists of one or more
ITEMs, and a USEDINLIST consists of zero or more USEDINs. The notation #PC-
DATA stands for a “parsed character string”. In BNF notation, the grammar becomes

<PARTSLIST> ::5 <ITEM> 0<ITEM><PARTSLIST>
<ITEM> ::5 <PARTNUMBER> <USEDINLIST>
<PARTNUMBER> ::5 <identifier>
<USEDINLIST>::5l 0 <USEDIN> 0<USEDIN><USEDINLIST>
<USEDIN> ::5 <MAKE><MODEL>
<MAKE>::5 <identifier>
<MODEL ::5 <identifier>
<identifier> ::5 [as defined in Example 55]

2 “Panini-Backus Form Suggested,” Ingerman, P. Z ., Communications of the ACM, vol. 10, No. 3, 1967.

Section 9.5 Formal Languages 789

The preceding grammar allows the erasing productions F S l and A S l.
To generate any language containing l, we have to be able to erase somewhere. In
the following grammar types, we will limit erasing, if it occurs at all, to a single
production of the form S S l, where S is the start symbol; if this production oc-
curs, we will not allow S to appear on the right-hand side of any other productions.
This restriction allows us to crank out l from S as a special case and then get on
with other derivations, none of which allow any erasing. Let’s call this the erasing
convention. The following definition defines three special types of grammars by
further restricting the productions allowed.

A Web browser parses the XML document to determine whether it is a valid in-
stance of the language defined by its associated DTD, and if so, displays it.

Classes of Grammars

Before we identify some types of grammars, let’s look at one more example.

 example 57 Let L be the empty string l together with the set of all strings consisting of an
odd number n of 0s, n ≥ 3. The grammar G = (V, VT, S, P) generates L where
V = 50, A, B, E, F, W, X, Y, Z, S6 , VT = 506 , and the productions are

S S FA 0X S X0 0Z S Z0
S S FBA Y0 S 0Y WBZ S EB
FB S F0EB0 FX S F0W F S l

EB S 0 YA S Z0A A S l

EB S XBY W0 S 0W

The derivation S 1 FA 1
*

ll = l produces l. The derivation

S 1 FBA
 1 F0EB0A
 1 F0XBY0A

 1* FX0B0YA
 1* F0W0B0Z0A
 1* F00WBZ00A
 1 F00EB00A
 1 F00000A

 1* 00000

produces five 0s. Notice how X and Y, and also W and Z, march back and forth
across the strings of 0s, adding one more 0 on each side. This activity is highly
reminiscent of a Turing machine read-write head sweeping back and forth across
its tape and enlarging the printed portion.

ReminDeR

The erasing convention
says how to do erasing
IF erasing is to be done.
It does not require the
production S S l in every
grammar.

790 Modeling Arithmetic, Computation, and Languages

 DefinitionS ContExt-sEnsitivE, ContExt-frEE, AnD rEGuLAr GrAMMArs;
ChoMsKy hiErArChy
A grammar G is context-sensitive (type 1) if it obeys the erasing convention and
if, for every production a S b (except S S l), the word b is at least as long as
the word a. A grammar G is context-free (type 2) if it obeys the erasing conven-
tion and for every production a S b, a is a single nonterminal. A grammar G
is regular (type 3) if it obeys the erasing convention and for every production
a S b (except S S l), a is a single nonterminal and b is of the form t or tW,
where t is a terminal symbol and W is a nonterminal symbol. This hierarchy of
grammars, from type 0 to type 3, is called the Chomsky hierarchy.

In a context-free grammar, a single nonterminal symbol on the left of a
production can be replaced wherever it appears by the right side of the pro-
duction. In a context-sensitive grammar, a given nonterminal symbol can per-
haps be replaced only if it is part of a particular string (context)—hence the
names context-free and context-sensitive. It is clear that any regular grammar
is also context-free, and any context-free grammar is also context-sensitive.
The grammar of Example 49 is regular (the two productions have the single
nonterminal S on the left, and on the right either 1—a terminal—or 0S—a ter-
minal followed by a nonterminal). Both grammars of Example 51 are context-
free but not regular (again the single nonterminal S appears on the left of all
productions, but the right sides consist of three symbols or two nonterminals
or two terminals, respectively). The grammar of Example 52 is context-sensi-
tive but not context-free (the productions do not shrink any strings, but some
left sides have multiple symbols). The grammars of Example 53 and Example
54 are context-free but not regular (for example, the first three productions of
Example 54 violate the requirement for a regular grammar). Finally, the gram-
mar of Example 57 is a type 0 grammar, but it is not context-sensitive (for
example, the production EB S 0 is a “shrinking” production; also, the erasing
convention is violated).

 Definition LAnGuAGE tyPEs
A language is type 0 (context-sensitive, context-free, or regular) if it can be
generated by a type 0 (context-sensitive, context-free, or regular) grammar.

Because of the relationships among the four grammar types, we can classify
languages as shown in Figure 9.26. Thus, any regular language is also context-free
because any regular grammar is also a context-free grammar, and so on. However,
although it turns out to be true, we do not know from what we have done that these
sets are properly contained in one another. For example, the language L described
in Example 57 was generated in that example by a grammar that was type 0 but
not context-sensitive, but that does not imply that L itself falls into that category.
Different grammars can generate the same language.

Section 9.5 Formal Languages 791

Regular

Context-free

Context-sensitive

Type 0

Formal Language Hierarchy

figure 9.26

 Definition EquivALEnt GrAMMArs
Two grammars are equivalent if they generate the same language.

 example 58 Example 57 gave a grammar G to generate a language L, which is l together with all
odd-length strings of 0s of length at least 3. We will now give three more grammars
equivalent to G. (See if you agree that each of these grammars also generates L.)

G1 = (V, VT, S, P) where V = 50, A, B, S6 , VT = 506 , and the productions are

 S S l AB S 00
 S S ABA 0A S 000A
 A S 0

G1 is context-sensitive but not context-free.
G2 = (V, VT, S, P) where V = 50, A, S6 , VT = 506 , and the productions are

 S S l A S 00A
 S S 00A A S 0

G2 is context-free but not regular.
G3 = (V, VT, S, P) where V = 50, A, B, C, S6, VT = 506, and the productions

are

 S S l B S 0
 S S 0A B S 0C
 A S 0B C S 0B

G3 is regular.
Thus, when all is said and done, L is a regular language.

792 Modeling Arithmetic, Computation, and Languages

This is a somewhat confusing point and worth repeating. Because a given
language can be generated by multiple grammars, if you find a grammar G for a
language L that is type x but not type y, that does not necessarily make L type x
but not type y. There might be a different grammar that also generates L and is a
type y grammar.

formal Languages and Computational Devices

The language L of Example 57 can be described by the regular expression
l ~ (000)(00)*, so L is a regular set. From Example 58, L is also a regular language.
It is not coincidental that a regular set turned out to be a regular language. It can be
shown that for any finite-state machine, the set it recognizes is a regular language. It
can also be shown that for any regular language, there is a finite-state machine that
recognizes exactly that language. (In the proofs of these results, the productions of a
regular grammar correspond to the state transitions of a finite-state machine.) Hence
those sets recognized by finite-state machines—the regular sets—correspond to
regular languages. Therefore the class of sets recognized by a computational device
of limited capacity coincides with the most restricted class of languages.

On the other end of the spectrum, the most general computational device is
the Turing machine and the most general language is a type 0 language. As it
happens, the sets recognized by Turing machines correspond to type 0 languages.

There are computational devices with capabilities midway between those of
finite-state machines and those of Turing machines. These devices recognize ex-
actly the context-free languages and the context-sensitive languages, respectively.

The type of device that recognizes the context-free languages is called a
pushdown automaton, or pda. A pda consists of a finite-state unit that reads
input from a tape and controls activity in a stack. Symbols from some alphabet
can be pushed onto or popped off of the top of the stack. The finite-state unit in a
pda, as a function of the input symbol read, the present state, and the top symbol
on the stack, has a finite number of possible next moves. The moves are of the
following types:

 1. Go to a new state, pop the top symbol off the stack, and read the next input
symbol.

 2. Go to a new state, pop the top symbol off the stack, push a finite number
of symbols onto the stack, and read the next input symbol.

 3. Ignore the input symbol being read, manipulate the stack as above, but do
not read the next input symbol.

A pda has a choice of next moves, and it recognizes the set of all inputs for which
some sequence of moves exists that causes it to empty its stack. It can be shown
that any set recognized by a pda is a context-free language, and conversely.

The type of device that recognizes the context-sensitive languages is called a
linear bounded automaton, or lba. An lba is a Turing machine whose read-write
head is restricted to a portion of the tape that is no longer than a constant multiple
of the length of the original input; in addition, at each step it has a choice of pos-
sible next moves. An lba recognizes the set of all inputs for which some sequence

PrACtiCe 65 Give the derivation of 00000 in G1, G2, and G3. ■

Section 9.5 Formal Languages 793

of moves exists that causes it to halt in a final state. Any set recognized by an lba
can be shown to be a context-sensitive language, and conversely.

Figure 9.27 shows the relationship between the hierarchy of languages and the
hierarchy of computational devices.

C
on

te
xt

-fr
ee

recognized by
pda

C
on

tex
t-s

ensitiv
e recognized by

lba

Ty

pe
0

recognized by Turing machine

Regular
recognized by

finite-state machine

figure 9.27

Context-free Grammars

Context-free grammars are important for three reasons. Context-free grammars
seem to be the easiest to work with, since they allow replacing only one symbol at
a time. Furthermore, many programming languages are defined such that sections
of syntax, if not the whole language, can be described by context-free grammars.
Finally, a derivation in a context-free grammar has a nice graphical representation
called a parse tree.

 example 59 The grammar of Example 54 is context-free. The word d2q can be derived
as follows: identifier 1 identifier letter 1 identifier digit letter 1 letter digit
 letter 1 d digit letter 1 d2 letter 1 d2q. We can represent this derivation as a
tree with the start symbol for the root. When a production is applied to a node, that
node is replaced at the next lower level of the tree by the symbols in the right-hand
side of the production used. A tree for the derivation appears in Figure 9.28.

figure 9.28

794 Modeling Arithmetic, Computation, and Languages

Suppose that a context-free grammar G describes a programming language.
The programmer uses the rules of G to generate legitimate strings of symbols,
that is, words in the language. Here we may think of a word as corresponding to
a program instruction. Thus, a word consists of various subwords, for example,
identifiers, operators, and key words for the language. The program instructions
are fed into the compiler for the language so that the program can be translated
into machine language code for the computer. The compiler must decide whether
each program instruction is legitimate in the language. In a sense, the compiler
has to undo the process that the programmer used to construct the statement; that
is, the compiler must start with the statement and decompose it to see whether it
follows the rules of the language. This really entails two questions: Are the sub-
words themselves legitimate strings? Is the program instruction a legitimate way
of grouping the subwords together?

 Usually the set of legitimate subwords of a language can be described by a
regular expression, and then a finite-state machine can be used to detect the sub-
words; the lexical analysis or scanner portion of the compiler handles this phase of
compilation. (See Exercise 32 of Section 9.3 for the lexical analysis of ScrubOak.)
If all goes well, the scanner then passes the program instruction, in the form of a
string of legitimate subwords, to the syntax analyzer. The syntax analyzer deter-
mines whether the string is correct by trying to parse it (construct its parse tree).

 Various parsing techniques, which we won’t go into, have been devised.
Given a string to be tested, one approach is to construct a tree by beginning with
the start symbol, applying productions (keeping an eye on the “goal”—the given
string) and ending with the goal string. This procedure is called top-down pars-
ing. The alternative is to begin with the string, see what productions were used
to create it, apply productions “backwards,” and end with the start symbol. This
process is called bottom-up parsing. The trick to either approach is to decide
exactly which productions should be used.

PrACtiCe 66 Draw a parse tree for the word m34s in the grammar of Example 54.
■

 example 60 Consider the context-free grammar G given by G = (V, VT, S, P) where
V = 5a, b, c, A, B, C, S6 , VT = 5a, b, c6 , and the productions are

 S S B B S C A S abc
 S S A B S ab C S c

Suppose we want to test the string abc. A derivation for abc is S 1 A 1 abc.
If we try a top-down parse, we might begin with

S

B

Then we have to detect that this will not work and try something else. If we try a
bottom-up parse, we might begin with

Section 9.5 Formal Languages 795

BC

abc

Then we have to detect that this will not work and try something else. Parsing tech-
niques automate this process and attempt to minimize the amount of false starts
and backtracking required.

Notice the distinction between generating members of a set, which the pro-
grammer does, and deciding membership in a set, which the compiler does. Since
we ask the compiler to decide membership in a set, a decision algorithm must exist
for the set. It turns out that decision algorithms do exist for context-free languages,
another point in their favor.

S e c t i o n 9 . 5 review

tecHniQueS

• Describe L(G) for a given grammar G.
• Define a grammar to generate a given language L.
• Construct parse trees in a context-free grammar.

main iDeaS

• A grammar G is a generating mechanism for its lan-
guage L(G).

• Formal languages were developed in an attempt to
describe correct syntax for natural languages; al-
though this attempt has largely failed because of the
complexity of natural languages, it has been quite
successful for high-level programming languages.

W

exeRciSeS 9.5

 1. Describe L(G) for the grammar G = (V, VT, S, P) where V = 5a, A, B, C, S6 , VT = 5a6 , and P consists of

 S S A B S A
 A S BC aC S l

 A S a

 What type of grammar is this?
 2. Describe L(G) for the grammar G = (V, VT, S, P) where V = 50, 1, A, B, S6, VT = 50, 16, and P consists of

 S S 0A A S 1BB B S 01
 S S 1A B S 11

 What type of grammar is this?

• Special classes of grammars are defined by restrict-
ing the allowable productions.

• The various types of formal languages correspond
to the sets recognized by various automata; in par-
ticular, (1) regular languages are the sets recognized
by finite-state machines, (2) context-free languages
are the sets recognized by pushdown automata,
(3) context-sensitive languages are the sets recog-
nized by linear bounded automata, and (4) type 0
languages are the sets recognized by Turing ma-
chines.

• Derivations in context-free grammars can be illus-
trated by parse trees.

• A compiler for a context-free programming lan-
guage checks correct syntax by parsing.

796 Modeling Arithmetic, Computation, and Languages

 3. Describe L(G) for the grammar G = (V, VT, S, P) where V = 50, 1, A, B, S6, VT = 50, 16, and P consists of

 S S 0 A S 1B B S 0A
 S S 0A B S 0

 What type of grammar is this?
 4. Describe L(G) for the grammar G = (V, VT, S, P) where V = 50, 1, A, S6 , VT = 50, 16 , and P consists of

 S S 0S A S 1A
 S S 11A A S 1

 What type of grammar is this?
 5. Find a regular grammar that generates the language of Exercise 1.
 6. Find a regular grammar that generates the language of Exercise 2.
 7. Find a regular grammar that generates the language of Exercise 3.
 8. Find a regular grammar that generates the language of Exercise 4.
 9. Describe L(G) for the grammar G = (V, VT, S, P) where V = 5a, b, A, B, S6, VT = 5a, b6, and P consists of

S S aA
S S l
A S bS

 10. Describe L(G) for the grammar G = (V, VT, S, P) where V = 50, 1, A, S6 , VT = 50, 16 , and P consists of

S S 0
S S ASA
A S 1

 11. Describe L(G) for the grammar G = (V, VT, S, P) where V = 5a, b, A, B, S6, VT = 5a, b6, and P consists of

 S S AB AB S AAB
 A S a AB S ABB
 B S b

 What type of grammar is G? Find a regular grammar G′ that generates L(G).
 12. Describe L(G) for the grammar G = (V, VT, S, P) where V = 5a, b, c, A, B, C, R, T, S6 , VT = 5a, b, c6 ,

and P consists of

 S S ARBT T S cT
 R S ARB T S c
 RB S ACBB A S a
 CB S BC B S b
 CT S cT

 What type of grammar is G? Find a context-free grammar G′ that generates L(G). Explain why it is not
possible to find a regular grammar that generates L(G).

Section 9.5 Formal Languages 797

 13. Write the productions of the following grammars in BNF:
 a. G in Exercise 2
 b. G in Exercise 3
 c. G in Exercise 4
 14. Write the productions of the following grammars in BNF:
 a. G in Exercise 10
 b. G3 in Example 58
 15. A grammar G is described in BNF as

<S> ::= 1 01<S> 0<S> 00

 a. Find a regular expression for L(G).
 b. Find a regular grammar for L(G).
 16. A grammar G is described in BNF as

<S> ::= 01 00<S> 0<S> 1

 a. Find a regular expression for L(G).
 b. Find a regular grammar for L(G).
 17. Find a grammar that generates the set of all strings of well-balanced parentheses.
 18. English words are translated into “pig latin” by the following two rules:
 1. If a word begins with a vowel, add the suffix “yay”.
 2. If a word begins with a string of one or more consonants, move the string of leading consonants to the

back of the word and then add the suffix “ay”.
 a. What is the pig latin translation of the word “apple”?
 b. What is the pig latin translation of the word “monkey”?
 c. What is the pig latin translation of the word “chain”?
 d. Find a grammar that generates all legal pig latin words.
 e. Using your grammar from part d, generate the pig latin word that was the answer to part c.
 19. A word w in V* is a palindrome if w = w

R, where w
R is the reverse of the string w. A language L is a

palindrome language if L consists entirely of palindromes. Find a grammar that generates the set of all
palindromes over the alphabet 5a, b6 .

 20. a. Let L be a palindrome language (see Exercise 19). Prove that LR = 5wR
 0 w [L6 is a palindrome

language.
 b. Let w be a palindrome. Prove that the language described by the regular expression w* is a palindrome

language.
 21. Find a regular grammar that generates the language L = 11(0 ~ 1)*.
 22. Find a regular grammar that generates the language L = (0 ~ 1)*01.
 23. Find a grammar that generates the language L = 512n

 0 n ≥ 06 .
 24. Find a regular expression for the language of Exercise 23. Is your grammar from Exercise 23 regular? If

not, write a regular grammar that generates L.
 25. Find a context-free grammar that generates the language L = 50n1n

 0 n ≥ 06 .

798 Modeling Arithmetic, Computation, and Languages

 26. Find a context-free grammar that generates the language L = 5wwR
 0 w [50, 16* and wR is the reverse of

the string w}.
 27. Find a context-free grammar that generates the language L where L consists of the set of all nonempty

strings of 0s and 1s with an equal number of 0s and 1s.
 28. Find a context-free grammar that generates the language L where L consists of the set of all nonempty

strings of 0s and 1s with twice as many 0s as 1s.
 29. Find a grammar that generates the language L = 502i

 0 i ≥ 06 .
 30. Find a grammar that generates the language L = 50n12n0n

 0 n ≥ 06 .
 31. Find a grammar that generates the language L = 5ww 0 w [50, 16*6 .
 32. Find a grammar that generates the language L = 5an2

 0 n ≥ 16 . (By Exercise 38, L is not a context-free
language, so your grammar cannot be too simple.)

 33. Draw parse trees for the following words:
 a. 111111 in the grammar G of Example 51
 b. 111111 in the grammar G′ of Example 51
 34. Draw parse trees for the following words:
 a. 011101 in the grammar G of Exercise 2
 b. 00111111 in the grammar G of Exercise 4
 35. Consider the context-free grammar G = (V, VT, S, P) where V = 50, 1, A, S6 , VT = 50, 16 , and P

consists of

S S A1A
A S 0
A S A1A

 Draw two distinct parse trees for the word 01010 in G. A grammar in which a word has more than one
parse tree is ambiguous.

 36. Ambiguity in a grammar (see Exercise 35) that describes a programming language is an undesirable trait
because the compiler is unable to uniquely parse the programming instruction. Ambiguity in a natural
language can be similarly confusing. The following two instructions were posted beside an escalator.

“Shoes must be worn.”

“Dogs must be carried.”

 Give two possible interpretations for each instruction.
 37. Show that for any context-free grammar G there exists a context-free grammar G′ in which for every

production a S b, b is a longer string than a, L(G′) # L(G) and L(G) − L(G′) is a finite set.
 38. Following is the pumping lemma for context-free languages. Let L be any context-free language. Then

there exists some constant k such that for any word w in L with 0w 0 ≥ k, w can be written as the string
w1w2w3w4w5 with 0w2w3w4 0 ≤ k and 0w2w4 0 ≥ 1. Furthermore, the word wlw2

i w3w4
i w5 [L for each i ≥ 0.

 a. Use the pumping lemma to show that L = 5anbncn
 0 n ≥ 16 is not context-free.

 b. Use the pumping lemma to show that L = 5an2
 0 n ≥ 16 is not context-free.

c H a p t e R 9 review

teRminology

addition modulo n (p. 692)
alphabet (pp. 694, 782)
alternating group (p. 701)
associative binary operation

(p. 687)
Backus Naur form (BNF) (p. 787)
bottom-up parsing (p. 794)
cancellation laws (p. 696)
canonical parity-check matrix

(p. 721)
check bits in a code word (p. 721)
Chomsky hierarchy (p. 790)
coefficient (p. 690)
commutative binary operation

(p. 687)
commutative group (p. 688)
concatenation (p. 694)
context-free (type 2) grammar

(p. 790)
context-free language (p. 790)
context-sensitive (type 1)

grammar (p. 790)
context-sensitive language

(p. 790)
coset leader (p. 723)
cosets of a subgroup in a group

(p. 717)
decision problem (p. 772)
degree of a polynomial (p. 691)
delay element (p. 744)
direct generation (derivation) of a

word (p. 784)
double-error detecting code

(p. 715)
empty string (p. 694)
equivalent grammars (p. 791)
equivalent states (p. 739)
erasing convention (p. 789)
even and odd permutations

(p. 700)
final state (pp. 734, 765)
finite-state machine (p. 729)
formal language (p. 785)
free monoid generated by a set A

(p. 695)

generation (derivation) of a word
(p. 784)

group (p. 688)
group code (p. 719)
group of permutations on a set A

(p. 693)
halting problem (p. 774)
Hamming distance (p. 718)
homomorphism (p. 702)
identity element (p. 687)
improper subgroup (p. 700)
information bits in a code word

(p. 721)
input alphabet (p. 729)
intractable problem (p. 776)
inverse element (p. 687)
isomorphism (p. 702)
k-equivalent states (p. 739)
kernel of a homomorphism

(p. 716)
language (p. 782)
language generated by a

grammar G (p. 784)
left cancellation law (p. 696)
left cosets (p. 717)
length of a string (p. 694)
linear bounded automaton (lba)

(p. 792)
maximum likelihood decoding

(p. 715)
minimum distance of a code

(p. 718)
monoid (p. 689)
multiplication modulo n (p. 692)
negative solution to a decision

problem (p. 772)
next-state function (p. 729)
nondeterministic Turing machine

(p. 777)
NP (p. 777)
NP-complete problem (p. 778)
number-theoretic function (p. 767)
order of a group (p. 698)
output alphabet (p. 729)
output function (p. 729)

P (p. 777)
parse tree (p. 793)
partial function (p. 767)
partition refinement (p. 741)
perfect code (p. 722)
permutation group (p. 700)
phrase-structure (type 0) grammar

(p. 783)
polynomial in x with real number

coefficients (polynomial in x
over R) (p. 690)

polynomial of zero degree (p. 691)
positive solution to a decision

problem (p. 772)
production (p.783)
proper subgroup (p. 700)
pushdown automaton (pda)

(p. 792)
recognition by a finite-state

machine (p. 734)
recognition (acceptance) by a

Turing machine (p. 765)
refinement (p.741)
regular expression (p. 735)
regular (type 3) grammar (p. 790)
regular language (p. 790)
regular set (p. 736)
right cancellation law (p. 696)
right cosets (p. 717)
semigroup (p. 689)
semigroup of transformations on a

set A (p. 693)
sequential network (p. 745)
single-error correcting code

(p. 715)
start symbol (p. 783)
state graph (p. 730)
state table (p. 730)
string (p. 694)
subgroup (p. 699)
symbol (p. 694)
symmetric group of degree n

(p. 693)
syndrome of a binary n-tuple in a

group code (p. 724)

 Chapter 9 Review 799

800 Modeling Arithmetic, Computation, and Languages

tape alphabet (p. 762)
terminal (p. 783)
top-down parsing (p. 794)
total function (p. 767)
transposition (p. 700)

Turing-computable function
(p. 768)

Turing machine (p. 762)
type 0 language (p. 790)
unreachable state (p. 737)

unsolvable (undecidable) decision
problem (p. 772)

vocabulary (p. 782)
weight of a code word (p. 719)
word (pp. 694, 782)

Self-teSt

Answer the following true–false questions.

section 9.1
1. A binary operation is associative if the order of the

elements being operated upon does not matter.
2. The identity i in a group 3G, # 4 has the property that

x−1 # i = i # x−1 = x−1 for all x in G.
3. Every group is also a monoid.
4. A group of order 10 cannot have a subgroup of

order 6.
5. If 3S, # 4 and 3T, + 4 are two groups, then a function

f: S S T for which f (x # y) = f (x) + f (y) is an
isomorphism.

section 9.2
1. A binary single-error correcting code must have

minimum distance at least 3.
2. In a canonical n × r parity-check matrix H, the

bottom r rows form the r × r identity matrix.
3. A canonical n × r parity-check matrix H maps all

of Zm
2 to code words in Zn

2.
4. If the syndrome of a received word X in Zn

2 is 0r,
then X is assumed to be a code word.

5. A perfect code is “perfect” because no bit errors
will occur during transmission.

section 9.3
1. The next state of a finite-state machine is determined

by its present state and the present input symbol.
2. The set of all binary strings ending in two 0s is

regular.
3. A finite-state machine cannot get to a state from

which there is no exit.
4. According to Kleene’s theorem, a set that cannot be

described by a regular expression cannot be recog-
nized by a finite-state machine.

5. In a finite-state machine, k-equivalent states are
also (k + 1)-equivalent.

section 9.4
1. A Turing machine halts if and only if it enters a

final state.
2. A Turing machine that computes the function

f (n) = n + 1, given input n, will halt with (n + 1)
1s on its tape.

3. Church’s thesis says that the halting problem is
unsolvable.

4. The halting problem says that, given a Turing ma-
chine and its input, there is no algorithm to decide
whether the Turing machine halts when run on that
input.

5. A set in P is recognizable by a Turing machine in
no more than a polynomial number of steps.

section 9.5
1. The language generated by a type 0 grammar G is

the set of all strings of terminals generated from the
start symbol by applying G’s productions a finite
number of times.

2. Beginning at the start symbol and applying the
productions of a grammar G eventually leads to a
string of terminals.

3. A language generated by a grammar that is context-
sensitive but not context-free is a context-sensitive
but not context-free language.

4. Any regular set is a regular language.
5. A parse tree will have as many leaves as terminal

symbols in the word being derived.

o n t H e c o m p u t e R

For Exercises 1–11, write a computer program that
produces the desired output from the given input.

1. Input: Two words from an alphabet A
 Output: Their concatenation

2. Input: Positive integer n and finite alphabet A
 Output: All words over A of length ≤ n

3. Input: Positive integer n
 Output: Tables for addition and multiplication

modulo n

4. Input: Positive integer n
 Output: The n! elements of Sn expressed both in

 array form and in cycle notation, the group table for
3Sn, + 4 , and the group table for 3An, + 4

5. Input: n × n array, n ≤ 10, that purports to repre-
sent a binary operation on the finite set of integers
from 1 to n

 Output: Determination of whether the set under this
operation is a commutative group

6. Input: Two n × n arrays, n ≤ 10, that represent
two groups and an array that represents a function
from the first group to the second

 Output: Determination of whether the function is
an isomorphism

7. Input: A canonical n × r parity-check matrix H
for a single-error correcting code with r ≤ 4 and
n ≤ 2r−1

 Output: The set of binary m-tuples H encodes and
the code word for each one

8. Input: A canonical parity-check matrix for a perfect
single-error correcting code where r ≤ 5 and any
binary n-tuple X

 Output: The binary n-tuple to which X is decoded

9. Input: Positive integer n, n ≤ 50, representing the
number of states of a finite-state machine with in-

put alphabet = output alphabet = 50, 16 and an
n × 3 array representing the state table description
of such a machine

 Output: List of any states unreachable from the
start state s0

10. Input: Positive integer n, n ≤ 50, representing
the number of states of a finite state machine with
input alphabet = output alphabet =50, 16 and an
n × 3 array representing the state table descrip-
tion of such a machine

 Output: m × 3 array representing the state table
of a minimized version of M

11. Input: Set of terminals in a grammar and a de-
scription of the productions in a grammar; ability
for the user to set a maximum number of steps for
any derivation

 Output: List of words in the language that can be
derived within that maximum

12. Write a finite-state machine simulator. That is,
 given

• a positive integer n, n ≤ 50, representing the
number of states of a finite state machine with
input alphabet = output alphabet = 50, 16

• an n × 3 array representing the state table
description of such a machine

 your program should request input strings and
write the corresponding output strings as long as
the user wishes.

13. Write a Turing machine simulator. That is, given
a set of quintuples describing a Turing machine,
your program should request the initial tape con-
tents and write out a sequence of successive tape
configurations. Assume that there are at most 100
quintuples and that the number of cells used on
the tape is at most 70, and allow the user to set a
maximum number of steps in case the computa-
tion does not halt before then

 Chapter 9 Review 801

This page intentionally left blank

EquivalEncE RulEs

Expression Equivalent to name/abbreviation for Rule

P ~ Q
P ` Q

Q ~ P
Q ` P

Commutative—comm

(P ~ Q) ~ R
(P ` Q) ` R

P ~ (Q ~ R)
P ` (Q ` R)

Associative—ass

(P ~ Q)′
(P ` Q)′

P′ ` Q′
P′ ~ Q′

De Morgan’s laws—De Morgan

P S Q P′ ~ Q Implication—imp

P (P′)′ Double negation—dn

3(Ex)A(x) 4′ (4x) 3A(x) 4′ Negation—neg

infEREncE RulEs

from can Derive name/abbreviation for Rule

P, P S Q Q Modus ponens—mp

P S Q, Q′ P′ Modus tollens—mt

P, Q P ` Q Conjunction—con

P ` Q P, Q Simplification—sim

P P ~ Q Addition—add

P S Q, Q S R P S R Hypothetical syllogism—hs

P ~ Q, P′ Q Disjunctive syllogism—ds

P S Q Q′ S P′ Contraposition—cont

Q′ S P′ P S Q Contraposition—cont

P P ` P Self-reference—self

P ~ P P Self-reference—self

(P ` Q) S R P S (Q S R) Exportation—exp

P, P′ Q Inconsistency—inc

P ` (Q ~ R) (P ` Q) ~ (P ` R) Distributive—dist

P ~ (Q ` R) (P ~ Q) ` (P ~ R) Distribution—dist

803

Derivation Rules for Propositional
and Predicate Logic

A
Appendix

804 Derivation Rules for Propositional and Predicate Logic

infEREncE RulEs (continued)

from can Derive name/abbreviation for Rule Restrictions on use

(4x)P(x) P(t), where t
is a variable
or constant
symbol

Universal instantiation—ui If t is a variable, it
must not fall within
the scope of a
quantifier for t.

(Ex)P(x) P(a) where a
is a constant
symbol not
previously
used in proof
 sequence

Existential instantiation—ei Must be the first rule
used that introduces
a.

P(x) (4x)P(x) Universal generalization—ug P(x) has not been
deduced from any
hypotheses in which
x is a free variable
nor has P(x) been
deduced by ei from
any wff in which x is
a free variable.

P(x) or P(a)
where a is
a constant
symbol

(Ex)P(x) Existential generalization—eg To go from P(a) to
(Ex)P(x), x must not
appear in P(a).

Summation notation is a shorthand way of writing certain expressions that are
sums of terms. As an example, consider the sum of the integers from 1 to 5:

1 + 2 + 3 + 4 + 5

This expression can be thought of in the following way: Suppose we have some
quantity i that initially has the value 1 and then takes on successive values of 2, 3,
4, and 5. The expression is the sum of i at all its different values. The summation
notation is

∑
5

i=1
i

The uppercase Greek letter sigma, Σ, denotes summation. Here the number 1 is
the lower limit of summation, and the number 5 is the upper limit of summation.
The variable i is called the index of summation. The index of summation is ini-
tially set equal to the lower limit and then keeps increasing its value by 1 until it
reaches the upper limit. All the values that the index of summation takes on are
added together. Thus

∑
5

i=1
i = 1 + 2 + 3 + 4 + 5 = 15

Similarly

∑
3

i=1
i = 1 + 2 + 3 = 6

And

∑
8

i=4
i = 4 + 5 + 6 + 7 + 8 = 30

In these examples, the expression after the summation sign is just i, the in-
dex of summation. However, what appears after the summation sign can be any
expression, and the successive values of the index are simply substituted into the
expression. Thus

∑
5

i=1
i2 = 12 + 22 + 32 + 42 + 52 = 55

Summation and Product Notation B
Appendix

805

A way to symbolize summation in general is

∑
q

i=p
ai

Here the lower limit, upper limit, and expression behind the summation are not
specifically given but merely symbolized. The notation ai is a reminder that the
expression will be evaluated at the different values i takes on in going from the
lower to the upper limit.

There are three special cases to consider:

 1. ∑
q

i=p
0 = 0

Here the expression behind the summation is the constant 0, which has the value
0 no matter what the value of the index of summation. The sum of any number of
0s is 0.

 2. ∑
n

i=1
1 = n

Here again the expression behind the summation is a constant, and the summation
says to add n copies of 1, which results in n.

 3. ∑
0

i=1
ai = 0

Here the upper limit is smaller than the lower limit; the usual interpretation of sum-
mation does not apply, but by convention the summation is assigned the value 0.

The index of summation is a dummy variable, meaning that it merely acts as a
placeholder and that a different variable could be used without changing the value
of the summation. Thus

∑
3

i=1
i = ∑

3

j=1
j = 6

It may be convenient to change the limits on a summation, which is legitimate
as long as the final value of the summation remains the same. For example,

∑
3

i=1
i = ∑

2

i=0
(i + 1)

since both have the value

1 + 2 + 3 = 6

Finally, the following three rules hold, as we will see shortly.

806 Summation and Product Notation

Summation and Product Notation 807

Rules of Summation

 1. ∑
q

i=p
(ai + bi) = ∑

q

i=p
ai + ∑

q

i=p
bi

 2. ∑
q

i=p
(ai − bi) = ∑

q

i=p
ai − ∑

q

i=p
bi

 3. ∑
q

i=p
cai = c ∑

q

i=p
ai where c is a constant

To prove rule 1, note that

 ap + bp + ap+1 + bp+1 + c+ aq + bq
 = ap + ap+1 + c+ aq + bp + bp+1 + c+ bq

because of the commutative property of addition. The proof of rule 2 is similar.
To prove rule 3, note that

cap + cap+1 + c+ caq = c(ap + ap+1 + c+ aq)

because of the distributive property. This rule allows a constant to be “moved
through” a summation.

Sometimes a summation can be represented by an even shorter expression
that does not involve adding separate terms. For example, according to Exercise 7
of Section 2.2,

 ∑
n

i=1
i2 =

n(n + 1)(2n + 1)
6

(1)

so that the value of ∑
5

i=1
i2 can be found by substituting the upper limit, 5, into the

right side of (1), giving

5(5 + 1)(2*5 + 1)
6

= 55

as before. Section 2.2 and its exercises give a number of other “closed form” ex-
pressions for certain summations, all of them provable by mathematical induction.

Product notation is a shorthand way of writing certain expressions that are
products of factors. Product notation is very similar to summation notation, except
it uses the uppercase Greek letter pi, Π and the various items are multiplied rather
than added. There is an index of multiplication, a lower limit, and an upper limit.
For example,

q
7

i=3
i = (3)(4)(5)(6)(7) = 2520

and

q
2

i=1
(2i + 5) = (2*1 + 5)(2*2 + 5) = (7)(9) = 63

Product notation occurs less often than summation notation, but there are still
special cases to note:

 1. q
q

i=p
0 = 0 (the product of all 0s equals 0)

 2. q
q

i=p
1 = 1 (the product of all 1s equals 1)

808 Summation and Product Notation

The logarithm function is closely related to the exponential function

y = bx

where b, the base, is a constant greater than 1. (Actually b can be any positive
number, but the only interesting cases occur when b > 1.) Recall the following
rules of exponents:

 1. bnbm = bn+m (when you multiply, you add exponents)
 2. bn�bm = bn−m (when you divide, you subtract exponents)
 3. (bn)m = bnm (when you raise a power to a power, you multiply

exponents)

If we select a specific base, b = 2 for example, we can plot y = 2x for various
values of x and fill in the remaining values, getting the graph

y = 2x

(3, 8)

(2, 4)
(1, 2)

(0, 1)

(–1,)

y

x

1_
2

In this function, x can take on any real value, and y will always be positive. An-
other way to say this is that the domain of the function is the set R of real numbers,
and the range is the set R+ of positive real numbers.

The Logarithm Function C
Appendix

809

810 The Logarithm Function

A related function (in fact, the inverse function) is the logarithm function,
defined by

 y = logb x meaning b
y = x

Therefore log216 = 4, for example, because 24 = 16. These two equations are
the logarithmic form and exponential form of the same fact. Similarly, log2 8 = 3
and log2 2 = 1.

Following is a graph of y = log2 x.

y = log2 x

(1, 0)

(4, 2)

(2, 1)
(8, 3)

y

x

(, –1)1_
2

Because the logarithm function y = logb x is the inverse of the exponential func-
tion, its domain (the values x can take on) is the set R+ of positive real numbers
and the range (the values y can take on) is the set R of real numbers. The logarithm
function for any base b > 1 has a domain, range, and shape similar to the case
for b = 2.

Certain properties about the logarithm function are true either because
of its definition or because of corresponding properties about the exponential
function, We’ll list all the properties of the logarithm function, and then prove
them.

Properties of the Logarithm Function y = logb x

 1. If p < q then logb p < logb q (the log function is strictly increasing)
 2. If logb p = logb q then p = q (the log function is one to one)
 3. logb 1 = 0
 4. logb b = 1
 5. logb (b

p) = p
 6. blogb

 p = p
 7. logb (pq) = logb p + logb q (the log of a product equals the sum of

the logs)
 8. logb (p�q) = logb

p − logb
q (the log of a quotient equals the

 difference of the logs)
 9. logb

(pq) = q(logb p) (the log of something to a power
equals the power times the log)

 10. loga p = logb p� logb a (change-of-base formula)
 11. plogb q = qlogb p

The Logarithm Function 811

In proving the properties of the logarithm function, we first note that many of
the properties involve the quantities logb p and logb q. Let us name these quantities
r and s, respectively, so that

logb p = r and logb q = s

This in turn means that

br = p and bs = q

 1. Because b > 1, the larger the power to which b is raised, the larger the result.
Thus if p < q, then br < bs, so r < s and therefore logb

p < logb
q.

 2. If logb p = logb q, then r = s, so br = bs and p = q.
 3. logb 1 = 0 because b0 = 1.
 4. logb b = 1 because b1 = b.
 5. logb

(b
p) = p because (translating this equation to its exponential form)

bp = bp.
 6. blogb p = p because (translating this equation to its logarithmic form)

logb p = logb p.
 7. logb (pq) = logb p + logb q = r + s because it is true that

br+s = brbs = pq, which is the exponential form of the equation we are
trying to prove.

 8. logb (p�q) = logb p − logb q = r − s because it is true that
br−s = br�bs = p�q which is the exponential form of the equation we are
trying to prove.

 9. logb
(pq) = q(logb p) = qr because it is true that bqr = (br)q = pq, which

is the exponential form of the equation we are trying to prove.
 10. loga p = logb p�logb a

Let loga p = w. Then aw = p. Now take the logarithm to the base b of both
sides of this equation:

logb(aw) = w(logb a) = logb p

or

w = logb p�logba

which is the desired result.

 11. plogb q = qlogb p

 logb(plogb q) = (logb
q)(logb

p) by Property 9
 = (logb

p)(logb
q)

 = logb (qlogb p) by Property 9

Therefore plogb q = qlogb p by Property 2
The three most useful bases for logarithms are

b = 10 (common logarithm)
b = e, e ∼ 2.7183 (natural logarithm)
b = 2 (what we use throughout this book)

812 The Logarithm Function

Common logarithms were used as computational aids before calculators and
computers became commonplace. Property 7 of the logarithm function says that
to multiply two numbers, one can take the logarithm of each number, add the re-
sults, and then find the number with that logarithm value. Addition was easier than
multiplication, and tables of common logarithms allowed one to look up a number
and find its logarithm, or vice versa.

Natural logarithms are useful in calculus and are often written “ln p” rather than
“loge p.” Base 2 logarithms are sometimes denoted by “lg p” rather than “log2 p.”
In this book, all logarithms are base 2, so we use log p to denote log2 p.

A final inequality involving base 2 logarithms (used in Section 3.3) is

 1 + log n < n for n ≥ 3

To prove this, note that

 n < 2n−1 for n ≥ 3

so by property 1 of logarithms,

 log n < log2n−1

By property 5 of logarithms, log2n−1 = n − 1. Therefore

 log n < n − 1

or

 1 + log n < n for n ≥ 3

 7. a. A B A S B B S A (A S B) 4 (B S A)
T T T T T

T F F T F

F T T F F

F F T T T

Answers to Practice Problems

Note to student: Finish all parts of a practice problem before turning to the
answers.

Ch a p te r 1

 1. False, false, false

 2. A B A ~ B

T T T

T F T

F T T

F F F

 3. A B A S B

T T T

T F F

F T T

F F T

 4. A A′

T F

F T

 5. a.	 Antecedent:	The	rain	continues			Consequent:	The	river	will	flood
 b. Antecedent: The central switch goes down Consequent: Network failure
 c. Antecedent: The avocados are ripe Consequent: They are dark and soft
 d. Antecedent: A healthy cat Consequent: A good diet
 6. Answer d. This is negation of A ` B, the same as the negation of “Peter is tall and thin.”

 b. A B A′ B′ A ~ A′ B ` B′ (A ~ A′) S (B ` B′)
T T F F T F F

T F F T T F F

F T T F T F F

F F T T T F F

813

814 Answers to Practice Problems

 c. A B C B′ A ~ B′ C′ (A ` B′) S C′ 3 (A ` B′) S C′ 4 ′
T T T F F F T F

T T F F F T T F

T F T T T F F T

T F F T T T T F

F T T F F F T F

F T F F F T T F

F F T T F F T F

F F F T F T T F

 d. A B A′ B′ A S B B′ S A′ (A S B) 4 (B′ S A′)
T T F F T T T

T F F T F F T

F T T F T T T

F F T T T T T

 8. A 1 A′ A ~ A′ A ~ A′ 4 1

T T F T T

F T T T T

 9. To prove (P S Q) 4 (P′ ~ Q), just construct a truth table:

P Q P S Q P′ P′ ~ Q (P S Q) 4 (P′ ~ Q)
T T T F T T

T F F F F T

F T T T T T

F F T T T T

 10. (A ` B′)′ 1, 2, mt
 11. 3(A ~ B′) S C 4 ` (C S D) ` A S D
 1. (A ~ B′) S C hyp
 2. C S D hyp
 3. A hyp
 4. A ~ B′ 3, add
 5. C 1, 4, mp
 6. D 2, 5, mp
 12. (A S B) ` (B S C) S (A S C)
 1. A S B hyp
 2. B S C hyp
 3. A hyp
 4. B 1, 3, mp
 5. C 2, 4, mp

Answers to Practice Problems 815

 13. (A S B) ` (C′ ~ A) ` C S B
 1. A S B hyp
 2. C′ ~ A hyp
 3. C hyp
 4. C S A 2, imp
 5. C S B 1, 4, hs
 6. B 3, 5, mp
 14. The argument is (S S R) ` (S′ S B) S (R′ S B). A proof sequence is
 1. S S R hyp
 2. S′ S B hyp
 3. R′ hyp
 4. S′ 1, 3, mt
 5. B 2, 4, mp
 15. a. True (all daffodils are yellow)
	 b.	 False	(not	true	that	all	flowers	are	yellow)
	 c.	 True	(all	flowers	are	plants)
 d. False (zero is neither positive nor negative)
 16. For example:
 a. The domain is the collection of licensed drivers in the United States; P(x) is the property that x is older

than 14.
	 b.	 The	domain	is	the	collection	of	all	fish;	P(x) is the property that x weighs more than 3 pounds.
 c. No; if all objects in the domain have property P, then (since the domain must contain objects) there is

an object in the domain with property P.
 d. The domain is all the people who live in Boston; P(x) is the property that x is a male. (Not every person

who lives in Boston is a male, but someone is.)
 17. Let x = 1; then x is positive and any integer less than x is ≤ 0, so the truth value of the statement is true.

For the second interpretation, let A(x) be “x is even,” B(x, y) be “x < y,” and C(y) be “y is odd”; the
statement is false because no even integer has the property that all larger integers are odd.

 18. a. (4x) 3S(x) S I(x) 4
 b. (Ex) 3I(x) ` S(x) ` M(x) 4
 c. (4x)(M(x) S S(x) ` 3I(x) 4′)
 d. (4x)(M(x) S S(x) ` I(x))
 19. a. (Ex) 3V(x) ` (4y)(F(y) S S(x, y)) 4
 b. (4x) 3F(x) S (4y)(V(y) S S(x, y)) 4
 c. (4x) 3F(x) S (Ey)(V(y) ` S(x, y)) 4
 d. (4x)(4y) 3V(y) ` S(x, y) S F(x) 4
 20. Answer d. If L(x, y, t) means “x loves y at time t,” the original statement is

(4x)(Ey)(E t)L(x, y, t)

816 Answers to Practice Problems

 and the negation is

 3(4x)(Ey)(E t)L(x, y, t) 4′ 4 (Ex) 3(Ey)(E t)L(x, y, t) 4′
 4 (Ex)(4y) 3(E t)L(x, y, t) 4′
 4 (Ex)(4y)(4t) 3L(x, y, t) 4′

 or, “There is some person who, for all persons and all times, dislikes those persons at those times” or “Some-
body hates everybody all the time.” Answers (a) and (c) can be eliminated because they begin with a univer-
sal	quantifier	instead	of	an	existential	quantifier;	answer	(b)	is	wrong	because	“loves”	has	not	been	negated.

 21. Invalid. In the interpretation where the domain consists of the integers, P(x) is “x is odd” and Q(x) is “x
is even,” the antecedent is true (every integer is even or odd), but the consequent is false (it is not the case
that every integer is even or that every integer is odd).

 22. (4x) 3P(x) S R(x) 4 ` 3R(y) 4′ S 3P(y) 4′
 1. (4x) 3P(x) S R(x) 4 hyp
 2. 3R(y) 4′ hyp
 3. P(y) S R(y) 1, ui
 4. 3P(y) 4′ 2, 3, mt
 23. (4x) 3P(x) ` Q(x) 4 S (4x) 3Q(x) ` P(x) 4
 1. (4x) 3P(x) ` Q(x) 4 hyp
 2. P(x) ` Q(x) 1, ui
 3. Q(x) ` P(x) 2, comm
 4. (4x) 3Q(x) ` P(x) 4 3, ug
 24. (4y) 3P(x) S Q(x, y) 4 S 3P(x) S (4y)Q(x, y) 4
 1. (4y) 3P(x) S Q(x, y) 4 hyp
 2. P(x) hyp
 3. P(x) S Q(x, y) 1, ui
 4. Q(x, y) 2, 3, mp
 5. (4y)Q(x, y) 4, ug
 25. (4x) 3(B(x) ~ C(x)) S A(x) 4 S (4x) 3B(x) S A(x) 4
 1. (4x) 3(B(x) ~ C(x)) S A(x) 4 hyp
 2. (B(x) ~ C(x)) S A(x) 1, ui
 3. B(x) temporary hyp

 4. B(x) ~ C(x) 3, add
 5. A(x) 2, 4, mp

 6. B(x) S A(x) temporary hyp discharged
 7. (4x) 3B(x) S A(x) 4 6, ug
 26. (Ex)R(x) ` 3(Ex) 3R(x) ` S(x) 4 4′ S (Ex) 3S(x) 4′
 The argument is valid. If something has property R but nothing has both property R and property S, then

something fails to have property S. A proof sequence is
 1. (Ex)R(x) hyp
 2. 3(Ex) 3R(x) ` S(x) 4 4′ hyp

Answers to Practice Problems 817

 3. (4x) 3R(x) ` S(x) 4′ 2, neg
 4. R(a) 1, ei
 5. 3R(a) ` S(a) 4′ 3, ui
 6. 3R(a) 4′ ~ 3S(a) 4′ 5, De Morgan
 7. 3 3R(a) 4′ 4′ 4, dn
 8. 3S(a) 4′ 6, 7, ds
 9. (Ex) 3S(x) 4′ 8, eg
 27. The argument is (4x) 3R(x) S L(x) 4 ` (Ex)R(x) S (Ex)L(x)
 1. (4x) 3R(x) S L(x) 4 hyp
 2. (Ex)R(x) hyp
 3. R(a) 2, ei
 4. R(a) S L(a) 1, ui
 5. L(a) 3, 4, mp
 6. (Ex)L(x) 5, eg
 28. deer grass (deer eat grass and grass is a plant)
 29. a. predator(X) <= eat(X, Y) and animal(Y)
 b. bear
	 	 fish
 raccoon
 bear
 bear
 fox
 bear
 wildcat
 30. Responses 7–9 result from in-food-chain(raccoon, Y); responses 10 and 11 result from

in-food-chain(fox, Y); response 12 results from in-food-chain(deer, Y).
 31. x − 2 = y, or x = y + 2
 32. Working backwards from the postcondition using the assignment rule,

 5x + 4 = 76
y = 4

 5x + y = 76
z = x + y

 5z = 76

 The	first	assertion,	x + 4 = 7, is equivalent to the precondition, x = 3. The assignment rule, applied
twice, proves the program segment correct.

 33. The two implications to prove are

 5x = 4 and x < 56 y = x − 1 5 y = 36
5x = 4 and x ≥ 56 y = 7 5 y = 36

 The	first	implication	is	true	by	the	assignment	rule.	Working	backwards	from	the	postcondition,

 5x − 1 = 36
 y = x − 1
 5 y = 36
 x − 1 = 3 4 x = 4 4 x = 4 and x < 5

 The second implication is true because the antecedent is false. The program segment is correct by the
conditional rule.

Ch a p te r 2

 1. Possible answers:
 a. A whale
 b. The integer 4. Four is less than 10, but it is not bigger than 5.
 2. a. Show that the conjecture is true for all cases:

n n2 10 + 5n

1 1 15

2 4 20

3 9 25

4 16 30

5 25 35

 b. For n = 7, n2 is 49 but 10 + 5n is only 45.
 3. Let x be divisible by 6. Then x = 6k where k is an integer, and 2x = 2(6k) = 12k = 4(3k). Since 3k is

an integer, 2x is divisible by 4.
 4. a.	 If	the	river	will	not	flood,	then	the	rain	will	not	continue.
 b. If there is not a network failure, then the central switch does not go down.
 c. If the avocados are not dark or not soft, then they are not ripe.
 d. If the diet is not good, the cat is not healthy.
 5. a.	 If	the	river	will	flood,	then	the	rain	will	continue.
 b. If there is network failure, then the central switch goes down.
 c. If the avocados are dark and soft, then they are ripe.
 d. If the diet is good, then the cat is healthy.
 6. Let x = 2m + 1 and y = 2n + 1 where m and n are integers, and assume that xy is even. Then

xy = 2k for some integer k

 or

(2m + 1)(2n + 1) = 2k

 Multiplying out the left side,

4mn + 2m + 2n + 1 = 2k

818 Answers to Practice Problems

Answers to Practice Problems 819

 Rearranging terms in the equation,

1 = 2k − 4mn − 2m − 2n

 Factoring out 2 on the right side,

 1 = 2(k − 2mn − m − n) where k − 2mn − m − n is an integer

 This is a contradiction since 1 is not even.
 7. P(1): 1 = 1(1 + 1)∙2, true
 Assume P(k): 1 + 2 + c+ k = k(k + 1)∙2

 Show P(k + 1): 1 + 2 + c+ (k + 1) =
? (k + 1) 3(k + 1) + 1 4

2

 1 + 2 + c+ (k + 1) = 1 + 2 + c+ k + (k + 1)

 =
k(k + 1)

2
+ (k + 1) = (k + 1)ak

2
+ 1b

 = (k + 1)ak + 2
2

b =
(k + 1) 3(k + 1) + 1 4

2
 8. The base case is n = 2.
 P(2): 22+1 < 32, or 8 < 9, true
 Assume P(k): 2k+1 < 3k and k > 1

 Show P(k + 1): 2k+2 <
?

3k+1

 2k+2 = 2(2k+1)
 < 2(3k

) (by the inductive hypothesis)
 < 3(3k

) (since 2 < 3)
 = 3k+1

 9. a. To verify P(k + 1) in implication 2′, we subtract 3 from k + 1. For the inductive hypothesis to hold, it
must be the case that (k + 1) − 3 ≥ 8, so k + 1 must be ≥ 11. Therefore implication 2′ cannot be
used to verify P(9) or P(10).

 b. The truth of P(k + 1)	cannot	be	verified	from	the	truth	of	P(k). For example, in trying to express 11
as a sum of 3’s, and 5’s, knowing that 10 = 5 + 5 is no help. However, knowing that 8 = 3 + 5 is
helpful because adding one more 3 gives 11 = 2 * 3 + 5.

 10. Q(0): j0 = x + i0 true since j = x, i = 0 before the loop is entered
 Assume Q(k): jk = x + ik

 Show Q(k + 1): jk+1 =
?

x + ik+1

 jk+1 = jk + 1 (by the assignment j = j + 1)
 = (x + ik) + 1 (by inductive hypothesis)
 = x + (ik + 1)
 = x + ik+1 (by the assignment i = i + 1)

 Upon loop termination, i = y and j = x + y.

 11. a. If d 0 a then a = n1d where n1 is a positive integer. If d 0 b then b = n2d where n2 is a positive integer.
Therefore

c = ia + jb = i(n1d) + j(n2d) = (in1 + jn2)d

 where in1 + jn2 is an integer and d 0 c.
 b. If d 0 c then c = nd where n ≥ 1 because both c and d are positive, so c ≥ d .
 12. From	the	Euclidean	algorithm	to	find	gcd(21, 16),

 1 = 16 − 3 # 5
 5 = 21 − 1 # 16
 from which

1 = 16 − 3 # (21 − 1 # 16) = 4 # 16 − 3 # 21

 so i = −3, j = 4.
 13. Do a proof by mathematical induction.

 Base case: (k = 1). If p 0 a1 then p 0 a1

 Assume that if p 0 a1a2…ak then p 0 aj for some j, 1 ≤ j ≤ k

 Let p 0 a1a2 … akak+1 = (a1a2 … ak)ak+1. Using the theorem on division by prime numbers,
either p 0 a1a2 … ak or p 0 ak+1. If p 0 a1a2 … ak then by the assumption p 0 aj for some j, 1 ≤ j ≤ k.
Therefore p 0 aj for some j, 1 ≤ j ≤ k + 1.

 14. 1176 = 23 # 3 # 72

 15. 420 = 22 # 3 # 5 # 7 and 66 = 2 # 3 # 11, so gcd(420, 66) = 2 # 3 = 6
 16. Because p is a prime number, it has no factors other than itself and 1. Therefore every positive integer less

than p has only the factor 1 in common with p, so it is relatively prime to p. Therefore w(p) = p − 1.
 17. w(n) = 33 # 7 3w(3)w(5)w(7) 4 = 27 # 7 # 2 # 4 # 6 = 9072

Ch a p te r 3

 1. 1, 4, 7, 10, 13
 2. 1, 1, 2, 3, 5, 8, 13, 21
 3. In proving the k + 1 case, the terms F(k − 1) and F(k) are used. If k + 1 = 2, then the value at 2 posi-

tions back, F(k − 1),	is	undefined.	Therefore	in	the	inductive	step,	we	must	have	k + 1 ≥ 3 and the case
n = 2 must be done separately. Put another way, the inductive step does not demonstrate the truth of the
n = 2 case from the truth of the n = 1 case.

 4. A, B, and C are wffs by rule 1. By rule 2, (B′) is a wff, and so then is (A ~ (B′)) and ((A ~ (B′)) S C).
This can be written as (A ~ B′) S C.

 5. Every parent of an ancestor of James is an ancestor of James.
 6. 1011001, 0011011, 00110111011

820 Answers to Practice Problems

Answers to Practice Problems 821

 7. 1. l, 0, and 1 are binary palindromes.
 2. If x is a binary palindrome, so are 0x0 and 1x1
 8. 1. x1 = x
 2. xn = xn−1x for n > 1
 9. if n = 1 then

return 1
else

return T(n − 1) + 3
end if

 10. 10, 7, 8
 11. T(n) = T(n − 1) + 3
 = 3T(n − 2) + 3 4 + 3 = T(n − 2) + 2 * 3
 = 3T(n − 3) + 3 4 + 2 * 3 = T(n − 3) + 3 * 3
 (
 In general, we guess that

T(n) = T(n − k) + k * 3

 When n − k = 1, that is, k = n − 1,

T(n) = T(1) + (n − 1) * 3 = 1 + (n − 1) * 3

 Now prove by induction that T(n) = 1 + (n − 1) * 3.
 T(1): T(1) = 1 + (1 − 1) * 3 = 1, true
 Assume T(k): T(k) = 1 + (k − 1) * 3

 Show T(k + 1): T(k + 1) =
?

1 + k * 3

 T(k + 1) = T(k) + 3 (by the recurrence relation)
 = 1 + (k − 1) * 3 + 3 (by the inductive hypothesis)

 = 1 + k * 3
 12. The recurrence relation matches equation (6) with c = 1 and g(n) = 3. From equation (8), the closed-form

solution is

T(n) = 1n−1(1) + ∙
n

i=2
1n− i(3)

 = 1 + ∙
n

i=2
3

 = 1 + (n − 1)3

 13. a.	 From	the	base	cases	and	the	recurrence	relation,	the	first	five	terms	of	the	sequence	are

S(1) = 3, S(2) = 1, S(3) = 2S(2) + 3S(1) = 11,
S(4) = 2S(3) + 3S(2) = 25, S(5) = 2S(4) + 3S(3) = 83

 b. The formula S(n) = 3n−1 + 2(−1)n−1 generates 3, 1, 11, 25, 83 for n = 1, 2, 3, 4, 5.

 14. c1 = 6 and c2 = −5, so the characteristic equation is

t
2 − 6t + 5 = 0

 which has roots r1 = 1, r2 = 5. The solution has the form

T(n) = p + q(5)n−1

 where

 p + q = 5
p + q(5) = 13

 Solving this system of equations, p = 3, q = 2 and the solution formula is

 T(n) = 3 + 2(5)n−1

 15. This is in the form of equation (16) with c = 2 and g(n) = 1. By equation (21), the solution is

 2log n(1) + ∙
log n

i=1
2(log n)− i(1) = 2log n + 2(log n)−1 + 2(log n)−2 + c+ 20

 = 2(log n)+1 − 1
 = (2)2log n − 1 = 2n − 1

 16.

822 Answers to Practice Problems

n Sequential
Search

Binary
Search

64 64 7

1024 1024 11

32768 32768 16

Ch a p te r 4

 1. a. 54, 5, 6, 76
 b. 5April, June, September, November6
 c. 5Washington, D.C.6
 2. a. 5x 0x is one of the first four perfect squares6
 b. 5x 0x is one of the Three Men in a Tub in the children’s nursery rhyme6
 c. 5x 0x is a prime number6
 3. a. A = 5x 0x [N and x ≥ 56
 b. B = 53, 4, 56
 4. x [B
 5. A (B means (4x)(x [A S x [B) ` (Ey) 3 y [B ` (y [A)′ 4
 6. a, b, d, e, h, i, l

Answers to Practice Problems 823

 7. Let x [A. Then x [R and x2 − 4x + 3 = 0, or (x − 1)(x − 3) = 0, which gives x = 1 or x = 3. In
either case, x [N and 1 ≤ x ≤ 4, so x [B. Therefore A # B. The value 4 belongs to B but not to A, so
A (B.

 8. `(A) = 5[, 516, 526, 536, 51, 26, 51, 36, 52, 36, 51, 2, 366.
 9. 2n

 10. By	the	definition	of	equality	for	ordered	pairs,

2x − y = 7 and x + y = −1

 Solving the system of equations,

x = 2, y = −3

 11. (3, 3), (3, 4), (4, 3), (4, 4)
 12. a. S is not closed under division. (3 ÷ 4 is not a positive integer)
 c. 00	is	not	defined.
 f. x[is not unique for, say, x = 4 (22 = 4 and (−2)2 = 4).
 13. Yes; if x [A d B, then x [A (and x [B, but we don’t need this fact), so x [A c B.
 14. A′ = 5x 0 x [S and x o A6

A

S

A′

 15. A − B = 5x 0 x [A and x o B6

A B

S

A − B

 16. a. 51, 2, 3, 4, 5, 7, 8, 9, 106
 b. 51, 2, 36
 c. 51, 3, 5, 106
 17. a. A × B = 5(1, 3), (1, 4), (2, 3), (2, 4)6
 b. B × A = 5(3, 1), (3, 2), (4, 1), (4, 2)6
 c. A2 = 5(1, 1), (1, 2), (2, 1), (2, 2)6
 d. A3 = 5(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)6
 18. Show set inclusion in each direction. To show A c [# A, let x [A c [. Then x [A or x [[, but since

[has no elements, x [A. To show A # A c [, let x [A. Then x [A or x [[, so x [A c [.
 19. a. 3C d (A c B) 4 c 3(A c B) d C′ 4

 = 3(A c B) d C 4 c 3(A c B) d C′ 4 (lb)
 = (A c B) d (C c C′) (3b)
 = (A c B) d S (5a)
 = A c B (4b)

 b. 3C c (A d B) 4 d 3(A d B) c C′ 4 = A d B

 24. Although	the	problem	consists	of	successive	events—the	five	tosses—the	number	of	outcomes	of	each	
event is not constant but varies between one and two depending on the outcome of the preceding event.

 25.

 26. A c B
 27. Equation (2) gives the result of Example 31 because if A and B are disjoint, then
 0A d B 0 = 0.
 28. The reasons for the equalities are

set union is associative
equation (2)
equation (2) and set identity 3b (distributive property)
equation (2)
rearranging terms

824 Answers to Practice Problems

 29. 7 (The bins are the 6 possible values.)

 30. P(20, 2) =
20!
18!

= 380

 31. 6! = 720

 32. C(12, 3) =
12!
3!9!

= 220

 33. a. 18 b. 24

 34.
9!

3!2!

 20. An enumeration of the even positive integers is 2, 4, 6, 8, 10, 12, … .
 21. 1∙5, 5∙1 22. 4(8)(5) = 160 23. 7(5) + 9 = 44

 35. Here r = 6 and n = 3, with repetitions. C(r + n − 1, r) = C(8, 6) =
8!

6!2!
= 28

 36. cysar, scary, scrva, scyra, yarcs, yarsc
 37. Here	five	digits	are	being	permuted,	so	n = 5. At this point

d1 = 5, d2 = 1, d3 = 4, d4 = 3, d5 = 2

 In	the	for	loop	that	generates	all	permutations	after	the	first,	set	i = 4, j = 5. Consider pairs of adjacent
values from right to left as long as di > dj:
d4 > d5 3 > 2 true
d3 > d4 4 > 3 true
d2 > d 1 > 4 false

Answers to Practice Problems 825

 The value of i at this point is 2, and di = d2 = 1. Set j = 5; consider dj values from right to left as long
as di > dj.

 d2 > d5 1 > 2 false

 The value of j at this point is 5. Swap d2 and d5, giving 52431. Take the descending sequence right of d2,
namely 431, and swap pairs of values from the outside in to reverse the sequence. Swap 4 and 1, giving
52134. The indices i from the left and j from the right meet in the middle, at which point the reversal—and
the new permutation—is complete.

 38. The rightmost non-max element is 5, which becomes incremented to 6. The two digits to its right are reset
to their minimum values of 78. The next combination is therefore 24678.

 39. (a + b)3 = a3 + 3a2b + 3ab2 + b3

 Coefficients:	1	3	3	1,	which	is	row	n = 3 in Pascal’s triangle

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

 Coefficients:	1	4	6	4	1,	which	is	row	n = 4 in Pascal’s triangle
 40. (x + 1)5 = C(5, 0)x5 + C(5, 1)x4 + C(5, 2)x3 + C(5, 3)x2 + C(5, 4)x + C(5, 5)
 = x5 + 5x4 + 10x3 + 10x2 + 5x + 1
 41. C(7, 4)x3y4

 42. The sample space consists of all the cards in the deck, so 0S 0 = 52. The event of interest is the set of aces,
so 0E 0 = 4. P(E) = 4∙52 = 1∙13.

 43. 16∙42 = 8∙21; 28∙42 = 14∙21
 44. a. p(c) = 1 − (p(a) + p(b)) = 1 − (0.2 + 0.3) = 0.5
 b. p(a) + p(c) = 0.2 + 0.5 = 0.7
 45. E1 = 5HH, HT, TH6, E2 = 5HH6, E1 d E2 = 5HH6

P(E2 0E1) =
P(E1 d E2)

P(E1)
=

1∙4
3∙4

= 1∙3

 46. Let
E1 be the event that the package came from Supplier A
E2 be the event that the package came from Supplier B
F be the event that the package was lettuce

 By Bayes’ theorem,

P(E1 0F) =
P(F 0E1)P(E1)

P(F 0 E1)P(E1) + P(F 0 E2)P(E2)
=

(57∙100)(1∙2)
(57∙100)(1∙2) + (39∙100)(1∙2)

> 0.594

 47. E(X) = 5(2∙8) + 2(3∙8) + 3(2∙8) + 7(1∙8) = 29∙8 = 3.625
 48. This is still a Bernoulli trial where n = 200 and p = 1∙2. From the binomial distribution, the probability

of 100 heads is C(200,100)(1∙2)100(1∙2)100 > 0.056.

Ch a p te r 5

 1. a. (3, 2) [r

 b. (2, 4), (2, 6) [r

 c. (3, 4), (5, 6) [r

 d. (2, 1), (5, 2) [r

 2. a. Many-to-one
 b. One-to-one
 c. Many-to-many
 3. a. x(r c s) y 4 x ≤ y
 b. x r′ y 4 x ∙ y
 c. x s′ y 4 x ≥ y
 d. r d s = [

 4. a. (1, 1), (2, 2), (3, 3)
 b. Knowing that a relation is symmetric does not by itself give information about any of the ordered pairs

that might belong to r. If we know that a relation is symmetric and we know some ordered pairs that
belong to the relation, then we know certain other pairs that must belong to the relation (see part (c)).

 c. (b, a)
 d. a = b
 e. The transitive property says (x, y) [r ` (y, z) [r S (x, z) [r. In this case (1, 2) is the only element

of r and (2, z) o r for any z in S. Therefore the antecedent of the implication is always false, and the
implication is true; r is transitive.

 5. a.	 Reflexive,	symmetric	transitive
	 b.	Reflexive,	antisymmetric,	transitive
	 c.	 Reflexive,	symmetric,	transitive
 d. Antisymmetric
	 e.	 Reflexive,	symmetric,	antisymmetric,	transitive
 f. Antisymmetric (recall the truth table for implication), transitive
	 g.	 Reflexive,	symmetric,	transitive
	 h.	Reflexive,	symmetric,	transitive
 6. No. If the relation has the antisymmetry property, then it is its own antisymmetric closure. If the rela-

tion is not antisymmetric, there must be two ordered pairs (x, y) and (y, x) in the relation with x ∙ y.
Extending the relation by adding more ordered pairs will not change this situation, so no extension will
be antisymmetric.

 7. Reflexive	closure:	5(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a), (d, d)6
 Symmetric closure: 5(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a), (d, b)6
 Transitive closure: 5(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a), (d, d), (d, c), (b, a), (b, c), (c, d)6
 8. a. (1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 6), (6, 6), (1, 12), (12, 12), (1, 18), (18, 18), (2, 6), (2, 12),

 (2, 18), (3, 6), (3, 12), (3, 18), (6, 12), (6, 18)
 b. 1, 2, 3
 c. 2, 3

826 Answers to Practice Problems

Answers to Practice Problems 827

 9. 10. y [S is a greatest element if x d y for all x [S.
 y [S is a maximal element if there is no x [S

with y a x.

 11. 12. Let q [3x 4 . Then x r q. Because x r z, by
 symmetry z r x. By transitivity, z r x together
with x r q gives z r q. Therefore, q [3z 4 .

 13. Reflexive:	 For	any	x [S, x is in the same block as itself, so x r x.
 Symmetric: If x r y, then x is in the same block as y, so y is in the same block as x, or y r x and r is

 symmetric.
 Transitive: If x r y and y r z, then x is in the same block as y and y is in the same block as z, so x is in

the same block as z, or x r z.

 Therefore r is an equivalence relation.
 14. a. The equivalence classes are sets consisting of lines in the plane with the same slope.
 b. 3n 4 = 5n6; the equivalence classes are all of the singleton sets of elements of N.
 c. 31 4 = 32 4 = 51, 26, 33 4 = 536
 15. 30 4 = 5… , −15, −10, −5, 0, 5, 10, 15, …6

31 4 = 5… , −14, −9, −4, 1, 6, 11, 16, …6
32 4 = 5… , −13, −8, −3, 2, 7, 12, 17, …6
33 4 = 5… , −12, −7, −2, 3, 8, 13, 18, …6
34 4 = 5… , −11, −6, −1, 4, 9, 14, 19, ...6

 16. 2 17.

 18. Minimum time to completion is 36 days. Critical path is 1, 2, 3, 4, 6, 8, 9.
 19. For example: 1, 3, 2, 6, 7, 5, 4, 8, 9, 10, 11, 12
 20. For example: 1, 2, 3, 7, 5, 4, 6, 8, 9

 21.
Locale

Name State

Patrick, Tom FL

Smith, Mary IL

Collier, Jon IL

Jones, Kate OH

Smith, Bob MA

White, Janet GA

Garcia, Maria NY

 22. a. project(join(restrict PetOwner where Pet-
Type = “Dog”) and Person over Name) over
City giving Result

 b. SELECT City
 FROM Person, PetOwner WHERE Person.

Name = PetOwner.Name AND PetType =
“Dog”

 c. Range of x is Person
 Range of y is PetOwner
 5x.City 0 exists y(y.Name = x.Name and
 y.PetType = “Dog”)6

828 Answers to Practice Problems

 23. a. Not a function; 2 [S has two values associated with it.
 b. Function
 c. Not a function; for values 0, 1, 2, 3 of the domain, the corresponding h(x) values fall outside the

codomain.
 d. Not a function; not every member of S owns an automobile.
 e. Function (not every value in the codomain need be used)
 f. Function
 g. Function
 h. Not a function; 5 [N has two values associated with it.
 24. a. 16 b. ±3 25. T, F

 26.

 27. f and g have the same domain and codomain, so we must show that each function has the same effect on
each member of the domain.

 f (1) = 1 g(1) =
∙
1

k=1
(4k − 2)

2
 =

4 # 1 − 2
2

=
2
2

= 1

 f (2) = 4 g(2) =
∙
2

k=1
(4k − 2)

2
 =

(4 # 1 − 2) + (4 # 2 − 2)
2

=
2 + 6

2
= 4

Answers to Practice Problems 829

 f (3) = 9 g(3) =
∙
3

k=1
(4k − 2)

2
 =

(4 # 1 − 2) + (4 # 2 − 2) + (4 # 3 − 2)
2

=
2 + 6 + 10

2
= 9

 Therefore f = g.
 28. b, f, g
 29. If P is either a tautology or a contradiction.
 30. e, g
 31. (g + f)(2.3) = g(f (2.3)) = g((2.3)2) = g(5.29) = :5.29; = 5
 (f + g)(2.3) = f (g(2.3)) = f (:2.3;) = f (2) = 22 = 4
 32. Let (g + f)(s1) = (g + f)(s2). Then g(f (s1)) = g(f (s2)) and because g is one-to-one, f (s1) = f (s2). Because

f is one-to-one, s1 = s2.
 33. Let t [T . Then (f + g)(t) = f (g(t)) = f (s) = t.
 34. f −1: R S R, f −1(x) = (x − 4)∙3
 35. a. (1, 4, 5) = (4, 5, 1) = (5, 1, 4)

 b. a1 2 3 4 5
1 4 2 5 3

b
 36. a. g + f = (1, 3, 5, 2, 4) = (3, 5, 2, 4, 1) = …
 f + g = (1, 5, 2, 3, 4) = (5, 2, 3, 4, 1) = …

 b. g + f = a1 2 3 4 5
4 2 5 1 3

b

 f + g = a1 2 3 4 5
2 1 3 5 4

b

 c. g + f = f + g = a1 2 3 4 5
3 5 1 4 2

b
 37. (1, 2, 4) + (3, 5) or (3, 5) + (1, 2, 4)

 38.

 39. One possibility: 5(0, 0), (1, 1), (−1, 2), (2, 3), (−2, 4), (3, 5), (−3, 6), …6
 40. a. 10.87 ≤ 12 ≤ 1087

 22.27 ≤ 27 ≤ 2227
 37.67 ≤ 48 ≤ 3767
 57.07 ≤ 75 ≤ 5707

 b. No
 c. n0 = 1, c1 = 1∙200, c2 = 1
 41. a. Let f r g. Then there are positive constants n0, c1, and c2 with c1g(x) ≤ f (x) ≤ c2g(x) for x ≥ n0. Then

for x ≥ n0, it is true that (1∙c2) f (x) ≤ g(x) ≤ (1∙c1) f (x), so g r f .

 b. Let f r g and g r h. Then there are positive constants n0, n1, c1, c2, d1, and d2 with c1g(x) ≤ f(x) ≤ c2g(x)
for x ≥ n0 and d1h(x) ≤ g(x) ≤ d2h(x) for x ≥ n1. Then for x ≥ max(n0, n1), c1d1h(x) ≤ f(x) ≤ c2d2h(x)
so f r h.

 42. 3x2 = Θ(x2) using constants n0 = 1, c1 = c2 = 3.
 200x2 + 140x + 7 = Θ(x2) using constants n0 = 2, c1 = 1, c2 = 300.
 43. a. If x ≡ y (mod n) then x − y = kn for some integer k, so x − y = kn + 0 and (x − y) mod n = 0.
 Conversely, if (x − y) mod n = 0 then x − y = kn + 0 for some integer k, or x − y = kn so

x ≡ y (mod n).
 b. Let x = q1n + r1, 0 ≤ r1 < n and y = q2n + r2, 0 ≤ r2 < n, so x mod n = r1 and y mod n = r2.

Then x − y = (q1n + r1) − (q2n + r2) = (q1 − q2)n + (r1 − r2) with −n < r1 − r2 < n.
 If x mod n = y mod n, then r1 = r2 so r1 − r2 = 0 and x − y = (q1 − q2)n where q1 − q2 is an

 integer, so x ≡ y (mod n).
 Conversely, if x ≡ y (mod n), then x − y = kn for some integer k. Because x − y =

(q1 − q2)n + (r1 − r2) with −n < r1 − r2 < n, r1 − r2 = 0 and x mod n = y mod n.

 44.
0

1

2

3

4

5

6

7

8

9

48

28

23

7

158

59

(a) (b)

59

48

7

23

0

1

2

3

4

5

6

7

8

9

28 158

 45. THE CAT IN THE HAT
 46. x = 1011, p = x mod 23 = 0011, q = p # 2 = 0110, s = x ! p = 1000, t = s # 2−3 = 0001,

y = q + t = 0111
 47. (166)35mod 221 = (1662)17 # 166 mod 221 = (27556)17 # 166 mod 221
 = (152)17 # 166 mod 221 = (1522)8 # 152 # 166 mod 221 = (23104)8 # 152 # 166 mod 221
 = (120)8 # 152 # 166 mod 221 = (1202)4 # 152 # 166 mod 221
 = (14400)4 # 152 # 166 mod 221 = (35)4 # 152 # 166 mod 221
 = 352 # 352 # 152 # 166 mod 221 = 120 # 120 # 152 # 166 mod 221
 = 14400 # 25232 mod 221 = 35 # 38 mod 221 = 4
 48. a. 3 b. X

830 Answers to Practice Problems

Answers to Practice Problems 831

 51.

2A + B = £
6 14
3 10
9 16

§

 52.
A # B = c15 22

12 28
d

 B # A = c39 0
27 4

d
 53.

I # A = c1(a11) + 0(a21) 1(a12) + 0(a22)
0(a11) + 1(a21) 0(a12) + 1(a22)

d = ca11 a12

a21 a22
d = A

 Similarly, A # I = A.

 54.

A # B = £
−1 2 −3

2 1 0
4 −2 5

§ £
−5 4 −3
10 −7 6
8 −6 5

§ = £
1 0 0
0 1 0
0 0 1

§

B # A = £

−5 4 −3
10 −7 6
8 −6 5

§ £
−1 2 −3

2 1 0
4 −2 5

§ = £
1 0 0
0 1 0
0 0 1

§

 55. The augmented matrix is

c3 −5 5
7 1 37

d

 Multiply row 1 by 1/3:

1∙3 c3 −5 5
7 1 37

d

 Then multiply row 1 by −7 and add it to row 2:

 −7 c1 −5∙3 5∙3
7 1 37

d resulting in c1 −5∙3 5∙3
38∙3 76∙3

d

 Using the second row,

(38∙3)y = 76∙3 or y = 2

 Using	the	first	row,

x − (5∙3)y = 5∙3 or x − (5∙3)(2) = 5∙3 or x = 5.

 The solution is x = 5, y = 2.

 49. temp = 375
ones = temp mod 10 = 5
temp = (375 − 5)∙10 = 370∙10 = 37
tens = temp mod 10 = 37 mod 10 = 7
temp = (37 − 7)∙10 = 30∙10 = 3
hundreds = temp = 3

 50. a23 = 1, a24 = −7, a13 = −6

 56.

832 Answers to Practice Problems

x y x ` y

1 1 1

1 0 0

0 1 0

0 0 0

x y x ~ y

1 1 1

1 0 1

0 1 1

0 0 0

 57.

No, A # B = £
2 1 1
1 1 1
0 0 1

§
 58.

B × A = £
1 1 0
1 1 1
0 0 1

§

Ch a p te r 6

 1. One possible picture:

 2. a. b.

Answers to Practice Problems 833

 3. Possible answers:
 a. 2 and 3 f. 2, a1, 1, a2, 3, a3, 4, a4, 3, a3, 4
 b. 5 g. 3, a3, 4, a4, 3
 c. a6 h. no
 d. a3 and a4 i. yes
 e. 3

 4. 5.

 6. a. In a complete graph, any two distinct nodes are adjacent, so there is a path of length 1 from any node
to any other node; hence the graph is connected.

 b. For example, the graph of Figure 6.10b.

 7. f2: a4 S e3
 a5 S e8
 a6 S e7
 a7 S e5 (or e6)
 a8 S e6 (or e5)

 8. f: 1 S d
 2 S e
 3 S f
 4 S c
 5 S b
 6 S a

 9. The graph on the left in Figure 6.19 has two nodes of degree 2, but the graph on the right does not; or the
graph on the left has parallel arcs, but the graph on the right does not.

 10. K4 can be represented as

 11. Making 1–3 and 1–4 exterior arcs leads to the graph below, where it is still impossible to make 3 and 5
adjacent while preserving planarity.

 12. An attempt to construct K3,3 as a planar graph leads to the graph below; there is no way to connect nodes
3	and	5.	Any	other	construction	leads	to	a	similar	difficulty.

 13. n = 6, a = 7, r = 3, and 6 − 7 + 3 = 2
 14. Without	this	condition	on	the	arc,	a	figure	such	as	the	one	below	could	result.	Then	the	graph	would	be	

split into two disconnected subgraphs and the inductive hypothesis would not apply. Also the number of
regions would not change.

 15. In K3,3, a = 9, n = 6, and 9 ≤ 3(6) − 6.

 16.

A = ≥
1 1 0 1
1 0 1 0
0 1 0 2
1 0 2 0

¥

 17.

834 Answers to Practice Problems

 19. 18. a. 2 b. 4 c. 2

Answers to Practice Problems 835

 20. a. Left child right child

1 0 2

2 3 4

3 0 5

4 0 0

5 0 0

 b.

1

2

3 4

5

Gers PP-20

 21. a, b, e, f, c, d, g, i, h
 e, b, f, a, c, i, g, d, h
 e, f, b, c, i, g, h, d, a

 22. Prefix	notation:	 + a − * b c d
Postfix	notation:	 a b c * d − +

 23. For the base case, n = 1, the tree consists of a single node and no arcs, therefore no arc ends. The number
of arc ends is 0 = 2(1) − 2. Assume that any tree with k nodes has a total number of arc ends of 2k − 2.
Consider a tree with k + 1 nodes, and show that the number of arc ends is 2(k + 1) − 2. In this tree,
remove a leaf node and the arc to that node’s parent. This leaves a tree with k nodes and, by the induc-
tive hypothesis, 2k − 2 arc ends. The original graph had one more arc, and two more arc ends, so it had
2k − 2 + 2 = 2k = 2(k + 1) − 2 arc ends.

 24. The base case is the same as in Practice 23. Assume that tree T is constructed from subtrees T1, … , Tt and
that any subtree Ti with ni nodes has (2ni − 2) arc ends. Let n equal the number of nodes in T. Then, as in
Example 30,

n = 1 + ∙
t

i=1
ni so 2n = 2 + 2 ∙

t

i=1
ni

 The number N of arc ends in T is 2t + ∙
t

i=1
(number of arc ends in Ti). (The extra 2t counts the number of

arc ends contributed by the t arcs from the root of T to the t subtrees.) Then

N = 2t + ∙
t

i=1
(2ni − 2) = 2t + 2 ∙

t

i=1
ni − 2t = 2 ∙

t

i=1
ni = 2n − 2

 25. a.

 b. Depth of tree = 3 = 1 + :log5;
 26. a.

b. d = 3

836 Answers to Practice Problems

 27. a.

 28. a. ppca? b. cagak c. ?kac?
 29.

 30. w: 010
 q: 011
 h: 00
 e: 1

Answers to Practice Problems 837

Ch a p te r 7

 1. 5(2, 1),(2, 2),(3, 1),(3, 4)6

 2. There are two distinct nodes, 3 and 4, with 3 r 4 and 4 r 3.
 3.

 A = ≥
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 0

¥ A(2) = ≥
1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1

¥

 A(2) 32, 1 4 = 1 because there is a path from 2 to 1 of length 2 (2–4–1).
 4. There is a length-4 path (2–4–1–4–1) from 2 to 1, so A(4) 32, 1 4 should be 1.

 A = ≥
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 0

¥ A(2) = ≥
1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1

¥

 A(3) = ≥
0 0 0 1
0 0 0 1
0 0 0 0
1 0 0 0

¥ A(4) = ≥
1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1

¥

 5. R = A ~ A(2) ~ A(3) ~ A(4), so performing the Boolean or of the four matrices from Practice 4 gives

 R = ≥
1 0 0 1
1 0 1 1
0 0 0 0
1 0 0 1

¥

 Column 2 is all 0s, so 2 is not reachable from any node.
 6.

M0 = ≥
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 0

¥ M1 = ≥
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 1

¥ M2 = ≥
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 1

¥

 M3 = ≥
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 1

¥ M4 = R = ≥
1 0 0 1
1 0 1 1
0 0 0 0
1 0 0 1

¥

 7. a. No b. Yes

 10. A B C D

A
B
C
D

≥
0 2 2 1
2 0 0 1
2 0 0 1
1 1 1 0

¥

 After row C, total = 3, the loop terminates, and there is no path.
 11. a. No b. Yes

838 Answers to Practice Problems

IN = 5x6
x 1 2 3 y

d 0 1 ∞ 4 ∞
s − x x x x

p = 1
IN = 5x, 16

x 1 2 3 y
d 0 1 4 2 6
s − x 1 1 1

p = 3
IN = 5x, 1, 36

x 1 2 3 y
d 0 1 4 2 5
s − x 1 1 3

p = 2
IN = 5x, 1, 3, 26

x 1 2 3 y
d 0 1 4 2 5
s − x 1 1 3

p = y
IN = 5x, 1, 3, 2, y6

x 1 2 3 y
d 0 1 4 2 5
s − x 1 1 3

 13. 14. a, e, d, b, c, i, f, g, h, l, k, m, j
 15. a, e, f, d, i, b, c, g, h, j, k, m, l

 12.

 Path: x, 1, 3, y Distance = 5

b. 16. a.

 8. a. No, four odd nodes b. Yes, no odd nodes
 9. No, all four nodes are odd nodes.

Answers to Practice Problems 839

 17. Choosing node c (arbitrarily) as the start node, we visit e, then have to back up to c. There’s nowhere else
to go, so start over from node a (again, an arbitrary choice from the unvisited nodes). Traveling from a to
b to d and then backing up produces the rest of the node numbers.

 Topological sort: a, b, d, c, e
 18. The	depth-first	search	progresses	from	node	a to b and then c, with TreeNumbers and BackNumbers as-

signed in sequence. At node c, the back arc to node a causes BackNumber of c to be changed to TreeNum-
ber of a. The search progresses to d, which has a sequential TreeNumber and BackNumber assigned. The
search then backs up to node c. Because BackNumber(d) > TreeNumber(c), c is recognized as an articula-
tion point. The search backs up to node b, and b’s BackNumber is reduced to that of c. The search backs
up to a, but a is not an articulation point because it is the starting node with only one tree arc.

Ch a p te r 8

 1. 0 # 1 = 0
 1 # 1 = 1

 2. a. A ~ A = A
 b. A c A = A

 3. a. x + 1 = x + (x + x′) (5a, complement property)
 = (x + x) + x′ (2a, associative property)
 = x + x′ (idempotent property)
 = 1 (5a, complement property)
 b. x # 0 = 0
 4. To prove that 0′ = 1, show that 1 has the two properties of the complement of 0.

0 + 1 = 1 (universal bound)
0 # 1 = 1 # 0 (1b)

 = 0 (dual of universal bound)

 Therefore 1 = 0′ by the theorem on the uniqueness of complements.
 5. a. f(x # y) = f(x) * f(y)
 b. f(x′) = 3 f(x) 4′ ′

 6. Property 2:

840 Answers to Practice Problems

Property 3:

 Property 4:

 7. a. f (0 + a) = f (a) = 516 = [c 516 = f (0) c f (a)
 b. f (a + a′) = f (1) = 51, 26 = 516 c 526 = f (a) c f (a′)
 c. f (a # a′) = f (0) = [= 516 d 526 = f (a) d f (a′)
 d. f (1′) = f (0) = [= 51, 26′ = (f (1))′
 8. a. A single truth function on 50, 16n must map each of the elements in the domain to a 0 or a 1, and there

are 2n n-tuples in the domain 50, 16n. Hence the table for the function will have 2n rows.
	 b.	Any	truth	function	must	fill	4	“slots”	(corresponding	to	the	22 = 4 domain elements) with one of 2

values, a 0 or a 1. There are 24 = 16 different ways to do this.
	 c.	 Any	truth	function	must	fill	2n “slots” (corresponding to the 2n domain elements) with one of 2 values,

a 0 or a 1. There are 22n
 different ways to do this.

 9. a.

 b.

 10. a. (x1′ + x2)x3′

 b. x1 x2 x3 (x1′ + x2)x3′

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 1

Answers to Practice Problems 841

 11. a. x1x2x3 + x1x2′x3 + x1x2′x3′ + x1′x2′x3 + x1′x2′x3′

 b.

 12. 101
 111
 (1)100

 13. a.

 b. x1x3 + x2′ = ((x1x3)′x2)′

 14. a

x1 x2 f(x1, x2)
1 1 0

1 0 1

0 1 1

0 0 0

 Here xi = 0 when the switch is in the “off ” position and f (x1, x2) = 0 when the light is off. The last
row of the truth table says that when both switches are off, the light is off. Rows 2 and 3 say that when
one or the other switch is turned on, the light goes on. But the top row says that if the light is on (be-
cause	one	of	the	switches	has	been	turned	on)	then	flipping	the	second	switch	turns	the	light	off.

 b. One possibility is the canonical sum-of-products form, x1x2′ + x1′x2

 c.

842 Answers to Practice Problems

 15. a. x1x2 + x1′x2 = x2x1 + x2x1′
 = x2(x1 + x1′)
 = x2

1
 = x2

 b. x1 + x1′x2 = x1
1 + x1′x2

 = x1(1 + x2) + x1′x2 (universal bound)
 = x1 + x1x2 + x1′x2

 = x1 + x2(x1 + x1′)
 = x1 + x2

1
 = x1 + x2

16.

1

1

x2

x'2

x1 x'1

 The reduced expression is x1′
 17. x1x3 (4 squares) and x1′x2x3′ (2 squares)
 18. x1x2′x4 + x1x3′x4 + x2′x3′

1 1

111

1x3x4

x3x'4

x'3x'4

x'3x4

x1x2 x1x'2 x'1x'2 x'1x2

 19. The reduction table follows.

Number of 1s x1 x2 x3

Three 1 1 1 1

Two 1 1 0 1,2

One 1 0 0 2,3

0 0 1 4

None 0 0 0 3,4

Number of 1s x1 x2 x3

Two 1 1 –

One 1 – 0

None – 0 0

0 0 –

Answers to Practice Problems 843

 The comparison table follows.

111 110 100 001 000

11– ✓ ✓

1–0 ✓ ✓

–00 ✓ ✓

00– ✓ ✓

 Essential terms are 11– and 00–. Either 1–0 or –00 can be used as the third reduced term. The minimal
sum-of-products form is

x1x2 + x1′x2′ + x1x3′ or x1x2 + x1′x2′ + x2′x3′

Ch a p te r 9

 1. Multiplication in R is associative and commutative, and 1 is an identity. But 3R, # 4 is not a commutative
group because 0 [R does not have an inverse with respect to multiplication; there is no real number y
such that 0 # y = y # 0 = 1.

 2. See Practice 52 of Chapter 5.
 3. Many elements of M2(Z) do not have inverses under matrix multiplication. For example, if

c2 0
0 2

d

 is to have an inverse

ca b
c d

d

 under multiplication, then

c2 0
0 2

d # ca b
c d

d = ca b
c d

d # c2 0
0 2

d = c1 0
0 1

d

 By	the	definition	of	matrix	multiplication,	the	only	matrix	that	satisfies	this	equation	would	have	2a = 1
or a = 1

2 and thus would not be a member of M2(Z).
 4. Subtraction is not associative; for example, 5 − (3 − 1) = 3 but (5 − 3) − 1 = 1.

 5. No, S is not closed under multiplication; for example,
2
3

3
2

= 1.

 6. All except 3R+, + 4 (which has no identity) are monoids; the identities are, respectively, 0, 1, 1, 0, [, S.
 7. 3R, + 4
 8. a. f (x) + g (x) = g (x) + f (x)
 3 f (x) + g (x) 4 + h (x) = f (x) + 3g (x) + h (x) 4
 b. the zero polynomial, 0
 c. −7x4 + 2x3 − 4

 9. a.

844 Answers to Practice Problems

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

#
5 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

 b. 0; 1
 c. 3
 d. all except 0

 10. a. #
6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

 b. 1 and 5

 11. a. 01101+2 11011 = 10110
 b. −10100 = 10100 because 10100 +2 10100 = 00000
 12. Let f, g, h [S. Then for any x [A, 3(f + g) + h 4(x) = (f + g)(h(x)) = f (g 3h(x) 4) and 3 f + (g + h) 4(x) =

f 3(g + h)(x) 4 = f (g 3h(x) 4). Hence, (f + g) + h = f + (g + h).

 13. a. + a1 a2 a3 a4 a5 a6

a1 a1 a2 a3 a4 a5 a6

a2 a2 a1 a6 a5 a4 a3

a3 a3 a5 a1 a6 a2 a4

a4 a4 a6 a5 a1 a3 a2

a5 a5 a3 a4 a2 a6 a1

a6 a6 a4 a2 a3 a1 a5

 b. No, because a2 + a3 = a6 but a3 + a2 = a5.

 14. a. No, because ab # a = aba but a # ab = aab.
 b. No, because no nonempty string has an inverse; for example, there is no string to concatenate with a to

get l.
 15. i1 = i1

i2 because i2 is an identity i1
i2 = i2 because i1 is an identity

 16. Let y and z both be inverses of x. Let i be the identity. Then y = y # i = y # (x # z) = (y # x) # z = i # z = z.
 17. 7−1 = 5, 3−1 = 9; so 10−1 = (7 +12 3)−1 = 3−1 +12 7−1 = 9 +12 5 = 2

 18. z # x = z # y implies
 z−1 # (z # x) = z−1 # (z # y)
 (z−1 # z) # x = (z−1 # z) # y
 i # x = i # y
 x = y

 21. a. 3Z18, +18 4
 b. 3S3, + 4

 20. * 1 a b c d
1 1 a b c d
a a b c d 1
b b c d 1 a
c c d 1 a b
d d 1 A b c

 19. x = 1 +8 (3)−1 = 1 +8 5 = 6

Answers to Practice Problems 845

 22. Requirement 2, i [A, ensures that A ∙ [.
 23. a. Closure holds:

+8 0 2 4 6

0 0 2 4 6

2 2 4 6 0

4 4 6 0 2

6 6 0 2 4

 0 [50, 2, 4, 66; 0−1 = 0, 4−1 = 4, and 2 and 6 are inverses of each other.
 b. Closure holds:

+7 1 2 4

1 1 2 4

2 2 4 1

4 4 1 2

 1 [51, 2, 46; 1−1 = 1, and 2 and 4 are inverses of each other.
 24. 3 5al, a5, a66 , + 4 3 5a1, a26 , + 4 3 5a1, a36 , + 4 3 5a1, a46 , + 4
 25. To show that f is one-to-one, let a and b belong to An and suppose f (a) = f (b). Then a + (1, 2) = b + (1, 2).

By the cancellation law available in the group Sn, a = b. To show that f is onto, let g [On. Then
g + (1, 2) [An and f (g + (1, 2)) = g + (1, 2) + (1, 2) = g + i = i.

 26. For nz1, nz2 [nZ, nz1 + nz2 = n(z1 + z2) [nZ, so closure holds; 0 = n # 0 [nZ; for nz [nZ,
−nz = n(−z) [nZ.

 27.

 28. f (s) + f (s−1) = f (s # s−1) = f (iS) = iT . Similarly, f (s−1) + f (s) = iT . Therefore f (s−1) acts like the in-
verse of f (s) in T , and since inverses are unique, f (s−1) = −f (s).

 29. Let t1 and t2 be members of T . Because f is onto, t1 = f (s1) and t2 = f (s2) for some s1, s2 [S. Then

 t1 + t2 = f (s1) + f (s2) = f (s1
s2) = f (s2

s1) (because 3S, # 4 is commutative)
= f (s2) + f (s1) = t2 + t1

 so 3T, + 4 is commutative.
 30. Clearly f is onto. f is also on-to-one: Let f (x) = f (y). Then 5x = 5y and x = y. f is a homomorphism:

For x, y [Z, f (x + y) = 5(x + y) = 5x + 5y = f (x) + f (y).
 31. a. Composition of bijections is a bijection, and for x, y [S, (g + f)(x # y) = g(f (x # y)) =

g(f (x) + f (y)) = g(f (x)) * g(f (y)) = (g + f)(x) * (g + f)(y)
 b. S . S by the identity mapping. If f is an isomorphism from S to T , then f −1 is an isomorphism from

T to S. If S . T and T . V , then by part (a), S . V .

 32. To show that ag is an onto function, let y [G. Then g−1 # y belongs to G and ag(g−1 # y) =
g (g−1 # y) = (g # g−1)y = y. To show that ag is one-to-one, let ag(x) = ag(y). Then g # x = g # y, and by
cancellation, x = y.

 33. a. For ag [P, ag + a1 = ag #1 = ag and a1 + ag = al #g = ag

 b. ag + ag−1 = ag #g−1 = a1 and ag−1 + ag = ag−1 #g = a1

 34. a. Let f (g) = f (h). Then ag = ah and, in particular, ag(1) = ah(1), or g # 1 = h # 1 and g = h.
 b. For g, h [G, f (g # h) = ag #h = ag + ah = f (g) + f (h).
 35. x r x because f (x) = f (x).
 x r y S y r x because if f (x) = f (y) then f (y) = f (x).
 x r y and y r z S x r z because if f (x) = f (y) and f (y) = f (z), then f (x) = f (z).
 36. K = 5x [Z 0 f(x) = x #

31 = 06 . Therefore K = 50, ± 3, ± 6, ± 9, …6 = 3Z.
 37. a. 1 +8 S = 51 +8 0, 1 +8 2, 1 +8 4, 1 +8 66 = 51, 3, 5, 76
 3 +8 S = 53 +8 0, 3 +8 2, 3 +8 4, 3 +8 66 = 53, 5, 7, 16
 7 +8 S = 57 +8 0, 7 +8 2, 7 +8 4, 7 +8 66 = 57, 1, 3, 56
 b. 2 +8 S = 52 +8 0, 2 +8 2, 2 +8 4, 2 +8 66 = 52, 4, 6, 06
 2 +8 S = 0 +8 S = 4 +8 S = 6 +8 S
 38. H(X, Y) = 2
 39. Straightforward matrix multiplication using addition modulo 2. For example,

(01111)E

1 0 1
1 1 1
1 0 0
0 1 0
0 0 1

U = (000)

 40. 00 S 00000
 01 S 01111
 11 S 11010
 Together with 10 S 10101, these are the four code words given in Example 21.
 41. a. For example,

H = G

1 0 1
1 1 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1

W

 (There are other possibilities because the order of the rows in B does not matter.)
 b. 0000 S 0000000
 0001 S 0001110
 0010 S 0010011

846 Answers to Practice Problems

Answers to Practice Problems 847

 44. present state Next state Output
present input

0 1
s0 s0 s3 0
s1 s0 s2 1
s2 s3 s3 1
s3 s1 s3 2

 0011 S 0011101
 0100 S 0100111
 0101 S 0101001
 0110 S 0110100
 0111 S 0111010
 1000 S 1000101
 1001 S 1001011
 1010 S 1010110
 1011 S 1011000
 1100 S 1100010
 1101 S 1101100
 1110 S 1110001
 1111 S 1111111
 42. (11011)H = 001
 (10100)H = 001
 (01110)H = 001
 (00001)H = 001
 43. 000110

 45. a. b. 01011

 46. a. s1 b. s1

 47. 11001011
 48.

 49. a Set consisting of a single 0
 b. Set consisting of any number of 0s (including none) followed by 10
 c. Set consisting of a single 0 or a single 1
 d. Set consisting of any number (including none) of pairs of 1s
 50. The string in part (b) does not belong.
 51. a. 0 b. 0*10 c. 0 ~ 1 d. (11)*
 52. s2, s3

 53. A state s produces the same output as itself for any input. If si produces the same output as sj, then sj pro-
duces the same output as si. Transitivity is equally clear.

 54. Property	1	 is	 satisfied	because	all	 states	 in	 the	 same	class	have	 the	 same	output	 strings	 for	 any	 input	
string,	including	the	empty	input	string.	To	see	that	property	2	is	satisfied,	assume	si and sj are equivalent
states proceeding under the input symbol i to states si′ and sj′ that are not equivalent. Then there is an in-
put string a such that fO

(si′, a) ∙ fO
(sj′, a). Thus, for the input string ia, si and sj produce different output

strings, contradicting the equivalence of si and sj.
 55. Equivalent states of M in Table 9.9 are A = 50,1,36, B = 526 , and C = 546 . The reduced machine is

present state Next state Output

present input

0 1

A B A 1

B C A 0

C A A 0

 Equivalent states of M in Table 9.10 are 506, 516, 526, and 536 . M is already minimal.
 56. First, write the state table:

present state Next state Output

present input

0 1

s0 s0 s1 1

s1 s1 s0 0

 The states can be encoded by a single delay element, as shown:

d

s0 0

s1 1

 The truth functions are

x(t) d(t) y(t) d(t + 1)
0 0 1 0

1 0 1 1

0 1 0 1

1 1 0 0

848 Answers to Practice Problems

Answers to Practice Problems 849

 The canonical sum-of-products forms are

 y(t) = d′
d(t + 1) = xd′ + x′d

 and the sequential network is

x(t)

d(t)

d(t) d(t + 1)

d(t + 1)

y(t)

x'd

xd'

 57. a. …b 0 0 b...
 b. The machine cycles endlessly over the two nonblank tape squares.
 c. The machine changes the two nonblank squares to 0 1 and then moves endlessly to the right.
 58. a. b X X 1 X X b halts without accepting

 5
 b. b X X X X X b halts without accepting

 2
 c. b X X X 0 X X b halts without accepting

 2

 59. State	3	is	the	only	final	state.

(0, 1, 1, 0, R) move right, ignoring 1s
(0, 0, 0, 1, R) a 0 has been read, change state
(1, 0, 0, 2, R) a second 0 in succession has been read
(1, 1, 1, 0, R) no second 0, start over
(2, 0, 0, 2, R) 0s continue to be read
(2, 1, 1, 0, R) string of 0s broken before end of input, start over
(2, b, b, 3, R) end of input follows string of at least two 0s, accept

 If we were not constrained to move only to the right, we could use the following machine, where state 4
is	the	only	final	state.

(0, 0, 0, 1, R)
(0, 1, 1, 1, R)

 0	reads	the	first	symbol	so	the	tape	is	not	blank

(1, 1, 1, 1, R)
(1, 0, 0, 1, R) state 1 reads to end of input, moves left
(1, b, b, 2, L)
(2, 0, 0, 3, L) reads one 0
(3, 0, 0, 4, L) reads second 0, accepts

 60. Change (2, 1, X, 3, L) to (2, 1, X, 7, L) and add (7, 1, X, 3, L).
 61. One machine that works, together with a description of its actions:

(0, 1, 1, 1, R)	 reads	first	1
(1, b, 1, 6, R) n = 0, changes to 1 and halts
(1, 1, 1, 2, R) reads second 1
(2, b, b, 6, R) n = 1, halts
(2, 1, 1, 3, R) n ≥ 2
(3, 1, 1, 3, R)
(3, b, b, 4, L) finds	right	end	of	n
(4, 1, b, 5, L)
(5, 1, b, 6, L) erases two 1s from n and halts

 62. 0S 1 00S 1 000S 1 0000S 1 00001
 63. L = 50n1 0 n ≥ 06
 64. For example:
 a. G(V, VT, S, P) where V = 50, 1, S6, VT = 50, 16 , and P = 5S S 1, S S 0S06
 b. G = (V, VT, S, P) where V = 50, 1, S, M6, VT = 50, 16 , and P = 5S S 0M0, M S 0M0, M S 16
 65. In G1: S 1 ABA 1 00A 1 0000A 1 00000
 In G2: S 1 00A 1 0000A 1 00000
 In G3: S 1 0A 1 00B 1 000C 1 0000B 1 00000

850 Answers to Practice Problems

¶

f

f

f

 66.

Answers to Odd-Numbered
Exercises

(Note that these are answers, not necessarily complete solutions; your instructor
may require more explanation or justification, as well as a different format, for
some of these exercises.)

Ch a p te r 1

exerCises 1.1

 1. a, c, d, e, f
 3. a. T b. T c. T d. F
 5. a. If there is sufficient water, then there is healthy plant growth.
 b. If there are further technological advances, then there is increased availability of information.
 c. If errors were introduced, then there was a modification of the program.
 d. If there is fuel savings, then there is good insulation or storm windows throughout.
 7. a. A ~ B b. A′ ` B′
 9. a. 1 and 3 b. 2 c. 4
 11. a. The food is good but the service is poor.
 b. The food is poor and so is the service.
 c. Either the food is poor or the service is poor, but the price is low.
 d. Either the food is good or the service is excellent.
 e. The price is high but either the food is poor or the service is poor.
 13. a. 3A S B ` C 4 ` (C′ S B)
 b. 3(A ~ B) S C 4 ` (C S B)′
 c. (A ~ B) ` (A ` B)′
 d. (A ~ B) S C
 e. A ~ (B S C)
 15. a. A ` B
 b. A ` (B ~ C)
 c. B S (A ` C)
 d. A S (B′ ~ C′)
 e. A ` 3C′ S (B′ ~ C) 4
 17. a. Violets are blue or sugar is sour.
 b. Violets are not blue or, if roses are red, then sugar is sweet.
 c. Sugar is sweet and roses are not red, if and only if violets are blue.

851

852 Answers to Odd-Numbered Exercises

 d. Sugar is sweet, and roses are not red if and only if violets are blue.
 e. If it is false that both violets are blue and sugar is sour, then roses are red.
 f. Roses are red, or violets are blue and sugar is sour.
 g. Roses are red or violets are blue, and sugar is sour.
 19. a. H S K b. K S (H ` A) c. K S H d. K 4 A e. (A ~ H) S K
 21. a. F S B b. B S F c. B′ S (F′ ` S) d. S S B′ e. S 4 F′
 23. a. A B A S B A′ A′ ~ B (A S B) 4 A′ ~ B

T T T F T T

T F F F F T

F T T T T T

F F T T T T

Tautology
 b.

A B C A ` B (A ` B) ~ C B ~ C A ` (B ~ C) (A ` B) ~ C S A ` (B ~ C)
T T T T T T T T

T T F T T T T T

T F T F T T T T

T F F F F F F T

F T T F T T F F

F T F F F T F T

F F T F T T F F

F F F F F F F T

 c. A B A′ B′ A′ ~ B′ (A′ ~ B′)′ A ` (A′ ~ B′)′
T T F F F T T

T F F T T F F

F T T F T F F

F F T T T F F

 d. A B A′ A ` B A ` B S A′

T T F T F

T F F F T

F T T F T

F F T F T

 e. A B C A S B A ~ C B ~ C (A ~ C) S (B ~ C) (A S B) S 3(A ~ C) S (B ~ C) 4
T T T T T T T T

T T F T T T T T

T F T F T T T T

T F F F T F F T

F T T T T T T T

F T F T F T T T

F F T T T T T T

F F F T F F T T

Tautology

Answers to Odd-Numbered Exercises 853

 25. lb. A B A ` B B ` A A ` B 4 B ` A

T T T T T

T F F F T

F T F F T

F F F F T

 2a. A B C A ~ B (A ~ B) ~ C B ~ C A ~ (B ~ C) (A ~ B) ~ C 4 A ~ (B ~ C)
T T T T T T T T

T T F T T T T T

T F T T T T T T

T F F T T F T T

F T T T T T T T

F T F T T T T T

F F T F T T T T

F F F F F F F T

 2b. A B C A ` B (A ` B) ` C B ` C A ` (B ` C) (A ` B) ` C 4 A ` (B ` C)
T T T T T T T T

T T F T F F F T

T F T F F F F T

T F F F F F F T

F T T F F T F T

F T F F F F F T

F F T F F F F T

F F F F F F F T

 3a. A B C B ` C A ~ (B ` C) A ~ B A ~ C (A ~ B) ` (A ~ C) A ~ (B ` C) 4 (A ~ B) ` (A ~ C)
T T T T T T T T T

T T F F T T T T T

T F T F T T T T T

T F F F T T T T T

F T T T T T T T T

F T F F F T F F T

F F T F F F T F T

F F F F F F F F T

854 Answers to Odd-Numbered Exercises

 27. a. (A ` B′) ` C 3 A ` (B′ ` C) by 2b 3 A ` (C ` B′) by 1b 3 (A ` C) ` B′ by 2b
 b. (A ~ B) ` (A ~ B′) 3 A ~ (B ` B′) by 3a 3 A ~ 0 by 5b 3 A by 4a
 c. A ~ (B ` A′) 3 (A ~ B) ` (A ~ A′) by 3a 3 (A ~ B) ` 1 by 5a 3 A ~ B by 4b
 29. If A is F and both B and C are T, then (A ` B) ~ C is T but A ` (B ~ C) is F. These two wffs are not

equivalent.
 31. dogs AND NOT retrievers
 33. (novels OR plays) AND AIDS
 35. 1.0, 2.4, 7.2, 5.3
 37. if not (Value1 < Value2) then statement1 else statement2 end if

 39. A B A S B A′ A′ ~ B A S B 4 A′ ~ B

T T T F T T

T F F F F T

F T T T T T

F F T T T T

 41. a. Assign B′ ` (A S B) true and A′ false. From the second assignment, A is true. From the first assign-
ment, B′ is true (so B is false), and A S B is true. If A S B is true and A is true, then B is true. B is
thus both true and false, and 3B′ ` (A S B) 4 S A′ is a tautology.

 b. Assign (A S B) ` A true and B false. From the first assignment, A is true and A S B is true. If A S B
is true and A is true, then B is true. B is thus both true and false, and 3(A S B) ` A 4 S B is a tautology.

 c. Assign (A ~ B) ` A′ true and B false. From the first assignment, A′ is true (and A is false), and A ~ B
is true. If A ~ B is true and A is false, then B is true. B is thus both true and false, and (A ~ B) ` A′ S B
is a tautology.

 43. 225
= 232

 45. A B A ! B

T T F

T F T

F T T

F F F

 3b. A B C B ~ C A ` (B ~ C) A ` B A ` C (A ` B) ~ (A ` C) A ` (B ~ C) 4 (A ` B) ~ (A ` C)
T T T T T T T T T

T T F T T T F T T

T F T T T F T T T

T F F F F F F F T

F T T T F F F F T

F T F T F F F F T

F F T T F F F F T

F F F F F F F F T

 5b. A A′ A ` A′ 0 A ` A′ 4 0

T F F F T

F T F F T

 4a. A 0 A ~ 0 A ~ 0 4 A

T F T T

F F F T

Answers to Odd-Numbered Exercises 855

A B A ~ B A′ B′ A′ ` B′ (A′ ` B′)′ A ~ B 4 (A′ ` B′)′
T T T F F F T T

T F T F T F T T

F T T T F F T T

F F F T T T F T

 47. a.

A B B′ A ` B′ (A ` B′)′ A S B A S B 4 (A ` B′)′
T T F F T T T

T F T T F F T

F T F F T T T

F F T F T T T

 b.

 A ~ B is equivalent to A′ S B
A B A ~ B A′ A′ S B A ~ B 4 A′ S B

T T T F T T

T F T F T T

F T T T T T

F F F T F T

 51. A ` B is equivalent to (A 0B) 0 (A 0B)
A B A ` B A 0B (A 0B) 0 (A 0B) A ` B 4 (A 0B) 0 (A 0B)
T T T F T T

T F F T F T

F T F T F T

F F F T F T

 A′ is equivalent to A 0A
A A′ A 0A A′ 4 A 0A
T F F T

F T T T

A B A ` B B′ A S B′ (A S B′)′ A ` B 4 (A S B′)′
T T T F F T T

T F F T T F T

F T F F T F T

F F F T T F T

 49. A ` B is equivalent to (A S B′)′

856 Answers to Odd-Numbered Exercises

 53. a. For A ` B to be true, we would want to know that both parts are true; if one part has an unknown truth
value then it is unknown whether this is the case. For A ~ B to be true, we would want at least one part
to be true; if one part is false and the other part has an unknown truth value, then it is unknown whether
this is the case. Finally, if the truth value of A is unknown, then the truth value of A′ is also unknown.

 b. N c. F d. T
 55. 3n

 57. Machine D is either clean or infected. In either case, by statements 3 and 1, respectively, C is infected.
Because C is infected, then A is infected by statement 2. By statement 4, B is infected (because C is not
clean). By statement 3, because B is infected, D is not clean. The conclusion is that all four machines are
infected.

 59. This could include everyone because members are welcome and nonmembers are welcome. Or it could
include no one because no one is both a member and a nonmember.

 61. If Percival is a liar, then his statement is false. Therefore it is false that there is at least one liar, and both
Percival and Llewellyn must be truth-tellers. But this is impossible because we assumed Percival is a liar.
Therefore Percival is a truth-teller, and his statement is true. Because he said, “At least one of us is a liar,”
Llewellyn must be a liar. Therefore Percival is a truth-teller and Llewellyn is a liar.

 63. Rothwold’s statement is of the form A ~ B, where A stands for “I am a liar” and B stands for “Grymlin
is a truth-teller.” If Rothwold is a liar, then his statement A ~ B is false, and the statement (A ~ B)′ must
be true. By De Morgan's laws, A′ and B′ must both be true. But A′ is the statement that Rothwold is a
truth-teller, which is not true. Therefore Rothwold must be a truth-teller, and his statement A ~ B is true.
Statement A, however, is false because it says that Rothwold is a liar. So statement B must be true, and
Grymlin is a truth-teller. Both are truth-tellers.

exerCises 1.2

 1. mt
 3. sim
 5. By mt, the conclusion is that the car was not involved in the hit-and-run.
 7. By simplification, the conclusion is that you will be paid tomorrow.
 9. 1. hyp
 2. hyp
 3. hyp (deduction method)
 4. 2, 3, mp
 5. 1, 4, con
 11. 1. hyp
 2. hyp
 3. hyp
 4. 2, 3, con
 5. 4, De Morgan
 6. 1, 5, mt
 13. 1. (A ~ B′)′ hyp

 2. (B S C) hyp
 3. A′ ` (B′)′ 1, DeMorgan
 4. A′ ` B 3, dn

 5. A′ 4, sim
 6. B 4, sim
 7. C 2, 6 mp
 8. A′ ` C 5, 7, con

 15. 1. A S B hyp
 2. A S (B S C) hyp
 3. A hyp

 4. B 1, 3, mp
 5. B S C 2, 3, mp
 6. C 4, 5, mp

Answers to Odd-Numbered Exercises 857

 1. A′ hyp
 2. A ~ B hyp
 3. (A′)′ ~ B 2, dn

 4. A′ S B 3, imp
 5. B 1, 4, mp

 17.

 19. 1. A′ S B′ hyp
 2. B hyp
 3. A S C hyp
 4. (B′)′ 2, dn

 5. (A′)′ 1, 4, mt
 6. A 5, dn
 7. C 3, 6, mp

 21. 1. A S (B S C) hyp
 2. B hyp
 3. A hyp (using deduction

method again)

 4. B S C 1, 3, mp
 5. C 2, 4, mp

 23. 1. A S C hyp
 2. C S B′ hyp
 3. B hyp

 4. (B′)′ 3, dn
 5. C′ 2, 4, mt
 6. A′ 1, 5, mt

 1. A S C hyp
 2. C S B′ hyp
 3. B hyp

 4. A S B′ 1, 2, hs
 5. (B′)′ 3, dn
 6. A′ 4, 5, mt

or

 1. P ~ Q hyp
 2. P′ hyp
 3. (P′)′ ~ Q 1, dn

 4. P′ S Q 3, imp
 5. Q 2, 4, mp

 25.

 1. Q′ S P′ hyp
 2. P hyp
 3. (P′)′ 2, dn

 4. (Q′)′ 1, 3, mt
 5. Q 4, dn

 27.

 29. 1. P′ S P′ ` P′ Exercise 28
 2. P′ S (P ~ P)′ 1, De Morgan
 3. 3P′ S (P ~ P)′ 4 S 3(P ~ P) S P 4 Exercise 27
 4. P ~ P S P 2, 3, mp
 31. 1. P hyp
 2. P′ hyp
 3. P ~ Q 1, add
 4. Q ~ P 3, comm

 5. (Q′)′ ~ P 4, dn
 6. Q′ S P 5, imp
 7. (Q′)′ 2, 6, mt
 8. Q 7, dn

 33. Prove

P ~ (Q ` R) S (P ~ Q)

 Rewriting the conclusion, the argument is

P ~ (Q ` R) S ((P′)′ ~ Q) by dn
or

P ~ (Q ` R) S (P′ S Q) by imp

 1. P ~ (Q ` R) hyp
 2. P′ hyp
 3. (P′)′ ~ (Q ` R) 1, dn
 4. P′ S (Q ` R) 3, imp
 5. Q ` R 2, 4, mp
 6. Q 5, sim

858 Answers to Odd-Numbered Exercises

 35. 1. P S Q hyp
 2. P′ S Q hyp
 3. Q′ S P′ 1, cont
 4. Q′ S Q 2, 3, hs

 5. (Q′)′ ~ Q imp
 6. Q ~ Q 5, dn
 7. Q 6, self

 37. 1. A′ S B hyp
 2. B S C hyp
 3. C S D hyp

 4. A′ S C 1, 2, hs
 5. A′ S D 3, 4, hs

 1. Y S Z′ hyp
 2. Y S Z hyp
 3. Y hyp

 4. Z′ 1, 3, mp
 5. Z 2, 3, mp
 6. W 4, 5, inc

 39.

 41. 1. (A ` B)′ hyp
 2. (C′ ` A)′ hyp
 3. (C ` B′)′ hyp
 4. A′ ~ B′ 1, De Morgan
 5. B′ ~ A′ 4, comm
 6. B S A′ 5, imp
 7. (C′)′ ~ A′ 2, De Morgan

 8. C′ S A′ 7, imp
 9. C′ ~ (B′)′ 3, De Morgan
 10. (B′)′ ~ C′ 9, comm
 11. B′ S C′ 10, imp
 12. B′ S A′ 8, 11, hs
 13. (B S A′) ` (B′ S A′) 6, 12, con
 14. A′ Exercise 35

 43. The argument is (E S Q) ` (E ~ B) ` Q′ S B
 A proof sequence is

 1. E S Q hyp
 2. E ~ B hyp
 3. Q′ hyp
 4. Q′ S E′ 1, cont

 5. E′ 3, 4, mp
 6. (E′)′ ~ B 2, dn
 7. E′ S B 6, imp
 8. B 5, 7, mp

 45. The argument is

(C S F′) ` (F ~ S) S (C S S)

 A proof sequence is

 1. C S F′ hyp
 2. F ~ S hyp
 3. C hyp

 4. F′ 1, 3, mp
 5. S 2, 4, ds

 1. A S S hyp
 2. A ~ C hyp
 3. S′ hyp

 4. A′ 1, 3, mt
 5. C 2, 4, ds

 47. The argument is

 3(A S S) ` (A ~ C) ` S′ 4 S C

 A proof sequence is

The proof for

P ~ (Q ` R) S (P ~ R)

is similar.

Answers to Odd-Numbered Exercises 859

 49. The argument is

 3(R ` (F′ ~ N)) ` N′ ` (A′ S F) 4 S (A ` R)

 A proof sequence is:
 1. R ` (F′ ~ N) hyp
 2. N′ hyp
 3. A′ S F hyp
 4. R 1, sim
 5. F′ ~ N 1, sim
 6. N ~ F′ 5, comm

 7. F′ 2, 6, ds
 8. F′ S (A′)′ 3, cont
 9. (A′)′ 7, 8, mp
 10. A 9, dn
 11. A ` R 4, 10, con

 51. The argument is

 3((J ~ L) S C) ` T′ ` (C S T) 4 S J′

 A proof sequence is

 1. (J ~ L) S C hyp
 2. T′ hyp
 3. C S T hyp
 4. T′ S C′ 3, cont
 5. C′ 2, 4, mp

 6. C′ S (J ~ L)′ 1, cont
 7. (J ~ L)′ 5, 6, mp
 8. J′ ` L′ 7, De Morgan
 9. J′ 8, sim

or

 1. (J ~ L) S C hyp
 2. T′ hyp
 3. C S T hyp
 4. C′ 2, 3, mt

 5. (J ~ L)′ 1, 4, mt
 6. J′ ` L′ 5, De Morgan
 7. J′ 6, sim

 53. The argument is

 (D S T) ` (D ~ B) S (T′ S B)

 A proof sequence is
 1. D S T hyp
 2. D ~ B hyp
 3. T′ hyp

 4. D′ 1, 3, mt
 5. B 2, 4, ds

 55. a. A B C B S C A S (B S C) A ` B (A ` B) S C A S (B S C) 4 (A ` B) S C

T T T T T T T T

T T F F F T F T

T F T T T F T T

T F F T T F T T

F T T T T F T T

F T F F T F T T

F F T T T F T T

F F F T T F T T

 b. A S (B S C) 3 A S (B′ ~ C) 3 A′ ~ (B′ ~ C) 3 (A′ ~ B′) ~ C 3 (A ` B)′ ~ C 3

 (A ` B) S C
 c. By part (a) (or (b)), 3P1 ` P2 ` c` Pn 4 S (R S S) 3 (P1 ` P2 ` c` Pn ` R) S S, which

says to take each of P1, P2, …, Pn, R as hypotheses and deduce S.

860 Answers to Odd-Numbered Exercises

exerCises 1.3

 1. a. T b. F c. F d. T
 3. a. T b. T c. T d. F e. F f. T g. T h. F
 5. a. F b. T c. T d. F e. T f. T
 7. a. true: domain is the integers, A(x) is “x is even”, B(x) is “x is odd”, false: domain is the positive inte-

gers, A(x) is “x > 0”, B(x) is “x ≥ 1”
 b. true: domain is the collection of lines in the plane, P(x, y) is “x is parallel to y”, false: domain is the

integers, P(x, y) is “x < y ”
 c. true: domain is the integers, P(x) is “x is even”, Q(x, y) is “y 0 x” (y divides x), false: domain is the col-

lection of all people, P(x) is “x is male”, Q(x, y) is “y is a brother of x”
 9. a. scope of (4x) is P(x) S Q(y); y is a free variable
 b. scope of (Ex) is A(x) ` (4y)B(y); scope of (4y) is B(y); no free variables
 c. scope of (Ex) is (4y)P(x, y) ` Q(x, y); scope of (4y) is P(x, y); y is a free variable
 d. scope of (Ex) is (Ey) 3A(x, y) ` B(y, z) S A(a, z) 4; scope of (Ey) is A(x, y) ` B(y, z) S A(a, z); z is a

free variable
 11. b and c

 Many parts of Exercises 13−24 have multiple equivalent answers, some of which are shown here.
 13. a. (4x)(D(x) S S(x))
 b. (Ex) 3D(x) ` (R(x))' 4 or 3(4x)(D(x) S R(x)) 4′
 c. (4x) 3D(x) ` S(x) S (R(x))′ 4
 d. (Ex) 3D(x) ` S(x) ` R(x) 4
 e. (4x) 3D(x) S (S(x) ` R(x))′ 4
 f. (4x) 3D(x) ` S(x) S D(x) ` R(x) 4
 g. (4x) 3D(x) S (S(x))′ 4
 h. S(M) S (4x)(D(x) S S(x))
 i. R(M) ` R(T)
 j. (Ex)(D(x) ` R(x)) S (4x)(D(x) S S(x))
 15. a. (4x)(M(x) S T(x))
 b. (Ex)(W(x) ` T(x))
 c. (4x)(M(x) S T(x)) ` (4x)(W(x) S 3T(x) 4′)
 d. (4x)(T(x) S W(x))
 e. (4x) 3M(x) S (T(x))′ 4
 f. (4x)(M(x) S T(x)) S (4x)(W(x) S T(x))
 g. (Ex) 3W(x) ` (T(x))′ 4
 h. (4x) 3M(x) S (T(x))′ 4 S (Ex) 3W(x) ` (T(x))′ 4
 17. a. (Ex) 3P(x) ` (4y)(T(y) S F(x, y)) 4
 b. (4x) 3P(x) S (Ey)(T(y) ` F(x, y)) 4
 c. (Ex)(Ey)(P(x) ` T(y) ` (F(x, y)′)
 19. a. (4x)(4y)(M(x) ` G(y) S F(x, y))
 b. 3(Ex)(G(x) ` (4y)(M(y) S F(x, y))) 4′ or (4x)(G(x) S (Ey)(M(y) ` 3F(x, y) 4′))
 c. (4x)(4y)(M(y) ` F(x, y) S G(x))
 d. (4x)(G(x) S (Ey)(M(y) ` F(x, y))) or (4x)(Ey)(G(x) S (M(y) ` F(x, y)))
 21. a. (Ex)(W(x) ` L(x) ` C(x))
 b. (4x) 3W(x) S (L(x) ` C(x))′ 4
 c. (Ex) 3L(x) ` (4y)(A(x, y) S J(y)) 4 or (Ex)(4y) 3L(x) ` (A(x, y) S J(y)) 4

Answers to Odd-Numbered Exercises 861

 d. (4x) 3J(x) S (4y)(A(x, y) S J(y)) 4 or (4x)(4y) 3J(x) S (A(x, y) S J(y)) 4 or
 (4x)(4y) 3J(x) ` A(x, y) S J(y) 4
 e. (4x)(4y) 3(J(y) ` A(x, y)) S J(x) 4
 f. (4x)(3W(x) ` L(x) 4 S (Ey) 3J(y) ` A(x, y) 4) or (4x)(Ey)(3W(x) ` L(x) 4 S 3J(y) ` A(x, y) 4)
 g. (Ex)(W(x) ` (4y) 3L(y) S (A(x, y))′ 4) or (Ex)(W(x) ` (4y) 3A(x, y) S (L(y))′ 4) or
 (Ex)(4y)(W(x) ` 3L(y) S (A(x, y))′ 4)
 23. a. (4x) 3B(x) S (4y)(F(y) S L(x, y)) 4 or (4x)(4y) 3(B(x) ` F(y)) S L(x, y) 4
 b. (Ex) 3B(x) ` (4y)(F(y) S L(x, y)) 4
 c. (4x) 3B(x) S (Ey)(F(y) ` L(x, y)) 4
 d. (4x) 3B(x) S (4y)((L(x, y))′ S F(y)) 4
 e. (4y) 3F(y) S (4x)(L(x, y) S B(x)) 4 or (4y)(4x) 3(F(y) ` L(x, y)) S B(x) 4
 f. (4x) 3B(x) S (4y)(L(x, y) S F(y)) 4
 g. 3(Ex) 3B(x) ` (4y)(L(x, y) S F(y)) 4 4′ or (4x) 3B(x) S (Ey)(L(x, y) ` (F(y))′) 4
 h. (Ex) 3B(x) ` (Ey)(F(y) ` L(x, y)) 4 or (Ex)(Ey) 3B(x) ` F(y) ` L(x, y) 4
 i. ((Ex) 3B(x) ` (4y)(L(x, y) S F(y)) 4
 j. (4x) 3B(x) S (Ey)(F(y) ` (L(x, y))′ 4
 k. (4x) 3B(x) S (4y)(F(y) S (L(x, y))′) 4 or (4x)(4y) 3(B(x) ` F(y)) S (L(x, y))′ 4
 l. 3(Ex) 3B(x) ` (4y)(F(y) S (L(x, y))′) 4 4' or (4x) 3B(x) S (Ey)(F(y) ` L(x, y)) 4
 25. a. John is handsome and Kathy loves John.
 b. All men are handsome.
 c. All women love only handsome men.
 d. A handsome man loves Kathy.
 e. Some pretty woman loves only handsome men.
 f. John loves all pretty women.
 27. a. 2 b. 3 c. 3 d. 1
 29. a. No Web site features audio.

 b. Some Web site does not have audio or does not have video.
 c. Some Web site has neither audio nor video.
 d. Every Web site has either audio or video.
 e. Some Web site does not have text and also either doesn’t have audio or doesn’t have video.

 31. a. Every farmer grows something besides corn.
 b. Some farmer does not grow corn.
 c. Someone besides a farmer grows corn.

 33. a. Both sides are true exactly when A(x, y) holds for all x, y pairs.
 b. Both sides are true exactly when some x, y pair satisfies the property A(x, y).
 c. If there is a single x that is in relation P to all y, then for every y an x exists (this same x) that is in rela-

tion P to y.
 d. If a has property A, then something in the domain has property A.
 e. If any member of the domain that has property A also has property B, then if all members of the domain

have property A, all have property B.
 35. a. valid: there is an x in the domain with property A says it is false that everything in the domain fails to

have property A.
 b. not valid: domain is the integers, P(x) is “x is even”, Q(x) is “x is prime”. Because there are prime in-

tegers, (Ex)Q(x) and therefore (4x)P(x) ~ (Ex)Q(x) is true. But it is false that every integer is even or
prime, so the implication is false.

 37. If something in the domain has either property P or property Q, then something has property P or some-
thing has property Q, and vice versa.

862 Answers to Odd-Numbered Exercises

exerCises 1.4

 1. The conclusion is that pansies are plants. The hypotheses have the form (4x)(F(x) S P(x)) ` F(p). By
universal instantiation, F(p) S P(p), then by modus ponens, P(p).

 3. The conclusion is that pansies are red. The hypotheses have the form (4x) 3F(x) S (R(x) ~ P(x)) 4 `

F(p) ` 3P(p) 4′. By universal instantiation, F(p) S (R(p) ~ P(p)), then by modus ponens, R(p) ~ P(p),
and finally by disjunctive syllogism, R(p).

 5. No conclusion is possible. Just because pansies are flowers, it does not make them either red or purple.
The hypotheses have the form (Ex)(F(x) ` R(x)), (Ex)(F(x) ` P(x)), F(p). But existential instantiation
does not allow us to use p in removing the existential quantifiers, so we can say nothing further about
pansies.

 7. 1. hyp
 2. 1, ei
 3. hyp
 4. 3, ui
 5. 2, 4, mp
 6. 5, eg
 9. a. The domain is the set of integers, P(x, y) is “x < y”, and Q(x, y) is “x > y”; for every integer x, there is

some integer that is larger and there is some integer that is smaller. But it is false that for every integer
x there is some one integer that is both larger and smaller than x.

 b. To get to step 2, ei was performed on two different existential quantifiers, neither of which was in front
with the whole rest of the wff as its scope. Also, both existential quantifiers were removed at once, with
the same constant a substituted for the variable in each case; this should be done in two steps, and the
second would then have to introduce a new constant not previously used in the proof. And at step 3,
the existential quantifier was not inserted at the front of the wff.

 21. 1. (4x)(P(x))′ hyp
 2. (P(x))′ 1, ui
 3. P(x) temporary hyp
 4. Q(x) 2, 3, inc

 5. P(x) S Q(x) temporary hyp
discharged

 6. (4x)(P(x) S Q(x)) 5, ug

 11. 1. (4x)P(x) hyp
 2. P(x) l, ui
 3. P(x) ~ Q(x) 2, add
 4. (4x)(P(x) ~ Q(x)) 3, ug (note that P(x) ~ Q(x) was deduced from (4x)P(x) in which x is not free
 13. 1. (Ex)(Ey)P(x, y) hyp
 2. (Ey)P(a, y) 1, ei
 3. P(a, b) 2, ei

 4. (Ex)P(x, b) 3, eg
 5. (Ey)(Ex)P(x, y) 4, eg

 15. 1. (4x)P(x) hyp
 2. (Ex) 3P(x) 4′ hyp
 3. 3P(a) 4′ 2, ei

 4. P(a) 1, ui
 5. Q(a) 3, 4, inc
 6. (Ex)Q(x) 5, eg

 17. 1. (Ex)(A(x) ` B(x)) hyp
 2. A(a) ` B(a) 1, ei
 3. A(a) 2, sim
 4. B(a) 2, sim

 5. (Ex)A(x) 3, eg
 6. (Ex)B(x) 4, eg
 7. (Ex)A(x) ` (Ex)B(x) 5, 6, con

 19. Domain is the integers, P(x) is “x is even”, Q(x, y) is “x = 2y + 1” (which means that x is odd). Then
(Ex)P(x) is true (x = 2) and (Ex)(Ey)Q(x, y) is true (3 = 2 * 1 + 1), but (Ex)(Ey) 3P(x) ` Q(x, y) 4 is
false (no x is both even and odd).

 23. 1. (Ex)(4y)Q(x, y) hyp
 2. (4y)Q(a, y) 1, ei
 3. Q(a, y) 2, ui

 4. (Ex)Q(x, y) 3, eg
 5. (4y)(Ex)Q(x, y) 4, ug

Answers to Odd-Numbered Exercises 863

 25. 1. (4x)(A(x) S B(x)) hyp
 2. (Ex)A(x) hyp
 3. A(a) 2, ei

 4. A(a) S B(a) 1, ui
 5. B(a) 3,4, mp
 6. (Ex)B(x) 5, eg

 27. 1. P(x) S (Ey)Q(x, y) hyp
 2. P(x) temporary hyp
 3. (Ey)Q(x, y) 1, 2, mp
 4. Q(x, a) 3, ei

 5. P(x) S Q(x, a) temporary hyp
 discharged
 6. (Ey)(P(x) S Q(x, y)) 5, eg

 29. 1. (Ex) 3P(x) ` Q(x) 4 hyp
 2. (4y) 3Q(y) S R(y) 4 hyp
 3. P(a) ` Q(a) 1, ei
 4. P(a) 3, sim
 5. Q(a) 3, sim

 6. Q(a) S R(a) 2, ui
 7. R(a) 5, 6, mp
 8. P(a) ` R(a) 4, 7, con
 9. (Ex) 3P(x) ` R(x) 4 8, eg

 31. a. (4x)(M(x) S P(x)) ` (4x)(S(x) S M(x)) S (4x)(S(x) S P(x))
 1. (4x)(M(x) S P(x)) hyp
 2. (4x)(S(x) S M(x)) hyp
 3. M(x) S P(x) 1, ui

 4. S(x) S M(x) 2, ui
 5. S(x) S P(x) 3, 4 hs
 6. (4x)(S(x) S P(x)) 5, ug

 b. (4x)(M(x) S 3P(x) 4′) ` (4x)(S(x) S M(x)) S (4x)(S(x) S 3P(x) 4′)
 1. (4x)(M(x) S 3P(x) 4′) hyp
 2. (4x)(S(x) S M(x)) hyp
 3. M(x) S 3P(x) 4′ 1, ui

 4. S(x) S M(x) 2, ui
 5. S(x) S 3P(x) 4′ 3, 4, hs
 6. (4x)(S(x) S 3P(x) 4′) 5, ug

 c. (4x)(M(x) S P(x)) ` (Ex)(S(x) ` M(x)) S (Ex)(S(x) ` P(x))
 1. (4x)(M(x) S P(x)) hyp
 2. (Ex)(S(x) ` M(x)) hyp
 3. S(a) ` M(a) 2, ei
 4. M(a) 3, sim
 5. M(a) S P(a) 1, ui

 6. P(a) 4, 5, mp
 7. S(a) 3, sim
 8. S(a) ` P(a) 6, 7, con
 9. (Ex)(S(x) ` P(x)) 8, eg

 1. (4x)(M(x) S 3P(x) 4′) hyp
 2. (Ex)(S(x) ` M(x)) hyp
 3. S(a) ` M(a) 2, ei
 4. M(a) S 3P(a) 4′ 1, ui
 5. M(a) 3, sim

 6. 3P(a) 4′ 4, 5, mp
 7. S(a) 3, sim
 8. S(a) ` 3P(a) 4′ 6, 7, con
 9. (Ex)(S(x) ` 3P(x) 4′) 8, eg

 d. (4x)(M(x) S 3P(x) 4′) S (Ex)(S(x) ` M(x)) S (Ex)(S(x) ` 3P(x) 4′)

 33. The argument is

(4x)(4y) 3C(x) ` A(y) S B(x, y) 4 ` C(s) ` (Ex)(S(x) ` 3B(s, x) 4′) S (Ex) 3A(x) 4′
 A proof sequence is
 1. (4x)(4y) 3C(x) ` A(y) S B(x, y) 4 hyp
 2. C(s) hyp
 3. (4y) 3C(s) ` A(y) S B(s, y) 4 1, ui
 4. (Ex)(S(x) ` 3B(s, x) 4′) hyp
 5. S(a) ` 3B(s, a) 4′ 4, ei
 6. C(s) ` A(a) S B(s, a) 3, ui
 7. 3B(s, a) 4′ 5, sim
 8. 3C(s) ` A(a) 4′ 6, 7, mt
 9. 3C(s) 4′ ~ 3A(a) 4′ 8, De Morgan
 10. 3 3C(s) 4′ 4′ 2, dn
 11. 3A(a) 4′ 9, 10, ds
 12. (Ex) 3A(x) 4′ 11, eg

864 Answers to Odd-Numbered Exercises

 35. The argument is

(4x)(M(x) S I(x) ~ G(x)) ` (4x)(G(x) ` L(x) S F(x)) ` (I(j))′ ` L(j) S 3(M(j) S F(j)) 4
 A proof sequence is
 1. (4x)(M(x) S I(x) ~ G(x)) hyp
 2. (4x)(G(x) ` L(x) S F(x)) hyp
 3. M(j) S I(j) ~ G(j) 1, ui
 4. G(j) ` L(j) S F(j) 2, ui
 5. M(j) hyp
 6. I(j) ~ G(j) 3, 5, mp

 7. (I(j))′ hyp
 8. G(j) 6, 7, ds
 9. L(j) hyp
 10. G(j) ` L(j) 8, 9, con
 11. F(j) 4,10, mp

 37. The argument is
 (4x)(R(x) S F(x)) ` (Ex)(R(x) ` B(x)) ` (4x)(G(x)′ S B(x)′) S (Ex)(G(x) ` F(x))

 A proof sequence is
 1. (4x)(R(x) S F(x)) hyp
 2. (Ex)(R(x) ` B(x)) hyp
 3. (4x)(G(x)′ S B(x)′) hyp
 4. R(a) ` B(a) 2, ei
 5. R(a) S F(a) 1, ui
 6. R(a) 4, sim
 7. B(a) 4, sim

 8. F(a) 5, 6, mp
 9. G(a)′ S B(a)′ 3, ui
 10. B(a) S G(a) 9, cont
 11. G(a) 7, 10, mp
 12. G(a) ` F(a) 8, 11, con
 13. (Ex)(G(x) ` F(x)) 12, eg

 39. The argument is

 (4x)(C(x) S (Ey)W(x, y)) ` (4x)(4y)(W(x, y) S S(x, y)) ` C(m) S (Ey)S(m. y)

 A proof sequence is
 1. (4x)(C(x) S (Ey)W(x, y)) hyp
 2. C(m) S (Ey)W(m, y) 1, ui
 3. C(m) hyp
 4. (Ey)W(m, y) 2, 3, mp
 5. (4x)(4y)(W(x, y) S S(x, y)) hyp

 6. (4y)(W(m, y) S S(m, y)) 5, ui
 7. W(m, a) 4, ei
 8. W(m, a) S S(m, a) 6, ui
 9. S(m, a) 7, 8, mp
 10. (Ey)S(m, y) 9, eg

 41. The argument is

(Ex)(E(x) ` (4y)(M(y) S A(x, y))) ` (Ex)(M(x) ` S(x)) S (Ex)(E(x) ` (Ey)(S(y) ` A(x, y)))

 A proof sequence is
 1. (Ex)(E(x) ` (4y)(M(y) S A(x, y))) hyp
 2. (Ex)(M(x) ` S(x)) hyp
 3. E(a) ` (4y)(M(y) S A(a, y)) 1, ei
 4. (4y)(M(y) S A(a, y)) 3, sim
 5. M(b) ` S(b) 2, ei
 6. M(b) S A(a, b) 4, ui
 7. M(b) 5, sim
 8. A(a, b) 6, 7, mp
 9. S(b) 5, sim
 10. S(b) ` A(a, b) 8, 9, con
 11. (Ey)(S(y) ` A(a, y)) 10, eg
 12. E(a) 3, sim
 13. E(a) ` (Ey)(S(y) ` A(a, y)) 11, 12 con
 14. (Ex)(E(x) ` (Ey)(S(y) ` A(x, y))) 13, eg

Answers to Odd-Numbered Exercises 865

 43. 3(Ex) 3A(x) 4′ 4′ 4 (4x) 3 3A(x) 4′ 4′ neg, using 3A(x) 4′ for A(x)
3(Ex) 3A(x) 4′ 4′ 4 (4x)A(x) dn
3(4x)A(x) 4′ 4 (3(Ex) 3A(x) 4′ 4′)′ cont (each direction)
3(4x)A(x) 4′ 4 (Ex) 3A(x) 4′ dn

exerCises 1.5

 1. yes
 3. no
 5. fish
 7. fox, deer
 9. herbivore(X) <= eat(X, Y) and plant(Y)
 11. fox
 13. a. anita

 b. mike, kim
 c. judith, sam, mike, kim, joan, hamal, enrique, jefferson

 15. a. ?authorof (marktwain, houndofthebaskervilles)
 b. ?authorof (williamfaulkner, X)
 c. nonfictionauthor(X) <= authorof (X, Y) and not fiction(Y)
 d. ?nonfictionauthor(X)

 17. a. fatherof (X, Y) <= parentof (X, Y) and male(X)
 b. daughterof (X, Y) <= parentof (Y, X) and female(X)
 c. ancestorof (X, Y) <= parentof (X, Y), ancestorof (X, Y) <= parentof (X, Z) and ancestorof (Z, Y)

 19. a. ?dry(X) and ingredientof (X, Y))
 b. ?perishable(Y) and ingredientof (X, Y) and liquid(X)
 c. foundin(X, Y) <= ingredientof (X, Y), foundin(X, Y) <= ingredientof (X, Z) and foundin(Z, Y)

 21. The results should agree with the results for Exercises 13 and 14.

exerCises 1.6

 1. x + 1 = y − 1 4 x = y − 2
 3. 3x − 1 = 2y − 1 4 3x = 2y
 5. Working backward from the postcondition using the assignment rule,

5x + 3 = 46 4 x = 1
 y = x + 3
52y = 8 or y = 46
 y = 2 * y
5y = 86

 7. Working backward from the postcondition using the assignment rule,
52x + 1 = 16 4 x = 0
 z = 2x + 1
5z − 1 = 0 or z = 16
 5y = 06

866 Answers to Odd-Numbered Exercises

 9. Working backward from the postcondition using the assignment rule,
5x(x − 1) = x(x − 1)6
 y = x − 1
5xy = x(x − 1)6
 y = x * y
5y = x(x − 1)6

 Because the precondition is always true, so is each subsequent assertion, including the postcondition.
 11. Using the conditional rule, the two implications to prove are

5y = 0 and y < 56 y = y + 15y = 16 and5y = 0 and y ≥ 56 y = 5 5y = 16
 The first is true by the assignment rule. Working backward from the postcondition,

5y + 1 = 16 4 y = 0
 y = y + 1
5y = 16

 The second is true because the antecedent is false.
 13. Using the conditional rule, the two implications to prove are

5x ∙ 0 and x > 06 y = 2 * x 5y > 06 and 5x ∙ 0 and x ≤ 06 y = (−2) * x 5y > 06
The first is true by the assignment rule. Working backward from the postcondition,

52*x > 06 4 x > 0 4 x ∙ 0 and x > 0
 y = 2 * x
5y > 06

 The second is true by the assignment rule. Working backward from the postcondition,
5(−2) * x > 06 4 x < 0 4 x ∙ 0 and x ≤ 0
 y = (−2) * x
5y > 06

 15. Using the conditional rule and the definition of absolute value for a nonzero number, the two implications
to prove are

5x ∙ 0 and x ≥ 06 abs = x 5(x > 0 and abs = x) or (x < 0 and abs5−x)6
5x ∙ 0 and x < 06 abs = −x 5(x > 0 and abs = x) or (x < 0 and abs = −x)6

 Using the assignment rule on the first implication gives the precondition

(x > 0 and x = x) or (x < 0 and x = −x) 4 (x > 0 and x = x) 4 (x ∙ 0and x ≥ 0).

 Using the assignment rule on the second implication gives the precondition

 (x > 0 and −x = x) or (x < 0 and −x = −x) 4 (x < 0 and −x = −x) 4 (x ∙ 0 and x < 0)

Ch a p te r 2

exerCises 2.1

 1. a. If there is not healthy plant growth, then there is not sufficient water.
 b. If there is not increased availability of information, then there are no further technological advances.
 c. No modification of the program implies that errors will not be introduced.
 d. Poor insulation and some windows not storm windows implies no fuel savings.

Answers to Odd-Numbered Exercises 867

 3. For example:
 a. a nonsquare rectangle

 b. 0
 c. a short, blue-eyed redhead
 d. a redhead who is short

 5. Half of this statement is true. If n is an odd integer, 3n + 5 is an even integer. However, the converse is
false. Consider the even integer 6. If 3n + 5 = 6, then 3n = 1 and n = 1∙3, which is not an integer at all,
much less an odd integer. See Exercise 25.

 7. a. 4 + 6 = 10; 4 and 6 are even but 10 is not a multiple of 4.
 b. The error lies in choosing both x and y to be equal to 2m. This makes them the same number, which is

a special case.

 9. 25 = 52 = 9 + 16 = 32 + 42, 100 = (10)2 = 36 + 64 = 62 + 82, 169 = (13)2 = 25 +144 =
52 + (12)2

 11. n = 1, n! = 1, 2n = 2; n = 2, n! = 2, 2n = 4; n = 3, n! = 6, 2n = 8
 13. Let x = 2m, y = 2n, where m and n are integers. Then x + y = 2m + 2n = 2(m + n), where m + n is

an integer, so x + y is even.
 15. Let x = 2m + 1, y = 2n + 1, where m and n are integers. Then x + y = (2m + 1) + (2n + 1) =

2m + 2n + 2 = 2(m + n + 1), where m + n + 1 is an integer, so x + y is even.
 17. Let x = 2m + 1 and y = 2n where m and n are integers. Then x − y = 2m + 1 − 2n = 2(m − n) + 1

where m − n is an integer, so x − y is odd.
 19. For two consecutive integers, one is even and one is odd. The product of an even integer and an odd inte-

ger is even by the proof of Example 9.
 21. Let x = 2m where m is an integer. Then x2 = (2m)2 = 4m2, where m2 is an integer, so x2 is divisible by 4.
 23. The contrapositive is: if x + 1 ≤ 0, then x ≤ 0. If x + 1 ≤ 0, then x ≤ −1 < 0, so x < 0 and therefore

x ≤ 0.
 25. If n is odd, then n = 2k + 1 for some integer k. Then 3n + 5 = 3(2k + 1) + 5 = 6k + 8. For the con-

verse, if 3n + 5 = 6k + 8 for some integer k, then 3n = 6k + 3 or 3n = 3(2k + 1) and n = 2k + 1 for
some integer k, so n is an odd integer.

 27. If x < y then multiplying both sides of the inequality by the positive numbers x and y in turn gives x2 < xy
and xy < y2 and therefore x2 < xy < y2 or x2 < y2. For the other direction, if x2 < y2 then y2 − x2 > 0
by the definition of <, (y + x)(y − x) > 0 by factoring, (y + x) < 0 and (y − x) < 0 or (y + x) > 0
and (y − x) > 0 because a positive number is the product of two negatives or two positives. But it cannot
be that (y + x) < 0 because y and x are both positive; therefore (y + x) > 0 and y − x > 0 and y > x.

 29. Let n be a prime number with n = 2k, where k is an integer. Then both 2 and k divide n. Because n is
prime, n is divisible only by itself and 1, so n = 2 and k = 1. Therefore n = 2.

 31. Let p and q be divisible by n. Then p = k1n and q = k2n, where k1 and k2 are integers, and
p + q = k1n + k2n = (k1 + k2)n, where k1 + k2 is an integer. Therefore p + q is divisible by n.

 33. Because n 0 m, m = k1n for some integer k1. Because m 0 p, p = k2m for some integer k2. Then
p = k2m = k2(k1n) = (k2k1)n where k2k1 is an integer, so n 0 p.

 35. Let x = 2n + 1. Then x2 = (2n + 1)2 = 4n2 + 4n + 1 = 4n(n + 1) + 1. But n(n + 1) is even (Exer-
cise 19), so n(n + 1) = 2k for some integer k. Therefore x2 = 4(2k) + 1 = 8k + 1.

 37. m2n2 = (mn)2

 39. Proof by cases, depending on whether x and y are negative. Case 1: x ≥ 0, y ≥ 0. Then 0x 0 = x, 0y 0 = y.
Also, x + y ≥ 0 and 0x + y 0 = x + y. Therefore 0x + y 0 = x + y = 0x 0 + 0y 0 . Case 2: x ≥ 0, y < 0.
Then 0x 0 = x, 0y 0 = −y. Subcase a: x + y ≥ 0. Then 0x + y 0 = x + y. Therefore 0x + y 0 =

868 Answers to Odd-Numbered Exercises

x + y < x + (−y) (remember that y is negative, so −y is positive) = 0x 0 + 0y 0 . Subcase b: x + y < 0.
Then 0x + y 0 = −(x + y). Therefore 0x + y 0 = −(x + y) = (−x) + (−y) ≤ x + (−y) (remember that
x ≥ 0, so −x ≤ 0) = 0x 0 + 0y 0 . Case 3: x < 0, y ≥ 0. Similar to Case 2 with the roles of x and y reversed.
Case 4: x < 0, y < 0. Then 0x 0 = −x, 0y 0 = −y. Also, x + y < 0 and 0x + y 0 = −(x + y). Therefore
0x + y 0 = −(x + y) = (−x) + (−y) = 0x 0 + 0y 0 .

 41. Proof by contradiction. If x1 < A, x2 < A, c, and xn < A, then x1 + x2 + c+ xn < A + A +
c+ A = nA, and (x1 + x2 + c+ xn)∙n < A, which contradicts the definition of A as the average of
x1, …, xn.

 43. Assume that "3 is rational. Then "3 = p∙q where p and q are integers, q ∙ 0, and p and q have no
common factors (other than ± 1). If "3 = p∙q then 3 = p2∙q2 or 3q2 = p2. Then 3 divides p2 so 3
divides p. Thus 3 is a factor of p or 9 is a factor of p2 , and the equation 3q2 = p2 can be written 3q2 = 9x
or q2 = 3x. Then 3 divides q2 so 3 divides q. Therefore 3 is a common factor of p and q, a contradiction.

 45. Assume that "3 2 is rational. Then "3 2 = p∙q where p and q are integers, q ∙ 0, and p and q have no com-
mon factors (other than ±1). If "3 2 = p∙q then 2 = p3∙q3 or 2q3 = p3. Then 2 divides p3 so 2 divides
p. Thus 2 is a factor of p, or 8 is a factor of p3, and the equation 2q3 = p3 can be written 2q3 = 8x or
q3 = 4x. Then 2 divides 4x so 2 divides q3 or 2 divides q. Therefore 2 is a common factor of p and q, a
contradiction.

 47. 0 = (0)2, which is an integral multiple of 2.
 49. 297 is a composite number; 297 = 3*3*3*11
 51. Counterexample: 9 − 7 = 2
 53. Proof: If x is even, then x = 2n and x(x + 1)(x + 2) = (2n)(2n + 1)(2n + 2) = 2 3(n)(2n + 1)(2n + 2) 4 ,

which is even. If x is odd, then x = 2n + 1 and x(x + 1)(x + 2) = (2n + 1)(2n + 2)
(2n + 3) = 2 3(2n + 1)(n + 1) (2n + 3), which is even.

 55. Proof: If x is even, then x = 2n and 2n + (2n)3 = 2n + 8n3 = 2(n + 4n3), which is even. If x is odd, then
x = 2n + 1 and (2n + 1) + (2n + 1)3 = (2n + 1) + (8n3 + 12n2 + 6n + 1) = 8n3 + 12n2 + 8n +
2 = 2(4n3 + 6n2 + 4n + 1), which is even.

 57. Counterexample: 3 × 9 = 27
 59. Let n be odd and m be even. Then n2 is odd by Example 9 and m2 is even by Example 5. Then n2 + m2 is

the sum of an odd and an even, so it is odd by Exercise 16.

 61. For n = 1, n +
1
n = 1 +

1
1

= 2. For n ≥ 2, n +
1
n ≥ 2 +

1
n > 2 because 1∙n is a positive number.

 63. Counterexample: 5 is prime, but 5 + 4 = 9 is not prime.
 65. Proof: n2 − 1 = (n + 1)(n − 1) where n − 1 > 1 (because n > 2), which is a nontrivial factorization,

so the number is not prime.
 67. Counterexample: 42 + 4 + 1 = 21 = 3(7), not prime.
 69. Proof: Let x and y be rational numbers, x = p∙q, y = r∙s with p, q, r, s integers and q, s ∙ 0. Then

x + y = p∙q + r∙s = (ps + rq)∙qs, where ps + rq and qs are integers with qs ∙ 0, and any common
factors between q and s can be removed. Thus x + y is rational.

 71. Counterexample: "2 is irrational but "2 × "2 = 2, which is rational.
 73. Angle 6 plus Angle 5 plus the right angle sum to 180° by the first fact. The right angle is 90° by the fourth

fact. Therefore Angle 6 plus Angle 5 sum to 90°. Angle 6 is the same size as Angle 3 by the second fact.
Therefore Angle 3 plus Angle 5 sum to 90°.

 75. Assume that Angle 1 and Angle 5 are the same size. As in Exercise 73, Angle 3 plus Angle 5 sum to 90°.
Because Angle 1 and Angle 5 are the same size, Angle 3 plus Angle 1 sum to 90°. Also, Angle 3 plus Angle

Answers to Odd-Numbered Exercises 869

1 plus Angle 2 sum to 180° by the first fact. Therefore 90° plus Angle 2 sum to 180°, or Angle 2 = 90°.
Angle 2 is a right angle by the fourth fact.

exerCises 2.2

 1. a. P(1): 4(1) − 2 = 2(1)2 or 2 = 2, (true)
 b. P(k): 2 + 6 + 10 + c + (4k − 2) = 2k2
 c. P(k + 1): 2 + 6 + 10 + c + 34(k + 1) − 2 4 = 2(k + 1)2

 d. Left side of P(k + 1) = 2 + 6 + 10 + c + 34(k + 1) − 2 4 = 2 + 6 + 10 + c + (4k − 2) +
34(k + 1) − 2 4 (write next-to-last term) = 2k2 + 4(k + 1) − 2 (using P(k)) = 2k2 + 4k + 2 =
2(k2 + 2k + 1) = > 2(k + 1)2 which is the right side of P(k + 1).

 3. Base case: P(1): 1 = 1(2(1) − 1), (true). Assume P(k): 1 + 5 + 9 + c + (4k − 3) = k(2k − 1). Show
P(k + 1): 1 + 5 + 9 + c + 34(k + 1) − 3 4 = (k + 1) 32(k + 1) − 1 4 . Left side of P(k + 1) = 1 + 5
+ 9 + c + 34(k + 1) − 3 4 = 1 + 5 + 9 + c + (4k − 3) + 34(k + 1) − 3 4 = k(2k − 1) + 4(k + 1)
− 3 (using P(k)) = 2k2 − k + 4k + 1 = 2k2 + 3k + 1 = (k + 1)(2k + 1) = (k + 1) 32(k + 1) − 1 4
which is the right side of P(k + 1).

 5. Base case: P(1): 6 − 2 = 1 33(1) + 1 4 , (true). Assume P(k): 4 + 10 + 16 + c + (6k − 2) = k(3k + 1).
Show P(k + 1): 4 + 10 + 16 + c + 36(k + 1) − 2 4 = (k + 1) 33(k + 1) + 1 4 . 4 + 10 + 16 + c
+ 36(k + 1) − 2 4 = 4 + 10 + 16 + c + (6k − 2) + 36(k + 1) − 2 4 = k(3k + 1) + 6(k + 1) − 2
(using P(k)) = 3k2 + k + 6k + 4 = 3k2 + 7k + 4 = (k + 1)(3k + 4) = (k + 1) 33(k + 1), + 1 4 which
is the right side of P(k + 1).

 7. Base case: P(1): 12 = 1(1 + 1)(2 + 1)∙6, (true). Assume P(k): 12 + 22 + c + k2 = k(k + 1)(2k + 1)∙6.
Show P(k + 1): 12 + 22 + c + (k + 1)2 = (k + 1)(k + 2)(2(k + 1) + 1)∙6. Left side of P(k + 1) = 12
+ 22 + c + (k + 1)2 = 12 + 22 + c + k2 + (k + 1)2 = k(k + 1)(2k + 1)∙6 + (k + 1)2 (using P(k))
= (k + 1) 3k(2k + 1)∙6 + k + 1 4 = (k + 1) 3(2k2 + k + 6k + 6)∙6 4 = (k + 1)(2k2 + 7k + 6)∙6
= (k + 1)(k + 2)(2k + 3)∙6 = (k + 1)(k + 2)(2(k + 1) + 1)∙6 which is the right side of P(k + 1)

 9. Base case: P(1): 12 = 1(2 − 1)(2 + 1)∙3, (true). Assume P(k): 12 + 32 + c + (2k − 1)2 =
k(2k − 1)(2k + 1)∙3. Show P(k + 1): 12 + 32 + c + 32(k + 1) − 1 42 = (k + 1)(2(k + 1) − 1)
(2(k + 1) + 1)∙3. Left side of P(k + 1) = 12 + 32 + c + 32(k + 1) − 1 42 = 12 + 32 + c + (2k − 1)2
+ 32(k + 1) − 1 42 = k(2k − 1)(2k + 1)∙3 + 32(k + 1) − 1 42(using P(k)) = k(2k − 1) (2k + 1)∙3 +
(2k + 1)2 = (2k + 1) 3k(2k − 1)∙3 + 2k + 1 4 = (2k + 1)(2k2 − k + 6k + 3)∙3) = (2k + 1)(2k2 + 5k + 3)∙3
= (2k + 1)(k + 1)(2k + 3)∙3 = (k + 1)(2(k + 1) − 1) (2(k + 1) + 1)∙3 which is the right side of
P(k + 1).

 11. Base case: P(1): 1 # 3 = 1(2)(9)∙6, (true). Assume P(k): 1 # 3 + 2 # 4 + c + k(k + 2) = k(k + 1)
(2k + 7)∙6. Show P(k + 1): 1 # 3 + 2 # 4 + c + (k + 1)(k + 3) = (k + 1)(k + 2)(2(k + 1) + 7)∙6.
Left side of P(k + 1) = 1 # 3 + 2 # 4 + c + (k + 1)(k + 3) = 1 # 3 + 2 # 4 + c + k(k + 2) +
(k + 1)(k + 3) = k(k + 1)(2k + 7)∙6 + (k + 1)(k + 3) (using P(k)) = (k + 1) 3k(2k + 7) + 6(k + 3) 4∙6
= (k + 1)(2k2 + 13k + 18)∙6 = (k + 1)(k + 2)(2k + 9)∙6 = (k + 1)(k + 2)(2(k + 1) + 7)∙6 which
is the right side of P(k + 1).

 13. Base case: P(1): 1∙(1 # 2) = 1∙(1 + 1), (true). Assume P(k): 1∙(1 # 2) + 1∙(2 # 3) + c + 1∙k(k + 1) =
k∙(k + 1). Show P(k + 1): 1∙(1 # 2) + 1∙(2 # 3) + c + 1∙(k + 1)(k + 2) = (k + 1)∙(k + 2). Left side of
P(k + 1) = 1∙(1 # 2) + 1∙(2 # 3) + c + 1∙(k + 1)(k + 2) = 1∙(1 # 2) + 1∙(2 # 3) + c + 1∙k(k + 1)
+ 1∙(k + 1)(k + 2) = k∙(k + 1) + 1∙(k + 1)(k + 2) (using P(k)) = 3k(k + 2) + 1 4∙(k + 1)(k + 2) =
(k2 + 2k + 1)∙(k + 1)(k + 2) = (k + 1)2∙(k + 1)(k + 2) = (k + 1)∙(k + 2) which is the right side of
P(k + 1).

870 Answers to Odd-Numbered Exercises

 15. Base case: P(1): 12 = (−1)2(1)(2)∙2, (true). Assume P(k): 12 − 22 + c + (−1)k+1k2 = (−1)k+1
(k)(k + 1)∙2. Show P(k + 1): 12 − 22 + c + (−1)k+2(k + 1)2 = (−1)k+2(k + 1)(k + 2)∙2. Left side
of P(k + 1) = 12 − 22 + c + (−1)k+2(k + 1)2 = 12 − 22 + c + (−1)k+1k2 + (−1)k+2(k + 1)2 =
(−1)k+1(k)(k + 1)∙2 + (−1)k+2(k + 1)2 (using P(k)) = 3(−1)k+1(k)(k + 1) + 2(−1)k+2 (k + 1)2 4∙2 =
(−1)k+2(k + 1) 3k(−1)−1 + 2(k + 1) 4∙2 = (−1)k+2(k + 1) 3−k + 2k + 2 4∙2 = (−1)k+2(k + 1)(k + 2)∙2
which is the right side of P(k + 1).

 17. Base case: P(1): 22 = (2)(1)(2)(2 + 1)∙3 or 4 = (2)(6)∙3, (true). Assume P(k): 22 + 42 + c + (2k)2
= 2k(k + 1)(2k + 1)∙3. Show P(k + 1): 22 + 42 + c + 32(k + 1) 42 = 2(k + 1)(k + 2) 32(k + 1)
+ 1 4∙3. Left side of P(k + 1) = 22 + 42 + c + 32(k + 1) 42 = 22 + 42 + c + (2k)2 + 32(k + 1) 42 =
2k(k + 1)(2k + 1)∙3 + 32(k + 1) 42 (using P(k)) = 2(k + 1) 3k(2k + 1)∙3 + 2(k +1) 4 52(k + 1) 3k(2k + 1)
+ 6(k + 1) 4∙3 = 2(k + 1) 32k2 + 7k + 6 4∙3 = 2(k + 1)(k + 2)(2k + 3)∙3 = 2(k + 1)(k + 2) 32(k + 1)
+ 1 4∙3 which is the right side of P(k + 1).

 19. Base case: P(1): 1 # 2 = (1)(2)(3)∙3, (true). Assume P(k): 1 # 2 + 2 # 3 + 3 # 4 + c + k(k + 1) =
k(k + 1)(k + 2)∙3. Show P(k + 1): 1 # 2 + 2 # 3 + 3 # 4 + c + (k + 1)(k + 2) = (k + 1)(k + 2)(k + 3)∙3
Left side of P(k + 1) = 1 # 2 + 2 # 3 + 3 # 4 + c + (k + 1)(k + 2) = 1 # 2 + 2 # 3 + 3 # 4 + c +
k(k + 1) + (k + 1)(k + 2) = k(k + 1)(k + 2)∙3 + (k + 1)(k + 2)(using P(k)) = (k + 1)(k + 2) 3k∙3 + 1 4
= (k + 1)(k + 2)(k + 3)∙3 which is the right side of P(k + 1).

 21. Base case: P(1): 1∙(1 # 4) = 1∙(3 # 1 + 1), (true). Assume P(k): 1∙(1 # 4) + 1∙(4 # 7) + 1∙(7 # 10) + c +
1∙(3k − 2)(3k + 1) = k∙(3k + 1). Show P(k + 1): 1∙(1 # 4) + 1∙(4 # 7) + 1∙(7 # 10) + c + 1∙(3(k + 1)
− 2)(3(k + 1) + 1) = (k + 1)∙33(k + 1) + 1 4 . Left side of P(k + 1) = 1∙(1 # 4) + 1∙(4 # 7) + 1∙(7 # 10) +
c + 1∙(3(k + 1) − 2)(3(k + 1) + 1) = 1∙(1 # 4) + 1∙(4 # 7) + 1∙(7 # 10) + c + 1∙(3k − 2)(3k + 1)
+ 1∙(3(k + 1) − 2)(3(k + 1) + 1) = k∙(3k + 1) + 1∙(3(k + 1) − 2)(3(k + 1) + 1) (using P(k)) = k∙(3k + 1)
+ 1∙(3k + 1)(3k + 4) = 3k(3k + 4) + 1 4∙(3k + 1)(3k + 4) = (3k2 + 4k + 1)∙(3k + 1)(3k + 4) =
(3k + 1)(k + 1)∙(3k + 1)(3k + 4) = (k + 1)∙33(k + 1) + 1 4 which is the right side of P(k + 1).

 23. Base case: P(1): 1 + 4 = (42 − 1)∙3 or 5 = 15∙3, (true). Assume P(k): 1 + 4 + 42 + c + 4k = (4k+1 − 1)∙3.
Show P(k + 1): 1 + 4 + 42 + c + 4k+1 = (4k+2 − 1)∙3. Left side of P(k + 1) = 1 + 4 + 42 + c
+ 4k+1 = 1 + 4 + 42 + c + 4k + 4k+1 = (4k+1 − 1)∙3 + 4k+1 (using P(k)) = (4k+1 − 1 + 3 # 4k+1)∙3
= (4 # 4k+1 − 1)∙3 = (4k+2 − 1)∙3 which is the right side of P(k + 1).

 25. Base case: P(1): 1 = (3 − 1)∙2, (true). Assume P(k): 1 + 4 + 7 + 10 + c + (3k − 2) = k(3k − 1)∙2.
Show P(k + 1): 1 + 4 + 7 + 10 + c+ (3(k + 1) − 2) = (k + 1)(3(k + 1) − 1)∙2. Left side of P(k + 1)
= 1 + 4 + 7 + 10 + c + (3(k + 1) − 2) = 1 + 4 + 7 + 10 + c + (3k − 2) + (3(k + 1) − 2) = k(3k
− 1)∙2 + (3(k + 1) − 2) (using P(k)) = 3k(3k − 1) + 2(3(k + 1) − 2) 4∙2 = (3k2 − k + 6k + 6 − 4)∙2
= (3k2 + 5k + 2)∙2 = (k + 1)(3k + 2)∙2 = (k + 1)(3(k + 1) − 1)∙2 which is the right side of
P(k + 1).

 27. Base case: P(1): a = (a − ar)∙(1 − r) = a(1 − r)∙(1 − r), (true). Assume P(k): a + ar + c +
ark−1 = (a − ark)∙(1 − r). Show P(k + 1): a + ar + c + ark = (a − ark+1)∙(1 − r). Left side of
P(k + 1) = a + ar + c + ark = a + ar + c + ark−1 + ark = (a − ark)∙(1 − r) + ark (using P(k))
= 3a − ark + ark(1 − r) 4∙(1 − r) = (a − ark+1)∙(1 − r) which is the right side of P(k + 1).

 29. a. 4,882,812
 b. 64,592,673,600
 c. 225
 d. 884
 31. Base case: P(2): 22 > 2 + 1, (true). Assume P(k): k2 > k + 1. Show P(k + 1): (k + 1)2 > k + 2. Left

side of P(k + 1) = (k + 1)2 = k2 + 2k + 1 > (k + 1) + 2k + 1 (using P(k)) = 3k + 2 > k + 2 which
is the right side of P(k + 1).

Answers to Odd-Numbered Exercises 871

 33. Base case: P(7): 72 > 5 # 7 + 10 or 49 > 45, (true). Assume P(k): k2 > 5k + 10. Show P(k + 1):
(k + 1)2 > 5(k + 1) + 10 = 5k + 15. Left side of P(k + 1) = (k + 1)2 = k2 + 2k + 1 > (5k + 10) +
2k + 1 (using P(k)) = 5k + 2k + 11 > 5k + 12 + 11 (because k > 6) = 5k + 23 > 5k + 15 which
is the right side of P(k + 1).

 35. Base case: P(4): 4! > 42 or 1 # 2 # 3 # 4 = 24 > 16 (true). Assume P(k): k! > k2. Show P(k + 1):
(k + 1)! > (k + 1)2. Left side of P(k + 1) = (k + 1)! = k!(k + 1) > k2(k + 1) (using P(k)) > (k + 1)
(k + 1) (by Exercise 31 because k ≥ 4) = (k + 1)2 which is the right side of P(k + 1).

 37. Base case: P(4): 4! > 24 or 24 > 16, (true). Assume P(k): k! > 2k. Show P(k + 1): (k + 1)! > 2k+1.
Left side of P(k + 1) = (k + 1)! = k!(k + 1) > 2k(k + 1) (using P(k)) > 2k(2) (because k ≥ 4) = 2k+1
which is the right side of P(k + 1).

 39. Base case: P(1): 1! ≥ 20, (true). Assume P(k): k! ≥ 2k−1. Show P(k + 1): (k + 1)! ≥ 2k. Left side of
P(k + 1) = (k + 1)! = k!(k + 1) ≥ 2k−1(k + 1) (using P(k)) ≥ 2k−1(2) (because k ≥ 1 so k + 1 ≥ 2)
= 2k which is the right side of P(k + 1).

 41. Base case: P(2): (1 + x)2 > 1 + x2 or 1 + 2x + x2 > 1 + x2 (true because x > 0 implies 2x > 0).
Assume P(k): P(k): (1 + x)k > 1 + xk. Show P(k + 1): (1 + x)k+1 > 1 + xk+1. Left side of P(k + 1) =
(1 + x)k+1 = (1 + x)k(1 + x) > (1 + xk)(1 + x) (using P(k)) = 1 + xk + x + xk+ l > 1 + xk+1 which
is the right side of P(k + 1).

 43. Base case: P(2): 1 + 2 < 22 or 3 < 4, (true). Assume P(k): 1 + 2 + c + k < k2. Show P(k + 1):
1 + 2 + c + (k + 1) < (k + 1)2. Left side of P(k + 1) = 1 + 2 + c + (k + 1) = 1 + 2 + c +
k + (k + 1) < k2 + k + 1 (using P(k)) < k2 + 2k + 1 = (k + 1)2 which is the right side of P(k + 1).

 45. a. Base case: P(1): 1 + (1∙2) < 2, (true). Assume P(k): 1 + (1∙2) + c + (1∙2k) < 2. Show
P(k + 1): 1 + (1∙2) + c + (1∙2k+1) < 2. Left side of P(k + 1) = 1 + (1∙2) + c + (1∙2k+1) =
1 + (1∙2) + c + (1∙2k) + (1∙2k+1) < 2 + (1∙2k+1) (using P(k)), but 2 + (1∙2k+1) is not less than 2.

 b. Base case: P(1): 1 + (1∙2) = 2 − (1∙2), (true). Assume P(k): 1 + (1∙2) + c + (1∙2k) = 2 − (1∙2k).
Show P(k + 1): 1 + (1∙2) + c + (1∙2k+1) = 2 − (1∙2k+1). Left side of P(k + 1) = 1 + (1∙2) +
c + (1∙2k+1) = 1 + (1∙2) + c + (1∙2k) + (1∙2k+1) = 2 − (1∙2k) + (1∙2k+1) (using P(k)) =
2 − (2∙2k+1) + (1∙2k+1) = 2 − (1∙2k+1) which is the right side of P(k + 1).

 47. Base case: P(1): 23 − 1 = 8 − 1 = 7 and 7 07. Assume P(k): 7 023k − 1 so 23k − 1 = 7m or 23k = 7m + 1
for some integer m. Show P(k + 1): 7 023(k+1) − 1. 23(k+1) − 1 = 23k+3 − 1 = 23k # 23 − 1 = (7m + 1)23
− 1 = 7(23m) + 8 − 1 = 7(23m + 1) where 23m + 1 is an integer, so 7 023(k+1) − 1.

 49. Base case: P(1): 7 − 2 = 5 and 5 05. Assume P(k): 5 07k − 2k, so 7k − 2k = 5m or 7k = 5m + 2k for some
integer m. Show P(k + 1): 5 07k+1 − 2k+1. 7k+1 − 2k+1 = 7 # 7k − 2k+1 = 7(5m + 2k) − 2k+1 = 5(7m)
+ 2k(7 − 2) = 5(7m + 2k) where 7m + 2k is an integer, so 5 07k+1 − 2k+1.

 51. Base case: P(1): 2 + (−1)2 = 2 + 1 = 3 and 3 03. Assume P(k): 3 02k + (−1)k+1, so 2k + (−1)k+1 =
3m or 2k = 3m − (−1)k+1 for some integer m. Show P(k + 1): 3 02k+1 + (−1)k+2. 2k+1 + (−1)k+2 =
2 # 2k + (−1)k+2 = 2(3m − (−1)k+1) + (−1)k+2 = 3(2m) − 2(−1)k+1 + (−1)k+2 = 3(2m) + (−1)k+1
(−2 + (−1)) = 3(2m) + (−1)k+1 (−3) = 3(2m − (−1)k+1) where 2m − (−1)k+1 is an integer, so
3 02k+1 + (−1)k+2.

 53. Base case: P(1): 34+2 + 52+1 = 36 + 53 = 729 + 125 = 854 = 61 # 14 and 14 061 # 14. Assume P(k):
14 034k+2 + 52k+1, so 34k+2 + 52k+1 = l4m or 34k+2 = 14m − 52k+1 for some integer m. Show P(k + 1):
14 034(k+1)+2 + 52(k+1)+1. 34(k+1)+2 + 52(k+1)+1 = 34k+2 # 34 + 52k+3 = (14m − 52k+1)34 + 52k+3 = 14(m34)
− 52k+1 # 34 + 52k+1 # 52 = 14(m34) − 52k+1(34 − 52) = 14(m34) − 52k+1(81 − 25) = 14(m34)−52k+1(56)
= 14(m34 − 4 # 52k+1) where m34 − 4 # 52k+1 is an integer, so 14 034(k+1)+2 + 52(k+1)+1.

872 Answers to Odd-Numbered Exercises

 55. Base case: P(1): 10 + 3 # 43 + 5 = 10 + 192 + 5 = 207 = 9 # 23 and 9 09 # 23. Assume P(k): 9 010k +
3 # 4k+2 + 5, so 10k + 3 # 4k+2 + 5 = 9m or 10k = 9m − 3 # 4k+2 − 5 for some integer m. Show P(k + 1):
9 010k+1 + 3 # 4k+3 + 5. 10k+1 + 3 # 4k+3 + 5 = 10 # 10k + 3 # 4k+3 + 5 = 10(9m − 3 # 4k+2 − 5)
+ 3 # 4k+3 + 5 = 9(10m) − 30 # 4k+2 − 50 + 3 # 4k+2 # 4 + 5 = 9(10m) − 45 − 3 # 4k+2(10 − 4) =
9(10m − 5) − 18 # 4k+2 = 9(10m − 5 − 2 # 4k+2) where 10m − 5 − 2 # 4k+2 is an integer, so 9 010k+1 +
3 # 4k+3 + 5.

 57. Base case: P(1): 13 + 2(1) = 3 and 3 03. Assume P(k): 3 0k3 + 2k so k3 + 2k = 3m for some integer m.
Show P(k + 1): 3 0 (k + 1)3 + 2(k + 1). (k + 1)3 + 2(k + 1) = k3 + 3k2 + 3k + 1 + 2k + 2 = k3 +
2k + 3(k2 + k + 1) = 3m + 3(k2 + k + 1) = 3(m + k2 + k + 1) where m + k2 + k + 1 is an integer,
so 3 0 (k + 1)3 + 2(k + 1). This result also follows directly from Exercise 56: n3 + 2n = n3 − n + 3n =
3m + 3n (by Exercise 56) = 3(m + n).

 59. Base case: P(1): cos u + i sin u = cos u + i sin u. Assume P(k): (cos u + i sin u)k = cos ku + i sin ku.
Show P(k + 1): (cos u + i sin u)k+1 = cos (k + 1)u + i sin (k + 1)u. (cos u + i sin u)k+1 =
(cos u + i sin u)k (cos u + i sin u) = (cos ku + i sin ku)(cos u + i sin u) = cos ku cos u + i sin ku cos u
+ i cos ku sin u + i2sin ku sin u = cos ku cos u − sin ku sin u + i(sin ku cos u + cos ku sin u) =
cos (ku + u) + isin (ku + u) = cos (k + 1)u + isin (k + 1)u.

 61. The statement to be proved is that n(n + 1)(n + 2) is divisible by 3 for n ≥ 1. Base case: P(1):
1(1 + 1)(1 + 2) = 6 is divisible by 3, (true). Assume P(k): k(k + 1)(k + 2) = 3m for some integer m.
Show P(k + 1): (k + 1)(k + 2)(k + 3) is divisible by 3. (k + 1)(k + 2)(k + 3) = (k + 1)(k + 2)k +
(k + 1)(k + 2)3 = 3m + (k + 1)(k + 2)3 = 3 3m + (k + 1)(k + 2) 4 .

 63. 65.

 67. Proof is by induction on n. P(1) is true because 1 line divides the plane into 2 regions, and
(12 + 1 + 2)∙2 = 2. Assume that P(k) is true: k lines divide the plane into (k2 + k + 2)∙2 regions.
Show P(k + 1), that k + 1 lines divide the plane into 3(k + 1)2 + (k + 1) + 2 4∙2 regions. A new line
creates one more region than the number of lines it crosses. When line k + 1 is added, it will cross k
lines (because no two lines are parallel and have no common intersection points). Therefore k + 1 new
regions are created. The total number of regions is therefore k + 1 more than the number present with
k lines, or (k2 + k + 2)∙2 + (k + 1) = (k2 + k + 2 + 2(k + 1)∙2 = (k2 + 3k + 4)∙2 = ((k + 1)2 +
(k + 1) + 2)∙2.

 69. P(1) is 1 = 1 + 1 which is not true.

 71. a. Let P(n) be the property that any word composed of a juxtaposition of n subwords has an even number
of o’s. Then P(1) is true because the only words with 1 subword are the words moon, noon, and soon,
all of which have 2 o’s. Assume that P(k) is true and consider P(k + 1). For any word composed of
k + 1 subwords, break the word into two parts composed of k subwords and 1 subword. By the induc-
tive hypothesis, the part with k subwords has an even number m of o’s. The part with 1 subword has 2
o’s. The total number of o’s is therefore m + 2, an even number. This verifies P(k + 1) and completes
the proof.

Answers to Odd-Numbered Exercises 873

 b. Let P(n) be the property that any word composed of a juxtaposition of n subwords has an even num-
ber of o’s. Then P(1) is true because the only words with 1 subword are the words moon, noon, and
soon, all of which have 2 o’s. Assume that P(r) is true for all r, 1 ≤ r ≤ k, and consider P(k + 1).
For any word composed of k + 1 subwords, break the word into two parts composed of r1 and r2
subwords, with 1 ≤ r1 ≤ k, 1 ≤ r2 ≤ k, and r1 + r2 = k + 1. By the inductive hypothesis, r1 con-
tains m1 o’s, an even number, and r2 contains m2 o’s, an even number. Then the original word contains
m1 + m2 o’s, an even number. This verifies P(k + 1) and completes the proof.

 73. For the base case, a 1-piece puzzle requires 0 steps to assemble. Assume that any block of r pieces, 1 ≤ r ≤ k,
requires r − 1 steps to assemble. Now consider a puzzle with k + 1 pieces. The last step in assembling the
puzzle is to fit together two blocks of size r1 and r2 with 1 ≤ r1 ≤ k, 1 ≤ r2 ≤ k, and r1 + r2 = k + 1. By
the inductive hypothesis these blocks required r1 − 1 and r2 − 1 steps to assemble, so with the final step,
the total number of steps required is (r1 − 1) + (r2 − 1) + 1 = (r1 + r2) − 1 = k.

 75. For the base case, the simplest such wff is a single statement letter, which has 1 symbol; 1 is odd. Assume
that for any such wff with r symbols, 1 ≤ r ≤ k, r is odd. Consider a wff with k + 1 symbols. It must
have the form (P) ` (Q), (P) ~ (Q), or (P) S (Q) where P has r1 symbols, 1 ≤ r1 < k, and Q has r2
symbols, 1 ≤ r2 < k. By the inductive hypothesis, both r1 and r2 are odd. The number of symbols in the
original wff is then r1 + r2 + 5 (four parentheses plus one connective), which is odd.

 77. P(2) and P(3) are true by the equations 2 = 2 and 3 = 3. Now assume that P(r) is true for any r, 2 ≤ r ≤ k,
and consider P(k + 1). We may assume that k + 1 ≥ 4, so that (k + 1) − 2 ≥ 2 and by the inductive
hypothesis can be written as a sum of 2s and 3s. Adding an additional 2 gives k + 1 as a sum of 2s and 3s.

 79. P(14), P(15), and P(16) are true by the equations 14 = 2(3) + 8, 15 = 5(3), 16 = 2(8). Now assume
that P(r) is true for any r, 14 ≤ r ≤ k, and consider P(k + 1). We may assume that k + 1 ≥ 17, so
(k + 1) − 3 ≥ 14 and by the inductive hypothesis can be written as a sum of 3s and 8s. Adding an ad-
ditional 3 gives k + 1 as a sum of 3s and 8s.

 81. P(64), P(65), P(66), P(67), and P(68) are true by the equations 64 = 6(5) + 2(17), 65 = 13(5),
66 = 3(5) + 3(17), 67 = 10(5) + 17, 68 = 4(17). Now assume that P(r) is true for any r, 64 ≤ r ≤ k,
and consider P(k + 1). We may assume that k + 1 ≥ 69, so (k + 1) − 5 ≥ 64 and by the inductive hy-
pothesis can be written as a sum of 5s and 17s. Adding an additional 5 gives k + 1 as a sum of 5s and 17s.

 83. From Exercise 2,

∙
n

m=1
2m = n(n + 1) = n2 + n. Also, 3

n

0

2x dx =
2x2

2
`
n

0
= n2

 and

3

n+1

1

2x dx =
2x2

2
`
n+1

1
= (n + 1)2 − 1 = n2 + 2n. It is true that n2 ≤ n2 + n ≤ n2 + 2n.

ExErcisEs 2.3

 1. Assume xk
2 > xk + 1. Then x2

k+1 = (xk + 1)2 = x2
k + 2xk + 1 > x2

k + 1 > (xk + 1) + 1 = xk+1 + 1.
 3. Q(0): j0 = (i0 − 1)! because j = 1, i = 2 before loop is entered. Assume Q(k): jk = (ik − 1)! Then

Q(k + 1): jk+1 = jk
ik = (ik − 1)!ik = (ik)! = (ik+1 − 1)! At loop termination, j = (i − 1)! and

i = x + 1, so j = x!
 5. Q(0): j0 = xi0 because j = x, i = 1 before loop is entered. Assume Q(k): jk = xik. Then Q(k + 1): jk+1 =
 jk

x = xik # x = xih+1 = xik + 1. At loop termination, j = xi and i = y, so j = xy.

874 Answers to Odd-Numbered Exercises

 7. gcd(308, 165) = 11
 9. gcd(735, 90) = 15
 11. gcd(1326, 252) = 6
 13. You want to divide the 792 bars of soap evenly among x packages. Therefore x must be a divisor of 792.

Similarly, you want to divide the 400 shampoo bottles evenly among the x packages. Therefore x must be
a divisor of 400. The number of packages is the largest value of x that divides both 792 and 400, which is
the definition of gcd(792, 400).

 15. Q: j = x * yi. Q(0): j0 = x * yi0 because j = x, i = 0 before loop is entered. Assume Q(k): jk = x * yik.
Then Q(k + 1): jk+1 = jk * y = x * yik * y = x * yik+1 = x * yik + 1. At loop termination, j = x * yi and i = n,
so j = x * yn.

 17. Q: j = (i + 1)2. Q(0): j0 = (i0 + 1)2 because j = 4, i = 1 before loop is entered. Assume Q(k): jk =
(ik + 1)2. Then Q(k + 1): jk+1 = jk + 2ik + 3 = (ik + 1)2 + 2ik + 3 = ik

2 + 2ik + 1 + 2ik + 3 =
i2
k + 4ik + 4 = (ik + 2)2 = (ik + 1 + 1)2 = (ik+1 + 1)2. At loop termination, j = (i + 1)2 and i = x,

so j = (x + 1)2.
 19. Q: j = x * i!. Q(0): j0 = x * i0! because j = x, i = 1 before loop is entered. Assume Q(k): jk = x * (ik)!

Then Q(k + 1): jk+1 = jk * (ik + 1) = x * (ik)!(ik + 1) = x * (ik + 1)! = x * (ik+1)! At loop termina-
tion, j = x * i! and i = n, so j = x * n!

 21. Q: j = max of (a 31 4, …, a 3i 4). Q(0): j0 = max(a 31 4, …, a 3i0 4) because i0 = 1, so the right side be-
comes max(a 31 4) and j0 = a 31 4 . Assume Q(k): jk = max(a 31 4, …, a 3ik 4). ThenQ(k + 1): jk+1 =
max(jk, a 3ik + 1 4) = max(max(a 31 4, …, a 3ik 4), a 3ik + 1 4) = max(a 31 4, …, a 3ik + 1 4) = max(a 31 4, …,
a 3ik+1 4). At loop termination, j = max(a 31 4, …, a 3i 4) and i = n, so j = max(a 31 4, …, a 3n 4).

 23. Suppose there exists an integer d such that d 0 a∙2, d 0 b∙2, and d > c, from which 2d > 2c. Then a∙2 = k1d
and b∙2 = k2d where k1, k2 are integers. Then a = k1(2d) and b = k2(2d), which means that 2d divides
both a and b but is greater than 2c = gcd(a,b), which is a contradiction.

 25. If a and b are both odd, then a − b is even, in which case by fact 2, gcd(a − b, b) = gcd((a − b)∙2, b)
 27. 308 165 Fact 2

 154 165 Fact 2
 77 165 Fact 3
 77 44 Fact 2
 77 22 Fact 2
 77 11 Fact 3
 33 11 Fact 3
 11 11 Fact 3
 0 11
 gcd(308, 165) = 11

ExErcisEs 2.4

 1. 11 = 7 # 308 − 13 # 165
 3. 15 = 1 # 735 − 8 # 90
 5. 6 = 100 # 252 − 19 # 1326
 7. 1729 = 7 # 13 # 19
 9. Because "1171 > 34, we try the primes 2, 3, 5, 7, 11, 13, 17, 23, 29, 31. None of these divide n, so n is prime.
 11. 8712 = 23 # 32 # 112

Answers to Odd-Numbered Exercises 875

 13. 308 = 22 * 7 * 11 and 165 = 3 * 5 * 11, so gcd(308, 165) = 11
 15. 735 = 3 * 5 * 72 and 90 = 2 * 32 * 5 so gcd(735, 90) = 3 * 5 = 15
 17. 1326 = 2 * 3 * 13 * 17 and 252 = 22 * 32 * 7, so gcd (1326, 252) = 2 * 3 = 6
 19. The gcd(a, b) is the product of primes that appear in both a and b to the lowest power to which they appear.

The lcm(a, b) is the product of primes that appear in either a or b to the highest power to which they appear.
 21. gcd = 2 # 3 # 11, lcm = 22 # 3 # 112 # 13.
 23. gcd = 3 # 5 # 11, lcm = 32 # 53 # 112 # 17
 25. Let gcd(a, b) = c and gcd(a, a + b) = d . Because gcd(a, b) = c, c 0 a and c 0 b, so a = mc and b = nc

for some integers m and n. Then a + b = mc + nc = (m + n)c, so c 0 (a + b). Therefore c is a common
divisor of a and a + b, and must be ≤ the greatest common divisor of a and a + b, namely d. Be-
cause gcd(a, a + b) = d , d 0 a and d 0 (a + b), so a = id and a + b = jd for some integers i and j. Then
b = jd − a = jd − id = (j − i)d , so d 0 b. Therefore d is a common divisor of a and b and must be ≤
the greatest common divisor of a and b, namely c. Now c ≤ d and d ≤ c, so c = d .

 27. For example, 8 024 and 24 = 12 # 2 but 8 0 12 and 8 0 2. This does not violate the theorem of division by
prime numbers because 8 is not prime.

 29. 3, 5, 7
 31. w(8) = 4 (the numbers 1, 3, 5, 7)
 33. w(10) = 4 (the numbers 1, 3, 7, 9)
 35. Let w(n) = n − 1. Because n is never relatively prime to n, the numbers being counted in w(n) are

(1, 2, … , n − 1). Thus every number between 1 and n − 1 is relatively prime to n, so only 1 and n divide
n, making n prime.

 37. w(24) = 23w(2) = 8 # 1 = 8. The numbers are: 1, 3, 5, 7, 9, 11, 13, 15
 39. 35640
 41. 1248000
 43. To compute w(pq), count the number of positive integers less than or equal to pq, which is pq, and

throw out those that are not relatively prime to pq. A positive integer m less than or equal to pq and
not relatively prime to pq must either contain at least one factor of p or at least one factor of q. We
count how many integral multiples of p (p, 2p, 3p, … , pq) are less than or equal to pq. This number
is pq∙p = q. Similarly we count how many integral multiples of q (q, 2q, 3q, … , pq) are less than or
equal to pq, of which there are pq∙q = p. Multiples of p and multiples of q are distinct except for pq,
which we have counted twice; to compensate, we will add 1 to the final count. The correct expression is
w(pq) = pq − q − p + 1 = (p − 1)(q − 1) = w(p) w(q).

 45. Using the fundamental theorem of arithmetic, let n = pn1
1 pn2

2 c pnk
k so that nm = pn1m

1 pn2m
2 c pnkm

k and by
Equation 2,

f(n) = pn1−1
1 pn2−1

2 c pnk−1
k 3f(p1)f(p2)

c
 f(pk) 4

 Then, again by Equation 2,

 w(nm) = pn1m−1
1 pn2m−1

2 c pnkm−1
k w(p1)w(p2)

c
 w(pk) =

pn1m
1 pn2m

2 c pnkm
k

p1p2 c pk
w(p1)w(p2)

c
 w(pk)

 =
pn1m

1 pn2m
2 c pnkm

k

p1p2 c pk
a w(n)

pn1−1
1 pn2−1

2 c pnk−1
k

b =
pn1m

1 pn2m
2 c pnkm

k

pn1
1 pn2

2 c pnk
k

w(n)

 =
nm

n w(n) = nm−1w(n)

 47. 5, 7, 31, 127

876 Answers to Odd-Numbered Exercises

 49. a. 28 = 1 + 2 + 4 + 7 + 14
 b. 28 = 22(23 − 1)

 51. The original list is
 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99

 After pass one (crossing out multiples of 2):
 1 2 3 5 7 9

11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47 49
51 53 55 57 59
61 63 65 67 69
71 73 75 77 79
81 83 85 87 89
91 93 95 97 99

 After pass two (crossing out multiples of 3):
 1 2 3 5 7
11 13 17 19
 23 25 29
31 35 37
41 43 47 49
 53 55 59
61 65 67
71 73 77 79
 83 85 89
91 95 97

 After pass three (crossing out multiples of 5):
 1 2 3 5 7
11 13 17 19
 23 29
31 37
41 43 47 49
 53 59
61 67
71 73 77 79
 83 89
91 97

Answers to Odd-Numbered Exercises 877

 After pass four (crossing out multiples of 7):
 1 2 3 5 7
11 13 17 19
 23 29
31 37
41 43 47
 53 59
61 67
71 73 79
 83 89
 97

 Because 7 is the largest prime less than "100, the process terminates. The remaining numbers (excluding 1)
are the primes less than 100.

53. 8 9 5 2 1 7 6 4 3

6 4 7 5 8 3 9 1 2

2 3 1 6 9 4 5 8 7

9 2 4 1 3 5 8 7 6

1 5 8 7 2 6 4 3 9

7 6 3 9 4 8 1 2 5

4 8 2 3 5 9 7 6 1

3 7 9 4 6 1 2 5 8

5 1 6 8 7 2 3 9 4

ch a p tE r 3

ExErcisEs 3.1

 1. l0, 20, 30, 40, 50
 3. 2, 1/2, 2, 1/2, 2

 5. 1, 1 +
1
2

, 1 +
1
2

+
1
3

, 1 +
1
2

+
1
3

+
1
4

, 1 +
1
2

+
1
3

+
1
4

+
1
5

 7. 1, 5, 47, 755, 18879
 9. 2, 2, 6, 14, 34
 11. 2, 3, 6, 18, 108
 13. F(n + 1) + F(n − 2) = F(n − 1) + F(n) + F(n − 2) = 3F(n − 2) + F(n − 1) 4 + F(n) = F(n) +

F(n) = 2F(n).
 15. F(n) = F(n − 2) + F(n − 1) = 3F(n − 4) + F(n − 3) 4 + 3F(n − 3) + F(n − 2) 4 = F(n − 4) +

2F(n − 3) + F(n − 2) = F(n − 4) + 2F(n − 3) + 3F(n − 4) + F(n − 3) 4 = 3F(n − 3) +
2F(n − 4).

 17. F(n + 3) = F(n + 2) + F(n + 1) = F(n + 1) + F(n) + F(n + 1) = 2F(n + 1) + F(n).
 19. n = 1: F(1) = F(3) − 1 or 1 = 2 − 1, true. Assume true for n = k: F(1) + c+ F(k) = F(k + 2) − 1.

Then F(1) + c+ F(k + 1) = F(1) + c+ F(k) + F(k + 1) = F(k + 2) − 1 + F(k + 1) =
F(k + 3) − 1.

878 Answers to Odd-Numbered Exercises

 21. n = 1: F(1) = F(2) or 1 = 1, true. Assume true for n = k: F(1) + F(3) + c+ F(2k − 1) = F(2k). Then
F(1) + F(3) + c+ F(2(k + 1) − 1) = F(1) + F(3) + c+ F(2k − 1) + F(2(k + 1) − 1) =
F(2k) + F(2(k + 1) − 1) = F(2k) + F(2k + 1) = F(2k + 2) = F(2(k + 1)).

 23. n = 1: F(4) = 2F(2) + F(1) or 3 = 2(1) + 1, true. n = 2: F(5) = 2F(3) + F(2) or 5 = 2(2) + 1, true.
Assume for all r, 1 ≤ r ≤ k, F(r + 3) = 2F(r + 1) + F(r). Then F(k + 4) = F(k + 2) + F(k + 3) =
2F(k) + F(k − 1) + 2F(k + 1) + F(k) = 2 3F(k) + F(k + 1) 4 + 3F(k − 1) + F(k) 4 = 2F(k + 2) +
F(k + 1).

 25. n = 1: F(1) < 2 or 1 < 2, true. n = 2: F(2) < 22 or 1 < 4, true. Assume for all r, 1 ≤ r ≤ k, F(r) < 2r.
Then F(k + 1) = F(k − 1) + F(k) < 2k−1 + 2k = 2k−1(1 + 2) = 3(2k−1) < 4(2k−1) = 22(2k−1) =
2k+1.

 27. F(positive integer n)
//function that recursively computes the value of
//the nth Fibonacci number
 if n = 1 then
 return 1
 else
 if n = 2 then
 return 1
 else
 return F(n − 2) + F(n − 1)
 end if
 end if
end function F

 29. a. i = n
 b. p = F(n − 1)

 31. a. p2 =
(1 + "5)2

22 =
1 + 2"5 + 5

2
=

6 + 2"5
4

=
3 + "5

2
=

2
2

+
1 + "5

2
= 1 + p

 The proof that 1 + q = q2 is similar.

 b. n = 1: F(1) =
p − q
p − q = 1, true.

n = 2: F(2) =
p2 − q2

p − q =
(p − q)(p + q)

p − q = p + q =
1 + "5

2
+

1 − "5
2

=
2
2

= 1, true.

 Assume for all r, 1 ≤ r ≤ k, F(r) =
pr − qr

p − q . Then

 F(k + 1) = F(k − 1) + F(k) =
pk−1 − qk−1

p − q +
pk − qk

p − q =
pk−1(1 + p) − qk−1(1 + q)

p − q

 =
pk−1p2 − qk−1q2

p − q =
pk+1 − qk+1

p − q

Answers to Odd-Numbered Exercises 879

 c. From part (b),

 F(n) =
pn − qn

p − q =
a1 + "5

2
b

n

− a1 − "5
2

b
n

a1 + "5
2

b − a1 − "5
2

b
=

2(1 + "5)n

2n(2"5)
−

2(1 − "5)n

2n(2"5)

 =
1

"5
a1 + "5

2
b

n

−
1

"5
a1 − "5

2
b

n

=
"5

5
a1 + "5

2
b

n

−
"5

5
a1 − "5

2
b

n

 33. Yes.
 35. No.
 37. a. F(1) = F(2) = 1 because the rabbits do not breed until they are 2 months old. F(n) = the number

of pairs at the end of n months = (the number of pairs at the end of n − 1 months) + (the num-
ber of offspring pairs produced during month n, born to the pairs existing at month n − 2) =
F(n − 1) + F(n − 2)

 b. 27 = 1 + 5 + 21, 62 = 2 + 5 + 55
 39. Base cases: S(1), S(2), S(3) are even. Assume for all r, 1 ≤ r ≤ k, S(r) is even. Then S(k + 1) =

3S(k − 2) = 3(even) = even
 41. a. n = 0: S(0) = 1 is odd, n = 1: S(1) = 1 is odd. Assume for all r, 0 ≤ r ≤ k, S(r) is odd. Then

S(k + 1) = 2S(k) + S(k − 1) = 2(odd) + odd = even + odd = odd
 b. n = 4: S(4) < 6S(2) or 17 < 6(3) = 18, true. n = 5: S(5) < 6S(3) or 41 < 6(7) = 42, true. Assume

for all r, 4 ≤ r ≤ k, S(r) < 6S(r − 2). Then S(k + 1) = 2S(k) + S(k − 1) < 2 36S(k − 2) 4 +
6S(k − 3) = 6 32S(k − 2) + S(k − 3) 4 = 6S(k − 1)

 43. S(1) = a, S(n) = rS(n − 1) for n ≥ 2
 45. a. A(1) = 50,000, A(n) = 3A(n − 1) for n ≥ 2

 b. 4.
 47. b and c
 49. a, b, and e
 51. The basis elements are 0 and 3, each of which is a multiple of 3. Assume that x and y are integers that are

multiples of 3, so x = (n)3 and y = (k)3. Then x + y = (n)3 + (k)3 = (n + k)3, which is a multiple of 3.
 53. 1. Any unary predicate in x is a wff. 2. If P and Q are unary predicate wffs in x, so are (P ` Q), (P ~ Q),

(P S Q), (P′), (P 4 Q), (4x)P, and (Ex)P.
 55. (1) The integer 1 belongs to the set. (2) If x is an odd integer, so are x + 2 and x − 2.
 57. (1) The string 0 belongs to the set. (2) If x is a binary string with an odd number of 0s, so is 1x, x1, and

0x0.
 59. (1) The string 0 belongs to the set. (2) If x is a binary string ending with 0, so is 1x, 0x, x0.
 61. <positive digit> ::5 1|2|3|4|5|6|7|8|9, <digit> ::5 0|<positive digit>, <positive integer> ::5 <posi-

tive digit>|<positive integer><digit>
 63. (1) lR = l (2) If x is a string with a single character, xR = x. (3) If x = yz, then xR = zRyR
 65. 1! = 1, n! = n(n − 1)! for n ≥ 2

 67. a. max (a1, a2) = e a1 if a1 ≥ a2

a2 if a1 < a2
 max (a1, ..., an) = max (max (a1, ..., an−1), an) for n > 2

 b. min (a1, a2) = e a1 if a1 ≤ a2

a2 if a1 > a2
 min (a1, ..., an) = min (min (a1, ..., an−1), an) for n > 2

880 Answers to Odd-Numbered Exercises

 69. A ~ (B1 ` B2) 3 (A ~ B1) ` (A ~ B2) by equivalence 3a. Assume that A ~ (B1 ` c` Bk) 3

(A ~ B1) ` c` (A ~ Bk). Then A ~ (B1 ` c` Bk+1) = A ~ 3(B1 ` c` Bk) ` Bk+1 4 by
Exercise 68 3 (A ~ (B1 ` c` Bk)) ` (A ~ Bk+1) 3 3(A ~ B1) ` c` (A ~ Bk) 4 ` (A ~ Bk+1) 3

(A ~ B1) ` c` (A ~ Bk+1) by Exercise 68. The proof of the other statement is similar.
 71. if n = 1 then

 return 1
else
 return 3 * S(n − 1)
end if

 73. if n = 1 then
 return 1
else
 return S(n − 1) + (n − 1)
end if

 75. if n = 1 then
 return a
else
 if n = 2 then

 return b
 else

 return S(n − 2) + S(n − 1)
 end if

end if
 77. Mystery(n) = n
 79. If the list has 1 element or 0 elements, then we are done; else exchange the first and last element in the list

and invoke the algorithm on the list minus its first and last elements.
 81. Divide a by b. If the remainder r is 0, then gcd(a, b) = b; else invoke the algorithm on b and r instead of

a and b.
 83. 4,10, −6, 2, 5; 4, 5, −6, 2, 10; 4, 2, −6, 5, 10; −6, 2, 4, 5, 10
 85. New Orleans, Charlotte, Indianapolis
 87. Q: CurrentValue = 2i−1. Q(0):CurrentValue0 = 2i0−1 true because CurrentValue0 = 2 and i0 = 2

and 2 = 22−1. Assume Q(k): CurrentValuek = 2ik−1 Then CurrentValuek+1 = 2 *
CurrentValuek = 2(2ik−1) = 2ik = 2ik + 1−1. At termination, CurrentValue = 2i−1 and i = n + 1, so
CurrentValue = 2n+1−1 = 2n.

ExErcisEs 3.2

 1. S(n) = n(5)
 3. F(n) = n2n

 5. A(n) = n(n + 1)∙2

 7. T(n) =
n(n + 1)(2n + 1)

6
 9. The solution formula does not apply. Using expand, guess, and verify, F(n) = n!
 11. The solution formula does not apply. Using expand, guess, and verify, A(n) = 2n−1(n − 1)!
 13. a. The recurrence relation is T(n) = 0.95T(n − 1) with a base case T(1) = X.
 b. T(n) = (0.95)n−1(X).
 c. T(21) = 0.358(X), which is slightly more than one-third the original amount X.

Answers to Odd-Numbered Exercises 881

 15. a. The recurrence relation is S(n) = 10S(n − 1) with a base case of S(1) = 1000.
 b. S(n) = 10n+2

 c. At the end of 20 seconds, (the beginning of the 21st second), S(21) = 1023 e-mail messages are sent.
 17. a. The recurrence relation is A(n) = (1.01)A(n − 1) − 80 with a base case of A(1) = 5000.
 b. A(n) = (1.01)n−1(5000) − 80 31 − (1.01)n−1 4∙31 − 1.01 4
 c. A(19) = $4411.56
 19. a. The recurrence relation is S(n) = 0.98S(n − 1) − 10,000 with a base case of S(1) = 1,000,000.
 b. S(n) = (0.98)n−1(1,000,000) − 10,000 31 − (0.98)n−1 4∙(1 − 0.98)
 c. S(10) = 750622
 21. a. The recurrence relation for the total number of infected machimes each day is T(n) = 6T(n − 1) − 6n−2

with a base case of T(1) = 3.
 b. T(n) = 6n−2 36 * 3 − (n − 1) 4
 c. The virus disappears after 19 days.
 23. The recurrence relation is P(n) = P(n − 1) + n, with P(1) = 1. The solution is P(n) = n(n + 1)∙2.
 25. The recurrence relation is P(n) = P(n − 1) + 3n − 2 with P(1) = 1. The solution is P(n) =

(n∙2)(3n − 1).
 27. T(n) = 4(2)n−1 + (3)n−1

 29. S(n) = 2 + 2(−2)n−1
 31. F(n) = 6 + 2(5)n−1

 33. B(n) = 3(2)n−1 + 4(n − 1)(2)n−1

 35. A(n) = 4(1 + i)n−1 + 4(1 − i)n−1

 37. The characteristic equation is t2 − t − 1 = 0 with roots

r1 =
1 + "5

2
, r2 =

1 − "5
2

 The solution is

F(n) =
"5

5
a1 + "5

2
b

n

−
"5

5
a1 − "5

2
b

n

 which agrees with the expression given in Exercise 31(c) of Section 3.1.
 39. a. The recurrence relation is M(n) − M(n − 1) = (1∙2) 3M(n − 1) − M(n − 2) 4 for n ≥ 3, with

M(1) = 200,000, M(2) = 250,000. The solution is M(n) = 300,000 + (−100,000)(1∙2)n−1.
 b. M(7) = 298437, which is within $2000 of $300,000.

 41. Let S(n) be the number of binary strings of length n with no two consecutive 0s. Such strings can be
generated in two ways: (i) Put a 1 on the end of a string of length n − 1 that has no two consecutive 0s.
There are S(n − 1) of these strings. (ii) Put a 10 on the end of a string of length n − 2 that has no two
consecutive 0s. There are S(n − 2) of these strings. Therefore S(n) = S(n − 1) + S(n − 2), which is the
recurrence relation for the Fibonacci numbers. Also S(1) = 2 (both 0 and 1 are 1-length binary strings
with no two consecutive 0s), S(2) = 3 (01, 10, 11 are 2-length binary strings with no two consecutive 0s).
So S(1) = 2 = F(3), S(2) = 3 = F(4), S(3) = S(2) + S(1) = 5 = F(5), etc.

 43. Here c2 = 0 so the characteristic equation is t2 − c1t = 0, which has roots r1 = 0, r2 = c1. The solu-
tion is S(n) = p(0)n−1 + q(c1)n−1 = q(c1)n−1 where p + q = S(1), q(c1) = S(2), so q = S(2)∙c1. By the
recurrence relation S(n) = c1S(n − 1), S(2)∙c1 = S(1), so q = S(1). The solution is S(n) = S(1)(c1)n−1,
which is the solution given by Equation 8 because g(n) = 0.

 45. P(n) = 4n − 3
 47. S(n) = (1 + log n)n

882 Answers to Odd-Numbered Exercises

ExErcisEs 3.3

 1. for i = 1 to n do
low = roster[i].quiz[1]
high = roster[i].quiz[1]
sum = roster[i].quiz[1]

for j = 2 to m do
 sum = sum + roster[i].quiz[j] //A
 if roster[i].quiz[j] < low then
 low = roster[i].quiz[j]
 end if
 if roster[i].quiz[j] > high then
 high = roster[i].quiz[j]
 end if

end for
sum = sum − low //S
sum = sum + high //A
write(“Total for student”, i, “is”, sum)

end for
 3. A total of n2 additions is done.
 5. The overall number of output statements is n(log n)
 7. a. factorial(integer n)

 integer i
 factorial = 1
 if n = 1 then
 return 1
 else
 for i = 1 to n − 1 do
 factorial = factorial *(i + 1)
 end for
 return factorial
 end if

 b. n − 1 multiplications are done.
 9. a. c has the value 4. When i = 1, product = 1 * 4 = 4, sum = −14 + 5 * 4 = 6. When i = 2,

product = 4 * 4 = 16, sum = 6 + (−7) * 16 = −106. When i = 3, product = 16 * 4 = 64,
sum = −106 + 2 * 64 = 22, so 22 is the final value, which is correct.

 b. The total work is 3n.
 11. The best case occurs when the first quiz grade is the lowest quiz grade for each student. Then the condition

of the if statement is never true and the assignment statement within the if statement executes 0 times. The
worst case occurs when all the quiz grades go downhill from beginning to end for each student. Then each
new quiz grade is lower than the previous one, so the assignment statement within the if statement executes
each time, or n(m − 1) times. Total assignments and comparisons in the best case = 3n + 2n(m − 1)
and in the worst case = 3n + 3n(m − 1).

 13. a. After pass 1 the list is 5, 3, 4, 6, 2, 8. After pass 2 the list is 3, 4, 5, 2, 6, 8. After pass 3 the list is 3, 4,
2, 5, 6, 8. After pass 4 the list is 3, 2, 4, 5, 6, 8. After pass 5 the list is 2, 3, 4, 5, 6, 8.

 b. B(1) = 0, B(n) = (n − 1) + B(n − 1) for n ≥ 2
 c. B(n) = (n − 1)n∙2
 15. n − 1 compares are always needed - every element after the first must be considered a potential new

maximum.

Answers to Odd-Numbered Exercises 883

 17. S(n) = (n − 1)n∙2
 19. a. The merged list is 1, 4, 5, 6, 8, 9; 3 comparisons
 b. The merged list is 1, 2, 3, 4, 5, 8; 4 comparisons
 c. The merged list is 0, 1, 2, 3, 4, 7, 8, 9, 10; 8 comparisons.
 21. M(1) = 0, M(n) = 2M(n∙2) + (n − 1) for n = 2m, n ≥ 2
 23. selectionsort mergesort
 n = 4 9 5
 n = 8 35 17
 n = 16 135 49
 n = 32 527 129

 25. Original list: 9, 8, 3, 13. After 1st pass: 8, 3, [9], 13. After 2nd pass: 3, [8], [9], 13 −sorted
 27. 6
 29. Q(1) = 0, Q(n) = (n − 1) + 2Q(n∙2) for n ≥ 2
 31. Q(1) = 0, Q(n) = (n − 1) + Q(n − 1) for n ≥ 2
 33. If the original list is sorted in increasing order, then the first element of each sublist is the smallest ele-

ment, so for the next pass the list of elements smaller than the pivot element will be empty and the list of
elements greater than the pivot element will be only one element shorter than the sublist.

 35. position at which x occurs Number of comparisons

1 1

2 2

3 3
c c

n n

 37. For m = 1, F(m + 2) = F(3) = 2 and F(m + 1) = F(2) = 1. We need to show that if 1 division is
required to find gcd(a, b), then a ≥ 2 and b ≥ 1. Because the Euclidean algorithm applies to posi-
tive integers, b ≥ 1. Because a > b, a ≥ 2. Assume that if k divisions are required, a ≥ F(k + 2),
b ≥ F(k + 1). Show that if k + 1 divisions are required, then a ≥ F(k + 3), b ≥ F(k + 2). The
first step of the algorithm in computing gcd(a, b) is to divide a by b, so a = qb + r, 0 ≤ r < b.
This is 1 division. The algorithm finishes the computation by finding gcd(b, r), which will there-
fore require k divisions. By the inductive hypothesis, b ≥ F(k + 2) and r ≥ F(k + 1). Then
a = qb + r ≥ b + r (q ≥ 1 because a > b) ≥ F(k + 2) + F(k + 1) = F(k + 3).

 39. From Exercise 38, a3
2
b

m+1

< a, so, taking the logarithm to the 3/2 of both sides, m + 1 < log1.5 a or
m < log1.5 a − 1.

ch a p tE r 4

ExErcisEs 4.1

 1. a. T b. F c. F d. F
 3. Four: 52, 3, 46 = 5x 0x [N and 2 ≤ x ≤ 46 = 53, 4, 26 , 5a, b, c6 = 5x 0x is the first letter of cat, bat, or

apple6 , [= 5x 0x is the first letter of cat, bat, and apple6 , 52, a, 3, b, 4, c6

884 Answers to Odd-Numbered Exercises

 5. a. 50, 1, 2, 3, 46
 b. 54, 6, 8, 106
 c. 5Washington, Adams, Jefferson6
 d. [
 e. 5Maine, Vermont, New Hampshire, Massachusetts, Connecticut, Rhode Island6
 f. 5−3, −2, −1, 0 , 1, 2, 36

 7. a. 5x 0x [N and 1 ≤ x ≤ 56
 b. 5x 0x [N and x is odd6
 c. 5x 0x is one of the Three Wise Men6
 d. 5x 0x is a nonnegative integer written in binary form6

 9. If A = 5x 0x = 2n for n a positive integer6 , then 16 [A. But if A = 5x 0x = 2 + n(n − 1) for n a positive
integer6 , then 16 o A. In other words, there is not enough information to answer the question.

 11. a. F b. T c. F d. T e. T f. T
 13. b, e, and g are true; a is false because 516 [S but 516 o R; c is false because 516 [S, but 1 o S; d is false

because 1 is not a set (the correct statement is 516 # U); f is false because 1 o S
 15. a, b, d, e, g, and i are true; c is false because neither member of C is a member of A; f is false because this

2-element set is not an element of A; h is false because a o C
 17. Let (x, y) [A. Then (x, y) lies within 3 units of the point (1, 4), so by the distance formula,

"(x − 1)2 + (y − 4)2 ≤ 3, or (x − 1)2 + (y − 4)2 ≤ 9, which means (x − 1)2 + (y − 4)2 ≤ 25, so
(x, y) [B. The point (6, 4) satisfies the inequality (x − 1)2 + (y − 4)2 ≤ 25, so (6, 4) [B, but (6, 4) is
not within 3 units of (1, 4), so (6, 4) does not belong to A.

 19. a. For a = 1, b = −2, c = −24, the quadratic equation is x2 − 2x − 24 = 0 or (x + 4)(x − 6) = 0,
with solutions 6 and −4. Each of these is an even integer between −100 and 100, so each belongs to E.

 b. Here Q = 56,−46 , but E = 5−4, −2, 0, 2, 46 , and Q h E.
 21. a, d, and e
 23. Let x [A. Then, because A # B, x [B. Because B # C, x [C. Thus A # C.
 25. The proof uses mathematical induction. n = 2: A set with 2 elements has exactly 1 subset with 2 elements,

namely the set itself. Putting n = 2 into the formula n(n − 1)∙2 gives the value 1. This proves the base
case. Assume that any set with k elements has k(k − 1)∙2 subsets with exactly 2 elements. Show that
any set with k + 1 elements has (k + 1)k∙2 subsets with exactly 2 elements. Let x be a member of a set
with k + 1 elements. Temporarily removing x from the set gives a set of k elements that, by the inductive
hypothesis, has k(k − 1)∙2 subsets with exactly 2 elements. These are all of the 2-element subsets of the
original set that do not include x. All 2-element subsets of the original set that do include x can be found
by pairing x in turn with each of the remaining k elements, giving k subsets. The total number of 2-element

subsets is therefore
k(k − 1)

2
+ k =

(k + 1)k
2

 27. `(S) = 5[, 5a66
 29. For this set of four elements, the power set should have 24 = 16 elements.

`(S) = 5[, 516, 526, 536, 546, 51, 26, 51, 36, 51, 46, 52, 36, 52, 46, 53, 46, 51, 2, 36, 51, 2, 46, 51, 3, 46,
52, 3, 46, 51, 2, 3, 466

 31. `(S) = 5[,5[6,55[66, 55[, 5[666, 5[, 5[66, 5[, 5[, 5[666, 55[6, 5[, 5[666, 5[, 5[6,
5[,5[666 6

 33. A = 5x, y6
 35. Let x [A. Then 5x6 [`(A), so 5x6 [`(B) and x [B. Thus A # B. A similar argument shows that

B # A so that A = B.
 37. a. x = 1, y = 5 b. x = 8, y = 7 c. x = 1, y = 4

Answers to Odd-Numbered Exercises 885

 39. a. binary operation
 b. no; 0 + 0 o N, so closure fails
 c. binary operation
 d. no; ln x is undefined for x ≤ 0

 41. a. no; operation undefined for x = 0
 b. binary operation
 c. unary operation
 d. binary operation

 43. nn

 45. a. AB + CD − * b. AB ** CD * − c. AC * BCDB * +∙+
 47. a. 5t6 b. 5p, q, r, s, t, u6 c. 5q, r, v, w) d. [
 49. a. 51, 2, 4, 5, 6, 8, 96 e. 52, 6, 86

 b. 54, 56 f. 50, 1, 3, 7, 96
 c. 52, 46 g. [
 d. 51, 2, 3, 4, 5, 96

 51. a. 5a6 e. 5a, 5a66
 b. 5[, 5a6, 5a, 5a666 f. 5[, 5a, 5a666
 c. 5[, a, 5a6, 55a66, 5a, 5a666 = S g. 5[6
 d. [

 53. c, e, and f
 55. a. B′ d. B′ d C

 b. B d C e. B′ d C′ or (B c C)′ or B′ − C
 c. A d B

 57. a. C′ b. B d D c. A d B d. A d D′
 59. D d R′ 61. (N c P) d A
 63. a, b, d, and f 65. b and c
 67. a. B # A b. A # B c. A = [d. B # A e. A = B f. A = B
 69. Let x [A d B. Then x [A and x [B, so x [A.
 71. Let C [`(A) d `(B). Then C [`(A) and C [`(B), from which C # A and C # B, so C # A d B or

C [`(A d B). Therefore `(A) d `(B) # `(A d B). The same argument works in reverse.
 73. Suppose B ∙ [. Let x [B. Then x [A c B but x o A − B, which contradicts the equality of A c B

and A − B.
 75. Let x [C. Then x [B − A = B d A′. Therefore x [A′, and no element that is in C can also be in A, so

A d C = [.
 77. i. Let A # B and let x [A. Then x [B, so x o B′ and no element that is in A can also be in B′. Therefore

A d B′ = [. ii. Let A d B′ = [and let x [A. Then because A d B′ = [, x o B′, so x [B. Therefore
any element of A is an element of B, and A # B.

 79. a.
A B

 b. 52, 4, 6, 7, 96

 c. x [(A c B) − (A d B) 4 x [(A c B) and x [(A d B)′ 4 (x [A or x [B) and
x o A d B 4 (x [A and x o A d B) or (x [B and x o A d B) 4 (x [A and x o B) or
(x [B and x o A) 4 x [(A − B) c (B − A)

 81. (1a) x [A c B 4 x [A or x [B 4 x [B or x [A 4 x [B c A (1b) x [A d B 4 x [A and x [B
4 x [B and x [A 4 x [B d A (2a) x [(A c B) c C 4 x [(A c B) or x [C 4 (x [A or x [B)
or x [C 4 x [A or x [B or x [C 4 x [A or (x [B or x [C) 4 x [A or x [(B c C) 4

886 Answers to Odd-Numbered Exercises

x [A c (B c C) (2b) x [(A d B d C) 4 x [(A d B) and x [C 4 (x [A and x [B) and x [C
4 x [A and x [B and x [C 4 x [A and (x [B and x [C) 4 x [A and x [(B d C) 4
x [A d (B d C) (3b) x [A d (B c C) 4 x [A and x [(B c C) 4 x [A and (x [B or x [C) 4
(x [A and x [B) or (x [A and x [C) 4 x [(A d B) or x [(A d C) 4 x [(A d B) c (A d C)
(4b) x [A d S S x [A and x [S S x [A. Also x [A S x [A and x [S because A # S S x [A d S
(5a) x [A c A′ S x [A or x [A′ S x [S or x [S because A # S, A′ # S S x [S. Also x [S S
(x [S and x [A) or (x [S and x o A) S x [A or x [A′ S x [A c A′ (5b) For any x such that
x [A d A′, it follows that x [A and x [A′, or x belongs to A and x does not belong to A. This is a con-
tradiction; no x belongs to A d A′, and A d A′ = [.

 83. a. ((A c B) d (A c B′) = A c (B d B′) (3a)
 = A c [(5b)
 = A (4a)
 The dual is (A d B) c (A d B′) = A.
 b. 3((A d C) d B) c ((A d C) d B′) 4 c (A d C)′
 = 3(A d C) d (B c B′) 4 c (A d C)′ (3b)
 = 3(A d C) d S 4 c (A d C)′ (5b)
 = (A d C) c (A d C)′ (4b)
 = S (5b)
 The dual is 3((A c C) c B) d ((A c C) c B′) 4 d (A c C)′ = [.
 c. (A c C) d 3(A d B) c (C′ d B) 4
 = (A c C) d 3(B d A) c (B d C′) 4 (1b)
 = (A c C) d 3B d (A c C′) 4 (3b)
 = (A c C) d 3(A c C′) d B 4 (1b)
 = 3(A c C) d (A c C′) 4 d B (2b)
 = 3A c (C d C′) 4 d B (3a)
 = (A c [) d B (5b)
 = A d B (4b)
 The dual is (A d C) c 3(A c B) d (C′ c B) 4 = A c B.
 85. a. A d (B c A′) = (A d B) c (A d A′) (3b)
 = (A d B) c [(5b)
 = A d B (4a)
 = B d A (1b)
 b. (A c B) − C = (A c B) d C′ (defn. set diff.)
 = C′ d (A c B) (1b)
 = (C′ d A) c (C′ d B) (3b)
 = (A d C′) c (B d C′) (1b)
 = (A − C) c (B − C) (defn. set diff.)
 c. (A − B) − C = (A − B) d C′ (defn. set diff.)
 = (A d B′) d C′ (defn. set diff.)
 = C′ d (A d B′) (1b)
 = (C′ d A) d B′ (2b)
 = (A d C′) d B′ (1b)
 = (A − C) d B′ (defn. set diff.)
 = (A − C) − B (defn. set diff.)

Answers to Odd-Numbered Exercises 887

 87. a. A1 c A2 c cc An = 5x 0x belongs to some Ai for 1 ≤ i ≤ n6
 b. A1 c A2 = 5x 0x [A1 or x [A26 for n = 2, A1 c A2 c cc An = (A1 c cc An−1) c An for n > 2

 89. a. A1 d A2 d
c d An = 5x 0x belongs to every Ai for 1 ≤ i ≤ n6

 b. A1 d
A2 = 5x 0x [A1 and x [A26 for n = 2, A1 d

A2 d
c d An = (A1 d ... d An−1) d

An for n > 2
 91. a. Proof is by induction on n. For n = 2, B c (A1 d A2) = (B c A1) d (B c A2) by identity 3a.

Assume that B c (A1 d
c d Ak) = (B c A1) d

c d (B c Ak). Then B c (A1 d
c d Ak+1) =

B c ((A1 d
c d Ak) d Ak+1) by Exercise 89b = (B c (A1 d

c d Ak)) d (B c Ak+1) by identity
3a = ((B c A1) d

c d (B c Ak)) d (B c Ak+1) by inductive hyp. = (B c A1) d
c d (B c Ak+1) by

Exercise 89b.
 b. Proof is by induction on n. For n = 2, B d (A1 c A2) = (B d A1) c (B d A2) by identity 3b. Assume

that B d (A1 c cc Ak) = (B d A1) c cc (B d Ak). Then B d (A1 c cc Ak+1) = B d
((A1 c cc Ak) c Ak+1) by Exercise 87b = (B d (A1 c cc Ak)) c (B d Ak+1) by identity
3b = ((B d A1) c cc (B d Ak)) c (B d Ak+1) by inductive hyp. = (B d A1) c cc (B d Ak+1)
by Exercise 87b.

 93. a. d
i[I

Ai = 5x 0x [(−1,1)6; t
i[I

Ai = 506

 b. d
i[I

Ai = 5x 0x [3−1,1 4 6; t
i[I

Ai = 506
 95. P(1) is true—every member of T is greater than 1; otherwise 1 would be the smallest member of T. As-

sume that P(k) is true, i.e., every member of T is greater than k. Consider P(k + 1), that every member of
T is greater than k + 1. If P(k + 1) is not true, then there is some member of T ≤ k + 1. By the induc-
tive hypothesis, every member of T is greater than k; therefore some member of T equals k + 1, and this
is the smallest member of T. This is a contradiction, because we assumed that T has no smallest member.
Therefore P(k + 1) is true. By the first principle of induction, P(n) is true for all n, and T must be empty.
This contradicts the fact that T is a non-empty set.

 97. An enumeration of the set is 1, 3, 5, 7, 9, 11, c ,
 99. An enumeration of the set is a, aa, aaa, aaaa, c
 101. An enumeration of the set is shown by the arrow through the array

(2, –2) (2, –3) . . .

(–1, –2) (–1, –3) . . .

(1, –2) (1, –3) . . .

(2, 0)

(–1, 0)

(1, 0)

(0, 0)

(2, 1)

(–1, 1)

(1, 1)

(0, 1)

(2, –1)

(–1, –1)

(1, –1)

(0, –1)

(2, 2)

(–1, 2)

(1, 2)

(0, 2)

(2, 3)

(–1, 3)

(1, 3)

(0, 3)(0, –2) (0, –3) . . .

 103. Assume that the set has an enumeration

z11, z12, z13, z14, …

z21, z22, z23, z24, …

z31, z32, z33, z34, …

⁞

 Now construct an infinite sequence Z of positive integers with Z = z1, z2, z3, … such that zi ∙ zii for all i.
Then Z differs from every sequence in the enumeration, yet it is a member of the set. This is a contradic-
tion, so the set is uncountable.

888 Answers to Odd-Numbered Exercises

 105. Let A and B be denunmerable sets with enumerations A = a1, a2, a3, c and B = b1, b2, b3, c. Then
use the list a1, b1, a2, b2, a3, b3, c and eliminate any duplicates. This will be an enumeration of A c B,
which is therefore denumerable.

 107. B = 5S 0S is a set and S o S6 . Then either B [B or B o B. If B [B, then B has the property of all mem-
bers of B, namely B o B. Hence both B [B and B o B are true. If B o B, then B has the property char-
acterizing members of B, hence B [B. Therefore both B o B and B [B are true.

ExErcisEs 4.2

 1. 30
 3. 92
 5. 263 # 102

 7. 585
 9. 109

 11. 17,576
 13. 16
 15. 286
 17. 180

 19. 1680
 21. 25,974,000
 23. 917
 25. 15
 27. 180
 29. 720
 31. 45
 33. 256
 35. 192

 37. 32
 39. 160
 41. 8
 43. 36
 45. 6
 47. 25
 49. 648
 51. 72
 53. 36

 55. 60,466,176
 57. 3,515,625
 59. 2704
 61. 144
 63. 208
 65. 96
 67. 1104

 69.

11 01011 0

0 01

0 1

0 1

1

1 1

 8 outcomes, which equals F(6)

 71.

GB R G

G

B

B

R

R
R R G

G

RR

R G

G
B

R
B

B

B G

GB

B

R GBR GB R GBR

R

R GRG

GG
B

B

B B

 33 ways; the outcome that is highlighted is BRGR.
 73. For m = 2, the result follows from the multiplication principle. Assume that for m = k, there are n1

nk
possible outcomes for the sequence of events 1 to k. Let m = k + 1. Then the sequence of events 1 to
k + 1 consists of the sequence of events 1 to k followed by event k + 1. The sequence of events 1 to k has
n1

nk possible outcomes by the inductive hypothesis. The sequence 1 to k followed by event k + 1
then has ((n1

nk)nk+1 outcomes by the multiplication principle, which equals n1
nk+1.

 75 a. P(1) = 1 (trivial case), P(2) = 1 (only one way to multiply 2 terms). For n > 2, let the last
multiplication occur at position k, 1 ≤ k ≤ n − 1. The product is then split into two prod-
ucts of k and (n − k) factors, respectively, which can be parenthesized in P(k) and P(n − k)
ways, respectively. By the multiplication principle, there are P(k)P(n − k) ways to parenthe-
size for a fixed k. Each value for k gives a different set of parentheses, so by the addition principle,
P(n) = P(1)P(n − 1) + P(2)P(n − 2) + c+ P(n − 1)P(1) = ∙

n−1

k=1
P(k)P(n − k).

 b. The proof will use the Second Principle of Induction. P(1) = 1 = C(0), P(2) = 1 = C(1). Assume

that P(r) = C(r − 1) for 1 ≤ r ≤ m. Then P(m + 1) = ∙
m

k=1
P(k)P(m + 1 − k) =

∙
m

k=1
C(k − 1)C(m − k) = C(m).

Answers to Odd-Numbered Exercises 889

 15. a. 0A 0 + 0B 0 + 0C 0 + 0D 0 − 0A d B 0 − 0A d C 0 − 0A d D 0 − 0B d C 0 − 0B d D 0 − 0C d D 0 +
 0A d B d C 0 + 0A d B d D 0 + 0A d C d D 0 + 0B d C d D 0 − 0A d B d C d D 0

 b. 2n − 1

ExErcisEs 4.3

 1. 19
 3. 60
 5. 5 parts had all three types of defect.
 7. a. 2 b. 6

 9. a. 39 b. 14
 11. 8
 13. a. 60 b. 40

 17. 5 19. No 21. 51 23. 367
 25. There are 3 pairs—1 and 6, 2 and 5, 3 and 4—that add up to 7. Each element in the set belongs to one of

these pairs. Apply the pigeonhole principle, where the pairs are the bins, and the numbers are the items.
 27. This follows from the pigeonhole principle, where the n possible remainders (the numbers 0 through

n − 1) are the bins.

ExErcisEs 4.4

 1. a. 42 b. 6720
 3. 362,880
 5. 3,628,800
 7. 40,320; 15,120
 9. 2730
 11. 19!
 13. (2!)(11!)(8!) = 2(39,916,800)(40,320)
 15. 18!
 17. a. 120 b. 36 c. 28
 19. C(300, 25)
 21. C(17, 5)C(23, 7)
 23. 11,760
 25. 427,518
 27. 48
 29. 22308
 31. 792
 33. 4
 35. 624
 37. 5,108
 39. 54,912
 41. 1,098,240
 43. 482,320,623,240
 45. 11,662,691,040

 47. 902,720
 49. 495
 51. 40
 53. 1770
 55. 341,149,446
 57. 220
 59. 115
 61. 14,307,150
 63. 4,412,826
 65. 8,586,820
 67. 3003
 69. 2508
 71. 19,481
 73. 36
 75. 20
 77. a. 3360 b. 420
 79. 27,720
 81. 21
 83. C(81, 48) = very big number
 85. a. 28 b. 7 c. 10
 87. a. 8008 b. 84
 89. 286

 91. P(n, n) =
n!

(n − n)!
=

n!
0!

= n! and P(n, n − 1) =
n!

(n − (n − 1))!
=

n!
1!

= n!

 93. C(n,r) =
n!

r!(n − r)!
=

n!
(n − r)!(n − (n − r))!

= C(n,n − r)

 Whenever r objects are chosen from n, n − r objects are not chosen. Therefore the number of ways to
choose r objects out of n is the same as the number of ways to choose n − r objects out of n.

890 Answers to Odd-Numbered Exercises

 95. Consider selecting r elements from a set of n and putting those in bucket A, then selecting k of those r to put in
bucket B. The left side multiplies the number of outcomes from those two sequential tasks. Alternatively, we
can select k elements from n and place them in bucket B, then r − k elements from the remaining n − k and
place them in bucket A. The right side multiplies the number of outcomes from these two sequential tasks.

 97. C(2) =
1
3

C(4,2) =
1
3

4!

2! # 2!
=

4 # 3
3 # 2

= 2

 C(3) =
1
4

C(6,3) =
1
4

6!

3! # 3!
=

6 # 5 # 4
4 # 2 # 3

= 5

 C(4) =
1
5

C(8,4) =
1
5

8!

4! # 4!
=

8 # 7 # 6 # 5
5 # 2 # 3 # 4

= 14

 These results agree with the recurrence relation results.
 99. 163452, 163542, 345621, 356421, 634521, 643125
 101. 7431652; reading right to left, the first non-increasing value is 1. Again reading right to left, the first value

greater than 1 is 2, so swap 1 and 2, giving 7432651. From the right of the 2 value, the numbers decrease;
swap 6 and 1, giving 7432156.

 103. 3675421; reading right to left, the first non-increasing value is 6. Again reading right to left, the first value
greater than 6 is 7, so swap 6 and 7, giving 3765421. From the right of the 7 value, the numbers decrease;
swap 6 and 1, swap 5 and 2, giving 3712456.

 105. 24589, 24678, 24679, 24689, 24789
 107. Make the initial permutation the largest permutation, n…321. Then just reverse all inequalities in the body

of algorithm permutation generator.

ExErcisEs 4.5

 1. a. a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

 b. x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

 c. a5 + 10a4 + 40a3 + 80a2 + 80a + 32
 d. a4 − 16a3 + 96a2 − 256a + 256

 3. 120a7b3

 5. −489,888x4

 7. 6561y8

 9. 2560x3y2

 11. Think of (a + b + c)3 as ((a + b) + c)3. Then ((a + b) + c)3 = C(3, 0)(a + b)3 + C(3, 1)(a + b)2c +
C(3, 2)(a + b)c2 + C(3, 3)c3 = a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2 + c3

 13. 11,200
 15. C(n + 2, r) = C(n + 1, r − 1) + C(n + 1, r) (Pascal’s formula) = C(n, r − 2) + C(n, r − 1) +

C(n, r − 1) + C(n, r) (Pascal’s formula again) = C(n, r) + 2C(n, r − 1) + C(n, r − 2)
 17. From the binomial theorem with a = 1, b = (−1): C(n, 0) − C(n,1) + C(n,2) − c+

(−1)nC(n,n) = (1 + (−1))n = 0n = 0
 19. From the binomial theorem with a = 1, b = 2−1:

C(n, 0) + C(n, 1)2−1 + C(n, 2)2−2 + c+ C(n, n)2−n = (1 + 2−1)n

 so, multiplying by 2n,

C(n, 0)2n + C(n, 1)2n−1 + C(n, 2)2n−2 + c+ C(n, n)2n−n = 2n(1 + 2−1)n

Answers to Odd-Numbered Exercises 891

 or

C(n, 0)2n + C(n, 1)2n−1 + C(n, 2)2n−2 + c+ C(n, n) =

 2na1 +
1
2
b

n

= 2na2 + 1
2

b
n

= 2na3n

2nb = 3n

 21. a. (1 + x)n = C(n, 0) + C(n, 1)x + C(n, 2)x2 + C(n, 3)x3 + c+ C(n, n)xn
 b. Differentiating both sides of the equation in (a) gives n(1 + x)n−1 = C(n, 1) + 2C(n, 2)x +

3C(n, 3)x2 + c+ nC(n, n)xn−1 c. follows from (b) with x = 1 d. follows from (b) with x = −1
 23. a. Out of all the intersections of m sets, 1 ≤ m ≤ k, we want the ones that pick all m sets from the k sets

in B. There are C(k, m) ways to do this.
 b. For any value of m, 1 ≤ m ≤ k, an intersection of m sets has C(k, m) that include only sets in B. Count-

ing the intersections in the right side of (1) that contain x (intersections of single sets, intersections of
2 sets, and so forth) we get C(k, 1) − C(k, 2) + C(k, 3) − c+ (−1)k+1C(k, k)

 c. From Exercise 17, C(k, 0) − C(k, 1) + C(k, 2) − c+ (−1)kC(k, k) = 0 or C(k, 1) − C(k,2) +
c (−1)k+1C(k, k) = C(k, 0), but C(k, 0) = 1. Therefore x is counted only once in the right side of (1).

ExErcisEs 4.6

Some decimal answers in this section are approximations.
 1. 8
 3. 1∙8
 5. 1∙4
 7. 36
 9. 1∙6
 11. 1∙6

 13. 1∙12
 15. 8
 17. 1∙8
 19. 1∙4
 21. 1∙52
 23. 1∙2

 25. 1326
 27. > 0.5588
 29. > 0.3824
 31. > 0.0498
 33. > 0.0023

 35. The answer to Exercise 30 should be the sum of the answers to Exercises 28 and 29 because “at least one
spade” is either exactly one spade (Exercise 29) or two spades (Exercise 28). Using the probabilities ob-
tained, this arithmetic is correct.

 37. a. 1000 b. 0.001 c. 0.006 d. 0.003
 39. a. 69,090,840 b. > 0.0000017 c. > 0.000295 d. > 0.0097
 41. > 0.0000015
 43. > 0.0002
 45. > 0.002

 47. > 0.021
 49. > 0.423
 51. 365n

 53. B = E′, so from Exercise 52, P(B) = 1 − P(E) = 1 − P(365, n)∙365n.
 55. B has a higher probability because B consists of exactly two + exactly three + c+ exactly n persons

sharing the same birthday, whereas C consists of exactly two.
 57. 38
 59. > 0.026
 61. > 0.105
 63. > 0.00000751
 65. 6.29908E-12

 67. a. 0.55 b. 0.68 c. 0.32
 69. a. 0.6 b. 0.25 c. 0.65

d. 0.15 e. 0.95
 71. > 0.93
 73. a. > 0.24 b. 0.43 c. 0.57

892 Answers to Odd-Numbered Exercises

 75. 0.25
 77. 0.3125
 79. 0.5
 81. 0.5

 83. 0.375
 85. 0.875
 87. 0.5

 89. a. P(Ei 0 F) =
P(Ei d F)

P(F)
 (1)

 P(F 0 Ei) =
P(F d Ei)

P(Ei)
 or P(F d Ei) = P(F 0 Ei) P(Ei) (2)

 Because P(F d Ei) = P(Ei d F), substitute from Equation (2) into Equation (1), giving

P(Ei 0 F) =
P(F 0 Ei) P(Ei)

P(F)

 b. The events Ei,1 ≤ i ≤ n, are all disjoint; therefore the events F d Ei,1 ≤ i ≤ n are all disjoint.
F = F d S = F d (E1 c E2 c … c En) = (F d E1) c (F d E2) c … c (F d En). Because the prob-
ability of the union of disjoint events is the sum of the probabilities of each event,

 P(F) = ∙
n

k=1
P(F d Ek).

 c. From Equation (2) of part (a), P(F d Ei) = P(F 0 Ei) P(Ei). Substituting into the result of part (b) gives

 P(F) = ∙
n

k=1
P(F 0 Ek) P(Ek)

 d. Substituting the result of part (c) into the result of part (a) gives

 P(Ei 0 F) =
P(F 0 Ei) P(Ei)

∙
n

k=1
P(F 0 Ek) P(Ek)

 91. > 0.40
 93. a. 3.5

 b. > 3.29
 c. Less than (which turns out to be true, 3.29 < 3.5). The reason is that the die is now weighted toward

a smaller value than the previous expected value, so this smaller value is more likely to occur and will
drag down the weighted average.

 95. 4.75
 97. a. > 0.904 b.  > 0.999 c. > 0.096
 99. > 0.547

 101.
n2 + 3n
2(n + 1)

Answers to Odd-Numbered Exercises 893

ch a p tE r 5

ExErcisEs 5.1

 1. a. (1, 3),(3, 3) 3. a. (1, −1),(−3, 3)
 b. (4, 2),(5, 3) b. (19, 7),(41, 16)
 c. (5, 0),(2, 2) c. (−3, −5),(−4, 1∙2),(1∙2, 1∙3)
 d. (1, 1),(3, 9) d. ((1, 2),(3, 2))
 5. a.

(0, 2)

21 3�2�3 �1

1

3

�3

�2

�1

x

y b.

(0, 1)
(�1, 0)

1

3

2

�3

�2

�1

y

21 3�2�3 �1

1

3

2

�3

�2

�1

x

y

 c.

(0, 5)

(0, �5)

(5, 0)(�5, 0)

x

y d.

21 3�2�3 �1 x

(2, 2)

1

3

2

�3

�2

�1

y

(�2, �2)

 7. a. many-to-many
 b. many-to-one
 c. one-to-one
 d. one-to-many

 9. a. (2, 6),(3, 17),(0, 0)
 b. (2, 12)
 c. none
 d. (1, 1),(4, 8)

 11. a. reflexive
 b. reflexive, symmetric, antisymmetric, transitive
 c. none
 d. antisymmetric, transitive

 13. a. reflexive, transitive
 b. reflexive, symmetric, transitive
 c. symmetric
 d. transitive
 e. reflexive, symmetric, transitive

 15. (b); the equivalence classes are 30 4 = 5…, −9, −6, −3, 0, 3, 6, 9, …6, 31 4 = 5…, −8, −5, −2, 1, 4,
7, 10, …6 , and 32 4 = 5…, −7, −4, −1, 2, 5, 8, 11, …6 .

 (e); the equivalence classes are sets consisting of squares with equal length sides.

894 Answers to Odd-Numbered Exercises

 21. For example:
 a. S = set of all lines in the plane, x r y 4 x coincides with y or x is perpendicular to y.
 b. S = set of integers, x r y 4 x2 ≤ y2

 c. S = set of nonnegative integers, x r y 4 x < y
 d. S = set of integers, x r y 4 x ≤ 0y 0 .

 23. a. reflexive closure = r itself, symmetric closure—add (2,1),(3, 2), transitive closure—add (2, 1),(3, 2)
 b. reflexive closure = symmetric closure = transitive closure = r itself
 c. reflexive closure—add (2, 2),(3, 3), symmetric closure—add (2, 1),(3, 2), transitive closure—add

(1, 1), (2, 1), (2, 2), (3, 3)
 d. reflexive closure—add (2, 2), (3, 3), symmetric closure—add (2, 1), (3, 2), (3, 1), transitive closure

5r itself
 25. x r* y 4 one can fly from x to y (perhaps by multiple hops) on Take-Your-Chance Airlines
 27. No—if the relation is irreflexive, it is its own irreflexive closure. If the relation is not irreflexive, there

must be some x [S with (x, x) in the relation; extending the relation will not remove this pair, so no ex-
tension can be irreflexive.

 29. 2n2

 31. a.

a

b

c b.

a

cb

d

 c. (a, c)

(c) (a) (b)

(a, b)

�

 33. Reflexivity: If x [A, then x [S, so (x d x) because d is a reflexive relation on S. Symmetry: if x, y [A
and x d y, then x, y [S and x d y, so y d x because d is symmetric on S. Transitivity: if x, y, z [A
and x d y and y d z, then x, y, z [S, x d y, and y d z, so x d z because d is transitive on S.

 35.

�1

10

30

2 5

6 15

3

{1, 2}
{1, 3}

{1, 2, 3}

{1}

{2, 3}

{3}
{2}

 The two graphs are identical in structure.
 37. Reflexive: (s1, t1) m (s1, t1) because both s1 r s1 and t1 s t1 due to reflexivity of r and s. Antisymmetric:

(s1, t1) m (s2, t2) and (s2, t2) m (s1, t1) S s1 r s2 and s2 r s1, t1 s t2 and t2 s t1 S s1 = s2 and t1 = t2 due to
antisymmetry of r and s S (s1, t1) = (s2, t2). Transitive: (s1, t1) m (s2, t2) and (s2, t2) m (s3, t3) S s1 r s2
and s2 r s3, t1 s t2 and t2 s t3 S s1 r s3 and t1st3 due to transitivity of r and s S (s1, t1) m (s3, t3).

 39. Assume that r is reflexive and transitive on S. Then for all x [S, (x, x) [r, which means (x, x) [r−1,
so (x, x) [r d r−1 and r d r−1 is reflexive. Let (x, y) [r d r−1. Then (x, y) [r and (x, y) [r−1,
which means (x, y) [r and (y, x) [r. This implies (y, x) [r−1 and (y, x) [r, so (y, x) [r d r−1 and
r d r−1 is symmetric. Let (x, y) [r d r−1 and (y, z) [r d r−1. Then (x, y) [r and (x, y) [r−1 and
(y, z) [r and (y, z) [r−1, so (x, y) [r and (y, x) [r and (y, z) [r and (z, y) [r. Because r is transi-
tive, (x, z) [r and (z, x) [r or (x, z) [r and (x, z) [r−1, so (x, z) [r d r−1 and r d r−1 is transitive.

 17. a. symmetric
 b. antisymmetric, transitive
 c. reflexive, antisymmetric, transitive
 d. reflexive, symmetric, transitive

 19. a. reflexive, transitive
 b. antisymmetric, transitive
 c. reflexive, symmetric, transitive
 d. antisymmetric

Answers to Odd-Numbered Exercises 895

 41. Reflexive: X d X because xi = xi, 1 ≤ i ≤ k. Antisymmetric: Let X d Y and Y d X . If X ∙ Y , let
m + 1 be the first index where xm+1 ∙ ym+1. Then xm+1 d ym+1 and ym+1 d xm+1 S xm+1 = ym+1, a
contradiction. Transitive: Let X d Y and Y d Z . Then xp d yp for some p ≤ k and yq d zq for some
q ≤ k. Let m = min(p, q). Then xm d zm and X d Z . Therefore d is a partial ordering. It is a total
 ordering by “otherwise”.

 43. a. when; no; all but the last
 b. Old

King

merry soul

was

Cole

a

 Maximal elements: a, merry, soul
 45. a. 3a 4 = 5a, c6 = 3c 4

 b. 33 4 = 51, 2, 36, 34 4 = 54, 56
 47. 31 4 = 5... , −5, −3, −1, 1, 3, 5, ...6
 49. If x ≡ y (mod n) then x − y = k1n for some integer k1, or x = k1n + y. If z ≡ w (mod n) then z − w = k2n

for some integer k2, or z = k2n + w.
 a. x + z = (k1n + y) + (k2n + w) = y + w + (k1 + k2)n, so x + z − (y + w) = (k1 + k2)n where

k1 + k2 is an integer, and x + z ≡ y + w (mod n).
 b. x − z = (k1n + y) − (k2n + w) = y − w + (k1 − k2)n, so x − z − (y − w) = (k1 − k2)n where

k1 − k2 is an integer, and x − z ≡ y − w (mod n).
 c. xz = (k1n + y)(k2n + w) = k1k2n2 + yk2n + wk1n + yw = (k1k2n + yk2 + wk1)n + yw so

xz − yw = (k1k2n + yk2 + wk1)n where k1k2n + yk2 + wk1 is an integer, and xz ≡ yw (mod n).

 d. xs − ys = (k1n + y)s − ys = c ∙
s

k=0
C(s, k)(k1n)s−kyk d − ys

 = c ∙
s−1

k=0
C(s, k)(k1n)s−kyk d + ys − ys = n ∙

s−1

k=0
C(s, k)k1

s−kns−k−1yk = nk2

 where k2 is an integer and xs ≡ ys (mod n).
 51. a. 5(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 4), (4, 3)6

 b. 5(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)6
 53. Reflexive: x2 − x2 = 0, which is even. Symmetric: If x2 − y2 = 2n then y2 − x2 = −2n, which is even.

Transitive: if x2 − y2 = 2n and y2 − z2 = 2m, then x2 − z2 = x2 − y2 + y2 − z2 = 2n + 2m = 2(n + m),
which is even. The equivalence classes are the set of even integers and the set of odd integers.

 55. Reflexive: (x, y) r (x, y) because y = y. Symmetric: If (x, y) r (z, w) then y = w so w = y and (z, w) r (x, y).
Transitive: If (x, y) r (z, w) and (z, w) r (s, t) then y = w and w = t, so y = t and (x, y) r (s, t). The
equivalence classes are sets of ordered pairs with the same second components.

 57. a. Reflexive: x r x because x and x start and end with the same bit values. Symmetric: If x r y then y
starts and ends with the same bits as x, so x starts and ends with the same bits as y and therefore y r x.
Transitive: If x r y and y r z, then y starts and ends with the same bits as x and z starts and ends with the
same bits as y, so z starts and ends with the same bits as x and therefore x r z.

 b. 256
 c. 4; there are 4 start bit-end bit combinations, 0…0, 1…0, 0…1, and 1…1.
 d. 26

 59. Clearly P 4 P is a tautology. If P 4 Q is a tautology, then P and Q have the same truth values every-
where, so Q 4 P is a tautology. If P 4 Q and Q 4 R are tautologies, then P, Q, and R have the same

896 Answers to Odd-Numbered Exercises

truth values everywhere, and P 4 R is a tautology. The equivalence classes are sets consisting of wffs
with the same truth values everywhere.

 61. a. 1 b. 2 c. 5 d. 15
 63. Answers agree with Exercise 61.
 65. a. 3 b. 7
 67. Answers agree with Exercise 65.
 69. The number of blocks in a partition can range from 1 (the whole set) to n (a single element in each block).

The result follows by the definition of S(n, k) and the addition principle.
 71. 6
 73. a. 25, 49 b. (3, 4, 5), (0, 5, 5), (8, 6, 10) c. (−4, 4, 2, 0), (−6, 6, 0, −2)
 75. 6

ExErcisEs 5.2

 1. Yes; for example: 1, 2, 3, 8, 4, 5, 6, 7, 9
 3.

E(2)

A(3)

G(4)

C(2)

F(4)

H(1)

B(5)

D(6)

 5. Minimum time-to-completion is 17 time units. Critical path: E, A, D, B, H
 7. Minimum time to completion is 13 time units. Critical path: E, A, C, B, H
 9. For example: G, H, F, D, E, C, A, B
 11. For example: E, A, C, D, G, F, B, H
 13. For example, 6, 9, 1, 7, 8, 11, 2, 3, 5, 10, 4
 15. For example, 5, 6, 4, 1, 2, 3, 7, 10, 8, 11, 9

ExErcisEs 5.3

 1. a. Give the name, type, and breed of all pets that are cats.
 b. 2
 c. SELECT PetName, PetType, Breed FROM Pet WHERE PetType = “Cat”;

 3. Whatami

PetName Breed

Spot Hound

Twinkles Siamese

Lad Collie

Lassie Collie

Mohawk Moorish idol

Tweetie Canary

Tiger Shorthair

Answers to Odd-Numbered Exercises 897

 5.

ISBN Title Publisher Subject

N

M

Books

Writes

Author

Name Country

 The writes relation is many-to-many; that is, one author can write many books, and one book can have
more than one author.

 7. results7

Name Country

East, Jane U.S.

Kovalsco, Bert U.S.

 9. results9

ISBN Title Publisher Subject

0-364-87547-X Early Tang Paintings Bellman Art

0-56-000142-8 Springtime Gardening Swift-Key Nature

 11. results11

Name

Chan, Jimmy

East, Jane

King, Dorothy

Kovalsco, Bert

Lau, Won

Nkoma, Jon

Quercos, Tom

 13. results13

Publisher Subject

Bellman Art

Harding Art

Harding Nature

Loraine Nature

Swift-Key Nature

In some database systems you have to specify, via something
like a “DISTINCT” clause or a “Unique Values” property, that
duplicate tuples should be eliminated. Otherwise in this exam-
ple, (Harding, Nature) would be listed twice.

 15. results15

ISBN Name Title Publisher Subject

0-115-01214-1 Nkoma, Jon Birds of Africa Loraine Nature

0-364-87547-X Lau, Won Early Tang Paintings Bellman Art

0-364-87547-X Chan, Jimmy Early Tang Paintings Bellman Art

0-56-000142-8 East, Jane Springtime Gardening Swift-Key Nature

0-816-35421-9 King, Dorothy Springtime Gardening Harding Nature

0-816-53705-4 Kovalsco, Bert Baskets for Today Harding Art

0-816-88506-0 King, Dorothy Autumn Annuals Harding Nature

898 Answers to Odd-Numbered Exercises

 17. a. project(restrict Book where Subject = “Art”) over Title giving Results 17
 b. SELECT Title FROM Book WHERE Subject = “Art”;

 c. Range of x is Book, 5x.Title 0x.Subject = “Art”6
 d. results17

Title

Baskets for Today

Early Tang Paintings

 19. a. project(join(restrict Book where Publisher = “Harding”) and Writes over ISBN) over Name giving
Results19

 b. SELECT Name FROM Writes, Book WHERE Book.ISBN = Writes.ISBN AND Publisher =
“Harding”;

 c. Range of x is Writes, Range of y is Book, 5x.Name 0exists y(y.Publisher = “Harding” and
y.ISBN = x.ISBN)6

 d. results19

Name

King, Dorothy

Kovalsco, Bert

 21. a. project (join(join(restrict Author where Country = “U.S.”) and Writes over Name) and Book over
ISBN) over Title giving Results21

 b. SELECT Title FROM Author, Book,Writes WHERE Author.Name = Writes.Name AND Writes.
ISBN = Book.ISBN AND Country 5 “U.S.”;

 c. Range of x is Book, Range of y is Author, Range of z is Writes, 5x.Title 0 exists y, z (y.Country =
“U.S.” and y.Name = z.Name and z.ISBN = x.ISBN6

 d. results21

Title

Baskets for Today

Springtime Gardening

 23. a. project(join(join(restrict Author where Country = “England”) and Writes over Name) and
(restrict Book where Subject = “Art”) over ISBN) over Name, Title giving Results23

 b. SELECT Author.Name, Title FROM Book, Author, Writes WHERE Author.Name = Writes.Name
AND Writes.ISBN = Book.ISBN AND Country = “England” AND Subject = “Art”;

 c. Range of x is Author, Range of y is Book, Range of z is Writes, 5x.Name and y.
Title 0x.Country = “England” and y.Subject = “Art” and exists z 0 z.Name = x.Name and
y.ISBN = z.ISBN6

 d. The empty set; there are no results that match this query.
 25. a. p * q

 b. If the common attribute is sorted in each table, then the join can be performed by doing something
similar to a merge sort (see Exercise 19 in Section 3.3) on the common attribute, which means at most
(p + q) rows would need to be examined.

 c. 14
 d. 42

 27. a. SELECT Author.Name, Title, Book.ISBN, RoyaltyPercent FROM Author, Book, Writes WHERE
Author.Name = Writes.Name AND Writes.ISBN = Book.ISBN AND RoyaltyPercent <100;

 b. royalty lEss thaN 100

Name Title ISBN RoyaltyPercent

Chan, Jimmy Early Tang Paintings 0-364-87547-X 20

Lau, Won Early Tang Paintings 0-364-87547-X 80

Answers to Odd-Numbered Exercises 899

 29. a. Yes—every attribute described for Employee, Contribution, and Payment is listed and no attributes not
mentioned have been included.

 b. The primary key of Employees is EmployeeID, presumably a unique identifer for each employee.
Likewise, the primary key of Contribution is ContributionID. The primary key of Payment is the com-
posite key ContributionID / PaymentDate. None of the three attributes alone uniquely identifies a pay-
ment, nor does ContributionID / PaymentAmount [a given contribution may result in the same payment
amount on several different dates] or PaymentDate / PaymentAmount [multiple contributions can pay
the same amount on the same payment date]. But a given contribution does not have different payment
amounts on the same date.

 31. a. The three relation tables are
EmployEE

EmployeeID FirstName LastName Department

1 Mary Black Accounting

2 June Brown Payroll

3 Kevin White Accounting

4 Kelly Chen Payroll

6 Conner Smith Sales

coNtributioN

ContributionID EmployeeID ContributionDate TotalAmount NumberofPayments

101 1 1/1/2013 $300.00 3

102 3 1/1/2013 $500.00 2

103 6 1/1/2013 $150.00 2

104 4 4/15/2013 $100.00 1

105 1 6/1/2013 $210.00 3

107 2 6/1/2013 $300.00 2

108 2 1/1/2014 $600.00 12

109 3 1/1/2014 $500.00 2

paymENt

ContributionID PaymentDate PaymentAmount

101 1/15/2013 $100.00

101 1/31/2013 $100.00

101 2/15/2013 $100.00

102 1/15/2013 $250.00

102 1/31/2013 $250.00

103 1/15/2013 $75.00

103 1/31/2013 $75.00

104 4/30/2013 $100.00

105 6/15/2013 $70.00

105 6/30/2013 $70.00

105 7/15/2013 $70.00

107 6/15/2013 $150.00

107 6/30/2013 $150.00

108 1/15/2014 $50.00

109 1/15/2014 $250.00

900 Answers to Odd-Numbered Exercises

 b. EmployeeID in the Contribution table is a foreign key into the Employee table. ContributionID in the
Payment table is a foreign key into the Contribution table.

 c. Because the EmployeeID is just a sequence of sequential integer values that are likely to have no mean-
ing outside the database, it is probably a blind key generated automatically by the database system.

 33. SELECT Employee.EmployeeID, PaymentDate, PaymentAmount FROM Employee, Contribution,
Payment WHERE Employee.EmployeeID = Contribution. EmployeeID AND Contribution.
ContributionID = Payment.ContributionID AND PaymentAmount > 100; The result is

EmployeeID PaymentDate PaymentAmount

2 6/15/2013 $150.00

2 6/30/2013 $150.00

3 1/15/2013 $250.00

3 1/31/2013 $250.00

3 1/15/2014 $250.00

 35. SELECT FirstName, LastName, PaymentAmount, PaymentDate FROM Employee, Contribu-
tion, Payment WHERE Employee.EmployeeID = Contribution.EmployeeID AND Contribution.
ContributionID = Payment.ContributionID AND PaymentDate = “1∙15∙2013”; (The last equality is
likely to need a system-dependent additional function to convert the 1/15/2013 to a true date type so the
equality test will work.) The result is
FirstName LastName PaymentAmount PaymentDate

Mary Black $100.00 1/15/2013

Kevin White $250.00 1/15/2013

Conner Smith $75.00 1/15/2013

ExErcisEs 5.4

 1. a. Domain = 54, 5, 6, 7, 86 codomain = 58, 9, 10, 116 range = 58, 9, 106
 b. 8, 10
 c. 6, 7
 d. no, no

 3. a. 5(0, −1), (1, 1), (2, 3)6
 b. 5(1, 1), (2, 3), (4, 7), (5, 9)6
 c. 5("7, 2"7−1), (1.5, 2)6

 5. a. f (A) = 53, 9, 156 b. f (A) = all integral multiples of 6
 7. a. f (S) = 53, 76 b. f (S) = 51, 36 c. f (S) = 52, 1, 06
 9. a. F b. F c. T d. F
 11. a. not a function b. function c. function; one-to-one and onto

 d. not a function e. not a function
 13. a. not a function b. function, onto, not one-to-one c. function, one-to-one, not onto
 15. a. function

 b. not a function
 c. function; onto
 d. bijection; f −1: 5p, q, r6 S 51, 2, 36 where f −1 = 5(q, 1), (r, 2), (p, 3)6
 e. function; one-to-one
 f. bijection; h−1: R2 S R2 where h−1(x, y) = (y − 1, x − 1)

Answers to Odd-Numbered Exercises 901

 17. Any odd value of n will produce a bijection because the function will look similar to Figure 5.12. For even
values of n the function is not one-to-one because positive and negative values map to the same result.

 19. f is neither one-to-one nor onto. For example, f (xxy) = f (yyy) = 3, so f is not one-to-one. For any string
s, f (s) ≥ 0; there are no strings in A* that map to negative values, so f is not onto.

 21. f is both one-to-one and onto. If f (s1) = f (s2) then s1 = s2 (just reverse the strings again and you get back
where you started), so f is one-to-one. Given any string s in A*, let y be its reverse. Then y is in A* and
f(y) = s, so f is onto.

 23. f is neither one-to-one nor onto. For example, f (5a, b6) = f (5b, c6) = 2, so f is not one-to-one. The range
of f is the set of sizes of all subsets of 5a, b, c6 , which is 50, 1, 2, 36 , so this is clearly not Z and f is not
onto.

 25. For example, f(x) = 1∙x. For x ≥ 1, the value 1∙x is greater than 0 but less than or equal to 1, so
f: S S T . If f(x1) = f(x2), then 1∙x1 = 1∙x2 and x1 = x2, so f is one-to-one. Given any value y in T, that
is, 0 < y ≤ 1, the value 1/y is in S and f(1∙y) = 1∙(1∙y) = y, so f is onto.

 27. a. 3 b. 0 c. 0
 29. The greatest integer ≤ x is the same as the smallest integer ≥ x; therefore x is an integer.
 31. Let k ≤ x < k + 1 where k is an integer. Then k is the greatest integer that is less than or equal to x, so

:x; = k. Also, multiplying the entire inequality by −1, which reverses the direction of the inequality
signs, gives −k ≥ −x > −k − 1 which means that −k is the smallest integer greater than or equal to −x,
so <−x= = −k. Multiplying both sides of this equation by –1 gives −<−x= = k.

 33. a. False. Let x = 3.6. Then < :x; = = <3= = 3 ∙ x.
 b. False. Let x = 4.8. Then :2x; = :9.6; = 9 but 2:x; = 2(4) = 8.

 35. If 2k < n < 2k+1 then log(2k) < log n < log(2k+1) or k < log n < k + 1 and :log n; = k, <log n= = k + 1.
 37. a. 9 b. 0 c. 4 d. 2
 39. False. For example, let x = 7 and y = 9. Then x mod 10 + y mod 10 = 7 + 9 = 16 but (x + y) mod

10 = 16 mod 10 = 6.
 41. a. (1, 1), (2, 0), (3, 1), (4, 0), (5, 1)

 b. cAdB(x) = 1 4 x [A and x [B 4 cA(x) = 1 and cB(x) = 1 4 cA(x) # cB(x) = 1
 c. If cA′(x) = 1, then x [A′ and x o A, so cA(x) = 0 = 1 − cA′(x). If cA′(x) = 0. then x o A′ and x [A

so cA(x) = 1 = 1 − cA′(x)
 d. No. Let S = 51, 2, 36 , A = 51, 26 , B = 52, 36 . Then cAcB(2) = 1 but cA(2) + cB(2) = 1 + 1.

 43. a. S(0, n) > A(0, n) for n > 1 because nn > n + 1.
 b. S(1, n) = S(0, S(0, n)) = S(0, nn) = nnnn

 c. The googolplex is 1010100
= 10101010

= S(1,10)
 45. g + f = 5(1, 6), (2, 7), (3, 9), (4, 9)6
 47. a. 18 b. 16 c. 3x + 3
 d. 3x + 1 e. x + 2 f. 9x
 49. a. If f(s1) = f(s2) then g(f(s1)) = g(f(s2)) so (g + f)(s1) = (g + f)(s2). Because g + f is one-to-one, s1 = s2

and therefore f is one-to-one.
 b. For u [U , there exists s [S such that (g + f)(s) = u, because g + f is onto. Thus g(f (s)) = u and f(s)

is a member of T that is a preimage of u under g, and g is onto.
 c. Let S = 51, 2, 36 , T = 51, 2, 3, 46 , U = 51, 2, 36 , f = 5(1, 1), (2, 2), (3, 3)6 , g = 5(1, 1), (2, 2),

(3, 3), (4, 3)6 . Then f: S S T, g: T S U , g is not one-to-one but g + f = 5(1, 1), (2, 2), (3, 3)6 is
one-to-one.

 d. same example as for (c)

 51. a. f −1(x) = x∙2 b. f −1(x) = "3 x c. f −1(x) = 3x − 4

902 Answers to Odd-Numbered Exercises

 53. a. (1, 3, 5, 2) b. (1, 4, 3, 2, 5)
 55. Both h + (g + f) and (h + g) + f have domain and codomain A. For x [A, (h + (g + f))(x) =

h((g + f)(x)) = h(g(f (x))) = (h + g)(f (x)) = ((h + g) + f)(x).
 57. a. (1, 2, 5, 3, 4)

 b. (1, 7, 8) + (2, 4, 6)
 c. (1, 5, 2, 4) + (3, 6)
 d. (2, 3) + (4, 8) + (5, 7)

 59. a. (a, d, e, b) b. (d, e) c. (a, d) + (c, e)
 61. f −1 = (2, 4, 3, 8)
 63. a. 34 b. 36
 65. a. For 0S 0 = 2, 2!∙0! = 2 and 22 − C(2, 1)(1)2 = 4 − 2 = 2. For 0S 0 = 3, 3!∙0! = 6 and

33 − C(3,1)(2)3 + C(3, 2)(1)3 = 27 − 3 # 8 + 3 = 6. For 0S 0 = 4, 4!∙0! = 24 and
44 − C(4, 1)(3)4 + C(4, 2)(2)4 − C(4, 3)(1)4 = 256 − 4 # 81 + 6 # 16 − 4 = 24.

 b. Assume f is onto. If two distinct elements of S map to one element of S, then n − 2 elements are left to
map onto n − 1 elements, which cannot be done. Therefore f is one-to-one. Now assume f is one-to-
one. Then the n elements of S map to n distinct elements of S; thus every element of S is in the range of
f, and f is onto.

 c. For example, S = N, f: N S N given by f (x) = 2x.
 d. For example, S = N, f: N S N given by f (0) = 0, f (x) = x − 1 for x ≥ 1.

 67. a. nn

 b. n!
 c. n!
 d. n!

 e. n! c 1
2!

−
1
3!

+ c+ (−1)n 1
n!
d

 f. The number of derangements (answer d) is < n! c 1
2!
d = n! # 1

2
< n! and n! < nn. The total number

of functions, with no restrictions, is the maximum. Only some of these functions are one-to-one and
onto, but this is the definition of a permutation as well. Not all permutations are derangements, so the
number of derangements is smaller still.

 69. 1854
 71. a. For x [S, f (x) = f (x), so x r x and r is reflexive. For x, y [S, if x r y then f (x) = f (y) and f (y) = f (x),

so y r x and r is symmetric. For x, y, z [S, if x r y and y r z, then f (x) = f (y) and f (y) = f (z), so
f (x) = f (z) and x r z, so r is transitive.

 b. If f is a one-to-one function, then no two elements of S map to the same value, so the equivalence
classes each consist of a single element.

 c. 34 4 = 54, −46 because f (4) = f (−4).
 73. a. 5m, n, o, p6 b. 5n, o, p6; 5o6
 75. Reflexive: S r S by the identify function. Symmetric: If S r T and f is a bijection from S to T, then

f −1: T S S and f −1 is a bijection, so T r S. Transitive: If S r T and T r U, f: S S T, g: T S U , f and g
bijections, then g + f : S S U and g + f is a bijection, so S r U .

 77. a. (define (square x) b. 18
 (* xx))

ExErcisEs 5.5

 1. For example, n0 = 1, c1 = 1∙34, c2 = 1. For x ≥ 1, (1∙34)(17x + 1) ≤ x ≤ 1(17x + 1)
 3. For example, n0 = 2, c1 = 1, c2 = 2. For x ≥ 2, 1(15x2 + x) ≤ 29x2 − 4x − 15 ≤ 2(15x2 + x)
 5. For example, n0 = 1, c1 = 1, c2 = 2. For x ≥ 1, 1(x3) ≤ x3 + log x ≤ 2x3.

Answers to Odd-Numbered Exercises 903

 7. Yes. For example, in Exercise 1, we could use the constants n0 = 1, c1 = 1∙34, c2 = 1∙10. Then the
 envelope would be entirely below g(x), but it still follows the general “shape” of g(x).

 9. 2 11. lim
xS∞

x
17x + 1

= lim
xS∞

1
17

=
1
17

 13. lim
xS∞

x
x2 = lim

xS∞

1
2x

= 0 15. lim
xS∞

log x
x = lim

xS∞

1
xlog e

1
= 0

 17. 3200 log x 4 = 341 ln x2 4 < 3"4 x 4 < 3420 x 4 < 317 x log x 4 < 310x2 − 3x + 5 4 < 32x x2 4
 19. Knowing that the algorithm is O(n3) tells you only that the growth rate is less than or equal to n3; it could

be n3, n2, n log n, n, etc. Knowing that it is o(n3) tell you that the growth rate is less than n3, but again it
could be n2, n log n, etc. The most useful information is that the growth rate is Θ(n2), essentially growing
at a constant times a parabolic

 21. S(n) = Θ(n2) 23. S(n) = Θ(n log n)
 25. S(n) = Θ(nlog33) = Θ(n)
 27. a. C′(n) = Θ(n log n).

 b. The exact solution for C(n) is C(n) = n(log n) − n + 1, which is also Θ(n log n).

ExErcisEs 5.6

 1. 25 mod 6 = 1, 11 mod 6 = 5, 14 mod 6 = 2, and (5 + 2) mod 6 = 1
 3. 262 mod 13 = 2, 74 mod 13 = 9,188 mod 13 = 6, and (9 + 6) mod 13 = 2
 5. 486 mod 5 = 1, 18 mod 5 = 3, 27 mod 5 = 2, and (3 # 2) mod 5 = 1
 7. Let x = q1n + r1, 0 ≤ r1 < n and y = q2n + r2, 0 ≤ r2 < n, so x mod n = r1 and y mod n = r2. Then

x # y = (q1q2n + q2r1 + q1r2)n + (r1
r2),0 ≤ r1

r2 < n2. Let r1
r2 = kn + r with 0 ≤ r < n. Then

x # y = (q1q2n + q2r1 + q1r2 + k)n + r with 0 ≤ r < n, so (x # y) mod n = r. Also x mod n # y mod
n = r1

r2 = kn + r with 0 ≤ r < n, so (x mod n # y mod n) mod n = r.
 9. Answer c is correct.
 11. 0 33

1 1

2 13

3 12

4 34

5 38

6 27

7 22

8

9

10

 13. a. The values are stored in locations
6, 14, 1, 7, 8, 2, 16, 9, 0.
0 50

1 52

2 18

3

4

5

6 23

7 40

8 24

9 58

10

11

12

13

14 14

15

16 33

 b. 58 hashes to location 7,
which contains another ele-
ment (40), so, following the
collision resolution scheme
under which 58 would have
been stored, search the next
table position, 8, which
contains 24, then search the
next table position, 9, which
contains 58. 41 also hashes
to location 7 in the table; pro-
ceeding as before, locations
8 and 9 are also checked, and
do not contain 41. The next
location to check is 10, which
is empty. Therefore 41 is not
in the table.

904 Answers to Odd-Numbered Exercises

 15. a. 1∙t b. 2∙t c. 3∙t
 17. a. ALLS WELL THAT ENDS WELL

 b. TWAS BRILLIG AND THE SLITHY TOVES DID GYRE AND GIMBLE IN THE WABE
 c. COL MUSTARD WITH THE KNIFE IN THE LIBRARY

 19. k = 9, SLEEP NOW WE MARCH ON ROME TOMORROW
 21. a. x = 10011 (5-bit string), p = x mod 24 = 00011, q = p # 2 = 00110, s = x ! p = 10000,

t = s # 2−4 = 00001, y = q + t = 00111
 b. x = 0011 (4-bit string), p = x mod 23 = 0011, q = p # 2 = 0110, s = x ! p = 0000,

t = s # 2−4 = 0000, y = q + t = 0110
 23. 1010001111101010
 25. a. d = 3

 b. 83 mod 15 = 82 # 8 mod 15 = 64 # 8 mod 15 = 4 # 8 mod 15 = 32 mod 15 = 2
 c. 23 mod 15 = 8

 27. a. d = 23 b. 127 mod 55 = 23 c. 2323 mod 55 = 12
 29. a. n(n − 1)∙2 b. n
 31. a. X b. 7
 33. check digit = 8
 35. a. temp = number

 ones = temp mod 10
 temp = (temp − one)∙10
 tens = temp mod 10
 temp = (temp − tens)∙10
 hundreds = temp mod 10
 temp = (temp − hundreds)∙10
 thousands = temp

 b. temp = 7426
 ones = 6
 temp = 742
 tens = 2
 temp = 74
 hundreds = 4
 temp = 7
 thousands = 7

 37. If x ≡ y (mod n) then x − y = kn where k is an integer. Therefore xc − yc = kcn where kc is an integer,
so xc ≡ yc (mod n).

 39. a. f (ka) = (ka) mod p maps each element of S to a unique value in T. To show that f is one-to-one, sup-
pose f (k1a) = f (k2a) for some k1 and k2, 0 ≤ k1, k2 ≤ p − 1. Then k1a mod p = k2a mod p. By Prac-
tice 43b, k1a ≡ k2a (mod p). Because p is a prime number and a is not divisible by p, gcd (a, p) = 1,
so by Exercise 38 (cancellation under congruence modulo n), k1 ≡ k2 (mod p), or k1 − k2 = mp for
some integer m. But −p < k1 − k2 < p so m = 0 and k1 = k2, so k1a = k2a and f is one-to-one.

 b. 0S 0 = 0T 0 = p and f is a one-to-one function. Therefore each of the p distinct elements of S map to dis-
tinct elements of T, making each of the p elements of T the image of an element of S.

 c. 3a # 2a c (p − 1)a 4mod p = 3(a mod p) # (2a mod p) c ((p − 1)a)mod p 4 mod p by Equation
(1) of this section. Because f is an onto function, the set T is the set of all residues modulo p of
the elements of S. Because 0 mod p = 0, the set 51, 2, c , (p − 1)6 is the set of all residues
modulo p of the elements 5a, 2a, c , (p − 1)a6 . Therefore 3(a mod p) # (2a mod p) c
((p − 1)a) mod p 4 mod p = 31 # 2 c (p − 1) 4 mod p = (p − 1)! mod p.

 d. From part (c), 3ap−1(p − 1)! 4 mod p = (p − 1)! mod p or, by Practice 43b, ap−1(p − 1)! ≡
(p − 1)! (mod p). Because p is a prime, gcd((p − 1)!, p) = 1, so by Exercise 38 (cancellation under
congruence modulo n), ap−1 ≡ 1 (mod p).

 e. 51, 2, 3, 4, 5, 66
 f. 46 mod 7 = (43 # 43)mod 7 = 64 # 64 mod 7 = 1 # 1 mod 7 = 1

 41. a. d # e ≡ 1 mod w(n) means d # e ≡ 1 mod (p − 1)(q − 1), so that d # e = 1 + k(p − 1)(q − 1) for
some integer k. Then Ted = T1 + k(p−1)(q−1) = T(T

k(p−1)(q−1)) = T(T
p−1)k(q−1) or T(T

q−1)k(p−1).

Answers to Odd-Numbered Exercises 905

 b. If T is not divisible by p, then Tp−1 ≡ 1 (mod p) by Fermat’s little theorem (Exercise 39).
Ted mod p = T(Tp−1)k(q−1) mod p = 3T(T

p−1)(T
p−1) c (T

p−1) 4 mod p = 3(T mod p) # 1 # 1 c 1 4 mod p
by Equation (1) and Practice 43b = T mod p so that Ted ≡ T (mod p) by Practice 43b. Similarly if T
is not divisible by q, then Tq−1 ≡ 1(mod q). Ted mod q = T(T

q−1)k(p−1) mod q and T
ed ≡ T(mod q).

 c. If p 0T then T = kp for some integer k and T
ed − T = (kp)ed − kp = p(ped−1ked − k) where

ped−1ked − k is an integer, so Ted ≡ T (mod p). If p 0T and q 0T , then T is a multiple of p and T is a
multiple of q. Because p and q are primes, T = cpq for some integer c, which is a contradiction because
T < pq = n.

 d. The proof is very similar to part c.
 e. Ted ≡ T (mod p),Ted ≡ T (mod q) and p and q are relatively prime. This matches the pattern of the Chi-

nese remainder theorem where a1 = a2 = T and x = Ted . But also, T ≡ T (mod p) and T ≡ T(mod q).
By the Chinese remainder theorem, Ted ≡ T (mod pq), or Ted ≡ T (mod n). By Practice 43b,
Ted mod n = T mod n = T because T < n.

ExErcisEs 5.7

 1. 2, −4
 3. x = 1, y = 3, z = −2, w = 4

 5. a. £
6 −5
0 3
5 3

§

 b. £
−2 7
−2 −3

1 5
§

 c. £
12 3 6
18 −3 15
3 9 6

§

 d. c −4 −8
−12 2

d

 e. £
14 −17
2 9
9 1

§

 7. a. £
10 7

−2 −4
30 8

§

 b. not possible

 c. £
21 −23
33 −44
11 1

§

 d. c28 4
6 25

d

 9. a. A # B = c10 4
18 −3

d B # A = c14 1
4 −7

d

 b. A(B # C) = (A # B)C = c 68 −58
102 −84

d

 c. A(B + C) = A # B + A # C = c26 −9
40 −23

d

 d. (A + B)C = A # C + B # C = c42 −35
32 −28

d

906 Answers to Odd-Numbered Exercises

 11. Both A # (B # C) and (A # B) # C can be computed and will result in an n × m matrix. The i, j element of
A # (B # C) looks like

∙
p

s=1
ais(B # C)sj = ∙

p

s=1
aisa ∙

r

k=1
bskckjb = ai1(b11c1j + b12c2j + c+ b1rcrj) + c+

aip(bp1c1j + bp2c2j + c+ bprcrj) = (ai1b11 + ai2b21 + c+ aipbp1)c1j + c+

(ai1b1r + ai2b2r + c+ aipbpr)crj = ∙
r

k=1
a ∙

p

s=1
aisbskbckj = ∙

r

k=1
(A # B)ikckj

 which is the i, j element of (A # B) # C.
 13. a. Assume that row i of A is all 0s. Then for any j, the element in row i, column j of A # B is given by

∙
n

k=1
aikbkj. This sum is 0 because aik = 0 for all values of k.

 b. Assume that column j of B is all 0s. Then for any i, the element in row i, column j of A # B is given by

∙
n

k=1
aikbkj. This sum is 0 because bkj = 0 for all values of k.

 15. a. AT = £
1 6
3 −2
4 1

§

 b. If A is symmetric then aij = aji and AT(i, j) = A(j, i) = A(i, j). Therefore AT = A. If AT = A, then
A(i, j) = AT(i, j) = A(j, i) and A is symmetric.

 c. (AT)T = A follows from the definition - two interchanges of row and column gets back to the original.
 d. Let A + B = C. Then CT(i, j) = C(j, i) = A(j, i) + B(j, i) = AT(i, j) + BT(i, j) and CT = AT + BT .
 e. Let A be an n × m matrix and B be an m × p matrix; then AT is m × n and BT is p × m. Let A # B = C.

Then CT(i, j) = C(j, i) = ∙
m

k=1
ajkbki = ∙

m

k=1
AT (k, j)BT(i, k) = ∙

m

k=1
BT (i, k)AT (k, j) = (BT # AT)(i, j) and

CT = BT # AT .

 17. For example, c 1 1
−1 −1

d c 1 1
−1 −1

d = c0 0
0 0

d
 19. This is not always true (for example, use the A and B of Practice 52). It is true if A = B = I, for example.

 21. The i, j entry of A2 is ∙
n

k=1
aikakj.The j,i entry of A2 is ∙

n

k=1
ajkaki. But these are the same because aik = aki and

akj = ajk (A is symmetric).

 23. For n = 1, A = c1 1
1 0

d = cF(2) F(1)
F(1) F(0)

d . Assume that Ak = cF(k + 1) F(k)
F(k) F(k − 1)

d . Then

Ak+1 = Ak # A = cF(k + 1) F(k)
F(k) F(k − 1)

d c1 1
1 0

d = cF(k + 1) + F(k) F(k + 1)
F(k) + F(k − 1) F(k)

d =

 cF(k + 2) F(k + 1)
F(k + 1) F(k)

d .

 25. (rA)(1∙r)A−1 = r(1∙r)(A # A−1) = 1I = I and (1∙r)A−1(rA) = (1∙r)(r)(A−1 # A) = 1I = I.
 27. x = 6, y = −1
 29. x = 11, y = 6, z = −2
 31. x = 9∙14, y = 2∙7, z = 31∙14

Answers to Odd-Numbered Exercises 907

 33. x = 5, y = −3, z = 4, w = 2.
 35. For example,

x + 2y = 3
4x + y = 19
3x − y = 16

 The augmented matrix is £
1 2 3
4 1 19
3 −1 16

§ . The following elementary row operations

 £
1 2 3
4 1 19
3 −1 16

§

 result in

 £
1 2 3
0 −7 7
0 −7 7

§

 Because row 2 of the augmented matrix is the sum of rows 1 and 3, the new rows 2 and 3 represent the
same equation, so this actually is a system of 2 equations in 2 unknowns. Solving −7y = 7 gives y = −1,
and solving x + 2y = 3 or x + 2(−1) = 3 gives x = 5.

 37. Let g = the amount of gold in cubic centimeters, and c = the amount of copper in cubic centimeters.
Then c + g = 52 and 9c + 19.3g = 859.4. The solution is g = 38 cc, c = 14 cc.

 The percentage of copper by volume is 14∙52 = 26.9%.

 39. A−1 = c−1∙2 3∙4
1∙2 −1∙4

d

 41. A−1 = c−14∙10 1∙10
24∙10 −1∙10

d A−1 # B = c20
50

d = cx
y
d

 so x = 20, y = 50.
 43. x = 6, y = −1
 45. x = 11, y = 6, z = −2

 47. A ` B = £
1 0 0
0 1 0
0 1 1

§ A ~ B = £
1 0 1
1 1 1
1 1 1

§ A × B = £
1 0 1
1 1 1
1 1 1

§ B × A = £
1 1 1
1 1 1
1 1 1

§

 49. A ` B = £
0 1 0
0 0 1
0 0 0

§ A ~ B = £
0 1 1
1 0 1
1 0 1

§ A × B = £
0 0 1
1 1 1
1 0 0

§ B × A = £
1 0 1
0 0 1
0 1 0

§

 51. In order for A ~ B = A ` B, it must be the case that aij ~ bij = aij ` bij for all i, j. This is true if
aij = bij = 1 or aij = bij = 0, therefore when A = B.

 53. 2
n(n+1)

2

 55. a. The rows in the augmented matrix as it is being transformed are of length n + 1, n, n − 1, …3. (The
augmented matrix is size n × (n + 1) and the next to last row is the last for which such a multiplication
is required in order to zero out position n,n − 1 in the last row.) Each non-zero element in each row
must be multiplied by the scalar value, requiring a total of (n + 1) + n + (n − 1) + c+ 3 which is

(n + 1) + n + (n − 1) + c+ 3 + 2 + 1 − (2 + 1) multiplications, which is
(n + 1)(n + 2)

2
− 3.

−3
−4

908 Answers to Odd-Numbered Exercises

 b. To zero out the first column, a multiple of the first row (length n + 1) must be added to each row below
it, requiring (n + 1) multiplications and (n + 1) additions for n − 1 rows. To zero out the second col-
umn, a multiple of the second row (length n) must be added to each row below it, requiring n multiplica-
tions and n additions for n − 2 rows. The last transformation requires a multiple of the next to last row
(length 3) to be added to the 1 row below it, requiring 3 multiplications and 3 additions for 1 row. The
totals are (n + 1)(n − 1) + (n)(n − 2) + c+ (3)(1) for both multiplications and additions, and this

expression (from Exercise 11 in Section 2.2) equals
(n − 1)(n)(2(n − 1) + 7)

6
=

2n3 + 3n2 − 5n
6

 c. To solve the equations from bottom to top requires
 Row n: cnnxn = dn 1 multiplication
 Row n − 1: c(n−1)(n−1)xn−1 + c(n−1)nxn = dn−1 1 multiplication, 1 addition, 1 multiplication
 Row n − 2: c(n−2)(n−2)xn−2 + c(n−2)(n−1)xn−1 + c(n−2)nxn = dn−2 2 multiplications, 2 additions,
 1 multiplication
 (
 Row 1: c11x1 + c12x2 + c+ c1nxn = d1 (n − 1) multiplications, (n − 1) additions, 1 multiplication

 for a total of 1 + 2 + 3 + c+ n =
n(n + 1)

2
 multiplications and 1 + 2 + c+ (n − 1) =

(n − 1)n
2

 additions.

 d. The transformation requires Θ(n2) + 2Θ(n3) operations, and the resulting equation solving requires
2Θ(n2) operations, so the overall order of magnitude is Θ(n3).

ch a p tE r 6

ExErcisEs 6.1

 1. g(a) = (1,2), g(b) = (1,3), g(c) = (2,3), g(d) = (2,2)
 3. a. b. For example, c.

 5.

 7. a. For example,

 b. Does not exist; the node of degree 4 would have to have arcs going to 4 distinct other nodes because no
loops or parallel arcs are allowed, but there are not 4 distinct other nodes.

Answers to Odd-Numbered Exercises 909

 c.

 d. Does not exist; in such a graph, the sum of all the degrees would be 11, but the sum of all the degrees
is the total number of arc ends, which must be twice the number of arcs, i.e., an even number.

 9. a. Because everyone in a department presumably knows someone in the same department, this would
mean that no one in the IT department knows anyone in the marketing department (and vice versa).

 b. Carl and Fletcher are not acquainted. SiuYin is acquainted only with Carl.
 c. 2

 11. For example: a. star S idol S statue S sculpture
 b. burden S load S weight S influence
 c. piano S upright S moral S significance

 13. (b), because there is no node of degree 0.
 15. f1: 1 S a, 2 S b, 3 S c, 4 S d, f2: a1 S e2, a2 S e7, a3 S e6, a4 S e1, a5 S e3, a6 S e4, a7 S e5

 17. f: 1 S a, 2 S d, 3 S b, 4 S e, 5 S c
 19. Not isomorphic; graph in (b) has a node of degree 5, graph in (a) does not.
 21. a. There cannot be a bijection between the two node sets if they are not the same size.

 b. For isomorphic graphs there is a bijection from one arc set to the other, either explicitly or, in the case
of simple graphs, implicitly by means of the endpoints; this cannot happen if the arc sets are not the
same size.

 c. If the graphs are isomorphic and arcs a1 and a2 in one graph both have endpoints x–y, then their image
arcs in the second graph must have the same endpoints, which cannot happen if the second graph has
no parallel arcs.

 d. If the graphs are isomorphic and an arc in one graph has endpoints x–x, then its image arc in the second
graph must have endpoints f(x)–f(x), which is not possible if the second graph has no loops.

 e. If the graphs are isomorphic and a node of degree k in one graph serves as an endpoint to k arcs, its
 image in the second graph must serve as an endpoint to the images of those k arcs, which implies it will
have degree k also.

 f. If the graphs are isomorphic and if there is a path n1, a1, n2, a2, ... , nk between two nodes in one graph,
then f(n1), f(a1), f(n2), f(a2), ... , f(nk) is a path in the second graph. Two nodes in the second graph are
the images of nodes in the first graph; if the first graph is connected, there is a path between these nodes
and hence there is a path between the two nodes in the second graph.

 g. By the answer to part f, in isomorphic graphs paths map to paths, so cycles map to cycles.

 23. 4 graphs: 25.
n(n − 1)

2
= C(n,2)

 27. If we can draw the graph with arcs that intersect only at nodes, then it is a planar graph.

 K2,3:

910 Answers to Odd-Numbered Exercises

 29. 5
 31. The proof for Euler’s formula does not depend on the graph being simple, so the result still holds for non-

simple graphs, but this is not true for inequalities (2) and (3).
 33. Planar

 35. Nonplanar—subgraph here can be obtained from K3,3 by elementary subdivisions

 37.

E

1 1 0 0 2
1 1 1 1 1
0 1 0 1 0
0 1 1 0 0
2 1 0 0 0

U

 39.

G

0 1 1 0 0 0 0
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 1
0 1 1 0 1 1 0

W

 41.

≥
0 1 0 0
0 0 1 1
0 0 0 1
0 0 1 0

¥

 43. 45.

5

2

4

3
1

 47.
4

1

2 3

 49. The graph consists of n disconnected nodes with a loop at each node.
 51. The n × n matrix with 0s down the main diagonal and 1s elsewhere.
 53.

1 1

2

3

4

5

2

1 2

2 4

1 1

2 3

2

5

3

5

4 5

Answers to Odd-Numbered Exercises 911

 55.

1 2

2

3

4

5

3

1 4

1 5

6

3 7

7

2 6

6 7

6 2

7

3 4 7

2 3 5 6

 57.

1 2

2

3

4

3 4

4

3

 59. a.
1 2

2

3

4

5

3

4 5 6

6

 b. 16 c. 36

 61. Node pointer

1 5

2 7

3 11

4 0

5 2 6

6 3 0

7 1 8

8 2 9

9 3 10

10 4 0

11 4 0

63.
1

2

3

4

 65.

4

2 3

6

1

5

912 Answers to Odd-Numbered Exercises

 67. By the definition of isomorphic graphs, nodes x–y are adjacent in G1 if and only if their images are adja-
cent in G2. Therefore nodes are not adjacent in G1 (and therefore are adjacent in G1r) if and only if their
images are not adjacent in G2 (and therefore are adjacent in G2r). Thus the same function f makes the
complement graphs isomorphic.

 69. If G is not connected then G consists of two or more connected subgraphs that have no paths between
them. Let x and y be distinct nodes. If x and y are in different subgraphs, there is no x–y arc in G; hence
there is an x–y arc in G′, and a path exists from x to y in G′. If x and y are in the same subgraph, then pick
a node z in a different subgraph. There is an arc x–z in G′ and an arc z–y in G′, hence there is a path from
x to y in G′.

 71. The matrix for G′ will have 1s where A had 0s and 0s where A had 1s except for diagonal elements, which
remain 0s.

 73. The maximum number of arcs occurs in a complete graph; the maximum is C(n,2) = n(n − 1)�2, there-
fore a ≤ n(n − 1)�2 or 2a ≤ n2 − n.

 75. Let G be a simple graph with n nodes, n ≥ 2, and m arcs, m > C(n − 1,2) = (n − 1)(n − 2)�2,
and suppose that G is not connected. By Exercise 69, G′ is connected. By Exercise 74, the number
of arcs in G′ is at least n − 1. Therefore the number m of arcs in G is (the number of arcs in a com-
plete graph) − (the number of arcs in G′) = n(n − 1)�2 − (the number of arcs in G′) ≤
n(n − 1)�2 − (n − 1) = (n − 1)(n�2 − 1) = (n − 1)(n − 2)�2 which is a contradiction.

 77. At least three colors are required because of the overlapping boundaries. Once the following assignment
has been made, the country marked A must be a third color:

yellow
peach

A

 Three colors are sufficient:

yellow

yellowgreen

peach

 79. a. b. c.

 81. The four-color conjecture is equivalent to the statement that the chromatic number for any simple, con-
nected, planar graph is at most 4.

 83. The proof is by mathematical induction on the number of nodes in the graph. For the basis step of the
induction process, it is clear that five colors are sufficient if the number of nodes is less than or equal to
5. Now assume that any simple, connected, planar graph with ≤ k nodes can be colored with five colors,
and consider such a graph with k + 1 nodes. We can assume that k + 1 is at least 6 because 5 or fewer
nodes are taken care of. By Exercise 82, at least one node n of the graph has degree less than or equal

Answers to Odd-Numbered Exercises 913

to 5; temporarily removing n (and its adjoining arcs) from the graph will leave a collection of one or more
simple, connected, planar subgraphs, each with no more than k nodes (Figures a and b). By the inductive
hypothesis, each subgraph has a coloring with no more than five colors (use the same palette of five col-
ors for each subgraph). Now look at the original graph again. If n has degree less than 5 or if the 5 nodes
adjacent to n do not use five different colors, there is a fifth color left to use for n. Thus, we assume that n
is adjacent to 5 nodes, n1, n2, n3, n4, and n5, arranged clockwise around n and colored, respectively, colors
1, 2, 3, 4, and 5 (Figure c).

One subgraph
remaining when

n is removed

(a)

n

Two subgraphs
remaining when

n is removed

(b) (c)

n n

n1

n2

n3

n4

n5

 Now pick out all the nodes in the graph colored 1 or 3. Suppose there is no path, using just these nodes,
between n1 and n3. Then, as far as nodes colored 1 and 3 are concerned, there are two separate sections of
graph, one section containing n1 and one containing n3. In the section containing n1 interchange colors 1
and 3 on all the nodes. Doing this does not violate the (proper) coloring of the subgraphs, it colors n1 with
3, and it leaves color 1 for n. Now suppose there is a path between n1 and n3 using only nodes colored 1
or 3. In this case we pick out all nodes in the original graph colored 2 or 4. Is there a path, using just these
nodes, between n2 and n4? No, there is not. Because of the arrangement of nodes n1, n2, n3, n4, and n5,
such a path would have to cross the path connecting n1 and n3. Because the graph is planar, these two paths
would have to meet at a node, which would then be colored 1 or 3 from the n1–n3 path and 2 or 4 from the
n2–n4 path, an impossibility. Thus, there is no path using only nodes colored 2 or 4 between n2 and n4, and
we can rearrange colors as in the previous case. This completes the proof.

 85. four; three

ExErcisEs 6.2

 1. a. Yes, it is a tree. Put the root at the top. b. Not a tree because there is a cycle.
r

 c. Yes, it is a tree. Put the root at the top d. Yes, it is a tree. “Shake down” the lower branches.
and drop down all the branches.

r

r

914 Answers to Odd-Numbered Exercises

 3. a. r b. c.

 5.

�

�

�

y3

z4

1

*

* *

2 x

 7.

1

2

3

4 5

�

�

�

�

 9. Left child Right child

1 2 3

2 0 4

3 5 6

4 7 0

5 0 0

6 0 0

7 0 0

 11. 1

2

4

6 7

5

3

 13. Name Left child Right child

1 All 0 2

2 Gaul 3 4

3 divided 0 0

4 is 5 6

5 into 0 0

6 three 7 0

7 parts 0 0

 15. 1

2 3

4 5 6

 17. a. Left child Right sibling

1 2 0

2 5 3

3 8 4

4 9 0

5 0 6

6 0 7

7 0 0

8 0 0

9 0 10

10 0 11

11 0 0

 b. 1

2

5 3

6

7 9

10

11

48

Answers to Odd-Numbered Exercises 915

 19. preorder: a b d e h f c g, inorder: d b h e f a g c, postorder: d h e f b g c a
 21. preorder: a b e c f j g d h i, inorder: e b a j f c g h d i, postorder: e b j f g c h i d a
 23. preorder: a b c e f d g h, inorder: e c f b g d h a, postorder: e f c g h d b a
 25. prefix: +∙ 3 4 − 2 y, postfix: 3 4 ∙ 2 y − +
 27. infix: ((2 + 3) * (6 * x)) − 7, postfix: 2 3 + 6 x * * 7 −
 29. prefix: + * 4 − 7 x z, infix: (4 * (7 − x)) + z
 31. 10
 33.

b

d e

c

a 35.

d

c

b

a

 37. If the root has no left child and no right child, return 0 as the height, else invoke the algorithm on the left
child if it exists, invoke the algorithm on the right child if it exists, return the maximum of those two val-
ues plus 1.

 39. Consider a simple graph that is a nonrooted tree. A tree is an acyclic and connected graph, so for any two
nodes x and y, a path from x to y exists. If the path is not unique, then the two paths diverge at some node
n1 and converge at some node n2, and there is a cycle from n1 through n2 and back to n1, which is a contra-
diction. Now consider a simple graph that has a unique path between any two nodes. The graph is clearly
connected. Also, there are no cycles because the presence of a cycle produces a nonunique path between
two nodes on the cycle. The graph is thus acyclic and connected and is a nonrooted tree.

 41. If G is a nonrooted tree, then G is connected. Suppose we remove an arc a between n1 and n2 and G re-
mains connected. Then there is a path from n1 to n2. Adding a to this path results in a cycle from n1 to n1,
which contradicts the definition of a tree. On the other hand, suppose G is connected and removing any
single arc makes G unconnected. If G is not a tree, then it contains a cycle. If a single arc is removed from
the cycle, the graph is still connected because any path that made use of the removed arc can use the rest
of the cycle instead. This is a contradiction, so G is a nonrooted tree.

 43. Proof is by induction on d. For d = 0, the only node is the root, and 20 = 1. Assume that there are at most
2d nodes at depth d, and consider depth d + 1. There are at most two children for each node at depth d, so
the maximum number of nodes at depth d + 1 is 2 # 2d = 2d+1.

 45. a. 7 nodes b. 15 nodes c. 2h+1 − 1

 47. a. In a full binary tree, all internal nodes have two children, so the total number of “children nodes” is 2x;
the only “non-child” node is the root, so there is a total of 2x + 1 nodes.

 b. From part a, there are 2x + 1 total nodes, x of which are internal, leaving 2x + 1 − x = x + 1 leaves.
 c. Consider a full binary tree with n nodes; let x be the number of internal nodes. From part a, n = 2x + 1.

Therefore, x = (n − 1)∙2. From part b, the number of leaves = x + 1 = (n − 1)∙2 + 1 = (n + 1)∙2.
 49. By Exercise 45, a full binary tree of height h − 1 has 2h − 1 nodes. When n = 2h, this is the begin-

ning of level h. The height h remains the same until n = 2h+1, when it increases by 1. Therefore for
2h ≤ n < 2h+1, the height of the tree remains the same and is given by h = :log n; .

916 Answers to Odd-Numbered Exercises

 51. 2
 53. a. There is only one binary tree with one node, so B(1) = 1. For a binary tree with n nodes, n > 1,

the “shape” of the tree is determined by the “shape” of the left and right subtrees; the two subtrees
have a total of n − 1 nodes. Let the left subtree have k nodes; the right subtree then has n − 1 − k
nodes; k can range from 0 to n − 1. For each value of k, there are B(k) ways to form the left sub-
tree, then B(n − 1 − k) ways to form the right subtree, so by the multiplication principle, there are
B(k)B(n − 1 − k) different trees.

 b. B(0) = 1, B(1) = 1, B(n) = ∙
n−1

k=0
B(k)B(n − 1 − k), = ∙

n

k=1
B(k − 1)B(n − k)

 which is the same as the Catalan sequence, so by Exercise 97 of Section 4.4,

B(n) =
1

n + 1
 C(2n, n)

 c. B(3) = 5. The 5 distinct binary trees are

 d. B(6) = 132

 55. rrrr

 57. a.

c a

k
f

p s

m

c

a
k

p s

f

m

a

c

k

p s

f

m a

c

p s

f

m

k

k

a
c

p s

f

m

a

k

c

f

p sm k

c

p s

a

m

f

Answers to Odd-Numbered Exercises 917

k

a
c

p s

f

m

a

k

c

p sm k

a

p sm

c

f f

k

c

p s

f

m

a

k

a

p sm

fc

 b. The array, when rearranged into a heap (but not yet sorted) would be

g

r

w

f d

v

k

ExErcisEs 6.3

 1.

x � L[1]

x � L[2]

x � L

x: L[1]

x: L[3]

�

�

�

x � L[3]

�

x: L[2]
�

�

 3.

x: L[2] x: L[3]

x � L[1] x � L[7]

� �

� �

� �

� �

L[1]
� x �
L[2]

� x �
L[3]

� x �
L[4]

L[3]L[2]

x: L[5] x: L[7]
� �

� �

� �

L[5]
� x �
L[6]

� x �
L[5]

� x �
L[7]

L[6]

x: L[6]x: L[2]

x: L[4]

L[4]

 5.

L[2] � x � L[3]

� �

L[3] � x � L[4]

x: L[3]

x: L[2]

x: L[6]

x: L[4]
L[1] � x � L[2]

� �

x: L[1]

�
�

L[4] � x � L[5]

x: L[5]
x � L[1]

� �

� �

L[5] � x � L[6]

� �

x � L[6]

 7. a.

4 7

2

5

6

9 b. average > 2.83

depth = 6; algorithm is not optimal
because 6 > 1 + log:6; = 3

depth = 3 = 1 + :log 7;

918 Answers to Odd-Numbered Exercises

 9. a. 3 b. For example: g, d, a, k, i, s 11.

not that

theis question

be

or

To

 be is not or question that the To
 13. a. 5 b. 16 c. 45
 15. a. 5 b. 2 c.

1

1:2 4:5

2

3

1, 2:4, 51L or 2L

X 4 5X

� �

� ��

� �

4L or 5L

 17. a. 4 b. 2 c.

1

1:3 1:3 2:3

X

1:21L, 2G
or 1G, 2H

2L, 1G
or 2G, 1H

2 2 X1

� �

� ��

� � �
� �

3 34

� �

 This problem (because we do not have to decide whether the counterfeit coin is heavy or light) can also
be done with a binary tree of depth 2:

 4

1:3 1:3

3

1:2

2 1

� � � �

� �

 19.

1L

1:3
3:4

2:3

X

1:21L, 2G
or 1G, 2H

4L, 3G
or 3H, 4G

3L, 4G
or 3G, 4H

2L, 1G
or 2G, 1H

2H 2L X1H

� �

� �

� �

�

�

� �
� �

X

1:3 2:3

3L4H X

X

4L3H

� �
� �

� �

 21. 2 * (1 + :log n;).

 23. a. log n! = log 3(n)(n − 1)(n − 2) c (2)(1) 4 = log n + log(n − 1) + log(n − 2) + c+ log 2 +
 log 1 ≤ log n + log n + log n + c+ log n for n ≥ 1 = n log n

 b. log n! = log 3(n)(n − 1)(n − 2) c (2)(1) 4 = log n + log(n − 1) + log(n − 2) + c+ log 2 +
 log 1 ≥ log n + log(n − 1) + c+ log<n∙2= ≥ log<n∙2= + log<n∙2= + c+ log<n∙2= ≥ <n∙2=
 log<n∙2= ≥ an

2
blogan

2
b = an

2
b(log n − log2) = an

2
b(log n − 1) = an

2
blog n − an

2
b =

 an
4
blog n + an

4
blog n − an

2
b = an

4
blog n + an

4
b(log n − 2) ≥ an

4
blog n because

 log n ≥ 2 for n ≥ 4

Answers to Odd-Numbered Exercises 919

 13. a.

955

1754

416
(82)171

383

799

212
(327)

74
(389)

97
(664)

509
(349)

446
(423)

 b. 82-01
 664-0001
 327-001
 349-11
 423-10
 389-0000

 15. a. 85,000 bytes b. 34000 bytes
 17. One of several possibilities: s-000, h-001, a-01, t-100, c-101, e-11
 19. a. One possible Huffman code is
 B-110100
 C-11101
 G-1101100
 R-110101
 S-1101101

0-01
1-101
2-1001
3-011
4-1111

5-1000
6-010
7-1100
 8-110111
9-11100

 b. The new file takes about 44 percent of the space of the original file.

ExErcisEs 6.4

 1. No, because the code for m, 01, is a prefix of the code for d, 011.
 3. a. ooue b. iaou c. eee
 5. a. (pw)a b. paw c. ((a))
 7. a-0101, b-011, c-10, d-11

 9. a.

45 55

100

20-m 25-d
27

9

28-c

18-z

6-g3-r

 b. c-11, d-01, g-1001, m-00, r-1000, z-101

 11. a.

42 58

100

15-c 27-a
27

31-e

15-t12-z

 or

42 58

100

15-t 27-a
27

31-e

15-c12-z

 b. a-01 a-01
 z-100 z-100
 t-101 or t-00
 e-11 e-11
 c-00 c-101

920 Answers to Odd-Numbered Exercises

Ch a p te r 7

exerCises 7.1

 1. A = £
1 0 0
1 0 1
0 1 0

§

 r = 5(1, 1), (2, 1), (2, 3), (3, 2)6
 3. 2

4 5

1 3

 r = 5(1, 4), (2, 5), (4, 2), (5, 3), (5, 4)6

 5.

4 65

1 2 3 A = F

0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 1 0

V 7. 0 2 4 6

1 3 5

 9. For every pair of nodes a and b, if there is an arc from a to b, then there is also an arc from b to a.
 11. The graph can be written as a “star” with node 1 at the center; i.e., 1 is adjacent to every node and every

node is adjacent to 1, but no other nodes are adjacent. For example, with n = 5:

 13. No node has a loop.

 15. r c s: £
1 0 1
1 1 1
0 0 1

§ r d s: £
1 0 0
1 0 0
0 0 1

§

17. 1 1

22 33

19. A2 = £
1 1 2
1 2 3
0 0 1

§ A(2) = £
1 1 1
1 1 1
0 0 1

§ 21. R will have all 1 entries.

Answers to Odd-Numbered Exercises 921

 23. R = ≥
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

¥ 25. R = £
1 0 0
1 1 1
1 1 1

§ 27. R = E

0 1 1 1 1
0 1 1 1 1
0 0 0 0 0
0 1 1 1 1
0 1 1 1 1

U

 29. R = F

0 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 1 0

V 31. R = £
1 0 0
1 1 1
1 1 1

§

 33. R = E

0 1 1 1 1
0 1 1 1 1
0 0 0 0 0
0 1 1 1 1
0 1 1 1 1

U 35. R = F

0 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 1 0

V

 37. Transitive closure = 5(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)6
 39. a. Add (2, 1) and (3, 2) to r to get the transitive closure.

 b. r is its own transitive closure.
 c. Add (1, 1), (2, 1), (2, 2), (3, 3) to r to get the transitive closure.
 d. r is its own transitive closure.

 41.

 43. A2 3i,j 4 = ∙
n

k=1
aikakj. If a term such as ai2a2j in this sum is 0, then either ai2 = 0 or a2j = 0 (or both) and

there is either no path of length 1 from ni to n2 or no path of length 1 from n2 to nj (or both). Thus there
are no paths of length 2 from ni to nj passing through n2. If ai2a2j ∙ 0, then ai2 = p and a2j = q, where p
and q are positive integers. Then there are p paths of length 1 from ni to n2 and q paths of length 1 from
n2 to nj. By the multiplication principle, there are pq possible paths of length 2 from ni to nj through n2.
By the addition principle, the sum of all such terms gives all possible paths of length 2 from ni to nj.

 45. 3; A2 = ≥
0 0 3 0
0 0 0 0
0 0 0 0
0 0 0 0

¥

922 Answers to Odd-Numbered Exercises

exerCises 7.2

 1. No, four nodes of degree 3
 3. No odd nodes, so yes; such a path can start at any node and will end there. For example, 1-2-6-3-1-4-6-5-1
 5. No, four nodes of odd degree
 7. Two odd nodes, 1 and 3, so yes; such a path must begin at one odd node and end at the other. For example,

1-4-5-1-2-5-6-2-3-6-7-3
 9. No, six nodes of odd degree
 11. No, four nodes of odd degree

 13. F

0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
0 1 1 1 1 0

V 15. G

0 1 0 1 1 0 0
1 0 1 0 1 1 0
0 1 0 0 0 1 1
1 0 0 0 1 0 0
1 1 0 1 0 1 0
0 1 1 0 1 0 1
0 0 1 0 0 1 0

W

 total after row 2 is 0 i = 8
 17. A connected directed graph will have an Euler path if and only if (a) All nodes have out-degree equal to in-

degree or (b) One node, np, has out-degree one greater than in-degree and another node, nq, has in-degree
one greater than out-degree.

 19. Every node has equal in-degree and out-degree, so a path exists from an arbitrary node back to that node.
For example, 2-4-2-3-1-2.

 21. No
 23. yes; for example, 1-4-2-6-3-5-1
 25. yes; for example, 1-2-3-7-6-5-4-1
 27. yes; for example, 6-5-8-7-3-4-1-2-6
 29. Any two nodes must be part of the Hamiltonian circuit; therefore there is a path between them, namely,

that part of the circuit that is between them.
 31. a. (n − 1)n b. (n − 1)(n − 2)n−1 c. (n − 1)! d. 14! seconds or about 24.22 hours.
 33. a. n = 2 or n = any odd number. b. n > 2
 35. Such a graph is a chain, so just pick a node and then walk around the chain back to the starting node.
 37. a. Consider each node of G in turn. At each node add as many new arcs as possible without creating a

circuit. This process terminates because the complete graph with n nodes would contain a circuit.
 b. H is not a complete graph or it would contain a Hamiltonian circuit. Therefore there must be two nodes

p and q that are not adjacent in H, but adding arc p–q would complete a Hamiltonian circuit. Therefore
there is a Hamiltonian path beginning at node p and ending at node q.

 c. If both these arcs exist in H, then H has a Hamiltonian circuit, as follows: xi, p, x2, x3, … , xi−1, q,
xn−1, xn−2, … , xi

 d. Nodes p and q are not adjacent (otherwise there would be a Hamiltonian circuit), so the only nodes that
can be adjacent to p or q (with at most one arc) are the n − 2 nodes xi, 2 ≤ i ≤ n − 1. From part (c),
for each such node xi, if p is adjacent to xi then q is not adjacent to xi−1, so the total of the two degrees
cannot exceed n − 2.

Answers to Odd-Numbered Exercises 923

 e. H was constructed from G by adding additional arcs, so for any node its degree in G is ≤ its degree in
H. Using this fact together with the result of part (d), degree(p) + degree(q) < n in graph G.

 f. Nodes p and q are not adjacent, yet degree(p) + degree(q) < n. This contradicts condition (2), so the
assumption that G does not have a Hamiltonian circuit is wrong.

 1. IN = 526
1 2 3 4 5 6 7 8

d 3 0 2 ∞ ∞ ∞ 1 ∞

s 2 − 2 2 2 2 2 2

 p = 7, IN = 52, 76
1 2 3 4 5 6 7 8

d 3 0 2 ∞ ∞ 6 1 2

s 2 − 2 2 2 7 2 7

p = 3, IN = 52, 7, 36
1 2 3 4 5 6 7 8

d 3 0 2 3 ∞ 6 1 2

s 2 − 2 3 2 7 2 7

 p = 8, IN = 52, 7, 3, 86
1 2 3 4 5 6 7 8

d 3 0 2 3 3 6 1 2

s 2 − 2 3 8 7 2 7

 p = 5, IN = 52, 7, 3, 8, 56
1 2 3 4 5 6 7 8

d 3 0 2 3 3 6 1 2

s 2 − 2 3 8 7 2 7

 path: 2, 7, 8, 5 distance = 3

exerCises 7.3

 3. IN = 516
1 2 3 4 5 6 7 8

d 0 3 5 ∞ 8 1 ∞ ∞

s − 1 1 1 1 1 1 1

 p = 6, IN = 51, 66
1 2 3 4 5 6 7 8

d 0 3 5 ∞ 7 1 6 ∞

s − 1 1 1 6 1 6 1

p = 2, IN = 51, 6, 26
1 2 3 4 5 6 7 8

d 0 3 5 ∞ 7 1 4 ∞

s − 1 1 1 6 1 2 1

 p = 7, IN = 51, 6, 2, 76
1 2 3 4 5 6 7 8

d 0 3 5 ∞ 7 1 4 5

s − 1 1 1 6 1 2 7

 p = 3, IN = 51, 6, 2, 7, 36
1 2 3 4 5 6 7 8

d 0 3 5 6 7 1 4 5

s − 1 1 3 6 1 2 7

 p = 8, IN = 51, 6, 2, 7, 3, 86
1 2 3 4 5 6 7 8

d 0 3 5 6 6 1 4 5

s − 1 1 3 8 1 2 7

 p = 5, IN = 51, 6, 2, 7, 3, 8, 56
1 2 3 4 5 6 7 8

d 0 3 5 6 6 1 4 5

s − 1 1 3 8 1 2 7

 path: 1, 2, 7, 8, 5 distance = 6

 5. IN = 5a6
a b c d e f

d 0 1 3 ∞ ∞ ∞

s − a a a a a

 p = b, IN = 5a, b6
a b c d e f

d 0 1 2 ∞ ∞ 2

s − a b a a b

924 Answers to Odd-Numbered Exercises

 9. a. Change the condition on the while loop to continue until all nodes are in IN. Also, rather than writing
out a particular shortest path, make d and s output parameters that carry the information about shortest
paths and their distances.

 b. No

 p = c, IN = 5a, b, c6
a b c d e f

d 0 1 2 4 6 2

s − a b c c b

 p = f, IN = 5a, b, c, f 6
a b c d e f

d 0 1 2 4 3 2

s − a b c f b

 p = e, IN = 5a, b, c, f, e6
a b c d e f

d 0 1 2 4 3 2

s − a b c f b

 path: a, b, f, e distance = 3

 7. IN = 516
1 2 3 4 5 6 7

d 0 2 ∞ ∞ 3 2 ∞

s − 1 1 1 1 1 1

p = 2, IN = 51, 26
1 2 3 4 5 6 7

d 0 2 3 ∞ 3 2 ∞

s − 1 2 1 1 1 1

 p = 6, IN = 51, 2, 66
1 2 3 4 5 6 7

d 0 2 3 ∞ 3 2 5

s − 1 2 1 1 1 6

 p = 3, IN = 51, 2, 6, 36
1 2 3 4 5 6 7

d 0 2 3 4 3 2 5

s − 1 2 3 1 1 6

 p = 5, IN = 51, 2, 6, 3, 56

1 2 3 4 5 6 7

d 0 2 3 4 3 2 5

s − 1 2 3 1 1 6

 p = 4, IN = 51, 2, 6, 3, 5, 46
1 2 3 4 5 6 7

d 0 2 3 4 3 2 5

s − 1 2 3 1 1 6

 p = 7, IN = 51, 2, 6, 3, 5, 4, 76
1 2 3 4 5 6 7

d 0 2 3 4 3 2 5

s − 1 2 3 1 1 6

 path: 1,6,7 distance = 5

 11. 1 2 3 4 5 6 7 8

d 3 0 2 ∞ ∞ ∞ 1 ∞

s 2 − 2 2 2 2 2 2

 (1)

1 2 3 4 5 6 7 8

d 3 0 2 3 11 4 1 2

s 2 − 2 3 1 1 2 7
 (2)

1 2 3 4 5 6 7 8

d 3 0 2 3 3 4 1 2

s 2 − 2 3 8 1 2 7
 (3)
 No further changes in d or s. Agrees with

 Exercise 1 for 2 to 5

Answers to Odd-Numbered Exercises 925

 13. 1 2 3 4 5 6 7

d 0 2 ∞ ∞ 3 2 ∞

s − 1 1 1 1 1 1
 (1)

1 2 3 4 5 6 7

d 0 2 3 ∞ 3 2 5

s − 1 2 1 1 1 6

 (2)

1 2 3 4 5 6 7

d 0 2 3 4 3 2 5

s − 1 2 3 1 1 6
 (3)
 No further changes in d or s.
 Agrees with Exercise 7 for 1 to 7

 15. Initial A and after k = x:
x 1 2 3 y

x 0 1 ∞ 4 ∞

1 1 0 3 1 5

2 ∞ 3 0 2 2

3 4 1 2 0 3

y ∞ 5 2 3 0

 after k = 1 and k = 2:
x 1 2 3 y

x 0 1 4 2 6

1 1 0 3 1 5

2 4 3 0 2 2

3 2 1 2 0 3

y 6 5 2 3 0

 after k = 3 and k = y:
x 1 2 3 y

x 0 1 4 2 5

1 1 0 3 1 4

2 4 3 0 2 2

3 2 1 2 0 3

y 5 4 2 3 0

 17. IN = 51, 6, 2, 7, 8, 5, 3, 46
2 2

1
1 47 8

2

1
1

3 1
1

5
4

5

8

3

6 6 5

 19. IN = 51, 4, 7, 3, 6, 5, 2, 86
2

2

1

2 2

23

44 1

1

1 3

8
7

5
6

3
3

4

 21. For example,
2 2

1
1 47 8

2

1
1

3 1
1

5
4

5

8

3

6 6 5

 23. For example,
2

2

1

2 2

23

44 1

1

1 3

8
7

5
6

3
3

4

926 Answers to Odd-Numbered Exercises

 29. Dijkstra’s algorithm is Θ(n2) in the worst case, which is when all nodes are brought into IN. This is the
situation to find the distance from the start node to any other node. Repeating this process with all n
nodes, in turn, as the start node would result in an algorithm of order nΘ(n2) = Θ(n3). Floyd’s algorithm
is clearly Θ(n3) because of the nested for loops. Therefore the algorithms are the same order of magnitude.
Although Floyd's algorithm has the advantage of simplicity to code, that is more than balanced out by the
fact that Floyd's algorithm does not give the actual shortest paths.

exerCises 7.4

 1. a b c e f d h g j i
 3. d a b c e f h g j i
 5. e b a c f d h g j i
 7. a b c f j g d e h k i
 9. f c a b d e h k i g j
 11. a b c d e g f h j i
 13. d a f b c e h g i j
 15. e b c f g a d h j i
 17. a b c d e f g h i j k
 19. f c j a b g d e h i k
 21. a b c e g d f h
 23. f b
 25. a b c d e g h f
 27. f b

29. B

A

G D

C

E

F

 31. Begin a dfs at node a: a c f g e b d
b(2)

f(5) g(4)

d(1)

a(7)

c(6) e(3)

 33. Because of the recursion, a stack would be a good data structure.
 35. Suppose the depth-first search has visited node x and has moved on to visit node y. The algorithm looks for

nodes adjacent to y that are unvisited. If a visited node (other than y's “parent” x) is on y’s adjacency list,
then the graph contains a cycle. For example, in Figure 7.13, when the recursive algorithm is invoked on
node g, node d is a previously visited node that is adjacent to g but not the parent node of g (which is f).
This situation detects the cycle d-g-f-d.

 25.

4

5

2

5

33

1 4

1 2

 The shortest path from 1 to 5 is 1–5 with dis-
tance 5. If the algorithm added the node closest
to IN at each step, it would choose the path 1-2-
3-4-5 with distance 10.

 27. 2

4
4

2
2

7

3

3

54

5

6

 The solution is to find a minimal
spanning tree for the graph, as
shown here.

Answers to Odd-Numbered Exercises 927

exerCises 7.5

 1.

dca

b

e

 back arcs: a–c, a–e, b–d, c–e

 3.

ca

f he

d

g

b

 back arcs: a–d, a–f

 5.

da

he

gf

cb

 back arcs: e–h

 7.

c(2, 2)

b(3, 3)a(1, 1)

d(4, 4)

4
f(7, 7)

e(5, 5)

4
g(6, 6)

4

 articulation points: c, d

 biconnected components

c

d

a

c c

b

d

f

e

g

 9.

e(5, 5)
2

d(3, 3)
2

c(2, 2)

a(1, 1) b(4, 4)

 articulation points: c, d

 biconnected components

 e

dc

dc

a b

 11.

e(5, 5)

1
b(2, 2)

3
1

f(6, 6)
1

g(7, 7)

a(1, 1)

1

h(8, 8)
1

c(3, 3)
1

d(4, 4)
1

 articulation points: none

 biconnected components

b

f

a c

h

g e

d

928 Answers to Odd-Numbered Exercises

Ch a p te r 8

exerCises 8.1

 1. + 0 1 a a′

0 0 1 a a′

1 1 1 1 1

a a 1 a 1

 a′ a′ 1 1 a′

0 1 a a′

0 0 0 0 0

1 0 1 a a′

a 0 a a 0

 a′ 0 a′ 0 a′

 3. a. max(x, y) = max(y, x), min(x, y) = min(y, x), max(max(x, y), z) = max(x, max(y, z)) = max(x, y, z),
min(min(x, y), z) = min(x, min(y, z)) = min(x, y, z), max(x, min(y, z)) = min(max(x, y), max(x, z)),
min(x, max(y, z)) = max(min(x, y), min(x, z)). The last two can be shown by taking cases: x < y < z,
y < x < z, etc.

 b. Let m be the 0 element. Then we must have max(x, m) = x for all x [Z . But for x = m − 1,
max(m − 1, m) = m.

 5. a. 16
 b. (f1 + f2)(0, 0) = 1 (f1

f2)(0, 0) = 1 f1′(0, 0) = 0
 (f1 + f2)(0, 1) = 1 (f1

f2)(0, 1) = 0 f1′(0, 1) = 1
 (f1 + f2)(1, 0) = 1 (f1

f2)(1, 0) = 0 f1′(1, 0) = 0
 (f1 + f2)(1, 1) = 0 (f1

f2)(1, 1) = 0 f1′(1, 1) = 1
 c. + and # are binary operations on B, ′ is a unary operation on B. Max and min are commutative and

associative operations; the distributive laws follow by considering different cases for the values of
f1(x, y), f2(x, y), and f3(x, y) for a fixed (x, y) [S2. For any f in B and (x, y) in S2, (f + 0)(x, y) = max
(f (x, y), 0(x, y)) = max(f (x, y), 0) = f (x, y), and (f # 1)(x, y) = min(f (x, y), 1(x, y)) =
min(f (x, y), 1) = f (x, y). Also (f + f ′)(x, y) = max(f (x, y), f ′(x, y)) = 1 and (f # f ′)(x, y) =
min(f (x, y), f ′(x, y)) = 0 because one value of the pair (f (x, y), f ′(x, y)) is 1 and the other is 0.

 7. Show that x acts like the complement of x′, that is, that it satisfies properties 5a and 5b with respect to x′.
 x′ + x = x + x′ (1a)
 = 1 (5a)
 and
 x′ # x = x # x′ (1b)
 = 0 (5b)
 Therefore x = (x′)′ by the theorem on the uniqueness of complements.
 9. a. x + (x # y)
 = x # 1 + x # y (4b)
 = x(1 + y) (3b)
 = x(y + 1) (1a)
 = x # 1 (universal bound)
 = x (4b)
 x # (x + y) = x by duality
 b. x # 3y + (x # z) 4
 = x # y + x # (x # z) (3b)
 = x # y + (x # x) # z (2b)
 = x # y + x # z (dual of idempotent)
 x + 3y # (x + z) 4 = (x + y) # (x + z) by duality

Answers to Odd-Numbered Exercises 929

 c. (x + y) # (x′ + y)
 = (y + x) # (y + x′) (1a)
 = y + (x # x′) (3a)
 = y + 0 (5b)
 = y (4a)
 (x # y) + (x′ # y) = y by duality
 d. (x + (y # z))′
 = x′ # (y # z)′ (De Morgan’s laws)
 = x′ # (y′ + z′) (De Morgan’s laws)
 = x′ # y′ + x′ # z′ (3b)
 (x # (y + z))′ = (x′ + y′) # (x′ + z′) by duality
 e. (x + y) # (x + 1)
 = (x + y) # x + (x + y) # 1 (3b)
 = x # (x + y) + (x + y) # 1 (1b)
 = (x # x) + (x # y) + (x + y) # 1 (3b)
 = x + (x # y) + (x + y) # 1 (dual of idempotent)
 = x + (x # y) + (x + y) (4b)
 = (x # y) + x + (x + y) (1a)
 = (x # y) + (x + x) + y (2a)
 = (x # y) + x + y (idempotent)
 = x + (x # y) + y (1a)
 (x # y) + (x # 0) = x # (x + y) # y by duality
 11. a. x + (x′ # y + x # y)′
 = x + (y # x′ + y # x)′ (1b)
 = x + (y # (x′ + x))′ (3b)
 = x + (y # (x + x′))′ (1a)
 = x + (y # 1)′ (5a)
 = x + y′ (4b)
 b. ((x # y) # z) + (y # z)
 = (x # (y # z)) + (y # z) (2b)
 = ((y # z) # x) + y # z (1b)
 = ((y # z) # x) + (y # z) # 1 (4b)
 = (y # z) # (x + 1) (3b)
 = (y # z) # 1 (universal bound)
 = y # z (4b)
 c. x # y + y # x′
 = y # x + y # x′ (1b)
 = y # (x + x′) (3b)
 = y # 1 (5a)
 = y # (x + 1) (universal bound)
 = y # x + y # 1 (3b)
 = y # x + y (4b)
 = x # y + y (1b)
 d. (x + y)′ # z + x′ # z # y
 = x′ # y′ # z + x′ # z # y (De Morgan’s laws)
 = x′ # z # y′ + x′ # z # y (1b)
 = x′ # z # (y′ + y) (3b)
 = x′ # z # (y + y′) (1a)
 = x′ # z # 1 (5a)
 = x′ # z (4b)

930 Answers to Odd-Numbered Exercises

 e. (x # y′) + (y # z′) + (x′ # z) = (x # y′) # 1 + (y # z′) # 1 + (x′ # z) # 1 (4b)
 = (x # y′) # (z + z′) + (y # z′) # (x + x′) + (x′ # z) # (y + y′) (5a)
 = x # y′ # z + x # y′ # z′ + y # z′ # x + y # z′ # x′ + x′ # z # y + x′ # z # y′ (3b)
 = x # y′ # z + x′ # z # y′ + y # z′ # x + x # y′ # z′ + x′ # z # y + y # z′ # x′ (1a)
 = y′ # z # x + y′ # z # x′ + x # z′ # y + x # z′ # y′ + x′ # y # z + x′ # y # z′ (1b)
 = (y′ # z) # (x + x′) + (x # z′) # (y + y′) + (x′ # y) # (z + z′) (3b)
 = (y′ # z) # 1 + (x # z′) # 1 + (x′ # y) # 1 (5a)
 = (y′ # z) + (x # z′) + (x′ # y) (4b)
 = (x′ # y) + (y′ # z) + (x # z′) (1a)
 13. This is an “if and only if” problem, so there are two things to prove.
 a. Let x = 0. Then
 x # y′ + x′ # y = 0 # y′ + x′ # y (x = 0)
 = y′ # 0 + x′ # y (1b)
 = 0 + x′ # y (dual of universal
 bound)
 = x′ # y + 0 (1a)
 = x′ # y (4a)
 = 1 # y (Practice 4)
 = y # 1 (1b)
 = y (4b)
 b. Let x # y′ + x′ # y = y. Then
 x # x′ + x′ # x = x (letting y in the

 hypothesis have the
 value x)

 x # x′ + x # x′ = x (1b)
 0 + 0 = x (5b)
 0 = x (4a)
 15. a. x ! y
 = x # y′ + y # x′ (definition of !)
 = y # x′ + x # y′ (1a)
 = y ! x (definition of !)
 b. x ! x
 = x # x′ + x # x′ (definition of !)
 = 0 + 0 (5b)
 = 0 (4a)
 c. 0 ! x
 = 0 # x′ + x # 0′ (definition of !)
 = x′ # 0 + x # 0′ (1b)
 = 0 + x # 0′ (dual of universal

bound)
 = 0 + x # 1 (Practice 4)
 = 0 + x (4b)
 = x + 0 (1a)
 = x (4a)
 d. 1 ! x
 = 1 # x′ + x # 1′ (definition of !)
 = x′ # 1 + x # 1′ (1b)
 = x′ + x # 1′ (4b)
 = x′ + x # 0 (Practice 4)
 = x′ + 0 (dual of universal

bound)
 = x′ (4a)

Answers to Odd-Numbered Exercises 931

 17. Suppose x + 01 = x for all x [B. Then 0 + 01 = 0 and 01 + 0 = 01 so 01 = 01 + 0 = 0 + 01 = 0
and 01 = 0. Then 1 = 0′, so 1 is unique by the theorem on uniqueness of complements.

 19. a. b. c. 16

 21. a. (i) bijection (ii) for x, y [S, f (x # y) = f (x) + f (y)
 b. Let f (0) = 5, f (1) = 7. Then f (0 # 0) = f (1) = 7 = 5 + 5 = f (0) + f (0), f (0 # 1) = f (0) = 5 =

5 + 7 = f (0) + f (1), f (1 # 0) = f (0) = 5 = 7 + 5 = f (1) + f (0), f (1 # 1) = f (1) = 7 = 7 + 7 =
f (1) + f (1)

 23. a. f: ℝ S ℝ+. f is onto: given y [ℝ+, let x = log y; then x [ℝ and f (x) = 2x = 2log y = y. f is one-to-
one: if f (x) = f (w) then 2x = 2w and (taking the log of both sides) x = w.

 b. for x, y [ℝ, g(x + y) = g(x) # g(y)
 c. f is a bijection from ℝ to ℝ+ and for x, y [ℝ, f (x + y) = 2x+y = 2x # 2y = f (x) # f (y)
 d. f −1(y) = log y
 e. f −1 is a bijection from ℝ+ to ℝ and for any

x, y [R+, f −1(x # y) = log(x # y) = log x + log y = f −1(x) + f −1(y)
 25. f1 S 51, 36, f2 S 51, 26, f3 S 51, 2, 36, f5 S 51, 2, 46, f6 S 51, 3, 46, f7 S 52, 3, 46, f8 S 52, 36,

f9 S 52, 46, f10 S 51, 46, f11 S 53, 46
 27. a. For any y [b, y = f (x) for some x [B. Then y & f (0) = f (x) & f (0) = f (x + 0) = f (x) = y, and

f (0) = f because the zero element in any Boolean algebra is unique (see Exercise 17).
 b. f (1) = f (0′) = 3f (0) 4′ ′ = f″ = 1−
 29. a. i.If x d y, then x d y and x d x, so x is a lower bound of x and y. If w* d x and w* d y, then w* d x, so

x is a greatest lower bound and x = x # y. If x = x # y, then x is a greatest lower bound of x and y, so x d y.
ii. Similar to i.

 b. i. Let x + y = z. Then z is a least upper bound of x and y, which is a least upper bound of y and x, so
z = y + x. ii. Similar to i. iii. Let (x + y) + z = p and x + (y + z) = q. Then y d x + y d p and
z d p so p is an upper bound for y and z; because y + z is the least upper bound for y and z, y + z d p.
Also x d x + y d p. Therefore p is an upper bound for x and y + z, and q d p because q is the least
upper bound for x and y + z. Similarly p d q, so p = q. iv. Similiar to iii.

 c. x + 0 = x 4 0 d x, which is true because 0 is a least element. x # 1 = x 4 x d 1, which is true
because 1 is a greatest element.

 d. (a) no—no least element, (b) yes, (c) yes, (d) no—not distributive: 2 + (3 # 4) = 2 + 1 = 2 and
(2 + 3) # (2 + 4) = 5 # 5 = 5. Also, both 3 and 4 are complements of 2, so complements are not
unique.

exerCises 8.2

 1. x1 x2 x3 (x′ 1 + x2) x3

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

x� � x21
(x� � x2)x31

x�1x1
x2
x3

932 Answers to Odd-Numbered Exercises

 3. x1 x2 x′ 1x2 + (x1 x2)′

1 1 0

1 0 1

0 1 1

0 0 1

 5. x1x2 + x′ 2
x1 x2 f(x1, x2)

1 1 1

1 0 1

0 1 0

0 0 1

(x� x2) � (x1 x2)�1

(x1 x2)�

x� x21x1
x2

x1
x2

 7. (x1x2)′(x2 + x′ 3)
x1 x2 x3 f(x1, x2, x3)

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 1

 9. a. b.
x y f(x, y)

1 1 0

1 0 1

0 1 1

0 0 0

xy� � yx�

x
y

xy�

yx�x
y

 c. The truth function for the network is the same as part (a). The network illustrates “x OR y” and “NOT
both x AND y”

 11. x′ 1x′ 2

 13. x1x2x3 + x′ 1x2x3

 15. x1x′ 2x3 + x1x′ 2x′ 3 + x′ 1x2x′ 3

 17. x1x2x3x4 + x1x2x′ 3x4 + x1x′ 2x3x4 + x1x′ 2x′ 3x4 + x′ 1x′ 2x3x4 + x′ 1x′ 2x3x′ 4

 19. x1x′ 2x3x′ 4 + x′ 1x2x3x4 + x′ 1x2x′ 3x4 + x′ 1x′ 2x3x4 + x′ 1x′ 2x3x′ 4 + x′ 1x′ 2x′ 3x4
 21. a. x1x2x′ 3 + x1x′ 2x′ 3

 b.

x1 x2 x� � x1 x� x�3 2 3

x2

x1

x3

x2

x1

x3

x1
x3

x1 x�3

 c. x1x2x′ 3 + x1x′ 2x′ 3 = x1x′ 3x2 + x1x′ 3x′ 2 = x1x′ 3(x2 + x′ 2) = x1x′ 3
1 = x1x′ 3

Answers to Odd-Numbered Exercises 933

 7. (x1x2)′(x2 + x′ 3)
x1 x2 x3 f(x1, x2, x3)

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 1

 c. x1x3 + x′ 1x2 = (x1x3 + x′ 1)(x1x3 + x2) = (x′ 1 + x1x3)(x2 + x1x3) =
(x′ 1 + x1)(x′ 1 + x3)(x2 + x1)(x2 + x3) = (x1 + x′ 1)(x′ 1 + x3)(x1 + x2)(x2 + x3) =
(x′ 1 + x3)(x1 + x2)(x2 + x3) = (x1 + x2)(x′ 1 + x3)(x2 + x3)

 25. a. (x′ 1 + x′ 2)(x′ 1 + x2)(x1 + x′ 2)
 b. (x′ 1 + x2)(x1 + x2)
 c. (x′ 1 + x′ 2 + x3)(x′ 1 + x2 + x′ 3)(x′ 1 + x2 + x3)(x1 + x′ 2 + x3)(x1 + x2 + x′ 3)(x1 + x2 + x3)
 d. (x′ 1 + x′ 2 + x′ 3)(x′ 1 + x2 + x3)(x1 + x′ 2 + x3)(x1 + x2 + x′ 3)
 e. (x′ 1 + x′ 2 + x′ 3)(x′ 1 + x′ 2 + x3)(x1 + x′ 2 + x′ 3)(x1 + x2 + x′ 3)(x1 + x2 + x3)

 27. a. 1100 b. 1001 c. 001
 0100 0111 111
 (1)0000 (1)0000 (1)000

 29. a.

 23. a. b. x1x2x3 + x1x′ 2x3 + x′ 1x2x3 + x′ 1x2x′ 3x1 x2 x3 f(x1, x2, x3)

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 0

0 0 0 0

x1

x3

x� x13

x� x12
x2

x�3

x�2

x� � x� x1 � x� x13 23

 b. x′ 3x1 + x′ 2x1 + x′ 3 = x1x′ 3 + x1x′ 2 + x′ 3 = x1(x′ 3 + x′ 2) + x′ 3 = (x3x2)′x1 + x′ 3 = (((x3x2)′x1)′)x3)′

(x3 x2)�

x1

x2

x3

((x3 x2)� x1)� (((x3 x2)� x1)�x3)�

 or, alternatively, x′ 3x1 + x′ 2x1 + x′ 3 = x′ 3x1 + x′ 3 + x′ 2x1 = x′ 3x1 + x′ 3
1 + x′ 2x1 = x′ 3(x1 + 1) +

x′ 2x1 = x′ 3
1 + x′ 2x1 = x′ 3 + x′ 2x1 = (x3(x′ 2x1)′)′

x2

x1

x3

(x� x1)�2 (x3(x� x1)�)�2
x�2

 31. a.
x1

1 1 1(x1 � x1)�� x� x� � x�

934 Answers to Odd-Numbered Exercises

 35. x1 = neutral, x2 = park, x3 = seat belt
X1 X2 X3 f(x1, x2, x3)

1 1 1 –

1 1 0 –

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

 37. a. Let the two input lines be x0 and x1, and the selector line be s. The truth function is

X0 X1 s f(x0, x1, s)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

 b. x0

x1

s

 39. x1 = pressure (1 when pressure > 50 psi, otherwise 0)
x2 = salinity (1 when salinity > 45 g∙L, otherwise 0)
x3 = temperature (1 when temperature > 53°C, otherwise 0)
x4 = acidity (1 when acidity < 7.0 pH, otherwise 0)

 b. 1 21 2(x1 � x2)�� x� x� (x�x�)�� x1 � x2x1
x2

 c.
1 2(x� � x�)�� x1x2

1x�
x1

x2
2x�

 33. X1 X2 f(x1, x2)

1 1 0

1 0 1

0 1 0

0 0 0

 x1x′ 2 x1 x�2x1
x2

(x1 + x2)x3
(x1 � x2)x3

x1
x2

x3

Answers to Odd-Numbered Exercises 935

 The output for each valve should be 1 when the valve is to open, 0 otherwise. The canonical sum-of-
products forms are
A = x1x2x3x4 + x1x2x3x′ 4 + x1x2x′ 3x4 + x1x2x′ 3x′ 4
B = x1x′ 2x3x4 + x′ 1x2x3x4 + x′ 1x′ 2x3x4

 Using these forms, the circuit for A would require 2 inverters (one for x3 and one for x4, assuming we
split the output from an inverter into more than one gate), 4 AND gates, and 1 OR gate; B would require
2 inverters, 3 AND gates, and 1 OR gate. It is possible to write simpler equivalent expressions.

exerCises 8.3

 1. x′ 1x3 + x1x′ 3 + x′ 1x2 or x′ 1x3 + x1x′ 3 + x2x′ 3

 3. x3 + x2

 5. x1x′ 3x′ 4 + x′ 1x3x′ 4 + x′ 2x′ 4 + x1x′ 2

 7. x1x′ 2x4 + x′ 1x3x′ 4 + x′ 2x3x′ 4 or x1x′ 2x4 + x′ 1x3x′ 4 + x1x′ 2x3

 9. x1x2 + x2x3

 11. x1x4 + x′ 1x2′x3

 13. a. x′ 1x4 + x′ 2x3x′ 4 b. x1

x4

x2

x4

x3

 15. x2x′ 3x4 + x′ 2x3x′ 4 + x′ 1x4

 17. x1x3 + x1x′ 2 + x′ 1x2 or x2x3 + x1x′ 2 + x′ 1x2
 or

 19. x2x′ 4 + x′ 1x′ 2x4 Here the don’t care at x1x2x′ 3x′ 4 has been treated as a 1, as has the don’t care at x′ 1x′ 2x′ 3x4;
the don’t care at x1x′ 2x3x′ 4 has been ignored.

 21. x3 + x2
 23. x1x3x′ 4 + x1x′ 2x′ 3 + x′ 1x′ 2x3 + x′ 1x′ 3x′ 4

 25. x1x′ 2x3x′ 4 + x′ 1x3x4 + x′ 1x′ 3x′ 4 + x′ 1x′ 2x4
 or
 x1x′ 2x3x′ 4 + x′ 1x3x4 + x′ 1x′ 3x′ 4 + x′ 1x′ 2x′ 3

 27. x1x2 + x2x′ 4 + x1x′ 3x4 + x′ 1x′ 2x′ 3
 or
 x1x2 + x2x′ 4 + x′ 2x′ 3x4 + x′ 1x′ 3x′ 4

 or
 x1x2 + x2x′ 4 + x′ 2x′ 3x4 + x′ 1x′ 2x′ 3

 29. x1x3 + x′ 1x2x′ 3 + x′ 2x′ 3x′ 4

x1
x3

x1
x2

x1
x2

x2
x3

x1
x2

x1
x2

936 Answers to Odd-Numbered Exercises936 Answers to Odd-Numbered Exercises

Ch a p te r 9

exerCises 9.1

 1. a. not commutative, not associative
 b. The completed table is

∙ p q r s

p p q r s

q q r s p commutative

r r s p q

s s p q r

 3. a. associative, not commutative b. commutative, not associative c. neither
 d. both e. commutative, not associative
 5. a. semigroup b. none c. none

 d. monoid; i = 1 + 0"2 e. group; i = 1 + 0"2 f. group; i = 1

 7. a. group; i = zero polynomial d. group; i = 1
 b. none e. group; i = 0
 c. group; i = c1 0

0 1
d f. monoid; i = function mapping every x to 0

 9.

 Identity element is R3; inverse for F1 is F1; inverse for R2 is R1.
 11. a. No—not the same operation
 b. No—zero polynomial (identity) does not belong to P; also, closure does not hold.

 c. No—not every element of ℤ* has an inverse in ℤ*
 d. Yes

 13. 3 506, +12 4, 3Z12, +12 4, 3 50, 2, 4, 6, 8, 106, +12 4, 3 50, 4, 86, +12 4, 3 50, 3, 6, 96, +12 4, 3 50, 66, +12 4
 15. a1 = i, a2 = (1, 2) + (3, 4), a3 = (1, 3) + (2, 4), a4 = (1, 4) + (2, 3), a5 = (1, 3) + (1, 2),
 a6 = (1, 2) + (1, 3), a7 = (1, 3) + (1, 4), a8 = (1, 4) + (1, 2), a9 = (1, 4) + (1, 3), a10 = (1, 2) + (1, 4),
 a11 = (2, 4) + (2, 3), a12 = (2,3) + (2,4)
 17. a. No b. No c. Yes, but not an isomorphism
 19. a. Yes; f: ℤ S 12ℤ, f (x) = 12x

 b. No; ℤ5 is finite, 5ℤ is infinite

 c. Yes; f : 5ℤ S 12ℤ, f (x) =
12
5

 x
 d. No; both sets have 6 elements, but 3S3, + 4 is noncommutative, 3ℤ6, +6 4 is commutative.

+ R1 R2 R3 F1 F2 F3

R1 R2 R3 R1 F3 F1 F2

R2 R3 R1 R2 F2 F3 F1

R3 R1 R2 R3 F1 F2 F3

F1 F2 F3 F1 R3 R1 R2

F2 F3 F1 F2 R2 R3 R1

F3 F1 F2 F3 R1 R2 R3

Answers to Odd-Numbered Exercises 937

 21. a. Closure: c1 z
0 1

d # c1 w
0 1

d = c1 w + z
0 1

d [M0
2(ℤ). Matrix multiplication is associative.

c1 0
0 1

d [M0
2(ℤ). The inverse of c1 z

0 1
d is c1 −z

0 1
d , which belongs to M0

2(ℤ).

 b. f is a bijection and

 f a c1 z
0 1

d # c1 w
0 1

d b = f a c1 w + z
0 1

d b = w + z = z + w = f a c1 z
0 1

d b + f a c1 w
0 1

d b

 c. f a c1 7
0 1

d b = 7 and f a c1 −3
0 1

d b = −3, 7 + (−3) = 4, f−1(4) = c1 4
0 1

d

 d. f
−1(2) = c1 2

0 1
d and f

−1(3) c1 3
0 1

d , c1 2
0 1

d # c1 3
0 1

d = c1 5
0 1

d and f a c1 5
0 1

d b = 5

 23. a. i # i = i so i = i−1 b. x−1 # x = x # x−1 = i, so x = (x−1)−1

 25. a. x r x because i # x # i−1 = x # i−1 = x # i = x. If x r y then for some g [G, g # x # g−1 = y or
g # x = y # g or x = g−1 # y # g = (g−1) # y # (g−1)−1 so y r x. If x r y and y r z then for some g1, g2 [G,
g1

x # g1
−1 = y and g2

y # g2
−1 = z so g2

g1
x # g1

−1 # g2
−1 = z or (g2

g1) # x # (g2
g1)−1 = z and x r z.

 b. Suppose G is commutative and y [3x 4 . Then for some g [G, y = g # x # g−1 = x # g # g−1 = x # i = x.
Thus 3x 4 = 5x6 . Conversely, suppose 3x 4 = 5x6 for each x [G. Let x, y [G, and denote the element
y # x # y−1 by z. Then x r z, so z = x and y # x # y−1 = x or y # x = x # y.

 27. a. iL = iL
iR = iR so iL = iR and this element is an identity in 3S, # 4 .

 b. For example, # a b

a a b

b a b

 c. For example, # a b

a a a

b b b

 d. For example, 3ℝ+, + 4
 29. Let x [S with left inverse y. Then y [S, so let z be the left inverse of y. Then x # y =

iL
(x # y) = (z # y) # (x # y) = z # (y # x) # y = z # iL

y = z # y = iL, so y is also a right inverse of x. Also,
x # iL = x # (y # x) = (x # y) # x = iL

x = x, so iL is also a right identity in S and therefore an identity.
 31. For some fixed a [S, let x1 be the solution to x # a = a. Let b be any element of S. Then a # x = b for

some x [S and x1
b = x1

(a # x) = (x1
a) # x = a # x = b. Therefore x1 is a left identity in S. Also, for

any b [S, there is an x such that x # b = x1; hence every element of S has a left inverse. Result follows
from Exercise 29.

 33. If G is commutative, then (x # y)2 = (x # y) # (x # y) = x # (y # x) # y = x # (x # y) # y = (x # x) # (y # y) = x2 # y2.
For the converse, let x, y [G; then x # y # x # y = x # x # y # y, and by left and right cancellation, y # x = x # y,
so G is commutative.

 35. Closure: let x, y [Bk. Then (x # y)k = xk # yk (because of commutativity) = i # i = i, so x # y [Bk.
Identity: ik = i, so i [Bk. Inverses: for x [Bk, (x−1)k = (xk)−1 = i−1 = i, so x−1

[Bk.
 37. a. S d T # G. Closure: for x, y [S d T , x # y [S because of closure in S, x # y [T because of closure

in T, so x # y [S d T . Identity: i [S and i [T so i [S d T . Inverses: for x [S d T , x−1
[S and

x−1
[T so x−1

[S d T .
 b. No. For example, 3 50, 4, 86, +12 4 and 3 50, 66, +12 4 are subgroups of 3Z12, +12 4 but 3 50, 4, 6, 86, +12 4

is not a subgroup of 3Z12, +12 4 (not closed).

938 Answers to Odd-Numbered Exercises

 39. a. Closure: let f, g [Ha. Then (f + g)(a) = f (g(a)) = f (a) = a, so f + g [Ha. Identity: the identity map-
ping on A maps a to a. Inverses: let f [Ha. Then f(a) = a so f

−1(a) = a, and f
−1

[Ha.
 b. (n − 1)!

 41. a. Let x = az1, y = az2 [A. Then x # y−1 = az1 # (az2)−1 = az1 # (a−1)z2 = az1−z2 [A. By Exercise 40, A is
a subgroup.

 b. 20 = 0, 21 = 2, 22 = 2 +7 2 = 4, 23 = 6, 24 = 1, 25 = 3, 26 = 5
 c. 50 = 0, 51 = 5, 52 = 5 +7 5 = 3, 53 = 1, 54 = 6, 55 = 4, 56 = 2
 d. 30 = 0, 31 = 3, 32 = 3 +4 3 = 2, 33 = 1

 43. a. [Aut(S),+] is closed because composition of isomorphisms is an isomorphism (Practice 31). Associa-
tivity always holds for function composition. The identity function iS is an automorphism on S. Finally,
if f is an automorphism on S, so is f

−1.

 b.

i:

0 S 0
1 S 1
2 S 2
3 S 3

f :

0 S 0
1 S 3
2 S 2
3 S 1

 ° i f

i i f

f f i

 45. Let iG and iH denote the identity elements of G and H, respectively. Let f be an isomorphism, f : G S H .
Then f (iG) = iH and because f is one-to-one, iG is the only such element. Now let f be a homomorphism
from G onto H; then f (iG) = iH . Suppose iG is the only such element, and let f (g1) = f (g2) for g1, g2 [G.
Then f (g1

g2
−1) = f (g1) # f (g2

−1) = f (g1) # (

f (g2))−1 = f (g1) # (

f (g1))−1 = iH . Therefore g1

g2
−1 = iG

and g1 = iG
g2 = g2. Thus f is one-to-one; f is already an onto homomorphism, so it is an isomorphism.

 47. a. The + operation is a binary operation on E (well-defined and closed). Associativity holds because
(3x 4 + 3y 4) + 3z 4 = 3x + y 4 + 3z 4 = 3(x + y) + z 4 = 3x + (y + z) 4 = 3x 4 + 3y + z 4 = 3x 4 +
(3y 4 + 3z 4). [0] is the identity because 3x 4 + 30 4 = 3x + 0 4 = 3x 4 and 30 4 + 3x 4 = 30 + x 4 = 3x 4 .
Each element has an inverse: 3x 4 + 3−x 4 = 3x + (−x) 4 = 30 4 = 3−x 4 + 3x 4 . Commutativity holds
because 3x 4 + 3y 4 = 3x + y 4 = 3y + x 4 = 3y 4 + 3x 4

 b. The function f : ℤ5 S E5 given by f (0) = 30 4 , f (1) = 31 4 , f (2) = 32 4 , f (3) = 33 4 , f (4) = 34 4
is a bijection. It is also a homomorphism. For x, y elements of ℤ5, f (x + y) = 3x + y 4 =
3x 4 + 3y 4 = f (x) + f (y)

 c. The inverse of 310 4 is 3−10 4 = 34 4 . The preimage of [21] is 7.

exerCises 9.2

 1. f (G) is closed: Let f (x) and f (y) be elements in f (G). Then because f is a homomorphism,
f (x) + f (y) = f (x # y). Because x and y belong to G, x # y belongs to G and f (x # y) is an element of
f (G). iH belongs to f (G): Let f (x) be an element in f (G). Then f (x) + f (iG) = f (x # iG) = f (x) and
f (iG) + f (x) = f (iG

x) = f (x), so f (iG) is an identity for the subset f (G) and therefore f (iG) = iH . Ele-
ments in f (G) have inverses in f (G): Let f (x) be an element in f (G). Then x belongs to G and x−1 exists
in G. Then f (x−1) + f (x) = f (x−1 # x) = f (iG) = iH . Similarly f (x) + f (x−1) = iH , so f (x−1) = −f (x)
and f (x) has an inverse in f (G).

 3. K = 4ℤ

 5. a. f ((x, y) + (r, s)) = f (x + r, y + s) = (x + r) + (y + s) = (x + y) + (r + s) = f (x, y) + f (r, s).
 b. K = 5(x,−x) 0x [ℤ6 .

 7. 7 +12 S = 57, 11, 36
 9. a. H has no row of all 0s and no two rows alike, so the minimum distance = 3 and the code is single-error

correcting.

Answers to Odd-Numbered Exercises 939

 b. H can encode all of Z3
2. 000 S 000000, 001 S 001101, 010 S 010011, 011 S 011110,

100 S 100111, 101 S 101010, 110 S 110100, 111 S 111001

 11. For example, H = I

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Y

 13. Let X = (x1, … , xn) and Y = (y1, … , yn) be elements of Zn
2. The ith component of (X +2 Y) # H is

given by(x1 +2 y1) # H1i +2 (x2 +2 y2) # H2i +2
c

 +2 (xn +2
yn) # Hni. Because the distributive law holds

and addition modulo 2 is commutative, this expression equals (x1H1i +2 x2H2i +2 c +2 xnHni) +2
(

y1H1i +2 y2H2i +2

c
 +2 ynHni), which is the ith component of X # H +2

Y # H.
 15. Coset leaders Syndromes
 0000000 000
 0000001 001
 0000010 010
 0010000 011
 0000100 100
 0100000 101
 1000000 110
 0001000 111
 17. The decoded word is 011000010101001.

ExErcisEs 9.3

 1. a. 0001111110 b. aaacaaaa c. 00100110
 3. Next statePresent state Output

Present input

s1

0

s1

s2 s1

s2

s0

s1

s2

0

1

0s0

1

Output is 010010

 5. Next statePresent state Output

Present input

s1

0

s2

s2 s3

s2

s0

s1

s3

a

b

s2 s1s2 c

bs3

1

Output is abbcbb

940 Answers to Odd-Numbered Exercises

 7.

1

1

1

0
0

0

s0 /1 s1/0

s2/0

 Output is 101110

 9.

a, b, c

c
c

a, bs0 /0 s1/0

b

a
s2 /1

 Output is 0001101

 11. a.

s0 /0 s1/1

0

0

1 1
 b. 010100

 13. a.

s0 /0 s1/1

11

11

00, 10, 01

00, 10, 01 b. 010010

 15. a. Name each state with the sequence of the last two input bits read.

00/0 01/0

11/1 10/1

0

0

00

1

1

1

1

 b. The length of time required to remember a given input grows without bound and eventually would
exceed the number of states.

 17.

Cust.
data

Add
form

Screen
1

go
back

select
cust.

exit

new
cust.

go
back

Prog.
not

running

 19.
s1/wait

4
s2/wait

1
s3/bingo

7

I

I � {4} I � {1} I � {7} I

s0/wait

s4/dead

Answers to Odd-Numbered Exercises 941

 21. No
 23. Yes
 25. a.

0

0

1 1

s0/1 s1/0

 b.
s1/0

1
s2/0

1
s3/1

0

0, 1

0, 1

100

s0/0

s4/0 c.

s0/0 s1/0
0

s2/1
0

0

0, 1

1

1

1

s3/0

 27. a.

s1/1
1

s2/0
1

0, 100

s0/0

 b.

s1/0
0

s2/0
0

1

1 1
s3/1

0
s0/0

s4/0

0, 1

0, 1

 c.

s2/0
0

0

s3/0
0, 10, 1

1

s4/1
1

s1/0s0/0

s5/0

0, 1

0, 1

 29. The object is to recognize the substring bcon.

s1/0 s2/0
oc

s3/1
n

s0/0

s4/0β

I − {n, β} I − {β}

I − {β}

I − {c, β}
β

βββ

I − {o, β}

942 Answers to Odd-Numbered Exercises

 31. Once a state is revisited, behavior will be periodic because the input is always 0 and there is no choice of paths from
a state. The maximum number of inputs that can occur before this happens is n − 1 (visiting all n states before
repeating). The maximum length of a period is n (output from all n states, with the last state returning to s0).

 33. 0*
 35. 01* ~ (110)*
 37. (1 ~ 01)(01)*
 39. 10*1
 41. 1* ~ (010)*
 43. a. 0(0 ~ 1)*1 b. 1*01*(01*0)*1* c. 100*1
 45. a. Yes b. No c. No
 47. dd*(+ ~ −)dd* where d stands for any digit
 49. a. (00)* b. 111*0 c. 1*001*
 51. a. 0*10* b. 000(1 ~ 0)* c. (1 ~ 0)0(1 ~ 0)1(1 ~ 0)*
 53. a. Proof is by induction on the length of the regular expression. For the base step, if A = [, l, or i, then

AR = [, l, or i. Assume that for all expressions of length ≤ k, A regular S AR regular. Let A be a reg-
ular expression of length k + 1. If A = BC, where B and C are regular, then BR and CR are regular by
inductive hypothesis and AR = CRBR, so AR is regular. Similarly, if A = B ~ C, then AR = BR ~ CR
(regular), and if A = B*, then AR = (BR)* (regular).

 b. No—no regular expression describes this set.
 55. beer, beter
 57. beter, better, bettter
 59. bit, but, beet
 61. b t
 63. s1

 65. A = 506, B = 51, 2, 56, C = 53, 46, D = 566
Next statePresent state Output

Present input

C

0

D

C B

C

A

B

D

1

0

B AC 1

1B

1

 67. A = 506, B = 556, C = 526, D = 57, 86, E = 51, 36, F = 54, 66
Next statePresent state Output

Present input

E

0

C

F D

B

A

B

F

0

0

E FC 0

D ED 0

C EE 1

1F

1

Answers to Odd-Numbered Exercises 943

 69. A = 506, B = 526, C = 51, 46, D = 536, E = 556
Next statePresent state Output

Present input

C

0

D

E C

A

B

0

0

B CC 1

C BD 2

C AE 2

1

 71. A = 50, 26, B = 51, 36, C = 546
Next statePresent state Output

Present input

B

a

C

C A

A

B

1

0

B AC 0

b

A

B

A

c

 73. A = 506, B = 52, 46, C = 51, 56, D = 536
Next statePresent state Output

Present input

D

0

A

C B

A

A

B

D

0

0

B DC 1

1B

1

 75. Possible answer: d1 d2

s0 0 0

s1 0 1

s2 1 0

s3 1 1

 x(t) d1(t) d2(t) y(t) d1(t∙1) d2(t∙1)

0 0 0 0 1 0

1 0 0 0 1 1

0 0 1 1 0 0

1 0 1 1 0 1

0 1 0 0 0 1

1 1 0 0 1 1

0 1 1 1 0 1

1 1 1 1 1 0

 y(t) = d1
′ d2 + d1d2 = d2

 d1(t + 1) = x′d1
 ′d2

 ′ + xd1
 ′d2

 ′ + xd1d2
 ′ + xd1d2 = d1

 ′d2
 ′ + xd1

 d2(t + 1) = xd1
 ′d2

 ′ + xd1
 ′d2 + x′d1d2

 ′ + xd1d2
 ′ + x′d1d2 = x(d1

 ′ + d2
 ′) + x′d1

944 Answers to Odd-Numbered Exercises

21

x(t)

y(t)

d1(t)

d1(t)

d2(t)

d2(t)

d1(t � 1)

d2(t � 1)

x(d� � d�)

x�d1

21d�d�

xd1
d1(t � 1)

d2(t � 1)

exerCises 9.4

 1. a. halts with final tape c b 0 0 0 0 0 b c

 b. does not change the tape and moves forever to the left
 3. One answer: State 2 is a final state.

(0, b, b, 2, R) blank tape or no more 1’s, go to final state
(0, 1, 1, 1, R) has read odd number of 1’s
(1, 1, 1, 0, R) has read even number of 1’s

 5. One answer: State 3 is a final state.
 (0, 0, 0, 0, R) e

 (0, 1, 1, 1, R)
pass over 0s to first 1

 (1, 0, 0, 1, R) e

 (1, 1, 1, 2, R)
pass over 0s to second 1

 (2, b, b, 3, R) end of string, halt and accept
 7. One answer: State 9 is a final state
 (0, b, b, 9, R) accepts blank tape
 (0, 0, 0, 0, R) e

 (0, 1, X , 1, R) finds first 1, marks with X
 (1, 1, 1, 1, R) e

 (1, Y , Y , 1, R) searches right for 2s
 (1, 2, Y , 3, R) e

 (3, 2, Y , 4, L)
pair of 2s, marks with Y ’s

 (4, Y , Y , 4, L)

s
 (4, X , X , 4, L)
 (4, 1, 1, 4, L)
 (4, Z, Z, 4, L)

searches left for 0s

Answers to Odd-Numbered Exercises 945

 (4, 0, Z, 5, L) e

 (5, 0, Z, 6, R) pair of 0s, marks with Z ’s

 (6, Z, Z, 6, R)
s (6, X , X , 6, R)

 (6, 1, X , 1, R)
passes right to next 1

 (6, Y , Y , 7, R) no more ls
 (7, Y , Y , 7, R) e

 (7, b, b, 8, L) no more 2s

 (8, Y , Y , 8, L)

s
 (8, X , X , 8, L)
 (8, Z, Z, 8, L)
 (8, b, b, 9, L)

no more 0s, halts and accepts

 9. One answer: State 8 is a final state
 (0, 0, b, 1, R) 0 read on left of w1
 (1, 0, 0, 1, R)

s (1, 1, 1, 1, R)
 (1, *, *, 2, R)

moves right to *

 (2, X , X , 2, R) passes over X ’s
 (2, 1, 1, 8, R) e

 (2, b, b, 8, R) nonzero on left of w2, halts and accepts

 (2, 0, X , 3, L) left symbols match
 (3, X , X , 3, L) e

 (3, *, *, 4, L) moves left to *

 (4, 1, 1, 4, L)
s (4, 0, 0, 4, L)

 (4, b, b, 0, R)
finds leftmost symbol

 (0, 1, b, 5, R) 1 read on left of w1
 (5, 0, 0, 5, R)

s (5, 1, 1, 5, R)
 (5, *, *, 6, R)

moves right to *

 (6, X , X , 6, R) passes over X ’s
 (6, 0, 0, 8, R) e

 (6, b, b, 8, R) non-one on left of w2, halts and accepts

 (6, 1, X , 3, L) left symbols match
 (0, *, *, 7, R) word left of * is empty
 (7, X , X , 7, R)

s (7, 0, 0, 8, R)
 (7, 1, 1, 8, R)

word right of * nonempty, halts and accepts

 (0, b, b, 0, R) w1 initially empty
 11. (0, 0, 1, 0, R) changes 0 to 1
 (0, 1, 0, 0, R) changes 1 to 0
 13. (0, 1, 1, 1, R) passes center point
 (1, 0, 0, 1, R) e

 (1, b, 0, 2, L) adds 0 on right end

 (2, 0, 0, 2, L)
s (2, 1, 1, 2, L)

 (2, b, 0, 0, R)
adds 0 on left end

 (0, 0, 0, 0, R) returns to center point

946 Answers to Odd-Numbered Exercises

 15. The general idea is to decrement the binary number by 1; with each decrement, add a 1 to the string of 1s
being built.1

 (0, 1, 1, 0, R)
s (0, 0, 0, 0, R)

 (0, b, b, 1, L)
finds least significant digit

 (1, 1, 0, 2, R) if least significant digit = 1, then decrement
 (2, 0, 0, 2, R)

s (2, 1, 1, 2, R)
 (2, b, b, 3, R)

finds end of original string

 (3, 1, 1, 3, R) finds right end of new string
 (3, b, 1, 4, L) writes 1 at end of new string
 (4, 1, 1, 4, L) e

 (4, b, b, 1, L) goes back to original string
 if least significant digit = 0, change to 1 and look
 (1, 0, 1, 5, L) left for another 1 to decrement
 (5, 0, 1, 5, L) increment 0s to the left
 (5, b, b, 8, R) just incremented the final remaining 0, clean up
 (5, 1, 0, 6, L) found a 1 to decrement
 (6, 1, 1, 2, R) e

 (6, 0, 0, 2, R) prepare to move to end of original string
 (6, b, b, 7, R) the 1 just decremented was the most significant digit
 (7, 0, b, 2, R) blank out the leading 0
 (8, 1, b, 9, L) clean up and halt
 17.

f(n1, n2, n3) = e n2 + 1 if n2 > 0
undefined if n2 = 0

 19. (0, 1, 1, 1, R) e

 (1, b, 1, 4, R) n = 0, add 1 and halt
 (1, 1, 1, 2, R) e
 (2, b, 1, 4, R) n = 1, add additional 1 and halt
 (2, 1, 1, 3, R)

s (3, 1, b, 3, R)
 (3, b, b, 4, R)

n > 2, erase extra 1s and halt

 21. One answer:
 (0, 1, 1, 1, R) e

 (1, b, b, 8, R) n = 0, 2 # 0 = 0

 (1, 1, 1, 2, R)
s (2, 1, 1, 2, R)

 (2, b, b, 3, L)
n > 0, finds end of n

 (3, 1, X , 4, R)

s
 (4, X , X , 4, R)
 (4, 1, 1, 4, R)
 (4, b, 1, 5, L)

changes 1 to X, adds 1 at right end of string

 (5, 1, 1, 5, L)

s
 (5, X , X , 6, L)
 (6, X , X , 6, L)
 (6, 1, X , 4, R)

goes left to next 1 of n

1My thanks to Alicia Kime of Fairmont State College and her student Tim Holmes for this solution.

Answers to Odd-Numbered Exercises 947

 (6, b, b, 7, R) e

 (7, X , 1, 7, R) n is doubled, changes X ’s to 1’s
 (7, 1, 1, 7, R)

s (7, b, b, 8, L)
 (8, 1, b, 9, L)

finds right end, erases extra 1, halts

 23. One answer:
 (0, 1, b, 1, R) erases one extra 1
 (1, *, b, 3, R) n1 = 0
 (1, 1, b, 2, R)

s (2, 1, 1, 2, R)
 (2, *, 1, 3, R) n1 > 0, replaces * with leftmost 1 of n1, halts
 25. One answer:
 (0, 1, 1, 0, R)

s
 (0, *, *, 0, R)
 (0, b, b, 1, L)
 (0, X , X , 1, L)

move to right end of 1s for n2

 (1, 1, X , 2, L) X ’s rightmost 1 of n2
 (2, 1, 1, 2, L)

t
 (2, *, *, 2, L)
 (2, b, b, 3, R)
 (2, X , X , 3, R)
 (3, 1, X , 0, R)

move to left end of 1s for n1, X leftmost 1

 (3, *, X , 4, L) n1 < n2
 (4, X , X , 4, L)

t
 (4, b, 1, 5, R)
 (5, X , b, 5, R)
 (5, 1, b, 5, R)
 (5, b, b, 9, R)

write 0 on tape and halt

 (1, *, *, 6, R) all of n2 used, now write n1 − n2 on tape
 (6, X , X , 6, R)

s (6, b, b, 7, L)
 (7, X , b, 7, L)

erase n2

 (7, *, 1, 8, L)

s
 (8, 1, 1, 8, L)
 (8, X , b, 8, L)
 (8, b, b, 9, R)

clean up n1 − n2 and halt

 27. invoke T1, invoke T

exerCises 9.5

 1. L(G) = 5l, a6; the grammar is type 0.
 3. L(G) = 0(10)*; the grammar is regular.
 5. G = (V, VT, S, P) where V = 5a, S6, VT = 5a6 , and P = 5S S l, S S a6
 7. The grammar of Exercise 3 is already regular.
 9. L(G) = (ab)*
 11. L(G) = aa*bb*. G is context-sensitive. An example of a regular grammar that generates L(G) is

G′ = (V , V T, S, P) where V = 5a, b, A , B, S6, V T = 5a, b6 and P = 5S S aA , S S aB, A S aA ,
A S aB, B S bB, B S b6

948 Answers to Odd-Numbered Exercises

 13. a. <S> ::= 0<A> 0 1<A>, <A> ::= 1, ::= 01 0 11
 b. <S> ::= 0 0 0<A>, <A> ::= 1, ::= 0<A> 0 0
 c. <S> ::= 0 <S> 0 11<A>, <A> ::= 1<A> 0 1

 15. a. 1*1(00)*
 b. S S 1, S S 1S, S S 0A, A S 0, A S 0B, B S 0A

 17. For example, G = (V, VT, S, P) where V = 5(,), S6, VT = 5(,)6 , and P = 5S S l, S S (S)S6
 19. For example, G = (V, VT, S, P) where V = 5a, b, A, B, S6, VT = 5a, b6 , and P = 5S S l, S S aSa,

S S bSb, S S a, S S b6
 21. For example, G = (V, VT, S, P) where V = 50, 1, A, B, S6, VT = 50, 16 , and P = 5S S 1A , A S 1,

A S 1B, B S 0, B S 1, B S 0B, B S 1B6
 23. For example, G = (V, VT, S, P) where V = 51, S6, VT = 516 , and P = 5S S l, S S 11S6
 25. For example, G = (V, VT, S, P) where V = 50, 1, S6, VT = 50, 16 , and P = 5S S l, S S A , A S 01,

A S 0S16
 27. For example, G = (V, VT, S, P) where V = 50, 1, S6, VT = 50, 16 , and P = 5S S SS, S S 01, S S 10,

S S 0S1, S S 1S06
 29. For example, G = (V, VT, S, P) where V = 50, S, A, B, X6, VT = 506 , and P = 5S S A0B, A0 S A00X ,

X0 S 00X , XB S B, A S l, B S l6
 31. For example, G = (V, VT, S, P) where V = 50, 1, S, S1, A, B, M6, VT = 50, 16 , and P = 5S S l,

S S 0S1A, S S 1S1B, S1 S 0S1A, S1 S 1S1B, S1 S M, MA S M0, MB S M1, M S l, 0A S A0,
0B S B0, 1A S A1, 1B S B16

 33. a.

S S

1 11 1

SS

1 1

S b.

11 S

S

11 S

11

 35.

1A A

S

1A A

S

1A A 1A A0

0 0 0 0

0

 37. The set of productions for G′ is formed from the set of productions for G as follows: For A and B nonter-
minals, whenever A 1

*

B in G and B S a is a production in G with 0a 0 ≥ 2, add the production A S a to

the set, then eliminate all productions of the form A S B. For any productions of the form A S a, a [VT ,
add to the set of productions those obtained by replacing any A on the right of an existing production by a,
then eliminate all productions of the form A S a. Eliminate S S l. The remaining productions all have
right sides with length ≥ 2 and L(G′) # L(G). Only l and a finite number of one-length words may have
been eliminated, so L(G) − L(G′) is a finite set.

949

Answers to Self-Tests

Ch a p te r 1

SeCtion 1.1

 1. F If a statement is not a tautology, it does not have values that are all true, but that does not make them
all false.

 2. T Because of the truth table for disjunction, () ~ T is T.
 3. F The statement must have an implication as its main connective.
 4. T
 5. F The negation of a disjunction is the conjunction of the negations.

SeCtion 1.2

 1. T
 2. F
 3. T
 4. F It is one in which hypothesis S conclusion is always true.
 5. T

SeCtion 1.3

 1. F In fact, (4x)(P(x) ` 3P(x) 4′) would be false in all interpretations.
 2. T
 3. T
 4. F	 There	 is	 no	 one	 predicate	 wff	 defined	 on	 an	 interpretation,	 nor	 is	 the	 domain	 at	 all	 determined	

by truth values.
 5. T

SeCtion 1.4

 1. T
 2. F Existential instantiation should be used early.
 3. F	 Universal	instantiation	would	only	strip	off	the	leading	universal	quantifier.
 4. F Wffs in propositional logic are not even wffs in predicate logic.
 5. T Predicate logic is correct—only valid wffs are provable.

950 Answers to Self-Tests

SeCtion 1.5

 1. T
 2. F A single negated predicate is only one kind of Horn clause.
 3. T
 4. F A Prolog recursive rule is not a rule of inference.
 5. T

SeCtion 1.6

 1. F	 It	guarantees	only	 that	 the	output	 satisfies	certain	conditions,	given	 that	 the	 input	 satisfies	certain	
conditions.

 2. F Nothing much can be said about the precondition without knowing the assignment, but at any rate the
strict inequality will not go away.

 3. F Program testing involves test data sets.
 4. T
 5. T

Ch a p te r 2

SeCtion 2.1

 1. F	 A	conjecture	that	only	asserts	something	about	a	finite	number	of	cases	can	be	proved	by	proving	all	
cases.

 2. T
 3. F	 A	universal	quantifier	is	understood,	because	the	formal	statement	of	the	theorem	is	

(4x)(x odd S 2 * x is even).
 4. F	 The	second	statement	is	the	converse	of	the	first,	not	the	contrapositive.
 5. T

SeCtion 2.2

 1. T
 2. F The basis step need not be n = 1.
 3. T
 4. T
 5. F	 This	omits	the	first	k − 1 terms of the series.

SeCtion 2.3

 1. F A loop invariant remains true after loop termination.
 2. F It means that correctness has been proved only given that the loop terminates.

Answers to Self-Tests 951

 3. F	 The	first	principle	of	induction	is	used	because	the	values	at	pass	k + 1 through the loop depend only
on the values at pass k.

 4. F But Q should give the desired result when the condition B′ is true.
 5. T (12 is the remainder when 42 is divided by 30).

SeCtion 2.4

 1. T
 2. F The linear combination must equal 1.
 3. F For example, 36 = 22·32, so the prime factors are 2 and 3, neither of which is > 6 = "36.
 4. F For example, w(5) = 4, which is not a prime.
 5. T

Ch a p te r 3

SeCtion 3.1

 1. T
 2. F 18, 20, 22, 24 can be generated, but not, for example, 26.
 3. F They are valuable because they represent natural ways of thinking about certain problems, but they

typically use more storage and perform more operations than a corresponding iterative program.
 4. T
 5. T

SeCtion 3.2

 1. F Induction may be used to verify a proposed closed-form solution but not to determine such a solution
from the recurrence relation.

 2. F It is not linear because of the presence of the S(n − 2) term.
 3. F It is a pattern for the general solution, but it is not a closed-form solution because of the summation;

in	any	specific	case,	there	must	be	a	closed-form	expression	to	evaluate	the	summation.
 4. T
 5. T

SeCtion 3.3

 1. T
 2. F It requires m(n − m + 1) comparisons.
 3. T
 4. F	 The	recursive	version	looks	at	the	first	item	in	the	list,	and	if	that	is	not	the	target,	it	searches	the	rest	

of the list. The “input size” goes down only by 1 each time the algorithm is invoked.
 5. T

952 Answers to Self-Tests

Ch a p te r 4

SeCtion 4.1

 1. F It is not a proper subset of itself.
 2. T
 3. T
 4. F This is the closure property.
 5. F It is a way to prove that certain sets are uncountable.

SeCtion 4.2

 1. T
 2. F
 3. T
 4. T
 5. F

SeCtion 4.3

 1. F
 2. F The number of elements in the union plus the number of elements in the intersection is the sum of the

number of elements in each set.
 3. F	 All	must	be	finite.
 4. F
 5. T

SeCtion 4.4

 1. T
 2. T
 3. F Use C(n, r).
 4. F It is n!�n1!n2!n3!.
 5. T

SeCtion 4.5

 1. F Combinations, not arrangements.
 2. T
 3. F All terms are found in row n.
 4. T
 5. T

Answers to Self-Tests 953

SeCtion 4.6

 1. T
 2. T
 3. F This will work only if the events are independent.
 4. F A random variable is not a variable; it is a function that assigns numerical values to the members of a

sample space, and these values are generally not randomly chosen.
 5. T

Ch a p te r 5

SeCtion 5.1

 1. T
 2. F (x, x) can belong.
 3. T
 4. F The relation of equality is both a partial ordering and an equivalence relation.
 5. F An equivalence relation does this.

SeCtion 5.2

 1. F
 2. T
 3. F The converse is true.
 4. F The maximum value is used.
 5. F See Example 18 and Practice 19.

SeCtion 5.3

 1. T
 2. T
 3. F
 4. T
 5. F If the data satisfy data integrity to begin with, then data integrity will still be true after a delete. It is

referential integrity that may be lost.

SeCtion 5.4

 1. F It may not have an image for each member of the domain.
 2. F Every element of the range has a preimage; begin with an element of the codomain.
 3. T

954 Answers to Self-Tests

 4. T
 5. F The original function must be a bijection.

SeCtion 5.5

 1. F Other constants may work where these do not.
 2. F Either f = Θ(g) or f = o(g)
 3. T
 4. F
 5. T

SeCtion 5.6

 1. T
 2. F If the hash table entry does not match the target value, then the collision resolution algorithm must be

followed before the search can be deemed a failure.
 3. T
 4. F	 It	derives	from	the	difficulty	of	finding	the	prime	factors	of	n.
 5. T

SeCtion 5.7

 1. T
 2. F The two products are not necessarily equal.
 3. T
 4. F
 5. F See Practice 58.

Ch a p te r 6

SeCtion 6.1

 1. F A complete graph has an arc between any two nodes.
 2. T
 3. F A planar graph could still be drawn with arcs that cross.
 4. F It means that nodes 2, 3, and 4 are all adjacent to some one node.
 5. F It could be symmetric; it just doesn’t have to be.

SeCtion 6.2

 1. T
 2. F A complete (binary) tree has nothing to do with a complete graph.
 3. T
 4. T
 5. T

Answers to Self-Tests 955

Section 6.3

 1. T
 2. F This is the worst case; other cases could require fewer comparisons.
 3. T
 4. F The binary search tree depends on the order in which data elements are inserted.
 5. F It must have at least n! leaves.

Section 6.4

 1. T
 2. F	 In	a	prefix	code,	no	code	word	is	the	prefix	of	another	code	word.
 3. F	 Characters	 that	occur	most	 frequently	have	 the	shortest	 strings,	and	 frequency	does	not	affect	 the	

number of 0s versus the number of 1s.
 4. T
 5. F	 The	code	table	file	(giving	the	code	for	each	character)	must	be	stored	along	with	the	encoded	file.

ch a p te r 7

Section 7.1

 1. T
 2. T
 3. F R = A ~ A(2) ~ c~ A(n)

 4. F That’s what R = A ~ A(2) ~ c~ A(n)	does;	Warshall’s	algorithm	expands	the	set	of	nodes	available	
for use on a path.

 5. F Warshall’s algorithm computes transitive closure.

Section 7.2

 1. T
 2. F The graph can have at most two odd nodes.
 3. T
 4. F Some arcs may go unused.
 5. F	 No	efficient	algorithm	is	known,	but	trial	and	error	solves	the	problem.

Section 7.3

 1. F	 This	is	how	Prim’s	algorithm	works.
 2. F	 A	greedy	algorithm	does	not	necessarily	divide	a	problem	into	smaller	subproblems,	but	it	takes	the	

“best”	action	based	on	limited	knowledge	at	each	step.
 3. T
 4. T
 5. F It will generally not form a tree at all.

956 Answers to Self-Tests

SeCtion 7.4

 1. F	 The	starting	node	for	a	depth-first	search	can	be	any	node	in	the	graph.
 2. T
 3. T
 4. F It is the equivalent of depth-first search, assuming that sibling nodes are labeled in order from left to

right.
 5. F Use a succession of depth-first searches.

SeCtion 7.5

 1. F Any path between some set of two nodes must pass through it.
 2. T
 3. T
 4. T
 5. F The root is a special case.

Ch a p te r 8

SeCtion 8.1

 1. F x + x′ = 1
 2. T
 3. T x + (y + x # z) = x + (x # z + y)
 = x # 1 + (x # z + y)
 = (x # 1 + x # z) + y
 = x # (1 + z) + y
 = x # (z + 1) + y
 = x # 1 + y
 = x + y
 4. T
 5. T

SeCtion 8.2

 1. T (x + y)′ = x′ # y′
 2. F It has as many terms as the function has 1-values (or one term if the function has all 0-values).
 3. F Only one half-adder is needed (see Figure 8.14a).
 4. T Because x + x = x
 5. F This usually results in an unnecessarily large number of devices; start again from the truth

function.

Answers to Self-Tests 957

Section 8.3

 1. T
 2. T
 3. F	 Look	for	two-square	blocks	first	and	work	up	from	there.
 4. T
 5. F	 The	term	is	essential	if	the	check	for	that	row	is	the	only	one	in	some	column.

ch a p te r 9

Section 9.1

 1. F	 This	describes	a	commutative	operation.
 2. T	 Even	though	this	is	not	the	definition	of	the	identity
 3. T
 4. T	 By	Lagrange’s	theorem.
 5. F f	must	also	be	a	bijection.

Section 9.2

 1. T
 2. T
 3. F H	maps	Z n2 to Z r2.
 4. T	 If	the	syndrome	of	X equals 0r ,	then	X	is	in	the	kernel	of	the	homomorphism	generated	by	H	and	is	a	

code	word;	it	will	be	assumed	that	no	errors	occurred.
 5. F	 No	coding	scheme	can	guarantee	zero	bit	errors.

Section 9.3

 1. T
 2. T (0 ~ 1)*00
 3. F	 See	Figure	9.8a.
 4. T
 5. F

Section 9.4

 1. F	 Entering	a	final	state	causes	a	Turing	machine	to	halt,	but	it	can	also	halt	in	a	nonfinal	state	if	there	is	
no	instruction	for	the	current	state–input	pair.

 2. F	 There	will	be	n + 2 1s	on	the	tape.
 3. F
 4. F	 This	is	the	version	with	the	quantifiers	reversed	that	is	trivially	true.
 5. T

958 Answers to Self-Tests

SeCtion 9.5

 1. T
 2. F Depending on the productions selected, nonterminal symbols may never be removed.
 3. F There may be an equivalent grammar for the language that is context-free.
 4. T
 5. T

Index

A
ABA routing number, 437
Absolute value, 107
Absorption property, 633
Ackermann’s function, 407
Acquaintanceship graph, 499
Acyclic graph, 482
Addition inference rule, 29
Addition modulo n, 343, 438, 692
Addition of matrices, 449
Addition principle, 254–55

definition of, 254
Adjacency list, 494
Adjacency matrix, 492
Adjacency relation, 555
Adjacent nodes, 481
Adleman, Len, 431
AES (Advanced Encryption

Standard), 431
Algebraic structure, 686–708. See also

Group
associative property, 687
commutative property, 687
free monoid, 695
group of permutations, 693
identity element, 687
inverse element, 687
monoid, 689
semigroup, 689
semigroup of transformations, 693

ALGOL, 164, 788
Algorithm

definition of, 12
divide-and-conquer, 468
graph traversal, 596–604
greedy, 586
optimal, 533
recursive, 166–71

Algorithms
ArtPoint, 610
Bellman-Ford, 592

BinarySearch, 169, 208
BreadthFirst, 599
BubbleSort, 214
CombGenerator, 285
DepthFirst, 597
Dijkstra’s, 582
Euclidean, 133
EulerPath, 574
Floyd’s, 593
HeapSort, 527
HuffmanTree, 542
Inorder, 515
Kruskal’s, 594
MatrixMultiplication, 452
MergeSort, 215
Minimize, 742
PermGenerator, 282, 283
Postorder, 515
Preorder, 514
QuickSort, 215
SelectionSort, 169, 215
SequentialSearch, 204, 207
Sum-of-Products, 643
TautologyTest, 13
TopologicalSort, 360
Warshall, 563

Alphabet, 694, 782
Alternating group, 701
Ambiguous grammar, 798
Analysis of algorithms, 203–10, 314,

415
average case, 205, 314
binary search, 209
breadth-first search, 601
computational complexity, 416
definition of, 203
depth-first search, 601
Dijkstra’s algorithm, 586
Euclidean algorithm, 210
Euler path, 565
lower bound, 511

sequential search, 205, 207
upper bound, 210
using recurrence relations, 206–10
Warshall’s algorithm, 565
worst case, 205

AND connective, 11, 75
AND gate, 12, 639
Antecedent, 3
Antisymmetric relation, 332
Appel, Kenneth, 507
Arc, 477, 478
Archimedes, 286
Aristotle, 59, 71
Arithmetic progression (arithmetic

sequence), 124
Array, 448
Articulation point., 607
Assertion, 85–87

definition of, 86
Assignment rule of inference, 87–89

definition of, 87
Associative equivalence rule, 28
Associative property, 9, 234, 687
Asymmetric encryption, 431
Asymmetric relation, 349
Atias,Nir, 497
Augmented matrix, 453
Automorphism, 714
Axiom, 98, 773

B
Back arc, 608
Backus-Naur form (BNF), 163, 787
Ballot problem, 175
BASIC, 259
Basis (basis step), 111
Bayes’ theorem, 308–9

statement of, 309
Behm, Patrick, 136
Bell numbers, 354

959

960 Index

Bellman-Ford algorithm, 592
Benford’s law, 325
Benoit, Paul, 136
Bernoulli experiment, 313
Bernoulli trial, 313
Bernoulli, Jacob, 313
Biconnected components, 608
Big oh, 417
Big theta, 413
Bijection, 390
Binary adder, 731–33
Binary connective, 3
Binary GCD algorithm, 142
Binary operation, 228–30

associative, 687
commutative, 687
definition of, 229
well-defined, 229, 686

Binary predicate, 40
Binary relation, 328–36

antisymmetric, 332
asymmetric, 349
closure of, 334–36
complement of, 331
definition of, 329
and directed graph, 555–57
equivalence relation, 339–44
intersection of, 331
inverse of, 350
irreflexive, 349
many-to-many, 330
many-to-one, 330
one-to-many, 330
one-to-one, 330
partial ordering, 336–38
properties of, 332–34
reflexive, 332
reflexive closure of, 334
from S to T, 330
symmetric, 332
symmetric closure of, 334
transitive, 332
transitive closure of, 334, 561
union of, 331

Binary search algorithm, 169, 208
Binary search analysis, 209
Binary search tree, 352, 511, 534
Binary string, 163
Binary tree, 510
Binary tree search, 352, 534
Binomial coefficient, 297
Binomial distribution, 313–14

definition of, 313
Binomial theorem, 294–98

statement of, 296

Bipartite complete graph, 483
Birthday problem, 318
Blind key, 368
Block cipher, 429
Blocks of a partition, 339
BNF. See Backus-Naur form
Boole, George, 458, 617
Boolean algebra, 618–31

absorption property, 633
complement of an element, 625
definition of, 620
De Morgan’s laws, 624
double negation property, 624
dual of a property, 623
idempotent property, 622
isomorphism, 629
modular property, 633
universal bound property, 624

Boolean AND, 458
Boolean expression, 639
Boolean matrix, 458–59

Boolean AND, 458
Boolean OR, 458
multiplication, 458
and reachability, 558

Boolean OR, 458
Bottom up parsing, 794
Bourg, David M., 749
Breadth-first search, 598–601

analysis of, 601
B-tree, 526
Bubble sort algorithm, 214
Byte, 257

C
ℂ, 224
Caesar, Julius, 428
Caesar cipher, 428
Cancellation laws, 696
Canonical parity-check matrix, 721
Canonical product-of-sums form, 660
Canonical sum-of-products form, 643
Cantor, Georg, 237, 401
Cantor’s diagonalization method, 237
Cantor’s theorem, 401
Carbin, Michael, 654
Cardinality

of a relation, 366
of a set, 236, 401

Cartesian product (cross product), 233
Castile, Tracy, 262
Catalan numbers, 175, 263, 293, 526
Cayley, Arthur, 708
Cayley’s theorem, 708

Ceiling function, 386
Center of a group, 713
Chain, 338
Chaining, 426
Characteristic equation, 190
Characteristic function, 406
Chinese remainder theorem, 432, 445
Chomsky, Noam, 786
Chomsky hierarchy, 790
Chromatic number of a graph, 507
Chung, Fan, 287
Church, Alonzo, 770, 771, 773
Church-Turing thesis, 770
Ciphertext, 428
Circular left shift, 430, 439
Closed form solution, 180
Closure of binary relations, 334–36,

556
definition of, 334

Coding theory, 714–26
canonical parity-check matrix, 721
check bits, 721
coset leader, 723
double-error detecting code, 715
group code, 719
Hamming distance, 718
information bits, 721
maximum likelihood decoding, 715
minimum distance of a code, 718
perfect code, 722
single-error correcting code, 715
syndrome, 724
weight of a code word, 719

Codomain, 383
Coefficient, 690
Collision, 425
Collision resolution, 425
Combinational network, 638–48, 744

definition of, 642
Combinations, 274–77

definition of, 274
eliminating duplicates, 279
generating, 284
with repetitions, 279

Combinatorial proof, 296
Combinatorics, 252–87

addition principle, 254
combinations, 277
decision tree, 257–58
definition of, 252
multiplication principle, 253
permutations, 272–74
pigeonhole principle, 269

Common difference, 124
Common ratio, 124

Index 961

Commutative diagram, 391, 479, 628
Commutative equivalence rule, 28
Commutative group, 688
Commutative property, 9, 234, 687
Complement

of a binary relation, 331
of a boolean algebra element, 625
of a graph, 506
of a set, 232

Complement property, 9, 234
Complete binary tree, 510
Complete formal system, 27, 58
Complete graph, 482
Composite number, 107
Composition function, 391
Composition of functions, 390–92

definition of, 391
Compound statement, 2
Computational complexity, 416,

776–78
Computational procedure, 769
Computer security, 143, 427–35

ciphertext, 428
cryptographic hash functiom, 434
cryptography, 427–33
one-way encryption, 434
password encryption, 433–35
plaintext, 428

Concatenation, 163, 694
Conclusion of an argument, 25
Conditional probability, 306–7

definition of, 307
independent events, 307

Conditional rule of inference, 90–92
definition of, 90

Conditional statement, 90
Congruence modulo n, 343
Conjunct, 2
Conjunction, 2
Conjunction inference rule, 29
Conjunctive normal form, 660
Connected component of a graph, 603
Connected graph, 482
Connective. See Logical connective
Consequent, 3
Constant symbol, 41
Context free (type 2) grammar, 790,

793–95
Context free language, 790
Context sensitive (type 1) grammar,

790
Context sensitive language, 790
Contradiction, 8, 104–6
Contraposition, 103–4
Contraposition inference rule, 37

Contrapositive, 21, 103
Converse, 21, 103
Correct formal system, 27, 58
Correct program, 85
Coset, 717
Countable set, 236
Counterexample, 99
Critical path, 359
Cryptographic hash function, 434
Cryptography, 427–33

AES, 431
asymmetric encryption, 431
block cipher, 429
Caesar cipher, 428
definition of, 428
DES, 429, 656
diffusion, 429
private key encryption, 431
public key encryption, 431
RSA public key encryption

algorithm, 431
simple substitution cipher, 429
symmetric encryption, 431

Cryptology, 428
Cutler, William, 286
Cycle in a graph, 482
Cycle notation, 395
Cyclic group, 713

D
Darwin, Charles, 211
Data compaction, 540
Data compression, 540
Data flow diagram, 480
Data integrity, 375
Database, 365–76

add operation, 375
blind key, 368
composite primary key, 367
conceptual model of, 365
data integrity, 375
definition of, 365
delete operation, 375
entity, 365
entity attributes, 365
entity integrity, 367, 375
entity-relationship diagram, 365
entity-relationship model, 365–66
foreign key, 368
integrity, 375–76
join operation, 370
metadata, 366
modify operation, 375
operations, 369–73

outer join, 369
primary key, 367
project operation, 369
in Prolog, 73
referential integrity, 375
relational, 366
relational algebra, 372
relational calculus, 372
relational model, 366–69
restrict operation, 369
SQL, 372
surrogate key, 368
tuple, 366

Decision problem, 771–76
definition of, 772
negative solution for, 772
positive solution for, 772
uncomputable, 772
undecidable, 772
unsolvable, 772

Decision tree, 257–58, 511, 529–36
definition of, 529
for searching, 529–35
for sorting, 535–36

Declarative language, 73
Deduction method, 32
Deductive reasoning, 99
Degree of a node, 481
Degree of a polynomial, 691
Degree of a relation, 366
Degree of separation, 499
Delay element, 744
DeMoivre’s theorem, 126
De Morgan, Augustus, 9, 507
De Morgan’s laws, 10, 28, 178, 248,

250, 624, 633
Denumerable set, 236, 401
Depth of a node, 510
Depth-first search, 81, 596–98

analysis of, 601
Dequeue, 599
Derangement, 396
Derivation in a grammar, 784
Derivation rules, 803–04

definition of, 27
for predicate logic, 58–62
for propositional logic, 28–33

DES (Data Encryption Standard), 429,
656

Descriptive language, 73
Determinant of a matrix, 473
Diagonal matrix, 463
Difference of sets, 233
Diffusion, 429
Digraph. See Directed graph

962 Index

Dijkstra, Edsger W., 581
Dijkstra’s algorithm, 581

analysis of, 586
Dimensions of a matrix, 446
Direct proof, 101–3
Directed graph

connected, 568
definition of, 478
initial point, 478
path in, 483
reachability in, 557–62, 602
reachability matrix, 559
reachable node in, 483, 557
terminal point, 478
Warshall’s algorithm, 562–65

Disjoint cycles, 395
Disjoint sets, 232
Disjunct, 3
Disjunction, 3
Disjunctive normal form, 643
Disjunctive syllogism, 37
Distributive inference rule, 37
Distributive property, 9, 234, 250
Divide-and-conquer algorithm, 208,

468
Divide-and-conquer recurrence

relation, 193–97
Divides, 107
DNA, 205
Document Type Definition, 788
Domain

of a function, 383
of an interpretation, 41

Don’t-care condition, 653
Double negation equivalence rule, 28
Double negation property, 624, 633
DTD, 788
Dual

of Boolean algebra property, 623
of set identity, 235
of a tautological equivalence, 9

Dummy variable, 41
Dwyer function, 407

E
Edge, 477, 478
Elementary row operations, 454
Empty set, 224
Empty string, 163, 694
Enqueue, 599
Entity integrity, 367, 375
Entity relationship diagram, 365
Equal functions, 387
Equal matrices, 447
Equal sets, 223

Equivalence class, 339
Equivalence connective, 3
Equivalence relation, 339–44

definition of, 339
and equivalence class, 339
and partitions, 340

Equivalence rules
associative, 28
commutative, 28
definition of, 28
De Morgan’s laws, 28
double negation, 28
implication, 28

Equivalent Boolean expressions, 645
Equivalent grammars, 791
Equivalent sets, 401–2

Cantor’s theorem, 401
definition of, 401

Equivalent states, 739
Equivalent wffs, 8
Erasing convention, 789
Euclid, 98, 133, 148
Euclidean algorithm, 133–35, 144,

145, 210, 217, 432
binary GCD algorithm, 142
greatest common divisor, 133

Euler, Leonhard, 488, 571
Euler path, 572, 573
Euler phi function, 149–51, 431

definition of, 150
Euler’s formula, 488
Even node, 572
Even number, 101
Even permutation, 700
Event, 302
Exclusive OR, 22, 430, 634, 656
Exhaustive proof, 100–101
Existential generalization, 59, 62
Existential instantiation, 59, 60
Existential quantifier, 40
Expected value, 310–12

definition of, 310
linearity of, 312

Expert system, 81
Exportation inference rule, 37
Extensible Markup Language, 788

F
Faivre, Alain, 136
Fermat, Pierre de, 143
Fermat’s last theorem, 143
Fermat’s little theorem, 432, 445
Fibonacci sequence, 159, 188, 301
Field-programmable gate array

(FPGA), 647

Figurate numbers, 200
Final state, 734, 765
Finite set, 223
Finite state machine, 479, 728–48

binary adder, 731–33
definition of, 729
equivalent states in, 739
final state, 734
input alphabet, 729
k-equivalent states in, 739
Kleene’s theorem, 737
minimization, 737–44
minimization algorithm, 742
next-state function, 729
output alphabet, 729
output function, 729
recognition by, 734
and regular sets, 737
and sequential networks, 744–48
state graph, 730
state table, 730
unreachable state of, 737

First principle of induction, 110–12,
250

definition of, 111
First order recurrence relation, 182
Five-color theorem, 507
Flip-flop, 744
Floating point operations, 460
Floor function, 386
Floyd’s algorithm, 593
Foreign key, 368
Forest, 510
Formal language, 782–95. See also

Language
and computational devices,792–93
definition of, 785
generated by a grammar, 784
hierarchy of, 793

Formal logic, 1–96
predicate logic, 58–69, 773
propositional logic, 25–35

Formal system
completeness of, 27, 58
correctness of, 27, 58

Four-color problem, 507
Free monoid, 695
Free tree, 509
Free variable, 42
Full binary tree, 510
Full-adder, 649
Function, 381–402

Ackermann’s function, 407
bijection, 390
as a binary relation, 383
ceiling function, 386

Index 963

characteristic, 406
codomain, 383
composition, 391
composition of, 390–92
definition of, 383
domain, 383
Dwyer function, 407
equality of, 387
floor function, 386
hash function, 441
identity function, 392
image under, 383
injective, 389
inverse, 392–94
left inverse, 408
modulo, 386
of more than one variable, 385
next-state, 729
nondeterministic, 411
number of, 397–400
number-theoretic, 767
one-to-one, 389
onto, 388
order of magnitude of, 412–21
output, 729
partial, 767
permutation, 394–96
preimage under, 383
properties of, 388–90
range of, 388
right inverse, 408
Smorynski function, 407
surjective, 388
total, 767
truth, 640
Turing-computable, 768

Fundamental Theorem of Arithmetic,
144–48

definition of, 144
Fuzzy logic, 23, 250
Fuzzy set, 250

G
Gates, William, 211
Gauss, Karl Friedrich, 110, 454
Gaussian elimination, 453–57
Generating permutations, 280–85
Generator of a cyclic group, 713
Geometric progression (geometric

sequence), 124
Global clustering coefficient, 500
Gödel, Kurt, 98, 773
Goldbach conjecture, 149, 154
Golden ratio, 160, 219
Goodman, Jacob, 211

Graham, Ronald, 287
Grammar

ambiguous, 798
Backus-Naur form, 787
bottom-up parsing, 794
Chomsky hierarchy, 790
classes of, 789–92
context-free (type 2), 790, 793–95
context-sensitive (type 1), 790
direct generation (direct derivation)

in, 784
equivalent, 791
erasing convention, 789
generation (derivation) in, 784
language generated by, 784
parse tree, 793
phrase-structure (type 0)

grammar, 783
production, 783
regular (type 3), 790
start symbol, 783
terminal, 783
top-down parsing, 794

Graph, 476–96. See also Tree
acquaintanceship graph, 499
acyclic, 482
adjacency list, 494
adjacency matrix, 492
adjacency relation, 555
adjacent nodes in, 481
algorithms, 553–604
applications, 479–81
arc, 477, 478
articulation point, 607
Bellman-Ford algorithm, 592
biconnected, 608
biconnected components, 608
bipartite complete, 483
breadth-first search of, 598–601
chromatic number of, 507
colorability, 506
coloring of, 507
complement of, 506
complete, 482
connected, 482
connected component of, 603
cycle in, 482
definition (formal), 478
definition (informal), 477
degree of a node, 481
degree of separation, 499
depth-first search of, 596–98
Dijkstra’s algorithm, 581
directed. See Directed graph
dual graph for a map, 507
edge, 477, 478

endpoints of an arc, 478
Euler path in, 572
Euler’s formula, 488
even node, 572
five-color theorem, 507
Floyd’s algorithm, 593
four-color problem, 507
global clustering coefficient, 500
Hamiltonian circuit in, 576
homeomorphic, 491
in-degree of a node, 579
isolated node, 481
isomorphic, 484–87
isomorphism, 486
Kruskal’s algorithm, 594
Kuratowski theorem, 491
labeled, 479
length of a path, 482
loop in, 481
loop-free, 481
map-coloring problem, 506
minimal spanning tree, 587
node, 477, 478
odd node, 572
out-degree of a node, 579
parallel arcs in, 481
path in, 482
Petersen, 492
planar, 487–92
Prim’s algorithm, 587
self-complementary, 506
shortest path problem, 581–87
simple, 481
six-color theorem, 508
spanning tree in, 587
sparse adjacency matrix, 494
subgraph of, 482
theorem on Euler paths, 573
traversal, 596
traversal algorithms, 596–604
trees, 509–21
vertex, 477, 478
weighted, 479

Graph coloring problem, 778
Greatest common divisor, 133, 144
Greatest element, 338
Greatest lower bound, 637
Greedy algorithm, 586
Group

alternating, 701
automorphism, 714
Cayley’s theorem, 708
center of a, 713
commutative, 688
coset, 717
cyclic, 713

964 Index

Group (cont.)
definition of, 688
generator of, 713
homomorphism, 702
idempotent element, 713
improper subgroup of, 700
isomorphic, 702–8
isomorphism, 702
kernel of a homomorphism, 716
Lagrange’s theorem, 701
left cancellation law, 696
left identity element, 712
left inverse element, 713
order of, 698
permutation group, 700
of permutations, 693
proper subgroup of, 700
right cancellation law, 696
right identity element, 712
right inverse element, 713
subgroup of, 699
symmetric group of degree n, 693
of symmetries of an equilateral

triangle, 710
Group code, 719

H
Haken, Wolfgang, 507
Half-adder, 649
Halting problem, 774
Hamilton, William Rowan, 576
Hamiltonian circuit, 576, 777
Hamming distance, 718
Hamming, Richard W., 718
Hash function, 424, 441
Hash table, 425
Hashing, 424–27

chaining, 426
collision, 425
collision resolution, 425
cryptographic hash functiom, 434
hash function, 424
hash table, 425
linear probing, 425
load factor, 427

Hasse diagram, 336, 479
Heap, 527
Heapsort algorithm, 527
Height of a tree, 510
Highway inspector problem, 554, 571
Hilbert, David, 772
Hilbert’s tenth problem, 772
Hoare, Anthony, 86
Hoare triple, 86
Homeomorphic graphs, 491

Homogeneous recurrence relation, 182
Homomorphism, 702
Hopkins, Brian, 571
Horn clause, 76
Horner’s method, 213
HTML, 788
Huffman code, 539–46

encoding algorithm, 542
JPEG compression, 547
prefix code, 541

Hypertext Markup Language, 788
Hypothesis of an argument, 25
Hypothetical syllogism, 33, 37

I
Idempotent property, 622
Identity element, 687
Identity function, 392
Identity matrix, 451
Identity permutation, 396
Identity property, 9, 234
Image under a function, 383
Immediate predecessor, 336
Implication, 3
Implication equivalence rule, 28
Improper subgroup, 700
Inclusive OR, 22
Inconsistency inference rule, 37
Independent events, 307
Index of summation, 182
Index set, 250
Induction

basis step, 111
equivalence to well-ordering, 119
first principle of, 110–12
inductive assumption, 112
inductive hypothesis, 112
inductive step, 111
proofs by, 112–18
second principle of, 118–22
structural induction, 164, 520

Inductive assumption, 112
Inductive definition, 158
Inductive hypothesis, 112
Inductive reasoning, 99
Inductive step, 111
Inference rules

addition, 29
conjunction, 29
contraposition, 37
definition of, 29
disjunctive syllogism, 37
distributive, 37
existential generalization, 59, 62

existential instantiation, 59, 60
exportation, 37
hypothetical syllogism, 33, 37
inconsistency, 37
modus ponens, 29
modus tollens, 29
resolution, 76
self-reference, 37
simplification, 29
universal generalization, 59, 61
universal instantiation, 59

Infinite sequence. See Sequence
Infix notation, 244, 518
Ingerman, P.Z, 788
Initial point, 478
Injective function, 389
Inorder tree traversal, 515
Input alphabet, 729
Integer overflow, 344
Intermediate statement, 43
Internal node in a tree, 510
Interpretation, 41

domain of, 41
Intersection of binary relations, 331
Intersection of sets, 231
Intractable problem, 417, 776
Inverse

of a binary relation, 350
of a function, 392–94
of an implication, 21
of a matrix, 452

Inverse element, 687
Inverse function, 393
Inverter, 12, 639
Invertible matrix, 452
IP address, 257
Irreflexive relation, 349
ISBN, 435
Isolated node, 481
Isomorphic Boolean algebras, 629
Isomorphic graphs, 484–87
Isomorphic groups, 702–8
Isomorphic partially ordered sets, 634
Isomorphic structures, 626
Isomorphic trees, 527
Isomorphism, 626
Iterative algorithm, 166

J
Join operation, 370
JPEG compression, 547

K
Karnaugh map, 665–72

steps in using, 669
k-equivalent states, 739

Index 965

kernel of a homomorphism, 716
Kim, Deokhwan, 654
Kleene, Stephen, 737, 771
Kleene’s theorem, 737
Knight, John, 136
Knowledge-based system, 81
Koutis, Ioannis, 460
Kroeker, Kirk, 460
Kruskal’s algorithm, 594
Kuratowski, Kazimierz, 491
Kuratowski theorem, 491

L
Labeled graph, 479
Lagrange, Joseph-Louis, 701
Lagrange’s theorem, 701
Lamé, Gabriel, 217
Language. See also Formal language

alphabet, 782
context-free, 790
context-sensitive, 790
generated by a grammar, 784
over an alphabet, 782
palindrome, 797
pumping lemma, 798
regular, 790
type 0, 790
vocabulary, 782
word, 782

Lattice, 637
complemented, 637
distributive, 637

Leaf of a tree, 510
Least common multiple, 152
Least element, 338
Least upper bound, 637
Left cancellation law, 696
Left child node, 510
Left identity element, 712
Left inverse

of an element, 713
of a function, 408

Length of a string, 694
Level-order tree traversal, 606
Lexical analyzer, 794
Lexicographical ordering, 281, 351
L’Hôpital’s rule, 422
Linear bounded automaton (lba), 792
Linear combination, 144
Linear equations

definition of, 447
Gaussian elimination, 453–57
solving systems of, 453–57

Linear first-order recurrence relations,
180–88

Linear probing, 425
Linear recurrence relation, 182
Linear second-order recurrence

relations, 188–193
Linked list, 494
Little oh, 417
Load factor, 427
Logarithm function, 809–12
Logic. See also Formal logic

fuzzy, 23
many-valued, 23
three-valued, 23, 374
two-valued, 23

Logic network, 479, 638–53
AND gate, 639
canonical product-of-sums form,

660
canonical sum-of-products form,

643
combinational network, 638–48,

744
conjunctive normal form, 660
delay element, 744
disjunctive normal form, 643
don’t-care condition, 653, 672
field-programmable gate array,

647
flip-flop, 744
full-adder, 649
half-adder, 649
inverter, 639
Karnaugh map, 665–71
minimization, 663–77
multiplexor, 663
NAND gate, 650
NOR gate, 651
OR gate, 639
programmable logic device, 647
Quine–McCluskey procedure,

673–77
sequential, 744–801

Logic programming, 73–82
Logical connective, 2–8

AND, 11, 75
conjunction, 2
disjunction, 3
equivalence, 3
implication, 3
negation, 4
NOT, 11, 75
OR, 11, 75
order of precedence, 6
and programming, 11
truth table, 3
XOR, 22

Loop in a graph, 481
Loop invariant, 130
Loop rule of inference, 129–33

definition of, 131
Lossy compression scheme, 547
Lower bound for sorting, 536
Lucas sequence, 174, 201
Lukasiewicz, J., 518

M
Machine. See Finite-state machine
Maclaurin series, 411
Main connective, 6
Main diagonal of a matrix, 447
Many-valued logic, 23
Map coloring problem, 506
Mapping. See Function
Markov, A., 771
Marley, Scott, 24
Master theorem, 417–21

proof of, 419–21
statement of, 418

Mathematical induction. See Induction
Mathematical structure, 619
Matrix, 446–59

addition, 449
augmented, 453
Boolean, 458–59
of coefficients, 447
cofactor of an element, 473
definition of, 446
determinant of, 473
diagonal, 463
dimensions of, 446
elementary row operations on, 454
equal, 447
Gaussian elimination, 453–57
identity, 451
inverse of, 452
invertible, 452
main diagonal, 447
minor of an element, 473
multiplication, 450
operations on, 448–53
scalar multiplication, 448
Strassen’s algorithm, 467
subtraction, 449
symmetric, 447
transpose of, 463
upper triangular, 453
zero, 449

Maximal element, 338
Mergesort algorithm, 215
Metadata, 366

966 Index

Meynadier, Jean-Marc, 136
Miller, Gary, 460
Minimal element, 338
Minimization

of Boolean expressions, 645–47
of combinational network, 663–77
of finite-state machine, 737–44

Misailovic, Sasa, 654
Modular arithmetic, 692
Modular multiplicative inverse, 356
Modular property, 633
Modulo function, 386, 423–40

ABA routing number, 437
in cryptographic hashing, 434
to decompose integers, 438
to generate integer values, 437
for hashing, 427
ISBN, 435
modular arithmetic designs, 438
residue of x modulo n, 423
in RSA, 431
UPC-A, 436

Modus ponens, 27, 29
Modus tollens, 29
Monoid, 689
Morse code, 541
Multiplexor, 663
Multiplication modulo n, 692
Multiplication of matrices, 450
Multiplication principle, 252–53

definition of, 253

N
ℕ, 224
n factorial, 99, 272
NAND gate, 22, 650
n-ary predicate, 40
n-ary relation, 330
n-ary relation on a set, 356
Necessary condition, 4
Negation connective, 4
Negation of a statement, 5
Network. See Logic network
Netz, Reviel, 286
Next-state function, 729
Node, 337, 477, 478
Nondeterministic function, 411
Nondeterministic Turing machine, 777
Nonrooted tree, 509
NOR gate, 23, 651
NOT connective, 11, 75
NP, 777
NP-complete problem, 778
Null pointer, 495
Null set, 224

Number theory, 107, 143–51
Number theoretic function, 767

O
Odd node, 572
Odd number, 101
Odd permutation, 700
One-to-one function, 389
One-way encryption, 434
Only, 43
Only if, 4
Onto function, 388
Operation

binary, 228–30
unary, 230

Optimal algorithm, 533
OR connective, 11, 75
OR gate, 12, 639
Order of a group, 698
Order of magnitude, 412–21

big oh, 417
big theta, 413
definition of, 413
little oh, 417
master theorem, 418

Order of precedence, 6
Ordered pair, 228
Ore, Oystein, 580
Outer join, 369
Output alphabet, 729
Output function, 729

P
P

definition of, 777
and NP, 77–78

Page, Larry, 497
Palindrome, 163, 797
Palindrome language, 797
Papadimitriou, Christos, 211
Paradox, 69, 251
Parallel arcs, 481
Parent node in a tree, 509
Parity bit, 126, 733
Parse tree, 511, 793
Parsing

bottom-up, 794
top-down, 794

Partial correctness, 132
Partial function, 767
Partial ordering, 336–38

chain, 338
definition of, 336
greatest element, 338

greatest lower bound, 637
Hasse diagram, 336
immediate predecessor in, 336
lattice, 637
least element, 338
least upper bound, 637
maximal element, 338
minimal element, 338
predecessor in, 336
restriction of, 336
successor in, 336
total ordering, 338

Partially ordered set, 336
dual of, 350

Partition, 339
Partition refinement, 741
Pascal, Blaise, 294
Pascal’s formula, 295
Pascal’s triangle, 294–96
Password encryption, 433–35
Path

in a directed graph, 483
in a graph, 482

Pattern matching, 205
Peirce arrow, 23
Peng, Richard, 460
Pentagonal numbers, 200
Perfect square, 107
Perl, 757
Permutation function, 394–96

cycle notation, 395
definition of, 394
derangement, 396
disjoint cycles, 395
identity permutation, 396

Permutation group, 700
Permutations, 272–74

definition of, 272
eliminating duplicates, 279
generating, 282
with repetitions, 279

PERT chart, 357, 479
Petersen graph, 492
Phrase structure (type 0) grammar, 783
Pig latin, 797
Pigeonhole principle, 269
Plaintext, 428
Planar graph, 487–92
Plato, 154
Plaza, Jan, 186
Polish notation, 518
Polynomial, 690
Poset, 336
Post, E., 771
Postcondition, 86
Postfix notation, 244, 518

Index 967

Postorder tree traversal, 515
Power set, 227
Precondition, 86
Predecessor, 336
Predicate, 39–42

binary, 40
definition of, 39
n-ary, 40
ternary, 40
unary, 40, 223

Predicate logic, 58–69
completeness of, 63, 773
correctness of, 63, 773
definition of, 58
derivation rules for, 58–62
valid argument in, 58
well-formed formula, 41

Predicate well-formed formula, 35, 41
validity of, 48

Prefix code, 541
Prefix notation, 518
Preimage, 383
Prenex normal form, 57
Preorder tree traversal, 514
Primary key, 367
Prime number, 107

Mersenne primes, 153
Prim’s algorithm, 587
Principle of inclusion and exclusion,

150, 264–68, 300, 304
definition for n sets, 267
definition for three sets, 265

Principle of well-ordering, 119, 250, 702
Private key encryption, 431
Probability, 301–14

axioms, 304
Bayes’ theorem, 308–9, 321
Bernoulli trial, 313
binomial distribution, 313–14
birthday problem, 318
conditional, 306–7
equally likely outcomes, 302
event, 302
expected value, 310–12
independent events, 307
linearity of expected value, 312
probability distribution, 305
random variable, 310
sample space, 302
weighted average, 310

Probability distribution, 305
Procedural language, 73
Product notation, 807–08
Production, 783
Program testing, 85
Program validation, 85

Program verification, 84
Programmable logic device (PLD), 647
Programming language

declarative, 73
descriptive, 73
procedural, 73

Project operation, 369
Prolog, 73–81

database, 73
fact, 73
program, 73
query, 73
recursive rule, 80
rule, 75
rule of inference, 76

Proof by cases, 104
Proof of correctness, 84–92, 129–35

assertions, 85–87
assignment rule, 87–89
conditional rule, 90–92
definition of, 85
loop rule, 129–33

Proof sequence, 27
Proof techniques, 98–107

contradiction, 104–6
contraposition, 103–4
direct proof, 101–3
exhaustive proof, 100–101
indirect proof, 104
induction, 110–22
serendipity, 107

Proper subgroup, 700
Proper subset, 225
Proposition, 2
Propositional calculus, 25
Propositional logic, 25–35

completeness of, 32
correctness of, 32
definition of, 25
derivation rules for, 28–33
valid argument in, 25–28
well-formed formula, 25

Propositional well-formed formula,
25

Pseudocode, 12
Public key encryption, 431
Pumping lemma, 798
Pushdown automaton (pda), 792
Pythagorean Society, 200

Q
ℚ, 224
Quantifier, 39–42

existential, 40
universal, 39

Queue, 599
dequeue, 599
enqueue, 599

Quicksort algorithm, 215
Quine–McCluskey procedure, 673–77

R
ℝ, 224
Random variable, 310
Range of a function, 388
Rational number, 105
Reachability, 557–62, 602
Reachability matrix, 559
Reachable node, 483, 557
Recaman’s sequence, 180
Recognition

by finite-state machine, 734
by Turing machine, 765

Recurrence relation,159, 180–97
characteristic equation of, 190
closed-form solution, 180
constant coefficients in, 182
definition of, 159
divide-and-conquer, 193–97
first-order, 182
general solution (divide-and-

conquer), 196
general solution (first-order), 183
general solution (second-order),

193, 196
homogeneous, 182
linear, 182
linear first-order, 182
second-order, 188
solving, 180

Recursion, 79–81, 158–71
recursive algorithm, 166–71
recursive definition, 79, 158
recursive operation, 165–66
recursive sequence, 158–62
recursive set, 162–64

Referential integrity, 375
Refinement of a partition, 354, 741
Reflexive relation, 332
Regular expression, 735
Regular (type 3) grammar, 790
Regular language, 790
Regular set, 736
Relation. See Binary relation
Relational algebra, 372
Relational calculus, 372
Relational database. See Database
Relatively prime, 146
Residue of x modulo n, 423
Resolution, 76

968 Index

Restrict operation, 369
Restriction of a partial ordering, 336
Reverse Polish notation (RPN), 518
Right cancellation law, 696
Right child node, 510
Right identity element, 712
Right inverse

of an element, 713
of a function, 408

Rinard, Martin, 654
Rivest, Ron, 431
Root of a tree, 509
RSA public-key encryption

algorithm, 431
Rule-based system, 81
Russell, Bertrand, 251
Russell’s paradox, 251

S
Sample space, 302
Satisfiability problem, 778
Scalar, 448
Scalar multiplication, 448
Scanner, 794
Scope of a quantifier, 41
Searching

binary search, 169
binary tree search, 352, 534
decision tree for, 529–35
by hash function, 425
lower bound for, 532–33
sequential search, 204, 415

Second principle of induction, 118–22,
144, 160, 251

definition of, 118
Second-order recurrence relation, 188
Seemann, Glenn, 749
Selection sort algorithm, 169, 215
Self-complementary graph, 506
Self-reference inference rule, 37
Semigroup, 689
Semigroup of transformations, 693
Sequence

definition of, 158
Fibonacci, 159
recursive, 158–62

Sequential network, 744–48
definition of, 745

Sequential search algorithm, 204
Sequential search analysis, 205,

207, 216
Serendipity, 106–7
Sets, 222–39

binary operation on, 229
binary relation on, 329

Cantor’s diagonalization
method, 237

cardinality of, 236–39, 401
Cartesian product (cross product)

of, 233
characteristic function of, 406
closure of, 229, 686
complement of, 232
countable, 236
denumerable, 236, 401
difference of, 232
disjoint, 232
empty, 224
equality of, 223
equivalent, 401–402
finite, 223
fuzzy, 250
identities, 233–36
intersection of, 231
membership, 222
n-ary relation on, 330
notation, 222–24
null, 224
operations on, 230–33
partial ordering on, 336
partially ordered, 336, 634
partition of, 339
permutations of, 394
power set of, 227
proper subset of, 225
recognition by finite-state

machine, 734
recognition by Turing machine, 765
subset of, 224
symmetric difference of, 248
unary operation on, 230
uncountable, 236
union, 231
universal, 231

Shamir, Adi, 431
Shannon, Claude, 638
Sharan, Roded, 497
Sheffer stroke, 22
Sieve of Eratosthenes, 154
Simple closed polygon, 127, 263

triangulation of, 263
Simple graph, 481
Simple statement, 2
Simple substitution cipher, 429
Simplex method, 417
Simplification inference rule, 29
Six-color theorem, 508
Sloane, Neil, 179
Smorynski function, 407
Smullyan, Raymond, 25, 771

Sorting
bubble sort, 214
decision tree for, 535–36
heapsort, 527
lower bound for, 536
mergesort, 215
quicksort, 215
selection sort, 169, 215

Spanning tree, 587, 601
Sparse adjacency

matrix, 494
SQL, 372
Square numbers, 200
Stack, 167, 409

pop instruction, 409
push instruction, 409
stack overflow, 167

Standard sets, 224
Start symbol, 783
State graph, 730
State table, 730
Statement, 2
Statement letter, 2
Statement logic, 25
Stewart, Ian, 174
Stirling numbers, 355
Stirling’s triangle, 355
Strassen’s algorithm, 467
String, 694

binary, 163
concatenation, 163
empty, 163
palindrome, 163
pattern matching, 205

Structural induction, 164, 520
Subgraph, 482
Subgroup, 699
Subset, 224
Subtraction of matrices, 449
Successor, 336
Sudoku, 154
Sufficient condition, 4
Summation notation, 182, 805–07
Sun-Tsu, 445
Surrogate key, 368
Swift, Jonathan, 550
Symbol, 694
Symbol table, 441
Symbolic logic, 68
Symmetric difference of sets, 248
Symmetric encryption, 431
Symmetric matrix, 447
Symmetric relation, 332
Syntax analyzer, 794
Syntax rule, 6

Index 969

T
Tape alphabet, 762
Tautological equivalence, 9

associative property, 9
commutative property, 9
complement property, 9
distributive property, 9
identity property, 9

Tautology, 8–10
definition of, 8

Temporary hypothesis, 64
Terminal, 783
Terminal point, 478
Ternary predicate, 40
Ternary tree, 537
Theorem, 98, 773
Three-valued logic, 23, 374
Tiling problem, 117
Token, 163
Top down parsing, 794
Topological sorting, 356–61, 602

definition of, 359
Total function, 767
Total ordering, 338
Towers of Hanoi, 179, 199
Transitive relation, 332
Transpose of a matrix, 463
Transposition, 700
Traveling salesman problem, 554, 577
Tree, 353, 509–21

applications of, 511–12
binary, 510
binary search, 534
B-tree, 526
child node, 509
complete binary, 510
decision tree, 257–58, 529–36
definition of, 509
depth of, 510
depth of a node, 510
forest, 510
free, 509
full binary, 510
height of, 510
inorder traversal, 515
internal node in, 510
isomorphic, 527
leaf of, 510
left child in, 510
left child-right child

representation, 513
level-order traversal, 606
nonrooted, 509
parent node, 509

postorder traversal, 515
preorder traversal, 514
right child in, 510
root, 509
ternary, 537
traversal, 514

Tree arc, 608
Tree traversal, 514
Triangular numbers, 200
Triangulation of a convex polygon, 263
Truth function, 640
Truth table, 3
Tuple, 366
Turing, Alan M., 428, 760, 771
Turing computable function, 768
Turing machine, 759–78

acceptance by, 765
Church–Turing thesis, 770
decision problem, 771–76
definition of, 762
final state, 765
as function computer, 767–69
halting problem, 774
nondeterministic, 777
NP, 777
NP-complete problem, 778
P, 777
recognition by, 765
as set recognizer, 764–67
tape alphabet, 762
unsolvability of halting problem,

774
Two’s complement, 660
Two-valued logic, 23
Type 0 language, 790

U
Unary connective, 3
Unary operation, 230
Unary predicate, 40, 223
Uncomputability, 771–76
Uncomputable problem, 772
Uncountable set, 236
Undecidable problem, 772
Union of binary relations, 331
Union of sets, 231
Universal bound property, 624
Universal generalization, 59, 61
Universal instantiation, 59
Universal quantifier, 39
Universal set, 231
Universe of discourse, 231
Unreachable state, 737

Unsolvability of the halting
problem, 774

Unsolvable problem, 772
UPC-A (Universal Product Code), 436
Upper bound, 210
Upper triangular matrix, 453

V
Valid argument

in predicate logic, 58
in propositional logic, 25–28

Valid predicate wff, 48
Vandermonde’s identity, 293
Vector, 448

dot product of, 463
magnitude of, 463

Venn, John, 231
Venn diagram, 231
Vertex, 337, 477, 478
Vocabulary, 782

W
Warshall’s algorithm, 562–65

analysis of, 565
Weighted average, 310
Weighted graph, 479
Well-balanced parentheses, 780
Well-defined binary operation, 229
Well-formed formula (wff), 6

comparison of propositional and
predicate, 48

equivalent, 8
predicate, 35, 41
propositional, 25

Well-ordering principle, 119, 250, 702
Wff. See Well-formed formula
Wiles, Andrew, 143
Wilson, Robin, 571
Word, 694, 782

X
XML, 788
XOR, 22

Y
Yin, Xiang, 136

Z
ℤ, 224
Zero matrix, 449
Zero-degree polynomial, 691

	Cover
	Title Page
	Copyright
	Contents
	CHAPTER 1 Formal Logic
	1.1 STATEMENTS, SYMBOLIC REPRESENTATION, AND TAUTOLOGIES
	Connectives and Truth Values
	Tautologies
	Logical Connectives in the Real World
	An Algorithm
	SPECIAL INTEREST PAGE: Can “And” Ever Be “Or”?
	SECTION 1.1 Review
	EXERCISES 1.1

	1.2 PROPOSITIONAL LOGIC
	Valid Arguments
	Derivation Rules for Propositional Logic
	Deduction Method and Other Rules
	Verbal Arguments
	SECTION 1.2 Review
	EXERCISES 1.2

	1.3 QUANTIFIERS, PREDICATES, AND VALIDITY
	Quantifiers and Predicates
	Translation
	Validity
	SECTION 1.3 Review
	EXERCISES 1.3

	1.4 PREDICATE LOGIC
	Derivation Rules for Predicate Logic
	Universal Instantiation
	Existential Instantiation
	Universal Generalization
	Existential Generalization
	More Work with Rules
	Verbal Arguments
	Conclusion
	SECTION 1.4 Review
	EXERCISES 1.4

	1.5 LOGIC PROGRAMMING
	Prolog
	Horn Clauses and Resolution
	Recursion
	Expert Systems
	SECTION 1.5 Review
	EXERCISES 1.5

	1.6 PROOF OF CORRECTNESS
	Assertions
	Assignment Rule
	Conditional Rule
	SECTION 1.6 Review
	EXERCISES 1.6
	Chapter 1 Review
	On the Computer

	CHAPTER 2 Proofs, Induction, and Number Theory
	2.1 PROOF TECHNIQUES
	Theorems and Informal Proofs
	To Prove or Not to Prove
	Exhaustive Proof
	Direct Proof
	Contraposition
	Contradiction
	Serendipity
	Common Definitions
	SECTION 2.1 Review
	EXERCISES 2.1

	2.2 INDUCTION
	First Principle of Induction
	Proofs by Mathematical Induction
	Second Principle of Induction
	SECTION 2.2 Review
	EXERCISES 2.2

	2.3 MORE ON PROOF OF CORRECTNESS
	Loop Rule
	Euclidean Algorithm
	SPECIAL INTEREST PAGE: Making Safer Software
	SECTION 2.3 Review
	EXERCISES 2.3

	2.4 NUMBER THEORY
	The Fundamental Theorem of Arithmetic
	More on Prime Numbers
	Euler Phi Function
	SECTION 2.4 Review
	EXERCISES 2.4
	Chapter 2 Review
	On the Computer

	CHAPTER 3 Recursion, Recurrence Relations, and Analysis of Algorithms
	3.1 RECURSIVE DEFINITIONS
	Recursively Defined Sequences
	Recursively Defined Sets
	Recursively Defined Operations
	Recursively Defined Algorithms
	SECTION 3.1 Review
	EXERCISES 3.1

	3.2 RECURRENCE RELATIONS
	Linear First-Order Recurrence Relations
	Expand, Guess, and Verify
	A Solution Formula
	Linear Second-Order Recurrence Relations
	Divide-and-Conquer Recurrence Relations
	SECTION 3.2 Review
	EXERCISES 3.2

	3.3 ANALYSIS OF ALGORITHMS
	The General Idea
	Analysis Using Recurrence Relations
	Upper Bound (Euclidean Algorithm)
	SPECIAL INTEREST PAGE: Of Trees ... and Pancakes
	SECTION 3.3 Review
	EXERCISES 3.3
	Chapter 3 Review
	On the Computer

	CHAPTER 4 Sets, Combinatorics, and Probability
	4.1 SETS
	Notation
	Relationships Between Sets
	Sets of Sets
	Binary and Unary Operations
	Operations on Sets
	Set Identities
	Countable and Uncountable Sets
	SECTION 4.1 Review
	EXERCISES 4.1

	4.2 COUNTING
	Multiplication Principle
	Addition Principle
	Using the Principles Together
	Decision Trees
	SECTION 4.2 Review
	EXERCISES 4.2

	4.3 PRINCIPLE OF INCLUSION AND EXCLUSION; PIGEONHOLE PRINCIPLE
	Principle of Inclusion and Exclusion
	Pigeonhole Principle
	SECTION 4.3 Review
	EXERCISES 4.3

	4.4 PERMUTATIONS AND COMBINATIONS
	Permutations
	Combinations
	Eliminating Duplicates
	Permutations and Combinations with Repetitions
	Generating Permutations and Combinations
	SPECIAL INTEREST PAGE: Archimedes and the Stomachion
	SECTION 4.4 Review
	EXERCISES 4.4

	4.5 BINOMIAL THEOREM
	Pascal’s Triangle
	Binomial Theorem and Its Proof
	Applying the Binomial Theorem
	SECTION 4.5 Review
	EXERCISES 4.5

	4.6 PROBABILITY
	Introduction to Finite Probability
	Probability Distributions
	Conditional Probability
	Bayes’ Theorem
	Expected Value
	Binomial Distributions
	Average Case Analysis of Algorithms
	SECTION 4.6 Review
	EXERCISES 4.6
	Chapter 4 Review
	On the Computer

	CHAPTER 5 Relations, Functions, and Matrices
	5.1 RELATIONS
	Binary Relations
	Properties of Relations
	Closures of Relations
	Partial Orderings
	Equivalence Relations
	SECTION 5.1 Review
	EXERCISES 5.1

	5.2 TOPOLOGICAL SORTING
	SECTION 5.2 Review
	EXERCISES 5.2

	5.3 RELATIONS AND DATABASES
	Entity-Relationship Model
	Relational Model
	Operations on Relations
	Null Values and Three-valued Logic
	Database Integrity
	SECTION 5.3 Review
	EXERCISES 5.3

	5.4 FUNCTIONS
	Definition
	Properties of Functions
	Onto Functions
	One-to-One Functions
	Bijections
	Composition of Functions
	Inverse Functions
	Permutation Functions
	How Many Functions
	Equivalent Sets
	SECTION 5.4 Review
	EXERCISES 5.4

	5.5 ORDER OF MAGNITUDE
	Function Growth
	More on Analysis of Algorithms
	The Master Theorem
	Proof of the Master Theorem
	SECTION 5.5 Review
	EXERCISES 5.5

	5.6 THE MIGHTY MOD FUNCTION
	Hashing
	Computer Security
	Cryptography
	Hashing for Password Encryption
	Miscellaneous Applications
	Identification Codes
	Generating and Decomposing Integers
	Modular Arithmetic Designs
	SECTION 5.6 Review
	EXERCISES 5.6

	5.7 MATRICES
	Terminology
	Matrix Operations
	Gaussian Elimination
	Boolean Matrices
	SPECIAL INTEREST PAGE: Solve Millions of Equations, Faster than Gauss
	SECTION 5.7 Review
	EXERCISES 5.7
	Chapter 5 Review
	On the Computer

	CHAPTER 6 Graphs and Trees
	6.1 GRAPHS AND THEIR REPRESENTATIONS
	Definitions of a Graph
	Applications of Graphs
	Graph Terminology
	Isomorphic Graphs
	Planar Graphs
	Computer Representation of Graphs
	Adjacency Matrix
	Adjacency List
	SPECIAL INTEREST PAGE: Isomorphic Protein Graphs
	SECTION 6.1 Review
	EXERCISES 6.1

	6.2 TREES AND THEIR REPRESENTATIONS
	Tree Terminology
	Applications of Trees
	Binary Tree Representation
	Tree Traversal Algorithms
	Results about Trees
	SECTION 6.2 Review
	EXERCISES 6.2

	6.3 DECISION TREES
	Searching
	Lower Bounds on Searching
	Binary Tree Search
	Sorting
	SECTION 6.3 Review
	EXERCISES 6.3

	6.4 HUFFMAN CODES
	Problem and Trial Solution
	Huffman Encoding Algorithm
	Justification
	Application of Huffman Codes
	SECTION 6.4 Review
	EXERCISES 6.4
	Chapter 6 Review
	On the Computer

	CHAPTER 7 Graph Algorithms
	7.1 DIRECTED GRAPHS AND BINARY RELATIONS; WARSHALL’S ALGORITHM
	Directed Graphs and Binary Relations
	Reachability
	Warshall’s Algorithm
	SECTION 7.1 Review
	EXERCISES 7.1

	7.2 EULER PATH AND HAMILTONIAN CIRCUIT
	Euler Path Problem
	Hamiltonian Circuit Problem
	SECTION 7.2 Review
	EXERCISES 7.2

	7.3 SHORTEST PATH AND MINIMAL SPANNING TREE
	Shortest-Path Problem
	Minimal Spanning Tree Problem
	SPECIAL INTEREST PAGE: Pathfinding
	SECTION 7.3 Review
	EXERCISES 7.3

	7.4 TRAVERSAL ALGORITHMS
	Depth-First Search
	Breadth-First Search
	Analysis
	Applications
	SECTION 7.4 Review
	EXERCISES 7.4

	7.5 ARTICULATION POINTS AND COMPUTER NETWORKS
	The Problem Statement
	The Idea behind the Algorithm
	The Algorithm Itself
	SECTION 7.5 Review
	EXERCISES 7.5
	Chapter 7 Review
	On the Computer

	CHAPTER 8 Boolean Algebra and Computer Logic
	8.1 BOOLEAN ALGEBRA STRUCTURE
	Models or Abstractions
	Definition and Properties
	Isomorphic Boolean Algebras
	What is Isomorphism?
	Isomorphism as Applied to Boolean Algebra
	SECTION 8.1 Review
	EXERCISES 8.1

	8.2 LOGIC NETWORKS
	Combinational Networks
	Basic Logic Elements
	Boolean Expressions
	Truth Functions
	Networks and Expressions
	Canonical Form
	Minimization
	Programmable Logic Devices
	A Useful Network
	Other Logic Elements
	Constructing Truth Functions
	SPECIAL INTEREST PAGE: Pruning Chips and Programs
	SECTION 8.2 Review
	EXERCISES 8.2

	8.3 MINIMIZATION
	Minimization Process
	Karnaugh Map
	Maps for Three and Four Variables
	Using the karnaugh Map
	Quine–McCluskey Procedure
	SECTION 8.3 Review
	EXERCISES 8.3
	Chapter 8 Review
	On the Computer

	CHAPTER 9 Modeling Arithmetic, Computation, and Languages
	9.1 ALGEBRAIC STRUCTURES
	Definitions and Examples
	Basic Results about Groups
	Subgroups
	Isomorphic Groups
	SECTION 9.1 Review
	EXERCISES 9.1

	9.2 CODING THEORY
	Introduction
	Background: Homomorphisms and Cosets
	Generating Group Codes
	Decoding Group Codes
	SECTION 9.2 Review
	EXERCISES 9.2

	9.3 FINITE-STATE MACHINES
	Definition
	Examples of Finite-State Machines
	Recognition
	Regular Sets and Kleene’s Theorem
	Machine Minimization
	Unreachable States
	Minimization Procedure
	Sequential Networks and Finite-State Machines
	SPECIAL INTEREST PAGE: FSMs Behind the Game
	SECTION 9.3 Review
	EXERCISES 9.3

	9.4 TURING MACHINES
	Definition
	Turing Machines as Set Recognizers
	Turing Machines as Function Computers
	Church–Turing Thesis
	Decision Problems and Uncomputability
	Examples of Decision Problems
	Halting Problem
	Computational Complexity
	SECTION 9.4 Review
	EXERCISES 9.4

	9.5 FORMAL LANGUAGES
	Classes of Grammars
	Formal Languages and Computational Devices
	Context-Free Grammars
	SECTION 9.5 Review
	EXERCISES 9.5
	Chapter 9 Review
	On the Computer

	Appendix A: Derivation Rules for Propositional and Predicate Logic
	Appendix B: Summation and Product Notation
	Appendix C: The Logarithm Function
	Answers to Practice Problems
	Answers to Odd-Numbered Exercises
	Answers to Self-Tests
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

		2015-05-01T04:46:15+0000
	Preflight Ticket Signature

