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Introduction

Real-Life Math takes an international perspective in
exploring the role of mathematics in everyday life and is
intended for high school age readers. As Real-Life Math
(RLM) is intended for a younger and less mathematically
experienced audience, the authors and editors faced
unique challenges in selecting and preparing entries.

The articles in the book are meant to be understand-
able by anyone with a curiosity about mathematical topics.
Real-Life Math is intended to serve all students of math
such that an 8th- or 9th-grade student just beginning their
study of higher maths can at least partially comprehend
and appreciate the value of courses to be taken in future
years. Accordingly, articles were constructed to contain
material that might serve all students. For example, the
article, “Calculus” is intended to be able to serve students
taking calculus, students finished with prerequisites and
about to undertake their study of calculus, and students in
basic math or algebra who might have an interest in the
practical utility of a far-off study of calculus. Readers
should anticipate that they might be able to read and
reread articles several times over the course of their stud-
ies in maths. Real-Life Math challenges students on multi-
ple levels and is designed to facilitate critical thinking and
reading-in-context skills. The beginning student is not
expected to understand more mathematically complex
text dealing, for example, with the techniques for calculus,
and so should be content to skim through these sections
as they read about the practical applications. As students
progress through math studies, they will naturally appre-
ciate greater portions of more advanced sections designed
to serve more advanced students.

To be of maximum utility to students and teachers,
most of the 80 topics found herein—arranged alphabeti-
cally by theory or principle—were predesigned to corre-
spond to commonly studied fundamental mathematical
concepts as stated in high school level curriculum objec-
tives. However, as high school level maths generally teach
concepts designed to develop skills toward higher maths
of greater utility, this format sometimes presented a chal-
lenge with regard to articulating understandable or direct
practical applications for fundamental skills without
introducing additional concepts to be studied in more
advanced math classes. It was sometimes difficult to
isolate practical applications for fundamental concepts
because it often required more complex mathematical
concepts to most accurately convey the true relationship
of mathematics to our advancing technology. Both the
authors and editors of the project made exceptional
efforts to smoothly and seamlessly incorporate the con-
cepts necessary (and at an accessible level) within the text.

Although the authors of Real-Life Math include
math teachers and professors, the bulk of the writers are
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practicing engineers and scientists who use math on a
daily basis. However, RLM is not intended to be a book
about real-life applications as used by mathematicians
and scientists but rather, wherever possible, to illustrate
and discuss applications within the experience—and that
are understandable and interesting—to younger readers.

RLM is intended to maximize readability and accessi-
bility by minimizing the use of equations, example prob-
lems, proofs, etc. Accordingly, RLM is not a math textbook,
nor is it designed to fully explain the mathematics involved
in each concept. Rather, RLM is intended to compliment
the mathematics curriculum by serving a general reader
for maths by remaining focused on fundamental math
concepts as opposed to the history of math, biographies of
mathematicians, or simply interesting applications. To be
sure, there are inherent difficulties in presenting mathe-
matical concepts without the use of mathematical nota-
tion, but the authors and editors of RLM sought to use
descriptions and concepts instead of mathematical nota-
tion, problems, and proofs whenever possible.

To the extent that RLM meets these challenges it
becomes a valuable resource to students and teachers of
mathematics.

The editors modestly hope that Real-Life Math serves
to help students appreciate the scope of the importance
and influence of math on everyday life. RLM will achieve
its highest purposes if it intrigues and inspires students to
continue their studies in maths and so advance their
understanding of the both the utility and elegance of
mathematics.

“[The universe] cannot be read until we have learnt
the language and become familiar with the characters in
which it is written. It is written in mathematical language,
and the letters are triangles, circles, and other geometrical
figures, without which means it is humanly impossible to
comprehend a single word.” Galilei, Galileo (1564–1642)

K. Lee Lerner and Brenda Wilmoth Lerner, Editors
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Addition

Overview

Addition is the process of combining two or more
numbers to create a new value, and is generally consid-
ered the simplest form of mathematics. Despite its simplic-
ity, the ability to perform basic addition is the foundation
of most advanced mathematics, and simple addition,
repeated millions of times per second, actually underlies
much of the processing performed within the most
advanced electronic computers on earth. Despite its ele-
mentary nature, the process of adding numbers together
remains one of the most useful mathematical operations
available, as well as perhaps the most common type of
calculation performed on a daily basis by most adults.

Fundamental Mathematical Concepts
and Terms

An addition equation requires only two terms to
describe its component parts. When asked to name the
simplest equation possible, most adults would respond
with 1 � 1 � 2, probably the first math operation they
learned. In this simple equation, the two 1s are termed
addends, while the result of this or any other addition
equation is known as the sum, in this case the value 2.
Because this final value is called a sum, it is also correct,
though less common, to describe the process of adding as
summing, as in the expression, “Sum the five daily values
to find the total attendance for the week.” While the addi-
tion sign is properly called a plus sign, one does not ever
refer to the process of addition as “plus-ing” two values.

A Brief History of Discovery 
and Development

Because the basic process of addition is so simple, its
exact origins are impossible to identify. Near the begin-
ning of recorded history, a variety of endeavors including
commerce, warfare, and agriculture required the ability
to add numbers; for some lines of work, addition was
such a routine operation that specific tools became nec-
essary in order to streamline the process. The most basic
counting tools consisted of a small bag of stones or other
small objects that could be used to tally an inventory of
goods. In the case of shipping, a merchant counting sacks
of grain as they were loaded onto his ship would move
one small stone aside for each sack loaded, providing
both a running total and a simple method to double-
check the final count. Upon arrival, this same collection
of stones would serve as the ship’s manifest, allowing a
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running count of the shipment as it was unloaded. In the
case of warfare, a general might number his horses using
this same method of having each object represented by a
stone, a small seashell, or some other token. The key prin-
ciple in this type of system was a one-to-one relationship
between the items being counted and the smaller sym-
bolic items used to maintain the tally.

Over time, these sets of counting stones gradually
evolved into large counting tables, known as abaci, or in
the singular form, an abacus. These tables often featured
grooves or other placement aids designed to insure accu-
racy in the calculations being made, and tallies were made
by placing markers in the proper locations to symbolize
ones, tens, and hundreds. The counting tables developed
in numerous cultures, and ancient examples survive from
Japan, Greece, China, and the Roman Empire. Once these
tables came into wide use, a natural evolution, much like
that seen in modern computer systems, occurred, with
the bulky, fixed tables gradually morphing into smaller,
more portable devices. These smaller versions were actu-
ally the earliest precursors of today’s personal calculator.

The earliest known example of what we today recog-
nize as the hand-held abacus was invented in China
approximately 5,000 years ago. Consisting of wood and
moveable beads, this counting tool did not actually per-
form calculations, but instead assisted its human opera-
tor by keeping a running total of items added. The
Chinese abacus was recognized as an exceptionally useful
tool, and progressively spread throughout the world.
Modern examples of the abacus are little changed from
these ancient models, and are still used in some parts of
the world, where an expert user can often solve lengthy
addition problems as quickly as someone using an elec-
tronic calculator.

As technology advanced, users sought ways to add
more quickly and more accurately. In 1642, a French
mathematician Blaise Pascal (1623–1662) invented the
first mechanical adding machine. This device, a complex
contraption operated by gears and wheels, allowed the
user to type in his equation using a series of keys, with the
results of the calculation displayed in a row of windows.
Pascal’s invention was revolutionary, specifically because
it could carry digits from one column to another.
Mechanical calculators, the distant descendents of Pas-
cal’s design, remained popular well into the twentieth
century; more advanced electrically operated versions
were used well into the 1960s and 1970s, when they were
replaced by electronic models and spreadsheet software.

In a strange case of history repeating itself, the intro-
duction of the first high-priced electronic calculators in
the 1970s was coincidentally accompanied by television
commercials offering training in a seemingly revolution-
ary method of adding called Chisenbop. Chisenbop
allowed one to use only his fingers to add long columns
of numbers very quickly, and television shows of that era
featured young experts out-performing calculator-wielding
adults. Chisenbop uses a variety of finger combinations
to represent different values, with the right hand tallying
values from zero to nine, and the left hand handling val-
ues from ten and up. The rapid drop in calculator prices
during this era, as well as the potential stigma associated
with counting on one’s fingers, probably led to the
method’s demise. Despite its seemingly revolutionary
nature, this counting scheme is actually quite old, and
may in fact predate the abacus, which functions in a sim-
ilar manner by allowing the operator to tally values as
they are added. Multiple online tutorials today teach the
technique, which has gradually faded back into obscurity.

While the complex calculations performed by today’s
sophisticated computers might appear to lie far beyond
anything achieved by Pascal’s original adding machine,
the remnants of Pascal’s simple additions can still be

The Chinese abacus was one of the earliest tools for
everyday addition. CORBIS-BETTMANN. REPRODUCED BY PERMISSION.
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found deep inside every microprocessor (as well as in a
simple programming language which bears his name in
honor of his pioneering work). Modern computers offer
user-friendly graphic interfaces and require little or no
math or programming knowledge on the part of the aver-
age user. But at the lowest functional level, even a cutting
edge processor relies on simple operations performed in
its arithmetic logic unit, or ALU. When this basic pro-
cessing unit receives an instruction, that instruction has
typically been broken down into a series of simple
processes which are then completed one at a time. Ironi-
cally, though the ALU is the mathematical heart of a
modern computer, a typical ALU performs only four
functions, the same add, subtract, multiply, and divide
found on the earliest electronic calculators of the 1970s.
By performing these simple operations millions of times
each second, and leveraging this power through modern
operating systems and applications software, even a
process as simple as addition can produce startling results.

Real-life Applications

SPORTS  AND  F I TNESS  ADD I T ION
Many aspects of popular sports require the use of

addition. For example, some of the best-known records
tracked in most sports are found by simply adding one
success to another. Records for the most homeruns, the
most 3-point shots made, the most touchdown passes
completed, and the most major golf tournaments won in
a career are nothing more than the result of lengthy addi-
tion problems stretched out over an entire career. On the
business side of sports are other addition applications,
including such routine tasks as calculating the number of
fans at a ballgame or the number of hotdogs sold, both of
which are found by simply adding one more person or
sausage to the running total.

Many sports competitions are scored on the basis of
elapsed time, which is found by simply adding fractions
of a second to a total until the event ends, at which time
the smallest total is determined to be the winning score.
In the case of motor sports, racers compete for the chance
to start the actual race near the front of the field, and
these qualifying attempts are often separated by mere
hundredths or even thousandths of a second. Track
events such as the decathlon, which requires participants
to attempt ten separate events including sprints, jumps,
vaults, and throwing events over the course of two gruel-
ing days, are scored by adding the tallies from each sepa-
rate event to determine a final score. In the same way,
track team scores are found by adding the scores from

each individual event, relay, and field event to determine
a total score.

Although the sport of bowling is scored using only
addition, this popular game has one of the more unusual
scoring systems in modern sports. Bowlers compete in
games consisting of ten frames, each of which includes up
to two attempts to knock down all ten bowling pins.
Depending on a bowler’s performance in one frame, he
may be able to add some shots twice, significantly raising
his total score. For example, a bowler who knocks down
all ten pins in a single roll is awarded a strike, worth ten
plus the total of the next two balls bowled in the follow-
ing frames, while a bowler who knocks down all ten pins
in two rolls is scored a spare and receives ten plus the next
one ball rolled. Without this scoring system, the maxi-
mum bowling score would be earned by bowling ten, ten-
point strikes in a row for a perfect game total of 100. But
with bowling’s bonus scoring system, each of the ten
frames is potentially worth thirty points to a bowler who
bowls a strike followed by two more strikes, creating a
maximum possible game score of 300.

While many programs exist to help people lose
weight, none is more basic, or less liked, than the straight-
forward process of counting calories. Calorie counting is
based on a simple, immutable principle of physics: if a
human body consumes more calories than it burns, it will
store the excess calories as fat, and will become heavier.
For this reason, most weight loss plans address, at least to
some degree, the number of calories being consumed. A
calorie is a measure of energy, and 3,500 calories are
required to produce one pound of body weight. Using
simple addition, it becomes clear that eating an extra 500
calories per day will add up to 3,500 calories, or one
pound gained, per week.

While this use of addition allows one to calculate the
waistline impact of an additional dessert or several soft
drinks, a similar process defines the amount of exercise
required to lose this same amount of weight. For exam-
ple, over the course of a week, a man might engage in a
variety of physical activities, including an hour of vigor-
ous tennis, an hour of slow jogging, one hour of swim-
ming, and one hour officiating a basketball game. Each of
these activities burns calories at a different rate. Using a
chart of calorie burn rates, we determine that tennis
burns 563 calories per hour, jogging burns 493 calories
per hour, swimming burns 704 calories per hour, and
officiating a basketball game burns 512. Adding these val-
ues up we find that the man has exercised enough to burn
a total of 2,272 calories over the course of the week.
Depending on how many calories he consumes, this may
be adequate to maintain his weight. However if he is
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consuming an extra 3,500 calories per week, he will need
to burn an additional 1,228 calories to avoid storing these
extra calories as fat. Over the course of a year, this excess
of 1,228 calories will eventually add up to a net gain of
more than 63,000 calories, or a weight gain of more than
18 pounds.

While healthy activities help prolong life, the same
result can be achieved by reducing unhealthy activities.
Cigarette smoking is one of the more common behaviors
believed to reduce life expectancy. While most smokers
believe they would be healthier if they quit, and cigarette
companies openly admit the dangers of their product,
placing a health value or cost on a single cigarette can be
difficult. A recent study published in the British Medical
Journal tried to estimate the actual cost, in terms of
reduced life expectancy, of each cigarette smoked. While
this calculation is admittedly crude, the study concluded
that each cigarette smoked reduces average life-span by
eleven minutes, meaning that a smoker who puffs
through all 20 cigarettes in a typical pack can simply add
up the minutes to find that he has reduced his life
expectancy by 220 minutes, or almost four hours. Simple
addition also tells him that his pack-a-day habit is costing
him 110 hours of life for each month he continues, or
about four and one-half days of life lost for each month
of smoking. When added up over a lifetime, the study
concluded that smokers typically die more than six years
earlier than non-smokers, a result of adding up the seem-
ingly small effects of each individual cigarette.

F INANC IAL  ADD I T ION
One of the more common uses of addition is in the

popular pastime of shopping. Most adults understand
that the price listed on an item’s price-tag is not always
the full amount they will pay. For example, most states
charge sales tax, meaning that a shopper with $20.00 to
spend will need to add some set percentage to his item
total in order to be sure he stays under budget and doesn’t
come up short at the checkout counter. Many people esti-
mate this add-on unconsciously, and in most cases, the
amount added is relatively small.

In the case of buying a car, however, various add-ons
can quickly raise the total bill, as well as the monthly pay-
ments. While paying 7% sales tax on a $3.00 purchase
adds only twenty-one cents to the total, paying this same
flat rate on a $30,000 automobile adds $2,100 to the bill.
In addition, a car purchased at a dealership will invariably
include a lengthy list of additional items such as docu-
mentation fees, title fees, and delivery charges, which
must be added to the sticker price to determine the actual
cost to the buyer.

As of 1999, Americans spent almost 40 cents of every
food dollar at the 300,000 fast food restaurants in the
country. Because they are often in a hurry to order, many
customers choose one of the so-called value meals offered
at most outlets. But in some cases, simple addition
demonstrates that the actual savings gained by ordering a
value meal is only a few cents. By adding the separate
costs of the individual items in the meal, the customer
can compare this total to learn just how much he is sav-
ing. He can also use this simple addition to make other
choices, such as substituting a smaller order of French
fries for the enormous order usually included or choosing
a small soda or water in place of a large drink. Because
most customers order habitually, few actually know the
value of what they are receiving in their value meals,
and many could save money by buying à la carte (piece
by piece).

Deciding whether to fly or to drive is often based on
cost, such as when a family of six elects to drive to their
vacation destination rather than purchasing six airline
tickets. In other cases, such as when a couple in Los Ange-
les visits relatives in Connecticut over spring break, the
choice is motivated by sheer distance. But in some situa-
tions, the question is less clear, and some simple addition
may reveal that the seemingly obvious choice is not actu-
ally superior. Consider a student living in rural Okla-
homa who wishes to visit his family in St. Louis. This
student knows from experience that driving home will
take him eight hours, so he is enthusiastic about cutting
that time significantly by flying. But as he begins adding
up the individual parts of the travel equation, he realizes
the difference is not as large as he initially thought. The
actual flight time from Tulsa to St. Louis is just over one
hour, but the only flight with seats available stops in
Kansas City, where he will have to layover for two hours,
making his total trip time from Tulsa to St. Louis more
than three hours. Added to this travel time is the one hour
trip from his home to the Tulsa airport, the one hour
early he is required to check in, the half hour he will
spend in St. Louis collecting his baggage and walking to
the car, and the hour he will spend driving in St. Louis
traffic to his family’s home. Assuming no weather delays
occur and all his flight arrive on time, the student can
expect to spend close to seven hours on his trip, a net sav-
ings of one hour over his expected driving time. Simple
addition can help this student decide whether the price of
the plane ticket is worth the one hour of time saved.

In the still-developing world of online commerce,
many web pages use an ancient method of gauging
popularity: counting attendance. At the bottom of many
web pages is a web counter, sometimes informing the
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visitor, “You are guest number . . .”. While computer gurus
still hotly debate the accuracy of such counts, they are a
common feature on websites, providing a simple assess-
ment of how many guests visited a particular site.

In some cases, simple addition is used to make a
political point. Because the United States government
finances much of its operations using borrowed money,
concerns are frequently raised about the rapidly rising
level of the national debt. In 1989, New York businessman
Seymour Durst decided to draw attention to the spiraling
level of public debt by erecting a National Debt Clock one
block from Times Square. This illuminated billboard pro-
vided a continuously updated total of the national debt,
as well as a sub-heading detailing each family’s individual
share of the total. During most of the clock’s lifetime, the
national debt climbed so quickly that the last digits on the
counter were simply a blur. The clock ran continuously
from 1989 until the year 2000, when federal budget sur-
pluses began to reduce the $5.5 trillion debt, and the
clock was turned off. But two years later, with federal
borrowing on the rise once again, Durst’s son restarted
the clock, which displayed a national debt of over 
$6 trillion. By early 2005, the national debt was approach-
ing $8 trillion.

POKER , PROBAB IL I TY, AND  OTHER
USES  OF  ADD I T ION  

While predicting the future remains difficult even for
professionals such as economists and meteorologists,
addition provides a method to make educated guesses
about which events are more or less likely to occur. Prob-
ability is the process of determining how likely an event is
to transpire, given the total number of possible outcomes.
A simple illustration involves the roll of a single die; the
probability of rolling the value three is found by adding
up all the possible outcomes, which in this case would be
1, 2, 3, 4, 5, or 6 for a total of six possible outcomes. By
adding up all the possibilities, we are able to determine
that the chance of rolling a three is one chance in six,
meaning that over many rolls of the die, the value three
would come up about 1/6 of the time. While this type of
calculation is hardly useful for a process with only six
possible outcomes, more complex systems lend them-
selves well to probabilistic analysis. Poker is a card game
with an almost infinite number of variations in rules and
procedures. But whichever set of rules is in play, the basic
objective is simple: to take and discard cards such that a
superior hand is created. Probability theory provides sev-
eral insights into how poker strategy can be applied.

Consider a poker player who has three Jacks and is
still to be dealt her final card. What chance does she have

of receiving the last Jack? Probability theory will first add
up the total number of cards still in the dealer’s stack,
which for this example is 40. Assuming the final Jack has
not been dealt to another player and is actually in the
stack, her chance of being dealt the card she wants is 1 in
40. Other situations require more complex calculations,
but are based on the same process. For example, a player
with two pair might wonder what his chance is of draw-
ing a card to match either pair, producing a hand known
as a full house. Since a card matching either pair would
produce the full house, and since there are four cards in
the stack which would produce this outcome, the odds of
drawing one of the needed cards is now better than in the
previous example. Once again assuming that 40 cards
remain in the dealer’s stack and that the four possible
cards are all still available to be dealt, the odds now
improve to 4 in 40, or 1 in 10. Experienced poker players
have a solid grasp of the likelihood of completing any
given hand, allowing them to wager accordingly.

Probability theory is frequently used to answer ques-
tions regarding death, specifically how likely one is to die
due to a specific cause. Numerous studies have examined
how and why humans die, with sometimes surprising
findings. One study, published by the National Safety
Council, compiled data collected by the National Center
for Health Statistics and the U.S. Census Bureau to pre-
dict how likely an American is to die from one of several
specific causes including accidents or injury. These statis-
tics from 2001 offer some insight into how Americans
sometimes die, as well as some reassurance regarding
unlikely methods of meeting one’s end.

Not surprisingly, many people die each year in trans-
portation-related accidents, but some methods of trans-
portation are much safer than others. For example, the
lifetime odds of dying in an automobile accident are 1 in
247, while the odds of dying in a bus are far lower, around
1 in 99,000. In comparison, other types of accidents are
actually far less likely; for instance, the odds of being
killed in a fireworks-related accident are only 1 in
615,000, and the odds of dying due to dog bites is 1 in
147,000. Some types of accidents seem unlikely, but are
actually far more probable than these. For example, more
than 300 people die each year by drowning in the bath-
tub, making the lifetimes odds of this seemingly unlikely
demise a surprising 1 in 11,000. Yet the odds of choking
to death on something other than food are higher by a
factor of ten, at 1 in 1,200, and about the same as the odds
of dying in a structural fire (1 in 1,400) or being poisoned
(1 in 1,300). Unfortunately, these odds are roughly equiv-
alent to the lifetime chance of dying due to medical or
surgical errors or complications, which is calculated at
1 in 1,200.
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US ING  ADD I T ION  TO  PRED ICT  
AND  ENTERTA IN

Addition can be used to predict future events and
outcomes, though in many cases the results are less accu-
rate than one might hope. For example, many children
wonder how tall they will eventually become. Although
numerous factors such as nutrition and environment
impact a person’s adult height, a reasonable prediction is
that a boy will grow to a height similar to that of his
father, while a girl will approach the height of her mother.
One formula which is sometimes used to predict adult
height consists of the following: for men, add the father’s
height, the mother’s height, and 5, then divide the sum by
2. For women, the formula is (father’s height � mother’s
height � 5) / 2. In most cases, this formula will give the
expected adult height within a few inches.

One peculiar application of addition involves taking
a value and adding that value to itself, then repeating this
operation with the result, and so forth. This process,
which doubles the total at each step, is called a geometric
progression, and beginning with a value of 1 would

appear as 1, 2, 4, 8, 16, 32 and so forth. Geometric pro-
gressions are unusual in that they increase very slowly at
first, then more rapidly until in many cases, the system
involved simply collapses under the weight of the total.

One peculiarity of a geometric progression is that at
any point in the sequence, the most recent value is greater
than the sum of all previous values; in the case of the sim-
ple progression 1, 2, 4, 8, 16, 32, 64, addition demonstrates
that all the values through 32, when added, total only 63,
a pattern which continues throughout the series. One
seemingly useful application of this principle involves gam-
bling games such as roulette. According to legend, an eigh-
teenth century gambler devised a system for casino play
which used a geometric progression. Recognizing that he
could theoretically cover all his previous losses in a single
play by doubling his next bet, he bragged widely to his
friends about his method before setting out to fleece a
casino. The gambler’s system, known today as the Martin-
gale, was theoretically perfect, assuming that he had ade-
quate funds to continue doubling his bets indefinitely. But
because the amount required to stay in the game climbs so
rapidly, the gambler quickly found himself out of funds
and deep in debt. While the story ends badly, the system is
mathematically workable, assuming a gambler has enough
resources to continue doubling his wagers. To prevent this,
casinos today enforce table limits, which restrict the max-
imum amount of a bet at any given table.

Addition also allows one to interpret the cryptic-looking
string of characters often seen at the end of series of
motion picture credits, typically something like “Copyright
MCMXXLI.” While the modern Western numbering sys-
tem is based on Arabic numerals (0–9), the Roman system
used a completely different set of characters, as well as a
different form of notation which requires addition in order
to decipher a value. Roman numerals are written using
only seven characters, listed here with their corresponding
Arabic values: M (1,000), D (500), C (100), L (50), X (10),
V (5), and I (1). Each of these values can be written alone
or in combination, according to a set of specific rules. First,
as long as characters are placed in descending order, they
are simply added to find the total; examples include VI (5 �
1 � 6), MCL (1,000 � 100 � 50 � 1,150), and LIII (50 �
1 � 1 � 1 � 53). Second, no more than two of any sym-
bol may appear consecutively, so values such as XXXX and
MCCCCV would be incorrectly written.

Because these two rules are unable to produce certain
values (such as 4 and 900), a third rule exists to handle these
values: any symbol placed out of order in the descending
sequence is not added, but is instead subtracted from
the following value. In this way, the proper sequence for 
4 may be written as IV (1 subtracted from 5), and the

Geometric Progression

An ancient story illustrates the power of a geomet-
ric progression. This story has been retold in numer-
ous versions and as taking place in many different
locales, but the general plot is always the same. A
king wishes to reward a man, and the man asks for
a seemingly insignificant sum: taking a standard
chessboard, he asks the king to give him one grain
of rice on day one, two grains of rice on day two, and
so on for 64 days. The king hastily agrees, not real-
izing that in order to provide the amount of rice
required he will eventually bankrupt himself.

How much rice did the king’s reward require?
Assuming he could actually reach the final square of
the board, he would be required to provide
9,223,372,036,854,775,808 grains of rice, which
by one calculation could be grown only by planting
the entire surface of the planet Earth with rice four
times over. However it is doubtful the king would
have moved far past the middle section of the
chessboard before realizing the folly of his generos-
ity. The legend does not record whether the king was
impressed or angered by this demonstration of
mathematical wisdom.
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Roman numeral for 900 is written CM (100 subtracted
from 1,000). While this process works well for shorter
numbers, it becomes tedious for longer values such as
1997, which is written MCMXCVII (1,000 � 100 � 1,000 �
10 � 100 � 5 � 1 � 1). Adding and multiplying 
Roman numerals can also become difficult, and most
ancient Romans were skilled at using an abacus for this
purpose. Other limitations of the system include its lack
of notation for fractions and its inability to represent val-
ues larger than 1,000,000, which was signified by an M
with a horizontal bar over the top. For these and other
reasons, Roman numerals are used today largely for
ornamental purposes, such as on decorative clocks and
diplomas.

Potential Applications

While addition as a process remains unchanged from
the method used by the ancient Chinese, the mathematical 

tools and applications related to it continue to evolve. In
particular, the exponential growth of computing power
will continue to radically alter a variety of processes.
Gordon Moore, a pioneer in microprocessor design, is
credited with the observation that the number of transis-
tors on a processor generally doubles every two years; in
practice, this advance means that computer processing
power also doubles. Because this trend follows the princi-
ple of the geometric progression, with its doubling of size
at each step, expanding computer power will create unex-
pected changes in many fields. As an example, encryption
schemes, which may use a key consisting of 100 or more
digits to encode and protect data, could potentially
become easily decipherable as computer power increases.
The rapid growth of computing power also holds the
potential to produce currently unimaginable applications
in the relatively near future. If the consistent geometric
progression of Moore’s law holds true computers one
decade in the future will be fully 32 times as powerful as
today’s fastest machines.

An Iraqi election officer checks ballot boxes at a counting center in Amman, Jordan, 2005. Counting ballots was accomplished
by adding ballots one at a time, by hand. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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Algebra

Overview

Algebra is the study of mathematical procedures that
combine basic arithmetic with a wide range of symbols in
order to express quantitative concepts. Arithmetic refers
to the study of the basic mathematical operations per-
formed on numbers, including addition, subtraction,
multiplication, and division, and is widely viewed as a
separate field of mathematics because it must be taught
to students before they can progress to higher studies; but
arithmetic is basically algebra without the symbols and
advanced operations. In this sense, algebra is often
referred to as a generalization of arithmetic, which can be
applied to more sophisticated ideas than numbers alone.
From adding up the price of groceries and balancing a
checkbook, to preparing medicines or launching humans
into space, algebra enables almost any idea to be written
in standard mathematical notation that can be utilized by
people around the world. No matter how advanced the
mathematics involved, algebraic rules and notations pro-
vide the instructions that dictate how to handle the vari-
ous combinations of numbers and symbols.

Fundamental Mathematical Concepts
and Terms

Algebraic symbols can be classified into symbols for
representing quantities (usually numbers and letters);
symbols for representing operations (such as addition,
subtraction, multiplication, division, exponents, and
roots); symbols representing equality and inequality
(equal to, approximately equal to, less than, greater than,
less than or equal to, greater than or equal to, and not
equal to); and symbols for separating and organizing
terms, and determining the order of operations (typically
parentheses and brackets).

Multiplication in an algebraic expression is often
represented by a dot when written out by hand (e.g.,
4 • 5 � 20), or an asterisk when using a computer or
graphing calculator (e.g., 4*5 � 20). Adjacent sets of
parentheses also signify multiplication, as in (4)(5) � 20.
A number or variable attached to the outside of a set
of parentheses also signifies multiplication. That is, 60 � t
� (60)(t) � (60)t � 60(t). These notations are used
instead of 4 � 5 and 60 � t in order to avoid confusion
between the multiplication sign and the commonly used
variable x. The symbol for multiplication is often omitted
from an equation altogether: aside from the notation, 60t
is identical to 60 � t. When two numbers are multiplied
together, there must always be some sort of symbol to
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indicate the multiplication in order to avoid confusion.
For example, (2)(3) � 2 � 3 � 23.

Repeated multiplication can be simplified using expo-
nential notation. If the letter n is used to represent a generic
number, then n � n � n2 (n squared), n � n � n � n3

(n cubed or n to the 3rd power), and so on. For example, if
n � 3, then n3 � 33 � 3 � 3 � 3 � 27. In general, the value
of n multiplied by itself y times can be expressed as ny, read
n to the power of y.

Performing operations in the proper order is essen-
tial to finding the correct solution to an equation. In gen-
eral, the proper order of operations is as follows:

1. Using the following guidelines, always perform oper-
ations moving from left to right;

2. Perform operations within parentheses or brackets
first;

3. Next, evaluate exponents;
4. Then perform multiplication and division operations;
5. Finally, perform addition and subtraction operations.

In algebraic equations, numbers are typically
referred to as constants because their values do not
change. Letters are most often used as variables, which
represent either unknown values or placeholders that can
be replaced with any value from a range of numbers. For
example, if a car is traveling at a speed of 60 miles per
hour, then the distance that the car has traveled can be
represented as d � 60t, where d represents the distance in
miles that the car has traveled and t represents the num-
ber of hours that the car has been moving. The variable t
can be replaced with any nonnegative value (zero and the
positive numbers); as time progresses, t increases, and as
would be expected, the distance d increases.

An expression that involves variables, numbers, and
operations is called a variable expression, or algebraic
expression. For example, x2 � 3x is a variable expression.
An equation, like x2 � 3x � 18, is created when a variable
expression is set equal to a number, variable, or another
variable expression. An algebraic inequality is expressed

Mathematician Dr. Tasha Inniss corrects a factorization shown on blackboard. Can you spot the error? AP/WIDE WORLD PHOTOS.

REPRODUCED BY PERMISSION.
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when a variable expression is separated from a number,
variable, or another variable expression by a greater than
sign, less than sign, greater than or equal to sign, or less
than or equal to sign. Inequalities can be used to deter-
mine upper or lower bounds for a possible range of val-
ues. For example, the idea that it takes less than 15
minutes to boil an egg can be expressed as t � 15, where
t represents time measured in minutes.

The parts of an equation that are separated by the sym-
bols of addition, subtraction, and equality (or inequality)
are called the terms of the equation. In the equation 4x2 �

3x � 76, the three terms are 4x2, 3x, and 76. The symbols of
positive and negative can also be taken into account in the
terms of the equation, so that the terms are only separated
by the symbols of addition and equality. In the equation 
8x2 � 3x � 26, the terms are 8x2, �3x, and 26, because 
8x2 � 3x can be written as 8x2 � (�3x ). In general, sub-
traction can be thought of as addition of a negative term.

When a constant and a variable are multiplied, the
constant is called the coefficient of the term. In the vari-
able expression 8x2 � 3x, the coefficient of the first term
is 8 and the coefficient of the second term is �3.

A special type of equation or inequality in which
there are an infinite number of solutions is known as an
algebraic formula. Formulas are useful for performing
repeated mathematical tasks. The previous equation for
determining the distance that a car has traveled if travel-
ing at 60 miles per hour for a given amount of time, d �

60t, is a formula because for every value of t, there is a new
value for d. If the value for d is known, the value of t can
be determined, and vice versa. This formula can be gener-
alized to allow for different speeds as well. In the formula
d � st, any speed can be substituted for the variable s. An
equation like 2x2 � x � 10 is not a formula because only
a finite number of values of x satisfy the equation.

Equations in which the highest power of any term is
one are called linear equations (recall that x1 � x ). The
equation d � 60t, for instance, is linear. Nonlinear equations
are those that involve at least one term raised to a power
greater than one. Equations in which the highest power of
any term is two are referred to as quadratic equations. The
equation 5x2 � 3x � 2 is an example of a quadratic equa-
tion. In general, a quadratic equation can be simplified into
the form ax2 � bx � c � 0, where a, b, and c are the coeffi-
cients of the terms. There are various methods for solving
quadratic equations. One of the most common methods is
the known as the quadratic formula, which states that

–b – 4ac± b2

2a
=x

For example, the equation 5x2 �3 x � �2 can be
rewritten as 5x2 � 3x � 2 � 0 (by adding 2 to both sides
of the equation); so the values of the coefficients are a �

5, b � 3, and c � 2. Substituting these values into the
quadratic formula reveals the values of x that satisfy the
equation:

Therefore, the values of x that satisfy this equation are �2⁄3
and �1. These values can be substituted for x to verify
that they satisfy the equation.

Equations in which the highest power of any term is
three are called cubic equations. Equations involving
higher powers are usually referred to as 4th-order equa-
tions, 5th-order equations, and so on.

The various methods and rules for simplifying the
terms of an algebraic equation constitute the most
important tools for working with any mathematical con-
struction. For example, rules like the associative, commu-
tative, and distributive properties dictate how terms can
be added and multiplied to simplify and solve algebraic
expressions.

Combining like terms is a useful method of simplifi-
cation. To illustrate this method, consider the task of
counting the number of boys and girls in a gymnasium.
One way to simplify this problem is to ask all of the boys
to move to one side of the room, and all the girls to move
to the other side. Similar reasoning is used to simplify a
messy algebraic equation like 3x2 � 7x � x2 � 9x � x2 �

4x � 4x2 � 2x2 � 2 � 6. Terms involving the same vari-
able raised to the same power are called like terms and
can be added and subtracted just like numbers. This
equation involves three powers of the variable x, so by
collecting like terms it can be simplified to an equation
with only three terms. First, by grouping the like terms
together, the equation becomes 3x2 � x2 � x2 � 4x2 �

2x2 � 7x � 9x � 4x � 6 � 2 (note that 2 was added to each
side of the equation in order to group the constants on the
right side). Next, by adding and subtracting like terms, the
equation becomes less of any eyesore: x2 � 2x � 8.

Factoring allows seemingly difficult equations to be
expressed in different ways that can immediately reveal a
solution. For example, finding the values of x that satisfy
the equation x2 � 2x � 8 may at first seem intimidating;
but this equation can be rewritten as (x � 4)(x � 2) � 0,
which reveals that x � 4 and x � �2 both satisfy the
equation (if either of these values is substituted for x,
then one of the two parenthetical expressions is equal to

–3 –4(5)(–2)± 32

2(5)
=x

–3± 9 + 40

10
=

–3 ± 7

10
=
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zero, so when it is multiplied with the other expression,
the entire left side is equal to zero).

The endless rules and tricks for evaluating algebraic
expressions permeate mathematics and science at all lev-
els. Whether noticed not, the fundamental concepts of
algebra can be found in daily activities, and can be used
to explain many concepts in the universe.

A Brief History of Discovery 
and Development

The symbols and syntax of algebra have developed
slowly over thousands of years to become what is now rec-
ognized as the fundamental language of mathematics. In
ancient times, mathematical problems were often written
out in the verbal language of the time. As similar problems
repeatedly arose, people began to invent abbreviations, and
eventually symbols, for common terms in the problems. As
mathematical concepts progressed and great mathemati-
cians continued to make breakthroughs based on the find-
ings of earlier mathematicians, less words were used to
describe problems and the language of mathematics was
continuously refined and adapted to the pressing problems
of the various times and civilizations. Eventually, almost
any problem or arithmetical fact that humans found could
be expressed using the mathematical symbols of algebra.

In general, algebra refers to mathematical operations
involving unknown values represented by some sort of
symbols, where other symbols are used as shorthand for
commands. In this sense, algebra was studied extensively
in ancient Egypt, possibly as early as 2000 B.C. However,
algebra in the form that is recognized today (even the
word algebra) would not be discovered for thousands of
years after the Egyptians began using these concepts. In
ancient Egypt, and in many civilizations prior to the
development of the current conception of algebra, alge-
braic equations were not generalized as ideas that could
be applied to other types of problems. Individual practi-
cal problems of the time were studied and documented.
Once a problem was solved, the writings could be used to
solve a similar problem using different values for the
unknowns; but mathematical language was seldom
shared between different types of problems. For example,
the method for finding the optimal amount of fertilizer to
place on a crop was not seen as related mathematically to
the method for figuring how much grain would fit in a
storage structure, even though both procedures involve
the operations now known as addition and multiplication.

The Greek mathematician Diophantus made great
progress in generalizing algebraic symbolism in his writings.

Little is known of Diophantus’ life, but it is commonly
held that his most important works took place about
A.D. 250. He discovered a general method for solving
equations and finding values of unknowns. Diophantus is
attributed as the first mathematician to use abbreviations
for unknowns (variables) and powers of unknowns, and
abbreviating words such as the Greek word meaning “is
equal to”. The use of these abbreviations was a major step
toward the sophisticated algebraic symbolism (e.g., using
letters to represent variables) found in modern mathe-
matics. However, Diophantus did not use notation that
could represent two or more unknowns and resorted to
using words to describe multiple unknowns.

Like the earlier Egyptians, Diophantus viewed his
mathematical ideas not as theories in the workings of
numbers, but as a means for solving common problems
of his day. His main work, Arithmetica, is a collection of
pertinent problems described using numerical solutions
of mathematical structures, the predecessors of algebraic
equations. Diophantus’ original works did not compen-
sate for abstract ideas such as negative numbers. The idea
of a negative number, or an equation like x � 20 � 2, was
not explored because the idea of a negative quantity, a
negative stone or book for example, was not needed in his
society. Nonetheless, an essential branch of algebraic
analysis that deals with solving certain types of rational
equations (equations that allow for fractions and roots in
addition to whole numbers) has been named Diophan-
tine analysis (or analysis of Diophantine equations) in
celebration of his work.

An Arab mathematician named Abu Abdullah
Muhammad ibn Musa al-Khwarizmi contributed greatly
to the language and concepts of algebra. Like Diophantus,
little is known about the life of Khawarizmi, but it is com-
monly accepted that most of his important works took
place around A.D. 820. In addition to his resounding
developments in various fields of mathematics, he also
contributed greatly to astronomy, geography, the inner
workings of clocks, and the degree measurements of
angles. Khawarizmi’s writings on arithmetic and algebra
have had resounding effects on the fundamental ideas of
modern mathematics.

Based on knowledge documented by Greek mathe-
maticians and the innovative notation for numbers and
mathematical operations proposed by Hindu contempo-
raries in India, Khawarizmi developed the basis for mod-
ern arithmetical notation. His writings introduced and
developed several fundamental arithmetic procedures,
including operations performed on fractions. He was the
first to spread the decimal number system (now com-
monly referred to as Arabic numerals) and the idea of the
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number zero outside of India, introducing it directly
to Arabs, and later to Europe when his writings were
translated to Latin and other European languages.
Khawarizmi’s original book on arithmetic was lost, leav-
ing only translations.

Another of Khawarizmi’s books, Kitab al-Jabr w’al-
Muqabala, sparked the analysis of algebra as a well-
organized form of mathematics. The title of the book has
been interpreted in various ways, including “Rules of
Reintegration and Reduction” and “The book of sum-
mary concerning calculating by transposition and reduc-
tion.” The word algebra is derived from the term al-jabr
in the title of the book, which can be taken to mean
“reunion of broken parts,” “reduction,” “connection,” or
“completion.” The rest of the title loosely translates to “to
set equal to” or “to balance.” The title of the book relates
to the fundamental procedures involved in solving alge-
braic problems, such as shifting terms from one side of an
equation to the other and combining like terms. The
methods described in Khawarizmi’s books have been
built upon ever since; and the word algebra evolved for
centuries before it was spelled and used as it is today.

At the beginning of the thirteenth century, Leonardo
da Pisa (also known as Leonardo Fibonacci), an Italian
mathematician, traveler, and tradesman, discovered that
the potential of algebraic computations using the Hindu
(Arabic) notation for numbers far exceeded the capacities
of the Roman numeral system that was standard in
Europe at that time. In his writings on algebra, he dis-
cussed the superiority of the symbols and concepts borne
in distant lands. His writings included little original dis-
coveries and were intended to illuminate pertinent ideas
and problems found in his culture at that time. Unfortu-
nately, his proposals were generally viewed as nothing
more than interesting, and the ideas that he attempted to
spread would not catch on in Europe for almost 300 years.

In the late fifteenth century, an Italian named Lucas
Paciolus (Lucas de Burgo) authored multiple works on
arithmetic, geometry, and algebra. Though most of the
mathematical elements are taken from earlier writings,
his algebraic writings were integral in the development of
algebraic methods because of his efficient use of symbols.
Due to the invention of the printing press earlier in the
century, Paciolus’ writings were among the first widely
distributed algebraic texts, at long last effectively intro-
ducing the benefits of algebraic reasoning and Arabic
numerals.

In the sixteenth century, algebra began to be used in a
purely mathematical sense, with symbols and numbers
completely representing general quantitative ideas. Robert
Recorde—an English mathematician and originator of the

symbol � for representing equality—is attributed with the
first use of the term algebra in a strictly mathematical
sense. François Viete made much progress in the use of
symbols for representing generic numbers, which enabled
mathematic ideas to be represented in a more general
manner and ultimately led to the view of algebra as gener-
alized arithmetic.

The recognition and understanding of negative val-
ues, irrational numbers, and negative roots of quadratic
equations were crucial developments in the progression
of algebraic theories because they opened doors to more
advanced mathematical concepts. The discovery of nega-
tive numbers is often attributed to Albert Girard in the
early seventeenth century. Unfortunately for Girard, the
work of René Descartes—another great mathematician of
the time—overshadowed his findings.

In the field of algebra, the most notable accomplish-
ment of Descartes was the discovery of relationships
between geometric measurements and algebraic meth-
ods, now referred to as analytic geometry (geometry ana-
lyzed using algebra). Using this analytic method of
describing measurements such as lengths and angles,
Descartes showed that algebraic manipulations (e.g.,
addition, multiplication, extraction of roots, and repre-
sentation of negative values) could be represented by
investigating related geometric shapes. Descartes’ fusion
of algebra and geometry elucidated both mathemati-
cal fields.

In the more than two centuries following Descartes
discoveries, mathematicians have continued to refine
algebraic notation and analyze the properties of more
sophisticated aspects of mathematics. Many algebraic
advances enable mathematicians and scientists to investi-
gate and understand real-world phenomena that were
previously thought impossible or unnecessary to analyze.
In the twenty-first century, it seems that there are as many
types of algebra as there are problems to be solved, but all
of them depend wholly on the concepts of basic algebra.

Real-life Applications

PERSONAL  F INANCES
Many people use a checkbook registry or financial

software to track their income and expenses in order to
make sure that they are making enough money to pay
their bills and accomplish their financial goals. The reg-
istry in a checkbook is basically a form that helps to
perform the algebraic operations necessary to track
expenses. A checkbook registry includes columns for
describing transactions (including the dates on which
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they take place), and columns for the recording amount
of each transaction. There is usually a column labeled
“deposits” and another column labeled “debits” so that
transactions that add money and transactions that sub-
tract money can be kept separate for quick and easy
analysis. For example, when birthday money or a pay-
check is received, it is logged in the deposits column.
Things like groceries, rent, utilities, and car payments are
recorded in the debits column. A “balance” column is
provided for calculating the amount of money present in
the bank account after each transaction. The process of
recording transactions and balances in a checkbook
registry basically involves performing a large, highly
descriptive, ongoing algebraic equation. When a transac-
tion is recorded in the column for deposits, a positive
term is appended to the equation. When a transaction 
is recorded in the debits column, a negative term is
appended to the equation. The balance column repre-
sents the other side of the equation. As the terms are
appended to the equation, the balance column may be
updated immediately, or the various transactions can be
recorded and the total can be found later; but either way,
the balance is always the result of the addition and sub-
traction of the terms represented by the values in the deb-
its and deposits columns.

Every April, millions of United States citizens must
analyze their financial income from the previous year in
order to determine how much income tax they are required
pay to federal and state government offices. Government
taxes help pay for many social benefits, such as healthcare
and social security. The Internal Revenue Service (IRS) pro-
vides various forms with step by step instructions for per-
forming algebraic operations to calculate subtotals, and
ultimately the amount of money that must be sent to the
government. The various items on a tax form include the
amount of taxes that are withheld from each paycheck;
the amount of money taken home from each check after
estimated taxes are deducted; items of personal worth such
as savings, investments, and major possessions; and work-
related expenses such as company lunches, office supplies,
and utility bills. Many people receive money back from the
government because the items representing expenses and
taxes throughout the year add up to more than the total
taxes due for the year. Some people end up owing taxes at
the end of the year. Other people, such as self-employed
workers, may or may not have taxes withheld from each
paycheck. These people generally use a different type of IRS
form and need to save money throughout the year to pay
their taxes come tax time. Whatever form is used, the vari-
ous items are added, subtracted, multiplied and divided just
like the terms of an algebraic equation. In essence, an IRS
tax form is an expanded algebraic equation, with the terms

and operations written out as explicit, intuitive instruc-
tions. The variables are described with words and a 
blank line or box is provided for filling in the value of each
variable.

COLLEGE  FOOTBALL
Unlike other college sports, National Collegiate

Athletic Association (NCAA) football does not hold a
national tournament at the end of the season to deter-
mine which team is the year’s national champion.
Instead, a total of 25 bowl games are held throughout the
country, pitting teams with winning records against each
other. The Bowl Championship Series (BCS) consists of
four of these bowl games: the Orange Bowl, the Fiesta
Bowl, the Sugar Bowl, and the Rose Bowl. These four
bowl games feature eight of the highest rated teams of the
year, and each year a different bowl game is designated as
the national championship game. An invitation to any
BCS game guarantees that a school will receive a hefty
sum of money at the end of the year. Winning a BCS
game could bring in millions of dollars.

The mathematical formula used to figure out which
teams make it to the BCS games (and which two teams
will fight to be crowned the national champions) turns
out to be a rather complicated application of statistical
analysis; but algebra provides the backbone of the entire
operation. Across the country every week, each team’s
BCS ratings are updated according to four major factors:
Computer rankings, the difficulty of the team’s schedule,
opinion polls, and the team’s total number of losses. Each
of these four components yields a numerical value.

The computer rankings, for one, are determined by
complex computer programs created by statisticians.
Computer ranking programs crunch an enormous
amount of statistical data, including numerical values
representing a multitude of factors ranging from the
score of the game, the number of turnovers, and each
team’s total yardage, to the location of the game and the
effects of weather.

The difficulty of a team’s schedule is also determined
by algebraic equations with terms accounting for the dif-
ficulty of the team’s own schedule and the difficulty of the
schedules of the teams that they will play throughout 
the season.

There are two separate opinions polls: one involving
national sports writers and broadcasters, and one involv-
ing a select group of football coaches. Each poll results in
a numerical ranking for all of the teams. For each team,
an average of a these two rankings determines their
national opinion poll ranking.
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A team’s number of losses is the most straightforward
factor. The number of losses is figured directly into the
general mathematical model, and each loss throughout the
season has a large effect on a team’s overall ranking.

The four numerical values are added together to cal-
culate the team’s national ranking. The top two teams at
the end of the regular season are invited to the national
championship BCS game. However, the selection of the
six teams that are invited to the other three BCS games is
not as straight forward. These other six teams are selected
from the top 12 teams across the nation (excluding the
top two that are automatically invited to the champi-
onship game). How these 12 teams are narrowed to six
depends mainly on which teams are expected to attract
the most attention and, therefore, create the most profits
for the hosting institution, the television and radio sta-
tions that broadcast the game, and the various sponsors.
These financial considerations are also modeled using
algebraic formulas.

UPC  BARCODES
Universal Product Code (UPC) barcodes are

attached to almost all items purchased from mass mer-
chandisers, such as department stores and grocery stores.
These barcodes were originally used in grocery stores to
help track inventory and speed up transactions, but
shortly thereafter, UPC barcodes were appearing on all
types of retail products.

UPC barcodes have two components: the barcode
consisting of vertical lines that can be read by special
scanning devices, and a set of numbers that can be read
by humans (see Figure 1). Each component represents the
same 12-digit number in a different language. That is, the
barcode is simply the number below it represented in 
the language that can be read by the barcode scanner. The
language of barcode scanners is based on vertical lines of
two different colors (usually black and white) and four
different sizes (the skinniest lines, and lines that are two,
three, and four times as thick).

The UPC numbers for all items throughout the
world are created and maintained by a central group
called the Uniform Code Council (UCC). The first six
numbers of a product’s UPC number identify the manu-
facturer. Any manufacturer that wants to use UPC bar-
codes must submit an application to the UCC and pay an
annual fee. Every barcode found on products sold by the
same manufacturer will start with the same six digits. The
first digit of the manufacturer number (the first digit in
the entire UPC number) organizes all manufacturers into
different categories. For example, the UPC numbers for

pharmaceutical items, such as medicines and soaps, begin
with 3. Some numbers at the beginning of UPC numbers
are reserved for special items like coupons and gift
certificates.

The second set of five digits represents the product
itself. This five-digit product code is unique on every dif-
ferent product sold by a manufacturer, even different
sizes of the same product. Some larger manufacturers
have secured choice manufacturer codes and product
codes that contain consecutive zeros. In certain configu-
rations, consecutive zeros can be left out so that the UPC
barcode can be squeezed onto small products, such as
packs of chewing gum. There are ways to determine the
positions of missing zeros when less than 12 numbers
appear; but regardless, the barcode represents all 12 digits
so that a quick swipe in front of a scanner determines all
of the necessary information.

In any store, the price of each item is stored in a sep-
arate computer, which is attached to all of the checkout
registers and provides the price for each item scanned.
The prices of items are not indicated on barcodes because
different stores charge different prices and all stores need
to be able to change prices quickly.

The final digit of a UPC number is called the check
digit and is used to minimize mistakes made by barcode
scanners. The final digit can be calculated from the pre-
ceding 11 digits using a standard set algebraic operations.
Following is an explanation of the algebra involved in cal-
culating the check digit of the UPC number 43938200039,
which has a check digit of 9:

1. Starting with the first digit, add together all of the
digits in every other position (skipping every other
number): 4 � 9 � 8 � 0 � 0 � 9 � 30. In a sense,
this sum is a variable in the equation for calculating
the check digit because it represents values that can
be changed.

Figure 1: UPC bar code. KELLY QUIN. REPRODUCED BY PERMISSION.
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2. Then multiply that value by 3: 3*30 � 90. The num-
ber 3 is a constant value in the check digit equation,
and can be thought of as the coefficient of the
variable in the previous step. Together, this coeffi-
cient and the variable sum in the previous step
form a term in the equation for calculating the
check digit.

3. Next, add up all of the other digits in the UPC
number (starting with the second digit and 
skipping every other digit): 3 � 3 � 2 � 0 � 3 � 11.
This sum is another term of the equation used to cal-
culate the check digit. This variable value is not
multiplied by a constant, so there is no coefficient of
this term.

4. Now add the values of these two terms together: 90 �
11 � 101.

5. Finally, determine the smallest number that, when
added to the value found in the previous step, results
in a multiple of ten. That is, find the smallest number
that can be added to the number in the previous step
such that the sum divided by ten does not yield a
remainder. In this case, that number is 9: 101 � 9 �
110. Using the mathematical concept of remainders,
this value can be represented in an algebraic equation
as well.

6. Compare the number found in the previous step
with the final digit in the UPC number. The fact that
this number matches the check digit in the UPC
number confirms that the previous 11 digits were
read correctly.

The entire calculation of the check digit can be repre-
sented by a single equation. A barcode scanner performs
these calculations almost instantaneously every time a bar-
code is scanned. The actual check digit is represented at the
end of the barcode (just as it appears at the end of the UPC
number that humans can read). If the check digit calculated
using the first 11 digits does not match the actual check
digit, the scanner communicates to the store clerk—usually
by making a loud beep and displaying a message on the
screen of the cash register—that an error has occurred and
the item needs to be rescanned.

FLY ING  AN  A IRPLANE

In order for an 870,000-pound (394,625-kg) 747
jumbo jet to fly thousands of miles, it must be built
according to strict specifications to create and balance the
forces needed to carry this huge collection of metal
through the air.

Thrust is the force that an airplane creates by moving
forward very fast and causing air to move quickly past its 

wings. Airplanes use powerful propellers, jet engines, or
rockets to create enough thrust to drive the airplane for-
ward. When an airplane moves through the air, it also cre-
ates drag, a force that acts in the opposite direction of
thrust and slows the plane down. When a hand is sticking
out of a moving car, it creates similar drag. The faster the
car is moving, the more the passing air acts on the hand,
causing it to move backward with respect to the move-
ment of the car. An airplane must create enough thrust to
counteract the drag forces. This is why large planes must
be traveling at hundreds of miles per hour in order to get
off the ground. After a plane takes off, the landing gear is
retracted because, much like a hand sticking out of a car,
the landing gear creates drag. In fact, the drag created
by the landing gear of a large airplane would most likely
rip the landing gear off, leaving the pilots and passengers
in a terrible predicament.

There are two other important forces that act on an
airplane in motion. Gravity is pulling the airplane toward
Earth so the weight (mass) of the airplane is an important
factor. In order to raise the weight of the airplane
upward, the airplane must create another force, called lift.
As an over-simplified explanation of these four forces:
the airplane must create enough thrust to move the
plane quickly forward and counteract drag; and the air-
plane must be designed in such a way that when the plane
moves forward fast enough, sufficient lift is created in
order to counteract the forces of gravity acting on the
mass of the plane. The wings play the biggest role in cre-
ating lift. The details of how an airplane creates lift
involve advanced concepts of physics (including the idea
that air is a fluid and acts much like water); but the cal-
culations involved in planning and executing the safe
operation of any airplane involve an immense amount of
algebra. In algebraic equations that model the lift that an
airplane produces, for instance, variables represent the
factors that affect lift, including the density of the air,
the speed of the airplane, the shape and surface area of
the wings, and the angle at which the wings meet the
oncoming air.

In addition to the calculations that must be checked
and rechecked to ensure that an airplane can create suffi-
cient lift, each trip involves a variety of important alge-
braic formulas. For example, deciding how much fuel to
load into an airplane for each trip involves factors includ-
ing the desired distanced to be traveled, the weather, and
the effect that the weight of the fuel has on take off and
landing procedures. Obviously, enough fuel must be pres-
ent in the airplane to keep the engines running for a
longer amount of time than the airplane will be flying.
But this amount can be affected by strong winds and 
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changes in air pressure, which must be predicted and
taken into account in the formulas used to decide on an
amount of fuel. Surprisingly, the maximum weight of an
airplane on take off is a higher value than the maximum
weight of the airplane during the landing sequence.
When flying a 747 jumbo jet, for example, the maximum
weight that the airplane can manage to get off of the
ground is about 870,000 pounds (394,625 kg). But the
maximum weight of the aircraft that will enable a safe
landing is about 630,000 pounds (285,793 kg). All loss of
weight is due to the burning of fuel, and it is essential that
enough fuel is used during the flight to bring the weight
of the airplane down below the safe landing weight.
Therefore, unless an airplane will be traveling the longest
distance possible, the fuel tanks are rarely filled to their
maximum capacity. In an emergency landing, the pilot
must usually dump some of the fuel from the aircraft in
order to lower the weight below the maximum safe land-
ing weight. All of the factors that determine how much
fuel to load into an airplane are calculated and rechecked
using standard mathematical formulas that require a
solid understanding of algebra.

SKYD IV ING
In addition to a good deal of courage, the act of

jumping out of an airplane involves a lot of algebra. In
addition to the important calculations involved in any
flight of an airplane, algebra is used by all skydivers to
ensure that the plummet to Earth is as controlled as pos-
sible. For example, careful calculations are performed and
rechecked in order to ensure that proper of size parachute
is packed according to each diver’s body weight.

Algebra is also needed to analyze the speed and accel-
eration of a diver. In turn, this analysis is critical to calcu-
lating the amount of time that a diver should wait to
deploy the parachute after jumping out of the airplane. In
a typical skydiving session, the pilot takes the airplane to an
altitude of about 10,000 feet (3,048 m). After jumping, the
average diver accelerates to a top speed (known as terminal
velocity) of about 120 miles per hour (193 km/h). This
gives a diver about 45 seconds of free fall (falling at termi-
nal velocity), at which time the diver will be approximately
2,500 feet (762 m) above the ground. At this height, the
diver must deploy a small parachute, called a drogue chute.
The drogue chute is attached to the main parachute, and
the main parachute is held in its container until the diver
pulls a cord that allows the drogue chute to pull the main
parachute out.

For the first jump, a diver is usually strapped to an
instructor who makes sure that everything goes smoothly.
This is known as a tandem jump, and requires different

calculations to plan the jump safely. The small drogue
chute is deployed almost immediately after exiting the
airplane in order to slow the pair of divers for the dura-
tion of the free fall. If the drogue shoot were not open, the
extra weight would cause the two divers to accelerate to a
terminal velocity of up to 200 miles per hour (322 km/h),
making tandem jumps inconsistent and unsafe. The main
parachute remains in its container until the correct alti-
tude is reached and one of the two divers pulls the release
cord, allowing the drogue to open the main parachute. In
a tandem jump, the main parachute must be much larger
than the main parachute in a solo jump in order to stabi-
lize the two bodies and slow them to a safe landing speed.

In another type of dive, called a high-altitude, low-
open (HALO) jump, the diver jumps from an airplane
traveling at a much higher altitude (often about 30,000
feet [9,144 m]) and does not open a parachute until reach-
ing a significantly lower altitude than in a typical jump. In
any jump higher than about 15,000 feet (4,572 m), divers
must where oxygen masks because the air becomes too
thin at higher altitudes. In a HALO jump, free fall can last
for up to three minutes and the diver can reach speeds of
over 200 miles per hour (322 km/h). This type of jump
requires more training and preparation. Algebra provides
the essential tools for performing the many calculations
required to plan all of these different types of jumps.

Several algebraic formulas are used to analyze the
effects that changes in the materials and shape of the
main parachute have on a dive. Most parachutes are made
of materials that allow no air to pass through them, mak-
ing the parachute more effective for slowing the fall of the
diver. However, if the parachute opens too quickly, it can
slow the diver too quickly, possibly causing serious phys-
ical injury or damage to the parachute and other gear. To
prevent the parachute from opening all at once, a mecha-
nism is attached to the cords that hold the parachute to
the diver. This mechanism slides slowly down the cords
and controls the speed at which the cords can separate
from each other, and in turn controlling how quickly the
parachute opens after it is deployed. Algebraic formulas
are essential for finding a safe speed at which the para-
chute should open, and for properly manufacturing the
device that controls this speed.

Many older parachutes (and some still made for spe-
cial purposes) are round, a shape that allows the diver to
fall straight down in the absence of wind. Standard con-
temporary parachutes are rectangular in shape. These
rectangular parachutes cause the diver to move forward
while falling. The main benefit of a rectangular parachute
is that it allows for much more directional control while
falling, enabling smoother and more accurate landings.
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To ensure safe, reliable operation, the dimensions of a
parachute must be as close to perfect as possible. Luckily the
specifications of all parachutes are determined and tested
according to in-depth mathematical models. While these
models are rather advanced applications of mathematics
and physics, they rely heavily on algebraic reasoning.

Most divers employ an automatic activation device
(AAD), a small computation device that performs con-
stant calculations in order to deploy a reserve parachute if
something goes wrong. The AAD unit is turned on when
the diver is on the ground, and from then on it constantly
monitors the altitude of the diver. When the diver jumps
out of the airplane, the AAD senses that it is falling
quickly, and is programmed to recognize this as the
beginning of the fall. If the diver falls past a certain alti-
tude without deploying the main parachute, the AAD
shoots a piece of metal into the cord that holds the
reserve parachute in place, deploying it automatically. As
long as the reserve parachute opens correctly, the 
AAD will most likely save the life of a diver that is dis-
tracted or has lost consciousness. To make things more
complicated, the AAD must also be programmed to dif-
ferentiate a loss in altitude during free fall from a loss in
altitude due to other events, such as the plane landing
before the diver ever jumps out. This ensures that the
AAD will only activate the reserve parachute if the diver
is free falling.

Every aspect of skydiving—from the altitude and
timing to the lengths of all the cords and the computer
assistance of the AAD—involves the addition, subtrac-
tion, multiplication, and division of terms and expres-
sions that represent many factors. An enormous amount
of algebraic formulas helps divers, instructors, pilots, and
equipment manufacturers understand the multitude of
factors that must be controlled in every skydiving session.

CRASH  TESTS
Every year, hundreds of new model cars, trucks, vans,

and sports utility vehicles (SUVs) are purposely involved
in controlled crashes in order to analyze the safety fea-
tures of each model of automobile. The various compo-
nents of these crash tests involve a seemingly endless
amount of calculations. The slightest miscalculation can
result in the recall of an entire model (which costs the
manufacturer a substantial amount of money), and much
worse, injury or death of people involved in real crashes.
Therefore, the calculations involved in crash tests are
checked multiple times under various conditions.

The design of crash test dummies, the main focus of
all crash tests, involves a great deal of algebraic calcula-
tions. To ensure consistent results, all official crash tests

use the same type of crash test dummy, belonging to the
Hybrid III family of dummies. Various Hybrid III dum-
mies are used to simulate different ages and body types
for both genders. For each dummy, characteristics includ-
ing height and weight are measured and factored in to the
mathematical formulas used to analyze the amount of
damage done to the dummy during an accident.

Crash test dummies must possess rather complex
structures in order to simulate all of the parts of a human
body that are usually affected in car crashes. For example,
an elaborate spine consisting of metal discs connected by
rubber cushions is attached to sensors that collect data
used to analyze the damage done to the simulated spine.
Sensors for measuring how quickly different parts of the
body speed up and slow down are present throughout the
body of a dummy. These sensors collect data that help to
analyze the potential injury sustained due to the sudden
decrease in speed caused by a crash (e.g., whiplash).
Other sensors are placed throughout the dummy to
measure the amount of impact endured by body parts
(e.g., how hard the dummy’s arm slams into the dash-
board). Different colors of paint are applied to a dummy’s
various body parts so that, when an impact is detected by
these sensors during in a crash test, researchers can deter-
mine which parts of the body collided with which parts of
the car or airbag. A single sensor in a dummy’s chest
measures how much the chest is compressed due to the
forces applied by the seatbelt and airbag.

All of the information collected by these sensors is
injected into mathematical formulas in order to test and
improve the timing and power of the seatbelts and
airbags. For example, modern seatbelts sense abrupt
decreases in an automobile’s speed, immediately lock up
but allow for a small amount of movement forward, then
quickly increase the tension to bring the body to a stop,
and finally decrease the tension so that the seatbelt does
not cause injuries. In this way, the body slows down more
gradually than it would if strapped in by a constantly stiff
seatbelt. If the seatbelt stopped the body from moving
forward all at once, the seatbelt itself could cause sub-
stantial injuries. Most cars now include airbags to supple-
ment seatbelts in absorbing the forward force of the body
and keeping it from slamming into anything solid. In
order to effectively supplement a seatbelt, an airbag must
deploy with perfect timing immediately after the seatbelt
begins to lock up.

Algebraic operations are integral to the mathemati-
cal models used to analyze the various factors in a car
crash. The wide range of problems solved using the math-
ematical models found in a crash test include the realistic
design of dummies and the analysis of data collected
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from their sensors; determining the effects of modifying
the weight of the automobile and the load it carries; selec-
tion of the speed at which to hurl the automobile toward
a concrete wall (frontal impact tests), or how fast to slam
an object into the side of the automobile (side impact
tests); analysis of the deliberate crunching of the materi-
als that make up the automobile, which helps to absorb
much of the impact; and calculation of the odds of sur-
viving such a crash in real life. The rating systems used to
indicate the effectiveness of an automobile’s safety fea-
tures also rely on algebraic formulas.

FUNDRA IS ING
In any fundraiser, the planners must be sure that

enough money is brought in to cover the costs of the
event and meet their fundraising goals. For example, to
raise money for new equipment at a local hospital, the
hospital’s fundraising committee decides to sell raffle
tickets for a new $30,000 car. The committee needs to
raise at least $20,000 to be able to pay for the new equip-
ment. To ensure that at least this amount of money is
available after the paying for the car and the various com-
ponents of the fundraiser, the committee decides to set up
a mathematical model. To analyze the financial details of
the event and decide the price of the raffle tickets and the
minimum number of tickets that need to be sold, the
committee prepares an algebraic formula. The formula
will take into account the price of the car, the number of
tickets sold, the price to be charged for each ticket, and
the ultimate financial goal of raising $20,000. The for-
mula they come up with is G � TP � C � E, where the
variable G represents the amount of money to be raised,
T is the number of tickets sold, P is the price of each
ticket, C is the cost of the car, and E is the cost of the
event. This equation states that the amount of money
raised will be equal to the number of tickets sold multi-
plied by the price of each ticket, minus the cost, the car,
and the event itself.

Because the purpose of this equation is to determine
how many tickets to sell and at what price, the committee
rewrites the equation with the term TP (representing the
number of tickets multiplied by the price of each ticket)
alone on the left side of the equation. By subtracting TP
from both sides, the equation becomes G � TP � �C �

E. Next, subtracting G from both sides gives �TP � �G �

C � E. The term TP is now alone on the left side of the
equation, but notice that all of the terms are negative. By
multiplying both sides of the equation by �1, all of the
negative terms become positive to yield TP � G � C � E.
This equation now states that the amount of money that
will be taken in from the sales of the raffle tickets is equal

to the financial goal of the event plus the cost of the car
plus the cost of the event itself. This equation allows the
committee to substitute the values for the financial goal
and the costs of the car and the event in order to deter-
mine the number of tickets that need to be sold, and at
what price. However, the committee does not necessarily
want the money brought in from the ticket sales to be
exactly equal to the costs and fundraising goals; the money
brought in needs to be greater than or equal to the money
spent. Thus the committee makes this equation into an
algebraic inequality by replacing the equal sign with the
greater than or equal to symbol to get TP � G � C � E.

Next, the committee begins to plug numbers into
their algebraic inequality. The committee’s financial goal
for the event is to raise $20,000, so G � 20,000. The car
costs $30,000, so C � 30,000. The costs of the eventflyers,
food, musical entertainment, renting a venue, and so
onare estimated at $5,000, so E � 5,000. By substituting
these values into the equation TP � G � C � E, the com-
mittee finds that TP � 20,000 � 30,000 � 5,000 �

55,000. Since TP � 55,000, the committee knows that the
sale of tickets must amount to at least $55,000.

At a similar fundraising event in the previous year, a
little over 12,000 raffle tickets were sold. To be safe, the
committee decides to predict an underestimate of 11,000
raffle tickets sold at this year’s event. Substituting 11,000
for the variable T, the inequality becomes 11,000P �

55,000. Dividing through by 11,000 gives P � 5; so the
committee needs to charge at least $5.00 for each ticket in
order to pay for the car and the event, and have enough
left over to pay for the new equipment. Since 11,000 was
an underestimate for the number of tickets sold, the com-
mittee decides that it is safe to charge $5.00 for the tickets.

BU ILD ING  SKYSCRAPERS
A massive amount of calculations are involved in all

phases of skyscraper construction, from determining the
amounts of time, manpower, money, concrete, steel,
wiring, pipes, and paint needed to build the skyscraper, to
determining the number of exits, bathrooms, and electri-
cal outlets needed to serve the maximum capacity of
people in the building. The calculations used in the actual
creation of the structure are dependent on basic algebra;
but long before construction can begin, more sophisti-
cated mathematical formulas are developed to design a
building that meets strict safety guidelines.

A skyscraper towering high above a city is susceptible
to many unpredictable forces and must be able to with-
stand a wide range of punishing forces. These forces
include large changes in weight due to people coming and
going and precipitation collecting on the outside of the 
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building, fluctuations in air pressure and wind, and seis-
mic activity (earthquakes). A skyscraper must even be
able to endure a sizeable fire or other direct damage to the
structure of the building. For example, in 1945, a United
States Army B-25 bomber, whose pilot had been disori-
ented by dense fog, crashed into the side of the Empire
State Building, tearing gigantic holes in the walls and sup-
port beams, and igniting fires on five floors. However, the
nearly 1,500-foot (457 m) tall skyscraper (the tallest in
the world at the time) stood and the damage was
repaired. If even small miscalculations had taken place in
the planning of the Empire State Building, the crash
might have caused the entire building to topple.

In-depth architectural specifications used to make a
building visually pleasing and functionally efficient
require countless algebraic systems. Formulas for model-
ing the various safety issues involved in constructing such
a tall building take into account all of the factors that can
compromise the structure of a skyscraper. The biggest
problem to overcome when attempting to design a safe
skyscraper is to make the structure stable enough to with-
stand wind and other forces. A skyscraper cannot be per-
fectly rigid. The structure must be allowed to sway
slightly in all directions or its own weight would cause the
structure to snap like a dry stick when acted on by forces
like wind and earthquakes. On the other hand, if the sky-
scraper were allowed to sway too far from perfectly verti-
cal, the building would fall over. Under normal conditions,
the movement of a skyscraper is undetectable by the
human eye, and unnoticed by occupants. The amount of
flexibility in the structure must be controlled perfectly by
the structure of each floor. Modeling the nature of a sky-
scraper’s flexible components involves the use of the
imaginary number, i, where i2 � �1.

In the study of basic algebra, the value of i is not log-
ical because multiplying any real number by itself results
in a positive number, e.g., 22 � (�2)2 � 4. Multiples of i,
such as 2i and �3i, are called imaginary numbers or
complex numbers. An entire field of mathematics, known
as complex analysis, is devoted to the study of the prop-
erties of imaginary numbers. Although imaginary num-
bers do not follow the rules of basic algebra, they are
often used to simplify enormous, intricate polynomial
equations—like those used to model the stability of
skyscrapers—into more manageable equations. After an
equation is solved using imaginary numbers, the solution
can often be transformed back into real numbers. The use
of imaginary numbers enables mathematicians and sci-
entists to solve problems that would otherwise be unsolv-
able. For example, by assuming that i exists and using it in
algebraic expressions, mathematicians, physicists, chemists,
statisticians, and engineers are able to model and simplify
complicated phenomena. In addition to modeling the
slight swaying of a skyscraper, imaginary numbers can be
used to model the behavior of electrical circuits, the
springs that absorb shock in automobiles, and sophisti-
cated economic systems.

BUY ING  L IGHT  BULBS
Incandescent light bulbs produce light by passing

electricity through a thin metal coil, called a filament (see
Figure 2). When electricity is passed through the fila-
ment, it glows and illuminates the light bulb. The elec-
tricity also produces heat as it passes through the
filament. In fact, special bulbs, called heat lamps, are
intended to produce heat for purposes such as heating
food and drying plants; but in most light bulbs, heat is an
undesired (and unavoidable) side effect which eventually
causes the filament to burn out. The amount of time that
a light bulb can be turned on for before it is expected to
burn out is printed on most packages so that shoppers
can compare the life expectancy of the various available
bulbs. It turns out that the amount of electricity that
passes through the filament when the light bulb is turned
on is all that is needed to predict how long a light bulb
will last.

By logging and analyzing the results of various
experiments to test the life of light bulbs under different
conditions, the life expectancy of a light bulb has been
found to be inversely proportional to the voltage that is
applied to the filament. That is, the life expectancy is
equal to some number divided by the number of volts
raised to a power; when two values are inversely propor-
tional, decreasing one value causes an increase in the
other value. The life expectancy of most incandescent

Figure 2: Light bulb filament. ROYALTY-FREE/CORBIS.
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light bulbs is inversely proportional to the 12th power of
the applied voltage and can be expressed as L � a /V12,
where L represents the life expectancy, a is a constant, and
V represents the applied voltage. This expression indi-
cates that using a lower value for the variable V results in
the constant a being divided by a smaller number as long
as V is >1, so that the life expectancy L is equal to a larger
number. This means that lowering the voltage that is
allowed to surge through the filament increases the life
expectancy of the light bulb.

On the other hand, less light is produced if less elec-
tricity is allowed to pass through the filament. The
amount of light that is produced is dependent on the
voltage and can be expressed as X � bV 3.3 where X repre-
sents the amount of light produced by the light bulb, b is
a constant, and V (which is raised to a power of 3.3) rep-
resents the voltage. In contrast to the relationship
between voltage and life expectancy, it is said that the
amount of light produced is directly proportional to the
voltage, meaning that the amount of light is equal to
some number multiplied by the voltage raised to a power.
In this type of relationship, increasing the value of one

variable also increases the value of the other variable. As
can be deduced by examining these two equations, lower-
ing the voltage has a much smaller effect on the amount
of light produced than it does on the life expectancy of
the light bulb. In other words, a small decrease in voltage
increases the life expectancy by a relatively substantial
amount, but decreases the amount of light produced only
slightly. Therefore, buying light bulbs with lower voltage
values usually increases the amount of time before light
bulbs need to be replaced without resulting in a marked
decrease in illumination.

ART
Though art is often seen as an pure expression of cre-

ativity, artists cannot help but use mathematics in the
creation of any piece, whether the artist realizes it or not.
The size and dimensions of a canvas and frame are care-
fully chosen by a painter; and though the choice is often
dependent only on the artist’s preference, the measure-
ments of the rectangular canvas can be analyzed to deter-
mine which will be the most pleasing to the average
person, or which will help to effect the emotions that the

Figure 3: Fractals in art. BILL ROSS/CORBIS.
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artist hopes convey in the painting. The colors of the
paints can also be examined to determine the best mix-
tures of the primary colors, or to analyze the emotions
effected by different pigments and patterns.

In the age of computers, art has expanded its
definition to encapsulate computer-generated art, includ-
ing intricate and realistic images, and fractal images
automatically created by computer programs using
mathematical formulas (see Figure 3). Fractals are actu-
ally complex geometric shapes; but just as algebra can be
used to define and analyze the characteristics of a circle or
rectangle, algebraic sequences can be used to create and
investigate fractal images. In a fractal, each part of the
pattern has the same characteristics as every larger part.
That is, when part of the fractal is magnified, it is gener-
ally undistinguishable from the original image. In many
fractal images, a large part has small copies of itself stick-
ing out of it, and these copies have small copies of them-
selves sticking out of them. For example, a triangle
appears to have breaks in it, and smaller triangles fill the
gaps so that the line is continuous. These smaller triangles
have breaks in them, and even smaller copies of the trian-
gle fill those gaps. Theoretically, this pattern can repeat
infinitely so that no matter how many times the image is
magnified, the same pattern will appear.

These infinite patterns are defined by special algebraic
constructions, known as infinite series, which are deter-
mined by infinitely repeating numerical patterns. An infi-
nite series repeats infinitely with, for example, each term
raised to the power equal to the number of terms that pre-
cede the term in the series. Such an infinite series defines a
fractal image similar to a snowflake, with the resulting
image like a six-sided star, where each point can be thought
of as a triangle missing one of its sides. The sides of each
triangular point are cut at regular intervals and filled in
with the next smaller size of triangles in the pattern. As the
series continues, smaller and smaller triangles are added to
the image. In theory, the series continues on forever and
the image contains infinitely smaller and smaller triangles.

Though fractal images are frequently used to create
beautiful artistic graphics, they have applications in other
computer imaging projects as well. For example, com-
puter generated maps use fractals to create realistic coast-
lines and mountain regions. No matter the use, fractal
images are created by defining infinite series that involve
algebra at every step.

POPULAT ION  DYNAMICS
In any population—including bacteria, ants, fish,

birds, and humans—many factors contribute to the num-
ber of individuals present at a given time and the rate at

which the population increases or decreases. Some of the
most common and important factors include the availabil-
ity of food, the abundance of predators, and the inherent
reproductive capacity and natural mortality rate of the
species. In most investigations of population dynamics,
researchers attempt to set up algebraic formulas using terms
that represent all of the pertinent factors that determine
the way that a population fluctuates. Basic population
models are similar to N � aZ � bY � cX � dW � eV �

fU, where N is the current number of individuals in the
population. Each term on the other side of the equation
represents a different factor in the life of the species. The
variables Z, Y, X, W, V, and U represent different factors.
These variables often take into account the number of
individuals in the population in the immediate past (e.g.,
reproductive rates of are dependent on the number
mature individuals). The constants a, b, c, d, e, and f are
the coefficients of the terms and define the extent to which
each represented factor affects the population. A large
coefficient indicates that the term has a relatively
significant effect, while a coefficient smaller than one indi-
cates that the term has a relatively minimal effect.
The coefficients for factors that decrease the number of liv-
ing individuals (e.g., mortality rate and abundance of
predators) have negative values, essentially subtracting
individuals from the total. Positive coefficients are
attached to terms representing factors such as reproduc-
tive rate and availability of food. This type of algebraic
formula has helped to save many endangered species by
facilitating important research of the affects that human
developments have on wildlife populations around 
the world.

F INGERPR INT  SCANNERS
Security is an essential consideration for many organ-

izations, including police and military groups, financial
institutions protecting money, and hospitals protecting
sensitive medical records. All forms of security can be
penetrated by an experienced attacker. Although many
security devices attempt to give the appearance of being
impenetrable, the true goal of a solid security system is to
minimize the number of successful attacks by maximiz-
ing the time and energy required to circumvent the
implemented security measures. The odds of an attacker
successfully breaking a security system can be calculated
using algebraic expressions that represent the various fac-
tors involved (e.g., the thickness of a safe door, or the
odds of guessing a given password).

A form of identification steadily increasing in popu-
larity, called biometrics, involves comparing an individ-
ual’s unique physical characteristics with previously
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stored data about the individual. When someone first
uses a biometric device, physical characteristics are meas-
ured, translated into mathematical formulas by a com-
puting device, and stored for future comparison. The
most widely developed biometric security devices include
cornea and iris scanners that measure the characteristics
of the parts of an individual’s eyes; face scanners that can
recognize major facial features; voice scanners that meas-
ure the frequencies in an individual’s voice; and finger-
print scanners that read and interpret the unique curves
and patterns of an individual’s fingerprints.

Fingerprint scanners are widely accepted as one of the
most effective forms of identification, and are becoming
more common in all types of secure environments. The
uses of fingerprint scanners range from the physical pro-
tection of a secured room to the protection of sensitive
computer files. Many computer mice and keyboard man-
ufacturers integrate fingerprint scanners into their prod-
ucts in hopes of replacing passwords as the most common
form of identity verification for personal computers. An
increasing number of automobile manufacturers have
begun to incorporate fingerprint scanners into door lock-
ing mechanisms and ignition systems, so that the owner of
a vehicle does not need a key to lock and unlock the car, or
start the engine. Banking institutions are also beginning to
look to fingerprint technology in hopes of replacing bank
cards and personal identification numbers (PINs).

Like all biometric devices, fingerprint scanners map
the unique characteristics of a fingerprint into mathe-
matical formulas, which are used later to determine
whether or not the fingerprint present on the scanner
matches stored data. The size and relative location of the
prominent features in each fingerprint are represented by
the terms of mathematical formulas, so fingerprint scan-
ners utilize massive amounts of algebraic operations dur-
ing each security session.

Potential Applications

TELEPORTAT ION
Throughout history, humans have invented increas-

ingly advanced methods of transportation—from the
invention of the wheel to the first trip into space—in order
to enable and expedite the process of traveling from one
physical location to another. However, even with all of the
advances in transportation, no vehicle can take passengers
from one point to another without traveling across the
space in between. Learning how to skip the intermediate
locations is the goal of scientists who are attempting to
invent and perfect teleportation devices. Similar to the

fantastic idea first popularized in science-fiction, teleporta-
tion devices essentially collect information about an
object, destroy the object, and send the information about
the object to a different location, where the object is recon-
structed. In a sense, this idea is similar to a fax machine,
which translates a copy of a document into numerical
information, and sends the information to another fax
machine that uses the information to construct and print
another copy. A teleportation device collects information
about an object and translates it into numerical informa-
tion according to mathematical formulas. Different formu-
las are then used to reconstruct the object elsewhere.

In 1998, a group of physicists performed the first
successful teleportation experiment. In the experiment,
information about a photon (a particle of energy that
carries light) was collected, sent through a cable one
meter in length, and used to construct a replica of the
photon. When the replica was created, the original pho-
ton no longer existed, so the photon is considered to have
traveled instantaneously to a different location.

It is uncertain whether or not this type of travel will
ever be safe for living organisms. The idea of being
destroyed and reconstructed elsewhere sounds rather for-
eign and frightening, and it will surely be difficult to find
willing subjects for experiments. However, the ability to
teleport energy will likely have profound effects on com-
puter networks. Instead of using cables or airwaves to
transfer information between computers, information
will be instantaneously teleported from machine to
machine, essentially eliminating delays in the transfer of
information.

An bar-coded identification bracelet is scanned at
Georgetown University Hospital in Washington, D.C. A/P WIDE

WORLD. REPRODUCED BY PERMISSION.
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PR IVATE  SPACE  TRAVEL

A new form of transportation will most likely revo-
lutionize the way that humans think about space travel.
SpaceShipOne (see Figure 4) is the first manned space-
craft project that does not depend on government funds.
This privately owned and operated craft is intended to
take anyone who can afford a ticket on a brief trip into
space. In order to alleviate the most difficult part of any
flight into space—the launch from the ground—
SpaceShipOne is launched from a second aircraft, called
White Night. While attached to White Night and during
the launch into space, SpaceShipOne is in a contracted
configuration. After the spacecraft launches and
reaches its highest altitude, it spreads its wings in a con-
figuration that slows its decent back into the inner atmos-
phere. Finally, the craft is reconfigured again to work
much like an airplane, allowing the pilot to safely steer
and land.

Because this project is not funded by the govern-
ment, the company that designed and built Space-
ShipOne and White Night had to create their innovative
technology from scratch, a task that involves an unimag-
inable amount of calculations, all of which rely on the

fundamental concepts of algebra. Developing a rocket
propulsion system alone involves a multitude of mathe-
matical formulas. Designing the three different configu-
rations of SpaceShipOne also involves an enormous
amount of mathematical models for determining the
optimal size and shape of the various parts of the space-
craft. The idea of an average private citizen having the
opportunity to travel into space on a regular basis is a
shining example of the endless potential for using algebra
to explore the real world.

Where to Learn More

Books
Johnson, Mildred. How to Solve Word Problems in Algebra,

2nd Ed. New York, NY: McGraw-Hill, 1999.

Ross, Debra Anne. Master Math: Algebra. Franklin Lakes, NJ:
Career Press, 1996.

Periodicals
Backaitis, S.H., H.J. Mertz, “Hybrid III: The First Human-Like

Crash Test Dummy.” Society of Automotive Engineers, Inter-
national. Vol. PT-44 (1994): 487–494.

Figure 4: SpaceShipOne: the future of travel? JIM SUGAR/CORBIS.
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Web sites
How Stuff Works. “How Skyscrapers Work.” Science Engineer-

ing Department. �http://science.howstuffworks.com/
skyscraper.htm� (March 22, 2005).

NASA. “Beginner’s Guide to Aerodynamics.” Glenn Research
Center. March 4, 2004. �http://www.grc.nasa.gov/WWW/
K-12/airplane/bga.html� (May 27, 2005).

Key Terms

Algebra: A collection of rules: rules for translating words
into the symbolic notation of mathematics, rules for
formulating mathematical statements using symbolic
notation, and rules for rewriting mathematical state-
ments in a manner that leaves their truth unchanged.

Arithmetic: The study of the basic mathematical opera-
tions performed on numbers.

Coefficient: A coefficient is any part of a term, except
the whole, where term means an adding of an alge-
braic expression (taking addition to include subtrac-
tion as is usually done in algebra. Most commonly,
however, the word coefficient refers to what is,
strictly speaking, the numerical coefficient. Thus, the
numerical coefficients of the expression 5xy2 � 3x �
2y � are considered to be 5, �3, and �2. In many
formulas, especially in statistics, certain numbers

are considered coefficients, such as correlation
coefficients.

Constant: A value that does not change.

Equation: A mathematical statement involving an 
equal sign.

Exponent: Also referred to as a power, a symbol written
above and to the right of a quantity to indicate how
many times the quantity is multiplied by itself.

Formula: A general fact, rule, or principle expressed
using mathematical symbols.

Term: A number, variable, or product of numbers and
variables, separated in an equation by the signs of
addition and equality.

Variable: A symbol representing a quantity that may
assume any value within a predefined range.
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Algorithms

Overview

An algorithm is a set of instructions that indicate a
method for accomplishing a task.

Algorithms—often used subconsciously—help us
solve a wide range of problems in everyday life. Algo-
rithms can be written to describe the method to tie a
shoelace, bake a cake, or address an envelope. Algorithms
are composed of the steps needed to accomplish a task
and are written in such a way that no “judgment”—other
than the fact that a particular step has been performed—
is required to accomplish the overall task.

Fundamental Mathematical Concepts
and Terms

In mathematics, an algorithm is a method for solving
a mathematical problem by using a finite number of
computations that repeat certain operations or steps. Not
all algorithms lead to a single solution (deterministic
algorithms), some algorithms can be designed that lead to
multiple solutions (nondeterministic algorithms).

The length of time required to complete an algorithm
is directly dependent on the number of steps involved and
the speed with which the steps are completed. For exam-
ple, a young child might take several minutes to add a long
column of numbers—an algorithmic task performed by
most computers in a fraction of a second.

A Brief History of Discovery 
and Development

The term algorithm is derived from the name of the
ninth century Arabic mathematician and Tashlent cleric
al-Khowarizmi, the mathematician most often credited
with the early development of algebra.

With the rise of an industrial mechanized society,
algorithms were developed to control a broad array of
devices and procedures from traffic signals to the opera-
tion of production lines. Algorithms were used in almost
every facet of communication and control (e.g., in rout-
ing aircraft at designated flight levels and speeds).

Microchip technology has increased the computa-
tional speed of computers so that, by using algorithms, they
can quickly scan large arrays of data. For example, comput-
ers can use algorithms based upon the rules of chess to
quickly evaluate the outcome of potential chess moves.
Although the human brain is far more complex than even the
most powerful supercomputers, high-speed supercomputers
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using well-designed algorithms have sometimes been able
to defeat world chess champions in test matches.

Real-life Applications

OPERAT IONAL  ALGOR I THMS
Probably the most commonly used algorithm is one

used in the operation of addition. This algorithm is used
everyday in countless ways, and is so basic to mathemat-
ics that most people do not realize that they are using an
algorithm when adding numbers.

The addition algorithm relies upon Hindu-Arabic
positional notation—the most commonly used nota-
tional system that imparts a value to the position of a
numeral. Each position or column is 10 times larger than
the column or position to its right (e.g., the number 3,456
is interpreted as the sum of 3 “thousands,” 4 “hundreds,”
5 “tens,” and 6 “ones”).

This positional notation and addition algorithm
makes possible the easy addition of large numbers, and
long columns of numbers. The addition algorithm, the
repetitive steps used to add numbers, specifies that we
count by “ones” in the right hand column, by “tens” in the
next column to the left, by “hundreds” in the next column
to the left and so on. When the sum in a column exceeds
nine, the amount over 10 is retained and the rest is car-
ried to the next column to the left. To add 67 and 97 we
add each column. Adding each column gives us 14 “ones”
and 15 “tens.” Using the addition algorithm, the 14 “ones”
are equal to 1 “ten” plus 4 “ones” and so we carry one ten
to the column to the left. This then gives us 16 “tens” and
4 “ones.” The additional algorithm dictates that 10 “tens”
are equal to one hundred and so the number 1 is inserted
into the “hundreds” column and the remainder of 6 left
in the “tens” column. The algorithm thus yields the cor-
rect answer of 164 (67 � 97 � 164).

The addition algorithm does not work for other sys-
tems of notation, such as Roman numerals.

Various methods are used to teach the essentials of
the addition algorithm, so the description above may not
be exactly what you remember from early elementary
school. Regardless, whatever the words you use to
describe the operation of addition—and the other oper-
ations of subtraction, multiplication, and division—
those terms describe an algorithm in action.

ARCHEOLOGY
Archeologists (scientists who study past civiliza-

tions) collect as much information as possible as they

explore a site or find. A small grave or ancient trash dump
may ultimately result in thousands of measurements of
pieces of bone, pottery, or other fragments of the past.
Other scientists who study the past, including archaeo-
astronomers (scientists who study and make calculations
about what past civilizations may have observed in the
skies with regard to the movement of the Sun, planets,
and stars), also compile thousands of observations to
yield clues about ancient humankind. Algorithms are
used to analyze those mountains of data to yield clues
regarding the building of ancient temples, monuments,
and tombs or upon the movements and cultural practices
of ancient civilizations.

COMPUTER  PROGRAMMING
Computers are particularly adept at utilizing algo-

rithms, and algorithms lie at the heart of computer pro-
gramming, the set of instructions that computers use to
analyze data. The creation of elegant (a term used by math-
ematicians to describe something simple yet powerful) and
thus faster algorithms has become an important consid-
eration in the study of theoretical computer science.

Logical algorithms (rules and steps based upon pat-
terns of mathematical logic or proof) including a class 
of algorithms known as “backtracking” algorithms were
developed in the 1960s to explore methods of solving
computational problems. Such algorithms can be
designed to test possible combinations of sub-problems
and such algorithms result in tree-like solutions. A par-
ticular solution can be traced back to through prior solu-
tions that are analogous to backtracking through the
increasing larger more inclusive branches of a tree that
ultimately lead to the trunk. Navigating the solution tree,
analogous to a squirrel climbing through the limbs of a
tree, produces computational solutions that can then be
described as “longest” or “shortest” path solutions. Many
computer-programming languages rely on backtracking.
For example, if a particular sub-problem solution (a par-
ticular branch of the solution tree) proves to be incorrect,
the computational algorithm “backtracks” and tries
another path to solve the problem.

CRED I T  CARD  FRAUD  DETECT ION
Every time you use a credit card, the purchase made

is analyzed by computers programmed with algorithms
to detect the crime of credit card fraud. Banks and finan-
cial institutions that issue credit cards program their
computers to use a series of algorithms that compare each
purchase to the established pattern of use. For example, if
you usually use your credit card in the New York area to
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make purchases totaling $150 a month, the computer’s
algorithms should be able to quickly determine that a
series of charges from a foreign country totaling thou-
sands of dollars is “unusual.” The fact that the purchase
does not fit an established pattern can be determined by
algorithms and is often enough to alert bank security
officials that further investigation is required before
authorizing a particular purchase. Upon investigation,
they may discover that the user is the authorized card-
holder enjoying a vacation or semester abroad. On the
other hand, investigation may reveal that the credit card
number has been stolen, and that the intended purchase
is unauthorized. The use of algorithms to analyze purchases
can thus save the bank—or credit card holder—thousands
of dollars.

CRYPTOLOGY
In 1977, Ronald Rivest, Adi Shamir, and Leonard

Adleman published an algorithm (known as the RSA
algorithm—a name derived from the first letters of the
founder’s last names) that marked a major advancement
in cryptology. The RSA algorithm factors very large com-
posite numbers. As of 2004, the RSA algorithm was the
most commonly used encryption and authentication
algorithm in the world. The RSA algorithm was used in
the development of Internet web browsers, spreadsheets,
data analysis, email, and word processing programs.

DATA  M IN ING
Association of data in a data mining process involves

the use of algorithms that establish relationships or pat-
terns in data. Such algorithms use “nested” or sub-
algorithms that rely on statistics and statistical analysis to
make associations between data. Usually the algorithm
designer (e.g., a computer programmer) specifies desired
associations or patterns to be established. Algorithms
can be written, however, to perform what is termed
exploratory analysis, a form of analysis where associa-
tions between data are sought without a preconception or
guess as to what patterns might exist.

DIG I TAL  AN IMAT ION  AND  D IG I TAL
MODEL  CREAT ION

Moviemakers rely on mathematical algorithms to
construct digital animation and models. Such algorithms
relate points on known surfaces to points on a drawing
(often a computer drawing) or digital model. For exam-
ple, data points for the movement of an arm or leg can be
obtained by actors wearing special gloves or sensors that
translate movements such as waving or walking into data

(sets of numbers) that can be analyzed by algorithms
designed to fill in the gaps between data points. Such
algorithms allow animation experts to subsequently draw
and animate figures with increasingly realistic features
and movement. Model makers can construct digital mod-
els at a fraction of the cost needed to construct and test
physical models.

DNA  OR  GENET IC  ANALYS IS
Biochemists use algorithms, more commonly

referred to in the laboratory as “lab procedures” to iden-
tify DNA markers that allow scientists and physicians to
determine genetic relatedness (identification of parents
or family members) to settle a court case or find a suitable
organ donor, determine a patient’s risk of disease suscep-
tibility risk, or to evaluate the effectiveness (efficacy) of
drug treatments.

In addition to physical testing algorithms, mathe-
matical and computer algorithms can be used to deter-
mine or predict patterns of genetic inheritance. The
pundit square used in beginning biology is a simple yet
powerful use of algorithms that result in the diagram-
matic representation of potential gene combinations. In
some cases, the pundit square allows the calculation of
the odds of having a child who might develop sickle cell
anemia or be a carrier of the gene that might lead to
actual sickle cell disease in their children.

The task of analyzing massive amounts of data gen-
erated by DNA testing is daunting even for very powerful
computers. New technologies, including so-called “bio-
flip” technologies use specialized computer algorithms to
detect small and differences and changes in the structure
of DNA (i.e., variation in genetic structure).

ENCRYPT ION  AND  ENCRYPT ION
DEV ICES

Although the technology exists to allow the con-
struction of cryptographic devices intended to protect
private communications from unauthorized users while
at the same time assuring that authorized government
agencies (e.g., those agencies such as the FBI who might
obtain a court order) can quickly decode (decrypt) and
read messages as needed, such technologies remain highly
controversial. So-called “clipper-chips” and “capstone
chips” would allow use United States law and intelligence
agencies to use specific algorithms to decode encrypted
(coded) messages. Certain authorized agencies would
then hold the algorithmic “keys” (the step-by step proce-
dures and codes) to any communication using the
encrypting technology.
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Use of the clipper chip was first adopted and author-
ized in 1994 by the National Institute of Standards and
Technology (NIST). The United States Department of the
Treasury was initially designated to hold the keys (algo-
rithms) to decode messages. Rules regarding access to the
keys are defined in state and national security wiretap
laws. The clipper chip utilizes the SKIPJACK algorithm—
a symmetric cipher (code) with a fixed key length of 80
bits. A bit is shorthand for “binary digit,” a unit of infor-
mation (a “1” or “0” in binary notation).

A cipher uses algorithms (i.e., sets of fixed rules) to
transform a legible message (clear text or plaintext) into
an apparently random string of characters (ciphertext or
coded text). For example, a cipher might be defined by
the following rule: “For every letter of plaintext, substi-
tute a two-digit number specifying the plaintext letter’s
position in the alphabet plus a constant (or key) between
1 and 73 that shall be agreed upon in advance.” This
would result in every letter in the alphabet being repre-
sented by a number between 17 and 99 (depending on the
particular constant used). For example, if 16 is the
agreed-upon constant, then the plaintext word PAPA
enciphers to 32173217 as follows: P � 16 � 16 � 32; A �
1 � 16 � 17; P � 16 � 16 � 32; A � 1 � 16 � 17. Real
keys would, of course be longer and more complex, but
the basic idea remains the same: an algorithm-based
encryption key allows messages to be locked (enciphered)
or unlocked (deciphered), just as a physical key fits into a
lock and allows it to be locked and unlocked. Without a
key, a cipher algorithm is missing its most critical part. In
fact, so important is the key that many times the algo-
rithm itself is widely known and distributed—it is only
the keys that remain secret. For this reason, the algorithm
used to code messages may remain the same for months
or years, but the keys change daily.

Other algorithms remain a mystery. In 1943, Alan
Turing (1912–1954), Tommy Flowers (1905–1998),
Harry Hinsley (1922–1998), and M. H. A. Newman at
Bletchley Park, England, constructed a computational
device called Colossus to crack the Nazi German encryp-
tion codes created by the top secret Enigma machine used
by the Germans. The decryption algorithms used by
Colossus remain secret.

In the late 1970s, the United States government set a
specific cipher algorithm for standard use by all govern-
ment departments. The digital encryption standard (DES)
is a transposition-substitution algorithm that offers 256

different possible keys (a number roughly equivalent to a
1 followed by 17 zeroes). As larger a number of different
keys as that number represents, modern higher speed
computers might allow hackers (who also use algorithms)

to too easily crack codes with this many keys, and so a
new algorithm, known as the advanced encryption stan-
dard, is replacing the old algorithm.

Security is increasing as a function of who can develop
the most sophisticated algorithms to either protect data, or
hack into protected algorithmic codes.

IMAG ING
The digitization of images used in modern digital

computers would not be possible without the use of algo-
rithms to translate the images into numbers and back
again into a viewable image. Digital cameras can be in a
vacationer’s backpack or be mounted in satellites in orbit
hundreds of miles above the Earth. Digital cameras offer
higher resolution (the ability to distinguish small objects)
than cameras that use light-sensitive photographic film.
Digital photo manipulation has also revolutionized pho-
tography, including commercial advertising, and offers
new security challenges to uncover altered photos. Fractal
image compression algorithms allow much greater com-
pression in the storage of images.

Digital cameras capture reflected light on a chip or
charged coupled device (CCD). The surface of the CCD
contains light-sensitive cells (photo diodes). Each cell or
diode represents a pixel and so the pixel becomes a basic
unit of a digital image. Light-stimulated diodes produce a
signal (often using a transistor) with a voltage that corre-
sponds to the light intensity recorded by the diode. An
algorithm in the camera’s processing unit then translates
that signal into binary code—1s and 0s—that can later be
reconverted by the reverse algorithm back into a viewable
image. For example, algorithms may assign a code
sequence between 0 and 255 to color data (0 is black and
255 indicates an intense red color). These codes are then
turned into eight digit binary code sequences (00000000
for black, 111111111 for the most intense red).

Digital photo manipulation involves the alteration
of the binary code (i.e., the digital 1s and 0s) that repre-
sents the image. While algorithms can be used to alter
photos, they can also be used to detect forgery or alter-
ation. Algorithms can compare values of pixels in the
background of an image and determine whether they are
consistent. Other parts of an image can be protected by
altering certain pixels to form a digital watermark that can
only be removed by application of a particular algorithm
to the image binary code.

INTERNET  DATA  TRANSMISS ION
All information sent by a computer over the Internet

contains the sending computer’s hardware source address
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(MAC address). This is similar to a return address
included on a piece of physical mail (snail mail). Con-
versely, all the information that the computer accepts
must be addressed to its unique hardware address (or
often a more common “broadcast address” that is similar
to a zip code used in regular mail). When an packet of
data (e.g., a portion of a text) is received, the receiving
computer subjects the incoming packet of data to a pro-
cessing algorithm, a mathematical formula or set of pro-
cedures that determines whether the address information
is correct and the message intended for that computer. If
the packet of data is accepted, additional algorithms are
used to decode the binary message (a series of ones and
zeros such as “100010110” into text, pictures, or sound).

MAPPING
Algorithms can analyze data measurements of

height, depth, and distance to construct maps. For exam-
ple, bathymetric maps (maps that depict the oceans as a
function of depth) help develop a model of a body of
water as depth increases. Such maps are important to
fishermen and similar algorithmic programs analyze data
in navigational and “fish-finding” equipment aboard
many commercial and sport fishing boats.

To construct a precise map of the region, whether of
land or at sea, it is necessary to perform detailed meas-
urements, a task increasingly performed by satellites (or
in the case of bathymetric maps, by ships with echo
sounding surveying equipment that bounce sound waves
off the ocean floor). Such data is then set into an array (a
particular grid or pattern) that are analogous to strips of
a map. Algorithms perform calculations that link the data
between various strips and allow the construction of a
larger map of the area.

THE  GENET IC  CODE
Humans themselves are the result of an molecular

algorithm that operates at the genetic and cellular level.
The genetic code ultimately relates a sequence of chemi-
cals called nitrogenous bases found in deoxyribonucleic
acid (DNA) to the amino acid sequences of proteins
(polypeptides). These proteins control the biochemistry
of the body. The algorithm that describes this process
allows scientists to understand the genetic and molecular
basis of heredity and many genetic disorders.

In humans, DNA is copied to make mRNA (messen-
ger RNA), and mRNA is used as the template to make
proteins. Formation of RNA is called transcription and
formation of protein is called translation. This process is
the fundamental control mechanism for the development

(morphogenesis), growth and regulation of the body and
complex physiological processes.

The structure of DNA—and the sequences formed
during transcription—can, for example be predicted
from an algorithm (based upon the physical shape of the
molecules themselves) that specifies that the nucleotide
with the nitrogenous base adenine will pair only with a
nucleotide that contains a thymine base (an A-T pair).
Likewise, nucleotides with a cytosine base will pair only
with a nucleotide that contains a guanine base (a C-G
pair). The molecular algorithm allows the prediction of
bases (e.g., the ATTATCGG sequences) that in triplet
sequences (three base sequences) then form the backbone
of genes.

A sequence, such as A-T-T-C-G-C-T . . . etc., might
direct a cell to make one kind of protein, while another
sequence, such as G-C-T-C-T-C-G . . . etc., might code for
a different kind of protein.

MARKET  OR  SALES  ANALYS IS
Algorithms are routinely used to analyze buying and

selling patterns. Businesses rely on algorithms to make
decisions regarding which products to sell, or to which
portion of the overall market advertising can be most
effectively targeted (e.g., an advertising campaign
designed to sell blue jeans to teenagers). Such marketing
algorithms make associations between buying patterns
and established demographic data (i.e., data about the
age, sex, race, income groups, etc.) of the user.

For example, market specialists use algorithms to
study data developed from test groups. If a product
receives a sufficiently favorable rating from a very small
test group, a manufacturer may skip the costs and
delays of further testing and move straight into produc-
tion of a product. The algorithms might be simple (e.g.,
if 75% of the initial test group likes the product the man-
ufacture knows from experience that there will be suffi-
cient sales to make a profit) or complex (e.g., a complex
relation or weighting of responses to the demographics of
the test group). Less enthusiastic results may require fur-
ther testing or a decision not to develop a particular
product.

Algorithms can also be used to compare observed
responses of a test group to anticipated responses (or
responses from other test groups) to determine which
products might gain a market advantage if manufactured
in a certain way. For example, algorithms can be used to
analyze data to find the most favored color, size, and
potential name of a skateboard and intended for sale to
10–13-year-old boys.
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L INGU IST ICS , THE  STUDY  
OF  LANGUAGE

The study of the elements of language (e.g., English,
French, ancient Native American languages, etc.) is
increasingly a quantitative science that relies on mathe-
matical analysis to yield clues about the source of a lan-
guage and the placement of a language within larger
families of languages. This quantitative analysis often
requires sophisticated computer-processing and algo-
rithms designed to sift through large databases to deter-
mine statistically significant relationships (more than
accidental or random relationships) between words and
the use of words.

SECUR I TY  DEV ICES
Closed circuit television (CCTV) is increasing a part

of security measures. CCTV is widely used in the United
Kingdom (CCTV is so widespread in London, for exam-
ple, that it can be used to detect violations of traffic laws)
and its use is growing in Europe and in the United States.
Many major cities, including New York and Washington,
D.C., now utilize widespread public-surveillance CCTV
systems, most often operated by the local police.

As a response to terrorism, images from CCTV cam-
eras, especially those located in airports and other trans-
portation hubs, are analyzed by algorithms that compare
biometric data (e.g., height, shape of head, etc.). Facial
recognition systems use algorithms to compare observed
facial features that are hard to change (e.g., head size,
width/length of nose, distance between the eyes) against
databases containing photographs of known terrorists
and other criminals.

SPORTS  STAND ING  AND  “SEED INGS”
Many sports tournaments such as the NCAA men’s

and women’s basketball championships—or the pairings
for the annual football bowl games that are now used as
“national championship” games—rely on algorithms that
are designed to take the bias (an unwarranted predisposi-
tion in favor of someone or something) and prejudice (an
unwarranted predisposition against someone or some-
thing) out of the selection process.

Depending on the sport, “seeding” algorithms can be
designed to use data derived from poll results, strength of
schedule points, points earned through competition, indi-
vidual race or game results, conference or league stand-
ings, etc. Algorithms are used to determine everything
from which lane a runner or swimmer starts a particular
race to more fundamental questions as to whether an ath-
lete or team is invited to participate in a competition.

For example, the NCAA algorithms were designed to
replace a simple reliance upon polls of coaches or sports-
writers than were often driven by publicity and favoritism
toward certain teams or teams from certain areas of the
country. Although the new algorithm-driven selection
processes are not perfect, they are an attempt to make the
selection processes more fair.

TAX  RETURNS
Some tasks that seem complex and difficult can be

broken down into simpler steps (i.e., an algorithm can be
written to accomplish the task). For example, completing
a tax return form can be a time consuming and frustrat-
ing task for many people—especially young students who
may have just started working.

At first glance, tax forms often seem overly and need-
lessly complex. The forms, however, can be completed by
using a series of algorithms that are described in the
instructions for each form. The instructions themselves
are keyed to the step-by-step (systematic) completion of
the tax form they describe. Completing a series of smaller,

Trevecca Nazarene’s Alex Renfroe drives around Lewis-Clark
State’s Danny Allen during the second half of a 2005 NAIA
Division I tournament game. Algorithms are often used in
sports to determine bids and placement of teams in match
brackets. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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usually less complex steps, allows taxpayer to correctly
complete the tax form.

Potential Applications

ART I F IC IAL  INTELL IGENCE
Since their development, electronic computers have

been programmed with algorithms to accomplish specific
tasks (e.g., a numerical calculations). Current research
and development seeks to develop sophisticated algo-
rithms that when combined with more flexible rules of
operation may result in what is termed “artificial intelli-
gence.” The exact differences in computers that perform
intricate algorithms and those with “artificial intelli-
gence” is often a hotly debated topic among scientists and
engineers. Regardless, one element or defining character-
istic of artificial intelligence that is widely agreed upon is
that a computer using artificial intelligence will use flexi-
ble rules rather that rigid algorithms for seeking solutions.

Artificial intelligence programming may even allow com-
puters to modify their own programming rules and
develop their own algorithms for tackling problems.

Where to Learn More

Books
Edelstein, Herbert A. Introduction to Data Mining and Knowl-

edge Discovery, 3rd ed. Potomac, MD: Two Crows Corpo-
ration, 2000.

Grahm, Alan. Teach Yourself Basic Mathematics. Chicago:
McGraw-Hill Contemporary, 2001.

Sherman, Chris, and Gary Price. The Invisible Web: Uncovering
Information Sources Search Engines Can’t See. Medford, NJ:
CyberAge Books, 2001.

Web sites
National Institute of Standards and Technology. “Advanced

Encryption Standard: Questions and Answers.” Computer
Resource Security Center. March 5, 2001. �http://csrc.nist
.gov/encryption/aes/round2/aesfact.html� (June 16, 2004).

Key Terms

Algorithm: A fixed set of mathematical steps used to
solve a problem.

Operation: A method of combining the members of a
set so the result is also a member of the set. Addi-
tion, subtraction, multiplication, and division of real

numbers are everyday examples of mathematical
operations.

Program: A sequence of instructions, written in a 
mathematical language, that accomplish a certain
task.
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Architectural
Math

Overview

Architectural mathematics uses mathematical for-
mulae and algorithms for designing various architectural
structures. Most of these structures are buildings such as
museums, galleries, sport complexes and stadiums, the-
atres, churches, cathedrals, offices, houses, and so on.
Architectural mathematics is also used to design open
spaces in cities and towns, recreational places including
gardens, parks, playgrounds, water bodies such as lakes,
ponds and fountains, and a variety of physical construc-
tion and development.

Put simply, architectural math pertains to mathe-
matical concepts that are central to architecture. These
architectural math concepts are also used in several other
activities that we see in our daily lives. They are exten-
sively used in sports, technology, design, aviation, medi-
cine, astronomy, and much more.

Understanding architectural math requires knowl-
edge of various two-dimensional as well as three-
dimensional shapes such as square, rectangle, triangle,
cube, cuboids, sphere, cone, and cylinder. There are also
other concepts such as symmetry and proportion that are
integral to architecture math. The pyramids of Egypt, for
example, are based on these principles.

Fundamental Mathematical Concepts
and Terms

As architectural designs are strongly inspired and
implemented using various shapes and forms, basic
architectural mathematics involves understanding under-
lying principles that derive such shapes and forms. This
requires understanding geometric equations associated
with its visual representations. In other words, architec-
tural mathematics is not expressed as simple numbers but
rather as graphical or visual forms. What follows are some
of the most widely used architectural math concepts.

RAT IO
A ratio is a comparison by division of two quantities

expressed in the same unit of measure. In other words,
you get a ratio by dividing two numbers of quantities.
The ratio may be represented in words or in symbols. For
example, if segment Line A is one inch long and Line B is
two inches long, we say that the ratio of Line A to B is
one to two. In terms of mathematical symbols, the ratio
may be denoted in fractional form as 1⁄2, or it may be
expressed as 1:2.
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Since ancient times, Greeks and Romans were known
to be the most elaborate builders. They had a flair for
architecture and built structures that were pleasing to the
eye. They were convinced that architectural beauty was
attained by the interrelation of universally valid ratios.
Frequently, complicated mathematical ratios were used
by architects to accomplish their goals. Take, for example,
the golden ratio (or phi)—1.618. This ratio that has
applications in many areas, has been extensively used in
architecture—both modern and ancient.

PROPORT ION
Proportion, like ratio has always been a vital compo-

nent of architectural math. The ancient Greeks and
Romans followed certain mathematical proportions (and
ratio) to attain order, unity, and beauty in their buildings.
Using simple mathematical formulae (based on propor-
tion) they were able to establish a unique relationship
among various parts of buildings. Such relationships have
been used for generations.

To better understand the concept of proportion, con-
sider an example of two buildings variable in height
and base, however displaying the same proportion (see
Figure 1).

In Figure 1, there are four terms that would define
proportion of one building to another. These are 2, 3, 6,
and 9. A proportion is an equation that states the ratios of
comparison are equal. Thus, in the above example we
would say that Building 1 is in proportion (or propor-
tionate) to Building 2 if 6/9 � 2/3, or 9/6 � 3/2. This is
the case, and hence the statement that the buildings are in
proportion holds.

If the ratios for two objects are not equal, they would
not be in proportion. Proportion can also be used to

calculate the ratio of the total magnitude (in this case
size) of the two objects. For example, in our case 9/6 can
also be expressed as 3/2 � 3. Thus, we can say that
Building 1 is three times the size of Building 2.

SYMMETRY

In architecture, one way to attain balance and
response while designing structures is by the use of sym-
metry. Architecture is based on principles of balance.
Basically, if most architectural forms are divided into two
equal parts by a line in the center, the opposites sides of
the dividing line would be similar (or even identical).
This concept that can also be seen in all basic geometric
forms (square, rectangle, circle, triangle, and so on) is
known as symmetry and is extensively used architectural
structures—modern and ancient.

See Figure 2 to understand symmetry further. In this
figure (2a), triangle ABC and triangle BCD are symmet-
ric about line m. The corresponding sides and correspon-
ding angles of the triangles are similar. In other words,
triangle CBD is the reflection of triangle ABC, and m is
the line of symmetry. Such type of symmetry is also
known as symmetry by reflection.

Forms can also be created using translation or sliding
symmetry. This type of symmetry involves two or more
similar forms of the same size and facing the same direc-
tion. In figure (2b), all images are similar to each other
and face the same direction. Another way to understand
this is imagine that the same image has been slid on the
line p (and thus the name sliding symmetry).

The third method of attaining symmetry is by rota-
tion. If a figure, after rotating it around a central point by
less than 360�, remains unchanged, then it has rotation
symmetry. For example, in figure 2c, if this form is
rotated from the central point B by 180�, the resulting
form would be the same. Thus, the figure has rotation
symmetry for a rotation of 180�.

It is interesting to note that all geometric forms
(square, rectangle, triangle, pyramid, hexagon, etc.) can
have reflection, translation, and rotation symmetry.
It is for this reason, they are used extensively in
architecture.

SCALE  DRAWING
For designing any structure (a building, a house, or a

city), an architect is required to convert his ideas to draw-
ings. These drawings provide homeowners, contractors,
carpenters, and others with a small diagram of the final
structure. The drawings show in detail the sizes, shapes,

Height = 9
Base length = 6

Building 1

Height = 3
Base length = 2

Building 2

Figure 1.
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arrangements of rooms, structural elements, windows,
doors, closets, and other important details of construc-
tion. For example, a drawing for a house would specify
the area (length, width, and height) of every room includ-
ing the living area, bedroom, and bathroom at every floor.
Such miniature reproductions of the structure are called
scale drawings.

Scale drawings that represent parts of a structure
must be in proportion to the actual structure.

To do this, architects use a specific scale corre-
sponding to the actual size. For example, a scale such as 
1⁄4 inch � 1 foot, would suggest that a length of 1⁄4 inch on
the scale drawing is equal to one foot within the actual
structure.

Scale drawings allow an architect to visualize a struc-
ture before building it.

MEASUREMENT
Measurement is important and is required while

designing any building, right from the planning stage to
the actual construction work. The instrument used to
measure objects is the ruler, or a measuring tape.
Architects, carpenters, and designers use measure-ments
to come up with accurate scale drawings before starting
construction work. Throughout the process of building
any structure, measurement is extensively used.

Measurement can be expressed as inches, feet, and
yards (English system), or centimeters, and meters
(metric system).

A Brief History of Discovery 
and Development

There is a commonality between the seventeenth-
century Round Tower of Copenhagen, the thirteenth-
century Leaning Tower of Pisa, Houston’s Astrodome,
(the first indoor baseball stadium built in the United
States), the vast dome of the Pantheon in Rome, a
Chinese pagoda, and the Sydney Opera House. All these
buildings were built using architectural math concepts
such as scale, measurement, ratio, proportion, and
symmetry.

Architectural mathematics has always been a vital
part of structural design. The pyramids of Egypt used
basic principles of the geometric “pyramid”—a square
base and an apex tapering as the elevation of the
pyramid increased. The pyramid shape provides higher
stability compared to other structures as it is able to
counter wind forces and natural forces, such as earth-
quakes, much more effectively than compared to most
other shapes.

The same concept of visual geometry was used while
constructing the Eiffel Tower in Paris. It has a square base
with a narrowing apex as one moves toward the top of the
structure. One key aspect of mathematics to be consid-
ered while building a pyramid structure is the use of ratio
and proportion in designing the base and apex of the
tower. Higher the ratio of base to the apex, the higher will
be the stability of the structure to withstand the various
forces. This has been kept in mind while designing the
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above mentioned structures (and many other around
the world).

The influence of mathematics on architecture and its
principles can be seen since the time of the Greek mathe-
matician Pythagoras (569  B.C.–475 B.C.). Pythagoras, and
his followers, believed that all things could be represented
in numbers. This concept has been used extensively in
architecture, ever since.

Pythagoras, after conducting many experiments,
found out that music depended considerably on math-
ematics. He concluded that musical scales (notes)
depended on ratios of small integers. Architects adopted
this principle and designed buildings based on ratios of
smaller integers or units. These smaller units could be
units of length, size, or dimension. For example, a simple
wall consisted of smaller blocks equal in length.

Pythagoras also believed that all numbers could be
represented as geometrical shapes. Furthermore, he
developed an idea that geometrical symmetry based on
proportion is far more appealing, visually. This is the very
concept that architects used while designing buildings and

other structures. The structures that were then built in
ancient Greece and Rome were based on symmetry.

Architectural math concepts were eventually used in
a variety of other areas including astronomy, carpentry,
jewelry design, and more. It is not known how many of
these concepts were used in architecture first and then
later re-used in other fields of work. However, they are
interlinked and there is a high possibility that these con-
cepts inspired other designers and engineers to use math-
ematics effectively to justify the form or function of other
objects and devices, just the way architects used it to
express their building designs.

Real-life Applications

ARCH I TECTURE

It is evident by now that architecture is the most
common application of architectural mathematics. These
concepts are used in a number of ways by architects the
world over.

Carpenters use a variety of everyday math skills. CORBIS.
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USE  OF  SPACE

Architecture is all about using physical three-
dimensional space. The ways in which this space is used
is one of the most important aspects of architecture.
Many mathematical concepts are visible in architectural
designs that include spaces. For example, a building
design may leave an open space in the center, which is
often geometrical in shape such as a square, rectangle,
or a circle, with several other geometric designs sur-
rounding the space. Spaces are always designed based
on mathematical principles or ratio, proportion, and
symmetry.

Designs based on symmetry and space can be seen in
several open spaces and squares. One great example of the
same is St. Peter’s Square in Vatican City, Rome, where a
circular symmetry of elements is focused on the central
piece. The intersecting lines in the circle have a focal point
of concentration, a place where people can gather around.

USE  OF  GR IDS
Elements in a building are often arranged forming a

grid that resembles a set of parallel and perpendicular
lines on a piece of paper. Again these elements are based
on symmetry and patterns.

Carpentry

“Measure twice and cut once” is a principle slogan of
carpentry. Cutting out pieces of wood in such a way that
they subsequently fit together to make a beautiful cabi-
net, desk, cupboard or whatever calls for correct meas-
urements of length, width and height. The manufacture
of these and other items calls for the correct measure-
ment of slope; no one wants to try to eat off of a table
that is so slanted that the soup spills onto the floor! Nail-
ing pieces of wood together calls for a mathematical dis-
tinction between perpendicular and an angle less than
90 degrees.

A carpenter needs to understand the size and pro-
portion of each object depending on the person who is
expected to use it. These are again based on ergonomic
standards (see the section on Ergonomics). Subse-
quently, the designs reflect most of the basic concepts
of architectural mathematics.

For example, table tops often have wood pieces cut
and put together to form a symmetric design, exemplify-
ing their beauty. Symmetries and ratios are clearly evi-
dent in the design of a couch as well, which is based on
bilateral symmetry (see figure at above right).

The myriad number of carpentry processes that go
into the construction of a house are rooted in math. Car-
penters get involved in house construction following the lay-
ing of the foundation. Construction of a floor frame is
essential. Often the wood frame sits directly on the foun-
dation, and is not fixed or bolted to the foundation. The
weight of the house will provide the force to keep the frame
intact. But, for this operation to be successful, the frame
must be the same length, width and shape as the 
foundation and have enough cross braces to provide

strength. Proper measuring is crucial, as is the fitting
together of the slabs of wood that make up the skeleton of
the frame.

The cross braces, which are also called “joists” are
attached to a center beam that runs down the center of
the house. Once again, proper positioning of the beam is
essential to establishing the support needed for the
floors to come.

Once a floor is installed on the floor frame, walls
can be built. This construction is fraught with measure-
ments. For example, since special vertical supports need
to be in the right places to accommodate the interior
walls. Other side supports are usually positioned 8 to 16
inches apart and comprise the supporting studs. Doors,
windows and other exterior openings must be properly
located. In the case of windows, a special structure
called a header needs to be built above the window
opening. It will give the wall enough strength over the
expanse of glass to support the roof. Typically, this
phase of the construction requires detailed plans of the
structure, with accurate measurements. A blueprint of
the project is a necessary and prudent tool.
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USE  OF  RAT IO  AND  PROPORT ION

Historical monuments and modern buildings, alike,
have used architectural mathematics extensively. This is
reflected in several landmarks. As stated earlier, the Pyra-
mids of Egypt are a very good example of the use of a
simple form (the geometric pyramid shape), having a
square base and tapering as its height increases. These are
built such that their base and height have specific ratio
and proportion. This is done to impart greater strength
and stability. The same is the case with the Eiffel tower in
Paris.

For example, the ratio of the base of the Pyramids
with their height is almost 1:1.5. The ratio gives the
structure higher stability. Conversely, the Eiffel tower
has a ratio of 1:3 for base to height. Both these struc-
tures have different ratios. However, they both impart
stability to the structure due to their shape and design.
(See Figure 3.)

Architectural designs also use ratio and proportion
to justify the dimensions of elements within the build-
ings. This includes length and width of the corridor, its
proportion to doors that lie within the corridor, the
height of the ceiling from the floor with respect to the
type of building, and the ratio of size of the steps on a
staircase with respect to the total height of the staircase—
all these aspects are considered vital while designing a
structure.

USE  OF  ARCH I TECTURAL  SYMMETRY
IN  BU ILD INGS

Reflection symmetry (also known as bilateral symme-
try) is the most common type of symmetry in architectural
designs. In bilateral symmetry, the halves of a composition
mirror each other. Such symmetry exists in the Pantheon
in Rome. We find the same symmetry in the mission-style
architecture of the Alamo in San Antonio, Texas.

Bilateral symmetry existed in several buildings built
during the Roman or Greek periods. Modern architects
also use such symmetry widely for various structures (see
Figure 4).

Additionally, translation and rotation symmetry are
also employed considerably in modern architectural
designs.

USE  OF  RECTANGLE  AS  “GOLDEN
RECTANGLE”  AND  “GOLDEN  RAT IO”

Since ancient times, architectural designs have used
the golden ratio (1.618) in various ways. One of the best
examples being the Parthenon, the main temple of the
goddess Athena, built on the Acropolis in Athens. The
front of the Parthenon is a triangular area that fits inside
a rectangle whose sides are equivalent to the golden ratio
(the rectangle is popularly known as the golden rectan-
gle). The golden ratio and its related figures were incor-
porated into every piece and detail of the Parthenon.

Ratio & Proportion
Eiffel tower

Ratio of
base Length to
height is
1:3

Height
984 ft

Square Base, Side is 330 ft long

Ratio & Proportion
Pyramid of Cheops

Ratio of Base
length to Height is
1:1.5 Height of Apex

is 715 ft

length of one side of the base is 475 ft

A

E

B

FG

D

H

C

51"50' 51"50'

Figure 3.
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Symmetry of
building elements in

elevation
Multiple symmetry in building plan

Figure 4.

The same math principles that allowed the construction of the Arch of Constantine in Rome also allow designers to shape
modern home interiors. The arch distributes load. TRAVELSITE/DAGLI ORTI. REPRODUCED BY PERMISSION.
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The Triumphal Arch of Constantine, and the 
Colosseum—an amphitheater in Rome built in around
A.D. 75 (both in Rome)—are other great examples of
ancient use of golden relationships in architecture. The
main idea behind employing this ratio was to make the
structure visually appealing and also more stable.

USE  OF  BAS IC  FORMS AND  SHAPES
OF  GEOMETRY

Apart from mathematical concepts such as ratio,
proportion, and symmetry, most architectural designs
are based on basic geometric shapes and forms includ-
ing triangle, rectangles, pyramids, cones, cylinders, and
more. Although, when viewed as a whole these struc-
tures would have basic shapes, their interiors can always
be represented by the above mentioned mathematical
concepts.

The Taj Mahal in India is an example of the use of
a basic shape or form—the cube. The Taj Mahal was 

built as a cube, where the four minarets and the center 
burial tomb of the queen all are contained in a perfect
cube. The length, breadth, and height of all sides are
equal in dimension. Additionally, the sense of ratio, pro-
portion, and symmetry of this structure is precise and
spell-binding.

A modern example of the use of basic shapes is the
Pentagon, in Washington, D.C. The Pentagon’s five 
sides are equal in length, denoting a perfect pentagon.
Within the main structure, there are five concentric 
pentagons of corridors and offices. Again, these internal
pentagons are symmetric and in proportion to each
other.

SPORTS
Geometric shapes and forms, symmetry, ratio, and

proportion have found a place in sports as well. Practi-
cally, every field sport uses architectural math principles.
A tennis court, basketball court, football, hockey, soccer

Decorating

Numerous symmetrical shapes and forms are used while
decorating furniture and home accessories ranging from
a flower vase to the kitchen sink. The use of architectural
shapes and concepts is clearly visible in every decora-
tive aspect of the complete design.

Besides the arrangement of these shapes and
forms (see figures below), the concept of symmetry also
plays a vital role in the layout of these. For example,
while decorating a room, most interior designers 
would ensure that the entire layout of the room (and how
all elements within the room are placed) is based on

symmetry principles. The main purpose is to give a dec-
orative touch to the room to make it visually more
appealing.

Home accessories, especially decorative artwork
(vase, glassware, china pottery, and so on) are often made
of wood or ceramics. These decorative pieces more 
often than not are also based on principles of symmetry.
Their shape, exterior designs, and colors are amazingly 
symmetrical, and in many cases are based on basic 
geometric forms and shapes—much like designs in
architecture.
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fields—all of them are rectangles having a center line
dividing each into two halves for each team or players.
These are perfect examples of reflection symmetry.
Besides, many of these sports have fields that have sides
forming the “Golden Rectangle.” The ratio of a side to its
length is based on the golden ratio—a concept adopted
by architects to depict buildings during the Roman and
Greek periods, as discussed earlier.

In addition, other concepts of mathematics that are
commonly applicable to architectural designs, such as
measurements and scales also apply to field sports.

TECHNOLOGY

Technology tools and devices use architectural math
concepts of symmetry and proportion to facilitate their
underlying functions. Equipments such as a periscope
used in submarines, guns in aircrafts, and satellite trans-
mission use the principle of symmetry.

A periscope is commonly used in submarines. It is a
device that can help view objects such as ships and other
water vessels above the water surface, while still being
underwater. A periscope has two mirrors placed at a 45�

angle to the eye’s line of sight along with another mirror
placed at 45� parallel to the first one at a variable height
(see Figure 5). This allows a person to view objects using
the laws of reflection at different heights while maintain-
ing his/her own position and eye level.

The principle of periscope is clearly visible in the
rotational symmetry concept of many architectural
building designs. The use of two mirrors can be com-
pared with two parallel lines to reflect a design and make

it look symmetrical. The concept is the same, however its
application and use varies drastically.

Fighter aircraft guns are often assisted by the visual
cross-hair—two perpendicular lines, where the point of
intersection is often pinpointing or locating a target (see
Figure 6). There are several aircraft guns that have two
cross-hairs, one for the aircraft gun itself, and the other
for the object. Once the two cross hairs coincide with
each other, or are symmetrically aligned with each other,
the target object is in line with the gun point. In other
words, the crosshairs are now pointing at the target. The
target can be locked and shot. This entire mechanism is
based on principles of symmetry.

Another such technological tool is the fan. A fan
works on the principles of architectural math, mainly
symmetry, and is used in several applications including
aircrafts, helicopters, wind mills, and air conditioners, as
well as industrial/home establishments such as kitchens

Mirrors parrallel to other in a
periscope at a 45-degree angle

Line of sight

Above Water

Under Water

Figure 5.

Sample crosshair
target with two perpendicular
lines and a circle

Figure 6.
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(exhaust fans). A fan has typically three wings, which are
similar in size, shape, ratio, and proportion. On rotation,
they (wings) generate air and help run several mechanical
as well as electrical devices. A simple fan is one of the
most commonly used mathematical applications of sym-
metry and geometric shape (circle).

US ING  SYMMETRY  IN  C I TY  PLANN ING
Since the early 1930s, most cities in the world have

developed in similar ways. City planners have always
focused on symmetrical models for planning a new city
or even developing existing cities further. Many cities
have a central area known as the central business district
(CBD). This is where businesses within a city are concen-
trated. The areas around the CBD are mostly residential.

The manner in which residential areas have devel-
oped over the years is comparable (around the world). A
city can be thought of as a group of clusters, where each
cluster comprises of a number of buildings, roads, and
other structures. The entire city consists of numerous
such clusters arranged symmetrically. In other words, a
city would consist of a central area (CBD) and several
similar clusters around the CBD placed in a symmetrical
pattern. This concept is based on the principle of transla-
tion symmetry (also known as a fractal or motif).

Some of the biggest cities in the world, including
New York, London, Paris, Beijing, and so on are in many
ways based on the architectural mathematical concept of
symmetry. That said, the late 1990s and early 2000s have
started witnessing newer cities that are far more de-
centralized. In other words, the concept of a central business
area and symmetrical clusters of residential areas around it
is losing popularity. Clusters within some cities have
become dispersed and random rather than symmetric.

ERGONOMICS
Ergonomics is a science that studies technology and

how well it suits the human body. Ergonomics involves
understanding basic body parts, their functions and abili-
ties to operate equipments, machinery, products, and other
technological devices. Ergonomics is commonly used
while designing cars, among other things. Ergonomic car
designs are based on the principles of ratio and propor-
tion. In other words, car designers use principles and math
concepts that are used considerably in architecture to come
up with designs that better fitand serve the human body.

For example, the height from the surface, inclination,
and movements patterns in a car seat for drivers are all
designed in proportion to the human body. The ratios are
extremely critical here. The size of the seat has to be in
proportion with the size of an average human driver.

Besides, you do not expect a person to have a giant wheel
in front of him/her, the size of the wheel (the diameter of
the wheel) has to be in proportion to the size of the hand
grip, shoulder width, and distance between the wheel and
person driving the car. All these elements are carefully
incorporated into the design of cars.

Similarly, interior designers also use ratios to design
various objects (such as beds, tables, chairs, and so on)
within a house. These ratios are based on ergonomic
standards. For example, a bed is designed such that it is in
proportion to the human body. In Sweden, beds have a
length of 7 feet (2.1 m), while beds in Japan are rarely
6 feet (1.8 m) long. This is due height differences in the
populations. The average height of an individual in Japan
is 5 feet 2 in (1.5 m), while the average height of a person
in Sweden is about six feet (1.8 m). This also influences
other design standards such as height of the bed from the
floor, width of the bed, and portability of the bed.

The size of the window is also often based on the
proportion of human body. A window in a house will be
smaller, compared to a window in a public building. The
proportion of both windows may be same implying that
the ratio of their width/height is equal. However, their
sizes would differ.

Architectural mathematical concepts such as ratio
and proportion form an integral part of ergonomics,
especially when it comes to design related issues.

JEWELRY
Ornaments made of gemstones, diamonds, gold, and

silver use symmetry of arrangement extensively. A cut of
a diamond often displays several shapes and forms. Gold
is molded into several geometric forms to add value to an
ornament.

Consider, for example, pendants that are more often
than not designed using principles of symmetry. The
symmetry in such pendants is visible in architectural
structures as it is in nature (arrangement of flowers and
fruits on trees). Ornament designs are often very intricate
and require a finer view to understand their symmetry,
ratio, and geometric shapes. Such symmetric designs are
not limited to pendants but are also visible in rings,
bracelets, and several other ornaments.

Compare these with symmetric designs in the ceil-
ings of several domes and museum galleries and a stark
resemblance is clearly evident. Mirrors, stained glass, and
other shinny materials that are commonly used to signify
architectural designs in building interiors are very similar
to ornament designs—with respect to their visual arrange-
ment and their underlying mathematical principles.
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Cathedrals are a common example, where the architecture
is inspired by arranging materials and objects in symme-
try, similar to that in ornaments and jewelry.

ASTRONOMY
Fundamentals of architectural math including dis-

tance, size, and proportion are also visible in various
astronomical advancements. The telescope is one such
example. Telescopes are used to view stars and planets
located in far away galaxies. The distance is measured in
light years. The distance traveled by light in one year is
known as a light year (light travels at a speed of 186,000
miles per second). This gives an indication of the distances
between the Earth and some of the stars and planets.

Telescopes are used to magnify the image of these
objects. This is done by using different lenses. Larger tel-
escopes, such as the Hubble telescope, are able to magnify
objects situated at a larger distance. Smaller telescopes in
comparison have lower magnification implying lower
visibility and clarity.

One of the basic mathematical principles of tele-
scopes is scaling—a concept extremely common in archi-
tecture. Just like architects draw scale diagrams using
ratio and proportion, telescopes use the same principles
to magnify objects situated at large distances. In other
words, telescopes present a scale model of an object that
is not otherwise visible (or too tiny) with the naked eye.

Although, larger telescopes magnify objects that are
further away, as compared to the smaller telescopes, the
degree of magnification (of both types of telescopes) is
always in proportion.

TEXT I LE  AND  FABR ICS
Cloth or fabrics are used for a variety of purposes.

This includes bed sheets, covers, clothes, apparels, wipes,
and more. Fabrics are textile products that require knit-
ting. These are made from fibers of cotton, nylon, or
other types. However, most of these fabrics do not have
any value until a design is printed or woven on them. In
other words, fabric prints carry considerable value to a
plain piece of fabric or cloth. People would usually buy
fabrics with visually appealing prints, rather than those
that are plain.

Symmetry, which is used commonly used in archi-
tecture, is often reflected in fabric or cloth designs. Most
fabric designs are composed of motifs. Motifs are repeti-
tive use of a single design concept, style, or shape—Motifs
signify symmetry (translation symmetry). The type of
motifs could range from a leaf or a flower of same color
or style repeated over the entire fabric print. The design

varies depending on the final use of the fabric. Bed sheets,
clothes, fashion apparels, and so on have different sym-
metry motifs depending the type of fabric, their manu-
facturing price, and quality of print.

Motifs are not limited to floral or color patterns but
are often extend to lines, simple geometric shapes
(squares, circles, rectangle, etc.), blocks, and much more.
In some cases, once the fabric is cut or is stitched to
make the final product, the symmetry may be lost. Nev-
ertheless, the design is still based on the very principle 
of symmetry.

This is one of the most common applications in daily
life that uses mathematical concepts of architecture in a
very different way.

ARCH I TECTURAL  CONCEPTS  
IN  WHEELS

Commuting has become an integral part of our daily
life. We drive (on our own or in public transportation) to
work, to school, to attend meetings, to go shopping or
buy groceries. We require transportation to reach differ-
ent places. Today, transportation is seen as a necessity.

Transportation is facilitated by public buses, rail-
ways, airplanes, and cars. All of these use wheels. A wheel,
be it of rubber, magnet, or iron, is a vital component of
any automobile. The wheel consists of a bar in its center
known as the axle. The width of the axle is governed by
the width of the carriage (weight of the automobile)
required. Subsequently, the width varies in trains, buses,
and cars. While designing wheels, engineers must ensure
that the size of the wheel and the axle is in proportion to
the total weight of the vehicle (including the people it car-
ries) as well as the speed at which the vehicle can travel.

Ratio and proportion play a very important role in
defining the diameter, width and the number of wheels
that have to be attached with a vehicle. Higher the load to
be carried, the more number of wheels (and even
stronger wheels) will be required. Similarly, the longer the
length of the vehicle, more the number of wheels
required. Airplanes do not travel on wheels but require
them to land and take off. However, the proportion of
their wheels is much greater when compared with other
vehicles as the amount of load is much higher. Besides,
the size of the plane is also much larger when compared
with other vehicles.

In short, wheels have to compliment the size of the
vehicle and its intended purpose. Automobile design uses
mathematical concepts of ratio and proportion, similar
to those used in architecture. These are also based on
ergonomical standards (see section on Ergonomics).



A r c h i t e c t u r a l  M a t h

44 R E A L - L I F E  M A T H

Where to Learn More

Books
Rossi, Corinna. Architecture and Mathematics in Ancient Egypt.

Cambridge University Press, 2004.

Williams, Kim. Nexus III: Architecture and Mathematics. Pacini
Editore, 2000.

Web sites
University College London, Department of Geography. “Fractals

New Ways of Looking at Cities” �http://www.geog.ucl.ac
.uk/casa/nature.html�(April 9, 2005).

Yale New Haven Teachers Institute. “Some Mathematical Princi-
ples of Architecture” �http://www.cis.yale.edu/ynhti/
curriculum/units/1983/1/83.01.12.x.html� (April 9, 2005).

Key Terms

Proportion: An equality between two ratios.

Ratio: The ratio of a to b is a way to convey the idea of
relative magnitude of two amounts. Thus if the
number a is always twice the number b, we can 
say that the ratio of a to b is “2 to 1.” This ratio
is sometimes written 2:1. Today, however, it is 

more common to write a ratio as a fraction, in this
case 2/1.

Scale: The ratio of the size of an object to the size of its
representation.

Symmetry: An object that is left unchanged by an oper-
ation has a symmetry.
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Area

Overview

An area is a measurement of a defined surface such
as a face, plane, or side. Conceptually, an object’s area can
be compared quantitatively to the amount of paint
needed to cover the object completely. However, in con-
trast to measures of volume in pints, liters, or gallons,
area measurements are expressed in units such as square
feet, square meters, or square miles. Calculations of area
are basic to science, engineering, business, buying and
selling land, medicine, and building.

Fundamental Mathematical Concepts
and Terms

AREA  OF  A  RECTANGLE
Every real-world object and every geometrical figure

that is not a point or a line has a surface. The amount or
size of that surface is the object’s or figure’s area. There
are many standard formulas for calculating areas, the
simplest and most commonly used being the formula for
the area of a rectangle. To find the area of a rectangle, first
measure the lengths of its sides. If the rectangle is W cen-
timeters (cm) wide and H cm high, then its area, A, is
given by A � W cm � H cm.

Centimeters are used here only as an example. The
units used to measure length—centimeters, inches, kilo-
meters, miles, or anything else—do not change the basic
formula: area equals width times height. So, for example,
a typical sheet of typing paper, which is 8.5 inches wide
and 11 inches high, has area A � 8.5 inches � 11 inches �
93.5 square inches.

UNITS  OF  AREA
Area has now been explained in terms of “square

inches” (or centimeters). This means that on the right-
hand side of the formula A � W cm � H cm, four terms
are multiplied: W, H, and cm (twice). These four terms
can be reordered to give W � H � cm � cm. It is cus-
tomary in mathematics to use the square notation when
a term is multiplied by itself, so cm � cm is always writ-
ten cm2, which is centimeters squared, or square centime-
ters. Another way of writing the rectangle area formula is,
therefore, A � WH cm2. Area is therefore measured in
units of square centimeters—or square inches, square
feet, square kilometers, square miles, or any other length
measure squared. For example, a square with edges 1 foot
long has an area of 1 square foot.

When talking about physical materials such as cloth,
land, sheet steel, plywood, or the like, it is important to
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give correct units for length and area. However, in math-
ematics it is common to not use units. The norm is to say
that an imagined rectangle has a length of 4, a height of 5,
and an area of 4 � 5 � 20.

AREAS  OF  OTHER  COMMON SHAPES
The simplest rectangle is a square, which is a rectan-

gle whose four sides are all of equal length. If a square has
sides of length H, then its area is A � H � H � H 2.

The standard formulas for finding the areas of other
simple geometric figures are depicted in Figure 1.

Notice that in all the area formulas, two measures of
length are multiplied, not added. This means that when-
ever an object is made larger, its area increases faster than
its height or width. For example, a square that has sides of
length 2 has area A � 22 � 4, but a square that is twice as
tall, with sides of length 4, has area A � 42 � 16, which is
four times larger. Likewise, making the square three times
taller, with sides of length 6, makes it area A � 62 � 36,
which is nine times larger. In general, a square’s area
equals its height squared; therefore its area “increases in
proportion to” or “goes as” the square of the side length.
Consequently, a common rule of thumb for sizes and areas
is, increasing the size of a flat object or figure makes its area
grow in proportion to the square of the size increase.

AREAS  OF  SOL ID  OBJECTS
Three-dimensional objects such as boxes or balls also

have areas. The area of a box can be calculated by adding
up the areas of the rectangles that make up its sides. For
example, the formula for the area of a cube (which has
squares for sides) is just the area of one of its sides, H 2

multiplied by the number of sides, which is 6: A � 6H 2.

Calculating the area of a rounded object like a ball is
not as simple, because it has no flat sides and none of the
standard formulas for simple geometric shapes can be
used to find the areas of parts of its surface. Fortunately,

standard formulas were worked out centuries ago for
simple rounded objects like cones, spheres, and cylinders;
these formulas are listed in many math books. For exam-
ple, the area of a sphere of radius R is A � 4�R2 (�, pro-
nounced “pie,” is a special number approximately equal to
3.1416; see the article on “Pi” in this book). The Earth,
which is basically sphere-shaped, has an average radius of
6,371 kilometers (km), or about 3,956 miles. Its surface
area is therefore A � 4�6,3712 � 510,060,000 km2, which
is about 316,750,000 square miles. The Earth is 53 times
the area of the United States.

A Brief History of Discovery 
and Development

The calculation of areas was one of the earliest math-
ematical ideas to be developed by ancient civilizations,
preceded only by counting and length measurement. The
ability to calculate areas was originally needed in the buy-
ing and selling of land. Four thousand years ago the
Egyptian and Babylonian civilizations also knew how to
calculate the area of a circle, having worked out approxi-
mate values for the number �. The ability to calculate
areas was also useful in construction projects. The pyra-
mids of Egypt, for example, could only have been con-
structed with the help of sophisticated geometric
knowledge, including formulas for the areas of basic
shapes. Calculation of the areas of spheres and other solid
objects also dates back to the ancient Egyptian and Baby-
lonian civilizations. Similar knowledge was discovered
independently by Chinese mathematicians at about the
same time.

In the seventeenth century, the calculation of the
areas of shapes with smoothly curving boundaries was an
important goal of the inventors of the branch of mathe-
matics known as calculus, especially the English physicist
Isaac Newton (1642–1727) and the German mathemati-
cian Gottfried Wilhelm von Leibniz (1646–1716). One
of the two basic operations of calculus, integration,
describes the area under a curve. (To understand what is
meant by the area under a curve, one must imagine look-
ing at the flat end of a building with an arch-shaped roof.
The area of the wall at the end of the building is the area
under the curve marked by the roofline.) The area under
a curve may stand for a real physical area—if, for exam-
ple, the curve describes the edge of a piece of metal or a
plot of land—or, it may stand for some other quantity,
such as money earned, hours lived, fluid pumped, fuel con-
sumed, energy generated. The extension of the area con-
cept through calculus over the last three centuries has
made modern technology possible.

Geometric figure Dimensions Formula for area

rectangle width W, height H A�WH
square side length H A�H2

circle radius R A�R2

triangle base B, height H A�1/2 BH
parallelogram base B, height H A�BH
trapezoid base B, top T, height H A�1/2 (B � T )H

Areas of geometric shapes

Figure 1.
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Real-life Applications

DRUG  DOS ING

The amount of a drug that a person should take
depends, in general, on their physical size. This is because
the effect of a drug in the body is determined by how

concentrated the drug is in the blood, not by the total
amount of drug in the body. Children and small adults
are therefore given smaller doses of drugs than are large
adults. The size of a patient is most often determined by
how much the patient weighs. However, in giving drugs
for human immunodeficiency virus (HIV, the virus that

About 70% of the surface area of Earth is covered with water. U.S. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA).
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causes AIDS), hepatitis B, cancer, and some other dis-
eases, doctors do not use the patient’s weight but instead
use the patient’s body surface area (BSA). They do so
because BSA is a better guide to how quickly the kidneys
will clear the drug out of the body.

Doctors can measure skin area of patients directly
using molds, but this is practical only for special research
studies. Rather than measuring a patient’s skin area, doc-
tors use formulas that give an approximate value for BSA
based on the patient’s weight and height. These are simi-
lar in principle to the standard geometric formulas that
give the area of a sphere or cone based on its dimensions,
but less exact (because people are all shaped differently).
Several formulas are in use. In the West, an equation
called the DuBois formula is most often used; in Japan,
the Fujimoto formula is standard. The DuBois formula
estimates BSA in units of square meters based on the
patient’s weight in kilograms, Wt, and height in centime-
ters, Ht : BSA = .007184Wt .425Ht .725

In recent years, doctors have debated whether setting
drug doses according to BSA really is the best method.
Some research shows that BSA is useful for calculating
doses of drugs such as lamivudine, given to treat the hep-
atitis B virus, which is transmitted by blood, dirty nee-
dles, and unprotected sex. (Teenagers are a high-risk
group for this virus.) Other research shows that drug dos-
ing based on BSA does not work as well in some kinds of
cancer therapy.

BUY ING  BY  AREA
Besides addition and subtraction to keep track of

money, perhaps no other mathematical operation is per-
formed so often by so many ordinary people as the calcu-
lation of areas. This is because the price of so many
common materials depends on area: carpeting, floor tile,
construction materials such as sheetrock, plywood, exte-
rior siding, wallpaper, and paint, whole cloth, land, and
much more. In deciding how much paint it takes to paint
a room, for example, a painter measures the dimensions of
the walls, windows, floor, and doors. The walls (and ceil-
ing or floor, if either of those is to be painted) are basically
rectangles, so the area of each is calculated by multiplying
its height by its width. Window and door areas are calcu-
lated the same way. The amount of area that is to be
painted is, then, the sum of the wall areas (plus ceiling or
floor) minus the areas of the windows and doors. For each
kind of paint or stain, manufacturers specify how much
area each gallon will cover, the spread rate. This usually
ranges from 200 to 600 square feet per gallon, depending
on the product and on the smoothness of the surface
being painted. (Rough surfaces have greater actual surface

area, just as the lid of an egg carton has more surface area
than a flat piece of cardboard of the same width and
length.) Dividing the area to be painted by the spread rate
gives the number of gallons of paint needed.

F I LTER ING
Surface area is important in chemistry and filtering

because chemical reactions take place only when sub-
stances can make contact with each other, and this only
happens on the surfaces of objects: the outside of a mar-
ble can be touched, but not the center of it (unless the
marble is cut in half, in which case the center is now
exposed on a new surface). Therefore a basic way to take
a lump of material, like a crystal of sugar, and make it
react more quickly with other chemicals is to break it into
smaller pieces. The amount of material stays the same,
but the surface area increases.

But don’t larger cubes or spheres have more surface
area than small ones? Of course they do, but a group of
small objects has much more surface area than a single
large object of the same total volume. Imagine a cube
having sides of length L. Its area is L � 6L2. If the cube is
cut in half by a knife, there are now two rectangular
bricks. All the outside surfaces of the original cube are
still there, but now there are two additional surfaces—the
ones that have appeared where the knife blade cut. Each
of these surfaces is the same size as any of the cube’s orig-
inal faces, so by cutting the cube in half there has added
2L2 to the total area of the material. Further cuts will
increase the total surface area even more.

Increasing reaction area by breaking solid material
down into smaller pieces, or by filling it full of holes like
a sponge, is used throughout industrial chemistry to
make reactions happen faster. It is also used in filtering,
especially with activated charcoal. Charcoal is solid carbon;
activated charcoal is solid carbon that has been treated to
fill it with billions of tiny holes, making it spongelike.
When water is passed through activated charcoal, chemi-
cals in the water stick to the carbon. A single teaspoonful
of activated charcoal can contain about 10,000 square feet
of surface area (930 square meters, the size of an Ameri-
can football field). About a fourth of the expensive bot-
tled water sold in stores is actually city tap water that has
been passed through activated charcoal filters.

CLOUD  AND  ICE  AREA  
AND  GLOBAL  WARMING

Climate change is a good example of the importance
of area measurements in earth science. For almost 200
years, human beings, especially those in Europe, the
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United States, and other industrialized countries, have
been burning massive quantities of fossil fuels such as
coal, natural gas, and oil (from which gasoline is made).
The carbon in these fuels combines with oxygen in the air
to form carbon dioxide, which is a greenhouse gas. A
greenhouse gas allows energy from the Sun get to the sur-
face of the Earth, but keeps heat from escaping (like the
glass panels of a greenhouse). This can melt glaciers and
ice caps, thus raising sea levels and flooding low-lying
lands, and can change weather patterns, possibly making
fertile areas dry and causing violent weather disasters to
happen more often. Scientists are constantly trying to
make better predictions of how the world’s climate will
change as a result of the greenhouse effect.

Among other data that scientists collect to study
global warming, they measure areas. In particular, they
measure the areas of clouds and ice-covered areas. Clouds
are important because they can either speed or slow global
climate change: high, wispy clouds act as greenhouse fil-
ters, warming Earth, while low, puffy clouds act to reflect
sunlight back into space, cooling Earth. If global warming
produces more low clouds, it may slow climate change; if
it produces more high wispy clouds, it may speed climate
change. Cloud areas are measured by having computers
count bright areas in satellite photographs.

Cloud areas help predict how fast the world will get
warmer; tracking ice area helps to verify how fast the
world has already been getting warmer. Most glaciers
around the world have been melting much faster over the
last century—but scientists need to know exactly how
much faster. To find out, they first take a satellite photo of
a glacier. Then they measure its outline, from which they
can calculate its area. If the area is shrinking, then the gla-
cier is melting; this is itself an important piece of knowl-
edge. Scientists also measure the area of the glacier’s
accumulation zone, which is the high-altitude part of the
glacier where snow is adding to its mass. Knowing the
total area of the glacier and the area of the accumulation
zone, scientists can calculate the accumulation area ratio,
which is the area of the glacier’s accumulation zone
divided by its total area. The mass balance of a glacier—
whether it is growing or shrinking—can be estimated
using the accumulation area ratio and other information.

CAR  RAD IATORS
Chemical reactions are not the only things that hap-

pen at surfaces; heat is also gained or lost at an object’s
surface. To cool an object faster, therefore, surface area
needs to be increased. This is why elephants have big ears:
they have a large volume for their body surface area, and
their large, flat ears help them radiate extra heat. It is also

why we hug ourselves with our arms and curl up when we
are cold: we are trying to decrease our surface area. And it
is how cars engines are kept cool. A car engine is sup-
posed to turn the energy in fuel into mechanical motion,
but about half of it is actually turned into heat. Some of
this heat can be useful, as in cold weather, but most of it
must simply be expelled. This is done by passing a liquid
(consisting mostly of water) through channels in the
engine and then pumping the hot liquid from the engine
through a radiator. A radiator is full of holes, which
increase its surface area. The more surface area a radiator
has, the more cool air it can touch and the more quickly
the metal (heated by the flowing liquid inside) can get rid
of heat. When the liquid has given up heat to the outside
world through the large surface area of the radiator, the
liquid is cooler and is pumped back through the engine to
pick up more waste heat. Car designers must size radiator
surface area to engine heat output in order to produce
cars that do not overheat.

SURVEY ING
If a parcel of land is rectangular, calculating its area is

simple: length � width. But, how do surveyors find the
area of an irregularly shaped piece of land—one that has
crooked boundaries, or maybe even a winding river along
one side?

If the piece of land is very large or its boundaries very
curvy, the surveyor can plot it out on a map marked with
grid squares and count how many squares fit in the par-
cel. If an exact area measurement is needed and the par-
cel’s boundary is made up of straight line segments,
which is usually the case, the surveyor can divide a draw-
ing of the piece of land into rectangles, trapezoids, trian-
gles. The area of each of these can be calculated separately
using a standard formula, and the total area found as the

Figure 2.
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sum of the parts. Figure 2 depicts an irregular piece of
property that has been divided into four triangles and
one trapezoid.

Today, it is also possible to take global positioning
system readings of locations around the boundary of a
piece of property and have a computer estimate the inside
area automatically. This is still not as accurate as an area
estimate based on a true survey, because global position-
ing systems are as yet only accurate to within a meter or
so at best. Error in measuring the boundary leads to error
in calculating the area.

SOLAR  PANELS
Solar panels are flat electronic devices that turn part

of the energy of sunlight that falls on them—anywhere
from 1% or 2% to almost 40%—into electricity. Solar
panels, which are getting cheaper every year, can be
installed on the roofs of houses to produce electricity to
run refrigerators, computers, TVs, lights, and other
machines. The amount of electricity produced by a col-
lection of solar panels depends on their area: the more
area, the more electricity. Therefore, whether a system of
solar panels can meet all the electricity demands of a
household depends on three things: (1) how much elec-
tricity the household uses, (2) how efficient the solar pan-
els are (that is, how much of the sun energy that falls on
them is turned into electricity), and (3) how much area is
available on the roof of the house.

The average U.S. household uses about 9,000 kWh of
electricity per year. A kWh, or kilowatt-hour, is the
amount of electricity used by a 100-watt light bulb burn-
ing for 10 hours. That’s equal to 1,040 watts of around-
the-clock use, which is the amount of electricity used by

ten 100-watt bulbs burning constantly. A typical square
meter of land in the United States receives from the Sun
about 150 watts of power per square meter (W/m2), aver-
aged around the clock, so using solar panels with an effi-
ciency of 20% we could harvest about 30 watts per square
meter of panel (on average, around the clock). To get
1,040 watts, therefore, we need 1,040 W / 30 W/m2 �

34 m2 of solar panels. At a more realistic 10% panel effi-
ciency, we would need twice as much panel area, about 
68 m2. This would be a square 8.2 meters on a side (27
feet). Many household rooftops in the United States
could accommodate a solar system of this size, but it
would be a tight fit. In Europe and Japan, where the aver-
age household uses about half as much electricity as the
average U.S. household, it would be easier to meet all of a
household’s electricity demands using a solar panel sys-
tem. Of course, it might still a good idea to meet some of
a household’s electricity needs using solar panels, even
where it is not practical to meet them completely that way.

Where to Learn More
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Average

Overview

An average is a number that expresses the central
tendency of a group of numbers. Another word for aver-
age, one that is used more often in science and math, is
“mean.” Averages are often used when people need to
understand groups of numbers. Whenever groups of
measurements are collected in biology, physics, engineer-
ing, astronomy or any other science, averages are calcu-
lated. Averages also appear in grading, sports, business,
politics, insurance, and other aspects of daily life. An
average or mean can be calculated for any list of two or
more numbers by adding up the list and dividing by how
many numbers are on it.

Fundamental Mathematical Concepts
and Terms

ARITHMET IC  MEAN
There are several ways to get at the “average” value of

a set of numbers. The most common is to calculate the
arithmetic mean, usually referred to simply as “the
mean.” Imagine any group of numbers—say, 140, 141,
156, 169, and 170. These might stand for the heights in
centimeters (cm) of five students. To find their mean, add
them up and divide by the number of numbers in the list,
in this case, 5:

Mean = 140 + 141 + 156 + 169 + 170

5

= 776

5

= 155.2

Figure 1: Calculation of an average or mean.

The average or mean height of the students is therefore
155.2 centimeters (about 5 ft 1 in). Mentioning the mean is
a quicker, easier way of describing about how tall the stu-
dents in the group are than listing all five individual heights.

This is convenient, but to pay for this convenience,
information must be left out. The mean is a single num-
ber formed by blending all the numbers on the original
list together, and can only tell us so much. From the
mean, we cannot tell how tall the tallest person or short-
est person in the group is, or how close people in the
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group tend to be to the mean, or even how big the group
is—all things that we might want to know. These details
are often given by listing other numbers as well as the
mean, such as the minimum (smallest number), maxi-
mum (largest number), and standard deviation (a meas-
ure of how spread out the list is).

More than one list of numbers might have the same
mean. For example, the mean of the three numbers 155,
155.2, and 155.4 is also 155.2.

GEOMETR IC  MEAN
The kind of average found by adding up a list of

numbers and dividing by how many there are is called the
“arithmetic” mean to distinguish it from the “geometric”
mean. When numbers on a list are multiplied by each
other, they yield a product; the geometric mean of the list
is the number that, when multiplied by itself as many
times as there are numbers on the list, gives the same
product. Take, for example, the list 2, 6, 12. The product
of these three numbers is 2 � 6 � 12 � 144. The geo-
metric mean of 2, 6, and 12 is therefore 5.24148 because
5.24148 � 5.24148 � 5.24148 also equals 144.

The geometric mean is not found by adding up the
numbers on the list and dividing by how many there are,
but by multiplying the numbers together and finding the
nth root of the product, where n stands for how many
numbers there are on the list. So, for instance, the geo-
metric mean of 2, 6, and 12 is the third (or “cube”) root
of 2 � 6 � 12:

The mean and the median are similar in that they
both give a number “in the middle.” The difference is that
the mean is the “middle” of where the listed numbers are
on the number line, whereas the median is just the num-
ber that happens to be in the middle of the list. Consider
the list 1, 1, 1, 1, 100. The mean is found by adding them
up and dividing by how many there are:

The median, on the other hand—the number in the
middle of the list—is simply 1. For this particular list,
therefore, the mean and median are quite different. Yet
for the list of heights discussed earlier (140, 141, 156, 169,
170), the mean is 155.2 and the median is 156, which are
similar. What makes the two lists different is that on the
list 1, 1, 1, 1, 100, the number 100 is much larger the oth-
ers: it makes the mean larger without changing the
median. (If it were 1 or 10 instead of 100, the median
would still be 1—but the average would be smaller.) A
number that is much smaller or larger than most of the
others on a list is called an “outlier.” The rule for finding
the median ignores outliers, but the rule for finding the
mean does not.

If a list contains an odd number of numbers, as does
the five-number list 1, 1, 1, 1, 100, one of the numbers is
in the middle: that number is the median. If a list con-
tains an even number of numbers, then the median is the
number that lies halfway between the two numbers near-
est the middle of the list: so, for the four-number list 1, 1,
2, 100 the median is 1.5 (halfway between 1 and 2).

WHAT  THE  MEAN  MEANS
The mean is not a physical entity. It is a mathemati-

cal tool for making sense of a group of numbers. In a
group of students with heights 140, 141, 156, 169, 170 cm
and average height 155.2 cm, no single person is actually
155.2 cm tall. It does not usually mean much, therefore,
when we are told that somebody or something is above or
below average. In this group of students, everybody is
above or below average.

Further, averages only make sense for groups of
numbers that have a gist or central tendency, that are fairly
evenly scattered around some central value. Averages do
not make sense for groups of numbers that cluster around
two or more values. If a room contains a mouse weighing
50 grams and an elephant weighing 1,000,000 grams, you
could truly say that the room contains a population of
animals weighing, on average, (50 � 1,000,0000) / 2 �
500,025 grams, half as much as a full-grown elephant, but

1 + 1 + 1 + 1 + 100 104
5

= = 20.8
5

Geometric mean = 2 × 6 × 123

= 1443

= 5.24148

The geometric mean is used much less often than the
arithmetic mean. The word “mean” is always taken as
referring to the arithmetic mean unless stated otherwise.

THE  MED IAN
Another number that expresses the “average” of a

group of numbers is the median. If a group of numbers
is listed in numerical order, that is, from smallest to
largest, then the median is the number in the middle of
the list. For the list 140, 141, 156, 169, 170, the median
is 156.
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this would be somewhat ridiculous. It is more reasonable
to say simply that the room contains a 50-gram mouse
and a 1,000,000-gram elephant and forget about averag-
ing altogether in this case. If the room contains a thou-
sand mice and a thousand elephants, it might be useful to
talk about the mean weight of the mice and the mean
weight of the elephants, but it would still probably not
make sense to average the mice and the elephants
together. The weights of the mice and elephants belong
on different lists because mice and elephants are such dif-
ferent creatures. These two lists will have different means.
In general, the average or arithmetic mean of a list of
numbers is meaningful only if all the numbers belong on
that list.

A Brief History of Discovery 
and Development

The concept of the average or mean first appeared in
ancient times in problems of estimation. When making
an estimate, we seek an approximate figure for some
number of objects that cannot be counted directly: the
number of leaves on a tree, soldiers in an attacking army,
galaxies in the universe, jellybeans in a jar. A realistic way
to get such a figure—sometimes the only realistic way—
is to pick a typical part of the larger whole, then count
how many leaves, soldiers, galaxies, or jellybeans appear
in that fragment, then multiply this figure by the number
of times that the part fits into the whole. This gives an
estimate for the total number. If there are 100 leaves on a
typical branch, for instance, then we can estimate that on
a tree with 1,000 branches there will be 100,000 leaves. By
a “typical” branch, we really mean a branch with a num-
ber of leaves on it equal to the average or mean number
of leaves per branch. The idea of the average is therefore
embedded in the idea of estimation from typical parts.
The ancient king Rituparna, as described in Hindu texts
at least 3,000 years old, estimated the number of leaves on
a tree in just this way. This shows that an intuitive grasp
of averages existed at least that long ago.

By 2,500 years ago, the Greeks, too, understood esti-
mation using averages. They had also discovered the idea
of the arithmetic mean, possibly to help in spreading out
losses when a ship full of goods sank. By 300 B.C., the
Greeks had discovered not only the arithmetic mean but
the geometric mean, the median, and at least nine other
forms of average value. Yet they understood these aver-
ages only for cases involving two numbers. For example,
the philosopher Aristotle (384–322 B.C.) understood that
the arithmetic mean of 2 and 10 was 6 (because 2 plus 10
divided by 2 equals 6), but could not have calculated the

average height of the five students in the example used
earlier. It was not until the 1500s that mathematicians
realized that the arithmetic mean could be calculated for
lists of three or more numbers. This important fact was
discovered by astronomers who realized that they could
make several measurements of a star’s position, with each
individual measurement suffering from some unknown,
ever-changing error, and then average the measurements
to make the errors cancel out. From the late 1500s on,
averaging to reduce measurement error spread to other
fields of study from astronomy. By the nineteenth century
averaging was being used widely in business, insurance,
and finance. Today it is still used for all these purposes
and more, including the calculation of grade-point aver-
ages in schools.

Real-life Applications

BATT ING  AVERAGES
A batting average is a three-digit number that tells

how often a baseball player has managed to hit the ball
during a game, season, or career. A player’s batting aver-
age is calculated by dividing the number of hits the player
gets by the number of times they have been at bat
(although this is not the number of times they have
stepped up to the plate to hit because there are also spe-
cial rules as to what constitutes a legal “at bat” to be used
in calculating a player’s batting average). Say a player goes
to bat 3 times and gets 0 hits the first time, 1 the second,
and 0 the third (this is actually pretty good). Their batting
average is then (0 � 1 � 0) / 3 � .333. (A batting average
is always rounded off to three decimal places.) A batting
average cannot be higher than 1, because a player’s turn at
bat is over once they get a hit: if a player went up three
times and got three hits, their batting average would (1 �
1 � 1) / 3 � 1.000.

But this would be superhumanly high. Not even the
greatest hitters in the Baseball Hall of Fame got a hit every
time they went to bat—or even half the time they went to
bat. Ty Cobb, for instance, got 4,191 hits in 11,429 turns
at bat for a batting average of .367, the highest career bat-
ting average ever. The highest batting average for a single
season, .485, was achieved by Tip O’Neill in 1887.

In cricket, popular in much of the world outside the
United States, a batsman’s batting average is determined
by the number of runs they have scored divided by the
number of times they have been out. A “bowling average”
is calculated for bowlers (the cricket equivalent of pitch-
ers) as the number of runs scored against the bowler
divided by the number of wickets they have taken. The
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higher a cricket player’s batting average, the better; the
lower a player’s bowling average, the better.

GRADES
In school, averages are an everyday fact of life: an

English or algebra grade for the marking period is calcu-
lated as an average of all the students’ test scores. For
example, if you do four assignments in the course of the
marking period for a certain class and get the scores 95,
87, 82, and 91, then your grade for the marking period is 

In many schools that assign letter grades, all grades
between 80 and 90 are considered Bs. In such a school, your
grade for the marking period in this case would be a B.

95 + 87 + 82 + 91
4

= 88.75

WEIGHTED  AVERAGES  IN  GRAD ING
What if some of the assignments in a course are more

important than the others? It would not be fair to count
them all the same when averaging scores to calculate your
grade from the marking period, would it? To make score-
averaging meaningful when not all scores stand for
equally important work, teachers use the weighted-
average method. Calculation of a weighted average
assigns a weight or multiplying factor to each grade. For
example, quizzes might be assigned a weight of 1 and tests
a weight of 2 to signify that they are twice as important
(in this particular class). The weighted average is then cal-
culated as the sum of the grades—each grade multiplied
by its weight—divided by the sum of the weights. So if
during a marking period you take two quizzes (grades 82
and 87) and two tests (grades 95 and 91), your grade for
the marking period will be 

Because you did better on the tests than on the quizzes,
and the tests are weighted more heavily than the quizzes,
your grade is higher than if all the scores had been worth
the same.

In most colleges and some high schools, weighted
averaging is also used to assign a single number to aca-
demic performance, the famous (or perhaps infamous)
grade point average, or GPA. Like individual tests, some
classes require more work and must be given a heavier
weight when calculating the GPA.

WEIGHTED  AVERAGES  IN  BUS INESS
Weighted averages are also used in business. If in the

course of a month a store sells different amounts of five
kinds of cheese, some more expensive than others, the
owner can use weighted averaging to calculate the average
income per pound of cheese sold. Here the “weight”
assigned to the sales figure for each kind of cheese is the
price per pound of that cheese: more expensive cheeses
are weighted more heavily. Weighted averaging is also
used to calculate how expensive it is to borrow capital
(money for doing business) from various lenders that all
charge different interest rates: a higher interest rate means
that the borrower has to pay more for each dollar bor-
rowed, so money from a higher-interest-rate source costs
more. When a business wants to know what an average
dollar of capital costs, it calculates a weighted average of
borrowing costs. This commonly calculated figure is known
in business as the weighted average cost of capital. Spread-
sheet software packages sold to businesses for calculating

82 + 87 + (2 × 95) + (2 × 91)

1 + 1 + 2 + 2

541

6
= = 90.2

A motorcyclist soars high during motocross freestyle
practice at the 2000  X Games in San Francisco. Riders and
coaches make calculations of average “hang time” and
length of jumps at various speeds so that they know what
tricks are safe to land. AP/WIDE WORLD PHOTOS. REPRODUCED BY

PERMISSION.
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profit and loss routinely include a weighted-averaging
option.

AVERAG ING  FOR  ACCURACY
How long does it take a rat to get sick after eating a

gram of Chemical X? Exactly how bright is Star Y? Each
rat and each photograph of a star is a little different from
every other, so there is no final answer to either of these
questions, or to any other question of measurement in
science. But by performing experiments on more than
one rat (or taking more than one picture of a star, or tak-
ing any other measurement more than once) and averag-
ing the results, scientists can get a better answer than if
they look at just one measurement. This is done con-
stantly in all kinds of science. In medical research, for
instance, nobody performs an experiment or gathers data
on just one patient. An observation is performed as many
times as is practical, and the measurements are averaged
to get a more accurate result. It is also standard practice
to look at how much the measurements tend to spread
out around the average value—the “standard deviation.”

How does averaging increase accuracy? Imagine
weighing a restless cat. You weigh the cat four times, but
because it won’t hold still you get a scale reading each time
that is a little too high or a little too low: 5.103 lb, 5.093 lb,
5.101 lb, 5.099 lb. In this case, the cat’s real weight is 5.1 lb.
The error in the first reading, therefore, is .003 lb, because
5.1 � .003 � 5.103. Likewise, the other three errors are
�.003, .001, and �.001 lb. The average of these errors is 0:

The average of the four weights is therefore the true
weight of the cat:

Although in real life the errors rarely cancel out to exactly
zero, the average error is usually much smaller than any of
the individual errors. Whenever measurement errors are
equally likely to be positive and negative, averaging
improves accuracy.

In astronomy, this principle has been used for the
star pictures taken by the International Ultraviolet
Explorer satellite, which took pictures of stars from 1978
to 1996. To make final images for a standard star atlas (a
collection of images of the whole sky), two or three
images for each star were combined by averaging. In fact,
a weighted average was calculated, with each image being

5.103 + 5.093 + 5.101 + 5.099

4

20.4

4
= = 5.1

.003 + (−.003) +.001 + (−.001)

4

0

4
= = 0

weighted by its exposure: short-exposure images were
dimmer, and were given a heavier weight to compensate.
The resulting star atlas is more accurate than it would
have been without averaging.

HOW MANY  GALAX IES?
As scientists discovered in the early twentieth century,

the Universe does not go on forever. It is finite in size, like
a very large room (only without walls, and other strange
properties). There cannot, therefore, be an infinite num-
ber of galaxies because there is not an infinite space.

Scientists use averages to estimate such large num-
bers. Galaxies, like leaves on a large tree, are hard to
count. Many galaxies are so faint and far away that even
the powerful Hubble Space Telescope must gaze for days
a small patch of sky to see them. It would take many years
to examine the whole sky this way, so instead the Hubble
takes a picture of just one part of the sky—an area about
as big as a dime 75 ft (22.86 m) away. Scientists assume
that the number of galaxies in this small area of the sky is
about the same as in any other area of the same size. That
is, they assume that the number of galaxies in the
observed area is equal to the average for all areas of the
same size. By counting the number of galaxies in that
small area and multiplying to account for the size of the
whole sky, they can estimate the number of galaxies in the
Universe.

In 2004, the Hubble took a picture called the Ultra
Deep Field, gazing for 300 straight hours at one six-
millionth of the sky. The Ultra Deep Field found over
10,000 galaxies in that tiny area. If this is a fair average for
any equal-sized part of the sky, then there are at least
twenty billion galaxies in the universe. Most galaxies con-
tain several hundred billion stars.

THE  “AVERAGE”  FAMILY
Any list of numbers has an average, but an average

that has been calculated for a list of numbers that does
not cluster around a central value can be meaningless
or misleading. In such a case, the “distribution” of the
numbers—how they are clumped or spread out on the
number line—can be important. This knowledge is lost
when the numbers are squashed down into a single num-
ber, the average.

In politics, numbers about income, taxes, spending,
and debt are often named. It is sometimes necessary to
talk about averages when talking about these numbers,
but some averages are misleading. Sometimes politicians,
financial experts, and columnists quote averages in a way
that creates a false impression.



A v e r a g e

56 R E A L - L I F E  M A T H

For example, public figures often talk about what a
proposed law will give to or take away from an “average”
family. If the subject is income, then most listeners prob-
ably assume that an “average” family is a family with an
income near the median of the income range. For
instance, if 99 families in a certain neighborhood make
$30,000 a year and one family makes $3,000,000, the
median income will be $30,000 but the average income—
the total income of the neighborhood divided by the
number of families living there—will be $59,700, twice as
much as all but one of the families actually make. To say
that the “average” family makes almost $60,000 in this
neighborhood would be mathematically correct but mis-
leading to a typical listener. It would make it sound like a
wealthier neighborhood than it really is.

This problem is that there is an unusually large value
in the list of incomes, namely, the single $3,000,000
income—an outlier. This makes the arithmetic average
inappropriate. A similar problem often arises in real life
when political claims are being made about tax cuts. A tax
cut that gives a great deal of money to the richest one per-
cent of families, and a great deal less money to all the rest,
might give an “average” of, say, $2,500.00 each year. “My
tax cut will put $2,500 back in the pocket of the average
American family!” a politician might say, meaning that
the sum of all tax cuts divided by the number of all fam-
ilies receiving cuts equals $2,500.00. Yet only a small
number of wealthier families might actually see cuts of
$2,500 or larger. Middle-class and poorer families, to
whom the number “$2500.00” sounds more important
because it a bigger percentage of their income—the great
majority of voters hearing the politician’s promise—
might actually have no chance of receiving as much as
$2,500. An average figure can misused to convey a false
idea while still being mathematically true.

SPACE  SHUTTLE  SAFETY
Many of the machines on which lives depend—jet

planes, medical devices, spacecraft, and others—contain
thousands or millions of parts. No single part is perfectly
reliable, but in designing complex machines we would
like to guarantee that the chances of a do-or-die part fail-
ing during use is very small. But how do we put a number
on a part’s chances for failing?

For commonplace parts, one way is to hook up a
large number of them and watch to see how many fail, on
average, in a given period of time. But for a complex sys-
tem like a space shuttle, designers cannot afford to wait
and they cannot afford to fail. They therefore resort to a
method known as “probabilistic risk assessment.” Proba-
bilistic risk assessment tries to guess the chances of the

complex system failing based on the reliability of all its
separate parts. Reliability is sometimes expressed as an
average number, the “mean time between failures”
(MBTF). If the MBTF for a computer hard drive is five
years, for example, then after each failure you will have
to wait—on average—five years until another failure 
occurs. The MBTF is not a minimum, but an average: the
next failure might happen the next day, or not for a
decade.

MBTF is not an average from real data, but a guess
about the average value of numbers that one does not
know yet. MBTF estimates can, therefore, be wrong. In
the 1980s, in the early days of the space shuttle program,
NASA calculated an estimated MBTF for the space shut-
tle. Its estimate was that the shuttle would suffer a cata-
strophic accident, on average, during 1 in every 100,000
launches. That is, the official MBTF for the shuttle was
100,000 launches.

But it was at the 25th shuttle launch, that of the
space shuttle Challenger, that a fatal failure occurred.
Seventy-six seconds after liftoff, Challenger exploded.
This did not prove absolutely that the MBTF was wrong,
because the MBTF is an average, not a minimum—yet
the chances were small that an accident would have hap-
pened so soon if the MBTF were really 100,000 launches.
NASA therefore revised its MBTF estimate down to 265
launches. But in 2003, only 88 flights after the Challenger
disaster, Columbia disintegrated during re-entry into the
atmosphere. Again, this did not prove that NASA’s MBTF
was wrong, but if it were right then such a quick failure
was very unlikely.

STUDENT  LOAN  CONSOL IDAT ION
Millions of students end up owing tens of thousands

of dollars in student loans by the time they finish college.
Usually this money is borrowed in the form of several dif-
ferent loans having different interest rates. After gradua-
tion, many people “consolidate” these loans. That is, several
loans are combined into one loan with a new interest rate,
and this new, single loan is owed to a different institution
(usually one that specializes in consolidated loans). There
are several advantages to consolidation. The new interest
rate is fixed, that is, it cannot go up over time. Also,
monthly payments are usually lower, and there is only
one payment to make, rather than several.

The interest rate on a consolidated student loan is
calculated by averaging the interest rates for all the old
loans that are being consolidated. Say you are paying off
two (rather small) student loans. You still owe $100
on one loan at 7% interest and $200 on another at 8%
interest. When the loans are consolidated you will owe
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$100 � $200 � $300, and the interest rate will be the
weighted average of the two interest rates:

The weights in the weighted average are the amounts of
money still owed on each loan: the interest rate of the big-
ger loan counts for more in calculating the new interest
rate, which is 7.667%. In practice, the rate is rounded up
to the nearest one eighth of a percent, so your real rate
would be 7.75%.

AVERAGE  L I FESPAN
We often read that the average human lifespan is

increasing. Strictly speaking, this is true. In the mid nine-
teenth century, the average lifespan for a person in the
rich countries was about 40 years; today, thanks to med-
ical science and public health advances such as clean
drinking water, it is about 75 years. Here the word “aver-
age” means the arithmetic mean, that is, the sum of all
individual lifespans in a certain historical period divided
by the number of people born in that period.

Some have argued that because average lifespan has
been increasing, it must keep on increasing without limit,
making us immortal. For example, computer scientist Ray
Kurzweil said in “the eighteenth century, we added a few
days to the human life expectancy every year. In the nine-
teenth century, we added a few weeks every year. Now we’re
adding over a hundred days per year to human life
expectancy . . . Many observers, including myself, believe
that within ten years we will be adding more than a year—
every year—to human life expectancy. So as you go forward
a year, human life expectancy will move away from us.”
(Kurzweil, R. “The Ascendence of Science and Technology
[a panel discussion].” Partisan Review. Sept 2, 2002.)

The problem with this argument is that it mixes up
average lifespan with maximum lifespan. The average
lifespan is not increasing because people are living to be
older than anyone ever could in the past: they are not. A
few people have always lived to be 90, 100, or 110 years
old. The reason average lifespan is higher now than in the
past is that fewer people are dying in childhood and
youth. Today, at least in the industrialized countries, most
people do not die until old age. However, the ultimate
limit on how old a person can get has not increased, and
the average lifespan cannot be increased beyond that limit
by advances that keep people from dying until they reach
it. Perhaps in the future, medical science will increase the
maximum possible age, but that is only a possibility. It
has nothing to do with past increases in average lifespan.

100 × .07 + 200 × .08

300
 New interest rate = = .07667

INSURANCE
In the industrial world, virtually everyone, from their

late teens on up, has some kind of insurance. For exam-
ple, all European Union states and most U.S. states
require that all drivers buy liability insurance—that is,
insurance to pay for medical care for anyone that the
driver may injure in an accident that is their fault. Insur-
ance is basic to business, health care, and personal life—
and it is founded on averages.

Insurance companies charge their customers a cer-
tain amount every month, a “premium,” in return for a
commitment that the insurance company will pay the
customer a much greater amount of money if a problem
should happen—sickness, car accident, death in the fam-
ily, house fire, or other (depending on the kind of insur-
ance policy). This premium is based on averages. The
insurance company groups people (on paper) by age,
gender, health, and other factors. It then calculates what
the average rate of car wrecks, house fires, or other prob-
lems for the people in each group, and how much these
problems cost on average. This tells it how much it has to
charge each customer in order to pay for the money that
the company will have to pay out—again, on average. To
this amount is added the insurance company’s cost of
doing business and a profit margin (if the insurance com-
pany is for-profit, which not all are).

Insurance costs are higher for some groups than for
others because they have higher average rates for some
problems. For example, young drivers pay more for car
insurance because they have more accidents. The average
crash rate per mile driven for 16-year-olds is three times
higher than for 18- and 19-year olds; the rate for drivers
16–19 years old, considered as a single group, is four
times higher than for all older drivers. What’s more,
young male drivers 16–25, who on average drive more
miles, drink more alcohol, and take more driving risks,
have more accidents than female drivers in this age group:
two thirds of all teenagers killed in car crashes (the lead-
ing cause of death for both genders in the 18–25 age
group) are male.

More crashes, injuries, and deaths mean more payout
by the insurance company, which makes it reasonable,
unfortunately, for the company to charge higher rates to
drivers in this group. Some companies offer reduced-rate
deals to young drivers who avoid traffic tickets.

EVOLUT ION  IN  ACT ION
Averaging makes it possible to see trends in nature

that can’t be seen by looking at individual animals. Aver-
ages have been especially useful in studying evolution,
which happens to slowly to see by looking at individual
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animals and their offspring. The most famous example of
observed evolutionary changes is the research done by the
biologists Peter and Rosemary Grant on the Galapagos
Islands off the west coast of South America. Fourteen or 15
closely related species of finches live in the Galapagos. The
Grants have been watching these finches carefully for
decades, taking exact measurements of their beaks. They
average these measurements together because they are
interested in how each finch population as a whole is evolv-
ing, rather than in how the individual birds differ from each
other. The individual differences, like random measure-
ment errors, tend to cancel each other out when the 
beak measurements are averaged. When a list of data is
averaged like this, the resulting mean is called a “sample
mean.”

The Grants’ measurements show that the average
beak for each finch species changes shape depending on
what kind of food the finches can get. When mostly large,
tough seeds are available, birds with large, seed-cracking
beaks get more food and leave more offspring. The next
generation of birds has, on average, larger, tougher beaks.
This is exactly what the Darwinian theory of evolution
predicts: slight, inherited differences between individual
animals enable them to take advantage of changing
conditions, like food supply. Those birds whose beaks just
happen to be better suited to the food supply leave more
offspring, and future generations become more like those
successful birds.

Where to Learn More
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Tanur, Judith M., et al. Statistics: A Guide to the Unknown.

Belmont, CA: Wadsworth Publishing Co., 1989.

Wheater, C. Philip, and Penny A. Cook. Using Statistics to Under-
stand the Environment. New York: Routledge, 2000.

Web sites
Insurance Institute for Highway Safety. “Q7&A: Teenagers: Gen-

eral.” March 9, 2004. �http://www.iihs.org/safety_facts/
qanda/teens.htm#2� (February 15, 2005).

Mathworld. “Arithmetic mean.” Wolfram Research. 1999.
�http://mathworld.wolfram.com/ArithmeticMean.html�
(February 15, 2005).

Wikelsky, Martin. “Natural Selection and Darwin’s Finches.”
Pearson Education. 2003. �http://wps.prenhall.com/esm
_ freeman_evol_3/0,8018,849374-,00.html� (February 15,
2005).

Key Terms

Mean: Any measure of the central tendency of a
group of numbers.

Median: When arranging numbers in order of
ascending size, the median is the value in the
middle of the list.
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Base

Overview

In everyday life, a base is something that provides
support. A house would crumble if not for the support of
its base. So it is too with math. Various bases are the foun-
dation of the various ways we humans have devised to
count things. Counting things (enumeration) is an essen-
tial part of our everyday life. Enumeration would be
impossible if not for based valued numbers.

Fundamental Mathematical Concepts
and Terms

In numbering systems, the base is the positive integer
that is equal to the value of 1 in the second highest count-
ing place or column. For example, in base 10, the value of a
1 in the “tens” column or place is 10.

A Brief History of Discovery 
and Development

The various base numbering systems that have arisen
since before recorded history have been vital to our exis-
tence and have been one of the keys that drove the for-
mation of societies. Without the ability to quantify
information, much of our everyday world would simply
be unmanageable. Base numbering systems are indeed an
important facet of real life math.

The concept of the base has been part of mathemat-
ics since primitive humans began counting. For example,
animal bones that are about 37,000 years old have been
found in Africa. That is not the remarkable thing. The
remarkable thing is that the bones have human-made
notches on them. Scientists argue that each notch repre-
sented a night when the moon was visible. This base 1 (1,
2, 3, 4, 5, . . .) system allowed the cave dwellers to chart the
moon’s appearance. So, the bones were a sort of calendar
or record of the how frequent the nights were moonlit.
This knowledge may have been important in determining
when the best was to hunt (sneaking up on game under a
full moon is less successful than when there is no moon).

Another base system that is rooted in the deep past is
base 5. Most of us are familiar with base 5 when we chart
numbers on paper, a whiteboard or even in the dirt, by
making four vertical marks and then a diagonal line
across these. The base 5-tally system likely arose because
of the construction of our hands. Typically, a hand has
four fingers and a thumb. It is our own carry-around base
5 counting system.
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In base 5 tallying, the number 7 would be repre-
sented as depicted in Figure 1.

Of course, since typically we have two hands and a
total of ten digits, we can also count in multiples of 10. So,
most of us also naturally carry around with us a conven-
ient base 10 (or decimal) counting system.

Counting in multiples of 5 and 10 has been common
for thousands of years. Examples can be found in
the hieroglyphics that adorn the walls of structures built
by Egyptians before the time of Christ. In their system,
the powers of 10 (ones, tens, hundreds, thousands, and
so on) were represented by different symbols. One
thousand might be a frog, one hundred a line, ten a
flower and one a circle. So, the number 5,473 would 
be a hieroglyphic that, from left to right, would be a
pattern of five frogs, four lines, seven flowers and three
circles.

There are many other base systems. Base 2 or
binary (which we will talk about in more detail in the
next section) is at the heart of modern computer
languages and applications. Numbering in terms
of groups of 8 is a base-8 (octal) system. Base 8 is
also very important in computer languages and
programming. Others include base 12 (duodecimal),
base 16 (hexidecimal), base 20 (vigesimal) and base 60
(sexagesimal).

The latter system is also very old, evidence shows its
presence in ancient Babylon. Whether the Babylonians
created this numbering system outright, or modified it
from earlier civilizations is not clear. As well, it is unclear
why a base 60 system ever came about. It seems like a
cumbersome system, as compared with the base 5 and 10
systems that could literally rely on the fingers and some
scratches in the dirt to keep track of really big numbers.
Even a base 20 system could be done manually, using both
fingers and toes.

Scholars have tried to unravel the mystery of base
60’s origin. Theories include a relationship between num-
bers and geometry, astronomical events and the system of
weights and measures that was used at the time. The real
explanation is likely lost in the mists of time.

Real-life Applications

BASE  2  AND  COMPUTERS
Base 2 is a two digit numbering system. The two dig-

its are 0 and 1. Each of these is used alternately as num-
bers grow from ones to tens to hundreds to thousands
and upwards. Put another way, the base 2 pattern looks
like this: 0, 1, 10, 11, 100, 101, 110, 111, 1000, . . . (0, 1, 2,
3, 4, 5, 6, 7, 8, . . .).

The roots of base 2 are thought to go back to ancient
China but base 2 is as also fresh and relevant because it is
perfect for the expression of information in computer lan-
guages. This is because, for all their sophistication, com-
puter language is pretty rudimentary. Being driven by
electricity, language is either happening as electricity
flows (on) or it is not (off). In the binary world of a com-
puter, on is represented by 1 and off is represented by 0.

As an example, consider the sequence depicted in
Figure 2.

Figure 1: Counting to seven in a base 5 tally system.

off-off-on-off-on-on-on-off-on-on

Figure 2: Information series.

0010111011

Figure 3: Information series translated to Base 2.

In the base 2 world, this sequence would be written
as depicted in Figure 3.

View the fundamental code for a computer program
and you will see line upon line of 0s and 1s. Base 2
in action!

Each 0 or 1 is known as a bit of information. An
arrangement of four bits is called a nibble and an arrange-
ment of 8 bits is called a byte (more on this arrangement
below, in the section on base 8).

A base 2 numbering system can also involve digits
other than 0 and 1, with the arrangement of the numbers
being the important facet. In this arrangement, each
number is double the preceding number. This base 2 pat-
tern looks like this: 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . It is
also evident that in this series, from one number to the
next, the numbers of the power also double. For example,
compare the numbers 64 and 128. In the larger number,
12 is the double of 6 and 8 is the double of 4.
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Base 8

In the base 8 number system, each digit occupies a
place value (ones, eights, sixteens, etc.). When the num-
ber 7 is reached, the digit in that place switches back to 0
and 1 is added to the next place. The pattern looks 
like this: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17,
20, 21, 22, . . . .

Each increasing place value is 8 times as big as the
preceding place value. This is similar to the pattern
shown above for base 2, only now the numbers get a lot
bigger more quickly. The pattern looks like this: 1, 8, 64,
512, 4096, 32768, . . .

As mentioned in the preceding section, the base 2 dig-
its can be arranged in groups of 8. In the computer world,
this arrangement is called a byte. Often, computer soft-
ware programs are spoken of in terms of how many bytes
of information they consist of. So, the use of the base 8
numbering system is vital to the operation of computers.

Base 10

The base 10, or decimal, numbering system is
another ancient system. Historians think that base 10
originated in India some 5,000 years ago.

The digits used in the base 10 system are 0 through 9.
When the latter is reached, the value goes to 0 and 1 is
added to the next place. The pattern look like this: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .

Each successive place value is 10 times greater than
the preceding value, which results in the familiar ones,
tens, hundreds, thousands, etc. columns with which we
usually do addition, subtraction, multiplication and
division.
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Books
Devlin, K.J. The Math Gene: How Mathematical Thinking

Evolved & Why Numbers are like Gossip. New York: Basic
Books, 2001.

Gibilisco, S. Everyday Math Demystified. New York: McGraw-
Hill Professional, 2004.
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.htm� (October 31, 2004).

Poseidon Software and Invention. “Base Valued Numbers.”
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(October 31, 2004).
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Business Math

Overview

Money is the difference between leisure activity 
and business. While enjoying leisure activity one can
expect to pay to have a good time by purchasing a
ticket, supplies or paying a fee to gain access to whatever
they wish to do. Business activity in any form
spends money to earn money. In both cases, numbers
are the alphabet of money and math is its universal
language.

Computing systems have displaced manual informa-
tion gathering, recordkeeping, and accounting at an ever-
increasing rate within the business world. Advancing
computer technology has made this possible and, to some
extent, decreasing math skills among the general popula-
tions of all nations have made it necessary. One of the
initial motivating factors that have led more and more
stores to investing large amounts of money to install and
operate code-scanning checkout systems is the increasing
difficulty in finding an adequate number of people
with the necessary math skills to consistently and reliably
make change at checkout counters. The introduction
of these systems has improved merchants’ ability to
keep accurate records of what they sell, what they need
to order, and to recognize what their customers want
so that they may maintain a ready supply. However, for
all of the advances business computing has made in gen-
erating real-time management reports, none of it is of
any value without people who can interpret what it
means and, to do that, one must understand the math
used by the computing system. Simply because a com-
puter prints out a report does not ensure that it is accu-
rate or useful.

It is worth stating that those people with good math
skills will have the best opportunities to excel in many
ways in jobs and careers within the business world. Math
is not just an exercise for the classroom, but is a critical
skill if one is to succeed now and in the future. All money
is being monitored and managed by someone. One’s per-
sonal future depends on how well they manage their
money. The future of any employer, and the local, state,
and national governments in which one lives, depends on
how well they manage money. Money attracts attention.
If a person or the business and the governmental institu-
tions they depend on do not use the math skills necessary
to wisely manage the money in their respective care,
someone else will and they are not likely have the best
interest of others in mind. Math skills are one of the
most essential means for one to look after their own best
interest as an individual, employee, investor, or business
owner.
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Fundamental Mathematical Concepts
and Terms

Business math is a very broad subject, but the most
fundamental areas include budgets, accounting, payroll,
profits and earnings, and interest.

BUDGETS
All successful businesses of any size, from single indi-

viduals to world-class corporations, manage everything
according to a budget. A budget is a plan that considers
the amount of money to be spent over a specific time
schedule, what it is to be spent on, how that money is
to be obtained, and what it is expected to deliver in
return. Though this sounds simple, it is a very compli-
cated concept.

Businesses and governments rise and fall on their
ability to perform reliably according to their budgets.
Budgets include detailed estimates of money and all
related activities in a format that enables the state of
progress toward established goals and objectives to be
monitored on a regular basis through various business
reports. The reports provide the information necessary
for management to identify opportunity and areas of
concern or changing conditions so that proper adjust-
ments may be made and put into action in timely fashion
to improve the likelihood of success or warn of impend-
ing failure to meet expectations. In a budget, all actions,
events, activities, and project outcomes are quantified in
terms of money.

The basic components of any budget are capital
investments, operating expense and revenue generation.
Capital investments include building offices, plants and
factories, and purchasing land or equipment and the
related goods and services for new projects, including the
cost of acquiring the money to invest in these projects.
Expense outlays include personnel wages, personnel ben-
efits, operating goods and services, advertising, rents, roy-
alties, and taxes.

Budgets are prepared by identifying and quantifying
the cost and contributions from all ongoing projects, as
well as new projects being put in place and potential new
projects and opportunities expected to be begun during
the planning cycle. Typically, budgets cover both the
immediate year and a longer view of the next three to five
years. Historical trends are derived by taking an after-look
at the actual results of prior period budgets compared to
their respective plan projections. Quite often the numer-
ical data is converted to graphs and charts to aid in spot-
ting trends and changes over time. A simple budget is
represented by Figure 1.

The math involved in this simplistic example budget
is addition, subtraction, and multiplication, where Revenue
from shoe and sandal sales � Number of pairs of sold mul-
tiplied by the price received; Personnel Expense � Number
of people employed each month multiplied by individual
monthly wages; Federal Taxes � The applicable published
tax rate multiplied times Income Before Tax.

As the year progresses, a second report would be pre-
pared to compare the projections above with the actual
performance. If seasonal shoe sales fall below plan, then
the company knows that they need to improve the prod-
uct or find out why it is not selling as expected. If shoe
sales are better than expected, they may need to consider
building another factory to meet increasing demand or
acquire additional shoes elsewhere.

This somewhat boring exercise is essential to the A.Z.
Neuman Shoe Factory to know if it is making or losing
money and if it is a healthy company or not. This infor-
mation also helps potential investors decide if the com-
pany is worth investing money in to help grow, to
possibly buy the company itself, or to sell if they own any
part of it. As a single year look at the company, A.Z.
Neuman seems to be doing fine. To really know how well
the company is doing, one would have to look at similar
combined reports over the past history of the company,
its outstanding debts, and similar information on its
competitors.

ACCOUNT ING
Accounting is a method of recordkeeping, commonly

referred to as bookkeeping, that maintains a financial
record of the business transactions and prepares various
statements and reports concerning the assets, liabilities,
and operating performance of a business. In the case of
the A.Z. Neuman Shoe Factory, transactions include the
sale of shoes and sandals, the purchase of supplies,
machines, and the building of a new store as shown in the
budget. Other transactions not shown in detail in the
budget might include the sale of stocks and bonds or loans
taken to raise the necessary money to buy the machines or
build the new store if the company did not have the
money on hand from prior years’ profits to do so.

People who perform the work of accounting are
called accountants. Their job is to collect the numbers
related to every aspect of the business and put them in
proper order so that management can review how the
company is performing and make necessary adjustments.
Accountants usually write narratives or stories that serve
to explain the numbers. Computing systems help gather
and sort the numbers and information, and it is very
important that the accountant understand where the
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A. Z. Neuman Shoe Factory - Projected Annual Budget – Figures rounded to $MM (millions)

Months: J  F M A M J J A S O N 
  D Total
Revenue
Shoe sales  3 4 4 16 14 2 2 3 18 4 
  3 1 74
Sandal sales  0 1 1 3 4 3 3 2 1 1 
  0 0 19
Total   3 5 5 19 18 5 5 5 19 5 
  3 1 93

Operating Expense
Personnel  1 2 2 2 1 1 1 1 1 1 
  1 1 15
Supplies 2 2 2 2 2 2 2 2 1 1 1 
  1 20
Electricity  1 1 1 1 1 0 1 0 1 0 
  1 0   8
Local Taxes  0 0 0 1 0 0 1 0 0 0 
  0 1   3
Total   4 5 5 6 4 3 5 3 3 2 
  3 3 46

Net Contribution (Revenue – OpExp.)
   –1 0 0 13 14 2 0 2 16 3 
  0 –2 47

Capital Investments
Machines  1 3 3 4 0 0 0 0 0 0 
  0 0 11
New Store  0 0 0 0 5 0 0 0 0 0 
  0 0 5
Total   1 3 3 4 5 0 0 0 0 0 
  0 0 16

Income Before Tax (IBT = Net Contribution – Capital)
   –2 –3 –3 9 9 2 0 2 16 3 
  0 –2 31
State & Federal Tax (Minus = credit)
   –1 –1 –2 3 3 1 0 0  5 1 
  0 –1   8
Income After Tax (IAT = IBT – S&FT)
   –1  –2  –1   6  6 1  0  2  11  2   
  0  –1   23

Figure 1: A simple budget.

computing system got its information and what mathe-
matical functions were performed to produce the tables,
charts, and figures in order to verify that the information
is true and correct. Management must understand the

accounting and everything involved in it before it can
fully understand how well the company is doing.

When this level of understanding is not achieved for
any reason, the performance of the company is not likely
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to be as expected. It would be like trying to ride a bicycle
with blinders on: one hopes to make to the corner with-
out crashing, but odds are they will not. Recent and his-
torical news articles are full of stories of successful
companies that achieved positive outcomes because they
were aware of what they were doing and managed it well.
However, there are almost as many stories of companies
that did not do well because they did not understand
what they were truly doing and mismanaged themselves
or misrepresented their performance to investors and
legal authorities. If they only mismanage themselves,
companies go out of business and jobs are lost and past
investments possibly wasted. If a company misrepresents
itself either because it did not keep its records properly, did
not do its accounting accurately, or altered the facts and
calculations in any untruthful way, people can go to jail.
The truth begins with honest mathematics and numbers.

PAYROLL
Payroll is the accounting process of paying employees

for the work performed and gathering the information for

budget preparation and monitoring. An employee sees
how much money is received at the end of a pay period,
while the employer sees how much it is spending each pay
period and the two perspectives do not see the same num-
ber. Why? A.Z. Neuman wants to attract quality employ-
ees so it pays competitive wages and provides certain
benefits. Tom Smith operates a high-tech machine that is
critical to the shoe factory on a regular 40-hour-per-week
schedule, has been with the company a few years, and has
three dependents to care for. How much money does Tom
take home and what does it cost A.Z. Neuman each
month? Figure 2 lays out the details.

This is just an example. Not all companies offer such
benefits, and the relative split in shared cost may vary
considerably if the cost is shared at all. If Tom is a mem-
ber of a labor union, dues would also be withheld. As is
shown in Figure 2, the company has to spend approxi-
mately $2 for every $1 Tom takes home as disposable
income to live on. Correspondingly, Tom will take home
only about half of any raise or bonus he receives from the
company. At the end of each tax year, Tom then has to file
both State and Federal income tax and may discover that

Troy McConnell, founder of Batanga.com at his office. The center broadcasts alternative Hispanic music on dedicated Internet
channels to consumers between 12 and 33 years of age. In addition, studies at the center include all aspects of business
math. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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he is either due a refund or owes even more depending on
his individual situation. Tax withholdings are required by
State and Federal law at least in part to fund the operation
of governmental functions throughout the year. In some
regions of the country, there are other local and city taxes
not shown in this example. If people had to send their tax
payments in every month in place of having them auto-
matically withheld they would be more mindful of the
burden of taxation. In theory, Tom will get his contribu-
tions to Social Security and Medicare back in the future
in his old age. Tom’s contribution to the savings plan is
his own attempt to ensure his future.

PROF I TS
Unless Mr. A.Z. Neuman just really enjoyed making

shoes, he founded the business to make a profit. A profit
is realized when the income received is greater than the
sum of all expenditures. As shown in the example budget
in Figure 1, the company does not make a profit every
month and is very dependent on a few really good
months when shoe sales are in season to yield a profit for
the year. Most businesses operate in this up and down
environment. Some business segments have even longer
profit and loss cycles, such that they may lose money for
several years before experiencing a strong year and hope-
fully making enough profit to sustain them through the
next down cycle. If they fail to make a profit long enough,
companies go out of business and this occurs to a large
percentage of all companies every year. Without the effec-
tive application of good math skills in accounting and

business evaluations as well as the ability to understand
their meaning to direct future decisions, companies have
no idea if they are in fact growing or dying, but they can
be sure they are doing one or the other.

EARN INGS
Fundamentally, profits and earnings are defined in

very similar terms. However, earnings are often thought
of as the return on capital investments as distinguished
from expense, as shown in the budget example in Figure 1.
One has to know how much capital has been invested
throughout the life of the company to fairly calculate the
earnings or return on capital employed. The example
budget is limited to only one year and suggests that A.Z.
Neuman is expected to earn $23 million while investing
$16 million in that year. The budget shows that the com-
pany had product to sell before investing in new equip-
ment and a new store; thus, the year shown is benefiting
from prior year investments of some unknown magni-
tude. In the developing period of any company, annual
earnings are negative (losses) until the initial investments
have generated earnings of equal amount to reach what is
called payout. Once past payout, companies can begin gen-
erating a positive annual return on capital employed. Some
industries require continued annual capital investment to
expand or replace their asset base, and this will continue to
hold down their annual rate of return until such time as
there are no more attractive investment opportunities and
they are in the later stage, but high earnings generating
phase, of their business life. Typically, businesses that can

Gross Pay ($25/hour, 40 hours/week, 4 weeks per month)
Withholdings: (Required by law)
 Social Security  12.4% split 6.2% each
 Medicare   2.9% split 1.45% each
 State & Federal Unemployment Insurance
 Federal Income Tax
 State Income Tax
Savings Plan (Tom can put up to 4%, company matches)
Insurance (Cost split between Tom and company)
 Life
 Medical
Net Pay

$   496
$   116
$   120
$   800
$   200

$1,732

-$4,000

-$248
-$58

-$120

-$160

-$62
-$72

-$4,720

$4,000

-$248
-$58

-$800
-$200
-$160

-$62
-$72

$2,400

Tom GovernmentA.Z. Neuman

Figure 2: Sample of payroll accounting.
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generate a 15% rate of return on capital employed over a
period of several years have done very well. Most compa-
nies struggle to deliver less than half that level of earnings.

INTEREST
Interest is money earned on money loaned or money

paid on money borrowed. Interest rates vary based on a
variety of factors determined in financial markets and by
governmental regulations. Low interest rates are good for
a borrower or anyone dependent on others’ ability to bor-
row money to buy goods and services. High interest rates
are good for those saving or lending. When the A.Z.
Neuman Shoe Factory wants to buy additional equip-
ment or build new factories or stores, it has to determine
where the money will come from to do so. If interest rates
are low, it may elect to borrow instead of spending its
own cash. If interest rates are high, it will have to consider
other courses of raising the money needed to fund invest-
ments if it has a cash reserve and wishes to hold on to it
for protection or other investments. The two primary
ways businesses raise capital, other than borrowing, are to
sell stocks and bonds in the company.

A share of stock represents a fractional share of own-
ership in the company for the price paid. The owner of
stock shares in the future performance of the company. If
the company does well, the stock goes up and the investor
does well, and can do very well under the right circum-
stances. If the company does poorly, the investor does
poorly and can lose the entire amount invested. Stock
ownership has a definite share of risk while it has a defi-
nite attraction of significant growth potential. Compa-
nies will pay a return, or dividend, that might be thought
of as interest to stockholders when it can afford to do so
as incentive for them to continue to own the stock.

Bonds are generally less risky than stocks, but only
those ensured by cash reserves or the assets of sound
national governments are secure. A company issues a
bond, or guaranty, to investors willing to buy them that
over a specified period of time interest will be paid on the
amount invested and that the original investment will be
returned to the buyer when the bond matures. However,
the security of a bond is only as good as the company
issuing it. It is in the best interest of a company to meet
its bond obligations or it may never sell another bond.

A presentation in a “business” environment. PREMIUM STOCK/CORBIS.
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The advantage of a bond to the company is that owner-
ship is not being shared among the buyers, the upside
potential of the company remains owned by the com-
pany, and the interest rate paid out is usually less than the
interest rate that would have to be paid by the company
on a loan. The benefit to the buyer is that bonds are not
as risky as stock and, while the return is limited by the
established interest rate, the initial investment is not at as
great a risk of loss. Bonds are safer investments than
stocks in that they tend to have guaranteed earnings, even
if considerably lower than the growth potential of stock
without the downside risk of loss.

Companies pay the interest on loans, the interest on
bonds, and any dividends to stockholders out of their
earnings; thus, the rate of return as mentioned earlier is an
important indicator to potential investors of all types. The
assessment of business risks and opportunity can only be
performed through extensive mathematical evaluation,

and the individuals performing these evaluations and
using them to consider investments must possess a high
degree of math skills. In the end, the primary difference
between evaluating a business and balancing one’s own per-
sonal checkbook is the magnitude of the numbers.

Where to Learn More

Books
Boyer, Carl B. A History of Mathematics. New York: Wiley and

Sons, 1991.

Bybee, L. Math Formulas for Everyday Living. Uptime Publica-
tions, 2002.

Devlin, Keith. Life by the Numbers. New York: Wiley and Sons,
1998.

Westbrook, P. Math Smart for Business: Essentials of Managerial
Finance. Princeton Review, 1997.

Key Terms

Balance: An amount left over, such as the portion of a
credit card bill that remains unpaid and is carried
over until the following billing period.

Bankruptcy: A legal declaration that one’s debts are
larger than one’s assets; in common language,

when one is unable to pay his bills and seeks relief
from the legal system.

Interest: Money paid for a loan, or for the privilege of
using another’s money.
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Calculator
Math

Overview

A calculator is a tool that performs mathematical
operations on numbers. Some of the simplest calculators
can only perform addition, subtraction, multiplication,
and division. More sophisticated calculators can find
roots, perform exponential and logarithmic operations,
and evaluate trigonometric functions in a fraction of a
second. Some calculators perform all of these operations
using repeated processes of addition.

Basic calculators come in sizes from as small as a credit
card to as large as a coffee table. Some specialized calcula-
tors involve groups of computing machines that can take
up an entire room. A wide variety of calculators around the
world perform tasks ranging from adding up bills at retail
stores to figuring out the best route when launching satel-
lites into orbit. Calculators, in some form or another, have
been important tools for mankind throughout history.
Throughout the ages, calculators have progressed from
pebbles in sand used for solving basic counting problems
to modern digital calculators that come in handy when
solving a homework problem or balancing a checkbook.

People regularly use calculators to aid in everyday
calculations. Some common types of modern digital cal-
culators include basic calculators (capable of addition,
subtraction, multiplication, and division), scientific cal-
culators (for dealing with more advanced mathematics),
and graphing calculators. Scientific calculators have more
buttons than more basic calculators because they can
perform many more types of tasks. Graphing calculators
generally have more buttons and larger screens allowing
them to display graphs of information provided by the
user. In addition to providing a convenient means for
working out mathematical problems, calculators also offer
one of the best ways to verify work performed by hand.

Fundamental Mathematical Concepts
and Terms

Modern calculators generally include buttons, an
internal computing mechanism, and a screen. The inter-
nal computing mechanism (usually a single chip made of
silicon and wires, called a microprocessor, central pro-
cessing unit, or CPU) provides the brains of the calcula-
tor. The microprocessor takes the numbers entered using
the buttons, translates them into its own language, com-
putes the answer to the problem, translates the answer
back into our numbering system, and displays the answer
on the screen. What is even more impressive is that it usu-
ally does all of this in a fraction of a second.
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The easiest way to understand the language of a cal-
culator is to compare it to our numbering system, which is
a base ten system. This is due to the fact that we have ten
fingers and ten toes. For example, consider how humans
count to 34 using fingers. You basically keep track of how
many times you count to ten until you get to three, and
then count four more fingers. This idea is represented in
our numbering system. There is a three in the tens col-
umn and a four in the ones column. The tens column
represents how many times we have to go through a set of
ten fingers, and the ones column represents the rest of the
fingers required. A calculator counts in a similar way, but
its numbering system is based on the number two instead
of ten. This is known as a binary numbering system,
meaning that it is based on the number two.

Our ten-based numbering system is known as the
decimal numbering system. Much in the same way that
each column of a decimal number represents one of the
ten numbers between zero and nine, a number in binary

form is represented by a series of zeros and ones. Though
binary numbers may seem unintuitive and confusing,
they are simpler than decimal numbers in many ways,
allowing complex calculations to be carried out on tiny
microprocessor chips.

The columns (places) in the decimal numbering sys-
tem each represent multiples of ten: ones, tens, hundreds,
thousands, and so forth. After the value of a column
reaches nine, the next column is increased. Similarly, the
columns in binary numbers represent multiples of two:
ones, twos, fours, eights, and so on. Counting from zero,
binary numbers go 0, 1, 10, 11, 100, 101, 110, 111, 1000,
etc. 110 represents six because it has a one in the fours
column, a one in the twos column, and a zero in the ones
column. Because binary notation only involves two values
in different columns, it is common to think of each col-
umn either being on or off. If a column has a 1 in it, then
the value represented by the column (1, 2, 4, 8, 16, 32, and
so on) is included in the number. So a 1 can be seen to
mean that the column is on, and a 0 can be seen to mean
that the column is off. This is the essence of the binary
numbering system that a calculator uses to perform
mathematical operations.

As an example, add the numbers 6 and 7 together.
Using fingers to count in decimal numbers, count 6 fin-
gers and then count 7 more fingers. When all ten fingers
are used, make a mental tally in the tens column, and then
count the last three fingers to get a single tally in the tens
column and three in the ones column. This represents
one ten and three ones, or 13. When you input 6 plus 7
into a calculator, the calculator firsts translates the two
numbers into binary notation. In binary notation, 6 is
represented by 110 (a one in the fours column, a one in
the twos column, and a zero in the ones column) and 7 is
represented by 111 (a one in the fours column, a one in
the twos column, and a one in the ones column). Next,
the two numbers are added together by adding the
columns together. First, adding up the values in the ones
column (0 and 1) results in a one in the ones column.
Next, adding the values in the twos column results in a 2
so the twos column of the sum get a 0 and the next col-
umn over, the fours column, is increased by one (just like
the next column in the decimal numbering system is
increased when a column goes beyond nine). Adding this
to the other values in the fours column results in a 3 in
the fours column (because the two numbers being added
together each have a 1 in the fours column), so the eights
column now has a 1 in it, and a 1 is still left in the fours
column. Now listing the columns together reveals the
answer in the binary form: 1101. Finally, the calculator
translates this answer back into decimal form and dis-
plays it on the screen: 8 � 4 � 0 � 1 � 13. As illustrated

A student works on his Texas Instruments graphing
calculator. American students have been using graphing
calculators for over a decade, and Texas Instruments
accounts for more than 80% of those sales, according to an
industry research firm. Texas Instruments faces what may
turn out to be a more serious challenge: software that turns
handheld computers into graphing calculators. AP/WIDE WORLD

PHOTOS. REPRODUCED BY PERMISSION.
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by this example, the columns in the binary numbering
system cause each other to increase much quicker than
the columns in the decimal number system. Many calcu-
lators use this form of addition as the basis for the most
complicated of operations.

Most calculators allow combinations of operations,
but paying attention to the order of operations is essen-
tial. For example, a calculator can find the value of four
plus six and then divide by two to arrive at five, or it can
find the value of four plus the value of six divided by two
to arrive at seven. If the numerical and operational num-
bers (e.g., addition and division) are pressed in the wrong
order, the (correct) answer to the wrong question will be
found. For example, adding two numbers, dividing by
two, and then adding another number usually results in a
different value than adding three numbers and then
dividing by two.

The ability to store numbers is a valuable function of
a calculator. For example, if it takes a long series of oper-
ations to find a number that will be used in future calcu-
lations, the number can be stored in the calculator
(usually by pressing a button labeled STO) and then
recalled when needed (usually by pressing a button
labeled RCL). Some universally important numbers have
been permanently stored in most calculators. Most scien-
tific calculators, for example, have a button for recalling a
reasonable approximation of the value of pi, the number
that defines how a circle’s radius is related to its circum-
ference and area. The exact value of pi cannot be repre-
sented on a typical scientific calculator, and repeatedly
typing in the numbers involved in the approximation of
pi would be tedious to say the least. The ability to quickly
provide important numbers is one of most significant
benefits of electronic calculators.

Calculators that are capable of more than basic addi-
tion, subtraction, multiplication, and division usually
have the ability to work in three different modes: degrees,
radians, and gradians. These modes pertain to different
units for measuring angles. Degrees are used for most of
the basic operations. A right angle is 90 degrees and a cir-
cle encompasses 360 degrees. Radians measure angles in
terms of pi, where pi represents the same angle as 180
degrees (a straight line or half way around a circle). Most
calculators indicate that they are working in the degree
mode by displaying DEG in the screen. A right angle is
half of pi and a circle is represented by pi multiplied by
two. When a calculator is working in terms of radians,
RAD usually appears in the screen. In gradians, a circle is
represented by 400; so a right angle is 100 gradians and a
straight line is 200 gradians. This mode is usually indi-
cated by GRAD displayed in the screen.

A Brief History of Discovery 
and Development

As previously mentioned, the decimal numbering
system is based on the number ten because the earliest
calculating devices were the ten fingers found on the
human body. As human intelligence developed, calcula-
tors evolved to incorporate pebbles and sticks. In fact, the
word calculator comes from a form of the late fourteenth
century word calculus, which originally referred to stones
used for counting. Long before the inception of the word,
many different ancient civilizations used piles of stones
(as well as twigs and other small plentiful things) to count
and perform basic addition. However, counting out large
piles of stones had limitations (imagine counting 343
stones and then adding 421 stones to find the sum).
As civilizations progressed, needs for more efficient 
calculators increased. For example, more and more mer-
chants were selling their goods in the growing towns,
and keeping track of sales transactions became a
common need.

Around 300 B.C., the Babylonians used the first
counting board, called the Salamis Tablet, which con-
sisted of a marble tablet with parallel lines carved into it.
Stones were set on each line to indicate how many of each
multiple of five were needed to represent the number.
Counting boards similar to the Salamis Tablet eventually
appeared in the outdoor markets of many different civi-
lizations. These counting boards were usually made of
large slabs of stone and intended to remain stationary,
but people with more money could afford more portable
boards made of wood.

The abacus took the counting board methods to
another level by allowing beads to be slid up and down
small rods held together by a frame. The word abacus
stems from the Greek word abax, meaning table, which
was a common name for the counting boards that
became obsolete with the popularization of the abacus.
Historians believe that the first abacus was invented by
the Aztecs between A.D. 900 and 1000. The Chinese ver-
sion of the abacus, which is still the calculator of choice in
many parts of Asia, first appeared around A.D. 1200. In
A.D. 1600, a Russian form of abacus was invented. A
Japanese style of Abacus was invented in 1930 and is still
widely used in that country. The rods of most abaci are
divided into two sections (called decks) by a bar, with the
beads above the bar representing multiples of five. A top
bead in the ones column represents five, a top bead in the
tens column represents 50, and so on. Some abaci have
more than two decks. In 1958, the Lee abacus was
invented by Lee-Kai-chen. This abacus is still used in
some areas. It can be thought of as two abaci (the plural



C a l c u l a t o r  M a t h

72 R E A L - L I F E  M A T H

of abacus) stacked on top of each other, and is supposed
to facilitate multiplication, division, and other more
complicated operations.

Mathematical tables and slide rules were two of the
most common computational aids before small elec-
tronic calculators became reasonably affordable in the
1970s. Mathematical tables were used for thousands of
years as a convenient way to find values of certain types
of mathematical problems. For example, finding the
value of 23 multiplied by 78 on a multiplication table
only requires finding the row next to the number 23 and
then following that row until reaching the column labeled
78; no computation is necessary, and finding the value
takes little time.

The first slide rule was created in 1622. A typical slide
rule consists of a two or more rulers marked with
numeric scales. At least one of the rulers slides so that two
or more of the scales move along each other. Different
types of slide rules can be used to reduce various complex
operations to simple addition and subtraction. By align-
ing the scales in the proper positions and observing the
positions of other marks on the rulers, a trained user can
make quick computations by reducing multiplication and
more complex operations to simple addition. Slide rules,
along with mathematical tables, remained two of the
most useful mathematical tools until they were made
obsolete in most areas of computation by the invention of
electronic calculators.

The invention of the slide rule was dependent on the
discovery of logarithms about a decade earlier because
the scales on a slide rule involve logarithms. John Napier
was the first to publish writings describing the concept of
logarithms, though historians also point out that the idea
was most likely conceived a few years earlier by Joost
Bürgi, a Swiss clockmaker. The math behind the discov-
ery and development of logarithms is beyond the scope of
this text, but their main contribution to science and
mathematics lies in their ability to reduce multiplication
to addition, division to subtraction. Furthermore,
exponents can be found using only multiplication; and
finding roots only involves division. For example, when
using a table of logarithmic values to multiply two large
numbers, one only needs to find the logarithmic values
for both of the numbers and add them together. The
invention of the slide rule made it possible to work 
with logarithms without searching through large tables
for values.

Many mechanical calculators were invented before
the electronic technology used in modern calculators came
about. One such mechanical calculator, the Pascaline, was
invented in 1642 by 19-year-old French mathematician
Blaise Pascal. The Pascaline was based on a gear with only
one tooth attached to another gear that had ten teeth.
Every time the gear with one tooth completed a turn it
would cause the other gear to move a tenth of the way
around, so the gear with ten teeth completed one turn for
every ten turns of the gear with one tooth. Using multiple
gears in this way, the Pascaline mechanically counted in
way similar to a person counting on their fingers or using
an abacus. The concepts first explored in the Pascaline
mechanical calculator are still used in things like the
odometer that keeps track of how far an automobile has
gone, and the water meter that keeps track of how much
water is used in a household.

Compact electronic calculators were made readily
available in the early 1970s and changed mathematics for-
ever. Not only were these calculators small and easily
portable, they substituted for both slide rules and mathe-
matical tables with their ability to store important and
commonly used numbers and to use them in complex
operations. With clearly labeled buttons and a screen
that shows the answer, these calculators were easier to
use and required less practice to master. Like slide rules,
many modern electronic calculators use logarithms to
reduce mathematical operations to repeated operations
of addition.

Personal computers are powered by the same type of
technology as handheld calculators. Most computers
include a software program that simulates the look and

View of the inside of the first miniature calculator, invented
at Texas Instruments in 1967. CORBIS/SYGMA.
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feel of a handheld calculator, with buttons that 
can be clicked with the mouse. The main difference
between computers and calculators is that computers
are capable of handling complex logical expressions
involving unknown values. This basically means that
computers are capable of processing more types of
information and performing a wider variety of tasks.
Making the jump from calculators to computers is an
important technological milestone. Just as people a thou-
sand years ago could not have imagined a small battery-
operated mathematical tool, it is difficult to imagine a
technology that will replace electronic calculators and
computers.

Real-life Applications

F INANC IAL  TRANSACT IONS
When it comes to personal finances, electronic calcu-

lating devices have gone far beyond helping people bal-
ance checkbooks. Cash registers and automatic teller
machines (ATMs) have shaped how people trade money
for products and services.

Cash Registers A cash register can be thought of as a
large calculator with a secured drawer that holds money.
The cash register was originally invented in 1879 to pre-
vent employee theft. The drawer on most cash registers
can only be opened after a sales transaction has taken
place so that employees can not purposely fail to record a
transaction and pocket the money. Manually opening the
drawer requires either a secret code or a key that is kept
safe by the store manager or owner. The buttons on a cash
register are different from the buttons on calculators
intended for personal use. The basic buttons of a calcula-
tor that are applicable to money (e.g., the numbers and
the decimal point) are present on a cash register; but the
remaining buttons can usually be customized to fit the
needs of the organization that uses it. For example, a
restaurant can program a group of buttons to store the
prices of their various menu items; or cash registers in
certain geographic locations might have buttons for com-
puting the regional sales tax. The screen can usually be
turned so that the merchant and the customer can both
see the prices, taxes (if any), and total. Like many calcula-
tors, a cash register has a roll of paper and a printing
device used for creating printed records of calculations
(called receipts in the case of monetary transactions). The
inside of a cash register works (and always has worked)
almost exactly like a calculator. Modern cash registers
include electronic microprocessors similar to those found
in handheld calculators; but when calculators were powered

by the turning of mechanical gears, cash registers were
also powered by similar gear mechanisms.

ATM Machines Automatic teller machines (ATMs) were
first used in 1960 when a few machines were placed in
bank lobbies to allow customers to quickly pay bills with-
out talking to a bank teller. Later in the decade, the first
cash dispensing ATMs were introduced, followed by
ATMs that could accept and read bank cards. The fact
that ATMs are unmanned requires that they possess
greater security. To ensure the safety of the bank’s money,
the materials that make up the ATM and connect it to a
building are precisely constructed and physically strong.
To thwart attempts to pose as another person in order to
take that person’s money out of an ATM, transactions
require two forms of identification: physical possession of
a bank card and knowledge of a personal identification
number (PIN). While the inner workings of an ATM 
are more complicated than that of a cash register, the
technology and concepts of the electronic calculator
provide the basis for computing the values of every
transaction.

The introduction of check cards has combined the
technological benefits of cash registers and ATMs to fur-
ther facilitate the storage and expenditure of money. A
check card can be used to make purchases using money
that is stored in a checking account at a bank in another
location. Other advancements in technology (e.g., scan-
ners that quickly scan barcodes on items, self-checkout
stations that allow customers to scan their own items, and
secure Internet transactions that use calculators operat-
ing on a computer thousands of miles away from the
computer being used by the customer) continue to revo-
lutionize how humans buy and sell products and services.
However, none of these accomplishments would have
been possible without tools that automatically perform
the mathematical operations that take place in every
monetary transaction.

NAUT ICAL  NAV IGAT ION

For hundreds of years, sailors used celestial naviga-
tion: navigating sea vessels by keeping track of the relative
positions of stars in the sky. Through the ages, a wide
variety of tools have been created to help a navigators
navigate boats and ships from one point to another in a
safe and timely manner. Different colored buoys warn of
shallow waters or fishing nets, and ensure that ships do
not collide when nearing docks and harbors. A compass
is an essential tool for determining and maintaining
directional bearings. Tables of tides and detailed nautical
maps help to determine the quickest and safest route and
foresee potential obstacles and dangers. For centuries,
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navigation of the seas required an in-depth understand-
ing of trigonometry (relationships between lengths and
angles) and intensive calculations performed by hand;
and, as many navigators have discovered the hard way,
small directional errors can result in devastating miscal-
culations over a trip of thousands of miles. Handheld
electronic calculators have proven to be an essential
navigational aid since they became reasonably affordable.
They are often used aboard sea vessels as either the pri-
mary tool for calculating directions and distances on the
water or the secondary tool for double-checking calcula-
tions carried out by hand.

For every type of navigational problem that can be
solved with the help of a handheld electronic calculator,
there is also a specialized calculator for solving the spe-
cific problem. Often found either on a sea vessel or on
the Internet, several calculators have been programmed
to take a few pertinent values and find a specific answer.
One example of a specialized nautical calculator is a
speed-distance-time calculator for finding the time that
it will take to get from one point to another if traveling
at a certain speed. Most of these calculators require two
of the three values (speed, distance, and time) in order to
calculate the third value. The time that it takes to get
from one point to another is the product of the distance
between the two points and the speed at which the ship
is traveling (time is equal to distance multiplied by
speed). Similarly, to figure out how fast the ship needs
to travel in order to get from one point to another in a

specified amount of time requires dividing the distance
by the desired time of travel (speed is equal to distance
divided by time). Finally, to figure out far a ship will go
if traveling at a given speed for a specified amount of
time, the speed and time must be multiplied together
(distance is equal to speed multiplied by time). Due to
the fact that all of these operations involve only multipli-
cation and division, this type of calculator only needs to
be capable of multiplication and division. More sophis-
ticated navigation calculators exist to quickly determine
values that help a ship’s navigator make crucial decisions.
These decisions range from determining the fuel neces-
sary for completing a trip and planning appropriate
stops for refueling, and finding the true direction in
which to steer the ship in order to maintain a desired
heading (direction) while taking into account forces
such as wind and the current of the water. Specialized
calculators are also often used to ensure that a ship is
built properly. One such calculator measures a ship’s
resistance to capsizing (turning upside-down in the
water) based on the width of the widest part of the ship
and the weight of the ship.

Although modern global positioning system (GPS)
technology allows precise and accurate position measure-
ments, calculators (whether external or internal) are used
determine vectors (directions and distance) to execute
course changes or to determine the best path.

COMPOUND  INTEREST
Banking can be a highly profitable business. For

example, a bank can use the money in a savings account
for other investments as long as the money is stored at the
bank; so the more money present in the bank’s various
accounts at any given time, the more money the bank can
earn on its own investments. As an incentive for banking
customers to store their money with a bank, savings
accounts earn compound interest. That is, the bank pays
a savings account holder a relatively small amount of
money based on the amount of money in the savings
account. The basic idea that drives this investment chain
is that the bank makes more money in its own invest-
ments than it pays out to its account holders.

The amount of money that is earned on a savings
account containing a given amount of money is deter-
mined by a compound interest formula. Compound
interest is an example of exponential growth: the larger
the number becomes, the faster the number grows. The
term compound refers to the idea that the growth
depends both on how much money is deposited into the
account as well as the amount of interest already earned
in past growth periods. These growth periods are referred

Beat the Abacus

Contests throughout the world have pitted individu-
als equipped with an abacus against individuals
equipped with a handheld digital calculator. In most
cases, the person with the abacus wins, no matter
how complicated the mathematical operations
involved. This, of course, does not mean that even
the most skilled person with an abacus can make
calculations faster than a calculator; the time that it
takes to press the buttons accounts for most of the
time that it takes to use a calculator to solve a prob-
lem. Nonetheless, even in operations as compli-
cated as multiplying and dividing 100 pairs of
numbers with up to 12 digits (trillions), a proficient
abacus user beats a skilled calculator user almost
every time.
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to as compounding periods. Interest is typically com-
pounded annually or monthly, but may also be com-
pounded weekly, or even daily. More frequent compounding
benefits the account holder and may be offered to attract
more account holders in order to increase the bank’s
profits.

Determining the amount of interest earned and pre-
dicting future account values requires calculations of
inverses (1 divided by a number) and exponents (one
number raised to the power of another number), both of
which are usually rather messy operations, especially
when performed by hand. A handheld scientific calcula-
tor allows account holders to calculate these values
quickly and accurately in order to compare banks and
track earnings with ease.

MEASUREMENT  CALCULAT IONS
How calculators function to solve an array of meas-

urement and conversion problems is perhaps best illus-
trated by example. Imagine a local high school is hosting
a regional basketball tournament. On the day of the tour-
nament, the athletic director discovers that the supply
closet has been vandalized and all of the basketballs have
been damaged. As the athletic director begins to make the
announcement that the tournament will have to be
delayed due to the lack of basketballs in the building, a
student in the crowd reveals that she has a basketball in
her backpack and throws it down to the court. Before the
tournament can resume, the officials must determine
whether or not the ball is regulation size. All of the writ-
ing, including the size of the ball, has been worn off by
years of use. Fortunately, one of the referees knows that
the diameter of a full-sized basketball (the distance from
one side of the ball to the other measured through the
center of the ball) is about 9.4 inches. The high school
home economics teacher, who happens to be in the
crowd, quickly produces a tape measure from her purse,
hoping to be of assistance. However, an accurate meas-
urement of the diameter of the basketball cannot be
determined with a tape measure. The referee measures
the circumference of the ball (the longest distance around
the surface of the ball) and finds that it is 29.5 inches. Not
knowing the circumference of a regulation-size basket-
ball, the referee asks if anyone in the crowd might know
how to solve this problem.

A student speaks up, stating that he has been study-
ing circles and spheres in his math class. He was able to
recall an important fact that would help to determine the
diameter of the basketball: the circumference of a sphere
(such as a basketball) is equal to the diameter of the
sphere multiplied by pi. So the diameter of the basketball

is 29.5 divided by pi. The student cannot remember a
good approximation of the value of pi, but his scientific
calculator has a button for recalling the value of pi
(approximated to the ten digits that his calculator can dis-
play). He enters 29.5, presses the / button (for division),
recalls the value of pi (which displays 3.141592654), and
presses the � button (the equal sign). The calculator dis-
plays the answer as 9.390141642. This value rounds to
9.4, which is the value that the referee indicated as the
diameter of a regulation basketball. The ball is accepted
by the officials and the tournament continues.

RANDOM NUMBER  GENERATOR
When conducting scientific experiments, it is often

necessary to generate a random number (or a set of mul-
tiple random numbers) in order to simulate real-life situ-
ations. For example, a group of scientists attempting to
model the way that fire spreads in a forest need to account
for the fact that a burning tree may or may not ignite a
nearby tree. Unpredictable factors like shifting winds and
seasonal levels of moisture make incorporating the 
probability of fire spreading in a certain direction into
models next to impossible because the nature of wildfires
is seemingly random. However, this randomness can be
loosely accounted for in scientific wildfire models by
strategically inserting random numbers into the mathe-
matical formulas that are used to describe the nature of
the fire. These models are often run repeatedly in order to
evaluate how well they fit real-world observations. Each
time the formula is used, different random numbers are
generated and inserted into the formula.

Cryptography Another important area of study that ben-
efits from the generation of random numbers is cryptog-
raphy, in which messages are encrypted (scrambled) so
that they cannot be understood if they are intercepted by
an unauthorized party. A message is encrypted according
to mathematical formulas. Most of these encryption for-
mulas incorporate random numbers in order to create
keys that must be used to decrypt (unscramble) the mes-
sage. The decryption key is available only to the message
sender and the intended message reader.

Random number generators are important tools in
many other scientific endeavors, from population model-
ing to sports predictions. Fortunately, most scientific cal-
culators and graphing calculators include buttons for
generating random numbers. Some calculators have a
single button (often labeled RAND or RND) for generat-
ing a random three-digit number, between 000 and 999.
Each time the button is pressed, a new random number is
generated. Other calculators also allow the user to adjust
the number of digits and the placement of the decimal



C a l c u l a t o r  M a t h

76 R E A L - L I F E  M A T H

point in the random generated numbers. Other calcula-
tors allow the user to define upper and lower bounds for
random numbers; and some can generate multiple ran-
dom numbers at once. On such a calculator, inputting a
set of three numbers that looks something like (1, 52, 9)
will cause the calculator to display nine random numbers
with values between one and 52. These values can then be
used to represent the drawing of nine cards from a deck
of 52 playing cards, where each card is assigned a number
between one and 52.

Random number generators included in calculators
(and various computer software programs) not only
make it easy to generate the random numbers needed to
simulate real-life situations; using random number gen-
erators also ensures that the numbers are truly random.
The idea of structured randomness may seem strange;
but in order to fully simulate the true randomness found
in real-life situations, random number generators use
mathematical formulas to generate the numbers accord-
ing to certain guidelines. One such guideline ensures that
the numbers are distributed in certain ways (e.g., to ensure
that the numbers are not all close together or equally
spaced). Different methods for achieving randomness are
used to generate random numbers, and choosing a
method is an important consideration in scientific mod-
eling scenarios. Random numbers generated according to
mathematical formulas are referred to as pseudorandom
numbers.

With the hordes of numbers and unknowns required
to model real-life situations, it can be easy to lose sight of
the essential ideas behind the data. Using random num-
bers in mathematical models makes it possible to imi-
tate experiments and focus on the underlying patterns
and ideas.

BR IDGE  CONSTRUCT ION
The construction of large suspension bridges requires

almost unfathomable amounts of calculations to ensure
that the structures can withstand the multitude of forces
acting on a bridge at any given time. Although a suspen-
sion bridge looks solid, it is a complex structure that is
constantly swaying and twisting; if it were rigid, it would
snap under heavy winds and other forces. The weight of
the roadway alone would cause the bridge to crumble if
swooping cables attached to strong towers were not accu-
rately designed and built. Some forces, including gravity
and the weight of the materials that make up the bridge,
are constant (unchanging). Other factors are constantly
changing: the weight of the automobiles, the strength of
the wind, the strength of the water current pushing on the
supporting structure, varying temperatures, earthquakes

and other disastrous activity. Bridge engineers must
ensure that a bridge can withstand the worst possible sit-
uations. For example, a worst-case calculation might
examine the stability of the bridge supporting the maxi-
mum number of automobiles while under the pressure of
high winds and strong water currents during a reasonably
large earthquake. When building a large bridge, the slight-
est miscalculation has the potential of endangering hun-
dreds of human lives.

Before the invention of electronic calculators, the
colossal calculations involved in building a safe and long-
lasting bridge were performed (and rechecked many
times) by hand with the assistance of slide rules and enor-
mous mathematical tables. When the Golden Gate Bridge
was built in San Francisco, California, it was the longest
suspension bridge in the world. Most experts believed the
distance that needed to be spanned in order to build a
bridge across the Golden Gate Straight was too large.
Furthermore, the many other regional complications—
including characteristically high winds, strong tidal cur-
rents, the weight of water formed by dense fog, and
frequent earthquake activity—made most bridge engi-
neers skeptical to say the least. However, Joseph B.
Strauss, who worked on hundreds of bridges in his life,
successfully planned and headed the construction of the
Golden Gate Bridge. Strauss and his team of engineers
worked for months using circular slide rules and making
(and rechecking) calculations involving more than 30
unknowns (e.g., the height of the towers, the lengths and
arcs of the cables, the thickness of the roadway, the speed
of the wind, the strength of water currents, and the weight
of automobiles). The bridge took over four years to build,
spanned 4,200 feet (1,280 m), and cost over 30 million
dollars. To someone accustomed to using a handheld elec-
tronic calculator, even the task of approximating the cost
of the bridge—taking into account the amounts of mate-
rials, the number of people required for construction, and
the predicted amount of time needed—seems daunting.

The invention of electronic calculating devices greatly
reduced the amount of time needed to perform and repeat
immense calculations. For example, the stability of a sus-
pension bridge depends heavily on the lengths of the
cables, the heights of the towers to which the cables are
connected, and the angles between them. A typical scien-
tific calculator has buttons labeled SIN, COS, and TAN.
These buttons are related to trigonometry, the study of tri-
angles that defines the relationship between lengths and
angles, and greatly reduce the time needed to calculate and
confirm crucial measurements for the parts of a bridge.

Bridge engineering continued to advance as calculat-
ing devices evolved into computing technology that could
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quickly and accurately simulate diverse situations involv-
ing numerous adjustable factors. The record for longest
suspension bridge has been broken many times since the
completion of the Golden Gate Bridge. In 1998, the
Akashi Kaikyo Bridge was constructed across the Akashi
Strait between Kobe and Awaji-shima in Japan. This mas-
sive steel bridge was the longest (and tallest) suspension
bridge as of 2005, spanning a total of 12,828 feet (3,910 m).
It took over ten years and 4.3 billion dollars to build.

COMBINATOR ICS
Combinatorics is the mathematical field relating to

the possible combinations of a given number of items.
A common example investigates the number of possible
arrangements (called permutations) for a standard
deck of 52 playing cards. It can be shown that 52 cards
can be arranged in a surprisingly large number of ways,
which is essential in making cards games unpredictable
and interesting.

To grasp the idea, start with the order in which cards
are usually organized when the pack is first opened:
increasing from two to king (with the ace on one end or
the other) and separated by suit (hearts, spades, dia-
monds, clubs, not necessarily in that order). That’s one
combination (permutation). Next, take the card on the
top of the deck and move it down one position. That’s
two combinations. Continue to move that card down one
position until it reaches the bottom of the deck. That is 52
different combinations obtained by moving a single card.
Next, take the next card in the deck (the card that is now
on the top of the stack) and move it through all of the
possible positions. Keep in mind that the first combina-
tion was already accounted for when the first card was in
its final position on the bottom of the stack; so that is
another 51 combinations of cards. The next card will pro-
vide another 50 combinations, and so on. It turns out that
the total number of combinations is the product of the
numbers between 52 and one: 52 multiplied by 51 multi-
plied by 50, and so on down to one. This type of value
(the product of every whole number between a given
number and one) appears often in combinatorics and has
a standard notation. The number of combinations for 52
cards, for example, is written as 52! and pronounced fifty-
two factorial. This type of multiplication is difficult and
time-consuming to work out by hand. Fortunately, typi-
cal scientific calculators include a button for performing
factorial operations (usually labeled n! and pronounced 
n factorial). Entering 52 and then pressing n! returns a
number larger than eight multiplied by ten to the 67th
power. That means that number of possible combina-
tions for a deck of 52 cards is more than 8 followed by 67

zeros! A million has only six zeros; a billion only nine.
Factorial operations tend to yield large numbers and are
difficult to calculate by hand; but calculators make it easy
to find the values of factorials of reasonably large num-
bers, and even perform operations on those values.

UNDERSTAND ING  WEATHER
The practice of predicting the weather has been a

growing art for centuries; but no advancement has influ-
enced the field meteorology (the scientific study of
Earth’s climate and weather) more than the development
of calculating and computing devices. As with most sci-
entific fields, the common availability of electronic calcu-
lators affected meteorological studies by greatly reducing
the amount of time required for making calculations
needed to predict the weather, and updating these calcula-
tions based on frequent changes in observed weather data.

American meterologist Joanne Simpson, the first
woman to earn a doctorate in meteorology, developed the
first model of cloud activity in Earth’s atmosphere, helped
to explain the forces that power hurricanes, and discov-
ered the cause of the air currents in tropic regions. The
calculations that led to her theories were originally per-
formed in the 1940s and 50s without the assistance of an
electronic calculator. Simpson’s theories were met with
criticism and disbelief, but she would later stand as a shin-
ing example of electronic calculating devices verifying
human calculations. Using calculators and, eventually,
computers, she was able to improve her models, revolu-
tionizing meteorological research and prediction. After
years of tireless research and teaching positions at multiple
universities, she went on to work at the National Aeronau-
tics and Space Administration (NASA) for over 24 years.

While working at NASA, Simpson was integral in the
advancement of meteorological studies using images and
information gathered by satellites orbiting Earth. Start-
ing in 1986, Simpson headed NASA’s Tropical Rainfall
Measuring Mission (TRMM). This mission involved the
launch and utilization of the first satellite capable of
measuring the rainfall in Earth’s tropical and subtropical
regions from space. This mission has been regarded as one
of the most important advancements in the field of mete-
orological research, deepening the understanding of mete-
orological phenomena ranging from the affects of dust
and smoke on rain clouds to the origins of hurricanes.

The scientific accomplishments of Simpson—from
hand calculations leading to ground-breaking theories, to
cutting-edge technological research—provide an excel-
lent illustration of the power of a brilliant mind teamed
up with technology. Having already revolutionized her
field long before the availability of electronic calculating
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Key Terms

Calculator: A tool for performing mathematical opera-
tions on numbers.

Decimal: Based on the number ten; proceeding by tens.

Digital: Of or relating to data in the form of numerical digits.

Exponent: Also referred to as a power, a symbol written
above and to the right of a quantity to indicate how
many times the quantity is multiplied by itself.

Logarithm: The power to which a base number, usually
10, has to be raised to in order to produce a spe-
cific number.

Model: A system of theoretical ideas, information, and
inferences presented as a mathematical description
of an entity or characteristic.

Operation: A method of combining the members of a
set so the result is also a member of the set. Addi-
tion, subtraction, multiplication, and division of real
numbers are everyday examples of mathematical
operations.

devices, she first used calculators to verify her results, and
then continued to stretch the limitations of meteorology
by employing the ever-growing capabilities of computers.

Potential Applications

SUPERCOMPUTERS
The earliest and simplest personal computers dif-

fered from calculators in that they could interpret
instructions involving unknown values, called variables.
As computers evolve, they retain the ability to perform
the mathematical calculations for which calculators exist.
Most personal computers have a calculator program. On
the computer screen, the calculator program resembles a
handheld calculator. The buttons on the screen can be
clicked with the mouse, or the computer keyboard can be
used to input the numbers and commands. Even the most
advanced computers are based on the concepts that
enable calculators to perform mathematical operations.

Supercomputers are computing systems that possess
the most power and are capable of the highest level of com-
putation in any given time period. Since the early days of
digital computation, supercomputers have been employed
to perform large amounts of complex calculations that go
beyond the capabilities of the common computing
machines of their era. Supercomputers (also known as high
performance computing systems) become outdated as
technology advances. For example, the most powerful per-
sonal computers in the new millennium possess power
more than supercomputers from past technological eras.

Long before handheld electronic calculators were made
available to the general public, electronic supercomputers

were used by the United States government to break
enemy codes during World War II. Military codes are
usually implemented using mathematical formulas that
define how information is transformed, and in turn, how
to transform it back to its original, readable form.
Cracking these codes requires massive amounts of calcu-
lations to determine the values of the mathematical
formulas.

In the 1990s, large oil companies began deploying
supercomputers developed to analyze enormous amounts
of seismic data (information about vibrations in the
ground). This data can be used to create images that rep-
resent the underlying contents of the terrain, helping the
oil companies locate oil in the ground and leading to a
dramatic increase in the accuracy of their searches.

Other uses for supercomputers include the creation
of detailed three-dimensional (3-D) models of informa-
tion that is difficult to grasp in its raw form. Weather pat-
terns can be visualized, making them easier to interpret,
hopefully improving future predictions. The chemical
compositions of a virus can be seen in a new light that
may help medical experts expose a plan of attack. The
surface of planets can be recreated based on information
gathered by a spacecraft. Supercomputers make it possi-
ble to understand the invisible building blocks of our
world and to access the far reaches of the universe for
close inspection. Like all major scientific contributions,
supercomputers allow the men and women of science to
achieve goals that were previously nothing more than
dreams. Considering the abundance of new applications
leading to breakthrough scientific discoveries each year,
supercomputers seem to possess boundless potential for
enhancing our understanding of science.
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Calculus

Overview

Calculus is a set of mathematical tools for solving
certain problems. It assumes the methods of algebra and
geometry, and in turn is used as a starting point for
higher forms of mathematics. Calculus is applied to a
wide range of problems in medicine, the social sciences,
economics, biological growth and decay, physics, and
engineering. It is a flexible language for describing the
physical world: objects in motion, chemical reactions,
complex surfaces and volumes, heating and cooling, the
hard-to-imagine behaviors of space and time, and many
other events. Not only do all students of medicine, engi-
neering, physics, biology, and economics study calculus in
college, so do many students of psychology, literature, art,
business, and history.

Calculus, like geometry, is built on a foundation of
simple elements that can be drawn on paper or seen in
the mind: curves, slopes, and areas. And if ever a branch
of mathematics was created to deal with real-life prob-
lems, this is it. English physicist Isaac Newton (1642–
1727) and German mathematician Gottfried Wilhelm
von Leibniz (1646–1716) invented calculus in the 1600s
because it was needed to solve the cutting-edge science
and math problems of their time, including how to
calculate the lengths of curves, the areas bounded by
curves, and the motion of objects that are accelerating
(gaining speed).

More than three hundred years later, the language of
calculus is common to almost every scientific or technical
field. It is essential to the design of engines, computers,
and all other complex machines; to economics, agricul-
ture, and physics; in fact, to the study of pretty much
everything from subatomic particles to the shape of the
Universe. Almost every scientist and engineer in the
world understands at least basic calculus. And even for
those who will never as adults perform any mathematical
operation more complex than bidding on eBay, the
concepts of calculus, like the concepts of basic physics,
can clarify our thinking about the world, make it more
effective.

Geometry tells us how to deal with curves and shapes
that are described by simple rules: squares, triangles, cir-
cles, ellipses, and so on. Calculus tells us how to deal with
curves and shapes that are described by more complex
rules, or by no rules. Calculus is more suited to the real
world, where irregular curves and shapes—including
graphs of changing speeds, forces, and other things that
can be measured—are the rule.
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Fundamental Mathematical Concepts
and Terms

FUNCT IONS
To talk about calculus, we need to be able to talk about

functions. A “function” is a rule that relates one group of
numbers to another. For example, we can write a rule that
relates each positive number, x, to some negative number,
f � �x. This rule or function tells us that if x equals 10,
f equals �10. Likewise, if x equals 2.5 then f equals �2.5,
and so on. We say that “f is a function of x” when f is on the
left-hand side of the equals sign, as it is here.

When f is a function of x, it is common practice to
write f as f (x), which we read aloud as “f of x.” So the func-
tion f � �x can also be written as f (x) � �x. If we  do not
want to write the whole rule out every time (or if we do
not know what that rule is), we can simply write f (x).

By the way, other letters besides x and f can be used
to write functions. In fact, if we are talking about more
than one function at a time, we have to use other letters
to keep from getting confused.

It is often useful to make a picture of a function. This
is done by picking values for x, applying the rule of the
function, and finding out what values of f result. In this
way any number x can be paired with a number f. These
pairs can be graphed as dots by hand or computer. If
enough of these dots are graphed, they can be joined by a
smooth line. In this discussion, such graphs will be used
to show what various functions look like. For example, a
graph of the function f (x) � 2x is shown in Figure 1.

THE  DER IVAT IVE
Consider the simple function shown in Figure 2,

f (x). The exact rule that relates f to x is not important
right now; what matters to us is the shape of its graph.

The function depicted is often used in real-life math
problems. It approximates one of the curves used to
describe the spread of epidemics and other processes that
spread geometrically in a finite medium (discussed in the
article on Exponents). It also approximates part of the
spectrum of tidal wetland growth (discussed further
below as a real-life application of derivatives). Such a
curve is shown in many introductory calculus textbooks
because it offers a clear visual basis for explaining the
concepts of calculus. In particular, tangent lines with pos-
itive slope can be laid against the curve without confus-
ingly overlapping over other parts of it; also, the integral
of (area under) this curve is easy to understand and to
graph. Moreover, the derivative of this curve is a
nontrivial bell shape that can be used to explore min-max
problems.

We will use this function to visualize the first ideas of
calculus, but the questions we are about to ask about this
particular f (x) could just as well be asked about many
other curves.

The two basic ideas of calculus arise from asking two
questions about curves like this one. The first is: How
steep is the curve at any one point? A more exact way of
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Figure 1: Graph of the function f(x) � 2x. The line could go
on forever, but only a part can be shown.
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asking this is: If we lay a straight line against the curve so
that it touches it at just one point, how steep is that line? In
other words, what is its slope? Figure 3 shows a line segment
just touching f (x) at the point directly above xo. (The sub-
script “0” is just a label to distinguish xo from other values
of x.) This line segment is said to be “tangent” to the curve.

The slope of a line tangent to a curve is called the
derivative of the curve at the point where the line and the
curve touch. The derivative tells us how steep the curve is
where the line touches.

A single tangent line shows the derivative only at one
point, but the derivative can be found in the same way for
every single point along the curve. These numbers can be
graphed as a curve in their own right. From Figure 3 you
can see that the slope of f (x) starts out small (at zero, actu-
ally), gets bigger as f (x) increases, and shrinks as f (x) starts
to level off. The derivative of f (x) is shown in Figure 4.

The derivative of f (x) is often written 

df
dx

because it corresponds to the slope or rate of change 
of f (x) at a single point x. The numerator df stands 
for a very small vertical change in f (x), and the denomi-
nator dx stands for a very small horizontal change 
in x , so 

echoes the definition of a slope from elementary geometry,

.

Another way of looking at the derivative or slope of
a function at a given point is that it tells you the rate of
change of the function at that point.

A function f (x) might be defined either by a series of
measurements of some real-world quantity, or by an equa-
tion. In the case of the curve in Figures 2 and 3, the equa-
tion for f (x) happens to be f (x) � (1 � 2�x)3. There is a set
of standard rules (which students in introductory calculus
courses learn by heart) that says exactly how to write down
what df/dx is, starting with an equation for f (x). Applying
these rules to f (x) is called “differentiating” f (x) or “tak-
ing the derivative of” f (x). Some functions do not coop-
erate with these rules and so their derivatives cannot be
written down explicitly, in which case computers must be
used to find their derivatives.

Taking derivatives is one of the two fundamental
operations of calculus. But what use are derivatives? Why
bother with them?

Derivatives can help pilot remote vehicles (e.g., to
help robot rovers navigate on other planets, such as Mars).
If, for example, an engineer is piloting a robot rover on
Mars by remote control and plans to drive it up a hill, he
might rely on orbital photography to provide data for a
graph of altitude versus distance along the rover’s
proposed line of travel. This graph might look something
like the function in Figure 2. But if the Mars rover isn’t
strong enough to climb at any angle steeper than, say, 30
degrees, the pilot would want to look at the derivative of
the altitude curve to make sure that the steepness of the
proposed route never exceeds 30 degrees at any point. The 
peak value of the curve in Figure 4 would tell you exactly
what maximum steepness your rover was going to
encounter. If that value was too high, you’d have to try
another route.

One more word about derivatives. The derivative of
a function is just another function, and so you can take its

rise
run

df
dx

Figure 3: A line segment tangent to f(x). 

Figure 4: Derivative of the function in Figure 2.
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derivative too. This function is called the “second deriva-
tive of f (x)” and is written 

The second derivative of the f (x) graphed in Figure 2
is shown in Figure 5.

If you take the derivative of the second derivative, you
have the third derivative of f (x). You could find the fourth,
fifth, or ten-thousandth derivative of f (x), too, but the first
and second derivatives are by far the most useful. For
instance, the first derivative of a function that describes an
object’s position describes the object’s speed, and the second
derivative describes the object’s acceleration. Any derivative
beyond the first is called a “higher-order” derivative.

THE  INTEGRAL
Now to ask a simple but important question about

the function in Figure 2: What is the area under any given
part of the curve? In Figure 6, the area under the curve
between x � 0 and x � x0 has been shaded in.

This area is called the definite integral of f (x)
between 0 and x0. The definite integral, like the derivative
at a single point, is simply a number. In our example, the
definite integral says how many square inches the shaded
area in Figure 6 is.

The definite integral can tell us the actual physical area
of an object with curving edges. It can have other physical
meanings, as well. For example, the integral of an equation
that describes an object’s velocity tells us how far the object
has traveled. Consider an object moving at a steady speed or
velocity, v. Velocity might change over time, so we will write
v as a function of time, v(t). If the object’s velocity happens
to be an unchanging 100 miles per hour, we can write v(t) �
100 miles per hour. This function is shown in Figure 7.

d 2 f
dx2

The definite integral of the velocity, v(t), from time 0
to time t0 is the area under the curve from 0 to time t0.
This area is shaded in Figure 8.

The length of the rectangle in Figure 8 is t 0 and its
height is 100. Therefore, its area—the value of the definite
integral—is 100 � t0. The definite integral of a velocity
function is useful because it gives the distance traveled in
that time. In 1 hour, the object in our example will have
traveled 100 � 1 � 100 miles; in 2.5 hours, it will have
traveled 100 � 2.5 � 250 miles.

Here the area calculation is simple because the veloc-
ity is unchanging, so we can use the formula for the area
of a rectangle. In real life, objects such as cars, bullets,
spacecraft, and runners change their velocities over time.
In this case the velocity curve is not a flat line (as in 
Figure 7) but a more complicated curve, perhaps like that
in Figure 6. The more complex the curve, the more complex
the mathematics needed to find its integral.

Just as with the derivative, it is possible to find a series
of definite integrals and to graph them as a function in their
own right. This is called integrating f (x), and the resulting
curve or function is called the indefinite integral (or simply
the integral) of f (x). Also, instead of graphing the integral
point by point by evaluating definite integrals, it is often
possible to find an exact expression for the integral. The
indefinite integral of a function f (x) is written as follows:

The symbol at the far left that looks like a stretched “s”, �,
actually is a stretched “s.” Centuries ago it stood for
“summa,” which is Latin for “sum,” a reference to sum-
ming up the area under the curve. This symbol is called
the integral sign. The expression 

∫f(x)dx

∫f(x)dx

Figure 5: The second derivative of the f(x) shown in Figure 2.
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is read aloud as “the integral of f (x) dee x.” (We can use
letters other than f and x whenever we like; they are just
labels or names.)

In our example of an object moving at a constant 100
miles per hour, the integral of v(t) � 100 is easy to write
down as an exact mathematical expression:

∫ v(t)dt � 100t �C

100

0 t

v(t)

Figure 7: The velocity, v(t), of an object moving at 100 miles
per hour.

100

t t0

v(t )

0

Figure 8: The area of the shaded rectangle is the definite
integral of the velocity v(t) from time 0 to time t0.
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0

Figure 9: The indefinite integral of v(t).
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∫ f (x)dx

Figure 10: The indefinite integral of the function first seen in

Figure 2, .∫ kt dt �     t 2k
2

The C at far right stands for “constant of integra-
tion.” C is “arbitrary,” meaning that it can be set equal to
any number and the equation will still be true. The indef-
inite integral of v(t) � 100, namely 

is plotted in Figure 9 with C set equal to 0.

An indefinite integral is more informative than a def-
inite integral because it can tell us the value of any defi-
nite integral. To find the value of a definite integral over a
certain interval (for example, from time 0 to time t0), we
subtract the value of the indefinite integral at the left-
hand end of the interval from its value at the right-hand
end. In the case of the object moving at 100 miles 
per hour, the value of the indefinite integral at time t0

is 100 � t0 � C. At time 0 it is 100 � 0 � C. Subtracting,
we have 

which is exactly what we found by calculating this defi-
nite integral as the area of a rectangle.

We have already seen, in Figures 4 and 5, the first and
second derivatives of the curve first shown in Figure 2.
The integral of that curve is shown in Figure 10.

As mentioned earlier, in a real-life application, the
“area” under a curve may not correspond to a literal, phys-
ical area like 10 square miles of parking lot. In calculus,

100 � t0

100 � t0 � C

100 � 0 � C�

∫ v(t)dt � 100t �C
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depending on what real-world quantity you’re measur-
ing, an “area” may be the number of miles driven, or the
profit made by a business, or the amount of oil leaked
from a beached tanker, or the probability that a rocket
will explode before reaching orbit, or many other things.
Derivatives are flexible in the same way. It’s one of the
reasons calculus is so useful.

THE  FUNDAMENTAL  THEOREM 
OF  CALCULUS

The fundamental theorem of calculus is simply this:
Taking the derivative is the reverse of taking the integral,
and taking the integral is the reverse of taking the deriva-
tive. We have seen this sort of thing before: add 10 to a
number and then subtract 10, and you are back where
you started (addition and subtraction can reverse each
other). Or multiply a number by 10 and then divide it by
10, and you are back where you started (multiplication
and division can reverse each other).

Similarly, take the derivative of a function and then
take the integral of that derivative, and you are back
where you started. (Except for a constant of integration,
and that can always be set to whatever we choose.) Inte-
gration and differentiation reverse each other.

Writing this out in symbols, we have 

(taking the derivative undoes integration) and 

(integration undoes taking the derivative). (For simplic-
ity, the constants of integration on the right-hand sides of
these two integrals, and of the rest of the indefinite inte-
grals in this chapter, are omitted, as is often done in prac-
tical math.)

The fundamental theorem of calculus is fundamen-
tal because it tells us that a function, the derivative of that
function, and the integral of that function all contain the
same information in different forms. Knowing any one
form, we can produce the others.

And that’s it, that’s calculus. Or the heart of it, at
least: derivatives, integrals, and the fundamental theorem
that ties them together. Related topics such as summa-
tions, limits, exponential functions, and analytic geome-
try are often lumped together under the term “calculus”

∫       dx � f(x)
df
dx

∫ f(x)dx � f(x)
d
dx

for convenience, but differentiation, integration, and the
fundamental theorem are the big three, the core.

MAXIMA  AND  M IN IMA
The curve in Figure 4 and its derivative, the curve in

Figure 5, are plotted together in Figure 11. Notice that the
place where the curve from Figure 4 (the black line)
crosses the horizontal axis, around x � 1.6, the curve
from Figure 3 (the gray line) hits a peak or maximum.

This gives us a very useful general principle: By find-
ing out where the derivative of a function equals zero, we
can determine the maximum (and minimum) points of
that function. Why? Because maxima and minima are
peaks and valleys, places where a function levels off
briefly. And wherever a curve is level, its slope (derivative)
equals zero. Being able to find maxima and minima is
useful because there lots of things in life that we want to
maximize or minimize—profit, cost, risk, time, distance,
and more.

Second-order differentiation—finding the derivative
of the derivative—is important for finding maxima and
minima. The fact that the derivative equals zero at some
point really only guarantees that the curve is level at that
point; it doesn’t say whether it is the top of a peak, or the
bottom of a valley, or a ledge halfway up a slope. The sec-
ond derivative, however, helps distinguishes between
these possibilities. Look at the point in Figure 11 where
the lighter curve crosses the horizontal axis. The curve is
decreasing there, so it has a negative slope—that is, its
derivative, which is the second derivative of the darker
curve, is negative. Now look up at the darker curve at that
point: it is at a maximum. A curve’s second derivative, then,
tells us which way it is bending. If the second derivative is 
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Figure 11: A function (black) and its derivative (gray) plotted
together, showing that at the x value where the function
levels off at a maximum, its derivative equals 0.



C a l c u l u s

86 R E A L - L I F E  M A T H

negative, the curve is bending downward; if the second
derivative is negative, the curve is bending upward.
Curves bend downward at peaks (maxima) and upward
at valleys (minima). This leads to the second derivative
test: Where a function’s first derivative is zero and its sec-
ond derivative is negative, the function is at a maximum.
Where its first derivative is zero and its second derivative
is positive, the function is a maximum. If both the first
and second derivatives are zero, the test fails and we have
to investigate further, perhaps by investigating even
higher-order derivatives.

Plotting the original curve and just looking at it is a
perfectly good way to distinguish between maxima and
minima when the function is simple, as in our examples,
but in practice one may be looking at a function in two,
three, or more dimensions, where visualization is difficult
or impossible.

A Brief History of Discovery 
and Development

Calculus—or the calculus, as it is sometimes called—
was invented in the 1600s independently and more or less
simultaneously by the English physicist Newton and the
German mathematician Leibniz. Actually, it is a slight
exaggeration to say that either Leibniz or Newton
invented calculus; both applied fresh insight to a mass of
mathematical questions and tools that had been building
up for centuries.

Mathematicians had been worrying about rates of
change (what we now call derivatives) and the calculation
of areas ever since the Greek mathematicians, such as
Aristotle (384–322 B.C.).

But something new did come into being when the
collection of techniques we now call “calculus” came
together in the mid- to late 1600s. For the first time,
mathematicians had a systematic way of finding deriva-
tives and integrals, that is, rates of change on a curve and
areas under a curve. Leibniz realized that to make calculus
really useful, an easily understood system of notation
would be needed—a way of writing down calculus 
that would do some of the work automatically. He
achieved this by coming up with the integral sign, �, and
the notation for the derivative that we most commonly
use today,

df
dx

In 1675, over 325 years ago, he was already writing calcu-
lus in his notebook using exactly the same notation we
use today, such as 

This “Leibniz notation,” as it is called, makes it possi-
ble for high-school and college students of normal math-
ematical ability to solve problems that baffled great
mathematicians for centuries.

In the twentieth and twenty-first centuries, one of the
most important practical developments in calculus—as in
much of science and mathematics—has been the advent
of the electronic digital computer, which was invented
during World War II. Digital computers allow us to deal
with equations that cannot be solved in “closed form,” that
is, reduced to a neat, algebraic expressions with the
unknown variable on one side of the equals sign and all
the known (or knowable) variables on the other. Equa-
tions that cannot be solved in closed form can arise even
in simple problems. But using the computerized number-
crunching techniques collectively referred to as “numeri-
cal methods,” engineers, scientists, and others can today
solve virtually any problem that can be stated using calcu-
lus, whether a closed-form solution can be found or not.

Interestingly, Leibniz and Newton still haunt the age
of computerized calculus. One of the most commonly
used numerical methods for solving equations was devel-
oped by Newton and is called “Newton’s method,” and
Leibniz built one of the first mechanical calculating
machines, a direct ancestor of the modern computer.

Real-life Applications

APPL ICAT IONS  OF  DER IVAT IVES
Many direct applications of derivatives in real life are

to situations of the sort called min-max problems or
extremum problems, that is, situations where the goal is to
find the minimum or maximum (the “extreme” values) of
some physical, financial, or other quantity. Solving these
problems requires derivatives. Derivatives are also used
indirectly, as one of the many mathematical tools that
engineers, scientists, and other math-using professionals
need to solve their complex and many-layered problems.
The following applications of calculus are simplified ver-
sions of real max-min problems, that is, they are direct
applications of the concept of the derivative.

Maximizing Profits Making a profit is essential to the
health and longevity of a business. And for any industrial

∫ x2dx �    x31
3
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enterprise more complicated than a lemonade stand, it
often calls for calculus.

Suppose that you are manufacturing x bottles of hair
gel per day. It would be convenient if you could always
make more profit just by cranking out more gel, but this
does not work. You have to sell to make a profit, and you
can only sell units as fast as your customers will buy them;
making too many will result in unsold bottles and
reduced profits. However, making too few units is no
good either. Assuming that there are no factors affecting
your profits other than how many bottles per day you
manufacture—and that’s a big assumption—how many
bottles per day should you make?

Let’s assume that you have discovered an equation
that describes your daily profit, p(x), as a function of how
many bottles you make per day, x : p(x) � �.03x2 �

4x � 200. Recall that you can find the minimum or maxi-
mum points of a function by finding where its derivative
equals zero. The first step, then, is to take the derivative 
of the profit function. In this case, the derivative of
p(x) is dp/dx � �.06x � 4. To find where dp/dx equals
zero, we solve the algebraic equation �.06x � 4 � 0 and

find that the optimal number of bottles to manufacture
per day is a whopping 

or, since it is presumably impossible to sell two thirds of
a bottle of gel, 66 bottles.

No real-world business is this simple, but the princi-
ple is sound. Calculus, along with other branches of math
(such as probability theory), is indeed used by financial
analysts.

Storing Data on a Computer Disk Calculus has been used
literally thousands of times in the design of every one of
the electronic toys we take for granted including MP3
players, TV screens, computers, cell phones, etc. A simple
example can be found inside the nearest computer.

For long-term information storage, every computer
contains a “hard drive,” the primary storage device that, if
it crashes and you haven’t made backups, will result in a
loss of data. A hard drive contains a stack of thin discs

� 66
4

.06
2
3

Credit for Calculus

Question: What do you get when you cross history with
calculus? Answer: two famous mathematicians and
nations arguing over who was first in its discovery.

Isaac Newton (1643–1727), staunch English Puritan
and the England’s champion of math and physics, devel-
oped the fundamental concepts of calculus in 1665 and
1666. He organized his ideas into a manuscript in late
1666 and showed it to a few other English mathemati-
cians, but did not publish it. In 1672 to 1676, a German
mathematician named Gottfried Leibniz (1646–1716),
who started college at 15 and graduated at 17, worked pri-
vately on the same problems and came up with similar
answers. Leibniz had not heard of Newton’s work, and he
developed notation and methods that were different from
Newton’s, but his ideas were essentially the same.

Leibniz first published his results in 1684 and
1686; Newton, in 1687. The math debate arose in the
late 1690s, when followers of Newton began to accuse
Leibniz of having stolen his calculus ideas from Newton.
The fact that Leibniz had published first and Newton sec-
ond might have made this impossible, but Newton and

Leibniz had exchanged letters in 1676 and Leibniz had
visited London in both 1673 and 1676, so it was not
impossible that Leibniz had stolen Newton’s ideas—
merely untrue.

Newton and Leibniz actually invented calculus inde-
pendently, not an uncommon event in science and math-
ematics. But sharing the accomplishment was not on
anyone’s agenda, especially in a question of national
pride. Newton became so angry that he deleted all refer-
ences to Leibniz’s work from his scientific books (except
insults). Newton and his followers publicly accused
Leibniz of stealing. Leibniz asked the Royal Society of
London, the major English scientific club or society of its
day, to investigate this damning charge. Newton secretly
stage-managed the society’s investigation and Leibniz
was found guilty.

Newton was buried in a cathedral with royal honors
and thousands of mourners; Leibniz’s funeral was
attended only by his secretary. Leibniz’s ultimate
revenge, however, is that his calculus notation, not New-
ton’s, is used today.
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coated with magnetic particles. A computer stores infor-
mation in the form of binary digits (“bits” for short, 1s
and 0s) on the surface of each disc by impressing or “writ-
ing” on it billions of tiny magnetic fields that point one
way to signify “1”, another way to signify “0.” The bits are
arranged in circular tracks, as shown in Figure 12.

To read information off the spinning disk, sensors
glide back and forth between the edge of the disc and its
center to place themselves over selected tracks. The track
spins under the sensor, the bits are read off one by one
at high speed, and within a few seconds, your favorite
video game pops up. But that isn’t the whole story. In
designing a data-storage disc, if you should ever get the
urge to do so, you will want to optimize the amount of
data stored on the disk-that is, to store the most bits
possible. How?

You might think that the way to do this would be to
completely cover the disk’s surface with tracks. Logical,
but wrong, because there’s one more real-life wrinkle,
namely, that for the sake of keeping the read-write

A compact disk is deteriorating along the edges and will no longer play properly. The larger the disk, the more susceptible it is
to “disk rot.” This and other factors limit disk size. Calculus is used to maximize the number of bits on the disk but the larger
the disk the more susceptible it is to “disk rot.” AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.

Router

rinner

Figure 12: The shaded area is the readable-writeable part of
the disc. Each circle represents a track. The radius of the
innermost track is rinner, that of outermost track is Router.
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mechanism simpler (and therefore cheaper), every circu-
lar track has to have the same number of bits. So, by the
formula for the circumference of a circle of radius r, C �

2�r, the bits are packed less densely on the outer tracks
than on the inner tracks: same number of bits per track,
more C to string them out on.

Say that the most bits you can pack onto each inch
of track is bi. Then, the most bits you can fit on a track of
radius r is the length of the track times bi, 2�rbi. So the
smaller you make the radius of the innermost track,
which we’ll call rinner, the fewer bits you can fit on it. But
all the tracks on the disc must, as specified above, have
the same number of bits, so if you make the innermost
track too small, it will hold only a few bits, and so will
all the other tracks, and you’ll end up with an inefficient
disc. On the other hand, if you make the innermost
track too big, there won’t be much room for additional
tracks between the innermost track and the outer edge
of the disc, and again your design will be inefficient. What
to do?

Calculus to the rescue. Say that the most tracks that
you can pack on the disk per radial inch (that is, going
from the center toward the edge) is ti. And let the radius of
the outermost track on the disk be made as large as possi-
ble, the radius of the disk itself. Call this outer limit R. The
number of tracks on the disk, then, is the radial distance
between the innermost and outermost tracks times the
number of tracks per inch that we can fit into that dis-
tance: total number of tracks equals (R � rinner )ti. The
total number of bits on the disk is the number of tracks
times the number of bits per track, and the number of bits
per track is limited by how many we can pack onto the
smallest, innermost track, which from the previous para-
graph we know to be 2�rinnerbi. So, writing the number of
bits on the disc B as a function of rinner, we have

We want to maximize this function, B(rinner), the
number of bits on the disk. Taking the derivative using
the rules found in standard calculus textbooks, we get 

.

To find where a function has maxima (or minima),
we look for places where the derivative equals zero. So,
setting B (rinner) equal to zero and solving for rinner using
elementary algebra, we find that the value of rinner that
maximizes the number of bits on the disk is rinner � R/2.
Disk packed, case closed.

B'(rinner) � 2πbiti (R � 2rinner)

B(rinner) � 2πrinner bi (R � rinner)ti � 2πbiti (Rrinner � rinner
2)

bits per track tracks per disk
����������

Lenses and Rainbows Light always takes the quickest
possible path through whatever transparent materials it
must travel through, a fact known as Fermat’s principle.
A physicist can write an equation that expresses the time
taken by light to pass through an optical system (say, a
series of lenses and reflectors). Taking the derivative of
this function to find where its minimum point is
shows what path that light will take through the system.
Light-path minimization based on Fermat’s principle is
used in some computer programs for designing optical
systems.

Designing for Strength In structures that must with-
stand strong forces, such as bridges and rockets, the force
is never distributed evenly throughout the body of the
object. Certain places, depending on the object’s shape,
will experience more than others. Engineers need to
know where these points are and how big the maximum
forces are that they experience; if the steel, stone, or other
material from which the object is made isn’t strong
enough to withstand that maximum force, the bridge,
rocket, or other object will fail. To find points of maxi-
mum force, designers describe force as a function and
look for points where its first derivative equals zero. Some
of these points may be minima, not maxima, but there are
several ways—including the second derivative test—to
tell which is which. Today, design of bridges, rockets, jet
or car engines, and other complex structures is often
done by making a mathematical image or model of the
structure that can be stored in a computer. This model
predicts force throughout the object as a function of
space and time; wherever this function is at a maximum
(first derivative zero, second derivative negative), if the
predicted force is greater than the strength of the materi-
als being used, the design must be changed.

Failure Prediction Derivatives can be used to guess when
structures will break. Before breaking, many materials
develop cracks. This causes them to emit brief noises
that may not be audible to the human ear, but can be
recorded by machines. One method of predicting structural
breakdown is to use record the noises made by an object
(e.g., a large, rotating metal shaft in a generator). The
noises are counted by a computer, and their frequency
(how fast they are happening) is recorded as a function of
time. Software then calculates the first and second deriv-
atives of this function and uses them to decide whether
the noise frequency is increasing in a way that may indi-
cate that a breakdown is going to happen soon. If the soft-
ware detects a possible impending breakdown, it warns
its human operators. Some scientists have proposed using
the same method for predicting earthquakes, since an
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earthquake is essentially a sudden break in a large mass of
material (the crust of the earth) that is preceded by a long
period of strain and cracking.

Seeing Spectra Light waves vibrate at different rates or
frequencies. One frequency or vibration-rate of light
affects our eyes as the color blue; a slower vibration-rate
(that is, a lower frequency) affects our eyes as the color
red. There are also frequencies both too low and too high
for our eyes to see. Most light is a mixture of many colors
or frequencies, some of which are usually brighter than
others. If we graph the brightness of the different colors
in a beam of mixed light as a function of frequency, the
resulting curve is called a spectrum. Often, a spectrum
looks like a crowded row of tall, narrow peaks and valleys,

all of different heights and depths. Spectra are used
through science and engineering, for they contain infor-
mation about the chemical composition of the objects
giving off the light. Astronomers look at spectra to know
what distant stars and planets are made of; chemists look
at spectra in the laboratory to find out what chemicals
their samples contain; and biologists and geologists look
at spectra of the Earth’s surface, as photographed by satel-
lites, in order to map the composition and health of the
earth’s surface. Changes to the spectra of artificially pure
beams of light (lasers) that have passed through the
atmosphere are used to monitor pollution. First, second,
and even higher-order derivatives of spectra are all used.
In fact, in chemistry an entire sub-field, derivative spec-
troscopy, is devoted to the use of derivatives of spectra.

A large section of the concrete roadway in the center span of the Tacoma Narrows bridge crashes into the Puget Sound in
Tacoma, WA, on November 7, 1940. High winds caused the bridge to sway, undulate, and finally collapse under the strain.
Engineers use calculus derivatives to estimate the forces bridges must withstand. AP/WIDE WORLD PHOTOS. REPRODUCED BY

PERMISSION.
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Derivatives make spectra more useful partly because
they tend to sharpen the ups and downs in a function. If
you compare a function to its first and second derivatives
(as in Figures 2 and 11, for example), you’ll see that where
the original function is a gently curving slope, the first
derivative has a peak and the second derivative has two
sharper peaks. This sharpening effect can be used to clar-
ify differences between the peaks and valleys in a spec-
trum, which makes it easier to tell what substances have
reflected the light.

Sometimes derivatives of spectra are used even more
directly. For example, the spectrum of light reflected from
plants in tidal wetlands (as photographed by satellite)
closely resembles, in part, the curve in Figure 2. The cen-
ter of the rising part of the spectrum, where its derivative
peaks (as shown in Figure 4), is called the “red edge”
because here the spectrum drops to lower values for red-
der (lower-frequency) light. The exact location of the red
edge indicates the amount of chlorophyll (a red-light-
absorbing chemical) in the leaves reflecting the light, and
so is an indicator of the health of the plants.

REAL - L I FE  APPL ICAT IONS  
OF  INTEGRALS

The Area Between Two Curves The integral of a function
of one variable, as discussed earlier, is essentially the area
under that function. What about the area between two
functions, such as the shaded area in Figure 13?

With integration, determining the exact area of this
oddly-shaped region is easy. The rule is this: To find the
area between two functions g(x) and f (x), integrate the
difference between them, g(x) � f (x). In this case, g(x) �
f (x) � (3x � x2) � x � 2x � x2. To find the area A
between 0 and 2 in this example, we integrate this differ-
ence function between the two points, that is, we find the
definite integral of 2x � x2 from 0 to 2. This can be written

This expression can be evaluated using the rules of ele-
mentary integration given in all calculus textbooks. We
find that A � 4/3.

Inertial Guidance Like all scientific knowledge, calculus
can be applied not only to creation but to destruction.
For example, the calculus-based concept of inertial guid-
ance has been developed by missile-makers to a fine art.

The first ballistic missiles used in war, the V-2 rock-
ets produced by Nazi Germany near the end of World
War II (1939–1945), were fired at London from mainland

A �∫ 2x � x2dx
2

0

Europe. They were intended as terror or “vengeance”
weapons, and so only needed to explode somewhere over
the city, not over particular military objectives; yet to hit
a large city such as London at such a distance, a V-2 mis-
sile needed a guidance system, a way of knowing where it
was at every moment so that it could steer toward its tar-
get. It was not practical to steer by the stars or Sun,
because these are hard to observe from a missile in super-
sonic flight and would require complex calculations. Nor
was it practical to steer by sending radio signals to the
missiles, for without advanced radar (not yet available)
controllers on the ground would be just as ignorant of the
missile’s location as the missile itself. Besides, the enemy
might learn to fake or jam control signals, that is, drown
them out with radio noise.

The solution was inertial guidance, which exploits
the calculus fact that (a) the time derivative of position is
velocity and (b) the time derivative of velocity is accelera-
tion. By the fundamental theorem of calculus, which says
that integration and derivative are opposites, we know
that we can follow the trail backwards: the integral of
acceleration is velocity, and the integral of velocity is
position.

What designers need a missile to know is its position.
But position is hard to measure directly. You have to look
out the window, identify landmarks (if any happen to be
visible), and do some fast geometry, likewise with veloc-
ity. But acceleration is easy to measure, because every part
of an object accelerated by a force experiences that force.
We’ve all felt the seat pushing against our backs in an
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Figure 13: Difference of two functions. Integration can give
an exact number value for the shaded area, A, between
functions g(x) and f(x).
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accelerating car or plane. In addition, unlike velocity or
position, a force can be measured directly and locally, that
is, without making observations of the outside world.
Therefore, the V-2’s engineers installed gyroscopes (spin-
ning masses of metal) in their missile and used these to
measure its accelerations. Lasers, semiconductors, and
other gadgets have also been used since that time. Some
are more expensive and accurate than others, but all do
the same job: they measure accelerations. Any device that
measures accelerations is called an accelerometer.

Thanks to its accelerometers, an inertial guidance
system knows its own acceleration as a function of time.
What does it do with this knowledge? Acceleration can be
written as a function of time, a(t). This function is known
by direct measurement by accelerometers. The integral of
a(t) gives velocity as a function of time: � a(t) dt � v(t).
And the integral of v(t) gives distance as a function of
time, which reveals one’s position at any given moment:
� v(t) dt � x(t). The real-world math of inertial guidance
is of course more complex, but the principle is the same.

The bottom line for inertial guidance is that, given an
accurate knowledge of its initial location and velocity, an
inertial guidance system is completely independent of
the outside world. It knows where it is, no matter where it
goes, without ever having to make an observation.

The V-2 inertial guidance system was crude, but
since World War II inertial guidance systems have become
more accurate. In the early 1960s they were placed in the
first intercontinental ballistic missiles (ICBMs), large
missiles designed by the Soviet Union and the United
States to fly to the far side of the planet in a few minutes
and strike specific targets with nuclear warheads. They

were also used in the Apollo moon rocket program and in
nuclear submarines, which stay underwater for weeks or
months without being able to make observations of the
outside world. Inertial guidance systems are today not
only in missiles but in tanks, some oceangoing ships, mil-
itary helicopters, the Space Shuttle and other spacecraft,
and commercial airliners making transoceanic journeys.

Calculus makes inertial guidance possible, but also,
in a sense, limits its accuracy. The problem is called
integration drift. Integration drift is a pesky result of the
fact that small “biases” are, for various technical reasons,
almost certain to creep into acceleration measurements.
(A bias is a small, unknown number added to all your
measurements, like .000000001 m/s2.) Now, the integral
of a constant (any ordinary number, like 2.0 or
.000000001) is a linear function. That is, for any constant
k, � k dt � kt.

Figure 14 shows why this works. Plotted as a function
of t, a constant k (e.g., the number 2) is a flat line: it never
changes, it’s always just k. But the area under that line
grows steadily as one takes in more of the t axis, starting
from any given point, such as 0.

What’s more, the integral of a linear function is a
quadratic function, that is, a function containing t2 as its
highest power of t :

This function is plotted in Figure 15, for k � 2.

Inertial guidance depends on measuring a physical
variable (acceleration) and then, in essence, integrating

∫ kt dt �     t2
2
k

0

3

2

2.5

1.5

0.5

1

0
1 1.5 20.5 2.5 3 3.5 4 4.5 5

t

∫ 2dt = 2t

0

10

7

8

9

5

6

1

3

4

0
1 1.5 20.5 2.5 3 3.5 4 4.5 5

2

t

Figure 14: Left, a constant (the number 2) plotted as a function of t. Right, the definite integral of the number 2 from 0 to t.
This shows that the integral of a constant is a linear function.
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twice. Any bias in these acceleration measurements,any
unwanted, constant number that adds itself to all the meas-
urements, will result in a position error that increases in
proportion to the square of time, just like the function in
Figure 15. Notice how quickly the numbers can grow. After
1 second, a constant acceleration-measurement error of 2
m/s2 produces a position error of 1 meter; after 3 seconds,
an error of 9 meters; after 5 seconds, an error of 25 meters.
These particular numbers are unrealistically large, but any
degree of real-life quadratic error will eventually grow to
unacceptable values. As a result, no inertial guidance system
can go forever without taking an observation of the outside
world to see where it really is. Increasingly, inertial guidance
systems are designed to update themselves automatically by
checking the global positioning system (GPS), a network of
satellites that blanket the whole Earth with radio signals that
can be used to determine a receiver’s position accurately.

Today, inertial guidance systems have reached a fan-
tastic degree of accuracy. A ballistic missile launched from
a nuclear submarine, which may begin with a knowledge
of its initial position and velocity that is several weeks old,
can be launched from a still-submerged submarine by
compressed air, burst through the surface of the water,
ignite its rocket, fly blind to the far side of the planet,
and explode its nuclear warhead within a few yards of its
target.

Threading the Cosmic Needle On June 28, 2004, the
Cassini space probe, a robot craft about the size of a small
bus built jointly by the United States and Europe, arrived
at Saturn after a seven-year journey. The plan was for it to
be captured by Saturn’s gravity and so become a perma-
nent satellite, observing Saturn and its rings and moons
for years to come. But to make the journey, Cassini had
reached a speed of 53,000 miles per hour (85,295
km/h)—(many times faster than a rifle bullet), too fast to
be captured by Saturn’s gravity. At that speed it would
swoop past Saturn and head out into deep space.
Therefore, it was programmed to hit the brakes, to fire a
rocket against its direction of travel as it approached its
destination.

For objects moving in straight lines, changes in veloc-
ity can be calculated using basic algebra. Calculus is not
needed. But Cassini was not moving in a straight line; it was
falling through space on a curving path toward Saturn,
being pulled more strongly by Saturn’s gravity with every
passing minute. To figure out when to start Cassini’s rocket
and how long to run it, the probe’s human controllers on
Earth had to use calculus. The effects of the important
forces acting on Cassini—in particular, its own rocket
motor and Saturn’s gravity—had to be integrated over
time. And the calculation—carried out using computers,

not, for the most part, on paper—had to be extremely
exact, or Cassini would be destroyed. For to get deep
enough into Saturn’s gravitational field, Cassini would have
to steer right through a relatively narrow gap in Saturn’s
rings called the Cassini division (named after the same Ital-
ian astronomer as the probe itself), a navigational feat com-
parable to threading a cosmic needle. If it missed the gap,
the Cassini craft would have been destroyed by collision
with the rings.

Not all of NASA’s navigational calculations have been
correct: in 1998, a space probe crashed into Mars because
of a math mistake. But in Cassini’s case, the calculations
were correct. Cassini passed the rings safely, was captured
by Saturn’s gravity, and began its orbits of Saturn.

Energy Payback Flip the switch and the light comes on.
This simple act connects us directly to a vast system of elec-
tricity production worth many billions of dollars, with
transmission wires marching across the countryside to
immense yet delicately adjusted generating plants where
the electricity is produced. Flipping a light-switch adds to
the total demand for electricity that this system must meet.

The engineers who run our electricity production
system are supposed to meet not only today’s demand but
the demand 10 and 20 years from now, so they try to fore-
cast what that demand will look like. One mathematical
prediction or “model” that has often been used to predict
growth in demand for electricity is the exponential
model. (See article on Exponents in this book.) This
guesses that total demand for electricity will grow by a
fixed percentage every year (e.g., 2%). That is, if electric
demand is 100 units in the year 2025, it will be 102 units
in 2026, and so forth, if the model is correct. Demand
might grow because the population is growing and there
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Figure 15: Showing that integrating a linear error (in this
case, 2t) produces a quadratic error.
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are more people using electricity, or because we are using
more electricity to make things, or because we are wast-
ing more electricity (by leaving our computers or lights
on), or for some mixture of these reasons.

If we consider demand as a function of time, D(t),
then exponentially increasing demand can be written as
D(t) � D0k

t, where k is some constant (fixed number)
and D0, also a constant, is the value of D(t) at t � 0. Any
number to the 0th power is 1, so at time equals 0 we have
D(0) � D0k

0 � D0 � 1 � D0. Exponential growth is
depicted in Figure 16, with D0 � 1 and k � 2.

Now, to meet new electricity demand, new electricity-
production plants must be built. And to meet exponen-
tially increasing demand, plants must be built at an
exponentially increasing rate. So far, so clear—so why not
build them? Because, even apart from the fact that on a
finite planet no pattern of exponential growth can go on
forever (it will eventually eat up the whole planet), we are
confronted by a paradox: A program that builds power
plants at an exponentially increasing rate will produce no
energy for some time even after its first plants start gen-
erating electricity.

Why? Because it takes energy to build a power plant.
That is, energy must be loaned from some other source.
Before the plant can be a true energy producer, it has to
pay back this energy debt. Furthermore, building power
plants at an exponentially increasing rate requires an
exponentially increasing amount of power. (Power is the
rate of flow of energy, that is, its time derivative.)

Let’s take a closer look at energy in and energy out.
Call the power going into unfinished plants Pin(t) and the
power coming out of finished plants Pout(t). We’ll assume
that the building program begins at time 0. At some later

time, call it tstart, the first plant starts delivering electricity.
For a large dam, coal-fired plant, or nuclear power plant,
tstart might be 10 years. We’ll also say that each finished plant
produces more power than each unfinished plant uses.

Let the power output of each finished plant be pout and
the power input to each unfinished plant be pin. Assume for
that pout � pin. As plants are finished and start putting out
power, the program as a whole will produce more and more
power, but it will also consume more and more power, as
construction of new plants grows exponentially too.

In real life, the total amount of power required by the
building program increases by little jumps of size pin (as
construction of each new plant is begun), and the total
amount of power produced increases by little jumps of
size pout (as each finished plant comes online). But here
we’ll pretend that both curves can be treated as smooth
functions of time. We’ll call the total power-investment
curve Pin(t) and the total power-output curve Pout(t). Both
curves climb exponentially, but the power-investment
curve Pin(t) starts to climb as soon as construction begins,
namely at t � 0, and the power-output curve doesn’t start
to climb until tstart, when the first finished plant kicks in.

If pout � pin, then the power-output curve climbs
more steeply than the power-investment curve. This situ-
ation is shown in Figure 17.

Notice in Figure 17 that although power output gets
a late start, it soon catches up with power investment
(where the curves cross) and surpasses it. But the pro-
gram only becomes a net power producer when its
summed power output exceeds its total power debt.
When does this happen?

Before we look at the actual calculus, let’s first empha-
size that power is the time derivative of energy. That is, if a
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Figure 16: Exponentially growing demand for electricity
modeled by D(t) � 2t.
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Figure 17: Total power output and power output of an
exponential program for building power plants.
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curve records power (rate of energy transformation or
“flow”) as a function of time, then the area under that curve
between any two times gives the energy supplied in 
that time. So to find out when our hypothetical program has
first produced as much energy as it has consumed, we have
to find that time (call it tpayback) when the area under the
Pout(t) curve equals the area under the Pin(t) curve. That is,
we have to find tpayback such that area A equals area B in
Figure 18.

Once again, calculus to the rescue. Area A (energy
invested up to tpayback) can be written as the definite integral 

Area B (energy produced up to tpayback) can be written

If A � B, then we just set these integrals equal to each other:

If we assign the simplest possible exponential forms to
Pin(t) and Pout(t), this gives 

(Here the letter “e” stands for the constant 2.7182818 . . . ,
which is usually used in calculus for exponential func-
tions.) Using the standard rules of integration found in
calculus textbooks, this equation evaluates to 

tstart
∫

tpayback (ekint �1)dt � ∫
tpayback (ekout(t�tstart)�1)dt

0

� ∫
tpayback Pout(t)dttstart

∫
tpayback Pin(t )dt
0

B � ∫ tpayback Pout(t )dt
tstart

A � ∫
tpayback Pin(t )dt
0

The only unknown in this equation is tpayback, so if we
had particular numbers for the other variables, we could
solve for tpayback using a computer.

This general approach can be used to evaluate the
realism of any proposed program to grow the electricity
supply quickly. Simple-minded plans to rapidly build any
kind of generating capacity—windmills, nuclear plants,
coal plants, or other—in order to meet a projected energy
shortage that is, say, 20 years away, may be worse than
useless if tpayback for the proposed program is 40 years!

Exponential functions have actually been used by
government and industry analysts to predict growth in
energy demand. A net-energy analysis such as that out-
lined above can reveal the long-term strengths or weak-
nesses of such predictions, and any energy solutions
proposed to cope with such increases in demand. Expo-
nential growth models can be relatively accurate over
short periods of time and limited areas; fortunately, pre-
dictions of exponential growth in overall electricity
demand have rarely turned out to be correct in the long
term. This is mostly due to increases in user efficiency. For
example, a typical refrigerator today uses about half as
much electricity as a 10-year-old refrigerator but cools the
same amount of food. Electricity costs money, so there is
an ongoing economic pressure toward more efficient use.
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Figure 18: Area A, at left, and Area B, at right, correspond to total energy consumed and produced (respectively) in the time
intervals shown. We want to find tpayback such that A � B to know when the building program pays off its energy debt. 
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Key Terms

Acceleration: A change of velocity (either in magnitude
or direction).

Bit: The smallest unit of information storage in comput-
ers. A bit stores a 0 or a 1.

Derivative: The limiting value of the ratio expressing a
change in a particular function that corresponds to

a change in its independent variable. Also, the
instantaneous rate of change or the slope of the
line tangent to a graph of a function at a given point.

Differentiate: To determine the derivative or differential
of a particular function.

Integral: The area under a curve.



R E A L - L I F E  M A T H 97

Calendars

Overview

A feature in many kitchens is a calendar hanging on
a wall. Typically, there will be all sorts of notations on the
calendar, charting the various events and important
points in the days and weeks. In electronic form, calen-
dars have become a time and appointment tracking tool
that serve to keep individuals organized both in their
work and personal lives.

The prime function of a calendar is to organize time,
over a short term and even extending far ahead into the
future. This function hinges on math.

A Brief History of Discovery 
and Development

The need and desire to map the passage of time is
something that has probably been with us ever since our
prehistoric ancestors started to ponder the world around
them. Gazing up at the sky would have made people
aware of time. Days turn into nights and back into days.
Then as now the moon waxed and waned in the night sky.
With the advent of telescopes, the regular movement of
some celestial bodies (like the planets in our solar system)
was revealed. In more northern climates, seasonal varia-
tions in temperature and weather would have been
apparent. All these things and more helped form the basis
of the measurement of time.

Maintaining records of the passage of time has long
been with us. Carvings and scratches in rocks, bones and
sticks made by people some 20,000 years ago in present-
day Europe are thought to be a form of calendar, to chart
the appearance of the moon. Knowledge of when the
nights would be bright with a full moon, or darker and
better for sneaking up on game, would be beneficial for 
a hunter.

Five thousand years ago, the Sumerians who dwelled
in what today is Iraq had a formal calendar. Their version
divided the year into equal 30-day periods, each day into
12 equal periods (corresponding to 2 of our hours) and
each of these daily periods into 30 parts (corresponding
to about 4 of our minutes). Stonehenge, the jumble of
stones assembled in southwest England over 4,000 years
ago, was likely built at least in part to help chart universal
events such as lunar eclipses and the passage of seasons.

Ancient Egyptians originally had a calendar based on
the monthly cycle of the moon. However, they came to
realize that a star (we know it as Sirius) appeared in the
sky next to the sun every 365 days, at around the same
time as the great river Nile flooded. This lead them,
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around 4236 B.C., to revamp their calendar, to one based
on a 365-day cycle.

Elsewhere, the Mayan culture that flourished in
Central America between 2600–1500 B.C. had 260 and
365-day calendars that were based on the Sun, Moon, and
planet Venus. Portions of their calendars were sculpted
into large calendar stones, which have survived to the
present day.

The Julian calendar was introduced by Julius Caesar
in 45 B.C. This version was a calendar based on the daily
passage of the Sun across the sky. Each month was equal
in length. Every fourth year a day was added to keep
the calendar year in synch with the seasonal year. Today,
principles of this calendar such as the fourth year
added day and the January 1 beginning of a new year are
still in use.

The year 45 B.C. is also known as the ‘year of confu-
sion’ since Caesar inserted 90 days into the year to bring
the calendar months back into synch with the seasons. It
must have been a confusing year, indeed!

There are others examples of calendars. Indeed, even
today there are approximately 40 different kinds of calen-
dars in use.

Real-life Applications

As is evident that part of the math behind calendars
is the segregation of time into units. For example, the
Gregorian calendar that guides the days of many of us is
another 365-day based design (except for every fourth
year, the so-called leap year, when an extra day is added
on to the month of February). Each 365-day period is
divided into collections of days, usually 30 and 31, except
for the 28 or 29 days of February, that are called months.
In turn, the days in each month are organized into groups
of seven, each of which represents a week. Fine-tuning
things further, each day is divided into the 24 equal splits
of time called hours and each hour into 60 minutes. Fur-
ther divisions are possible.

The math at the heart of calendars organizes and at
least gives the sense of controlling time. So, the math con-
nects people to the world and even to the universe. It is
not surprising that calendars assume such central and
even sacred importance to societies throughout recorded
history and even back into the mists of time.

The daily division of time in many calendars is based
on astrological events. One is the daily cycle that results
from the rotation of the Earth on its axis. Because the
Earth is moving, relative to the sun, any particular por-
tion of the globe will light and dark periods. The Grego-
rian and Julian calendars are solar calendars.

The monthly calendar cycle is based on the revolu-
tion of the Moon around the Earth. This is a lunar calen-
dar. An example of a lunar-based calendar is the Islamic
calendar. Because the phases of the moon do not match
up with the months of the year, the Gregorian and Islamic
calendars do not ‘match up.’

Calendars also track the length of the four seasons.
The basis of seasons is also astrological. The Earth’s
north-south axis is not oriented at 90 degrees to the Sun.
Rather, the axis is tilted, with the North Pole being further
away from the Sun than the South Pole. The result is that,
as the Earth revolves around the Sun, the sunlight is more
intense over certain regions of the planet at different
times of year.

This tropical year is incorporated into a third type of
calendar that is a blend of the solar and lunar calendars.
The Hebrew and Chinese calendars are examples of this
blend, which is called a lunisolar calendar. A lunisolar
calendar has a sequence of months that are based on
the cycle of the moon. But, every few years a month is
added in, to bring the calendar back in synch with the
tropical year.

Ancient Egyptians originally had a calendar based on the
monthly cycle of the moon. This ancient Egyptian calendar 
is from Ptolemaic Alexandria, and show zodiac signs.
BETTMANN/CORBIS. REPRODUCED BY PERMISSION.
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LEAP  YEAR
As mentioned earlier, the Julian and Gregorian calen-

dars have some years that are one day longer. In the Gre-
gorian calendar these leap years are 366-days long, rather
than the usual 365-day year. The determination of when
a leap year occurs is a straightforward mathematical
process. Every year that can be divided evenly by 4 is a
leap year, except for years that can also be divided evenly
by 100. The latter, those years that mark the end of a cen-
tury, can be leap years, but only when they can be divided
evenly by 400.

Using these rules, the year 2000 is a leap year, since it
can be divided exactly by 4 (to yield 500), by 100 (to yield
20) and by 400 (to yield 5). But the year 1900 is not a leap
year. This is because it can be divided evenly by 4 (to yield
475) and by 100 (to yield 19), but cannot be divided
exactly by 400 (1900/400 � 4.75). The year 2100 is also
not a leap year.

The 400-year cycle of the Gregorian calendar com-
prises 146,097 days. Dividing the number of days by the
number of years results in 365.24 (just about the number
of days in each year). Multiplying this number by 2 or 3
does not produce a whole number. But, when 365.24 is
multiplied by 4, the result is very close to a whole num-
ber. This is the basis of the 4-year cycle of leap years.

MATHEMAT ICAL  OR IG IN  
OF  THE  GREGOR IAN  CALENDAR

The Gregorian calendar was devised to recalculate
the dates of Easter. Centuries ago, the March 21 date of
Easter coincided with the spring equinox; one of two days
each year when the length of daytime and nighttime are
the same at 12 hours. But, by the thirteenth century, peo-
ple became aware that Easter was falling earlier in the
month than the equinox. Popes Pius V and Gregory XIII
worked on readjusting things. The solution implemented
by Gregory was to delete October 5 through October 14,

1582, from the calendar. In that year, October 4 was fol-
lowed by October 15, which put occurrence of the spring
equinox back around March 21.

MATH  AND  THE  ISLAMIC  
AND  CH INESE  CALENDARS

In the Islamic calendar, the months correspond to
the lunar cycle. Twelve lunar cycles comprises a period in
the Gregorian calendar equivalent to about 33 years.

The Chinese calendar is a lunisolar calendar whose
months depend on the positions of the Sun and Moon.
The pattern of 29- or 30-day months forms the basis for
a 60-year cycle of names. A year name consists of a name
from a group of celestial names and terrestrial names.
The latter are names of animals and is the basis of Chi-
nese years such as ‘Year of the Rat’ and ‘Year of the Pig’.

For all the different calendar systems that have and
still exist, several fundamentals are common. One is the
intent of a calendar to organize time. The other is the vital
relationship of math to the structure of the calendar. As
in many other aspects of life, calendars are all about real-
life math.

Where to Learn More

Books
Bourgoing, J.D. Discoveries: The Calendar History, Lore, and 

Legend. New York: Harry N. Abrams, 2001.

Judge, M. The Dance of Time: The Origins of the Calendar – A
Miscellany of History and Myth. New York: Arcade Publish-
ing, 2004.

Richards, E.G. Mapping Time: The Calendar and Its History.
New York: Oxford University Press, 2000.

Web sites
Doggett, L.E. “Calendars.” �http://astro.nmsu.edu/~lhuber/

leaplist.html� (November 3, 2004).
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Cartography

Overview

Cartography—the making of maps and charts—
relies on mathematical principles to produce accurate rep-
resentations of features or attributes distributed in space
and time. The primary uses of mathematics in cartogra-
phy are to accurately transform the spatial relationships
among features on a curved surface onto a plane such as a
piece of paper or a computer monitor and to determine
the precise locations of features. Maps can depict physical
features such as cities and roads, the type of bedrock
exposed at the surface, or the elevation of the ground sur-
face. They can also depict non-physical attributes such as
the likelihood of damage during a strong earthquake or
the average income of residents. The word chart is usually
restricted to highly specialized maps showing coastlines,
water depths, navigational aids such as buoys, and navi-
gational hazards such as reefs in great detail.

Fundamental Mathematical Concepts
and Terms

SCALE
The scale of a map is the mathematical relationship

between real distances and those shown on the map. If two
buildings located 1 mi (1.6 km) apart are shown 1 in (2.5 cm)
apart on a map, the map scale is 1 in : 1 mi or, using consis-
tent units, 1:63,360. If the same two buildings are located
0.1 in (0.25 cm) apart on the map, then the scale becomes
1:633,600. Scale can also be written in a fractional form, for
example 1/100,000, or shown graphically by a scale bar
printed on the map. A scale of 1:100,000 is said to be larger
than a scale of 1:1,000,000 because the fraction 1/100,000 is
larger than 1/1,000,000. The concept of large and small
scale can sometimes be confusing because a small scale map
will cover a larger area than a large scale map of the same
size. Large scale maps, however, show more detail than
small scale maps covering the same area. Although there is
no universally accepted definition of the difference between
large, intermediate, and small scale maps, those with scales
larger than 1:25,000 are usually considered large scale and
those with scales less than 1:250,000 are usually considered
small scale. Maps with scales between 1:25,000 and
1:250,000 are generally considered to be intermediate scale.
To eliminate the possibility of confusion, it is always best to
specify the scale numerically rather than just qualitatively
using words like large or small.

MAP PROJECT ION
One of the most difficult problems facing cartogra-

phers is the development of methods to transfer Earth’s
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spherical shape onto flat pieces of paper. This is done
using an application of geometry known as map projec-
tion. Cartographers have developed dozens of different
projections over the years, each of which has its advan-
tages and disadvantages. Regardless of the projection
used, however, all maps produced on flat surfaces will
include some distortion.

The Mercator projection, invented by the cartogra-
pher Gerardus Mercator in 1569, is useful for navigation
because a straight line drawn on a Mercator map repre-
sents a straight line on Earth’s surface. Because Earth is
spherical, however, the straight line does not necessarily
represent the shortest distance between two points.

Mercator projections are projections of the spherical
Earth onto a vertical cylinder tangent to the Equator.
Therefore, a Mercator projected map will occupy an
unbroken rectangle representing an unrolled cylinder. Its
primary disadvantage is that the Mercator projection dis-
torts areas and shapes to a degree that increases as one
moves away from the Equator. Therefore, land masses at
mid- to high latitudes appear disproportionately large. A
variation on the Mercator projection, the transverse Mer-
cator projection, was created by Johann Heinrich Lambert
in 1772. It is a projection of the spherical Earth onto a
horizontal cylinder. The Mercator projection was brought
into the space age during the 1970s, when cartographers 

Equator

Mercator

A Mercator map. MAP BY XNR PRODUCTIONS, INC. THE GALE GROUP.

Equator

Transverse Mercator

A transverse mercator map. MAP BY XNR PRODUCTIONS, INC. THE GALE GROUP.
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A.P. Colvocoresses, J.P. Snyder, and J.L. Junkins invented
the space oblique Mercator projection in order to project
images obtained from Landsat satellites orbiting Earth.

As the name implies, conic projections use a cone
that is tangent to Earth’s surface rather than a cylinder.
One kind of conic projection, the Albers equal area conic
projection, is used by the U.S. Geological Survey for maps
of the conterminous United States because it is well-
suited for areas that have a large east-west extent. Another
conic projection, the Lambert conformal conic projec-
tion, is also well-suited to areas with large east-west
extents and is used for many maps of the United States.

Sinusoidal equal area projections, which have 
been in use since 1570, avoid the distortion of Mercator
projections and are often used for maps in which it is
important to compare the sizes or shapes of features in
different parts of the world. An example of this would be
a map showing the distribution of oil fields around the
globe. A Mercator projected map would exaggerate the
sizes of oilfields far from the Equator, but a sinusoidal
equal area projection does not. A disadvantage of the
sinusoidal equal area projection is that its projected
shape is a series of lozenges or pods rather than a simple
rectangle.

Albers Equal Area Conic

An Albers equal area conic map. MAP BY XNR PRODUCTIONS, INC. THE GALE GROUP.

A sinusoidal equal area map. MAP BY XNR PRODUCTIONS, INC. THE GALE GROUP.

Equator

Sinusoidal Equal Area
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COORDINATE  SYSTEMS
Coordinate systems provide a way to record the posi-

tion of a feature on the ground or on a map. The most
widely known geographic coordinate system consists of
lines of latitude and longitude on a sphere, which are
measured as angles north or south of the Equator for lat-
itude and east or west of the Greenwich (or Prime)
Meridian for longitude (see Figure 1).

Angles of latitude range from 0 at the Equator to 90
degrees at the North and South Poles, and angles of lon-
gitude can range from 0 to 360 degrees. It is important to
specify whether latitude is north or south of the Equator
and whether longitude is east or west of the Greenwich
Meridian. Lines of latitude are parallel to each other
and each degree of latitude is equivalent to about 70 mi
(112 km). Lines of longitude, which are known as merid-
ians, converge at the North and South Poles and the dis-
tance between them decreases away from the Equator. The
distance between meridians is about 70 mi (112 km) at the
equator and decreases to zero at the two poles. Because
there is such a large distance between lines of latitude and
longitude, it is convenient to subdivide each degree into
smaller parts. Degrees (�) have traditionally been divided
into 60 minutes (�) of latitude or longitude, and minutes
into 60 seconds (��) of latitude or longitude. For example,
the location of the Seattle-Tacoma International Airport
is 47˚ 26� 56�� North latitude and 122˚ 18� 34�� using
degrees, minutes, and seconds. Because it can be difficult
to perform arithmetic with latitude and longitude values
given in degrees, minutes, and seconds, latitude and longi-
tude can also be specified in decimal degrees. The location

of the Seattle-Tacoma airport in decimal degrees is 47.45˚
North latitude and 122.31 ˚ West longitude.

Latitude and longitude are well suited for locating
points on spheres and global navigation, but can be
inconvenient to use for small areas. Therefore, other
coordinate systems have been developed over the years.
One of these is the Universal Transverse Mercator (UTM)
grid system, which divides the globe into 60 zones each 
6˚ of longitude wide and divided into North and South
halves. Each zone has its own Transverse Mercator pro-
jection, which allows the curved surface of Earth to be
accurately projected onto a flat map with grid lines that
are parallel and perpendicular to each other. Because
Earth is covered by 60 projections, distortion within any
one of the zones is minimal. The UTM coordinates of a
point are given by specifying the zone number, an east-
west distance known as the easting, and the distance
north or south of the Equator, which is known as the nor-
thing. UTM positions are always given in meters and
never in feet or miles. Using UTM coordinates, the loca-
tion of Seattle-Tacoma International Airport is Zone 10 N,
552,058 E, 5,255,280 N. One disadvantage of UTM coor-
dinates is that is that they cannot be extended beyond
zone boundaries. Therefore, latitude and longitude
remain the standard for global mapping and navigation.

Each state within the United States also has its own
coordinate system, known as a State Plane Coordinate Sys-
tem, that is used by surveyors and government agencies.
State plane coordinate systems give distances east and north
of a specified point in each state, can can be divided into
parts for large states. Unlike UTM coordinates, state plane

Greenwich meridian

A = latitude
B = longitude

North Pole

Equator

B
A

The latitude of point        is A degrees North
and its longitude is B degrees West

Figure 1.
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coordinates can be given in either meters or feet (although
it is important to specify which units are being used).

TOPOGRAPH IC  MAPS
Topographic maps (an example is shown in Figure 2)

are specialized maps that show the elevation of Earth’s
surface using contour lines, which connect points of
equal elevation, or shading. They are especially useful for
route finding, search and rescue operations, construction
site selection, and scientific studies because of their accu-
rate representation of landforms such as hills and valleys.
Skilled map readers can easily interpret patterns of con-
tour lines and visualize the landscape. Topography can
also be represented using digital elevation models, which

are computer files containing the elevation of Earth’s sur-
face at thousands or even millions of known points. Digi-
tal elevation models can be used to create contour maps,
shaded relief maps, or three-dimensional surfaces that are
useful for many applications.

A Brief History of Discovery 
and Development

Maps have been important in warfare, agriculture,
trade, and the growth of civilizations for thousands of
years. The oldest map discovered to date is a small clay
tablet unearthed in 1930 at an archeological excavation in
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Iraq, at the ancient city of Ga-Sur about 200 mi (320 km)
north of present-day Baghdad. The tablet is thought to
date from the time of Sargon of Akkad (2334–2279 B.C.)
and shows two hilly areas on either side of a stream. More
than two millenia passed before the Greek mathematician
Eratosthenes (276–194 B.C.) estimated the circumference of
Earth by measuring the lengths of noon shadows cast at two
distant points at midsummer. The Greek astronomer
Ptolemy (ca. 100–170, exact dates unknown) produced the
first maps showing Earth as a sphere and included lines of
latitude and longitude, but his maps were not widely used
until the fifteenth century. Scientific cartography lan-
guished through the Middle Ages but blossomed again in
the Renaissance and the Age of Exploration, when accu-
rate maps became so important that they were considered
to be military, diplomatic, and commercial secrets. It was
at this time that Mercator developed his projection and
produced a widely known map of the world. Map pro-
duction technology continued to advance through the
centuries, spurred on by events such as the introduction
of aerial photography in the early twentieth century,
satellite-based remote sensing in the 1960s and 1970s,
and the widespread use of geographic information sys-
tems (GIS) software in the 1980s and 1990s.

Real-life Applications

GPS  NAV IGAT ION
Maps are an important part of global positioning sys-

tem (GPS) navigation systems installed in personal automo-
biles, commercial vehicles, aircraft, and ships. GPS receivers
obtain signals from a system of satellites and, in the best of
circumstances, can calculate locations with an accuracy of a
few feet. In order to be useful for aviation or marine naviga-
tion, the location provided by the GPS receiver must be
combined with an accurate map showing navigational haz-
ards such as mountain ranges or submerged reefs.

GIS -BASED  S I TE  SELECT ION
GIS software allows map users to combine different

kinds of maps in order to select the best locations for
everything from new stores to hazardous waste storage
facilities. Maps showing topography, transportation
routes, population, natural hazards such as flood plains,
and many other factors can be combined and sites
selected using sophisticated mathematical algorithms that
weigh the importance of information contain on each
map or determine the most economical route between
two locations. Maps and GIS systems are also used to
understand the spread of diseases, evaluate patterns of

criminal activity, and distribute aid in the wake of natu-
ral disasters such as floods, hurricanes, and earthquakes.

NATURAL  RESOURCES  EVALUAT ION
AND  PROTECT ION

Scientists and engineers use maps on a daily basis to
record the distribution of natural resources ranging from
ore deposits to endangered species habitat, to depict the
locations of hazards such as landslides or earthquake
faults, and to regulate activities such as commercial log-
ging and urban growth. Some of their cartographic prod-
ucts include geologic maps showing the distribution of
rock types, soil survey maps useful for agriculture and
land use planning, and land cover maps that can be used
to help assess the likelihood for erosion during heavy
rainstorms.

Potential Applications

Maps will remain vital tools as long as humans con-
tinue to travel and explore. In the future, maps may help
to guide the exploration of nearby planets and moons.
Maps and GIS software will continue to integrated into
cellular phones and portable computers used in day-to-
day activities such as shopping and vacation travel. Com-
puter mapping software and databases will allow users to
create maps custom tailored to their unique needs.

Where to Learn More

Books
Crane, Nicholas. Mercator: The Man Who Mapped the Planet.

New York: Henry Hold and Company, 2003.

Thrower, N.J.W. Maps and Civilization: Cartography in Culture and
Society, 2nd ed. Chicago: University of Chicago Press, 1999.

Wilfor, J.N. The Mapmakers (Revised). New York: Knopf, 2000.

Key Terms

Cartographic projection: A geometric transfer of
patterns, shapes, and locations from a spheri-
cal globe to a flat surface.

Scale: The ratio of the size of an object to the size
of its representation.
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Web sites
Aber, J.S. “Brief History of Maps and Cartography”. 2004.

�http://academic.emporia.edu/aberjame/map/h_map/h_
map.htm� (February 12, 2005).

Cartography Associates. “David Rumsey Map Collection”. 2003.
�http://www.davidrumsey.com/� (February 12, 2005).

U.S. Department of the Interior. “National Atlas Home Page”.
January 26, 2005. �http://nationalatlas.gov/� (February
12, 2005).

U.S. Geological Survey. “Map Projection Publications”, Fact
Sheet 087-99, May 1999. February 19, 2004. �http://erg

.usgs.gov/isb/pubs/factsheets/fs08799.html� (February
12, 2005).

U.S. Geological Survey. “A Tapestry of Time and Terrain: The
Union of Two Maps—Geology and Topography.” March
29, 2002. �http://tapestry.usgs.gov/two/two.html� (Feb-
ruary 12, 2005).

Woodward, David. “The History of Cartography.” January 11,
2005. February 19, 2004. �http://feature.geography.wisc
.edu/histcart/� (February 12, 2005).
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Charts

Overview

Charts are a graphical representation of quantitative
data, usually laid out in two-dimensional form. A chart is
a picture of related data, or, with line charts, a picture of
an equation.

Charts and graphs are used extensively to help people
both communicate numerical information and under-
stand the relationship between different data sets. Charts
are a way to view numbers and/or math, in picture form.

Charting grids are called a planes because of their
two-dimensional qualities, usually represented in x-axis
and y-axis forms, where the x axis is the horizontal plane
and the y axis is the vertical plane. Each point, or coor-
dinate, represents the x-value location relative to the 
y-value location. Charts are also commonly called graphs
because the exercise of plotting these x and y coordinates
is known as graphing. This mapping process follows a
diagram where the variation of a dependent variable is in
comparison with another, independent variable.

Fundamental Mathematical Concepts
and Terms

There are three basic chart formations: line charts,
column charts, and pie charts.

Line charts are pictures plotted, connected dots, often
representing equations. Column charts are pictures of
data clusters, while pie charts are pictures of percentages.

BAS IC  CHARTS
Although the line chart and the column chart are

similar, each has unique characteristics that help the user
better understand the data. The pie chart represents parts
of a whole (percentages) and shows how parts of a data
set are combined to create a complete picture.

There are many variations of these three basic charts,
but the motivation between choosing which chart to use
depends on how to communicate the information.

L INE  CHARTS
Line charts are commonly used to graph time hori-

zon data such as stock prices, economic data, or sales of
specific companies. Many different types of data can be
plotted in a line chart but the main benefit is to show how
a data set trends, usually over a time horizon. Figure 1
shows a line chart in which the line goes up or down.

A line chart is a series of connected dots. Each dot rep-
resents a coordinate value of independent and dependent
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variables. Usually the independent variable is plotted on
the x axis (horizontal), and the dependent variable is
plotted on the y axis. Each coordinate of the x value is
plotted in relation to its y value. The dots are then con-
nected to create a line.

When plotting changes over time, the x axis usually
represents the time, the independent variable, and the 
y axis represents the dependent variable, the data values.

With all line charts, the order of the values on both the 
x axis and the y axis is relational.

In line charts, the slope of the line between two
points is easily recognized simply by observation. No cal-
culations are necessary to get a good idea of the relative
change from one segment to the next. Another quality
about line charts is that it is easy to see if the values are
increasing or decreasing along different segments. This
change is often referred to as volatility.

Multiple-line charts can be plotted on one graph to
show the relationship of different data sets with similar
parameters relative to each other. A good example of
multiple-line charts is seen daily when looking at the
price changes of two similar stocks trading on the New
York Stock Exchange. Figure 2 shows how to plot both
lines on the same graph and quickly see which stock
yields the better return for its investors.

In a double-axis line chart, one or more lines is plot-
ted on the left axis, and one or more lines is plotted on the
right y axis. This is useful when looking at the relative
changes of different data that have similar independent

Attorney William Lerach, representing Amalgamated Bank, uses a timeline chart of the Enron Corp. daily share price at a New
York news conference in 2001. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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variables (e.g., time horizon), but the data does not have
similar dependent variables. Using the stock price exam-
ple, Figure 3 shows how to compare the price change of
two different companies over the same time horizon, but
they have very different stock prices. One set of data is
plotted on the left y axis, and the other on the right y axis.

X -Y  SCATTER  GRAPHS
At the fundamental level, all line charts are x-y scat-

ter graphs. The x-y scatter graph is a plotting of all the
coordinated points in a set of data. It does not usually
have connecting lines. Consequently, the line chart is the
next step after plotting the relationships between the 
x values and the y values. By simply connecting the dots,
the XY scatter graph turns into a line chart.

X-y scatter graphs are useful when there are numer-
ous variables to plot and a connecting line is not impor-
tant. With the x-y scatter graph, clusters of data are easy
to follow. These types of charts are used extensively in sta-
tistics to see the correlation of dependant and independ-
ent variables. As shown in Figure 4, a trend line could be
drawn through the midpoint of all the data to show the
aforementioned trending of different variables.

COLUMN AND  BAR  CHARTS
Column charts are useful when sizing different cate-

gories of data and comparing them to each other. Col-
umn charts are usually used for fewer observations than
seen in a line chart. For instance, to measure points
scored per starting basketball player in a particular game,
a column chart, such as Figure 5, would have a column
(category) to represent each player. The players would be
labeled along the x axis, and the points scored for each
measured on the y axis.

To measure hours of sunlight per day over a one-year
period, a column chart would need 365 x-axis categories.
It is easier to show this with a line graph and have 12 x-axis
categories, each measuring one month with the appropri-
ate number of days between each category. Having 365
columns on one graph is usually unrealistic.

BAR  CHARTS
Bar charts are constructed in the same way as column

charts with the difference being that the categories are
plotted on the y axis and the data values are plotted on the
x axis. This results in the columns protruding out hori-
zontally, rather than up vertically. Because the column is
now horizontal, it is referred to as a bar, like a parallel bar,
rather than a column. Figure 6 represents a bar chart.
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CLUSTERED  COLUMN CHARTS
Clustered columns are charts with the columns adja-

cent to each other, that is, they are touching, with multi-
ple columns per category. For instance, when charting the
points scored per player per game, each category would
represent one game and there would be columns per cat-
egory, all adjacent to each other. The next category would
also have the same number of columns and would repre-
sent a different game. As Figure 7 shows, this type of chart
needs a legend explaining what each column, or data
series, represents.

Clustered column charts are very useful in compar-
ing different categories as well as the series within the cat-
egory. Often the individual columns are color coded as
another way to separate and compare the data.

STACKED  COLUMN CHARTS
The stacked column chart puts the different values per

category on top of each other. This type of chart gives a rel-
ative sizing of each value per category. The stacked chart is
good for comparing data both within categories and across
categories. As in Figure 8, sometimes lines are drawn from
the tops of each value between categories to help show the
rate of change from one category to the next.

100%  STACKED  COLUMN CHARTS
Similar to the stacked chart, the 100% stacked chart

gives a relative measurement categories, but sets the sum
of all category values to 100%. The end result is a per-
centage measure of each value per category, rather than
the actual value. The 100% stacked chart is useful when
the overall category is a fixed amount. As an example,
since there are 24 hours in the day, Figure 9 shows how
those hours are spent on a percentage basis.

P IE  CHARTS
Pie charts—much like the 100% stacked chart—

convert all the data to percentages. That is, a pie chart
sums all the different data categories and accepts this total
to be 100% of the data, as in the whole pie. Then, each
category is measured as a slice of the pie and represents
therefore the percentage of the pie.

The formula for taking hypothetical data of 95 12th
graders, 115 11th graders, 150 10th graders, and 180 9th
graders is 95 � 115 � 150 � 180 � 540. Therefore the pie
calculations for 12th graders would be 95 / 540 � 18%.
Figure 10 represents doing the same calculation for each
grade, keeping the denominator at 540 and changing the
numerator to represent the total students in each grade.
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Pie charts are useful to help show how data sizes up
to other data in one category. They also help to rank data
quickly because they show which data category is largest,
which is smallest, and all others in between.

A Brief History of Discovery 
and Development

Charts are sometimes referred to as Cartesian planes.
This is the early name for a two-dimensional grid repre-
sentation of numbers, first developed by French mathe-
matician, philosopher, and scientist René Descartes 
(1596–1650).

Real-life Applications

People in finance and business often use charts, con-
sequently they have develop elaborate charting tech-
niques and different ways of displaying data in the three
basic charting types.

In the field of finance there are people who make
their living trading securities based solely on analyzing
the charts of stocks, bonds, and commodities. This busi-
ness is known as technical analysis, and the people who
work in this field are known as chartists.

L INE  CHARTS
Line charts are useful for charting large quantities of

data, with numerous categories that would be impractical
to view individually. For instance, to look at the daily
closing price of a stock over a five-year period, it would
require viewing approximately 1,260 individual data
points (there are approximately 252 trading days in each
calendar year). By using a line chart, each point can be
graphed individually with tiny lines connecting the dots
to give the visual quality of a continuous line. This will
show trends over the five-year period and offers a sense of
how the price has behaved during the entire time horizon
or during specific time periods.

A more technical application for line charts is to plot
a few data items and then calculate the slope of the line
between each data point, or selective data points. This is
useful in measuring volatility, and it also reveals trends
and periods of drastic change more precisely.

COLUMN/BAR  CHARTS
The term stack-up is pertinent in column charts

because that is exactly what happens: data are stacked on

top of each other or next to each other, for comparative
purposes.

Bar charts are often used to measure distance or
growth. Since distance of travel is usually viewed from left
to right, the length of each bar is a perfect way to visual-
ize how far the data series goes. To compare distance trav-
eled from one person’s house to four other people’s
houses, Figure 11 is a bar chart that shows how far each
trip is. It is easy to see which distance is furthest, which is
shortest, and others in between.

P IE  CHARTS
Pie charts are used to see how a particular data set is

partitioned. A pie chart assumes that the data set is the
whole universe of data, and it will show the individual
percentages that make up that whole. Pie charts are most
useful when the total is a fixed quantity.

When looking at total points scored in a football
game, each player’s points scored is shown as slices of the
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pie, and the whole pie would represent the total points
scored. Alternatively, to look at points scored by just three
players, a pie chart is not useful, because other points
could have been scored by different players, and the play-
ers do not represent the whole, they are only a fraction of
the whole.

US ING  THE  COMPUTER  
TO  CREATE  CHARTS

There are many computer programs that quickly do
most chart plotting. The most common is Microsoft Excel,

which has many different predetermined chart templates,
based on the three basic charts, and formats data into
a chart.

Excel and other charting programs have created pre-
formatted charts to represent data in as many ways as
possible, but at the root of all these charts are the three
basic chart formats. One area where they have made sig-
nificant changes in appearance is in area charts, or other
three-dimensional chart types. While the basic charting
procedure is basically the same, these charting programs
have tried to add a third dimension, depth, to the basic
two-dimensional chart. While this is helpful with very
specific types of data, the two-dimensional charts are still
the most commonly used.

CHOOS ING  THE  R IGHT  TYPE  
OF  CHART  FOR  THE  DATA

Organization of data is an important part of telling a
story, and conveying that story to others. Charts are a
quick way of showing the relational aspects of different
categorized data sets; charts take the quantitative aspects
of information and create a picture to make it easier for
the viewer to quickly see relationships. Therefore, choos-
ing the correct chart to represent data sets is a key ele-
ment of conveying the story, and communicating how the
data looks.

For example, at the beginning of the semester the
math teacher makes the following announcement: the
school administrators want to analyze the demographics
of this high school relative to three other high schools in
neighboring states. Furthermore, the administration has
made the analysis a contest, and everyone in any math
class is welcome to participate. All entries will be voted on
fairly and independently. The teacher also states: if the
winner is in a particular class, that participating student
will receive an A for the course.

After collecting the data, the student ends up with
the following information for all four schools: total stu-
dents, broken out by grade; number of male and female
students; total square feet of each school; number of
teachers; number of classes offered; and the number of
students who took the SAT tests, per state, over a 25-year
period.

Using line, column, and pie charts, the data is organ-
ized in the following way: First, a basic column chart is
created showing the total students for each school, as in
Figure 12. Secondly, in Figure 13, a stacked bar chart is cre-
ated, each with four columns, so each segment is repre-
senting one grade and each column is representing each
school. Figure 14 represents this same concept used to
show the distribution of males and females for each school.
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Using a pie chart to plot the square feet per school,
the pie chart has four segments, one for each school, and
each segment of pie represents the percentage of square
feet as a portion of the whole, as shown in Figure 15. Fig-
ure 16 represents a pie chart to plot the number of teach-
ers for each school, and Figure 17 is the third pie chart
that has the number of classes per school.

Lastly, Figure 18 is a line chart used to plot the aver-
age SAT scores over the 25-year period. With 25 cate-
gories on the x axis, and the scores on the y axis, the data
points are plotted, the dots connected, and a line chart is
created that spans the 25-year period.

Where to Learn More

Books
Excel Charts. Somerset, NJ: John Wiley & Sons, 2005.
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Key Terms

Dependant variable: What is being modeled; the 
output.

Independent variable: Data used to develop a model,
the input.
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Computers and
Mathematics

Overview

Mathematics is integral to computers. Most com-
puter processes and functions rely on mathematical prin-
ciples. The word “computers” is derived from computing,
meaning the process of solving a problem mathemati-
cally. Large complex calculations (or computing) in engi-
neering and scientific research often require basic
calculators and computers.

Computers have evolved greatly over the years. These
days, computers are used for practically anything under
the Sun, education, communication, business, shopping,
or entertainment. Mathematics forms the basis of all
these applications.

Applications of mathematical concepts are seen 
in the way computers process data (or information) 
in the form of bits, bytes, and codes, store large quantities
of data by compression, and send data from one
computer to another by transmission. With the advent of
the Internet, communication has become extremely 
easy. Every computer is assigned a unique identity,
using mathematical principles, making communication
possible. In addition, mathematics has also found 
other applications in computers, such as security and
encryption.

Fundamental Mathematical Concepts
and Terms

BINARY  SYSTEM
All computers or computing devices think and

process in binary code, a binary number system. In a
binary number system, everything is described using two
values—on or off, true or false, yes or no, one or zero, and
so on. The simplest example of a binary system is a light
switch, which is always either on or off. A computer con-
tains millions of similar switches. The status of each
switch in the computer represents a bit or binary digit. In
other words, each switch is either on or off. The computer
describes one as “on” and zero as “off.”

Any number can be represented in the binary system
as a combination of zeros and ones. In the binary num-
ber system, each number holds the value of increasing
powers of two, e.g., 20, 21, and so on. This makes counting
in binary easy. The binary representation for the numbers
one to ten can be shown as follows:

• 0 � 0
• 1 � 1
• 2 � 10
• 3 � 11
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• 4 � 100
• 5 � 101
• 6 � 110 
• 7 � 111
• 8 � 1000
• 9 � 1001
• 10 � 1010.

ALGOR I THMS
The key principle in all computing devices is a sys-

tematic process for completing a task. In mathematics,
this systematic process is called an algorithm. Algorithms
are common in daily life as well. For example, when
building a house, the first step involves building the floor
base (or foundation), followed by the walls, and then the
ceiling or roof. This systematic procedure to solve the
problem of building a house is an example of an algorithm.

In a nutshell, algorithms are a list of step-by-step
instructions. In mathematical terms, these are also some-
times known as theorems. A computer program, or appli-
cation, is made up of a number of such algorithms.
Besides, every process in a computer also depends on a

specific algorithm. For example, when switching on the
computer, the computer does what is known as “booting.”
Booting helps in properly loading the operating system
(Windows, Mac, Dos, UNIX, and so on). During booting,
the computer follows a set of instructions (defined by an
algorithm). Similarly, while opening any program (say,
MS Word), the computer is again instructed to follow a
set of tasks so that the program opens properly.

Like complex mathematical problems, even the most
complex software programs are based on numerous
algorithms.

A Brief History of Discovery 
and Development

Although the modern computer was built only in the
twentieth century, many primitive forms of the computer
were used in ancient times. The early calculators can also be
considered as extremely basic computers based on similar
mathematical concepts. The word calculator, is derived
from the Latin word calculus (or a small stone). Early

A calculating device created by Scottish mathematician John Napier in 1617 which consists of cylinders inscribed with
multiplication tables. It’s also known as “Napier’s Bones.” BETTMANN/CORBIS.
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human civilizations used small stones for counting. Count-
ing boards made up of stones were used for basic arithmetic
tasks such as addition, subtraction, and multiplication.

This led to development of devices that enabled cal-
culation of more complex numbers, and in quick time.
With the progress of civilization, man saw the development
of the abacus, the adding machine, the Babbage, and the
prototype mainframe computers.

Modern computers, however, were invented in the
twentieth century. In 1948, the mathematician Claude
Shannon (1916–2001), working at Bell Laboratories in
the United States, developed computing concepts that
would form the basis of modern information theory.
Shannon is often known as the father of information sci-
ence. Computers were earlier only used by government
institutions. Home or personal computers (known as
PCs) came much later in the late 1970s and 1980s.

Today, personal computers and servers with a micro-
processor chip (a small piece of computer hardware) are
embedded in almost all lifestyle electronic products, from
the washing machine and television to calculators and
automobiles. Many of these chips are capable of comput-
ing in the same capacity as some basic computers. The
advancement of mathematical concepts and theories has
made it possible to develop sophisticated computers in
smaller and smaller sizes, such as those found in hand-
held computers like the PDA (personal data assistant)
and PMP (personal media player).

Ciphers, codes, and secret writing based on mathe-
matical concepts have been around since ancient times.
In ancient Rome, they were used to communicate secrets
over long distances. Such codes are now used extensively
in the field of computer science.

Real-life Applications

B I TS
The bit is the smallest unit of information in a com-

puter. As discussed earlier, a bit is a basic unit in a binary
number system. A bit or binary digit stands for true or
false, one or zero, on or off. The computer is made up of
numerous switches. Each switch has two states (on and
off). The value of each state represents a bit.

Bits are the basic unit of storage in computers. In
other words, all data is stored in the form of bits. The rea-
son for using a binary number system rather than deci-
mal system for storage (and other purposes) is that with
prevailing technology, it is much easier to implement the
binary system in computers. Implementing the binary
system is significantly cheaper, as well.

The speed of the computer (processor speed) in
terms of processing applications is related to many fac-
tors, including memory space (also known as random
access memory, or RAM). Most home computers are
either 32-bit or 64-bit; 32-bit and 64-bit are the sizes of
the memory space.

BYTES
In computers, bits are bundled together into man-

ageable collections called bytes. A byte consists of eight
bits. Bits and bytes are always clubbed together like atoms
and molecules. Computers are designed to store data and
process instructions in bytes. To handle large quantities 
of information (or bits), other units such as kilobytes,
megabytes, and gigabytes are used. One kilobyte (KB) �
1,024 bytes � 210 bytes (and not 1,000 bytes as commonly
thought). Similarly, 1 megabyte (MB) � 1,048,576 bytes �
220 bytes, and 1 gigabyte (GB) � 1,073,741,824 bytes � 230

bytes.

The first computers were 1-byte machines. In other
words, they used octets or 8-bit bytes to store informa-
tion, and they represented 256 values (28 values, integers
zero to 255).

The latest computing machines are 64-bit (or eight
bytes). This type of representation makes computing eas-
ier in terms of both storage and speed. Bits and bytes
form the basis of many other computer processes and
functions. These include CD storage, screen resolution,
text coding, data comparison, data transmission, and
much more.

TEXT  CODE
All information in the computer is stored in the form

of binary numbers. This includes text, as well. In other
words, text is not stored as text, but as binary numbers.
The rule that governs this representation is known as
ASCII (American Standard Code for Information Inter-
change). The ASCII system assigns a code to every letter
of the alphabet (and other characters). This code is stored
as a seven digit binary number in computers. Moreover,
the ASCII code for a capital letter is different than the
code for the small letter. For example, the ASCII code for
“A” is 10, whereas that for “a” is 97. Consequently, the
value of “A” is stored as 0001010 (its binary representa-
tion), whereas “a” is 1100001.

Every character is stored as eight bits (a leading bit in
addition to the seven bits for the ASCII code), or one
byte. Thus, the word “happy” would require five bytes. An
entire page with 20 lines and 60 characters per line would
require 1,200 bytes.
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The main benefit of storing text code as binary num-
bers is that it makes it easier for the computer to store and
process the data. Besides, mathematical operations can be
performed on binary representations of text.

P IXELS , SCREEN  S IZE ,
AND  RESOLUT ION

A pixel is derived from the words picture and ele-
ment. The smallest and the most basic unit of images in
computers is the pixel. A pixel is a tiny square block.
Images are made up of numerous pixels. The total num-
ber of pixels in a computer image is known as the resolu-
tion of the image. For example, a standard computer
monitor displays images with the resolution 800 � 600.
This simply means that the image (or the entire computer
screen) is 800 pixels wide and 600 pixels high.

Each pixel is also stored as eight bits (or one byte).
Again, its representation is in the form of binary num-
bers. Storing the value of the color of a pixel is far easier
in binary format, as compared with other formats. The
maximum number of combinations of zeros and ones in
an 8-bit number is 256 (28). Each combination represents
a color. Simply put, every pixel can have one of 256 dif-
ferent colors.

This kind of computer display is called an “8-bit” or
“256-color” display, and was very common in computers
built in the 1990s. In contrast, newer computer monitors
built after the year 2000 have a significantly higher num-
ber of colors (in millions). These are the 16-bit and 24-bit
monitors.

The color of every pixel in a computer image is a
combination of three different colors—red, green, and
blue (RGB). RGB is common terminology used in com-
puter graphics and images, and simply means that every
color is a combination of some portion of red, green, and
blue colors. The value of each of these colors is stored in
one byte. For example, the color of a pixel could be 100 of
red, 155 of green, and 200 of blue. Each of these values is
stored in binary format in a byte. Note that the color val-
ues can range from zero to 255. Thus, every color pixel
has three bytes. Subsequently, a computer monitor with
the resolution 800 � 600 would need 3 � 800 � 600, or
1,440,000 bytes.

I P  ADDRESS
Every computer on a network has a specific address.

A number, known as the Internet protocol address, or IP
address, indicates this. The reason for having an IP
address is simple. To send a packet or a letter through reg-
ular mail, the address of the recipient is required. Simi-
larly, for communicating with a computer (from another

computer), the address of that computer is required.
Every computer has a unique IP address that clearly dis-
tinguishes it from other computers. The concept of the IP
address is based on mathematical principles, and there
are rules that govern the value of the IP address. For
example, an IP address is always a set of four numbers
separated by dots (e.g., 204.65.130.40).

Remember, the computer only understands binary
numbers. Consequently, the IP address is also represented
as a binary number. The binary representation is octet
(equivalent to the representation of a byte). Technically,
every IP address is a 32-bit number divided into four
bytes, or octets (eight bites). Each octet represents a spe-
cific number. For example, in the above case, 204 would
be stored in one octet, 65 in another octet, and so on. The
binary representation (as stored in the computer) for 
the above-mentioned IP address would be: 11001100
.01000001.10000010.0101000.

Communication between computers becomes far
easier with binary representation. The IP address consists
of two components, the network address and the host
address. The network address (the first two numbers)
represents the address of the entire network. For example,
if a computer is part of a network of computers con-
nected into an entire company, the first two numbers
would represent the IP address of the company. In other
words, for all computers connected to the company net-
work, the first two numbers would remain the same.

Internet mathematics translates binary code into web
addresses and other information. ROYALTY-FREE/CORBIS.
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The host address (the last two numbers) represents
the address of a computer specifically. For example, the
third number might represent a particular department
within a company, whereas the last number would
represent a particular computer in that department.
Consequently, two computers within the same depart-
ment (and part of the same company) would have 
the same first three numbers. Only the last number would
be different. Similarly, two computers that are part of dif-
ferent departments would have the same first two
numbers.

As each number in the IP address is allowed a maxi-
mum of one octet (or eight bites), the maximum value
the number can have is 255. In other words, the values of
every number in the IP address ranges from zero to 255.
An IP address that contains a number higher than this
range would be incorrect. For example, 204.256.12.0 is
incorrect, as 256 is not valid.

SUBNET  MASK
With the advent of the Internet, the number of com-

puters that are connected worldwide is quickly rising. The
Internet is a huge network of computers. Subsequently,
each computer has an IP address that helps it communi-
cate with the rest. For example, to send an email, the
email address must be entered. This email address is
translated to a specific IP address, that of the recipient. As
of 2005, there are millions of computers connected to the
Internet. As mentioned earlier, IP addresses have a limita-
tion. Each number can only have a value within a specific
range (zero to 255).

The IP address given to any computer on the Inter-
net is temporary. In other words, as soon as a computer
connects to the Internet, it receives a unique IP address.
As soon as the Internet is disconnected, this IP address is
free and can be used by another computer. When the
same computer connects again, it would get another IP
address. With the high number of computers connected
to the Internet simultaneously, it is difficult to accommo-
date every computer within this range. This is where the
concept of Subnet mask comes in.

Subnets, as the name suggests, are sub-networks. The
host address (from the IP address) is divided into further
subnets to accommodate more computers. This is done in
such a way that a part of the host address identifies the
subnet. The subnet is also shown as a binary number.
Communication becomes easier because of the binary
representation.

Take, for example, the IP address 204.65.130.40.
Its binary equivalent is 11001100.01000001.10000010
.00101000.

The subnets would have the same network address
(first two numbers). The first four bits of the host address
(third number) would be the same as well, to identify the
host of the subnet. In this case, 1000 would be
unchanged. The remaining four bits of the host address
would be unique to each subnet. Every subnet, in turn,
can have numerous computers. Every computer on the
subnet would have a unique fourth number in the IP
address. Consider the following scenario:

The main IP address is 11001100.01000001
.10000010.00101000. This could have many subnets such
as 11001100.01000001.10000111.00111010, 11001100
.01000001.10000101.0100010, and so on. Note that the
first four digits of the third number (host address) are same
but the remaining are different, indicating different sub-
nets on the same host. The fourth number indicates a
specific computer on the subnet. For computers on the
same subnet, the first three numbers would remain 
the same.

Simply put, the subnet mask ensures that more com-
puters can be accommodated within a network. Every
subnet mask number identifies the network address, the
host, the subnet, as well as the computer.

COMPRESS ION
Computers store (and process) data that include

numbers, arithmetic calculations, and words. In addition,
the data may also be in the form of pictures, graphics, and
videos. In computers, data is stored in files. File sizes,
depending on the type of data, can be huge. Many times
the size of a file becomes unmanageable. In such cases, bet-
ter ways of storing and process data, must be used. Given
below are some comparisons to provide a better under-
standing of sizes of different files on a computer.

One alphabetic character is represented by one byte,
one word is equivalent to eight to ten bytes or so, a page
averages about two kilobytes, an entire book averages one
megabyte or more, twenty seconds of good quality video
occupy anywhere from two to ten megabytes, and so on.
Similarly, a compact disc (CD) has 600–800 megabytes 
of data.

Storing such huge amounts of information in a com-
puter can often be difficult. Besides, it is almost impossi-
ble to send large data from one computer to another
through e-mail or other similar means. Moreover, down-
loading a significant amount of data from the Internet
(such as movie files, databases, application programs) can
be extremely time consuming, especially if using a slow
dial up connection. This is where compression of the data
into a manageable size becomes important.
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Certain applications based on mathematical algo-
rithms compress the data. This allows the basic data that
a computer sees in binary format, to be stored in a com-
pressed format requiring much lower storage space.
Compressed data can be uncompressed using the same
application and algorithm.

Compression is extremely beneficial, especially when
a large file has to be sent from one computer to another.
In case of e-mail, sending a one-megabyte (MB) file
through a dial up connection, would take considerable
time, anywhere from fifteen to thirty minutes. Bigger files
would take even longer. Besides, e-mails might not have
the capacity of sending (or receiving) bigger files. In such
cases, sending zipped files that are much smaller is useful.
Similarly, downloading compressed files from the Inter-
net rather than the large original ones is a better option.

There are also other types and methods for compress-
ing. Run length compression is another type that is used
widely. In run length compression, large chunks, or runs, of
consecutive identical data values are taken, and each of
these is replaced by a common code. In addition to the
code, the data value and the total length are also recorded.
Run length compression can be quite effective. However, it
is not used for certain types of data such as text, and exe-
cutable programs. For these types of files, run length com-
pression does not work. Without going into the technical
specifics of run length compression, this method works
quite well on certain types of data (especially images and
graphics), and is subsequently applied to many data com-
pression algorithms. Most compressed files can be un-
compressed to obtain the original. However, in almost all
cases, some data is lost in the process. For visual and audio
data, some loss of quality is allowed without losing the
main data. By taking advantage of limitations of the
human sensory system, a great deal of space is saved while
creating a copy that is very similar to the original. In other
words, although compression results in some data loss, this
loss can be insignificant and the naked eye usually cannot
usually discern the difference between the original and the 
un-compressed file. The defining characteristics of these
compression methods are their compression speed,
the compressed size, and the loss of data during
compression.

Apart from computers, compression of images and
video is also used in digital cameras and camcorders. The
main purpose is to reduce the size of the image (or video)
without compromising on the quality. Similarly, DVDs
also use compression techniques based on mathematical
algorithms to store video.

In audio compression, compression methods remove
non-audible (or less audible) components of the signal

while compressing. Compression of human speech is
sometimes done using algorithms and tools that are far
more complex. Audio compression has applications in
Internet telephony (voice chat through the internet),
audio CDs, MP3 CDs, and more.

DATA  TRANSMISS ION
In computing, data transmission means sending a

stream of data (in bits or bytes) from one location to another,
using different technologies. Two of these technologies are
coding theory and hamming codes. These are both based on
algorithms and other mathematical concepts.

Coding theory ensures data integrity during trans-
mission. In other words, it ascertains that the original
data is safely received, without any loss. Messages are usu-
ally not transmitted in their original form. They are
transmitted in coded or encrypted form (described later).
Coding theory is about making transmitted messages
easy to read. Coding theory is based on algorithms. In
1948, the mathematician Claude Shannon presented cod-
ing theory by showing that it was possible to encode in an
effective manner. In its simplest form, a coded message is
in the form of binary digits or bits, strings of zero or one.
The bits are transmitted along a channel (such as a tele-
phone line). While transmitting, a few errors may occur.
To compensate for the errors, more bits of information
than required are generally transmitted.

The simplest method (part of the coding theory
developed by Shannon) for detecting errors in binary
data is the parity code. Concisely, this method transmits
an extra bit, known as the parity bit, after every seven bits
from the source message. However, the parity code
method can merely detect errors, not correct them. The
only method for correcting them is to ask for the data to
be transmitted again.

Shannon developed another algorithm, known as the
repetition algorithm, to ensure detection as well as correc-
tion of errors. This is accomplished by repeating each bit
a specific number of times. The recipient sees which value
(zero or one) occurred more often and assumed that was
the actual value. This process can detect and correct any
number of errors, depending on how many repeats of each
bit are sent. The disadvantage of the repetition algorithm
is that it transmits a high number of bits, resulting in a
considerable amount of repetitive bits. Besides, the
assumption that a bit that is received more often, is the
actual bit, may not hold true in all cases.

Another mathematician, Richard Hamming (1915–
1998), built more complex algorithms for error correction.
Known as Hamming codes, these were more efficient, even
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with very low repetition. Initially, Hamming produced a
code (based on an algorithm) in which four data bits were
followed by three check bits that allowed the detection and
the correction of a single error. Although, the number of
additional bits is still high, it is without a doubt lower than
the total number of bits transmitted by the repetition algo-
rithm. Subsequently, these additional bits (check bits) were
reduced even further by improving the underlying algo-
rithms. Hamming codes are commonly used for transmit-
ting not just basic data (in the form of simple email
messages), but also more complex information.

One such example is astronomy. The National Aero-
nautics and Space Administration (NASA) uses these
techniques while transmitting data from their spacecrafts
back to Earth (and vice versa). Take, for example, the
NASA Mariner spacecraft sent to Mars in the 1960s. In
this case, coding and error correction in data transmis-
sion was vital, as the data was sent from a weak transmit-
ter over very long distances. Here the data was read
perfectly using the Hamming code algorithm. In the late
1960s and early 1970s, the NASA Mariner sent data using
more advanced versions of the Hamming and coding the-
ories, capable of correcting seven errors out of thirty-two
bits transmitted. Using this algorithm, over 16,000 bits
per second of data was successfully relayed back to Earth.

Similar data transmission algorithms are used exten-
sively for communication through the Internet since the
late 1990s. The Hamming codes are also used in prepar-
ing compact discs (CDs). To guard against scratches,
cracks, and similar damage, two overlapped Hamming
codes are used. These have a high rate of error correction.

ENCRYPT ION
Considerable confidential data is stored and trans-

mitted from computers. Security of such data is essential.
This can be achieved through specialized techniques
known as encryption. Encryption converts the original
message into coded form that cannot be interpreted
unless it is de-coded back to the original (decryption).
Encryption, a concept of cryptography, is the most effec-
tive way to achieve data security. It is based on complex
mathematical algorithms.

Consider the message abcdef1234ghij56789. There
are several ways of coding (or encrypting) this informa-
tion. One of the simplest ways is to replace each alphabet
by a corresponding number, and vice versa. For example,
“a” would become “1”, “b” would be “2”, and so on. The
above original message can, thus be encrypted as
123456abcd78910 efghi. The message is decrypted using
the same process and converted back in the original form.

Complex mathematical algorithms are designed to cre-
ate far more complex encryption methods. The informa-
tion regarding the encryption method is known as the key.

Cryptography provides three types of security for data:

• Confidentiality through encryption—This is the
process mentioned above. All confidential data is
encrypted using certain mathematical algorithms. A
key is required to decrypt the data back into its origi-
nal form. Only the right people have access to the key.

• Authentication—A user trying to access coded or
protected data must authenticate himself/herself.
This is done through his/her personal information.
Password protection is a type of authentication that
is widely used in computers and on the Internet.

• Integrity—This type of security does not limit access
to confidential information, as in the above cases.
However, it detects when such confidential is modi-
fied. Cryptographic techniques, in this case, do not
show how the information has been modified, just
that it has been modified.

There are two main types of encryption used in
computers (and the Internet)—asymmetric encryption
(or public-key encryption), and symmetric encryption
(or secret key encryption). Each of these is based on dif-
ferent mathematical algorithms that vary in function and
complexity.

In brief, public key encryption uses a pair of keys, the
public key, and the private key. These keys are compli-
mentary, in the sense that a message encrypted using a
particular public key can only be decrypted using a cor-
responding private key. The public key is available to all
(it is public). However, the private key is accessible only
by the receiver of a data transmission. The sender
encrypts the message using the public key (corresponding
to the private key of the receiver). Once the receiver gets
the data, it is decrypted using the private key. The private
key is not shared with anyone other than the receiver, or
the security of the data is compromised.

Alternatively, symmetric secret key encryption relies
on the same key for both encryption and decryption. The
main concern in this case is the security of the key. Sub-
sequently, the key has to be such that even if someone gets
hold of it, the decryption method does not become too
obvious. For this purpose, encryption and decryption
algorithms for secret key encryption are quite complex.

The key, as expected, is shared only by the receiver
and the sender (unlike public key encryption, where
everyone knows the public key). The key can be anything
ranging from a number, a word, or a string of jumbled up
letters and other characters. In simple terms, the original
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data is encoded using a simple or complex technique
defined by a mathematical algorithm. The key also holds
the information on how the algorithm works. The same

algorithm can then be used to decode the message back
into its original form.

Encryption is used frequently in computers. Most
data is protected using one of the above mentioned
encryption techniques. The Internet also widely applies
encryption. Most websites protect their content using
these methods. In addition, payment processing on 
websites also follows complex encryption algorithms (or
standards) to protect transactions.

Where to Learn More

Books
Cook, Nigel P. Introductory Computer Mathematics. Upper 

Saddle River, NJ: Prentice Hall, 2002.

Graham, Ronald H., et al. Concrete Mathematics: A Foundation
for Computer Science. Boston, MA: Addison-Wesley, 1994.

Key Terms

Bit: The smallest unit of storage in computers. A bit
stores a binary value.

Byte: A byte is a group of eight bits.

Encryption: Using a mathematical algorithm to
code a message or make it unintelligible.

Pixel: Short for “picture,” a pixel is the smallest
unit of a computer graphic or image. It is also
represented as a binary number.
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Conversions

Overview

Conversion is the process of changing units of meas-
urement from one system to another. The ability to con-
vert units such as distance, weight, and currency is an
increasingly important skill in an emerging global econ-
omy. In area of research and technological applications
such as science and engineering, the ability to convert
data is crucial.

No better example of how critical a role conversion
math can play can be found in the destruction of NASA’s
Mars Climate Orbiter in 1999. The Mars Climate Orbiter
was one of a series of NASA missions in a long-term pro-
gram of Mars exploration known as the Mars Surveyor
Program. The orbiter mission was designed to have the
orbiter fire its main engine to enter into orbit around
Mars at an altitude of about 90 miles (about 140 km).
However, a series of errors caused the probe to come too
close to Mars and, as a result, the probe was only about 
35 miles (57 km) from the Martian surface when it
attempted to enter orbit—an altitude far below the min-
imum safe altitude for orbit. As a result the Mars Climate
Orbiter is presumed to have been destroyed as it reentered
the Martian atmosphere.

Engineering teams contracted by NASA used differ-
ent measurement systems (English and metric) and never
converted the two measurements. As a result, the probe’s
attitude adjustment thrusters failed to fire properly and
the probe drifted off course toward its fatal demise.

Fundamental Mathematical Concepts
and Terms

In addition to traditional English measurements,
International System of Units (SI) and MKS (meter-
kilogram-second) units are part of the metric system, a
system based on powers of ten. The metric system is used
throughout the world—and in most cases provides the
standard for measurements used by scientists. On an
everyday basis, nearly everyone is required to convert val-
ues from one unit to another (e.g., the conversion from
kilometers per hour to miles per hour).

This need for conversation applies widely across
society, from fundamental measurement of the gap in
spark plugs to debate and analysis over sports records.

When values are multiplied or divided, they can each
have different units. When adding or subtracting values,
however, the values must added or subtracted must have
the same units. A notation such as “ms�1” is simply a dif-
ferent way of indicating m/s (meters per second).
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Units must properly cancel to yield a proper conver-
sion. If an Olympic sprinter runs 200-meter race in 19.32
seconds, he runs at an average speed of average speed of
10.35 meters per second [200 m / 19.32 s � 10.35 m/s]. If
a student wishes to convert this to miles per hour the
conversion should be carried out as follows: (10.35 m/s)
(1 mile / 1,609 m) (3,600 s / 1 hr) � 23.2 miles/hr. The units
cancel as follows: (10.35 m/s) (1 mile / 1,609 m) (3,600 s /
1 hr) � 23.2 miles/hr.

Students should remember to be cautious when
dealing with units that are squared, cubed, or that carry
another exponent. For example, a cube that is 10 cm on
each side has a volume that is expressed as a cube value
(e.g., m3 that is determined from multiplying the cube’s
length times the width times the height: V � (10 cm) 
(10 cm)(10 cm) � 1,000 cm3.

Many conversions are autoprogrammed into
calculators—or are easily made with the use of tables 
and charts.

THE  METR IC  UN I TS
The SI starts by defining seven basic units: one each

for length, mass, time, electric current, temperature,
amount of substance, and luminous intensity. (“Amount
of substance” refers to the number of elementary particles
in a sample of matter. Luminous intensity has to do with
the brightness of a light source.) However, only four of
these seven basic quantities are in everyday use by non-
scientists: length, mass, time, and temperature.

The defined SI units for these everyday units are the
meter for length, the kilogram for mass, the second for
time, and the degree Celsius for temperature. (The other
three basic units are the ampere for electric current, the
mole for amount of substance, and the candela for lumi-
nous intensity.) Almost all other units can be derived
from the basic seven. For example, area is a product of
two lengths: meters squared, or square meters. Velocity or
speed is a combination of a length and a time: kilometers
per hour.

Because the meter (1.0936 yd) is much too big for
measuring an atom and much too small for measuring
the distance between two cities, we need a variety of
smaller and larger units of length. But instead of invent-
ing different-sized units with completely different names,
as the English-American system does, metric adaptations
are accomplished by attaching a prefix to the name of the
unit. For example, since kilo- is a Greek form meaning a
thousand, a kilometer is a thousand meters. Similarly, a
kilogram is a thousand grams; a gigagram is a billion
grams or 109 grams; and a nanosecond is one billionth of
a second or 10�9 second.

THE  ENGL ISH  SYSTEM

In contrast to the metric system’s simplicity stands
the English system of measurement (a name retained to
honor the origin of the system) that is based on a variety
of standards (most completely arbitrary).

There many English units, including buckets, butts,
chains, cords, drams, ells, fathoms, firkins, gills, grains,
hands, knots, leagues, three different kinds of miles, four
kinds of ounces, and five kinds of tons. There are literally
hundreds more. For measuring volume or bulk alone, the
English system uses ounces, pints, quarts, gallons, barrels
and bushels, among many others.

THE  INTERNAT IONAL  SYSTEM 
OF  UN I TS  (S I )

The metric system is actually part of a more compre-
hensive International System of Units, a comprehensive
set of measuring units. In 1938, the 9th General [Interna-
tional] Conference on Weights and Measures, adopted
the International System of Units. In 1960, the 11th Gen-
eral Conference on Weights and Measures modified the
system and adopted the French name Système Interna-
tional d’Unités, abbreviated as SI.

Nine fundamental units make up the SI system.
These are the meter (abbreviated m) for length, the kilo-
gram (kg) for mass, the second (s) for time, the ampere
(A) for electric current, the Kelvin (K) for temperature,
the candela (cd) for light intensity, the mole (mol) for
quantity of a substance, the radian (rad) for plane angles,
and the steradian (sr) for solid angles.

Odometers sit in a shop that legally converts odometers
from kilometers to miles in used cars imported from
Canada. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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DER IVED  UN I TS
Many physical phenomena are measured in units

that are derived from SI units. As an example, frequency
is measured in a unit known as the hertz (Hz). The hertz
is the number of vibrations made by a wave in a second.
It can be expressed in terms of the basic SI unit as s�1.
Hertz units are used to describe, measure, and calibrate
radio wavelengths and computer processing speeds.

Pressure is another derived unit. Pressure is defined
as the force per unit area. In the metric system, the unit of
pressure is the Pascal (Pa) and can be expressed as kilo-
grams per meter per second squared, or kg/m s2. Mea-
surements of pressure are important in determining
whether gaskets and seals are properly placed on
automobile motors or properly functioning in air-
conditioning units.

Even units that appear to have little or no relation-
ship to the nine fundamental units can, nonetheless, be
expressed in terms of those units. The absorbed dose, for
example, indicates that amount of radiation received by a
person or object. In the metric system, the unit for this
measurement is the “gray.” One gray can be defined in
terms of the fundamental units as meters squared per sec-
ond squared, or m2 / s2.

Many other commonly used units can also be
expressed in terms of the nine fundamental units. Some
of the most familiar are the units for area (square meter:
m2), volume (cubic meter: m3), velocity (meters per
second: m/s), concentration (moles per cubic meter:
mol/m3), and density (kilograms per cubic meter: kg/m3).

As previously mentioned, a set of prefixes is available
that makes it possible to use the fundamental SI units to
express larger or smaller amounts of the same quantity.
Among the most commonly used prefixes are milli- (m)
for one-thousandth, centi- (c) for one-hundredth, micro-
(�) for one-millionth, kilo- (k) for one thousand times,
and mega- (M) for one million times. Thus, any volume
can be expressed by using some combination of the fun-
damental unit (liter) and the appropriate prefix. One mil-
lion liters, using this system, would be a megaliter (ML)
and one millionth of a liter, a microliter (�L).

UNITS  BASED  ON  PHYS ICAL  
OR  “NATURAL”  PHENOMENA

In the field of electricity the charge carried by a sin-
gle electron is known as the elementary charge (e) and
has the value of 1.6021892 � 10�19 coulomb. This is
termed a “natural” unit.

Other real-world or “natural” units of measurement
include the speed of light (c: 2.99792458 � 108 m/s), the
Planck constant (6.626176 � 10�34 joule per hertz), the

mass of an electron (me: 0.9109534 � 10�30 kg), and the
mass of a proton (mp: 1.6726485 � 10�27 kg).

Each of the above units can be expressed in terms of
SI units, but they are often also used as basic units in spe-
cialized fields of science.

A Brief History of Discovery 
and Development

Because the United States is the world’s leading pro-
ducer in many items, regardless of the near universal
acceptance of the SI, the most frequent conversions
between units are between the English system of weights
and measures to those of the metric system. The metric
system of measurement, first advanced and adopted by
the France in the late eighteenth and early nineteenth
century, has grown to become the internationally agreed-
upon set of units for commerce, science, and engineering.

The United States is the only major economic power
to yet fully embrace the metric system. The history of the
metric system in the United States is bumpy, with
progress toward inevitable metrification coming slowly
over two centuries.

As early as 1800, U.S. government agencies adopted
metric meter and kilogram measurements and standards.
In 1866, the U.S. Congress first authorized the use of the
metric system. Although internal progress is halting at
best, the United States is one of the 17 original signers of
the treaty establishing the International Bureau of
Weights and Measures that was intended to provide
worldwide metric standards. Most Americans do not
know, for example, that since 1893, the units of distance
(foot, yard), weight (pound), and volume (quart), have
been officially defined in terms of their relation to the
metric meter and kilogram.

After the modernization and international expan-
sion of the metric system in the 1960s and 1970s follow-
ing adoption of the SI, the United States soon stood alone
among modern industrialized nations in failing to make
full conversion. The English system was abandoned by
the English as early as 1965 as part of Great Britain’s inte-
gration into the European Common Market (a forerun-
ner of the modern European Union) and countries such
as Canada completed massive metrification efforts
throughout the 1970s.

Following Congressional resolutions and studies that
recommended U.S. conversion to the metric system
by 1980, an effort toward voluntary conversion began
with the 1975 Metric Conversion Act that established
a subsequently short-lived U.S. Metric Board. The
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American public simply refused to embrace and use met-
ric standards.

It was not until 1988 the Congress once again tried to
spur metric conversion with the Omnibus Trade and
Competitiveness Act of 1988. The Act specified that met-
ric measurements are to be considered the “preferred
system of weights and measures for U.S. trade and com-
merce.” The Act also specified that federal agencies use the
metric measurements in the course of their business.

Regardless of the efforts of leaders in science and
industry, early into the twenty-first century, U.S. progress
remains spotty and slow. However, the demands of global
commerce and the economic disadvantages of the use of
non-metric measurements provide an increasingly pow-
erful incentive for U.S. metrification.

Although the SI is the internationally accepted sys-
tem, elements of the English system of measurement con-
tinue in use for specialized purposes throughout the
world. All flight navigation, for example, is expressed in
terms of feet, not meters. As a consequence, it is still nec-
essary for a mathematically literate person to be able to
perform conversion from one system of measurement to
the other.

Real-life Applications

There are more than 50 officially recognized SI units
for various scientific quantities. Given all possible combi-
nations there are millions of possible conversions possible.
All of these require various conversion factors. However,
in addition to metric conversions, a wide range of conver-
sions are used in everyday situations—from conversion
of kitchen measurements in recipes to the ability to con-
vert mathematical data into representative data found in
charts, graphs, and various descriptive systems.

Historical Conversions

Historians and archaeologists are often called upon
to interpret text and artifacts depicting ancient systems of
measurement. To make a realistic assessment of evidence
from the past they must be able to convert the ancient
measurements into modern equivalents.

For example, the Renaissance Italian artist, Leonardo
da Vinci used a unit of measure he termed a braccio (Eng-
lish: arm) in composing many of his works. In Florence
(Italian: Firenze) braccio equaled two palmi (English:
palms). However, historians have noted that the use of such
terms and units was distinctly regional and that various

conversion factors must be used to compare drawings
and manuscripts. In Florence, a braccio equaled about 
23 in. (58 cm), but in other regions (or among different
professional classes) the braccio was several inches
shorter. In Rome, the piede (English: foot) measured near
it modern equivalent of 12 in. (30 cm) but measured up
to 17 in. (34 cm) in Northern Italy.

Conversion of Temperature Units

Temperature can be expressed as units of Celsius,
Fahrenheit, Kelvin, Rankin, and Réaumur.

The metric unit of temperature is the degree Celsius
(�C), which replaces the English system’s degree Fahren-
heit (�F). In the scientists’ SI, the fundamental unit of
temperature is actually the kelvin (K). But the kelvin and
the degree Celsius are exactly the same size: 1.8 times as
large as the degree Fahrenheit. One cannot convert
between Celsius and Fahrenheit simply by multiplying or
dividing by 1.8, however, because the scales start at differ-
ent places. That is, their zero-degree marks have been set
at different temperatures.

The measurement of thermal energy involves indi-
rect measurement of the molecular kinetic energies of a
substance. Rather than providing an absolute measure of
molecular kinetic energy, thermal measurements are
designed to determine differences that result from work
done on, or by, a substance (e.g., heat added to, or
removed from, a substance). Temperature differences
correspond to changes in thermal energy states, and there
are several analytic methods used to measure differences
in thermal energy via measurement of temperature.
When dealing with the terminology associated with the
measurement of thermal energy, one must be mindful
that there is no actual substance termed “energy” and no
actual substance termed “heat.” Accordingly, when speak-
ing of energy “transfer” or heat “flow” one is actually
referring to changes in functions of state that can only be
raised or lowered within a body or system. Neither energy
or heat can really be “transferred” or “flow.”

In thermodynamics, temperature is directly related
to the average kinetic energy of a system due to the agita-
tion of its constituent particles. In practical terms, tem-
perature measures heat and heat measures the thermal
energy of a system.

In meteorological systems, for example, temperature
(as an indirect measure of heat energy) reflects the level
of sensible thermal energy of the atmosphere. Such meas-
urements use thermometers and are expressed on a given
temperature scale, usually Fahrenheit or Celsius.
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The common glass thermometer containing either
mercury or alcohol uses the property of thermal expan-
sion of the respective fluid as an indirect measure of the
increase or decrease in the thermal energy of a body or
system. Other types of thermometers utilize properties
such as electrical resistance, magnetic susceptibility, or
light emission to measure temperature.

Electrical thermometers (e.g., thermoprobes, ther-
mistor, thermocouples, etc.) relate changes in electrical
properties (e.g., resistivity) to changes in temperature
are extensively used in scientific research and industrial
engineering.

Because energy is commonly defined as the ability to
do work, the thermal energy of a system is directly related
to a system’s ability to translate heat energy into work.
Correspondingly, the measurement of the thermal energy
of a system must be interpreted as the measurement of
the changes in the ability of a system or body to do work.
Absolute zero Kelvin—notice that Kelvin is not expressed
as “degrees Kelvin”—(�459.69�F, �273.16�C, 0�R on the
Rakine scale)—is the lowest temperature theoretically
possible. At absolute zero there is a minimum of vibra-
tory motion (not an absence of motion) and, by defini-
tion, no work can be done by a system on its surrounding
environment. In this regard, such a system (although not
motionless) would be said to have zero thermal energy.

In 1714, the German physicist Daniel Gabriel
Fahrenheit (1686–1736) created a thermometer using liq-
uid mercury. Mercury has a uniform volume change with
temperature, a lower freezing point and higher boiling
point than water, and does not wet glass. Mercury ther-
mometers made possible the development of repro-
ducible temperature scales and quantitative temperature
measurement. Fahrenheit first chose the name “degree”
(German: grad) for his unit of temperature. Then, to fix
the size of a degree (�), he decided that it should be of
such size that there are exactly 180� between the temper-
ature at which water freezes and the temperature at which
water boils. (180 is a “good” number because it is divisi-
ble by one and by 16 other whole numbers. That is why
360, or 2 � 180, which is even better, was originally cho-
sen as the number of “degrees” into which to divide a
circle.) Fahrenheit now had a size for his degree of tem-
perature, but no standard reference values. Where should
the freezing and boiling points of water fall on the scale?
He eventually decided to fix zero at the coldest tempera-
ture that he could make in his laboratory by mixing ice
with various salts that make it colder. (Salts, when mixed
with cold ice, lower the melting point of ice, so that when
it is melting it is at a lower temperature than usual.)
When he set his zero at that point, the normal freezing

point of water turned out to be 32� higher. Adding 180 to
32 gave 212�, which he used for the normal boiling point
of water. Thus, freezing water falls at 32� and boiling
water falls at 212� on the Fahrenheit scale. The normal
temperature of a human being is about 99�.

In 1742, the noted Swedish astronomer Anders Cel-
sius (1701–1744), professor of astronomy at the Univer-
sity of Uppsala (Sweden), proposed the temperature scale
which now bears his name, although for many years it
was called the centigrade scale. As with the Fahrenheit
scale, the reference points were the normal freezing and
normal boiling points of water, but he set them to be 100�

apart instead of 180. Because the boiling point and, to a
lesser extent, freezing point of a liquid depend on the
atmospheric pressure, the pressure must be specified:
“normal” means the freezing and boiling points when the
atmospheric pressure is exactly one atmosphere. These
points are convenient because they are easily attained and
highly reproducible. Interestingly, Celsius at first set boil-
ing as zero and freezing as 100, but this was reversed in
1750 by the physicist Martin Strömer, Celsius’s successor
at Uppsala.

Defined in this way, a Celsius degree (�C) is 1/100 of
the temperature difference between the normal boiling
and freezing points of water. Because the difference
between these two points on the Fahrenheit scale is 180�F,
a Celsius degree is 1.8 times (or 9/5) larger than a Fahren-
heit degree. You cannot convert between Fahrenheit and
Celsius temperatures simply by multiplying by 1.8, how-
ever, because their zeroes are at different places. That
would be like trying to measure a table in both yards and
meters, when the left-hand ends (the zero marks) of the
yardstick and meter stick are not starting at the same place.

One method to convert temperature from Fahren-
heit to Celsius or vice versa, is to first account for the dif-
ferences in their zero points. This can be done very simply
by (step 1) adding 40 to the temperature you want to con-
vert. That is because -40� (40 below zero) happens to come
out at the same temperature on both scales, so adding 40
gets them both up to a comparable point: zero. Then (step
2) you can multiply by 1.8 (9/5) convert Celsius to Fahren-
heit or divide by 1.8 (9/5) to convert Fahrenheit to Celsius
to account for the difference in degree size, and finally
(step 3) subtract the 40� originally added.

WEATHER  FORECAST ING
An understanding of the daily weather forecast, espe-

cially in areas outside the United States requires the ability
to convert temperatures between Celsius and Fahrenheit
temperature scales. The standard conversion from
Fahrenheit to Celsius is expressed as �C � (�F �32) / 1.8.
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Accordingly a 72�F expected high temperature equates to
approximately 22.2�C.

COOK ING  OR  BAK ING  TEMPERATURES
To convert a temperature used for cooking (the

expected oven temperature) for an French recipe for bak-
ing bread one might be called on to convert �C to �F and
that conversion is obtained via �F � (�C � 1.8) + 32. So
if an oven should be set at 275 �C in France to produce a
crispy baguette (the traditional French long an thin loaf
of bread) then an oven calibrated in �F should be set to
approximately 525�F (275�C � 1.8) + 32 � 527�F.

Canceling Units

Notice that we are performing simple conversions,
without the formality of labeling the units that must can-
cel to make the transformation. In the above example
regarding oven temperature, the conversion factor 1.8
really represents 1.8�F / 1�C, read as 1.8 degrees Celsius to
1 degree Fahrenheit. This allows the units to cancel
(275�C � 1.8 �F / 1 �C) + 32�F � 527�F.

In the prior example related to weather, the factor
reciprocal of the factor 1.8 is used in the conversion formula
�C � (�F � 32) / 1.8 equals 1�C per 1.8 �F or 1�C / 1.8�F and
so the �F cancels as 22.2�C � (72 � 32) �F / 1.8 �C / �F.

ABSOLUTE  SYSTEMS
About 1787 the French physicist Jacques Charles

(1746–1823) noted that a sample of gas at constant pres-
sure regularly contracted by about 1/273 of its volume at
0�C for each Celsius degree drop in temperature. This
suggests an interesting question: If a gas were cooled to
273� below zero, would its volume drop to zero? Would it
just disappear? The answer is no, because most gases will
condense to liquids long before such a low temperature is
reached, and liquids behave quite differently from gases.

In 1848 William Thomson (1824–1907), later Lord
Kelvin, suggested that it was not the volume, but the
molecular translational energy, that would become zero
at about –273�C, and that this temperature was therefore
the lowest possible temperature. Thomson suggested a
new and more sensible temperature scale that would have
the lowest possible temperature—absolute zero—set as
zero on this scale. He set the temperature units as identi-
cal in size to the Celsius degrees. Temperature units on
Kelvin’s scale are now known as Kelvins (abbreviation, K);
the term, degree, and its symbol, �, are not used. Lord

Kelvin’s scale is called either the Kelvin scale or the
absolute temperature scale. The normal freezing and
boiling points of water on the Kelvin scale, then, are 273K
and 373K, respectively, or, more accurately, 273.16K and
373.16K. To convert a Celsius temperature to Kelvin, just
add 273.16.

The Kelvin scale is not the only absolute temperature
scale. The Rankine scale, named for the Scottish engineer
William Rankine (1820–1872), also has the lowest possi-
ble temperature set at zero. The size of the Rankine
degree, however, is the same as that of the Fahrenheit
degree. The Rankin temperature scale is rarely used today.

Absolute temperature scales have the advantage that
the temperature on such a scale is directly proportional to
the actual average molecular translational energy, the
property that is measured by temperature. For example, if
one object has twice the Kelvin temperature of another
object, the molecules, or atoms, of the first object actually
have twice the average molecular translational energy of
the second. This is not true for the Celsius or Fahrenheit
scales, because their zeroes do not represent zero energy.
For this reason, the Kelvin scale is the only one that is
used in scientific calculations.

Conversion of measurements in recipes if often necessary.
ALEN MACWEENEY/CORBIS.
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ARB I TRARY  SYSTEMS
On the Réaumur scale, almost forgotten except in parts

of France, freezing is at 0 degrees, and the boiling point is at
80 as opposed to 100� Celsius, or 212� Fahrenheit. The gra-
dation of temperature scales is, however, arbitrary.

Conversion of Distance Units

Distance conversions are common to hundreds of
everyday tasks, from driving to measuring. Conversion
factors for distance are uncomplicated and easily
obtained from calculators and conversion tables (e.g., 1
inch � 2.54 centimeters, 1 yard � 0.9144 meter, and 1
mile � 1.6093 km).

The meter was originally defined in terms of Earth’s
size; it was supposed to be one ten-millionth of the dis-
tance from the equator to the North Pole, going straight
through Paris. However, because Earth is subject to geo-
logical movements, this distance cannot be depended
upon to remain the same forever. The modern meter,

therefore, is defined in terms of how far light will travel in
a given amount of time when traveling at—naturally—
the speed of light. The speed of light in a vacuum is con-
sidered to be a fundamental constant of nature that will
never change, no matter how the continents drift. The
standard meter turns out to be 39.3701 inches.

10K and 5K walks and races (measuring 10 and 5
kilometers, properly abbreviated km, or 10,000 and 5,000
meters) are popular events, often used for local charitable
fund raising and well as sports competition. A 10K race is
about 6.21 miles and a 5K race is, of course, half that dis-
tance (about 3.11 miles, with rounding). One kilometer �
.6214 mile and so 10,000 km � .6214 miles/km � 6.21 km.

Other units of measurement related to distance
encountered include: Admiralty miles, angstroms, astro-
nomical units, chains, fathoms, furlongs (still used in
horse racing), hands, leagues, light years, links, mils
(often used to measure paper thickness), nautical miles
(with different U.K. and U.S. standards), parsecs, rods,
Roman miles (milia passuum), Thous, and Unciae
(Roman inches).

A traffic sign near the U.S. border in Quebec. OWEN FRANKEN/CORBIS.
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Conversion of Mass Units

The kilogram is the metric unit of mass, not weight.
Mass is the fundamental measure of the amount of mat-
ter in an object. For example, the mass of an object will
not change if you take it to the Moon, but it will weigh
less—have less weight—when it lands on the Moon
because the Moon’s smaller gravitational force is pulling
it down less strongly.

Regardless, in everyday terms on Earth, we often speak
loosely about mass and weight as if they were the same
thing. So you can feel free to “weigh” yourself (not “mass”
yourself) in kilograms. Unfortunately, no absolutely
unchangeable standard of mass has yet been found to stan-
dardize the kilogram on Earth. The kilogram is therefore
defined as the mass of a certain bar of platinum-iridium
alloy that has been maintained since 1889 at the Interna-
tional Bureau of Weights and Measures in Sèvres, France.
The kilogram turns out to be approximately 2.2046 pounds.

To convert from the pound to the kilogram, for
example, it is necessary to multiply the given quantity (in
pounds) by the factor 0.45359237. A conversion in the
reverse direction, from kilograms to pounds, involves
multiplying the given quantity (in kilograms) by the fac-
tor 2.2046226.

For large masses, the metric ton is often used instead
of the kilogram. A metric ton (often spelled tonne in other
countries) is 1,000 kilograms. Because a kilogram is about
2.2 pounds, a metric ton is about 2,200 pounds—ten per-
cent heavier than an American ton of 2,000 pounds.

Some remnants of English weights and measures still
exist in popular culture. It is not uncommon to have weights
of athletes in football (American soccer) and rugby matches
quoted by commentators in terms of “stones.” A stone is
the equivalent of 14 pounds, so a 15-stone goalkeeper or
rugby forward would weigh a formidable 210 pounds.

Other units of mass encountered include carats
(used for measuring precious stones such as diamonds),
drams, grains, hundredweights, livre, ounces (Troy), pen-
nyweights, pfund, quarters, scruples, slus, and Zentners.

Conversion of Volume Units

For volume, the most common metric unit is not the
cubic meter, which is generally too big to be useful in
commerce, but the liter, which is one thousandth of a
cubic meter. For even smaller volumes, the milliliter, one
thousandth of a liter, is commonly used.

Other units of volume include acre-feet, acre-inches,
barrels (used in the petroleum industry and equivalent to

42 U.S. gallons), bushels (both United States and 
United Kingdom), centiliters, cups (both U.S. and 
metric), dessertspoons (U.S., U.K., and metric, and in 
the U.S. about double the teaspoon in volume) 
fluid drams, pecks, pints, quarts, tablespoons, and
teaspoons.

Units such as tablespoons and teaspoons are among
the most common of hundreds of units related to cook-
ing where units can be descriptive (e.g., a “pinch” of salt).
Most cookbooks carry conversions factors for units
described in the book.

In the United States, gasoline is sold and priced by
the English gallon, but in Europe gasoline is sold and
priced by the liter. The unsuspecting tourist may not take
immediate notice at the great difference in price because
roadside signs advertising the two can sometime be very
similar. Aside from differences in currency value
explained below, a price of $2.10 per gallon is far less than
1.30 € (Euros) per liter. There are more than 3.78 liters
per gallon and so the price of 1.30 €/liter must be multi-
plied by 3.78 to arrive at a gallon equivalent cost of
approximately 4.91 Euros per gallon.

Currency Conversion

The price difference in the above fuel purchase
example is exacerbated (increased not for the better) by
the need to convert the value of the two currencies
involved. As of mid-2005, 1 Euro equaled $1.25 (in other
words, it took $1.25 to purchase 1 Euro). And so the
actual price of the fuel in the above example was 1.30
Euro/liter � 1.25 $/Euro � 1.625 $/liter and thus a gallon
equivalent price of $6.14 per gallon (1.625 $/liter � 3.78
liter/gallon).

Although currency values (and thus conversion fac-
tors) can change rapidly—over the years between 2001
and 2005 the Euro went from being worth only about 75
U.S. cents to more than $1.30—such price differences for
fuel are normal, because fuel in Europe is much more
expensive than in the United States.

Non-standard Units of Conversion

Another often-used, non-standard metric unit is the
hectare for land area. A hectare is 10,000 square meters
and is equivalent to 0.4047 acre.

Other measurements of area include Ares, Dunams,
Perches, Tatami, and Tsubo.
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Conversion of Units of Time,
an Exception to the Rule

The metric unit of time, the second, no longer
depends on the wobbly rotation of Earth (1/86,400th of a
day), because Earth is slowing down; with days keep get-
ting a little longer as time passes. Thus, the second is now
defined in terms of the vibrations of the cesium-133
atom. One second is defined as the amount of time it
takes for a cesium-133 atom to vibrate 9,192,631,770
times. This may sound like a strange definition, but it is a
superbly accurate way of fixing the standard size of the
second, because the vibrations of atoms depend only on
the nature of the atoms themselves, and cesium atoms
will presumably continue to behave exactly like cesium
atoms forever. The exact number of cesium vibrations
was chosen to come out as close as possible to what was
previously the most accurate value of the second.

Minutes are permitted to remain in the metric sys-
tem for convenience or for historical reasons, even
though they do not conform strictly to the rules. The

minute, hour, and day, for example, are so customary that
they are still defined in the metric system as 60 seconds,
60 minutes, and 24 hours—not as multiples of ten.
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Key Terms

English system: A collection of measuring units that
has developed haphazardly over many centuries and
is now used almost exclusively in the United States
and for certain specialized types of measurements.

Derived units: Units of measurements that can be
obtained by multiplying or dividing various combina-
tions of the nine basic SI units.

Kelvin: The International System (SI) unit of tempera-
ture. It is the same size as the degree Celsius.

Mass: A measure of the amount of matter in a sample
of any substance. Mass does not depend on the
strength of a planet’s gravitational force, as does
weight.

Matter: Any substance. Matter has mass and occupies
space.

Metric system: A system of measurement developed in
France in the 1790s.

Natural units: Units of measurement that are based on
some obvious natural standard, such as the mass
of an electron.

SI system: An abbreviation for Le Système International
d’Unités, a system of weights and measures adopted
in 1960 by the General Conference on Weights and
Measures.

Temperature: A measure of the average kinetic energy of
all the elementary particles in a sample of matter.
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Coordinate
Systems

Overview

Coordinate systems are grids used to label unique
points using a set of two or more numbers with respect to
a system of axes. An axis is a one-dimensional figure, such
as a line, with points that correspond to numbers and
form the basis for measuring a space. This allows an exact
position to be identified, and the numbers that are used
to identify the position are called coordinates. One exam-
ple of the use of coordinates is labeling locations on a
map. Street maps of a town, or maps in train and bus sta-
tions allow an overview of areas that may be too difficult
to navigate if all features of the area were to be shown.
Without a coordinate system, these maps would represent
no sense of scale or distance.

The most common use of coordinate systems is in
navigation. This allows people who cannot see each other
to track their positions via the exchange of coordinates.
In a complex transport system, this allows all the compo-
nents to work together by exchanging coordinates that
reference a common coordinate system. An example is an
aviation network, where air traffic control must con-
stantly monitor and communicate the positions of air-
craft with radar and over radio links. Without a
coordinate system, it would be impossible to monitor dis-
tances between aircraft, predict flight times, and commu-
nicate direction or change of direction to aircraft pilots
over the radio.

Fundamental Mathematical Concepts
and Terms

DIMENS IONS  OF  A  COORD INATE
SYSTEM

Coordinate systems preserve information about dis-
tances between locations. This allows a path in space to be
analyzed or areas and volumes to be calculated. For
example, if a position coordinate at one point in time is
known and the speed and direction are constant, it is pos-
sible to calculate what the position coordinate will be at
some future time.

The number of unique axes needed for a coordinate
system to work is equal to the number of unique dimen-
sions of the space, and is written as a set of numbers
(x,y,z). In ordinary day-to-day life, there are three unique
directions, side-to-side, up and down, and backwards and
forwards. It was the German-born American physicist
Albert Einstein (1879–1955) who suggested that there 
is a fourth dimension of time. This suggestion led to
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Einstein’s famous theory of relativity. However, these
effects are normally not visible unless the velocities are
very close to the speed of light or there is a strong gravi-
tational field. Therefore, the dimension of time is not
usually used in geometric coordinate systems.

Sometimes it is sensible to reduce the number of
dimensions used when constructing a coordinate system.
An example is seen on a street map, which only uses two
axes, (x,y). This is because changes in height are not
important, and locations can be fixed in two of the three
dimensions in which humans can move. In this case, a
coordinate system based on a two-dimensional flat sur-
face (a map) is the best system to use.

CHANGING  BETWEEN  COORD INATE
SYSTEMS

Coordinate systems denote the exact location of
positions in space. If two or more sets of coordinates are
given, it is possible to calculate the distances and direc-
tions between them. To see this, consider two points on a
street map that uses a two-dimensional Cartesian coordi-
nate system. A line can be drawn between the two points
that extend from a reference point, say a building where a
friend is staying, located at (a,b) on the map, to the point
where you are standing (x,y). This line has a length, called
a magnitude, and a direction, which in this case is the
angle made between the line and the x axis. In Cartesian
coordinates, the magnitude is given by Pythagoras’
theorem:

The angle that this line makes with the x axis moving
anticlockwise is given by:

If you were to walk toward your friend along the line,
the magnitude would change, but the angle would not. If
you were to walk in a circle around your friend, the angle
would change, but the magnitude would not.

You may have noticed that the magnitude (radius of
the circle around your friend) and the angle taken
together form a coordinate in the polar coordinate sys-
tem, (radius, angle). These equations are an example of
how it is possible to convert between coordinate systems.
The Cartesian coordinates of your position can be 
redefined as a polar coordinates. The reverse is also 
possible.

Angle = tan –1
y – b

x – a

⎛

⎝
⎜

⎞

⎠
⎟

Magnitude = – a)2 +(x – b)2(y

VECTORS
This example also leads to the concept of vectors.

Vectors are used to record quantities that have a magni-
tude and a direction, such as wind speed and direction or
the flow of liquids. Vectors record these quantities in a
manner that simplifies analysis of the data, and vectors
are visually useful as well. For example, consider wind
speed and direction measured at many different coordi-
nates. A map can be made with an arrow at each coordi-
nate, where each arrow has a length and direction
proportional to the measured speed and direction of the
wind at that coordinate. With enough points, it should be
possible just by looking at this map to see patterns these
arrows create and hence, patterns in the wind data.

CHOOS ING  THE  BEST  
COORD INATE  SYSTEM

Coordinate systems can often be simplified further if
the surface being mapped has some sort of symmetry,
such as the rotational symmetry of a radar beam sweep-
ing out a circular region around a ship. In this case, the
coordinate system with axes that reflect this circular sym-
metry will often be simpler to use. Coordinates can be
converted from one system to another, and this allows
changing to the simplest coordinate system that best suits
each particular situation.

CARTES IAN  COORD INATE  PLANE
A common use of the Cartesian coordinate system

can be seen on street maps. These will quite often have a
square grid shape over them. Along the sides of the square
grid, numbers or letters run along the horizontal, bottom
edge of the map and the other along the vertical, left hand
side of the map. In this example, assume that both sides
are labeled with numbers. These two sides are called the
axes and for Cartesian coordinate systems, they are always
at 90 degrees to each other.

By reading the values from these two axes, the loca-
tion of any point on the map can be recorded. The values
are taken from the horizontal x axis, and the vertical y
axis. The value of the x axis increases with motion to the
right along the horizontal axis, and the value of the y axis
increases with motion up along the vertical axis.

By selecting a point somewhere on the map, two lines
are drawn from the point that crosses both the x axis and
y axis at 90 degrees. The values along the two axes can then
be read to give coordinates. The exact opposite technique
will define a point on the map from a pair of coordinates.
Two lines drawn at 90 degrees to the x axis and y axis will
locate a point on the map where the two lines cross.
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The coordinates for a point on the map are often
written as (x,y). The order of expressing the coordinates
is important; if they are mixed up the wrong point will be
defined on the map.

Figure 1 shows an example of a two-dimensional
Cartesian coordinate system. In three dimensions, a Carte-
sian system is defined by three axes that are each at 90-
degree angles to each other. There is some freedom in the
way three axes in space can be represented, and an error
could invalidate the coordinate system. The usual rule to
avoid this is to use the right-handed coordinate system. If
you hold out your right hand and stick your thumb in the
air, this is the direction along the z axis. Next, point your
index finger straight out, so that it is in line with your palm;
this is the direction along the x axis. Finally, point your mid-
dle finger inwards, at 90 degrees to your index finger; this is
the y axis. The fingers now point along the directions of
increasing values of these axes. A point is now located in a
similar way to two-dimensional coordinates. From a set of
coordinates, written as (x,y,z), a point is located where three
planes, drawn at 90-degree angles to these axes, all cross.

POLAR  COORD INATES
The polar coordinate system (see Figure 2) is another

type of two-dimensional coordinate system that is based
on rotational symmetry. The reason this system is useful
is that many systems in nature exhibit rotational symme-
try, and when expressed in these coordinates, they will
often be simpler and more enlightening than using two-
dimensional Cartesian coordinates.

The two coordinates used to define a point in this sys-
tem are the radius and the polar angle. To understand this,
imagine standing at the center of a round room that has the
hours of a clock painted around the walls. Elsewhere in the
room is a dot painted on the floor. The distance between
you and the dot is the radius. The angle is a bit more
involved. Standing facing 3 o’clock, the polar angle is given
by the number of degrees you turn your head counter-
clockwise to face the dot. For example, if the dot is at the 12
o’clock mark, it has a polar angle of 90 degrees with respect
to you; if it is at 9 o’clock, it has an angle of 180 degrees; and
if it is at 6 o’clock, it has an angle of 270 degrees. The line at
0 degrees, the 3 o’clock mark, is defined to coincide with the
horizontal, or the x axis in the Cartesian system.

A Brief History of Discovery 
and Development

Humans have been mapping their location and trav-
els since the dawn of human history. Examples are seen
throughout history, such as the mapping of land in the

valley of the Nile in ancient Egypt, and recording jour-
neys of global exploration such as those of the Spanish
explorer Christopher Columbus (1451–1506) and others.

Today, the management of the world’s natural and
economic resources requires the availability of accurate
and consistent geographic information. The methods for
storing this data may have changed, with computer-based
storage replacing paper maps, yet the underlying princi-
pals for ensuring compatibility has remained the same.
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With coordinate systems, locations can be placed on
maps and navigation can be achieved. Such systems allow
a location to be unambiguously identified through a set
of coordinates. In navigation, the usual coordinates in use
are latitude and longitude, first introduced by the ancient
Greek astronomer Hipparchus around 150 B.C.

Like so many mathematical ideas in history, coordi-
nates may have existed in many forms before they were
studied in their own right. French philosopher and math-
ematician René Descartes (1596–1650) introduced the
use of coordinates for describing plane curves in a treatise
published in 1637. Only the positive values of the x and 
y coordinates were considered, and the axes were not
drawn. Instead, he was using what is now called the
Cartesian coordinate system, named after him. The polar
coordinate system was introduced later by the English
mathematician and physicist Isaac Newton (1642–1727)
around 1670. Nowadays, the use of coordinate systems is
integral to the development and construction of modern
technology and is the foundation for expressing modern
mathematical ideas about the nature of the universe.

Real-life Applications

COORDINATE  SYSTEMS  USED  
FOR  COMPUTER  AN IMAT ION

Films makers and photographers use computers to
manipulate images in a computer. Some common appli-
cations include photo manipulation, where images can be
altered in an artistic manner, video morphing, where a
computers morph an image into another image, and
other special effects. Blue screen imaging is an effect
where an actor acts standing in front of a screen, which is
later replaced with an image. This would allow an actor
dressed as Superman in front of a blue screen to later be
seen flying over a town in the film, for example.

Leaps in computing power and storage have allowed
animators to use computers to design and render breath-
taking artistic works. Rendering is a process used to make
computer animation look more lifelike. Some of these
animations are works in their own right, and others can
be combined with real life film to create lifelike computer
generated effects.

All of these techniques require coordinate systems, as a
computer’s memory can only store an image as a sequence
of numbers. Each set of coordinates will be associated with
the position, velocity, color, texture, and other information
of a particular point in the image. As an example, consider
animating the figure of a dog in a cartoon. If the dog was
featured in many scenes, it would be inefficient to redraw

each movement of the dog. To simplify the animation, each
part of the picture is split up into objects that can be ani-
mated individually. In this case, a coordinate system can be
set up for each moving part of the dog.

For the finished animated picture, all the objects will
be drawn together on some background image all at once,
maybe with some objects rotated, shifted, or enlarged to
refine the final effect. Vectors can be used to make this
process more efficient and flexible. In two-dimensional
animation and computer graphics design, this is often
called vector graphics. In three-dimensional graphics, it is
usually referred to as wire frame modeling.

COORDINATE  SYSTEMS  USED  
IN  BOARD  GAMES

Some games use boards that are divided up into
squares. An example of this is chess, an ancient and
sophisticated game that is played and studied widely. By
defining a coordinate system on the board, the positions
of the individual pieces can be located. Examples of this
are found in books on the game and even in some news-
papers, where rows of letters and numbers define the
position and movements of the pieces. In this way, many
famous games of chess have been recorded and a student
of the game can replay them to learn tactics and strategies
from masters of the game.

In computer chess simulators, the locations of the
pieces have to be stored as coordinates as numbers in the
computers memory. Once in the computer’s memory,
various algorithms calculate the movements of the pieces,
which are then displayed on the computer screen.

Even without computers, if two chess players are sep-
arated by vast distances, the coordinate system allows the
game to be played by the transmission of the coordinates
of each move. There are many games of chess that have
been played over amateur radio or by mail in this man-
ner. In this case, the players can be separated by many
thousands of miles and still play a game of chess.

PAPER  MAPS  OF  THE  WORLD
Assuming that the terrain one wishes to cross is flat,

a coordinate system based on two dimensions and a
Cartesian grid can be used for a paper map. This is suit-
able in shipping for maps of coastlines and maps of areas
up to the size of large islands. However, the world is not
flat, but curved, and for maps with areas larger than about
4 mi2 (10 km2), a Cartesian map of the surface will not be
accurate.

One way to make an accurate map that covers most
of the world on paper is to use a Mercator projection 
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(a two-dimensional map of the Earth’s surface named for
Gerhardus Mercator, the Flemish cartographer who first
created it in 1569). This projection misses the North and
South Poles, as well as the international date line. At the
equator, the map is a good approximation of the Carte-
sian system, but because of Earth’s curved shape, no two
axes can perfectly represent its surface. Toward the poles,
the image of the Earth’s surface becomes more and more
distorted. It is impossible to accurately project a spherical
surface onto a flat sheet, as there is no way to cut the
sphere up so that its sections can be rolled out flat. No
matter what projection is used, flat paper maps of Earth’s
surface will always have some distortion due to the
curved nature of Earth.

COMMERC IAL  AV IAT ION
Coordinate systems allow a location to be transmit-

ted over a radio link if two people have a map with a com-
mon coordinate system. Shipping is one example of this,
but another important commercial use of coordinate sys-
tems is in aviation. In the skies, positions can be commu-
nicated as a series of coordinates verbally or electronically
over radio links that allow many planes to be flown into
or out of airports. In commercial aviation, there will
often be many planes in the sky at one time coming in
from all different directions toward an airport. At busy
airports, sometimes there will not be enough runways to
deal with all the traffic, and airplanes will often be put
into a holding pattern while awaiting clearance to land.
Positions of the aircraft are continually monitored by air
traffic controllers with coordinates given both verbally by
pilots and mechanically by radar.

As air traffic increases each year, it becomes more
critical that coordinates and other information are relayed
quickly and clearly. Air traffic controllers must make sure
that coordinates are correct and understood clearly. Apart
from all of the sophisticated technological safeguards, a
simple misunderstanding of a spoken coordinate could
be enough to cause a disaster. To avoid this, all commer-
cial pilots must communicant in English, and flight ter-
minology is common and standard across countries.

LONG I TUDE  AND  JOHN  HARR ISON
In navigation, some point of reference is needed

before a coordinate can be found. On a street map, a per-
son could look for a street name or some other landmark
to pinpoint their position. However, on the open seas and
without fixed landmarks, it was not always simple for a
ship to find a point of reference. To fix a position on
Earth’s surface requires two readings, called latitude and
longitude. If the Earth is pictured as a circle, with the

North Pole at the top and the South Pole at the bottom,
and the ship is on the edge of the circle, the latitude is the
angle between the ship, the center of the Earth, and the
equator. Longitude can then be pictured as the circle
when looking down from on top of the Earth, with the
North Pole at the center of the circle. The angle between
the ship and Greenwich, England is the longitude. Find-
ing latitude is quite simple at sea using the angle between
the horizon and the North Star or noon Sun. A device
called a sextant was commonly used for this, but finding
an accurate reading for longitude was more problematic.

Calculating longitude was a great problem in the
naval age of the seventeenth and eighteenth century, and
occupied some of the best scientific minds of the time.
The British announced a prize of £20,000 for anyone who
could solve the problem. It was finally solved by the
invention of a non-pendulum clock that could kept accu-
rate time at sea. It was invented by the visionary English
clock maker John Harrison (1693–1776), who spent a
great part of his life trying to construct a clock that was
thought by many to be impossible with the technology of
the time. It contained several technological developments
that allowed it to work and keep time in the rough condi-
tions at sea. During this time, John Harrison was con-
stantly battling with the Royal Society, England’s
preeminent scientific organization. Ironically, while the
members of the Royal Society were still debating if his
clock really did work, it was already being used at sea for
navigation by the navy. Eventually, after a long battle,
John Harrison received the money and recognition he
deserved. With the invention of this clock, calculating
longitude at sea became simple. The clock is set to a stan-
dard time, taken as the time of Greenwich and called
Greenwich Mean Time (GMT). If a person looks at the
clock at noon, when the sun is directly overhead, and it
reads 2 P.M., then two hours ago it was noon in Green-
wich, as the sun rotates 360 degrees around the Earth
every 24 hours. The equation is:

MODERN  NAV IGAT ION  AND  GPS

In the twenty-first century, most navigation is based
on the global positioning system (GPS). This is a network
of 24 American satellites that orbit the Earth, allowing a
position coordinate to be read off the screen of a special
radio receiver anywhere on Earth, and is accurate to within
16.4 yd (15 m). Interestingly, this system requires use of a
special coordinate system based on Einstein’s theory of

2 hours
difference = 30° Longitude

from Greenwich
360°

24 hours
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relativity called spacetime. In spacetime, time itself
becomes a coordinate axis added to the normal three-
dimensional world. The four-dimensional spacetime may
seem strange, and the effects of it are far too small to be
seen unless scientists or mathematicians are dealing with
very high velocities or gravitational fields. However, the
GPS satellites must give a very accurate time signal for the
calculation of a coordinate. To do this, the satellites have
small on-board atomic clocks. Relativistic effects from
the high velocity of the satellites orbit relative to the
Earth’s surface distort this time signal and this distortion
must be accounted for. If these effects were not taken into
account, the resulting coordinates would be off by more
than 6.2 miles (10 km) per day. This is all accomplished
with an internal computer that returns the corrected map
reading to the user.

3 -D  SYSTEMS  ON  ORD INANCE
SURVEY  MAPS

Some examples of three-dimensional coordinate sys-
tems can be found on ordinance survey maps. In this
case, a two-dimensional Cartesian system is modified by
the addition of lines to map height above sea level. These
maps are used by surveyors and in sports, such as climb-
ing and hiking, to map terrain with valleys and moun-
tains. To define the height of the ground above sea level,
two coordinates would not be enough. The basic map is a
Cartesian system with a grid that gives two coordinates,
but the third dimension for height is represented by
curved lines drawn on the map. Each one of these lines

represents a height in meters above sea level, giving the
third dimension.

RADAR  SYSTEMS  
AND  POLAR  COORD INATES

Modern radar systems are based on a device called a
magnetron that produces a highly focused beam of
microwaves. The beam can be rotated so that a radar
operator can see all of a ship. A radar system that uses this
method is seen on ships as a rotating parabolic aerial
attached somewhere on top of the ship. This radar system
is used to detect ships and other large solid objects in the
sea, as the beam sweeps around the ship in a circular path.
The radar screen will look like the familiar radar screen
seen in movies, shaped as a round monitor with a line
from the center sweeping around it in a circular path.
Objects on the screen will show up as points as the beam
sweeps over them.

The beam rotates in a two-dimensional fixed plane,
so in order to locate objects, changes in height can be
ignored, and a two-dimensional coordinate system can be
used. The two-dimensional Cartesian coordinate system
is not the best coordinate system to use in this case. Con-
sider the operator’s screen, for example. Although one
might cover the round screen in a square mesh and put
the round screen into a square box to draw the x and y
axis, this would be impractical. The length from the cen-
ter of the screen to a point to the edge of the round screen
is constant, and is related to the maximum range the
radar system can physically detect. As the edge of the

Key Terms

Axis: Lines labeled with numbers that are used to locate
a coordinate.

Coordinate: A set of two or more number or letters used
to locate a point in space. For example, in 2 dimen-
sions a coordinate is written as (x,y).

Cartesian coordinate: A coordinate system were the
axes are at 90 degrees to each other, with the x axis
along the horizontal.

Dimension: The number of unique directions it is possi-
ble for a point to move in space. The world is nor-
mally thought of as having three. Flat surfaces have
two dimensional and more advanced physical con-
cepts require the use of more than three dimen-
sions such as spa.

Polar angle: The angle between the line drawn from a
point to the center of a circle and the x axis. The
angle is taken by rotating counterclockwise from the
x axis.

Polar coordinate: A two-dimensional coordinate system
that is based on circular symmetry. It has two coor-
dinates, the radius and the polar angle.

Radius: The distance from the center of a circle to its
perimeter.

Vector: A quantity consisting of magnitude and direc-
tion, usually represented by an arrow whose length
represents the magnitude and whose orientation in
space represents the direction.
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round screen is at maximum range, there would be areas
dead areas between this and the square box used to define
the Cartesian coordinate system. Another problem comes
with the calculation of the distance and angles of objects
in relation to the ship.

A better coordinate system to use in this example is
the polar coordinate system, which reflects the circular
nature of the sweeping beam. The radius axis is the dis-
tance along a line, drawn from the detected object to the
center of the screen. The polar angle is measured between
the horizontal line that crosses the center of the screen
and the beam line. To draw a reference grid for the radius
of this coordinate system, the screen is divided up into a
number of concentric circles, or circles that get bigger
with equal spacing, and are all centered at the screen cen-
ter. Each of these circles is at a different fixed radius so the
distance of the detected object can be read on the screen.
A number of lines drawn at equal angles emanating from
the center of the screen, like the spokes of a bicycle wheel,
allow the polar angle to be read off, giving the angle
between the ship and the detected object.

The center of the screen is always the location of the
ship. If the radar operator sees a flash on the screen, the
polar coordinate of the object is identified by the finding
the circle and line that meet at the detected object. If each

circle is labeled as 1km and each line labeled in 1-degree
increments of angle, with the right hand side of the hori-
zontal line representing the front of the ship, a polar
coordinate made from the twentieth circle and the 
ninetieth line counter-clockwise from the horizontal
instantly tells the radar operator that the object is 20 km
away and 90 degrees to the right of the ship. More impor-
tantly, this information is read from the screen without
using any mathematical conversion to find these figures,
which would have been needed had a Cartesian system
been used.

Where to Learn More

Books
Sobel, Dava, and William J. H. Andrewes. The Illustrated Longi-

tude. New York: Walker & Company, 2003.

Web sites
Dana, Peter H. “Coordinate Systems Overview” The Geogra-

pher’s Craft”. University of Colorado. �http://www.
colorado.edu/geography/gcraft/notes/coordsys/coordsys_
f.html� (accessed March 18, 2005).

Stern, David P. “Navigation.” �http://www-istp.gsfc.nasa.gov/
stargaze/Snavigat.htm� (accessed March 18, 2005).
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Decimals

Overview

Decimals can precisely indicate amounts, time speed
to the hundredths or even thousandths of a second, pre-
cisely indicate the passage of time, accurately represent
measurements of parameters that include weight, height,
temperature and distance, and even help nab drivers who
are speeding down the highway.

This article will consider decimals: what they are,
how numbers are represented, and how decimals form a
vital part of real-life math.

Fundamental Mathematical Concepts
and Terms

The simplest way to answer this is visually: suppose
that there are ten boxes on a table, as depicted in Figure 1.

Three of the boxes in Figure 1 are black in color and
the remaining seven boxes are white. An ideal way to
describe this relationship nonverbally is to use the lan-
guage of math. A central part of a mathematical descrip-
tion can revolve around decimals. In order to write the
preceding sentence using math language instead of words.
The black colored boxes can be denoted as 1/10 �1/10 �
1/10 � 3/10. Another way to mathematically write the
same information is in decimal form, expressed as 0.3.

This particular decimal consists of three components.
The zero is in the ones column. Although other numbers
are not present to the left of the zero, if they were, they
would be in the familiar tens, hundreds, thousands, etc.
columns. In other words, these numbers would be increas-
ing from zero in 10� increments. The number three is
located immediately to the right of the period (the deci-
mal point), in the column that depicts tenths (1/10).

If there was a number to the right of the three,
that number would be in the hundredths (1/100) col-
umn. In the present example, 0.3, there are zero ones and
three tenths. The number is pronounced as ‘zero point
three’.

Thus decimals can be seen as a short way of express-
ing certain types of fractions, namely those whose
denominator are sums of powers of ten (tenths, hun-
dredths, thousandths, etc.).

As an example, consider the number 8.53479. The
number can be written in fractional form in terms of the
place values of its various digits: 8.53479 � 8/1 � 5/10 �
3/100 � 4/1,000 � 7/10,000 � 9/1,000,000. However, it is
certainly a lot easier and more understandable to write
this number in the decimal form (also called decimal
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notation) of 8.53479 than in the long and cumbersome
fractional form.

A Brief History of Discovery 
and Development

Interestingly, although decimals are relatively new to
numbering systems, base numbering systems like base 10
and base 60 have been around for thousands of years. In
1579, a book written by an Italian/French mathematician
named François Viete contains a quote that argues for 
the use of the base 10 decimals (the tenths, hundredths
and thousandths pattern seen above) instead of a more
complex base 60 (sexagesimal) system that was then 
in vogue.

Viete argued, ‘Sexagesimals and sixties are to be tested
sparingly or never in mathematics, and thousandths and
thousands, hundredths and hundreds, tenths and tens,
and similar progressions, ascending and descending, are to
be used frequently or exclusively.’

Just a few years later, in 1585, a book entitled De
Thiende (The Tenth) popularized the concept and 
structure of decimals. However, the structure was a bit dif-
ferent than the decimals known today. The present day for-
mat of decimals came about in seventeenth century
Scotland, courtesy of mathematician John Napier. It was
Napier who introduced the decimal point as the boundary
between the place values on ones and tenths. In some 
areas of the world a decimal comma is still used instead of
a point.

Real-life Applications

As noted in the previous section, decimals numbers
are easier to write and comprehend than numbers as rep-
resented in a fractional format, especially larger numbers.
This ease of use and understanding has made decimals a
centerpiece of disciplines including medicine, finance,
and construction that call for the precise representation
of distance, mass, and currency.

SC IENCE
In science, virtually all measurements are recorded

and expressed as decimals. This accuracy is important to

the scientific method, since it makes it possible for some-
one to repeat the reported experiments. Repetition of
experiments and the resulting confirmation or refuting of
the reported results is the cornerstone of science.

MEASUREMENT  SYSTEMS
In countries that use the metric system, such as

Canada and most of Europe, decimals predominate.
Glancing at the digital thermostat might reveal a tem-
perature of 68˚F (20.17˚C). A glance at the cereal box
might reveal that a 1 cup (0.25 liter) serving of cereal con-
tained 8.5 grams of protein and 2.7 grams of fat. A coffee
bought at the local drive-through java emporium costs
$3.00 plus a 15% tax (another $0.45).

Sports

There are many others examples of decimals in our
everyday lives. Watch just about any sporting event in
which timing of the game or the race is involved and a
digital clock will inevitably be in use. Indeed, in track and
field events like the 100-, 200- and 400-meter runs, the
finish line clock is capable of measuring to the hun-
dredths of a second. That is why a winning 100-meter
time will be reported as 9.89 seconds, for example.

In the sport of baseball, a common practice for a
team is to position one of their personnel in the stands to
monitor the speed of the pitches thrown by the team’s
starting pitcher. Compiling this information can help the
coach know at about what point in the game the pitcher
starts to get tired and the velocity of his or her pitches
begins to decrease. The timing device is used to record the
speed of the pitches. This device is essentially the same as
the one that police officers use to record the speed of vehi-
cles zooming along a highway. These ‘speed guns’ display
the speed digitally. So, when a coach sees the pitches drop
to 75.5 miles per hour, or the police officer times a car
moving at 80.3 miles per hour, action is likely to be taken.

GRADE  PO INT  AVERAGE
CALCULAT IONS

Another example of one of the thousands of uses of
decimals strikes motivating fear into the hearts of stu-
dents, calculating their grade point average or GPA. The
GPA is a cumulative score of the individual grades attained
for the various courses taken. As high school seniors are
well aware, universities, colleges and other institutions
can place great emphasis on GPA when deciding on
admittance of students.

Figure 1.
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A, B�, B, C, and a C�. John received two As, a B�, B, and
a D. Using the grade point scale, the points for each of the
courses is expressed in Figure 3.

In order to calculate the GPAs for the Bob and John,
each student’s individual scores are totaled and that num-
ber is divided by the number of courses. In other words,
the average score is determined. Bob’s GPA is (4.00 �

3.33 � 3.00 � 2.00 � 1.67) / 5, or 2.80. John’s GPA is
(4.00 � 4.00 � 3.33 � 3.00 � 1.00) / 5, or 3.066.

Where to Learn More

Books
De Francisco, C., and M. Burns. Teaching Arithmetic: Lessons for

Decimals and percents, Grades 5-6. Sausalito: Math Solu-
tions Publications, 2002.

Mitchell, C. Funtastic Math! Decimals and Fractions. New York:
Scholastic, 1999.

Schwartz, D.M. On Beyond a Million: An Amazing Math Journey.
New York: Dragonfly Books, 2001.

Web sites
BMCC Math Tutorials “Introduction to Decimals.” �http://

www.bmcc.org/nish/MathTutorials/Decimals/� (October
30, 2004).

 Letter grade Points

 A 4.00
 A� 3.67
 B� 3.33
 B 3.00
 B� 2.67
 C� 2.33
 C 2.00
 C� 1.67
 D� 1.33
 D 1.00
 D� 0.67
 F 0.0  

Figure 2.

 Bob John

A 4.00 A 4.00
B� 3.33 A 4.00
B 3.00 B� 3.33
C 2.00 B 3.00
C� 1.67 D 1.00

Figure 3.

GPA is based on the points that are assigned to a
course. The points are usually based on a four-point
grading scale similar to those in Figure 2.

In this example, Bob and John have received the fol-
lowing grades for the five courses taken: Bob received an
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Demographics

Overview

Demographics is the mathematical study of popula-
tions, and groups within populations.

Demographics uses characteristics of a population to
develop policies to serve the people, to guide the develop-
ment and marketing of products that will be popular, to
conduct surveys that reveal opinions and how these opin-
ions vary among various sectors of those surveyed, and of
continuing news interest, to analyze polls and results
related to elections.

Math lies at the heart of demographics, in the methods
used to assemble information that is accurate and represen-
tative of the population. Without the accuracy and precision
that mathematics brings to the enterprise, the demographic
analysis will not provide meaningful information.

But demographics is not entirely concerned with math.
Because demographics is also concerned with factors like
cultural characteristics and social views, factors such as how
people think about the issue at hand are also measured. Or,
even less precisely, demographics can be concerned with
how people ‘feel’ about something. These sorts of factors are
more difficult to put into numbers and they are described as
being qualitative (measuring quality) as opposed to quanti-
tative (measuring an amount). Qualitative and quantitative
aspects are often combined to form a ‘demographic profile.’

Some of the mathematical operations that can be
useful in the analysis of demographic information
include the mean (the average of a set of numbers that is
determined by adding some aspect of those numbers and
dividing by some aspect of the numbers), the median (the
value that is in the middle of a range of values) and the
distribution (the real or theoretical chances of occurrence
of a set of values, usually patterned with the most 
frequently-occurring values in the middle with less 
frequently-occurring values tailing off in either direction.)

Demographic information can be very powerful. It
can reveal previously unrecognized aspects of a popula-
tion and can be used to predict future trends. Part of the
reliability of the demographic information comes from
the mathematical operations used to derive the data.

Real-life Applications

ELECT ION  ANALYS IS
The analysis of the 2004 general election (also called

the Presidential election) in the United States offers an
example of the use of demographics to analyze the voting
patterns. By asking people questions about their beliefs and
opinions on a variety of issues, and by utilizing databases
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that yield information on aspects such as age, gender, and
income (more on this sort of information is presented
below), a more complete picture can be built of the char-
acteristics of those who voted for a certain candidate.

For example, exit polls (asking people questions after
they have voted) were used to determine voter prefer-
ences and what issues were important in deciding how to
cast votes in various races.

These characteristics can be considered along with
information on employment, geographic residence, home-
owner status, and other factors, to build up a profile of a
‘typical’ person who will vote for a particular politician.

These demographic patterns were known before-
hand to campaign organizers, who conducted their own
surveys of the public. So, aware of the characteristics of a
certain segment of the population and the percentage of
total voters who fit this demographic, candidates target
specific groups with specific messages and promises.

CENSUS
Many countries periodically undergo a process known

as a census. Essentially, a census is an organized gathering
of information about the adult population of the country.
Citizens and other eligible residents of the country com-
plete a form or participate in an interview. Many questions
are asked in a census. Example categories include age, gen-
der, employment status, income range, educational back-
ground, marital status, number of dependents, ethnic
background, place of residence (both geographically and in
terms of whether a residence is owned or rented), history
of residence change, and record of military service.

These categories of information can be analyzed to
provide details of the characteristics of the population,
and the proportions of the populations that make up
each of the characteristic groups.

The demographic information in a census is used by
governments to develop policies that will hopefully best

Artists (such as hip hop artists jace, Buckshot, and Freddie Foxxx, shown here) and other activists use demographics to
identify specific areas and populations where advertising and money will be most effective. AP/WIDE WORLD PHOTOS. REPRODUCED 

BY PERMISSION.
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serve their constituents. As well, the information repre-
sents a wonderful database for marketers to sell their
wares. For example, it would not make sense for car com-
pany to target a region of high unemployment as a mar-
ket for its top-of-the-line luxury car.

Demographics and the Marketplace

Demographics such as contained in a census have long
been a tool of those who make and sell products. Knowing
the characteristics, likes and dislikes of the buying public is
obviously important when trying to sell a product.

The baby boom that occurred during the 1950s and
1960s provides a prime example of an identified demo-
graphic group. The increased birth rate in North America
during those decades will have a number of effects that
have and will continue to ripple through the ensuing
decades. In the first few years, there was an increased
demand for products to do with infants (baby food, dia-
pers). Savvy entrepreneurs took advantage of the knowl-
edge that an increasing number of new parents identified
strongly with environmental protection to market organic
baby foods and re-popularize nondisposable diapers. In the
following few years as infants became youngsters, adoles-
cents and young adults there was a succession of increased
demands for children’s toys and clothes, better educational
facilities, housing and furniture. In the last decade, as the
baby boomers have reached middle age, there has been an
increased demand for certain types of vehicles such as
SUVs, for health clubs and weight loss centers to help trim
sagging waistlines, and for expertise in investment help as
retirement draws closer. In the coming decades, as the baby
boomers become infirmed, there will be a demand for
more health-care services and funeral services.

Baby boomers came into the world at about the same
time and, as they age, experience similar things and have
similar demands. This generation is a perfect example of
what was termed, way back in the 1920s, a ‘generational
cohort.’ The designation has roots in mathematics. In sta-
tistical analysis, it can be advantageous and more mean-
ingful to group items in cohorts that are similar in

whatever aspect(s) is being studied. Historic examples of
other demographic cohorts, and their associated charac-
teristics, are given in Table 1.

GEOGRAPH IC  INFORMAT ION  SYSTEM
TECHNOLOGY

Geographic information system (GIS) technology is
the use of computers and computer databases to assem-
ble information that have a geographical component. The
information can come from reports, topographical maps
that display elevation, land use maps, photographs, and
satellite images of an area.

Knowledge of the geography can be combined with
other data including information on age, gender, employ-
ment, health, and other aspects that are collected in a cen-
sus, and data collected from other surveys. The aim is to
provide a more complete picture of a region, in which
demographic characteristics can be related to geographi-
cal features.

As an example, combining GIS data with population
information could reveal that there is a higher incidence
of fatal diseases in rural and mountainous areas. This
could help health care providers in designing better
ambulance service or telephone-based health advice.

The analysis and interpretation of geographic infor-
mation can be a mathematical process. Equations can be
applied to images to help sort out background detail from
the more relevant information. Data can be statistically
analyzed to reveal important associations between vari-
ous data groups.

Where to Learn More

Books

Foote, D.K., and D. Stoffman. Boom Bust & Echo: Profiting 
from the Demographic Shift in the 21st Century. Toronto:
Stoddart, 2000.

Rowland, D.T. Demographic Methods and Concepts. New York:
Oxford University Press, 2003.

Wallace, P. Agequake: Riding the Demographic Rollercoaster Shak-
ing Business, Finance, and Our World. London: Nicholas
Brealey Publishing, 2001.

Cohort

Great Depression
World War II
Generation X
Generation N

Dates of birth

1912–1921
1922–1927
1965–1976
1977–present

Events

Depression, high unemployment, hard times
War, women working, a common enemy
Space disasters, AIDS, safe sex, Berlin wall
September 11, Iraq wars, Internet

Example characteristics

Need for financial security and comfort, Conservative
The common good, patriotism, teamwork
Need for emotional security and independence, importance of money
Need for physical safety, patriotism, increased fear, comfortable

with change

Table 1.
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Discrete
Mathematics

Overview

Discrete mathematics includes all types of math that
deal with discrete objects, that is, things that are distinct,
unconnected, or step-by-step in nature. For example, the
natural numbers 0, 1, 2, 3, 4, . . . are discrete, and count-
ing is a discrete process.

The increasing use of computers in science, engi-
neering, mathematics, and daily life has led to fast growth
in discrete mathematics over the last 30 years or so. Digi-
tal computers store numbers, words, and images in dis-
crete form, that is, as ones and zeroes, so designing and
programming computers involves discrete mathematics.
Today, discrete mathematics is basic to most areas of
computer science, including operating systems, algo-
rithms, security, cryptography, networking, and database
searching. Discrete math also used in engineering, chem-
istry, biology, operations research (the scientific manage-
ment of large systems of people, machines, money, and
material), and in many other fields.

The counterpart of discrete is continuous. Something
is continuous if it changes smoothly from one place (or
time) to another. A flight of stairs is discrete; a ramp is con-
tinuous. Calculus, which studies the behavior of curves
and irregularly shaped areas, is an example of a branch of
mathematics that is concerned mostly with continuous
rather than discrete objects. However, discrete and contin-
uous mathematics often overlap or influence each other.

Fundamental Mathematical Concepts
and Terms

LOG IC , SETS , AND  FUNCT IONS
The foundation of discrete mathematics is the study

of logic, statements, sets, and functions.

Logic is the study of the rules of thinking. It helps
mathematicians distinguish trains of thought that are
valid (correct throughout) from ones that contain hidden
errors. Logic can be considered a form of discrete mathe-
matics because the steps in a logical train of thought
occur one at a time, that is, in a discrete way.

Statements are claims about the way things are. True
statements obey the rules of logic, and false statements
break them. The statement 1 � 1 � 2 is true, and the
statement 1 � 1 � 5 is false.

Set theory studies the ways in which statements,
facts, or objects can be arranged into groups. These
groups are called sets. For example, the two numbers 0
and 1 can be grouped into a set. Logic governs the mak-
ing of statements about sets.
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Finally, a function is a rule that connects the objects
in one set with those in another. A function can be
defined by a sentence like “Adding 1 to every number 
in set A gives a number in set B,” by a formula like f(x) �
x � 1, or by a computer program. Functions are basic to
both discrete and non-discrete mathematics; they are the
language that mathematics uses to describe changes and
relationships.

BOOLEAN  ALGEBRA
In 1854 the English mathematician George Boole

(1815–1864) published a book called The Laws of
Thought. In it, he described the rules for doing mathe-
matics with the numbers 0 and 1. These are the rules of
the type of discrete mathematics called Boolean algebra.
In Boolean algebra, every operation (such as addition or
multiplication) must give a result that is still a 0 or a 1. In
ordinary arithmetic, 1 � 1 � 2; but in Boolean algebra,
1 � 1 � 1. Ordinary arithmetic can be approximately
translated into Boolean algebra, which is how computers
and calculators are programmed to do math.

NUMBER  THEORY
Number theory is the study of integers, which are the

counting numbers 0, 1, 2, 3, . . . and their negatives, –1, –2,
–3, and so on. Numbers that cannot be written as whole
numbers, like 1/2, 3/4, or 5.6, are not integers.

But how can there be a whole field of study devoted
to something so simple? When you’ve counted 1, 2, 3,
what else is there to say? Plenty, as it turns out. Prime
numbers, for example, are one of the main interests of
number theory. An integer is a prime number if it cannot
be evenly divided by any number smaller than itself
except 1. (Any number divided by 1 is just itself.) 4 is not
a prime number because it can be evenly divided by 2, but
5 is prime because it cannot be evenly divided by 2, 3, or
4. One sure way to tell whether a number is prime is to 
try to divide it by every positive integer smaller than 
itself; if none of them divide the number evenly, it is a
prime. Primes have surprisingly complicated and useful
properties.

COMBINATOR ICS
Combinatorics is the mathematics of counting.

Counting may also seem, at first glance, too simple to be
a whole field of mathematics. When you count, you just
point to each object to be counted and say “one, two,
three . . .” until you run out of objects—right?

But this will not work if there is nothing to point at,
or if there are too many things for one-by-one counting

to be practical. This is often the case when we are trying
to count not objects, but arrangements of objects, also
called “permutations.” For example, we might be design-
ing a computer password system to serve as many as a bil-
lion users. We don’t want to require extremely long
passwords, because this might annoy users and drive
them away. However, if we use passwords that are too
short, there will not be enough passwords to go around.
For example, if the passwords were only one letter long,
there would only be 26 passwords (A, B, C, . . . Z). Would
five letters be enough? We could answer such a question by
writing down all possible five-letter combinations and
then counting them, but this would take too long—
remember, we want at least a billion passwords. Combina-
torics answers questions like this efficiently. In the case of
the five-letter password, one of combinatorics’s simplest
rules says that there are 265 or 11,881,400 possible pass-
words. This is not enough for a billion users. To allow for
more than a billion passwords, we must use at least seven
letters. Combinatorics enables us to count possibilities in
more complicated situations, too, with many applications
in computer science and other real-world fields.

PROBAB IL I TY  THEORY
Probability theory is the study of how likely things

are to happen. For instance, when a fair coin is flipped,
the probability of getting heads is 1/2 and the probability
of getting tails is 1/2. Probability theory often uses con-
tinuous variables, but it is rooted in discrete mathematics
because the “events” it deals with are separate or discrete.

Probability theory is used throughout science and
business. Whenever we have to make a guess about the
future—or about past events of which we cannot have cer-
tain knowledge—we must think in terms of probability.
Corporations deciding how many items to manufacture
and where to send them must decide what the market will
probably want; gamblers and betters try to make the most
probable bets; testing memory chips and other manufac-
tured items for quality control is done using probability-
based methods; and many computer tasks, such as
searching a database for a particular name or other item,
are treated by designers as “probabilistic” (random)
processes. Combinatorics is used heavily in probability
theory because to know how probable a particular event
or group of events is, we need to know how many possible
events there are. We calculate this using combinatorics.

ALGOR I THMS
An algorithm is a set of instructions for solving a

problem or performing a task. The problem may be
mathematical—like deciding whether a particular
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number is a prime number, or finding the square root of
a number—or it may be non-mathematical, like baking a
cake or finding a word in a computer database. Algo-
rithms are used to tell computers how to do virtually
everything that they do. When a digital camera focuses
automatically, for example, its internal computer obeys
an algorithm that tells it what part of the picture to focus
on and how to know when that part is in focus. Large
prime numbers, which are important for sending secret
messages (cryptography), are found using algorithms.
Algorithms are a part of discrete mathematics because the
steps of an algorithm can be taken separately, one at a time.

CRYPTOGRAPHY
Cryptography is the science of making and reading

secret (or “encrypted”) messages—messages that look
like completely random strings of symbols (letters, num-
bers, or bits). Cryptography is a sub-field of discrete
mathematics because it deals with discrete (separate)
symbols and words.

GRAPHS
In mathematics, graphs are drawings consisting of

points (or circles) joined by lines. The circles are called
nodes and the lines that join them are called edges. If you
were to draw a five-pointed star, going directly from point
to point with your pencil, and then put a circle at each
point of the star, you would have drawn a graph with five
nodes and five edges. Many real-world problems can be
drawn as graphs. Nodes can stand for actual places (cities,
say) connected by edges representing roads, railways, or
telephone lines. Nodes can also be used to stand for states
or conditions of a machine, with edges standing for pos-
sible changes from one state to another. For instance, two
nodes connected by a single edge might stand for the ON
and OFF states of a television, with the line between them
standing for the fact that we can make the machine go
from one state to another (turn it on and off).

MATR IX  ALGEBRA
Matrix algebra gives the rules for handling matrices

(plural of “matrix”). A matrix is a group of numbers or
other symbols that have been arranged in a rectangular
array, as if glued to the squares of a chessboard. Whenever
we have a list of related mathematical equations (a “sys-
tem of equations”) and want to find a solution that satis-
fies all of them at once, we can write that list of equations
as a matrix. Matrix algebra is used in computer programs
designed to predict or mimic real-world events. Each
number in computer memory can be treated as a number

in a matrix, making it possible to solve large, difficult sys-
tems of equations efficiently.

Real-life Applications

SEARCH ING  THE  WEB
You want to find something on the Web, so you call

up the window of a favorite search engine such as
AltaVista or Google and type in a word or phrase. In a few
seconds or less, results appear—the first 10 or 20 out of
what may be hundreds or even tens of thousands of
matches, also called “hits.” Somehow, in a fraction of a sec-
ond, a computer (not yours, one belonging to the com-
pany that runs the search engine) has managed to comb
through the contents of several billion Web pages to see
which ones contain the word or words that you’ve entered.
Each page may contain hundreds or thousands of words.

The search engine manages this trick by searching
not the Web itself, but an index. A separate program is
constantly “crawling” the Web, that is, automatically call-
ing up hundreds of millions of Web pages. It then looks
at all the words on each page and adds the words it finds
to a large index or database along with information about
how important each particular Web page might be. Such
an index is huge—gigabytes or even terabytes (trillions of
bytes)—but it is still far smaller than the Web itself. When
you enter a word or phrase in the search engine, the
engine searches the index. Structuring and searching
large indexes and databases relies on the mathematics of
graphs, especially that kind of graph called a “tree.” Struc-
turing an index as a tree makes searching it highly effi-
cient. The result is that a search engine can dish up
thousands of hits almost in almost as little time as it takes
to get your request and send the results back.

COMPUTER  DES IGN
When George Boole published his book The Laws of

Thought in 1854, digital computers had not yet been
thought of (though a few mechanical adding machines
had been built). Boole’s book, in which he laid out the
rules of arithmetic using the simplest possible number
system (0 and 1), was thought to be “pure” math, that is,
math having no application to “reallife.” But in 1938 the
American mathematician Claude Shannon (1916–2001)
showed that Boolean algebra could be used to design
electrical circuits. It is easier and cheaper to build a circuit
that represents 1 and 0 by switching itself on and off than
to design a circuit that represents many numbers by
switching between many in-between states. Today, all
computer circuits are designed using Boolean algebra.
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SHOPP ING  ONL INE  
AND  PR IME  NUMBERS

Cryptography is probably the most important applica-
tion of number theory. It is, for example, basic to the func-
tioning of the Internet. Without cryptography, millions of
credit-card numbers could not be sent safely and automat-
ically over the Internet every day. Whenever a web browser
such as Explorer or Communicator announces that it has
given you a “secure” connection after you have clicked on a
link to make a credit-card purchase, a link using a type of
encryption known as a “public-key cipher” is established. It
is practically impossible for anyone (except, maybe, some-
body at the National Security Agency, the United States
government organization devoted to eavesdropping on
communications and breaking codes) to read a message
sent over such an Internet connection, even if they some-
how manage to intercept the message somehow. Public-key
ciphers depend on the fact that when very large two prime
numbers are multiplied to give a third, larger number it is
difficult—almost impossible, in practical terms—to dis-
cover the two primes from knowledge of their product (the
large number made by multiplying them).

COMBINATOR IAL  CHEMISTRY
Many of the tastes and smells that we experience

every day—whether in foods like french fries and gum, or
wafting from toilet paper, shampoo, or makeup—are cre-
ated in laboratories. Chemists are always looking for new
taste and smell chemicals, “tastants and odorants” as they
are called in the industry. One of the fastest-growing
methods for finding new tastants and odorants, as well as
drugs, pesticides, dyes, catalysts, and other chemicals, is
combinatorial chemistry. In theory, scientists should be
able to predict the properties of a complicated chemical
just by looking at the shape and composition of its mole-
cules. In practice, though, the only way to know how a
complicated chemical will behave is to put it together and
perform tests on it. Combinatorial chemistry, guided by
the mathematics of combinatorics, creates small amounts
of hundreds or thousands of similar chemicals all at once.
These are then tested by computers at high speeds. Com-
binatorial chemistry has greatly speeded up the discovery
of new drugs and other useful chemicals.

LOOK ING  INS IDE  THE  BODY  
WITH  MATR ICES

For about a hundred years, x-ray images of patients
were taken by shining x rays (a type of high-energy light)
through the body and capturing the shadows cast by body
parts, especially bones, on a piece of photographic film.
But in the 1980s, a new kind of x-ray came into being,

called CAT scanning (for computerized axial tomogra-
phy). In CAT scanning, a narrow x-ray beam, like the
beam of a flashlight, is moved all around the patient in a
circle. It is turned to point inward as it moves so that it
shines through the patient crosswise from every possible
angle. On the far side of the patient, an instrument
records the power of the x rays shining through the
patient. Where the x-ray beam meets more bone or other
tissue that absorbs it, the beam is weaker on the far side
of the patient. This process produces a long series of
numbers (beam brightness measurements) that do not
look anything like a picture of the inside of the patient’s
body—but using matrix algebra, a computer makes them
into a clear, sharp “cross-section” image resembling what
you would see if you could slice the patient in half. CAT
scans show pictures of fine details inside the body that
doctors could never see before. Other modern imaging
methods, such as nuclear magnetic resonance imaging,
also use matrix algebra.

F IND ING  NEW DRUGS  
WITH  GRAPH  THEORY

The chemical industry has for decades been building
up databases that record the three-dimensional (3-D)
structures of millions of molecules. The 3-D structure or
shape of a molecule helps determine its medical properties.
Researchers designing new drugs often know what shape
they want a drug molecule to have in order to produce a
certain effect in the body, but searching through millions
of 3-D molecule records by calling up each one on a screen
and looking at it is too slow. Instead, since the early 1990s
drug designers have been using graph theory and algo-
rithms to search for molecules with useful shapes. In this
method, each molecule is represented as a graph, with
atoms for nodes and chemical bonds for edges. Fast algo-
rithms have been designed that look for matches between
a “query graph” (the molecule the drug designer is looking
for) and the graphs of the molecules in the database.

COUNT ING  JAGUARS  US ING
PROBAB IL I TY  THEORY

Jaguars live in the jungles of Central and South
America. In the wild, jaguars—like other predators—
roam over vast areas, making it hard to know how many
jaguars there are in a given area. Yet it is important to
know how many jaguars there are in an area such as Kaa-
Iya National Park in Bolivia, in order to know how best to
protect them from extinction.

The probability theory of discrete events provides an
answers. (Counting jaguars is discrete because jaguars are
discrete.) Researchers set up “camera traps” in the forest
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that automatically photograph jaguars as they pass by.
Since the pattern of spots on each jaguar is unique, like a
fingerprint, these photographs tell the researchers how
many individual jaguars they have seen at each camera
trap. The whole population of jaguars cannot be expected
to walk past the cameras, however—it would cost too
much to build that many camera traps—so a mathemat-
ical model is used instead, along with a method called
“maximum likelihood estimation,” that guesses what the
most probable or likely total number of jaguars is based
on the number that have been photographed. In 2004,
biologists announced that using cameras and probability
theory they estimated that there were about 1,000 jaguars
in Kaa-Iya Park—more than they had thought, which is
good news for this endangered species.
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Key Terms

Boolean algebra: The algebra of logic. Named after
English mathematician George Boole, who was the
first to apply algebraic techniques to logical method-
ology. Boole showed that logical propositions and
their connectives could be expressed in the lan-
guage of set theory.

Combinatorics: The study of combining objects by vari-
ous rules to create new arrangements of objects.
The objects can be anything from points and num-
bers to apples and oranges. Combinatorics, like
algebra, numerical analysis and topology, is a impor-
tant branch of mathematics. Examples of combina-
torial questions are whether we can make a certain
arrangement, how many arrangements can be made,
and what is the best arrangement for a set of
objects. Combinatorics can be grouped into two cat-
egories. Enumeration, which is the study of counting
and arranging objects, and graph theory, or the study
of graphs. Combinatorics makes important contribu-
tions to fields such as computer science, operations
research, probability theory, and cryptology.

Function: A mathematical relationship between two sets
of real numbers. These sets of numbers are related
to each other by a rule which assigns each value
from one set to exactly one value in the other set.
The standard notation for a function y � f(x), devel-
oped in the 18th century, is read “y equals f of x.”
Other representations of functions include graphs
and tables. Functions are classified by the types of
rules which govern their relationships.

Logic: The study of the rules which underlie plausible
reasoning in mathematics, science, law, and other
discliplines.

Matrix: A rectangular array of variables or numbers, often
shown with square brackets enclosing the array.
Here “rectangular” means composed of columns of
equal length, not two-dimensional. A matrix equation
can represent a system of linear equations.

Prime number: Any number greater than 1 that can only
be divided by 1 and itself.

Set: A collection of elements.
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Division

Fundamental Mathematical Concepts 
and Terms

Division is the inverse operation of multiplication,
and is used to separate a set quantity into several smaller
equal quantities. Simple division involves three quanti-
ties. The beginning value in a division problem is called
the dividend, and the amount by which it is divided is
labeled the divisor. The solution to a division equation is
called a quotient, so a simple division equation takes the
form of dividend / divisor � quotient.

Two symbols are used to signify a division operation.
The commonly used division symbol (�) is called an
obelus, though this name is rarely used. The fraction line
(/) is also used to signify division, and this symbol is
called either a diagonal or a solidus. A fraction, written as
one value separated from another by a solidus, is in real-
ity a division equation that has not yet been evaluated.
The upper (left-hand) value, or dividend, in a fraction is
called the numerator, and the lower value or divisor is
called the denominator. In cases where the dividend does
not divide evenly by the divisor, the quantity left over
after the division is termed a remainder.

A Brief History of Discovery 
and Development

As the inverse of multiplication, division probably
developed around the same time it did. However, the
need for complex division calculations emerged only
fairly recently, and early applications of division were
probably simple equations used to evenly divide and dis-
tribute quantities of tangible objects.

As the need for multi-digit calculations became more
common, the process of long division was gradually
refined, and relatively complex procedures were devel-
oped to deal with these increasingly challenging prob-
lems. The ancient Egyptians developed a repetitive, but
effective, method for calculating long division solutions
using only simple multiplication. In this process, the divi-
sor is repeatedly doubled until the product is more than
the original dividend; at the point this occurs, specific
intermediate values from this process are added to find
the solution. While this process works well for even divi-
sion, additional complications arise when the initial divi-
sion leaves a remainder, an outcome for which additional
procedures were developed to approximate the resulting
fractional result.

A second ancient method of division is attributed to
the Hindus and goes by several names, including galley
division, batello division, and scratch division. This
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method, one of the most commonly used techniques
prior to 1600, is well-suited to the abacus and counting
table, but can quickly become confusing when done with
pencil and paper due to the necessity of repeatedly cross-
ing out or erasing numbers and replacing them with oth-
ers. The basic methodology involves guessing a potential
solution and replacing the existing value with this guess,
then evaluating the outcome and making another guess.
While tedious and needlessly complex in the twenty-first
century, this method allowed lengthy equations to be
evaluated many centuries before mathematics became a
widely taught subject.

Ironically, one modern division technique is quite
similar to the scratch method of repeatedly guessing and
evaluating trial values. Trial division is a commonly used
method of finding the prime factors of any number simply
by evaluating different divisors or sets of divisors until a
solution is found. While simple in application, this
approach is computationally intensive, requiring hundreds
or thousands of trials to produce a solution; however mod-
ern computers are ideally suited to such brute force meth-
ods, making this method useful in many situations.

Although powerful computers can solve virtually any
division problem, equations with a divisor of 0 cannot be
evaluated, and division by 0 produces an error message
on pocket calculators, in spreadsheet formulas, and in
computer programming applications. The reason for this
error can be demonstrated by conducting a series of cal-
culations which approach this value. For instance 1 / 1 �
1, and each reduction in the divisor produces a corre-
sponding increase in the result. Accordingly, if a sequence
of calculations is evaluated, we find that 1 / .001 � 1,000
and 1 / .0000001 � 10,000,000. As this progression con-
tinues and the divisor gets smaller and smaller
(approaches 0), the result of the equation will grow larger
and larger. If taken to its ultimate extreme, this process
would produce the equation 1 / 0 � infinity (or, 1 / 0 �
undefined). Because infinity is a symbolic value with lit-
tle practical meaning, this progression explains a com-
puter’s inability to perform calculations in which infinity
is the result. Given this impossibility, most computers
respond with an error code, informing the user that
dividing by 0 is illegal or impossible.

Real-life Applications

DIV IS ION  AND  D ISTR IBUT ION
Three boys have six cookies to eat; how do they

determine the most equitable way to distribute the treats?
For many people, a simple situation like this one will be

their first exposure to one of the most common uses of
division: distribution. In the case of boys and cookies, six
cookies will divide evenly among three stomachs, and
giving two cookies to each child will probably satisfy
them all fairly well.

Of course if the boys are not all the same age 
and size, some may argue for a different distribution,
with the largest boy arguing that he is entitled to three
due to his larger appetite, or the smallest claiming he is
due a larger share since his mother baked the cookies.
While these childish disputes are relatively insignificant,
they are different only in scale from the division 
disputes which take place daily in the world of commerce.
For example, the 2004 major professional hockey season
was cancelled, costing both players and owners millions
of dollars in earnings, largely because the owners 
and the players could not agree how to equitably 
divide the profits of their joint venture. In this case, with
the season cancelled, the income available to divide
became 0, making the question of how to divide it much
simpler.

Similar dilemmas arise when business ventures fail
and companies declare bankruptcy. In such cases, a court
will hear arguments from the company’s management or
their attorneys, and from claimants who have a legal right
to receive some of the assets of the failed firm. In deter-
mining how to divide the assets, the judge is guided in
part by a specific set of laws which govern bankruptcy
and his or her own understanding of how strong each
claimant’s position is. In such cases, it is not unusual for
stockholders to receive nothing, while bondholders and
others receive twenty-five to seventy-five cents for each
dollar they are owed.

Large corporations do not have an individual owner,
per se, but are owned by their stockholders, a diverse
group which can include individuals, pension funds and
retirement plans, and other corporations. These owners
are compensated for their investment by the payment of
dividends, normally distributed on a quarterly schedule.
A typical method of accounting for corporate earnings
allows the firm to subtract all its costs of doing business,
as well as the taxes it pays, to produce a final net earnings
value. From these net earnings, the firm will take some
funds to invest in future growth and other strategic goals;
the remainder will typically be distributed to sharehold-
ers as a dividend, normally by paying an equal share to
the owner of each share of common stock.

In the case of a large corporation such as Apple
Computer, General Motors, or Wal-Mart, earnings for a
given quarter could be hundreds of millions of dollars.
However, the number of shares of stock is so large that a
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firm’s dividend, or the amount that it passes along to
shareholders, is usually fairly small, often in the range of
$1.00 to $2.00 per share. In order to determine the value
of this payment to an investor, analysts frequently calcu-
late a value known as dividend yield, which equates to the
percent of the share price which the annual dividend
equals. Dividend yield is simple to calculate: annual divi-
dend is divided by stock share price to give yield. This
value provides an estimate of the first year return an
investor might make if he or she purchased shares of the
firm. Dividends are typically not paid by firms which are
losing money, or by rapidly growing start-up companies
which prefer to reinvest earnings in their current busi-
ness. Microsoft, a leading software company, grew rapidly
through the 1980s and 1990s, however it did not pay its
first regular dividend until 2004.

Budgeting, whether dealing with money or any other
limited commodity, provides many opportunities to
apply division. An annual income of $48,000 can be bud-
geted across 12 months using division, giving a monthly
spendable income of $4,000; in practical terms, many
expenses do not appear evenly across the months of the
year, so a prudent budget will include some unspent
money for unforeseen or irregularly timed expenses.

At the corporate level, high-flying companies often
start with a large pot of investor cash and race to become
profitable before the pot runs dry; these firms, or the ana-
lysts who watch them, frequently assess their progress
using the graphically labeled “burn rate.” A company’s
burn rate is simply the amount of cash which it is burn-
ing, or spending in the course of a month, and is found
by subtracting the current month’s cash reserves from last
month’s figure to find out how much has been spent.
Once the burn rate is calculated, the company’s total cash
nest egg can be divided by this figure top project an
expected lifetime for the company before it runs out of
cash and goes out of business. In the case of a firm with a
$45 million cash start and a $9 million burn rate, the
equation is 45 / 9 � 5, giving the firm’s managers five
months to either turn a profit, find additional investors,
or look for other employment. Many of the internet
startup firms of the early twenty-first century had burn
rates of several million dollars per month, and in most
cases, they never reached profitability.

Rationing is another form of budgeting, in which
scarce resources such as water or food are distributed at a
slower rate in order to prolong the supply. Survivors of a
shipwreck might determine that they have eighteen gal-
lons of water to divide among three survivors, and simple
division will tell them that six gallons per person is all
they have. Similarly, these same survivors might also

wonder how long their limited water supply will last;
dividing each individual’s supply of six gallons by each
person’s minimum consumption of one gallon per day
provides the bad news that the water will last less than
one week.

DIV IS ION  AND  COMPARISON
Division is frequently used to compare two items to

each other using a relationship known as a ratio. For
example, a researcher might wish to know how accessible
medical care is in different parts of the country. Common
sense would tell her that a large city like Chicago should
have more doctors than a small town like Whiteland,
Indiana, but how can she compare these two, since they
are so different? One approach to making this compari-
son involves the use of ratios. Dividing the number of
doctors by the number of residents gives a ratio of doc-
tors to residents, such as one doctor for each 1,400 resi-
dents. For example, if Whiteland has 2,700 residents and 
3 doctors, dividing these values would produce a ratio of
1 doctor for every 900 residents. Other locations would
have different ratios; some small towns might have ratios
of 1 doctor for every 5,000 or more residents, while an
urban area with a teaching hospital or an affluent suburb
might have one doctor for every 100 residents. Using this
ratio calculation, the researcher will be able to compare
any locale with any other. In most cases, the conclusion
will be that residents in areas with a higher ratio of doc-
tors will have better access to medical care.

In numerous settings, division can provide a meas-
ure of the relationship between two quantities. Envi-
ronmental scientists wishing to examine the rate of
deforestation could choose to assess the density of trees in
an area by dividing the number of trees in a forest by the
number of acres covered, producing a ratio of trees per
acre, which can be tracked over time. Similar methods
can be used to assess the number of people living in an
area by counting the population in a city, then dividing by
the number of square miles in the urban area to produce
a measure of residents per square mile.

Speed is commonly expressed in terms of miles or
kilometers per hour, a simple ratio of distance covered in
a set quantity of time which can be calculated for a given
trip by dividing the number of miles covered by the num-
ber of hours required for the trip. Chemical concentra-
tions are frequently expressed in ratio form using the
measure parts per million (PPM), or the number of par-
ticles of a given substance which would be found in a
million particles of the combined substance. Home
swimming pools typically use low levels of chlorine to
keep algae and bacteria from growing in the water, and
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the chlorine level in a swimming pool is typically meas-
ured using this ratio. While chlorine levels will vary
depending on the weather and the number of swimmers,
appropriate levels of 1 to 3 PPM will produce comfort-
able swimming and low maintenance requirements. At
higher levels, chlorine stings the eyes of swimmers and
tints hair, while lower levels are inadequate to control
algae, causing the pool water to gradually shift from clear
to green.

AVERAGES
Division is commonly used to produce averages. An

average allows a large amount of data to be clearly and
succinctly summarized in a single value. A simple average
is found by adding the quantities involved and dividing
by the number of items. If the daily temperatures for a
week are 70, 72, 71, 75, 77, 71, and 45, the average is found
by adding all the values, then dividing by seven, which is
the number of data points included. In this case, the aver-
age would be 481 / 7 � 68.71, meaning the average tem-
perature throughout the week was 68.71 degrees.

Because averages sum up a large amount of data,
they frequently pay for this efficiency by obscuring indi-
vidual values or trends in the data. In the temperature
example above, a seasoned weather watcher would prob-
ably conclude from the raw data that a cold front blew
into the region on the last day of the week, causing the
temperature to drop rapidly, and significantly impacting
the average. Recalculating the average for the first six days
of the week produces an average temperature of 72.67, a
value much closer to the temperatures actually experi-
enced on the first six days of the week.

In this example, the accuracy of the average was
improved by eliminating the final temperature reading
from the calculation. Values which lie far from the rest,
referred to as outliers, can reduce the accuracy of a simple
average by skewing the results away from what it would
otherwise be. For example, when evaluating average
income in a city, one might find that 450 residents each
earned an average of $40,000 per year while a single
wealthy resident earned $9 million. While an estimate of
$40,000 per resident would be quite accurate for a typical
wage earner in this town, calculating the average income
for the area gives a value of $59,866. This value provides a
misleading picture of the area’s income by suggesting that
the average wage-earner in the area actually makes approx-
imately 50% more than he actually does. In addition, no
person in the city earns a salary anywhere close to this
value, making its usefulness as a summary value suspect.

A second weakness of simple averages is that they
sometimes produce values which are mathematically

correct, but which actually provide a misleading picture
of the underlying values. For example, a store owner
might wish to assess the age of his customers in order to
better serve their needs. To accomplish this, he assigns an
employee to ask customers their ages and then calculate
an average age. As soon as the manager looks at the aver-
age age of 45, he contemplates firing the employee, since
he knows from observation that most of the customers in
his store walk over from a nearby high school and a sen-
ior citizens center, and he has seen nobody near the age of
45. But further investigation reveals that the average is
actually correct, since the ages of the customers were 14,
15, 16, 74, 75, and 76. In this case, where the total popu-
lation is made up of two distinct groups, rather than a
continuous distribution, the averaging process produces
a solution which is mathematically correct, but practi-
cally misleading. In such cases, other measures of central
tendency may be used, either alone or in concert with the
average. One such measure, the mode, locates the most
common or frequently occurring value in a distribution;
this measure is useful when values are presented in whole
numbers, such as ages. A second measure, the median
value, locates the center-most value of a sequence. This
assessment is useful for dividing a distribution in half,
since it provides a line which lies below half the values in
the distribution and above the other half.

Averages are often used to compare athletic perform-
ers and coaches. A baseball player’s hitting is calculated by
dividing his number of hits by his number of times at bat,
though walks, fielder’s choices, and other outcomes are
counted differently than actual safe hits. This value, the
player’s batting average, tells how often a given hitter can
expect to bat successfully in a given number of attempts.
In the case of a batter who has hit fifteen times out of 100
attempts, the batting average would be 15 / 100 � .150.
Batting averages are generally recorded to three decimal
places and stated without the decimal point, meaning
that these averages would typically be stated as “one-fifty.”

Coaches are often assessed on their ratio of wins to
attempts, or the number of wins, compared to the total
number of games played. A successful coach might have
compiled a record of 400 wins and 125 losses. This coach
would have won 400 of his total 525 games, and dividing
these values (multiplied by 100 to create a percentage)
would produce a career winning percentage of 76%. Top-
ranked coaches in professional basketball and football are
frequently able to win far more games than they lose, pro-
ducing high winning percentages.

In many cases, a simple average provides a useful
summary of the values involved. But in some situations,
one or more of the items being averaged is considered
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more important than the others; in these cases, a
weighted average may be used to more accurately assess
the data. A weighted average assigns a factor, or weight, to
each value in the data set, giving some values a larger
influence on the final result.

Consider the case of a new car buyer who wishes to
compare three vehicles. The buyer has decided that his
major criteria are price, efficiency, size, and sportiness,
and he proceeds to rate each of the three vehicles on each
of these four criteria using a scale from 1 to 10. However,
the buyer is on a limited budget, so financial considera-
tions are more important to him than other factors. For
this reason, he assigns a weight of 1.0 to the factors of size
and sportiness, but a weight of 2.0 to price and a weight
of 1.5 to efficiency, which impacts the long-term cost of
ownership.

Once these weights are multiplied by the raw scores
to produce weighted scores, the resulting average will give
the factor of price twice the influence of size and sporti-
ness, while efficiency will be one and one-half times as
influential. Weighted averages can be extremely helpful as
a decision-making tool by allowing specific factors to
influence the final score more highly than others.

PRACT ICAL  USES  OF  D IV IS ION  
FOR  STUDENTS

Students are frequently encouraged to learn good
time management skills, that in many cases requires mak-
ing projections to determine how long a project might
take. For example, a student who must read a 30-page
chapter and has allotted one hour to read it can divide
sixty minutes by thirty pages to find that he can devote
two minutes to each page if he wants to finish in the allot-
ted time. He can also determine that if he chooses to
spend his first thirty minutes watching television, he will
then have only thirty minutes left for his assignment, giv-
ing him one minute per page.

Similar choices exist when meal time arrives. The
student eating on a budget of $15.00 per day can easily
figure out using division that her choices will determine
both how well and how often she eats. For instance, if she
keeps her meal costs to $5.00 a piece, division tells her
that she can plan to eat three meals per day. However if
her meal cost climbs, the number of meals will fall; at
$6.00 per meal, the number of meals will be 15 / 6, � 2.5,
meaning she can afford 2 full meals and a snack, or per-
haps a soft drink at mid-afternoon.

When a semester ends, one particular average takes
center stage: the grade point average, or GPA. GPA is an
average that summarizes a student’s grades for a single
semester or an entire academic career. GPA is found by

assigning a scale to the letter grades, most commonly
with a grade of A earning 4 points, B earning 3, and so on.
These grades are then averaged by adding the values and
dividing by the number of courses taken (or more fre-
quently by the number of credit hours earned), and this
ratio is the GPA. A perfect GPA of 4.0 would mean a stu-
dent had earned only grades of A during the entire
academic career, while a GPA of 1.0 would mean the stu-
dent’s average grade was a D.

Calculations of GPA are important to colleges evalu-
ating applicants and to insurance companies. Students
with high GPAs have also been found to experience fewer
automobile accidents, a relationship that some insurers
exploit by offering good student discounts to these young
drivers.

OTHER  USES  OF  D IV IS ION
Measuring a nation’s affluence can be difficult, par-

ticularly when trying to compare it to another country
with different characteristics. Consumer affluence is often
measured by examining the availability of consumer
goods, such as automobiles, televisions, and housing.
While these goods are available in virtually every econ-
omy on Earth, the relationship between an item’s price
and a consumer’s hourly wages may make it unaffordable.

Consider an automobile which sells for $20,000 in
the United States, and a comparable car which sells for
$8,000 in a less-developed nation. Before concluding that
the car is more affordable in the other country, it is nec-
essary to compare these prices to the wages of the citizens
who might purchase them. Assuming that the average
hourly wage in the U.S. is $10.00, we can divide the pur-
chase price of the car by this value to conclude that a typ-
ical U.S. worker will spend 2,000 hours at work in order
to pay for the car (and in reality much more because that
income does not include deductions for taxes, etc.).

In the case of the second country, low prices are
accompanied by much lower wages, in this case an aver-
age hourly rate of $1.00. Dividing the $8,000 price of the
car by the hourly wage tells us that a worker in this coun-
try will have to work 8,000 hours to buy the car, or four
times as long as the American worker. If similar relation-
ships hold for other consumer goods, one can reasonably
conclude that the American worker will be able to pur-
chase more consumer goods for a given number of hours
worked, and will enjoy a higher standard of living.

Retailing is a competitive industry, and in addition to
the challenge of facing their competitors, retailers often
face problems caused when their own employees either
steal or give away merchandise, a crime known as pilfer-
age. In many cases, employees assume that because the
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firm has such a large supply of hamburgers, pencils, or
other items, a few will not be missed and will cause little
harm. Unfortunately, this assumption is often incorrect.

Consider a young man working at a hamburger
restaurant. After several months of work, he decides to do
something nice for his best friend, so when the friend
orders a meal, the young man simply does not charge him
for his hamburger, which would normally sell for $1.65.
What is the impact on the company of this theft? One way
to determine the damage is to calculate how many ham-
burgers must now be sold in order to offset the loss
caused by the employee’s dishonesty. The company must
first pay its owns costs before it earns any profits, and its
expenses for rent, beef, wages, lettuce, and all its other
costs come to $1.50 per hamburger, meaning that its net
profit per sandwich is only 15 cents.

Because this 15 cents in profit is all that can be used
to pay for the materials in the stolen burger, the company
must divide the lost cost of the stolen burger by the profit
earned on each additional burger in order to determine
how many must be sold to recoup the loss. In this case,
the $1.50 loss divided by 15 cents profit per sandwich
means the restaurant must sell ten more burgers to make
up the loss incurred on the stolen sandwich. These ratios
are typical for most retailers, making employee theft a
major threat to company profitability.

As digital cameras rapidly replace film cameras, users
must determine what size memory card to purchase. One
simple way to answer this question uses division to calcu-
late how many photos will fit on each card. Imagine a
photographer who wants to know how many shots he can
take before he fills up his memory card and is forced
to either download or delete shots. The memory card
in this case is a 512 megabyte model, and the user’s
camera produces shots requiring 4 megabytes of stor-
age apiece. Dividing the card capacity by the size per shot,
the user finds that he will be able to store 128 digital pic-
tures at a time.

Percentages are one of the most common methods of
using division to represent and compare different values.
For example, imagine that two extreme sports fans are
arguing about which of their two favorite competitors is a
better street luge racer. One racer has competed in 200
races and has won 150, while the other, who is in his rookie
season, has only competed 38 times, of which he has won
30. Which racer is having a more successful career?

While many other aspects of the question could be
argued, one simple comparison would be to calculate
which racer has won more of his competitions. Obviously
the first racer has won more races than the second has
even entered, so how can these two performances be

compared? Calculating a percentage allows both scores to
be standardized for easy comparison.

A percentage expresses a ratio or division equation as
if its divisor were 100. For example, in examining the
human population of earth, we could easily determine
that every living human being on the planet is breathing,
meaning that the ratio of breathing humans to humans
is around 7,000,000,000 / 7,000,000,000, or 1.0. Express-
ing this value as a percentage simply requires moving the
decimal point two places to the right; thus 1.0 equals
100%, which is the percentage of living humans who are
breathing.

In a similar manner, we could count and determine
that of the 7 billion humans on Earth, about 3.4 billion
are male, meaning that the ratio of males to humans is 
3.4 / 7, and if we solved this equation we would find a
decimal value of .486, or 48.6%. A similar process would
tell us that the U.S. population of 300 million accounts
for only 6% of the total world population.

Applying this percentage technique to our original
question, we can calculate each racer’s winning percent-
age in order to compare them. For the more experienced
racer, 150 wins divided by 200 races produces a win ratio
of 75%, meaning that in 100 races he can expect to win
about 75. How does this compare to the newcomer’s per-
formance? Dividing his 30 wins by his 38 races gives a win
ratio of 78.9%, meaning that in the same 100 races he
would probably triumph in 79 of them, or about 4 more
races than his competitor. While this comparison may not
settle the debate over which extreme racer is better, it does
provide a simple technique for comparing one racer’s
performance to another.

Many drivers get in a hurry, sometimes choosing to
disobey posted speed limits in order to arrive at their des-
tinations more quickly. What is the cost of this choice,
assuming the driver is pulled over by a highway patrol
officer? One way to assess the cost of this decision
involves determining how much the driver paid for each
mile over the speed limit he drove, and this can be found
by dividing the fine by the number of miles over the limit.
In this case, a fine of $75.00 for going 15 miles per hour
over the limit would mean the driver paid $5.00 for each
mile per hour that his speed exceeded the limit.

Car maintenance can extend an automobile’s life; in
particular, changing a car’s oil regularly will improve its
chance of a long life. Today’s car owner faces many
choices in the oil market, and division can help her deter-
mine the relative cost of each choice. Assuming this driver
changes her own oil, she might wonder whether she
should use standard motor oil, which costs $1.00 per
quart, or synthetic oil, which costs $5.00 per quart.
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At first glance, synthetic oil appears far more expen-
sive, since a typical oil change requires five quarts. How-
ever, the newest synthetic oils claim they will last a full
year, while standard oil must be changed 3–4 times per
year. How can a driver compare these options? A simple
division equation allows a direct comparison of these two
possibilities.

An oil change using five quarts of synthetic oil will
cost $25.00, while each of the year’s four changes using
standard oil will cost $5.00 to drive the car for three
months. Dividing the $25.00 cost of the synthetic change
by four, we find an equivalent value for the synthetic
change of $6.25, compared to $5.00 for standard oil.
While this calculation demonstrates that synthetic oil
does cost an average of about $1.25 more per oil change
period (or about $5.00 more per year), this calculation
does not take into account the other costs associated with
the two options, such as the fact that one produces four
times the quantity of used oil which must be disposed of,
or that the time required to change the car’s oil four times
rather than one may be valuable to some owners.

Potential Applications

A traditional telephone system sends a person’s voice
as a continuous electrical signal over a pair of wires. But
data sent over most digital data networks is actually
divided into numerous small pieces, or packets, which are
sent across the network independently, then reassembled
at the destination. This method of dividing a message
into numerous small pieces offers numerous advantages,
including greater efficiency and much lower costs than
the use of a dedicated line.

One of the most intriguing uses of this digital division
process is the rapid emergence of VOIP (voice over internet

protocol) telephone systems. The systems take the sound of
a speaker’s voice, break it into small packets of data, and
send these packets across the Internet with all the other
data packets traveling there; at their destination, the pack-
ets are reassembled to produce an audible signal with very
little delay or system degradation. Because of the enor-
mous cost savings and flexibility offered by VOIP, many
technology analysts predict that by the year 2010, virtually
all phone calls will be carried using VOIP technology. This
same technology is also expected to be used for transmit-
ting movies and other forms of entertainment.

Where to Learn More

Books
Seiter, Charles. Everyday Math for Dummies. Indianapolis: Wiley

Publishing, 1995.

Web sites
A Brief History of Mechanical Calculators. “Leibniz Stepped

Drum.” �http://www.xnumber.com/xnumber/mechanical1
.htm� (April 5, 2005).

History of Electronics. “Calculators.” �http://www.etedeschi
.ndirect.co.uk/museum/concise.history.htm� (April 6, 2005).

Homerun Web. “How to Calculate Earned Run Average (ERA).”
�http://www.homerunweb.com/era.html� (April 12, 2005).

Mathworld. “Division.” �http://mathworld.wolfram.com/
division.html� (April 16, 2005).

Mathworld. “Trial Division.” �http://mathworld.wolfram.com/
trialdivision.html� (April 16, 2005).

The Math Forum at Drexel. “Dividing by 0.” �http://mathforum
.org/dr.math/faq/faq.divideby0.html� (April 16, 2005).

The Math Forum at Drexel. “Galley or Scratch Method of Divi-
sion” �http://mathforum.org/library/drmath/view/61872
.html� (April 16, 2005).

The Math Forum at Drexel. “Egyptian Division” �http://
mathforum.org/library/drmath/view/57574.html� (April
16, 2005).

Key Terms

Dividend: A mathematical term for the beginning value
in a division equation, literally the quantity to be
divided. Also a financial term referring to company
earnings which are to be distributed to, or divided
among, the firm’s owners.

Percentage: From Latin for per centum meaning per
hundred, a special type of ratio in which the second

value is 100; used to represent the amount present
with respect to the whole. Expressed as a percent-
age, the ratio times 100 (e.g., 78/100 � .78 and
so .78 � 100 = 78%).

Stockholder: The partial owner of a public corporation,
whose ownership is contained in one or more
shares of stock. Also called a shareholder.
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Domain and
Range

Overview

A function is generally defined as a rule that partners
to each number x in a set a unique number y in another
set. The set of x values to which the rule applies is the
function’s domain, and the set of y values to which it
applies is its range.

Calculus allows us to mathematically study rates of
change and motion, something not precisely possible
prior to discovery of the fundamental theorem of calcu-
lus. The domain and range of a function are the essence
or foundation of algebraic equations and calculus formu-
las. Everyday uses include graphs, charts and maps.

Fundamental Mathematical Concepts
and Terms

A function is a set of ordered pairs (x ,y) such that for
each first element x, there always corresponds one and only
one element y. The domain is the set of the first elements
and the range is the term given to name the set of the sec-
ond elements. Often the domain is referred to as the inde-
pendent variable and the range as the dependent variable.

The domain is the first group or set of values being
fed or input into a function and these values will serve as
the x-axis of a graph or chart.

The range is the second group or set of values being
fed or input into a function with these values serving as
the y-axis of a graph or chart.

A Brief History of Discovery 
and Development

The word function was first used mathematically 
by German philosopher and mathematician Gottfried
Leibnitz (1646–1716) during his development of curve
relationships. He used the term to describe a quantity rel-
ative to a curve such as a particular point of a curve or
said curve’s slope. Today the specific type of functions
Leibniz referred to are called differentiable functions.

During the eighteenth century, Swiss mathematician
and physicist Leonhard Euler (1707–1783) began using
the word function to describe a formula involving various
parameters. Over the next century, calculus and functions
were being expanded upon and developed by German
mathematician Karl Weierstrauss (1815–1897) who pro-
moted developing calculus based upon arithmetic or
number theory rather than geometry. By the end of the
nineteenth century, mathematicians began defining
mathematics using set theory thus seeking to describe
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every mathematical object as a set. It was German
mathematician Johann Peter Gustav Lejeune Dirichet
(1805–1859) and Russian born mathematician Nikolai
Ivanovich Lobachevsky (1792–1856) who almost simul-
taneously gave a formal definition of function. They
defined a function as a special case of a relation, with a
relation being described by such concepts as “is greater
than” or “is equal to” in arithmetic.

Real-life Applications

COMPUTER  CONTROL  
AND  COORD INAT ION

All modern applications and technology use functions
to determine the domain and range of a given problem.
Every time you observe a graph, use a calculator, turn on a
computer, drive an automobile, or even watch television,
you are interacting with calculus and the concepts of
domain and range. An example of this would be the com-
puter components found in modern aircraft. Equations,
formulas, and functions are all utilized and working in
onboard computer systems to increase the safety of mod-
ern aviation. These computer systems help compensate for
the instability of the aircraft, weight vs. wingspan length
disparity, and a host of other variables related to flight.

CALCULAT ING  ODDS  AND  OUTCOMES
Another example of common uses would be calcu-

lating risk or determining odds. Share values can be
depicted as functions with domain and range and analy-
sis of such data differentiate a wise from a foolish invest-
ment. Insurance companies use calculus formulas and
functions to determine the risk associated with insuring.
Analysts and researchers use set theory and ratios as a
method of evaluation.

Having a “working understanding” of functions—
and of the components of domain and range (especially

which are dependent and independent variables) allows
deeper understanding of graphs, charts, maps, finance,
and business strategies.

PHYS ICS
Physics relies heavily on calculus. English physicist and

mathematician Sir Isaac Newton (1642–1727), who inde-
pendently developed calculus about the same time as did
Liebniz, used the concepts of domain and range of a func-
tion in advancing a Law of Gravity. In 2005, physicists use
the domain and range of functions in designing and solving
equations relative to nuclear energy development, nuclear
fission processes, and other scientific experiments. Quan-
tum mechanics, a rudimentary physical theory which refers
to discrete units that the theory assigns to certain physical
quantities, is the underlying structure in many fields of
chemistry and physics. The fundamental beginnings of
quantum mechanics stem from functional analysis.

ASTRONOMERS
Astronomers use the domain and range of functions

to plot trajectories, calculate distances, measure space and
speed of objects, and more. One example would be calcu-
lating the future path of asteroids, comets, and falling
space debris. A complex set of functions are used to deter-
mine where to search for stars, planets, black holes,
comets, asteroids, and other objects in our own galaxy as
well as in other galaxies. Data sorted into tables by
domain and range helped prove the existence of the plan-
ets Neptune and Pluto.

ENG INEER ING
Determining the design and construction of high-

ways, roads, wiring layouts, inventing new molecules, or
developing molecular structures all require the use of
domain and range in order to achieve the necessary

Key Terms

Dependent variable: What is being modeled; the output.

Function: A mathematical relationship between two sets
of real numbers. These sets of numbers are related
to each other by a rule that assigns each value from
one set to exactly one value in the other set. The
standard notation for a function y � f(x), developed

in the eighteenth century, is read “y equals f of x.”
Other representations of functions include graphs
and tables. Functions are classified by the types of
rules which govern their relationships.

Independent variable: Data used to develop a model,
the input.
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results. Structural engineers use functions to determine
tensile strength of metals, to study aerodynamics of vehi-
cles, and in the design of the subtle aerodynamic curves
of an automobile.

COMPUTER  SC IENCE
Computer hardware and software all use domain and

range in the design and implementation of their programs.
Computer programming languages such as Functional
programming, is structured upon the use of functions.
This language is a programming paradigm that relates
computation as the evaluation of mathematical functions.
Inductive logic programming also uses functions in a
declarative programming paradigm that is concerned with
finding general rules based on a sample of facts.

GRAPHS , CHARTS , MAPS
The ability to interpret graphs, charts and maps

requires the understanding of the domain and range of
functions. The x axis of a graph is the domain or all input
elements of a function, and the y axis is all the actual ele-
ments derived from the function. The same is true for
charts; the horizontal line represents the larger set, and
the vertical line represents the specific information

derived from the larger set. (See Figure 1, a typical chart
of stock prices.)

Satellite technology, space exploration, computer
programming and languages, automobile design, nuclear
physics and countless other scientific fields all rely on the
interrelation of domain and range.

In this digital information age, privacy concerns are
of increasing importance. Cryptography is a field which
uses the domain and range of functions in order to
develop keys and ciphers to hide important or sensitive
information transmitted over the Internet or other
media. For example, based upon a random number, the
independent and dependent variables can construct an
elaborate system of codes and keys.

Where to Learn More

Books
Krantz, Stephen G. Calculus Demystified. New York, NY:

McGraw-Hill, 2003.

Websites
Husch, Lawrence S. Visual Calculus. 2001 �http://archives.math

.utk.edu/visualcalculus/� (March 1, 2005).
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Figure 1. A one year chart of stock prices. (Share price is represented in U.S. dollars on the y axis.)
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Elliptic 
Functions

Overview

Elliptic equations are a type of mathematical expression
that is related to the geometric shape called an ellipse. An
ellipse is a shape like a flattened circle. To draw an ellipse, one
picks two points (called “foci”) and encloses them with a
curve drawn so that the sum of the distances from the foci
to every point on the curve is always the same. An ellipse is
flatter or more stretched if its foci are farther apart.

Fundamental Mathematical Concepts
and Terms

An ellipse can also be defined using an equation. How-
ever, the equation that defines an ellipse is not what math-
ematicians mean when they speak of an “elliptic equation.”
An elliptic equation is a particular type of equation that
arises from calculating the length of part of an ellipse. The
lengths of curves are calculated using the mathematical
technique called “integration.” Integration of part of an
ellipse produces a type of function (a function is a rule for
going from one set of numbers to another) called an “ellip-
tic integral.” An elliptic equation is the opposite or inverse
of an elliptic integral, the “inverse”of a function being a sec-
ond function that undoes the first one. Elliptic equations
are thus related to ellipses, but in a rather roundabout way.

Technically speaking, an elliptic function is a function
in the complex plane that is periodic in two directions.
This statement needs some explanation. The “complex
plane” is a flat space like the x-y plane that is used in ordi-
nary geometry and in graphing, except that one of the
directions or axes is reserved for so-called “imaginary”
numbers, which have special properties. A function is
“periodic” if it repeats itself after some distance. A zigzag
line is an example of a function that is periodic in one
direction; the rings of a bull’s-eye target are an example of
a function that is periodic in all directions.

Elliptic functions are an important tool for mathe-
maticians and physicists, because they crop up during the
solution of many larger, more complex problems. For
example, they appear in the exact mathematical descrip-
tion of pendulums and tumbling objects.

Real-life Applications

CONFORMAL  MAPS
Flat maps have useful properties: they can be shown

on computer screens and take up little room when
printed on paper. However, most of the things that we are
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interested in making maps of—like the surface of the
Earth—are curved. And whenever a curved surface is
mapped to a flat surface, there is distortion or error. The
Mercator projection of the Earth’s surface (any flat map
of a curved surface is called a “projection”) is the most
widely used flat map of the world, and it distorts the
Earth by grossly expanding shapes near the North and
South Poles. However, the Mercator projection does have
one useful property: it is “conformal.” Elliptic functions
are involved in the mathematics of conformal projec-
tions. A conformal projection does not squeeze or stretch
small shapes. Thus, a small circle or triangle on the globe
is still a circle or triangle on the Mercator map. Confor-
mal projections are used to map the surfaces of the Earth
and of other planets. They are also used by researchers
who want to make flat maps of the complexly folded sur-
face of the brain, and are being studied by plastic sur-
geons as a way to describe and predict the effects of
surgery on the nose.

E -MONEY
Many companies in Europe, Japan, and the United

States are developing forms of e-money, also called digi-
tal cash. E-cash is electronic money on a card. A certain
amount of money value is programmed into a memory
circuit in the card, the card is swiped through a machine
at the store when you buy something, and the cost of the
purchase is subtracted from the value on the card. Unlike
a debit card, you don’t have to have a bank account to use
an e-money card. Value is loaded directly into the card.

To keep people from simply programming more
money into their e-money cards and becoming instant
millionaires, a secret code or “cryptosystem” is used
to check that e-money is real when it is spent. The kind
of cryptosystem proposed for e-money is “public-key

cryptography,” and the particular kind of public-key
cryptography that is proposed is elliptic-curve cryptogra-
phy. Elliptic-curve cryptography doesn’t require long,
complicated calculations, which makes it ideal for use
with the relatively simple circuits that can be embedded
in e-money cards. Elliptic functions are involved in the
mathematics of elliptic-curve cryptography.

THE  AGE  OF  THE  UN IVERSE
In 1915, the German physicist Albert Einstein

(1879–1955) published his theory of general relativity.
According to this theory (which has been checked against
experiment many times, and is used every day in the
global positioning system [GPS]), space does not go on
forever. In a way that cannot be pictured in the mind but
can be described mathematically, it bends around on
itself. Space is finite or limited in size. Furthermore, it is
expanding—and if it is finite and expanding, there must
have been a time when it began expanding from zero size.
In other words, the Universe must have had a beginning.
Calculating the age of the Universe from the theory of
general relativity involves the use of elliptic functions.
Combining such calculations with astronomical obser-
vations has shown that the Universe is approximately 
14.5 billion years old.

Where to Learn More

Books

Straffin, Philip, ed. Applications of Calculus, Vol. 3. Washington,
DC: Mathematical Association of America, 1997.

Web sites

Wolfam. “Elliptic function.” �http://mathworld.wolfram.com/
EllipticFunction.html� (Feb 13, 2005).

Key Terms

Derivative: The limiting value of the ratio expressing a
change in a particular function that corresponds to
a change in its independent variable. Also, the
instantaneous rate of change or the the slope of the
line tangent to a graph of a function at a given point.

Integral: A quantity expressible in terms of integers.
Also, a quantity representing a limiting process in
which the domain of a function is divided into small
units.
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Estimation

Overview

Estimation is the act of approximating an attribute
such as value, size, or amount. Estimation has applica-
tions in all walks of life—from how much salt to put on
popcorn, to using complex mathematical methods to
predict the economy. Many common ideas, such as esti-
mating the distance from Earth to the Sun, would be
inconceivable without mathematical estimation.

Fundamental Mathematical Concepts
and Terms

Estimation is an essential tool in many mathematical
situations. For example, many people have to set an alarm
clock to make sure that they wake up in time to get ready
and get to school. The first time they set their alarm, they
probably had to think about the different tasks they
needed to accomplish in the morning in order to get to
school on time. Those tasks may be broken down in the
following manner:

• School starts at 8:00 a.m.
• It takes about 20 minutes to walk to school.
• It takes about 30 minutes to make and eat breakfast.
• It takes 20 minutes to shower, brush their teeth, and

get dressed.
• They may plan to press the snooze bar twice, so they

set the alarm for about 20 minutes before they actu-
ally need to get up.

Adding all these amounts of time together gives an esti-
mation that it takes about an hour-and-a-half to get ready
and get to the destination. According to this estimation,
these people need to set the alarm for about 6:30 a.m to be
able to arrive on time. The ability to make a good estimate
considerably depends on known information and past expe-
rience. Final estimations also often depend on previously
established estimations. For instance, the amounts of time
that they spend performing the various tasks are estimates in
themselves. In this case, the final estimation is based on:

• Information provided—classes begin at 8:00 in the
morning.

• Past experience—people have showered and brushed
their teeth before; they have made and eaten break-
fast before; they know if they are snoozers and that
they usually push the button twice before they get
out of bed.

• Rough estimation—they know how far school is
from their house and about how long it takes to walk
that distance; because they prefer to get to school
early rather than late, so they overestimate the time
just a bit.
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Estimates are usually refined as they are tested. Each
time a person wakes up, gets ready, and walks to school, they
may make adjustments to their estimate. For instance, some-
times they may want to get to school earlier, so they set their
alarm even earlier for that day. On the other hand, they may
have the first class of the day canceled, and they decide to set
the alarm for later so that they can sleep a little longer.

Defining acceptable levels of error is another key
concept in making meaningful estimates. There are many
different theories and methods for analysis of error in
estimation.

Throughout history, multiple methods of estimation
have been proposed and scrutinized. Controversy exists
among the many estimators and analysts about which
methods yield the most accurate results.

A Brief History of Discovery 
and Development

The word estimate is derived from a late sixteenth
century Latin word meaning to determine, appraise, or
value. However, various methods of estimation have been
used throughout history.

An early account of mathematical estimation involves
a question posed by Greek mathematician Archimedes
(born c. 287 B.C.), in which he contemplated how many
grains of sand would be needed to match the volume of
Earth. In ancient times, the issue of understanding and
labeling very large (and small) numbers posed a serious
problem that hindered the capabilities of mathematicians.
This issue is at least partly attributed to the limitations of
the existing numbering system, which was much like the
Roman numeral system. By utilizing his own numbering
system (similar to the exponential numbering system
adopted later), Archimedes was able to grasp numbers
large enough to approximate key values for determining a
reasonable estimation of the amount of sand required to
fill the volume of the planet. His new notation also allowed
him to convey his ideas to his peers and to effectively con-
vince them of the relative accuracy of his estimate.

Archimedes employed existing geometric theory (the
equation for finding the volume of a sphere), a commonly
accepted estimation (an approximate value of the radius
of Earth, the distance from the center to the crust), and an
observed measurement (he estimated that an average
grain of sand was basically spherical and had a diameter of
about 1/100th of an inch). Using these tools, Archimedes
was able to estimate that it would take over 1032 grains of
sand to match Earth’s volume. He was aware of many
imperfections in his calculations, including the fact that
every grain of sand is not perfectly spherical. Earth is not a

perfect sphere either—it has mountains and canyons (and
is squashed at the poles). The values for the radius of Earth
and the average diameter for a grain of sand are also only
approximate values. Nevertheless, he was able to derive an
estimate that was substantial enough to give a manageable
account of the magnitude of the answer to his question.
This was an important step toward mankind becoming
comfortable with previously unfathomable numbers.

In 1773, Benjamin Franklin found that a drop of oil
placed on the surface of water will spread out across the
water until it forms a layer that has the thickness of a sin-
gle molecule of the oil (known as a monomolecular film).
In addition to Franklin’s immediate observations from this
experiment (his notes describe the oil spreading quickly
and causing wavy water to become calm almost immedi-
ately), his discoveries would have a profound influence in
the first estimation of the thickness of a molecule more
than a century later. Scientists first estimated the thickness
of a molecule by recording the volume of a drop of oil and
then placing the drop onto the surface of some water. Once
the oil had spread to a thickness of a single molecule, the
surface area of the floating film was estimated using an
approximate value for the radius of the somewhat circular
layer of film. Then the formula for volume was used to
determine the thickness of the film. The volume of the oil
is equal to the area of the film multiplied by the thickness
of the film. So to determine the thickness of the film, which
is the thickness of a single molecule, the volume of the
drop of oil was divided by the approximate area of the film.

In 1801, Carl Frederick Gauss, also commonly viewed
as one of the most important figures in the history of math-
ematics, made the first applicable estimation of the orbit of
planets. His first subject was a newly discovered planet
named Ceres. Using his method of least square, which
remains an important contribution to the development of
estimation methods, Gauss was able to enhance prior theo-
ries about the orbits of planets, incorporating calculations
that represent imperfections in orbital paths due to factors
such as interference caused by other celestial bodies.

From tracking and maintaining populations of endan-
gered species, to predicting genetic abnormalities in unborn
babies, estimation remains an essential concept in many
mathematical and scientific procedures and discoveries.

Real-life Applications

BUY ING  A  USED  CAR
For most people, the purchase of their first car can be

an overwhelming event. There is much more to consider
than whether they like the color or the rims on the
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wheels. With so many factors that can affect the value of
an automobile, people have to be careful that they don’t
get cheated.

Often, the seller will begin by asking for much more
money than the car is actually worth, or keep any prob-
lems a secret until they officially sell the car. So, how can
one know if they are getting a good deal or being cheated?
First, one should be aware that issues might exist, such as
engine trouble, damaged upholstery, or body damage that
lower the true value of the car. Similarly, any enhance-
ments that can raise the value must be considered,
including custom parts, limited edition features, audio or
video equipment, global positioning system (GPS) track-
ing devices, safety features, and so on.

The most significant obstacle in coming to an agree-
ment between the seller and the buyer is that there is no
true value of a used car. Too many factors influence each
car to be defined generally. Luckily, one thing that the
buyer and the seller will probably agree on is that they
both want to finalize the transaction as quickly and
smoothly as possible. Therefore, both people have to use
estimation involving available information to find an
agreeable price range. Most buyers and sellers alike refer
to one of many periodically released publications, such as
the Kelley Blue Book, as a basis for what the car should
cost depending on the year, make, model, mileage, and
general condition. Using this base price, both parties
attempt to factor in as many positive and negative char-
acteristics as they can find to determine what they think
the car is worth and to arrive at lower and upper bounds
for an acceptable price. From there, everything depends
on keen negotiation skills.

GUMBALL  CONTEST
Jen has been entered into the critical-thinking con-

test at the annual mathematics fair, in which the top math
students from around the region compete to solve diffi-
cult problems. The first problem posed to the contestants
involves the estimation of the number of gumballs con-
tained in a glass case that is 4 feet long, 4 feet wide, and 8
feet tall. Each contestant is expected to use mathematical
reasoning to decide whether they think that the number
of gumballs inside the glass case is less than or greater
than 25,000.

Jen examines the glass case and thinks about how she
can make a good approximation of the number of gum-
balls inside. The first thing she does is collect as much
information as she can about the problem at hand. Jen
takes note of the following information:

• The glass case is transparent, so Jen can approximate
the size of the gumballs. As far as she can see, the

gumballs are all about the same size—somewhere
between 1 inch and 2 inches in diameter.

• The volume of the glass case is equal to the product
of its dimensions. Since she will be estimating the
volume of the gumballs in cubic inches, Jen multi-
plies each dimension of the glass case by 12 to con-
vert to inches. The glass case is 48 inches by 48 inches
by 96 inches. Multiplying these values together, she
finds that the volume of the glass case is 221,184
cubic inches.

Her estimate of the diameter of each gumball con-
sists of an upper bound and a lower bound. In this way,
she hopes to simplify the problem without concerning
herself too much with the true size of one gumball—let
alone all of them! If the total estimated volume that she
finds using the lower bound for the size of a gumball is
more than the volume of the case, then she will know that
25,000 gumballs will not fit into the case. If the estimate
she finds using the upper bound for the size of a gumball
is less than the volume of the case, then she can safely con-
clude that 25,000 gumballs will fit into the glass case.
However, if the volume of the glass case is between her
lower and upper estimates, then she cannot make a confi-
dent conclusion using this information, and she will have
to attempt to refine her estimate of the size of a gumball.

Jen knows that she needs the size of the gumballs to
be expressed in terms of volume so that she can compare
the volume of 25,000 gumballs to the volume of the glass
case. She needs to find the volume of a single gumball and
then multiply this value by 25,000. Using the formula for
the volume of sphere, she finds that a gumball that is 1
inch in diameter (having a half-inch radius) has a volume
of approximately 2.09 cubic inches. Similarly, she finds
that a gumball that is 2 inches in diameter (having a one-
inch radius) has a volume of 4.19 cubic inches. At this
point, she feels confident that the volume of a single
gumball is somewhere between these two estimated
bounds. To find bounds for the total estimated volume of
25,000 gumballs, she multiplies the bounds for the vol-
ume of a single gumball by 25,000. She is reasonably cer-
tain that the volume of 25,000 gumballs is between
52,359 and 104,750 cubic inches. Since the upper bound
for her estimate of the total volume of the gumballs is less
than the volume of the glass case, Jen could decide at this
point that she is convinced that 25,000 gumballs will in
fact fit into the case. However, just before she turns her
response in for evaluation, she becomes aware of a major
flaw in her reasoning.

The total estimated volume of the gumballs defi-
nitely gives her a better feeling for this problem, but she
quickly realizes that this will not yield conclusive results
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because she has not considered the air space in between
all of the gumballs. What she has really figured out is that
if she were to chew up 25,000 gumballs and press them
into the glass case, the huge blob of gum would fit (espe-
cially if the gumballs are hollow). Little does Jen know
that this is an example of a sphere-packing problem—a
classic problem in mathematics for which there is no
standard solution. Nevertheless, she is on the right track
to making a fairly good estimate.

While thinking of a way to refine her estimation
methods, she imagines having each gumball wrapped
perfectly into a little box. She understands that this idea
will lead to an overestimate of the amount of airspace in
the glass case because the gumballs do not stack on top of
each other perfectly. She will use the values found using
this method as upper bounds for the total volume of the
gumballs taking airspace into account.

Each gumball-wrapping box would have length,
width, and height equal to the diameter of the gumball.
For a gumball with a 1-inch diameter, the surrounding
box would have a volume of 1 cubic inch. For a gumball
with a 2-inch diameter, the box would have a volume of 8
cubic inches. The question now is whether or not 25,000
of these surrounding boxes will fit into the glass case.
Multiplying by 25,000, she finds lower and upper bounds
for the total volume of all of the wrapping boxes. The
total volume of the boxes is between 25,000 and 200,000
cubic inches.

At this point, Jen stops to think about her progress so
far. Since she can show that her largest estimate of
200,000 cubic inches—found by packing gumballs into
boxes that overcompensate for airspace—is smaller than
the volume of the glass case (221,184 cubic inches), she
feels fairly certain that 25,000 gumballs fit into the glass
case. (Note that if any of Jen’s estimates were greater than
221,184 cubic inches, then she would have had to either
refine her estimate of the diameter of a gumball or come
up with a more accurate way to account for air space.)

POPULAT ION  SAMPL ING
Wildlife conservationists are often confronted with

the task of estimating how many members of a certain
species of animal are living in a given area. For example,
suppose that a team of conservationists needs to estimate
the number of fish in a small lake (without draining the
lake and counting all of the fish). This may seem a daunt-
ing task because fish move around the lake, reproduce,
and die. However, the team will be able to use population
sampling techniques to find an estimate that is suitably
accurate for their needs.

To begin, the team catches a sample of 300 fish. Each
of these fish is tagged and returned to the lake. The team
then makes a simplifying assumption that will be critical
to the estimation process: over time, all of the fish in the
lake move about at random. This is a reasonable assump-
tion based on previous studies about these fish.

After waiting a week for the fish to redistribute them-
selves, the team again catches 300 fish and finds that 25
fish out of this sample are tagged. This time, the team
members must do their best to select the fish at random
from the total population of the lake. To ensure that they
collect a random sample, they may collect the sample
from various areas of the lake.

Next, the team uses the basic sampling principle as it
applies to their situation: the proportion of tagged fish in
the second sample should reflect the proportion of tagged
fish in the entire lake population, as long as the sample
size is reasonably large.

In the second sample, the team found that 25 out of
300 fish were tagged, so the proportion of tagged fish in
the second sample is 25 divided by 300, or 1/12. The team
also knows that there were 300 tagged fish in the lake
(barring any fatalities among the first sample), so the pro-
portion of tagged fish in the entire lake is 300 out of the
total population of fish, the value that the team is attempt-
ing to estimate. In accordance with the basic sampling
principle, the formula 1/12 ≈ 300/N, where N is the total
number of fish in the lake helps team members find an
estimate for the total population of fish in the lake.

After dividing both sides by 300 and simplifying, the
team finds that N ≈ 3,600. The team of conservationists
now has a rough estimate of 3,600 fish living in the lake.
Depending on the requirements of the study, the team
may or may not need to take more samples and find an
average value. The team would not replace the fish after
each sample, so that the fish are not counted twice. A rel-
atively consistent number of tagged fish in each sample
would be a good indication that the estimations are suffi-
ciently accurate. Using a larger sample will usually result
in higher accuracy as well.

DIG I TAL  IMAG ING
A digital image is an arrangement of tiny square

regions called pixels. In the case of a gray-scale (black-
and-white with shades of gray) image, the brightness of
each pixel is determined by a numeric value. A typical
gray-scale image contains values ranging from 0 to 255,
with 0 representing black, 255 representing white, and
intermediate values representing shades of gray.

A color image can be represented using different
mixtures of red, green, and blue. The color of each pixel
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in the digital image is usually determined by a set of three
numbers, one representing red, one representing green,
and one representing blue. These values each range from
0 to 255, where 0 indicates that none of that color is pres-
ent in that pixel and 255 indicates a maximum amount of
that color. When a digital image is magnified many times,
the pixels can be seen clearly. If only part of a magnified
image is visible, it may look like nothing more than dif-
ferent colored squares.

Estimation is a key concept in digital image com-
pression processes. The goal of digital image compression
is to reduce the size of the image file (so that it can be effi-
ciently stored and shared) without losing so much qual-
ity that the human eye will easily notice the change. The
main difference between image formats is the way that
they compress images. The graphics interchange format
(GIF) and joint photographic experts group (JPEG or
JPG) formats—two of the most common digital image
formats—are good examples of the effects of the various
image compression techniques.

GIF images only support 256 colors—not much
compared to the millions of colors found in most color
photographs. If an image is converted to the GIF format,
a compression technique called dithering is used to com-
pensate for any loss of color. Image dithering involves
repeating a pattern of two or more available colors in
order to trick the eye into seeing a color very close to the
color found in the original photograph. For example, to
represent a solid area of a shade of red that is not included
in the available 256 colors, the dithering process may
alternate every other pixel with the two closest available
shades of red. As the image is magnified, the pattern
becomes more and more apparent. The color patterns
that result from the dithering process are determined by
mathematical functions that perform operations for esti-
mating unavailable colors. The GIF format is best suited
for illustrations and graphics with large regions of solid
color. On the other hand, when a photograph containing
millions of colors is converted to GIF, it usually appears
grainy because there are too many colors to be adequately
represented by just 256 colors.

JPEG images are much better suited for photo-
graphs. The JPEG format supports millions of colors and
its compression method is intended to handle quick
changes in color from pixel to pixel. However, graphics
with relatively large areas of solid color converted to JPEG
images tend to display messy spots around the areas
where colors change. For example, if a company logo con-
sisting only of a blue word on a solid red background is
saved as a JPEG image, it will most likely have fuzzy areas
all around the border of the letters. These fuzzy areas are

called compression artifacts and, as implied by their
name, are results of the compression process. As with the
dithering process of the GIF format, the compression
process is heavily dependent on mathematical functions
that attempt to reduce the file size while retaining the
image as seen through the human eye.

CARBON  DAT ING
One of the most influential concepts in the field of

archeology is that of carbon-14 dating, which allows
archeologists to estimate the age of fossils and human
artifacts. The basic idea behind carbon-14 dating is that
all living things, from plants to humans, contain the same
ratio of carbon-14 and carbon-12 atoms at all times (for
every carbon-14 atom, there are a certain number of
carbon-12 atoms). In a living organism, both types of
atoms are constantly being created and destroyed, but the
ratio between the two remains constant.

As soon as a living organism dies, it stops producing
new carbon atoms. The carbon-14 decays and is no
longer replaced, while the carbon-12 does not decay at all.
By comparing the ratio of carbon-14 to carbon-12 in a
formerly living organism to that in a living organism, it is
possible to estimate how long the former has been dead.
This concept has allowed archeologists to uncover many
important milestones in the history of humankind.

Potential Applications

THE  HUBBLE  SPACE  TELESCOPE
The Hubble Space Telescope (HST), a high-powered

telescope attached to a spacecraft, has revolutionized
astronomy by allowing astronomers to view celestial
sights that are billions of light years away. Due to the fact
that the images are captured from billions of light years
away, astronomers know that the events depicted took
place billions of years ago! Breathtaking images that have
been constructed using data transmitted from the HST
can be found on the Internet, in books, magazines, and
newspapers.

However, these images are not exact representations
of what is truly out there. The HST is capable of detect-
ing different types of light and heat, including visible
light (that humans can see), ultraviolet light, and infrared
light. The raw data transmitted by the HST are electronic
black-and-white images that reveal very little detail.
Astronomers must combine the data from the various
images (created from the different types of light and heat)
and interpret the overall picture. These interpretations
require advanced estimation methods, as well as some
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imagination and creativity. Since its launch in 1990, the
HST has undergone many revisions, including updates to
its image-capturing tools. As space telescope technology
is refined, astronomers are able to construct increasingly
accurate representations of celestial activity, providing
valuable insight into the vastness of the universe.

SOFTWARE  DEVELOPMENT
Software developers strive to estimate the amount of

time that it will take to complete a software development
cycle. A single development cycle often involves a vast
number of steps that can take anywhere from a few weeks
to a few years. All of these steps must be accounted for in
the development plan to ensure that the software is com-
pleted, tested, and revised in a specified amount of time.
If the product is not ready on time, the software company
may lose clients and funding. Some of the major steps in
the development cycle include conception (coming up
with initial ideas), planning (organizing ideas and time),
design (working out the look and feel of the on-screen
display and general functionality), coding (using a pro-
gramming language to write the software), and testing
(checking to make sure that things look and work cor-
rectly). All of these steps are made up of multiple smaller
tasks. For example, design might be split into visual
design and functional design. Visual design might be split
into window design, menu design, and so on. If any part
of testing fails, issues must be listed and categorized by
severity. The development team must then go back to the
development cycle. How far back in the cycle the devel-
opment team must go depends on the issues found by the
testing team.

For decades, people have tried to conceive a univer-
sally accepted method for estimating the time it will take
to complete a software product. However, software com-
panies continue to run into unforeseen snags in the
process, causing them to miss deadlines. Compensating
for less tangible aspects of the development process
proves to be a difficult task. For example, the complexity
of the project (the number of pages, the types of tasks the
software performs, how information is processed, etc.) is
a consistent source of error.

In spite of past limitations to software development
strategies, the desire to streamline the development
processes continues to grow. This is due to a steady
increase in the demand for software products, a trend that
is not expected to change in the near future.

Where to Learn More

Books
Klette, R., and A. Rosenfeld. Digital Geometry—Geometric

Methods for Digital Picture Analysis. San Francisco: Morgan
Kaufmann, 2004.

Periodicals
Lewis, A. P. “Large Limits to Software Estimation.” ACM Software

Engineering Notes. 26, No. 4 (2001): 54–59.

Web sites
Calkins, Keith G. “The How and Why of Statistical Sampling.”

Andrews University. October 4, 2004. �http://www.andrews
.edu/~calkins/math/webtexts/stattoc.htm� (March 8, 2005).

U.S. Census Bureau. “About Population Projections.” August 
2, 2002. �http://www.census.gov/population/www/
projections/aboutproj.html� (March 9, 2005).
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Exponents

Overview

An exponent is a number placed just above and to
the right of another number to say how many times the
lower number should be multiplied by itself. For exam-
ple, 23 � 2 � 2 � 2, where the exponent is 3.

We can handle some very large and very small num-
bers easily using exponents. For example, instead of
100,000,000,000,000,000,000 can write 1020. Equations
that contain a variable as an exponent, such as y � 5x, are
known as exponential equations. They are used to
describe the breakdown of radioactive atoms, the growth
of living populations, the interest paid on loans, the cool-
ing of planets and other objects, the spreading of epi-
demic diseases, and many other situations.

Fundamental Mathematical Concepts
and Terms

BASES  AND  EXPONENTS

The expression 23 is read as “two to the third
power” or “two to the power of three.” Here 3 is the expo-
nent and 2 is the “base.” In 56, the exponent is 6 and the
base is 5.

INTEGER  EXPONENTS

An integer is a whole number, like 3, 0, or �12. When
a positive integer like 3 is used an exponent, it tells us 
to take the base and multiply it by itself. Thus, for 
example, 104 �10 � 10 �10 �10 � 10,000. (Notice that
when 10 is the base, the exponent gives the number of
zeroes in the product.) For any number a and any posi-
tive integer n,

For any two positive integers, which we can call m
and n, am an � am�n. For example, if the base is a � 10 and
the exponents are m � 2 and n � 3, then 

10 10 10 10 10 10 10

10 10 10 10 10

10 10

2 3

2 3 5

= × × × ×

= × × × ×

= =+

3 times
�������

2 times
�����

2+3 times
�����������

a a a a an = × × …
n times

�������
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Several other useful rules apply to integer exponents
such as that (am)n � aan or that (ab)m � (a)m(b)m. Here are
examples of these rules in action:

• (am)
n

� amn means that (102)
3
� 102102102

� 102+2+2

� 102�3 � 106

• (ab)m � ambm means that (3�10)2 � 32102

As for negative integer exponents, they also have a
simple meaning:

What about using 0, which is neither positive nor neg-
ative, as an exponent? By definition, a0 � 1 for any number
a other than 0 itself. For example, 10 � 1, �100 � 1, and
1,000,0000 � 1. But this doesn’t work for 0 0. Raising 0 to the
power of 0, like dividing by 0, is what mathematicians call
“undefined”—it has no meaning. You might want to try
raising 0 to the power of 0 (or dividing anything by 0) on
your calculator, and see what happens.

NON - INTEGER  EXPONENTS
So much for integer exponents. But how do we han-

dle an expression with a fractional exponent, like 21/3? We
can’t multiply 2 by itself one-third of a time! Therefore,
we expand our definition of exponent to include rational
numbers, that is, all numbers that can be written as frac-
tions, such as 1/3. The rational numbers include the inte-
gers, because we can always write an integer as a fraction
by putting a 1 in the denominator: 56 = 56 / 1. Any num-
ber in decimal form, such as 5.34, can also be written as a
fraction:

Let’s start with rational numbers of the form 

where is a positive integer. For two positive numbers a
and b, b � a1/n means that bn � a. For example, 3 � 91/2

means that 32 � 9, and 5 = 251/2 means that 52 � 25.
When b � a1/2, as in these two examples, we say that b is
the “square root” of a; so 3 is the square root of 9, and 

1
n

55.34
3

10
534
100

= + + =4
100

a
a a a a

n
n

– = =
× ×

1
a…

n times

�������

1

5 is the square root of 25. Taking the “square” of b
(raising b to the power of 2) gives a back again: 32 � 9 and
52 � 25.

When b � a1/3 we say that b is the “cube root” of a,
meaning that b � b � b � a. When b � a1/n we say that b
is the “nth root” of a, meaning that b � b � b ... � b
(n times) � a.

By combining this rule for 1/n exponents with the
rule that amn � (am)n, we can see what it means to use
rational numbers (fractions) as exponents, as in am/n:
namely, am/n � (am)1/n. And we already know how to deal
with exponents like m and 1/n separately. For example,

271/2, the square root of 27, is approximately 5.1961524. To
write it down exactly, we would have to write an infinitely
long string of digits to the right of the decimal point.

We’ve been looking at the meaning of rational 
exponents—exponents that can be expressed as frac-
tions with integers in their numerators and denomina-
tors. Any number that can’t be represented as a ratio of
integers, like �, is termed irrational. Since we can’t
express an irrational number as a fraction, our method
for dealing with rational exponents won’t work for irra-
tional exponents. The irrational exponent must be
approximated as a rational exponent before it can be
evaluated.

EXPONENT IAL  FUNCT IONS
A function is a rule that relates numbers to each

other. For example, the function f (x) � 2x (“f of x
equals 2x”) means that for every number x there is
another number, f (x), that is related to it by being twice
as large.

The exponential function is f (x) � bx , where b is 
any number other than 1. The function behaves differ-
ently depending on whether x is greater than 1 or
between 0 and 1. If b is greater than 1—say, f (x) �

2x—then the exponential function behaves as shown in
Figure 1.

Figure 1 shows the plot of the exponential function
f (x) � 2x. All functions of the form f (x) � bx with 
b � 1 have this shape, and all equal 1 at x � 0. The curve in
this figure looks like it touches the x axis at the far left, but
the curve never quite gets there, no matter how negative x
becomes.
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The key features of f (x) � 2x are its slow decline to the
left, like a plane coming in for a landing that never 
quite touches the runway, and its upward zoom to the 
right. The curve increases to the right because we are rais-
ing 2 to increasingly large exponents : for x � 2 we have
f (2) � 22 = 4, for x � 5 we have f (5) � 25 � 32, and 
so on. The functions tails off toward 0 as x gets more 
negative because we are raising 2 to increasingly negative
exponents:

and so on.

If b is between 0 and 1, the exponential function 
f(x) � bx behaves as shown in Figure 2.

All functions f (x) � bx with 0 � b � 1 have a simi-
lar shape, and all equal 1 at x � 0.

What do we do with negative exponents in an expo-
nential equation, f (x) � b�x? This can be rewritten using
the rule that (am)n � amn f(x) � b–x� b(–1)(x) � (b–1)x.
Since

using a negative exponent is the same thing as 
using a positive exponent with the base flipped upside
down:

For example,

The rule (am)n � amn also tells us how to deal with num-
bers that multiply the exponent, as in f (x) � bax. We can
always rewrite the function so that the exponent is plain
old x: f(x) � bax � (ba)x.

Table 1 presents a summary of the laws of exponents.

The concept of the exponent boils down to repeated
multiplication: take a number b, multiply it by itself, mul-
tiply that result by b, multiply that result by b, and so
on. People began to play with this concept—geometric
progression, as it is also called—very early in history.
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Geometric progression was studied over 3,600 years ago
by the ancient Egyptians and Sumerians and much later
by the Greeks, including Euclid (c. 300 B.C.) and
Archimedes (287?–212 B.C.).

A Brief History of Discovery 
and Development

Especially after the Middle Ages, scientists became
aware of many real-life objects that behave in a geometric
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Figure 1: Plot of the exponential function f(x) � 2x.
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Figure 2: Plot of the exponential function f(x) = (1/2)x.
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or exponential way, including the unrestrained breeding
of animals; the cooling of hot objects; the shapes of nat-
ural spirals such as those found in pine cones, sunflowers,
and ram’s horns; the dimming of supernovae (exploding
stars); the relationships between musical notes; and many
others. Ancient records inscribed in clay show that in the
Middle East, the Sumerians knew about the exponential
properties of compound interest as early as 2000 B.C.

Our modern way of writing an exponent-placing a
small number above and to the right of another number—
was introduced in 1637 by the French philosopher and
mathematician René Descartes (1596–1650). At abut that

time the relationship between the logarithm and the
exponent (namely, that they are inverses of each other)
was finally clarified.

In the eighteenth century, Swiss mathematician
Leonhard Euler (1701–1783) first devised the complex
exponential function, where a base is raised to the power
of an “imaginary” number containing the square root of
�1. The square root of �1 was a radical new idea because
it seemed impossible: what number, when multiplied 
by itself, could give �1? The square root of �1 is simply
itself (because 12 � 1), but �1 cannot be its own square
root (because �12 � �1 � �1 � �1). Nevertheless,

a a an m n m= + = =2 2 2 322 3 5

Rule ExampleMeaning

Multiplying two exponential
terms having the same base
is the same as raising that
base to the product of the

two exponents.

Dividing two exponential
terms having the same base
is the same as raising that
base to the difference of

the exponents.

Applying an exponent to a
base that is already raised
to an exponent is the same
as raising that base to the

product of the two exponents.

Raising the product of two
numbers to an exponent is
the same as raising each
number separately to that

exponent and then
multiplying.

Raising a fraction to an
exponent is the same as

raising the numerator and
denominator separately to that

exponent and then dividing.
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Table 1: Summary of the laws of exponents.
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mathematicians have found numbers containing the
square root of �1, called “complex” numbers, to be very
useful. Euler also explored the use of the number e �

2.7182818 as a “natural” (that is, highly convenient) base
for exponents and logarithms.

Today, exponents are applied throughout mathemat-
ics. They are used in physics and engineering to describe
phenomena that fade with time, such as radioactivity, or
periodic (repeating) phenomena like waves. They are
used in biology to model populations of bacteria, ani-
mals, and people; in medicine to model the breakdown of
drugs in the body; and in business and economics to
describe interest and inflation.

Real-life Applications

SC IENT I F IC  NOTAT ION
With scientific notation you can write down a num-

ber greater than the number of atoms in the universe with
just a few strokes of your pen. This is how:

Recall that for powers of ten, the exponent gives the
number of zeroes: 100 = 102, 1000 = 103, and so forth.
Using this fact, an ugly number like 1,000,000,000,000,
000,000 becomes a user-friendly 1018. We can also write a
number like 1,414,000,000,000,000,000 as 1.414 times
1018, namely, 1.414 � 1018. A number written in this form
is said to be in “scientific notation.” Scientific notation
makes large numbers much easier to handle.

The same trick also works for small numbers,
because numbers like .1, .01, .001, and so forth can be
written as tens raised to negative exponents; for example,

We can therefore write 10�20 instead of .0000000000
0000000001, and 1.675 � 10�24 instead of .0000000000
00000000000001675 (which happens to be the mass in
grams of a single hydrogen atom).

Another useful feature of scientific notation is that
changing the exponent is shorthand for moving the dec-
imal point. Thus we write 4.5 � 10�2 for .045 and 4.5 �
10�4 for .00045.

To multiply two numbers written in scientific nota-
tion, all we have to do is multiply the numbers out front
and add the exponents. So, 1.414 � 1018 times 1.675 �
10�24 is 1.414 � 1.675 � 1018–24 � 2.36845 � 10–6. This is
so easy that when multiplying simple numbers like 1 �
1012 and 5 � 109, it’s actually easier to do the math in your

.01
1

100

1
10 2–

102
= = =

head than to punch buttons on a calculator provided you
can add 12 and 9 in your head without blowing a fuse.
(The answer is (1 � 1012 ) � (5 � 109) � ( 1 � 5) �
1012�9 � 5 � 1021.) Division is equally easy, only you
divide the numbers out front and subtract the exponents.

As for writing down a number larger than the num-
ber of atoms in the universe, this is it: Physicists estimate
that there are fewer than 10100 atoms in the Universe, per-
haps only about 1080. If every atom in the Universe were
inflated into a universe full of atoms, there would still be
only (1080)2 or 10160 atoms in existence. So writing 10160,
or 10200, or 10300 gives a number much, much greater than
the number of atoms in the Universe.

EXPONENT IAL  GROWTH
A useful fact in science (and banking) is this: Any

quantity that grows by a fixed percentage during each
interval of time grows exponentially.

Consider a pair of rabbits. Say that this pair has two
offspring by the end of one year. There are now four rab-
bits: the population has doubled in one year. Assume that
both pairs will breed the following year, each producing
two more offspring, and that their offspring will also
breed, and so on, so that the total population keeps on
doubling every year. This is the same as saying that the
population increases by a fixed percentage every year,
namely 100%: 2 rabbits plus 100% of 2 rabbits equals 
4 rabbits (first year’s population growth), 4 rabbits plus
100% of 4 rabbits equals 8 rabbits (second year’s growth),
and so forth. The growth of this rabbit population is
described by an exponential equation. If we label the first
year Year 0, then the number of rabbits at the beginning
of each year, R(t). is given by the following series of num-
bers: R(0) � 2, R(1) � 4, R(2) � 8, R(3) � 16, and so on.
In general, 2R(t) � 2 � 2t, where t is years.

Figure 3 shows the number of rabbits as an expo-
nential function of time, starting with two rabbits and
assuming a doubling time of 1 year. This curve is similar
to the part of Figure 1 to the right of x � 0.

Do rabbits really do this? Sure—when they can; that
is, if they have food to eat, room to live in, and air to
breathe, and no enemies or diseases nasty enough to keep
the population from growing. In reality, rabbits cannot
have all these things, certainly not in infinite amounts.
There are predators and diseases; there is only so much
food, water, and room. So in one sense the exponential
equation is not realistic—but in another sense, it is terri-
bly realistic. It forces conflict between growing popula-
tions and their environments. If a population seeks to
increase by any fixed percentage per year (that is, if it
seeks to grow exponentially), then at some point
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deaths—whether from hunger or other causes—will
inevitably outpace births. To see why this cannot be
avoided, let’s use the master rabbit equation, R(t) � 2 �
2t, to look at what would happen if our imaginary rabbit
population was somehow, magically, able to keep on
growing.

Let’s calculate how long it takes to get a given num-
ber of rabbits, N. To do so, we find the “solution” to the
equation 2 � 2t � N, that is, that unique value of t for
which the equation is true. Let’s pick a nice, big value for
N—say, enough rabbits to completely fill the Solar Sys-
tem. Pluto, usually regarded as the outermost planet, has
an average distance from the Sun of 5.914 � 1012 km.
Because the volume of a sphere of radius r is

(exponents again!), the volume of the Solar System is

where 1 m3 is a cubic meter (the amount of space in a
cube 1 meter across). If we can pack 50 rabbits into each

4
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cubic meter of space, then the number of rabbits that can
fit into the Solar System is 

Because the number of rabbits at the start of year t is N �

2 � 2t , to find out the number of years till there are 

rabbits we need to find t such that 

To find the t that satisfies this equation, we must per-
form the mathematical operation known as “taking the
logarithm” of both sides. Taking the logarithm undoes

N = ×2 957 1038π .
4
3

N = ×2 957 1038π .
4
3

N m
rabbits

m

rabbits to fill Solar System

××=

×=

5.914 10
50

2.957 10

36 3
3

38

π

π

number of cubic meters
in Solar System

number of rabbits
per cubic meter

⎟
4
3

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠

������������� ���������

4
3

10

50

45

40

35

30

25

20

15

10

5

2
0

0.5

years

R(t)= 2·2t

rabbits

1.5 2 2.5 4.5 53.53 4

Figure 3: An exponential function.



E x p o n e n t s

R E A L - L I F E  M A T H 173

exponentiation (applying exponents) in much the same
way that subtraction undoes addition or division undoes
multiplication.

Solving using logarithms, we find that t equals
approximately 129 years. This means that a rabbit popu-
lation that doubled every year would fill the whole Solar
System with long-eared rodents in only 129 years. It
would take the first 128 of those years to fill half the Solar
System, but just one more year to fill the other half!

A Solar System full of rabbits is, of course, physically
impossible. The moral is that exponential population
growth always runs up against physical limits, most often
getting eaten or starving to death.

The equation R(t) � 2 � 2t is an example of the gen-
eral exponential equation R(t) � R0b

t, where b is some pos-
itive number and R0 is the value of R(t) at t � 0 (because
R(0) � R0 � b0 � R0 � 1 = R0). We’ll use this form of the
exponential equation in the following application also.

ROTT ING  LEFTOVERS

Any quantity—say a population of rabbits, or of
people—that grows by a fixed percentage each year, no
matter how small, will double over some period of time.
It will then double again after an equal period of time,
and so on forever. Every exponentially growing quantity
grows in this way, so every exponentially growing quan-
tity is said to have a “doubling time.”

Suppose you leave a dish of food out at midnight.
The dish happens to have 10 bacteria sitting on it. Sup-
pose also that this population of bacteria increases by 4%
every minute. How long will it be before the number of
bacteria in the dish doubles? And how many bacteria will
you be consuming when you finish off the leftovers at
noon the next day?

If the population is growing by 4% every minute,
then it is growing exponentially, and can be described by
an exponential equation of the form R(t) � R0b

t, just like
the rabbit population in the previous example. We
already know R0, the number of bacteria at time t � 0; it’s
10. But what is b?

Besides the fact that R0 � 10, we also know that the
bacterial population at the end of 1 minute, R(1), is 4%
greater than at t � 0, because we’re told that the popula-
tion is growing by 4% every minute. This fact can be writ-
ten down as R(1) � 10 � (.04 � 10) � 10.4.

We also know that R(1) must be given by the expo-
nential equation R(t) � R0b

t with 10 plugged in for R0

and 1 plugged in for t, namely, R(1) � 10b1 � 10b. We can
now set this expression for R(1) equal to the number
found in the previous paragraph: 10b � 10.04.

Dividing both sides by 10 to solve for b, we find that
b � 1.004.

We now have both R0 and b, and so can write down
the exact exponential equation that describes this bacter-
ial population: R(t) � R0b

t � 10 � (10.004t).
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We can now return to our first question: What is the
doubling time? Let us call that unknown number of min-
utes TD. Because we start out with 10 bacteria, the num-
ber of bacteria after the first doubling time will be 
20 (double). So the population at time TD is given by
R(TD) � 20 � 10 � 1.004TD. To solve for TD, we must
“take the logarithm” of both sides of this equation. Taking
the logarithm undoes the exponential operation much the
way that subtraction undoes addition or division undoes
multiplication (see chapter on Logarithms). We find that
TD � 173.63 minutes (about 2 hrs 54 minutes).

The equation R(t) � 10 � (10.004t) also tells us how
many bacteria you’ll be eating at noon the next day. All 
we need to know is the number of minutes between 

midnight and noon, which is 12 hours times 60 minutes
per hour, or 720 minutes. Thus, R(720) � 10 � 1.004720,
or about 177 bacteria.

Not bad, really. As you read this, your intestines con-
tain trillions of bacteria. But remember the power of expo-
nential growth. After 24 hours there will be 3,137 bacteria;
after 48 hours, 984,205 bacteria; and after 3 days, 3.088 �
108 bacteria, about as many people as there are in the
United States. Look out for a stomach upset—or worse.

EXPONENTS  AND  EVOLUT ION
Predators and sickness often keep populations from

growing exponentially, but if they don’t there is one thing
that certainly will: hunger. There can never be an infinite
food supply—even if you could somehow turn the whole
Earth into a ball of food, it would be limited. Therefore,
sooner or later, any exponentially growing population 
must run out of food and either stop breeding or start
starving.

This principle was first clearly explained English
economist and minister Thomas Robert Malthus
(1766–1834). In his 1798 book, An Essay on the Principle
of Population, Malthus wrote: “Population, when
unchecked, increases in a geometrical ratio [exponen-
tially]. Subsistence [that is, food supply] increases only 
in an arithmetical ratio [like a straight line]. A slight
acquaintance with numbers will show the immensity of
the first power in comparison of the second. . . . This
implies a strong and constantly operating check on pop-
ulation from the difficulty of subsistence.”

By “a slight acquaintance with numbers” Malthus
meant a knowledge of exponents. Population increases
exponentially (“in a geometrical ratio”) whenever it can,
rising in a curve that gets ever steeper; but food supply
increases (if it increases at all, say by the clearing and plant-
ing if more cropland) approximately as a straight line, that
is, according to a “linear” function or “arithmetical ratio.”
And any exponential function will eventually outrun any
linear function. Accordingly, any freely-breeding popula-
tion must eventually outrun its food supply.

Malthus was talking about the human population,
but his logic applies to any biological population. Two
English biologists, Charles Darwin (1809–1882) and
Alfred Russel Wallace (1823–1913)—realized this when
they read Malthus’s book in the mid-1800s. Both Darwin
and Wallace were trying to think of a mechanism to
explain biological evolution, the process whereby new
species of animals and plants arise from older ones. Peo-
ple had been suggesting theories of evolution for years,
but none of them could explain why evolution happened.
However, Malthus’s reasoning about population growth

Population Growth

The human race has inhabited Earth for about 3 mil-
lion years. For much of that time, the world’s popula-
tion was constant at about 10 million people. Life
was difficult; most babies died, and people reached
old age and usually died by 30. For food, people har-
vested wild plants and hunted animals.

With the invention of farming and cities about
10,000 years ago, larger local populations became
possible. During the first century A.D, some 2,000
years ago, the world’s population had grown to
about 300 million people. Around the year 1600, as
modern science and technology started to come
into being, and population began to grow faster. By
1800, there were about 1 billion people on Earth. It
took about 3 million years for the world to gain its
first billion people, and only 130 years to gain its
second billion. Today, there are over 6 billion people
living on Earth.

The most common mathematical model for
population growth is the exponential function, Q(t) �

0k
t (see main text). As the population figure shows

the approximate recent exponential growth of world
population, the data becomes visible. Dots are
actual world population at 1, 2, 3, 4, 5, and 6 billion;
the smooth curve is exponential function 2.3236 �
10�10 � 1.0124t, where t is in years A.D.

The world’s population will continue to grow for
the near future. But it is physically impossible for
the Earth’s population to continue to grow exponen-
tially, as there is a finite amount of space and poten-
tial for growing food. 
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triggered a fresh insight for both Wallace and Darwin.
Working separately, they realized that the potential of
every species for exponential population growth guaran-
teed struggle between organisms. In biology, “struggle”
usually means not fighting, but competition to leave
more offspring than one’s rivals. In an article published
jointly with Wallace in 1858, Darwin said, echoing
Malthus: “[T]he amount of food for each species must,
on an average, be constant, whereas the increase of all
organisms tends to be geometrical, and in a vast majority
of cases at an enormous ratio . . . . Now, can it be doubted,
from the struggle each individual has to obtain subsis-
tence, that any minute variation in structure, habits, or
instincts, adapting that individual better to the new con-
ditions, would tell upon its vigour and health? In the
struggle it would have a better chance of surviving; and
those of its offspring which inherited the variation, be it
ever so slight, would also have a better chance. . . . Let this
work of selection on the one hand, and death on the
other, go on for a thousand generations, who will pretend
to affirm that it would produce no effect . . . ”

Wallace and Darwin’s insight was that competition
(made inevitable by exponential population growth) is
more than just a check or limit on population: it forces

nature to filter the chance changes that show up in every
generation of creatures and so acts as a creative force,
helping sculpt such marvels as the gull’s wing, the eagle’s
eye, and the human brain.

RAD IOACT IVE  DECAY

In Nevada, about 90 miles (145 km) northwest of Las
Vegas, stands an unremarkable-looking ridge of dry, brown
rock, owned by the Federal government and known as
Yucca Mountain. This is where the United States govern-
ment hopes to bury 77,000 tons (69,853 tonnes) of highly
radioactive nuclear waste from around the U.S. (about 60%
of the total amount that had built up as of 2004).

This waste is what is left over when a nuclear power
plant has finished using uranium fuel to produce elec-
tricity. Plans call for it to be mixed with molten glass and
cooled to a solid (“vitrified”), sealed inside rust-resistant
metal containers, and parked along 73 miles (117 km) of
branching tunnels located 1,000 feet (305 m) below the
surface of Yucca Mountain. When the tunnels are full,
they will be sealed off and hopefully not entered again—
especially by water, which might carry the waste back to
the surface—for at least 10,000 years.

Population Growth

Think of how a rumor spreads. Somebody starts a rumor
by telling everyone they know, then those people tell
everyone they know, then those people tell everybody
they know, and so on.

In a finite environment, such as a high school (or
the planet Earth, for that matter), there are a limited
number of people to tell. Soon, people who have heard
the rumor are having trouble finding people who haven’t
heard it yet. What happens then?

The function that describes the growing number 
of people who have heard a rumor is called the logistic
curve.

The horizontal axis here is time, the vertical axis the
fraction of the school that knows the rumor; let’s call it
the hip fraction. The curve starts out at time zero at
some nonzero number, namely, the fraction of the school
population that knows the rumor to begin with. As time
goes on, the hip fraction approaches 1; everybody knows
the rumor. Using calculus, we can show that the deriva-
tive of the logistic curve always has a maximum where

the hip fraction equals .5 (marked X on the curve). That
is, the rate of change of the hip fraction decreases after
that time. A rumor, therefore, spreads more slowly once
it has been heard by half the people in a group.

Because germs, like rumors, spread by contact,
mathematicians also use the logistic curve to describe
the spread of a disease in a finite population.
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Why does the waste need to be put in such a special
place at all? And why for as long as 10,000 years—or for
only 10,000 years? Why not forever?

The Reason is Radioactive Decay A “radioactive” sub-
stance is one whose individual atoms break apart (fission)
at random (chance) times, releasing energy. This energy
takes the form of fast-moving particles or invisible rays
that can cause cancer or other sickness. Some radioactive
atoms are mixed naturally with the environment, whereas
some are human-made. Regardless of where they come
from, the fewer radioactive atoms we come in contact
with, the better for our health. (Some medical tests and
treatments do use radioactive substances, however, where
the gain is thought to be larger than the risk.)

Radioactive substances disappear over time as their
atoms change into other types of atoms. This change
in atoms is called “radioactive decay.” Like the curve in Fig-
ure 2, radioactive decay can be described by an exponential

equation with a base between 0 and 1. Someday, therefore,
all the nuclear waste generated today will be harmless,
but that date is tens or hundreds of thousands of years in
the future.

Just as every exponentially increasing process has a
doubling time, so every exponentially decaying process
has a halving time. In the case of a radioactive substance,
this halving time is called the substance’s “half-life.” Half
the atoms in a lump of any radioactive substance will
have changed into other substances after one half-life of
that substance. Different radioactive substances have dif-
ferent half-lives. Half-lives vary from a tiny fraction of a
second up to billions of years.

Consider the substance plutonium 238. Plutonium
238 (also written 238Pu) is both poisonous and radioac-
tive. It can be used as fuel for nuclear reactors or to make
nuclear bombs. It is one of the ingredients in radioactive
waste of the type that may someday be stored beneath
Yucca Mountain (perhaps starting in 2010). 238Pu has a
half-life of about 25,000 years. If the amount of 238Pu that
we start out with at time t � 0 is Q0 tons, then the amount
at some later time t will be described by the exponential
equation Q(t) � Q0k

t. Because we know that after the first
25,000 years there will be half as much 238Pu as at time 
t � 0 , we can write the following:

Because Q0 appears on both sides of the equal sign, it can-
cels out. We can then solve for k using logarithms. We find
that k � .999972. The radioactive decay of 1 ton of 238Pu
is shown in Figure 4.

In Figure 4, the radioactive decay of 1 ton of plutonium
238 (238Pu). Time is shown in units of half-lives. Notice that
at t � 1 (one half-life) the amount of 238Pu is down to 

Q k0
25,000=

Q0

2
A common example of exponential decay is radioactive
decay. A concrete sarcophagus covered the damaged
nuclear reactor No. 4 at the power plant in Chernobyl,
Ukraine, following the 1986 nuclear accident. A/P WIDE WORLD.

REPRODUCED BY PERMISSION.
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1/2 ton. To read the time axis in units of years, multiply by
25,000. Note that this curve is exactly the same (except for
vertical scale) as the part of Figure 2 to the right of x � 0.

As a rule of thumb, experts often say that we should
wait at least 10 half-lives of a radioactive substance before
considering that a chunk of it is harmless. In the case of plu-
tonium, 10 half-lives are about 250,000 years. How much of
an original quantity of any radioactive substance, say 1 ton,
is left after 10 half lives? Since waiting one half-life cuts the
amount in half, and waiting two half-lives cuts that amount
in half, and so on, we can use exponents. A little thought
shows that the fraction that is left after ten half-lives is 

That is, after 10 half-lives, only .0009766 tons (about one
one-thousandth of the original ton) will be left.

The wastes intended for Yucca Mountain contain
many radioactive substances besides plutonium. Many of
these have much shorter half-lives than plutonium, so in
about 300 years 99% of the radioactivity of the nuclear
waste will have disappeared. After 10,000 years, the amount
of time that the Yucca Mountain storage tunnels are sup-
posed to be guaranteed for, these shorter-lived substances
will be essentially gone. On the other hand, after 10,000
years only about one-fourth of the plutonium will be gone.

RAD IOACT IVE  DAT ING
“Radioactive dating” is an essential technique in geol-

ogy and archaeology. By looking at the amounts of radioac-
tive substances embedded in rocks or other objects and at
the amounts of breakdown products (substances left over
from radioactive decay) that are mixed with them, scientists
can tell how much radioactive material must have been
originally present in the object—and thus, by the exponen-
tial equation, how old the object is. For example, if a rock
contains 1 gram of radioactive uranium 238 (238U) and 1
gram of lead, which is a breakdown product, it is probable
that the rock originally contained 2 grams of 238U. Since 238U
has a half-life of about 4.5 billion years, it takes about 4.5 bil-
lion years for 2 grams to decay to 1 gram, so we deduce that
this particular rock is about 4.5 billion years old.

In practice, breakdown products and radioactive dat-
ing are more complex than this. Scientists must look at
many different samples of rock (or wood, or whatever
material they are dating) and at a number of different
radioactive substances and breakdown products, rather
than just one. But by combining methods and measuring
many different objects, error can be minimized. Through

1
2

.0009766
10

=
⎞
⎠⎟

⎛
⎝⎜

radioactive dating, scientists have verified that the Earth,
the Moon, and most meteorites are about 4.5 billion years
old. That is, about half the 238U that was present when the
Solar System formed has turned into other elements.
Some of it, in fact, has ended up in your car battery.

INTEREST  AND  INFLAT ION
Let’s say that you earn $100 at a weekend job. Your

parents insist that you put it in a nice, safe bank until
you’re 18. They try to comfort you with the idea that your
money will earn interest, so you will end up with more
money if you wait. How much more? And what exactly
does it mean to “earn interest,” anyway?

“Interest” is money that is paid to you by a bank in
which you have deposited money. The bank invests the
money in enterprises that it thinks will be worth more in
the future. Banks make profit by taking in more money
on their investments than they pay in interest to their
depositors (that’s you), but regardless of how well a
bank’s investments are doing, it is obliged to pay you the
agreed-upon interest.

To pay interest, the bank looks at the money in your
account at regular intervals, say every three months. It then
calculates a fixed percentage of that amount (your interest)
and adds this money to your account. (At the words “reg-
ular intervals” and “fixed percentage” your ears should
prick up: “Regular intervals? Fixed percentage? My money
will grow exponentially ?” Yes, but wait.) The percentage
used to calculate your interest is called the “interest rate.”

After another three months (or whatever the interval
happens to be), the bank calculates the fixed percentage
again and adds it to your account. The interest from the
previous time interval—also called a “conversion period”—
earns interest during the next time interval, assuming that
you haven’t taken any money out. This arrangement, where
interest earns interest, is called “compound” interest.

Let’s go back to your $100. Assume the conversion
period is three months (which is one quarter of a year, so
it’s also called a “quarter”). You get a quarterly interest rate
of 1.5%, so the end of the first quarter, the bank adds 1.5%
of $100 to your account, namely, $1.50. Your account now
contains $101.50. At the end of the second quarter, the
bank calculates 1.5% of $101.50, which is $1.52 (rounding
down), and it adds that to your account. Your account now
contains $103.02. Notice that the amount of interest you
receive at the end of the second quarter is larger than the
interest you receive at the end of the first quarter. The rea-
son is that you’ve begun to earn interest on your interest.

Not surprisingly, this is an exponential process. Its
equation is S(n) � P (1 � r)n. Here S(n) is the amount of
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money in your account after n quarters, P is your princi-
pal (the money you start off with, in this case $100), and
r is the quarterly interest rate (1.5%, in this case). Since
time, n, is in the exponent, this is an exponential func-
tion. Putting in our numbers for P, r, and n, we find that
S(n) � 100 (1 � .015)n � 100 � 1.015n.

For the end of the second quarter, n � 2, this gives
the result already calculated: S(2) � $103.02.

This equation for S(n) should look familiar. It has the
same form as the equation for a growing population, R(t)
� R0b

t, with R0 set equal to $100 and b set equal to 1.015.

If $100 is put in the bank when you’re 14, then by the
time you’re 18, four years or 16 quarters later, it will 
have grown exponentially to $100 � 1.01516 � $126.90
(rounded up). If you had invested $1,000, it will have grown
to $1,268.99. That’s lovely, but meanwhile there’s inflation,
which is exponentially making money worth less over time.

Inflation occurs when the value of money goes
down, so that a dollar buys less. As long as we all get paid
more dollars for our labor (higher wages), we can afford
the higher prices, so inflation is not necessarily harmful.
Inflation is approximately exponential. For the decade
from 1992 to 2003, for example, inflation was usually
around 2.5% per year. This is lower than the 6% per year
interest rate we’ve assumed for your invested money, so
your $100 of principal will actually gain buying power
against 2.5% annual inflation, but not as quickly as the
raw dollar figures seem to show: after four years, you’ll
have 26% more dollars than you started with ($126.90
versus $100), but prices will be 10.4% higher (i.e., some-
thing that cost $100 when you were 14 will cost about
$110 when you are 18).

Furthermore, 6% is a rather high rate for a savings
account: during the last decade or so, interest rates for
savings accounts have actually tended to be lower than
inflation, so that people who keep their money in interest-
bearing savings accounts have actually been losing
money! This is one reason why many people invest their
money in the stock market, where it can keep ahead of
inflation. The dark side of this solution is that the stock
market is a form of gambling: money invested in stocks
can shrink even faster than money in a savings account,
or disappear completely. And sometimes it does.

CRED I T  CARD  MELTDOWN
When you deposit money in a bank, the bank is essen-

tially borrowing your money, and pays you interest for the
privilege of doing so. When you borrow money from a
bank, you pay the bank interest, so if you don’t pay off your
debt, it can grow exponentially. Exponential interest

growth is why credit-card debt is dangerous. A credit-card
interest rate, the percentage rate at which the amount you
owe increases per unit time, is much higher than anything
a bank will pay to you. (Fifteen percent would be typical,
and if you make a late payment you can be slapped with a
“penalty rate” as high as 29%.) So if you only make the
minimum monthly payments, your debt climbs at an
exponential rate that is faster than that of any investment
you can make. This is why you can’t make a living by bor-
rowing money on a credit card and investing it in stocks. If
you could, the economy would soon collapse, because
everyone would start doing it, and an economy cannot run
on money games; it needs real goods and services.

Those high credit-card interest rates are also the rea-
son credit-card companies are so eager to give credit
cards to young people. They count on younger borrowers
to get carried away using their cards and end up owing
lots of fat interest payments. And it seems like a good bet.
In 2004, the average college undergraduate had over
$1,800 in credit-card debt.

The good news is that to avoid high-interest credit-
card debt, you need only pay off your credit card in full
every month.

THE  AMAZ ING  EXPAND ING  UN IVERSE
The entire Universe is shaped by processes that are

described by exponents.

All the stars and galaxies that now speckle our night
sky, and all other mass and energy that exists today, were
once compressed into a space much smaller than an
atom. This super-tiny, super-dense, super-hot object
began to expand rapidly, an event that scientists call the
Big Bang. The Universe is still growing today, but at dif-
ferent times in its history it has expanded at different
speeds. Many physicists believe that for a very short time
right after the Big Bang, the size of the Universe grew
exponentially, that is, following an equation approxi-
mately of the form R(t) � Kat, where R(t) is the radius of
the Universe as a function of time and t and K and a are
constants (fixed numbers). This is called the “inflationary
Big Bang” theory because the Universe inflated so rapidly
during this exponential period. If the inflationary theory
is correct, the Universe expanded by a factor of at least
1035 in only 10–32 seconds, going from much smaller than
an electron to about the size of a grapefruit.

This period of exponential growth lasted only a brief
time. For most of its 14-billion year history, the Universe’s
rate of expansion has been more or less proportional to
time raised to the 2/3 power, that is, R(t) � Kt2/3. Here
R(t) is the radius of the universe as a function of time,
and K is a fixed number.
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Most scientists argue that the Universe will go on
expanding forever—and that it’s expansion may even be
accelerating slowly.

WHY ELEPHANTS  DON ’ T  HAVE
SK INNY  LEGS

The two most common exponents in the real world
are 2 and 3. We even have special words to signify their
use: raising a number to the power of 2 is called “squar-
ing” it, while raising it to the power of 3 is called “cubing”
it. These names reflect the reasons why these numbers are
so important. The area of a square that is L meters on a
side is given by A � L2 , that is, by “squaring” L, while the
volume of a cube that is L meters on a side is given by 
V � L3, that is, by “cubing” L.

These exponents—2 and 3—appear not only in the
equations for the areas and volumes of squares and cubes,
but for any flat shapes and any solid shapes. For example,
the area of a circle with radius L is given by A � �L2 and
the volume of a sphere with radius L is given by 4/3 �L3.
The equations for even more complex shapes (say, for the
area of the letter “M” or the volume of a Great Dane)
would be even more complicated, but would always
include these exponents somewhere—2 for area, 3 for
volume. We say, therefore, that the area of an object is
“proportional to” the square of its size, and that its vol-
ume is proportional to the cube of its size.

These facts influence almost everything in the physi-
cal world, from the shining of the stars to radio broad-
casting to the shapes of animals’ legs. The weight of an
animal is determined by its volume, since all flesh has
about the same density (similar to that of water). If there
are two dogs shaped exactly alike, except that one is twice
the size of the other, the larger dog is not two times as
heavy as the smaller one but 23 (eight) times as heavy,
because its volume is proportional to the cube of its size.
Yet its bones will not be eight times as strong. The
strength of a bone depends on its cross-sectional area,
that is, the area exposed by a cut right through the bone.
The bigger dog’s bones will be twice as wide as the small

dog’s (because the whole dog is twice as big), and area is
proportional to the square of size, so the big dog’s bones
will only be 22 (four) times as large in cross section, there-
fore only four times as strong. To be eight times as strong
as the small dog’s bones, the big dog’s bones would have
to be the square root of 8, or about 2.83 times wider.

You can probably see where this is leading. An ele-
phant is much bigger than even a large dog (about ten
times taller). Because volume goes by the cube of size, an
elephant weights about 103 � 10 � 10 � 10 � 1000 times
as much as a dog. To have legs that are as strong relative to
its weight as a dog’s legs are, an elephant has to have leg
bones that are the square root of 1,000, or about 31.62
times wider than the dog’s. So even though the elephant is
only 10 times taller, it needs legs that are almost 32 times
thicker. If an elephant’s legs were shaped like a dog’s, they
would snap.

Where to Learn More

Books
Durbin, John R. College Algebra. New York: John Wiley & 

Sons, 1985.

Morrison, Philip, and Phylis Morrison. Powers of Ten: A Book
About the Relative Size of Things in the Universe and the
Effect of Adding Another Zero. San Francisco: Scientific
American Library, 1982.

Periodicals
Curtis, Lorenzo. “Concept of the exponential law prior to 

1900,” American Journal of Physics 46(9), Sep. 1978, pp.
896–906 (available at �http://www.physics.utoledo.edu
/~ljc /explaw.pdf�.

Wilson, Jim. “Plutonium Peril: Nuclear Waste Storage at Yucca
Mountain,” Popular Mechanics, Jan. 1, 1999.

Web sites
Population Reference Bureau. “Human Population: Fundamen-

tals of Growth: Population Growth and Distribution.”
�http://www.prb.org/Content/NavigationMenu/PRB/Edu
cators/Human_Population/Population_Growth/Population
_Growth.htm� (April 23, 2004).
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Factoring

Overview

Factoring a number means representing the number
as the product of prime numbers. Prime numbers are
those numbers that cannot be divided by any smaller
number to produce a whole number. For instance, 2, 3, 5,
7, 11, and 13 (among many others) cannot be divided
without producing a remainder.

Factoring in its simplest form is the ability to recog-
nize a common characteristic or trait in a group of indi-
viduals or numbers which can be used to make a general
statement that applies to the group as a whole.

Another way to think of factoring is that every indi-
vidual in the group shares something in particular. For
example, whether someone is from France, Germany, or
Austria is irrelevant in the statement that they are Euro-
pean, because all three of these countries share the geo-
graphic characteristic of being on the continent of
Europe. The factor that can be applied to all three indi-
viduals in this particular group is that they are all Euro-
pean. The ability to recognize relationships between
individual components is fundamental to mathematics.
Factoring in mathematics is one of the most basic but
important lessons to learn in preparation for further
studies of math.

Fundamental Mathematical Concepts
and Terms

A number which can be divided by smaller numbers
is referred to as a composite number.

Composites can be written as the product of smaller
primes. For example, 30 has smaller prime numbers
which can be multiplied together to achieve the product
of 30. These numbers are as follows: 2 � 3 � 5 � 30. A
number is considered to be factored when all of its prime
factors are recognized. Factors are multiplied together to
yield a specific product.

It is important to understand a few basic principals
in factoring before further discussion can continue on
how factoring can be applied to real life. One of the most
important studies of mathematics is to study how indi-
vidual entities relate to one another.

In multiplying factors which contain two terms, each
term must be multiplied with each term of the second set
of terms. For example, in (a�b) (a�b), both the a and b
in the first set must be multiplied by the a and b in the
second set. The easiest way to accomplish this is by employ-
ing the FOIL method. FOIL refers to the order of multi-
plication: first, outer, inner, and last. First we multiply a
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by a to yield a2, then the Outer terms of a and b to yield
ab, then the Inner terms of b and a to yield another ab,
finally we multiply the Last terms of b and b for b2.
Putting all of these together, we achieve a2 � 2ab � b2.

Greatest common factor (GCF) refers to two or more
integers where the largest integer is a factor of both or all
numbers. For example, in 4 and 16, both 2 and 4 are fac-
tors that are common to each. However, 4 is greater than
2, so therefore 4 is the greatest common factor. In order to
find the greatest common factor, you must first determine
whether or not there is a factor that is common to each
number. Remember that common factors must divide the
two numbers evenly with no remainders. Once a common
factor is found, divide both numbers by the common fac-
tor and repeat until there are no more common factors. It
is then necessary to multiply each common factor
together to arrive with the greatest common factor.

Factoring perfect squares is one of the essentials of
learning factoring. A perfect square is the square of any
whole number. The difference between two perfect squares
is the breaking of two perfect squares into their factors. For
example a2 � b2 is referred to as the difference between two
perfect squares. The variables a and b refer to any number
which is a perfect square. In order to factor a2 � b2, we
must see that the factors must contain both a and b. If we
start with (a � b), and remove this expression from a2 �

b2, we will have (a � b) remaining. This would yield a solu-
tion of (a � b) (a � b). Using the FOIL method, the prod-
uct would be a2 � ab � ab � b2, which is a 2 � 2ab � b2

which is incorrect due to the presence of a middle term.

Alternatively, if we choose (a � b) and remove both a
and b from the original equation, we have: (a � b) (a � b).
Multiplying these factors back together yields a2 � ab � 

ab � b2 which simplifies to our original equation of
(a2 � b2). The difference between two perfect squares always
has alternating � and � signs to eliminate the middle term.

Real-life Applications

Factoring is used to simplify situations in both math
and in real life. They allow faster solutions to some prob-
lems. In the mathematical calculations used to model
problems and derive solutions, factoring plays a key role in
solving the mathematics that describe systems and events.

IDENT I F ICAT ION  OF  PATTERNS  
AND  BEHAV IORS

By learning the patterns and behaviors of factors
in mathematical relationships, it is possible to identify
similarities between multiple components. By being able

to quickly and accurately find similarities, a solution can
usually be identified. The solution to any given problem
is based on how each individual player or factor in the
problem relates to one another for an effective solution.
By being able to see these relationships, many times it is
possible to see the solution in the relationship.

An example is commonly found in decision making.
For example, a shopper enters an unfamiliar grocery store
looking for Gouda cheese. The shopper could wander aim-
lessly, hoping to spot the cheese, but a smarter approach
illustrates the intuitive process of factoring. Granted, with
enough time, the shopper might eventually find the
cheese, but a better approach is to search for a common
factor to help narrow the search. What common factor
does cheese have with other items in the store? The obvi-
ous choice would be to look for the dairy section and
eliminate all other sections in the store. The shopper
would then further factor the problem to locate the
cheese section and eliminate the milk, eggs, etc. Finally
one would only look at the cheese selections for the
answer, the Gouda cheese. This is a fairly simple non-
mathematical example, but it demonstrates the principle
of mathematical factoring—a search for similarities
among many individual numerical entities.

REDUC ING  EQUAT IONS
In math, one of the most useful applications of fac-

toring is in eliminating needless calculations and terms
from complex equations. This is often referred to as
“slimming down the equation.” If you can find a factor
common to every term in the equation, then it can be
eliminated from all calculations. This is because the fac-
tor will eventually be eliminated through the calculation
and simplification process anyway. An example of this is
(2�8)/4 which can be slimmed down to (1 � 4)/2 by
eliminating the common factor of 2. The value of the first
expression was 10/4 and the value of the second one is
5/2, which is the same once 10/4 is simplified. As we can
see, one advantage in eliminating factors is the answer is
already simplified. Now let’s take a look at a slightly more
complicated example:

we can see that a common factor of ax2 can be eliminated.

This expression then becomes:

ax2 (x + b – c)

ax2
= (x + b – c)

ax3 abx2 acx2+ –

ax2
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This same technique can be employed in any mathe-
matical equation in which there is a factor common to all
parts of the equation.

DISTR IBUT ION
Factoring is often used to solve distribution and

ordering problems across a range of applications. For
example, a simple factoring of 28 yields 4 and 7. In appli-
cation, 28 units can be subdivided into 4 groups of 7 or 7
groups of 4, Again, by example, in application 28 
players could be divided into 4 teams of 7 players or 
7 teams of 4 players. This is intuitive factoring—
something done every day without realizing that it is a
math skill.

SK ILL  TRANSFER
In addition to factoring mathematical equations, the

ability to mathematically factor has been demonstrated to
transfer into stronger pattern recognition skills that allow
rapid categorization of non-mathematical “factors.”
Essentially is it an ability to find and eliminate similarities
and thus focus on essential difference.

When a defensive linebacker looks over an offensive
set in football, he scans for patterns and similarities in
numbers of players each side of the ball, in the backfield,
in an effort to determine the type of play the opposing
quarterback (or his coach) has called. This is not mathe-
matical factoring, but psychology studies have shown that
practice in mathematical factoring often leads to a gen-
eral improvement in pattern recognition and problem
solving.

CODES  AND  CODE  BREAK ING
Another example of mathematical factoring is in

coding and decoding text. Humans have found clever
ways of concealing the content of sensitive documents
and messages for centuries. Early forms of coding
involved the twisting of a piece of cloth over a rod of a
certain length. On the cloth would be printed a confusing
matrix of seemingly unrelated letters and symbols. When
the cloth was twisted over a rod of the proper diameter
and length, it would align letters to form messages. The
concealed message would be determined by a mathemat-
ical factor of proper rod diameter and length that only the
intended party would have in possession. Coding and
decoding text today is far more complicated. In our new
highly computerized age, coding and decoding text
depends on an extremely complicated algorithm of
mathematical factors.

GEOMETRY  AND  APPROXIMAT ION  
OF  S IZE

While factoring is primarily taught and practiced in
algebra courses, it is used in every aspect of mathematics.
Geometry is no exception. In the field of geometry, there
exists the rule of similar triangles. The rule of similar tri-
angles shows that if two triangles have the same angles
and the lengths of two legs on one triangle along with a
corresponding leg on the other triangle is known, there
exists a common factor that can be used to determine the
lengths of the other legs. For example, if one wishes to
determine the height of a flagpole, factoring through the
use of similar triangles can be employed. This is accom-
plished by an individual of known height standing next to
the flagpole. The shadows of both the individual and the
flagpole will now be measured. Because the person in
standing perpendicular to the ground, a 90-degree trian-
gle is formed with the height of the person being one leg,
the length of the shadow being the other leg, and the
hypotenuse being the distance from the tip of the person’s
head to the tip of the head on the shadow. The flagpole
forms a similar 90-degree triangle. Once the lengths of
the shadows are known, divide the length of the flagpole’s
shadow by the length of the individual’s shadow to deter-
mine the common factor. This factor is then multiplied
by the height of the individual to find the height of the
flagpole.

Potential Applications

In engineering, business, research, and even enter-
tainment, factoring can become a valuable asset.
Engineers must use factoring on a daily basis. The job of
an engineer is either to design new innovations or to
troubleshoot problems as arise in existing systems. Either
way, engineers look for effective solutions to complex
problems. In order to make their job easier, it is
important for them to be able to identify the problem, the
solution, and—with regard to the mathematics that
describe the systems and events—the factors that 
systems and events share. Once equations describing
systems and events are factored, the most essential 
elements (the elements that unite and separate systems)
can often be more clearly identified. The relationship of
each component in the problem will often lead to the
solution.

In business, factoring can help identify fundamental
factors of cost or expense that impact profits. In research
applications, mathematical factoring can reduce complex
molecular configurations to more simplified representa-
tions that allow researchers to more easily manipulate
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and design new molecular configurations that result in
drugs with greater efficiency—or that can be produced at
a lower cost. Factoring even plays a role in entertainment
and movie making as complex mathematical patterns
related to movement can be factored into simpler forms
that allow artists to produce high quality animations in a
fraction of the time it would take to actually draw each
frame. Factoring of data gained from sensors worn by
actors (e.g., sensors on the leg, arms, and head, etc.) pro-
vide massive amounts of data. Factoring allows for the
simplified and faster manipulation of such data and also
allow for mapping to pixels (units of image data) that

together form high quality animation or special effects
sequences.

Where to Learn More

Web sites

University of North Carolina. “Similar Triangles.” �http://www
.math.uncc.edu/~droyster/math3181/notes/hyprgeom/
node46.html� (February 11, 2005).

AlgebraHelp. “Introduction to Factoring.” �http://www
.algebrahelp.com/lessons/factoring/� (February 11,2005).

Key Terms

Algorithm: A set of mathematical steps used as a group
to solve a problem.

Hypotenuse: The longest leg of a right triangle, located
opposite the right angle.

Whole number: Any positive number, including zero, with
no fraction or decimal.
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Overview

Unlike calculus, geometry, and many other types 
of math, basic financial calculations can be performed 
by almost anyone. These simple financial equations address
practical questions such as how to get the most music for
the money, where to invest for retirement, and how to avoid
bouncing a check. Best of all, the math is real life and sim-
ple enough that anyone with a calculator can do it.

Fundamental Mathematical Concepts
and Terms

Financial math covers a wide range of topics, broken
into three major sections: Spending decisions deals with
choices such as how to choose a car, how to load an MP3
player for the least amount of cash, and how to use credit
cards without getting taken to the bank; Financial toolbox
looks at the basics of using a budget, explains how income
taxes work, and walks through the process of balancing a
checkbook; Investing introduces the essentials of how to
invest successfully, as well as sharing the bottom line on what
it takes to retire as a millionaire (almost anyone can do it).

Real-life Applications

BUY ING  MUS IC
Today’s music lover has more choices than ever

before. Faced with hundreds of portable players, a dozen
file formats, and millions of songs available for instant
download, the choices can become a bit overwhelming.
These choices do not just impact what people listen to,
they can also impact the buyer’s finances for years to
come. Additionally, in many cases, comparing the differ-
ent offers can be difficult.

One well-known music service ran commercials dur-
ing the 2005 Super Bowl, urging music buyers to simply
“Do the math” and touting its offer as an unparalleled
bargain. The reasoning is that the top-selling music player
in 2005 held up to 10,000 songs and allowed users to
download songs for about a dollar apiece; buying that
player along with 10,000 songs to fill it up would cost
around $10,000. But the music service’s ad offered a
seemingly better deal: unlimited music downloads for
just $14.95 per month. While this deal sounds much bet-
ter, a little math is needed to uncover the real answer.

A good starting point is calculating the “break-even”
point: how many monthly payments do we make before
we actually spend the same $10,000 charged by the other

Financial 
Calculations,

Personal
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firm. This calculation is simple: divide the $10,000 total
by the $14.95 monthly fee to find out how many months
it takes to spend $10,000. Not surprisingly, it takes quite a
few: 668.9 months, to be exact, or about 56 years, which
is the break-even point. This result means that if we plan
to listen to our downloaded songs for fewer than 56 years,
we will spend less with the monthly payment plan. For
example, if we plan to use the music for 20 years, we will
spend less than $3,600 during that time (20 years �

$14.95 per month), a significant savings when compared
to $10,000.

One question raised by this ad is, “How many songs
does a typical listener really own?” Assuming the user
actually does download 10,000 songs, the previous analy-
sis is correct. But 10,000 songs may not be very realistic;
in order to listen to all 10,000 songs just one time, a per-
son would have to listen to music eight hours a day for
two full months. In fact, most listeners actually listen to
playlists much shorter than 10,000 tracks. So if a listener
doesn’t want all 10,000 tunes, is the $14.95 per month still
the better buy?

Again, the calculations are fairly simple. Let’s assume
we want to listen to music four hours per day, seven days
per week, with no repeats each week. By multiplying the
hours times the days, we find that we need 28 hours of
music. If a typical song is 3 minutes long, then we divide
60 minutes by 3 minutes to find that we need 20 songs per
hour, and by multiplying 20 songs by the 28 hours we
need to fill, we find that we need 560 songs to fill our
musical week without any repeats. Using these new num-
bers, the break-even calculation lets us ask the original
question again: how long, at $14.95 per month, will it
take us to break-even compared to the cost of 560 songs
purchased outright? In this case, we divide the $560 we
spend to buy the music by the $14.95 monthly cost, and
we come up with 37.5 months, or just over three years. In
other words, at the end of three years, those low monthly
payments have actually equaled the cost of buying the
songs to start with, and as we move into the fourth and
fifth year, the monthly payments begin to cost us more.
Plus, for users whose music library includes only 200 or
300 songs, the break-even time becomes even shorter,
making the decision even less obvious than before.

Several other important questions also impact the
decision, including,“What happens to downloaded music
if we miss a monthly payment?” Since subscription serv-
ices typically require an ongoing membership in order to
download and play music, their music files are designed
to quit playing if a user quits paying. The result is gener-
ally a music player full of unplayable files. A second con-
sideration is the wide array of file formats currently in

use. Some services dictate a specific brand of player hard-
ware, while others work with multiple brands. Most users
feel that the freedom to use multiple brands offers them
better protection for their musical investment. Since
some players will play songs stored in multiple formats,
they offer users the potential to shop around for the best
price at various online stores. A final question deals with
musical taste and habits. For listeners whose libraries are
small, or who expect their musical tastes to remain fairly
constant, buying tracks outright is probably less expen-
sive. For listeners who demand an enormous library full
of the latest hits and who enjoy collecting music as a
hobby, or for those whose music tastes change frequently,
a subscription plan may provide greater value.

In the end, this decision is actually similar to other
financial choices involving the question of whether to rent
or buy (see sidebar “Rent or Buy?”), since the monthly
subscription plan is somewhat like renting music. Math
provides the tools to help users make the right choice.

CRED I T  CARDS
Although the average American already carries eight

credit cards, offers arrive in the mail almost every week
encouraging us to apply for and use additional cards.
Why are banks so eager to issue additional credit cards to
consumers who already have them? Answering this ques-
tion requires an examination of how credit cards work.

Today’s music lover has more choices than ever before.
Faced with hundreds of portable players, a dozen file
formats, and millions of songs available for instant
download, the choices can become a bit overwhelming.
These choices don’t just impact what people listen to, they
can also impact the buyer’s finances for years to come.
KIM KULISH/CORBIS.
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In its simplest possible form, a credit card agreement
allows consumers to quickly and easily borrow money for
daily purchases. Typically, we swipe our card at the store,
sign the charge slip or screen, and leave with our goods.
At this point in the process, we have our merchandise,
paid for with a “loan” from the credit card issuer. The
store has its money, less the fee it paid to the credit card
company, and the credit card has paid our bill in
exchange for a 2–3% fee and for a promise of payment in
full at a later date. At the end of the month, we will receive
a statement, pay the entire credit card bill on time to
avoid interest or late charges, and this simplest type of
transaction will be complete.

If this transaction were the norm, very few compa-
nies would enter the credit card business, as the 2–3%
transaction fees would not offset their overhead costs. In
reality, a minority of consumers actually pay their entire
bills at the end of the month, and any unpaid balances
begins accruing interest for the credit card issuer. These
interest charges are where credit card companies actually
earn their profits, as they are, in effect, making loans to
thousands of consumers at rates that typically run from
9–14% for the very best customers, from 16–21% for
average borrowers, and in the case of customers with
poor credit histories, even higher rates. Countless indi-
viduals who would never consider financing a car loan or
home mortgage at an interest of 16% routinely borrow at
this and higher rates by charging various monthly
expenses on credit cards, and consequently carrying a
balance on their bill.

The average American household with at least one
credit card in 2004 carried a credit card balance of $8,400
and as a result paid lenders more than $1,000 in interest and
finance charges alone, making the credit card business the
most profitable segment of the banking industry today.
This fact alone answers the original question of why so
many credit cards are issued each year: because they are
highly profitable to the lenders. Card issuers mailed out
three billion credit card offers in 2004 (an average of ten
invitations for every man, woman, and child in the United
States) because they know their math: half of all credit card
users carry a balance and pay interest, so the more new
cards the lenders issue, the greater their profits will be.

Loaning money in exchange for interest is an ancient
practice, discussed in numerous historical documents,
including the Jewish Torah and the Muslim Koran, which
both discuss the practice of usury, or charging exorbi-
tantly high interest rates. Modern U.S. law restricts exces-
sive interest charges, and most states have usury laws on
their books that limit the rate that an individual may
charge another individual. These rates vary widely from

state to state; as of 2005, the usury rate, defined as the
highest simple interest rate one individual may legally
charge another for a loan, is 9% in the state of Illinois. In
contrast, Florida’s rate is 18%, Colorado’s rate is 45%, and
Indiana has no stated usury rate at all. Ironically, these
laws do not apply to entities such as pawn brokers, small
loan companies, or auto finance companies, explaining
why these firms frequently charge rates far in excess of the
legal maximums for individuals. Credit card issuers, in
particular, have long been allowed to charge interest rates
above state limits, making them typically one of the most
expensive avenues for consumer borrowing.

How much does it really cost to use credit cards for
purchases? The answer depends on several factors,
including how much is paid each month and what inter-
est rate is being charged. For this example, we’ll assume a
credit card purchase of $400, an interest rate of 17%, and
a minimum monthly payment of $10. After the purchase
and making six months of minimum payments, the buyer
has paid $60 (six months � $10 per month). But because
more than half that amount, $33.06 has gone to pay the
17% interest, only $26.94 has been paid on the original
$400 purchase. At this point, even though the buyer has
paid out $60 of the original bill, in reality $373.06 is still
owed ($400�$26.94).

This pattern will continue until the original purchase
is completely paid off, including interest. If the buyer con-
tinues making only the required $10 monthly payment, it
will take five full years, or 60 payments, to retire the orig-
inal debt. Over the course of those five years, the buyer will
pay a total of $194 in interest, swelling the total purchase
price from $400 to almost $600. And if the item originally
purchased was an airline ticket, a vacation, or a trendy
piece of clothing, the buyer will still be paying for the item
long after it’s been used up and forgotten. While many fac-
tors influence the final cost of saying “charge it,” a simple
rule of thumb is this: Buyers who pay off their charges
over the longest time allowed can expect to pay about 50%
more in total cost when putting a purchase on the credit
card, pushing a $10 meal to an actual cost of $15. Simi-
larly, a $200 dress will actually cost $300, and a $1,000 trip
will actually consume $1,500 in payments.

Credit cards are valuable financial tools for dealing
with emergencies, safely carrying money while traveling,
and in situations such as renting a car when required to
do business. They can also be extremely convenient to
use, and in most cases are free of fees for those customers
who pay their balance in full each month. Only by doing
the math and knowing one’s personal spending habits
can one know if credit cards are simply a convenient
financial tool, or a potential financial time bomb.
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CAR  PURCHAS ING  AND  PAYMENTS
For most consumers, an automobile represents the

second largest purchase they will ever make, which makes
understanding the car buying process critically impor-
tant. Several important questions should be considered
before buying a new car. First, a potential buyer should
calculate how much he can spend. Most experts recom-
mend keeping car payments below 20% of take-home
pay, so if a worker receives a check for $2,000 each month
(after taxes and other withholding), then he should plan
to keep his car payments below $400 (20% � $2,000).
This figure is for all car payments, so if he already has a
$150 payment for another car, he will be shopping in the
$250 per month payment range.

Using this $250 monthly payment, the buyer can
consult any of several online payment calculators to
determine how much he can spend. For example, if the
buyer is willing to spend five years (60 months) paying off
his vehicle, this might mean he could afford to borrow
about $13,000 for a vehicle (this number varies depend-
ing on the actual interest rate at the time of the loan).
However this value must pay not just for the car, but also
for additional fees such as sales tax, license fees, and reg-
istration, which vary from state to state and which can
easily add hundreds or thousands of dollars to the price
of a new vehicle. For this example, we will estimate sales
tax at 6%, license fees at $200, and registration at $100; so
a car priced at $12,000 will wind up costing a total of
$13,020 (12,000 � .06 � 12,000 � $200 � $100), which
is right at the target value of $13,000.

The second aspect of the buying equation is the
down payment. A down payment is money paid at the
time of sale, and reduces the amount that must be bor-
rowed and financed. In the case of the previous example,
a down payment of $2,000 would mean that instead of
shopping in the $12,000 price range, the buyer could now
shop with $14,000 as the top price.

Many buyers have a used car to sell when they are
buying a new vehicle, and in many cases they sell this car
to the dealer at the same time, a process known as 
“trading-in.” A trade-in involves the dealer buying a car
from the customer, usually at a wholesale price, with the
intent to resell it later. A trade-in is a completely separate
transaction from the car purchase itself, although dealers
often try to bundle the two together. Here again, securing
information such as the car’s fair trade value will allow
the savvy customer to receive a fair price for the trade.

Many consumers find the car-buying experience
frustrating, and they worry that they are being taken advan-
tage of. Automobile dealerships are among the only places
in the United States where every piece of merchandise has

a price tag clearly attached, but both the seller and the
buyer know the price on the tag means very little. Most
cars today are sold at a significant discount, meaning that
a sticker price of $20,000 could easily translate to an
actual sales price of $18,000. Incentives, commonly in the
form of rebates (money paid back to the buyer by 
the manufacturer), can chop another $2,000-$5,000 off
the actual price, depending on the model and how late 
in the season one shops. While dealers are willing to
negotiate and offer lower prices when they must, they are
also going to try to sell at a higher price whenever possi-
ble, which places the burden on the buyer to do the
homework before shopping. Numerous websites and
printed manuals provide actual dealer costs for every
vehicle sold in the United States, as well as advice on how
much to offer and when to walk away.

CHOOS ING  A  W IRELESS  PLAN
Comparing cellular service plans has become an

annual ritual for most consumers, as they wrestle with
whether to stay with their current cell phone and
provider or make the jump to a new company. Beyond
the questions of which service offers the best coverage
area and which phone is the most futuristic-looking,
some basic calculations can help determine the best value
for the money.

There are normally three segments to wireless plans.
The first segment consists of a set quantity of included
minutes that can be used without incurring additional
charges. These are typically described as “anytime” min-
utes, and are the most valuable minutes because they can
be used during daytime hours. These minutes are typi-
cally offered on a use-it-or-lose-it basis, meaning that if a
plan includes 400 minutes and the customer uses only
150, the other 250 minutes are simply lost. Some plans
now offer rollover minutes, which means that in the pre-
vious example, the 250 minutes would roll to the next
month and add to that month’s original 400 minutes,
providing a total of 650 minutes that could be used with-
out additional charges.

Another segment is that many wireless plans include
large blocks of so-called free time, during which calls can
be made without using any of the plan’s included min-
utes. These free periods are usually offered during times
when the phone network is lightly used, such as late at
night and on weekends when most businesses are closed.
Users may talk non-stop during these free periods with-
out paying any additional fees.

The third major component of a wireless plan is its
treatment of any additional minutes used during non-
free periods. In many cases, these additional minutes are
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billed at fairly high rates, and using additional minutes
past those included in a plan’s base contract can poten-
tially double or triple the monthly bill.

Other features are sometimes offered, including
perks such as free long-distance calling, premium features
such as caller identification, and free voicemail. In other
cases, providers allow free calls between their own mem-
bers as part of so-called affinity plans. Cellular plans are
typically sold in one- or two-year contracts.

Choosing a wireless plan can be challenging, since
there are so many options, and choosing the wrong plan
can be a costly choice. A few guidelines can help simplify
this choice. First, users should estimate how many min-
utes will be needed during non-free periods, and then
add 10–15% to this estimate in order to provide a margin
of error. Next, users can consider whether an affinity plan
or free long distance can impact their choices; in cases
where most calls are made between family members,
plans with these features can offer significant savings.

Finally, users can compare options among the several
providers, paying careful attention to coverage areas. For
most users, saving a few dollars per month by choosing a
carrier with less coverage winds up being an unsatisfying
choice. In addition, users should carefully weigh whether
to sign a two-year contract, which may offer lower rates,
or a one-year plan. One-year plans provide the most flex-
ibility, since rates generally fall over time and a shorter
contract allows one to reevaluate alternative plans more
often. In addition, wireless providers are now required to
let customers keep their cell numbers when they change
providers (a feature called “portability”), simplifying the
change-over process.

For users needing very few minutes each month, or
those on extremely tight budgets, pay-as-you-go plans
offer a thrifty alternative. These plans do not normally
include free phones or bundles of minutes; instead, a user
recharges the account by buying minutes in credit card
form at a convenience store or similar outlet. For users
who talk 30 minutes or less each month, these plans can
be ideal.

When purchasing a wireless plan, add-ons will
inevitably increase the final cost. A plan advertised at
$39.95 per month will typically generate bills of $43.00 or
more when all the taxes and fees are added in, so plan
accordingly.

BUDGETS
Personal budgets fill two needs. First, they measure

or report, allowing people to assess how much they are
spending and what they are spending on. Second, budgets

forecast or predict, allowing people to evaluate where
their finances are headed and make changes, if necessary.
A budget is much like an annual checkup for finances,
and can be simple or complex. The simplest budget con-
sists of two columns, labeled “In” and “Out.”

The first step in the budgeting process consists of fill-
ing the in column with all sources of income, including
wages, bonuses, interest, and miscellaneous income. In
the case of income that is received more frequently, such
as weekly paychecks, or less frequently, such as a quarterly
bonus, one must convert the income to a monthly basis
for budget purposes, with quarterly items being divided
by three and weekly items being multiplied by four. In the
case of semiannual items, such as auto insurance premi-
ums, the amount is divided by six.

Next, in the out column, all identifiable outflows
should be listed, such as mortgage/rent payments, utilities
(electricity, gas, water), car payments and gasoline, inter-
est expense (i.e., credit card charges), health care, charita-
ble donations, groceries, and eating out. The details of
this list will vary from person to person, but an effort
should be made to include all expenditures, with particu-
lar attention paid to seemingly small purchases, such as
soft drinks and snacks, cigarettes, and small items bought
with cash. For accuracy, any purchase costing over $1
should be included.

The third step is to add up each column, and find the
difference between them; in simplest terms, if the out col-
umn is larger than the in column, more money is flowing
out than in, the budget is out of balance and the family’s
financial reserves are being depleted. If more money is
flowing in than out, the family’s budget is working, and
attention should be paid to maintaining this state.

The fourth step in this process is evaluating each of
the specific spending categories to determine whether it is
consuming a reasonable proportion of the spendable
income. For instance, each individual category can be
divided by the total to determine the percentage spent; a
family spending $700 of their monthly $2,000 on car pay-
ments, gas, and insurance should probably conclude that
this expenditure (700/2000 � 35%) is excessive and needs
to be adjusted. In many cases, families creating a first-
time budget find that they are spending far more than
they realized at restaurants, and that by cooking more of
their own meals they can almost painlessly reduce their
monthly deficits.

The previous four steps of this process ask “What is
being spent?” The fifth and final step asks, “What should
be spent?” or “What is the spending goal?” At a minimum,
efforts should be made to bring the entire budget into bal-
ance by adjusting specific categories of spending. Ideally,
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goals can be set for each category and reevaluated at the
end of each month. A budget provides a simple, inexpen-
sive tool to begin taking control of one’s personal
finances. W. Edwards Deming, the genius who trans-
formed the Japanese from makers of cheap trinkets into
the worldwide experts on quality manufacturing, is often
paraphrased as saying, “You can’t change what you can’t
measure.” A simple three-column budget provides the
basic measurement tool to begin measuring one’s finan-
cial health and changing one’s financial future.

UNDERSTAND ING  INCOME  TAXES
The United States Treasury Department collects around

$1 trillion in individual income taxes each year from U.S.
workers, most of it subtracted from paychecks. While
income tax software has taken much of the agony out of tax
preparation each April, most workers still have to interact
with the Internal Revenue Service, or IRS, from time to time,
especially in the area of filling out tax paperwork.

Employers are required by law to withhold money
from employee paychecks to pay income taxes. But
because each person’s tax situation is different, the IRS
has a specific form designed to tell employers how much
to withhold from each employee. This form, the W-4,
asks taxpayers a series of questions, such as how many
children they have and whether they expect to file specific
tax forms or not. By supplying this form to new employ-
ees, companies can ensure that they withhold the proper
amount from each paycheck, as well as protect employees
from penalties that apply if they do not have enough of
their taxes withheld. In cases where family information
changes, or where the previous year’s withholding
amount was too high or too low, a new form can be filed
with the employer at any time during the year.

At the end of the calendar year, employers issue a
report to each employee called a W-2. Form W-2 is a
summary of an employee’s earnings for the entire year,
including the total amount earned, or gross pay and,
amounts withheld for income tax, social security, unem-
ployment insurance, and other deductions. The informa-
tion from the W-2 is used by the employee when filing
federal and state income returns each year. W-2 forms are
required to be mailed to employees by January 31; if a 
W-2 is not received by the first week in February, the
employee should contact the employer.

Other forms are used to report other types of income.
The 1099 form is similar to W-2s and is sent to individu-
als who received various types of non-wage income dur-
ing the year. For example, form 1099-INT is used by banks
to provide account holders with a record of interest
earned, form 1099-DIV is used to report dividend income,

and form 1099-MISC is used to report monetary win-
nings such as contest prizes, as well as other types of mis-
cellaneous income. These forms should not be discarded,
as the amounts on them are reported to the IRS, which
matches these reported amounts with individual tax
returns to make sure the income was reported and taxes
were paid on it. Failure to report income and payroll taxes
could lead to penalties and the possibility of a tax audit, in
which the taxpayer is required to document all aspects of
the tax return to an IRS official.

BALANC ING  A  CHECKBOOK
Balancing a checkbook is an important chore that

few people enjoy. A correctly balanced checkbook pro-
vides several distinct benefits, including the knowledge of
where one’s money is being spent, and the avoidance of
embarrassing and costly bounced checks. A balanced
account also allows one to catch any mistakes, made
either by the bank or by the individual, before they create
other problems. Balancing a checkbook is actually quite
simple and can usually be accomplished in less than half an
hour. Whether one uses software or the traditional paper-
and-pencil method, the general approach is the same.

Balancing a checkbook begins with good record-
keeping, which means correctly writing down each trans-
action, including every paper check written, deposit
made, ATM withdrawal taken, or check-card purchase
made. Bad recordkeeping is a major cause of checkbook
balancing problems.

Determining whether all of one’s transactions have
cleared the checking account is described as the process of
a paper check winding its way through the financial sys-
tem from the merchant to the bank, which can take sev-
eral days. It also refers to deposits or withdrawals made
after the statement date. The net effect of clearing delays
is that most consumers will have records of transactions
that are not in the latest bank statement, meaning this
statement balance may appear either too high or too low.
Determining whether all items have cleared involves a
review of the records collected in the previous step. A
checkmark is placed next to the item on the bank state-
ment for each check, ATM receipt, or other record. Once
this process is complete, and assuming good records have
been kept, all the items in the bank statement will be
checked, and several items that were not in the statement
at all will remain. The process of adjusting for these
uncleared items is called reconciling the statement.

To reconcile a check register with the bank state-
ment, all the uncleared items must be accounted for, since
these transactions appear in the personal check register
but not in the statement. Specifically, deposits and other
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uncleared additions to the account must be subtracted,
while withdrawals, check-card transactions, written
checks, and other uncleared subtractions from the
account must be added back in. The net effect of this
process is to back the records up to the date of the bank
statement, at which time the two totals, the check register
and the bank statement, should match. Many banks
include a simple form on the back of the printed bank
statement to simplify this process.

For most customers, a day will arrive when the
account simply does not balance. Since bank errors are
fairly rare, the most common explanation is an error by
the customer. A few simple steps to take include scanning
for items entered twice, or not entered at all; data entry
errors, such as a withdrawal mistakenly entered as a
deposit; simple math errors; and forgetting to subtract
monthly service charges or fees. Most balancing errors fall
into one of these categories, and as before, good record-
keeping will simplify the process of locating the mistake.

Balancing a checkbook is not difficult. The time
invested in this simple exercise can often pay for itself in
avoided embarrassment and expense.

SOC IAL  SECUR I TY  SYSTEM
The Social Security system was established by Presi-

dent Franklin Roosevelt in 1935, creating a national sys-
tem to provide retirement income to American workers
and to insure that they have adequate income to meet
basic living expenses. Due largely to this program, nine in
ten American senior citizens now live above the official
poverty line.

But a Social Security number is important long
before one retires. Because the United States does not
have an official, government-issued identification pro-
gram, Social Security numbers are frequently used as per-
sonal identification numbers by universities, employers,
and banks. U.S. firms are also required by law to verify an
applicant’s Social Security number as part of the hiring
process, making a Social Security card a necessity for any-
one wanting to work. For this reason, most Americans
apply for and receive a Social Security number and card
while they are still minors.

Social Security numbers and cards are issued free of
charge at all Social Security Administration offices. An
applicant must present documents such as a birth certifi-
cate, passport, or school identification card in order to
verify the person’s identity. After these documents are
verified, a number will be issued. A standard Social Secu-
rity number is composed of three groups of digits, sepa-
rated by dashes, such as 123-45-6789, and always contains
a total of nine digits. Each person’s number is unique, and

in some cases, the first three digits may indicate the
region in which the card was issued. The simplest way for
a child to receive a Social Security number is for the par-
ents to apply at birth, at the same time they apply for a
birth certificate. After age 12, a child applying for a card,
in addition to providing documentation of age and citi-
zenship, must also complete an in-person interview to
explain why no card has been previously issued.

When a person begins working, the employer with-
holds part of the worker’s earnings to be deposited into
the Social Security system; as of 2005, these contributions
are taken out of the first $90,000 in earned income each
year at a rate of 7.65%. Starting at age 25, each worker
receives an annual statement listing their income for the
previous year; this information should be carefully
checked for accuracy. While taking one’s Social Security
card to job interviews or loan applications is a good idea,
the Social Security Administration recommends that
cards be kept in a safe place, rather than carried on one’s
person. In the event that a Social Security card is lost or
stolen, a new card can be requested at no charge by com-
pleting the proper form and submitting verification of
identity. The new card will have the same number on it as
the old card. In the case of a name change due to mar-
riage, divorce, or similar events, a new card can be issued
with the same number and the cardholder’s new name.
This process requires documentation showing both the
previous name and the new name.

The Social Security system remains the largest single
retirement plan in the country, is mandatory for most
workers, and is expected to remain in place for the fore-
seeable future.

INVEST ING
Investing simply means applying money in such a

way that it grows, or increases, over time. In a certain
sense, investing is somewhat like renting money to some-
one else, and in return, receiving a rental fee for the priv-
ilege. Investments come in an almost endless variety of
forms, including stocks, bonds, real estate, commodities,
precious metals, and treasuries. While this array of
options may seem bewildering at first, all investment
decisions are ultimately governed by a simple principle:
“risk equals reward.”

Risk is the potential for loss in any investment. The
least risky investments are generally government-backed
investments, such as Treasury bills and Treasury bonds
issued by the United States government. These invest-
ments are considered extremely safe because they are
backed by the U.S. Treasury and, barring the collapse of
the government, will absolutely be repaid. For this reason,
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these investments are sometimes described as riskless. At
the other end of the risk spectrum might be an investment
in a company that is already bankrupt and is trying to pull
itself out of insolvency. Because the risk of losing one’s
investment in such a firm is extremely high, this type of
investment is often referred to as a junk bond, since its
potential for loss is high. Between riskless and highly risky
investments are a variety of other options that provide var-
ious levels of risk. Risk is generally considered higher when
money is invested for longer periods of time, so short-term
investments are inherently less risky than long-term ones.

Reward is the return investors hope to receive in
exchange for the use of their money. Most investors are
only willing to lend their money to someone for some-
thing in return. Investors who buy a rare coin or a piece
of real estate are hoping that the value of the coin or
house will rise, so they can reap a reward when they sell
it. Likewise, investors who buy shares of a company’s
stock is betting that the company will make money, which
it will then pass along to them as a dividend. Investors
also hope that as the company grows, other investors will
see its value and the stock price itself will rise, allowing
them to profit a second time when they sell the stock.
Investment rewards take many different forms, but finan-
cial returns are the main incentive for people to invest.

The principle “risk equals reward” states that invest-
ments with higher levels of risk will normally offer higher
returns, while safer (less risky) investments will normally
return smaller rewards. For this reason, the very safest
investments pay very low rates. An insured deposit in a
savings account at a typical U.S. bank earns about 1–2%
per year, since these funds are insured and can be with-
drawn at any time. Other safe investments, such as U.S.
Treasury bills and U.S. savings bonds, pay low interest
rates, typically 3–4% for a one-year investment.

Corporate bonds and stocks are two tools that allow
public corporations to raise money. Bonds are considered
a less risky investment than stocks, and hence pay lower
returns, generally a few percentage points higher than
Treasury bills. Historically, stocks in U.S. firms have
returned an average of 9–10% per year over the long-
term. However, this average return conceals considerable
volatility, or swings, in value. This volatility means in a
given year the stock market might rise by 30-40%, decline
by the same amount, or experience little or no change.
This variation in annual rates of return is one reason
stocks are considered more risky than Treasuries, and
hence pay a higher rate of return. Most financial experts
recommend that those investing for periods longer than
ten years place most of their funds in a variety of differ-
ent kinds of stocks.

Among the riskiest investments are stock options
and commodity futures. Because these types of invest-
ments are complex and can potentially lead to the loss of
one’s entire investment, they are generally appropriate
only for experienced, professional investors. Other invest-
ments, such as rental real estate, can offer substantial
returns in exchange for additional work required to
maintain, repair, and manage the property.

A few tricks can help young investors take advantage
of certain laws to invest their money. Because the govern-
ment taxes most forms of income, any investment vehicle
that allows the investor to defer (delay) paying taxes will
generally produce higher returns with no increase in risk.
As an example, consider a worker who begins investing
$3,000 per year in a retirement account at age 29. If the
worker deposits this money in a normal, taxable savings
account or investment fund, each year he will have to pay
income tax on the earnings, meaning that his net return
will be lower. But if this same amount of money is
invested in a tax-sheltered account, the money can grow
tax-free, meaning the income each year is higher. Over the
course of a career, this difference can become enormous.
In this example, the worker’s contributions to the taxable
account will grow to $450,000 by age 65. But in a tax-
sheltered account, those very same contributions would
swell to more than $770,000, a 70% advantage gained sim-
ply by avoiding tax payments on each year’s earnings.

One of the simplest ways to begin a tax-deferred
retirement plan is with a Roth Individual Retirement
Account (IRA). Available at most banks and investment
firms, Roth accounts allow any person with income to
open an account and begin saving tax-free. Beginning in
2005, the maximum annual contribution to a Roth IRA is
$4,000, which will increase again in 2008 to $5,000. One
notable feature of IRAs is the hefty 10% penalty paid on
withdrawals made before retirement. While this may
seem like a disadvantage, this penalty provides strong
incentive to keep retirement funds invested, rather than
withdrawing them for current needs.

Another outstanding investment option is a 401(k)
plan, offered by many large employers under a variety of
names. These plans not only allow earnings to grow tax-
deferred like an IRA, they offer other advantages as well.
For instance, most firms will automatically withdraw
401(k) contributions from an employee’s paycheck,
meaning he doesn’t have to make the decision each
month whether to invest or not. Also, some companies
offer to match employee contributions with additional
contributions. In a case where a company offers a 1:1
match on the first $2,000 an employee saves, the
employee’s $2,000 immediately becomes $4,000, equal to
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a 100% return on the investment the first year, with no
added risk. In the case of a 50% match on the first $3,000,
the firm would contribute $1,500. Company matches are
among the best deals available and should always be taken
advantage of.

Investing is a complex subject, and investing in an
unfamiliar area is a chance for losses. By choosing a vari-
ety of investments, most investors can generate good
returns without exposing themselves to excessive risk.
And by taking time to learn more about investment
options, most investors can increase their returns without
unduly increasing their risk.

RET IR ING  COMFORTABLY  
BY  INVEST ING  WISELY

Who wants to be a millionaire? More importantly,
what chance does an average 18-year-old person have of
actually reaching that lofty plateau? Surprisingly, almost
anyone who sets that as a goal and makes a few smart
choices and exercises self-discipline along the way can
fully expect to be a millionaire by the time he retires. In
fact, there are so many millionaires in the United States
today that most people already know one or two, even
though they are tough to pick out since few of them fit the
common stereotype (see sidebar: Millionaire Myths).

Is a million dollars enough to retire comfortably on?
Most people would scoff at the question, but the answer
may not be as obvious as it first seems. Most members of
the World War II generation clearly remember an era of
$5,000 houses, $500 cars, and 5-cent soft drinks. What
they may not recall so clearly is that in 1951, the average
American worker earned only $56.00 per week, meaning
that while prices are much higher today, wages have risen
substantially as well.

This gradual rise in prices (and the corresponding
fall in the purchasing power of a dollar) is called inflation.
When inflation is low, and prices and wages increase
3–4% per year, most economists feel the economy is
growing at a healthy pace. When inflation reaches higher
levels, such as the double-digit rates experienced in the
late 1970s, the national economy begins to collapse. And
in rare situations, a disastrous phenomena known as
hyperinflation takes over. In 1922, Germany experienced
an inflation rate of 5,000%. This staggering rate meant
that in a two-year period, a fortune of 20 billion German
marks would have been reduced in value to the equivalent
of one mark. One anecdotal account of hyperinflation in
Germany tells of individuals buying a bottle of wine in
the expectation that the following day the empty bottle
could be sold for more than the full bottle originally cost.
Hyperinflation has occurred more recently as well: Peru,

Brazil, and Ukraine all experienced hyperinflation during
the 1990s; with prices rising quickly, sometimes several
times each day, workers began demanding payment daily
so they could rush out and spend their earnings before
the money lost much of its value.

While hyperinflation can destroy a nation’s economy,
it is a rare event. A far more realistic concern for workers
intent on retiring comfortably is the slow but steady ero-
sion of their money’s value by inflation. In the same way
that the 5-cent sodas of the 1950s now cost more than a
dollar, an increase of twenty-fold, one must assume that
the one-dollar sodas of today may well cost $20 by the
middle of the twenty-first century. And as costs continue
to climb, the value of a dollar, or a million dollars, will
correspondingly fall.

The million dollar question (will a million dollars be
enough?) can be answered fairly simply using a mathe-
matical approach and several steps. The first question:
how much money will be needed in 50 years to equal the
value of $1 million today? The first step of this process is
determining how much buying power $1 million loses in
one year. If the rate of inflation is 3%, a reasonable guess,
then over the course of one year $1 million is reduced in
buying power by 3%. At the end of the first year, it has
buying power equal to $1,000,000 � 97%, or $970,000.
This is still a fantastic sum of money to most people, but
the true impact of inflation is not felt in the first year, but
in the last.

These calculations could continue indefinitely, mul-
tiplying $970,000 � 97% to get the value at the end of the
second year, and so forth. If this were done for 50 years,
we could eventually produce an inflation “multiplier,” a
single value by which we multiply our starting value to
find the predicted future buying power of that sum. In
this example, the inflation multiplier is .22, which we
multiply by our starting sum of $1 million to find that at
retirement in 50 years the nest-egg will have the buying
power of only $220,000 today. And while $220,000 is a
nice sum of money, it may not be enough to support a
comfortable retirement for very many years.

This raises another obvious question: how much will
it take in 50 years to retain the buying power of $1 mil-
lion today? This calculation is basically the inverse of the
previous one. To determine how much is required one
year hence to have the buying power of $1 million today,
we simply multiply by 1.03 (based on our 3% inflation
assumption), giving a need next year for $1,030,000.
Again, we can carry this out for 50 years and produce a
multiplier value, which in this case turns out to be 4.5. We
then multiply that value times the base of $1 million to
learn that in order to have the buying power of $1 million
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today will require one to have accumulated more than 
$4 million by retirement.

In summary, the answer to the question is simple: If
a retirement fund of $220,000 would be adequate for
today, then $1 million will be adequate in 50 years. But if
it would take $1 million to meet one’s retirement needs
today, the goal will need to be quite a bit higher, since
today’s college students will likely retire in an era when a
bottle of drinking water will set them back $20.

This example requires that we picture our bank
account as a swimming pool and the money we save as
water. The goal is to fill the pool completely by the time
of retirement. Because the pool begins completely empty,
the task may seem daunting. But like most challenging
goals, this one can be achieved with the right approach.

In order to fill the pool, one must attach a pipe that
allow water to flow in, and the first decision relates to the
size of this pipe, since the larger the pipe, the more water
it can carry and the faster the pool will fill. The size of the
pipe equates to income level, or for this illustration, the
total amount we expect to earn over an entire career. This
first decision may be the single most important choice
one makes on the road to millionaire status, since this
first decision will largely determine the size of the pipe
and the size of one’s income.

Educational level and income are highly correlated,
and not surprisingly, less education generally equates to
less income. A report by the U.S. Census Office provides
the details to support this claim, finding that students
who leave high school before completion can expect to
earn about $1 million over their careers. While this
sounds like a hefty amount, it is far below what most fam-
ilies need to live, and almost certainly not enough to
amass a million dollars in retirement savings. Just for
comparison, this value equates to annual earnings of less
than $24,000 per year. In our current illustration, this
equates to a tiny pipe, and means the swimming pool will
probably wind up empty.

The good news from the report is that each step
along the educational path makes the pipe a little larger,
and fills the pool a little faster. For high school students
who stay enrolled until graduation, lifetime earnings
climb by 20%, to $1.2 million, meaning that a high school
junior who chooses to finish school rather than dropping
out will earn almost a quarter of a million dollars for his
or her efforts. And with each diploma comes additional
earning power. An associate’s degree raises average life-
time earnings to $1.5 million, while a bachelor’s degree
pushes average lifetime earnings to $2.1 million, more
than double the amount earned by the high school
dropout. Master’s degrees, doctorates, and professional

degrees such as law and medical degrees each raise
expected earnings as well, increasing the size of the pipe
and filling the pool faster. Simple logic dictates that when
the pipe is two to four times as large, the pool will fill far
more quickly. For this reason, one of the best ways to pre-
dict an individual’s retirement income level is simply to
ask, “How long did you stay in school?”

Retirement savings are impacted by income level in
multiple ways. First, since every household has to pay for
basics such as food, housing, clothing, and transporta-
tion, total income level determines how much is left over
after these expenses are paid each month, and therefore
how much is available to be invested for retirement. Sec-
ond, as detailed in the Social Security system section,
Social Security pays retirement wages based on one’s
earnings while working, so those who earn more during
their career will also receive larger Social Security pay-
ments after retirement. Third, employers frequently con-
tribute to retirement plans for their workers, and the level
of these contributions is also tied directly to how much
the worker earns, with higher earnings equating to higher
contributions and greater retirement income. Because
each of these pieces of the retirement puzzle is tied to
income level, each one adds to the size of the pipe, and
helps fill the pool more quickly. Again, education is a pri-
mary predictor of income level.

Of course a few people do manage to strike it rich in
Las Vegas or win the state lottery, which is roughly equiv-
alent to backing a tanker truck full of water up to the pool
and dumping it in. For these few people, the size of the
income pipe turns out to be fairly unimportant, since they
have beaten some of the longest odds around. To get some
idea just how unlikely one is to actually win a lottery, con-
sider other possibilities. For example, most people don’t
worry about being struck by lightning, and this is reason-
able, since a person’s odds of being struck by lightning in
an entire lifetime are about one in 3,000, meaning that on
average if he lived 3,000 lifetimes, he would probably be
struck only once. And even though shark attacks make the
news virtually every year, the odds of being attacked by a
shark are even lower, around one in 12,000.

Since most people fully expect to live their entire
lives without being attacked by a shark or being struck by
lightning, it seems far-fetched that many would play the
lottery each week, given that the odds of winning are
astronomically worse. As an example, the Irish Lotto
game, which offers some of the best odds of any national
lottery on the planet, gives buyers a 1-in-5 million chance
of winning, meaning a player is 1,600 times more likely to
be struck by lightning than to win the jackpot. And the
U.S. PowerBall game offers larger jackpots, but even lower
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odds of winning: a player in this game is 16 times less
likely to win than in the Irish Lotto, meaning the average
PowerBall player should expect to be struck by lightning
26,000 times as often as he wins the jackpot. Of all the
unlikely events that might occur, winning the lottery is
among the most unlikely.

Once the pipe is turned on, which means we have
begun making money, one may find the pool filling too
slowly, which means assets and savings are accumulating
too slowly. At this point it becomes necessary to notice
that the pool includes numerous drains in the floor, some
large and others small. Water is continually flowing out
these drains, which represent financial obligations such as
utility bills, tuition payments, mortgages, and grocery
costs. In some cases, the water may flow out faster than
the pipe can pump it in, causing the water level to drop

until the pool runs dry, meaning the employee runs out
of money, and bankruptcy follows. In most families, the
inflow and outflow of money roughly balance each other,
and each month’s bills are paid with a few dollars left, but
the pool never really fills up. In either case, retirement will
arrive with little or nothing saved, and retirement survival
will depend largely on the generosity of the Social Secu-
rity system.

A more pleasant alternative involves closing some of
the drains in the pool, or reducing some expenditures.
For most families, the largest drains in the pool will be
monthly items such as mortgage and car loan payments
that are set for periods of several years and may not be
easily changed over the short-run. For these items, deci-
sions can only be made periodically, such as when a new
car or home is purchased.

However, some seemingly small items may create
huge drains in the family financial pool. For most fami-
lies, eating out consumes a majority of the food budget,
even though eating at home is typically both cheaper.
Numerous small bills such as cable, wireless, and internet
access can add up to take quite a drink out of the pool,
even though each one by itself seems small. Yet, while the
total dollar value of such items may seem insignificant,
their impact over time can be enormous. By removing
just $50 from consumption and investing it at 8% each
month during the 50 years of a career, this trivial amount
will grow to almost $350,000. These types of choices are
among the most difficult to make, but can be among the
most significant, especially considering that $50 per
month represents what many Americans spend on soft
drinks or gourmet coffee. A good rule of thumb for this
calculation is to multiply the monthly contribution times
7,000 to find its future value at retirement, assuming one
begins at age 20 and retires at age 70.

The other major factor in retiring comfortably is
time. To put it simply, the final value of one dollar
invested at age 20 will be greater than the final value of
four dollars invested at age 50. This means that $10,000
invested at age 20 will grow to $143,000 by age 75, while
$40,000 invested at age 50 will be worth only $134,000 at
the same time. In fact, a good general rule of thumb is for
each eight years that pass, the final value of the retirement
nest egg will be reduced by 50%. It is never too early to
start saving for retirement.

CALCULAT ING  A  T IP
After the meal is over and everyone is stuffed, it’s

time to pay the bill and make one of the most common
financial calculations: deciding how much to tip a server.
Some diners believe that the term “tips” is an acronym for

Millionaire Myths

Say the word “millionaire,” and most Americans pic-
ture Donald Trump, fully decked out in expensive
designer suits and heavy gold jewelry. To most Amer-
icans, yachts, mansions, lavish vacations, and fine
wines are the sure signs that a person has made it
big and has accumulated a seven-figure net worth.
But recent research paints a very different picture:
most millionaires live fairly frugal lives and tend to
prefer saving over spending, even after they’ve
made it big. In fact, the most surprising fact about
real millionaires is this: they don’t look or act at all
like TV millionaires.

The average millionaire in the United States
today buys clothes at J.C. Penney’s, drives an Amer-
ican made car (or a pickup), and has never spent
more than $250 on a wristwatch. He or she inher-
ited little or nothing from parents and has built the
fortune in such industries as rice farming, welding
contracting, or carpet cleaning. This person is fru-
gal, remains married to the first spouse, has been
to college (but frequently was not an A student), and
lives in a modest house bought 20 years ago.

In short, while most millionaires are gifted with
vision and foresight, there is little they have done
that cannot be duplicated by any hard-working,
dedicated young person today. The basic principles
of accumulating wealth are not hard to understand,
but they require hard work and self-discipline to
apply.
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“to insure prompt service,” hence they believe that the
size of the tip should be tied to the level of service, with
excellent service receiving a larger tip and poor service
receiving less, or none. Others recognize that servers often
make sub-minimum wage salaries (as of 2005, this could
be as little as $2.13 per hour) and depend on tips for most
of their income, hence they generally tip well regardless of
the level of service. Another important consideration is
that servers are often the victims of kitchen mistakes and
delays, and therefore penalizing them for these problems
seems unreasonable. A good general rule of thumb is to
tip 20% for outstanding service, 15% for good service,
and 10% or less for poor service. Regardless of which tip-
ping philosophy one adopts, some basic math will help
calculate the proper amount to leave.

For example, imagine that the bill for dinner is $56.97,
which includes sales tax. By looking at the itemized bill, we
determine that the pre-tax total is $52.75, since most people
calculate the tip on the food and drink total, not including
tax. Since the service was excellent we choose to tip 20%.
Most tip calculations begin by figuring the simplest calcula-
tion, 10%, since this figure can be determined using no real
math at all. Ten percent of any number can be found sim-
ply by moving the decimal point one place to the left. In the
case of our bill of $52.75, we simply shift the decimal and
wind up with 10% being $5.275, or five dollars twenty seven
and one-half cents. Then to get to 20%, we simply double
this figure and wind up with a tip of $10.55.

In real life, we are not concerned about making our tip
come out to an exact percentage, so we generally round up
or down in order to simplify the calculations. In this case,
we would round the $5.275 to $5.25, which is then easily
doubled to $10.50 for our 20% tip. Finding the amount of
a 15% tip can be accomplished either of two ways. First, we
can take the original 10% value and add half again to it. In
this case, half of the original $5.27 is about $2.50, telling us
that our final 15% tip is going to be around $7.75, which
we might leave as-is or round up to $8.00 just to be gener-
ous. A second, less-obvious approach involves our two pre-
vious calculations of 10% and 20%. Since 15% is midway
between these two values, we could take these two numbers
and choose the midway point (a process that mathemati-
cians call “interpolation”). In other words, 10% is $5.27 (or
about $5.00) and 20% is $10.55 (or about $11.00), so the
midway point would be somewhere in the $7.00–8.00
range. Either of these two methods will allow us to quickly
find an approximate amount for a 15% tip.

CURRENCY  EXCHANGE
Because most nations issue their own currency, trav-

eling outside the United States often requires one to

exchange U.S. dollars for the destination nation’s cur-
rency. But this process is complicated by the fact that one
unit of a foreign currency is not worth exactly one U.S
dollar, meaning that one U.S. dollar may buy more or
fewer units of the local currency. Currency can be
exchanged at many banks and at most major airports,
normally for a small fee. Banks generally offer better
exchange rates than local merchants, so travelers who
plan to stay for some time typically exchange larger
amounts of money at a bank when they first arrive, rather
than smaller amounts at various shops or hotels during
their stay.

Consider a person who wishes to travel from the
United States to Mexico and Canada. Before leaving the
States, the traveler decides to convert $100 into Mexican
currency and $100 into Canadian currency. At the cur-
rency exchange kiosk, there is a large board that displays
various currencies and their exchange rates.

The official unit of currency in Mexico is the peso,
and the listed exchange rate is 11.4, meaning that each

A potential customer looks at exchange rates outside an
exchange shop in Rome. AP/WIDE WORLD PHOTOS. REPRODUCED 

BY PERMISSION.
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U.S. dollar is worth 11.4 pesos. Multiplying 100 � 11.4,
the person learns that one is able to purchase 1,140 pesos
with $100. Canadians also use dollars, but Canadian dol-
lars have generally been worth less than U.S. dollars. On
the day of the exchange, the rate is 1.3, meaning that each
U.S. dollar will buy $1.3 Canadian dollars, so with $100
the person is able to purchase 130 Canadian dollars. At
this point, the shopper might wonder about the exchange
rate between Canadian dollars and pesos. Since it is
known that 130 Canadian dollars equals the value of
1,140 pesos, the person can simply divide 1,140 by 130 to
determine that on this date, the exchange rate is 8.77
pesos to one Canadian dollar.

Exchange rates fluctuate over time. On a business
trip one year later, this same person might find that the
$100 would now buy 2,000 pesos, meaning that the U.S.
dollar has become stronger, or more valuable, when com-
pared to the peso. Conversely, it might be that the dollar
has weakened, and will now purchase only 800 pesos.
These fluctuations in exchange rates can impact travelers,
as the changing rates may make an overseas vacation more
or less expensive, but they can be particularly troublesome

for large corporations that conduct business across the
globe. In their situation, products made in one country
are often exported for sale in another, and changing
exchange rates may cause profits to rise or fall as the
amount of local currency earned goes up or down.

In addition to U.S. dollars, other well-known national
currencies (along with their exchange rates in early 2005)
include the British pound (.52), the Japanese yen (105),
the Chinese yuan (8.3), and the Russian ruble (27.7).
Beginning in 2002, 12 European nations, including Ger-
many, Spain, France, and Italy, merged their separate cur-
rencies to form a common European currency, the Euro
(.76). Designed to simplify commerce and expand trade
across the European continent, conversion to the Euro was
the largest monetary changeover in world history.

Where to Learn More
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Key Terms

Balance: An amount left over, such as the portion of a
credit card bill that remains unpaid and is carried
over until the following billing period.

Bankruptcy: A legal declaration that one’s debts are
larger than one’s assets; in common language,
when one is unable to pay his bills and seeks relief
from the legal system.

Bouncing a check: The result of writing a check without
adequate funds in the checking account, in which
the bank declines to pay the check. Fees and penal-
ties are normally imposed on the check writer.

Inflation: A steady rise in prices, leading to reduced buy-
ing power for a given amount of currency.

Interest: Money paid for a loan, or for the privilege of
using another’s money.

Lottery: A contest in which entries are sold and a winner is
randomly selected from the entries to receive a prize.

Mortgage: A loan made for the purpose of purchasing a
house or other real property.

Reconcile: To make two accounts match; specifically,
the process of making one’s personal records
match the latest records issued by a bank or finan-
cial institution.

Register: A record of spending, such as a check register,
which is used to track checks written for later
reconciliation.
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Fractals

Overview

A fractal is a kind of mathematical equation of which
pictures are frequently made. A small unit of structural
information structure forms the basis for the overall
structure. The repeats do not have to be exact, but they
are close to the original. For example, the leaves on a
maple tree are not exactly alike, but they are similar.

The beauty principle in mathematics states that if a
principle is elegant (arrives at the answer as quickly and
directly as possible), then the probability is high that it is
both true and useful. Fractal mathematics fulfills the
beauty principle. Both in the natural world and in com-
merce, fractals are ever-present and useful.

A fractal has infinite detail. This means that the more
one zooms in on a fractal the more detail will be revealed.
An analogy to this is the coastline of a state like Maine.
When viewed from a satellite, the ocean coastline of the
state shows large bays and peninsulas. Nearer to the ground,
such as at 40,000 feet (12,192 m) in a jet aircraft flying over
the state, the convoluted nature of the coast looks similar,
only the features are smaller. If the plane is much lower,
then the convolutions become even smaller, with smaller
bays and inlets visible but still have basically the same shape.
A fractal is similar to the example of the Maine coastline. As
the view becomes more and more magnified, the never-
ending complexity of the fractal is revealed.

Fundamental Mathematical Concepts
and Terms

Among the many features of fractals are their non-
integer dimensions. Integer dimensions are the whole
number dimensions that most people are familiar with.
Examples include the two dimensions (width and length;
this is also commonly referred to as 2-D) of a square and
the three dimensions (width, length and height; com-
monly called 3-D) of a cube. It is odd to think that
dimensions can be in between 2-D and 3-D, or even big-
ger than 3-D. But such is the world of fractals.

Dimensions of 1.8 or 4.12 are possible in the fractal
world. Although the mathematics of fractals involves com-
plex algorithms, the simplest way to consider fractal dimen-
sions is to know that dimensions are based on the number
of copies of a shape that can fit into the original shape. For
example, if the lines of a cube are doubled in length, then it
turns out that eight of the original-sized cubes can fit into
the new and larger cube. Taking the log of 8 (the number of
cubes) divided by the log of 2 (doubling in size) produces
the number three. A cube, therefore, has three dimensions.



F r a c t a l s

R E A L - L I F E  M A T H 199

For fractals, where a pattern is repeated over and over
again, the math gets more complicated, but is based on
the same principle. When the numbers are crunched, the
resulting number of dimensions can be amazing. For
example, a well-known fractal is called Koch’s curve. It is
essentially a star in which each original point then has other
stars introduced, with the points of the new stars becoming
the site of another star, and on and on. Doing the calcula-
tion on a Koch’s curve that results from just the addition of
one set of new stars to the six points of the original star pro-
duces a dimension result of 1.2618595071429!

BU ILD ING  FRACTALS
Fractals are geometric figures. They begin with a

simple pattern, which repeats again and again according
to the construction rules that are in effect (the mathe-
matical equation supplies the rules).

A simple example of the construction of a fractal
begins with a � shape. The next step is to add four � shapes
to each of the end lines. Each new � is only half as big as the
original �. In the next step, the � shapes that are reduced
by half in size are added to each of the three end lines that
were formed after the first step. When drawn on a piece of
paper, it is readily apparent that the forming fractal, which
consists of ever smaller � shapes, is the shape of a diamond.
Even with this simple start, the fractal becomes complex in
only a handful of steps. And this is a very simple fractal!

S IM ILAR I TY
An underlying principle of many fractals is known as

similarity. Put another way, the pattern of a fractal is the
repetition of the same shaped bit. The following cartoons
will help illustrate self-similarity.

In Figure 1, the two circles are alike in shape, but they
do not conform to this concept of similarity. This is
because multiple copies of the smaller circle cannot fit
inside the larger circle.

In Figure 2, the two figures are definitely not similar,
because they have different shapes.

The two triangles in Figure 3 are similar. This is
because four of the smaller triangles can be stacked
together to produce the larger triangle. This allows the
smaller bits to be assembled to form a larger object.

A Brief History of Discovery 
and Development

Fractals are recognized as a way of modeling the
behavior of complex natural systems like weather and

animal population behavior. Such systems are described
as being chaotic. The chaos theory is a way of trying to
explain how the behavior of very complex phenomena
can be predicted, based on patterns that occur in the
midst of the complexity.

Looking at a fractals, one can get the sense of how
fractals and chaos have grown up together. A fractal can
look mind-bendingly complex on first glance. A closer
inspection, however, will reveal order in the chaos; the
repeated pattern of some bit of information or of an
object. Thus, not surprisingly, the history of fractals is
tied together with the search for order in the world and
the universe.

In the nineteenth century, the French physicist Jules
Henri Poincaré (1854–1912) proposed that even a minis-
cule change in a complex system that consisted of many
relationships (such as an ecosystem like the Florida Ever-
glades or the global climate) could produce a result to the
system that is catastrophic. His idea came to be known as
the “Butterfly effect” after a famous prediction concern-
ing the theory that the fluttering of a butterfly’s wings in
China could produce a hurricane that would ravage
Caribbean countries and the southern United States. The
Butterfly effect relied on the existence of order in the
midst of seemingly chaotic behavior.

Figure 1.

Figure 2.

Figure 3.
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In the same century, the Belgian mathematician P. F.
Verhulst (1804–1849) devised a model that attempted to
explain the increase in numbers of a population of crea-
tures. The work had its beginning in the study of rabbit
populations, which can explosively increase to a point
where the space and food available cannot support their
numbers. It turns out that the population increase occurs
predictably to a certain point, at which time the growth in
numbers becomes chaotic. Although he did not realize it
at the time, Verhulst’s attempt to understand this behav-
ior touched on fractals.

Leaping ahead over 100 years, in 1963 a meteorologist
from the Massachusetts Institute of Technology named
Edward Lorenz made a discovery that Verhulst’s model
was also useful to describe the movement of complicated
patterns of atmospheric gas and of fluids. This discovery
spurred modern research and progress in the fractal field.

In the late 1970s, a scientist working at International
Business Machines (IBM) named Benoit Mandelbrot was
working on mathematical equations concerning certain
properties of numbers. Mandelbrot printed out pictures
of the solutions and observed that there were small marks
scattered around the border of the large central object in
the image. At first, he assumed that the marks were created
by the unclean roller and ribbon of the now-primitive
inkjet type printer. Upon a closer look, Mandelbrot dis-
covered that the marks were actually miniatures of the
central object, and that they were arranged in a definite
order. Mandelbrot had visualized a fractal.

This initial accidental discovery led Mandelbrot to
examine other mathematical equations, where he discov-
ered a host of other fractals. Mandelbrot published a
landmark book, The Fractal Geometry of Nature, which
has been the jump-start for numerous fractal research in
the passing years.

Real-life Applications

FRACTALS  AND  NATURE
Fractals are more than the foundation of interesting

looking screensavers and posters. Fractals are part of our
world. Taking a walk through a forest is to be surrounded
by fractals. The smallest twigs that make up a tree look
like miniature forms of the branches, which themselves
are similar to the whole tree. So, a tree is a repeat of a sim-
ilar (but not exact) pattern. The leaves on a softwood tree
like a Douglass fir or the needles on a hardwood tree like
a maple are almost endless repeats of the same pattern as
well. So are the stalks of wheat that sway in the breeze in
a farmer’s field, as are the whitecaps on the ocean and the
grains of sand on the beach. There are endless fractal pat-
terns in the natural world.

In the art world, the popularity of the late painter
Jackson Pollock’s seemingly random splashes of color on
his often immensely-sized canvasses relate to the fractal
nature of the pattern. Pollock’s paintings reflected the
fractal world of nature, and so strike a deep chord in
many people.

By studying fractals and how their step-by-step
increase in complexity, scientists and others can use fractals
to model (predict) many things. As we have seen above, the
development of trees is one use of fractal modeling. The
growth of other plants can be modeled as well. Other sys-
tems that are examples of natural fractals are weather
(think of a satellite image of a hurricane and television
footage of a swirling tornado), flow of fluids in a stream,
river and even our bodies, geological activity like earth-
quakes, the orbit of a planet, music, behavior of groups of
animals and even economic changes in a country.

The colorful image of the fractal can be used to
model how living things survive in whatever environment
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they are in. The complexity of a fractal mirrors the com-
plexity of nature. The rigid rules that govern fractal for-
mation are also mirrored in the natural world, where the
process of constant change that is evolution takes place in
reasonable way. If a change is unreasonable, such as the
sudden appearance of a strange mutation, the chance that
the change will persist is remote. Fractals and unreason-
able changes are not compatible.

Let us consider the fractal modeling of a natural sit-
uation. An example could be the fate of a species of squir-
rel in a wooded ecosystem that is undergoing a change,
such as commercial development. The squirrel’s survival
depends on the presence of the woods. In the fractal
model, the woods would be colored black and would be
the central image of the developing fractal. Other envi-
ronments that adversely affect the squirrel, such as
smoggy air or the presence of acid rain, are represented
by different colors. The colors indicate how long the
squirrel can survive in the adverse condition. For exam-
ple, a red color might indicate a shorter survival time
than a blue color. When these conditions are put together
in a particular mathematical equation, the pattern of

colors in the resulting fractal, and the changing pattern of
the fractal’s shape, can be interpreted to help predict how
environmental changes in the forest will affect the squir-
rel, especially at the border of the central black shape,
where the black color meets the other colors in the image.

MODEL ING  HURR ICANES  
AND  TORNADOES

Nonliving systems such as hurricanes and tornadoes
can also be modeled this way. Indeed, anything whose
survival depends on its surroundings is a candidate for
fractal modeling. For example, a hurricane draws its
sometimes-terrifying strength from the surrounding air
and sea. If the calm atmosphere bordering a hurricane,
and even the nice sunny weather thousands of miles away
could be removed somehow, the hurricane would very
soon disappear.

NONL IV ING  SYSTEMS
Other nonliving systems that can be modeled using

fractals include soil erosion, the flicking of a flame and

Fractals and Jackson Pollock

Early in his career as a painter, the American artist Jack-
son Pollock struggled to find a way to express his artistry
on canvas. Ultimately, he unlocked his creativity by drip-
ping house paint onto huge canvasses using a variety of
objects including old and hardened paintbrushes and
sticks. The result was a visual riot of swirling colors,
drips, splotches, and cross-canvas streaks.

There was more to Pollock’s magic than just the ran-
dom flinging of paint onto the canvas. Typically, he would
begin a painting by using fluid stokes to draw a series of
looping shapes. When the paint dried, Pollock often con-
nected the shapes by using a slashing motion above the
canvas. Then, more and more layers of paint would be
dripped, poured and hurled to create an amazing and col-
orful spider-web of trails all over the huge canvas.

Pollock’s paintings are on display at several of the
world’s major museums of modern art, including the
Museum of Modern Art in New York and the Guggenheim
Museum in Venice, Italy, and continue to amaze many
people. The patterns of paint actually traced Pollock’s
path back and forth and around the canvas as he con-
structed his images. One reason that these patterns

have such appeal may be because of their fractal 
nature.

In 1997, physicist and artist Richard Taylor of the Uni-
versity of New South Wales in Australia photographed the
Pollock painting Blue Poles, Number 11, 1952, scanned
the image to convert the visual information to a digital
form, and then analyzed the patterns in the painting. Tay-
lor and his colleagues discovered that Pollock’s artistry
represented fractals. Shapes or patterns of different sizes
repeated themselves throughout the painting. The
researchers postulated that the fact that fractals are so
prevalent in the natural world makes a fractal image pleas-
ing to a person at a subconscious level.

Analysis of Pollock while he was painting and of
paintings over a 12-year period from 1943–1952 showed
that he refined his construction of fractals. Large fractal
patterns were created as he moved around the edge of
the canvas, while smaller fractal patterns were produced
by the dripping of paint onto the canvas.

Pollock died in a high-speed car crash in 1956,
long before the discovery of fractals that powered
his genius.
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the tumbling or turbulent flow of a fluid like water. The
movement of fluid through the tiny openings in rocks is
another example. Indeed, oil companies use fractal mod-
eling to try to unravel the movement of oil through rock
formations to figure out where the best spot to drill might
be to get the most oil with the least expense and danger.

ASTRONOMY
Fractals can be useful in understanding the behavior

of events far from Earth. Evidence is mounting that the
arrangement of galaxies in the inky vastness of space is
fractal-like, in that the galaxies are somewhat similar in
shape and are clustered together in a somewhat ordered
way. “Clustered together” is relative; the galaxies are mil-
lions of light years apart. Still, in the infinity of space, the
galaxies can be considered close neighbors. While the
fractal nature of the universe is still controversial, it does
make sense, because here on Earth the natural world
beats to a fractal rhythm.

CELL  PHONE  AND  RAD IO  ANTENNA
Fractals also have real-world applications in mechan-

ical systems. One example is the design of the antennas
that snag radio and other waves that pass through the air.
A good antenna needs a lot of wave-trapping wire sur-
face. Having a long and thin wire is not the best design.
But, because some antennas need to fit into a narrow
space (think of the retractable antenna on a car and in a
cellular phone), there is not much room for the wire. The
solution is fractals, whose mix of randomness (portions
of the fractal) and order (the entire fractal) can pack a
greater quantities of material into a smaller space.

By bending wires into the multi-star-shaped fractal
that is the star-shaped Koch’s curve, much more wire can
be packed into the narrow confines of the antenna barrel.
As an added benefit, the jagged shape of the snowflake-
shaped fractal actually increases the electrical efficiency
of the antenna, doing away with the need to have extra
mechanical bits to boost the antenna’s signal-grabbing

power. Some companies use fractal antennas in cell
phones. This innovation has proven to be more efficient
than the traditional straight piece of wire antennas, they
are cheaper to make, and they can be built right into the
body of the phone, eliminating the pull-up antenna. The
next time your cell phone chirps, the incoming connec-
tion might be due to a fractal.

COMPUTER  SC IENCE
Another use of fractals has to do with computer sci-

ence. Images are compressed for transmission as an email
attachment in various ways such as in JPEG or GIF for-
mats. A route of compression called fractal compression,
however, enables the information in the image to be
squeezed into a smaller, more easily transmitted bundle at
one end, and to be greatly enlarged with a minimal loss of
image quality.

There are many fractal equations that can be written,
and so there are many images of fractals. The images are
often beautiful; many sites on the Internet contain stun-
ning fractal images available for download.
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Fractions

Overview

A fraction is a number written as two numbers with
a horizontal or slanted line between them. The value of
the fraction is found by dividing the number above the
line by the number below the line. Not only are fractions
a basic tool for handling numbers in mathematics, they
are used in daily life to measure and price objects and
materials that do not come in neatly countable, indivisible
units. (We must often deal with a fraction of a pizza or a
fraction of an inch, but we rarely have to deal with a frac-
tion of an egg.) Fractions are closely related to percentages.

Fundamental Mathematical Concepts
and Terms

WHAT  IS  A  FRACT ION?
Every fraction has three parts: a horizontal or slanted

line, a number above the line, and a number below the
line. The number above the line is the “numerator” and
the number below the line is the “denominator.” For
example, in the fraction 3/4 (also written 3⁄4), the numer-
ator is 3 and the denominator is 4.

The fraction 3/4 is one way of writing “3 divided by 4.”
In general, a fraction with some number a in the numera-
tor and some number b in the denominator, a/b, means
simply “a divided by b.”For example, writing 4/2 is the same
as writing 4 � 2. Because division by 0 is never allowed, a
fraction with 0 in the denominator has no meaning.

You can think of a fraction as a way to say how many
portions. For example, if you slice 1 pizza into 8 equal-
sized parts, each piece is an eighth of a pizza, 1/8 of a
pizza. If you put 3 of these pieces on your plate, you have
three eighths of the pizza, or 3/8.

TYPES  OF  FRACT IONS
There are different kinds of fractions. A proper frac-

tion is a fraction whose value is less than 1, and an
improper fraction is a fraction whose value is greater than
or equal to 1. For example, 3/5 is a proper fraction, but
5/3 is an improper fraction. Despite the disapproving
sound of the word “improper,” there is nothing mathe-
matically wrong with an improper fraction. The only dif-
ference is that an improper fraction can be written as the
sum of a whole number and a proper fraction: 5/3, for
example, can be written as 1 � 2/3.

A unit fraction is any fraction with 1 in the numera-
tor. This kind of fraction is so common that the English
language has special words for the most familiar ones: 1/2
is a “half,” 1/3 is a “third,” and 1/4 is a “quarter.”
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Two or more fractions are called equivalent if they
stand for the same number. For example, 4/2 and 8/4 are
equivalent because they both equal 2.

A lowest-terms fraction is a fraction with all com-
mon terms canceled out of the numerator and denomi-
nator. A “common term” of two numbers is a number
that divides evenly into both of them: 2 is a common
term of 4 and 16 because it goes twice into 4, eight times
into 16. For the fraction 2/16, therefore, 2 is a common
term of both the numerator and denominator, and so the
fraction 2/16 is not a lowest-terms fraction. We can make
2/16 into a lowest-terms fraction by dividing the numer-
ator and the denominator by 2.

A mixed fraction is made up of an integer plus a frac-
tion, like 1 + 1/2. In cooking and carpentry (but never in
mathematics), a mixed fraction is written without the
“�” sign: 1 1/2.

RULES  FOR  HANDL ING  FRACT IONS
To be useful, fractions must be added, subtracted,

multiplied, and divided by other numbers. The rules for
how to do each of these things are given in Table 1.

FRACT IONS  AND  DEC IMALS
Fractions are closely related to another mathematical

tool used in science, business, medicine, and everyday life,

namely decimal numbers. A number in decimal form, such
as 3.1415, is shorthand for a sum of fractions: each of the
numbers to the right of the decimal point (the “.” in 3.1415)
stands for a fraction with a multiple of 10 in its denomina-
tor. The first position to the right of the decimal point is a
tenth, the second is a hundredth, the third is a thousandth,
and so forth: .1 � 1/10, .01 � 1/100, .001 � 1/1,000, and so
on. Therefore we can write any decimal number as a sum of
fractions; for example, 3.1 � 3 � (1/10).

FRACT IONS  AND  PERCENTAGES
Fractions are also close cousins of percentages, which

are fractions with 100 in the denominator. For example,
to say “50 percent” is exactly the same as saying “fifty hun-
dredths” (50/100). This fraction, 50/100, can be reduced
to a least-terms fraction by dividing the numerator and
the denominator by 50 to get 1/2. Accordingly, “50 per-
cent” is the same as “half.”

However, if percentages are just fractions, why use
percentages? We do so because they give us a quick, use-
ful way of relating one thing (a count or concept) to
another. Say, for example, that we want to know how
many people in a population of 150 million are unmar-
ried. We conduct a survey and find out that the answer is
77 million. To describe this fact by reeling off the raw
data—“77 million out of 150 million people in this
population are unmarried”—would be truthful but
clumsy. We can make things a little better by writing the
two numbers as a fraction, 77,000,000/150,000,000, and
then converting this into a least-terms fraction by
dividing the numerator and denominator by 1,000,000.
This gives us 77/150, which is more compact than
77,000,000/150,000,000, but is still hard to picture in the
mind: how much is 77/150? Most of us have to do a little
mental arithmetic to even say whether 77 is more than
half of 150 or not. (It’s a little more.) The handiest way to
express our results would be to use a fraction with a
familiar, easy-to-handle denominator like 100—a per-
centage. One way to do this is to divide 77 by 150 on a cal-
culator, read off the answer in decimal form as .5133333
(the 3s actually go on forever, but the calculator cannot
show this), and round off this number to the nearest hun-
dredth. Then we can say, “51 percent of this population is
married”—51/100.

By rounding off, however, we throw away a little
information. (If all you keep from .5133333 is .51, the
.0033333 is gone—lost.) In this case, however, as in great
many real-life cases, the loss is not enough to matter. It is
small because a hundredth is a small fraction. If we
rounded off to thirds instead of hundredths, we would
lose much more information: the closest we could come

Gas prices for (from top) plus, premium, and diesel, are
typically shown with fractions denoting tenths of a cent.
AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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to 77/150 would be 2/3, which is 66%, which is much far-
ther from the truth than 51% is. By expressing informa-
tion as percentages (in numbers of hundredths), we get
three advantages: (1) accuracy, because hundredths allow
for pretty good resolution or detail; (2) compactness,
because a percentage is usually easier to write down than
the raw numbers; and (3) familiarity—because we are
used to them.

ALGEBRA
All the rules that apply to adding, subtracting, multi-

plying, and dividing fractions are used constantly in alge-
bra and higher mathematics. Simple fractions have only
an integer in the numerator and an integer in the denom-
inator, but there is no reason not to put more compli-
cated mathematical expressions in the numerator and
denominator—and we often do. For example, we can
write expressions such as x2 / (9 � x2) where x stands for
an unknown number. Any material above the line in
fraction-like expression such as 1/2 or to the left side of a
fraction written in linear form such as 1/2), no matter
how complicated it is, is the “numerator,” and any mate-
rial below the line is the “denominator.” Such expressions
are added, subtracted, multiplied, and divided using
exactly the same rules that apply to ordinary number
fractions like 3/4.

A Brief History of Discovery 
and Development

Fractions were invented about 4,000 years ago so that
traders could keep track of how they were dividing goods
and profits. For instance, if three traders own a grain-
selling stall together, and 10 sacks of grain are sold at 1
denarius apiece, how much profit should the books
record for each owner? Three does not go evenly into 10,
so we have a fraction, 10/3. This is an improper 
fraction, and can be reduced to 3 + 1/3. Each trader
should get 3 whole denarii and credit on the books for 
1/3 more.

Many ancient civilizations developed some form of
dealing with fractions—the Mayan, the Chinese, the
Babylonian, the Egyptian, the Greeks, the Indians (in
Asia), and the Romans. However, for centuries these sys-
tems of writing and dealing with fractions had severe lim-
its. For example, the Egyptians wrote every fraction as a
sum of unit fractions (fractions with a “1” in the numer-
ator). Instead of writing 2/7, the Egyptians wrote their
symbols for 1/4 + 1/28 (which, if you do the math, does
add up to 2/7). The Romans did not write down fractions
using numbers at all, but had a limited family of fractions
that they referred to by name, just as we speak of a half, a
third, or a quarter. All the other ancient systems had their
own problems; in all of them it was very difficult to do
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Operation Rule Example

Multiply a fraction by an
integer, n

Divide a fraction by an
integer, n

Multiply fractions

Divide fractions

Add fractions

Subtract fractions

÷

Table 1: Rules for handling fractions.
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calculations with fractions, like adding and subtracting
and multiplying them. Finally, around 500 A.D., a system
of number-writing was developed in India that was simi-
lar to the one we use now. In fact, our system is descended
from that one through Arab mathematics.

Fraction theory advanced in the 1600s with the
development of practical applications for continued frac-
tions. Continued fractions are fractions that have frac-
tions in their denominators, which have fractions in their
denominators, and so on, forever if need be.

Continued fractions were originally used for design-
ing gears for clocks and other mechanisms. Today they
are used in the branch of mathematics called “number
theory,” which is used in cryptography (secret coding),
computer design, and other fields.

Real-life Applications

COOK ING  AND  BAK ING
Fractions are basic to cooking and baking. Look at

any set of cup measures or spoon measures: they are all
marked in fractions of a cup (or, in Europe, fractions of a
liter). A typical cup-measure set contains measures for 1
cup, 1/2 cup, 1/3 cup, 1/4 cup, and 1/8 cup; a typical
spoon set contains measures for a tablespoon, a teaspoon,
1/2 teaspoon, 1/4 teaspoon, 1/8 teaspoon; some also
include 1/2 tablespoon and 1 1/2 tablespoon.

Not only are measurements in cooking and baking
done in fractions, a cook must often know at least how to
add and multiply fractions in order to use a recipe.
Recipes might only given for a single batch: if you want to
make a half batch, or a double or triple batch, you must
halve, double, or triple all the fractional measurements in
the recipe. Say, for example, that a cookie recipe calls for
2 2/3 cups of flour and you want to make a triple batch.
How much flour do you need to measure?

There are several ways to do the math, but all require
a knowledge of fractions. One way is to write the mixed
number 2 2/3 as a fraction by first noting that 2 � 6/3.
Therefore, by the rule for adding fractions that have the
same denominator, 2 2/3 � 6/3 + 2/3 � 8/3. To triple the
amount of flour in the batch, then, you multiply 8/3 cups
by 3:

At this point you can either get out your 1/3-cup meas-
ure and measure 24 times, which is a lot of work, or you can
try reducing 24/3 to a mixed fraction. If you try reducing

3 =×8 3
3
×8 =

3
24

3

the fraction, you will probably discover at once that 24 / 3 �
8. Therefore, you can measure eight times with your 1-cup
measure and move on to the next ingredient on the list.

RAD IOACT IVE  WASTE
A continuing political issue in nuclear capable coun-

tries is the question of what to do with nuclear waste.
Such waste is an unwanted by-product of making elec-
tricity from metals like uranium and plutonium. Nuclear
waste gives off radiation, a mixture of fast-moving atomic
particles and invisible, harmful kinds of light that at low
levels may cause cancer and at high levels can kill living
things. Only over very long periods will radioactive waste
slowly become harmless as it breaks down naturally into
other elements. This happens quickly for some substances
in the waste mixture, slowly for others. How quickly a
substance loses its radioactivity is expressed as a fraction,
the “half-life” of the substance. The half-life of a substance
is the time it takes for any fixed amount of the substance
to lose 1/2 of its radioactivity. For the element plutonium,
which is found in most nuclear waste, the half-life is about
24,000 years. That is, no matter how much plutonium you
start out with at time zero, after 24,000 years you will have
half as much plutonium left. (But not half as much
radioactivity, exactly, since some of the elements that plu-
tonium breaks down into are radioactive themselves, with
half-lives of their own, and must break down further
before they can become harmless.)

By multiplying fractions, it is possible to answer
some questions about how much radioactive waste will
remain after a certain time. For instance, after two half-
lives, how much of 1 kilogram (kg) of plutonium will be
left? This is the same as asking what is a half of a half,
which is the same as multiplying 1/2 times itself: 1 kg �
1/2 � 1/2 � 1/4 kg.

This can be carried on for as many steps as we like.
For example, how much of 1 kg of plutonium will be left
after 10 half-lives (that is, after 240,000 years)? The
answer is 1 kg � 1/2 � 1/2 � 1/2 � 1/2 � 1/2 � 1/2 �
1/2 � 1/2 � 1/2 � 1/2 � 1 / 1024 kg.

This shows that the plutonium will never completely
disappear. The denominator gets larger and larger, which
makes the value of the fraction smaller but cannot make
it equal to zero.

MUSIC
Fractions and rhythm Fractions are used throughout
music. In Western music notation, the time-values of
notes are named after fractions: besides the whole note,
which lasts one full beat, there is the half-note, which lasts
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only half a beat, and the quarter note, eighth note, six-
teenth note, and so forth. Notice that these fractions—
1/2, 1/4, 1/8, 1/16—all have multiples of 2 in the
denominator. In fact, each fraction in the series is the pre-
vious fraction times 1/2. That is, each standard type of
note lasts 1/2 as long as the next-longest type. Music
notation also has “rest” symbols, marks that tell you how
long to be silent. Just as there are notes with various val-
ues, there are rest symbols with various time values—
whole, half, quarter, and eighth rests.

Nor are we limited to the beat fractions given above.
Each of the standard notes can also be marked with a dot,
which indicates that the duration of the note is to be
increased by 1/2. This is the same as multiplying the time
value of the original note by 3/2. So, for example, the time
value of a dotted eighth note is given by 1/8 � 3/2, which
is 3/16. And by tying three notes together with an arc-
shaped mark (a “tie”) and writing the number “3” by the
arc, we can show that the musician should play a “triplet,”
a set of three notes in which each note lasts 1/3 of a beat.

Fractions and the musical scale A single guitar string
can produce many different notes. The guitar player
pushes the string down with a fingertip on a steel bar
called a “fret,” shortening the part of the string that
vibrates freely. The shorter the freely vibrating part of the
string, the higher the note. The Greeks also made music
using stringed instruments, and they noticed several
thousand years ago that the notes of their musical scale—
the particular notes that just happen to be pleasing to the
human ear—were produced by shortening a string to cer-
tain definite fractions of its full length. Sounding the
open string produced the lowest note: the next-highest
pleasing note was produced by shortening the string to
4/5 of its open length. Shortening the string to 3/4, 2/3,
and 3/5 length—each fraction smaller than the last, each
note higher—produced the three notes in the Greek 5-
note scale. Shortening a string to 1/2 its original length
produces a note twice as high as the open string does:
musically, this is considered the same note, and the scale
starts again.

Modern music systems have more than 5 notes; in
the Western world we use 12 evenly-spaced notes called
“semitones.” Seven of these notes have letter names—A,
B, C, D, E, F, and G—and five are named by adding the
terms “sharp” or “flat” to the letters. These musical
choices are built right into our instruments. If you look at
the neck of a guitar, for example, you will see that the frets
divide it up into 12 parts. Why 12? The ancients decided
to see what would happen if they divided the fractional
string lengths of the Greeks’ 5-note scale into similar
fractions. That is, if one pleasing note is produced by

shortening the string to 2/3 its open length, what note do
we get if we shorten the string to 2/3 of that shorter length?
The vibrating part of the string is then 2/3 � 2/3 � 4/9 the
length of the open string. But this is less than half the
length of the string, making the note an octave too high,
so we double the fraction to lengthen the string and lower
the note: 4/9 � 2 � 8/9. And indeed, the fret for playing
a B on the A string of a guitar does shorten the string to
8/9 of its open length. By similarly multiplying the frac-
tions that gave the other notes in the original Greek scale,
people discovered 12 notes—the semitones we use today.
Later, in the 1600s, people decided that they would space
the notes slightly differently, based on multiples of the
12th root of 2 rather than on fractions. This makes it eas-
ier for instruments to be tuned to play together in groups,
as the notes are spaced perfectly evenly, and as long two
instruments match on one semitone they will match on
all the others too. These modern notes are close to the
fraction-based notes, but not exactly the same.

S IMPLE  PROBAB IL I T I ES
Many U.S. states make money through lotteries, pub-

lic games in which any adult can buy one or more tickets.
The money spent on tickets is pooled, the state keeps a
cut, and the rest is given to a single winning ticket-buyer
who is chosen by chance. Some states have become
dependent on the money they make from the lotteries,
which now totals many billions of dollars every year. If
you bought a lottery ticket, what would your chances of
winning? Mathematically, we would ask: what is the
probability that you will win?

A “probability” is always a number between 0 and 1.
Zero is the probability of an event that can’t possibly
happen; 1 is the probability of an event that is sure to
happen; and any number between 0 and 1 can stand for
the probability of an event that might happen. If you buy
one lottery ticket in which, say, 10 million other people
have bought a ticket, then the probability that you will
win is a unit fraction with 10 million in the denominator:
a 1-ticket chance of winning � 1/10,000,000.

If you buy two tickets, your chance of winning is this
fraction multiplied by 2: a 2-ticket chance of winning �
2/10,000,000. This fraction can be reduced to a lowest-
terms fraction by dividing both the numerator and denom-
inator by 2 to yield 1/500,000. Accordingly, buying two
tickets doubles your chances of winning. On the other
hand, double a very small chance is still a very small chance.

Lottery chances are typical of a certain kind of prob-
ability encountered often in everyday life, namely, when
some number of events is possible (say, N events), but
only one of these N events can actually happen. If all 
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N events are equally likely, then the chance or probability
of any one of them happening is simply the fraction 1/N.

The math of probabilities gets much more compli-
cated than this, but simple fractional probabilities can be
important in daily life. Consider, for instance, two people
who are considering having a baby. Many serious diseases
are inherited through defective genes. Each baby has two
copies of every gene (the molecular code for producing a
certain protein in the body), one from each parent, and
there are two kinds of defective genes, “dominant” and
“recessive.” For a disease controlled by a dominant defect,
if the baby has just 1 copy of the defective gene from either
parent, it will have the disease. If one parent carries one
copy of the dominant defective gene in each of their cells,
the probability that the baby will have the dominant gene
(and therefore the disease) is 1/2; if both parents have one
copy of the dominant gene, the probability that the baby
will have the dominant gene is 3/4. Parents who are aware
that they carry defective genes cannot make informed
choices about whether to have children or not unless than
can understand these fractions (and similar ones).

OVERT IME  PAY
In many jobs, workers who put in hours over a cer-

tain agreed-only weekly limit—“overtime”—get paid
“time and a half.” This means that they are paid at 3/2 or
1 � 1/2 times their usual hourly rate.

Multiplying this fraction by your usual hourly rate
gives the amount of money your employer owes you for
your overtime.

TOOLS  AND  CONSTRUCT ION
Most of us have to use tools at some time or another,

and millions of people make a living using tools. An
understanding of fractions is necessary to do any tool-
work much more complicated than hammering in a nail.
To begin with, all measurements, both in metal and
wood, are done using rulers or measuring tapes that are
divided into fractions of an inch (in the United States) or
of a meter (in Europe). The fractions used are based on
halving: if the basic unit of measure is an inch, and then
the ruler or tape is marked at 1/2 inch, 1/4 inch, 1/8 inch,
and 1/16 inch, each fraction of being half as large as the
next-largest one. So to read a ruler or a tape measure it is
necessary to at least be able to read off the fractions. Fur-
ther, in making anything complex—framing a house, for
example—it is necessary to be able to add and subtract
fractions. For example, you are framing a wall that is 
6 feet (72 inches) wide. You have laid down “two-by-
fours” at the ends of the wall, at right angles to it where

the other walls meet, like the upright arms of a square
“U.” (A two-by-four was 2 inches thick and 4 inches wide
many years ago, but today is 1 1/2 inches thick and 3 1/2
inches wide. Notice that in carpentry, as in cooking, it is
acceptable to write “1 1/2” for 1 + 1/2.) Now you want to
cut a two-by-four to lay down along the base of the 6-foot
wall, in the space that is left by the two two-by-fours that
are already down at right angles: you want to put in the
bottom of the square “U.” How long must it be?

You could, in this case, just measure the distance with
a tape measure. But there are many occasions, in building
a house, when it is simply not possible to measure a dis-
tance directly, and we’ll pretend that this is one of them
(because it’s relatively simple). Each of the two-by-fours
uses up 3 1/2 inches of the 72 inches of wall. There are
several ways to do the problem: one is to add 3 1/2 + 3 1/2
to find that the two two-by-fours use up 7 inches of
space. Since 72 � 7 � 65, you want to cut a board 65
inches long.

Another place where fractions pop up in the world of
tools and construction is in dimensions of common
tools. United States drill bits, for instance, typically come
in widths of the following fractions of an inch: 1/4, 3/16,
5/32, 1/8, 7/64, 3/32, 5/64, and 1/16.

FRACT IONS  AND  VOT ING
Simple fractions like and 1/4, 1/3, and 2/3 have a

common-sense appeal that leads us to use them again and
again in everyday life. They appear often in politics, for
example. The United States Constitution states that the
President (or anyone else who could be impeached) can

Key Terms

Equivalent fractions: Two fractions are equivalent
if they stand for the same number (that is, if
they are equal). The fractions 1/2 and 2/4 are
equivalent.

Improper fraction: A fraction whose value is
greater than or equal to 1.

Least-terms fraction: A fraction whose numerator
and denominator do not have any factors in
common. The fraction 2/3 is a least-terms
fraction; the fraction 8/16 is not.

Proper fraction: A fraction whose value is less
than 1.

Unit fraction: A fraction with 1 in the numerator.
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only be convicted if 2/3 of the members of the Senate
who are present agree. Some other fraction could have
been used—4/7, say—but would not have been as simple.

One of the most famous fractions in political history,
3/5, appears in the United States Constitution, Article I,
Section 2, which reads as follows: “Representatives and
direct Taxes shall be apportioned among the several
States which may be included within this Union, accord-
ing to their respective Numbers, which shall be deter-
mined by adding to the whole Number of free Persons,
including those bound to Service for a Term of Years, and
excluding Indians not taxed, three fifths of all other Per-
sons.” Translated into plain speech, this means that the
more people live in a state, the more congresspeople
would be needed to represent it in the House of Repre-
sentatives, giving it more voting power. The phrase “all
other Persons” was an indirect reference to “slaves.”
Because of this clause in the Constitution, slaves, though
they had no human rights, would count toward allotting
congresspeople (and thus political power) to Southern
states. The Southern states wanted the Constitution to
count slaves as equal to free persons for the purposes of
allotting state power in Congress, and the Northern states
wanted slaves counted as a smaller fraction or not at all;
James Madison proposed the fraction 3/5 as a compro-
mise. The rule was ultimately canceled by the Fourteenth
Amendment after the Civil War, but it did play an impor-
tant part in U.S. history: Thomas Jefferson was elected to
the Presidency in 1800 by Electoral College votes of
Southern states derived from the three-fifths rule. (By the
way, neither the original Constitution or the 14th

Amendment counted women at all: you might say that
they were counted at 0/5 until the 19th Amendment gave
them the legal right to vote in 1920.)

In 2004, a bill was proposed to give teenagers frac-
tional voting rights in California. If the bill had passed,
14- and 15-year-olds would have been given votes worth
1/4 as much as those of adults and 16- and 17-year-olds
would have been given votes worth 1/2 as much as those
of adults. (All people 18 years and older already have the
right to vote, each counted as one full vote.) The intent
was to teach teenagers to take the idea of participating in
democracy seriously from a younger age. Some European
countries such as the United Kingdom have seriously
considered lowering the voting age to 16—with no frac-
tions involved.
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Functions

Overview

A function is a rule for relating two or more sets of num-
bers. The word “function” is from the Latin for perform or
execute, and was first used by the German mathematician
Gottfried Wilhelm von Leibniz, one of the inventors of cal-
culus, in the late 1600s.A function is often written as an equa-
tion, that is, as two groups of mathematical symbols
separated by an equals sign. A function can also be expressed
as a list of numbers on paper or in computer memory.

A function in mathematics is, more or less, what the
sentence is in English: it expresses a complete mathemat-
ical thought. Much of mathematics consists of functions
and the rules that relate them to each other. To use math-
ematics in the real world means looking for functions to
describe how things behave, and then using those func-
tions to design, understand, predict, or control the things
they describe.

Fundamental Mathematical Concepts
and Terms

Mathematicians divide all known kinds of function
into types. Each type of function has different properties
and different uses. Some of the most common types of
function are polynomials, exponentials, and trigonomet-
ric functions. Lists of more complicated, unusual func-
tions are published as lists of “special functions.”

FUNCT IONS  AND  RELAT IONS
A function is a particular type of “relation.” A rela-

tion is a set of ordered pairs of numbers. For example, the
three pairs (2,1), (4,2), and (3,1) give a relation. It is usual
in mathematics to refer to each left-hand number in a
pair as an x and to each right-hand number as a y. In this
relation, x can be 2, 4, or 3, and y can be 1 or 2.

A relation is also a function if each y goes with only
one x. The relation (2,1), (4,2), and (3,1) is not a function
because a y value of 1 goes with two values of x, namely 2
and 3. For a relation to be a function, each x must be
paired with one and only one x.

In practice, the word “function” is often used to include
equations that assign more than one y value to each x value.
Such equations are sometimes called “multiple-valued
functions” and are also useful in dealing with the real world.

HOW FUNCT IONS  ARE  DESCR IBED
Functions are usually written as an equations. This is

done because most functions relate not only a few pairs of
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numbers, as in the example already given, but many pairs
of numbers—too many to write down. For example, if we
decide to use x and y to stand for any of the positive
counting numbers (1, 2, 3, . . . ), then the equation y � 2x
describes a function that relates an infinite number of x’s
to an infinite number of y’s as shown in Table 1.

The only practical way to write down such a function
is in the form of an equation.

Can such a simple function as y � 2x describe some-
thing in the real world? Certainly. If you are climbing a
steep mountain that goes up two feet for every foot you
go forward, then the vertical (upward) distance you travel
is twice as great as the horizontal (sideways) distance you
travel. If we use y to stand for the distance you have trav-
eled vertically and x to stand for the distance you have
traveled horizontally, then y � 2x.

The letters x and y are called “variables” because they
can vary, that is, take on different values. The numbers
that x can stand for are called the function’s “domain” and
the numbers that y can stand for are called its “range.” In
the example above, the domain and the range both con-
sist of all the positive counting numbers, 1, 2, 3, and so
forth. Many symbols other than x and y are used to stand
for variables; these two are merely the most common, by
tradition.

A function can be thought of as a sort of number
machine that takes in an x value and puts out a y value.
The y value can thus be thought of as depending on the x
value, so x is sometimes called the “independent variable”
and y the “dependent variable.” If we are using a function
to describe cause-and-effect in the real world, we describe
the cause as an independent variable and the effect as a
dependent variable. For example, if a rocket is pushing on
a spacecraft with a certain force, and we want to write a
function that relates this force to the acceleration
(increase of speed) of the spacecraft, we write the force as
the input or independent variable and the acceleration 
of the spacecraft as the output or dependent variable. It is
the acceleration that depends on the force, not the other
way around.

There are also functions that have more than one
independent variable. We put two (or more) numbers
into the function rather than one, and the function pro-
duces a single number as output.

Real-life Applications

MAKING  A IRPLANES  FLY
One of the basic laws of physics is that energy can

neither be created nor destroyed. It can, however, be

moved from one form to another. For example, a fluid
(gas or liquid) can store energy in several ways: as heat, as
motion, or as pressure. A function called Bernoulli’s
equation, named after its discoverer, Swiss mathematician
Daniel Bernoulli (1700–1782), describes how a moving
fluid can move its energy between pressure and motion.
According to Bernoulli’s equation, the faster a fluid flows,
the lower its pressure.

Bernoulli’s equation—or, rather, the physical effect
described by it—is what keeps airplanes up. An airplane
wing is shaped so that as it slices through the air, the air that
flows over the rounded top of the wing has to travel farther
than air under the flat bottom of the wing. The air on top
and on bottom must make the trip from the leading edge of
the wing to the trailing edge in the same amount of time, so
the wing on the upper surface, which has farther to go, is
forced to flow faster. But this means, by Bernoulli’s equa-
tion, that its pressure is decreased. As a result, there is more
pressure—more force—per square foot on the wing’s bot-
tom than on its top. This difference in pressure is what
holds the plane up. In the case of a Boeing 747, the pressure
difference between the top and bottom sides of the wing is
over 100 pounds per square foot.

You can test the Bernoulli principle by holding a
sheet of paper by one edge so that it droops away from
you, and blowing on the top of it. The paper will rise into
the jet of air from your mouth because the pressure in the
moving air is lower.

Bernoulli’s equation only holds true for flight slower
than the speed of sound (about 741 mph [1,193 km/h], at
sea level). At speeds faster than the speed of sound—
supersonic flight—the behavior of air is so different that
functions other than Bernoulli’s equation must be used to
design aircraft wings.

GU ILLOCHÉ  PATTERNS
Look at any piece of paper money from almost any-

where in the world. Somewhere on the bill—on United
States currency, it is around the border—you will see a
dense, complex pattern of curving, intersecting lines. This

2 � 2 � 1
4 � 2 � 2
6 � 2 � 3 ... and so on, forever

y's x's

Table 1. The function y = 2x, where x can be any positive
counting number.
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design is known as a Guilloché pattern and they have
been used since the 1850s on paper money, stocks, bonds,
and other official documents in order to make them more
difficult to counterfeit. Today they are also used on lami-
nated plastic cards such as some identification cards and
driver’s licenses.

Guilloché patterns were originally produced by
mechanical means. Today they are produced mathemati-
cally on computers, using the functions called sinusoids.
Sinusoids are functions that look, when graphed, like
smooth, wavy lines. A Guilloché pattern is produced by
multiplying sinusoids, shifting them, adding them, and
placing one on top of another. (Straight lines may also be
added to make the pattern even more complex.)

Modern money is protected from counterfeiting
more by invisible inks, hidden plastic threads, and other
hard-to-copy features than by its Guilloché patterns, but
a finely-printed Guilloché pattern still makes it more dif-
ficult to produce a convincing fake of a piece of money or
an identification card. A number of software packages are
for sale that make Guilloché patterns.

THE  M ILL ION -DOLLAR  HYPOTHES IS
In 1859, the same year that saw the publication of

Charles Darwin’s theory of evolution in The Origin of
Species, the German mathematician Georg Friedrich
Bernhard Riemann (1882–1866) made a guess about a
special function, the “zeta function.” His guess, or
hypothesis, was that all the zeroes of this function—all
the values of the independent variable for which the
function equals 0—lie on a certain line.

Mathematicians have been trying to prove the Rie-
mann hypothesis for well over century. So important is
the Riemann hypothesis that in 2000, the Clay Mathemat-
ics Institute of Cambridge, Massachusetts, announced
that it would give $1,000,000 to the first person to prove
it. Computers have been used to test millions of zeroes of
the zeta function and found that all of them, so far, do lie
on the line that Riemann described. But the zeta function
has an infinite number of zeroes, so no computer study
can prove that all the zeroes lie on the line.

The Riemann hypothesis matters to real-world
mathematics because it is one of the most important
ideas in the study of prime numbers. A prime number is
any whole number that cannot be evenly divided by any
number smaller than itself except 1. (The first 10 prime
numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.) Large
prime numbers (primes dozens or hundreds of digits
long) are at the heart of modern cryptography, the sci-
ence of sending secret messages—and cryptography is at
the heart of our modern economy. Cryptography allows

banks and Internet users to send money, credit-card
numbers, and other private information as coded mes-
sages without fear that thieves will be able to read or fake
those messages. If the Riemann hypothesis concerning
the zeta function is proved, it will become easier to dis-
cover new large primes.

In June 2004, a French mathematician working at
Purdue University, Louis de Branges de Bourcia (1932–)
claimed to have discovered a proof of the Riemann
hypothesis. His proof was long and complicated, and
mathematicians could not quickly agree whether he had
solved the puzzle or not. As of late 2005, de Bourcia’s
claim had not been proved or disproved by other
mathematicians.

F IN I TE - ELEMENT  MODELS
A computer can predict the weather—more or less—

by “modeling” it, that is, by working with a three-dimen-
sional mesh or net of numbers. Each separate hole in the
mesh or net—also called an element of the mesh—stands
for a small piece of the atmosphere. Numbers attached 
to each element represent the pressure, temperature,
motion, and other properties of that piece of air. Next,
functions are programmed into the computer to describe
the physical laws that the element must obey. Foremost
among these functions are the Navier-Stokes equations,
which relate air pressure to speed and acceleration. This
set of equations is named after French physicist 
Claude-Louis Navier (1785–1836) and Irish mathemati-
cian Gabriel Stokes (1819–1903), the men who discov-
ered them.

The computer feeds the numbers on the mesh into
the functions that describe what should happen to them
next. As output, the functions produce a new set of num-
bers that is, in effect, a prediction of what the weather will
be a little bit into the future. This computation is done
repeatedly, until eventually a prediction for the weather
hours, days, or weeks into the future is produced. Will the
hurricane head for shore? If so, where will the hurricane
strike? How bad will it be?

This method of modeling or computing the behavior
of physical systems is called “finite-element modeling”
because the size of each piece or element of the model
mesh is finite (limited) in size. Finite-element modeling
was developed in the 1950s for aircraft design and is used
today in a many real-life applications, including machine
design, ocean current modeling, medical imaging, cli-
mate change prediction, and others.

Real weather is not really made up of separate ele-
ments or pieces, but just as a picture made of dots can get
more realistic as the dots are made smaller and more



F u n c t i o n s

R E A L - L I F E  M A T H 213

numerous, a finite-element model can get more realistic
as its elements are made smaller and more numerous.
However, there is always a practical limit, because even
the most powerful computers can only handle a limited
number of calculations. In addition, some results, like
hurricane forecasts, are needed in hours, not days or
months. For this reason—and also because complex sys-
tems such as the weather are often “chaotic” or unpre-
dictable over the long term by their very nature—weather
forecasting will always remain imperfect. For example,
when Hurricane Ivan approached the Gulf Coast of the
United States in September 2004, computer models were
unable to predict exactly where it would come ashore or
how severe it would be by the time it did so. Repeated cal-
culations starting from slightly different assumptions
produced significantly different results.

SYNTHS  AND  DRUMS
Many of the characteristic sounds of modern pop

music depend on math. From the deep “thump” of a driv-
ing hip-hop beat to the high-pitched “ting” or clashing
sounds of high-hat cymbals, and lots of the sounds in
between—snare drums, piano, strings, horns, hand claps,
or sounds never heard before: are all produced mathe-
matically, using functions.

Sounds are rapidly repeating pressure changes in air.
If the pressure changes that we hear as a pure musical
note are graphed, they look like a sinusoid (a type of
function shaped like a wavy line). But music made only of
pure sinusoids would sound flat and dull. More interest-
ing sounds—sounds that growl, snap, clap, sing, and
make our feet want to move—can be made by adding
many functions together.

One of the ideas most commonly used in the design
of sounds and sound systems is the fact, first discovered
by French mathematician Jean Baptiste Fourier
(1768–1830), that every possible sound can be built up by
adding together the functions called sinusoids. Electronic
sound synthesizers (“synths”) allow a musician or sound
designer to build sounds on this principle. In analog
synths, an “oscillator bank” produces a number of sinu-
soids that can be shifted, amplified, and added to make
new sounds.

This is not the only way that sounds can be created.
Another method is called “physical modeling synthesis.”
In this approach, mathematical functions that describe
the air vibrations made by a drum or other instrument
are based the physical laws that describe the vibration of
a drum head, string, soundboard, or other object. These
functions are then evaluated by a computer to produce
the desired sound.

NUCLEAR  WASTE
Radioactive materials are made of atoms that break

apart at random or unpredictable times. When an atom
breaks apart (“decays”), it releases fast-moving particles
and high-energy light rays. These particles and rays
(“radiation”) can kill or damage living cells. Only when
most of the atoms in a lump of radioactive material have
decayed is it no longer dangerous.

Radioactive waste is produced by the manufacture of
nuclear weapons and by nuclear power plants (which
make electricity) and are stored above the surface of the
ground at about 130 locations around the United States.
This is not a good long-term solution because accidents
or terrorism might allow them to mix with the air and
water. A possible solution is to bury the wastes deep
underground in a part of the country that gets little rain,
so that they can remain isolated until most of their
radioactive atoms have decayed.

The time needed for radioactive material to become
harmless is given by a mathematical function called an
exponential function. This function states that after a cer-
tain amount of time—different for each radioactive
substance—about half the atoms in a lump of that sub-
stance will have decayed. This amount of time is called a
“half-life” of that substance. After another half-life has
gone by, half of the atoms left after the first half-life will
also have decayed, and so on, half-life after half-life, until
the very last atom is gone. The amount of radiation given
off by a quantity of radioactive waste thus decreases over
time. The half-life of some radioactive substances is a
fraction of a second; for others it is tens of thousands of
years, or even millions of years.

If the amount of radioactivity at the beginning is R,
then the amount after one half-life will be 1/2 � R. After
another half-life it will be half of that, or 1/2 � (1/2 � R).
If N is the number of half-lives that have passed, then the
amount of radioactivity left will be R times 1/2 multiplied
by itself N times, which can be written as (1/2)N R. As a
general rule, physicists say that a sample of radioactive
substance can be considered be safe after 10 half-lives. By
that time, the radiation will be down to (1/2)10 R, about
1/1,000 as much as there was at the start.

In the case of plutonium, a radioactive element found
in nuclear waste, the half-life is about 20,000 years, so by
this rule of thumb plutonium should be isolated from the
environment for at least 200,000 years (10 half-lives).

These numbers are involved in a political dispute.
Since 1978, the United States Department of Energy has
been studying Yucca Mountain, in Nevada, as a place to
bury about 60% of the nuclear waste that has accumu-
lated around the country. Seventy-three miles (117 km)
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of huge tunnels to put the waste in have been dug 1,000
feet (305 m) below the surface at a cost of over $9 billion.
However, no waste has yet been stored there. The site is
still being studied, and government has decided that
Yucca Mountain must be able to keep all its waste from
leaking out for 10,000 years. Opponents of the plan—
including the State of Nevada, which objects strongly to
receiving the whole country’s nuclear waste—argue that
this is not long enough. In July 2004, a Federal Court of
Appeals decided against the Department of Energy
(which manages Yucca Mountain) in a lawsuit brought by
the State of Nevada and environmental groups. The court
ruled that 10,000 years was not long enough, and that the
Department of Energy must come up with a tougher
standard.

BODY  MASS  INDEX
Government experts said in 2000 that 11% of the

United States population between the ages of 12 and 19
was overweight. That’s more than double the rate meas-
ured in 1984; experts are talking of an “epidemic of obe-
sity.” But what is it, exactly, to be “overweight”?

Doctors decide whether a child or teen is overweight
using something called the “body mass index (BMI) for
children,” also known as “BMI-for-age.” Your BMI is your
weight in kilograms divided by the square of your height
in meters. If you are 1.7 meters (5 feet, 7 inches) tall and
weigh 59 kilograms (130 pounds), then your BMI is 

�
59 kg

(1.7 m)�(1.7 m)
20.4 kg/m2

If you are heavy for your height, you will have a high
BMI.

So is 20.4 a good BMI or a bad BMI? It’s not neces-
sarily either. Based on measurements of many thousands
of young people, the Centers for Disease Control of the
United States government have graphed average BMI as a
function of age. That is, age is graphed as the independ-
ent variable (horizontal or x axis) and BMI as the
dependent variable (vertical or y axis) to produce a curve.
BMI is a good example of a function that is described not
by an equation, but by a collection of number pairs.
(There is one chart for boys and another for girls.)

When you go for a checkup, the doctor may compare
your BMI to a chart to see how many people your age
have BMIs less than yours. If 95% of people your age have
a lower BMI than yours, you are considered overweight. If
only 5% of people your age have a lower BMI than yours,
you are considered underweight.
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Key Terms

Domain: The domain of a relation is the set that con-
tains all the first elements, x, from the ordered pairs
(x,y) that make up the relation. In mathematics, a
relation is defined as a set of ordered pairs (x,y) for
which each y depends on x in a predetermined way.
If x represents an element from the set X, and y rep-
resents an element from the set Y, the Cartesian
product of X and Y is the set of all possible ordered
pairs (x,y) that can be formed.

Function: A mathematical relationship between two sets
of real numbers. These sets of numbers are related

to each other by a rule which assigns each value
from one set to exactly one value in the other set.
The standard notation for a function y � f(x), devel-
oped in the eighteenth century, is read “y equals f
of x.” Other representations of functions include
graphs and tables. Functions are classified by the
types of rules which govern their relationships.

Prime number: Any number greater than 1 that can only
be divided by 1 and itself.
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Game Math

Overview

Mathematics has played a role in games for centuries.
Some games are purely mathematical in form, such as
numbers theory, where solving a tricky math problem in
of itself becomes the game. Other games, such as logic
problems and puzzles, rely heavily on math to reach the
solution. There are games where knowing a bit of math,
such as probability, can help you determine your playing
strategy, and still others where math helps you keep score.

Fundamental Mathematical Concepts
and Terms

Game math covers a wide variety of entertainments,
including board games such as Monopoly or chess, card
games such as blackjack or poker, casino games such as
roulette, logic puzzles, and number games. Number theory,
a very specific sort of game math, deals with the make up
of numbers themselves, and involves puzzling through the
relationship between different numbers in order to find
patterns in the ways that they relate. Often, number theory
requires complex equations using algebra or calculus to
come up with solutions, and in many cases there are math-
ematical questions that have yet to be answered—puzzles
still unsolved. Games that involve the rolling of dice or the
drawing of cards use addition, probability, and odds to
determine a player’s next move. Any game that involves
keeping score requires someone to add up the points, and
games that involve money require basic bookkeeping on
the parts of the players. Computer game designers pro-
gram their games to take into account the probability of
each player’s actions and the various reactions that the
game might offer, working through every possible permu-
tation in order to provide a realistic experience.

Probability and odds are two terms often used in
relation to games that involve math, particularly games of
chance. However, the terms are not interchangeable.
Probability involves the outcome of a trial of chance in
relation to the number of different outcomes that were
possible. For instance, if you were to flip a coin, there
would be two potential outcomes: heads or tails. Flip the
coin once, and you will get one of those two choices.
Therefore, if you flip a coin a single time, the probability
that it will land heads up is one in two or 1/2. Likewise,
the probability that it will land tails up is also one in two.

In the event that you have more potential outcomes,
such as when you roll a single die, the principle remains
the same. If you roll a die with six sides, numbered con-
secutively, there are six possible outcomes. The probabil-
ity that you will roll a two is one out of six, or 1/6.
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Odds refer to the chance that you will achieve a spe-
cific outcome compared to the chance that you will achieve
any of the other potential outcomes. For instance, when
tossing a coin a single time, you have only two potential
outcomes, so the odds are that you will either have the coin
come out heads up or tails up, one to one. These are also
knows as even odds. But when rolling a single die, you have
six different sides that might turn up. Therefore there is
one chance of rolling any given number, such as two, while
there are five chances that you will not roll a two, but one
of the other potential outcomes. In this instance, the odds
are one to five that you will roll a two, or 1/5.

In order to determine the odds against something
happening, you take the mathematical reciprocal of the
odds that it will happen. For example, in the instance of
rolling the single die, if there is a 1/5 chance that you will
roll a two, the odds are five to one or 5/1 against rolling a
two in a single throw.

Permutations are the various choices at each stage of
certain games, such as checkers, chess, or many computer
games. Each time a player moves, they make a decision, and
these decisions add up eventually to become their route
through the game on that specific occasion. However, what
would have happened if the player made a different move
the first time? Or the second? In some instances there may
have only been one choice, because an opponent blocked
other routes or other moves led in the wrong direction, but
ultimately, there were still a variety of options, and all of
those put together are the potential permutations of the
game. Mathematically, there are hundreds—sometimes
thousands—of potential play scenarios available to each
player, depending on how they mix and match their moves.

A Brief History of Discovery 
and Development

Game math has a long history, with some forms dat-
ing back to early human history. The throwing of dice
originated in an ancient game that involved rolling bones,
potentially man’s earliest game of chance. Although it is
unlikely that early gamblers were aware of the probability
behind the game, it survived and eventually evolved into
its more modern equivalent. Nor were dice games limited
to specific nations. During his travels to China, Marco
Polo reportedly encountered the dice rolling as both a
means of divination and simple entertainment. Native
Americans, the Aztecs and Mayans, Africans, and Eski-
mos all have evidence of dice in their cultures.

Early dice were fashioned out of animal teeth and
bones, stones, and sticks, and used by witches or a tribal

shaman to foretell the future. As they evolved and began
to be used for diversion, the dice were shaped to match
their uses. The modern look is believed to have originated
in Korea, as part of a Buddhist game called Promotion.
Dice as a means of gaming spread rapidly, particularly
through the Roman Empire, where there is evidence not
only of the rolling of dice, but of cheating. By the tenth
century, dice games appear to have been a part of most
cultures.

Chess is another mathematical game that has devel-
oped through the centuries. The earliest game resembling
chess is Shaturanga, a board game between four armies
that was designed by an Indian philosopher in the sixth
century. The original version was played on a board made
up of sixty four squares, and each of the four players had
an army controlled by a rajah or king. Other pieces
included infantry or pawns, calvary or knights, and an
elephant that moved like the modern rook. In the early
history of the game, dice were rolled to determine each
player’s moves. Only later, when Hindu law forbade gam-
bling, were the dice eliminated. At that point, the game
became a two-player contest, and the pieces were com-
bined, with two of the kings demoted to prime ministers
among other changes. The new version of the game was
called Shatranj, and its first mention is in approximately
A.D. 600 in a Persian text. As of A.D. 650, there was evi-
dence of Shatranj being played in the Arab kingdoms, the
Byzantine court, Greece, Mecca, and Medina.

Shatranj made its way to Europe some time during
the eighth century, but there are several theories as to
how. One theory is that the Saracens brought the game to
Andalusia after conquering North Africa and it then trav-
eled on to the court of Charlemagne in approximately
A.D. 760. Another theory has Charlemagne engaged to the
Empress Irene of the Byzantine Court. A Shatranj set was
given to Charlemagne during one of their meetings, but
instead of the standard prime ministers there were two
queens mistakenly included. They were considered the
most powerful pieces on the board and Charlemagne
took it as a bad omen and cancelled the engagement. The
third, and most likely explanation is that knights return-
ing from the Crusades brought the game back to Europe
with them.

The game continued to evolve across Asia and
Europe, eventually breaking out into several versions. The
European game most closely resembling modern chess
became popular at the end of the fifteenth century. Cer-
tain pieces gained more power at that point, and several
new moves were added to the game.

The common element through all of these versions
of the game were the multiple permutations possible
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depending on the strategy of the players. This became
increasingly evident in modern times, when computer
programs were written to simulate a chess game in the
1960s. The early programs were easy to beat, but as the
programs became more complex, taking into account 
the possible mathematical permutations for each move
and the likely responses of the opponent, the games
became more sophisticated and more closely resembled
the playing style of a live player. In 1997, Gary Kasparov,
considered the best chess player in the world, was beaten
by a computer chess program.

Magic squares are blocks of cells—three by three,
four by four, etc.,—where each cell contains an integer
and the integers in each row, column, and diagonal add
up to the same number. Coming up with working combi-
nations of numbers is a pastime that dates back to as early
as 2200 B.C. The first known square of this sort was a
third-order magic square, three cells across and three cells
down, recorded in a Chinese manuscript. Early squares
have been discovered engraved into metal or stone in
both China and India. There is a legend surrounding the
first magic square that says that Chinese Emperor Yu dis-
covered it while walking by the Lo River. He spotted a tur-
tle on the river’s bank, and that turtle had a series of dots
on its shell in the formation of a magic square, with each
row, column, or diagonal of the dots adding up to fifteen.
The Emperor took the turtle home to his palace to study
it, and the turtle continued to live at court, with famous
mathematicians traveling to examine it. The pattern of
dots on the turtle’s back became known as the Lo-shu.

Nearly every civilization since has made a study of
magic squares, often attributing them with mystical
properties and using them in rituals and as the founda-
tion of prophecies and horoscopes. They appeared in
Europe during the first millennium A.D., with the Greek
writer Emanuel Moschopoulus being the first to write
about them. The numbers have been equated with plan-
ets, elements, and religious symbols, and have appeared
in works of art and on the backs of coins. As an enter-
tainment, they have provided generations of mathemati-
cians and laymen alike with a diverting puzzle, as people
continue to attempt to discover new combinations of
numbers that work in the magic square format.

Card games of all types also use a certain amount of
math. It is unknown precisely when the first card games
appeared, but there are references to card games in
Europe starting in the thirteenth century, and the first
actual playing card can be traced back to Chinese
Turkestan in the eleventh century. It is suggested that the
Chinese might have invented the cards, as they were the
first to create paper.

Specific card games, such as blackjack, are not refer-
enced until more recently. Blackjack originated in France
as twenty-one, or vingt et un, in the early eighteenth cen-
tury. The game traveled to the United States in the nine-
teenth century and became popular in the West, where
gambling was a growing pastime. Las Vegas legalized
gambling in 1931, and blackjack became a regular attrac-
tion in the new casinos. By the 1950s, books were being
written on how to count cards and predict the odds for
any given hand of cards. Blackjack games began using
more decks of cards, making it nearly impossible for an
individual to keep track of the permutations, and in the
1970s, with the advent of mini-computers and calcula-
tors, cheating at cards rose to a new level.

Slot machines, which combine probability, statistics,
and a variety of potential permutations and corresponding
payouts, first appeared during the early part of the twenti-
eth century. They were invented in 1895 by Charles Rey but
not manufactured until approximately 1907 when Rey and
the Mills Novelty Company joined forces to create the first
machine, the Liberty Bell, which had a cast iron case and
reels with pictures of playing cards. Different themes
became popular through the years and other pictures were
added, such as fruit, castles, and eagles. The modern

Chess is essentially a game of mathematical options. WILLIAM

WHITEHURST/CORBIS.
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devices are electronic and provide even more potential for
different combinations. Most illustrate the odds of achiev-
ing any given payout based upon the number of coins
played. An understanding of probability helps a player
realize the rate at which he will probably lose his money,
and how slim his chances of hitting one of the jackpots.

Real-life Applications

CARD  GAMES
Math is an important skill for various card games,

both in order to strategize against one’s opponents and as
an actual part of certain games as well. In blackjack, basic
addition is required in order to determine how to play
each hand, in addition to an understanding of the value
of each card in the deck. Numeric cards two through nine
are worth the same number of points as their face value,
so that a four is worth four points and so on. This is true
of all four suits. The ten, jack, queen, and king are all
worth ten points apiece. The value of the ace depends on
the combination of cards in the hand, as it adapts itself
accordingly, worth either one point or eleven, depending on
which is more advantageous to the player. In order to get
blackjack, the player’s had must add up to exactly twenty-
one points. This can happen as a natural blackjack—
consisting of an ace and either a face card or a ten—or
through another combination of cards.

There is more to blackjack than scoring a perfect
twenty one, however. The game is usually played at a table
with a dealer and one or more players. It is the dealer’s
duty to distribute cards both to the players and to
himself—the house. In order to win, a player needs to
come as close to twenty one as possible without going
over, known as going bust, and yet still have either the
same number of points or more points than the house. As
a result, the game requires more math skills than simply
adding up the cards in one’s hand. Once the dealer dis-
tributes two cards to each player, the player must decide
whether the cards he has are sufficiently close to twenty-
one, or whether he wants to risk taking an additional
card. Because the dealer only reveals one of his own cards
at the onset of the round, the player also has to guess what
the chances are that the dealer has a better hand. The
player’s only advantage is knowing that the dealer must
continue to take additional cards until the house’s hand
reaches at least a total of sixteen. The house must also
stand, or take no additional cards, once the dealer has
reached a total of seventeen points in the hand.

In order to play blackjack effectively, a player must
determine the mathematical likelihood that they will have

a hand equal to or better than the dealer’s hand, without
going bust. There are some basic rules of probability that
come into play at this point. For instance, looking strictly
at the player’s hand, if the two cards dealt total seventeen
or higher, it is advisable for the player to stand and refuse
any further cards. It is easy to see why when you look at
the possible permutations. If a player already has a total
of seventeen and chooses to draw an additional card, the
only cards that would give him a new total of twenty one
and lower are the ace—acting as a one and not eleven—
or the two through the four. Five or higher will result in
the player going bust. This means that out of a potential
thirteen cards in a suit, four of them would result in a
win, while the remaining nine would result in a loss. Not
very good odds.

The math becomes more complicated when the
player’s original hand totals less than seventeen, and it
becomes necessary to also consider the value of the single
card the dealer has revealed for the house. The higher the
dealer’s standing card, the more likely it is that when the
second card is revealed the total will be above seventeen.
Therefore, the higher the dealer card, the more likely it is
that the player will need to choose an additional card for
his own hand. This becomes doubly true if the two origi-
nal cards dealt to the player are substantially lower than
sixteen. Once the various permutations are taken into
account, it becomes clear that if the player’s hand totals
twelve or less and the dealer holds anything other than a
four through a sex, the odds are better if the player draws
an additional card. If the player holds thirteen to sixteen
points, and the dealer holds a seven or higher, the player
should also draw another card. It is important to remem-
ber when totaling a hand that an ace can count as either a
ten or a one, so an ace and a six can be considered either
a sixteen point hand or a seven point hand. Also, the
probability of drawing any given hand changes depend-
ing on how many decks the dealer is using and how many
hands have already been played.

Counting cards is a skill that can help a player get a
better idea of his chances of winning over the course of a
game. The system involves assigning each card a value
other than their point value in the game. The ace and any
card with a point value of ten is equal to negative one,
cards two through six are equal to positive one, and the
others are counted as zero. For each hand, the player
keeps a running tally based on the cards dealt and the
number of decks being used. There is a higher chance of
winning when the card count total is above a positive two.

In other card games, counting cards merely refers to
keeping track of what has already been played. If a single
deck of fifty two cards is divided among four players, each
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player guesses what the other players are holding based
on their knowledge of their own hand and their knowl-
edge of the cards in the deck. Depending on the game, as
cards are thrown down on the table, a player remembers
what they have seen because that means those particular
cards have been eliminated from play. The player, in a
sense, subtracts those cards from the total set available.

Probability is also used to determine what sort of
hand constitutes a winning hand in many card games. For
instance, in Poker, a hand that contains a pair of like cards
may have some value, but it will still be worth less than
three of a kind or a flush, and far less than a royal flush. The
probability of getting a pair is fairly high, given that there
are more than one million potential combinations in a
standard deck of cards that would qualify. A royal flush,
however, which requires you to not only attain the major
face cards but for all of them to be in the same suit, is lim-
ited to only four potential combinations—the face cards
for hearts, diamonds, spades, and clubs. It is easy to see why
a royal flush is such a difficult hand to obtain, and why it
will beat out any of the other potential combinations.

OTHER  CAS INO  GAMES
Game math in the form of probability plays a huge

role in most other casino games as well. Roulette is an
obvious example. A player chooses a number on the
board and places their chips on that square. Once all of
the bets are made, the dealer spins the wheel, setting loose
a small ball that circles the wheel until the wheel comes to
a halt, then drops down into one of the slots that indicate
the winning number. It is similar to playing the lottery,
but on a smaller scale. In order to win, a player must 
have bet on the same number as the one on which the 
ball lands.

Other bets are possible in roulette, but as with any-
thing, the greater the odds of winning, the less money you
lose—or win. Half of the numbers in Roulette are black
while the remaining half are red. If a player decides to
simply bet on black in general, they have a fifty/fifty
chance of winning and therefore can do no more than
double their bet with each spin. At the other end of the
spectrum is a straight up bet, where a player chooses a
number and hopes that is the one to win. Because there
are thirty six numbers on the board, the odds of winning
become one in thirty five or 1/35. In between these two
bets are other combinations that provide various differ-
ent odds, such as a trio bet in which three individual bets
are placed on separate numbers and the odds of winning
become three in 36 or one in 12.

It is important to understand the odds of a game
before playing because the mathematics behind the

action can help a player from making foolish mistakes. It
is possible to place a bet in Roulette thirty six times in a
row and never win, even though there are thirty six num-
bers, because the win spins independently each time and
each time the odds of a given number appearing remain
virtually unchanged. Common sense tells us that eventu-
ally different numbers will result, but experience teaches
us that it is unlikely that each of the thirty six numbers
will come up once. However, if a player takes those same
thirty six bets and places them all at once, with one bet on
each number, the outlay of chips is identical but there is a
guarantee of winning because all of the potential out-
comes have been covered.

Slot machines offer players the chance to play with
minimal interaction. All one needs to do is put money
into the machine and either pull the lever or push a but-
ton. If the machine offers the opportunity to bet more
than one coin at a time, the player can also make that
decision. However, there is no other human interaction—
the rest of the game is up to the machine. Players win at
various levels based on whether any matched sets appear
on the reels when they stop spinning, but these wheels
have been programmed and are encased within the
machine, so a player has to trust to the payout odds listed
on the front of the device to determine whether the prob-
ability of winning is worth the risk of losing. As with
many casino games, the odds are in favor of the casino.

The payout percentage is listed on most slot
machines. This is the amount of money that particular
machine is required to pay back out in winnings over the
course of its lifetime on the casino floor. However, a high
percentage, while favorable, is no guarantee, as the
machine could pay that entire amount in one huge jack-
pot every so often and then not provide any smaller win-
nings in the interim, or conversely, could pay the money
in small, unimpressive amounts on a steady basis. There
is no way to know the machine’s history, or whether it
might have paid out a fairly large amount of money to
another player just an hour earlier. The machine should,
however, illustrate some of the typical combinations that
might appear when the reels stop spinning, and what the
odds are of that type of payout occurring. It will also
show if the machine accepts multiple coins for each spin,
and what the difference is in the payout if you play one,
two, or more coins.

Multiple line payout machines seem to offer multiple
chances to win by paying for lines other than the one
straight across the middle. For instance, a three line
machine might offer payout for a line across the top, mid-
dle, and bottom of the reels. However, often these lines
only payout if you are making the corresponding bet, so
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that one coin activates one line, two coins activate two
lines, and so on. A player has to take a close look at the
probability of their winning and determine if it is worth
playing several coins at a time.

Progressive machines are a relatively new type of slot
machine. A progressive machine reserves a small amount
of money from each bet made and adds it to a grand jack-
pot total that continues to grow until someone finally
wins. What makes this impressive is that multiple
machines are linked together, with all of them feeding
into the one prize total. They can be part of a local net-
work, with machines all over that particular casino or
even several nearby casinos under the same management,
or they can be part of a wide area network, which could
include slot machines over a fairly large region. This
means that the jackpot has the potential to be a far larger
amount than if it were just based on a single machine.
However, because money is constantly reserved to add to
that total, the odds of winning are greatly reduced, and

any non-jackpot winnings tend to be extremely small.
Also, many progressive machines require players to bet
the maximum number of coins in order to win the pro-
gressive, so if the jackpot comes up and a player has only
bet a single coin out of a possible three coins, there won’t
be a payout.

BAS IC  BOARD  GAMES
Board games rely on several mathematical principles

to enable the players to advance around or across the
board. Simple games for children, such as Chutes and Lad-
ders and Candyland, provide the players with an arrow to
spin, and whatever number the arrow lands on is the num-
ber of spaces the player can advance. This basic system
enables younger children to grow accustomed to counting
and adding as they work their way through the game.

More advanced games for older children and adults
often use dice to determine the number of spaces a player
advances. Again, they use simple addition, but often take
other factors into consideration as well. It is common for
a game to require players to roll a specific number at
some point during the game, whether it is double sixes for
bonus points or an exact number that allows the player to
reach the final square of the game in the precise number
of moves.

Monopoly provides players with numerous chances
to apply their math skills. Not only does this game use
dice to travel around the board, but it doles out money to
each player based on various events over the course of the
game and also requires players to pay out from their accu-
mulated earnings in order to advance. For instance, play-
ers receive a two hundred dollar salary each time they
pass the initial starting point on the board, the “Go”
square. They can also land on squares that allow them to
draw cards that occasionally reward other cash prizes,
such as a lottery win or an inheritance. Expenses for the
player fall into two categories: those that are unavoidable
and those that serve as an investment. If a player lands on
a square—or property—owned by one of his opponents,
he must pay rent to the owner of that property. Players
can also lose funds by landing on squares that require
them to pay taxes or alimony or to go to jail and forgo
passing “Go” and collecting that round’s salary. However,
if a player lands on a property that is not owned by
another player, he has the option of buying it himself.
This costs money from his own fund, but provides him
with the potential to earn additional cash if and when his
opponents land on that space. Rents are further escalated
when players manage to buy several properties of a set,
and when houses or hotels are purchased to add to the
value of the square.

Nigel Downing poses with his board game, “Enterprise Profit
Ability.” The board game teaches players how cash flow and
profit affect business. AP/WIDE WORLD PHOTOS. REPRODUCED BY

PERMISSION.
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MAGIC  SQUARES
Magic squares are a form of math puzzle that dates

back thousands of years. A magic square is made up of a
number of cells, an equal number per row as per column,
with an integer in each cell. The integers used are the
numbers 1, 2, 3, . . . N 2, where N is the number of rows or
columns. When added together, the sum of each row is
equal to the sum of each individual column, as well as the
sum of each of the diagonals. Magic squares are essen-
tially puzzles with very little in the way of practical value.
However, the patterns are often used in art and geometric
designs.

The smallest possible magic square consists of nine
cells—three across by three down. A magic square of two
cells by two cells would only work if every cell held the
number one, and so is considered too simplistic and there-
fore not a true magic square. The number of cells in a row
or column, N, determines the order of the magic square.
Therefore, a square consisting of three cells by three cells

is a third order square. The order of the square also deter-
mines what the sum of each row and column will be.
Every third order magic square consists of rows, columns,
and diagonals that add up to the number fifteen. A fourth
order magic square—four cells by four cells—consists of
rows, columns, and diagonals that total thirty four.

In order to determine what the sum is for a particu-
lar order of magic squares, all you have to do is plug the
order number into a simple equation. For instance,
assume you are interested in knowing the sum of each
line for a fifth order magic square. N � the order of the
square, so in this case N � 5.

S � (N/2) (N2 � 1) where S is the sum for any row
or column in the magic square. In this example, for a fifth
order magic square, the sum is sixty five. The sum is often
referred to as the magic sum or magic constant.

But how do you determine what numbers go on
which lines so that each of the lines adds up properly?

Chess Mathematics

Chess is a highly mathematical game, as the only way in
which to excel is to study the board and determine the
various potential moves for each piece in play—both your
own and those of your opponent—for several moves into
the future. This understanding of probability and permu-
tations allows a player to strategize for the best out-
come. The chess moves themselves, when written out,
use a form of algebraic notation to explain what piece
has been moved to which square on the board, and the
board is referenced as a grid.

However, there is more to chess than the traditional
game of white against black. Within the game itself is
another puzzle called the Knight’s Tour.

The Knight’s Tour involves traveling a knight using
only the traditional combination move of two squares
either horizontally or vertically and one square at a right
angle to that move so that the knight lands once and
only once on each square of the board. This puzzle has
likely provided an intriguing challenge nearly as long as
Chess itself has existed, and is referenced as early as
one thousand years ago. The first in-depth study of the
math behind the puzzle was published by the mathe-
matician Euler in 1759.

There is no rule that a Knight’s Tour must take up
the entire traditional board comprising sixty-four squares.

Smaller puzzles exist, and in some cases the smaller
blocks are solved and then combined in an effort to find
a new way of traversing the larger board.

Math puzzles can be combined, so that a Knight’s
Tour forms a quasi-magic square. In order to do this,
each move the knight makes is numbered consecutively,
with the number written into the landing square. Once
the tour is complete, the numbers are then added across
and down to make a partial magic square.

As difficult as the Knight’s Tour is, there is an even
more challenging version, known as a closed Knight’s Tour,
in which the knight finishes the tour of the board on the
same square from which it began. This is also referred to
as re-entrant. Other ways to make the tour more difficult
include turning the flat chess board into a cube, where
each face is a separate board of sixty-four squares and the
knight must tour each face in such a way as to ensure that
the last move allows it to jump to the next side of the cube.

Because the knight has the most complex way of
moving around a chess board, it is the subject of a vari-
ety of these types of mathematical puzzles. Another
poses the question of how many knights would need to
rest on a board in order that every single square would
be reached in a single move. On a standard chess board,
the fewest number of knights required would be twelve.
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With small orders of magic squares, it is easy to see how to
distribute the numbers because there are only a few poten-
tial equations to use. For example, in a third order magic
square, where each line totals fifteen and each cell holds a
single digit number, one simply examines the various dif-
ferent equations that meet those terms. Each equation
needs to consist of three numbers. So, for a third order
magic square, here are the possible equations:

6 � 5 � 4 = 15, 7 � 5 � 3 = 15, 7 � 6 � 2 = 15, 8 � 4 � 3 = 15,

8 � 5 � 2 = 15, 8 � 6 � 1 = 15, 9 � 4 � 2 = 15, 9 � 5 � 1 = 15

In this instance, the first thing that becomes apparent
is that the number five appears in four of the eight poten-
tial equations for the third order magic square. This
means that the number five should be placed in the cen-
ter cell of the square, since four separate equations are
required to use the center cell as one of their integers: the
middle column, the middle row, and each of the two
diagonals. Once those equations are in place, it is simply
a matter of determining how the other cells need to be
filled to match the equations as listed above.

The number of potential magic squares increases
with each increase in the order. There is only one true
third order magic square, although it is possible for it to
appear as if there are more, depending on which way one
flips the square itself. However, there are 880 fourth order
magic squares, and over thirteen million fifth order magic
squares. Obviously, one cannot simply list potential equa-
tions in order to determine how to fill the cells when the
possibilities become so numerous. However, there is a
way to generate a new magic square based on the layout
of an existing one. For each cell in the magic square, sub-
tract the integer from N2 � 1, then insert the new num-
ber into the cell. The new magic square is sometimes
called the complement of the original square.

There are different types of magic squares. Some
refer to the classic magic square described above, where
the numbers in the cells consist of the integers from 1
through N 2, as a normal magic square. A magic square
that allows other integers in the cells as long as the sums
of the rows, columns, and diagonals work is then referred
to as simply a magic square. Creating normal magic
squares, however, is by far the more challenging puzzle.

In a normal magic square in which N is equal to an
odd number, there are several systems for filling in the rest
of the integers. Perhaps the simplest is called de la Lou-
bere’s algorithm. This method has you start by placing the
number one in the cell that is at the top center of the
magic square. Then working in numerical order, you add
each number to the square by working in an upward diag-
onal direction to the right. So, after the number one, you
move one cell up and one cell to the right and place the

number two in that cell. Of course, because you have com-
menced the square at the top, this movement takes you
out of the square entirely. In order to determine where the
number two should go, you must imagine that the magic
square repeats in all directions. Once you’ve filled the cell
in with the number two, and have determined where in
the square it goes, you can transfer it to the same position
in the original square. In the case of a third order magic
square, the two would therefore appear in the bottom
right hand cell.

De la Loubere’s algorithm enables you to continue
filling in the cells of the magic square until all of them
have been filled. In some cases, the system of moving one
cell up and one cell to the right will lead to a cell that has
already been filled. When this happens, you simply drop
straight down by one cell from the most recently filled
cell and insert the next integer there instead. Then resume
the standard movement of up one and over one to the
right with the next consecutive number. In the third order
magic square, this leads to the number four appearing
below the three, and the seven beneath the six. This sys-
tem also works if you spread the move out to resemble a
knight’s move in chess, in which you move the piece two
cells either horizontally or vertically and then one cell at
a right angle to the original direction. For the purpose of
the magic square, the movement must always consist of
two cells up and one cell to the right.

There is no algorithm to create magic squares where
N is equal to an even integer, however. Despite this,
many have been discovered. Perhaps the most famous
even integer magic square is the fourth order square that
appears in artist Albrecht Dürer’s etching, “Melencolia
I.” The German Renaissance artist drew the magic
square into the top right hand column of the work.
Astrologers of that period linked fourth order magic
squares to the planet Jupiter, and they were thought to
battle melancholy. As the etching depicts a woman
thinking while surrounded by uncompleted chores, it is
possible that this was Dürer’s purpose in including the
magic square.

The square itself, however, has certain intriguing
properties. The cells read across as 16, 3, 2, 13 for the first
row, 5, 10, 11, 8 in the second, 9, 6, 7, 12, in the third row,
and 4, 15, 14, 1 along the bottom row. As expected with a
fourth order magic square, each row, column, and 
diagonal adds up to thirty four. In addition, however, the
four corner numbers (16, 13, 4, 1) also add up to thirty
four, as do the four numbers that comprise the inner
square of two cells by two cells (10, 11, 6, 7). The sum of
the remaining numbers is equal to sixty eight, which is
twice the standard sum for any given line. As an added
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detail, the two central bottom cells of the square read 
15 and 14; 1514 was the year in which Dürer created 
the etching.

MATH  PUZZLES
Math puzzles or logic puzzles frequently consist of a

short story in which a problem is given and the aim is to
solve the puzzle through math. In a school setting, they
are often called word problems, but they have a history of
being offered up as challenges to see who can find the
conclusion first—or in some cases, at all. Often these
problems combine math with common sense to see if the
person attempting to solve it is paying attention to all of
the details.

Here’s an example: an injured mouse is trapped at
the bottom of a hole that is ten feet deep. Each day, the
mouse is able to climb up three feet, but each night he
slides two feet back down. How many days will it take the
mouse to get free of the hole?

Well, at first glance, it seems that his is a simple math
problem. The hole is ten feet deep. Every twenty-four
hours, the mouse travels three feet forward and two feet
back, which means he makes precisely one foot of
progress per day. Therefore, the automatic response
would be that, at one foot per day, it would take ten days
for the mouse to travel ten feet and thereby climb out of
the hole.

Except, it’s not quite that straightforward because the
mouse does make that three feet of progress every day,
even if it does then lose a good portion of it during the
night. Day one sees the mouse crawl to the three-foot
mark, then slide down, so he starts day two at the one foot
mark. He then crawls to four feet and slides down to two.
And so on. On day eight, however, the mouse is starting
at the seven-foot mark, because that is where he slid to
the previous night. But when the mouse crawls three feet
up, he has reached the ten foot mark, thereby reaching his
goal and climbing out of the hole.

Other traditional math puzzles such as this include
problems where the ages of several people are given but
only in relation to each other, and the aim is to determine
how old each of them are; time and distance puzzles,
where one must try and determine which train will reach
the city first based on when each leaves in relation to each
other and how far they are traveling at a particular speed;
and puzzles where an unstated number people choose
items from a box and based on which items and how
many each takes, one must determine how many people
there actually are. These games are enjoyable for sheer
entertainment value, but also help develop problem-
solving skills that can be used in the real world.

Potential Applications

Game math serves purely as entertainment if you
look at it as a form of recreation, but it can also mean big
business if you are on the other end of the spectrum. The
casino industry relies heavily on a solid knowledge of
probability and the ways in which they can keep the odds
in their favor, as that is how casinos make their money. A
casino needs to keep players entertained and interested, or
they will not continue to gamble. Therefore, the players
must be able to win often enough that they are having a
good time, but not so frequently that the casino ceases to
make money. The casino’s goal is to earn as much of a
profit as possible while still keeping their customers
happy. In order to keep everything in balance, they analyze
the odds on every game on their floor and adjust them
whenever necessary. Mechanized games, in particular, can
be manipulated to pay out at a different percentage rate to
keep players entertained and coming back for more.

Probability comes into play in any game that enables
you to place a bet, including horse racing and other pro-
fessional sports. Odds are determined based on numerous
factors including previous performance results and other
analysis. As with any form of gambling, the higher the odds
one of the participants might win, the greater the potential
payout, and the greater the chance of losing one’s money.

Computer games are another enormous industry that
relies heavily on various types of game math. Interactive
games that allow you to choose a character’s moves based
on a set scenario are programmed with thousands of differ-
ent permutations to take each possible choice into account.
Each individual choice leads down numerous different
paths, and each one results in a different ending. The best
game designers understand that a variety of options makes
the game more entertaining and insures that the players will
be able to play over and over instead of simply solving the
puzzle once and having to move on to something else.
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Key Terms

Odds: A shorthand method for expressing probabilities of
particular events. The probability of one particular event
occurring out of six possible events would be 1 in 6,
also expressed as 1:6 or in fractional form as 1/6.

Permutations: All of the potential choices or outcomes
available from any given point.

Probability: The likelihood that a particular event will
occur within a specified period of time. A branch of
mathematics used to predict future events.
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Game Theory

Overview

Game theory is an approach to the way humans
interact and behave that is rooted in mathematics. Game
theory attempts to understand, explain, and even to pre-
dict the “give and take” between people and other organ-
isms (even bacteria follow game theory) that allows an
outcome to be reached.

Game theory does not involve entertaining games in
the manner of tag or cards. The game in game theory,
however, resembles tag or poker in that decisions have to
be made to reach an outcome, and there are winners and
losers based on the decisions that are made. Also, like tag
and poker, game theory operates on the premise that the
two or more people who are involved have an interest in
the outcome. In most cases, the participants want to win.
It is the strategies used in trying to achieve a winning out-
come that game theory helps explore.

Some aspects of human behavior lead to individual
gain. By performing in a certain manner, an athlete could
attract the attention of the basketball coach, and so
increase his chances of making the starting squad. One
person making the team, however, comes at the expense
of someone else not making the team. This area is part of
non-cooperative game theory. The subject acts on his
own, for his own benefit.

At other times, chances of success come when people
get together and pool resources with others. This is called
mutual gain. For example, in the basketball analogy, after
a person makes the team, chances of success (winning
games and being a star) happen only if that person works
together with his teammates. By cooperating, the team
wins and everyone benefits. The part of game theory that
looks at this sort of behavior is known as cooperative
game theory.

Game theory was first developed to help those who
study the economy learn how decisions are made in the
face of conflict. Whether in a small business deal or in
economic relationships between two nations, conflict is
one of the driving forces of the proceedings. By under-
standing how rational decisions that benefit the person or
organization making them can be made in such an
atmosphere, the chances of making a good decision
improve.

As the power of game theory became more recog-
nized over time, the theory was applied to other areas
such as sociology, psychology, biology, and evolution.
Game theory is also important in sports, mathematics,
social science, and psychology (psychologists often refer
to an aspect of game theory as the theory of social situa-
tions). It even appears that evolution operates according
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to aspects of game theory. A genetic change is tried out in
the face of a survival pressure. If there is a benefit to the
change, it is conserved and the change continues.

Game Theory Issues

The following issues, posed as questions, illustrate
the relevance of game theory. Some might seem familiar:

• A strategy is chosen to achieve a desirable outcome.
How can this strategy be chosen rationally when the
outcome depends on the strategies that are selected
by others and when you do not have all the available
information on the topic when you select your 
strategy?

• When a situation permits all those involved to gain
(or to lose), is it rational to cooperate with the others
to realize the mutual gain or mutual loss, or is it
more rational to act independently and aggressively
in order to claim a larger share, even at an increased
risk of loss?

• If it sometimes beneficial to cooperate with others
and sometimes beneficial to act independently, how
are you to know which decision is the rational choice
at a particular time?

• Do all of the questions above apply in the same man-
ner to an ongoing relationship as compared to a one-
time relationship?

These questions help to point how the important
features of game theory. It is about how people get along
with one another as much as it is about how we compete
with each other. If we were completely competitive, such
a predatory environment probably would have ended
humans as a species long ago. We thrived because we
learned to cooperate.

Game theory, therefore, goes to the heart of human
nature, illustrating cooperation and independent behav-
ior at different times. To understand which course is best
at a particular time is what game theory is all about.

Fundamental Mathematical Concepts
and Terms

The mathematics that govern game theory attempt to
model and predict the outcome of interactions between
people, or, in a field like evolutionary game theory,
between an organism (such as a bacterial cell) and some-
thing else (such as an antibiotic). As summarized above,
there are two main branches to this interaction: the coop-
erative game theory and the non-cooperative game theory.

The thing that drives game theory is the outcome.
Most of us want the outcome of a decision to be some-
thing that is good for us, makes us feel happy, and which
benefits us. In the jargon of the game theory world, this
good stuff is called the “payoff.”

In game theory, there are decision makers (the play-
ers) who each have at least two choices or a defined series
of choices (the plays). All the different combinations of
plays leads to some end (win, loss, or draw), and this ends
the ‘game.’ Some games end when one player wins and the
other loses at the same time. This is called a zero-sum
game. Capturing your opponent’s Queen in the game of
chess is a perfect example of a zero-sum game.

Chess also provides another example of an outcome,
namely a draw. Both players may realize that winning is
not to be. So, they cooperate to end the game by deciding
that there will not be a winner or a loser.

In game theory it is assumed that each decision
maker has all the necessary and important information
needed for the decision. Everybody knows as much as
everybody else. As we saw above, this is not always the
reality. However, it makes for a starting assumption. Fur-
thermore, it is assumed that all players make their
decisions rationally (for an interesting twist on this
assumption, see “The Prisoner’s Dilemma”).

A Brief History of Discovery 
and Development

The popular root of game theory dates back to 1944.
It was then that the renowned mathematician John von
Neumann, in collaboration with the mathematical econ-
omist Oskar Morgenstern, published a book called The
Theory of Games and Economic Behavior. This book laid
out the framework of game theory upon which others
have added to over the years.

However, the roots of game theory go back much
further than the middle of the twentieth century. For
example, the Babylonian Talmud gathered all the then-
existing laws and traditions as a basis of Jewish religion,
criminal law, and social interactions. One recommenda-
tion (Mishna) concerning the division of marital prop-
erty upon the death of the husband among his wives
(more than one being the norm at that time) has various
options depending on the size of the estate. In the case,
three wives whose marriage contracts specify that in the
case of this death they receive proportions of his estate of
100, 200, and 300, respectively (there being some sort of
seniority in place). If the estate was only 100 (a relative
figure for the purposes of the example), the Talmud
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The Prisoner’s Dilemma

This classic example of game theory was first devised in
the 1950s by two researchers of the RAND Corporation,
when the “Cold War” threat of nuclear weapons was part
of everyday life. The game was an attempt to understand
decision making in times of stress.

The Prisoner’s Dilemma relates the story of two pris-
oners (we will call them Fred and John). In the story,
Fred and John team up to rob a store. Because they both
planned the heist, they both know all the details. 
Later they are both picked up by the police under suspi-
cion of being the men who committed the crime. They are
carted downtown to the police station, and are put in
holding cells that are some distance away from one
another. There is no way they can communicate with
each other.

A prosecutor offers Fred and then John a break on
the length of their jail sentence if they give him informa-
tion of the other man’s participation in the holdup. He
tells Fred that he has offered the deal to John, and tells
John that he has offered the deal to Fred.

The deal offered to Fred and John is this:

• If one of the prisoners confesses that the two of
them committed the crime and the other prisoner
denies that he had anything to do with the heist,
then the one who confessed will be set free and the
one who denied any wrong doing will get a 5-year
prison sentence.

• If both Fred and John deny doing anything wrong,
they will probably be convicted and each receive a 2-
year jail sentence.

• If both Fred and John confess that they committed
the crime as a team, they both get a 4-year sentence.

The Prisoner’s Dilemma now shifts to consider one
prisoner. Let us consider the case of Fred. If Fred impli-
cates John and he denies having anything to do with the
convenience store holdup, he is free. However, if Fred
says that John was involved and John tells of Fred’s
involvement, both get a jail sentence of four years.
Finally, if Fred does not mention John’s involvement but
John says that Fred was a part of the robbery, Fred is off
to jail for five years.

It is to Fred’s advantage to implicate John, and hope
that John tells the police that Fred was also a part of the
crime, and so go to jail for a shorter time than if Fred
denies involvement hoping that John also denies involve-
ment. This is because Fred runs the risk of John impli-
cating Fred while Fred denied doing anything, and thus
Fred would be up for a 5-year prison stay.

 The action Jail sentence (the payoff)

Fred John Fred John
cooperate cooperate 2 years (R) 2 years (R)
cooperate deny 5 years (S) 0 years (T)
deny deny 0 years (T) 5 years (S)
deny cooperate 4 years (P) 4 years (P)

The rational thing to do is implicate John. Of course,
John arrives at the same decision. They both end up con-
fessing and so both go to the state penitentiary for four
years. However, if both denied the crime, they both would
be facing jail time of only two years.

By acting rationally, both have come out worse! It
turns out that Fred and John’s best strategy would have
been to act irrationally and admit that they did do the
crime. In this game, cooperation is both the best thing to
do and an irrational thing to do!

The Prisoner’s Dilemma explains how this has come
about in terms of what is called a payoff (the conse-
quence of the action). There are four payoff categories: 

• R = reward for mutually cooperating
• S = sucker (admitting guilt thinking that the other

person will do the same)
• T = temptation to deny
• P = punishment for mutual denial.

The dilemma is set up so that the rank of these pref-
erences, from the most desirable to the least desirable,
is T, R, P, and S. As well, the reward payoff R can be
greater than the average of T and S payoffs.

Table 1 presents a chart that can help make things
clearer to understand.

Another fascinating aspect of the Prisoner’s
Dilemma is the outcome if the same participants ‘play’
again. The next time Fred and John wind up in the jail
together and get a offer of time off for spilling the beans
on each other, Fred could well select a different option,
based on your memory of John’s response the first time
around. So, the game becomes more complex as the
same people play it over again. Likewise, if more than two
people are involved, there are more interactions that can
occur, which also increases the complexity.

The Prisoner’s Dilemma model has been applied
to many real-life situations, from the way business is 
conducted to political relations between countries,
and even to how bacteria deal with the presence of an
antibiotic.

Table 1.
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recommends that the estate be divided in three equal por-
tions among the three wives. However, if the estate totaled
300, then the wives divide up the property in a different
way, in a ratio of 50, 100, and 150 (the numbers in each
example do not add up). Finally, while for an estate that
totals 200, the Talmud recommends a proportional divi-
sion of 50, 75, and 75. The reasons for the different divi-
sions, and how the ratios were arrived at was, for a long
time, a confusing mystery. But, in the 1980s scholars rec-
ognized that the options were based on what we now
know as cooperative game theory. Each of the solutions
was a logical response to the given situation (or ‘game’).
Thus, even in A.D. 500, game theory guided decisions.

Another milestone in games theory made it to the
Hollywood screen. The movie A Beautiful Mind the
Oscar-winning performance by Russell Crowe chronicled
the troubled genius of Princeton University researcher
John Forbes Nash. Between 1950 and 1953 Nash pro-
duced four papers that proved to be of major significance
to game theory and made game theory very useful to
non-cooperative situations like the bargaining process
that goes on between workers and management in seek-
ing a new work contract. Subsequently, Nash went
through decades of torment, due to the development of
schizophrenia. Ultimately, he was able to deal with his

mental illness. The brilliance of Nash’s insights culmi-
nated with his being awarded a Nobel Prize in economic
sciences in 1994.

In the mid-1950s, game theory was applied to the
political arena. Two researchers (L.S. Shapley and M. Shu-
bik) developed and used a calculation (the Shapley value)
to determine who in the United Nations Security Council
wielded the power. At about the same time the link
between game theory and philosophy was recognized.

The 1960s also saw game theory applied to automo-
bile insurance, where the rates that are set are influenced
by the degree of risk.

Just several decades later, in 1982, a book entitled
Evolution and the Theory of Games was written by John
Maynard Smith. In the book, Smith applied game theory
to evolutionary biology; the inherited biological changes
that are driven by evolutionary pressures.

The intervening years have seen the applications of
game theory expanded still further, and the tools used to
apply the theory become more refined.

Real-life Applications

ECONOMICS  AND  GAME  THEORY
A major application of game theory is to economics;

the generation of wealth, creation of jobs, and the flow of
money and goods that keeps societies from collapsing.
Economic game theory also has three other related areas
to consider. These are known as decision theory, general
equilibrium, and mechanism design theory.

DEC IS ION  THEORY
You are golfing. You are getting ready to hit your

drive on a particularly hard hole. The reason that this
hole is so challenging is a pond that cuts across the fair-
way about 250 yards (228.6 m) away. If you hit a good
shot, your ball will clear the pond. However, your shot
could just as easily get wet. You could have a go at bash-
ing your ball over the pond and leaving yourself a really
easy second shot to the green. But that requires a pretty
good shot. A not-so-good shot will be at the bottom of
the pond, and you will have an added penalty stroke.
Maybe you should play it safe and hit a shorter shot that
does not make it the pond. That leaves you with a longer
second shot to the green. How do you feel about your golf
skills today? What are you going to do?

This example, which involves one person thinking
about the particular situation, acquiring information,
and using the information to make a decision that

John Forbes Nash PHOTOGRAPH BY ROBERT P. MATTHEWS. © REUTERS

NEWMEDIA INC./CORBIS. REPRODUCED BY PERMISSION.
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determines his or her outcome, is what decision theory is
all about.

GENERAL  EQU IL IBR IUM
General equilibrium is not on the personal scale, like

our previous golfing example. It is much larger in scope.
The concept is suited to making or getting products to a
large number of people. This can be literal, as in the man-
ufacture of something and the distribution of the item to
stores nationwide. However, general equilibrium can also
be used to consider things like the stock market, and even
politics.

NASH  EQU IL IBR IUM
The Nash equilibrium is named after John Nash. The

premise that he developed (when he was still a graduate
student, and before mental illness claimed him for several
decades) is that participants in an activity have a number
of options. The equilibrium exists when no one has any
reason to change their selected option, since by doing so
they earn less (Nash was thinking about economics) than
if they hold their course. The outcome, however, does not
have to be about money.

So, when someone contemplates a new strategy as a
way of earning more or maximizing their payoff, he/she
needs to consider what the others are doing and how they
might change what they are doing. In a Nash equilibrium,
the best individual response is to cooperate.

ECONOMICS
Economics and game theory go hand-in-hand.

Indeed, game theory came about as a way of getting a
handle on economic activities.

The link between economics and game theory is
rational behavior. Although economists can disagree in
the nuts and bolts of economic theory and which eco-
nomic plan is best, the general consensus (often referred
to as neoclassical economics) is that people are rational in
their economic choices. We consider our options and
make the choice that we feel gives the best opportunity
for the best result. When the aim is to get maximum
return on an investment, or to make the most money we
can make out of an opportunity, a rational approach is
certainly the wise approach.

If we were operating in a vacuum, with no outside
forces affecting our economic decisions, then the deci-
sions would be easier to make. However, life does not
operate so simply. A person’s decision is influenced by,
and the outcome of a decision affected by, factors like

political relationships between countries, the stock mar-
ket, company fortunes, and the changing currency rates
in your country and around the globe.

Game theory arose to enable economists to predict
the outcome of an individual’s decision in the face of all
these unpredictable influences. In game theory, as in a
real-life game like poker, a person chooses a strategy. The
outcome of this choice depends on the strategies that are
chosen by other participants.

Game theory applies to economics in more ways
than just making money. The process of pondering a pur-
chase can be guided by game theory. For example, a stu-
dent decides to buy a new computer to help with
homework. In pondering choices, the student considers
the advantages of wireless Internet access knowing that
the local board of education is considering installing
wireless capability in schools. If the student purchases a
computer with the extra expense of a wireless connection
and the board comes through on its intent, both ‘players’
can be better off. The student gains the advantage of the
Internet connection and the board benefits from having
more capable and world-knowledgeable students. How-
ever, if the student spends the additional money to buy a
wireless enabled computer and the Board decides not to
proceed, the student may have wasted money on an
accessory that does not help with homework (the original
intent of purchase).

EVOLUT ION  AND  AN IMAL  BEHAV IOR
Game theory has been very useful when applied to

evolution in the traditional sense; that is, the way living
things change over time and with environmental pres-
sure. Indeed, in the preface to his 1982 book Evolution
and the Theory of Games, John Maynard Smith wrote that
“[p]aradoxically, it has turned out that game theory is
more readily applied to biology than to the field of eco-
nomic behaviour for which it was originally designed.”

The role of game theory in evolution was first devel-
oped in 1930 by Ronald Fisher to try to explain the obser-
vations that the ratio of males to females in many animals
species (he specifically studied mice) are equal, even
though the majority of males never mate. However, by
using game theory, Fisher deduced that the seemingly
‘excess baggage’ non-mating males in fact help to raise and
protect their grandchildren. Thus, it is in the best interest
of the species to maintain fit males to take a role in child-
care when females might be aging or in poorer health.

Another aspect of game theory concerns animal
behavior. An example of this is the so-called ‘Hawk-Dove
game.’ Animal (yes, even human) behavior can take the
role of a hawk; initiating aggression and not backing
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down until injured or until the opponent backs down, or
of a dove; immediate retreat when danger threatens.
When a hawk meets a dove, the hawk will gain the terri-
tory, food, nest, etc. When two hawks meet, the feathers
will literally fly. When two doves meet, there will be a
sharing of the resources or territory. So, depending on
who meets whom, the payoff for a hawk and a dove can
be rather good or exceedingly bad (e.g., death).

Evolution will seek the path that is the most stable
and which carries the most advantage for the species. To
return to the hawk-dove example, a dove-dove relation-
ship in a population does not make evolutionary sense,
since the presence of even a single hawk throws the sys-
tem into disarray. In contrast, the aggressive hawk strat-
egy is evolutionarily stable—but if, and only if, the value
of the resource in dispute is greater than the cost of being
injured in a fight.

Of course, there can be variations on this all-aggression
or all-retreat stance. Some animals may chose to fight or
cut-and-run, depending on the circumstance. Over time, a
dominant strategy (the one that produces the best payoff
for the species) will emerge.

Evolutionary game theory need not just be con-
cerned with the Darwinian kind of evolution. Social
evolution—the way the beliefs and what is considered to
be normal and acceptable behavior a society changes over
time—can also be approached using game theory.

Potential Applications

INFECT IOUS  D ISEASE  THERAPY
This application has some overlap to the evolution-

ary biology area. However, in an era of rising antibiotic
resistance by bacteria, and the increasing frequency of
infectious disease, the fight against certain infectious bac-
teria is a stand-alone category.

Game theory has a place in a bacterial population.
When a population of millions of bacteria is exposed to
an antibiotic, a large proportion of the cells are usually
killed. But some will survive, either because they have
acquired some genetic or other means of eluding or
destroying the effects of the antibiotics, or just because
the antibiotic was used up by the time it encountered that
individual bacterium.

Game theory has potential in modeling the ‘choices’
faced by bacteria, and helping guide a strategy that attacks
the bacteria after they have made the most probable
choice. For example, bacteria exposed to an antibiotic
may choose to seek shelter at a surface. By making the
surface itself antibacterial, the cells are killed as they

colonize the surface. This strategy exploits the bacterial
choice as a weapon against infection.

In another tact, researchers at the Center for
Genomic Sciences in Pittsburgh, Pennsylvania, and the
Center for Interfacial Microbial Engineering at the Uni-
versity of Montana in Bozeman are testing the hypothesis
that an individual bacterial cell is part of a larger com-
munity, and that the total number of genes in this com-
munity can be shared among individual members as
needed. Thus, a single cell need not carry every single
gene, since it can acquire that gene from its neighbor in
time of need.

These sorts of strategies are currently being tested.

EBAY  AND  THE  ONL INE  
AUCT ION  WORLD

This potential is real but will surge in coming years.
Auction sites such as eBay have a fixed closing time for
the auction. Experienced bidders will zoom in with their
bid just before the close, often securing the sale. Such
“sniping” requires a person to observe the auction, at least
periodically, to time their bid. However, there are Internet
sites that will automatically assume this function, for a
price.

As has been explained by Harvard University econo-
mist, Al Roth, sniping web sites and the experienced auc-
tion snipers are examples of game theory in action. Late
bidders are less influenced by the decisions of others. As
well, those who recognize the value of an item will often
reserve their bid for the end of the auction so as not to tip
their hand about the object’s value, thus hopefully keep-
ing the price down.

Knowledge of game theory could make for more suc-
cessful Internet auction hunting.

ART I F IC IAL  INTELL IGENCE
A computer is not yet the equal of a human. Humans

can make an independent decision, but computers must
be pre-programmed with decisions that are based on the
meeting of a number of conditions. Computers cannot
make decisions they have not been programmed to make.

In the future world of artificial intelligence, it is
anticipated that computers will be able to make decisions
free of the constraints of meeting pre-set conditions.
Game theory can play a role in this new world. Artificial
intelligence programs would be able to make new deci-
sions that produced the best payoff, based on the incom-
ing information and on the previous experiences of the
computer. In other words, a computer would be capable
of “learning.”
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Overview

Geometry is defined as the branch of mathematics
concerned with the properties and relations of points,
lines, surfaces, and solids, and can be found in absolutely
anything, from the shape of the tires on a car, to the
movement of light throughout the Universe. The forms
of buildings, the paths of flying objects, the patterns in
strands of DNA, the characteristics of leaves on a tree, the
markings on a sports field, and the behavior of atoms can
all be investigated using some degree of geometric rea-
soning. Even someone who has never heard of the math-
ematical study of geometry cannot help but use its
concepts in every action and observation. In its entirety,
geometry relates all objects and phenomena to the math-
ematical language common to all human communities
on Earth, existing at the heart of all indisputable logic.

Fundamental Mathematical Concepts
and Terms

In order to understand how geometry can be used to
expound upon just about anything in the Universe, it is
important to fully grasp the concept of dimensions.
Although all objects in the Universe have three dimen-
sions, they can all be related to lesser dimensions.

Theoretically, points have no dimension. A point is a
set of coordinates, a location, not something tangible.
When a point is represented as a drawing on graph paper,
a dot is used to represent the location, but the mark that
is used to indicate the location of a point is always three-
dimensional. For example, a dot made by a pencil on a
piece of paper is roughly circular, having a crude diame-
ter, perimeter, and area existing in two dimensions, and a
measurable thickness, or height protruding from the sur-
face of the paper to account for the third dimension.

To represent one dimension, a pencil can be dragged
across a piece of paper to draw a curve (where a line is
considered to be a curve with no curvature). This draw-
ing also exists in three dimensions, having thickness,
width, and length. However, the drawing is intended to
represent only one of these dimensions, length. Lines are
considered to continue forever along their path, while
line segments include only the section of the line between
two endpoints. When two straight lines or line segments
meet, they create an angle. Two lines are said to be paral-
lel if they will never meet. Perpendicular lines create a 90�

angle, or right angle, like those found in rectangles.
Angles smaller than 90� are called acute angles; larger
angles are called obtuse angles.

Geometry
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When one-dimensional curves create an enclosed
shape, the realm of two dimensions is reached. Two-
dimensional figures exist in planes, which can be thought
of as pieces of paper for drawing shapes, although planes
have no thickness and exist only in the imagination. Poly-
gons and ellipses are fundamental examples of two-
dimensional figures. Any enclosed planar figure (existing
in a plane) bound by straight lines is defined as a polygon.
Basic polygons include triangles, quadrilaterals such as
parallelograms and rectangles, pentagons, hexagons, and
octagons. Because of their many interesting properties
regarding lengths and angles, triangles create a large
amount of useful concepts. The study of triangles is
referred to as trigonometry and is most often taught in a
separate academic course.

Ellipses include ovals and circles, and enclose two-
dimensional space without creating any corners. The def-
inition of an ellipse involves two points, but the concept is
easier to understand by considering the definition of a

circle. A circle is a special ellipse that has a boundary
defined as the set of points that are equidistance (the same
distance) from one point. That distance is called the radius
and is usually represented by a line segment stretched
from the center to the perimeter. The perimeter can be
viewed as the path that the end of the radial line segment
traces out when is rotated around the center like the hands
of a clock. In any other ellipse, there are two points that
determine the boundary, causing the figure to resemble a
circle that has been stretched. Ellipses are always symmet-
rical, meaning that if they are cut in half at some angle,
each side looks like a mirror image of the other side.

Vectors present another important geometric con-
cept, representing both a number, known as a vector’s
magnitude or length, and an angle that determines its
direction. Vectors are essential to depicting phenomena
such as wind or the movement of a sailboat in water.
When investigating the factors that determine the move-
ment of a sailboat, the vectors representing the speeds and

The geometric alignment of the stones in Stonehenge served as an ancient astronomical calculator and calendar. PHOTOGRAPH

BY JASON HAWKES. CORBIS. REPRODUCED BY PERMISSION.
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directions of the wind and water currents can be added to
the vector representing the motion of the vessel in order to
model the true motion of the boat relative the seabed.

Any geometric figure can theoretically exist in three
dimensions. For example, the point 5 feet (1.5 m) above
the intersection of the borders between Utah, Colorado,
Arizona, and New Mexico can be described in reference to
other locations on Earth, but that point is not a tangible
object and has no dimension. The border between Utah
and Arizona can be described in reference to other geo-
graphic landmarks, but it has only one dimension that
describes the imaginary path of the border. The border
around Colorado can also be defined as a rectangle with a
definite length and width, but this two-dimensional figure
cannot be seen or touched. Someone standing at the inter-
section of the four states can imagine all of these figures,
and even though they do not actually exist, their underly-
ing concepts are vital to our perception and use of space.

In reality, the form of every object has three dimen-
sions. The notions of lesser dimensions, however, provide
helpful tools for understanding all that is real. Humans
can simplify any physical problem by investigating the
properties of points, curves, and areas. For example, the
area of a circle is defined by A � �r 2, where A represents
the area and r represents the radius; and the formula 
for the volume of a cylinder is V � h(�r 2), where V rep-
resents the volume and h represents the height. It is easier
to understand the formula for volume by thinking of a
cylinder as a circular base extended upward. The volume
is equal to the area of the two-dimensional base multi-
plied by height, the third dimension of the cylinder.

In the mind of anyone equipped with basic geomet-
ric tools, anything in the physical universe can be trans-
formed into combinations of geometric figures spanning
multiple dimensions. Whether too small to see, plainly
visible, or located in a different solar system, any object

With its five-sided geometric shape still intact in the inner rings, the west face of the Pentagon is shown in this aerial photo
taken before the attack on September 11, 2001. UPI/CORBIS-BETTMANN. REPRODUCED BY PERMISSION.
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seems less intimidating when represented by elegant geo-
metric figures that have been systematically scrutinized
for thousands of years.

A Brief History of Discovery 
and Development

Like most fields of mathematics, geometry found its
beginning due to a necessity to understand and predict
phenomena in the natural world. Geometry provided a
tool to help humans understand their surroundings long
before generalized mathematical formulas were con-
ceived. As long as 6,000 years ago, people began using
geometric reasoning as a visual aid to explain and predict
phenomena in the world around them. Pure mathemati-
cal reasoning (and proofs that the reasoning was sound)
would not appear until geometry was coupled with alge-
braic rules thousands of years later.

Possibly the first use of abstract geometric reasoning
was invoked in early human settlements as result of the
inception of monetary calculations. In Egypt, for example,
nomadic peoples led simple yet inconsistent and insecure
lives, roaming the land and setting up temporary shelters
wherever the forces of nature (most notably weather and
the availability of food) guided them. After thousands of
years spent roaming the sparse desert, these people even-
tually discovered that the Nile River provided ample water,
and hence vegetation, which in turn attracted animals,
essential survival resources that are consistently sparse in
the middle of the desert. The activities of their lives
depended on the ebb and flow of the river. Even their
first calendar was based on the cycles that governed
their annual cultivating and harvesting periods. After 
generations of cultivation and expansion along the river,
towns were set up and a system of leadership was
established.

The concept of money was implemented in these
towns in order to facilitate trades between the citizens, and
eventually visitors. Similar to the taxation of modern cul-
tures that enables important communal facilities, including
schools and healthcare, the Egyptian leaders set up a system
of taxation to support the needs of the growing culture.
Most of the taxes implemented under the Pharaohs were
used to build large, intricate structures to support their
images as divine beings that should be feared and followed.
Because the Nile held the key to the flourishing agricultural
settlements, the River was believed to possess a godlike per-
sona, and each year the taxes were based on the amount of
flooding that took place. Taxes were vital to the success of
the Pharaohs, and were therefore taken very seriously.

Arithmetic and algebra (the essential tools for analyzing
numbers) had yet to be discovered, so Egyptian accountants
used visual aids, now recognized as geometric figures, to
determine the amount that each citizen should be taxed.
The circle, for one, was an important figure in the calcula-
tion of taxes. This use of circles led Egyptians to approxi-
mate the value now commonly symbolized by the Greek
letter �, which defines the relationship between radius and
circumference. They estimated pi (�) to be 3.16, but it is
closer to 3.1415927. The fact that Egyptian officials were
happy to collect slightly too much tax from each citizen is
probably the reason that they used an overestimate of the
value for �, when an underestimate could surely be calcu-
lated just as easily. In a culture that called for the execution
of mildly rebellious individuals, a percentage of income was
not something to be quibbled over.

In ancient Egyptian culture, spatial measurements
were eventually given a name that translates loosely to
“Earth measure.” The Egyptians and Babylonians used
these ideas to describe the physical world around them,
but made no advances in using mathematics to explain
seemingly inexplicable events or reveal fundamental
truths. The building of the pyramids is the most notable
use of geometric reasoning by ancient Egyptians. A
pyramid has a square base and four triangular sides that
come to a point at the top. If a measurement is even
slightly inaccurate, the top of the pyramid will not come
to a point, but rather a flat grouping of stones. This
would subtract from the pyramid’s magnificence and 
almost certainly result in the execution of the designer 
at the order of the Pharaohs who demanded divine
perfection.

To ensure that the base was square and that the tri-
angular faces met at a point, the Egyptians conceived an
ingenious method of measurement. Systems of ropes
were stretched by a handful of workers to map out trian-
gles. Knots tied in the ropes at equal distances enabled the
workers to create triangles with proportional lengths, in
turn controlling the resulting angles. For example, in a
triangle with a side created by three knots, a side created
by four knots, and a side created by five knots, the angle
opposite the longest side will be a right angle.

With all of their advances in measurement, the Egyp-
tians did not view the concepts behind their quantitative
reasoning as mathematical notions that could be
extended to explain other phenomena. They did not truly
understand the theoretical points represented by the
knots, or the lines represented by the ropes.

During approximately the same time period that gave
rise the Egyptian pyramids, the Babylonians were making
similar advancements in the perception of geometric logic.
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In general, the civilizations that existed prior to the Greeks
noticed and utilized many interesting and helpful proper-
ties about their physical surroundings, and were able to use
their findings to accomplish relatively incredible feats. What
separates these earlier cultures from the Greeks is that they
did not possess, and perhaps did not desire, a deeper under-
standing of the measurements that they recorded.

About 2,500 years ago, a Greek merchant, engineer,
and philosopher named Thales at long last expanded geo-
metric reasoning beyond the measurements of taxes and
sand, sparking a new wave of logic and abstraction that
would later motivate the work of Pythagoras. Thales
invested most of his life to the evolution of all types of
knowledge, including astronomy. For part of his life,
Thales lived and studied in Egypt. It is widely accepted that
he was first to determine the true height of one of the pyr-
amids, employing the triangles used in the precise meas-
urement of the base in a completely new way. When he
returned to Greece, he brought a multitude of new ideas
regarding spatial measurements. These ideas and the
resulting field of logical reasoning that followed were soon
thereafter referred to as geometry, the term that is still used
today. Like the term used in Egypt at the time, the word
geometry translates loosely to “Earth measurements.”

Ancient sources claim that, shortly before death,
Thales received a visit from a young philosopher and
mathematician named Pythagoras. During their meeting,
Thales is believed to have suggested that Pythagoras travel
to Egypt in order to further the advancement of Egyptian
practical geometric concepts. Pythagoras followed this
advice, returning to Greece with another generation of
knowledge pertaining to mathematics, astronomy, and
philosophy. For example, though it is evident that the
Pythagorean theorem was used in the creation of pyra-
mids thousands of years earlier, it is named after him due
to the growing Greek affinity for logic. No one in Egypt
would have been named after such a concept, because it
was not regarded in that land as important knowledge
outside of the occasional launch of a new pyramid.
Pythagoras found many followers in Greece, and eventu-
ally settled with them outside of Athens to live life truly
by numbers. To the Pythagoreans, everything in life was
numerical. Mathematics was essentially their religion.
Outsiders were generally regarded as blasphemers,
unworthy of the beautiful truths of advanced mathemat-
ics. Their notion of irrational numbers (numbers that
cannot be represented as one whole number divided by
another) was one of their greatest secrets, and one mem-
ber was allegedly drowned for leaking this knowledge.

About two centuries later, Euclid (c. 325–265 B.C.),
another Greek mathematician, again enhanced the study

of geometry. While little of his work provided any origi-
nal ideas, Euclid is often regarded as the father of geome-
try because his systematic methods for representing
geometric ideas sculpted the subject into a more manage-
able form. Using consistent and simple notation, geome-
try could be studied by all and generalized to fit more and
more situations. Euclid’s work has provided the basis for
communicating geometric ideas ever since.

With the rise of the Roman Empire came a heavy
decline in intellectual advancement. During the ensuing
900-year period referred to as the Dark Ages, the works of
Euclid and his predecessors were locked up in private
libraries, and not until the seventeenth century would
geometric thought continue to advance.

In the early seventeenth century, an Italian philosopher
and mathematician named René Descartes revolutionized
both fields in ways that have yet to be improved upon. In
mathematics, he melded the laws of numbers and geometric
measurements by conceiving the coordinate plane. By plac-
ing geometric figures in a well-labeled grid, algebraic 
manipulations could be applied directly to geometric fig-
ures. In this way, geometric concepts began to be analyzed in
new ways, illuminating the concepts of the past and 
spawning an enormous amount of new theories. The 
simultaneous consideration of algebraic and geometric
properties first introduced by Descartes has come to be
known as analytical geometry, and has provided the 
basis for all scientific endeavors in the four centuries since
his life.

In modern times, scientists have realized that the
three space dimensions are not truly independent of
the time dimension. This concept was popularized by the
German-born American physicist and mathematician
Albert Einstein (1879–1955) in the early twentieth cen-
tury. Just as the works of Thales, Pythagoras, Euclid, and
Descartes were difficult to grasp when they were first
introduced, the idea that time and space interact compli-
cates geometry to a degree that most people are not yet
equipped to understand. However, as time advances, so
shall the collective human understanding of it as a con-
crete dimension.

Real-life Applications

POTHOLE  COVERS  
Millions of potholes, also called manholes, are scat-

tered throughout the world, giving workers access to
underground sewer lines. In the United States, these pot-
holes and the large hunks of metal that cover them are
almost always round. A pothole cover is a cylinder with a
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relatively small height. This shape is chosen because of
two important properties about circles.

First of all, a circle is one of only two basic two-
dimensional geometric figures that cannot fit through an
identical figure in three dimensions. That is, if two iden-
tical circles (having radii of equal length) are placed in
three-dimensional space, one could not be made to pass
through the other, no matter how the circles were angled.
All but one other basic shape can be lifted and rotated so
that it will fit through a copy of itself. A square, for exam-
ple, can be rotated upward until vertical, and then rotated
approximately 45� in any other direction to fit diagonally
through a copy of itself because the diagonal of a square
is longer than any of its sides (a fact which can be proven
using the Pythagorean Theorem). Similar reasoning can
be used to show that almost all other basic shapes can be
made to fit through an identical shape. The fact that a cir-
cle will not slip through an identical circle ensures that
heavy round pothole covers do not fall through the open-
ings of potholes and injure the workers below.

An equilateral triangle (a triangle with three sides of
equal length and three 60� angles) is the only other basic
two-dimensional geometric figure that cannot be made
to pass through a copy of itself. If the lengths of the 
sides of the two identical triangles were not all equal, one
of the triangles could be propped up vertically with a side
other than the longest on the bottom, and then rotated
until the bottom side of the vertical triangle was parallel
to a longer side of the horizontal triangle, and fall
through.

In some parts of the world, pothole covers are occa-
sionally found in the form of an equilateral triangle and
they, of course, never fall through the hole. However,
most pothole covers are chosen to be round because of
another unique characteristic of circles; they have no cor-
ners. A circular pothole cover saves the energy of workers
by allowing them to roll the heavy covers out of the way.
The three vertices of a triangle also make it more likely to
injure someone while it is being moved or sitting on the
ground. A circular shape also makes replacing pothole
covers easier because they do not need to be rotated in
order to line up with the shape of the hole.

ARCH I TECTURE  
Mathematical reasoning was used to build the Egypt-

ian pyramids over 6,000 thousand years ago, long before
geometry was conceived as a fundamental field of math-
ematics. Since the rise of the early Greek mathematicians,
standardized geometric concepts have provided the
essential tools for planning and constructing all types of
buildings.

All architectural structures—from simple four-walled
buildings with flat roofs to elaborate, multipurpose con-
structions—comprise combinations of geometric figures.
The types of curves and shapes used to create an enclosed
space are carefully chosen for their effects on function
and beauty.

In the design of some buildings, functionality is far
more important than artistic expression. For example,
when building a silo for the storage of large amounts of
grain, a cylinder provides the most efficient use of space.
The horizontal cross-section of a cylinder (e.g., the base)
is circular, and circles can be shown to have the largest
area with respect to perimeter out of all two-dimensional
shapes. Because the circular cross-section is extended ver-
tically to form a three-dimensional cylinder, a cylinder
requires the least surface are—and therefore the least
building materials—to provide a given volume.

Most temples and churches, for instance, are
designed to balance the beauty required for paying
respect to the religious figures worshiped by the congre-
gation (e.g., painted ceilings, intricate moldings, and
stained picture windows) with the function of fitting a
large amount of people into a single enclosed space.
When congregations first began to grow, the task of
building a room of worship large enough to accommo-
date everyone posed a serious problem. Enclosures had
previously been created using only flat walls and ceilings,
which greatly limited the space because the flat ceiling
would collapse if the supporting walls were too far apart.
This obstacle was eventually overcome by the Romans
when they began using semicircular arches in their archi-
tecture. A semicircular arch is created by stacking half of
a circle on top of a rectangle. This structure allows the
supporting walls to be further apart because, as gravity
pulls on the structure, the semicircle distributes weight so
that the arch does not collapse. Soon thereafter, arches
were placed one in front of the other to create the walls
and roofs of relatively huge halls, giving congregations
room to grow. Domes are created by copying and rotating
an arch around its highest point and were later added to
create even higher ceilings, instilling a sense of awe wor-
thy of a building devoted to gods. The round nature of
domes also adds a sense of perfection, an important
aspect in many religions. Individual arches were also used
as the shapes of windows and doors to increase structural
stability and effect beauty.

The arch is just one of the geometric figures integral
in the design of various structures. Like an arch, a trian-
gle adds stability by distributing and balancing the down-
ward force of gravity as well as the lateral forces of wind.
The triangular configuration of rafters in the roofs of
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many houses also allows rain and debris to slide down
and fall off so that the roof does not have to endure much
weight. Sloping roofs also add a familiar aesthetic charac-
teristic to the house’s overall appearance.

Rectangles, ellipses, hexagons, and more can be
found throughout any human construction, including
the landscaping that surrounds many buildings. Most
structures made by humans are heavily dependent on
geometric figures, from the triangles found in the enor-
mous towers that support elaborate networks of electrical
wiring to the visually pleasing dimensions of national
monuments. The 630-foot (192-m) tall Gateway Arch in
St. Louis provides another example of the abilities of the
geometric arch to create a sense of beauty while stretch-
ing the limits of architecture. The Washington Monu-
ment consists of four trapezoidal sides topped by a
pyramid. This gigantic vertical structure is impressive  for
its size: the square base of the shaft has a width of 55 feet

(16.7 m); the shaft is 500 feet (152 m) tall; and the pyra-
mid is 55 feet tall. Its construction required in-depth
analysis of lengths, angles, areas, and volumes.

Some structures, such as the pointy onion-shaped
roofs common in the regions of the former Soviet Union,
do not appear to be associated with basic geometric
shapes. Other buildings, including some modern muse-
ums, are intentionally designed to appear irregular in
shape, seemingly not following any laws of mathematics.
However, all of these shapes are defined and thoroughly
analyzed using mathematical formulas describing
complicated geometric figures in one, two, and three
dimensions.

Regardless of the goals of the architect, every aspect
of a building is deeply considered. Every consideration—
from the orientation of the wood panels on a residential
property to the ponderous calculations involved in
building a retractable dome over a gigantic sports

Intricate geometry contained in glasswork. BETTMAN/CORBIS.
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stadium—are modeled and investigated using geometric
reasoning.

HONEYCOMBS  
Just like geometric figures are used to affect certain

functions in a structure, many species of animals seem to
utilize a small amount of instinctive geometric knowl-
edge in order to conserve materials and energy. Various
species of spiders, for example, spin webs in patterns that
maximize the ability to catch bugs while minimizing the
amount of silk expended. Birds generally create circular
nests because a circle provides the maximum amount of
area for a given amount of materials.

Honeybees also display an instinctive understanding
of geometry in their use of hexagonal chambers for stor-
ing honey in honeycombs. One might think that bees
would choose to build chambers with circular holes
(cylinders) in their honeycombs because, just as a circle

allows for the most area given a specified perimeter, a
cylinder provides the largest volume for a given perime-
ter. However, placing a group of circles next to each other
wastes space because they do not fit together. For exam-
ple, if a group of cylindrical silos were built side by side
and viewed from above, it would be easy to see that 
space is wasted between the silos where grain cannot 
be stored. Most two-dimensional geometric figures 
cannot be used to completely fill a two-dimensional area.
In fact, only equilateral triangles, rectangles, and hexa-
gons can fit together with identical figures to completely
fill an area.

Of these three space-filling shapes, the hexagon is the
most efficient—that is, it uses the least material (wax, in
this case) to make a honeycomb having a given volume. It
might seem strange to think of an insect using geometric
reasoning but over time nature has a knack for uncover-
ing the most logical solution to any problem.

GLOBAL  POS I T ION ING  
In the new millennium, a global positioning system

(GPS) receiver is all a person needs to determine his or
her exact location on Earth. Every day, thousands of
campers, hikers, bikers, skiers, hunters, boaters, pilots,
and motorists around the globe use these ingenious
devices to ensure that they do not get lost.

The global positioning system consists of 27 solar-
powered satellites that orbit Earth. Only 24 of the satel-
lites are in operation at all times; the extra three are in
orbit in case any of the operational satellites malfunc-
tions. This network of satellites was originally launched
by the United States government to aid in military navi-
gation, but was shortly thereafter made available for use
by anyone. Each satellite weighs about 4,000 pounds
(1,814 kg), orbits at about 12,000 miles (19,312 km)
above the surface of Earth, and completes a rotation
around Earth approximately twice a day. From any posi-
tion on the surface of Earth, at least four of these satellites
can be detected by a GPS receiver at all times.

In order to understand how a GPS receiver uses satel-
lites to determine its own location, it is helpful to first dis-
cuss the process in two dimensions. Imagine, for example,
that an explorer is lost somewhere on Earth with a
detailed map, but absolutely no idea of her current loca-
tion. She asks one of the locals if he can help, but the only
information she receives is that she is currently 699 miles
(1,125 km) from Barcelona. Because she does not know
the direction in which Barcelona lies, this only indicates
that she is somewhere on the perimeter of a circle with its
center in Barcelona and a radius of 699 miles. This is a
good start, so she draws this circle on her map. Hoping to

The Washington Monument consists of four trapezoidal
sides topped by a pyramid. CRAIG AURNESS/CORBIS. REPRODUCED

BY CORBIS CORPORATION.
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get a better idea of her location, she asks another person
for help. This time, she learns that she is currently 680
miles (1,094 km) from Berlin. Again, this means that she
could be at any point on a circle around Berlin. After
drawing this circle on the map, she notices that there are
now two intersecting circles on which she might currently
be located. For both of the pieces of information she
received to be true, she must be located at one of the two
points where the circles intersect. Having two reference
points lowers her possible locations from an infinite
number of points around a large circle down to only two
points. To figure out which of these two points represents
her location, she needs one more reference point, which
will generate another circle of possible points. The next
person she talks to tells her that she is currently 257 miles
(413.6 km) from London. She draws a circle around Lon-
don with a radius of 257 miles and finds that it only inter-
sects one of the two possible points found with the first
two circles. This point represents her current location,
which turns out to be Paris.

GPS receivers use similar reasoning extended to three
dimensions. By measuring the lag in radio waves sent

from a satellite, the GPS receiver determines how far the
satellite currently is from the receiver; but the direction
from which the radio waves approached is not deter-
mined. Just like a circle can be staked out on a map, the
distance to a satellite allows the GPS receiver to map out
a sphere in space. The GPS receiver must be located
somewhere on the boundary of this sphere.

Next, the GPS receiver locates another satellite and
determines how far away it is, creating another sphere.
The intersection of the two spheres is a circle. (Imagine
chopping off a thin portion of two oranges to create flat
surfaces so that they can be stuck together; the boundary
of the area where the two oranges touch is a circle.) Using
these two spheres allows the GPS receiver to narrow its
location down to a circle, just like using a single reference
point on a two-dimensional map creates a circle. Because
one more dimension is involved, it takes one more
reference point to narrow the location down to a two-
dimensional circle.

The GPS receiver then locates a third satellite, map-
ping out a third sphere. Just as a second circle drawn on a
two-dimensional map determines two possible points, the

Hexagons in honeycombs. RALPH A. CLEVENGER/CORBIS.
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third sphere determines two points in three-dimensional
space. At this point, the receiver can approximate its loca-
tion by using Earth as a fourth sphere. One of the two
points created by the first three spheres is always out in
space, so the GPS receiver knows that the point that lies
on Earth’s surface is its approximate location.

Errors can occur in the calculations performed by
GPS receivers, due mainly to the effects that Earth’s
atmosphere has on the speed of the radio waves sent out
from the satellites, which throws off the perceived dis-
tance to each satellite by a small amount. So, while three
satellites are theoretically enough to pinpoint the location
of a GPS receiver, these devices always attempt to locate a
fourth satellite in order to increase the accuracy of their
calculations.

F IREWORKS  
Fireworks employ two different types of explosive

powder, flash powder and black powder. Flash powder is
used to create bright a bluish-white light that can easily
be changed to any color by adding certain chemicals.
Almost all fireworks that create light include flash pow-
der. Sparklers, for instance, consist of flash powder stuck
to a small metal rod. Black powder (also known as gun-
powder) is usually used in fireworks to create a loud
explosion. Basic firecrackers contain mostly black pow-
der. Some of the larger and more elaborate fireworks
available at firework stands near the 4th of July consist of
a cylindrical casing that houses combinations of flash
powder and black powder. The black powder creates
noise and launches projectiles into the air, while the flash
powder emits bright light from the main casing and air-
borne projectiles. Projectile charges that create light dur-
ing their flight are called flash star pellets, or stars.

Large public gatherings at sports stadiums and other
outdoor venues feature enormous displays of fireworks,
creating explosions that are audible for miles and visually
stunning color patterns that can seem to take up the
entire sky. Different patterns of light (e.g., spheres and
discs) are achieved by mapping out the desired pattern of
the stars inside of the large casing. Most main casings are
cylindrical, with the height and size of the base depend-
ent on the intended size and shape of the color pattern.
The stars are separated and held in place by black powder,
which fills the remaining volume of the casing. To cause a
spherical pattern, the stars are equally spaced throughout
the three dimensions of their casing. To create a disc that
spreads in a plane parallel to the locally flat surface of
Earth, the stars are situated in a circular pattern around
the center of the casing; if the disc sits at an angle inside
of the casing, a similar angle will appear in the explosion.

Spheres and discs are the most logical shapes because
they require that the stars are all projected the same dis-
tance. Those distances, the radii of the spheres and discs,
are determined by the amount of black powder packed
between the stars. Therefore, a larger casing usually
results in a larger spread of stars because there is more
extra room for black powder.

In order to launch the whole thing into the sky, the
firework is first placed into a cylindrical tube with black
powder in the bottom. The correct volume of black 
powder is determined based on the mass of the firework
and the desired height to be reached. The black powder in
the tube is then ignited, shooting the firework upward
(and possibly at an angle determined by the angle of
the tube) and igniting the firework’s main fuse. All of
the fuses in the contraption have a pre-calculated length
in order to control the timing of the explosions of light
and sound.

MANIPULAT ING  SOUND  
Using the right materials and a little geometric rea-

soning, enclosed spaces can be designed to affect sounds
in different ways. The muffler attached to the exhaust
pipe on a car, for example, is intended to absorb most of
the noise produced by the engine, but the thin materials
used absorb a relatively small amount of the noise. The
majority of the engine noise is canceled out by additional
waves of sound produced when the engine’s sound waves
bounces off the walls and inner structure. Sound from the
engine enters the muffler through a pipe, where some of
the sound waves escape through circular holes in the side
of the pipe, called perforations. The dimensions of the
pipe and the size and position of perforations are impor-
tant to directing the sound against different walls of the
muffler. The main part of the muffler is sectioned off into
three chambers, and as sound waves bounce in different
directions, they cancel each other out. Technically, the fre-
quencies of the sound waves interfere with each other,
and the combination of sound waves results in fewer
vibrations in the air. Because a muffler cannot consist of,
say, padded concrete walls, it must be designed to use
sound waves against each other in order to disrupt as
much of the noise as possible.

A concert hall, on the other hand, is designed to
bounce sound waves around a large volume in order to
enhance the sound. The dimensions of the walls, ceiling,
and floors surrounding the performers and audience
greatly affect the resulting sounds, as do the furniture and
anything protruding from the walls or ceiling. The most
important consideration when designing a concert hall is
the equalization of the different frequencies coming from
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the stage. The sound waves that produce higher sounding
notes do not tend to bounce of surfaces as well as the
slower vibrations of lower sounding notes. The overall
shape of the hall and the additional surfaces (especially
shapes and patterns incorporated into the walls and ceil-
ing) are intended to ensure that the best balance of tones
makes it to each listener’s ears.

Reverberation is another important aspect of an
acoustic space. Reverberation relates to the amount of
time that sound waves continue bouncing off of the var-
ious surfaces. As a simple interpretation, reverberation
defines the amount of echoing effect that will be heard. A
mathematical formula, called the Sabine formula, can be
used to measure the relative amount of reverberation and
to determine how much absorbing surfaces need to be
added to or removed from a space to achieve optimal
reverberation time.

Acoustic instruments rely on the same types of con-
siderations on a much smaller scale. The sounds pro-
duced by any drum that does not rely on electricity
depend almost entirely on its shape and size. The dimen-
sions of a piano can greatly affect the quality of sound
produced when the keys are pressed. On an acoustic gui-
tar, the strings are attached to the outside of the wooden
body; but the dimensions of the body are the main reason
that the sounds produced by the strings can be heard
clearly. Much of the vibrations coming from the strings
enter the body of the guitar through a circular sound hole
situated directly beneath the portion of the strings that is
most often plucked or strummed. The body is carefully
designed so that the entering sound waves are most likely
to bounce at angles that enhance the sound in ways sim-
ilar to sound waves bouncing around a well-designed
concert hall.

The geometric dimensions of strings are a major fac-
tor in the tones produced by any stringed instrument.
The strings are essentially cylindrical, having a small cir-
cular cross-section stretched along a third dimension to
create a volume. On an acoustic guitar each string is
stretched to the same length, so the sounds produced by
the different strings are dependent on the area of the
circular cross-section (the thickness). A larger cross-
sectional area results in a larger volume. Because the strings
are made of similar materials, thicker strings also have a
greater mass, which causes them to vibrate slower and to
produce lower sounds than thinner strings.

Reverting to the single dimension of curves and
lines, guitar strings can be thought of as parallel line seg-
ments. Strips of metal (called frets) are spaced out along
a wooden fret board, or fingerboard. The frets lie perpen-
dicular to the strings, defining important points where

they intersect. Pressing a string against one of the frets
essentially changes the length of the segment being
strummed or plucked, causing the strings to vibrate at
different frequencies and altering the resulting tones.

SOLAR  SYSTEMS  
All things in the physical universe, from molecules to

exploding stars, have forms that can be defined geometri-
cally. The laws of the Universe have worked together over
the past few billion years to create incredible geometric
shapes.

For example, solar systems all over the Universe tend to
be relatively planar, like huge spinning discs in space. Basi-
cally, as a star begins to be crushed by gravity, pulling in all
sorts of nearby materials, it picks up a spinning motion,
similar to the spinning motion of tornadoes or water escap-
ing through a drain in a bathtub. (If gravitational shrinkage
keeps up for too long, a black hole results.) Things con-
tinue to spin, and like a ball of dough spun in the air to cre-
ate a flat pizza crust, the ensuing solar system expands to
a practically flat shape. Because of the relative emptiness
of space, things spread out at a somewhat constant speed,
creating an elliptical disc expanding in a plane. As the rocks,
gas, dust, and other debris spin around the star, they collide
and collect together to form planets, moons, comets, and
asteroids.

The planets are the largest collections of materials and
continue on an elliptical orbit around the star. Because
they are so big, planets create their own substantial amount
of gravity and attract debris that settles into orbit around
them. Sometimes this debris collides, and eventually cre-
ates a single satellite around the planet. Planets and moons
are suspended in an orbit, so each collision causes the
material to spin (similar to the effect of flicking a coin held
vertical by one finger) eventually leading to large bodies
spinning on a constant axis and taking spherical forms.
When the debris collecting around a planet has not col-
lected to form a single satellite, the planets are encircled by
planar belts of debris.

As new debris enters the atmosphere, it is attracted to
the belt by the spinning forces. It is no coincidence that all
of these spinning objects take on elliptical or spherical
forms. These heavenly bodies all provide stellar examples
of the idea of a radius defining a collection of points
equally spaced from a center.

As moons spin around planets that are spinning
around a star, all of the orbiting bodies create thousands
of constantly changing angles between them. These
changes in these angles are rather periodic, and are often
studied and accurately predicted from Earth. For example,
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lunar and solar eclipses, in which Earth and the moon
line up to create a straight line with the sun, are marked
on many standard calendars.

Until late in the twentieth century, it was thought
that Earth’s solar system might be the only true solar sys-
tem in the known Universe. Because most stars are
unfathomable distances from Earth, their intense light
drowns out any nearby material, no matter how powerful
the telescope. However, as planets orbit around the star,
they cause it to move around in a relatively small circle.
From a viewpoint on Earth, this movement appears as a
minute back-and-forth motion. Using mainly the star’s
wobble as an indicator, astronomers can determine the
number of planets, the mass of each planet, and their rel-
ative distances from the central star.

Scattered throughout the Universe and confined to
planes tilted at various angles, brilliant solar systems and
exploding star systems (that may or may not become
solar system sometime in the vast future) illustrate
nature’s affinity for geometric figures and provide mar-
velous examples of how geometric reasoning continues to
light the paths that lead to knowledge previously thought
impossible.

RUB IK ’S  CUBE
For any geometric concept, there is an associated

puzzle or riddle. While many puzzles have been designed
to clearly illustrate a preexisting concept, some sound
geometric theories were actually discovered as a solution
to such puzzles, or proofs that no solution exists.

Rubik’s Cube is possibly the most famous and addic-
tive of all geometric puzzles. It was invented in 1974 by
Hungarian sculptor, architectural engineer, and professor,
Erno Rubik. Rubik’s Cube consists of smaller cubes,
where only the outer faces of the outermost cubes can be
seen. The original Rubik’s Cube has dimensions of
3 � 3 � 3. That is, each edge of the cube is three cube
lengths long; each layer of the cube is 3 � 3 to create a
square; and the cube consists of three of these layers; so
the measurement in any direction is the length of three
smaller cubes. Any layer of the cube contains nine cubes
(3 � 3 � 32 � 9). There are three layers for a total of 27
smaller cubes (3 � 3 � 3 � 33 � 27).

The Rubik’s Cube is a perfect illustration of the rea-
son that numbers like 1, 8, 27, 64, and 125 are referred to
as cubic numbers; they can be configured to make perfect
cubes. Any eight identical objects can be situated in space
to form a cube. This is the geometric interpretation of
two raised to the third power. Similarly, if a number of
objects can be arranged (in two dimensions) to form a
square, that number is called a square number. Square

numbers can be represented algebraically by some other
whole number raised to the power of two. This concept is
illustrated by the faces of a Rubik’s Cube.

Professor Rubik was not actually trying to create a puz-
zle, but rather to solve a three-dimensional geometric prob-
lem that had become a hot topic at the time. The problem
was to create a seemingly solid cube consisting of twenty-
seven smaller cubes, where any layer could be rotated
around its center without disturbing the other layers.

Fascinating mechanics allow any layer to be rotated
around its center without causing the rest of the appara-
tus to fall apart. The 27 smaller cubes can be categorized
as a single central cube (which is not actually a cube, but
the main component of the complex rotating mecha-
nism); six cubes surrounding the central mechanism; and
the 20 cubes with faces that can be seen. The rotation of
layers in different directions is enabled by a series of
spring-loaded spindles and plastic flanges, in addition to
the intricate mechanism in the center of the cube.

A Rubik’s Cube provides a concrete example of the
geometric concepts of surface area and volume. The area
of one face on a small cube is equal to the length of one
of its edges squared; and each of the six faces of a
3 � 3 � 3 cube consists of nine smaller faces for a total of
54 visible faces; so the surface area of the entire cube is
equal to the area of one small face multiplied by 54. The
volume of a small cube is equal to the length of one if its

Rubik’s Cube consists of smaller cubes, where only the
outer faces of the outermost cubes can be seen. STEFANO

BIANCHETTI/CORBIS.
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edges cubed; and there are 27 smaller cubes; so the vol-
ume of the main cube is equal to the volume of one small
cube multiplied by 27. The multitude of mathematical
facts that can be illustrated (and even discovered) while
playing with a Rubik’s Cube is amazing.

Initially and when in solved form, each of the six
faces of the cube is its own color: green, blue, red, orange,
yellow, or white. As the layers are rotated, the colored
faces are shuffled. The goal of the puzzle is to restore each
face to a single color after thorough shuffling. Numerous
strategies have been developed for solving a Rubik’s Cube,
all of which involve some degree of geometric reasoning.
Some strategies can be simulated by computer programs,
and many contests take place to compare strategies based
on the average number of moves required to solve ran-
domized configurations. The top strategies can require
less than 20 moves.

Possibly the most daunting fact about the 3 � 3 � 3
Rubik’s Cube is that 43,252,003,274,489,856,000 different
combinations of colors can be created on the faces of the
cube. That’s more than 43 quintillion combinations, or 43
million multiplied by a million, and then multiplied by a
million again. Keep in mind that the original 3 � 3 � 3
cube is among the smallest and least complicated of
Rubik’s puzzles! 

SHOOT ING  AN  ARROW 
The aim of archery is to shoot an arrow and hit a tar-

get. The three main components involved in shooting an
arrow—the bow, the arrow, and the target—are thor-
oughly analyzed in order to optimize accuracy.

The act of shooting an arrow provides an excellent
exploration of vectors (as may be deduced by the fact that
vectors are usually represented by arrows in mathemati-
cal figures). The intended path of the arrow, the forces
that alter this path, and the true path taken by the arrow
when released can all be represented as vectors. In fact,
the vector that represents the true path taken by the arrow
is the sum of the vectors produced by the forward motion
of the arrow and the vectors that represent the forces that
disrupt the motion of the arrow. Gravity, wind, and rain
essentially add vectors to the vector of the intended path,
so that the original speed and direction of the arrow is
not maintained. When an arrow is aimed directly at a tar-
get and then released, it begins to travel in the direction
of the target with a specific speed. However, the point at
which an arrow is directly aimed is never the exact point
hit by the arrow. Gravity immediately adds a downward
force to the forward force created by the bow, pulling the
arrow down and reducing its speed. Gravity is constant,
so the vector used to represent this force always points

straight toward the ground with the same magnitude
(length). If gravity is the only force acting on an arrow
flying toward its target, then the point hit will be directly
below the pointed at which the arrow is aimed; how far
below depends on the distance the arrow flies. Any
amount of wind or rain moving in any direction has a
similar affect on the flight of the arrow, further altering
the speed and direction of the arrow. To determine the
point that the arrow will actually hit involves moving
from the intended target in the direction and length of
the vectors that represent the additional forces, similar to
the way that addition of vectors is represented on a piece
of graph paper.

Though the addition of vectors in three-dimensional
space is the most prominent application of geometry
found in archery, geometric concepts can be unearthed in
all aspects of the sport. The bow consists of a flexible strip
of material (e.g., wood or light, pliable metal) held at a
precise curvature by a taught cord. The intended target
and the actual final location of the arrowhead—whether
on a piece of wood, a bail of hay, or the ground—can be
thought of as theoretical points in space. The most pop-
ular target is made of circles with different radial dis-
tances from the same center, called concentric circles. If
feathers are not attached at precise angles and positions
near the rear of the arrow, they will not properly stabilize
the arrow and it will wobble unpredictably in flight. In
these ways and more, geometric reasoning is essential to
every release of an arrow.

STEALTH  TECHNOLOGY  
Radar involves sending out radio waves and waiting

a brief moment to detect the angles from which waves are
reflected back. An omnidirectional radar station on the
ground detects anything within a certain distance above
the surface of Earth, essentially creating a hemisphere of
detection range. A radar station in the air (e.g., attached
to a spy plane), can send out signals in all directions,
detecting any object within the spherical boundary of the
radar’s range. The direction and speed of an object in
motion can be determined by changes in the reflected
radio waves. Among other things, radar is used to detect
the speed of cars and baseballs, track weather patterns,
and detect passing aircraft.

Most airplanes consist almost entirely of round sur-
faces that help to make them aerodynamic. For example,
a cross-section of the main cabin of a passenger plane
(parallel to the wingspan or a row of seats) is somewhat
circular; so when the plane flies relatively near a radar sta-
tion on the ground, it provides a perfect reflecting surface
for radio waves at all times. To illustrate this, consider
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someone holding a clean aluminum can parallel to the
ground on a sunny day. If he looks at the can, he will be
able to see the reflection of the Sun no matter how the can
is turned or moved, as long as it remains parallel to the
ground. However, if the can were traded for a flat mirror,
he would have to turn the mirror to the proper angle or
move it to the correct position relative to his eyes in order
to reflect the Sun into his face. The difficulty of accurately
reflecting the sun using the flat mirror provides the basis
for stealth technology.

To avoid being detected by radar while sneaking
around enemy territories, the United States military has
developed aircraft—including the B-2 Bomber and the 
F-117 Nighthawk—that are specially designed to reflect
radio waves at angles other than directly back to the
source. The underside of an aircraft designed for stealth is
essentially a large flat surface; and sharp transitions
between the various parts of the aircraft create well-
defined angles. The danger of being detected by radar
comes into play only if the aircraft is directly above a
radar station; a mistake easily avoided with the aid of
devices that warn pilots and navigators of oncoming
radio waves.

Potential Applications

ROBOT IC  SURGERY  
While the idea of a robot operating on a human body

with metallic arms wielding powerful clamps, prodding
rods, probing cameras, razor-sharp scalpels, and spinning
saws could make even the bravest of patients squeamish,
the day that thinking machines perform vital operations
on people may not be that far away.

Multiple robotic surgical aids are already in develop-
ment. One model is already in use in the United States
and another, currently in use in Europe, is waiting to be
approved by the U.S. Food and Drug Administration
(FDA). All existing models require human input and con-
trol. Initial instructions are input via a computer work-
station using the usual computer equipment, including a
screen and keyboard. A control center is also attached to
the computer and includes a special three-dimensional
viewing device and two elaborate joysticks. Cameras on
the ends of some of the robotic arms near or inside the
patient’s body send information back to the computer
system, which maps the visual information into mathe-
matical data. This data is used to recreate the three-
dimensional environment being invaded by the robotic
arms by converting the information into highly accurate
geometric representations. The viewing device has two

goggle-like eyeholes so that the surgeon’s eyes and brain
perceive the images in three dimensions as well. The
images can be precisely magnified, shifting the perception
of the surgeon to the ideal viewpoint.

Once engrossed in this three-dimensional represen-
tation, the surgeon uses the joysticks to control the vari-
ous robotic appendages. Pressing a button or causing any
slight movement in the joysticks sends signals to the com-
puter, which translates this information into data that
causes the precise movement of the surgical instruments.
These types of robotic systems have already been used to
position cameras inside of patients, as well as perform
gallbladder and gastrointestinal surgeries. Immediate
goals include operating on a beating heart without creat-
ing large openings in the chest.

By programming robotic units with geometric
knowledge, humans can accurately navigate just about
any environment, from the inside of a beating human
heart to the darkest depths of the sea. By combining
spacecraft, telescopes, and robotics, scientists can send
out robot aids that explore the reaches of the Universe
while receiving instructions from Earth. When artificial
intelligence becomes a practical reality, scientists in all
fields will be able to send out unmonitored helpers to
explore any environment, perform tasks, and report back
with pertinent information. With the rise of artificial
intelligence, robots might soon be programmed to detect
any issues inside of a living body, and perform the appro-
priate operations to restore the body to a healthy state
without any human guidance. From the first incision to
the final suture, critical decisions will be made by a think-
ing robotic surgeon.

THE  FOURTH  D IMENS ION  
Basic studies in geometry usually examine only three

dimensions in order to facilitate the investigation of the
properties of physical objects. To say that anything in the
Universe exists only in three dimensions, however, is a
great oversimplification. As humans perceive things, the
Universe has a fourth dimension that can be studied in
the same way as the length, width, and height of an
object. This fourth dimension is time, and has just as
much influence on the state of an object as its physical
dimensions. Similar to the way that a cylinder can be seen
as a two-dimensional circle extended into a third dimen-
sion, a can of soda thrown from one person to another
can be seen as a three-dimensional object extending
through time, having a different distinct position relative
to the things around it at every instant. This is the funda-
mental concept behind the movement of objects. If there
were truly only three dimensions, things could not move
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or change. But just as a circular cross-section of a cylin-
der helps to shed light on its three-dimensional proper-
ties, studying snapshots of objects in time makes it
possible to understand their structure.

As perceived by the people of Earth, time moves at a
constant rate in one direction. The opposite direction in
time, involving the moments of the past, only exists in the
forms of memory, photography, and scientific theory.
Altering the perceived rate of time—in the opposite direc-
tion or in the same direction at an accelerated speed—has
been a popular fantasy in science fiction for hundreds of
years. Until the twentieth century, the potential of time
travel was considered by even the most brilliant scientists
to lie much more in the realm of fiction. In the last hun-
dred years, however, a string of scientists have delved into
this fascinating topic to explore methods for manipulating
time.

The idea of time as a malleable (changeable) dimen-
sion was initiated by the theory of special relativity pro-
posed by Albert Einstein (1879–1955) in the early
twentieth century.

An important result of the theory of special relativity is
that when things move relative to each other, one will per-
ceive the other as shrinking in the direction of relative
motion. For example, if a car were to drive past the woman
in the chair, its length would appear to shrink, but not its
height or width. Only the dimension measured in the direc-
tion of motion is affected. Of course, humans never actually
see this happen because we do not see things that move
quickly enough to cause a visible shrinking in appearance.
Something would have to fly past the woman at about 80%
the speed of light for her to notice the shrinking, in which
case she would probably miss the car altogether, and would
surely have no perception of its dimensions.

Similar to the manner in which the length of an
object moving near the speed of light would seem to
shrink as perceived by a relatively still human, time would
theoretically seem to slow down as well. However, time
would not be affected in any way from the point of view
of the moving object, just as physical measurements only
seem to shrink from the point of view of someone not
moving at the same speed along the same path. If two
people are flying by each other in space, to both of these
people it will seem that the other is the one moving. So
while one could theoretically see physical shrinking and a
slowing of the watch on the other’s arm, the other sees the
same affects in the other person. Without a large nearby
reference point, it is easy to feel like the center of the uni-
verse, with the movement, mass, and rate of time all-
dependent upon the local perception.

All of these ideas about skewed perception due to
speed of relative motion are rather difficult to grasp
because none of it can be witnessed with human eyes, but
recall that the notion of Earth as a sphere moving in space
was once commonly tossed aside as mystical nonsense.
Einstein’s theory of relativity explains events in the Uni-
verse much more accurately than previous theories. For
example, relativity corrects the inaccuracies of English
mathematician Isaac Newton’s (1642–1727) proposed
laws of gravity and motion, which had been the most
acceptable method for explaining the forces of Earth’s
gravity for hundreds of years. Just as humans can now
film the Earth from space to visually verify its spherical
nature, its path around the sun, and so forth, the future
may very well bring technology that can vividly verify the
theories that have been evolving over the last century. For
now, these theories are supported by a number of exper-
iments. In 1972, for example, two precise atomic clocks
were synchronized, one placed on a high-speed airplane,
and the other left on the ground. After the airplane flew
around and landed, the time indicated by the clock on the
airplane was behind that of the clock on the ground. The
amount of time was accurately explained and predicted
by the theory of relativity. Inconsistencies in experiments
involving the speed of light dating back to the early eigh-
teenth century can be accurately accounted for by the
theory of relativity as well.

To travel into the past would require moving 
faster than the speed of light. Imagine sitting on a space-
craft in outer space and looking through a telescope at
someone walking on the surface of Earth. New light is
continually reflecting off of Earth and the walker, entering
the telescope. However, if the spacecraft were to begin
moving away from Earth at the speed of light, the walker
would appear to freeze because the spacecraft and the
light would be moving at the same speed. The same
vision would be following the telescope and no new
information from Earth would reach it. The light waves
that had passed the spacecraft just before it started mov-
ing would be traveling at the same speed directly in front
of the spacecraft. If the spacecraft could speed up just a
little, it would move in front of the light of the past, and
the viewer would again see events from the past. The
walker would appear to be moving backward as the
spacecraft continued to move past the light from further
in the past. The faster the spacecraft moved away from
Earth, the faster everything would rewind in front of the
viewer’s eyes. Moving much faster than the speed of light
in a large looping path that returned to Earth could land
the viewer on a planet full of dinosaurs. Unfortunately,
moving faster than the speed of light is considered to be
impossible, so traveling backward in time is out of the
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question. The idea of traveling into the future at and
accelerated rate, on the other hand, is believed to be the-
oretically possible; but the best ideas so far involve flying
into theoretical objects in space, such as black holes,
which would most likely crush anything that entered and
might not even exist at all.

The interwoven relationship of space and time is
often referred to as the space-time continuum. To those
who possess a firm understanding of the sophisticated
ideas of special relativity, the four dimensions of the uni-
verse begin to reveal themselves more plainly; and to
some, the fabric of time is begging to be ripped in order
to allow travel to other times. While time travel is not
likely to be realized in the near future, every experiment
and theory helps the human race explain the events of the
past, and predict the events of the future.
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Key Terms

Angle: A geometric figure formed by two lines diverging
from a common point or two planes diverging from
a common line often measured in degrees.

Area: The measurement of a surface bounded by a set
of curves as measured in square units.

Cross-section: The two-dimensional figure outlined by
slicing a three-dimensional object.

Curve: A curved or straight geometric element gener-
ated by a moving point that has extension only
along the one-dimensional path of the point.

Geometry: A fundamental branch of mathematics that
deals with the measurement, properties, and rela-
tionships of points, lines, angles, surfaces, and
solids.

Line: A straight geometric element generated by a mov-
ing point that has extension only along the one-
dimensional path of the point.

Point: A geometric element defined only by an ordered
set of coordinates.

Segment: A portion truncated from a geometric figure by
one or more points, lines, or planes; the finite part
of a line bounded by two points in the line.

Vector: A quantity consisting of magnitude and direc-
tion, usually represented by an arrow whose length
represents the magnitude and whose orientation in
space represents the direction.

Volume: The amount of space occupied by a three-
dimensional object as measured in cubic units.
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Overview

In its most straightforward definition, graphing is
the act of representing mathematical relationships or
quantities in a visual form. Real-life applications can
range from records of stock prices to calculations used in
the design of spacecraft to evaluations of global climate
change.

Fundamental Mathematical Concepts
and Terms

In basic mathematics, graphs depict how one vari-
able changes with respect to another and are often
referred to as charts or plots. The graphs can be either
empirical, meaning that they show measured or observed
quantities, or they can be functional. Examples of empir-
ical measurements are the speed shown on the speedome-
ter of a car, the weight of a person shown on a bathroom
scale, or any other value obtained by measurement. Func-
tion plots, in contrast, show pure mathematical relation-
ships known as functions, such as y � b � m, x, or y � x2.
In these examples, each value of x corresponds to a spe-
cific value of y and y is said to be a function of x.

Mathematicians and computer scientists sometimes
refer to graphs in a different sense when they are analyz-
ing possible ways to connect points (also known as ver-
tices or nodes) in space using networks of lines (also
known as edges or arcs). The body of knowledge related
to this kind of analysis is known as graph theory. Graph
theory has applications to the design of many kinds of
networks. Examples include the structure of the elec-
tronic links that comprise the Internet, determining the
most economical route between two points connected by
a complicated network of roads (or railroads, air routes,
or shipping routes), electrical circuit design, and job
scheduling.

In order to accurately represent empirical or functional
relationships between variables, graphs must use some
method to scale, or size, the information being plotted. The
most common way to do this relies upon an idea developed
by the French mathematician René Descartes (1596–1650)
in the seventeenth century. Descartes created graphs by
measuring the value of one variable along an imaginary line
and the value of the second variable along another imagi-
nary line perpendicular to the first. Each of the lines is
known as an axis, and it has become standard practice to
draw and label the axes rather than using only imaginary
lines. Other kinds of coordinate systems exist and are useful
for special applications in science and engineering, but the

Graphing
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majority of graphs encountered on a daily basis use a set of
two perpendicular axes.

In most graphs, the dependent variable is plotted
using the vertical axis and the independent variable is
plotted using the horizontal axis. For example, a graph
showing measured rainfall on each day of the year would
commonly show the rainfall on the vertical axis because
it is dependent upon the day of the year and is, therefore,
the dependent variable. Time, represented by the day of
the year, is the independent variable because its value is
not controlled by the amount of rainfall. Likewise, a
graph showing the number of cars sold in the United
States for each of the past ten years will usually have the
years shown along the horizontal axis and the number of
cars sold along the vertical axis. There are some excep-
tions to this general rule. Atmospheric scientists measur-
ing the amount of air pollution at different altitudes or
geologists measuring the chemical composition of rocks
at different depths beneath Earth’s surface often choose to
create graphs in which the independent variable (in these
cases, altitude or depth) is shown on the vertical axis. In
both cases the dependent variable is being measured ver-
tically, so it makes sense to make graphs having the same
orientation.

BAR  GRAPHS
Bar graphs are used to show values associated with

clearly defined categories. For example, the number of
cars sold by a dealer each month, the numbers of homes
sold in different cities during a certain year, or the
amount of rainfall measured each day during a one-year
period can all be shown on bar graphs. The categories are
shown along one axis and the values are represented by
bars drawn perpendicular to the category axis. In some
cases bar graphs will contain a value axis, but in other
cases the value axis may be omitted and the values indi-
cated by a number just above or next to each bar. The
term “bar graph” is sometimes restricted to graphs in
which the bars are horizontal. In that case, graphs with
vertical bars are called column graphs.

One bar is drawn for each category on a bar graph,
and the height or length of the bar is proportional to the
value being shown. For example, the following set of
numbers could reflect the average price of homes sold in
different parts of Santa Barbara County, California, in
February 2005: Area 1, $334,000; Area 2, $381,000; Area 3,
$308,000; Area 4, $234,000; Area 5, $259,950. If these fig-
ures were plotted on a bar graph, the tallest bar would cor-
respond to the price for Area 2. The absolute height of this

A computer chip (which contains billions of pure light converting proteins) is shown in the foreground. The chip may one day be
a power source in electronics such as mobile phones or laptops. In the background is a graph which displays gravity forces that
can separate light-electricity converting protein from spinach. Researchers at MIT say they have used spinach to harness a plant’s
ability to convert sunlight into energy for the first time, creating a device that may one day power laptops, mobile phones and
more. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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bar does not matter, because the largest value will control
the values of all the other bars. The height of the bar for
Area 1, which has the second most expensive homes,
would be 334,000 / 381,000 � 88% as tall as the bar rep-
resenting Area 2. Similarly, the bar representing Area 3
would be 308,000 / 381,000 � 81% as tall as the Area 2
bar. See Figure 1, which depicts the bar graph reflecting
the average price of homes sold in different parts of Santa
Barbara County, California, in February 2005.

Bar graph categories can represent virtually anything
for or about which data can be collected. In Figure 1, the
categories represent different parts of a county for which
real estate sales records are kept. In other cases bar graph
categories represent a quantity such as time, such as the
rainfall measured in New York City on each day of Feb-
ruary 2005, with each bar representing one day.

Scientists and engineers often use specialized forms
of bar graphs known as stem graphs, in which the bars are
replaced by lines. Using lines instead of bars can help to
make the graph more readable when there are many cat-
egories; for example, the sizes of the largest floods along
the Rio Grande during the past 100 years would require

100 bars or stems. More often than not, the kinds of data
collected by scientists and engineers dictate that the cate-
gories involve some measure of distance or time (for
example, the year in which each flood occurred). As such,
they are usually ordered from smallest to largest. Stem
graphs can also have small open or filled circles at the end
of each stem. Unless the legend for the graph specifies
otherwise, the circles are used simply to make the 
graph more readable and do not have any significance of
their own.

Histograms are specialized bar graphs in which each
category represents a range of possible values, and the val-
ues plotted perpendicular to the category axis represent
the number of occurrences of each category. An impor-
tant characteristic of a histogram is that each category
does not represent just one value or attribute, but rather a
range of values that are grouped together into a single cat-
egory or bin. For example, suppose that in a group of 100
people there are 20 who earn annual salaries between
$20,000 and $30,000, 40 who earn annual salaries 
between $30,001 and $40,000, 30 who earn annual salaries
between $40,001 and $50,000, and 10 who earn annual
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salaries between $50,001 and $60,000. The bins in a his-
togram showing this salary distribution would be $20,000
to $30,000, $30,001 to $40,000, $40,001 to $50,000, and
$50,001 to $60,000. The height of each bin would be pro-
portional to the number of people whose salaries fall into
that bin. The tallest bar would represent the bin with the
most occurrences, in this case the $30,001 to $40,000. The
second tallest bar would represent the $40,001 to $50,000
category, and it would be 30/40 � 75% as tall as the tallest
bin. The width of each bin is proportional to the range of
values that it represents. Therefore, if each class interval is
the same size then all of the bars on a histogram will be the
same width. A histogram containing bars with different
widths will have unequal class intervals.

Some bar graphs use more than one set of bars in
order to convey several sets of information. Continuing
with the home price example from Figure 1, the bars
showing the 2005 prices could be supplemented with bars
showing the average home sales prices for the same areas
in February 2004. Figure 2 allows readers to quickly com-
pare prices and see how they changed between 2004 and
2005. Each category has two bars, one for 2004 and one for
2005, filled with different colors, patterns, or shades of
gray to distinguish them from each other.

A third kind of bar graph is the stacked bar graph, in
which different types of data for each category are repre-
sented using bars stacked on top of each other. The

bottom bar in each of the stacks will generally have a dif-
ferent height, which makes it difficult to compare values
among categories for all but the bottom bars. For this rea-
son, stacked bar graphs can be difficult to read and
should generally be avoided.

L INE  GRAPHS
Line graphs share some similarities with bar graphs,

but use points connected by straight lines rather than
bars to represent the values being graphed. As with bar
graphs, the categories on a line graph can represent either
some kind of measurable quantity or more abstract qual-
ities such as geographic regions.

Line graphs are constructed much like bar graphs. In
line graphs, values for each category are known or meas-
ured, and the categories are placed along one axis. The
values are then scaled along the value axis, and a point,
sometimes represented by a symbol such as a circle or a
square, is drawn to represent the value for each category.
The points are then connected with straight line seg-
ments to create the line graph.

One of the weaknesses of line graphs is that they can
imply some kind of connection between categories,
which may or may not be the intention of the person cre-
ating the graph. In a bar chart, each category is repre-
sented by a bar that is completely separate from its
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neighbors. Therefore, no connection or relationship
between adjacent categories is implied by the graph. A
line graph implies that the value varies continuously
between adjacent categories because the points are con-
nected by lines. If there is no real connection between the
values for adjacent categories, for example the home sales
prices used in the Figure 1 bar graph example, then it may
be better to use a bar graph or stem graph than a line
graph.

Like bar graphs, line graphs can be combined to cre-
ate multiple line graphs. Each line represents a different
value associated with each category. For example, a mul-
tiple line graph might show different household expenses
for each month of the year (rent, heat, water, groceries,
etc.) or the income and expenses of a business for each
quarter of a particular year. Rather than being placed
side-by-side as in a multiple bar graph, however, multiple
line graphs are placed on top of each other and the lines
are distinguished by different colors or patterns. If only
two sets of values are being graphed and their values are
significantly different, two value axes may be used. As
shown in Figure 3, each value axis corresponds to one of
the sets of values and is labeled accordingly.

AREA  GRAPHS
Area graphs are line graphs in which the area

between the line and the category axis is filled with a
color or pattern, and are used when there is a need to
show both the values associated with each category and
the total of all the values. As Figure 4 shows, the values are
represented by the height of the colored area, whereas the
total is represented by the amount of area that is colored.
If the total area beneath the lines is not important, then
a bar graph or line graph may be a better choice. Area
graphs can also be stacked if the objective is to show
information about more than one set of values. The result
is much like a stacked bar graph.

P IE  GRAPHS
Pie graphs are circular graphs that represent the rel-

ative magnitudes of different categories of data using
angular wedges resembling slices of pie. The size of each
wedge, which is measured as an angle, is proportional to
the relative size of the value it represents.

If the data are given as percentages that add up to
100%, then the angular increment of each wedge is its

Graphs are often used as visuals representing finances. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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percentage � 360�, which is the number of degrees in a
complete circle. For example, imagine that Store A sells
30% of all computers sold in Boise, Idaho, Store B sells
18%, and all other stores combined sell the remainder. The
wedge representing Store A would be 0.30 � 360� � 108�

in size. The wedge representing Store B would, by the
same logic, be 0.18 � 360� � 65�, and the wedge repre-
senting all other stores would (1.00 � 0.30 � 0.18) �

360� � 0.52 � 360� � 187�. Figure 5 depicts a represen-
tative pie graph.

The calculations become slightly more complicated
if the data are not given in terms of percentages that add
up to 100%. Suppose that instead of the percentage of
computers sold by the stores in the previous example,
only the number of computers sold by each store is
known. In that case, the number of computers sold by
each store must be divided by the total number sold by all
stores to calculate the percentage for that store. If Store A
sold 1,500 computers, Store B sold 900 computers, and all
other stores combined sold 2,600 computers, then the
total number of computers sold would be 5,000. The
percentage sold by Store A would be 1,500/5,000 � 0.30,
or 30%. Similar calculations produce results of 18% for
Store B and 52% for all other stores combined (just as in
the previous example).

RADAR  GRAPHS

Radar graphs, also known as spider graphs or star
graphs, are special types of line graphs in which the val-
ues are plotted along axes radiating from a common
point. The result is a graph that looks like a radar screen
to some people, and a spider or star to others. There is
one axis for each category being graphed, so for n cate-
gories each axis will be separated by an angle of 360�/n. A
radar graph showing five categories, for example, would
have five axes separated by angles of 360�/5 � 72�.
The value of each category is measured along its axis,
with the distances from the center proportional to the
value, and adjacent values are connected to form an
irregularly shaped polygon. One of the advantages of
radar plots, as shown below in Figure 6 (p. 254), is that
they can convey information about the values of many
categories using shapes (the polygons created by connect-
ing adjacent values) that can be easily compared for many
different data sets.

Multiple radar graphs are constructed much like
multiple line graphs, with several values plotted for each
category. The lines connecting the values for each cate-
gory have different colors or patterns in order to distin-
guish among them.
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GANTT  GRAPHS
Gantt graphs are used by project managers and oth-

ers to show job activity over time, which can range from
a single workday to a complicated construction project
that stretches over several years. The horizontal axis
shows time, with units depending on the length of the
project. The vertical axis shows resources, which can be
anything from the names of people working on the proj-
ect to different pieces of equipment needed to complete
the project. Blocks of time are marked off along the 
time axis showing how each resource will be used during
that time.

P ICTURE  GRAPHS
Graphs that are intended for general readers rather

than scientists or engineers, such as those frequently pub-
lished in newspapers and magazines, often use artistic
symbols to denote the values of different categories. An
article about money, for example, might show stacks of
currency instead of plain bars in a bar graph. A different
article about new car sales might include a graph using a
small picture of a car to represent every 100 cars sold by
different dealers. These kinds of artistic graphs are usually
varieties of bar graphs, although the use of artistic sym-
bols can make it difficult to accurately compare values
among different categories. Therefore, they are most use-
ful when used to illustrate general trends or relationships
rather than to allow readers to make exact comparisons.
For that reason, picture graphs are almost never used by
scientists and engineers.

X -Y  GRAPHS

X-y graphs are also known as scatterplots. Instead of
having a fixed number of categories along one axis, x-y
graphs allow an infinite number of points along two per-
pendicular axes and are used extensively in scientific and
engineering applications. Each point is defined by two
values: the abscissa, which is measured along the x axis,
and the ordinate, which is measured along the y axis.
Strictly speaking, the terms abscissa and ordinate refer to
the values measured along each axis although in day-to-
day conversation many scientists and engineers use the
terms in reference to the axes themselves. Each piece of
data to be graphed will have both an abscissa and an ordi-
nate, sometimes referred to as x- and y-values.

The most noticeable property of an x-y graph is that
it consists of points rather than bars or lines. Lines can be
added to x-y plots but they are in addition to the points
and not a replacement for them. Line graphs can also
have points added as an embellishment and can therefore
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be confused with x-y graphs under some circumstances.
Line graphs and x-y graphs, however, have some impor-
tant differences. First, the categories on a line graph do
not have to be numbers. As described above, line graphs
can represent things such as cities, geographic areas, or
companies. Each value on a line graph must correspond
to one of a finite number of categories. The abscissa of a
point plotted on an x-y graph, in contrast, must always be
a number and can take on any value. Second, the lines on
a line graph must always connect the values for each cat-
egory. If lines are added to an x-y graph, they do not have
to connect all of the points. Although they can connect all 

Graphing Functions and Inequalities

Continuous mathematical functions and inequalities
involving real numbers have an infinite number of possi-
ble values, but are graphed in much the same way as 
x-y graphs containing a finite number of points.

Consider the function y � x2. The first step is to
determine the range of the x axis because, unlike a finite
set of points that have a minimum and maximum x value,
functions can generally range over all possible values of
x from �∞ to �∞. For this example, allow x to range from
0 to 3 (0 � x � 3). Next, select enough points over that
range to produce a smooth curve. This must be done by
trial and error, and becomes easier once a few graphs are
made. Seven points will suffice for this example: 0, 0.5,
1, 1.5, 2, 2.5, and 3. These values will be the abscissae.
Substitute each abscissa into the function (in this case
y � x2) and calculate the value of the function for that
value, which will produce the ordinates 0, 0.25, 1, 2.25,
4, 6.25, and 9. Finally, plot a point for each corresponding
abscissa and ordinate, or (0,0), (0.5,0.25), (1,1),
(1.5,2.25), (2,4), (2.5,6.25), and (3,9).

Because a continuous function has values for all
possible values of x, not just those for which values were
just calculated, the points can be joined using a smooth
curve. Before computers with graphics capabilities were
widely available, this was done using drafting templates
known as French curves, or thin flexible strips known as
splines. The French curve, or spline, was positioned so
that it passed through the graphed points and used as a
guide to draw a smooth curve. A smooth curve can also
be approximated by calculating values for a large number
of points and then connecting them with straight lines, as
in a line graph. If enough points are used, the straight line

segments will be short enough to give the appearance of
a smooth curve. Computer graphics programs follow a
digital version of this procedure, calculating enough sets
of abscissae and ordinates to generate the appearance
of a continuous line. In many cases the programs use
sophisticated algorithms that minimize the number of
points by evaluating the function to see where values
change the most, plotting more points in those areas and
fewer in parts of the graph where the function is smoother.

To plot an inequality, temporarily consider the
inequality sign (�, �, �, 	) to be an equal sign. Decide
upon a range for the abscissae, divide it into segments,
and calculate pairs of abscissae and ordinates in the
same manner as for a function. If the inequality is � or
�, then connect the points with a dashed line and indi-
cate which side of the line represents the inequality. For
example, if the inequality is y � x2, then the area above
the dashed line should be shaded or otherwise identified
as the region satisfying the inequality. If the inequality
had been y � x, then the area beneath the dashed line
would satisfy the inequality. In cases of � or 	 inequal-
ities, the two regions can be separated by a solid line to
indicate that points exactly along the line, not just those
above or below it, satisfy the relationship.

Graphs of functions can also be used to solve 
equations. The equation 4.3 � x2, for example, is a ver-
sion of the equation y � x2 described in this sidebar.
Therefore, it can be solved by graphing the function y �
x2 over a range of values that includes x � 4.3 (for exam-
ple, 4 � x � 5) and reading the abscissa that corre-
sponds to an ordinate of 4.3. In this case, the answer is
x � 2.07.

of the points, especially in cases where there are only a
few points on the graph, lines connecting the data points
are not required on x-y graphs. Lines can, for example, be
used to show averages or trends in the data on an x-y
graph. Figure 8 represents an x-y graph. Adding lines to
connect all of the points in an x-y graph can be very
confusing if there are a large number of points, and
should be done only if it improves the legibility of the
graph.

To create an x-y graph, first move along the x-axis to
the abscissa and draw an imaginary line perpendicular to
the x-axis and passing through the abscissa. Next, move
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along the y-axis to the ordinate, then draw an imaginary
line perpendicular to the y-axis. Draw a small symbol at
the location where the two imaginary lines intersect.
Repeat this procedure for each of the points to be
graphed. The symbols used should be the same for all of
the points in each data set, and can be circles, squares,
rectangles, or any other simple shape. If more than one
data set is to be shown on the same graph, choose a dif-
ferent symbol or color for the points in each set.

The abscissa and ordinate values of points on x-y
graphs created for scientific or engineering projects are
sometimes transformed. This can be done in order to
show a wide range of values on a single set of axes or, in
some cases, so that points following a curved trend are
graphed as a straight line. The most common way to
transform data is to calculate the logarithm of the
abscissa or ordinate, or both. If the logarithm of one is
plotted against the original arithmetic value of the other,
the graph is known as a semi-log graph. If the logarithms
of both the abscissa and ordinate are plotted, the result is

a log-log graph. The logarithms used can be of any base,
although base 10 is the most common, and the base
should always be indicated. At one time, base 10 loga-
rithms were referred to as common logarithms and
denoted by the abbreviation log. Base e logarithms (e �

2.7183. . .) were referred to as natural logarithms and
denoted by the abbreviation ln. This practice fell out of
favor among some scientists and engineers during the late
1900s. Since then, it has been common to use log to
denote the natural logarithm, and log10 to denote the base
10, or common, logarithm.

A map with points plotted to indicate different cities
or landmarks can be considered to be a special kind of
x-y graph. In this case, the abscissa and ordinate of each
point consist of its geographic location given in terms of
latitude and longitude, universal transverse Mercator
(UTM) coordinates, or other cartographic coordinate
systems. Likewise, the outline of a country or continent
can be thought of as a series of many points connected by
short line segments.

Graphing Fallacies

Some people believe that graphs don’t lie because they
are based on numbers. But, the way that a graph is
drawn and the numbers that are chosen can deliberately
or accidentally create false impressions of the relation-
ships shown on the graph. Scientists, engineers, and
mathematicians are usually very careful not to mislead
their readers with fallacious graphs, but artists working
for newspapers and magazines sometimes take liberties
that accidentally misrepresent data. Dishonest people
may also deliberately create graphs that misrepresent
data if it helps them to prove a point.

One way to misrepresent data is to create a graph
that shows only a selected portion of the data. This is
known as taking data out of context. For example, if the
number of computers sold at an electronics store
increases by 100 computers per year for four years and
then decreases by 25 computers per year during the fifth
year, it is possible to make a graph showing only the last
year’s information and title the graph, “Decreasing Com-
puter Sales.” Actually, though, sales have increased by 
4 � 100 � 25 � 375 computers over the five years, so
the fifth year represents only a small change in a longer
term trend. It is true to state that computer sales fell dur-
ing the fifth year but, depending on how the graph is
used, it may be misleading to do so because it presents
data out of context.

Another way to misrepresent data is by choosing the
limits of the vertical axis of the graph. Imagine that a sur-
vey shows that men working in executive jobs earned an
average salary of $100,000 per year and that women
working in executive jobs earned an average salary of
$85,000 per year. If these two pieces of information
were plotted on a graph with an axis ranging from zero to
$100,000, it would be clear that the women earned an
average of 15% less than the men. But, if the axis were
changed so that it ranged only from $80,000 to
$100,000 it might appear to the casual reader than
women earned only about 25% as much as men.
Because the information conveyed by a graph is largely
visual, many readers will not notice the values on the
axis and base their interpretation only on the relation-
ships among the lines, bars, or points on the graph.
Some irresponsible graph-makers even eliminate the
ordinate axis altogether and use bars or other symbols
that are not proportional to the values that they
represent.

Sometimes it is the data themselves that are the
problem. A graph showing how salaries have increased
during the past 50 years may show a tremendous
increase. If the salaries are adjusted for inflation, how-
ever, the increase may appear to be much smaller.
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The underlying principles of x-y plots can be extended
into the third dimension to produce x-y-z plots. Points are
plotted along the z axis following the same procedure that
is used for the x and y axes. One difficulty associated with
x-y-z plots is that two-dimensional surfaces such as pieces
of paper have only two dimensions. Complicated geomet-
ric constructions known as projections must be used to
create the illusion of a third dimension on a flat surface.
Therefore, x-y-z plots of large numbers of points are prac-
tical only if done on a computer, which allows the plots to
be virtually rotated in space so that the data can be exam-
ined from any perspective.

BUBBLE  GRAPHS
Bubble graphs allow three-dimensional data to be

presented in two-dimensional graphs, and are in many
cases useful alternatives to x-y-z graphs. For each data
point, two of the three variables are plotted as in a normal
x-y graph. The third variable for each point is represented
by changing the size of the point to create circles or
bubbles of different sizes. One important consideration is
the way in which the bubble size is calculated. One way is
to make the diameter of the circle proportional to the
value of the third variable. Because the area of a circle is
proportional to the square of its radius, doubling the
radius or diameter will increase the area of the circle by a
factor of 4. Therefore, doubling the diameter may mislead
a reader into believing that one bubble represents a value
four times as large as another when the person creating
the graph intended it to represent a value only twice as
large. In order to create a circle with twice the area, the
radius or diameter must be increased by a factor of 1.414
(which is the square root of 2). Figure 9 is representative
of a bubble graph.

A Brief History of Discovery 
and Development

The graphing of functions was invented by the
French mathematician and philosopher René Descartes
(1596–1650) in 1637, and the Cartesian coordinate sys-
tem of x-y (and sometimes z) axes used to plot most
graphs today bears his name. Ironically, however,
Descartes did not use axes as known today or negative
numbers when he created the first graphs.

Commercially manufactured graph paper first
appeared in about 1900 and was adopted for use in
schools as part of a broader reform of mathematics edu-
cation. Leading educators of the day extolled the virtues

of using so-called squared paper or paper with squared
lines to graph mathematical functions. As the twentieth
century progressed, students and professionals came to
have a wide range of specialized graph paper available for
use. The selection included graph paper with preprinted
semi-log and log-log axes, as well as paper designed for
special kinds of statistical graphs.

Digital computers were invented in the middle of the
twentieth century, but computers capable of displaying
even simple graphs were rare until personal computers
became common in the 1980s. So-called spreadsheet pro-
grams, in particular, represented a great advance because
they allowed virtually anyone to enter rows and columns
of numbers and then examine relationships among them
by creating different kinds of graphs. Handheld graphing
calculators appeared in the 1990s and were quickly incor-
porated into high school and college mathematics courses.
At about the same time, sophisticated scientific graphing
and visualization programs for advanced students and
professionals began to appear. These programs could plot
thousands of points in two or three dimensions.

Real-life Applications

GLOBAL  WARMING
Most scientists studying the problem have concluded

that burning fossil fuels such as coal and oil (including
gasoline) during the twentieth century has caused the
amount of carbon dioxide, carbon monoxide, and other
gasses in Earth’s atmosphere to increase, which has in turn
led to a warming of the atmosphere and oceans. Among
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the tools that scientists use to draw their conclusions are
graphs showing how carbon dioxide and temperature
change from day to day, week to week, and year to year.
Although actual measurements of atmospheric gasses date
back only 50 years or so, paleoclimatologists use other
information such as the composition of air bubbles
trapped for thousands of years in glacial ice, the kinds of
fossils found buried in lake sediments, and the widths of
tree rings to infer climate back into the recent geologic
past. Data collected over time are often described as time
series. Time series can be displayed using line graphs, stem
graphs, or scatter plots to illustrate both short-term fluc-
tuations that occur from month to month and long-term
fluctuations that occur over tens to thousands of years,
and have provided compelling evidence that increases in
greenhouse gasses and temperatures measured over the
past few decades represent a significant change.

F IND ING  O I L
Few oil wells resemble the gushers seen in old

movies. In fact, modern oil well-drilling operations are
designed specifically to avoid gushers because they are
dangerous to both people and the environment. Geolo-
gists carefully examine small fragments of rock obtained
during drilling and, after drilling is completed, lower
instruments down the borehole to record different rock
properties. These can include electrical resistivity, natural
radioactivity, density, and the velocity with which sound
waves move through the rock. All of this information
helps to determine if there is oil thousands of feet
beneath the surface, and is plotted on special graphs
known as geophysical logs. In most cases, the properties
are measured once every 6 inches (15.2 cm) down the
borehole, so depth is the category (or abscissa) and each
rock property is a value (or ordinate). Unlike most line
graphs or x-y graphs, though, the category axis or
abscissa is oriented vertically with the positive end point-
ing downward because the borehole is vertical and depth
is measured from the ground surface downward. Geo-
physical logs are plotted together on one long sheet of
paper or a computer screen so that geologists can com-
pare the graphs, analyze how the rock properties change
with depth, and then estimate how much oil or gas there
is likely to be in the area where the well was drilled. If
there is enough to make a profit, pipes and pumps are
installed to bring the oil to the ground surface. If not, the
well is called a dry hole and filled with cement.

GPS  SURVEY ING

Surveyors, engineers, and scientists use sensitive
global positioning system (GPS) receivers that can

determine the locations of points on Earth’s surface to an
accuracy of a fraction of an inch. In some cases, the infor-
mation is used to determine property boundaries or to
lay out construction sites. In other cases, it is used to
monitor movements of Earth’s tectonic plates, the growth
of volcanoes, or the movement of large landslides. GPS
users, however, must be certain that their receivers can
obtain signals from a sufficient number of the 24 global
positioning system satellites orbiting Earth in order to
make such accurate and precise measurements. This can
be difficult because the number of satellites from which
signals can be received in a given location varies from
place to place throughout the course of the day. Profes-
sional GPS users rely on mission-planning software to
schedule their work so that it coincides with acceptable
satellite availability. Two of the most important pieces of
information provided by mission-planning software are
bar graphs showing the number of satellites from 
which signals can be received and the overall quality or
strength of the signals, which is known as positional dilu-
tion of precision (PDOP). A surveyor or scientist plan-
ning to collect high-accuracy GPS measurements will
enter the latitude and longitude of the project area, infor-
mation about obstructions such as tall buildings or cliffs,
and the date the work is to take place. The mission-
planning software will then create a graph showing the
satellite coverage and PDOP during the course of that
day, so that fieldwork can be scheduled for the most
favorable times.

B IOMED ICAL  RESEARCH

Genetic and biomedical research generate large
amounts of data, particularly related to genetic sequences
or genomes. Researchers in these fields use specialized
graphing programs to visualize genetic sequences of dif-
ferent organism, including computer programs that can
simultaneously display information about two different
organisms and graphically illustrate which genes are pres-
ent in both. Phylogenetic tree graphs, which have a
branching structure, are used to illustrate the relation-
ships between groups of many different organisms. Other
biomedical scientists have developed new ways to con-
struct multidimensional graphs to represent similarities
between proteins. The field of biomechanics combines
physics with biology and medicine to analyze how physi-
cal stresses and forces affect living organisms. Sophisti-
cated scientific visualization software is used to analyze
computer models simulating the stresses developed in the
bones of athletes or in the blood vessels of people suffer-
ing heart attacks.
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PHYS ICAL  F I TNESS

Many health clubs and gyms have a variety of comput-
erized machines such as stationary bicycles, rowing
machines, and elliptical trainers that rely on graphs to pro-
vide information to the person using the equipment. At the
beginning of a workout, the user can scroll through a menu
of different simulated routes, some hilly and some flat, that
offer different levels of physical challenge. As the workout
progresses, a bar graph moves across a small screen to show
how the resistance of the machine changes to simulate the
effect of running or bicycling over hilly terrain. In other
modes, the machine might monitor the user’s pulse and
adjust the resistance to maintain a specified heartbeat, with
the level of resistance shown using a different bar graph.

AERODYNAMICS  AND
HYDRODYNAMICS

The key to building fast and efficient vehicles—
whether they are automobiles, aircraft, or watercraft—lies
in the reduction of drag. Using a combination of experi-
mental data from wind tunnels or water tanks and the
results of computational fluid dynamics computer
simulations, designers can create graphs showing how fac-
tors such as the shape or smoothness of a vehicle affect the
drag exerted by air or water flowing around the vehicle.

Experiments are conducted or computer simulations run
for different vehicle shapes, and the results are summa-
rized on graphs that allow designers to choose the most
efficient design for a particular purpose. In some cases,
these are simply x-y graphs or line graphs comparing sev-
eral data sets. In other cases, the graphs are animated sci-
entific visualizations that allow designers to examine the
results of their experiments or models in great detail.

COMPUTER  NETWORK  DES IGN
Computer networks from the Internet to the com-

puters in a small office can be analyzed using graphs
showing the connectivity of different nodes. A large net-
work will have many nodes and sub-nodes that are
connected in a complicated manner, partly to provide a
degree of redundancy that will allow the network to con-
tinue operating even if part of it is damaged. The United
States government funded research during the 1960s on
the design of networks that would survive attacks or
catastrophes grew into the Internet and World Wide Web.
A network in which each computer is connected to oth-
ers by only one pathway, be it a fiber optic cable or a wire-
less signal, can be inexpensive but prone to disruption. At
the other end of the spectrum, a network in which each
computer is connected to every other computer is almost

Technical Stock Analysis

Some investors rely on hunches or tips from friends to
decide when they should buy or sell stock. Others rely on
technical analysis to spot trends in stock prices and
sales that they hope will allow them to earn more money
by buying or selling stock at just the right time. Technical
stock analysts use different kinds of specialized graphs
to depict information that is important to them. Candle-
stick plots use one symbol for each day to show the price
of the stock when the market opened, the price when it
closed, and the high and low values for the stock during
the course of the day. This is done by using a rectangle
to indicate opening and closing prices, with vertical lines
extending upward and downward from the box to indicate
the daily high and low prices. The result is a symbol that
looks like a candle with a wick at each end. The color of
the box, usually red or green, indicates whether the clos-
ing price of the stock was higher or lower than the open-
ing price.

Day-to-day fluctuations in stock price can be
smoothed out using moving average or trend plots that
remove most, if not all, of the small changes and let
investors concentrate on trends that persist for many
days, weeks, or even months. Moving averages calculate
the price of a stock on any given day by averaging the
prices over a period of days. For example, a five-day mov-
ing average would calculate the average price of the
stock over a five-day period. The “moving” part of moving
average means that different sets of data are used to
calculate the average each day. The five-day moving aver-
age calculated for June 5, 2004, will use a different set
of five prices (for June 1 through June 5) than the five-
day moving average calculated for June 6, 2004 (June 2
through June 6).

The volume, or number, of shares sold on a given
day, is also important to stock analysts and can be
shown using bar charts or line graphs.
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always prohibitively expensive even though it may be the
most reliable. Therefore, the design of effective networks
balances the costs and benefits of different alternatives
(including the consequences of failure) in order to arrive
an optimal design. Because of their built-in redundancy
and complexity, large computer networks are impossible
to comprehend without graphs illustrating the degrees of
interconnection between different nodes. Applied mathe-
maticians also use graph theory to help design the 
most efficient networks possible under a given set of
constraints.

Potential Applications

The basic methods of graphing have not changed over
the years, but continually increasing computer capabilities

give scientists, engineers, and businesspeople powerful
and flexible graphing tools to visualize and analyze large
amounts of data. Likewise, scientific visualization tools
provide a way to comprehend the voluminous output of
supercomputer models of weather, ocean circulation,
earthquake activity, climate change, and other compli-
cated natural processes. Ongoing technology develop-
ment is concentrated on the use of larger and faster
computers to better visualize these kinds of data sets, for
example using transparent surfaces and advanced render-
ing techniques to visualize three-dimensional data. Com-
puter-generated movies or animations will also allow
visualization of changes in three-dimensional data sets
over time (so-called four-dimensional analysis). The
design and implementation of user-friendly interfaces
will also continue, bring powerful visualization technol-
ogy within the grasp of more people.

Scientific Visualization

Scientific visualization is a form of graphing that has
become increasingly important since the 1980s and
1990s. Advances in computer technology during those
years allowed scientists and engineers to develop sophis-
ticated mathematical simulations of processes as diverse
as global weather, groundwater flow and contaminant trans-
port beneath Earth’s surface, and the response of large
buildings to earthquakes or strong winds. Likewise, com-
puters enabled scientists and engineers to collect very
large data sets using techniques like laser scanning and
computerized tomography. Instead of tens or hundreds of
points to plot in a graph, scientists working in 2005 can
easily have thousands or even millions of data points to
plot and analyze.

Scientific visualizations, which can be thought of as
complicated graphs, usually contain several different
data sets. A visualization showing the results from a
computer simulation of an oil reservoir, for example,
might include information about the shape and extent of
the rock layers in which the oil is found, information
about the amount of oil at different locations in the reser-
voir, and information about the amount of oil pumped
from different wells. A visualization of a spacecraft reen-
tering Earth’s atmosphere might include the shape of the
spacecraft, colors to indicate the temperature of the out-
side of the spacecraft, and vectors or streamlines show-
ing the flow of air around the spacecraft. Animation can
also be an important aspect of scientific visualization,

especially for problems in which the values of variables
change over time. Visualization software available in
2005 typically allows scientists to interactively rotate
and zoom in and out of plots showing several different
kinds of data in three dimensions.
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Figure A: Scientific visualization, especially for problems
in which the values of variables change over time such as
representations of data related to oil drilling depicted
above, are an increasingly important ways to understand
and depict data.
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Overview

We each process hundreds or thousands of manufac-
tured images every day, including those displayed by
books, magazines, computers, digital cameras, signage,
TVs, and movies. Images are an important form of com-
munication in entertainment, war, science, art, and other
fields because a human being can grasp more informa-
tion more quickly by looking at an image than in any
other way.

Fundamental Mathematical Concepts
and Terms

Most of the images we see have been either altered or
created from scratch using computers. Computers
process images in “digital” form, that is, as collections of
digits (numbers). A typical black-and-white digital image
consists of thousands or millions of numbers laid out in
a rectangular array like the squares on a checkered table-
cloth. (The numbers are not stored this way physically in
the computer, but they are organized as if they were.) To
turn this array of numbers into a visible image, as when
making a printout or displaying the image on a screen, a
tiny, visible dot is created from each number. Each dot is
called a picture element or “pixel.” A color image of the
same size consists of three times as many numbers as a
black-and-white image because there are three numbers
per pixel, one number for the brightness of each color
channel. The three colors used may be the three 
primary colors (red, yellow, blue), the three secondary
colors (cyan, magenta, yellow), or the colors of the
popular RGB scheme (red, green, blue). By adding differ-
ent amounts from each color channel, using the three
numbers for each pixel as a recipe, a pixel of any color can
be made.

A rectangular array of numbers is also called a
“matrix.” An entire field of mathematics—“matrix alge-
bra”—is devoted to working with matrices. Matrix alge-
bra may be used to change the appearance of a digital
image, extract information from it, compare it to another
image, merge it with another image, and to affect it in
many other ways. The techniques of Fourier transforms,
probability and statistics, correlation, wavelets, artificial
intelligence, and many other fields of mathematics are
applied to digital images in art, engineering, science,
entertainment, industry, police work, sports, and warfare,
with new methods being devised every year.

In general, we are interested in either creating, alter-
ing, or analyzing images.
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A Brief History of Discovery 
and Development

The relationship between images and mathematics
began with the invention of classical geometry by Greek
thinkers such as Euclid (c. 300 B.C.) and by mathemati-
cians of other ancient civilizations. Classical geometry
describes the properties of regular shapes that can be
drawn using curved and straight lines, namely, geometric
figures such as circles, squares, and triangles and solids
such as spheres, cubes, and tetrahedra. The extension of
mathematics to many types of images, not just geometric
figures, began with the invention of perspective in the
early 1400s. Perspective is the art of drawing or painting
things so as to create an illusion of depth. In a perspective
drawing, things that are farther from the artist are smaller
and closer together according to strict geometric rules.
Perspective became possible when people realized that
they could apply geometry to the space in a picture,
rather than just to shapes such as circles and triangles.
Today, the mathematics of perspective—specifically, the
group of geometric methods known as trigonometry—
are basic to the creation of three-dimensional animations
such as those in popular movies like Jurassic Park (1993),
Shrek (2001), and Star Wars Episode II: Attack of the
Clones (2003).

Real-life Applications

CREAT ING  IMAGES
Because a digital image is really a rectangular array

matrix full of numbers, we can create one by inserting
numbers into a matrix. This is done, most often in the
movie industry, by cooking up numbers using mathe-
matical tools such as Euclidean geometry, optics, and
fractals. A digital image can also be created by scanning or
digitally photographing an existing object or scene.

ALTER ING  IMAGES
The most common way of altering a digital image is

to take the numbers that make it up and apply some
mathematical rule to them to create a new image. Meth-
ods of this kind including enhancement (making an
image look better), filtering (removing or enhancing cer-
tain features of the image, like sharp edges), restoration
(undoing damage like dust, rips, stains, and lost pixels),
geometric transformation (changing the shape or orienta-
tion of an image), and compression (recording an image
using fewer numbers). Most home computers today con-
tain software for doing all these things to digital images.

ANALYZ ING  IMAGES
Analyzing an image usually means identifying the

objects in it. Is that blob a face, a potato, or a bomb in the
luggage? If it’s a face, whose face is it? Is that dark patch in
the satellite photograph a city, a lake, or a plowed field?
Such questions are answered using a wide array of math-
ematical techniques that reduce images to representation
of pixels by numbers that are then subject to mathemati-
cal analysis and operations.

Sports Video Analysis

Video analysis is the use of mathematical techniques
from probability, graph theory, geometry, and other
areas to analyze sports and other kinds of videos.
Sports video analysis is a particularly large market,
with millions of avid watchers keen for instant replays
and new and better ways of seeing the game.

Traditionally, the only way to find specific
moments in a video (or any other kind) of video was
to fast-forward through the whole thing, which is
time-consuming and annoying. Today, however,
mathematics applied to game footage by computers
can automatically locate specific plays, shots, or
other moments in a game. It can track the ball and
specific players, automatically extract highlights and
statistics, and provide computer-assisted referee-
ing. Soon, three-dimensional computer models of
the game space constructed from multiple cameras
will allow the viewer to choose their own viewpoint
from which to view the game as if from the front row,
floating above the field, following a certain player,
following the ball, or wherever. Some software
based on these techniques, such as the Hawk-Eye
program used to track the ball in broadcast cricket
matches, is already in commercial use.

Video analysis in sports is also used by
coaches and athletes to improve performance.
Mathematical video analysis can show exactly how
a shot-putter has thrown a shot, or how well the
members of a crew team are pulling. By combining
global positioning system (GPS) information about
team players’ exact movements with computerized
video analysis and radio-transmitted information
about breathing and heart rates, coaches 
(well-funded, high-tech, and “math savvy” coaches,
that is) can now get an exact picture of overall team
effort.
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OPT ICS
Mathematics and imaging formed another fruitful

connection with the growth of modern mathematical
optics starting in the 1200s. Mathematical optics is the
study of images are formed by light reflecting from curved
mirrors or passing through one or more lenses and falling
on any flat or light-sensitive surface such the retina of the
eye, a piece of photographic film, or a light-sensitive cir-
cuit such as is used in today’s digital cameras. Mathemat-
ical optics makes possible the design of contacts,
eyeglasses, telescopes, microscopes, and cameras of all
kinds. Advanced mathematics are needed to predict the
course of light rays passing through many pieces of glass
in high-quality camera lenses, and to design lens shapes
and coatings that will deliver a nearly perfect image.

MEDICAL  IMAG ING
For the better part of a century, starting in the 1890s,

the only way to see anything inside of a human body
without cutting it open was to shine x rays through it.
Shadows of bones and other objects in the body would
cast by the x rays on a piece of photographic film placed
on the other side of the body. This had the disadvantages
that it could not take pictures of soft tissues deep in the
body (because they cast such faint shadows), and that the
shadows of objects in the path of the x-ray beam were
confusingly overlaid on the x-ray film. Further, excessive
x-ray doses can cause cancer. However, the spread of
inexpensive computer power since the 1960s has led to an
explosion of medical imaging methods.

Due in part to faster computers, it is now possible to
produce images from x-rays and other forms of energy,
including radio waves and electrical currents, that pass
through the body from many different directions. By apply-
ing advanced mathematics to these signals, it is possible to
piece together extremely clear images of the inside of the
body—including the soft tissues. Magnetic resonance
imaging (MRI), which places the body in a strong magnetic
field and bombards it with radio waves, is now widely avail-
able. A technique called “functional MRI” allows neurolo-
gists to watch chemical changes in the living brain in real
time, showing what parts of the brain are involved in think-
ing what kinds of thoughts. This has greatly advanced our
knowledge of such brain diseases as Alzheimer disease,
epilepsy, dyslexia, and schizophrenia.

COMPRESS ION
Imagine a square digital image 1,000 pixels wide by

1,000 pixels tall—all one solid color, blue. That’s 1,000 �
1,000 or 1 million blue pixels. If each pixel requires 3 bytes
(one byte equals eight bits, that is, eight 1s and 0s), this

extremely dull picture will take up 3 million bytes
(megabytes, MB) of computer memory. But we don’t need
to waste 3 MB of memory on a blue square, or wait while
they transmit over the Web. We could just say “blue square,
1,000 pixels wide” and have done with it: everything there is
to know about that picture is summed up by that phrase.
This is an example of “image compression.” Image com-
pression takes advantage of the redundancy in images—the
fact that nearby pixels are often similar—to reduce the
amount of data storage and transmission time taken up by
images. Many mathematical techniques of image compres-
sion have been developed, for use in everything from space
probes to home computers, but the most of the images that
are received and sent over the World Wide Web are com-
pressed by a standard method called JPEG, short for Joint
Photographic Experts Group, first advanced in 1994.

JPEG is a “block encoding” method. This means
that it divides the image up into blocks 8 by 8 pixels in
size, then records as much of the image redundancy in
that block as it can in a series of numbers called 
“coefficients.” The coefficients that don’t record as much
redundancy are thrown away. This allows a smaller group
of numbers (the coefficients that are left) to record 
most of the information that was in the original 
image. An image can then be reconstructed from the
remaining coefficients. It is not quite as sharp as the
original, but the difference may be too slight for the eye to
notice.

RECOGNIZ ING  FACES :  
A  CONTROVERS IAL  APPL ICAT ION

Human beings are expert at recognizing faces. We
effortlessly correct for different conditions of light and
shadow, angles of view, glasses, and even aging. It is diffi-
cult, however, to teach a computer how to do this. Some
progress has been made and a number of face-recogni-
tion systems are on the market.

The mathematics of face recognition are complex
because faces do not always look the same. We can grow
beards or long hair, don sunglasses, gain or lose weight, put
on hats or heavy makeup, be photographed from different
angles and in different lights, and age. To recognize a face it
is therefore not enough to just look for matching patterns
of image dots. A mathematical model of whatever it is that
people recognize in a face—what it is about a face that
doesn’t change—must be constructed, if possible. Face-
recognition software has a low success rate in real-life set-
tings such as streets and airports, often wrongly matching
people in the crowd with faces in the records or failing to
identify people in the records who are in the crowd.
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Face on Mars

In 1976, two spidery robots, Viking 1 and Viking 2,
became the first spacecraft to successfully touch down
on the rocky soil of Mars. Each lander had a partner, an
“orbiter” circling the planet and taking pictures. Images
and other data from all four machines were radioed back
to Earth.

One picture drew public attention from the first. It had
been taken from space by a Viking orbiter, and it looked
exactly like a giant, blurry face built into the surface of Mars
(See Figure 1.)

Notice the dots sprinkled over the image. These are
not black spots on Mars, but places where the radio sig-
nal transferring the image from the Viking orbiter as a
series of numbers was destroyed by noise. However, one
dot lands on the “nose” of the Face, right where a nostril
would be; one lands on the chin, looking like the shadow
of a lower lip; and several land in a curve more or less
where a hairline would be. These accidents made the
image look even more like a face.

Some people erroneously decided that an ancient civ-
ilization had been discovered on Mars. Scientists insisted
that the “face” was a mountain, but a better picture was
needed to resolve any doubt. In 2001 an orbiter with an
better camera than Viking’s did arrive at Mars, and it took
the higher resolution picture of the “face” shown in 
Figure 2.

In this picture, the “Face” is clearly a natural feature
with no particular resemblance to a human face. Thanks
to mathematical processing of multiple images, we can
now even view it in 3-D. 

In later releases of Viking orbiter images in the
1970s the missing-data dots were “interpolated,” that
is, filled in with brightness values guessed by averaging
surrounding pixels. Without its dots, and seen in more
realistic detail, the “Face” does not look so face-like 
after all. 

Figure 1 (top). NASA/JPL/MSSS.

Figure 2 (bottom). 1989 ROGER RESSMEYER/NASA/CORBIS.
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Using face-recognition systems to scan public spaces
is politically controversial. At the Super Bowl game in
Tampa, Florida, in 2001, for example, officials set up cam-
eras to scan the fans as they went through the turnstiles.
The videos were analyzed using face-recognition soft-
ware. A couple of ticket scalpers were caught, but no seri-
ous criminals. Face-recognition technology has not been
used again at a mass sporting event, but is in use at sev-
eral major airports, including those in Boston, San Fran-
cisco, and Providence, Rhode Island.

Critics argue that officials might eventually be able to
track any person’s movements automatically, using the
thousands of surveillance cameras that are being installed
to watch public spaces across the country. Such a tech-
nology could be used not only to catch terrorists (if we
knew what they looked like) but, conceivably, to track
people for other reasons.

Face-recognition systems may prove more useful and
less controversial in less public settings. Your own com-
puter—which always sees you from about the same angle,
and in similar lighting—may soon be able to check your
identity before allowing you to spend money or access
secure files. Some gambling casinos already use face-recog-
nition software to verify the identities of people withdraw-
ing winnings from automatic banking machines.

FORENS IC  D IG I TAL  IMAG ING :
SHOEPR INTS  AND  F INGERPR INTS

Forensic digital imaging is the analysis of digital
images for crime-solving. It includes using computers to
decide whether documents are real or fake, or even
whether the print of a shoe at a crime scene belongs to a
particular shoe. Shoeprints, which have been used in crime
detection even longer than fingerprints, are routinely pho-
tographed at crime scenes. These images are stored in large
databases because police would like to know whether a
given shoe has appeared at more than one crime scene.
Matching shoe prints has traditionally been done by eye,
but this is tedious, time-consuming, and prone to mis-
takes. Systems are now being developed that apply mathe-
matical techniques such as fractal decomposition to the
matching of fresh shoeprints with database images—faster
and more accurately than a human expert. Fingerprints,
too, are now being translated into digital images and sub-
jected to mathematical analysis. Evidence that will stand up
in court can sometimes now be extracted from fingerprints
that human experts pronounced useless years ago.

DANCE
Dance and other motions of the human body can be

described mathematically. This knowledge can then be used

to produce computer animations or to record the choreog-
raphy of a certain dance. In Japan, for example, the number
of people who know how to dance in traditional style has
been slowly decreasing. Some movies and videos, however,
have been taken of the older dances. Researchers have
applied mathematical techniques to these videos—some of
which have deteriorated from age and are not easy to
view—in order to extract the most complete possible
description of the various dances. It would be better if the
dances could be passed down from person to person, as
they have in the past, but at least in this way they will not be
completely forgotten. Japanese researchers, who are partic-
ularly interested in developing human-shaped robots, also
hope to use mathematical descriptions of human motion to
teach robots how to sit, stand, walk—and dance.

MEAT  AND  POTATOES

The current United States beef-grading system assigns
a grade or rank to different pieces of beef based on how
much fat they contain (marbling). Until recently, an ani-
mal had to be butchered and its meat looked at by a human
inspector in order to decide how marbled it was. However,
computer analysis of ultrasound images has made it possi-
ble to grade meat on the hoof—while the animal is still
alive. Ultrasound is any sound too high for the ear to hear.
It can be beamed painlessly into the body of a cow (or per-
son). When this is done, some of the sound is reflected
back by the muscles and other tissues in the body. These
echoes can be recorded and turned into images. In medi-
cine, ultrasound images can reveal the health of a human
fetus; in agriculture, mathematical techniques like gray-
scale statistical analysis, gray-scale spatial texture analysis,
and frequency spectrum texture analysis can be applied to
them in order to decide the degree of marbling.

Different mathematics are applied to the sorting of
another food item that often appears at mealtime with
meat: potatoes. Potatoes that are the right size and shape
for baking can be sold for higher price, and so it is desir-
able to sort these out. This can either be done hand or by
passing them down a conveyer belt under a camera con-
nected to a computer. The computer is programmed to
decide which blobs in the image are potatoes, how big
each potato is, and whether the potatoes that are big
enough for baking are also the right shape. All these steps
involve imaging mathematics.

STEGANOGRAPHY  AND  D IG I TAL
WATERMARKS

For thousands of years, people have been interested in
the art of secret messages (also called “cryptography,” from
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the Greek words for “secret writing”), and computers have
now made cryptography a part of everyday life; for exam-
ple, every time someone uses a credit card to buy some-
thing over the Internet, their computer uses a secret code
to keep their card number from being stolen. The writing
and reading of cryptographic or secret messages by com-
puter is a mathematical process.

But for every code there is a would-be code-breaker,
somebody who wants to read the secret message. (If there
wasn’t, why would the message be secret?) And a message
that looks like it is in a secret code—a random-looking
string of letters or numbers—is bound to attract the atten-
tion of a code-breaker. Your message would be even more
secure if you could keep its very existence a secret. This is
done by steganography (from the Greek for “covered writ-
ing”), the hiding of secret messages inside other messages,
“carrier” messages, that do not appear secret at all. Secret
messages can be hidden physically (a tiny negative under a
postal stamp, or disguised as a punctuation mark in a
printed letter) or mathematically, as part of a message
coded in letters, numbers, or DNA. Digital images are par-
ticularly popular carriers. We send many images to each
other, and an image always has an obvious message of its
own; by drawing attention to itself, an image diverts suspi-
cion from itself. But a digital image may be much more
than it appears. The matrix of numbers that makes it up can
be altered slightly by mathematical algorithms to convey a
message while changing the visible appearance of the image
very little, or not at all. And since images contain so much
more binary information than texts such as letters, it is eas-
ier to hide longer secret messages in them.

You do not have to be a spy to want to hide a message
in an image. People who copyright digital photographs
want to prevent other people from copying them and using
them for free, without permission; one way to do so is to
code a hidden owner’s mark, a “digital watermark,” into the
image. Software exists that scans the Web looking for
images containing these digital watermarks and checking to
see whether they are being used without permission.

ART
Digital imaging and the application of mathematics

to digital images have proved important to the caretaking
of a kind of images that are emphatically not digital, not
a mass of numbers floating in cyberspace, not repro-
ducible by mere copying of 1s and 0s: paintings of the
sort that hang in museums and collections. Unlike digital
images, these are physical objects with a definite and
unique history. They cannot be truly copied and may
often be worth many millions of dollars apiece. The role
of digital imaging is not to replace such paintings, but to
aid in their preservation.

The first step is to take a super-high-grade digital
photograph of the painting. This is done using special
cameras that record color in seven color bands (rather
than the usually three) and take extremely detailed scans.
For example, a fine-art scanner may create a digital image
20,000 � 20,000 pixels (color dots) large, which is 400
million pixels total. But each pixel has seven color bands,
so there are actually seven times this many numbers in
the image record, about 2.8 billion numbers per painting.
This is about 100 times larger than the image created by a
high-quality handheld digital camera.

Once this high-grade image exists, it has many uses.
Even in the cleanest museum, paintings slowly dim, age,
and get dirty, and so must eventually be cleaned up or
“restored.” A digital image shows exactly what a painting
looks like on the day it was scanned; by re-scanning the
painting years later and comparing the old and new
images using mathematical algorithms, any subtle
changes can be caught. By applying mathematical trans-
formations to the image of a painting whose colors have
faded, experts can, in effect, look back in time to what the
painting used to look like (probably), or predict what it
will look like after cleaning. Also, famous paintings are
often transported around the world to show in different
museum. By re-imaging a painting before and after trans-
port and comparing the images, any damage during
transport can be detected.

Key Terms

Matrix: A rectangular array of variables or numbers, often
shown with square brackets enclosing the array.
Here “rectangular” means composed of columns of
equal length, not two-dimensional. A matrix equation
can represent a system of linear equations.

Pixel: Short for “picture unit,” a pixel is the smallest unit
of a computer graphic or image. It is also repre-
sented as a binary number.
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Information
Theory

Overview

It is often said that we live in the Information Age.
Computer enthusiasts sometimes speak as if we were now
being fed and housed by the “information economy,” or
as if we were all racing down the “information highway”
toward a perfect society. But what, exactly, is “informa-
tion”? We all know that disks and chips store it, and that
computers process it, and that is supposed to be a good
thing to have lots of—but what is it?

The answer is given by information theory, a branch
of mathematics founded in 1948 by American telephone
engineer Claude Shannon (1916-2001). Shannon discov-
ered how to measure the amount of information in any
given message. He also showed how to measure the abil-
ity of any information-carrying channel to transmit
information in the presence of noise (which disrupts and
changes messages). Information theory soon expanded to
include error-correction coding, the science of transmit-
ting messages with the fewest possible mistakes.

Shannon’s ideas about information have proved use-
ful for many things besides telephones. Information the-
ory enables designers to make many kinds of
message-handling devices more efficient, including com-
pact disc (CD) players, deep-space probes, computer
memories, and other gadgets. Information theory has
also proved useful in biology, where the DNA molecules
that help to shape us from birth to death turn out to be
written in code, and in economics, where information
processing is key to making money in a complicated,
competitive world. Error-correction coding also enables
billions of files to be transferred over the Internet every
day with few errors.

Fundamental Mathematical Concepts
and Terms

The central idea of information theory is informa-
tion itself. In everyday speech, “information” is used to
mean “useful knowledge”; if you have information about
something, you know something useful or significant
about that thing. In mathematics, however, the word has
a much narrower meaning.

Shannon began with the simple idea that whatever
information is, messages carry it. From this he derived a
precise mathematical expression for the information in
any given message. Every system that transmits a message
has, Shannon said, three parts: a sender, a channel, and a
receiver. If the sender is a talker on one end of a phone
line, the phone line is the channel and the listener at the
far end is the receiver.
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The sender chooses a message at random. Here, ran-
dom means that all N messages are equally likely, just as,
when you flip a fair coin, heads and tails are equally likely.
If all N messages are equally likely, the chance or proba-
bility of each message being sent is 1/N. For example, if
we flip a coin to choose whether to send 1 or 0 (1 for
heads, 0 for tails), then N � 2 (there are two possible
messages) and the probability of each message is 1/2
(because 1/N � 1/2).

From the sender’s point of view, the situation is sim-
ple: choose a message and send it. From the receiver’s
point of view, things are less simple. The receiver knows
that a message is coming, but they do not know which
one. They are therefore said to have uncertainty about
what message will be sent. Exactly how much “uncer-
tainty” they have depends on N. That is, the more possi-
ble messages there are (the larger N is), the harder it is for
the receiver to guess what message will be sent.

The receiver’s uncertainty is important because it
tells us exactly much they learn by receiving a message. If
there is only one possible message—say, if the sender can
only send the digit “0”, over and over— then the receiver
can always “guess” it ahead of time, so they learn nothing
by receiving it. If there are two possible messages (N � 2),
then the receiver has only a 50–50 chance of guessing
which will be sent, and definitely learns something when

a message is received. If there are more than two possible
messages (N � 2), then the receiver’s chance of guessing
which message will be sent is less than 50–50.

The harder it is to guess a message before getting it,
the more one learns by getting it. Therefore, the receiver’s
uncertainty tells us how much they learn—how much
information they gain—from each message. Messages
chosen at random from large message-sets are harder to
guess ahead of time, so the receiver learns more by receiv-
ing them; they convey more “information.”

Now assume that a message has been chosen from
the list of N possibilities, sent, and correctly received. The
receiver’s uncertainty about this particular message has
now been reduced to 0. This reduction in uncertainty
corresponds, as we have seen, to a gain in information.
This, then, is information theory’s definition of informa-
tion: Information is what reduces uncertainty. We will
label information H, as is customary.

The information that the receiver derives from a sin-
gle message, H, depends on the number of possible mes-
sages, N. Bigger N means more uncertainty: more
uncertainty means more information gained when the
message arrives. To signify the dependence of informa-
tion on N, we write H as a “function” of N , like so: H(N).
(This is pronounced “H of N ”.) A function is a rule that
relates one set of numbers to another set. For example, if
we write f(x), we mean that for every number x there is
another number, f , related to it by some rule; if the rule
is, for example, that f is always twice x, we write f(x) � 2x.
Likewise when we write H(N), we say that for every N
there is another number, H, related to it by some rule.
Below, we’ll look at exactly what this rule is.

H, which stands for the amount of information in a
single message, has units of “bits.” Similarly, numbers that
record distances have units of feet (or meters, or miles)
and numbers that record time intervals have units of sec-
onds (or hours, or days). The bit is defined as follows: If
a message consisting of a single binary digit is received,
and that message was equally likely to be a 1 or a 0, then
1 bit of information has been received.

To find out what the function or rule is that relates
the numbers H and N, we first introduce an imaginary
wrinkle. Let us say that the sender is picking messages
from two groups of possibilities, like two buckets of mar-
bles. One group of possible messages has N1 choices
(Bucket Number 1, with N1 marbles in it) and the other
has N2 choices (Bucket Number 2, with N2 marbles in it).
(The small “1” and small “2” attached to N1 and N2 are
just labels that help us tell the two numbers apart.) Now
imagine that the sender picks a message from the first
group and sends it, then picks a message from the second

000
100
010
001

101
110
111
011

Table 1.

We imagine that the sender chooses messages from a
collection of possible messages and sends them one by
one through the channel. Say that N stands for the num-
ber of messages that the sender has to choose from each
time. If the message is a word from the English language,
N is about 600,000. Often the message is a string of ones
and zeroes. Ones and zeroes are often used to represent
messages because they are easy to handle. Each one or
zero is called a “binary digit” (or “bit,” for short). If a
binary message is M bits long, then the number of possi-
ble messages, N, equals 2M. This is because there can be
only 2M different strings of ones and zeroes M digits long.
For example, if the message could be any string 3 bits long
(N � 3), then M � 8, because there are 23 � 8 different 
3-bit strings, as shown in Table 1.
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group and sends it, like grabbing one marble from Bucket
Number 1 and a second marble from Bucket Number 2.

This sender is really sending messages (or picking
marbles) in pairs. How many such pairs could there be? If
we call the number of possible pairs N, then N � N1N2.
This is easy to see with simple groups of messages. If the
first message is a 0 or 1 (a single binary digit), then N1 �

2, and if the second set is a pair of binary digits, the four
possible messages are 00, 10, 01, and 11, so N2� 4. Choos-
ing one message from each set allows eight (that is, N1 �

N2) possible pairs, as shown in Figure 1.

It is easy to prove to yourself that these really are the
only possible message pairs—just try to write one down
that isn’t already on the list.

How much information does one of these message-
pairs contain? To give a specific number we would have to
know the correct rule for relating H and N, that is, the
function H(N), which is what we’re still looking for. But
we can say one thing right off the bat: H(N) should agree
with common sense that the information given by the
two messages together is the sum of the information
given by the two messages separately. It turns out that this
common-sense idea is the key to finding H(N). Saying
that the information in the two messages adds can be
written as follows: H(N) � H(N1) � H(N2).

But we also know, as shown above, that N �N1 � N2.
We can therefore rewrite the previous equation a little
differently:H(N1N2) � H(N 1) � H(N2). It may not seem
like we’ve proven much by writing this equation, but it is
actually the key to our whole problem. Because it has the
form it has, there is only one possible way to compute the
information content of a message, that is, one possible
rule or function. Mathematicians have shown, using tech-
niques too advanced to go over here, that there is only
one function that satisfies H(N1N2) � H(N 1) � H(N2),
namely H(N) � log2N.

The expression “log2N ” means “the base 2 logarithm
of N,” namely, that power of 2 which gives N. For exam-
ple, log2 8 � 3 because 23 � 8, and log2 � 4 because 24 �

16. (See the entry in this book on Logarithms.) The graph
of H(N) � log2N is shown in Figure 2.

As we saw earlier, the number of different messages
that can be sent using binary digits (ones and zeroes) is 
N � 2M. So, for example, if we send messages consisting
of 7 binary digits apiece, the number of different messages
is N � 27 � 128. Using 2M for N in H(N) � log2N, we get
a new expression for H(N): H(M) � log22

M.

But log2 2M is just M, by the definition of the base-2
logarithm given above, so H(M) � log22

M simplifies to
H(M) � M. This is just a straight line, the simplest of all

functions, as shown in Figure 3. The equation H(M) � M
not only looks simple, it has a simple meaning: a message
written using M equally likely binary digits conveys M
bits of information. This is why we use “bit,” an abbrevi-
ation of “binary digit,” as the unit of information.

It is important to remember that while the “bit” is the
unit of all information, not all information is in the form
of “binary digits” (e.g., ones and zeroes). For example, the
letters in this sentence are not binary digits, but they con-
tain information.

UNEQUALLY  L IKELY  MESSAGES
A bit is the amount of information conveyed by the

answer to the simplest possible question, that is, a ques-
tion with two equally likely answers. When a lawyer in a
courtroom drama shrieks “Answer yes or no!” at a wit-
ness, they are asking for one bit of information. Paul
Revere’s famous scheme for anticipating a British raid

Message 1

0
0
0
0
1
1
1
1

Eight possible
message pairs

0 00
0 10
0 01
0 11
1 00
1 10
1 01
1 11

Message 2

00
10
01
11
00
10
01
11

Figure 1.

1

4

3.5

3

2.5

2

1.5

1

0.5

0
2 3 4 5

N

H(N)

6 7 8 9 10

Figure 2. The information content of a single message
selected from N equally likely messages: H(N) � log2N.
Units of H(N) are bits. 
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from Boston, as described by Henry Longfellow
(1807–1882) in the famous poem beginning “Listen my
children, and you shall hear / Of the midnight ride of
Paul Revere,” sought to convey one bit of information:

[Revere] said to his friend, “If the British
march

By land or sea from the town tonight,
Hang a lantern aloft in the belfry arch
Of the North Church tower as a signal light,—
One, if by land, and two, if by sea;
And I on the opposite shore will be,
Ready to ride and spread the alarm . . .”

Strictly speaking, this was a one-bit message 
only if the British were equally likely to come by land or
by sea.

But what if they were not? What if the British were,
say, five times as likely to come by land as by sea? So far
we’ve talked about messages selected from equally likely
choices, but what if the choices aren’t equally likely?

In that case, our rule for the information content of a
message must become more complicated. It also becomes
more useful, because it is usually the case that some mes-
sages are more likely than others. In transmitting written
English, for example, not all letters of the alphabet are
equally likely; we send the letter “e” about 1.36 times more
often than the next most common letter, “i.”

Let’s say that the sender has three messages to choose
from, only now each message has a different chance or
probability of being sent. The probability of an event is
written as a number between 0 and 1: smaller probability

numbers mean less-likely events, larger numbers mean
more-likely events. Say that the probability of the first
message on the sender’s list is p1, that of the second 
message is p2, and that of the third message is f 3.
The amount of information per message is, in this case,
given by the following equation: H(N) � � p1log2p1 �

p2log2p2 � p3log2p3 bits.

If there were more than 3 possible messages, there
would be more terms to subtract, such as p4log2p4,
p5log2p5, and so on up to as many terms as there were pos-
sible messages.

These equations are the heart and soul of informa-
tion theory. Using it, we can calculate exactly how much
information, H, any message is worth, if we know the
probabilities of all the possible messages. This is best
explained by working out a simple example.

Paul Revere had two possible messages to deliver,
“land” or “sea,” so in his case N � 2. We will call p1 the
probability that the message would be “land,” and p2

the probability that it would be “sea”. In this case then,
H(N) � � p1log2p1 � p2log2p2 bits. If both messages are
equally likely, then p1 and p2 both equal 1/2 and so we
have 

which works out to H(2) � 1 bit. This, we already knew:
Where there are two equally likely messages, sending
either one communicates 1 bit of information.

But if the probabilities of the two messages are not
equal, less than 1 bit is communicated. For example, if
p1 � .7 and p2 � .3 then H(2) � � (.7 log2 .7) � (.3 log2.3)
= .88129 bits.

This agrees with common sense, which tells us that if
the American revolutionaries had known beforehand 
that the British were more than twice as likely to come by
land than by sea (probability .7 for land, only .3 for sea),
they would have had a pretty good shot at guessing what
was going to happen even without getting the message
from the church tower (and so that message wouldn’t
have told them as much as in the equal-probability case).
If the revolutionaries had known that the British were
sure to come by land, then p1 would have equaled 1 (the
probability of a certain event), p2 would have equaled 0
(the probability of an impossible event), and the message
would have communicated no information, zero bits:
H(2) � � (1 � log21) � (0 � log20) = 0 bits.

And that makes sense too. A message that conveys 0
bits is one that you don’t need to receive at all.

(          ) (          )H(2) �� bitslog2
1
2

1
2

log2
1
2

1
2

�

1

10

9

8

7

6

5

3

4

2

1

0
2 3 4 5

N

H(N)

6 7 8 9 10

Figure 3. Bits of information, H, in a message, shown as a
function of the number of binary digits in that message, N.
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INFORMAT ION  AND  MEAN ING
The assignment of Revere’s colleague in the church

tower was to send a single binary digit: “one, if by land,
and two, if by sea.” If the person in the tower had written
“Land” or “Sea” on paper, instead of putting up lights, the
message would have contained more bits of information—
about 18.8 bits for “Land” and 14.1 bits for “Sea,” taking
each letter as worth log226 � 4.7 bits (because there are
26 letters in the alphabet)—yet the message would have
meant—the same thing. This seems like a contradiction:
More information does not necessarily provide greater
knowledge. Why not?

The answer is that the everyday sense of the word
“information” is different from the mathematical sense.
The everyday sense is based on meaning or importance. If
a message is meaningful, that is, tells us something impor-
tant, we tend to think of it as having more information 
in it. Mathematically, however, this isn’t true. How 
much information a message contains has nothing to do
with how meaningful that message is. The answers to 
1-bit, “Yes-No” questions like “Shall we surrender?” or
“Will you marry me?”, which are very important, contain 
only 1 bit of information. On the other hand, a many-bit
message, say a hundred 1s and 0s picked by flipping a coin,
may have no meaning at all. Meaning and information are
not the same thing.

A Brief History of Discovery 
and Development

Information theory dates from the publication of
Claude Shannon’s 1948 paper,“A Mathematical Theory of
Communication.” A few scientists had suggested using a
logarithmic measure of information before this, but
Shannon—who was famous for riding a unicycle up and
down the hallways of Bell Laboratories—was the first to
hit on the necessary mathematical expressions. He
defined “information,” distinguished it from meaning,
and proved several important theorems about transmit-
ting it in the presence of noise (random signals that cause
erroneous messages to be received).

Real-life Applications

A great deal of work has been done on information
theory since Shannon’s 1948 paper, applying and extend-
ing his ideas in thousands of ways. Few of us go through
a single day without availing ourselves of some applica-
tion of information theory. Cell phones, MP3 players,

palm pilots, global positioning system units, and laptops all
rely information theory to operate efficiently.). Informa-
tion theory is also applied to electronic communications,
computing, biology, linguistics, business, cryptography,
psychology, and physics. It an essential branch of the math-
ematical theory of probability.

COMMUNICAT IONS
Paul Revere was not only a revolutionary conspira-

tor, but part of a communications channel. Once he had
seen whether one light or two was burning in the church
tower, it was his job to deliver that one precious bit of
information to its final destination, the revolutionary
militia at Concord, Massachusetts.

The Paul Revere statue in Paul Revere Plaza in the North
End neighborhood of Boston. The spire of the famous Old
North Church is seen in the background. According to
information theory, Paul Revere’s famous scheme for
anticipating a British raid from Boston, as described by
Henry Longfellow in the famous poem beginning “Listen my
children, and you shall hear / Of the midnight ride of Paul
Revere,” sought to convey approximately 1 bit of information.
AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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However, he was captured by a British patrol before
getting there. He was thus part of what engineers call a
“noisy channel.” All real-world channels are noisy, that is,
there is some chance, large or small, that every message
will suffer damage or loss before it gets to its intended
receiver. Before Shannon, engineers mostly thought that
the only way to guarantee transmission through a noisy
channel was to send messages more slowly. However,
Shannon proved that this was wrong. Every channel has a
certain capacity, that is, a rate at which it can send infor-
mation with as few errors as you please if you are allowed
to send a certain number of extra, redundant bits—
information that repeats other parts of your message—
along with your actual message.

Shannon showed how to calculate channel capacity
exactly. With this tool in hand, engineers have known for
half a century how to make every message channel as good
as it needs to be, squeezing the most work possible out of
every communications device in our increasingly gadget-
dependent world: optical disc drives, cell phones, optical
fibers carrying hundreds of thousands of telephone calls
through underground pipes, radio links with deep-space
probes, file transfers over the Internet, and so on.

Around A.D. 1200, the Chinese were able to invent
primitive rockets without knowing calculus or Newton’s
Laws of Motion, but without mathematics they could
never have built truly huge rockets such as the Long
March 2F booster that lifted the first Chinese astronaut
into space in May 2004. Likewise, communications
devices and digital computers were invented before infor-
mation theory, but without information theory engineers
could not build such machines as well (and as cheaply) as
we do today. In rocketry, communications, powered
flight, and many other fields, the early steps depend
mostly on creative spunk but later improvements depend
on mathematics.

Today applications of information theory are literally
everywhere. Every cubic inch of your body is at this
moment interpenetrated by scores or hundreds of radio
signals designed using information theory.

Physics and Information

From the very beginning there has been a connection
between physics and information theory. Shannon’s rule
for calculating information was nearly identical to the
expression in statistical physics for the entropy of a sys-
tem (a measure of its disorder or randomness), as was
pointed out to Shannon before he published his famous
1948 paper. One physicist even advised Shannon to call

his new measure “entropy,” not “information,” because
“most people don’t know what ‘entropy’ really is. If you
use ‘entropy’ in an argument you will win every time!”

Nor is the connection between physics and informa-
tion merely a matter of look-alike equations. In 1951, the
physicist L. Brillouin proved the amazing claim that there
is an absolute lower limit on how much energy it takes to
observe a single bit of information. Namely, to observe
one bit takes at least kBTloge2 ergs of energy, where T is
temperature in degrees Kelvin, k and B are constants
(fixed numbers) from physics, and loge2 equals approxi-
mately .693. The precise value of this very small number
is not important: what is important is what it tells us. One
of the things it tells us that it is impossible to have or
process an infinite amount of information. That would,
by Brillouin’s theorem, take an infinite amount of energy;
but there is only a limited amount of energy in the whole
Universe.

INFORMAT ION  THEORY  IN  B IOLOGY
AND  GENET ICS

Most of the cells in your body contain molecules of
DNA (deoxyribonucleic acid). Each DNA molecule is
shaped like a long, narrow ribbon or zipper that has been
twisted lengthwise like a licorice stick. Each side of the
zipper has a row of teeth, each tooth being a cluster of
atoms. There are four kinds of zipper teeth in DNA, the
chemicals guanine, thymine, adenine, and cytosine
(always called G, T, A, and C for short).

These teeth of the DNA zipper are lined up in groups
of three: AGC, GGT, TCA, and so on for many thousands
of groups. Each group of three teeth is a code word bear-
ing a definite message. Also, each type of zipper tooth is
shaped so that it can link up with only one other kind of
zipper tooth: A and T always zip together, and G and C
always zip together. Therefore, both sides of the zipper
bear the same series of messages, only coded with differ-
ent chemicals: thus, AGCGGT zips together with
TCGCCA. If you know what one side of the zipper looks
like, you can say what the other side must look like.

DNA is usually zipped up so that the two opposite
sets of teeth are locked together. Sometimes, however,
DNA gets partly unzipped. This happens whenever the
cell needs to read off some of the messages in the DNA,
such as when the cell needs to make a copy of itself or to
refresh its stores of some useful chemical. The unzipping
is done by special molecules that move down the DNA,
separating the two sides like the slide on an actual zipper.
When a section of DNA has been unzipped, other mole-
cules move along it and copy (or “transcribe”) its three-
letter code words. These code words order the cell to
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string certain molecules (“amino acids”) together like
beads on a necklace. These strung-together amino acids
are the very complex molecules called proteins, which do
most of the microscopic, chemical work that keeps us
alive. Proteins are produced from step-by-step instruc-
tions in DNA much as a cook bakes a cake from step-by-
step instructions (a recipe) in a cookbook. The exact
same three-letter DNA code is used in the cells of every
living thing on Earth, from people to pine trees.

Biologists have found it helpful to view each three-
letter DNA code word as a message. Since there are four
choices of letter (A, C, G, and T) and three letters per
word, there are 43 � 64 possible words that DNA might
send. According to information theory, each DNA code
word could contain up to log2 64 � 6 bits of information.
Actually, some words are used by DNA to mean the same
thing as other words, so the DNA code only codes for 20
different amino acids, not 64. Each DNA code word there-
fore contains about log2 20 � 4.32 bits. There are about
three billion pairs of molecular zipper teeth (base pairs) in
a complete set of human DNA molecules. These three bil-
lion pairs could encode, at most, one billion three-letter
words, each conveying 4.32 bits. Therefore, the most
information that the human DNA could contain is about
4.32 billion bits. A standard 700 MB CD-ROM also con-
tains about this much information.

Thus, an entire CD-ROM’s worth of information is
packed by Nature into a chemical speck too small to be
seen without a powerful microscope—a set of human
DNA molecules. Most of the cells in the human body
contain these molecules.

Accordingly, the “recipe” for a human being requires
about as much information storage space as it would take
to record 80 minutes of dance hits.

Seeing the DNA-to-protein system in terms of infor-
mation theory has helped biologists understand evolu-
tion, aging, growth, and viruses such as AIDS. Biologists
have also applied information theory to molecules other
than DNA and to the brain.

ERROR  CORRECT ION
Every message has some chance of not getting

through or of getting through with damage, like a letter
that is delivered with a corner torn off or with a letter “O”
smeared into a letter “Q.” Here is another problem that
begs for a clever solution.

Once again, Paul Revere is ahead of us. Revere’s task
was to deliver his one-bit message to the town of Con-
cord, Massachusetts. On the way there, he stopped at
Lexington and shared the message with two other men,

William Dawes and Samuel Prescott. All three set off for
Concord; all three were captured by the British. Revere
was released without his horse. Dawes and Prescott made
a break for it, but Dawes fell off his horse. Only Prescott
got through. If Revere had headed straight for Concord
by himself, the message would never have been delivered.
Sending the message three separate times, by three sepa-
rate riders, an example of “triple redundancy,” got this
one-bit message through this very noisy channel.

Today we send messages using electrons and photons
rather than horses, but triple redundancy (sending a mes-
sage three times) is still an option. For instance, instead of
101, we can send 111000111. If this message is damaged
by electronic noise (static), then the receiver will receive a
different message, for example, 011000111. In this case,
noise has changed the first bit from a 1 to a 0. By looking
at the first three bits the receiver knows, first of all, that an
error must have happened, because all three bits are not
the same. Triple redundancy thus has the power of error
detection. Second, the receiver can decide whether the first
three bits were a 1 or a 0 in the original message since
there are two 1’s and only one 0; thus 011 decodes to 1,
which is correct. Triple redundancy also, therefore, has
the power of error correction. In particular, if no more
than one bit out of every three is changed by noise, the
entire message can still get through correctly. If we were
to send triple-redundant messages forever, we could send
an infinite number of bits despite an infinite number of
errors, as long as the errors didn’t happen too fast!

In practice this scheme isn’t used because it would be
wasteful. It forces us to send three times as many bits as
there are in the original message, but there are only a few
simple errors that it can find and fix. If two bits that are
close to each other get flipped by noise, we can find the
error but our fix may be wrong: for instance, if 111 gets
changed to 001 or 010, we will know that an error has hap-
pened (because the three bits are not all the same, as they
should be), but by majority vote we will decode the received
word incorrectly to 0, rather than 1. Errors that are near
each other, as in this example, are called “burst” errors.

There are several ways to handle burst errors. The
simplest that is used in many real-world codes is termed
“interleaving.” Interleaving takes one chunk of a message
and slips its bits between the bits of another chunk, like
two halves of a deck of cards being shuffled together. For
example, we may want to transmit the message 01. We
first create the two triply redundant words 000 and 111,
then interleave them to get 010101. If two bits right next
to each other get changed anywhere in this six-bit string,
our simple code can both detect and correct them. If the
second and third bits, for instance, are both changed
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during transmission, 010101 is turned into 001101. De-
shuffling this (taking the first, third, and fifth bits first,
then the second, fourth, and sixth bits) gives us 010011.
By majority vote, the first three bits decode to 0 and the
second three bits decode to 1—which is our original mes-
sage, 01. This shows the power of combining repetition
with interleaving.

If three bits in a row are flipped, this code will fail. Every
code has its limits. Nevertheless, Shannon’s channel capac-
ity theorem guarantees that we can always drive the cor-
rected error rate down to any specific level we want, for a
channel with a given amount of noise, by adding redundant
bits. In the interleaved code with repetition that we’ve been
considering, for example, we could correct longer burst
errors simply by repeating each bit more than three times
(e.g., six, or 10, or a 1,000 times). More redundancy, and
more interleaving, would offer more protection. This is a
general property of all error-correcting codes: You can
never get something for nothing—but you can get some-
thing for something, namely, reliability for redundancy.

Information theorists call a code “perfect” if its level of
error correction is bought for the least possible redundancy.
Error correction coding is that branch of information the-
ory that concerns itself with getting the most bang for the
bit, that is, with inventing practical, real-world codes that
are as close as possible to perfect. Many error-correcting
codes have been developed. They are used in virtually all
consumer electronics devices that transmit, code, or decode
digital information: digital telephone links, DVDs, audio
CDs, computer hard drives, CD-ROMs, and more.

Sometimes the error rate that needs to be dealt with is
low to begin with. For example, the industry standard for
computer hard drives before error correction is one error
for every billion bits read to or from the spinning magnetic
discs inside the drive. This is a very quiet (low-noise) chan-
nel, but still too noisy for a computer. Modern computers
read and write many billions of bits to and from their hard
drives, so one error per billion bits might result in scram-
bled documents, crashed programs, messed-up money
transfers, and e-mail sent to wrong addresses.

To prevent this, all computer hard drives use error-
correcting schemes belonging to a family of codes called
the Reed-Solomon codes. Reed-Solomon codes (named
after their two inventors, who published the idea in 1960)
are nearly “perfect” in the sense that they give almost the
maximum amount of error correction possible for the
number of redundant bits they add. When using an error-
correcting code you cannot fit as much data onto a hard
drive because of the redundant bits inserted by the code,
but reading and writing from the drive suffers very very
few errors.

Various versions of the Reed-Solomon code are used
not only for computer hard drives but for audio CDs,
DVDs, digital videotape, digital cable TV, digital cameras,
and virtually every other commonplace digital data
storage-and-retrieval device.

The most heroic deed of coding-theory history so far
was performed by the Voyager spacecraft. Launched by
the United States in 1977, Voyager 1 traveled to Jupiter
and Saturn and Voyager 2 sailed past Jupiter, Saturn,
Uranus, and Neptune. The two probes took sharp color
pictures of scores of mysterious moons that are nothing
but fuzzy points of light as seen from the Earth, even
through powerful telescopes.

The Voyagers sent their pictures and other data back
to the Earth as strings of ones and zeros. But they didn’t
have much power to do it with, so by the time a Voyager’s
signal arrived on Earth it was extremely faint. The largest
radio antennas on Earth could only gather about 10�16

watts of power from a Voyager 2 signal originating near
Neptune, 4.6 hours away at the speed of light. This much
power, if collected for three billion years, would light a 40-
watt light bulb for less than one second. A digital watch
uses billions of times as much power. Yet these ghostly sig-
nals from Voyager signals were detected, and color images
of far-distant worlds were reconstructed from them.

This feat would have been impossible without error
correction. For the Jupiter-Saturn leg of the journey, the
Voyagers used a sophisticated error-correcting code called a
Golay (24,12,8) self-dual code; Voyager 2, for its 1986 flyby
of Uranus, was re-programmed to use an even more com-
plex code, actually one code wrapped up inside another.
The “outer” code was a Reed-Solomon code related to those
used in CD players and other consumer electronics. Each of
Voyager 2’s code words contains 32 bits, of which 26 bits are
redundant bits. That is, over 80% of each Voyager code
word consists of error-correction bits. These redundant bits
enable computers on Earth to fix single and burst errors
and even to replace “erasures” or completely lost bits.

The Voyagers are still transmitting data from deep
space, leaving the solar system farther and farther behind
with each passing second. And their messages are still sur-
viving the trip thanks to error-correction codes designed
on Earth using the principles of information theory.

Potential Applications

QUANTUM COMPUT ING
Ordinary information is encoded in objects or sig-

nals that behave in a more or less reliable way. When a
laser beam burns a microscopic pit on a music CD,
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recording a single bit of information, that pit stays put. At
least, it stays put until something physical, say a steel fork
wielded by a younger sibling, comes along and changes it
by force. Furthermore, each pit only means one thing,
zero or a one, never both at once or some third, unde-
fined thing.

That’s ordinary information. There is also a thing
called “quantum” information. Even computer scientists
call it “weird” and are, according to the journal Science,
“increasingly confused about how it works” (Sep. 14,
2001, Vol. 293, p. 2026). But the basic idea is not hard to
understand.

Quantum information is still information, but it is
called “quantum” because it is stored not by microscopic
pits in a CD, or by voltages, magnetic fields, ink on paper,
or any other physical object that has a definite state (there
or not there, on or off, etc.). Instead, it is stored by objects
like individual atoms, electrons, or photons. Such small
objects, instead of obeying the physical laws of our every-
day, human-scale world, obey the laws of the kind of
physics called “quantum mechanics,” which deals with the
properties of atoms or smaller objects. The properties of
such small objects are, by the standards of our everyday
experience, simply crazy. For example, a basketball can-
not spin to the left and the right at the same time, but an
electron, according to quantum mechanics, can. If you
can’t see this in your mind, don’t worry, physicists can’t
either. But they describe it mathematically, and the math
always works, so we take it as a fact.

If, then, we use spin to store bits (say, leftward spin to
store a 1 and rightward spin to store a 0), we can store a 1
and a 0 at the same time in the same electron (or atom).
Physicists call a bit stored in this way a “qubit” (pro-
nounced KYOO-bit), short for “quantum bit.”

One reason computer scientists get excited when they
think of qubits is that you can, because of superposition of
states (the ability to spin left and right at the same time),
run a single computation on quantum information and
get twice as many answers as if it had been run on a con-
ventional computer. And that’s only the beginning.
Groups of cubits can be linked to each other at a distance
by the quantum effect that physicists call “entanglement.”

With a boost from entanglement, N qubits can do the
computational work not just of 2N but of 2N conventional
bits. That makes computation with qubits not just twice as
fast as conventional computation, but exponentially faster.

But there is a good reason why we don’t all have
qubit-based PCs and Macs on our desks, and that is that
it is not easy to teach an individual atom to sit up, roll
over, and bark ones and zeroes on command. Researchers
are approaching the problem by using electromagnetic
fields to bottle up small numbers of ultracold atoms, then
zapping them gently with laser beams, a procedure that
does not involve not the kind of hardware you easily can
scoot out and buy at the local electronics store. Further,
qubits tend to “leak” or evaporate, losing their informa-
tion. So ticklish is quantum computation that although it
has been studied for over 30 years, the first demonstra-
tion of a true quantum computation was not made until
2002, and even that only involved a few bits. Progress
remains slow but the potential payoffs are great, so
research continues. Computation using quantum infor-
mation teases us with the possibility that computers may
someday billions or even trillions of times faster 
than today’s.

Where to Learn More
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404, pp. 247–255.

Seife, Charles. “The Quandary of Quantum Information,”
Science, 14 September 2001, Vol. 293, pp. 2026-2027.

Shannon, C.E. “A Mathematical Theory of Communication,”
The Bell System Technical Journal, Vol. 27, pp. 379-423,
623-656, July, October, 1948. Available online at
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Overview

If something is transformed by a sequence of events,
the inverse is another sequence of events that will bring it
back to the start. The nature of the inverse steps, com-
pared to the steps that are applied, allows identification of
how the system is related to its starting conditions under
the transformation. The definition of the inverse is of
fundamental importance and is probably one of the first
mathematical entities that would be sought in many
problems. The nature of the inverse allows one to under-
stand how the transformation will act when trying to
manipulate it. This concept is important in understand-
ing the algebra that can be applied to the transformation
in a mathematical analysis. The nature of the inverse has
implications and applications that span all areas of math-
ematics, science, and engineering, and will often be
defined in many different forms.

Fundamental Mathematical Concepts
and Terms

DEF IN I T ION  OF  AN  INVERSE
If a sequence of actions is applied, then by definition,

the inverse is the sequence of events that undo these
effects, returning to the start. For example, imagine a
length of rope, the sequence of events that will be applied
include tying a knot in the rope. The inverse of this oper-
ation will then be the sequence of events that untie the
knot and leave the rope as it was originally. This is where
the term inverse comes from, as we invert what has been
done. If R is the series of actions that were applied to
something, F, then the inverse sequence is written by
adding a superscript: R–1(RF) � F.

THE  MULT IPL ICAT IVE  INVERSE
It is now possible to investigate some interesting

forms of the inverse. Consider if the reverse of the above
is true. In this case, we swap the order of our actions by
applying the inverse first, followed by the original
sequence of events: R (R–1F). If the result is also identical
when nothing is done, the events are their own inverse.
They are said to be a multiplicative inverse, or that they
commute. For example, consider rotating a photograph
to the right through some angle and then its inverse, to
the left, so that it is back to where it started. Now, swap
the order of the events by applying the inverse, rotat-
ing the photograph to the left this time, followed by the
original rotation to the right. This will again leave the
photograph unchanged. This is written as R–1(RF) �

R(R –1F) � F.

278 R E A L - L I F E  M A T H

Inverse



I n v e r s e

R E A L - L I F E  M A T H 279

OPERAT IONS  WITH  MORE  THAN  ONE
INVERSE

Now consider tossing a coin. If the coin always starts
as heads before it is flipped, there are two possible out-
comes and hence, two inverses. Approximately fifty per-
cent of the time, the inverse action would be to do
nothing, as the coin lands on heads. For the other fifty
percent of the time, the inverse action would be to turn
the coin over after it lands on tails. However, it is not pos-
sible to know which inverse to choose before the coin is
flipped, as at this point, both outcomes are just as likely.
In this case, the multiplicative inverse does not hold true.
The multiplicative inverse only holds for actions that have
one possible inverse.

OPERAT IONS  WHERE  THE  INVERSE
DOES  NOT  EX IST

Sometimes the steps needed to find the inverse may
be so complicated that we can assume that it does not
exist. An example involves hitting a pack of balls on a
snooker table forcefully. After hitting the pack, the balls
will be spread all over the table. The inverse of this would
be to give all the balls a shove in the opposite direction so
that they all roll back into a pack, just as if a film of the
shot were run in reverse. However, if we tried to do this in
reality, small errors in the velocity and imperfections on
the surface of the balls and table would be magnified as
they moved in reverse, with the result that no matter how
hard you tried, the balls would never form the original
pack shape again. In this case, the inverse will be impos-
sible to perform in reality.

INVERSE  FUNCT IONS  
Consider a set of points along the x axis, 3, 5 and 9.

The function y � f (x) � 3x � 2 will transform these
points to the following coordinates (x,y): (3,11), (5,17),
and (9,29).

An inverse function would have the effect of return-
ing each y axis value to the original x axis value. Looking
at the formula, it is seen that this is achieved if it is re-
arranged by adding 2 to both sides and dividing by 3, as
in x � f –1(y) � (y � 2) / 3.

If the function and its inverse function are substi-
tuted for each other, they are seen to leave the coordinates
unchanged as expected, f –1 f (x) � (3(x � 2) � 2) / 3� x.

If a graph of the function is made, the effect of the
inverse function will be to reflect all the points, (x,y)
along the line y � x (see Figure 1).

Now consider the function f(x) � x2 � c.

By definition, a function can only have one result
and functions such as y � x2 are said to not have an

inverse. It can also be seen that y � x2 will not satisfy the
multiplicative inverse relation. This is not quite as bad as
it sounds because in real life applications, boundary con-
ditions can be put on the range of values a function can
take. In this case, we may find that in our analysis x can
only take positive values; maybe it is a radius or mass
where negative values would make no sense. It is then safe
to ignore the negative square roots and define an inverse
within these boundaries.

A Brief History of Discovery 
and Development

An inverse operation is such a fundamental idea that
examples are found all through the history of mathemat-
ics, geometry, and science. One of the more historically
interesting uses is in code breaking. All throughout his-
tory, codes have been invented and deciphered in
attempts to gain some form of political or military
advantage. In the time of the French king Henry the IV
(1553–1610), Spain had ciphers that they changed regu-
larly and was thought impossible to break. Henry IV gave
the problem to a mathematician called Vieta, who figured
out how to decode it and it was used by the French for
two years to read Spanish documents. It was so successful
that King Philip II of Spain (1527–1598) complained to
the pope that the French were using sorcery to read their
communications.

Another interesting fact is the development of nega-
tive numbers, used as the inverse of addition. It would

f (x)

y 
ax

is

x axis

f –1(x)

y = x

Figure 1: Reflection along y = x of the inverse function.
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seem that such a common concept would have been used
since ancient times, but in fact it was not until 1545 that
they came into common use. It was Gerolano Cardano
(1501–1576), an Italian mathematician, who first showed
that negative numbers could be used as an extension of
our number system and that this was useful in the calcu-
lation of debts for example.

Real-life Applications

CRYPTOGRAPHY
Cryptography is the science of encoding informa-

tion so that it can be transmitted secretly without an

eavesdropper decoding it. Consider a simple cipher when
encoding a letter to a friend by swapping all the letters
and spaces by numbers. The friend has a similar sheet of
numbers to letters that they use to decode your message.
This sheet is called a key. In this case, the inverse steps are
equal to the original number of steps you used to encode
the message. However, an eavesdropper can decode your
message by hand or writing a computer program that
randomly assigns letters to numbers and scans for words
in a dictionary. This is repeated until parts of a word is
found that you can guess, and as more words are found,
it will become possible for the eavesdropper to regenerate
the key and decode your message. It is possible to use
more complex functions to encode your message, but it
can be shown that an eavesdropper will always be able to
find the inverse function in a length of time that gets
shorter the more the transmitted text becomes larger
than the key. By sophisticated use of mathematics and
computers, it is obvious this is not the most secure
method to transmit data, and that it becomes weaker the
more it is used.

A method called public key encryption is very com-
mon nowadays, and can get around this problem wher-
ever information needs to be sent securely over
unsecured lines. For example, Internet banking and auto-
matic teller bank machines use public key encryption.
Public key encryption works as follows. Imagine Bob
wants to receive information from Alice. Bob has a special
function that is split into two parts, the public function
and private function, and generates keys using these func-
tions. Bob sends the public key to Alice over an ordinary
unsecured line and keeps the private key. Alice encodes
the information she wants to send to Bob with the key
using her public function and sends the resulting
sequence of code back to Bob over the unsecured line.
This public function has no inverse, so even if an eaves-
dropper were to gain access to the function, the public
key alone provided no information.

When Bob receives the encoded data from Alice, he
combines the private and public keys, to generate the
inverse function. By running the information through
this new function, the message from Alice is recovered. If
Alice wants to receive information from Bob, then the
reverse scenario is used and a completely secure two-way
conversation has been set up over public lines. The reason
this system works is that there is no analytical way to gen-
erate the inverse from the public key, but it can be gener-
ated with the combination of public and private keys. The
only way it is thought possible to break this encryption
would be to use the theoretical quantum computer. Until
such a device exists, this form of encryption will remain
theoretically impossible to break.

Inverse Square Law

The inverse square law is used to describe a field
generated by a point charge, where the field is free
to extend in every direction into free space. The field
generated by a uniform sphere will be identical to the
point charge field and at large enough distances;
non-uniform shapes will often become good approxi-
mations to a point source as well. This means that
the inverse square law accurately describes or gives
very good approximations to many fields generated
in nature. Examples are the gravitational fields gen-
erated by stars and planets, sources of radiation
such as light and heat, and the electromagnetic
forces such as those between atoms.

At a given distance, r, from a source the
inverse square law is given as the intensity of the
source A, divided by the area of a sphere,

For example, if one moved two feet away from
a spherical light source, the intensity of the light
would drop by a factor of four. To invert this, and
keep the light intensity the same as before, the
intensity of the light source would need to be
increased by a factor of four. This explains the rea-
son why a lighthouse focuses the light into a beam
of light. This is not a point source, as the light has
been kept in a narrow beam, and the intensity will
only fall off as the light beam spreads due to focus-
ing imperfections or atmospheric effects and will be
visible to much greater distances.

=I A
4   r 2π
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Even though this system was known about for many
years, it was only the invention of such functions by the
English mathematician Clifford Cocks in the 1970s that
made it possible. It was promptly made a state secret until
it was independently invented by several American math-
ematicians in 1976. The American government made the
code military property and legal battles ensued over
about the encryption method’s future. However, control
of the encryption method was finally defeated in 1991
after versions of the code for Pretty Good Privacy (PGP)
were published. In some countries, this method of encod-
ing information is still illegal.

NEGAT IVES  USED  IN  PHOTOGRAPHY
When a black and white photograph is taken with a

camera, light falling on the film will turn the film black,
and areas where no light falls will remain clear. After the
photograph has been taken, the film is chemically fixed so
that it no longer responds to light and the image has been
recorded. However, on examining the film, the image will
be the inverse of what is desired; dark areas will be light
and light areas dark. In this case, the photographic film is
called a negative. In order to produce the final image, the
areas of light and dark must be reversed. This is done
with a special camera that will pass light through the neg-
ative and onto photographic sensitive paper. By retaking
the image again in this way, the areas of light and dark are
inverted and the original image is returned. The second
step of re-exposing the negative of the image is equivalent
to taking the inverse. Although technically more compli-
cated, the process is the same for producing a color
image.

THE  BRA IN  AND  THE  INVERTED
IMAGE  ON  THE  EYE

The eye works by passing light through a single lens
and focusing it on the retina at the back of the eye. Due
to the nature of optics, this image is upside down. The
reason humans do not see the world upside down is that
the brain inverts the image, therefore, the world is seen
right-side up. It was thought that this process was hard-
wired into the human brain for many years until a series
of experiments were conducted that suggested otherwise.
In these experiments, subjects wore a special mask over
their eyes for 24 hours a day for several weeks. This mask
placed lenses in front of the subjects’ eyes that caused
them to see the world upside down. For a period of time,
the subjects were naturally disorientated and confused,
but after a while, started to see the world the correct way
again, suggesting that the human brain had the ability to
re-configure itself to cancel the effect of the mask.

FLU ID  MECHANICS  AND  NONL INEAR
DES IGN

In the snooker ball example discussed previously, it
was seen that after hitting a pack of snooker balls, there
existed no inverse operation where we could give the 
balls a shove and they would roll back into the formation of
a pack as any tiny error would be magnified and ensure that
the balls were always distributed randomly over the table.
This has an important consequences for industrial design.

Consider using a computer to optimize the flow of
fuel from a nozzle for an engine you are trying to design.
At low velocities the flow from the nozzle will be smooth,
called laminar flow and the computer simulation will
accurately reproduce the flow. However, the laws of fluid
dynamics are non-linear, i.e, they do not have a 
simple inverse and the flow at future moments is not
related to the flow to past moments in a simple way. As a
consequence any errors in the measurements will 
start to multiply rapidly and at a certain flow rate this 
is seen as a turbulent flow where any predictions 
from the computer will rapidly deviate from the real situ-
ation. In this case, it is necessary to find a specific approx-
imating model to the nozzle that you are trying to design.

In industry, there are many examples of this situation,
such as modeling the flow and timing of inks from printer
heads, gas flow in exhaust systems to the effects of rain
and dirt on glass. Even though the physical laws of each
situation may be written down in a few lines, the non-
linearity means that special and often highly technical
models have to be constructed to investigate each situation
and this can involve much time and investment making the
details of such models closely guarded industrial secrets.

Multiplicative Inverse 

As described previously, the multiplicative inverse is
satisfied by actions that only have one possible
inverse as R–1(RF) � R(R–1F) � F.

An obvious example of such a function is multi-
plication, which has the inverse of division. Consider
multiplication by the number 3, which has the inverse
1⁄3 as in (1⁄3.3).F � (3.1⁄3).F � F. Multiplication by 1⁄3 is
really division by 3—the inverse of multiplication by 3. 

Another example is addition. The inverse of
this is subtraction. Consider the action of adding
3. Here R � �3 and the inverse R�1 is subtracting
3: (F � 3) � 3 � (F � 3) � 3 � F.
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ANT I -SOUND
Sound is a series of pressure waves in air. Sound that is

not loud enough to cause damage to the hearing can still
cause discomfort and irritation after long periods of
exposure. In modern design keeping sound down to
minimal levels is a key concern in commercial passenger
transport, such as ships, trains, planes and cars. By reducing
the noise most passengers will experience a more present
and relaxing journey. Another area where sound levels need
to be kept under control is in military equipment where the
high performance needed will often result in very noisy
equipment but large amounts of sound absorbent material
is undesirable due to weight and space concerns.

One solution to reduce sound in these environments
is to generate anti-sound. This involves wearing ear-
phones or fitting the passenger compartment with loud-
speakers that generate a special form of sound. Speakers
will record the sound waves in the compartment and a
computer will calculate the exact pressure waves that will
cancel these pressure waves, called inverse or anti-sound.
When the anti-sound plays through the speakers it will
reduce the sound that reaches the ear of the passenger.
Although conceptually simple, in practice these systems
are very difficult to make, for example real time 
anti-sound generation requires rapid computing and
playback times, and can be very expensive and sensitive to
changes in its environment. Some systems get around 
this by using a digital recording to playback the anti-
sound. In practice, it will be impossible to completely
cancel all the background sound, but the systems have
been shown to be very effective at reducing background
noise levels.

STEALTH  SUBMARINE
COMMUNICAT IONS

Communicating with submarines is not as easy as
communicating with space craft. Unlike space and air,
water is a much denser medium. In pointing radio 
signals at submarines, they will be rapidly absorbed by the
water. Another problem with submarine communications
is that one of their main strengths comes from being hid-
den. For example, submarines make up a key part in the
nuclear defense systems of both the East and West, and
can remain hidden off a coastline or under an ice flow for
many months at a time, if needed, before engaging their
target. An exposed submarine is vulnerable to missiles
from other submarines, surface ships, and aircraft. Sub-
marines are also vulnerable to attack, as explosions under
water can be far more devastating even if there is not
a direct hit due to the large pressures on the hull. For
this reason, high-power focused radio transmissions are a

problem, as the direction of the beam can give the posi-
tion of the submarine away to the enemy.

One system for communicating with submarines
relies on a series of radio antennas that transmit at
extremely low frequencies (ELF). It is a physical property
of radio waves that their absorption by water increases
with frequency. By using ELF transmissions at around 76
Hertz, the radio signal can penetrate the water to depths of
hundred of feet as opposed to a similar VHF transmissions
would only penetrate to a depths of around 10 feet (3 m).

When setting up a system like this, there are multiple
transmitters to give a wide coverage. Having multiple
transmitters of such low frequency can cause blank spots
in radio transmissions in areas where a signal would be
expected. This is because the waves from each transmitter
interfere with each other, adding to the overall power at
one point or diminishing the overall power at another,
forming an interference pattern. This can be thought of as
throwing two stones into a small pond. After the initial
splash, the ripples will form a stationary pattern on the
water’s surface, with some areas having higher ripples 
and some areas that look calmer. The interference 
pattern generated with such low-frequency transmissions
will leave blank spots in a signal that can be larger then the
submarine, and a careful design of the antennas is needed
to give constant communications with the submarine.

Blank spots in the reception can be shifted if the tim-
ing of the transmitted signals, called the phase of the
transmission, is changed in one or more of the transmit-
ters. Now imagine if the submarine is in a certain position
in the sea and it transmitted a signal. This signal would
spread out and reach all of the transmitters slightly dif-
ferent times, i.e., with different phases. If a signal is 
transmitted back to the submarine as the inverse of the
way a signal is received, then the signals from the trans-
mitters can be made to interfere with each other and build
up as they approach the submarines location. This effect
that can be thought of as the inverse of ripples formed
from throwing a stone into a pond, in this case, the radio
ripples move toward the center of the pond, building up
into the original splash, at the location of the submarine.

As the submarine moves, the phase of the transmit-
ters can be changed to refocus the transmission to the
new location. At other points on, the radio signals will be
more difficult to detect, making the system more secure
against eavesdropping.

STEREO
Having two ears, the human brain can figure 

out the location of a sound by the time delay in the signal
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as it reaches either ear. For example, if a sound reaches the
left ear first and then the right ear a fraction of a second
later, the brain interprets the source closer to the left side
and this is the feeling we would have from this source.

To record a sound in stereo, two microphones are
needed and these are placed side-by-side at about the dis-
tance of the human head in front of the artist. Having the
two microphones means that not only is the sound
recorded, but the delay phase of the sound is also recorded.
In a modern studio, equipment exists that can add 
this delay electronically. In this manner, artists can 
record themselves with high-quality microphones and
pickups onto separate channels, and the studio can elec-
tronically add phases to each channel and make the artists
sound as if they had been playing at different positions in
a group.

To play back sound in stereo, two speakers are placed
in front of the listener to invert the effect of the 
recording. During playback, the timing or phase of the
sound waves from either speaker will interfere with 
each other, some waves adding to each other (called 
constructive interference) and some waves canceling each
other (called destructive interference). The interference
of the waves as they reach the ear will result in time delays
in the sound between each ear, which the brain 

will reconstruct as positions of sound sources. It is 
possible to hear the musicians playing from different
positions in the group as if they were in the room 
with the listener. For this system to work properly, the
locations of the speakers and listeners, and reducing
sound reflections from the walls of the room will all be
crucial factors in how well the stereo effect is recon-
structed. It can take much time and investment to con-
struct the ideal listening environment, especially in
environments such as cinemas, where there are many lis-
teners to consider.

Where to Learn More
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Wicks, J. “Details about the functional inverse.” North 
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Iteration

Overview

Iteration is a process of calculation that is repeated
again and again, each time improving the accuracy of the
result by using the output of each step for the input of the
next iteration. By repeating the process and analyzing
successes and errors, humans and even some machines
can improve at performing the action.

Fundamental Mathematical Concepts
and Terms

An example of problem solving by the process of
iteration could be found in the following set of computer
programming instructions: “While a number is less than
15, continue printing that number but increase its value
by one. Upon arriving at the number 15, activate the pro-
grammed screensaver.” These instructions could well
relate to the set up of a screensaver to come on after a
computer screen was been inactive for 15 minutes.

Let’s look at the nuts and bolts of the above set of
instructions in a bit more detail. If the starting number was
two, for example, it would be less than 15, and so the state-
ment would be judged as being true (i.e. less than 15). That
would be a signal to go through the process again, and
again, until the number was 14. At that point the number
plus one would no longer be less than 15. That would be
the signal for the computer to switch to another set of
instructions that activates the screen saver.

Real-life Applications

ITERAT ION  AND  SPORTS
You do not have to be a big basketball fan, or even

have much of a knowledge of the game, to recognize the
name Michael Jordan. Michael Jordan was an awe-
inspiring basketball player. One big reason was talent, but
another was iteration. A particularly relevant example of
this process was Jordan’s routine at the end of each prac-
tice. Jordan would shoot the basketball at the hoop from
various locations, near to the basket and further away. His
practice was not over until he sank 100 shots in a row. If
he made 92 baskets and missed one, he would start over
again. This routine, which must have been frustrating on
a less-than-accurate day, is analogous to mathematical
iteration. By performing the action over and over again,
using the results of each shot to refine the performance of
the next shot, Jordan fine-tuned a technique that pre-
dictably put the ball through the hoop.
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Similarly, Tiger Woods has used thousands of hours of
golf practice to perfect a golf swing that is consistent from
one day to the next. This consistency propelled him to
become the number one ranked golfer in the world in 2003.

But even the best golfer in the world likes to tinker
with his swing, to try out slightly different changes in
hopes of producing a swing that is even better than
before. That is the essence of iteration. By repeating an
action again and again, changes can be evaluated and, if
they are successful, can be incorporated into the action.

I TERAT ION  AND  BUS INESS
Not surprisingly, iteration is a favorite buzzword of

computer programmers. Computer programmers often
make available trial software programs on the Internet,
called beta versions. Beta programs are a form of practice
versions of a new program. Usually this iteration of a
program has more features built in that presumably will
make people want to buy it and use it instead of the
current version of the program. The purpose of a beta ver-
sion program is to encourage people to try the software,
figure out its good points and, most importantly, discover
what needs changing or what does not work. The software
programmers can then change the beta version to produce
the final improved program that is widely sold.

In another business application, iteration is an
important feature of accomplishing a project that involves
a large team of people. Again, in the realm of computing,
an ideal example of iteration involves extreme program-
ming, or XP. Like an extreme sport, XP is a difficult-to-
accomplish form of programming that often involves
dozens of programmers. These programs are updated fre-
quently and made available much more often than, for
example, a program for a video game that might be
updated once every three or four years.

In the XP iteration process, the total project is usually
broken into chunks. Each chunk can have a back-and-
forth process where the component of the program is
written, tested, and returned for tinkering. A tight sched-
ule allows the iteration process for each chunk of the
project to be accomplished by a deadline, so that all the
chunks can be put together to produce the final product.
As well, the back-and-forth contact between people that
is part of this type of iteration allows for better tracking
of minute details in the frenzy of the project.

I TERAT ION  AND  CREAT IV I TY
Creativity involves the ability to look at something in a

different way, to find a new idea. A necessary part of creative
thinking is gathering information, and then trying to put
that information together in a new way. This is where

iteration comes in. New product ideas come to the forefront
after cycles of inventing a design, testing the design, and, as
usually happens, discovering and fixing problems.

Iteration in creative product design can be illustrated
by considering a new CD from a popular music group.
The tracks on the CD do not usually happen in one
recording session in the studio. When the band first starts
to record a song, the musicians, songwriters, and pro-
ducer may have different ideas of what the final version
will sound like. Different versions (iterations) of the song
are tried out, discussed, and changed until the artist is
pleased with the final version. The final track that is heard
on the CD is often very different from what a band mem-
ber thought it sound like months before.

People who are known for their creative approach to
their work often say that the process they use to come up
with all those great ideas is very structured. They take the
same approach to each problem, knowing that doing the

DJ Kool Herc, the Jamaican-born DJ considered the father of
hip-hop. It was Herc, at parties in the early 1970s, who began
playing the instrumental segments of songs over and over
again, a form of musical iteration, while speaking in rhyme
over them. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.



many hexagons of the honeycomb of a beehive, a basic unit
is repeated again and again to produce the final structure.
This repeat of the basic unit is iteration.

A cutting-edge example of iteration in the laboratory
is molecular cloning. Molecular cloning involves creating
a genetic twin from the genetic material obtained from
a living creature. Experiments in plants and animals
have shown that scientists have not yet perfected the clon
ing process. When they do, then cloning will be a living
example of iteration. Whether this form of iteration is
desirable or not is being debated at the present time.

Where to Learn More

Books
Woods, T. How I Play Golf. New York: Warner Books, 2001.

Web sites
Peterson, Ivars. “Ivars Peterson’s Math Trek: Candy for Every-

one” Mathematical Association of America �http://
www.maa.org/mathland/mathtrek_1_10_00.html� (Sep-
tember 5, 2004).

Wells, D. “Iteration Planning.” Extreme programming �http: //
www.extremeprogramming.org/rules/iterationplanning
.html� (September 3, 2004).
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steps in much the same order (there has to some flexibility
in how things are done) helps their mind get ready to think.
In other words, their whole approach to being creative
involves iteration. Similar actions are repeated.

I TERAT ION  AND  COMPUTERS
In a computer program, iteration is the recycling of a

set of instructions, known as looping. A single iteration is
one pass of the instructions. Once the set of instructions
has been written, a computer will quickly pass through
the loop over and over again without making mistakes
(unlike humans).

Another real-world example of iteration in comput-
ing is a macro. A macro is the putting together of a series
of commands that responds to one signal (like the press-
ing of a designated key on the keyboard). Macros are not
necessary to do work on a computer, but they make time
go more quickly. Instead of typing in the same commands
over and over, this iteration is taken care of by the one
action of pressing that designated key.

Iteration and Nature

In nature, repeating patterns are common. From the
spirals of a seashell to the icy beauty of a snowflake, to the
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Overview

Linear mathematics deals with linear equations. An
equation is “linear” if it consists of a sum of variables or
unknowns, each of which is multiplied by some number
or constant (examples will be given below). Many real-
world problems in physics, engineering, business, chem-
istry, biology, and other fields are described by linear
equations. Computers are use to solve linear equations in
groups or “systems,” making possible many kinds of med-
ical and scientific imaging, realistic video games, cheaper
design of cars and other products, and the more efficient
management of money.

Fundamental Mathematical Concepts
and Terms

Linear equations are called “linear” (line-like)
because the simplest kind of linear equation—one having
two variables—describes a straight line. For example, the
equation 2x0 � 3x1 � 4 describes the straight line
depicted in Figure 1.

Here x0 and x1 are “variables,” meaning that they
stand for any numbers we like; the small 0 and 1 are labels
to tell them apart by. For each x0 we choose, there is one
and only one x1 that makes 2x0 � 3x1 � 4 true. For
example, if we set x0 equal to 0, then x1 must be 4/3
because:

We can also use letters to stand for the fixed numbers
that multiply x0 and x1. If we replace 2 and 3 in 2x0 �

3x1 � 4 with the symbols a1 and a2, and replace 4 with b—
where these new letters can stand for any fixed numbers
we like—we get a general-purpose linear equation in two
variables: a1x1 � a2x2 � b.

We can extend this to as many multipliers (also
known as “coefficients”) and variables as we like. The
equation is still called a “linear” equation no matter how
many variables we add. Here is the form of linear equa-
tion involving 3 variables and 3 coefficients:

a1x1 � a2x2 � a3x3 � b.

We have already seen how a two-variable linear equa-
tion describes a line. A three-variable linear equation

2 0 3 4

0

1

× + × =

x value

x value

4
3

Linear 
Mathematics
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describes a plane, a set of points resembling a stiff sheet
of paper tilted in space.

In general, a linear equation containing n variables
and n coefficients looks like this:

a1x1 � a2x2 � a3x3 � a4x4 � . . . � anxn � b.

The three dots in the middle of the equation stand
for all the terms between the fourth term and the nth
term that we don’t want to bother to write down. In real-
world applications, linear equations containing dozens or
even millions of terms are common.

Linear equations can be combined into groups or
systems. A system of linear equations is a group of two or
more equations that involve the same variables. The fol-
lowing is a system of two linear equations involving the
two variables, x0 and x1:

The “solution” of a system of linear equations is that
set of numbers which, if plugged in for the variables,
makes every equation in the system true at the same time.
In this example, the solution of the system is x0 � 12/5,
x1� –4/15. This solution is unique; that is, each equation
considered by itself is true for many values of x0 and x1,
but only at x0 � 12/5, x1 = –4/15 are both equations true.

If you graph the two equations in this system as lines
on paper, the solution of the system will be the point
where the two lines intersect. Every system of equations
has a single, unique solution (like this system), or no
solutions, or an infinite number of solutions. Among

2 3 4
9 0

0 1

0 1

x x
x x

+ =
+ =

x1
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2
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0 1 2
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Figure 1: Graph of the equation 2x0 � 3x1 � 4.
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Figure 2: A “two-by-two” matrix.
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Figure 3: A “two-by-three” matrix.

systems that consist of two lines, like the ones that we’ve
just been looking at, those that have a single, unique solu-
tion are lines that intersect (one point in common); those
that have no solutions consist of parallel lines (no points
in common); and those with an infinite number of solu-
tions consist of two equations for the exact same line (all
points in common).

Systems of equations can also be written as matrix
equations. A matrix is a rectangular array of numbers or
variables with square brackets around it. It is named
according to how high and how wide it is. For example,
the matrix shown in Figure 2 is a 2 � 2 (“two by two”)
matrix because it is 2 entries tall and 2 entries wide.
The matrix depicted on Figure 3 is a 2 � 3 (“two by
three”) matrix because it is 3 entries tall and 2 entries
wide. A matrix can be added to, subtracted from, or mul-
tiplied by other matrices. It can also be multiplied by
numbers, variables, and vectors, which are special matri-
ces only 1 entry wide. Vectors containing three entries, as
depicted in Figure 4, are particularly useful in science,
engineering, and computer animation because each
three-entry vector can specify a point, force, velocity, or
acceleration in three-dimensional space.

3
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1
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Figure 4: Vector containing three entries. 
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The system of two equations shown earlier can be
written as a 2 � 2 matrix multiplied by a vector and set
equal to a second vector. That is,

When there are only two or three variables in a sys-
tem of equations, as in this example, there is no advantage
in using the matrix form. But when systems involve many
variables, as in most real-life applications, the matrix
form is more efficient and revealing. Computers are well-
suited to calculating with matrices, and are often used to
solve systems whose matrices contain millions of entries.
In creating medical images of the inside of the body,
searching for oil reserves, predicting global climate
change, designing new drug molecules, maximizing prof-
its, and many other applications, the solution of large
matrix equations by computer is key.

Because the solution of systems of linear equations is
so important in our high-technology society, most of the
examples of linear math given below involve the solution
of such systems.

Real-life Applications

EARTHQUAKE  PRED ICT ION
Science foresees no way of preventing earthquakes,

which occur when whole sections of the Earth’s crust,
many miles across and weighing billions of tons, slip past
east other. These forces are too great to control. However,
knowing when and where earthquakes are likely to hap-
pen, and how strong they are going to be, would make
better preparedness possible and reduce the loss in lives
and money caused by major quakes.

It is not yet possible to predict most earthquakes, but
with the help of large systems of linear equations solved
by computers, scientists are making rapid progress. The
basic method, called “finite element modeling,” is a com-
mon one in manufacturing, science, medical imaging,
and other fields today. In finite element modeling, a
mathematical model or image of an object or volume of
space is built up using either triangles (for flat models) or
tetrahedra (four-pointed pyramids, for three-dimensional
models). The triangles or tetrahedra are called “elements”
and fit together into a web or network called a “mesh.”
One or more separate variables (like x0, x1, and so forth
used above) are assigned to each element, and linear
equations involving these variables are written so that
they approximate the laws of physics that apply in that
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area of space. For earthquake prediction, meshes contain-
ing 100 million tetrahedra or more are created that repre-
sent parts of Earth’s crust containing earthquake faults.
Equations are constructed using these meshes that
describe how shock waves move through the rock and
soil. Supercomputers are then used to solve the resulting
systems of millions of linear equations; the solution
shows what an earthquake will look like.

Linear equations

Linear equations that involve two variables, such as
2x � 3y � 4, describe straight lines. That is, if you
graph any of the x, y pairs that satisfy the equation,
you will find that they all lie on the same line on the
paper—and, likewise, that every point on that line
satisfies the equation. A linear equation that
involves not two but three variables, such as 2x �

3y � 7z � 4, graphs a plane in three-dimensional
space.

Linear equations appear everywhere in sci-
ence, technology, and business. If you are selling
sneakers at x dollars of profit a pair, you know that
if you sell 20 pairs of sneakers you will make dou-
ble the money than if you sell 10 pairs, namely, 20x
dollars rather than 10x dollars. Here the relation-
ship of pairs sold to total profit is described by a
linear equation: number of pairs sold (call it a)
times profit per pair (x) equals total profit (p), ax �

p. Anyone running a lemonade stand knows this
much linear math by instinct.

But not everything in real life is linear. For exam-
ple, you might make more profit per pair of sneak-
ers if you sell a million pairs than if you sell only a
hundred. In this case, the equation describing your
total profit in terms of sales will not be a linear
equation.

Nor are all linear equations as bare-bones as
ax � p. If you are selling two types of sneaker, one
of which makes x1 dollars of profit per pair while the
other makes x2 dollars, a different linear equation
arises. Say you sell a1 pairs of the first type of
sneaker and a2 of the second type. Then your total
profit p is given by the sum of the profits from each
type: a1x1 � a2x2 � p. This is also a linear equation,
but it involves two variables. In real business and
industry, equations of this type involving variables
are common.
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Linear Inequalities

Equations express equalities, such as 1 � 2 � 3. We can
also write inequalities, expressions that say that one thing
is less (or greater) than some other. Four signs are used
to express inequality: � (less than), � (less than or equal
to), � (greater than), and � (greater than or equal to). For
example, the expression a � b reads “a is greater 
than b.” The expression c � a reads “c is less than or
equal to a.”

A linear inequality is a linear equation with its
equals sign replaced by an inequality sign. The linear
equation, x � y � 2, for example, can become the linear
inequality x � y � 2.

The linear equation x � y � 2 describes a straight
line—and that’s why it’s “linear” (See Figure A.)

The inequality is also true for all points below the line,
namely the gray area in Figure B.

Linear inequalities arise often in real life. Consider
a factory that can make two kinds of computer chip,
Chip One and Chip Two, but cannot make both at the
same time. The time needed to make a batch of Chip
One is 5 minutes, so the time to make c1 batches of
Chip One is 5c1 minutes. The time needed to make a
batch of Chip Two is 10 minutes, so the time to make c2

batches of Chip Two is 10c2 minutes. But there are only
1,440 minutes in a day. Adding the time spent in one
day making Chip One to the time spent making Chip
Two, we have the linear inequality: 5c1 � 10c2 � 1,440.
This example is simple but not far-fetched. Linear
inequalities that express limits or constraints on time,
material, or other valuables appear constantly in the
solution of real-world business and finance problems.
Such problems are often solved using the technique
called “linear programming.”
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Figure A: Graph of x + y � 2.

The linear inequality x � y � 2 also describes a set
of points. The line x � y � 2 is part of that set because
the “less than or equal to” sign includes an equals sign.
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Figure B: Graph of x + y = 2.

RECOVER ING  HUMAN MOT ION  
FROM V IDEO

There is much interest today in teaching computers
how to track human motion from video cameras. To
track human motion successfully, a computer must be
able to pick human forms out of all the other information
in a moving image, like the video of a dance or a football

game. It should then be able to describe what the human
being has done in words, or be able to move a mathemat-
ical model or virtual puppet to re-create the motion it has
observed. The ability to track and then describe or repro-
duce human motion mathematically is used in video
games, virtual reality, formation analysis in sports, and in
other ways.
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One method used to track motion is the identifica-
tion of “feature points” on the subject—idealized dots or
spots on the surface of the subject’s body, say on their 
helmet or elbow or knee. These feature points are then
tracked in the video images recorded by several video
cameras. Since each video image is two-dimensional
(flat), the location of each feature point in the image at
any one time can be described by two numbers, an 
x coordinate that says how far from the left-hand edge of
the image the point is and a y coordinate that says how
high up it us from the bottom edge of the image. If there
are, say, 40 feature points on the subject, there are then 
80 numbers that describe where the feature points are at
a particular moment of time in the video from a single
camera, and 3 � 80 � 240 numbers to describe where the
feature points in the video from 3 cameras. These num-
bers are put into a matrix. Using linear mathematics
methods of matrix algebra, this matrix is separated into
two matrices, an M matrix that describes how the cam-
eras are pointing (which we don’t really care about) and
an S matrix that describes the true arrangement in space
of the feature points. The S matrix records how the sub-
ject is positioned in space at that moment. A whole series
of S matrices, one for each frame of video, describes how
the subject’s body moves through space over time.
Motion capture and analysis using linear algebra is used
in computer-animated movies such as Polar Express
(2004), where live actors’ motions were recorded by com-
puters and then used to animate digital figures.

V IRTUAL  TENN IS
The ongoing explosion in computer power makes

possible the crafting of “virtual” worlds in which a game-
player, scientist, or other user can experience the illusion of
movement and exploration. In most virtual-world or
virtual-reality systems, a headset replaces the scene that the
user would otherwise see with computer-generated scenes.

But the sense of touch is not so easy to fool. One
approach, in virtual tennis, is to have a computer read posi-
tion information from a racket grip held in the player’s
hand. A rod is also attached to the “racket.” When the
player sees a ball coming in the virtual world which the
headset shows to them, they swing at the ball. The com-
puter senses the forces that the player’s hand exerts on the
racket grip, as well as the position of the racket in three-
dimensional space, and calculates whether they player is
going to succeed in hitting the virtual ball. If they do, the
computer sends a shock along a rod connected to the
player’s racket so that they can feel the impact of the ball—
which does not physically exist—hitting the racket. Such
systems are already becoming commercially available.

All the computations performed by the computer in
such a game involve vectors and linear mathematics. The
position of the racket in space is characterized by a set of
three-dimensional vectors; the force of the player’s grip,
the velocity of the ball, and other variables are also rep-
resented by vectors. Furthermore, the computer must cal-
culate what racket positions are “feasible” for the system,
that is, what positions the rod and wiresattached to the
racket can allow. This is done using matrix algebra.

L INEAR  PROGRAMMING
Linear inequalities (see sidebar) are important to the

problem-solving method known as “linear program-
ming.” In a linear programming problem, linear equali-
ties and linear inequalities are combined into a system
(that is, they all involve the same variables or unknowns).

A check sorting machine separates checks at high speed at
the Unisys Corp. check-processing facility. Banks use linear
programming to process checks more efficiently. In
particular, they want to minimize “float.” AP/WIDE WORLD

PHOTOS. REPRODUCED BY PERMISSION.



This system is then solved, using the methods of linear
algebra, to find the “optimum” (i.e., best possible) way of
mixing ingredients, manufacturing items, transporting
supplies, or allotting other resources.

The first step in a linear programming problem is to
define a linear equation that describes something which
we want to minimize (expenses, say) and as many linear
inequalities as we need to describe the bounds on our
resources: for instance, that there are only so many min-
utes in a day, or pounds of Ingredient Z available, or

dollars in the bank available for investment. Each linear
inequality is then converted into a linear equality. For
example, the inequality 50x1 � 12x2 � 100 really says that
50x1 � 12x2 is less than 100 by some unknown amount
(maybe 0). This is the same as saying that an 50x1 � 12x2

plus an unknown quantity equals 100. If we name this
third unknown M, we can turn the inequality into an
equation: 50x1 � 12x2 � M � 100. When all linear
inequalities have been turned into linear equations, we
then use matrix algebra methods (which are described in
many textbooks) to solve the system and find out the best
way to run our business.

Linear programming is used by real-life organiza-
tions, especially businesses and the military. An example
is the use of processing stations in semiconductor manu-
facturing plants. These plants make the circuit-covered
“chips” that run all complex electronic devices, including
computers. Many thin layers of material have to be built
up on each chip, and each layer requires many stages of
optical and chemical processing. In fact, more resources
are consumed in making the tiny chips in a desktop com-
puter than in making all the rest of the computer put
together. Manufacturers are therefore keen to use their
chip-making factories efficiently.

A processing station in a chip factory is a large, com-
plex device that performs one step at a time in the chip-
making process. Instead of having hundreds of stations, one
for every step, it is cheaper to re-fit each station (change
some of its parts) occasionally so that it can do a different
step. But refitting a station takes time; it would be unprof-
itable to refit a station every single time it performed a step.
How many batches of chips should a station process before
being refitted for another step? Linear programming is used
to answer this question, telling the manufacturer how to
schedule steps and stations for maximum profit.

L INEAR  REPRODUCT ION  OF  MUS IC  
If a musician plays two notes in a recording studio,

one twice as loud as the other, you want two notes come
out of your stereo’s speakers so that the one is twice as
loud as the other. If graphed on paper, this relationship
between live performance and ideal playback is a straight
line—a linear function. A great deal of mathematical
design work goes into making sound-reproduction sys-
tems as linear as possible.

But nonlinearity—electronic behavior that is not
linear—has its uses, too. The rough sound of a rock guitar
is produced by feeding an electrical signal derived from
the guitar’s strings into a circuit that does not respond
linearly. That is, the original signal looks like a compli-
cated wave or series of up-and-down wiggles; when two
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Maximizing Profits

The technique known as “linear programming” com-
bines linear equations with linear inequalities (see
sidebar) to find the best way of using limited
resources. It is used mostly by large organizations,
such as corporations or the military, to minimize
operating costs.

Banks use linear programming to process
checks more efficiently. In particular, they wanted to
minimize “float.” Float is the amount of money rep-
resented by uncancelled checks—checks that have
been received by the bank but for which the money
has not yet been collected. Float is detrimental to
profit because it represents money in limbo; the
bank cannot make money on that money (invest it)
until the check has cleared.

What should a bank do to minimize float with-
out spending so much doing it that the cure is
worse than the disease? When checks are received
they are “encoded,” that is, marked with magnetic
ink by a machine. This is the first step in clearing
the check. Banks realized they needed to encode
checks as quickly as possible without hiring too
many machines and clerks, so mathematicians
and computer specialists set up a linear program-
ming problem to model the situation. That is, they
organized float, encoding machines costs, wages
and hours for clerks, and other relevant variables
as a set of linear equations and inequalities, and
solved this system using linear algebra. The solu-
tion showed banks how many full- and part-time
clerks to assign to how many shifts on how many
machines in order to minimize float. Although there
are increasingly high-tech ways to digitize informa-
tion and handle checks, many financial institutions
still use linear programming to save money and
increase profits.
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wiggles, one twice as big as the other, are fed into a non-
linear circuit, the larger wiggle does not come out twice as
big but gets flattened or chopped off at the top and bot-
tom. This happens because the circuit cannot produce a
signal above or below a certain limit. The resulting sound
is, technically speaking, “distorted”—but sometimes,
that’s exactly what we want.

Where to Learn More

Books
Budnick, Frank S. Finite Mathematics with Applications. New

York: McGraw-Hill, 1985.

Lay, David C. Linear Algebra and its Applications, 2nd ed. New
York: Addison-Wesley, 1999.

Key Terms

Linear algebra: Includes the topics of vector algebra,
matrix algebra, and the theory of vector spaces. Lin-
ear algebra originated as the study of linear equa-
tions, including the solution of simultaneous linear
equations. An equation is linear if no variable in it is
multiplied by itself or any other variable. Thus, the
equation 3x � 2y � z � 0 is a linear equation in
three variables.

Linear equation: An equation whose left-hand side is
made up of a sum of terms, each of which consists
of a constant multiplying a variable, and whose
right-hand side consists of a constant.

Linear programming: A method of optimizing an out-
come (e.g., profit) defined by a linear equation but
constrained by a number of linear inequalities. The

inequalities are recast as linear equation and the
resulting system is solved using matrix algebra.

Matrix: A rectangular array of variables or numbers,
often shown with square brackets enclosing the
array. Here “rectangular” means composed of
columns of equal length, not two-dimensional. A
matrix equation can represent a system of linear
equations.

System of equations: A group of equations that all
involve the same variables.

Vector: A quantity consisting of magnitude and direc-
tion, usually represented by an arrow whose length
represents the magnitude and whose orientation in
space represents the direction.
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Logarithms

Overview

A logarithm is the power to which a number (usually
termed the base number) must be raised to equal a target
number.

Fundamental Mathematical Concepts
and Terms

In base 10 systems, 2 is the logarithm of 100 because
102 � 10 � 10 � 100. The number 2 in this example is
the exponent of the base number 2 that yields 100.
Accordingly, in base 10 the log of 100 is 2.

Because logarithms are so common in mathematics,
there are different ways to develop an understanding of
them and this will often cause some confusion. However,
at their most basic level they can be thought of as a set of
rules that allow one quantity to be converted into another
to simplify a problem. This idea is the same as multipli-
cation, which is a simplification of the operation of
repeated addition; it is easier to say 50 � 5 rather than
write 50 � 50 � 50 � 50 � 50. Logarithms are effectively
the next step, the simplification of repeated multiplica-
tion or division. Logarithms have their own form of
mathematical notation that can only be manipulated in
strict accordance with a set of rules. Once these rules are
understood the work of manipulating logarithms is car-
ried by the notation itself, operations no more complex
than multiplication, addition, subtraction and division
are used to manipulate terms in an equation and generate
the desired result.

Before trying to use the mathematical notation of
logarithms, it is helpful to understand some aspects of
mathematical notation itself. Consider the simple opera-
tion of multiplication. The common notation for multi-
plication is the � symbol.

Using a symbol to stand for repeated addition, called
multiplication, is a form of shorthand. For example, 2 �
3 � 2 � 2 � 2. Obviously, the notation reduced the
amount of work needed to express repeated addition; it
would be hard work if you had to write out 3,200 � 563
as 3,200 � 3,200 � 3,200 . . . some five hundred sixty
three times. However, this notation is more than just a
shorthand; it allows us to manipulate quantities that were
not possible before and extend our range of mathemati-
cal tools. For example, consider multiplying two fractions
together. Even though it is not possible to write this
out directly, it is still possible to find the answer,
0.5 � 0.7 � .35. It is even possible to throw away the
numbers and replace them with letters that represent any
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number that you can think of. Here x means any number
we can think of multiplied by three. y now represents the
answer, 3 � x � y . In equations like this the multiplica-
tion symbol, �, is often dropped and letters and numbers
that are next to each other are understood to be multi-
plied. If we set x � 2, remembering this is just a number
used for example, our equation y is found to be equal to
3 � 2 � 6. Again, if x � 5, then y is equal to 15.

One of the great powers of this notation is that it
allows the terms, such as x and y, to change places. This is
done by noticing that any operation performed to on one
side of the equal sign must be repeated on the other side
of the equal sign. This is because the values are equal and
what we do to one side should balance the effect on the
other side.

Let’s consider an example of this for the formula 3 �
x � y. This formula may give us some property of a mate-
rial, and we conduct an experiment where we measured
the values of y of that material. Can we find the value of
x? Yes, simply find the value of x by dividing both sides by
three: (3 � x)/3 � y/3 so this gives x � y/3. By dividing the
equation by 3 on both sides we have eliminated the term in
front of the x and given the equation in terms of y. This
process is called rearranging an equation.

THE  POWER  OF  MATHEMAT ICAL
NOTAT ION

As multiplication was the extension of repeated
addition, so raising to powers, or simply powers, is the
extension of repeated multiplication. Consider the
number 5 multiplied by itself four times; this can be
written in shorthand by putting the number of times
the multiplication is to be repeated as a smaller number
4 to the top right of the 5. Here are some examples, 5 �
5 � 5 � 5 � 54 is the same as 5 � 5 � 5 � 5 � 54. To
read this notation out loud we say base five raised to
the power of four. Another example is 2 � 2 � 2 � 2 �
2 � 2 � 26 read as base two raised to the power of six.
There are a couple of points to remember about this
notation. The first is that the power is also known as the
exponent and raising to a power is also known as expo-
nentiation. Exponentiation is not to be confused with the
exponential function, ex, discussed later. Another point
to note is that numbers raised to the power of two or
three are often read as squared or cubed. For example,
5 � 5 � 52 is read as five squared and 8 � 8 � 8 � 83 is
read as eight cubed.

As division is the opposite of multiplication, loga-
rithms can be thought of as the opposite of exponents.
They come in two common forms. The first form is writ-
ten as log10, read as log base 10. The base here is related to

the base of the powers, as we shall soon see. Log10 is so
common that in texts and the buttons on most calculators
the base 10 is dropped and it simply reads as log or lg. The
other form is read as the natural logarithm, and is written
as ln, this is identical to “log e.” Logs to any other base,
such a base 2, are written as log2, etc.

POWERS  AND  LOGS  OF  BASE  10  
Now students should try to get a feel for some values

in base 10. Using a scientific calculator, they can try the
following, log (1,000) � 3. This tells us that 1,000 can be
repeatedly divided by 10 three times: 1,000 /10 /10 /10 �
1, which is true. Another way to look at this is the loga-
rithm has told us that the number 1000 has three zeros after
the one. Now raise base 10 to the power of 3 and we are
back with the number we started from, 10 � 10 � 10 �
103 � 1,000. Here we see the relation between the base of
the logarithm and the base of the power. This reflects the
relationship of logarithms as repeated division and pow-
ers as repeated multiplication. Raising the logarithm to
the power like this is called an anti-logarithm, and it gives
us back the number we started with. Here is another
example, log (10,000) � 4. Again, this shows us that
10,000 can be repeatedly divided by 10 exactly four times,
or to view it another way, there are four zeros after the 1.
Raising this logarithm to the power of base 10 gives us
back our number, 104 � 10,000.

For any number made from one followed by a num-
ber of zeros the log will always equal the number of zeros
if we use logarithms with base 10.

As with the previous multiplication example, our
definitions of this notation allow us to extend this idea of
repeated multiplication and division to more than just
shorthand, because we can now use fractional values. Stu-
dents should try the following, log (5,246) � 3.7198283.
Even though this cannot be written out as an exact
repeated division by ten as we did before, it still tells us
how 5,246 would divide into 10 in an abstract sense,
about four times. If we raise this to base ten do we get the
answer back as expected? 103.7198283 � 5,246.0002. Almost,
but what about the small fraction after the number?
(Depending on places and the calculator, the exact frac-
tion may differ.) The digits after the decimal place are not
important and are there because the calculator cannot
store numbers to infinite precision. However, they can
safely be ignored as the error is not in the digits in which
we are interested. This will always be found to be true and
we obtain the correct answer of 5,246. The notation has
allowed the extension of the mathematical idea of
repeated multiplication to be taken beyond the simple
idea of a shorthand.



LOGAR I THMS  TO  OTHER  BASES  
THAN  10

What about logarithms with a base other than 10, such
as, log2 (256) � 8? You do not find a log2 button on your
calculator because logarithms to bases other than 10 can
always be expressed as log10 using the following formula:

logN (y) � log10 (y)/log10 (N)

Here y is the value of the log and N is the value of the
base. So, to solve the previous equation, log2 (256) �

log10 (256)/log10 (2) � 2.40824/0.30103 � 8. As a check,
28 � 256, as expected.

Logarithms to the base 2 are common in computing
where a computer will represent numbers by a series of 1s
or 0s internally. Arithmetic performed in base two is
called binary.

POWERS  AND  THE IR  RELAT ION  TO
LOGAR I THMS

Let us consider replacing the numbers with letters as
was done with multiplication. Again the letter x can take
any value, y � 10x. If we apply log to the terms on both
sides of the equals sign we can now find x. Check the
method used for rearranging the formula, 3x � y, if you
do not understand this step, log (y) � log (10x) � x x �
log (y). This shows the effect of the log was to cancel the
base of the power, 10, in y � 10x. This is the same in any
base and generally can be written logN (Nx) � x. Notice
that the base must be the same in both parts. For instance,
the following formula is wrong, log2 (3x) is not equal to x
but this is correct, log3 (3x) � x. This rule allows us to
cancel the base of a power by multiplication with a loga-
rithm. This is useful for extracting the power x.

THE  ALGEBRA  OF  POWERS  AND
LOGAR I THMS  

When two powers of the same base are multiplied,
the repeated multiplication is effectively extended. This is
identical to the base raised to the sum of the powers.
If they are divided, then the powers are just subtracted.
Nx � Ny � N (x�y) (Nx)/(Ny) � N(x�y).

While thinking about these relations, students can
see that we have combined multiplication and addition
and vise-versa for division and subtraction. Using the
logarithm to extract the powers, shown previously, allows
the addition and subtraction parts to be extracted,
LogN (Nx � Ny) � x � y � logN (Nx) � logN (Ny) and if
we set Nx � A and Ny � B then logN (A � B) � logN (A) �
logN (B). Likewise logN (A/B) � logN (A) � logN (B). The
rules shown here are the reason that logarithms allow us to

reduce the complexity of large lists of multiplications (or
divisions) down to simple addition (or subtraction).

These basic properties of logarithms were critical in
the development of science and industry over the past
three centuries.

LOG  TABLES
Suppose you want to multiply numbers so large that

it will take a while to complete the computation by hand.
It would be faster if there were some sort of table to look
up the answer. If we wanted the answer to be accurate to
four digits, a simple solution would be to make a table,
called a matrix, with the rows and columns correspon-
ding to the numbers between 1 and 9,999. If we picked a
row, say 50 and column say 26, were they crossed we
would find the answer for the multiplication, in this case
1300. Picking a row and column would show us the mul-
tiplied answer quickly.

Now any multiplication can simply be looked up in
our table. For numbers outside the range 1 to 9,999 we can
still find the answer by moving the decimal point until they
are in this range, reading from the table and finally moving
the decimal place back by an opposite number of steps.

The problem with this basic system, that makes it
unworkable, is the number of entries needed will be huge.
For four digits accuracy each edge of our square table
would have 10,000 numbers. This gives us least
100,000,000 entries (10,0002). If the print is very small
that is still enough to fill 20 thick books.

Another problem is seen as we increase the number
of digits accuracy needed. The square shape of our table,
the matrix, will rapidly start to get bigger with each digit
added. Most scientific and engineering calculations work
at seven digits accuracy. This works out to be more than
a million thick books to store our table and we have not
even considered division.

History of Logarithms

Logarithms were invented in the seventeenth century
by John Napier, a Scottish Barron. During that time in
Scottish history the country was undergoing major
religious and political upheaval. In this climate academic
study was not held in high regard. Later in life Napier
considered his greatest publications were his theological
works, with his mathematical works as a secondary inter-
est. The development of logarithms at this time came
from a need to simplify the computations of repeated
multiplications and divisions. These computations were
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common in the calculations of astronomical charts used
by the navy and the shipping industry and religious
charts used by the church, three of the most powerful
institutions in Britain at the time.

The power of the system of logarithms comes from its
simplification of computational steps involved. By convert-
ing terms that were to be multiplied or divided to logarithms
from a table, they could then simply be added or subtracted,
and the result read from another table. The system was com-
pact and flexible enough that the two tables needed to per-
form the steps could be listed in a few pages at the back of a
book. Another device, called a slide rule, reduced computa-
tional time further by allowing the user to read the answer
directly by simply moving the two rulers on the device. For
300 years this device was commonly used by scientists and
engineers, just as hand-held calculators are today.

It is no understatement that the invention of loga-
rithms changed the world. Their usefulness in industry
and science was soon realized, and the system rapidly
spread around the world. The invention of the electronic
calculator in the 1950s allowed complex calculations to
be performed by the simple push of a button.

Real-life Applications

COMPUTER  INTENS IVE  APPL ICAT IONS
Although the system of using log tables is not in

common use since the invention of electronic calculators
it has found new life in computer intensive applications.
The desktop calculator will have to run a program to
multiply numbers together. This process is so fast we can-
not see it and to us it looks instant. However, it still takes
a certain amount of time, and the time needed increases
with the complexity and amount of calculations. In a
computer-intensive application, in which millions of
numbers have to be multiplied every second and speed is
critical, this can become a problem. Some examples are
interactive 3D computer games, and software used in
spacecraft and aircraft. Here, the small time the computer
takes to calculate the numbers will rapidly increase and
can become substantial.

This can be reduced if a set of log and anti-log tables
are wired into the computers memory, and the computer
only has to look up values instead of running a program to
find the answer. This technique to improve performance
under heavy arithmetic load is called a log lookup table.

US ING  A  LOGAR I THMIC  SCALE  TO
MEASURE  SOUND  INTENS I TY

Decibels (dB) are used as a measure of sound level.
They are common markings for stereos, televisions, and
other audio equipment and are based on a log10 scale.
The faintest sound we can hear is called the threshold of
hearing. Its value is tiny, about a 0.3 billionths change in
air pressure. The scale is given as dB � log (Number of
times greater than threshold of hearing) � 10. A normal
conversation is 60dB or, remembering to divide by the 10
from right of the formula, 106 � 1,000,000. This is one
million times louder than the faintest sound you can hear.
We can safely hear sounds to around 90 dB, the level of an
orchestra, before damage to the ear starts to occur, but we
can still hear sounds louder than that. The levels of the
front row of a rock concert can reach 110 dB. After this,
there is pain and instant deafness. This gives the human
ear an amazing range of about 100 billion times the
faintest sound it can detect.

“e”

The most common logarithms that are encountered
in mathematics are natural logarithms. These are
logarithms to the base e. This is due to the remark-
able properties of the number e and its many spe-
cial properties. One of these properties is that ex

has a rate of change that is equal to its value of x.
This makes ex a solution to equations used to cal-
culate rates of change, often with respect to time,
called differential and integral equations. This num-
ber is irrational, which means that the numbers
after the decimal place carry on forever and the
sequence never repeats. The first five significant
digits of this number are 2.7182. e has a very spe-
cial place in mathematics and is believed to be a
fundamental number in nature.

Applications of e are too numerous to list, but
some examples are the calculation of compound
interest rates, rates of radioactive decay, or the
rates of decay of damped springs found in the sus-
pension systems of cars. This is why a scientific cal-
culator will have the natural logarithm button ln, as
this is the most common logarithm encountered in
engineering, scientific, or mathematic work.

One example of the families of equations that
contain this number are said to show exponential
behavior. This means that they can rapidly change
with time. This behavior is seen in many natural and
human-made systems. Some examples are the
rates of growth of bacteria and radioactive decay,
and the calculation of compound interest rates.



EST IMAT ING  THE  AGE  OF  ORGAN IC
MATTER  US ING  CARBON  DAT ING

The atmosphere is continuously being bombarded
by radiation from space. In the upper atmosphere, the
radiation from space has enough energy to change atoms
of nitrogen into carbon. Carbon created this way is called
carbon 14 and is different to the majority of the carbon
we see around us called carbon 12. Carbon 14, unlike car-
bon 12, is unstable and will slowly decay back to nitrogen
over a period of many thousands of years. The rate of
production of carbon 14 in the atmosphere can be shown
to be stable for a very long period of history, and this
allows us to measure the age of dead organic matter.

All life on Earth is made from carbon, and during the
course of an organism’s life it will absorb small amounts of
carbon 14. When the organism dies, it will stop absorbing

carbon 14. So by measuring the ratio of carbon 14 to car-
bon 12 that is present and using the law of exponential
decay of a radioactive source and their logarithms, scien-
tists can calculate the age of the material.

DEVELOP ING  OPT ICAL  EQU IPMENT
No matter how pure a material is made, as light

passes through it a small majority will always be scattered
or absorbed. This is an exponential effect and logarithms
are therefore used extensively in the design of optical
equipment. Just a few examples are cameras, optical
fibers, and the design of television screens.

USE  IN  MED ICAL  EQU IPMENT
Certain cancers can be treated by passing radioactive

beams though the body. A machine with a radioactive
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Tourists watch as tsunami waves hit the shore near in Penang, northwestern Malaysia on December 26, 2004. Although the
earthquake causing the tsunami initially measured at 8.0 on the Richter scale, scientists later found that the data indicated
an undersea earthquake measuring 9.0. The difference of one point is not insignificant. On the logarithmic Richter scale,
each whole number increase means that the magnitude of the quake is ten times greater than the previous whole number.
Thus, an earthquake with a magnitude of 9.0 has ten times the force of one with a magnitude of 8.0; an earthquake of 9.0
has 100 times the intensity of the 7.0 earthquake, etc. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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source is rotated around the patient. Only at the center of
this rotation will the radiation be constant. Moving away
from the center, the radiation will only pass through the
patient periodically as the machine makes each rotation.

The location of the cancer is carefully mapped, and
the absorption of the radiation through the body and the
absorption by various organs is then calculated. This
requires the use of logarithms due to the exponential
nature of this absorption. The aim of the surgeons is to
locate the cancer and manipulate the intensity of the
beam over each rotation so that minimum damage is
caused to the surrounding organs and maximum damage
is caused to the tumor.

DES IGN ING  RAD IOACT IVE  SH IELD ING
FOR  EQU IPMENT  IN  SPACE

Outside the protection of the Earth’s atmosphere we
enter a highly radioactive environment. Spaceships, satel-
lites, and spacesuits must all able to absorb and disperse
this energy to protect the delicate equipment and astro-
nauts from damage. The absorption must be balanced
against weight not too massive to launch.

Absorption of different types of radiation and in dif-
ferent materials involves calculations using logarithms
due to the exponential nature of absorption.

SUPERSONIC  AND  HYPERSONIC
FL IGHT

During supersonic and hypersonic flight, the air
flow over the craft behaves very differently than at slower
flight speeds. Logarithms are used in the design and fuel
requirements.

Potential Applications

CRYPTOGRAPHY  AND  GROUP  THEORY
Cryptography is the science of encoding information

in such a way that an eavesdropper cannot intercept and

decode a message. Modern methods rely on a mathemat-
ical phenomenon that some formulas are practically
impossible to invert. This means that information encoded
by such a formula cannot simply be decoded by rearrang-
ing the terms of the formula to reverse the processes.

Two parties can generate and swap unique keys
which will unlock the message encrypted by a formula
like this. However, if an eavesdropper were to try to
decode the encryption by setting a machine up between
the two parties without the keys, he would have to invert
the formula used to encrypt the information.

One set of such functions that show these properties
come from an abstract area of mathematical research that
studies the relations between objects called group theory.
Certain groups can be given properties that act like expo-
nentials and logarithms. The calculation of the exponen-
tial part of these groups is very simple, and the calculation
of the logarithmic part is very hard. This property can be
exploited in cryptography. Studies of this branch of
mathematics are important in the future development of
faster and more secure algorithms.

Where to Learn More

Books
Durbin, John R. College Algebra. New York: John Wiley & Sons,

1985.

Morrison, Philip and Phylis Morrison. Powers of Ten: A Book
About the Relative Size of Things in the Universe and the
Effect of Adding Another Zero. San Francisco: Scientific
American Library, 1982.

Periodicals
Curtis, Lorenzo. “Concept of the exponential law prior to 1900.”

American Journal of Physics 46(9), Sep. 1978, pp. 896–906
(also available at �http://www.physics.utoledo.edu/~ljc/
explaw.pdf�.

Web sites
SOS Math! “Introduction to logarithms.” �http://www.sos-

math.com/algebra/logs/log1/log1.html� (February 1, 2005).
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Logic

Overview

Logic is a set of rules by which decisions and conclu-
sions are either derived or inferred from a set of state-
ments. Logic can be mathematical or predicate (dealing
with statements and sentences). Logic is also a set of rules
by which computers handle data, and circuit logic dic-
tates how many devices operate.

However, a logical decision or a belief may or may
not be correct. Logic is more of a set of rules to follow in
reaching a decision. An example of a logical, but incor-
rect, bit of reasoning is the following: If I believe that
sheep have a wool coat and that all sheep are mammals,
then it could make logical sense for me to believe that all
mammals have wool coat. The conclusion is incorrect,
but it is logically drawn.

Fundamental Mathematical Concepts
and Terms

Over twenty-four centuries ago, the idea of logic was
explored and developed about the same time in China,
India, and Greece. The Greek philosopher Aristotle 
(384 B.C.–322 B.C.) was important in the creation of logi-
cal systems.

REASONING
Logic does not necessarily lead to the truth. What

logic does do is to allow us to look at an argument and to
decide if the reasoning is valid or not valid. Logic also
points out how we can come to believe something that is
not true (even though that sounds illogical).

PROPOS I T ION  AND  CONCLUS ION
The starting point of a logical line of thought is

called the proposition (or the statement). A proposition is
the real meaning of the sentence (or the equation, as it
can be written in mathematical language also). The
meaning can be expressed in different ways and still mean
the same thing. For example “Today is Friday” and “Yes-
terday was Thursday” are the same proposition, while
“My name is Brian” is a different proposition.

A proposition is always true or false, although it is
sometimes unknown which proposition is true and which
is false. “There is life on Mars” is an example of a proposi-
tion that may or may not be true; we have yet to find out.

Logic proceeds from the starting point of the propo-
sition to the conclusion in a series of steps that are related
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to each other. That is, one step is followed by a step that
supports it.

Here is an example of a logical series of steps:

• Today is Friday.
• My library books were due Thursday.
• My library books are overdue.

Here is an example of a series of steps that is not logical:

• The moon is full.
• There are clouds in the sky.
• My cat has a hairball.

From the proposition, the steps that proceed to the con-
clusion can be set up so that the steps guarantee that the
conclusion is true. This is a good style to use when debating.
There is no middle ground with this type of approach.
Either all the steps lead to a single conclusion or they do not.

A number of different outcomes can still result,
depending on whether the steps from the proposition to
the conclusion support this conclusion. Table 1 summa-
rizes these various possibilities.

A less rigid style is when the steps from the proposition
to the conclusion support the likelihood of the conclusion.
In this style a conclusion does not have to be true, it is just
likely to be true. Points can be presented that support the
conclusion, but the conclusion could still be debatable. This
style of logic is used in many courtrooms by lawyers trying
to defend their clients from charges brought against them.

Real-life Applications

BOOLEAN  LOG IC
Many persons do most of their banking while sitting at

their desk. This is possible since they can hook up to the
local bank’s Web site, research bank accounts, and then use

the computer directions built into the site to shift money
from one account to another, pay bills, and look at the
action in each account over whatever time period is desired.

These activities are pretty human-like. How can com-
puters do them? The answer is something called Boolean
logic.

Boolean logic is named after the Irish mathematician
George Boole (1815–1864). From an early age, Boole
showed a talent for languages and teaching. When he was
20, Boole began to teach himself mathematics. He proved
to be talented at this as well, publishing papers in the lead-
ing math journals of the day. When he was 34 years old, he
was appointed chair of mathematics at Queens College in
Cork, Ireland. He taught there for the rest of his life.

In 1854, when he was only 39 years old, Boole pub-
lished a paper called “An Investigation into the Laws of
Thought, on Which are founded the Mathematical Theo-
ries of Logic and Probabilites.” The ideas in this paper
became the basis of Boolean logic.

One niche that Boolean logic has filled beautifully is
the task of sifting through vast amounts of information
to find those bits of information that are desired.

FUZZY  LOG IC
Fuzzy logic is a way of making computers behave in

a way that is similar to the way humans think. Often, we
are able to use information that is not really clear or pre-
cise to make decisions that are definite. We can relate the
imprecise (fuzzy) information with what we already
know to make a decision.

Here is an example. You are driving your car on a
crowded, four-lane freeway. The speed limit is 65 mph
(105 km/h). As is usually the case, traffic is moving faster,
at an average speed 70 mph (113 km/h). You know that it

True

True

False

False

Proposition Steps Conclusion

Always true

Can be true
or false

Can be true
or false

Can be true
or false

Support the
conclusion

Do not support the
conclusion
Support the
conclusion

Do not support the
conclusion

Table 1.



is safest for you and those around you to drive “with the
traffic.” But what exactly does driving “with the traffic”
mean?

Watching other drivers, you realize that driving “with
traffic” is done different ways. Some drivers will drive
more slowly and stay in the right hand lane. Other driv-
ers will speed and zig-zag their way between cars and
lanes. Usually, the different styles mesh together to make
a smooth flow of traffic. When they do not, there a traffic
accident can occur.

Fuzzy logic was conceived by Lotfi Zadeh, a professor
of electrical engineering at the University of California at
Berkley, and was first proposed in a 1965 paper. From its
humble beginnings, fuzzy logic has expanded to assume
an important role in our daily lives. For example, because

of fuzzy logic, the computer inside a video camera is able
to keep focusing even when the camera is jostled. As
another example, fuzzy logic makes it possible to pro-
gram a microwave oven to cook differently sized and
types of foods perfectly with the touch of one button.

The logic of fuzzy logic can be summed up as IF X
AND Y THEN Z. It is the ‘if ’ and ‘and’ that makes things
less precise.

The following example may help to make this fuzzi-
ness clearer. A conventional oven operates on the basis of
exact temperature. A thermometer in the oven can cut off
the power to the oven’s heater when the oven reaches what-
ever temperature has been selected, and will kick the heater
back into action when the temperature falls below another
set value. This occurs no matter what is in the oven.

A microwave with a fuzzy logic temperature control
does not rely on exact temperatures. Instead, the process
is like this: “IF (the process is too cool) AND (the process
is getting colder) THEN (add more heat)”, or “IF (the
process is too hot) AND (the process is getting colder)
THEN (heat it up now).”

Companies have leapt on fuzzy logic as a way of
making products that will perform better for people. Self-
focusing cameras and video recorders, washing machines
that can adjust the strength of cleaning power to how
much dirt is in the clothes being washed, the controls to
car engines, anti-lock braking systems in vehicles, banking
programs, programs that allow people to do stock market
trades—all these would not exist if not for fuzzy logic.

Where to Learn More

Books
Bennett, D.J. Logic made Easy: How to Know When Language

Deceives You. New York: W.W. Norton & Company, 2004.

Gregg, J.R. Ones and Zeros: Understanding Boolean Algebra, Dig-
ital Circuits, and The Logic of Sets. New York: Wiley-IEEE
Press, 1998.

Mukaidonon, M., and H. Kikuchi. Fuzzy Logic for Beginners.
Singapore: World Scientific Publishing Company, 2001.

Web sites
Brain, M. “How Boolean Logic Works.” �http://computer.

howstuffworks.com/boolean.htm� (September 2, 2004).

Cohen, L. “Boolean Searching on the Internet: A Primer in
Boolean Logic.” University Libraries-State University of New
York. �http://library.albany.edu/internet/boolean.html�
(September 3, 2004).

Kemerling, G. “Arguments and Inference” �http://www.
philosophypages.com/lg/e01.htm� (September 3, 2004).
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Boolean Logic and
Computer Searches

Boolean logic links the common parts of different
pieces of information. This feature makes Boolean
logic widely used in Internet search engines. For
example, if there was no Boolean logic and infor-
mation from the Internet on the trigonometry and
homework problems was desired, the Internet
search for every word would show all the documents
that separately mention “trigonometry” or “home-
work.” This would probably result in a huge number
of sites to search, making the search nearly mean-
ingless. Because of Boolean logic, however, a
search can be done to look for those documents
that contain “trigonometry” AND “homework.” This
number of sites will be much less, and the sites will
be more likely to have something to do with home-
work related to trigonometry rather than homework
related to all subjects.

Boolean logic even allows a search to focus on
one word and not another. To use the above exam-
ple, the following search could be done: “trigonom-
etry” AND “homework” NOT “advanced.” This would
allow the search engine to zero in on those site that
were about teaching methods of trigonometry at a
basic level as opposed to sites that discussed
advanced trigonometry.
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Overview

In mathematics, a matrix is a group of numbers that
have been arranged in a rectangle. The word for more
than one matrix is matrices. The mathematics of han-
dling matrices is called matrix algebra or linear algebra.
Matrices are one of the most widely applied of all mathe-
matical tools. They are used to solve problems in the
design of machines, the layout by oil and trucking com-
panies of efficient shipping routes, the playing of com-
petitive “games” in war and business, mapmaking,
earthquake prediction, imaging the inside of the body,
prediction of both short-term weather and global climate
change, and thousands of other purposes.

Fundamental Mathematical Concepts
and Terms

Matrices are usually printed with square brackets
around them. The matrix depicted in Figure 1 contains
four numbers or “elements.”

A column in a matrix is a vertical stack of numbers:
in this matrix, 3 and 7 form the first column and 5 and 4
form the second. A row in a matrix is a horizontal line of
numbers: in this matrix, 3 and 5 form the first row and 7
and 4 form the second. Matrices are named by how tall
and wide they are. In this example the matrix is two ele-
ments tall and two elements wide, so it is a 2 � 2 matrix.
The matrix in Figure 2 is 3 elements tall and five elements
wide, so it is a 3 � 5 matrix.

A flat matrix that could be written on the squares of
a chessboard, like these two examples, is called “two
dimensional” because we need two numbers to say where
each element of the matrix is. For instance, the number
“10” in the 3 � 5 matrix would be indicated “row 2, col-
umn 4.” A matrix can also be three-dimensional: in this
case, numbers are arranged as if on the squares of a stack
of chessboards, and to point to a particular number you
have to name its row, its column, and which board in the
stack it is on. There is no limit to the number of dimen-
sions that a matrix can have. We cannot form mental pic-
tures of matrices with four, five, or more dimensions, but
they are just as mathematically real.

The numbers in a matrix can stand for anything.
They might stand for the brightnesses of the dots in an
image, or for the percentages of spotted owls in various
age groups that survive to older ages. In one of the most
important practical uses of matrices, the numbers in the
matrix stand for the coefficients of linear equations. A
linear equation is an equation that consists of a sum of

Matrices and
Determinants
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variables (unknown numbers), each multiplied by a coeffi-
cient (a known number). Here are two linear equations:
2x � 3y � 11 and 7x � 9y � 0. Where the variables are x
and y and the coefficients are the numbers that multiply
them (namely 2, 3, 7, and 9). Together, these two equations
form a “system.” This system of equations can also be writ-
ten as a 2 � 2 matrix times a 2 � 1 matrix (or “vector”), set
equal to a second 2 � 1 matrix, as depicted in Figure 3.

The information that is in the matrix equation is also
in the original system of equations, and is in almost the
same arrangement on the paper. The only thing that has
changed is the way the information is written down. For
very large systems of equations (with tens or hundreds of
variables, not just x and y), matrix equations are much
more efficient.

Say that we wish to solve this matrix equation. This
means we want to find a value of x and a value of y for
which the equation is true. In this case, the only solution is 

(If you try these values for x and y in the equations 2x �
3y � 11 and 7x � 9y � 0, you’ll find that both equations
work out as true. No other values of x and y will work.)
Finding solutions to matrix equations is one of the most
important uses of computers in science, engineering, and
business today, because thousands of practical problems
can be described using systems of linear equations
(sometimes very large systems, with matrices of many
dimensions containing thousands or millions of num-
bers). Computers are solving larger matrix equations
faster and faster, making many new products and scien-
tific discoveries possible.

The rules for doing math with matrices, including
solving matrix equations, are described by the field of
mathematics called “matrix algebra.” Matrices of the
same size can be added, subtracted, or multiplied. One
number that can be calculated from any square matrix—
that is, any matrix that has the same number of rows as it
has columns—is the determinant. Every square matrix
has a determinant. The determinant is calculated by multi-
plying the elements of the matrix by each other and then
adding the products according to a certain rule. For
example, the rule for the determinant of a 2 � 2 matrix is
as follows:
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(Here the small numbers attached to the variables are just
labels to help us tell them apart). For a 3 � 3 matrix, the
rule is more complicated:

—and the rules get more and more complicated for larger
matrices and higher dimensions. But that isn’t a problem,
because computers are good at calculating determinants.

Determinants are always studied by students learning
matrix algebra, where they have many technical uses in
matrix algebra. However, they are less important today 
in matrix theory than they were before the invention of
computers. About a hundred years ago, a major mathemat-
ical reference work was published that merely summarized
the properties of determinants that had been discovered up
to that time: it filled four entire volumes. Today, mathe-
maticians are less concerned with determinants than they
once were. As one widely used textbook says, “After all, a
single number can tell only so much about a matrix.”

Real-life Applications

DIG I TAL  IMAGES
A digital camera produces a matrix of numbers when

it takes a picture. The lens of the camera focuses an image
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Figure 1: A matrix with four numbers or “elements.”
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on a flat rectangular surface covered with tiny light-
sensitive electronic devices. The devices detect the color
and brightness of the image in focus, and this informa-
tion is saved as a matrix of numbers in the camera’s mem-
ory. When a picture is downloaded from a camera to a
computer and altered using image-editing software, it is
subjected to mathematical manipulations described by
matrix algebra. The picture may also be “compressed” so
as to take up less computer memory or transmit over the
Internet more quickly. When an image is compressed, the
similarities between some of the numbers in its original
matrix are used to generate a smaller matrix that takes up
less memory but describes the same image with as little of
image sharpness lost as possible.

FLY ING  THE  SPACE  SHUTTLE
In the early days of flight, pilots pushed and pulled

on a joystick connected to wires. The wires ran over pul-
leys to the wings and rudder, which steered the plane. It
would not be possible to fly as complex a craft as the
Space Shuttle, which is steered not only by movable pieces
of wing, but by 44 thruster jets, by directly mechanical
means like these. Steering must be done by computer, in
response to measurements of astronaut hand pressure on
controls. In this method the flight computer combines
measurements from sensors that detect how the ship is
moving with measurements from the controls. These
measurements are fed through the flight computers of
the Shuttle as vectors, that is, as n � 1 matrices, where the
measurements from ship and pilot are the numbers in the
vectors. The ship’s computer performs calculations on
these vectors using matrix algebra in order to decide how
to move the control surfaces (moveable parts of the wing
and tail) and how to fire the 44 steering jets.

POPULAT ION  B IOLOGY
One of the things that biologists try to do is predict

how populations of animals change in the wild. This is
known as the study of population dynamics because in

science or math, anything that is changing or moving is in
a “dynamic” state. In population biology, a matrix equa-
tion describes how many members of a population shift
from one stage of their reproductive life to the next, year
to year. Such a matrix equation has appeared in the
debate over whether the spotted owl of the Pacific North-
west (United States) is endangered or not. If the numbers
of juvenile, subadult, and adult owls in year k are written
as Jk, Sk, and Ak, respectively (where the small letters are
labels to mark the year), and if the populations for the
next year, year k � 1, are written as Jk�1, Sk�1, and Ak�1,
then biologists have found that the following matrix
equation relates one years’ population to the next:

By analyzing this equation using advanced tools of
matrix algebra such as eigenvalues, biologists have shown
that if recent rates of decline of habitat loss (caused by
clearcutting) continue, the spotted owl may be doomed
to extinction. Owls, like all predators, need large areas of
land in which to hunt—for spotted owls, about 4 square
miles per breeding pair.

DES IGN ING  CARS
Before the 1970s, car makers designed new cars by

making first drawings, then physical models, then the actual
cars. Since the 1970s, they have also used a tool called
computer-aided design (CAD). CAD is now taught in many
high schools using software far more sophisticated than was
available to the big auto makers in the beginning, but the
principles are the same. In automotive CAD, the first step is
still a drawing by an artist using their imagination—a
design for how the car will look, often scrawled on paper.
When a new image has been agreed on, the next step is the
creation of a “wireframe” model. The wireframe model is a
mass of lines, defined by numbers stored in matrices, that
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Key Terms

Matrix: A rectangular array of variables or numbers,
often shown with square brackets enclosing the array.
Here “rectangular” means composed of columns of
equal length, not two-dimensional. A matrix equation
can represent a system of linear equations.

Vector: A quantity consisting of magnitude and direc-
tion, usually represented by an arrow whose length
represents the magnitude and whose orientation in
space represents the direction.
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outline the shape of every major part of the car. The num-
bers specify the three-dimensional coordinates of enough
points on the surface of the car to define its shape. The wire-
frame model may be created directly or by using lasers to
scan a clay model in three dimensions. The wireframe car
model is stored as a collection of many matrices, each
describing one part. This model can be displayed, rotated,
and adjusted for good looks. More importantly, by using
matrix-based mathematical techniques called finite ele-
ment methods, the car company can use the wireframe
model to predict how the design will behave in crashes and
how smoothly air will flow over it when it is in motion

(which affects how much gas the car uses). These features
can be experimentally improved by changing numbers in
matrices rather than by building expensive test models.

Where to Learn More

Books
Lay, David C. Linear Algebra and its Applications, 2nd ed.

New York: Addison-Wesley, 1999.

Strang, Gilbert. Linear Algebra and its Applications, 3rd ed. New
York: Harcourt Brace Jovanovich College Publishers, 1988.
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Overview

Measurement is the quantifying of an exact physical
value. The thing being measured is normally called a 
variable, because it can take different values in different
circumstances.

The most common type of measurement is that of
distance and time. As science and mathematics have
developed, accuracy has increased dramatically in both
microscopic and macroscopic scenarios. Without the
ability to measure, many of the things that societies take
for granted simply would not exist. Scientists can now
accurately measure quantities ranging from the height of
the tallest mountains, to the force of gravity on a distant
moon through to the distance between stars light years
away. The list is practically endless. Yet, the most remark-
able aspect is that much of this can be achieved without a
direct physical measurement. It is this theoretical aspect,
along with the obvious practical consequences, that
makes the area of measurement so fascinating.

Fundamental Mathematical Concepts
and Terms

Distance is nearly always defined to be the shortest
length between two points. If it were not so defined then
there would be an infinite number of distances. To realize
this, just plot two points and attempt to sketch all the
different-length curves that exist between them. It would
take literally forever.

Time is a much harder item to quantify. There are
many philosophical discussions about the nature of time
and its existence. In physics, time is the regular passing of
the present to the future. This is perfectly adequate, until
one starts to travel extremely fast. Believe it or not, time
starts to slow down the faster one travels. This theory
leads into a whole branch of science known as relativity.

The majority of science is also concerned with the
measurement of forces, namely the interactions that exist
between different objects. The most common forces are
gravity and magnetism. The ability to measure these has
immediate consequences in terms of space travel and
electricity, respectively, as well as the interaction and
motion of objects.

Finally, the measurements of speed, velocity, and
acceleration have profound implications on travel. Veloc-
ity is defined to be the speed of an object with the direction
of travel specified. Acceleration the rate at which velocity is
changing. A large acceleration indicates that speed is
increasing quickly.

Measurement
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Measurement can also be made of the geometrical
aspects of objects. This has led to the development of
angle-measuring techniques. Much of the development
in navigation and exploration has come from the conse-
quences of measuring geometry accurately.

A Brief History of Discovery 
and Development

The human race has been assigning measurements for
thousands of years. An early unit was the cubit. This was
defined to be the distance from a man’s elbow to the end of
his outstretched middle finger. However, as trade began to
develop, the need for a standardized system became more
important. It made little sense to have two workers
producing planks of two cubits, when the two people would
differently define a cubit. Inconsistencies would cause con-
siderable problems in engineering projects.

It is acknowledged that the Babylonians were the first
to standardize weight. This was particularly important in
trade. They had specified stones of fixed weight and these
were used to weigh and, hence, value precious gems and
jewels. This led to the common terminology of stone,
though even this had a variance; the stone used by a fish-
erman being half that used by a wool merchant. Yet, this
wouldn’t be a problem because the two trades were dis-
tinct. Definitions of mass and its measurement were espe-
cially important in the trade of gems.

It was King Edward I who first standardized the yard,
a measurement used predominantly in Britain. There was
an iron bar named the iron ulna from which all yardsticks
were derived. This allowed for a standardized measure-
ment. However, the metric system used today was first
developed during the 1790s, Napoleon’s time, by the
French government. The meter was initially defined to be
one ten-millionth of the distance from the North Pole to
the equator passing through Paris.

It was not until 1832 that any legal standardized
lengths existed in the United States. Indeed, it was a bill in
1866 that finally accepted the metric system. Finally, in
1975, Congress passed the Metric Conversion Act and so
the metric system became the predominant measuring
system in the United States.

Real-life Applications

MEASUR ING  D ISTANCE
It is extremely easy to measure the distance between

two objects if they are of close proximity and, perhaps
more importantly, if travel can be done easily between

these two points. Travel plans are based on such distances,
and such factors to consider include buying gas or decid-
ing whether to walk or take public transport.

All companies involved in travel need to know the dis-
tance between start and destination. Customers like to
know how far they are going so that they can plan for their
arrival. On a smaller scale, production companies need to
be able to produce items of a specified length. It is impos-
sible to build a building and yet be unable to specify the
lengths of materials required. Or, in the production of
parts in either an automobile of a plane, it would be rather
difficult to manufacture such products if the pieces didn’t
fit together. It would be as useless as a jigsaw with incorrect
pieces.

DIMENS IONS

Travel and objects do not exist in only one dimension.
Instead, there are three aspects to most items: length, depth,
and height. These are called the three dimensions. It is

Shortest Distance 
Between Two Cities

When looking for the distance between two cities 
in geography the temptation is to pick up a two-
dimensional map, measure how far apart the cities
are with a ruler, and use a suitable scale to evalu-
ate this route. However, this method is completely
erroneous. The best way to understand the following
idea is to get a globe and actually test the following
for your self. Pick two places of your choice. Get a
piece of string and lay it on your flat map between
the two cities marking where the cities are. Cut the
string to this length. Apart from very few cases, you
will be able to place the string on the globe so as to
find a route that involves less string. 

This is a simple example of spherical geome-
try. An analogous way to think about the difficulties
is to imagine you are walking along when confronted
by a hill. It is often the case that the shortest route
passes around the hill, and not straight over the
summit. The globe is a perfect form of a hill. There
is a simple was to find the shortest route between
two points. The globe can be cut into Great Circles.
These are circles that cut the globe exactly in half.
The Great Circle that passes through both cities
provides the shortest route.
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therefore easy to specify the size of a brick required in con-
struction by just stating the three measurements required.

Of course it is not always the most efficient way to
specify an object. Circular laminas, thin plates, are often
used in construction. In this case, the radius is a much
better way of defining the shape.

Mathematicians often define different situations by
using different systems of dimensions. This is done to
make both the mathematics and its application in real life
as simple as possible. Dimensions can also be distorted by
the real world. For instance, if a person travels from New
York to Los Angeles, can they actually travel in a straight
line, even ignoring heights above sea level? The simple
answer is no, because the actual world itself is curved 
to form a global shape. This raises a whole new area 
of mathematics called curvature, which explores how
curved surfaces affect distances.

ACCURACY  IN  MEASUREMENT

Given a specified measurement in a specified dimen-
sion, the next task often required is to be able to do such

a measurement accurately, often within a distance imper-
ceptible to the naked eye. It is actually impossible to
achieve perfect measurement, yet it is possible to get it to
within specified bounds. These bound are often referred
to as error bounds. The importance of the situation will
limit the accuracy required. There is no point in spending
millions of dollars to get a kitchen table an exact length to
within on thousandth of a millimeter, yet it is essential
that such money be spent when the context is building
planes or space shuttles. If there were substantial errors,
then the consequences could be disastrous.

Clearly such accuracy cannot be achieved using the
simple ruler. It is virtually impossible to measure to
within one millimeter without using magnification
techniques. It was Sir Isaac Newton who, in 1672, stum-
bled upon a method called interferometry, which is
related to the use of light to accurately measure at micro-
scopic level.

EVALUAT ING  ERRORS  
IN  MEASUREMENT  
AND  QUAL I TY  CONTROL

Being aware of the error involved in real-life produc-
tion can make calculations to work out the worst-case
scenario possible. For instance, if a rod of 10 cm width is
required to fit into a hole, a tight fit is not required. It’s
possible that the rod itself has errors. As an example, this
could mean that it could be as wide as 10.05 cm or as low
as 9.95 cm. Logic dictates that the hole needs to be larger
than 10.05 cm for a guaranteed fit. This leads to the next
possible problem: the hole was produced using a drill size
that also has an error. If a drill with a size of 10.05 cm is
used, there is always the chance that it will create a hole
that is too small.

It is for all these reasons that mathematicians are
employed to reduce the chance of waste and potential
problems. Indeed, the problem often boils down to one
involving statistics and probability; it is the job of quality
control to reduce the chance of errors occurring, while
maximizing profit and ensuring the equipment actually
works as required.

ENG INEER ING

Engineers are required to produce and measure
important objects for complex design projects. It may
take only one defective piece for the whole project to fail.
These engineering works will often be integral parts of
society. Most of the things taken for granted, such as
water, food production, and good health, are direct con-
sequences of engineering projects.

Activity: Running Tracks

Most people would state that a running track is
defined to be 400 meters. After all, in a 400-meter
race they run once around the track. Yet, a confus-
ing fact is that at the start of the race the runners
all start spread out. Is it the case that runners on
the outside lanes (of which there are normally eight)
are given an unfair advantage?

The solution to this comes simply from careful
mathematical thought. Indeed mathematics is
required by designers to ensure that any running
track meets defined standards. A multi-billion dollar
Olympic industry depends on such accuracy. Con-
sider the running track to be two straights and two
half circles. It is quite clear that on the outer lane,
the runner is passing along a greater circle. We can
simplify the problem by joining the two half circles
together to create one whole circle. If every lane is
a fixed distance d apart, then as you progressively
move to outer lanes, each runner would have to run
an extra 2 � � � d. This equates to an approximate
distance of six meters per lane; hence the reason
for the staggered starts.



ARCHAEOLOGY

Archaeology is the study of past cultures, which is
important in understanding how society may progress in
the future. It can be extremely difficult to explore ancient
sites and extract information due to the continual shift-
ing and changing of the surface of the earth. Very few
patches of ground are ever left untouched over the years.

While exploring ancient sites, it is important to be
able to make accurate representations of the ground. Most
items are removed to museums, and so it is important to
retain a picture of the ground as originally discovered. A
mathematical technique is employed to do so accurately.
The distance and depth of items found are measured and
recorded, and a map is constructed of the relative posi-
tions. Accurate measurements are essential for correct
deductions to be made about the history of the site.

ARCH I TECTURE

The fact that the buildings we live in will not sud-
denly fall to the ground is no coincidence. All founda-
tions and structures from reliable architects are built on
strict principles of mathematics. They rely upon accurate
construction and measurement. With the pressures of

deadlines, it is equally important that materials with insuf-
ficient accuracy within their measurements are not used.

COMPUTERS

The progression of computers has been quite dra-
matic. Two of the largest selling points within the com-
puter industry are memory and speed. The speed of a
computer is found by measuring the number of calcula-
tions that it can perform per second.

BLOOD  PRESSURE

When checking the health of a patient, one of the pri-
mary factors considered is the strength of the heart, and how
it pumps blood throughout the body. Blood pressure meas-
urements reveal how strongly the blood is pumped and
other health factors. An accurate measure of blood pressure
could ultimately make the difference between life and death.

DOCTORS  AND  MED IC INE

Doctors are required to perform accurate measure-
ments on a day-to-day basis. This is most evident dur-
ing surgery where precision may be essential. The
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Measuring the Height of Everest 

It was during the 1830s that the Great Trigonometrical
Survey of The Indian sub-continent was undertaken by
William Lambdon. This expedition was one of remark-
able human resilience and mathematical application.
The aim was to accurately map the huge area, including
the Himalayans. Ultimately, they wanted not only the
exact location of the many features, but to also evalu-
ate the height above sea level of some of the world’s
tallest mountains, many of which could not be climbed
at that time. How could such a mammoth task be
achieved?

Today, it is relatively easy to use trigonometry to
estimate how high an object stands. Then, if the position
above sea level is known, it takes simple addition to
work out the object’s actual height compared to Earth’s
surface. Yet, the main problem for the surveyors in the
1830s was that, although they got within close proximity
of the mountains and hence estimated the relative
heights, they did not know how high they were above sea
level. Indeed they were many hundreds of miles from the
nearest ocean.

The solution was relatively simple, though almost
unthinkable. Starting at the coast the surveyors would
progressively work their way across the vast continent,
continually working out heights above sea level of key
points on the landscape. This can be referred to in math-
ematics as an inductive solution. From a simple starting
point, repetitions are made until the final solution is
found. This method is referred to as triangulation
because the key points evaluated formed a massive grid
of triangles. In this specific case, this network is often
referred to as the great arc.

Eventually, the surveyors arrived deep in the
Himalayas and readings from known places were taken;
the heights of the mountains were evaluated without
even having to climb them! It was during this expedition
that a mountain, measured by a man named Waugh, was
recorded as reaching the tremendous height of 29,002
feet (recently revised; 8,840 m). That mountain was
dubbed Everest, after a man named George Everest who
had succeeded Lambdon halfway through the expedition.
George Everest never actually saw the mountain.
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administration of drugs is also subject to precise controls.
Accurate amounts of certain ingredients to be prescribed
could determine the difference between life and death for
the patient.

Doctors also take measurements of patients’ temper-
ature. Careful monitoring of this will be used to assess the
recovery or deterioration of the patient.

CHEMISTRY

Many of the chemicals used in both daily life and in
industry are produced through careful mixture of
required substances. Many substances can have lethal
consequences if mixed in incorrect doses. This will often
require careful measurement of volumes and masses to
ensure correct output.

Much of science also depends on a precise measure-
ment of temperature. Many reactions or processes
require an optimal temperature. Careful monitoring of
temperatures will often be done to keep reactions stable.

NUCLEAR  POWER  PLANTS

For safety reasons, constant monitoring of the out-
put of power plants is required. If too much heat or dan-
gerous levels of radiation are detected, then action must
be taken immediately.

MEASUR ING  T IME

Time drives and motivates much of the activity
across the globe. Yet it is only recently that we have been
able to measure this phenomenon and to do so consis-
tently. The nature of the modern world and global trade
requires the ability to communicate and pass on infor-
mation at specified times without error along the way.

The ancients used to use the Sun and other celestial
objects to measure time. The sundial gave an approximate
idea for the time of the day by using the rotation of the Sun
to produce a shadow. This shadow then pointed towards a
mark/time increment. Unfortunately, the progression of
the year changes the apparent motion of the Sun. (Remem-
ber, though, that it is due to the change in Earth’s orbit
around the Sun, not the Sun moving around Earth.) This
does not allow for accurate increments such as seconds.

It was Huygens who developed the first pendulum
clock. This uses the mathematical principal that the length
of a pendulum dictates the frequency with which the pen-
dulum oscillates. Indeed a pendulum of approximately 39
inches will oscillate at a rate of one second. The period of a
pendulum is defined to be the time taken for it to do a
complete swing to the left, to the right, and back again.

These however were not overly accurate, losing many min-
utes across one day. Yet over time, the accuracy increased.

It was the invention of the quartz clock that allowed
much more accurate timekeeping. Quartz crystals vibrate
(in a sense, mimicking a pendulum) and this can be uti-
lized in a wristwatch. No two crystals are alike, so there is
some natural variance from watch to watch.

THE  DEF IN I T ION  OF  A  SECOND

Scientists have long noted that atoms resonate, or
vibrate. This can be utilized in the same way as pendulums.
Indeed, the second is defined from an atom called cesium.
It oscillates at exactly 9,192,631,770 cycles per second.

MEASUR ING  SPEED, SPACE  TRAVEL ,
AND  RAC ING

In a world devoted to transport, it is only natural that
speed should be an important measurement. Indeed, the
quest for faster and faster transport drives many of the
nations on Earth. This is particularly relevant in long-
distance travel. The idea of traveling at such speeds that
space travel is possible has motivated generations of film-
makers and science fiction authors. Speed is defined to be
how far an item goes in a specified time. Units vary
greatly, yet the standard unit is meters traveled per sec-
ond. Once distance and time are measured, then speed
can be evaluated by dividing distance by time.

All racing, whether it involves horses or racing cars,
will at some stage involve the measuring of speed. Indeed,
the most successful sportsperson will be the one who,
overall, can go the fastest. This concept of overall speed is
often referred to as average speed. For different events,
average speed has different meanings.

A sprinter would be faster than a long-distance run-
ner over 100 meters. Yet, over a 10,000-meter race, the
converse would almost certainly be true. Average speed
gives the true merit of an athlete over the relevant dis-
tance. The formula for average speed would be average
speed � total distance/total time.

NAV IGAT ION

The ability to measure angles and distances is an
essential ingredient in navigation. It is only through an
accurate measurement of such variables that the optimal
route can be taken. Most hikers rely upon an advanced
knowledge of bearings and distances so that they do not
become lost. The same is of course true for any company
involved in transportation, most especially those who
travel by airplane or ship. There are no roads laid out for



them to follow, so ability to measure distance and direc-
tion of travel are essential.

SPEED  OF  L IGHT

It is accepted that light travels at a fixed speed
through a vacuum. A vacuum is defined as a volume of
space containing no matter. Space, once an object has left
the atmosphere, is very close to being such. This speed is
defined as the speed of light and has a value close to
300,000 kilometers per second.

HOW ASTRONOMERS  AND  NASA
MEASURE  D ISTANCES  IN  SPACE

When it comes to the consideration of space travel,
problems arise. The distances encountered are so large
that if we stick to conventional terrestrial units, the num-
bers become unmanageable. Distances are therefore
expressed as light years. In other words, the distance
between two celestial objects is defined to be the time
light would take to travel between the two objects.

SPACE  TRAVEL  AND  T IMEKEEP ING

The passing of regular time is relied upon and trusted.
We do not expect a day to suddenly turn into a year, though
psychologically time does not always appear to pass regu-
larly. It has been observed and proven using a branch of
mathematics called relativity that, as an object accelerates,
so the passing of time slows down for that particular object.

An atomic clock placed on a spaceship will be slightly
behind a counterpart left on Earth. If a person could
actually travel at speeds approaching the speed of light,
they would only age by a small amount, while people on
Earth would age normally.

Indeed, it has also been proven mathematically that a
rod, if moved at what are classed as relativistic velocities
(comparable to the speed of light), will shorten. This is
known as the Lorentz contraction. Philosophically, this
leads to the question, how accurate are measurements?
The simple answer is that, as long as the person and the
object are moving at the same speed, then the problem
does not arise.

M e a s u r e m e n t
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To make a fair race, the tracks must be perfectly spaced. RANDY FARIS/CORBIS.
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WHY DON ’ T  WE  FALL  OFF  EARTH?

As Isaac Newton sat under a tree, an apple fell off and
hit him upon the head. This led to his work on gravity.
Gravity is basically the force, or interaction, between Earth
and any object. This force varies with each object’s mass
and also varies as an object moves further away from the
surface of Earth.

This variability is not a constant. The reason astronauts
on the moon seem to leap effortlessly along is due to the
lower force of gravity there. It was essential that NASA was
able to measure the gravity on the moon before landing so
that they could plan for the circumstances upon arrival.

How is gravity measured on the moon, or indeed
anywhere without actually going there first? Luckily,
there is an equation that can be used to work it out. This
formula relies on knowing the masses of the objects
involved and their distance apart.

MEASUR ING  THE  SPEED  OF  GRAV I TY

Gravity has the property of speed. Earth rotates
about the Sun due to the gravitational pull of the Sun. If
the Sun were to suddenly vanish, Earth would continue
its orbit until gravity actually catches up with the new sit-
uation. The speed of gravity, perhaps unsurprisingly, is
the speed of light.

Stars are far away, and we can see them in the sky
because their light travels the many light years to meet our
retina. It is natural that, after a certain time, most stars end
their life often undergo tremendous changes. Were a star
to explode and vanish, it could take years for this new real-
ity to be evident from Earth. In fact, some of the stars
viewable today may actually have already vanished.

MEASUR ING  MASS

A common theme of modern society is that of
weight. A lot of television airplay and books, earning
authors millions, are based on losing weight and becom-
ing healthy. Underlying the whole concept of weighing
oneself is that of gravity. It is actually due to gravity that
an object can actually be weighed.

The weight of an object is defined to be the force that
that object exerts due to gravity. Yet these figures are only
relevant within Earth’s gravity. Interestingly, if a person
were to go to the top of a mountain, their measurable
weight will actually be less than if they were at sea level.
This is simply because gravity decreases the further away
an object is from Earth’s surface, and so scales measure a
lower force from a person’s body.

Potential applications

People will continue to take measurements and use
them across a vast spectrum of careers, all derived from
applications within mathematics. As we move into the
future, the tools will become available to increase such
measurements to remarkable accuracies on both micro-
scopic and macroscopic levels.

Advancements in medicine and the ability to cure
diseases may come from careful measurements within
cells and how they interact. The ability to measure, and do
so accurately, will drive forward the progress of human
society.

Where to Learn More

Periodicals
Muir, Hazel. “First Speed of Gravity Measurement Revealed.”

New Scientist.com.

Web sites
Keay, John. “The Highest Mountain in the World.” The Royal

Geographical Society. 2003. �http://imagingeverest.rgs.org/
Concepts/Virtual_Everest/-288.html� (February 26, 2005).

Distance in Three
Dimensions

In mathematics it is important to be able to evaluate
distance in all dimensions. It is often the case that
only the coordinates of two points are known and the
distance between them is required. For example, a
length of rope needs to be laid across a river so that
it is fully taut. There are two trees that have suitable
branches to hold the rope on either side. The width of
the river is 5 meters. The trees are 3  meters apart
widthwise. One of the branches is 1 meter higher
than the other. How much rope is required?

The rule is to use an extension of Pythagoras
in three dimensions: a2 � b2 � h2. An extension to
this in three dimensions is: a2 � b2 � c2 � h2. This
gives us width, depth, and height. Therefore, 52 �

32 � 12 � h2 � 35. Therefore h is just under 6. So
at least 6 m of rope is needed to allow for the extra
required for tying the knots.
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Overview

Mathematics finds wide applications in medicine and
public health. Epidemiology, the scientific discipline that
investigates the causes and distribution of disease and that
underlies public health practice, relies heavily on mathe-
matical data and analysis. Mathematics is also a critical
tool in clinical trials, the cornerstone of medical research
supporting modern medical practice, which are used to
establish the efficacy and safety of medical treatments. As
medical technology and new treatments rely more and
more on sophisticated biological modeling and technol-
ogy, medical professionals will draw increasingly on their
knowledge of mathematics and the physical sciences.

There are three major ways in which researchers and
practitioners apply mathematics to medicine. The first
and perhaps most important is that they must use the
mathematics of probability and statistics to make predic-
tions in complex medical situations. The most important
example of this is when people try to predict the outcome
of illnesses, such as AIDS, cancer, or influenza, in either
individual patients or in population groups, given the
means that they have to prevent or treat them.

The second important way in which mathematics
can be applied to medicine is in modeling biological
processes that underlie disease, as in the rate of speed
with which a colony of bacteria will grow, the probability
of getting disease when the genetics of Mendelian inheri-
tance is known, or the rapidity with which an epidemic
will spread given the infectivity and virulence of a
pathogen such as a virus. Some of the most commercially
important applications of bio-mathematical modeling
have been developed for life and health insurance, in the
construction of life tables, and in predictive models of
health premium increase trend rates.

The third major application of mathematics to med-
icine lies in using formulas from chemistry and physics in
developing and using medical technology. These applica-
tions range from using the physics of light refraction in
making eyeglasses to predicting the tissue penetration of
gamma or alpha radiation in radiation therapy to destroy
cancer cells deep inside the body while minimizing dam-
age to other tissues.

While many aspects of medicine, from medical diag-
nostics to biochemistry, involve complex and subtle
applications of mathematics, medical researchers con-
sider epidemiology and its experimental branch, clinical
trials, to be the medical discipline for which mathematics
is indispensable. Medical research, as furthered by these
two disciplines, aims to establish the causes of disease and
prove treatment efficacy and safety based on quantitative

Medical 
Mathematics
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(numerical) and logical relationships among observed
and recorded data. As such, they comprise the “tip of the
iceberg” in the struggle against disease.

The mathematical concepts in epidemiology and
clinical research are basic to the mathematics of biology,
which is after all a science of complex systems that
respond to many influences. Simple or nonstatistical
mathematical relationships can certainly be found, as in
Mendelian inheritance and bacterial culturing, but these
are either the most simple situations or they exist only
under ideal laboratory conditions or in medical technol-
ogy that is, after all, based largely on the physical sciences.
This is not to downplay their usefulness or interest, but
simply to say that the budding mathematician or scientist
interested in medicine has to come to grips with statisti-
cal concepts and see how the simple things rapidly get
complicated in real life.

Noted British epidemiologist Sir Richard Doll (1912–)
has referred to the pervasiveness of epidemiology in mod-
ern society. He observed that many people interested in
preventing disease have unwittingly practiced epidemiol-
ogy. He writes, “Epidemiology is the simplest and most
direct method of studying the causes of disease in humans,
and many major contributions have been made by studies
that have demanded nothing more than an ability to
count, to think logically and to have an imaginative idea.”

Because epidemiology and clinical trials are based on
counting and constitute a branch of statistical mathemat-
ics in their own right, they require a rather detailed and
developed treatment. The presentation of the other major
medical mathematics applications will feature explana-
tions of the mathematics that underlie familiar biological
phenomena and medical technologies.

Fundamental Mathematical Concepts
and Terms

The most basic mathematical concepts in health care
are the measures used to discover whether a statistical
association exists between various factors and disease.
These include rates, proportions, and ratios. Mortality
(death) and morbidity (disease) rates are the “raw mate-
rial” that researchers use in establishing disease causation.
Morbidity rates are most usefully expressed in terms of
disease incidence (the rate with which population or
research sample members contract a disease) and preva-
lence (the proportion of the group that has a disease over
a given period of time).

Beyond these basic mathematical concepts are con-
cepts that measure disease risk. The population at risk is

the group of people that could potentially contract a dis-
ease, which can range from the entire world population
(e.g., at risk for the flu), to a small group of people with a
certain gene (e.g., at risk for sickle-cell anemia), to a set of
patients that are randomly selected to participate in
groups to be compared in a clinical trial featuring alter-
native treatment modes. Finally, the most basic measure
of a population group’s risk for a disease is relative risk
(the ratio of the prevalence of a disease in one group to
the prevalence in another group).

The simplest measure of relative risk is the odds
ratio, which is the ratio of the odds that a person in one
group has a disease to the odds that a person in a second
group has the disease. Odds are a little different from the
probability that a person has a disease. One’s odds for a
disease are the ratio between the number of people that
have a disease and the number of people that do not have
the disease in a population group. The probability of dis-
ease, on the other hand, is the proportion of people that
have a disease in a population. When the prevalence of
disease is low, disease odds are close to disease probabil-
ity. For example, if there is a 2%, or 0.02, probability that
people in a certain Connecticut county will contract
Lyme disease, the odds of contracting the disease will be
2/98 � 0.0204.

Suppose that the proportion of Americans in a par-
ticular ethnic or age group (group 1) with type II diabetes
in a given year is estimated from a study sample to be
6.2%, while the proportion in a second ethnic or age
group (group 2) is 4.5%. The odds ratio (OR) between
the two groups is then: OR � (6.2/93.8)/(4.5/95.5) �

0.066/0.047 � 1.403.

This means that the relative risk of people in group 1
developing diabetes compared to people in group 2 is
1.403, or over 40% higher than that of people in group 2.

The mortality rate is the ratio of the number of
deaths in a population, either in total or disease-specific,
to the total number of members of that population, and
is usually given in terms of a large population denomina-
tor, so that the numerator can be expressed as a whole
number. Thus in 1982 the number of people in the
United States was 231,534,000, the number of deaths
from all causes was 1,973,000, and therefore the death
rate from all causes of 852.1 per 100,000 per year. That
same year there were 1,807 deaths from tuberculosis,
yielding a disease-specific mortality rate of 7.8 per mil-
lion per year.

Assessing disease frequency is more complex because
of the factors of time and disease duration. For example,
disease prevalence can be assessed at a point in time
(point prevalence) or over a period of time (period
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prevalence), usually a year (annual prevalence). This is
the prevalence that is usually measured in illness surveys
that are reported to the public. Researchers can also
measure prevalence over an indefinite time period, as in
the case of lifetime prevalence. Researchers calculate this
time period by asking every person in the study sample
whether or not they have ever had the disease, or by
checking lifetime health records for everybody in the
study sample for the occurrence of the disease, counting
the occurrences, and then dividing by the number of peo-
ple in the population.

The other critical aspect of disease frequency is
incidence, which is the number of cases of a disease that
occur in a given period of time. Incidence is an
extremely critical statistic in describing the course of
a fast-moving epidemic, in which medical decision-
makers must know how quickly a disease is spreading.
The incidence rate is the key to public health planning
because it enables officials to understand what the
prevalence of a disease is likely to be in the future.
Prevalence is mathematically related to the cumulative
incidence of a disease over a period of time as well as the
expected duration of a disease, which can be a week in
the case of the flu or a lifetime in the case of juvenile
onset diabetes. Therefore, incidence not only indicates
the rate of new disease cases, but is the basis of the rate
of change of disease prevalence.

For example, the net period prevalence of cases of dis-
ease that have persisted throughout a period of time is the
proportion of existing cases at the beginning of that period
plus the cumulative incidence during that period of time
minus the cases that are cured, self-limited, or that die,
all divided by the number of lives in the population at
risk. Thus, if there are 300 existing cases, 150 new cases,
40 cures, and 30 deaths in a population of 10,000 in a par-
ticular year, the net period (annual) prevalence for that
year is (300 � 150 � 40 � 30) / 10,000 � 380/10,000 �
0.038. The net period prevalence for the year in question is
therefore nearly 4%.

A crucial statistical concept in medical research is
that of the research sample. Except for those studies that
have access to disease mortality, incidence, and preva-
lence rates for the entire population, such as the unique
SEER (surveillance, epidemiology and end results) proj-
ect that tracks all cancers in the United States, most stud-
ies use samples of people drawn from the population at
risk either randomly or according to certain criteria (e.g.,
whether or not they have been exposed to a pathogen,
whether or not they have had the disease, age, gender,
etc.). The size of the research sample is generally deter-
mined by the cost of research. The more elaborate and

detailed the data collection from the sample participants,
the more expensive to run the study.

Medical researchers try to ensure that studying the
sample will resemble studying the entire population by
making the sample representative of all of the relevant
groups in the population, and that everyone in the rele-
vant population groups should have an equal chance of
getting selected into the sample. Otherwise the sample
will be biased, and studying it will prove misleading
about the population in general.

The most powerful mathematical tool in medicine is
the use of statistics to discover associations between death
and disease in populations and various factors, including
environmental (e.g., pollution), demographic (age and
gender), biological (e.g., body mass index, or BMI), social
(e.g., educational level), and behavioral (e.g., tobacco
smoking, diet, or type of medical treatment), that could
be implicated in causing disease.

Familiarity with basic concepts of probability and
statistics is essential in understanding health care and
clinical research and is one of the most useful types of
knowledge that one can acquire, not just in medicine, but
also in business, politics, and such mundane problems as
interpreting weather forecasts.

A statistical association takes into account the role of
chance. Researchers compare disease rates for two or
more population groups that vary in their environmental,
genetic, pathogen exposure, or behavioral characteristics,
and observe whether a particular group characteristic is
associated with a difference in rates that is unlikely to have
occurred by chance alone.

How can scientists tell whether a pattern of disease is
unlikely to have occurred by chance? Intuition plays a
role, as when the frequency of disease in a particular pop-
ulation group, geographic area, or ecosystem is dramati-
cally out of line with frequencies in other groups or
settings. To confirm the investigator’s hunches that some
kind of statistical pattern in disease distribution is emerg-
ing, researchers use probability distributions.

Probability distributions are natural arrays of the
probability of events that occur everywhere in nature. For
example, the probability distribution observed when one
flips a coin is called the binomial distribution, so-called
because there are only two outcomes: heads or tails, yes or
no, on or off, 1 or 0 (in binary computer language). In the
binomial distribution, the expected frequency of heads
and tails is 50/50, and after a sufficiently long series of
coin flips or trials, this is indeed very close to the propor-
tions of heads and tails that will be observed. In medical
research, outcomes are also often binary, i.e., disease is
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present or absent, exposure to a virus is present or absent,
the patient is cured or not, the patient survives or not.

However, people almost never see exactly 50/50,
and the shorter the series of coin flips, the bigger the
departure from 50/50 will likely be observed. The bino-
mial probability distribution does all of this coin-
flipping work for people. It shows that 50/50 is the
expected odds when nothing but chance is involved, but
it also shows that people can expect departures from
50/50 and how often these departures will happen over
the long run. For example, a 60/40 odds of heads and
tails is very unlikely if there are 30 coin tosses (18 heads,
12 tails), but much more likely if one does only five coin
tosses (e.g., three heads, two tails). Therefore, statistics
books show binomial distribution tables by the number
of trials, starting with n � 5, and going up to n � 25.
The binomial distribution for ten trials is a “stepwise,” or
discrete distribution, because the probabilities of vari-
ous proportions jump from one value to another in the
distribution. As the number of trials gets larger, these
jumps get smaller and the binomial distribution begins to
look smoother. Figure 1 provides an illustration of how
actual and expected outcomes might differ under the
binomial distribution.

Beyond n � 30, the binomial distribution becomes
very cumbersome to use. Researchers employ the nor-
mal distribution to describe the probability of random
events in larger numbers of trials. The binomial distri-
bution is said to approach the normal distribution as
the number of trials or measurements of a phenomenon
get higher. The normal distribution is represented by a
smooth bell curve. Both the binomial and the normal
distributions share in common that the expected odds
(based on the mean or average probability of 0.5) of
“on-off ” or binary trial outcomes is 50/50 and the prob-
abilities of departures from 50/50 decrease symmetri-
cally (i.e., the probability of 60/40 is the same as that of
40/60). Figure 2 provides an illustration of the normal
distribution, along with its cumulative S-curve form
that can be used to show how random occurrences
might mount up over time.

In Figure 2, the expected (most frequent) or mean
value of the normal distribution, which could be the
average height, weight, or body mass index of a popula-
tion group, is denoted by the Greek letter �, while the
standard deviation from the mean is denoted by the
Greek letter �. Almost 70% of the population will have
a measurement that is within one standard deviation
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from the mean; on the other hand, only about 5% will
have a measurement that is more than two standard
deviations from the mean. The low probability of such
measurements has led medical researchers and statisti-
cians to posit approximately two standard deviations as
the cutoff point beyond which they consider an occur-
rence to be significantly different from average because
there is only a one in 20 chance of its having occurred
simply by chance.

The steepness with which the probability of the odds
decreases as one continues with trials determines the
width or variance of the probability distribution. Vari-
ance can be measured in standardized units, called stan-
dard deviations. The further out toward the low
probability tails of the distribution the results of a series
of trials are, the more standard deviations from the mean,
and the more remarkable they are from the investigator’s
standpoint. If the outcome of a series of trials is more
than two standard deviations from the mean outcome, it
will have a probability of 0.05 or one chance in 20. This 
is the cutoff, called the alpha (�) level beyond which
researchers usually judge that the outcome of a series of
trials could not have occurred by chance alone. At that
point they begin to consider that one or more factors 
are causing the observed pattern. For example, if the

frequency pattern of disease is similar to the frequencies
of age, income, ethnic groups, or other features of popu-
lation groups, it is usually a good bet that these charac-
teristics of people are somehow implicated in causing the
disease, either directly or indirectly.

The normal distribution helps disease investigators
decide whether a set of odds (e.g., 10/90) or a probabil-
ity of 10% of contracting a disease in a subgroup of peo-
ple that behave differently from the norm (e.g.,
alcoholics) is such a large deviation (usually, more than
two standard deviations) from the expected frequency
that the departure exceeds the alpha level of a probabil-
ity of 0.05. This deviation would be considered to be sta-
tistically significant. In this case, a researcher would want
to further investigate the effect of the behavioral differ-
ence. Whether or not a particular proportion or disease
prevalence in a subgroup is statistically significant
depends on both the difference from the population
prevalence as well as the number of people studied in the
research sample.

Real-life Applications

VALUE  OF  D IAGNOST IC  TESTS
Screening a community using relatively simple diag-

nostic tests is one of the most powerful tools that health
care professionals and public health authorities have in
preventing disease. Familiar examples of screening
include HIV testing to help prevent AIDS, cholesterol
testing to help prevent heart disease, mammography to
help prevent breast cancer, and blood pressure testing to
help prevent stroke. In undertaking a screening program,
authorities must always judge whether the benefits of
preventing the illness in question outweigh the costs and
the number of cases that have been mistakenly identified,
called false positives.

Every diagnostic or screening test has four basic
mathematical characteristics: sensitivity (the proportion
of identified cases that are true cases), specificity (the
proportion of identified non-cases that are true non-
cases), positive predictive value (PV+, the probability of a
positive diagnosis if the case is positive), and negative
predictive value (PV–, the probability of a negative diag-
nosis if the case is negative). These values are calculated as
follows. Let a � the number of identified cases that are
real cases of the disease (true positives), b � the number
of identified cases that are not real cases (false positives),
c � the number of true cases that were not identified
by the test (false negatives), and d � the number of indi-
viduals identified as non-cases that were true non-cases
(true negatives). Thus, the number of true cases is a � c,
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the number of true non-cases is b � d, and the total
number of cases is a � b � c � d. The four test charac-
teristics or parameters are thus Sensitivity � a/a � b;
Specificity � d/b � d; PV+ � a/a � b; PV- � d/c � d.
These concepts are illustrated in Table 1 for a mammog-
raphy screening study of nearly 65,000 women for breast
cancer.

Calculating the four parameters of the screening test
yields: Sensitivity � 132 / 177 � 74.6%; Specificity �

63,650 / 64, 633 � 98.5%; PV+ � 132 / 1,115 � 11.8%;
PV– � 63,650 / 63,695 � 99.9%.

These parameters, especially the ability of the test to
identify true negatives, make mammography a valuable
prevention tool. However, the usefulness of the test is
proportional to the disease prevalence. In this case, the
disease prevalence is very low: (a � c)/(b � d) �

177/64,683 ≈ 0.003, and the positive predictive value is
less than 12%. In other words, the actual cancer cases
identified are a small minority of all of the positive cases.

As the prevalence of breast cancer rises, as in older
women, the proportion of actual cases rises. This makes
the test much more cost effective when used on women
over the age of 50 because the proportion of women that
undergo expensive biopsies that do not confirm the
mammography results is much lower than if mammogra-
phy was administered to younger women or all women.

CALCULAT ION  OF  BODY  MASS  
INDEX  (BMI )

The body mass index (BMI) is often used as a measure
of obesity, and is a biological characteristic of individuals
that is strongly implicated in the development or etiology
of a number of serious diseases, including diabetes and
heart disease. The BMI is a person’s weight, divided by his
or her height squared: BMI � weight/height2. For example,
if a man is 1.8 m tall and weighs 85 kg, his body mass index
is: 85 kg2/1.8 m � 26.2. For BMIs over 26, the risk of dia-
betes and coronary artery disease is elevated, according to
epidemiological studies. However, a more recent study has
shown that stomach girth is more strongly related to dia-
betes risk than BMI itself, and BMI may not be a reliable
estimator of disease risk for athletic people with more lean
muscle mass than average.

STANDARD  DEV IAT ION  
AND  VAR IANCE  FOR  USE  
IN  HE IGHT  AND  WE IGHT  CHARTS

Concepts of variance and the standard deviation are
often depicted in population height and weight charts.

Suppose that the average height of males in a popu-
lation is 1.9 meters. Investigators usually want to know
more than just the average height. They might also like to
know the frequency of other heights (1.8 m, 2.0 m, etc.).
By studying a large sample, say 2,000 men from the pop-
ulation, they can directly measure the men’s heights and
calculate a convenient number called the sample’s stan-
dard deviation, by which they could describe how close or
how far away from the average height men in this popu-
lation tend to be. To get this convenient number, the
researchers simply take the average difference from the
mean height. To do this, they would first sum up all of
these differences or deviations from average, and then
divide by the number of men measured. To use a simple
example, suppose five men from the population are meas-
ured and their heights are 1.8 m, 1.75 m, 2.01 m, 2.0 m,
and 1.95 m. The average or mean height of this small
sample in meters � (1.8 � 1.75 � 2.01 � 2.0 � 1.95)/5 �
1.902. The difference of each man’s height from the
average height of the sample, or the deviation from aver-
age. The sample standard deviation is simply the average

A researcher collects blood from a “sentinel” chicken from
an area being monitored for the West Nile virus. FADEK

TIMOTHY/CORBIS SYGMA.
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of the deviations from the mean. The deviations are 1.8 �
1.902 � �0.102, 1.75 � 1.902 � �0.152, 2.01 � 1.902 �
0.108, 2.0 � 1.902 � 0.008, and 1.95 � 1.902 � 0.048.
Therefore, the average deviation for the sample is (�1.02
� 0.152 � 0.108 � 0.008 � 0.048) /5 = �0.2016 m.

However, this is a negative number that is not
appropriate to use because the standard deviation is sup-
posed to be a directionless unit, as is an inch, and because
the average of all of the average deviations will not add
up to the population average deviation. To get the sam-
ple standard deviation to always be positive, no matter
which sample of individuals that is selected to be meas-
ured, and to ensure that it is a good estimator of the pop-
ulation average deviation, researchers go through
additional steps. They sum up the squared deviations,
calculate the average squared deviation (mean squared

deviation), and take the square root of the sum of the
squared deviations (the root mean squared deviation or
RMS deviation). They then add a correction factor of –1
in the denominator.

So the sample standard deviation in the example is 

Note that the sample average of 1.902 m happens in this
sample to be close to the known population average,
denoted as �, of 1.9 m. The sample standard deviations
might or might not be close to the population standard
deviation, denoted as �. Regardless, the sample average
and standard deviation are both called estimators of the
population average and standard deviation. In order for
any given sample average or standard deviation to be con-
sidered to be an accurate estimator for the population
average and standard deviation, a small correction factor
is applied to these estimators to take into account that a
sample has already been drawn, which puts a small con-
straint (eliminates a degree of freedom) on the estima-
tion of � and � for the population. This is done so that
after many samples are examined, the mean of all the
sample means and the average of all of the sample stan-
dard deviations approaches the true population mean
and standard deviation.

GENET IC  R ISK  FACTORS :  THE
INHER I TANCE  OF  D ISEASE

Nearly all diseases have both genetic (heritable) and
environmental causes. For example, people of Northern
European ancestry have a higher incidence of skin cancer
from sun exposure in childhood than do people of South-
ern European or African ancestry. In this case, Northern
Europeans’ lack of skin pigment (melanin) is the herita-
ble part, and their exposure to the sun to the point of
burning, especially during childhood, is the environmen-
tal part. The proportion of risk due to inheritance and the
proportion due to the environment are very difficult to
figure out. One way is to look at twins who have the same
genetic background, and see how often various environ-
mental differences that they have experienced have
resulted in different disease outcomes.

However, there is a large class of strictly genetic dis-
eases for which predictions are fairly simple. These are
diseases that involve dominant and recessive genes. Many
genes have alternative genotypes or variants, most of
which are harmful or deleterious. Each person receives

s = ≅ 0.109
(–.102)2 � (–.152)2 � (.108)2 � (.008)2 � (.048)2

4

Counting calories is a practice of real-life mathematics that
can have a dramatic impact on health. A collection of menu
items from opposite ends of the calorie spectrum including
a vanilla shake from McDonald’s (1,100 calories); a Cuban
Panini sandwich from Ruby Tuesday’s (1,164 calories), and 
a six-inch ham sub, left, from Subway (290 calories). All the
information for these items is readily available at the
restaurants that serve them. AP/WIDE WORLD PHOTOS.

REPRODUCED BY PERMISSION.
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one of these gene variants from each parent, so he or she
has two variants for each gene that vie for expression as
one grows up. People express dominant genes when the
variant contributed by one parent overrides expression of
the other parent’s variant (or when both parents have the
same dominant variant). Some of these variants make the
fetus a “non-starter,” and result in miscarriage or sponta-
neous abortion. Other variants do not prevent birth and
may not express disease until middle age. In writing
about simple Mendelian inheritance, geneticists can use
the notation AA to denote homozygous dominant (usu-
ally homozygous normal), Aa to denote heterozygous
recessive, and aa to denote homozygous recessive.

One tragic example is that of Huntington’s disease
due to a dominant gene variant, in which the nervous sys-
tem deteriorates catastrophically at some point after the
age of 35. In this case, the offspring can have one domi-
nant gene (Huntington’s) and one normal gene (het-
erozygous dominant), or else can be homozygous
dominant (both parents had Huntington’s disease, but
had offspring before they started to develop symptoms).
Because Huntington’s disease is caused by a dominant
gene, the probability of the offspring developing the dis-
ease is 100%.

When a disease is due to a recessive gene allele or
variant, one in which the normal gene is expressed in the
parents, the probability of inheriting the disease is slightly
more complicated. Suppose that two parents are het-
erozygous recessive (both are Aa). The pool of variants
contributed by both parents that can be distributed to the
offspring, two at a time, are thus A, A, a, and a. Each of the
four gene variant combinations (AA, Aa, aA, aa) has a 25%
chance of being passed on to an offspring. Three of these
combinations produce a normal offspring and one pro-
duces a diseased offspring, so the probability of contract-
ing the recessive disease is 25% under the circumstances.

In probability theory, the probability of two events
occurring together is the product of the probability of each
of the two events occurring separately. So, for example, the
probability of the offspring getting AA is 1⁄2 � 1⁄2 � 1⁄4
(because half of the variants are A), the probability of

getting Aa is 2 � 1⁄4 � 1⁄2 (because there are two ways of
becoming heterozygous), and the probability of getting aa
is 1⁄4 (because half of the variants are a). Only one of these
combinations produces the recessive phenotype that
expresses disease.

Therefore, if each parent is heterozygous recessive
(Aa), the offspring has a 50% chance of receiving aa and
getting the disease. If only one parent is heterozygous
normal (Aa) and the other is homozygous recessive (aa),
and the disease has not been devastatingly expressed
before childbearing age, then the offspring will have a
75% chance of inheriting the disease. Finally, if both par-
ents are homozygous recessive, then the offspring will
have a 100% chance of developing the disease.

Some diseases show a gradation between homozy-
gous normal, heterozygous recessive, and homozygous
recessive. An example is sickle-cell anemia, a blood dis-
ease characterized by sickle-shaped red blood cells that do
not efficiently convey oxygen from the lungs to the body,
found most frequently in African populations living in
areas infested with malaria carried by the tsetse fly. Let AA
stand for homozygous for the normal, dominant geno-
type, Aa for the heterozygous recessive genotype, and aa
for the homozygous recessive sickle-cell genotype. It
turns out that people living in these areas with the normal
genotype are vulnerable to malaria, while people carrying
the homozygous recessive genotype develop sickle-cell
anemia and die prematurely. However, the heterozygous
individuals are resistant to malaria and rarely develop
sickle-cell anemia; therefore, they actually have an advan-
tage in surviving or staying healthy long enough to bear
children in these regions. Even though the sickle-cell vari-
ant leads to devastating disease that prevents an individ-
ual from living long enough to reproduce, the population
in the tsetse fly regions gets a great benefit from having
this variant in the gene pool. Anthropologists cite the dis-
tribution of sickle-cell anemia as evidence of how envi-
ronmental conditions influence the gene pool in a
population and result in the evolution of human traits.

The inheritance of disease becomes more and more
complicated as the number of genes involved increase. At

Screening test  
(mammography) Cancer confirmed Cancer not confirmed Total

Positive a � 132 b � 983 a � b � 1,115
Negative c � 45 d � 63,650 c � d � 63,695

Total a � c � 177 b � d � 64,683 a � b � c � d � 64,810

Real-life sensitivity and specificity in cancer screening

Table 1.
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How Simple Counting has Come 
to be the Basis of Clinical Research

The first thinker known to consider the fundamental con-
cepts of disease causation was none other than the
ancient Greek physician Hippocrates (460–377 B.C.),
when he wrote that medical thinkers should consider the
climate and seasons, the air, the water that people use,
the soil and people’s eating, drinking, and exercise
habits in a region. Subsequently, until recent times,
these causes of diseases were often considered but not
quantitatively measured. In 1662 John Graunt, a London
haberdasher, published an analysis of the weekly reports
of births and deaths in London, the first statistical
description of population disease patterns. Among his
findings he noted that men had a higher death rate than
women, a high infant mortality rate, and seasonal varia-
tions in mortality. Graunt’s study, with its meticulous
counting and disease pattern description, set the foun-
dation for modern public health practice.

Graunt’s data collection and analytical methodology
was furthered by the physician William Farr, who
assumed responsibility for medical statistics for England
and Wales in 1839 and set up a system for the routine
collection of the numbers and causes of deaths. In ana-
lyzing statistical relationships between disease and such
circumstances as marital status, occupations such as
mining and working with earthenware, elevation above
sea level, and imprisonment, he addressed many of the
basic methodological issues that contemporary epidemi-
ologists deal with. These include defining populations at
risk for disease and the relative disease risk between
population groups, and considering whether associations
between disease and the factors mentioned above might
be caused by other factors, such as age, length of expo-
sure to a condition, or overall health.

A generation later, public health research came into
its own as a practical tool when another British physi-
cian, John Snow, tested the hypothesis that a cholera
epidemic in London was being transmitted by contami-
nated water. By examining death rates from cholera, he
realized that they were significantly higher in areas sup-
plied with water by the Lambeth and the Southwark and
Vauxhall companies, which drew their water from a part
of the Thames River that was grossly polluted with
sewage. When the Lambeth Company changed the loca-
tion of its water source to another part of the river that

was relatively less polluted, rates of cholera in the areas
served by that company declined, while no change
occurred among the areas served by the Southwark and
Vauxhall. Areas of London served by both companies
experienced a cholera death rate that was intermediate
between the death rates in the areas supplied by just
one of the companies. In recognizing the grand but sim-
ple natural experiment posed by the change in the Lam-
beth Company water source, Snow was able to make a
uniquely valuable contribution to epidemiology and pub-
lic health practice.

After Snow’s seminal work, epidemiologists have
come to include many chronic diseases with complex
and often still unknown causal agents; the methods of
epidemiology have become similarly complex. Today
researchers use genetics, molecular biology, and micro-
biology as investigative tools, and the statistical meth-
ods used to establish relative disease risk draw on the
most advanced statistical techniques available.

Yet reliance on meticulous counting and categoriz-
ing of cases and the imperative to think logically and
avoid the pitfalls in mathematical relationships in med-
ical data remain at the heart of all of the research used
to prove that medical treatments are safe and effective.
No matter how high technology, such as genetic engi-
neering or molecular biology, changes the investigations
of basic medical research, the diagnostic tools and treat-
ments that biochemists or geneticists propose must still
be adjudicated through a simple series of activities that
comprise clinical trials: random assignments of treat-
ments to groups of patients being compared to one
another, counting the diagnostic or treatment outcomes,
and performing a simple statistical test to see whether
or not any differences in the outcomes for the groups
could have occurred just by chance, or whether the new-
fangled treatment really works. Many hundreds of mil-
lions of dollars have been invested by governments and
pharmaceutical companies into ultra-high technology
treatments only to have a simple clinical trial show that
they are no better than placebo. This makes it advisable
to keep from getting carried away by the glamour of
exotic science and technologies when it comes to medi-
cine until the chickens, so to speak, have all been
counted.
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a certain point, it is difficult to determine just how many
genes might be involved in a disease—perhaps hundreds
of genes contribute to risk. At that point, it is more useful
to think of disease inheritance as being statistical or
quantitative, although new research into the human
genome holds promise in revealing how information
about large numbers of genes can contribute to disease
prognosis and treatment.

CL IN ICAL  TR IALS
Clinical trials constitute the pinnacle of Western

medicine’s achievement in applying science to improve
human life. Many professionals find trial work very excit-
ing, even though it is difficult, exacting, and requires
great patience as they anxiously await the outcomes of
trials, often over periods of years. It is important that the
sense of drama and grandeur of the achievements of the
trials should be passed along to young people interested
in medicine. There are four important clinical trials cur-
rently in the works, the results of which affect the lives
and survival of hundreds of thousands, even millions, of
people, young and old.

The first trial was a rigorous test of the effectiveness
of condoms in HIV/AIDS prevention. This was a unique
experiment reported in 1994 in the New England Journal
of Medicine that appears to have been under-reported in
the popular press. Considering the prestige of the Journal
and its rigorous peer-review process, it is possible that
many lives could be saved by the broader dissemination
of this kind of scientific result. The remaining three trials
are a sequence of clinical research that have had a pro-
found impact on the standard of breast cancer treatment,
and which have resulted in greatly increased survival. In
all of these trials, the key mathematical concept is that of
the survival function, often represented by the Kaplan-
Meier survival curve, shown in Figure 4 below.

Clinical trial 1 was a longitudinal study of human
immunodeficiency virus (HIV) transmission by hetero-
sexual partners Although in the United States and West-
ern Europe the transmission of AIDS has been largely
within certain high-risk groups, including drug users and
homosexual males, worldwide the predominant mode of
HIV transmission is heterosexual intercourse. The effec-
tiveness of condoms to prevent it is generally acknowl-
edged, but even after more than 25 years of the growth of
the epidemic, many people remain ignorant of the scien-
tific support for the condom’s preventive value.

A group of European scientists conducted a prospec-
tive study of HIV negative subjects that had no risk factor
for AIDS other than having a stable heterosexual rela-
tionship with an HIV infected partner. A sample of 304

HIV negative subjects (196 women and 108 men) was fol-
lowed for an average of 20 months. During the trial, 130
couples (42.8%) ended sexual relations, usually due to the
illness or death of the HIV-infected partner. Of the
remaining 256 couples that continued having exclusive
sexual relationships, 124 couples (48.4%) consistently
used condoms. None of the seronegative partners among
these couples became infected with HIV. On the other
hand, among the 121 couples that inconsistently used
condoms, the seroconversion rate was 4.8 per 100 person-
years (95% confidence interval, 2.5–8.4). This means that
inconsistent condom-using couples would experience
infection of the originally uninfected partner between 2.5
and 8.4 times for every 100 person-years (obtained by
multiplying the number of couples by the number of
years they were together during the trial), and the
researchers were confident that in 95 times out of a 100
trials of this type, the seroconversion rate would lie in this
interval. The remaining 11 couples refused to answer
questions about condom use. HIV transmission risk
increased among the inconsistent users only when
infected partners were in the advanced stages of disease
(p � 0.02) and when the HIV negative partners had gen-
ital infections (p � 0.04).

Because none of the seronegative partners among the
consistent condom-using couples became infected, this
trial presents extremely powerful evidence of the effec-
tiveness of condom use in preventing AIDS. On the other
hand, there appear to be several main reasons why some
of the couples did not use condoms consistently. There-
fore, the main issue in the journal article shifts from the
question of whether or not condoms prevent HIV 
infection—they clearly do—to the issue of why so many
couples do not use condoms in view of the obvious risk.
Couples with infected partners that got their infection
through drug use were much less likely to use condoms
than when the seropositive partner got infected through
sexual relations. Couples with more seriously ill partners
at the beginning of the study were significantly more
likely to use condoms consistently. Finally, the couples
who had been together longer before the start of the trial
were positively associated with condom use.

Clinical trial 2 investigated the survival value of
dense-dose ACT with immune support versus ACT given
in three-week cycles Breast cancer is particularly devas-
tating because a large proportion of cases are among
young and middle-aged women in the prime of life. The
majority of cases are under the age of 65 and the most
aggressive cases occur in women under 50. The very most
aggressive cases occur in women in their 20s, 30s, and 40s.
The development of the National Cancer Care Network
(NCCN) guidelines for treating breast cancer is the result
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of an accumulation of clinical trial evidence over many
years. At each stage of the NCCN treatment algorithm, the
clinician must make a treatment decision based on the
results of cancer staging and the evidence for long-term
(generally five-year) survival rates from clinical trials.

A treatment program currently recommended in the
guidelines for breast cancer that is first diagnosed is that
the tumor is excised in a lumpectomy, along with any
lymph nodes found to contain tumor cells. Some addi-
tional nodes are usually removed in determining how far
the tumor has spread into the lymphatic system. The

tumor is tested to see whether it is stimulated by estrogen
or progesterone. If so, the patient is then given chemother-
apy with a combination of doxorubicin (Adriamycin) plus
cyclophosphamide (AC) followed by paclitaxel (Taxol, or
T) (the ACT regimen). In the original protocol, doctors
administered eight chemotherapy infusion cycles (four
AC and four T) every three weeks to give the patient’s
immune system time to recover. The patient then receives
radiation therapy for six weeks. After radiation, the patient
receives either Tamoxifen or an aromatase inhibitor for
years as secondary preventive treatment.
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Figure 4: Cancer survival data.
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Oncologists wondered whether compressing the
three-week cycles to two weeks (dense dosing) while sup-
porting the immune system with filgrastim, a white cell
growth factor, would further improve survival. They
speculated that dense dosing would reduce the opportu-
nity for cancer cells to recover from the previous cycle
and continue to multiply. Filgrastim was used between
cycles because a patient’s white cell count usually takes
about three weeks to recover spontaneously from a
chemotherapy infusion, and this immune stimulant has
been shown to shorten recovery time.

The researchers randomized 2,005 patients into four
treatment arms: 1) A-C-T for 36 weeks, 2) A-C-T for 24
weeks, 3) AC-T for 24 weeks, and 4) AC-T for 16 weeks.
The patients in the dense dose arms (2 and 4) received fil-
grastim. These patients were found to be less prone to
infection than the patients in the other arms (1 and 3).

After 36 months of follow-up, the primary endpoint
of disease-free survival favored the dense dose arms with
a 26% reduction in the risk of recurrence. The probabil-
ity of this result by chance alone was only 0.01 (p �

0.01), a result that the investigators called exciting and
encouraging. Four-year disease-free survival was 82% in
the dense-dose arms versus 75% for the other arms.
Results were also impressive for the secondary endpoint
of overall survival. Patients treated with dense-dose ther-
apy had a mortality rate 31% lower than those treated
with conventional therapy (p � 0.013). They had an
overall four-year survival rate of 92% compared with
90% for conventional therapy. No significant difference
in the primary or secondary endpoints was observed
between the A-C-T patients versus the AC-T patients:
only dense dosing made a difference. The benefit of the
AC-T regimen was that patients were able to finish their
therapy eight weeks earlier, a significant gain in quality of
life when one is a cancer patient.

One of the salient mathematical features of this 
trial is that it had enough patients (2,005) to be powered
to detect such a small difference (2%) in overall survival
rate. Many trials with fewer than 400 patients in total are
not powered to detect differences with such precision.
Had this difference been observed in a smaller trial,
the survival difference might not have been statistically
significant.

Clinical trial 3 studied the treatment of patients over
50 with radiation and tamoxifen versus tamoxifen alone.
Some oncologists have speculated that women over 50
may not get additional benefit by receiving radiation
therapy after surgery and chemotherapy. A group of
Canadian researchers set up a clinical trial to test this
hypothesis that ran between 1992 and 2000 involving

women 50 years or older with early stage node-negative
breast cancer with tumors 5 cm in diameter or less. A
sample of 769 women was randomized into two treat-
ment arms: 1) 386 women received breast irradiation plus
tamoxifen, and 2) 383 women received tamoxifen alone.
They were followed up for a median of 5.6 years.

The local recurrence rate (reappearance of the tumor
in the same breast) was 7.7% in the tamoxifen group and
0.6% in the tamoxifen plus radiation group. Analysis of
the results produced a hazard ratio of 8.3 with a 95% con-
fidence interval of [3.3, 21.2]. This means that women in
the tamoxifen group were more than eight times as likely
to have local tumor recurrences than the group that
received irradiation, and the researchers were confident
that in 95 times out of a 100 trials of this type, the hazard
ratio would at least be over three times as great and as
much as 21.2 times as great, given the role of random
chance fluctuations. The probability of this result was
that it could occur by chance alone only once in a 1,000
trials (p � 0.001).

As mentioned above, clinical trials are the interven-
tional or experimental application of epidemiology and
constitute a unique branch of statistical mathematics.
Statisticians that are specialists in such studies are called
trialists. Clinical trial shows how the rigorous pursuit of
clinical trial theory can result in some interesting and
perplexing conundrums in the practice of medicine.

In this trial, they studied the secondary prevention
effectiveness of tamoxifen versus Exemestane. For the
past 20 years, the drug tamoxifen (Nolvadex) has been the
standard treatment to prevent recurrence of breast cancer
after a patient has received surgery, chemotherapy, and
radiation. It acts by blocking the stimulatory action of
estrogen (the female hormone estrogen can stimulate
tumor growth) by binding to the estrogen receptors on
breast tumor cells (the drug is an estrogen imitator or
agonist). The impact of tamoxifen on breast cancer recur-
rence (a 47% decrease) and long-term survival (a 26%
increase) could hardly be more striking, and the life-
saving benefit to hundreds of thousands of women has
been one of the greatest success stories in the history of
cancer treatment. One of the limitations of tamoxifen,
however, is that after five years patients generally receive
no benefit from further treatment, although the drug is
considered to have a “carryover effect” that continues for
an indefinite time after treatment ceases.

Nevertheless, over the past several years a new class
of endocrine therapy drugs called aromatase inhibitors
(AIs) that have a different mechanism or mode of action
from that of tamoxifen have emerged. AIs have an even
more complete anti-estrogen effect than tamoxifen, and
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showed promise as a treatment that some patients could
use after their tumors had developed resistance to tamox-
ifen. As recently as 2002 the medical information com-
pany WebMD published an Internet article reporting that
some oncologists still preferred the tried-and-true
tamoxifen to the newcomer AIs despite mounting evi-
dence of their effectiveness.

However, the development of new “third generation”
aromatase inhibitors has spurred new clinical trials that
now make it likely that doctors will prescribe an AI for
new breast cancer cases that have the most common
patient profile (stages I–IIIa, estrogen sensitive) or for
patients that have received tamoxifen for 2–5 years. A very
large clinical trial reported in 2004 addressed switching
from tamoxifen to an AI. A large group of 4,742 post-
menopausal patients over age 55 with primary (non-
metastatic) breast cancer that had been using tamoxifen
for 2–3 years was recruited into the trial between February
1998 and February 2003. About half (2,362) were ran-
domly assigned (randomized) into the exemestane group
and the remainder (2,380) were randomized into the
tamoxifen group (the group continuing their tamoxifen
therapy). Disease-free survival, defined as the time from
the start of the trial to the recurrence of the primary
tumor or occurrence of a contralateral (opposite breast)
or a metastatic tumor, was the primary trial endpoint.

In all, 449 first events (new tumors) were recorded, 266
in the tamoxifen group and 183 in the exemestane group, by
June 30, 2003. This large excess of events in the tamoxifen
group was highly statistically significant (p � 0.0004,
known as the O’Brien-Fleming stopping boundary), and the
trial’s data and safety-monitoring committee, a necessary
component of all clinical trials, recommended an early halt
to the trial. Trial oversight committees always recommend
an early trial ending when preliminary results are so statisti-
cally significant that continuing the trial would be unethical.
This is because continuation would put the lives of patients
in one of the trial arms at risk because they were not receiv-
ing medication that had already shown clear superiority.

The unadjusted hazard ratio for the exemestane group
compared to the tamoxifen group was 0.62 (95% confidence

interval 0.56–0.82, p � 0.00005, corresponding to an
absolute benefit of 4.7%). Disease-free survival in the
exemestane group was 91.5% (95% confidence interval
90.0–92.7%) versus 86.8% for the tamoxifen group (95%
confidence interval 85.1–88.3%). The 95% confidence inter-
val around the average disease-free survival rate for each
group is a band of two standard errors (related to the stan-
dard deviation) on each side. If these bands do not overlap,
as these did not, the difference in disease-free survival for the
two groups is statistically significant.

The advantage of exemestane was even greater when
deaths due to causes other than breast cancer were cen-
sored (not considered in the statistical analysis) in the
results. One important ancillary result, however, was that
at the point the trial was discontinued; there was no sta-
tistically significant difference in overall survival between
the two groups. This prompted an editorial in the New
England Journal of Medicine that raised concern that
many important clinical questions that might have been
answered had the trial continued, such as whether tamox-
ifen has other benefits, for instance osteoporosis and car-
diovascular disease prevention effects, in breast cancer
patients, now could not be and perhaps might never be
addressed.

RATE  OF  BACTER IAL  GROWTH
Under the right laboratory conditions, a growing

bacterial population doubles at regular intervals and the
growth rate increases geometrically or exponentially (20,
21, 22, 23 . . . 2n) where n is the number of generations. It
should be noted that this explosive growth is not really
representative of the growth pattern of bacteria in nature,
but it illustrates the potential difficulty presented when a
patient has a runaway infection, and is a useful tool in
diagnosing bacterial disease.

When a medium for culturing bacteria captured
from a patient in order to determine what sort of infec-
tion might be causing symptoms is inoculated with a cer-
tain number of bacteria, the culture will exemplify a
growth curve similar to that illustrated below in Figure 5.
Note that the growth curve is set to a logarithmic scale in
order to straighten the steeply rising exponential growth
curve. This works well because log 22 � 2x is a formula
for a straight line in analytic geometry.

The bacterial growth curve displays four typical
growth phases. At first there is a temporary lag as the bac-
teria take time to adapt to the medium environment. An
exponential growth phase as described above follows as
the bacteria divide at regular intervals by binary fission.
The bacterial colony eventually runs out of enough nutri-
ents or space to fuel further growth and the medium
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Figure 5: Bacterial growth curve for viable (living) cells.
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becomes contaminated with metabolic waste from the
bacteria. Finally, the bacteria begin to die off at a rate that
is also geometric, similar to the exponential growth rate.
This phenomenon is extremely useful in biomedical
research because it enables investigators to culture suffi-
cient quantities of bacteria and to investigate their genetic
characteristics at particular points on the curve, particu-
larly the stationary phase.

Potential Applications

One of the most interesting future developments in
this field will likely be connected to advances in knowl-
edge concerning the human genome that could revolu-
tionize understanding of the pathogenesis of disease. As
of 2005, knowledge of the genome has already con-
tributed to the development of high-technology genetic
screening techniques that could be just the beginning of
using information about how the expression of thou-
sands of different genes impacts the development, treat-
ment, and prognosis of breast and other types of cancer,
as well as the development of cardiovascular disease, dia-
betes, and other chronic diseases.

For example, researchers have identified a gene-
expression profile consisting of 70 different genes that accu-
rately predicted the prognosis for a group of breast cancer
patients into poor prognosis and good prognosis groups.
This profile was highly correlated with other clinical char-
acteristics, such as age, tumor histologic grade, and estrogen
receptor status. When they evaluated the predictive power
of their prognostic categories in a ten-year survival analysis,
they found that the probability of remaining free of distant
metastases was 85.2% in the good prognosis group, but
only 50.6% in the poor prognosis group. Similarly, the sur-
vival rate at ten years was 94.6% in the good prognosis
group, but only 54.6% in the poor prognosis group. This
result was particularly valuable because some patients that
had positive lymph nodes that would have been classified as
having a poor prognosis using conventional criteria were
found to have good prognoses using the genetic profile.

Physicians and scientists involved in medical
research and clinical trials have made enormous contri-
butions to the understanding of the causes and the most
effective treatment of disease. The most telling indicator
of the impact of their work has been the steadily declin-
ing death rate throughout the world. Old challenges to
human survival continue, and new ones will certainly
emerge (e.g., AIDS and the diseases of obesity). The
mathematical tools of medical research will continue to
be humankind’s arsenal in the struggle for better health.
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Key Terms

Exponential growth: A growth process in which a num-
ber grows proportional to its size. Examples include
viruses, animal populations, and compound interest
paid on bank deposits.

Probability distribution: The expected pattern of ran-
dom occurrences in nature.
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Overview

A model is a representation that mimics the impor-
tant features of a subject. A mathematical model uses
mathematical structures such as numbers, equations, and
graphs to represent the relevant characteristics of the
original. Mathematical models rely on a variety of math-
ematical techniques. They vary in size from graphs to
simple equations, to complex computer programs. A
variety of computer coding languages and software pro-
grams have been developed to aid in computer modeling.
Mathematical models are used for an almost unlimited
range of subjects including agriculture, architecture, biol-
ogy, business, design, education, engineering, economics,
genetics, marketing, medicine, military, planning, popu-
lation genetics, psychology, and social science.

Fundamental Mathematical Concepts
and Terms

There are three fundamental components of a math-
ematical model. The first includes the things that the
model is designed to reflect or study. These are often
referred to as the output, the dependent variables, or the
endogenous variables. The second part is referred to as
input, parameters, independent variables, or exogenous
variables. It represents the features that the model is not
designed to reflect or study, but which are included in or
assumed by the model. The last part is the things that are
omitted from the model.

Consider a marine ecologist who wants to build a
model to predict the size of the population of kelp bass (a
species of fish) in a certain cove during a certain year. This
number is the output or the dependent variable. The ecol-
ogist would consider of all the factors that might influence
the fish population. These might include the temperature
of the water, the concentration of food for the kelp bass,
population of kelp bass from the previous year, the num-
ber of fishermen who use the cove, and whatever else he
considers important. These items are the input or the
dependent variables. The things that might be excluded
from the model are those things that do not influence 
the size of the kelp bass population. These might include
the air temperature, the number of sunny days per year, the
number of cars that are licensed within a 5-mile (8 km)
radius of the cove, and anything else that does not have a
clear, direct impact on the fish population.

Once the model is built, it can often serve a variety of
purposes and the variables in the model can change
depending on the model’s use. Imagine that the same

Modeling
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model of kelp bass populations is used by an officer at the
Department of Fish and Wildlife to set fishing regula-
tions. The officer cares a lot about how many fishermen
use the cove and he can set regulations controlling the
number of licenses granted. For the regulator, the num-
ber of fisherman changes to the independent variable and
the population of fish is a dependent variable.

Building mathematical models is somewhat similar
to creating a piece of artwork. Model building requires
imagination, creativity, and a deep understanding of the
process or situation being modeled. Although there is no
set method that will guarantee a useful, informative
model, most model building requires, at the very least,
the following four steps.

First, the problem must be formulated. Every model
answers some question or solves a problem. Determining
the nature of the problem or the fundamentals involved
in the question are basic to building the model. This step
can be the most difficult part of model building.

Second, the model must be outlined. This includes
choosing the variables that will be included and omitted.
If parameters that have no impact on the output are
included in the model, it will not work well. On the other
hand, if too many variables are included in the model, it
will become exceedingly complex and ineffective. In addi-
tion, the dependent and independent variables must 
be determined and the mathematical structures that
describe the relationships between the variables must be
developed. Part of this step involves making assumptions.
These assumptions are the definitions of the variables
and the relationships between them. The choice of
assumptions plays a large role in the reliability of a
model’s predictions.

The third step of building a model is assessing its
usefulness. This step involves determining if the data
from model are what it was designed to produce and if
the data can be used to make the predictions the model
was intended to make. If not, then the model must be
reformulated. This may involve going back to the outline
of the model and checking that the variables are appro-
priate and their relationships are structured properly. It
may even require revisiting the formulation of the prob-
lem itself.

The final step of developing a model is testing it. At
this point results, from the model are compared against
measurements or common sense. If the predictions of the
model do not agree with the results, the first step is to
check for mathematical errors. If there are none, then fix-
ing the model may require reformulations to the mathe-
matical structures or the problem itself. If the predictions
of the model are reasonable, then the range of variables

for which the model is accurate should be explored.
Understanding the limits of the model is part of the test-
ing process. In some cases it may be difficult to find data
to compare with predictions from the model. Data may
be difficult, or even impossible, to collect. For example,
measurements of the geology of Mars are quite expensive
to gather, but geophysical models of Mars are still pro-
duced. Experience and knowledge of the situation can be
used to help test the model.

After a model is built, it can be used to generate pre-
dictions. This should always be done carefully. Models
usually only function properly within certain ranges. The
assumptions of a model are also important to keep in
mind when applying it.

Models must strike a balance between generality and
specificity. When a model can explain a broad range of
circumstances, it is general. For example, the normal dis-
tribution, or the bell curve, predicts the distribution of
test scores for an average class of students. However, the
distribution of test scores for a specific professor might
vary from the normal distribution. The professor may
write extremely hard tests or the students may have had
more background in the material than in prior years. A
U-shaped or linear model may better represent the distri-
bution of test scores for a particular class. When a model
more specific to a class is used, then the model loses its
generality, but it better reflects reality. The trade-offs
between these values must be considered when building
and interpreting a model.

There are a variety of different types of mathemati-
cal models. Analytical models or deterministic models
use groups of interrelated equations and the result is an
exact solution. Often advanced mathematical techniques,
such as differential equations and numerical methods, are
required to solve analytical models. Numerical methods
usually calculate how things change with time based on
the value of a variable at a previous point in time. Statis-
tical or stochastic models calculate the probability that an
event will occur. Depending on the situation, statistical
models may have an analytical solution, but there are sit-
uations in which other techniques such as Bayesian meth-
ods, Markov random models, cluster analysis, and Monte
Carlo methods are necessary. Graphical models are
extremely useful for studying the relationships between
variables, especially when there are only a few variables or
when several variables are held constant. Optimization is
an entire field of mathematical modeling that focuses on
maximizing (or minimizing) something, given a group of
constraining conditions. Optimization often relies on
graphical techniques. Game theory and catastrophe the-
ory can also be used in modeling. A relatively new branch



M o d e l i n g

330 R E A L - L I F E  M A T H

of mathematics called chaos theory has been used to
model many phenomena in nature such as the growth of
trees and ferns and weather patterns. String theory has
been used to model viruses.

Computers are obviously excellent tools for building
and solving models. General computer coding languages
have the basic functions for building mathematical mod-
els. For example, JAVA, Visual Basic and C�� are com-
monly used to build mathematical models. However, there
are a number of computer programs that have been devel-
oped with the particular purpose of building mathemati-
cal models. Stella II is an object oriented modeling
program. This means that variables are represented by
boxes and the relationships between the variables are rep-
resented by different types of arrows. The way in which
the variables are connected automatically generates the
mathematical equations that build the model. MathCad,
MatLab and Mathematica are based on built-in codes that
automatically perform mathematical functions and can
solve complex equations. These programs also include a
variety of graphing capabilities. Spreadsheet programs like
Microsoft Excel are useful for building models, especially
ones that depend on numerical techniques. They include
built-in mathematical functions that are commonly used
in financial, biological, and statistical models.

Real-life Applications

Mathematical models are used for an almost unlim-
ited range of purposes. Because they are so useful for
understanding a situation or a problem, nearly any field
of study or object that requires engineering has had a
mathematical model built around it. Models are often a
less expensive way to test different engineering ideas than
using larger construction projects. They are also a safer
and less expensive way to experiment with various sce-
narios, such as the effects of wave action on a ship or
wind action on a structure. Some of these fields that com-
monly rely on mathematical modeling are agriculture,
architecture, biology, business, design, education, engi-
neering, economics, genetics, marketing, medicine, mili-
tary, planning, population genetics, psychology, and
social science. Two classic examples of mathematical
modeling from the vast array of mathematical models are
presented below.

ECOLOG ICAL  MODEL ING
Ecologists have relied on mathematical modeling for

roughly a century, ever since ecology became an active field
of research. Ecologists often deal with intricate systems in

which many of the parts depend on the behavior of other
parts. Often, performing experiments in nature is not fea-
sible and may also have serious environmental conse-
quences. Instead, ecologists build mathematical models
and use them as experimental systems. Ecologists can also
use measurements from nature and then build mathe-
matical models to interpret these results.

A fundamental question in ecology concerns the size
of populations, the number of individuals of a given
species that live in a certain place. Ecologists observe
many types of fluctuations in population size. They want
to understand what makes a population small one year
and large the next, or what makes a population grow
quickly at times and grow slowly at other times. Popula-
tion models are commonly studied mathematical models
in the field of ecology.

When a population has everything that it needs to
grow (food, space, lack of predators, etc.), it will grow at
its fastest rate. The equation that describes this pattern of
growth is ∆N/∆t � rN. The number of organisms in the
population is N, time is t, and the rate of change in the
number of organisms is r. The ∆ is the Greek letter delta
and it indicates a change in something. The equation
says that the change in the number of organisms (∆N)
during a period of time (∆t) is equal to the product of the
rate of change (r) and the number of organisms that are
present (N).

If the period of time that is considered is allowed
to become very small and the equation is integrated, it
becomes N � N0e

rt, where N0 is the number of organisms
at an initial point in time. This is an exponential equation,
which indicates that the number of organisms will increase
extremely fast. Because the graph of this exponential equa-
tion shoots upward very quickly, it has a shape that is sim-
ilar to the shape of the letter “J”. This exponential growth is
sometimes called “J-shaped” growth.

J-shaped growth provides a good model of the
growth of populations that reproduce rapidly and that
have few limiting resources. Think about how quickly
mosquitoes seem to increase when the weather warms up
in the spring. Other animals with J-shaped growth are
many insects, rats, and even the human population on a
global scale. The value of r varies greatly for these differ-
ent species. For example, the value of r for the rice weevil
(an insect) is about 40 per year, for a brown rat about 
5 per year and for the human population about 0.2 per
year. In addition, environmental conditions, such as tem-
perature, will influence the exponential rate of increase of
a population.

In reality, many populations grow very quickly for
some time and then the resources they need to grow
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become limited. When populations become large, there
may be less food available to eat, less space available for
each individual or predators may be attracted to the large
food supply and may start to prey on the population.
When this happens the population growth stops increas-
ing so quickly. In fact, at some point, it may stop increas-
ing at all. When this occurs, the exponential growth
model, which produces a J-shaped curve, does not repre-
sent the population growth very well.

Another factor must be added to the exponential
equation to better model what happens when limited
resources impact a population. The mathematical model,
which expresses what happens to a population limited by
its resources, is ∆N/∆t � rN(1 � N/K). The variable K is
sometimes called the carrying capacity of a population. It
is the maximum size of a population in a specific environ-
ment. Notice that when the number of individuals in the
population is near 0 (N � 0), the term 1�N/K is approx-
imately equal to 1. When this is the case, the model will
behave like an exponential model; the population will
have rapid growth. When the number of individuals in the
population is equal to the carrying capacity (N � K), then
the term 1 � N/K becomes 1 � K/K, or 0. In this case the
model predicts that the changes in the size of the popula-
tion will be 0. In fact, when the size of a population
approaches its carrying capacity, it stops growing.

The graph of a population that has limited resources
starts off looking like the letter J for small population
sizes and then curves over and becomes flat for larger
population sizes. It is sometimes called a sigmoid growth
curve or “S-shaped” growth. The mathematical model
∆N/∆t � rN(1�N/K) is referred to as the logistic growth
curve.

The logistic growth curve is a good approximation
for the population growth of animals with simple life his-
tories, like microorganisms grown in culture. A classic
example of logistic growth is the sheep population in 
Tasmania. Sheep were introduced to the island in 1800
and careful records of their population were kept. The
population grew very quickly at first and then reached a
carrying capacity of about 1,700,000 in 1860.

Sometimes a simple sigmoidal shape is not enough
to clearly represent population changes. Often popula-
tions will overshoot their carrying capacity and then
oscillate around it. Sometimes, predators and prey will
exhibit cyclic oscillations in population size. For example
the population sizes of Arctic lynx and hare increase and
decrease in a cycle that lasts roughly 9–10 years.

Ecologists have often wondered whether modeling
populations using just a few parameters (such as the rate of
growth of the population, the carrying capacity) accurately

portrays the complexity of population dynamics. In 1994,
a group of researchers at Warwick University used a rela-
tively new type of mathematics called chaos theory to
investigate this question.

A mathematical simulation model of the population
dynamics between foxes, rabbits and grass was developed.
The computer screen was divided into a grid and each
square was assigned a color corresponding to a fox, a rab-
bit, grass, and bare rock. Rules were developed and
applied to the grid. For example, if a rabbit was next to
grass, it moved to the position of the grass and ate it. If a
fox was next to a rabbit, it moved to the position of the
rabbit and ate it. Grass spread to an adjacent square of
bare rock with a certain probability. A fox died if it did
not eat in six moves, and so on.

The computer simulation was played out for several
thousand moves and the researchers observed what hap-
pened to the artificial populations of fox, rabbits, and
grass. They found that nearly all the variability in the sys-
tem could be accounted for using just four variables, even
though the computer simulation model contained much
greater complexity. This implies that the simple exponen-
tial and logistic modeling that ecologists have been work-
ing with for decades may, in fact, be a very adequate
representation of reality.

MIL I TARY  MODEL ING
The military uses many forms of mathematical mod-

eling to improve its ability to wage war. Many of these
models involve understanding new technologies as they
are applied to warfare. For example, the army is interested
in the behavior of new materials when they are subjected
to extreme loads. This includes modeling the conditions
under which armor would fail and the mechanics of pen-
etration of ammunition into armor. Building models of
next generation vehicles, aircraft and parachutes and
understanding their properties is also of extreme impor-
tance to the army.

The military places considerable emphasis on develop-
ing optimization models to better control everything from
how much energy a battalion in the field requires to how to
get medical help to a wounded soldier more effectively. Spe-
cial probabilistic models are being developed to try to
detect mine fields in the debris of war. These models incor-
porate novel mathematical techniques such as Bayesian
methods, Markov random models, cluster analysis, and
Monte Carlo simulations. Simulation models are used to
develop new methods for fighting wars. These types of
models make predictions about the outcome of war since it
has changed from one of battlefield combat to one that
incorporates new technologies like smart weapon systems.
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Game theory was developed in the first half of the
twentieth century and applied to many economic situa-
tions. This type of modeling attempts to use mathematics
to quantify the types of decisions a person will make
when confronted with a dilemma. Game theory is of great
importance to the military as a means for understanding
the strategy of warfare. A classic example of game theory
is illustrated by the military interaction between General
Bradley of the United States Army and General von Kluge
of the German Army in August 1944, soon after the inva-
sion of Normandy.

The U.S. First Army had advanced into France and
was confronting the German Ninth Army, which out-
numbered the U.S. Army. The British protected the U.S.
First Army to the North. The U.S. Third Army was in
reserve just south of the First Army.

General von Kluge had two options; he could either
attack or retreat. General Bradley had three options con-
cerning his orders to the reserves. He could order them to
the west to reinforce the First Army; he could order them
to the east to try to encircle the German Army; or he

could order them to stay in reserve for one day and then
order them to reinforce the First Army or strike eastward
against the Germans.

In terms of game theory, six outcomes result from
the decisions of the two generals and a payoff matrix is
constructed which ranks each of the outcomes. The best
outcome for Bradley would be for the First Army’s posi-
tion to hold and to encircle the German troops. This
ranks 6, or the highest in the matrix and it would occur if
von Kluge attacks and the First Army and Bradley holds
the Third Army in reserve one day to see if the First Army
needed reinforcement and if not he could then order
them to the east to encircle the German troops. The worst
outcome for Bradley is a 1 and it would occur if von
Kluge orders an attack and at the same time Bradley
ordered the reserve troops eastward. In this case, the 
Germans could possibly break through the First Army’s
position and there would be no troops available for
reinforcement.

Game theory suggests that the best decision for both
generals is one that makes the most of their worst possible
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Figure 1: Examples of population growth models. The dots are measurements of the size of a population of yeast grown in a
culture. The dark line is an exponential growth curve showing J-shaped growth. The lighter line is a sigmoidal or logistic growth
curve showing S-shaped growth. The dashed line shows the carrying capacity of the population.
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outcome. Given the six scenarios, this results in von Kluge
deciding to withdraw and Bradley deciding to hold the
Third Army in reserve for one day, a 4 in the matrix. The
expected outcome of this scenario is that the Third Army
would be one day late in moving to the east and could only
put moderate pressure on the retreating German Army.
On the other hand, they would not be committed to the

wrong action. From the German point of view, the Army
does not risk being encircled and cut off by the Allies, and
it avoids excessive harassment during its retreat.

Interestingly, the two generals decided to follow the
action suggested by game theory. However, after van
Kluge decided to withdraw, Hitler ordered him to attack.
The U.S. First Army held their position on the first day of

Military positions:
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First Army. Hold position
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Outcome: Reserves reinforce
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Rank: 2
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available to reinforce
First Army. Germans break
through position.

Rank: 1
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available to reinforce
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German retreat.

Rank: 5

Outcome: Reserves available
to reinforce First Army if
neede. If not, reserves can
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Outcome: Reserves available
to put heavy pressure on
German retreat.

Rank: 4

British Army

U.S. First Army

U.S. Third Army (in reserve)

Germany Army
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Ocean

Figure 2: Payoff matrix for the various scenarios in the battle between the U.S. Army and the German Army in 1944. If
possible add graphic of military positions as well. Caption should read: Military positions of the U.S. and German Armies
during the battle. The U.S. and British forces held positions to the west of the German Army. The U.S. Third Army was in
reserve to the south of the U.S. First Army.
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the battle and Bradley ordered the Third Army to the east
to encircle the Germans. Hitler unwittingly generated the
best possible outcome for Bradley, the 6th or highest rank
in the matrix.
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Key Terms

Dependent variable: What is being modeled; the output.

Exponential growth: A growth process in which a num-
ber grows proportional to its size. Examples include
viruses, animal populations, and compound interest
paid on bank deposits.

Independent variable: Data used to develop a model,
the input.

Input: What is used to develop a model, the independ-
ent variables.

Model: A system of theoretical ideas, information, and
inferences presented as a mathematical description
of an entity or characteristic.

Output: What is being modeled; the dependent
variables.
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Multiplication

Overview

Multiplication is a method of easily adding various
quantities of identical numbers without performing each
addition equation individually.

Fundamental Mathematical Concepts
and Terms

In a multiplication equation, the two values being
multiplied are called coefficients or factors, while the
result of a multiplication equation is labeled the product.
Several forms of notation can be used to designate a mul-
tiplication operation. The most common symbol for
multiplication in arithmetic is �. In algebra and other
forms of mathematics where letters substitute for
unknown quantities, the � is often omitted, so that the
expression 3x � 7y is understood to mean 3 � x � 7 �
y. In other cases, parentheses can be used to express mul-
tiplication, as in 5(2), which is mathematically identical
to 5 � 2, or 10.

For both subtraction and division, the order of the
values being operated on has a significant impact on the
final answer; in multiplication, the order has no effect on
the result. The commutative property of multiplication
states that x � y gives the same result as y � x for any val-
ues of x and y, making the order of the factors irrelevant
to the product. Another property of multiplication is that
any value multiplied times 0 produces a product of 0,
while any number multiplied times 1 gives the starting
number. The signs of the factors also affect the product;
multiplying two numbers with the same sign (either two
positives or two negatives) will produce a positive result,
while multiplying numbers with differing signs will pro-
duce a negative value.

A Brief History of Discovery 
and Development

As an extension of the basic process of addition, mul-
tiplication’s origins are lost in ancient history, and early
merchants probably learned to perform basic multiplica-
tion operations long before the system was formalized.
The first formal multiplication tables were developed and
used by the Babylonians around 1800 B.C. One of these
earliest tables was created to process simple calculations
of the area of a square farm field, using the length and
width as data and allowing a user to look up the area in
the table body. These early tables function identically to
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today’s multiplication tables, meaning that the tables
which modern elementary school students labor to mem-
orize have actually been in use for close to forty centuries.

Moving past the basic single digit equations of the
elementary school multiplication table, long multiplica-
tion can become a time-consuming, complex process,
and many different techniques for performing long mul-
tiplication have been developed and used. In the thir-
teenth century, educated Europeans used a multiplication
technique known as lattice multiplication. This somewhat
complicated method involved drawing a figure resembling
a garden lattice, then writing the two factors above and to
the right of the figure. Following a step by step process of
multiplying, adding, and summing values, this method
allowed one to reliably multiply large numbers.

An earlier, more primitive method of long multipli-
cation was devised by the early Egyptians, and is
described in a document dating to 1700 B.C. The Egypt-
ian system seems rather unusual, due largely to the
Egyptian perspective on numbers. Whereas modern
mathematics views numbers as independent, discrete
entities with an inherent value, ancient Egyptians
thought of numbers only in terms of collections of con-
crete objects. In other words, to an ancient Egyptian, the

number nine would have no inherent meaning, but
would always refer to a specific collection of objects, such
as nine swords or nine cats.

For this reason, Egyptian math generally did not
attempt to deal with extremely large quantities, as these
calculations offered little practical value. Instead, the
Egyptians devised a method of multiplication which
could be accomplished by a complex series of manipula-
tions using nothing more than simple addition. Due to its
complexity and limited utility, this method does not
appear to have gained favor outside Egypt. As an interest-
ing side note, elements of the Egyptian method actually
involve binary mathematics, the system which forms the
basis of modern computer logic systems.

A similar, binary-based system was developed and used
in Russia. This so-called peasant method of multiplication
involved repeatedly doubling and halving the two values to
be multiplied until an answer was produced. While tedious
to apply, this method involved little more than removing
the right-most value at each step until the result was pro-
duced. Like the previously discussed methods, this tech-
nique seems remarkably slow in modern terms; however, in
a context in which one might only need to perform a single
multiplication problem each week or each month, such
techniques would have been useful.

Given the complexity of performing long multiplica-
tion manually, numerous inventors attempted to create
mechanical multiplying machines. Far more difficult
than creating a simple adding machine, this task was first
successfully completed by Gottfried Wilhelm Von Leibniz
(1646–1716), a German philosopher and mathematician
who also invented differential calculus. This device,
which Von Leibniz called the Stepped Reckoner, used a
series of mechanical cranks, drums, and gears to evaluate
multiplication equations, as well as division, addition,
and subtraction problems. Only two of these machines
were ever built; both survive and are housed in German
museums. Von Leibniz apparently shared the somewhat
common dislike of calculating by hand; he is quoted as
saying that the process of performing hand calculations
squanders time and reduces men to the level of slaves.
Unfortunately, his bulky, complex mechanical calculator
never came into widespread use.

Additional attempts were made to construct multi-
plying machines, and various mechanical and electro-
mechanical versions were created during the ensuing
centuries. However the first practical hand-held tools for
performing multiplication did not appear until the
1970s, with the introduction of microprocessors and
handheld calculators by firms such as Hewlett Packard
and Texas Instruments. Today, using these inexpensive

Girl executing simple multiplication problems. Lambert/Getty
Images.
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tools or spreadsheet software, long multiplication is no
more difficult or time-consuming to perform than simple
addition.

Real-life Applications

EXPONENTS  AND  GROWTH  RATES
Growth rates describe the application of simple mul-

tiplication many times to a starting value. In cases where
the growth rate is constant over time, a special notation is
used to define the projected value; this notation is called
an exponent, and its value conveys how many times the
starting value is to be multiplied by itself. For example,
the expression 3 � 3 can also be written 32, which is read
“Three to the second power,” or simply “Three squared.”
As the sequence progresses, the values become more
cumbersome to work with, and exponents greatly sim-
plify the process. For instance, the expression 3 � 3 �
3 � 3 � 3 � 3 � 3 � 3 � 3 � 3 can be easily written as
310, and when evaluated produces a value of 59,049.

INVESTMENT  CALCULAT IONS
One common application of exponents deals with

growth rates. For example, assume that an investment of
$100 will earn 7% over the course of a year, yielding a total
of $107 at year-end. This process can be continued indef-
initely; at the end of two years, this $107 will have earned
another $7.49, making the total after two years $114.49.

Using exponents, we can easily determine how much
the original $100 will have earned after any specific num-
ber of years; in this example, we will find the total value
after nine years. First, we note that the growth rate is 7%,
meaning that the starting value must be multiplied by
1.07 in order to find the new value after one year. In order
to find the multiplier, or value we would apply to our
starting number to find the final total, we simply multiply
1.07 times itself until we account for all nine years of the
calculation. Expressed in long terms, this equation would be
1.07 � 1.07 � 1.07 � 1.07 � 1.07 � 1.07 � 1.07 � 1.07 �
1.07 � 1.84. Expressing this value exponentially we write
the expression as 1.079. We can now multiply our original
investment value by our calculated multiplier to find the
final value of the investment: $100 � 1.84 � $184. Further,
if we wish to recalculate the size of the investment over a
shorter or longer period of time, we simply change the
exponent to reflect the new time period.

Two unusual situations occur when using exponents.
First, by convention, the value of any number raised to
the power 0 is 1; so 40 � 1,260 � 1, and 9950 � 1. While
mathematicians offer lengthy explanations of why this is

so, a more intuitive explanation is simply that moving
from one exponent to the next lower one requires a divi-
sion by the base value; for example, to move from 34 to 33,
we divide by 3, or in expanded terms, we divide 81 by 3 to
get to 27. If we follow this sequence to its natural pro-
gression, we will eventually reach 31, and if we divide this
value (3) by 3, we find a result of 1. Since this sequence
will end with 1 for any base value, then any value raised
to the power 0 will equal 1.

A second curiosity of exponents occurs in the case of
negative values, either in the exponent or in the base
value. In some situations, base values are raised to a neg-
ative power, as in the expression 5–3. By convention, this

How Much Wood Could 
a Woodchuck Chuck,

if a Woodchuck Could 
Chuck Wood?

This nursery rhyme tongue-twister has puzzled chil-
dren for years, and has in fact inspired numerous
online discussions regarding the specific details of
the riddle and how to solve it. Using a simple for-
mula, we can take the amount the rodent chucks
per hour, multiply it times the number of working
hours each day, then multiply again by 365 to get a
total per year. This, multiplied by the animal’s lifespan
in years would give us a total amount chucked,
which one online estimate places at somewhere
around 26 tons.

Like all such estimations, in which a single
event is multiplied repeatedly to predict perform-
ance over a long period of time, this estimate is
fraught with assumptions, any of which can cause
the final estimate to be either too high or too low.
For example, even a small error in estimating how
much can be chucked per hour could throw the final
total off by a ton or more. Another major source of
error is found in the variability of the woodchuck’s
work; unlike mechanical wood chuckers, wood-
chucks work faster some days than others. Also
unlike machines, rodents frequently spend the win-
ter hibernating, significantly reducing the actual vol-
ume of wood chucked. To sum up, the question of
how much wood can be chucked remains difficult to
answer, given the number of assumptions required;
the most generally correct answer may simply be
“Quite a lot.”
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expression is evaluated as the inverse of this expression
with the exponent sign made positive, or 1/53 � 1/125. A
related complication arises when the base value is itself
negative, as in the case of (–5)3. Multiplying negative and
positive values is accomplished according to a simple set
of rules: if the signs are the same, the final value is posi-
tive, otherwise the final value is negative. So 4 � 4 and
–4 � –4 produce the same result, a value of 16. However
4 � –4 produces a value of –16. In the case of a negative
base being raised to a specific power, a related set of rules
apply: if the exponent is even, the final value is positive,
otherwise it is negative. Following this rule, (–5) 3 �

–125, while (–5) 2 � 25.

CALCULAT ING  EXPONENT IAL  
GROWTH  RATES

One ancient myth is based on the concept of an
exponential growth rate. The legend of Hercules
describes a series of twelve great works which the hero
was required to perform; one of these assignments was to
slay the Hydra, a horrible beast with nine heads. While
Hercules was unimaginably strong, he quickly found that
traditional tactics would not work against the Hydra;
each time Hercules cut off one of the Hydra’s heads, two
new heads grew in its place, meaning that as soon as he
turned from dispatching one head, he quickly found him-
self being attacked by even more heads than before.
Hercules eventually triumphed by discovering how to
cauterize the stumps of the severed heads, preventing
them from regenerating. While this story is ancient, it
illustrates a simple principle which frequently holds true:
in stopping an exponentially growing system, the best
solution is typically to interrupt the growth cycle, rather
than trying to keep up with it in this case was to prevent
or interrupt the growth in the first place, rather than try-
ing to keep up with it as it occurs.

While some animals are able to regenerate severed
body parts, no real-life animal is able to do so as quickly
as the mythical Hydra. However, some animal popula-
tions do multiply at an alarming rate, and in the right cir-
cumstances can rapidly reach plague proportions. Mice,
for example, can produce offspring about every three
weeks, and each litter can include up to eighteen young.
To simplify this equation, we can assume one litter per
month, and 16 young per litter. We also assume, for sim-
plicity, that the mice only live to be 1 month old, so only
their offspring live on into the next month. Beginning
with a single pair of healthy mice on New Year’s Day, by
the end of January, we will have eight pair. Thus, over the
course of the first month, the mouse population will have
grown by a factor of eight.

While this first month’s performance is impressive,
the process becomes even more startling as the months
pass. At the end of February, the eight pair from month
one will have each given birth to another sixteen young
(eight pair), making the new population 8 � 8 � 64 pair.
This number will continue to increase by a factor of eight
each month, meaning that by the end of May, more than
3,000 pair of mice will exist. By the end of December, the
total mouse population will be almost 70 billion, or about
10 times the human population of Earth.

Obviously, mice have lived on Earth for eons without
ever taking over, so this conclusion raises some question
about the validity of the math involved, as well as point-
ing out some potential problems with the methodology
used. First, the calculation assumes that mice can begin
breeding immediately after birth, which is incorrect. Also,
it assumes that all the mice in each generation survive to
reproduce, when in fact many mice do not. Additionally,
it assumes that adequate food exists for all the mice to
continue eating, which would also be a near-impossibility.
Finally, it assumes that the mouse’s natural predators,
including humans, would sit idly by and watch this
takeover occur. Since these limitations all impact the
growth rate of mouse populations in real life, a mouse
population explosion of the size described here is unlikely
to occur. Nevertheless, the high multiplication rate of mice
and other rodents helps explain why they are so difficult to
eradicate, and can so quickly infest large buildings.

While the final result of the mouse calculation is
somewhat unrealistic, similar population explosions have
actually occurred. A small number of domestic rabbits
were released in Australia during the 1800s; with ade-
quate food and few natural predators, they quickly multi-
plied and began destroying the natural vegetation.
During the 1950s, government officials began releasing
the Myxoma virus, which killed 99% of animals exposed
to it. However, resistant animals quickly replenished the
population, and by the mid-1990s, parts of the Australian
rangeland were inhabited by more than 3,000 rabbits per
square kilometer. Rabbit control remains an issue in Aus-
tralia today; the country boasts the world’s longest rabbit
fence, which extends more than 1,000 kilometers. As of
1991, the estimated rabbit population of Australia was
approximately 300 million, or about fifteen times the
human population of the continent.

SPORTS  MULT IPL ICAT ION
CALCULAT ING  A  BASEBALL  ERA

Comparing the performance of baseball pitchers can
be difficult. In a typical major league game three, four, or
more pitchers all work for the same goal, but only one is
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awarded a win or loss. To help compare pitching per-
formance on more even basis, baseball analysts frequently
discuss a pitcher’s earned run average, or ERA. The ERA
is used to evaluate what might happen if pitchers could
pitch entire games, providing a basis for comparison
among multiple players.

Calculating a pitcher’s ERA is fairly simple, and
involves just a few values. The process begins with the
number of earned runs scored on the pitcher during his
time in the game. This value is then multiplied by nine
(the assumed number of innings in a full game), and that
total is divided by the number of innings actually pitched.
For example, if a pitcher plays three innings and allows
two runs, his ERA would be calculated as 2 � 9/3 � 6.
Like most projections, this one is subject to numerous
other factors, but suggests that if this pitcher could main-
tain his performance at this level, he would allow six runs
in a typical full game.

The ERA calculation becomes more complex when a
pitcher is removed from a game during an inning. In such
cases, the number of innings pitched will be measured in
thirds, with each out equaling one third of an inning. If
the pitcher who allows two runs is removed after one out
has been made in the fourth inning, he would have
pitched 3 1/3 innings. Historically, major league ERAs
have risen and fallen as the rules of the game have
changed. Today, a typical professional pitcher will have an
ERA around 4.50, while league leaders often post single-
season ERAs of 2.00 or less. One of a coach’s more diffi-
cult challenges is recognizing when a pitcher has reached
the end of his effectiveness and should be removed from
a game. Fatigue typically leads to poorer performance
and a rapidly rising ERA.

RATE  OF  PAY
An old joke says that preachers hold the most lucra-

tive jobs, since they are paid for a week’s labor but only
work one day of each week. Using this arguably flawed
logic, professional rodeo cowboys might be considered
some of the highest paid athletes today, since they spend
so little time actually “working.” A bull rider’s working
weekend typically consists of a two day competition. Each
competitor rides one bull the first night, and a second the
following night. If he is able to stay on each bull for the
full eight seconds, and scores enough style points for his
riding ability, he then qualifies for a third ride in the final
round of competition.

Because each ride lasts only eight seconds, a bull
rider’s complete work time for each event is only 24 
seconds, not counting time spent settling into the saddle
and the inevitable sprint to escape after the ride ends.

Multiplying this 24 seconds of work times the 31 events
in an entire professional season produces a total working
time each year of about 13 minutes. Because a top profes-
sional rider earns over $250,000 per season, this rider’s
income works out to an amazing $19,230 per minute, or
$1,153,846 per hour. Unfortunately, this average does not
include the enormous amounts of time spent practicing,
traveling, and healing from injuries, and in many cases,
professional bull riders win only a few thousand dollars
per season. But even for the wages paid to top riders, few
people are willing to strap themselves atop an angry ani-
mal that weighs more than some small cars.

MEASUREMENT  SYSTEMS
Some sports have their own unique measurement

systems. Horse racing is a sport in which races are fre-
quently measured in furlongs; since a furlong is approxi-
mately 66 feet, a 50 furlong race would be 3,300 feet long,
or around .6 miles. Furlongs can be converted to feet by
multiplying by 66, or converted to miles by dividing by
80. Horses themselves are frequently measured in an
arcane measurement unit, the hand. A hand equals
approximately four inches, and hands can be converted to
feet by multiplying the number of hands by 3, or to
inches by multiplying the number of hands by .25. Like
many other traditional units of measurement, the hand is
a standardized version of an ancient method of measure-
ment, in which the width of four fingers serves as a stan-
dard measurement tool.

ELECTRONIC  T IM ING
Electronic timing has made many sports more excit-

ing to watch, with Olympic medallists often separated
from also-rans by mere thousandths of a second. In
some events, split times are calculated, such as a time at
the halfway mark of a downhill ski race. Along with pro-
viding an assessment of how well a skier is performing
on the top half of the course, these measurements can
also be used to predict the final time by simply doubling
the mid-point time to predict the final. While this
method is not foolproof, it is close enough to give fans an
idea of whether a skier will be chasing a world record or
simply trying to reach the bottom of the hill without
falling down.

MULT IPL ICAT ION  IN  
INTERNAT IONAL  TRAVEL

Despite enormous growth in international trade, the
United States still uses the imperial measurement system,
rather than the more common and simpler metric system.
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Because of this disparity, conversions between the two
systems are sometimes necessary. While the 2-liter soft
drink is one of the few common uses of the metric system
in America today, a short trip to Canada would reveal
countless situations in which converting between the two
systems would be necessary.

While packing for the trip, an important considera-
tion would be the weather forecast for Canada, which
would normally be given in degrees Celsius. The conver-
sion from Celsius to the Fahrenheit system used in the
U.S. requires multiplication and division, using this for-
mula: F � 9/5 � C � 32. To get a ballpark figure (a rough
estimate), simply double the Celsius reading and add 30.
Obviously, this difference in measurement systems means
that a frigid sounding temperature of 40 degrees Celsius
is in fact quite hot, equal to 104 degrees Fahrenheit. Con-
verting Fahrenheit to Celsius is equally simple: just
reverse the process, subtracting 32 and multiplying by
5/9. No conversion is necessary at –40, because this is the
point at which both scales read the same value.

Driving in Canada would also require mathematical
conversions; while Canadians drive on the right-hand
side of the highway, they measure speed in kilometers per
hour (km/h), rather than the U.S. traditional miles per
hour (mph) system. Because one mile equals 1.6 kilome-
ters, the kilometer values for a given speed are larger than
the mile values; the typical highway speed of 55 mph in
the U.S. is approximately equal to 88 km/h in Canada,
and mph can be converted to km/h using a multiplication
factor of 1.6.

Gasoline in Canada is often more expensive than in
the United States; however prices there are not posted in
gallons, but in liters, meaning the posted price may
appear exceptionally low. One gallon equals 3.8 liters, and
gallons are converted to liters by multiplying by this
value. Soft drinks are often sold in 2-liter bottles in the
U.S., making this one of the few metric quantities famil-
iar to Americans. Also, smaller volumes of liquid are
measured not in ounces, quarts, or pints, but in deciliters
and milliliters.

One of the greatest advantages of the metric system
is its simplicity, with unit conversions requiring only a
shift of the decimal point. For example, under the U.S.
system, converting miles to yards requires one to multiply
by 1,760, and converting to feet requires multiplication
by 5,280. Liquids are even more confusing, with gallons
to quarts using a factor of 4, and quarts to ounces using
32. Weights are similarly inconsistent, with pounds equal-
ing 16 ounces. Using the metric system, each conversion is
based on a factor of ten: multiplying by ten, one hundred,
or one thousand allows conversions among kilometers,

meters, and millimeters for distance, liters, deciliters, and
milliliters for volume, and kilograms, decigrams, and mil-
ligrams for weight.

OTHER  USES  OF  MULT IPL ICAT ION
Multiplication is frequently used to find the area of a

space; as previously discussed, one of the oldest known
multiplication tables was apparently created to calculate
the total area of pieces of farm property based on only the
side dimensions. The area of a square or rectangle is
found by multiplying the length times the width; for a
field 40 feet long and 20 feet wide, the total area would be
40 � 20 � 800 square feet. Other shapes have their own
formulae; a triangle’s area is calculated by multiplying the
length of the base by the height, then multiplying this
total by 0.5; a triangle with a 40 foot base and a 20 foot
height would be half the size of the previously described
rectangle, and its area would be 40 � 20 � 0.5 � 400
square feet.

Formulas also exist for determining the area of more
complex shapes. While simple multiplication will suffice
for squares, rectangles, and triangles, additional informa-
tion is needed to find the area of a circle. One of the best-
known and most widely used mathematical constants is
the value pi, which is approximately 3.14. Pi was first cal-
culated by the ancient Babylonians, who placed its value
at 3.125; in 2002, researchers calculated the value of pi to
the 1.2 trillionth decimal place.

Pi’s value lies in its use in calculating both the cir-
cumference and the area of a circle. The circumference, or
distance around the perimeter, of a circle, is found by
multiplying pi times the diameter; for a circle with diam-
eter of 10 inches, the circumference would be 3.14 � 10,
or 31.4 inches. The area of this same circle can be found
by multiplying pi times the radius squared; for a circle
with diameter of 10 and radius of 5, the formula would be
3.14 � 5 � 5, giving an area of 78.5 square inches.

Other techniques can be used to calculate the area of
irregular shapes. One approach involves breaking an
irregular shape into a series of smaller shapes such as rec-
tangles and triangles, finding the area of each smaller
shape, and adding these values together to produce a
total; this method is frequently used when calculating
the number of shingles needed to cover an irregularly
shaped roof.

A branch of mathematics called calculus can be used
to calculate the area under a curve using only the formula
which describes the curve itself. This technique is funda-
mentally similar to the previously described method, in
that it mathematically slices the space under the curve
into extremely thin sections, then finds the area of each
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and sums the results. Calculus has numerous applications
in fields such as engineering and physics.

CALCULAT ING  M ILES  PER  GALLON
As the price of gasoline rises and occasionally falls,

one common question deals with how to reduce the cost
of fuel. The initial part of this question involves deter-
mining how much gas a car uses in the first place. Some
cars now have mileage computers which calculate this
automatically, but for most drivers, dividing the number
of miles driven (a figure taken from the trip odometer) by
the number of gallons added (a figure on the fuel pump)
will provide a simple measure of miles per gallon. Using
this figure along with the capacity of the fuel tank allows
a calculation of a vehicle’s range, or how far it can travel
before refueling.

In general, larger vehicles will travel fewer miles per
gallon of gas, making them more expensive to operate.
However, these vehicles also typically have larger fuel
tanks, making their range on a single tank equal to that of
a smaller car. For example, a 2003 Hummer H2 has a 30-
gallon fuel tank and gets around 12 miles per gallon, giv-
ing it a theoretical range of 360 miles on a full tank. In
comparison, the fuel-sipping 2004 Toyota Prius hybrid
sedan has only a 12 gallon tank. However, when combined
with the car’s mileage rating of more than 50 miles per
gallon, this vehicle can travel around 600 miles per tank,
and could conceivably travel more than 1,500 miles on the
Hummer’s oversized 30-gallon fuel load. In general, most
cars are built to allow a 300–500-mile driving range
between fill-ups, however the price of the fill-up varies
widely depending on the car’s efficiency and tank size.

SAV INGS
Small amounts of money can often add up quickly.

Consider a convenience store, and a student who stops
there each morning to purchase a soft drink. These drinks
sell for $1.00, but by reusing his cup from previous days,
the student could save 32 cents per day, since the refill
price is only 68 cents. While this amount of money seems
trivial when viewed alone, consider the implications
over time.

Over the course of just one week, this small savings
rapidly adds up; multiplying the savings times five days
gives a total savings of $1.60, or enough to buy two more
refills. Multiplying this weekly savings times four gives us
a monthly savings of around $6.40, and multiplying the
weekly savings by 52 yields a total annual savings of
$83.20, enough to pay for a tank or two of gas or perhaps
a nice evening out. Perhaps more amazing is the result

when a consumer decides to save small amounts wherever
possible; saving this same tiny amount on ten items each
day would yield annual savings of $832.00, a significant
amount of savings for doing little more than paying
attention to how the money is being spent.

Potential Applications

One increasingly popular marketing technique illus-
trates the use of exponential growth for practical use. Tra-
ditional marketing practices work largely by addition: as
more advertisements are run, the number of potential
customers grows and a percentage of those potential
customers eventually buy the product or service. As
advertising markets have become more fragmented and
audiences have grown harder to reach, one emerging
technique is called viral marketing.

SPAM AND  EMAIL  COMMUNICAT IONS
Viral marketing refers to a marketing technique in

which information is passed from the advertiser to one
generation of customers who then pass it to succeeding
generations in rapidly expanding waves. In the same way
that the rabbit population in Australia expanded by sev-
eral times as each generation was born, viral marketing
depends on people’s tendency to pass messages they find
amusing or thought-provoking to a long list of friends.

The growth of e-mail in particular has helped spur
the rise of viral marketing, since forwarding a funny
email is as simple as clicking an icon. In the same way that
viruses rapidly multiply, viral e-mail messages can
expand so rapidly that they clog company e-mail servers.
Some companies have begun taking advantage of this
phenomenon by intentionally producing and releasing
viral marketing messages, such as humorous parodies of
television commercials. Viral marketing can be an excep-
tionally inexpensive technique, as the material is distrib-
uted at no cost to the originating firm.
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Key Terms

Exponential growth: A growth process in which a num-
ber grows proportional to its size. Examples include
viruses, animal populations, and compound interest
paid on bank deposits.

Integral calculus: A branch of mathematics used for
purposes such as calculating such values as vol-
umes displaced, distances traveled, or areas under
a curve.
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Music and
Mathematics

Overview

Mathematics and music are basic elements of cul-
tures and civilizations. They are fundamental. Along with
moving, speaking, and reading, basic mathematics is one
of the key early developmental skills parents try to instill
in their children. Even before children are born, their par-
ents may play music for them. Music is said to help
babies’ brains develop, and music made specifically for
unborn or newborn babies can be found ranging from
classical to reggae. Mathematics and music are often
combined in books, toys, or songs, as musical counting
can be easier for children to remember and is more fun.

Fundamental Mathematical Concepts
and Terms

Mathematics is the study of mathematics. Music is
experienced and created as music. These statements may
seem obvious and trivial at first, but consider the study of
physics without mathematics, or the study of economics
without statistics, or the creation of poetry without lan-
guage. Most subjects draw on tools from other disci-
plines, but mathematics and music can be studied as pure
forms. In music, the form and the medium are the
same. In mathematics, the methods and the subject are
the same.

What is a number? What is a minor key? Both mathe-
matics and music have invented special symbols to repre-
sent their seemingly abstract concepts. Everyone thinks
they know what a number is, but defining the concept of a
number is very difficult. One may know what a minor key
is, but defining the concept rigorously is again difficult.

However, these are casual similarities between math-
ematics and music. There are more fundamental and for-
mal ways in which the two disciplines interact, and the
realization of this dates back to at least the Ancient Greeks.

A Brief History of Discovery 
and Development

PYTHAGORAS  AND  STR INGS
Pythagoras (fifth to sixth century B.C.) is chiefly

remembered for discovering the method of calculating
the length of one side of a right-angled triangle when the
lengths of the other sides are known. He was a Greek
philosopher who came to believe that mathematics was
the most important discipline to study, and that nature
was, at its deepest level, mathematical. Very little is known
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about Pythagoras, and what writings there are have come
from his later followers and contain many inventions and
exaggerations, often treating Pythagoras as a god-like
being with divine powers. However, even if nothing his
supporters tell is true, the legend and legacy of Pythago-
ras had a profound effect on both mathematics and
music in the Western tradition.

Supposedly, one day Pythagoras was walking by a
blacksmith’s shop and was distracted by the sounds of the
hammers falling on the anvil. Several hammers were
being used, producing distinct notes, the notes separated
in regular musical intervals that Pythagoras found pleas-
ing to hear. The hammers were of different weights, and
Pythagoras wondered if the ratio of weights might be
related to the notes they played. Then Pythagoras is said
to have done something unusual for a Greek philosopher;
he experimented to see if his observations had a physical
basis, by playing with a string.

The string was a monochord, which is a taut string
stretched between two supports on the top of a hollow
sounding box, much like a single string guitar. Plucking
the string makes it vibrate, which produces a note
dependent on the length and tension of the string. A stop-
per, or bridge, can move up and down the string, chang-
ing the length of the string that vibrates, and thereby
changing the note played. The shorter the string, the
higher the note.

Only certain combinations of notes seem to go
together to the ear. Pythagoras had found the music of
the hammers pleasing. The notes they played when strik-
ing the anvil seemed to complement each other. The
monochord, like many stringed instruments, can play
notes that seem ‘sweet’ and those that seem ‘sour’ to the
ear, as well as those that seem to go together in harmony
and those that seem discordant. The Greeks, like many
other cultures, had developed rules for the playing of the
good notes that produced harmonious listening. In mod-
ern Western terminology, the notes were collected into
scales and octaves. What Pythagoras is said to have dis-
covered is that there is a mathematical relationship
between such notes. On the monochord, the relationship
could be seen in the length of the string to be played. If
the string is played without a stopper, so that its full
length vibrates, a certain note is played. If the stopper is
then placed halfway, the note that results from only half
the string vibrating is an octave higher than the original.
If the string were to be doubled in length, it would play a
note an octave lower.

In the Western tradition, the separation of these
notes is called an octave because there were originally
eight notes placed in this interval. However, that is just

one possible way of dividing the interval, and different
cultures have produced different divisions. For example,
in the Chinese tradition there are five notes, while in the
Arabic there are 17. Yet while the number of notes placed
into an “octave” is variable, all cultures use the same inter-
val. The notes an octave apart are the same note, and they
sound the same, just pitched higher or lower. Musicians
in all cultures have recognized this interval as a natural
phenomenon. What the Pythagoreans showed was that
this interval had a mathematical basis, and could be
expressed in relation to the length of a monochord string
by the ratio 2:1.

Playing two notes an octave apart either together or
immediately after one another sounds harmonious. It is
said two musical notes are harmonious when they sound
pleasing together, as opposed to discordant notes that
sound bad together and can make listeners wince or block
their ears. Musicians in all cultures had, through trial and
error, discovered those notes that seemed to go together
well in harmony, simply by listening. The Pythagoreans
revealed a mathematical relationship between these har-
monious notes.

The modern notes C and G sound pleasing when
played close together. If a monochord is set up so the full
length of the string plays a C, then to play a G the stopper
is moved two-thirds along (a third from the end). The
ratio of the lengths of C and G is 3:2. The modern musi-
cal term is that these notes are separated by a perfect fifth.
Other simple ratios of the string also give rise to harmo-
nious notes. Some notes, however, produce a discordant
sound together. Playing a C with an F sharp, an interval
known as an augmented fourth with the ratio of 45:32,
does not sound good.

The reason for these different sounds, it was discov-
ered centuries later, is the frequency, or number of vibra-
tions per second, at which the strings vibrate. A string of
half the length vibrates at twice the frequency of a full
string, whereas two-thirds of a string, the perfect fifth
ratio, vibrates at one and a half times the speed of the full
string. The Pythagoreans concluded that musical har-
mony was a mathematical property, and occurred when
the ratios between the notes were simple.

Pythagoras and his followers believed that the ratios
they had discovered using the monochord could not only
be applied to other musical instruments, but to the whole
of nature. They developed a theory that linked music,
mathematics, and the motion of the planets. The Greek
view of the universe placed the Earth at the center, with
the sun, the moon, the five known planets, and the stars
all rotating in fixed crystalline spheres around it. The
Pythagoreans applied the same principle of ratios to the
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supposed orbits of the planets, and concluded that they
had the same properties as a musical scale. The crystal
spheres, they said, must make a sound as they moved, and
these sounds must be harmonious. Other Greek philoso-
phers, such as Plato, became enamored with this rather
beautiful notion of a singing universe, and added to it.
The idea of the music of the spheres would remain in
fashion for hundreds of years, heavily influencing the
study of astronomy.

MEDIEVAL  MONKS
The Greeks linked music and mathematics so tightly

that the study of music was considered a branch of math-
ematics, along with arithmetic, geometry, and astronomy.
The Greek ideas were, however, almost lost to the Western
world after the fall of the Roman Empire. Monks clois-
tered in monasteries were the only ones with the educa-
tion and time to translate and copy the surviving writings
of the Greeks. Anicis Manlius Severinus Boethius 
(c. 480–524) translated and copied the ideas of the
Pythagoreans. Boethius did more than just copy ancient
texts, he also drew together many sources into coherent
books. Also, like many other monastic copyists, he edited
sections so that they conformed to his own beliefs.
Boethius was an excellent translator and copyist, but his
grasp of mathematics was poor, and his writings were
often hard to follow or misrepresented their sources.
However, his copies, mistakes and all, were copied by oth-
ers and followed blindly, even when they contradicted
real-life experiences.

Whatever the limitations of Boethius’ copies, they
had a profound and lasting effect on Western teaching.
Copies of his compilation spread across Europe, and
influenced the way music and mathematics were thought
of and studied. Music remained a kind of sub-discipline
of mathematics, and was taught in European universities
as part of the quadrivium (“the four ways”), the same set
of subjects that Pythagoras had grouped together: arith-
metic, geometry, astronomy, and music.

Under the influence of Boethius, the science of har-
monics was the main focus of musical study. The
medieval scholars categorized music in three ways, the
actual making of music (musica instrumentalis), the har-
mony of the human soul (musica humana), and the
music of the spheres (musica mundane). In this scheme,
music was seen as part of the basic nature of the universe,
while the playing of music was merely the lowliest part of
musical study.

Fixed styles of singing, based heavily on the theories
of Pythagoras, became entrenched in the musical practice
of the times. Most formal music was made for religious

purposes, and just what forms of music were appropriate
were written into canon law as the “Ecclesiastical modes.”
This provided a unifying structure to European music,
but also limited innovation. Monophonic chants with
one melody line without an accompaniment, where all
the singers sing the same words at the same pace, were the
standard form. Harmonies were slowly introduced into
Gregorian chants by singing the same words at different
frequencies at the same time, and these were usually lim-
ited to an octave, a fifth, or a fourth apart.

Then a new kind of song type called polyphony,
where two or more melodies would be sung or played at
the same time, began to take over. The composer had to
be careful to make the separate melodies blend together
in a harmonious manner, which was rather hard to do.
Even harder was trying to write such a song down on
paper. Monophonic songs only required the composer to
write the pitch or note that was to be sung. A polyphonic
song required a method of recording the time each note
was to take for all the melodies.

QUANT I F ICAT ION  OF  MUS IC
In monophonic plainchant, the singers all start

together, sing the same words, and stop together, so the
level of notation that is required is simple. However, in
polyphonic songs, different melodies must be sung, and
without a method of knowing the time each note is to take,
the whole process slides into anarchy and discordance.

The rise of polyphony, therefore, coincided with
advances in musical notation, which also coincided with
the development of mathematical notation. Early musical
notation developed in the West as a way of fixing songs
into a specific form. In the sixth century A.D., Saint Isidore
had complained that “[u]nless sounds are remembered
by man, they perish,” and wondered how reliable were the
memories of some singers. However, the early notation
could not express the concept of time in music, such as
how long to sing a note.

Polyphony required such tools, so musical notation
evolved into a way of quantifying time. The melodies a
composer had ticking in his head could be transmitted to
performers in different places, and even later times, by
writing them down using the special code of music.

One of the most interesting developments in musical
notation was the ability to note a specific period of silence
with rests, which were introduced in the thirteenth cen-
tury. Around the same time the Hindu-Arabic numerals
were being popularized in Europe, and with them the
strange symbol for zero. While the ideas of silence and
zero may be taken for granted, they were both revolu-
tionary in their respective fields. The musical rests
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enabled even more complex melodies to be linked har-
monically, and the zero opened up new ways of thinking
about numbers in mathematics.

DISCORDANCE  OF  THE  SPHERES
Innovation in music, mathematics, and other fields

led to a realization among the scholars of the age that they
were doing new things, going beyond the ancients ideas of
the Greeks and Romans. In music, the new styles came to
be called the Ars Nova (The New Art). However, the ideas
of the ancients were difficult for many to abandon. The
idea of the harmony of the spheres remained a central part
of scholarly thinking, partly because it meshed nicely with
Christian beliefs and implied an order to creation.

Just as there had been great changes in music and
mathematics, the field of astronomy also went through a
revolution. In 1543, Nicolas Copernicus (1473–1543)
challenged the accepted wisdom of the ancients by pub-
lishing a book that suggested the Sun, not the Earth, was
at the center of the universe. One scholar who embraced
this new idea was Johannes Kepler (1571–1630), who
attempted to merge the new Copernican universe with
the ancient idea of the harmony of the spheres.

Because the study of astronomy was almost always
accompanied with musical study, many important figures
in the development of astronomy were also keenly inter-
ested in music, and Kepler was no exception. Kepler tried
to piece together a model of the universe that used the
musical and geometrical ideas of Pythagoras and the new
theory of Copernicus, to finally reveal just what notes
each planet sang as they moved through the heavens in
their crystalline spheres. However, he could just not get
the theories to fit together.

After a number of unsuccessful early attempts,
Kepler was fortunate enough to inherit a huge collection
of accurate planetary observations upon the death of his
master, Tycho Brahe (1546–1601). Kepler tried once
more, using the observations to guide him in recreating
the motion of the planets. He found a regular order in the
motion of the planets, but to his great surprise it was an
entirely different type of motion than expected, and con-
tradicted all the theories he was attempting to unify.
Kepler realized the observation figures he had been given,
and those he had made himself, showed that the planets
moved in elliptical orbits. While this was not the philo-
sophical order he had been searching for, it was a mathe-
matical order, and he produced equations that predicted
the planetary motion with unprecedented accuracy. His
insights slowly spread and gained acceptance, shattering
the crystalline spheres, and bringing to an end the scien-
tific search for the harmony of the spheres.

WELL - TEMPERED  TONES

Music composers grew more and more innovative and
daring as the years progressed, experimenting with new
styles and ideas such as modulations of scale, just as inno-
vators in other fields experimented with new theories and
devices. However, some of the new compositions began to
push the limits of the music instruments and tunings of
the times. The musical notes that had been evolved from
the Pythagorean theories used “just tones,” that is, intervals
between the notes that were derived from integer ratios.
However, this only allowed for perfect tuning in one key at
a time. If the composer wanted a piece of music to change
keys, then either the musicians had to re-tune on the fly,
use different instruments, or sound out of tune.

The problem was that the notes in the just scale were
not equally spaced in the octave. When key changes were
made, there was a need for new notes to fill in the gaps in
the scale. For example, in the diatonic scale the pure (or
just) ratios between the notes are either a tone or a semi-
tone apart. The semitones all have the interval 15:16, and
the tones are either separated by 8:9 or 9:10, just to make
it more complicated. Because the intervals between the
notes are different, playing in a different key (which can
be thought of as the note started with) means every key
has different patterns of intervals between the notes. Also,
if the key chosen is too far from the instrument’s tuning,
so-called “wolf-tones” are heard, where discordant
sounds shrill and howl for notes that theoretically should
sound harmonious.

Many possible solutions were suggested and tried,
and compromise tunings, or temperings, were attempted
with various degrees of success. The mean-tone tempera-
ment used only major thirds and minor sixth intervals
between the notes, effectively averaging out the scale. This
meant that all the fifths and fourths that could be played
were a little out of tune, but barely. This system worked
well for six major and three minor keys, but outside of
those, was very discordant.

Eventually the well-tempered tuning was introduced.
In this tuning, the interval between each note is made
equal, so it is often referred to as the equal temperament.
The octave was simply divided into 12 equal parts, giving
12 semitones. In mathematical terms, since the interval
ratio of an octave is 2:1, the interval between semitones
had to be that number that equals two when multiplied
by itself 12 times, which is 1.0595. This meant that chang-
ing keys was no longer a problem, as every key has the
same interval between notes. However, the beautiful and
precise Pythagorean ratios between the notes were now
lost, so that all the notes in the octave interval were slightly
out of just tuning. The equal temperament sacrificed
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accuracy for flexibility, precision for practicality, but in
doing so allowed for much more innovation and experi-
mentation in music.

The well, or equal, temperament was suggested as
early as 1550, but was slow to be accepted. It became
championed by Johann Sebastian Bach (1685–1750), and
in 1722 he published a set of 24 preludes and fugues in
the 12 major and 12 minor keys of the well tempering,
naming them The Well Tempered Clavier. Anyone wishing
to play these pieces (and Bach’s music was quite popular)
had to tune their instruments to the equal temperament.
Other composers also adopted the new tuning, and
slowly it became the standard tuning for Western music,
confusing music students ever since by the fact the mod-
ern octave now consists of 12 notes.

Real-life Applications

MATHEMAT ICAL  ANALYS IS  OF  SOUND
A vibrating string produces a fundamental note, the

note that is heard when it is played. However, in reality it
also produces other sounds called overtones that add
complexity to the sound. This is why strings made from
different materials will make different sounds even when
everything else is equal, or why different kinds of musical
instruments can play the same note yet give out a unique
tone. However, overtones also add complexity to the
analysis of sound. A pure tone, it was discovered, can be
represented as a simple wave, but when overtones are
introduced, the analysis becomes much more difficult.

The mathematical work of Jean-Baptiste-Joseph
Fourier (1765–1830) led to a method for analyzing, and
eventually recreating, sound. Fourier discovered that any
periodic oscillation, of which sound waves were later
shown to be one type, can be broken up into a set of sim-
ple sine curves. The sine function is one of the basic func-
tions of trigonometry. A sine curve or wave is defined by
the function y � sin (x), and can be considered as the
modeling of a pure tone without overtones. What
Fourier’s work showed was that complex waves can be
thought of as the addition of a number of sine waves of
different frequencies and amplitudes. Fourier analysis can
take a complex sound wave and break it apart into a col-
lection of simple sine curves. The way the sine curves
interact, canceling out in some places and combining in
others, means that sound waves, even strange artificial
curves such as square or triangular waves, can be broken
down and analyzed with some simple mathematics.

The oscilloscope allows regular vibrations, including
sound waves, to be displayed in real-time. An oscilloscope,

in essence, draws a graph on the screen, displaying the sig-
nal as a waveform, which can be broken down into a sum
of sine curves. Oscilloscopes are used by scientists, televi-
sion and automotive repair technicians, in medical
research, and to measure and analyze diverse phenomena
from stress in buildings and brain waves, and, of course,
sound waves.

If sound can be deconstructed into simple sine
curves, then simple sine waves can be generated, then
added together to reconstruct, or synthesize, any sound.
This is the principle of modern electronic music synthe-
sizers. Theoretically, the quality of the sound these instru-
ments can produce depends only on the accuracy of the
original analysis of the sound to be reconstructed and the
quality of the sine waves that can be produced.

ELECTRONIC  INSTRUMENTS
In the last 100 years, the electrification of music has

changed the way music is produced and listened to. Elec-
tric instruments were first introduced as a means of mak-
ing a louder sound. For example, the Hawaiian-style, or
slide, guitar was a popular instrument in the 1930s, but
because it was played horizontally it projected most of its
sound upwards, rather than toward the audience, limiting
the size of the audience it could reach. In the 1930s, the
Gibson company successfully placed an electronic ampli-
fier inside an otherwise acoustic Hawaiian guitar, and the
electric guitar was born.

Distortions introduced in the amplification process
limited the volume of early instruments and their accept-
ance. However, by the 1950s electric guitars produced
cleaner, louder sound, and could sustain notes for a
longer time than any acoustic model. The rising popular-
ity of the electric guitar ushered in a whole new range of
sound, such as the electronic manipulations of the sound,
using fuzz-boxes, wah-wah peddles, and many other
devices. The loudness of the electric guitar had to be
matched with louder supporting instruments, and so all
the instruments had to be wired up and their sound
amplified.

Early electronic instruments still relied on a natural
vibrator, such as string or drum skin, even though the
final sound might bear little resemblance to the natural
sound of the vibrating element. However, since the math-
ematical analysis of sound had shown that sound waves
could be thought of as the sum of simple oscillations,
then it must be possible to build sounds from a simple
electronic source, and so the synthesizer was born. The
Hammond electric organ, which debuted in 1935, can be
considered the first of the electronic synthesizers,
although the technology it used relied on many moving
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parts. Later electronic keyboards use a myriad of mathe-
matical algorithms to reproduce the sounds and rhythms
of other musical instruments. The synthesizer contains
an oscillator to produce the basic frequency, which is then
amplified, mixed with other frequencies to add richness
to the sound, filtered to remove unwanted noises, and can
then be submitted to a host of other modulations to give
the final desired sound. Early synthesizers sounded artifi-
cial, with sounds that mimicked actual instruments, but
did not sound as natural. Better mathematical analysis of
sound, combined with better programming and electron-
ics, has produced much richer sounding electronic
instruments, with the ability to not just sound like an
genre of instruments but an actual specific instrument,
such as a particular Steinway grand piano or an individ-
ual Stradivarius violin.

Personal computers (PCs) have added another dimen-
sion to electronic music, with many add-on components
and programs that turn the PC into a recording studio. A
single instrument can, through the manipulation of com-
puter algorithms, produce the tracks for a complete band
or orchestra. While early programs were little more than
novelties, producing bleeps and beats, it has become pos-
sible to record professional quality music on a PC, and a
number of professional musicians have done so. The flex-
ibility and sophistication of computer-generated music
has even allowed musicians to experiment with scales
other than the well tempered scale, and many alternate
tunings that use the just or Pythagorean scales have again
become popular, as their limitations can be overcome
electronically.

ACOUST IC  DES IGN
Making sound louder by electronic amplification is

one method of making sounds easier to hear. However,
for some styles of music, amplification is not an option,
such as classical or acoustic concerts. Either the number
of people who can hear the music will be very limited, or
some other method of boosting the strength of sound to
help it arrive to a listener’s ear must be found. Acoustic
design is a branch of architecture that attempts to build
concert halls, sound stages, and auditoriums in such a
manner as to maximize the amount of sound that reaches
the audience.

Sound quickly fades in strength as one moves from
the source, in proportion to the inverse square law. So if
one moves twice as far away from a sound, one hears a
quarter of the original strength. However, sound can be
reflected with the right surface. Ancient Greek amphi-
theaters used hard rocks in large amounts to help large
audiences hear the voices of actors, using clever angles to

get the most reflection and the best focus on the listeners
as they could. The designs for modern concert halls and
stadiums are computer modeled to maximize the sound
reflection, while removing unwanted reverberations.
Geometry plays a key role in such design, as well as the
reflective and absorbent qualities of the materials used. By
integrating different materials with careful design, the
sound of a room can be crafted to give a warm, rich sound
or a clean, intimate sound, or many other desired results.

For many buildings, it is sound reduction or diffu-
sion that is important. By using materials that absorb
sound and angles that diffuse rather than concentrate,
architects can design rooms where sound does not travel
clearly, for example, to avoid secrets being overheard.
Sound insulation and soundproofing can effectively iso-
late the sound of a room from rooms or areas close by.

DIG I TAL  MUS IC
A digital revolution in the late twentieth century

changed the way music is recorded, stored, and listened to.
Early music recording and storage devices were analog
devices, such as LPs (long-playing records) and audiotape.
Analog means a continuous property that varies, such as
the bumps on a wax cylinder, the groove of a record, or the
magnetic alignment of grains on an audiotape. Analog
recordings are very susceptible to errors, such as a scratch
on a record, or being dropped or jolted, and are ineffi-
cient, needing a large surface to record small amounts of
information. Digital music was introduced as a way to
eliminate errors, and as a more compact medium. The
compact disc is much smaller than an old LP, yet can store
almost twice as much music, while a computer hard drive
can have an entire music collection stored in digital form.

Digital simply means the information is recorded as
binary numbers, ones and zeros. The sound to be
encoded is sampled a large number of times each second,
and a value is given for the wave height at that moment.
Compact discs (CDs) were designed for a sample rate of
44,100 times per second (44.1 kHz). Going from analog
sound to digital data is an inexact process, and even with
a high sample rate some information will be lost or sim-
plified, because the number of samples is limited, and the
acceptable values for the wave height are also restricted.

Like building a staircase, sampling sound has to con-
sider the distance between the steps (the sample rate) and
the height difference between the steps (the allowed val-
ues of the sampling, referred to as the bit depth). The wider
the steps, the harder it is to walk up them, and by analogy,
the sound is poorer in quality, because the sampling is too
far between steps. The taller the steps, the harder they are
to walk up, and by analogy, the less accurate the sample
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estimations are. The solution is to make short, low steps,
to sample frequently, and to have many small increments
in the values the estimates can take. However, there is a
practical limit to how small these steps can be made and
still be usable. In the case of digital music, the limit is how
much storage space the information requires.

COMPRESS ING  MUS IC
CDs use comparatively large amounts of space to store

their digitally encoded information. Binary information
on the CD is stored in groups of 16 ones and zeros (16-bit
samples). There are 8 bits per byte, so 44,100 16-bit sam-
ples per second equals 88,200 bytes per second. That’s for
one channel; twice as much is needed for a stereo record-
ing. Consequently, 176,400 bytes per second is about 10
megabtyes (10,584,000 bytes) per minute for stereo
recording.

One method to reduce storage size is to take less-
frequent samples (lower sample rate) or less accurate values
(less bit-depth), but this leads to a poorer sound quality. So
compressing the data is the preferred option, used in for-
mats like the mp3. A range of mathematical topics con-
tributes to the field of data compression, including algebra,
statistics, graph theory, calculus, Fourier analysis, and frac-
tals. Basic compression takes redundant information that
can be simplified to the point where it takes less binary
numbers to encode.

Another compression technique relies on the fact
that the human ear is an imperfect listening device. The
ear cannot detect all the complexities of sound, and will
often be unable to tell the difference between a complex
noise and a simplified substitute. Mathematical models of
the human ear have helped define methods for dramati-
cally reducing sound files in this manner, essentially
tricking the ears of those who listen.

ERROR  CORRECT ION

Whenever a compact disc skips or an mp3 file gives
out an unexpected sharp squawk it is because of an error.
These errors can be from physical substances, such as dust,
dirt, or scratches, from jolting a music player, or from
recording or manufacturing mistakes. Because errors are
so common, music players must use error-correction
algorithms to fill in missing information where possible.

The mathematics for correcting these errors were dis-
covered many years before any use for them existed. The
work of Claude Shannon (1916–2001), Warren Weaver
(1894–1978), and others on information theory (IT) showed
that information transmission errors could be corrected 
by mathematical algorithms, and later work by other

mathematicians and engineers provided working applica-
tions. The basic ideas of error correction are to add extra, or
redundant, information to the signal so that there is a bet-
ter chance of one of the bits of information being read cor-
rectly, and the information encoded in such a way that it
can self-check as it goes along, so that it literally knows what
to expect next. The mathematics of error correction is also
used in linguistics, psychology, cryptography, and the elim-
ination of noise in the transmission of data.

US ING  RANDOMNESS

Mathematical ideas have often been incorporated
into composition techniques. Chance music, also called
algorithmic, aletoric, random, or stochastic music, allows
for unexpected structures to be introduced as defined by
a set of rules, for example, by tossing a coin. Some chance
pieces have strict rules that provide a high degree of
structure, while others are so flexible in the choices that
can be made as to be almost unpredictable.

Wolfgang Amadeus Mozart (1756–1791) created a
musical game, Musikalisches Wurfelspiel (Dice Music), in
1787, where a minuet is formed by rolling dice, which
determines the order of pre-written measures of music,
sort of like cutting and pasting. The background music for
the 1938 film, Alexander Nevsky, composed by Sergei
Prokofiev (1891–1953), used the landscape in the film as a
pattern for the notes. John Cage’s (1912–1992) Atlas Eclip-
ticalis (1961) was composed by placing the score over star-
charts, with the position and brightness of the stars visible
through the paper determining the notes, while his
Reunion (1968) is performed by playing chess on a chess-
board equipped with photo-receptors, each move deter-
mining the series of sounds to be played. Many of Cage’s
pieces allow for great freedom of interpretation, including
how many instruments, or what instruments, are used,
and the pitch, duration, intonation, and loudness of the
notes to be played. Another example is the composition of
Brian Eno’s (1948–) Music for Airports (1978), where
pieces of prerecorded audio tape were cut up and several
played simultaneously in loops. These laborious cut-and-
paste techniques of composition were later revolutionized
by personal computers.

COMPUTER -GENERATED  MUS IC
Human composers may incorporate random or

chance elements in their work, but wisely tend to let such
processes guide them rather than dictate the final results.
Getting a computer to compose music means letting go of
that human input, and gives rise to many problems. A
number of attempts to have a computer compose music
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were made as early as the 1950s, with limited success.
Sometimes the resulting pieces had snatches of tuneful
music, but were overall disappointing, while other
attempts produced listenable, but extremely simple tunes.
In 1959 the ILLIAC computer, an early supercomputer, was
programmed with the rules of composition that had been
written during the period of Baroque music. The Illiac
Suite for String Quartet was performed successfully, but the
composition was not considered to be of high quality.

The problems with computer composition were that
when there are few rules for generating the notes, the result-
ing tunes are too random in structure, resembling white
noise. The music generated has no direction or coherence.
If the rules are stricter, then some coherence can be found
in some tunes, because rather than white noise the use of
strict algorithms often produces brown noise. Brown noise,
named after Robert Brown (1773–1858), refers to a type of
process that can be thought of as a random walk. The start-
ing point can be set, but after that the walker may end up
moving forward or back, to the sides, or some combination.
Over time, the walker will have progressed somewhere and

how they will get there cannot be determined. Not surpris-
ingly, brown-noise computer compositions sometimes have
a direction, of sorts, but can be rambling and dull.

Fractal mathematics, popularized by Benoit Mandel-
brot (1924–) in the 1970s, offer a different type of struc-
ture for computer-generated music. Fractals are curves,
surfaces, and objects that have non-integer dimensions. A
point has a dimension of zero, a line a dimension of one,
a square two, and a cube three. However, fractals have
dimensions that lie between these; for example, a geomet-
ric construction called Koch’s cube has a dimension of
about 1.26. Surprisingly, a number of natural phenomena
displays fractal properties, such as clouds, coastlines, land-
scapes, plants, and many more. Fractional dimensions
produce some interesting patterns that usually have a
degree of self-similarity in them; that is, the large-scale
pattern resembles smaller structures within the pattern,
which in turn resemble smaller structures within them-
selves. For example, a tree has a growth pattern that
resembles that of a single branch, and within a branch
there can be smaller branches with the same pattern.

Musical scores convey information with almost mathematical elegance. JOHN GARRETT/CORBIS.
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Compositions that use fractal formulas sound more
coherent that other types of computer-generated chance
music. The property of self-similarity means that fractal
compositions repeat themes in complex ways, which
closely mimics a common property of human composi-
tion. Without knowing it, composers like Prokofiev and
Cage had already used fractals in their music by using
landscapes and star patterns to determine notes. How-
ever, most computer-generated music still sounds aimless
and flat in comparison with human compositions. While
many musicians have embraced the flexibility and inspi-
ration that computer generation can give to a composi-
tion, computers are in no danger of taking over the
writing of music just yet. There is still something human
choices can give to music that cannot be fully simulated.

Randomness was originally seen as a negative when
it entered music as unexpected or unwanted noise, yet
when harnessed in the right manner it has produced
many innovative and important pieces of music. Ran-
domness has also entered into the way music is listened
to, from CD-shuffling stereos to mp3 players with a ran-
dom song selection, the old structures of albums and
playlists are often sidestepped.

FREQUENCY  OF  CONCERT  A
Sometimes mathematics and music have come into

conflict, such as the long debates over the correct fre-
quency of the notes in the Western scale. Orchestras and
many other musicians often tune their instruments to the
note known as concert A, and from that all the other notes
in the scale are then set by their musical intervals from
that frequency. However, the choice of this frequency is
arbitrary. At first, Western music had no standard fre-
quency for concert A, as there was very little communica-
tion across medieval Europe. Different regions sang and
performed with their own pitches, because they had their
own frequencies for the same notes. However, as contact
between musicians increased across Europe, a rough stan-
dard was introduced and in the eighteenth century, con-
cert A, as estimated by music historians, was about
420–425 Hz (Hertz, or cycles per second).

Once sound frequencies became better understood,
and methods of measuring frequency were available,
there were attempts to introduce a more specific and uni-
versal standard for concert A, although national pride
and politics got in the way. The French and English set
different frequencies, of 435 Hz (cycles per second) for
the French and 439 Hz for the English.

Then in 1939, an international standard of 440 Hz
was introduced, but against the will of a mathematical
lobby that wished concert A to be set at 426.7 Hz, so that

middle C would be at 256 Hz. This was called the philo-
sophical pitch, as 256 is 28 (two to the power of eight, or
two multiplied by itself eight times), and so seemed to the
mathematicians a more formal, even Pythagorean, deri-
vation of the note. The musicians, however, did not want
such a dramatic change to the pitch of the music they
played, as such a low number for concert A would have
altered the sound of all existing music.

MATH -ROCK
Most musicians do not consider the mathematics

that lie behind their music. Music can be composed and
performed extremely well without any mathematical
input from those involved. However, with the introduc-
tion of electronic instruments, it has become easier to
introduce mathematical concepts into music. There is
even a genre of rock music that calls itself math-rock, and
is categorized by the creative use of time signatures.

A time or meter signature can be thought of as the
number of beats in a measure of music, or in basic rhyth-
mic terms, the number of drum beats in a set period of
time. Normally, all the instruments in a piece of music
will play in the same time, as this makes it easy to keep
together, and usually sounds better. If one instrument
plays in a different meter than the others, the result is
usually unpleasant to the listeners. In math-rock, how-
ever, the musicians play in different meters on purpose.
For example, in the Frank Zappa (1940–1993) instru-
mental Toads of the Short Forest from the 1970 album
“Weasels Ripped My Flesh” there are two drummers, one
playing in 7/8 time, while the other plays in 3/4. At the
same time the organist plays in 5/8, creating an effect
known as polyrhythm, or polymeter. The roots of
polyrhythmic music go back to Indian and African
music, as well as Latin music.

Music performance and composition are art forms,
and many have called mathematics at its highest levels
more art than science. Yet, when the basics of mathemat-
ics or music are learned, they both must start with simple
rules and learned by rote, memorizing the building
blocks of the subject until they become second nature. As
learning progresses, the rules become more complex, and
the effort needed to master them increases. For some
people the effort is too great, or the rules too complex.
Only a few people master a branch of mathematics or a
genre of music, and at the highest levels the rules do not
seem to be so important. They are still there, underpin-
ning everything, but can be used in new ways, or
stretched, or combined with unexpected results. For
those people on the outside looking in, these highest
workings of music and mathematics may be fascinating,
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spellbinding, even beautiful, but are strange and unexplain-
able; they are to be enjoyed, but never fully understood.

Potential Applications

Mathematics and music have become more entwined
than ever before. The ways music is made, produced, trans-
mitted, and listened to all rely heavily on mathematics, and
many practical applications in music have come from
abstract mathematical concepts. The shift to digital for-
mats for music has been accompanied by continuing work
in compression, error correction, and improving quality.
Work in the field of music has produced mathematical

tools and applications for other areas, and will continue to
do so. In turn, mathematical ideas in other fields have suc-
cessfully been transposed into musical applications. The
experimental ethos that is at the heart of musical expres-
sion also exists in the field of musical instrumentation and
engineering, and new devices are constantly being created.

Where to Learn More

Books
Garland, Trudi Hammel, and Charity Vaughan Kahn. Math 

and Music: Harmonious Connections. Palo Alto, CA: Dale
Seymour Publications, 1995.

Helmholtz, Hermann. The Sensations of Tone. Mineola, NY:
Dover Publications, 1954.

Johnston, Ian. Measured Tones: The Interplay of Physics and
Music, 2nd Ed. Bristol, England: Institute of Physics Pub-
lishing, 2002.

Roederer, Juan G. The Physics and Psychophysics of Music: An
Introduction, Third Edition. New York: Springer Publish-
ing, 2001.

Web sites
Mozart’s Musikalisches Wurfelspiel (Musical Dice Game)

November 1995. �http://sunsite.univie.ac.at/Mozart/dice�
(May 25, 2005).

Music and Mathematics: Dave Benson. 2003. �http://www
.math.uga.edu/~djb/html/math-music.html� (May 25,
2005).

Key Terms

Analogue: A continuously variable medium, for use
as a method of storing, processing, or trans-
mitting information.

Frequency: Number of times that a repeated event
occurs in a given time period, usually one second.

Scale: The ratio of the size of an object to the size
of its representation.
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Nature and
Numbers

Overview

Scientists depend on numbers and mathematics to
explain many of the patterns that they observe in nature.
For example, scientists find the same numbers repeated in
many different places in nature. Fibonacci numbers and the
Golden section are found in the geometry of mollusk shells
and in the petal and leaf patterns of plants. Scientists also
use special mathematical formulas called models to predict
patterns that occur in nature. Mathematical models are
used to explain how horses move and where phytoplankton
grow most quickly in the ocean. New fields of mathematics
have also resulted in insights into nature. Fractals are math-
ematical rules that can be used to represent complex shapes
in nature and knot theory has the potential for providing an
improved understanding of viral infections. Both numbers
themselves and a variety of mathematical techniques
greatly improve our understanding of the natural world.

Real-life Applications

F IBONACC I  NUMBERS  
AND  THE  GOLDEN  RAT IO

Fibonacci (1175–1250) was an Italian mathematician
credited with introducing the decimal system to Europe.
In 1225 he took part in a tournament to solve a mathe-
matical problem: a pair of rabbits produces another pair
of rabbits every month, but it takes two months before any
pair can produce their first offspring. Assuming no rabbits
die, at the end of a year, how many rabbits will there be?
Fibonacci answered the question by writing out a series of
numbers. The first month there is one pair. Since the pair
cannot reproduce until after the second month, the sec-
ond month there is still just one pair. The third month, the
pair reproduces so there are two pairs. The fourth month,
the original pair reproduces, but the younger pair is still
too young to reproduce; there are three pairs of rabbits.
Continuing with this logic, Fibonacci showed that at the
end of 12 months, there would be 144 rabbits. The series
of numbers that answered the question is 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144 . . . Fibonacci noticed that this series
could be extended infinitely by adding the previous two
numbers to produce the next number in the series.

The Fibonacci numbers are repeatedly found in
nature, particularly in plants. The number of petals on most
flowers and leaves on many plants are Fibonacci numbers.
For example, calla lilies have one petal, irises and lilies have
three petals, buttercups, roses and columbine have five
petals, delphiniums have eight petals, some daisies and
marigolds have 13 petals. The numbers of leaves on only a
few plants are not Fibonacci numbers: consider how rare
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four leaf clovers are. The center of many flowers, like sun-
flowers, is called the seedhead and it consists of seeds
packed together in spirals. These spirals are organized in
both clockwise and counterclockwise directions and they
are interlocking. On a flower’s seedhead the numbers of
spirals in both directions are also Fibonacci numbers. For
example, the seedheads of coneflowers have 55 clockwise
spirals and 34 counterclockwise spirals; sunflowers have 89
clockwise and 55 counterclockwise. It turns out that this
arrangement of seeds allows for optimal packing: seeds are
not crowded and the most seeds possible can fit on the
seedhead. The same pattern of interlocking spirals also
appears on cauliflower heads, broccoli heads, pinecones
and pineapples. The numbers of spirals on these structures
are also always Fibonacci numbers. Additionally, the
branching patterns of many plants can be expressed using
Fibonacci numbers. The patterns of leaf growth around
plant stems, called phyllotaxis, uses Fibonacci numbers.

Dividing every number of the Fibonacci series by its
previous number results in another series: 1, 2, 1.5, 1.66, 1.6,
1.625, 1.61538 . . . , which eventually converges to 1.618034.
This number is called the Golden ratio, the Golden section
or the Golden number. It is often represented by the Greek
letter Phi, �. The part of the number to the right of the dec-
imal, 0.618034 is called phi (with a lowercase p) and is equal
to 1/�. Both Phi and phi are observed in many places in
nature. For example, many spiral mollusk shells incorpo-
rate Phi in their growth pattern. The nautilus shell is created
as the mollusk adds larger and larger chambers to the out-
side of its shell. Drawing a line from the center of the spiral
to the outside, the ratio of the distance between one turn of
the spiral and the next turn of the spiral along that line is
Phi. The DNA molecule, which contains the genetic infor-
mation for all organisms, has the shape of a double helix.
Each turn of the helix measures 34 angstroms in length. The
width of the DNA molecule is 21 angstroms. These num-
bers are successive Fibonacci numbers and their ratio is

close to the Golden ratio. The Golden ratio is observed in
ratio of the width to the height of a dolphin’s fin. The ratio
of the length of the bones at the tips of the human fingers
to the length of the bones between the first and second
knuckle is the Golden ratio. Similarly, the ratio of the length
of bones between the first and second knuckle to the length
of the bone between the second knuckle and the hand is
also the Golden ratio. The Golden ratio also turns up in the
ratio of the distance between the top of the human head
and the navel and the distance between the navel and the
feet. In fact, some consider the Golden ratio fundamental to
art, architecture and music.

MATHEMAT ICAL  MODEL ING  
OF  NATURE

A group of equations that are combined together in
order to make a prediction is called a mathematical
model. Scientists and mathematicians often use mathe-
matical models to better understand their observations 
of nature. Mathematical models explain a variety of
processes in the world, from how horses move to where
phytoplankton are found in the ocean.

Biomechanics is a field of research that investigates
how the materials in living organisms behave and mathe-
matical models are fundamental to this research. For
example, biomechanists have developed a mathematical
model that describes the stresses and strains on the bones
and muscles in horses’ legs. These models lead to predic-
tions of how horses move. At rest, the stress on a horse’s
bones is about 25% of the stress it would take to break the
bones. When a horse starts walking the stress increases and
it continues to increase as the horse walks more quickly. At
the point where the stress reaches 30% of the breaking
point, the horse switches to a trot, relieving the stress on
the bones. Again the stress increases as the horse trots more
quickly. The model predicts that at the point when the
stress is about 30% of the breaking point, the horse should
switch its behavior. Indeed at the speed where the stress on
the bones is 30% of the breaking point, the horse switches
its motion and begins to canter and the stress decreases.
Finally, when the canter speed increases to the point that
stress reaches 30% the model suggests another change in
behavior. This speed is, in fact, the speed at which the horse
begins to gallop decreasing the stress once again.

Phytoplankton are microscopic plants that live in the
ocean. They perform photosynthesis, which is responsi-
ble for producing most of the oxygen on Earth and for
removing a great deal of the greenhouse gas, carbon diox-
ide, from the atmosphere. In addition, phytoplankton are
the base of the oceanic food chain, so where phytoplank-
ton are, there are usually fish to be caught. Phytoplankton

Note the geometric detail of a tortoise shell. ROYALTY-FREE/CORBIS.
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grow by dividing into two individuals, so when they grow
faster, they are found in higher concentration. Phyto-
plankton growth requires both light and nutrients and it
usually occurs more quickly when water temperature is
warmer. Given information about light levels and nutri-
ent concentrations, scientists construct mathematical
model that predict where phytoplankton are found and
in what concentration they will be found throughout the
ocean. In fact, scientist can use their models with satellite
imagery of the ocean to predict concentrations of phyto-
plankton throughout the oceans. These predictions help
estimate the effects of carbon dioxide on the planet and
help regulators develop fisheries policy.

Mathematical modeling is not limited to these two
examples. Practically any observation or a pattern in
nature, such as describing how leopards get their spots,
why monkeys could never grow as large as King Kong,
where hurricanes are likely to make landfall and even the
height of the tides, can be better understood by develop-
ing mathematical models.

US ING  FRACTALS  
TO  REPRESENT  NATURE

In the 1970s a new branch of mathematics emerged
that demonstrates how complex shapes in nature result
from the repetition of the same pattern over and over.
These repeating patterns, or self-similar shapes, are called
fractals. Notice that a branch of a tree has roughly the
same shape as the tree itself. Likewise, a piece of a cloud
looks similar to an entire cloud. These complicated shapes
are built by writing computer codes with very simple
rules, or fractals, and then letting the computer repeat the
rules over and over. The result is computer simulations of
shapes that look like forms from nature: the complicated
branches of trees, the clouds in the sky or a sprig of lilacs
on a branch. Fractals have also been used to help forecast
weather patterns. Fractals have helped mathematicians
and biologists understand that complex-looking forms in
nature may not really be that complicated. Instead these
shapes are intricate repetitions of simple patterns.

Potential Applications

SPEC IFY  APPL ICAT ION  US ING
ALPHABET IZABLE  T I T LE

About one hundred and fifty years ago, mathemati-
cians developed a knot theory, which describes the way
that strings are formed into knots using mathematics.
This allowed them to compare different knots to see
whether they were similar or not. The mathematics of
knot diagrams was worked out in the early 1920s using a
new form of algebra. Eventually computer codes were
developed to study different knots.

Recently knot theory has been applied to the study of
viruses. Viruses are really just pieces of DNA or RNA,
which can be thought of as long strands that can be made
into knots. The virus inserts itself into the host’s DNA
causing it to coil, or knot, in ways that are very different
from the original piece of DNA. Studying these patterns
will, hopefully, bring insight to the fight against diseases
that are caused by viruses.

Where to Learn More

Books

Devlin, Keith. Life By the Numbers. New York: John Wiley &
Sons, Inc., 1998.

Gardner, Robert, and Edward A. Shore. Math in Science and
Nature. New York: Franklin Watts, 1994.

Web sites

Britton, Jill. “Fibonacci Numbers in Nature.” �http://
ccins.camosun.bc.ca/~jbritton/fibslide/jbfibslide.htm�
(September 25, 2003).

“Fibonacci Numbers and the Golden Section” University of
Surrey �http://www.mcs.surrey.ac.uk/Personal/R.Knott/
Fibonacci/fib.html� (November 1, 2004).

“What is the Fibonacci Sequence” �http://techcenter.david
son.k12.nc.us/Group2/main.htm� (November 5, 2004).

“SeaWiFS Project” NASA Goddard Space Flight Center �http://
seawifs.gsfc.nasa.gov/SEAWIFS.html� (November 5, 2004).

Key Terms

Fibonacci numbers: The numbers in the series, 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, 89, 144 . . . , which are
formed by adding the two previous numbers together.

Fractal: A self-similar shape that is repeated over and
over to form a complex shape.

Golden ratio: The number 1.61538 that is found in
many places in nature.

Knot theory: A branch of mathematics that studies the
way that knots are formed.
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Overview

Negative numbers are like mirror images of positive
numbers. Any positive number can be made into a nega-
tive number by attaching a negative sign to it: for 5 there
is �5, for 0.133 there is �0.133, and so on.

While negative numbers may at first seem intuitively
odd, they actually have a prominent role in everyday life.

Fundamental Mathematical Concepts
and Terms

When representing physical quantities with num-
bers, negative numbers allow the “bracketing” of a zero
value. If that zero value has some meaning, then the pos-
itive and negative numbers that accrue from that point
also have meaning.

For example, negative numbers allow benchmarks of
physical behavior to be established. A fundamental exam-
ple is the physical liquid-to-solid change that occurs 
in water at 32 degrees Fahrenheit (0 degrees Celsius). On
several scales, measuring temperature negative numbers
because the numbers characterize temperature states (a
measure of molecular activity) below the zero point.
Absolute zero on temperature scales is characterized by
negative numbers on the Fahrenheit, Celsius, and Kelvin
temperature scales. Absolute zero—0 Kelvin, �459.67�

Fahrenheit, or �273.15� Celsius—is the minimum possi-
ble temperature: the state in which all molecular motion
of the particles in a substance has ceased.

A Brief History of Negative Numbers

The conceptual roadblock against numbers less than
zero dates back thousands of years. The ancient Chinese
calculated numerical solutions using colored rods. Their
use of red rods for positive quantities and black rods for
negative quantities is opposite our present-day account-
ing standard (where “in the black” means having a positive
bottom line). Although they accepted that numbers could
decrease the value of a quantity, the idea that a final solu-
tion could be negative was unacceptable. Instead, they
would rearrange the problem so that a positive number
answer was obtained.

This line of thinking persists. For example, a section
of a 2002 United States government income tax document
contained the following section: “If line 61 is more than
line 54, subtract line 54 from line 61. This is the positive
amount you OVERPAID. If line 54 is more than line 61,

Negative 
Numbers
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subtract line 61 from line 54. This is the positive amount
you OWE.” In both cases, the solution is presented as a
positive, rather than a negative.

The earliest known records of the acceptance of zero
as an actual value and the related concept of negative
numbers date from India around 600 A.D. Several cen-
turies later, the Indian scholar Brahmagupta routinely
used negative numbers and even derived mathematical
rules to deal with such numbers.

Yet, even into the 1500s, European mathematicians
argued that negative numbers could not exist, since zero
signified nothing, and “it is impossible for anything to be
less than nothing.” In The Principles of Algebra, published
in 1796, William Fredn stated that “to attempt to take [a
number] away from a number less than itself is ridiculous.”

By the nineteenth century, however, negative numbers
had become accepted as a valid part of numbering systems.

Real-life Applications

TEMPERATURE  MEASUREMENT
Whether the thermometer scale is in degrees Fahren-

heit (°F) or Celsius (°C) or both, a range of positive and
negative numbers brackets the zero mark.

In degrees Celsius, the zero value is arbitrarily assigned
to that temperature at which water changes its chemical
structure from a liquid to become a solid. Because the tem-
perature of the air can become even colder, it is necessary to
have a number scale to relate this degree of coldness in
terms that are rational and intuitively understandable.

In a typical thermometer, the expansion and con-
traction of mercury or alcohol liquid in a column is indi-
cated by the temperature scale. Thus, the mercury
column will be shorter (compressed or contracted) on a
�10°F-day than the length of the column on a 10°F-day.

The change in temperature that will occur during the
course of a day is also described by negative numbers. As
the day cools into evening, the temperature will decrease
and the mercury column will drop (compress). The tem-
perature decrease is represented by a negative number.

The Kelvin scale developed in the mid-1800s by the
British scientist Lord Kelvin. The zero point of the Kelvin
scale corresponds to absolute zero. This temperature,
which represents the minimum molecular motion, is the
equivalent of �273.16°C.

ACCOUNT ING  PRACT ICE
The fundamentally important economic practice of

bookkeeping, exemplified in balancing income and

expenditures or in the completion of an income tax return,
requires negative numbers. Depending on the accounting
system used, negative numbers can represent a debt (e.g.,
�$20 representing a sum owed and to be deducted from
an account), an expenditure (e.g., �$20 to be deducted
from an account for a purchase, or a remaining balance
(e.g., �$20 as a balance when adding together all income
and expeditures where expeditures exceed income by $20.

THE  MATHEMAT ICS  OF  BOOKKEEP ING
Bookkeeping describes the process where the amount

of money coming in (income) and the amount of money
being spent (expenses) are itemized in an arrangement
that clarifies which side of the “ledger” is greater.

In a business or a home budget, the ultimate aim is
to have a greater income than expense. This remainder
can be used for investment or pleasure.

The countdown clock is stopped at the T-minus five minute
mark (a negative number) while the Space Shuttle Columbia
sits on Launch Pad 39-B on Oct. 15, 1995 at Kennedy Space
Center. NASA often uses negative number during countdowns
to launch. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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However, a harsh reality can be when expenses exceed
income. An annual income of $75,000 and expenses of
$85,000 will produce a final tally of 75,000 � 85,000 �
�10,000. In modern-day bookkeeping parlance, this neg-
ative tally is “in the red.” This is also known as a deficit.

Similarly, income tax calculations itemize all the
sources of income and expense to arrive at either a posi-
tive number, which represents the refund payable by the
government, or a negative number, which is the amount
that the person or business filing the tax return owes the
government.

Such negative numbers are not usually a cause for
celebration.

However, a business owner can be heartened if the
deficit has decreased from that of the previous year. For
example, a deficit for one tax (fiscal) year of $50,000
(�50,000) followed by a deficit of $10,000 (�10,000) in
the following fiscal year would be hailed as a tangible
indication that the business is edging toward profitability
(a positive number). So, even though the “bottom line” is
a negative number, the trend is encouraging.

A bank account is another example of bookkeeping.
An algorithm (a set of instructions that denote a method
for accomplishment of a task) applied when every deposit
or withdraw of funds are made keeps a tally of the money
remaining in the account. A negative number, which can
be represented by the bracketing of the number, indicates
that the account is “overdrawn”; more money has been
taken from the account than was actually in the account.
The imbalance must be corrected by depositing more
money to at least bring the account balance to zero.

SPORTS
In the realm of sports, various statistics and scoring

systems are rooted in negative numbers.

Negative numbers are in integral part of a number of
sports. In golf, the aim on each hole of the 18 holes that
make up a standard course is to hit the ball from the start-
ing area (the tee) into a hole in a determined number of
shots. The number of shots representing normal or “par”
performance varies from three to five (and, in rare cases,
six) depending on the length of the hole. The cumulative
score represents what is called “par” for the course.

The vast majority of golfers will never achieve par.
Their scores will be greater than the ideal score. For
example, on a par 72 score, a competent golfer may rou-
tinely shoot 85. This can also be described as shooting 13
over par, or �13.

Professional golfers are able to routinely shoot the
par score and even lower, as for example a score of 65 on

a par 72 score. This score can be described as a negative
number, in this case 7 under par, or �7.

While a negative number is desirable in golf, it is
undesirable in football. A team’s movement on the foot-
ball field from their end to the opposition’s end is meas-
ured in yards. Positive yardage indicates forward
movement. Negative yardage is indicative of backwards
movement. If the quarterback or running back is tackled
behind the place where the play began, the effort results
in a negative number of yards. This makes the team’s task
of reaching the opposition’s end of the field all the harder.

Negative numbers are encountered in sporting events
where time is measured. Running events on the track or
longer distances run on roads are two examples. Often, an
athlete will gauge his or her performance by splitting the
event into two or more equal distances (called splits) and
timing each phase of the race (split times). A desirable
goal is to achieve what are called negative splits, where the
time to complete the later stage(s) of the race is less than
the time spent in the earlier distance. Negative split times
can be a way to the winner’s podium.

On the track, negative numbers are part of the blind-
ingly quick sprints. A worldclass sprinter can run 100
meters in under ten seconds. Often the field of runners
will cross the finish line within a fraction of a second of
one another. To sort out their finishing places, cameras
positioned at the start and finish lines accurately record
the respective times. The winner’s time can then become
the benchmark, denoted as zero, on which the other times
are compared by means of negative numbers. Thus, if the
second and third place finishers were 1/100 and 1/10 of a
second slower, respectively, their times will be displayed
as �0.01 and �0.1. This use of negative numbers permits
a rapid assessment of the race’s outcome.

FLOOD  CONTROL
Land located next to a water body that can rapidly

increase in volume can be flooded if the increased volume
cannot be accommodated. The flooding potential of the
watercourse can be measured by recording the level of the
water above or below the flood stage. A positive number,
which is above the flood stage, indicates that flooding is
occurring. A negative number indicates that the water
level has not reached the danger zone.

As with temperature, monitoring the progression of
the number change over time reveals the trend, and so
can guide subsequent actions. For example, if flood con-
trol officials note that the flood measurements are nega-
tive numbers and these are increasing with time, they can
be confident that the flood danger is past and the river’s
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level is settling back to normal. Flood control procedures
can be eased or cancelled.

BU ILD INGS
The floors in a multi-story building are denoted by

numbers. Sometimes a building has levels below the
ground, typically parking space, as well as floors towering
overhead. The ground floor forms the demarcation
between the above- and below-ground floors, in essen-
tially the same way that zero marks the positive and neg-
ative number series on a numerical scale.

The real-life demarcation is readily evident when
riding down in an elevator. Beginning on a floor (the
fifth, for example), the floor indictor could display 5, 4, 3,
2, 1, 0, �1, �2. The latter two are the underground levels.
The practice of which floor to assign zero or ground level
often varies from country to country.

Where to Learn More

Books
Pickover, Clifford A. Wonders of Numbers: Adventures in Mathe-

matics, Mind, and Meaning. New York: Thomas Dunne
Books, 2004.

Schwarz, Alan. The Numbers Game: Baseball’s Lifelong Fascina-
tion with Statistics. New York: PowerKids Press, 2004.

Strazzbosco, John. Extreme Temperatures: Learning About
Positive and Negative Numbers. New York: PowerKids Press,
2004.

Web sites
Purplemath. “Negative Numbers Review I.” �http://www.

purplemath.com/modules/negative.htm� (February 11,
2005).

British Broadcasting Corporation.“Skillswise factsheet: negative
numbers – practical examples.” �http://www.bbc.co.uk/
skillswise/numbers/wholenumbers/whatarenumbers/
negativenumbers/� (February 11, 2005).



360 R E A L - L I F E  M A T H

Number Theory

Overview

Number theory is the study of numbers, in particu-
lar integers. Integers are the positive and negative whole
numbers: . . . �3, �2, 1, 0, 1, 2, 3 . . . Number theory was
once considered a branch of pure mathematics, which
means that its major focus was to explore the properties
of numbers without concern for the real-world applica-
tion of any of the results. Nonetheless, applications of
number theory that are extremely important to the real
world have resulted from research in this field. Cryptog-
raphy, which is the transformation of information into a
form that is unintelligible (and the reverse of this process)
is commonly used in electronic transactions of all kinds
to ensure privacy and security. Error checking codes,
which are used in telephone communications, satellite
data transfer, and compact discs, ensure that information
remains intact. Both of these applications have founda-
tions in number theory.

Fundamental Mathematical Concepts
and Terms

Number theory is concerned with the properties of
integers. Because of its concern with numbers, some peo-
ple associate the terms arithmetic and higher arithmetic
with number theory. Number theory is subdivided into a
number of fields, the major ones being elementary num-
ber theory, analytic number theory, algebraic number
theory, geometric number theory and Diophantine
approximation. Several other fields of study within num-
ber theory include probabilistic number theory, combina-
torial number theory, elliptic curves and modular forms,
arithmetic geometry, number fields, and function fields.

Elementary number theory is one of the major sub-
fields of number theory. The word elementary does not
refer to the simplicity of the problems in this subfield, but
rather to the fact that the problems studied do not use
techniques from any other field of mathematics. Elemen-
tary number theory has a certain popular appeal because
many of the problems are easily explained, even to people
who are not mathematicians. However, finding solutions
for these seemingly simple problems is often extremely
complex and require great insight.

Some of the important problems involve prime
numbers. Prime numbers are numbers greater than 1 that
only have two divisors: 1 and the number itself. The
prime numbers less than 10 are 2, 3, 5 and 7. As of 2005
the largest known prime number was 225964951 � 1, which
has 2,816,230 digits. It is a special type of prime number
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called a Mersenne prime. Prime number theory states that
there are an infinite number of prime numbers; new ones
are being found all the time.

Elementary number theory also investigates perfect
numbers. Perfect numbers are numbers that are equal to
the sum of all the integers that are its divisors. The num-
ber 6 is a perfect number. Its divisors are 1, 2 and 3 and
the sum of these three numbers is 6. A second perfect
number is 28. Its divisors are 1, 2, 4, 7 and 14, which sum
to 28. Ancient Greeks discovered two more perfect num-
bers: 496 and 8,128. As of 2005, 42 perfect numbers were
known and all of them were even. It is unknown if an odd
perfect number exists, but if one does number theorists
have shown that it will have at least seven different prime
factors.

Questions of divisibility and prime factorization are
also part of elementary number theory. Divisibility
means that a number can be divided by another number
without leaving a remainder. For example, both 5 and 6
are divisors of 30. Finding all the divisors that are prime
numbers is prime factorization. The prime factors of 30
are 2, 3 and 5.

One of the important operators used in number the-
ory is modulus. Modulus refers to dividing an integer by
another integer and calculating the remainder. For exam-
ple, 10 mod 2 � 0 because 10 is divided evenly by 2 and
there is no remainder. In another example, 10 mod 3 � 1
because dividing 10 by 3 is 3 with a remainder of 1. Mod-
ulus is used in cryptography as described below.

The Euclidean algorithm is also part of elementary
number theory. This algorithm is used to find the great-
est common divisor of two integers. Euclid wrote it down
in about 300 B.C., making it one of the oldest algorithms
known. The greatest common divisor is the largest num-
ber that divides two integers without leaving a remainder.
For example, the greatest common divisor of 42 and 147
is 21, although 3 and 7 are also common factors.

A second subfield of number theory is analytic num-
ber theory. This field involves calculus and complex
analysis to understand the properties of integers. Many of
these techniques depend on developing functions that
describe the behavior of arithmetic phenomenon and
then investigating the behavior of the function. This often
makes use of the asymptotic nature of certain functions;
functions that tend toward certain values called limits at
extremely large (or small) values.

A number of statements in elementary number the-
ory are easily described, but require extremely compli-
cated techniques in analytic number theory to solve. For
example, the Goldbach conjecture states that every even
number greater than 5 is the sum of three primes. This

conjecture has never been proven or disproven, but
remains a source of much research in analytic number
theory. The twin prime conjecture states that there are an
infinite number of primes of the form p and p � 2.
Although most mathematicians argue that this is true, it
too has never been proven and remains an active area of
research.

The subfield algebraic number theory concerns
number that are algebraic numbers, which are numbers
that are the solutions to polynomial expressions. All
numbers that can be expressed as the ratio of two inte-
gers, also called rational numbers, are algebraic numbers.
Some irrational numbers are also algebraic.

Some of the important areas of research in algebraic
number theory are Galois theory, which studies how
different solutions to polynomials are related to each
other, and Abelian class field theory and local analysis,
which investigate the properties of fields. In mathematics,
fields are abstract structures in which all the elements
can be subjected to addition, subtractions, multiplication
and division (except by zero) and in which the distribu-
tive rule, the associative rule and the commutative rule
all hold.

Geometric number theory and Diophantine approx-
imation represent another field of study within number
theory. Diophantus was an ancient Greek mathematician
who lived in Alexandria, Egypt, probably in the third cen-
tury A.D. He wrote a treatise called Arithmetica in which
he described many problems concerning number theory.
Diophantine equations are attributed to this great thinker
and they are equations that have whole numbers as their
solutions. Some of the most common Diophantine equa-
tions are whole number solutions to the Pythagorean the-
orem: x2 � y2 � z2, which can also represent the length of
the sides of a right triangle (a triangle that has one 90�

angle). Some solutions include 32 � 42 � 52 and 52 �

122 � 132. In fact, Diophantus showed that there are an
infinite number of whole number solutions to the
Pythagorean equation. Other problems in geometric
number theory incorporate the theory of elliptic curves,
the theory of lattice points in convex bodies and the pack-
ing of spheres in different types of spaces.

Fermat’s last theorem is one of the most famous
statements in number theory. It claims that there are no
solutions to the problem xn + yn � zn for any values of
n greater than 2. In the margin of Diophantus’s
Arithmetica, the famous French mathematician Pierre de
Fermat claimed “I have a truly marvelous demonstration
of this proposition, which this margin is too narrow to
contain.” In 1665 he died without ever writing down the
“marvelous demonstration.” The statement was the
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source of much fascination to mathematicians for more
than three centuries. A cash reward was even offered to
the person who could provide a proof of the statement.
Most mathematician accept that an extremely complex
proof using techniques in geometric number theory by
mathematician Andrew Wiles finally proved Fermat’s last
theorem in 1994.

Real-life Applications

Number theory is a pure math discipline, which
means it evolved without any attention to developing
real-life applications. Nonetheless, number theory has
proven to have real-life applications that affect almost
everyone. As the Internet and other forms of electronic
communication has become a larger part of daily life, the
need to keep personal information private and to verify
the identity of individuals becomes extremely important.
Number theory provides techniques, which can be used
to disguise information in order to ensure privacy and
security. These techniques form the basis for the field of
cryptography and they are used in a broad range of indus-
tries from retail stores to finance to government to health-
care. Every time a credit card is swiped, a bank transaction
occurs, insurance agencies and hospitals send patient
information to each other or the police use a driver’s
license to verify an identity, techniques from number the-
ory are used to keep the information transferred secure.

While the goal of cryptography is making informa-
tion harder to decipher, the goal of error correcting
codes is to protect information from corruption. Error
correcting codes are based in number theory and they
are used in everything from the information beamed
back to earth from Mars rovers to the compact disks that
contain music.

CRYPTOGRAPHY
Cryptography is the set of techniques, usually math-

ematical, that are used to encrypt and decrypt informa-
tion. Encryption means converting information from its
understandable form to a form that is unintelligible. Most
often, a set of mathematical steps called an algorithm is
used for this purpose. A second algorithm is then per-
formed to transform the unintelligible version of the mes-
sage back to it original form. This is called decryption.

A simple example of encryption is the XOR algo-
rithm. It can be used to transform binary codes. Binary
codes are strings of 0s and 1s. All information in com-
puters is eventually reduced to binary codes. Binary addi-
tion is slightly different from the addition that is

commonly used with integers. It has four rules: 0 � 0 �
0; 0 � 1 � 1; 1 � 0 � 1; and 1 � 1 � 0.

Suppose that a binary message is 1010. A key for
encrypting this message could be any string of four 0s and
1s; for example, 1101. Adding the original message to the
key (bit by bit, with no carryover from the highest place—
also known as the XOR function) results in an encrypted
string. If someone were to intercept the encrypted string,
they would not know what the original message was with-
out the key. With symmetric keys, the same key is used for
encryption and decryption.

There are several symmetric key systems in common
use. The data encryption standard (DES) is one of the
most popular, though it is not considered particularly
secure because more than one person knows the key.
The Diffie Hellman key agreement algorithm provides a
higher degree of security because the parties involved in
the exchange of information negotiate the key that they
want to use as they exchange information. Because the
key is developed as it is used, the chances that it will be
intercepted by a third party decreases. In addition, the
algorithm relies on the fact that the people involved in the
negotiation will only have to do simple calculations to
establish the key, but an eavesdropper would have to do
very difficult calculations to steal it.

Encryption techniques that employ asymmetric
keys, also called public keys, require that different keys be
used for encryption and decryption. One of the most
commonly used public key systems is the RSA Public-Key
System. It is named for the last names of its developers,
Ron Rivest, Adi Shamir and Leonard Adleman, who first
developed the algorithm in the 1970s at MIT. These
mathematicians build a company around the algorithm
called RSA Data Security, headquartered in Redwood
City, CA. RSA technology has been incorporated into a
broad range of computer software including Microsoft
Windows, Netscape Navigator, Intuit’s Quicken, Lotus
Notes, as well as operating systems for Apple, Sun and
Novell computers. It is part of the Society of Worldwide
Interbank Financial Telecommunications standards for
financial transfers as well as standards used by the 
United States banking industry.

The RSA algorithm makes use of two important fea-
tures of number theory: prime numbers and the modu-
lus function. Its security depends on the fact that it is very
hard to factor very large numbers. For example, the algo-
rithm usually uses a modulus that is somewhere near 2800;
in order to discover the private key, an eavesdropper
would need to find a way to factor the modulus.

Several types of factoring algorithms have been devel-
oped and they can be used to estimate the difficulty of
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factoring very large numbers. According to one of these
algorithms, in order to factor a value number that is close
to 2800 would require about 277 steps. In 2005, the average
computer could do about 100 million instructions per sec-
ond. This corresponds to 100,000,000 instructions/second �
60 seconds/minute � 60 minutes/hour � 24 hours/day �
365 days/year � 3 � 1015 instructions/year, which can also
be written approximately as 251 instructions per year. As a
result it would take about 277 / 251 � 2(77�51) � 226 or
roughly 70 million years to factor the modulus.

In addition to RSA, other groups of public key algo-
rithms have been developed. One is called ElGamal and it
relies on similar mathematics as the RSA algorithm.
ElGamal can also be used to verify that information sent has
not been compromised during transmission. It does this by
means of a digital signature and special mathematical func-
tions called Hash functions. Digital signal algorithm (DSA)
can also be used for digital signatures. Another public key

algorithm relies on functions called elliptic curves, which
are studied in number theory and have become increasingly
popular for use with cryptography.

ERROR  CORRECT ING  CODES
As binary information (information coded as strings

of 0s and 1s) is transmitted, errors can occur in the string,
which make the information unintelligible. Error correct-
ing codes are algorithms that ensure that information is
transmitted error-free and many of these algorithms
depend on results from number theory.

Claude Shannon and Richard Hamming working at
Bell Laboraties in the late 1940s developed a method of
repeating strings to ensure that the information sent
was received. They worked out theories, which optimized
the number of repetitions necessary to ensure that the
information received was correct. Another researcher,

The RSA Public-Key Algorithm 

The RSA algorithm is one of the most popular public key
algorithms. It is probably best understood by example.
Assume that a customer wants to make an electronic
deposit of $3 using an automatic teller. The number 3 is
the original message, M, which must be encoded for
transfer and then decoded when the bank receives it. The
automatic teller acts as the keymaker, generating num-
bers that act as keys for encryption and decryption.

In the first step of the RSA algorithm the keymaker
generates two prime numbers: say p1 � 11 and x2 � 2.
Next the product of the two numbers is calculated: n �

(p1)(p2) � (11)(2) � 22. This number n is part of both
the encryption key and decryption key. It is the modulus
that is used later in the algorithm.

Next a number is calculated using Euler’s totient
function. This number is referred to as t and it is equal
to (p1�1)(p2�1) � (11�1)(2�1) � (10)(1) � 10. The
keymaker then selects a number, let’s call it e, such that
e is less than t and the greatest common divisor of e and
t is 1. In this case the number chosen is 3, because it
is less than 10 and the greatest common denominator of
3 and 10 is 1.

The next calculation requires finding a number d
such that when the product of e and d is divided by t the
remainder is 1. Another way to write this is ed � 1 mod
t. In this case, d is 7 because 3 � 7 � 21 and 21/10 �
2 with a remainder of 1. 

The public key, used to encrypt the message is e
and n, in this example 3 and 22. The keymaker may
make this key known to everyone. The private key is d
and n or 7 and 22, and only the keymaker knows it. 

The keymaker now transforms the message by rais-
ing the message M to the power e, dividing by n, and cal-
culating the remainder. This calculation can also be
written Me mod n. In this example Me � 33 � 27. The
number 27 is divided by n � 22 and the remainder is 5.
The encrypted message, E, is 5. 

The automatic teller then sends the encoded mes-
sage (E � 5) to the bank, along with the private key,
which in this example is d and n or 7 and 22.

The encrypted message and the private key is
received by the bank, they decrypt it using the calcula-
tion, Ed mod n. In this example, Ed � 57 � 78,125. The
number 78,125 is divided by n � 22 and the remainder
is 3, which was the original message.

Although very small numbers were chosen for p1
and p2 in this example, in practice they are usually on
the order of 2400, which makes n extremely large, some-
where near 2800. The difficulty in factoring such big num-
bers is crucial to the security of the algorithm. If the
factors of n were easy to find, then discovering the pri-
vate key would not be that hard to do. 
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John Leech, also developed theories related to error cor-
recting codes. His work included some abstract mathemat-
ical in number theory such as groups and lattices.

Error correcting codes were put to immediate use at
NASA, where satellites were equipped with powerful
error checking codes. A typical algorithm of this type is
capable of correcting seven errors in every 32 bits sent
back to earth. The redundancy in the data sent is
immense; in every 32 bits only 6 are data. The rest are for
error checking.

When they were initially developed, compact discs
were highly sensitive to scratching and cracking. But by
incorporating two redundant codes that are interleaved,
CD players can recover up to 4,000 consecutive errors.
Additional error checking algorithms are built into CD
players to further correct problems with the signal.
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Key Terms

Algorithm: A set of mathematical steps used as a group
to solve a problem.

Binary code: A string of zeros and ones used to repre-
sent most information in computers.

Decryption: The process of using a mathematical algo-
rithm to return an encrypted message to its original
form.

Divisibility: The ability to divide a number by another
number without leaving a remainder.

Encryption: Using a mathematical algorithm to code a
message or make it unintelligible.

Greatest common divisor: The largest number that is
a divisor of two numbers.

Integer: The positive and negative whole numbers.. –4, –3,
–2, –1, 0, 1, 2, . . . The name “integer” comes directly
from the Latin word for “whole.” The set of integers can
be generated from the set of natural numbers by
adding zero and the negatives of the natural numbers.

To do this, one defines zero to be a number which,
added to any number, equals the same number.

Key: A number or set of numbers used for encryption or
decryption of a message.

Modulus: An operator that divides a number by another
number and returns the remainder.

Perfect number: A number that is equal to the sum of
its divisors.

Prime factorization: The process of finding all the divi-
sors of a number that are prime numbers.

Prime number: Any number greater than 1 that can only
be divided by 1 and itself.

Public key system: A cryptographic algorithm that
uses one key for encryption and a second key for
decryption.

Symmetric key system: A cryptographic algorithm that
uses the same key for encryption and decryption.
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Overview

Probability is a form of statistics used to predict how
often specific events will occur, and is used in fields as
varied as meteorology, criminal justice, and insurance
underwriting. When probabilities are calculated, they are
frequently expressed in terms of odds. Odds provide a
simple, shorthand language for communicating probabil-
ities, regardless of the specific situation being assessed.
Odds can be expressed using differing terminology and
notations, but the basic principles remain constant,
regardless of the application.

Fundamental Mathematical Concepts
and Terms

Several systems of terminology can be used to express
the odds of a particular event occurring. Consider the case
of a standard deck of 52 playing cards, which consists of
four suits of 13 cards apiece. A dealer takes this deck, shuf-
fles it thoroughly, then draws a single card; what are the
odds that he will draw the single Ace of Hearts? The odds
of drawing this particular card out of the fifty-two in
the deck are denoted 1:52. This probability can also be
described as one chance in 52 of successfully drawing the
desired card, or expressed as a fraction: 1/52.

Odds are also expressed in reverse, giving the odds
against an event happening. In the previous example, the
odds of drawing the desired card from the deck could also
be expressed as 51:1, meaning that of the 52 possible out-
comes, 51 would be undesirable while only 1 would be
the hoped-for outcome. In some cases, the odds for and
the odds against are used interchangeably: odds of 1 in a
million and odds of a million to 1 are both used to describe
extremely unlikely events, and are almost identical math-
ematically. However, this same relationship does not hold
true for smaller values, with odds of 1 in 3 (33%) being
significantly better than odds of 3 to 1 (25%).

A Brief History of Discovery 
and Development

Because odds are simply the language of probability,
the history of odds runs parallel with the history of prob-
ability, and is discussed extensively in the entry on that
subject. However, as the language of odds has been
applied to an expanding array of applications, a unique
vocabulary has developed around the use of odds. Unfa-
vorable odds, such as odds of one in a million, have come

Odds
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to be called long odds, meaning the event they describe is
highly improbable. Long odds are also sometimes
referred to as a long shot; slow race horses and unknown
political candidates are often described as long shots, sug-
gesting that their odds of winning are remarkably small.
Odds are sometimes expressed in terms of a percentage,
or on a base of 100. A salesman who claims to be 90%
sure he can deliver his product on time is offering odds of
9 in 10 that he will succeed. A wildcatter drilling a new oil
well might give odds of 60/40 that the new well will be a
gusher, placing the odds at 6:4, which can be reduced to
3:2 and then reduced further to 1.5 to 1 that he will suc-
ceed. A stock analyst who gives a stock a 50:50 chance of
rising is giving it a 1 in 2 chance, equal to the chance of
flipping heads on a single toss of a coin.

In a few cases, odds are used to imply that an event is
absolutely certain to occur; theoretically these odds
would 1:1, or 100%, though the certainty of any future
event is always less than 100%. However in these cases, an
event is often referred to as a lock, or a sure thing, sug-
gesting that it will certainly occur. However the history of
gambling and athletics is replete with sure things which
failed to materialize, suggesting that the sure thing and
the lock are more a result of wishful thinking than of rig-
orous statistical analysis.

Real-life Applications

SPORTS  AND  ENTERTA INMENT  ODDS  
Poker is a popular card game in which odds are used to

develop strategy, and successful poker players often possess
an innate sense of the odds associated with certain hands. In
the course of a typical poker game, players are often forced
to make quick decisions on whether a hand is winnable and
should be played, or is unwinnable and should be folded.
For example, a player holding a 5, 6, 7, 9, 9 must decide
whether to keep the 9s and hope to be dealt a third 9, or to
discard one of the nines in the hope of drawing an 8 to com-
plete a straight. Using a basic understanding of probability
and the rules of the game, an experienced player will prob-
ably keep the 9’s, knowing that the odds of ending up with
a winning hand are significantly better using this strategy.

Gambling in any form has been a popular pastime
for most of recorded history. During the past century,
gambling, or gaming, as it is sometimes called, grown
from a casual pastime into a multi-billion dollar industry.
As the gambling industry has grown, casino owners have
increasingly turned to fields such as psychology and mar-
keting in order to increase their earnings. The very exis-
tence of these extravagant entertainment centers, some

costing more than $1 billion to build, simply confirms the
efficiency with which casino owners separate players
from their money.

Modern casinos are scientifically designed to lure
players in and keep them playing as long as possible. A
typical casino contains a variety of games, offering a wide
array of playing styles and varying odds of winning
though one fact remains: in every form of casino gam-
bling, the odds of the game favor the casino, or as it’s
known in the industry, the house. In most cases, the tilt in
favor of the house is slight, allowing some players to beat
the house over the short-run and leading to impressive
tales of huge jackpots. But the ultimate result is the same
as in any other activity governed by the laws of probabil-
ity: over the long-run, the house will always win.

The house edge, or how strongly the odds of a par-
ticular game favor the casino, vary from game to game.
The game of roulette, in which a ball is dropped onto a
spinning number wheel, offers a house edge of 5.6%,
meaning that in practice, for each $100 wagered, a player
will lose an average of $5.60. If a roulette player spends
two hours playing, betting $25 per spin and averaging
30 spins per hour, the casino will expect to make about
$75.00 in that time, and the customer will have paid
roughly $37.50 an hour for the privilege of watching a
small marble drop onto a shiny spinning wheel. Of course
two other outcomes are also possible. A player could
actually win several times in a row and walk away with his
winnings, taking the house for a loss; this possibility is
what keeps die-hard gamblers coming back for more
action. The other possibility is that the player hits a run of
tough luck and loses his entire stake sometime during
the session. In this case, the casino’s edge has simply been
felt earlier than expected, and the player goes home
empty-handed.

Roulette offers some of the lowest odds of any casino
table game, meaning the house edge is larger in this game
than in most others. Blackjack, a card game in which a
player tries to collect cards totaling 21, offers a theoretical
house edge of only 0.80%, though in practice few players
play the game with such computer-like precision, making
the actual house edge higher. Assuming a gambler can
follow the optimal betting strategy without error, he
should be able to wager $100 during his session and lose
only 80 cents to the casino. Similar odds accompany the
game of craps, in which dice are rolled and games are won
and lost based on the outcome of the roll.

Some of the worst odds in the casino are offered by
one of the most popular games, the slot machine. Aptly
nicknamed the “one armed bandit,” these flashing, beep-
ing machines involve no skill whatsoever, requiring
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ODDS  IN  EVERYDAY  L I FE  
While the question “paper or plastic?” is probably the

most common dilemma faced by shoppers, one shopper’s
quandry (perplexing question) is as old as the supermar-
ket: how can a shopper tell which check-out line will
move fastest? Obviously if one line has fewer shoppers in
it, that is probably the line to choose, though smart shop-
pers also know that if the light above that line’s cashier is
flashing it’s probably a danger sign. But what if all the
lines have the same number of customers waiting? What
chance is there of choosing the fastest line? All things
being equal, a shopper’s chance of choosing the fastest
line is actually pretty small, a statistical reality born out by
many shoppers’ frustrating experiences.

Consider this quandary as a probability question.
Assume that the shopper has no information about which
checkers currently working are faster or slower, meaning
that in this case, his decision comes down a random selec-
tion. Once he has made his choice, in this case choosing
lane three, he will be forced to stand and watch the other
lanes to learn whether or not he chose wisely. From lane
three he is able to see lanes one and two on his left and
lanes four and five on his right, and chances are good that
he will soon find out he did not choose the fastest lane. A
simple odds calculation explains why.

The total group of possible outcomes consists of the
five cashiers from which the shopper can choose, while
the outcome of interest is the particular lane the shopper
ultimately selects. All other factors being equal, the odds
of choosing the fastest line are 1 in 5; put more pes-
simistically, the odds of choosing incorrectly are 4 in 5,
meaning that most days, most shoppers will watch at least
one other line move faster than the one they have chosen.
Given these poor odds, one might instead opt for a new

players only to insert a coin and pull a lever or push a but-
ton. Based on the outcome of a set of spinning wheels,
prizes are paid according to a table on the front of the
machine. The house edge for slot machines is difficult to
calculate, because machines can be programmed to
return a higher or lower amount of player money. As a
general rule, slot machine payouts vary depending on the
amount required to play, with higher play values receiv-
ing better odds. The typical house edge for a nickel slot
machine would be somewhere near 8%, meaning that for
each $100 bet, a player would typically lose about $8.00.
Odds are much better on higher-value slot machines,
meaning that a player willing to spend $5.00 per play will
face a less severe house edge. Unfortunately, he will also
burn through his funds much more quickly. Slot
machines offer high efficiencies to casino operators. By
combining low operating costs, a high house edge, and
the potential for players to bet several times per minute,
one armed bandits are among the casino’s best money-
makers, probably explaining why most Las Vegas casino
entrances are lined with a sizeable collection of the shiny
machines.

Why do people gamble? Few other activities offer a
guaranteed chance to lose money, yet gambling today is
more widespread in both the physical and the virtual
world than ever before. For some players, gambling is
simply a form of entertainment. These players typically
allot a set amount to spend on an outing, wager and 
enjoy the experience and the excitement, then leave, hav-
ing paid relatively little for their entertainment. For 
other players, gambling is perceived as a chance to
improve their lot in life by offering a fast route to large
amounts of cash.

Some percentage of gamblers behave irresponsibly,
wagering far more than they can afford to lose and creat-
ing serious problems for themselves and their families.
Compulsive gamblers are similar to compulsive drinkers
in that they are unable to moderate their behavior; in
some cases, compulsive gamblers spend entire paychecks
or close out bank accounts attempting to recoup previous
gambling losses. Gamblers Anonymous, an organization
created to help compulsive gamblers recover, provides a
list of questions to help gamblers determine whether they
have a problem. Questions such as, “Did you ever gamble
to get money to pay debts,” “Have you ever sold anything
to finance gambling,”“Did you ever gamble down to your
last dollar,” and “Did you ever have an urge to celebrate
good fortune with a few hours of gambling?” are intended
to help gamblers assess their situation. According to the
National Council on Problem Gambling, in 2005 between
3,000,000 and 12,000,000 Americans had gambling prob-
lems of varying degrees.

The game of roulette offers a house edge of 5.6%, meaning
that in practice, for each $100 wagered, a player will lose an
average of $5.60. ROYALTY-FREE/CORBIS.
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development, self check-out, which in most cases is
markedly slower than being checked out by a professional,
but which eliminates the annoying wait in line, as well as
providing a reasonable distraction from the process.

Human beings have an innate fascination with
events or objects which seem to defy the laws of proba-
bility. Chinese basketball star Yao Ming fascinates most
Westerners, not just because he is a basketball star or even
because he is an unlikely 7’6” tall. Most Americans are
stunned by Yao’s towering height because he beat the
odds by growing so tall in a nation where the average man
is around three inches shorter than the average American
man. While Yao seems like the ultimate example of a long
shot, two factors make his height far more understand-
able. First, his parents are exceptionally tall, even by U.S.
standards, with his father standing 6’7” tall and his
mother measuring 6’3”. Second, regardless of the average
national height, China is more likely to produce another
giant player simply by virtue of its enormous population:
with more than 1.3 billion residents, mainland China is
more than four times as populace as the U.S., dramati-
cally boosting its chances of producing another seven-
footer or two. In addition, both the U.S. and China are
demographically diverse, and there are areas of China
where the average height exceeds the average world and
U.S. height for males.

ODDS  IN  STATE  LOTTER IES  
Many states and countries now generate revenue by

operating lotteries. In a typical lottery, players are
encouraged to buy a ticket with a set of numbers on it,
such as six numbers between 1 and 45. Tickets are sold for
a set period of time, then a drawing is held in which 6
numbers are randomly selected. Matching some of the
selected numbers is rewarded with a cash prize deter-
mined by the number of numbers guessed correctly. In a
typical lottery, the largest prize, the jackpot, is won by
correctly guessing all the numbers selected, with the prize
normally being more than one million dollars. Because
most lotteries are run by government agencies, they are
required to publicize details of the games, such as the
odds of winning at each level and the actual use of the lot-
tery’s earnings.

State lottery managers must make several decisions
in order to maximize the number of players and, by
extension, the total number of dollars earned for the
state; for this reason, lottery rules change frequently in
order to keep players interested. One state lottery in 2005
used the following formula: two sets of numbers are used,
each running from one to 44. From the first set of num-
bers, five values are randomly selected, and from the

second set of numbers, a single bonus number is chosen.
A player lucky enough to match all five of the initial num-
bers has managed to beat odds of 1.1 million to one and
will collect a sizeable prize. But a player who manages to
combine this feat with a correct pick of the bonus num-
ber wins the top prize, frequently in the tens of millions
of dollars. Jackpots often go unclaimed for several weeks,
since the odds of picking all six values correctly are 1 in
47 million. A player’s odds of winning any prize (prizes
start at $3.00) in a single play are 1 in 57.

Where does lottery money go? Lottery proponents
are quick to point out that the net proceeds of a lottery
are typically spent on education and other popular proj-
ects. However, the actual education income from lottery
tickets is typically less than one-third of the money spent
playing the game. The Texas State Lottery in 2004 pub-
lished a breakdown of how its income was spent. For each
dollar wagered, the program returned fifty-two cents to
players in the form of prizes, making lotteries among the
worst bargains in gambling when compared with almost
any casino game. Seven cents of each lottery dollar also
went to administrative costs associated with running the
lottery itself, including salaries for administrators and
advertising costs, while another five cents was paid to
retailers in return for their work selling the tickets.

Once all these costs are removed, this particular lot-
tery program contributes the remaining thirty cents of
each dollar to the state’s education agency for use in local
school programs. Is this level of return high or low? The
answer depends on whether the lottery is analyzed as a
business or as a non-profit fund-raising agency. For most
business CEOs, managing to pass 30% of their gross rev-
enues along to their owners would make them among the
most successful and admired business leaders in the hemi-
sphere. But a non-profit fund-raising organization which
consumes 70% of its revenues paying administrative and
other costs before passing less than one-third of contribu-
tions along to its beneficiary is generally considered either
unethical or grossly incompetent. Because state lotteries
fail to cleanly fit either model, the appropriateness of this
30% pass-through rate remains controversial.

Lotteries have risen from relative obscurity in Amer-
ica during the early twentieth century to a point where
most states operate the programs. Several facts have con-
tributed to this rise in popularity. One trend which
helped lotteries flourish was a general resistance to addi-
tional taxes, beginning with the Reagan presidency in the
1980s and continuing through the turn of the century. In
an atmosphere where even proposing a tax hike could be
politically fatal, lotteries provided a sizeable revenue
boost without the political costs of a tax hike. A second
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argument has gained steam as lotteries have spread to
cover most of the country. Economic studies have looked
at out-of-state revenue garnered by lotteries, concluding
that in many cases, residents of non-lottery states drive
across the border to buy tickets when jackpots grow large.
In response, some non-lottery states eventually conclude
that initiating their own lottery is the lesser of two evils
when compared with continuing to watch residents take
their dollars to neighboring states.

A final argument in favor of starting lotteries is the
voluntary nature of participation. For many voters, the
choice between a hike in property taxes, which impacts
most citizens, and a state lottery which produces the same
amount of revenue but is purely voluntary, may seem
straightforward. However, given the lottery’s common
nickname of “the stupid tax,” (a perspective on the fact
that the “tax” is regressive in that it is generated even if
voluntarily) from people with lower levels of education
and income as opposed to the general population.

While the long-term impact and success of state lot-
teries remains to be proven, various challenges have
already faced lottery administrators. For example, in one
case a larger than expected number of players of one par-
ticular game won jackpots during the first quarter of the
year. Because lottery profits are tied directly to the num-
ber of tickets sold, this statistical fluke did not endanger
the lottery’s solvency. However, because of the psycholog-
ical appeal of larger prizes, this run of smaller jackpot
winners did substantially reduce the number of ticket
sold, slashing income during the first months of the year.
By mid-year, directors were evaluating a change in the
game rules to reduce the number (and increase the size)
of jackpots won.

OTHER  APPL ICAT IONS  OF  ODDS  
Large numbers are used for a variety of business

purposes, including security. A typical credit card uses a
sixteen digit account number. For a thief trying to make
an online purchase, how hard would it be to simply guess
random numbers until he chose one that was valid? The
total number of credit card account numbers possible
using all sixteen digits is 1016, meaning that the odds of
guessing a particular number on a single try are 1 in
10,000,000,000,000,000. Since most credit cards start
with the same few sets of four digits, those digits are not
available for creating account numbers, reducing the
number of possible account numbers to 1 in 1012, or 1 in
1,000,000,000,000. If United States consumers held one
billion credit cards, the odds of guessing a correct num-
ber would improve dramatically, to roughly 1 in 1,000.
Using modern software, a thief could easily try 1,000

numbers in order to find one that would work; for this
reason, most credit card companies now also require a
three to four digit code from the back of card, as well as
complete personal information including the billing
address, making the guessing tactic relatively useless. In
response, twenty-first century thieves are far more likely
to focus on hacking into massive credit databases where
they can steal millions of valid card numbers and billing
addresses at one time, rather than spending time guessing
card numbers.

While providing a set of odds lends an air of credi-
bility to a claim, odds are sometimes assigned to an event
based on little evidence. Surgeons and other care-givers
are frequently asked to give worried family members the
odds of a patient’s recovery from a serious illness. How
can a concerned doctor provide these odds? An experi-
enced surgeon can probably scan his memory for similar
cases, or refer to medical reference volumes that estimate
the likelihood of recovery. Unfortunately, given the wide
variations in actual patient conditions, these methods are
subject to wild swings in accuracy, and in many cases, a
doctor is probably forced to provide an estimate based on
little more than his instincts.

Ironically, in the case of a doctor giving odds for a
patient’s survival, some incentive exists for the doctor to
actually overstate the danger and give lower odds than he
might otherwise. For example, imagine that a doctor
assigns a serious case 1 chance in 10 of surviving; if the
patient dies, the concerned family and friends will likely
be unsurprised, since the odds provided were not favor-
able. On the other hand, if this long shot patient manages
to pull through, the family will be elated, potentially con-
cluding that doctor is a medical genius. In this case, with
the doctor providing unfavorable odds, he is ultimately
perceived more favorably whether the patient lives or dies.

Conversely, consider the situation in which a doctor
provides an overly optimistic assessments. If a doctor
gives the patient survival odds of 9 in 10, the patient’s
recovery will occur only as an expected event. However, if
the patient takes a turn for the worse and ultimately dies,
the stunned family will have been emotionally unpre-
pared, and may in fact blame the doctor or file lawsuit
based on their expectations rather than the merits of the
case. Subconsciously, the doctor who consistently gives
his patients good odds only to watch them die may begin
to question his own performance. While most doctors
undoubtedly try to give accurate assessments of a
patient’s prognosis, little incentive exists for a doctor to
give optimistic assessments. Subconsciously, this may
lead doctors to paint a grim picture while hoping for a
positive outcome.
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Doctors are not alone in struggling to understand the
odds of common events. Despite numerous news stories on
the topic, many people still believe that flying is a more dan-
gerous form of travel than driving. In truth, the odds of
dying while driving to the airport are frequently higher than
the odds of dying in the ensuing plane trip. People’s irra-
tional fear of flying is perhaps because hundreds of auto-
mobile accidents occur each day without notice, while every
passenger plane crash receives extensive media coverage.

A similar situation exists in the energy industry.
Many people believe that nuclear energy is the most dan-
gerous form of power generation, and that the odds of
being killed or injured in a nuclear power accident are far
higher than the odds of being injured by processes related
to coal or other low-tech energy sources. Ironically, far
more people have died as a result of working in coal
mines or in the coal industry than from the U.S.’s single
nuclear power accident at Three Mile Island. Each year, a
person’s odds of being killed by a simple electric shock or
by falling down in the bathtub are far higher than her
odds of being exposed to dangerous levels of radiation.

Because most people have such a hard time assessing
the odds of an event occurring, some companies market
products designed to allay people’s fears of these events
occurring. Insurance companies, well-aware of both the
slim odds of an airplane crash and the public’s irrational
fear of flying, have long offered flight insurance policies
at airports, comfortable that these policies will provide
both peace of mind to their buyers and steady income to
their sellers.

In some situations, people take elaborate precautions
to protect against hazards with relatively low odds, while
ignoring other events with much higher odds of occur-
ring. Most responsible drivers recognize the hazards of
driving while intoxicated and avoid this behavior because
of its potential for disaster. However, the number of

drivers who talk on their wireless phones while driving
remains high, despite advertising campaigns informing
drivers that the chance of being in an accident are roughly
the same in both situations. While the odds may be the
same in both cases, most chatting drivers apparently do
not recognize the hazard they are creating.

Because the language of odds provides a shorthand
way of discussing possible outcomes, informal odds are
frequently assigned to events as part of a discussion. One
example of this informal use of odds is the well-known
80/20 rule. While not a strict mathematical set of odds,
this rule is commonly used to explain a variety of situa-
tions in which some small portion of the whole has a
larger than expected influence on the outcome. For
example, managers sometimes use this rule in describing
employees who require exceptionally large amounts of
time, implying that the trouble-prone 20% of their
employees are responsible for 80% of the manager’s total
problems. Teachers sometimes use this same rule to
describe certain students who require constant assistance.
Fund-raisers who spend their careers soliciting donors
for causes such as education, disease research, or religious
work, are well aware that the 80/20 rule accurately
approximates the distribution of their donors, with the
most generous 20% contributing 80% of the total funds,
while the other 80% collectively give only 20%. Inventory
managers frequently observe a similar pattern, with a rel-
atively small number of products making up a significant
majority of total order volume received.

The 80/20 principle can guide decision-making in a
variety of scenarios. A fund-raiser who recognizes the
pivotal role played by his larger contributors will go to
extraordinary lengths to remain in favor with these
donors, since he knows that a large donor is both far
more painful to lose and far more difficult to replace. In
optimizing inventory management, a warehouse supervi-
sor can observe that 80% of orders received will include

Key Terms

80/20 rule: A general statement summing up the ten-
dency for a few items to consume a disproportion-
ate share of resources, such as cases in which 20%
of a store’s customers lodge 80% of the total
complaints.

Long odds: Poor odds, or odds which suggest an event
is highly unlikely to occur.

Odds: A shorthand method for expressing probabilities of
particular events. The probability of one particular event
occurring out of six possible events would be 1 in 6,
also expressed as 1:6 or in fractional form as 1/6.

Probability: The likelihood that a particular event will
occur within a specified period of time. A branch of
mathematics used to predict future events.
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at least one of the top 20% of products, meaning he will
keep a sizeable supply of these items on hand for imme-
diate shipment. On the other side of this equation, this
same manager knows that he can safely inventory smaller
quantities of the less popular items, since the odds of any
single one being ordered on a given day is quite small.

In a few cases, people can improve the odds of favor-
able outcomes. A male college applicant might consider
the ratio of men to women at a particular campus,
assuming that a larger number of single women on a
campus would raise his odds of finding an appropriate
date or mate. While the ratio of men to women is roughly
1:1 in the entire world, specific locations feature some
surprisingly large variations in this mix.

Potential Applications

Because odds are simply the language of probability,
future developments in the use of probability will be
reflected in future uses of odds. With the growing popu-
larity of poker as both a participant and a spectator sport,
odds may become a more common topic of discussion,
and fans of the game may commit the odds of completing

particular hands to memory. In addition, recent advances
in computer technology will likely lead to more accurate
assessments of odds for numerous events, such as 
predictions of the future state of the U.S. and world
economies.
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Percentages

Overview

A percentage is a fraction with a denominator of 100.
A percentage may be expressed using the term itself, such
as 25 percent, or using the % symbol, as in 25%.

The calculation of various kinds of rates by way of per-
centages is the backbone of a wide range of mathematical
applications, including taxes, restaurant tips, bank interest,
academic grades, population growth, and sports statistics.

Fundamental Mathematical Concepts
and Terms

Percentages are the natural mathematical extension
of three other familiar concepts: fractions, ratios, and
proportions. A fraction is a number expressed as one
whole number divided by another; for example, one half
is expressed as 1⁄2. A ratio is the relationship between two
similar magnitudes. For example, as of 2005, the rela-
tionship between the population of Canada, estimated at
31 million people, and that of the United States, meas-
ured at approximately 310 million people, is a ratio of
1 to 10.

A proportion is a pair of ratios expressed as a math-
ematical equation. For example, if in a city of 100,000 res-
idents, 1,000 people had red hair, the proportion of the
population with red hair will be expressed as 1,000/
100,000, or 1/100. The equation 1,000/100,000 � 1/100 is
a proportion.

All percentages are an expression of a relationship
based on 100. Every fraction, ratio, and proportion may
be expressed as a percentage. Percentages may also be
expressed where decimals are required, as in the figure
66.92%.

An important application of the concepts concern-
ing percentages is that of percentiles. A percentile, which
is one of the 99 points at which a range of data is divided
to make 100 groups of equal size, is an important tool
used in a vast number of statistical areas. For example,
students in a class or across a larger population are given
percentile rankings on a national test. The determination
of the percentile ranking is a way of measuring relative
standing to every other person in the class or larger group.

DEF IN I T IONS  AND  BAS IC
APPL ICAT IONS

A percentage is a fraction with a denominator of 100.
A percentage may be expressed in any of the following ways:
38 percent, 38%, 38/100, or 0.38 as a decimal notation.
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• To convert a decimal to a percentage, move the deci-
mal point two places to the right and tack on a % sign.
For example, the decimal 0.09  equals 9%.

• To convert a percentage to a fraction, remember that
x% will always mean x/100; for example, 40% �

40/100. The simplest form of this fraction is 4/10,
or 2/5.

• To convert a fraction to a percentage, find the deci-
mal equivalent of the fraction and convert the deci-
mal to a percentage as described above. For example,
3/4 � .75 � 75%.

• Finding a percentage of a quantity is common. For
example, 15% of a shipment of 350 books is stated to
be damaged by water. To find the actual number of
damaged books in the shipment, proceed as follows:
the word “of,” as used here, means multiply, or, (15/
100) � 350 � 52.5.

RAT IOS , PROPORT IONS ,
AND  PERCENTAGES

To properly understand the many ways that percent-
ages can be applied in modern life, it is important to
understand the relationship between ratios, proportions,
and percentages. These terms are commonly applied, and
each has a separate meaning and a distinct mathematical
purpose.

A ratio is defined as the expression of the relative
values of numbers or quantities, using one of three forms:

• use of the word “to,” as in “a ratio of 8 to 5”
• use of a colon, as in 8:5
• use of a fraction, as in 8/5

A ratio may also be expressed where different quan-
tities are related. For example, the relationship of 20 min-
utes to one hour is the same relationship as 20 minutes to
60 minutes, or a ratio of 20:60, or 2:6, and ultimately, a
ratio of 1:3.

Other examples of ratio conversion include 5 tons to
500 pounds, 10,000 pounds to 500 pounds, 10,000/500,
and a ratio of 20:1.

Ratios are a common form of expression in certain
forms of sports wagering and games of chance. When a
certain horse is favored to win at a racetrack, the proba-
bility of that horse winning its race, referred to as the odds
of winning, is expressed in ratio form, for example, 3 to 2.
In this context, the ratio means that for every two dollars
agreed, the bettor will win three dollars if the horse wins.

The calculation of odds finds itself in other aspects of
daily living. If in a particular place, over the course of an
average year, 35 young drivers (under the age of 21) out
of a sample of 100 young drivers were involved in motor

vehicle accidents, and 10 older drivers (over the age of 50)
were involved in accidents, what are the odds of a young
driver being involved in accident versus those of an older
driver? The odds are calculated as follows: 35/65 � 10/90 �
4.85. Therefore, the odds of the young driver being
involved in an accident might be said to be almost 5
(rounding up the 4.85 figure).

Proportions result when two ratios are set equal to
one another. For example, 6:9 � 12:18: a/b � c/d.

A Brief History of Discovery 
and Development

The term percent is derived from two Latin words:
per, meaning by, and cent, meaning one hundred. The use
of multiples of 10 as the basis for arithmetic, the forerun-
ner to the modern decimal system, first gained acceptance
with the Pythagorean school of mathematicians based in
Greece in approximately 400 B.C.

However, the percentage is a relative latecomer as
mathematical developments are gauged. The decimal had
been developed as an effective way to easily distinguish
between fractions with different denominators (for
example, on first observation, the fractions 4/13 and 5/17
have similar values, but the corresponding decimal con-
versions for each, 0.307 and 0.294, are clearly different
values). The decimal point became standard throughout
the European scientific community in the early 1600s.

The introduction of the decimal fraction was one of
the great advances of mathematics. This occurred
because the decimal simplified numerical calculations,
thus engineers, surveyors, and scientists could express
their work to any desired degree of accuracy. The deci-
mal fraction eliminated the potential for errors when
fractions were compared with one another or converted
in the course of measuring or other mathematical
calculations.

The percentile concept was first developed in 1885 by
English physician and mathematician Sir Francis Galton
(1822–1911). His motto, “Whenever you can, count” is as
appropriate today as when Galton coined the expression,
given the role of the percentile in the modern world’s
obsession with measuring and ranking an infinite range
of activities, from business to government to sport.

The percentage is now used as both a general
descriptive term (in phrases such as “play the percent-
ages,” “there is no percentage in that”), as well as a math-
ematical tool of comparison and analysis.

The understanding of the various ways that percent-
age calculations may be used is crucial to the successful
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navigation of commercial, academic, and social worlds.
Because society is now so accustomed to percentages
being advanced in support of a particular viewpoint or
concept, percentages can sometimes convey a superficial
or misleading sense of certainty about a topic. Broad
statements made in the media by business leaders, gov-
ernment officials, and others speaking on public issues
often incorporate the expression of percentages. An
example, “The economy will grow by 2% this year,” has
the ring of authority because a specific figure, 2%, is
stated. However, an understanding as to how a particular
percentage figure was arrived at is more important than
the figure itself.

Similarly, an NBA basketball player may take pride in
making 65% of his shots in the course of a playing season.
If he only takes five shots per game, when his team is reg-
ularly scoring 100 points or more per game, the super-
ficial impression and the impact of the high shooting
percentage is much less, and the 65% figure is deceptive.

Real-life Applications

IMPORTANT  PERCENTAGE
APPL ICAT IONS

Percentages are calculated in a multitude of real-life
situations. The understanding and proper applications of
various percentage calculations are critical to daily living.
The most relevant of these applications are set out below:

• The calculation of any type of rate: bank interest
rate, a student loan rate, tax rate, mortgage rate.

• Education: determination of student grades. The
ranking of students will often be determined by their
grades, usually expressed as a percentage, as well as
determined by the calculation of a related applica-
tion to that of the percentage, the determination of a
percentile.

• Science: in fields such as chemistry, pharmacology, or
medicine, it is essential to be able to calculate the
concentration of a particular substance in a mixture
or solution.

• Food industry: percentages are used to determine the
relative amount of the contents of food and beverage
products, including the amount of certain fats, the
amount of alcohol by volume in liquors, and the
amount of a recommended vitamin or mineral.

• Retail sales: pricing increases and sales discounts are
almost always expressed as a percentage. It would be
difficult for businesses and customers alike if a price
reduction was expressed as 2/7 of every dollar off, as
opposed to a percentage figure.

• Social studies: any analysis of population growth,
income, spending, inflation, or unemployment is
expressed as a percentage.

• Meteorology: weather forecasts express the possibil-
ity of certain changes in the weather as a percentage;
for example, a 20% possibility of precipitation.

• Sports: percentages are used to make comparisons in
all types of competition. The shooting percentage in
basketball, a quarterback’s pass completion percent-
age in football, or baseball’s batting average have
become essential to the manner in which these sports
are understood.

• Business: a company’s current performance, the
prospects for future growth, and measures of prof-
itability and returns on investment will all be meas-
ured by percentage applications.

• Government and public service: trends in govern-
ment spending, the increases or decreases in all
aspects of the size, nature, and extent of public serv-
ice, and future projections of every kind.

EXAMPLES  OF  COMMON 
PERCENTAGE  APPL ICAT IONS

The 1% method This method of calculation is often useful
for quickly determining small percentages. Determine 1%
of the given number, and then compute the value of the
desired percent.

To calculate 3% of 1,800: if 1% of 1,800 � 18, then
3% of 1,800 � 3 � 18 � 54.

To calculate 2.5% of 1,250: if 1% of 1,250 � 12.5,
and 2% � 25.0 and 0.5% � 6.25, then the total � 31.25.

F IND ING  THE  RATE  PERCENT
Rate is the comparison between two numbers

expressed as a ratio, written as a common fraction. For
example, to express what percent of x is y: y:x or y/x, what
percent of 20 is 8: rate � 8/20 � 0.40 � 40%.

F IND ING  THE  BASE  RATE
The determination of the base rate is often a feature of

real-life calculations in business. Business finances will
often involve determining a number of rates, from how
quickly inventory is being distributed, to comparing
spending from month to month or year to year, to salary
and benefits increases or decreases. All of these determina-
tions require an understanding of base rate calculations.

Base rates are calculated by creating an equation. For
example, to determine what number is 25% of 88: x �
25% of 88, the percentage is changed to a fraction, creat-
ing x � 1/4 � 88, then x � 22. If it is desired to determine
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60% of what number is equal to 42: 60% of x � 42, the
percentage is changed to a decimal, 0.6x � 42, therefore 
x � 42/0.6, x � 70.

To apply this method of base rate calculation to a
business example: a company keeps track of its sales on a
monthly basis. What were the sales for the month of
October if the November sales of $14,352 were 115% of
October sales? October sales � x; 14, 352 � 115% of x;
14,352 � 1.15x; x � 14,352/1.15 � 12,480.

PERCENTAGE  CHANGE :  INCREASE  
OR  DECREASE

Whenever a problem is expressed by words such as
“is 15% more than,” or “is 60% less than,” or “has
increased by 180%,” or “has decreased by 38%,” the prob-
lem requires a calculation of the percentage change, as
either an increase or a decrease.

For example, 44 increased by 25% is what number?
The new number will be represented by x, whereby x �
44 � 25% of 44; x � 44 � 1/4 (44); x � 44 � 11; x � 55.

Another example: 90 decreased by 40% is what num-
ber? The formula is x � 90 � 40% of 90; x � 90 � 0.4
(90); x � 90 � 36; x � 54.

F IND ING  THE  RATE  OF  INCREASE  
OR  DECREASE

The rate of change may be expressed as the following
equation: rate of change � amount of change / original
number. For example, if 40 increases to 46, rate of change �
(46 � 40)/40 � 15%.

F IND ING  THE  OR IG INAL  AMOUNT
If the quantity after the change in a circumstance is

known, the original quantity may be found as follows: 96
is 60% more than what number? In this example, 96 is the
number after the increase. Let the original number be x:
x � 60% of x � 96; x � 0.6x � 96; 1.6x � 96; x � 96/
1.6; therefore, x � 60.

CALCULAT ING  A  T IP
A number of studies in recent years have determined

that in North America, between 30% and 50% of a typi-
cal family’s yearly budget for food is spent outside of the
home, in restaurants ranging from the typical fast food
emporiums of all types to more formal restaurant dining.
Tips and tipping are the common terms used to describe
the gratuity typically paid to a server in a restaurant for

A man carries a basketful of organic coffee beans harvested throughout the morning at a coffee plantation in Guatemala 
City. Guatemala is ranked number one in percentage of its crop rated as highest quality. AP/WIDE WORLD PHOTOS. REPRODUCED 

BY PERMISSION.
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their assistance to a diner during the course of a meal.
The money spent on the tip, which is in addition to the
cost of the food and the taxes that may apply to the pur-
chase of a meal, is therefore an important factor in the
measurement of the total cost of food spending outside
the home.

From the perspective of a server working in a restau-
rant, the correct calculation of the tip is important
because it has a direct impact upon their personal
income, as typically the tips earned by a server for their
work will constitute an important part of their earnings.

The calculation of a tip involves a percentage-based
application, usually related to the total amount of the
bill, not including sales tax. It is generally accepted that a
15% tip recognizes good service, while a 20% tip tells the
server that the service was outstanding. Tips of less than
10% are treated as an expression of the diner’s dissatis-
faction with the server and the establishment about the
meal.

Assume a 15% tip in the following examples: 15% �
15/100 � 0.15. Where a restaurant bill totals $28.56,
without tax being added to the total, to calculate the tip:
.15 � 28.55 � 4.28. Thus, the 15% tip on this bill is
$4.28.

It is unusual to leave a precise amount such as this for
the tip, especially if the bill is being paid by cash. Custom
may dictate that if the patron is paying by cash, a rounded
figure that approximates the 15% will be left for the
server, perhaps $4.25 or $4.50 in this example.

Note that when using the 1% method, this tip could
be also calculated as follows: 10% of 28.55 � 2.85; 5% is
1⁄2 of 10% � 1.43. Thus, the total is 4.28.

COMPOUND  INTEREST
Bank interest is expressed as a percentage. If funds

are left in a bank account as a savings, they will attract
what is referred to as compound interest, which is inter-
est calculated both on the principal amount as well as the
accumulated interest over time.

For example, in Year 1, $10,000 is deposited to a bank
account that will pay the depositor 4% per year. The
interest earned in Year 1 will equal $400. The interest to
be calculated in Year 2 will be calculated on the original
$10,000 as well as the Year 1 interest of $400, for a total of
$10,400. 4% � 0.04, so Year 2 interest � 10,400 � 0.04 �
$416.

Total monies in the account at the end of Year 2 will
be $10,816. The 4% rate will apply indefinitely until the
money is withdrawn in this example.

RETA IL  SALES :  PR ICE  D ISCOUNTS
AND  MARKUPS  AND  SALES  TAX

Many aspects of retail sales advertising are expressed
in percentage terms. Sale prices, discounts, markups on
merchandise, and all sales tax calculations depend on per-
centages. The various methods set out below assist in
determining the various ways that retail sales are depen-
dant upon percentages.

Discounts and markups: a discount is any sale where
the seller claims that the goods are being sold at less than
the regular or listed price. In some cases, the original
price of the item is known, as is the percentage discount.
The sale price is not known and it must be calculated, as
follows: A refrigerator was said to have a list or regular
price of $625. In the appliance showroom, there is a tag
placed on the refrigerator advertising the item as on sale
at 40% off its regular price. To find the sale price, 40% �
0.40; 40% of 625 � 0.40 � 625 � 250; 625 � 250 � 375.

In this example, the discount of 40% is $250, and the
sale price is therefore $375. As an alternative method for
calculating the sale price, 100% � 40% � 60%; 60% �
0.60; 0.60 � 625 � 375.

The next type of discount application commonly
required in retail sales is the computing of the percentage
discount advertised in any given situation. A used motor
vehicle is advertised by its owner as being for sale at a
price of $8,500. The advertisement states that the vehicle
is worth $12,000 and that it is being sacrificed at the
$8,500 price because the owner is relocating to another
country to take a new job. The percentage by which the
vehicle price is being discounted is calculated as follows:

Percentage discount � original price � sale price / 
original price � 100%; percentage discount � 12,000 �

8,500 / 12,000 � 100% � 3,500 / 12,000 � 100% � 29.17%.

The opposite concept in retail sales is the notion of the
markup. While discounts are typically a part of the retail
process that is advertised to the public, the markup is pri-
marily an internal mechanism within a particular retailer.

Items that are sold in retail stores are often manufac-
tured or assembled elsewhere, and they are purchased by
the retailer on what is known as a wholesale basis. The
ultimate sale price offered by the retail store to a pur-
chaser will be the price paid by the retailer to obtain the
item, plus an amount reflecting the relationship between
what the retailer paid for an item themselves and what it
will be sold for to the public. This amount is the markup.
It is also referred to in some businesses as a margin, as in
a business operating on a small margin, or the markup
may also be described as the gross profit (the profit before
costs and overhead is deducted). The relationship
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between cost, markup, and the retail or selling price for
any item may be expressed in this simple equation:
cost � markup � selling price.

Markups will be quoted as either a percentage of the
cost price or of the selling price of an item, depending upon
what is customary in that particular business. To compute
selling price, the following example sets out the process: A
hardware store buys drills a cost of $145 per drill. The store
marks up the cost 65% based on its cost. The selling price is
determined by 65% � 0.65; markup � 0.65 � 145 �

$94.25; selling price � 94.25 � 145 � $239.25.

Alternatively, the known markup can be added to
100%, creating a total percentage figure, to perform the
calculation: 100% � 65% � 165% � 1.65; selling price �
1.65 � 145 � $239.25.

SALES  TAX  CALCULAT IONS
In most jurisdictions in the world, anyone purchas-

ing consumer goods, ranging from bubble gum to motor
vehicles, will be faced with the imposition of a sales tax.
Such taxes, depending upon the location, may be
imposed by city, state or province, or national govern-
ments. Tax rates vary from place to place; it is common to
find 5% sales taxes. In some countries what are referred to
as goods and services taxes, when combined with existing
local taxes, can have a combined impact of 15% or more
on a consumer purchase.

When assessing the price of an item offered for sale
by a retailer, the total cost of the item must be assessed
with the applicable taxes taken into account. For example,
a new vehicle dealer is selling a pickup truck for $21,595,
plus taxes. If the applicable tax rate is 4.5%, the total cost
of the item is 4.5% � .045; tax � .045 � 21,595 �

$971.76; total cost � 971.76 � 21,595 � $22,566.78.

Another factor in relation to the calculation of costs
is the fact that the retailer may also have paid taxes on
their purchase, which are being passed along. For this rea-
son, the actual savings on a discounted item that is pur-
chased has two components: the available discount on the
price of the goods in question, and a reduction in the
sales tax otherwise applicable to the price.

For example, a television is listed at a regular price 
of $649. It is then the subject of a “one third discount.”
The total savings available to the consumer are as follows:
Price discount is 1⁄3 discount � 33.3%; discount � 0.333;
discount � 0.333 � 649 � 214.17; discount price �

649 � 214.17 � $432.88.

If the applicable sales tax was 5% the sales tax
payable on the discounted price would be tax rate 5% �
0.05; tax on discount price � 0.05 � 432.88 � 21.64;

total cost of discounted item � tax � discount price �
432.88 � 21.64 � $454.52.

Had the television been purchased at the regular price,
the sales tax would have been taxed at regular price � 0.05 �
649 � 32.45. The total cost of the television at its regular
price is 649 � 32.45 � $681.45; total savings on the dis-
counted television purchase is regular price total cost �
discounted price total cost: 681.45 � 454.52 � $226.93.

REBATES
A variation on the notion of discounts is that of the

rebate. A rebate occurs where a retail business sets a par-
ticular advertised or published sale price, and then will
offer to refund or discount to the customer a fixed
amount or percentage of the sale price. Rebates are fre-
quently advertised in retail sales, and they are most com-
mon in the automotive sector, and they are also employed
in the sale of various kinds of electronic devices and com-
puter hardware.

For most circumstances, a rebate will have the same
effect on a transaction as does a discount: a price that is
the subject of a 10% rebate will have the same effect on a
transaction as a 10% discount. However, there is one dis-
tinction between the impact of a discount and that of a
rebate when the rebate is not offered at the retailer, but by
way of the format known as a mail-in rebate.

For example, at a computer store that offers various
types and brands of computers for sale, a particular com-
puter manufacturer is offering a new computer monitor
for sale at a price of $399, less a $50 mail-in rebate. The
computer is purchased in accordance with the following
transaction: sale price � 399; sales tax rate � 5% � 0.05;
sales tax � 0.05 � 399 � $19.95; total cost � 399 �

19.95 � $418.95.

The purchaser is provided with a mail-in rebate card,
which sets out the terms of the rebate, namely that upon
receipt of the card, the manufacturer will send the sum of
$50 payable to the purchaser within 60 days. Therefore, after
60 days, plus the time it takes to deliver the rebate to the
manufacturer, the net cost to the purchaser shall be $368.95.

Two percentage-based calculations come into play in
this mail-in rebate example. First, the difference is sales
tax payable between the mail-in rebate and an identical
discount; second, the 60 days or greater that the cus-
tomer’s $50 is out of the customer’s control.

SALES  TAX  CALCULAT ION :  IN -STORE
D ISCOUNT  VERSUS  MA IL - IN  REBATE

If a $50 discount had been applied to the computer
monitor purchase at the time of the transaction, the sale
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price would have been reduced to $349, resulting in a
total cost to the purchaser of sales tax � 0.05 � 349 �
$17.45; total cost � 349 � 17.45 � $366.45.

The difference between the rebate being obtained by
the mail-in method and the discount being calculated at
the time of purchase at the store is $2.50. To calculate the
percentage difference between the total cost of the in
store discount purchase and that of the 60-day rebate
purchase: rebate cost / discount cost � 100% � percent-
age difference, or 368.95 / 366.45 � 100% � 1.006%.

To express the cost difference between the in-store
discount and the mail-in rebate, the mail-in rebate
process is 1.006% more expensive. This calculation as set
out here does not place a value on other likely costs,
including the time the purchaser would take to complete
the rebate form, mail the rebate, and other associated
steps required to have the rebate processed.

IMPACT  OF  THE  60 -DAY  
REBATE  PER IOD  ON  THE  COST  
OF  THE  PRODUCT

As was noted in the examples dealing with the calcula-
tion of percentages, an interest rate measures the value of
money over a period of time. Interest rate calculations are
useful not only to calculate an increase in the value of
money (such as the rate on interest being compounded on
money being held in a bank account), but as is illustrated by
the 60-day rebate, the interest rate percentage calculation
can be used to confirm a loss of value over a period of time.

The calculation of the difference in the total cost of
the refrigerator confirmed that the in-store discount total
price of $366.45 was $2.50, or 1.006% less than the mail-
in rebate total price of $368.95. The next calculation will
illustrate what happens to the $50 rebate during the 
60-day rebate period.

Assume that if the $50 were placed in a bank
account, it would earn interest at a rate of 4% per year.
Had the customer purchased the refrigerator by way of an
in-store discount, the $50 discount would have been an
immediate benefit to the purchaser, deducted at that
point from the price paid to the retailer.

By waiting 60 days to receive the rebate (the mini-
mum period, given that as a mail-in rebate there are addi-
tional days of mail and processing by the manufacturer),
the purchaser lost an opportunity to use that $50 sum.
The percentage interest calculation will place a value on
that loss of opportunity: loss � value of rebate � number
of days rebate not available / length of the year � interest
rate; value of rebate � $50; mail-in period � 60 days;
year � 365 days; interest rate � 4% � 0.04; loss � $50 �
60 / 365 � 0.04; loss � 50 � 0.164 � 0.04; loss � 0.205.

In this example, the loss of opportunity for the pur-
chaser on the $50 rebate paid to the purchaser after 60
days is a small figure, 20.5 cents. The total difference in
cost between the in-store discount purchase and the
rebated purchase is the difference in total cost, $2.50, and
the loss of opportunity on the $50 rebate, $0.205, for a
total of $2.705.

However, as with most retail sales examples using rel-
atively small numbers, it is easy to understand the impor-
tance of these percentage calculations where the retail price
is 10 or 100 times greater. The percentages do not change,
but where the percentages are applied to larger numbers,
the potential impact on a purchaser is considerable.

UNDERSTAND ING  PERCENTAGES  
IN  THE  MED IA

It is virtually impossible to read a news article,
whether in paper format or by way of Internet service, that
does not make at least one reference to a statistic that is
described by way of a percentage. Sports, television ratings,
employment, stock prices: all are commonly described in
terms a percentage. In the media, it is common for per-
centage figures to be stated as a conclusion. For example,
the income tax rate will be increased by 2.5% next year, for
all persons earning more than $75,000 per year.

To properly understand how things such as the con-
sumer price index, the inflation rate, the unemployment
rate, and similar issues are reported in the media, it is
important to keep in mind the mathematical rules con-
cerning percentages and how they are calculated.

The Consumer Price Indexes (CPI) program pro-
duces monthly data on changes in the prices paid by
urban consumers for a representative basket of goods and
services. Comparisons between prices on a month-by-
month basis are useful in determining whether living
costs are going up or down. To put it another way, the CPI
tells how much money must be spent each month to main-
tain the same standard of living month to month, as the
CPI values the same items to be purchased each period.

The CPI is based upon a sample of actual prices of
goods that are grouped together under a number of cate-
gories such as food and beverages, clothing, transporta-
tion, and housing. Each individual item is priced, and the
entire costs of the categories are compared with a selected
base period. There are a number of adjustments that are
also factored into the calculations, to take into account
seasonal buying patterns at holidays and well-known sale
periods.

The CPI calculations are made as follows: the base
period, representing the time against which the current
comparison will be made, is equal to 100, based upon 1990



P e r c e n t a g e s

R E A L - L I F E  M A T H 379

reference data. Assume that the period to be compared is
in November 2005: 1990 base price � $100.00; November
2005 price � $189.50.

The increase in the CPI index from 1990 to November
2005 is 89.5% or (189.50 � 100.00)/100. If the December
cost of the consumer basket is 191.10, the increase from the
base period of 1990 is 91.10% or (191.10 � 100.00)/100. To
calculate the percentage increase between November and
December, the following process must be carried out: the
November value of 189.50 must be subtracted from the
December value of 191.10, for an increase of 1.60% when
compared to the 1990 rate. To calculate the percentage change
between November and December: 1.6%/ 189.5% � 100% �
0.0084 � 100 � 0.84%. Therefore, there was a 0.84%
increase in the consumer price index in this example
between November and December.

PUBL IC  OP IN ION  POLLS
From time to time, specialist organizations, known

as polling companies, will be commissioned to gather
data from a segment of the population concerning par-
ticular issues. The question asked of the people polled
may involve a large national issue, such as whether capi-
tal punishment ought to be permitted, or whether the
maximum speed limits on national highways should be
increased or decreased. In some instances, the polling
organization may be hired to obtain the opinions of the
public in relation to issues that pertain to a local concern,
such as whether a town should permit a casino to be con-
structed within its boundaries.

The manner in which public opinion polls are car-
ried out is a branch of social science. The methods used
by the pollsters in the asking of the questions, the num-
ber of people who form the sample upon which calcula-
tions are made, and the age and the background of the
responders are all factors that may impact upon the
answers given to the polling company.

From the perspective of percentages, it is important to
appreciate that virtually all such public opinion polls are
translated, and reported in the media, as a percentage fig-
ure. The meaning to be attached to the percentage quoted
as the result of the poll must be examined carefully.

For example, a sample of 4,000 people were asked the
following questions: Should cigarette sales in their city be
banned completely? Should smoking be banned in every
public place in their city? For the first question, the fol-
lowing results were noted: 1,900 said, “yes”; 1,800 said,
“no”; 250 were “not sure”, and 50 “refused to answer.” For
the second question, the following results were noted:
2,100 said, “yes”; 1,550 said, “no”; 300 were “not sure”;
and 50 “refused to answer.”

What are the different ways that the results of each of
these questions can be expressed as a percentage?
Depending upon how the percentage calculation is used
in each case, what answers may be given to each of the ques-
tions? The percentage calculation for each answer to ques-
tion 1 on the ban of cigarette sales is “yes” � 1,900/4,000 �
47.5%; “no” � 1,800/4,000 � 40%; “not sure” � 250/
4,000 � 6.25%; “refused” � 50/4,000 � 1.25%.

If the poll was to exclude those who refused to
answer the question, and only calculate the responses
from people who did answer, the percentages for each
answer are “yes” � 1,900/3,950 � 48.1%; “no” �

1,800/3,950 � 345.6%; “not sure” � 250/3,950 � 6.3%.

If the poll were further defined as all respondents
who had made up their minds and therefore had a posi-
tive opinion on the issue, the formula is “yes” �

1,900/3,700 � 51.35%; “no” � 1,800/3,700 � 48.65%. By
taking these steps, the polling company might choose to
state this result as “more than 50% of respondents to the
poll who had formed an opinion on the question were in
favor of a ban on the sale of cigarettes in the city.”

If the poll is defined by who is in favor of the ques-
tion, the formula is “yes” � 1,900/4,000 � 47.5%; “all
other responses” � 2,100/4,000 � 52.5%. The polling
company might state this result as “less than 50% of all
respondents to the poll stated that they were in favor of a
ban on cigarette sales in the city.”

The result to the question 2 to ban cigarette smoking
in public places generates the following percentage cal-
culations: “yes” � 1,650/4,000 � 41.25%; “no” �

1,550/4,000 � 38.75%; “not sure” � 700/4,000 � 17.5%;
“refused” � 100/4,000 � 2.5%.

Using the same analysis as carried out with question 1,
if the persons who refused to answer the question are also
eliminated from the sample: “yes” � 1,650/3,900 �

42.3%; “no” � 1,550/3,900 � 39.8%; “not sure” �

700/3,900 � 17.9%.

If the persons who were not sure in their answers to
the question are removed from the sample: “yes” �

1,650/3,200 � 51.5%; “no” � 1,550/3,200 � 48.5%.

In the same manner as is set out in the question 1
analysis, the manner in which the percentages are calcu-
lated in each case can support different conclusions. With
the question 2 calculations, when the whole sample of
4,000 answers is examined, only 41.25% of those ques-
tioned supported the ban on smoking in public places. By
restricting the sample to those with a definitive opinion,
a majority of those questioned may be said to support the
proposed ban.
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US ING  PERCENTAGES  
TO  MAKE  COMPARISONS

It is common in media reports to compare different
results in related topics. For example, government spend-
ing may be reported in a particular year as having
increased 5% over the previous year. The population of a
particular state may be stated as having increased by 3%
over the past decade.

These calculations are relatively straightforward,
because the comparison is being made between single
entities, namely a government budget, which would be
calculated and measured to be reflected as a total figure,
or population, which would have been measured by way
of a population count, known as a census.

Percentages are more difficult to put into perspective
when they are employed to compare less certain items.
For example, if the two public opinion questions and the

various answers are compared by way of percentage cal-
culations, the results are not always certain.

In question 1, when only the respondents who had
either a yes or a no opinion were calculated, the number
of those in favor of the ban on cigarette sales was 51.35%,
and those opposed to such a ban was 48.65%. In the ques-
tion 2 analysis, when only the respondents with a yes or
no opinion were counted, the number of those in favor of
banning smoking in all public places was 51.5%, those
opposed totaled 48.5%.

Based upon the determination of percentage figures
that are virtually identical (51.35% and 51.5%) in each
question, it would be possible to state the following as a
conclusion from the two sets of polling questions, namely
a majority of people in the city are in favor of both a ban
on cigarette sales and a ban on smoking in all public places.

However, having worked through the calculation to
each of the percentages that form the basis of this state-
ment, it is also clear that the use of those percentages in
the manner contemplated by this conclusion is not the
entire picture. If other parts of the calculation are used to
determine a conclusion, it could also be stated that as
47.5% of all respondents were in favor of the ban on cig-
arette sales, and then a further 41.25% were in favor of
the public places ban, the following conclusions are valid:
less than 50% of persons polled were in favor of any
restriction upon cigarette purchase or usage in the city; a
little over 2 out of 5 people polled were in favor of these
restrictions.

Percentages and statistics of all types are often stated
as a definitive answer or conclusion to an issue. As illus-
trated in the questions posed above, it is important that
the method employed in calculating the percentage be
understood if one is to truly understand the significance
of the percentage figure that is stated as a conclusion.
Where the methodology behind a particular percentage is
not stated in a particular media report, the percentage
must be regarded with caution.

SPORTS  MATH
Another common media report in which percentages

are employed in a variety of ways is that of the sports
commentary. There are a seemingly limitless number of
ways that sport and athletic competition commentaries
are enhanced by the use of statistics, many of which are
dependent upon percentage calculations.

In the media, there is a recognition that certain sta-
tistics go beyond analysis of an individual performance,
but are descriptors that convey a definition of enduring
excellence. The “300 hitter” is a description applied to a

Miami Heat’s Dwayne Wade goes up and scores against the
Atlanta Hawks in the game in Miami. Players are often rated
by percentages, such as their field goal percentage. AP/WIDE

WORLD PHOTOS. REPRODUCED BY PERMISSION.
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solid offensive professional baseball player, while a “400
hitter” is in an ethereal world inhabited by legends like
Ted Williams and Ty Cobb. A 90% free-throw shooter in
basketball has a similar instantaneous public recognition.

The American humorist Samuel Langhorne
Clemens, better known as Mark Twain (1835–1910), once
said that there are three kinds of lies: % lies, damn lies,
and statistics. Whenever a percentage is referenced in a
sports article, as with any other media usage of percent-
ages, care must be taken to determine whether the per-
centage figure being quoted is an accurate indicator of
performance, or whether at best it is a lesser or insignifi-
cant fact adding only color, and not necessarily insight,
concerning the sporting event.

Sports examples of percentage calculation usage are
based on daily examples found in the media around the
world. For instance, in basketball, an example would be
Amanda and Claire as members of their girls’ high school
basketball team. The coach of the team has been asked to
select a most valuable player for the season. While the
coach has a personal view of each player based on his
assessment of their play through practice and games all
season, he decides to do an analysis of their respective
offensive statistics. Each player had the following 
statistics after the completion of the 20-game high school
season: Amanda scored 160 total points; 108 2-point
shots attempted; 62 2-point shots made; 10 3-point shots
attempted; 6 3-point shots made; 21 free throws
attempted; 18 free throws made; 17.5 minutes played per
32-minute game. Claire scored 322 total points; 341 
2-point shots attempted; 125 2-point shots made; 22 
3-point shots attempted; 5 3-point shots made; 81 free
throws attempted; 57 free throws made; 28.8 minutes
played per 32-minute game. The team scored 887 points
on the season.

How can percentages be used to help determine who
is having the better season? Conversely, do percentage cal-
culations distort any elements of the performance of
these players?

If the 2-point shooting of each player is compared,
by calculating the percentage accuracy of each player
through the entire season, the following comparison 
can be made: Amanda � 62 shots made/108 shots
attempted � 57.4%. Claire � 125 shots made/341 shots
attempted � 36.66%.

The 3-point shooting percentage calculation is as fol-
lows: Amanda � 6 shots made/10 shots attempted �

60%. Claire � 5 shots made/22 shots attempted � 22.7%.

The players’ free-throw shooting percentages are cal-
culated as follows: Amanda � 18/21 � 85.7%. Claire �
57/81 � 70.4%.

If a newspaper report was written setting out the
coach’s analysis of the respective play of Amanda and
Claire, it is quite possible that such a report might
describe Amanda as a better shooter than Claire because
her shooting percentages in every area of comparison (2-
point shooting, 3-point shooting, and free-throw shoot-
ing) are better than Claire’s. Conversely, Claire has scored
the most points and she has played more minutes per
game than Amanda. When those statistics are assessed,
the following percentage calculations can be determined:
For Amanda, 160 points scored/887 team points scored �
100% � 18% of the team offense. For Claire, 322 points
scored/887 team points scored � 100% � 36.3% of the
team offense.

Further, Amanda generated her 18% of the team
offense while playing 17.5 minutes per game. Claire pro-
duced her 36.3% of the team offense while playing 28.8
minutes per game.

There are certain hard conclusions that the coach in
this scenario may have reached based upon the percent-
age calculations that pertain to Amanda and Claire.
Amanda is a more accurate shooter in every aspect of the
shooting game. It is likely that based upon these percent-
ages, the coach will create opportunities for Amanda to
shoot more often next season.

However, as with many applications of the percent-
age calculation in a sports context, it is important to have
more information about the team and the players to give
the percentage statistics more context, and to put the per-
centages into a better perspective. If Amanda is a weak
defensive player, her offensive percentages are placed in a
different light. If Claire had performed all season known
to all rivals as the team’s best player, and thus attracted
extra attention from opponents, her shooting percentages
would be weighed differently.

Baseball statistics may be the most identifiable per-
centage in sport, usually expressed as a decimal. For
example, a strong hitter in the North American profes-
sional leagues will be referred to as a “300 hitter,” mean-
ing a batsman with an average of 0.300, or a 30%, success
rate. This percentage is calculated by the following 
formula: Number of hits/Number of at bats � 100% �
Batting average.

However, as befits a sport that has been played pro-
fessionally in North America since the 1870s, statistics
have grown out of the game, some clear to even the aver-
age fan, and some very obscure. A key percentage used to
calculate offensive contributions is that of “on base per-
centage,” which measures how often a batter advances to
first base by any of the means available in baseball,
namely hit, walk, hit by pitched ball, etc. The percentage
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is calculated by the following formula: Total number of
times on base / Total number of at bats or plate appear-
ances � 100% � On base percentage.

A very intricate set of percentages has made its way
into the analytical end of baseball through the work of
Bill James. His approach, which he termed sabermetics, is
an attempt to use scientific data collection and interpre-
tation methods that employ various types of percentages
in different aspects of baseball to conclude why certain
teams succeed and others fail.

North American football is also riddled with statis-
tics. One of those measurements is that concerning the
most prominent player on the field, the quarterback. How
often the quarterback may successfully throw the ball
down field is an important statistic, referred to as passing
completion. This percentage is calculated by: Number of
passes completed/Number of passes thrown � 100%.

However, much like the basketball examples set out
above, this percentage on its own is potentially deceiving.
A quarterback who throws 80% of his passes for comple-
tions, but never throws a pass for a score, is unlikely to be
as successful as the 50% passer who throws for 20 touch-
downs in a season.

TOURNAMENTS  AND  CHAMPIONSH IPS
With the rise in the popularity and the sophistication

of college sports in the United States, coupled with the
impossibility of having hundreds of teams in a given sea-
son playing one another head to head, statistical tools
were developed to weight the relative abilities of teams
that would not necessarily meet in a season, but each of
whom would seek selection to an elite end-of-season
tournament or championship.

In American college basketball, hockey, and football,
tournament selection is made using what is known as the
RPI, or ratings percentage index. This interesting and
much debated tool is defined in college basketball as fol-
lows: RPI � Team winning percentage/25% � Oppo-
nents winning percentage/50% � Opponents’ opponents
winning percentage/25%.

If a team had a record of 16 wins and 12 losses in a sea-
son, they would therefore have a team winning percentage of
16 of 57.14%. The team played opponents whose total
record was 400 wins and 354 losses. The opponents’ winning
percentage is 53.05%. These opponents played teams whose
winning percentage was 49.1%, the opponents’ opponents’
winning percentage: RPI � 57.14/25 � 53.05/50 � 49.1/25,
which is RPI � 2.28 � 1.06 � 1.96 � 5.304.

A team will typically have a bigger and better RPI if
the team combines its own success with an ability to beat

strong opponents that have themselves played a strong
schedule. Therefore, a team at the end of a particular sea-
son that has a lesser record than a rival, but that has
played what the RPI determines to be a demonstrably
more difficult schedule, may be selected to compete over
the team with the better win/loss record. The RPI has a
number of nuances that are not the subject of this text,
but it is important to understand that the percentage cal-
culation is at the root of any RPI determination.

Percentiles

The percentile is a ranking and performance tool
that is closely related to the concept of percentages. A per-
centile represents a place on a scale or a field of data, pro-
viding a rank relative to the other points on the scale.
Percentiles are calculated by dividing a data set into 100
groups of values, with at most 1% of the data values in
each group.

Percentages can be expressed in any number from 0
to virtual infinity, with either a positive or negative value
as circumstance may determine. However, it is commonly
accepted that in many applications where a percentage
calculation determines a grade or a score in a particular
activity, the percentage is expected to be between 0% and
100%. For example, where a school assignment was
graded at 17/20, the assignment has a percentage grade
of 85%.

In situations where there is a large class of students,
it is often desirable to rank them in order of performance.
Ranking provides a measure of how a particular student
has performed relative to every other comparable stu-
dent. For example, hundreds of thousands of potential
university students in the United States, with many thou-
sands more worldwide, test for the standard Scholastic
Aptitude Test (SAT) every year. The SAT is tested at a
multitude of test sites, at various times. Each test in a
given year is similar, but the exact questions asked on
each of the tests will vary. The SAT has a complicated
scoring system generating scores from 0 to 1600, and the
administrators of the test recognize that assessing stu-
dents who have taken different versions of the SAT is very
difficult. For this reason the percentile ranking becomes
important, as it measures where every student stands rel-
ative to every other student who took the test.

Determining where an individual students stands
relative to everyone else who took the test is a terrific tool
with which to assess relative performance. This determi-
nation is done by calculating the percentile.
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SAT  SCORES  OR  OTHER  
ACADEMIC  TEST ING

The percentile grew from the concept of percentages;
for that reason, founded upon the concept of 100, and if
the data comprising the test results is regarded as a unit of
100, percentile ranking proceeds in bands from 0 to 99,
with the 99th band being that that includes the highest
score or scores in the sample.

Each percentile in the sample may have more than
one score within it. Further, percentiles are not sub-
divided. For example, there may be as many as 20,000 test
scores produced from one round of SAT testing. If eight
students scored a perfect 1600 on the SAT, they would
each be described as having a result in the 99th percentile
even if, say, 10 students with slightly lower scores were
also in the 99th percentile. Similarly, if the 55th per-
centile, representing 1% of all scores from that test, was
determined to be all of the scores between 1010 and 1040,
all scores within that percentile band would be described
as in the 55th percentile.

One formula to calculate the percentile for a given
data value is: Percentile � (number of values below x �
0.5)/number of values in the data set � 100%.

As an example, the following is a sample of the shoe
sizes for a 12-member high school boys basketball team:
Sample: 14, 12, 10, 10, 13, 11, 10, 9, 9, 10, 11, 9. How is the
percentile rank of shoe size 12 determined? First, the shoes
sizes must be arranged in values smallest to largest, which
create this set: 9, 9, 9, 10, 10, 10, 11, 11, 12, 13, 14. The num-
ber of values below 12 is eight, and the total number of
values in the data set is 12. The formula to express the per-
centile rank of the value 12 is (8 � 0.5)/12 � 100% �

70.83%. The percentile ranking of the value of the size
12 can therefore be expressed as the 1st percentile.

To calculate the percentile ranking of the size 10,
there are three identical sizes in the data set. There are
three values in the set below 10. The formula would be
(3 � 0.5)/12 � 100% � 29.1%. The percentile ranking of
the value of all three of the size 10s is expressed as the
29th percentile.

It is also common to express a ranking using a broader
term. For example, a student may be described as being in
the top 20% of their class, or in the top quarter. These
expressions are a paraphrasing of the percentiles known as
deciles (groups of 10 percentiles) and quartiles (groups of
25 percentiles). Deciles divide the data set into 10 equal
parts, and quartiles divide the set into four equal parts.

The 50th percentile, the 5th decile, the 2nd quartile,
and the median are all equal to one another.

Final grades in academic courses are typically expressed
as a percentage. Even where alternate methods are used to

express performance (as with alpha grades A through F),
or as a grade point average, each alternative has an equiv-
alency expressed as a percentage. The percentages are
then matched to a particular letter grade that has a range
of percentages within it. For example, A� is the equiva-
lent of 90–100%; A is the equivalent of 80–89%; B is the
equivalent of 70–79%; C is the equivalent of 60–69%; D
is the equivalent of 50–59%; and F is the equivalent of
below 50%.

Letter grades function in a similar way as percentiles,
in that each grade includes a potential range of percent-
age scores, and like the percentile, the percentage scores
are not ranked within the assigned grade.

Any area of human performance that is subject to
ranking will likely employ percentiles as a measuring
stick. Topics can be as diverse as the relative rate of obe-
sity in children, ranking increases or decreases in funding
rates for hospitals and schools, and comparing the rela-
tive safety rates in relation to speed on highways. These
are three of the almost limitless ways that percentiles can
be used to assist in a ranking of performance.

Potential Applications

The better understanding of a multitude of everyday
concepts and activities will be determined, directly or
indirectly, by an appreciation of the ability to perform the
percentage calculation.

As further examples, percentages play a key role in
the following areas:

• Voting patterns and election results: Percentages are
used to take the large numbers of persons who may
vote in an election, and reduce the figures to a result
that is often easier to understand.

• Automobile performance: Octane is a term that is
familiar to everyone who has ever used gasoline as a
fuel for a vehicle. In general terms, the octane rating
refers to how much the fuel can be compressed
before spontaneously igniting, an important factor
in optimizing the performance of the internal com-
bustion engine. While the public generally associates
high octane requirements as required for certain
motor vehicle models with more powerful engines
and vehicle performance, the octane rating repre-
sents the percentage between the hydrocarbon
octane (or similar composition) in relation to the
hydrocarbon heptane. For example, an 87 octane rat-
ing (a common minimum in the United States) rep-
resents an 87 percent octane, 13 percent heptane
mixture in the fuel.



P e r c e n t a g e s

384 R E A L - L I F E  M A T H

• Clothing composition and manufacture: Most
clothing is sold with a tag or other indication as to
its material composition. For example, it is com-
mon to see a label on a shirt indicating 65% cot-
ton, 35% polyester, or a sweater marked as 100%
wool.

• Vacancy rates: The availability of vacant apartment
space in a particular city is of great importance 
to prospective residents and existing apartment
dwellers alike. The vacancy rate is expressed as a per-
centage to provide interested persons with an indica-
tor as to the relative ease or difficulty to obtain
particular types of rental accommodation. Vacancy
rates can be viewed as of a particular period (for
example, the vacancy rate in Spokane was 1.8% in
April), or as a calculation increase or decrease from

period to period (for example, the vacancy rate in
Toronto fell 0.7% last month).

Where to Learn More
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Key Terms

Fraction: The quotient of two quantities, such as 1/4.

Percentage: From Latin per centum, meaning per hun-
dred, a special type of ratio in which the second
value is 100; used to represent the amount present
with respect to the whole. Expressed as a percent-
age, the ratio times 100 (e.g., 78/100 � .78 and
so .78 � 100 = 78%).

Ratio: The ratio of a to b is a way to convey the idea of
relative magnitude of two amounts. Thus if the num-
ber a is always twice the number b, we can say that
the ratio of a to b is “2 to 1.” This ratio is some-
times written 2:1. Today, however, it is more com-
mon to write a ratio as a fraction, in this case 2/1.



R E A L - L I F E  M A T H 385

Overview

A perimeter is the boundary of an area or shape. Its
measurement is the total length along the border or outer
boundary of a closed two-dimensional plane or curve.
The origin of the word perimeter comes from the Greek
words peri (around) and metron (to measure).

The application of perimeters in everyday life is
widespread when determining a wide range of mathe-
matical problems such as the amount of fencing needed
to encompass a homeowner’s property; the number of
miles of beach property along a lake; and the distance
around the equator of Earth.

Fundamental Mathematical Concepts
and Terms

One of the simplest equations for solving a perime-
ter is that of a square or rectangle, which is the sum of its
four sides. The general equation for determining the
perimeter of a rectangle is p � 2W � 2L, where W �
width of the rectangle and L is the rectangle’s length.
Knowing that a rectangle always has four sides with
opposite, equal widths and lengths, a rectangle (for exam-
ple) with length of 4.3 meters (about 14.1 feet) and width
of 6.4 meters (21 feet) has a total perimeter length of
p � 2 (6.4 meters) � 2 (4.3 meters) � 12.8 meters �
8.6 meters � 21.4 meters (about 70.2 feet).

The equation that determines a perimeter of a circle
(also known as its circumference) is p � 2�r or p � �d
(where � � approximately equal to 3.14159, r � radius of
the circle, and d � circle’s diameter and d � 2r). As a spe-
cific example, a circle with a diameter of 7.5 meters
(about 24.6 feet) has an approximate perimeter of p � �

(7.5 meters) � 3.14159 (7.5 meters) � 23.6 meters
(about 77.4 feet). By knowing the shape of a simple fig-
ure, such as a triangle, hexagon, square, or pentagon, its
perimeter can be easily calculated. More complicated fig-
ures, such as an ellipse, need the tools of calculus in order
to calculate its perimeter.

A Brief History of Discovery 
and Development

Archimedes is known to have found the approximate
ratio of the circumference to diameter of a circle with cir-
cumscribed and inscribed regular hexagons. He com-
puted the perimeters of polygons obtained by repeatedly
doubling the number of sides until he reached ninety-six

Perimeter
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sides. His method for finding perimeters with the use of
circumscribed and inscribed hexagons was similar to that
used by the Babylonians (whose civilization endured from
the eighteenth to the sixth century B.C. in Mesopotamia,
the modern lands of Iraq and eastern Syria).

Real-life Applications

SECUR I TY  SYSTEMS
A physical barrier around the perimeter of a building

may stop or at least delay potential intruders from penetrat-
ing inside. Such physical barriers include fences, brick or
concrete walls, and metal fencing. A well-known outer
perimeter barrier surrounds the White House complex in
Washington, D.C., which includes very substantial physical
fencing, Secret Service agents, and an assortment of televi-
sion cameras and high-tech sensors. An effective perimeter
security system, especially for critically important proper-
ties, may include a combination of several physical barriers,
an electronic detection system, and numerous manual pro-
cedures.A single barrier completely around the perimeter of
a protected property could take only a few seconds to pene-
trate, while multiple barriers will typically take longer to
penetrate. Taller and stronger perimeter barriers will further
increase the time it takes an intruder to gain entry to a site.

In all cases, in order to effectively secure a property,
the physical barrier must completely surround the prop-
erty’s perimeter. As a result, the installers of a perimeter
barrier must first measure the number of feet (or meters)
in the perimeter. Because of this measurement, these pro-
fessionals must know the appropriate equations to calcu-
late the perimeter of a square, rectangle, circle, and other
shapes. In many instances, numerous equations will need
to be combined due to irregular-shaped perimeters
around a facility or property. Because of increased risks of
terrorism and criminal activities around the world, secu-
rity that involves total perimeter protection is becoming
more popular at governmental, industrial, and commer-
cial facilities such as airports, correctional centers, court
houses, entertainment complexes, military bases, and
police stations, along with residential homes.

LANDSCAP ING
The use of perimeters in landscaping is a common

way to design for particular purposes. For instance, com-
mercial properties may use certain plants and shrubs
along the perimeter of their facility for the following rea-
sons: to completely isolate the facility from the public; to
create a visual separation between the facility and the
public; to soften the appearance of streets, parking areas,

and other exterior buildings and structures; and to pro-
vide summer shade on parking areas.

Defining a landscape’s outer boundaries (its perime-
ter) with respect to the interior buildings, gardens, and
other structures and materials often help to create a better
visual effect for the entire property. Homeowners with
small urban properties, where neighbors live in close prox-
imity to each other, naturally lean toward defining their
perimeters with the use of fencing, hedges, shrubs, trees,
and other similar structures. These materials are used for
such reasons as identification of property lines, privacy,
and overall aesthetic beauty. When larger properties are
involved, perimeter framing is less used because of fewer
concerns for privacy and other such considerations. How-
ever, large properties without visible exterior boundaries
will often allow such an open area to look more exposed
and unfinished—thus detracting from the overall beauty.
Simple placement of plantings along the perimeter will
make the entire area look more organized and cohesive.
Unless privacy, unattractive outside views, or intrusion of
wildlife are a concern, most perimeter plantings only need
a light planting of trees and shrubs of various densities,
sizes, and textures. In all cases, accurate calculations with
respect to the total length of the perimeter is essential.

Perimeters are not only used to define the boundary
line of a property. Landscaping within a property can also
use perimeter-planting when planting around the
boundary of a perennial flower gardens, houses, swim-
ming pools, or other such structures. In each instance, the
measurement of perimeters is important when designing
an outside landscape.

SPORT ING  EVENTS
Knowledge of the perimeter of various sport fields is

important with respect to the watching, playing, and dis-
cussing of the games. For example, the perimeter of an
American football field (excluding the end zones) is 920 feet
(280 m): two lengths of each 300 feet (91 m) and two widths
each of 160 feet (49 m). Since each end zone is 30 feet (9 m)
long, the perimeter of each end zone is (30 � 30 � 160 �
160) feet � 380 feet. Thus, the total perimeter of a football
field including the two end zones is 1,680 feet (about 512 m).
Playing strategies by coaches and players depend on know-
ing the exact measurements of a field’s perimeter in such
sports as football, soccer, tennis, baseball (which can vary
depending on the size of the stadium), basketball, and
hockey.

BODIES  OF  WATER
The calculation of perimeters of bodies of water such

as lakes and swimming pools is important for many
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reasons. Because shorelines are very valuable property
with regards to investments, people like to build expensive
houses along lakes. Therefore, it is important to accurately
measure the perimeter around a lake so, by knowing the
length of each house lot, the possible number of total
houses built can be figured. This information is very
important, for instance, when surveyors and building con-
tractors are first plotting out new lakeside developments.

When first building swimming pools that are to be
used for competitions, it is important to know the perime-
ter of the pool so that the proper number of lanes can be
built. For example, the world swimming organization
FINA (International Amateur Swimming Federation or, in
French, Fédération Internationale de Natation Amateur)
states that the official dimensions for pools used for
Olympic Games and World Championships are to be of a
total length of 50 meters (164 ft) and a total width of 25
meters (82 ft), with two empty widths of 2.5 meters (8 ft)
at each side of the pool. With this information, it is easily
calculated that an Olympic-sized pool must have a
perimeter of 150 meters (about 492 ft) and contain eight
lanes, each with a width of 2.5 meters. That is, the total of

25 meters of width consists of 20 meters (66 ft) of lanes (8
lanes � 2.5 meters per lane � 20 meters) and 5 meters 
(16 ft) of empty lanes (2 empty lanes � 2.5 meters per
lane � 5 meters).

MIL I TARY
The United States military has an important need for

physical security barrier walls and systems that can pro-
tect its ground forces, military fighting assets such as air-
planes and tanks, and critical infrastructure assets from
hostile actions. These materials are set up around the
perimeter of critical structures, soldiers, and materials in
order to assure that enemy forces do not penetrate, attack,
and destroy such critical personnel and hardware. These
perimeter security devices can be simple, portable coaxial
cables laid around the perimeter of buildings, properties,
or assets, which emit multiple radio-frequency signals.
Strategically placed receivers monitor the signals and trig-
ger an alarm when there is a disturbance along the pro-
tected perimeter. Other more complex perimeter security
devices can be high-technology corrugated metal barriers
that can withstand the blast of high-order detonations

One side of the perimeter of a farm is marked with a fence. TERRY W. EGGERS/CORBIS.
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and anti-ram barriers that can withstand the repeated
assault by enemy tanks and other motorized vehicles.

Potential Applications

PLANETARY  EXPLORAT ION
Perimeter is such a general term within mathematics

that its use will always be important for new applications.
For example, as mankind ventures further into the solar
system, unmanned rovers with portable power supplies,
such as rechargeable batteries, may depend on supple-
mentary power generated on stationary landers. As the
rover explores a pre-determined area of a celestial body,
such as the moons of Saturn and Jupiter, it would return
to the central lander to recharge its power supply. This
method is very similar to how motorists check their fuel
gauge to make sure they are not too far away from a gas sta-
tion when the arrow points near empty. In such a scenario,
aerospace scientists would calculate the straight-line
perimeter of maximum exploration for the rover in order
to assure that the rover would never venture too far from
its power supply. Knowing this maximum number of kilo-
meters, the scientists then keep track of the actual mileage
of the rover, most likely within an internal sensor of the
rover, to accurately predict when to return to base camp.

ROBOT IC  PER IMETER  DETECT ION
SYSTEMS

The U.S. Department of Defense’s Defense Advanced
Research Projects Agency (DARPA) and Sandia National
Laboratories’ Intelligent Systems & Robotics Center

(ISRC) are developing and testing a perimeter detection
system that uses robotic vehicles to investigate alarms
from detection sensors placed around the perimeter of
protected territories and buildings. Such advanced 
technologies that involve the use of perimeters allow
humans to perform other, more important tasks, and
eliminate the loss of human lives from investigating possi-
ble intrusions.

Where to Learn More

Books

Bourbaki, Nicolas (translated from French by John Meldrum).
Elements of the History of Mathematics. Berlin, Germany:
Springer-Verlag, 1994.

Boyer, Carl B. A History of Mathematics. Princeton, NJ: Prince-
ton University Press, 1985.

Bunt, Lucas N.H., Phillip S. Jones, and Jack D. Bedient. The His-
torical Roots of Elementary Mathematics. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1976.

Web sites

Rores, Chris Rorres. Drexel University. “Archimedes.” Infinite
Secrets. October 1995. �http://www.mcs.drexel.edu/
~crorres/Archimedes/contents.html� (March 15, 2005).

Sandia National Laboratories. “Perimeter Detection.” No-
vember 4, 2003. �http://www.sandia.gov/isrc/perimeter
detection.html� The Intelligent Systems & Robotics 
Center. (March 15, 2005).

Thordarson, Olafur, Dingaling Studio, Inc. “Project for an
Olympic Swimming Pool, 1998.” October 1995. �http://
www.thordarson.com/thordarson/architecture/laugar
dalslaug.htm� (March 15, 2005).
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Overview

Perspective is the geometric method of illustrating
objects or landscapes on a flat medium so that they
appear to be three dimensional, while considering dis-
tance and the way in which objects seem smaller and less
vibrant when they are farther away. The items must be
portrayed in precise proportion to each other and at spe-
cific angles in order for the effect to be realistic. In art,
perspective applies whether the painting or drawing
depicts a landscape, people, or objects.

Fundamental Mathematical Concepts
and Terms

Basically, perspective works when a series of parallel
lines are drawn in such a way that they all seem to head
for, and then disappear at, a single point on the horizon
called the vanishing point (see Figure 1). The parallel lines
running toward the vanishing point are referred to as
orthogonals. The vanishing point itself is considered the
place that naturally draws the eye in relation to the other
objects in the composition, regardless of the size or sub-
ject of the work of art, and the horizon is a straight line
that splits the image, placed according to the artist’s point
of view. The higher the artist’s vantage point, the lower
the horizon appears in the rendering, and vice versa.
More than one vanishing point can be applied to a work
of art, giving the illusion that the picture bends around
corners or has several points of focus. These composi-
tions are referred to as having two-point, three-point, or
four-point perspective.

Perspective is based upon the assumption that one is
viewing the image from a single point, and is therefore,
sometimes referred to as centric or natural perspective. It is
also possible to examine three-dimensional space from two
points, the study of which is known as bicentric perspective.

A Brief History of Discovery 
and Development

Early paintings and drawings, prior to the invention
of perspective, tended to appear flat and out of propor-
tion. They lacked a sense of realism. Linear perspective,
the first method of creating art that was more precise in
its portrayal of its subjects, was invented by Filippo Di Ser
Brunellesci (1377–1446), a sculptor, architect, and engi-
neer in Florence, Italy. Brunellesci was responsible for
building several of Florence’s most famous structures
including the Duomo (dome of the main cathedral) and

Perspective
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church of San Lorenzo. Brunellesci experimented with
creating a single line of sight, toward a vanishing point, by
viewing a reflection of a picture or image through a peep
hole in a sheet of paper and thereby focusing his vision on
a single line (see Figure 2).

Brunellesci never recorded his findings, but may
have passed them on to other artists and architects
through demonstrations or word of mouth. The first
written account of the use of perspective was recorded by
the Italian architect Leon Battista Alberti (1404–1474),

one-point
perspective

two-point
perspective

three-point
perspective

vanishing points

Figure 1.

Figure 2.
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who initiated the use of a glass grid through which the
artist would look at the subject while painting in order to
assist in creating the proper perspective. Alberti deter-
mined that he could use a geometric technique in order
to mimic what the eye saw, and also that the distance
from the artist to the scene being painted had an effect on
the rate at which the image appeared to recede. Alberti
said that the artist created a sort of visual pyramid,
turned on its side, between himself and the painting,
where his line of sight connected to the vanishing point
on the work of art. The surface of the painting itself was
the base of the pyramid and the painter’s eye formed the
summit. Alberti considered it necessary to maintain that
position in order for the artist to accurately capture the
perspective of his subject on the canvas.

The first surviving example of the use of perspective
in art is credited to Donato di Niccolò di Betto Bardi
(1386–1466), more commonly known as Donatello, an
Italian sculptor during the early part of the Renaissance.
Of his surviving work, most prominent are sculptures he
created for the exterior of the Florentine cathedral,
including St. Mark and St. George. The latter is a marble
relief that depicts Saint George killing the dragon, and
the work shows some indication that Donatello
attempted to use perspective within the scene. Some of
the lines used to create the illusion were most likely inac-
curate, as the perspective is less than perfect, so it cannot
be said for certain that he was applying this then-new
methodology.

However, in later works, it becomes more obvious
that Donatello was aware of the principles of perspective.
In a bronze relief panel he designed for the font at the
Siena cathedral, titled Feast of Herod, Donatello 
clearly utilized a vanishing point and orthogonals. While
there is a slight imperfection in the panel, in that the
orthogonals do not meet precisely at the same point, it is
likely this defect was not part of the original sketches, but
instead resulted at some point during the execution in
bronze.

Masaccio (c. 1401–1428), considered with Donatello
and Brunellesci to be among the founding artists of the
Italian Renaissance, showed no signs of attempting to use
perspective in his first known painting, Madonna and
Child with Saints. However, his three most famous works
painted near the end of his life all use linear perspective.
One of these, Trinity, which was done for Saint Maria
Novella in Florence, is thought the oldest perspective
painting to still survive today. It depicts the crucifixion of
Jesus Christ, with key figures such as John the Baptist and
the Madonna framing him in a pyramid fashion, and God 

hovering above. Masaccio supposedly discussed “Trinity”
with Brunellesci. The work itself was painted based on a
strict grid that was applied to the surface before any
painting began. Every detail is in precise perspective,
down to the nails holding Christ to the cross. In another
perspective painting,“Tribute Money,” Masaccio used lin-
ear perspective not just to create a realistic portrayal of
the scene from the lives of St. Peter and St. Paul, but also
to direct the viewer’s eye in such a way that the painting
becomes a narrative. Christ stands in a group of his
followers, and it is his head that is the vanishing point on
which the viewer focuses.

The advent of the camera obscura in the mid-
fifteenth century offered another way to examine per-
spective. Based on similar techniques as the peephole
experiments, the camera obscura allowed light into a
darkened room through a small hole. An image was then
projected onto a wall and the artist attached paper to the
surface in order to trace it. The act of tracing guaranteed
the artist would achieve the proper angles and propor-
tions of perspective.

Other artists went on to do additional experiments in
perspective, and to perfect the technique. Leonardo da
Vinci, noted as an artist, inventor, and mathematician, did
much to further the understanding of how perspective
applied to distance, shape, shadows, and proportion in art.
He was the first artist to work with atmospheric perspec-
tive, where the illusion of distance was created through
using fainter or duller colors for objects meant to be farther
from the viewer. By combining this knowledge with other
mathematical references, such as the standard proportions
of the parts of the human figure, he was able to create com-
positions that appeared realistic and natural. Albrecht
Dürer, a noted German Renaissance artist and print maker,
experimented with using tools to assist in attaining proper
perspective, and kept detailed records of his discoveries. In
1525, he wrote a book in order to teach artists how to rep-
resent the most difficult shapes using perspective.

During the seventeenth century, Dutch artists were par-
ticularly known for their exemplary use of perspective in
their paintings. Pieter de Hooch and Johannes Vermeer were
two such painters renown for including such details as floor
tiles, elaborate doorways, and multiple walls incorporating
perspective in order to achieve the most realistic effect.

Real-life Applications

ART
Artists display the most obvious need for a clear

understanding of perspective in their work. In order to
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fashion any realistic depiction of a scene, whether in a
simple sketch or a detailed painting, an artist must use the
rules of perspective to guarantee that the proportions and
angles of the images appear three-dimensional. Land-
scapes particularly require exact application of perspective
in order to give the illusion of depth and distance. A com-
mon illustration of this technique (see Figure 3) depicts a
train track heading toward the horizon, the parallel lines
of its rails appearing to become closer together as they
grow farther away, until they eventually converge at the
vanishing point. The picture becomes more complex if
the artist wishes to add something along the side of the
train tracks, such as trees or telephone poles. Although
the artist knows the phone poles must appear smaller as
they grow more distant, he needs to determine at
what rate their size decreases. By applying the rules of
perspective, the artist may sketch in the orthogonals,
the diagonal lines that stretch from the vanishing point
to the edge of the paper, in order to provide a guideline
for the heights of the poles as they gradually shrink into
the distance.

This method can be applied to any number of sub-
jects that may appear in a painting, such as a row of
buildings that reaches to the skyline or clusters of people
scattered across a large room for a party. Orthogonal lines
can be placed at any height in relation to other subjects
so that smaller objects remain in proportion to larger
ones, regardless of their placement in the scene. If a
man who is six feet tall stands next to a child who is only
three feet tall, the child will appear half the height of the
man if they are sketched at the front of the painting or
back near the horizon, even though the actual size of
each will be adjusted to represent their placement in the
composition.

Perspective helps artists render drawings that include
buildings much more accurately, as well. If an artist wishes
to paint a landscape that includes a house and a barn that are
situated at an angle, with the corners of the buildings facing
the viewer, perspective allows him to draw the edges of the
buildings and their roofs at the correct angles. The horizon-
tal lines that form the top and bottom edges of the buildings,
as well as the horizontal lines for the door and windows—if
extended straight out to the side—should eventually inter-
sect at a vanishing point. The slanted lines that form the side
edges of a pitched roof will also intersect in the same way. If
the painting includes a split-rail fence around the farmland,
the rails must all angle so that the lines would extend to a
vanishing point. In these types of landscapes, the artist will
frequently use two-point or three-point perspective in order
to set the angles for the different sides of the buildings.

Artists often use the vanishing point as a focal point
when composing the layout of a painting. If several peo-
ple are depicted, it is common for an artist to have their
attention directed toward the vanishing point. A person
gesturing with an arm might likewise be indicating some-
thing at the vanishing point.

I L LUSTRAT ION
One specific application of artistic talent, illustra-

tion, provides books and other publications with artwork
to accompany the text. Children’s books are a prime
example of this, and the simplicity of many of the pic-
tures that illustrate children’s stories does not preclude
the need to apply perspective to the composition. A child
will notice if a picture seems out of proportion, just as an
adult will, and as the illustrations carry much of the
weight of the storytelling for pre-readers, it is important
that everything is rendered correctly and in proportion.

Comic books or graphic novels are other examples of
illustration as an art form. As with picture books for chil-
dren, comic books rely heavily on the pictures to tell the
story, with only a small amount of narrative and dialogue
to move the plot forward. Each panel of a comic is drawn
in perspective, with the occasional pane drawn in such a
way as to indicate the action happens in the foreground
and is therefore, more important. Using perspective for
emphasis allows comics to convey heightened emotion
and action in a relatively small space.

ANIMAT ION
Animation, an art form unto itself, would not be

possible without perspective, as the figures would appear
flat and lifeless on the screen despite their ability to move.
Early animated films were hand drawn a single frame at a

Figure 3.
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based on time of day or night for the story, to alter the
camera angles, or even to add in new background struc-
tures such as a new building or taller trees due to the
passage of time. The changes are made automatically
within the parameters of the perspective already pro-
grammed into the computer.

One modern example of the use of this technology is
the Walt Disney Company’s film Beauty and the Beast. This
animated movie applied new technology to centuries-old
theories of perspective to create a scene where the Beast
and Belle dance in an animated virtual reality ballroom.
The scene consists of a large ballroom with rounded walls
and a tiled floor, and the film gives the illusion of a living
couple twirling around the dance floor as the camera pans
around them. The animators programmed the computer
to maintain the proportions of the room, with the appar-
ently rounded backdrop, and the tiles on the floor decreas-
ing in size as they grew more distant from the camera. As
the animated couple dances and the camera follows them,
the vanishing point is required to shift with each move-
ment so that it will remain steady in relation to the eye of
the audience and the illusion of depth may be maintained.

F I LM
Animated films are not the only ones concerned with

perspective. As live action films include more and more spe-
cial effects that require actors to perform in front of green
screens or blue screens, perspective becomes the concern of
special effects artists. Obviously the effects artists need to
apply perspective when generating the background, as they
would with an animated film, but in addition they must
maintain the size ratio between the live actors who will be
part of the finished scene and any computer graphics com-
ponents, including scenery and creature effects. The actors
must also perform in relation to special effects that are not
present while they are filming. While stand-ins are some-
times utilized, it is also helpful to apply the same lines of
perspective that an artist would use when composing a
painting. An actor might address himself toward what will
end up being the vanishing point of the scene, allowing the
special effects artists to fill in the graphics around the same
point, creating the illusion that all of the components of the
film actually took place at the same time.

An example of combining live action with digital
backgrounds is the film version of the Frank Miller
graphic novels, Sin City. In this film, the actors performed
their scenes against a green screen, often without even the
benefit of another actor to whom they could address their
lines. The background, a heightened noir-style city in
stark black and white, was created on the computer using
a three-dimensional digital program. Using the graphic

time, and the precise measurements required to achieve
perfect perspective made it easier for the artist to recreate
the background of the film over and over, while limiting
variances that might have made the finished film appear
inconsistent or fake.

As animation has grown more technical and the art
has shifted from paper to computers, it has become more
important that the angles and lines required to give the
illusion of a three-dimensional setting remain constant.
Animators can now feed mathematical calculations into a
computer where a graphics program will plot the
coordinates for the horizon and the vanishing point.
Once this information is computerized, it is saved in the
machine’s memory and applied whenever that particular
background is needed for the film. The computer soft-
ware allows the animators to program shifts in shadow

Art and Mathematics—
Perspective

Perspective provides flat, two-dimensional works of
art with the means to appear three dimensional and
realistic. No painting, sculpture, or frieze can seem
to have depth or illustrate distance from the viewer
if the artist fails to apply the rules of perspective to
the composition. In reality, the curvature of the
planet combines with the eye’s ability to look into
the distance and creates the visual effect of per-
spective where lines appear to converge upon a sin-
gle point, even when the lines never actually meet,
as is the case with the two rails of a train track. This
trick of the eye, or perspective, must be replicated
as an optical illusion on a flat canvas in a painting
in order for it to considered a precise representation
of the three-dimensional view seen in real life.

A student of art must learn to apply perspec-
tive to whatever he is attempting to create. This
holds true of paintings done from life and those cre-
ated solely from the imagination. While it is possi-
ble to sit at an easel and recreate the landscape
just beyond the top of the canvas, it is more difficult
to create an accurate rendering when the subject is
not visible. For this reason, art students learn the
principles behind the illusion of perspective. An
artist can sketch a horizontal line onto a canvas and
create both horizon and vanishing point, then add
orthogonal lines to assist in creating an accurate,
realistic landscape, even in a room without a view.
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novel as a template, the director recreated the look and
feel of each panel of the comic by mimicking the per-
spective of each shot. The background maintained the
perspective and all of the angles from the original source
material, and the actors were placed in relation to that
background to make it seem as if the graphic novel itself
had come to life.

Another optical illusion popular in film—particularly
fantasy or science fiction films—is making actors of simi-
lar heights appear vastly different in size. The Lord of the
Rings trilogy faced this challenge when the filmmakers
attempted to create a world shared by several species of vary-
ing heights. When an actor playing a short Hobbit filmed a
scene with an actor playing a normal sized person, it was not
only necessary to have the actors appear to be different
heights. The sets around them also had to be altered so that
items that appeared average size for the man would be over-
sized for the Hobbit. Props, such as a ring or a mug of ale,
could be duplicated in varying sizes and then substituted for
each actor according to their character’s size, but the back-
ground and furnishings were more complicated. The set
designers used perspective to determine the precise propor-
tions for each item and then used forced perspective filming
in order to create the optical illusion that the two actors were
actually using the same items. For example, in a scene where

the wizard, Gandalf, and the Hobbit, Bilbo, are seated at a
long table, the front of the table was cut down to be smaller
than normal, so that Gandalf would appear to be cramped.
The back half of the table was sized normally so it would
appear to fit Bilbo. Items placed on the table at the joining
point helped disguise that the table was not all one size, and
the camera was placed at an angle to shoot down the table’s
length, taking advantage of the fact that perspective would
help make it seem to grow smaller at a distance. The actors
themselves stood several feet apart, but staring straight ahead,
and were filmed in profile to give the illusion of their facing
each other. Perspective made the more distant actor playing
Bilbo appear smaller than the actor closer to the camera.

INTER IOR  DES IGN
Interior designers and decorators are responsible for

the layout and design inside a house, and frequently use
perspective as a tool to maximize the potential of a living
space. An architectural detail such as exposed beams—
which were originally solely a functional aspect of a
house, used to brace walls and support the roof—can
make a room appear to be longer than it really is. Look-
ing carefully at the beams running parallel to each other,
they seem to grow closer together as they move toward

Study for perspective with animals and figures by Leonardo da Vinci. BETTMANN/CORBIS.
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the opposite end of the room from the viewer, just as
train tracks seem to converge toward a vanishing point
when viewed from a distance. In a house, the beams reach
the supporting wall before they appear to meet each
other, but the vanishing point still exists. If one could see
through the wall and extend the beams indefinitely, they
would illustrate a textbook example of perspective. As it
stands, the optical illusion they create gives a home a
more spacious feel. Anything that adds horizontal lines to
the overall look of a room—tiles or hardwood flooring, a
chair railing or molding, decorative detail on a ceiling,
built in bookshelves that run the length of a wall—gives
the impression that a room is longer and more spacious.

A similar illusion that also uses perspective to make a
room seem larger is adding a large mirror to a wall. If an
entire wall contains a mirrored surface, it will seem to dou-
ble the size of the room by reflecting it back upon itself. By
staring into the mirror, a viewer will notice that the reflected
walls seem to angle inward, just like the train tracks in a per-
spective painting. The illusion of additional space suddenly
looks more like the view out a window than an addition to

the room. The mirror effect is particularly popular when a
designer can place it opposite a window, thereby reflecting
not only additional space from the room, but the light and
the view from outside as well, creating an open effect.

Another decorating effect that makes use of perspec-
tive is the artistic treatment known as trompe d’oeil. Lit-
erally meaning “trick of the eye,” this painting technique
involves rendering a highly realistic looking painting or
mural directly onto the wall of a room in an attempt to
make it appear completely authentic to the viewer. In
some cases, the painting is something simple, such as a
statue on a pedestal standing in an alcove. Someone look-
ing at the painting from a distance will be tricked into
believing that the wall really does curve back at that point,
and that the piece of art in question is actually a three-
dimensional statue. Only when they draw nearer will they
realize that the statue is painted on the wall. The artist uses
lines of perspective to create the illusion, perhaps giving
the alcove portion of the painting a tiled pattern or grad-
ually lightening the tone of the paint used since colors fade
at a distance, all in order to make the wall seem to curve.

Leonardo da Vinci’s “Window” for Recording 
Proper Linear Perspective in Art

Italian artist, inventor, and mathematician Leonardo da
Vinci (1452–1519) understood that linear perspective was
necessary in order for a painting to appear realistic. In
order to practice transposing the exact lines and angles
of the world as he saw them, Leonardo began to use a
window as a framework. When he looked out the window,
whatever he saw became the subject of his painting, as
if the edges of the window were the edges of a canvas.
He would then attach a piece of paper to the window so
that the natural light shone in from outside and he was
able to see the outline of the scene through the paper. It
was necessary for him to cover one eye when working, so
that he would, in effect, be looking at the three-dimensional
world from a two-dimensional viewpoint. He would then
go on to trace what he saw through the window onto the
paper. Leonardo da Vinci accurately captured all of the
lines of perspective as they appeared in nature. This
exercise enabled him to learn how perspective affected
the composition. He discovered that his own distance to
the window, as well as the distance of the objects out-
side to the window, changed the perspective of the

scene. If he shifted to the left or the right, the vanishing
point on the horizon also shifted on his paper. It was also
possible for Leonardo to sketch in guiding lines, orthog-
onals, to help him maintain the size ratio between vari-
ous items in the composition, regardless of where they
appeared in relation to the vanishing point. Leonardo
proceeded to apply what he learned to his painting. Early
sketches of his work illustrate how he composed his
work to include a vanishing point that was logical in rela-
tion to the subject of the painting.

The famous painting, The Last Supper, clearly illus-
trates Leonardo da Vinci’s use of perspective. While the
scene itself shows only minimal depth, concentrating
more on the length of the dining table as it stretches the
width of the painting, with Christ and his disciples posi-
tioned along the back, Leonardo applied his knowledge
of perspective to create the rear walls of the room. Jesus
himself, seated at the center point between his follow-
ers, provides the focus of the painting, and his head
serves as the vanishing point on the horizon for the
composition.
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Other examples of the use of trompe d’oeil may
include a painted window or doorway, including the
view through that opening. Perspective is applied as it
would be in any landscape, so that the view through the
painted window or door mimics what one might see
through an actual hole at that point, or else the artist
might create an entirely imaginary landscape, giving a
city apartment the luxury of a view of the beach or the
countryside.

Trompe d’oeil may also be applied to an entire wall, as
in a mural. This sort of effect can involve multiple
illusions, depending on the images chosen for the com-
position. Some of the wall might be painted as if it were
still part of the house, with the rest providing some sort
of outdoor view. Examples might include a painting of a
balcony that overlooks the garden, with the majority of
the perspective applied to the images that are meant to
be more distant, and other, more subtle techniques
used for the supports of the balcony that are meant to be
much closer. However, the lines of the balcony must
remain in harmony with the lines of the view, maintain-
ing the same vanishing point, in order to maintain the
overall effect.

LANDSCAP ING
Landscapers and landscape architects do for the

outdoors what interior designers do for the inside of a
building. By applying the rules of perspective when lay-
ing out a garden, park, or other property, landscapers
can make a small piece of land seem larger or grander
than it might otherwise appear. A building with a
straight driveway can be made to appear farther from
the road by planting a series of trees along each side of
the drive. The effect is similar to that of a painting of a
road with trees lining it, the road converging on the van-
ishing point and the trees shrinking into the distance.
Likewise, details such as long, narrow reflecting pools,
hedges, stone walls, flower beds, and flagstone or brick
pathways help draw the eye in a particular direction and

direct the visual focus of the landscape in whatever way
the designer sees fit.

Potential Applications

COMPUTER  GRAPH ICS
Any work done with computer graphics can make

use of the rules of perspective. Programs that allow
images to appear on the computer screen in three dimen-
sions apply to a range of work, including architecture, city
planning, or entertainment.

Architects and engineers can use preprogrammed
angles of perspective to create virtual images of buildings
or bridges or other large-scale projects, enabling them to
test the effect of the new construction in its intended set-
ting without having to build detailed models. City plan-
ners can in turn use perspective to get an accurate idea of
the layout of a town from the comfort of a desk. Streets
and traffic flow, how roads converge, where traffic lights
might be most effective, entrances to major thorough-
fares, and placement of shopping or public facilities, all
may be programmed into a computer and illustrated in a
realistic, three-dimensional layout.

Computer game designers can apply perspective to
their creations, enabling enthusiasts to enjoy the most
realistic experiences possible when playing their games.
Accurate perspective can enhance a variety of games, such
as those where the participant drives a racecar, pilots an
airplane, or maneuvers a space ship through an asteroid
field in a faraway galaxy. Likewise, games that involve role
play or character simulation can provide realistic settings,
such as towns or the interiors of buildings.
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Overview

Photography, literally writing with light, is full of
mathematics even though modern auto-exposure and
auto-focus cameras may seem to think for themselves.
Lens design requires an intimate knowledge of optics and
applied mathematics, as does the calculation of correct
exposure. When mastered, the mathematics of basic pho-
tography allow artists, journals, and scientists to create
more compelling and insightful images whether they are
using film or digital cameras.

Fundamental Mathematical Concepts
and Terms

THE  CAMERA
In its simplest form, the camera is a light-tight box

containing light sensitive material, either in the form of
photographic film or a digital sensor. A lens is used to
focus light rays entering the camera and produce a sharp
image. The amount of light striking the film and sensor is
controlled by shutter, or curtain that quickly opens and
exposes the film or sensor to light, and the size of the lens
opening, or aperture, through which light can pass.

F I LM  SPEED
The speed of photographic film is a measure of its

sensitivity to light, with high speed films being more sen-
sitive to light than low speed films. Film speed is most
commonly specified using an arithmetric ISO number
that is based on a carefully specified test procedure put
forth by the International Organization for Standardiza-
tion (ISO), for example ISO 200 or ISO 400. Each dou-
bling or halving of the speed represents a doubling or
halving of the sensitivity to light. Thus, ISO 400 speed
film can be used in light that is half as bright as ISO 200
speed film without otherwise changing camera settings.
Some films, particularly those intended professional pho-
tographers or scientific applications, also specify speed
using a logarithmic scale that is denoted with a degree
symbol (�). Each logarithmic increment represents an
increase or decrease of three units corresponds to a dou-
bling or halving of film speed. ISO 400 film as a logarith-
mic speed of 27� but ISO 200 film, which is half as fast,
has a logarithmic speed of 24�.

Photographic films are coated with grains of light-
sensitive silver compounds that form a latent image when
exposed to light. Film speed is increased by increasing the
size of the silver grains, and the grains in high speed films
can be so large that they produce a visible texture, or

Photography
Math
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graininess, in photographs that many people find dis-
tracting. Therefore, photographers generally try to use
the slowest possible film for a given situation. In some
cases, however, photographers will deliberately choose a
high-speed film or use developing methods that increase
grain in order to produce an artistic effect. The choice of
film speed is also affected by factors such as the desired
shutter speed and aperture.

LENS  FOCAL  LENGTH
The focal length of a simple lens is the distance from

the lens to the film when the lens is focused on an object
a long distance away (sometimes referred to as infinity,
although the distance is always finite), and is related to
the size of the image recorded on the film. Given two
lenses, the lens with the longer focal length will produce a
larger image than the lens with the shorter focal length.
Most camera lens focal lengths are given in millimeters. A
lens with a focal length of 100 mm (3.9 in) is in theory
100 mm (3.9 in) long, but camera lenses consist of many
individual lens elements designed to act together. There-
fore, the physical length of a camera lens will not be the
same as the focal length of a simple lens. Zoom lenses
have variable focal lengths, for example 80–200 mm
(3.1–7.9 in), and also variable physical lengths. The phys-
ical lens length will also change as the distance to the
object being photographed changes.

Lenses are often described as telephoto, normal, and
wide angle. Normal lenses cover a range of vision similar
to that of the human eye. Wide angle lenses have shorter
focal lengths and cover a broader range of vision whereas
telephoto lenses have longer focal lengths and cover a
narrower range of vision. All of these terms are relative to
the physical size of the film being used. A normal lens has
a focal length that is about the same as the diagonal size
of the film frame. For example, 35 mm (1.4 in) film is 35
mm (1.4 in) wide and each image in a standard 35 mm
(1.4 in) camera is 24 mm (0.9 in) by 36 mm (1.4 in) in
size. The Pythagorean theorem can be used to calculate
that the diagonal size of a standard 35 mm (1.4 in) frame
is 43 mm (1.7 in). Lenses are usually designed using focal
length increments that are multiples of 5 mm (0.2 in) or
10 mm (0.4 in) and 40 mm (1.6 in) lenses are not com-
mon so, in practice, the so-called normal lens for a 35
mm (1.4 in) camera is a 35 mm (1.4 mm) or 50 mm (2.0
in) lens. Manufacturers of cameras with film sizes or dig-
ital sensors of different sizes will sometimes describe their
lenses using a 35 mm (1.4 in) equivalent focal length.
This means that the photographic effect (wide angle, nor-
mal, telephoto) will be the same as that focal length of
lens used on a 35 mm (1.4 in) camera.

SHUTTER  SPEED

The amount of light striking the film is controlled by
two things: the length of time that the shutter is open
(shutter speed) and the lens aperture. Shutter speed is
typically expressed as some fraction of a second, for
example 1/2 s or 1/500 s, and not as a decimal. Manual
cameras allow photographers to choose from a fixed set
of mechanically controlled shutter speeds that differ from
each other by factors of approximately 2, and the shutter
is opened and closed by a series of springs and levers. For
example, 1/2, 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, and
so forth. Note that the factor changes slightly between 1/8
and 1/15, and then again between 1/60 and 1/125. In
order to make the best use of limited space on small cam-
eras, film speed dials or indicators in many cases use only
their denominator the shutter speed. Thus, a camera dial
showing a shutter speed of 250 means that the film will be
exposed to light for 1/250 s. Electronic cameras, whether
film or digital, contain microprocessors and can offer a
continuous range of shutter speeds. The shutter speeds
can be set by the photographer or automatically selected
by the camera.

Camera lens. UNDERWOOD & UNDERWOOD/CORBIS.
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LENS  APERTURE
Lens aperture is the diameter of the opening through

which light passes on its way to the film. The larger the
aperture, the wider the opening and the more light that
will pass through the lens to the film. Aperture is
expressed as a so-called f-stop or f-number that is the
quotient of the lens focal length divided by the diameter
of the aperture, and is controlled by a diaphragm consist-
ing of moving metal blades within the lens. A lens with a
focal length of 100 mm (3.9 in) and an opening 50 mm
(2.0 in) in diameter is said to have an aperture of 100/50 �
f/2, but a 400 mm (15.7 in) lens with the same opening
would have an aperture of 400/50 � f/8. Therefore, the
size of the opening must increase proportionately with
focal length in order for lenses of two different focal
lengths to have the same aperture. This is why the large
telephoto lenses used by sports and nature photographers
are so long and wide. They must have both long focal
lengths and wide openings to transmit enough light to
properly expose the film.

The term f-stop refers to the fact that photographers
have traditionally adjusted the aperture of their lenses by
rotating a ring on the lens to choose among several pre-
set apertures. Each pre-set aperture is marked by a sensi-
ble and audible click, or stop, hence the name f-stop. The
pre-set apertures were chosen so that each stop halved or
doubled the radius of the opening, using the same logic
as pre-set shutter speeds, thus halving or doubling the

amount of light passing through. The result was this pro-
gression of f-stops: f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11,
f/16, f/22, and f/32. Although many modern lenses have
continuously adjustable apertures, and some are elec-
tronically controlled with no aperture rings at all, the 
f-stop terminology and progression of f-stops marked on
lenses persists. Physical constraints make it difficult to
design lenses with large apertures, so the range of most
lenses begins above f/1, typically in the range of f/2 or
f/2.8. The additional difficulty of designing zoom lenses,
especially if they are to be affordable to large numbers of
people, sometimes motivates lens designers to use maxi-
mum apertures that change according to the focal length.
An 18–70 mm (0.7–2.8 in) f/3.5-4.5 zoom lens would have
a maximum aperture that ranges from f/3.5 at 18 mm 
(0.7 in) focal length to f/4.5 at 70 mm (2.8 in) focal length.

DEPTH  OF  F IELD
Depth of field refers to the range of distance from the

lens, or depth, throughout which objects appear to be in
focus. A lens can be focused on objects at only one dis-
tance, and objects closer to or farther away from the lens
will be out of focus on the plane of the film. In the case of
a point of light that is out of focus, the result is a fuzzy
circle known as a circle of confusion. Depth of field is
increased by decreasing the size of the circles of confusion
in an image, which is accomplished by reducing the

Long Focal
Length

LensReal Object Image on Film

Long Focal
Length

Figure 1.
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aperture of the lens, until objects over a wide range of dis-
tances appear to be in focus to the human eye.

Although a small aperture reduces the sizes of the
circles of confusion in an image, it also increases the rel-
ative importance of diffraction around the edges of aper-
ture. As light passes through the movable metal blades
that control aperture, some of it is scattered or diffracted.
When the aperture is large, the effects of diffraction gen-
erally go unnoticed. As the aperture decreases, diffracted
light becomes an increasingly large proportion of all the
light passing through the aperture and image sharpness
can decrease. Therefore, setting a lens to its smallest aper-
ture will not generally produce the sharpest possible
image. The sharpest images will generally be obtained by
setting the lens to an aperture in the middle of its range.

For a specified aperture, lenses with long focal
lengths will always have shallower depths of field than
lenses with short focal lengths. This is because the longer
lenses must have physically larger openings than the
shorter lenses, even if the aperture (f-stop) is the same. A
larger opening transmits more light, which in turn pro-
duces larger circles of confusion.

REC IPROC I TY
Reciprocity is a mathematical relationship between

shutter speed and lens aperture. If a photographer
increases the light passing through the lens by opening
the aperture one f-stop and then doubles the shutter
speed (which will reduce the length of time the shutter is
open by one-half), the amount of light reaching the film
will not change. An aperture of f/4 and a shutter speed of
1/500 s, for example, will deliver the same amount of light
as an aperture of f/5.6 and a shutter speed of 1/250 s. In
other words, aperture and shutter speed share a recipro-
cal relationship and many different combinations of
shutter speed and lens aperture will provide the same
amount of light. The reciprocal relationship also extends
to film speed. If film speed is doubled, either the shutter
speed can be increased (producing a shorter exposure) or
aperture can be decreased by the same factor without
changing the amount of light that reaches the film.

In practice, there are some limitations to reciprocity.
Photographs with very slow shutter speeds, for example
minutes or hours instead of fractions of a second, can be
appear too dark (underexposed) because the reciprocity
relationship does not extend to such long exposures. This
is known as reciprocity failure and can pose a problem for
photographers working at night in situations where artifi-
cial lights cannot be used, for example when astronomers
are attempting to take photos of the night sky using their
very sensitive equipment. Film manufacturers publish

tables that allow photographers to compensate for reci-
procity failure in different kinds of film.

DIG I TAL  PHOTOGRAPHY
Virtually everything written in this article applies to

digital photography as well as film photography. The pri-
mary difference is that a digital camera uses an electronic
sensor instead of a piece of plastic film coated with silver
compounds. In place of the film used in a conventional
camera, a digital camera uses an electronic sensor. Two
sensor types are commonly used: CCDs, or charged-
coupled device sensors, and CMOSs, or complementary
metal oxide semiconductor sensors. Both kinds are com-
posed of rows and columns of photosites that convert
light into an electronic signal. Each photosite is covered
with a filter so that it is sensitive to only one of the three
components of visible light (red, blue, or green). One
widely used configuration, the Bayer array, consists of
rows containing red and green filtered photosites alter-
nating with rows containing green and blue photosites.
When the image is being processed by the camera, values
for the two missing colors are estimated using the math-
ematical technique of interpolation.

Two primary measures are used to characterize digi-
tal images: resolution and size. Resolution refers to the
ability of a sensor to represent details, and is generally
specified in terms of pixels per inch (ppi). Image size
refers to the total number of pixels comprising an image,
and is typically given in terms of megapixels. A pixel is the
smallest possible discrete component of an image, typi-
cally a small square or dot, and one megapixel consists of
one million pixels. As of early 2005, the best commercially
available digital cameras had resolutions of approxi-
mately 20 megapixels and many professional quality dig-
ital cameras had resolutions of 5 or 6 megapixels.

Digital photographers can adjust the sensitivity of
the sensor to light just as film photographers can use
films with different ISO speeds. In digital cameras, how-
ever, there is done with a switch or button on the camera
and the sensor is not physically removed. Although digi-
tal cameras commonly have ISO settings, they vary from
manufacturer to manufacturer and do not follow the
consistent ISO standard. Instead, they are an approximate
gauge of the sensitivity. The digital equivalent of film
grain is electronic noise, which can appear in images as
visual static or randomly colored pixels, and is most often
a problem using high digital ISO settings. The size of the
sensor can also contribute to the amount of noise in a
digital image, because the photosites on a small sensor are
closer to each other than those on a larger sensor and can
interfere with each other.
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A Brief History of Discovery 
and Development

The basic concept of using a device to project an
image onto a flat surface dates from the camera obscura
of ancient times, in which light passed through a small
hole that focused the image and projected it in a darkened
room. The modern day descendent of the camera obscura
is the pinhole camera, which uses a hole without a lens to
project an image onto a piece of photographic film. The
quality of camera obscura images increased as lenses were
developed in the sixteenth century. Still, there as no way
to preserve the image except by drawing or painting on
the projection screen. The discovery of photosensitive
chemicals in the nineteenth century was a major step for-
ward because it allowed images to be preserved without
drawing or painting, and many different techniques were
invented for creating photographs on paper, glass, and
metal sheets. In 1861, Scottish physicist James Clerk-
Maxwell invented a system of color photography using
black and white images taken through red, green, and

blue filters and then combined. George Eastman started
his photographic company in 1880, and the first Kodak
camera was introduced in 1888. This surge in technology
gave rise to an explosion in the technical, journalistic, and
artistic use of photography as mechanical cameras and
lenses were continually refined throughout the first half
of the twentieth century. The advent of computer-aided
design in the 1960s and 1970s represented another major
step forward, allowing much more sophisticated camera
and lens designs, and auto-focus and auto-exposure cam-
eras arrived on the scene shortly thereafter.

Real-life Applications

SPORTS  AND  WILDL I FE
PHOTOGRAPHY

Sports and wildlife photographers often share the
same goals. They want to produce photographs of fast
moving subjects from a distance. Therefore, they prefer
long telephoto lenses with large maximum apertures. By

In order to capture action photos, photographers must use math to set shutter and film speeds properly. AP/WIDE WORLD PHOTOS.

REPRODUCED BY PERMISSION.
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virtue of reciprocity, these large aperture lenses can be
used with higher shutter speeds that freeze action,
whether it be a gazelle or a linebacker. Long lenses with
large maximum apertures also add an artistic element,
helping to blur the background and focus the viewer’s
eyes on the subject of the photograph. For the same rea-
son, portrait photographers will often used moderately
long telephoto lenses that set their subjects apart from the
background. Photographers describe the aesthetic quality
of the blurred areas with the Japanese word bokeh, and a
lens that produces pleasingly out-of-focus areas is said to
have good bokeh.

DIG I TAL  IMAGE  PROCESS ING
The ability to create high-resolution digital images,

either using a digital camera or by scanning a film negative
or transparency, allows photographers to adjust the details
of their photographs without entering a darkroom. Each
pixel contains a red, green, and blue value that can be
brightened or darkened. The overall range of tones, known
as contrast, can also be easily adjusted and unwanted tints
can be removed. A photographer, for example, can remove
the cool bluish cast in shadowy light by adding more red
and green to the image. Images can also be sharpened to
some degree, although it is impossible to sharpen an image
that is truly out of focus. This is done using a technique
called unsharp masking, which derives its name from a
technique developed by astrophotographers using film
many years ago. In order to sharpen a slightly fuzzy image,

the photographer would make a deliberately blurred copy
of the film negative. The two images would be carefully
aligned and a sharpened print made.

PHOTOMICROGRAPHY
Photomicrography uses an optical microscope, rather

than a traditional lens, to produce photographs of objects
such as microorganisms and mineral grains. In the case of
geological photomicrography, small slices of rock are glued
to microsope slides and then ground down to a thickness
of 30 microns (0.001 in). The slice of rock is nearly trans-
parent at that thickness, allowing it to be examined under
the microscope. Digital image processing techniques can
also be applied to photomicrographs in order to enhance
edges or increase the visibility of subtle details.

Potential Applications

Computer designed lenses and cameras, both film
and digital, continue to increase in sophistication each
year. Current commercial activity emphasizes the devel-
opment of improved digital sensors with increased reso-
lution and decreased noise, vibration resistant camera
bodies and lenses that compensate for the photographers
moving hands, and zoom lenses that cover focal length
ranges from wide angle to telephoto.

Where to Learn More
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Enfield, Jill. Photo-Imaging: A Complete Guide to Alternative

Processes. New York: Amphoto, 2002.

Jacobson, Ralph, Sidney Ray, G.G. Attridge, and Norman
Axford. Manual of Photography: Photographic and Digital
Imaging, 9th ed. New York: Bantam, 1998.

Web sites
Greenspun, Philip. “History of Photography Timeline.” 2005.

�http://www.photo.net/history/timeline� (February 15,
2005).

Kodak. “Photography in Your Science Fair Project: Photomi-
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15, 2005).

Key Terms

Aperture, lens: The size of the opening through
which light passes in a photographic lens. 

Reciprocity: The mathematical reciprocal relation-
ship between shutter speed and aperture,
which states that there are many combinations
of lens aperture and shutter speed that will
supply the same amount of light to the film or
digital sensor in a camera. 
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Overview

The use of plots and diagrams is an integral part of
everyday life. Plots and diagrams can be found in many
applications in scientific study and in real life.

Effective graphs can significantly increase a reader’s
understanding of complex data sets. The basis of scien-
tific procedure is data collection. Scientists are required
to examine and analyze the data they collect. The most
efficient way to do this is graphically. A graph is a visual
representation of two variables relative to each other.
Graphs are one- or two-dimensional figures. Three-
dimensional graphs also exist, however, these are often
more complex and more difficult to understand than
basic two-dimensional graphs. A graph usually has two
axes, the x-axis and the y-axis. There is also an origin,
which is the point (0, 0). This is where the two axes cross
each other. Each point on a scatter graph is represented
by a pair of coordinates. These are written in the form
(x, y). The number x represents how far along the x-axis
the point is, and y represents how far along the y-axis the
point is. If a point lies on the y-axis, its co-ordinates
would be (0, y), because it is at the 0 point along the 
y-axis (remember the axes cross each other at 0). Accord-
ingly, if a point is on the x-axis, then its co-ordinates
are (x, 0).

PROPERT IES  OF  GRAPHS
A graph should have at least a title and a scale that is

numbered in specific and constant intervals and labeled.
This allows the reader to know what the graph is about
and what the graph is measuring or showing. The more
information that is included on the graph, the easier it is
to understand and interpret the data it shows. However,
too much information must not be included, as the graph
may become cluttered. Some graphs require a legend or
key. This helps the reader understand different shading
and colors that have been used. A legend is useful if the
graph becomes too cluttered with all the labeling. The
purpose of a graph is to provide clear, concise informa-
tion. This is difficult to accomplish if there are large num-
bers of labels covering the data.

DIAGRAMS
Diagrams can come in many shapes and forms,

depending on the application for which they are being
used. Most graphs are about numbers; in other words,
they are number oriented. However, with diagrams this
need not be the case. Some diagrams do present quanti-
tative (number oriented) data, but most diagrams present
qualitative (non-numerical) data. They are widely used in

Plots and 
Diagrams
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both science and everyday life. The type of diagram
directly depends on the subject data. Diagrams are usu-
ally pictures. Around or on this picture is usually written
extra information. This information could be providing
details about the diagram, such as a diagram of the body,
or the diagram could be there for easier comprehension
of details, such as a weather map.

Fundamental Mathematical Concepts
and Terms

STEM AND  LEAF  PLOTS
Stem and leaf plots are similar to histograms (verti-

cal graphs with touching bars) in the way they represent
information. However, they usually contain a little more
information. Stem and leaf plots show the distribution
(or the shape of the data) as well as individual data. These
types of plots are useful in organizing large groups of
data. In a set of data containing numbers from 1 to 100,
the digits in the largest place, the tens, are referred to as
the stem. The digits in the smallest place, the units or
ones, are referred to as the leaf. When there is a large
amount of data, sometimes the stem needs to be repre-
sented twice. The first time it is associated with the leaves
0 to 4, and the second time it is associated with the leaves
5 to 9. If a stem is shown five times, then similar rules
apply as when it is represented twice. The first stem is
associated with 0 to 1, the second with 2 to 3, and so on.
This is to make the plot easier to read.

BOX  PLOT
A box plot (also known as a box and whisker plot) is

a diagram of the measure of spread. It is a graph of the 
5-number summary. Data can be divided into four even
sections called quartiles. The number of values in each
quartile is the same. The middle number is called the
median. The value between the median and the mini-
mum value is the first quartile and the value between the
median and the maximum value is the third quartile. The
5-number summary is the minimum, the first quartile,
the median, the third quartile and the maximum. The
inter-quartile range is the distance from quartile 1 to
quartile 3. A quartile is 25% of the numbers of the entire
set of data. A box plot shows the spread of a set of values.
This is an important factor in some statistical analyses.

SCATTER  GRAPH
Scientists most often utilize scatter graphs. They are

useful for fast and easy analysis of data. These types of
graphs are usually a series of points on a grid. Each of the

axes is used to represent a value data. The value of the
variable along the y-axis (the vertical axis) is dependent
on the value of the variable along the x-axis, which is the
independent variable.

Scatter graphs are usually used to determine a rela-
tionship between two variables. Once two sets of data
have been plotted against each other (such as distance
against time), a line of best fit can be drawn through the
points to determine whether there is a relationship
between the two variables. Scatter graphs are most com-
monly used for scientific purposes. This is because they
do not negate individual data. Every single piece of data
is included in a scatter graph. However, scatter graphs can
also show two sets of data that had the same variables
measured, but one was changed.

Three mathematical concepts that are unique and
integral to scatter graphs are the line of best fit, the corre-
lation coefficient, and the coefficient of determination.
These three tools are important in helping scientists ana-
lyze the data that they gather. In real-life applications, the
interpretation and understanding of data is the most
important part of scientific process. Without interpreta-
tion, and thus tools of interpretation, data would just be
a meaningless set of numbers.

A line of best fit, also known as a line of regression,
is a line that is drawn to represent the trend of the data. A
regression line always exists, whether there is correlation,
a relationship between two variables, or not. The easiest
way to draw this line is to draw a straight line through as
many points of data as possible. However, this is usually
impossible, especially when scientific errors are taken
into account. Then the best method to draw this line is to
have an equal number of points above the line and below
the line. This averages out the line. There are complicated
methods of determining the exact line of best fit that
involve long and laborious calculations. A line of best fit
is where the vertical deviations (the up or down dis-
tances) from the observed point (the ones determined
experimentally) and the calculated points (the ones taken
from the regression line) are as small as possible. In other
words, the line of best fit is a refined line of regression,
although the two terms are usually used to represent the
same line. It would take a long time to determine the line
of best fit if drawing the line of regression by hand. Com-
puter programs for data analysis exist now that can com-
pute and draw the line of best fit automatically. The
computer does all the calculations much faster than a
person would be able to do it.

The correlation coefficient is an important concept
to understand when interpreting graphs and their lines of
best fit. The correlation coefficient is a way to measure
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how close the points are to a regression line. The correla-
tion coefficient is commonly known as r and lies between
�1 and 1. When r � �1, then there is perfect correlation
between the two variables and all the points lie on the
line. Then r � 0, there is no correlation between two vari-
ables and they are all independent of each other and the
line of regression. A correlation coefficient between 0.0
and �0.3 is considered a weak, a correlation coefficient
between �0.3 and �0.7 is considered a moderate, and a
correlation coefficient between �0.7 and �1.0 is consid-
ered a high. Mathematically, the correlation coefficient is
the sum of the squares of the individual errors, which are
the vertical deviations, to measure how well a function,
usually the line of regression, predicts y from x.

The coefficient of determination, R2, is another
measure of how well two variables are related and how
well a regression line fits to the set of points. R2 describes
how much of the deviance in the y values can be
explained by the fact that they are related to an x value. In
simple linear regression, R2 is the square of the correla-
tion coefficient, in other words, R2 � r2. Both of these
coefficients can help people determine whether data is
credible or not, especially in a scientific context. Usually a
scientist will have a thesis or aim that he or she wants to
prove or disprove. Here the correlation between height
and arm span will be used and the aim is to show that
they are related to each other. The scientist will take an
ample amount of data and then analyze this data, proba-
bly using a scatter graph. If the correlation coefficient or
R2 value is below standard to prove the aim correct, then
the scientist may have to revise the data or gather more
data. This process, especially the R2 value, is integral to
the process of scientific information, especially if a scien-
tist is looking to present credible data.

AREA  CHART
A variation of the line chart is an area chart. Line

charts look like various line graphs together with the sec-
tions between them colored in. They are used where there
is one independent series and several dependent series.
The independent series together have a constant sum.

P IE  GRAPH
Another type of graph is a pie graph. These graphs

are aptly named, as they have a circular shape and sec-
tions are cut separated by a line making the whole graph
look like an unevenly cut pie. The idea is effective because
it takes advantage of the everyday principles people use
when, say, they are cutting a cake into portions. This
makes the pie chart something people can relate to and
thus more easily understand. Although these graphs are

not often seen, they are the most useful in expressing dis-
crete data in specific categories. They are used to show
how one piece fits into the entirety; in other words, pie
graphs are used when the values have a constant sum,
such as a population or when using percentages.

Pie graphs are best utilized when there is significant
variation between the portions. In other words, having five
equal areas is quite useless, unless that is the point being
made. Pie graphs often have the sections labeled directly on
the diagram instead of having a separate table informing
the reader of which section is which. However, a pie graph
does have its limitations. The number of categories (or por-
tions of the pie) needs to be small or the graph may become
cluttered. Generally, the number of categories should be
between 3 and 10, although this may vary slightly.

BAR  GRAPHS
Bar graphs are another popular style of graph. Bar

graphs are a versatile type of graph and can show many
different types of data. A bar graph, also called a column
graph, is easy to recognize because several long or short
rectangles represent data categories. These rectangular
bars can be vertically or horizontally orientated. A bar
graph has the bars orientated horizontally and a column
graph has them orientated vertically. Sometimes this dis-
tinction is not made, however, it is important to know the
difference. On a bar graph, the bars are usually the same
width. They are used as a comparative type of graph and
usually compare several things, people, objects, cities or
departments, units or entities, in a data series. On a col-
umn graph, these categories are along the horizontal axis
whereas on a bar graph they are on the vertical axis.

F ISHBONE  D IAGRAM
Fishbone diagrams have a strange name that resem-

bles the style of graph. Fishbone graphs are primarily
used in problem solving, especially in quality improve-
ment programs in business. The problem is written inside
a box at the head of the fish. This provides the aim for the
diagram. The words and ideas that extend from the back-
bone are the possible causes of the problem. They allow
people to organize thoughts about problems and what
may be causing them. It is a systematic way to organize
and analyze data that is related to solving a quality prob-
lem. Fishbone diagrams may also be called cause-and-
effect diagrams or Ishikawa diagrams.

POLAR  CHART
There are several specialized types of graphs that

have been developed to deal with unusual and different
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types of data. Even though scatter graphs, pie charts, bar
charts, and line graphs deal with a wide variety of data,
sometimes even they cannot handle specific data. One
such graph that has been developed is the polar chart. A
polar chart is used with discrete data where each point
has a direction value from a source, in other words, a
direction, usually expressed in degrees. The data also has
a quantity, or a specific distance it is away from the
source. Essentially, this graph represents polar data. Polar
graphs are used in the study of polar equations and also
in vector studies.

TR IANGULAR  GRAPH
Another specific type of graph is a triangular graph.

These graphs are most commonly used in geographic
applications. They are used to plot discrete data in which
each point has three values. These values have a constant
sum that is usually expressed as a percentage. It is trian-
gular in shape, hence its name, the triangular graph.

THREE -D IMENS IONAL  GRAPH
A more complex type of graph is a three-dimensional

graph. These are used when three interdependent vari-
ables need to be plotted. If data are grouped, then a three-
dimensional column graph can be used. This allows the
reader to associate certain things relative to others in one
graph instead of having to use many different graphs.
When data is displayed in this manner, it may initially
look quite complex. However, with further understand-
ing of what the graph represents, it is a suitably useful way
of displaying data. If data are from a continuous distribu-
tion then a surface plot is used. This is another type of
three-dimensional plot. These are more difficult to inter-
pret, as the data is continuous. Three-dimensional graphs
can be shown as a continuous surface or as a series of
contour lines.

A Brief History of Discovery 
and Development

The origins of plots and diagrams date to prehistoric
ages when people made cave drawings. Although these
may not be the sophisticated plots and diagrams that exist
in the twenty-first century, they were, nonetheless, dia-
grams. The earliest map was a tenth century map of China.
Diagrams of planets and planetary motions were some of
the earliest, more complex diagrams that existed. Graphs
made their first appearance around 1770, and became
accepted and widely used around 1820. In 1795, graphi-
cal scales were used to help convert old measurements to

the new, metric measurements. The French mathemati-
cian Johann Heinrich Lambert (1728–1777) used graphs
extensively in the eighteenth century. He was one of the
only scientists of the time to do so. He applied many of
the principles now applied to graphs, such as a line of best
fit. From this time, graphs and diagrams developed to aid
people in determining angles, analyzing data, and provid-
ing information. Bar graphs emerged for data that could
not be sorted. General x-y graphs did not appear in pub-
lications until the twentieth century. From simple things,
such as pictorial instructions, to complex graphs, every-
day life has been greatly affected by plots and diagrams.

Real-life Applications

STEM AND  LEAF  PLOTS
Stem and leaf plots can be used for series of scores on

sports teams, series of temperatures or rainfall in a
month, or series of classroom test scores. In a stem and
leaf plot, data is arranged in place value. (See Figure 1.)

BOX  PLOT
Box plots are usually drawn as composite box plots.

(See Figure 2.) Two different box plots displaying, for
example, the heights of boys in a class and the heights of
girls in a class, can provide more statistically useful data
when compared than a single box plot. It is a simple and
clear graphical representation of information that may be
difficult to decipher as just a series of numbers on a page.
The two graphs together allow the reader to easily inter-
pret the ranges of girls’ height with respect to the boys,
and vice versa. Box plots also show whether there is a data
point that is an outlier, that is, it does not fit within the
specified set.

SCATTER  GRAPH
Scatter graphs are used to plot much of the experi-

mental data that scientists collect. For example, if a scientist
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Figure 1: A stem and leaf plot display.
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measured the distance a car, traveling at a constant speed,
traveled over a period of time, a scatter graph would
measure the time and the speed. In this case, the time is
the independent variable because the distance the car
travels depends on the amount of time the car is travel-
ing. When comparing two sets of data, a scientist could
compare the braking distances of cars traveling at differ-
ent speeds. The speed the car is traveling at would be the
independent variable, and the braking distance would be
the dependent variable. Different brands and types of
cars can be shown on a scatter graph to compare and con-
trast them to each other. This can help a person wishing
to purchase a car to determine which car they want to buy
if safety is one of their primary buying criteria.

A scatter graph can also be used to determine if there
is a correlation between a person’s arm span and their
height. The initial scatter graph would show the grouping

of the data and can show whether there is evidence of a
trend or not. (See Figure 3.)

Once a set of data is plotted, a line of best fit can be
drawn to show whether the relationship between two
variables is worth investigating. An example would be a
scatter graph illustrating the growth of a rabbit popula-
tion. The population was counted at various intervals and
the data was plotted on the graph. A line of best fit was
drawn and the correlation coefficient was determined.
The use of scatter graphs can help scientists determine
important statistical data. People can then use this infor-
mation when they are studying the growth of populations
for assignment or more in depth studies. These graphs
help people to understand the way things work without
having to be scientists. (See Figure 4.)

L INE  GRAPH
Line graphs represent changes in numbers over time.

It is one of the most widely used types of graphs in real
life. Stock market graphs are an example of line graphs.
They provide stockbrokers and the general public with
long-term information about a particular stock. It is eas-
iest to read how much a particular stock has gone up in
one day. However, to determine whether the stock would
be a good investment in the long-term, it is best to look
back at years of data. However, poring over page after
page of numbers is difficult and laborious, so this data is
best represented in a scatter-plot that has each point
joined together. This enables people to tell whether its
value has fallen or risen over a period of time, all with just
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one look at a single image. Stock market graphs are found
in newspapers and can be seen on television. Although
these may be difficult to understand to the novice, for a
person who wants the information and who understands
the basic principles, they are easy to decipher and quick to
understand.

Another example of a line graph is to show the num-
ber of people who attend sports matches over a period of
time. Time would be illustrated on the x-axis, which
means that the number of people who attend is depend-
ent on the time. The graph would show how many peo-
ple attended matches each year. It would show how the
trend the amount of people who attended matches
increased or decreased. It would also show specific
slumps and rises in attendance numbers. These graphs
can have future applications in determining the reasons
for lack of attendance or for high attendance. This would
require further research, such as looking at world events
that may have caused particular slumps or high points.

Figure 5 depicts a line graph as a composite line
graph. This means that it shows different types of data
that have the same variables measured and are compara-
ble. In this case, it is the growth of a normal mouse rela-
tive to that of mutant mice.

A special type of line graph is a run chart. Run charts
show the sequential measurements of a process over a
specific period of time. One example is how many cookies
are produced from a batch of dough that is presumably
the same size each time. These types of graphs usually
have limits, depending on what is being measured.
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Another example could illustrate patient waiting time in
a dentist’s or doctor’s office.

P IE  GRAPH
Pie graphs can be used for such purposes as illustrat-

ing the different cultural backgrounds of people in a
country. The categories in the pie chart are often linked,
such as cultural backgrounds, as in the example of Figure 6
given. Pie graphs provide a more overall view of data and
can be difficult to read if the data is not written on or near
each pie section. However, they are useful in determining
general trends or providing rough estimates. This is
because pie charts are quite graphic and tend to be color-
ful, to make distinguishing between sections easy. They are
useful in representing percentages of stock in a store of
percentages of a population that have particular diseases.
As shown in Figure 6, a pie graph can also be used to com-
pare the different types of housing in which people live.

BAR  GRAPHS
Bar graphs are used in a similar fashion to pie graphs

in that they can express discrete data in specific categories
with great efficiency. Bar graphs are more useful than pie
graphs when exact numerical data is more important
rather than a general overview. For example, the number

of people who answered a particular multiple-choice
question would be best represented in a bar graph. This
would allow students to easily compare their own scores
with other students’ scores and also determine whether
they were in a majority or not. A simple bar graph, as
shown in Figure 7, quickly shows the frequency of specific
heights of people which can then be used to compare
people’s heights.

Another example of how a bar graph can be used is
depicted in Figure 8, a graph that compares technology
access.

As shown in Figure 9, another method to depict data
joins the successive midpoints of each of the bars to make
another type of graph, a frequency histogram. His-
tograms provide information on the distribution of the
data, a concept that relates more to statistics than to
graphs and diagrams.

F ISHBONE  D IAGRAM
If a person in a business has a problem, such as low

production, a fishbone diagram can be applied to deter-
mine the cause of the problem. The problem is written in
the head of the fish. From the backbone of the fish are
bones, each with a specific topic, such as psychological
factors, company pressures, physical pressures, and home
problems, for a set example. From each of these are the
different contributing factors within those topics. This
visual representation can help both the person and the
company locate and identify the problem and thus start
the process of solving the problem.

TR IANGULAR  GRAPH
Each side of the triangle is labeled with a different

soil type, for example. Along that line are marked the var-
ious percentages, from 0% to 100%. A point marked
inside the triangle denotes a specific soil type. Its compo-
sition can be determined by drawing a line from it to each
edge of the triangle. Where the line lands perpendicular
to the side of the triangle is the percentage of that com-
pound that can be found in that soil. This process can
also be used in reverse by knowing the percentages of the
composition and then determining the specific soil type
from those percentages. Its most common use is the
three-way split of sand, silt, and clay in soil and sediment
samples. This type of diagram allows scientists to deter-
mine the type of soil that it is, and thus postulate where
the region may have been developed (since land masses
have moved due to continental drift). It can also help
them determine what uses the soil may have. This means
that this type of graph can help a person determine the
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Terrace
Flat
Other

Flat 0% Other 2%
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Figure 6: A pie graph can also be used to compare the
different types of housing in which people live.
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type of soil they need for their garden to make sure their
plants have the correct soil. However, this type of graph
can also be used where three factors are needed to repre-
sent a whole and each is of a specific percentage.

FLOW CHART

An important type of diagram is a flow chart. Flow
charts are useful because they show sequential steps in a
process. They are good reference points for people learning 
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a new skill or job. They are used to represent a group of
connected components in a series where there may be
more than one pathway through them. Occasionally, flow
charts have a web-like structure. Quantitative aspects of
the data flow can be distinguished by varying the line
style or thickness between the components, and labeling
each of the components thoroughly.

A flow chart has many applications. One of the most
important applications is in computing where flow charts
are used to represent the internal logical organization of
computer programs. Examples of these charts can be seen
on a personal home computer, or PC. When navigating
through folders to find a file, one of a multitude of possi-
ble paths is followed. There are also methods for deter-
mining the number of different pathways, however, these
are complex and are not discussed here. Flow charts are
also used in business organization. One example is pro-
cessing a sales transaction, from the flow of information
and goods beginning at the receipt of the order, to the
shipping and the invoicing of the customer.

New computer systems are larger, can process more
data, and can accomplish this at a greater speed than older
models. This means that more information can be stored
on them and thus, more information needs to be accessed
and processed at a comparative or faster speed. Alternative
diagrammatic structures have been developed to aid sys-
tem analysts in designing information processing systems
that have quite complex internal information flows. The
tools allow the analysts to model the relationships
amongst the components of a system. These relationships
can become quite complex, especially with new computer
systems. These tools and structures are all encompassed
under the general heading of relationship diagrams.

Representations of the World Wide Web, more com-
monly referred to as the Internet, are usually drawn as
flow charts. This is due to the large amounts of intercon-
nected data that exist on the Internet. The concept of vir-
tual realities is based upon this interconnectivity. Virtual
realities are becoming more and more a part of everyday
life for people. Computer and arcade games use virtual
reality concepts. Virtual realities have the ability to allow
the user to experience things they may not be able to
experience in real life, such as river rafting, snow skiing,
or water skiing. Behind the graphical images of virtual
realities are flow charts not unlike those that have been
described. Each choice in a virtual reality game, for exam-
ple, is a path that is followed though an interconnected
web, in other words, a flow chart. One decision is simply
just that, one decision, meaning that each time the game
is played and one decision is made differently, then the
entire game experience may be different. A flow chart is a
diagram that can be used to map the progress of person’s
experience in a virtual reality game, or map Internet surf-
ing or web structure as depicted in Figure 10.

This flow chart is an example of a Web page. Some
flow charts illustrate a single flow. However, others can be
drawn to represent the relationships between each com-
ponent, in this case a web page, and thus, the various
paths that can be followed through a web page via hyper-
links. Flow charts represent these complex data paths in
simple, understandable ways.

TREE  D IAGRAM
A tree diagram shows the relationships amongst

main concepts and contributing concepts. Tree diagrams
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usually begin with a main concept or idea, such as an
essay topic. From this main concept, several sub ideas
branch off (hence the name tree diagram). From these,
more information branches off until all the desired infor-
mation is included. Tree diagrams can be vertical, which
means they have the initial concept at the top, or hori-
zontal, where the initial concept is on the right hand side.

A tree diagram can be used in statistics to determine
the probability of throwing two heads and two tails when
flipping a coin. A family tree is another example of a tree
diagram. Some family trees are oriented to have the last
person born at the bottom; this represents a reversed ver-
tical tree diagram. However, the orientation does not
detract from the purpose or meaning.

ORGANIZAT ION  CHARTS
Organization charts are slightly different than flow

charts. Flow charts have a web-like structure, and organ-
ization charts tend to be less interconnected. Organiza-
tional charts usually have a hierarchal structure. This
means that there is a leader at the top, and subordinates
are illustrated below. Usually, as the chart progresses
down the hierarchy, each level contains more entries.

The primary place where organization charts are
used is in organizations or business firms. These present
the hierarchal structure vividly. They are used best when
there are more than three people in an organization.
Organization charts can also be used to map the evolu-
tion of objects such as refrigerators, microwaves, and
computers. They will show the earliest model at the top of
the chart, and then year-by-year how new models evolved
from the older models. Organizational charts are easy to
understand and are much simpler to read than reading a
paragraph or essay about the history of the appliance.

GANTT  CHARTS
A Gantt chart is a time-management and product-

management tool in a business that helps organize an
individual or a group. It is a visual presentation of parts
of a project and how they all relate to one another. Gantt
charts show the progression of a project or a specific task
to be completed. They use a timeline along the top and a
list of tasks or people down the side. Different tasks may
also be represented in different colors. It can help
employees to determine who is relying on them and on
whom they are relying to have work completed. Gantt
charts also provide a visualization of project deadlines.
They are most useful for tracking work, scheduling work,
and planning work for a project, especially when there are
several people involved.

MAPS
Maps are a type of diagram. They represent a certain

area with a picture by showing the placement of one
thing relative to another. In the case of road maps, they
are usually labeled and contain important information
about how to travel to a destination or where that desti-
nation is located. A map is a complex diagram consisting
of various pieces of information portrayed in different
colors and symbols that are explained in a legend.

A map is easier to read and understand than a com-
plex set of instructions, especially for long distances. It
provides an easy to view comparison of places relative to
one another. Maps also provide specific information
about amenities in a local area. They can show where
parks are located, where libraries are, or where shopping
centers are. World maps show the different continents
and how they are arranged. Some maps show the world’s
ocean currents, others show the tectonic plates and the
direction in which they are moving. Some maps are top-
ographical, meaning that they have lines that represent
different heights and they also show most, if not all, the
specific details of the terrain.

There are many potential uses for maps. Every time a
new estate or town is built, a new map has to be drawn.
There is always going to be a need for maps. Now maps
are being used in global positioning systems (GPS) to
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Figure 10: A flow chart.
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help determine specific locations. These are especially use-
ful when a person cannot be found because they are buried
under an avalanche or in a collapsed building. The maps
incorporated into GPS help rescuers find these people.

WEATHER  MAPS
Other commonly used maps are weather maps,

which can illustrate areas worldwide, country-wide, and
region-wide, along with local areas. Weather maps are a
simple and easy to understand way to present data about
the weather. Instead of having the wind speed and direc-
tion, the temperature and weather forecast for every city,
and the isobars, the weather map presents this informa-
tion in a single screen on the television or a single image
in the newspaper. To look at a weather map is easier than
to read all of the information.

Many types of maps are different from geographical
maps. For example, a calendar is a map, and thus, by defi-
nition, a type of diagram. It shows the days in a month or
year relative to one another and allows people to keep track
of time. A diagram of the moon phases is also a diagram
and can be thought of as a map. A map is an object that
simply shows one thing relative to another. Therefore, the
term map is quite versatile and includes many diagrams.

BODY  D IAGRAM 
Diagrams often seen in real life include those of the

human body. For centuries, physicians attempted to treat
patients without proper knowledge of human physiology.
This led to physicians being feared by many people, and
patients benefiting little from physicians. However, this
was in the Dark Ages when medicine was a more super-
stitious than scientific practice. In the twenty-first cen-
tury, physicians have many different options for treating
patients, including x-ray images to determine where
bones are broken. X rays are a type of diagram.

STREET  S IGNS
Some of the most useful diagrams occur in day-to-day

life. One of the most common diagrams seen by people
every day is the street sign. Street signs denote instructions
for traffic and pedestrians. Without street signs, traffic
would be disorganized and safety would be compromised.

C IRCU I T  D IAGRAM
Another vital diagram is an electrical circuit diagram.

An electrician has a diagram of all of the circuits in a per-
son’s home. This allows the electrician to complete work.
The diagram enables him to determine which circuit he

must enter to fix an appliance or lighting fixture. It saves
him from having to switch off all power to the house, and
may also save his life. These diagrams need to be accurate
and up to date; otherwise people’s lives may be at risk.

Circuit diagrams are most often seen in computer-
related work. Although most students have only experi-
enced circuits that involve minimal components, such as a
9-volt battery and a small light bulb, circuits can become
quite complex and difficult to decipher. Diagrams are infi-
nitely useful in determining both the function and size of
a circuit. Electrical circuits are everywhere, in computer,
cars, refrigerators, washing machines, dishwashers, mobile
phones, Discmans, and many more household items. The
circuits found in everyday objects are formed from circuit
diagrams. These diagrams allow manufacturers to manip-
ulate the size and shape of circuits before they actually
make them. This becomes more efficient with the use of
circuit diagram drawing programs on computers, which
save time and resources in the production stages. On a cir-
cuit diagram, different symbols denote different circuit
components. Two vertical lines, one shorter than the
other, denote a battery or cell, whereas two equal length
lines denote a capacitor. A circle with a cross in it denotes
a light bulb. There are thousands of components in elec-
trical circuits. Each of them has a different symbol. A cir-
cuit diagram arranges these symbols in an order, so that
they perform a particular function.

OTHER  D IAGRAMS
Lighting designers use diagrams of lights to illumi-

nate a Broadway spectacular. These diagrams show the
type of lights and their placement. A lighting bar diagram
allows a lighting designer to design the lighting for a show
without the trouble of rigging and re-rigging the lights
each time they want to make a change. This diagram
helps the designer to work out where the lights should be
initially placed. Through experience, the designer would
be able to produce an effective design without having to
rig any lights.

There also exist diagrams that are instructions on the
use of a particular item. Instructional diagrams may be
included in a manual for the operation of unfamiliar
technology such as digital cameras. These manuals con-
tain diagrams that provide important information on the
functions of specific buttons. They also show what a but-
ton might look like and its placement on the camera in
the diagrammatic instruction, so that the reader is easily
able to discern the function and the button required for
it. There are diagrams that explain the symbols used on a
particular compact disc player. Diagrammed instructions
also help when assembling consumer products such as
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furniture, toys, or bicycles. Putting together a bookcase,
for example, would be difficult without a diagram show-
ing where to attach the shelves.

Where to Learn More

Books
David, C., and S. Moore. The Basic Practice of Statistics.

New York: W.H. Freeman and Company, 1995.

Weaver, Marcia. Visual Literacy: How to Read and Use Informa-
tion in Graphical Form. New York, NY: Learning Express,
LLC., 1999.

Web sites
Egger, Anne C. “Visualizing Scientific Data: An essential com-

ponent of research.” Visionlearning Vol. SCI-2 (1), 2004.
�http://www.visionlearning.com/library/module_viewer.
php?mid=10� (Mar. 30, 2005).

“Graphs.” University of Rhode Island. �http://www.uri.edu/
artsci/ecn/mead/306a/Overviews/overview.Graph.html�
(Mar. 30, 2005).
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Overview

The term “powers” is used to describe the result of
repeatedly multiplying a number by itself. It is repre-
sented by: a � a � a � a . . . a, where ‘a’ is a variable, ‘�’
shows the process of multiplication, and ‘. . .’ shows that
the process can be repeated some number of times. For
example, nine (3 � 3), twenty-seven (3 � 3 � 3), and
eighty-one (3 � 3 � 3 � 3) are all powers of 3. Two of the
largest powers are called googol (10 multiplied by itself
100 times, or 10100) and googolplex (10 multiplied by
itself a googol number of times, or 10googol).

Powers are used in virtually all areas of business,
science, and education from helping schoolchildren with
their studies of mathematic and defining the magnitude
of earthquakes, to analyzing the amounts of acid rain that
fall on manufacturing areas.

Fundamental Mathematical Concepts
and Terms

A compact notation has been developed to represent
powers. The notation is described by an, where the first
variable a is the base that is successively multiplied by
itself and the second variable n is the exponent which
indicates the number of times the base is to be multiplied
by itself.

The powers of 10 are: 10, 100, 1000, etc., represented
as 101, 102, 103, etc. Many powers of ten have been given
distinct names. For example, in the United States, thou-
sand denotes 103, million represents 106, and billion
stands for 109. As one example, 106 equals 10 � 10 � 10
� 10 � 10 � 10. When these six numbers are multiplied
together, the result is 1,000,000 (or written out as one
million). The definition of powers can be broadened to
include zero, negative, and rational exponents. Powers are
also used within scientific notation, logarithms, and
series.

A Brief History of Discovery 
and Development

Using powers of numbers originated with the
ancient mathematicians, most likely with the Egyptians
(whose civilization lasted from about 3300 B.C. to 30 B.C.
and the Babylonians (living from the eighteenth century
B.C. to the sixth century B.C.). These ancient peoples
encountered powers when developing formulas to

Powers
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describe geometric forms. The Egyptian Rhind pyrus,
which dates from 1650 B.C., contains the concept of pow-
ers for numbers. The Pythagoreans (c. 450 B.C.) origi-
nated the use of x-squared for x2 and x-cubed for x3.

Diophantus of Alexandra (c. 200–284) used S for the
square of an unknown, C for the cube, SS for the square
square (fourth power), SC for the square cube (fifth
power), and CC for the cube cube (sixth power). Ways to
represent powers of unknowns began to spread through-
out many countries in the fifteenth century. For instance,
French physician Nicholas Chuquet (1445–1488) denoted
successive powers of an unknown by placing numerical
superscripts on the coefficients. He represented 4�5 as 45.

The first mathematician to use letters for numbers as
a way to perform mathematical calculations is generally
said to be Francois Vite (1540–1603), an advisor to King
Henri IV of France. Vite used vowels (A, E, I, O, U, and Y)
for the unknowns and consonants (such as B, G, and D)
for known quantities. The convention where letters near
the beginning of the alphabet represent known quantities
while letters near the end represent unknown quantities
was introduced later by René Descartes (1596–1650).
Descartes also introduced the notation of x, xx, xxx, etc.-
where today mathematicians prefer x, x2, x3, etc.

Real-life Applications

AREAS  OF  POLYGONS  AND  VOLUMES
OF  SOL ID  F IGURES

The areas of polygons and the volumes of solid fig-
ures are expressed as powers of a particular length of the
figure. For example, the area (A) of a square of side s is
calculated as side s times side s, or A � s2; that is, the sec-
ond power of s. The volumes of solid geometrical figures
are designated as the third power of a length. For exam-
ple, the volume (V) of a cube with sides of length y is cal-
culated as V � y � y � y, or V � y3, where y3 is the third
power of y. In the case of a sphere with radius r, its equa-
tion for its volume is V � (4/3)�r3, represented as 4�

times the third power of r.

EARTHQUAKES  AND  THE  
R ICHTER  SCALE

Everyday more than one thousand earthquakes
occur around the world. Most of them are not noticed
because they originate beneath the ocean, far under-
ground, or are too small for humans to feel. The surface
of the Earth consists of large pieces, or plates, which con-
stantly grind against each other. When sufficient pressure
builds up beneath two plates, it is released through

cracks, or faults, between the plates. The result is an
earthquake, or shaking of Earth’s surface.

In order to calculate the magnitude of earthquakes,
American seismologist Charles F. Richter (1900–1985)
developed in 1935 a scale (now called the Richter scale)
for measuring earthquake strength. The amplitude of the
waves caused by the energy released in an earthquake
increases by powers of 10 with respect to the magnitude
numbers used by Richter. The released energy of an
earthquake can be approximated by an equation that
includes the energy magnitude of these waves and the
distance from the measuring device, called a seismo-
graph, to the earthquake’s epicenter. Numbers for the
Richter scale range from zero to infinity, although nine is
generally the top limit ever reached. The Richter scale
grows by powers of 10, where an increase of one point
means that the strength of that earthquake is 10 times
greater than the level before it.

For example, the famous San Francisco earthquake
of 1906 (when later evaluated by the method developed
by Richter) had a Richter reading of 7.8, which is 10 (101)
times more intense than one with a reading of 6.8, 100
(102) times more intense than one with a reading of 5.8,
and 1,000 (103) times more intense than one with a
reading of 4.8.

COMPUTER  SC IENCE  
AND  B INARY  LOG IC

In order to store digital information on modern
computers, such as on the memory of hard-drives, com-
puter hardware is made up of millions, or even billions, of
tiny switches that can be either turned OFF or ON. The
digits, 0 and 1, are used to stand for these two states of
OFF and ON, respectively. Since these switches have
exactly two different values, computer scientists work
with a numbering system based on two digits. That num-
bering system is called the binary number system, which
uses 2 as its base number. Each digit in a binary number
represents a power of 2 (20 � 1, 21 � 2, 22 � 4, 23 � 8,
24 � 16, etc.).

Computers have been designed to use two voltage
levels—usually 0 volts for logic-0 and either �3.3 volts or
�5 volts for logic-1. With these two voltage levels, com-
puter scientists can represent the two different values
OFF and ON or, equivalently, values such as no and
yes, false and true, low and high, and many other combi-
nations. Since only two digits are used, any binary digit,
or bit (the smallest unit of information inside a com-
puter), can be transmitted and recorded electronically sim-
ply by the presence or absence of an electrical pulse or
current. Even though it takes many more digits to represent
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binary numbers versus decimal numbers (for example,
the decimal number 255 is represented in binary as 1111
1111), the greater speeds possible with the use of binary
logic more than compensates for that fact.

AC IDS , BASES , AND  pH  LEVEL
Acidic and basic are two classes of chemical compounds

that possess opposite characteristics. Acids are characterized
as tasting tart, being able to change pink litmus paper to red,
and often reacting with some metals to produce hydrogen
gas, while bases taste bitter, turn litmus paper to blue, and
feel slippery to the touch. Mixing acids and bases can cancel
out their opposite characteristics, producing a substance
that is neither acidic nor basic, but neutral.

In order to measure all the different chemicals found
on Earth, the pH scale was developed to show how acidic or
basic a substance is. The pH scale ranges from 0 to 14, with
a substance having a pH of 7 considered neutral, one with a
pH less than 7 being acidic, and one with a pH greater than
7 considered basic. The method of pH uses powers for com-
paring chemicals. Each whole pH value below 7 is ten times
more acidic than the next higher value. For example, a sub-
stance with a pH of 4 is ten times (101) more acidic than a
substance with a pH of 5, 100 times (102, or 10 � 10) more
acidic than a substance with a pH of 6, and 1,000 times (103,
or 10 � 10 � 10) more acidic than a substance with a pH
of 7. The same rationale is valid for pH values above 7, each
of which is ten times more alkaline (basic) than the next
lower whole value. For example, a substance with a pH of
10 is ten times (101) more alkaline than a substance with a
pH of 9 and 100 times (102, 10 times 10) more alkaline than
a substance with a pH of 8.

Knowing the value of pH is very important to many
industries around the world. For example, the food indus-
try relies on pH when dealing with all kinds of foods. The
pH of carbonated colas (which contain phosphoric acid)
is about 2.5, the pH of milk is about 6.5 (almost neutral),
the pH of water is 7.0 (neutral), and the pH of bananas,
garlic, and broccoli are all within the basic range.

The amount of pH in the atmosphere is important
when acid rain falls on the Earth. Acid rain is a form of air
pollution in which airborne acids, which are produced by
electric power plants and other sources, fall to Earth in
local and distant regions. Acid rain dissolves and washes
away nutrients needed by plants, attacks trees, and dam-
ages bodies of water by making waters more acidic that
then can harm fish and other aquatic animals. Because
the corrosive nature of acid rain causes widespread dam-
age to the environment, environmental scientists study
acid rain in great detail. With an accurate measure of the
pH of substances, based on the powers of numbers,

scientists are better able to study and analyze the causes of
acid rain and the ways to reduce or eliminate it.

ASTRONOMY AND  BR IGHTNESS  
OF  STARS

In astronomy, magnitude is a term used to designate
the brightness of a star. The Greek astronomer Hipparchus
(190 B.C.–120 B.C.) devised this system around 150 B.C.
when he placed the brightest stars into the first magnitude
class, the next brightest stars into second magnitude class,
and so on until he reached the dimmest magnitude stars
which were placed within the sixth magnitude class. By the
nineteenth century, astronomers had developed the tech-
nology to objectively measure a star’s brightness with the
use of powers. Instead of abandoning the long-used mag-
nitude system, astronomers modified it for their own use.
They established that a difference of 5 magnitudes corre-
sponds to a factor of exactly 100 times in intensity. For
example, first magnitude stars are about 2.5121 � 2.512
times brighter than second magnitude stars, 2.5122 �

2.512 � 2.512 times brighter than third magnitude stars,
and 2.5123 � 2.512 � 2.512 � 2.512 times brighter than
fourth magnitude stars, etc. Some very bright objects can
have magnitudes of zero or even negative numbers and
very faint objects have magnitudes greater than �6.

Potential Applications

THE  POWERS  OF  NANOTECHNOLOGY
Powers is such a widely used term within mathemat-

ics that it will always be part of future applications. One
promising new technology that will use powers in its
development and application is nanotechnology, which is
the research and development involved in manipulating
materials on a very small scale so that microscopic machin-
ery can be built. These nanotechnology materials and
devices generally range from 1 to 100 nanometers, where
one nanometer is equal to one-billionth of a meter
(0.000000001, or 10–9 meter). Because scientists believe that
nanotechnology will eventually give humans the ability to
mold individual atoms and molecules into microscopic-
sized biological, electrical, and mechanical machines, it may
replace many current production processes.
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Expanded Edition. The Mathematical Association of
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Key Terms

Decimal number system: A base-10 number sys-
tem that requires ten different digits to represent
numbers.

Logarithm: The power to which a base number,
usually 10, has to be raised to in order to pro-
duce a specific number.

Scientific notation: A shorthand way to write very
large or very small numbers.
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Overview

A prime number is a number that is larger than 1 and
which can only be divided evenly by itself and by the
number 1. Just a few examples of prime numbers are 2, 3,
5, 7, 11, 13, 17, 19, 23 and 29.

A Brief History of Discovery 
and Development

Prime numbers have fascinated people for centuries.
When they were not battling Trojans and helping to
devise philosophy and logic, the ancient Greeks were also
tinkering with prime numbers. It was thought that these
numbers held mystical power. The ancient Greeks were
also interested in what came to be known as perfect num-
bers. These are numbers that can be divided evenly by
other numbers (the divisors), with the divisors adding up
to the original number. One example is the number 6. Six
can be divided by 1 (to give 6), by 2 (to give 3), and by 3
(to give 2). Adding up the divisors (1 � 2 � 3) equals 6.

Centuries before the modern era, mathematicians
studied prime numbers. In 300 B.C., Euclid of Alexandria
wrote an essay entitled ‘The Elements’ that collected the
knowledge of mathematics up to that time. In ‘The Ele-
ments’, Euclid was able to demonstrate that prime numbers
did not just stop at a predetermined value, but that they go
on forever. In other words, prime numbers are infinite.
Euclid also showed that if 2n � 1 is a prime number, then
the number 2n�1 � (2n � 1) yields a perfect number.

Test Euclid’s discovery by setting n � 3: 23 � 1 �
(2 � 2 � 2) � 1 � 7 (which is a prime number) so,
23�1 � (23 � 1) � 22 � 7 � (2 � 2) � 7 � 28. Twenty-
eight can be divided into an even number by 1, 2, 4, 7 and
14; finally, 1 � 2 � 4 � 7 � 14 � 28, so 28 is “perfect.”

About 100 years later, another Greek mathematician,
Eratosthenes, came up with a way of determining prime
numbers. Among his other accomplishments, Eratosthenes
was the first person to accurately estimate the diameter of
Earth while serving as the chief librarian of the great ancient
library in Alexandria. His prime-calculating invention was
called the Sieve of Eratosthenes. This mathematical sieve
drains away non-prime numbers from prime numbers.

To illustrate, Table 1 shows an arrangement of the
numbers 1–100:

Perform the following steps:

• Cross out 1 (it’s not a prime number)
• Circle 2 (the smallest prime number), then cross out

every multiple of two (4, 6, 8, etc; in other words,
every second number)

Prime 
Numbers
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• Circle 3 (the next prime number) then cross out all
the multiples of 3 (6, 9, 12, 15, etc.; some have already
been crossed out)

• Circle the next number not circled or crossed out,
which is 5, then cross out the multiples of 5 (10, 15,
20, 25, etc.; some have already been crossed out)

• Continue doing this until all the numbers have been
circled or crossed out.

The circled numbers are the prime numbers.

Another prime number discovery made in the seven-
teenth century was made by Christian Goldbach, a histo-
rian and mathematician. He said that every even number
could be expressed as the total of two prime numbers. As
two examples, 6 can be expressed as 3 � 3, and 20 can be
expressed as 17 � 3. His idea is known as the Goldbach
conjecture. Even today, we are still not sure if his idea is
true. But, scientists do know that the pattern is true for
every even number between 2 and 400,000,000,000,000,
and for some even numbers selected up to 10300 (10 fol-
lowed by 300 zeros). In 2000–2002, a British firm offered
a million dollars to anyone who could prove or disprove
the Goldbach conjecture. No one did.

Since the 1700s, another a great challenge has been to
determine the greatest prime number. Until the number-
crunching power of big computers, this sort of activity
did not get very far. However, with modern supercom-
puters the greatest prime number known now has over 
4 million digits.

As recently as 2003, discoveries were announced
regarding prime numbers. In that year, a team of physi-
cists published a scientific paper in the prestigious jour-
nal Nature that provides evidence that the arrangement
of prime numbers in amongst the other numbers is not
just haphazard, but may have a pattern. Scientists and
mathematicians are not sure what the significance of this

might be. But, prime numbers may have a key role to play
in the natural world.

Real-life Applications

B IOLOG ICAL  APPL ICAT IONS  
OF  PR IME  NUMBERS

Plant-eating insects called cicadas spend a lot of their
life underground in one form, before emerging as adults.
In some types (species) of cicada, this appearance occurs
at the same time for all the adults in the region, every 13
or 17 years.

Thirteen and 17 are prime numbers. Coincidence?
Scientists who have studied the species of cicadas do not
think so. Rather, they think, the use of a prime number
for the life cycle has been a response to the pressure put
on cicada population by other creatures who utilize them
as food. In other words, the cicadas are the prey and the

1
11
21
31
41
51
61
71
81
91

2
12
22
32
42
52
62
72
82
92

3
13
23
33
43
53
63
73
83
93

4
14
24
34
44
54
64
74
84
94

5
15
25
35
45
55
65
75
85
95

6
16
26
36
46
56
66
76
86
96

7
17
27
37
47
57
67
77
87
97

8
18
28
38
48
58
68
78
88
98

9
19
29
39
49
59
69
79
89
99

10
20
30
40
50
60
70
80
90

100

Table 1.

Michigan State University graduate student Michael Shafer
stands next to the computer he used to discover the world’s
highest prime number. The number is 6,320,430 digits long
and would need 1,400 to 1,500 pages to write out. AP/WIDE

WORLD PHOTOS. REPRODUCED BY PERMISSION.
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creatures lying in wait when they emerge to the surface
are the predators.

Researchers have used mathematical ways to model
the so-called predator-prey relationship. Modeling allows
them to do experiments in their lab, on the computer,
without having to actually go to nature and observe what
is happening (which could be very hard to do).

In the mathematical model, the cicadas and their
predators had life cycles that were randomly chosen to be
different lengths. When both predator and prey were
present in high numbers at the same time, it was bad
news for the cicadas, as there were lots of hungry preda-
tors waiting for the cicadas as they came out of the
ground. But, if the emergence of the cicadas occurred
when there were not many predators, they had a much
better chance of living long enough to mate.

In the computer studies, the researchers found that
the best times for the cicadas to emerge from the ground
was in life cycles that had prime numbers (e.g., 13 and 17
years). The researchers assert that a life cycle that is 13 or
17 years long increases the cicadas chances of avoiding
population depletion. Consider what could happen if
their life cycle was 12 years long. If cicada emerged every
12 years, any predator that had a life cycle of numbers
that can divide into 12 (such as 2, 3, 4, or 6 years) could

be around at the same time the cicadas emerged from the
ground. There would be more chance of a hungry preda-
tor would be waiting. But, if a life cycle is 13 or 17 years
long, a predator’s life cycle also has to be 13 or 17 years
long. The odds of that are much less.

Where to Learn More
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Probability

Overview

Probability is the likelihood that a particular event
will occur. Probability is used to estimate the chances of
many different types of events happening. Insurance
companies use probability to estimate how likely a partic-
ular driver is to cause an accident during the next year.
Engineers use probability to predict how often critical
pieces of equipment, such as jet engines on passenger
planes, will fail. Gamblers in casinos routinely make
wagers based on their understanding of the laws of prob-
ability, while investors make even riskier gambles on the
rise and fall of the stock market or the price of a bushel of
corn. Although probability is one of the most commonly
used forms of mathematics in everyday life, many mis-
conceptions exist about its formulation, meaning, and
impact.

Fundamental Mathematical Concepts
and Terms

Probability calculations are generally straightfor-
ward, though as the number of possible outcomes grows,
the math required can become somewhat involved. Con-
sider a simple example involving a single die (the singu-
lar form of dice), in which we wish to determine the
probability of rolling a 4. The calculation for probability
includes several elements. Outcomes are all the possible
results we could achieve; since the die has 6 sides (1, 2, 3, 4,
5, and 6), and any of the six could land on top, the total
number of possible outcomes in this experiment is 6.

Next, we must determine the total number of ways in
which the event of interest could possibly occur; in this case,
a roll of 4 can occur only one way. By dividing this value
(the number of ways our desired outcome can possibly
occur) by the total number of possible outcomes, we can
determine the probability of the 4 being rolled, creating this
equation: Probability � Desired outcome / Total Out-
comes, or in numerical terms, P � 1/6 � 1/6. Thus we con-
clude that the probability of rolling a 4 on a single toss of
the die is 1/6, or 1 in 6. We could perform the same calcula-
tion for each of the other values on the die, demonstrating
that for each side of the die, the probability is also 1 in 6.

Interpreting this value is relatively straightforward: a
probability of 1 in 6 tells us that if we roll the dice a large
number of times, we will, on average, roll a single 4 for
each six tosses of the die. If we wish to find out about how
many 4s we will roll in 600 rolls of the die, we multiply the
probability by the number of rolls, which are often called
experiments or trials; in this case, we use the following
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equation: 1/6 � 600 � 100. This result tells us that over
the course of 600 rolls, about 100 will be 4’s.

This same procedure can be scaled up to evaluate
events with thousands or millions of possible outcomes.
If the names of each person living in the U.S. were writ-
ten on slips of paper and one slip was randomly drawn,
what chance would John Smith of Cloverleaf, Iowa, have
of being drawn? In this example, only one John Smith
exists in Cloverleaf, providing only one possible way to
reach the desired outcome. The total number of people in
the U.S. in 2005 was approximately 300,000,000, which is
the total number of possible outcomes. John Smith’s
chance of having his name drawn is 1 in 300,000,000. If
the drawing were held using the earth’s entire population
of 6,400,000,000, John’s chance of being drawn would
drop by a factor of 20.

A Brief History of Discovery 
and Development

While the very first game of chance cannot be specif-
ically identified, historians are certain that these proba-
bility contests have been enjoyed for millennia. Ancient
civilizations left behind small dice-shaped pieces of bone
called astragalia, which apparently facilitated the earliest
contests similar to modern dice games. Throughout the
early history of man, gambling remained popular, with lit-
tle apparent attention paid to the laws of nature and
mathematics, which made the toss of the colored stones or
polished bone fragments so maddeningly unpredictable.

During the sixteenth century, Gerolamo Cardano
(1501–1576), a scholar of medicine, astrology, and phi-
losophy made the first known attempt to explain the
function of chance in gambling and other endeavors.
Cardano was the first to deduce that an event’s probabil-
ity of occurring is determined by dividing the number of
ways the event could occur by the total number of possi-
ble outcomes. Cardano explained that a roll of a single die
has six possible outcomes, while a pair of dice can land
thirty-six different ways; he also wrote about the statisti-
cal logic of a primitive ancestor of the modern game of
poker. Unfortunately, Cardano’s science was somewhat
limited by his intense belief in astrology, which he used to
predict future events of human lives. Perhaps his most
successful prediction was naming the date of his own
death far in advance; when the predicted date of his death
arrived, Cardano insured his own correctness . . . by
committing suicide.

A century later, mathematician Blaise Pascal
(1623–1662) was asked why the odds of throwing a single

six in four throws of one die do not equal the odds of
throwing four sixes in twenty-four throws of two dice.
Pascal accepted this challenge, then went on to devise the
theory of probability as it is currently understood, in
many cases applying these principles to the popular pas-
time of gambling. At age nineteen, Pascal also constructed
the first mechanical adding machine.

While various other mathematicians added to the
body of knowledge regarding chance and gambling in the
decades that followed, the next major advance occurred in
1928, when John von Neumann put forward the basic
concepts of game theory in a paper analyzing the proba-
bilities associated with various poker hands. While game
theory has found application in fields such as economics,
its application to games of chance also continues, particu-
larly given the advent of powerful, inexpensive computers.

Real-life Applications

SECUR I TY
The ability to conceal data from outsiders has been

valued by military commanders for centuries; historians
have uncovered evidence of military codes dating back
more than 4,000 years. The Allied victory in World War II
was hastened significantly when the Allies broke a pre-
sumably unbreakable code used by the Japanese, thus
becoming privy to numerous confidential communica-
tions. Today, numerous applications for encoding and
decoding data exist, most of them based on the funda-
mental principles of probability.

One critical use for this technology is data encryp-
tion, a technique for encoding data so that it is unreadable
without a specific number, or key, which allows an author-
ized user to decrypt and read the message. Data encryp-
tion has become a critical technique as electronic transfers
of sensitive financial data have become more routine.
Many commercial websites now transfer buyers to a secure
site, at which data such as credit card numbers is
encrypted before it is transmitted from a user’s computer.

Encryption works because of the laws of probability.
An encrypted message can be read by any person with the
proper numerical key, meaning that for a message to
remain secure, the key must be virtually unguessable.
Ever faster computers have made it possible for simple
encryption schemes to be broken using a brute-force
approach, in which the computer simply tries key after
key until the proper one is located. Preventing this type of
attack requires a large enough number of possible keys
that the likelihood of guessing the proper key by chance
becomes so small that it is not worth attempting. An
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encryption key’s resistance to brute force attacks is meas-
ured as strength, with a more secure key being described
as stronger encryption.

As of 2005, one of the most widely used encryption
schemes is found in Microsoft Internet Explorer, where it
encrypts data sent from computer users to the Internet.
This encryption scheme uses a 128-bit encryption key,
meaning that in order to read the encoded data, an inter-
loper would have to correctly guess a 128-bit number.
Since this length of key would theoretically take a modern
supercomputer several hundred years to crack, 128-bit
encryption is considered adequate for routine applica-
tions such as online shopping. In cases where additional
security is desired, such as military applications, longer
keys significantly increase the number of possible keys,
producing a commensurate reduction in the odds of ran-
domly guessing the key.

A related use for encryption techniques has recently
appeared in the rapidly growing field of forensic comput-
ing. In the course of criminal investigations, law enforce-
ment personnel frequently need to locate computer files
related to a crime, a process much like finding the prover-
bial needle in a haystack. A typical computer hard drive
contains hundreds of thousands of files, most of which
arrive as part of the operating system or are installed with
user applications; a basic installation of Microsoft Win-
dows XP places between 10,000 and 30,000 separate files
on a computer hard drive.

Unlike a computer user who knows where most of
his important files are saved, a police investigator search-
ing a computer for files with evidentiary value has no idea
what the needed files are called, or in which directories
they reside. Since it is impractical to manually open and
read every file on the computer, encryption methods now
allow investigators to automatically eliminate more than
90% of the files on a computer, permitting the investiga-
tor to focus on the remaining files.

This file-sorting system is based on the principle of
encryption, in which any file can be processed to produce
a unique identifying code. By creating these unique
codes, or file signatures, of all the files installed by most
operating systems and commercial applications, investi-
gators have created a massive reference library for law
enforcement purposes. Investigators can use this library
to scan a suspect’s hard drive, automatically eliminating
any files which match the signature keys of known files
while leaving the files which might have evidentiary value
behind. The system works only because the number of
potential file signatures is enormous; in the case of the
MD5 algorithm, the total possible number of unique file
signatures is 1038, or a one with 38 zeros after it, making

the odds of two files having the same file signature almost
an impossibility. By reducing the number of files to be
examined, this library enables investigators to more rap-
idly and more efficiently search hard drives, gathering
evidence they might otherwise overlook.

GAMBL ING  AND  PROBAB IL I TY  MYTHS
While the ancestors of today’s dice games predate

recorded history, the modern game of craps is far more
recent, and is attributed to twelfth century Crusaders
besieging a castle in Arabia. Most of today’s other casino
games also can be dated back to the Middle Ages, however
one type of wagering can rightfully trace its lineage back
more than twenty centuries. The longest-running wagering
event practiced today is the ancient sport of horse racing.

Numerous archaeological finds support horse racing’s
claim as the most ancient form of gambling. A Hittite doc-
ument dating to about 1500 B.C. describes in detail the
process of breeding and training horses for the purpose of
racing, while the Iliad provides a complete account of a
chariot race. The Olympic games in 624 B.C. included spe-
cific rules for horse racing in contests of various distances,
and the Romans soon added the concept of handicapping,
or betting against the house. While the popularity of horse
racing has risen and fallen over the centuries, today’s rac-
ing, while faster and more refined, is virtually unchanged
from the ancient contests held in Europe. While the advent
of modern statistical analysis and computer equipment has
provided the tools to analyze the mountains of statistical
data available on past races, the ability to correctly predict
the outcome of a horse remains an elusive goal.

While the interpretation of probability projections is
fairly straightforward when applied to events which occur
many times, the laws of probability become far less intu-
itive over short periods of time. One common probabil-
ity myth, often cited by gamblers, is that numbers, horses,
or players can become due, meaning that since they have
not won in many plays of the game, they are now more
likely to occur. This faulty line of reasoning is based on
the understanding that over many thousands of plays,
each number will appear a set number of times, hence the
gambler assumes that the longer a value goes without
appearing, the more likely it is to appear soon. Unfortu-
nately, this belief is unfounded. In the case of completely
unrelated events, such as the spin of a roulette wheel, the
odds of the next spin are unchanged by the result of any
previous spins. If the number 14 has not been spun on a
particular wheel for six weeks, the odds of it appearing on
the next spin are still exactly the same as they were before.
The laws of probability do not provide for events to occur
simply because they have not occurred previously.
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A second probability myth, ironically, is the exact
opposite perspective of the previous view. This perspec-
tive says that particular numbers can become “hot,” or
more likely to be spun. In adopting this philosophy, an
observant gambler might notice that the number 27 had
been spun on the wheel several times over the course of a
short wagering session. The gambler, acting on the theory
that numbers can become hot, now concludes that the
number’s frequent appearance in past spins makes it
more likely to appear in a future spin, and he will wager
heavily on this particular number. Once again, the laws of
probability and chance dictate that, assuming the roulette
wheel is functioning correctly, the chance of a future spin
cannot be predicted by how often a particular number
has appeared in recent spins. Regardless of how hot a
number appears, it is no more likely to appear on the next
spin of the wheel than any other value. Ironically, the the-
ory of hot numbers, which says that the same number
will come up many times together, is the exact opposite of
the theory of coming due, which says that a number will
appear when it has not been spun for some time. While

gamblers subscribe to both philosophies (and back up
their philosophies with their wallets), both theories can-
not simultaneously be right; in truth, probability theory
says that neither theory is correct, and that past events do
not impact future spins of the wheel.

PROBAB IL I TY  IN  SPORTS  
AND  ENTERTA INMENT

Many sports rely on probability to predict future
events. Baseball is among the most statistically-oriented
sports, with numbers available for almost every aspect of
the game. A player’s batting average is a measure of the
percentage of times he hits safely, expressed as a 3-place
decimal value such as .333. While this value allows an
assessment of a player’s past performance, it is also useful
in predicting his future effectiveness. For instance, a
player batting .200, which can also be expressed 2:10, 1:5,
or 20% can be predicted to hit safely 20% of his times at
bat, or 1 time in 5 attempts. For this batter, the odds
against him hitting safely on any given trip to the plate
will be 4:1. Baseball batting averages are calculated using
an involved set of rules, meaning that a player batting
.200 will generally make it to first base safely more than
20% of the time; for this reason, some managers prefer to
use a player’s on-base average, which includes walks and
errors in the player’s success ratio.

Bowling is a popular sport in which players actually
receive two chances to succeed, in the form of two shots
(if necessary) to knock down all ten pins. Statisticians
have used mountains of data from previous bowling
competitions to calculate the odds of a professional
bowler making a variety of shots. For example, when a
professional bowler steps up to roll his first ball in a
frame, the objective is to knock down all ten pins, scoring
a strike. For the second shot, the odds of clearing the lane
depend on which pins remain standing; three pins stand-
ing close together have much higher odds of falling than
two widely separated pins. For most bowlers, a split is one
of the hardest shots in the game, requiring the player to
slice the ball to the outside of one pin, knocking it across
the lane to hit the other one. Even for a professional, splits
are long-shots. According to the Professional Bowlers
Association, the 7-10 split, in which two pins remain at
opposite sides of the lane, has been attempted 400 times
in televised matches. In all these attempts, the profession-
als have managed to convert only three, putting the odds
of a professional making this shot at 3:400, or about 
1 time in 133 attempts.

How often do miracles occur? The term miracle has
several different meanings; in theological language, it
refers to an act of God that defies the laws of nature,

The probability of this coin landing heads or tails is easy to
predict. ROYALTY-FREE/CORBIS.
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though its most common use today refers to any seem-
ingly impossible event that actually occurs. When the
Boston Red Sox finally broke the decades-long curse of
the Bambino and won the World Series in 2004, fans pro-
claimed the victory a miracle. When a jet airliner crashes
and one or two passengers walk away without injury,
many label their survival a miracle. And in a handful of
cases where a single individual has won a state lottery, not
once but twice, writers routinely throw out the term to
describe this odds-defying run of luck. Ironically, the
term is applied almost exclusively to positive events like
those described, ignoring equally improbable turns of
probability which lead to unexpected death or injury.

While no statistical definition of miracle exists, an
estimate can be made based on common language. To
most people, the expression “one in a million” describes
something quite rare, though still achievable. People fre-
quently use this expression to describe a job they truly love
or a dear family member or friend, suggesting that this
level of probability does not rise to the level of miracle sta-
tus. For this discussion, we must conclude that a miracle is
much rarer than 1 in a million; for simplicity’s sake, we
will assume that a probability of 1 in one billion qualifies
an event as a miracle. In other words, a miraculous event
is one which occurs only once in every billion opportuni-
ties. To get some sense of this level of probability, one bil-
lion seconds would take more than 30 years to elapse.

In determining how often these miraculous events
occur, it becomes important to recognize that while odds
of 1 in one billion are almost unimaginably low, these
odds apply not just to a single person, but to many mil-
lions of individuals. For example, assume that any single
person in the United States has a miraculous, or one in a
billion, chance of being struck by lightning in a given day.
With odds like these, any single person can safely go on
with his life without worrying about storm clouds. But
when these odds are applied to the entire 300 million
people in the U.S., the equation changes dramatically
since each of the 300 million provides another opportu-
nity for the miraculous event to occur. Now, across the
entire population, the odds of a lightning strike in a day
become 300 million in one billion, or roughly 1 in 3.33.
At this probability level, some individual in the U.S.
would be struck by lightning every three days, making the
miraculous seem almost routine, since many of these
strikes would undoubtedly be covered on national news.
Fortunately, lightning strikes appear to be infrequent
enough to reach even the so-called miraculous level pro-
posed here. But given the large number of citizens in the
U.S., it seems statistically likely that one in a million
events actually occur on the North American continent
several times each day.

PROBAB IL I TY  IN  BUS INESS  
AND  INDUSTRY

Some business endeavors require a calculation of
probabilities, even though little data on which to base the
calculation is available. Complex pieces of machinery like
the NASA space shuttle are notoriously hard to estimate
reliability projections for, due largely to the massive num-
ber of components involved. Some components are sim-
ple; for example, a tire on the space shuttle is one of the
more dependable components. Other components con-
tain thousands of parts; the shuttle’s main engines are
among the most complex propulsion systems ever
designed. In order to calculate the odds of an accident
occurring in a single shuttle flight, the chances of failure
for each individual component must be calculated, then
combined with those of the other components to pro-
duce a composite estimate of the ship’s chances of return-
ing safely.

As the number of components rises, the process
becomes increasingly difficult; because of the shuttle’s
complexity this process becomes virtually impossible to
carry out accurately for such a machine, sometimes forc-
ing engineers to make an educated guess. Unfortunately,
these guesses are sometimes given more credibility than
they deserve. Prior to the shuttle Challenger’s loss on the
twenty-fifth shuttle mission, engineers had assessed the
shuttle’s chance of a catastrophic failure at 1 in 100,000,
meaning the ship could have flown every day for 300
years while suffering only one major failure during that
time. Unfortunately, these overly optimistic assessments
appeared to ignore previous experience with unmanned
solid rockets, which suggested an accident rate closer to 1
in 25 or 1 in 50 for the boosters alone. To date, actual
experience with the shuttle system has led to 2 shuttle
accidents in 113 missions, suggesting that the probability
of loss is far closer to the 1 in 50 value than the 1 in
100,000 estimate.

Most consumer products sold today include a war-
ranty period, during which the manufacturer agrees to
either repair or replace the product if problems occur. For
most products, users expect the item to last far beyond
the warranty period; new automobiles typically include a
three to five year warranty, even though most buyers
expect to drive a new car for twice that long. In some
cases, manufacturers attempt to estimate the likely service
life of a product by providing a measure called mean time
before failure, or MTBF. For example, a computer moni-
tor might be sold with an advertised MTBF of 50,000
hours, which equates to 10 hours of use, 5 days per week,
for more than nineteen years. For most customers, nine-
teen years is longer than they typically keep a monitor, so
they will feel comfortable with this purchase. However,
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MTBF is not the same as a warranty or a minimum life-
time; rather, MTBF provides the mean, or average lifetime
of this product model before failure. In other words, half
of the products will last longer than MTBF (50,000 hours
in this case), but the other half will fall below the average,
failing at some point less than the advertised lifetime.

If MTBF does not give a minimum lifetime, how
should it be interpreted when trying to assess a product’s
potential service life? First, if the MTBF has been cor-
rectly calculated, the buyer can expect that the item will
provide the rated service life or more half the time, so if
he buys twenty of the monitors, he can expect at least ten
to last 50,000 hours or longer, in some cases perhaps
much longer.

The other monitors in the group can be expected to
last for varying periods of time, with most of them last-
ing close to the average lifespan of 50,000 hours and a few
failing as the time-span grows further from the mean. In
a few cases, monitors might actually quit working within
the original warranty period, meaning they would be
replaced by the manufacturer. Unfortunately, MTBF cal-
culations for complex electronic equipment can be
impractical or impossible to calculate mathematically,
meaning that in some cases the MTBF is based largely on
engineer intuition and experience with similar parts,
rather than actual experimentation.

One of the most exciting moments in a teenager’s life
is when she finally receives her driver’s license. But soon
after this triumph may come a rude surprise: car insurance
for young drivers is often several times as expensive as for
older adults. Why do insurers charge teen drivers more?

Insurance companies are among the largest users of
statistical and probability data. Specialists called actuaries
spend their days determining exactly how likely events are
to occur, allowing the insurer to charge correctly for its
policies. Actuarial tables provide summaries of this data;
for example, an actuary could use one of these tables to
determine that a 45-year-old man in good health is likely
to live to be 82 years old, and that his odds of dying next
year are 1 in 14,400. Using these probabilities, the insurer
can then determine how much to charge the man for a
life insurance policy which pays $100,000 to his family in
the event of his death.

These probability tables allow insurers to provide
discounts to specific customers, such as those who don’t
smoke, since they have a higher probability of living
longer. Automobile insurers also use actuarial data to pre-
dict which drivers are more likely to be involved in an
accident, in which case the insurer will be obligated to pay
for repairs. Using this information, insurers then give
lower rates to drivers who have lower odds of having an

accident and higher rates to those with higher odds.
Based on past experience with millions of drivers, insur-
ance companies know that the odds of a teenage driver,
especially a male, having an accident are much higher
than for a 30- or 40-year-old. Since the company is more
likely to pay a claim for these young drivers, it is forced to
charge higher premiums in order to cover the expected
losses. As long as young drivers continue to have more
accidents in general, even safe teenage drivers will con-
tinue to pay higher premiums for auto insurance. In a few
cases, actuarial data has shown that certain groups, such
as Honor Roll students, are less likely to have accidents,
and some insurers now offer discounts to students with
strong academic performance.

OTHER  USES  OF  PROBAB IL I TY
In 2001 Russian engineers fired braking rockets to

bring the aging Mir space station back to earth. The re-
entry was carefully orchestrated to insure that most of the
station would burn up in the earth’s atmosphere, and any
surviving pieces would land harmlessly in the Indian
Ocean. Recognizing the incredibly long odds of losing,
restaurant chain Taco Bell made an astonishing offer. The
company floated a 40-foot square target featuring the
words “Free Taco Here” in the Indian Ocean off the coast
of Australia. The company then widely advertised that if
the remains of the Mir station hit the target, Taco Bell
would give one free taco to every person living in the
United States. Mir eventually landed thousands of miles
from the target, and the company avoided having to serve
300 million free tacos. However, executives at Taco Bell
apparently recognized that even the unlikeliest of events
occasionally occurs; the company took out an insurance
policy in advance just in case the falling station defied the
exceptionally long odds and hit the target.

Sometimes the seemingly impossible can be accom-
plished due to an audience’s lack of statistical savvy.
Consider this simple magic trick. A magician, claiming 
to have psychic powers, stands before a crowd and
announces that he has noticed an odd coincidence:
although there are 365 possible birthdays in a year, he has
psychically observed that two of the individuals in this
particular audience happen to share the exact same birth-
day. He then asks a series of questions to help locate the
unlikely pair, and after confirming this fact, moves on
with his act. Was it psychic power, or simple probability?

To most casual observers, the large number of possi-
ble birthdays seems to make the prediction a long shot at
best. But considered in terms of probability theory, it
begins to look far less magical. Assume that the crowd
consists of 12 people. The magician has a 0.5073 chance of
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being correct, one better than in two. With a bit of
showmanship, most psychic performers are able to easily
dismiss the predictions they miss using a variety of expla-
nations. But in close to half of this performer’s appear-
ances, he will shock the crowd by appearing to do the
impossible, when in fact he has simply made a smart bet
based on the simple laws of probability.

In a few instances, probabilities are used to attract
attention or create fear. Newspaper and magazine head-
lines during the mid-1990s warned air travelers to avoid
planes with fewer than thirty seats, based on statistics
which seemed to indicate that these smaller planes were
several times more likely to crash than larger jets. But this
probability was based on a classification system which
grouped small commercial planes in the same category as
helicopters and some other types of planes, unrealistically
inflating the numbers for the category and making the
commuter planes seem less safe. Eliminating the other
types of equipment from the equations produced proba-
bility figures demonstrating that the smaller commercial
planes are approximately as likely to crash as their larger
cousins.

Potential Applications

As computational power continues to double every
two years, the ability to apply probability theory in new
ways will lead to further applications for this powerful
tool. In some cases, these applications may involve major
improvements in current applications, such as forecasting
weather patterns or predicting when and explaining why
freeways suddenly become congested. The ability of
faster computers to crack increasingly complex codes will
lead to an escalating battle between code-writers and
code-breakers.

In other cases, advances in probability theory may
well result in unforeseen applications. Based on mathe-
matical advances made by eighteenth century mathe-
matician Thomas Bayes, scientists are just beginning to
develop software which is comfortable dealing with con-
cepts such as “probably” and “more likely” rather than the
simple yes or no typically required in computer pro-
gramming. Google and other search engines already use
rudimentary forms of Bayesian reasoning to answer
search queries. Potential future applications include cam-
eras which would visually examine a patient and warn a
physician of symptoms making the person more likely to
suffer a stroke.
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Overview

Proportion is an equation used to compare the mag-
nitudes of quantities. It can be defined as an equation
that presents equality between two ratios. In other words,
if the ratio between two characteristics of an object is
equal to the ratio between the same two characteristics of
another object, the two objects are considered to be in
proportion. These characteristics could be anything that
can be measured (such as size, quantity, dimension, etc.).
For example, consider two rectangles, the first having
length and width equal to 8 in. (20 cm) and 4 in. (10 cm)
respectively, and the other having a length of 6 in. (15 cm)
and width of 3 in. (7.5 cm). These two rectangles are in
proportion as the ratio of the length and width of each
rectangle is equal.

Although proportion is a concept mainly used in
design, it is widely applied to other aspects of daily life as
well. One of the most common examples is grocery shop-
ping, where proportion is frequently used to compare
prices of items with different sizes. In addition, proportion
finds uses in numerous other fields, including architec-
ture, art, maps, astronomy, business, imaging, technology,
and even cooking.

Fundamental Mathematical Concepts
and Terms

As stated earlier, proportion is indicated by the
equality between two ratios. Mathematically, it can be
expressed in two ways—a/b � c/d or a:b � c:d. The outer
terms of the equation are known as extremes, while the
inner (or middle) terms are known as means. For exam-
ple, in the above equation “a” and “d” are extremes,
whereas “b” and “c” are means.

SOLV ING  RAT IOS  
WITH  CROSS  PRODUCTS

One way to test equality is by simply calculating the
values of the ratios. However, a more commonly used
method involves the use of cross products. Cross prod-
ucts can be calculated by multiplying the outer terms (or
extremes) and then the inner terms (means). If both val-
ues are equal, the ratios are in proportion.

Consider the ratios 2/5 and 3/7.5. In this case,
the cross product of the extremes is 2 � 7.5 � 15, while
the cross product of means is 5 � 3 � 15. Hence, the
ratios are in proportion. Note that simple division
here would have been far more complex and time con-
suming, as compared to calculating cross products.

Proportion
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This is one of the reasons for the popularity of the cross
product method.

The cross product method also has another signifi-
cant benefit. Real life applications use the concept of pro-
portion mainly to compare two things or objects. In
many cases, there may be a missing term in the propor-
tion. For example, a grocery store owner charges $1.50 for
1 lb. (0.4 kg) of beef roast. He wants to set the price of a
3 lb. (1.2 kg) roast, such that it is in proportion with the
price of the 1 lb. (0.4 kg) roast. This can be easily done by
writing the proportion equation, and then using cross
product to determine the price.

The equation can be written as—1.50/1 � x/3, where
“x” is the price of the 3 lb. roast. By calculating the cross
products of the means and extremes, the value of “x”
comes out to be 4.50. In other words, the 3 lb. (1.2 kg)
roast should be priced at $4.50 for it to be in proportion.
Simply put, you can calculate a missing term from a ratio
if this ratio is in proportion to another known ratio. This
underlying concept of proportion is extremely useful in
real-life applications.

DIRECT  PROPORT ION
If change in one component causes a change of equal

magnitude (size, percentage) in another component, the
two components are said to be in direct proportion.
Another way of expressing this is by stating that the first
component is directly proportional to the second compo-
nent. In a nutshell, direct proportion is a concept that
pertains to the change in the values of two (or more)
components that are already in proportion.

For example, imagine the price of a candy bar is $0.50.
The number of candy bars is always proportional to the
total price of the bars—the ratio of the number of candy
bars to the total price always remains same. One bar costs
$0.50, two bars cost $1.00, four cost $2.00, eight bars cost
$4.00, and so on. Put simply, a change in the number of bars
causes a change in the total price. Moreover, the magnitude
of the change is also the same. In other words, the change in
the number of bars as well as the price can be represented
by a common factor. The number of bars keeps doubling
(or 1 � 2 � 2, 2 � 2 � 4, 4 � 2 � 8). Similarly, the price
also doubles ($0.50 � 2 � $1.00, $1.00 � 2 � $2.00, $2.00 �
2 � $4.00). Hence, the number of candy bars is directly
proportional to the total price of the bars. Also the change
is represented by a common factor (two in this case).

Mathematically, direct proportion is indicated as 
a r b (a is directly proportional to b). The main advan-
tage of direct proportions is that they can be expressed in
the form of an equation. For example, the relationship

between the total number of bars and the total price, in
the above case, can be shown as:

Total number of candy bars � k � Total Price, where
k is the common factor.

The common factor is known as the proportionality
constant. This equation may be used to easily calculate
the total price if the number of candy bars is known, and
vice versa. All direct proportion relationships can be
expressed by such equations. Consequently, they are used
extensively in various real-life activities and applications.

INVERSE  PROPORT ION
Like direct proportion, inverse proportion also per-

tains to the change in two (or more) components. How-
ever, in the case of inverse proportion, an incremental
change in one component causes a decrement in the
other component. In other words, if the magnitude of
one component increases, the value of the other compo-
nent decreases, and vice versa.

Consider, for example, a car traveling from one place
to another. If the car has a constant speed (and assuming
it does not stop anywhere), the more it travels, the less the
remaining distance to the target destination. Hence, in
this case, as the total travel time increases, the distance to
the destination decreases—travel time is inversely pro-
portional to distance remaining.

Similar to direct proportion, the change can be rep-
resented by a factor. However, the factors that represent
change for both components are multiplicative inverses
of each other. In simple terms, if the value of one compo-
nent changes by a factor of three, the change in the value
of the other component will be 1/3. Consequently, inverse
proportion is also known as reciprocal proportion, and is
mathematically indicated as a r 1/b (or travel time r
1/distance remaining, for the above example).

An inverse proportion relationship can also be
expressed in the form of an equation. For instance, the
two components (travel time and distance remaining) in
the above example can be shown as:

Travel time � k/distance remaining, where k is the
proportionality constant.

A Brief History of Discovery 
and Development

Throughout history, proportion has been used
extensively in numerous areas. The Greek mathematician
Pythagoras (580 B.C.–500 B.C.) who is most well known
for the Pythagorean theorem, developed the Theory of
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Proportion to relate music with mathematics. He estab-
lished musical scales that were based on the concept of
proportion.

Subsequently, evidence of proportion can be seen in
many works of art and architecture, especially in ancient
Greece and Rome. Some of the most popular paintings by
renowned artists such as Michelangelo (1475–1564),
Raphael (1483–1520), and Leonardo da Vinci (1452–
1519) were based on proportion. The concept of propor-
tion is vital to art and architecture as it describes the size,
location, or amount of one element to another within the
entire work (e.g., Vitruvian Man by Leonardo da Vinci).
The proportion of various parts of the body in this

painting is very similar to the proportion seen in an aver-
age human body.

Similarly, much like modern architecture, ancient
structures and buildings also incorporated proportion.
The ancient Egyptians used it in the construction of the
pyramids. The Parthenon in Athens, Greece, is another
structure where proportion, along with ratio and scale is
used extensively to create a “harmony” among various
elements.

Interestingly, Isaac Newton’s (1643–1727) second law
of motion states that the acceleration of an object in
motion is directly proportional to the force applied 
on it—a classic equation indicating direct proportion
between two properties, acceleration and force.

Historians and mathematicians also believe that the
great musicians Mozart (1756–1791) and Beethoven
(1770–1827) used proportion to compose music. Propor-
tional scaling allows the composition of harmonic, pleasant-
sounding, music—a concept initially put forward by
Pythagoras.

Subsequently, by the nineteenth century proportion
was applied to numerous applications including those in
business and sciences.

Real-life Applications

ARCH I TECTURE
Architecture uses mathematical concepts such as

proportions and ratio extensively. Since ancient times,
architects and designers have been building various parts
of a structure in proportion to attain visual appeal, unity,
stability, and order. These principles hold true even today.
Proportion is employed in a number of ways in architec-
ture. Most popular buildings and structures—ancient as
well as modern, are based on what is commonly known as
the divine proportion or golden proportion.

The divine proportion consists of two or more ratios
that are equal to phi (or 1.618). In other words, if the
ratio (also known as divine ratios) of various parts of a
building (or a structure) is equal to the number 1.618,
then the proportion of these various parts is known as the
divine proportion. Throughout the world, monuments,
famous buildings, and other structures have been created
using the divine proportion. This includes the pyramids
of Giza, the Parthenon in Greece, the Colosseum in
Rome, numerous cathedrals including St. Peter’s Cathedral
in the Vatican, the Taj Mahal in India, the Pentagon in the
United States of America, and many more.

As stated earlier, proportions are used on various
elements (or parts) of the entire structure. For example,

Michelangelo’s marble statue of David in Florence, Italy.
Measurements of the statue debunked long-held notions
that the 13.5-ft (4.1-m) high statue was out of proportion 
to the human form. AP/WIDE WORLD PHOTOS. REPRODUCED BY

PERMISSION.
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the front elevation of the Parthenon is built to the divine
proportions:its width is 1.618 times its height. Besides
divine proportion, basic principles of proportion are also
used. For example, the Pentagon is made up of five inter-
nal (or concentric) pentagons. Each of these internal pen-
tagons is in proportion to the outer pentagon.

The concept of proportion is used widely in modern
architecture as well. Apartment buildings, or houses
within the same community may have different sizes of
apartments (or houses). However, they are typically in
proportion to each other. Sports stadiums also incorpo-
rate proportion: the distance between the bases in a base-
ball field is always proportional to the length (or width)
of the field. Similarly, the width of a goal post in a soccer
field is proportional to the width of the entire field.

In addition, architects design miniature models
before building the actual structure. These models,
known as scale models, serve as detailed representations of
the final structure. These scale models are much smaller in
size, but are in proportion to the final structure. For
example, if the scale model of a house is a hundred times
smaller than the actual house, every room (or part) of the
model would also be a hundred times smaller than the
corresponding room (or part) in the actual house—all
parts of the model are in proportion with the actual
house. Similarly, different parts within the model are also
in proportion. If the actual house should be built such that
there are two rooms—one room twice the size of
the other, the model would also depict two rooms, where the
size of one room is twice that of the other. Simply put, the
ratio of the sizes of the two rooms is equal in both cases.

The main advantage of a model is that it allows the
architect to visualize a structure before it is built. Also,
once the model is created, using proportion, various
measurements of the final structure can be easily deter-
mined and constructed accordingly.

ART, SCULPTURE , AND  DES IGN
Like architecture, painting and sculpting also relies

on the concept of proportion. Some of the great painters
and sculptors, for centuries, have used mathematical
models of proportion to attain visual appeal and symme-
try (balance) in their work. Portraits and paintings
depicting natural scenery are, more often than not, in
proportion with the real thing. For a portrait of a person,
a good painter would ensure that the measurements of
body parts in the painting are in proportion to the actual
measurements of the person. This can be seen in most of
the ancient as well as modern day portraits.

In addition, different elements within the same paint-
ing are also in proportion. In a painting of natural scenery

depicting a house, trees, fences, and mountains, the size of
each of these is not similar. A house in the painting would
be bigger than the size of the fence (unless they are sup-
posed to be at different locations far away). In other
words, depending on their location, the sizes are always in
proportion—similar to what we see in the real world.

The same holds true for sculptures as well. Like a
painting, the sculpture of a person may be bigger (or
smaller) in size than the person. However, in most cases,
the measurements are in proportion. The advantage of
proportion for creating sculptures is evident when the
difference in size of the actual object and that of the
sculpture is large. Mount Rushmore, in South Dakota, is
a classic example. The design and development of
the famous memorial to the four presidents—George
Washington, Thomas Jefferson, Abraham Lincoln, and
Theodore Roosevelt, is based on a number of mathemat-
ical concepts, such as ratio, proportion, and scale.

Prior to sculpting the faces of the presidents on the
mountain itself, the designer of the memorial, Gutzon

The proportions of man are carefully delineated in the
drawing Vitruvian Man by Leonardo da Vinci. CORBIS

CORPORATION. REPRODUCED BY PERMISSION.
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Borglum, developed a smaller model. The size and meas-
urements of the memorial on the mountain are in pro-
portion to the model. Carving the faces on the mountain
directly would have been an extremely difficult task for
the designer and his team. However, a smaller but pro-
portional model greatly simplified the process. Many
technical aspects such as distance between the faces, size
of each face, measurements within a particular face, could
be easily calculated in the model. Once all measurements
were recorded, the designer used the proportion equation
to calculate the actual measurements of the memorial (in
order for it to look exactly like the model itself).

The principles of interior design also rely on propor-
tion. Furniture, for example, is designed so that its parts
are proportionate to each other. This is critical in achieving
stability and balance. Furniture that is out-of-proportion is
not considered visually appealing. The parts of a chair—
the arms, legs, seat, and back—are in proportion to each
other, and the chair as a whole.

MEDIC INE
Medicines are very essential to treat many illnesses

and diseases. Medicines are also used during surgeries
and medical diagnosis. They often contain more than two
ingredients or compositions that are essential to have
desired effect. The proportion of this composition
becomes very important. In other words, every medicine
contains a specific proportion of its ingredients.

Prescriptions, as well as over the counter drugs,
require the mixture of various chemicals, and other addi-
tional constituents, to be in certain proportions. For
example, over the counter medicines for pain relief often
contain aspirin, a required drug to relieve pain, along
with other drugs. The proportion of each constituent
present in medicine is important as they are meant to
treat a certain type of disease, illness, or ailment.

Changing the proportion of the constituents can
have different effects. Several common ingredients are
used to treat different types of illnesses. The reason for
this is that medicines, when prepared using different pro-
portions of the same drugs (or ingredients), act differ-
ently, and hence are meant for different diseases.

Proportion is also used frequently by doctors and
nurses, while preparing dosages for patients. Patients may
require dosages of drugs that vary in quantity and
strength. For example, some times a patient may need a
dosage that contains 200 mg of a drug that comes as 100
mg diluted in 1 ml of fluid. The technical specifications
associated with dosage measurement are beyond the
scope of this article. However, for our purpose, the above
dosage can be thought of containing a drug in specific

quantity (200 mg), having specific strength (100 mg
diluted in 1 ml of fluid). The quantity of a drug is pro-
portional to its strength. Using this relation, health care
professionals can calculate the quantity of the drug to be
administered for a particular strength.

MAPS
Maps may represent a large geographical area and

can be of various types depending on the features they
emphasize. The area represented by a map can vary from
a small room to the entire universe.

There exists a relationship between a specific dis-
tance on the map and its actual distance. This relation-
ship is defined by the mathematical concept of scale (or
map scale). However, it is important to note that the map
scale is based on proportion. In simple terms, the size of
the map and the size of the area it shows are always in
proportion.

Consider a map that depicts an area that is a hundred
times larger than the size of the map. In this case, the rela-
tionship between the map and the actual area can be
shown as the map scale (a ratio in this case) 1:100—one
unit of measurement (cm, inch, feet, etc.) on the map is
equal to hundred units in the actual area. The ratio
between any part of the map to its actual size remains the
constant (1:100). Therefore, every part of the map is in
proportion to its actual size. For example, if the actual dis-
tance between two points is 100 inches, then the distance
between the same two points on the map would be 1 inch.
Similarly, if the actual distance between two points is 500
inches, the distance between these two points on the map
is 5 inches—the distance between any two points on the
map is proportional to the actual distance between them.

Maps can be categorized into two types—the large
scale map, and the small scale map. The large scale map
shows a smaller area but in greater detail, whereas a small
scale map shows a larger area in less detail. The map scale
for these maps would differ; however, the maps are always
in proportion to the actual size. A city map would be an
example of a large scale map as compared to a world map
(small scale).

ERGONOMICS
Ergonomics is a science that studies technology and

how well it suits the human body. Ergonomics involves
understanding basic body parts, their functions and abili-
ties to operate equipments, machinery, products, and
other technological devices. Ergonomics is commonly
used while designing cars, among other things. Ergonomic
car designs are based on the principles of proportion.
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Consider, for example, a car seat for drivers. Its
height from the surface, inclination, and movements pat-
terns are all designed in proportion to the human body.
The size of the seat has to be in proportion with the size
of an average human driver. In addition, you do not
expect a person to have a giant steering wheel in front of
him/her—the size of the wheel (the diameter of the
wheel) has to be in proportion to the size of the hand
grip, shoulder width, and distance between the wheel and
person driving the car.

Ergonomics is used extensively in many areas as well.
This includes design of kitchen and appliances, design of
home and office furniture, bathroom appliances, electron-
ics, computer systems, airplane and train interiors, and
much more. Every ergonomically designed object is pro-
portional to the size of the human body (or a part of it).

For example, a bed is usually designed in proportion
to the human body. The length of a bed is proportional to
the average height of a person. Many beds in Europe are
around seven feet (2 m), whereas those in Asia are around
six feet (2 m) long. This also influences other design stan-
dards such as height of the bed from the floor, and width
of the bed.

ENG INEER ING  DES IGN
Engineers apply the principle of proportion in many

ways including when designing automobiles, airplanes,
and trains. Representative two-dimensional models (sim-
ilar to scale models discussed earlier) are designed before
finalizing and manufacturing a car, plane, or train. These
are detailed models depicting each and every characteris-
tic. The automobile is then built such that its size and
other measurements are directly proportional to the
model. In other words, a relation based on proportion is
established between the model and the actual object.

The main benefit of creating models for automobiles
(as well as airplanes and trains) is to easily study design
issues. For example, after calculating the measurements
of a seat in the car model, using proportion, the actual
size of the seat can be calculated. This will enable the
designer to analyze whether the size of the seat is appro-
priate for a person.

As the dimensions and size of the car are propor-
tional to the model, any change in the model would affect
the car. Besides, parts of the model (or car) are also pro-
portional to the model (or car) as a whole. Put simply, if
for example, the size of the leg room is changed, the
change in the total size of the car can be calculated. if leg
room needs to be increased, and at the same time the size
of the car must remain constant, the designer would have
to reduce the size of some other part of the car.

Once a model with ideal measurements is created,
manufacturing the final object becomes a lot easier.

MUSICAL  INSTRUMENTS
Since ancient times, mathematicians have always

established relationships between principles of mathe-
matics and music. Pythagoras was the first people known
to study and apply concepts of proportion and scale to
music. These principles are also valid for most musical
instruments.

It is widely believed that instruments designed using
specific proportions produce superior music. This can be
seen in both ancient as well as modern day instruments.
For example, to achieve better quality of music, the dis-
tance between strings on a guitar (or a violin) is propor-
tional to its entire width. In fact, proportion is used for
designing every part of the instrument. Similarly, for a
piano to function properly, all its parts have to be in pro-
portion to one another.

CHEMISTRY
Chemicals are often a mixture of a variety of sub-

stances. These substances are present in certain ratios. For
example, the chemical composition of ammonia is NH3.
Here, the amount of nitrogen (N) is directly proportional
to the amount of hydrogen (H)—the ratio of nitrogen
atoms to hydrogen atoms is 1:3. In other words, if the
number of nitrogen atoms increases by one, the number
of hydrogen atoms have to be increased by three. Simi-
larly, if two nitrogen atoms are added, six hydrogen atoms
must also be added to continue for the substance to be
ammonia. The ratio between nitrogen and hydrogen is
always maintained.

Setting up equations as proportions is one of the
most effective ways of solving a number of problems in
chemistry. For example, to prepare chemical solutions,
the chemicals are usually dissolved in water or alcohol.
The quantity of chemical present in the solution is known
as the strength of the solution. In simple terms, a 70%
solution would contain 70% of chemical and 30% of
alcohol (or water). While preparing the solution of a spe-
cific concentration, the amount of chemical is always
proportional to the amount of alcohol (or water). This
relationship is especially useful while preparing solutions
in different quantities but the same concentration.

A 50 mL (four tablespoons) of chemical solution con-
tains 20 mL (a little more than one tablespoon) of alcohol.
If the amount of chemical solution has to be increased to
80 mL (a little more than five tablespoons), what would
be the amount of alcohol present in this solution? This
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can be calculated by setting up a proportionality equation
as shown below:

20 mL alcohol / 50 mL solution � x mL alcohol/
80 mL solution, where x is unknown amount of alcohol.
The quantity of alcohol should be 32 mL (two table-
spoons) for an 80 mL solution.

Such equations are used widely by doctors, scientists,
and students.

DIETS
Dieticians and fitness experts often apply mathemat-

ical approaches to developing “balanced” diets. They
indicate that every meal should have proteins, carbohy-
drates, and fats in a certain proportion to each other (and
the entire meal). This relationship helps greatly in calcu-
lating the amount of proteins, carbs, and fats for different
meal portions.

For example, a particular meal amounts to 400 
calories—160 calories from proteins, 160 calories from
carbohydrates, and 80 calories from fat. If another meal is
equivalent to 600 calories, the amount of proteins, carbs,
and fats would increase to 240 calories, 240 calories, and
120 calories respectively. Note that the amount of pro-
teins, carbs, and fats is in proportion.

Most food items list the amount (in grams) of protein,
carbohydrate, and fat content. For instance, 100 grams (3.5
oz) of ice-cream may contain 20 grams (0.7 oz) of fat. The
amount of fat in 50 grams (1.7 oz) of the same ice-cream
would be 10 grams (0.3 oz), and so on—fat content is pro-
portional to the total quantity. Food items are always avail-
able in specific quantities. Put simply, by applying
proportion equations, the content of proteins, carbohy-
drates, and fats can easily estimated for different quantities.

The same concept is also applied to cooking. While
preparing a food item, the ingredients are in proportion
to each other (and to the total quantity of the food item).

STOCK  MARKET
Mathematical concepts such as proportion and ratio

have a lot of business applications. One such example is
in the stock market. There are factors that contribute to
the share value of a company. However, more often than
not, a company’s share value fluctuates based on profit it
makes. Besides, the value also depends on the number of
buyers of the company shares. Simply put, the value of a
share is proportional to a combination of factors, includ-
ing the profit and number of buyers.

Most companies divide a percentage of profits
amongst all its shareholders (people who own the
company’s shares). The amount given per share is known
as dividend. Higher the number of shares a person owns,
higher the dividend. Another way to look at this is
that the total dividend is proportional to the number of
shares owned.

PROPORT ION  IN  NATURE
The number Phi is an unusual number with

astounding mathematical properties. As explained earlier,
the golden section, a principle on which ancient Greek
architecture was based, is derived from a ratio that fur-
ther results in the number phi. Phi appears in propor-
tions of the human body as well as the proportions of
various other animals. The renaissance artists referred to
the golden section as the divine proportion and used it
for achieving balance in arts. The divine proportion prin-
ciple is found in abundance in nature. The spirals of a sea
shell, the galaxy, the body of a dolphin, the structure of a
butterfly, a peacock feather, the patterns of flowers and
plants, the rings of Saturn, all follow the divine propor-
tion principle.

The average human face is also an example of divine
proportion. The head forms the golden rectangle with
eyes exactly at the center. The mouth and nose are each
placed at golden sections of the distance between the eyes

Key Terms

Ratio: The ratio of a to b is a way to convey the idea of
relative magnitude of two amounts. Thus if the num-
ber a is always twice the number b, we can say that
the ratio of a to b is “2 to 1.” This ratio is some-
times written 2:1. Today, however, it is more com-
mon to write a ratio as a fraction, in this case 2/1.

Proportion: Two quantities with equal ratios.

Scale: The ratio of the size of an object to the size of its
representation.

Symmetry, or balance: A design is symmetrical if its
two opposite sides divided by a line in the center
are identical, or nearly identical.
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and the bottom of the chin. Assume that the eyes are rep-
resented by A, nose by B, mouth by C and chin by D. The
ratio of line AC to line AD is the same as ratio of line BC
to line AC. This means that the ratio of distance between
eyes and mouth to the distance between eyes and chin is
in proportion with the ratio of distance between nose and
mouth and eyes and mouth. Some scientists who study
psychological reactions to faces assert that concepts of
beauty may be related to facial symmetry and proportion.

Interestingly, the average human face, when viewed
from side also reflects the divine proportion principle.
Even the dimensions of human teeth are based on 
this principle. Some dentists are even considering the

knowledge of this principle to enhance their aesthetic
dentistry skills. The human hand is also an example of the
divine proportion.

Where to Learn More

Books
Elam, Kimberly. Geometry of Design: Studies in Proportion and

Composition. New York: Princeton Architectural Press,
2001.

Padovan, Richard. Proportion: Science, Philosophy, Architecture.
London: E & FN Spon, 1999.
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Overview

An equation often describes a function, a rule that
relates numbers in one set to numbers in another. Rather
than listing all the numbers related by a function, letters,
also termed variables, are often used to stand in for the
numbers.

Fundamental Mathematical Concepts
and Terms

The function y � 2x says that for every number x in
some set there is some other number, y, in some other set
that is twice as large as x. Some functions consist of a sum
of powers of x, like y � x3 � 3x2 � 2x � 1.

Here the number just above each x tells us how many
times to multiply x times itself: that is, x3 � x � x � x,
and so forth. Functions of this form are named by the
highest power of x they contain, which is the rank or
order of the equation. For example, the highest power of
x in y � 2x is 1 (because x � x1), so this is a first-order
equation. The highest power of x in y � x 3 � 3x2 � 2x �

1 is 3, so this is a third-order equation.

The first four orders have special names, namely
linear, quadratic, cubic, and quartic. Quadratic and
higher-order equations appear constantly in science,
engineering, and business mathematics. They are used lit-
erally millions of times a day in these fields, designing
electronics, analyzing data, implementing codes, predict-
ing profits, and performing other tasks.

Examples of equations of the first four orders are
given in Table 1. In the examples, the letters A through E
are used to stand for any constants (fixed numbers), with
the exception that A cannot equal 0. These constants are
called the coefficients of the equation.

A “solution” to an equation is an x, y pair for which the
equation holds true. For example, a solution to the linear
equation y � 2x is x � 5, y � 10, because 10 � 2 � 5. In
this equation—in fact, in all linear equations—there is one
x for each y. Finding solutions to equations is one of the
most common tasks in the mathematics of science, engi-
neering, and business. Often we know what y is, or what we
want it to be—the cost of an item to be manufactured,
say—and we want to know what x (or x’s) will produce
that y. The variable x often stands for something that we
can chose or control, such as the length of an assembly line
or the amount of a chemical added to a reaction.

For equations where y is equal to a sum of powers of
x, including linear, quadratic, cubic, and quartic equa-
tions, the x’s for which the equation is true are called its

Quadratic,
Cubic,

and Quartic
Equations
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roots. Often the y value is subtracted from both sides of
the equation to produce a nice, neat 0 on the left-hand
side of the equation, but this is a minor detail. What is
important is that the number of roots is equal to the
order of the equation. A linear (first-order) equation has
one root, a quadratic (second-order) equation has two
roots, and so on.

We can find the roots of any linear, quadratic, cubic,
or quartic equation by writing down certain equations
containing the coefficients of the original equation. This
cannot be done for equations of order higher than 4, as
mathematicians have known since the 1820s. The first
four orders are therefore special. The equation that gives
the roots of a quadratic equation, y � Ax2 � Bx � C, is
one of the most commonly used formulas in all math and
science, and has been known since mathematicians of
Babylon discovered it some 4,000 years ago:

This formula is known as “the quadratic equation.” In
the equation 0 � 2x2 � 3x � 1, we have A � 2, B � 3, and
C � �1 and the quadratic equation gives us the two roots:

These roots are the two values of x for which 0 �
2x2 � 3x �1 is true. If you plug either of them in for x
and do the arithmetic on a calculator, you’ll see that 0
really is the answer. (The small numbers hanging off x1

and x2 are just labels to set them apart.)

Real-life Applications

AREA  AND  VOLUME
The most basic uses of quadratic and cubic equa-

tions are for determining area and volume. In fact, it was
the need to calculate land areas that motivated the
Babylonians to discover the quadratic equation to begin
with. You already know that the area of a square with
edges x units long is x � x or x2. If we call the area of a
square S, then we have the quadratic equation S � x2

(which can also be written 0 � x2 � S). The formulas for
the area of a circle, a triangle, or even of the surface areas
of solids like spheres and cubes, all contain x2; all are
quadratic equations. Surface area is important in real
estate, medicine, physics, and engineering. It affects how
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fast an object cools off (greater area equals quicker cool-
ing), which is why machines that need to get rid of extra
heat sometimes have little metal fins stuck on them to
increase their surface area. It affects how quickly a droplet
evaporates (greater area equals quicker evaporation). It
affects how quickly a chemical reaction proceeds (greater
area equals quicker reaction).

Cubic equations come up just as naturally. Recall that
the volume of a cube with an edges x units long is x3. If we
call the volume of the cube V, then we have the quadratic
equation 0 � x3 � V. And, just as with surface area, this
cubic relationship pops up not only in the formula for the
volume of a cube, but in the formula for the volume of a
sphere or cylinder or any other three-dimensional object.

The fact that area is described by a quadratic equa-
tion and volume by a cubic equation affects many things
in nature. Any object’s surface area is proportional to x2—
where x stands for how wide the object is—but its volume
is proportional to x3. And as you make the object bigger,
that is, increase x, x3 will always grow faster than x2. This
is why insects can’t (lucky for us) grow to the size of dogs
or whales: they breathe using surface area (x2) but their
need for oxygen goes by body volume (x3). This is why
elephants have fat legs: the strength of a leg-bone goes by
cross-sectional area (x2), but the weight the bone has to
bear goes by the volume of the elephant (x3).

ACCELERAT ION
Quadratic equations are needed to predict the paths

of accelerating objects. Acceleration is any change in
speed. When the driver of a car steps on the gas or hits
the brakes, the car accelerates (goes faster or slower).
When you drop a ball or throw it up in the air it acceler-
ates. And almost any time a machine with moving parts
is designed, from a CD player to a car engine to a jet
plane, the people designing the product must deal with
accelerations.

CAR  T IRES
Car tires are made of rubber-like plastics derived

from petroleum and interwoven with metal wires, and

Type of  
equation General form Example

Linear y � Ax � B y � x � 10
Quadratic y � Ax2 y � 2x2 � 3�1
Cubic y � Ax3 � Bx2 � Cx � D y � 12 x3 � x � 5
Quartic y � Ax4 � Bx3� Cx2 � Dx � E y � x4 � 12x3 � x2 � 100

Table 1.
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must work well despite thousands of miles of use, violent
blows from bumps, fast turns, and other stresses. Your life
depends on them every day, and their design is a complex
art. Computer calculations are used to predict how a new
tire design will behave, as this is much cheaper than cast-
ing actual tires in a trial-and-error way. One of the most
important factors in modeling a tire using calculations is
describing the mechanical properties of the “rubber” used
in the tire: how it responds to stretching, squeezing, and
twisting. In a class of new synthetic tire materials called
“carbon black filled rubber compounds,” it has been
found that a cubic equation best describes the stress-
strain relationship—that is, how much the material gives
in response to a certain amount of force. This cubic equa-
tion is used in writing a computer program that will
accurately predict how a tire made with these compounds
will behave.

JUST  IN  T IME  MANUFACTUR ING
Traditional economics treated supply and demand as

the two factors deciding profitability in manufacturing.
However, in the 1990s some Japanese manufacturers
introduced a philosophy called “just in time” (JIT) man-
ufacturing. In this approach, a manufacturer—say of
cars, computers, or cameras—tries to produce as many
items as possible just in time to deliver them to a buyer.
Manufacturing a product and then having it sit in a ware-
house, waiting to be sold, reduces profit. But a manufac-
turer must balance certain variables: they must announce
a price and stick to it, they must guess at how much delay
or “lead time” they will need to deliver a product, and
they must guess at how much demand for the product
there will be. The goal, as always, is to earn maximum
profit. It turns out that the solution of a cubic equation is
central to solving the equation for maximizing profit.

HOSP I TAL  S IZE
Since the 1980s, hospitals have found it increasingly

difficult to make a profit—or even to stay out of debt.
Mathematical cost-profit analysis has therefore been
brought into play to help hospitals make more profit.
One basic decision that a hospital must make is how
many beds to have. Having too few or too many beds
makes it harder for a hospital to be profitable. Traditionally,
profitability has been described as a quadratic function of

bed size (the number of beds in the hospital, not how big
each bed is); more recent work has shown that a cubic
equation works even better. (Other factors are involved,
such as where the hospital is located and how affluent the
surrounding population is. But if these assumptions are
held steady, profitability is a cubic function of bed size.)
Using a cubic equation, researchers have found that there
isn’t just one bed size that is most profitable, but two; or,
rather, a point this is typical of a cubic equation, which
can have two maximum points rather than one (as a
quadratic equation does). From 0 to 238 beds, profit
increases. After 238 beds it decreases until 560, after
which it goes up indefinitely (but other factors prevent us
from building infinitely large hospitals). A hospital is
therefore most profitable, in the United States under cur-
rent conditions, if it is either medium-sized (about 238
beds) or as big as it can be (560 beds or larger).

GU ID ING  WEAPONS
In steering weapons such as missiles and planes, it is

necessary to tell the computer that guides the weapon
where it is. Each position is coded as a set of numbers, the
“coordinates” of the weapon or vehicle. These can be
given in traditional terms as latitude and longitude
(numbers derived from a network of imaginary lines laid
down on the Earth’s surface by map-makers) plus altitude
(height above the surface), or in terms of an “Earth-
centered coordinate system.” Since one type of coordi-
nates is better for some purposes and the other is better
for other purposes, it is sometimes necessary to translate
between them—to take position information given in
one form and turn it into the other form. Going from 
latitude-longitude coordinates to Earth-centered coordi-
nates is mathematically easy, but going the other way
requires the solution of a quartic equation.

Where to Learn More

Web sites
Budd, Chris, and Chris Sangwin. “101 Uses of a Quadratic

Equation.” Plus Magazine. March 29, 2004 and May 30,
2004. Part I: �http://plus.maths.org/issue29/features/
quadratic/index-gifd.html�. Part II: �http://plus.maths.org/
issue30/features/quadratic/index-gifd.html� (Oct. 22,
2004).
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Ratio

Overview

A ratio defines the numerical relationship between
two comparable quantities. Examining the ratios between
two or more values often provides valuable insight into
the patterns and behaviors of numbers.

Ratios exist naturally throughout the universe. The
ratio of the size of one planet to another nearby planet
can affect the orbits of both planets. The ratio of owls to
mice plays a big role in the survival of both species. The
ratio of height to trunk width limits the growth of trees.
Humans have used ratios in almost all of our creations
throughout history. The physical stability of a building
depends on several ratios—involving height, width,
angles, and the strength of materials that must be care-
fully analyzed to ensure the safety of the people inside.
The accurate mixing of chemicals that allows us to create
stronger materials is also reliant on ratios that define how
much of each substance is needed with respect to the
other materials. People around the world use ratios on a
daily basis to organize time and finances.

Fundamental Mathematical Concepts
and Terms

A ratio between two numbers X and Y is usually
expressed in one of three ways:

• X/Y (much like a fraction)
• X:Y
• “X to Y”

Each of these expressions represents the ratio of X to Y.

For example, if there are 12 cars for every three
trucks, then the ratio of cars to trucks can be written as
12/3, as 12:3, or as “12 to 3.” Given this information about
cars and trucks, it is also true that the ratio of trucks to
cars is 3/12, 3:12, or “3 to 12”.

All of these expressions for the ratio of cars to trucks
(or trucks to cars) state exactly the same thing: for every 12
cars, there are three trucks. Suppose that people in a certain
neighborhood always keep their cars in their garages, but
leave their trucks out in the driveway. If three trucks are
visible in the neighborhood, then there are 12 cars in the
neighborhood, even though they are hidden in garages.

The foundation of the idea of a ratio is that whatever
happens to one of the numbers also happens to the other.
Suppose that six trucks can be seen in driveways around
the neighborhood. This means that there are 24 cars hid-
den in garages. The number of trucks was doubled (mul-
tiplied by 2) so the number of cars must have doubled as
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well. Division of ratios works in the same way. If there
was only one truck in the entire neighborhood, then there
would be only four cars. Here, the number of trucks and
cars are both divided by two to arrive at the ratio 1:4. In
fact, this is the simplest form of the ratio of trucks to cars.
In a case such as this, the ratio can be simplified so that one
of the values is one, which is a good illustration of how
ratios work: no matter how many trucks are in the neigh-
borhood, the number of cars is four times as large. Not all
ratios can be simplified this neatly—2:3 for example. In
cases like this, a decimal can be used as 2:3 simplifies to
1:1.5. In any case, it is easiest to understand the relationship
between the two values when the ratio is simplified.

Ratios can be multiplied together to discover new
ratios. For instance, if there are two cars for every truck,
and three trucks at every house, then there are six cars at
every house. That is, 2:1 multiplied by 3:1 is equal to 6:1.
Perhaps money provides a better illustration of this con-
cept. There are four quarters to every dollar and five nick-
els to every quarter; so there are 20 nickels to every dollar.
This can be verified by multiplying the five pennies in
each nickel by 20 (the number of nickels in a dollar) to get
100 pennies to every dollar.

Although often expressed as a quotient (one number
divided by another, such as 2/3), ratios are not the same
thing as fractions. For example, if Otis has two dogs and
four cats, then the ratio of dogs to cats in his house is two
to four, which simplifies to 1:2 or 1/2. This indicates how
many dogs there are compared to cats (there are half as
many dogs as cats). However, the fraction of animals in
Otis’ house that are dogs is two out of the total number of
animals or 2/6, which simplifies to 1/3. This means that
one third of all of his animals are dogs. Be careful to
understand how fractions are related to ratios when using
the quotient style of notation. To avoid confusion, this
text most often uses the X:Y style of notation for ratios.

A Brief History of Discovery 
and Development

The term ratio stems from an early sixteenth century
Latin word meaning reason or computation. However,
the mathematical concept of ratios helped people under-
stand the universe around them long before that.

For example, the relationship between a circle’s
diameter (the length of any line connecting one side of
the circle to the other through the center of the circle)
and circumference (the length of the boundary of the cir-
cle) was approximated for thousands of years before the
Greek mathematician Archimedes discovered a way to

define the relationship exactly. This ratio can be used to
determine the circumference of a circle if its diameter is
known, and vice versa. The circumference of any circle is
equal to the diameter multiplied by this ratio, commonly
represented by the Greek letter pi, and approximately
equal to 3.14159265.

Ancient Egyptians approximated pi (though they did
not call it pi) as 3.1605. The Old Testament of the Judeo-
Christian Bible contains a reference to an approximation
of 3:1 for the ratio of a circle’s radius to the circumference
of a circle. Although ancient Babylonians generally
agreed with this approximation throughout most of their
history, a stone tablet believed to have been created by
Babylonians sometime between 1900 and 1680 B.C.
referred to a slightly more accurate approximation of
3.125 for pi.

Early approximations of pi were dependent on
approximations of the circumference of circles. It is
believed that most approximations of circumference 
were found using methods similar to those used by
Archimedes. First a circle was placed inside of the small-
est hexagon (a polygon with six sides) that it could fit
into. The length of the perimeter of the hexagon was cal-
culated by measuring one side and multiplying this value
by six. Next, the perimeter of largest hexagon that could
fit inside the circle was calculated. Because the smaller
hexagon just barely fits into the circle, and the circle just
barely fits into the larger hexagon, the circumference of
the circle is somewhere between the lengths of the
perimeters of the two hexagons. To arrive at a better
approximation, the number of sides of the two surround-
ing polygons was increased. As more sides were added,
the two polygons fit the circle more snugly and the
perimeters became closer and closer to the circumference
of the circle. Archimedes used these approximations as
clues that eventually led him to find a way to define the
ratio of diameter to circumference exactly.

Another important ratio studied throughout history
is the Golden Ratio, also known as the Golden Mean, the
Divine Section, the Golden Section, the Golden Cut, the
Divine Proportion, and many other names. The main
reason that this ratio has so many names is that it has
been discovered at different times by civilizations that use
different languages and, most importantly, different
numbering systems. The Golden Ratio is approximately
1.6180339887498948482 to 1 (how the Golden Ratio is
calculated is beyond the scope of this text). The Golden
Ratio is usually denoted by the Greek letter phi (�).

The Golden Ratio can be found throughout nature—
from the patterns found in leaves, pinecones, and
seashells, to the reproductive patterns of certain animal



R a t i o

R E A L - L I F E  M A T H 443

species. It is also argued that the Golden Ratio provided
a basis for the architecture of the ancient Egyptians
(including the designs of pyramids and tombs), Greeks
(the Parthenon), and Romans. Some ancient Egyptian
hieroglyphics show signs of the Golden Ratio as well.
Leonardo da Vinci, Mozart, and Beethoven purposely
incorporated this ratio into their works. The seemingly
endless applications of the Golden Ratio provide brilliant
illustrations of the fascinating relationships between
numbers.

Real-life Applications

LENGTH  OF  A  TR IP
Ratios can be used to estimate length. For an exam-

ple let us assume that Tom needs to drive from New York
to Miami for a business convention on Saturday evening.
He has never driven that far and wants to figure out about
how long it will take, so he buys a map of the United
States. He notices two bars labeled Scale in the corner of
the map. The longer of the two bars represents 100 miles,
and the shorter bar represents 100 kilometers. He uses his
ruler and finds that the 100-mile bar is one inch long; so
the ratio of inches to miles on Tom’s map is one to 100.
Using the other side of his ruler, he finds that the 100
kilometer bar is one centimeter long; so the ratio of cen-
timeters to kilometers is also one to 100.

Tom is more comfortable thinking in terms of miles,
so he chooses to approximate the length his trip based on
the inch to mile ratio of 1:100. All he needs to do is find
out how many inches separate New York and Miami on
the map. Tom lays his ruler on the map, with the begin-
ning of the ruler (representing zero in inches) at New
York. The shortest driving route is not a straight line, so
he must approximate how long, in inches, his route is on
the map. Starting from New York, he measures one inch
in the direction of the route that he will take, and marks
the spot on the map with a pencil. Then he moves the
beginning of the ruler to the mark he just made and
measures another inch, following his intended route as
accurately as possible. Continuing in this way, he makes
13 marks. The last mark is a little past Miami on the map,
so he figures that the route is a little less than 13 inches
long. He can’t be late to his convention, so he decides to
use 13 inches as the base of his calculations. As he found
before, the ratio of inches to miles represented on the
map is 1:100.

Tom then wants to figure out how many miles are
represented by 13 inches, so he must multiply the ratio
through by 13 to get a ratio of 13:1,300. This ratio indicates

that 13 inches on the map represents 1,300 miles in the
real world. So Tom’s trip will be about 1,300 miles in dis-
tance (length).

Tom now needs to utilize another ratio to help him
decide when to leave New York. Without exceeding the
speed limit, he can drive about 500 miles in a day. So his
mile to day ratio is 500:1. This means that he can drive
500 miles in a single day, 1,000 miles in two days, 1,500
miles in three days, and so on. He needs to go a total of
1,300 miles, so he cannot make it in two days. He can
make it easily in three days. He may be a little early but he
will not be rushed. He decides that if he leaves on Thurs-
day morning, he will get to the convention with time to
spare.

COST  OF  GAS
In the previous example, Tom calculated 1,300 miles

as a slight overestimate for the length of his trip from
New York to Miami. He now wants to calculate how
much money he will need for gas so that he can plan the
budget for his trip. His car gets an average of 25 miles per
gallon, which is a mile to gallon ratio of 25:1. Tom uses
this ratio to calculate how many gallons of gas his car will
need to go 1,300 miles. 1,300 miles is 52 times as long as
25 miles, which means that Tom must multiply both sides
of the ratio by 52. In this way, he calculates the mile to
gallon ratio 1,300:52. To go 1,300 miles, Tom’s car will
need 52 gallons of gas.

Next, Tom looks on the Internet and discovers that
the average cost of gas along his route is two dollars per
gallon. So the ratio of dollars to gallons of gas is 2:1. To
find out how much 52 gallons of gas will cost, Tom mul-
tiplies both sides of the ratio by 52 to get a dollars to gal-
lon of gas ratio of 104:52, meaning that Tom needs $104
to buy 52 gallons of gas for his car. After working this fig-
ure into his budget, he finds that he has plenty of money
for his trip to Miami.

GENET IC  TRA I TS
In 1866, Austrian monk and geneticist Gregor

Johann Mendel (1822–1937), published his results from
an extensive series of experiments that investigated how
characteristics are passed to offspring. One such experi-
ment involved the cross-pollination (transferring the
pollen of one plant to another) of two different varieties
of pea plants, a green wrinkly pea plant and a yellow
rounded pea plant. In this experiment, Mendel discov-
ered that the ratio of yellow rounded offspring to green
wrinkly offspring was 3:1, meaning that the cross-
pollination process produced three yellow rounded pea
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plants for every green wrinkly pea plant. This suggested
that the yellow characteristic is three times as likely to
appear in the offspring as the green characteristic, and the
round characteristic is three times as likely to appear as
the wrinkly characteristic. This dominance of yellow and
rounded characteristics led Mendel to believe that there
are two different types of genetic traits: dominant traits
and recessive traits. In these two types of pea plants, the
yellow color and round shape dominate the green color
and wrinkly shape.

Mendel used this idea of dominance to explain why
the ratio of dominant traits to recessive traits is always
3:1. For instance, if the dominant yellow color trait is rep-
resented by Y, and the recessive green color trait is repre-
sented by g, then the four possible combinations of these
traits are YY, Yg, gY, and gg (where each parent plant pro-
vides either a Y or a g). A dominant trait only needs to
appear once in the combination in order for the domi-
nant characteristic to appear in the offspring. Y appears
in three of the combinations, and the only combination

that results in a green pea plant is gg. Therefore, the ratio
of offspring that show a dominant characteristic to
offspring that show a recessive characteristic is three to
one, or 3:1. This is true for the shape trait as well. Keep in
mind that Mendel’s actual experiments and results were
more complicated than described here.

Mendel’s experiments and conclusions explained a
phenomenon that had confused people for thousands of
years, that traits can appear after skipping generations.
For example, cross-pollination of two yellow pea plants
can result in a green offspring as long as at least one par-
ent had a Yg or gY gene.

The importance of Mendel’s results was not truly rec-
ognized until the beginning of the twentieth century when
multiple researchers independently rediscovered Mendel’s
conclusions in their own experiments. Since then,
Mendel’s findings have been the foundation of many
genetic studies and practices, including the creation of new
flowers and new species of pet fish, and enhancements in

China’s one-child family planning program, in combination with a preference for male children, has created an unbalanced 
boy-girl ratio according to U.S. State Department officials. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.



R a t i o

R E A L - L I F E  M A T H 445

farm production that improve the quality of produce
found in most grocery stores.

STUDENT- TEACHER  RAT IO
The student-teacher ratio compares the number of

students to the number of teachers at a given school. For
example, if a school has 44 teachers and 968 students, the
student-teacher ratio at this school is 968:44, which sim-
plifies to 22:1. This can be interpreted in a few different
ways. A mother might see it as an indication of how much
attention her child will receive in school (e.g., her child
will share each teacher with 22 other students). This ratio
enables a teacher to predict how many students he or she
will teach and how many papers she will be grading
(about 22 students per class multiplied by the number of
classes he or she teaches). A school official may see it as an
indication of how many teachers need to be hired in the
following year. A prospective college student will usually
take the student-teacher ratio into consideration when
choosing a school for higher studies.

MUSIC
Ratios can be found in every facet of music. Rhythm,

the speed and pattern of beats, has been the foundation of
music dating back to ancient drum circles. Rhythm deter-
mines how many beats there are in a measure (the stan-
dard unit in the arrangement of song). For example, if
there are four beats in a measure, then the ratio of beats
to measures is 4:1. This means that the musician consid-
ers four beats—possibly counted by tapping a foot—to be
a single standard unit in the arrangement of the song.
Different ratios of beats to measures affect different types
of music. For example, a typical waltz has a ratio of 3:1.

The relationship between the pitch of two musical
notes is also a ratio. Whether created by your vocal
chords, a guitar, or a finger moving around the rim of a
wine glass, the sound of a note is determined by the fre-
quency (speed) of the vibration causing it. As you move
from left to right on the keys of a piano, the difference
from one note to the next is determined by the ratio
between the frequencies of the two notes: the ratio
between the frequencies of two subsequent notes is
always the same. Harmony (whether or not two or more
notes sound good when played together) is determined
by the ratios of their frequencies as well.

Ratios in music allow songwriters and musicians to
communicate the intended shape and feel of a song. The
many ratios in a composition define how the various sounds
relate to each other in time and, whether consciously noticed
or not, give the music both structure and beauty.

AUTOMOBILE  PERFORMANCE
The safe and efficient operation of any automobile

is dependent on many ratios. Oils and fluids must be
present in certain ratios to keep the engine and brakes
operating properly. The relationships between the size,
weight, and position of various parts ensure that a car or
truck can make turns while traveling at reasonable speeds
and can stop quickly when necessary. Two ratios found in
automobiles are compression ratios and gear ratios.

The compression ratio is used to predict how effi-
ciently an engine will perform. In general, a higher com-
pression ratio indicates better engine performance. High
compression ratios are often associated with require-
ments of more expensive fuel and frequent engine main-
tenance. The determination of an engine’s compression
ratio involves the relationship between the sizes of the
parts of the engine that cause combustion (the small
explosions that provide an engine with power).

The speed and power of an automobile depend par-
tially on the ratio between the sizes of gears that cause the
wheels to turn. A larger gear turns slower because it has
more teeth and takes longer to complete a full revolution.
If a gear that is powered by the engine is attached to a
smaller gear, the smaller gear will turn more quickly than
the large gear. This increases the speed of revolution with-
out increasing the need for power. Given certain gear
ratios for an automobile, a specialist can determine how
many revolutions per minute (RPM) are required to go a
certain speed, or how many tons can be pulled without
overexerting the engine. A typical car has multiple sets of
gears intended to perform different actions. The first gear
has a high gear ratio in order to provide the car with
enough power to get the car started. In higher gears, the
gear ratio is increased in order to enable faster speeds.
Also, a car would eventually get stuck without an addi-
tional gear set that caused the car to move in reverse.

SPORTS
Ratios are often used to assess the performance of an

athlete or athletic team. The relationship between two or
more statistics often proves a better indication of per-
formance than a single statistic alone.

As an example, a point guard’s contribution to a bas-
ketball team is partly measured by his assist-to-turnover
ratio. This ratio is determined by comparing the number
of assists (passes that lead to an immediate basket) to the
number of turnovers (anything that causes the ball to be
lost to the other team). Suppose Gary has had 53 assists
this year, and has turned the ball over to the other team
44 times. Gary’s assist-to-turnover ratio is 53:44.
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Gary’s talents could be judge based on turnovers
alone. If Gary had more turnovers than anyone else this
season, sports analysts might think that he is the worst
point guard because he gives the ball up more often than
anyone else. But what if he also happened to have the
most assists? Would the analysts still think so poorly of
him? The converse is true as well: if Gary’s talents were
judged based only on the number of assists that he has
without taking into account the fact that he turns the ball
over quite often, the analysts would not have a very accu-
rate picture of how Gary actually performs on the court.

AGE  OF  EARTH
In 1905, New Zealand/English physicist Ernest

Rutherford (1871–1937) announced a discovery that
would forever change the approximations of the age of
Earth. He suggested that the age of rocks could be com-
puted by analyzing one of two ratios: the ratio of ura-
nium to lead or the ratio of uranium to helium. These
ratios can be used to determine how long radioactive
materials have been decaying, and in turn, to determine
how long ago rocks were formed. Prior to this discov-
ery, the process of radioactive decay was poorly under-
stood, and guesses at the age of Earth were just that:
guesses. Since Rutherford’s discoveries, new tools and
methods have been derived to improve estimations of
Earth’s age. For example, calculations in the dating
process, including values for decay rates, have been
repeatedly improved upon. As of 2005, the best estima-
tion for the age of Earth is in the neighborhood of
4.5 billion years.

HEALTHY  L IV ING
A person’s height-to-weight ratio is the relationship

between how tall that person is and how much that per-
son weighs. If a person is six feet tall and weighs 180
pounds, then his height-to-weight ratio is six feet to 180
pounds, or 1 foot per 30 pounds. This ratio can be seen as
an indication of how healthy a person is. There are, of
course, many other important considerations—including
body type, bone thickness, and muscle density—that help
determine an individual’s optimal weight. All of these fac-
tors can be put into terms of ratios.

COOK ING
Whenever a chef follows a recipe, he uses ratios to

determine how much of each ingredient to stir in. Sup-
pose a chef is cooking his favorite soup for a large dinner
party. He has a recipe that tells him how much of every-
thing is required for making enough of the soup to serve

20 people, but there will be 140 people at the dinner
party. The ratio of people served by his recipe to the
actual number of people that he needs to serve is 20:140,
which simplifies to 1:7 (by dividing both sides by 20).
This tells the chef that he needs to buy seven times the
amount of ingredients suggested by the recipe in order to
make enough soup for the dinner party.

The chef can also use ratios to determine how much
of one ingredient will be needed based on the required
amount of another ingredient. For instance, the chef
knows that the ratio of sugar to butter in this recipe is 1:3.
This means that the amount of sugar needed to make any
amount of this recipe is a third of the amount of butter
needed. The chef has already calculated that he needs six
cups of butter to make the soup for 140 people. With no
further calculations, he knows that he needs two cups of
sugar to make this amount of soup.

CLEAN ING  WATER
Chlorine is the main chemical that is used to clean

both drinking water and the water in swimming pools.
The biggest difference between the processes for cleaning
drinking water and swimming water is the concentration
of the chemicals, the ratio of the amount of chemicals to
the amount of water. This ratio is much lower in drinking
water than in swimming water. That is, the water you
drink has a smaller amount of chemicals in it than the
water in most swimming pools. The concentration of
chemicals in drinking water must be precisely monitored
in order to ensure that enough chemicals are present to
kill bacteria, but not enough to be harmful when swal-
lowed by humans. Water in a swimming pool must con-
tain a higher concentration of chemicals because the
water is constantly in contact with contaminants from
swimmers and the air above. The fact that a swimming
pool is open to the air also allows the chemicals to evap-
orate, so new chemicals must be added periodically.
These ratios between water and chemicals are essential
for the different uses of water. Water from a swimming
pool is not safe to drink in large quantities; and swim-
ming in water with the concentration of chemicals found
in drinking water would quickly result in the growth of
algae and bacteria in the pool.

Potential Applications

STEM CELL  RESEARCH
Stem cells are special cells in the human body that

have the ability to become any type of human cell. This
single type of cell can create skin and muscle tissue, bones
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and bone marrow, and organs such as the liver and lungs.
This characteristic has made stem cells the main focus of
regenerative medicine, a field of research involving the
recreation of cells in the human body. The regeneration
of cells may be the solution to many problems that have
been unsolvable in the past. Potential uses of cell regener-
ation include regaining skin and muscle tissue lost in
physical accidents; allowing someone bound to a wheel-
chair to walk; and curing diseases such as Parkinson’s,
cancer, Alzheimer’s, and diabetes. Unfortunately, it may
be many years before stem cells are regularly used in rou-
tine medical procedures.

Scientists have much to learn about manipulating
stems cells to create a desired part of the body. Ratios play
a big role in many stem cell research projects. For exam-
ple, the ratio of blood cells in a donor to blood cells in the
recipient may be an important factor in the success of
stem cell transplants.

OPT IM IZ ING  L IVESTOCK  PRODUCT ION
In nature, the sex ratio (ratio of males to females) of

many species remains close to 1:1 (often referred to as
50:50 or fifty-fifty), meaning that about half of the popu-
lation is male and about half is female. In species with
males that can mate with multiple females, this may not
seem a very efficient ratio. Nevertheless, the sex ratio
remains approximately 1:1.

Farmers have for millenia artificially kept the ratio of
female cattle (cows) to male cattle (bulls) high, because
a single male cow can fertilize multiple female cows.
Suppose a single male cow can regularly fertilize up to

20 cows. If a dairy farm with 100 cows had 50 males and
50 females, then only half of their cows would be producing
milk, and the male cows would not be performing to their
capacity. But if there were 5 males and 95 females, then
the farm would have more cows producing milk, and the
males would be able to do their job at a rate closer to their
limit.

DETERMINING THE  ORIG IN  
OF  THE  MOON

In 2003, German scientists compared the ratios
of two elements present in rocks from the Earth, Moon,
Mars, and various meteorites to arrive at a better approx-
imation of how and when the moon was formed. The two
elements compared were niobium (a metal commonly
found in alloy steels) to tantalum (an acid-resistant metal
commonly found in dental and surgical instruments).

Most astronomers have long subscribed to the theory
that the moon was formed when a celestial body (roughly
half the size of Earth) crashed into Earth causing a large
mixture of rocky debris from both bodies to fly into
space, some of which lumped together to form the moon,
while the rest dropped back to Earth. The amount of the
Moon that is made up of material from the body that
struck Earth has long been passionately debated; as has
the amount made up of material from the Earth itself.
The percentage of the Moon that is made up of material
from the impacting body, for example, was approximated
at as low as 1% by some scientists, and as high as 90% by
others. By comparing the ratios of niobium and tantalum,
the German team of scientists was able to determine that

Key Terms

Concentration: The ratio of one substance mixed with
another substance.

Percent: From Latin for per centum, meaning per hun-
dred, a special type of ratio in which the second
value is 100; used to represent the amount present
with respect to the whole. Expressed as a percent-
age, the ratio times 100 (e.g., 78/100 � .78 and
so .78 � 100 = 78%).

Rate: A comparison of the change in one quantity, such
as distance, temperature, weight, or time, to the
change in a second quantity of this type. The com-
parison is often shown as a formula, a ratio, or a

fraction, dividing the change in the first quantity by
the change in the second quantity. When the
changes being compared occur over a measurable
period of time, their ratio determines an average
rate of change.

Ratio: The ratio of a to b is a way to convey the idea of
relative magnitude of two amounts. Thus if the
number a is always twice the number b, we can say
that the ratio of a to b is “2 to 1.” This ratio is
sometimes written 2:1. Today, however, it is more
common to write a ratio as a fraction, in this
case 2/1.
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the amount of the moon that is composed of material
from the body that struck Earth is somewhere between
35% and 65%. The rest of the Moon is composed of
material from Earth.

The approximate age of the moon, another value
that scientists have had a hard time agreeing about, was
also refined during these studies. Calculations based on
the ratios of niobium and tantalum suggest that the
Moon must have been created at about the same time as
Earth: about 4.5 billion years ago. As scientists continue
to study the moon, the approximations of its composi-
tion and age will become increasingly accurate.

Where to Learn More
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basics/basics6.asp� (March 12, 2005).
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Rounding

Overview

Rounding is a way of simplifying a number to an
approximate value. The intent is to create a number that
is easier to envision conceptually and is more practical to
use. When a result close to the actual value is sufficient,
rounding can be a useful operation.

Fundamental Mathematical Concepts
and Terms

WHOLE  NUMBERS
Numbers can be rounded to the nearest unit or a

larger scale across multiple units, as is appropriate.

The rules of rounding are rudimentary. Irrespective
of, for example, the power of ten under consideration,
rounding is based on the equal number of incremental
increases between one power of ten and the subsequent
power of ten.

For example, the single digit incremental pattern
between 0 and 10 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) is mirrored
by the pattern between 10 and 20, 100 and 200, 10,000
and 20,000, 100,000 and 200,000 and so on.

In addition, all the incremental series display a com-
mon pattern of internal symmetry. As a representative
example, between 1 and 10 there are as many numbers
below 5 as there are above. This aspect is crucial to round-
ing. To round a number to the nearest ten, the last digit of
the number is the determinant. If that digit is 1 through
4, then the number is rounded to the next lower number
that ends in 0 (the next lower even ten). For example, the
number 14 is rounded to 10. If the last digit is 5 or more,
then the number is rounded to the next higher even ten.
For example, 17 would be rounded to 20.

The same pattern is followed when rounding num-
bers to the nearest hundred. Numbers that end in 1
through 49 are rounded to the next lower number ending
in 00. Thus, 624 is rounded to 600, as is 648. Numbers
that end in 50 or higher are rounded to the next even
hundred. Thus, 650, 675 and 688 are all rounded to 700.

Similarly, when rounding to the nearest thousand,
numbers whose last three digits are 001 through 499
would be rounded to the next lower number ending in
000, and numbers whose last three digits are 500 and
higher would be rounded to the next even thousand. As
examples, 4,390 and 4,450 are rounded to 4,000, while
4,600 and 4,835 are rounded to 5,000.

The same pattern carries through the increasing
powers of ten.
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DEC IMALS
Rounding decimals is no more complicated than

rounding whole numbers. If the thousandths place of a
decimal (i.e., 0.00x) is four or less, that place is dropped
and the value of the other digits remains unchanged. As
an example, rounding 0.574 to the nearest hundredth
produces 0.57.

If, however, the thousandths place is five through
nine, then the hundredths place is increased by one digit.
For example, 0.577 is rounded to 0.58.

Decimals can also be rounded to the tenth. In this
operation, if the hundredths and thousandths places are
less than forty-nine, they are deleted and the value of the
tenths place remains unchanged. As an example, 0.638 is
rounded to 0.6.

But, if the hundredths and thousandths places
exceeded fifty, then these would be dropped and the value
of the tenths place is increased by one. For example, 0.679
is rounded to 0.7.

Decimals that extend to more decimal places can also
be rounded. Then, they utilize the preceding two decimal
places to make the rounding decision. Thus, 0.647756 is
rounded to 0.6478 and 0.32434612 is rounded to 0.324346.

P I
One prominent case is the value of the ratio of the

circumference of a circle to the diameter of the circle.
This ratio, which is called “pi,” has been computed to
approximately 100 billion digits, with no repeat or end of
the decimal sequence found. The first few digits of pi are
3.14159265 . . . Since there is an infinite number of digits
in pi, it has to be rounded to be used at all.

Using the aforementioned rules, pi could be rounded
off to 3.142 (since the next digit is 5), 3.1416 (since the
next digit is 9), or 3.141593 (since the next digit is 6).
Obtaining all the rounded versions of pi would literally
be a never-ending task. The decision of where to round
off pi depends on the how precise the number needs to
be, with more decimal places producing a more precisely
accurate approximation of pi.

A Brief History of Discovery 
and Development

References to rounded-off values of pi can be found
in the Bible and other sacred scripture. Many books con-
tain apparently incorrect derivations resulting from the
use of a rounded estimate of pi, indicate that rounding
has been practiced since antiquity.

Real-life Applications

LENGTH  AND  WE IGHT
Rounding is a way of simplifying numbers to make

them easier to comprehend and use. Precise measure-
ments (at least to the nearest 0.1 inch) are necessary in
carpentry to provide a correct fit between components.
However, in many other applications an estimation of
dimensions is sufficient.

Length measurements provide numerous examples of
rounding. For example, a brochure advertising a house 
for sale might want to note that the house is far back 
from a busy highway. Instead of noting that the driveway 
is 221.5 feet long, rounding off the distance to 200 feet 
will still convey the desired impression to the prospective
buyer.

Rounding off lengths can also be a more descriptive
way of comparing two objects. As an example, it is accurate
to describe a 39-inch-long board as being 1.77 times the
length of a 22-inch-long board. However, this ratio is hard
to conceptualize. Rounding off the lengths of the longer
board to 40 inches and the shorter board to 20 inches pro-
duces a ratio of 2. This is close to the actual ratio, but is a
much easier difference to understand.

This ease of comparison also applies to weights. An
object that weighs 262 pounds is 4.3 times as heavy as an
object that weighs 61 pounds. While descriptive, and cer-
tainly accurate, this weight distinction is more difficult 
to gauge than if the weights are rounded off to 250 and 
50 pounds, producing a ratio of 4.

BULK  PURCHASES
When contemplating the bulk purchase of an item,

rounding off permits a quick estimation of the total pur-
chase price. This can be an important factor in making
the purchase decision.

An item may be advertised with a price (i.e., $10.65)
based on a single purchase. In considering a bulk 
purchase (i.e., 21 items), rounding can be used in several
ways. The item cost can be rounded (i.e., $11.00) and
multiplied by the number of items to give the total
purchase cost.

The number of items can also be rounded (i.e., 20).
The purchase price can then be determined by multiply-
ing the rounded single purchase price by the rounded
number of items.

Either of the estimates, which typically are close 
to the actual (non-rounded) value, provides the informa-
tion necessary for the purchase decision.
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POPULAT ION
In a census, the population is determined as accu-

rately as possible. However, such an exact tally is not
always necessary or convenient. Indeed, in the case of a
city of town, maintaining an exact tally can be difficult
with the population shifting daily.

Rounding the population can be a more convenient
way to present the information. This is especially true
when the population figure can be rounded up, as would
be the case for a civic population of 47,724. The rounded
population of 48,000 would be a hedge for the natural
increase in population number over time.

Many communities that post welcoming signage will
use a rounded population number. At the very least, this
saves constant modification or replacement of the sign to
keep the population number current.

The rounding of population is also extends to the
state level. For example, according to 2003 figures from
the United States Census Bureau, the population of
California was 38,484,453. Because this number will be
constantly fluctuating with births, deaths, immigration
and emigration, such an exact number may not be useful
in some instances. Instead, the population can be
rounded to the nearest million (38,000,000) or nearest
hundred thousand (38,500,000).

Similarly, rounding can be done for selected cate-
gories of census data. Using the California example, the
2003 Census Bureau figures established that women
made up 50.2% of the state’s populations. Rounding the
number to 50% makes discussion of the female segment
of the population easier, without comprising the possible
significance of the figure.

LUNAR  CYCLES

“Thirty days has September, April, June and Novem-
ber,” begins a well-known nursery rhyme. Calculations of
lunar cycles are based on 30 days a month. This is despite
the fact that there are only four such months in the year.

The derivation of the monthly period in our Julian
calendar (which consists of three 365-day years followed
by a 366-day leap year) is based on the monthly transit of
the Moon around Earth. However, the lunar cycle actually
covers some 29.54 days. The 30 day period that is
enshrined in our calendar is a rounded estimate of the
actual lunar cycle time.

Similarly, the 365-day length of the normal year—
based on the transit of Earth about the Sun—is itself a
rounded number. Because every forth year is a leap year
to maintain the synchronicity of the calendar, each year

actually comprises 365.33 days. Because the decimals are
less than 0.50, the rounded number becomes 365.

ENERGY  CONSUMPT ION
Figures on the consumption of oil and gasoline that

are released by agencies such as the United States Depart-
ment of Energy (DOE) are rounded. For example, in 2004
the DOE reported that the United States used an average of
20 million barrels of oil per day. This number has been
rounded up or down from a more precise estimate. The
result is still a potent number, which serves as a reminder
of just how much of a non-renewable resource is claimed.

WEIGHT  DETERMINAT ION
Trucks that haul produce, freight and other loads on

the nation’s highways are designed to hold a maximum
weight. Exceeding that weight can make a load danger-
ously unstable, which can lead to an accident. As well,
trucks that exceed the weight limit for bridges and road-
ways can damage these routes.

To try to ensure compliance with weight limits, trans-
port trucks are periodically required to pull into roadside
inspection stations where the vehicles are weighed.

Part of the process used to determine weight compli-
ance involves the establishment of several weight categories;
for example, under 30,000 pounds, 30,000–80,000 pounds
and more than 80,000 pounds. When a particular truck is
weighed, the result can be rounded off to the nearest 10,000
pounds. So, a truck weighing 57,650 pounds can be
recorded as 60,000 pounds. If the truck is meant to be in the
intermediate weight category, then it is in compliance.

ACCOUNT ING
When people successfully sell an item on the eBay

Internet auction site, a portion of the sum they receive rep-
resents the company’s fee. As more transactions are con-
ducted, a running balance is kept of the amount owing.

eBay uses six decimal places to charge on an account.
For example, a calculated balance might be $6.333560.
However, the balance tally that appears on a customer’s
account is rounded to two decimal places ($6.33). As with
other examples of rounding, there can be a slight difference
between the actual and rounded values. But, rounding pro-
duces a balance that conforms to accepted billing practices.

Cash registers are programmed to round off a sum to
the nearest hundredth. For example, if the sales tax
charged on purchased items is 0.015%, then the sales tax
added to an item sold for $17.50 is 17.50 � 0.015, or
0.2625. The final purchase price for the item would be
$17.50 � $0.2625 � $17.7625.
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This four decimal place tally would never appear on
the cash register receipt. Instead, the internal program-
ming of the register rounds $17.7625 to $17.76.

T IME
Clocks and watches allow time to be measured to the

second. With digital display capability, the estimation of
time is needless.

Yet often time is rounded and expressed in more gen-
eral terms. Instead of expressing a time as 6:43, a com-
mon practice is to note the time as “quarter to seven.”
Because an hour can be conveniently divided into four
15-minute segments, time can be rounded within a 15-
minute bracket of time. Thus, a time of 6:32 could fairly
accurately be rounded and expressed as “half past six.”

The slight loss in the precision of the expressed time
has not come at the loss of meaning.

MILEAGE
Mileage is typically expressed as the average of the dis-

tance traveled and the time taken to travel that distance.
The result can be a multi-decimal number that is unwieldy
and conveys too much information than is necessary.

As an example, if someone drove 335 miles in 4.75
hours, their average mileage would be 335 / 4.75, or
70.526315 miles/hour. For practical purposes, such as to
calculate gas mileage, a simpler answer is best. Consider-
ing the above mileage to the first decimal place (70.5)
allows the mileage to be rounded up to 71 miles/hour.
The rounded answer carries the suitable depth of mean-
ing for the problem.

Rounding is also practiced by drivers when calculat-
ing the distance from one local to another using a road
map. Often maps will display distance to one decimal
place (i.e., 25.5 miles). But, when adding a number of
distances mentally, it is easier to round each of the dis-
tances to whole numbers and add the series of whole
numbers together. This can usually be accomplished eas-
ily, quickly, and will provide the driver with the answer
that has the appropriate level of meaning.

PREC IS ION
Precision is indicated by the number of significant 

figures in a number. For example, using a meter ruler,
it is possible to measure a length to the millimeter (one
thousandth of a meter, or 0.001). However, expressing 
some measurements to the thousandth of a meter can be
imprecise.

For long distances, it would not be reliable or even
honest to report a distance to this level of precision.
Rather, by rounding the number to the tenth decimal
place, a value is reported that represents a more reliable
estimate of the distance.

Scientific notation is valuable in improving the pre-
cision of rounded numbers. For example, 363.6 meters
can be expressed as 3.636 � 102. The number can also 
be rounded off and expressed in scientific notation as 
4 � 102 or, more precisely, 3.6 x 102.

Where to Learn More

Books
Niederman, Derrick, and David Boyum. What the Numbers Say:

A Field Guide to Mastering Our Numerical World. New
York: Broadway, 2003.

Pickover, C.A. The Mathematics of Oz: Mental Gymnastics 
from Beyond the Edge. Cambridge: Cambridge University
Press, 2002.

Pickover, C.A. Wonders of Numbers: Adventures in Mathematics,
Mind, and Meaning. Oxford: Oxford University Press,
2002.

Web Sites
Arnold, Douglas N. “The Patriot Missile Failure” �http://www.

ima.umn.edu/~arnold/disasters/patriot.html� (February
12, 2005).

British Broadcasting Corporation. “Skillswise factsheet: what is
rounding?” �http://www.bbc.co.uk/skillswise/numbers/
wholenumbers/whatarenumbers/rounding/� (February 12,
2005).

Purplemath. “Rounding and Significant Digits I.” �http://www.
purplemath.com/modules/rounding.htm� (February 12,
2005).

Key Terms

Decimal: Based on the number ten; proceeding by tens.

Pi: The ratio of the circumference of a circle to the diame-
ter: � � C/d where C is the circumference and d is the
diameter. This fact was known to the ancient Egyptians

who used for � the number 22/7 (3.14159) which is
accurate enough for most applications.

Whole number: Any positive number, including zero, with
no fraction or decimal.

452 R E A L - L I F E  M A T H



R E A L - L I F E  M A T H 453

Rubric

Overview

The word rubric sounds like something from a
poem. Indeed, the term comes from the Latin word
rubrica, meaning ‘red earth’. Historically, rubric refers to
the prompts that were written in red ink in some docu-
ments during the Middle Ages. Later, red ink was used to
highlight noteworthy sections (often rules) within legal
documents.

But, contrary to the wordplay of poetry, a rubric is
grounded in logic and math. A rubric is defined as a set of
rules that allow tasks or activities to be scored. By doing
so, both students and teachers are more aware of what
achievement benchmarks there are in a task, and what a
score really means in terms of what was achieved and
what was not. This sort of knowledge can help students
improve, since they are more aware of what specific tasks
need to be done to improve.

Not surprisingly, the scoring involved in a rubric is
tied to mathematics. The means used to assess the per-
formance of the particular task and the detailed descrip-
tions of the various levels of performance can involve
math. Rubric math is certainly real life math, and is in
action every day in most every classroom.

Real-life Applications

SCORING  RUBR ICS
A good rubric can detail out the various grades of

quality of each of the criteria that have been picked as
being important in the performance of a task. Often, this
detail takes the form of a point scale. For example, in an
oral presentation, a rating of 1 on a 1-5 point scale could
be understood to mean ‘a poorly organized presentation,
with a poor use of voice and props.’ A grade of 5 would be
given for ‘a presentation that is excellently organized and
presented with a riveting use of voice and props.’ The
rubric has clearly detailed the expectations of the stu-
dents and how their efforts will be scored. There is not
any confusion over what a certain score means.

Another example will help to show the clarity that
rubrics can provide. A poor rubric would be ‘Students
will show an understanding of how to use a ruler.’
Instead, a proper rubric for this situation could read 
‘Students will demonstrate that they can use a ruler to
accurately measure the target length and width of large
and small objects.’

In the non-rubric classroom, scoring an assignment
by a percentage value can lead to confusion. For example,
two students hand in an essay on the same topic. One of
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the students receives a grade of 72 percent and the other
student’s grade is 76 percent. It can be difficult for a
student to understand why one essay is four percent “bet-
ter,” and how another essay can be improved upon in the
future, since percentage evaluations seldom have criteria
associated with them. It may even be difficult for the
teacher to explain the basis of the marking to the student!

Rubrics can also consist of questions. ‘Does the student
understand how to measure centimeters and millimeters?’
and ‘Can the student produce measurements that are two-
and three-times as long as an example dimension?’

Scoring rubrics can also be used to gauge a student’s
performance. These can involve a checklist or using a
number-based rating scale of performance. They specifi-
cally itemize the performance and provide a number that

indicates how well or poorly a task was achieved. In other
words, such rubrics provide quantitative results. Rubrics
can also provide qualitative results. Examples include rat-
ings like ‘excellent,’ ‘good,’ and ‘poor.’

When different people look at an assignment or a test
document, they can have different rankings of what are
the important things to note. Scoring rubrics helps avoid
ambiguity and differences in assessing an assignment or
document, since the criteria for scoring will already be set
out. Deciding on which criteria to include and in what
order can be the toughest stage. But, once the rubric is
established, scoring becomes routine.

There are several different types of scoring rubrics.
Which one is used depends on the purpose of the evalu-
ation that is to be done.

Captured former Iraqi leader Saddam Hussein undergoes medical examinations in Baghdad. Aspects of medical exams and
other biometric tests can be converted to numerical data through the use of rubrics that allow examiners to match subjective
observations such as gum color to a numerical scoring system. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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ANALYT IC  RUBR ICS  
AND  HOL IST IC  RUBR ICS

These terms sound complicated, but they are not
really. An analytic rubric is one that details how several
different criteria are to be used in the evaluation of some-
thing. For example, an analytic rubric in an essay presen-
tation could detail what aspects of grammar are going to
be assessed and how the structure of the essay contributes
to its impact. Each aspect could have a checklist of points
that will be evaluated, and different scoring lists for the
different criteria.

Sometimes it is not possible or beneficial to evaluate
a project on separate criteria. Then, an overall view is
best. That is where the holistic rubric comes in handy. In
a holistic rubric a single scoring scale is used.

Generally, an analytic rubric is suitable for quantita-
tive scoring (that is, where numbers are actually assigned
as scores), whereas a holistic rubric is best suited for qual-
itative assessments.

The two rubrics are not mutually exclusive. It can
happen that one of the criteria in an analytic rubric is

more general. So, the assessment of that one criterion 
can involve a holistic rubric.

GENERAL  RUBR ICS  
AND  TASK -SPEC IF IC  RUBR ICS

In setting up the scoring of a task or activity, the first
step is in creating what is called the general rubric. This is
an overview or an outline that helps create the more
detailed rules of the scoring. For example, if a course in
school is designed to improve a student’s skill in per-
forming microbiology experiments, a general scoring
rubric could be developed to evaluate each experiment
that a student does. The feedback that a student got fol-
lowing the completion of one experiment could help
them to carry out better experiments in the future.

A task-specific rubric would be concerned with the
evaluation of an individual experiment. The criteria
would be different from the general rubric, and would
focus on that particular experiment.

A task-specific rubric lays out the details of how a 
single task is to be approached. As well, the rubric provides

South Korean high school students bow in Seoul, as they pray for their seniors’ success in college entrance exams. School
exams that require essays, such as the revised College Scholastic Ability Test (SAT exams), are often scored by rubrics that
define criteria that allow scorers to place numbers in otherwise subjective evaluations. AP/WIDE WORLD PHOTOS. REPRODUCED BY

PERMISSION.
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a basis for scoring how well (or not so well) the particular
task was done. Put another way, the task-specific rubric
details what really counts about the particular task being
done.

As another example, a rubric for an oral presentation
could tell students that their presentation will be judged
on the originality of the topic, the organization of the
information, and the presentation itself; how informative
and entertaining the delivery is; the use of voice; and the
constructive use of props.

Developing a Scoring Rubric The very first step in devel-
oping a scoring rubric is figuring out what aspects of the
project, report, lesson, or other item being evaluated are
important to the evaluation. It is fruitless to focus on
something that will not provide any feedback that can be
used for future improvement.

The qualities that are identified as being important
form the framework on which the rubric is made. For
example, in assessing a report such qualities could be
spelling, grammar, organization, presentation style and
use of language. The details of the rubric would be com-
piled using these as the starting points.

There should be enough qualities to make for a
meaningful assessment, but not too many qualities. If
there are many qualities, it can become difficult to score
any one of them. It is better to have fewer qualities with
several scoring criteria in each one than a lot of qualities
with only one criterion in each.

Ideally, there should be three criteria per criterion,
since typically there will be indicators of poor, average,
and standout performance for each quality. The criteria
should not depend on each other. Each should be able to
be evaluated on its own.

When developing the criteria, it is better to have a
definite indication of how each criterion will be deter-
mined. For example, it is better to say ‘Student’s writing
will be free of spelling errors,’ than to say ‘Student’s writ-
ing will be good.’ ‘Free of spelling errors’ is something that
can be quantified. ‘Good’ is hard to quantify.

If the evaluation involves assigning a score (1,2,3, . . .
or A,B,C, . . .) then the same score should mean the same
thing for different categories. It would be confusing to
have a score of 2 pertain to merely satisfactory in one cat-
egory and outstanding in another category.

Finally, the rubric needs to be tested in action. Typi-
cally, the first run-through of a rubric will show that
some revision is necessary. This is to be expected. The
math involved in a rubric is not the more straightforward
math of an equation. Rather, the mathematics of scoring
is part of a more subjective evaluation. So, some tinkering
may be needed to make the rubric as good an instrument
of assessing performance as it can be. But, the effort will
be worth it.

The math that is part of a rubric can help create a
tool that assesses the performance of a task in a way that
is clear to the teacher and, most importantly, to the stu-
dent. The student will be able to use the information to
improve. Different teachers will be able to use the same
rubric effectively. The real life math of a rubric is thus an
important part of a great classroom.

Where to Learn More
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Using Performance Criteria for Assessing and Improving
Student Performance. New York: Corwin Press, 2000.
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Lessons/reference/basearith.htm� (October 30, 2004).
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Sampling

Overview

Sampling is the statistical process of analyzing a
group of items selected from a bigger set. It is not always
feasible to perform a study on all members of a popula-
tion. For example, it is impossible to interview all AIDS
patients throughout the world to study the stress and
problems they endure in their daily life. A better
approach is to interview a group of such patients and
generalize the common results to all HIV positive people,
the world over.

In sampling, a smaller manageable group of items,
elements, members, or individuals representing the entire
population is studied. Observations made from the analy-
sis are generalized for the larger set to which the sample
belongs. Sampling helps identify and understand the
group’s dynamics, ongoing trends, and their implications.

Sampling is a widely implemented concept used to
perform demographic studies, environmental research,
marketing analysis, and soil testing, to name a few appli-
cations. It will not be incorrect to say that sampling is uti-
lized in all aspects of life ranging from medicine, social
behavior, business, music, sports, and technology to ecol-
ogy, and the balance in nature.

Fundamental Mathematical Concepts
and Terms

PROBAB IL I TY  SAMPL ING
Probability and non-probability sampling are the

two commonly used forms of sampling implemented in
various sciences. In probability sampling, every member
(or object) of the sample group gets an equal opportunity
(in other words, they are all given equal weight). Prob-
ability sampling begins by listing the traits and features to
be studied. Identifying these traits helps in defining the
populations to be researched. For example, to study the
effects of smoking on women of reproductive age, female
smokers in the age group of twelve to fifty years are most
likely to show traits identifying the sample to be studied.
If however, this study is to be conducted for women from
a particular ethnicity or geographic region, then the sub-
ject’s background and location will also form a part of the
features defining the population to be analyzed.

Once the group to be studied is identified, all indi-
viduals belonging to that group have the same opportu-
nity to participate in the research effort, thus reducing
bias and error. However, at times, scientists randomly
choose their subjects from the selected group. This con-
stitutes unrestricted or simple random sampling.
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Another type of random sampling is restricted or
stratified sampling, in which the population is categorized
into homogeneous segments with the idea that maximum
possible variations can be accounted for, thereby mini-
mizing the chances of arriving at biased results. Samples
representing each unit are then identified and studied.

In contrast to random sampling is the more fre-
quently used systematic sampling, wherein the first ele-
ment is selected randomly and the remaining elements are
identified on the basis of a calculated sampling interval.

For example, a student might want to interview store
owners of all the malls in a particular location. If the
identified area has several malls, then it would be
extremely time-consuming to talk to all the owners of all
the stores of all the malls. To make the task easy and still
get a good representation of the owners, the student can
determine the total number of malls and stores. Assume
there are a total of ten malls and 250 stores. The student
decides to interview 20% of the population, which means
fifty vendors. The sampling interval can be easily com-
puted by dividing population size (250 in this example)
by the sample size (50 in this example). Accordingly, the
sampling interval in the illustrated example is five.

Another form of probability sampling is cluster sam-
pling, in which the investigator selects subjects in a
“phased manner”; first identifying clusters to be studied,
and then randomly or systematically identifying individ-
uals to participate in the study. Using the example discussed
earlier, a researcher may, for example, first identify cities
from where to select women smokers to perform the study.
The examiner then randomly or systematically selects indi-
vidual participants from the identified locations.

In the real world, none of the sampling techniques
mentioned above are employed in isolation. Instead,
researchers use a suitable combination to perform stud-
ies. This strategy of utilizing one or more techniques to
investigate an issue is known as multi-stage sampling. It is
helpful in carrying out elaborate research involving huge
populations spread over large geographical areas.

NON -PROBAB IL I TY  SAMPL ING
In non-probability sampling, the researchers typically

select subjects depending on their availability. The basic
assumption of non-probability sampling is that any sam-
ple available would be sufficient to accurately represent
the entire population, thus leading to correct results. With
non-probability sampling, not all members of the group
receive an equal opportunity to participate in the study.

Some forms of non-probability studies are con-
ducted with individuals easily available. For example,

visitors to malls or other public places might find a tele-
vision crew interviewing passers by, thus offering an in-
expensive way of understanding public opinion on a
particular subject. This form of non-probability sam-
pling, ideal for quick, economical, investigative, and nar-
rative researches, is therefore referred to as convenience,
accidental, or haphazard sampling.

The biggest disadvantage of convenience sampling is
the high degree of bias because it is completely at the ana-
lyst’s judgment to select members for the study. However,
errors occurring due to bias can be minimized if the
study is conducted on a uniform population that shows
consistent features through its expanse. This way, all
members experience and perceive almost the same things
and represent an accurate picture. For example, soil sam-
ples from a smaller field are likely to yield similar results,
but the probability of samples collected from a large field
showing greater variation is high.

Another form of non-probability sampling is volun-
teer sampling that subjects a volunteer to participate in
the study. A good example of volunteer sampling is the
call-in surveys that various television and radio channels
conduct to assess public sentiment. The downside of vol-
unteer sampling is that only those interested enough in
the issue participate in the study, thereby introducing
strong biases. It does not take into account the opinions
of those who might be concerned about the issue but
avoid active participation.

Yet another method of non-probability sampling is
judgment sampling, wherein the investigator uses his/her
judgment to select the members for a study. The biggest
disadvantage of this sampling method is that the selec-
tor’s judgment might be heavily biased and inaccurate. In
such a situation, results of the investigation carried out
will be erroneous, no matter how elaborately the study is
performed. These biases can however be reduced if judg-
ment sampling is utilized in controlled environments,
such as a life sciences laboratory where variables are few
and limited by the issue to be studied.

Apart from these types of non-probability sampling,
the most commonly used is quota sampling, in which
members are selected from various sub-groups of a popu-
lation until they satisfy a pre-calculated quota that is typi-
cally in proportion to the total population size. Several
market researchers use the principle of quota sampling.
For example, a mattress manufacturing organization
might want to know the opinion of senior citizens who
constitute 5% of the population. If the sample to be stud-
ied is of 1,000 people, then of those 1,000 candidates, 50
must be senior citizens. To meet this quota, the interviewer
will then approach any 50 people fulfilling the age criteria.
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Snowball sampling, another form of non-probability
sampling, involves employing few subjects for a study.
These members, in turn, enlist their acquaintances (people
they know), who on their part sign up their friends and
colleagues for the study. The basic idea here is that the indi-
viduals who have signed up initially would be the best to
know about more of their kind. For example, a quilt sup-
plies store aiming at updating their offerings in accordance
with the new products available in the market, and the pre-
cise needs of their patrons, will be better off by interview-
ing quilters. Here, the best way to interview the maximum
number of people would be to request regular customers
to suggest names of fellow quilters they might know.

As is obvious, snowball sampling is useful in studies
targeting small or inaccessible populations. The situation
may further become difficult if the members of such
populations are scattered everywhere.

A Brief History of Discovery 
and Development

Sampling is almost always a part of scientific testing.
Rarely are all objects or situations examined, so by testing
selective samples, scientists are able to make broad
conclusions.

It was only through careful sampling and segregation
of pea plants that Gregory Mendel (1822 A.D.–1884 A.D.),
known today as one of the founders of modern genetics,
discovered the laws of heredity. His methods since then
have been followed to produce improved varieties of not
only crops and plants but also award-winning breeds of
dogs, horses, cattle, and other animals.

Similarly, Englist naturalist Charles Darwin (1809
A.D.–1882 A.D.) studied samples of animals and birds liv-
ing on the Galapagos Islands. Diligent analysis of those
limited population samples resulted in the theory of evo-
lution, the unifying principle of biological science.

Starting from 1920, the Literary Digest, in circulation
from 1890 to the late 1930s, correctly predicted the win-
ner of the presidential campaigns for four elections in a
row. Their method was simple. They collected the name
of the voters’ favorite candidate in six states. They how-
ever subsequently failed the fifth time because they
selected samples from telephone directories and auto reg-
istration records, thus approaching only the wealthy
strata of population. Beginning 1936, Gallup presidential
polls used quota sampling to successfully predict presi-
dential elections. Today, politicians and pollsters use
sophisticated mathematical sampling to predict elections
and to shape policy.

Real-life Applications

AGR ICULTURE

Sampling has been implemented to improve agricul-
tural practices since ancient times. It is a well-known fact
that not all kinds of plants grow in similar kinds of soils
and climates. Meticulous sampling and testing over the
centuries has now made it clear the type of soil a crop
requires for thriving.

Today, samples are collected and put through exten-
sive tests to assess a variety of factors affecting plant
growth, soil quality, pH balance, nutrient levels, and con-
centration of micro-organisms. As mentioned earlier, most
real-life applications use a combination of sampling meth-
ods. The same is the case here. However, the most promi-
nent sampling method used in agriculture is the cluster
sampling, wherein groups are identified and then they are
either systematically or randomly used as samples.

Sean “Diddy” Combs and others used sampling to
determine where best to target efforts to encourage young
people to vote during the 2004 presidential election. AP/WIDE

WORLD PHOTOS. REPRODUCED BY PERMISSION.
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PLANT  ANALYS IS
Sampling analysis of plants is useful in identifying

any nutrient deficiencies or excessive accumulation of a
particular nutrient that proves harmful to plant growth.
By collecting samples of plant tissue and studying them
carefully, scientists can also assess the effects of insecti-
cides, pesticides, new chemicals thought to have benefi-
cial effects, and the proximity of an industrial area or
waste dumping grounds on the general health of the
plants of a specific region.

Plant analysis can give crucial insight into the kind of
plants a given piece of land will support in the future. For
example, a random plant analysis of a green area near a
waste chemicals removal yard will clearly show that the
existence of the greenery is threatened. From this, one can
easily deduce that the land might become completely bar-
ren in a few years and may actually become a wasteland.
Accordingly, the authorities can take measures to save the
fertile land.

Similarly, random sampling of plants showing a
sudden drop in development can give important clues
about the cause of the weakening. The reasons can be
numerous, ranging from introduction of a new insect or
bug into the plant community and increased human
interference to a sudden rise in the local temperature. All
this investigation however depends heavily on a best pos-
sible collection of enough samples representing plants of
the identified region.

Sampling enough plants gives a good indication of the
general health of other similar plants in a field. The entire
sampling process followed here is based on the mathemat-
ical concept of cluster sampling. Clusters are first identi-
fied. For example, plants near a waste chemicals removal
yard form one cluster; plants showing a sudden drop in
development become another cluster, and so on. Random
samples from each of these clusters are then studied.

SOIL  SAMPL ING
A regular soil analysis helps farmers and people

engaged in commercial agriculture in assessing the qual-
ity of the soil. Depending on the findings of the soil
analysis, they can enrich their fields before sowing the
next crop. Alternatively, if the analysis shows increased
occurrence of a harmful element, they can take due
measures to prevent its growth.

Plants continuously absorb minerals and other
nutrients from the soil. An annual soil analysis before the
next sowing can tremendously help farmers in selecting
the most appropriate crop to be grown and the right fer-
tilizer to be used, thereby bringing down the costs, reduc-
ing avoidable harmful effects of unsuitable chemicals,

and increasing crop yield to the maximum. All this leads
to enhanced profits in terms of resources as well as
money.

Typically, a soil analysis requires systematic sampling
requiring the collector to visualize the field to be divided
into grids. Based on a sampling interval is determined.
For example, samples are gathered at a rate of 15–20 soil
samples from a 40 acre field. Collecting fewer samples
runs the risk of producing inaccurate results. To investi-
gate nutrient concentration, especially that of nitrogen,
samples from varying depths are taken. In other words,
the sampling interval is critical.

SC IENT I F IC  RESEARCH
Modern research depends largely on intelligent ways

of implementing sampling procedures; so much so that
no exploration can be carried out without collecting and
analyzing samples. Numerous ongoing studies are a case
in point.

By carefully studying samples of available material,
scientists have discovered microorganisms thriving in the
most extremes of locations, such as hot sulphur springs
that have very low levels of oxygen. These studies involve a
combination of cluster sampling with systematic and strat-
ified sampling. Interestingly, the evidence supporting this
discovery is so strong that the theory about all life needing
oxygen for its sustenance is now being questioned.

Clinical trials testing effects of new drugs on human
patients are possible only because of large numbers of
patients volunteering for the tests. A combination of vol-
unteer and judgment sampling are used to conduct these
tests. Volunteers are required for the tests, and selection of
the volunteers depends on the judgment of the person
doing the sampling.

Geologists also depend on regular random sampling
to continue with their explorations of Earth.

Scientists from all disciplines of studies put in collec-
tive efforts to discover any evidence throwing light on liv-
ing beings that walked the surface of Earth before
humans. Fossil samples are studied to find missing links
in the evolutionary process. This process is based on
concepts of stratified sampling. Dinosaur fossil studies
can prove to be the key in determining the cause of their
sudden extinction.

DRUG  MANUFACTUR ING
Sampling is an extensive and essential part of the

process of designing and manufacturing drugs. Right
from the beginning, research assistants accompany sur-
geons in operation theaters to collect samples of diseased
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tissues and conduct experiments to determine the cause
of the ailment. As a part of these experiments, they com-
pare the symptoms of a diseased animal with those of a
healthy animal. To arrive at an authentic conclusion, they
use judgment sampling to maintain batches of ailing and
healthy tissue so findings can be generalized for the
human population. However, this application requires
both cluster sampling to identify the samples, and then
analyzing the selected samples based on judgment.

Supporting these studies are the patient interviews or
surveys regularly conducted by people involved in health
care management and social sciences. Such investigations
give the emotional, societal, and mental perspective to the
effects of the disease. Depending on these studies, com-
munities may shun or accept patients of a particular dis-
ease. For example, the stigma with AIDS is so strong that
even the family members of an HIV� person begin to
avoid him or her, though everyone knows that AIDS does
not spread through merely touching, hugging, or talking
with the patient. This misconception however is gradu-
ally losing ground after countless interviews, medical
reports, and proper promotion of facts about the basic
respect that HIV positive people crave.

After understanding the causes and symptoms of a
disease, scientists propose solutions and conduct experi-
ments to study the practicality of the proposed remedies.
This time round, carefully selected samples of diseased
animals are treated with chemicals or therapy thought to
be beneficial and the results are studied. Different treat-
ments may affect different aspects of the disease. For
example, a prospective drug to combat hair loss may
influence hair growth on the whole body while another
may have localized effects on certain body parts.

In addition, it is also important to study the side
effects of these treatments. For instance, the so-called hair
growth promoting medicine with localized effects may
sound good, but might cause extreme nausea and dizzi-
ness, in which case it is not user-friendly and loses its
marketability. On the other hand, researchers might acci-
dentally stumble upon some positive side effects. A proba-
ble flu medicine may help reduce obesity, in the event of
which drug manufacturers can either start a new investiga-
tion exploring the weight-reducing effects of the drug or
market the flu tablet as it is while highlighting its desirable
side effects too. Each of these can be thought of as clusters
that undergo specific types of mathematical sampling.

Once the drug is ready for human trials, patients vol-
unteering through non-probability sampling are invited
to try it out, and studies are performed vigilantly to assess
its impact. Volunteer sampling is the key here because
members chosen through other sampling methods would

literally force them to try the medication and thus prove
to be unethical.

Quite often, new medication may not show immedi-
ate side effects, but its long-term use may cause unwanted
results. Therefore, extensive data spanning several years of
drug consumption are maintained and further examined.
If possible, patients are grouped by different criteria,
including age, sex, race, and region, to identify if a partic-
ular population responds uniquely to the treatment.

In a nutshell, independent of the stage of drug man-
ufacturing, sampling is an important step in the intro-
duction of new cures. Different forms of sampling may be
employed at different times but it would be impossible to
pioneer new drugs without the painstaking task of assem-
bling samples of tissues and subjects that match the
required factors—a concept based on the statistical prin-
ciple of cluster sampling.

WEATHER  FORECASTS
Weather predicting organizations receive loads of

related data, which is then used for weather forecast. In
spite of all the predictions carefully arrived at, the actual
weather conditions are invariably somewhat different.
Weather information analysts now compare samples of
this difference along with current information to statisti-
cally arrive at the best weather forecast model for the next
day, week, or month.

In the event of an approaching snowstorm or a thun-
derstorm, its estimated force can be compared with a past
event of similar nature. Information from such a study is
used to caution the public about an oncoming natural
catastrophe, and estimate the extent of loss. This can be
thought of as a type of convenience sampling, where
information is presented based on availability (in this
case, past data in a similar situation).

A different form of sampling referred to as matched
sampling is used to calculate the risk ratio of accidents
occurring on a bad weather day, particularly those related
with some form of precipitation. In this type of sampling, a
given period of unfavorable weather conditions is matched
with the same duration of otherwise desirable weather. For
instance, a heavy snowfall period starting at 9:00 a.m. on a
Friday morning lasting two hours is compared with an
identical two-hour period of another Friday morning with
clear weather conditions. The control duration is ideally
selected from a couple of weeks before or after the time
period to be studied. Number and types of accidents occur-
ring during the experimental duration are compared with
those occurring during the control period to arrive at risk
ratios. Comparing a specific weather related duration with
a control is essential in matched sampling.
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ENV IRONMENTAL  STUD IES
Sampling finds widespread use in environmental

studies, especially those related with measuring pollution.
To study air and water pollution levels at different places,
researchers collect samples and put them through
numerous scientific procedures to draw conclusions.

Levels of pollutants in air and water can be studied from
various perspectives. For example, assessment of harmful air-
borne microbes is particularly useful for food processing
units, organizations handling any kind of living organisms,
pharmaceutical companies, and hospitals. Larger air sam-
ples are required from places considered having relatively
cleaner air, because they have fewer pollutants.

Studies indicate that collecting air samples and test-
ing them is a far better and more accurate approach than
traditional methods. Additionally, sampling is quicker
and can be done in a shorter duration.

Similarly, studying water samples helps identify
water contaminants following which corrective measures
can be taken to save the water body. Trained personnel
and investigators take samples of water from the source to
be examined. Random water samples, collected in special
containers, are carefully scrutinized to determine healthy
and harmful elements contributing to the general health
of the water resource.

It is interesting to note that results of water sampling
may differ depending on the time when samples were col-
lected. For results to be an accurate representation, due
care must therefore be taken to collect all samples at the
same time.

Environmentalists and ecologists regularly assess the
delicate balance maintained within a system by performing
various tests on the objects and living beings specific to
that natural environment. For example, researchers evalu-
ate soil quality of an exceptionally fertile area by studying
samples of its soil, water, flora, and fauna. Similarly, pro-
ductivity of fishing grounds can be judged by doing water
analysis and a study of the fish inhabiting the place.

All of the above are processes based on sampling.
Some involve random sampling, while some are applica-
tions of stratified sampling. The foundation of each 
of these is, however, identifying different groups of
samples—similar to what is done in cluster sampling.
Thus sampling in environmental studies can be thought
of as a combination of cluster sampling with other kinds
of probability sampling.

DEMOGRAPH IC  SURVEYS
Demographic surveys involve counting the number

of people who match the criteria to be studied. The most

well known form of demographic survey is the census,
wherein the government launches a mass scale activity,
typically every ten years, of counting the number of
people living in the country.

Though sampling is not an inherent part of census, it
was used in 2000 to calculate the number of people
belonging to minority groups, and the homeless since
they lack an address. This involved a mix of judgment
sampling, quota sampling, and convenience sampling.

Once the total population is calculated, different
types of sampling, be it probability or non-probability
sampling, are used for various purposes. For example,
comparison of samples from the latest and past census
results can be used to assess ongoing trends within the
country. A study in the early 2000s showed that an
increasing number of women drivers are getting involved
in road accidents. Though this study may throw some
light on the increasing stress levels among women driv-
ers, but one must also note that over the years, more and
more women are acquiring driving licenses. In fact, the
number of women drivers is increasing faster than ever
before. This, to a large extent, explains more women
being involved in accidents.

Census results also give key information about future
requirements and society make up. For instance, if a given
region shows increased levels of education, it can be safely
assumed that people from that region have a higher prob-
ability of performing well in the future. If on the other
hand, census results from a flourishing area show an
increase in the number of elderly people and a relatively
lower number of young adults and children, then that
area may suffer setbacks or show diminished develop-
ment after a few years.

Demographic surveys can thus be used to deduce
population dynamics. The objectives of such analyses
range from identifying problems of minority groups,
advancements in society, general progression of a group
of people, and population health to predicting growth
rate in the coming years and expected development
responsiveness.

ASTRONOMY
Astronauts have brought back samples of soil and

rocks from the moon. Because of the bulky spacesuits the
astronauts wear, their mobility is quite restricted. To enable
them to successfully collect samples, NASA has used a vari-
ety of tools such as improvised rakes, tongs, scoops, ham-
mers, and electric drills on their trips to the moon.

The procedures that are to be followed to collect
these samples depend on several factors. For example,
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while collecting samples from near a crater, astronauts
follow what is known as radial sampling (a mathematical
concept). The basis of radial sampling is that materials
thrown out of greater depths are deposited closer to the
rim of the crater, while substances coming out of shal-
lower depths accumulate far away from the rim. The
astronauts therefore collect samples from varying dis-
tances from a crater, thereby ensuring collection of mat-
ter from different depths from the surface.

Similar to the astronauts, space vehicles and rovers
have been involved in collecting rock samples form the
surface of Mars. While the space machines collect and
send the samples back to Earth, scientists in laboratories
study them to derive conclusions about Mars.

Mars samples include photographs assisting investi-
gators in identifying objects of interest. High-quality elec-
tronic imaging equipments are required for this purpose.
Later, after identifying the rocks to be examined further,
sophisticated drills and other instruments are used to
retrieve the appropriate samples. Somewhat varying from
astronauts and rovers, but essentially achieving the same
objective, are space shuttles that continue to send pictures
of planets and other objects in the universe. A thorough
examination of these pictures and their comparison with
collected data unfolds new information literally everyday.

Aside from this, astronomers use standard sampling
procedures to devise theories about the universe. Sam-
pling plays a key role in the development of astronomy as
a science because it is impossible to perform laboratory
experiments the way it is possible for other science
streams. Astronomers must use sampling to draw infer-
ences about changes going on in the universe.

Sampling further becomes feasible in astronomy
because any event in the universe takes millions of years.
However, different objects in the universe can be
observed in various stages of the event, thus making it
possible for astronomers to predict the complete cycle.

ARCHEOLOGY
Archeologists use cluster sampling to identify and

decide the sites to be dug for archeological findings. If an
area of interest shows ancient artifacts on the surface,
such as the arid and semi-arid regions, it is easy to explore
and ascertain the particular spots to be excavated.

A problem, however, arises if objects of archeological
value are embedded deep under Earth’s surface and are
covered with soil, grasslands, ice, human neighborhoods,
and other objects on the ground. In such a situation,
archeologists typically utilize the principle of probability
sampling to pinpoint the specific areas to be dug up.

Systematic sampling is used to divide the region of
interest in a grid-like fashion into excavating units that lie
adjacent to each other without overlapping. Of these
units, those identified to be explored further are dug with
the help of machines or sometimes manually to detect
any findings of an archeological nature. Measures are
taken to employ non-destructive, though more time-
consuming, digging methods.

MARKET  ASSESSMENT
Marketing is the heart of any profit-making business

and all businesses aim at making huge profits year after
year. In spite of this, some companies perform exceptionally
well while others fail to even capture consumer attention.

One of the key reasons for varying business perform-
ance is an understanding of the market. Organizations gen-
erating huge revenues typically have a sound understanding
of their customers’ needs. In other words, they have a grip
over the market, possible only through market assessment.

There are different ways of studying market trends
and all of them employ various sampling techniques. You
might have come across company employees, typically
students and other part-timers, working from a stall in a
mall or a department store promoting a new product or
collecting feedback from the visitors. People interested in
the goods being endorsed or the parent company always
make it a point to spend a few minutes at the stall either
to know more about the product or give their input. This
is an effective sampling strategy as it not only gives the
customers the option of interacting with the organiza-
tion, but the manufacturer also comes in direct contact
with the target clientele. Gathering information other-
wise can be an expensive, time-consuming activity that
might drain an organization’s resources.

The success of sampling depends largely on careful
planning and interpretation of the collected data. Before
embarking on such an activity, analysts should first identify
objectives of the study, design a robust sampling process
that includes defining characteristics of the population to
be studied, the best suited method of selecting subjects, the
ideal number of members constituting the sample, and the
most effective way of conducting marketing research and
assembling information. Additionally, researchers should
devise a competent way of analyzing all the accumulated
data. Without a serious approach to conducting market
research, even the most extensive sampling strategy fails.

MARKET ING
Several companies promote their new products 

by flooding the market with samples of the product.
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This gives the consumers an excellent opportunity to try out
the product in little quantities at nominal rates. If the users
like the product, it is easier for them to switch to the regular
packing. Sampling thus gives the producers a chance to
gauge public response while users test the new product.

Even for products that have a strong market share,
companies often retain their samples so retailers can offer
them to prospective clients. Cosmetics manufacturers fre-
quently use this marketing technique. Their outlets
promptly offer sample sachets or trial packs to interested
customers. Otherwise too, travelers go for smaller pack-
ing because of their convenient size.

For goods targeting a specific section of the market,
producers send samples through mail. Organizations
involved in producing baby products, for instance,
send sample formula, diapers, diaper rash ointments,
shampoo, and parenting magazines to new parents and
parents-to-be. Similarly, crafters receive samples of new
crafting products specific to their craft.

Typically, receivers of these samples constitute a spe-
cial group of consumers for their needs form a niche
market. They usually first join the manufacturers’ mailing
list or at least show an interest in trying out the products

by filling out a form either on the Internet, or in a maga-
zine, newspaper, or some other source. This way the
organizations making specialized products get in touch
with the clients who are actually interested in their prod-
ucts, without spending money in extensive advertising
targeting everyone in general.

Offering samples is a win-win situation for both the
consumers as well as the producers. While the clients can
test the product either for free or at reduced prices, man-
ufacturers reach out to consumers who are truly inter-
ested in their goods and are instrumental in giving them
feedback.

Where to Learn More

Books
Thompson, Steven K. Sampling. Wiley-Interscience, 2002.

Thompson, William. Sampling Rare or Elusive Species: Concepts,
Designs, and Techniques for Estimating Population Parame-
ters. Island Press, 2004.

Web sites
NC State University. “Sampling” �http://www2.chass.ncsu.edu/

garson/pa765/sampling.htm� (May 09, 2005).

Key Terms

Convenience sampling: Sampling done based on the
easy of availability of the elements.

Simple random sampling: A sampling method that pro-
vides every element equal chance of being selected.

Stratified sampling: In this type of random sampling,
elements are grouped together before sampling.

Systematic sampling: In this type of sampling, there
are intervals between each selection for sampling.
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Scale

Overview

Scale defines the relationship between the actual size
of an object and its representation in the form of a pro-
totype. It is used extensively in a variety of real world sce-
narios and is useful in modeling extremely large objects
(or even tiny objects) into an easy to comprehend size.
Scaling is done with respect to certain properties of the
object, such as length, temperature, or mass. This concept
is employed widely in architecture, astronomy, and imag-
ing. For example, a scale model of a part of the solar sys-
tem can provide a clearer understanding of the relative
size and distances of planets and other objects in it.

Scale is also used in numerous other aspects of daily
life including music, art, sports, fitness, business, technol-
ogy, aviation, and a whole range of sciences, such as
physics, chemistry, and engineering. The most common
application of scales is found in maps.

Fundamental Mathematical Concepts
and Terms

L INEAR  SCALE
Scales can be associated with various properties of an

object. Accordingly, there are several types of scale. The
most basic form of scale is the linear scale. The linear
scale follows a linear pattern and is used to quantify dis-
tance. The foot-ruler and the measuring tape are most
well known examples of linear scale.

A key characteristic of the linear scale is that the length
represented by two equidistant marks is always the same.
Take, for example, a scale marked as 100, 300, 500, 700, and
900. As shown below, this would be a linear scale, as the
length between any two equidistant marks, say 100 and 300,
or 700 and 900, is always 200. (See Figure 1.)

Maps are the most prominent applications of
linear scale.

LOGAR I THMIC  SCALE
One of the biggest limitations of linear scale is that it

becomes difficult to manage if the quantity (or length) rep-
resented by the scale has a large range. This is where the 

100 300 500 700 900

Figure 1: A linear scale.
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logarithmic scale comes in. Simply put, the logarithmic
scale represents the logarithm of the quantity rather than
the quantity itself. In other words, the natural steps on a log-
arithmic scale increase in a multiplicative fashion rather than
an additive or linear fashion. For example, a scale marked as
50, 500, 5000, 50000 would be a logarithmic scale as any suc-
ceeding mark is ten times the preceding mark (50 � 10 �
500, 500 � 10 � 5000, and so on).

Differences between linear and logarithmic scales is
shown in Figure 2.

On the linear scale in Figure 2 it is not possible to 
indicate the cup. The 8-foot pole is also not accurately
shown. However, all three objects—the tower, the pole, and
the cup—are clearly indicated on the logarithmic scale.
Logarithmic scales thus become extremely useful in such
scenarios.

INTERVAL  SCALE
In an interval scale, the adjacent points are at equal

intervals and also represent the magnitude of the under-
lying quantity. The most common example of interval
scale is the thermometer (for measuring temperature in
Celsius). The difference between 15�C (Celsius) and 20�C
is the same as that between 30�C and 35�C—5�C. In other

words, we can say that 20�C is warmer than 15�C by 5�C,
and similarly for the other two points.

However, the interval scale does not have an absolute
zero point. Consequently, we cannot say that 30�C is
twice as warm as 15�C. The reason for this is that 0�C is
not “absolute” zero (there is some heat at this point as
well). The Celsius thermometer, thus, qualifies as an
interval scale application.

In comparison, a scale indicating the percentile values
of a few students may not qualify as an interval scale. The
percentile value specifies the percent of total distribution
that is equal to or less than that value. For example, in our
case, saying that a student scores in the 75th percentile
would indicate that 75% of the total students are either
ranked equal to or below this student. Consequently, the
difference, in terms of number of students between the 80th
percentile and 75th percentile, may not be the same as
between the 50th percentile and 45th percentile.

RAT IO  SCALE
The ratio scale includes all features of the interval

scale. In addition, it also has an “absolute” zero or “true”
zero point. Such scales allow for measurement of magni-
tude between equal intervals (as in the case of interval

200
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Figure 2.
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scale) and permit calculation of ratio between two points
as well. As a result, we may say that a certain value on the
ratio scale is twice as much as another value.

Take, for example, the Kelvin temperature scale. Due
to the presence of an absolute zero—0 K (Kelvin), 100 K is
certainly twice as warm as 50 K. Moreover, the difference
between 15 K and 20 K is also same as the difference
between 40 K and 45 K.

The Kelvin temperature scale can also be used to
show how our earlier statement (30�C is not twice as
warm as 15�C) is true.

For example 0�C � 273 K, yet 30�C � 273 K � 30 �
303 K and 15�C � 273 K � 15 � 288 K. Accordingly, 303 K
is not twice of 288 K and 30�C is not twice as warm as 15�C.

NOMINAL  SCALE
The nominal scale is perhaps the most primitive

model of measurement. It is a classification tool more
than anything else. For decades now, mathematicians
have been questioning the authenticity of this scale.
Nevertheless, we will still discuss this concept in brief.

The numbers presented on a nominal scale do not
indicate values or quantity. They simply indicate a cate-
gory or a type. For example, consider a herd of different
animals including bears, elephants, tigers, and lions. All
bears may be categorized as “1” on the nominal scale, all
elephants as “2”, tigers as “3”, and lions as “4”. The inter-
vals do not signify anything in terms of magnitude or
quantity. We cannot say that elephants are twice some-
thing as compared to bears. In other words, the difference
in various points on the scale cannot be measured in
amount, but only in kind.

Consequently, none of the mathematical operations,
such as addition, multiplication, subtraction, division,
and average can be applied to this scale.

ORDINAL  SCALE
The ordinal scale improves on the nominal scale as it

adds more value to the different categories represented.
Categories can be ranked or logically ordered on the scale
based on certain characteristics. In a nutshell, with an ordi-
nal scale you can say whether a particular item possesses
more or less of a characteristic as compared to other items.

To make more sense out of this scale, higher values
are usually represented by higher numbers. An example
of ordinal scale is as follows. You visit Orlando, Miami,
and Tampa along with your family and at the end of your
stay are asked to rate each of the hotels (on a scale of 1 
to 5) with respect to certain characteristics. These could
include quality of the room, quality of service and staff,

facilities provided, proximity to Disneyland, and so on.
You rate the hotel in Orlando as “4”, the one in Miami as
“2”, and Tampa as “2”. This becomes an ordinal scale
where you can conclude that the hotel in Orlando is bet-
ter than those in Miami and Tampa.

An important point to note is that the intervals on
the ordinal scale may not be equal. Similarly, you cannot
establish a ratio between two values. For instance, in the
above example, it may not necessarily mean that the hotel
in Orlando is twice as good as the other hotels.

A Brief History of Discovery 
and Development

Applications of scale can be seen in some of the very
ancient paintings and maps. Researchers have found evi-
dence that maps based on certain scales were being used
more than 2,600 years ago. In 1963, an interesting 
painting—dating back to 6200 B.C. was discovered in the
city of Ankara, Turkey. The painting depicted a miniature
version of a city known as Catal Hyuk (part of modern
Turkey) in great detail. The painting included streets and
houses of this town. This is one of the first known exam-
ples of scale. There have also been discoveries of other
maps in the regions of Egypt and Greece between the
periods 2300 B.C. to 600 B.C.

Around the same period, scale became an integral
component of architecture in Greece, Egypt, and Rome.
Through the centuries, there has been evidence of scale
being used to design and build monumental structures.
Musical instruments that date back to the early 1500 A.D.
were also designed using scale theory.

In the late A.D. 1700s, the French Academy of Sci-
ences devised a more consistent and organized unit of
measurement. This new unit, known as the “meter,” was
based on multiples of ten—a concept commonly used in
modern scales. Eventually, scale also found use in other
fields, including model railroading. By the beginning of
the nineteenth century, people started using scale com-
monly for a number of purposes with respect to business,
sports, and a host of sciences.

Real-life Applications

MAP  SCALE
Maps, as stated earlier, are the most prominent

examples of scale. Maps represent a much larger geo-
graphical area and can be of various types depending on
the features they emphasize. The area represented by a
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map can be wide-ranging, from a small room to the
entire universe. Most maps use both the metric as well as
U.S. measurement units.

The relationship between a specific distance on the
map and its actual distance is identified by scale (also
known as map scale). The distance between two points on
the map can thus be easily calculated. Map scale is gener-
ally indicated in three forms—verbal, representative frac-
tion, and bar (or graphic). The verbal scale, which is the
most basic form of representation, simply gives a written
description of the map-to-actual distance relationship.
For example, “One inch equals one mile.” This would
imply that a distance of one inch on the map is equivalent
to one mile (63,360 inches) on the ground.

The representative fraction (RF) scale (sometimes
referred to as ratio scale) is the most flexible of all the
three scales. This scale indicates that the relationship
between one unit on the map is equivalent to a specific
number of units on the ground. The ratio scale is flexible
because the unit of measurement can be assumed to be
anything (centimeters, inches, etc.). This scale is usually
expressed as a fraction (and thus the name). For example,
1:50,000 implies that 1 unit on the map is equal to 50,000
units on the ground. Again, this unit could be millimeter,
centimeter, inch, and so on. Simply put, the map is
1/50,000 times the size of the actual area it represents.

The concept of RF scale is often used while designing
scale models of automobiles, rail, and aircrafts. The size
of most automobile scale models, for instance, is 1/32 or
1:32. In other words, one unit on the scale model is equiv-
alent to thirty-two units of the actual automobile. RF
Scales are also prominently used by geographers (people
who experts of geography). Many people, however, also
find RF scales confusing as they do not realize what unit
of measurement to use.

The bar, or graphic scale, is the most widely used
type of map scale. It is merely a single line marked with
distances corresponding to the ground. Given below is an
illustration of different kinds of bar scale.

The first illustration in Figure 3 indicates that the
distance between two adjacent points is equal to two
miles. Note that this is a type of interval scale. The best
way to interpret such scales is by measuring the length of

any interval with a foot-ruler, and then using this length
as a reference for the entire map. For example, if the
length between any two adjacent points is 0.5 in (inch) on
the foot-rule, a distance of 0.5 in, anywhere on the map,
would indicate 2 miles on the ground. Similarly, the sec-
ond illustration denotes the length of the dotted line to be
equivalent to 10 miles on the ground.

Based on their scale, maps can be categorized into
two types—the large scale map, and the small scale map.
The large scale map shows a smaller area but in greater
detail, whereas a small scale map shows a larger area in
less detail. A city map would be an example of a large
scale map as compared to a world map (small scale).

ARCH I TECTURE
We discussed earlier how scales were used in ancient

architecture. Scales (and especially map scales) are exten-
sively used by modern day architects and interior design-
ers. Architects always draw plans (diagrams) before
starting construction work on any structure, be it a build-
ing, a house, a football stadium, or even an entire city.
Such diagrams are based on the concept of map scale.

These plans give a detailed view of the entire structure
in terms of size and dimension. In other words, a plan
would give an architect a much better sense of the final
structure. For example, a plan for a house would specify
the area (length, width, and height) of every room, includ-
ing the living area, bedroom, and bathroom at every floor.
It would also specify details of the garage, porch, and so on.
Each of these is designed with respect to a specific scale
corresponding to the actual house. The main purpose of
this diagram is to ascertain whether all requirements are
being satisfied within the given area. For example, are there
enough bedrooms, is the garage large enough, and so on.

After conceptualizing the design on paper, 3-
dimensional scale models are developed. These are minia-
ture, yet detailed, prototypes of the actual structure. They
are similar to the scale models for automobiles, discussed
earlier. They are a certain proportion of the actual structure.

Interior designers also develop similar diagrams of a
room before designing it to get a better idea of the space
(area) available to them.

In a nutshell, scale models and diagrams allow archi-
tects to visualize a structure before it is built.

WEIGH ING  SCALE
We are all familiar with weighing scales and have

used them frequently to measure our weight, or that of
other things. As the name suggests, weighing scales work
on the principle of scale. A weighing scale calculates the
weight of an object and displays it on a scale. The units of

2 ----- 4 ----- 8 ----- 10 miles
------------- 10 miles

Figure 3: Examples of differences in linear and logarithmic
scales.
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the scale may be ounces (oz), pounds (lb), grams (g), or
kilograms (kg). The weighing scale can be categorized as
a ratio scale as it has an absolute zero and can go up to
any weight depending on its type. For example, most
home weighing scales indicate up to 300 lb.

Scale applications discussed till now mainly focused
on the length (distance) property of an object. Weighing
scales represent the mass (weight) of an object on an easy
to comprehend scale. There are numerous types of weigh-
ing scales available apart from the common home scale, or
bathroom scales as most people would call them. Such
scales are widely used for medical, industrial (for example,
weighing heavy equipment), and retail (for example,
weighing food items or other groceries) purposes.

However, a majority of traditional weighing scales
are now being replaced by digital scales. These simply dis-
play the weight in digital format (numbers) rather than
show it against a scale. As a result, the use of scale as a
weighing tool is decreasing.

THE  CALENDAR
We look at the calendar every day. The calendar is

merely a scale indicating the progression of time. It is one
of the most universal examples of interval scale. Like an
interval scale, the magnitude of intervals (years, months,
days) between any two adjacent points on the calendar is
the same. For example, the interval between January 1,
2001, and January 1, 2002, is the same as January 1, 2003,
and January 1, 2004 (one year).

The years on a calendar (or even months, weeks, and
days) can be meaningfully added or subtracted. The same
is not true when you multiply or divide them. Moreover, as
in the case of any interval scale, the calendar does not have
an absolute zero point. The year 1 A.D. does not indicate the
beginning of time. Time before this is specified as B.C.

Similarly, scale is also used in clocks.

ATMOSPHER IC  PRESSURE  
US ING  BAROMETER

A number of modern-day instruments used for pre-
diction and analysis of weather patterns include scales.
One such instrument is the barometer. The barometer,
like a thermometer, is an inverted glass tube dipped in
mercury and sealed at the other end. It is used to measure
atmospheric pressure, the weight due to the pressure (or
force) of the atmosphere. As atmospheric pressure varies,
the mercury in the barometer rises or dips accordingly.

The barometer consists of a scale (in inches) corre-
sponding to the atmospheric pressure in millibars (unit
for measuring atmospheric pressure). The height of the

mercury on the scale would indicate the atmospheric
pressure. For example, at sea level the atmospheric pres-
sure is 1,013 millibars, and the corresponding mercury
height would be 29.92 inches on the barometer scale. The
atmospheric pressure at higher altitudes (height) is lower
due to decreased air mass at and above the recorder.

In addition, the atmospheric pressure as indicated on
the barometer scale can often be used to generally fore-
cast weather conditions for the next twelve to sixteen
hours. It is for this reason that weather experts use
barometer readings in forecast reports.

An atmospheric pressure of around 1,015 millibars
would indicate dry and calm weather. As the pressure
increases, the temperature rises as well. In other words,
higher the pressure, the sunnier are the conditions. Simi-
larly, as the atmospheric pressure decreases, conditions
usually become colder and wetter. A rapid fall in the
atmospheric pressure would imply that a low pressure
storm system might be approaching.

MEASUR ING  WIND  STRENGTH
Another type of instrument commonly used by

weather experts is the Beaufort scale. The Beaufort scale,
devised by Sir Francis Beaufort (a British admiral) in the
early 1800s, is used to measure the speed of winds at sea.
This instrument includes a scale of 0–12 (0–17 in some
cases). Each number represents a certain strength of wind
10 m (meters) above the ground. The numbers also indi-
cate the height of the waves in the sea, giving an idea of its
state. Given below are a few observations and their impli-
cations on the weather.

A measurement of 2 (known as Force 2) would imply a
light breeze blowing at a speed of 4–7 mph (miles per hour).
The height of waves in the sea would be less than 0.1 meter
(less than 4 inches), implying a relatively calm sea with small
wavelets. A measurement of Force 6 on the scale would
imply very strong breeze blowing at 25–31 mph. Such wind
is capable of moving large tree branches and would make it
difficult to control an umbrella if out in the open. The sea
would understandably have large waves (up to almost 10 ft
or 3 meters high), indicating rough conditions. Lastly, Force
12 on the scale would suggest the possibility of a hurricane.
Winds would blow at enormous speeds of around 80 mph
and waves in the sea can rise as high as 45 feet (approxi-
mately 14 m). Severe destruction can be caused in such
cases. The devastating hurricanes that struck Florida in 2004
were measured at 12 on the Beaufort scale.

TECHNOLOGY  AND  IMAG ING
Technology is continuously progressing. Software

tools have become extremely complicated and can do
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things we could not imagine a few years ago. Most software
tools are based on mathematical concepts including scale.
Take, for example, the car GPS (global positioning system)
navigation tool. These systems help the driver in navigat-
ing from one location to another. All the driver has to do is
enter the starting point as well as the destination, and the
GPS would give detailed street-by-street directions on how
to get to the destination. A map (much similar to a road
map) is also shown on the GPS screen. The scales used by
the GPS are similar to those used in printed maps.

Most architects now draw diagrams on the computer
using specific software. The software tools make the
architect’s job easier and even faster. Scale diagrams can
be effectively designed and printed. One such tool that is
widely used by architects and interior designers around
the world is AutoCAD.

Scale also forms an integral part of creating graphics
and images, especially when using specific software tools.

The building blocks of computer images are the pixels. A
pixel is a specific number of blocks of color arranged in a
grid. For example, a good quality 4 � 6 inch photograph
would generally have 100 pixels per inch—400 � 600 pixels
in total. The total number of pixels of any image is known
as the resolution of that image.

The quality of an image is often measured by its
resolution. In other words, the higher the resolution,
the better the quality. What does scale have to do with
the resolution of an image? To understand this relation-
ship, take the above example again. If you have a 400 �
600 pixels computer image, you would be able to print a
good quality 4 � 6 inch on paper. However, this does not
mean that the size of the 400 � 600 pixels image on the
computer is necessarily equal to the size of 4 � 6 inch
image on paper. The size of the computer image (in
inches) may be much smaller than the actual image
printed out.

The difference in scale between an adult hand and that of an infant is clear. BETTMANN/CORBIS.
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In fact, you can even print a much bigger image, say
8 � 10 inches with the same resolution (400 � 600 
pixels). The quality of the printed image in this case,
however would not be as good. In other words, the size of
the printed image is not limited by the size of the com-
puter image—the quality is. Using scale, you can define
the relationship between pixels and inches to get a good
quality image. In our example of the 4 � 6 inch image,
the scale to get a good quality image can be defined as 100
pixels � 1 inch.

TOYS
Children love to play with toys. We always think of

toys as a means of entertainment. However, toys also can
be educational. Most toys, whether you buy them from
the local Toys ‘R’ Us store or get them free with a kid’s
meal at McDonald’s, are small scale representations of
actual objects in the real world.

Take, for example, miniature dolls of characters from
the Star Wars movies or cars from HotWheels.

THE  R ICHTER  SCALE

The magnitude of earthquakes is measured using a
numerical scale known as the Richter scale. Every earth-
quake, big or small, releases energy and produces shock
waves of specific size within the Earth. The size of magni-
tude of these waves can be recorded on the Richter scale
to get a better idea of how big or small the earthquake is.
This scale is logarithmic. Thus, the increase of 1 unit of
the scale would represent an increase in size of the shock
waves (or magnitude) by 10 times. For example, an earth-
quake measuring 4 on the Richter scale is 10 times the
magnitude of an earthquake measuring 3 on the scale.

The Richter scale starts with a unit of 1. It has no
upper limit; however, it is important to note that theoret-
ically it is not possible to have any earthquake bigger or
equivalent to unit 10. An earthquake measured between 1
and 3 on the Richter scale would generally not be felt. On
the other hand, an earthquake measured at 7 can be
termed a massive one, capable of causing great damage
up to a distance of 100 km (kilometers), or 62 mi (miles).

Tsunami, or seismic sea waves, are a series of strong
ocean waves generated by the sudden displacement of
large volumes of water. A very strong undersea earth-
quake caused a massive tsunami and killed hundreds of
thousands of people in late 2004. The earthquake (ulti-
mately measured at 9.0 magnitude on the Richter scale)
created a series of waves that then radiated over thou-
sands of square kilometers.

EXPANSE  OF  SCALE  FROM 
THE  SUB -ATOMIC  TO  THE  UN IVERSE

Scale models can be used to represent parts of the
solar system. Our solar system, and indeed the entire
universe, are too big to comprehend. Without the use of
small-scale models, it may not be possible to study
them. Small-scale models are designed such that all
parts of the model are in the same proportion in terms
of size. In other words, the proportion of Earth’s actual
size to the actual size of the Sun is the same in the scale
model.

To build a scale model, you must divide all sizes by a
common factor. Scale models of different sizes can be
built based on different common factors. However, the
distances between planets and stars are so large that it
may not be easy to find a common factor. For instance,
the distance between Earth and the Sun is approximately
ninety-three million miles, whereas the distance between
Pluto and the Sun is three thousand seven hundred mil-
lion miles. It is easier to make models based on distances
(or sizes) measured in astronomical units (AU). 1 astro-
nomical unit is equivalent to ninety three million miles
(the same as the distance between Earth and the Sun).
Consequently, creating a scale model based on the scale 1
AU � 30 inches would be much easier rather than divid-
ing the distances by a common factor.

Over the years, scientists and researchers have used
scale models to compare sizes of different objects ranging
from the really large (the Sun, planets, and other stars) to
those that have a more reasonable size (an elephant, or a
human being) to the really minute objects that are not
visible to the naked eye (an atom, an electron, or a body
cell). The study of such “sub-atomic” objects is known as
Nanotechnology (“nano” means really small). Simply
put, the expanse of scale allows us to explore in detail,
things from space and galaxies to nanotechnology.

MUSIC
Interestingly, music from the ancient period has been

developed on various principles of mathematics. Scale is
one of them. The most basic form of music is known as a
“note.” Each note corresponds to a certain frequency of
sound. A series of such notes makes up music scales. The
music scale is comprised of notes that are evenly spaced
in terms of sound frequency. Thus, the music scale is
based on the concept of interval scale.

Western music is made up of a number of major and
minor scales. Each major and minor scale is comprised of
seven notes. In other words, the frequency of various
sounds is represented in the form of an interval scale to
make a music scale.
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THE  METR IC  SYSTEM 
OF  MEASUREMENT

The metric system consists of units of measurement
that are used to measure length, mass, or temperature.
The most common units are meter (length), kilogram
(mass) and Celsius (temperature). The meter, as we dis-
cussed earlier, was developed using the concept of scale.
Moreover, length or mass can be measured with different
units (within the metric system) related to each other by
factors of 10—the basis of logarithmic scales. For exam-
ple, 10 millimeters (mm) � 1 centimeter (cm), 100 cen-
timeters � 1 meter (m), and 1,000 meters � 1 kilometer
(km). This is true for units of mass as well.

The metric system is used in most countries. How-
ever, the United States and a handful of other countries
still use the English system of measurement (foot, pound,
Fahrenheit).

The use of the English system has always hurt the
economy of the United States. It makes communication
and trade with other countries difficult, and eventually
affects the competitiveness of the United States. Due to
this, most people within the Untied States have been
encouraging the use of metric units. In fact, many organ-
izations, including government agencies, have been using
both systems of measurement.

SAMPL ING
Sampling (taking small samples of a much larger

quantity) is done extensively in the real world. A good
example of sampling is blood tests. Doctors would take
blood samples of a patient to determine his/her illness. To
put it simple terms, to analyze a problem we do not study
the whole object (blood, in our example) but we only take
a small scale portion of it, commonly known as a sample.

Sampling is used in numerous other ways. Agriculture
is another application. Farmers, around the world, grow
different types of food at different places. What type of
food (or crop) can be grown at a particular place depends
on the nature of its soil. The soil mainly consists of four
ingredients—water, air, minerals, and organic matter.

A specific crop would require the right amount of all
of the above in order to grow well. Thus a farmer’s job is
not limited to only planting seeds and waiting for the
crop to grow. The soil in different parts of his/her field
must be tested (and recorded) to get a better idea of the
contents of the soil. To do this, farmers take samples of
soil from various parts, measure their content (using
appropriate tools) and record them on a scale. The scale
has an absolute zero (ratio scale). For instance, zero value
of a mineral would indicate that there is no mineral in the
soil sample. Similarly, if two samples (A & B) contain 
2 gm (grams) and 1 gm of mineral respectively, we can
say that sample A has twice the amount of minerals com-
pared to sample B.

By recording data pertaining to the content of the
soil, farmers can compare all the samples. They now
know how much water and fertilizers to add and where.
In other words, they can ensure that the soil contains the
required amount of nutrients and water for the best pos-
sible growth of crops.
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Scientific
Math

Overview

Numerous mathematical concepts are used for
explaining complex real life situations using a scientific
process. These concepts include trigonometry, calculus,
rational exponents, statistical analysis, logarithms, and
factoring. Mathematics, when used for scientific applica-
tions or processes, is referred to as scientific math. Such
scientific mathematical concepts are widely used in real-
life applications such as weather prediction, engineering,
and astronomy. For example, scientific mathematical
concepts can explain why bacteria multiply, thus provid-
ing a clear understanding of how to control them, and
eventually benefiting from this process.

Scientific math is used in different aspects of daily
life, including business-meteorology, aviation, biology,
engineering, architecture, and basic sciences. The most
common applications of scientific math are found in
technology.

Fundamental Mathematical Concepts
and Terms

The fundamental scientific math concepts cover an
entire gamut of areas. Professionals such as engineers, sci-
entists, accountants, and carpenters use scientific mathe-
matics in different ways to manage and find solutions to
improve their work. Thus, scientific math plays a vital
role in various walks of life.

FUNCT IONS  AND  MEASUREMENTS
A function is a mathematical expression that specifies

a relationship between two sets of numbers (perhaps rep-
resenting physical characteristics of objects). In simple
terms, it shows how a number belonging to one group can
be related to a number belonging to some other group.

Take, for example, a tank of water. The total quantity
of water in the tank can be expressed as a number. To esti-
mate how much water the tank can hold, a function can be
defined that presents a relationship between the shape of
the tank and the volume of the tank (total quantity of
water). A tank that is square would have a certain volume
(quantity) of water, whereas a cylindrical tank would have
a different volume. In a nutshell, the volume of the tank
(and water) varies depending on the shape of the tank.

A variety of scientific processes can be explained
using functions. For instance, meteorologists (people
who study and predict weather) usually use relationships
to predict the type of weather. There are certain factors
that are vital in understanding weather patterns. Each of
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these factors is inter-related. Such relationships can be
expressed easily in terms of functions. For example, there
is a certain relationship between humidity and rain. If the
weatherperson knows that the humidity is high, he or 
she may predict rain in the next few hours.

Functions can be simple or complex depending on
the nature of the relationship. When a task becomes dif-
ficult and more factors are to be considered, a complex
function may be used to explain the relationship. In the
above example, if the tank is leaking, the function
describing the relationship between the shape of the tank
and the quantity of water would be far more complicated.
This may involve the use of more elaborate mathematical
concepts such as calculus and differential equations.

DISCRETE  MATH
For every task, there can be two or more options. For

example, a simple toss of a coin can result in a heads or
tails presentation. The possibility of either a head or a tail
showing up can be expressed by probability. Probability is
the measurement of the likelihood of a particular event.

For example, the probability of tails showing up, after a
coin is tossed, is 50%. In other words, the probability of
either the head or tail showing up is equal.

Workers in various disciplines, including engineers,
mathematicians, marketers, government administrators,
economists, biologists, or others who work with a vast col-
lection of data, use probability and statistics. These con-
cepts fall in an area of math commonly known as discrete
mathematics. Like probability, most people also use sta-
tistics extensively in daily life activities. Statistics involves
the analysis of recorded data. In other words, once a range
of data is collected, it is organized and then studied to
establish relationships and in turn, make more sense out
of the data. For example, consider the population of a
place. This data can then be organized by age or gender
(male or female) and analyzed to understand various
issues, such as determining the average age of the entire
population, or the ratio of males to females, and so on.

Similarly, certain scientific predictions can be made
from the above data using probability. For example, after
determining the actual number of individuals who have
received primary education from the total population of
a city, the number of individuals opting for primary edu-
cation can be calculated. This means that using the con-
cepts of probability and viewing past data, one can
determine future educational trends and whether the
future population of this city will be educated.

It is important to note that probability is not an exact
science. In other words, it allows for intelligent predictions,
but can never determine an answer with absolute accuracy.

Biologists, scientists, and statisticians use the scien-
tific concepts of discrete math (such as probability) to
explain how to produce a better quality of product, such
as a breakfast cereal. This process requires an under-
standing of how to make a better wheat plant by mixing
and matching different types of wheat from across the
country. Scientists use probability and statistical analysis
to find matched types whose combination has the best
attributes of wheat (say, a higher amount of vitamins).
This combination can then be used to make breakfast
cereal that has higher vitamin content.

In another example, an aeronautical engineer may
study the impact of rain on the wings of a fighter plane by
using another area of discrete mathematics called graphical
analysis to create a model of rain drops. This eventually
helps in designing a better (and more reliable) aircraft wing.

TR IGONOMETRY  AND  THE
PYTHAGOREAN  THEOREM

Mathematical principles of trigonometry, especially
the Pythagorean Theorem, are used to find the height of
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U.S. Navy Blue Angels in formation. MUSEUM OF FLIGHT/CORBIS.
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a mountain, the distance of an airplane from the landing
airstrip, the width of a river or valley, and much more
without actually measuring these manually. The
Pythagorean theorem was devised by the Greek mathe-
matician Pythagoras (569 B.C.– 475 B.C.). It presents a
relationship between the short sides of a right triangle
and its long side. The Pythagoras equation is given as 
a2 � b2 � c 2 where a and b are the lengths of the short
side, and c is the length of the long side of the triangle.
(See Figure 1.)

Procedures that employ the Pythagorean theorem
are greatly useful and far easier than manual measure-
ment. For example, it would always be simpler to esti-
mate the depth of a valley if it is extremely uneven 
and unsafe, rather than treading the terrain physically. In
such cases, by taking simple measurements, the entire
depth of the valley can be calculated using trigonometric
concepts.

In addition, trigonometry is used for a variety of
other applications. For instance, certain trigonometric
concepts are used to survey distances to plan the design
and development of a six-lane highway. A carpenter uses
the same scientific concepts to design and build furniture.
The weather department would use the Pythagorean the-
orem to calculate considerable data vital for predicting
weather.

LOGAR I THMS
Logarithms (and scales based on logarithms) are

often used scientifically to simplify several processes. In
mathematical terms, a logarithm is defined as the power
to which a base must be raised to equal a given number.
Scales that have units as log of a value instead of the value
itself are known as Logarithmic scales. Simply put, the
logarithmic scale represents the logarithm of the quantity
rather than the quantity itself.

Logs can be expressed as exponents—101 � 10,
102 � 100, 103 � 1,000, or 106 � 1,000,000 (a million).
The superscripts are actually the logarithms of the final
result. In other words, the log of 10 is 1, the log of 100 is
2, the log of 1,000 is 3, and so on.

A log scale generally has units such as 10, 100, 1,000,
and so on, instead of 1, 2, 3, etc. The natural steps on a
logarithmic scale increase in a multiplicative fashion
rather than an additive or linear fashion. For example,
in this case the natural steps increase by a multiple of ten
(10 � 10 � 100, 100 � 10 � 1,000, and so on).

Subsequently, the total length of any given road, the
distance from New York to San Francisco, and even the
distance from Earth to the planet Pluto can be easily

compared using the log scale. In short, log scales facilitate
comparison of wide ranging data. This is critical for most
applications.

A geologist observing the vibrations of the earth
records an extremely wide range of data (small vibrations
to huge vibrations). There is a high variation in the obser-
vations, and hence it becomes much easier to present
such data in terms of logarithms (and log scales).

MATR ICES  AND  ARRAYS
A matrix is a square or a rectangular array of

numbers. The numbers are represented as rows and
columns. Matrices (plural of matrix) can be 2-
dimensional, 3-dimensional (for example, cubical matri-
ces), or higher-dimensional. Simply put, a 2-dimensional
matrix can record different values for two characteris-
tics of an object, whereas a 3-dimensional matrix can
record different values for three characteristics of an
object.

Matrices are used in several real world applications.
A medical radiologist takes a patient’s CT scan to show
the presence of a tumor in the brain so that a surgeon can
remove it. The scan of the brain uses the mathematical
principle of matrix to create a 3-dimensional image. Put
simply, sophisticated technology uses a matrix to convert
a 2-dimensional image into a 3-dimensional one. This
greatly enhances the quality of the image and makes it
easier for the surgeon to pinpoint the exact location of
the tumor.

Engineers use similar principles and concepts to
explain the structural nature of a material. For example,
using matrices, they can create a 3-dimensional view of
the wings of a space shuttle. This allows them to study the
characteristics (structure) of the wings in order to make
them stronger and more reliable.
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EQUAT IONS  AND  GRAPHS
Scientists, engineers, and researchers use mathemat-

ical concepts of variables, expressions, or equations to
show a relationship among different objects and entities.
An equation is an expression made of two or more mem-
bers related by an equality sign. Each member of the
equation can either be a fixed number or a variable. The
Pythagorean theorem described earlier is also an equa-
tion (as given below): a2 � b2 � c 2. Here, the members a,
b, and c are variables representing the sides of a right
angle triangle.

Equations can be used to represent different objects
(and their characteristics) in the form of tables and
graphs. In other words, an object can be mathematically
represented in the form of an equation, or a graph, with-
out using actual values and numbers.

The purpose of such visual representation is to under-
stand an object (or abstract equation) better. Equations and
graphs help in identifying a wide variety of patterns for the
object. Moreover, complex calculations can be performed
easily. In short, they help create a model to better under-
stand a situation and to solve a problem. In addition, they
also facilitate comparison between two or more objects.

A Brief History of Discovery 
and Development

Babylonians four thousand years ago knew of
Pythagoras’ theorem. As stated earlier, the Greek mathe-
matician Pythagoras also developed this equation
describes the relationship between all three sides of a
right triangle. This equation has, ever since, been used
extensively in architecture and carpentry. Subsequently, it
was also employed in a number of other fields including
the science of flight and measurements of height for
various purposes.

Although ancient global civilizations knew of the
importance of mathematics for various applications, it
was in the eighteenth century that the Swiss mathemati-
cian Leonhard Euler (1707–1783) invented two new
branches of mathematics, namely calculus of variations,
and differential geometry. With these, people started rec-
ognizing the importance and value of mathematics for
scientific processes.

Euler was also instrumental in pushing forward with
research in number theory, which was eventually used in
several scientific applications. Towards the end of the
eighteenth century, Italian-born French mathematician
Joseph-Louis Lagrange (1736–1813) worked on the
theory of functions and equations.

Real-life Applications

WIND  CH ILL  IN  COLD  WEATHER
Wind chill is a vital aspect of weather. Meteorologists

provide details on wind chill along with the temperature in
the winter. The reason for doing so is that a high wind chill
makes a place feel colder, even though the temperature
remains unchanged. In other words, a temperature of
around 40�F (around 2�C) and a zero wind chill would
indicate cold weather. However, the same temperature with
a high wind chill would make the effects of the cold seem
more efficient, although the temperature is still the same.

In simple terms, wind chill gives a measure of the
discomfort caused due to a combination of the speed of
wind and the air temperature at a particular time. The
speed of wind does not increase or decrease temperature.
Nevertheless, a high wind speed (in cold weather) always
makes a person feel colder than it actually is. This is one
reason why the windy city of Chicago (with normally
high wind chills) has harsh winters. High wind chill can
also be very dangerous, as it may result in acquiring frost-
bite and other problems related to extremely cold weather
more quickly.

A mathematical relationship exists between the wind
speed, and air temperature. It is commonly known as the
wind chill index, and was devised by the National
Weather Service. The equation Wind Chill Index (�F) �
35.74 � 0.6251T � 35.75(v 0.16) � 0.4275T (v 0.16)
relates the above-mentioned factors where v is the wind
speed in miles per hour and T is the temperature in
Fahrenheit. The unit of the wind chill index is �F. The wind
chill index gives a “truer” indication of the temperature.
For example, if the air temperature is 40�F and a wind is
blowing at 10 miles per hour (around 16 kilometers per
hour), the wind chill index is 34�F (calculated using the
above formula). This implies that although the actual air
temperature is 40�F, it feels like 34�F due to the wind.

Meteorologists record the necessary data and use 
the above equation to calculate the wind chill index.
The equation makes it simpler to compute wind chill as
the factor values are easily determined.

Wind chill indices are of great importance to the
armed forces. Often, military personnel are posted in
places with adverse weather conditions (for example,
Siberia). Wind chill becomes critical in such cases. In
addition, wind chill indices are also used to study the
effect of wind and cold weather on other life forms.

WEATHER  PRED ICT ION
Meteorologists predict weather patterns over the

next few days or even few weeks. Weather prediction is
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based on a number of factors. These include the geo-
graphical location of a place, its weather in the last few
days, existing temperature, humidity, formation of
clouds, wind systems, pollution, historical weather
trends, air pressure, direction of the wind, and many
more factors.

Meteorologists use the mathematical concept of rela-
tionship to explain the cause and effect of each of these
factors (in the form of a mathematical equation). Each of
these relations is then studied to develop an overall pre-
diction. Based on these findings, weather is usually
expressed in six different ways—as the temperature (in �F
or �C), the humidity of the air, the type and amount of
cloudiness, the types and amount of precipitation, the
atmospheric pressure, and the speed and direction of the
wind. These weather attributes describe future weather
patterns. For example, high amounts of precipitation and
cloudiness would indicate rain in the next few hours.

The weather at a particular place can also be pre-
dicted by the scientific relationship between a number of
other factors, such as the amount of solar radiation, the
geographic location (latitude and longitude), position of
the sun, and the seasonal variation in the altitude of the
sun. There are other factors including the type of rainfall,
the type of clouds, and ocean currents.

In a nutshell, a large collection of factors affect
weather and their relationship can be expressed in the
form of an equation. These equations are also used in a
host of other applications. For example, astronomers and
scientists use them to predict and study weather patterns
of other planets. The National Aeronautics and Space
Administration (NASA) uses these findings to model
spacecrafts. Similarly, climatic conditions in places having
extreme weather (such as many parts of Antarctica) can
be understood on the basis of data collected by studying
similar relationships. Explorers can then use these
weather predictions to their advantage. Meteorologists
also use similar equations to understand the impact of
weather on crops.

EST IMAT ING  DATA  USED  
FOR  ASSESS ING  WEATHER

Meteorologists must gather information about the
environment to predict weather. To collect and measure
data critical for determining weather patterns (tempera-
ture, pressure, precipitation, solar energy, wind speeds,
and so on) they use specific tools. All these tools are set on
a balloon, which is raised into the atmosphere at a partic-
ular altitude (height). The balloon is attached to a cable.
Using this process, meteorologists can record data at dif-
ferent altitudes; the balloon is raised to a certain height

and brought down to note down the readings. It is raised
again to a different height, and the same data is again
recorded. This process is repeated for varying heights as it
helps meteorologists predict weather better. Moreover, it
is also repeated on a regular basis every day. Changes in
weather patterns at certain altitudes can assist in fore-
warning people about difficult conditions.

The height at which data is gathered is crucial. This
would be equal to the length of the cable. However, meas-
uring the length manually would be an extremely difficult
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Conversions

The units of measurement around the world are
based on two systems, the Metric System, and the
English System. Most the countries, apart from the
United States, employ the Metric system of meas-
urement. The Metric system of measurement
includes units such as centimeter, meter, kilometer,
gram, kilogram, �C, and so on. The English system
of measurement includes units such as foot, mile,
pint, gallon, quart, �F, and so on.

There is a definite relationship between a unit
of measurement in the Metric system and its coun-
terpart in the English system. This relationship can
be expressed in the form of an equation. Such
equations are often used in daily life activities for
converting one unit to another.

For example, the relationship between one mile
and one kilometer can be shown as: 1 mile � 1.61
kilometers. Similarly, other units can be expressed
in terms of mathematical equations.

Conversions based on equations and relation-
ships are possible for any unit of measurement,
even within the same measurement system. Some
of the real world examples based on equations dis-
cussed earlier are also types of conversions. In
other words, any equation always results in the con-
version of one entity (or unit) into another.

Conversion is also used extensively in scien-
tific processes. For example, the amount of elec-
tricity produced from thermal energy can be
expressed as an equation. The calorific value of fuel
can be converted into heat, and then into power
using simple equations. The relationship between
water, its solid form (ice), and gas form can be
shown by an equation. This would state at what tem-
perature water gets converted into ice or gas.
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and time-consuming task (as the balloon is often raised to
very high altitudes). This is where the Pythagorean theo-
rem comes in. Using the Pythagorean theorem, the length
of the cable can be easily calculated. In fact, it enables
meteorologists to pre-measure lengths allowing them to
simply place the balloon at different altitudes. Once the
necessary data is gathered, other scientific mathematical
concepts are used to forecast weather patterns.

BR IDG ING  CHASMS
Engineers and architects construct dams and high-

ways in difficult terrains such as those across river gorges,
and through mountain ranges. These terrains make it
difficult to measure distances manually. With the help of
certain instruments and mathematical concepts of
trigonometry, especially the Pythagorean theorem, the dis-
tance or span of a bridge in such geographical locations
can be calculated easily. (This is another application of
math in scientific processes and hence Pythagoras’ theorem
could be considered as a scientific mathematical term.)

For example, if a bridge has to be built across a river,
the engineer could use the principle of the Pythagorean
theorem to calculate the width of the river (rather than
measuring it manually). The theorem states that the sum
of two smaller sides (squared) of a right triangle is equal
to the square of the biggest side. One way of measuring
the length of the river is as follows. A pole of known
height is placed on one side of the river (perpendicular to
the river). One side of a string is then attached to the top 
of the pole, whereas the other side is tied to the other side
of the river (exactly at the end of the river). The string is
then taken out and its length is measured. Using the
length of the string and the length (height) of the pole,
the length of the third side (which is the length of the
river) can be calculated.

In hazardous conditions, an engineer can use this
simple scientific concept of math to measure the river’s
width. Similar processes are also used in other areas. For
example, the Pythagorean theorem is also used in space
explorations. By simply studying the length of shadows,
the depth of craters and height of mountains on the
Moon (or a planet) can be estimated.

AV IAT ION  AND  FL IGHTS
A supersonic fighter jet is a complex machine to

launch, especially from a small runway, such as the deck of
an aircraft carrier. Controlling the fighter jet requires great
skill and knowledge of how to fly the machine from a
restricted runway. There are certain factors that control
the take-off and landing of the fighter jet. The pilot applies

scientific math concepts to launch an F/A-18 Hornet from
an aircraft carrier. The amount of lift or force required to
fly the F/A-18 Hornet can be expressed as a mathematical
relationship dependent on factors such as the air density,
the wind velocity, and the surface area of the wings. In
order to allow the aircraft to take off, lift force must over-
come gravity and equal the weight of the aircraft. This
entire process can be shown as a simple math equation.

The benefit of applying this equation is that it allows
the pilot to concentrate only on some key indicators of the
equation to fly the plane from the deck of an aircraft carrier.
The equation provides the pilot with critical data, including
the ideal speed of the plane, to get the right lift for take-off
or landing. The equation also shows the pilot how much
time he or she has for safe landing of the plane on a short-
ened runway, in case there is low fuel and a large payload.

In another similar example, an athlete uses a similar
relationship to assess the length and height of his or her
long jump and the high jump or pole vault jump, respec-
tively. Like fighter jets, the athlete also has a short run up
but must jump as long (or high) as possible. Similar
equations can thus be of great help.

Equations are also used to determine take-off and
landing maneuvers for larger airplanes. For example, the
pilot of a large Boeing or Airbus jet has to maneuver the
plane, and approach the runway in a precise manner (for
safe landing). Planning the approach ensures a smooth
landing within the “touchdown zone” of the runway (this
is an area on the runway that ensures that after touch
down the airplane has can be smoothly and steadily
brought to a halt). Pilots must sometimes execute visual
approaches that vary in size, shape, and angle based on a
variety of factors, such as other aircrafts on the runway,
obstructions, noise abatement, and prevailing weather
conditions. In other words, all these factors contribute to
the safe landing of an airplane.

Pilots use mathematical concepts of relationship and
equations (similar to those discussed in the case of fighter
jets) in working out the approach strategy for landing the
aircraft. Despite airplanes being equipped with modern
technology instruments, a pilot must know and under-
stand the relationship between various factors, to deter-
mine the distance and angle of descent, required to land
the plane. As discussed earlier, such relationships can be
expressed in the form of equations.

Using these landing equations, the pilot can figure
the total distance required to land the plane from a par-
ticular height. This simple scientific computation enables
the pilot to land safely, despite the distractions caused by
differing conditions at various airports. In other words,
the equation shows the effect on the landing caused by 
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a change in any one (or more) of the factors. For differ-
ent airports, the magnitude (value) of the factors forming
the equation may be different. For example, weather con-
ditions at airports would vary. This would change the
landing process (in terms of the distance required and the
angle of descent). Thus, the equation would ensure that
the pilot knows exactly what is the new distance, and
angle of descent for that particular airport (for a smooth
landing).

In addition, the pilot may not always have the oppor-
tunity to bring in the plane from a specific height every
time. In such cases, the angle of descent would have to be
modified. For these scenarios, pilots also create a graph
(or chart) based on the landing equation that shows the
relation between altitudes and the corresponding angle of

approach. In simple terms, the angle of descent for differ-
ent heights is known from this graph.

Such equations are also used in a variety of other
applications. A baseball batter would use it to assess the
force he requires (and the swing angle) to hit the ball for
a home run. A trapeze artist uses it to define his or her
swing while performing. Racecar drivers use similar
equations to control the speed of their cars at sharp turns
on a racing circuit. The mathematical concepts for all
these remain the same.

S IMPLE  CARPENTRY
Architects, designers, and carpenters need to under-

stand dimensions of the structures they work on. Any
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Mathematics of Flight

Have you ever wondered how people measure the height
at which an airplane (or a bird) is flying? Airplanes have
advanced tools that constantly measure their altitude
(height). However, these tools are based on simple math-
ematical principles, the same principles that can be
used to measure the height of any flying object. The con-
cept that is used here is again Pythagoras’ theorem.

Airplanes continually record the distance they have
traveled since take-off. With the help of instruments such
as radar, it is also possible to pinpoint the exact location
of the airplane, corresponding to the ground. Tools that
measure altitude would then take this data and calculate
the height using the Pythagorean theorem. Similarly, it is
also possible to determine the exact location of an air-
plane if the height and total distance traveled are known,
especially if for some reason the plane cannot be
detected on the radar.

Mathematical principles are also used for other
aspects of flight. Aeronautical engineers use concepts
such as functions and equations, to find out how rain
affects the wings of airplanes and eventually its flight. As
raindrops are not all the same size, varying from tiny
droplets to large blobs, each raindrop affects the wings
differently. The concept of relationship is used here as
well. The relation between the size of the raindrop and
how it affects the wings (in terms of damage) can be
expressed as a mathematical equation. For different
sizes of raindrops, their corresponding impact on the
wings is recorded (during an average rainy day, or even a
storm). Using the equation, the impact for any size of the

raindrop can be estimated (which would not be possible
manually).

An entire range of data is then represented in the
form of a graph. The purpose of doing so is similar to
that discussed in the example on bacteria. After plotting
all recorded values on the graph, a line can be drawn that
represents the pattern in which raindrops affect airplane
wings. The line can then be further extended to assess
the impact of different sizes of raindrops, the ones that
are not measured. Wings are central to the flight of an
airplane (or any other flying object). Such equations
and graphical representations allow engineers to
assess the damage that can be caused during rain and
thunderstorms, and in turn, build far more stable and reli-
able wings.

Furthermore, to study the effects of vibration on
astronauts during a space shuttle launch, space
engineers employ methods based on logarithms. Before
launch, the vibrations felt by an astronaut inside the
space shuttle are negligible (similar to those anyone
would feel on the ground). However, as the space shuttle
is about to be launched, the vibrations increase
enormously. The magnitude of vibrations at different
times during the space shuttle launch is expressed in
terms of a logarithmic scale. This suggests that the
vibrations increase in magnitude in multiples of ten.
Another reason for using a log scale is that the magni-
tude of vibrations ranges drastically, from small tremors
to large shuddering shakes. Consequently, this cannot
be expressed on a linear scale (or by a linear equation).
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construction is unique in its shape. To work out the size,
shape, and dimensions of any new structure, be it a build-
ing or a simple wooden table, the Pythagorean theorem
(and other trigonometric concepts) is used extensively.
Although the use of mathematics in architecture is com-
monly known as architectural math, some of these con-
cepts are also being used in a scientific manner, and hence
can be termed as scientific math.

Continuing with the discussion on Pythagorean the-
orem, take for example the process of designing and cre-
ating an entertainment center for the living room. A
carpenter uses the Pythagorean theorem to make sure the
corners of the cabinets are at a perfect right angle. To do
so, the carpenter would cut two pieces of wood (forming
two sides of the cabinet). Consider that the length of one
side is 3 inches, and the other is 4 inches. To join both
these pieces such that they form perfect 90� angle, the
carpenter would cut a string 5 inches long. As per the
Pythagorean theorem, if the string fits perfectly between
the free ends of both the pieces, the angle between them
is an exact 90� angle. (See Figure 2.)

The same process would be repeated for the remain-
ing two sides and a square cabinet is created.

The benefit of using the Pythagorean theorem is that
the carpenter does not have to always manually measure
the angle between sides, using complex tools. He or she
can do this by simply measuring the corresponding
lengths and sizes, a process that is far more convenient.
Pythagoras’ theorem can be similarly used on larger scales
as well. An architect (or engineer) designing a highly
technical structure, or even a model, uses this same math-
ematical concept.

The benefit of using trigonometry in carpentry or
architecture is that the relationships between shapes and
sizes hold true in most conditions. In other words, the
relationship between two sides of a cabinet as defined by
the Pythagorean theorem would be the same even for a
much larger or more complex structure. Besides, in some

cases, an architect may not need sophisticated tools.
Knowledge of mathematical concepts and simple tools
(such as a string in our case) can do the trick. Ancient
structures around the world were built using similar
methods, as they did not have advanced tools at the time.

MEDICAL  IMAG ING
In earlier days, in order to diagnose internal prob-

lems of a patient, doctors could only rely on x-rays that
created 2-dimensional images. This would make compli-
cated operations such as surgery rather difficult. Medical
imaging, over the years, has progressed immensely. Newer
technologies that produce 3-dimensional images have
become extremely common. These technologies that
greatly facilitate complex operations are based on mathe-
matical concepts.

A radiologist undertakes imaging of the human 
body to find any growth, say in the brain, using computer
tomography (CT) or nuclear magnetic resonance (NMR).
An explanation of these technologies is not within the
scope of this article. For our understanding, these are
imaging methods that use mathematical principles of alge-
bra and matrices to create 3-dimensional images.

CT measures the length of x-ray beams passing
through a part of a body, from hundreds of different
angles. Subsequently, based on the evidence of these
measurements, computer software is able to reconstruct
3-dimensional pictures of the body’s interior. In doing so,
the software uses matrices to define dimensions of small
portions from the body. In other words, the body (or a
part of it) is considered as a number of smaller parts. The
dimension of each part is defined using a 3-dimensional
matrix. The 3-dimensional matrices for all parts are then
joined together to get a complete image. Sonography is
another technology that is based on similar concepts.

As stated earlier, the benefits of 3-dimensional imag-
ing are numerous. Doctors can pinpoint the exact loca-
tion of a problem area and perform surgery with greater
effectiveness. Simply put, doctors can see the inside of any
part of the body (as if they are the actual thing itself) and
diagnose health-related problems far more efficiently.
Three-dimensional imaging is also used in a range of other
applications. This includes architecture, aviation, automo-
bile engineering, computer games, and much more.

ROCKET  LAUNCH
Rocket scientists are always looking for cheaper and

more effective ways of launching a rocket. The space
agency NASA launches its space shuttles from Florida, and
with a reason. According to the Coriolis force, a scientific
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principle (based on mathematics) developed by French
Mathematician Gustave Coriolis (1792–1843), as Earth’s
axis of rotation at the poles is nearly vertical to the hori-
zon, any still object in the sky would spin horizontally. In
contrast, at the equator Earth’s axis are nearly horizontal.
Subsequently, still objects in the sky would move verti-
cally. Thus, objects here would get a vertical boost.

In other words, if a space shuttle was launched nearer
the equator it would get a vertical boost. Consequently,
because of this boost, less fuel is utilized. In fact, NASA
saves considerably on the cost of a launch dollars because

of this strategy. In a nutshell, the science behind rocket
launch is based on a principle that presents a mathemat-
ical relationship between Earth’s axis of rotation at a par-
ticular place, and the corresponding direction and speed
at which an independent object moves at that place.

The same principle can be used to explain why most
airplanes that fly around the world fly near the poles
rather than the equator. At the poles, an object spins hor-
izontally. In other words, its horizontal speed would be
higher. Subsequently, the speed of airplanes near the
poles would be higher.
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Bacterial Division and Replication

Medical scientists, biologists, and health officials con-
stantly study the impact of various diseases on humans
and other living beings in order to seek better cures. To
study these diseases, these scientists must first under-
stand how bacteria multiplies and at what speed. Bacteria
are small cells (living organisms) that cause many dis-
eases. Once inside another body, bacteria multiply quite
rapidly. Each single-celled bacterium divides to form two 
or more bacteria cells. Each of these then split into two or
more bacteria cells. The process, known as binary cell fis-
sion, is efficient at causing tremendous bacterial growth.

The time that it takes one bacterium to split into two
(or more) cells is known as generation time. Generation
time varies greatly among different species of bacteria.
For example, certain bacteria such as Escherichia coli,
which causes severe diarrhea, takes only about twenty
minutes, whereas Mycobacterium tuberculosis, the bac-
terium responsible for tuberculosis, would take as much
as twenty-four hours.

Cell fission follows certain mathematical principles.
Consequently, the entire process can be expressed
through algebra and basic calculus. Scientists use these
mathematical concepts to develop a model for under-
standing the behavior of bacterial division and replica-
tion. For example, they would be able to figure out up to
what number different bacteria can grow within one hour,
and eventually an entire day. Most bacteria grow propor-
tionately. In other words, the rate of replication is pro-
portional to the population of existing bacteria. This has
been established by studying the growth of bacteria in
different environments, at different intervals of time.

Based on this fact, relationship models (or equa-
tions) are developed between existing bacteria popula-
tion and time. Such relationship models ensure a better

understanding of bacterial growth, which is extremely
vital to the progress of medical science. Furthermore,
scientists also study the impact of the bacterial growth
through a visual graph, known as the exponential graph.
The population growth trend for bacteria is an exponen-
tial curve. Each generation doubles in number. For
instance, the process starts with one bacterium that
replicates itself to two bacteria, two grow into four, eight,
and so on. The numbers (quantity of bacteria cells) 
can be plotted on a graph against time. A single straight
line that connects most (if not all) of these points
would represent the growth trend of the bacteria. The
purpose of such models is to estimate the growth after
a certain time, by way of extrapolation. In other words,
the line on the graph can be drawn further to estimate
the growth of bacteria after subsequent intervals of
time. Thus, instead of actually measuring the growth
every hour through experiments, scientists can simply
predict it.

Similar models can also explain the growth of a par-
ticular disease among living beings. Most contagious
diseases (diseases that are spread through contact)
affect living beings exponentially, at least early on in an
epidemic. For example, initially one person may be
infected, and after a certain time two would be infected,
and so on. Exponential graphs can be used here to pre-
dict the number of people affected after a certain period
of time. This helps government officials control the prob-
lem, especially in cases of an epidemic.

Similarly, the utility department can use such rela-
tionships towards controlling water borne diseases.
Similar principles are also employed in handling radioac-
tive materials in medicine, studying the impact of their
exposure in space, or in case of a nuclear accident.
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SH IPS
The design of ships and submarines involves exten-

sive use of a scientific principle known as the Archimedes
principle. According to this principle, floating objects (or
even objects that are fully or partially submerged in a
fluid) displace a certain amount of fluid. Due to this, the
object feels a certain up-thrust. The magnitude of the up-
thrust is equal to the amount of fluid displaced. Note that
this principle is a mathematical equation based on the
relationship between amount of fluid displaced, and the
up-thrust experienced by the object. Ship architects and
engineers use this principle to assess how a ship would lie
in the water before it is launched. In other words, the
Archimedes principle helps in designing the ship such
that its movement and position is ideal once it is in water.
The same principle is also used for submarines.

GENET ICS  AND  MATHEMAT ICS
Doctors and scientists perform studies to predict

what characteristics a child inherits from his or her father
and mother. Such scientific studies are based on the con-
cept of probability. Consider that the father and mother
have brown eyes. However, it is possible that the child
does not have brown eyes. The reason for this is that every
characteristic of the human body (in this case color of the
eyes) has two genes (cells that possess the characteristic).
One gene is dominant, whereas the other is recessive.
In this case, both father and mother would have one gene
that is responsible for the brown color. Simultaneously,
they would also have another gene (responsible for the
eye color) that would have some other color. A child is
likely to inherit the dominant genes, which may be the
non-brown ones, and hence not have brown eyes at all.

Using the principles of probability, scientists can
figure out the characteristics a child is most likely to have.
The scientist must also have complete information on the
genes of the parents. Thus, characteristics such as
the color of the skin, color of the eyes, facial features,
build and physique, and much more can be predicted.
It is important to note that scientists and doctors can
only state characteristics that a child is most likely to
inherit.

Scientists also use these principles to create geneti-
cally modified plants and animals. For example, scientists
can genetically modify a cow so that she gives birth to a
calf that ends up giving more milk. Similarly, different
breeds of animals are also genetically modified so that
they give birth to offspring of mixed breeds.

EARTHQUAKES  AND  LOGAR I THMS
A common example of a logarithm scale (scale based

on log values) is the Richter scale for measuring magnitude
of earthquakes. During an earthquake, an enormous
amount of energy (in the form of heat) is released from
the surface. The magnitude of the earthquake depends on
the amount of energy released. The magnitude is shown
on the Richter scale.

The relationship between each step on the scale
(magnitude of the earthquake) and the corresponding
amount of energy released by the earthquake can be
explained by an algebraic equation. The Richter scale is a
log scale; the difference in magnitude (in terms of the
energy released) between two consecutive steps on the
scale is ten-fold. For example, the amount of energy
released by a 6.0-magnitude earthquake on the Richter

482 R E A L - L I F E  M A T H

Key Terms

Equation: A mathematical statement including an
equals sign.

Function: A mathematical relationship between two sets
of real numbers. These sets of numbers are related
to each other by a rule that assigns each value from
one set to exactly one value in the other set. The
standard notation for a function, y � f(x), developed
in the 18th century, is read “y equals f of x.” Other
representations of functions include graphs and
tables. Functions are classified by the types of rules
which govern their relationships.

Logarithm: The power to which a base number, usually
10, has to be raised to in order to produce a spe-
cific number.

Matrix: A rectangular array of variables or numbers,
often shown with square brackets enclosing the
array. Here “rectangular” means composed of
columns of equal length, not two-dimensional. A
matrix equation can represent a system of linear
equations.
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scale has ten times more than the energy released by a 
5.0-magitude earthquake on the same scale.

Potential Applications

GENET ICS
The use of probability in genetics is fast increasing.

Genetic technology is being used in agriculture and forestry
to improve plants, increase disease resistance and the yield
of crops, and adapt non-native crops to a new environment
for specific benefits. This has improved the quality and
quantity of food production in many parts of the world.

Animal breeders have been using genetic principles
for many years to develop characteristics within a species
that they feel are desirable. There are areas where genetics
can be used; all of these are based on the principles of
probability. However, the maximum benefit would be in

the field of medicine. Genetic modification of certain
bacteria has helped find better cures for many diseases,
and holds true potential.
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Overview

When dealing with very small or very large numbers,
such as within the scientific fields of biology, chemistry,
engineering, mathematics, and physics, professional men
and women use scientific notation as an efficient way to
read and write such numbers. The method of scientific
notation uses the significant digits of a number and mul-
tiplies it by specific integral powers of ten. This method of
notation is an easy way to read and write numbers so that
the resulting representation makes more sense. It is also
quicker to perform various mathematical operations
such as addition and multiplication when large and small
numbers are changed to scientific notation.

Scientific notation is used when working with the
numerous sizes and time frames often found in the sci-
ences, such as the very large distances between stars and
the very small diameters of atoms and molecules.

Fundamental Mathematical Concepts
and Terms

When using scientific notation, the expression of a
number n is represented as n � a � 10p, where the vari-
able a (generally representing a number between 1 and
10) is multiplied by an integer power (p) of 10. A power
of 10p is 10 multiplied by itself a specified number of
times (p). For example, the number 1 would be written as
1 � 100 where 100 � 1; 10 would be written as 1 � 102

where 10 � 10 � 100; and 1,000 would be written as 1 �
103 where 10 � 10 � 10 � 1,000. As a specific example,
when n � 71,000, the number n can be written in scien-
tific notation as 7.1 � 104, where a � 7.1 and p � 4.

Writing numbers in scientific notation allows scien-
tists to reduce, and often times eliminate, many zeros
while indicating that zeros are still significant. The num-
ber 71,000, as shown above, is the same as 7.1 multiplied
by 10,000 (104) and is written 7.1 � 104 in scientific nota-
tion. In scientific notation, numbers that are smaller than
one will contain negative exponents. The number
0.00523, for example, is the same as 5.23 times 0.001 (10–3)
and is written 5.23 � 10–3. (The term 10–3 means that 1 is
divided by (10 � 10 � 10).)

To convert a large or small number to scientific nota-
tion, move the decimal point in the number to the right
of the first nonzero digit. For example, within the num-
ber 45,630,000.00, move the decimal point seven places to
the left so that it is positioned to the right of 4, the first
nonzero digit. (Remember that a decimal point is implied
at the end of every whole number, even when it is not

Scientific
Notation
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written; thus, 33 � 33.0.) Then, indicate the movement
by multiplying by a power of 10 that shows the exact
number of positions moved. In this case, since the deci-
mal point was moved seven positions to the left, 4.653
would be multiplied by 107, or 4.653 � 107. If the decimal
point is moved to the left (as in the above example), the
exponent p in a � 10p is positive (�). If the decimal point
is moved rightward, then the exponent p is negative (�).
In this second case, the number 0.0000376 would be writ-
ten as 3.76 � 10–5.

The process is reversed when changing a number
from scientific notation to regular notation. That is, move
the decimal point the same number of places as the value
of the exponent and then move the decimal point to the
right if the exponent is positive or to the left if it is nega-
tive. Finally, add zeros if necessary.

Scientific notation is also important because it pro-
vides a clear indication of the number of significant dig-
its within a number or calculation. For example, if a truck
weighs 4,007 pounds (accurate to the nearest pound)
then both 4,007 and 4.007 � 103 give an accurate meas-
urement. However, if a truck’s weight is 4,000 pounds
then it is not (necessarily) apparent that this weight is
accurate to the nearest single pound because it might be
rounded to the nearest ten pounds. Scientific notation, on
the other hand, shows that all four digits are significant.
That is, when the truck weight is shown as 4.000 � 103

pounds, the extra (significant) zeros to the right of the
decimal point show that the precision of the measure-
ment is down to the single pound.

A Brief History of Discovery 
and Development

The publishers of the Oxford English Dictionary are
interested when a new word or term shows up in print for
the first time. The first recorded use of the term scientific
notation appeared in the third edition of the New Inter-
national Dictionary of the English Language, which was
published in 1961. Because scientific notation did not
appear in the second edition of that dictionary, which was
published in 1934, language experts widely assume that
the term was probably invented sometime during the
decades of the 1940s or 1950s, and it is also assumed that
the term gained widespread usage during the 1960s.

In 1963, the term was used inside the article “Digital
Computer Technology and Design” that was part of the
Oxford English Dictionary. Within this article, scientific
notation referred to any number of the form: a first num-
ber times a second number raised to a third number.

Since scientific notation came from a computer science
reference book, the term is likely to have been regularly
used by the pioneering computer users who were already
buying electronic calculators and experimenting with
simple computers. It is assumed that computer enthusi-
asts wanted a specific way to describe how a number is
stored in a computer because at that time there was a big
difference in how integers and fractional numbers were
stored. (By the way, it is assumed that mathematicians,
physicists, and engineers did not invent the term because
they were already using the term exponential notation as
an alternate form for scientific notation.) In 1973, scien-
tific notation was defined in an introductory textbook on
computer science and two years later appeared in the
Physics Bulletin as a feature contained on calculators. By
this time, the term scientific notation had spread from the
computer science community out into the community of
physicists and other physical scientists.

The modern meaning of the term scientific notation
has changed from its original meaning. In the 1960s the
meaning of scientific notation referred to any number of
the form “first number times second number raised to
third number.” In modern usage of scientific notation,
the second number is always 10, while the more general
term exponential notation is used when this second num-
ber is any numerical value.

Real-life Applications

MATHEMAT ICAL  OPERAT IONS
One of the most obvious reasons to use scientific

notation is when adding, subtracting, multiplying, and
dividing very large and very small numbers. Adding two
or more numbers with scientific notation involves con-
verting all of the numbers to the same power of 10 and
then adding the digit terms of the numbers. (When meas-
urements are added or subtracted, the accuracy of the
answer is no greater than the least accurate measure-
ment.) For example, adding 5.045 � 10�6 and 2.65 �

10�4 involves: 5.045 � 10�6 � 265 � 10�6 � 270.045 �
10�6 � 2.70 � 10�4. When subtracting two or more num-
bers with scientific notation, convert all of the numbers
to the same power of 10 (as with addition) and then sub-
tract the digit terms of the numbers. For example, 7.99 �
105 � 4.534 � 103 � 7.99 � 105 � 0.04534 � 105 �

7.94466 � 105 � 7.94 � 105.

Multiplying two numbers with scientific notation
involves using the rules of exponents: 10m � 10n �

10m � n. (When measurements are multiplied or divided,
the answer contains no more significant figures than the
least accurate measurement.) As an example, multiplying
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46,850 and 0.0000417 with the use of scientific notation
results in (4.685 � 103) (4.17 � 10�5) � (4.685) (4.17) �
103 � 10�5 � 19.53645 � 103 � (�5) � 19.54 � 10�2 �

1.95 � 10�1. Dividing (/) one number such as 650,000 by
another number 25,000,000 results in: 6.5 � 105 / 2.5 �
107 � 6.5 / 2.5 � 105 � 10�7 � 2.6 � 10�2. Generally,
from between one-hundredth (1/100) to 100, scientific
notation is not usually needed, but on either side of this
range, it is useful to apply scientific notation.

CHEMISTRY
In chemistry—which involves the study of the inter-

actions between matter and energy and the composition
of matter itself—the calculation of the parts of matter
such as the dimensions of atoms uses very small numbers
and thus needs the application of scientific notation. For
example, the weight of a single atom of hydrogen is 
better expressed as 1.7 � 10�24 grams, rather than
0.0000000000000000000000017 grams.

One of the fundamental laws of chemistry is
Avogadro’s Law, which expresses the fact that under a
closed, theoretical environment of pressure and tempera-
ture, identical volumes of gases contain an equal amount
of molecules. The law helped in the early development of
chemistry, but the number itself (Avogadro’s number)
was not calculated until the last half of the nineteenth
century due to limitations in technology. Avogadro’s
number is usually stated as the number of molecules
existing in one mole, or gram molecular weight, of a sub-
stance; and is formally defined as the number of atoms in
12 grams of the element carbon-12. The number of mol-
ecules in one mole has been scientifically determined to
be approximately 6.0221367 � 1023 molecules, a number
that is obviously easier to read under scientific notation
than with many zeros.

ELECTR ICAL  C IRCU I TS
Physics is the study of all the physical events that take

place in the universe. Physicists use mathematical equa-
tions to describe and predict physical events, and because
there is so much variety in the universe, physicists
encounter very large and very small numbers within their
observations, theoretical calculations, and experimenta-
tion. Because of that fact, all the many divisions within
physics, such as astronomy electromagnetism, mechanics,
optics, quantum mechanics, and thermodynamics, use
scientific notation.

In electromagnetism, for example, a scientist might
consider the number of electrons passing through a point
in an electrical circuit of one ampere every second. Scien-
tific notation would be helpful during such calculations

because one ampere contains about 6,250,000,000,000,
000,000 electrons per second; that is, approximately 
6.25 � 1018 electrons per second. In this case, the advan-
tages of scientific notation are obvious: the number is not
as cumbersome when written on paper, and the signifi-
cant digits are easy to identify. Both advantages are
important in nearly all physics calculations.

L IGHT  YEARS , THE  SPEED  OF  L IGHT,
AND  ASTRONOMY

Astronomy is the study of the universe, including all
materials such as celestial bodies, dust, and gases within
it. Work within astronomy includes theories and observa-
tions about the solar system, the stars, the galaxies, and
the general structure of space itself. Much of the research
performed in astronomy involves very large and very
small numbers so that scientific notation is regularly used
as an important way to handle such numbers. For exam-
ple, one of the largest objects visible to the naked eye is
the Andromeda galaxy, with a diameter of over 1.0 � 105

(100,000) light years. A light year is the distance that light
travels in one year, or about 5.9 � 1012 miles (about 9.5
trillion kilometers). The Andromeda galaxy appears large
even though it is over 2.0 � 106 (two million) light years
away from the Earth.

Astronomers use scientific notation when measuring
the distance between stars because these distances can be
as small as a few light years to hundreds of light years or
more—but in any case are very large numbers. The speed
of light is approximately 3 � 108 meters per second (or
about 1.86 � 105 miles per second). Even the simple cal-
culation concerning the time it takes light to travel from
the Sun to the Earth involves two very large numbers.
This calculation can be simplified with the use of scien-
tific notation by knowing the distance between the Earth
and Sun is about 1.5 � 1011 meters (m) and the speed of
light to be 3 � 108 meters per second (m/s). Dividing the
first number by the second results in (1.5 m) / (3 m/s) �
1011 � 10�8 � 0.5 � 103 � 500 seconds, or about 
8.3 minutes.

Astronomers also use scientific notation when exam-
ining electromagnetic radiation from all of the wave-
lengths emitted by celestial bodies. The most obvious
radiation with respect to humans is visible light, which is
the only radiation that humans can see with their 
eyes. However, visible light is only a small part of the
electromagnetic spectrum that includes radio waves,
microwaves, infrared light, visible light, ultraviolet
light, x-rays, and gamma rays. Radio waves, which
include waves used to provide sound in AM and FM
radio, are the longest type of radiation, with a wavelength
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of about 1 � 108 meters. The shortest type of radiation is
gamma waves, with a wavelength of about 1 � 10–16

meters. Gamma waves are emitted by such objects
as radioactive isotopes and in some nuclear reactions,
both created by mankind and occurring within the center
of stars.

Professional astronomers use powerful telescopes,
computers, and instruments while performing their jobs.
Most work includes, first, observing astronomical bodies
by using telescopes and instruments to collect relevant
information. Astronomers, secondly, analyze the resulting
images and data. Computational astronomy is one way
that astronomers use computers and scientific notation
to simulate and analyze astronomical events. Examples of
events that are simulated by computers include the mas-
sive explosions of stars as they end their lives to make way
for supernovas and the creation of the earliest galaxies
within the universe. Thirdly, they compare their results
with existing theories to determine whether their obser-
vations coincide with what theories predict, or whether
the theories can be improved or, in some cases, replaced.
Some astronomers work only on observation and analy-
sis, and others work primarily on developing new theo-
ries, but in all cases the men and women within the field
of astronomy use scientific notation in order to do their
very difficult and complicated work.

COSMOLOGY
Cosmology, a branch of astronomy, is the study of

the origins of the universe. It includes the Big Bang the-
ory, which is the currently accepted explanation of the
beginning of the universe. The theory proposes that the
universe was once extremely dense and hot. Then a cos-
mic explosion called the big bang happened about 1.37 �
1010, or approximately 13.7 billion, years ago, and the uni-
verse has ever since been expanding and cooling.
Cosmologists best understand the universe from about
one hundredth of a second after the big bang through to
the present day. However, particle cosmologists attempt to
describe the state of the universe that occurred only 1.0 �
10�11 seconds after the big bang—information that is
hard to verify. For that reason, sophisticated computer
models along with scientific notation are used in order to
make predictions about unknown characteristics from
the few facts known—a process called extrapolation.

Besides working on the early beginnings of the uni-
verse, some cosmologists work with quantum cosmology
in order to study the origin of the universe itself. Because
of the tiny and huge numbers involved, cosmologists use
scientific notation within their research. This study is an
attempt to characterize processes at the earliest times of

the universe, that of the Planck epoch at 1.0 � 10�43 sec-
onds after the big bang. It is widely accepted that from the
instant of the big bang to about 10�32 seconds later, the
universe expanded much more rapidly than it did later—
to about 1050 times its original size. At the Planck epoch,
the universe was extremely hot in temperature. In fact,
cosmologists do not even talk in terms of familiar tem-
perature units such as degrees Kelvin, Celsius, or Fahren-
heit, but use gigaelectron volts (GeV) when dealing with
such very hot temperatures. At the Planck epoch, the tem-
perature of the universe is believed to be 1019 GeV, which
is equivalent to about 1.0 � 1032 degrees Kelvin.

ENG INEER ING
When engineers use scientific notation they call it

engineering notation because the powers of ten are lim-
ited to multiples of three. For instance, electronic multi-
meters are set up in ranges that accommodate engineering
notation. A reading of 3.06 � 10�5 amperes would not 
be valid (because 5 is not a multiple of 3) but with the use
of engineering notation the value would be converted to
30.6 � 10�6 amperes (amps) and represented as 30.6
microamps, where micro stands for one millionth of an
ampere. The prefixes associated with engineering notation
include (in the positive) 103 � kilo, 106 � mega,
109 � giga, 1012 � tera; and (in the negative) 10�3 � milli,
10�6 � micro, 10�9 � nano, 10�12 � pico.

COMPUTER  SC IENCE
Computer science involves the engineering, experi-

mentation, and theory that goes into the design, produc-
tion, and use of computers. Writing out very large and
very small numbers can be tedious and cause mistakes,
which is one reason why in early computers these large
and small numbers were often written out with scientific
notation. However, when inputting such large and small
numbers into a computer with scientific notation,
another problem arises. A number such as 1.4 � 105 was
not easy to input into early computers because the times
(�) symbol is different from the letter “x,” and most of
the computers of those early years did not have a way to
indicate superscripts. So, when computer languages were
first developed, an alternative way of writing scientific
notation was developed, the exponential notation. The
“� 10” (or times 10) was replaced with the capital letter
“E” and the exponent itself was written without the
superscript. Thus, the value of 1.4 � 105 was written as:
1.3E5 (some other equivalent representations include
�1.4E � 05, 1.4E � 05, and 1.4000E05). Because com-
puters in the twenty-first century are used in every con-
ceivable field of science, business, and everyday life, the
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inputting of very large and very small numbers is now an
easy task.

MEDIC INE
The process of diagnosing, treating, and preventing

illnesses, diseases, and injuries is called medicine.
Although practicing doctors and other similar health care
professionals rarely use scientific notation as part of their
daily routine, medical researchers and scientists often use
scientific notation in their search for new medical knowl-
edge and technology in such areas as drugs, medical treat-
ments, and equipment and devices.

Controlled clinical trials are a method used by med-
ical professionals to decide whether new drugs and treat-
ments are safe. In a controlled clinical trial, a group of
patients, normally called the treatment group, receives a
new drug or treatment. Another group, referred to as the
control group, is given a placebo (an inactive drug) or a
currently accepted method of treatment. Over an appro-
priate period of time, researchers compare the two
groups as to their overall reactions. The resulting data is
collected and analyzed with statistical techniques, which
includes scientific notation, to determine if the new treat-
ment is better than standard treatments or no treatment
at all. For instance, in one study, volunteers might receive
a one 1-milliliter (1 � 10�3 � mL) injection of an exper-
imental vaccine at a dosage of 1 � 1010 units. Due to the
extremely small amount of vaccine given to the volun-
teers, scientific notation would be used to analyze the
resulting data, and to ultimately determine the safety of
the new vaccine. Amounts of such medical materials as
bodily fluids, drugs, DNA samples, and plasma and blood
all potentially need to be measured in terms of scientific
notations in order to be efficiently researched and
analyzed by the medical community.

ENV IRONMENTAL  SC IENCE
The study of the environment involves dealing with

all of the external factors such as other living organisms
and nonliving factors like ocean currents, rainfall, and
temperature affecting an organism. Environmental scien-
tists study the long-term consequences of human actions
on the Earth’s environment and other smaller environ-
ments. During their studies, these scientists are con-
fronted with many large and small numbers. For instance,
there are 3.34 � 1022 (or 33,400,000,000,000,000,000, 000)
molecules in one gram of water, the life providing mate-
rial of all organisms on Earth.

Environmental scientists are likely to measure the
average volume of river water flowing into a particular
ocean, which may commonly reach values of 1 � 109

cubic meters per year. For example, at New Orleans,
Louisiana, the average flow rate of the Mississippi River,
one of the principal freight transportation arteries in
North America, is 6 � 105 cubic feet per second, which
relates into 1.9 � 1013 cubic feet per year (5.4 � 1011

cubic meters per year). Because the Mississippi River is so
important to the health of the United States, it is neces-
sary for environmental scientists to study the river’s over-
all condition. Because so many of the river’s statistics are
large numbers, scientific notation is regularly used to
analyze the very large numbers that describe the Missis-
sippi River with regards to transportation, farming, fish-
ing, and the general environmental conditions of the
areas surrounding the river.

GEOLOG IC  T IME  SCALE  
AND  GEOLOGY

The study of the history, features, and the processes
acting upon the planet Earth is called geology. A specific
type of calendar is used by geologists in order to find out
(for example) how long ago a dinosaur lived or why a vol-
cano was formed. Such a calendar, which is able to go back
millions of years into Earth history, is called the geologic
time scale. It begins when the Earth was first formed,
about 4.6 � 109, or 4.6 billion, years ago, and continues up
to the present. Instead of months and days, the geologic
time scale divides Earth’s history into: (1) eons (the
longest unit of geologic time comprising several eras),
(2) eras (the second longest unit of geologic time com-
prising several periods), and (3) periods (a third longest
unit of geologic time, shorter than an eon or an era).

Scientific notation is critical to the proper use of the
geologic time scale because of the large numbers
involved. For instance, the Hadean eon occurred about
4.6 � 109 years ago, at the time when the Earth was
formed, while the Proterozoic eon occurred about 2.2 �
109 years ago, at the time when the mechanics of plate tec-
tonics began to slow down and operate much like it does
today. During the Jurassic period, the second division of
the Mesozoic era which occurred about 2.06 � 108 years
ago, reptiles were the dominant form of animal life, hav-
ing adapted to life in the air, in the sea, and on the land.

FORENS IC  SC IENCE
Forensic science—the application of science to law—

uses advanced technologies to uncover scientific evidence
in a variety of fields. There are many subspecialties within
the field of forensic science including anthropology, biol-
ogy, chemistry, pathology, odontology, toxicology, psychi-
atry, and physics. Forensic scientists in each subspecialty
use scientific notation in their own way to perform the
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science necessary within their specific jobs. In fact, the
amount of digital evidence that forensic scientists collect
each year and store in data storage devices is greatly
increasing. Many digital evidence computer programs are
searching terabytes of data each year, where one terabyte
is one thousand billion, or 1 � 1012, characters.

Recent technological developments easily permit sci-
entists to analyze the deoxyribonucleic acid (DNA) of
forensic evidence in order to determine whether it came
from a victim or a suspected criminal. During the last
quarter of the twentieth century, its use in forensic sci-
ence has dramatically helped to solve ever increasingly
complicated crimes. In fact, the high-technology process
known as polymerase chain reaction (PCR) is an impres-
sive technique that quickly multiples very small samples
of DNA into much larger samples and results in the use of
scientific notation when very small numbers are con-
verted into very large numbers. Repeated cycles of replica-
tion (multiplication) involve the heating and cooling of a
DNA sample within a solution of heat-resistant enzymes.
This action results in a particular DNA sequence being
multiplied at a rapid rate. Within several hours, a tiny
sample, for instance 1 nanogram (or 1 � 10�9 grams) of
DNA, would have been increased by about a million
times, to give a milligram of sample material, enough
material for many DNA tests by numerous laboratories.

ELECTRONICS
Electronic engineering, the largest field within engi-

neering, is concerned with the application, design, devel-
opment, and manufacture of devices and systems that use
electrical power. While working in the field, electronic
engineers encounter many very large and very small
numbers that would be quite inconvenient to write out
with traditional notation. For example, a capacitor might
have a value of 0.000001 farad or a resistor a value of
150,000 ohms. Because these numbers are inconvenient
to write, it becomes much easier to use 1 � 106 Farad or
1 micro-Farad and 1.5 � 105 ohms or 150 kilo-ohms.
Another familiar measure used in the electronics field is
the coulomb, which stands for the quantity of electrical
charge. One coulomb equals the amount of electrical
charge carried by 6.25 � 1018 electrons.

ABSOLUTE  DAT ING
Anthropology is the study of all aspects involving the

ways and means that humans live. Anthropologists study
such topics as: what people think about, how they react to
their environments, and the reasons that humans evolved
over time. Archaeologists use specialized methods and
tools for the excavation and recording of recovered

remains of ancient peoples and their artifacts. They use a
variety of dating methods—all using scientific notation
to achieve reliable results—which involve various scien-
tific analyses to uncover the characteristics of materials
buried for thousands, even millions of years. One of these
dating methods is called absolute dating, which deter-
mines the age of a material with respect to a particular
time scale that involves very large numbers.

EARTH  SC IENCE
Earth science, as the name suggests, is the study of

the Earth. Because Earth science deals with many very
large and very small numbers, it is essential that earth sci-
entists use a form of shorthand to represent such num-
bers. As a result, scientific notation is used, for example,
to represent very large numbers such as the mass of the
Earth as 6.000 � 1024 kilograms, rather than as 6,000,
000,000,000,000,000,000,000 kilograms, and the average
circumference of the Earth as 4.0074 � 107 meters, rather
than 40,074,000 meters. Scientific notation is also used to
represent very small numbers within earth science such
the concentration of gold in seawater as 5 � 10�8 grams
per liter rather than the unwieldy 0.00000005 grams per
liter. In each case, it would be both confusing and requir-
ing of a great deal of space to continually use the longer
version.
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Real-Life Math 
and Audio Engineers

Audio engineers make audio amplifiers such as
those found commonly in radios and television sets.
The word audio refers to signals with information in
the frequency range that is audible by humans,
which involves very large numbers calculable with
scientific notation. An audio amplifier consists of an
electrical circuit manufactured to increase the cur-
rent, power, or voltage of an applied signal, which is
then converted to sound. For example, electromag-
netic signals between 300 hertz and 3,000 hertz
are called audio-band electromagnetic signals. Gen-
erally, audio signals operate at frequencies below
20,000 hertz, or 20 kilohertz-where 1 kilohertz
equals 1,000 (103) cycles per second-but can oper-
ate up to 100 kilohertz (or 100,000 (105) cycles per
second).
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Potential applications

PROTE INS  AND  B IOLOGY
Biology is the study of life, and its data is usually

acquired through measurements of very small and very
large values of mass, volume, length, temperature, pres-
sure, and pH, which again necessitates the need for scien-
tific notation. For example, the basic length scale used to
describe any type of molecule is a nanometer, where 1
nanometer � 1 � 10�9 meters. Currently, biological data
is subdivided into sections based on the cell, the molecule,
the organism, and the population. Using an example from
molecules, when compared to a water molecule, a protein
molecule is gigantic with a typical mass of about 1 � 10�22

kilograms. Made up of thousands of atoms (mostly atoms
of carbon, hydrogen, oxygen, and nitrogen), proteins serve
numerous purposes such as a constituent of bones and
tendons; an ingredient within red blood cells; a part of
oxygen in the lungs; a material in the hair and skin, and an
aid in the digestion of food. Discovering how atoms are
arranged in a protein molecule is one of the most chal-
lenging research projects in the biological sciences. With
an estimated 30,000 different proteins in the human body,
only about two percent have been adequately described,
which provides ample need for future research into the
discovery of these descriptions, and along with it the need
for calculations with scientific notation.

NANOTECHNOLOGY
Nanotechnology is a relatively new science that

involves the creation and use of materials and devices at

extremely small sizes. These materials and devices are gen-
erally in the (nanoscale) range of 1 to 100 nanometers,
where one nanometer is equal to one-billionth of a meter
(0.000000001, or 1 � 10�9, meter), which is about 50,000
times smaller than the diameter of a single length of
human hair. Scientists refer to the materials at the nano-
level as nanomaterials or nanocrystals. The transmission
electron microscope, a pioneering nanotechnology
invention, is already a popular instrument for visualizing
individual atoms within semiconductor nanocrystals.
This instrument and other such breakthroughs have
already applied nanotechnology, but future research and
development will hold the key to nanotechnology’s major
impacts in such fields as energy conservation, medicine,
environmental protection, electronics, computers, and
world defense.
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Key Terms

Anthropology: The study of humankind.

Exponent: Also referred to as a power, a symbol
written above and to the right of a quantity to
indicate how many times the quantity is multi-
plied by itself.
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Sequences,
Sets, and
Series

Overview

Sets, series, and sequences are all interrelated. They
are each helpful in dealing with groups of numbers, espe-
cially large groups of numbers. Sets can contain useful
data and can help mathematicians understand these
groups of numbers with greater clarity. Sequences always
form patterns. These patterns have many practical appli-
cations in other areas of mathematics and also in life.
From these sequences emerge ratios and formulae 
that have many applications. One such sequence is 
the Fibonacci sequence, which is directly related to the
golden ratio. This ratio was often used in ancient archi-
tecture and is still used today.

Fundamental Mathematical Concepts
and Terms

A series is a natural extension of a sequence. How-
ever, series can stretch further. The formulae that can
emerge from a series have applications in probability and
many other areas of mathematics.

SETS
A set is simply a collection of things. These things

can be of any genre: numbers, coins, animals, trees, etc.
However, in mathematics, a set is usually a set of num-
bers. The things that make up a set are called elements.

A set contains elements of a specific characteristic.
There is usually a reason that elements in a set are part 
of the set. There is some commonality between the
elements. In this way, sets, and sequences are connected.

SEQUENCES
A sequence is an ordered set of mathematical terms.

It is usually formed by a specific rule. A sequence can also
be called a progression. There are two main types of
sequences: arithmetic sequences and geometric sequences.

An arithmetic sequence occurs when the difference
between successive terms is the same. For example: 2, 4, 6,
8, 10. The difference between each term and the one
before it is 2. Therefore this is an arithmetic sequence.
In general terms this can be stated as the nth term minus
the (n�1)th term is equal to a constant. The formula 
for finding the nth term of an arithmetic sequence is:
tn � a � (n�1)d.

A geometric sequence occurs when the ratio between
successive terms is equal. For example: 3, 9, 27, 81,
243 . . . , where a is the first number in the sequence, d is
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the difference between each term in the series and the
next, and n goes on as 1, 2, 3, . . . . In this case the ratio
between a term and the term preceding it is 3. In other
words the 4th term divided by the 3rd term gives 3. In gen-
eral, this can be stated as the nth term divided by the
(n�1)th term is equal to a constant. The formula for find-
ing the nth term of a geometric sequence is tn � arn�1,
where a is the first term, r is the factor by which each term
differs from the one before, and n goes as 1, 2, 3, . . . .

SER IES
A series is a sequence that is derived from the sum to

n terms of another sequence. It can also be defined as the
sum of a specific number of terms in a sequence. For the
sequence t1, t2, t3, t4 . . . tn the corresponding series would
be: t 1 � t2 � t 3 � t4 �. . . � tn. Sequences and series are
related, but different.

An arithmetic series is formed from an arithmetic
sequence and a geometric series is formed from a geo-
metric sequence.

The sum of an arithmetic series can be found using
the formula 1⁄2n[2a�(n�1)d].

The sum of a geometric series can be found using the
formula:

and the sum to infinity:

Just as a sequence can be finite or infinite, a series can
also be finite or infinite. An infinite series can be conver-
gent or divergent, also just as a sequence.

A Brief History of Discovery 
and Development

Zeno of Elea, who lived about 490–425 B.C. was the
first mathematician to write about infinite series and
sequences and their sums. Archimedes discovered a way to
show that infinite sequences could have finite results. Chi-
nese mathematicians used methods that have led to an
understanding of long-term behavior and limits of infi-
nite sequences. Mathematicians have used sequences over
the years to develop new methods in calculus. More
recently sequences have found applications in computing.

Real-life Applications

OPERAT ING  ON  SETS
A set P consisting of the numbers 1, 2, 4, 8, and 16 is

written in set notation as: P � {1, 2, 4, 8, 16}.

To state that 4 is an element of P, the following notation
is used: 4 � P. 4 � P means that “4 is not an element of P.”

If set A consists of 2 and 4, i.e., A � {2, 4}, then it is
a subset of P. This is written in set notation as A � P.
Alternatively it can be written as A � P. However, this
means that A is a proper subset of P, which means that it
is a subset of P but is not equal to P. To write that A is not
a subset of P the following notation is used: A � P.

Including all numbers in an infinite set would be
impossible. Simple set notation makes this an easy task.

a

1 – r 
S∞ =

a(1 – r n)

(1 – r )
Sn =

Fibonacci Sequence

The Fibonacci sequence is one of the best-known
sequences. It was written down, and its properties
examined, by Fibonacci in 1202. Fibonacci, also
known as Leonardo of Pisa, was an Italian mathe-
matician. The sequence is formed by adding the pre-
vious two terms to obtain the next term: t n = tn–1 �

t n�2. In other words, t 1 � t2 � t3. The sequence is:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 . . . ad infinitum (con-
tinuing forever).

The Fibonacci is directly related to the 
golden ratio. The ratio between successive terms
approaches the golden ratio as the number of terms
approaches infinity. The golden ratio is usually writ-
ten as the Greek letter phi (�). The exact value of
the golden ratio is 

The golden ratio is used in ancient architecture. The
proportions of the length to the height on the front
of ancient Greek and Roman buildings are often the
golden ratio. This ratio is proven to be the most aes-
thetically pleasing ratio. The golden ratio is also
found in nature. The nautilus shell spiral can be cre-
ated by drawing a curve through successive golden
rectangles. The pinecone is another example of this
same spiral.

51 +

2
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“M is a set containing all integers greater than one” is
written as: M � x � Integers(x � 1). This reads as “M is
a set of all integers x such that x is greater than 1.” The
vertical bar means “such that.” It states a condition.
Commas separate multiple conditions.

Occasionally a set will have no elements. This set is
called the null, or empty, set. It is represented by the sym-
bol: �. For example: A � {  } � �.

Sets can also be part of a group. That is, data in a
set can be part of a larger group of data. There is set nota-
tion that deals with multiple sets. A Venn diagram most
easily represents these because a Venn diagram is a
method of representing multiple sets graphically. A�B
means “A union B”;. This is a way of writing the elements
that are in both sets combined. (See Figure 1.) A Venn
diagram is a method of representing multiple sets graph-
ically. A�B means “A intersection B”. This is a way of
writing the elements in both set A and set B—in other
words, the elements common to both set A and B. (See
Figure 2.) These types and/or principles are used in data-
base searches, the most common being an Internet
search. A search may be conducted for something con-
taining the word cat AND dog—mathematically this
would be cat � dog.

Sets are frequently used in everyday applications.
Their most common application is in classification
schemes, whether it be for clothes, food, animals,
or socks. Catalogues are another example of non-
mathematical sets. Sets are also used in data analysis in
genetics. Chromosomes are sorted and arranged in sets
according to shape and specific lengths of chromosome
arms and other factors.

US ING  SEQUENCES
There are finite sequences and infinite sequences.

A finite sequence has a limited number of terms. An infi-
nite sequence has an unlimited number of terms. An infi-
nite sequence can be a divergent or convergent sequence.
A divergent sequence is truly unlimited. A convergent
sequence approaches a limit as the number of terms
approaches infinity. Convergent sequences are usually
geometric sequences. This is because if the rule for find-
ing the nth term is tn; � ar1/n then as n approaches infin-
ity the nth term approaches 0. This is because r1/n; � 1/rn.

Sequences always have a specific pattern to them.
However, occasionally there is a sequence where a pattern
exists that is unknown but it would be beneficial to
understand the pattern. An example of this is the stock
market. Researchers have been searching for many years
to find a pattern behind the stock market, with varying
degrees of success.

ORDER ING  TH INGS
Associated with sequences is the notion of a specific

order. Placing objects or numbers in an order can give
them meaning, such as placing soccer teams on a ladder
with the leader at the top and the team with the least num-
ber of points at the bottom. This is a simplified sequence.

GENET ICS
Sequences are also used commonly in the field of

genetics. Specific genes are sequenced (e.g., their base
sequence is identified) to determine exactly what gene is
associated with a specific physiological function, charac-
teristic, or disease. Sequences of bases determine what
gene is formed and what the gene does.

SER IES
A convergent series converges, or comes to, a finite

sum. The series 0.5 � 0.25 � 0.125 . . . , is a convergent
series because even if extended to infinity its sum is finite.
Using the above formula it is easy to see that the sum to
infinity of this series is 1, and so it is a convergent series.
Another way to think of a convergent series is to think of
a radio signal that is attenuated by half it’s strength each
time it pulses (a sequence used in some timing devices).
At each step the signal strength decreases but will mathe-
matically never reach zero. Mechanically the signal

Set BSet A

Figure 1: The elements in set A and B.

Set BSet A

Figure 2: Venn diagram of the intersection of sets A and B
(intersection is shaded area).
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reaches a functional zero when the signal strength is too
weak to be measured. This is the concept of a sum
approaching a specific figure as the number of terms
approaches infinity.

Potential Applications

Series can be used to predict regular repeating
events, for example, earthquakes and the weather. The
data mathematicians collect can be analyzed as a
sequence or a series and thus future events predicted in
an accurate manner. Sequences can be used in speech
recognition. The sound waves produced can be converted
to a sequence, similar to a sine wave. Each pitch has its
own specific sine wave, which in turn has a specific
sequence of y values and x values and these can be con-
verted to a sequence. Sequences also have potential uses
in the communications industry, most specifically in sig-
nals analysis and wireless connections.
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Sports Math

Overview

Sport, at its best, is a perfect marriage of emotion
and execution. The exhilaration of competition and the
endorphin-fueled rush of physical fitness are not capable
of being measured with mathematical precision. How-
ever, the results achieved in sports of every type, whether
the endeavor is an individual pursuit or a team game, are
invariably assessed in two ways: using the basic math of
counting to keep score and assessing the subjective per-
spectives of the participants about how they regarded the
performance.

When the subjective, emotional components of the
particular sport are stripped away, the desire to improve
performance will often become the focus of an athlete or
a team. The desire to improve technique and to achieve
better results in competition has spurred the development
of numerous mathematical approaches within every sport
to measure and to compare aspects of performance.

Math principles are fundamental to sport. They
manifest themselves on a number of different levels, from
simple counting and keeping track of a score or time, to
mathematics as a tool of human discovery as to how a
particular sport can be played better.

Sports math can be grouped into three general cate-
gories. The first is rules math, in which mathematics is
the regulatory basis for the sport. The second grouping is
math as an interpretive or demonstration tool in which
the understanding and the illustration of aspects of ath-
letic performance is assisted by the application of mathe-
matical concepts, or in which math is used to indicate or
predict future performance. The third grouping is per-
formance math, in which mathematics alone, or in con-
junction with other science concepts, particularly those
of physics, is used to assist in the improvement of athletic
performance.

Fundamental Mathematical Concepts
and Terms

Counting is fundamental to the appreciation of
sport, both in competition and in training. This concept
is present in an elemental fashion in sport through the
recording of scores, the measuring of distances, and the
keeping of accurate time, both as a standard of achieve-
ment as well as a competition limit.

Counting in a more sophisticated form is found in
most sports through the compilation and use of statistics.
Statistics is defined as the branch of the science of math-
ematics related to the collecting, classification, and use of
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numbers, often in large quantities. Statistics in sport are
often expressed as percentages.

A percentage is a fraction with a denominator of 100.
A percentage may be expressed using the word “percent,”
as in 25 percent, or using the % symbol, as in 25%. Per-
centages are the natural mathematical extension of three
other familiar concepts: fractions, ratios, and proportions.
A fraction is a number written as one whole number
divided by another; for example, one half is expressed as 1⁄2.
A ratio is the relationship between two magnitudes. For
example, if the payroll, meaning the total of the salaries
paid to all members of a professional baseball team, was
$40 million 10 years ago and $80 million today, the rela-
tionship between the two payroll figures may be expressed
as a ratio of 1 to 2. A proportion is a pair of ratios
expressed as a mathematical equation. For example, if a
college basketball team has a roster of 15 players, and three
of the players are left-handed, the ratio of the team mem-
bers who are left-handed will be expressed as 3/15, or 1/5.

All percentages are an expression of a relationship
based on 100. As is set out in the various sports applica-
tions that follow, every fraction, ratio, and proportion
may be expressed as a percentage. Percentages may also
be expressed where required using decimals, as in the
figure 66.92%.

Mathematics is the language of physics. Physics and its
particular applications to sport, both in the understanding
of the mechanics of human movement as well as in equip-
ment construction, is made clearer in its application
through statements expressed as mathematical equations.

A Brief History of Discovery 
and Development

RULES  MATH
How math came to occupy its place as the prime reg-

ulatory tool in sport is best understood by the following
simple progression: Physical activity, followed by specific
activities, followed by informal competition, followed by
structured competition, followed by codified rules of
competition (time, space, distance), followed by score-
keeping (simple math), followed by performance analysis
(advanced math, statistical measures, and mechanics
of sport).

At its root, sport is competition, from the informal
challenge that individuals make to themselves as they run
to keep fit, simply testing themselves personally, to the
organized event against a rival or a team of rivals. Com-
petition, to be organized and certain, requires a frame-
work, a structure within which the event can occur with

certainty for every participant that everyone is competing
in exactly the same fashion. The structure must have lim-
its of time to give the competition a fixed duration, and
space or distance to provide boundaries within which the
sport can occur.

The evolution of many sports has been accompanied
by a progression in the rigidity of rules concerning time
and space. Lacrosse, as originally played by Native Amer-
icans and referred to as “the little brother of war,” was
played with teams of hundreds of men, goals set miles
apart, in contests lasting as long as three days, and no par-
ticular rules of engagement. Timekeeping and precise
boundaries were unimportant to the competitors. As
another example, ice hockey was originally played on
large frozen ponds or rivers, with no lines or markings to
regulate play. Modern sport places a greater premium on
precise and effective counting of time, space, and distance
in the creation of a venue for a competition.

The origins of sports math are best understood in the
context of the math applications at the heart of tradi-
tional athletics: the track and field competition. Modern
track and field events are modeled to a large degree upon
the motto of the ancient Olympics of Greece: higher,
faster, stronger. Traditional athletics, whether the high
jump, the shot put, or foot races ranging from the sprints
to the marathon, required the barest of mathematical
measures: a defined, accurately determined distance 
to run, a precisely set object to jump, or an accurately
weighed object to throw as well as the measurement of
the throw itself.

A timing device to measure performance was a late-
comer to sport. By the mid-1800s, the time it took a run-
ner to run a particular distance became important as
standards of athletic achievement had become an impor-
tant public fact. Handheld precision stopwatches were the
timing standard in track and field competitions until
the 1960s.

The results in these athletic disciplines are calculated
in simple mathematical terms, including the fastest time,
the furthest distance, the greatest height. Advances in
technology have taken the mathematics involved to even
greater degrees of precision. For instance, a 100-meter
race at the St. Louis Olympics in 1904 took place on a
cinder track, where the distance was measured by a steel
tape and the races timed by handheld stopwatches. Mod-
ern events are run on tracks measured by way of sophis-
ticated electronic means and timing is similarly accurate
to thousands of one second. However, the basic mathe-
matics involved in determining the “higher, faster,
stronger” concept is not changed.
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Math as the rules of a sport extends to team compe-
titions. Fundamental to all team games are the following
mathematical concepts:

• keeping score
• keeping time
• keeping track of the players
• ensuring conformity with rules concerning size (i.e.,

a regulation basketball court is 94 feet long; a regula-
tion American football field is 120 yards long; an ice
hockey goal is 6 feet wide by 4 feet high)

• keeping a record of the statistics common to the game

Real-life Applications

MATH  TO  UNDERSTAND  SPORTS
PERFORMANCE

Beyond the result achieved in any competition,
numbers are used throughout sport to explain and to bet-
ter understand performance. Statistics are widely relied
upon in virtually every team sport as a means of enhancing

the understanding of both individual competitions as
well as entire seasons, for both the participants and the
public at large. The interpretation of sports performance
through mathematics will often provide an understand-
ing of a result that the scoreboard does not reflect.

Statistics in sport must be regarded with caution.
Media commentators often speak with apparent author-
ity about a sport through their reliance on the numbers
that are associated with competition. An understanding
of the mathematics involved in these interpretive aspects
of sports math is critical to separating the statistical
“wheat from the chaff.”

There are levels of interpretation that mathematics
can provide. Some simple statistics provide a peephole 
on performance, others a picture window. The math
involved is not the entire story, but merely an insight into
the actual result achieved. The better the relationship
between the math and the subject sport, the more likely
the analysis is more insightful.

The following statistics are examples of how
sport observers, especially in the media, often present

The geometry of basketball. ELLEN H. WALLOP/CORBIS.
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arguments to support a contention that a certain player is
outstanding:

• An NBA basketball player averages 22.0 points per
game over the course of a season. Is such a player an
elite performer?

• A major league baseball pitcher wins 18 games in a
season, and he has an earned run average calculated
at 4.5 runs per game. Is this pitcher an elite player?

• An NHL hockey goaltender has a save percentage of
0.93 (for every 100 shots on his goal, he saves 93).
Is this athlete an elite level player?

In each of these three examples, the answer to the
question of whether each player is an elite must be a
resounding “maybe” or “perhaps.” The NBA player scor-
ing 22.0 points per game may be a terrific all-round
player, with his strong scoring average one facet of his
skills, or he may be a weak defensive player who is a lia-
bility at his end of the floor. The pitcher might be truly
dominant, or he may be one of those athletes with impres-
sive overall statistics, who performs poorly in important
situations in critical games. The NHL goaltender could be
a steady performer, or might be inconsistent, getting a
shut-out one game and allowing six goals the next. With-
out a more in-depth and focused use of mathematical
principles, these simple numbers are not the basis for
great insight when taken by themselves.

In most team sports, such as baseball or basketball,
individual statistics are an indicator, and not a determinant,
of team success. The final score in a team contest is the only
absolute measure of the team’s success on a given day.

Sport statistics are almost universally expressed as
either a percentage, or as a decimal. In sports, the score in
a game or the result achieved by an athlete in an individ-
ual competition represents “what.” Various kinds of
mathematical and statistical applications can tell a great
deal about the related questions of “why” and “how.”
Math is variously an interpreter of past performance and
a predictor of future performance. The game of baseball
provides some useful insights in this regard.

BASEBALL
Baseball is a sport saturated in statistics. Its fans will

often exaggerate when explaining the nuances of baseball
to more casual observers that this sport is the only major
team sport played without a clock, which is said to give it
a subtlety that can be captured by a wide variety of statis-
tical measures. Further, because baseball has inherent
repetitions of a number of actions within the game over
a season (a major league player may face a pitcher more
than 500 times in a season, make hundreds of throws, and

run the bases hundreds of times), each player and each
team perform in ways that can be readily converted into a
statistical measure.

Some baseball statistics, such as batting average and
earned-run average, are ingrained in the public conscious-
ness as key indicators of performance. Over the past 
30 years, the desire to delve further into the interpretation
of baseball performance led a number of statisticians to
develop the analysis into a field now known as sabermet-
rics. This analysis extends the mathematics of baseball
from the relatively simple formulae of batting average and
earned-run average to detailed calculations used to both
rank player ability and to predict future performance.

Baseball batting averages are expressed as percentages.
A player’s batting average is the number of base hits made
by the player divided by the number of at bats (an “at bat”
in baseball is defined by the number of times the player
comes to bat, less all walks, errors, and times hit by pitch
ball). For example, Player A has 140 hits, 30 walks, was hit
three times by a pitch, and reached first base five times as a
result of errors in a season. He took 220 total bases. He has
600 at bats. His batting average is 140 / 600 � 0.233. In
baseball terms, Player A is said to be a “233 hitter.”

The on-base percentage statistic determines how
effective a player is at getting on base, by all possible
means. The on-base percentage is Number of times to
first base / Number of plate appearances � 140 � 30 � 3 �
5 / 600 � 30 � 3 � 5 � 178 / 638 � 0.279. One would con-
clude from this calculation that Player A’s simple batting
average is deceiving; Player A is more effective, by the ratio
of 0.279 to 0.233, at getting on base by any means than the
simple batting average statistic reveals. As the object of
baseball is to score more runs than one’s opponent, getting
on base, and being in a position to score a run, is a more
accurate statistical measure of a player’s worth to a team
than the number of hits the player may collect.

For many years, baseball placed a premium on the
total runs scored by a player as a measure of effectiveness.
Sabermetrics took this analysis in a more detailed direc-
tion, that of “runs created” by an individual player. As in
the on-base percentage example, the object of baseball is
to score more runs than the opponent. If determining
how effective a player is at getting on base is a more use-
ful indicator of a player’s contributions than simple bat-
ting average, determining how effective a player is at
creating runs will be an even more useful statistic to ana-
lyze the abilities of a given player. The player who can cre-
ate the most runs, in whatever fashion, will likely be the
most valuable offensive player on a team.

Total bases are the number of bases that the batter’s
hits amounted to over the season, with a single being one
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base, a double two bases, a triple three bases and a home
run all four bases. In an individual game, for example,
where a player hit two doubles and a home run, the player
would have eight total bases. Therefore, Runs Created is
(Hits � Walks) � Total Bases / (At Bats � Walks). With
this equation, Player A’s statistics read (140 � 30) � 220 /
(600 � 30) � 37,400 / 630 � 59.37.

Using this analysis, Player A created approximately
59 runs for his team over the season. If the team scored
700 runs, and if 12 players had been used regularly as hit-
ters in the team’s line up over the course of the season,
Player A is proven to be a slightly above average contrib-
utor to his team’s offensive production (700 team runs
divided by 12 players means that the average regular hit-
ter would be expected to create 58.3 runs). To complete
the progression from the simple batting average calcula-
tion to the runs created determination, a relatively mod-
est .233 batting average translates in the example to a
slightly better than average contributor to the offence of
this team.

As will be further illustrated, and as the above base-
ball examples confirm, the rough rule of thumb regarding
sports statistics is that the more intricate and involved the
desired analysis of athletic performance, the more typi-
cally involved the mathematics will be.

NORTH  AMER ICAN  FOOTBALL
Football is a game of territorial conquest, and the

measurement of the amount of territory gained by com-
peting teams has been a focus of performance analysis in
this sport. Like the evolution in the extent and the sophis-
tication of mathematical applications in baseball, North
American football has grown from a game where bare sta-
tistical measures of leading scorers and yards gained by
individual players have given way to involved analyses of
every aspect of the game. Thirty years ago, a quarterback,
the single most important player on a team, would gener-
ally be assessed on the following set of statistical indicators:

• Completion percentage: The number of passes
completed divided by the total number of passes
attempted; percentages in the range of 55–60% were
typically considered good.

• Number of touchdowns versus the number of inter-
ceptions: A good quarterback typically would throw
for more touchdowns than interceptions.

• Yards gained through total number of passes: In a ter-
ritorial game, quarterbacks who passed for a greater
number of yards were generally more valuable.

With these statistics, it was possible to have an
understanding of the performance of an individual quar-
terback, but the statistics did not give a complete picture.

For example, a quarterback on a team that threw the foot-
ball less frequently might appear to be an inferior player
when compared with a player whose team threw the ball
a great deal. Using years of data, analysts were able to
incorporate known and reliable statistics to create useful
mathematical tools with which to assess performance, as
well as to establish a standard that would permit compar-
ison between individual players.

The desire to better understand quarterback per-
formance lead football analysts to develop the Quarter-
back Rating Index, which is calculated as follows:
(1) Total pass completions divided by total pass attempts;
(2) Subtract 0.3 from (1); (3) Divide by 0.2 and record the
total (the result cannot exceed 2.375 or it may be less than
0), and this gives Subtotal one; (4) Total passing yards
divide by total pass attempts; (5) Subtract 3 from (4);
(6) Divide by 4 and record the total (the result cannot
exceed 2.375 or may it be less than 0), and this gives Sub-
total two; (7) Total number of touchdown passes divided
by total pass attempts; (8) Divide result by 0.05 and record
the total (the result cannot exceed 2.375 or it may be less
than 0) and this gives Subtotal three; (9) Total number of
interceptions divided by total pass attempts; (10) 
Subtract 0.095 from (9); (11) Divide the result in (10) by
0.04 and record the total (the result cannot exceed 2.375 or
it may be less than 0), and this gives Subtotal four; (12) Add
the four subtotals recorded; (13) Multiply by 100;
(14) Divide by 6. This final total is the Quarterback Rating.

This more complicated Quarterback Rating Index is
seen as more reliable because it incorporates every aspect
of the quarterback’s ability to pass into the equation. It
takes the analysis beyond interpretation into an under-
standing of the individual player’s performance.

However, as with any statistic that is not the final
score or result, even the complicated ratings of this Index
are not a compete picture. If a quarterback throws for
three touchdowns and many yards after his team is hope-
lessly behind, the individual rating may be enhanced, but
the team performance not assisted. An interception
thrown in the first quarter of the game is given the same
weight as an interception thrown in the last minute of a
tied game that is returned by the other team for a winning
score. As with all forms of statistical analysis, the factors
not calculated in the statistical equation must be assessed
as well.

BASKETBALL
Basketball is a simpler, more free flowing game than

either baseball or North American football, and its statis-
tical base has long been the individual statistics of players,
totaled for team assessment. In basketball, statistics are
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seen as a measure of tendency, as opposed to the interpre-
tation of individual performance. For all of the impor-
tance attached to scoring averages of players, basketball
experts key on two chief statistics: rebounding (broken
into offense and defense) and free-throw shooting.

Studies have illustrated that where a team has more
rebounds than an opponent, that team will be expected to
win 70% of its games. When that same team is more
effective from the free-throw line, the success rate for the
team is between 85% and 90%. These statistics bear out
the nature of the game itself, i.e., rebounding advantages
mean that a team is controlling the ball on defense and
likely getting more than one shot on any given sequence on
offence. Good free-throw shooting means that the team is
getting in a position on offence to take shots, drawing fouls
from the opponent, an indication that the team is better
controlling the ball and the game than its opponent.

These statistics also underscore the fact that each
sport has subtleties that are inherent in the interpretation
of the statistics gathered, and each sport has its own
measure of what constitutes success. In baseball, a profes-
sional hitter who has a batting average of .350 is very
likely a successful offensive player; an NBA basketball
player with a free-throw shooting percentage of 35%
would be considered a very poor free-throw shooter; an
NFL quarterback with a passing completion rate of 35%
would not succeed as a player at that level.

PRED ICT ING  THE  FUTURE :  CALL ING
THE  CO IN  TOSS

In many respects, the coin toss is a metaphor for life
itself: if one’s call is wrong on one occasion, one will likely
get another chance at some later time. The coin toss in
North American football is one of the great rituals of the
game; the winner of the coin toss has the right to elect to
receive the opening kickoff and thus take initial posses-
sion of the ball. The loser of the coin toss can select which
end of the field they will defend. In a game that is, at its
core, one of territorial conquest, success at the opening
coin toss in a football game is important, especially given
the variables of wind, field condition, and weather where
the game is being played outdoors. The direction and the
outcome of the game may well be influenced by the result
of the coin toss.

In the American professional game, the coin toss
takes on special significance if the game is tied at the end
of regulation time. To determine which team will take
possession of the ball at the commencement of sudden
death overtime, where the first team to score in any fash-
ion wins, the referee will toss the coin and the winner of
the coin toss will inevitably elect to receive the kickoff.

The question is, Is there a mathematical predictor for
how the coin toss should be played by either team? The
probability of a coin being heads or tails is 1:1, or an even
chance, every time. No matter that, for example, the pre-
vious five coin tosses may have been heads, on the sixth
and subsequent tosses the probability of heads versus tails
remains even. In other words, each coin toss must be
approached as a unique, free-standing event: any history
will be irrelevant.

The probability of heads (or tails) is expressed as
Number of Favorable Outcomes / Number of Possible
Outcomes � 1⁄2. The probability of two heads (or tails)
being tossed in a row is 1⁄2 � 1⁄2 � 1⁄4. The probability of
four heads (or tails) being tossed in a row is 1⁄2 � 1⁄2 � 1⁄2 �
1⁄2 � 1/16.

PASCAL’S  TR IANGLE  AND  PREDICT ING
A  CO IN  TOSS

The French mathematician Blaise Pascal (1623–
1662) is regarded as the developer of the device known as
Pascal’s triangle (although history confirms that Chinese
mathematicians developed a very similar construct 500
years before Pascal). Pascal’s triangle has a number of
algebraic applications. (See Figure 1.)

To read this table in terms of coin toss probabilities,
suppose that the number of tosses is one. On the corre-
sponding line, the triangle provides the numerators for
two possible outcomes, heads or tails. As the total num-
ber of outcomes is two, the denominator for this calcula-
tion shall always be two, meaning that the probability of
heads or tails is 1⁄2.

When the coin is flipped twice, there are three possi-
ble outcomes: (1) heads once, tails once, (2) twice heads,
and (3) twice tails. The extreme possibilities, two heads or
two tails, are represented by a “1” on each side of the tri-
angle. The one head, one tail result (which may occur in
two different orders), is represented by “2.” The extreme
possibilities are therefore 1⁄4, and the probability of one
head, one tail is 2/4, or the expected 50%.

If the third line of the Pascal’s triangle in Figure 1 is
examined, the total number of possibilities is 2 � 2 �
2 � 2, or 16. By using the triangle as a calculator, the
probabilities can be determined as All heads, 1/16; One
head, Three tails, 4/16; Two heads, Two tails, 6/16; Three
heads, One tail, 4/16; All tails, 1/16. (As the triangle is
symmetrical, it does not matter which side is called heads
or tails.)

There has been interesting research carried out
recently that suggests that the side of the coin facing up in
a coin toss is slightly more likely to be the side turned up
on the flip. The premise of such research appears to be
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that as coins are tossed by real people, who are subject
to bias, and the person tossing the coin sees the head or
tail facing upwards, they may tend to unconsciously catch
the coin with that face up. The probability is said to rise
to 0.51 in favor of the exposed side as opposed to the
accepted 0.50. This theory will no doubt be the subject of
further study.

FOOTBALL  TACT ICS—MATH  AS  
A  DEC IS ION -MAK ING  TOOL

In many team games, math is a tool for strategy 
decisions, many of which are rooted in the concepts of
probability. The basic question that is often addressed is,
in a given situation, what play or strategy affords the best
chance of success?

American football is a game of field position and ter-
ritorial advantage. As a general rule, the team with the
consistent best position on the field will be in the best
position to score and therefore win. A common tactical
decision in American football related to field position is,
given where the team has the ball on the field, whether the
should team punt the ball away to the other team, attempt
to gain a first down and keep possession of the ball and
ultimately score, or kick a field goal.

Based on the data gathered from more than 700 NFL
football games, the following statistical analysis can be
made: Team A has a fourth down on the Team B 2-yard
line. Team A is assessing its options: punt, attempt to
score a touchdown, or attempt a field goal. A punt by
Team A is not a sensible option, as the ball would be
kicked through the 10-yard end zone and would be
placed at the Team B 20-yard line, where Team B
would take over on offense. The two realistic options for
Team A are the attempt to score a touchdown or to kick a
field goal.

At the NFL level, the statistical data confirms that an
attempt to score a touchdown from the 2-yard line, cou-
pled with a virtually automatic extra-point conversion,
has a probability of success of 40%. Therefore, the value
of that choice can be calculated as 6-point touchdown �
0.40 � 2.4 points; 1-point convert � 0.40 � 0.4 points.
Therefore, the total value of attempt � 2.8 points.

An attempt at a 3-point field goal from the 2-yard
line is as likely to be successful as the 1-point conversion
after a touchdown (the success rate is slightly under
99%). The value of the field goal choice is 3-point field
goal � 0.99 � 2.97, which is in essence 3 points.

Using the value of each choice with the probabilities
for each calculated, it would seem that Team A would have
a slightly better option with the field goal over the touch-
down attempt (3 points versus 2.8 points). However, as

stated above, American football is a game that turns, to a
large degree, on field position; the decision as to attempt a
field goal versus the try for a touchdown must also be
assessed considering the field position consequences that
flow from each choice.

By rule, after a successful field goal, Team A would
kick off to Team B. On average, statistics confirm that an
NFL kickoff will be returned to the receiving team’s 
27-yard line. A first down and 10 yards to go situation at
that position for Team B is worth 0.6 points to Team B,
based on the probabilities of scoring from that position.

If Team A were to attempt to score a touchdown
from the Team B 2-yard line and fail, the ball would be
turned over to Team B at the same 2-yard line. With Team
B 98 yards from the Team A’s goal line, this poor field
position statistically is worth �1.6 points to Team B.
With the field position components factored into the cal-
culation weighing the attempt at a touchdown versus a
field goal, the value of each choice can be calculated as
Value of Touchdown Attempt � 2.8 points; Field position
(�1.6 points to Team B) � 1.6 points to Team A; Total
Touchdown Attempt Value � 4.4 points; Value of Field
Goal Attempt � 3.0 points; Field Position (�0.6 points to
Team B) � �0.6 points to Team A; Total Field Goal
Attempt Value � 2.4 points.

With the field position information now factored
in, it is apparent that what was a slightly preferable
course of action, the field goal attempt, is now a signifi-
cantly lesser option when compared to the touchdown
attempt.

As with any mathematical model employed to pre-
dict an event or to select the optimum course of action,
there will be variables that cannot be reduced to a num-
ber or an equation. In the above example, factors, such as
how much time is left in the game, field conditions, or an

Number of
Coin Tosses

1
2
3
4
5
6
7
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1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 17 21 35 35 21 7
1 8 18 28 56 70 56 28

2
4
8
16
32
64
128
256

Numerator for
Probabilities

Denominator for
Probabilities

Figure 1: Pascal’s triangle as a probability tool.
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injury to a key player on either side, would potentially
alter the decision that the probability calculation other-
wise directs as the best choice. Math is rarely determina-
tive with respect to decisions in team sports, but it is often
very illuminating.

UNDERSTAND ING  THE  SPORTS  
MED IA  EXPERT

It is standard in the television coverage of virtually
every sport, from professional competitions to the various
events in the Olympics, for the broadcasting network to
engage the services of an expert to assist in the presentation
of the event. A typical broadcast will have a commentator
giving the audience a play-by-play of the action being tele-
cast, and the expert, often referred to as a color commen-
tator, provides insight and analysis about the event, both as
it is unfolding and at various stoppages in play.

In addition to what the expert may be saying to the
audience, it is common for the presentation to display
statistical summaries in relation to either the individual
players, the teams, or the season to date. Where the casual
fan is seeking information to enhance their enjoyment of
the broadcast and the game itself, the numbers cited by
the experts are often not helpful, but can actually be con-
fusing. It is important to approach these statistics-filled
commentaries with caution.

For example, in professional baseball, basketball, and
hockey, it is common for a playoff series to be played as a
best-of-seven-games event. In a baseball World Series,
where one team is ahead of its rival three games to none,
there will inevitably be an expert commentator who
might suggest that “never in World Series history has a
team come back from three games down to take the
Series.” This statement might be true, a powerful sound-
ing pronouncement, which can be examined more closely
using math principles to test its weight.

Between 1920 and 2004, there have been only 20
World Series where a team led 3-0. Assuming for a
moment that all other factors are equal, and that the two
teams are relatively evenly matched, the odds of a team
winning four straight games can be calculated using the
same probability as the coin toss analysis or Pascal’s Tri-
angle (1⁄2 � 1⁄2 � 1⁄2 � 1⁄2 � 1/16). Based on this calculation,
one would therefore expect a four-game comeback to
take a series as very rare. Mathematically, one would not
expect this result with high probability in 20 World
Series. Again, variables such as talent disparity, injury, the
tendencies of teams in certain stadiums, and similar fac-
tors will play their role. The basic math, however, under-
scores that the expert’s breathless pronouncement about
the difficulty of a comeback is an overstatement.

Another common example of a statistic used in a
superficial fashion is the emphasis placed by the expert
on an aspect of the game that is not essential to a team’s
success, yet stated in an authoritative fashion. It is com-
mon in the course of an NBA basketball season to hear
references to a certain player being the best slam dunker
on his team or in the league as a whole. A dunk, or slam
dunk, is the delivery of the basketball by a shooter
through the cylinder to score with the ball being pro-
pelled down after the player has jumped high enough for
the shooting hand and ball to be above the rim.

For example, a statement such as “X is the most pro-
lific dunker in the NBA” might be made by the expert
analyst. While there is no question that the dunk is in
many situations an emphatic and athletic maneuver, from
a mathematical perspective, assessing the relevance of this
statistic to team success, this expert statement is of little
value, because the dunk is worth the same as any other 
2-point field goal attempt in basketball, therefore the
manner in which the basket is made has no greater effect
on the scoreboard. Further, the dunk is less important
than the 3-point shot (a 50% greater value per successful
attempt). In a team game, the analysis as to how the
ball got to X for the dunk is more important than the
dunk itself—how did X become open to make the dunk,
what passes or other maneuvers were made by X or his
teammates. In basketball, rebounding the other team’s
miss is a typical way that the ball begins its path to the
other team’s goal. Therefore, one would expect rebound-
ing to be far more important in an analysis than is a
dunking statistic.

In the simple analysis above, one would conclude
that rebounding is far more important than dunking. In
fact, based on statistics gathered using NCAA men’s and
women’s basketball data over a five-year period, the sim-
ple analysis is confirmed. Where a team out-rebounds its
opponent, it will win 72% of its games. Where that team
also shoots more free throws than its opponent, its suc-
cess rate climbs to almost 90%. Dunking, dramatic as it
may be, is not a significant factor in team success.

Every sport has its statistics that, when employed in
commentary, may impress but not necessarily inform the
audience. In NHL hockey, frequent references will be
made during telecasts as to how hard a particular player
can shoot the puck. There is no question that from a
physical standpoint, it is an impressive feat for a player to
be able to deliver a shot towards the opposing goal at
speeds in excess of 100 miles per hour. However, much
like the dunking example in basketball, this statistic does
not really contribute to the understanding of the game,
especially if the information is taken in isolation.
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The object of the game is to put the puck in the opposi-
tion goal, it is shooting accuracy that will be at a premium.

RAT INGS  PERCENTAGE  INDEX  (RP I )
Determining a winner in a team sport competition

on one level is an easy task, i.e., the score at the end of the
game is the sole indicator of success. In a series or in a
season of competition, the winner is readily determined
by the season standings, and so long as all teams in the
competition have competed the same number of times
against all others in the league, the final standing will be
the determinate as to the champion.

Standings, and what are referred to as win/loss
records, are a less useful standard where there are multi-
ple teams and all do not compete against all of the others
in a given season. For example, in American college
sports, there may be as many as 350 teams in a particular
division. While each team may play in a conference of
between eight and 15 other programs, assessing a team
using its won/loss record alone among conference rivals is
straightforward, but to compare the team regionally or
nationally from its conference play is problematic. For
example, if a basketball team won 27 games and lost one,
as opposed to a team they did not play who compiled a
record of 16 wins and 12 losses, the team with the best
record is not necessarily the better team, if its opponents
were weaker than those of the 16 win team.

When an issue such as the determination of a
national champion in a particular sport is at stake, con-
sideration is given as to how teams that did not compete
against one another in the regular season might be com-
pared and ranked to create a fair championship that
included all deserving teams. The Ratings Percentage
Index (RPI) was created to achieve this objective.

The RPI is calculated in different ways for different
sports, so as to reflect the nuances of that particular compe-
tition, but the RPI is an algorithm that takes into account the
common features of a team’s season record, the record of its
opponents, and the record of its opponents’ opponents. The
theory in the construction of the RPI is simple: wins and
losses must be assessed on a qualitative basis as much as they
are counted on a quantitative basis. To calculate the RPI,
Team A RPI � 25% (Team A record) � 50% (Team A’s
opponent’s record) � 25% (Team A’s opponent’s record).

There are a number of variables that the RPI does
not address. The following examples show the RPI as a
potential rectifier of disparity that appears from a review
of comparison teams’ win/loss records alone.

Team A and Team B are both NCAA Division 1
women’s basketball teams. Each is being considered for a

place in the elite National Championship tournament.
Team A is from California and Team B is from Connecti-
cut, and the teams play in different conferences. Team A
and Team B did not play one another during the course
of the regular season.

Team A had a very successful season, compiling a
record of 26 wins and five losses, for a wining percentage
of 83.8%. Team B struggled for large parts of the season,
achieving a record of 16 wins and 14 losses, 53.3%. Team
A was therefore more than 30% more successful at win-
ning games than Team B.

For example, Team A winning percentage (83.8%);
Opponent’s winning percentage (45%); and Opponents/
Opponents (58%), the calculation is RPI Team A �

(83.8 � 0.25) � (45.0 � 0.50) � (58.0 x 0.25) � 20.95 �
22.50 � 14.50 � 57.95 (round to 58.0).

Continuing the example, Team B winning percentage
(53.3%); Opponent’s winning percentage (75%); and
Opponents/Opponents (60%), the calculation is RPI Team
B � (53.3 � 0.25) � (75.0 � 0.25) � (60.0 � 0.25) �
13.33 � 37.50 � 15.00 � 65.83 (round to 66.0).

It is evident from this analysis that while Team A had
a far more successful season in terms of winning games,
Team B played a much more difficult schedule. The RPI
would lead to the conclusion that if one were to choose
between these teams, Team B is likely the better team.
However, while the RPI is a more involved calculation
than simple wins and losses, it has significant variables
that cannot be reduced to mathematical equation. Those
variables include injuries to key players, whether the wins
were early or later in the season, or the margin of victory
(the RPI calculation treats as equal a win by 25 points and
a win in overtime by a single point, the margin is not rel-
evant to the RPI).

As the RPI is used as a statistical measure more fre-
quently, individual sports can customize the calculation
to reflect a feature in its game. For example, in 2005, the
NCAA adjusted its RPI for basketball championship cal-
culations. The NCAA concluded that as a home court was
a significant advantage to the home team in college bas-
ketball, a visiting team deserved extra credit for a victory
in a hostile environment. The RPI was thus adjusted so
that road win � 1.4 wins; road loss � 0.6 losses; home
win � 0.6 wins; home loss � 1.4 losses; neutral site � 1.0.

NCAA hockey adopted a similar approach to fine-
tune its RPI, with a road win worth 1.5 wins, a neutral site
win valued at 1.3 wins, and a home win worth 1.0.

The RPI will never be determinative of ability;
arguably, the only reliable measure of that standard in team
sports is head-to-head competition. Used in conjunction
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with other tools, the RPI provides insight to complicated
ranking and seeding issues.

MATHEMAT ICS  AND  THE  JUDG ING  
OF  SPORTS

In most athletic disciplines, mathematics will illumi-
nate aspects of performance. As noted in the discussion of
team sport statistics, the more involved the mathematics,
often the greater degree of insight into present and future
performance.

Mathematics is a rather poor tool when used to
explain sports that are subjectively assessed, such as figure
skating, diving, synchronized swimming, and other simi-
lar disciplines. However, it is important to understand
what is being sought to be achieved in the scoring of these
disciplines, and to be careful in attempting to interpret
any result beyond the obvious ranking of the participants.

Figure skating has always posed particular difficulty
for judges: How can a subjective opinion, however knowl-
edgeable, concerning elements of beauty, presentation,
and grace be reduced to a score, a hard, certain mathe-
matical proposition? Figure skating has had a number of
judging scandals, usually turning on improper collabora-
tion among judges to guarantee that certain participants
would achieve certain scores. In 2004 the international
figure skating adopted a scoring system referred to as a
“code of points.” The general proposition of this system 
is that every aspect of each skater’s performance, every
jump, spin, turn, and movement will be graded individu-
ally. The judges, typically numbering eight at an interna-
tional event, would then add or subtract points for the
skater’s execution of each part.

This grade of execution applies to five overall com-
ponents; the maximum score available in each compo-
nent is 10.0. Each judge submits their individual score for
each skater. The highest and the lowest scores from the
judging panel are discarded, with the maximum score
attainable of 50.0.

Similar to the manner in which team sports telecasts
communicate statistics that are purportedly used to
describe performance, but without proper reference to the
fundamentals of the sport itself, figure skating judging and
the mathematical results generated are difficult to under-
stand. The mathematics here is an imperfect attempt to put
a hard number to a purely subjective discipline.

Unless one has an in-depth knowledge of the judging
criterion, the viewer is left with a number that is discon-
nected from performance. If a swimmer races 100 meters
in a pool in 55 seconds, that result is observable. If a foot-
ball player scores a touchdown by running with the ball,
that result is observable. The math underlying the scoring

in the judged sports is only an indicator to the most
expert in that discipline; the more casual fan must treat
the numbers generated as a simple ranking.

MATH  AND  THE  SC IENCE  OF  SPORT
The aim of mathematical applications in sport is not

to change the sport in question, but to better understand
it. One must be able to understand the essence of per-
formance. As already discussed, mathematics is a very
helpful interpretive tool in sport. Math as the language of
science can be applied in virtually every sport to under-
stand how the game is played. However, the following
examples of math explain how a particular sporting activ-
ity is performed, or how it might be performed better.

BASEBALL
The home run is arguably the most dramatic play in

baseball, the product of a one-on-one confrontation
between hitter and batter. Science will assist in the under-
standing of a number of features concerning how far a
baseball can be hit. Assuming that the bat is constructed
of wood and is 32 ounces in weight, that a ball is pitched
at 85 miles per hour (an approximate average speed for a
pitch thrown by an American major league pitcher), and
that the ball was struck squarely on the “sweet spot” (the
optimum part of the bat for striking the ball, given that
the end of the bat is moving more quickly than the han-
dle). To send the ball 400 feet, the bat must strike the ball
at a speed of 70 miles per hour.

To take the analysis one stage further, the difference
between the properties of an aluminum bat and a
wooden bat can be examined. This analysis will turn on a
calculation known as determining the coefficient of resti-
tution (COR), a determination of how “springy” the sur-
face of each bat is, which will impact upon how much
energy will be lost in the transfer from the pitched ball to
the bat when it is struck.

Due to the nature of each bat’s construction, a 
32-ounce aluminum bat will have a barrel of 2.75 inches
(the maximum size permitted by major league baseball);
the wooden bat will have 2.50 inches, as it is not possible
to have the weight distributed more to the barrel of the
bat, with the thin handle, as the bat tends to shatter on
impact with a ball.

The aluminum bat has a barrel circumference that is
1.21 times bigger than the wooden bat (the ratio of 23.74
to 19.63), which translates into a surface available to
strike a ball that is approximately 10% larger than the
wooden bat. Precise scientific trials using standard baseballs
show that 25% of the energy created in the collision
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between an aluminum bat and ball will be restored to the
ball, as opposed to 20% of the similar energy generated
between a wooden bat and a ball. The COR for the wooden
bat is 0.45, the COR for the aluminum bat is 0.50. Using this
general relationship (and assuming that other variables
such as elevation, wind speed, and direction and the angle
at which the bat strikes the ball are not factored), if a ball
were hit 380 feet with a wooden bat, one would expect an
aluminum bat to generate a hit of approximately 410 feet.

It is this type of analysis that has persuaded the
authorities to forbid the use of aluminum bats in North
American major league competition. The physics of the
aluminum bat would not only make home runs an easier
proposition, the speed of the ball created on impact with
the aluminum bat would create a greater risk of danger
for those fielders closest to the batter, including the
pitcher, the first baseman, and the third baseman. As
noted, the coefficient of restitution is a measure of the
springiness of a surface, expressed as the ratio of the
speed of the object before and after collision. If a rubber
ball were thrown against a wall at 50 miles per hour, and
it returned at 30 miles per hour, COR � 30/50 � 0.6.

The following will illustrate why the pitcher and his
first and third base teammates are at greater risk from a
ball hit with an aluminum bat. The regulated distance
from the batter to the pitcher is 60 feet, 6 inches. How-
ever, on the delivery of a pitch, the pitcher must maintain
contact with the point of measurement (the pitching rub-
ber) only as the ball is being delivered, and as the pitcher
throws the ball, the natural pitching motion will carry the
pitcher one stride closer to the batter, plus any extra dis-
tance that is created by his follow-through. It is safe to
assume that the pitcher will be no further than 54 feet
from the batter as the ball is released.

Pitches at the major league level vary in speed, but a
typical pitch will travel approximately 85 miles per hour
(assuming a constant speed, although in practice the
pitch will be faster on delivery and slower as it has trav-
eled to the batter’s box). The pitch thrown at 85 miles per
hour is traveling at a speed of 124.67 feet per second. To
travel the 60.5 foot distance to home plate, the ball will
reach home plate in approximately 0.49 seconds. Studies
using wooden bats confirm that the approximate time for
a hard-line drive delivered directly at a major league
pitcher is approximately 0.40 seconds.

Studies at the American college level, where alu-
minum bats are legal for use (with players presumably
not as strong or as skilled as major league players), con-
firm the following: At speeds off the bat at between 103
and 113 miles per hour, batted balls were reaching the
pitcher 54 feet away at 0.357–0.315 seconds. It would be

reasonable to conclude that a major league batter would
deliver the ball harder and therefore in a shorter time
than the college sample.

As it is generally accepted that human reaction time
is rarely faster than 0.20 seconds to an event, even where
the event is anticipated (as with a pitcher who might
expect a ball to be struck at him), not only would balls
travel further when hit by the aluminum bat, the differ-
ence in the available reaction time to the pitcher and the
time for the ball to reach the pitcher from the bat when
struck would decrease to as little as 0.10 seconds in major
league play.

CYCL ING—GEAR  RAT IOS  
AND  HOW THEY  WORK

Cycling, at both the recreational level as well as inter-
national competition level, requires an understanding of
a number of physical principles. The gears used by cyclists
are an example. The “penny farthing” bicycles of the
period from 1870 to approximately 1900 were con-
structed with a huge front wheel and a tiny rear wheel,
with the pedals connected to the front wheel only. The
penny farthing did not have gears connecting the large
front wheel and the small rear wheel, and it depended
upon the fact that one pedal by the rider would create one
rotation of the large front wheel. The penny farthing con-
struction is identical in principal to that of a child’s tricy-
cle. As an example, if a tricycle front wheel, to which the
pedals are directly connected, is 16 inches in diameter,
that wheel will have a circumference 50 inches. One rev-
olution of the front wheel means that the tricycle travels
50 inches. If the child pedaling the tricycle pedals at a
speed of 60 revolutions per minute, or one revolution per
second, the tricycle will be traveling at 50 inches per second,
which is a speed of 2.8 miles per hour. Greater speed can
only be achieved through greater revolutions per minute.

If an adult wished to ride a tricycle at a speed of
15 miles per hour, a typical speed at which to ride a bicy-
cle in a recreational fashion, the tricycle front wheel would
have to be very large or the cyclist would not be able to
generate enough revolutions per minute to get distance. If
the adult pedaled at 60 revolutions per minute, to achieve
a speed of 15 miles per hour, the front wheel would neces-
sarily be 84 inches, or 7 feet, in diameter. Gearing was nec-
essary to make cycling a more efficient form of movement.

The concept of gearing for a bicycle was first theo-
rized by Leonardo da Vinci (1452–1519) in the 1500s, but
the concept was not developed for commercial applica-
tion until Frenchman Paul de Vivie, alias “Velocio,” (1853–
1930) built the first functional derailleur, the device that
permits the gears on a multi-speed bicycle to be changed
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by the rider as the bicycle is ridden. The gearing on a bicy-
cle permits a cyclist to use energy more efficiently to
climb hills, and to maximize speed on a downhill.

A typical bicycle has wheels that are 26 inches in
diameter. Gears are typically measured by the number of
teeth each gear has on its circumference. For example, if a
front gear ring on a bicycle has 54 teeth, and a rear gear
wheel has 27 teeth, every time the front wheel rotates, the
rear wheel will rotate twice, creating a 2:1 gear ratio.

The lowest gear ratio on a bicycle might be a front
chain wheel with 22 teeth and a rear chain wheel with 30
teeth. This creates a lower gear ratio of 0.73:1. For each
pedal stroke, the rear wheel will turn 0.73 times, meaning
that the bicycle will move forward approximately 60
inches (approximately 3.4 miles per hour if the bicycle is
pedaled at a 60 revolutions per minute rate). The highest
gear ratio on the bicycle might be a front chain wheel
with 44 teeth and a rear chain wheel with 11 teeth, creat-
ing a 4:1 gear ratio. As the bicycle wheels are 26 inches in
diameter, the bicycle will move forward 326 inches with
each pedal stroke. If the cyclist pedaled at a rate of 60 rev-
olutions per minute, the bicycle will be traveling at a
speed of 18.5 miles per hour. If the pedaling rate were
doubled to 120 revolutions per minute, the bicycle would
travel at a speed of 37 miles per hour. Gearing permits the
bicycle in this example to travel at speeds ranging from
3.4–37 miles per hour, to climb steep hills or to travel
along level terrain.

The gearing of the bicycle must be considered along
with the cadence or the rate at which the bicycle is pedaled.
A smooth, even cadence means that the bicycle will be ped-
aled efficiently, as the energy expended by a cyclist is deliv-
ered most efficiently at certain cadences. For example, on
the very steep terrain where mountain bikes are effective, a
cyclist may climb a hill at as little as 50 revolutions per
minute, whereas a road racer will typically operate at
cadences of between 80 and 120 revolutions per minute.

SOCCER—FREE  K ICKS  AND  THE
TRAJECTORY  OF  THE  BALL

The free kick, bent with skill around a wall of defend-
ers, is one of the most dramatic aspects of soccer. The
success of this tactic is dependent upon a host of vari-
ables, including the distance from the goal, the height of
the opposing players’ wall, the height of the goal, the force
of the kick, the spin imparted to the ball, the air flow
around the ball in flight, and lesser variables, such as air
temperature, humidity, and the friction of the grass when
the ball is struck.

Using a famous free kick goal from the England vs.
Greece 2001 World Cup qualification game as an example,

English midfielder David Beckham scored a goal analyzed
as: The ball was kicked at 36 m/sec. (80 miles per hour); the
ball was kicked from a distance 27 meters from the goal;
the ball moved laterally in flight 3 meters (from Beckham’s
right to left, facing the goal); the ball cleared the defender’s
wall by 0.5 meters; as it entered the goal, the ball was trav-
eling at a speed of 19 m/sec (42 miles per hour).

The analysis assists in understanding how players
taking a free kick can best strike the ball for a similar
effect. The high speed of the initial kick results in the ball
having very little drag as it moves through the air. How-
ever, as it passes the opposition wall, the ball begins to
slow, entering a smooth airflow (laminar) phase of its
travel. Greater drag on the ball now occurs, when coupled
with forces generated by the spin imparted on the ball by
the foot of the player (Magnus force), the ball will appear
to bend and dip, fooling the goalkeeper.

There have also been various studies conducted in
recent years in world soccer due to the rise in the impor-
tance of the penalty shot. The penalty shot awarded for 
a foul committed against an offensive player in the
defender’s penalty area has long been a feature of soccer.
Only since 1982 has the penalty shootout been the sanc-
tioned method of deciding an international soccer game.
The ball is placed at a spot 36 feet from the goal; the goal-
keeper may not move until the ball is struck. The inter-
national soccer goal is 8 feet high and 24 feet wide. In an
analysis of penalty kicks taken in the World Cup between
1982 and 1998, it was determined that 211 such kicks
were taken, with 161 successfully made: Success rate �
161/211 � 76.3%.

Further analysis revealed that the goalkeeper during
the penalty dove to the side to which the ball was directed
(the correct side) 63% of the time. Also, 41% of all suc-
cessful goals were scored within 6.2 feet of the goal-
keeper’s initial position. By studying the tendencies of an
opponent (that is, whether the kicker tends to kick 
the ball in a particular direction, or to a particular part of
the net on penalties), a soccer goalkeeper can increase the
chance of saving a penalty.

GOLF  TECHNOLOGY
In recent years, there has been considerable public

debate about the technology of golf clubs, and the ability
of golfers to hit a golf ball farther than ever. One key area
of debate has centered on the construction of the driver,
the club used to generate the greatest distance. World golf
regulatory bodies have imposed rules with respect to the
construction of the driver, based on the principles 
of coefficient of restitution (COR). As noted in the base-
ball math segment, COR is the ratio of the speed of
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an object measured before and after a collision with a
fixed object, such as a wall. It is impossible to have an
object speed after such a collision that is greater than the
object speed prior to collision. The higher the COR (that
is, the closer the COR is to 1.0), the faster the object is
expected to move after collision. If the object, in this case
a golf ball, were struck by a very bouncy, trampoline-type
surface on the face of the golf club, one would expect it to
travel farther than if struck by a denser, less elastic mate-
rial. Huge sums are spent each year by golf equipment
manufacturers to design surfaces for clubs that create
high COR values.

The current COR for a driver legal for use in inter-
national golf is 0.83, meaning that an object striking the
material used on the driver’s surface at 100 miles per hour
would expect to rebound at a speed of 83 miles per hour.

FOOTBALL—HOW FAR  WAS  
THE  PASS  THROWN?

There are innumerable circumstances where mathe-
matical principles can be used to assist in assessing
performance. For example, to determine how far a quar-
terback actually threw a pass, consider the following: The
quarterback takes the snap from the center and drops
back to pass. The pass is delivered and is caught by a
receiver 20 yards from the quarterback’s position. The
ball was thrown at an angle of 30� from the line of the
hash mark on the field. What was the actual down-field
gain for this pass and catch? The distance thrown down
field is represented by d: d � 20 � sin 30� � 20(0.5); d �

10 yards.

MONEY  IN  SPORT—CAPOLOGY  101
To even the casual observer of the modern sporting

world, the media coverage of teams and competitions is
seemingly fixated with the financial aspects of sport.
Player contracts, television contracts, the sale of profes-
sional franchises for huge sums of money, ticket prices to
attend events, all these issues have captivated the sporting
public to an ever-increasing degree.

The salary cap is a financial tool in place in a number
of professional sports. By definition, a salary cap is a pre-
scribed limit placed upon how much money individual
athletes may earn from their playing contract, and the
salary cap is also a limit as to how much a team may
collectively pay its roster of players. NFL football and
NBA basketball are the two best North American exam-
ples of leagues with a salary cap in place.

As with other examples of mathematics in sport, the
expression of the salary cap in a sport as a finite number

may appear simple; the calculation and the impact of the
salary cap on different aspects of team organization and
player transactions is often very complicated. The salary
cap and its rules as employed in various sports have cre-
ated a species of sports administrator commonly referred
to as the team “capologist,” an expert with respect to the
interpretation of salary cap rules made by the league in
question. The capologist will assist the team management
in determining whether, from a financial perspective, cer-
tain types of player transactions comply with the salary
cap rules.

The salary cap is generally intended to create two
important results for a professional team. One, the own-
ers of the team will have a measure of cost certainty, in
that they will know that in the given season, the team’s
player payroll will not (or should not) exceed the cap
limit. For example, if an NBA basketball team is said to
have a salary cap of $82 million, the team payroll, in the-
ory, may not exceed this amount, and the team must
budget accordingly. Two, the level of the salary cap will
impact decisions that the team may wish to make con-
cerning trades and other acquisitions of players. As noted,
the salary cap may be set out in a finite number.

The NFL salary cap structure is a complicated calcu-
lation, taking into account numerous factors. For the sake
of illustrating the function of the salary cap and its
impact upon team personnel decisions, the example is the
amount of the salary cap. This figure is calculated using
64% of the team’s “defined gross revenue” calculated
from the previous year. For the purpose of this calcula-
tion, such revenues will include the team’s share of the
league television revenues, stadium ticket sales, merchan-
dise sales, and related revenues generated by the games
themselves for each team.

Therefore, in an imaginary NFL season, if a team had
defined gross revenues of $120 million, the salary cap �
$120,000,000 � 0.064 � 76,800,000; the salary cap for
the next season would be $76.8 million.

By salary cap rules, the top 51 players’ contracts on a
team are included for the purposes of the salary cap. The
amount of the contract is defined by both its face value,
for example, if a player has a contract worth $10 million
over a four-year period, as well as any bonuses that the
individual contract may provide. All bonuses are prorated
for the purpose of a salary cap calculation over the four
years of the sample contract.

In the sample, if the player had a $10 million con-
tract over four years, and a $1 million bonus he received
upon signing the contract, for the purposes of the salary
cap, the contract is expressed as $10 million / four years �
$2,500,000/year (salary component); $1 million / four
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years � $250,000/year (bonus component); net salary �
$2,750,000/year. The player salary is treated as $2.75 mil-
lion against the salary cap total of $76.8 million. This cal-
culation will be made with respect to all 51 current
contracts.

Assume that the total player salaries are $71.2
million. The total available monies with which to sign
other players to contracts is $5.6 million for the coming
season, subject to releasing or otherwise terminating any
existing contracts to create a greater cushion under the
salary cap limit of $76.8 million.

How does the salary cap work if a team wishes to
acquire a player beyond their means? In the example, the
available money for player acquisitions is $5.6 million.
The team finished the previous season at eight wins and
eight losses, and it did not qualify for the postseason play-
offs. The head coach and the general manager believe that
a certain wide receiver, who is not under contract to any
team and is therefore a free agent, would be a player who
might take the team that extra step needed to make the
league playoffs in the coming year.

This wide receiver is an elite player, and he is
expected to command a salary of $10 million per season,
and he will command a contract of four seasons. Can the
sample team with only $5.6 million left in its salary cap
sign this player? The capology options include:

• No bid for this player: The current roster, subject to
other contingencies such as injury, remains intact.
(In a salary cap, where a player has been injured, they
remain in receipt of their salary for the life of the
contract, all counted in some fashion against the
salary cap.)

• Sign the elite player at $10 million per season for four
seasons. To get “under” the salary cap in this exam-
ple, the team would be required to cut other players
whose salaries total $4.4 million for the coming
season ($10 million in new salary, less the available
$5.6 million). The team in this scenario would be
required to assess whether the benefit to the team in
terms of performance was worth the loss of other
players; further, the variable of injury for the new
player would be considered.

• Sign the elite player, but structure the $10 million
salary in year one of the four years as follows: Agree
that the contract will be a $20 million bonus, and 
$20 million in salary over the following three years.
The bonus is prorated over four years, meaning only
$5 million would count against the salary cap this
coming season. As $5.6 million is available as room
under the team’s cap, the bonus/deferred salary
structure works, at least for the first year. The team

will have to assess how it deals with this contract in
each successive year, as it will be required to count
this player’s salary contract in year two as Bonus �
$5 million (25% calculated over four-year period)
and Salary � $20 million obligation now payable
over three years.

This math application in essence borrows from the
team’s future to pay for the present needs of the team. In
the realm of the salary cap, the best interests on the team
on the field and the best financial interest of the team do
not always exist in harmony.

The more involved the mathematical equations deal-
ing with salary cap, the less important are the players
themselves. Further, it is a reasonable presumption that
the greater the room available to a professional sports
franchise in its salary cap, the greater potential profits to
the ownership of the franchise.

Some salary caps have a punitive component for
those teams that breach the salary cap rule; these penalties
are often referred to as a luxury tax. The premise behind
these measures is that the richer franchises that exceed the
salary cap limits will pay monies back into the general
funds of the league, which are then distributed among the
franchisees that abided by the salary cap rules.

In the NBA, the tax on the individual player salary
that broke the cap ceiling is 10%. The team is also obli-
gated in general terms to pay a 10% team tax on its pay-
roll that is in excess of the cap. There are a multitude of
exemptions and qualifications; the bottom line for the
owner is, are they prepared to exceed the salary cap and
pay the penalties imposed if they get a team that might
win a championship?

MATH  AND  SPORTS  WAGER ING
Team sports wagering has grown from its clandestine

roots in taverns and clubs to a multi-billion dollar enter-
prise that includes private bookmakers and state-run
sport bets. All forms of sport gambling have a mathemat-
ical basis, rooted in the concepts of probability and
understanding the statistics relied upon by odds makers
to establish betting systems. There are a number of dif-
ferent types of wagers available, each generally involving
a different math principle:

• Straight bet: This is a wager placed on the final out-
come of an event. For example, if a team is chosen
as the winner and does win, the successful bettor gets a
return on their money 1:1. If $100 were wagered on the
team, the winner recoups his initial bet, plus $100.

• Odds: As with the straight bet, the wager is with
respect to the final outcome, with the odds, or the
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probability, of the event added to the wager. For
example, as in the earlier example, if the team were
not likely to beat the opponent, the odds of such an
event occurring might be as remote as 10:1 against,
meaning that it is stated to be 10 times more likely
that the team will lose than win. If $100 were wagered
on 10 to 1 odds, and the team were successful, the
successful bettor would again recoup the initial $100
wagered, plus 10 � 100, or $1,000.

• Point spread (also referred to as the line and other
terms): This variation in sports betting is very popu-
lar in sports such as football and basketball. The
nature of the point spread in any given game is typi-
cally calculated by professional gambling organiza-
tions, and published in major media. The bettor does
not wager necessarily on the best team, but the wager
is with respect to the difference in points between the
team’s scores at the end of the game. For example,
Team A and Team B are NFL football teams sched-
uled to play on a Sunday afternoon. The professional
gambling organization reviews the teams’ records,
injury situation, home field advantage, and the play
of each team to date, and determines that “Team A is
a 5-point favorite,” which means that the gambling
organization believes that Team A will beat Team B
by 5 points or more. The organization will then take
bets on the outcome of this game using that 5 points,
referred to as the spread, as its betting standard for
that game. The results in this type of bet for a bettor
placing $100 on Team A are that Team A must win by
5 points or more. If Team A wins by 5 points exactly,
the result is referred to as a “push”: the bettor gets his
$100 back, less the fee charged by the gambling

house, 10%. Another result is for a bettor who places
$100 on Team B. Because Team A is favored by 5
points, this bet will succeed if either Team B wins
altogether, or Team B loses by 5 points or less. As
with the straight bets, these wagers pay on a 1:1 ratio,
less the 10% customarily charged by the betting
establishment.

• Over/under: This bet and its variations are based
upon the total number of points scored in a game,
including any overtime played, by both teams; the
win or loss of the game itself is not relevant. For
example, in a basketball game, the wagering line would
be established as 176 points, wagers invited as being
over and under the mark. If a wager is successful in
predicting whether the teams were a total over or
under the line, the return is again a 1:1 ratio to the
money wagered.

• Parlay: This form of wagering permits the bettor to
gamble on two or more games in one wager. The bet-
ter must be correct in all of the individual wagers to
claim the entire bet. The reward multiplies in parlay
betting, as does the risk of missing out on one wager
in the sequence:In three-game parlay, Game has
12.7:1 odds; Game 2 has 3.3:1 odds; Game 3 has 1.9:1
odds. On a $5.00 wager on this three-game parlay, the
return if each team selected were successful would be
2.7 � 3.3 � 1.9 � 16.93; $5 � 16.93 � $86.45. As is
illustrated, a return of almost 17 times the initial $5
wager would be a successful gambler’s reward in this
scenario; a loss of any of the three games would
mean the bettor would lose the entire parlay.

• Future event: It is common for both North American
and world sporting events to be the subject of odds

Key Terms

Average: A number that expresses a set of numbers as
a single quantity that is the sum of the numbers
divided by the number of numbers in the set.

Odds: A shorthand method for expressing probabilities
of particular events. The probability of one particu-
lar event occurring out of six possible events would
be 1 in 6, also expressed as 1:6 or in fractional
form as 1/6.

Percentage: From the Latin term per centum meaning
per hundred, a special type of ratio in which the sec-
ond value is 100; used to represent the amount

present with respect to the whole. Expressed as a
percentage, the ratio times 100 (e.g., 78/100 �

.78 and so .78 � 100 � 78%).

Statistics: Branch of mathematics devoted to the col-
lection, compilation, display, and interpretation of
numerical data. In general, the field can be divided
into two major subgroups, descriptive statistics
and inferential statistics. The former subject
deals primarily with the accumulation and presenta-
tion of numerical data, while the latter focuses on
predictions.
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posted by various professional gambling agencies. For
example, in the lead-up to the World Cup of Soccer,
every team will be the subject of odds of winning the
quadrennial championship; a perennial soccer power
like Brazil might be listed at 3 to 1 odds, while a tra-
ditionally less successful nation, such as Saudi Arabia
or Japan, will be listed at more dramatic numbers
such as 350 to 1. Wagers are typically binding at 
the odds quoted, no matter what might happen to the
subject team in the period between the date of the
wager and the date of the event. For example, if
Brazil’s best scorer and best goaltender were injured,
the actual odds quoted for Brazil might be quite
higher at the start of the championships; the wager
would remain payable at the initial 3 to 1 odds.
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Square and
Cube Roots

Overview

Finding the square and cube roots of a number are
amongst the oldest and most basic mathematical opera-
tions. A number, when multiplied by itself, equals a num-
ber called its square. For example, nine is the square of
three. The square root of a number is the number that
when multiplied by itself, equals the original number. For
example, three is the square root of nine. The cube root is
the same concept, but the cube root must be multiplied
three times to yield the original number. These two con-
cepts get their names from the relationship they have with
the area of a square and the volume of a cube.

In our three dimensional world, lines that have one
dimension, squares that have two dimensions, and cubes
that have three dimensions form the basic shapes that
mankind uses to build models of the world. The square and
cube of a number, and their inverses the square and cube
roots, allow us to relate the length of a line to the area 
of a two-dimensional square or the volume of three-
dimensional cube respectively.

Examples of the square and cube roots will be found
in any area of design where a model of an object will need
to be conceptualized before the object can be built, for
example in the architect’s plans for a new house or the
maps for the construction of roads, or the blueprints of
an aircraft. During the design phase, whenever areas and
volumes need to be manipulated, the square and cube
roots would be used to calculate these quantities.

Fundamental Mathematical Concepts
and Terms

The definition of the square root is a number that
when multiplied by itself, will yield the original number.
As an example, again consider the value 9. It has a square
root of 3, so 3 � 3 � 9. The value 9 is called the square of
3. The cube root is similar, but now the value that has to
be multiplied is multiplied by itself three times, for exam-
ple, the cube root of 8 is 2, so 2 � 2 � 2 � 8 and the value
8 is called the cube of 2.

The names square and cube root come from their
relation with these shapes. Consider a square, where each
side has an equal length; if you know the area of the
square, the square root will give you the length of one
side. Since all the sides are an equal length, you have
found the length of them all. The area may be some
square land where you want to know how much fencing
is needed to mark the edge of your land. If the area is 100
square meters then the length of one edge is 10 meters. As
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there are four edges to the square, you will need to buy 40
meters of fencing.

The cubed root comes from the same idea. Imagine a
wooden cube, where each edge is again exactly the same
length. If we know the volume of this cube, the cube root
will give us the length of one of the edges; since it is a
cube, we know the length of all the edges. For example, an
architect has calculated that his building will need a foun-
dation with 1000 cubic meters of cement to hold 
the weight of the structure safely. The cube root of 1000
is 10, so the builders will know that by marking a 10 by 
10 meter square out on the floor and digging down 10
meters this hole will be the right size for the cement.

NAMES  AND  CONVENT IONS
In mathematical text the radical symbol is used to

indicate a root of a number. The square root is written as
��9 � 3.

To indicate roots or higher than the square root, for
example the cubed root, the number of the root is entered
into the top left part of this symbol. For example the
cubed root is written as 3��8 �2.

This notation was developed over a period of about
100 years. The right hand slash and line above the num-
bers first appeared in 1525 in the first German algebra
book, Die Coss, by Christoff Rudolff (1499–1545). It is
thought that the notation of adding the number 3 for a
cube and numbers for higher roots as a symbol to the top
left of the radical was first suggested by the Western
philosopher, physicist, and mathematician René
Descartes (1596–1650). The addition of the “vee” to the
left side of the symbol is thought to have been developed
in 1629 by Albert Girard (1595–1632), a French mathe-
matician who had some of the first thoughts on the fun-
damental theorem of algebra.

The name root comes from a relationship with a fam-
ily of equations called polynomials, these equations con-
tain all the powers of a variable x in an infinite series and
have the form, y � a � bx � cx2 � dx3 � ex4 . . . and so
on, forever. All the letters on the right hand side of the
equals sign, apart from the x, can have any values we want.
Setting a value to zero will eliminate that term in the series.

A Brief History of Discovery 
and Development

In ancient times numbers held a deep religious and
spiritual significance. Mathematics was heavily based on
geometry, philosophy, and religion. Early thinkers about
the nature of geometry saw lines and other geometrical

shapes as the fundamental and logical building blocks of
the heavens and Earth. The idea that nature could always
be expressed with lines and shapes lead to the develop-
ment of Pythagoras’ famous proof for triangles, a relation
that uses the square root to calculate the final answer.

Pythagoras of Samos (c. 500 B.C.), was an extremely
important figure in the history of mathematics. Pythago-
ras was an ancient Greek scholar who traveled extensively
throughout his life. He founded a school of thought that
had many followers. The society was extremely secretive
but was based on philosophy and mathematics. The
school admitted women as well as men to follow a strict
lifestyle of thought and practice of mathematics.

Pythagoras’ proof is for a triangle with one right
angle and it relates the length of the longest side to the
lengths of the other two sides. In the modern era, the
proof is included in school textbooks and so it is hard for
us to understand the deep impact on their way of life that
this new method of logical thinking had on our ancestors.
The proof—and knowledge of mathematics in general—
were venerated as sacred secrets.

Today, Pythagoras’ proof is learned as a formula with
symbols, but this system of thinking would not have been
known to its founder. Moreover, the proof that Pythago-
ras found was based purely on geometry. Legend has it
that a philosopher of Pythagoras’s society, called Hippa-
sus, made the discovery at sea that if the two shorter sides
of the triangle are set to 1 unit of length, then the result
for the longer sided is an irrational number when the
square root is taken. This special number could never be
drawn with geometry and the legend goes that the other
Pythagoreans were so shocked at this discovery that they
threw him overboard to drown him and so keep his dis-
covery a secret.

There is another important property of taking roots
of numbers that was not understood until English physi-
cist and mathematician Sir Isaac Newton’s (1642–1727)
time: the concept of taking the root of a negative number.
If you try this on a calculator it will most likely give you
an error. However, it was shown that it is possible to
extend our number system to deal with taking the root of
a negative number if we add a new number, given the
symbol, i, in mathematics. This opened a whole new
world of algebra that mathematicians call complex num-
bers and allows solutions to be found for problems that
had previously been thought impossible.

From a practical viewpoint, this development
affected almost every area of modern physics, which relies
on complex numbers in some form or another. Some
examples of their usage are found in electromagnetism,
which gave us television, radio, and quantum mechanics,



S q u a r e  a n d  C u b e  R o o t s

R E A L - L I F E  M A T H 513

which gave us, among many other things, computers and
modern medical imaging techniques.

PYTHAGOREAN  THEOREM
Using just pure geometry, Pythagoras is famous for

proving that, for a right angled triangle, the square of the
lengths of the longest side, called the hypotenuse, is equal
to the sum of the squares of the other two sides. This
rather long sentence is much easier to follow if it is writ-
ten as an equation: h2 � a2 � b2.

In this equation, the letter h is the length of the
hypotenuse and a and b are the lengths of the other
two sides. As this equation has only squared terms, we
must take the square root if we want to find the actual
length of h.

For example, in a rectangular room, how long would
a wire have to be if it was to be run in a straight line,
across the floor, from the back, left hand corner, to the
front, right hand corner? The room is full of furniture
and it would be impossible to just measure the distance
with a tape measure. However, we notice that the walls
and the wire form a triangle pattern. Each wall is at right
angles and lengths of the walls form the shorter two sides
of the right angle triangle. The wire, running across the
room, forms that longer side, the hypotenuse.

One wall is 3 meters long, and the other is 7 meters,
so: h2 � 3 � 3 � 4 � 4 � 25. So the length of the wire is
given by the square root of 25 as 5 meters long.

Wall length “b”

Wall length “a”

Wire length “h”

Finding the length of a wire

h =

h 2 a 2 b 2= +

h 2 a 2 b 2= +

HIPPASUS ’  FATAL  D ISCOVERY
How long is the wire in the previous example if we

have a room where each wall is just 1 meter long? h2 �

1 � 1 � 1 � 1 � 2. Now take the square root of 2 to find
1.4142136.

In fact the digits of this number go on forever. It is a
member of the family of numbers called irrational num-
bers. These numbers have the property that the fractional
part of the digits continue forever and never repeat the
same pattern. From the practical perspective of installing
our wire, this is no problem as we would simply round up
the length. However, in the exact world of mathematics
the consequences are much more dramatic. Due to the
fractional part having an infinite nature, it cannot be
expressed as a ratio of integer values (a fraction).

What is even stranger is that we have made this
length in something that is a perfectly reasonable and real
geometric shape, a square box with sides equal to 1 meter.
In this case, what exactly does the length of the line from
one corner to the opposite corner of the box “mean”?
Something that at first glance would seem child’s play to
measure is soon found to be impossible. No matter what
we do, the length, given by the square root of 2, will
always be wrong to some degree if we try to give it an
exact value. In the legend of the death of Hippasus at the
hands of his fellow Pythagoreans, it was the discovery of
this anomaly that shattered the idea that the Heavens and
Earth could be expressed totally and completely by
lengths and their ratios.

Real-life Applications

ARCH I TECTURE
The knowledge that some lengths are related with

squared ratios has been known since Egyptian times, even
though they would not have known the proof. Examples
of this include the lengths 3, 4, 5, which are related by
Pythagoras’ theorem and are thought to be found in the
construction of the Egyptian pyramids.

Today, squared and cubed roots are used in con-
struction and design. If you were to design a car you
might wish to change the volume of the driver’s com-
partment. A modern three-dimensional (3D) design
would be stored, as a wire frame model, in the memory of
a computer. A computer program will divide the 3D
space into thousands of tiny cubes, a job that is easy for a
computer to do. Next, a program is run that counts the
number of cubes within the driver’s compartment and
returns a value. The total volume is equal to the number
of cubes found in the compartment, multiplied by the
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volume of one cube. The one cube is called the unit cube
and has real dimension; this allows us to make modifica-
tions to the actual size of the 3D wire frame without alter-
ing the wire frame itself.

To change the volume of the compartment, you
change the volume of the unit cube. The amount that you
would need to scale the sides of the unit cube is found by
taking the cubed root of the original volume

NAV IGAT ION

The use of Pythagoras’ theorem allows distance to be
calculated on maps using coordinate systems. A coordi-
nate system is a grid-like structure that is used as refer-
ence for points on the map’s surface. Lines between one
point and another form vectors and the calculation of

lengths of vectors requires the use of square roots. Vectors
can also be used to map velocity, a combination of speed
and direction. These systems are used on land by the mil-
itary, at sea by the navy and shipping firms, and in the air
by aircraft, to plan and negotiate the terrain they are
moving over. As an example, if two ships are moving per-
pendicular to each other, i.e, at 90 degrees to each other,
and one ship is traveling at 3 knots and the other at 4
knots, using Pythagoras’ relation, the navigators on the
deck of each ship would measure the speed of the other
as moving away from them at 5 knots.

SPORT
Football pitches, tennis courts, race tracks, and swim-

ming pools are some examples of areas used by professional

This paper, written in 1946, was written by Albert Einstein. He explains how he derived the formula E = Mc2, a consequence of
his Special Theory of Relativity, first published in 1905. The formula specifies that c (the speed of light) is squared. AP/WIDE

WORLD PHOTOS. REPRODUCED BY PERMISSION.
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sports people that need to be accurately measured if the
events are to be considered fair. The areas to be surveyed
and locations of the various markings must be set down.
The process of surveying these areas requires the use of
roots in the calculations of various lengths for the markings

STOCK  MARKETS
Many of the transactions used in stock markets use

statistics to estimate the market trends and the best times
to buy and sell stocks and shares. These calculations will
often use something called the standard deviation, a
measure of the spread of random events, and will give the
traders some idea of the accuracy of their estimates. This
calculation will require the use of roots.

Another occurrence of the root comes when the
errors of predictive models are calculated. Models used to
predict the stock market or anything else will have some
sort of error depending on the accuracy of the data fed
into it. If the error is much smaller than the size of the
result, then the result can be trusted.

For example, if your model suggests that you buy
gold next Wednesday, within an error of one hour, this is
fine, but if the error is ten years then the it would be fool-
ish to trust the result. As there may be many sources of
error they will all have to be accounted for they need to be
combined to give a final overall error. This technique is
well defined in statistics, which requires the use of the
square root.

Potential Applications

GLOBAL  ECONOMICS
As global finance becomes more sophisticated, math-

ematicians and economists investigate the patterns of
these transactions and look for relationships that will
indicate the growth and decline of large groups of com-
panies or even countries. It has only been recently, with
the large scale computing and the application of a num-
ber of areas of science to economics that such models
have come into use.

Successful interpretation of these trends, and new
ideas and concepts in understanding the trends, are vital
to the future development and stability of corporations
and governments. This science, macroeconomics, is sta-
tistical in nature and allows predictions of important eco-
nomic indicators such as inflation, interest rates, and the
prices of materials. The use of squared and cubed roots in
making these judgments incorporates fundamental for-
mulas of probability and statistics that rely on square and
cube roots.

Where to Learn More

Web sites

Wolfram. MathWorld. �http://mathworld.wolfram.com/�
(February 1, 2005).

Key Terms

Cubed root: The relation of the volume of a cube to one
of its edges.

Root: The solutions of a polynomial equation, of which
the square and cube root are special cases.
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Overview

Statistics is the branch of applied mathematics con-
cerned with characterization of populations by the collec-
tion and analysis of data. Its applications are broad and
diverse. Politicians rely on statistical polls to learn how
their constituents feel about issues; medical researchers
analyze the statistics of clinical trials to decide if new med-
icines will be safe for the general public; and insurance
companies collect statistics about automobile accidents
and natural disasters to help them set rates. Baseball fans
immerse themselves in statistics that range from slugging
percentages to earned run averages. Nervous travelers
comfort themselves by reminding themselves that, statisti-
cally speaking, it is safer to travel in a commercial airliner
than in an automobile. Students preparing for college fret
over grade point averages and standardized test score per-
centiles. In short, almost every facet of daily life involves
statistics to one degree or another.

Fundamental Mathematical Concepts
and Terms

POPULAT IONS  AND  SAMPLES  
A statistic is a numerical measure that characterizes

some aspect of a population or group of values known as
random variables. They are random variables because the
outcome of any single measurement, trial, or experiment
involving them cannot be known ahead of time. The
weight of men and women, for example, is a random
variable because it is impossible to pick a person at ran-
dom and know his or her weight before he or she steps on
a scale. Random variables are discrete if they can take on
only a finite number of values (for example, the result of
a coin toss or the number of floods occurring in a cen-
tury) and continuous if they can take on an infinite num-
ber of values (for example, length or height).

In some cases the populations are finite, for example
the students in a classroom or the citizens of a country.
While it may be impractical to do so if the population is
large, a statistician can in theory measure each member of
a finite population. For example, it is possible to measure
the height of every student attending a particular school
because the population is finite. In other cases, especially
those related to the outcome of scientific experiments or
measurements, the populations are infinite and it is
impossible to measure every possible value. An oceanog-
rapher who wants to determine the salt content of sea
water using an electronic probe is faced with an infinite
population because there are an infinite number of places
where he or she could place the probe.

Statistics
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In many practical situations, the underlying objec-
tive of statistics is to make inferences about the charac-
teristics of a large finite or infinite population by carefully
selecting and measuring a small sample or subset of the
population. A political pollster, for example, may infer the
likely outcome of a national election by asking a sample
of a few hundred carefully chosen voters which candidate
they prefer. An environmental scientist may collect only a
few dozen samples in order to determine whether the soil
or water beneath an abandoned factory is contaminated.
In both cases it would have been impractical or impossi-
ble to analyze each member of the population, especially
because the number of possible samples that could be
collected is infinite. So, representative samples are chosen
and statistics are calculated to draw conclusions about the
population. Statistics that are calculated from measure-
ments of an entire finite population are known as popu-
lation statistics, whereas those that are based on a sample
of either a finite or infinite population are known as sam-
ple statistics.

Because sample statistics are used to make inferences
about populations, it is essential that the samples are rep-
resentative of the population. If the objective of a study is
to calculate average income, then it would be misrepre-
sentative to poll only shoppers at a yacht brokerage
because people who can afford yachts probably have
incomes that are higher than average. By the same token,
it would be just as misrepresentative to ask people waiting
in line to file unemployment claims, because their
incomes may generally be lower than average. Therefore,
real world applications of statistics demand that consider-
able attention be given to experimental designs and sam-
pling strategies if the statistical results are to be reliable.

One way to obtain a representative sample is to select
members of the population at random. In simple random
sampling, each member of the population has an equal
chance of being selected or measured and there is no pre-
defined sampling pattern. Random sampling is often
accomplished using a computer program that generates
random numbers or by referring to published random
number tables. It is impossible to generate truly random
numbers using a computer program, because the pro-
gram itself must have some underlying structure or pat-
tern. Mathematicians have been able to develop methods
or algorithms, however, which generate nearly random
numbers that suffice for most practical applications. To
select a random sample of 100 people attending a sport-
ing event, a statistician might assign a number to each
seat in the stadium or arena. Then, he or she would gen-
erate 100 random integers and the people in the seats cor-
responding to those 100 numbers would comprise the

random sample. Likewise, a scientist interested in meas-
uring the soil nutrients in a farmer’s field might divide
the field using a grid of north-south and east-west imag-
inary lines. If the objective were to sample the soil at 20
random locations, the scientist would then use 40 ran-
dom numbers to generate 20 pairs of north-south and
east-west coordinates. One sample would be taken at each
of the 20 locations specified by the coordinates.

Although simple random sampling works well for
homogeneous populations, it may not produce truly ran-
dom samples of heterogeneous populations that consist
of distinct sub-populations or categories. In such cases,
stratified random sampling provides more representative
samples. The first step in stratified random sampling is to
define the sub-populations. In a political poll, the sub-
populations might be registered Democrats, Republicans,
and Independents. In a marketing survey, the sub-
populations might be defined in terms of age, sex, and
income. Each sub-population is randomly sampled and
the results are weighted so that they are proportionate to the
relative size of each sub-population. Thus, stratified random
sampling provides results that characterize each sub-
population and the population in general, which the contri-
bution of each sub-population proportional to its size.

PROBAB IL I TY
It is possible to use basic statistical results without

reference to the concept of probability. A diehard baseball
fan, for example, can compare Babe Ruth’s lifetime bat-
ting average of 0.342 to Hank Aaron’s lifetime batting
average of 0.305 and argue passionately that Ruth was the
better hitter of the two. Batting averages are statistics, one
is clearly larger than the other, and there is no need to
worry about the nature of probability.

Unlike simple comparisons of batting averages, real
life applications of statistics are in most cases closely tied
to the concept of probability. The type of probability that
is most often taught in basic statistics courses is known as
relative frequency probability (or just frequency proba-
bility), and those who advocate this definition are known
as frequentists. Relative frequency probability is defined
as the number of times an event has occurred divided by
the number of trials conducted or observations made,
where the number of trials or observations is large. Flip a
coin many times and the results should be very close to
500 heads and 500 tails, so the relative frequency is 500 �
1,000 � 0.5, or 50%. All other things being equal, there-
fore, the probability of obtaining a head with the next toss
is 50%. A slightly more complicated example might
involve the measurement of a quantity that has an infinite
number of possible outcomes, for example weight. If each
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of 1,000 students in a high school were weighed, and 100
of them weighed between 140 and 150 pounds, then the
relative frequency of a weight in that interval would be
100/1,000 � 0.1, or 10%. Therefore, the probability that a
student selected at random would weigh between 140 and
150 pounds is 0.1. The determination of values of a ran-
dom variable, in this case the weights of students in a
school, by repeated measurement produces an empirical
probability distribution.

Mathematicians have devised a number of theoreti-
cal probability distributions that play an important role
in statistics, the best known of which is the normal, or
Gaussian, distribution. Named after the mathematician
Karl Friedrich Gauss (1777–1855), the normal distribu-
tion is defined by a probability density function that fol-
lows a distinctive bell shaped curve. Continuous random
variables following a normal distribution are more likely
to have values near the peak of the curve than near the
ends. In many situations, it is the logarithms of values,
not the values themselves that follow a normal distribu-
tion. In this case the distribution is said to be lognormal.
Another example of a widely used theoretical probability
distribution is the uniform distribution, which is defined
by minimum and maximum values. Each value in a 
uniform distribution has an equal probability of occur-
rence. The binomial distribution applies to discrete
random variables.

Although the normal (and lognormal), uniform, and
binomial distributions are among the most common

probability distributions, there are many specialized
distributions that are particularly well-suited for specific
problems. The Pareto distribution, for example, is named
after the Italian economist Vilfredo Pareto (1848–1923)
and is used in many statistical problems that consist of
many small values and relatively few large values. It has
found applications in studies of the distribution of
wealth, the distribution of wind speeds, and the distribu-
tion of broken rock sizes encountered in construction
and mining.

The great value of theoretical probability distribu-
tions, especially the normal distribution, is that they facil-
itate the use of rigorous mathematical tests that scientists
can use to evaluate hypotheses and understand uncer-
tainties in experimental data. For example, how likely is it
that two samples were drawn from the same population?
How certain are regulators that water quality meets gov-
ernment standards? How precisely must a product be
manufactured to ensure that there is less than 1 defect in
1,000,000? How reliable are the results of a public opin-
ion survey? The answers to these kinds of questions are
more precise if the sample distribution follows a theoret-
ical distribution and parametric statistical tests can be
used. Therefore, one of the first steps in the statistical
analysis of data is to determine whether the data are nor-
mally (or lognormally) distributed.

Statistics or statistical tests that are tied to a theoret-
ical probability distribution are known as parametric.
Those that are independent of any theoretical distribu-
tion are known as non-parametric.

MIN IMUM, MAXIMUM, AND  RANGE
The most fundamental statistics that can be calcu-

lated from a set of observations are its minimum value,
maximum value, and range, which is the difference
between maximum and minimum values. If the set of
observations comprises the entire population, then the
minimum and maximum will represent the true values. If
the observations are only a sample of a larger population,
however, the true or population minimum and maxi-
mum will be smaller and larger, respectively, than the
sample minimum and maximum.

Consider the following list of values as an example:
8.95, 6.93, 11.07, 10.21, and 10.31. In order to calculate
the range, first identify the minimum and maximum
values in the list. In this case, as in most real life applica-
tions, the minimum and maximum values are not the
first and last values. The minimum and maximum values
in this example are 6.93 and 11.07, so the range is 11.07 �
6.93 � 4.14.

This tablet displays ancient Sumerian measurements and
statistics (ca. 2400 B.C.). BETTMANN/CORBIS.
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AVERAGE  VALUES
An average is defined as a number that typifies or

characterizes the general magnitude or size of a set of
numbers. In statistics, there are several different types 
of averages known as the mean, median, and mode.
The word average itself, however, does not have a formal 
statistical definition and is generally not used in 
statistical work.

The most common kind of average is the arithmetic
mean, which is found by adding together all of the num-
bers in a lists and then dividing by the length of the list.
Using the same list of numbers as in the previous section,
the arithmetic mean is (8.95 � 6.93 � 11.07 � 10.21 �
10.31)/5 � 9.49. Another kind of mean, the geometric
mean, is calculated using the logarithms of the values.
The geometric mean is calculated as follows: First, find
the logarithm of each number in the sample or popula-
tion. For the example list of five values used above, the
natural (base e � 2.7183) logarithms are: 2.19, 1.94, 2.40,
2.32, and 2.33. Second, calculate the mean of the loga-
rithms, which is (2.19 � 1.94 � 2.40 � 2.32 � 2.33)/5 �
2.24. Finally, raise e to that power, or e2.24 � 9.37. Any
base can be used to calculate the logarithms as long it is
used consistently throughout the calculation. Statisticians
sometimes refer to the arithmetic mean of a population
as its expected value.

Another kind of average, the median, is the number
that divides the sample or population into two subsets of
equal size. If the list of numbers for which a median is to
be calculated is of odd length, then the median is found
by ordering or sorting the values from smallest to largest
and selecting the middle value. If the list is of even length,
the median is the arithmetic average of the two middle
values of the sorted list. The sorted version of the 
example list from the previous paragraph is 6.93, 8.95,
10.21, 10.31, and 11.07. The length of the list is odd and
the middle value is in position (5 � 1)/2 � 3, so the
median is 10.21.

Although sorting is a trivial computation for a short
list of numbers, sorting large lists can be time consuming
and the development of fast sorting algorithms has been
an important contribution to applied mathematics and
computer science. To illustrate how a simple sorting algo-
rithm works, compare the first two values of the sample
data set from the previous paragraph, 8.95 and 6.93. The
second value, 6.93, is smaller than the first value, 8.95, so
the positions of the two values are switched. Next, the
third value, 11.93, is compared to the first two. Because
11.93 is greater than both of the first two values, none of
their positions in the list are switched. The fourth value,
10.21, is then compared. It is greater than the first two

values, 9.93 and 8.95, but smaller than the third value,
11.93. Therefore, the positions of 10.21 and 11.93 are
switched. The same procedure is repeated until each value
in the list is compared and, if necessary, put into the cor-
rect position.

If a population follows a normal distribution or uni-
form distribution, its mean will be equal to its median.
Another way of saying this is that the ratio of arithmetic
mean to median is 1. If a population follows a lognormal
distribution, however, the mean will be larger than the
median. Scientists analyzing data often calculate the ratio
of arithmetic mean to median as a simple preliminary
method of determining whether the data are likely to fol-
low a lognormal distribution. This is not a rigorous sta-
tistical method, though, and the preliminary result is
often followed by more sophisticated calculations.

Astute readers will have noticed that the mean and
median values calculated as examples in this section are
not equal, but almost certainly will not know that the five
numbers used in the calculations were selected at random
from a normal distribution with an arithmetic mean of
10. If the five numbers represent a normal distribution,
why are the mean and median different and why does
neither of them equal 10? The answer is a consequence of
the law of large numbers, which states that the difference
between expected and calculated values decreases
towards zero as the number of trials (in this case the
number of randomly selected numbers) grows large. In
other words, small sample sizes are likely to yield sample
statistics that differ from the true population statistics. If
the example calculations had been carried out using a list
of 1,000 or 10,000 numbers, the sample arithmetic mean
would have both been very close to 10. The corollary of
this is that the reliability of sample statistics is generally
proportional to the sample size. The larger the sample,
the more likely it is that the sample statistics are accurate
reflections of the underlying population statistics. In
most practical applications, however, sample sizes are
limited by the amount of money available to pay for the
study (especially in cases where expensive laboratory tests
must be conducted). The job of the practical statistician
in many cases is to strike a balance between the desired
accuracy of statistical results and the amount of money
available to pay for them.

The third kind of average, the mode, is the most fre-
quently occurring value in a sample or population. If no
value occurs more than once, then the sample or popula-
tion has no mode. If one value occurs more than any
other, the data are said to be unimodal. Data can also be
multimodal if more than one mode exists. For example,
the list of values 3, 3, 4, 5, 6, 7, 7 has modes of 3 and 7.
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MEASURES  OF  D ISPERS ION
Statistical measures of dispersion quantify the degree

to which the values in a sample or population are clus-
tered or dispersed around the mean. To illustrate the need
for measures of dispersion, consider two samples. The
first is 2, 3, 4, 5, 5, 6, 7, and 8. The second is 2, 3, 5, 5, 5, 5,
7, and 8. Both samples have identical minima, maxima,
ranges, means, and medians, but the numbers comprising
the second are more tightly grouped around the mean
value of 5 than those in the first sample.

The most common measure of dispersion is the vari-
ance, which is based on the sum of squares of differences
between the sample values and their mean. For the first
set of example values in the previous paragraph, the mean
is 5 and the sum of squared differences is (2 � 5)2 �

(3 � 5)2 � (4 � 5)2 � (5 � 5)2 � (5 � 5) 2 � (6 � 5)2 �

(7 � 5)2 � (8 � 5)2 � 28. If the list of numbers represents
an entire population, then the sum of squared differences
is divided by the length of the list (in this case 
n � 8) to find the population variance of 28 / 8 = 3.5. If
the list of numbers represents a sample of a population,
however, the sum is divided by one less than the number
of values (n � 1 � 7) to find the sample variance of 28 /
(8 � 1) � 4.0. Repeating the calculation for the second
sample, the result is (2 � 5)2 � (3 � 5)2 � (5 � 5)2 � (5 �
5)2 � (5 � 5) 2 � (5 � 5)2 � (7 � 5)2 � (8 � 5)2 � 26.
Depending on whether the result is for a population or
sample, the variance is either 26/8 � 3.25 or 26/(8 � 1) �
3.71. Therefore, the variance of the second sample is
smaller than that of the first even though the two samples
have the same mean, minimum, and maximum values.

Because the variance is calculated from squared
terms, the units of the values being calculated must also be
squared. If the units of measurement are length (meters,
for example), then the variance would be expressed in
terms of length squared. The use of squared terms also
means that variances will always be positive values.

The denominator used to calculate the sample vari-
ance is slightly larger than that used to calculate the pop-
ulation variance in order to account for the uncertainty or
bias inherent any time that a sample is used to make infer-
ences about a population. If the data set for which a vari-
ance is being calculated is the entire population, then the
mean value used in the calculation is the population mean
and the calculated variance is therefore unbiased. If the
data set is a sample or subset of the population, though,
the mean value is only an estimate of the population
mean. Therefore, any subsequent calculations must take
into account the fact that the use of the sample mean adds
some bias to the results. This is accomplished by using a
slightly smaller number (n � 1 rather than n) in the

denominator to produce an unbiased estimate of the vari-
ance. The effect of dividing by n � 1 rather than n will
decrease as the sample size becomes large, which reflects
the fact that a variance calculated from a very large sample
is a more accurate representation of the population vari-
ance than one calculated from a small sample.

Another commonly used measure of dispersion is the
standard deviation, which is simply the square root of the
variance. As such, standard deviations have units of plus or
minus (±) the original units of measure. A variance of 4.0
meters2 is therefore equivalent to a standard deviation of
±2 meters. If the data being analyzed follow a normal dis-
tribution, then 68% of the values will fall within plus or
minus one standard deviation of the mean, 95% will fall
within two standard deviations of the mean, and 99.7%
will fall within three standard deviations of the mean. If the
data for which statistics are being calculated are measure-
ments of error, for example the difference between the
designed length and the actual length of an automobile
part, then the standard deviation is often referred to as the
root mean square or RMS error.

There are some situations in which the variance, and
therefore the standard deviation, of a population is infi-
nite. In such cases, attempts to calculate a variance will
not converge on a single value as the sample size
increases, and variances calculated using different sam-
ples of the same population will produce different results.
It may still be possible, however, to calculate a statistic
that is known as the average deviation, mean deviation,
or mean absolute deviation. It is calculated in a manner
similar to the variance, but the absolute values of each
difference are used instead of their squares. The sum of
absolute deviations of the sample 2, 3, 4, 5, 5, 6, 7, and 8 is
thus Abs(2 � 5) � Abs(3 � 5) � Abs(4 � 5) � Abs(5 �
5) � Abs(5 � 5) � Abs(5 � 5) � Abs(7 � 5) � Abs(28 �
5) � 12, where Abs means “the absolute value of,” and the
average deviation is thus 12/8 � 1.5.

Statisticians have largely avoided the average deviation
for two reasons. First, it is difficult to work with absolute
values when performing mathematical derivations. Sec-
ond, the trick of dividing through by n � 1 rather than n
to produce an unbiased estimate does not work nearly as
well as with the variance. Therefore, statistics books do not
contain alternative population and sample formulations
for the average deviation. For the large data sets commonly
encountered by many scientists and engineers, however,
the difference between dividing by n and n � 1 is small
enough to be inconsequential. Therefore, the average devi-
ation is a statistic that has theoretical limitations but can be
a useful practical tool for large data sets, and particularly
those for which the variance is infinite.
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CUMULAT IVE  FREQUENC IES  
AND  QUANT I LES

Cumulative frequency is closely related to relative fre-
quency probability and has many applications in real life
statistics. It is defined as the number of occurrences in a
sample that are less than or equal to a specified value. If
the cumulative frequency is divided by the number of data
in a sample, it is, following from the relative frequency
definition of probability, known as the relative cumulative
frequency, cumulative probability, or plotting position.
For a sample consisting of n data sorted from smallest to
largest, the relative cumulative frequency of data point m
is often calculated as m/(n � 1). Consider this sample of
five values: 19, 7, 20, 10, and 17. To calculate the relative
cumulative frequency, first sort the list from smallest to
largest to obtain 7, 10, 17, 19, 20. The relative cumulative
frequency of 7, the first value in the list, is thus 1/(5 � 1) �
0.17, or 17%. The relative cumulative frequency of 10, the
second value in the list, is 2/(5 � 1) � 0.33, or 33%. This
procedure is repeated for each element in the list until a
relative cumulative frequency of 5/(5 � 1) � 0.83, or 83%,
is obtained for the largest value. Thus, 17% of the values
in the sample are less than or equal to 7 and 83% are less
than or equal to 20. If the sample is representative of the
population from which it was drawn, the same relative
cumulative frequencies apply to the population. This
approach also assumes that relative cumulative frequency
is being calculated for a sample, not a population, because
the formulation allows for the proportion 1/n of the val-
ues to fall below the smallest value in the list and 1/n of the
values to fall above the largest value in the list. It is 
attributed to the Swedish engineer Waloddi Weibull
(1887–1979), whose statistical formulations are often
applied to analyze the sizes of events in sequences (for
example, the sizes of yearly floods along a river).

Quantiles, sometimes known as n-tiles, are the values
that correspond to particular relative cumulative fre-
quency values. Using the data from the previous para-
graph, the 0.17th is 7 and the 0.83rd quantile is 20. If the
sample size is small, some quantiles will be undefined. For
example, there is no 0.10th in the list of five values used in
the previous paragraph because none of the values has a
relative cumulative frequency of 0.10. If it can be shown
that the sample was drawn from a known theoretical dis-
tribution, such as a normal distribution, then statisticians
can calculate the value that theoretically corresponds to a
given quantile. The 0.25, 0.50, and 0.75 quantiles are
often referred to as the first, second, and third quartiles,
whereas the 0.01, 0.02, 0.03, 0.99 quantiles are often
referred to as percentiles.

The Weibull formula, m/(n � 1), is only one of sev-
eral different ways to calculate the cumulative probability.

In fact, the Weibull formula is somewhat arbitrary. The 1
was added to the denominator because data were at one
time plotted on special graph paper, known as probabil-
ity paper, which did not allow values of 0 or 1. This is
because, strictly speaking, it is impossible for the proba-
bility of an event occurring to take on either of those val-
ues. Probabilities can come very close to 0 or 1, but never
reach them. Another approach, known as Hazen’s
method, uses the formula (m � 1⁄2)/n and is widely used
in hydrologic studies. If it can be inferred that a sample
follows a normal distribution, the quantiles can be calcu-
lated using a formula specifically designed for normal
distributions. For most practical statistical problems
there is usually very little difference between the values
calculated using different methods.

CORRELAT ION  AND  CURVE  F I T T ING
Correlation describes the degree to which two or

more sets of measurements are related. For example,
there is a general correlation between the height and
weight of people (especially if they are of the same age,
sex, and location). Correlation does not require a perfect
relationship, but rather a degree of relationship or corre-
spondence. It is possible that any given tall person weighs
less than any given short person, but on average tall peo-
ple will weigh more than short people.

Statisticians calculate correlation coefficients to
express the degree to which two variables are correlated.
The most common form of correlation coefficient is
called the Pearson correlation coefficient, and is calcu-
lated using sums of mean deviations for each variable. It
is almost always represented by r or R. Correlation coeffi-
cients can range from �1 to �1. A correlation coefficient
of r � 0 represents a complete lack of correlation between
two variables, and points plotted on a graph to represent
the two variables will appear to be randomly located.
Variables with correlation coefficients of r � �1 or r �
�1 plot along a perfectly straight line, with the sign of the
correlation coefficient indicating whether the slope of the
line is negative or positive. In real life, most correlations
fall somewhere in between these two extremes.

If two variables are correlated, it is often useful to
express the correlation in terms of the equation for a
straight line or curve representing the relationship. The
simplest relationship is one in which the two variables are
related by a straight line of the form y � b � mx. Because
it is rare for variables to be perfectly correlated, the chal-
lenge is to find the equation for the line that fits data the
best. There are several ways to do this, and all of them
incorporate some way of minimizing the differences
between the line and the data points. Regression is a
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parametric, or distribution-dependent, procedure because
it assumes that the differences to be minimized follow
normal distributions. The general practice of finding the
equation of the line that best represents the relationship
between two correlated variables is known as regression
or, more informally, curve fitting.

STAT IST ICAL  HYPOTHES IS  TEST ING
In a previous example it was shown that the arith-

metic mean of the numbers 8.95, 6.93, 11.07, 10.21, and
10.31 is 9.49. Could the numbers have been drawn at ran-
dom from a normal distribution with a mean of 9 or less,
even though the calculated sample mean is greater than
9? Possibilities such as this can be evaluated using statis-
tical hypothesis tests, which are formulated in terms of a
null hypothesis (commonly denoted as H0) that can be
rejected with a specified level of certainty. Statistical
hypothesis tests can never prove that a hypothesis is true.
They can only allow statisticians to reject null hypotheses
with a specified level of confidence.

One common hypothesis test, the t-test, is used to
compare mean values. It assumes that the values being
used were selected at random from a normal distribution
and that the variances associated with the means being
compared are equal. It also takes into account the num-
ber of samples used to calculate the mean, because sam-
ple means calculated from a large number of values are
more reliable than those calculated from a small number
of values. The sample size is taken into account by using
a probability distribution known as the t-distribution,
which changes shape according to the number of sam-
ples. If the sample number is large, generally above 25 or
30, the t-distribution is virtually identical to the normal
distribution.

To determine if the numbers 8.95, 6.93, 11.07, 10.21,
and 10.31 are likely to have been drawn from a popula-
tion with an arithmetic mean of 9 or less, first define a
null hypothesis. In this case, the null hypothesis is that the
arithmetic mean of the population from which the sam-
ple is drawn is less than or equal to 9. The result of the t-
test, which can be performed by many computer
programs, is a probability (p-value) of 0.27. This means
that a person would be incorrect 27 out of 100 times if the
population were repeatedly sampled and the null hypoth-
esis rejected each time. Scientists often use a threshold
(also known as a level of significance) of 0.05, so in this
case the null hypothesis cannot be rejected because it is
greater than either of those commonly used values. It can
be tempting to interpret the failure to reject a null
hypothesis at an 0.05 level of significance as a 0.95, or
95%, probability that the null hypothesis is true. But, this

interpretation is inconsistent with the relative frequency
definition of probability and should be avoided.

Similar tests can be conducted to compare the means
of two samples (using a slightly different kind of t-test) or
to compare the variances of two distributions (using an
F-ratio test). In all cases, the tests are carefully structured
so that the result is given as the probability of being
incorrect if the null hypothesis is rejected.

CONF IDENCE  INTERVALS
Another way to characterize the uncertainty associ-

ated with sample statistics is to calculate confidence inter-
vals for the sample mean and variance. For the example
of 8.95, 6.93, 11.07, 10.21, and 10.31, the confidence
interval for the arithmetic mean at the 0.05 level of sig-
nificance is 7.48 to 11.51. Calculation of the mean confi-
dence interval relies on the t-distribution, so increased
sample sizes will result in smaller confidence intervals. In
other words, the larger the sample the more precisely the
population mean can be estimated.

As above, the relative frequency definition of proba-
bility requires that this result be interpreted to mean that
that true mean would be contained with the confidence
interval 95 out of 100 times if samples of five were repeat-
edly drawn from the population. This is, strictly speaking,
different than stating that there is a 95% probability that
the population mean is between 7.48 and 11.51. The nor-
mal distribution from which the example values were
drawn had a population mean of 10, so in this case the
population mean did fall within the confidence interval.
An analogous test can be performed to calculate confi-
dence intervals for the F-ratio test.

If the variance of a population is known or can be
estimated, the number of samples required to obtain a
confidence interval of specified size can be calculated.
Knowledge of the variance can come from other studies
involving similar data or a small preliminary study.

ANALYS IS  OF  VAR IANCE
Analysis of variance, which is often shortened to the

acronym ANOVA, is a method used to compare several
data sets. This is accomplished by comparing the degree
of variability of measurements within individual sample
sets to those among different sample sets to determine if
their means are significantly different. The null hypothe-
sis being tested is that all of the sample means are equal.

In biology and medicine, the different sample sets
often represent different treatments (for example, does
treatment with drug A produce better results than treat-
ment with drug B or a placebo?). In geology, the samples
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might represent the sizes of fossils from different locations
or the amount of gold in samples from several different
rock outcrops. In political science, the samples might con-
tain the ages of voters with different political tendencies
(for example, are the average ages of liberal, moderate, and
conservative voters significantly different?).

ANOVA assumes that the samples being compared
are normally distributed (thus, like regression, it is a para-
metric procedure), that their variances are approximately
equal, and that their samples are approximately the same
size. Variances are calculated for each sample or treatment,
and all of the samples are grouped together to calculate a
total variance. ANOVA assumes that the total variance
consists of two components: one resulting from random
variance within each sample and the other resulting from
variance among the different samples. The two variances
are compared using an F-ratio test to determine whether
the null hypothesis can be rejected at a specified level of
significance. In the hypothetical case that all of the sam-
ples are identical, the variance among samples (and there-
fore the F-ratio) is zero. Thus, the null hypothesis would

not be rejected. If the F-ratio is large, and depending on
the sample sizes and desired level of significance, the null
hypothesis may be rejected. As with all statistical tests, the
F-ratio tests in ANOVA do not prove anything. They can
only be used to reject or fail to reject the null hypothesis at
a specified level of significance.

US ING  STAT IST ICS  TO  DECE IVE
The aphorism that there are “lies, damned lies, and

statistics” is attributed to British statesman Benjamin
Disraeli (1804–1881) and reflects the unfortunate fact
that statistics can be accidentally or deliberately used to
deceive just as easily as they can be used to illuminate and
inform. Understanding how statistics can be accidentally
or deliberately used to misrepresent data can help people
to see through deceptive uses of statistics in real life.

Consider a group of four friends who graduated 
from the same college. Three of them earn $40,000 per
year working as managers in a local factory, while the
fourth earns $500,000 per year from his family’s shrewd

A mother with her triplets. The statistical chance of a woman having triplets without fertility treatments is about one in 9,000
births. SANDY FELSENTHAL/CORBIS.
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investments in the stock market. What statistic best repre-
sents the income level of the four friends? The arithmetic
mean is ($40,000 � $40,000 � $40,000 � $500,000)/4 �
$155,000, but in this case the arithmetic mean is not an
accurate reflection of the underlying bimodal population.
If anything, the median income of $40,000 is more repre-
sentative of most of the group even though it does not
accurately reflect the highest salary. It is likewise strictly
correct to state that the incomes of the four friends range
from a minimum of $40,000 to a maximum $500,000, but
that simple statistic does not convey the fact that most of
the friends earn the minimum amount. It would therefore
be true but misleading for a university recruiter to tell
prospective students that a group of its graduates earns an
average of $155,000 per year or that graduates of the uni-
versity earn as much as $500,000 per year. A less deceptive
statement that that the group earns between $40,000 and
$500,000, and that three of them earn the minimum
amount (or that the mode is $40,000). But, this still does

not paint an accurate picture. An even less deceptive state-
ment would also explain that while the highest earner is
indeed a graduate of that college, his income is tied to his
family’s investments and not necessarily related to his col-
lege education.

There are several kinds of clues that can help deter-
mine if statistics are deceptive. The first is use of only
maximum or minimum values to characterize a sample
or population, to the exclusion of any other statistics. Par-
ties involved in a dispute may emphasize that reported
values are as high as or as low as a certain figure without
giving the range, mean, median, or mode. Or, someone
hoping to use statistics to prove a point may cite a mean
without mentioning the median, mode, or range.
Another potential source of deception is the use of biased
or misrepresentative samples, which may produce sample
statistics that are not at all representative of the underly-
ing population. Reputable statisticians will always explain
how their samples were chosen.

Correlation or Causation?

Some of the most common examples of real life statis-
tics are news stories describing the results of recently
published medical or economic research. A newspaper
article might give details of a study showing that men
and women with college degrees tend to have higher
incomes than those who have never attended college. 
A report on the evening news might explain that
researchers have found a correlation between low test
scores and excessive soft drink consumption among
high school students. In both cases, variables are corre-
lated but the studies do not necessarily prove that one
causes the other to occur. In other words, correlation
does not necessarily imply causation.

It is easy to think of reasons why people who obtain
college degrees tend to make more money than those who
do not. College degrees are required for many high paying
jobs in science, engineering, law, medicine, and business.
College graduates also know other college graduates who
can help them to get good jobs and can take advantage of
on-campus interviews. People who do not attend college,
in contrast, are excluded from many high paying careers
and may not have the same advantages as college stu-
dents. This is not to say that there are no exceptions,
because someone with a college degree may choose to
take a low paying job for its intrinsic satisfaction. Social
workers, teachers, or artists, for example, may have

college degrees but earn less money than factory workers
without degrees. Likewise, some multi-millionaires and
even billionaires never completed college. What about the
converse? Is it possible that high earnings cause people
to become college graduates? In one sense, the answer is
no. People usually attend college early in life, before they
begin full-time careers, so it is unlikely that high earnings
cause college attendance. It also seems unlikely that
someone will make a sizable amount of money and,
because of that, decide to attend college. It seems safe to
conclude that, all other things being equal, college
degrees are likely to cause higher earnings.

The other result, showing a correlation between soft
drink consumption and low test scores, may be more dif-
ficult to explain. It is difficult to imagine that soft drink
consumption alone causes a chemical or biological reac-
tion that reduces intelligence and lowers test scores.
But, there may be other factors to consider. It may be
that students who like soft drinks place a higher priority
on instant gratification than discipline, a quality that
might also cause them to spend less time studying than
students who consume few soft drinks. If that is the
case, then both excessive soft drink consumption and
low test scores are caused by another factor such as
their parents’ attitudes towards delayed gratification. If
so, correlation would not reveal causation in this case.
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A Brief History of Discovery 
and Development

The history of statistics dates back to the first sys-
tematic collection of large amounts of data about human
populations in the sixteenth century. This included
weekly data about deaths in London and data about bap-
tisms, marriages, and deaths in France. The first book
about statistics, titled Natural and Political Observations
Upon the Bills of Mortality, was written by the English
mathematician John Graunt (1620–1674) in 1662. His
motivation was practical: London had suffered from sev-
eral outbreaks of plague, and Graunt analyzed weekly
death statistics (bills of mortality) to look for early 
signs of new outbreaks. He also estimated the popula-
tion of London. British astronomer Edmond Halley
(1656–1742), best known for the comet that bears his
name, wrote about birth and death rates for the German
city of Breslaw (sometimes spelled Breslau, and now
Wroclaw, Poland). His results were used by the English
government to set the prices of annuities, which provided
regular payments similar to a retirement fund, according
to the age and sex of the person. The government had
previously lost a considerable amount of money when it
sold annuities to young people using rates based on aver-
age life expectancy during times of plague and war, and
the annuity holders failed to die quickly enough. The
French mathematician Abraham de Moivre (1667–1754)
worked in London and was also interested in the statistics
of death and annuities, publishing the book The Doctrine
of Chances in 1714. He is known as the first person to
write about the important properties of the normal dis-
tribution, and also for predicting the date of his death.

The dawn of the eighteenth century was marked by
an explosion of inquiry about statistics in probability,
including important books by Karl Friedrich Gauss
(1777–1855) and Pierre Simon Laplace (1749–1827). The
normal distribution is often known as the Gaussian dis-
tribution in deference to his work. The Statistical Society
was established in London in 1834, and five years later the
American Statistical Association was established in
Boston. Much of the theory that stands behind modern
statistics, though, was not discovered until the early 
twentieth century by notables such as Karl Pearson
(1857–1936), A.N. Kolmogorov (1903–1987), R.A. Fisher
(1890–1962), and Harold Hotelling (1895–1973), for
whom numerous statistical methods and tests are named.
One of the most unusual statisticians of the early twenti-
eth century was William S. Gosset (1876–1937), who
wrote under the pseudonym Student. He is best known
for the t-test and t-distribution, which is commonly
referred to as Student’s t.

Real-life Applications

GEOSTAT IST ICS

Geostatistics is a specialized application of statistics
to variables that are correlated in space, and is based on a
concept known as the theory of regionalized variables. It
has important applications in fields such as mining,
petroleum exploration, hydrogeology, environmental
remediation, ecology, geography, and epidemiology.

Traditional statistics is concerned with issues such as
sample size and representativeness, but does not explicitly
address the observation that many variables are spatially
correlated. Spatial correlation means that samples taken in
close proximity to each other are more likely to have sim-
ilar values than those taken great distances apart. The vari-
able being sampled might be the distribution of insect
types or numbers across a landscape, the physical proper-
ties that characterize a good petroleum reservoir or
aquifer, the occurrence of valuable minerals (such as gold
or silver) in different parts of a mine, or even real estate
prices in different parts of a city. Whatever their discipline,
people who use geostatistics measure some variable at a
limited number of points (for example, places where oil
wells have already been drilled or the locations of homes
that have been sold in the past few months) but need to
calculate values at locations where they have no measure-
ments. This process is known as interpolation, and geosta-
tistics provides a set of tools that interpolate values based
on the distribution of known values at different locations.

Central to the theory and application of statistics is
the variogram, which is a graphical representation of spa-
tial correlation. It depicts the variance among samples
located different distances from each other, as opposed to
the variance of an entire group of samples without regard
to their locations. To calculate a variogram, samples are
generally grouped or binned. For example, samples
located between 0 and 100 meters from each other are put
into one group, samples located between 101 and 200
meters from each other are put into a second group, and
so forth. The distance between samples is known as the
separation distance or lag. A variance is calculated for
each group of samples, and the results are then plotted on
a graph as a function of the separation distance. This is
traditionally done using the semi-variance, which is one-
half of the variance, rather than the variance itself.

If a variable is spatially correlated, the semi-variances
will increase with separation distance and eventually reach
a constant value known as a sill. The separation distance at
which the sill is reached is known as the variogram range.
The semi-variance will, in theory, decrease to zero when
the separation distance is zero. This is because if one
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repeatedly measured a value at the same location, the result
should always be the same.

In real life applications, however, the result may dif-
fer if several samples are taken at the same location. If the
values are chemical concentrations, for example, the dif-
ferences may arise as a result of analytical errors or the
inability to collect more than one sample (such as a scoop
of soil) from exactly the same position. A non-zero semi-
variance at zero separation distance is known as a nugget
or the nugget effect. This term dates back to the origin of
geostatistics as a practical tool for mining engineers who
needed to calculate the grade, or richness, of ore in order
to determine the most efficient and economical way to
run their mines. An unusually rich nugget or pod of ore
might yield a very high grade, whereas rock or soil a very
short distance away might have a much lower grade.

Once a variogram is developed, values can be inter-
polated using a process known as kriging, named after the
South African mining engineer who invented the tech-
nique. Variograms can also be used as the basis for geosta-
tistical simulation, which uses information about spatial
variability to generate alternative realizations that are
equally probable and poses the same statistical properties
as the samples from which they are derived. A petroleum
geologist might, for example, use geostatistical simulation
to generate alternative realizations of an underground oil
reservoir for which she has definite information from only
a handful of wells. The exact nature of the oil reservoir
between the existing wells is unknown, and geostatistical
simulation provides a series of possibilities that can be
used as input for computer models that determine how to
most efficiently remove the oil.

QUAL I TY  ASSURANCE
Statistics play a critical role in industrial quality

assurance, and are often used to monitor the quality of
products and determine whether problems are random
occurrences or the result of systematic flaws that need to
be corrected. All manufactured products will have some
degree of variability. Components may be slightly shorter
or longer than designed, not exactly the correct color, or
prone to premature failure. Statistical process control can
be used to monitor the variability of product quality by
sampling components or finished products. If the results
fall within pre-established limits (for example, as defined
by a specified mean and variance), the process is said to
be in control. If results fall outside of acceptable limits,
the process is said to be out of control. Statistical quality
analysts can also examine trends. If there is a gradually
increasing number of unacceptable products, the under-
lying cause may be a piece of machinery that is gradually

going out of adjustment or about to fail. Trends that fluc-
tuate with time and appear to be correlated with factor
shift changes may indicate human errors.

Six Sigma is an extension of statistical quality control
that has evolved into a popular business philosophy. As it
is used by many people, the term Six Sigma is nothing
more than another way of saying that a process or proce-
dure is nearly perfect or, among those who are slightly
more mathematically inclined, that it produces no more
than 3.4 failures per million opportunities. In the tradi-
tional manufacturing sense, each item produced on an
assembly line is an opportunity to fail or succeed. In 
service-oriented fields such as retailing and health care,
the opportunities might represent customer visits to a
store or patient visits to a hospital.

The sigma in Six Sigma refers to the standard devia-
tion of a normally distributed population, which is often
represented in equations by the Greek letter sigma. The
six has to do with the number of standard deviations
required to achieve the desired standard of less than 3.4
failures per million opportunities.

Imagine that a bolt that is part of an airplane is
designed to be exactly 10 centimeters long, but will still
work if it is as short as 9.9 centimeters. Anything shorter
than that will not fit and must be discarded. The owner of
a machine shop hoping to supply bolts to the aircraft
company collects samples of his product, carefully meas-
ures each bolt, and learns that the sample has a mean of
10 centimeters and a standard deviation of ±0.1 centime-
ter. If the owner collected a representative sample and
bolt length that follows a normal distribution, then he
can expect that 16% of the bolts will be too short. This is
because 16% of a normal distribution is less than or equal
to the mean minus one standard deviation, regardless of
the size of the mean or the standard deviation. He can still
provide bolts to the aircraft company, but would be
forced to throw out 16% of his production to meet the
standards. This amount of waste is inefficient and costs
money, so the owner decides to adopt a Six Sigma policy.

To achieve Six Sigma, he must refine his bolt manufac-
turing process so that the standard deviation is small
enough that only 3.4 out of each million bolts produced (or
0.00034%) are less than 9.9 centimeters. For a normal dis-
tribution, 0.00034% of the population is less than the mean
minus 4.5 standard deviations, or 4.5 sigma. The average
length of bolts produced in the machine shop, though,
varies over time. This might be the result of seasonal tem-
perature fluctuations (metal expands and contracts as its
temperature changes), small variations in the composition
of the metal used to make the bolts, or a host of other fac-
tors. Pioneering studies of electronics manufacturing
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processes showed that the mean value must be 6, not 4.5,
standard deviations away from the acceptable limit in order
to ensure no more than 3.4 defects per million products. In
others words, an additional increment of 1.5 standard devi-
ations is added to account for the fluctuations. Hence the
association of the name Six Sigma with a defect rate of 3.4
pieces per million. In terms of the bolt manufacturer, this
means that he must improve his manufacturing process to
the point where the standard deviation of bolt lengths is
(10.0 � 9.9)/6 � 0.017 centimeters.

PUBL IC  OP IN ION  POLLS
Public opinion polls, particularly political polls dur-

ing major election years, are another real life application
of statistics in which samples consisting of a few hundred
people are used to predict the behavior or sentiments of
millions. Careful selection of a representative sample
allows pollsters to reliably forecast outcomes ranging
from consumer product demand to election outcomes.

Modern public opinion polling starts with carefully
selected questions designed to elicit specific opinions. For
example, asking a voter whether she likes Candidate A
may elicit a different response than asking the same voter
if she dislikes Candidate B, even if Candidate A and Can-
didate B are the only choices. Interviewers are trained to
ask questions in a neutral, rather than suggestive or leading,

manner. The selection of people to be interviewed, known
as sampling, begins with the generation of random tele-
phone numbers. Known business telephone numbers and
cellular telephone numbers are removed from the list, and
random number generation ensures that every residential
telephone number has an equal probability of being called
even if it is not listed in the telephone directory. In a
national poll, the list of telephone numbers is then sorted
by state and county and the number of telephone num-
bers called for each state or county is proportional to its
population. Because there may be more than one eligible
respondent in each residence, interviewers may ask to
speak to the person who has had the most recent birthday.
Women are more likely than men to provide complete and
usable responses, so interviewers ask to speak to male
household members more often than female household
members to account for that bias.

The number of people interviewed is estimated using
a standard formula based on the normal distribution.
The formula predicts that the uncertainty of results
(often referred to as the margin of error) for a random
sample of 500 people, which is a common size for a
nationwide political poll in the United States, is ±4.4%.
The uncertainty is inversely proportional to the square
root of the sample size, so increasing the sample size to
5000 (a factor of 10) decreases the margin of error to
±1.3% (a factor of 3.4). Decreasing the sample size to 50

Cellular Telephones and Political Polls

Political pollsters have long relied on telephone surveys
to sample public opinion on matters ranging from presi-
dential elections to advertising effectiveness. As long as
virtually everyone has a telephone, the population of a
city, region, or nation can be sampled by randomly select-
ing telephone numbers and calling those people. Even
people with unlisted telephone numbers are fair game
because pollsters can use computers to generate and
dial telephone numbers. Although there are some people
without any telephone service, they generally represent
less than 5% of the population.

The explosive growth of cellular telephone use, and
particularly the increasing number of people who use
only cellular telephones and do not have land line tele-
phones, became an issue in the 2004 United States
presidential election. During the months leading up to
the election, some experts believed that a dispropor-
tionate number of people who used only cell phones

were young voters. This presented a problem because
political pollsters do not call cellular telephones. Federal
law makes it illegal to use automated dialing machines
to reach cellular telephones, and some state laws pro-
hibit unsolicited calls to numbers at which the recipient
will have to pay for the call (which includes most cellular
telephones). If each voter is equally likely to have only a
cellular telephone, then survey results will not be
affected. If certain segments of the population, however,
are more likely than others to be inaccessible to poll-
sters then the reliability of their polls decreases because
their samples will be biased. The influence, if any, of
young cellular-only voters on pre-election polls for the
2004 presidential election was never conclusively deter-
mined. The potential for poll bias as growing numbers of
people abandon their traditional land line telephones for
cellular phones, however, promises to be an important
consideration in future elections.
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would increase the margin of error to ±14%. Thus, the
often used sample size of 500 represents a compromise
that provides relatively reliable results for a reasonable
expenditure of time and money.

Once the required number of responses have been
obtained, the results are broken down into groups accord-
ing to the age, race, sex, and education of the respondent.
The results for each group are weighted according to cen-
sus results in order to arrive at a final result that is repre-
sentative of the population as a whole. For example, if
30- to 40-year-old Asian males who graduated from col-
lege comprise 2% of the population but represent 3% of
the poll respondents, then the results are adjusted down-
ward so that they do not unduly influence the outcome.

Perhaps the most difficult political polling problem
is the identification of so-called likely voters. Pollsters will
ask respondents if they are likely to vote in an upcoming
election, but there is no guarantee that the respondent
will follow through. Unexpected bad weather, in particu-
lar, can reduce the number of voters and skew results if
different parts of the country are affected. Good weather
in states with many conservative voters may compound
bad weather in states with many liberal voters, or vice
versa. Unexpected mobilization of large blocs of voters
with vested political interests, for example religious or
labor groups, may also invalidate pre-election polls. Thus,
the political pollster is faced with the problem of trying to
sample a population that will not exist until election day.

Potential Applications

The potential applications of statistics in real life will
increase as society continues to rely on technological
solutions to social, environmental, and medical problems.

Optimization methods based on statistics are becoming
increasingly more important as airlines strive to become
more competitive. Advance knowledge of the likely
weight of passengers and their luggage, or the number of
passengers who are likely to miss their flights, can help an
airline to utilize its resources in the most effective manner
possible. High tech manufacturing calls for rigorous
quality assurance procedures to ensure that expensive
and complicated electronic components don’t fail, espe-
cially those used in situations where failure may have life-
threatening consequences. The explosive growth of the
Internet during the 1990s led to the creation of a new
field known as data mining, which involves the statistical
analysis of extremely large data sets containing many
millions of records, that will no doubt continue to grow
as the prevalence of electronic commerce increases.

Where to Learn More

Books
Best, Joel. Damned Lies and Statistics: Untangling Numbers from

the Media, Politicians, and Activists. Berkely: University of
California Press, 2001.

Graham, Alan. Teach Yourself Statistics (2nd edition) Chicago:
McGraw-Hill, 2003.

Huff, Darrell. How to Lie With Statistics (reissue). New York:
W.W. Norton, 1993.

Periodicals
Langer, Gary. “About Response Rates,” Public Perspective. vol. 14

no. 3 (2003): 16–18.

Web sites
ABC News. “ABC News’ Polling Methodology and Standards.”

2005. �http://abcnews.go.com/US/PollVault/story?
id=145373&page=1� (April 9, 2005).

UCLA Department of Statistics.“History of Statistics.” August 16,
2002. �http://www.stat.ucla.edu/history/� (April 9, 2005).



R E A L - L I F E  M A T H 529

Subtraction

Overview

Subtraction is the inverse operation of addition. It
provides a method for determining the difference between
two numbers; put another way, it is the process of taking
one number from another to determine the amount that
remains. While the basics of this fundamental process are
taught at the preschool level, subtraction provides a foun-
dation for many aspects of higher mathematics, as well as
a conceptual basis for some cutting-edge methods of
developing new technology. In addition, subtraction pro-
vides answers to a wide array of practical daily questions
in areas ranging from personal finance to athletics to mak-
ing sure one gets enough sleep to remain healthy.

Fundamental Mathematical Concepts
and Terms

A subtraction equation consists of three parts. The
solution or answer to a subtraction equation is called the
difference. While this term is commonly known, the other
two elements of a subtraction equation also have labels,
albeit far less well-known ones. The starting value in a
subtraction equation is called the minuend, while the sec-
ond term is called the subtrahend. Thus, a subtraction
equation is formally labeled: minuend � subtrahend �
difference. Simple two-place subtraction problems can be
solved by subtracting each column individually, beginning
at the right and working progressively left. The equation
49 � 21 is solved by evaluating 9 � 1 for the right value
and 4 � 2 for the left value to produce a final answer of 28.

Complications in this simple process arise when bor-
rowing and carrying become necessary, as in the equation
41 � 28. Because 8 cannot be directly subtracted from 1,
it becomes necessary to borrow ten from the next place,
in this case the value 4. This operation is made possible by
applying the distributive property of mathematics, that
describes how values can be distributed in multiple ways
and that in this example insures that the value 41 is equiv-
alent to the expression 30 � 11. Following this operation,
solving this equation is simply a matter of subtracting 8
from 11 and 2 from 3 using the same column by column
approach demonstrated in the initial example. Subtrac-
tion equations using large values may require multiple
instances of borrowing in order to produce a solution,
though the method used to solve these equations is iden-
tical to that used for simpler equations.

A second complication arises when subtraction
involves negative numbers. While the physical world does
not contain negative quantities of any physical object,
some measurement systems include negative values, the
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most common of these being the modern system of tem-
perature measurement. Whether dealing with Fahrenheit
or Celsius, both systems measure temperature with values
gradually falling to a value of 0 long before temperatures
stop decreasing; in both systems, the temperatures reach
zero and simply begin again, this time with the number
values labeled negative and decreasing as the temperature
cools, such that �10 degrees is colder than 10 degrees.

Now suppose that we wish to find the difference
between a day’s high and low temperatures, or the temper-
ature range for that day (also called the diurnal tempera-
ture). If the high and low temperatures are both positive,
this is accomplished by simply subtracting the low temper-
ature from the high temperature to find the difference.
However, if the low value happens to be negative, this
process must be handled differently. In order to subtract a
negative number, we simply add the absolute value of that
number; if we wish to subtract �14, we accomplish this by

adding 14. Applying this convention to a day where the high
is 40 and the low is �9, we solve this equation: 40 � (�9),
that we convert to 40 � 9 � 49, the difference in the two
measured temperatures and the temperature range for the
day. This same process can be used for any temperature sys-
tem that does not have an absolute 0 point, as well as in any
other type of measure that uses both positive and negative
values. Among modern temperature scales, the only one
that does not require this type of adjustment is the Kelvin
temperature scale, in which 0 represents the coldest any
object can ever become, and the point at which molecules
have a minimum of molecular motion (many texts incor-
rectly state that at absolute zero motion ceases. However,
this is incorrect because there is still vibratory motion). For
comparison, 32 degrees Fahrenheit (32°F) equals 0 degrees
Celsius (0°C), and equals 273 Kelvin (273 K).

Because carrying is frequently required to resolve sub-
traction equations, most people find subtraction harder to

While the basics of this fundamental process are taught beginning at the preschool level on up, subtraction provides a
foundation for many aspects of higher mathematics, as well as a conceptual basis for some cutting-edge methods of
developing new technology. WILLIAM GOTTLIEB/CORBIS.
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perform than addition. For this reason, a different type of
borrowing and carrying is sometimes employed to simplify
mental subtraction. In an equation such as 41 � 29, the
first step requires borrowing ten and adding it to the 1, the
step at which most mistakes are made, and where a simple
shortcut can help avoid errors. This shortcut is based on
the fact that the simplest number to subtract from any
value is 0, and this shortcut takes advantage of this fact. To
apply this shortcut to the equation 41 � 29, we simply
change the 29 to 30 by adding one. Then, we can easily
evaluate the new equation, 41 � 30, to get 11, to which we
add back the one extra that we subtracted to reach the cor-
rect total of 12. This process can be quickly learned, and
with practice becomes routine, helping improve the accu-
racy of mental arithmetic.

A Brief History of Discovery 
and Development

Subtraction has been used for millennia, initially
being calculated with counting sticks, stones, or other
items, and later using early tools such as the counting
table and the abacus. However, the written notation for
subtraction, the modern minus symbol, came into use
much more recently. In England during the 1400s, the
dash as a minus symbol was first used to mark barrels
that were under-filled, signifying that the marked barrels
had missing or inadequate contents. By the 1500s, this
notation had migrated from barrels into mathematical
notation as the accepted symbol for subtraction, and has
remained in use ever since.

The modern method of solving subtraction problems
can be traced as far back as the 1200s, when this method
was originally called decomposition; not until the 1600s
did the term “borrowing” come into use. Two other sub-
traction methods were also taught well into the twentieth
century, though these are largely forgotten today. One
fairly intense debate arose during the early 1900s, dealing
with the proper notation for subtraction. While students
today are taught to cross out values and write in new ones
above them as part of the borrowing process, this practice
did not appear widely in American textbooks prior to the
middle of the twentieth century. Before this adoption, an
ongoing debate raged over the use of these hash marks, or
crutches as they were originally called. Critics argued that
subtraction should be accomplished without the use of
this pejoratively labeled aid; one 1934 math text went so
far as to give examples of equations performed both with
and without “crutches,” labeling the version without
crutches the preferred method and noting that teachers
should not allow students to use crutches when solving

problems. Advocates of crutches, many of them school
teachers, based their argument on simple utility, counter-
ing that the use of crutches aided students in calculating
correct results with fewer errors. A 1930s study published
by researcher William Brownell offered strong evidence
that the teachers were right, and that using crutches or
other notations to keep track of borrowing did reduce
errors in subtraction. Almost immediately following this
study, textbooks teaching the crutch notation method of
subtraction became the norm, and this technique contin-
ues to be used today.

Real-life Applications

SUBTRACT ION  IN  F INANC IAL
CALCULAT IONS  

Profit is the amount earned from a business transac-
tion, and can be found using subtraction. In the simplest
form, profit is determined by subtracting cost from sell-
ing price; for the up-and-coming lemonade merchant
who takes in $6.75 from her customers after spending
$2.25 on lemonade mix, cups, and ice, a simple profit cal-
culation of $6.75 � $2.25 reveals a positive outcome or
profit of $4.50. However, profit calculations are rarely this
simple, and in many cases, unplanned costs can subtract
significant amounts from the final profit earned.

Consider a beginning entrepreneur trying to make a
start on E-bay. This young businessman purchases the
latest Tony Hawk PlayStation game at a garage sale for
$14.00. Because he already owns a copy of this game, he
is eager to sell it on E-bay for a quick profit. He lists it on
the auction site with free shipping and a “Buy-it-now”
price of $19.95 that he calculates will give him a quick
$5.00 profit after paying his expenses. The game sells
quickly, the seller ships it to the buyer, and then sits down
to calculate his profits.

The beginning point of this calculation is the
amount of income received, often called gross income,
that in this case is $19.95. From this starting value, the
seller must subtract all his expenses to find his actual
profit, sometimes referred to as net income. He begins with
his cost for the game, that was $14.00; 19.95 � 14.00 �
5.95. From this value, he then subtracts his other costs,
such as postage of $1.45; 5.95 � 1.45 � 4.50. The seller
was surprised to find that the padded envelope he needed
was more expensive than he expected, at 75 cents; 4.50 �
.75 � 3.75. Other fees also must be subtracted, and while
most of these are small, they begin to accumulate. E-bay
fees including a listing fee, “Buy-it-now fee,” additional
photo fee, and final sale fee totaled 1.75; 3.75 � 1.75 �
2.00. The final surprise for the young businessman comes
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when he receives his electronic billing statement and
learns that the service charged him 3% of the total sale
price of $19.95, or 60 cents; 2.00 � .60 � 1.40. The final
profit left after subtracting all expenses is $1.40, far less
than he had hoped. What appeared to be a fairly prof-
itable business transaction turned out to be a near-loss
when all the relevant expenses were correctly subtracted.

TAX  DEDUCT IONS

One of the more enjoyable uses of subtraction
involves the use of tax deductions. Throughout history,
most taxpayers around the world have complained that
taxes are too high. In the American federal tax system,
several items may be subtracted from total income before
taxes are calculated, and in many cases, the net tax savings
from these items can be thousands of dollars.

The standard U.S. Federal Income Tax form is called
Form 1040. On the first page of this form, taxpayers enter
the total amount of their earnings for the year. However,
before paying taxes, numerous items are subtracted, reduc-
ing the taxable income as well as the actual income tax
paid. For instance, taxpayers are allowed to take a personal
exemption for each family member; for tax year 2004, this
exemption is $3,100, meaning that a family of four can
subtract $3,100 four times, for a total reduction in taxable
income of $12,400. Contributions to an Individual Retire-
ment Account are often deductible up to a maximum limit
(e.g., $3,000 per person), and self-employed individuals
(those who don’t work for a company) can deduct their
costs of health insurance from their taxable income. In
many cases, students can deduct tuition and textbook costs
up to the maximum allowed limit as well. Finally, expenses
such as mortgage interest on a home loan can be deducted
prior to calculating the actual tax bill.

Only after all these items and others are deducted, or
subtracted from gross income, is a final value reached.
This value, called taxable income, is the actual amount on
which federal taxes are calculated. Because so many items
can be subtracted before calculating taxes, a typical fam-
ily of four might easily reduce its taxable income by
$20,000 or more by following the tax instructions care-
fully. Because the tax system is designed with these sub-
tractions as an expected part of the process, failing to
claim these deductions is equivalent to voluntarily paying
more income taxes than required, something very few
taxpayers have any interest in doing. Modern tax software
has made the previously tedious process of tax filing far
simpler and more accurate.

Along with electronic tax filing, some tax services offer
to give filers their tax refund immediately, in the form of a

refund anticipation loan or RAL. RALs are offered to tax
filers who don’t want to wait for their tax refund to arrive.
While RALs may be a useful tool for situations in which
money is needed immediately, an RAL can significantly
reduce the amount of the final refund. For example, a con-
sumer expecting a tax refund who requests an RAL would
typically have to subtract several fees, including an applica-
tion fee that averages about $30, and a loan fee that can
range from $30 to more than $100. For 2005, a refund of
$2,050 incurred an average fee of $100, which reduces the
total refund to $1,950. While this reduction seems small, it
represents a 5% fee for borrowing this money until the
actual refund arrives from the IRS. Because the average
refund is now deposited in less than two weeks, this loan
equates to an annual percentage rate of roughly 187%. In
2003, 11% of taxpayers took RALs, costing themselves
more than $1 billion in fees for these short-term loans that
many consumer advocates criticize as an unreasonable
effort to charge taxpayers interest on their own money.

Rebates are a popular method of selling an item for
less than its original price in order to attract buyers.
Rebates come in several forms. Most new cars today are
sold with a manufacturer’s rebate, meaning that the sticker
price on the window of the car is automatically reduced by
subtracting the rebate amount. This rebate is in addition to
the normal amount subtracted from the sticker price by
most car dealers. Automobile rebates are paid automati-
cally to any buyer, and are given at the time of purchase.
Information on actual dealer costs and available rebates
can be found at numerous online car buying sites.

Another popular form of rebate is the mail-in rebate.
These rebates are frequently offered on electronic equip-
ment and other high-priced items, particularly in the case
of older merchandise that manufacturers wish to clear
out of inventory. A mail-in rebate is not paid at the time
of purchase; instead, the purchaser is required to com-
plete one or more rebate forms and mail these forms,
along with specific pieces of documentation, to a process-
ing center. If the documents are submitted correctly and
prior to the offer’s deadline, a check is normally mailed to
the buyer within a period of four to six weeks.

Why are mail-in rebates so popular with manufactur-
ers, and why do companies use rebates instead of simply
reducing the price of the products? Consumers behave in
predictable ways, and most rebate programs save manu-
facturers money due to a phenomena researchers call slip-
page, in that many customers never redeem their rebates.
Estimates vary on just how high slippage rates are, and the
rate is influenced by factors such as the size of the rebate,
the length of time allotted to redeem it, and the difficulty
of complying with the program rules. However, on
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average, rebate redemption rates for small items can be as
low as 2%, while for larger rebates in the $50 to $100
range, redemption levels typically hover around 50%. The
benefit of rebates to the manufacturer are obvious: they
can advertise a much lower price, knowing that half or
fewer of the buyers will get this lower price, while the rest
will pay the full, unrebated amount. Rebates can be a won-
derful bargain for those who follow through on them.
However, for many buyers, the promised reduction in
price is never realized due their own unwillingness to fol-
low through on the process.

While most highways can be driven free of charge,
toll roads require a driver to pay for the privilege. While
using a toll road has traditionally meant stopping to
throw a handful of coins into a basket or waiting for an
attendant to make change, many toll roads now provide
the option to pay electronically without stopping. These
systems, with names such as Pike Pass in Oklahoma and
FasTrak in California, allow a user to purchase a small
electronic unit to mount in her vehicle; this unit can then
be filled by paying in advance and then used like a debit
card while driving. To use the automated systems, drivers
typically change into a specific lane that is equipped with
sensors to read data from the user’s transmitter. Using
this identification data, the system automatically sub-
tracts the proper toll amount from the user’s account; in
many cases, the system automatically sends a reminder e-
mail or letter when the balance drops below a set limit.
Drivers using these systems not only avoid the hassle of
carrying correct change with them and waiting in line to
pay, some states also give them a reduced toll rate for
using the automatic system. In addition to saving 5–10%
on their tolls, drivers in Oklahoma also enjoy the pleasure
of paying the toll while never dropping below the 75 mile
per hour posted speed limit on the state’s tollways.

SUBTRACT ION  IN  ENTERTA INMENT
AND  RECREAT ION

One of the more entertaining uses of subtraction is a
process known as a countdown, in that a large starting
value is gradually reduced by one until it finally reaches
zero. Countdowns are used in a variety of settings in that
people need to know in advance when a particular event
will happen. Countdowns are perhaps best known for
their use in space exploration, where an enormous clock
traditionally ticks off the final seconds until liftoff. While
this process provides dramatic footage for television news,
the use of countdowns, which typically start several days
before launch, is actually a method of insuring that the
complex series of events required for a successful launch
are completed on time and in the proper sequence. Space

launch countdowns normally include several planned
holds, during which the countdown clock stops for a set
period of time while various checks are made.

Countdowns are also used for recreational purposes.
Each year, millions of people across the globe eagerly
count down the final seconds until the arrival of a new
year, celebrating its arrival with cheers, hugs, and toasts.
Hockey players, banished to the penalty box for rule vio-
lations, sit and impatiently wait for their penalty time to
count down to zero so they can re-enter the game. Top
ten lists, including television host David Letterman’s
long-running version, are often used to poke fun or
entertain by leading the audience gradually down from
ten to one, and weekly top 20 countdowns guide music
fans gradually to number one, the week’s top song.

Golf Handicaps While most sports force players to com-
pete head-to-head without any adjustment to the score, a
few events attempt to level the playing-field by adjusting

A countdown clock on the Eiffel Tower in Paris marking the
last 100 days before the year 2000. Countdown clocks use
simple subtraction to countdown to zero. AP/WIDE WORLD

PHOTOS. REPRODUCED BY PERMISSION.
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player totals. Golf is one of the more popular sports in
which subtraction is used to allow players of differing
skill levels to compete on an equal basis. Using a system
known as handicapping, a golfer’s handicap index is
assigned based on a series of ten recent rounds he has
played. Using these game scores, a difficulty rating for the
courses on which they were played, and a complex for-
mula, an authorized golf club can issue an official handi-
cap index to a player. Using this index, each player can
then calculate his handicap for a particular course, mean-
ing he is given strokes and can subtract a specific number
of shots from his score. Using this system, a golfer who
normally scores 76 and a golfer who normally scores 94
can compete fairly on the same course. By subtracting the
proper number from each score, each golfer is able to
arrive at an adjusted score and compare how well or how
poorly he played that particular course that day.

Track and Field One measure of an athlete’s performance
is his vertical jump. Vertical jump is not a measure of how
high an athlete can leap in absolute terms, because this
result is strongly influenced by an athlete’s height and
arm-length; rather, vertical jump is a measure of how
high an athlete can propel himself from a standing start,
relative to his standing height; for this reason, it provides
a better measure of absolute jumping ability than a sim-
ple measure of how high a leaping athlete can reach.

Vertical jump is calculated using subtraction. First, an
athlete’s standing reach is measured by having him stand
flat-footed and reach as high as possible with one arm.
Then, the athlete’s jump reach is measured by having him
stand and jump straight up without taking a step. True ver-
tical jump is calculated using the following equation: Jump
Reach � Standing Jump � Vertical Jump. For reference,
professional basketball players typically have a standing
vertical jump of 28–34 inches, meaning their final reach
height is almost three feet higher than their standing reach.
Jumping, like most other athletic skills, can be improved
with training. Because of the explosive nature of jumping,
performance is often improved using both strength-
building and power-enhancing forms of exercise.

Pop Culture

Each December, millions of people around the world
plan for a new year by making one or more New Year’s
resolutions. While many of these resolutions focus on
addition, such as making more money, spending more
time with family, or playing more golf, the two most pop-
ular resolutions for 2005 both involved subtraction. The
second most popular resolution in 2005 was to lower

payments by reducing personal debt. The most popular
resolution has stood atop the list for some time, and will
probably remain there: more people chose subtracting
pounds, or losing weight, than any other New Year’s res-
olution for 2005.

Weight Loss and Dieting

Because losing weight is such a popular goal, one
might assume that many people are reaching this goal and
losing weight. In truth, the popularity of the goal is proba-
bly tied to the increasing incidence of obesity; as of 2000,
approximately two-thirds of United States adults were
defined as overweight or obese, and predictions suggest that
this number will continue to rise. Most of the hundreds of
methods of subtracting pounds involve subtracting from
what is being eaten. Some diets reduce intake of fats while
others restrict intake of carbohydrates. While debate con-
tinues to rage on which plans work best (and that do not
work at all), one piece of advice seems to make sense: reduc-
ing the amount of food on one’s plate helps many people
eat less. This simple subtraction can provide a solid starting
point for any weight-loss plan, and has been shown to lead
to weight loss even without any other behavioral changes.

Sleep Management

Before the invention of the electric light bulb, Amer-
icans slept an average of nine hours per night; today, the
average is one to two hours less. While doctors and sleep
experts recommend that teenagers get 8.5–9 hours of
sleep each night, the average teenager in America gets far
less. Sleep experts say that each person has a set need for
sleep each night, and that each hour of missed sleep adds
up to create a sleep deficit. This deficit describes how far
in debt a person is in terms of sleep and represents
needed sleep hours that have been subtracted and applied
to other activities. While being a few hours overdrawn on
sleep is not an immediate danger and can usually be
made up over a weekend of sleeping late, the long-term
impact of inadequate sleep can be serious. As the sleep
deficit grows, a variety of negative physiological out-
comes become more likely, including obesity, high blood
pressure, reduced productivity at work, poor mood, and
increased an likelihood of accidents at home, at work, and
while driving. While sleep time can be subtracted over the
short-term without major impact, the sleep account must
eventually be rebalanced by adding additional hours of
sleep to the account.
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Subtraction in Politics and Industry

DOOMSDAY  CLOCK

One famous countdown clock has been ticking for
more than half a century, though this clock has actually
moved only a few minutes during that time, and has
occasionally run backwards. In June of 1947, the Bulletin
of the Atomic Scientists, an academic journal dealing
with atomic power and physics, placed on its cover a
clock, with the hands showing seven minutes until
midnight. In a lengthy editorial inside, the journal
described this so-called Doomsday Clock, in which mid-
night signaled the destruction of mankind by atomic
weapons. The Doomsday Clock stirred a great deal of dis-
cussion with its appearance during the earliest years of
the atomic age.

In the years since 1947, the Clock has made many
appearances on the journal’s cover, with the minute hand
moving either forward or backward depending on the
state of world events. In 1949, after the Soviet Union det-
onated its first atomic weapon, the clock advanced four
minutes, displaying three minutes before midnight. Four
years later, following the test detonations of thermonu-
clear devices in both the Eastern and Western hemi-
spheres, the hands advanced again, reaching two minutes
until midnight. During the following years, events
including new arms treaties and the rekindling of old
conflicts nudged the minute hand repeatedly backward
and forward. The signing of the Strategic Arms Reduc-
tion Treaty (START) in 1991 moved the clock to seven-
teen minutes till midnight, its earliest point ever. At its
last appearance in 2002, the clock stood once again at
seven minutes till midnight.

Engineering Design

As popular as weight loss goals are for individuals,
subtracting pounds or ounces can also become a major
goal in industry. During the design phase of the Apollo
moon missions, NASA became concerned that the Lunar
Module, the ship that would carry two astronauts on the
final leg of the trip to the moon’s surface, was signifi-
cantly overweight. Major redesigns began, and, by reduc-
ing the size of the observation window, cutting the
thickness of the craft’s skin, and making other changes,
the craft’s weight was significantly reduced. However, in
order to reach the specified weight target, Grumman, the
craft’s builder, resorted to extraordinary measures, at one
point actually paying company engineers a bonus for
each ounce they were able to shave off the craft’s weight.

The efforts of these professionals were successful, and the
lunar module performed as designed.

Weight reduction is also a priority in the automobile
industry. In order to meet fuel economy goals, most auto-
mobile manufacturers have made significant changes to
their designs in order to subtract from the vehicle’s total
weight. In many cases, steel has been replaced with alu-
minum, which is more expensive, but far lighter; in other
cases, plastics or lightweight carbon composites have
been introduced in order to reduce weight. One extreme
example of this type of engineering weight loss involves a
revolutionary car, General Motors’ EV1, the first totally
electric production car. Introduced in 1996, the EV1 was
also faced with extraordinarily tight weight limits in
order to reach its target mass of under 3,000 pounds
(1,360 kg). Toward this end, GM engineers adopted a
variety of changes to subtract weight from the vehicle.
Among the solutions was the decision to use aluminum
for the frame and wheels, shaving more than 300 pounds
(136 kg) off the weight of traditional steel parts, and the
choice of a non-traditional material, magnesium, for the
steering wheel and seat-backs. While the EV1 was not a
commercial success, GM’s experience in cutting weight
during its development has led to applications in other
vehicles. According to one calculation, an automaker can
subtract $4.00 from a car’s cost for each pound of weight
it manages to remove from the design.

Potential Applications

While the basic process of subtraction itself offers few
potential breakthroughs, the concept of removing items
from a collection in order to reach an objective remains
useful, and one early application of this principle is already
producing impressive breakthroughs. Evolutionary design
is a technique that allows computers to consider millions
or billions of possible solutions to a complex problem to
arrive at an optimal solution. In many ways, this process is
similar to the concept of natural selection, in which the
stronger predator survives to reproduce and pass his genes
on to succeeding generations while the weaker predator is
eliminated from the gene pool.

Antenna Design

The field of antenna design is unfamiliar to most
people. However, the ability to design lightweight, effi-
cient antennas is critical to the space program and other
industries. One challenge in this endeavor has been that
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antenna design requires a deep understanding of the
field, limiting this work to a relative handful of experts. A
second limitation is that even these experts are not always
certain how to improve the design of a specific antenna.
Evolutionary design accepts that the present understand-
ing of how to improve antennas is limited; this process
instead simply creates and evaluates so many different
choices that it is likely to produce a useful one.

The evolutionary design process begins with a
researcher creating a group of antennas with different
combinations of shapes and sizes, that are then
mathematically described for the software. Next, the soft-
ware applies random mutations to these beginning anten-
nas, such as lengthening some and giving others more or
fewer arms. After that, the resulting antennas are tested
for performance. Using the results of this testing, the
more effective models are kept, while the poorest per-
formers are replaced with new samples similar to the
good performers. Then, the process of mutating the
designs, testing the resulting models, and retaining 
the best versions is repeated. After this process of evolu-
tionary improvement has occurred for thousands of gen-
erations, a single model eventually emerges that offers the
best possible combination of performance traits.

In the case of this small, one-inch square antenna
designed for satellite use, more than ten hours of super-
computer time was required to assess millions of possible
configurations; by comparison, an expert antenna
designer would have needed twelve years working full-
time to process the first 100,000 designs. Further, given
the strange appearance of the antenna, which resembles
little more than a collection of strangely bent paper clips,
it seems doubtful that a human designer would ever have
proposed such a configuration. The secret to this unique
design process lies in a radically advanced form of sub-
traction that allows removal of the every design except
the very best ones, allowing those designs to be further
enhanced. Future uses of this technique are anticipated in
producing such developments as computer chips that can
heal themselves in the case of malfunction, and improved
components for implantable medical devices.
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Symmetry

Overview

Objects that have parts that correspond on opposite
sides of a dividing line are said to have symmetry.

Fundamental Mathematical Concepts
and Terms

If a spatial operation can be applied to a shape that
leaves the shape unchanged, the object has a symmetry.
There are three fundamental symmetries: translational
symmetry, rotational symmetry, and reflection symmetry.

An example of translational symmetry can be seen in
lengths of rope or in the patterns on animals. If the rope
is closely inspected, a braided pattern can be seen. By
moving along the rope a bit further, the same pattern is
seen again; thus the rope has translational symmetry.
This pattern is very important for climbers, if the 
braided pattern is distorted in any way the force will no
longer be evenly distributed along its length and it can
break at this point under load. For this reason, climbing
ropes will often have brightly colored patterns in 
their braiding to help the climber spot any deviations
from this symmetry.

Imagine a sunflower that is the object of an opera-
tion, and the operation can be applied to its rotation
around the center of the flower. If it is rotated so that the
petals line up again so that it will look the same as before,
the sunflower pattern is said to be “symmetric under
rotation.” Symmetries are probably the easiest patterns in
nature for us to see and also the most common. The rea-
son that nature has used symmetry in such abundance 
is that it allows complex objects to be constructed 
from simpler shapes, greatly reducing the amount of
information that needs to be stored and processed to
build the object.

Your whole body has reflection symmetry along the
center. This symmetry can be seen if you stand by a reflec-
tive shop window, or large mirror, so that one half of your
body is hidden from view and the other half is reflected.
To an observer it looks as if you are whole because
humans have a biological symmetry (often distorted or
fused in the case of internal organs such as the heart) that
roughly corresponds to an imaginary plane through the
sagittal suture of the skull that divides the body onto left
right planes.

Other symmetries can be built by repeated applica-
tion of these basic symmetries, for example, the teeth of a
zipper have a symmetry made by reflection and transla-
tion. This symmetry is called glide-reflection.
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Anatomical Nomenclature

Lumbar region
(small of back) or loin

Sacral region

Gluteal region
(buttock)

Proximal end
of forelimb

Distal end
of forelimb

Proximal end
of thigh

Distal end
of thigh

Lateral region
of leg

Medial region
of legPosterior

(dorsal) view
(b)

Anterior
(ventral) view

(a)

Thoracic (chest)

Cephalic
region (head)

Upper
extremity

Lower
extremity

Superior

Right side

Lateral

Medial

Proximal end
of leg

Distal end
of leg

Inferior

Inferior

Celiac region
(abdomen)

Pelvis

Frontal
(Coronal) plane

Parasagittal plane

Midsagittal plane

Right
side

Left
side

Oblique plane

Left side

Transverse plane

Cranial (superior)

A plane through the sagittal suture establishes a plane of left and right symmetry for the human body. ILLUSTRATION BY ARGOSY.

THE GALE GROUP.
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EXPLOR ING  SYMMETR IES
To understand the nature of translation, rotation,

and reflection symmetry, one must first define how these
operations act on an object. If an object is defined by a set
of points, an operation can be defined by its action on
these points.

Let us start with translation, the basic braided pat-
tern of a rope can be recorded by a number of points
which can be grouped together into a set called X_braid.
As a simple braiding, imagine the rope has a repeating
pattern made from two crosses inside by a box. This pat-
tern can be represented by points as the set of points
X_braid. The act of translation will be to copy and shift
each of the sets by a fixed distance T. If the translated
points, X_new � X_braid � T match the current braid-
ing on the rope at that point X_new � X_current, then
the translation, T, was symmetric. In our example this
means that the translated “two cross and box” pattern
matches the current pattern at that point on the rope.
This translation can be applied as many times as we like,
if our rope is long enough, and our new pattern will
always match the braiding at that point. (See Figure 1.)

For rotational symmetry, using our flower pattern we
can find the relation between the angle the flower is
rotated and the number of petals on the flower. Start by
marking one of the petals with a cross so the rotation can
be seen. If there are n petals and each rotation takes us to
the next petal, it will take n rotations for the all the petals
to be marked, a 360-degree rotation. The angle of one

rotation that moves the cross from one petal to the next
is therefore 360/n.

As an example, think of a flower pattern with 5
evenly spaced petals. The smallest rotation that will leave
the flower pattern unchanged is 360 / 5 petals � 72
degrees. So, if we wanted to draw a flower with five petals
that has a rotational symmetry, each petal must be spaced
exactly 72 degrees from the next. (See Figure 2.)

72 degrees

A flower with five petals

Figure 2.

X_braid1 X_braid2 X_braid3

X_braid4 X_braid5 X_braid6

T T + T + TT + T

Figure 1.
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Consider a flower pattern that is rotationally sym-
metric with four petals; this means that each petal will be
spaced at 90 degrees from the next for the formula.
Another shape that has four points that are each separated

by 90 degrees around the center is a square. All of our
flower patterns with rotational symmetry can be repre-
sented by geometrical shapes such as this. For example, a
flower with two petals is identical to a line, with three it is
identical to an equilateral triangle (a triangle where each
side has an equal length), with four a square, with five a
pentagon and so on. (See Figure 3.)

The operation for a reflection is defined by drawing
a line that acts as a mirror. This is easier to see if it is done
in stages for every point in our object. The first stage is to
draw a line from a point through the mirror line; this is
called the line of reflection and must cross the mirror line
at exactly 90 degrees. The next step is to measure the dis-
tance along the line of reflection from the point to the
mirror line. The reflection of the point is made by draw-
ing a point on the opposite side of the mirror line at an
equal distance along the line of reflection.

If an object is placed in front of the mirror line and we
generate a number of reflected points behind the mirror
line and join them up we simply have made a reflection of
the object but this is not a symmetry of the object as the
reflected points are not matched up with the original object.
However, if we can place the mirror line in the center of the
object and all the points match up we have a reflective sym-
metry, for example a mirror line drawn down the center of
a photograph of a face almost shows this symmetry.

An example of perfect reflection symmetry is a square.
Using the reflection operation, there are four lines that can
be drawn that will keep the shape of a square. The first is
from the top left hand corner to the bottom right hand
corner (L-R), from the center of the top edge to the center
of the bottom edge (TC), the top right corner to the bot-
tom left corner (R-L) and along the center of the middle
left to right edge (MC). Now, mark the top left corner with
a cross as was done with the flower pattern to see the effect
of each reflection. Under the (L-R) reflection the cross will
not move, under (TC) the cross is reflected in the top right
corner, under (R-L) the cross is reflected to the bottom
right corner and under (MC) it is reflected to the bottom
left corner. This is identical to the effect of the cross under
rotation; our square has to be rotated four times to bring
the cross back to the starting position and this is also the
number of lines of reflection symmetry. (See Figure 4.)

Geometric objects with rotation symmetry, lines, tri-
angles, and squares etc. have an identical symmetry to
reflection. The number of reflection planes for a geometric
shape is given by the number of rotations needed to make
the object turn one full circle, 360 degrees. This is simply
equal to the number of corners, or petals if we are using a
flower shape. The angle from the center between two
opposing corners is given by the rotation formula, 360/n.

A flower with two petals
is the same as a line

A flower with three petals is the
same as an equalateral triangle

A flower with four petals
is the same as a square

A flower with five petals is
the same as a pentagon

Figure 3.

Reflective symmetry of a square

(TC)(L–R)

(MC)

(R–L)

Figure 4.
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An equilateral triangle, or a flower with three petals,
has 3 lines of reflection and rotational symmetry every 45
degrees from the formula. A square, or a flower with four
petals, will have 4 lines of reflection and rotational sym-
metry every 90 degrees and so on.

Real-life Applications

ARCH I TECTURE
Nature is not the only one to use this tool, mankind

uses it extensively as well. Look at most architecture and
you will see symmetries used in the construction. The
architect uses symmetry to distribute the forces in the
building in a manageable way and for artistic reasons to
give the building an appealing elegance. Many psycholog-
ical studies have shown the human concept of symmetry
is closely related to perceptions of beauty when humans
evaluate shape as either beautiful or ugly.

Symmetry and Perceptions of Beauty

Symmetry has artistic importance as it is deeply
embedded in our experience of the world and how it
should look. It gives us strong feelings of how beautiful or
ugly something is. Non-symmetric and symmetric shapes
can affect us quite deeply, and these effects are exploited by
modern artists. For an example Pablo Picasso often chal-
lenged perceptions of symmetry with a stunning effect.

FRACTAL  SYMMETR IES
There is another special form of symmetry that is

common in the natural world that is called fractal sym-
metry, or scaling symmetry. If a fractal is scaled up or
down by a certain magnification it will look exactly the
same as before. In nature this type of symmetry can be
seen in many plants. A tree, for example, has a thick truck
that divides into a number of branches; each branch then
divides into a smaller branches and so on. It is possible to
imagine that if one of these branches were scaled up it
would look like a tree itself. This scaling symmetry is
finding uses in many areas of science, such as weather
patterns, the stock market and earthquake prediction,
that are too complex to predict with normal means.

An example of a simple fractal shape is the Sierpin-
ski triangle. To draw a Sierpinski triangle, start by draw-
ing an equilateral triangle. Along the middle of each edge
make a point. Each of these points is then joined by a line.

The sun sets under the Arc de Triomphe in Paris, providing a
display of symmetry for tourists and drivers on the Champs-
Elysees. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.

Figure 5: Sierpinski triangles.

Four magnifications of the Sierpinski triangle

Step 1 Step 2

Step 3 Step 4
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can be shown to be the same, hence they are symmetric.
This unified force is called electromagnetism. The study of
this abstract symmetry has, amongst other things, allowed
the development of radio technology used to carry mobile
phone calls and television signals. The study of symmetries
and their properties in mathematics is called group theory.

Where to Learn More

Web sites
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P/picasso/picasso205.html� (January 30, 2005).
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symmetry.html� (January 21, 2005).

Key Terms

Reflection: The operation of moving all the points
to an equal distance, on the opposite side of a
line of reflection.

Rotation: The operation of moving all the points of
an object through a fixed angle around a fixed
point.

Translation: The operation of moving each point a
fixed distance in the same direction.

This divides the triangle into three smaller triangles.
Repeat the operation along the middle edges of these tri-
angles, only for the triangles that point upwards. This
continues forever. (See Figure 5.) No matter how closely
we magnify the triangle, we will always find that it is
made from equilateral triangles exactly like the one we
started with.

IMPERFECT  SYMMETR IES
The symmetries seen in nature are rarely perfect.

Consider the rotational symmetry of a flower; on closer
inspection each petal will have a unique pattern and
marks that define it from the rest. The translation sym-
metry of the marks on animals and the reflection sym-
metry of the human body is never quite perfect. A human
face made with a perfect reflection symmetry by a com-
puter will look odd. These imperfections probably arise
due to perturbations in the natural replication process. It
seems that these imperfections are important for giving
natural objects unique identities.

SYMMETR IES  IN  NATURE
There are other forms of symmetry that can help us

understand the way our world works. These symmetries
are often highly abstract and mathematical but offer deep
insight into science and nature. Our day-to-day experience
of electricity and magnetism show that they exhibit very
different characteristics, but under certain operations they
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Tables

Overview

A table consists of a series of rows and columns that
are used to organize various types of data.

Tables serve many uses in daily life, providing a
teaching tool for basic math problems or easy access to
the solutions to more complex equations, and displaying
information in a logical format that enables anyone
access to data they might otherwise be unable to deter-
mine themselves.

Fundamental Mathematical Concepts
and Terms

Table headings, both along the top of columns and
the start of rows, set the parameters for what sort of
information the table will provide, and answers to each
problem or question can be found by tracing each col-
umn and row to their point of intersection. The actual
mathematical equation or work that has been done to
provide each answer is done behind the scenes, and the
table itself only displays the starting points and the solu-
tions. In the case of highly complicated mathematics, the
table provides the solutions to readers unable to perform
the steps to find the answers on their own. Even if the
equations are less complex, a table can save the time nec-
essary to work out the solution by displaying the work
that has been done earlier.

The amount of information provided by the table
depends on the subject matter. Tables used for basic
mathematical equations, such as addition or multiplica-
tion, generally cover basic numbers from 1 to 10, or 12, or
else series of numbers, such as 10s or 100s. Complicated
mathematical equations, such as logarithms, may be illus-
trated over many tables, each one covering a small num-
ber of problems. Other tables, where the mathematical
application is less obvious, include the information rele-
vant for that specific function. For instance, time tables
for train departures would be based on the length of the
day and the frequency of train trips.

A Brief History of Discovery 
and Development

The earliest records of the use of tables date back to
Mesopotamia in approximately 3000 B.C., and the Sumeri-
ans, who used symbols to denote different goods and kept
track of quantities of each item in table form on tablets.
Between 2000 and 1600 B.C., the Old Babylonian period,
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two types of multiplication tables came into use. The first
kind simply listed the multiples for a single number, while
the second combined a series of these smaller tables on one
tablet, illustrating a number of multiplication equations.

Single tables listed a principal number, denoted as p,
then indicated the solutions for multiplying p by num-
bers 1 through 20. Mesopotamians operated on a base 60
system of numbers, and therefore could have calculated
through 59p, but instead their tables went in increments
of 10 following 20p, and to determine a number in
between, one simply combined equations, so that 26p was
the result of adding 20p with 6p. Combined tables
included a variety of single tables on one tablet, with the
individual tables generally written in descending order
according to the primary number illustrated.

Examples of later tables were discovered in early
Egyptian texts, listing the values of letters used as place
holders in equations that contained fractions. Early Ara-
bic astronomers utilized tables to keep track of variables
used in calculating planetary positions necessary for
astrology. Then in the eleventh century, Hebrew
astronomers corrected errors in observations based on
inconsistent calculations, and began recording constants
in tables to ensure that all future observations were based
on the same set of calculations.

As mathematical equations grew more complex,
tables were used to record trigonometric functions, such
as values for sine and cosine, and eventually logarithms
and differential equations. In 1627, Johannes Kepler
printed the first modern astronomical tables, the Rudol-
phine Tables, which provided accurate, complex plane-
tary calculations based on longitude and latitude of the
stars, previously not available.

Real-life Applications

MATH  SK ILLS
Tables are commonly used to teach basic math skills,

such as addition and multiplication—equations that are
eventually committed to memory. For addition, a series
of numbers run across the top of the columns and down
the start of the rows as headings. Then each number
across the top is added to each number down the side and
the result entered at the intersection of the column and
row. The table is used to drill students in the basic addi-
tion skills. (See Figure 1.)

In multiplication, the numbers along the top of the
columns are instead multiplied by those down the side of
the rows, with the solution again placed at the intersec-
tion. This format allows certain patterns to become clear,
often providing tricks that help students memorize the
answers to the equations. For instance, when multiplying

Types of tables

Tables fall into various categories, including mathe-
matical, scientific, and astronomical. They can be
used to communicate schedules, to translate weights
and measures from one standard to another, or to
convert currencies between countries. When design-
ing a Web site, tables can help provide underlying
structure as part of the coding of a Web page. Tables
are available that convey various statistical informa-
tion, including salary ranges for different jobs or for dif-
ferent regions; religious or political demographics by
town, state, or country; types of disabilities and per-
centage of the population affected; health trends and
life expectancies. Financial information is frequently
presented in table format, from the transactions in
your checking account, to interest rates, to income 
tax brackets. Tables provide ready-made data that
enables you to get the information you need without
extensive calculations or research.

+ 0

Addition Table

1 2 3 4 5 6 7 8 9 10

0 0 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 11

2 2 3 4 5 6 7 8 9 10 11 12

3 3 4 5 6 7 8 9 10 11 12 13

4 4 5 6 7 8 9 10 11 12 13 14

5 5 6 7 8 9 10 11 12 13 14 15

6 6 7 8 9 10 11 12 13 14 15 16

7 7 8 9 10 11 12 13 14 15 16 17

8 8 9 10 11 12 13 14 15 16 17 18

9 9 10 11 12 13 14 15 16 17 18 19

10 10 11 12 13 14 15 16 17 18 19 20

Figure 1: Addition table.
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numbers by a factor of 9, as the first digit of the solution
increases by one, the second digit decreases by one, so that 4
� 9 = 36, 5 � 9 = 45, 6 � 9 = 54, and so on. (See Figure 2.)

Similar tables can be used for both subtraction and
division.

For more complicated math equations, tables list
solutions that might normally require complicated calcu-
lations or even the use of a computer, or values for vari-
ables used in complex equations. Examples include
trigonometry, logarithms, and differential equations.

OTHER  EDUCAT IONAL  TABLES
Another table studied in school is the periodic table.

Used in chemistry, this table displays the various elements
according to abbreviation, their placement providing
information such as atomic weight. Similar substances
are grouped together, such as gases, liquids, and those ele-
ments that are synthetically crafted.

Probability and statistics findings can also be dis-
played using a table. Available data provides the material
for headings, while the resulting odds for each combina-
tion fill in the body of the table. In genetics, this sort of
information can be applied to the Punnet square. This
small table illustrates the likelihood that various genetic
traits will be inherited by a child, based on what genetic
material each parent might donate, and whether that

material is dominant or recessive. An example of this
using two peapod plants, one tall carrying a recessive
short gene (Tt) and one short (tt), where tall is the dom-
inant trait, results in half of the second generation plants
being tall and half of them short. (See Figure 4.)

CONVERT ING  MEASUREMENTS
Units of measurement vary from country to country,

with some nations using metric measurements and oth-
ers utilizing a standard of feet, yards, miles and so on.
There are calculations that allow one to translate inches
into centimeters or yards into meters, but tables that illus-
trate these transitions eliminate the need to recall the
relationship between the two forms and provide a short-
cut to performing the math. (See Figure 5.)

Tables can be used to illustrate not only equivalent
measures of distance, but weight, liquid and solid capac-
ity, or temperature, by converting pounds to kilos, quarts
to liters, and degrees in Fahrenheit to degrees in Celsius.
Fractions can be converted into decimals, with the table
also illustrating the equivalent percentages. Cooking
measurements, such as cups or tablespoons, may be listed
as weights, in ounces, pounds, grams, and kilos, enabling
a cook to translate recipes printed using American meas-
urements into their own more familiar European meas-
urements, or vice versa.

× 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 12 14 16 18 20

3 0 3 6 9 12 15 18 21 24 27 30

4 0 4 8 12 16 20 24 28 32 36 40

5 0 5 10 15 20 25 30 35 40 45 50

6 0 6 12 18 24 30 36 42 48 54 60

7 0 7 14 21 28 35 42 49 56 63 70

8 0 8 16 24 32 40 48 56 64 72 80

9 0 9 18 27 36 45 54 63 72 81 90

10 0 10 20 30 40 50 60 70 80 90 100

11 12

0 0

11 12

22 24

33 36

44 48

55 60

66 72

77 84

88 96

99 108

110 120

11 0 11 22 33 44 55 66 77 88 99 110

12 0 12 24 36 48 60 72 84 96 108 120

121 132

132 144

Multiplication Table

Figure 2: Multiplication table.
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F INANCE
The financial industry makes use of tables as a way of

conveying information for nearly every type of transac-
tion. Checkbook registers are structured as very basic
tables, with each row making up a separate transaction in
your checking account, and the columns indicating what
type of transaction has taken place—the writing of a
check, a deposit of funds, the addition of interest, amounts,
and whether the transaction was of a tax-deductible
nature, with the final column keeping a running tally of the
account balance. Statements for bank accounts are also
structured as tables, with dates and transactions indicated

Linear measure

1 mil 0.001 inch 0.0254 millimeter
1 inch 1,000 mils 2.54 centimeters
12 inches 1 foot 0.3048 meter
3 feet 1 yard 0.9144 meters
5.5 yards or 16.5 feet 1 rod  5.029 meters
    (or pole or perch) 
1 mile 5,280 feet 1.6094 kilometers
40 rods 1 furlong 201.168 meters
8 furlongs 1 mile 1.6094 kilometers
3 miles 1 league 4.83 kilometers
 1 millimeter 0.03937 inches
10 milimeters 1 centimeter 0.3937 inch
10 centimeters 1 decimeter 3.937 inches
10 decimeters 1 meter 39.37 inches 
     or 3.2808 feet
10 meters 1 decameter 393.7 inches 
     or 32.8083 feet
10 decameters 1 hectometer 323.083 feet
10 hectometers 1 kilometer 0.621 mile 
     or 3,280 feet
10 kilometers 1 myriameter 6.21 miles

Figure 5.
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Figure 3: The Periodic Table of the Elements.

Phenotypes: 
tall x short

Genotypes: 
Tt x tt

Parent Pea Plants
("P" Generation)

Phenotypes:
50% tall

50% short

Genotypes:
50% (2/4) Tt
50% (2/4) tt

Offspring
("F1" Generation)

Figure 4: Punnet square. This small table illustrates the
likelihood that various genetic traits will be inherited by a
child, based on what genetic material each parent might
donate, and whether that material is dominant or 
recessive.

in each row, and the columns separating deposits from
withdrawals, interest, and an updated balance.

Banks list interest rates in tables, both for certificates
of deposit (CDs) and other investment accounts, and for
their advertised loan rates for cars or mortgages. In the
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case of CDs, the table will list a row for each locked-in
time period, as interest rates differ based on the length of
time the account is held. Corresponding interest rates are
listed in the next column, followed by a column for APY,
or the actual period yield that reports the amount of
interest you would earn when accounting for compound-
ing. For instance, a CD that is deposited for a preset
period of six months might earn a 2.52% interest rate,
which would result in an actual earned rate of 2.55%. In
the case of money market accounts, while there is no set
time period, some banks offer greater interest rates for
larger deposits to encourage customers to keep more
money in the institution. They display these advantages
in table form, listing each deposit increment, followed by
the interest rate given on that amount. (See Figure 6.)

Loan information is also listed in tables. Car loans
vary both in time period and interest rate amount, so a
table might list the average interest rate offered for a loan
that is spread over 36 months, 48 months, and 60 months.
Mortgage rates offer even more choices, including the
length of the loan—anywhere from 15 to 30 years—and
whether a loan rate is fixed or variable. Sometimes the

Local and Universal Time

Due to the shape and movement of Earth, the planet is
divided into time zones based upon the amount of time
it takes to make one complete rotation of the sun—
approximately twenty-four hours. What time zone you are
in determines the time of day at any given point, with
your own time zone considered “local time.” Tables list
the various different time zones and enable you to deter-
mine what the corresponding time is in another part of
world at a glance. An international timetable makes it
possible to see the time of day anywhere in the world,
simply by comparing the time zones. In addition, a
detailed timetable will include information that accounts
for the use of daylight savings time in the summer, as
some parts of the world do not observe this manual
change of the clocks, and those who do sometimes
begin and end this period on different dates.

Coordinated Universal Time (UTC), formerly known
as Greenwich Mean Time, sets the time standard for the
entire world. It is essentially solar mean time, and moves
at a variable rate to account for the fact that the planet
does not rotate around the sun in precisely twenty-four
hours, but rather is off by a few seconds that eventually

add up. Because of this, UTC will occasionally leap
ahead by several seconds in order to even out the time
with the actual rotation of the planet. All other clocks in
all other time zones are set to correspond to UTC. (See
Figure A.)

Standard time zone conversions

UTC Pacific Mountain Central  Eastern
(GMT)  standard standard standard standard

00 4 pm * 5 pm * 6 pm * 7 pm *
01 5 pm * 6 pm * 7 pm * 8 pm *
02 6 pm * 7  pm * 8 pm * 9 pm *
03 7 pm * 8 pm * 9 pm * 10 pm *
04 8 pm * 9 pm * 10 pm * 11 pm *
05 9 pm * 10 pm * 11 pm * 12 mid
06 10 pm * 11 pm * 12 mid 1 am
07 11 pm * 12 mid 1 am 2 am
08 12 mid 1 am 2 am 3 am
09 1 am 2 am 3 am 4 am
10 2 am 3 am 4 am 5 am
11 3 am 4 am 5 am 6 am

Conversions from UTC to some US time zones: * � previous day

Figure A.

Current

Source: CDs provided by Bankrate.com

1
Month
Prior

1-Month

6-Month

1-Year

2-Year

5-Year

3-Month Jumbo

6-Month Jumbo

1-Year Jumbo

2-Year Jumbo

1.25

2.55

3.28

3.66

4.25

2.15

2.82

3.49

3.9

1.25

2.37

3.01

3.33

4.09

2.06

2.62

3.18

3.52

1.13

2.01

2.63

3.11

3.97

1.82

2.26

2.81

3.27

1.06

1.81

2.33

2.95

4.03

1.63

1.98

2.5

3.12

0.89

1.34

1.71

2.23

3.49

1.19

1.46

1.85

2.34

3
Month
Prior

6
Month
Prior

1
Year
Prior

Figure 6: Interest and earning table.
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tables are used to illustrate trends in loan rates as well, list-
ing a column for current rates and another for rates that
were offered the previous week. If rates are rising, the table
is an easy way to encourage customers to make a decision
before prices go even higher by showing how much they
have changed in a short period of time.

Other investments display necessary information in
table form. The business section of most large newspa-
pers includes the most recent closing prices for the vari-
ous stock markets. These enormous tables go on for pages
and list row after row of company names, followed by col-
umn after column of information regarding how each
stock is trading, including the most recent price, the price
the day before, percent that price has changed, high and
low prices over the last year, and other pertinent infor-
mation for investors. Anyone following the trends of a
particular company has only to know what exchange it
trades on and they can locate the stock information
within the table.

The United States Federal Government provides
their own set of financial tables to the public each year—
the most recent tax tables. These tables are designed to
help you determine how much income tax you owe on
your previous year’s salary. The tables are divided into
sections based on your adjusted gross income (AGI), with
each row indicating a salary range, such as between
$18,000 and $18,050, followed by columns for the

amount of tax owed based on whether you are filing as an
individual, a married person filing with their spouse, a
married person filing alone, or the head of your house-
hold. The tax tables provide tax payment information for
salaries ranging from a single dollar to just under
$100,000. For earned income over $100,000, there are
additional tables that explain how to calculate taxes owed
based on different, broader ranges of income.

The United States government also provides infor-
mation about average government salaries, displaying
their findings in tables. These figures are available for
executive positions and mid-level jobs, or according to
location, or for very specific posts, such as administrative
law judges or law enforcement officials. Each row lists the
pay grade category of the position, while the columns
indicate the various raises available at that job level. Gen-
eral job statistics, not limited to government employees,
are also available through census findings.

HEALTH
Certain basic health information often appears in

tables. Healthy weight ranges for both men and women of
varying heights are typically displayed in table format.
Columns are labeled according to the size of the person’s
frame—small, medium, or large—and then each row lists
a height. Weight ranges are listed for each body type. (See
Figure 7 and Figure 8.)

Small Frame Medium Frame Large FrameHeight (in shoes)

Ideal Weight for Men

6'4"
6'3"
6'2"
6'1"
6'
5'11"
5'10"
5'9"
5'8"

162 to 176 lb
158 to 172 lb
155 to 168 lb
152 to 164 lb
149 to 160 lb
146 to 157 lb
144 to 154 lb
142 to 151 lb
140 to 148 lb

5'7"
5'6"
5'5"
5'4"
5'3"
5'2"

138 to 145 lb
136 to 142 lb
134 to 140 lb
132 to 138 lb
130 to 136 lb
128 to 134 lb

171 to 187 lb
167 to 182 lb
164 to 178 lb
160 to 174 lb
157 to 170 lb
154 to 166 lb
151 to 163 lb
148 to 160 lb
145 to 157 lb
142 to 154 lb
139 to 151 lb
137 to 148 lb
135 to 145 lb
133 to 143 lb
131 to 141 lb

181 to 207 lb
176 to 202 lb
172 to 197 lb
168 to 192 lb
164 to 188 lb
161 to 184 lb
158 to 180 lb
155 to 176 lb
152 to 172 lb
149 to 168 lb
146 to 164 lb
144 to 160 lb
142 to 156 lb
140 to 153 lb
138 to 150 lb

Figure 7: Generalized “healthy” weight ranges for men.
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Expected life spans are also listed in tables. The num-
bers of years a person is expected to live is based on many
factors, such as family history, eating and exercise regi-
mens, whether or not they smoke, year they were born, and
so on. However, by distilling all of this information, it is
possible to come up with an average life expectancy for a
person of a given age, and these are what are published in
the tables. The information is useful to individuals plan-
ning for retirement, as it helps them determine how many
years they will need to support themselves based on their
investments and savings. Life insurance costs are also based
on a person’s age and how long they are expected to live.

TRAVEL
There are numerous uses for tables when traveling.

Schedules are frequently illustrated in table format. In
order to determine what train or bus to take, one must
consult the timetable that lists the various train or bus
stations and then shows the progression of each vehicle
from its starting point to the destination. The schedules
are determined based on distance between stations and
the amount of time it takes to travel between points, but
travelers can simply consult the schedule rather than
working out the distances mathematically.

Travelers going to the beach may consult a table to
determine when high or low tide will occur. The tables

take into account time of day and day of the month, sea-
sons, the cycle of the moon—everything that affects the
transition of the tide. The equations are solved in advance
and the results published in a table so that beach-goers
have no need to understand the math necessary to deter-
mine the tide’s movements.

Currency varies from country to country, and travel-
ers need to determine how much things cost regardless of
their location. Banks issue tables that estimate the con-
version rate between currencies, providing a translation
from one monetary denomination to another for basic
round numbers, such as a hundred dollars and its equiv-
alent in various other currencies. This enables travelers to
determine quickly how much they are spending without
performing complicated math equations.

Potential Applications

DA ILY  USE
Tables can be used to assist with many day-to-day

tasks. Computer spreadsheet programs provide a tem-
plate that can apply to various uses, whether or not they
use mathematical equations.

If you are interested in keeping track of your
finances—both how much money you earn from various

Small Frame Medium Frame Large FrameHeight (in shoes)

Ideal Weight for Women

5'1"
5'0"
4'11"
4'10"

138 to 151 lb
135 to 148 lb
132 to 145 lb
129 to 142 lb
126 to 139 lb
123 to 136 lb
120 to 133 lb
117 to 130 lb
114 to 127 lb

6'
5'11"
5'10"
5'9"
5'8"
5'7"
5'6"
5'5"
5'4"
5'3"
5'2"

111 to 124 lb
108 to 121 lb
106 to 118 lb
104 to 115 lb
103 to 113 lb
102 to 111 lb

148 to 162 lb
145 to 159 lb
142 to 156 lb
139 to 153 lb
136 to 150 lb
133 to 147 lb
130 to 144 lb
127 to 141 lb
124 to 138 lb
121 to 135 lb
118 to 132 lb
115 to 129 lb
113 to 126 lb
111 to 123 lb
109 to 121 lb

158 to 179 lb
155 to 176 lb
152 to 173 lb
149 to 170 lb
146 to 167 lb
143 to 163 lb
140 to 159 lb
137 to 155 lb
134 to 151 lb
131 to 147 lb
128 to 143 lb
125 to 140 lb
122 to 137 lb
120 to 134 lb
118 to 131 lb

Figure 8: Generalized “healthy” weight ranges for women.
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sources, and how much you spend on both necessities and
pleasure—a simple table can provide the format. Each row
can be numbered with a day of the month; the column
headings might include such labels as job income,
allowance, interest, and gifts for incoming funds, and car
payment, gas, insurance, housing, food, utilities, clothing,
and entertainment for expenditures. If you wish to
become even more detailed, you can break out certain
categories further. For example, entertainment might
become movies, concert tickets, eating out, sports activi-
ties, and travel. At the end of the month, the spreadsheet
program will enable you to calculate for different factors,
such as money earned over the month, total money spent,
money spent on necessities, and money spent on luxuries.
This can be very useful if you are looking to cut back and

save for a big-ticket item, such as a new stereo or a car. The
table allows you to see at a glance where you have to spend
your money, and where you might eliminate a few costs.

Tables do not always have to deal with numbers.
Although they originally were used for mathematical pur-
poses, the structure applies to many other things. Schedules
are a prime example of this. While some schedules, such as
those for transportation or attending classes, deal with
times and dates, others might simply distribute tasks. A
table could assign chores to different household members
on a rotating basis, with each column labeled with a task
and each row indicating the week. Each person determines
when they are scheduled to do the dishes, vacuum, or take
out the trash by finding their name at the intersection of the
chore and the week it has been assigned to them.

Single Life Expectancy
(For Use by Beneficiaries)

Age Life Expectancy

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

28.7
27.9
27.0
26.1
25.2
24.4
23.5
22.7
21.8
21.0
20.2
19.4
18.6
17.8
17.0
16.3
15.5
14.8
14.1
13.4
12.7
12.1
11.4
10.8
10.2
9.7
9.1
8.6

Age Life Expectancy

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111 and over

8.1
7.6
7.1
6.7
6.3
5.9
5.5
5.2
4.9
4.6
4.3
4.1
3.8
3.6
3.4
3.1
2.9
2.7
2.5
2.3
2.1
1.9
1.7
1.5
1.4
1.2
1.1
1.0

Figure 9: Average life expectancies.
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Where to Learn More

Books
Auth, Joanne Buhl. Deskbook of Math Formulas and Tables: A

Handy Reference to Math Formulas, Metric Tables, Termi-
nology and Everyday Problem Solving. New York, NY: Van
Nostrand Reinhold Company, 1985.

Fitzpatrick, Gary L. International Time Table. Metuchen, NJ:
The Scarecrow Press, Inc., 1990.

Grattan-Guinness, Ivor (editor). The Norton History of the
Mathematical Sciences: The Rainbow of Mathematics. New
York, NY: W.W. Norton and Co., 1998.

Web sites
Baby Steps through the Punnet Squares. �http://www .borg.com/

~lubehawk/psquare.htm� (April 5, 2005).

Bloomberg.com. �http://www.bloomberg.com/markets/rates/�
(April 3, 2005).

IRS Web site. �http://www.irs.gov/� (April 1, 2005).

Math.2.org. �http://www.math2.org.� (April 5, 2005).

Mesopotamian Mathematics. �http://it.stlawu.edu/~dmelvill/
mesomath/� (April 2, 2005).

Periodic Table Styles. �http://chemlab.pc.maricopa.edu/
periodic/styles.html� (April 5, 2005).

S.O.S. Mathematics Tables and Formulas. �http://www.sos
math.com/tables/tables/html� (April 5, 2005).

United States Office of Personnel Management. �http://www
.opm.gov/oca/05tables/index.asp� (April 5, 2005).

Universal Time: UTC, UT1. �http://www.hartrao.ac.za/nccs
doc/slalib/sun67.hxt/node219.html� (April 5, 2005).

University of Michigan Health System. �http://www.med.umich.
edu/1libr/primry/life15.htm� (April 5, 2005).

Changeable table showing New York City’s train schedule. REUTERS/CORBIS.
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Key Terms

Array: A rectangular arrangement of numerical data in
rows and columns, as in a matrix.

Logarithm: The power to which a base number, usually
10, has to be raised to in order to produce a spe-
cific number.

Trigonometry: A branch of applied mathematics con-
cerned with the relationship between angles and

their sides and the calculations based on them.
First developed as a branch of geometry focusing
on triangles during the third century B.C, trigonome-
try was used extensively for astronomical measure-
ments. The major trigonometric functions, including
sine, cosine, and tangent, were first defined as
ratios of sides in a right triangle.
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Topology

Overview

Topology is a branch of mathematics that studies the
shapes of objects. More specifically, topology is concerned
with how portions of an object do not change when a
change in overall shape occurs. Two objects are considered
to be the same if they can be changed to the other form
without being cut or torn. An example is a bowl and a
plate. At least in the imagination, it is possible to change a
bowl into a flat plate by pressing down on the curved sur-
face of the bowl (of course, you would not want to try this
in your kitchen with your parents’ best china).

Another way to visualize topology is to look at a map
of the freeway system of a typical large city. Dozens of
freeways intersect and fan out in different directions.
Looking at the map in a topological manner would
involve determining how the lines would connect to get a
driver to a given destination. This has nothing to do with
how far the journey would be, which would be more in
the realm of geometry.

Looking at the freeway map from the viewpoint of
topology, it would be much more appropriate to ask if the
beginning and end of the journey were connected by the
same road, or whether several roads had to be taken to
reach the destination.

A topological freeway journey has to do with shape.
That is the heart of topology; the shape of an object and
how the object can be changed in shape without chang-
ing the properties of its shape. For example, if you hold a
beach ball in your hands and pull with both hands to
stretch the ball, the formerly spherical ball is now a foot-
ball shape. This new shape is called an ellipsoid. Even
though the sphere and the ellipsoid are different in shape,
they have the same topology.

Other questions that can be asked about an object’s
topology include: are there holes in the object? Is the
object hollow, and does the object have a limit, like a bal-
loon, or does it reach to infinity.

Thinking about topology can be a bit confusing and
mind-bending. Topology has been described as being
“rubber-sheet geometry.” That means that it is fine to
shrink an object, or twist it or stretch it, because topology
is not concerned with how close one molecule is to
another. Changes like cutting, pasting, or puncturing,
however, which take molecules from one part of the
object and move them to another part of the object, are
not part of studying topology.

An object’s topology can be different depending on
how it is viewed. Let us return to the dinner plate exam-
ple to see an illustration of this concept. If a plate is lying
on a dinner table and you look at it before you sit down,
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it appears like a circle. But, if you walk ten feet away and
then look at the same plate, its shape may well be more
like the elliptical football; the plate will look much wider
than long. Two very different views are produced by an
object whose shape has not changed.

Topological variations like the dinner plate example
are one reason why learning how to draw can be a diffi-
cult process. Even though the shape of a plate from across
the room is elliptical, the mind can still interpret a plate
as being a circle. So, when drawing a table, the artist 
can actually fight against his or her brain telling him to
draw a circle.

A dinner plate is a solid object, whose shape cannot
be changed except by breaking it. But consider a piece of
bread dough. The dough can be squeezed, rolled, flattened
and stretched. A circle of dough can be changed to a rec-
tangle, triangle, sphere, or other shapes. From a topologi-
cal point of view, all the shapes of the piece of dough are
the same. This is because to change from one form (a cir-
cle, for example) to another form (a triangle, for example)
does not involve a rearrangement of the molecules that
make up the object. A dough circle is the same as a shape

like a dough triangle, as portions of the circle can be
tugged outward to form the triangle. Likewise, a dough
triangle is the same topology as a dough sphere, as the tri-
angle can be rolled around the form a sphere.

Topology also involves the shape that can be created
in space by the movement of an object. A good example
of this is the hands of a clock. As the hour, minute, or sec-
ond hands move from the 12 o’clock position around the
dial and back to 12 o’clock, they create a circle.

Real-life Applications

V ISUAL  ANALYS IS
Anyone who has looked at a graph of scientific or

other information has an appreciation for topology, even
if they have not realized it. The relationships between two
or more factors (for example, retail sales, day of the week,
and age of shopper) can be detailed without the use of a
graph. But, plotting the information in graph form, with
the resulting hills and valleys, makes it much easier for
people to interpret and to understand the information.

A commuter passes a map of the London Underground (subway) system showing how the lines and stations connect
(topological information), rather than distances, directions, or other geometric information. TOBY MELVILLE/REUTERS/CORBIS.
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V ISUAL  REPRESENTAT ION
Topology is used to measure and evaluate magnetic

and electrical fields. Topology can determine the shape of
the fields. The changing shape of Earth’s magnetic 
field varies the field’s reactions to incoming solar 
particles and radiation. These changes often impact the
performance of electronic navigation and communica-
tion devices.

Topology is also used in physics to describe string
theory or to construct models of the shape of the universe
that conform to observed data.

COMPUTER  NETWORK ING
Topology is critically important in designing com-

puter network systems. The layout of workstations, hubs,
switches, and servers constitutes the physical topology of
the network and greatly impacts the capability and speed
of transmitting data.

I .Q .  TESTS
A number of psychology, medical, and I.Q. type 

tests utilize topological puzzles to assess visual and
coordination skills as they relate to thinking or manipu-
lative skills.

For example, the handcuff puzzle has been around
for over 250 years. Two people, some lengths of rope, and
some space to move around in are required. Each person
uses a length of rope as handcuffs. The rope has loops at
either end to fit over each hand. As well, each length of
rope should be long enough to allow each person to move
around without tripping.

As each person puts the rope handcuffs on, the
lengths of rope are themselves looped together. The chal-
lenge is then to get themselves apart from each other
without removing the handcuffs, or damaging the ropes.

But how can the ropes be separated from each other
when they are looped together and when the ropes cannot
be cut?

Here is the solution to the handcuff puzzle. Let us
pretend that you are one of the handcuffed pair of peo-
ple. You take the other person’s rope and move it along
yours until the rope is lying on one of your arms (make it
the right arm). The other person’s rope should not be
wrapped around your rope. It should just be lying along
your right arm. Now, take your left hand and reach
through the handcuff around the right wrist. Grab the
other person’s rope, which is still lying along your right
arm. Pull the rope through the handcuff over the right
hand. Now let the rope go back through the handcuff. You
should now be separated from the other person.

The basis of the trick is topology. As a bowl can be
made to form a plate without altering the surface, so can
the arrangement of the ropes be altered without the need
for cutting or other damage.

MÖBIUS  STR IP
At first it seems absurd; a strip of paper that has only

one side. But that is the magic of the Möbius strip. Once
again, at the heart of this “magic” is topology.

A Möbius strip is easy to make. A strip of paper is
closed into a loop. Before the ends of the looped strip are
taped together, however, one end is given a twist to pro-
duce a looped piece of paper with a half-twist in it.

Now comes the fun part. When a pen or pencil mark
is made down the middle of the strip all the way around,
the mark will be on both sides of the paper. It is the twist
that does it, as it makes the mark change from one side of

Gymnast competes for airspace with a soccer ball-shaped
balloon. Topology helps mathematicians to characterize
diverse shapes. AP/WIDE WORLD PHOTOS. REPRODUCED BY

PERMISSION.
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the paper strip to the other side. In other words, a Möbius
strip only has one side.

Likewise, the strip only has one edge. And, when the
strip is cut down the middle, the result is one long strip
instead of two separate strips.

The Möbius strip is not just a novelty. This form of
topology used to be part of car engines, in the form of the
fan belt. By having a twist in the belt, any strain imposed
on the belt would be directed evenly over the whole sur-
face of the belt.

Where to Learn More

Books
Gamelin, T.W., and R.E. Greene. Introduction to Topology.

Mineola: Dover Publications, 1999.

Periodicals
Collins, G.P. “The Shapes of Space,” Scientific American (July,

2004) 291: 94–103.

Web sites
Weisstein, E.W. “Topology.”MathWorld” �http://mathworld

.wolfram.com/Topology.html� (September 5, 2004).
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Trigonometry

Overview

Trignometry is the study of relationships among the
sides and angles of triangles, and derives its name from
the Greek word for triangle, trignon. Real life uses of
trigonometry include navigation, land surveying, global
positioning system (GPS) applications, robotics, and the
design of structures such as buildings and bridges. The
height of Mt. Everest, the world’s tallest peak, was calcu-
lated using trigonometry long before it was scaled by
mountaineers.

Plane trigonometry involves trigonometric relation-
ships that occur on a flat plane such as a piece of paper,
whereas spherical trigonometry involves trigonometric
relationships that occur on spheres such as planets. If the
area being studied is small compared to the size of the
sphere, it is often possible to obtain acceptably accurate
results by using plane trigonometry for spherical prob-
lems. The grid systems that land surveyors use when laying
out construction sites or locating property boundaries, for
example, are formulated by assuming that Earth’s curved
surface can be represented by a series of flat planes.
Although it is relatively easy to perform trigonometric cal-
culations using points that lie on any one of the flat planes,
it is very difficult to perform calculations using points that
lie on more than one of the planes.

Fundamental Mathematical Concepts
and Terms

MEASUR ING  ANGLES
Plane angles are measured using wedge-shaped

increments representing a fraction of a circle. The most
common unit of angular measurement is the degree,
which is denoted by the symbol �. A circle consists of
360�. Thus, an angle of 1� is 1/360 of a circle. For very
accurate measurements of angles, degrees can be
expressed in decimal form (for example, 10.5�) or in
terms of minutes and seconds of arc. Each degree is
divided into 60 minutes and each minute is divided into
60 seconds. In most branches of mathematics, including
geometry and trigonometry, positive angles are measured
counter-clockwise from the positive x-axis. Angles meas-
ured clockwise from the x-axis are negative.

The use of 60 rather than some other number, for
example 10 or 100, to subdivide angles into minutes and
seconds dates back to the Babylonian civilization, which
arose around 1800 B.C. The Babylonians used a base 60
number system for their financial and scientific calcula-
tions, so it was natural for them to divide each degree into
60 seconds and each second into 60 degrees. The reason
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behind the division of circles into 360�, however, is less
obvious. One explanation is that the Babylonians recog-
nized that the sun follows a nearly circular path through
the sky each year and that each Babylonian year consisted
of 360 days. Thus, each degree in a geometric circle cor-
responded to one day in the Babylonian calendar.
Another possible reason has been inferred from a Baby-
lonian clay tablet unearthed in 1936, which describes geo-
metric relationships within a circle circumscribed around
a hexagon. The Babylonians knew that the perimeter of a
hexagon is exactly six times the radius of a circumscribed
circle, which led them to divide each of the six sides of the
hexagon into 60 units, giving a total of 360� in a circle.
The Babylonians also used relationship between hexa-
gons and circumscribed circles to make a remarkably
accurate estimate of the value of �. Regardless of the rea-
son why circles were divided into 360�, it is a convenient
integer because is divisible by 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18,
20, 24, and 30. As such, fractions such as 1/2 or 1/5 of a cir-
cle can be represented by an integer number of degrees.

Degrees are not the only units that can be used to
measure angles. In calculus and computer programs,
angles are often measured using units called radians.
There are 2� (or approximately 6.28) radians in a circle
because the circumference of a circle with a radius of 1 is
2�. Thus, 1 radian represents one increment of length
along the circumference of the circle, and is equal to
approximately 57.3�. The need to quickly perform
trigonometric calculations in battle led the German army
to use the mil, which is short for milliradian, as a unit of
angular measurement during World War II. It was subse-
quently adopted by other armies and is now the standard

for angular measurement in military applications. A mil
is 1/1,000 radian and is equal to the angle formed by a tri-
angle 1,000 meters long and 1 m wide. This relationship
applies only to small angles, so 1 radian cannot be defined
in terms of a triangle that is 1 m long and 1 m wide. There
are 6,283 or 2,000 � mils in a circle, so 1� � 17 mils. The
German army and modern NATO armies use an approx-
imate value of 6,400 mils in a circle, while the Soviet
Union adopted an approximation of 6,000 mils in a cir-
cle. Binoculars, gunsights, and other instruments were
calibrated and marked with angular measurements in
mils in order to estimate distances. A truck that is 10 m
long occupies 10 mils in the field of vision, and is approx-
imately 10/10 � 1,000 � 1,000 m away. If the same truck
occupies 20 mils, it is 10/20 � 1,000 � 500 m away.

A third form of angular measurement is the grad,
which is a metric unit of angular measurement rarely
used in the United States. One grad is defined as 1/400 of
a circle, so it is slightly smaller than a degree. Instead of
being divided into minutes and seconds, grads are
divided into centigrads and milligrads.

Angles less than 90� are referred to as acute angles
and those greater than 90� are referred to as obtuse
angles. Angles that are exactly equal to 90� are known as
right angles. The right in right angle is an outgrowth of
the Latin word rectus, an adjective meaning correct or
proper, that has found its way into English words such as
direct, correct, erect, and rectify. A likely explanation is
that a 90� angle is called a right angle because it is upright
or erect, as in a wall that forms a right angle with the floor
and ceiling in a house. This explains why there are no left
angles. Right angles are sometimes described as orthogo-
nal, which is derived from the Greek words for right
(ortho) and angle (gonia).

TYPES  OF  TR IANGLES
Plane triangles can be classified according to the rela-

tive lengths of their three sides or the angles between the
sides. In either case, three kinds of triangles are recog-
nized. If classified according to the lengths of their sides,
triangles are equilateral, isosceles, or scalene. If classified
according to their angles, triangles are acute, right, or
obtuse. Regardless of the triangle type, the sum of the
three angles in a plane triangle must always add up to 180�

or � radians. If two triangles are identical, they are said to
be congruent. If they are of the same shape but different
sizes, so that their angles are identical but the lengths of
their sides are different, they are said to be similar.

Equilateral triangles have three sides of equal length
and, as a consequence, three angles of equal size. (See 
Figure 1.) Although the lengths can be of any size, the

Figure 1: Equilateral triangle.
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three angles in an equilateral triangle are all 60�. Isosceles
triangles have two sides of equal length and a third side
that is shorter than the other two. Two of the angles in an
isosceles triangle are equal to each other and the third,
located opposite the shortest side, is always smaller than
the other two angles. Scalene triangles have three unequal
sides and three unequal angles, with the largest angle
opposite the longest side and the smallest angle opposite
the shortest side. (See Figure 2.)

Acute triangles are defined by three acute angles,
with no restrictions regarding the lengths of the sides.
Thus, equilateral and isosceles triangles are acute trian-
gles. Obtuse triangles contain one obtuse angle, and sca-
lene triangles are necessarily also obtuse triangles.
Because a triangle must consist of three angles that sum
to 180�, a triangle cannot contain more than one obtuse
angle. Right triangles are defined by the presence of one
90�, or right, angle. (See Figure 3.) The side opposite the
right angle is known as the hypotenuse and, because of
the right angle, the sum of the two remaining angles must
always be 90�. Just as an obtuse triangle cannot contain
more than one obtuse angle, a right triangle cannot con-
tain more than one right angle.

Spherical triangles are formed by the intersection of
three curved lines, or arcs, on the surface of a sphere.

Unlike the angles comprising a plane triangle, the angles
inside of a spherical triangle do not always add up to a
fixed value of 180�. Instead, they add up to a value between
180� and 540� (or � to 3� radians), and the difference
between the sum of the angles and 180� is known as the
spherical excess. As the surface area of the sphere becomes
large relative to the size of the triangle, the spherical excess
decreases towards zero and the spherical triangle becomes
much like a plane triangle. This is why small areas of
Earth’s curved surface can be mapped as if they were
planes. The second difference between spherical and plane
triangles is that because a sphere wraps around on itself,
the three intersecting arcs form one interior spherical tri-
angle and one exterior spherical triangle. The sum of the
angles of the outer spherical triangle always falls between
540� and 900� (3 � and 5 � radians). The third difference
is that the lengths of the sides of spherical triangles can be
measured in degrees as well as units of length.

PYTHAGOREAN  THEOREM
Some of the most widely used real life applications of

trigonometry are based on the Pythagorean theorem,
which relates the lengths of the three sides of a rightFigure 2: Scalene triangle.

Hypotenuse

Right
angle

Figure 3: Right triangle.
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triangle. Pythagoras (560–480 B.C.) was a Greek mathe-
matician and philosopher who founded a school of reli-
gion and philosophy in the city of Croton. Pythagoras and
his followers believed that geometric properties could
always be expressed as ratios or products of whole num-
bers. They were troubled that the length of the hypotenuse
of a right triangle is not a simple multiple of the lengths of
the sides. Instead, the square of the hypotenuse is the sum
of the squares of the two sides. If the lengths of any two
sides of a right triangle are known, the Pythagorean theo-
rem allows the length of the third side to be calculated.

If the length of the hypotenuse of a right triangle is C,
and the lengths of the two sides are A and B, then the
Pythagorean theorem is A2 � B2 � C2. In the case of a tri-
angle with sides of A � 3 and B � 4, C � 5 and the
Pythagorean theorem is 32 � 42 � 52. In this case the three
lengths are related using only whole numbers. In the spe-
cial case in which both A � 1 and B � 1, however, the the-
orem is 1 � 1 � 2. Because C2 � 2, C � ��2 , which is
often referred to as Pythagoras’s constant. The problem
that faced Pythagoras and his followers was that ��2 is an
irrational number that cannot be expressed as a ratio of
whole numbers such as 1⁄2 or 1⁄3, which violated their belief
that geometric relationships must be expressible in terms
of whole numbers. It is said that Hippasus, a follower of
Pythagoras, was thrown overboard by other Pythagoreans
when he proved during an ocean voyage that ��2 is irra-
tional. However disappointing it was to the Pythagoreans,
the discovery of irrational numbers was an important step
in the progress of mathematics that led to the acceptance
of concepts such as �.

TR IGONOMETR IC  FUNCT IONS
Real life applications of trigonometry almost always

involve the use of three trigonometric functions that

relate the sides and angles of right triangles. Those three
functions are the sine, cosine, and tangent of an angle. To
define the trigonometric functions, use the letter C to
represent the length of the hypotenuse of a right triangle
and the letters A and B to represent the lengths of the
other two sides. It does not matter which of the two
shorter sides is A and which is B, as long as C is the
hypotenuse. Next, use the lower-case letters a, b, and c to
represent the three angles. Assign the letters so that angle
a is opposite side A, angle b is opposite side B, and angle
c is opposite side C (which is the hypotenuse).

The sine of an angle, which is almost always abbrevi-
ated as sin, is the ratio of the side opposite the angle and
the hypotenuse. In other words, sin a � A / C and sin b �
B / C. The actual numerical value of the sine function will
depend on the size of the angle. For example the sine of
30�, which is abbreviated as sin 30�, is 1/2. One of the rea-
sons that the sine function is an important tool for 
scientists, engineers, and mathematicians is that it is peri-
odic, meaning that it repeats itself at regular intervals. It
begins with sin 0� � 0, increases until it reaches a peak at
sin 90� � 1, decreases to sin 180� � 0 and then sin 270� �

�1, and then increases to sin 360� � 0. This pattern
repeats itself indefinitely every 360�. A plot of the 
sine function for angles ranging from 0� to 360� produces
a wave-like line that is known as a sine curve. (See 
Figure 4.)

Another important trigonometric function is the
cosine, which is defined as the ratio of the side adjacent to
an angle and the hypotenuse. Using the same definitions as
in the previous paragraph, the cosine of a, which is usually
written as cos a, is B / C. Likewise, cos b � A / C. The cosine
function follows a curve that is identical in shape to a sine
curve that has been shifted 90� to the left or right along the
horizontal axis, starting with cos 0� � 1 and decreasing to
cos 90� � 0 and cos 180� � �1, then increasing smoothly
to cos 270� � 0 and cos 360� � 1. Like the sine curve, the
cosine curve repeats itself indefinitely.

The identical shapes of the sine and cosine curves can
be expressed by the relationship sin � � cos(� � 90�) or,
equivalently, cos � � sin(� � 90�), in which � is any angle
measured in degrees. The same relationship works for
angles measured in radians if the 90� is changed to �/2
radians. Another way of writing the relationship between
the sine and cosine of an angle is to use a variation of the
Pythagorean theorem, which is that sin2 � � cos2 � � 1.
Thus, if a person knows the sine of an angle then he or she
can easily calculate the cosine, or vice versa.

Sine and cosine curves are important in many scien-
tific and engineering problems involving waves in space or
time. For example, a seismologist analyzing the vibrations

x
90 180 270 360

sin x

Figure 4: Sine curve.
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recorded during a large earthquake considers his or her
seismogram to consist of many different sine and cosine
waves added together to produce the complicated shaking.
An oceanographer can analyze the waves traveling across
a body of water using sine and cosine functions. Even
Earth’s topography can be simulated as a collection of sine
and cosine waves added together. Although values of sines
or cosines can be calculated by drawing a triangle to scale,
measuring the lengths of the appropriate sides, and divid-
ing, this is not an efficient approach for practical prob-
lems. An engineer who needs to draw a graph of a sine
curve, for example, would have to draw many triangles in
order to calculate the value of sin � at enough values of �
to produce a smooth curve. Until computers and scientific
calculators became widespread in the last half of the twen-
tieth century, people who needed to find the values of trig-
nometric functions looked them up in mathematical
handbooks that contained tables of values for each func-
tion. Since then, however, so-called trig tables have virtu-
ally disappeared and values are almost always calculated
using a calculator or a computer. Whereas most scientific
calculators will allow their users to choose whether angles
are specified in degrees, radians, or grads, computer lan-
guages generally require angular measurements to be
specified in radians.

The third basic trignometric function is the tangent,
which is the ratio of the sides opposite and adjacent to an
angle. Again using the same variables as above, the 
tangent of a, or tan a, is A / B and tan b � B / A. As the
size of the angle decreases, so does its tangent. The tan-
gent of any angle that is an even multiple of 90� (for
example, 0�, 180�, and 360�) is 0. As the size of the angle
increases, the tangent increases until it reaches � for
angles that are odd multiples of 90� (for example, 90�,
270�, and 450�). The tangent of an angle can also be
defined in terms of its sine and cosine, tan a = sin a / sin b.
One of the reasons why angles measured in radians are
useful in science and engineering is that if the angle is
very small, the angle will very nearly equal to its tangent.
For example, the tangent of an angle measuring 1/100
radian is 1/100. Because of this, some complicated equa-
tions involving the tangents of angles can be made much
simpler. It is also the basis for the use of mils as angular
measurements that can be used to easily calculate
distances.

In addition to the three basic functions (sine, cosine,
and tangent), there exist three reciprocal functions:
cosecant, secant, and cotangent. The cosecant of angle a is
csc a � 1/sin a, the secant of a is sec a � 1/cos a, and the
cotangent of a is cot a � 1/tan a. Notice that the cosecant is
the reciprocal of the sine and the secant is the reciprocal of
the cosine, which can be confusing. The cosecant, secant,
and cotangent can help to simplify complicated equations
involving trigonometric terms. Two other trigonometric

functions, the versed sine (versin a � 1 � cos a) and the
exsecant (exsec a � sec a � 1), have fallen out of use.

Over the years many mnemonics have been proposed
to help students remember which sides of a triangle are
associated with each of the functions. To use the
mnemonics, first take the first letter of each word in the
following equations: Sine � Opposite / Hypotenuse,
Cosine � Adjacent / Hypotenuse, and Tangent � Opposite/
Adjacent. This will form the combination SOHCAHTOA,
which can be used to invent sentences consisting of words
beginning with those letters, for example Some Old
Horses Chase And Hunt ’Til Old Age or Silly Old Harry
Caught a Herring Trawling Off America. Another
approach is to use only the first letters of the names of the
sides, which form the combination OHAHOA. Two com-
mon mnemonics involving those letters are Old Houses
Always Have Old Attics and Oscar Has A Heap Of Acorns.
Regardless of how clever they are, it may take more effort
to memorize the mnemonics and their meanings than to
simply memorize the basic definitions.

LAW OF  S INES
The law of sines relates the sides and angles in any

triangle, regardless of whether or not it is a right triangle.
Again using upper case letters to represent the sides of a
triangle and lower case letters to represent the angles
opposite those sides, the law of sines is A / sin a � B / 
sin b � C / sin c � 2R, where R is the radius of a circle
circumscribing the triangle. Any two of the terms sepa-
rated by equal signs can be combined to perform trigono-
metric calculations. For example, if A � 1 cm and a �
30�, then 1 / sin 30� �2 R. Because sin 30� � 1/2, the law
of sines requires that 1 / 1/2 � 2 R or, simplifying the equa-
tion, R � 1. Calculations can also be formed using only
sides and angles. For example if A � 1 cm and a � 30�, as
before, and b �50�, then the law of sines can be written as
1 cm / sin 30� � B / sin 50�. Knowing that sin 30� � 0.5000
and sin 50� � 0.7660, it follows that B � 1.53 cm.

A Brief History of Discovery 
and Development

Although the Babylonians developed the unit of
angular measurement known today as a degree, knew
many geometric techniques, and gave angular coordi-
nates for stars, the Greek astronomer Hipparchus
(180–125 B.C.) is generally known as the father of
trigonometry. He constructed tables of chords, which are
line segments joining two points along the circumference
of a circle, and it is said that he wrote a 12–volume



T r i g o n o m e t r y

562 R E A L - L I F E  M A T H

treatise on chords. Although that work has never been
found, it has been described by other Greek writers, and
the series of volumes appears to have been the first writ-
ten about trigonometry. The analysis of chords was an
important development in the history of trigonometry
because they are related to the sine and cosine functions.
To illustrate this, consider a straight line connecting any
two points along the circumference of a circle. Draw a
line from one of the points to the center of the circle, and
then from the center to the other end of the chord. This
forms a triangle, and the length of the chord is related to
the angle formed within the circle.

The Greek astronomer Menelaus (70–130 A.D.),
about whom little is known, wrote a treatise on spherical
trigonometry and its applications to astronomy. Like
Hipparchus, he worked with chords rather than the mod-
ern trigonometric functions. He was a contemporary of
Ptolemy (85–165 A.D.), another astronomer and author of
a book most commonly known as the Almagest, which
included tables of chords computed in %1⁄2� increments.
Ptolemy also described how to use his tables of chords to
solve trigonometric problems. Despite his great contribu-
tions to science and mathematics, Ptolemy is best remem-
bered for his geocentric theory stating that the Sun and
planets revolve around Earth. At about the same time,
astronomers in India were using the precursor to the
modern sine function rather than chords in their calcula-
tions. Unlike the modern sine function, the sine function
developed in India was based on the length of one leg of
a right triangle and not the ratio of the leg to the
hypotenuse.

Muslim astronomers took the lead during the Mid-
dle Ages, building upon the work of their Greek and
Indian predecessors. In particular, they began using all six
modern day trigonometric functions (sine, cosine,
tangent, secant, cosecant, and cotangent). Muslims con-
tinued to use lengths rather than ratios in their trigono-
metric functions, but also appear to have started using
circles with a radius of 1, rather than the Babylonian
value of 60, in their derivations. This produced the same
values for the trigonometric functions that are used
today. In addition to being used for astronomical calcula-
tions, their results helped the faithful to determine the
direction to Mecca for prayers five times each day.

Latin translations of Arabic books did not make their
way to Europe until the twelfth century. During the thir-
teenth century, German astronomer Georges Joachim
proposed that trigonometric functions should be
expressed as ratios rather than the lengths of lines. This
was an important contribution because it meant that the
values of the functions would depend only on the angle

and not the actual lengths of the triangle legs. Like other
scholars of his time, Joachim adopted the Latin name
Rheticus. Subsequent work by European scholars
included the development of many relationships involv-
ing multiple angles and powers of trignometric terms,
which laid the groundwork for much of European science
in the following centuries. Trigonometry also played an
important role in Isaac Newton’s invention of the calcu-
lus, which included ways to write trigonometric func-
tions of an angle as infinite series involving powers of the
angle. With the invention of the calculus, trigonometry
was absorbed into the larger field of mathematics known
as analysis.

Real-life applications

NAV IGAT ION

Pilots, mariners, and mountaineers all use trigono-
metric concepts to find their way from one point to
another. In navigation, positive angles are measured
clockwise from North and are known as azimuths.
Azimuths convey direction, so they can range from 0� to
360�, and the word azimuth is sometimes used synony-
mously with the word heading. The azimuth of a line
running from south to north is 0� and the azimuth of a
line running from north to south is 180�. This distinction
is critical in navigation. In other applications, it may not
be critical to distinguish the direction. For example, it
does not matter whether the boundary of a country runs
from north to south or south to north.

A related term, which was in common use before
computers and calculators existed, is bearing. Like an
azimuth, a bearing conveys the direction of a line. The
difference is that a bearing is always an acute angle meas-
ured from north or south. The reason for this was that the
trigonometric tables necessary for navigation calculations
contained values ranging from 0� to 90�, so it was impos-
sible to look up a value for, say, an azimuth of 140�.
Instead of using an azimuth for the obtuse angle of 140�

measured from north, a navigator would use its acute
supplementary angle, which is 180� � 140� � 40�. In
order to avoid confusing this value with an azimuth of
40�, the bearing includes the axis from which the acute
angle is measured (south in this case) and the direction in
which it was measured (towards east in this case). Thus,
the complete expression for the bearing would be south
40� east, or S40�E. One way to ensure that an azimuth is
never confused with a bearing is to always write an
azimuth using three digits and a bearing with two. Thus,
an azimuth of 40� can be written 040� to avoid confusion
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with a bearing of S40�E or N40�E. Any angle greater than
90� cannot be a proper bearing.

In real-life problems involving travel over large dis-
tances, Earth’s curvature becomes important and spherical,
rather than planar, and trigonometry must be used. Coor-
dinates for navigation over long distances are given in terms
of latitude and longitude, which are angular measurements.
Trigonometry is used to calculate the distance between the
starting and ending points of a journey, taking into account
that the path follows the surface of a sphere and not a
straight line. The latitude and longitude of waypoints along
a journey can also be calculated using trigonometry.

Navigation on Earth is complicated by the fact that the
North Magnetic Pole, to which compass needles are
attracted, does not coincide with the North Geographic
Pole. The North Magnetic Pole is located in far northern
Canada. For very approximate navigation, for example if a
hiker wants to know if she is generally headed north or
south, the fact that the geographic and magnetic poles are
different does not make much difference. For any kind of
precise navigation or mapmaking, however, the difference
is important. The difference between true north, which is
the direction to the North Geographic Pole, and magnetic
north, which is the direction to the North Magnetic Pole, is
known as magnetic declination. It is shown as an angle on
topographic maps and navigational charts. Magnetic north
is about 20� east of true north in the northwestern United
States and about 20� west of true north in the northeastern
United States. The line of zero declination runs through
the Midwestern part of the country. In other areas of the
world, the magnetic declination can be as great as 90� east
or west in the far southern hemisphere. The North Mag-
netic Pole moves from year to year as a consequence of
Earth’s rotation, so the magnetic declination also changes
over time. Government agencies responsible for providing
navigation aids track the movement of the North Magnetic
Pole, and maps are continually revised to reflect changing
declination. Measurements by the Canadian government
show that the North Magnetic Pole moved an average of
25 miles (40 km) per year between 2001 and 2005.

A simple trigonometric calculation illustrates the
error that can occur if magnetic declination is not taken
into account. The distance off course will be the distance
traveled multiplied by the sine of the magnetic declina-
tion. In an area where the magnetic declination is 20�,
therefore, a sailor following a course due north would
find herself 34 kilometers (21 mi) off course at the end of
a 100-kilometers (62 mi) trip. The longer the distance
traveled, the farther off course the traveler will be. If the
magnetic declination is only 10�, however, the error will
be 100 km � sin 10� � 17 km (11 mi).

VECTORS , FORCES , AND  VELOC I T IES
Vectors are quantities that have both direction and

magnitude, for example the velocity of an automobile,
airplane, or ship. The direction is the azimuth in which
the vehicle is traveling and the magnitude is its speed.
Using trigonometry, vectors can also be broken down
into perpendicular components that can be added or sub-
tracted. Take the example of a ferry that carries cars and
trucks across a large river. If there are ferry docks directly
across from each other on opposite banks of the river, the
captain must steer the ferry upstream into the current in
order to arrive at the other dock. Otherwise, the river cur-
rent would push the ferry downstream and it would miss
the dock. If the velocities of the river current and the ferry
are known, then the captain can calculate the direction in
which he must steer to end up at the other dock. The
velocity of the river current forms one leg of a right tri-
angle and the velocity of the ferry forms the hypotenuse
(because the captain must point the ferry diagonally
across the river to account for the current). If the current
is moving at 5 km/hr and the ferry can travel at 12 km/hr,
the angle at which the ferry needs to travel is found by
calculating its sine. In this case, the sine of the unknown
angle is 5 / 12 � 0.4167. The angle can then be deter-
mined by looking in a table of trignometric functions to
find the angle that most closely matches the calculated
value of 0.4167, by using a calculator to calculate the sines
of different angles and comparing the results, or by using
the arc sine (asin) function. Each of the trigonometric
functions has an inverse function that allows the angle to
be calculated from the value of the function. In this case,
the answer is asin 0.4167 � 25�. In other words, the cap-
tain must point his ferry 25� upstream in order to
account for the current and arrive at the dock directly
across the river.

Another real-life application of vectors and
trigonometry involves weight and friction. Automobiles
and trains rely on friction to move uphill or remain in
place when parked, and friction is required in order to
hold soil and rock in place on steep slopes. If there is not
enough friction, cars will slide uncontrollably downhill
and landslides will occur. Even if a car is traveling down-
hill, friction is required to steer. In the simplest case, the
traction of a vehicle or the resistance of a soil layer to land-
sliding depends on three things: the weight of the object,
the coefficient of friction, and the steepness of the slope.
The weight of the object is self-explanatory. The coeffi-
cient of friction is an experimentally measured value that
depends on the two surfaces in contact with each other
and, in some cases, temperature or the rate of movement.
The value used before movement begins, for example
between the tires of a parked car and the pavement or a



T r i g o n o m e t r y

564 R E A L - L I F E  M A T H

soil layer that is in place, is known as the static coefficient
of friction. Once the object begins moving, the coefficient
of friction decreases and is known as the dynamic coeffi-
cient of friction. Some typical examples of coefficients of
friction are 0.7 for tires on dry asphalt, 0.4 for tires on
frosty roads, and about 0.2 for tires on ice. The coefficients
of friction for soils involved in landslides can range from
about 0.3 to 1.0, with most values around 0.6.

Because weight is a force that acts vertically down-
ward, trigonometry must be used to calculate the compo-
nents of weight that are acting parallel to the sloping
surface. The frictional force resisting movement parallel
to the slope is 	 � w � cos �, where w is the weight, 	 is
the coefficient of friction, and � is the slope angle. The
component of the weight acting downslope is w � sin �.
Division of the frictional resisting force by the gravita-
tional driving force gives the expression 	 / tan �. If the
result is equal or greater than 1, the car or soil layer will
not slide downhill. If it is less than 1, then downhill slid-
ing is inevitable. If the coefficient of friction for tires on
dry asphalt is 0.7, then parked cars will slide downhill if
the slope is greater than 35�. If the road is covered with
ice, however, the coefficient of friction is only 0.2 and cars
will slide downhill on slopes greater than 11�.

SURVEY ING , GEODESY,
AND  MAPP ING

Land surveyors and cartographers make extensive
use of trigonometry in their work. Land surveyors are
responsible for establishing official property boundaries
and locations, for example the legal location of a piece of
property being bought or sold. They also perform topo-
graphic surveys that depict the elevation of Earth’s sur-
face and important features such as stream channels,
roads, utility lines, and buildings. Location maps showing
the locations of oil, gas, and water wells also fall within
the scope of land surveying. Because their work is used in
legal transactions such as real estate sales and applications
to drill wells, land surveyors are licensed by government
agencies and must have a good knowledge of trigonome-
try. Geodetic scientists perform work that is similar to
that done by land surveyors, but over much larger dis-
tances and in some cases with much greater demands for
accuracy. They are responsible for establishing the net-
works of known points that land surveyors rely upon in
their daily work. Cartographers use information pro-
vided by surveyors, geodetic scientists, and others to pro-
duce maps. One of the great challenges of cartography is
the development of techniques to represent the three
dimensional surfaces of Earth and other planets on two
dimensional pieces of paper or computer monitors.

In order to determine the exact location of a property
line or other feature, a surveyor begins at a point with a
known location, known as a point of beginning. These are
generally small metal discs or monuments established by
government agencies such as the U.S. Geological Survey or
the U.S. Coast and Geodetic Survey, and for which the
location has been carefully determined in advance. The
discs marking a point of known location are called bench-
marks. Surveyors determine locations by using optical and
electronic instruments to accurately and precisely meas-
ure angles and distances from a benchmark to the points
for which locations must be determined. The angles and
distances are plotted to create a map from which the loca-
tions of new points, for example the corners of a rectan-
gular piece of property, can be calculated.

One of the techniques used by surveyors is triangula-
tion, which allows them to determine the location of a point
without actually occupying it. This is done by accurately
measuring the length of a line between two known points,
which is known as a baseline. The azimuth to the unknown
point is measured from each of the known points, forming
an imaginary triangle. The surveyor knows the length of
one leg of the triangle and two of its angles, and can use
trigonometry to calculate the lengths of the remaining two
legs. This provides the location of the unknown point. The
surveyors then move their instruments and use the newly
calculated lengths as the sides of two more triangles, repeat-
ing the process to create a network of benchmarks. The
locations of some or all of the points are calculated more
than once, using different baselines each time, in order to
improve the accuracy of the survey.

One of the greatest surveying projects of all time was
the Great Trigonometric Survey, which was undertaken to
map India when it was a British colony during the nine-
teenth century. Because of the great distances involved,
the surveyors used specially manufactured theodolites,
which are surveying instruments designed to measure
angles. Surveyors look through a telescope at the center of
the theodolite to align it with their target, and then read
angles measured both horizontally and vertically. The
theodolites manufactured for the Great Trigonometric
Survey used circles 36 inches in diameter (the larger the
circle, the more accurately angles can be measured) that
were read through microscropes to achieve extremely
high accuracy. Theodolites used for ordinary surveying,
by way of comparison, have circles just a few inches in
diameter. After the measurements were made, elaborate
trigonometric calculations were made by hand in order to
calculate the horizontal and vertical distances between
points. In 1852, the Great Trigonometric Survey meas-
ured the height of a mountain known as Peak XV. Its
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height and location were calculated using a triangulation
from six different locations, each of them at least 100
miles (160 km) from the peak. The results showed it to be
the highest mountain on Earth, with a summit elevation
of 8,850 m (29,035 ft). In 1856 Peak XV was renamed in
honor of George Everest, the previous Surveyor General
of India. It would be more than 100 years after its discov-
ery before Sir Edmund Hillary and Tenzing Norgay
reached the summit of Mt. Everest in 1953.

Even when global positioning system (GPS) receivers
are used to determine the locations of unknown points, the
locations of known points are used to increase accuracy.
This is done by placing one GPS receiver over a known
point such as a benchmark and using a second receiver at
the point for which a location must be determined. In the
United States, one of the known points might be a contin-
uously operating reference station, or CORS, operated by
the government and providing data to surveyors over the
internet. Data from the two receivers are combined, either
in real time or afterwards by post-processing, to obtain a

more accurate solution that can be accurate to a millime-
ter or so. Although it may not be obvious because the cal-
culations are performed by microprocessors within the
GPS receivers and on computers, they require extensive use
of trigonometric functions and principles.

Once the locations of points or features are deter-
mined, they must be plotted on a map in order to be visu-
alized. If the area of concern is relatively small, the map
can be constructed using an orthogonal grid system of
perpendicular lines measuring the north-south and east-
west distance from an arbitrary point. If the area to be
mapped is large, however, then trigonometry must be
used to project the nearly spherical surface of Earth onto
a flat plane. Over the centuries, cartographers and math-
ematicians have developed many specialized projections
involving trigonometric functions. Some are designed so
that angles measured on the flat map are identical to
those measured on a round globe; some are designed so
that straight-line paths on the globe are preserved as
straight lines on the planar map.

Surveyors use basic trigonometry while taking measurements at Kirinda, about 140 miles (225 km) southeast of Colombo,
Sri Lanka. AP/WIDE WORLD PHOTOS. REPRODUCED BY PERMISSION.
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COMPUTER  GRAPH ICS
Both two- and three-dimensional computer graphics

applications make heavy use of trigonometric relation-
ships and formulae. Rotating an object in two dimen-
sions, for example a spinning object in a video game or
the text in an illustration, requires calculation of the sine
and cosine of the angle through which the object is being
rotated. Graphics objects are typically defined using
points for which x and y coordinates are known. In some
cases, the points may represent the ends of lines or the
vertices of polygons. Many computer programs that allow
users to rotate objects require the user to enter an angle of
rotation or use a graphics tool that allows for freehand
rotation in real time. Each time a new angle is entered or
the mouse is moved to rotate an object on the screen, the
new coordinates of each point must be quickly calculated
behind the scenes.

Rotation of graphical objects in three dimensions is
much more complicated than it is in two dimensions.
This is because instead of one angle of rotation, three
angles must be given. Although there are several different
conventions that can be used to specify the three angles of
rotation, the one that is most understandable to many
people is based on roll, pitch, and yaw. These terms were
originally used to describe the three kinds of rotation
experienced in a ship as it moves across the sea, and were
adopted to describe the motion of aircraft in the twenti-
eth century. Roll refers to the side-to-side rotation of a
ship or aircraft around horizontal axis. An aircraft is
rolling if one of its wings goes up and the other goes
down. Pitch refers to the upward or downward rotation
of the bow of a ship or the nose of an aircraft. As the bow
or nose goes up, the stern or tail goes down and vice versa.
The final component of three-dimensional rotation is
yaw, which refers to the side-to-side rotation of the nose
or bow around a vertical axis. Just as in two-dimensional
graphics, the simulation of three-dimensional rotation 
by a computer program requires that trigonometric 
functions be calculated for each of the three angles 
and applied to each point or polygon vertex. Three-
dimensional graphics are also more complicated because
the shape of each object being simulated must be pro-
jected onto a two dimensional computer monitor or
other plane, just as Earth’s spherical surface must be pro-
jected to make a map.

CHEMICAL  ANALYS IS
Chemists rely on trigonometry to analyze unknown

substances using methods such as Fourier transform spec-
troscopy. Spectroscopes are instruments that break down
the electromagnetic radiation absorbed or emitted by a

substance into a collection of component wavelengths
known as a spectrum. Spectroscopes attached to telescopes,
for example, allow astronomers to learn the chemical com-
position of distant stars by analyzing the color of their light.
In the laboratory, chemists use a variety of spectroscopic
techniques to determine the chemical composition of sub-
stances. Invisible forms of electromagnetic radiation such
as infrared radiation can also be used for spectroscopy.

In conventional spectroscopy, the wavelength of elec-
tromagnetic radiation to which a sample is subjected is
varied over a period of time. The result is a graph show-
ing the response of the sample to different wavelengths of
radiation. Fourier transform spectroscopy is different
because the sample is subjected to many different wave-
lengths at once, which produces a complicated combina-
tion of responses to those many wavelengths of radiation.
Its advantage is that Fourier transform spectroscopy is
much quicker than conventional spectroscopy. Its disad-
vantage is that a series of complicated calculations known
as a Fourier transform, which is based on sines and
cosines, must be performed in order to make the results
useful. Although the precursor of the Fourier spectro-
scope was invented in 1880, real life Fourier transform
calculations are so time consuming that practical applica-
tions of Fourier transform spectroscopy were limited
until digital computers became common in the 1950s.
The subsequent discovery of an especially efficient com-
putational method known as the fast Fourier transform,
or FFT, in 1956 was a major advance that led to the prac-
tical development of Fourier transform spectroscopy.
Fast Fourier transforms have since become an important
computational tool for digital audio processing, digital
image processing, and seismic data processing.

Potential applications

Trigonometric principles and calculations have
applications in virtually every discipline of science and
engineering, so their importance will continue to increase
as technology continues to grow in importance. Global
positioning system (GPS) receivers embedded in cellular
telephones, vehicles, and emergency transmitters will
allow lost travelers to be located and criminal suspects to
be tracked. Fast Fourier transforms will help to advance
any kind of computation involving waveforms, including
voice recognition technologies. Trigonometric calcula-
tions related to navigation will also become even more
important as global air travel increases and the responsi-
bility for air traffic control is shifted from humans to
computers and GPS technology.
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Key Terms

Chord: A straight line connecting any two points on a
curve.

Hypotenuse: The longest leg of a right triangle, located
opposite the right angle.
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Overview

A vector is a mathematical object that contains two
or more numbers in an ordered set. For example, [5 6 8]
is a vector. Vectors containing two or three numbers (that
is, vectors in two or three “dimensions”) can be drawn as
arrows. Vectors describe things that have more than one
measurable feature: an arrow, for instance, has a certain
length and points in a certain direction. Vectors are used
in physics, medicine, engineering, and animation to
describe forces, positions, speeds, changes in speed, elec-
tric and magnetic fields, gravity, and many other physical
quantities. Vectors are also used in the field of linear alge-
bra, along with the arrays of numbers called matrices, to
stand for more abstract quantities. The rules for doing
math with vectors are called “vector algebra.”

Fundamental Mathematical Concepts
and Terms

TWO -D IMENS IONAL  VECTORS
A vector containing two numbers is termed a “two-

dimensional” vector. A two-dimensional vector can be
drawn as an arrow. To see how a pair of numbers can
stand for an arrow (or the other way around), picture an
arrow 25 centimeters (cm) long that has been drawn near
one corner of a piece of paper. (See Figure 1.)

With the arrow drawn as in Figure 1, its base and tip
are 3 cm apart as measured along the bottom edge of the

Vectors

5 cm

Figure 1. The arrow is not drawn to scale (that is, it is not
exactly 5 cm long).



V e c t o r s

R E A L - L I F E  M A T H 569

paper and 4 cm apart as measured along the side. (See
Figure 2.)

The arrow can therefore be described by the vector 
[3 4]. Since this arrow is 5 cm long and is drawn at a 53�

angle to the bottom edge of the paper, it could also be
described by writing down its length and its angle: 5 cm,
53�. It cannot be described using fewer than two num-
bers. It is therefore called a “two-dimensional” vector.

Having more than one dimension—that is, consist-
ing of more than one number—is what makes a vector
different from a plain number (also called a “scalar”). A
scalar can describe a measurement that consists of a sin-
gle number, like the mass of a rock, but anything that
pushes or points in a certain direction is best described by
a vector. The force of a dancer’s shoe against a floor, for
example, is a vector because it has both a strength or
“magnitude”—how hard the shoe is pushing against the
boards—and a direction. This force can either be pic-
tured as an arrow pushing against the sole of the shoe or
written out in numbers. The push of a rocket motor, the
speed and direction of a moving object, the strength and
direction of an electric or magnetic field—all these
things, and many more, are best treated as vectors.

THREE -D IMENS IONAL  VECTORS
Many things in the real world cannot be described

using two-dimensional vectors because they exist in
three-dimensional space, namely, the ordinary space in
which we live and move. Imagine, for example, an arrow

placed inside a glass box. The arrow is too big to lie down
in the box, but it can just fit with its base in one corner
and its point in another. Drawing the edges of the box as
dashed lines, we develop the image in Figure 3.

The length of this arrow and the direction it is 
pointing can be described by three numbers (also called
“dimensions”). For example, if the glass box is 4 cm wide,
4 cm deep, and 8 cm tall, then writing down these num-
bers tells us exactly where the two ends of the arrow are.
Writing down these three numbers gives us a numerical vec-
tor, [4 4 8]. In real life, many forces must be described
using three-dimensional vectors like this one. For exam-
ple, the force of a dancer’s shoe against the floor is a three-
dimensional vector because it might push on at the floor
at any angle.

To write vectors in higher dimensions, all one has 
to do is write more numbers between the brackets, like 
[4 4 8 10 2]. Although it is not possible to draw pictures
of vectors in higher dimensions, such vectors have many
uses in physics, economics, and other fields.

THE  MAGNITUDE  OF  A  VECTOR
A vector’s “magnitude” is basically its size. If a vector

connects two points on a flat surface or in a three-
dimensional space, then its magnitude gives the distance
between those two points—the number we would measure
if we stretched a measuring tape between them. If a vector

4 cm

3 cm

Figure 2. Figure 3.
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stands for a force, then its magnitude gives the strength of
that force. If a vector stands for an object’s motion, then its
magnitude gives how fast the object is moving.

The magnitude of a vector can be found by drawing
it or building a model of it and measuring its length with
a ruler, but it is easier to find the magnitude mathemati-
cally. To find the length of a vector that is known in
numerical form, like the three-dimensional vector [4 4 8],
first add the squares of all its parts or components. (The
“square” of a number is that number multiplied by itself.)
For example, to find the magnitude of [4 4 8], first calcu-
late (4 � 4) � (4 � 4) � (8 � 8) � 96. The second step
is to find the square root of this sum. (The “square root”
of a number is a second number that, when multiplied by
itself, gives the first number. Square roots can be found
using a calculator.) In this case, the sum is 96 and the
square root of 96 is 9.798 because 9.798 � 9.798 � 96.
Therefore, the magnitude of the vector [4 4 8] is 9.798. In
the example where the arrow touching the two diagonally
opposite corners of the box is described by the vector 
[4 4 8], the length of the arrow is 9.798 centimeters.

VECTOR  ALGEBRA
Vectors can be added or multiplied according to the

rules called “vector algebra.” Addition and multiplication
are different for vectors than for ordinary,“scalar” numbers.

Imagine that we want to add a second arrow or vec-
tor to the 5 cm vector shown earlier. This second vector is
also 5 cm long, but points down rather than up. (See 
Figure 4.)

Let us call the first vector A and the second vector B.
To perform vector addition of A and B, place them tip to
tail and draw a third vector, C, from the base of the first
arrow to the tip of the second, forming a triangle as
depicted in Figure 5.

C is the vector sum of A and B. In vector algebra, the
sum is written A � B � C. The vector C can also be found
by adding the numerical versions of A and B. Here, A can
be written [3 4] and B can be written [3 � 4]. C is found
by adding the first dimension of A and B to give the first
dimension of C, and adding the second dimension of A
and B to give the second dimension of C: C � [60].

Air traffic controllers use vectors (orders to fly a certain compass heading for a certain distance or time) to sequence aircraft
during takeoff and landing. DAVID LAWRENCE/CORBIS.
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Addition of vectors with more than two dimensions
is done the same way.

Vector multiplication is more complicated. There is
only one kind of multiplication for scalars—the 2 � 2 �
4 kind of multiplication—but there are two kinds of vec-
tor multiplication. The first, simpler kind is called the
“inner product” and is written A • B � c (where A and B
are vectors having the same number of dimensions and c
is an ordinary number, a scalar). The inner product is
found by adding up the products of the dimensions of A
and B. For example, if A � [3 4] and B � [5 6], then 
A • B � (3 � 5) � (4 � 6) � 39. The dot product of two
vectors is a scalar, not a vector.

The second kind of vector multiplication is called the
“vector product” or “cross product” of the two vectors.
Some knowledge of trigonometry—the mathematical
study of triangles—is needed to fully understand the vec-
tor product. The vector product of A and B is written 
A � B � C, where A, B, and C are all vectors having the
same number of dimensions. The magnitude and direc-
tion of C is calculated separately. The magnitude of C is
given by multiplying the magnitude of vector A (written
|A|), the magnitude of vector B (written |B|), and the sine
of the angle between A and B (written �): A � B �

|A| � |B| � sin�. As for direction, C points at right angles
to the plane containing the two vectors being multiplied.
For example, if A and B are drawn on this piece of paper,
then C sticks straight up out of the paper (or straight
down into it, depending on the directions of A and B).

The elements of vectors may be functions rather
than numbers. In the field known as “vector analysis,” the
methods of calculus are applied to such vectors.

VECTORS  IN  L INEAR  ALGEBRA
We have already seen that it is easy to write a 

vector having more than two or three dimensions, such as
[4 4 8 10 2]. This particular vector happens to have five
dimensions. The rules for doing math with five-dimensional
vectors are the same as for two- or three-dimensional vec-
tors, but when vectors have more than three dimensions
nobody tries to think of them as “arrows.” In linear algebra,
vectors with hundreds of dimensions may be used.

A Brief History of Discovery 
and Development

The idea of using vectors (arrows) to stand for veloc-
ities and the idea of adding two vectors by placing the
arrows tip to tail to form a triangle were known to Greek
thinkers over two thousand years ago. (This method of
adding velocity vectors is also known as the “parallelo-
gram of velocities” method, since the same answer can 
be found either by making the triangle or by making 
a parallelogram that has the two vectors as two of its
edges.)

However, it was not until the 1600s that scientists
began to handle many vector quantities, such as velocity,

Figure 4.

C

A B

Figure 5.
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force, momentum, and acceleration. In the 1700s and
1800s, science also began to deal more with other vectors
in optics and electricity. This gradually forced the inven-
tion of better ways to handle vectors. In the late 1700s and
1800s, mathematicians struggling to deal with the ques-
tion of “complex” numbers created two-dimensional vec-
tor algebras. The first important three-dimensional
vector algebra was invented in the 1840s, at about the
same time that matrix algebra was being created to han-
dle matrices and vectors of higher dimensions. Since that
time, the term “vector algebra” has come to refer mostly
to the rules and symbols for handling vectors only (espe-
cially vectors of two, three, or four dimensions), while
“matrix algebra” has come to refer to the rules and sym-
bols for handling both vectors and matrices (rectangular
arrays of numbers). Today, vectors are used through busi-
ness, mathematics, and science.

Real-life Applications

3D  COMPUTER  GRAPH ICS
3D (“three dimensional”) computer graphics is the art

or science of creating an imaginary world of spaces and
objects inside a computer using numbers, then producing
flat images from that imaginary world that can be shown on
a screen or printed on paper. Popular movies such as Shrek
and The Incredibles are produced using 3D computer graph-
ics. The animators who make these movies rely on vectors at
every stage. Vectors are used in 3D computer graphics to
stand for the locations of points in the imaginary space, the
edges of objects, the way objects are moving (velocities),
and the way motions are changing (accelerations). Vector
algebra is also used to create two-dimensional (flat) images
of the computer’s imaginary 3D world as seen from any
angle desired. This involves the use of the dot product 
(A • B � C, where A, B, and C are vectors) to find the “pro-
jections” of vectors defining object edges in the 3D
world—that is, what all the vectors defining the edges of an
object in the 3D world look like when seen from a certain
angle. Some computer graphics programs also allow for
realistic physics, that is, for “objects” in the imaginary
world to fall or respond to pushes as if they were physically
real. This, too, requires the use of vector algebra, since the
motions of objects in response to forces are calculated
using vectors.

DRAG  RAC ING
To design a race car, engineers must take into account

that a car is not a rigid block: it has a suspension system that
allows its wheels to move. A car therefore changes overall

shape temporarily whenever a force is applied to it, like
acceleration, braking, or turning. All these forces must be
treated as vectors.

When a car accelerates, several things happen at
once. First, assuming that the car is rear-wheel drive, the
rear tires push against the pavement. If they push too
hard, they start to slip or spin, which is fine if the driver
just wants to lay down rubber, but bad if he wants to win
a race. The second thing that happens is that the force of
the car’s weight (a vector that points straight down,
toward Earth’s center) and the force accelerating the car
(a vector pointing forward along the road) add to a total
force vector that does not point straight down. Nor does
it point straight through the car’s center of mass. This
effect is called “weight shift.” Weight shift causes the car to
“lift” in the front and “squat” in the rear, as if weights had
been piled on the rear of the car. Because of weight shift,
the front tires press on the road with less force and the
rear tires press on the road with more force. This is good,
up to a point, because more pressure on the back tires
means that the car can accelerate faster without starting
to slip. It is bad, however, if so much force is taken off the
front tires that they rear right up off the road, which
makes it impossible for the driver to steer. A drag racing
car, therefore, must be designed using vector analysis so
that when it is accelerating as hard as it can, the front
wheels remain on the road—barely.

LAND  M INE  DETECT ION
According to the United Nations, there are 60 to 100

million land mines buried around the world. These kill
about 10,000 people a year—most of them civilians, not
soldiers fighting wars—and maim about twice as many.
Detecting landmines is therefore an urgent problem.

One method is to use radar in small, handheld units
that are swept back and forth over the ground. The radar
unit sends burst of radio waves down into the ground.
Since landmines are made of metal and are usually round
in shape, they reflect the radar differently than rocks, dirt,
or differently-shaped metal objects such as wires and
pipes. Still, it is not easy, even using a computer to analyze
the radar reflections, to tell whether the radar is seeing a
landmine or just “clutter,” by which mine detection
experts mean ground containing anything but land
mines.

Vector analysis is being used to help make the detec-
tion of land mines more reliable. First, each signal
bounced back from the ground is turned into a vector (an
ordered series of numbers). This is done by finding the
radar signal’s “spectrum,” a set of numbers that says how
much of the signal’s energy consists of vibrations at
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different rates of speed: a signal with many vast vibrations
will have energy at the high end of its spectrum, a signal
with slow vibrations will have energy at the low end of its
spectrum, and so on. Each radio echo from the ground
therefore gives a vector.

The goal is to decide whether each vector consists of
an echo from a land mine, or not. If the vectors were two-
dimensional, then each could be plotted as an arrow on a
piece of paper. Or, more simply, the tip of the arrow alone
could be plotted, as a dot. The vectors from landmines are
not always the same, so if many are plotted the dots will
not be located all at one place, but in a fuzzy, rounded
area called an “ellipse” (even though its outline it may not
have the exact shape of a true geometric ellipse). The
computer’s job is to figure out whether any given vector
is inside the ellipse, which would show a landmine was
present. In practice, the vectors used in landmine detec-
tion may have from 40 to 128 dimensions, rather than
two, but researchers still refer to the “ellipse” or “ellip-
soid” (egg-shaped volume) in which the land mines are to
be found.

SPORTS  IN JUR IES
A part of the body often injured in sports is the ACL

(anterior cruciate ligament). This is a tough, ribbon-like
structure that helps keep the top part of the knee joint
from slipping forwards and back (other ligaments keep
the knee from slipping from side to side). ACL injuries

are more common in sports that involve “cutting”—
changing direction suddenly while running.

Movement technique refers to how an athlete moves
her or his body when making sports maneuvers. To study
movement techniques, researchers begin by making
measurements of male and female athletes in motion.
They do so by attaching bright dots to various points on
the athletes’ bodies and then taking three-dimensional
movies of them cutting, pivoting, jumping, and making
other motions. They also place “force platforms” under
the athletes’ feet, flat plates that measure the strength and
direction of the force vectors exerted by the athletes’ feet
against the ground.

These methods only produce raw data—lots of num-
bers, but no explanations. To understand what the raw data
really mean, researchers must use many mathematical
tools. One is vector analysis. Vectors are used to calculate
the forces acting on the skeleton. They are also used to cal-
culate the angle at which the knee is bent when the athlete’s
foot hits the ground (which is important to understanding
how the knee is stressed). First, three-dimensional vectors
standing for the length and position of the upper and
lower parts of the leg are calculated from the video. Then
the dot product of these two vectors is calculated by the
method described earlier in this article. Since the dot prod-
uct of two vectors depends on the angle between them,
finding the dot product (plus one more mathematical step
using trigonometry) gives us the angle.

Studies using these methods have shown that the
knee is more vulnerable to ACL injury when it is less bent.
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Volume

Overview

An object’s volume describes the amount of space it
contains. Calculations and measurements of volume are
used in medicine, architecture, science, construction, and
business. Gasses and liquids such as propane, gasoline,
and water are sold by volume, as are many groceries and
construction materials.

Fundamental Mathematical Concepts
and Terms

UNITS  OF  VOLUME
Volume is measured in units based on length: cubic

feet, cubic meters, cubic miles, and so on. A cubic meter,
for instance, is the amount of volume inside a box 1 
meter (m) tall, 1 m wide, and 1 m deep. Such a box is a 
1-meter cube, so this much volume is said to be one
“cubic” meter. An object doesn’t have to be a cube to con-
tain a cubic meter: one cubic meter is also the space inside
a sphere 1.24 meters across.

Cubic units are written by using exponent notation:
that is, 1 cubic meter is written “1 m3.” This is why raising
any number to the third power—that is, multiplying it by
itself three times, as in 23 � 2 � 2 � 2—is called “cubing”
the number.

VOLUME  OF  A  BOX
There are standard formulas for calculating the vol-

umes of simple shapes. The simplest and most commonly
used of these is the formula for the volume of a box. (By
“box,” we mean a solid with rectangular sides whose edges
meet at right angles—what the language of geometry also
calls a “cuboid,” “right prism,” or “rectangular paral-
lelepiped.”) To find the volume of a box, first measure the
lengths of its edges. If the box is L centimeters (cm) long,
W cm wide, and H cm high, then its volume, V, is given
by the formula V � L cm � W cm � H cm. This can be
written more shortly as V � LWH cm3.

The units of length used do not make any difference
to the formula for volume: inches or feet will do just as
well as centimeters. For example, a room that is 20 feet
(ft) long, 10 ft wide, and 12 feet high has volume V �

20 ft � 10 ft � 12 ft � 2,400 ft3 (cubic feet).

VOLUMES  OF  COMMON SOL IDS
There are standard formulas for finding the volumes

of other simple solids, too. Figure 1 shows some of these
formulas.
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In all these formulas, three measures of length are
multiplied—not added. This means that whenever an
object is made larger without changing its shape, its vol-
ume increases faster than its size as measured using a
ruler or tape measure. For example, a sphere 4 m across
(a sphere with a radius of 2 m) has a volume of V � 4/3
�23 � 33.5 m3, whereas a sphere that is twice as wide
(radius of 4 m) has a volume of V � 4/3 � 43 � 268.1 m3.
Doubling the radius does not double the volume, but
makes it 8 times larger. In general, since the radius is
cubed in calculating the volume, we say that a sphere’s
volume “increases in proportion to” or “goes as” the cube
of its radius. This is true for objects of all shapes, not just
spheres: Increasing the size of an object without changing
its shape makes its volume grow in proportion to the
cube (third power) of the size increase.

The formula for an object’s volume can be compared
to the formula for its area. The area of a sphere of radius
R, for example, is A � 4 � R2. The radius appears only as
a squared term (R2) in this formula, whereas in the vol-
ume formula it appears as a cubed term (R3). Dividing
the volume formula by the area formula yields an inter-
esting and useful result:

Crossing out terms that are the same on the top and
bottom of the fraction, we have 

R34
3
π

4   R2π
=V

A

which, if we multiply both sides by A, becomes 

This means that when we increase the radius R of a
sphere, area and volume both increase, but volume
increases by the increased area times R/3. Volume
increases faster than area. This fact has important conse-
quences for real-world objects. For example, how easily an
animal can cool itself depends on its surface area, because
its surface is the only place it can give heat away to the air;
but how much heat an animal produces depends on its
volume, because all the cubic inches of flesh it contains
must burn calories to stay alive. Therefore, the larger an
animal gets (while keeping the same shape), the fewer
square inches of heat-radiating skin it has per pound: its
volume increases faster than its area. A large animal in a
cold climate should, therefore, have an easier time staying
warm. And in fact, animals in the far North tend to be big-
ger than their close relatives farther south. Polar bears, for
example, are the world’s largest bears. They have evolved
to large size because it is easier for them to stay warm. On
the other hand, a large animal in a hot climate has a harder
time staying cool. This is why elephants have big ears: the
ears have tremendous surface area, and help the elephant
stay cool.
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Solid Shape Dimensions Formula for Volume

box

cube

sphere

cylinder

cone

pyramid

torus (doughnut)

Length L, width W, height H

Length = width= height = L

radius R

radius R, height H

Base radius R, height H

base area A, height H

distance from center of torus to
center of tube D, radius of tube R

V = LWH

V = L3

V =        R3

V =    R2H

V =        R2H

V =     AH

V = 2DR2

4
3
π

1
3

1
3
π

π

Figure 1: Standard formula to calculate volume.
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A Brief History of Discovery 
and Development

Weights, lengths, areas, and volumes were the earliest
measurements made by humankind. Not only are they eas-
ier to measure than other physical quantities, like velocity
and temperature, but they have an immediate money
value. Measuring lengths, builders can build more complex
structures, such as temples; measuring area, landowners
can know how much land, exactly, they are buying and sell-
ing; measuring volume, traders can tell how much grain a
basket holds, or how much water a cistern (holding tank)
holds. Therefore it is no surprise to find that the Egyptians,
Sumerians, Greeks, and ancient Chinese all knew the con-
cept of volume and knew many of the standard equations
for calculating it. In 250 B.C. (over 2,200 years ago), the
Greek mathematician Archimedes wrote down formulas
for the volume of a sphere and cylinder. In approximately
100 B.C., the Chinese had formulas for the volumes of
cubes, cuboids, prisms, spheres, cylinders, and other shapes
(using, like the Greeks, approximate values for � ranging
from rough to excellent).

Such formulas are useful but do not give any way of
exactly calculating the volume of a shape whose surface is
not described by flat planes or by circles (as are the curved
sides of a cylinder, or the surface of a sphere). New progress
in the calculation of volumes had to wait almost 2,000
years, until the invention of the branch of mathematics
known as calculus in the 1600s. One of the two basic math-
ematical operations of calculus is called “integration.” Inte-
gration, as it was first invented, allowed mathematicians to
exactly calculate the area under any mathematically
defined curve or any part of such a curve; it was soon
discovered, however, that integration was not restricted to

flat surfaces and areas. It could be generalized to three
dimensions—that is, to ordinary space. It had now become
possible to calculate exactly the volumes of complexly-
shaped objects, as long as their surfaces could be described
by mathematical equations.

The next great revolution in volume calculation
came with computers. Since computers can add many
numbers very quickly, they have made it possible to cal-
culate areas and volumes for complex shapes even when
the shapes cannot be described by nice, neat mathemati-
cal equations. Today, the calculation of volumes of simple
shapes is still routine in many fields, but the use of calcu-
lus and computers for complex shapes such as airplane
wings and the human brain is increasingly common.

Real-life Applications

PR IC ING
Volume is closely related to density, which is how

much a given volume of a substance weighs. For instance,
the density of gold is 19.3 grams per cubic centimeter,
that is, one cubic centimeter of gold weighs 19.3 grams,
which is 19.3 times as much as one cubic centimeter of
water. Silver, platinum, and other metals all have different
densities. This fact is used by some jewelry makers to
decide how much to charge for their jewelry.

Different metals not only have different densities,
they have different costs: at a 2005 price of about $850 per
ounce, for example, platinum cost about twice as much as
gold. So when a jewelry maker uses a blend of gold and
platinum in a piece of jewelry, they need to know exactly
how much of each they have used in order to know how
much to charge for the piece. Now, a blend of two metals
(called an alloy) has a density that is somewhere between
the densities of the two original metals. Therefore, deter-
mining the average density of a piece (say, a ring) will tell
a manufacturer how much gold and platinum it contains,
regardless of how complicated the piece is. Volume and
weight together are used to determine density. The fin-
ished piece is suspended in water by a thread. Any object
submerged in water experiences an upward force that
depends only on the volume of water the object displaces.
Therefore, by weighing the piece of jewelry as it hangs in
water, and comparing that weight to its weight out 
of water, the jeweler can measure exactly what weight of
water it displaces. Since the density of water is known 
(1 gram per cubic centimeter), this water weight tells 
the jeweler the exact volume of the piece. Finally, know-
ing both the volume of the piece and its weight, the 
jeweler can calculate its density by the equation density

Volume can be described in terms of an amount of the
space an object assumes, such as water in a bucket.
ROYALTY-FREE/CORBIS.
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� weight/volume. The jewelry maker’s wholesale price
will be determined partly by this calculation, and so will
the retail price in the store.

MEDICAL  APPL ICAT IONS
In medicine, volume measurements are used to char-

acterize brain damage, lung function, sexual maturity,
anemia, body fat percentage, and many other aspects of
health. A few of these uses of volume are described below.

Brain Damage from Alcohol Using modern medical
imaging technologies such as magnetic resonance imaging
(MRI), doctors can take three-dimensional digital pic-
tures of organs inside the body, including the brain. Com-
puters can then measure the volumes of different parts of
the brain from these digital pictures, using geometry and
calculus to calculate volumes from raw image data.

MRI volume studies show that many parts of the
brain shrink over time in people who are addicted to alco-
hol. The frontal lobes—the wrinkled part of the brain sur-
face that is just behind the forehead—are strongly affected.
It is this part of the brain that we use for reasoning, mak-
ing judgments, and problem solving. But other parts of the
brain shrink, too, including structures involved in memory
and muscular coordination. Alcoholics who stop drinking
may regain some of the lost brain volume, but not all. MRI
studies also show that male and female alcoholics lose the
same amount of brain volume, even though women alco-
holics tend to drink much less. Doctors conclude from this
that women are probably even more vulnerable to brain
damage from alcohol than are men.

Diagnosing Disease Almost half of Americans alive today
who live to be more than 85 years old will suffer eventu-
ally from Alzheimer’s disease. Alzheimer’s disease is a loss
of brain function. In its early stages, its victims sometimes
have trouble remembering the names for common
objects, or how they got somewhere, or where they parked
their car; in its late stages, they may become incurably
angry or distressed, forget their own names, and forget
who other people are. Doctors are trying understand the
causes of Alzheimer’s disease and develop treatments for
it. All agree that preventing the brain damage of
Alzheimer’s—starting treatment in the early stages—is
likely to be much more effective than trying to treat the
late stages. But how can Alzheimer’s be detected before it
is already damaging the mental powers of the victim?

Recent research has shown that the part of the brain
called the hippocampus, which is a small area of the brain
located in the temporal lobe (just below the ear), is the
first part of the brain to be damaged by Alzheimer’s. The
hippocampus helps the brain store memories, which is

why forgetting is one of Alzheimer’s first symptoms. But
instead of waiting for memory to fail badly, doctors can
measure the volume of the hippocampus using MRI. A
shrinking hippocampus can be observed at least 4 years
before Alzheimer’s disease is bad enough to diagnose
from memory loss alone.

Pollution’s Effects on Teenagers Polychlorinated aro-
matic hydrocarbons (PCAHs) are a type of toxic chemi-
cal that is produced by bleaching paper to make it white,
improper garbage incineration, and the manufacture of
pesticides (bug-killing chemicals). These chemicals,
which are present almost everywhere today, get into the
human body when we eat and drink. In 2002 scientists in
Belgium studied the effects of PCAHs on the sexual mat-
uration of boys and girls living in a polluted suburb. They
compared how early boys and girls in the polluted suburb
went through puberty (grew to sexual maturity) com-
pared to children in cleaner areas. They found that high
levels of PCAH-related chemicals in the blood signifi-
cantly increased the chances of both boys and girls of
having delayed sexual maturity. Once again, volume
measurements proved useful in assessing health. The
researchers estimated the volume of the testicles as a way
of measuring sexual maturity in boys, while they assessed
sexual maturity in girls by noting breast development.
This study, and others, show that some pollutants can
injure human health and development even in very low
concentrations. Testicular volume measurements are also
used in diagnosing infertility in men.

Body Fat Doctors speak of “body composition” to refer
to how much of a person’s body consists of fat, muscle,
and bone, and where the fat and muscle are located on the
body. Measuring body composition is important to mon-
itoring the effects of diet and exercise programs and
tracking the progress of some diseases. Volume measure-
ment is used to measure some aspects of body composi-
tion. For example, the overall density of the body can be
used estimate what percentage of the body consists of fat.
Measuring body density requires the measurement of the
body’s weight—which can be done easily, using a scale—
and two volumes.

The first volume needed is the volume of the body as
a whole. Since the body is not made of simple shapes like
cubes and cylinders, its volume cannot be found by tak-
ing a few measurements and using standard geometric
formulas. Instead, its volume must be measured by sub-
merging it in water. The body’s overall volume can then
be found by measuring how much the water level rises or,
alternatively, by weighing the body while it is underwater
to see how much water it has displaced. (Underwater
weighing is the same method used to measure the density
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of jewelry containing mixed metals, as described earlier in
this article.) The body’s overall volume is equal to the
water displaced.

However, doctors want to know the weight of the
solid part of the body; the air in the lungs does not count.
And even when a person has pushed all the air they can
out of their lungs, there is still some left, the “residual
lung volume.” Residual lung volume must therefore also
be measured, as well as overall body volume. This is done
using special machines that measure how much gas
remains in the lungs when the person exhales. The body’s
true, solid volume is approximately calculated by sub-
tracting the residual lung volume from the body’s water
displacement volume.

Dividing the body’s weight by its true, non-air vol-
ume gives its density. This is used to estimate body fat
percentage by a standard mathematical formula.

BU ILD ING  AND  ARCH I TECTURE
Many building materials are purchased by area or

volume. Area-purchased materials include flooring, sid-
ing, roofing, wallpaper, and paint. Volume-purchased
materials include concrete for pouring foundations and
other structures, sand or crushed rock, and grout (a kind
of thin cement used to fill up masonry joints). All these
materials are ordered by units of the cubic yard. (One
cubic yard equals about .765 cubic meters.) In practice,
simple volume formulas for boxes and cylinders are used
to calculate how many cubic yards of cement must be
ordered to build simple structures like housing founda-
tions. A simple foundation, shaped like a box without a
top, can be broken into three slab-shaped boxes, namely
the four walls and the floor. Multiplying the length by the
width by the thickness of each of these slabs gives a vol-
ume: the sum of these volumes is the cubic yardage that
the cement truck must deliver. For concrete columns, the
formula for the volume of a cylinder is used. For complex
structures with curving shapes, a computer uses calculus-
based methods to calculate volumes based on digital
blueprints for the structure.

The same principle is used in designing machine
parts. It is necessary to know the volume of a machine
part while it is still just a drawing in order to know what
its weight will be: its weight must be known to calculate
how much it will weigh, and (if it is a moving part) how
much force it will exert on other parts when it moves. For
parts that are not too complicated in shape, the volume of
the piece is calculated as a sum of volumes of simple ele-
ments: box, cylinder, cone, and the like. Computers take
over when it is necessary to calculate the volumes of
pieces with strange or curvy shapes.

COMPRESS ION  RAT IOS  IN  ENG INES
Internal combustion engines are engines that burn

mixtures of fuel and air inside cylinders. Almost all
engines that drive cars and trucks are of this type. In an
internal combustion engine, the source of power is the
cylinder: a round, hollow shaft sealed at one end and with
a plug of metal (the piston) that can slide back and forth
inside the shaft. When the piston is withdrawn as far as it
will go, the cylinder contains the maximum volume of air
that it can hold: when the piston is pushed in as far as it
will go, the cylinder contains the minimum volume of air.
To generate power, the cylinder is filled with air at its
maximum volume. Then the piston is pushed along the
cylinder to compress the air. This makes the air hotter,
according to the well-known Ideal Gas Law of basic
physics—just how hot depends on how small the mini-
mum volume is. Fuel is squirted into the small, hot vol-
ume of air inside the cylinder. The mixture of fuel and air
is then ignited (either by sheer heat of compression, as in
a diesel engine, or by a spark plug, as in a regular engine)
and the expanding gas from the miniature explosion
pushes the piston back out of the cylinder. The ratio of
the cylinder’s largest volume to its smallest is the “com-
pression ratio” of the engine: a typical compression ratio
would be about 10 to 1. Engines with high compression
ratios tend to burn hotter, and therefore more efficiently.
They are also more powerful. Unfortunately, there is a
dilemma: burning very hot (high compression ratio)
allows the nitrogen in air to combine with the oxygen,
forming the pollutant nitrogen oxide; burning relatively
cool (low compression ratio) allows the carbon in the fuel
to combine only partly with the oxygen in the air, form-
ing the pollutant carbon monoxide (rather than the non-
poisonous greenhouse gas carbon dioxide).

GLOWING  BUBBLES :
SONOLUMINESCENCE

When small atoms come together to make a single
heavier atom, energy is released. This process is called
“fusion” because in it, two atoms fuse into one. All stars,
including the Sun, get their energy from fusion. Some
nuclear weapons are also based on fusion. But fusion is
difficult to control on Earth, because atoms only fuse
under extreme heat. If fusion could be controlled, rather
than exploding as a bomb, it could be used to generate
electricity. Many billions of dollars have been spent on
trying to figure out how to make atoms trapped inside
magnetic fields fuse—so far without success.

Yet there is a new possibility. Some reputable scientists
claim that they can produce fusion using nothing more
expensive or exotic than a jar full of room-temperature
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liquid bombarded by sound waves. This claim—which has
not yet been tested by other researchers—is related to the
effect called “sonoluminescence,” which means “sound-
light.” Sonoluminescence depends on changes in volume
of bubbles in liquid. Under certain conditions, tiny bub-
bles form and disappear in any liquid that is squeezed and
stretched by strong sound waves; when the bubbles col-
lapse, they can emit flashes of light. This happens as fol-
lows: Pummeled by high-frequency sound waves, a bubble
forms and expands. When the bubble collapses, its radius
decreases very rapidly as its surface moves inward at sev-
eral times the speed of sound. Because the volume of a
sphere is proportional to the cube (third power) of its
radius, when a bubble’s radius decreases to 1/10 of its
starting value, its volume decreases to (1/10)3 � 1/1,000
of its starting value. (These are typical figures for the col-
lapse of a sonoluminescence bubble.) This decrease in
volume squeezes the gas inside the bubble, and, according
to laws of physics, when a gas is squeezed its temperature
goes up. Also, the compression happens very quickly—
too quickly for much heat to escape from the bubble.
Therefore, the bubble’s rapid shrinkage causes a fast rise
in temperature inside the bubble. The temperature has
been shown to rise to tens of thousands of degrees, and
may reach over two hundred thousand degrees. Such heat
rivals that at the heart of the Sun and makes the gas in the
bubble glow. It may also do something else: in 2002 sci-
entists at Oak Ridge National Laboratory claimed to have
detected neutrons flying out of a beaker of fluid in which
sonoluminescence was occurring. Neutrons would be a
sign that fusion was occurring. If it is, then there is a close
resemblance between bubble fusion and the diesel
engines found in trucks: both devices work by rapidly
decreasing the volume of a gas in order to heat it to the
point where energy is released. In a diesel engine, the
energy is released by a chemical reaction. In a fusion bub-
ble, it would be released by a nuclear reaction.

As of 2005, the reality of bubble fusion had been nei-
ther proved nor disproved. If it is proved, it might even-
tually mean that producing electricity from fusion could
be done more cheaply than scientists had ever before
dreamed. Describing changes in bubble volume mathe-
matically is basic to all attempts to understand and con-
trol sonoluminescence and bubble fusion.

SEA  LEVEL  CHANGES
One of the potential threats to human well-being

from possible global climate change is the rising of sea
levels. The International Panel on Climate Change pre-
dicts that ocean levels will rise by 3.5 inches to 34.5 inches
(about 9 to 88 centimeters) by the year 2100, with a best

guess of 1.6 ft (about 50 centimeters) with the ocean con-
tinuing to rise. Hundreds of millions of people live near
sea level worldwide, and their homes might be flooded or
at greater risk from flooding during storms. Also, many
small island nations might be completely flooded.

Sea level rises when the volume of water in the ocean
increases. There are two ways in which a warmer Earth
causes the volume of water in the ocean to increase. First,
there is the melting of ice. Ice exists on Earth mostly in
the form of glaciers perched on mountain ranges and the
ice caps at the north and south poles. Second, there is the
volume increase of water as it gets warmer. Like most
substances, water expands as it gets warmer: a cubic cen-
timeter of seawater gains about .00021 cubic centimeters
of volume if it is made 1 degree Centigrade warmer.
Therefore, the oceans get bigger just by getting warmer. In
fact, the International Panel on Climate Change predicts
that most of the sea-level rise that will occur in this cen-
tury will be caused by water expansion, rather than by ice
melting and increasing the mass of the sea. Calculations
of the volume of water that will be added to the ocean by
melting glaciers and icecaps and by thermal expansion
are at the heart of predicting the effects of global warm-
ing on sea levels.

WHY THERMOMETERS  WORK
The fact that liquids expand as they get warmer

(until they start to boil) is used to measure temperature
in old-fashioned mercury or colored-alcohol thermome-
ters. Geometry is used to amplify or multiply the expan-
sion effect: a thin cylinder connected attached to a sphere
(the “bulb”). The bulb is full of liquid. If the radius of the
thermometer bulb is rB, then its volume (VB, for “volume,
bulb”) is given by the standard volume formula for a
sphere as 

If the cylinder’s radius is rC, then the volume of liq-
uid in the cylinder (VC, for “volume, cylinder”) is given by
the standard volume formula for a cylinder as VC �

� rC
2H, where H is the height of the fluid in the cylinder.

We read the temperature from a thermometer of this type
by reading H from marks on the cylinder.

There is room in the cylinder for more liquid, but
there is no room in the sphere, which is full. If the ther-
mometer contains a liquid that has a “volume thermal
coefficient” of � � .0001, a cubic centimeter of the liquid
will gain .0001 cubic centimeters of volume if it is warmed
by 1 degree Centigrade. Say that the thermometer starts

VB =        rB
34

3
π
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out with no fluid in the cylinder and the bulb perfectly
full. Then the temperature of the thermometer goes up by
1�C. This causes the volume of the fluid in the bulb, VB

before it is warmed, to increase by .0001VB. But this extra
volume has nowhere to go in the bulb, which is full, so it
goes up the cylinder. The amount of fluid in the cylinder
is then VC � � rC

2H � .0001VB. If we divide both sides of
this equation by � rC

2, we find that

Because VB is on top of the fraction, making it bigger
makes H bigger. That is, the bigger the bulb, the bigger 
the change in the height of the fluid in the cylinder when
the temperature goes up. Since rC is on the bottom of the
fraction, making it smaller also makes H bigger. That is,
the narrower the cylinder, the bigger the change in the
height of the fluid in the cylinder when the temperature
goes up. This is why thermometers have very narrow
cylinders attached to fat bulbs—so it is easy to see how far
the fluid goes up or down the cylinder when the temper-
ature changes.

MISLEAD ING  GRAPH ICS
Many newspapers and magazines think that statistics

are dull, and so they have the people who work in their
graphics departments make them more visually appeal-
ing. For example, to illustrate money inflation (how a
Euro or a dollar buys less every year), they will show you
a picture of shrinking bill—a big bill, then a smaller bill
below it, and a smaller below that, and so forth. Or, to
illustrate the increasing price of oil, they will show you a
picture of a row of oil barrels, each bigger than the last.

Such pictures can create a very false impression,
because it is usually the lengths of the dollar bills or the
oil barrels (or whatever the object is), not their areas or
volumes, that matches the statistic the art is trying to
communicate. So, to show the price of oil going up by
10%, a publication will often show two barrels, one 10%
taller and wider than the other. But the equation for the
volume of a barrel, which is a cylinder, is V � � r 2H,
where r is the radius of the barrel and H is its height.
Increasing r or H by 10% is the same as multiplying it by
1.1, so increasing the dimensions of the barrel by 10%
shows us a barrel whose volume is Vbigger � � (1.1 r)2

(1.1)H. If we multiply out the factors of 1.1, we find that
Vbigger � 1.331V—that is, the volume of the larger barrel
in the picture, the amount of oil it would contain, is not
10% larger but 33.1% larger. Because volume increases by

H =
.001VB

2rcπ

the cube of the change in size, the larger the size change,
the more misleading the picture.

Look carefully at any illustration that shows growing
or shrinking two-dimensional or three-dimensional
objects to illustrate one-dimensional data (plain old
numbers that are getting larger or smaller). Does the art-
work exaggerate?

SWIMMING  POOL  MA INTENANCE
Everyone who owns a swimming pool knows that

they have to add chemicals to keep the water healthy for
swimming. It’s not enough to just dump in a bucket or
two of aluminum sulfate or calcium hypochlorite,
though—the dose has to be proportioned to the volume
of water in the pool.

Some pools have simple, box-like shapes: their vol-
ume can be calculated using the standard formula for the
volume of a box, volume equals length times width times
height. A standard formula can also be used for a circular
pool with a flat volume, which is simply a cylinder of
water. Many pools have more complex shapes, though,
and even a rectangular pool often has a deep end and a
shallow end. The deep and shallow ends may be flat, with
a step between, or the bottom of the pool may slope.
Some pools are elliptical (shaped like a stretched circle),
and an elliptical pool may also have a sloping bottom.

To calculate the correct chemical dose for a swimming
pool, it is necessary, then, to take some measurements. A
pool with a complex shape has to be divided into sections
with simpler shapes, and the volumes of the separate pieces
calculated and added up. More complex formulas are
needed for, say, the volume of an elliptical pool with a slop-
ing bottom; calculus is needed to find these formulas. For-
tunately for the owners of complexly shaped pools,
volume-calculation computer software exists that will cal-
culate a pool’s volume given the basic measurements of its
shape. For an elliptical pool with a sloping bottom, you
would need to measure the length of the pool, the width of
the pool, the maximum depth, and the minimum depth.

B IOMETR IC  MEASUREMENTS
On average, men’s brains tend to be larger than

women’s, occupying more volume and weighing more.
Before the invention of modern medical imaging
machines like CAT (computerized axial tomography)
scanners, brain volumes were measured by measuring the
volumes of men’s and women’s skulls after they were dead.
Beads, seeds, or ball bearings were poured into the empty
skull to see how much the skull would hold, then they
were weighed. More beads, seeds, or bearings meant more
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brain volume. Today, brain volume can be measured in
living people using computer software that uses three-
dimensional medical scans of the brain to count how
many cubic centimeters of volume the brain occupies.

But the fact that men, on average, have slightly larger
brains (about 10% larger) does not mean that men are
smarter than women. To begin with, a bigger brain does not
mean a more intelligent mind, and there is great individual
variation among people of both sexes. Some famous schol-
ars have been found, after death, to have brains only half the
size of other scholars. People of famous intelligence, like
Einstein, usually do not have larger-than-average brain vol-
ume. Second, about half of the average size difference is
accounted for by the fact that men tend to be larger than
women. Brain size goes, on average, with body size: taller,
more muscular men tend to have larger brains than smaller,
less muscular men. Elephants and whales have larger brains
several times larger than those of human beings, but are not
more intelligent. To some extent, therefore, men have larger
brains only because their bodies are larger, too.

In the nineteenth and early twentieth centuries,
brain-volume measurements were used to justify laws
that allowed only men to vote and hold some other legal
rights. This is a classic case of accurate measurements
being interpreted in a completely misleading way.

RUNOFF
Runoff is water from rain or melting snow that runs

off the ground into streams and rivers instead of soaking
into the ground. Scientists and engineers who study flood
control, sewage management, generating electricity from
rivers, shipping goods on rivers, or recreation on rivers
make determinations of water volume to estimate supply.
To make an educated guess, they initially estimate the

volume of water that will be added by snowmelt and rain-
fall during a given period of time. This indicates how
much water will arrive, and when and how fast, in various
rivers or lakes.

Hydrogeologists and weather scientists use complex
mathematical equations, satellite data, soil-test data, and
computer programs to predict runoff volumes. Some of
the factors that they must take into account include rain
amount, intensity, duration, and location; soil type and
wetness; snowpack depth and location; temperature 
and sunshine; time of year; ground slope; and the type
and health of the vegetation covering the ground. All this
information goes into a mathematical model of the
stream, lake, or reservoir basin into which the water is
draining. Given the exact shape of the basin receiving the
water, water volume can be translated into water depth.
In some places, water can be drained from reservoirs to
make room for the volume of water that has been forecast
to flow from higher ground, thus preventing floods.

Where to Learn More

Books
Tufte, Edward R. The Visual Display of Quantitative Information.

Cheshire, CT: Graphics Press, 2001.

Web sites
“Causes of Sea Level Rise.” Columbia University, 2005.

�http://www.columbia.edu/~epg40/elissa/webpages/
Causes_of_Sea_Level_Rise.html� (April 4, 2005).

“Making a River Forecast.” US National Weather Service,
Sep. 21, 2004. �http://www.srh.noaa.gov/wgrfc/resources/
making_forecast.html� (April 6, 2005).

“Volume.” Mathworld. 2005. �http://mathworld.wolfram.com/
Volume.html� (April 4, 2005).
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Word Problems

Overview

The ability to communicate and the development of
language have paralleled the progression in society of
mathematical and scientific developments. Humans
think and imagine in language and pictures, so it is 
hardly surprising that much of mathematics deals with
the translation from words to expressions. The word 
translate can be used because many people view math as
a language in its own right. After all, it has its own 
rules of grammar and layout. It should also be perfectly
logical.

It is often observed that a good mathematician is one
who can translate complicated real-life situations into
logical mathematical sentences that can then be solved.

Fundamental Mathematical Concepts
and Terms

There are two distinct types of word problems, both
relevant to today’s world. First, there is the statement
believed to true. Mathematics can often be used to estab-
lish the validity of the statement. This proposition is often
called a hypothesis. Often a written statement can be
proven to hold true without exception. These ideas
branch out into a large mathematical area called proof.
There are many different ways of proving things. These
proofs can often have tremendous impact on the real
world because people can the use these ideas completely
and confidently.

Second, there is the word problem, to which the solu-
tion happens to involve mathematics. Mathematical
modeling is considered to be the process of turning real-
life problems into the more abstract and rigorous lan-
guage of mathematics. It generally involves assumptions
and simplifications required to express the complex situ-
ation as one that can be solved.

These solutions are then compared to the actual
readings or observations. Alterations are then made to the
model to try to achieve a more realistic solution. These
alterations are often referred to as refinements. This
process of solving, comparing, and refining is called the
modeling process. It is used to solve many of the prob-
lems in the real world. It is used because it is often impos-
sible to exactly model the frequently immeasurable
possibilities in real life. Simplifications often lead to a
realistic and useable model.

Diagrams are also used to simplify situations. The
key elements can be marked and these are then used
within the model. One of the key facts that should be
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considered is that a diagram will help simplify even the
most complex of problems.

A Brief History of Discovery 
and Development

It is frequently the case that the person involved as a
manager behind a job will have the ideas but not the
mathematical ability to solve the problem. It is for this rea-
son that mathematics, whether through mathematicians,
engineers, scientists, or statisticians, is thus employed.

Possibly one of the early cases of such an idea was the
building of ancient monuments some of which, it is now
believed, tell time and measure the passing of seasons.
The most famous example includes the building of the
pyramids. The pharaohs, wanting to express their might
and wealth, commanded the building of these tombs
without the slightest idea of the mathematics behind
them. It was the engineers who set to work, translating
the request into achievable, long-lasting designs.

As the years have progressed, so the requests and
subsequent designs have become and more detailed and
complicated. War, however terrible, has forced great
strides in our technologies. Requests for fighting
machines have driven much of the mathematics behind
flight, engines, and electronics. Progress in trade and
finance has also forced people into solving problems
involving money. Though these calculations generally use
the four basic operators, (add, subtract, divide, and mul-
tiply), the ability to translate between statements and cal-
culations is a highly sought after skill. The more complex
finance has become, so the complexity of problems met
in the real world has increased.

Perhaps the biggest driving force is the current
emphasis towards efficiency. It is increasingly the case
that the best solutions, often referred to as optimal solu-
tions, are required. Today, only the very best will do.

Real-life Applications

TEACHERS
Teachers spend most of their time trying to construct

real-life problems. It is widely believed that understanding
the mathematics behind actual problems assists in grasp-
ing the more theoretical, fundamental, and abstract ideas
that underpin mathematics. It also makes the subject more
accessible, relevant, and interesting. Indeed, it is the appli-
cation to real life that has driven many of the advance-
ments in mathematics. The more abstract side of

mathematics is a beautiful area, and application to the real
world provides a stepping-stone into this complex and
remarkable subject.

COMPUTER  PROGRAMMING
Computers are built with an underlying logic behind

them. This logic is used to then program software or
games. The computer designer will have ideas about how
to make the interface look and how to program the 
operating software to allow for a suitable user-friendly
environment.

SOFTWARE  DES IGN
The design of software goes through various processes.

First, the creative department will come up with ideas for a
suitable game. This will often be deduced through market
research. The department will then pass on ideas to the pro-
grammers, who will translate the creative ideas into pro-
gramming code. Programming code is an example of the
use of mathematics. It follows a logical structure and obeys
the many structures underlying mathematics.

CREAT IVE  DES IGN
The artistic idea behind animation, computer graph-

ics, or a storyline will often be verbal. This then has to be
turned into motion through the work of computer
designers. Highly competent mathematicians will pro-
gram these packages. The concepts behind three dimen-
sions, perspective, etc. have to be converted into machine
code. These are effectively strings of mathematical state-
ments. They will use vast arrays (data storage) that are
then manipulated.

INSURANCE
Insurance involves almost exclusively real-life situa-

tions. A client will provide a list of items that need to be
insured against loss, and the insurance company will then
try to offer an attractive premium that the client will be
willing to pay to insure his items. The evaluating of such
premiums can be a highly complex task. The people
involved, who are often referred to as actuaries, need to
simplify all the variables involved and work out the vari-
ous probabilities. Not only do they want to encourage the
client to pay the premium, they must also ensure that, on
average, the company will not lose vast sums of money in
event of a claim.

Actuaries evaluate what is often referred to as the
expected monetary value of the situation. This is simply the
expected financial outcome of a given financial situation.
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They will often draw a simple tree diagram, upon which
expected occurrences are labeled. They can then work out
from this the best possible premium for the situation.

This allows solutions to such questions as, What is
the best premium? How much should be charged? It also
allows the consumer to evaluate the best deal being
offered. Everyone, at some point in life, will be faced with
the prospect of buying insurance. Every first-time driver
will be expected to pay a premium that is much greater
that experienced drivers.

CRYPTOGRAPHY
Cryptography is the ability to send encoded data that,

in theory, will be unreadable without a key. Authorities
need to be able to control and often intercept messages
and then read them. In modern times, where terrorism is
often referred to as a significant threat, it is essential to be
able to understand what such groups are saying. By its
very nature, cryptography deals problems involving
words.

There are many different ways of coding data, yet an
awareness of the different possibilities means that, with
powerful computers, a piece of writing can be unscram-
bled in many different ways until the correct key is found.
The ability to decode information can hinge on knowl-
edge of the actual language used. However a coding is
applied, the frequency of certain letters within the lan-
guage can be used to try to decode simple situations. Dur-
ing World War II, decoding was often found to be difficult
due to the placing of random letters into specific sections
of the text, but the decoders generally prevailed.

MEDIC INE  AND  CURES
Research in medicine is frequently concerned with

questioning the benefits of drugs as well as assessing their
possible side effects. It is an extremely difficult area to
research, because people’s lives are so heavily mixed into
the equation. It is impossible to test all drugs on all peo-
ple and record which ones work while recording the visi-
ble effects on the patients. So, how does a question such
as “Does smoking cause cancer?” actually get solved
mathematically?

These are questions involving causality. Namely, does
smoking actually cause cancer? It is often the case that,
even though there appears to be a direct link, it is either a
fluke or a third variable is causing the apparent situation.
To determine this, strict statistical tests need to be carried
out using a control group, made up of people that have
no link to the drug in question. Another group is then
selected, who are given just the drug. These people would

have to be selected randomly to reduce the chance of a
third variable. The outcomes can then be compared and
inferences drawn.

HYPOTHES IS  TEST ING
This is an important area of mathematics. It is equiv-

alent to a court case, in which a party is only found guilty
if the evidence is of sufficient nature. For instance, it is
believed that playing computer games has caused a
decrease in the number of people reading books. To prove
this, the situation is set up extremely systematically. A null
hypothesis is defined. This often states a simple belief that
there has been no change: computers have not caused a
decrease in literacy.

An alternative hypothesis is defined. This would be a
statement indicating that there has been a change. In this
case, computers have decreased literacy. A statement is
then made indicating how much evidence is required to
decide on the alternative hypothesis. This is called the sig-
nificance. The statistician would then pick a random
sample of people relevant to the survey. These would have
to be drawn from the whole population. The statistician
would then take a survey on reading and computer habits
and compare this to data from the past. If the change
(presuming a change) were to be sufficient, it would be
stated that there existed enough evidence for the alterna-
tive hypothesis.

In hypothesis testing it is essential to define the sig-
nificance before the test, otherwise the conclusion may be
compromised.

ARCHAEOLOGY
Archaeology uses many mathematical ideas to ana-

lyze many different aspects, from dating individual
objects to how the landscape has changed. These facts are
then pieced together to provide an overall picture to help
in understanding the past.

ENG INEER ING
The conversion of ideas into safe and workable

designs involves a lot of detailed mathematics. For
instance, how does water arrive through the tap? The
many different stages in the process would be separated
and each part solved progressively. The whole system
involves forces, which allow the water to flow around the
system. This in turn puts pressure on the system; hence it
needs to be strong enough and yet cheap enough to run.
A single error in calculation along the way and the whole
process would have to be thought through again at much
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expense. The sewerage and water system beneath any
major city is a great engineering and mathematical feat.

COMPARISONS
Statements are often made concerning views on

sports persons or other famous figures such as pop stars.
Frequent allusions are made to the best ever sportsman or
the most successful singer. Mathematics is used to solve
such problems using the concept of averages. There are
three main types of averages: mean, median, and mode,
each having an exact meaning.

For example, a teacher has stated that Sam is better at
math than David. This is because Sam averages 70, while
David averages 65. Sam’s scores were 40, 70, and 80;
David’s scores were 65, 65, and 100. It is perhaps imme-
diately apparent that David has the better scores overall.
When solving problems involving averages, it is also use-
ful to indicate how spread out the data is. This indicates
how consistent someone or the object in question is.

PERCENTAGES
Everyday, the consumer is confronted by billboards

offering massive savings and bargain prices in an attempt
by retailers to tempt the customer in. The customer must
see a way around any potential pitfalls. For instance, if a
store suggests that 40% of their competitors are worse
than they are, the clever consumer would logically deduce
that 60% are as good or better!

EXCHANGE  RATES
The difference in currency from one country to the

next can cause many problems for consumers. There is also
a variation from one day to the next. Some currency
exchange companies may charge an extra amount; this is

referred to as commission. Being aware of these facts allows
the consumer to correctly evaluate the relative amount
they are spending while abroad. They need to ask them-
selves, “Which is the more expensive: a coat costing $10 or
one costing 15 euros?” The concept of ratios can be used to
solve this particular problem: If that day’s ratio is $1 to 1.2
euros, then $10 � 12 euros. Hence, the $10 coat is the bet-
ter deal. Obviously, it pays to be aware of exchange rates.

PHONE  COMPANIES  
It can be difficult choosing the best company to use for

a mobile phone. They all offer different rates and different
incentives. A graph is a good way to compare different
phone options. It may save money in the long run. For
example, company A has a fixed charge of $20, and charges
$1 for every 10 minutes; company B has no fixed charge, but
charges $1 for every five minutes for the first two hours and
then $3 every 5 minutes thereafter. Figure 1 shows a com-
parison graph. If the consumer uses the phone for less than
130 minutes a month, then option A is the better deal; oth-
erwise company B offers the better deal.

TRAVEL  AND  RAC ING
Before setting out on a trip, it is important to assess

travel times. To work out how long a 100 kilometer jour-
ney would take, one could make an approximation of
80 km/hour, which would therefore make the trip take 
1 1/4 hours.

Another example is a man taking part in a rally. The
overall length is 120 kilometers. He completes the first 60
kilometers in 1 hour and twelve minutes. To win the prize
he needs to average over 100 kilometers an hour for the
whole race. It would be impossible, because even if he
travels at phenomenal speeds, he still wouldn’t get his
average speed above 100 kilometers an hour. In fact, even
assuming he could arrive at the finishing post instanta-
neously, he still would only match the target, not beat it.

PROPORT ION  AND  INVERSE
PROPORT ION

Many problems in real life have simple proportional
laws and so are easy to solve. If 10 people on average can
produce a factory output of 1,000 units, then 20 people
on average should be able to produce 2,000 units. This
deduction is called direct proportion. Unfortunately, it is
not always that simple; careful reasoning is required
before stating what could be the wrong solution.Suppose
it takes 10 people 10 hours to do a job. How long would
it take two people? The answer is not two hours! There
are less people and so the job should take longer. This
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particular case is an example of inverse proportion. It 
can be worked out using the unitary method: 10 people:
10 hours; 1 person: 100 hours; 2 people: 50 hours.

Even though proportion appears easy, when it is
applied to other real-life problems it can get much more
complex. For example, a company is producing boxes for
storing model cars. The boxes are 2 cm by 2 cm by 2 cm.
For a special edition, they want to create a box with a
volume that is twice as big. What should the length of
the sides be? The apparently obvious, yet incorrect,
answer is for the sides to be 4 cm long. But the 2 cm sides
give a volume of 8 cm3, while the 4 cm sides give a vol-
ume of 64 cm3. Much too big! By doubling the sides, the
volume becomes 8 times as big. This is called cubic
proportion.

If solving a problem that involves proportion, it
should be determined whether it is direct proportion
or not. It is also a good idea to always check answers
afterwards.

ECOLOGY
A problem facing ecologists at the moment is the

saving of endangered animals. Statements are frequently
made concerning those dwindling in stock, and radical
solutions are suggested. Yet, it is essential that the solu-
tions be explored before any action is taken.

To model situations encountered in ecology, mathe-
matical equations are set up that are indicative of the way
the population changes as time progresses. These can be
referred to as differential equations. These indicate how a
population continually changes from second to second.
This can be a bad model for species that breed at 
specific times. Such a population will have very distinct,
regular changes.

The type of equation used to solve these situations
can be known as difference equations. This would be used
to illustrate changes over discrete periods of time. A list of
equations, often referred to as a series of equations, is
produced. These equations would each correspond to a
different variable within the ecosystem in question. These
are then solved, often using computers, to suggest the
outcomes if different methods are used. If an equation is
solved using computers, it is often referred to as an ana-
lytical solution.

A simple example to consider is that of rabbits and
foxes. The ecologist will consider that the more rabbits
there are, the quicker they will breed and hence the pop-
ulation will increase. If there are more rabbits, there is
more for the foxes to eat, and so the foxes thrive and their
population increases. Conversely, more rabbits are eaten,

so their population decreases. Each of these lines could be
represented by an equation and these could be used as
indications of how the populations will develop.

TRANSLAT ION
As the commercial possibilities expand, and more

and more cultures mix and work together, the ability to
communicate is becoming increasing essential. Yet it is
virtually impossible for a human translator to be present
at all times to assist between different languages. It is for
this reason, as well as cost consideration, that the concept
of computerized translation is very appealing. Yet the
ability to turn a random phrase in English into Spanish is
difficult, if it is to be done efficiently. The simplest solu-
tion would be to have all conceivable phrases stored
somewhere for each language, and to then link them. This
is often called a one-to-one (functional) solution.

Careful consideration should, however, reveal the lim-
itations of such an idea. The number of possible sentences
in a language is unimaginably vast. The aim is therefore to
program the computer with a sense of grammar and lan-
guage structure. When a sentence is typed in, the computer
recognizes whether words are verbs, nouns, or preposi-
tions, converts these into the required counterpart, and
then applies the correct grammar. This in itself is a remark-
ably complex task. Computers are still poor translators.
However, the continual development of computers is
allowing advances in such areas.

NAV IGAT ION
Strictly speaking, for many transportation compa-

nies, navigation is concerned with getting from point A to
point B in the shortest time and cheapest way possible. A
company will set out with the sole objective of finding
this route. Finding the shortest distance is a large disci-
pline of mathematics and often goes under the overall
umbrella of decision mathematics.

To solve this problem, the company would make a
map indicating all the possible routes and their respective
costs. Figure 2 is an example of such a simplification.
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Figure 2.
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Cost is a generic term used to denote the area of con-
sideration. This could be time, or distance, or cost, or
even gasoline consumption. An algorithm is then used to
solve this problem. There are many methods available;
the main one used is called Dijkstra’s algorithm. Any elec-
tronic route-finder on cars will probably apply this
method. A more complete algorithm used is called
Floyd’s. This is a repeated version of Dijkstra and finds
the shortest distance between all points on a map.

The maps used are always simplified versions of the
real-life situation. They will never resemble visually the
actual physical situation. These maps are referred to as
graphs, the roads are often called arcs, and the places
where roads diverge or converge are called nodes, or ver-
tices. This leads to a large area of real-life mathematics
called graph theory.

GRAPH  THEORY
Graph theory is often used to solve real-life prob-

lems, often those expressed in words that appear complex
on the face of it. For example, the problem is to find the
most efficient way to build a car using the minimal num-
ber of people, while completing the task within a pre-
scribed time. The way to solve this problem is to identify
the tasks and to construct a precedence diagram for the
situation. The diagram merely indicates the order in
which certain tasks need to be performed. It is obvious,
for instance, that the engine cannot be placed in the car
before the car itself has been built.

The situation thus described would then be solved
using a method often called critical path analysis. Dia-
grams to show number of workers can also be 
drawn, which show how many people are required at any
one time and would be used during the hiring process
and to plan wages. These concepts are important to 
learn when considering a career in management and
business.

L INEAR  PROGRAMMING
Linear programming is used to solve such problems

as how to maximize profit and minimize costs. The situ-
ation is simplified into a series of simple equations, and
these are solved to present the optimal, or best, solution.
For example, a company wants to produce two items of
candy. Candy A will sell for $1.50; Candy B will sell for $2.
The company wants to produce at most 1,000,000 candy
bars altogether. Due to demand, it wants to make at least
twice as much of A as of B. The ratio of the secret ingre-
dient X in the two candy bars is 2:5. The company has
7,000,000 parts of ingredient X. How much of each
should they produce to maximize profit?

The problem is solved as follows: They let x = the
amount of Candy A made, and y = amount of Candy B
made. Then, they want to maximize 1.50x + 2y, since this
denotes profit, subject to: x + y � 1,000,000 (total num-
ber of bars less than one million); x � 2y i.e. x – 2y � 0
(twice as many of A as of B); 2x + 5y � 7,000,000 (Total
amount of ingredient X is less than 7,000,000 parts).

These equations can then be solved to find the opti-
mal solution. They can be expressed graphically, using 
x- and y-coordinates to represent amount of candy A and
candy B. These equations are linear because the coeffi-
cient of both x and y is 1. It is best solved using a com-
puter. A method that is most efficient is called the simplex
method. A computer is able to use the algorithm 
quickly and give the optimal solution in virtually no time
at all.

Paradox

A paradox is a statement that seems to contradict
expected reasoning. There are many famous para-
doxes within mathematics and they often lead to
exploration into new areas to try to evaluate why they
occur. For example, the Sorites paradox. Sorites is
Greek for heap and describes a set of thinking prob-
lems. At what point does a pile of sand denote a
mound of sand? One grain clearly isn’t a mound; add
one more grain to this, and little difference has been
made. By this definition, adding one grain each time
still means there is no mound. At what point is a
mound achieved? Conversely, if there is a mound and
a grain of sand is removed, there is still presumably
a mound. Keep removing one grain, and when is there
no mound? Is it just the limitations of language that
cause the apparent paradox?

Another paradox, originally expressed in ancient
Greek, is well-known. A man fires an arrow at a mov-
ing target, albeit one that is slower than the arrow.
Unfortunately, the arrow never hits the target. This is
because by the time the arrow would have caught up
with the target, this object has moved that much fur-
ther on. So the arrow needs to travel a bit further, but
by this time the target has once again moved. And so
the argument persists. This entire argument has now
been resolved and indeed is linked to a whole area of
mathematics often referred to as convergence and
divergence in sequences. These are extremely impor-
tant areas in number theory.
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TRAVEL ING  SALESPERSON
Most companies need to travel either to market their

product or to make deliveries. It is essential that this be
done as efficiently as possible. Often a delivery will do a
circular trip, calling at all required places. To save gas, the
shortest route is found, though this may be in terms of
time, or gas, or cost, or a combination of many factors.
This requires graph theory to find a solution. Nodes are
drawn to represent the places required and arcs are used
to represent possible journeys.

There is no easy way to find an optimal solution. For
extremely large routes, even a computer would take years
to reach an optimal solution. For this reason, a trial and
improvement technique is used. This is an important
concept in mathematics. Estimates for worst-case and
best-case scenarios are found. A logical search (often
referred to as an inductive process) must take place.
Gradually, improvements are made, until the company is
satisfied with the solution. They may stumble upon a bet-
ter solution later. The company that achieves the better
solution will be the one that survives.

POSTMAN
A mailman who needs to walk down all streets in a

particular precinct will want to take the shortest route
possible, and avoid repetitions, if possible. Consider
Figures 3 and 4.

In Figure 3, all of the roads (arcs) are complete. How-
ever, Figure 4 has one of the roads (arcs) removed. Even
though there are fewer “roads” to go down, the actual
solution takes longer to perform. It is actually the case
that a good solution exists if all nodes have an even num-
ber of roads/arcs leading out of them. If there is a node
with an odd number of roads coming out of them, then
the problem becomes more complex.

To solve the problem, a consideration is taken of the
odd nodes. As a reminder, this means the nodes with an
odd number of roads coming out of them. The shortest
arcs between such nodes are then doubled up. This is
equivalent to walking up and down the road twice. It is like
meeting a dead-end and the postman has to double back.

There are many different jobs where such analysis is
required. Many bulk delivery firms will use such ideas. It
can also be used for hypothetical problems such as where
the arcs represent tasks and where all the tasks need to be
performed, though not in any particular order.

ROTA  AND  T IMETABLES
One of the more complex aspects of any business is

that of staffing levels and evaluating when staff should
work. Many food outlets require shift patterns to be

established, and the average high school will have many
hundreds of teachers that need to be organized. A careful,
logical approach is required to meet the demands.

SHORTEST  L INKS  TO  ESTABL ISH
ELECTR IC I TY  TO  A  WHOLE  TOWN

What is the most efficient way to connect a whole
town to a main electricity supply? Clearly, the most effi-
cient solution would be the one using the smallest length
of cable. There are two established techniques for solving
this problem.

Drawing a graph is required to solve this problem.
Nodes are used to represent houses, and arcs are used 
to represent all the possible connections available. The
graph will be a complete graph. This is because all the dif-
ferent possibilities will be considered. One of the two fol-
lowing efficient methods will solve the problem.

In the Kruskal’s algorithm, all the different possible
cable lines are ranked from shortest (best) to longest
(worst). Then cable is progressively added in until all the
houses are connected. In the Prim’s algorithm, it is the
houses that are progressively joined by lengths of cable.
Starting with the house that is closest each time, all
houses are joined together.

RANK ING  TEST  SCORES
Ranking a long list of numbers occurs often in real

life. This seems like a trivial task until there is a list of

Start

Figure 3.

Start

Figure 4.
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substantial size. Suddenly, a logical method is required.
There are many different methods used, all going under
the name of sorting algorithms. They all have different
advantages and disadvantages. These algorithms may be
programmed into software to allow computers to do the
hard work. A computer needs an explicit set of instruc-
tions if it is to complete a task. The programmer must
consider the amount of coding required to get the sort
function to work.

SEARCH ING  IN  AN  INDEX
With a lot of information, it can be difficult to find one

precise piece. It is for this reason that a dictionary is ordered
sequentially. In another example, a student may have a large
amount of school notes, each page numbered and in order,
and the student needs to find a specific page to study for an
exam. The method to use is called binary search.

This method requires a numbered list. This would be
the case in most examples of filing. A good starting point
would be the halfway point in the list. The student can
look through the upper half first, then the lower half,
until the specific page is found. This is much quicker
method than randomly looking at pages. Obviously, a
computer would be much quicker!

EFF IC IENT  PACK ING  
AND  ORGAN IZAT ION

To pack the most objects in a given space requires
careful mathematics. One method is extremely good at
these packing situations. The rule is to order the objects
first, from largest to smallest, and then pack them in that
particular order.

SEED ING  IN  TOURNAMENTS
One of the prerequisites for many sporting events is

that the best players don’t meet each other until the later
stages of the game. To accomplish this, players are allo-
cated seeds, or rankings based upon their past and cur-
rent performance. The players are then often pooled into
different groups and the fixtures are arranged initially
within groups. This will ensure that seed 1 and seed 2 will
not meet until later in the tournament.

ARCH I TECTURE
Buildings must be designed by taking several factors

into consideration. It is to resolve the myriad issues that
architectural design is so important. Architects are work-
ers with a fully functional knowledge of the mathematics
behind construction.

Connecting Four Towns

Consider four towns, each located at a vertex. A rail net-
work is required to connect these four towns. Which of the
following two solutions, Option A or Option B, is the opti-
mal solution?

It turns out that Option B is the better solution.
Indeed, by formulating mathematical expressions for the
railway tracks, calculus can be used to evaluate what the
length of the horizontal section must be for the smallest
route. This will depend on the exact distances between
each of the towns.

A B

C D

Option B.

Option A.

A B

C D
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Objects of such magnitude as buildings must be con-
structed of materials that support the extreme forces
exerted on them. The tensile strength of a material involves
how much it can be stretched without deforming. The
compressive strength corresponds to the ability to with-
stand compressive forces. (It would be disastrous if the
walls of a building began to shrink!)

The shape and structure of the building is also
important. Certain configurations are recognized as hav-
ing a much greater stability. Often, geometry will be used
to ensure that angles of adjoining structures maximize
the strength required.

COOK ING  INSTRUCT IONS
Many meals require precise instructions, depending

on oven type and power. It is then up to the consumer to
evaluate the cooking time for the product. Many pieces of
meat have times prescribed according to mass. For exam-
ple, a chicken may require 30 minutes cooking, plus an
extra 30 minutes per 500 grams. It is obviously important
to be able to understand such instructions.

REC IPES
Recipes are real-life examples of word problems.

They provide exact quantities to make a meal for a spe-
cific number of people. It is then up to the individual to
adjust the ratio accordingly. This is an example of direct
proportion. It is an essential skill for those involved in
mass catering or indeed in any production to be able to
scale up required ingredients to satisfy variable orders.

LOTTER IES  AND  GAMBL ING
Many millions of people gamble every day. They are

often enticed by vocabulary, such as even chance or good
chance, without really knowing what the phrases mean.
The odds in horse racing always start as a ratio; it is up to
the betters to understand the relative merits of the odds
and make a judgment accordingly.

BANKS , INTEREST  RATES ,
AND  INTRODUCTORY  RATES

The modern banking market is extremely competi-
tive. One of the main concerns when establishing a sav-
ings account is that of interest. Each bank may offer a
slightly different level, and some offer initial rates that
soon change.

There are two different types of interest. The main
type is called compound interest. This is normally paid
yearly and is evaluated from the amount currently in the

account. The second type is simple interest. This is a fixed
amount. It is often worked out by looking at the initial
amount deposited into the account.

An example would be look at savings account A,
which has an initial deposit of $1,000 that offered a yearly
interest rate of $100 fixed; savings account B offered 8%
yearly. The progression of account A would be 1,000, 1,100,
1,200, 1,300, 1,400, 1,500, 1,600, 1,700; the progression of
account B would be 1,000, 1,080, 1,166, 1,259, 1,360, 1,469,
1,586, 1,713. Clearly, option B is relatively slower to start
off with. However, after seven years the amount in account
B overtakes that in account A. It is always important to
look in detail at a mathematical situation and not just take
a short-sighted view of the problem.

F INANCE
A company will often lay down objectives for the

forthcoming year. These will be in the form of a business
plan that describes the growth desired and what expendi-
tures can be used, among other factors. It is often up to
consultants to suggest ideas for how such objectives can
be achieved. Economics can be modeled through a range
of equations and economic principles are often applied to
the stock market and growth of countries and cities. A
consultant would be able to use the initial data and work
out the best way the resources can be used to ensure the
company achieves good results.

The study of economics is highly mathematical. There
are many accepted models used within the business world.

DISEASE  CONTROL
Many scientists currently monitor disease and try to

evaluate likely outbreaks. The World Health Organization
(WHO) may be interested in the likelihood of an outbreak
of malaria in a certain part of Africa. Mathematical mod-
els are constructed, using data available, to evaluate possi-
bilities. These models will frequently involve past data, as
well as expected data. Understanding the probabilities of
recurrences and the likelihood of location would be a use-
ful tool in combating the many serious diseases.

GEOLOGY
Geology is the study of the physical Earth, and most

aspects would be considered relevant to the real world. As
of 2005, due to the Asian tsunami disaster occurring in
2004, an awareness of the forces of nature is at the fore-
front of people’s consciousness. The question that many
officials may ask is “Will this happen again?” or “When
would such an occurrence happen?” or “How would a
tsunami affect us if it occurred closer to our country?”
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The mathematician would work out the many different
possibilities that could occur. Perhaps by studying the effects
of the recent disaster more information will be accessible
and further developments made. Yet to do this, it would be
broken down into the following key areas, such as where
could such an event occur, how unstable is the area, how
deep are the oceans, and what effect would this have?

The mathematician would then be able to apply
models to each of these situations and produce a logical
answer giving the range of expected possibilities. The
study of dynamics, especially in fluids such as the oceans,
is a vast area of applied mathematics. Many famous
mathematicians (for example, Euler) spend years of their
life studying such issues.

SURVEY ING
When building on a new site, a company would first

of all be expected to analyze the area to ensure no dangers
are around. Yet to solve this, consideration would have to
be taken into what safe actually means within the context,
and compare it to the construction being built. The situ-
ation would be simplified into key areas, including what
sort of weight can the land tolerate and what effect on the
environment would the project have? Such questions
would be explored mathematically through a considera-
tion of the weight of the engineering project and the sta-
bility of the surface.

STORE  ASS ISTANTS
Store assistants are constantly faced with word prob-

lems that may need immediate response. A customer may
ask how much a group of items would cost and the assis-
tant may not have a calculator at hand. The sales assistant
must be able to give an immediate response.

STOCK  KEEP ING
Store managers must work out how much stock to

order. If too much is ordered, it may be wasted; yet if too
little is ordered, customers will be dissatisfied. Managers
develop their own techniques for solving such questions,
however much of what they do will depend upon instinct
and experience. Many real word problems require experi-
ence to be solved. This can be paralleled in pure mathe-
matics. A good store manager will analyze sales of the
same period for previous years. They will evaluate aver-
ages and use these figures to determine the amount that
will be required. They may also produce graphs to show
how the average amount is changing. These are referred
to as moving average problems. For examples, average
sales may have gone up by $10, then $20, then $30; con-

sequently, a fair estimate may be made that the next
increase will be $40. The manager then uses this figure
when deciding how many units to order. Once again, the
problem is solved through converting the real-life situa-
tion into exact mathematical figures. These allow for sim-
ple conclusions that can be backed up with fact.

ACCOUNTS  AND  VAT
Deciphering monetary information often requires a

mathematical answer.VAT is a tax paid on items that are
not essential and is required by law within the European
Union. Any U.S. company selling into the EU has to, by
law, charge VAT at the required level.

If an item’s basic cost is known, then VAT is easy to
work out. The tax is the required percentage of the total
cost. For example, a coat exported to the United Kingdom
cost $85.11 before VAT was added. If the U.K. VAT is 17.5%
then the cost of the coat (rounded in dollars) becomes
$85.11 � $85.11 � (17.5/100) � $100.00. The person is
able to claim the VAT tax of $14.89 back from the U.K. gov-
ernment if the coat is essential for his employment.

BEAR INGS  AND  D IRECT IONS  
OF  TRAVEL

The shortest route between two points on a flat sur-
face is the straight line connecting the two points. How-
ever, how is motion achieved in that straight line? This is
a question that transport companies, especially nautical-
related transport, need to consider all the time because
other factors are continuously trying to influence the
motion of the vessel. There will be currents and wind try-
ing to steer the vessel off course. The ship would therefore
have to steer a course that compensates for these extra
factors. These problems can be solved using bearings and
trigonometry. Today, of course, sensors will detect the
forces present and computers will be able to adjust the
steering as required.

QUAL I TY  CONTROL
It is important for companies to monitor output to

ensure that goods meet standards. The authorities often
define these standards, and not meeting them could lead
to heavy fines and/or closure. For example, the criteria are
that only 5% of products are below a required size and
the company produces one million of these items a day.
How do they monitor their output?

A system is often used called systematic sampling.
Every one hundredth item produced is checked against
the required criteria. The company will then keep a run-
ning total of items failing or passing the test. As long as a
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sufficient number is above the required standard, the
company will keep producing. The authorities will nor-
mally publish guidelines, and the company uses those.

Sampling is used to solve a wide range of such prob-
lems. In different situations, different sampling techniques
are used. Samples are used because it is often impossible to
test or analyze every single item in a population.

WHAT  IS  THE  AVERAGE  HE IGHT  
IN  A  NE IGHBORHOOD?

Manufacturers of items ask this sort of question all
the time when the size of people, for example, has direct
relevance on production. It would be a bad business deci-
sion to produce small clothes if the population happened
to be a tall one. Yet, how would a company evaluate the
average height?

The company would first identify the target market.
This is important if their line of production happens to
be jackets for women. They would then need to pick a
random sample, which reduces the potential for bias.
Often the company will do a form of quota sampling.
This is a method to ensure that people of all ages are
picked. A quota is a group. The company will identify all
the relevant groups and pick out a random people from
each. The formula used to find the number of people in a
random sample or quota group is normally the square
root of the entire targeted population.

OPIN ION  POLLS
Opinion polls are used to answer such questions as

“Who is the most popular politician?” Politicians can use
them as propaganda, in both a positive and negative way.
Opinion polls, however, are often biased. Mathematically
speaking, opinion polls are not necessarily considered to
be sound. They frequently target only a select group in a
population and thus lead to often conflicting and contra-
dictory evidence.

WEATHER
Forecasts are used and needed across many spheres

in many different occupations. It is not possible to say
what will happen; instead forecasters deal with what is
most likely to happen. The reason weather cannot be pre-
dicted with much accuracy is due to a mathematical idea
called chaos theory. Basically, there are so many interac-
tions happening at both the macroscopic and micro-
scopic level that any slight perturbation in any of these
interactions could seriously affect the weather’s outcome.
Many sporting events and agricultural areas rely exclu-
sively on forecasts to plan their daily tasks.

The fundamental concepts behind weather forecast-
ing are the understanding of the interactions in the
atmosphere and the modeling of this using mathematics.
Powerful computers are today used to predict the likely
outcome, churning out vast output of data. The art of
predicting weather is often referred to as meteorology. It
is certainly not an exact science. To try to get a realistic
answer to the problem of weather forecasting, the super
computers produce different outputs with a slightly dif-
ferent starting point (a forced perturbation). The average
can then be taken. These small perturbations often lead to
dramatic changes in the output. There is frequently a dra-
matic divergence in solutions, especially when one begins
to predict more than just three or four days in the future.

THROWING  A  BALL
How one throws a ball to maximize the distance

achieved is of particular relevance within the sporting
world. The answer is solved through a series of assump-
tions. If it is assumed that the ball is thrown approxi-
mately from ground level and that the only force acting
on the ball is gravity, the solution is that the angle should
be 45�. It is clear why the angle affects the solution. If the
ball is thrown vertically upwards, it will cover no distance,
but if it is thrown horizontally, it will fall quickly to 
the ground. This model can then be improved and 
different solutions will be thus arrived. However, this
gives the mathematician a starting point from which to
develop a theory.

Riddles

A riddle is a written or verbal statement that requires
exact logic to solve. The answer should be unique and
make exact sense; otherwise, it is insolvable. Riddles
parallel a lot of work done in mathematics in real life.
They require sentences to be simplified into under-
standable ideas. Solutions can then be posed, until
the correct solution is acquired. The solution of a rid-
dle mimics the modeling method in mathematics.

To solve a riddle, one must consider the set of
solutions that solve each sentence. The solution that
overlaps all parts of the riddle is the final solution.
Consider the following challenging riddle:It is better
than God and more evil than the devil.Rich people
want it, poor people need it.You die if you eat it.

What is the riddle’s solution? (The answer is
“nothing.”)
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MEASUR ING  THE  HE IGHT  OF  WELL
The problem when constructing a working well for a

village in Africa is that there is a chasm already present.
There is a simple way to approximate its depth. If a stone
is dropped down the well, the time taken to reach the bot-
tom can be measured. A distinct sound would be heard as
it hits the water. The depth of the well can be approxi-
mated using the formula: d � 4.9 � t2.

DECORAT ING
When setting out on a renovation project, one of the

first questions will be a consideration of the materials
required. To minimize the cost of decoration it would be
advisable to use careful mathematics to evaluate the
quantity of material required. A professional decorator
will not want to mix a required hue only to find that there
is not enough to finish the whole room.

These types of problems can be easily solved through a
consideration of area. Rooms are generally regular. A sim-
ple calculation involving width and height would give the
amount of wall space involved. The materials should have
indications on the labels informing the consumer how
much area they will cover. It is then a simple case of using
proportion to evaluate the amount of material needed.

DOES  GLOBAL  WARMING  EX IST?
There are many different arguments on either side of

the debate of global warming. Mathematics provides a
way of looking at such issues and problems in a non-
emotive way, allowing for careful and logical reasoning. It
is, however, easy to manipulate many ideas involved and
the issue must be studied free from influence either polit-
ical or otherwise. This underpins the mathematics behind
independent surveys. It is a tool. Like all tools it can be
used flexibly in ways that are not obvious to the layman.

DOES  MMR (MEASLES , MUMPS ,
RUBELLA )  IMMUNIZAT ION  
CAUSE  AUT ISM?  

There is a reported link between immunization 
and subsequent disease. Mathematics, especially statistical

ideology, is used to test the likelihood of such a link 
existing. Unfortunately, the mathematics is often lost
beneath emotion and ideology until the evidence itself is
discounted or stated to be invalid. This is the main reason
why statistical tests used to investigate links need to be
done as rigorously as possible. There will always be an ele-
ment of doubt in the conclusions reached. The reduction
of this doubt will lead to more convincing arguments, and
so results can be displayed and credible conclusions
reached. Recent research does not establish a link between
MMR immunization and autism.

Potential Applications

The existence of word problems and their necessity
within society will never cease. Language will continue to
develop and so will the mathematical thirst to solve and
to explain. The ability to solve such problems and the
skills to explain in simple terms will always be considered
an essential skill in all areas of employment.

As time passes, mathematical models will become
more and more sophisticated and the advent of more pow-
erful computing will allow more accurate solutions. More
and more advanced questions about the universe and the
inherent mathematics that underpins it will continue to be
pursued. Who knows how far the solutions will take us?

Where to Learn More

Books
Parramore, K., J. Stephens, G. Rigby, and C. Compton. MEI
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Arnold H&S, 2004.

Porkess, R., et al. MEI Statistics 2 London: Hodder Arnold 
H&S, 2005.
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Value Added Tax. Online Resources. �http://www.vat.com/

faq.html� (March 1, 2005).
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Zero-Sum
Games

Overview

A zero-sum game is a game in which whatever is lost
by one player is gained by the other player or players. The
study of zero-sum games is the foundation of game the-
ory, which is a branch of mathematics devoted to deci-
sion-making in games.

In mathematics, all situations in which there are two
or more parties—people, companies, teams, or nations—
making decisions that affect some measurable outcome
are “games.” The decisions made by a game player make
up that player’s “strategy.” The goal of game theory is to
calculate the best strategy for a given game. Zero-sum
games are a special part of game theory that can be
applied in law, military strategy, biology, and economics.

Games are not necessarily played for fun. They can
be deadly serious. Chess, cards, and football are consid-
ered “games” in game theory, but so are business and war.
Not all the pastimes we call “games” are games in the
game-theory sense. The children’s card game called 
War is an example of a game that is not a game (mathe-
matically speaking). In War, the players repeatedly match
cards, one from each player, and the player with the
higher card takes the pair. They continue until one player
holds all the cards. Which player ends up with all the
cards depends only on how the cards have been shuffled
and dealt. No decisions are made by either player, so there
is no way to choose a strategy. The winner is decided by
pure chance.

True games can, however, involve an element of
chance. In football, for instance, a player can slip on wet
turf, make a freak catch, or get confused and throw the
ball the wrong way. Sometimes the winning team is even
decided by such an event. But football coaches still plan
strategies, and strategy does make a difference.

Fundamental Mathematical Concepts
and Terms

In a zero-sum game, the players compete for shares
of something that is in limited supply. One player’s loss is
the other player’s gain: if your slice of pie is bigger, mine
must be smaller.

The term “zero-sum” refers to the numbers that are
assigned to different game endings. If winning a game of
chess is assigned a value of �1, then losing a game has the
value �1 and the sum of the loser’s score and the win-
ner’s score for every game is 1� 1 � 0, “zero sum.” When
there is a draw, both players get 0 points and the game
remains zero-sum because 0 � 0 � 0.
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Two-player zero-sum games are also called strictly
competitive games. Games may also have more than two
players, as in poker or Monopoly. When three or more
players play a zero-sum game, some players may team up
or collaborate against the others, so multi-player zero-
sum games are not “strictly competitive.”

The theory of zero-sum games is the starting point for
the theory of all other games, which can be lumped under
the term “non-zero-sum games.” Non-zero-sum games are
games which are not played for fixed stakes.

The most famous non-zero-sum game is the Pris-
oner’s Dilemma, first proposed by Merrill Flood and
Melvin Dresher at the Rand Corporation in 1950. In this
situation, there are two prisoners who have committed a
serious crime. The police put each prisoner in a separate
cell and try to get them to confess by telling each prisoner
(falsely) that the other prisoner has already confessed,
and that if they will also confess, they will get a reduced

sentence. But, the police add, if the prisoner does not
confess, they will get a heavy sentence.

If both prisoners confess, they will both get reduced
sentences. If only one confesses, then the one that con-
fesses will get a reduced sentence and the other will get a
heavy sentence. If neither confesses, then both will be
freed. Obviously, it would be best for both prisoners if
they refused to confess. Yet, it can be shown by game the-
ory that the most mathematically “rational” thing for each
prisoner to do is to confess. This is a “dilemma” or no-win
situation because the best strategy is to confess and take a
reduced sentence rather than to refuse to confess, because
each prisoner cannot guarantee what the other will do.
Though not confessing might result in no sentence at all,
a heavy sentence could result for a prisoner who does 
not confess when the other does. The guessing game
played by the two prisoners is a non-zero-sum game
because both prisoners might win (go free) or lose (get
sentences) at the same time: there is not a fixed number of
years of imprisonment that must be divided between the
prisoners.

Real-life Applications

GAMBL ING
Competitive gambling for money is usually a zero-

sum game because the money won by one player must be
lost by another. There is a fixed amount of money, and
rolling dice or dealing cards cannot destroy it or create
any more. Zero-sum game theory can therefore be used to
find the best possible strategies for such games. This
applies to games in which there is an element of choice or 
strategy, such as poker. In fact, the game of poker was what
inspired Hungarian-born American mathematician John
Von Neumann (1903–1957) to invent modern game the-
ory, which he did starting with his 1928 article, “Theory of
Parlor Games.”

However, not all gambling games are “games” in the
game-theory sense. Playing a slot machine is not a game,
for example, because it is a matter of pure chance, all the
player does is pull the handle or push the button. Game
theory has nothing to say about activities like slots,
roulette, dice, or lotteries because they allow no choices to
the player and therefore no strategy. The only choice the
player has is to play or not play. Mathematics can deal with
games of pure chance, but this is done using probability
theory, not game theory. Probability theory is used in 
game theory to deal with games that mix strategy with
chance.

In zero sum games, winners entail losers. STEVE COLLIER;

COLLIER STUDIO/CORBIS.
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EXPER IMENTAL  GAMING
Psychologists have used game theory to study how

human beings make real-world decisions. They do this by
asking volunteers to play a game. The psychologists use
game theory to calculate the best or optimal strategy for
the game and compare the behavior of the volunteers to
the results of game theory. Psychologists have studied
behavior in both zero-sum and non-zero-sum situations.
They have often found that people do not behave in the
way that game theory says is most “rational.”

This does not necessarily mean, however, that people
act foolishly. People may simply disagree with the mathe-
matical definition of rationality. For example, if people
are offered an (imaginary) choice of $1,000 in cash or a
black box that has a 50% chance of containing either
nothing or $10,000, they usually take the cash. Mathe-
matics, however, says that the player’s most “rational”
choice is to maximize their expected or average winnings
by choosing the black box. If the game were played many
times over, a player who always chose the box would
make more money on average (about $5 thousand) than
a player who always took the $1 thousand. In this sense it
is more “rational” to take the box.

But there is something artificial about saying that the
behavior of a player who takes the cash is not rational. Why
should a person take a 50% chance of getting nothing
when they could get money without risk? This desire to
avoid drastic risk is an example of what game theorists call
“risk aversion.” People usually prefer a strategy that pro-
tects them from disaster to a strategy that offers them big
potential winnings but exposes them to possible disaster.

CURRENCY, FUTURES ,
AND  STOCK  MARKETS

Currency and futures trading are zero-sum games.
Currency trading is a form of money investment in which
speculators buy up one kind of money—dollars, pounds,
euros, yen, or other—and then sell it again, trying to make
a profit. For example, if 1 US dollar can buy 1.01 euros in
Germany, and 1.01 euros can buy 1.02 yen in Japan, and
1.02 yen can buy 1.03 dollars in the U.S., then an investor
can make $.03 by taking $1, buying a euro with it, buying
a yen with the euro, and buying a dollar with the yen. This
would be a way of getting something for nothing, except
that for every penny made in the currency-trading market
somebody loses a penny in the currency-trading market.
The market does not generate new wealth: like a poker
game, it only moves money around. Currency trading is
therefore a zero-sum game. In addition, such trading as
outlined above does not take into account fees that bro-
kers charge to make transactions.

In futures trading, speculators gamble on whether
unprocessed commodities like grain, beef, or oil will be
worth more, less, or the same in the near future. Since a
loss for the seller of the commodity is a gain for the buyer
of the commodity and vice versa, the futures market is
also a form of a zero-sum game. The commodity markets
allow producers to fix sale prices ahead of delivery and
therefore manage their risk of losing money.

There is debate about whether the stock market is a
zero-sum game, but most economists agree that it is not.
In the stock market, investors buy shares of ownership in
companies. For instance, buying a single share might
make you the owner of one millionth of the ABC Corpo-
ration. These shares can be bought and sold. As long as
the value of the companies being owned remains fixed,
buying and selling stock in them is a zero-sum game;
however, the companies are real-world enterprises that
may decrease or increase in value. Demand for a product
might increase or decrease, or a vital resource (like oil)
might run out, a company might go out of business, or a
new technology might be developed that increases pro-
ductivity and makes more real wealth. Any of these events
changes the amount of wealth that the stock-market
game is being played for.

WAR
War as such is not a zero-sum game. In almost any

case, if both sides helped each other instead of fighting,
they would be better off than if they fought. And, if the
war is destructive enough, both sides, even the “winner,”
may end up worse off than before.

However, particular battles are often zero-sum
games. The military forces fighting a battle are trying to
destroy each other’s resources—to kill soldiers and to
destroy weapons, vehicles, and supplies. A loss for one
side is a gain for the other, which is the primary feature of
zero-sum games. Military strategists do in fact study bat-
tle strategy in terms of zero-sum games as well as in terms
of more complex, non-zero-sum game theory.

Where to Learn More

Books
Colman, Andrew M. Game Theory and Its Applications in

the Social and Biological Sciences. New York: Routledge,
1999.

Davis, Morton D. Game Theory: A Nontechnical Introduction.
New York: Basic Books, 1970.

Straffin, Philip D. Game Theory and Strategy. Washington, DC:
Mathematical Association of America, 1993.
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Glossary

80/20 rule: A general statement sum-
ming up the tendency for a few items
to consume a disproportionate share
of resources, such as cases in which
20% of a store’s customers lodge
80% of the total complaints.

Acceleration: A change of velocity
(either in magnitude or direction).

Actuary: A mathematical expert who
evaluates the statistical likelihood of
various insurable events for under-
writing purposes.

Algebra: A collection of rules: rules for
translating words into the symbolic
notation of mathematics, rules for
formulating mathematical statements
using symbolic notation, and rules
for rewriting mathematical state-
ments in a manner that leaves their
truth unchanged.

Algorithm: A set of mathematical steps
used as a group to solve a problem.

Analogue: A continuously variable
medium, for use as a method of
storing, processing, or transmitting
information.

Analytic geometry: A branch of mathe-
matics that uses algebraic equations
to describe the size and position of
geometric figures on a coordinate
system. Developed during the seven-
teenth century, it is also known as
Cartesian geometry or coordinate
geometry. The use of a coordinate
system to relate geometric points to
real numbers is the central idea 
of analytic geometry. By defining
each point with a unique set of real
numbers, geometric figures such as
lines, circles, and conics can be
described with algebraic equations.
Analytic geometry has found impor-
tant applications in science and
industry alike.

Angle: A geometric figure formed by 
two lines diverging from a common
point or two planes diverging from a
common line often measured in
degrees.

Area: The measurement of a surface
bounded by a set of curves as meas-
ured in square units.

Arithmetic: The study of the basic
mathematical operations performed
on numbers.

Array: A rectangular arrangement of
numerical data in rows and columns,
as in a matrix.

Average: A numeral that expresses a set
of numbers as a single quantity. It is
the sum of the numbers divided by
the number of numbers in the set.

Axis: Lines labeled with numbers that are
used to locate a coordinate.

Balance: An amount left over, such as the
portion of a credit card bill that
remains unpaid and is carried over
until the following billing period.

Bankruptcy: A legal declaration that 
one’s debts are larger than one’s
assets; in common language, when
one is unable to pay his bills and
seeks relief from the legal system.

Bicentric perspective: Perspective
illustrated from two separate view-
ing points.

Binary code: A string of zeros and ones
used to represent most information
in computers.

Bit: The smallest unit of storage in com-
puters. A bit stores binary values.

Boolean algebra: The algebra of logic.
Named after English mathematician
George Boole, who was the first to
apply algebraic techniques to logical
methodology. Boole showed that
logical propositions and their con-
nectives could be expressed in the
language of set theory.

Bouncing a check: The result of writing
a check without adequate funds in
the checking account, in which the
bank declines to pay the check. Fees
and penalties are normally imposed
on the check writer.

Byte: A byte is a group of eight bits.

Calculator: A tool for performing math-
ematical operations on numbers.

Calculus: A branch of mathematics that
deals with the way that relationships
between certain sets (or functions)
are affected by tiny changes in one of
their variables.

Cartesian coordinate: A coordinate
system where the axes are at 90
degrees to each other, with the x axis
along the horizontal.
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Centric perspective: Perspective illus-
trated from a single viewing point.

Chi-square test: The most commonly
used method for comparing frequen-
cies or proportions. It is a statistical
test used to determine if observed
data deviate from those expected
under a particular hypothesis. The
chi-square test is also referred to as a
test of a measure of fit or “goodness
of fit” between data. Typically, the
hypothesis tested is whether or not
two samples are different enough in a
particular characteristic to be consid-
ered members of different popula-
tions. Chi-square analysis belongs to
the family of univariate analysis, i.e.,
those tests that evaluate the possible
effect of one variable (often called the
independent variable) upon an out-
come (often called the dependent
variable).

Chord: A straight line connecting any two
points on a curve.

Coefficient: A coefficient is any part of a
term, except the whole, where term
means an adding of an algebraic
expression (taking addition to in-
clude subtraction as is usually done
in algebra). Most commonly, how-
ever, the word coefficient refers to
what is, strictly speaking, the numer-
ical coefficient. Thus, the numeri-
cal coefficients of the expression
5xy2 3x � 2y are considered to be 5,
�3, and �2. In many formulas, espe-
cially in statistics, certain numbers
are considered coefficients, such as
correlation coefficients.

Combinatorics: The study of combining
objects by various rules to create new
arrangements of objects. The objects
can be anything from points and
numbers to apples and oranges.
Combinatorics, like algebra, numeri-
cal analysis and topology, is an
important branch of mathematics.
Examples of combinatorial questions
are whether we can make a certain
arrangement, how many arrange-
ments can be made, and what is the
best arrangement for a set of objects.
Combinatorics can be grouped 
into two categories: enumeration,
which is the study of counting and
arranging objects; and graph theory,
or the study of graphs. Combina-
torics makes important contribu-
tions to fields such as computer

science, operations research, proba-
bility theory, and cryptology.

Common denominator: A common
denominator for a set of fractions is
simply the same (common) lower
symbol (denominator). In practice
the common denominator is chosen
to be a number that is divisible by all
of the denominators in an addition
or subtraction problem. Thus for the
fractions 2/3, 1/10, and 7/15, a com-
mon denominator is 30. Other com-
mon denominators are 60, 90, etc.
The smallest of the common denom-
inators is 30 and so it is called the
least common denominator.

Complex numbers: Complex numbers
are so called because they are made
up of two parts which cannot be
combined. Even though the parts are
joined by a plus sign, the addition
cannot be performed. The expression
must be left as an indicated sum.

Concentration: The ratio of one sub-
stance mixed into another substance.

Congruent: Two triangles are congruent
if they are alike in every geometric
respect except, perhaps, one. That
one possible exception is in the tri-
angle’s “handedness.” There are only
six parts of a triangle that can be
seen and measured: the three angles
and the three sides. The six features
of a triangle are all involved with
congruence.

Conic section: The plane curve formed
by the intersection of a plane and a
right-circular, two-napped cone.

Constant: A value that does not change.

Convenience sampling: Sampling done
based on the easy availability of the
elements.

Coordinate: A set of two or more num-
bers or letters used to locate a point in
space. For example, in two dimensions
a coordinate is written as (x,y).

Cross-section: The two-dimensional 
figure outlined by slicing a three-
dimensional object.

Cubed root: The relation of the volume
of a cube to one of its edges.

Cubic equation: A cubic equation is one
of the forms of ax3�bx2�cx�d � 0
where a,b,c, and d are real numbers.

Curve: A curved or straight geometric
element generated by a moving point
that has extension only along the
one-dimensional path of the point.

Data point: A point in a graph or other
display that depicts a specific value
given by a function or calculation.

Decimal: Relating to the base power of ten.

Decimal fraction: A numeral that uses
the numeration system, based on
ten, to represent fractional numbers.
For example, a decimal fraction for 2
and 1/4 is 2.25.

Decimal number system: A base-10
number system that requires ten
different digits to represent numbers
(0 through 9) where the value of a
number is defined by its place (a
place value system where a “1” could
be valued at “one,” “ten,” “one hun-
dred,” “one thousand,” etc.).

Decryption: The process of using a
mathematical algorithm to return an
encrypted message to its original
form.

Degree: The word “degree” as used in
algebra refers to a property of poly-
nomials. The degree of a polynomial
in one variable (a monomial), such
as 5x3, is the exponent, 3, of the vari-
able. The degree of a monomial
involving more than one variable,
such as 3x2y, is the sum of the expo-
nents; in this case, 2 � 1 � 3.

Dependent variable: What is being
modeled; the output that results
from a function or calculation.

Derivative: The limiting value of the ratio
expressing a change in a particular
function that corresponds to a change
in its independent variable. Also, the
instantaneous rate of change or the
slope of the line tangent to a graph of
a function at a given point.

Differentiate: The process of determin-
ing the derivative or differential of a
particular function.

Digital: Of or relating to data in the form
of numerical digits.

Dimension: The number of unique direc-
tions it is possible for a point to
move in space. The world is nor-
mally thought of as having three
dimensions. Flat surfaces have two
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dimensional and more advanced
physical concepts that require the
use of more than three dimensions.

Distributive property: The distributive
property states that the multiplication
“distributes” over addition. Thus 
a � (b � c) � a � b � a � c and 
(b � c) � a � b � a � c � a for all
real or complex numbers a, b, and c.

Dividend: A mathematical term for the
beginning value in a division equa-
tion, literally the quantity to be
divided. Also a financial term refer-
ring to company earnings which are
to be distributed to, or divided
among, the firm’s owners.

Divisibility: The ability to divide a num-
ber by another number without leav-
ing a remainder.

Domain: The domain of a relation is the
set that contains all the first elements,
x, from the ordered pairs (x,y) that
make up the relation. In mathematics,
a relation is defined as a set of ordered
pairs (x,y) for which each y depends
on x in a predetermined way. If x rep-
resents an element from the set X, and
y represents an element from the set
Y, the Cartesian product of X and Y is
the set of all possible ordered pairs
(x,y) that can be formed.

Encryption: Using a mathematical algo-
rithm to code a message or make it
unintelligible.

Enumeration: The study of counting and
arranging objects.

Equation: A mathematical statement
involving an equal sign.

Equivalent fractions: Two fractions are
equivalent if they stand for the same
number (that is, if they are equal). The
fractions 1/2 and 2/4 are equivalent.

Estimation: A process that arrives at an
answer that approximates the correct
answer.

Exponent: Also referred to as a power, a
symbol written above and to the
right of a quantity to indicate how
many times the quantity is multi-
plied by itself.

Exponential growth: A growth process
in which a number grows propor-
tional to its size. Examples include
viruses, animal populations, and

compound interest paid on bank
deposits. The rate of growth is pro-
portional to the size of the sample or
population (i.e., a relation between
the size of the dependent variable
and rate of growth).

Fibonacci numbers: The numbers in the
series, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144 . . . , which are formed by adding
the two previous numbers together.

Formula: A general fact, rule, or princi-
ple expressed using mathematical
symbols.

Fractal: A self-similar shape that is
repeated over and over to form a
complex shape.

Fraction: The quotient of two quantities,
such as 1/4.

Frequency: Number of times that a
repeated event occurs in a given time
period, typically within one second.

Function: A mathematical relationship
between two sets of real numbers.
These sets of numbers are related to
each other by a rule that assigns each
value from one set to exactly one value
in the other set. The standard notation
for a function y � f(x), developed in
the eighteenth century, is read “y
equals f of x.” Other representations of
functions include graphs and tables.
Functions are classified by the types of
rules which govern their relationships.

Gambling: A popular form of entertain-
ment in which players select one of
several possible outcomes and wager
money on that outcome.

Game theory: A branch of mathematics
concerned with the analysis of con-
flict situations. It involves determin-
ing a strategy for a given situation and
the costs or benefits realized by using
the strategy. First developed in the
early twentieth century, it was origi-
nally applied to parlor games such as
bridge, chess, and poker. Now, game
theory is applied to a wide range of
subjects such as economics, behav-
ioral sciences, sociology, military sci-
ence, and political science.

Geometry: A fundamental branch of
mathematics that deals with the
measurement, properties, and rela-
tionships of points, lines, angles, sur-
faces, and solids.

Golden ratio: The number 1.61538 that
is found in many places in nature.

Greatest common divisor: The largest
number that is a divisor of two 
numbers.

Hypotenuse: The longest leg of a right tri-
angle, located opposite the right angle.

Improper fraction: A fraction whose
value is greater than or equal to 1.

Independent variable: Input data to a
function. The input data used to
develop a model where the outcomes
or results are determined by function
and/or calculation.

Inequality: A statement about the relative
order of members of a set. For
instance, if S is the set of positive inte-
gers, and the symbol < is taken to
mean less than, then the statement 5 <
6 (read “5 is less than 6”) is a true state-
ment about the relative order of 5 and
6 within the set of positive integers.

Infinity The term infinity conveys the
mathematical concept of large with-
out bound, and is given the symbol ∞.

Inflation: A steady rise in prices, leading
to reduced buying power for a given
amount of currency.

Input: What is used to develop a model,
the independent variables.

Integer: The positive and negative whole
numbers. �4, �3, �2, �1, 0, 1, 2, . . .
The name “integer” comes directly
from the Latin word for “whole.” The
set of integers can be generated from
the set of natural numbers by adding
zero and the negatives of the natural
numbers. To do this, one defines zero
to be a number which, added to any
number, equals the same number.

Integral: A quantity expressible in terms
of integers (the positive and negative
whole numbers). Also, a quantity
representing a limiting process in
which the domain of a function is
divided into small units.

Integral calculus: A branch of mathe-
matics used for purposes such as
calculating such values as volumes
displaced, distances traveled, or areas
under a curve.

Interest: Money paid for a loan, or for the
privilege of using another’s money.
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Irrational number: A number that can-
not be expressed as a fraction, that is,
it cannot be written as the quotient of
two whole numbers. As a decimal, an
irrational number is shown by an infi-
nitely long non-repeating sequence 
of numbers. Examples of irrational
numbers are pi (the ratio of circum-
ference to diameter of a circle), e (base
of the natural logarithms).

Iteration: Iteration consists of repeating
an operation of a value obtained by
the same operation. It is often used
in making successive approxima-
tions, each one more accurate than
the one that preceded it. One begins
with an approximate solution and
substitutes it into an appropriate
formula to obtain a better approxi-
mation. This approximation is sub-
sequently substituted into the same
formula to arrive at a still better
approximation, and so on.

Key: A number or set of numbers used 
for encryption or decryption of a
message.

Knot theory: A branch of mathematics
that studies the way that knots are
formed.

Least-terms fraction: A fraction whose
numerator and denominator do not
have any factors in common. The
fraction 2/3 is a least-terms fraction;
the fraction 8/16 is not.

Line: A straight geometric element gen-
erated by a moving point that
has extension only along the one-
dimensional path of the point.

Linear algebra: Includes the topics of vec-
tor algebra, matrix algebra, and the
theory of vector spaces. Linear algebra
originated as the study of linear equa-
tions, including the solution of simul-
taneous linear equations. An equation
is linear if no variable in it is multi-
plied by itself or any other variable.
Thus, the equation 3x � 2y � z � 0 is
a linear equation in three variables.

Linear equation: An equation on which
the left-hand side is made up of a sum
of terms (each of which consists of a
constant multiplying a variable), and
the right-hand side which consists of a
constant. For example, 2x0 � 3x1 � 4.

Linear programming: A method of opti-
mizing an outcome (e.g., profit)
defined by a linear equation but

constrained by a number of linear
inequalities. The inequalities are recast
as linear equation and the resulting
system is solved using matrix algebra.

Logarithm: The power to which a base
number, usually 10, has to be raised to
in order to produce a specific number.

Logic: The study of the rules which under-
lie plausible reasoning in mathemat-
ics, science, law, and other disciplines.

Long odds: Poor odds, or odds which
suggest an event is highly unlikely to
occur.

Lottery: A contest in which entries are
sold and a winner is randomly
selected from the entries to receive a
prize.

Mathematics: The systematic study of
relationships in the physical world
and relationships between symbols
which need not pertain to the real
world. In relation to the world,
mathematics is the language of sci-
ence. It operates within the laws and
constraints of science as it examines
physical phenomena.

Matrix: A rectangular array of variables or
numbers, often shown with square
brackets enclosing the array. Here
“rectangular” means composed of
columns of equal length, not two-
dimensional. A matrix equation can
represent a system of linear equations.

Median: A measure of central tendency,
like an average. It is a way of describ-
ing a group of items or characteristics
instead of mentioning all of them. If
the items are arranged in ascending
order of magnitude, the median is
the value of the middle item.

Metric system: The metric system of
measurement is an internationally
agreed-upon set of units for express-
ing the amounts of various quanti-
ties such as length, mass, time,
temperature, and so on.

Mode: A set of numbers is the number
that occurs most frequently. There
may be more than one mode. In the
set (1,4,5,7), all four numbers are
modes. But in the set (1,4,4,6), 4 is
the only mode. The mode is one of
the measures of central tendency, the
others being the mean and the
median.

Model: A system of theoretical ideas,
information, and inferences pre-
sented as a mathematical description
of an entity or characteristic.

Modulus: An operator that divides a
number by another number and
returns the remainder.

Mortgage: A loan made for the purpose
of purchasing a house or other real
property.

Nash equilibrium: A set of strategies,
named after John Nash, that results in
the maximum benefit of each player.

Natural numbers: The ordinary num-
bers, 1, 2, 3, . . . with which we count.
Sometimes they are called “the
counting numbers.”

Negative numbers: Numbers that have
a value less than zero.

Nth term: The phrase ‘nth term’ is used
to describe any term in a sequence.
The n refers to its ordered place in
the sequence.

Number theory: Number theory is the
study of natural, or counting num-
bers, including prime numbers.

Odds: A shorthand method for expressing
probabilities of particular events. The
probability of one particular event
occurring out of six possible events
would be 1 in 6, also expressed as 1:6
or in fractional form as 1/6.

Operation: A method of combining the
members of a set so the result is also
a member of the set. Addition, sub-
traction, multiplication, and division
of real numbers are everyday exam-
ples of mathematical operations.

Orthogonals: In art, the diagonal lines
that run from the edges of the com-
position to the vanishing point.

Output: Output data to a function. The
output data, the dependent vari-
able(s), that define a model.

Parabola: The open curve formed by the
intersection of a plane and a right
circular cone. It occurs when the
plane is parallel to one of the gener-
atrices of the cone.

Parallel: Two or more lines (or planes)
are said to be parallel if they lie in the
same plane (or space) and have no
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point in common, no matter how far
they are extended.

Parallelogram: A plane figure of four
sides whose opposite sides are paral-
lel. A rhombus is a parallelogram
with all four sides of equal length; a
rectangle is a parallelogram whose
adjacent sides are perpendicular; and
a square is a parallelogram whose
adjacent sides are both perpendicu-
lar and equal in length.

Percent: From Latin for per centum
meaning per hundred, a special type
of ratio in which the second value is
used to represent the amount pres-
ent with respect to the whole.
Expressed as a percentage, the ratio
times 100 (e.g., 78/100 � .78 and 
so .78 � 100 � 78%).

Perfect number: A number that is equal
to the sum of its divisors.

Permutations: All of the potential
choices or outcomes available from
any given point.

Pi: The ratio of the circumference of a cir-
cle to the diameter: � � C/d where C
is the circumference and d is the
diameter. This fact was known to 
the ancient Egyptians who used 
� for the number 22/7 (3.14159) 
which is accurate enough for most
applications.

Pixel: Short for “picture unit,” a pixel is
the smallest unit of a computer
graphic or image. It is also repre-
sented as a binary number.

Player: In game theory, a decision maker.

Plays: In game theory, choices that can
be made.

Point: A geometric element defined only
by an ordered set of coordinates.

Polar angle: The angle between the line
drawn from a point to the center of a
circle and the x axis. The angle is
taken by rotating counterclockwise
from the x axis.

Polar coordinate: A two-dimensional
coordinate system that is based on
circular symmetry. It has two coordi-
nates, the radius and the polar angle.

Polar-coordinate system: One of the
several systems for addressing points
in the plane is the polar-coordinate

system. In this system a point P is
identified with an ordered pair (r,�)
where r is a distance and � an angle.

Positive numbers: Commonly defined
as numbers greater than zero, the
numbers to the right of zero on the
number line. Zero is not a positive
number. The opposite, or additive
inverse, of a positive number is a neg-
ative number. Negative numbers are
always preceded by a negative sign
(�), while positive numbers are only
preceded by a positive sign (�) when
it is required to avoid confusion.

Powers: The number of times that a base
is to be multiplied by itself.

Prime factorization: The process of
finding all the divisors of a number
that are prime numbers.

Prime number: Any number greater
than 1 that can only be divided by 1
and itself.

Probability: The likelihood that a partic-
ular event will occur within a speci-
fied period of time. A branch of
mathematics used to predict future
events.

Probability distribution: The expected
pattern of random occurrences in
nature.

Probability theory: A branch of mathe-
matics concerned with determining
the long run frequency or chance
that a given event will occur. This
chance is determined by dividing the
number of selected events by the
number of total events possible.

Program: A sequence of instructions,
written in a mathematical language,
that accomplish a certain task.

Proper fraction: A fraction whose value
is less than 1.

Proportion: Two quantities with equal
ratios.

Public key system: A cryptographic
algorithm that uses one key for
encryption and a second key for
decryption.

Pythagorean theorem: A theorem of
geometry, often attributed to
Pythagoras of Samos (Greece) in the
sixth century B.C., states the sides a,
b, and c of a right triangle satisfy the

relation c2�a2�b2 where c is the
length of the hypotenuse of the tri-
angle and a and b are the lengths of
the other two sides.

Quadrilateral: A polygon with four
sides. Special cases of a quadrilateral
are: (1) A trapezium—A quadrilat-
eral with no pairs of opposite sides
parallel; (2) A trapezoid—A quadri-
lateral with one pair of sides parallel;
(3) A parallelogram—A quadrilat-
eral with two pairs of sides parallel;
(4) A rectangle—A parallelogram
with all angles right angles; (5) A
square.

Radius: The distance from the center of a
circle to its perimeter.

Rate: A comparison of the change in one
quantity, such as distance, tempera-
ture, weight, or time, to the change in a
second quantity of this type. The com-
parison is often shown as a formula, a
ratio, or a fraction, dividing the change
in the first quantity by the change in
the second quantity.When the changes
being compared occur over a measur-
able period of time, their ratio deter-
mines an average rate of change.

Ratio: The ratio of a to b is a way to con-
vey the idea of relative magnitude of
two amounts. Thus if the number a
is always twice the number b, we can
say that the ratio of a to b is “2 to 1.”
This ratio is sometimes written 2:1.
Today, however, it is more common
to write a ratio as a fraction, in this
case 2/1.

Rational number: A number that can be
expressed as the ratio of two integers
such as 3/4 (the ration of 3 to 4) 
or �5:10 (the ration of �5 to 10).

Real number: Any number which can be
represented by a point on a number
line. The numbers 3.5, �.003, 2/3,
etc. are all real numbers.

Reciprocal: The reciprocal of a number
is 1 divided by the number. Thus the
reciprocal of 3 is 1/3. If a number a is
the reciprocal of the number b, then
b is the reciprocal of a. The product
of a number and its reciprocal is 1.

Reconcile: To make two accounts match;
specifically, the process of making
one’s personal records match the lat-
est records issued by a bank or finan-
cial institution.
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Rectangle: A quadrilateral whose angles
are all right angles. The opposite
sides of a rectangle are parallel and
equal in length. Any side can be cho-
sen as the base and the altitude is the
length of a perpendicular line seg-
ment between the base and the
opposite side. A diagonal is either of
the line segments joining opposite
vertices.

Reflection: The operation of moving all
the points to an equal distance, on the
opposite side of a line of reflection.

Register: A record of spending, such as a
check register, which is used to track
checks written for later reconciliation.

Root: The solutions of a polynomial
equation, of which the square and
cube root are special cases.

Rotation: The operation of moving all
the points of an object through a
fixed angle around a fixed point.

Scale: The ratio of the size of an object to
the size of its representation.

Scientific notation: A shorthand way 
to write very large or very small
numbers.

Segment: A portion truncated from a geo-
metric figure by one or more points,
lines, or planes; the finite part of a line
bounded by two points in the line.

Set: A collection of elements.

Simple random sampling: A sampling
method that provides every element
equal chance of being selected.

Statistics: Branch of mathematics
devoted to the collection, compila-
tion, display, and interpretation of
numerical data. In general, the field
can be divided into two major
subgroups, descriptive statistics and

inferential statistics. The former
subject deals primarily with the
accumulation and presentation of
numerical data, while the latter
focuses on predictions.

Stockholder: The partial owner of a
public corporation, whose ownership
is contained in one or more shares of
stock. Also called a shareholder.

Stratified sampling: In this type of ran-
dom sampling, elements are grouped
together before sampling.

Symmetric key system: A crypto-
graphic algorithm that uses the same
key for encryption and decryption.

Symmetry: An object that is left
unchanged by an operation has a
symmetry.

Symmetry, or balance: A design is sym-
metrical if its two opposite sides
divided by a line in the center are
identical, or nearly identical.

System of equations: A group of equa-
tions that all involve the same variables.

Systematic sampling: In this type of
sampling, there are intervals between
each selection for sampling.

Term: A number, variable, or product of
numbers and variables, separated in
an equation by the signs of addition
and equality.

Translation: The operation of moving
each point a fixed distance in the
same direction.

Trigonometry: A branch of applied 
mathematics concerned with the rela-
tionship between angles and their
sides and the calculations based on

them. First developed as a branch of
geometry focusing on triangles dur-
ing the third century B.C, trigonome-
try was used extensively for astro-
nomical measurements. The major
trigonometric functions, including
sine, cosine, and tangent, were first
defined as ratios of sides in a right
triangle.

Unit fraction: A fraction with 1 in the
numerator.

Vanishing point: In art, the place on the
horizon toward which all other lines
converge; a focus point.

Variable: A symbol representing a quan-
tity that may assume any value
within a predefined range.

Vector: A quantity consisting of magnitude
and direction, usually represented by
an arrow whose length represents the
magnitude and whose orientation in
space represents the direction.

Volume: The amount of space occupied
by a three-dimensional object as
measured in cubic units.

Whole number: Any positive number,
including zero, with no fraction or
decimal.

Zero: The absence of a quality (normaliz-
ing) or absence of quantity (numeri-
cal). It can also be a reference point,
such as 0° on a temperature scale. In 
a mathematical system, zero is the
additive identity. It is a number that
can be added to any given number to
yield a sum equal to the given num-
ber. Symbolically, it is a number 0,
such that a � 0 � a for any number a.

Zero-sum game: An outcome of a game
where players choices have produced
neither a win or a draw for all of the
players.
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Field of 
Application
Index

A

Agriculture
Livestock sex ratios, 447
Mendelian inheritance, 443–445
Plant sampling, 460
Soil tests, 410–411, 459–460, 472

Architecture
Acoustic design, 348
Architectural math, 33–44, 310,

590–591
Bridge design, 76–77
Floor numbers, 359
Geometric shapes, 237–239
Scale models, 468
Skyscrapers, 19–20
Software, 470
Squared and cubed roots, 513
Symmetry, 541

Arts and Crafts
Children’s books, 392
Computer-generated, 22
Creativity, 285
Drawings and paintings, 267, 391–392
Fractal patterns, 22, 201
Illustration, 392
Jewelry, 42
Photographic negatives, 281
Proportion, 433, 433–434
Size and shape, 21–22

Astronomy and Space Travel
Age of the Universe, 160
Antenna design, 535–536
Astronomical averages, 55
Computational astronomy, 487
Cosmology, 487
Expanding Universe, 178–179
Galaxy arrangement, 202
Geostatistics, 525–526
Light years, 486–487
Mars, 462–463
Moon, 447–448, 451, 462–463
Rocket launches, 480–481
Solar systems, 242–243, 471
Space navigation, 93
Space Shuttle steering, 305
Space-time continuum, 245–247
Space travel, 24, 311, 312, 535
Speed of light, 486–487
Star magnitude, 418
Telescopes, 43, 165–166
Timekeeping in space, 312

B

Business
Accounting, 357–358
Bankruptcy, 150
Burn rate, 151
Business math, 62–68

An italicized page number 
indicates a photo, figure (f),
illustration or table (t).

Business plans, 591
Cash registers, 73
Charts, 111–113
Check processing, 291, 292
Compound interest, 74–75, 376
Credit card fraud, 27–28
Currency conversion, 129
Demographics, 143
Distribution of earnings, 150–151
E-money, 160
Factoring, 182–183
Fundraising, 19
Game theory, 228, 229
Global economics, 515
Insurance averages, 57
Just in time manufacturing, 440
Marketing and sales, 30, 341, 375,

463, 589
Online auctions, 230
Organizational charts, 413
Pilfering, 153–154
Product samples, 463–464
Production management charts, 413
Profits, 86–87, 531–532, 588
Project management, 285
Proportion and inverse proportion,

586–587
Public opinion polls, 379
Quality control, 526–527, 592–593
Simple averages, 152
Staffing levels, 589
Stock levels (Goods), 592
Stock market, 408–409, 436, 515, 597
Store assistants, 592
Time management, 413
Weighted averages, 54–55

C

Communications
Air traffic control, 135
Antennas, 202, 535–536
Data transmission, 119–120
Information theory, 273–274
Internet, 29–30, 117–118
Language translation, 587
Linguistic algorithms, 31
Submarines, 282
Subnet mask, 118

Computers
Aircraft control, 157
Algorithms, 27
Animation, 134, 392–393
Artificial intelligence, 32, 230
Base numbering systems, 60–61
Binary logic, 417–418
Boolean algebra, 146, 301
Charts, 112
Computer intensive applications, 297
Computer monitors, 117, 427–428
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Computers and math, 114–121
Data compression and transmission,

28, 87–89, 118–120, 202, 264, 349
Digital images, 29, 164–165, 263–264,

304–305, 403, 470–471
Domain and range of functions, 157,

158
Error-correction codes, 275–276, 349,

363–364
File sorting systems, 425
Fractal compression, 202
Fuzzy logic, 301–302
Graphics, 470–471, 566, 572, 581
Internal organization, 412
Internet, 29–30, 117–118
Linear programming, 291–292
Macros, 286
Memory and speed, 310
Music, 349–350
Networks, 259–260, 555
Quantum computing, 276–277
Scientific notation, 487–488
Software, 166, 285, 584
Subnet mask, 118
Supercomputers, 78
Web search engines, 146
Word problem programming, 584

Construction
Building materials, 579
Carpentry, 37, 479–480
Electric circuit diagrams, 414
Fraction measurements, 208
Pothole covers, 236–237
Surveying, 49, 49–50

E

Education
Comparisons, 586
Demographics, 112–113
Grades, 54, 139–140, 140f, 153,

452–456
Gumball estimation, 163–164
Math tables, 544–545
Student loan consolidation, 56–57
Student-teacher ratio, 445
Task-specific rubrics, 455–456
Testing, 382–383, 555, 589–590
Time management skills, 153
Word problems, 584

Energy
Municipal electricity supply, 589
Nuclear, 206, 213–214, 311
Oil and gas, 258, 451
Prediction of demand, 93–95, 94f
Solar, 50
Sonoluminescence, 579–580

Engineering
Automobile design, 305–306, 435
Bridges, 76–77

Designing for strength, 89
Domain and range of functions,

157–158
Electric circuits, 486
Electronic engineering, 489
Factoring, 182
Failure prediction, 89–90
Fluid mechanics, 281
Machine parts, 579
Measurement systems, 309
Nonlinear design, 281
Quality assurance, 526–527
Scientific notation, 487
Ships and submarines, 482
Vehicle weight, 535
Well depth, 594
Word problems, 585–586

Entertainment
Auditorium and concert hall acoustics,

348
Countdowns, 533
Dance, 266
Fireworks, 241
Games and puzzles, 134, 220, 223,

228–229
Magic, 221–223, 428–429
Möbius strip, 555–556
Movies, 28, 392–393, 393–394
Music, 285, 292–293, 347–348,

348–349, 349–350, 351–352, 435,
445, 471

Rhythm, 206–207
Rubik’s Cube, 243, 243–244
Sound, 213, 241–242, 282–283, 297

Environment. See Nature and Wildlife

G

Games. See Sports and Recreation
Geography and Mapping

Cartography, 100–106
Conformal maps, 159–160
Continuously operating reference

station (CORS), 565
Coordinate systems, 135
Demographics, 143
Geodesy, 564
Global positioning systems, 105,

239–241, 258, 565
Great Trigonomic Survey, 564–565
Land area conversions, 129
Map diagrams, 413–414
Map scale, 434, 467–468
Mapping algorithms, 30
Mount Everest height, 310
Oil exploration, 258
Paper maps, 134–135
Surveying, 136, 258, 564, 592

Government and Politics
Average families, 55–56

Census, 142–143, 462
City planning, 42
Currency design, 211–212
Election demographics, 141–142
Government salaries, 548
Mailman’s route, 589, 589f
Municipal electricity, 589
National debt, 5
News media statistics, 378–379, 380
Population statistics, 451
Public opinion polls, 379, 527–528, 593
State lottery odds, 207–208, 368–369
Voting, 208–209
War, 597

H

Health and Medicine
Alcohol-caused brain damage, 578
Alzheimer’s disease, 578
Arm span and height, 408
Autism, 594
Bacterial growth, 326–327, 481
Biomedical graphing, 258
Blood pressure measurement, 310
Blood tests, 472
Body composition, 578–579
Body diagrams, 414
Body mass index, 214, 319
Brain volume, 578, 581–582
Cancer treatment logarithms, 298–299
CAT scans, 147, 480
Causality and disease, 585
Cigarette smoking, 4
Clinical trials, 323–326, 460, 461, 488
Diagnosis, 264, 318–319, 320t, 480
Diet and fitness, 3–4, 259, 436, 534,

548–549, 548f, 549f
Disease demographics, 143, 230
Disease outbreaks, 591
Disease probabilities, 208
Drugs and pharmaceuticals, 47–48,

147, 310–311, 434, 460–461
Ergonomics, 42, 434–435
Food inspection imaging, 266
Genetics, 28, 30, 274–275, 321–323,

443–445, 482, 483, 493, 545
Height and weight charts, 319–320,

446, 593
Hospital size, 440
Human body proportions, 436–437
Infectious disease modeling, 230
Life expectancy, 57, 549, 550f
Polychlorinated aromatic

hydrocarbons, 578
Prognosis, 369
Proteins, 490
Robotic surgery, 245
Sleep management, 534
Sound intensity measurement, 297
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Stem cell research, 446–447
Vision inversion, 281
Visualization software, 258
Water safety, 446

Household Applications
Area of shapes, 340–341, 439
Automobile insurance, 428
Bed size, 435
Calendars, 98–99, 469
Decision making, 597
Drinking water, 446
Fabrics, 43
Food and cooking, 127, 129, 173–174,

206, 302, 446, 591
Instructional diagrams, 414–415
Interior design, 394–395, 434, 594
Landscaping, 386, 396
Length measurements, 450
New Year’s resolutions, 534
News media statistics, 378–379, 380
Packing objects, 590
Swimming pools, 446, 581
Time measurement, 311, 452
Toys, 471
Volume calculations, 439
Weight measurements, 450, 468–469
Work schedules, 549

M

Maps. See Geography and Mapping

N

Nature and Wildlife
Animals, 147–148, 164, 421–422, 587
Atmospheric pressure, 469
Biomechanics, 354
Earth science, 446, 489
Environment, 418, 462
Evolution, 57–58, 174–175
Fractal patterns, 200–201, 541–542
Game theory, 229–230
Global warming, 48–49, 257–258, 594
Honeycombs, 239, 240
Modeling, 354–355
Molecular cloning, 286
Natural disasters, 289, 358–359, 417,

471, 482–483, 591–592
Natural resources evaluation, 105
Nature and numbers, 353–355
Ocean level changes, 580
Patterns, 286, 353–354, 355
Photography, 402–403
Phytoplankton, 354–355
Plant sampling, 460
Population, 171–173, 174–175, 305,

338, 353–354, 408, 409f

River flow, 488
Water runoff, 582
Weather, 77–78, 126–127, 201, 414, 461,

476–478, 593
Wind strength, 469

P

Personal Finance
ATMs, 73
Automobile purchases, 187
Budgeting, 151, 188–198, 549–550
Cash registers, 73
Cellular service plans, 586
Checkbook, 13–14, 189–190, 546
Compound interest, 376, 591
Credit cards, 27–28, 178, 185–186, 369
Currency exchange rates, 195, 195–196,

586
Currency trading, 597
E-money, 160
Futures trading, 597
Income taxes, 14, 31–32, 189, 532, 548
Inflation exponentials, 177–178
Insurance, 584–585
Interest rates, 177–178, 546–547, 547f,

591
Investments, 190, 337–338, 546–548
Loan rates, 547–547
Lottery probability, 207–208
Mortgage rates, 547–547
Music purchases, 184–185
Overtime pay, 208
Pay rates, 339
Retirement plans, 191–194
Savings per purchase, 341
Social Security system, 190
Value added taxes, 592

S

Science and Technology
Absolute dating, 489
Aerodynamics and hydrodynamics, 259
Archeology, 27, 310, 463, 585
Area between curves, 91–96
Carbon dating, 165, 298
Chemicals, 311, 435–436, 486, 566
Combinatorial chemistry, 147
Domain and range of functions, 157–158
Failure prediction, 56, 89–90, 427–428
Filtering, 48
Finite-element models, 212–213
Fireworks, 241
Forensic science, 488–489
Fossil samples, 460
Geologic time scale, 488
Gravity, 313
Guidance systems, 91–96, 93f, 440

Historical conversions, 125
Human motion tracking, 290–291
Hypothesis testing, 585
Land mine detection, 572–573
Mass conversions, 129
Measurement systems, 139
Military models, 331–332
Nanotechnology, 418, 490
Nuclear waste half-life, 206, 213–214
Optics, 264, 298
Periodic table, 545
pH scale, 418
Physics and information theory, 274
Precision measurements, 452
Radar systems, 136–137
Radiation shielding, 299
Radioactive dating, 177
Radioactive decay, 175–177, 176, 176f
Random number generators, 75–76
Reducing equations, 181–182
Riemann hypothesis, 212
Scientific notation, 171
Sound reduction, 282
Spectra, 90–91
Stealth technology, 244–245
Temperature measurements, 125–126,

127, 357
Thermometers, 580–581
Time measurement, 311
Volume conversions, 129

Security
Biometrics, 22–23
Closed circuit television, 31
Codes and code breaking, 182
Credit card security, 147
Cryptography, 28, 147, 158, 280–281,

299, 585
Digital watermarks, 266–267
E-money, 160
Encryption, 28–29, 120–121,

362–363, 424–426
Face recognition software, 264–266
Forensics, 266, 425
Group theory, 299
Military perimeters, 387–388
Perimeter barriers, 386
Random number generators, 75–76

Shopping and Consumers
Automobile purchases, 153, 162–163,

187
Bulk purchases, 450
Buying by area, 48
Cellular service plans, 187–188
Check-out line speed, 367–368
Consumer affluence, 153
Credit card security, 147
Decision making, 181
Demographics, 143
Jewelry pricing, 573–574
Lightbulbs, 20–21
Marketing and sales analysis, 30
Pricing, 4, 376–377, 451–452, 586
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Shopping and Consumers (cont.)
Product samples, 463–464
Rebates, 377, 532–533
Sales tax, 377
Savings per purchase, 341
Tip calculations, 194–195, 375–376
Warranty periods, 427–428

Sports and Recreation
ACL injuries, 573
Archery, 244
Athletic performance, 152, 154,

497–498
Attendance statistics, 409
Baseball, 53–54, 139, 152, 338–339,

381–382, 426, 498–499, 504–505
Basketball, 381, 445–446, 498,

499–500, 503, 507
Bicycling, 505–506
Bowling, 3, 426
Card games, 5, 77, 218–219, 366
Casino games, 219–220
Championship standings, 31, 382
Countdowns, 533
Downhill skiing, 339
Drag racing, 572
Electronic timing, 339
Field and court design, 40–41
Figure skating, 504
Football, 14–15, 182, 358, 382, 386,

499, 500–502, 507–508
Gambling and betting, 6, 366–367,

425–426, 508–510, 591
Golf, 358, 506–507, 533–534
Horse racing, 339
Ice hockey, 498

Lottery odds, 207–208, 368–369, 591
Media experts, 502–503
Movement technique, 573
Photography, 402–403
Playing field surveying, 514–515
Rally racing, 586
Ratings percentage index, 503–504
Repetition, 284–285
Scoring systems, 3
Skydiving, 17–18
Soccer, 506
Space tourism, 24
Speed measurements, 311
Sports math, 495–510
Statistics, 380, 380–382
Swimming pools, 386–387, 581
Throwing a ball, 593
Timing games, 139
Tournaments, 590
Track and field, 309, 358, 534
Video analysis, 263
Virtual reality games, 412
Virtual tennis, 291
Winning percentages, 154
Zero-sum games, 596

T

Transportation
Aerodynamics and hydrodynamics,

259
Aircraft and airplanes, 16–17, 135,

157, 211, 429

Automobiles, 49, 153, 162–163, 187,
305–306, 408, 428, 435, 439–440,
445

Crash tests, 18–19
Engine compression, 579
Friction and weight, 563–564
Radar systems, 136–137
Vehicle weight, 451, 535
Wheels, 43

Travel
Automobile GPS systems, 470
Distance measurements, 128, 308–309,

452
Ferry schedules, 563
Flying vs. driving, 4, 370
Gasoline cost per trip, 443
Greenwich Mean Time, 135
Metric conversion for, 339–340
Miles per gallon calculations, 341,

452
Navigation, 73–74, 311–312, 514,

562–563, 587–588, 592
Schedules, 549, 551
Shortest distance, 587–588
Space tourism, 24
Street signs, 414
Supersonic and hypersonic flight,

299
Teleportation, 23–24
Time estimation, 586
Time travel, 246–247
Time zones, 547
Toll roads, 533
Trip length, 443
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General
Index

1% method, 374
80/20 rule, 370–371
128-bit encryption, 425
365-day calendars, 98
401(k) plans, 191–192
1099 Form, 189

A

AAD (Automatic activation device), 18
Abacus, 1–2, 2, 71–72, 74
Abelian class field theory, 361
Abscissa, 254–257
Absolute dating, 489
Absolute temperature, 127
Absolute zero, 127, 356, 466–467
Abstract symmetry, 542
Acceleration, 83, 307, 439, 572
Accidents

aircraft, 429
automobile, 5, 18–19
mortality from, 5

Account numbers, credit card, 369
Accountants, 63–64
Accounting, 63–65, 357–358, 451–452
Accuracy, 55
Acid rain, 418
Acids, 418
ACL (Anterior cruciate ligament),

573
Acoustic design (Architecture),

348
Acoustic instruments, 242
Acquired immune deficiency syndrome

(AIDS), 322, 461
ACT, dense-dose, 323–325
Actuarial tables, 428
Actuaries, 584–585
Acute angles, 558
Acute triangles, 559
Adding machines, 2
Addition, 1–8

algorithms, 27
notations, 485
tables, 544, 544f
of vectors, 570–571

Adleman, Leonard, 28, 362
Adolescents, 578
Aerodynamics, 259
Affluence, consumer, 153
Aggression, 229–230
AIDS (Acquired immune deficiency 

syndrome), 322, 461
Air pollution, 462
Air traffic control, 131, 135, 570
Air travel

around the world, 481
vs. driving, 4, 370
flight insurance for, 370

Airbags, 18

A boldface page number indi-
cates the main essay for a
topic. An italicized page number
indicates a photo, figure (f),
illustration, or table (t).  

Aircraft
accidents, 429
Bernoulli’s equation and, 211
computer systems in, 157
design, 16–17
flight mathematics, 479
fuel consumption, 16–17
guidance systems, 440
rain on, 474, 479
stealth technology, 244–245
supersonic and hypersonic, 299
take-offs and landings, 478–479
weight of, 535

Aircraft carriers, 478
Alarm clocks, 161–162
Albers equal area conic projection, 102,

102
Alberti, Leon Battista, 390–391
Alcohol, 578
Alexander Nevsky (Film), 349
Algebra, 9–25

Boolean, 145, 146, 301, 302
development of, 12–13
fractions and, 205
fundamental concepts, 9–12
linear, 571
logarithms and, 296
matrix, 146, 262, 303, 304, 304f, 572
potential, 23–24
powers and, 296
real-life applications, 13–23
vector, 570–571, 571f

Algebraic number theory, 361
Algorithms, 26–32

backtracking, 27
coding theory and, 119
computers and, 115
data transmission, 119–120
De la Loubere’s, 222
Diffie Hellman key agreement,

362
digital signal, 363
Dijkstra’s, 588
discrete math for, 145–146
El Gamal, 363
Euclidean, 361
Floyd’s, 588
Kruskal’s, 589
logical, 27
MD5, 425
repetition, 119
RSA, 28, 362, 363
seeding, 31, 31
SKIPJACK, 29
sorting, 590
transposition-substitution, 29
XOR, 362

Almagest, 562
ALU (Arithmetic logic unit), 3
Aluminum bats, 504–505
Alzheimer’s disease, 578
Ampere, 123
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Amplification (Sound), 347–348
Analog recordings, 348
Analysis of variance (ANOVA), 522–523
Analytic geometry, 13
Analytic number theory, 361
Analytic rubrics, 455
Analytical models, 329
Andromeda Galaxy, 486
Anemia, sickle-cell, 321
Angles

acute, 558
degrees of, 71, 557, 558
measurement of, 308, 557–558
obtuse, 558
plane, 123, 557–558
right, 558
sine function of, 560–561, 560f, 562
solid, 123

Animals
behavior, 229–230
breeding, 483
See also Population growth; Wildlife

Animation
coordinate systems for, 134
digital, 28
perspective in, 392–393
three-dimensional, 263

ANOVA (Analysis of variance),
522–523

Antennas
cellular telephone service, 202
radio, 182, 202
satellite, 536
space exploration and, 535–536

Anterior cruciate ligament (ACL), 573
Anthropology, 489
Anti-sound, 182
Anytime minutes, 187
Apartments, 384, 433
Aperture, lens, 400, 401, 402–403
Apollo mission, 535
Approximation, Diophantine, 361
Arch of Constantine, 39, 40
Archeology, 27, 310, 463, 585
Archery, 244
Arches, semicircular, 237
Archimedes, 162, 385, 442, 577
Archimedes principle, 482
Architectural math, 33–44

acoustic design, 348
development of, 35–36
floor numbering, 359
fundamental concepts, 33–34
geometry and, 237–239, 239
Golden ratio in, 443, 492
measurement systems, 35, 310
perspective in, 389–391, 396
proportion and, 34, 34, 38, 432–433
real-life applications, 36–43
scale in, 467, 468
software for, 470
squared and cubed roots in, 513–514

symmetry in, 34, 35, 36–38, 39, 541,
541

word problems, 590–591
Architectural models, 433, 468
Area, 45–50, 46t

measurement conversions for, 124
multiplication for, 340–341
quadratic and cubic equations 

for, 439
surface, 47, 48, 439, 576

Area graphs, 252, 253f, 405
Aristotle, 53, 300
Arithmetic logic unit (ALU), 3
Arithmetic mean, 51–52, 519
Arithmetica (Diophantus), 12
Arm span, 408
Aromatase inhibitors, 325–326
Arrays, 475
Arron, Hank, 517
Arrows, 244

See also Vectors
Ars Nova, 346
Art

computer-generated, 21
digital images of, 267
perspective, 391–392, 393
proportion, 432, 433–434

Artificial intelligence, 32, 230
Asset division, 150
Astronomical charts, 297
Astronomical tables, 544
Astronomy

astronomical charts and tables, 297,
544

averages and, 53, 55
computational, 487
data transmission for, 120
domain and range of functions, 157
fractals in, 202
music and, 346
telescopes, 43, 55, 165–166
trigonometry and, 562

Asymmetric encryption. See Public key
encryption

Athletic performance, 152, 154, 445–446,
495, 497–498

See also Sports math
Atlas Eclipticalis (Cage), 349
ATM (Automatic teller machine), 73
Atmospheric perspective, 391
Atmospheric pressure, 469
Attendance counters, 4–5
Auctions, online, 230, 451, 531–532
Audio compression, 119
Auditoriums, 348
Authentication, data, 120
Autism, 594
AutoCAD, 470
Automatic activation device (AAD), 18
Automatic teller machine (ATM), 73
Automobile accidents, 5, 18–19
Automobile insurance, 57, 428

Automobiles
acceleration, 307, 439
vs. air travel, 4, 370
braking distance, 408
buying, 153, 162–163, 187
computer-aided design, 305–306
crash tests, 18–19
engine compression ratio, 445, 579
ergonomic design, 42
fuel consumption, 341, 352, 383, 451
GPS systems, 470
loans, 547
models of, 435
monthly payments, 187
oil change, 154–155
performance percentages, 383
price, 4
radiators, 49
revolutions per minute, 445
seat design, 435
tires, 439–440
trade-ins, 187
vs. trucks, 441–442
used, 162–163
weight of, 535
wheels, 43

Average, 51–58, 54
deviation, 520
division for, 152–153
grade point, 139–140, 140f, 153
moving, 259
statistical, 519
weighted, 54–55, 153

Avogadro’s law, 486
Axis, 131, 248–249, 404
Azimuths, 562–563

B

Babies
development, 343
products for, 143

Baby boom, 143
Babylonian Talmud, 226, 228
Babylonians

calendars, 558
counting boards, 71
degrees of angle, 557–558
geometry, 235–236
multiplication tables, 335–336
pi, 442
powers, 416–417
tables, 543–544
weight measurements, 308

Bach, Sebastian, 347
Backtracking algorithms, 27
Bacteria

game theory modeling and, 230
population growth, 173–174, 326–327,

326f, 481
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Bakine, 127, 127
Balanced diet, 436
Balloons, weather, 477–478
Ballot boxes, 7
Balls

area of, 46
basketballs, 75
throwing, 593
See also Spheres

Bank check processing, 291, 292
Bankruptcy, 150
Bar charts, 109–110, 110f, 111, 111f, 112
Bar graphs, 249–251, 250f, 251f, 406, 410,

411f
Bar scale, 468
Barcodes, 15, 15–16, 23
Barometers, 469
Barriers, perimeter, 386, 387–388
Barter, 205
Base, 59–61, 167, 295–296
Base 2 numbering systems. See Binary

numbering system
Base 5 numbering systems, 59–60, 60f
Base 8 numbering systems, 60, 61
Base 10 numbering systems. See

Decimals
Base 20 numbering systems, 60
Base 60 numbering systems, 60,

557–558
Base e, 297
Base rate, 374–375
Base sequences. See Genetic sequence
Baseball

bats, 504–505
batting averages, 53–54, 152, 381–382,

426, 498, 517
commentators, 502
earned run average, 338–339,

498
on-base percentage, 498
runs scored, 498
speed of pitches, 139
statistics, 498–499
World Series wins, 427

Bases (Chemistry), 418
Basketball

championship standings, 382
commentators, 502
free-throws, 500
game theory and, 225
iteration in, 284
most valuable player, 381
player’s height, 368
point average, 498
point guard performance, 445–446
Ratings percentage index, 503
salary caps, 507
shooting percentages, 374
statistics, 499–500

Basketballs, size of, 75
Batello division, 149–150
Bats, baseball, 504–505

Batting average, 53–54, 152, 381–382,
426, 498, 517

Bayer array, 401
Bayes, Thomas, 429
Beak size, 58
Beams, 395
Bearing (Navigation), 562–563
Bears, polar, 576
Beaufort, Francis, 469
Beaufort scale, 469
A Beautiful Mind, (Film) 228
Beauty and the Beast, (Film) 393
Beauty principle, 198
Beckham, David, 506
Beds, 42, 435, 440
Bees, honey, 239
Beethoven, Ludwig van, 432, 443
Behavior

animal, 229–230
game theory and, 225–231
patterns of, 181

Bernoulli, Daniel, 211
Bernoulli’s equation, 211
Best fit, line of, 404
Betting, 508–510. See Gambling
Betto Bardi, Donato di Niccolo di, 391
Bicycles, 505–506
Big bang, 178, 487
Bilateral symmetry, 38
Binary numbering system

calculators and, 70
computers and, 60, 114–115, 116–117,

117
Egyptian, 336
index searches, 590
powers and, 417–418

Binomial distribution, 317, 317f, 518
Biomechanics, 354–355
Biomedical research graphs, 258
Biometrics, 22–23, 581–582
Birth rates, 525
Birthday predictions, 428–429
Bits, 116, 271–272
Black and white photographs, 281
Black powder, 241
Blackjack, 217, 218
Blood pressure measurement, 310
Blood tests, 472
Blue screen images, 134
BMI (Body mass index), 214, 319
Board games, 134, 220, 220
Body, human. See Human body
Body mass index (BMI), 214, 319
Body size (Wildlife), 576
Body surface area (BSA), 48
Boethius, Anicis Manlius Severinus, 345
Boiling point, 126
Bokeh, 403
Bolts, 526–527
Bonds, 67–68, 191
Bookkeeping, 63–65, 357–358,

451–452

Books
children’s, 392
comic, 392

Boole, George, 145, 146, 301
Boolean algebra, 145, 146, 301, 302
Borders, geographic, 234
Borrowing (Subtraction), 531
Boston Red Sox, 427
Boundaries, perimeter, 385–388
Bowl Championship Services, 14–15
Bowling, 3, 426
Box plots, 404, 407, 408f
Boxes, 46, 575
Bradley, General, 332–335
Brahe, Tycho, 346
Brahmagupta, 357
Braided rope, 539, 539f
Brain and vision, 281
Brain volume, 578, 581–582
Braking distance, 408
Break-even point, 184–185
Breast cancer, 323–326, 324f, 327
Breeding animals, 483
Bridges

derivatives for, 89
design, 76–77, 90
failure prediction, 89–90, 90
span, 478

Brilouin, L., 274
British pound, 196
Brown, Robert, 350
Brown noise, 350
Brownell, William, 531
Brunellesci, Filippo Di Ser, 389–390,

390f
BSA (Body surface area), 48
Bubble fusion, 579–580
Bubble graphs, 257, 257f
Budgets

business, 63, 64f
division for, 151
food, 194
personal, 188–189

Building materials, 579
Bulk purchasing, 450
Bull riders, 339
Bürgi, Joost, 72
Burn rate, 151
Burst errors, 275
Business math, 62–68, 65, 67, 182–183
Business plans, 591
Butterfly effect, 199
Bytes, 116, 118

C

C note, 344
CAD (Computer-aided design),

305–306
Caesar, Julius, 98
Cage, John, 349
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Calculators, 69–79
development of, 2, 71–73, 72, 115–116
fundamental concepts, 69–71
graphing, 69, 70, 257
mechanical, 72
potential applications, 78
real-life applications, 73–78
scientific, 69
software as, 72–73
speed-distance-time, 74
for trigonometry, 564

Calculus, 80–96
area and, 46
development of, 86, 87
domain and range, 156
fundamental concepts, 81–86
integration, 46, 577
real-life applications, 86–95

Calendars, 97–99
365-day, 98, 99
Babylonian, 558
base and, 59
Gregorian, 98, 99
Julian, 98, 99, 451
lunar, 97–98, 98, 99
lunisolar, 98, 99
solar, 98
as time scales, 469

Calorie counting, 3–4, 320, 436, 534
Camera lenses, 399, 399, 400f, 402–403
Camera obscura, 391, 402
Cameras, 398–403

development of, 402
digital, 29, 154, 401
Kodak, 402
shutter speed, 399, 401

Canada
currency exchange rates, 196
travel to, 339–340

Cancer
breast, 323–326, 324f, 327
radiation therapy, 298–299
screening, 320t

Candela, 123
Candlestick plots, 259
Capacitors, 489
Capital investments, 63, 66–67
Car seats, 42
Carats, 129
Carbon dating, 165, 298
Carbon dioxide, 49
Card games

combinatorics for, 77
math for, 217, 218–219
odds in, 365, 366
poker, 5, 219, 366, 596
probability theory, 5
war, 595

Cardano, Gerolano, 280, 424
Carpentry, 36, 37, 479–480, 480f
Carrying (Subtraction), 530–531
Cars. See Automobiles

Cartesian coordinate system, 132–133,
133f, 134, 136, 257

Cartography, 100–106
See also Maps

Cash registers, 73, 451–452
Casino games, 219–220, 366–367,

425–426
See also Gambling

Casino industry, 223
Cassini space probe, 93
CAT scans, 147, 475, 480
Cattle, 447
Causation, 524
CBD (Central business district), 42
CCD (Charged coupled devices), 29
CCDS (Charged-coupled device sensors),

401
CCTV (Closed circuit television), 31
CDs. See Compact disks
CDs (Certificates of deposit), 546–547
Cellular telephones

antennas, 202
coverage area, 188
opinion polls and, 527
selecting, 187–188, 586, 586f

Celsius, 123, 125–126, 340, 357, 466
Celsius, Anders, 126
Census, 142–143, 451, 462
Census Bureau (U.S.), 193, 451
Centimeters, square, 45–46
Central business district (CBD), 42
Central tendency, 52
Centric perspective. See Perspective
Certificates of deposit (CDs), 546–547
Challenger Space Shuttle, 56, 427
Championship standings, 31, 31, 382,

503–504
Chance, 215–216, 316, 424

See also Odds; Probability
Channels, noisy, 274
Chants, Gregorian, 345
Chaos theory, 199, 330, 331
Charged coupled devices (CCD), 29
Charged-coupled device sensors (CCDS),

401
Charles, Jacques, 127
Charts, 107–113, 108

astronomical, 297
bar, 109–110, 110f, 111, 111f, 112
column, 109, 109f, 110, 110f, 111, 112,

112f
domain and range of functions, 158
flow, 411–412, 413f
height and weight, 319–320
line, 107–109, 108f, 111
organizational, 413
pie, 110–112, 111f, 113, 113f
polar, 406–407
religious, 297
run, 409–410
See also Graphs

Check cards, 73

Check processing, 291, 292
Checkbooks, 13–14, 189–190, 358, 546
Checkout lines, 367–368
Checkout systems, code-scanning, 62
Chemical solutions, 435–436
Chemicals, 151–152, 566
Chemistry

combinatorial, 147
measurement systems, 311
scientific notation for, 486

Chess, 134, 216–217, 217, 221, 226
Child development, 343
Children’s books, 392
China

calendars, 99
card games, 217
colored rods, 356

Chisenbop, 2
Chlorine, 152, 446
Choking, 5
Cholera, 322
Chords, 561–562
Chronic diseases, 322
Chuquet, Nicholas, 417
Churches, 237
Cicadas, 421–422
Cigarette smoking, 4
Ciphers. See Cryptography; Encryption
Circles

area of, 46, 234, 340
circumference, 385, 442, 561–562
definition, 233
properties, 237

Circuit diagrams, 414
Circumference

circle, 385, 442, 561–562
of the Earth, 105

City planning, 42, 396
Classification schemes, 493
Clerk-Maxwell, James, 402
Climate

change in, 48–49, 257–258, 580, 594
cold vs. hot, 576

Climbing rope, 537
Clinical trials

breast cancer, 323–326, 324f, 327
medical mathematics and, 314, 315
sampling for, 460, 461
scientific notation for, 488

Clocks
alarm, 161–162
countdown, 533, 533, 535
digital, 139
Doomsday, 535
navigation and, 135
pendulum, 311
quartz, 311
rounding off time, 452

Cloning, molecular, 286
Closed circuit television (CCTV), 31
Clothing, 384
Cloud activity models, 77
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Cloud area, 48–49
Cluster sampling, 458, 460, 461
Clustered column charts, 110, 110f
CMOS (Complementary metal oxide

semiconductor sensors), 401
Coaches, 152
Coastline, Maine, 198
Cobb, Ty, 53
Cocks, Clifford, 281
Code of points system, 504
Codes (Computer)

error-correction, 269, 275–276, 349, 360
Pretty Good Privacy, 281
Reed-Solomon, 276

Codes (Secret). See Cryptography
Code-scanning checkout systems, 62
Coding theory, 119
Coefficient of determination, 404, 405
Coefficient of restitution, 504–505,

506–507
Coefficient of the term, 11
Coefficients (Multiplication), 335
Coin toss, 279, 474, 500–501, 501f,

517–518
Cold climate, 576
College graduates, 524
Colored rod system, 356
Colors, mixing, 22
Colossus device, 29
Columbia Space Shuttle, 56
Columbus, Christopher, 133
Column charts, 109, 109f, 110, 110f, 111,

112, 112f
Combinatorial chemistry, 147
Combinatorics, 77, 145
Comic books, 392
Commentators, 502–503
Commodity futures, 191
Common terms, 204
Communication

information theory and, 273–274
IP address for, 117–118
submarine technology for, 182

Commutative property, 335
Compact disks (CDs)

data compression, 118, 349
data transmission algorithms, 120
design, 348
error-correction codes, 349, 364
storing data on, 88f, 89

Comparisons, 380, 586
Competition, 175
Complementary metal oxide semi-

conductor sensors (CMOS), 401
Completion percentage, 499
Composite line graphs, 409, 409f
Composite numbers, 180
Compound interest, 74–75, 170, 376, 591
Compression

data, 118–119, 202, 264, 349
engine, 445, 579
sound, 349

Compulsive gamblers, 367
Computational astronomy, 487
Computed tomography (CAT scan), 147,

475, 480
Computer games

chess, 217
math for, 223
perspective in, 396
virtual reality and, 412

Computer graphics, 396, 566, 572
See also Digital images

Computer intensive operations, 297
Computer languages. See Programming

(Computer)
Computer monitors, 117, 427–428
Computer networks, 259–260, 555
Computer searches, 302
Computer-aided design (CAD),

305–306
Computer-generated art, 21
Computer-generated music, 349–350
Computers, 114–121

arithmetic logic unit, 3
binary numbering system and, 60,

114–115, 116–117, 117
business math and, 62
calculator programs for, 72–73
for calculus, 86
development of, 115–116
domain and range of functions, 157,

158
electronic music on, 348
fundamental concepts, 114–115
infinity and, 150
for language translation, 587
macros for, 286
memory, 310
quantum, 276–277
real-life applications, 116–121
sales graphs for, 253, 253f
scientific notation for, 487–488
speed, 310
storing data on, 87–89, 88f

Computing, forensic, 425
Concert halls, 241–242, 348
Concerts, rock, 297
Conclusions, 300–301, 301t
Concrete, 579
Coneflowers, 354
Confidence intervals, 522
Conflict, 225
Conformal maps, 159–160
Congressional Representatives, 209
Conic projections, 102
Constants, 10–11
Construction, 37, 208
Consumer affluence, 153
Consumer Price Indexes (CPI),

378–379
Continued fractions, 206
Continuous functions, 255
Continuous objects, 144

Continuously operating reference station
(CORS), 565

Convenience sampling, 461
Convergent sequences, 493, 588
Convergent series, 493–494
Conversions, 122–130, 477

distance, 123, 128, 348, 545, 546f
historical, 125
tables for, 545

Cooking
measurement conversions, 129
oven temperature, 127, 127, 302
recipes, 206, 446, 591
temperature conversion, 127, 127

Coordinate systems, 131–137
Cartesian, 132–133, 133f, 134, 136, 257
for graphs, 248–249
for maps, 103–104
polar, 132, 133, 133f, 136–137

Coordinated Universal Time (UTC), 547,
547f

Coordinates, 131
Copernicus, Nicolas, 346
Copyright, 267
Coriolis force, 480–481
Coriolis, Gustave, 481
Corporate earnings, 150–151
Correlation, 521–522, 524, 525–526
Correlation coefficient, 404–406,

521–522
CORS (Continuously operating reference

station), 565
Cosecant, 564
Cosine, 560–561
Cosmology, 487
Cost algorithms, 588
Cost minimization, 588
Cotangent, 564
Coulomb, 124
Countdowns, 533, 533, 535
Counterfeit money, 211–212
Counting

base and, 59
cards, 218–219
in epidemiology, 322
probability theory for, 147–148
in sports, 495–496
tools, 1–3, 4–5
See also Combinatorics

Counting boards, 71, 116
Counting tables (Abacus), 1–2, 2, 71,

74
CPI (Consumer Prices Indexes), 378–379
Crash tests, 18–19
Creativity, 285–286, 584
Credit cards

account numbers, 369
cost of using, 186
fraud, 27–28
interest rates, 178, 186
online security, 147
understanding, 185–186
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Cricket (Sport), 53–54
Critical path analysis, 588
Cross braces, 37
Cross hairs, 41, 41
Cross products, 430–431
Cross-pollination, 443–445
Crowe, Russell, 228
Cryptography

algorithms, 28
for credit card security, 147
development of, 116
digital watermarks, 266–267
discrete math for, 146
domain and range of functions, 158
for E-money, 160
factoring and, 182
group theory, 299
inverse operations, 279, 280–281
number theory and, 360, 362–363
probability and, 424–426
random number generators for,

75–76
supercomputers for, 78
word problems for, 585
See also Encryption

Cryptosystem, 160
Cube root, 511–515
Cubes

architectural use of, 40
Koch’s, 350
Rubik’s, 243, 243–244
volume of, 439, 575

Cubic equations, 11, 438–440, 439t
Cubic meters, 124, 129, 575
Cubing it (Power of three), 179
Cubit, 308
Cumulative frequency, 521
Currency exchange rates, 129, 195,

195–196, 196, 549, 586
Currency trading, 597
Curve fitting, 521–522
Curves

area between, 91f, 92
area under, 46, 83–85, 83f, 340–341
calculus for, 80
derivative of, 81–82
description, 233
French, 255
maxima and minima, 85–86, 85f
sine, 347, 494, 560–561, 560f

Cycling, 505–506
Cyclophosphamide, 324
Cylinders, 237

D

da Pisa, Leonardo, 13
da Vinci, Leonardo

bicycle gears, 505
Golden ratio, 443

perspective, 391, 394, 395
proportion, 432, 433

Dairy farms, 447
Dance, 266
Darwin, Charles, 174–175, 459
Darwinian evolution. See Evolution
Data

authentication, 120
fallacies, 256

Data compression, 118–119
for compact discs, 118, 349
for digital images, 264
fractal, 202
music, 349

Data encryption. See Encryption
Data encryption standard (DES), 362
Data mining, 28, 528
Data transmission, 29–30, 119–120
Dating

absolute, 489
carbon, 165, 298
radioactive, 177

David (Michelangelo), 432
Days, 120
De Bourcia, Louis de Branges, 212
De la Loubere’s algorithm, 222
de Moivre, Abraham, 525
De Thiende (Viete), 139
de Vivie, Paul, 505–506
Death rates, 5, 513, 525
Debt, national, 5
Deceptive statistics, 381, 523–524, 581
Decibels, 297
Decimal fractions, 373
Decimals, 60, 61, 138–140

calculators and, 70
conversion to percentage, 373
fractions and, 204
logarithms and, 295
rounding off, 450

Decision making
80/20 rule for, 370–371
in football, 501–502
game theory and, 228–229
Prisoner’s dilemma, 227, 596
shopping, 181
for zero-sum situations, 597

Declination, magnetic, 563
Decorating, 40
Decrease percentages, 375
Definite integrals, 83, 84f
Degrees

of angles, 71, 557, 558
of latitude and longitude, 103

Demographic profile, 141
Demographics, 141–143, 142

rounding off, 451
sampling for, 462
school, 112–113
See also Population growth

Denominators, 149
Dense-dose ACT, 323–325

Density, 124, 579
Department of Energy (U.S.), 214, 451
Dependent variables, 211, 249, 328
Depth of field, 400–401
Depth perspective, 263
Derivatives

application, 86–91
description, 81–83, 81f, 82f, 83f, 86
higher-order, 83

DES (Data encryption standard), 362
DES (Digital encryption standard), 29
Descartes, René

algebra, 13
Cartesian coordinate system, 134
exponents, 170
geometry, 236
graphing, 248, 257
powers, 417
root symbols, 512

Determinants, 303–306
Determination, coefficient of, 404, 405
Deterministic models, 329
Deviation

average, 520
mean, 520
standard, 318, 319–320, 520

Diabetes type II, 315
Diagnostic imaging and tests, 147, 264,

318–319, 475, 480
Diagrams, 404–415

body, 414
development of, 407
electric circuit, 414
fishbone (Ishikawa), 406
fundamental concepts, 404–407
precedence, 588
real-life applications, 407–415
tree, 412–413
for word problems, 583–584

Diatonic scale, 346
Dice, 216, 423–424
Dice Music (Mozart), 349
Die Coss (Rudolff), 512
Diet

balanced, 436
calorie counting, 3–4, 320, 436, 534
weight loss and, 534

Difference (Subtraction), 529
Diffie Hellman key agreement

algorithms, 362
Digital cameras, 29, 154, 401
Digital cash. See E-money
Digital clocks, 139
Digital encryption standard (DES), 29
Digital images, 262–268

blue screen, 134
creating, 29, 263–264
estimation in, 164–165
forensic, 266
fractal, 22, 202
matrices and, 304–305
processing, 403
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quality of, 470–471
resolution of, 401, 470–471

Digital music, 348–349
Digital photographs, 134, 401
Digital signal algorithm (DSA), 363
Digital signatures, 363
Digital video disks (DVDs), 119
Dijkstra’s algorithm, 588
Dimensions

of integers, 198
lesser, 232–234
matrices and, 303
measurement and, 308–309
See also Three-dimensions; Time

Diophantine approximation, 361
Diophantus, 12, 361, 417
Direct proportion, 431, 586–587
Dirichet, Johann Peter Gustav Lejeun,

157
Discrete mathematics, 144–148, 474
Discrete objects, 144
Diseases

bacterial growth and, 481
causality of, 585
chronic, 322
demographics, 143
epidemiology, 314, 315–318, 322, 481
frequency, 315–316
game theory modeling, 230
genetic risk factors, 321–323
medical mathematics and, 314
outbreaks, 591
probability of, 208, 315–318
prognosis, 369
spread, 175

Disk rot, 88f
Dispersion, 520
Disraeli, Benjamin, 523
Distance

bar charts for, 111
braking, 408
camera lenses for, 402–403
conversions, 123, 128, 340, 545, 546f
definition, 307
depth of field and, 400–401
functions for, 211
illusion of, 391
mail delivery, 589, 589f
map scale and, 434
measurement of, 123, 123, 128, 307,

308–309, 311
rounding off, 452
shortest, 308, 587–588, 587f
tables for, 545
three-dimensional measurement, 313
travel time and, 431
trip length, 443

Distribution
binomial, 317, 317f, 518
division and, 150–151
factoring and, 182
Gaussian, 518, 525

normal, 317–318, 318f, 518, 525
Pareto, 518
probability, 316–317
theoretical probability, 518
uniform, 518

Divergent sequences, 588
Divine proportion, 432, 436–437, 442
Division, 149–155, 361, 486
DNA analysis. See Genetic sequence
DNA helix, 354
Doctor-patient ratio, 151
Doctrine of Chances (de Moivre), 525
Dog bites, 5
Domain, 156–158
Domes, 237
Domestic animals, breeding, 483
Dominant inheritance, 444, 482
Doomsday Clock, 535
Double-axis line charts, 108–109
Doubling time, 173–174
Down payments, 187
Downhill ski racing, 339
Downloading, 118–119, 185
Doxorubicin, 324
Drag racing, 572
Drawings

perspective, 392, 392f
scale, 34–35

Dresher, Melvin, 596
Drinking water, 446
Drivers’ licenses, 428
Driving

vs. air travel, 4, 370
fuzzy logic for, 301–302
See also Automobiles; Travel

Drogue parachutes, 17
Drowning, 5
Drugs

development, 147, 461
dosage, 47–48, 310–311, 434
manufacturing, 460–461

DSA (Digital signal algorithm), 363
DuBois formula, 48
Dummies, crash test, 18
Duomo, 389–390, 390f
Dürer, Albrect, 391
Durst, Seymour, 5
DVDs (Digital video disks), 119

E

E base, 297
Earned run average (ERA), 338–339,

498
Earnings, 66–67, 150–151
The Earth

age, 446
circumference, 105
curvature, 563
origin of the moon and, 447–448

surface area, 47
volume, 162

Earth science, 489
Earthquakes, 289, 298, 417, 471,

482–483
Eastman, George, 402
eBay, 230, 451, 531–532
Ecclesiastical modes, 345
Eclipse, 243
Ecological models, 330–331
Economics

game theory and, 228, 229
global, 515

Ecosystems, 199, 201
Edges (Graphs), 146
Education

income and, 193
school demographics, 112–113
student-teacher ratio, 445
tables for, 544–545
test score ranking, 589–590
word problems in, 584
See also Grades; Students

Edward I, 308
Efficiency, 584
Egyptians

algebraic development, 12
binary numbering systems, 336
calendars, 97–98, 98
fractions, 205
geometry, 235
Golden ratio, 443
long division, 149
measurement systems, 235
multiplication, 336
pi, 442
powers, 416–417
proportion, 432
tables, 544
See also Pyramids, Egyptian

Eiffel Tower, 35–36, 38, 38
80/20 rule, 370–371
Einstein, Albert

age of the universe, 160
spacetime and, 136
speed of light and, 514
on time and space, 131–132,

236, 246
El Gamal algorithm, 363
Elapsed time, 3
Elections

ballot boxes, 7
demographic analysis, 141–142
presidential, 141–142, 459
public opinion polls, 527–528
results, 383
sampling, 459

Electoral college, 209
Electric circuits, 414, 486
Electric current, 123, 124
Electric fields, 555
Electrical thermometers, 126
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Electricity
magnetism and, 542
municipal supply, 589
prediction of demand, 93–95, 95f
solar panels for, 50

Electromagnetic radiation, 486–487
Electronic calculators. See Calculators
Electronic cash (E-money), 160
Electronic engineering, 489
Electronic musical instruments, 347–348
Electronic sound synthesizers, 213,

347–348
Electronic timing, 339
Electrons, 124
Elementary number theory, 360–361
The Elements (Euclid), 420–421
Elephants, legs, 179
Elevators, 359
ELF (Extremely low frequencies), 182
Ellipses, 233, 238, 346
Elliptic functions, 159–160
E-mail, 341
E-money, 160
Empire State Building, 20
Employee pilferage, 153–154
Encryption, 28–29

128-bit, 425
data, 120–121
data encryption standard, 362
digital encryption standard, 29
number theory and, 362–363
probability and, 424–426
public key, 120, 147, 160, 280–281,

362–363
symmetric secret key, 120–121, 362
See also Cryptography

Encryption devices, 28–29
Endangered species, 587
Energy

consumption, 451
prediction of demand, 93–95, 95f
thermal, 125

Engine compression, 445, 579
Engineering

Domain and range of functions,
157–158

electronic, 489
factoring in, 182
measurement systems, 309
proportion in, 435
scientific notation, 487
vehicle weight and, 535
word problems, 585–586

English measurement system, 122, 123,
124, 472, 477

Eno, Brian, 349
Entropy, 274
Enumeration. See Counting
Environmental science, 488
Epidemics, 591
Epidemiology, 314, 315–318,

322, 481

Equations
algebraic, 10–12
cubic, 11, 438–440, 439t
function graphs for, 255
functions as, 210–211, 211t
linear, 11, 287–293, 288f,

438–440, 439t
matrix, 288, 288f
Navier-Stokes, 212
nonlinear, 11
quadratic, 438–440, 439t
quartic, 438–440, 439t
reducing, 181–182
scientific use, 476
third-order, 438

Equilateral triangles, 237, 541, 558–559,
558f

Equilibrium, 229
Equivalent fractions, 204
ERA (Earned run average), 338–339, 498
Eratosthenes, 105, 420–421
Ergonomics, 42, 434–435
Error-correction codes, 269, 275–276,

349, 360
Errors

burst, 275
estimation of, 162
measurement, 309
medical, 5
RMS, 520

Estimation, 161–166
Euclid, 236, 263, 420–421
Euclidean algorithms, 361
Euler, Leonhard, 156, 170–171
Euro, 196
Everest, 310, 565
Evolution

averages and, 57–58
game theory and, 228, 229–230
population growth and, 174–175

Evolution and the Theory of Games
(Smith), 228

Execution grade, 504
Exemestane, 325, 326
Exercise, 3–4
Exercise equipment, 259
Exit polls, 142
Expenses, operating, 63
Exponential functions

description, 168–169, 169f
population growth, 171–173, 172f,

174, 200, 331, 338
for prediction of demand, 95

Exponentiation, 295
Exponents, 167–179

development, 160–171
fundamental concepts, 167–169
growth rates and, 337
laws of, 169, 170t
real-life applications, 171–179

Expressions, variable, 10
Extreme programming (XP), 285

Extreme sports, 154
Extremely low frequencies (ELF), 182
Eyes, 281

F

Fabric design, 43
Face recognition, 264–266
Factoring, 10, 11–12, 180–183, 182
Fahrenheit, 125–126, 340, 357
Fahrenheit, Daniel Gabriel, 126
Failure prediction, 89–90, 427–428
Fallacies, 256
Family, average, 55–56
Family tree, 413
Fans, 41–42
Farad, 489
Farr, William, 322
Fast food restaurants, 4
Fast Fourier transform (FFT), 566
Fat, body, 578–579
FDA (Food and Drug Administration),

245
Feast of Herod (Donato), 391
Feature points, 291
Fermat’s last theorem, 361–362
Fermat’s principle, 89
Ferries, 563
FFT (Fast Fourier transform), 566
Fibonacci numbers, 353–354, 491, 492
Field, depth of, 400–401
Field theory, Abelian class, 361
Fighter aircraft guns, 41, 41
Figure skating, 504
Files (Computer)

compression, 118–119
file-sorting programs, 425
forensic search of, 425
zipped, 119

Film
monomolecular, 162
photographic, 398–403

Films. See Motion pictures
Filtering, 48
FINA (International Amateur Swimming

Federation), 387
Financial calculations, personal, 184–197
Financial tables, 546–548
Finches, 58
Fingerprints, 22–23, 266
Finite sequences, 493
Finite-element models, 212–213
Fires, 5, 75
Fireworks, 5, 241
Fish populations, 164, 328–329
Fishbone diagrams (Ishikawa), 406
Fisher, R., 229, 525
Flash powder, 241
Flight insurance, 370
Flight mathematics, 479
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Floating objects, 482
Flood, Merrill, 596
Floods, 250, 358–359
Floor numbering, 359
Flow charts, 411–412, 413f
Flow rate, 488
Flowers, 353–354, 539–540, 539f, 540f
Flowers, Tommy, 29
Floyd’s algorithm, 588
Fluid mechanics, 281
Flying. See Air travel
Focal length, 399, 400f
FOIL method, 180–181
Food

budgets, 194
inspection technology, 266
percentages, 374
pH scale and, 418
proportions, 431
quality, 474
rotting leftover, 173–174
value meals, 4
See also Diet

Food and Drug Administration 
(FDA), 245

Football
coin toss, 500–501, 501f
college championships, 14–15
decision making in, 501–502
fields, 386
pass length, 507
pattern recognition, 182
quarterback rating index, 499
salary caps, 507–508
scores, 358
statistics, 382, 499

Forces, 563–564
Forensic science

digital images for, 266
fingerprints, 22–23, 266
forensic computing, 425
scientific notation for, 488–489

Formulas, algebraic, 11
Fossil fuels, 49
Fossil samples, 460
401(k) plans, 191–192
Fourier, Jean Baptiste, 213, 347
Fourier transform spectroscopy, 566
Fourteenth Amendment, 209
Fourth dimension. See Time
The Fractal Geometry of Nature

(Mandelbrot), 200
Fractals, 21, 22, 198–202, 199f

in computer-generated music,
350–351

in nature, 199, 200–201, 353, 355
symmetry of, 541–542, 541f

Fractional voting rights, 209
Fractions, 203–209, 204

continued, 206
conversion to percentage, 373
decimal, 138, 373

definition, 203, 372
division and, 149
equivalent, 204
improper, 203
lowest-term, 204
mixed, 204
proper, 203
vs. ratios, 442
rounding off, 204–205
rules for, 204, 205t
in sports, 496
unit, 203–204

Franklin, Benjamin, 162
F-ratio test, 522, 523
Fredn, William, 357
Free-throws, 500
Freezing point, 126, 356
French curves, 255
Frequencies (Sound), 241–242, 351
Frequency

cumulative, 521
of diseases, 315–316
histograms, 410, 412f
measurement of, 124
of musical notes, 351

Friction, 563–564
F-stop, 400
Fuel consumption

airplane, 16–17
automobile, 341, 352, 383, 451

Fuel fluid mechanics, 281
Fuels. See specific types of fuel
Functional MRI, 264
Functions, 210–214, 211t

calculus and, 81, 81f, 82
continuous, 255
definition, 145, 156, 157
domain and range of, 156–158
elliptic, 159–160
graphing, 255
inverse, 279, 279f
scientific use of, 473–474
sine, 560–561, 560f, 562

Fundamental theorem of calculus, 85
Fundraising, 19
Furlongs, 339
Furniture, 434
Fusion, 579–580
Future events, 6
Futures trading, 597
Fuzzy logic, 301–302

G

G note, 344
Galaxies, 55, 202, 486
Galley division, 149–150
Gallons, 340, 341, 452
Gallup polls, 459
Galois theory, 361

Galton, Francis, 373
Gamblers, compulsive, 367
Gambling and betting

casino games, 219–220, 366–367,
425–426

chance in, 424
history of, 424
Martingale system, 6
odds, 366–367, 591
probability myths, 425–426
slot machines, 217–218, 219–220,

366–367
sports, 223, 508–510
zero-sum games, 596

Game math, 215–224
development of, 216–218
fundamental concepts, 215–216
potential applications, 223
real-life applications, 218–223

Game theory, 225–231, 332–335
Games

board, 134, 220, 220
casino, 219–220, 366–367, 425–426
computer, 217, 223, 396, 412
musical, 349
strictly competitive, 596
zero-sum, 226, 595–597, 596
See also Card games

Gantt graphs, 254, 254f, 413
Gases, greenhouse, 49
Gasoline

consumption, 341, 352, 383, 451
cost per trip, 443
miles per gallon, 340, 341, 452

Gateway Arch, 238
Gauss, Karl Frederick, 162, 518, 525
Gaussian distribution, 518, 525
GCF (Greatest common factor), 181
Gears, bicycle, 505–506
Gender differences, 581–582
Gene expression profile, 327
General equilibrium, 229
General rubrics, 455–456
Generality, 329
Generational cohort, 143
Genetic sequence

algorithms, 28, 30
forensic, 489
graphing, 258
information theory and, 274–275
potential applications, 327
Punnet square for, 545, 546f
use of, 493

Genetic traits, 321–323, 443–445, 482, 483
Genome, human, 327

See also Genetic sequence
Geodesy, 564–565
Geographic coordinate systems, 133–134
Geographic information systems (GIS),

143
Geographic Poles, 563
Geologic time, 488
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Geology, 591–592
Geometric forms

architectural use, 40
area of, 46t, 182, 340
fractals as, 199
sports and, 40–41
symmetry of, 34

Geometric mean, 52, 519
Geometric number theory, 361
Geometric progression, 6
Geometry, 232–247, 233, 238

analytic, 13
development of, 235–236
fundamental concepts, 232–235
imaging and, 263
potential applications, 245–247, 260
real-life applications, 236–245
visual, 35–36

Geostatistics, 525–526
GIF (Graphics interchange format), 165
Gigaelectron volts, 487
Girard, Albert, 13, 512
GIS (Geographic information systems),

143
Glaciers, 49
Glass thermometers, 126, 580–581
Glide-reflection symmetry, 537
Global economics, 515
Global positioning systems (GPS)

automobile, 470
continuously operating reference

station, 565
inertial guidance systems and, 93
maps for, 105
nautical navigation and, 74
navigation and, 135–136
potential applications, 566
satellites, 239–241, 258
surveying with, 50, 258

Global warming, 48–49, 257–258, 594
GMT (Greenwich Mean Time), 135, 547,

547f
Gold, 489
Goldbach, Christian, 421
Goldbach conjecture, 361, 421
Golden Gate Bridge, 76
Golden ratio, 38–40, 353, 354, 442, 492
Golden rectangle, 38–40, 41
Golf, 285, 358, 533–534
Golf clubs, 506–507
Gosset, William S., 525
GPS. See Global positioning systems
Grade of execution, 504
Grades

average, 54
grade point average, 139–140, 140f, 153
percentages and, 374, 383
scale of performance for, 454
scoring rubrics for, 453–456

Gradians, 71
Grads, 558
Grant, Peter, 58

Grant, Rosemary, 58
Graph paper, 257
Graph theory, 147, 248, 588, 589
Graphic novels, 392
Graphic scale (Maps), 468
Graphical models, 329
Graphics

computer, 396, 566, 572
misleading, 581
See also Digital images

Graphics interchange format (GIF), 165
Graphing, 248–261, 249, 252

development of, 257
discrete math for, 146
Domain and range of functions, 158,

158f
fallacies, 256
functions, 255
fundamental concepts, 248–257
inequalities, 255
real-life applications, 257–260

Graphing calculators, 69, 70, 257
Graphs

area, 252, 253f, 405
bar, 249–251, 250f, 251f, 406, 410, 411f
bubble, 257, 257f
coordinate systems for, 248–249
gantt, 254, 254f, 413
legends and titles for, 404
line, 251–252, 253f, 255, 408–410, 409f
phylogenetic tree, 258
picture, 254
pie, 252–253, 253f, 406, 410, 410f
radar, 253, 254f
scatter, 404, 407–408, 408f, 409f
scientific use of, 476
stem, 250
three-dimensional, 112, 407
topology and, 554–555
triangular, 407, 410–411
x-y, 254–257, 254f
x-y scatter, 109, 109f
See also Charts; Diagrams; Plots

Graunt, John, 322, 525
Gravity, 16, 244, 313
Gray (Unit of measure), 124
Great Trigonometrical Survey of the

Indian Sub-continent, 310, 564–565
Greatest common factor (GCF), 181
Greeks, 53, 420
Greenhouse gases, 49
Greenwich Mean Time (GMT), 135, 547,

547f
Gregorian calendar, 98, 99
Gregorian chants, 345
Grids, 37
Group theory, 542
Growth rates, 337–338

See also Population growth
Guidance systems

inertial, 91–93, 92f, 93f
missile, 440

Guilloché patterns, 211–212
Guitar strings, 207, 242
Guitars, 242, 347
Gumball estimation, 163–164
Guns

fighter aircraft, 41, 41
speed, 139

H

Half-life (Nuclear waste), 206, 213–214
Halley, Edmond, 525
HALO skydiving, 17
Hamming, Richard, 119–120
Hamming codes, 119–120
Hammond electric organs, 347
Handcuff puzzles, 555
Handicaps, 533–534
Hang time, average, 54
Hard drive storage, 87–89, 88f
Harmonics, 345, 346
Harrison, John, 135
Hash functions, 363
Hawaiian-style guitars, 347
Hawk-Dove game, 229–230
Hazen’s method, 521
Health. See Medical mathematics
Heat lamps, 20
Height

arm span and, 408
average, 368, 593
bar graph of, 410, 411f
box plot of, 407
Mount Everest, 310
to-weight ratio, 446
and weight charts, 319–320, 548–549,

548f, 549f
Helix, 354
Henry IV, 279
Hercules, 338
Hertz (HZ), 124, 351
Heterozygous recessive inheritance, 321
Hexagons, 238, 239, 240
High school demographics, 112–113
High-altitude, low-open (HALO)

skydiving, 17
Higher-order derivatives, 83
Highways, toll, 533
Hillary, Edmund, 565
Hindu division methods, 149–150
Hindu-Arabic positional notation, 27
Hinsley, Harry, 29
Hipparchus, 134, 418, 561–562
Hippasus, 512, 513, 560
Hippocampus, 578
Hippocrates, 322
Histograms, 250–251, 404, 410, 412f
Historical conversions, 125
HIV (Human immunodeficiency virus),

322, 461
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Hockey, ice, 496, 498, 502–503
Holistic rubrics, 455
Home accessories, 40
Home prices, 249–250, 250f, 251f
Homozygous dominant inheritance, 321
Homozygous recessive inheritance, 321
Honey bees, 239
Honeycomb, 239, 240
Hooch, Pieter de, 391
Horizon, 389
Horse racing, 339, 425
Horses, 354
Hospital size, 440
Hot climate, 576
Hot numbers, 426
Hotelling, Harold, 525
Hour, miles per, 123, 128, 340, 452
Hours, 120
House edge (Casino gambling), 366, 367
Hubble Space Telescope, 55, 165–166
Human body

body composition, 578–579
body mass index, 214, 319
body surface area, 48
diagrams, 414
proportions, 436–437
reflection symmetry, 537, 538, 542
volume, 439

Human genome, 327
See also Genetic sequence

Human immunodeficiency virus 
(HIV), 322, 461

Human motion tracking, 290–291
Human population growth, 173f, 174,

175
Huntington’s disease, 321
Hurricane modeling, 201, 213
Huygens, 311
Hydra, 338
Hydrodynamics, 259
Hydrogen, 435, 486
Hyperinflation, 192
Hypersonic flight, 299
Hypotenuse, 559–560
Hypotheses, 522, 523, 583, 585
Hyuk, Catal, 467
HZ (Hertz), 124

I

Ice, polar and glacial, 48–49, 580
Ice hockey, 496, 498, 502–503
Identification bar codes, 23
ILLIAC computer, 350
Illusions, optical, 394
Illustrations, 392
Imaging, 262–268

See also Digital images
Impeachment, 208–209
Improper fractions, 203

Inches, square, 45–46
Incidence, 316
Income

average, 56, 152
budgeting for, 188–189
caps, 507
education and, 193
government salary tables, 548
graphing, 250–251
pay rate, 339
salary caps, 507–508

Income taxes
algorithms, 31–32
calculating, 14
deductions, 532
deferred, 191–192
negative numbers and, 356–357,

358
payroll and, 65–66
tables for, 548
understanding, 189

Increase percentages, 375
Indefinite integrals, 84, 84f
Independent variables, 211, 249, 328
Indexes, 146, 590
Individual retirement accounts (IRA),

191–192
Inequalities

graphing, 255
linear, 290, 290f, 291–292

Inertial guidance systems, 91–93, 92f,
93f

Infants
development, 343
products for, 143

Infectious disease modeling, 230
Infinite sequences, 493
Infinite series, 22
Infinity, 150
Inflation, 177–178, 192
Information

content, 272
definition, 269–273
meaning and, 273
messages, 269–273, 271f
quantum, 277

Information processing systems, 412
Information theory, 269–277

development of, 273
error-correction codes and, 349
fundamental concepts, 269–273
real-life applications, 273–276

Inheritance
dominant, 444, 482
heterozygous, 321
homozygous, 321
Mendelian, 321, 443–445
probability in, 483
recessive, 444, 482

Injuries, sports, 573
Input, 328
Inspection technology, food, 266

Instructions, 414–415, 591
Insurance

automobile, 57, 428
averages and, 57
flight, 370
word problems for, 584–585

Integers
definition, 145
dimensions of, 198
exponents and, 167–168
greatest common factor, 181
number theory and, 360–364

Integrals
application, 91–96
definite, 83, 84f
description, 83–85, 84f, 86
indefinite, 84f

Integration, 46, 577
Integrity, data, 120
Intelligence, artificial, 32, 230
Intelligence quotient (IQ), 555
Interactions and game theory, 225–231
Interest

business math and, 67–68
compound, 74–75, 170, 376, 591
credit card, 178, 186
exponential, 178
exponents and, 177–178
simple, 591
tables of, 546

Interferometry, 309
Interior design, 394–395, 434, 594
Internal combustion engines, 445,

579
International Amateur Swimming 

Federation (FINA), 387
International Bureau of Weights and

Measures, 129
International Organization for 

Standardization (ISO), 398
International Panel on Climate Changes,

580
International System of Units (SI),

122–130
International Ultraviolet Explorer 

satellite, 55
Internet

data transmissions, 29–30
IP address, 117–118
online auctions, 230, 451, 531–532
subnet mask, 118
telephony, 119
Voice over Internet protocol, 155

Internet Explorer, 425
Internet Protocol (IP) address,

117–118
Interval scale, 466, 468, 468f
Intervals, confidence, 522
Intuitive factoring, 182
Inverse, 278–283
Inverse functions, 279, 279f
Inverse proportion, 431, 586–587
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Inverse square law, 280
Investments

description, 190–192
growth rates, 337–338
retirement, 192–194
tables, 546–548

IP address, 117–118
IQ tests, 555
IRA (Individual retirement accounts),

191–192
Irish Lotto, 193–194
Irregular shapes, area of, 340
Ishikawa diagrams, 406–407
Isidore (Saint), 345
Islam

calendars, 99
trigonometry and, 562

ISO (International Organization for
Standardization), 398

ISO number, 398–399, 401
Isosceles triangles, 559
Iteration, 284–286
Ivan (Hurricane), 213

J

Jaguar population, counting, 147–148
James, Bill, 382
Jefferson, Thomas, 209
Jet fighters, 474, 478
Jewelry, 42–43, 577–578
Joachim, Georges, 562
Joint photographic experts group (JPG)

format, 165, 264
Joists, 37
Jordan, Michael, 284
JPG (Joint photographic experts group)

format, 165, 264
J-shaped growth, 330–331
Judges, sports, 504
Judgment sampling, 458, 461
Julian calendar, 98, 99, 451
Jumps, vertical, 534
Jurassic period, 488
Just in time manufacturing, 440

K

Kasparov, Gary, 217
Kelp bass, 328–329
Kelvin temperature scale, 123, 125, 126,

127, 357, 467
Kepler, Johannes, 346, 544
Keyboards, electronic, 348
al-Khwarizmi, Abu Abdullah Muham-

mad ibn Musa, 12–13, 26
Kilograms, 123, 124
Kilometers, 123, 128, 340
Kluge, General von, 332–335

Knight’s Tour, 221
Knot theory, 355
Koch’s cube, 350
Koch’s curve, 199, 202
Kodak Cameras, 402
Kolmogorov, A. N., 525
Kruskal’s algorithm, 589
Kurzweil, Ray, 57

L

Lacrosse, 496
Lake perimeters, 386–387
Lambdon, William, 310
Lambert, Johann Heinrich, 101, 407
Lamps, heat, 20
Land mines, 572–573
Land surveying. See Surveying
Landscaping, 386, 396
Language translation, 587
Laplace, Pierre Simon, 525
The Last Supper (Da Vinci), 395
Latitude, 103–104, 134
Lattice multiplication, 336
Laws of exponents, 169, 170t
The Laws of Thought (Boole), 145, 146
Leap years, 99
Leaves, 200, 353–354
Leech, John, 364
Lee-Kai-chen, 71–72
Leftover food, rotting, 173–174
Legs, 179, 354
Leibniz, Gottfried Wilhelm von

calculus, 46, 80, 86, 87
domain and range, 156
functions, 210
multiplication, 336

Leibniz notation, 86
Length, 123, 450

See also Distance
Lens aperture, 400–403
Lenses, camera, 399, 399, 400f,

402–403
Lesser dimensions, 232–234
Liberty Bell (Slot machine), 217
Licenses, drivers’, 428
Lies, 381, 523–524
Life cycle, cicadas, 421–422
Life expectancy, 4, 57, 549, 550f
Light

diagrams, 414
speed of, 124, 312, 486–487, 514

Light bulbs, 20–21
Light years, 486–487
Lightning, 193, 427
Likelihood. See Probability
Line charts, 107–109, 108f, 111
Line graphs, 251–252, 253f, 255,

408–410, 409f
Line of best fit, 404

Linear algebra, 571
Linear equations, 11, 287–293, 288f,

438–440, 439t
Linear inequalities, 290, 290f, 291–292
Linear mathematics, 287–293
Linear programming, 291–292, 588
Linear scale, 465, 465f, 466f
Lines

definition, 232
graphing, 248

Linguistics, 31
Liquid volume, 340
Liters, 129, 340
Livestock production, 447
Loans

automobile, 547
for credit card purchases, 186
interest on, 67–68
student, 56–57
tables for, 547–548

Lobachevsky, Nikolai Ivanovich, 157
Local analysis, 361
Lock (Odds), 366
Log tables, 296
Logarithmic scale, 298, 465–466, 466f,

468f, 475
Logarithms, 72, 294–299, 475
Logic, 144, 300–302, 301t
Logical algorithms, 27
Logistic growth curve, 331
Long division, 149
Long multiplication, 336–337
Long odds, 366
Longitude, 103–104, 134, 135
The Lord of the Rings (Film), 394
Lorenz, Edward, 200
Lottery odds, 193–194, 207–208,

368–369, 591
Lowest-term fractions, 204
Luminous intensity, 123
Lunar calendars, 97–98, 98, 99
Lunar cycles, 451
Lunar eclipse, 243
Lung volume, residual, 579
Lunisolar calendars, 98, 99

M

MAC address, 30
Machine parts, 579
Macros, 286
Madonna and Child with Saints

(Masaccio), 391
Magic squares, 217, 221–223
Magic tricks, 428–429, 555–556
Magnetic declination, 563
Magnetic fields, 555
Magnetic poles, 563
Magnetic resonance imaging 

(MRI), 264
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Magnetism and electricity, 542
Magnitude, 418, 569–570
Mail-in rebates, 532–533
Mailman routes, 589, 589f
Maine coastline, 198
Malaria, 321
Malls, 458
Malthus, Thomas Robert, 174–175
Mandelbrot, Benoit, 200, 350
Manhole covers, 236–237
Manufacturing, just in time, 440
Maps, 100–106

algorithms for, 30
conformal, 159–160
coordinate systems, 103–104, 131,

132–136
development of, 104–105
as diagrams, 413–414
Domain and range of functions, 158
Mercator projection, 101, 101–102,

105, 134–135, 160
ordinance survey, 136
paper, 134–135
projection of, 100–102
scale, 100, 434, 443, 467–468
street, 132
topographic, 104, 104, 136
trigonometry and, 564–565
weather, 414
x-y graphs as, 256

Market analysis, 30, 143, 463
Marketing

product samples for, 463–464
viral, 341

Mars, 265, 265, 462–463
Mars Climate Orbiter, 122
Martingale system, 6
Masaccio, 391
Mass, 123, 124, 129, 313
Matched sampling, 461
MathCad, 330
Mathematica, 330
Mathematical tables. See Tables
Mathematics

business math, 62–68, 182–183
discrete, 144–148, 474
flight, 479
game, 215–224
linear, 287–293
medical, 314–327, 488
photography, 398–403
rules, 495, 496–497
scientific, 69, 473–483
skills, 544–545
See also Architectural math; Sports

math; specific topics
Math-rock music, 351–352
MatLab, 330
Matrices, 303–306, 304f, 475
Matrix algebra, 146, 262, 303–304,

304f, 572
Matrix equations, 288, 288f

Maxima, 85–86, 85f, 518
Maximum lifespan, 57
Maximum likelihood estimation, 148
Maya calendars, 98
MBTF (Mean time between failures), 56,

427–428
MD5 algorithm, 425
Meals, value, 4
Mean, 51–53

arithmetic, 51–52, 519
deviation, 520
geometric, 52, 519
See also Average

Mean time between failures (MBTF), 56,
427–428

Meaning, 273
Mean-tone temperament, 346
Measles, Mumps, Rubella (MMR), 594
Measurement, 307–313

accuracy of, 309
architectural, 35, 310
calculators for, 75
conversions, 122–130, 339–340
decimal, 139
Egypt and, 235
English, 122, 123, 124, 472, 477
historical conversions, 125
International System of Units,

122–130
precision of, 452
United States and, 124–125
See also Metric system

Measuring tools, 208
Mechanical calculators, 72
Mechanics, quantum, 277
Media

news, 378–370, 429
sports experts, 502–503

Median, 52
Medical errors, 5
Medical imaging, 264
Medical mathematics, 314–327, 319

fundamental concepts, 315–318
potential applications, 327
real-life applications, 318–327
scientific notation and, 488

Medical technology, 314
Medieval monks, 345
Memory cards, 154
Mendel, Gregor, 443–445, 459
Mendelian inheritance, 321, 443–445
Menelaus, 562
Mercator, Gerhardus, 135
Mercator projection, 101, 101–102, 105,

134–135, 160
Mercury thermometers, 126, 580–581
Mesopotamians, 543–544
Mesozoic era, 488
Messages

information, 269–271, 272
unequally likely, 271–272

Metal density and volume, 577–578

Meters
conversions, 128
cubic, 124, 129, 575
definition, 123
history, 467
per second, 123
square, 124

Metric Conversion Act, 124–125, 308
Metric system

conversions, 339–340, 477
decimals and, 139
description, 122–130, 308, 472

Mexican currency exchange rates,
195–196

Michelangelo, 432
Microorganisms, 460
Microprocessors

algorithms, 26–27
in calculators, 69
Moore’s law of, 7
Pascal, Blaise and, 3

Microscopes, optical, 403
Microwave ovens, 302
Miles per gallon, 341, 452
Miles per hour, 123, 128, 340, 452
Military cryptography, 78
Military models, 331–332, 333f
Military perimeters, 387–388
Miller, Frank, 393–394
Millibars, 469
Milliliters, 129
Millionaires, 192, 194
Milliradians (Mils), 558
Mills Novelty Company, 217
Minima, 85–86, 85f, 518
Minutes, 120, 187
Mir Space station, 428
Miracles, 426–427
Mirrors, 42–43, 395
Misleading graphics, 581
Misrepresentative sampling, 524
Missile guidance systems, 440
Mission-planning software, 258
Mississippi River, 488
Mixed fractions, 204
MMR (Measles, Mumps, Rubella), 594
Mobile phones. See Cellular telephones
Möbius strip, 555–556
Mode, 519
Modeling, 28, 328–334, 353, 583
Models

analytical, 329
architectural, 433, 468
automobile, 435
deterministic, 329
ecological, 330–331
finite-element, 212–213
graphical, 329
military, 331–332, 333f
of nature, 354–355
population growth, 330–331, 332f
predator-prey relationship, 422
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Models (contd.)
simulation, 331–332
solar system, 471
three-dimensional, 78, 147, 468

Modulus, 361
Mole (Unit of measure), 123
Molecular cloning, 286
Molecular structure graphs, 147
Molecules

Avogadro’s law of, 486
thickness, 162

Mollusk shells, 353, 354
Money

business math and, 62
counterfeit, 211–212
currency exchange rates, 129, 195,

195–196, 196, 549, 586
E-money, 160
geometric representation, 235

Monks, Medieval, 345
Monochord strings, 344
Monomolecular film, 162
Monophonic songs, 345
Monopoly (Game), 220
Monthly payments, 184–185, 187
Moon

calendars and, 97–98, 98
lunar cycles, 451
orbit, 242–243
origin, 447–448
rock samples, 462–463

Moore, Gordon, 7
Moore’s law, 7
Morbidity rates, 315
Morgenstern, Oskar, 226
Mortality rates, 5, 315, 525
Mortgage rates, 547–548
Moschopoulus, Emanuel, 217
Most valuable player, 381
Motifs, 43
Motion

second law of, 432
tracking, 290–291

Motion pictures
animation, 28, 134, 263, 391–393
perspective in, 393–394

Motorcycles, 54
Mount Everest, 310, 565
Mountain height, 310
Mouse population growth, 338
Movement technique, 573
Movies. See Motion pictures
Moving average, 259
Mozart, Wolfgang Amadeus, 349,

432, 443
MRI (Magnetic resonance imaging),

264
Multiple axis line charts, 108
Multiple line graphs, 252, 253f
Multiple line payout machines,

219–220
Multiple radar graphs, 253

Multiplication, 335–342, 336
algebraic, 9–10
factoring and, 180–181
lattice, 336
long, 336–337
notations, 294–295, 335, 485–486
peasant method, 336
of vectors, 570–571

Multiplication table, 115, 543–552
development, 72, 335–336
log tables and, 296
student use, 544–545, 545f

Multiplicative inverse, 278, 281
Multiplying machines, 336–337
Municipal electric service, 589
Murals, 396
Music, 343–352

buying, 184–185, 185
compression of, 349
computer-generated, 349–350
development of, 343–347
digital, 348–349
downloading, 185
electronic, 213, 347–348
fractions and rhythm, 206–207
fundamental concepts, 343
intensity of, 297
linear reproduction, 292–293
math-rock, 351–352
notation systems, 345–346, 350
pitch, 445
potential applications, 352
randomness in, 349, 351
real-life applications, 347–352
rhythm, 445
rock, 297, 351–352
stereo sound, 282–283
Western, 351

Music for Airports (Eno), 349
Musical games, 349
Musical instruments

acoustic, 242
electronic, 347–348
proportion in, 435
scale theory and, 467

Musical iteration, 285, 285
Musical notes, 207, 344, 351
Musical scale, 207, 344, 346–347,

351, 471
Musical scores, 345–346, 350
Musikalisches Wurfelspiel (Mozart), 349
Muslims. See Islam

N

Names, drawing, 424
Nanometers, 490
Nanotechnology, 418, 490
Napier, John, 72, 115, 296
Napier’s bones, 115

NASA. See National Aeronautic and
Space Administration

Nash, John Forbes, 228, 229
Nash equilibrium, 229
National Aeronautic and Space

Administration (NASA)
Apollo mission, 535
Challenger Space Shuttle, 56, 427
Columbia Space Shuttle, 56
error-correction codes, 276, 364
failure probability and, 53, 427
Mars Climate Orbiter, 122
rocket launches, 480–481
space distance measurement by, 312
Space Shuttle, 56, 305, 427, 479, 481
Viking 1 and Viking 2 missions, 265,

265
Voyager spacecraft, 276
weather patterns and, 477
See also Space travel

National Collegiate Athletic Association
(NCAA), 14–15

National debt, 5
National Institute of Standards and

Technology (NIST), 29
National Safety Council, 5
National Security Agency, 147
Natural and Political Observations Upon

the Bills of Mortality (Graunt), 525
Natural perspective. See Perspective
Natural resource maps, 105
Nature, 353–355

fractals in, 199, 200–201, 353, 355
Golden ratio in, 442–443

Nautical navigation, 73–74, 135
Navier, Claude-Louis, 212
Navier-Stokes equations, 212
Navigation

astronomical charts for, 297
azimuths for, 562–563
bearings for, 562–563, 592
clocks and, 135
coordinate systems for, 131, 134, 135
global positioning systems and,

135–136
measurement systems for, 311–312
nautical, 73–74, 135
Pythagorean theorem and, 514
for shortest distance, 587–588, 587f
in space, 93

Nazi encryption codes, 29
NCAA (National Collegiate Athletic

Association), 14–15
Negative numbers, 356–359, 357

history, 13, 279–280, 356–357
square root of, 512

Negative predictive value, 318–319
Negatives, photographic, 281
Networks, computer, 259–260, 555
Neumann, John von, 226, 424, 596
New Year’s resolutions, 534
Newman, M. H. A., 29
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News media
probabilities, 429
statistics, 378–379

Newton, Isaac
calculus and, 46, 80, 86, 87
domain and range, 157
gravity and, 313
interferometry and, 309
polar coordinate system and, 134
relativity and, 246
second law of motion, 432
square root and, 512
trigonometry and, 562

Newton’s method, 86
NIST (National Institute of Standards

and Technology), 29
Nitrogen, 435
Nodes graph, 146
Noise

brown, 350
reducing, 182

Noisy channels, 274
Nominal scale, 467
Non-integer exponents, 168
Nonlinear design, 281
Nonlinear equations, 11
Nonliving systems models, 201–202
Non-probability sampling, 458–459
Norgay, Tenzing, 565
Normal distribution, 317–318, 318f,

518, 525
North Geographic Pole, 563
North Magnetic Pole, 563
Notation systems

Hindu-Arabic positional, 27
logarithms and, 294–295
musical, 345–346, 350
scientific, 171, 452, 484–490
set, 492–493
subtraction, 531

Notes (Music), 207, 344, 351
Novels, graphic, 392
N-tiles, 521
Nuclear power plants, 311, 370
Nuclear waste

half-life, 206, 213–214
radioactive decay, 175–177, 176, 176f

Null hypothesis, 522, 523
Number theory, 145, 360–364

algebraic, 361
analytic, 361
continued fractions in, 206
cryptography and, 147
elementary, 360–361
game math and, 215
geometric, 361

Numbering systems
base 5, 59–60, 60f
base 8, 60, 61
base 20, 60
base 60, 60, 557–558
base e, 297

See also Binary numbering system;
Decimals

Numbers
account, 369
composite, 180
Fibonacci, 353–354, 491, 492
hot, 426
negative, 13, 279–280, 356–359, 357, 512
perfect, 361
rounding off, 449–452
Social Security, 190
whole, 449–450
See also Prime numbers

Numerators, 149

O

Object oriented programming, 330
Objects

continuous, 144
discrete, 144
floating, 482
ordering, 493
packing, 590
See also Topology

O’Brien-Fleming stopping boundary, 326
Obtuse angles, 558
Obtuse triangles, 559
Ocean levels, 580
Octaves, 344, 346
Odds, 365–371

betting and, 223
definition, 216
Domain and range of functions, 157
game math and, 215–216
long, 366
percentages and, 373
sports betting, 508–509
See also Probability

OHAHOA, 564
Ohms, 489
Oil

consumption, 451
exploration, 258, 366
on water, 162

Oil change, 154–155
Omnibus Trade and Competitiveness

Act, 125
On-base percentage, 498
1% method, 374
128-bit encryption, 425
O’Neill, Tip, 53
Online auctions, 230, 451, 531–532
Online commerce, 4–5, 147
Online security, for credit cards, 147
Operating expenses, 63
Opinion polls, 379, 527–528, 593
Optical disks. See Compact disks
Optical equipment, 298
Optical illusions, 394

Optical microscopes, 403
Optics, mathematical, 264
Optimal solutions, 584
Optimization, 329
Orbit (Planetary), 162, 346
Ordering objects, 493
Ordinal scale, 467
Ordinance survey maps, 136
Ordinates, 254, 256
Organizational charts, 413
Organs, Hammond electric, 347
Oscilloscope, 347
Out-of-focus area, 403
Output, 328
Ovals, 233
Oven temperature, 127, 127, 302
Overtime pay, 208
Overtones, 347
Over/under bet, 509
Overweight persons, 214
Owl, spotted, 305
Oxford English Dictionary, 485

P

Paciolus, Lucas, 13
Packing, 590
Paclitaxel, 324
Paintings

digital images of, 267
perspective, 391–392, 394, 395
proportions, 21–22
scale, 467

Paints, color mixing, 22
Paper, graph, 257
Par scores, 358
Parachutes, 17–18
Paradox, 588
Parameters, 328
Pareto, Vilfredo, 518
Pareto distribution, 518
Parity code, 119
Parlay, 509–510
Parthenon, 38–40, 39, 432, 433
Parts per million (PPM), 151–152
Pascal, Blaise

adding machines and, 2–3
calculators and, 72
probability and, 424
triangles and, 500–501, 501f

Pascal (Unit of measure), 124
Pascaline, 72
Pascal’s triangle, 500–501, 501f
Passwords, 145
Pattern recognition, 182
Patterns

identification of, 181
in nature, 355
repeating, 284–286
voting, 383
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Pay
overtime, 208
rate, 339
See also Income

Payoff, 226
Payroll, 65–66, 66f
PCAHs (Polychlorinated aromatic

hydrocarbons), 578
PCR (Polymerase chain reaction), 489
PDOP (Positional dilution of precision),

258
Pea plants, 443–445
Pearson, Karl, 525
Pearson correlation coefficient, 521
Peasant method (Multiplication), 336
Pendants, 42
Pendulum clocks, 311
The Pentagon (Washington, D.C.), 40,

234
Pentagons, architectural, 40
Percentages, 372–384, 375

completion, 499
development, 373–374
fractions and, 204–205
fundamental concepts, 372–373
odds and, 366
on-base, 498
potential applications, 383–384
in sports, 496
winning, 154
wording of, 586

Percentiles, 372
Perfect numbers, 361
Perfect square, 181
Performance

athletic, 152, 154, 445–446, 495,
497–498

scale of, 454
Perimeter, 385–388, 387
Perimeter barriers, 386, 387–388
Perimeter detection systems, robotic, 388
Periodic tables, 545, 546f
Periscopes, 41
Personal computers. See Computers
Personal financial calculations, 184–197
Perspective, 389–397

atmospheric, 391
depth, 263
development, 389–391
fundamental concepts, 389
real-life applications, 391–396

Peso, 195–196
Petals, flower, 539–540, 539f, 540f
PGP (Pretty Good Privacy), 281
pH scale, 418
Phi, 354, 436
Phones. See Cellular telephones
Photographic film, 398–403
Photographic negatives, 281
Photographs

black and white, 281
digital, 134, 401

out-of-focus, 403
sports, 402–403
wildlife, 402–403
See also Digital images

Photography math, 398–403, 402
Photomicrography, 403
Photovoltaic panels, 50
Phyllotaxis, 354
Phylogenetic tree graphs, 258
Physical fitness equipment, 259
Physical modeling synthesis, 213
Physics, 157, 274
Phytoplankton, 354–355
Pi

area of a circle and, 340
calculators and, 71
Egyptians and, 235
history of, 442
rounding off, 450

Picture graphs, 254
Pie charts, 110–112, 111f, 113, 113f
Pie graphs, 252–253, 253f, 406, 410, 410f
Pilferage, 153–154
Pitch (Musical), 445
Pitchers earned run average, 338–339,

498
Pitches, speed of, 139, 505
Pixels, 117, 164–165, 262, 264
Pixels per inch (PPI), 401
Planck constant, 124, 487
Plane angles, 123, 557–558
Plane triangles, 558–559
Planes (Air). See Aircraft
Planes (Geometry), 233
Planets

formation, 242
orbit, 162, 346
shadows of, 478
tables of, 544

Plants, 460
Players, most valuable, 381
Plots, 404–415

box, 404, 407, 408f
development, 407
fundamental concepts, 404–407
real-life applications, 407–415
scatter, 408f
stem and leaf, 404, 407

Plutonium 238, 176–177, 176f, 206,
213–214

Poincaré, Jules Henri, 199
Point guards, 445–446
Point spread, 509
Points, 232, 248, 291
Poker, 5, 219, 366, 596
Polar bears, 576
Polar charts, 406–407
Polar coordinate system, 132, 133, 133f,

136–137
Polar ice, 48–49, 580
Pollination, 443–445
Pollock, Jackson, 200, 200

Polls, public opinion, 379, 459, 527–528,
593

Pollution, 462
Polo, Marco, 216
Polychlorinated aromatic hydrocarbons

(PCAHs), 578
Polygons, 233, 385–386, 417
Polymerase chain reaction (PCR), 489
Polynomials, 512
Polyphonic songs, 345
Polyrhythm, 351
Pools, swimming, 152, 386–387,

446, 581
Population dynamics, 22, 305, 330–331
Population growth

bacterial, 173–174, 326–327, 326f, 481
evolution and, 174–175
exponential, 171–173, 172f, 174, 200,

331, 338
Fibonacci numbers and, 353
human, 173f, 174, 175
logistic growth curve, 331
modeling, 330–331, 332f
of rabbits, 171–173, 172f, 200, 338,

353, 408
S-shaped, 331
Tasmanian sheep, 331

Populations
decrease in, 587
demographics, 141–143, 142, 451, 462
modeling, 330–331
sampling, 164, 516–517
school, 112–113

Positional dilution of precision (PDOP),
258

Positional notation, Hindu-Arabic, 27
Positive predictive vale, 318–319
Pothole covers, 236–237
Pound, British, 196
Powder, black/flash, 241
Power plants, 94–95, 370
Power of three (Cubing), 179
PowerBall, 193–194
Powers, 296, 416–419
PPI (Pixels per inch), 401
PPM (Parts per million), 151–152
Precedence diagrams, 588
Precision, 452
Predator-prey relationship, 422
Prediction, 6, 329, 494
Predictive value, 318–319
Premiums, 57
Presidential elections, 141–142, 459
Pressure measurement, 124
Pretty Good Privacy (PGP), 281
Prevalence, 316
Price tags, 4
Pricing

discounts and markups, 376–377
percentages, 374
proportion and, 431
by volume, 577–578
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Prime factorization, 361
Prime numbers, 420–422, 421t

definition, 145, 420
elementary number theory and,

360–361
factoring and, 180
highest, 421, 421
Riemann hypothesis, 212

The Principles of Algebra (Fredn), 357
Prisoner’s dilemma, 227, 596
Probability, 423–429, 426

addition and, 5
betting and, 223
card games and, 219
combinatorics for, 145
of disease, 208, 314, 315–318
distribution, 316–317
fundamental concepts, 215–216
genetic traits and, 321, 482, 483
logic and, 301
lottery winning and, 207–208
myths, 425–426
odds and, 365–371
relative frequency, 517–518
sampling, 457–458
scientific use of, 474
statistics and, 517–518
wildlife populations and, 147–148

Problem solving iteration, 284
Problems. See Word problems
Profits

business math and, 66
calculating, 531–532
derivatives for, 86–87
maximizing, 588

Prognosis, 369
Programming (Computer)

extreme, 285
linear, 291–292, 588
for modeling, 330
object oriented, 330
word problems for, 584

Progressive machines, 220
Project management, 285
Projection, Mercator, 100–102, 101, 105,

134–135, 160
Prokofiev, Sergei, 349
Promotion (Game), 216
Proof, 583
Proper fractions, 203
Property line perimeters, 386, 387

See also Surveying
Proportion, 430–437

architectural, 34, 34, 38, 432–433
definition, 372, 430
direct, 431, 586–587
divine, 432, 436–437, 442
epidemiology and, 315
inverse, 431, 586–587
percentages and, 373
wheels and, 43

Proportionality constant, 431

Propositions, 300, 301t
Proteins, 490
Proterozoic eon, 488
Protons, 124
Ptolemy, 562
Public key encryption

description, 120
for E-money, 160
inverse operations, 280–281
number theory and, 362–363
for online shopping, 147

Public opinion polls, 379, 527–528, 593
Punnet square, 545, 546f
Purchases

bulk, 450
rounding off, 451–452
savings per, 341

Puzzles
handcuff, 555
magic squares, 221–223
math, 223
Rubik’s cube, 243, 243–244
topographical, 555

Pyramids, Egyptian
area of, 46
geometry of, 35, 235, 237
proportion of, 432
ratio and form, 38
word problems for, 584

Pythagoras
architecture and, 36
geometry and, 236
music and, 343–345
proportion and, 431–432
root symbols and, 512

Pythagorean theorem
bridge span and, 478
camera lenses and, 399
carpentry and, 480, 480f
description, 512, 513, 513
development of, 236
Navigation and, 514
number theory and, 361
right triangles and, 559–560
scientific use of, 474–475, 475f
space exploration and, 478
three-dimensions and, 313
trigonometry and, 474–475, 475f
weather balloons and, 478

Q

Quadratic equations, 438–440, 439t
Quadrivium, 345
Qualitative statistics, 141, 455, 474
Quality control, 309, 526–527, 528,

592–593
Quantiles, 521
Quantitative statistics, 141, 455
Quantum computers, 276–277

Quantum cosmology, 487
Quantum information, 277
Quantum mechanics, 277
Quarterback rating index, 499
Quartic equations, 438–440, 439t
Quartz clocks, 311
Qubits, 277
Quota sampling, 458, 459
Quotients, 442

R

Rabbit population growth, 171–173, 200,
338, 353, 408

Racing
drag, 572
horse, 339, 425
measurement of, 311
rally, 586
ski, 339
track and field events, 3, 358, 496, 534

Radar
graphs, 253, 254f
polar coordinate system and, 136–137
stealth technology and, 244–245

Radians, 71, 123, 558, 564
Radiation

absorbed dose, 124
electromagnetic, 486–487
exposure, 370
shielding, 299

Radiation therapy, 298–299, 325
Radiators, automobile, 49
Radio antennas, 182, 202
Radio technology, 542
Radioactive dating, 177
Radioactive decay, 175–177, 176, 176f
Radioactive waste, 206, 213–214
Rafters, 237–238
Railway, 590, 590f
Rain

acid, 418
on aircraft, 474, 479
graphing, 249
measurement, 77

Rakine scale, 126
Rally racing, 586
Rand Corporation, 227, 596
Random number generators, 75–76, 517
Random sampling, 457–458, 460,

462, 517
Randomness, musical, 349, 351
Range, 156–158, 518
Rankine scale, 125, 127
Ranking test scores, 589–590
Rates

base, 374–375
definition, 374
epidemiology and, 315
of increase/decrease, 375
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Rates of change. See Derivatives
Ratings percentage index (RPI), 503–504
Rationing, 151
Ratios, 441–448, 444

architectural, 33–34, 38, 38
cross products and, 430–431
epidemiology and, 315
examples of, 151–152
golden, 38–40, 353, 354, 442, 492
percentages and, 373
proportion and, 430–431
scale, 466–467
in sports, 496
trigonometry and, 562
wheels and, 43

Reaction time, 505
Réaumur scale, 125, 128
Rebates, 377–378, 532–533
Rebounds, 500
Recessive inheritance, 444, 482
Recipes, 206, 446, 591
Reciprocity, photographic, 401
Recorde, Robert, 13
Recordings, analog, 348
Rectangles

architectural use of, 238
area of, 45, 340
golden, 38–40, 41
perimeter of, 385

Reducing equations, 181–182
Redundancy, triple, 275
Reed-Solomon codes, 276
Refinements, 583
Reflection symmetry, 38, 537–542, 538f
Regression, 405, 406, 521–522
Relationships

functions and, 210
scientific, 474, 476–477

Relative frequency probability, 517–518
Relativity and time, 131–132, 246
Religious charts, 297
Remote vehicles, 82
Rendering, 134
Rentals, 384
Repeating patterns, 284–286
Repetition algorithms, 119
Representative fraction scale, 468
Representatives, Congressional, 209
Research sampling, 316
Residual lung volume, 579
Resolution

computer monitor, 117
digital image, 401, 470–471

Resolutions, New Year’s, 534
Restaurants

budgeting for, 194
calculating tips, 194–195, 375–376
fast food, 4

Restitution, coefficient of, 504–505,
506–507

Retail sales analysis. See Sales analysis
Retirement accounts, 190, 191–194

Retreat, 229–230
Revenue generation, 63
Reverberation, 242
Revere, Paul, 271–272, 273, 275
Revolutions per minute (RPM), 445
Rewards, 6, 191
Rey, Charles, 217
RGB scheme, 262
Rhind pyrus, 417
Rhythm, 206–207, 351, 445
Richter scale, 298, 417, 471, 482–483
Riddles, 593
Riemann, Georg Friedrick Bernhad, 212
Riemann hypothesis, 212
Right angles, 558
Right triangles, 559–560, 559f
Risk

aversion, 597
calculating, 157
disease, 315–318
equals reward principle, 191
investment, 190–191

Rituparna, 53
Rivers, 488, 563
Riveste, Ronald, 28, 362
RMS errors, 520
Roads, toll, 533
Robotic perimeter detection systems, 388
Robotic surgery, 245
Rock music, 297, 351–352
Rock samples, 462–463
Rockets, 89, 274, 480–481
Roman numerals, 6–7
Romans, fractions and, 205
Roosevelt, Franklin, 190
Root mean square, 520
Ropes, 537, 539, 539f
Rotation, 34, 566
Rotational symmetry, 38, 537–542, 539f,

540f
Roth, Al, 230
Roth Individual Retirement Accounts,

191–192
Rotting leftover food, 173–174
Roulette, 219, 366, 367
Round objects. See Circles; Spheres
Rounding, 204–205, 449–452
Rovers, unmanned, 388
RPI (Ratings percentage index),

503–504
RPM (Revolutions per minute), 445
RSA algorithm, 28, 362, 363
Rubik, Erno, 243
Rubik’s cube, 243, 243–244
Ruble, 196
Rubric, 453–456, 454, 455
Rudolff, Christoff, 512
Rudolphine tables, 544
Rule of similar triangles, 182
Rules math, 495, 496–497
Run charts, 409–410
Run length compression, 119

Running tracks, 309
Runs scored, 498
Russian multiplication, 336
Ruth, George (Babe), 517
Rutherford, Ernest, 446

S

Sabermetics, 382, 498
Sabine formula, 242
Salamis Tablet, 71
Salaries. See Income; Pay
Salary caps, 507
Sales analysis

algorithms, 30
percentages for, 375
price discounts and markups,

376–377
weighted averages, 54–55

Sales tax, 377–378
Salesperson, traveling, 589
Sampling, 457–464, 459, 472

misrepresentative, 524
populations, 516–517
research, 316

San Francisco earthquake, 417
Sargon of Akkad, 105
SAT (Scholastic Aptitude Test), 382–383
Satellites

antennas, 536
error-correction codes, 364
GPS, 239–241, 258
International Ultraviolet Explorer, 55
spacetime and, 136

Savings accounts, 74–75
Savings per purchase, 341
Scale, 465–472, 470

bar, 468
grading, 453
graphing, 248
interval, 466, 468, 468f
linear, 465, 465f, 466f
logarithmic, 298, 465–466, 466f,

468f, 475
map, 100, 434, 443, 467–468
musical, 207, 344, 346–347, 351, 471
nominal, 467
ordinal, 467
of performance, 454
ratio, 466–467
representative fraction, 468
by telescopes, 43

Scale drawings, 34–35
Scalene triangles, 559, 559f
Scanners, fingerprint, 22–23
Scatter graphs, 404, 407–408, 408f, 409f
Scatter plots, 408f
Schedules, 549, 550, 551
Scholastic Aptitude Test (SAT),

382–383
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Schools. See Education; Students
Scientific math, 473–483, 475f

calculators for, 69
development, 476
fundamental concepts, 473–476
real-life applications, 476–483

Scientific notation, 171, 452, 484–490
Scientific relationships, 474, 476–477
Scientific visualization, 258, 260, 260f
Scores

musical, 345–346, 350
par, 358
sports, 3
test, 524, 589–590

Scoring rubrics, 453–456
Scratch division, 149–150
Screening tests, 318–319, 320t
Sculpture and proportion, 433–434
Sea levels, 580
Sea waves, seismic, 298, 471, 591–592
Search engines, 146, 302
Seasons, 98
Seatbelts, 18
Seats, car, 42
Seawater, 489
Secant, 564
Second law of motion, 432
Seconds, 120
Secret writing. See Cryptography
Security, for credit cards, 147
Seedheads, 354
Seeding algorithms, 31, 31
Seismic sea waves, 298, 471,

591–592
Self-check-out, 368
Semicircular arches, 237
Semiconductors, 292
Sensitivity, 318–319, 320t
Sensors

charged-coupled device, 401
complementary metal oxide 

semiconductor, 401
crash test, 18
perimeter detection, 388

Sequences, sets and series, 144,
491–494, 493f, 588

Sex ratio, 447
Shamir, Adi, 28, 362
Shannon, Claude

Boolean algebra and, 146
computers and, 116, 119
error-correction codes and, 349
information theory and, 269,

273, 274
Shape of objects. See Topology
Shapley, L. S., 228
Shark attacks, 193
Shatranj, 216
Shaturanga, 216
Sheep, 331
Shells, 353, 354, 354
Ships, 482

Shoeprints, 266
Shooting percentages, basketball, 374
Shopping decision making, 181
Shubik, M., 228
Shutter speed, 399, 401
SI (International System of Units),

122–130
Sickle-cell anemia, 321
Sierpinski triangle, 541–542, 541f
Sieve of Eratosthenes, 420–421
Sigmoid growth curve, 331
Signatures, digital, 363
Significance, 522
Signs, street, 414
Silence, 345–346
Silo, 237
Similar triangles, rule of, 182
Similarity fractals, 199, 199f
Simple interest, 591
Simpson, Joanne, 77–78
Simulation models, 331–332
Sin City (Miller), 393–394
Sine curves, 347, 494, 560–561, 560f
Sine function, 560–561, 560f, 562
Sinusoidal equal area projections, 102,

102
Sinusoids, 213
Sirius, 97–98
Six Sigma, 526–527
Skating, figure, 504
Ski racing, 339
Skin area, 48
SKIPJACK algorithm, 29
Skydiving, 17–18
Skyscrapers, 19–20
Slaves, 209
Sleep management, 534
Slide guitars, 347
Slide rules, 72
Sliding symmetry, 34
Slot machines, 217–218, 219–220,

366–367
Smith, John Maynard, 228
Smoking, 4, 457–458
Sniping, 230
Snooker, 279
Snow, John, 322
Snowball sampling, 459
Soccer, 506
Social Security number, 190
Social Security system, 190, 193
Soft drinks, 524
Software

architectural, 470
calculator, 72–73
for charts, 112
creative design, 584
development, 166
domain and range of functions, 158
face recognition, 264–266
graphing, 260
internal logical organization, 412

mission-planning, 258
modeling, 330
probability and, 429
spreadsheet, 257, 260, 549–550
trial, 285
visualization, 258, 260, 260f
word problems in, 584

SOHCAHTOA, 564
Soil tests, 410–411, 459–460, 472
Solar calendars, 98
Solar eclipse, 243
Solar panels, 50
Solar systems, 242–243, 471
Solid angles, 123
Solid objects, 46, 417
Solutions, optimal, 584
Songs, 185, 345, 445

See also Music
Sonoluminescence, 579–580
Sorites paradox, 588
Sorting algorithms, 590
Sound

amplification, 347–348
analysis, 347
compression, 349
frequencies, 241–242, 351
intensity, 297
reducing, 182
sine waves, 494
spacial geometry, 241–242
stereo, 282–283
synthesis, 213

Space
architectural, 37
sound manipulation with, 241–242
time and, 236

Space oblique Mercator projection, 102
Space Shuttle

Challenger, 45, 427
Columbia, 45
computer steering, 305
failure prediction for, 56, 427
launches, 481
See also National Aeronautic and Space

Administration
Space Station Mir, 428
Space travel

antennas and, 535–536
distance of, 311, 312
navigational calculations for, 93
private, 24, 24
Pythagorean theorem and, 478
timekeeping and, 312
unmanned vehicles, 388

Spacecraft
error-correction codes for, 276
private, 24, 24
radiation shielding for, 299
scientific visualization, 260
steering, 305
vehicle weight, 535
vibration, 479
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SpaceShipOne, 24, 24
Space-time continuum, 246–247
Spam, 341
Spatial correlation, 525–526
Specificity, 318–319, 320t, 329
Spectra, 90–91
Spectroscopy, 566
Speed

derivatives for, 83
of gravity, 313
of light, 124, 312, 486–487, 514
measurement, 123, 151, 307, 311
of photographic film, 398–399
of pitches, 139, 505
revolutions per minute and, 445
vectors, 233–234
See also Velocity

Speed guns, 139
Speed limits, 154
Speed-distance-time calculators, 74
Spheres

chords and, 562
harmony of, 346
measurement, 75
projection of, 101–102
volume, 576

Spherical triangles, 559
Spider (Radar) graphs, 253, 254f
Spirals, 354
Splines, 255
Sports injuries, 573
Sports judges, 504
Sports math, 495–510, 497

athletic performance, 152, 154,
445–446, 495, 497–498

attendance statistics, 409
betting, 508–510
championship standings, 31, 31, 382
development, 496–497
field perimeters, 386
fundamental concepts, 495–496
geometric forms, 40–41
judging and, 504
percentages in, 374
photographs, 402–403
probability in, 426–427
ratings percentage index, 503–504
real-life applications, 497–510
rules, 495, 496–497
salary caps, 507–508
scoring systems, 3
statistics, 380–382, 498
surveying and, 514–515
timing systems, 139
tournament standings, 590
video analysis, 263
See also specific sports

Sports media experts, 502–503
Spotted owl, 305
Spreadsheet software, 257, 260,

549–550
Square centimeters, 45–46

Square inches, 45–46
Square meters, 124
Square root, 511–515
Squares

area of, 46, 340, 439
magic, 217, 221–223
perfect, 181
perimeter of, 385
reflection symmetry, 540, 540f, 541
rotational symmetry, 541

Squaring it, 179
S-shaped growth, 331
St. Louis Gateway Arch, 238
Stacked bar graphs, 251
Stacked column charts, 110, 110f
Stadiums, 433
Staffing levels, 589
Stained glass, 42–43
Standard deviation, 318, 319–320, 520
Star atlas, 55
Star (Radar) graphs, 253, 254f
Stars (Astronomy), 242, 418
Star-shaped fireworks, 241
State Plane Coordinate System,

103–104
Statistics, 516–528, 518, 523

deceptive, 381, 523–524, 581
development, 525
fundamental concepts, 516–524
medical mathematics and, 314
potential applications, 528
qualitative, 141, 455, 474
quantitative, 141, 455
real-life applications, 525–528
scientific use of, 474
sports, 380–382, 498

Statues, 432, 433–434
Stealth technology, 182, 244–245
Steganography, 266–267
Stella II, 330
Stem cell research, 446–447
Stem graphs, 250
Stem and leaf plots, 404, 407
Stepped Reckoner device, 336
Steps, logic, 300–301, 301t
Steradian, 123
Stereo sound, 282–283
Stock (Goods), 592
Stocks (Securities)

business math and, 67
distribution of, 150–151
graphing, 259
investments, 191
line charts of, 111
market trends, 515
share values, 436
stock options, 191
zero-sum games and, 597

Stokes, Gabriel, 212
Stonehenge, 97, 233
Stones (Unit of measure), 129
Stopwatches, 496

Store assistants, 592
Straight bet, 508
Stratified sampling, 462, 517
Strauss, Joseph B., 76
Street signs, 414
Stress, 227
Strictly competitive games, 596
String theory, 555
Strings

guitar, 207, 242
knot theory of, 355
monochord, 344
overtones of, 347

Strõmers, Martin, 126
Structural design, 35–36, 89–90
Student loans, 56–57
Students

grade percentages, 374, 383
grade point average, 139–140, 140f
time management for, 153
See also Education

Student-teacher ratio, 445
Submarines, 41, 182, 482
Subnet mask, 118
Sub-populations, 517
Subtraction, 485, 529–536, 530
Sumerians, 97, 170
Sunflowers, 354
Super Bowl, 266
Supercomputers, 78
Supersonic flight, 299
Surface area, 47, 48, 439, 576
Surgery, robotic, 245
Surveying, 49, 49–50, 514–515

area conversions, 129
quadratic and cubic equations 

for, 439
trigonometry for, 557, 564–565,

565
word problems for, 592

Suspension bridges, 76–77
Swedish beds, 42
Swimming pools, 152, 386–387,

446, 581
Symmetric secret key encryption,

120–121, 362
Symmetry, 537–542

abstract, 542
architectural, 34, 35, 36–38, 39, 541,

541
bilateral, 38
city planning and, 42
fractal, 541–542, 541f
glide-reflection, 537
reflection, 38, 537–542, 538
rotational, 38, 537–542, 539f, 540f
sliding, 34
textile design and, 43
translational, 34, 38, 537–542,

539, 539f
Synthesizers, electronic sound, 213,

347–348
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T

Table tops, 37
Tables, 543–552

addition, 544, 544f
astronomical, 544
chord, 561–562
conversion, 545
development of, 72, 543–544
financial, 546–548
fundamental concepts, 543
periodic, 545, 546f
potential applications, 549–550
real-life applications, 544–551
Rudolphine, 544
tide, 549
trigonometry, 544, 561
types, 544
See also Multiplication table

Tacoma Narrows bridge, 90
Taj Mahal, 40
Talmud, Babylonian, 226, 228
Tamoxifen, 325
Tangents, 564
Task-specific rubrics, 455–456
Tasmanian sheep, 331
Tax cuts, 56
Taxes

apportionment, 209
geometric representation, 235
sales, 377–378
value added, 592
See also Income taxes

T-distribution, 522
Teacher-student ratios, 445
Technology access, 410, 411f
Teenagers, 578
Telephones. See Cellular telephones
Telephony, Internet, 119
Telephoto lenses, 399, 402–403
Teleportation, 23–24
Telescopes, 43, 55, 165–166
Television, closed circuit, 31
Temperament

mean-tone, 346
well, 346–347

Temperature
absolute, 127
absolute zero, 127, 356, 466–467
average, 152
Celsius, 123, 125, 340,

357, 466
conversion of, 125–126, 340
Fahrenheit, 125–126, 340, 357
freezing point, 126, 356
gigaelectron volts, 487
Kelvin, 123, 125, 126, 127, 357, 467
negative numbers and, 357
oven, 127, 127, 302
subtraction of, 530
wind chill and, 476

Temples, 237
Ten-based numbering systems. See

Decimals
1099 Form, 189
Tennis, virtual, 291
Terminal velocity, 17
Test scores, 524, 589–590
Text code, 116–117
Textile design, 43
Thales, 236
Theoretical probability distribution,

518
Theory of Games and Economic 

Behavior (Neumann and 
Morgenstern), 226

Theory of Proportion, 431–432
Thermal energy, 125
Thermodynamics, 125
Thermometers

electrical, 126
glass, 126, 580–581
interval scale, 466
mercury, 126, 580–581
oven, 302

Thickness, 162
Third-order equations, 438
Thomson, William, 127
Three Mile Island, 370
365-day calendars, 98, 99
Three-dimensional Cartesian coordinate

systems, 133, 133f, 136
Three-dimensional images

animated, 263
architectural, 513–514
diagnostic, 475, 480
graphs, 112, 407
rotation, 566
vectors and, 572

Three-dimensional models, 78,
147, 468

Three-dimensional vectors, 569, 569f, 572
Three-dimensions, 232, 303

See also Perspective
Thresholds, 522
Tide tables, 549
Time

conversion of, 120
Coordinated Universal Time, 547
definition, 307
doubling, 173–174
elapsed, 3
estimation of, 161–162, 166
geologic, 488
geometry and, 245–247
Greenwich Mean Time, 135,

547, 547f
measurement of, 311
navigation and, 135
rounding off, 452
scales, 469
space and, 236, 246–247, 312
theory of relativity and, 131–132

Time management, 153
Time travel, 246–247
Time zones, 547
Timing systems, sports, 139, 339, 496
Tips, calculating, 194–195, 375–376
Tires, 439–440
Toads of the Short Forest (Zappa), 351
Toll roads, 533
Tomography, computed, 147,

475, 480
Tone

well-tempered, 346–347
wolf, 346

Tons, metric, 129
Tools, measuring, 208
Topographic maps, 104, 104, 136
Topology, 553–556, 554, 555
Tornado modeling, 201
Tortoise shells, 354
Touchdowns, 499, 501–502
Tournaments, 590
Toys, 471
Track and field events, 3, 358,

496, 534
Tracking, human motion, 290–291
Tracks (Race), 309, 312
Trade-ins, automobile, 187
Translation, 587
Translational symmetry, 34, 38,

537–542, 539f
Transposition-substitution algorithms,

29
Travel

fuzzy logic for, 301–302
measurement for, 307
metric system conversion for,

339–340
time, 246–247, 431
time estimates, 586
trip length, 443
See also Distance

Traveling salesperson, 589
Traverse Mercator projection, 101
Tree diagrams, 412–413
Trees

family, 413
leaves, 200

Trend plots, 259
Trends, 374, 463
Trial division, 150
Trial software, 285
Triangles

acute, 559
area of, 340
description, 233
equilateral, 237, 541, 558–559,

558f
isosceles, 559
obtuse, 559
Pascal’s, 500–501, 501f
plane, 558–559
potential applications, 566
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Triangles (contd.)
Pythagorean theorem and, 512, 513, 513
rafters as, 237–238
right, 559–560, 559f
scalene, 559, 559f
Sierpinski, 541–542, 541f
similar, 182
spherical, 559
See also Trigonometry

Triangular graphs, 407, 410–411
Tricycles, 505
Trigonometry, 557–567

definition, 233
development, 561–562
fundamental concepts, 557–561
Pythagorean theorem and, 474–475,

475f
real-life applications, 562–566
tables, 544, 561
three-dimensional imaging and, 263

Trinity (Masaccio), 391
Triple redundancy, 275
Trompe d’oeil, 395–396
Tropical Rainfall Measuring Mission

(TRMM), 77
Trucks, 441–442, 451

See also Automobiles; Vehicles
Trump, Donald, 194
Truth and logic, 300, 583
Tsunami, 298, 471, 591–592
T-test, 522, 525
Turing, Alan, 29
Twain, Mark, 381
Twin prime conjecture, 361
Two by two matrix equations, 288, 288f
Two-dimensional vectors, 568–569, 568f,

569f
Type II diabetes, 315

U

Ultra Deep Field, 55
Unequally likely messages, 271–272
Uniform distribution, 518
Unit fractions, 203–204
United States

Census Bureau, 193, 451
Coast and Geodetic Survey, 564
Congressional Representatives, 209
Constitution, 208–209
Department of Energy, 214, 451
Food and Drug Administration, 245
Geologic Survey, 564
measurement system, 124–125
National Safety Council, 5
National Security Agency, 147
presidential elections, 141–142, 459
See also National Aeronautic and Space

Administration
Units of area, 45–46

Universal product code (UPC) barcodes,
15, 15–16, 23

Universal Transverse Mercator (UTM),
103

Universe
age of, 160
expanding, 178–179
origin of, 487
time and, 245–247

Unmanned rovers, 388
Unsharp masking, 403
UPC barcodes, 15, 15–16, 23
U.S. Coast and Geodetic Survey, 564
U.S. Geologic Survey, 564
Used automobiles, 162–163
Usury rate, 186
UTC (Coordinated Universal Time), 547,

547f
UTM (Universal Transverse Mercator),

103

V

Vacancy rates, 384
Vaccines, MMR, 594
Validity, 583
Value added taxes (VAT), 592
Value meals, 4
Vanishing point, 389, 390f, 392, 392f, 395
Variable expressions, 10
Variables, 211, 249, 328, 329
Variance, 318, 319–320, 520
Variance, analysis of (ANOVA), 522–523
Variogram, 525–526
VAT (Value added taxes), 592
Vectors, 233–234, 568–574, 570, 573

algebra for, 570–571, 571f
coordinate systems and, 132
matrix equations and, 288, 288f
three-dimensional, 569, 569f, 572
trigonometry and, 563–564
two-dimensional, 568–569, 568f, 569f
velocity and, 571–572

Vehicles
aerodynamic and hydrodynamics of,

259
crash tests of, 18–19
robotic, 388
weight of, 535
See also Automobiles

Velocity
integral of, 83–84, 84f
measurement, 307
of pitches, 139
spacetime and, 136
terminal, 17
trigonometry and, 563–564
vectors, 571–572, 573
See also Speed

Venn diagrams, 493, 493f

Verhulst, P. E., 200
Vermerer, Johannes, 391
Vertex, 590, 590f
Vertical jumps, 534
Vibration, 479
Video analysis

human motion, 290–291
sports, 263

Video file size, 118
Video morphing, 134
Viete, François, 13, 139, 279, 417
Viking 1, 265
Viking 2, 265
VIOP (Voice over Internet protocol), 155
Viral marketing, 341
Virtual-reality, 291, 412
Viruses, 355
Vision, 281
Visual geometry, 35–36
Visualization software, 258, 260, 260f
Vitruvian Man (da Vinci), 432, 433
Voice over Internet protocol (VIOP), 155
Volume, 575–582, 577

body, 439
of boxes, 575
brain, 578, 581–582
calculation of, 124, 129, 575–576,

576f
conversion of, 340
of cubes, 439, 575
of the Earth, 162
human body, 439
liquid, 340
quadratic and cubic equations 

for, 439
of solid objects, 417

Volunteer sampling, 458
Von Leibniz, Wilhelm. See Leibniz,

Gottfried Wilhelm von
Voting

Electoral College, 209
fractional, 209
patterns, 383
polls, 379, 459, 527–528
preferences, 142
See also Elections

Voyager spacecraft, 276

W

W-2 Form, 189
Wagering. See Gambling
Wages. See Income; Pay
Waitstaff tips, 194–195, 375–376
Wallace, Alfred Russel, 174–175
Walt Disney Company, 393
War, 597
War (Card game), 595
Warranty period, 427–428
Washington Monument, 238, 239
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Water
freezing point, 126
oil on, 162
quantity of, 473
safety of, 446
wells, 594

Water bodies, perimeter of, 386–387
Water pollution, 462
Watermarks, digital, 266–267
Waves

seismic sea, 298, 471, 591–592
sound, 494
Tsunami, 298, 471, 591–592

Weapon guidance systems, 440
Weather

atmospheric pressure, 469
balloons, 477–478
calculators for, 77–78
climate change, 48–49, 257–258, 580,

594
data collection for, 477–478
finite-element modeling of, 212–213
fractals for, 355
maps, 414
modeling, 201
percentages and, 374
relationships and patterns, 474,

476–477
sampling, 461
temperature conversion for, 126–127,

340
wind chill, 476
word problems for, 593

Web crawlers, 146
Weibull, Waloddi, 521
Weibull formula, 521
Weierstrauss, Karl, 156
Weight

friction and, 563–564
height and weight charts, 319–320,

548–549, 548f, 549f
measurement of, 129, 308, 340
optimal, 446
rounding off, 450

scales for, 468–469
to-height ratio, 446
of trucks, 451
of vehicles, 535

Weight loss, 534
Weighted average, 54–55, 153
The Well Tempered Clavier (Bach), 347
Wells, water, 594
Well-tempered tone, 346–347
Western music, 351
Wheat, 474
Wheels, 43
WHO (World Health Organization), 591
Whole numbers, 449–450
Wide angle lenses, 399
Wildfire models, 75
Wildlife

body size of, 576
counting, 147–148
endangered, 587
game theory and, 229–230
legs, 179
photographs, 402–403
population dynamics, 305
population sampling, 164
See also Population growth

Wiles, Andrew, 362
Wind chill, 476
Wind strength, 469
Wind tunnels, 259
Windows, 42, 233–234
Wireless service. See Cellular telephones
Wolf-tones, 346
Wood chucks, 337
Wooded ecosystems, 201
Woods, Tiger, 285
Word problems, 583–594

development of, 584
fundamental concepts, 583–584
real-life applications, 584–594

World Health Organization (WHO), 591
World Series, 427
World War II military model, 332–335,

333f

World Wide Web (WWW), 146, 412
See also Internet

Writing, secret. See Cryptography

X

X axis, 107
XOR algorithm, 362
XP (Extreme programming), 285
X-rays, 147, 264, 414
x-y graphs, 254–257, 254f
x-y scatter graphs, 109, 109f

Y

Y axis, 107
Yard (Measurement), 308, 340, 579
Yards gained (Football), 499
Years

leap, 99
light, 486–487

Yen, 196
Yuan, 196
Yucca Mountain, 175–177, 176,

213–214

Z

Zadeh, Lotfi, 302
Zappa, Frank, 351
Zeno of Elea, 492
Zero

absolute, 127, 356, 466–467
division by, 150
negative numbers and, 356
silence and, 345–346

Zero-sum games, 226, 595–597, 596
Zeta function, 212
Zipped files, 119
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