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Introduction

It is well known that a local change in the electronic state in a crystal
leads to corresponding local changes in the interactions between individual
atoms of the crystal, and hence to the excitation of atomic oscillations, i.e.
the excitation of phonons. And vice versa, any local change in the state
of the lattice ions alters the local electronic state. It is common in this
situation to talk about an “electron—phonon interaction”. This interaction
manifests itself even at the absolute zero of temperature, and results in
a number of specific microscopic and macroscopic phenomena. When an
electron moves through the crystal, this state of polarization can move
together with it. This combined quantum state, of “moving electron +
accompanying polarization”, may be considered as a sort of a quasipar-
ticle with its own particular characteristics, such as effective mass, total
momentum, energy, and maybe other quantum numbers describing the
internal state of the quasiparticle in the presence of an external magnetic
field presence or in the case of a very strong lattice polarization that
causes self-localization of the electron in the polarization well with the
appearance of discrete energy levels. Such a quasiparticle is usually called
a “polaron state” or simply a “polaron”. Polaron formation is a conse-
quence of dynamic electron-lattice interaction which is also responsible for
scattering of charge carriers, phonon frequency renormalization as well as
screening of interaction between charge carriers in solids.

The concept of the polaron was introduced first by S.I. Pekar [1],
who investigated the most essential properties of stationary polaron in
the limiting case of very intense electron-phonon interaction, so that the
polaron behavior could be analyzed in the so-called adiabatic approxima-
tion. Such famous researchers as L.D. Landau, S.I. Pekar, H. Frohlich and
R. Feynman have contributed to the development of polaron theory [1-5].

Despite the apparent simplicity of the formulation, the polaron prob-
lem has not yet been solved, and continues to attract much attention. It
plays an important role in statistical mechanics and quantum field theory
because it can be considered as the simplest example of a nonrelativistic
quantum particle interacting with a quantum field. Therefore many so-
phisticated mathematical techniques have been tested for the first time
using this problem as a model. A shining example of this is Feynman’s
functional integration method, which was applied first to the polaron
problem, before becoming one of the main methods used in statistical
mechanics and quantum field theory. Moreover, polaron theory is an
expanding field of investigation in solid state physics because polarons are
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not only theoretical constructs but practically observable physical objects
(see e.g. [6]).

One of the most important contributions to polaron theory, made by
N.N. Bogolubov, is the rigorous adiabatic perturbation theory [7] created
in 1950, in which the kinetic energy of the phonon field was treated
as a small perturbation. The theory is translationally invariant (which
is important for the development of the strong coupling theory), and
reproduced at zeroth order the results for large values of the interaction
constant that had already been derived. Despite a systematic attempt to
calculate higher orders of the perturbation theory, these have not yet been
derived, although much effort has been devoted to the problem.

Bogolubov returned to the polaron problem in 1980, when he devel-
oped and applied the well-known method of chronological or T-products
[8]. This method appeared to be effective for the theory of the large-radius
polarons for all strengths (weak, intermediate and strong) of electron—
phonon interaction and also for the derivation of higher terms of the per-
turbation series in the weak-coupling limit. Like the functional integration
formalism, the T-product method has various applications in many fields
of quantum physics.

Interest to the polaron problem is growing: in addition to earlier
fields of research dealing mostly with spatially homogeneous systems,
investigation of charged-particle interactions with elementary excitations
in spatially inhomogeneous low-dimensional systems, such as quantum
wells, wires and boxes, is gaining significance. Experimental techniques
have had great success in producing such systems with well-controlled pa-
rameters, thus allowing the manufacturing of structures with predictable
characteristics. Electron—phonon interactions of the polaron type play a
very important role in the properties of low-dimensional quantum sys-
tems. Thus, much efforts has been devoted to the investigation of surface
polarons (see [9, 10] and references therein).

Of course, it is impossible to cover all off the numerous aspects of
polaron theory in this short introduction or even in a far larger text. The
main purpose of the present book is to acquaint the reader with methods
of modern mathematical physics developed in connection with polaron
theory.

The book is organized in the following way. Chapter 1 is an introduc-
tion to the T-product approach in the theory of a particle interacting with
bosonic fields. As an example, this method is applied to the linearized
polaron model and Feynman’s two-body oscillator model, for which all
calculations can be carried out explicitly. Feynman’s well-known inequal-
ity in polaron theory is also reproduced as a particular case. The rest of
the chapter is devoted to one version of finite-temperature perturbation
theory for the polaron partition function and the ground-state energy
developed on the basis of the T-product formalism. Adiabatic perturbation
theory for the polaron ground-state energy, which is valid for the strong-
coupling case, is also highlighted.
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Chapter 2 deals with the equilibrium-state investigation for the
Frohlich polaron model. The main objective of this chapter is to derive
Bogolubov’s inequality for the reduced free energy of the polaron. This
inequality allows one to obtain various upper bounds for the polaron
ground-state energy relevant for different values of the particle—field
interaction strength.

Chapter 3 touches on some problems related to nonequilibrium polaron
theory including polaron kinetics. An exact evolution equation for a parti-
cle interacting with a bosonic field is derived here. It is shown that in the
weak-coupling case this equation can be reduced to the Boltzmann equa-
tion in the polaron theory. Special attention is paid to the investigation of
the nonequilibrium properties of the linearized polaron model. The main
characteristics of this system, such as the impedance and the admittance,
are calculated explicitly. It is also shown that the equilibrium momentum
distribution function in the weak coupling limit can be derived by means
of the T-product formalism without having recourse to the Boltzmann-
equation approach.

Investigation of the dynamics in a “small” system weakly coupled
to a “large” system (the heat bath) is one of the essential problems of
statistical mechanics. The work by N.N. Bogolubov and N.M. Krylov
[49] laid theoretical foundation for studies in this field. In this work the
problem of possibility of a stochastic process in a dynamic system being
under the influence of a large system was considered. The behavior of a
classical system was studied on the basis of the Liouville equation for the
probability distribution function in the phase space while for a quantum
system the equivalent von Neuman equation for the statistical operator
was employed. In [49] a method was developed allowing to derive the
Fokker-Planck equation already in the first order approximation. In [50]
a concrete model was studied in detail, the dynamics of which could be
described by integrable equations. This property allowed rigorous critical
analysis of various approximations to this model dynamics which had
been derived earlier. Similar results for quantum mechanical systems were
obtained in [51].

In lectures given by N.N. Bogolubov in 1974 while visiting the Rocke-
feller University, a modified version of the method, developed in [49], was
outlined and its relation to the theory of two-time Green functions was
discussed [52].

It is worth noticing that the notions of the “small” system and the
“large” system are to be comprehended in the sense that the number of
degrees of freedom of the former is much less than this number for the
latter one.

Further development of ideas outlined in [49-52] provided an oppor-
tunity to formulate, on the basis of a model polaron problem, a method
of derivation of exact system of hierarchic equations for time-dependent
averages [35]. Bose-variables elimination from operator dynamic equations
being averaged with respect to the initial statistical operator represents
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the cornerstone of the method. Special lemmas proved for the case of
adiabatic switching on of the interaction between the “small” and the
“large” systems played significant role in this elimination procedure [35].
If the “large” system is in the thermodynamically equilibrium state (being
the heat bath in effect), the method allows to describe approach to
equilibrium for the distribution of probabilities in the “small” system.

The above mentioned method proved itself very useful in studies of
superradiant generation processes [53-55|. The phenomenon of superradi-
ance reveals itself in appearance of spontaneous coherence of electromag-
netic radiation due to photon exchange between atoms of active medium
taking place under some additional conditions [56].

Here, in Chapter 3, an aproach to derive an exact equation for the
evolution of a particle interacting with bosonic field is proposed. It is
shown that in the case of weak interaction this equation can be reduced
to the Boltzmann equation in the polaron theory. Particular attention is
paid to investigation of nonequilibrium properties of the linearized polaron
model. Principle characteristics of this model, such as impedance and
admittance, are calculated explicitly. It is also shown that the equilibrium
function of momentum distribution in the limiting case of weak interaction
can be derived within the frame of the T-product formalism without any
recourse to approximate Boltzmann equation.

Polaron Model: General Discussion

Let us consider a slow electron in a dielectric crystal, interacting with
the lattice ions through long-range electrostatic forces. This electron will
be permanently surrounded by a region of lattice polarization. Moving
through the crystal, the electron carries the lattice distortion with it. The
electron together with the accompanying self-consistent polarization field
can be treated as a quasiparticle called a “polaron”. Its effective mass is
larger than that of a Bloch electron. Polaron formation is a consequence
of the dynamical electron—phonon interaction.

One may speak about a “cloud of phonons” accompanying the electron.
Thus a polaron can be also thought of as a compound system: “electron +
accompanying phonons”. The polaron problem was initially formulated in
the context of solid state physics, where this concept has some direct appli-
cations [6, 11, 12]. On the other hand, this problem is of great theoretical
interest quite apart from its particular solid-state interpretation, since it
provides a very simple example of a particle interacting with a quantum
field, and is thus a suitable model to probe the methods of quantum field
theory and quantum statistics, and to formulate intuitive ideas about the
properties of a particle moving through a fluctuating quantum medium.
A detailed discussion on the physical origins and basic features of the
polaron model can be found in old papers [11].

In this text we should like to give an introduction to a new method
in the equilibrium polaron theory based on the T-product operator
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technique. Here and below we follow mainly the ideas outlined in our
lectures [8].

Let us analyse in more detail the polaron Hamiltonian and its proper-
ties. From a general point of view, the polaron model may be considered
as a particular case of a “small” subsystem S interacting with a “large”
bosonic reservoir . Let S be the electron and ¥ be the phonon field
of a crystal. Denote by Xg the set of arguments of the electron wave
function and denote by X5 = (...ny...) the set of occupation numbers of
the phonon modes.

The dynamical states of the polaron S + X are then characterized by
wave functions ¥(Xg, Xx) forming the space Hsyx = Hs @ Hs, where
Hgs is the state space of the free electron while Hy is the phonon Fock
space. We shall use below the notation A(S), A(X) and A(S,¥) for the
operators acting correspondingly on the variables Xg, Xy, and (Xg, X»)
of the wave function ¥U(Xg, Xy,). Note that the operators A(S) and A(X)
will always commute with each other. The polaron Hamiltonian may be
written as follows:

Hp = H(S)+ H(X) + Hint (5, %), (0.1)
with 5
H(S) = ;’Tn (0.1a)
1

H(E) =35 (pp—s + wiqra—), (0.10)

(f)

1 if-r

Hint(Sa E) = WZLfoef ) (OIC)

)
where the three operator terms correspond respectively to the Hamiltonian
of the free band electron H(S) with effective mass m, the Hamiltonian of
the optical lattice phonons H(X) with wave vectors f and frequencies wy,
and the Hamiltonian of the electron—phonon interaction Hin(S,%). The
electron—phonon interaction is characterized by the coupling parameter
Ly, which is assumed to be a real and spherically symmetric function:

Ly = Ly = L(If]),
r,p are quantum operators satisfying the usual commutation relations:
TaPp — PBTa = Zhdozﬁ (avﬂ =T,Y, Z)

he phonon amplitudes py, and g are also quantum operators satisfying
analogous relations:

arpy — pyrqy = ihdyy,
pl=p_f, qh=dq.
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As usually, the phonon wave vector f runs over a quasidiscrete set of
values:
f= (

2y 2mng 27ng
L’ L’ L ) ’
where L3 =V is the volume of the system and n;,ny,ns are integers.

In most articles the so-called Frohlich polaron (also known as a large-
radius polaron) is considered. For the Frohlich polaron, the electron is
supposed to interact with a dielectric continuum by means of long-range
Coulomb forces. This assumption is adequate if the polaron, composed of
the electron and the polarization well, which is induced by the electron
itself, spreads over a range large compared with the lattice constant.
Then, the polarization field P(r) will be a smooth function of r and the
polarization of the medium can be characterized by macroscopic dielectric
constants €., and €p. The continuous approximation for the polarization
field and hence the Frohlich Hamiltonian itself would lose their meaning
if the polaron size were comparable to the lattice constant.

The interaction parameter for the Frohlich polaron model is deter-
mined in the following way:

L= s=c(=-1). (0.2)
where e is the electron charge, €5, and €y are high-frequency and low-
frequency dielectric constants. In the case of the usual Frohlich model,
one deals with the optical phonon branch, for which

wr—w>0 when f—0,

and the dispersion is neglected, i.e. wy = w.
It is generally accepted that the strength of the interaction in this stan-
dard model can be characterized by a dimensionless coupling constant:

2 1/2
_ _ % m
o= (o) (0.3)
One usually distinguishes the cases of weak (o < 1), strong (« > 10) and
intermediate (o = 3 — —6) coupling.

It should be noted that when investigating the polaron problem in the
general case, one should take into account the dependencies of wy; and
L on f. In particular, one or other modification of the Coulomb case
(0.2) might be analyzed. There are some physical reasons, for example,
to introduce some kind of damping of the interaction for large |f|. The
simplest way to do this is to supplement the conditions (0.2) with the
following restriction:

L;=0, (0.2a)

for |f| > fo, preserving old definition (0.2) for |f| < fy at the same
time. A natural value for the cut-off wave vector fy is 27/a, where a
is the reciprocal lattice vector, since phonons with |f| > 27/|a| are not
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represented correctly in (0.1¢) and thus can be omitted. Nevertheless,
later we shall consider the standard Frohlich polaron without any cut-off.
And all calculations will be carried out, wherever possible, for an arbitrary
functional dependence of the interaction parameter L.

Symmetries and Quantum Properties

It must be stressed that the polaron problem is essentially quantum
in character. It may easily be shown, for instance, that for a “classical”
electron the interaction (0.1¢) is not important and reduces simply to
some additive constant in the equivalent Hamiltonian.

Let us introduce in (0.1) instead of py and ¢y the phonon creation and

annihilation operators b} and by:

1/2
_ (" i
a5 = (2wf> (by +02 ), 0

satisfying the commutation relations
bybh, —blby =0pp, bsbp —bpbp =0, bhbL —blbl=0. (0.4a)
Then the Hamiltonian (0.1) reads

2

1/2
_ P T 1 1 Z h Ty ifr
Hp = m T Z hwy (bfbf + 5) + iz Ly (wa> (by + b*f)ez )
(f) (f)

(0.5)
It may also be rewritten as
H —p2+2h (BTB +1>—1 Ly (0.6)
P = % Wy f f 5 V ﬁ, .
() ()
where
1/2
— ppeifry L Ly (R
Bf o bfe + V1/2 TLUJf <2wf ’
" (0.6a)
t _ gt ifr 1 Ly ([ h
Bj = bje +V1/2 oy <2wf> .

The new operators By and Bl satisfy the same standard commutation
relations as the Bose operators, (0.4a). If we assume that position and
momentum operators r and p are commuting C-functions in the classical
case then the operators By and B];c in (0.6) commute with the term
p?/2m. In this case the relations (0.6a) can be interpreted as a canonical
transformation to new Bose operators By and B}. Comparing (0.5) and
(0.6), we conclude that for a classical electron the interaction is ineffective,
being reduced to an additive constant term in the Hamiltonian.
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On the contrary, in the quantum case, the “quasibosonic” ampli-
tudes By and B! do not commute with p?/2m because of the factors
exp(zif - r), and hence the electronic and the quasibosonic parts of the
Hamiltonian (0.6) are not independent of each other.

The difference between the classical and quantum situations may be
clarified further by performing a unitary transformation on the Hamilto-
nian. To this end, let us introduce unitary operators

U= exp(z’meb}bf), (0.7)
()
compensating for the exponential phase factors in By and B;:

L h 12

P I _3

UB/UT = b+ 3L <2wf> = by, (0.8)
1/2

UBJUT = b} + 5t <2wf> =0 (0.9)

On the other hand the operator U transforms the electron momentum as
follows:
UpU' =p - hfblb,. (0.10)
()

The second term on the right-hand side here is obviously the total mo-
mentum of phonons. Thus we get, after U-transformation of the polaron
Hamiltonian,®

2
Hpp = UHpU = <p -y hfb}bf> + 3ty (Bs 4 5) -3 L7l
@ @

2
1) 2wy
(0.10a)
1 2 A 1/2
_ T + i
~ om (p - Z hfbfbf> + Z hwfbfbf + Z Lf (2(.0;) (bf + b,f)~
(f) (f) (f)
(0.100)

Comparing (0.5) and (0.10b) and bearing in mind that the factors
exp (£if - r) in (0.5) are unimportant phase factors that are negligible in
the classical case (in fact, they can be included in the operators bl and
bs), we see that the quantum effect in polaron theory manifests itself in
replacing the electron momentum p by the relative momentum of the
electron with respect to the total momentum of phonons. It is interesting
to note that the only important feature here is the quantum nature of the
model itself but not the strength of the interaction.

2 It is known that a unitary transformation of a Hamiltonian does not change
the energy spectrum, and hence does not affect thermodynamic properties,
ground-state energy, and so on.
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Incidentally, it is possible to obtain some consequences of the represen-
tation (0.10) by observing that the momentum p is an integral of motion
for the transformed Hamiltonian:

pHp — Hpp = 0.

On performing the inverse transformation, one finds that the correspond-
ing integral of motion for the initial Hamiltonian is the sum of the electron
momentum and the momentum of phonons:

P=p-+Y hfblb;,  PHp— HpP =0. (0.11)
)

The latter identity can easily be verified by direct calculation. Note that
the total momentum P is the generator of the translational symmetry
group of the original Hamiltonian (0.5):

r—r+a (a = const),
by —bge~f bl — blet, (0.12)

The unitary transformations (0.7)—(0.12) were first introduced by Bogol-
ubov [7] and Lee, Low and Pines [13] in order to develop appropriate
approximate methods for the polaron problem.

Problems and Methods of Polaron Theory

One can distinguish two basic directions in polaron studies: the first
deals with kinetic and transport properties, while the second investigates
equilibrium properties, including quantum-mechanical phenomena at zero
temperature.

In the kinetic theory one studies time-dependent phenomena in non-
equilibrium or quasi-equilibrium situations such as relaxation processes
(described by a Boltzmann-type equation) or the motion of an electron
under given external forces, etc.

The equilibrium theory deals with the properties of the system at a
given temperature. Of considerable interest are different averages related
to the electron or to the polaron as a whole: the average kinetic and
average total energies, the effective mass, the effective radius, etc. An
interesting problem is to study the equilibrium distribution function of the
electron momentum and its deviations from a Maxwellian form. Analogous
problems can be formulated for the polaron ground state, which can also
be considered as the limiting zero-temperature state (when T' — 0).

The basic function at equilibrium is the free energy (the logarithm
of the partition function), which may be considered as a generating
functional in order to compute the average energy and the ground-state
energy. And, after introducing the corresponding fields (some additional
terms) into the Hamiltonian, the free energy may be used to compute one
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or another average, the effective mass, etc.® The equilibrium free energy
of a polaron will be the main quantity considered in the following sections.

Many important papers devoted to various aspects of the polaron
problem have been published. For the standard papers of the first period of
polaron studies one may consult [11] and references cited therein. Further
progress in the field is described in [6, 15, 37, 38, 59-61] and the numerous
references therein.

The general trend of developments can be seen from the titles of the
articles reproduced in the list of references, so we shall not review here all
the aspects of the polaron problem, making only some specific comments.
Examples of basic review articles are [6, 11, 17, 18].

Since the polaron Hamiltonian does not admit an exact solution, vari-
ous approximate methods have been proposed in order to obtain numerical
results. These methods usually involve elements of perturbation theory,
canonical transformations and variational principles.

At zero temperature the polaron problem is a quantum-mechanical
problem (see [11] and references therein). In the weak-coupling case o < 1
one can apply a more or less standard perturbation approach. Some
improvements of the perturbation scheme can be achieved by appropriate
canonical transformation of the Hamiltonian and a proper choice of the
trial (variational) wave function (see [7, 11, 13, 19-24]). Special forms of
perturbation theory have also been developed for the strong-coupling case
[2, 7, 11, 20, 25-27].

The problem becomes more complicated when one investigates polaron
equilibrium properties at finite temperature [5, 28].

Analogous investigations have also been performed for the nonequilib-
rium situation in [29-32].

A new general method in the polaron theory has been proposed by
N.N. Bogolubov and N.N. Bogolubov, Jr. in [8, 33-35|, which is based
on the elimination of the phonon degrees of freedom by means of the

PFor an arbitrary system at equilibrium, with the temperature
¥ = kT = 37! and Hamiltonian H, the free energy is given by

1 —
fIH,B) = =5 I Tre o
where 3 = 9! is the inverse temperature. Here Tr e ?F is the so-called par-
tition function. An arbitrary average (A)g m can be obtained, in particular, by
differentiating the free energy with respect to the corresponding source term
introduced into the Hamiltonian:

()it = == 116, H = 2.

For instance, the average energy is

()i = % (BF[H,5)}.
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averaged T-product operator technique. This technique may be considered
as an analog of the path-integration approach. However, it seems to be
much more transparent and rigorous from the mathematical point of
view, and more convenient for practical calculations. For instance, when
treating equilibrium aspects of a polaron below, we shall deal in all cases
with proper quantum Gibbs averages over quadratic bosonic Hamiltonians
instead of cumbersome path integral analysis.

A generalized approximation scheme for the free energy (partition
function) has been developed in [8], based on a “linear-model” trial Hamil-
tonian. The linear model can be considered as a natural generalization
of Feynman’s two-body approximation (0.13) to the case of a continuum
of “heavy particles” coupled with the electron. All of the characteristics
of the linear-model Hamiltonian can be evaluated exactly in terms of
the spectral representation, thus providing the basis for a systematic
variational approach in a general form. In [36] a perturbation theory
for the free energy (partition function) has been considered within the
framework of the T-product approach. The T-product approach has also
been developed for the nonequilibrium case. In [33, 34] a generalized
kinetic equation with eliminated phonons has been derived. After simple
approximations this equation yields the standard Boltzmann equation for
a polaron, and may be used to obtain its generalizations. Some other
applications of the generalized kinetic equation with eliminated phonons
can be found in [35]. We should also mention that in [35]. the expression
for the impedance and the admittance of a polaron, derived earlier in
[29] by path integration, are reproduced on the basis of the linear-model
Hamiltonian in a simpler and more rigorous manner.

In [59] a linear polaron model in constant uniform magnetic field was
considered at zero temperature. An approach based on the model Hamil-
tonian diagonalization by means of the Bogolubov u—v transformation
was proposed. The ground state energy was studied in the simplest case
of equal frequencies for all the phonons involved in the interaction. Joint
effect of the magnetic field and the electron-phonon interaction on the
energy spectrum was studied too. It was also shown that the usage of the
linear model as a trial model results in the action functional commonly
employed in treatment of polarons in external constant uniform magnetic

field [57, 58].
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Chapter 1
LINEAR POLARON MODEL

This chapter is mainly a pedagogical introduction to a modern method
in equilibrium finite-temperature polaron theory based on the T-product
operator technique. As an example of the application of this method, Bo-
golubov’s exactly solvable linearized polaron model, as well as Feynman’s
two-body oscillator model, are considered.

1.1. Introduction to the Linear Polaron Model

Here we consider the so-called linear polaron model described by a
Hamiltonian that consists of the well-known oscillator Hamiltonian Hg,
the phonon field Hamiltonian Hy, and the interaction Hamiltonian Hgsy,
i.e.

Hsyx = Hs + Hx + Hsy, (1.1)
where
2 2.2
_ P K°r _ 1 * 2 *
Hs =5 +——  Hs =53 Apwy +v°(f)asds),

)]
1
Hgy = WZS(f)f-rqf.
)]

Here r and p are respectively the position and the momentum of the
electron and S(f) = S(|f|) is a real radially symmetric function:

v(f) =v(f]) >0,

-5 =4y,  p—f=Dp}
Summation over f is over the range of quasidiscrete values

f= (27rn1 27ng 27rn3>

~\L’> L’ L)

where L2 = V is the volume of the system and ni,ns,n3 are integers
covering the whole space of integers from —oo to +00. The total number
of oscillators N is assumed to be finite for any finite volume V' (later we

should take the so-called thermodynamic limit as usual; that is, we must
put N — oo, V — oo, imposing the additional condition N/V = const).

15
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It should be noted that the following identity holds:

if -r S(f « if-r S(f %
20 {u (f)V(”z}{qur A = s

() ()

i «\ S(f)
-r)2+§Z(f-rqf—f-rqf) v
(f) (f)

+

It is obvious that

) 1
iy g gl = Vi/%f-rqff&—f):W%f-rqfsw
() 4

where the property ¢y = ¢} has been taken into account.
Because of the radial symmetry, the following identity holds for an
arbitrary function F(|f]):

STFE(f]) fa 5—%5 A
H (f)

where

fl=(+ B+ =1~

Therefore

52 r)? = r’ S*(f)f?
2V (zf; S 6V (zf): VA(f)

Therefore the potential energy can be represented in the form

K2 2 . . K2_K2 2
S ST a4 i S gy =
()

I _if~rS(f)}{* if-rS(f)} 19
+2%V (f){Qf A V72 qf+,/2(f) vz’ (1.2)

U=

where

L\~ SN
Ky =-—) .
3V 2
5 v
Consider the case K? = KZ. For this case, U > 0, with U = 0 if

if -r S(f)
v v

qfr =
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We write down the kinetic energy which is obviously positive:

p’ 1 2
am T3 2 Ipsl™
()

Let us introduce normal variables 5. Then r and gy are linear combina-
tions of the new variables @ . It will be noted that for K = K| the system
(1.1) is described by the Hamiltonian H = T + U, where both quadratic
forms are positive-definite. It can be shown by purely linear algebraic
methods that these can be reduced to the diagonal form simultaneously,
and the Hamiltonian reads as

H=Y (B +95A3).
A

if written in the new normal variables Q5. In this case each Q) satisfies
the following equation:

Qx+NBQ\=0.

For K = Ky, it follows from (1.2) that U becomes zero if and only if all
gs belong to the three-dimensional set

if v S(f)

VI

In other words, for K = Ky the Hamiltonian H is translation-invariant
with respect to the three-dimensional group of translations:

if R S(f)

I/2(f) V1/2 :

Hence exactly three components among the whole set of Qi are equal

to zero, while the other Qi are positive. So, there are three modes of
collective evolution, such that

qfr =

r—r+R, qr = qr +

which correspond to inertial motion. Therefore r(¢) describes uniform
inertial motion in the case K = K, on which harmonic vibrations are
superimposed.

Note also that when K < Ky, the form U is not positive, so that
some values Qi must be negative, and the motion is unstable and can be
characterized by the exponentially increasing function of .

Later we will be interested especially in the case K = K, but it is more
convenient for technical reasons to consider the more general expression

K? = K§ +17, (1.3)

having in mind a future passage to the limit n — 0 (which must be taken
before the usual limit V — o0).
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It is worth stressing that, with the above choice for K, the form U
is positive-definite because 7 > 0 by definition. So, all values Q3 are
positive too. Therefore all of the functions r(t), p(t), ¢¢(t) and ps(t) can
be represented as corresponding sums of harmonic vibrations.

1.2. Equations of Motion

Let us introduce Bose amplitudes by and b;rc by means of the relations

1/2 1/2
qf = (21/7?]0)) (bf‘f'bif), pf =1 (TLQ(f)) (b}—b,f).

These amplitudes satisfy the usual commutation relations
1 Ty _
bfbf — bfbf =1.
One can see from here that
-5 =4y,  P—f=Dp
and also

_ UPs —Prds

Therefore the Hamiltonian (1.1) can be rewritten in the form

2 1/2
_ P 1o oyo N 1 _h ot
H= oo+ 5 (Ko +n)r JrZ%;Vl/?S(f)(QV(f)) for(by+b',)

+ 3w hby + 5 Y hw(f). (14)
(f) (f)

The equations of motion for this Hamiltonian are

& _om  dp __oH
dt — op’ dt —  or’
L dby Ldol ;
zhﬁfbe—Hbf, ih 7 =b_,H—Hb_,.
Transforming the right-hand sides of these equations, we see that
i
dt - p7
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. 1/2
=5 e i s (575) oo,

(1.5)

) 1/2

in = hw(f)by — i (2,,"&)) S(f)f -,
de . i 1/2

it = —h(F + (Qf(f)) S(f)f .

Later we are going to convert the system of equations (1.5) into a
system of equations for Green functions. This step allows us to calcu-
late explicitly such Green functions as ((ro,rs)) and ((pa,pg)), the
spectral function Jp,,, , and hence the equilibrium correlation functions
(Pa(t)ps (7)) calculated with respect to the Hamiltonian (1.4).

It is appropriate to recall the definition of the two-time correlation and
Green functions [40, 41]. For any two operators A(t) and B(7) taken in
the Heisenberg representation, two-time equilibrium correlation functions
are usually defined in the following way:

(ABOBM g = T Tan(w)e =) du,
- (1.6)
(B(T)A(t))eq = +f°° Jap(w)e Behemiwt=7) gy,

where 5_1_ 1
9 KgT’

and Kg is Boltzmann’s constant and 7T the absolute temperature.
Retarded and advanced Green functions can be introduced in the usual
manner [41]:

(A1), B(T)))ret = (1t — 7)([A(¢), B(T)])eq

(A)B(1) — B(T)A(t))eq
ih ’

((A#)B(7)))aay = =0(1 — t)([A(), B(T)]>eq~

Here (...)eq denotes the statistical-equilibrium average value calculated
with respect to the Hamiltonian (1.4):
CTre 7L

(Yo = = —g75

Introduce a function of the complex variable ©, Im 2 # 0:

=9(t—71) (1.7)

1 +oo 1— ¢ Pvh
<<AﬂB>>Q = ﬁ,f JA,B(V)ﬁ dv. (18)
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Then the spectral densities for the advanced and retarded Green functions
can be introduced by means of the relations

L 4o —tw(t—T1
<<A(t)v B(T)>>adv = o _foo<<A, B>>w7i0€ (¢ )dw’
1 +oo 4 (1.9)
<<A(t)’ B(T)>>ret = o 7f <<A, B>>w+i0€_lw(t_T) dw.
Taking into account the well-known formula
1 1 .
w—vtic JD(m) Fimd(w —v), (1.10)
we arrive at the important relation
2 ) - w
({4, B))wrio = ({4, B))uw—io = *%Z JapW)(1—e Py (1.11)

Our aim is to derive a system of equations for the Green functions
(1.7). From a formal point of view,

9(t) =0(t),  Zo(—t)=—6(t).

These relations allows us to differentiate formally both sides of (1.7), thus
leading to the desired equations for the Green functions:

Z& <<A(t), B(7')>>ret7 adv
LdA(t)

From these equations one has, in the “Q-representation”

Q((A, B))o = +(AB — BA) + <<i%,3>>97 (1.13)

or equivalently, in a slightly different form,

~i(A, B))o = - (AB — BA) + <<%,B>>Q.
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We should note one more useful identity

(B(T)A(t))eq = +}X) Jpa(w)e =8 dy = +fo Jp.a(—w)e @) dy,

where
Jp,a(—w) = Jap(w)e ™" (cf. (1.6)),

From (1.8), one has, after the permutation

A— B
B—A)’
the following equation:
1 oo 1—e 0 1 e 1—eoh
1 tee —pun (17 1t 1— e AP
=5, Jane (m dv=—5 J JanW) =g —dv
Thus we have proved the property
ImQ # 0. (1.14)

<<B7 A>>Q = <<A7 B>>*Q7

1.3. Two-time Correlation Functions and Green Functions
for the Linear Polaron Model

Starting from (1.5) and (1.13), we construct a system of equations for

Green functions in the case of the linear polaron model :
(1.15)

—imQ{(ra,m8))0 = ((PasT8)) 0,

¢ Clarification:. Let us write the equality

(AOBT)eq = T Tap(@)e ) du,

Making the substitutions

A—B, t—7, B—A 71—t

we arrive at the following result:
+oo ; 400 )
(B(T)A())eqa = [ JB,A(W)e_W(T_t) dw= [ JB’A(_w)e—W(t—T) dw.

4 Here: r = (r1,72,73), P = (p1,P2,p3) and paTs — r5pa = —ihdas.
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—i(pa, T8)) = =00, — (K5 +0°)((ra, 75))0

i h 1/2 +
- 80 () Al #0110

V2 -
i no\7?
Wby radta = hv(f){(bs.ms)e = Ti7 (gy(f)) S(HUE-x,78))0,
(b, ra))a = = (B! 5, 7e)0 (1.17)

i 1\
+ (o) SO

From (1.17), we have

i 1 1 \?
(oo =i =y (i) SOUE 7

. 1/2
+ 1 1 1
L raa = 2= o () SUKE mradla.
Thus

<<bf + bT_f,rﬂ>>Q

; 1/2
i 11 1 .
G (Q+ v(f) Q- l/(f)) <2hu(f)> S(HUE -1, 78))a
Inserting this formula into (1.15) and (1.16), we find that

—mQ*((ra,rg))e = —(Ko +1°){(ra,75))0 — da,s

(f) 1 B 1 .
JrV 7 2v(f) fa <Q—|—V(f) Q—l/(f)) ((f-r,r5))a.

Since

S F(If)fafs = dapg Y- F(INS
f f
and

1
K2 =—
073

the following equation results:

MO {(ra, 750 = —n* (70, 7a)) n—ﬁ,; D vl
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S%(

l f) 42 1 B 1 B
v 7 6v(f)f (Q+V(f) Q_,,(f)><<7"aﬂ”5>>n Sap. (1.18)

However,

o 1 1
= (V(f){ﬂ oy Tas V(f)}l/(f)> :

Taking account of this transformation, (1.18) can be represented as

Sap = ({ra, 7))

2 2§ S*(f) 2 1 1
x{mﬂ 7 V(zf):GVQ(f)f <Q+y(f)+ﬂ—u(f))}' (1.19)

Let us define

_ 1 S e 1 1
AE) = Vv %; 61/2(f)f <Q+ v(f) Ta- v(f)) (1.20)

and note that
A(—Q) = =A(Q). (1.21)

Then (1.19) can be rewritten in the form

— da,p
rasrsle = o = o n@y (1.22)

Taking (1.15) into account, we have also

7im95a 8
= 2 . 1-23
(ool = el (1.23)
Recalling (1.14), we get
imQq
((rg:pa))a = UL R— (1.24)

mQ® —n® + QA(Q)
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Using (1.5) and (1.13), we have further
m
7

—Z'Qm<<7‘/3,pa>>9 = *h<716pa —p(ﬂ‘ﬁ> + <<p67pa>>97

so that
0)%60 m(QA(Q) —n?)
« = - 5a (m = = _505 .
{ps:padla = =mdas + Cor a0 R @) T =0 + QA (Q)
(1.25)
For [Im 2| > 0 we can take the limit n — 0, in (1.22) to (1.25). Then
_ 0o,
{(ra;78))0 = — T OA@)
_ _ imda,g
{(pa,m8))0 = — ({13, Pa))0 = ot AQ) (1.26)
mA ()

((pmpﬂ>>ﬂ = —5a,ﬁm-

It should be stressed that when calculating a spectral intensity
Ja,B(w), for example J,_ ,,(w), we have to use (1.25), which contains
1 > 0, and only after this can we take the limit n — 0.

By means of (1.11), we arrive at the following spectral density:

5 B B (mQ)2 w—+10
J. = 5(1 L 1-— Phey=1 ‘
PasPB (UJ) B 2 ( € ) m92 _7]2 +QA(Q) w—1i0
i QA(Q) — 2 w+10
N . 2A() — ‘ L(127)
71— )\ — P + 05 ) -

Here we have introduced the notation

a

It must be kept in mind that division by (1 — e=#")~1in (1.27) may lead
to a delta function Kd(w) with some unknown coefficient K. However,
when 7?2 > 0, the expression
w—+10
"w—io
in (1.27) is equal to zero in the vicinity of the point w = 0. On the other
hand, we know that in this case (namely for * > 0), function p,(t) can

be represented as a sum of harmonic oscillations with nonzero frequencies.
Therefore the corresponding spectral intensity

Jpapra (w)=0
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in a neighborhood of the point w = 0 that does not contain the harmonic-
oscillator frequencies. Therefore we have to calculate (1.27) first of all
under the condition n? > 0, and only after this can we take the limit
n— 0.

Let us consider in detail the simplest example when

v(f) = v = const > 0. (1.28)

In this case (1.20) if one takes into account that

1 S2(f
Kg:?ﬂ/(zf;féf;ﬁ

can be rewritten as

_ Ki( 1 1\ KiQ
A9 7(Q+u+9—u)* 02— % (1.29)
From (1.27), we derive
i _ _ (m)*(Q* — v?) w+1i0
J, W) = G go (1 — e PIw)=1 .
papﬁ( ) By ( ) mar — Qz(Kg T+ myz) T2 lw—io
(1.30)
Here the denominator has two roots with respect to 2:
2 2 2 2
2 vn 4 2 Ko+vm 2
W= YN L omY),  wi=20TYM L om?). 1.31
1 K2+ 2m (%) 2 m (n°) ( )
Hence
mQ* — Q2 (KZ +n? +v2m) + 2% = m(Q? — w})(Q? — wl).
Therefore
m*Q*(Q° — v°)
mQ* — (K5 +n° +v°m) + v’
2 2 2 2 2 2
mwi (wi — v 1 mws(wy — v 1
= 1212)2 3t 2§22)2 5 +&,
w1 — Wy Q — W1 Wo — Wy Q — Wy

where the expression £ is regular and does not have singularities on the
real axis. On the other hand,

11 (1 19
9270.)]2-_2(4)]' Q—wj Q+Wj ’ J= s

w410

and
1

2 2

= T 6w —wy) — 6w +wy)}

w—10 Wy
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Hence it follows from (1.30) that

Tpaps (@)
1 m(v? — w?) hwi hwi
= 5(504,5 w%—w% 1—@75hw1 5(w—w1)+m5(w+w1)

2 2

wy — Wy 1 — g Phw2 hwe 1
(1.32)
Keeping in mind (1.31), one has w; — 0, when n — 0, and at the same
time
hw1 1 — 9, huw 1 -9,

I L
1 — e Phen B ePher 1 B

1/2
K2
Wy — = (m? + V2) .

Taking the limit n — 0 in (1.32), we find that

2 2
m vy

—s 0
Kg + mv? (w)

Jpap;s (w) = o,

K3bap h h

If one knows the spectral intensity, one can easily calculate two-time
correlation functions:

<pa (t)pﬁ(T»eq =0, « 7& B,
<pa (t)p(x (7')>eq (134)

__mv K5 h o =intt-r) P ing-n)
Kg + mv? 21 \ 1 — ¢ PRm |
Now we consider the more general case when v(f) possesses a contin-

uous spectrum in the limit V' — oo. Let us return to (1.27) and transform
this formula into a new one:

ihw 1 w+i0
Jpapg (w) = m5a,ﬁm " fn(Q) i0 (1.35)
where QA Q) — 1
_fn(ﬂ) = 2 2 :
mQ” —n” + QA(Q)
We can see that
w—+10
fr(0)=—-1 and f,(Q) =0

w—10
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for small enough w. Hence, for small enough w

w410

= @) (2 i — ! ) = —2mify (@)6(w) = 2mid(w).
(1.36)

It should be stressed that the function 1/Q has only one singular point
Q0 = 0. So, for arbitrary real w

1
ﬁfn(Q)

w—10

1 w—+1i0 . 1 w—+10
Q f"(Q)‘wqo: 2midw) + 3 f”(m‘wﬂ‘o
or
1 w410 . 1 w410
S RO = —2misw) + 5 L@

Therefore it follows from (1.35) that
thwm . 1 w+i0
Tpaps (W) = 5a,6m < —2mid(w) + f"(Q)’w_io)

But the function Q
1— e Pme

is regular in the vicinity of the real axis, and so

hw 1 w+1i0 I w+1i0
1—e " Q I woio 1—e P n ‘u—iO '
Thus
Jpaps (W) =0 if a#p,
and

ihm QA(Q) —n? ‘w+i0

J. = mid(w) —
pape (W) = mId(w) 2r(1 — e ") mQ% — n® + QA(Q)

w—i0
As a result, we have
Pa(t)pa(T))eq =0 for a# 0,

+00 jhme 1 E=T) QA(Q) — 772 ’eriO

(Pa(t)Pa (T)>eq =mi — w.

o0 27(1 — e ") mQ? — ) + QA(Q) lw—io
Consider the function
QA(Q) — 7P mQ?
Q) =— =-1+
) m? —n? + QA(RQ) m? — 0 + QA(RQ)
ms)

mQ + A(Q) — n°/Q
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for @ =ic+ w and Q = —ie + w; e > 0. Taking account of (1.20), we
have

—ImA(w+¢)

_ £ S7(f) 42 1 1 0
VZW(f)f <{V(f)+w}2+62 +{V(f)—w}2+62> -

)
Then it is obvious that
2 2
- _ ne _ .
Im ) +7w2+€2>0, Q=w+ie
Hence 2
Im <mQ—|—A(Q) - ?2) >em, Q=w+ic
and )
‘mQ +A(Q) — % > em. (1.37)
In the same way, it can be proved that, for e = —ImQ > 0
2
‘mQ—i— A(Q) — % > €.

Therefore the function f;(€2) is a regular function of the complex variable
) on the two half-planes

ImQ>0 and ImQ <O0. (1.38)

Then we note that the poles of the function

1
1— e fne

in the domain (1.38) in the vicinity of the real axis are

2 2
Q= 7 and Q= SR
in the domain (1.38) in the vicinity of the real axis are
27
or in the region
0>ImQ > i
hB°
Then e—iQ(t—T)

gmfn(g)cm:o.
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We recall (1.20),
_ I S g 1 1
A(Q) = V(Zf;6yg(f)f <y(f)+Q+Qy(f)), (1.39)

which contains only a finite number (f), of terms if the volume V is fixed.
Therefore, for large enough ||,

|QA(£2)] = const, ImQ >e>0 (1.40)

A(Q)] < const.
2@ < S

As a result, one can choose for the contour £ an infinite contour
(see Fig. 1):

isl—oo<w><i61+oo, ie—oo<(5<is+oo,
O<e<e <27
1< 75
Fig. 1.1.

and obtain the expression

imh fe1foo omit=T) QA(Q) —n?
27 jemoo 1— e PP mQ% — ) + QA(Q)

_ +imh iefoo (—i(t-T) QA(Q) — n?
2T jeloo 1—e MmO — 0 + QA(Q)

dQ =0,

from which it follows that the integral

_imh iEtee TR0 QA(Q) — n?
2T ieloo 1— e 7" mQ? —n® + QA(Q)

does not depend on the magnitude of €, when ¢ belongs to the domain
2

0<€<hﬁ'

(1.41)
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In full analogy with the previous consideration, one can prove that the
same integral, calculated along the closed contour (—ie — oo, —ie + 00),
situated on the lower half-plane, does not depend on the precise value of
g, if € belongs to the region (1.41). We can write (1.36) in the form

imh ietoo Tt QA(Q) — 7P

t =md —
(Pa(t)pa(T))eq 2T icloo 1—e "2 mQ% — 2 + QA(Q)

imh —ietoe oTiR(E=T) QA(Q) —n?
4
2T _iemoo 1 — B_Bhn mQ? — 772 + QA(Q)

dsd.

Here, owing to (1.37) and (1.40), we may pass to the limit n — 0 and
write

imh ietoo =27 A(2)

<p06(t)p04(7_)>0q = mﬂ - ? is;foo 1- e_ﬁhn ms2 + A(Q) dQ

imh —ietoo i) A(2)
271' —ie—00 1— e_ﬁhn mQ + A(Q)

Q. (1.42)

Consider now the standard limit V' — oo. It follows from (1.20) that

dv
Q—v’

+o0o
NORSY§0

where

w(f) +w) +6((f) —w)},

Ey 20, Ev(-w)=FEv(w).

Let us suppose that this generalized function Ey (w) has the behavior

By(@) = Bw) = s [ D 2 {0(07) + )+ 600() — w)}

if V' — o0 in such a way that the convergence of the function:
(1°) is uniform on any finite interval

+ice—o0o<w<ie+oo, €>0 (1.43)
(on the upper half-plane) and

—ie—oo<w< —ie+oo0, >0 (1.44)
(on the lower half-plane):

+ﬁoEV(V>QdV L AL@) = +f<>0E v)dv

oo - —v
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(2°) for ImQ| > ¢
0A©)] < K.,

where K, — is some constant independent of the volume V.
Under these conditions, we can go to the limit V — oo in (1.42) and
write

imh ietoo Tt Ao ()
2m 1€ —00 1- €_BhQ ms2 + AOO(Q)

(Pa(t)pa(T))eq = M) — o+
imh oo i) Ao ()

dQ) =
271' —ie—00 1— e_ﬁhn TTLQ + AOO(Q)

imh it 7iQ(t77') Aoo(Q) o w+ie

ml = o it 1—e PP MmO+ A (Q) T lw—ic’ (1.45)
where
T B(v)
AQ)=— [ T dv, E(v)=E(-v) >0, (1.46)
and, from (2°
A (Q)] < K. for |[ImQ| > e. (1.47)

The right-hand side of (1.45) is independent of the value of ¢, if € is
positive and small enough. Owing to this fact, we can take the passage to
the limit € — 0, £ > 0 in (1.45). The result is®

imh tewe T Ao () d w+10

(Pa(t)pa(T))eq = mi) — —— ST amay A (@) “loio

Since

A, om0
mQ + A () - mQ + A ()
and _ihm w 1 |wti0

m
o 1o Qluw B d(w) = —mié(w),

we come at last to the expression

(Pa(tpa(r))eq = T T(@)e™ 0 do, (148)

¢ Here we assume that discontinuities of the expression
1 Ax(Q)  |wtio
Q m + Ao () ‘W i0
are of the first order, so that if F(2) — is an analytic function in the vicinity
of the real axis, such as the function

F(Q):l_e%, then {F(Q) — F(w)}L L) |10

=0.
Q mOQ+ Ao () lw—io
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where )
ihm w 1 w+i0

J(w) = 21 1 — e P mOQ + As(Q) ‘wfio .

From (1.46), one can derive
Doolw£i0) = = [ E@)P (1) dv +inE(w).

It follows from this equation that

1 w10
27‘ 0.
mS) + AOO(Q) w—10
Because, in addition,
“ 0
1 —Bhw =
it is easy to find that
J(w) = 0. (1.49)

It should be noted that if we put F(w) equal to

E(w) = K7§ {0(w—1p) +d(w+10)},

we get from (1.48) our previous (1.34) that we derived earlier.

1.4. Free Energy Calculation for the Linear Polaron Model

We now proceed with the calculation of the free energy for the dynam-
ical system under consideration. The free energy is defined as

F=—-9InTr eﬁH, (H = Hiinear model)-

The free energy for a single free particle of mass m that does not interact
with the phonon bath is

:—ﬁlnTrexp< pﬂ) :—ﬁlirr%)lnTrexp{— (—&-772 2),6}.
n—

The free energy of the free-phonon field ¥ is
— 1 * *
FZ =—Y9InTre H2ﬁ7 HE = 5 Z{pfpf + I/(f)Qquf}
)

Because explicit expressions for these energies are well known, we need
calculate only that part of the total free energy that is due to the inter-
action between the phonon field and the particle, i.e.

Ent:F*FS*FE-
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For technical reasons, we introduce an auxiliary parameter A (0 < A < 1)
into the total Hamiltonian H = thear model :

H(A)z%-ﬁ- VZ

We see that

Vj/g > ASpqpfr+ Hy.
(f)

H(0) = Hs + Hs, H(1)=H.
Thus

Fin = fd>\ (A) —19[ d>\ L n T PO =

_ by T{OHN) /oAye PHV] oH
= A Ty =/d <8)\ >A)eq7 (1.50)
i.e. oH
Fint = fdA< 3 >Aeq (1.51)

In this formula the subscript A indicates that the averaging is with
respect to the Hibbs equilibrium statistical operator corresponding to the
Hamiltonian H(\):

P(H(N)) = e™PHO) | Ty(e=FHN),
7
V1/2 Zquf f-r

T3V Z
()

From another point of view, we can write the equations of motion (1.5)
for the Hamiltonian H (\):

Fr o NS e, i 3
—-m— —N°r="— r+ AS¢qf.
ar TN Z(f) AT T A

OH(N) B d’r
>\< N >/\70q = — <<mdt2 + n2r) . r>)\70q . (1.52)

Taking (1.6), (1.11) and (1.22) into account, we have
(ra@®)rg(T))req =0 for a#p0,

But

Therefore

ih Too e—iw(i—‘r) 1 w—+i0

To(t)ro (T = — dw .
< a( ) a( )>/\,eq om _[301—6755“) m>? —772+)\ZQA(Q) w—i0

(1.53)
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Here we have not forgotten that on changing from the Hamiltonian H
to the Hamiltonian H(\), we have introduced the parameter A into Sy,
which results in the necessity to change A(2) into A2A(£). So

(et i) i)

_ @ oo mw? — 772 67iw(t7'r) 1
27 ool —e P mQ® — 0’ + A2QA(Q)

dw

’w-‘riO

w—10

dw

7

ih +00 677§w(t77) mQ? _ 7]2 w—+10
C2m bl —e P mQ? - n° + A2QA(Q) ‘

w—10
if @ — w, and, inserting this result into (1.51) we see that

2+ +oo 2 _ 2 w+10
)\<8H()\)> _gih 1 mQ? —n ‘
A

= dw.
X G 27 Sel—e P m0® — 0t + APQA(Q)

w—10
Let us note that
mQ? —n? _1_ QN A(Q)

mQ® —n® + A2QA(Q) mQ? —n° + A°QA((Q)]

mQ2 _ 772 w410 _ Q)\QA(Q) ‘w—&-iO
mQ® —n® + A2QA(Q) lw—io mQ? —n® + A2QA(Q)

w—i0

Hence (1.51) gives us

=32 dw
OA 2m 7{” 1—e " mQ? — > + N’QA(Q)

w—10

<8H()\) > ih T 1 QAA(RQ) ‘WHO
A

>

ih To© Q AA(Q) ‘w+i0

dw. (1.54
21 51— e PP mQ? — 0?4 A2QA(Q) w. (1:54)

w—10

Using a similar approach for the calculation of the correlation function
(Pa(t)palT))eqs

we find in the limit n — 0, V' — oo that

OH(N) _ Bkt Q1 AM(9) ‘wﬂ‘o
O [rea I oeel—en T D mO+ XA (@)

dw. (1.55)

w—10
The right-hand side of this equation does not depend on £ when 0 < € <
< 2x/hf. Thus, assuming € > 0, ¢ — 0, we derive from (1.50)

Fng = — dw.  (1.56)

3ihl Fe 0 1 Ao (Q w+i0
f dA f —BRQ () 2( ) ’
2m _ol—ce Q mQ+ A Ax(Q)

w—10
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Consider now the special “single-frequency” case

B(w) = 58 (5w - 1) + 6w + o). (1.57)
Then 20
B(®) = - 25,
and
1 Moo() 1 MK

QmO+NA(Q) Q2 mQ® — (mg + N K3)
This expression has three poles:
=0, Q=uN), Q=-—-n),

where

Let us notice that

1 1 ( 11 )
Q-2 26N \2—u(d)  Q+pN) )’
Because of the obvious identity

1 A oo (Q) w+10

Q MmO+ N A () lw—io

_ 2mid(w)AKG  2miMKG _
o ml/g + )\QKS 2M2(>\)m {(5((4) ,u(/\)) * 6(w * M()\))}

and

dw

W01 M) et
2T “oo1—e "M Q mQ + N A (Q)

_ g9 MEG L BAKGh 1 Lo
o myg + N K5 2mp(A) \ 1 = =P T o= Bhe(N)

= % (—% In (mvg + \2K2) + gﬁln(l - e_ﬂhu(/\)) + gﬁln(eﬁh#(A) - 1))

w—10
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Therefore

2, 2\1/2 _ —Bhug
Em:awmcmfﬂ%) +@ukw@—wmi _

where

As we have seen by now, all considered Green functions and correlation
functions relating to the particle S, as well as the free energy Fi,, are
determined by one and the same function E(v). The influence of the
phonon field upon these quantities depends exclusively on this spectral
intensity E(v).

Thus, if we had two different systems of oscillators interacting with
the given particle S (in the manner considered), for which the function
E(v) was one and the same, then all relevant quantities, mentioned above,
would remain unchanged.

To illustrate this statement, it is worth considering a two-body prob-
lem, for example

p’ | Kj 2, PP _ ¢
H:%+7(I‘*R) +m:azz:lHa7 (1.59)
where 9 R 5
_Pa Ko _py2. Pa
Ho= 50 + =5 (ra = Ra)™ + 530,

and the corresponding “one-body” free Hamiltonians are:

p’ 1 &,
H = —— = —
ST 9 2ma§1po"

P’ Kino o (P2 KS o
He=omt 5 R =2 oty )

fHere we have used the fact that

397 1y d _—Bhu(N) BRu(A) _
519{ d)\ﬁ{ln(l e )+1In(e 1)}

3 eBhr 1 eBh _q
= 519 (ln T +In o 1

- 519 1— e PAhvo . 1— e PAhvo

3 (m 1 — ¢~ Bhu eﬁhue—,ﬁfwo(l _ e*ﬁhu))

1— e Bhvo h
= —39In ¢ 3

T Ty (o).
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We shall calculate explicitly the free energy

Tr e PH — _39In Tr e AM

Tr(s) e PHs Trs) e PHx Tr(s) e PMs Trs) e AN’

Fine = —91n

where the one-dimensional Hamiltonians H, Hg and Hy are given by the
following expressions:

2 2 1

_ P Koy L op2

H—2m+2(x X)+2MP,
2 2 2

_r _ P Ko e

Hs =50 Ho=opyt35 X

To diagonalize the one-dimensional Hamiltonian H, we introduce nor-

mal coordinates ¢, @ and corresponding normal momentum variables y,
Y:

_mxz+MX o
4= =0 Q=v—-X. (1.58a)
Noting that
o _ m 0,0
dr  m+M dqg 0Q’
(1.58b)
o __M 5 _ 9
0X m+Mdq 0Q’
we put
m M
p—m+My+Y, Pim—&—Min' (1.58¢)

Substituting these results into (1.57), we arrive at the canonically trans-
formed Hamiltonian

1 1M+ K3
H = myQ—i_i Mmm Y2+70Q2 = Hiy + Hoge, (161)
where
v L M+m o | Kb o
o =g o Hose =5 g VT3 @
Thus BH BH,
Tr e 7Hin Tr e 7rese
Ent = —319111W — 3'[9111 W~
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It is well known that the free energy of the oscillator Hy with the
frequency vy = (Kg /M )1/ ? in the one-dimensional case is

Fg:@—ﬁlnl 1

2 P

and because the oscillator H,s. has frequency

1/2 1/2
(KM +m) . ( M
M_( Mm = 1+m) ’

then F_q. is

hu 1
lch - ‘5* —J1n i‘:ﬁ;jjﬁﬂz.
Therefore
Tr ¢ PHin 1 — ¢ Bhvo

Because the position @ — belongs to the interval —L/2 < = < L/2, the
corresponding momentum variable p can take only discrete values

ok, n=0,41,42, ...
L
and
2m 2 I5)
Zexp{_ (f"h) 2(M+m)}

Tr ¢ #Hin (n)

Tr ¢ PHs - 2
e Zexp{ (%ﬂnh) 2761}

(n)

1 +ee By’
ﬁ_{)oeXP (_2(M+m))dp _ (m+M)1/2

— 1 ¥ /8 5
L—oo o D
27TTL_{>OQXP (_ Zm) dp

m

Finally, we obtain the expression for the free energy:

Fo = —391n (’”M)l/z Cagm i
int m 1

3
o Bh + 2 h(/.t - VO)'

& For the Hamiltonian
H— P72 4 mw?X?
T 2m 2
the free energy is given by the expression
w

F= % 91— e M), 9 = KuT.
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This expression coincides with (1.56) if one puts

2
Ko
2
Vo

=M.

Observation. It is easy to obtain (1.34) for the correlator starting from
the Hamiltonian of the two-body problem (1.57). Put

Y:imr_@(ﬁgﬁfm, Q:@ﬁ+@(zﬁuym, (1.62)

where a, at are Bose-amplitudes,

Mm
M+m’

M =
and the mass parameter y is determined by (1.59):
2 _ K&
=
Further, we proceed with the oscillator Hamiltonian rewritten in new

terms: 5
Hose = 7“ + h,uaTa

and da o'
ZTLE = hua, iT“LdL; = —hpal,
a(t) = e"#a, al(t) = eal,
since
% =0, y = const.

It follows from (1.58a) that

(1.63)

AM /2
=)

Da(t) = mTM Y+ i(aTei”t — ae” ") (

From this,

<pa(t)pa(7')>cq = ( m )2<y2>cq+w(< >efip,(t77—)+<a~ra>eiu(t,.r))'

m+M
5 (1.64)
ut
(y%)eq = (m+ M)0
o 1 oy 1 - M/LQ o Kg
<a’a>_1_67_grmv <aa>_eﬁhu7_17 Mp = T

and we arrive at the same equation (1.34) as before.
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Therefore we come to the conclusion that two-time equilibrium correla-
tion functions of the particle S variables are the same for the Hamiltonian
(1.1) in the single-frequency case To v(f) = 1y and when

K2
Ew) = - [0(w—1p) + d(w + wo)],
as in the case of the two-body problem Hamiltonian (1.57).

We now return to the expression for the free energy Fi,; in the single-
frequency case and consider the passage to classical mechanics. By setting
h — 0, in (1.56), we get the classical result for the free energy:

Fint = 0.

It is obvious that the part of the free energy that is due to interaction
is always zero in classical mechanics for dynamical systems described by
a Hamiltonian of the kind (1.1) in the case K? = K¢ + n?. This statement
can be proved starting from (1.53), which can be rewritten as

OH(}) _ %t Q AA(Q) wrio
N [req 20 “col—e " mQ — )’ + NXQAQ) lw—io
(1.65)
where 9
0<e< 2.
hp
In the classical limit,

h—01—e PR 3

Consequently, it is true for the classical mechanics that

<8H()\)> __3id (iﬁ"“ FQ)do— 7 F(Q) dQ) ., (1.66)
Ae

oA 27 \ eloo —ie—o00

)

where AAQ)

F(Q) = :
(@) mQ? — 0’ + A2QA(Q)

(1.67)

It should be observed that F'(Q) is a regular analytic function on the half-
plane

Im(©2) > e>0.

Thus
TF(Q)dQ=0 (1.68)
C

for any closed contour £ lying in this half-plane. Let us take for £ the
contour composed of the interval (ie — L,ie + L) and the half-circle C
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Fig. 1.2. Fig. 1.3.

with center at the point ic and of radius L (see Fig. 1.2). On this contour,
1
F©)=0(3).
so we can see that

[F(@)d =0 (%) —0.

Therefore ietoo
F(2)dQ = 0.
1€ —00
The same considerations may be applied to prove that

T P(Q) do.
—1E—0OQ

In fact, F(2) — is a regular analytic function on the lower half-plane
ImQ < —e<0.

Therefore it is sufficient to choose the proper contour (see Fig. 1.3) and
to repeat all the previous reasoning.
Thus, taking (1.50) and (1.64) into account, we have

Fint == O

It should be stressed that this result follows entirely from the treatment
of the dynamical system within the framework of classical mechanics.

In the opposite, quantum mechanical case, (1.63) indicates that the
function - AA(Q)
1—e 7" mO? —n® + N°QA(Q)

F(Q) =

has an infinite number of poles on the imaginary axis:

2min

hG

and for this reason integrals of the type (1.66) are not equal to zero (they
are equal to the sum of residues taken at the poles (1.67)).

Q:

for n integer, (1.69)
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1.5. Average Values of T-products
Consider now equilibrium averages of the operator products
(T{lra(t) = ra(m)][ra(t) = ra (7))} eq,
where T denotes the “T-product” (i.e. the product of operators ordered in

time). By definition,

A(tl)B(tg), t1 > ta,

B(tz)A(fl), to > tq. (170)

T{A(t)B(t2)} = {

Because
[ra(t) = ra(T)llra:(t) = ras (7)]
= Ta()rar(t) = Ta(T)rar (t) = ra(O)rar (T) + ra(T)rar (T),
the following relation holds:
T{lra(t) = ra(m)llras(t) = ras (7)1}
_ {Ta(t)ra'(t) — Tar(D)7a(7) = Ta(O)ra (7) + 1o (F)rar(7), >,
Ta(B)rar(t) — ra(T)rar(t) — ra(T)ra(t) + ro(T)re (7)), t<T.
Therefore, putting A = 1 in (1.52), we get
(T{lra(t) = ra(Mllrar(t) = ra(1)]})eq =0 if oo

and

(T{ra(t) = ra(1)]*}eq
_ ik 21— e 0T) 1

w410
2T oo 1—e P mQ® —n’ +QA(Q) ’win

dw if t>T,

(T{[ra(t) = ra(7)]"Peq

. 400 _ —iw(T—t) w—+10
_in 21 e_h ) = 21 ’ dw if t<T.
2T oo 1—e ™ mQ® -’ + QA(Q) lw—io
Thus
(T{[ra(t) = a(T)*})eq
’LFL +<>02 1— *lw\t*ﬂ 1 w10
. N e (1)
mQ - +QA(Q) w—10

For some applications it is helpful to be able to calculate the ordered
products of operators depending on an “imaginary-time” argument.
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Setting t = —is and choosing real s to be the ordering parameter, we
define the T-product as

ro(—is)ro (—io) i s>o,
ro (—io)ro(—is) if o> s.

T{ro(—is)ro(—ic)} = {

Taking (1.52) into account under the condition A = 1, one obtains

(T{[ra(—is) — ra(=io)][ra(=is) = rar(=io)]})eq = 0 (1.72)

if a # o/, and, in the opposite case,

(T{[ra(~is) = ra(=i0)]*})eq

) e wls—al w—+i0
~ 2(1 M SE— dw. (1.73)
T on —o0 _ PP m° —n° + QA(Q) lw-i0

Consider the single-frequency case:
K2
E(w) = 70 {6(w—1g) + 0(w+ 1)}

Here we are not allowed to use (1.69) and (1.71) directly, observing from
the very start that the final result would be just the same as in the case
of the two-body model (1.57). Rigorously speaking, we mean that

(ra(t)ra(7))eq = (@(t)2(T))eq-
It follows from (1.58) that

x:q+m+MQ.

Since the time evolution of ¢(¢) and Q(t) is generated by independent
Hamiltonians H;, and H,g. respectively (see (1.59)), we have the equality

M2
<$(t)$(7—)>eq = <Q(t)q(’r)>eq + W<Q(t)Q(T)>eq
From which

(T{lra(~is) = ra(=i0)]*})eq = (T{la(~is) — a(=i0)]*})eq

M? , R
+m(ﬂ(@(—%)—@(—w)) Peq (1.74)
Thanks to (1.59),
(t—1)

o) = al7) = s vy = const
(V)eq = (M +m)9.

Hence 9
(la(t) — a(r)P)eg = L0 (1.75)
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We also have

t

q(t)q(r) — q(1)q(t) = [{d'(t)q(T) — q(7)q'(t)} dt

T

t t—71

t—T1
M+m’

(yq — qy) = —ih (1.76)

Consequently,
(T{lg(~is) — a(~i0)*})eq = (a°(—is) — 2q(—is)q(~io) + ¢*(=i0))eq
= (la(~is) — a(=i0)]*)eq
+ (—q(—is)q(—io) + q(—io)q(=is))eq if s>0,
and, thanks to (1.73) and (1.74),
(T{lg(~is) — a(=io)]*})eq

77(5—0)2 h

\
5
4

m(sfa) for s> o.

Making the permutation s o, it is easy to show that

(T{la(-is) - a(=i0)Pea = - S 04 11

We must now find an explicit expression for the ordered correlator

(T{[Q(~is) — Q(~i0)]*})eq-

in order to calculate the left-hand side of (1.72). Let us note that

Is—ol. (177

1/2
(it T —iut h
Q) = (el e ()

from which it follows that
(T{[Q(~is) — Q(=i0)]*})eq

= M {(e“SaJr + e_“sa)(e“saT + e *a)

+ (e"?al + e7Ha) (e’ al + eTa) — 2T (eH*a’+ e *a) (" al + e H7a)}.
Hence

(T{[Q(~is) = Q(=i0)]*})eq

h t 1y gpuls—oly i\ o —uls—aly, T
M (2(a'a) + 2{aa") — 2e (a'a) — 2e (aa")). (1.78)
Here ; 1 T 1
la'a) = -, laah) =1+ —.
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Since

L1 K (w1
m+ M Mm uQMm m m
(recalling that M = mM/(m + M)) and

M? 1 M1 M K3 _,uQ—Vg
3 )

(m+ M)? Mpu B ‘m? Mp - m2u N m?u® N mp
we find from (1.72), (1.75) and (1.76) that

(T{[ra(~is) — ra(~io)Deq
2 2
= (&) Zemor e () el

W — v 1 |s—o] 1 |s—o]
+ 3 h(l— _Bhu(lfe" ) — T (et 1)>

mu

It is interesting to note that
(T{[ra(=is) — 7o (=io)]*Veq = 0 if |s—o|<BR=h/I, (1.80)
where § = 1/0 and ¥ = KgT.

1.6. Averaged Operator T-Product Calculus for Some Model
Oscillatory Systems

Let the Hamiltonian I" be a quadratic positive-definite form composed
of Bose operators by, bf,. We denote the statistical sum as

Z=Tre Pl
and consider linear forms composed of the Bose operators by, b} :
Ay, Agy ... As,
and statistical averages consisting of the products of these linear forms:
(AjAg - A3)p = Z7Le PP (A1 Ay - - - A). (1.81)

Let us apply to (1.79) the well-known Bloch-Dominicis theorem, which
generalizes the Wick theorem. If we introduce couplings of the type

AjA = (A;A)r,

we see that the expression (1.79) is equal to the sum of products of all
possible couplings. For example,

—F 1 —  — 1
(A1 A A3 Ag)r = (A1 A2 A3 Ag)r + (A1 As A3 Ag)r + (A1 As A3 Ag)r
— (A A (Ag Ad)r + (AvAg)e(As A e + (A Ad)r(AsAg)r.  (1.82)
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Of course, the expression (1.79) is zero if s is odd, because in this case
one of the operators Aj, Ao, ..., As is left uncoupled, and

(A;)r =0,

because A; is a linear form composed of operators b, and bl and T'is a
quadratic form.
Then we apply this well-known technique to the calculation of the
expression
<6A>1"a

where A is some linear form composed of the above-mentioned Bose
operators. We arrive at the following result:

s 1

<€A>F _ Z 7' ij: A2k —

n=0

(1.83)

Thanks to the Bloch—Dominicis theorem,
(A%)p = G(k) (A1,
where G(k) is the number of all possible couplings in the expression
<A1 e A5>F~
One can see that
G(1)=1, G2)=3, Gk+1)=(2k+1)G(k).
Thus
Gk)  1-3---(2k—1) 1

Gk)=1-3---(2k-1), (kD) 1-2-3-4---(2k)  2Fkl

From where

(€M =143 = (5 A%)2 = ezl4Dr, (1.84)

We are now going to consider T-products of operators ordered in the
parameter s. By definition,

. A(Sl)A(S2) if 51 > s9,
T{A(s1)A(s2)} = {A(Sz)A(Sl) if 89 > sq,
and respectively
TA(s1)A(s2) - -+ Alsn) = A(s) - - A(sy,),

where $/,..., 8], is just the same set of parameters s1, ..., s,, but ordered

in time in the following way:

/ ! !
S§1 28y = ... 2 8,.
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It is interesting to note that, thanks to the definition of the T-product,
the operators A(s;) commute under the sign of the T-product. For

example,
T{A(s1)A(s2)} = T{A(s2)A(51)}.
Now we should try to simplify an expression of the kind

?1 ds A(s)
(T{ex br,  so <si,

where the averaging is with respect to the quadratic in Bose operators
Hamiltonian T, (we have in mind here the same Hamiltonian as that one
presented in (1.79)) and A(s) are linear forms composed of these Bose
operators with coefficients dependent on the ordering parameter s.

({2 = E(r{ (o) )

n=0

Keeping in mind that the Bloch—Dominicis theorem can be applied not
only to the ordinary products but also to the T-products, we may repeat
our previous reasoning and write down the final result at once:

(A, = 3(e{ (o) ),)

From the other side,
S1 2 S1 S1 S1 S1
T{ (f A(s)) } = T{f ds | daA(s)A(a)} = [ ds[ doT{A(s)A(o)}.

Therefore

<T{e:f: ‘“A(S)}>F _ exp(; T asf do(T{A(s)A(a)})p>. (1.85)

So So

We can now apply these results to the case of the oscillator Hamilto-

nian 2 S

r= ngn ¢ (1.86)
Put s s

Qs) =enlgent, (1.87)

and let A(s) be a ¢ — number function dependent on s. We want to
calculate the expression

<T{e?}(s)@(s) ds}>F (1.88)

Note that the Heisenberg equation for the time-dependent variable ¢(t) is

md%ﬂ = q(t)T —Tq(t), q¢(0) =g,
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from which it follows that

Equation (1.84) states that
Qs) = g(—is), (1.89)

so that s could be treated as an “imaginary time”. Introducing Bose
amplitudes, we have

_ h 1/2 T . 2mw 1/2T
() o i3 0y o
and B ! hw

Here T is represented by the sum of the quadratic form Awb'd and the
constant term fhw/2. It is clear that the constant term does not influence
the calculation of averages of the type:

Tr(...e T
()p = ﬁ

Therefore we can apply (1.82) to calculate the expression (1.85):

= (.- hwbib-

(rfed 20y _ exp( 3 1 051 dr AN TIQIQA ) )

(1.91)
Noting that , )
b(t) =e b, bi(t) = ™,

we obtain from (1.86) and (1.87) that

0= (41 )
and
(T{Q(S)Q(0) e = 5 (eIl bl)r + 71 (bit)r)
= (1 ) T (el g el ) (1.99)

It follows from here and from (1.88) that

Tasa) d
(r{er )
T

hB  hB —wl|s—o]| —whh+w|s—o]|
= eXp(f ds [ dah/\(s)A(U)(e te )
0 0

Amw(1 — e Py

). (1.93)
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Consider the expression
K(s,0) = e @Il 4 gmwhhtwls—ol (1.94)

for
0<s<ph, 0<o<ph (1.95)

as a function of s. We get
K(07J) — WO + e—w6h+wa7

K(ﬁh,a) = ¢~ w(Bh—0) + e_wﬁﬁ'i'wﬁﬁ—wo”

whence
K(0,0) = K(Bh,0). (1.96)
Since
d d
£(8—0‘)—1, ﬁ(o—s)——l,

we see that
i|s—a|=5(s—a)
ds ’

s(s—a):{ 1, s>o

where
-1, s<o.
Therefore differentiation of the expression (1.91) yields
% K(s,0) = e(s — o) (—we™ 15771 4 emwhhtwls—aly,

Keeping in mind the trivial relations
200 N _ de(s—o) B
ef(s—o)=1, — g = 20(s — o),
where (s — o) — is the usual Dirac delta function, and taking (1.91) into
account, we obtain
2
% — WK (s,0) = —2w(l — e P“M)§(s — o). (1.97)
S

From here, for any o, belonging to the interval (0,8%h), the function
K (s,0), taken as a function of s, satisfies the differential equation

TUD) ) = 2 - PN -0)  (199)

with boundary conditions

y(0) =y(Bh),  yi(0) = yL(Bh). (1.99)
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The first condition follows from (1.93), while the second is a conse-
quence of the identities

K;(0,0’) — o wo 4 e—wﬂh-&-wa’
K (Bh,0) = —we @ Oh=0) 4 pe=wbhtw(Bh=o) — K10 5),  (1.100)
0 <o < fh.

It is easy to see that equation (1.95) with boundary conditions (1.96)
cannot have two different solutions. Suppose, on the contrary, that we
could find two different solutions y;(s), y2(s). Taking their difference

y1(s) = ya(s) = Z(s),

we construct a nontrivial solution Z(s) that satisfies the equation

2
T26) _w2z(s) =0, (1.101)
ds
with boundary conditions
Z(0)=Z(Bh),  Z,(0) = Z,(Bh). (1.102)

However, it follows from (1.98) that
Z(s) = Ae™“* — Be“*,
whereas, from (1.99), we must have
Al — e PMy 4 B(evPt — 1) =0,
(1.103)
WA(1 — e PMy L wB(e¥Ph — 1) = 0.

The determinant of these two linear uniform equations is nonzero:
det = 2w(1 — e P«m) (2P — 1)
Thus (1.100) has only the trivial solution
A=0, B=0,

and consequently

Z(s) =0.
Thus we have proved that the differential equation (1.95) with boundary
conditions (1.96) cannot have two different solutions. Remembering that
0 < o < fh, we can rewrite (1.95) in the form

d*y(s) 2 —Bwhy 1 in®=2 21
_ - _ _ — B
17 w?y(s) 2w(l—e )ﬂh (z):e . (1.104)
To satisfy the boundary conditions, we must put
y(S) _ Z Cneinﬁ 271'7
(n)
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and, substituting this ansatz into (1.101), we arrive at

2
2mn 2 o __—Bwh L in% 27
{(ﬂh) +w}Cn—2w(1 e )ﬁhe .

Since there are no other solutions of (1.95) with the boundary conditions
(1.96), we see that

% 5 1— e*ﬁwh Z ezn Bh on (1 105
)= 3 (2mn/Bh)* + 105)
Thus, thanks to (1.90), we have
T d
T s s) ds
(r{e? }>F
hp hB zn%%‘r
Bh zns Bh zns
1 f Bh}\()dsfe 78R \(s) ds
= — 0 0 1.106
eXP(mﬁ % (27n/Bh)? + W ) ( )

Note that (1.102) was proved to be valid only for the domain
s< ph, 0<o<ph.

but, because the kernel K(s,o) is continuous and the Fourier series on
the right-hand side of (1.102) converges absolutely and uniformly, we can
prove that the expression (1.102) holds even for the closed domain

s<Ph, 0<o<ph.
Let us now consider the case when, instead of the integral
Bh
(f) A(s)Q(s) ds
we have the finite sum
Z iVj Q(Sj )7
1<jSN+1

where v; are real and

s1=0, sy+1=p0h, 0<sy3<s3<...<sy<ph. (1.107)
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Repeating all of previous reasoning, we find
27rin3j 2

(el 2 o)),
> e R uj‘

1<j<N+1
exp< mﬁz G B+ ) (1.108)

Consider a quadratic form with respect to the variables v; :

27Tin5j 2
Z e Bh Vj
Q(..v;..)= SIS . 1.109
oo mﬁ Z (2n/Bh)* ( )
Because of (1.104)
27rin5j 27r7ln5j
Z vie Ph = (v +vng1)+ Z vje Fh (1.110)
1SN +1 2<<N+1
Therefore
27rinsj 2
(1 +vNg1) + Z vje B
1 2<j<N+1
Q...vi...)= — 1.111
(v = 05 (zn): (2mn/Bh)% + w® (1D
and hence
QL..v;..)20
We shall show that
QL..vj..)=0 (1.112)
if and only if all the variables 11 + vy 41, vo,..., VN are zero:
v + UN4+1 = 07 Vo = O7 vy = 0, ey UN = 0. (1113)

In fact, it follows directly from (1.108) that (1.109) holds only if, for any
integer n (positive, negative or zero),

2mins;
(1 + vny1) + Z vie PR =0. (1.114)
2<j<N+1
Let us sum these relations for each n = 0,1,..., A and divide the result by
A + 1. We have
2mi(A+1)s;

1 e Ph -1
v+ UN+1 + Z A +1 I/j 2mis;
2<G<N+1 e PR 1

=0.
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Note that, thanks to (1.104),

2mis;

e B —1#0.
Hence, using the limiting procedure A — oo, we get

v + UN4+1 = 0.
2misy
Then, multiplying (1.111) by the factor e o (where k = 2,...,N), per-
forming a summation over n =1, ...,A + 1 and dividing the result by
A+ 1, we have

27 (A+1)sp,
T

e —1

A+1(V1+VN+1) 2misy +Vk

e /R —1

2mi(A+1)(sj—sk)
1 e g —1
+A+12<§<;+1Vj L) =0
ok e -1
In this sum,
27i(sj—sg)
e PR —1#0, for j#k.

Thus, passing here to the limit A — oo, we get
vp,=0, k=2,...,N.

It can be seen now that Q(...v;...) is a positive-definite quadratic form
in the variables vy + vNy1, V2, V3, ..., Vny. Introducing the notation

! / / /
Vi =1 +UN1, Vg =Va, Vs =13, ..., Uy =UN, (1.115)

we can write (1.105) in the form

(1.116)
where
2mins; 2
Z e Bh 1/]/‘
3BS = SRR 1.117
z:: z:: 1,72 j1 ]2 - mﬁz QWR/BTL ( . )
is a positive-definite quadratic form in the variables vi,...,v}. These

formulae can be used to establish the connection between averages of the
T-products (...) ;) and integration in functional space. Having in mind
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the situation that will be studied later, we shall now consider the three-
dimensional Hamiltonian

2 2 3 2

p n .2 pa mw 2 n
r—P " 2_~Npr o o— - . (111
om T2 T gl ar Ta=gol+=rh w=—75 (1118)
Let us put - .
R(s)=erre &, (1.119)
and note that
as Tas s Is
R.(s)=e h roe” =chree

Because I', — are operators acting upon functions of different variables,
I, and T/, commute, and the R, (s) also commute with R, (s) if a # o
Note that

(T{Ru(s)Ro/(s")})r =0 for a#d.

Therefore it is easily seen that the averages

(el 2 mrea)})

where s;, satisfy the condition (1.104) as before, are equal to
3

11 <T{exp (z Z I/j7aR(,(5j)> }> .

a=1 1GKN+1 Lo

Thus, taking (1.113) into account, we can write

(el X me)),

3 N N
_exp( Z Z Z AJl ,J2 jla ]/2 a) (1120)

a=1j;=1jz=1
where
r_ + r_ r _ / _
Via =Via TVN+lLary V2q=V2a V3a = V3,ay =+ VNao=VNa:

(1.121)
Consider the expression

‘/‘<T{ei21<j<N+1Vj‘R(Sj)}> eiizlgjgN-*—luj'R; dVldVN dVNJr],
r
(1.122)
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where R;- are real vectors and the integration with respect to each variable

Vj.« is over the whole real axis. Let us denote

Vi —VN+1 / /
f:’/N+1v V1+VN+1:V17

and note that

Z yl'Rliyl.Rgl_FR/JVJrl
J g — Y10 T

2
1<K N+1

+ Z Vj'R;‘+V§V+1'(RI1_ 9v+1)7

2<j<N
J()dvy - dvngy = f()dvy - duy .

From another point of view, (1.117) shows that the magnitude (...)r,
which is contained in the left-hand side of (1.119), does not depend on
Vv, 1, thus the integration over vy can be done independently:

feiwg(RllleN“) vy, = (2m)*6(R} — Ni1)-

Therefore

2
i1 <jent1 ViR(s) ‘ |
1 <T{e( 1<GSN+1 Vi I ) }> et 1Nt yj.Rj{DNV}
r

Wmf

N N
_Z ZAHJQ Vit,o Jza_ZZVJa Jre

§(Ri —R 3 T L L
= MR Rl 747 = oy
a=1
N N N
5(Ra — Rvss) 3 - Z Z Aj1,72Tj1 %52 *iz z;Rj
= - - - 7 e j1=1j2=1 j=1 D xV.
(27T)3N O];[lf { N }

where {Dy v} =dvy -+ - dvn dvn g, {DyV'} = dvy dvy, - duﬁ\,’a,
a {Dnx} = dxydxs - - - dey. Calculation of the usual Gaussian integral
results in

fexp( Z Z Aj1ja Ty Tjy — ZZ Zj Ja) dridzy - - - doy

J1= 172=1

7TN/2 ,
= (DetA)1/2 ( Z Z J1712 J1,GR]27 >

Jl*l Jj2=1
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Because the matrix A is positive-definite,
Det A >0,

the inverse matrix A~! is also positive-definite. We now have

1 i ) CR(ss —i )
(Qﬁ):s(Nﬂ) f<T{6 Licien ViR J)}>Fe Laggena ViR {DN+] v}

/ !/

:p( 1> 257 ?V_;,_l), (1123)
Where {DN+1IJ} = dVl I dVN dUN+1 and

/ / / _ 1 5(R,1 *R§V+1)
p(R17R27~-~a N+1) - 23N7T3N/2 (DetA)3/2

=~ =

N
Z Jl \J2 ]1 aR;2 a> (1124)

1]2 1

N
X exp(— >
Jj1=
It is obvious that
p RlaR27"~7RN 1) =20,
( +) (1.125)
Jp(R1,Ra,....;Ry41) dR1dRy - - - dRyy1 = 1.

These equations can be applied to disentangle expressions of the kind

<T’{f(].:{,(81)7 ceny R(SN+1)}>F-

So, consider a function

f(Rlv "'7RN+1)7
that depends on N + 1 real vectors and whose Fourier representation is
f(..R;..)
1 (S viR,—Y . ViR
= G /¢RI U SLRY) (Dy RHD, ),

where j =1, ..., N+ 1and {D,, R’} = dR}dRj - - - dR)y, . Because the
operators R(s;) commute under the sign of the T-product, we can write

T{f(R,(sl)7 ...,R(SN+1)} = (2”)3%

X fT{BiZU) Ris;)v; }e_izm V7R;f(R;) {DN+1R/}{DN+1 v},
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where {D, R’} = dRdR) - - - dR/y ;. Therefore, thanks to (1.120),

N+1

(T{f(R(s1),..,R(Sn+1) )1
= [ FC- RO )p( R dR, AR, -+ dRly,,  (1.126)

and, taking (1.122) into account, we see that
M > (T{f(..R(s;)..)})r >0,

if
M > f(..R(sj)...) = 0. (1.127)

Now let us consider functionals F'(R) that depend on real functions
R(s), defined on the interval

0 < s < Bh,
and use the following notation for the functional integral:

I F(R) dpu.
For a subset of “special functionals” of the type

FR) = 2(...R(sj)...),
that depend on a finite number N of vectors R(s;), we define this integral
by the following procedure:
[F(R) dp = @(..R(s5)...)p(...R;..) ] dR;.
()
Then, thanks to (1.123) and (1.124),
(T{fR)})r = | F(R) dp,

(1.128)
(T{fR)}r =0 if F(R)>0
for arbitrary real vectors R(s). These relations can be generalized for a
broader set of functionals F'(R) if one approximates these functionals by
corresponding sequences of the above-mentioned “special functionals” with
subsequent passage to the limit N — oco. For example, we can consider a
sequence of functions

RN(S) = R(Sj), Sj <s < Sj+15 j = 1,...,N (1.129)

51=0, sny1=0Bh,

|sj+1 —sj| <As—0, N — o0
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and approximate the functional F(R) in question by the form F(Ry),
belonging obviously to the class of “special functionals”. We should like to
stress here that the technique of functional integration was developed first
by R. Feynman. His method (known as the “path integration method”)
was also applied by him to problems of quantum statistical mechanics
[5, 39].

In our approach, we prefer to deal directly with the averaged T-
products

(T{FR)})r.

Moreover, the only property we require is the nonnegativity of all these
averages in the case in which the functionals F(R) are positive:

(T{F(R)})r =0, (1.130)

if F(R) > 0 for arbitrary real vectors R(s). Let us choose instead of the
Hamiltonian T, given by expression (1.83), the Hamiltonian

1
H(E) =53 (osps' +wPapa)), (1.131)
)
ph=p_y, di=aq

As has already been stressed, one can introduce Bose amplitudes by

1/2 12
qa = (mfzf)) (by +0 ), wzz‘(”é”) (b"; —by), (1.132)

and can transform H(X) into the form

_ t 1
H(E) =) hw(f)bhbs + 5 hw(f). (1.133)
(f) (f)
Let us consider
Bh th ds 3 Af(s)Qy(s)
T I ds %;)Af(s)Qf(s) Tr e PHE) P D
< {e }>H(2) B Tr ¢ PEE) ’
(1.134)
where
H(X H(X
Q¢(s) = exp (8 75 ))qfexp (—S FE )) ) (1.135)

Here we are going to analyze the situation where all operators A(f)
commute with each other, as well as with all operators Qy(s), H(X), so
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that when calculating (1.131) we can treat A (s) as the usual C-functions.
Hence, using (1.82), we get

Bh
[ dsy Ap(s)Qy(s)
<T{e° 5! }>
H(Z)

1 hB8 BB
exp( fdsfdo< {ZAf 5)Q(s) ZAf,Qf, }> )
H(Z)

)]
On the other hand, it follows from (1.89), (1.129) and (1.130) that

<{ZAf (5)Qy(s) ZAf’Qf’ }>

(f) H(%)
= As(s)A—p (o) {T{Qy(s)Q- (o) (s
(f)
= ZAf(S)A,f(U)% (1 — e_ﬁwfh)_l(e_wﬂs_fﬂ + e—wfﬁh-‘rUJHs—U\).
Thus
T sy As(9)Qs(s)
S f S f S
o (€D
(r{e s
hp h3 TLA 7Wf\.sfo'|+ *Wfﬁﬁ#»wf\sfa\
eXP(f dsf oy s(s ” -1(0) (e 1_z_gwfh )>.

f)
(1.136)

Let us assume that ...Ay... are operators commuting with any of the
operators ...Q... and H(X), but not commuting with each other. Of
course, equation (1.133) does not hold at all in this case. However, consider
the situation where the left-hand side of (1.133) is subjected to another
T-ordering operation that does not affect the operators Qf, H(X), but
puts in order only operators containing ... A¢.... In short, we consider just
the expression

Bh

[ ds[A(s)+3 Ap(s)Qr(s)]

T/{<T{€O ) (2)} (1.137)

where A,... A¢... are operators dependent only on those variables of the
wave function that are not influenced by the operators H(X),...Qy... and
vice versa. Here the symbol T” implies only the procedure of ordering for
operators

A Ay
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Then (1.134) can be rewritten directly with the help of (1.133), as if
A,...A;... were the usual C-functions. Consequently,

T aslA()+5 Ap()Q5(9)]
r{(rfet T D s}
H(S)
h

K8 B
= 7' exp %fdsfdUZAf(s)A,f(U)Q—(l—e_ﬂ“’fh)_l
L ) !

h,
% (e—wfls—o\ _|_e—wfﬁh+wf\3—a|> 4 fﬁds A(s)> } (1.138)
0

1.7. Auxiliary Operator Identities

Let us consider the operator equation

U — g+ Hy(5)}U s), (1.139)

where U(0) =1 — is the unit operator, and H (s) is an operator that can
depend explicitly on s. It is easily seen that

U(s) = T{eé Z{H”Hl(”)}d”}

Then substitute into (1.136)
Hgs
U(s)=e 1 C(s).
This ansatz leads to the following equation for C/(s)
Hogs Hgs
hdiis) — P H () C(s), C(0) =1,

which equation can be solved formally as

18 Hoo _Hgo
et~y ke )

Therefore

vt —zf oo

1
= e_HOBT{e "
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In the particular case, where H;(s) = H; and does not depend on s
explicitly, (1.136) gives

U(s) = e_(HDJrHl)%,

and it follows from (1.137) that

Bh
/
0

St

(1.141)

Hgs Hgs
— dse h Hije h
e~ B(Ho+H1) _ e—ﬂHoT{e }
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Chapter 2

EQUILIBRIUM THERMODYNAMIC STATE
OF POLARON SYSTEM

The main objective of this chapter is the derivation of Bogolubov’s
inequality for the polaron reduced free energy by means of the algebraic
T-product method. This inequality is a source of various upper bounds
for the polaron ground-state energy. Feynman’s well-known inequality
is reproduced as a particular case of Bogolubov’s inequality. A weak-
interaction systematic finite-temperature perturbation scheme, based on
the same T-product formalism, as well as the adiabatic perturbation
approach, valid for the strong-coupling case, are also outlined.

2.1. Free Energy and Ground State Energy Calculation

Let us consider the standard polaron Hamiltonian

Hp =H(S)+ H(X) + Hint (S, X), (2.1)
where 5
- b
H(S) = 2m’

1
H(E) = 33 Apsph +*(Nasaf}, ey =daf, pgp=p}  (22)
0

Hus(8,%) = —5 S L(Nase™,  L(f) = L(=f) = L'(f).
(f)

Here, as in Chapter 1,

_ (2mn1 27mng 27ng
I= ( L’ L' L ) ’
where (n1,n2,n3) are arbitrary integers and L3 = V.

We can see that H(S) is the Hamiltonian of a free particle of mass m,
(the electron in polaron theory); H(X) is the Hamiltonian of the phonon
field, and the Hamiltonian Hj,(S, ) describes the interaction between
the two systems 3 and S. In the case of the standard Frohlich model

L) = 5

w(f) = w = counst.

g = counst, (2.3)

63
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If we want the Hamiltonian Hj, (S, ) to contain only a finite number of
terms (until the formal passage to the limit V' — o), we must put

£ for |f‘ < fmax
L(f) =4 ISl 2.4
(f) { 0 for Ifl> fom (2.4)

Staying within the framework of the standard Frohlich model, we shall
assume that
fmax — 00 when V — oo.

However, we can consider the case when f,.x is held fixed forever dur-
ing passage to the thermodynamic limit. The physical justification for
this assumption originates from the fact that the Frohlich model does
not take proper account of the lattice structure. Thus a contribution
to the interaction Hamiltonian Hin(S,Y) from any vector f such that
|f| > 2m/a, where a is the lattice constant, is not represented correctly in
the expression (2.2) and should be omitted.

The free energy for the Hamiltonian Hp is given by the usual expres-
sion

-0 In Trg x ePHP,

This quantity is divergent in general. To make it finite, we must
subtract the free energies corresponding to the free particle S and to the
free phonon field 3. As a result, we arrive at the so-called interaction free
energy corresponding to the Hamiltonian Hj, (S, X):

—3 In Trg s e?HPr — (—19 In Trg e®7) — 9 In Try, eBH(Z))

Trs e PHP
~BHS) Tyy, ¢ PH)

=—9In (2.5)

TI‘S e

Later we shall keep this expression in mind when considering the polaron
free energy.

It is usually assumed that the particle in question (i.e. the electron in
polaron theory) is confined within a limited region of space. This means
that the radius vector r of the particle S lays inside a finite volume V.
However, from a technical point of view, it is far more convenient to
assume that the radius vector r can take any value. To compensate for
the unwanted consequences of this assumption (namely the divergence of
the free energy of the free particle), we add an auxiliary term n%r?/2 to
the Hamiltonian H(S), which now reads

2 2.2

H(S)=T = ;Lm + 77; _ (2.6)

This auxiliary term ensures soft confinement of the particle within
some effective volume. Smaller values of 7 lead to softer confinement, and
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thus to larger effective volume, and vice versa. Of course, we take the
passage to the thermodynamic limit

n—oo, V — oo (2.7)

in the final results. In so doing, we see that the interaction free energy
can be represented finally by the following expression:

F® = hm hm F(p)(V,n),

int 0V int
where
(p) . Trg,s e PHP
Fp (Vi) =—91n Trge PHO) Ty o AHE) (2.8)
Let us use (1.138), in which we choose
Hy=H(S)+ H(S) =T+ H(), (2.9)
Hy, = Hint (S, 2).
We denote
Hgs Hgs Hgs Hgs
R(s):efgre* n Qf(s)zef?qfef n
Then (2.2) results in
Hgs Hgs
eTOHint(S, E)e’TO - 1/2 Z et Rs)
and it follows from (1.138) that
o—BHP _ e—ﬁH(S)e—ﬁH(E)T{eXp( - f dSZL i R<s>>}
(2.10)

Note that H(S) =T and H(X) act in completely different subspaces,
corresponding to the systems S and X. Therefore

r H(Z) H(Z)

R(s) = eF Sre~h 5 Qf(s)=e n “gre” " n °. (2.11)

Because R(s) acts only upon the variables of the system S, and @ f(s) only
upon the variables of the system ¥, the ordering T-operation in (2.10) can
be carried out in two steps: first of all we put into the proper order all
the operators Q¢ (s), and after this we order all the operators R(s). Thus
we find from (2.10) that

e*ﬁHp — @BFeﬁH(Z)TR{TQ{eXP ( 1/2 f dSZL Zf.R(S))}} .

0
(2.12)
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Note further that the operator e?(*) can be placed after the symbol
denoting the operation Tr, because this operator does not act upon the
variables R(s). Taking this possibility into account, we find from (2.8)

Trse e PP TR {F(R)}
—BT 9

FPW gy =-0n

int

2.13
TI‘(S) e ( )

where

F(R) = <TQ{eXp <—71‘jm?ﬁds(zf):L( f)Qf(S)eif'R(S))}>H(E).

In order to transform the right-hand side of this expression, we can
use (1.134), in which we make the substitution

T'—Tr, T—Tq
and put

—_L(f)eTRE = w. (2.14)

we obtain
TR{6¢}—TR{<TQ{exp( iz f dSZL Qf zf»R(s)>}> }7
v (f) HE)
(2.15)
where

h Bl
= e LR (L= e
()

« f dshfﬂdo( —wls=ol 4 gmwBhtels—ol) i (R R} (2 16)

Since €® on the right-hand side of (2.15) is a functional of the variables
R(s) only, not containing the variables Q¢(s), there is no need to intro-
duce special notation Tg. Therefore we shall denote the right-hand side
of (2.15) simply as

T{e®}.

Thus we obtain from (2.13) that

FP/(V ) = =0 In (T{e*})r. (2.17)

int
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Let us return now to the quadratic Hamiltonian of Chapter 1 and
rewrite it in the form

HY = H(S)+ HY (%) + HE

int

(S, %), (2.18)

where

H(S)=T
is given by the expression (2.6) as before, and

1
HP(D) = 3 S {psph + v (fara} )
0

K22

H(8,%) =

1/2 > S(fasf-r (2.19)
5

NS i N g,
6V(zf): T +V1/2%): (fasE-r.

We can repeat for the Hamiltonian H®) all of our previous arguments,
developed for the Hamiltonian H), if we put in (1.135)

K¢R?
Als) = TRy 5) = - L YS(U)ER().
(f)

As a result, we obtain, instead of (2.17), the new expression

FOW m) = —9 In — 1o S —9 In(T{e*})r, (2.20)
int 21 Trs eﬁr TI‘E eﬂH(L)(Z) I !
where
Dy = — KO i 7 dsR2(s) + fdsf daZS2
0 ( )
(f)
Kl, (s,0)f-R(o) K
? R 0 fd R(s)
hB  hpB K, (s,0)R(s)-R(0)
2 v(f)\°s
f dsf daZS V(f) =y . (2.21)
and

K5 (s,0) = e~ VWDls—al | o=r(f)BRt+v(f)s—0l (2.22)
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It follows from (1.91) and (1.102) that

1— e_ﬁh’/(f)

2777177,%
> G
Bh

3 2mn/Bh) v (f)

Ky(5)(s,0) = 2v(f)

Hence
hB
v —Bhr(f)\—1
({do o (1 ) Ky (5 (8,0)
hp3
d 1 — —Bhv(f) —1K _ 2 ﬁh 2h
sas g e T T K 80) = 5 50 = g
Therefore
h3 KB
b2 [ ds [ do s (1= e D)) (5. 0) [R(s) + R (0)]
0 0
_ 1h 1 2 1h 1 9 1 Y 1 2
= Ré d 520 (s) + E({ do 270 R%(0) = o7 (j)” ds 22 0) R*(s).
Since 152 P
Kg v Z 2 T3
4 T (f) 3
we can see that
K213 hg f 5 Kui) (5, 0)[R(5) + R (0)
2—;2 é dsR?(s) = g %; &) 1o oD :

If we introduce the notation

1 SQ(f)fQ [e—l/(f”S—U\ + e_u(f)ﬁh+u(f)|s—a\]
e - h . (2.23
(Is —al) \Y4 % 6v(f) (1_e—ﬁhu(f)) ( )

then it follows from (2.21) that

hB  hB 9

Oy =—[ds[ doL(ls—o|)[R(s) —R(0)]*. (2.24)
0 0

As the next step, we shall try to consider this functional as a possible

approximation to the true initial functional ®. Our aim is to derive an

approximate expression for the polaron interaction free energy (2.17)
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Generally speaking, if y is a quantity of the first order of smallness
then, up to terms of the second order of smallness (in fact, we may neglect
such terms)

Tty d§
z &

Thus, regarding the difference ® — ®( as an expression of the first order
of smallness from a formal point of view, we can write in the “first
approximation”

o~

In(z+y)—In(z) =

SHES

T{e®(® — Po)})r
(T{e™hr

It is interesting to note that the corresponding approximation

(T{e™(® — ®o)})r
(T{e™ })r

provides us with an upper bound on the interaction free energy calculated

for the initial polaron Hamiltonian (here “app” assumes approximation for
precise linear model):

In (T{e®Wr = In (T{e® })p + &

appF (V) = =0 In (T{e® })r — 9

int

(2.25)

app B (V.m) > FL (V). (2.26)
To prove this statement, consider the function
F(€) = In (T{ePote(P=®)})p, (2.27)
We have _
f’(g) _ <T{6<I>0+§(<I> @o)((l) _ (I)O)}>F (2 28)
(et e |
and hence B ,
<T{e<1>n+5(<1> éo)(qy —®g— f (f))}>r —0. (2-29>

(TP T
Further, by means of (2.28) we find that
(L™ (@ — @)
<T{e<1>o+£(<1>—<1>o)}>r

<T{e<1>o+§(<1>—<1>o)(q) _ @0)}>F<T{e¢o+§(¢>7%)(@ _ ®o)}>r
<T{e¢o+§(¢>—®0)}>r2 '

(€)=

It follows from this equation that

" _ <T{e<1>o+£(<1>—¢o)((1) _ @0)2}>F
f (6) - (T{e<1>0+§(<1>—<1>0)}>1,

=—(f'(&)°

(T{e™*=20) (& — dg)* — (£/(€)*)]})r
<T{e¢0+£(¢—¢o)}>r ’
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On the other hand, taking (2.29) into account, we can write

(T{ePotE@=2)[(& — D) — (£(£))*IP)r
= (T{e® =2 [(@ — Bg)* — (f'(£))* = 2/ (&)(® — Do — ['(£)]D)r
= (T{e™ =2 (® — &y — '(€))*})r,
so that

ePOHE@=R0) (B — £(£))2 W)y

We see that the expressions

(PoHE@—R0) | Bo+E@=D0) (G _ G — [/(£))?

are positive for arbitrary real R(s) if they are considered to be functionals
of R(s) for (0 < s < Bh). Thus, using the property of the I'-averages for
T-products investigated before (see (1.127)), we can show that

17(€) > 0. (2:31)
It follows from (2.31) that
1€ = f0) if £=0

and

or
£0) + £(0) < f(1).
Multiplying the last inequality by —, we obtain
—9f(0) = 9£'(0) > —0f(1).
Taking (2.17), (2.25), (2.27) and (2.28) into account, we get
~0f(1) = Fyo (V).
~9£(0) = 9f'(0) = app s (V. m),

and consequently our main inequality (2.26) is proved. It can now be
noted that, because of (2.20) and (2.25), we can write

T{e™(® — ®o)})r
(T{e™}r

It is worth stressing that the quantity Flnt (V,7n) has been calculated in
Chapter 1 (see (1.50)—(1.54)), as well as the limiting relation

app FLD (V) = app F{2 (V. ) — 0 (2.32)

Y = hm hm FE )(V,n)

int int
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(see (1.54)). For the special case when H()(X) is a single-frequency
Hamiltonian, i.e. when v(f) = v = const, we obtain a simple closed-form
expression (1.56) from the Chapter 1 for F),

int
Let us now transform the second term on the right-hand side of (2.32).
Taking (2.16) and (2.24) into account, we obtain

<T{eq>(q> —P0))r 1V ZL2(J£)£ (]_ _ e*ﬁhw)fl

(T{e™Pr 20V & 2w
h8 KB ®o+if-{R(s)—R(c)}
x [ ds | do(e=¥Is=0l 4 gmwBhtuls—aly (T q) b
0 0 (T{e™* })r
hB RS ®o _ 2
+ [ds| dO’L(‘S —CTD<T{€ [R(S)q) R(o)] }>F
0o 0 (T{e™Pr
Thus we need only to transform the expressions
(T{ePo+F [R()-R(@)]yy (2.33)
(T{e™})r '
(T{e™ [R(s) - R(9)*))r- (234)
(T{e™})r
To do this, we first calculate the auxiliary expression
e
Do+ [ ds A(s) f-R(s
(e IRy (2.35)
in which we can put for example
A(s) =i[6(s — s1) — 0(s — s0)], (2.36)

0<sg<pPh, 0<s1<ph.
Consider the operator equation

RO — () (s £ U (s)

= —[H(S)+ H(X) + HY (S, %) — hA(s) £ - 1)U(S), (2.37)

int
U(0) =1.
This equation corresponds to (1.136), in which we put
Hy=H(S)+ HD(%), H(S)=HL(S,%)—hX(s)f-r.

int
We repeat our previous reasoning when calculating the magnitude
Trg s U(Bh)

- —gH() ’
Tr g, e 7 Ty, =21 )
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noting that in this case, when using (1.135), we have to choose

_ KgR*(9)

A(S) o7,

+ A(S) f-R(s).
Thus we can find that
Tlr&Z U(Bh)

<I>0+hfﬁ dsA(s) f-R(s)
= (rfe T ey
Tr e—ﬁH(S) Tr,, e PH (=) r

(5)
But, because of (2.20),

Tr e_ﬁH(L)
S,2

Tr(s) e PH(S) Try, efﬁH(L)@)

Bh
<T{e%+g ds A(s) £-R( >}>F T, U(BR) (2.38)

(T{e* h)r Trg . e Py

Let us now return to (1.136) and (2.37), and choose

= (T{e™})r.

Thus

Ho=HWY,  Hi(s)=—h\(s)fr.
Then, because of (1.137), we find that

ns s s
UhB) = e_ﬂH(L)T{eXp<f ds )\(S)eH(L)ﬁ f- re_H(L)h) } (2.39)
0

We note that in the Heisenberg representation the operator r(t) defined
by the linear equation of motion, which is induced by the Hamiltonian
H®) | would be as follows:

L) it
r(t) =en ' remin

Therefore s (L) s o) .
eh re h =r(—is).

It follows from (2.39) that

U(hﬂ) _ e’BH(L)T{eFZﬁ dsA(s) fr(—is) }

Thus

hB
Trs s U(BR) <T{e({ dsA(s)f~r(—is)}> (2.40)
H@D' ’

Tr e_*BH(L)
S,2
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Because HY) is also a positive-definite form composed of Bose operators,
we can use (1.82) and write down

St

s _ 9
<T{e£ A f.r(ﬂS)}>H(L) = exp<T{ (T{Bds A(s)f- r(—is)) }>H(L).
But (1.52) gives the identities
(ra)rar(m)pw =0 if a#d,
(ra@ra(m) g = (MO (1) pw, a=1,2,3,

from which it follows that

(1{T asrratis) [ asaor, “3)}>H<L>0’ "

(ool - (er )

and

{(fason o) - (gl
£l (oo,
-£{e{(foronco ),

We can derive from (2.38) and (2.40) that

hB
%eé dsA(s) £-R(s) 5
<T{e }>p _ epr6<T{ (?ﬁds)\(s)r(—is)>2}> :
0 H(L)

(T{e™ Hr
(2.41)

In particular, for the function A(s) defined by (2.36), relation (2.41) results
in

<T{e<1>o+if~[R(-91)—R(82)1}>
(T{e™ })r

or, after a change of variables,

r _ 67%(T{[r(fisl)fr(fisz)]2}>H(L),

(T{e% +if-[R(s)—R(o)] Mr

(T{e™ })r
If we apply the operator

_ 67%(T{[r(fis)fr(fid)]2}>H(L). (2.42)

—Z

3fa
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to both sides of (2.42) and put f = 0, we obtain

e [E“(‘[Se)éz}i(a)]2}>r = (T{(r(—is) — r(—i0))*}) gw- (2.43)

From (2.23), (2.42) and (2.43), we can derive the identity

1 h — Bwhy—
app Fi (V) = app FG) (V.n) = 0 DL (f) g (1= %M
()

h h
X fﬂds fﬁdo (e7«lsal + e—w5ﬁ+w\s—ff\)e—fﬁf<T{[r(—z’s)—r(—wnzwmm

g 1 S*NOFR 0 Bru(f)r—1
194#1/%; 6v(f) (1-e )

thﬁdshfﬁda( (Pls=ol . g= (DB DIs=0l) (L [p(—is) — r(—ic)2}) greo.

(2.44)
We should note that the expression

(T{[r(~is) = x(=io)]*}) ey

has already been considered in Chapter 1. So, keeping in mind (1.71) and
(1.72), we can write

(T{[r(~is) — r(=i0)*}) grws
@ +002(1 _ e—V\S—C’|) 1
2T oo 1—e ™ mQ? —nQ+QA((Q)

v+10

dv, (2.45)

v—1i0

where (see (1.20))

_ IS g 1 1
A(Q) = V(f)6y2(f)f <Q+y(f)+Q—y(f))' (2.46)

We are now going to consider the classical limit of the expression
(2.44). To make a transition to classical mechanics, we should take the
limit & — 0. It is convenient to introduce new variables in (2.44):

s=hs', o=ho.

Then we can see from (2.44) and (2.45) that

(P) _ (L ) 2
app Fy," (V) = app Fy,, (V Y ZL 7_@‘0)
(£
Ié] B —whl|s'—o’| —whpB+whl|s'—o’|
x [ ds' [ do'C te )

f2
0 0 rir-ins)—x(=ina"})
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9 ST h
4V F 6v(f) Qw(l_efﬁfw(f))

163 B8 —v(f)h|s'—a’| —v(f)RB+v(fR|s' —o'|
xfds'fda’(e te )

5 ;o (2.47)
0 0 o (T (=ins)) —x(=iha 2D 1)
(T{[r(—ihs") — v(=iha")}) g
- +oo , , v+1i0
L) N dv, (2.48)
21 o1 —e ™ mQ® — nQ + QA(Q) lv—io

If the variables V and 7 are fixed then the expression for A(£2) contains
only a finite number of terms. Hence we see that

(T{[r(—ihs") — r(—=iho")*) gy — 0 for h — 0.

Observing that all sums in (2.47) contain only a finite number of terms,
we have in the classical limit

app F.) (V)

Z (2.49)

2V2

because it was shown earlier that for classical mechanics the following
identity holds @
app F," (V) = 0.

int

We shall show now that (2.49) gives the exact value of the free energy

app Fi(nlt)) in the classical limit. In fact, the Hamiltonian H®) is the sum
of the potential and kinetic energies. Therefore, in the case of classical
mechanics,

FP) =kin FP) 4 pot FP), kin FP) = kin Fig + kin F,

and P
F‘l(nt) — pP) _ Fg — Fs, = potF(P) — pot Fig — pot F¥..

Therefore we arrive at the expression

r k2
feXp( L 1/221’ Hage™ ) dr Dq
Y @) @)

2.2

[ exp (—ﬁn; ) drfeXp(—TZqu}) Dq

(€))

FPwv,n)

int

(2.50)
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Here
qr =xf +1yyr, q—fy =25 —1Yyf,
l.e.
Tf=2f, Y-f = ~Yfs
and

Dq = H/dl'f dyf.
()
Here the symbol H/ denotes that only different dzy and dy; are

included; thus if f # 0 is included in the product then — f is not included.
After the change of variables

L(f) s t i L) e
N e ", dy — 4y — Sy2 enr,

qf — 4qf —

the expression

2
w T ﬁ if-r
5B (Ef) 9yt i (Ef) L(f)gse

transforms into

’ ’ L(f) €
2 5 e} L 4
)] )]
+Lﬁ L(f)+ B ZL(f)qfeif\r_é L(2f)

2 4V 1/2
o ¢ ViTm o Y

2
=D asd) - ngv > LA(f).
5 o

—if-rq} + eif-rqf
2

w

Therefore (2.50) can be represented as

FL(V.m)
ro [ BT N BN
xp | =075 = 58 ara) + 5D LX) | de Dg
9 5 Yo
Jexp| — e’ d —5—“)2 "D
I r [exp 5 > 4rd} | Dq
()
=LY LS. (25D
T ovw? ' '

()

Hence we see that in classical mechanics the approximation given by (2.49)
leads to the exact result.
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Now we shall investigate (2.44) in the quantum case. It is convenient
to use the function

v(f) +w) +(w(f) —w)] (2.52)

introduced in Chapter 1. With this function, (2.44) can be rewritten in
the form

app Fl(nt)(vﬂ 77) mt (V 77)

9 ) B e )
— L ———— [ds [ do
4Vh? % <f)w(1 — efmw) ({ ({ ef62 Dy (s,0)
00 R hp
% [ deo By ()~ ho fds] Cdo(e—sli0l | g=Bhursls=ol) D, (s ).
0 —e
(2.53)
where (see (2.45), (2.46) and (2.52))
3ih To1 — e @l 1 wi0
Dy (s,0) = 20 dw,  (2.54
v(s: o) T oo 1—e ™F mQ® —n® 4+ QA(Q) lw—io “ (2:54)
__TPEv(w)
A(Q) = Lo (2.55)
We note that, because of (2.52),
Ey(w) 20,  Ey(-w)=Ev(w). (2.56)
It follows from these relations and from (2.55) that
oV PEw) _ T EW _
A(-Q) = J;OE = 7{”% =—-A(Q). (2.57)

Let us introduce new notation for brevity:

1 3ih (1—e @l
= ®(Q), — ) = .
mQ® —n’ + QA(Q) ) m ( 1—e P ) o)
Then the right-hand side of (2.54) can be expressed as
—+oo

T {P(w +i0) — B(w - D)),

But it follows from (2.57) that

and in particular,

®(w +i0) — B(w — i0) = D(—w — i0) — B(—w + i0).
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From here

jf:qs(w){cp(w +i0) — B(w — i0)}dw :J:f:qﬁ(—w){‘b(w —i0) — ®(w + i0) Vo,

that yields

o) {®(w + i0) — ®(w — i0)} dw

1 +oo

— 3 TH0W) — o-)H(w + i0) — Bw — i0)} do

On the other hand,

1— e—w\s—a| 1— ew\s—a‘\ 14 e—huﬂ _ e—w\s—n‘\ _ e—ﬁhu-&-w\s—(ﬂ

1-e B hed 1—e P
Therefore we can derive from (2.54)
i +00] 4 M98 _ gmwls—ol _ —Bhutwls—ol 1wti0
21 % (1—e ") (mQ2 — > + QA(Q))  lw—i0
It will be noted that (1.91) and (1.102) give us the following result:

Dy (s,0) = dw. (2.58)

sS—o

e—u\s—a| +e—hwﬁ+w\s—a| Z znZWﬂih
2w(1 — e~ ") ﬁ (2mn/Bh)* +
cos {2mn(s — a)/ﬁh}
. (2.59
ﬁ Z 27rn/ﬂh w? ( )
Thus
h(l + e—huﬁ _ e—w\s—cf\ _ e—ﬁhuﬂ—w\s—o‘\) _ 1 Z 1— einQﬂsﬁ;ha
2w(1 — e P B (2nn/Bh)* + w?

(n0)

_1 1 —cos{2mn(s —o)/Bh}
= (%) @)+ o . (2.60)

These expressions are valid in the domain
s<fh  0<o<ph, (2.61)

but their right-hand sides are defined for all real s and o and they are
periodic functions of s — o with period Gh. It follows from (2.58) that

Dy (s,0) = Dy (s — o), (2.62)



2.1. Free Energy and Ground State Energy Calculation 79

B 3k T 14+ e—ﬁwﬁ _ e—wlsl _ e—ﬁﬁw\s\ w—+10

2T oo (1— e P (mQ% — 1 + QA(Q)) ‘w—io

dw, (2.63)

This function can be continued to the whole real axis,

3 +001 _ 2 1 w410
Dy(s) = é QCOS{ TQS/ﬁz} 2 :} ‘ dw,
w0~ 2mn/Bh)" +w” mQ° —n" + QA(Q) lw—i0
(2.64)
such that it is periodic and symmetric one:
Dv(—s) = Dv(S), Dv(S + ﬁh) = Dv(S) (265)

Let us consider the functions
R(P)(s) = (e + efﬁhwﬂ’s)e*% Dv(s)  0< s < Bh,
’R(L)(s) = (e7% 4 e Phwtws Dy (s).
Taking (2.59) and (2.64) into account, we can show that these functions
can be continued to the whole real axis s in such a way that they possess

properties of periodicity and symmetry similar to those given by (2.65).
Hence we have the identities

RIPD) (5 Z RPD 2mingy
(n)
and
REPD) (5 Z RPDe 2min 5>
(n)
from which it follows that
hf do RWPE) (s — o) = RSP’L)ﬁTL = hf do RP P (),
R i (2.66)
é dsé do R (s — o) = ﬁhé do R (a).

Thanks to (2.65), which are satisfied by the functions R("%)(s) too, we
have

R Bh/2 A
jﬁ do R () = f/ do R (o) + ﬁj do RED) ()
0 0 Bh/2

Bh/2 Bh/2 Bh/2
_ f dO,R(P,L)(U) 4+ dUR(P,L)(ﬂh,U) =2 ng(P,L)(U).
0

0
(2.67)
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Therefore (2.53) can be transformed into the following:

P L
app F.2 (V) = app F2 (V)

1 1

2 (s " o (e Bhetwo) & Dy (o)
- - e wao _’_67 wt+wo e’6 o
a4V ( )w(l_e—ﬁuh) g J( )
)
LT w " - —Bhw+
- = fdwEv(w)W [ do(e”“7 +e 7T\ Dy (o), (2.68)
49 l—e 0
or, equivalently,
P L
app Fyy, (V) = app F (V,n)

1 1 5h/2 —wo - wTwo 7ﬁ o
= oy L e | dolenr ety Pr(e)
()

1°° w ph/2 —wo —Bhwtwo
Let us proceed with the passage to the limit
lin}) Vlim . (2.70)
n— — 00

Then, using the identity (2.26), we have
app Fi,) > iy, (2.71)

where
)

app Fi . lim lim app Fi(nf)(v, ). (2.72)
n—0V—oo
It should be stressed that the functions S(f) and v(f), which characterize
the auxiliary Hamiltonian H(%), could be chosen arbitrarily.
To calculate (2.72), it is convenient to choose for S(f) and v(f) some
continuous functions on the real axis, such that

1 S(f) 2 1
0, = . <o(=) — 0,
e LS A pei(d) o

where 0(1/R) does not depend on V. In this case, if ¢(w) is an arbitrary
continuous and finite function on the real axis then we have

T o)) = g S5 o) + v}
()

2
v

1 S*(f) 2 y .
(27r)3f6u2(f)f {o(v(f) + d(=v(f))} df
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dr o . S?
= T S pown) +o-u())} when V- oo (273)
(2m)" 0 © 6v(f)
Thus the generalized limit
E(w) = lim Ey(w) (2.74)
— 00
exists and we can write
“+oo V—o0 +oo
[ dwd(w)By (@) =2 T dw¢(w) By (w). (2.75)
This function F(w)has the following obvious properties:
Ew) >0, E(-w)=FEW), (2.76)
oo 1% S%(f) 4
dwFE(w)=— [ d .
_foo w E(w) 672 ({ f 1/2(f) f
It follows from (2.75), in particular, that
+oo
AQ) =A@ = [ 2 when mazo,  (27)
—00 -
and
Ar() = A (—9).
Thus, as we can see,
1 . .
E(w) = 5 {As(w +1i0) — As(w —30)}
- zim {Ao(w +10) + Ase(—w +i0)}.  (2.78)

The calculation of (2.72) should be commenced with the proper choice of
the function A, (£2). Let us choose an analytic function A*(€) that is
regular in the upper half—plane and possesses the following properties:

(1) for large enough R,

AT (Q)] < %7 C =const, [Q >R, ImQ>0;

(2) the generalized function

lim AT (w+ig) = AT (w4 140)

e—0,e>0

exists on the real axis w, and the expression

Qim_ (AT (W +0) + AT (—w +i0)} > 0.
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The integral of this expression, taken over the whole real axis, converges.
Let us now choose

A(Q) =AL(Q), ImQ>0,

(2.79)
AQ)=-A4(-9Q), ImQ>0.
Bearing the conditions (1) and (2) in mind, it is easy to see that this func-
tion (2.79) and the corresponding function E(w) satisfy all the conditions
mentioned above.
Supposing A, to be fixed, we choose S(f) and v(f) in such a way that
the limit conditions (2.74)—(2.76) are obliged. To analyze the expression

lim lim D
nll% Vgnoo V(S),

we start from the definition (2.63), noting that the expression

~hBQ _ ,~Qs _ ,—BRQ+Qs

e

1+
L0 === Q1 —e 7) ’

0< s < fh, (2.80)

is an analytic function of 2 on the whole complex plane that has poles at

2mni
ph

and is free from any other singularities. We are going to show now that
the point = 0 is not a pole, so the function (2.80) is regular in the
vicinity of this point. In fact, the expansion in powers of {2 = 0 results in
the series

Q= where n is an integer,

14 e B2 _ o=0s _ o= BRQHQs Q2 (Bhs — %) + Q3 ...,
Q1 — e MY = BrO% 4+ Q% ...

These expansions lead to the final expansion for the function in question:

—
Therefore the only singularities of L(s,2), as a function of 2, are simple
poles:

L(s,9Q) =s (1 5) +Q.. (2.81)

2mni
0= ah

These features allows us to rewrite (2.63) and (2.80) in the form

n=41,+2 43, ...

3ih +oo Q w—+10
21 oo mQ* —n* + QA(Q) lw—io
0 < s < ph.

dw, (2.82)
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This expression can be treated by the method developed in Chapter 1.
Note that the expression

Q
mQ® —n’ + QAQ)’

L(s,8) 0<s<pBh

is nothing other than an analytic function of {2 that is regular on the strips

27 2w

and has an order 1/|Q|? as Q — co. Therefore it follows from (2.82) that
3k +o° 0 wtie

D == ,Q dw, 2.83

vis) =5 ,foo (s )m92 T+ QAQ) lwie (2:83)

where ¢ is an arbitrary number from the interval

2
0<e< an (2.84)
and (2.83) does not depend on ¢ in this interval. Fixing € , we can go to
the limit
lim lim
n—0 V—oo

in (2.83), thus obtaining

lim lim Dy(s) = 3ih +f00/$(s Q);’WHO dw
n—0 V-0 27 — 0 ’ mQ + AOO(Q) w—10
3ih T 1 w+i0
=5 _éoﬁ(s,w) SN () L_io dw. (2.85)

In order to get the limiting expression

app F) = lim lim app F(P)(V,r])
n

int 0V 00 int

consider the case of the true Frohlich model with L(f) given by (2.3). In
this case

5 2 _1/2 1/2
_ 4ng Je 5 ove g — dmg ”2 <D?S)> . (2.86)
™
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From (2.68) and (2.69), we obtain

(P) g g 1

F = .
app Lypg app Lipg (271_)3 2 w(lie*ﬁwh)

h —wo —whpB4wo 6 1z 1 w
x({do(e +e )(D(g)> —ZofdwE(w)i

hB
X [ do (e=%7 + e~@MBHUTND(g),  (2.87)
0

or
app Fly,) = app Flyy
2_3/2 1 Bh/2 1/2
— &7 3 o | do (6747 + e~ Whitwo) 0
(2m)° w(l—e ) o D(o)

Bh/2
1“}% g do (e™7 + ¢~ D(5). (2.88)

— e

100
- §gdwE(w)

This equation gives a function that satisfies the inequality

P P

appFi(nt) > Fi(nt)a
so that we can try to construct an effective approximation, consider-
ing trial functions A, (2) that contain some variational parameters.
These parameters will be fixed later by the minimization condition for

app Fi(nli)(V,n). To illustrate the idea, we begin with the simplest but
meaningful choice
K§Q K
A () = —ﬁ, Ew) = 70{6(w—1/0)+5(w+u0)}. (2.89)

As pointed out in Chapter 1, this choice is equivalent to Feynman’s model,
in whichH®) is the two-body Hamiltonian describing a particle S that
interacts with another particle ¥ via harmonic force. ® From (2.89), we
have

1 e A e Ve 11
ms + Aoo(Q) mQ(yg — Q2) m& 2uo \ 2+ po Q — po ’
(2.90)
where X
=K K= mid - i),

" See also Chapter 8, Section 4 in Feynman’s book [5].



2.1. Free Energy and Ground State Energy Calculation 85

Hence
1 w+1i0
mQ + A (Q) ‘wfio
. { 1 (v 2 ,u?) — 1/3 }
—ari L (2 6e) + BB 50— ) + 8+ )]
m \ fo 2mpyq

Now we use (2.85), keeping in mind that, because of (2.80),
L(s,w) = L(s, —w).
From this, we have
2 2 2
3h (o 3h po — o
D(s)==| =) L(s5,0)+ =22 .
(S) m (’uo) (37 )+ m H(Q) (SHUO)

This result can be transformed thanks to (2.80) and (2.81):

2
3h [ vo s
L ) 1- 2
D=5, <u0> ’ < ﬁh)
N @ ,LL(Z) 7 I/g (1 + e*hﬁuo _ e SHO _ eﬁﬁuovLS#o)

m 3 1 _ o~ Phuo

. (2.91)

where 0 < s < Bh. This expression has already been derived in Chapter:1
when we considered Feynman’s two-body model. Let us note that for
the choice (2.89) the corresponding expression for app Figllg) has also been
calculated there:

_ —Bhvo
app F) = ~30 I 22 3% (g — 1) 30 i ¢ (2.92)
0

int —Bhuo *
_e Bhuo

Let us substitute now (2.91) and (2.92) into (2.88). It is convenient to
introduce dimensionless parameters

_ Mo _
p== v=— (2.93)
and dimensionless constants
2 1/2
_ __ 8 _m
Ba=phw, o= (Z)" (2.94)
Then, putting
z = wo, doz%dz, 0<2z< By,

in the integrand, we we come to the main result of this chapter

(P) —Baqv
appFyy” _ 3 op 3 1-e 3 -
o = ﬂdnu ﬂdn1—e*"d“+2(u v)
« 6(1/2

[ dz (e * 4 e Pit?)
0
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9 —1/2
v z u2—1/21—1—67%“—67”2—67%‘#2”
X — | z2(1——= ]+ 3 3
M Ba 1 1—e Pk

Ba/2
o 2”(”2 _ 1/2)(1 _ e—de/)—l dé d (e—yz + e_BdV-H/Z)

2 2 2 —Bap —pz —Bamtzp
v z p—=v- 1l+e —e —e
X — 1-— + . (295
{(H) Z( Bd) w 1— ¢ fan } (2.95)

The parameters p and v can be treated as positive variational parameters
that must be chosen to minimize the expression (2.95), thus providing
the best possible approximation for the true value of the interaction free

energy
(P)

int
i (2.96)

It will turn out that (2.90) and (2.95) result in the inequality

2
w2t = 5o 5, (2.97)

mw

Hence the domain of possible values of the parameters p and v is given
by the inequality
w=v>0. (2.98)

Let us begin with the simplest (but not the best) choice of variational
parameters:

w=uv.

For this choice, the approximating formula (2.95) is simplified radically
and reduces to

o Paf2e=z 4 g=Batz dz
T2 f _ B4 1/2° (2-99)
T 0 1—e {z(1 - 2/B4)}

It is easy to see that (2.99) represents exactly the first term in the
expansion of the free energy F; ,’ in powers of the dimensionless interac-
tion parameter a (i.e. g2). In fact, thanks to (2.97), the equality pu = v
corresponds to the absence of the interaction term in the Hamiltonian
H@) | and the functional ®,, which is defined by (2.23) and (2.24), is
identical zero.

We see also from (2.16) that ® is proportional to «. Hence the approx-
imation (2.26) contains two terms of expansion for Fi(n}:) in powers of a,
i.e. the zeroth-order term and the first-order term.
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The zeroth-order term is now equal to zero and the first-order term is
expressed by (2.99). Of course, such an approximation is satisfactory only
in the case of small «. But, on the other hand, it is easy to take further
steps in this situation and to calculate the term proportional to o®. This
can be done by means of the regular expansion

app Fl,) = =0 In(T{e™})r = A1+ Az + -,
Ay = —(T{®})r, (2.100)
1
Ay = —19§<T{<I>2} — A, ...

Here A, is already known, and A can be easily constructed by the method
discussed before.

After these remarks, we may turn to (2.95) and consider it from the
point of view of the minimum principle, which allows us to determine
parameters p and v satisfying the inequalities (2.98). To simplify all
calculations, we are interested only in the case when

1 0

—=—<x1 2.101

5" T < (2.101)
Substituting 84 = oo into (2.95), we obtain an approximation formula for
zero temperature:

wop Fne. _ 3u—v)  3v(® —v*)
PP, T 7 2 4

0o » 2 2_ 2
x [e VF <> 2+ B —— (L—e M%) 3 dz
0 12 1%
. 5 ) ) —1/2
a —vz v n—v —Hz
———[e ~ | z+ 1—e* dz. (2.102
md {Q) e )} (2102)

After integration, we have

- 2 s 2
—vz v no—v —uz v
)¢ {(M) TR <1_eu)}dzz<ﬂ)vz

2 2 2 2
- 1 1 1 - 1 - 1
+ B (= =S+ A=Y ===
w v optv woovpt(ptv) I v p

Thus the two first terms on the right-hand side of (2.102) give us

§ 3v

S =)= (=)=

13 59 2 2y _ 3 N2
W—4H(2u 2py — p” 4 v7) 4u(u V)"
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Therefore (2.102) results in

o >
app - - = @(M—V)
[e%¢) 2 2 2 _1/2
o —z 14 -V oz
VE Ofe {(H) 2+ £ 7 (1—e* )} dz. (2.103)

This formula was derived for the first time by R. Feynman.

Let us investigate the applicability of this formula for the case of small
« and try to find parameters v and g from the minimum principle in such
a way as to take into account terms proportional to a? As we have seen
(see (2.99)), the term of app I?i(ni)), that is proportional to « in the case
3 = oo under consideration, will be equal to

—z

a e o o0 _ 2
—— [dz = =-2— [ e " dr = —a.
VRN S1/2 IRVERS

This situation corresponds to the choice of parameters v = p. Thus we
now put
pw=v(l+E&a) (2.104)

and evaluate the right-hand side of (2.103) with a precision up to terms
proportional to a® We have

° ., dz
ge M2 2 1/2
{Z+ % (1 e_uz)}
_ Fewdz _ p = Tell=ec™) 4o
5 L1/2 2#1/2 5 ,3/2
o0 2_ 2 0o —x _ —uac2
o e e M T U)oy a2l (2.105)
0 717 x
Observing that
0o —x2 _ —pa? 1/2
2 [ d - ) g = Te Utma® gy — T (14 p)=1/2)
Ou x 0 2

we get
00 (1 — g H¥)
[t da = {14 ) - 1

0 x
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The relation (2.105) leads to the formula

2 2
=7l/2 - uﬁl/z{(l—ku)”2 —1}+a®...

%
Hence, thanks to (2.104), the right-hand side of this equation can be

written as
/21— D) + ...,

where 9
D:;((1+y)1/2—1). (2.106)

It follows from (2.103) and (2.104) that

i(nItD) 3a”

PP T T A1 1 af) ve? —a(l+ af)(1 —atD) + ...

Neglecting terms of order a® we derive the following approximate result:

F-(P)
app —f‘l’:: =—a+a? (Z vE? *f*fD) . (2.107)

Here
£E>0, v>0

are parameters that must be determined through the minimum principle
for the expression
)

app — '~ = min.

Let us determine the value of ¢ first. We have the extreme condition

5 (Gve —e+ep) =Jve-14D,

so that 9
¢=. (1-D). (2.108)
Inserting this value into (2.107), we obtain
(P) 2 2 2
B Y D2 (1_ 2 /2 _ )
app BL = —a - S (1-D)?=—a- (1 {1 +v) 2 -13)

(2.109)

Now v must be determined in such a way that it provides the minimum
for the right-hand side of (2.109) or, equivalently, to ensure the maximum
of the expression

+(1- 2la+wyr- 1})2.

R
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We can see that the required value is
v=3. (2.110)

Inserting this value into (2.109), we arrive at the approximation

(P) 2 2
J2ISH a ( o )
= —ag—-—=—a—-123(—) . 2.111
PP T, ATl (2.111)
It will be noted that the standard expansion in perturbation theory in
powers of «, which has been accomplished up to the second order, gives
the following expansion instead of (2.111):

126 (Y 2.112
a1, ( E) . (2.112)
Thus we see that the variational approximation with the simplest choice
for the function E(v), which corresponds to Feynman’s two-body interac-
tion model, provides us with a very precise result in the case of small «.

We now have to consider just the opposite case o > 1. It is well known
that the theory of strong coupling yields in the leading term

—0.109a>. (2.113)

Thus, to transform (2.103) in the case of strong interaction, we should
apply the following scheme: we assume that g has order o2 and v is
proportional to a’. We obtain from (2.103)

(P)
int

3
P G, = g

a H Y2 oo —z —pz VQP' e
-7 5 ge l—e™4+ 5752 dz. (2.114)
™

v+

)
)
S

w

2
uwo—v

Observing that

we can exploit the expansion

- —1/2 -

fe ® (1 —e M4 2V K > z> dz= e *(1—e ") 7124y
0 uo—v 0

2 0o

-t T ey o (4
20" —=v7) 0 I

) (2.115)
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and evaluate integrals on the right-hand side of (2.115) by means of the

asymptotic formula ':
Je F(1—e )72 gy = Te#dz+ ofoe_z{(l —em) T2 1Y dz
0 0
oo x
—1+ e {1 —e ™) Y2 1) da
Koo
o
—t LT e oy a0 (L) —1 2240 (L),
Ko H I u
Ofoefzz(l e H*) 3/2 g4
0
= Te*zdz+ Ofoefzz{(l e M) 732 _1}dz
0 0
[o¢] x
= 1—|—i2 Je na{(1—e )32 _1}da = 1—|—(’)(12>.
w0 1
The expression (2.115) now gives
o 2 —1/2 2
fez<1—e“z+21/“2z) clz:1—|—72ln2 V/2+(9(12>,
p—v Iz p

0
and therefore it follows from (2.114) that
1/2(1+ 21n2—u2/2>+0(12)
1% e}

Pl 3, 3,3V
2 4 1 7_‘,1/2

app —=- = T —
2
(1+21“2M_”/2)+0(12). (2.116)
«

To minimize this expression, let us consider the extreme conditions

0 0
o £ =0, o £=0,
! The first integral can be expressed through the I'-function
Ofoe—z( e—uz) 1/2 dz = 1 F(l//'b)f
! (T u+1/2)°
T =U, we get

Introducing the variable e

f{( )T -1 de
; 2 _pdU _bd [ 1-0-0)"F }
g{( R e
B 1-(1-m¥2 1 1
In _U)1/2}0—71n7—21n2.

U+
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where
_ 3 3 a 1 ap? ap?
5—1“‘5”‘W1/z/‘/ - 224t (21)
These equations give us
L= 3 /2 1/2 12 _ 20 a,u714 In 2 a,u711/2
T2 ’ H 37T1/2 37r1/2 37r1/2 :
From here, it follows that
Ve to(5) v=1r0()
I _37r1/2+0<01 , v=14+0 )
So
’ 1/2 1/2
/~L1/2= 2 3w 1n2+37r +O(i3>.
37l/2 o 4o o
Therefore, neglecting terms of order 1/a? we obtain
2
u:‘g&—4ln2+1, v=1, (2.118)
T

and the asymptotic expression for Feynman’s approximation is

2
5:—%—31112—%:—0.106a272.83 if a1 (2119

The optimal determination of the parameters v and p that provides the
minimum for the corresponding approximate magnitude of the free energy
(2.103) in the case of intermediate values of o needs more elaborate numer-
ical calculations. These calculations have been done (see R. Feynman [5],
p. 273). Results of the approximations within the framework of Feynman’s
model seem to be quite satisfactory when one is interested in the case of
statistical equilibrium.

But, as was pointed out by J.T. Devreese and a few other authors,
Feynman’s model leads to difficulties if it is applied to the investigation
of kinetic processes. In fact, this model is characterized by only two
parameters: v and p. It follows from the previous consideration that the
frequency vy = vw corresponds to the frequency of the phonon field, while
Lo = pw is the true polaron frequency, determined by the interaction
between the electron and the phonon field.

Thus we see that by putting v # 1 we distort the true frequency of
the phonon field, which is just equal to w, not vw. And it is clear that this
distortion is essential when collisions between phonons and polarons are
considered. Therefore the Hamiltonian H (%) cannot be used to describe
kinetic processes when v # 1. One of the possibilities to improve the
situation for intermediate values of « consists in a coarser approximation,
under which one puts ¥ = 1 and then minimizes (2.103) with respect to
the parameter p only. In doing so, we find that the approximation

2
(67
—a—0.98 (E) .
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holds for small enough values of « instead of (2.111):

2
o
—o—1.23 (E) .

We believe that the results for the single-frequency model might be
improved significantly if proper damping is taken into account.

2.2. Equilibrium Momentum Distribution Function in the
Polaron Theory

Let us consider the equilibrium momentum distribution function of
the S particle (the electron):

Trgye """ 5(p — po)
—BH p) ’

W(po) = (2.120)

Trs,ze
satisfying the usual normalization condition:
I W(po) dpo = 1.

Using the Fourier representation for the three-dimensional Dirac §-func-
tion d(p — po), we get

W(p(0) = —5 [ W(A)e AP0 d, (2.121)
(2m)
where
—~ _ Trs,ze_ﬁH(mei}“p
W) = Trg Ee_mj[(P)

It should be noted that we have dropped the symbol

lim lim
n—0V —oco

here because it will always be clear in future at which step of calculations
this passage to the limit is taken. Let us introduce the notation

Tr5,2(3_£51T1T(1°>ei)“p B
T _—ar T, A W(A). (2.122)
Then
Wi = YN
W(A) = W) (2.123)

Now we apply to (2.122) the same procedure that was used earlier to
transform (2.5) into (2.17). Thus we obtain

W(A) = (T{e®}erP ).
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Note that the operators under the T-operation are ordered in such a way
that the ordering parameter, say s, increases from the right to the left.
One has s = 0 at the right end, while s = g% at the left end. We also note
the identity

p = p(0).

From here, we get
T{eé}ei)\-p — T{e<1>}ei)\~p(0) — T{eéez}\-p(o) }

Hence ‘
W) = (T{e®e?PO .

Because of this, (2.153) gives

i = (e e O,
W) = —75—""
N = e

To derive an approximation for (2.124) we follow the same scheme that
we implemented in Section 2.1 for the analysis of the free energy Fig:).
In other words, we shall treat formally the difference ® — ®,, appearing
in the expansion

(2.124)

T{e®...} =T{e®...} + T{e®(® — ®¢)...} + ...

as a magnitude of the “first order of smallness”. Then, neglecting in (2.124)
terms of higher order of smallness, we get the following approximation:

—~ Dy _iX-p(0 . A0
Wapp(A) = (T{e e% Ohr | (1™ (@ - ig)e Oy
(T{e™*})r (T{e® P)r

Do _iA-p(0
AT oo (@ — @) }r. (2.125)

(T{™})r’

Using the auxiliary Hamiltonian H ("), we see easily that

({0 O,
(T{e™ Pr

Because HF) is a positive-definite quadratic form made of Bose operators,
we can write

= (eiA'p >H(L) .

2 —5 D (PaPp) y(r) Aads 22(p?) (1)
<el P >H(L) =€ oh =e 6 ) (Oé,ﬁ: 17273>7
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and, from here,

®g _iA-p(0) 2, 2
<T{6 eq) }>F = exp _A <p >H(L) . (2126)
(T{e™ })r 6
Let us note that it follows from (1.48) that
1 +0oo
§<p2>H(L) = 7[ J(UJ) dw
ihm? To° w 1 w+i0
= _fool—e*mh O A () oo dw. (2.127)
In the particular case of the single-frequency Y-system, where
K{Q
A (Q) = -2
@ =52,
in the notations of (2.89), we have
L, 2 m*/p Koh 1 1
z = . 2.128
3<p >H(L) m+ (Ko/l/o)2 + 260 \1 — ¢ Phro + —1 4 ¢ Bhro ( )

Now we are going to calculate the expression
(T{e™ (@ — D))
(T{e™})r

Taking into account the definitions of ® and ®q (see (2.16), (2.23), (2.24)
and (2.52)), we get, in full analogy with (2.33),

_ (T{e™(® = 20)e P )y 1 2, I —Bwhy~1
IA) = = L 20 -
. (T{e" })r a2V (zf): (f)5 (L —e™™)
hB  hB ®o+if-[R(s)—R(c)]+iA-p(0)
X f dsf do- (e—UJlS—U‘ +e—ﬂwh+w|s—a—|)<T{e ) })F
’ ’ (T'{e 0}>F
1 ©° hp3 hp3 hw/ —o'|s—0] —Bw' 4w |s—0]|
tae { ] A S T e )
L ATLERE) ~ RO R o o)
(T{e™ Hr
Note that
(T{e® [R(s) — R(0)]2e PO}y
(T{e™ r
- {ZSI & <T{eq’°“f‘[R<s>R(owxp(m}w} . (2.130)
T OFa (T{e® })r o
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Generalizing the procedure that led to (2.40) and (2.42), we can derive

<T{e<1>o+if-[R(s)—R(a)]+i>\-p(0>}>F
(T{e™})r
= exp (%<T{e"f'[r““)‘”(‘i"”*"’\'p(o)}2>H<L>) . (2.131)

_ <T{eif~[r(—is)—r(—iU)]-F’i)vp(O)}>H(L)

Furthermore, we have

(T{{f - [r(~is) — r(=io)] +iX - p(0)}*}) peo
= (T{{f - [r(~is) — r(=io)]}* D uw

2

. . A
+ 2(T{f - [r(=is) = r(=i)IA - p(O)}) gar + 5 (P gy (2132)
Here 0 < s < fh, 0 <o < [h. As was shown in Section 2.1,

(T{{f - [r(—is) — v(=io) ]}’ D gy = f; D(s — o). (2.133)

Here the limiting magnitude is implied on the right-hand side. Note the
following important property of D-function:

D(s) =D(~s), DHS—s)="D(s). (2.134)

It is worth recalling (1.52) for the averaging procedure with H(E):

hi Too T (tmT) 1 w0

(raOrs(r s = basg | = ams woermA

We note that the function
F@) = 7721+ QA(Q)
is invariant with respect to the transformation 2 — —:
F(©) = F(-9)
Therefore
F(—w +i0) — F(—w — i0) = —[F(w + i0) — F(w — i0)],

and we can conclude that

GalOra(rmer = 2260 T (s = ) P
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or, in other words,

(ra(t)ra(T)) me
1 w—+10
dw.

hi ooe—iw(t—f) +6—ﬂwﬁ+iw(t—7’)
1—e Peh mQ* —n® + QA(Q) lw—io

=9,

(xﬁ% 0
It follows from this equation that

= mL e (Ora(r)) g

(pet)rs(r)) sy =m &
i ooe*iw(t*T) _ 6fﬁwh+iW(t7T) w w—+10
= bap— “Bwh 2 2 ’ _dw,
21 9 l—e mQ* —n° + QA(Q) lw—io
(ra(t)ps(T)) mrew
i, 00— iwt—T) _ j—Bwh-tiw(t—r) w w+i0
= 75(’[37 e 5} 5 dw.
2m g 1—e P mQ” —n° 4+ QA(Q) lw—io0
Taking the usual passage to the thermodynamic limit, we obtain
(Pa()ra(T)) o
Am ooefiw(tfr) _ efﬂwh+iw(t77) 1 w—+1i0
- nm d 2.1
Sap 2 1— e Pn m + A () ’w—iO W, (2.135)
(ra(t)ps(T)) Heo)
B Ooefiw(tfq—) _ efﬁwa»iw(th) 1 w—+10
= —bapa— —— ’ dw.
2§ 1—e B¢ m + Ao (Q) lw—io
Consider the functions
ihm Qe ws — e*/@hwwst 1 w+1i0
F(s) = ——— dw 2.136
( ) 21 1 — ¢ Pwh mQ + A (Q) lwu—io ( )
for 0 < s < Bh and
ihm Q¥ — g Phw—ws 1 w+10
F(s) = — dw
(5) 2r 5 1—e " mOQ+ Ax(Q) lw—io
for —Bh < s < 0 which possess the obvious properties
F(—s)=—-F(s), —ph<s<ph,
F(s+ ph)=F(s), —-Ph<s<O, (2.137)
0 < s < Sh.

F(s = ph) = F(s),
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If we put t = —iu and 7 = —is in the first relation in (2.135), and t = —is,
T = —iu in the second relation, we get

(Pa(—iw)rg(—is)) gy = i0apF (u —s) = —idapF (s — u), (2.138)
(ra(=is)ps(—iu)) g = —bapF (s —u).
Hence, in particular,
([ra(=is) = ra(=io)lpp(0)) ey = —idaplF(s) — F(o)], (2.139)
from which it follows that
({f - [r(=is) —x(=io) A - p(0)) ey = —if - A[F'(s) — F(0)].
Thanks to (2.132), (2.133) and (2.139), we have

(T{e% +if-[R(s)—R(o)]+iX-p(0) r
(T{e*})r

= exp (j;; D(|s —a|) +if - A[F(s) — F(0)] — <p2>H<L)> . (2.140)

Thus, from (2.130), we find

(T{e™ [R(s) = R(0)>¢** O )r
(T{e®})r

— [D(ls — o) + N[F(s) - F(o)2} e % @i, (2.141)

As a consequence, (2.129) transforms into

h h
UTL_[;Um)fﬁdeﬁdJ (efwlsf‘ﬂ + e*ﬁwﬁ+w\sfg|)
w — e 0 0

s e (<L Dl — o)+ ALFG) - Fo)l - 3 ()

00 hB  RB / , ’ ’
+ % f dw’f de do E(w’) UJEIB . (e—w |s—0o]| +e—,(3w h+w \s—a|)
4h° 0 0 0 1—e "¢
2

< {D(|s — o]) + \2[F(s) — F(o)]2} e~ 6 ®)ur . (2.142)

But, because of (2.125), (2.126) and (2.129),

—~ 2

A% 2 AT 2
Wapp(A) = €76 P a1 [(A) — I[(0)e” 6 (P )m@, (2.143)
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Thus it is easy to conclude that

Wapp(A) = (1 + 4(2171')3 fdf hw(lL—(efEﬁwn)

hB  hp 52
X f de do (67w|sfa\ _|_efﬁwh+w\376|)€7?D(|sfcr\)
0 0

x [exp {if - A\[F'(s) — F(0)]} — 1]

hw'’
1 — g AW

)\2

T

o hB B
[do' [ ds [ do E(w")
0 0 0

)\2

X(e—w’\s—al + e—ﬂw’h+w’|s—o|)[F(8) _ F(O’)]2> e~ T P uw (2.144)

Let us now return to (2.144) for the case of the standard Frohlich
model (2.3), for which

2
L*(f) = J%—
Here we can perform an integration of the kind

[df F(f%,£- ).

It is convenient to choose the direction A as the z-axis in f-space. Then
JAEF(f2,£-X) =21 df | dO f2F(f2 \f cos ) sin ¥
0 0
e} +1 2 2 +o0 1 2 2
=2m [ df [ dtF(f" fA)f"=2m [ df [ dt f7F(f7, fAt).
0 —1 —0o0 0

Therefore (2.144) yields

F oo Bhd Bhd o2 +<><>d 1 p ewls1ms2l | = Bhwtwlsi—so
o =1+ [ds Sg ——— t
pp(Y) ( { 1{ 2 421) f{ hw(l — e 7™

xe*%zD(SI’SZ) [exp {ifAt[F(s1) — F'(s2)]} — 1]

A28 Bh oo
+ == [ ds1[ dsaf dw'E(w')hw
4h” 0 0 0

/e—w/|31—$2| + e—ﬁﬁw’+w'\81—52

1— e B'n

A2

x[F(s1) — F(Sz)]2>e6<P2>H(L>
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On the other hand,

z df exp (-f; D(s1 — 83) + if M[F(s1) — F(@)])

1/2 [F(s1)—F(s2)]?
— 6771. e 2 222 Dl(sl sg?
D(S1 — 82) ’

and we get
2 1 Bh  Bh 1/2
g 6m
1+—=—/[dt[ d d P
BT A R (D(sl—sz>>

—wl|s1—s2| —Bhwtw|si —s2| 3 2,2 [F(s1)—F(s2)]?
e +e - (e—2t A D(s1—52) _ 1)
1—e 7%

Wapp()\) =

X

)\2ﬁh 0o
4 2[ dslf dszfdw E(W)hw'

e—W'\S1—S2\ + o he’ +w!|s1 5]

1— e P'n

2

X[F(s1) — F(SQ)]Q] e T P (2.145)

Let us now investigate the case of the single-frequency system %(%) dis-
cussed in Section 2.1, for which (2.89) is true and

K3

EW') = 5

6 — 1) + 6 +w)], KR =m(ud—1A).  (2.146)
For this particular case, (2.145) transforms into

. 2

W (A & s, d o\
. -1+ —2  Jat o
pp(A) + 4(277)2wh({ g 81{ S2 (D(sl —52)>

e*w\81*32\+€*Bﬁw+w|81*82l <€ 3, 2,2 (F(s1)— F(s2))? 1)

X D(s1—s2)
1— e*Bwh

Bh Bh e—V0\~91—S2\ + e—ﬁhuo-‘rm\sl—w\

A2 (Ho - VO)VO
+8—h f dSl f dSQ 17676}&1’0

x [F(s1) — F(SQ)]Z} e P (2.147)
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Recall that (see (1.34) and (2.91))

- 2{(2) 1o 5)

- Ng _ 1/3 14 e Bro _ e*\s\#o . e*ﬁhuo+uo|5| (2 148)
P 1 _ ¢ Bhuo ) :
—0h < s < Bh,
1 9 V2 2 —2 1+ e~ Phro
. () = + h , 2.149
S P B2 2,uo | o Phmo ( )

and that in the case under consideration it follows from (2.136) that

2 2 2 —Bhpo+uos —Hos
1 -5 e —e
Fis)=n () (= 1) r-w . (2,150
o K“O) (ﬁh 2) " 1—e (2:150)

0 < s < ph.
Introducing the dimensionless parameters and variables
B Ghw=By a= B (ﬂ)m (2.151)
w = M, w — Yy — Md, - 47rhw2 2hw ) .

01 = WS, 09 = WS2

we get in the new notation

3h
D(s) = 2 Dy(o),  F(s) = hFa(o).
2 2 2 —Ban —lolp —Bapn+uplo|
(v lo| u—v- l+e —e —e
Do) = () 1ol (1- 1) + £ s ,
—Ba <o < B, (2.152)
2 2 2 —Bantplo] —uo
1 —vie +e
F = Z o 1 + © 7
d(g) (M) (ﬁd 2> 2“2 1_e—ﬁdu
0 <o < By,

2 22 —Bap
2 1 v pw—v: l+e
(P*) gy = 3mwh [5(1 ( ) + o 16%4 .
In this notation, (2.147) takes the form

1/2
Wapp(A) = 1+ 1/2 f dtf doy f dos (Dl)>

a(o1 — o2

e*|01*02\+e*ﬁd+|01*02\ < 7t22/\2 h[Fd(Ul) Fa(o2)]? >
X e —1

D(o1—02)
1— e Pd
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A2 A Ba Ba —vloy—og| —Bav+vloi—oz|
—+ M V(,[LQ _ I/2) f dO'l f dO'Q € +67B .
8 0 0 1—efa
A2

x[Fa(01) = Fa(o)? |76 P um . (2.153)

The simplest choice of parameters v and p,
v=pu=1, (2.154)
corresponds to the case when we put
g =0, HI(D) = H(D), (2.155)

and thus
r(—is) =R(s), P¢=0. (2.156)

Under such circumstances, the functional ® in (2.124) is proportional to
g% i.e. a. Hence we can make use of the formal expansion of the right-
hand side of (2.124) in powers of . It easy to see that if one neglects all
terms of second and higher orders in « then (2.153) holds. Therefore the
terms in (2.153) are equal to the respective zeroth- and first-order terms
in « of this expansion. For the case (2.154) in question, (2.152) gives

Do) =lol (1=} ~ga <o <

1
Fd(O'l) — Fd(dg) = E (0'1 — O'Q), 0<o < ﬂd, 0<og < ﬁd, (2157)

3mwh

3mdd
Ba e,

<p2>H(L) =

from which it follows that

1 1/2@_|U1—02\+e—5d+\01—02\ e_#mwhw B
Da( )

o1 — 02 1— e Pa

= ®(|oy — 02),

0<o01 <B4, 0<o2<fBa,
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-1/2 _, —Ba+z 222 z
z e +e mwh—=77 —
)= [Z (1@1)] T (6 o T 1>,

0<z<fq.

As long as ®(|o1 — 02|) is a symmetric function of o7 and o2, we have

B B
éd doy éd dos (I)(|0'1 — 0'2|)

— 2T doy T dos ®(|or — aa]) = 21 d27'7 7 0(2) dos
0 0 0 0
B Ba/2 B
=28y - )0(2) de =202y dz 12 T (Bu— 2)0(2) dz
0 0 Ba/2
Ba/2 Ba/2

=2 é (Ba— 2)®(2)dz + 2 é 2®(Bq — z) dz.

Hence (2.153) gives
— 20 2mwh [ 1 Ba/2 _ 1/2
W) = e 30 4 o s [f at | dz <1§/ﬁd>

0

172
— —Bg+z 222 B
xelJre*@d (e Bzmwlz/ﬂd—l
— €
1 Ba/2 2 1/2 e ? +e—[3d+z 22 1—2/8y
dt d -5 mwhiz -1 )
o] e () She (e

(2.158)

If 4> 1 then the terms e #4/2 and e~ are negligible, and (2.158)
becomes

— A2mwh o _ A2mwh 1 ﬂd/Q 1 1 1/2
Wi(A)=e 28a + e 2Pa f dt [ dz (z — ) e B4
7T

1/2 0 ﬁd
D A2mwh
% (6 262 hl—z/ﬁd 1) + ?/2 e 2Ba
T
1 Baf? . 1/2 B GRS
x [ dt — e e 2 "METE) — 1) de. (2,159
[ (=m) )ée. s

Taking into account that

AN 3/2 _p?
fe MNP gy = (A) ehx,  A>0, (2.160)
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it is easy to derive a momentum partition function in the first order of
approximation: L .
Wi(p) = —— [ Wi(A)e AP dA.
(2m)
For the sake of simplicity, we restrict ourselves to the case of absolute
zero temperature, when 5y — co. Then (2.159) yields

—~ t2)\2mwh
WiA) =1+ 1/2fdtfdzz Z<e 1)

=1-24
2

t°2%m

fdtfdzz1/2 —2= T (2.161)

1/2

:;

and hence

+ (271T) iz f dtf dz2'/2e e” 2i2muﬁ (tQiiLrjh)Bﬂ
= (1 801+ e | 4 e )
= (1 - %) é(p) + 7r2(27733h)3/2 0}% (1 +p2/(;t2mwh))3
= (1-5) i) + w2(2mih)3/2 ?O ar o +p27/1(2mwh))3. (2.162)

Thus we arrive at the expression

o a 1
Wip)=(1-2)s :
1(p) ( 2) () + (2m)* (2mwh)? p? (1 4 p/(2mwh))’

(2.163)

We now see that the approximating Hamiltonian H) considered
above does not ensure a correct approximation for the partition function
W (p), whatever the choice of the spectral function F(w). In fact, we
always have the equality

2
. A% 2
<61AIP>H(L) —e 6 (p >H(L).

Therefore the corresponding momentum partition function will always be
of a “nearly Maxwellian type”:

1 6 3/2 __ _sp?

Wi(p) = 3f BRI O 3 (27r> e 2P uu)
(2m) @2m)® \ (") oy

(2.164)
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The choice of F(w) will affect only the magnitude of (p?) ) (see (2.127)).
For example, if F(w) is chosen in the form (2.146) then it follows from
(2.148) that

2 2
wo—v

I

P pw _
mwh

3
s (2.165)

And in the first-order approximation (3.153), Wy (p) does not include
even the terms of first order in «. Let us return to (2.153). As shown in
the “Note” below, we have

i.e.
(U(p))ro€ + d(appFint) = f Wine(p)¥(p) dp 0¢, (2.166)
where the variation is implied to be taken in the form
P P
o " am T U(p)ds.

Consider the variation of mass
2 2 2 2

b, P _P P
om 2(m+dm) 2m  2m om.
Hence
2 2
(> O(appFine) _ _ P
<2m2 >F t = om =~ Wapp(P) — dp- (2.167)

In particular, for the zero-temperature case (9 = 0), we have

p2
P =0,
<2m2 >F

O(appFint)
om ’

But, as was shown in Section 2.1, if ¢ = 0 then the function

so that
prWapp(p) dp = _2m2

appFing
hw

is only a function of «, and, on the other hand, « is proportional to
m!/2 Whence 5 N

m a9
om 2 du
and

L Wapp(p) dp = —a-> (appFi“t) for 9=0.  (2.168)

mwh Oa hw
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We also have
1

mwh

9 (M) for 9=0.  (2.169)

2 [
Ip Wapp(p) dp = aaa oh

Because (appFint) is a good approximation for the free energy Fin¢, we
may conclude that )
[p Wapp(p) dp

will ensure a close-enough approximation for the true expression
[p*W(p) dp.

However, the quality of the approximation provided by the function
Wapp (P) for the function W (p) is less satisfactory in some cases. It can be
shown, for example, that for small o and ¥ = 0 the function W,p,(p) even
becomes negative for some region of values of the parameter p?/(mwh)
(of the order a). .

We should note that (2.143) for W(A) can be derived immediately
from the expression for the free energy. Consider the Hamiltonian

HWP) 467 = HP) 4 0(p) b¢, (2.170)

where dr — is an infinitesimal parameter. The corresponding free energy

5 P H®) 46T
F(H®) 46T = fﬂlnTrs7Ee*6( +oT)

Hence
_ (P)
Tryge P77 76T
_ (P)
Tr, e PH

S,z
= (U(p)) g & = [{6(P — Po)) w» ¥(Po) dpo 6E.
It follows from (2.120) that

6F = F(H®) +6T) — F(HP)) = = (0T) yer) =

6F = | W(po)¥(po) dpo 6¢. (2.171)

Let us say a few words now about the free energy corresponding to the
Hamiltonian H’ that can be constructed from H") by substitution the
kinetic energy of the S particle p?/(2m) — with a more general function
of the momentum I'(p).

Keeping in mind the method clarified in Section 2.1, which led us to
(2.17), we see that the latter does not depend on the particular appearance
of the kinetic energy S, so we can write

Fui(H') = =9I (T{e*})1, (2.172)
F(H') = Fine(H') + F(I') + F(H(X)).
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Here ® has the same appearance as in Section 2.1 with the only difference
that R(s), which is given by (2.11), has been changed for

s’ s’

R(s)=e  nhre n. (2.173)

It is also useful to note that, in full analogy with (2.38)

<T{exp<¢o+ir;fﬂdsX(s)f-R(s))}>F/ T, U9

o) 9.174
<T{€q>0}>1"/ TI‘S7E€_5H (L) ( )

Here H (©) is the Hamiltonian H®), in which p?/2m is changed for the
Hamiltonian I”(p). ®; has the same appearance as in Section 2.1 with
R(s) given by (2.173) and U(s) is determined by the equation generalizing
(2.37):

hdU (s)

2= —[H'® —inX(s) £ - x)U'(s), (2.175)

U'(0) = 1.

After all these preliminary remarks, we return to the expression (2.172)
for the free energy and introduce the approximate expression

(T{e®(® — &)}

1 AN Py ,
apmet(H ) = —1JIn <T{e }>F v <T{6%}>F’

. (2.176)

appF(H') = appFine(H') + F(I') + F(H(X)). (2.177)
Consider the first-order variation
0 appF = appF(H(P) +4T) — appF(H(P))

= appF(H) + U (p)6e) — appF(H)).  (2.178)

As long as ¢ is infinitesimal, this variation will be proportional to €.
The corresponding coefficient is obviously a linear functional ¥(p). Thus
we can write

6(appt) = 1 f(p(0))¥(p(0)) dp(0) &¢.

Beginning with (2.171), we shall consider f(p(0)) as an approximation for
W(p(0)):
6(appF) = [ Wapp(p(0))¥(p(0)) dp(0) 6¢. (2.179)
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We intend to show that the Fourier transform
W(A) = [ Wapp (p(0))ei2P© dp(0) (2.180)

is the same as (2.143) derived before.
Let us start to evaluate (2.178). It must be pointed out here that H (%),
upon which appF(H (")) depends, contains some parameters arising in ex-

pressions for Hi(nLt) and H")(X). These parameters have to be determined

from the minimum principle
appFin (HF) = min . (2.181)

For example, in Chapter 2 we analyzed the case where the left-hand side
of (2.181) depended on two parameters: v and pu.

In the general case, some other parameters might be included in
appFin (HT) through H'% and H®)(X). Let us denote them as C;. With
this choice, the left-hand side of (2.181) will be a function of Cj:

appFint(HY) = f(...C;...),

and, thanks to the minimum condition, these parameters must satisfy the
set of equations
of(...Cj...) _ 0.

ac,
In addition, it follows from (2.177) that the difference
appF (H")) — appFi (H")) = F(T) + F(H(X))

does not depend on the parameters (...Cj...). Therefore the first-order
variation

SappF (H)) = 3 2L 5c,
) ’

which is calculated with respect to the variations of the parameters C;
is zero. This feature allows us to assume all ...C;... to be fixed when
calculating the first-order variation of (2.178).

Let us consider a form

FH®) = —9In (T{e* V) + F(I') + F(HP (%))
and note that, thanks to the variational property mentioned above,
F(H® 4 6T) = F(HD) = [<9In (T{e® Vg0 + F(L + 61)]
= [~ (T{e™ })r + F(D)],
or, in a brief notation,

SF(H ) = —96In (T{e**})r + 6F(I). (2.182)
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On the other hand, the arguments that were used in the derivation of
(2.171) lead to

SF(H' ™)) = 1 Wi (po)¥ (po) dpo 5¢, (2.183)
where Wy (po) is the momentum partition function for the particle S of

the dynamical system characterized by the Hamiltonian H ().
Thanks to (2.176), (2.177) and (2.179), we have

I Wapp(P0)¥(po) dpo 66 = 95 In (T{e®})ps + SF(I)

(T{e™ (@ — ®o)P)rv
(T{e™})r

(T{e" (@ — Do)}

=6F(H ) — 95 -
(T{e™ P

-9

Bearing (2.183) in mind, we get

S(Fapp) = [ Wapp(Po) ¥ (Po) dpo 0§ = | WL(po)¥(po) dpodé

_gsTie @ — 90
(L™ D)

(2.184)

The definitions of ® and ®¢ (see (2.16), (2.23) and (2.24)) make it clear
that

(T{e™ (@ — Do)} 1 2 h
) = LA(f)—————
(T{e®}) 4n°V %; (f)w(l — e Py

h h Po+if-[R(s1)—R(s
y ﬁf dsll} dss (6_"”'51_52‘ +6_5wh+w|81_52|)5<T{e o+if-[R(s1)—R( 2)]}>F/
0 0 (T{e™ })r

L T By(@) T dsy [ dsy —1
+ — w w S Sg ——————
aK® 5 v 0 10 21—e_ﬂwh

« (e—w’|sl—32\ + e—ﬁw’h+w'\sl—32|)

3 2 @0 +if [R(s1)—R(s2)]
{_ ) iQ giie” - b } . (2.185)
=05 ™ P 0

Introducing a function

A(s) =d(s —s1) — (s — $2),
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it follows from (2.174) that

hi3 ~
ST EBED Ry <T{6Xp (% TifdsMa)f R(S)) }>r

(T ) (T{e™ )
Tre U’ (R
- 5%. (2.186)
Here au’ ~
hUdT(S) = —[HD) —ihX(s) £ - x + U(p)SEU" (s),
U'0) =1,
and hence
U'(s) = U(s) + 6U(s), (2.187)
where
hdiiS) = —HDU(s) +ihA(s)f - r U(s), (2.188)
U(0) =1, (2.189)
and
hdédUS(S) = [=H®) 4+ inX(s)f - r] 6U(s) — U (p)U(s)d¢, (2.190)
oU(0) = 0.

It can also be seen that, thanks to (2.183),

1
Tr eiﬂHl(L)

S,z

) = gl (H' ™) = ﬂeﬁH/(L)(SF(H/(L))

_ ﬁeﬁF(H(“) I Wi (po) ¥ (po) dpo 06 = BIWL(Po)¥(p(0)) dpod&

Trg o ~pH®
With the help of (2.186), we obtain
<T{e<1>o+if'[R(S1)*R(52>]}>F,
(T{e™ )
Tr, o, 0U(hB) 1
- % + [Trs s U(RB)] Oy
Trg e Trsyze_ﬁ
Tr. .6U(h3 Tr. UK
= Den0UOD) 5 DUy (9) W(po) dpo ot (2.191)
Tr, e 7H Tr, e °H

S,z S,z
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It follows from (2.188) and (2.189) that

U(s) = e_sHi(iL)T{exp<i§X(U)f~r(—ia) do> } (2.192)

To solve (2.190), let us consider a solution U = U(s,u) of (2.188) that is
equal to the unit operator if s = u:

h%‘?u) = [—HP) 4 inX(s) £ - 1)U (s,u), Ulu,u)=1. (2.193)
Put here o) o)
U(Sau) =e °n A(Sau)eu h
Then
— (L) (L) ~
5 0A W) _ Z‘hA(S)eSHT f- re*SHTA(s,u) = ihA(s)f - r(—is)A(s,u),

A(u,u) = 1.
The solution of this equation is
A(s,u) = T{exp (z’fX(o) £ r(—io) da) }
and
)2482
U(s,u) = e_ShTeXp{ (z

Now, it is easy to prove that

j2482

X(a)f-r(—w)do—)}eu . (2.194)

S —uw

U (s) = —%ZU(S, W (p)U (u) du 5. (2.195)
Really, equation (2.195) gives
W) = —U(s,s)u(p)U ()8 — [ IS w(p)U () dusde,
or, thanks to (2.193),
88U (s)

h

0s
= —U(p)U(s) 8 — (—H™) +ihA(s) £ - ) +1U (s, u) W (p)U (u) du €.
0
Thus we see that (2.195) satisfies (2.190) with the initial condition

SU(0) =0.
It follows from (2.195) that

SU(Bh) =~ fU(ﬂh,u)q/(p)U(u) du d¢. (2.196)
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But, thanks to (2.194) and (2.192),

U(Bh,w)¥(p)U(u) = eﬁH(“T{exp <z ’?X(U) £ r(ia)> }

« en i \I/(p)e_“H(hL)T{exp <2Z doA(o)f - r(—z’a)) }
= e—ﬂH“’T{exp (z ?X(O—) £ r(—ia)) }\Il(p(—iu))

xT{exp <2Z do No) £ - r(—ia))}.

Paying attention to the structure of the ordering in the T-products,
we can write down this equation in condensed form:

U (Bh,w)¥(p)U(u) = e‘ﬁH(L)T{exp (z’hfdaX(a) £ r(—io)) ‘l’(p(—iu))}.

(2.197)

We substitute (2.192), (2.196) and (2.197) into (2.191), recalling that

AMo)=08(c —s1) — (0 — s2).
This results in

<T{6<1>o+if'[R(51)*R(52>] }>F,
(T{e* P

1 6% (r(—s1)—r(—is2 :
=5 [du (T{ef o) =r B2l (p(—iu))}) ey 0

+ BT { S is)r(=islyy L P W (po) W (po) dpo 06 (2.198)

Up to now we have not chosen any explicit form for the function ¥(p).
A possible choice is _
U(p) = M.

Thanks to the definition of Wi (p), it is obvious that
I WL(po)e X dpy = (6P ) ),

and thus

2

ix — 5P
TWrL(po)e*¥P? dpg =e™ 6 H(D) (2.199)
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This result allows further transformations in (2.198):

<T{6f~[P(—i‘sl)_r(_is2)]\I](p(_iu))}>H(L)
— (P rim) —ris)l AR )y

= exp (%<T{{f e(—isy) — r(—isy)] + A p(fiu)}2}>H(L)) . (2.200)
We can also write, as usual (compare with (2.132))
(T{{f - [r(—is1) — r(=is2)] + X - p(=iw) }*}) oy
= (T{{f - [r(~is1) — r(=is2)]}*} o
+ 2(T{{f - [r(—is1) —r(—is2) A - p(—iw) ) gy + A;<p2>H<L>-
But it follows from (2.138) that

(T{ra(—is)ps(—iw)}) gy = —ibapF (s —u),

with the obvious consequence

(T{{E - [r(=is1) —r(=is2)[}A - p(—iu) ) g
= —if - X[F(s1 —u) — F(s2 —u)].

Bearing in mind our previous result (2.133), we can reduce (2.200) to the
form

(T {eF i) (=)

)\2

= exp <—f62D(51 —89)+if - AN[F(s1 —u) — F(sa —u)] — 6<p2>H(L)> .

(2.201)
We now divide both sides of (2.2) by dx and incorporate (2.198),

(2.199) and (2.201) for further transformations. This allows us to derive
the following relation:

N (P) (L) A2

Wapp(A) = X6 4+ J(A) = J(0)e~ & PIur) (2.202)
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where

L L) ﬁf Uf dsy fhd82

| 1 (e7wIs 2l | gmBuhtwlsi—sl)
4n° 7 (2m)® Bh w(l —e M)

J(A) =

X exp (—fQ D(sy —s2)+if - A[F(s1 —u) — F(so —u)] — )‘62<p2>H(L))

6
+oo Bh B ho' E(w')
% (e—w’\sl—sﬂ + e—ﬁw’h+w/|sl—32|)
)\2
xexp {D(s1 — s2) + N’[F(s1 —u) — F(ss —u)]*} e & P nw (2.203)

It follows from (2.143) that we need only to show that
J(X) =1I(N) (2.204)
(where I(A) is defined by (2.142)) in order to prove the equivalence of

(2.203) and (2.143). To compare these expressions, we may represent them
in more convenient form:

h
J(A) = ﬁlh ﬁf ) f dsy f dss ®(s1 — u, s — ulA), (2.205)
Bh Bh
I(X) = | dsi [ dsa®(s1,52|N). (2.206)
0 0

But, as has been shown in Section 2.1, the functions

D(S), e—w\s| +e—w6h+w\s|, e—w'\s| +e—w/6h+w|s\

appearing in ®(s1, s2) which are defined only on the interval (—8h, [h),
can be continued to the whole real axis in such a way that they will be
periodic functions of s with period Sh.

Equation (2.136) shows that

F(s'y = F(s") when |s'—5§"|=8h, —ph<s, s <ph

INote that, for 0 < s; < Bh (j = 1,2), 0 < u < Bh, we have
—ph < sj —u < fh.
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Hence F(s) can be continued from the corresponding interval (—g8%h, 5h)
to the whole axis (—oo, +00). In addition, this continued function will be
a periodic function of s with period G%. We can put, for example,

F(s)=F(s—ph) for ph<s<20h,

F(s)=F(s+ph) for —20h<s<—ph,

and so on.

We therefore see that ®(s1,s2|A) can be considered as a periodic
function of two arguments s; and sy with period Gh. In this situation, it
is convenient to apply the Fourier transform:

(I) )\ A z(nlsl—&-nzsz)%
513 32| § nl,ng )

(n1,n2)
(I)(Sl —u,s2 — U|A Z An1,n2 % (n181+n282)6i% ("1"!‘”2)11’
(n1,n2)

which enables us to derive the relations
CI ) on  pn
é dSl é dSQ (I)(Sl — U, Sg — 7.L|)\) = (ﬂh) AO,O()\) = é d51 é dSQ (I)(Sl, 82‘)\),
and

1 Bh Bh Bh Bh

ah ! [ du f dsy j dsy ®(s1 — u, 852 — ulA) = é dsy é dsa®(s1,52|N).

Hence (2.205) and (2.206) are equivalent, so that (2.204) is correct. This
completes the proof of the equivalence of (2.202) and (2.143).
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Chapter 3
KINETIC EQUATIONS IN POLARON THEORY

Ideas and methods put forward by N.N. Bogolubov in [49-51| are
outlined and employed in the course of the studies of nonequilibrium
polaron properties throughout this chapter. His approach was character-
ized essentially by an attempt to derive kinetic equations of a physical
system rigorously, i.e. without recourse to any approximations based
on phenomenological ideas, from the corresponding reversible dynamic
equations of classical or quantum mecnanics taken as the starting point.
In the work by N.M. Krylov and N.N. Bogolubov [49] a problem of the
origin of stochastic behavior in a dynamic system being in weak contact
with “large” system was considered.

For classical systems this problem was treated on the basis of the
Liouville equation for the probability distribution functions in phase space
while the von Neumann equation for statistical density operators was
employed in the case of quantum systems [51].

In [49] a method was introduced which allowed derivation of the
Fokker-Planck-type equation in the first order approximation. In the
monograph [50], published in 1945, methods to derive kinetic equations for
“large” systems on the basis of general principles of statistical mechanics
were found. In lectures given by N.N. Bogolubov in 1974 at the workshop
on statistical mechanics a modified version of the approach [49] was
presented an its relation to the theory of two-time correlation Green’s
functions was discussed [52].

It is worth noticing that the terms “small” and “large” regarding to
physical systems are to be understood in that the number of degrees of
freedom of the former system is much smaller than this number of the
latter one.

Development of ideas outlined in [49-52] enabled formulation of a
method of derivation of hierarchical system of formally exact equations
for time-dependent averages [35].

An elimination of Bose variables from operator dynamic equations
by averaging them out with a properly chosen initial statistical density
operator was laid into the foundation of this method. Special lemmas,
proved for the case of adiabatic switching on of the interaction between
“small” and “large” systems [35], are another cornerstone of this method.
In the case when the “large” system is in the state of thermodynamic

117
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equilibrium, thus constituting a heat bath, this method allows to describe
the process of relaxation to thermodynamic equilibrium for the probability
distribution function or statistical density operator of the “small” system.
This method also proved itself useful for investigation of superradiant
generation processes studied in nonlinear optics [53-55]. Let us also note
that this chapter generalizes work by N.N. Bogolubov [33] and outlines
approaches to treatment of the electron—phonon system and the elimina-
tion of phonon operators from the corresponding kinetic equations.

In particular, a polaron kinetic equation is derived for the interac-
tion of an electron with a phonon field. Moreover, under the proper
approximation, the exact Boltzmann equation for the polaron system
follows from this kinetic equation. Methods of calculation of the response
functions (impedance and admittance), based on the “approximating”
Hamiltonian with linear interaction, are also proposed. The equilibrium
density probability function of the particle is also calculated.

3.1. Generalized Kinetic Equation.
Method of Rigorous Bose-Amplitude Elimination

Consider a dynamical system S interacting with a phonon field 3. Let
X5 be a set of wave function arguments for a single isolated system S
and let Xy = (...ng...) stand for the set of the phonon field occupation
numbers. Then the dynamical states of the combined system (S,X) can
be characterized by wave functions of the kind

U = ¥(Xg, Xs). (3.1)

Let us denote by
F(t,5), f(5) (32)

operators that, generally speaking, can depend explicitly on time ¢ and act
only on the Xg arguments of the wave functions ¥(Xg, X5 ). Analogously,

we denote by
G(t,%), g(%) (3.3)

operators that act on the wave function ¥ as a function of the arguments
Xyx. Such operators are, for example, Bose-amplitudes bkbl It is
important to stress that, because F'(¢.S) and G(¢, S) act on different vari-
ables of the wave function, they commute with each other. In particular,
F(t,S) commutes with all by(¢t) and b£ (t). The Hamiltonian of the free
phonon field

H(E) = Y hw(k)bl (1)bx(t), w(k) > 0. (3.4)

(k)

represents an example of an operator (3.3). Finally, we denote by

Ut,S,%)
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operators acting on either the Xg or Xy variables of the wave func-
tions ¥(Xg, Xx). Let us remark that all these operators are considered
in the Schrodinger representation of dynamical variables. Consider the
case when the full Hamiltonian of the system (5,%) is, in the notation
introduced above,

Hy = H(t,8,%) =T(t,5) + Y. [Cr(t, $)bi(t) + C(t, )b} (1)] + H(Z),
(k)

(3.5)
where T'(t,S) — is the free Hamiltonian of the system S and the second
term in (3.5) with summation over k describes an interaction between
subsystems S and X.. Consider two examples of such a system.

I. Polaron theory. The simplest polaron model describes an electron
moving through an ionic crystal. The system S consists of one electron
placed in an external electric field &:

I'tS) = % +eT"E(t) 1, E(t) = —e&(t),
(3.6)

est A 1/2 .
Ci(t,5) = iz L(k) <2w(k)> ek,

where e — is the electron charge,

r, p — are the position and momentum of the electron, and L(k), and
w(k) — are radially symmetric functions of the wave vector k. Summation
over k is over the usual quasidiscrete spectrum:

2rn1 2mng 2mna 3
k_<L’L’L>’ L*=v,
where n1,ns and ng — are integers (positive and negative). Of course, in
doing so one keeps in mind the limit V' — oo leading to the continuous
spectrum. The factor e* (¢ > 0) is introduced, as usual, to ensure the
adiabatic switching on of the interaction. In this case, operators of the
type f(S) are functions of operators p, and r, for example

f(p), e, f(p)e™r,

and so on. Sometimes we have to use a more general expression for the
kinetic energy T'(p) instead of p?/2m . Then the Hamiltonian (3.6) must
be rewritten as

[(t,S)=T(p)+e"E(t) - r. (3.7
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. Fermionic system. The system S is a system of free fermions
characterized by the Fermi amplitudes a}, and ay, In this case,

et

L(t,5) = Y A(abas,  CultS) = g Ly_algay,
() ()
(3.8)

et et
e

* * € *
Ck (t,S) = W kza}af_i'_k = ﬁ LkZa}ikaf,
VT W VT o

where Ly, and L} are “c-numbers”. Because fermions possess a spin degree
of freedom, f = (f,0),, where the vector f belongs to the quasidiscrete
spectrum and o is a spin quantum number. The symbol f 4 k& implies
that f 4+ k = (f + k,0). We also can investigate a system of interacting
fermions. In this case, we have to include an interaction operator and
terms responsible for the interaction between fermions and external fields
in the Hamiltonian T'(¢, S).

For dynamical systems of type II, the operators f(S) may be repre-
sented as arbitrary combinations of the Fermi amplitudes fe O
that do not contain any Bose amplitudes, for example a}l af,. Let us note
that problems in the theory of superconductivity and electron transport
in metals can be readily reduced to type rimIl dynamical systems.

Let us return to the Hamiltonian (3.5) and write the Liouville (von
Neumann) equation for the statistical operator D; of the system (S, 3):

.. 0Dy
ih 5

with initial condition

= H(t,S,%)D, — DH (L, S, %) (3.9)

Dto = p(S)D(Z)7
D(X) =2 1te PHE) 7 = Ty e PHE) (3.10)
Trg p(S) =1, Tr, D(X) = 1. (3.11)

It can be seen that the initial condition corresponds to the situation where
the phonon field ¥ is in a state of equilibrium at the time ¢y, at which
the interaction between the phonon system and the dynamical S system,
characterized by the statistical operator p(S), is “switched on”.
It follows from (3.9) that
Tr D; ="Tr

(s,3)

Dt07

(5,%)

and
Tr Dy =Tr, p(S)Try D(X) = 1.

(8,%)

Thus we have usual normalization condition for the statistical operator
D, of the dynamical system (S, X).
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Let us introduce an operator U(t,to) = U(t, tg,S,Y), defined by the
equation

AU (t, to)

ih=——=2" = H(t, $,2)U(t, to), Ulto,to) =1.

Because any Hamiltonian is a Hermitian operator,

~in L) ) (1S, 5), Ut to) = 1.
We can see that U is a unitary operator:
Ut(t,tg) = U™ L(t, to).
With the help of the operators U, we have, from (3.9),
Dy = U(t, to) Dy, U™ (1, 1o).

Consider now some dynamical variable in the Schrodinger
representation,! (¢, S, ). Its average value at ¢ is

Uy =Tr,, U, S, 5)Dy = Tr ., UL, S, S)U(t,to) D, U (t, o)

(5,%) (5,%)

=Tr, {U 't to)U(t, S, 2)U(t, t0)} Dy, (3.12)
It can be seen that the expression
U=t to)U(t, S, 2)U(t, to) (3.13)
is the Heisenberg representation of the dynamical variable U(t,S,Y),
which corresponds to the Schrodinger representation at ¢t = 3. We shall
denote this Heisenberg representation by U(t, S¢, 34):
U(t, Sy, Se) = U (t, to)U(t, S, 2)U(t, to). (3.14)

In particular, if we consider a dynamical variable given in the Schrédinger
representation by the operator F'(¢,S) then

F(t,Sy) = Ut t)F(t,S)U(t, to) = Ut (t, to)F(t, S))U(t, t9). (3.15)
From (3.12), we get
Tr(sﬁ):)F(t, St)Dto = Tr(S,Z)F(t7 S)Dt = TI‘(S) F(t, S)(TI'(Z) Dt)
Let us introduce further a statistical operator

pt(S) = ’I‘I'(E) Dt-
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Thenk
Tr(S,E)F(t’ St)Dto = TI'(S) F(t, S)pt(S) (316)

Consider now a dynamical system described by the Hamiltonian (3.5)
with initial condition (3.10) for the statistical operator. Starting from
(3.14) for the Heisenberg representation, we have

[u(ta St7 Et)v B(tv St7 Et)] = Uﬁl(ta tO)[u(ta Sa E)v B(ta Sa E)]U(ta t0)7
where [U, B] denotes the commutator

[U,Bl|=UB - BU.
From here, we see that if the commutator of two dynamical variables
taken in the Schrodinger representation is a c-number then the commuta-
tor of these variables in the Heisenberg representation will have the same
value.

Denote the Heisenberg representation for the Bose amplitudes as
Lb(t), bl (t). Then, according to the definition (3.14),

bi(to) = br, b} (to) = bf..

Because the operators bL, b, commute with I'(¢, .S), C(t,S), and C}; (t,S),
we see that

[br(t);T(t, S0 =0, [b();T(t, )] =0,
(b (1); Ci(t, )] = 0, [b(£); Ci(t, S)] = 0, (3.17)
[bk(t);olz(t?st)] =0, [bZ(t);Cg(ﬂSt)] =0.

For the same reason,

[H(2:); f(Se)] = 0. (3.18)

X By definition, the average value at the moment ¢ is
(FYye =Tr F(t,S) - D¢(S,%).
The trace is calculated over the complete set of the states of the system S + X.
Taking the tensor products |S) ® |o) of the base states |S) of the system S by
the base states |o) of the system X as the base states |s, o) of the whole system
S+ X, let us write down (F), as
<F>t =Trg F‘(t7 S) -Try Dt(S, E) = TI'(S) F(t, S) . pt(S),

where p; = Trs D¢(S, X)) is the density matrix of the S-system.
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It is clear that bL(t) and by(t) satisfy the same commutation relations
as bL and by. Bearing in mind (3.5) and (3.17), we can write dynamical
equations for the Bose amplitudes:

A0 550,
i.e. ‘
3b8kt(t) = —iw(k)b(t) — %Cz(t’st)’

The conjugate equation is

abl(t) . i
D) — i(kbf(e) + & Citt, 50).

Taking into account the initial conditions, we can write the formal solution
of these equations:

bi(t) = be(t) — iB(t),

bi(t) = e~ (E—to)p, (3.19)
1 —iw -7
Bu(t) = 5. | dre W00, 51)
0

and also _
bL(t) = bl (t) +iBL(t),

bl (t) = e M=to)p] (3.20)
1t Tw —T
Bi(t) = hldre BT (7, 5;).

Let us consider a dynamical variable, which can be expressed in the
Schrodinger representation by the explicitly time-independent operator
f(S). The equation of motion for f(S;) follows from (3.5) and (3.17):

af(St)

ih 5

= [f(S:), H(t, S, X¢)]

This equation can be rewritten in the explicit form

L Of(Se)
ZTLT = [f(S),T(t, S)]

+ > bk (t)[f(St), Cr(t, St)] + ZbZ [f(St), C’,Z(t, St)].
(k) (k)
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Substituting (3.19) and (3.20) into the last equation and taking the trace

over all variables Tr ¢ . ...Dy,, we get

5 0
Zha Tr(s,z) f(St)Dto + Tr(s,z) [F(t’ St)v f(st)]Dto

= —z(ZTr(S - f(St) Ck(t St)]Dto
k)

+iS Tr g o BE®)[F(Sh), CF(t, Sp)] Dy,
(k)

+ Z’I‘Y(S,E)gk (t)[f(st)’ Ck (t> St)]Dto
(k)
+ 3 Tr g o BLOF(S0), CL(E S Dy, (3:21)
(k)

In order to get rid of the Bose amplitudes gk and 52 on the right-hand
side of (3.21), we formulate the following lemma. N

Lemma For average values of the product of two operators by (t) and
U(S, ), the following relations hold:
Tr gk(t)u(svz)Dto (1+Nk) s, ):){bk( ) (sz) —U(S, E)Ek(t)}Dtov

(8,%)

where o B ()
Ne = 1_ g PR’
Tr g o U(S, 2)bi(t)Dyy = NyTr o o {bx(OU(S, ) — U(S, )by (t)} Dy -

For the proof, see Appendix I.
Choosing U(S, %) = [f(St), Ck(t, St)], we derive the useful relations

Tr 4, b (8)[£(S0), Ci(t, $0)] Dy,
= (14 Np)Tr g o, [0 (t), [F(Se), Cr(t, S]] Dy,

Tr , 5, L () [f(Se), CL(t, S)) Dy,

(s,%)

= NiTr g 5 [[£(Sh), CL(t, Sp)],bL(1)] Dy (3.22)

Because the operators bkbz commute with [f(S;)C(t,S:)], and
[£(S0), CL(t: 8],

bk (£), [£(Se), Clt, SO = 0, [[F(Se), CL(t, Si)],bL(8)] = 0.
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Substituting (3.19) and (3.20) into these identities, we find that
[0k (1), [£(Se), Cr(t, S| = i[Br(1), [f(Se), Ci(t, S]]
= iBi(t)[f(S), Cu(t, )] — il (Se), Cr(t, S)|B(t),
[[£(Se), CL(t, Se)],bE(1)] = —illf(Se), CL(t, Se)], BL(t)]
= iBJ(t)[f(St), CL(t, S)] — il (Se), CL(t, Sp)BL(L).

(3.23)

Making use of (3.22) and (3.23), we derive from (3.21)
., 0
Zha Tr(s,z) f(St)Dto + Tr(s,z) [F(t, St)7 f(St)]Dto

+Z {NkTr(s Z)B ( )[f(st)7ck(t7st>]Dt0
(k)

(1L Ny T g, [Cr(E S0), F(S)IBR() D, |

+ zz{ (14 Ni)Tr o 5, BLELF (1), CL(E, S0 Dy

+ NeTr g 5, [C(E S0, F(SOIBLO D | (3.230)

Note that, thanks to (3.16),
Tr(s,z)f(st)Dto = Tr(s) F(S)pe(S),
Tr(s,z) [F(t’ St)7 f(St)]Dto = TI‘(S) {F(ta S)f(S) - f(S)F(t7 S)}pt(s)

Substituting the operators by(t) and bi(t) in (3.23a) with their explicit
expressions (3.19) and (3.20), and dividing both sides of the resulting
equation by ih, we find that

Tr,., ( ()28 | TESS) — FONES) S>>

ot ih
32 Z f dr Tr _M(k)(t_T){NkCIZ(Tv ST)[f(St)7 Ck(t7 St)]
(k)to

+ (14 Np)[CE(t, S0, F(S)ICk(T,S-)} Dy

o 21 T, O 4 NCulr S (S1). Ol S0
(k)

+ Ne[CH(t,5,), F(S)ICk(T,5,)} Dy (3.23)
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Thus we have constructed the generalized kinetic equation. Now we pass
to the consideration of the polaron model itself, which was proclaimed to
be the main goal of this chapter. Substituting (3.6), i.e.

L(t,8) =T(p) + e'E(t) - r, E(t) = —eE(t),

et 5 1/2
(& ik-r
Ck(t7s) = V1/2 £(k) (2w(k)> € k )

into the right-hand side of the generalized kinetic equation, we find that

Tr,, {f(S) 5‘pé§5) LEER) [rf(S)*f(S)z];T(P)f(S) — (5T (p) pt(S)}

— le%tz [:2(k) j dre—<(t=7) [Nkefw(k)(tfr) +(1 JrNk)ew(k)(t*T)]
14 (k;) 2hw(k) to

% Tr(s,z) {e—ikm,.f(St)eik-m _ 6—ik~r,.eik~rt f(St)}Dto

2 t
+ %6251&22%“}(?]3) tf dr e*E(t—T)[(l + Nk)efw(k)(t—f) + Nkew(k)(t—r)}
© ’

X Tr(s72){eik'”f(St)e_ik'“ — f(Sp)eTiemikTAD, - (3.24)

It is interesting to observe that the operators of the phonon field do not
enter this equation explicitly. The right-hand side of the equation depends
only on the electron trajectory.

Let us stress that the electron operators r(r) and p(7), (o < 7 < t)
depend on the initial values r, p, ..., bk, b, in a very complicated manner.
Therefore, in order to derive some relevant results from (3.24) we have
to restrict ourselves to a proper approximation, assuming, for example,
that f(S) = f(p) and substituting the intricate time dependence of the
electron trajectory r, with the uniform-motion trajectory

_ p(t)
r(r) =r(t) - e (t—1),

considered as the “zeroth-order approximation”. Within the framework of
the Frohlich model, taking into account the smallness of the electron—
phonon interaction parameter, one can derive explicitly the approximate
Boltzmann equation for the polaron. This equation contains an integral
term induced only by the one-phonon emission and absorption processes.

Consider the spatially uniform case, i. e the case when f(S) = f(p) and
hence f(S:) = f(p:). From the usual quantum mechanical commutative
rules, we have

vf(p) — f(p)r = in L2,
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It is obvious that

Tris, F(P)p:(S) = [ f(P)Wi(p) dp,

where
Wi(p) = Tr ) 6(p — Po)p:(5). (3.25)

Let p: be a momentum operator in the Heisenberg representation. Then,
with the help of (3.16)

Tr(s,):)F(pt)Dto = fF(p)Wt(p) dp.
It follows from (3.11) and (3.25) that
JWi(p)dp = 1.

It is clear that Wi(p) may be interpreted as the probability density at
time t. The left-hand side of (3.24) can be represented as

(1020 4 im0, (5))

— rap (o) (252 4 v - L wip)) (320

It is easily seen that

T f(p) = f(p —hk)e™™,  f(p)e = e f(p+Tk),  (3.27)

and also

e f(pe) = f(pr — Bk)e™ ™, f(pe)e™ ™ = ™ f(p; + hk).

Taking into account the invariance of both sides of (3.24) with respect
to the transformation k — —k and the notes made above about the
probability density function, we find that

7 v o) (252 etpg . 2R )

— 7ap 1(p) (242 vt - 20 wi )

_ l 2et ['2 —e(t— 7') —w(k)(t—‘r) w(k)(t—T)
=3e (z):Qhw( dee [Ng + (1 + Ni)e ]

X Tr(s =) {eikirTe_ikirt [f(pt - hk) - f(p)]Dto}

L 2et —w(k)(t—7) w(k)(t—7)
+e (z):ﬁuu fd "1+ Ny)e + Nje® ]

X Tr oo {[f (Pt — Bk) — f(p)]e™ ™ e ™ ™ Dy}, (3.28)
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where Dy, = p(S)D(X). The rigorous equation (3.28) will be considered
in the next section as a source for the derivation of various approximate
kinetic equations.

Let us note in conclusion that the generalized equation (3.23") can be
used in other applications. For example, it can be applied to investigate
the motion of electrons in a metal if one derives the corresponding kinetic
equations. For this purpose, one must put in (3.23")

f(8)=alay, T =Y Tyalay.
()
Then

Tr s, f(S)pu(S) = Tr g, afagpe(S) = (af(D)as(t))e, = ns(t)

and
ops(S) 0
Tr(s) f(S) ot - & nf(t)7

and the expression

Ci(t,5) = e)g)l/z Ekzafﬂcaf(t)
(f)

would stand for the operator Cy(¢,.5). Let us define the operators a}Jrk (t)
and af(t) entering this combination, assuming that they satisfy the fol-
lowing approximate equation of motion without interaction:

.. da
lhTZ == Tfaf(t).
From here,

as(T) = exp (—z% (r— t)) as(t), a}(r) = exp (z% (r— t)) a}(t).
Thus

- T,
Ci(r, Sr) = ex‘l;l/‘f S exp (i (- 7))l (Dag(t).
©))

Taking into account the discussion above and substituting the approxi-
mate expression for Cj (7, S;) into the generalized kinetic equation (3.23'),
after simple transformations and the standard passage to the limit tg — —
—o00, € — 0, we arrive at the well-known Bloch quantum kinetic equation,
the basic equation in the theory of the electrical and thermal conductivity
of metals and semiconductors [48].

3.2. Kinetic Equations in the First-Order Approximation for
Weak Interactions

In this section we are concerned with the weak-interaction case. It is
convenient to characterize the electron-phonon interaction strength by a
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small dimensionless parameter, denoted by «, under the assumption that
L2(k) is proportional to a. For example, within the framework of the

Frohlich model,
g (m)” 3.29
«= 47rhw2 (27),&1) ) ( ’ )

is generally adopted as the standard dimensionless parameter. We also
assume that the external force E is formally proportional to some small
parameter.

In the “zeroth-order approximation”, when we neglect the electron—
phonon interaction, the following equation of motion holds:

in % = 1T (p) ~ T(p)r, (3.30)
from which it follows that
r, = er TOT—T0)p =5 TO)NT=70),
Let 79 = t; then
r, = eh T(p)(r%)rmef% T(p)(r—t)

and

e®Tr = exp (% T(p) (T — t)) e exp (—% T(p) (T — t)) . (3.31)
Moving e’**¢ to the right in (3.31) with the help of (3.27), we obtain

oikerr _ 6% T(pt)(‘rft)ef%. T(py—hk)(r—t) ik-re _ e%’ [T () =T (pe—hI)] (r—t)ikere

(3.32a)

and also _ 4 ;
eikrr _ gikry o3 [T(pithk) =T (p:)](T—1) (3.320)

Under the transformation k — —k, we have

e—ikrr _ g—ikeri 3 [T(pi—hk)=T(p:)](T—1t)
This “approximation” will be used in (3.28) only for the terms proportional
to «a.

We substitute (3.32a) and (3.32b) under the trace operation, exploiting
the “zeroth-order approximation” in the following manner:

Eapp = {Tr<s,z)6ik.r767ik.rt [f(pt — hk) — f(pt)] Dy, }app

= Tr,, , en TEO-TET0[f(p, — 1K) — f(p)]Dyy,  (3.33)
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g;pp = {Tr(s,z) [f(pt — hk) — f(pt)]eik'rte—ik'l‘f}

app
= Tt o [F (P — ) = f(po)ef (TP M=T @0,

It should be pointed out that all of these expressions are multiplied by
the magnitude £(k), which is proportional to a.

Thus we suppose that the terms of first order on the right-hand side
of (3.28) are evaluated correctly. This is just the approximation we have
been striving for. Further, take the limit V' — oo, tg — —o0, and then put
¢ — 0. in the final results. First of all, however, we have to transform the

expressions (3.33) for £, and E,pp. Let us return to the relation

Tr s ., F(Pt) D, = | F(P)We(p) dp,

which holds for an arbitrary function of the momentum, F(p). For F(p)
we choose

F(p) = ei T®O=T@MOT0 [ £(p, — k) — f(py)],
and we have, as a result,
Eappe = [ dpen [T =TEMNT=D[£(p —hik ) — f(p)|Wi(p)

= ] e BT f(p)Wip + hl)
P—Pp

— Jdpen (1O =TE=1C f(p) 1w (p).

It is easily seen that £, is the complex conjugate of E,pp:

€5 = [dpe 7 TEHIO=T@I=0) £(b\W, (p + k)

app
— [dpehr [T(p*ﬁk)*T(p)](T*t)f(p)Wt(p).
We substitute these expressions into (3.28), taking the limit V' — oo, and

changing all sums V=137 (...) to integrals (2) =3 s dk. It is also convenient

(k)
to make the transformation k — —k in the integrals containing W;(p).
Let us introduce a new variable of integration ¢t — 7 = &, so that

t t—to
rdr(...)= [ d&(...).
to 0
In the limit tg) — —oo, these integrals take the form f d¢ (...). In this way,
0
we can derive the first-order approximation for (3.28):

Tp (o) (2B - i) 2R )

2¢et

_ e L2 (k)
= [dp f(p) [ dk ) A.(p, k),
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where
Ac(p k) = Ofoodf e=E[(1 + Ny )@ (®E 4 Ny e—iw(k)E]
x[e—iéAp,k Wi(p + hk) — ei&ApykWt(p)]
+ Zodf 6_85[(1 + Nk)e—iW(k)f + Nkeiw(k)g]
x[eiEAp,k Wi (p + hk) — 67i5A”"“Wt(p)]

and where

T(p+hk)—T
Ay = (p+ h) ()

In view of the fact that f(p) is arbitrary function of the momentum, p,
this equation can be reduced to an equation for the probability density
function W, (p):

Wi (p)

OWp) _ L L)
ot

— eTE(t) > e [dk (k)

(p, k). (3.34)

Collecting similar terms in the expression for A.(p, k), we find that
Ac(p. k) = [(1+ Ni)Wi(p + hk) — N Wy(p)]
y (j?easesmp,kw(kn de 1 Temetei€iBmn—wi] dg)
0 0
+ [NWi(p + hk) — (1 + Ng)Wi(p)]

" <7°eeseemp,k+w<k>] d + Tes€eitlBputu(b) d§>_
0 0

Here
o Bhw(R)
Ni = P ON
or, that is
Wi(p + hk) — e "M,
Ac(p,k) = WelpH k) — ") D (A~ wl(k))

1— e*ﬁhw(k)

Wi(p + hk)e """ _ W, (p)

+ 1— e—ﬂh“’(k)

Da(Ap,k + w(k)),

D.(z) = +foe_5‘5‘ei5z dg.
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Let us also observe that

lim D (A F w(k)) = 276(A 1. F w(k)) = 270 <W>

= 27hS(hA, 1, F hw(k)),

Therefore

. o7h she

lim A, (p, k) = 7zrﬂm(k) [Wi(p + hk) —e ph (k)Wt(p)]
e—0 1—e

x 0(T(p + k) — T(p) — hw(k))

2mh

e

[Wi(p + hk)e ") — W, (p)]
x 8(T(p + hk) — T(p) + hw(k)).

Now, let us take the final step, putting ¢ — 0 in (3.34). As a result, we
get the final form of the kinetic equation in the first-order approximation:

oW (p)
ot

. oW:(p) _ 1 52(]5)
op (27r)2 [ dk 2w(k)(1 — e—ﬁhw(k))

- E@)

x [Wi(p + hk) — e "W, (p)|6(T (p + hk) — T(p) — hw(k))

L2 (k)

+
2w(k)(1 — e Py

1
dk
(2m) !

X [Wy(p + hk e P®) _ 1, (p))6(T(p + hk) — T(p) + hw(k)). (3.35)

Thus we have obtained generalized Boltzmann equations. Consider
now an important particular case,

2

T(p) =2

=5
Consequently, all §-functions take the form

6((I)+hk)2—p2j:hw(k)>.

2m 2m

It is obvious that (3.35) will be the usual Boltzmann equation, in which the
integral terms on the right-hand side correspond to one-phonon emission
and absorption. Such a Boltzmann equation has been studied intensely in
the investigation of transport properties.
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If the electric field is time-independent then the stationary Boltzmann
equation reads as

oW(p) 1
—E(t) - > @) fdk2

L2 (k)
w(k)(1 — e PPy

2

x [W(p + hk) — e B (p)]s (“’”“‘)2 - P _ hw(k))

2m 2m
1 L% (k)
+ (2)? J dk 2w (k) (1 — e Prek)y

x [W(p + hk)e ") _ W (p)]s (W - p—; + hw(k:)) . (3.36)

The factor e #"(*) in (3.36) can be omitted in the case of low tempera-
tures. The resulting equation was analyzed by Devreese and Evrard [6] for
the Frohlich polaron model. Very complicated behavior of the stationary
probability density function W (p) was revealed, apparently indicating the
existence of a fundamental peculiarity at F = 0.

In conclusion we should like to say a few words about one approxima-
tion used to determine the relation between the applied electric field and
the average stationary electron velocity V.

We multiply both sides of (3.36) by p and integrate over the whole of
momentum space. After simple transformations, we find that

1 L£?(k)hk
-E= dk
(2m)? 4 2w (k)(1 — e PPk
_ (k) pkep
X jde(p)5< 5 +h - hw(k)
1 L£%(k)hk (hk)? k-p
— dk dpW(p)o | ~—— +h—= — hw(k) | .
(27T)2f Qw(k)(eﬁhw(k) 71)/ pW(p) ( 2m - m w(k)
(3.37)
Here, according to the notations of Chapter 1,
E = —e€, (3.38)

where & is for the external electric field.

Thus the relation (3.37) is a rigorous consequence of the Boltzmann
equation. We assume the “coarse approximation”, choosing for of W(p) a
“shifted” Maxwellian distribution function with average velocity V,

/ p2
W(p) =pu(p—mV), pu(p)= (L)S 26—5%7

2mm
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and substitute this distribution into (3.37). This leads us to the approxi-
mate equation

of = 271r)2 [ dk Mk)(‘f(_’“)em;hw(k))
< Fap (013 (- G5 02— afu(e) - k- 1)
- e
% [ dp par(p)S ((2’“)2 + P Rl(h) k- V]) . (3.39)
Note that
5 (—(2’22 +0E P (k) — k V])

_ % Texp {z ((222 + 5P hfk) - k- V]> g} de

and

.. hk-p 2 .9
[pa(ple € m dp = exp (JZ:Z %) ’

eliee (k) ¢
(S — — S
[pm(p)e dp = exp ( om™ 5 )
Therefore, we find from (3.39) that

(k)Tik
w(k)

+oo L2
e = [ d¢ )3fdk .

1
(2n

ihlw(k)—k-V]¢ —ihw(k)—k-V]¢ 9 5
‘ ¢ (hk)* (€ .
x ( 1 _ o Bhw(k) T Bhw(k) _ 4 ) exp [— o <B —i€)|. (3.40)
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This approximate equation was first derived by K.K. Thornber and
R.P. Feynman [30] for weak interactions.! They found that the mobility
derived from (3.40) in the weak-interaction limit does not coincide with
the mobility found by the standard method from the Boltzmann equation.
We see here that this discrepancy originates from an inadequate approx-
imation, namely the choice of a Maxwellian distribution concentrated in
the “vicinity of the average velocity” V, as a trial momentum distribution
function in (3.37). This distribution is itself the rigorous consequence of
some Boltzmann equation. The connection between (2.13) and the use
of a Maxwellian for the trial equilibrium distribution function was also
noticed by J. T. Devreese (private communication).

3.3. Nonequilibrium Properties of the Linear Polaron Model

In this section we are going to show that the results of [6] and [30]
regarding the impedance calculations in the polaron model can be derived
immediately without functional integration.

Let us begin with the rigorous equation (3.36), in which we choose

f(p)=p. (3.41)

for the arbitrary function f(p). We denote the average electron momen-

tum by
(P)t = /pWi(p) dp.

Introducing notation

Tr, . e* e D, — &, (¢, 7, b), (3.42)

(5,%)
and, in addition,

Tr eik-r(t)efik-r(T)DtO — Tr(s,z) {eik-r('r)efik-r(t)}’fl)t0 _ ‘PZ(t, T, tO)-

(5,
it follows from (3.36), on taking (3.41) and (3.42) into account, that
d<p>t <t e2et
dt E(t) = - Z% —ﬁnw(m)

(k)

xj dr [eiw(k)(tf'r)+6fiw(k)(t7'r)efﬁhw(k)]efs(tfr)‘I)k(t7T’to)
to

! According to the notation and system of units used in [30],

1 1 1/2
h=1, ck:—( ) L(k), E= ek,

V12 \ 2w(k)
equation (3.40) takes the form
eiflw(k)—k-V]¢ e—ihlw(k)—k-VI¢ k2 (&2 _
b= {odg%'c g ( R ) o |5 (5 )
This equation corresponds to formula (3.17) of [30].




136 Ch. 3. Kinetic Equations in Polaron Theory

1 oet L2 (k)k
— =€
4 %):zw(k)u — e Phey

x} dr e===) [m () (E=T) | iw() (=) =0 (D)% (¢ 1 10).  (3.43)

to

This is still a rigorous relation. To derive some kind of approximate
equation, we have to find some approximation for ® (¢, 7,t9) in explicit
form. To solve this task, it is appropriate to employ a model Hamiltonian
that leads to exactly solvable equations of motion. To get the desired
approximation, this Hamiltonian should be constructed in such a way that
the behavior of the approximate trajectory r(t) has some resemblance
with the exact trajectory given by the Hamiltonian (3.5).
Let us start with the case of zero external field,

E =0, (3.44)
and consider the Hamiltonian
(L) p2 027’2 'I‘
HY = Dy~ + 3 + %hu(k)bkbk

. 1/2
+ # % <2VT(L,€)) Ak -r(by +b1 ), (3.45)

where A(k) is spherically symmetric function of k, v(k) is a spherically
symmetric function that is strictly positive:

v(k) > 0.

Until we take the limit V' — oo, we assume that the volume V is finite
and the number of terms ny in all sums over k is also finite. Then the
corresponding Heisenberg equations of motion form a finite linear system
of ordinary differential equations with constant coefficients that is exactly
solvable in principle, i.e.

dr _p

@ m
dp i ro\7?
D)~ Y () AW+,

(k)
1/2
bkd(tt) — i (k)bi(d) V}/Q <2hj(k)) A(k)k - (1),

AN i 1 1 \?
2 = L () + iz <m(k)> ARk - x(1), (3.46)



3.3. Nonequilibrium Properties of the Linear Polaron Model 137

Let us show now that the Hamiltonian (3.45) is translationally invariant
under a proper choice of the constant C?. We begin with the identity

ke Ak) _ikr A(k)
%hy(k) (b’“+ Vi y(k)[2hu(k)]1/2> (bk V2w 2h (k)] 2>

. 1/2
= (z;hy(k)b,tbk + ﬁ (Z): <2yf(bk)> A(K)k -t by
k k

i n )’ F 1 A%(R) )

and note that, thanks to the spherical symmetry of the functions

A(k), v(k)

1 A% (k) 2 21 A*(K) 2
— Z = k-r)=r"—= > k.
Vv =Y (k) Vv " 3v°(k)

On account of this,

2

g — P <02 B %Z A*(k) kz)T

2m™

: ik-r A(k) - ik-r A(k)
+(Z/e):hy(k) (b’“ Ty u(k)[zhu(k)}1/2> (bk VY2 w(k)[2hv (k)] 2>.

Therefore if we choose

2 1 A(k) 2
P =g %):%Q(k) k (3.47)

then the Hamiltonian H() becomes invariant with respect to the group

of translations

KR A®R)
r—r+R, b, — by + - .
BT A ) b ()]

(3.48)

This invariance leads to the existence of a conservation law for a vector P,

P
=0, (3.49)
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that could be interpreted as the conservation of a kind of “total momen-
tum”. To find an explicit expression for P we use (3.6), from which it
follows that

bk () — b1, (1)]

- = —iv(k)[br(t) — bT (8)]

and from here

d 1 o\ be(t) = bl ()
dt 172 (21/(k)> A(k) v(k) k

1 o\ : 1 —A%(k)
= —iim % (2v(k)) A(R)K[b(8) + b1, ()] = - ZVQ(k) k- r(t)k

But, thanks to (3.47),

1 A* (k) B 1 A*(k) Lo
—V%V%) k-r(k=r(t)= > k? = C?r(t).

Therefore

1/2
alp - S () -t 00] =

It follows from the last equation that the constant “total momentum”
vector has the form

1/2
Por- g D O I CXCR CE Y

Now let us introduce an external electric field, replacing the Hamilto-
nian HY) with B
HY =g L E(r) -r. (3.51)
Because H") commutes with P and because

’P/g,rv] = [pmm] = —ihég,y, 5,7 = 1,2,37
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we see that
P — B (3.52)

It can be seen that for the Hamiltonian (3.5), under the condition (3.44),
the translation group is defined by the transformations

r—r+R, by — be *R (3.53)

Under these circumstances, the “total momentum” is determined by the
expression

P =p+ > kb by. (3.54)
(k)

In the case when the external field is turned on, P also satisfies (3.52).
Consider the Hamiltonian (3.51), the corresponding Heisenberg equa-

tions and the corresponding initial conditions for the statistical operator

D,. We shall use the same form for these initial conditions as in (3.10):

Dy, = p(S)DL(X).
But now we put as a natural choice

Dy, = const - exp(—ﬂZhu(k)bLbk)
(k)

Here Dy is the statistical operator for the statistically equilibrium model
system Y. The equations of motion for the whole model system S + X are

‘ * 1o (3.55)
d%?) ==C*r(t) = 5 ) (;@) A(R)K[bi () + b ()] — B(t),
(k) /
1/2
b';(f) = —iv(k)br(t) — ﬁ (%) A(k)k - r(t),
3.56
bl (1) (3.56)

1/2
L iy(k)bik+‘;m(%jw) A(b)k - x(t),

r(to) =r, p(to) =p, br(to) = bs, bT_k(to) = bT_k,

from which it follows that

1/2
oy —iv(k)(t—to) _ 1 1 ¢ —iv(k)(t—7)] .
bi(t) = bie —TE (27“/(]6)) A(lc)t[o dre k-r(r),

1/2

i — 1 1 L 2% -7

bt (1) = bl e t°>+V1/2 <2hz/(k-)> A(k)J dre (B)E=T)k . r (7).
0
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Substitution of these expressions into (3.55) leads to the equation for the
electron momentum:

dp(t) + Ot ZA2 fd k- r(r)(e"(B=T) _ gmiv(R) (=)
dt tv

. 1/2
_ 1 L —iv(k)(t—to) | 1t _iw(k)(t—to)\ _
= V1/2 <;) 21/(](5)) A(k)k(bke o) 4+ b_ke 0 ) E(t).

Integrating by parts,
z} drk - r(T)(eiv(k)(tfr) _ efiu(k)(t—r))
to

i . .
— L k()L (@R v (=)
0

v(k) dr
k-r(t)  2k-r
—25 0 + () cos[v(k)(t — to)]
+ ﬁj ark T cos (k) (¢ — 7)),

and remembering that

I o W) U B o o L SN RN
V%yz(k) r(t) V%M(k) r(t) r(t)

_ % %ts(k]j)k k. dl;l(:) cos [v(k)(t — T)]

1 AP (kK dr(7)
- V% 22 06) cos [v(k)(t — 7)] ot

we obtain

dp(t) . 1 ¢ _ _ _
7+m* tfo dr K(t — 7)p(1) = —rK(t — o)

) 1/2
_ h —iv(k)(t—to) |t iv(k)(t—to)y _
iz (21/(k)> A(k)k(bre +bl e ) —E(t),
(3.57)

where

K(t—r) =1 Zﬁ(’“()k"; cos [v(k)(t — 7). (3.58)
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We average this equation with the initial statistical operator
Dy, = p(S)D() (3.50)

and denote
m*(V(t)) = (p(t)) = Tr g P (t) Dy,

(r) = Tr s 5 rDy, = Tr g 1p(9).

(8,%)

Because (b;) =0, (bik> = 0, equation (3.57) can be reduced to

*d<\;§t)> + j dr V(T)K(t —7) = —(r)K(t — to) — E(t).  (3.60)

Here (V(t)) is the average velocity of the particle.

Let us now consider the situation where E(t) is a periodic function of
t multiplied by e* (e > 0), corresponding to the adiabatic switching on
of the external electric field at time ¢ — —oo. We shall seek the stationary
solutions of (3.60), i.e. solutions that can be represented as a product of
et and some periodic function.

Since (3.60) is a linear equation, we can restrict ourselves to consider-

ation of the simplest ansatz
E(t) = B (7o), (3.61)

In fact, if E(t) were a sum of terms with different frequencies w then the
resulting stable solutions of (3.60) would be a sum of solution of the type
(3.61).
Thus consider the equation
0)

PO) 4 | dr (VK (- 7) = ~Buel -t

Substituting .
(V(t)) = Ve et

into this equation, we get

(m*(—iw +e) + [K(t)elwe)t dt) V., =-E,.
0
The definition (3.58) leads to the relation

o0 (—iwte)t g, _ L A% (k)K? ( 1 1 )
PR (B)e =y % 62(k) \e—ilot B | e—ifw—v(R] )
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Denote

lzm(k)kﬂ S(v(k) — Q) + 5w (k) + Q)] = I(Q). (3.62)

Then I(—Q) = I(Q2), I(Q2) > 0, and

ds2

" (3.63)

(o] . +oo

TE@)e = dt =i [ 1(Q)

0 —00
Therefore

<m*(—iw b i Q) —%

.t — (—tw+e)t
S w+i5—§2><v(t)> = ~Hue '

But, thanks to (3.38),
E, = _ecgw»

and, according to the definition of the electric current,

Ju(t) = —ec(V(1)),
we have

dQ?

m*(—iw +¢) + i+fOOI(Q)7 jult) = e2€,e7 Tt (3.64)
o wHic—Q )% crw ) ’
Let us take the limit V — oo, assuming that for any real w and any

positive €,

+o0 a2 +o0 ds2
AL brorerny s B g AL sy o3 (3.65)
After the passage to the limit, we put € — 0 in (3.64). We get
. 1 2 —iwt
W) = e€.e ,
=7
where
. oo ds2
Zi(w)=—-miw+1i [ J(Q) (3.66)

5o w—Q+140

Choosing a system of units for which the electron charge e, is unity, we see
that (3.66) is exactly the impedance corresponding to the frequency —w.

As we shall see later in connection with the process of the passage
to the limit, all expressions used further, including (3.42), will depend
only on the function J(£2),, but not on the particular choice of functions
v(k) and A(k). Therefore we have to employ, first of all, an appropriate
expression for J(£2). Let us allot the following properties to this function:
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1) J(£2) is an analytic function of the complex variable, regular on the
strip
[Im Q| < 7no.

2) J(Q)*J( Q).
3) [J(Q)| < C/IN? for ] > wy, where wy, C are constants.

4) For real Q
J(2) > 0. (3.67a)

Then we take expressions for A(k) and v(k) such that ™
1 Z A (kK> 4

< o where (1 is some constant independent of V',

2
(3w O )
(3.67b)
1 AR o0
2 : (2()k = TI(9) d, 0<w< oo (3.67¢)
v(k)<w 0

In the considered situation it is clear that (3.65) holds for any fixed ¢ >
> 0 and that the convergence is uniform with respect to w in the interval
—00 < w < 400).

Let us now introduce the following function of the complex variable W:

A(W) = Zifj: J(9Q) Wd? =. (3.68)

We see that this function is regular for |Im W| > 0. In connection with
the properties (3.67), it is obvious that

A(W) = lim i T r0) -

Jim i [T, ImW £, (3.69)

Here, thanks to (3.62)

ff(

k)k? 1 1
*vzﬁy ( —y(k)+W+u(k)>’

and hence this function is analytic on the whole complex plane and has
singularities (poles) only on the real axis at W = +v(k). However, the
limit function has a cut along the whole real axis, such that

A(w +1i0) — Alw —i0) = 27 J(w) > 0.

™ One of the ways to find such expressions for the functions A(k) and v(k)

. . 2 2 2
results in the following. We take k = ( 7an1, 77Ln27 7an3>, L3 =V; ni, na,
n3 to be positive and negative integers; it is assumed that n? + n3 + n2 # 0,
this prevents the appearance of zero value for k in all sums over k. Then we
put v(k) = s|k|, A(k) = 2m%(s®/|k|*)J(s|k|), where s is some positive constant
independent of V.
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Thus we have two analytic functions

+oo
ALW) =i [ I(9) Wd?ﬂ for TmW >0,
(3.70)
too dQ)
A_(W)= 72,‘&J(Q)W—Q for ImW <0.

Thanks to properties (2) and (4) in (3.67a), these functions are connected
with each other in a simple way:

A_(W)=-A(-W) for ImW <0. (3.71)

Hence, we need to investigate only one of them, for example, Ay (—W).
Denote

ReW = w, ImW =y > 0. (3.72)
Then, for any fixed w; > 0
. . a2 wtwr w—Q —iy
Ar(w+iy) =1 JOQ)——— +1 JQ)———
+( Y) \Q—wfl>w1 ( )w—i—zy—Q w_fm ( )(w—Q)2+y2
But ot 0 o Q
St d =~ [ 5 dQ =0,
w—w1 (UJ—Q) +vy —wlg +vy
and therefore
. dQ)
Af(w+iy) = JO) ————
Aorip =i 1 I@)
4 IO =I@ G ayan s T @)Y a0, (3.73)
ww (W= +y w—w (w=2)" 4y

From which it follows that
At (w) = lim Ay (w +iy)
y—)

(R

[Q—w|>w; w— w—wi w—0

dQ+nJ(w). (3.74)

Thus A (w) is also an analytic function on the real axis. Using (3.73), it
is easy to prove that

const

Wi

Ay (W)l < [W| — oo, (3.75)

Furthermore, we have

Ap(w) =A_(w) +21J(w) = AL (—w) + 27J (w).
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Thanks to condition (1), the function —A (—=Q) + 27.J(w) is analytic in

the domain
0=>ImW > —nq. (3.76)

Because this function coincides with Ay (w) on the real axis, we see that
A, (w), defined initially for ImW > 0, can be continued analytically to
the domain (3.76). Thus we can write

AL(W)=-Ay(-W)+2xJ(W) for 0=>ImW > —np. (3.77)
It can be shown that the inequality (3.75) is justified anywhere for
ImW > —no. (3.78)
Let us consider now the impedance function
ZL(W)=—im"W 4+ AL (Q)

in the domain (3.78) and note that it does not have any zeros in the upper
half-plane or on the real axis, because, thanks to (3.73),

ReZ (W) >0 for ImW > 0.

Hence all zeros of this function in the considered domain (3.78), if any,
must be confined within the domain (3.76) . But

AL (W)—0 for |[W|— oo,

and therefore zeros of the function Z, (W) might be observed only in the

closed domain
[ReW| < const, 0=ImW > —np. (3.79)

As is well known, an analytic function can possess only a finite number
of zeros in any closed domain. If a few zeros are contained in the domain
(3.70) then we can choose 1 > 0 such that —n is larger than any of the
imaginary parts of these zero points. If, on the other hand, the domain
(3.79) does not contain any zeros of the function Z, (W) then we choose
1n = 1no- In any case, we see that by choosing an appropriate value n > 0,
we can always ensure that the domain

ImW > —n (3.80)

does not contain any zeros of the impedance function Z; (W'). Therefore
the admittance function 1/Z, (W) is a regular analytic function in the
domain (3.80). Its behavior at infinity is given by the relation

1 1 _ 1 AT (W)
Zy(W)  —m W + AT (W) m W W (—mS W+ AT (W)
1 1
——WJFO(W), W] = 0o, (3.81)



146 Ch. 3. Kinetic Equations in Polaron Theory

In conclusion, we should like to consider the following example. Let
us take

" _ L K§ 1 1 B
A (W)fz2 W—Vo+i’y+W—|—l/o+i’y , v>0, ImW > —~,
_ P ¢ 1 1
A(W)=-A"(-W) =1 5 W+y0—iw+W—Vo—z"y , ImW< .
Then
1 K?
J(Ww) = — [AT(w) = A~ (w)] = =2 i 7 .
@) = oy (A% - A = B (s
(3.82)

For this example, all of our conditions are fulfilled. A similar result would
be obtained if, instead of the single term in (3.82), the sum of a few terms
of this type were considered.

After these lengthy speculations on the analyticity of the impedance
and admittance functions, we return to our fundamental equation (3.57),
in which we put

E(t) =Y E,e7™". (3.83)

It is convenient to solve this equation by the Laplace transform. Thus we
multiply both sides of the equation by the factor

Wt W =Q 410, (3.84)

and integrate over ¢:

oo . [l t
FateWt®O L LT oW gr (e — r)p (r)
to dt m to to

) 1/2
e Wt R o i(W-w)t & I
= rtfo dte’™ K (t —to) zw: E, tfo e —E (2y(k)) A(k)k

« <bk °f° dt W =v(k)t giv(k)to + btk Ofodt ei(W+v(k))t€—iu(k)to)_ (3.85)
to to
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But oo rdp(t) ‘ - ‘
[ dt WP\ —petWlo W T dt e™WVip(t),
to dt to
T dte } dr K(t —7)p(r) — ofoK(t)eth dt T eWip (t)dt.
to to 0 to
Therefore

ri* (—im*W + OfoK(t)eth dt) Ofoem/tp(t) dt
0

to

— peiWto _ peiWho C}OK(t)ez‘Wt d + Z o (W —w)to
0 @) ’L(W - w)

1/2 Wt T iWtg
1 h bre 0 b,ke
T (Xk): <2u(k)> Alk)k <W —ok) W V(k)> '

From here, thanks to (3.63), we have

0o ; +o0 dv
Wt —
éK(t)e dt-z_(f)oI(V)W_V
Introducing the notation
L oo v () T dv v
—im W—Q—z_(f)ol(l/)m—Z (W), z_(f)OI(U)W_V—A (W).
(3.86)
we get
Tdte™'p(t)
to
_ m*pethg 3 m*rA(V>(W) ethO B sz*E ethOe—ithO
zw) 2V w) CW—w)zMw)

1 NP Ak)ke™ b b,
Ty %m <2V(k)> 2V W) (W o T W I/(k)) - (3:87)

Because
“+oo ) oo .
fit) =77 e<529>t< / f(T)e(lﬂé)TdT> dQ, t > to,
(27) “so to
Therefore, using the notation
i +oo (B=i)(t—t0)

o L (Q+ 0 — ) Z2V)(Q +40)

dQ = f(y,é,t — to),
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1 too e(é—iﬂ)(i—to) 1 +oo( 1 A(V)(Q+i(5) )

21 oo ZV) (1 +46) 2rm” oo \ =0 (i —6)Z2Y)(Q +i6)

% (8= (t—to) gy — go(d,t —to),

L FRAY(Q46) (5-i)(t-to)

€ A0 = g, (8, — to), 3.88
o . Z<V>(Q+’L(5) gl( 0) ( )

we obtain from (3.87)
p(t) =p () +p P (t) + PP (1),
p(t) = m*pgy(d,t — to) — m*rg, (8, ¢ — to), (3.89)

p(E) (t) =-m" Z wa(wa 67t - tO)eiiwta
(w)

- 1/2
() _ —im h
P = Z(k) (b(k))

x A(k)K[b f(v(k),8,t —to) + b f(—v(k),d,t — to)].

It should be stressed that the functions (3.88) depend essentially on V.

Thanks to our choice, which leads to conditions1)—4) and (3.67), we
can take the passage to the limit V' — oco. Up to the present, § has been
arbitrary. Let us now choose

_n
5=1. (3.90)

From the other side, it is easy to see that

5 1 el

1 FRAL(Q+40) (5—ia)(t—
g1(0,t—to) > Wit —to) = 5 %e@ Dt=to) 4O (3.91)

s o ;i oo (61 (t=t0) j0)
fw,0,t —to) = @(v,t —tp) = g_{;o Q418 — ) Z4(Q +i6)

as V — oo. Taking into account the identity

1 1 A(Q + i6)

Z(Q+i0) - (iIQ—=0)Z(Q+id)
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and the magnitude § fixed by (3.90), one can show that the convergence
|f(v,6,t —to) = ®(v,t —to)| — O,
v|f(v,6,t —tg) — ®(v,t —to)| — 0, (3.92)
V-0

is uniform with respect to real v when |t — to| < T'. Here T is some constant
independent on V.

Let us begin to study the asymptotic behavior of the limiting functions
Py, ¥y and @ for t — g — oo. It is suitable to remind that functions
AL(Q+id); 1/Z4(Q 4 id) are regular analytic functions of Q in the
domain ImQ > —¢ — n = —30. Therefore the integration in the expres-
sions for Wy and W¥; can be distorted from the real axis to the axis
(—3id — 00, —3id + 00), which implies the change of variables

Q — Q — 3id.
Because of this,

_ 1 +°°A+(Q —1in) —iQ(t—tg) —n(t—to)
qjl(t—tg)—ﬁimme dQe y

L Fpe e tto) —n(t—to)
qjo(tito)i%,ﬁoz.k(g—i’q) dQ@
1 AL ()
21 oo (n + 1) Z4 (2 — in)

_ e~ 2t=t0) 40 6—77(15—750)7

since to0 —ii—t0)
——dQ =0
e NI

for t > tog. Hence, taking into account the inequalities proved before, we
have

|‘I’1(t — to)l < Kle_n(t_to),
o (t —to) < Koeffi(t*to), (3.93)
t > to,

where Ky and K; are some constants. We apply a similar procedure to
the function ®(v,t — tg). But here we need only pay attention to the fact
that the function under the integral (3.91) has a pole at 2 = v —id in the
domain Im Q2 + § > —n. As a consequence,

—iv(t—t - —iQ(t—t
(vt —tg) = S + = e*”<t*t°)+fo L
’ Z+(V) 27 — 00 (Q+Z(5—V)Z+(Q—7,T])

—iv(t—t
e~ w(t=to)

= 4 4 e—n(t—t0)+foo AL(Q— in)e—iﬂ(t—tg) a0
el ~o0 (@ — i = V)(IQ + )24 (Q — i)’

(3.94)
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because )
+joo e ) dN=0, t>t
- - - =0, > 1g.
L @—m— v —m)

The expressions (3.94) lead to the following inequalities:
—iv(t—tg)

— <K e_”(t_to)7
Z4+(v) 2

’(I)(I/,t — to) —

(3.95)

—iv(t—t
e (t—to)

€ | < Kgent—to)
Z4+(v) ’

v®(v,t —ty) —v

Here K5 and K5 are some constants.
Now we can pass to the calculation of the expressions (3.42) for the
model based on the Hamiltonian H%). We have

(b](ca) (t, ' t0> - Tr eik~r(‘r)e—ik-r(t)DtO. (396)

Here the index (a) indicates that we have used an approximation: instead
of the function r(¢) determined by the exact equations of motion, the
function r(¢) given by (3.56), which follows from the model Hamiltonian
H@) | has been substituted.

The approximate equation, which we propose to solve instead of the
exact one (3.43), is formulated as

2 t
kL (k) f dr efs(tf'r)

(p) _ . 1
a * E(#) = e>15,1§io (2m)® [ dk 2w(k)(1 — e PPek)y

X[eiw(k)(tfr)_,r_efiw(k)(tfr)efﬁhw(k)]t lim th <I>( (t, 7, t0)
0—— 00 — 00
_ lim [dk kL’ (k)
£>0,6—0 (2 )3 2w(k)(1 — e PPy

j dres(t=7)
o0

x [emw®(E=T) o piwk)(E=T)e=Bhw(k)] Jim  lim o, *(a )(t 7,t0). (3.97)

to——o0 V—oo

We note that this equation follows from (3.43) by replacing ®;, with <I>(a)

and taking the sequence of limits V — oo, tg — —00, € — 0.

To write the approximate equation (3.97) in explicit form, we consider
the expression (3.96) for <I>](€a). Let us pay attention first of all to the fact
that the “model equations” (3.56) are linear, so the commutators

[r;(t), ()], 5.3 =1,2,3
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are c-numbers. Therefore

. . 1 .
ezk~r(7)e—zk~r(t) —e2 [k~r(7—),k~r(t)]ezk'[r(t)—r(T)]’

, t
<I>,(€a) (t,7,tg) = e~ ker(t) = e% [k'r(T)’k'r(t)]Tr(S’Z)exp (—ikf I;T(;) ds) Dy, .

. (3.98)
Inserting (3.89) into this equation and observing that

Dy, = p(8)d(%), D(X) = const - exp (ﬁZhu(k)b;bk), (3.99)
(k)

Tr p(5) =1, Try D(E)=1,
we get from (3.98)

o\ (1,7, t0) = B (¢, 7, 10) DL (¢, 7, to), (3.100)
i
oW (1,7, t0) = e lr(Dkr®)] g (‘%1; P ds)

kLo
X Tr g exp(—zm* .lp( )(s) ds) D(E), (3.101)

t
P (t,7,t0) = Tr ) exp(—z'n‘; Jp(s) ds) p(S).  (3.102)

T

Furthermore, we have

[k : I‘(’T), k- I‘(t)} = 1* |:k . I‘(’T), jtl k- p(S) d8:| s I‘(T) — I'(t) _ ‘z‘ p(s) dS,

m T

[k -r(r).k - p(s)] = [k - {r(r) - r(s)}, k- p(s)] + ihk?

Thus

k-r(7),k-r(t)] = iZ’f (t-7) (= )2} ds ] do [k p(o). k- p(s)]

—ink
m
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because

Il
—
=
i)
—~
o
IS
m
—
=
i)
—~
o
U
I
I
o

z d32 do[k-p(o), k- p(s)]

and

On the basis of (3.89) and observing that all terms in the sum
p(t) =P () +p™ (1) +p (1)
commute with each other, we find that

ke r() k()] = Py 4 (L) Ids fdolk - p)(@).k - p*) (5]

2
+ (%) } ds} dolk -p® (o), k-pP(s)]. (3.103)
Here, because of (3.89),

(L) k- p(0). k- p(s)
= ihk*[gy(6,0 — to)g, (0,5 — to) — go(d, 5 — to)gy (6,0 —to)]  (3.104)
and
(%) B Do)k P (8)] = K[ (0,5.t0) ~ Flss oo, (3.105)
where

F(U7 SvtO) = % ZGVTEIC) (1 i\e(,kg)flz,(k)) [f(l/(k)a 55 o — tO)
(k)

x f(—v(k), 8,5 —to) + e PO f(—u(k), 8,0 — to) f(v(k),d,s — to)]

F(JvS,tO) = ?du[(u)% [f(u(k),5,a - tO)f(iy(k)vaaS - tO)

+ e PR f(—u(k), 8,0 —to) f(v(k), 8,5 —to)].  (3.106)
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Let us note further that because of the form (3.99) of the operator
Dy (%) and the linearity of p*(*)) with respect to the Bose operators, we
can write ™

kot
T exp( 5 [pi¥(s)ds ) Dy ()

T

. 2
= exp [—2;2 Tr, ([p ) () ds) DL(E)}

2
pet

1 t t
= exp<—2m J ds f do Tr,, k.p@)(s)k.p@)(a)m(z))
/ﬂ2 t t
= exp(—zf ds [ do F(s,a,t0)>. (3.107)

Let us also recall that

L pB(t) = = S By f(w, 6,1 — to)e~ % (3.108)

mn (@)

Bearing in mind (3.67), (3.91) and (3.92), we get

2

k-r(r), k- £(6)]y oo — ”LZ (t—7)

t ot
+ihk?® [ ds | do [Uo(o —to) W1 (s —to) — Wo(s — to)¥1(o — to)]
tot
+ k2 [ ds [ do[Fuo(0,8,t0) — Fao(s,0,t9)].  (3.109)
Here, in connection with (3.106),
. e hv
Foo(o,s,tg) = lim F(o,s,tg) = fJ(V)W
—00 0 1—e

X [®(v,0 —to)®(—v,5 — to) + e PP D(v, 5 — to)B(—v, 0 — to)] dv.

(3.110)
We also have, from (3.108),
1 i
Wp(E)(t) — =S E ®(w,t — to)e P, (3.111)

(w)

" Here <6A> = e<A2>/2, where A is a linear form in Bose operators, has
been used, and the averaging is with respect to the quadratic Hamiltonian
> Eublbe.

(w)
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Then we can write (see (3.100))

1 im [k-r(7),k-r ¢
‘I)](cl)(t,T,to) —e? i flex(m)ler()] exp(—i k* [ lim p(E)(S) ds)

k2 t t
xexp<—2f ds [ daFoo(s,a,to)>, (3.112)

T

taking into account (3.109), (3.100) and (3.111).
Now, let us consider the situation when t; — —oo. Because of (3.95)
and (3.111), we observe that

. 1 Cn(t—
Jim o pE (1) —v(t)| < % By | e "1, (3.113)
E, —tw
vit)=-)_ 7o) ¢ L (3.114)
(@)

Furthermore, incorporating (3.95) for the evaluation of the expression
(3.100), we find

|Foo (0, 5,t0) — F(o — s)| < K(e " t0) 4 ¢=n(s=t)y " | — const,

o) S (o) (3.115)
(o) hl/ e—'LV g—Ss + e— Ue'Ll/ o—Ss
Flo—s)= [dvJ
e e 0 7Y o R
or, as long as J(v) = J(—v),
+00 Ay efil/(n'fs)
F(o—s)= dvJ . 3.116
(=9 = [ W= 2.0 Z0) (3:110)

We transform this formula slightly. Because

2mI (1) = Ay (v) = A_(v) = Z4(v) — Z_(v) = Z4(v) + Zo (),

we have
1 1 Ziw)+Ze(v) _ 1 (1 1
7007V T iz () an (Z+<v> * Z+<—u>>

_1 (1 - 1>
S 2r \Zy(v) Z-(v) )

Furthermore, because of the reality of J(v), the following relation holds
ImZ,(v) = -ImZ,(—v).
But, by definition,

|t ()
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and hence
ReZ,(v) =nJ(v) =Re Zi(—v),

so that
Zi(~v) = Z3.(v),

As a consequence, we may rewrite (3.116) in the form

13%
1 — e B

_ 1 11 _ J(v)
G0 = (sz) Z+(u>> Z-W)F

As the final result, keeping in mind (3.101), (3.109), (3.112), (3.115) and
(3.93), we obtain

e—iu(o—s) dl/,

“+o00
Flo—s)= _f G(v)
> (3.117)

t

—i[k-V(s))ds
Jim - Tim oM (t,7,t0) = e Jleve) A(K*t — 1), (3.118)
0——o0 V—oo
where
9 o ih 1t t
Ak ,t—r)zexp{k <2m* (t—7‘)—|—§fdsj do [F(oc —s)— F(s—o0)]

— 5 ds]doF(s a)> (3.119)
But, because of (3.117),
+ — COS _
1}ds}doF(s—U): j?oG(u)1 cosv(t — 1) hi dv,
27 T —o00 1/2 1—e phv
St hv .
F(a—s)—F(s—a)zQz[G(u)l —gry Sinv(s —o)dv
—00 —€

+oo
-2 [ G(V)li

ry Sinv(s — o) dv
—00 €

6—[37‘“/ h

I sinv(s —o)dv = +}X>G(l/)hu sinv(s — o) dv,
—e

— 00

+o0
=-2i [ G(v)

i dsz do [F(o —s) — F(s — 0)] = z’hjfooG(z/) (S‘“”(j‘” - T)> dv,
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Thus (3.119) yields
Akt 1) = A(K®t — 1)

—exp{ﬁ[;’j -+ Faw) (Si“”(j")—@_ﬂ) i

1t h[l —cosv(t — )]
= fG() S0 e dl/:|}. (3.120)

Now consider the expression

7 (t,7,to) = T,y exp (—nz f k-p®)(0) da) p(9).
Here
%zk'p(s)(U) do = k~p§g0(§,a —tg)do — k- rzgl(é,a —tg) do.
In accordance with the results mentioned above,
zgo(&g —tg) do — i‘lfo(U —tg) do,

t t (3.121)
181(0,0 —tg) do — [¥1(0c —tg)do, V — o0,

and also
t
f\Ifo(J - to) do <

T

t
Ko [e "@7t) dg,

t (3.122)

[¥i(oc —to)do

T

t
< Ky [emMo7t0) do.

From here it is natural to see that

o7 (t,7,t0) = Tr 4, p(S)
¢ ¢
X exp(ik pJgy(d,0—tg) do+ik-r [gi1(0,0 —tg) dcr)

t ¢
— Tr g p(S) exp(ik p [ Voo —to) do+ik-r [Uy(c —to) da)
(3.123)

as V — oo, and
t t
Tr o, p(9) exp(—ik . p[\l/o(a —tg)do + ik - ri\lll(a —to) da)

— Tr p(S)=1. (3.124)
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However, in spite of (3.121) and (3.122), considerable difficulties arise in
the proof of (3.123) and (3.124). They originate from the unboundedness
of the operators r and p.

Nevertheless, the validity of (3.123) and (3.124) can be confirmed
(see Appendix II) in the case when the statistical operator p(S) does not
depend on V or ty. In this case,

lim lim <I>( )(t,7‘7t0) =1, (3.125)

to——o00 V—o00

and hence, on the basis of (3.100) and (3.118), we conclude that

—itk~VU do
lim  lim o\ (t,7,t0) = e aa A(K? t — 7). (3.126)

to——00 V—oo

We substitute this expression into the approximate equation (3.97):

d{p)e __n 1 kL? (k) L —e(t—7)
7 +E(t) = €>1017r6n_>0 2n)? [dk 2R (1 — = P _{O dre

X(eiw(k)(t—T) + e—iw(k’)(t—f)e—ﬂhw(k))e_i!k'v(a) dUA(kQ,t —7)

kL (k)
* s>10Hen—>0 (2m)? [ dk 2w(k)(1 — ef’%”(m) -

j dr e ct-T)

. . i / k-V(o)do
x (e~ =T i) (t=7) =Bl () TV g2y oy (3 197)

Thus we have derived a general approximate equation from which all
results of [6, 30] could be deduced. Note that in[6, 30], m = m* and the
function (3.82) is used in the limit v — 0.

Consider, in particular, the case of a weak external field, when one
can restrict oneself to a linear approximation of the average velocity with
respect to E. Put in (3.127)

iithU do
SV V(o) do

Bearing in mind the radial symmetry, we find

(p)e _ - k*L* (k)
PL4E() =— lim ' fdk

t
—e(t—7)
e—0,e>0 (2r) 6w(k)(1 — e PP —<f>o dre

x (e ® (=) | e—iw(k)(t—f)e—ﬁhw(k))}v(o_) do A(K,t — 1)
. j k> L2 (k) t e(t—
- 1 L [ dk dre==")
0850 (27r)3f 6w (k) (1 — e MRy EN

x (e~ E=T) . (i) (t=7) =B £y (g) dg A* (k2 E — 7). (3.128)
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Here )
—wt

) Z4(w)

represents the stationary average velocity induced in the model system
by the external field )
(t) =Y Ege ™"
(w)

Note that in the considered case of weak-enough field, we can express
the stationary average velocity for the real system analogously:
PO _ g~ B

m 24 (W) ’

(w)

but, of course, with different coefficients; here z, (w) corresponds to the
impedance of the real system.
To derive a “self-consistent” equation to determine this impedance, we

choose
Zy(w) = z4 (w) (3.129)
and take advantage of (3.128). We get

Ewe—iwt 11— eiw(k)(t—r)

o Z4(w) w

Introducing the integration argument t — 7 = s, we find

—iwt —iwt
usze iwt . E. e
m Z + ZEwe €>1(}gg0(2): 21 (W)
w

—i}V(U) do=—

1 0 0 —es( —iw(k)s iw(k)s  —Bhw(k)
dk d
. ((271')3 I 6w(k)(1 — 6—Bhw(k)) g se (e +e e )
ews _ 1 * (1.2 1 K212 (k)
X A*(K?,5) — dk
w ( ) (271')3 f 6w(k)(1 - 67ﬁhw(k))

« Ofods efes(eiw(k)s + efiw(k:)sefﬁhw(k)) e —1
0

> A(K?, 5)). (3.130)
Thus the impedance is determined self-consistently from the approximate
equation

. ELAh)
24 (W) = —iwm + 5>1(J1IEILO (2 2 J dk 6w(k)(1 — 67ﬁhw(k))
® —es —iw(k)s iw(k)s ,—Bhw(k) e —1 * (1.2
x [dse ((e +e e )TA(]C,S)
0

iws_l

- (eiw(k:)s + efiw(k)sefﬁhw(k:))e
w

AR, s)). (3.131)
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Consider, as an example, (3.127) in the case of a constant field, when
E = const, V = const. (3.132)

Since, because of (3.119), A*(k?,s) = A(k?, —s), on making the trans-
e:ﬁ:iw(k)sefﬁhw(k),

formation k — —k in the terms containing we can
write:
“E= lm Lorac® k‘c fd ~els|

(>0,e—0) (2m)

6i[w(k)—k~v]s e—i[u(k)—kv]s 9
X (1 e e ] )A(k ,8).  (3.133)
Equation (3.40) follows from here in the case of weak interaction if we
substitute A(k?, s) with its “zeroth-order approximation” (which neglects
interaction) and put s = h&.

In conclusion, we should make a few remarks on the structure of the
stationary probability density for the momentum of the particle .S in the
model system described by the Hamiltonian H%). Letting w;(p), stand
for this probability density distribution, we have
Je Py (p) dp = Tr e PO D,

(8,%)

= AP O Ty AP0 () Ty NPT O D (8. (3.134)

Here, as before,

2 w2
A m”

s i ( )D(2) = exp (‘ F(tatvtO)) . (3.135)

We now recall that

p () — p(t)=-m" Y E,®(w,t — to)e ™™,

V—oo (@)

P (1) =m V() — 0, (3.136)
p(t) e Poo(t) = m*pPq(t — to) — m vy (t — tp)
and
F(ttto) — Foolti,t,to), (3.137)
|Foo(t, 1, t0) — F(0)] < 2K e~ "(t—t0) .0
Here

oo Jv) hy
ENPRO

F(0) = dv > 0. (3.138)
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,(Ca), we find, as a

Repeating arguments used to investigate the function @
consequence of (3.134),

fe‘”"pwt(p) dp — e~IAPL (1) Tr e_i}"p@(t)p(S)

V—oo
)\Zm*Z
X exp (— 5 Foo(t,t7t0)) (3.139)
and
2 _— . AZm*Z
Vlim Je" P, (p)dp — e AV® exp (— 3 F(O)) =0. (3.140)
Let us now consider the momentum distribution function itself:
1 i i
wi(p) = 2P [ dX\e Ap(fe )‘pwt(p) dp). (3.141)
Note that
i . /\2771*2
eZ)"pfe_M‘pwt(p) dp‘ < exp (— 5 F(t,tto)) . (3.142)

But, thanks to (3.137) and (3.139), it is easy to prove that

Fuoltitito) > 71 5 0 (3.143)

for a large-enough difference ¢ — ty. Fix such ¢ and ¢q. Because, for fixed
t and tg, F(t,t,to) — Foolt,t,t0) as V — oo, we see that, for large
enough V|

Fu(t,t,t0) > @ >0

and

ixZm*2

g@ 8 F(O)

¢AP [em APy (p) dp

Therefore the passage to the limit in (3.141) as V — oo can be carried
out on the basis of (3.139) before the integration over A . Hence we get

lim wi(p) = 1 I dA RN SO {TT(S) e—iXP(of)(t)p(S)}

V —oo (271')3

A°m

2 %2
X exp (— Foo(t7t,t0)> . (3.144)

2
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Thanks to (3.143), the absolute value of the integrand in (3.144) will
i)\2m*2

be smaller than e~ 2 7 for a large-enough difference ¢ — ty. As a

consequence, we can again take the limit ¢ — oo under the integral over

A in (3.144) and obtain, in accordance with (3.140),

i (o)~ s x esp (ix o - (o] 255 F0) )| 0.
(3.145)

1
(2m)
Having calculated the Gaussian integral, we find that

1 B AZm 2

L raxexp <i)\- [p—m V()] - F(O))

)’
3/2 * 2
_ (22”) exp (MW) ,
m*™“F(0) m™F(0)

Thus, if the initial statistical operator for a model system has the form
Dy, = p(S)Dr (%), and, moreover, p(S) does not depend on either V' or
to, then the corresponding distribution function of momentum p in the
limit V — oo, i.e.

Jim, (p) = Jim D,

converges to the stationary distribution function:

3/2 * 2
. 1\ 2m [p —m*V(t)]
lim |w — (—*) - exp | —— =0.
t—oo
(3.146)
As can be seen, this stationary distribution function of momentum p is
represented by a “shifted” Maxwellian function.
Thus the use of the Hamiltonian H (%) as the approximate one is bound
up with the assumption that a shifted Maxwellian distribution may be
used for the initial approximation.
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Appendix I

Lemma. For the averaged product of the operators by (t) and U(S, ¥)
the following equality holds
T ) e (OU(S, 2) Dy

(5,%)

1 ~ ~
= o T (DU (S, 2) — U(S D)} D,

Dy, = p(S)Dy(2).

Proof. Note that the Bose operators b, commute with arbitrary
operators of the electron subsystem ®(S5). Constructing an operator ex-
pression averaged with the statistical operator of the whole system, i.e.
Dy, = p(S)D(X); we have
Tr . . bi(t)U(S,%) Dy, = Tr

(8,%)

be(U(S, E)p(S)D(E)

(5,2
= Trey, be(O{Tr 5, U(S, )p(S)}D(T),
Tr,. . U(S, E)bk(t)DtU =Tr

(8,3)

U(S, £)bi(t)p(S)D(Z)

(5,3)

— Tr, {Tr ) U(S, 2)p(S)}ou (1) D).

Denote

Tr s) U(S,X)p(S) = B(X);
then
Tr,. . be(OU(S,5) Dy, = Tr

(8,%)

= bE(t)B(Z)D(Z),
_ _ (A1)
Tr 5 U(S, X)bi(t) Dy, = Tr ) B(X)bk(t)D(X).

It is worth recalling here an important property of the equilibrium
Gibbs averages in statistical mechanics. Consider an isolated dynamical
system described by some time-independent Hamiltonian H and two
dynamical variables A and B relating to this system, which are also time-

independent. Then, for the equilibrium averages
(A(t)B)eq = Tr A(t)BDeq, (BA(t))eq = Tr BA(t)D
(Deq — heat bath equilibrium statistical operator), in which

A(t) = e HEA(0)e# B,

163
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we have
(A)B)eq = T T(@)e™™ dw, (BA(t))eq = / =P J(0)e = d.

We write these relations in the form
Tr (e% H(t=t0) Ao~ 7 H(t_tO)BDeq) = T T (w)emwt—t0) gy,

. _ (A.2)
T (Ber 1070 4™ HOZ0 D) = " e e p(w)em 1) do
—0o0

Let us put now
H=H(), Deg=D(S), A=by, B=B().
In this case,
Bi(t) = e —to)p, o H(i=to) o — % H(t—to)
Hence (A. 2) can be transformed into

Try, b () B(E)D(E) = e W) Ty b B(S)D(S)

= T Tk(w)em =) du,
T _ (A3)
Try, B(2)bi(t)D(D) = e W) Ty - B(S)be D(T)
— +fooe_5h‘”Jk(w)e_i“’(t_t°) dw.
These relations show that Ji(w) is proportional to §(w — w(k)):
Ji(w) = Id(w — w(k)),

and from here
e P I (w) = e PR g (w).

Hence we get from (A.3)
Try, B(E)b(t)D(S) = e P®) Ty by (£) B(E)D(T).

Using (A.1),
Tr, . U(S,E)by(t) Dy, = e Ty

(5,%)

b(DU(S, ) Dy,

(s.3)

which gives
Tt gy IO (U(S, E) — US, Z)bi ()} Dy

= (1 - eiﬂEW(k))Tr(s 2)~ ( ) (S E)Dto‘
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We observe now that B
Tr(s,z)bk (t)U(S, E)1)750

1 ~ ~
— L T BR(OU(S, )~ U(S, DB (0} D,
~ (A.4)
Tr g o U(S, B)bi(t) Dy,
k) - -
= e e {0e (U (S, 2) = U(S, X)bi(t) } Dy,

Thus the lemma is proved.
Let us introduce the notation
B (k)
1— e*ﬁhw(lﬂ

= Np.

Then the relations (A.4) can be expressed in terms of the phonon occu-
pation numbers bLbk:

Tr(s,z)gk (t)U(S, E)Dto - (1 + Nk)Tr(s,z){gk (t)U(S, 2) - U(Sa E)gk (t)}Dtoa
Tr g o U(S, D)bi(t)Dyy = Ny Tr g o {0k (OU(S, D) — U(S, £)by,(t) } Dy

(s,%)

Observation. From the proof outlined above, the suspicion might
have arisen that the operator U(S,Y) should not depend explicitly on
the time ¢. However, it is not difficult to see that the validity of the
lemma in the general case of an explicitly time-dependent operator follows
immediately from its correctness for the time-independent case.

Indeed, consider an operator U(t,S,3) and fix ¢ = t;. In this case,
U(t,S,X) does not depend on time from a formal point of view, and the
relations (A.4) hold. Because the time ¢; can be fixed arbitrarily, one can
put t; =t in (A.4) and satisfy oneself as to their correctness.
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Appendix II

It will be noted that our statement regarding (3.123) and (3.124) will
be proved if we are able to prove the following lemma.

Lemma. Let Any and By be a sequence of real three-dimensional
vectors converging to finite limits as N — oo:

Ay — A, By—>B as N — . (B.1)
So, if our statistical operator p(S) does not depend on N, then
Tr g, cANTHBNP) 5 ) Tr g, eATHBP) 5(q) (B.2)
In the case of (3.123), we have to put in this lemma, N =V,

By = —k}go(d,o’—to)da, AN:k;gl(J,a—to)da,

B= —kfvolo—to) do, A=Kkfi(o—to) do.

And in the case of (3.124), we can put N =t — tg, with 7 fixed, and
t ¢
By = —k[to(o —to) do, Ay =k [¢1(0—tg) do,

B=0, A=0.

Let us turn to the proof of the lemma.
Proof. As long as the commutators of the components of vector
operators p and r are c-numbers,

DaTB — T3P = —thiag,
then, according to the well-known identity
ei(C1~r+CQ~p) — 6% Cl-Czeicl~reiCQ-p
we can write:

G(ANT+BNP) _ i(Ar+Bp) _ e% ANBy AN T iBND

¢ 7 ABiAr iBp _ ( GANBy _ Y A~B) otANT BN P

+ 6% A-B [eiANT (eiBN-p _ eiB-p) + (eiAN-r _ eiA-r) eiB-p] )

167
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But, because the operator e*ANTe!BNP is ynitary owing to the reality of
Ay, By , we have

and hence

i (0D i5) i, (087505

<

ik i ' i
o2 (ANBy—A-B) _ 1‘ + ‘ Tr, ., GtANT (ezBN'p _ ezB-P) p(s)‘

+ ‘ Tr (e"AN'r . eiA”r) eiB'pp(S)‘. (B.3)

(s)

Bearing in mind that, since it is statistical operator, p(S) is non-
negative, the following general inequality holds (see Appendix III):

2
| T, UVA(S)| < Trg, UUTp(8) Tr,, VIVA(S). (B4

With the help of this inequality, we evaluate the first and second expres-
sions with the symbol Tr , on the right-hand side of (B.3), choosing

Up = ANty — (eiBNp _ ein) U = (eiAN~r _ eiA~r) V= eBP,
It can be seen that Vi and U; are unitary, and because
Tr g, p(S) =1,
for any statistical operator, we have
Tr, UiUp(S) = Tr gy, Vi Vi = 1.

Furthermore, because the components of the vector r commute with each
other, as do the components of the vector p , we get

U Ul = 2[1 —cos (Ay — A) - 1],
VITV] =2[1 —cos(By —B) - p].
Therefore we find from (B.3) that

| Tr, (A0 TR p(8)) — T, (AP Pp(S)) |

<[2 (1fcosg(AN~BNfA~B))]1/2

{21 - cos By~ B) - plo(s)}

1/2

+ {Tr(s) 2[1 — cos (Ay — A) -1]p(S)} (B.5)



Appendix II 169

Consider matrix elements of p(S) in the r-representation, i.e.
(r|p(S)|r), and in the p-representation, (p|p(S)|p). Then

Tr 5, (1 —cos (By — B) - p)p(S) = /[1 — cos (By — B) - p/{p|p(5)Ip) dp,
Tr g [L —cos (Ay — A) - plp(S) [[1 — cos (An — A) - r]p(S)(r[p(S)|r) dr.

But diagonal elements of a non-negative operator are non-negative:
(plp(S)lp) 2 0, (r|p(S)[r) =0,
and, because of the identity Tr p(S) =1, we have
Hplp(S)Ip) =1, 1{rlo(S)r) = 1.
Taking into account that p(S) does not depend on N and also that
1—cosX <2, 1—cos(AN—A) r—0upu N — 0
for bounded r and
1—cos(By—B)-p—o0 as N — 0

for bounded p, and

Tr . [1 —cos(Ay —A) - p]p(S) = 0 as N — oo,

Tr, . [1 —cos(By —B) - plp(S) — 0 as N — oc.

(s) [
(s) [
Hence we conclude on the basis of (B.5) that the lemma is proved. It is
obvious that the inequality (B.5) is valid whether or not p(S) depends on
N. Besides that, it is clear that 2(1 — cosx) < 2%. Hence

| T, {ArmeBaPlp(s) | — T, {AreBPp(s) }

<

N | St

|AN By —A- B| + [TY(S) |p|2p(5)]1/2|BN - B|
+ |AN - Al[Tr(s) |r|2p(5’)]1/2.
Thus, if p(S) depends on N, such that
T, [pI*p(S) < KT, T, [r*p(S) < K3,
where K7 and K5 do not depend on N, then (B.2) holds. Therefore, if in
Chapter 3 p(S) depends on tg and V, but in such a way that
<p2>t0 = TI‘(S) |p|2p(S)a <r2>t0 = Tr(S) ‘I‘|2p(S)

are bounded by some magnitudes independent of V' or ty, then all the
speculations and conclusions of Chapter 3 remain valid.
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Let us consider an average of a two-operator product (AB) as a bilinear
form in A and B (linear with respect to each of these operators).

Let Z(A,B) be an arbitrary bilinear form in A and B with the
following properties:

Z(AT, A) >0, (C.1)
{Z(A,B)}* = Z(BT, A"). (C.2)
We are going to show that the following inequality always holds:
|Z(A,B)|> < Z(A, AN Z(B', B). (C.3)
Putting here
A =U[p(S)]"?,
B =VI[p(8)]"?,

we arrive at the inequality (B.4).
To prove this inequality, let us not, first of all, that, thanks to
(1),
Z(xA+y*Bf, 2* AT 4+ yB) > 0, (C.4)

where x and y are arbitrary numbers. Removing the parentheses, we get
xx* Z(A, AY) + 2y Z(A, B) + y*2* Z(BT, A") + y*yZ(B', B) > 0.

Choose for z, y, =¥ y*
t= _Z(Av B)a

= —{Z(A, B)}* = -Z(BT, A",
y=y"=Z(A,A").

8

Then
—|Z(A,B)]*Z(A, A" + [Z(A, AN)>Z(BT,B) > 0.

From here, if Z(A, AT) # 0, we get the inequality (C.3).
It only remains to show that if Z(A, AT) = 0, then

Z(A, B) = 0. (C.5)
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For this purpose, we put in (C.4)
x*=—-Z(A,B)R,
r=—Z(B", ANR,
y=y" =1,
where R is an arbitrary positive number. We find that
—2R|Z(A,B)|* + Z(B',B) > 0. (C.6)

Let R — oo. Then, if (C.5) is wrong, we see that the left-hand side of
(C.6) must approach —oo, which is impossible.
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