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Preface

Multiplicative invariant theory, as a research area in its own right, is of relatively
recent vintage: the systematic investigation of multiplicative invariants was initiated
by Daniel Farkas in the 1980s. Since then the subject has been pursued by a small but
growing number of researchers, and at this point it has reached a stage in its devel-
opment where a coherent account of the basic results achieved thus far is desirable.
Such is the goal of this book.

The topic of multiplicative invariant theory is intimately tied to integral repre-
sentations of finite groups. Therefore, the field has a predominantly discrete, alge-
braic flavor. Geometry, specifically the theory of algebraic groups, enters the picture
through Weyl groups and their root lattices as well as via character lattices of alge-
braic tori.

I have tried to keep this book reasonably self-contained. The core results on mul-
tiplicative invariants are presented with complete proofs often improving on those
found in the literature. The prerequisites from representation theory and the theory
of root systems are assembled early in the text, for the most part with references to
Curtis and Reiner [44], [45] and Bourbaki [24].

For multiplicative invariant algebras, Chapters 3–8 give an essentially complete
account of the state of the subject to date. On the other hand, more is known about
multiplicative invariant fields than what found its way into this book. The reader
may wish to consult the monographs by Saltman [186] and Voskresenskiı̆ [220] for
additional information. A novel feature of the present text is the full and streamlined
derivation of the known rationality properties of the field of matrix invariants in
Chapter 9. This material could heretofore only be found in the original sources which
are widely spread in the literature.

A more detailed overview of the contents of this book is offered in the Intro-
duction below. In addition, each of the subsequent chapters has its own introductory
section; those of Chapters 4–9 are quite extensive, giving complete statements of the
main results proved and delineating the pertinent algebraic background. The book
concludes with a chapter on research problems. I hope that it will stimulate further
interest in the field of multiplicative invariant theory.
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Introduction

The Setting

Multiplicative actions arise from a representation G→ GL(L) of a group G on a lat-
tice L. Thus, L is a free

�
-module of finite rank on which G acts by automorphisms,

a G-lattice for short. The G-action on L extends uniquely to an action by � -algebra
automorphisms on the group algebra � [L] over any chosen commutative base ring � .
Multiplicative invariant theory is concerned with the study of the subalgebra

� [L]G = {f ∈ � [L] | g(f) = f for all g ∈ G}

of all G-invariant elements of � [L], the multiplicative invariant algebra (over � ) that
is associated with the G-lattice L.

The terminology “multiplicative”, introduced by Farkas [59], derives from the
fact that, inside � [L], the lattice L becomes a multiplicative subgroup of the group
U( � [L]) of units of � [L]. Indeed, identifying L with

� n by choosing a
�

-basis, the
G-action on L is given by matrices in GLn(

�
), the group algebra � [L] becomes the

Laurent polynomial algebra � [x±1
1 , . . . , x±1

n ], and the image of L in � [L] is the group
of monomials in the variables xi and their inverses. For this reason, multiplicative
actions are sometimes called monomial actions or purely monomial actions (in or-
der to distinguish them from their twisted versions; see below). The terminologies
“exponential actions” [24] or “lattice actions” can also be found in the literature.

Various generalizations of this basic set-up are of interest, notably the so-called
twisted multiplicative actions. Here, the the group G acts on the group ring � [L] of
a lattice L by ring automorphisms that are merely required to map � to itself. Thus,
G also acts on U( � [L])/U( � ). For a domain � , the latter group is isomorphic to L,
thereby making L a G-lattice in the twisted setting as well. If � is a field, the group
algebra � [L] is often replaced by its field of fractions, denoted by � (L). Any G-action
on � [L] extends uniquely to � (L). In the case of (twisted) multiplicative actions, the
resulting fields � (L) with G-action are called (twisted) multiplicative G-fields.

Example. Let S3 denote the symmetric group on {1, 2, 3} and let L =
�
a1 ⊕

�
a2

be a lattice of rank 2. Sending the generators s = (1, 2) and t = (1, 2, 3) of S3 to the
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matrices
(
−1 1
0 1

)
and

(
0 −1
1 −1

)
, we obtain an integral representation S3 → GL(L) ∼=

GL2(
�
). Thus, the action of S3 on L is given by s(a1) = −a1, s(a2) = a1 + a2,

t(a1) = a2 and t(a2) = −a1 − a2. The resulting multiplicative action on � [L] ∼=
� [x±1

1 , x±1
2 ] is determined by s(x1) = x−1

1 , s(x2) = x1x2, t(x1) = x2 and t(x2) =
x−1

1 x−1
2 . As will be explained in Example 3.5.6 below, the invariant algebra � [L]S3

is generated by the “fundamental invariants”

α = x1 + x2 + x1x2 + x−1
1 x−1

2 + x−1
1 + x−1

2 ,

β = x1x
2
2 + x−2

1 x−1
2 + x1x

−1
2 ,

γ = x2
1x2 + x−1

1 x2 + x−1
1 x−2

2 .

Here, α is the sum over the S3-orbit of x1 in � [L], and β and γ are the S3-orbit sums
of x1x

2
2 and x2

1x2, respectively. The algebra � [L]S3 is not regular; it is isomorphic
to � [x, y, z]/(z3 − xy). However, the multiplicative invariant field � (L)S3 is purely
transcendental of degree 2. — This example describes the multiplicative invariants of
the S3-action on the so-called root lattice A2. We will return to it on several occasions
in the text; see in particular Examples 1.8.1, 3.5.6, 6.3.2 and 9.6.3 where all assertions
made in the foregoing will be substantiated.

Multiplicative and Polynomial Invariants

For the most part, algebraic invariant theory is concerned with the investigation of
algebras of polynomial invariants over a field � . These come from a linear represen-
tation G → GL(V ) of a group G on a � -vector space V by extending the G-action
on V to the symmetric algebra S(V ). The resulting action of G on S(V ) is often
called a linear action. Identifying S(V ) with a polynomial algebra over � by means
of a choice of basis for V , the action can also be thought of as an action by linear
substitutions of the variables. Therefore, the subalgebra S(V )G of all G-invariant
polynomials in S(V ) is usually called an algebra of polynomial invariants.

There is a common way of viewing linear and multiplicative actions. Indeed,
both the symmetric algebra S(V ) and the group algebra � [L] are Hopf algebras
over � . Moreover, there are canonical isomorphisms GL(V ) ∼= AutHopf(S(V )) and
GL(L) ∼= AutHopf( � [L]). Thus, both types of actions arise from a homomorphism

G → AutHopf(H)

for some reduced affine commutative Hopf algebra H . Working over an algebraically
closed base field � , we may view H as the ringO(Γ ) of regular functions of an affine
algebraic group Γ and AutHopf(H) as the group Aut(Γ ) of automorphisms of Γ . In
the case of linear actions, the group Γ in question is the additive group of affine space� n = � n

a while multiplicative actions correspond to algebraic tori � n
m.

To a large extent, the local study of the algebra of multiplicative invariants � [L]G

of a finite group G reduces to the classical case of polynomial invariants, at least
when � is an algebraically closed field whose characteristic does not divide the order
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of G. Indeed, G acts linearly on the � -vector space L � = L ⊗ � � , and hence on its
symmetric algebra S(L � ). Luna’s slice theorem [128] implies that, for any maximal
ideal M of � [L], there is an isomorphism of the completions

̂� [L]Gm ∼=
̂

S(L � )GM

S+
,

where m = M ∩ � [L]G , GM is the decomposition group of M, and S+ denotes
the maximal ideal of S(L � )GM consisting of all GM-invariant polynomials having
constant term 0; see Proposition 7.3.1.

Special Features of Multiplicative Actions

Despite the aforementioned connections, multiplicative actions display some fea-
tures that contrast sharply with their linear counterparts:

• Even though multiplicative actions can of course be considered for arbitrary
groups G, the study of their invariant algebras quickly reduces to the case of
finite groups. Indeed, given a G-lattice L for an infinite group G, let Lfin denote
the set of all elements of L whose G-orbit is finite. Then Lfin is a G-sublattice
of L on which G acts through a finite quotient, G, and it is easy to see that

� [L]G ⊆ � [Lfin]. Thus,
� [L]G = � [Lfin]

G .

As a consequence, multiplicative invariant algebras � [L]G are always affine (i.e.,
finitely generated) � -algebras; see Proposition 3.3.1 and Corollary 3.3.2 below.

• The base ring � plays a rather subordinate role. Indeed, multiplicative invariants
are always defined over

�
,

� [L]G ∼= � ⊗ � �
[L]G ;

see Proposition 3.3.1. Many properties of
�
[L]G transfer directly to � [L]G. For

example, if G acts as a reflection group on L then, as we will show in Section 6.3,�
[L]G is a free module of finite rank over some polynomial subring. Conse-

quently, multiplicative invariants of reflection groups are Cohen-Macaulay, for
any Cohen-Macaulay base ring � (Corollary 6.1.2). On the other hand, polyno-
mial invariants of finite pseudoreflection groups can fail to be Cohen-Macaulay
if the characteristic of the base field divides the group order (Nakajima [136]).

• By a classical result of Jordan [102], the group GLn(
�
) has only finitely many

finite subgroups up to conjugacy. Therefore, working over a fixed base ring � ,
there are only finitely many multiplicative invariant algebras � [L]G, up to iso-
morphism, with rankL ≤ n. For small values of n, the finite subgroups of
GLn(

�
) are readily accessible by means of various computer algebra systems

(e.g., GAP [71], CARAT [34]). In principle, this opens the possibility of estab-
lishing a complete data base for multiplicative invariants in low ranks. This has
not yet been realized, however.
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• A property of polynomial invariants, of great practical and theoretical impor-
tance, is the existence of a natural grading by “total degree in the variables”. This
is no longer true of multiplicative invariants: in general, there is no

�
+-grading

� [L]G =
⊕

n≥0 Rn with R0 = � . Thus, the familiar graded-local setting of
polynomial invariants is not available when investigating multiplicative invari-
ants. This manifests itself in the fact that class groups, Picard groups etc. of mul-
tiplicative invariants have a more complicated structure than the corresponding
items for polynomial invariants.

Origins and Uses of Multiplicative Invariants

The early history of multiplicative invariant theory is somewhat opaque. The origins
of the subject lie in Lie theory which has a rich supply of lattices that are associ-
ated with root systems. Bourbaki’s “Groupes et algèbres de Lie” [24] devotes a sec-
tion (chap. VI §3) to multiplicative invariants under the name exponential invariants.
Steinberg [204] and Richardson [165], [166] are further sources with a Lie theoretic
orientation. The term “multiplicative invariant theory” was coined by Daniel Farkas
[59], [60] who, originally motivated by his research on infinite group algebras, ele-
vated the subject to a research area in its own right.

Multiplicative group actions occur naturally in a variety of contexts:

Centers and prime ideals of group algebras. The center of the group algebra � [Γ ]
of an arbitrary group Γ can be described as the invariant algebra � [∆]Γ for
the conjugation action of Γ on the subgroup ∆ consisting of all elements of
Γ whose Γ -conjugacy class is finite. If � [Γ ] is prime noetherian then ∆ is a
lattice and the center of � [Γ ] is a multiplicative invariant algebra. Of particular
interest is the special case where Γ is a crystallographic group. All multiplicative
invariant algebras � [L]G are centers of suitable crystallographic group algebras

� [Γ ], and conversely. In a more general setting, a key ingredient in the theory of
prime ideals in group algebras of polycyclic-by-finite groups Γ is the Bergman-
Roseblade Theorem on multiplicative actions ([15, Theorem 1], [170, Theorem
D]; see also Farkas [59, §1]).

Representation rings of Lie algebras. The representation ring R(g) of a finite-
dimensional complex semisimple Lie algebra g is a multiplicative invariant al-
gebra over

�
: R(g) ∼=

�
[Λ]W . Here, Λ is the weight lattice of g and W the

Weyl group. The isomorphism is effected by the notion of a character for g-
modules (Bourbaki [26, Théorème VIII.7.2]). Suitably completed versions of�
[Λ]W form the setting for the character, denominator and multiplicity formulas

for Kac-Moody algebras g = g(C) (cf. Kac [103]).
Rationality problems and relative sections. Let F/K be a rational extension of

fields, that is, F = K(t1, . . . , td) with algebraically independent generators
ti over K. Assume that the group G acts by automorphims on F which map
K to itself. Noether’s rationality problem, in the generalized form studied to-
day, asks under which circumstances the extension FG/KG of invariant fields
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is also rational, or at least stably rational, retract rational . . . ; see Section 9.1
for the definitions. The problem originated from considerations in constructive
Galois theory (Noether [141]). The special case of (twisted) multiplicative G-
fields, for a finite group G, has received particular attention; see especially the
work of Colliot-Thélène and Sansuc [41],[42], Hajja and Kang [84],[85],[86],
Lemire [115], Lenstra [118], Saltman [179], [181], [182],[186], Swan [209], and
Voskresenskiı̆ [217], [219],[220]. The interest in (twisted) multiplicative G-fields
is fueled in part by their connection with algebraic tori; see Section 3.10. Fur-
thermore, by constructing suitable relative sections in the sense of Katsylo [105]
(see also Popov [152] and Popov-Vinberg [153]), one can oftentimes show that
the field K(X)G of invariant rational functions under the action of an algebraic
group G on an irreducible algebraic variety X is isomorphic to the multiplicative
invariant field � (L)G of some finite group G. This will be explained in Chapter 9.
In the case where X is the space Mr

n of r-tuples of n×n-matrices over � and the
group G = PGLn operates by simultaneous conjugation, Procesi [154] has con-
structed a relative section leading to an isomorphismK(Mr

n)PGLn ∼= � (Ln,r)
Sn ,

where Ln,r is a certain lattice for the symmetric group Sn; see Theorem 9.8.2.
This approach was subsequently refined and systematically exploited by For-
manek [64], [65], Bessenrodt and Le Bruyn [17], Beneish [8], [12], [10], [13]
and others.

Algebraic tori. Let G be a finite group and � an algebraically closed field. As was
mentioned above, multiplicative G-actions on � [L] correspond to G-actions on
the algebraic torus T = � n

m (n = rankL). Since T/G = Spec � [L]G , properties
of � [L]G translate into properties of the quotient T/G. It is easy to see that T/G
is never a torus if the G-action is nontrivial (Corollary 3.4.2). However, if G acts
as a reflection group on L then T/G is at least an affine toric variety. This follows
from the fact that the multiplicative invariant algebra � [L]G of a reflection group
G is always a semigroup algebra (Theorems 6.1.1 and 7.5.1).

Overview of the Contents

Our main focus is on regular multiplicative actions as opposed to birational ones,
that is, for the most part we are concerned with multiplicative actions on the group
algebra � [L] rather than its field of fractions, � (L). Multiplicative invariant fields

� (L)G, along with their twisted versions, do however feature extensively and explic-
itly in Chapter 9 and implicitly in Chapter 2 which deploys a range of representation
theoretic tools needed for their investigation. Moreover, we adopt a primarily alge-
braic point of view, keeping prerequisites from algebraic geometry to a minimum.
On a few occasions in Chapters 7 and 9, however, we have found it convenient to use
geometric language. For a more geometric birational perspective on multiplicative
and other actions, see the works of Colliot-Thélène and Sansuc and Voskresenskiı̆
cited above.

Each individual chapter is preceded by its own introduction. Here, we limit our-
selves to a description of the contents in rather broad strokes:
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Chapters 1 and 2 are entirely devoted to group actions on lattices. Aside from
furnishing some basic definitions, notations and examples to be used throughout the
text, the main purpose of these chapters is to collect the purely representation theo-
retic techniques and results needed for the investigation of multiplicative invariant
algebras and fields later on. In Chapter 1, we in particular review the rudiments
of root lattices and weight lattices in some detail, following Bourbaki [24], while
Chapter 2 revolves around permutation lattices and the notion of flasque equivalence
of lattices. Our presentation regarding this notion leans rather heavily on Colliot-
Thélène and Sansuc [41],[42]. Chapter 2 also offers a simplified account of Esther
Beneish’s method [8] of restriction to the Sylow normalizer, a crucial ingredient in
her new proof of the Bessenrodt-Le Bruyn stable rationality theorem [17] for the
field of matrix invariants K(Mr

n)PGLn for n = 5 and 7. This proof is presented in
Chapter 9 along with proofs of Formanek’s rationality theorems for the cases n ≤ 4
[64], [65] and of Saltman’s retract rationality result for all prime values of n [177].

Multiplicative invariant algebras � [L]G and their twisted analogs make their
proper formal entrance in Chapter 3. Finite generation of � [L]G, the existence of
a

�
-structure, and the fact that it suffices to consider the case of finite group actions

are quickly derived in Section 3.3. Chapter 3 also contains a large supply of exam-
ples, including explicit descriptions of all invariant algebras

�
[L]G with rankL = 2.

The theoretical highlight is Bourbaki’s theorem [24] which asserts that multiplica-
tive invariant algebras of weight lattices over the Weyl group are polynomial algebras
(Theorem 3.6.1). The converse also holds: all multiplicative invariant algebras that
are polynomial algebras come from weight lattices. The latter result, due to Farkas
[59] and Steinberg [204], is proved in Chapter 7 (Corollary 7.1.2). Bourbaki’s theo-
rem and its converse can be viewed as a multiplicative analog of the classical theorem
of Shephard-Todd and Chevalley [196], [37] for polynomial invariants.

Various aspects of the algebraic structure of multiplicative invariant algebras
� [L]G , for a finite group G, are discussed in Chapters 4 through 8, each of which
is loosely based on an earlier publication of the author ([121], [123], [124], [122],
[120]). Chapter 4 addresses the question when � [L]G is a unique factorization do-
main. This is answered in Theorem 4.1.1 which gives a formula for the class group
Cl( � [L]G), the obstruction to the unique factorization property. The Picard group
Pic( � [L]G), a subgroup of Cl( � [L]G), is calculated in Chapter 5 (Theorem 5.1.1).
In contrast with the case of polynomial invariants, which have trivial Picard groups
(see Example 5.5.2), it turns out that Pic( � [L]G) can be nontrivial. Motivated by the
Shephard-Todd-Chevalley Theorem we completely determine the structure of � [L]G

for finite reflection groups G in Chapter 6: they are affine normal semigroup algebras
(Theorem 6.1.1). In particular, multiplicative invariant algebras of finite reflection
groups are always Cohen-Macaulay (for any Cohen-Macaulay base ring � ), but they
are generally not regular. The question as to when multiplicative invariant algebras
are regular is settled in Theorem 7.1.1. The Cohen-Macaulay property of multiplica-
tive invariants is addressed in a systematic fashion in Chapter 8. While the main
result, Theorem 8.1.1, falls short of fully determining when exactly multiplicative
invariant algebras are Cohen-Macaulay, we hope that the material of this chapter
will be useful for researchers in invariant theory, even if they are not primarily in-
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terested in multiplicative invariants: for the most part, we work in a general ring
theoretic context and we have included, among other things, a detailed discussion of
the celebrated Ellingsrud-Skjelbred spectral sequences [55] for local cohomology.

A recurring theme throughout Chapters 4 – 8 is the role of reflections and their
generalizations. Specifically, an element g ∈ G is said to act as a k-reflection on
the lattice L if the sublattice {g(m) − m | m ∈ L} of L has rank at most k or,
equivalently, if the g-fixed points in L ⊗ � � have codimension at most k. We will
refer to 1-reflections and 2-reflections as reflections and bireflections, respectively.
Figure depicts some relations between these properties, straight from linear algebra,
and certain ring theoretic properties of the multiplicative invariant algebra

�
[L]G .

G is generated by
reflections on L

Theorem 6.1.1

�� � [L]G is a
semigroup algebra

?

��

Hochster [89]

��
G is generated by
bireflections on L

� [L]G is
Cohen-Macaulay

Theorem 8.1.1

(G solvable)

��

Fig. 1. Generalized reflections and ring theoretic properties

Multiplicative invariant fields, ordinary and twisted, are finally taken up in Chap-
ter 9. The focal point of this chapter is Noether’s rationality problem. The various
versions of “rationality” for field extensions are discussed in some detail, with par-
ticular emphasis on the case of function fields of algebraic tori. The main features of
Chapter 9 are the aforementioned Formanek-Procesi description of the field of ma-
trix invariantsK(Mr

n)PGLn as a multiplicative invariant field of the symmetric group
(Theorem 9.8.2) and the various rationality results for K(Mr

n)PGLn that have been
derived from this description.

The last chapter, Chapter 10, is devoted to research problems. Some of these
summarize and complement problem areas that are touched on in previous chapters,
while others concern issues of current interest that did not end up in the main body
of the text (algorithms, essential dimension estimates). Since multiplicative invariant
theory has come into its own only fairly recently, the subject is very much in flux and
our present state of knowledge is still quite rudimentary. It will doubtless soon be
superseded and the author can only hope that this book contributes to this by acting
as a stimulant to further research in the field of multiplicative invariant theory.



Notations and Conventions

All actions will be written on the left. In particular, all modules are left modules.
Finite groups will be denoted by script symbols, such as G, while possibly infinite
groups will be written in ordinary roman type, G. Throughout, � will denote a com-
mutative base ring. All actions are trivial on � . Any further assumptions on � will be
explicitly stated whenever they are needed.

Here is a list of the main abbreviations and symbols used in the text.

General�
+, � + the set of non-negative integers and the non-negative reals�

the set of natural numbers, {1, 2, . . . }�
p the field with p elements∐

disjoint union (for sets)

Groups
Sn the symmetric group on {1, 2, . . . , n}
An the alternating subgroup of Sn

Cn the cyclic group of order n
Dn the dihedral group of order n
Hi(G, . ) ordinary cohomology of G

Ĥi(G, . ) Tate cohomology of the finite group G

X
i(G, . )

⋂
g∈G Ker

(
resG〈g〉 : Ĥi(G, . ) → Ĥi(〈g〉, . )

)
Vector spaces
V ∗ = Hom � (V, � ) the dual space of the � -vector space V
〈 ., . 〉 the evaluation form V ∗ × V → �
S(V ) the symmetric algebra of V
K(V ) = Q(S(V )) the field of fractions of S(V )
O(V ) = S(V ∗) the algebra of polynomial functions on V



10 Notations and Conventions

K(V ) = K(V ∗) the field of rational functions on V

Lattices
L ∼=

� n a lattice
L � L⊗ � � (most often used with � = � or � = � )
L(p) L⊗ � �

(p), where
�

(p) is the localization of
�

at p
L ∨ L′ L and L′ belong to the same genus; see §1.2.2
L ∼

fl
L′ L and L′ are flasque equivalent; see Section 2.7

gL the operator in GL(L) given by the action of an element
g ∈ G

KerG(L) the kernel of the action of G on L, that is, the set of all
g ∈ G with gL = IdL

L∗ = Hom � (L,
�
) the dual lattice

LG the sublattice of G-invariants in L
SnL the nth symmetric power of L∧n

L the nth exterior power of L
L↑H

G=
�
[H]⊗ � [G] L the induced H-lattice (for H ≥ G)

L↓G
H the restricted H-lattice (for H ≤ G)

εG/H the augmentation map
�
[G/H] →

�
, gH �→ 1; see §1.3.1

NG/H the norm map
�
→

�
[G/H], 1 �→

∑
g∈G/H gH; see

§1.3.1
IG/H the kernel of the augmentation map εG/H� −, Un, An−1 the sign lattice, the standard permutation lattice and the

root lattice for the symmetric group Sn; see §1.3.3
SPG the monoid of stable permutation equivalence classes of G-

lattices, for a finite group G; see Section 2.3

Rings and modules
Spec R the set of prime ideals of R
U(R) the group of units of the ring R
Cl(R) the class group of the Krull domain R
Pic(R) Picard group of R
R-Mod the category of all left R-modules
R-proj the category of finitely generated projective left R-modules
grade(a,M) the grade of a on M ; see Section 8.2
height(a,M) height of a on M ; see Section 8.2
Γa the a-torsion functor; see Section 8.3
Hi

a = RiΓa local cohomology with support in a; see Section 8.3

(Semi-) Group algebras
� a commutative base ring, a base field in Chapter 9
� [L] ( � [M ], � [G]) the (semi-)group algebra of the lattice L (monoid M , group

G) over �
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xm the basis element of � [L] corresponding to the element
m ∈ L

S = {xm | m ∈ S} the image of a subset S ⊆ L in the group algebra � [L]
ε : � [L] → � is the augmentation map, ε(xm) = 1 for m ∈ L
E = Ker ε the augmentation ideal of � [L]

� (L) = Q( � [L]) the field of fractions of � [L] (for a field � )
R[L]γ the group ring R[L] of L over R with a twisted multiplica-

tive G-action
K(L)γ = Q(K[L]γ) the field of fractions of K[L]γ (K is some G-field)

Group actions
RG invariant subring of R under a G-action on R
R#G the skew group ring associated with a G-action on R
Gx isotropy group of x in G
G(x) the G-orbit of x
IG(P) the inertia group in G of a (prime) ideal P of R
IR(G) the ideal of R that is generated by all elements r−g(r) (r ∈

R, g ∈ G); see Section 4.5
trG the trace map R → RG , r �→

∑
g∈G g(r) (G a finite group)

trG/H the relative trace map RH → RG ; see Section 8.5
RG

H the image of the relative trace map trG/H

ρ = ρG the Reynolds operator |G|−1 trG : R → RG (G a finite
group with |G|−1 ∈ R); similarly with L � in place of R

Root systems
W(Φ) the Weyl group of the root system Φ
Aut(Φ) the automorphism group of Φ
L(Φ) the root lattice of Φ
Λ(Φ) the weight lattice of Φ
ΦG(L) the root system that is associated with the G-lattice L; see

Section 1.9

Algebraic geometry
O(X) the algebra of regular functions of the algebraic variety X

over �
K(X) the field of rational functions of the irreducible algebraic

variety X
dom f the domain of definition of a rational map f

� m, � a the multiplicative group and the additive group
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Groups Acting on Lattices

1.1 Introduction

Aside from introducing the basic terminology and notations concerning lattices, this
chapter serves the dual purpose of (1) deploying a range of tools for the investigation
of lattices later in the text and (2) providing some background on integral represen-
tations of groups and integral matrix groups along with a number of examples. In
particular, we review the fundamentals pertaining to root systems and lattices that
are associated with them in some detail. This material will make frequent appear-
ances throughout the text. Our standard reference for the module theoretic material
is Curtis and Reiner [44]; for root systems we follow Bourbaki [24].

Throughout this chapter, G denotes a group.

1.2 G-Lattices

A lattice L is a free
�

-module of finite rank; so L ∼=
� n where n = rankL. Lattices

are traditionally written additively and we will do so throughout. If a group G acts
on L by means of a homomorphism G → GL(L) ∼= GLn(

�
) then L is called a G-

lattice. In other words, G-lattices are modules over the integral group ring
�
[G] (G-

modules, for short) that are free of finite rank over
�

. Homomorphisms of G-lattices
are identical with G-module homomorphisms, that is, G-equivariant

�
-linear maps.

If the structure map G → GL(L) needs to be made explicit, it will be written as
g �→ gL. The image of an element m ∈ L under gL will simply be denoted by g(m).
We put KerG(L) = {g ∈ G | gL = IdL}. A G-lattice (or G-module) L is called
faithful if KerG(L) = 1. For any G-lattice L, we put

LG = {m ∈ L | g(m) = m for all g ∈ G} ,

the sublattice of G-invariants in L. The G-lattice L is said to be effective if LG =
{0}, and trivial if LG = L.
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1.2.1 Rational Type

To any G-module L, we may associate the module

L � = L⊗ � � (1.1)

over the rational group algebra � [G]. If this module is irreducible, L is called ratio-
nally irreducible. Two G-modules L and L′ are said to be rationally isomorphic if
L � ∼= L′� as � [G]-modules. In this case, replacing L′ by an isomorphic copy inside
L � , we may assume that L ⊇ L′ and L/L′ is finite.

1.2.2 Genus

For any G-lattice L and any prime p ∈
�

, we write L(p) = L⊗ � �
(p), where

�
(p) is

the localization of
�

at p. Two G-lattices L and L′ are said to be locally isomorphic
if L(p)

∼= L′
(p) as

�
(p)[G]-modules for all primes p. In this case, L and L′ are also

said to belong to the same genus; in short, L ∨ L′. Clearly,

L ∼= L′ ⇒ L ∨ L′ ⇒ L � ∼= L′� .

If G is a finite group �= 1, it suffices to check the condition L(p)
∼= L′

(p) for all primes
p dividing the order of G; see [44, 31.2(ii)]. Moreover, for lattices over finite groups,

L ∨ L′ ⇐⇒ Ls ∼= L′s for some s > 0 ; (1.2)

see Swan and Evans [211, Theorem 6.11].

1.3 Examples

1.3.1 Some Permutation Lattices

When viewed as a lattice over some group G, the unadorned symbol

�

will always denote the integers with trivial G-action. More generally, for any sub-
group H of G with [G : H] < ∞, we may form the G-lattice

�
[G/H] =

⊕
g

�
gH ,

where g runs over a transversal for the collection G/H of left cosets of H in G. The
G-action on

�
[G/H] is given by g(g′H) = gg′H for g, g′ ∈ G. Thus, G permutes

a
�

-basis of the lattice
�
[G/H]. Lattices of this type are called permutation lattices;

they will be considered in detail in Chapter 2. There are G-lattice homomorphisms,
called augmentation and norm,
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εG/H :
�
[G/H] →

�
and NG/H :

�
→

�
[G/H] ; (1.3)

they are defined by εG/H(gH) = 1 and NG/H(1) =
∑

g∈G/H gH . Putting

IG/H = Ker εG/H (1.4)

we obtain an exact sequence of G-lattices

0 → IG/H
incl.
−→

�
[G/H]

εG/H
−→

�
→ 0 . (1.5)

1.3.2 Free and Projective Lattices

For a finite group G, the group ring
�
[G], viewed as module over itself via left multi-

plication, is a permutation G-lattice, the so-called the regular G-lattice. Any G-lattice
isomorphic to a finite direct sum

�
[G]r is called free. Direct summands of free G-

lattices are called projective. By a celebrated theorem of Swan [207] (see also [44,
32.11]), any projective G-lattice L is locally free, that is,

L ∨
�
[G]r (1.6)

for some r (necessarily equal to rankL/|G|).

1.3.3 The Symmetric Group

Throughout, we let Sn denote the symmetric group on {1, . . . , n}. Lattices for Sn

will play an important role in later sections, in particular the following Sn-lattices.
First, the sign homomorphism sgn: Sn → {±1} with kernel An, the alternating
group, gives rise to a non-trivial Sn-lattice structure on

�
. This lattice will be called

the sign lattice for Sn and denoted by

� − .

Next, identifying Sn−1 with the subgroup stabSn
(n) of Sn, we may form the Sn-

lattice
�
[Sn/Sn−1] as in (a) above. This lattice is isomorphic to the standard permu-

tation Sn-lattice, Un:
Un =

�
e1 ⊕ . . .⊕

�
en (1.7)

with s ∈ Sn acting by s(ei) = es(i). The augmentation map εn = εSn/Sn−1
in (1.3)

takes the form
εn : Un �

�
, ei �→ 1 . (1.8)

The kernel of ISn/Sn−1
of εn will be denoted by An−1; so

An−1 =

{
n∑

i=1

ziei ∈ Un

∣∣∣ ∑
i

zi = 0

}
. (1.9)

The augmentation sequence (1.5) now becomes
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0 → An−1
incl.
−→ Un

εn−→
�
→ 0 . (1.10)

The Sn-lattices
� − and An−1 are rationally irreducible. The corresponding irre-

ducible � [Sn]-modules are also known as the Specht modules S(1n) and S(n−1,1)

for the partitions (1n) and (n − 1, 1) of n; see, e.g., [70]. The standard permutation
lattice Un is rationally isomorphic, but not isomorphic, to the direct sum

�
⊕An−1.

1.4 Standard Lattice Constructions

As was already implicitly used above, the direct sum of a finite collection of G-
lattices is a G-lattice in the obvious way. In this section, we review some further
standard constructions of G-lattices.

Throughout, G will denote a group and L and L′ will be G-lattices.

1.4.1 Tensor Products, Symmetric and Exterior Powers

The tensor product L⊗ � L′ is a G-lattice with the “diagonal” G-action,

g(m⊗m′) = g(m)⊗ g(m′)

for m ∈ L, m′ ∈ L′ and g ∈ G. In particular, the n-fold tensor product L⊗n =
L⊗ � . . .⊗ � L (n factors) becomes a G-lattice in this fashion. The G-action on L⊗n

passes down to the symmetric power SnL and the exterior power
∧n

L, making them
G-lattices as well. For the general definitions of SnL and

∧n
L and the fact that both

are
�

-free of finite rank, we refer to [25]; see in particular pp. III.75, III.87. For future
use, we review the case n = 2 in detail:

By definition, S2L is the quotient of L⊗2 modulo the sublattice that is generated
by the elements m ⊗m′ −m′ ⊗m for m,m′ ∈ L. We will write mm′ ∈ S2L for
the image of m⊗m′; so mm′ = m′m. If {m1, . . . , mr} is any

�
-basis of L then a�

-basis of S2L is given by {mimj | 1 ≤ i ≤ j ≤ r}. Similarly,
∧2

L is the quotient
of L⊗2 modulo the sublattice that is generated by the elements m ⊗m for m ∈ L.
Denoting the image of m ⊗m′ in

∧2
L by m ∧m′, a

�
-basis of

∧2
L is given by

{mi ∧mj | 1 ≤ i < j ≤ r}. Thus,

rankS2L =

(
1 + r

2

)
and rank

∧2
L =

(
r

2

)
with r = rankL. In the following lemma, we let τ : L⊗2 → L⊗2 denote the switch
map given by τ(m⊗m′) = m′ ⊗m.

Lemma 1.4.1. Let L be a G-lattice. Then:

(a) The kernel of the canonical map L⊗2
�

∧2
L is the sublattice of symmetric

tensors (L⊗2)τ = {x ∈ L⊗2 | τ(x) = x}. Furthermore, there is an exact
sequence of G-modules

0 → S2L −→ (L⊗2)τ −→ L⊗ � �
/2

�
→ 0 .
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(b) There is an exact sequence of G-lattices

0 →
∧2

L −→ L⊗2 can.
−→ S2L→ 0 .

Proof. Fix a
�

-basis {m1, . . . , mr} for L.
(a) The elements {mi ⊗ mi,mi ⊗ mj + mj ⊗ mi | 1 ≤ i < j ≤ r} form

a
�

-basis of (L⊗2)τ . Thus, (L⊗2)τ ⊆ K := Ker
(
L⊗2

can.
�

∧2
L
)

, and (L⊗2)τ

and K have the same rank. Since L⊗2/(L⊗2)τ is
�

-free, we conclude that (L⊗2)τ

is equal to K. For the exact sequence, consider the map ϕ : S2L → (L⊗2)τ given
by mm′ �→ m ⊗ m′ + m′ ⊗m. This is a well-defined map of G-lattices which is
injective, since the

�
-basis {mimj | 1 ≤ i ≤ j ≤ r} of S2L maps to

�
-independent

elements. Finally, the map L → (L⊗2)τ/ Im ϕ sending m �→ m ⊗m + Imϕ is an
epimorphism of G-modules with kernel 2L. The desired sequence follows.

(b) Define the sublattice of antisymmetric tensors in L⊗2 by (L⊗2)−τ = {x ∈
L⊗2 | τ(x) = −x}. A

�
-basis of this sublattice is given by {mi ⊗mj −mj ⊗mi |

1 ≤ i < j ≤ r}. As in the proof of (a), one sees that (L⊗2)−τ is the kernel of the
canonical map L⊗2

� S2L. Sending m ∧m′ �→ m ⊗m′ −m′ ⊗m (m,m′ ∈ L),
we obtain a well-defined map of G-lattices

∧2
L → (L⊗2)−τ which sends the basis

{mi ∧mj | 1 ≤ i < j ≤ r} of
∧2

L to the above basis of (L⊗2)−τ . Hence,
∧2

L is
isomorphic to (L⊗2)−τ , proving the lemma. ��

1.4.2 Hom and Duals

The set Hom � (L,L′) of all
�

-linear maps f : L → L′ is a G-lattice with G acting
by the rule

(gf)(m) = g(f(g−1m)) .

In particular, taking L′ =
�

, we obtain the dual lattice L∗ = Hom � (L,
�
) with

G-action
(gf)(m) = f(g−1m)) .

(These actions can also be considered, more generally, for G-modules.) There are
canonical isomorphisms of G-lattices

L
∼
→ L∗∗ and L∗ ⊗ � L′ ∼

→ Hom � (L,L′)

given by m �→ (f �→ f(m)) and f ⊗m′ �→ (m �→ f(m)m′), respectively; see [44,
10.26 and 10.30].

If L ∼= L∗ as G-lattices then L is called self-dual. Important examples of self-
dual lattices are the permutation lattices introduced in §1.3.1; see §1.4.3 below. If the
group G is finite then L and L∗ are always at least rationally isomorphic, because L �
and L∗� have the same

�
-valued character; see [44, p. 246]. However, the Sn-lattice

An−1 in (1.9), for example, is not self-dual. In fact, we will see later (Examples 3.5.6
and 3.6.2) that An−1 and A∗

n−1 have quite different multiplicative invariant algebras.
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1.4.3 Restriction and Induction

If H is any subgroup of G then the G-lattice L may also be viewed as H-lattice. The
resulting H-lattice, called restricted, will be denoted by

L↓G
H .

Suppose that the index [G : H] is finite and let M be an H-lattice. Then the G-
module

�
[H] ⊗ � [G] M is in fact a G-lattice; it is called the induced G-lattice and

denoted by
M↑G

H .

For example, the permutation G-lattice
�
[G/H] considered in §1.3.1 is isomorphic

to
�
↑G

H .
Dualizing commutes with induction:

M∗↑G
H
∼=
(
M↑G

H

)∗
; (1.11)

see [44, 10.28]. In particular, since the trivial H-lattice
�

is clearly self-dual, we
see that permutation lattices are self-dual. Moreover, there is an isomorphism of G-
lattices, sometimes referred to as “Frobenius reciprocity”,

L⊗ �
(
M↑G

H

)
∼=
(
L↓G

H ⊗ � M
)
↑G

H ; (1.12)

this isomorphism is valid for modules rather than just lattices [44, 10.20]. As a con-
sequence of (1.12), there is an embedding of G-lattices

L ↪→ L↓G
H↑

G
H . (1.13)

It is obtained by applying L⊗ � ( . ) to the embedding
�

↪→
�
↑G

H , 1 �→
∑

g∈G/H g⊗

1, and using (1.12) for M =
�

together with the fact that ( . ) ⊗ �
�

is naturally
equivalent to the identity.

Finally, if H ′ is another subgroup of G then the Mackey decomposition theorem
yields an isomorphism of H ′-lattices

M↑G
H↓

G
H′
∼=

⊕
x∈H′\G/H

(
xM↓

xH
H′∩xH

)
↑H′

H′∩xH . (1.14)

Here, H ′\G/H denotes a representative set of the (H ′,H)-double cosets in G.
Moreover, xH = xHx−1 and xM is the xH-lattice x ⊗ M ⊆ M ↑G

H . Again, the
isomorphism (1.14) holds more generally for modules; see [44, 10.13].

1.5 Indecomposable Lattices

A G-lattice L is called indecomposable if it cannot be written as L = L1 ⊕ L2 with
nonzero G-lattices Li. For example, the Sn-lattice An−1 in (1.9) is indecomposable,
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being rationally irreducible. Moreover, the permutation lattices
�
[G/H] =

�
↑G

H

considered in §1.4.3 are all indecomposable [44, 32.14].
Clearly, every G-lattice can be decomposed as a direct sum of finitely many in-

decomposable G-lattices. However, the Krull-Schmidt Theorem fails in general: the
decomposition into indecomposable lattices need not be unique up to isomorphism,
even for lattices over a finite group G; see, e.g., [97], [88], [7]. Moreover, the set of
isomorphism classes of indecomposable G-lattices is usually infinite. The following
result, due to Jones [99, 100] (see also [44, 33.6]), describes when this set is finite
(“finite representation type”):

Theorem 1.5.1. Let G be a finite group. There are only finitely many indecompos-
able G-lattices (up to isomorphism) precisely if, for each prime p dividing the order
|G|, the Sylow p-subgroups of G are cyclic of order p or p2.

The groups G in this theorem are all metacyclic, that is, they are extensions of
one cyclic group by another; see [168, 10.1.10].

Complete sets of indecomposable G-lattices (up to isomorphism) are known for
very few finite groups G only. For the cyclic group G = Cp2 of order p2 (p a prime)
the lattices are described in [44, 34.35]; for the metacyclic groups G = Cp � Cq (p,
q primes) with Cq acting faithfully on Cp, see [44, 34.51]. Further references to the
literature can be found in [44, p. 753].

We discuss the case of groups of prime order in some more detail:

Example 1.5.2 (Indecomposable lattices for groups of prime order). Let Cp denote
the cyclic group of prime order, p. There are 2hp + 1 non-isomorphic indecom-
posable Cp-lattices, where hp is the class number of the cyclotomic field � (e2πi/p).
These lattices are described in [44, 34.31]. When hp = 1 — this happens precisely
for p ≤ 19 [222, Theorem 11.1] — a complete set of non-isomorphic indecompos-
able Cp-lattices is given by the trivial lattice

�
, the regular lattice

�
[Cp], and the lattice

Ap−1↓
Sp

Cp
. Here, Cp is viewed as the Sylow p-subgroup of Sp. The lattice Ap−1↓

Sp

Cp
is

rationally irreducible; in fact, (Ap−1↓
Sp

Cp
) � ∼= � (e2πi/p), with a fixed generator of Cp

acting by multiplication with e2πi/p. For p = 2, the lattice Ap−1↓
Sp

Cp
is isomorphic to

the sign lattice
� − for S2 = C2. Thus, every C2-lattice L can be written in the form

L ∼=
�
[C2]

r ⊕
� s ⊕ (

� −)t . (1.15)

This is easy to see directly: Say C2 = 〈x〉. Then (x + 1)(L) ⊆ LC2 . Thus, x acts

on L as a matrix of the form xL =
(

1u×u ξ
−1v×v

)
, where u = rankLC2 , v =

rankL/LC2 and ξ ∈ Mu×v(
�
). Put M =

(α γ
β

)
with α ∈ GLu(

�
), β ∈ GLv(

�
)

and γ ∈ Mu×v(
�
). Then MxLM−1 =

(
1u×u ξ′

−1v×v

)
with ξ′ = (αξ − 2γ)β−1.

A suitable choice of M leads to ξ′ =
(

1r×r 0

0 0

)
, where r is the rank of the matrix

ξ mod 2. (Note that GLn(
�
) maps onto GLn(

�
/2

�
) for all n.) This implies the

isomorphism (1.15), with s = u− r and t = v − r.
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1.6 Conditioning the Lattice

Let G be a finite group and L a G-lattice. It is often useful to replace L by a related
but better behaved lattice. In this section, we describe two such lattices.

1.6.1 The Effective Quotient

Let : L � L/LG denote the canonical map, where LG is the sublattice of G-
invariants in L. Note that L = L/LG is a G-lattice and the map is G-equivariant;
so we have an extension of G-lattices

0 −→ LG −→ L −→ L −→ 0 . (1.16)

Let
Gm = {g ∈ G | g(m) = m}

denote the isotropy (stabilizer) subgroup of m ∈ L in G, and similarly for m ∈ L.
Then

Gm = Gm (1.17)

holds for all m ∈ L. This follows from the fact that tensoring sequence (1.16) with
� yields the split sequence of � [G]-modules 0 −→ LG

� −→ L � −→ L � −→ 0

with L ⊆ L � , L ⊆ L � . As a consequence of (1.17), L is an effective G-lattice,

that is, L
G

= {0}. Clearly, every G-lattice homomorphism from L to some effective
G-lattice factors through L. We will call L the effective quotient of L.

1.6.2 The Lattice ΛG(L)

Extend the G-action from L to the � -vector space L � = L ⊗ � � and define ρ ∈
End � [G](L � ) by

ρ(v) = |G|−1
∑
g∈G

g(v) . (1.18)

Then ρ is an idempotent projection of L � onto the space of G-invariants LG
� and

L � = ρ(L � )⊕ π(L � ) ,

where π = Id−ρ ∈ End � [G](L � ). We define

Λ = ΛG(L) = {v ∈ π(L � ) | (Id− g)(v) ∈ L for all g ∈ G} . (1.19)

and
L̂ = ρ(L)⊕ Λ . (1.20)

Lemma 1.6.1. L̂ is a G-lattice with L ⊆ L̂. Moreover, L̂/L is finite and G-trivial. If
L is effective then L̂ = Λ and Λ/L ∼= H1(G, L).
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Proof. Note that, for all g ∈ G, (Id−gL)ρ = 0 holds in End � (L � ), and so
(Id−gL)π = Id−gL. Therefore, π(L) ⊆ Λ and so L ⊆ L̃ := ρ(L) ⊕ π(L) ⊆

L̂. By definition, L̂/L is G-trivial. Consequently, L̂/L̃ = Λ/π(L) is contained
in (π(L � )/π(L))

G . The exact sequence 0 = π(L � )G → (π(L � )/π(L))
G →

H1(G, π(L)) → H1(G, π(L � )) = 0 shows that

(π(L � )/π(L))
G ∼= H1(G, π(L)) .

Since H1(G, π(L)) is finite, we conclude that L̂/L̃ is finite. Moreover |G|L̃ ⊆ L,
which proves that L̂/L is finite. Finally, if L is effective then ρ = 0 and π = Id,
and hence L̂ = Λ and Λ/L = (L � /L)G . The above isomorphism now shows that
Λ/L ∼= H1(G, L), as we have claimed. ��

1.7 Reflections and Generalized Reflections

Let V be a vector space. An endomorphism ϕ of V is called a k-reflection if

rank(ϕ− IdV ) ≤ k .

We will refer to 1-reflections and 2-reflections as reflections and bireflections, re-
spectively. (In Bourbaki [24], reflections are more narrowly defined as 1-reflections
of order 2, and nonidentity 1-reflections are called pseudo-reflections.)

Now suppose that the group G acts on V by means of a representation G →
GL(V ), g �→ gV . An element g ∈ G is said to act as a k-reflection on V if gV is a
k-reflection, that is, the subspace

[g, V ] = Im(gV − IdV ) = {g(v)− v | v ∈ V } (1.21)

satisfies dim[g, V ] ≤ k. One easily verifies that, for g, h ∈ G,

[g−1, V ] = [g, V ] (1.22)

[hg, V ] = h([g, V ]) (1.23)

[gh, V ] ⊆ [g, V ] + [h, V ] (1.24)

Here, hg = hgh−1. Thus, inverses and conjugates of k-reflections are k-reflections,
and products of k-reflections and k′-reflections are (k+k′)-reflections. In particular,
the subgroups

Rk
V(G) = 〈g ∈ G | g acts as a k-reflection on V 〉 . (1.25)

form an increasing sequence of normal subgroups of G such that Rk
V(G)Rk′

V (G) ⊆

Rk+k′

V (G). The minimum k with Rk
V(G) �= 1 is called the class of G on V in

Gordeev [75]. The group G is called emphk-reflection group on V if G = Rk
V(G).

Proposition 1.7.1. If G is a k-reflection group on V then every subgroup of index m
is a km-reflection group on V .
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Proof. In view of equations (1.22) - (1.24), the proposition is a consequence of the
following purely group theoretical fact.

Claim. Let G be a group and let S be a fixed generating set of G that is closed under
taking inverses and G-conjugates. Then any subgroup H ≤ G with [G : H] ≤ m
can be generated by elements that can be written as products of length ≤ m with
factors from S.

I am indebted to Victor Guba for the following geometric proof. My terminology
concerning graphs follows [50] or [194].

Let Γ be the graph with vertex set H\G, the set of right cosets of H in G, and
with oriented edge set H\G×S. An oriented edge e = (Hg, s) can be visualized as
a directed line segment from the vertex Hg to Hgs labelled by s:

e : Hg •
s
�� •Hgs

There are m = [G : H] vertices and any two vertices can be joined by a path in
Γ , since S generates G. Each path p is labelled by a group word in S. The inverse
path, denoted by p−1 and thought of as travelling along p in the opposite direction,
is labelled by the inverse word. The paths from the vertex H to itself are labelled
exactly by the words representing elements of the subgroup H .

Now choose a maximal subtree T of Γ . This is a subgraph of Γ containing all
m vertices of Γ and the inverses of all its edges. Furthermore, for any two vertices
v and w, there is a unique path from v to w in T which involves no backtracking;
this path is called the T -geodesic from v to w. For any vertex v, let p(v) denote the
T -geodesic from the vertex H to v. For any edge e that is not an edge of T , consider
the path p(v)ep(w)−1, where v and w are the initial and the terminal vertex of e.
This is a path from H to H , and so its label defines a group element h(e) ∈ H .
The elements h(e) generate H . To see this, write a given h ∈ H as a word in S and
consider the path p from H to H that is labelled by this word. If all edges of p belong
to T then h = 1. Otherwise let e0 be the first edge of p that does not belong to T , let
w be its terminal vertex, and let p′ be the tail of p from w to H . Then h = h(e0)h

′,
where h′ ∈ H corresponds to the path p(w)p′ from H to H . Since the latter path
has fewer edges not belonging to T , we may conclude by induction that h′ can be
generated by the elements h(e). Therefore, these elements do indeed generate H .

It suffices to show that each h(e) can be written as a product of length ≤ m in
S. Recall that h(e) is represented by the path p(v)ep(w)−1, as above. Let p be the
longest common initial segment of p(v) and p(w) and write p(v) = pq, p(w) = pr.
Then qer−1 is a closed path in Γ without any repeated vertices other than its end
vertices; this follows from the fact that q and r are geodesic paths in a tree. Therefore,
the path qer−1 has length at most m, the number of vertices in Γ . Its label defines
an element g ∈ G of length ≤ m in S, and h(e) = xg where x ∈ G is given by the
label of the common initial segment p. Since xS ⊆ S, we conclude that h(e) also has
length ≤ m in S. This proves the claim, and hence the proposition. ��
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1.7.1 Reflections on Lattices

The foregoing applies in particular to lattices L via the embedding L ⊆ L � =
L ⊗ � � : if L is a G-lattice then an element g ∈ G is said to act as a k-reflection on
L if and only if g is a k-reflection on L � . Explicitly, this means that the sublattice

[g, L] = {g(m)−m | m ∈ L} (1.26)

of L has rank at most k or, equivalently, the g-fixed points of the � -space L � have
codimension at most k.

Now assume that L is a G-lattice of rank n, where G is a finite group. Let g ∈
G act as a nonidentity reflection on L. Then the endomorphism gL ∈ GL(L) is
conjugate in GL(L � ) ∼= GLn( � ) to the diagonal matrix diag(−1, 1, . . . , 1)n×n. In
particular, gL has order 2 and

L−
g := KerL(gL + IdL) ∼=

�
(1.27)

By (1.15), the 〈g〉-lattice L is isomorphic to
� n−1 ⊕

� − or to
� n−2 ⊕

�
[〈gL〉].

In the former case, gL is conjugate in GL(L) ∼= GLn(
�
) to

d =

⎛⎜⎜⎜⎝
−1

1
. . .

1

⎞⎟⎟⎟⎠
and H1(〈g〉, L) ∼= H1(〈g〉,

� −) ∼=
�
/2

�
. We shall call g a diagonalizable reflection

on L in this case.
In the second case, gL is conjugate in GLn(

�
) to

s =

⎛⎜⎜⎜⎜⎜⎝
0 1
1 0

1
. . .

1

⎞⎟⎟⎟⎟⎟⎠
and H1(〈g〉, L) = {0}.

Lemma 1.7.2. Let L be a faithful G-lattice, where G is a finite group. Let d1, . . . , dr ∈
G be the distinct non-identity reflections on L which are diagonalizable. Then
D = 〈d1, . . . , dr〉 is a normal subgroup of G and D ∼= Cr

2 . Moreover,

L = LD ⊕
r⊕

i=1

�
�i ,

with di(�i) = −�i, di(�j) = �j (i �= j). The group G stabilizes the sublattice of
D-invariants LD and permutes the lattices

�
�i.
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Proof. The di are exactly those nonidentity reflections in G that belong to the con-
gruence subgroup Γ (2) = {γ ∈ GL(L) | γ is trivial on L/2L}. Since every torsion
element of Γ (2) has order 2 (e.g., [31, Exercise II.4.3]), D is an elementary abelian
2-group. Clearly, G permutes the di. Therefore, G stabilizes D and LD and permutes
the sublattices L−

di
= KerL(di + IdL).

By (1.27), we may write L−
di

=
�
�i; so di(�i) = −�i. It remains to show that

di(�j) = �j holds for i �= j and L = LD ⊕
⊕r

i=1

�
�i. This will also imply that

D has rank r. For any di, we have L = L+
di
⊕ L−

di
, where L+

di
is the sublattice of

di-invariants in L. Both summands are D-stable, because D is commutative. Any
dj with i �= j must act trivially on L−

di
=

�
�i. For, otherwise dj would have to

act as −1 on L−
di

and trivially on L+
di

, and hence dj = di. Thus, L−
di
⊆ L+

dj
and

so L+
dj

=
(
L+

di
∩ L+

dj

)
⊕ L−

di
. Therefore, L =

(
L+

di
∩ L+

dj

)
⊕ L−

di
⊕ L−

dj
and the

asserted decomposition follows by induction. ��

1.8 Lattices Associated with Root Systems

A large supply of interesting lattices and groups are constructed from root systems.
Therefore, we include here a review of this topic. Complete details and much more
information can be found in Bourbaki [24] or Humphreys [93], for example.

1.8.1 Root Systems

Let V be a finite-dimensional nonzero � -vector space. Put V ∗ = Hom � (V, � ) and
let 〈. , .〉 : V ∗ × V → � denote the evaluation pairing. A subset Φ ⊆ V is called a
reduced root system in V if the following axioms are satisfied:

(R1) Φ is finite, does not contain 0, and spans V .
(R2) For each m ∈ Φ there exists a linear form m∨ ∈ V ∗ with 〈m∨,m〉 = 2 and

such that the reflection sm ∈ End � (V ) that is defined by

sm(v) = v − 〈m∨, v〉m

maps Φ to itself. (It follows from R1 that m∨ is uniquely determined by these
conditions; see [24, p. 143].)

(R3) 〈m∨, Φ〉 ⊆
�

holds for all m ∈ Φ.
(R4) If m ∈ Φ then 2m /∈ Φ.

Sometimes reduced root systems are simply called root systems in the literature or
else crystallographic root systems. The linear forms m∨ (m ∈ Φ) form a reduced
root system in V ∗ which is denoted by Φ∨.

A root system Φ in V is called irreducible if it is not possible to write V = V1⊕V2

and Φ = Φ1 ∪ Φ2 with nonzero subspaces Vi ⊆ V and root systems Φi in Vi. The
irreducible reduced root systems have been classified: they are known as the root
systems of types An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4) E6, E7, E8,
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F4, and G2. Type An in particular will make frequent appearances in later sections.
It will be described in detail in Example 1.8.1 below. For the other types, see [24,
Planches I - IX].

1.8.2 Weyl Group and Automorphism Group

The automorphism group of a reduced root system Φ in V is defined by

Aut(Φ) = {g ∈ GL(V ) | g(Φ) ⊆ Φ} .

By virtue of R1, Aut(Φ) is a finite subgroup of GL(V ). The reflections sm in R2
are elements of order 2 in Aut(Φ); they generate the so-called Weyl group of Φ:

W =W(Φ) = 〈sm | m ∈ Φ〉 .

Since Φ∨ spans V ∗, the space V W ofW-invariants in V is {0}.
The canonical isomorphism GL(V )

∼
→ GL(V ∗), u �→ tu

−1 (t = transpose),
sends Aut(Φ) to Aut(Φ∨) and W(Φ) to W(Φ∨); see [24, p. 144]. In practise, one
usually identifies V ∗ with V by means of a fixed Aut(Φ)-invariant positive definite
bilinear form on V . Such a form always exists since Aut(Φ) is finite. In this fashion,
Φ∨ can be viewed as a root system in V .

1.8.3 Base of a Root System

A subset ∆ of a root system Φ in V is called a base of Φ if

(B1) ∆ is a basis of the vector space V , and
(B2) Every root m ∈ Φ can be written as m =

∑
a∈∆ zaa or as m = −

∑
a∈∆ zaa

with non-negative integers za ∈
�

+. Thus,

Φ =
�

+∆
∐
−

�
+∆ .

A base always exists and is essentially unique: the Weyl group W = W(Φ) acts
simply transitively on the set of all bases for Φ. Moreover, if ∆ is a base for Φ then
Φ = {s(a) | a ∈ ∆, s ∈ W} and ∆∨ = {a∨ | a ∈ ∆} is a base for Φ∨; see [24,
pp. 153/4 and 167].

1.8.4 Root Lattice and Weight Lattice

The root lattice, L = L(Φ), and the weight lattice, Λ = Λ(Φ), of Φ are defined by

L =
�
Φ = {

∑
m∈Φ

zmm | zm ∈
�
}

and
Λ = {v ∈ V | 〈m∨, v〉 ∈

�
for all m ∈ Φ} .
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Both L and Λ are stable under Aut(Φ); they are faithful and effective lattices for
Aut(Φ) and for W(Φ). By axiom R3, L ⊆ Λ. Furthermore, the definition of Λ
implies that the Weyl group W = W(Φ) acts trivially on Λ/L. The weight lattice Λ
can be calculated directly from the root lattice L :

Λ = ΛW(L) . (1.28)

Here, the right hand side is defined by (1.19). Thus, Λ/L is finite and isomorphic
to H1(W, L); see Lemma 1.6.1. Identifying Aut(Φ) with Aut(Φ∨) as explained in
§1.8.2, we can view L(Φ∨) as Aut(Φ)-lattice. In fact,

Λ(Φ) ∼= L(Φ∨)∗ (1.29)

as Aut(Φ)-lattices.
Any base ∆ of Φ is clearly a

�
-basis for the root lattice L(Φ). The basis of V

that is dual to the basis ∆∨ of V ∗ forms a
�

-basis of the weight lattice Λ(Φ). The
elements of this basis are called the fundamental weights (or fundamental dominant
weights) relative to ∆.

Example 1.8.1 (Type An). Let V denote the kernel of the linear form � n+1 → �
sending all canonical basis vectors ei of � n+1 to 1. Then

Φ = {ei − ej | i �= j, 1 ≤ i, j ≤ n + 1}

is a root system in V , the so-called root system of type An. A base ∆ for Φ is given
by the roots

ai = ei − ei+1 (i = 1, . . . , n) .

The Weyl group W(An) is the symmetric group Sn+1 on {1, . . . , n + 1}, acting on
V via the standard Sn+1-permutation operation on � n+1: s(ei) = es(i) (s ∈ Sn+1).
The automorphism group of Φ is given by

Aut(An) = {±1} × Sn+1 (n ≥ 2) , (1.30)

where −1 acts on V by multiplication with −1; for n = 1, one has Aut(A1) = S2.
The standard bilinear form on � n+1, (ei, ej) = δi,j (Kronecker delta), is positive

definite and Aut(An)-invariant. Identifying V ∗ with V by means of this form, we
have m∨ = m for all m ∈ Φ; so Φ∨ = Φ.

The root lattice L =
�
Φ will simply be written as An; so

An =

{
n+1∑
i=1

ziei

∣∣∣zi ∈
�
,
∑

i

zi = 0

}
=

�
a1 ⊕ . . .⊕

�
an .

This lattice was already introduced earlier in (1.9). By (1.29), the weight lattice
Λ(An) can be identified with A∗

n; it is explicitly given by

Λ(An) = An +
�
a with a = e1 −

1
n+1

n+1∑
1

ei =
n∑

i=1

n+1−i
n+1 ai ∈ V .
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Note that Λ(An)/An
∼=

�
/(n+1)

�
with trivial Sn+1-action. Thus, we have an exact

sequence of Sn+1-modules

0 → An −→ A∗
n −→

�
/(n + 1)

�
→ 0 . (1.31)

1.9 The Root System Associated with a Faithful G-Lattice

Let L be a faithful G-lattice, where G is a finite group. As in (1.25), we define the
reflection subgroup of G by

R = R1
L(G) = 〈g ∈ G | g acts as a reflection on L〉 .

For each reflection g ∈ G, denote the two possible generators of L−
g = KerL(gL +

IdL) by ±�g; see (1.27). Define

Φ = ΦG(L) = {±�g | g a reflection in G} . (1.32)

We shall show that Φ is a reduced root system with Weyl group R and that R has a
complement in G. These are well-known facts; see, e.g., Bourbaki [24], Farkas [61],
Humphreys [94], and Lemire [115].

View G as acting (faithfully) on the real vector space L � = L ⊗ � � and let
ρ : L � � LR

� be the projection defined by ρ(v) = |R|−1
∑

g∈R g(v). Note that
ρ ∈ End � [G](L � ), sinceR is normal in G. Put π = Id−ρ ∈ End � [G](L � ) and let

V = KerL � (ρ) = π(L � ) .

Thus, L � = LR
� ⊕ V , both summands are G-stable, and R acts faithfully and effec-

tively on V .

Proposition 1.9.1. Let L be a faithful G-lattice, where G is a finite group, and let
R = R1

L(G), Φ = ΦG(L) and V be defined as above. Then:

(a) Φ is a reduced root system in V . The Weyl group W(Φ) is the restriction of R
to V and the weight lattice Λ(Φ) is the lattice ΛR(L) defined in (1.19). Both Φ
and Λ(Φ) are stable under G.

(b) Fix a base ∆ for Φ. Then G∆ = {g ∈ G | g(∆) = ∆} is a complement for R in
G; so G = R� G∆.

Proof. (a) Note that, for each reflection g ∈ G, we can write ρ = ρ′ ◦ (gL + IdL)
for some ρ′ ∈ End � (L � ). Hence, L−

g = KerL(g + Id) ⊆ KerL � (ρ) = V , and so
Φ ⊆ V . Also, G permutes the reflections in G by conjugation. Thus, the action of
G on L permutes the various L−

g for reflections g ∈ G, and hence G stabilizes the
collection of all their generators, that is, Φ.

We verify axioms R1 - R4 in §1.8.1 for Φ.
As for R1, only the fact that Φ spans V requires comment. To see this, let V ′ =

� Φ denote the � -linear span of Φ in V . Note that V ′ is a G-stable subspace of V ,
because Φ is G-stable. By Maschke’s Theorem, we may write V = V ′⊕U for some
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G-stable subspace U . Each reflection g ∈ G acts trivially on L/L−
g , and hence on

V/V ′ = U . Therefore, U ⊆ V R = {0} and so V = V ′, as required.
To prove R2, let g ∈ G act as a reflection on L. Then g maps Φ to itself, since Φ

is G-stable. Moreover, since g has order 2 , we have g(v)−v ∈ KerV (g+Id) = � �g

for all v ∈ V . Thus, g(v) = v + rg,v�g for some rg,v ∈ � . The map v �→ rg,v is the
required linear form �∨g ∈ V ∗.

For R3, note that, choosing v ∈ Φ in the preceding paragraph, we obtain g(v)−
v ∈ KerL(g + Id) =

�
�g; so 〈�∨g , v〉 = rg,v ∈

�
, as required.

Finally, since L/L−
g is

�
-free, no element of 2L can be a generator of L−

g . This
proves R4, thereby completing the proof that Φ is a reduced root system in V .

In our present setting, the reflections sm (m ∈ Φ) in R2 are given by s±�g
= gV

for each reflection g ∈ G. Thus, the Weyl groupW = W(Φ) isR acting on V .
Finally, by (1.19) and (1.28), the weight lattice of Φ = ΦL,G can be written as

Λ(Φ) = ΛW(L(Φ)) = {v ∈ L(Φ)⊗ � � | (Id− g)(v) ∈ L(Φ) for all g ∈ R} .

Since L(Φ)⊗ � � = π(L � ), we obtain that Λ(Φ) = ΛR(L). Also, since L(Φ) andR
are G-stable, so is Λ(Φ).

(b) For each g ∈ G, g(∆) is another base of Φ = ΦG(L). Since W(Φ) = R acts
simply transitively on the set of bases of Φ (see §1.8.3), there exists a unique r ∈ R
with g(∆) = r(∆). This proves (b). ��

1.10 Finite Subgroups of GLn( � )

By a celebrated theorem of Jordan [102], each GLn(
�
) has only finitely many fi-

nite subgroups, G, up to conjugacy. The actual numbers, even for relatively small n,
do however quickly become rather formidable while the number of maximal finite
subgroups grows at a much slower rate; see Table 1.1. 1

Proposition 1.1. Let Φ be an irreducible reduced root system not of type C4 and
let L = L(Φ) be its root lattice. The action of Aut(Φ) on L realizes Aut(Φ) as a
maximal finite subgroup of GL(L).

Proof. Say Φ is a root system in the real vector space V . There exists a unique
(up to scalar multiples) positive definite symmetric bilinear form β : V × V → �
that is invariant under Aut(Φ); see [24, Prop. VI.1.3 and Prop. VI.1.7]. Suppose
that Aut(Φ) ⊆ G for some finite subgroup G of GL(L). Then G fixes some pos-
itive definite symmetric bilinear form β′ : V × V → � . Indeed, β′ can be ob-
tained by averaging any positive definite symmetric bilinear form on V over G.
Since β′ is in particular Aut(Φ)-invariant, we have β′ = cβ for some positive
scalar c, by uniqueness of β. Thus, β is G-invariant. Therefore, G stabilizes the set

1 The first column is contained in [150]. The number of maximal finite subgroups, up to
conjugacy, can be computed with CARAT [34]. For GL6( � ), it was communicated to me
by Nebe and Schulz.
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Table 1.1. Finite subgroups of GLn( � )

n
# finite G ≤ GLn( � )

(up to conjugacy)
# max’l finite G ≤ GLn( � )

(up to conjugacy)

1 2 1

2 13 2

3 73 4

4 710 9

5 6079 17

6 85311 39

S = {� ∈ L \ {0} | β(�, �)is minimal}. By [24, Exercise VI.1.19], S is the set of
“short roots” in Φ. In case Φ has only one root length, we conclude that G stabilizes
Φ and hence is contained in Aut(Φ), as desired.

This leaves the root systems of types Bn, Cn, F4 and G2 to consider. Direct
inspection of these root systems using [24, Planches II,III,VIII,IX] reveals that in all
cases but Cn (n ≥ 4), the set T = {� ∈ L \ (S ∪ {0}) | β(�, �)is minimal} is the set
of long roots in Φ. Since T is G-stable, we again conclude that G maps Φ to itself,
and hence G ⊆ Aut(Φ).

The above reasoning does not apply to type Cn = B∨
n (n ≥ 4): the sum of two

orthogonal short simple roots in Φ has the same length as a long root but is not a root
in this case. However,

Aut(Cn) = Aut(Bn) ∼= {±1} � Sn , (1.33)

and the weight lattice Λ(Cn) coincides with the root lattice L(Bn). Thus, L(Cn) ⊗
� = L(Bn)⊗ � as rational representations of Aut(Cn) = Aut(Bn). Moreover, for
n �= 4, one knows that the action of Aut(Bn) on L(Bn)⊗ � realizes Aut(Bn) as a
maximal finite subgroup of GL(L(Bn)⊗ � ) = GLn( � ); see [149, (II.8)]. Therefore,
the action of Aut(Cn) on L(Cn) realizes Aut(Cn) as a maximal finite subgroup of
GL(L(Cn)) if n �= 4. ��

We remark that, by (1.29), L(Cn) ∼= Λ(Bn)∗ as Aut(Cn)-lattices, and Λ(B4) =
L(F4); see [24]. The action of Aut(C4) on L(C4) ∼= L(F4)

∗ embeds Aut(C4) as a
subgroup of tAut(F4), with index 3.

1.10.1 Representative Groups

The conjugacy classes of all finite subgroups of GL2(
�
) are well-known and easy

to determine; cf., e.g., Newman [140, p. 180]. A full set of non-trivial representative
groups is listed in Table 1.2. We use the following notations:
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d =
(
−1 0
0 1

)
, s = ( 0 1

1 0 ) , and x =
(

1 −1
1 0

)
. (1.34)

Moreover, Aut(Φ) andW(Φ) without further explanation denote the automorphism
group and the Weyl group of the root system Φ acting on the root lattice L(Φ) =

�
Φ.

Table 1.2. The nontrivial finite subgroups of GL2( � )

label generators; isomorphism type description
see (1.34)

G1 x, s D12 Aut(A2) = W(G2)

G2 d, s D8
∼= {±1} � S2 Aut(B2) = W(B2)

G3 x2,−s D6
∼= S3 W(A2)

G4 x2, s D6
∼= S3 W(A2) on A∗

2
∼= U3; see (3.15)

G5 d,−d C2 × C2 W(A1) ×W(A1)

G6 s,−s C2 × C2

G7 x C6 Aut(A2) ∩ SL2( � )

G8 ds C4 Aut(B2) ∩ SL2( � )

G9 x2 C3

G10 x3 = − Id C2

G11 d C2 W(A1) × 〈Id � 〉

G12 s C2
∼= S2 S2 on U2; see (1.7)

Representatives for the conjugacy classes of all finite subgroups of GLn(
�
) for

n = 3 can be found in Tahara [214]. (It was pointed out in [1] that the group
listed as W5 on the page 198 in [214] is redundant.) For representative finite sub-
groups of GLn(

�
) with n ≤ 4, see Brown et al. [30]. The maximal finite subgroups

of GL4(
�
) and GL5(

�
), up to conjugacy, were first determined in Dade [46] and

Ryškov-Lomakina [174], respectively.
Alternatively, representatives for the conjugacy classes of finite subgroups G ≤

GLn(
�
) with n ≤ 4 can be accessed through the crystallographic groups library

“crystcat” of the computer algebra system GAP [71]. The more specialized computer
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algebra system CARAT [34], [145] provides the groups G (and more) up to n =
6. Moreover, GAP and MAGMA [20] both have data bases of all maximal finite
subgroups of GLn( � ) for n up to 31. These are based on Nebe [137], [138]. Note
that if G ≤ GLn( � ) is finite then G stabilizes the lattice L =

∑
g∈G g(

� n) in � n.
Any

�
-basis of L is � -basis of � n. Hence, gGg−1 ⊆ GLn(

�
) for some g ∈ GLn( � ).

1.10.2 Sizes: The Minkowski Bound

The least common multiple of the orders of all finite subgroups of GLn(
�
) or, equiv-

alently, of GLn( � ) is given by the Minkowski bound [133]:

M(n) =
∏
p

p
� n

p−1�+� n
p(p−1)�+ � n

p2(p−1) � +...
(1.35)

Here, �x� denotes the greatest integer ≤ x and p runs over all primes. The p-factors
for p > n+1 are all equal to 1. More generally, by Schur [191], the order of any finite
subgroup G ≤ GLn( � ) all of whose elements have rational trace divides M(n).

The asymptotic order of M(n) has been calculated by Katznelson [107]:

lim
n→∞

(M(n)/n!)1/n =
∏
p

p1/(p−1)2 ≈ 3.4109 .

A related issue is the determination of the largest finite subgroups of GLn( � ).
Note that Aut(Bn) = {±1} � Sn is a subgroup of order 2nn! . Feit [62] has shown
that, for all n > 10 and for n = 1, 3, 5, the finite subgroups of GLn( � ) of maximal
order are precisely the conjugates of Aut(Bn). For the remaining values of n, Feit
also characterizes the largest finite subgroups of GLn( � ) and shows that they are
unique up to conjugacy. Feit’s proof depends essentially on an unpublished manu-
script of Weisfeiler [225] which establishes the best known upper bound for the Jor-
dan number j(n). Recall that a classical result of Jordan [101] asserts the existence
of a number j(n), depending only on n, such that every finite subgroup of GLn( � )
contains an abelian normal subgroup of index at most j(n). Since Sn+1 ≤ GLn( � )
via the action on An ⊗ � � , one certainly has j(n) ≥ (n + 1)! . It is commonly
believed that equality holds for large enough n. Weisfeiler [225] proves the almost
sharp bound j(n) ≤ (n + 2)! for n > 63. An alternative proof of Feit’s theorem for
large values of n has been given by Friedland [68] who relies on Weisfeiler [226]
instead. The latter article announces the weaker upper bound j(n) ≤ na log n+bn!.
Weisfeiler’s work in both [225] and [226] uses the classification of finite simple
groups.

For further information on the subject of finite subgroups of GLn(
�
) and of

GLn( � ), see, e.g., Nebe and Plesken [139] and Plesken [149].
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Permutation Lattices and Flasque Equivalence

2.1 Introduction

The main purpose of this chapter is to furnish some lattice theoretic tools for the
investigation of multiplicative field invariants in Chapter 9. This material will not be
required elsewhere in this book. In particular, the rather technical sections 2.11 and
2.12 are only needed for the proof of Theorem 9.8.3. These sections draw on work
of Beneish [8], Bessenrodt-Le Bruyn [17], and Formanek [64], [65].

Throughout, G denotes a finite group. We will discuss various types of G-lattices,
all closely related to permutation lattices, and an important equivalence relation be-
tween G-lattices, called flasque equivalence, which goes back to Endo-Miyata [57],
Voskresenskiı̆ [219], and Colliot-Thélène and Sansuc [41], [42]. Our presentation
with regard to flasque equivalence follows Colliot-Thélène and Sansuc.

2.2 Permutation Lattices

A G-lattice L is called a permutation lattice if it has a
�

-basis, say X , that is permuted
by the action of G. We will write such a lattice as

L =
�
[X] .

If G\X denotes a full representative set of the G-orbits in X and Gx = stabG(x) is
the isotropy group of x ∈ X then

L ∼=
⊕

x∈G\X

�
↑GGx

.

The summands
�
↑GGx

∼=
�
[G/Gx] are indecomposable G-lattices; see Section 1.5.

Permutation lattices of this form were considered earlier in Section 1.3, notably the
standard permutation lattice Un

∼=
�
↑Sn

Sn−1
for the symmetric group G = Sn; see

(1.7). As we have remarked in §1.4.3, all permutation lattices are self-dual.
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Direct sums and tensor products of permutation lattices are permutation lattices:
�
[X] ⊕

�
[X ′] ∼=

�
[X
∐

X ′] and
�
[X] ⊗

�
[X ′] ∼=

�
[X × X ′], where X

∐
X ′

is the disjoint union of the G-sets X and X ′ and X × X ′ their cartesian product.
Moreover, for any subgroup H ≤ G, restriction . ↓GH and induction . ↑GH both send
permutation lattices to permutation lattices: for restriction this is obvious from the
description L =

�
[X], while the case of induction follows from the “transitivity”

relation .↑HHx
↑GH
∼= .↑GHx

.

2.3 Stable Permutation Equivalence

Two G-lattices L and L′ are said to be stably permutation equivalent if L ⊕ P ∼=
L′⊕P ′ holds for suitable permutation G-lattices P and P ′. Since direct sums of per-
mutation lattices are permutation, this defines an equivalence relation on G-lattices,
coarser than isomorphism. Following Colliot-Thélène and Sansuc [41], we will de-
note the stable permutation class of the G-lattice L by

[L] .

If [L] = [0], that is, if L ⊕ P ∼= P ′ holds for suitable permutation G-lattices P and
P ′, then the G-lattice L is called stably permutation.

The stable permutation class [L ⊕ L′], for any two G-lattices L and L′, depends
only on [L] and [L′]. Thus we may define [L] + [L′] = [L ⊕ L′], thereby turning
the set of stable permutation classes of G-lattices into a commutative monoid with
identity element [0]. This monoid will be denoted by

SPG .

Duality of G-lattices passes down to SPG and, for any subgroup H ≤ G, induction
and restriction yield well-defined monoid homomorphisms .↑GH : SPH → SPG and
.↓GH : SPG → SPH .

The following lemma will be needed later for the the symmetric group G = Sn.
In this case, the lemma is due to Endo and Miyata [58, Theorem 3.3]. Recall that all
irreducible � [Sn]-modules are in fact absolutely irreducible or, in other words, � is
a splitting field for Sn; see [45, 75.1]. For more general results on recognizing stable
permutation equivalence, see Bessenrodt and Le Bruyn [17, §2].

Lemma 2.3.1. Assume that � is a splitting field for G. Then any two G-lattices in
the same genus (see §1.2.2) are stably permutation equivalent. In particular, all pro-
jective G-lattices are stably permutation.

Proof. We first show that the two assertions of the lemma are in fact equivalent.
Indeed, by Swan’s Theorem (1.6), any projective G-lattice L satisfies L ∨

�
[G]r for

some r. Therefore, the second assertion follows from the first. Conversely, assume
that projective G-lattices are stably permutation. If L and L′ are G-lattices in the
same genus then, by a theorem of Roiter [169] (see also [44, 31.28]), we have
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L⊕
�
[G] ∼= L′ ⊕ I (2.1)

for some G-lattice I with I ∨
�
[G]. By (1.2), I is projective and hence stably permu-

tation. Therefore, (2.1) implies that L and L′ are stably permutation equivalent.
The proof of the second assertion uses the projective class group Cl(

�
[G]) of the

group ring
�
[G]. Curtis-Reiner [45, Chapter 6] and Reiner [161] are good references

on this topic.
By definition, Cl(

�
[G]) is the kernel of the canonical map

K0(
�
[G]) →

∏
p

K0(
�

(p)[G]) ,

where p runs over the primes in
�

and K0( . ) denotes the Grothendieck group
of the category of all finitely generated projective modules over the ring in ques-
tion. Writing 〈L〉 for the element of K0(

�
[G]) defined by the projective G-lattice

L, Swan’s Theorem (1.6) implies that 〈L〉 − r〈
�
[G]〉 ∈ Cl(

�
[G]) for some r.

Let Λ be a maximal
�

-order in � [G] containing
�
[G], and let Cl(Λ) denote the

class group of Λ, defined exactly as for
�
[G]; see [45, 39.12]. The canonical map

Λ⊗ � [G] . : K0(
�
[G]) → K0(Λ) induces a (surjective) map Cl(

�
[G]) → Cl(Λ). By

Oliver [143, Theorem 5], the kernel of this map is the subgroup

C̃l
q
(

�
[G]) = {〈L1〉 − 〈L2〉 | L1 ⊕ P ∼= L2 ⊕ P for some permutation lattice P} .

Moreover, our hypothesis that � is a splitting field for G implies that the class
group Cl(Λ) is trivial. (The maximal order Λ decomposes according to the Wed-
derburn decomposition of � [G], and a description of the class groups of maximal
orders in central simple algebras is given in [45, 49.32] or [161, 35.14].) Therefore,
any projective G-lattice L satisfies 〈L〉 − r〈

�
[G]〉 ∈ C̃l

q
(

�
[G]) for some r, and so

L⊕ P ∼=
�
[G]r ⊕ P . This proves that L is stably permutation. ��

2.4 Permutation Projective Lattices

A G-lattice L is called permutation projective or invertible if [L] is an invertible
element of the monoid SPG of stable permutation classes of G-lattices. (The group of
invertible elements of SPG is called the permutation class group of G in Dress [53].)
In other words, L is permutation projective if and only if L is a direct summand of
some permutation G-lattice. This is a local condition:

Lemma 2.4.1. A G-lattice L is permutation projective if and only if L is permutation
projective as Gp-lattice for all Sylow subgroups Gp of G.

One direction is obvious: if L is permutation projective then so are all restric-
tions L↓GH, because restrictions of permutation lattices are permutation lattices. The
converse will be proved in §2.6.
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2.5 Ĥi-trivial, Flasque and Coflasque Lattices

We will use the notation Ĥi(G, . ) (i ∈
�
) for the Tate cohomology functors of the

finite group G. For i ≥ 1, Ĥi(G, . ) is identical with the ordinary cohomology functor
Hi(G, . ). We will be primarily concerned the groups Ĥ1(H, L) and Ĥ−1(H, L) for
a G-lattice L and subgroupsH of G. The group Ĥ−1(H, L) has the form

Ĥ−1(H, L) = L(H)/[H, L] , (2.2)

where

[H, L] =
∑
g∈H

[g, L] and L(H) = {m ∈ L |
∑
h∈H

h(m) = 0} . (2.3)

Here, [g, L] = {g(m)−m | m ∈ L}, as in (1.26); it suffices to let g run over a set of
generators of the group H in the definition of [H, L]; see (1.22) and (1.24). A good
background reference for Tate cohomology in general is Brown [31, Chap. VI].

A G-module M is called Ĥi-trivial if Ĥi(H,M) = 0 holds for all sub-
groups H ≤ G. By [31, III.9.5(ii) and VI.5.5], it is enough to check the condition
Ĥi(H,M) = 0 for all p-subgroups H ≤ G, where p runs over the prime divisors of
|G|.

If L is a G-lattice then we have a duality pairing Ĥi(G, L∗) ⊗ � Ĥ−i(G, L) −→
�
/|G|

�
given by the cup product; see [31, Exercise VI.7.3]. This gives rise to an

isomorphism of finite abelian groups

Ĥi(G, L∗) ∼= Ĥ−i(G, L) . (2.4)

Consequently, L is Ĥi-trivial if and only if L∗ is Ĥ−i-trivial.
Following Colliot-Thélène and Sansuc [41], Ĥ1-trivial G-lattices are also called

coflasque. Equivalently, L is coflasque iff Ext � [G](P,L) = 0 holds for all permuta-
tion projective G-lattices P . This follows from the isomorphism

Ext � [G](
�
↑GH, L) ∼= Ĥ1(H, L) ; (2.5)

see, e.g., [35, p. 118].
Similarly, Ĥ−1-trivial G-lattices are called flasque; they can be characterized by

the condition that Ext � [G](L,P ) = 0 holds for all permutation projective G-lattices
P .

For any subgroup H ≤ G, restriction . ↓GH clearly sends Ĥi-trivial G-modules
to Ĥi-trivial H-modules. As for induction, the Eckmann-Shapiro Lemma gives an
isomorphism of functors

Ĥi(G, .↑GH) ∼= Ĥi(H, . ) ; (2.6)

see [31, VI.5.2]. In conjunction with (1.14), this implies that induction .↑GH sends
Ĥi-trivial H-modules to Ĥi-trivial G-modules. In particular, since Ĥ−1(H,

�
) =

Ĥ1(H,
�
) = {0} holds for all finite groups H, we conclude that the G-lattice

�
↑GH

is flasque and coflasque. Since finite direct sums of G-modules are Ĥi-trivial if and
only if all summands are, we obtain:
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Lemma 2.5.1. Permutation projective G-lattices are both flasque and coflasque.

2.6 Flasque and Coflasque Resolutions

An exact sequence of G-lattices

0 → L −→ P −→ F → 0 (2.7)

with P a permutation lattice and F flasque is called a flasque resolution of L. Simi-
larly, an exact sequence of G-lattices

0 → C −→ P −→ L→ 0 (2.8)

with P permutation and C coflasque is called a coflasque resolution of L. Dualizing
a flasque resolution for L gives a coflasque resolution for L∗, and conversely.

Lemma 2.6.1. Flasque and coflasque resolutions exist for every G-lattice L. More-
over, the stable permutation classes [F ] and [C] in (2.7) and (2.8) depend only on
the class [L] of L.

Proof. By duality, it suffices to treat the case of coflasque resolutions.
Given L, define P =

⊕
H LH↑GH, where LH is the sublattice of H-fixed points

in L and H ranges over all subgroup of G. Note that P is a permutation G-lattice.
The inclusions LH ↪→ L can be assembled to yield a G-epimorphism f : P � L
with f(PH) = LH for allH ≤ G. Putting C = Ker(f) we obtain an exact sequence
of the form (2.8). From the cohomology sequence

· · · → PH f
−→ LH −→ H1(H, C) −→ H1(H, P ) → . . .

that is associated with this sequence together with the fact that P is coflasque
(Lemma 2.5.1) we infer that C is coflasque, thereby proving the desired coflasque
resolution of L.

For uniqueness, let 0 → C ′ → P ′ → L → 0 be another coflasque resolution of
L. Consider the pullback diagram (see, e.g., Hilton and Stammbach [87, Sect. II.6])

0 0

0 �� C �� P ��

��

L ��

��

0

0 �� C �� X ��

��

P ′ ��

��

0

C ′

��

C ′

��

0

��

0

��

(2.9)

Since C and C ′ are coflasque, the middle row and column split giving an isomor-
phism C ⊕ P ∼= C ′ ⊕ P ; so [C] = [C ′]. Finally, given a coflasque resolution (2.8)
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for L and a permutation lattice Q, the sequence 0 → C → P ⊕Q → L⊕Q → 0 is
a coflasque resolution of L⊕Q. This shows that the class [C] in (2.8) only depends
on [L]. ��

The foregoing can be used to complete the proof of Lemma 2.4.1.

Proof of Lemma 2.4.1. Let L be a G-lattice. We first note that

L is permutation projective if and only if Ext � [G](L,C) = 0 holds for all
coflasque G-lattices C.

The implication ⇒ has already been pointed out in §2.5. For ⇐, choose a coflasque
resolution 0 → C → P → L → 0 of L. Since Ext � [G](L,C) = 0, this sequence
splits; so L is isomorphic to a direct summand of the permutation lattice P .

Now assume that the restrictions L↓GGp
to all Sylow subgroups Gp of G are per-

mutation projective. Then Ext � [Gp](L,C) = 0 holds for all coflasque G-lattices C.
Since the restriction map Ext � [G](L,C) →

∏
p Ext � [Gp](L,C) is injective (see, e.g.,

[31, III(2.2) and III(9.5)(ii)]), we conclude that Ext � [G](L,C) = 0, as desired. ��

2.7 Flasque Equivalence

We now discuss a notion of equivalence for G-lattices, coarser than stable permuta-
tion equivalence (see §2.3), which will play an important role in the investigation of
rationality problems for field extensions in Chapter 9.

We concentrate on flasque resolutions; this is no essential restriction, by duality.
In view of Lemma 2.6.1, we may define, for any G-lattice L,

[L]fl = [F ] ∈ SPG ,

where F is the cokernel in any flasque resolution (2.7) of L. Flasque equivalence of
G-lattices, written ∼

fl
, is defined by

L ∼
fl

L′ ⇐⇒ [L]fl = [L′]fl .

Clearly, [0]fl = [0] and [L⊕ L′]fl = [L]fl + [L′]fl, because the direct sum of flasque
resolutions of L and L′ is a flasque resolution of L ⊕ L′. Moreover, [ . ]fl commutes
with restriction .↓GH and with induction .↑GH, and hence both maps preserve flasque
equivalence ∼

fl
.

Lemma 2.7.1. (a) If Q is a permutation projective G-lattice then [Q]fl = −[Q].
(b) If 0 → L→M → Q→ 0 is an exact sequence of G-lattices with Q permutation

projective then [L]fl + [Q]fl = [M ]fl.
(c) The following are equivalent for G-lattices L and L′ :

(i) L ∼
fl

L′ ;

(ii) There exist exact sequences of G-modules 0 → L→ P → M → 0 and 0 →
L′ → Q →M → 0 with G-lattices P and Q that are stably permutation.
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(iii) There exist exact sequences of G-lattices 0 → L → E → P → 0 and
0→ L′ → E → Q→ 0, where P and Q are permutation lattices.

Proof. (a) If Q ⊕ Q′ = R for some permutation lattice R then 0 → Q → R →
Q′ → 0 is a flasque resolution of Q, by Lemma 2.5.1, and [Q] + [Q′] = [R] = [0]
holds in SPG . Thus, [Q]fl = [Q′] = −[Q].

(b) Choose a flasque resolution (2.7) of L and consider the pushout diagram

0

��

0

��
0 �� L ��

��

M ��

��

Q �� 0

0 �� P ��

��

X ��

��

Q �� 0

F

��

F

��
0 0

Since Q is flasque, the middle row splits; so X ∼= P ⊕Q. Writing Q⊕Q′ = R as in
the proof of (a), the middle column gives the flasque resolution 0 →M → P ⊕R →
F ⊕Q′ → 0, whence [M ]fl = [F ] + [Q′] = [L]fl + [Q]fl.

(c) If L ∼
fl

L′ then we may choose flasque resolutions 0 → L → P → F → 0

and 0 → L′ → Q → F ′ → 0 with F = F ′. Thus, (i) implies (ii).
Now assume (ii). By adding a suitable permutation lattice to P , Q and M , we

may assume that P and Q are in fact permutation lattices. The middle row and col-
umn of the pullback diagram

0 0

0 �� L �� P ��

��

M ��

��

0

0 �� L �� E ��

��

Q ��

��

0

L′

��

L′

��

0

��

0

��

yield exact sequences as required in (iii).
Finally, the implication (iii)⇒ (i) is immediate from part (b). ��

2.8 Quasi-permutation Lattices and Monomial Lattices

A G-lattice L such that L ∼
fl

0 is called a quasi-permutation lattice. By Lemma 2.7.1(c),

L is quasi-permutation if and only if there is an exact sequence of G-lattices
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0 → L→ P → Q → 0 ,

where P and Q are permutation lattices. For example, if L is stably permutation then
L is certainly quasi-permutation.

Monomial lattices are further examples of quasi-permutation lattices. Specifi-
cally, a G-lattice is called monomial if it has a

�
-basis that is permuted by G up to

±-sign or, equivalently, if it is a direct sum of lattices that are induced from rank-1
lattices for suitable subgroupsH ≤ G. AnyH-lattice of rank 1 is quasi-permutation:
it is either the trivial lattice

�
or a lattice

� − which fits into an exact sequence
0 →

� − →
�
↑HN→

�
→ 0, where N = KerH(

� −) has index 2 in H. Therefore,
all monomial lattices are indeed quasi-permutation. Moreover, monomial lattices are
self-dual, since this holds for

�
and

� −. Finally, since H1(H,
� −) =

�
/2

�
, the

Eckmann-Shapiro Lemma (2.6) implies that H1 of any monomial lattice is an ele-
mentary abelian 2-group.

Example 2.8.1 (The Sn-root lattice An−1). Sequence (1.10) shows that the Sn-root
lattice An−1 is quasi-permutation. However, An−1 is neither stably permutation nor
monomial (for n ≥ 3), since H1(Sn, An−1) ∼=

�
/n

�
; see Lemma 2.8.2 (which we

state slightly more generally for future use).

Lemma 2.8.2. For any subgroup H ≤ Sn, H1(H, An−1) ∼=
�
/h

�
, where h is the

gcd of theH-orbit sizes in {1, . . . , n}.

Proof. Sequence (1.10) gives rise to the exact cohomology sequence

· · · → UH
n

εn−→
�
−→ H1(H, An−1) −→ H1(H, Un) → . . . .

Here, H1(H, Un) = 0, since Un is a permutation lattice and hence coflasque;
see Lemma 2.5.1. Using the notation of §1.3.3, the lattice of H-invariants UH

n

has
�

-basis {
∑

i∈O ei | O is anH-orbit in {1, . . . , n}}. The asserted description of
H1(H, An−1) follows from this. ��

2.9 An Invariant for Flasque Equivalence

This section is based on Colliot-Thélène and Sansuc [42, pp. 199–202]. For any G-
module M , define

X
i(G,M) =

⋂
g∈G

Ker
(
resG〈g〉 : Ĥi(G,M) −→ Ĥi(〈g〉,M)

)
. (2.10)

Recall that Ĥi(G, . ) = Hi(G, . ) for i > 0. In analogy with the terminology of §2.5,
M will be called X

i-trivial if X
i(H,M) = 0 holds for all subgroupsH ≤ G.

Of particular interest for us will be the case where M is a G-lattice and i = 1
or 2. We will show in Proposition 2.9.2 below that X

2(G, . ) is a ∼
fl

-invariant on

G-lattices, and X
1(G, . ) will play an important rôle in Chapter 5.
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Lemma 2.9.1. If 0 → M → P → N → 0 be an exact sequence of G-modules with
P a permutation projective G-lattice, then X

2(G,M) ∼= X
1(G, N).

Proof. The cohomology sequences that are associated with the given exact sequence
yield a commutative diagram with exact rows,

0 = H1(G, P ) �� H1(G, N) ��

res
��

H2(G,M) ��

res
��

H2(G, P )

res
��

0 =
∏

g H1(〈g〉, P ) ��
∏

g H1(〈g〉, N) ��
∏

g H2(〈g〉,M) ��
∏

g H2(〈g〉, P )

Therefore, we obtain an exact sequence

0 →X
1(G, N) −→X

2(G,M) −→X
2(G, P ) .

Here, X2(G, P ) = 0, because X
2(G, . ) is additive on direct sums and, for any sub-

groupH ≤ G, the group H2(G,
�
↑GH) ∼= Hom(H, � /

�
) is detected by restrictions to

cyclic subgroups. The asserted isomorphism X
2(G,M) ∼= X

1(G, N) follows. ��

Note that, for any G-lattice L, the groups Ĥ±1(G, L) depend only on the stable
permutation class [L] ∈ SPG , because H±1(G, . ) is trivial on permutation G-lattices.
In particular, Ĥ±1(G, [L]fl) are well-defined.

Proposition 2.9.2. (a) For any G-lattice L,

X
2(G, L) ∼= H1(G, [L]fl) .

In particular, direct summands of quasi-permutation lattices are X
2-trivial.

(b) Direct summands of monomial lattices are X
1-trivial.

Proof. (a) Let 0 → L → P → F → 0 be a flasque resolution of L; so [L]fl =
[F ]. By periodicity of cohomology for cyclic groups (see, e.g., [31, 9.2]), we have
H1(〈g〉, [L]fl) ∼= Ĥ−1(〈g〉, F ) = 0 for all g ∈ G, because F is flasque. Therefore,
X

1(G, [L]fl) = H1(G, [L]fl). Lemma 2.9.1 now yields H1(G, [L]fl) ∼= X
2(G, L).

Any quasi-permutation lattice L satisfies [L]fl = [0], and hence X
2(G, L) = 0.

The latter holds for direct summands of L as well, by additivity of X
2(G, . ). Fi-

nally, the property of being a direct summand of a quasi-permutation lattice survives
restrictions to subgroups. Therefore, direct summands of quasi-permutation lattices
are X

2-trivial.
(b) Arguing as in the last paragraph of the proof of (a), it suffices to show that

X
1(G, L) = {0} holds for L =

�
ϕ↑

G
H. Here,

�
ϕ denotes the H-lattice

�
with H

acting via a homomorphism ϕ : H → {±1}. We may assume that ϕ is nontrivial,
because otherwise L is a permutation module and the assertion is clear. Thus,

H1(G, L) ∼= H1(H,
�

ϕ) =
�
/2

�
,

where the first isomorphism is the Eckmann-Shapiro isomorphism (2.6). This iso-
morphism is equal to the composite
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proj∗ ◦ resGH : H1(G, L) → H1(H, L) → H1(H,
�

ϕ) ,

where proj : L =
�

ϕ ↑
G
H�

�
ϕ is the projection onto the H-direct summand 1 ⊗

�
ϕ
∼=

�
ϕ of L; see [31, Exercise III.8.2]. Fixing g ∈ H with ϕ(g) = −1, the

restriction map H1(H,
�

ϕ) =
�
/2

�
→ H1(〈g〉,

�
ϕ) =

�
/2

�
is an isomorphism,

and hence so is the map resH〈g〉 ◦proj∗ ◦ resGH = proj∗ ◦ resG〈g〉. This proves that

resG〈g〉 : H1(G, L) → H1(〈g〉, L) is injective, whence X
1(G, L) = {0}. ��

2.10 Overview of Lattice Types

Figure 2.10 depicts the various types of lattices discussed in this section and their
relations to each other.

flasque coflasque X
2-trivial

X
1-trivial

permutation projective
(invertible)

�� ����������

����������

		������������

������������

quasi-permutation





self-dual

stably permutation

�� ������������

������������

���������������

�������������
monomial



 ������������

������������





��
����������

����������

permutation

�� �������������

�������������

��
������������

������������

Fig. 2.1. G-lattices related to permutation lattices

For certain special groups, more can be said:

2.10.1 Metacyclic Groups

By results of Endo-Miyata [57, Theorem 1.5] and Colliot-Thélène and Sansuc [41,
Cor. 2 and Prop. 2], the following conditions are equivalent:

(i) All Sylow subgroups of G are cyclic;
(ii) flasque and coflasque G-lattices are identical;

(iii) all flasque (coflasque) G-lattices are permutation projective;
(iv) [I∗G ]fl is invertible in SPG .

For a description of the groups G in (i), see [168, 10.1.10]: they are extensions of one
cyclic group by another (“metacyclic”). In (iv), IG denotes the augmentation kernel
IG/〈1〉; see (1.4). Thus, I∗G is the cokernel of the norm map NG :

�
→

�
[G] in (1.3).



2.11 Restriction to the Sylow Normalizer 43

2.10.2 C2 × C2 and Q8

If G = C2 × C2 is the Klein 4-group then all G-lattices that are both flasque
and coflasque are actually stably permutation; see Colliot-Thélène and Sansuc [41,
Prop. 4]. In particular, permutation projective and stably permutation G-lattices co-
incide or, in other words, the unit group U(SPG) is trivial. The latter fact is also true
for the quaternion group Q8 of order 8; see [41, Remarque R5].

2.11 Restriction to the Sylow Normalizer

The following technical lemma has been distilled from Beneish [8]; it will only be
needed for the proof of Proposition 2.12.2(b), which in turn will only be used in the
proof of Theorem 9.8.3.

Lemma 2.11.1. Assume that, for some prime p, any two distinct Sylow p-subgroups
of G have trivial intersection. Fix a Sylow p-subgroup, Gp, and let N = NG(Gp)
denote its normalizer in G. Let L be a G-lattice such that pQ ⊆ L ⊆ Q for some
stably permutation G-lattice Q. Then

L↓GN ↑
G
N ∼

fl
L⊕ P

for some projective G-lattice P .

Proof. By hypothesis, there is an exact sequence of G-modules

0 → L→ Q → V → 0 (2.11)

with pV = 0. Thus, we obtain the exact sequence

0 → L↓GN ↑
G
N −→ Q↓GN ↑

G
N −→ V ↓GN ↑

G
N → 0 . (2.12)

Note that the G-lattice Q↓GN ↑
G
N is stably permutation, as Q is.

We will construct another short exact sequence of G-modules terminating in
V ↓GN ↑

G
N and with middle term a stably permutation G-lattice, but originating in

L⊕ P for some projective G-lattice P . By criterion (ii) in Lemma 2.7.1(c), this will
prove the desired equivalence L↓GN ↑

G
N ∼

fl
L⊕ P .

Note that (1.12) yields isomorphisms

V ↓GN ↑
G
N
∼=

�
↑GN ⊗ � V ∼=

�
p↑

G
N ⊗ � p

V . (2.13)

Let εG/N :
�
↑GN=

�
[G/N ] →

�
be the augmentation defined by εG/N (gN ) = 1

and let IG/N denote its kernel, as in (1.3), (1.4). Furthermore, let = ( . ) ⊗ �
�

p

denote reduction mod p. Then IG/N is the kernel of εG/N :
�

p↑
G
N→

�
p. Since p does

not divide the index [G : N ], the map εG/N splits. Thus,

�
p↑

G
N=

�
p ⊕ IG/N . (2.14)
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We claim that IG/N is
�

p[G]-projective. Indeed, by (1.14),

�
p↑

G
N↓

G
Gp

=
⊕

x∈Gp\G/N

�
p↑

Gp

Gp∩xN

Our hypothesis on Gp implies that Gp∩
xN = 1 when x /∈ N , because Gp∩

xN is con-
tained xGp, the unique Sylow p-subgroup of xN . Therefore, the right hand side of the
above equality has the form

�
p⊕

�
p[Gp]

r for some r, and hence IG/N↓
G
Gp

∼=
�

p[Gp]
r.

This implies that IG/N is a projective
�

p[G]-module (see, e.g., [44, 19.5(ix)]), as we
have claimed.

From (2.13) and (2.14) we obtain

V ↓GN ↑
G
N
∼= V ⊕

(
IG/N ⊗ � p

V
)

. (2.15)

Since IG/N is
�

p[G]-projective, IG/N ⊗ � p
V is a projective

�
p[G]-module as well,

by (1.12). Hence IG/N ⊗ � p
V has projective dimension 1 as

�
[G]-module; see, e.g.,

[224, 4.3.1]. Choose a
�
[G]-resolution 0 → P → F → IG/N ⊗ � p

V → 0 with
F a free

�
[G]-module and P projective. In view of (2.11) and (2.15), we obtain the

desired second sequence for V ↓GN ↑
G
N :

0 → L⊕ P −→ Q⊕ F −→ V ↓GN ↑
G
N→ 0 (2.16)

with Q⊕ F clearly stably permutation. This proves the lemma. ��

2.12 Some Sn-Lattices

This section is devoted to a detailed analysis of the squares A⊗2
n−1, S2An−1 and∧2

An−1 of the Sn-lattice An−1 introduced in §1.3.3. These results will only be
needed in Section 9.8.

Part (b) of the following lemma is from Lemire-Lorenz [117] while (d) is due to
Formanek [65].

Lemma 2.12.1. (a) The Sn-lattice S2An−1 is coflasque for all n.
(b) If n is odd then S2An−1 is stably permutation. In fact,

S2An−1 ⊕ Un ⊕
� ∼=

�
↑Sn

S2×Sn−2
⊕Un ⊕

�
,

where S2 × Sn−2 is the stabilizer in Sn of the subset {1, 2} of {1, . . . , n}. In
particular, A⊗2

n−1 ∼fl

∧2
An−1 holds for odd n.

(c) For n ≥ 3, there is an exact sequence of Sn-lattices

0 → Kn → S2An−1 → Un → 0

with Kn rationally irreducible for n ≥ 4 and K3 = 0.
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(d) For n = 4, there is an isomorphism of S4-lattices

S2A3 ⊕
� ∼=

�
↑S4

D8
⊕U4 ,

where D8 is a Sylow 2-subgroup of S4.

Proof. (a) We first show that there is an exact sequence of Sn-modules

0 → S2An−1 −→
�
↑Sn

S2×Sn−2

ρ
−→ An−1 ⊗ �

�
/2

�
→ 0 . (2.17)

Put Q =
�
↑Sn

S2×Sn−2

∼=
⊕

1≤i<j≤n

�
{i, j}. By Lemma 1.4.1(a), it suffices to show

that Q ∼= (A⊗2
n−1)

τ , the sublattice of symmetric tensors in A⊗2
n−1. Letting {ei} denote

the canonical permutation basis of Un as in §1.3.3, we have

(A⊗2
n−1)

τ ⊆ (U⊗2
n )τ =

(
n⊕

i=1

�
(ei ⊗ ei)

)
⊕

⎛⎝ ⊕
1≤i<j≤n

�
(ei ⊗ ej + ej ⊗ ei)

⎞⎠ .

The first summand on the right is isomorphic to Un, while the second is isomorphic to
Q via ei⊗ ej + ej ⊗ ei �→ {i, j}. Using the

�
-basis bi = ei− en (i = 1, . . . , n− 1)

of An−1, we obtain an analogous decomposition for (A⊗2
n−1)

τ . The projection of
(A⊗2

n−1)
τ onto the summand

⊕
1≤i<j≤n

�
(ei⊗ej +ej⊗ei) ∼= Q is easily seen to be

an isomorphism, thereby establishing the sequence (2.17). Using . = ( . ) ⊗
�
/2

�

to denote reduction mod 2 and identifying the middle term in (2.17) with Q, the map
ρ is explicitly given by ρ({i, j}) = ei + ej .

We now show that H1(H,S2An−1) = 0 holds for all subgroups H ≤ Sn.

From (2.17), we obtain the exact sequence QH ρ
→ A

H
n−1 → H1(H,S2An−1) →

H1(H, Q) = 0. Thus, we need to show that

ρ(QH) = A
H
n−1 . (2.18)

Now, A
H
n−1 ⊆ U

H
n and U

H
n consists of all elements Ê =

∑
i∈E ei, where E is an

H-invariant subset of {1, . . . , n}. Furthermore, Ê belongs to A
H
n−1 precisely if E

has even size. Putting πE =
∑

i,j∈E
i<j

{i, j} ∈ QH, one calculates

ρ(πE) =
∑

i,j∈E
i<j

ei + ej = (|E| − 1)Ê .

Thus, ρ(πE) = Ê for all E of even size, and so (2.18) is proved.
(b) We continue with the above notation. If n is odd then

Un = An−1 ⊕
�
·

n∑
i=1

ei .
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By sending 1 ∈
�

to
∑n

i=1 ei, we can enlarge sequence (2.17) to an exact sequence
of Sn-modules 0 → S2An−1 ⊕

�
−→ Q ⊕

�
−→ Un → 0. Consider the pullback

diagram
0 0

0 �� S2An−1 ⊕
� �� Q⊕

� ��

��

Un
��

��

0

0 �� S2An−1 ⊕
� �� X ��

��

Un
��

��

0

Un

��

Un

·2
��

0

��

0

��

The middle column and middle row both split, the latter by (a). This yields the as-
serted isomorphism.

The fact that A⊗2
n−1 ∼fl

∧2
An−1 now follows from Lemmas 1.4.1(b) and 2.7.1(b).

(c) Define ϕ : A⊗2
n−1 → Un by ϕ(bi⊗ bj) = en + δi,jei, where bi = ei− en (i =

1, . . . , n − 1). This map is clearly surjective for n ≥ 3 and it passes down to the
symmetric square S2An−1. Equivariance for Sn can be checked by direct calculation.
Alternatively, use the Sn-isomorphism

An−1 ⊗ � Un
∼
→
⊕
r �=s

�
(er ⊗ es) , (es − er)⊗ es �→ er ⊗ es (2.19)

and the Sn-epimorphism⊕
r �=s

�
(er ⊗ es) � Un , er ⊗ es �→ es .

The map ϕ is the restriction of the composite of these maps to A⊗2
n−1. The de-

sired sequence now follows by letting Kn denote the kernel of the epimorphism
S2An−1 � Un afforded by ϕ. Counting ranks, we see that K3 = 0. For n ≥ 4, the

� [Sn]-module S2An−1 ⊗ � � decomposes as the direct sum of the Specht modules
S(n) = � , S(n−1,1) = An−1 ⊗ � � and S(n−2,2); see, e.g., Fulton and Harris [70,
Exercise 4.19]. Thus, we must have

Kn ⊗ � � ∼= S(n−2,2) ,

which shows that Kn is rationally irreducible.
(d) The group S4 decomposes as the semidirect product S4 = V4 �S3, where V4

is the normal subgroup that is generated by the permutation (1, 2)(3, 4). One checks
that V4 acts trivially on K4 and K4

∣∣
S3

∼= A2. Thus, the augmentation sequence

(1.10) for S3, 0 → A2 → U3 =
�
↑S3

〈(1,2)〉→
�
→ 0, inflates to an exact sequence

of V4-trivial S4-lattices 0 → K4 →
�
↑S4

D8
→

�
→ 0, where D8 = 〈V4, (1, 2)〉 is a

Sylow 2-subgroup of S4. Now consider the pushout diagram
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0

��

0

��
0 �� K4

��

��

�
↑S4

D8

��

��

� �� 0

0 �� S2A3
��

��

X ��

��

� �� 0

U4

��

U4

��
0 0

where the first row is the above exact sequence and the first column is the sequence
of part (c). The middle row and column both split, because U4 and

�
are permutation

lattices and
�
↑S4

D8
and S2A3 are coflasque, the latter by (a). Therefore, X ∼= S2A3 ⊕

� ∼=
�
↑S4

D8
⊕U4, proving (d). ��

Using Proposition 2.9.2 one can show that, for even n ≥ 6, S2An−1 is not quasi-
permutation; see Lemire-Lorenz [117, Lemma 4.5].

The next proposition is due to Bessenrodt and Le Bruyn [17]. Part (b) is a crucial
ingredient in the proof of Bessenrodt and Le Bruyn’s celebrated rationality result
for the field of matrix invariants in degrees 5 and 7; see Theorem 9.8.3 below. The
original proof of (b) given in [17] relied on massive amounts of computer calculation.
A direct proof was subsequently found by Beneish [8]. Our presentation is based on
Beneish’s paper [8], with some simplifications.

Proposition 2.12.2. (a) If p is prime then the Sp-lattice A∗
p−1 ⊗ � Ap−1 is stably

permutation and A⊗2
p−1 is permutation projective.

(b) For p = 5 and p = 7, the Sp-lattice A⊗2
p−1 is flasque equivalent to A∗

p−1.

Proof. We let ⊗ = ⊗ � .
(a) Put Pp = Ap−1 ⊗ Up and recall from (2.19) that Pp is a permutation lattice.

Since permutation lattices are self-dual, it follows that Pp
∼= A∗

p−1 ⊗ Up. Thus,
tensoring the augmentation sequence (1.10), 0 → Ap−1 → Up →

�
→ 0, with

A∗
p−1 we obtain an exact sequence 0 → A∗

p−1 ⊗ Ap−1 → Pp → A∗
p−1 → 0, and

dualizing (1.10) yields 0 →
�
→ Up → A∗

p−1 → 0. Consider the the pullback
diagram

0 0

0 �� A∗
p−1 ⊗Ap−1 �� Pp ��

��

A∗
p−1

��

��

0

0 �� A∗
p−1 ⊗Ap−1 �� X ��

��

Up ��

��

0

�

��

�

��

0

��

0

��

(2.20)
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By Lemma 2.5.1, the middle column splits, because X is an extension of permutation
lattices; so X ∼= Pp ⊕

�
is a permutation lattice. The middle row also splits: it

represents an element in Ext � [Sp](Up, A
∗
p−1 ⊗ Ap−1) ∼= H1(Sp−1, A

∗
p−1 ⊗ Ap−1)

(see (2.5)) and
(
A∗

p−1 ⊗Ap−1

)
↓Sp−1

is a permutation lattice, because Ap−1↓Sp−1

∼=
Up−1

∼= A∗
p−1↓Sp−1

. Therefore, we obtain an isomorphism

(A∗
p−1 ⊗Ap−1)⊕ Up

∼= Pp ⊕
�

(2.21)

thereby proving that A∗
p−1 ⊗Ap−1 is stably permutation.

We now turn to A⊗2
p−1. In order to show that this lattice is permutation projective,

it is enough to show that the restrictions to all Sylow q-subgroups Gq ≤ Sp are
permutation projective; see Lemma 2.4.1. For primes q �= p, we may assume that
Gq ≤ Sp−1 = stabSp

(p). As we pointed out in the previous paragraph of the proof,
A⊗2

p−1↓Gq

∼=
(
A∗

p−1 ⊗Ap−1

)
↓Gq

is in fact a permutation Gq-lattice in this case. Now
consider Gp; this is a cyclic of order p, say Gp = 〈x〉. Then Ap−1↓Gp

∼= (x− 1)
�
[Gp]

and A∗
p−1↓Gp

∼=
�
[Gp]/

�
(
∑p−1

i=0 xi). Multiplication with x−1 yields an isomorphism
�
[Gp]/

�
(
∑p−1

i=0 xi)
∼
→ (x − 1)

�
[Gp]. Therefore, we again conclude that A⊗2

p−1
∼=

A∗
p−1 ⊗ Ap−1 as Gp-lattices, and we know already that the latter lattice is stably

permutation. This completes the proof of (a).
(b) Let p be any odd prime; we will specialize p towards the end of the proof.

Tensoring the augmentation sequence (1.10) with Ap−1 we obtain an exact sequence
of Sp-lattices 0 → A⊗2

p−1 → Pp → Ap−1 → 0, where Pp = Ap−1 ⊗ Up is the
permutation lattice used in the proof of (a). Dualizing this sequence yields a flasque
resolution of A∗

p−1, because A⊗2
p−1 is permutation projective by (a). Thus,

[A∗
p−1]

fl = [A⊗2
p−1]

∗ . (2.22)

Since [A⊗2
p−1]

fl = −[A⊗2
p−1], by Lemma 2.7.1(a), the assertion [A∗

p−1]
fl = [A⊗2

p−1]
fl of

(b) becomes [A⊗2
p−1]

∗ = −[A⊗2
p−1]. This is equivalent to [A⊗2

p−1 ⊕
(
A⊗2

p−1

)∗
] = 0 and

in view of Lemma 2.7.1(a), the latter condition can be restated as

A⊗2
p−1 ⊕

(
A⊗2

p−1

)∗
∼
fl

0 . (2.23)

Our goal is to verify (2.23) for p = 5 and p = 7.
For simplicity, put L = A⊗2

p−1 ⊕
(
A⊗2

p−1

)∗
, a permutation projective Sp-lattice.

Furthermore, let Gp denote a Sylow p-subgroup of Sp and let N be its normalizer
in Sp. Since Gp has order p, we may apply Lemma 2.11.1. Recall from (1.31) that
there is an exact sequence of Sp-modules 0 → Ap−1 → A∗

p−1 →
�

p → 0. Hence
we also have an exact sequence 0 → pA∗

p−1
∼= A∗

p−1 → Ap−1 → W → 0 with
pW = 0. Tensoring the first of these sequences with Ap−1 and the second with
A∗

p−1, we obtain exact sequences 0 → A⊗2
p−1 → Q→ V1 → 0 and 0 →

(
A⊗2

p−1

)∗
→

Q→ V2 → 0, where Q = A∗
p−1⊗Ap−1 and pVi = 0. Lemma 2.11.1 in conjunction

with Lemma 2.3.1 now yields:

A⊗2
p−1 ∼fl

A⊗2
p−1↓

Sp

N ↑
Sp

N and
(
A⊗2

p−1

)∗
∼
fl

(
A⊗2

p−1

)∗
↓
Sp

N ↑
Sp

N . (2.24)
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Therefore, L↓
Sp

N ↑
Sp

N ∼
fl

L, and so (2.23) becomes

L↓
Sp

N ↑
Sp

N ∼
fl

0 . (2.25)

In order to prove (2.25), note that N is a semidirect product, N = Gp � C, with
C cyclic of order p − 1. We may choose C so that C fixes p and is transitive on
{1, . . . , p− 1}. Therefore, Ap−1↓

Sp

C
∼=

�
[C] is C-free, and so is the tensor product of

Ap−1 with any other C-lattice, by (1.12). Let = ( . )⊗ �

�
p denote reduction mod

p. We will show that, for suitable N -lattices X and Y which are stably permutation
and C-free, there is an

�
p[N ]-isomorphism

L↓
Sp

N ⊕X ∼= Y . (2.26)

This will imply (2.25). For, by Curtis-Reiner [44, 30.17] and [45, 81.17], the iso-
morphism (2.26) is equivalent to L(p) ↓

Sp

N ⊕X(p)
∼= Y(p), where ( . )(p) denotes

localization at p, as in §1.2.2. The latter isomorphism implies the existence of a
short exact sequence of N -modules 0 → L↓

Sp

N ⊕X → Y → T → 0 with T fi-
nite and T(p) = 0. Since X , Y and L are C-free, their localizations at all primes
q �= p are projective

�
(q)[N ]-modules ([44, 19.5(ix)]). Therefore, T(q) has projec-

tive dimension at most 1 over
�

(q)[N ], and since T(p) = 0, it follows that T has
projective dimension at most 1 over

�
[N ]; see [44, proof of 8.19]. Fix a projective

resolution 0 → P1 → P0 → T → 0 and consider the induced exact sequences
0 → L↓

Sp

N ↑
Sp

N ⊕X↑
Sp

N → Y ↑
Sp

N → T↑
Sp

N → 0 and 0 → P1↑
Sp

N → P0↑
Sp

N → T↑
Sp

N → 0.

Since X ↑
Sp

N , Y ↑
Sp

N and both Pi ↑
Sp

N are stably permutation, the latter two by

Lemma 2.3.1, criterion (ii) in Lemma 2.7.1(c) tells us that L↓
Sp

N ↑
Sp

N ∼
fl

P1↑
Sp

N ∼fl
0,

thereby proving (2.25).
It remains to establish (2.26). To construct Y , let D denote the unique subgroup

of N containing Gp and satisfying [D : Gp] = 2; this is a dihedral group of order 2p.
Put

Y =
�
[N/D]⊗ � A⊗2

p−1
∼= A⊗2

p−1↓
Sp

D ↑
N
D .

Note that Y is C-free, because Ap−1 is a tensor factor. We claim that Y is stably

permutation. Indeed, as D-lattices, we have Up↓
Sp

D
∼=

�
[D/D ∩ C] and so Ap−1↓

Sp

D
∼= ID/D∩C , using the notation of (1.4). Thus we know from Colliot-Thélène and

Sansuc [41, Prop. 3 and Remarque R4] that A∗
p−1↓

Sp

D is quasi-permutation. In view
of (2.22) (which remains valid under restriction to D; see Section 2.7), this says that(
A⊗2

p−1

)∗
↓
Sp

D is stably permutation. Therefore, A⊗2
p−1 ↓

Sp

D is stably permutation as
well, and hence so is Y .

Fix generators x for Gp and y for C; so x has order p, y has order p − 1, and
yx = xθy, where θ ∈

� ∗
p is a primitive (p− 1)st root of unity. Moreover,N = 〈x, y〉

and D = 〈x, yp−1/2〉. For each i ∈
�
/(p − 1)

�
, let

� (i)
p denote the 1-dimensional�

p[N ]-module with trivial Gp-action and with y acting by multiplication with θi.

Then
� (i)

p ⊗ � p

� (j)
p
∼=

� (i+j)
p ,

( � (i)
p

)∗
∼=

� (−i)
p , and

�
p[N/Gp] ∼=

⊕
i∈ � /(p−1) �

� (i)
p .

We have
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Up↓N
∼=

�
p↑

N
C
∼=

�
p[Gp] ,

with x acting on
�

p[Gp] by multiplication and y by conjugation. This module is

uniserial with composition factors (x − 1)i �
p[Gp]/(x − 1)i+1 �

p[Gp] ∼=
� (i)

p , via
(x− 1)i �→ 1. In particular, Ap−1

∼= (x− 1)
�

p[Gp] has head Ap−1/(x− 1)Ap−1
∼=

� (1)
p , while A∗

p−1 has head
� (0)

p . Therefore, as
�

p[N ]-modules,

� (1)
p ⊗ � p

A∗
p−1

∼= Ap−1 . (2.27)

The isomorphism (2.27) gives:

� (p−3)
p ⊗ � p

A⊗2
p−1

∼=
( � (−1)

p ⊗ � p
Ap−1

)⊗2
∼= (A⊗2

p−1)
∗ . (2.28)

Now we finally specialize p. First, let p = 5. Then
�

5[N/D] ∼=
� (0)

5 ⊕
� (2)

5 and
(2.28) yields

Y ∼=
�

5[N/D]⊗ � 5
A⊗2

4
∼= A⊗2

4 ⊕
( � (2)

5 ⊗ � 5
A⊗2

4

)
∼= A⊗2

4 ⊕ (A⊗2
4 )∗ = L↓S5

N .

This proves (2.26) (with X = 0) for p = 5.
For p = 7, we have

�
7[N/D] ∼=

� (0)
7 ⊕

� (2)
7 ⊕

� (4)
7 and, as in the calculation for

p = 5, we obtain

Y ∼= L↓S7

N ⊕
( � (2)

7 ⊗ � 7
A⊗2

6

)
By (2.27),

� (2)
7 ⊗ � 7

A⊗2
6
∼=

� (3)
7 ⊗ � 7

A∗
6 ⊗ � 7

A6
∼= X , where we have put X =

(
� − ⊗ � A∗

6 ⊗ � A6)↓
S7

N . The lattice X is certainly C-free, having a tensor factor A6.
In order to show that X is stably permutation, let α ∈ H1(N ,

� −) denote the class
of the extension 0 →

� − →
�
[N/N ∩ A7] →

�
→ 0. Tensoring this extension

with B = A∗
6 ⊗ � A6 we obtain an extension 0 → X → B↓NN∩A7

↑NN∩A7
→ B →

0 representing the element β = IdB ∨α ∈ Ext � [N ](B, X); see [129, VIII.4]. It
suffices to show that β = 0, because B is stably permutation by part (a). But 2β = 0,
because α has order 2, and 7β = 0, because B is C-free and so resNC β = 0. This
establishes (2.26) for p = 7, and hence the proposition is proved. ��

The assertion that A⊗2
p−1 is permutation projective in part (a) above can be made

more precise. In fact, using assertion (a), Beneish proves in [8, Lemma 2.8] that
A⊗2

p−1 is isomorphic to a direct summand of the permutation lattice
�
↑
Sp

Sp−2
⊕

�
↑
Sp

Gp
,

where Gp is a Sylow p-subgroup of Sp. Part (b) of the Proposition is no longer true
for primes p > 7; see [17, Corollary 1]. Finally, it is known that A⊗2

n−1 is quasi-
permutation precisely for n = 2 and n = 3; see Cortella-Kunyavskiı̆ [43] and
Lemire-Lorenz [117, §4.1].



3

Multiplicative Actions

3.1 Introduction

In this chapter, we take up the subject of multiplicative actions and their invariants
proper along with some of its ramifications. In Section 3.3 we show that, in investi-
gating multiplicative invariant algebras, one can always reduce to the case where the
acting group is finite and we may always work over

�
. A number of explicit calcula-

tions of multiplicative invariant algebras over
�

for various finite groups, including
all finite subgroups of GL2(

�
), are carried out in Section 3.5. Section 3.6 features

a theorem of Bourbaki [24] which states that multiplicative invariant algebras of
weight lattices under the action of the Weyl group are polynomial algebras. Finally,
we discuss twisted multiplicative actions and their connections with algebraic tori.

3.2 The Group Algebra of a G-Lattice

3.2.1 Group Algebras

Let L be a lattice. The group algebra of L over the commutative base ring � will be
written as � [L]; it contains a copy of L as a subgroup of the group of multiplicative
units U( � [L]) and this copy of L forms a � -basis of � [L]. Working inside � [L], we
must pass from the additive notation of L to a multiplicative notation. In order to
make this passage explicit, we will write the basis element of � [L] corresponding to
the lattice element m ∈ L as

xm ;

so x0 = 1, xm+m′

= xmxm′

, and x−m = (xm)−1. When a subset M ⊆ L is
to be explicitly viewed inside the group algebra � [L], it will be denoted by M ; so
M = {xm | m ∈ M}.

Every f ∈ � [L] has a unique expression as

f =
∑
m∈L

kmxm (3.1)
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with km ∈ � and {m ∈ L | km �= 0} a finite subset of L, called the support of
f and denoted by Supp f . A fixed choice of

�
-basis {ei | i = 1, . . . , n} of L, or

a fixed isomorphism L ∼=
� n, gives rise to a � -algebra isomorphism of � [L] with

the Laurent polynomial algebra � [x±1
1 , . . . , x±1

n ] via xei �→ xi. Therefore, we may
think of the representatives xm ∈ � [L] of lattice elements m ∈ L as monomials in
x±1

1 , . . . , x±1
n .

3.2.2 Multiplicative Actions

If L is a G-lattice for some group G then the action of G on L extends uniquely to
an action by � -algebra automorphisms on � [L] via

g(
∑
m∈L

kmxm) =
∑
m∈L

kmxg(m) . (3.2)

This type of action is called a multiplicative action. More general G-actions, called
twisted multiplicative, will be considered in Section 3.8.

3.3 Reduction to Finite Groups, � -structure, and Finite
Generation

Let L be a G-lattice, where G is an arbitrary group. The multiplicative action (3.2)
of G on � [L] is a permutation action: {xm | m ∈ L} is a G-stable � -basis of � [L].
Therefore, the � -linear structure of � [L]G is easily described: The support Supp f
of any invariant f ∈ � [L]G is a finite G-stable subset of L, and hence Supp f is
contained in the G-sublattice

Lfin = {m ∈ L | the G-orbit G(m) is finite} . (3.3)

More precisely, f is a � -linear combination of G-orbit sums

orb(m) = orbG, � (m) :=
∑

m′∈G(m)

xm′

∈ � [L]G

with m ∈ Lfin. Different orbit sums have disjoint supports, and hence they are � -
independent. Thus:

� [L]G =
⊕

m∈G\Lfin

� orb(m) , (3.4)

where G\Lfin denotes a transversal for the finite G-orbits in L.
Note that, since Lfin is finitely generated, the subgroup KerG(Lfin) has finite

index in G; so G acts on Lfin through the finite quotient G = G/ KerG(Lfin).
Further, the group ring � [L] is defined over

�
, � [L] = � ⊗ � �

[L], and each
orbit sum has the form orbG, � (m) = 1 � ⊗ � orbG, � (m). Hence, by (3.4),

�
[L]G is a�

-structure for the multiplicative invariant algebra � [L]G. To summarize:



3.4 Units and Semigroup Algebras 53

Proposition 3.3.1. Let L be a G-lattice for an arbitrary group G and let � be a
commutative base ring. Then Lfin = {m ∈ L | G(m) is finite} is a faithful G-lattice,
where G = G/ KerG(Lfin) is a finite group . Furthermore:

(a) � [L]G = � [Lfin]
G , and

(b) � [L]G = � ⊗ � �
[L]G.

These observations have the following consequences.

Corollary 3.3.2. Each multiplicative invariant algebra � [L]G is an affine � -algebra.
Moreover, given a base ring � and a bound N , there is only a finite supply of multi-
plicative invariant algebras � [L]G (up to isomorphism) with rankL ≤ N .

Proof. Since
�
[Lfin] is affine over the noetherian ring

�
and G = G/ KerG(Lfin) is

finite, Noether’s finiteness theorem (e.g., [22, Théorème V.1.2]) implies that
�
[Lfin]

G

is an affine
�

-algebra. Therefore, by the proposition, � [L]G = � ⊗ �
[Lfin]

G is affine
over � .

The finite group G embeds into GLn(
�
), where n = rankLfin. By the foregoing,

the number of isomorphism classes of multiplicative invariant algebras � [L]G, with
rankL is bounded by N , is at most equal to the sum of the numbers of conjugacy
classes of finite subgroups of GLn(

�
) with n ≤ N ; see Section 1.10. ��

3.4 Units and Semigroup Algebras

Even though multiplicative invariant algebras arise from an action on a group algebra
� [L], it turns out that � [L]G is never a group algebra over � unless G acts trivially on
the sublattice Lfin in (3.3). In order to justify this claim, we use the following simple
lemma on unit groups.

Lemma 3.4.1. Let L be a G-lattice and � a commutative domain. Then U( � [L]) =
U( � )× L and U( � [L]G) = U( � )× LG.

Proof. It suffices to show that U( � [L]) = U( � ) × L, because this implies that
U( � [L]G) = U( � [L])G = U( � ) × LG. Note also that kxm ∈ U( � ) × L has in-
verse k−1x−m; so U( � ) × L ⊆ U( � [L]). In order to show that equality holds here,
fix a monomial order for � [L]. By definition, this is a total order � on L that is com-
patible with addition: m � n implies m + � � n + � for m,n, � ∈ L. (For example,
the lexicographic order with respect to any

�
-basis of L will do.) For any nonzero

f ∈ � [L], define max(f) and min(f) to be the largest and the smallest element of
the support Supp f with respect to �. Since � is a domain, it is easy to see that

max(ff ′) = max(f) + max(f ′) and min(ff ′) = min(f) + min(f ′)

holds for all nonzero f, f ′ ∈ � [L]. Now suppose that ff ′ = 1. Then max(f) +
max(f ′) = 0 = min(f) + min(f ′). Since max(f) + max(f ′) ≥ min(f) +
max(f ′) ≥min(f)+min(f ′), we conclude that max(f) = min(f) and similarly
for f ′. This implies that f and f ′ belong to U( � )× L. ��
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Corollary 3.4.2. Let L be a G-lattice, where G is an arbitrary group, and let � be a
commutative ring. The invariant algebra � [L]G is a group algebra over � precisely
if the action of G on the lattice Lfin in (3.3) is trivial. In particular, if G is finite then

� [L]G is a group algebra over � only if G acts trivially.

Proof. One direction is immediate from Proposition 3.3.1. Conversely, suppose that
� [L]G is isomorphic to a group algebra over � . By Proposition 3.3.1, we may replace
L by Lfin, thereby reducing to the case where G is finite, and we may also replace

� by some prime factor; so � is a domain. Since group algebras are generated, as � -
algebras, by their units, we conclude from Lemma 3.4.1 that � [L]G = � [LG]. Thus,
on the one hand, � [L] is integral over � [L]G, since G is finite, while on the other,
L/LG is

�
-free and hence � [L] is a Laurent polynomial algebra in r = rankL/LG

many variables over � [L]G. Thus, we must have r = 0. ��

While multiplicative invariant algebras � [L]G of finite groups G can never be
group algebras if G acts nontrivially, it turns out that in many cases � [L]G is at least a
semigroup algebra. Explicit examples will be presented in Section 3.5 and the phe-
nomenon will be fully explained in Theorem 6.1.1. Recall that a � -algebra R is a
semigroup algebra (or monoid algebra) if R has a � -basis, M , that is a submonoid
of the multiplicative monoid (R, · ); so 1 ∈ M and M is closed under multipli-
cation. In analogy with the notation � [L] for group algebras, � [M ] will denote the
semigroup algebra over � of a monoid M . For example, the semigroup algebra of
the monoid M =

� r
+ ⊕

� s is isomorphic to the mixed Laurent polynomial algebra
� [x1, . . . , xr, x

±1
r+1, . . . , x

±1
r+s] over � . We will only be concerned with commutative

monoids M and, as with lattices, it is customary to write them additively. Gilmer [73]
is a good reference for the algebraic structure of general commutative semigroup al-
gebras � [M ]. We mention the following basic facts:

• � [M ] is an affine (f.g.) � -algebra if and only if the monoid M is finitely gener-
ated, and

• � [M ] is a domain if and only if � is a domain and M is cancellative (a + c =
b + c ⇒ a = b for all a, b, c,∈ M ) and torsion-free (na = nb ⇒ a = b for
a, b ∈M and n ∈

�
).

The first assertion is obvious; for the second, see [73, Theorem 8.1]. Commutative
monoids M that are cancellative and torsion-free are exactly the monoids that are iso-
morphic to submonoids of torsion-free abelian groups. If M is also finitely generated
then M embeds into some lattice L, and we may clearly assume that 〈M〉group = L.
Finitely generated commutative monoids that are cancellative and torsion-free are
often simply referred to as affine semigroups; see, e.g., Bruns and Herzog [32, 6.1].
An affine semigroup M is called normal if nm ∈ M for m ∈ 〈M〉group and n ∈

�

implies m ∈M .

• � [M ] is an affine � -algebra that is a normal domain if and only if � is a normal
domain and the monoid M is an affine normal semigroup.
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For a proof, see [73, Corollary 12.11]. An affine semigroup M is called positive if
M has no units other than 0 and an element 0 �= m ∈ M is called indecomposable
if m = a + b (a, b ∈M) implies a = 0 or b = 0.

Lemma 3.4.3. Let M be a positive affine semigroup. Then M has finitely many in-
decomposable elements, say m1, . . . , ms. The mi generate M , and every generating
set for M contains {m1, . . . , ms}.

Proof. Clearly, all indecomposable elements must be contained in every generating
set of M . Thus, it suffices to show that the indecomposable elements of M do indeed
generate M . For this, we use the fact that there is a monoid homomorphism ϕ : M →

�
+ satisfying ϕ(m) > 0 for all 0 �= m ∈ M ; see, e.g., Swan [210, Theorem 4.5].

Now consider an element 0 �= m ∈ M . If m is not indecomposable, then write
m = a + b with 0 �= a, b ∈ M . Then ϕ(a), ϕ(b) < ϕ(m). By induction we know
that a and b can be written as sums of indecomposable elements of M , and hence so
can m. ��

The unique smallest generating set constructed in the above lemma is called the
Hilbert basis of M . An algorithm computing the Hilbert basis for any affine semi-
group without non-trivial units can be found in Sturmfels [206, Algorithm 13.2].

3.5 Examples

In this section, we explicitly calculate the multiplicative invariant algebras of certain
G-lattices L for various finite groups G. Throughout, we will work over � =

�
.

The results over arbitrary commutative base rings � then follow by base change; see
Proposition 3.3.1(b). Examples 3.5.1, 3.5.4, 3.5.5, 3.5.6 and 3.5.7 below describe
the multiplicative invariant algebras of certain reflection groups, while the group
in Example 3.5.3 is a bireflection group. Table 3.1 list the multiplicative invariant
algebras for lattices of rank 2; the groups in question are those in Table 1.2. The
invariant algebras for the groups G7, G8 and G9 were obtained by direct calculation;
the details for all other groups in Table 3.1 are given below.

We will repeatedly use the following obvious observation, valid for any base ring
� . Suppose that we have decompositions G = G1 × G2 and L = L1 ⊕ L2 with
G-sublattices Li such that Gj acts trivially on Li for i �= j. Then

� [L]G ∼= � [L]G1
1 ⊗ � � [L]G2

2 . (3.5)

Example 3.5.1 (The diagonal subgroup of GLn(
�
)). Let

Tn = diag(±1, . . . ,±1)n×n ⊆ GLn(
�
)

be the group of diagonal matrices, with the canonical action on L =
⊕n

i=1

�
ei: t =

diag(t1, . . . , tn) ∈ Tn acts by t(ei) = tiei. Put xi = xei ∈
�
[L] and ξi = xi + x−1

i .
We claim that �

[L]Tn =
�
[ξ1, . . . , ξn] , (3.6)
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a polynomial algebra in n variables. Indeed, formula (3.5) reduces the claim to the
case n = 1. Then

�
[L] =

�
[x±1] and T1 = 〈t〉 ∼= C2 acts by t(x) = x−1. Writing

�
[x±1] =

�
[ξ]⊕ x

�
[ξ] with ξ = x + x−1, it is easy to see that

�
[x±1]T1 =

�
[ξ], as

claimed.

The next example will make use of the following lemma on adding a summand
of rank 1.

Lemma 3.5.2. Let L = L′ ⊕
�

ϕ, where L′ is a G-lattice and
�

ϕ =
�

with G acting
via a non-trivial homomorphism ϕ : G → {±1}. Put N = Ker ϕ and suppose that

� [L′]N = � [L′]G +
∑m

j=1 αj � [L′]G . Then:

� [L]G = � [L′]G [ξ] +

m∑
j=1

(αjx + s(αj)x
−1) � [L′]G [ξ] ,

where x = x(0L′ ,1) ∈ � [L], ξ = x + x−1, and s ∈ G \ N .

Proof. Put R = � [L′]G⊕
⊕

i≥1 � [L′]N ξi; this is a G-stable subalgebra of � [L]N such

that RG = � [L′]G [ξ]. Define additive maps D, ρ : R → � [L]N by D(r) = s(r)−r
ξ

and ρ(r) = r + xD(r).

Claim. � [L]G = ρ(R).

First, s(ρ(r)) = s(r) − x−1D(r) = ρ(r) holds for r ∈ R; so ρ(R) ⊆ � [L]G .
For the reverse inclusion, write � [L] in the form � [L] = � [L′][ξ] ⊕ x � [L′][ξ] and
consider an element f = f0 +xf1 ∈ � [L], with fi ∈ � [L′][ξ]. Then s(f) = (s(f0)+
ξs(f1))−xs(f1) while for g ∈ N , one has g(f) = g(f0)+xg(f1). Hence, f ∈ � [L]G

if and only if f0 and f1 belong to � [L′][ξ]N =
⊕

i≥0 � [L′]N ξi and the following two
conditions are satisfied:

s(f1) = −f1

s(f0) = f0 + ξf1

The last equation gives: f0 ∈ R and f1 = D(f0). Therefore, f = ρ(f0) ∈ ρ(R) and
the claim is proved.

To complete the proof of the lemma, we use our hypothesis that � [L′]N =
� [L′]G +

∑m
j=1 αj � [L′]G . This results in the following expression for R:

R = � [L′]G ⊕
⊕
i≥1

⎛⎝ � [L′]G +

m∑
j=1

αj � [L′]G

⎞⎠ ξi

= � [L′]G [ξ] +
m∑

j=1

αjξ � [L′]G [ξ] .

The map ρ is RG-linear and its restriction to RG = � [L′]G [ξ] is the identity. There-
fore, the claim implies that
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� [L]G = � [L′]G [ξ] +

m∑
j=1

ρ(αjξ) � [L′]G [ξ] .

Finally, ρ(αjξ) = αjx
−1 + s(αj)x. To obtain the exact expression for � [L]G as

stated in the lemma, replace αj by s(αj) throughout. ��

Example 3.5.3 (The diagonal subgroup of SLn(
�
)). Let Tn = diag(±1, . . . ,±1)n×n

be as in Example 3.5.1 and consider the group

G = Tn ∩ SLn(
�
)

with the canonical action on L =
⊕n

i=1

�
ei. As in Example 3.5.1, put xi = xei , ξi =

xi + x−1
i ∈

�
[L]. We claim that

�
[L]G =

�
[ξ1, . . . , ξn]⊕ θn

�
[ξ1, . . . , ξn] , (3.7)

where θn =
∑

g∈G g(x1x2 . . . xn) = orb(
∑

i ei). We argue by induction on n.
For n = 1, the claim says that

�
[x±1] =

�
[x + x−1] ⊕ x

�
[x + x−1], which is

clear. For the inductive step, we invoke Lemma 3.5.2, with L′ =
⊕n−1

i=1

�
ei and

N = Tn−1 ∩ SLn−1(
�
). Since G acts on L′ as the full diagonal group Tn−1,

we know by Example 3.5.1 that
�
[L′]G =

�
[ξ1, . . . , ξn−1]. Moreover, by induc-

tion,
�
[L′]N =

�
[ξ1, . . . , ξn−1] ⊕ θn−1

�
[ξ1, . . . , ξn−1]. Thus, Lemma 3.5.2 with

s = diag(−1, 1, . . . , 1,−1) gives:

�
[L]G =

�
[ξ1, . . . , ξn−1][ξn] + (θn−1xn + s(θn−1)x

−1
n )

�
[ξ1, . . . , ξn−1][ξn]

=
�
[ξ1, . . . , ξn] + θn

�
[ξ1, . . . , ξn] .

Since the sum is clearly direct, (3.7) is proved.
Specializing to n = 2, we obtain the invariants of multiplicative inversion in rank

2; this is group G10 in Table 1.2:

�
[L]G10 =

�
[ξ1, ξ2]⊕ θ

�
[ξ1, ξ2] with θ = x1x2 + x−1

1 x−1
2 .

The generating invariants satisfy the relation θξ1ξ2 = θ2 + ξ2
1 + ξ2

2 − 4; so

�
[L]G ∼=

�
[x, y, z]/(x2 + y2 + z2 − xyz − 4) .

The invariant rings in this example are not semigroup algebras over
�

; see Section
10.2.

Example 3.5.4 (Multiplicative invariants of the root lattice Bn). The root lattice of
the root system of type Bn will simply be written as Bn; so Bn =

⊕n
i=1

�
ei. By

[24, Planche II],
Aut(Bn) =W(Bn) = {±1} � Sn .

This group can be written asW(Bn) = Tn�Sn, where Tn = diag(±1, . . . ,±1)n×n

acts as in Example 3.5.1 and s(ei) = es(i) for s ∈ Sn. Putting xi = xei ∈
�
[Bn],

as usual, the invariants of the normal subgroup Tn are given by Example 3.5.1:
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�
[Bn]Tn =

�
[ξ1, . . . , ξn] with ξi = xi + x−1

i . The group Sn acts on the polyno-
mial ring

�
[Bn]Tn by s(ξi) = ξs(i) for s ∈ Sn. Hence, the fundamental theorem for

Sn-invariants (e.g., [27, p. A IV.58]) yields that

�
[Bn]{±1}�Sn =

�
[ξ1, . . . , ξn]Sn =

�
[σ1, . . . , σn] , (3.8)

where
σi =

∑
j1<...<ji

ξj1ξj2 . . . ξji

is the ith elementary symmetric function in ξ1, . . . , ξn. Thus,
�
[Bn]{±1}�Sn is a poly-

nomial ring in n variables. The special case n = 2 yields the invariants for group G2

in Table 3.1.

Example 3.5.5 (Multiplicative Sn-invariants of Un). Restricting the lattice Bn in
Example 3.5.4 to the symmetric group Sn we obtain the standard permutation lat-
tice Un for Sn; see §1.3.3. As before, let {ei}n

1 denote the permutation basis of Un

and write xi = xei ∈
�
[Un]. Then the element x � n

1 ei ∈
�
[Un] becomes the nth

elementary symmetric function sn =
∏n

1 xi. Moreover,

�
[Un] =

�
[x±1

1 , . . . , x±1
n ] =

�
[x1, . . . , xn][s−1

n ] ,

and Sn acts via s(xi) = xs(i) (s ∈ Sn). By the fundamental theorem for Sn-
invariants,

�
[x1, . . . , xn]Sn =

�
[s1, . . . , sn], where si is the ith elementary sym-

metric function in x1, . . . , xn. Therefore,

�
[Un]Sn =

�
[s1, . . . , sn−1, s

±1
n ] ∼=

�
[

� n−1
+ ⊕

�
] , (3.9)

a mixed Laurent polynomial algebra in n variables, with 1 variable inverted.

Example 3.5.6 (Multiplicative Sn-invariants of An−1). We continue with the nota-
tion of Example 3.5.5. Note that

�
[Un] =

�
[x±1

1 , . . . , x±1
n ] is

�
-graded by total

degree in the xi’s and the action of Sn respects this grading. Using the standard basis
ai = ei − ei+1 (i = 1, . . . , n− 1) of the root lattice An−1, as in Example 1.8.1, and
putting yi = xai = xi

xi+1
, the group ring

�
[An−1] can be written as

�
[An−1] =

�
[y±1

1 , . . . , y±1
n−1] =

�
[
xi

xj
| 1 ≤ i, j ≤ n] .

This is the degree 0-component
�
[Un]0 of

�
[Un]. Hence,

�
[An−1]

Sn =
�
[Un]Sn

0 ,

the ring of Sn-invariants of total degree 0 in
�
[Un]. By equation (3.9), a

�
-basis of�

[Un]Sn
0 is given by the elements st1

1 . . . s
tn−1

n−1 /stn
n with ti ∈

�
+ and

∑n−1
i=1 iti =

ntn. Therefore, �
[An−1]

Sn ∼=
�
[M ] ,
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where M is the submonoid of
� n−1

+ consisting of all (t1, . . . , tn−1) so that
∑

i iti is
divisible by n. The isomorphism sends the element m = (t1, . . . , tn−1) ∈ M to the
basis element

µm = s
− 1

n � i iti
n ·

n−1∏
i=1

sti
i ∈

�
[An−1]

Sn .

Taking n = 2, for example, the monoid M is generated by m = (2) and we
obtain the fundamental invariant µm = s2

1/s2 = y1 + y−1
1 + 2. Thus,

�
[A1]

S2 =�
[y1 + y−1

1 ] is a polynomial algebra. This is just the special case n = 1 of Exam-
ple 3.5.1, since A1 is the sign lattice

� − for S2.
For n = 3, the monoid M has generators m1 = (3, 0), m2 = (0, 3) and m3 =

(1, 1). This yields the fundamental invariants µ1 = s3
1/s3, µ2 = s3

2/s2
3 and µ3 =

s1s2/s3 for
�
[A2]

S3 . Note that µ1µ2 = µ3
3; so we obtain the presentation

�
[A2]

S3 ∼=
�
[x, y, z]/(z3 − xy) .

A more economical system of fundamental invariants for
�
[A2]

S3 is given by

µ3 − 3 = y1 + y−1
1 + y2 + y−1

2 + y1y2 + y−1
1 y−1

2 = orb(a1)

µ1 − 3µ3 + 3 = y2
1y2 + y−1

1 y2 + y−1
1 y−2

2 = orb(2a1 + a2)

µ2 − 3µ3 + 3 = y1y
2
2 + y1y

−1
2 + y−2

1 y−1
2 = orb(a1 + 2a2)

Example 3.5.7 (non-diagonal Klein 4-group). Consider the group G = G6 = 〈s,−s〉 ∼=
C2 × C2 of Table 1.2. Here, s = ( 0 1

1 0 ). Note that both generators s and −s act as
(non-diagonalizable) reflections on L =

�
e1 ⊕

�
e2. Their product, g = s(−s) ∈ G,

acts as
(
−1 0
0 −1

)
, as in Example 3.5.3 above. Thus, using Example 3.5.3 and its no-

tation, we obtain
�
[L]G = R〈s〉 with R =

�
[L]〈g〉 =

�
[ξ1, ξ2]⊕ θ

�
[ξ1, ξ2]. Since s

interchanges ξ1 and ξ2 and leaves θ invariant, the invariant ring is given by

�
[L]G =

�
[σ1, σ2]⊕ θ

�
[σ1, σ2] ,

where σ1 = ξ1+ξ2 and σ2 = ξ1ξ2 are the 1st and 2nd elementary symmetric functions
in ξ1, ξ2. An alternative set of fundamental invariants is

µ1 = θ + 2 = x1x2 + x−1
1 x−1

2 + 2 ,

µ2 = σ2 − θ + 2 = x1x
−1
2 + x−1

1 x2 + 2 ,

µ3 = σ1 = x1 + x−1
1 + x2 + x−1

2 .

These invariants satisfy the relation µ2
3 = µ1µ2; so we obtain the presentation

�
[L]G ∼=

�
[x, y, z]/(z2 − xy) .

This shows that
�
[L]G is isomorphic to the semigroup algebra

�
[M ], where M is the

submonoid of
� 2

+ that is generated by the elements (2, 0), (0, 2) and (1, 1).
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Table 3.1. Multiplicative invariants in rank 2

group G
(cf. Table 1.2)

invariant algebra � [L]G reference

G1
∼= D12

polynomial algebra � [α, β]

α = x1 + x−1
1 + x2 + x−1

2 + x1x2 + x−1
1 x−1

2

β = x1x
−1
2 + x−1

1 x2 + x2
1x2 + x1x

2
2 + x−2

1 x−1
2 + x−1

1 x−2
2

Example 3.7.1

G2
∼= D8 polynomial algebra � [ξ1 + ξ2, ξ1ξ2] with ξi = xi + x−1

i

Example 3.5.4 for
n = 2

G3
∼= S3

semigroup algebra � [µ1, µ2] ⊕ µ3
� [µ1, µ2]

µ1 = s3
1/s3, µ2 = s3

2/s2
3, µ3 = s1s2/s3

si = si(x1, x2, x3) the ith elem. symm. function

relation: µ1µ2 = µ3
3

Example 3.5.6 for
n = 3

G4
∼= S3

polynomial algebra � [η+, η−]

η+ = x1 + x2 + x−1
1 x−1

2 , η− = x−1
1 + x−1

2 + x1x2

Example 3.7.1 for
n = 3

G5
∼= C2 × C2 polynomial algebra � [ξ1, ξ2] with ξi = xi + x−1

i

Example 3.5.1 for
n = 2

G6
∼= C2 × C2

semigroup algebra � [µ1, µ2] ⊕ µ3
� [µ1, µ2]

µ1 = x1x2 + x−1
1 x−1

2 + 2, µ2 = x1x
−1
2 + x−1

1 x2 + 2,
µ3 = x1 + x−1

1 + x2 + x−1
2

relation: µ1µ2 = µ2
3

Example 3.5.7

G7
∼= C6

� [τ1, τ2] ⊕ σ � [τ1, τ2]

τ1 = η+ + η−, τ2 = η+η− , σ = η+ϕ + η−ϕ−

with η+, η−, ϕ as for G9 and
ϕ− = x−1

1 x−2
2 + x2

1x2 + x−1
1 x2 + 6

relation:
σ2 = τ1(τ2+9)σ−τ2(τ2+9)2+(τ2

1 −4τ2)(3τ1τ2−τ3
1 −27)

G8
∼= C4

� [σ1, σ2] ⊕ ρ � [σ1, σ2]

σ1 = ξ1 + ξ2, σ2 = ξ1ξ2, where ξi = xi + x−1
i , and

ρ = x1x
2
2 + x−1

1 x−2
2 + x2

1x
−1
2 + x−2

1 x2 + 3σ1

relation: ρ2 = ρσ1(σ2 + 4) + 4σ2
1σ2 − σ4

1 − σ2(σ2 + 4)2

G9
∼= C3

� [η+, η−] ⊕ ϕ � [η+, η−]

η+ = x1 + x2 + x−1
1 x−1

2 , η− = x−1
1 + x−1

2 + x1x2,
ϕ = x1x

2
2 + x−2

1 x−1
2 + x1x

−1
2 + 6

relation: ϕη+η− = η3
+ + η3

− + ϕ2 − 9ϕ + 27
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Table 3.1. (continued)

group G
(cf. Table 1.2)

invariant algebra � [L]G reference

G10
∼= C2

� [ξ1, ξ2] ⊕ θ � [ξ1, ξ2]

ξi = xi + x−1
i , θ = x1x2 + x−1

1 x−1
2

relation: θξ1ξ2 = θ2 + ξ2
1 + ξ2

2 − 4

Example 3.5.3

G11
∼= C2 Laurent polynomial algebra � [x1 + x−1

1 , x±1
2 ]

Example 3.5.1 for
n = 1 and (3.5)

G12
∼= C2 Laurent polynomial algebra � [x1 + x2, (x1x2)

±1]
Example 3.5.5 for

n = 2

3.6 Multiplicative Invariants of Weight Lattices

The following result is classical; see [24, Théorème VI.3.1 and Exemple 1]. We use
the notation and terminology of Section 1.8.

Theorem 3.6.1 (Bourbaki). Let Λ = Λ(Φ) be the weight lattice of a reduced root
system Φ and let W = W(Φ) denote its Weyl group. Then the multiplicative invari-
ant algebra

�
[Λ]W is a polynomial algebra over

�
: the W-orbit sums of a set of

fundamental weights are algebraically independent generators.

Proof. Fix a base ∆ = {ai} of Φ and let {mj} ⊆ Λ be the corresponding set of
fundamental weights; so 〈a∨

i ,mj〉 = δi,j . Put

Λ+ = {m ∈ Λ | 〈a∨,m〉 ≥ 0 for all a ∈ ∆} =
⊕

j

�
+mj . (3.10)

The argument depends on the following standard facts about root systems:

(a) Every W-orbit in Λ meets the set Λ+ in exactly one point; see [24, Théorème
VI.1.2(ii)].

(b) Define a partial order on Λ by m ≥ m′ ⇐⇒ m − m′ ∈
⊕

a∈∆ � +a. Then
m ≥ g(m) holds for all m ∈ Λ+ and g ∈ W; see [24, Prop. VI.1.18].

(c) The restriction of ≥ to Λ+ satisfies the descending chain condition. In fact, for
each m ∈ Λ+, there are only finitely many m′ ∈ Λ+ with m ≥ m′; see [24,
p. 187] or [93, Lemma 13.2.B].

By (a) and (3.4), we have:

�
[Λ]W =

⊕
m∈Λ+

�
orb(m) . (3.11)
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Define elements fm ∈
�
[Λ]W (m ∈ Λ+) by

fm =
∏
j

orb(mj)
zj ,

where m =
∑

j zjmj with (uniquely determined) zj ∈
�

+. The theorem asserts that
the family F = {fm}m∈Λ+

is a
�

-basis of
�
[Λ]W .

To prove this, note that, with respect to the partial order ≥ of (b), each m ∈ Λ+

is the unique largest element of the support Supp(orb(m)) = W(m). Since ≥ is
compatible with addition (i.e., m ≥ m′ ⇒ m + w ≥ m′ + w for m,m′, w ∈ Λ),
we deduce that m is the unique largest element in Supp fm and its

�
-coefficient is

1. Therefore, by (3.11), fm can be written as a finite sum

fm = orb(m) +
∑

m′∈Λ+

m′<m

zm,m′ orb(m′) . (3.12)

This formula implies that the family F = {fm}m∈Λ+
is

�
-independent, because

{orb(m)}m∈Λ+
is. Also, each orbit sum orb(m) (m ∈ Λ+) is a

�
-linear combination

of elements in F . Otherwise (c) would allow us to pick a counterexample m that is
minimal with respect to ≥. Thus, all orb(m′) in (3.12) can be expressed in terms of
F , and hence orb(m) as well, a contradiction. This completes the proof that F is a

�
-basis of

�
[Λ]W . ��

The converse of Bourbaki’s theorem is also true: all multiplicative invariant al-
gebras that are polynomial algebras come from weight lattices; see Corollary 7.1.2
below. Since the root lattice Bn is equal to the weight lattice for Cn, Example 3.5.4
provides an illustration of Theorem 3.6.1. Here is a second example:

Example 3.6.2 (Multiplicative Sn-invariants of A∗
n−1). As was pointed out in Ex-

ample 1.8.1, we may think of A∗
n−1 as the weight lattice Λ(An−1) of the root

system An−1. Put �i = ei −
1
n

∑n
j=1 ej ∈ Λ(An−1) = A∗

n−1, where {ei}
n
1 de-

notes the canonical permutation basis of Un as in Example 3.5.5. Then the elements
mi =

∑i
j=1 �j =

∑i
j=1 ej −

i
n

∑n
j=1 ej are the fundamental weights of An−1

corresponding to the base ∆ = {ei − ei+1}
n−1
1 . Putting xi = xei ∈

�
[Un] and

ξi = x�i ∈
�
[A∗

n−1] and letting si denote the ith elementary symmetric function we
calculate the Sn-orbit sum of mi as follows:

orb(mi) =
∑

I⊆{1,...,n}
|I|=i

x � j∈I ej−
i
n � n

j=1 ej

= si(x1, . . . , xn) · sn(x1, . . . , xn)−i/n (3.13)

= si(ξ1, . . . , ξn) .

By Theorem 3.6.1, the elements si(ξ1, . . . , ξn) are algebraically independent gen-
erators of

�
[A∗

n−1]
Sn . A direct verification, independent of Theorem 3.6.1, will be

given in Example 3.7.1 below.
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3.7 Passage to an Effective Lattice

Let L be a lattice for the finite group G and let L = L/LG denote its effective
quotient; see Section 1.6. The canonical map : L � L extends to k[L]:

: � [L] � � [L] = k[L/LG ] , xm �→ xm+LG

(m ∈ L) .

It follows from (1.17) that the orbit sum of an element m ∈ L satisfies

orb(m) = orb(m) .

Moreover, orb(a) = orb(b) is equivalent to orb(a) = orb(b)xc for some c ∈ LG .
Consequently, (3.4) implies that

� [L]G = � [L]G ∼= � [L]G/
(
xm − 1 | m ∈ LG

)
. (3.14)

Here, it suffices to let m run over a
�

-basis of LG . The isomorphism (3.14) cannot
in general be strengthened to � [L]G ∼= � [L]G ⊗k � [LG ]; cf. Example 4.2.1 below.

Example 3.7.1 (Multiplicative Sn-invariants of A∗
n−1, revisited). The invariant al-

gebra
�
[A∗

n−1]
Sn can also be calculated from (3.14). Indeed, dualizing the aug-

mentation sequence (1.10) and using the fact that
�

and Un are self-dual (being
permutation lattices) one obtains an exact sequence of Sn-lattices

0 →
�
−→ Un −→ A∗

n−1 → 0 .

Thus,
A∗

n−1
∼= Un/USn

n = Un , (3.15)

and so (3.14) applies. In detail, using the notation of Example 3.5.5, the Sn-invariants
USn

n are spanned by the element
∑n

1 ei and x � n
1 ei ∈

�
[Un] is the nth elementary

symmetric function sn =
∏n

1 xi. By (3.9),
�
[Un]Sn =

�
[s1, . . . , sn−1, s

±1
n ], and so

(3.14) yields that
�
[A∗

n−1]
Sn is isomorphic to

�
[s1, . . . , sn−1, s

±1
n ]/(sn − 1). Thus,

�
[A∗

n−1]
Sn ∼=

�
[Un]Sn ∼=

�
[s1, . . . , sn−1] , (3.16)

a polynomial algebra in n− 1 variables.
To make the connection with the description of

�
[A∗

n−1]
Sn given in Exam-

ple 3.6.2, we use the Sn-lattice isomorphism

Un
∼
→ Λ(An−1) , ei �→ �i = ei −

1

n

n∑
j=1

ej . (3.17)

This isomorphism yields an isomorphism
�
[Un]Sn

∼
→

�
[Λ(An−1)]

Sn sending the
generators si in (3.16) to the generators si(ξ1, . . . , ξn) constructed in Example 3.6.2.

Finally, we point put how the foregoing yields the fundamental invariants for
the groups G1 and G4 in Table 3.1. Under the second isomorphism in (3.16), ith el-
ementary symmetric function si becomes the orbit sum orb(e1 + · · · + ei). Thus,
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writing yi = xei ∈
�
[Un], we obtain the following fundamental invariants in

�
[A∗

n−1]
Sn ∼=

�
[Un]Sn for n = 3:

η1 = orb(e1) = y1 + y2 + y−1
1 y−1

2

η2 = orb(e1 + e2) = y1y2 + y−1
1 + y−1

2

This takes care of group G4. For G1, note that G1 = 〈G4,− Id〉 and− Id interchanges
the above two invariants η1 and η2. Thus we have the following fundamental invari-
ants for G1:

η1 + η2 = y1 + y−1
1 + y2 + y−1

2 + y1y2 + y−1
1 y−1

2

η1η2 − 3 = y1y
−1
2 + y−1

1 y2 + y2
1y2 + y−2

1 y−1
2 + y1y

2
2 + y−1

1 y−2
2

3.8 Twisted Multiplicative Actions

3.8.1 The Setting

Let R be some commutative domain and let R[L] be the group algebra of the lattice
L over R. Suppose a group G acts by ring automorphisms on R[L] in such a way
that g(R) ⊆ R holds for all g ∈ G. In short, R ⊆ R[L] is an extension of G-
rings. Then G stabilizes the unit groups of U(R) and U(R[L]). By Lemma 3.4.1,
U(R[L]) = U(R) × L. Hence, the lattice L becomes a G-lattice that fits into an
exact sequence of G-modules

1 → U(R)→ U(R[L]) → L→ 1 . (3.18)

This extension of G-modules need not split. The G-action on R[L] is called twisted
multiplicative and the group ring R[L] will be called a twisted multiplicative G-ring.
We will use the notation

R[L]γ

to denote R[L] with a twisted multiplicative action. Explicitly, the action of g ∈ G
on R[L]γ is given by the formula

g(
∑
m∈L

rmxm) =
∑
m∈L

g(rm)γg(m)(g)xg(m) (3.19)

for suitable elements γg(m)(g) ∈ U(R). The map γ(g) : m �→ γm(g) belongs to
Hom � (L,U(R)). Moreover, viewing Hom � (L,U(R)) as G-module as in §1.4.2,
we have the identity

γ(gg′) = (gγ(g′))γ(g) (3.20)

for g, g′ ∈ G. Thus, γ : G → Hom � (L,U(R)) is a 1-cocycle. Let γ′ be a 1-
cocycle in the same cohomology class as γ; so γ′(g) = γ(g)fg(f)−1 for some
f ∈ Hom � (L,U(R)). Then the map R[L]γ → R[L]γ′ , rxm �→ rf(m)xm, is
an isomorphism of G-rings that is the identity on R. Therefore, we may view
γ as an element of H1(G, Hom � (L,U(R))). Under the standard isomorphism
H1(G, Hom � (L,U(R))) ∼= Ext � [G](L,U(R)) (see Brown [31, Proposition III.2.2]),
γ becomes the class of the extension (3.18).
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Example 3.8.1. Twisted multiplicative actions often arise in the investigation of or-
dinary multiplicative actions as follows. Given an extension of G-lattices 0 → N →
M → L → 0, the ordinary multiplicative action of G on � [M ] can be viewed as a
twisted multiplicative action on R[L]γ , with R = � [N ] and γ the image of the class
in Ext � [G](L,N) of the given lattice extension under the G-embedding N ↪→ U(R).

3.8.2 The Split Case

Twisted multiplicative actions with trivial extension class γ will simply be written as

R[L] .

In this case, the action (3.19) simplifies to

g(
∑
m∈L

rmxm) =
∑
m∈L

g(rm)xg(m) . (3.21)

Of course, if G acts trivially on R then (3.19) is an ordinary multiplicative action
(3.2). In the following, the notation � [L], for a G-lattice L, will always stand for
the group algebra of L over � with the ordinary multiplicative action (3.2). In other
words, all group actions on � are assumed trivial.

Twisted multiplicative actions of the form (3.21) are particularly important in
the case where R = K is a field and G is a finite group acting faithfully by auto-
morphisms on K. The invariant algebra K[L]G is then called an algebra of torus
invariants. The connection with algebraic tori will be explained in Section 3.10 be-
low.

3.8.3 Linearization via Permutation Lattices

Let L be a lattice and � a commutative domain. Any group action by � -algebra
automorphisms on � [L] is twisted multiplicative. Thus, the remarks in §3.8.1 lead to
the following description of the automorphism group of � [L]:

Aut � -alg( � [L]) = Hom(L,U( � )) � GL(L) (3.22)

with GL(L) acting by the ordinary multiplicative action (3.2) and with

f(xm) = f(m)xm

for f ∈ Hom(L,U( � )) and m ∈ L. These actions commute by the rule gf = g(f)g
for g ∈ GL(L) and f ∈ Hom(L,U( � )), where g(f) ∈ Hom(L,U( � )) is defined as
in §1.4.2.

As an application, we present the following linearization result which is essen-
tially proved in Barge [4].
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Proposition 3.8.2. Let � be an algebraically closed field of characteristic 0 and let
G be a finite group acting by � -algebra automorphisms on � [L]. Assume that, viewed
as G-lattice as in (3.18), L is rationally isomorphic to some permutation G-lattice.
Then there exists a finite extension G̃ of G and a linear � -representation G̃ → GL(V )
so that

� [L]G ∼= S(V ) �G [1/f ]

for some 0 �= f ∈ S(V ) �G .

Proof. We may assume that G acts faithfully on � [L]; so G ⊆ Aut � -alg( � [L]) =
Hom(L, � ∗) � GL(L). The action of G on L is given by the map ϕ : G ↪→

Hom(L, � ∗) � GL(L)
can.
� GL(L). Furthermore, G ⊆ Hom(L, � ∗) � ϕ(G). By

hypothesis, there is a permutation G-lattice P with L ⊆ P and P/L finite. Let
ψ : G → GL(P ) denote its structure map. Restriction from P to L gives an
isomorphism ψ(G)

∼
→ ϕ(G) and an exact sequence 0 → Hom(P/L, � ∗) →

Hom(P, � ∗) → Hom(L, � ∗) → 0, and these maps combine to give an epimorphism
ρ : Hom(P, � ∗)�ψ(G) � Hom(L, � ∗)�ϕ(G) with kernelN = Hom(P/L, � ∗) ∼=
P/L. Let G̃ denote the inverse image of G under ρ; so we have an extension of
groups 1 → N → G̃

ρ
→ G → 1. It is easy to see that � [P ]N = � [L]. Therefore,

� [P ] �G = � [L]G . Finally, let {m1, . . . , mn} be a
�

-basis of P that is permuted by the
action of G. Then Hom(P, � ∗) � ψ(G) stabilizes the � -subspace V =

⊕
i � xmi of

� [P ], and hence so does G̃. Moreover, � [P ] = S(V )[1/f ], where f =
∏

i x
mi is a

G̃-semiinvariant, that is, g(f) = λ(g)f for some λ ∈ Hom(G̃, � ∗). Replacing f by

f | �G| we can make f invariant. Hence, � [L]G = � [P ] �G = S(V ) �G [1/f ], as desired. ��

3.9 Hopf Structure

The group algebra � [L] is a Hopf algebra over � : the comultiplication ∆ : � [L] →
� [L]⊗ � � [L], counit (or augmentation) ε : � [L] → � , and antipode S : � [L] → � [L]
are given by � -linear extension of the rules

∆(xm) = xm ⊗ xm , ε(xm) = 1 , S(xm) = x−m

for m ∈ L. If � has no idempotents other than 0 and 1, the set of “monomials”
L = {xm | m ∈ L} can be characterized as the set of group-like elements of � [L],

L = {f ∈ � [L] | ∆(f) = f ⊗ f, ε(f) = 1} . (3.23)

Thus, every Hopf morphism � [L] → � [L] must map L to itself. In particular,

AutHopf( � [L]) ∼= GL(L) .
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3.10 Torus Invariants

We briefly sketch the connection of algebras of torus invariants as introduced in
Section 3.8 with algebraic tori. For background on algebraic groups, we refer to
Borel [19]. The algebra of regular functions of an algebraic group G will be denoted
by O(G).

By definition, an algebraic � -torus, for a field � , is an affine algebraic group T
defined over � so that, over the algebraic closure of � , T becomes isomorphic to

� n
m = � m × · · · × � m (n factors) for some n. Here, � m = GL1 is the multiplicative

group, that is, the algebraic group defined by the Hopf algebra O( � m) = � [t±1] ∼=
� [

�
]. It is known that T already becomes isomorphic to � n

m over some finite Galois
extension K/ � ; see [19, 8.11]. Explicitly, this means that the Hopf algebra O(K ⊗ �
T ) = K ⊗ � O(T ) is isomorphic to the group algebra K[L] with L ∼=

� n; see [19,
8.5]. By (3.23), the lattice L can be identified with the character group

X(K ⊗ � T ) = HomHopf(K[t±1],K ⊗ � O(T )) .

The action of the Galois group G = Gal(K/ � ) on K induces G-actions on O(K ⊗ �
T ) and on X(K ⊗ � T ), thereby making L a G-lattice. Moreover,

O(T ) = (K ⊗ � O(T ))
G ∼= K[L]G ;

so O(T ) is an algebra of torus invariants as in Section 3.8. Conversely, given a field
K with a faithful action by a finite group G and a G-lattice L, the Galois descent
lemma (Lemma 9.4.1 below) implies that K[L] = K ⊗ � K[L]G , where � = KG is
the subfield of G-invariants; so K[L]G = O(T ) for some � -torus T .
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Class Group

4.1 Introduction

In this chapter, we determine the class group of a multiplicative invariant algebra.
Throughout, we work over a Krull domain � .

Recall that a commutative domain R is called a Krull domain if it satisfies the
following three conditions:

(a) RP is a discrete valuation domain for each height 1-prime P of R,
(b)

⋂
P RP = R, where P runs over the height 1-primes of R, and

(c) each 0 �= r ∈ R is contained in only finitely many height 1-primes of R.

Conditions (a) and (b) imply that R is integrally closed, because all RP are. If R
is noetherian, (c) is automatic and the above conditions are in fact equivalent to R
being integrally closed; see Bourbaki [23] or Fossum [67]. Any unique factorization
domain is a Krull domain but the converse is far from true. For an arbitrary Krull
domain R, the class group Cl(R) is defined so as to measure the “unique factorization
defect”: Cl(R) is trivial precisely if R is a UFD. We will review the definition of
Cl(R) in Section 4.3 below.

Turning to the special case of multiplicative invariants R = � [L]G , it follows
from [67, 1.2, 1.6 and 1.8] that � [L]G is a Krull domain if and only if � is. In this
case, we have the following formula [121].

Theorem 4.1.1. Let L be a faithful lattice for the finite group G and let � be a Krull
domain. Then

Cl( � [L]G) ∼= Cl( � )⊕Hom(G/R,U( � ))⊕H1(G/D, LD),

where R = R1
L(G) denotes the subgroup of G that is generated by all elements

acting as reflections on L and D is the subgroup generated by the diagonalizable
reflections.

Recall from Section 1.7 that an element g ∈ G is called a reflection on L if
the endomorphism gL − IdL ∈ End � (L) has rank 1; a reflection g ∈ G is called
diagonalizable if gL is conjugate in GL(L) to a diagonal matrix.
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The term Hom(G/R,U( � )) mimics the well-known class group formulas for
polynomial invariants and for invariants under of finite group actions on local unique
factorization domains (cf. Benson [14] and Singh [197], or [121]), while the term
H1(G/D, LD) reflects the arithmetic restrictions inherent in the setting of multi-
plicative actions. Note that H1(G/D, LD) ∼= H1(G, LD) via inflation.

The proof of Theorem 4.1.1 presented here is a simplified version of the author’s
original calculation in [121]. As all previous calculations of class groups of invariant
rings, it is based on Samuel’s method of Galois descent as developed in [187]. This
material is reviewed in Section 4.4 after briefly recalling some basic facts pertaining
to Krull domains, class groups, and ramification in Section 4.3.

4.2 Some Examples

The first example substantiates a remark made in Section 3.7.

Example 4.2.1. Let G = S2 and L = A1 ⊕ U2; see §1.3.3. So L ∼=
� 3 and the

nonidentity element of G acts via the matrix

(
−1

1
1

)
. Then LG ∼=

�
and L =

L/LG ∼=
� − ⊕

� −. So
�
[L]G ⊗ � �

[LG ] ∼=
�
[L]G [t±1] is a Laurent polynomial

algebra over
�
[L]G . By Fossum [67, 8.1 and 7.3], the class group of

�
[L]G [t±1] is

identical with Cl(
�
[L]G) which, by Theorem 4.1.1, evaluates to Hom(G, {±1}) ⊕

H1(G, L) = (
�
/2

�
)
3. On the other hand, Theorem 4.1.1 also gives Cl(

�
[L]G) =

Hom(G, {±1})⊕H1(G, L) = (
�
/2

�
)
2. Therefore,

�
[L]G �

�
[L]G ⊗ � �

[LG ].

Next, we calculate the class group of the multiplicative invariant algebra of the
root lattice An−1 for the symmetric group Sn. We use the notation of §1.3.3.

Example 4.2.2. For any Krull domain � and any n > 2,

Cl( � [An−1]
Sn) ∼= Cl( � )⊕

�
/n

�
. (4.1)

For n = 2, An−1 is the sign lattice
� − whose multiplicative invariant algebra is a

polynomial algebra over � (see Example 3.5.6); so the class group is equal to Cl( � )
in this case. To prove (4.1), note that R = Sn holds in Theorem 4.1.1. Indeed, an
element s ∈ Sn is a reflection on An−1 if and only if s is a reflection on Un, and
the latter holds precisely if s is a transposition. Furthermore, since any transposition
s has fixed points for n > 2, Lemma 2.8.2 yields that H1(〈s〉, An−1) is trivial;
so D = {1} holds in Theorem 4.1.1; see Section 1.7. Hence, Cl( � [An−1]

Sn) ∼=
Cl( � ) ⊕ H1(Sn, An−1) and a second appeal to Lemma 2.8.2 proves (4.1). — This
example is a special case of Proposition 6.3.1 below.

4.3 Krull Domains and Class Groups

Let R be a Krull domain with field of fractions F , and denote by X(1) = X(1)(R)
the set of height 1-primes of R. The localizations RP for P ∈ X(1) are discrete
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valuation domains with corresponding valuations vP : F ∗
�

�
. The class group

Cl(R) of R is the quotient

Cl(R) = Div R/ PrinR ,

where Div R denotes the free abelian group with basis {[P] | P ∈ X(1)} and PrinR
is the subgroup of principal divisors div(x) =

∑
P∈X(1) vP(x)[P] for x ∈ F ∗.

Now let S ⊆ R be an inclusion of Krull domains. Then, for every p ∈ X(1)(S),
there are at most finitely many P ∈ X(1)(R) satisfying P∩S = p. As usual, we say
that P lies over p in this case. We have pRP = PeRP for some e = e(P/p), called
the ramification index of p in P. Sending [p] �→

∑
P e(P/p)[P], where P runs over

the height 1-primes of R lying over p, we obtain a homomorphism Div S → Div R.
If R is either integral over S or flat as S-module then this map passes down to a
homomorphism of class groups i : Cl(S) → Cl(R); see Bourbaki [23, p. 18ff] or
Fossum [67, p. 30ff].

We now specialize to the case where S = RG is the ring of invariants of the
action of a finite group G on the Krull domain R. Then RG is a Krull domain as well
(see, e.g., [67, p. 82]) and R is integral over RG . Thus, by the foregoing, we have a
canonical map of class groups

iG : Cl(RG) −→ Cl(R) . (4.2)

Moreover, for each height 1-prime p of RG , the primes P of R lying over p form a
single G-orbit and all have height 1; cf. [22, Théorème V.2.2(i)] and Lemma 8.5.3(a)
below. Hence, the ramification index e(P/p) is independent of P and will therefore
simply be denoted by e(p). Thus, the map iG sends the class of p to e(p) times the
sum of the classes of all primes P lying over p.

Returning to multiplicative actions now, we will use the notation and hypotheses
of Theorem 4.1.1. The following lemma reduces the calculation of Cl( � [L]G) to the
case where � is a field.

Lemma 4.3.1. Let K denote the field of fractions of the Krull domain � . Then
Cl( � [L]G) ∼= Cl( � )⊕ Cl(K[L]G).

Proof. Since � [L]G is free over � , by (3.4), the inclusion of Krull domains � ↪→
� [L]G give rise to a map of class groups Cl( � ) → Cl( � [L]G). The composite of this
map with iG : Cl( � [L]G) → Cl( � [L]) is an isomorphism Cl( � )

∼
→ Cl( � [L]); see

[67, 8.1 and 7.3]. Therefore, Cl( � ) injects as a direct summand into Cl( � [L]G). The
image of Cl( � ) is generated by the classes of all primes of the form p = p � [L]G ,
where p is a height 1-prime of � ; it follows from Proposition 3.3.1(b) that p is indeed
a prime of � [L]G , clearly of height 1. On the other hand, by [67, 7.2], there is a
canonical surjection Cl( � [L]G) � Cl(K[L]G) whose kernel is generated by the very
same p = p � [L]G , whence the lemma. ��
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4.4 Samuel’s Exact Sequence

As in Section 4.3, let R be any Krull domain and let G be a finite group acting by
automorphisms on R. We assume, without essential loss, that the action of G on R is
faithful.

There is a useful exact sequence, due to Samuel [187], that allows to compute
the kernel of the map iG in (4.2) in many instances:

0→ Ker iG −→ H1(G,U(R)) −→
⊕

p

�
/e(p)

�
. (4.3)

Here, U(R) denotes the group of units of R and p runs over the primes of height
1 in RG . Detailed proofs of (4.3) can be found in [67, pp. 82–83], [187, Chap. 1
§1], or [121]. The sequence ultimately is a consequence of Hilbert’s “Theorem 90”:
H1(G, F ∗) is trivial for the field of fractions F of R.

The following application of (4.3) will be instrumental for the calculation of the
class group of multiplicative invariants. We denote the inertia group of a prime P of
R by IG(P); so

IG(P) = {g ∈ G | g(r)− r ∈ P for all r ∈ R} . (4.4)

Lemma 4.4.1. Assume the finite group G acts faithfully on the unique factorization
domain R. Assume further that, for all height 1-primes P of R, the invariant subring
RIG(P) is a unique factorization domain. Then

Cl(RG) ∼=
⋂
P

Ker
(
resGIG(P) : H1(G,U(R))→ H1(IG(P),U(R))

)
,

where P runs over the height 1-primes of R.

Proof. By hypothesis on R, we have Cl(R) = 0; so sequence (4.3) takes the form

0 → Cl(RG) −→ H1(G,U(R)) −→
⊕

p

�
/e(p)

�
.

For each subgroup H ≤ G, there is an analogous sequence and these sequences fit
into a commutative diagram

0 �� Cl(RG)

��

�� H1(G,U(R)) ��

resG
H

��

⊕
p

�
/e(p)

�

ρG
H

��
0 �� Cl(RH) �� H1(H,U(R)) ��

⊕
q

�
/e(q)

�

with p and q running over the height 1-primes of RG and RH, respectively. The
first vertical map is the canonical map coming from the (integral) extension of Krull
domains RG ⊆ RH; see Section 4.3. The map ρGH sends the summand

�
/e(p)

�
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“diagonally” to
⊕

q : q∩RG=p

�
/e(q)

�
. Note that each e(q) in this sum divides e(p);

see [121, §1.4] for more details.
Now let H = IG(P) be the inertia group of a height 1-prime P of R. Then

Cl(RH) = 0, by hypothesis, and so Cl(RG) embeds into Ker(resGH). Hence, we have
an embedding Cl(RG) ↪→

⋂
H Ker(resGH). In order to prove that this embedding is

in fact an isomorphism, it suffices to show that
⋂

H Ker(ρGH) = 0. Starting with a
height 1-prime p of RG , choose a prime P of R lying over p and put H = IG(P)
and q = P ∩ RH. Then e(p) = e(q); see, e.g., Serre [193, Chap. 1 §7]. Hence, the
map ρGH is injective on the summand

�
/e(p)

�
. Consequently, the product map {ρGH}

is injective on all of
⊕

p

�
/e(p)

�
, as desired. ��

4.5 Generalized Reflections on Rings

Let R denote a commutative ring and G a finite group acting by automorphisms
on R. Following Gordeev and Kemper [76], we say that an element g ∈ G acts as
a k-reflection on R if g belongs to the inertia group IG(P) of some prime ideal
P ∈ Spec R with height P ≤ k. As usual, the cases k = 1 and k = 2 will be
referred to as reflections and bireflections on R, respectively. Define ideals IR(G)
and IR(g) for each g ∈ G by

IR(g) =
∑
r∈R

(g(r)− r)R (4.5)

and
IR(G) =

∑
g∈G

IR(g) (4.6)

Note that IR(g) = IR(g−1) and IR(gg′) ⊆ IR(g) + IR(g′). Thus, it suffices to
let g run over a set of generators of the group G in (4.6). Evidently, g ∈ IG(P) is
equivalent to P ⊇ IR(g). Thus,

g is a k-reflection on R if and only if height IR(g) ≤ k. (4.7)

We now specialize to the case of a multiplicative action of a finite group G on
R = � [L], where L is a G-lattice and � is some commutative base ring. In the next
lemma, we determine the height of the ideal I � [L](G). For a cyclic group G = 〈g〉, the
lemma asserts that height IR(g) = rank[g, L]. Thus, g acts as a k-reflection on � [L]
in the present sense if and only if g is a k-reflection on L in the sense of Section 1.7.

Recall that Tate cohomology group Ĥ−1(G, L) has the form Ĥ−1(G, L) =
L(G)/[G, L] with L(G) and [G, L] as in (2.3).

Lemma 4.5.1. With the above notation,

� [L]/I � [L](G) ∼= � [L/[G, L]] ∼= � [Ĥ−1(G, L)][L/L(G)] ,

a Laurent polynomial ring over the group algebra � [Ĥ−1(G, L)]. Moreover,

height I � [L](G) = rank[G, L] = rankL− rankLG .
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Proof. Put I = I � [L](G) and note that an alternative set of generators of I is given
by the elements xg(m)−m−1 with m ∈ L and g ∈ G. This explains the isomorphism

� [L]/I ∼= � [L/[G, L]]. Since L/[G, L] ∼= Ĥ−1(G, L) ⊕ L/L(G), the isomorphism
� [L/[G, L]] ∼= � [Ĥ−1(G, L)][L/L(G)] also follows.

The rational group algebra of G decomposes as

� [G] = �
∑
g∈G

g ⊕
∑
g∈G

� (g − 1) .

This implies L⊗ � � =
(
LG ⊗ � �

)
⊕([G, L]⊗ � � ), and hence rankL = rankLG +

rank[G, L].
We now show that, for any minimal covering prime P of I , we have

heightP = rank[G, L] .

Put A = L/[G, L] and P = P/I , a minimal prime of � [L]/I = � [A]. Further, put
p = P∩ � = P∩ � . Since the extension � ↪→ � [A] = � [L]/I is free, p is a minimal
prime of � ; see [28, Cor. to Prop. VIII.2.2]. Hence, descending chains of primes in

� [L] starting with P correspond in a 1-to-1 fashion to descending chains of primes
of Q( � /p)[L] starting with the prime that is generated by P. Thus, replacing � by
Q( � /p), we may assume that � is a field. But then

heightP = dim � [L]− dim � [L]/P = rankL− dim � [L]/P .

Let P0 = P ∩ � [A0], where A0
∼= Ĥ−1(G, L) denotes the torsion subgroup of

A. Since primes of � [A0] generate primes in � [A], we have P = P0 � [A] and
so � [L]/P ∼= � 0[A/A0], where � 0 = � [A0]/P0 is a field. Thus, dim � [L]/P =
rankA/A0. Finally, rankA/A0 = rankA = rankL−rank[G, L], which completes
the proof. ��

We now concentrate on reflections and height 1-primes. In the following lemma,
we assume the hypotheses of Theorem 4.1.1.

Lemma 4.5.2. The nonidentity inertia groups IG(P) of height 1-primes P of � [L]
are exactly the subgroups of G that are generated by a nonidentity reflection on L.
For each reflection 1 �= g ∈ G, the ring of multiplicative invariants has the form

� [L]〈g〉 ∼= � [
� n−1 ⊕

�
+] ,

where n = rankL. In particular, Cl( � [L]〈g〉) = Cl( � ).

Proof. Let H = IG(P) be a nonidentity inertia group of some height 1-prime P of
� [L]. Since I � [L](H) ⊆ P and P has height 1, it follows from Lemma 4.5.1 that
[H, L] has rank 1. Hence, all elements 1 �= g ∈ H are reflections; in particular, they
have determinant −1. Thus,H∩ SL(L) = {1} and soH has order 2, with generator
a single reflection.

Conversely, let 1 �= g ∈ G be a reflection and putH = 〈g〉. Then [H, L] = [g, L]
has rank 1, and hence height I(H) = 1, by Lemma 4.5.1. Therefore, H ⊆ IG(P)
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for some height 1-prime P of � [L], and the first paragraph of the proof implies that
IG(P) = H.

In order to determine the algebra of invariants � [L]〈g〉 for a reflection 1 �= g ∈ G,
identify the group 〈g〉 with S2 and recall from §1.7.1 that the 〈g〉-lattice L is either
isomorphic to

� n−1 ⊕ A1 or to
� n−2 ⊕ U2. In either case, � [L]〈g〉 is isomorphic to

� [
� n−1⊕

�
+]; see Examples 3.5.5 and 3.5.6. The formula Cl( � [L]〈g〉) = Cl( � ) now

follows from Fossum [67, 8.1 and 7.3]. ��

4.6 Proof of Theorem 4.1.1

First, by Lemma 4.3.1, we may replace � by its field of fractions K. Note that
Hom(G,K∗) = Hom(G,U( � )), since � is integrally closed. Thus, in the follow-
ing, we assume that � is a field. In particular � [L] is a unique factorization domain
and so are all invariant subalgebras � [L]IG(P) for height 1-primes P of � [L], by
Lemma 4.5.2. Therefore, Lemma 4.4.1 applies and, in view of Lemma 4.5.2, we
obtain the formula

Cl( � [L]G) ∼=
⋂
H

Ker
(
resGH : H1(G,U( � [L])) −→ H1(H,U( � [L]))

)
, (4.8)

whereH runs over the subgroups of G that are generated by a nonidentity reflection.
To evaluate this expression, recall from Lemma 3.4.1 that U( � [L]) = � ∗ × L; so
H1(G,U( � [L])) = Hom(G, � ∗)⊕H1(G, L) and similarly for all subgroupsH. The
right hand side of (4.8) is the direct sum of the terms⋂

H

Ker
(
resGH : Hom(G, � ∗) −→ Hom(H, � ∗)

)
(4.9)

and ⋂
H

Ker
(
resGH : H1(G, L)) −→ H1(H, L))

)
. (4.10)

The intersection (4.9) can be identified with Hom(G/R, � ∗), where R is the sub-
group of G that is generated by all reflections. In (4.10), it suffices to let H run
over the subgroups of G that are generated by a diagonalizable reflection, because
H1(H, L) is trivial otherwise. Therefore, letting D = 〈d1〉 × . . . × 〈dr〉 de-
note the subgroup of G that is generated by all diagonalizable reflections di, as in
Lemma 1.7.2, the intersection (4.10) is the kernel of the composite map

H1(G, L)
resG

D−→ H1(D, L)
res
−→

r∏
i=1

H1(〈di〉, L) ,

where res = {resG〈 di〉
} is the product of the restrictions. But Lemma 1.7.2 easily

implies that both H1(D, L) and
∏r

i=1 H1(〈di〉, L) are isomorphic to (
�
/2

�
)r and

res is in fact an isomorphism. So (4.10) is equal to Ker(resGD), and the latter is
isomorphic to H1(G/D, LD) via inflation; see, e.g., [193, Chap. VII, Prop. 4]. This
completes the proof of Theorem 4.1.1. ��
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Picard Group

5.1 Introduction

The Picard group of a commutative ring R, denoted Pic R, is the set of isomor-
phism classes of invertible R-modules; see Section 5.2 below for details. If R is a
Krull domain then Pic(R) embeds into the class group Cl(R). This embedding is
an isomorphism if R is regular. Pic( . ) defines a functor from commutative rings
to abelian groups. In particular, if G is a group acting by automorphisms on R and
RG is the subring of G-invariants then the inclusion RG ↪→ R yields a canonical
homomorphism

jG : Pic(RG) −→ Pic(R) . (5.1)

In this chapter, we determine the kernel of this map in the case of a multiplicative
action of a finite group G; so R = � [L] is the group algebra of a G-lattice L over the
commutative ring � . The structure of the Picard group Pic( � [L]) is quite involved
in general; see Weibel [223]. However, when � is an integrally closed domain then
the embedding � ↪→ � [L] yields an isomorphism Pic( � )

∼
→ Pic( � [L]) by Bass

and Murthy [6, 5.10]; see also [223, 1.5.2]. Moreover, since the augmentation map
ε : � [L]G → � (see 3.9) is the identity on � , we know that Pic( � ) is always a direct
summand of Pic( � [L]G). Thus, if � is an integrally closed domain, then

Pic( � [L]G) = Pic( � )⊕Ker jG . (5.2)

To compute Ker jG , we recall the definition

X
1(G, L) =

⋂
g∈G

Ker
(
resG〈g〉 : H1(G, L) −→ H1(〈g〉, L)

)
(5.3)

from Section 2.9. The result then reads as follows:

Theorem 5.1.1. Let L be a G-lattice, where G is a finite group, and let � be a com-
mutative domain with |G|−1 ∈ � . Then Ker jG ∼= X

1(G, L). In particular, if � is
also integrally closed then Pic( � [L]G) ∼= Pic( � )⊕X

1(G, L).
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The kernel of the restriction map resGH : H1(G, L) −→ H1(H, L), for any sub-
groupH ≤ G, has the following simple description. Let n be any multiple of |G| and
let = ( . ) ⊗ �

�
/n

�
denote reduction mod n. The exact sequence of G-modules

0 → L
·n
−→ L −→ L→ 0 gives rise to the cohomology sequence

LG −→ L
G
−→ H1(G, L)

·n=0
−→ H1(G, L) .

Therefore, H1(G, L) ∼= L
G
/LG and similarly forH. In terms of these isomorphisms,

resGH is the canonical map L
G
/LG → L

H
/LH coming from the inclusions L

G
⊆ L

H

and LG ⊆ LH. Therefore,

Ker
(
resGH

)
∼= LH/LG . (5.4)

We further remark that, letting g ∈ G in (5.3) run over the reflections on L only,
the resulting intersection is isomorphic to H1(G/D, LD) in the notation of Theo-
rem 4.1.1; see the computation of the term (4.10) in Section 4.6. Thus, X

1(G, L)
embeds into H1(G/D, LD).

5.1.1 Experiments

The group X
1(G, L) is trivial for all G-lattices L of rank 2. Indeed, SL2(

�
) acts

fixed point freely on L =
� 2; so L〈g〉 = 0 holds for every 1 �= g ∈ SL2(

�
).

Therefore, (5.4) shows that X1(G, L) = 0 if G intersects SL2(
�
) nontrivially. In the

opposite case, G is cyclic, having order at most 2, and so X
1(G, L) = 0 again.

A search of the crystallographic groups library “crystcat” of GAP [71] yields
that among the 73 conjugacy classes of finite subgroups of G ≤ GL3(

�
), exactly 2

lead to a nontrivial X
1(G, L). They are represented by two subgroups of S4 acting

on the root lattice A3, namely the alternating group A4 and its Sylow 2-subgroup
∼= C2×C2; see also Colliot-Thélène and Sansuc [42, p. 201-202] for the latter group.
In both cases, X1(G, A3) has order 2. The 710 conjugacy classes of finite subgroups
of GL4(

�
) altogether yield 9 with nontrivial X

1(G, L), of order 2 in all cases. The
above two groups G = A4 and G = C2 ×C2 in rank 3 account for 4 of these 9 cases:(
G

1

)
and

(
G

±1

)
.

By contrast, the Picard group for algebras of polynomial invariants over a field is
always trivial as has been shown by Kang [104, Theorem 2.4]; see also Example 5.5.2
below.

5.2 Invertible Modules

Let R be any commutative ring. An R-module P is called invertible (or an algebraic
line bundle) if the following equivalent conditions are satisfied; see, e.g., Bass [5,
p. 132]:

(a) P ⊗R Q ∼= R for some R-module Q;
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(b) P is finitely generated projective of constant rank 1, that is, PP
∼= RP holds for

all primes P of R;
(c) P is finitely generated projective and EndR(P ) = R.

The Picard group of R, written Pic(R), is the set of isomorphism classes of all invert-
ible R-modules. Denoting the isomorphism class of P by [P ], one defines a multipli-
cation in Pic(R) by [P ][P ′] = [P ⊗R P ′]. This makes Pic(R) an abelian group with
identity element [R]; the inverse of [P ] in Pic(R) is [P ∗], where P ∗ = HomR(P,R)
is the dual of P .

The group Pic( . ) is functorial: if S → R is a homomorphism of commutative
rings and Q is an invertible S-module then P = R ⊗S Q is an invertible R-module
and [Q] �→ [P ] gives a group homomorphism Pic(S) → Pic(R). The map jG of
(5.1) arises in this way from the embedding RG ↪→ R.

5.3 The Skew Group Ring

We continue to let R denote a commutative ring. Further, let G be an arbitrary group
acting by automorphisms on R, written r �→ g(r), and let RG denote the subring of
G-invariants of R. The skew group ring of G over R, denoted by

R#G ,

is an associative ring containing R as a subring and G as a subgroup of U(R#G),
the group of units of R#G. The elements of G form a free basis of R#G as left
R-module. Multiplication in R#G is based on the rule (rg)(r′g′) = rg(r′)gg′ for
r, r′ ∈ R and g, g′ ∈ G. The ring R becomes an (R#G, RG)-bimodule via

rg · r′ · s = rg(r′)s (r, r′ ∈ R, s ∈ RG , g ∈ G) .

The left R#G-module structure on R defined by this rule will be called “canonical”.
The endomorphism ring of the canonical R#G-module has the form

EndR#G(R) ∼= RG ; (5.5)

an explicit isomorphism is given by f �→ f(1). If R#GV and R#GW are two
R#G-modules then V ⊗R W becomes an R#G-module by letting R act as usual
and G diagonally: g(v ⊗ w) = gv ⊗ gw. Similarly, HomR(V,W ) becomes an
R#G-module by letting R act as usual and G via (gf)(v) = gf(g−1v). Note
that the R#G-homomorphisms coincide with the G-invariants under this action:
HomR#G(V,W ) = HomR(V,W )G.

Lemma 5.3.1. The group H1(G, U(R)) classifies the isomorphism classes of left
R#G-module structures on R that extend the regular R-module structure. The
multiplication in H1(G, U(R)) corresponds to ⊗R and the identity element of
H1(G, U(R)) corresponds to the canonical R#G-module.
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Proof. Let d : G → U(R) be a cocycle; so d(gg′) = d(g)g(d(g′)) holds for all
g, g′ ∈ G. Define Rd to be R with R#G-action

rg · r′ = rd(g)g(r′)

for r, r′ ∈ R, g ∈ G. Then Rd is an R#G-module whose restriction to R is the
regular R-module. For any two cocycles d1, d2, multiplication in R gives an isomor-
phism Rd1

⊗R Rd2
∼= Rd1d2

. Moreover, Rd is isomorphic to the canonical module
R#GR if and only if there is a G-equivariant R-isomorphism Rd

∼
→ R. The latter is

given by a unit u ∈ U(R), and G-equivariance translates into d(g) = g(u)u−1 for all
g ∈ G. Thus, Rd

∼=R#G R precisely if the cocycle d is principal. Finally, if · is any
R#G-module action on R extending the regular R-action then d(g) = g · 1 (g ∈ G)
yields a cocycle d : G → U(R) so that R, with the given R#G-module structure,
equals Rd. ��

5.4 The Trace Map

Retaining the notation of Section 5.3, we now consider the situation where the acting
group is finite; it will be denoted by G. Then we can define the trace map (sometimes
also called transfer map) of the action of G on R by

trG : R −→ RG , r �→
∑
g∈G

g(r) .

We will often work under the hypothesis that the trace map is surjective or, equiv-
alently, trG(r) = 1 for some r ∈ R. This hypothesis is easily checked if R is a an
algebra over some commutative ring � ⊆ RG such that there is an augmentation map
ε : R → � satisfying ε(g(r)) = ε(r) for all g ∈ G and r ∈ R. In this case,

trG is surjective if and only if |G|−1 ∈ � . (5.6)

To see this, observe that ε(trG(r)) = |G|ε(r) holds for all r ∈ R, by hypothesis on ε.
Hence, trG(r) = 1 implies that |G|−1 ∈ � . Conversely, if |G|−1 ∈ � then f = |G|−1

satisfies trG(f) = 1. This observation covers the case of multiplicative actions, using
the augmentation of Section 3.9, as well as the case of linear actions on polynomial
algebras, using evaluation of polynomials at 0.

Returning to general commutative rings R, note that trG(r) = t · r, where t =∑
g∈G g ∈ R#G is the “symmetrizer” element. We define G to be the ideal of the

skew group ring R#G that is generated by t,

G = R#GtR#G = RtR . (5.7)

Here, the second equality holds because g · t = t = t · g for all g ∈ G.
Finally, ( . )-proj will denote the category of finitely generated ( = f.g.) projective

modules over the ring in question.
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Lemma 5.4.1. Assume that the trace map trG is surjective. Then:

(a) An R#G-module R#GV is (f.g.) projective if and only if the restriction RV is
(f.g.) projective.

(b) Let A denote the full subcategory of R#G-proj consisting of all P satisfying
GP = P . Then the functor R#GR⊗RG ( . ) and the functor ( . )G of G-invariants
yield an equivalence of categories RG-proj ≈ A.

Proof. (a) Since R#G is finite over R, R#GV is finitely generated iff RV is. Also,
if R#GV is projective then RV is projective as well, because R#G is free over R.
Conversely, assume that V is projective as R-module. Fix an R#G-epimorphism
π : F � V , where F is a free R#G-module. Then there is an R-splitting σ ∈
HomR(V, F ) with πσ = IdV . By hypothesis, there is an element x ∈ R with
trG(x) = 1. View HomR(V, F ) as R#G-module as in Section 5.3 and put σ′ = eσ
with e = tx ∈ R#G. Then σ′ ∈ HomR(V, F )G and it is straightforward to verify
that πσ′ = IdV . Thus, V is an R#G-direct summand of F .

(b) The canonical R#G-module R#GR is projective by (a). Let add(R#GR) de-
note the full subcategory of R#G-proj consisting of all f.g. R#G-modules that are
isomorphic to a direct summand of some direct sum of copies of R#GR. We first
show that A = add(R#GR). Fixing x ∈ R with trG(x) = 1, as in (a), we have
t · x = 1 in R#GR. So R#GR belongs to A, and hence so does every member of
add(R#GR). Conversely, any P in A satisfies P = GP = RtP . Since Rt ∼=R#G R
as R#G-modules, a suitable direct sum of copies of R#GR maps onto P and this
map splits, because P is projective. Thus, P belongs to add(R#GR).

Now consider the functors E = R#GR⊗RG ( . ) : RG-proj −→ add(R#GR) and
F = ( . )G : add(R#GR) −→ RG-proj. For Q in RG-proj, let

ϕQ : Q→ (F ◦ E)(Q) = (R#GR⊗RG Q)
G

denote the RG-linear map given by ϕQ(q) = 1⊗ q. Then

ϕRG : RG →
(
R#GR⊗RG RG

)G
is an isomorphism, and hence so is ϕ(RG)n for every n and ϕQ for every Q in
RG-proj. Thus ϕ is a natural equivalence of functors IdRG -proj

∼= F ◦ E. Similarly,
defining ψP : (E ◦ F )(P ) = R#GR ⊗RG (PG) → P for P in add(R#GR) by
ψP (r ⊗ p) = rp, we obtain a natural equivalence of functors E ◦ F ∼= Idadd(R#GR).
This proves the category equivalence RG-proj ≈ add(R#GR) = A. ��

5.5 The Kernel of the Map Pic(RG) → Pic(R)

We now turn to the kernel of the map jG : Pic(RG) → Pic(R) in (5.1). For each
prime ideal P of R, let IG(P) denote the inertia group in G (see (4.4)) and define

ρP : H1(G, U(R)) −→ H1(IG(P),U(R/P)) = Hom(IG(P),U(R/P)) (5.8)
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via restriction resG
IG(P) : H1(G, U(R)) −→ H1(IG(P),U(R)) and the canonical

map U(R) → U(R/P). Then we have the following description of Ker jG implicit
in [123].

Proposition 5.5.1. Let R be a commutative ring and G a group acting by automor-
phisms on R. Then the kernel of jG : Pic(RG) → Pic(R) embeds into⋂

P

Ker ρP ,

where P runs over the primes of R. For the action of a finite group G such that the
trace map trG is surjective, this embedding is an isomorphism.

Proof. Let [Q] ∈ Ker jG; so there is an isomorphism of R-modules

ϕ : R⊗RG Q
∼
→ R .

Now R⊗RG Q is also a left R#G-module via the (R#G, RG)-bimodule structure on
R; see Section 5.3. Thus, the isomorphism ϕ defines an R#G-module structure on
R extending the regular R-module structure. By Lemma 5.3.1, this yields an element
[dQ] ∈ H1(G, U(R)).

For simplicity, let S(P) denote the skew group ring S(P) = (R/P)#IG(P);
this is actually an ordinary group ring, since IG(P) acts trivially on R/P. The ele-
ment ρP([dQ]) ∈ H1(IG(P),U(R/P)) corresponds to the S(P)-module structure
on R/P afforded by

(R/P)⊗R ϕ : (R/P)⊗RG Q ∼= (R⊗RG Q)/P(R⊗RG Q)
∼
→ R/P .

Since IG(P) acts trivially on (R/P)⊗RG Q, the IG(P)-action onR/P on the right
is also trivial; so the S(P)-module structure on R/P obtained from (R/P)⊗R ϕ is
the canonical one. By Lemma 5.3.1, this translates into ρP([dQ]) being the identity
element of H1(IG(P),U(R/P)). Thus, [dQ] belongs to Ker ρP and we obtain a
map

δ : Ker jG −→
⋂
P

Ker ρP , [Q] �→ [dQ] .

This map is easily seen to be multiplicative. To check that δ is injective, suppose
that [dQ] = 1 ∈ H1(G, U(R)); so R ⊗RG Q

∼
→R#G R, the canonical R#G-

module. Then HomR#G(R,R ⊗RG Q) ∼= EndR#G(R) ∼= RG as RG-modules; see
(5.5). Combining this isomorphism with the RG-map Q → HomR#G(R,R⊗RG Q),
q �→ (r �→ r ⊗ q), we obtain an RG-module map Q → RG. Since Qp

∼= RG
p for all

primes p of RG, this map is an isomorphism. Therefore, [Q] = 1 ∈ Pic(RG). This
proves that δ is an embedding Ker jG ↪→

⋂
P Ker ρP.

Now assume that G is finite, denoted G, and that trG is surjective. Let [d] ∈⋂
P Ker ρP be given and let P = Rd be a corresponding R#G-module, defined (up

to isomorphism) by Lemma 5.3.1. Since RP ∼= R, Lemma 5.4.1(a) implies that P is
projective. By Lemma 5.4.1(b), P has the form P ∼= R⊗RG Q for some Q in RG-proj
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(necessarily invertible) precisely if GP = P holds. Thus, in order to show that
[d] ∈ Im δ, we have to check that GP = P . Suppose otherwise. Then GP ⊆ MP
for some maximal ideal M of R, and so GP ⊆

⋂
g∈G g(M)P = MoP , where

Mo =
⋂

g∈G g(M). Therefore, G annihilates the R#G-module P/MoP . Letting
GM = stabG(M) denote the decomposition group of M, the Chinese remainder
theorem implies that

P/MoP ∼= R#G ⊗R#GM
P/MP ; (5.9)

as R#G-modules, and the R#GM-action on P/MP factors through (R/M)#GM.

Now, [d] ∈ Ker ρM and ρM factors as H1(G,U(R))
ρ′

M−→ H1(GM,U(R/M))
ρ′′

M−→
H1(IG(M),U(R/M)) by restriction along G ⊇ GM ⊇ IG(M). Here, Ker ρ′′M

∼=
H1(GM/IG(M), U(R/M)) is trivial, by Hilbert’s “Theorem 90” (cf. Serre [193,
Prop. VII.4 and Prop. X.2]). We conclude that [d] ∈ Ker ρ′M. In other words, the
(R/M)#GM-module P/MP is isomorphic to the canonical (R/M)#GM-module,
R/M. The symmetrizer tM =

∑
g∈GM

g ∈ (R/M)#GM acts as the trace trGM

on R/M. Moreover, our surjectivity hypothesis on trG implies that trGM
: R/M →

(R/M)GM is surjective as well. The isomorphism (5.9) now shows that the action
of
∑

g∈G g =
∑

g∈G/GM
gtM on P/MoP is nonzero, contradicting the fact that G

annihilates P/MoP . Thus, we must have GP = P , as desired. ��

Example 5.5.2 (Triviality of Pic for polynomial invariants; Kang [104]). Let � be a
field and let R = S(V ) denote the symmetric algebra of a � -vector space V . Suppose
that the group G acts by � -algebra automorphisms on R. Then Pic(R) is trivial and
U(R) = �

∗. So Proposition 5.5.1 gives that Pic(RG) embeds into the kernel of the
restriction map ρP : Hom(G, �

∗) → Hom(IG(P),U(R/P)) for all primes P of
R. If there is a G-stable P with R/P = � then this map is the identity map and
we conclude that Pic(RG) is trivial. In particular, this holds for linear actions, that
is, G acts on R = S(V ) by means of a linear representation G → GL(V ): take
P = V S(V ).

5.6 The Case of Multiplicative Actions

In this section, we calculate the intersection
⋂

P Ker ρP in Proposition 5.5.1 for a
multiplicative action of a finite group G on R = � [L]. The Proof of Theorem 5.1.1
will then follow immediately.

Lemma 5.6.1. Let R = � [L] denote the group algebra of the G-lattice L over the
commutative domain � . Assume that |G| �= 0 in � . Then the intersection

⋂
P Ker ρP

in Proposition 5.5.1 is isomorphic to X
1(G, L); see (5.3).

Proof. By Lemma 3.4.1, U( � [L]) = U( � )× L; so

H1(G,U( � [L])) = Hom(G,U( � ))⊕H1(G, L) .
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For the augmentation ideal E = Ker ε of � [L] (see Section 3.9), we have � [L]/E = �

and IG(E) = G. The map ρE of (5.8) in this case becomes

ρE : Hom(G,U( � ))⊕H1(G, L)
Id⊕0 �� Hom(G,U( � )) .

Therefore, Ker ρE = H1(G, L), and hence
⋂

P Ker ρP =
⋂

P Ker rP, where rP is
the restriction of the map ρP in (5.8) to the summand H1(G, L) of H1(G,U( � [L])).

For each g ∈ G, let I(g) = I � [L](g) be defined as in (4.5); so P ⊇ I(g) is
equivalent with g ∈ IG(P). By Lemma 4.5.1, � [L]/I(g) is isomorphic to a Laurent
polynomial ring over the group ring � [H1(〈g〉, L)]. Since |G| ·H1(〈g〉, L) = 0, our
hypotheses on � imply that � [H1(〈g〉, L)] is reduced, that is, � [H1(〈g〉, L)] has no
nonzero nilpotent elements. Hence, � [L]/I(g) is reduced as well, and so⋂

P:P⊇I(g)

P = I(g) .

Now consider a cocycle d : G → L and let [d] denote its class in H1(G, L). Then:

[d] ∈
⋂
P

Ker ρP ⇐⇒ ∀P ∀g ∈ IG(P) : xd(g) ≡ 1 mod P

⇐⇒ ∀g ∈ G : xd(g) − 1 ∈
⋂

P:P⊇I(g)

P = I(g)

⇐⇒ ∀g ∈ G : d(g) ∈ [g, L]

⇐⇒ ∀g ∈ G : [d] ∈ Ker resG〈g〉 .

This completes the proof of the lemma. ��

We are now ready to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. By (5.6), our hypothesis on |G| ensures that the trace map
trG : � [L] −→ � [L]G is surjective. Therefore, Proposition 5.5.1 implies that Ker jG
is isomorphic to

⋂
P Ker ρP. By Lemma 5.6.1, this intersection is isomorphic to

X
1(G, L). Therefore, Ker jG ∼= X

1(G, L). The rest now follows from (5.2). ��

We remark that if we only assume that |G| �= 0 in � rather than |G|−1 ∈ � then
the same proof still shows that Ker jG embeds into X

1(G, L).
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Multiplicative Invariants of Reflection Groups

6.1 Introduction

This chapter is devoted to the proof that multiplicative invariant algebras of reflection
groups are semigroup algebras. Some instances of this phenomenon have occurred
earlier in Examples 3.5.5, 3.5.6, 3.5.7 and in Theorem 3.6.1 and Lemma 4.5.2. We
refer to Section 1.7 for the basics concerning reflections and reflection groups and
to 3.4 for semigroup algebras. The main result reads as follows; for a more detailed
version, see Proposition 6.2.1 below.

Theorem 6.1.1. Let G be a finite group acting as a reflection group on the lattice L.
Then there is a submonoid M of (

�
[L]G , · ) whose elements form a

�
-basis of the

invariant algebra
�
[L]G . Consequently, for any commutative base ring � , � [L]G is

isomorphic to the semigroup algebra � [M ].

Following [124] we will derive this result from Theorem 3.6.1. A proof over �
is implicit in earlier work of Farkas [61]. It suffices to treat the case where the base
ring is

�
. In view of Proposition 3.3.1(b), the assertion that � [L]G ∼= � [M ] for an

arbitrary base ring � is then an immediate consequence.
We note the following corollary of Theorem 6.1.1. For the definition of Cohen-

Macaulay rings, we refer to Chapter 8.

Corollary 6.1.2. Suppose that G acts as a reflection group on L.

(a) If � is a Cohen-Macaulay ring then � [L]G is Cohen-Macaulay as well.
(b) If � is a PID then all projective � [L]G-modules are free.
(c) The group X

1(G, L) is trivial.

Proof. Since
�
[L]G is an affine normal domain, the monoid M is an affine nor-

mal semigroup; see Section 3.4. By a result of Hochster [89, Theorem 1] (see also
Bruns and Herzog [32, Theorem 6.3.5(a)]), the semigroup algebra � [M ] is Cohen-
Macaulay for any Cohen-Macaulay ring � , and hence so is � [L]G , thereby prov-
ing (a). (A self-contained proof of (a) will be given in Section 6.3 below.) Part (b)
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is a consequence of Gubeladze’s theorem [79] which asserts that projective � [M ]-
modules are free when � is a PID. In particular, Pic( � [L]G) is trivial, and hence so
is X

1(G, L) by Theorem 5.1.1. This proves (c). ��

Part (a) of the corollary contrasts interestingly with the situation for linear ac-
tions: polynomial invariants of finite pseudoreflection groups can fail to be Cohen-
Macaulay if the characteristic of the base field divides the group order; see, e.g.,
Nakajima [136, Example 4.1].

6.2 Proof of Theorem 6.1.1

Let G be a finite group acting as a reflection group on the lattice L. We may assume
without loss of generality that L is a faithful G-lattice. Consider the lattice

L̂ = ρ(L)⊕ Λ = L̂G ⊕ Λ

defined in (1.19) and (1.20); so L ⊆ L̂ ⊆ L � . By Proposition 1.9.1(a), we know that
Λ = ΛG(L) is the weight lattice of some reduced root system with Weyl group G.
Choose a set of fundamental weights {m1, . . . , mr} ⊆ Λ and put

Λ+ =

r⊕
i=1

�
+mi

as in (3.10). Then we have the following more precise version of Theorem 6.1.1.

Proposition 6.2.1. (a)
�
[L̂]G =

�
[L̂G ] ⊗ � �

[orb(m1), . . . , orb(mr)]. The G-orbit
sums orb(mi) (mi ∈ Λ) are algebraically independent. Thus,

�
[L̂]G is the semi-

group algebra
�
[M̂ ] of the monoid

M̂ =
(
〈xm, orb(mi) | m ∈ L̂G , 1 ≤ i ≤ r〉, ·

)
∼=
(
L̂G ⊕ Λ+,+

)
.

(b) Put M = M̂ ∩
�
[L], a submonoid of (

�
[L]G , · ). Then

M ∼=
(
(L̂G ⊕ Λ+) ∩ L,+

)
∼=
(
LG ⊕ (π(L) ∩ Λ+) ,+

)
,

where π = Id−ρ. The elements of M form a
�

-basis of
�
[L]G .

Proof. (a) The decomposition L̂ = L̂G ⊕ Λ implies that
�
[L̂]G =

�
[L̂G ]⊗ � �

[Λ]G .
Moreover, by Theorem 3.6.1, we know that the orbit sums orb(mi) form an alge-
braically independent set of generators for

�
[Λ]G . This proves that

�
[L̂]G is iso-

morphic to the semigroup algebra
�
[M̂ ]. Every � ∈ L̂G ⊕ Λ+ can be written as

� = m +
∑r

i=1 zimi, with uniquely determined m ∈ L̂G , zi ∈
�

+. An explicit

isomorphism L̂G ⊕ Λ+ → M̂ is given by
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� = m +

r∑
i=1

zimi �→ µ(�) = xm orb(m1)
z1 · . . . · orb(mr)

zr . (6.1)

(b) Clearly, M = M̂ ∩
�
[L] is a submonoid of (

�
[L]G , · ) whose elements are

�
-independent, as the elements of M̂ are. Our goal is to show that the monoid M is

a
�

-basis for the invariant algebra
�
[L]G and to determine its structure.

Let f ∈
�
[L]G be given. Then f ∈

�
[L̂]G =

�
[M̂ ]; so f can be uniquely written

as f =
∑

µ∈ �M zµµ with zµ ∈
�

. Let n(f) denote the number of µ with nonzero
coefficient zµ in this expression. We show by induction on n(f) that f ∈

�
[M ]. The

case n(f) = 0 (i.e., f = 0) being obvious, assume that f �= 0. Each µ ∈ M̂ has
the form µ = µ(�) for a unique � = m +

∑r
i=1 zimi ∈ L̂G ⊕ Λ+ as in (6.1). Since

the factors xm and orb(mi) of µ(�) only involve non-negative
�

-coefficients (in fact,
only 0 or 1), we have

Supp(µ(�)) = {m +

r∑
i=1

zi∑
j=1

gi,j(mi) | gi,j ∈ G} .

By Lemma 1.6.1, L̂/L is G-trivial. Hence, all m+
∑r

i=1

∑zi

j=1 gi,j(mi) are congru-
ent to � = m +

∑r
i=1 zimi modulo L. Therefore,

µ(�) ∈
�
[L] ⇐⇒ Supp(µ(�)) ∩ L �= ∅ ⇐⇒ � ∈ L . (6.2)

Since f ∈
�
[L], some µ ∈ M̂ with zµ �= 0 must satisfy Supp(µ)∩L �= ∅. By (6.2),

we conclude that µ ∈
�
[L] ∩ M̂ = M . Thus, f ′ = f − zµµ belongs to

�
[L]G and

satisfies n(f ′) = n(f)−1. By induction, f ′ ∈
�
[M ], and so f ∈

�
[M ] as well. This

proves the desired equality
�
[L]G =

�
[M ].

The equivalences in (6.2) also show that the (multiplicative) monoid M is iso-
morphic to the (additive) monoid (L̂G⊕Λ+)∩L via � �→ µ(�). Finally, the projection
π = Id−ρ (see §1.6.2) sends (L̂G⊕Λ+)∩L onto π(L)∩Λ+, with kernel LG . Since
π(L) is free abelian, this map splits; so (L̂G ⊕ Λ+) ∩ L ∼= LG ⊕ (π(L) ∩ Λ+). This
completes the proof. ��

6.3 Computing the Ring of Invariants

We continue with the notation of Section 6.2. The proof of Proposition 6.2.1 gives
a method for explicitly calculating the ring of invariants

�
[L]G . In this section, we

describe some reductions producing certain easily predictable pieces of
�
[L]G . We

also construct a set of fundamental invariants for
�
[L]G , calculate the class group

Cl(
�
[L]G) in terms of a suitable weight lattice, and verify the Cohen-Macaulay prop-

erty of
�
[L]G .
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6.3.1 Reduction to an Effective Lattice

As in Section 1.6, let L = L/LG denote the effective quotient of L. An element
g ∈ G acts as a reflection on L if and only if g does so on L. Hence, G acts as a
reflection group on L. We claim that

�
[L]G ∼=

�
[LG ]⊗ �

�
[L]G . (6.3)

Indeed, by Proposition 6.2.1(b),
�
[L]G =

�
[M ] and M = LG ×M+, where LG =

{xm | m ∈ LG} and M+
∼= π(L) ∩ Λ+. Hence,

�
[L]G ∼=

�
[LG ] ⊗ �

�
[M+] and

�
[M+] ∼=

�
[L]G/

(
xm − 1 | m ∈ LG

)
. Since the right hand side is isomorphic to

�
[L]G , by (3.14), the asserted isomorphism (6.3) follows.

6.3.2 Reduction to an Indecomposable Lattice

If L = L1 ⊕ L2 for suitable G-lattices L1 and L2 then
�
[L]G ∼=

�
[L1]

G ⊗ �
�
[L2]

G . (6.4)

Indeed, every reflection g ∈ G acts nontrivially on exactly one of the summands, and
so G decomposes as G1 ×G2, where G1 is generated by the reflections g ∈ G that act
trivially on L2 and similarly for G2. Therefore, (6.4) follows from (3.5). Note also
that G acts as a reflection group on both L1 and L2.

6.3.3 Removing Diagonalizable Reflections

As in §1.7.1, we put D = 〈d1, . . . , dr〉, where d1, . . . , dr are the elements of G that
act as diagonalizable reflections on L. We claim that

�
[L]G ∼=

�
[LD]G ⊗ �

�
[

� r
+] . (6.5)

Recall from Lemma 1.7.2 that the G-lattice L decomposes as L = LD ⊕ L0 with
L0 =

⊕r
i=1

�
�i and di(�i) = −�i, di(�j) = �j (i �= j). Thus, (6.4) gives

�
[L]G ∼=�

[LD]G ⊗ �
�
[L0]

G . We we have to show that
�
[L0]

G is a polynomial algebra over
�

. This is a consequence of Theorem 3.6.1 (see the proof of Theorem 7.1.1 (d) ⇒
(e) below), but it is also easy to see directly: by Lemma 1.7.2, the group G permutes
the summands

�
�i of L0 and (6.4) allows us to assume that G does in fact permute

the
�
�i transitively. Furthermore, by Example 3.5.1,

�
[L0]

D =
�
[λ1, . . . , λr] with λi = x�i + x−�i ,

and G permutes the λi transitively. Moreover, any reflection g ∈ G either fixes all
λi or interchanges exactly two of them. Thus, G acts on {λ1, . . . , λr} as a transitive
permutation group that is generated by transpositions, hence as the full symmetric
group Sr. By the fundamental theorem for Sr-invariants, we conclude that

�
[L0]

G =
�
[λ1, . . . , λr]

Sr is a polynomial algebra over
�

. This proves (6.5).
We remark that G acts as a reflection group without diagonalizable reflections on

LD. This follows from the decomposition G = G
∣∣
LD × G

∣∣
L0

; see §6.3.2.
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6.3.4 Class Group

Let L = L/LG denote the effective quotient of L, as above, and put

L′ = L
D

,

where D denotes the subgroup of G that is generated by the elements acting as diag-
onalizable reflections on L. Let

Λ′ = ΛG(L′)

denote the weight lattice that is associated with the action of G on L′; see Proposi-
tion 1.9.1(a). Fix a set of fundamental weights m1, . . . , mt ∈ Λ′ and let

Λ′
+ =

⊕
i

�
+mi

denote the corresponding monoid of dominant weights. The following proposition
summarizes the foregoing and determines the class group of

�
[L]G .

Proposition 6.3.1. Let G be a finite group acting faithfully as a reflection group on
the lattice L. Then, with the above notation,

�
[L]G ∼=

�
[L′]G ⊗ �

�
[

� r
+ ⊕

� s] ,

where s = rankLG and r is the number of elements of G that act as diagonalizable
reflections on L. Moreover,

�
[L′]G ∼=

�
[Λ′

+ ∩ L′],

the semigroup ring of the monoid Λ′
+ ∩ L′. The class group of � [L]G , for any Krull

domain � , is given by
Cl( � [L]G) = Cl( � )⊕ Λ′/L′ .

Proof. The first isomorphism follows from (6.3) and (6.5). Since the G-lattice L′ is
effective, Proposition 6.2.1(b) yields the second isomorphism.

After tensoring with � , the first isomorphism implies that Cl( � [L]G) ∼= Cl( � [L′]G);
see Fossum [67, 8.1 and 7.3]. Since G acts as a reflection group without diag-
onalizable reflections on the effective lattice L′ (see §6.3.3), Theorem 4.1.1 and
Lemma 1.6.1 yield Cl( � [L′]G) ∼= Cl( � ) ⊕H1(G, L′) ∼= Cl( � ) ⊕ Λ′/L′. This com-
pletes the proof. ��

For related result on class groups of semigroup algebras related to root systems,
see Popov [151] and Strickland [205].
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6.3.5 Fundamental Invariants and the Cohen-Macaulay Property

In view of §6.3.1, we may concentrate on the case where L is effective. Then Propo-
sition 6.2.1(b) gives

�
[L]G ∼=

�
[Λ+ ∩ L] ,

where Λ+ =
⊕n

i=1

�
+mi for some collection of fundamental weights m1, . . . , mn.

The monoid Λ+ ∩ L has a finite Hilbert basis; see Section 3.4. To explicitly
construct this basis, consider the weight lattice Λ =

⊕n
i=1

�
mi, as before. Since

Λ/L is finite, we may define

�i = zimi ∈ L (i = 1, . . . , n) ,

where zi ∈
�

is the order of mi modulo L. Put V = L � =
⊕n

i=1 � �i and

K = {
n∑

i=1

ti�i ∈ V | 0 ≤ ti ≤ 1} ⊃ K◦ = {
n∑

i=1

ri�i ∈ V | 0 ≤ ri < 1} .

Then K ∩L ⊆ Λ+ is finite, being the intersection of a compact and a discrete subset
of V . We claim that K ∩ L generates the monoid Λ+ ∩ L. Indeed, any � ∈ Λ+ ∩ L
can be uniquely written as

� = �′ + �′′ (6.6)

with �′ ∈
⊕n

i=1

�
+�i and �′′ ∈ K◦. Since �, �′ ∈ L, �′′ belongs to K ∩ L as

do �1, . . . , �n. Hence, (6.6) exhibits � as an element of the monoid generated by
K ∩ L, which proves our claim. Note that �1, . . . , �n are indecomposable elements
of Λ+∩L, that is, they cannot be written as m′+m′′ with nonzero m′,m′′ ∈ Λ+∩L.
The preceding argument shows that all indecomposable elements of Λ+ ∩ L belong
to K ∩ L. Denoting additional indecomposables of Λ+ ∩ L besides �1, . . . , �n (if
any) by �n+1, . . . , �s we obtain the desired Hilbert basis {�1, . . . , �s} for Λ+ ∩ L.

By Proposition 6.2.1, the Hilbert basis {�1, . . . , �s} of Λ+ ∩L yields the follow-
ing system of generating invariants for

�
[L]G :

µi = µ(�i) (i = 1, . . . , s) ,

where µ(�) is defined by (6.1). Here, µ1 = orb(m1)
z1 , . . . , µn = orb(mn)zn are

algebraically independent, as the orb(mi)’s are; so
�
[µ1, . . . , µn] is a polynomial

subring of
�
[L]G . Moreover, by (6.6), the elements µ(�′′) with �′′ ∈ K◦ ∩ L give

a free basis for
�
[L]G as a module over

�
[µ1, . . . , µn]. This shows that

�
[L]G is

Cohen-Macaulay. After tensoring with � , we obtain the same conclusion for any
Cohen-Macaulay base ring � , thereby giving a direct proof of Corollary 6.1.2(a).

Example 6.3.2 (Multiplicative S3-invariants of A2, revisited). Recall that a base for
the root system A2 is given by ai = ei − ei+1 (i = 1, 2), with corresponding
fundamental weights

m1 = 2
3e1 −

1
3e2 −

1
3e3 = 2

3a1 + 1
3a2 ,

m2 = 1
3e1 + 1

3e2 −
2
3e3 = 1

3a1 + 2
3a2 ;
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see Examples 1.8.1 and 3.6.2. The procedure described above results in the following
Hilbert basis for the monoid Λ+ ∩A2 = (

�
+m1 ⊕

�
+m2) ∩ (

�
a1 ⊕

�
a2):

�1 = 3m1 , �2 = 3m2 and �3 = m1 + m2 ; (6.7)

see Figure 6.1. Writing xi = xei (i = 1, 2, 3) and using the orbit sum formula (3.13)
of Example 3.6.2, we obtain the following fundamental invariants µi = µ(�i) for

�
[A2]

S3 :

µ1 = orb(m1)
3 =

(x1 + x2 + x3)
3

x1x2x3
,

µ2 = orb(m2)
3 =

(x1x2 + x2x3 + x1x3)
3

(x1x2x3)2
= (x1x2x3)(x

−1
1 + x−1

2 + x−1
3 )3 ,

µ3 = orb(m1) orb(m2) =
(x1 + x2 + x3)(x1x2 + x2x3 + x1x3)

x1x2x3
= 3 +

∑
i�=j

xi

xj
.

These generators are identical with those found earlier in Example 3.5.6.

m1

m2


1


2


3

a1

a2

K

Fig. 6.1. type A2

6.4 SAGBI Bases

In this section, we describe an interesting result of Reichstein [159] on SAGBI bases
(subalgebra analog of Gröbner bases for ideals), a notion introduced by Robbiano
and Sweedler [167] in the context of polynomial algebras. The modifications neces-
sary for Laurent polynomial algebras are due to Reichstein. For simplicity, we work
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over a base field � ; see [159, Remark 7.2] for the modifications needed to deal with
more general coefficient rings.

Recall from Section 3.4 that a monomial order for � [L] is a total order � on L
such that m � n implies m+� � n+� for all m,n, � ∈ L. A familiar example of such
an order is the lexicographic order�lex with respect to a fixed

�
-basis {m1, . . . , mr}

of L:
∑

i zimi �lex
∑

i z′imi if and only if the first nonzero difference zi − z′i is
positive.

Given a monomial order, we can define the leading exponent, max(f), for any
non-zero f ∈ � [L] to be the largest element of the support Supp f with respect to�;
so

f = kmaxx
max(f) +

∑
m∈L

max(f)�m

kmxm

with kmax ∈ � ∗. The coefficient kmax is called the leading coefficient of f , xmax(f)

the leading monomial, and kmaxx
max(f) the leading term. Note that

max(fg) = max(f) + max(g)

holds for all nonzero f, g ∈ � [L]. Thus, for any � -subalgebra R of � [L], the set

max(R) = {max(f) | 0 �= f ∈ R}

is a submonoid of L. A collection of elements {fi | i ∈ I} ⊆ R is called a SAGBI
basis of R if the following requirements are satisfied:

(a) the monoid max(R) is generated by {max(fi) | i ∈ I}, and
(b) the following algorithm “subduction algorithm” terminates for every input f ∈

R: If f = 0 then stop. Otherwise write max(f) =
∑

i nimax(fi) with ni ∈�
+; this is possible by (a). Define k ∈ � ∗ to be the leading coefficient of f

divided by the leading coefficient of
∏

i fni
i ; so f and k

∏
i fni

i have the same
leading terms. Replace f by the new input f1 = f − k

∏
i fni

i and proceed.

Note that the expression max(f) =
∑

i nimax(fi) in (b) is generally not uniquely
determined. Thus, each step in the subduction algorithm involves a choice. Each loop
of the algorithm replaces a nonzero input f ∈ R with a new f1 ∈ R which is either 0,
in which case the algorithm terminates, or else f1 satisfies max(f1) ≺ max(f). If
the process stops then the original input is explicitly written as a member of the sub-
algebra � [fi | i ∈ I] ⊆ R. However, the monoid max(R) need not be well-ordered
with respect to �. For example, if max(R) contains a nonzero unit m then we may
arrange that 0 � m and obtain the infinite descending chain 0 � m � 2m � . . . in
max(R). Therefore, termination of the algorithm is not a priori guaranteed. Condi-
tion (b) postulates that the subduction algorithm does in fact eventually terminate for
every input f ∈ R no matter what choices are made.

We are primarily interested in the case where R = � [L]G is a multiplicative
invariant algebra under the action of a finite group G on L. In this case, it follows
from (3.4) that
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max( � [L]G) = {m ∈ L | m # g(m) for all g ∈ G} =: L� .

Reichstein [159, Theorem 1.4] has shown that the monoid L� is finitely generated if
and only if G acts as a reflection group on L. Note that both m and−m belong to L�

precisely, if m ∈ LG . Therefore, L� can only be well-ordered if G acts effectively
on L. By [159, Proposition 5.5], the monoid L� is indeed well-ordered with respect
to � if G acts as a reflection group on L and LG = 0. Consequently, the subduction
algorithm will always stop in this case, and every collection of invariants fi ∈ � [L]G

whose leading exponents max(fi) generate the monoid max( � [L]G) = L� is a
SAGBI basis for � [L]G . With a more careful selection of the fi’s one can overcome
the restriction to effective actions. Thus, we have the following remarkable theorem.

Theorem 6.4.1 (Reichstein). Let L be a G-lattice, where G is a finite group, and let
� be any monomial order. Then the following are equivalent:

(a) the monoid max( � [L]G) = L� is finitely generated;
(b) � [L]G has a finite SAGBI basis;
(c) G acts as a reflection group on L.

For the proof, we refer to the original publication of Reichstein [159]. Note that
(c) above makes no reference to the chosen monomial order � and the theorem
requires no assumptions on �. In fact, if G acts effectively as a reflection group
on L then, as Reichstein points out in [159, Remark 7.1], there is a canonical SAGBI
basis for � [L]G which is independent of the choice of �. To see this, recall that the
monoid L� is finitely generated with U(L�) = {0} in this case and L� is clearly
cancellative and torsion-free, being contained in L. Hence, by Lemma 3.4.3, L� has
a unique Hilbert basis, {�1, . . . , �s}. The orbit sums

fi = orb(�i)

satisfy max(fi) = �i and so, by the foregoing, {f1, . . . , fs} is a SAGBI basis for
� [L]G . This SAGBI basis is independent of �. For, the cone C = � +L� in V = L �
that is spanned by L� is a chamber, in the sense of Bourbaki [24, V.1.3], for the
collection of hyperplanes V 〈g〉 = {v ∈ V | g(v) = v} where g runs over the
reflections in G, and L� = C ∩ L; see [159]. Thus, by [24, Lemme V.3.2], C is
determined by G, up to replacing C by g(C) for some g ∈ G, and similarly for L and
its Hilbert basis. Since fi remains unchanged under replacing �i by some g(�i), our
assertion follows.

We illustrate this construction with an example taken from Tesemma [215].

Example 6.4.2 (Canonical SAGBI basis for the S3-invariants of A2). As in Exam-
ple 1.8.1, we write the S3-lattice A2 as A2 =

�
a1 ⊕

�
a2. Identifying A2 with� 2 by means of this basis and using the lexicographical order �=�lex on A2 as the

underlying monomial order, one obtains

A�
2 = {(a, b) ∈

� 2 | 2a ≥ b ≥ a/2} .

The monoid A�
2 has the following Hilbert basis:
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�1 = (2, 1), �2 = (1, 2), �3 = (1, 1) .

This is identical with the basis exhibited in (6.7). The orbit sums fi = orb(�i) form
the desired SAGBI basis for � [A2]

S3 . Writing yj = xaj =
xj

xj+1
as in Example 3.5.6,

the fi are explicitly given by:

f1 = y2
1y2 + y−1

1 y−2
2 + y−1

1 y2 =
x3

1 + x3
2 + x3

3

x1x2x3

f2 = y1y
2
2 + y−2

1 y−1
2 + y1y

−1
2 =

x3
1x

3
2 + x3

2x
3
3 + x3

1x
3
3

(x1x2x3)2

f3 = y1y2 + y−1
1 y−1

2 + y1 + y2 + y−1
1 + y−1

2

=
x2

1x2 + x1x
2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3

x1x2x3

The multiplicative submonoid of � [A2]
S3 that is generated by {f1, f2, f3} is not � -

independent:

f1f2 − f3
3 + 3f1f3 + 3f2f3 + 6f1 + 6f2 + 9f3 + 9 = 0 .
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Regularity

7.1 Introduction

It is a standard fact from commutative algebra that any maximal ideal m of a com-
mutative noetherian ring R satisfies the inequality heightm ≤ dimk m/m2, where
k = R/m is the residue field of m. The ring R is called regular if equality holds
for all m. Localizations of regular rings at multiplicatively closed subsets are again
regular. Moreover, regular rings are normal, that is, they are finite direct products
of integrally closed domains. If R has finite (Krull) dimension dimR, regularity is
equivalent with finite global dimension. In this case, the two dimensions have the
same value, gl dim R = dimR; see Serre [192, Cor. 2 to Thm. IV.9]. The group
algebra � [L] of a lattice L is regular if and only if the base ring � is; cf., e.g., Bruns
and Herzog [32, Theorem 2.2.13].

The following theorem is a combination of the main result of [122] and ear-
lier results of Farkas [60], Steinberg [204] and Richardson [165, Prop. 4.1], [166,
Prop. 13.3].

Theorem 7.1.1. Let L be a faithful G-lattice, where G is a finite group, and let � be
a regular commutative ring so that |G| �= 0 in � . Then the following assertions are
equivalent:

(a) The algebra of multiplicative invariants � [L]G is regular;
(b) � [L] is projective as � [L]G-module;
(c) � [L]G ∼= � [

� r
+ ⊕

� s] , a mixed Laurent polynomial algebra over � ;
(d) G acts as a reflection group on L and

�
[L]G is a unique factorization domain.

(e) The effective quotient L = L/LG of L is isomorphic to the weight lattice of some
reduced root system with G acting as the Weyl group.

Accepting this theorem for now, we make a number of comments. First, part (b)
can be strengthened to:

(b1) � [L] is free over � [L]G .
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Indeed, in view of (d) or (e), all assertions of the theorem are equivalent to regularity
of

�
[L]G . Then

�
[L] is projective over

�
[L]G and

�
[L]G is a mixed Laurent polyno-

mial algebra. By the generalized Quillen-Suslin theorem (e.g., Lam [113, p. 144]) or
Corollary 6.1.2(b), we conclude that

�
[L] is actually free over

�
[L]G . Assertion (b1)

now follows by tensoring with � .
Furthermore, in view of Theorem 4.1.1 and Proposition 6.3.1, part (d) can be

reformulated in either of the following ways:

(d1) G acts as a reflection group on L and Λ′ = L′ in the notation of §6.3.4.
(d2) G acts as a reflection group on L and H1(G/D, LD) = 0, where D is the sub-

group of G generated by the diagonalizable reflections on L; see §1.7.1.

These formulations provide regularity criteria that are readily accessible to explicit
computations. Table 7.1 gives the statistics for ranks n ≤ 4; it was obtained using
the crystallographic groups library of GAP [71]. The two reflection groups in rank
2 leading to non-regular multiplicative invariant algebras have been discussed in Ex-
amples 3.5.6 and 3.5.7.

Table 7.1. Regular invariant algebras (L = � n)

n
# finite G ≤ GLn( � )

(up to conjugacy)
# reflection groups G

(up to conjugacy)
# cases with

� [L]G regular

2 13 9 7

3 73 29 18

4 710 102 51

Finally, in part (c) of Theorem 7.1.1, we must have s = rankLG . Indeed, if
� [L]G ∼= � [

� r
+ ⊕

� s] then, replacing � a prime image if necessary, Lemma 3.4.1
gives U( � [L]G) = U( � ) × LG while � [

� r
+ ⊕

� s] has group of units U( � ) ×
� s. In

particular, we obtain the following converse to Theorem 3.6.1. The result is due to
Farkas [59, Main Theorem] (over � ) and it is also implicit in Steinberg [204].

Corollary 7.1.2 (Farkas, Steinberg). Let L be a faithful G-lattice, where G is a finite
group, and let � be a regular commutative ring with |G| �= 0 in � . Then � [L]G is a
polynomial algebra over � if and only if L is isomorphic to the weight lattice of some
reduced root system with G acting as the Weyl group.

7.2 Projectivity over Invariants

The equivalence (a) ⇐⇒ (b) is a special case of a more general fact about finite
group actions on rings. The noetherian hypothesis in the following lemma is mi-
nor: by Noether’s finiteness theorem it is satisfied whenever R is an affine algebra



7.3 Linearization by the Slice Method 97

over some noetherian subring � ⊆ RG ; see, e.g., Bourbaki [22, Théorème V.1.2].
In general, however, there are regular domains R which are not noetherian over the
invariant subring RG under the action of some finite group G; see Chuang and Lee
[39] or Montgomery [135, Example 5.5].

Lemma 7.2.1. Let R be a commutative ring and let G be a finite group acting by
automorphisms on R. Assume that R is regular and noetherian as module over the
invariant subring RG . Then RG is regular if and only if R is projective as RG-module.

Proof. First assume that RG is regular. We have to show that, for each maximal ideal
m of RG , the localization Rm = R ⊗RG RG

m is free over RG
m. Note that RG

m =
(Rm)G ⊆ Rm is a finite extension of regular rings. Moreover, the maximal ideals of
Rm are exactly the primes lying over the maximal ideal of RG

m. By [22, Théorème
V.2.2(i)], these primes form a single G-orbit, and hence they all have the same height.
Freeness of Rm over RG

m now follows from Eisenbud [54, Corollary 18.17].
Conversely, assume that R is projective over RG . Fix a maximal ideal m of RG

and choose a maximal ideal M of R lying over m. Then we have maps RG
m ↪→

Rm → RM. The former makes Rm = R⊗RG RG
m a free RG

m-module, by hypothesis,
and the latter is flat, being a localization map. Therefore, RM is flat over RG

m. Since
RM is regular, it follows that RG

m is regular as well; see, e.g., Bruns and Herzog [32,
Theorem 2.2.12(a)]. ��

7.3 Linearization by the Slice Method

In this section, L denotes a G-lattice, where G is a finite group. If � is an algebraically
closed field whose characteristic does not divide the order of G then the local study of
the multiplicative invariant algebra � [L]G reduces to the classical case of polynomial
invariants. Indeed, G acts linearly on the � -vector space L � = L ⊗ � � , and hence
on the symmetric algebra S(L � ). The algebra of invariants S(L � )G associated with
this action is an ordinary algebra of polynomial invariants. Proposition 7.3.1 below
details the connection between the invariant subalgebras of � [L] and of S(L � ). The
proposition is an application of Luna’s slice theorem [128]. An excellent exposition
of this theorem, for reductive groups in characteristic 0, can be found in Slodowy
[198]; an appendix by Knop gives a complete proof. For arbitrary characteristics, see
Bardsley and Richardson [2].

We let E denote the augmentation ideal of � [L],

E = Ker (ε) , (7.1)

where ε : � [L] → � is the augmentation map defined by ε(xm) = 1 (m ∈ L),
as in Section 3.9. Furthermore, ̂ denotes completions of local rings and GM =
stabG(M) denotes the decomposition group of the ideal M of � [L].

Proposition 7.3.1. Assume that � is an algebraically closed field. Let M be a maxi-
mal ideal of � [L] and let m = M ∩ � [L]G . Then:
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(a) ̂
� [L]Gm ∼=

̂
� [L]GM

e , where e = E ∩ � [L]GM .

(b) If char � does not divide the order of GM then ̂
� [L]Gm ∼=

̂
S(L � )GM

S+
, where S+ de-

notes the maximal ideal of S(L � )GM consisting of all GM-invariant polynomials
having constant term 0.

Proof. Put X = Spec � [L] and let x ∈ X be the point corresponding to M. Then
X is an algebraic torus on which G acts by automorphisms and x has stabilizer
Gx = GM. Since G is finite, the orbit G(x) of x is closed and separable and the
tangent space Tx(G(x)) is the zero-space. Therefore, by [2, Proposition 7.3], there
exists an open affine Gx-subvariety S of X with x ∈ S such that the morphism
S/Gx → X/G which comes from the quotient morphism π : X → X/G is étale at
x. Thus, letting O(X/G) = O(X)G denote the algebra of regular functions on X/G
and similarly for S/Gx, we have

̂O(X)Gπ(x)
∼= Ô(S)Gx

x .

Since S is open in X , we have O(S)x
∼= O(X)x and so O(S)Gx

x
∼= O(X)Gx

x .
Translation by x, t �→ xt, is a Gx-equivariant automorphism of the torus X sending
the identity 1 to x. Hence, O(X)Gx

x
∼= O(X)Gx

1 and so

̂O(X)Gπ(x)
∼= Ô(X)Gx

1 .

This is the isomorphism asserted in (a). See also Raynaud [156, Chap. X, Théorème
1] or SGA1 [78, Prop. V.2.2].

For (b), assume that char � does not divide the order of Gx, or equivalently, that
Gx is linearly reductive over � . In view of (a), we may assume that G = GM and
x = 1. The canonical map E → (T1X)

∗
= E/E2 is a map of � [G]-modules. By

hypothesis on char � , this map has a � [G]-linear section E/E2 → E and this section
lifts to a G-equivariant algebra map O(T1X) = S(E/E2) → O(X). Hence we
obtain a morphism of G-varieties X → T1X , 1 �→ 0, which is étale at 1. Thus,

Ô(X)G1
∼= ̂O(T1X)G0 = ̂S(E/E2)GS+

.

Part (b) now follows from the � [G]-isomorphism

L � =L⊗ � �
∼=
−→ E/E2

m⊗ 1 �−→ xm−1 + E2 (m ∈ L)

This completes the proof of the proposition. ��

As an application one obtains the following regularity criterion.

Corollary 7.3.2. In the situation of Proposition 7.3.1(b), � [L]Gm is regular if and only
if GM acts as a reflection group on L.
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Proof. A noetherian local ring is regular if and only if its completion is; cf., e.g.,
Bruns and Herzog [32, Proposition 2.2.2]. Thus, by Proposition 7.3.1(b), � [L]Gm is
regular if and only if S(L � )GM

S+
is regular. Now, S(L � )GM is a positively graded al-

gebra with graded radical S+. By a standard result on graded algebras (e.g., [32,
Exercise 2.2.25]), S(L � )GM

S+
is regular if and only if S(L � )GM is a polynomial alge-

bra and, by the Shephard-Todd-Chevalley Theorem (e.g., [24, Théorème V.5.4]), the
latter condition is equivalent to GM acting as a reflection group on L � . Thus, GM is
generated by elements g so that that the subspace L

〈g〉� of g-fixed points in L � has
codimension at most 1; see Section 1.7. Finally, for each g ∈ GM, we have

rankL〈g〉 = dim � L
〈g〉� .

This is obvious for char � = 0. If char � = p > 0 then L
〈g〉� = L

〈g〉� p
⊗ � p � and

L〈g〉 maps onto L
〈g〉� p

, because p does not divide the order of g. The above equality
follows. In particular, g is a pseudoreflection on L � if and only if g is a reflection on
L. This proves the corollary. ��

7.4 Proof of Theorem 7.1.1

By Lemma 7.2.1, we know that (a) and (b) are equivalent. It remains to establish the
equivalence of (a), (c), (d) and (e).

We first show that regularity of � [L]G forces G to act as a reflection group on
L. By Proposition 3.3.1(b), we may replace � by any localization � p. Choosing p

to be a minimal prime not containing |G| we reduce to the case where � is a field
whose characteristic does not divide |G|. Passing to the algebraic closure of the prime
subfield of � (see [32, Remark 2.2.16]), we may further assume that � is algebraically
closed. Thus, Corollary 7.3.2 applies with M = E, the augmentation ideal of � [L],
and we obtain that GE = G is a reflection group on L, as desired.

In view of Theorem 6.1.1, we conclude that (a) implies that � [L]G is a regu-
lar semigroup algebra over � , and these are known to be mixed Laurent polyno-
mial algebras; see [32, Exercise 6.1.11]. Alternatively, Corollary 6.1.2(c) tells us that
X

1(G, L) is trivial. After reducing to the case where � is a field whose characteris-
tic does not divide |G| as above, we deduce from Theorem 5.1.1 that Pic( � [L]G) is
trivial, and hence so is Cl( � [L]G). By Proposition 6.3.1, the latter fact implies that
Λ′ = L′ and that � [L]G is a mixed Laurent polynomial algebra, for any base ring � .
Thus, (a) implies (c). Since the converse is standard, (a) and (c) are equivalent. Note
further that the above argument also shows that (a) implies (d).

We now show that (d) implies (e). As in §6.3.4, let L = L/LG denote the ef-
fective quotient of L, D the subgroup of G that is generated by the elements acting

as diagonalizable reflections on L, and L′ = L
D

. By Lemma 1.7.2, we know that
L = L′⊕L′′, where L′′ =

⊕r
i=1

�
�i with G permuting the summands

�
�i. Now (d1)

gives Λ′ = ΛG(L′) = L′; so Proposition 1.9.1 tells us that L′ is the weight lattice of
some reduced root system with G acting as the Weyl group. This is also true for L′′.
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For, L′′ splits into a direct sum of lattices formed by the orbits of G on {
�
�i}. Con-

sidering each of these summands in turn, we may assume that G permutes the
�
�i

transitively. Thus, G acts on L′′ as the semidirect product {±1} � Sr. This is exactly
the Weyl group action on the weight lattice of a root system of type Cr (r ≥ 2) or
A1 (r = 1); see Bourbaki [24, Planches I,III]. This proves (e).

Finally, assume (e). Then G acts as a reflection group on L and hence on L.
Thus, (6.3) gives � [L]G ∼= � [LG ] ⊗ � � [L]G . Furthermore, by Theorem 3.6.1, we
know that � [L]G is a polynomial algebra; so � [L]G is a mixed Laurent polynomial
algebra over � . This proves the implication (e) ⇒ (c), thereby completing the proof
of the theorem. ��

7.5 Regularity at the Identity

The following result takes up the theme of Chapter 6. Recall that ε : � [L] → � is the
augmentation map and E = Ker ε denotes the augmentation ideal of � [L]; see (7.1).

Theorem 7.5.1. Let L denote a faithful lattice for the finite group G and let � be a
commutative noetherian domain with |G| �= 0 in � . Then the following assertions are
equivalent:

(a) � [L]G is regular at the ideal E ∩ � [L]G;
(b) G acts as a reflection group on L;
(c) � [L]G = � [M ] is a semigroup algebra with ε(M) ⊆ � \ {0}.

Proof. The implication (a) ⇒ (b) was established in the first paragraph of the proof
of Theorem 7.1.1 in Section 7.4. Furthermore, (b) ⇒ (c) follows from Proposi-
tion 6.2.1 which asserts that if G acts as a reflection group on L then � [L]G is a

semigroup algebra � [M ] for some submonoid M ⊆
(

� [L]G , ·
)

whose elements

are products of certain orbit sums orb(m) with m ∈ L̂, some G-lattice containing
L. Since all ε(orb(m)) = [G : Gm] · 1 are nonzero in � , the same is true for each
element of ε(M). Therefore, ε(M) ⊆ � \ {0} proving (c).

In order to show that (c) ⇒ (a), it will again be convenient to use geometric
language. We may replace � by the algebraic closure of its field of fractions, thereby
reducing the problem to the case where � is an algebraically closed field whose
characteristic does not divide the order of G; see [32, Remark 2.2.16]. Our hypothesis
that � [L]G = � [M ] is a semigroup algebra, necessarily affine normal, is equivalent
to Y = Spec � [L]G being an affine toric variety. We briefly sketch the connection;
for more information on toric varieties, see Danilov [47], Fulton [69] or Oda [142].
Recall from Section 3.4 that the monoid M embeds into some lattice A with A =
〈M〉group. This embedding extends to an embedding of � -algebras � [L]G = � [M ] ↪→

� [A]. Put T = Hom(A, � ∗), an algebraic torus over � with � [A] = O(T ); see 3.10.
The embedding � [L]G ↪→ � [A] corresponds to a dominant morphism of varieties
Φ : T → Y . Explicitly, using the identification

Y = Spec � [M ] = Hom � -alg( � [M ], � ) = Hommonoid(M, ( � , · )) ,
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the map Φ is just restriction T = Hom(A, �
∗) → Y = Hommonoid(M, ( � , ·)). The

torus T acts on Y by multiplication: for τ ∈ T and µ ∈ Y , define τµ : M → � by
τµ(m) = τ(m)µ(m) (m ∈ M). This gives a morphism of varieties T × Y → Y
which fits into a commutative diagram of algebraic varieties

T
Φ �� Y

T × T

mult.

��

Id×Φ �� T × Y

��

The image Φ(T ) ⊆ Y is a dense T -orbit in Y which is explicitly given by

Φ(T ) = {µ ∈ Y | µ(M) ⊆ �
∗} .

Thus, our hypothesis ε(M) ⊆ �
∗ says that ε

∣∣
� [L]G

∈ Φ(T ).

The singular locus Ysing of Y is a closed T -stable subset of Y . Hence, Φ(T ) ⊆

Yreg = Y \ Ysing, because otherwise Φ(T ) ⊆ Ysing and hence Y = Φ(T ) ⊆ Ysing,
which is impossible. Therefore, ε

∣∣
� [L]G

∈ Yreg or, in other words, � [L]G is regular at

E ∩ � [L]G . This proves (a) and completes the proof of the theorem. ��
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The Cohen-Macaulay Property

8.1 Introduction

Cohen-Macaulay rings form an important class of commutative noetherian rings,
wide enough to encompass most other classes of well-behaved rings (see Fig. 8.4
below), yet restricted enough to avoid unwanted pathologies and allow for a sound
dimension theory. The definition of Cohen-Macaulay rings is slightly technical in
nature and the main tools for their investigation are furnished by homological alge-
bra, but the theory has surprising and pleasantly concrete applications in many fields,
notably in algebraic combinatorics; see, e.g., Stanley [202]. An excellent background
reference for Cohen-Macaulay rings is the monograph [32] by Bruns and Herzog.

The Cohen-Macaulay problem in invariant theory of finite groups is the question
to what extent the Cohen-Macaulay property passes from a commutative ring R to
a subring RG of invariants under the action of a finite group G. This is essentially
a problem in “modular” invariant theory: it is a well-known fact that the Cohen-
Macaulay property descends from R to RG whenever the trace map trG : R → RG ,
r �→

∑
g∈G g(r), is surjective; see Corollary 8.5.2 below. In general, however, the

property usually does not transfer to RG , even in the special case of linear actions on
polynomial algebras. The Cohen-Macaulay problem for polynomial invariants has
been rather thoroughly explored without, apparently, being near a final solution.

In this chapter, we will describe what is known about the Cohen-Macaulay prob-
lem for multiplicative invariants � [L]G ; the main result, Theorem 8.1.1 below, is
from [120]. It is a standard fact that � [L]G can only be Cohen-Macaulay when �

is so (see Proposition 8.4.1(a) below). However, even when the coefficient ring �

is Cohen-Macaulay, rather stringent additional conditions on the action of G on the
lattice L are required in order to ensure that � [L]G is Cohen-Macaulay. Recall from
Section 1.7 that an element g ∈ G is said to act as a bireflection on L if the sublattice
[g, L] = {g(m) −m | m ∈ L} of L has rank at most 2. For any subgroup H ≤ G,
we put

R2(H) = 〈g ∈ H | g acts as a k-reflection on L〉 .
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Furthermore, as usual, Gm = {g ∈ G | g(m) = m} denotes the isotropy group of
m ∈ L. The main result now reads as follows.

Theorem 8.1.1. Let L be a G-lattice, where G is a finite group, and assume that
�
[L]G is Cohen-Macaulay. Then Gm/R2(Gm) is a perfect group (i.e., equal to its

commutator subgroup) for all m ∈ L. If G acts non-trivially on L then some isotropy
group Gm is non-perfect, and hence some element of G acts as a non-trivial bireflec-
tion on L.

While certainly not laying the Cohen-Macaulay problem for multiplicative in-
variants to rest, Theorem 8.1.1 does have a number of noteworthy applications. It
leads to an almost complete description of all Sn-lattices L such that

�
[L]Sn is

Cohen-Macaulay; see Example 8.11.3 below. Moreover, the last assertion of The-
orem 8.1.1 immediately implies the following multiplicative version of Kemper’s
3-copies conjecture:

Corollary 8.1.2. If G acts non-trivially on L and r ≥ 3 then
�
[L⊕r]G is not Cohen-

Macaulay.

The 3-copies conjecture was originally formulated by Kemper in [108, Ver-
mutung 3.12] for polynomial invariants. The conjecture in this case states that if
G → GL(V ) is a non-trivial modular representation of a finite group G then the
algebra of invariants S(V ⊕r)G is not Cohen-Macaulay for any r ≥ 3. This is still
open.

The major part of this chapter, Sections 8.2 – 8.8, serves to deploy the homolog-
ical tools needed for the investigation of the Cohen-Macaulay problem. This mater-
ial, is developed in the framework of general commutative rings, usually under some
noetherian hypothesis. After providing some background on Cohen-Macaulay rings,
we describe in 8.6 the celebrated spectral sequences of Ellingsrud and Skjelbred sup-
plying some details not included in the original article [55]. Our main result on gen-
eral invariant rings of finite groups, Theorem 8.8.1, is an application of these spectral
sequences. In short, the result states that if R and RG are both Cohen-Macaulay and
Hi(G, R) = 0 for 0 < i < k then Hk(G, R) is detected by (k + 1)-reflections on
R in the sense of Section 4.5. Only Sections 8.9 – 8.11 are devoted specifically to
multiplicative invariants. Unless mentioned otherwise, the results and examples in
this chapter are from [125] and [120].

8.2 Height and Grade

Let R denote a commutative ring. The height of a prime p ∈ Spec R is defined to be
the supremum of the lengths t of all strictly descending chains p = p0 � p1 � · · · �
pt with pi ∈ Spec R. For an arbitrary ideal a of R, one defines

height a = inf{height p | p ∈ Spec R, p ⊇ a}

with the usual convention that inf ∅ = ∞. For added flexibility in changing rings,
the following module theoretic variant will be useful. For any finitely generated (left)
R-module M , we put
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height(a,M) = height(a + annR M/ annR M) ,

where annR M is the annihilator ideal of M in R. Thus, height a = height(a, R).
We remark that aM = M is equivalent with a + annR M = R (see, e.g., Eisenbud
[54, Corollary 4.7]); so height(a,M) = ∞ holds in this case.

For noetherian rings R, there is a second invariant associated with a, called the
grade of a (or the depth of a). Among the various descriptions of grade the version
based on regular sequences is the most elementary. Let M be an R-module. A se-
quence x = x1, x2, . . . , xn of elements of R is called M -regular or an M -sequence
if the following two conditions are satisfied

(a) xi acts injectively on M/
∑i−1

j=1 xjM for i = 1, 2, . . . , n, and
(b)

∑n
j=1 xjM �= M .

If all xi belong to the ideal a of R then x is said to be an M -regular sequence in a. The
sequence x is called a maximal M -regular sequence in a if x1, x2, . . . , xn, xn+1 is
not M -regular for any xn+1 ∈ a. Clearly, any M -regular sequence in a is contained
in a maximal one, since the chain (x1) ⊂ (x1, x2) ⊂ . . . of ideals of R is strictly
increasing. A classical result of Rees [157] asserts that, for any finitely generated
R-module M with aM �= M , all maximal M -sequences in a have the same length,
and this length is equal to the least integer i ≥ 0 with Exti

R(R/a,M) �= 0; see also
Bruns and Herzog [32, Theorem 1.2.5]. This number is called the grade of a on M ;
it will be denoted by grade(a,M). The grade of the ideal a is defined by

grade a = grade(a, R) .

If aM = M , one puts grade(a,M) = ∞. This is consistent with the description in
terms of Ext: Exti

R(R/a,M) = 0 for all i if and only if aM = M ; see [32, p. 10].
So, for any finitely generated R-module M and any ideal a of R, one has

grade(a,M) = inf{i | Exti
R(R/a,M) �= 0} .

The two invariants defined above are related by the fundamental inequality

grade(a,M) ≤ height(a,M) (8.1)

which holds for any finitely generated module M over a commutative noetherian
ring R and any ideal a of R; see [32, Exercise 1.2.22(a)].

8.3 Local Cohomology

Another descriptions of grade, based on local cohomology, will be convenient for
our purposes. We briefly recall the basic definitions and facts; see, e.g., Brodmann
and Sharp [29] for complete details.

Let R be a commutative ring and let R-Mod denote the category of all (left)
R-modules. For any ideal a of R, the a-torsion functor Γa : R-Mod → R-Mod is
defined by
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Γa(M) =
⋃
n≥0

{m ∈M | anm = 0}

for an R-module M . This functor is easily seen to be left exact. The ith local coho-
mology functor with respect to a, denoted by Hi

a, is the ith right derived functor of
Γa:

Hi
a = RiΓa .

To compute Hi
a(M) for an R-module M , one chooses any injective resolution

I : 0 → I0 → I1 → . . . of M ; so H0(I) ∼= M and Hi(I) = 0 for i �= 0.
Then Hi

a(M) is the ith cohomology group of the complex Γa(I) : 0 → Γa(I
0) →

Γa(I
1)→ . . .. In particular, H0

a(M) ∼= Γa(M), since Γa is left exact.
Now assume that R is noetherian and M is finitely generated. Then

grade(a,M) = inf{i | Hi
a(M) �= 0} . (8.2)

In particular, Hi
a(M) = 0 for all i if and only if aM = M ; see [29, 6.2.6, 6.2.7].

8.4 Cohen-Macaulay Modules and Rings

Let R be a commutative noetherian ring. A finitely generated R-module M is called
Cohen-Macaulay if equality holds in equation (8.1) for all ideals a of R. It follows
from Bruns and Herzog [32, Proposition 1.2.10(a) and Theorem 2.1.3(b)] that it suf-
fices to check the required equality for all maximal ideals a of R with a ⊇ annR M .
The ring R is called a Cohen-Macaulay ring if R is Cohen-Macaulay as module over
itself. Thus, R is Cohen-Macaulay if and only if

height a = grade a

holds for all (maximal) ideals a of R.
We briefly recall some standard facts on Cohen-Macaulay rings; for complete

details, the reader is referred to Bruns and Herzog [32]. As shown in Figure 8.4,
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Fig. 8.1. Hierarchy of commutative noetherian rings
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the usual classes of “well-behaved” noetherian rings and most “small” noetherian
rings are Cohen-Macaulay. Furthermore, localizations of Cohen-Macaulay rings and
polynomial rings over Cohen-Macaulay rings are again Cohen-Macaulay [32, The-
orem 2.1.3(b) and Theorem 2.1.9]. For future use, we quote the following standard
result on the passage of the Cohen-Macaulay property in ring extensions. Recall that
a Reynolds operator for an extension R ⊆ S of commutative rings is an R-linear
map ρ : S → R such that ρ

∣∣
R

= IdR.

Proposition 8.4.1. Let R ⊆ S be an extension of commutative noetherian rings.

(a) Assume that S is faithfully flat over R. Then S is Cohen-Macaulay if and only
if R and all fibres SP/pSP are Cohen-Macaulay where P ∈ SpecS and p =
P ∩R.

(b) (Hochster and Eagon [90]) Assume that S is integral over R and that there is a
Reynolds operator ρ : S → R. If S is Cohen-Macaulay then so is R.

Proof. For (a), see [32, Exercise 2.1.23] and for (b), [32, Theorem 6.4.5] or [90]. ��

For many purposes, the most useful and down-to-earth description of Cohen-
Macaulay rings is the following.

Theorem 8.4.2. Let R be a commutative domain that is an affine algebra over some
commutative PID � . Assume that R is a finite module over the polynomial subalgebra
P = � [x1, . . . , xn] ⊆ R. Then:

R is Cohen-Macaulay ⇐⇒ R is a free P -module.

Proof. ⇐: Since P is Cohen-Macaulay, this implication follows from Proposi-
tion 8.4.1(a).
⇒: For every maximal ideal m of P , Pm ⊆ Rm = R⊗P Pm is a finite extension

of noetherian domains, with Rm Cohen-Macaulay and Pm regular local. By Mat-
sumura [131, (18.H) Theorem 46], Rm is free over Pm. Therefore, R is projective
over P , and hence free by the Quillen-Suslin theorem. ��

8.5 The Cohen-Macaulay Property for Invariant Rings

Let G be a finite group acting by automorphisms on the commutative ring R. If R is
Cohen-Macaulay then we would like to know if the invariant subring RG is Cohen-
Macaulay as well. More generally, suppose we already know that RH is Cohen-
Macaulay for some subgroup H ≤ G. A useful device in passing from RH to RG is
the relative trace map trG/H : RH → RG ; it is defined by

trG/H(r) =
∑

g∈G/H

g(r) (r ∈ RH) ,

where G/H denotes any transversal for the cosets gH of H in G. Each choice of
transversal yields the same map. For H = 1 one obtains the ordinary trace map trG
as in 5.4. We will write
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RG
H = Im(trG/H) .

Since trG/H is RG-linear, RG
H is an ideal of RG .

Lemma 8.5.1. Put a =
∑

H RG
H, where H runs over all subgroups of G so that

RH is Cohen-Macaulay. Then, for every prime ideal p of RG so that p � a, the
localization RG

p is Cohen-Macaulay.

Proof. By hypothesis, p � RG
H for some H such that RH is Cohen-Macaulay. Let

Rp denote the localization of R at the multiplicative subset RG \ p. The G-action on
R extends to Rp and (Rp)

G = RG
p . Similarly, (Rp)

H = RH
p , and this ring is Cohen-

Macaulay. By choice of p the relative trace map trG/H : (Rp)
H → (Rp)

G is onto.
Fix an element c ∈ (Rp)

H so that trG/H(c) = 1 and define ρ : (Rp)
H → (Rp)

G by
ρ(x) = trG/H(cx). This map is a Reynolds operator in the sense of 8.4. Since (Rp)

H

is integral over (Rp)
G , Proposition 8.4.1(b) implies that (Rp)

G is Cohen-Macaulay,
which proves the lemma. ��

If a = RG holds in the above lemma then RG is Cohen-Macaulay. In particular,
we obtain the following fact first pointed out by Hochster and Eagon [90, Proposition
13].

Corollary 8.5.2. Suppose that R is Cohen-Macaulay. If the trace map trG : R →
RG is surjective then RG is Cohen-Macaulay as well.

We now turn to height and grade for invariant rings. For this, we will assume that
R is noetherian as RG-module. By Noether’s finiteness theorem, this assumption is
satisfied whenever R is an affine algebra over some noetherian subring � ⊆ RG ;
see [22, Théorème V.1.2]. In particular, the case of multiplicative actions over a
noetherian base ring � is certainly covered.

Lemma 8.5.3. Let A be an ideal of R and let M be a left module over the skew
group ring R#G (see 5.3). Put a = A ∩RG . Then:

(a) height(A,M) = height(a,M).
(b) If R is noetherian as RG-module and M is finitely generated then

grade(A,M) = grade(a,M) .

Proof. (a) We begin with some observations on the integral extension of rings

RG/ annRG M ↪→ R/ annR M .

First, for any P ∈ Spec R,

P ⊇ annR M ⇐⇒ P ∩RG ⊇ annRG M . (8.3)

To prove the nontrivial implication ⇐, use Lying Over to find a prime Q ∈ SpecR
with annR M ⊆ Q and Q∩RG = P∩RG . By [22, Théorème V.2.2(i)], P = g(Q)
for some g ∈ G, and so P ⊇ g(annR M) = annR M , since the ideal annR M
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is G-stable. This proves (8.3). We conclude that RG/ annRG M ↪→ R/ annR M
satisfies Going Down. Indeed, by (8.3), this follows from Going Down for RG ⊆ R,
which in turn is a consequence of Lying Over and Going Up in conjunction with [22,
Théorème V.2.2(i)]. It follows that, for any P ∈ Spec R with P ⊇ annR M , we
have

height(P/ annR M) = height(P ∩RG/ annRG M) . (8.4)

Now, to prove (a), let P be a prime of R with P ⊇ A + annR M and such
that height(A,M) = height(P/ annR M). Then height(a,M) ≤ height(P ∩
RG/ annRG M) and so, by (8.4), height(a,M) ≤ height(A,M). For the reverse
inequality, choose p ∈ Spec RG with p ⊇ a + annRG M and height(a,M) =
height(p/ annRG M). We claim that p ⊇ (A + annR M) ∩ RG . To see this, con-
sider a ∈ A and b ∈ annR M with a+ b ∈ RG . Then (a+ b)|G| =

∏
g∈G g(a+ b) =∏

g∈G g(a) + c with c ∈ annR M . Clearly,
∏

g∈G g(a) ∈ A ∩ RG = a and so c ∈

annRG M . Therefore, (a+b)|G| ∈ a+annRG M ⊆ p, and so a+b ∈ p, as desired. By
Lying Over for the integral extension RG/(A+annR M)∩RG ↪→ R/A+annR M ,
we may choose a prime P of R with P ∩ RG = p and P ⊇ A + annR M .
Then height(A,M) ≤ height(P/ annR M) and, by (8.4), height(P/ annR M) =
height(p/ annRG M). Therefore, height(A,M) ≤ height(a,M) which proves (a).

(b) Note that both R and RG are noetherian rings and M is finitely generated over
R and over RG . If aM = M then AM = M and both grades are ∞. Therefore, we
can assume that aM �= M . Let x = x1, . . . , xn be a maximal M -regular sequence
in a; so n = grade(a,M). Since x is also an M -regular sequences in A, we certainly
have n ≤ grade(A,M). To prove the reverse inequality, put M = M/

∑n
j=1 xjM

and note that a consists of zero divisors on the R-module M . By Eisenbud [54,
Theorem 3.1(b)], a ⊂

⋃
Q∈AssR(M) Q ∩ RG , where AssR(M) is the (finite) set of

associated primes of M . By “prime avoidance” [54, Lemma 3.3], a ⊂ Q ∩ RG for
some Q ∈ AssR(M). But then x is a maximal M -regular sequence in Q; so n =
grade(Q,M). By Lying Over for the integral extension RG/a ↪→ R/A, there exists a
prime P ∈ Spec R with P ⊇ A such that Q∩RG = P∩RG , and by [22, Théorème
V.2.2(i)], g(P) = Q for some g ∈ G. Hence, grade(Q,M) = grade(P,M) ≥
grade(A,M) and so n ≥ grade(A,M). This completes the proof. ��

We note the following consequence of Lemma 8.5.3. For a more general ring
theoretic result, see Kemper [108, Proposition 1.17].

Proposition 8.5.4. Let G be a finite group acting by automorphisms on the commu-
tative ring R and assume that R is noetherian as RG-module. Let M be a finitely
generated left module over the skew group ring R#G. Then M is Cohen-Macaulay
as R-module if and only if M is Cohen-Macaulay as RG-module.

Proof. Recall from (8.3) that the primes p ∈ Spec RG with p ⊇ annRG M are
precisely the primes of the form p = P ∩ RG with P ∈ Spec R, P ⊇ annR M .
Now, as was noted in the first paragraph of 8.4, M is Cohen-Macaulay as R-module
if and only if grade(P,M) = height(P,M) holds for all P ∈ SpecR with P ⊇
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annR M , and similarly for RGM . Thus, it suffices to invoke Lemma 8.5.3 to finish
the proof. ��

8.6 The Ellingsrud-Skjelbred Spectral Sequences

In this section, we describe two important spectral sequences, (8.6) and (8.7) be-
low, that were constructed by Ellingsrud and Skjelbred in [55]. Both sequences are
incarnations of a general spectral sequence due to Grothendieck. A standard tool in
homological algebra, Grothendieck’s spectral sequence establishes a relationship be-
tween the derived functors of two (covariant) functors G : A → B and F : B → C

and of their composition FG : A → C. The result holds for abelian categories A,
B, C such that A and B have enough injectives (i.e., every object embeds into an
injective object). The latter hypothesis makes it possible to define the right derived
functors RnF , RnG and Rn(FG) (n ≥ 0) via injective resolutions, as sketched
in 8.3 for the case of torsion functors. For our purposes it suffices to think of the
categories involved as categories of modules over some rings. The original source
for Grothendieck’s result is [77, Theorem 2.4.1]. Proofs can also be found in most
modern texts on homological algebra, e.g., Weibel [224, 5.8.3].

Theorem 8.6.1 (Grothendieck). Let G : A → B and F : B → C be functors such
that F is left exact and, for each injective object I of A, the object G(I) of B is
F -acyclic (i.e., RnF (G(I)) = 0 for all n > 0). Then, for each object A of A, there
exists a first quadrant cohomology spectral sequence

Ep,q
2 = (RpF )(RqG)(A) =⇒ Rp+q(FG)(A)

Spelled out in more detail, the theorem asserts the existence of a family Ep,q
r

(r ≥ 2, p, q ∈
�
) of objects of C so that Ep,q

r = 0 if p < 0 or q < 0. The initial
term E2 = {Ep,q

2 } has the form as stated. Each Er is equipped with a differential
dr = {dp,q

r } of bi-degree (r,−r + 1); so dp,q
r : Ep,q

r → Ep+r,q−r+1
r and drdr = 0;

see Fig. 8.2.

d
(p,q)
r

p

q

Ep,q
r

Ep+r,q−r+1
r

Fig. 8.2. Er-page

The term Er+1 is the homology of Er with respect to dr:

Ep,q
r+1 = Ker dp,q

r / Im dp−r,q−1+r
r . (8.5)
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Since the Ep,q
r vanish outside the first quadrant p, q ≥ 0, it follows that Ep,q

r =
Ep,q

r+1 = · · · if r > max{p, q + 1}. This stable value of {Ep,q
r } is denoted by Ep,q

∞ .
The Ep,q

∞ with p + q = n form the slices of a filtration of Rn(FG)(A): there is a
chain

0 = Fn+1Rn(FG)(A) ⊆ FnRn(FG)(A) ⊆ · · · ⊆ F0Rn(FG)(A) = Rn(FG)(A)

of subobjects of Rn(FG)(A) in C such that Ep,q
∞
∼= FpRn(FG)(A).

To construct the Ellingsrud-Skjelbred spectral sequences, let S denote a commu-
tative noetherian ring, G a finite group and S[G] the group ring of G over S. Fix an
ideal a of S and consider the following compositions of functors:

S[G]-Mod
( . )G

−→ S-Mod
Γa−→ S-Mod

and

S[G]-Mod
Γa−→ S[G]-Mod

( . )G

−→ S-Mod .

Here, ( . )G is the functor of G-fixed points and Γa is the torsion functor associated to
a; see 8.3. Viewing S[G]-Mod as a subcategory of S-Mod via S ⊆ S[G], Γa restricts
to a functor S[G]-Mod → S[G]-Mod. Clearly, the above compositions are identi-
cal: Γa(M

G) = Γa(M)G holds for any S[G]-module M . Following Ellingsrud and
Skjelbred [55] we let Hn

a (G, . ) denote the nth right derived functor of this composite
functor. Moreover, as usual, Hn(G, . ) = Rn( . )G and Hn

a = RnΓa. Thus, subject to
certain technical hypotheses which we will verify below, Theorem 8.6.1 yields two
first quadrant cohomology spectral sequences for each S[G]-module M :

Ep,q
2 = Hp

a (Hq(G,M)) =⇒ Hp+q
a (G,M) (8.6)

and
Ep,q
2 = Hp(G,Hq

a(M)) =⇒ Hp+q
a (G,M) . (8.7)

It remains to check the hypotheses of Theorem 8.6.1: Left exactness of Γa on
S-Mod and of ( . )G on S[G]-Mod are standard and easy. The following lemma takes
care of the acyclicity hypothesis for injective S[G]-modules.

Lemma 8.6.2. Let I be an injective left S[G]-module. Then:

(a) IG is an injective S-module. In particular, Hn
a (IG) = 0 (n > 0).

(b) Γa(I) is an injective S[G]-module; so Hn(G, Γa(I)) = 0 (n > 0).

Proof. (a) We may view S-modules as S[G]-modules by pulling back along the aug-
mentation map ε : S[G] → S, ε(

∑
g∈G sgg) =

∑
g∈G sg . Consider the “co-induced”

S-module HomS[G](S, I); it is isomorphic to the module of G-fixed points IG , via
f �→ f(1). Thus, we have natural isomorphism of functors on S-Mod,

HomS[G]( . , I) ∼= HomS( . , IG) ;

see, e.g., Brown [31, III(3.6)]. Since I is injective, the functor HomS[G]( . , I) is
exact, and hence HomS( . , IG) is an exact functor on S-Mod. In other words, IG is
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an injective S-module. The fact that Hn
a (IG) = 0 for all n > 0 is now an immediate

consequence of the definition of right derived functors via injective resolutions.
(b) By Baer’s criterion (e.g., Weibel [224, 2.3.1]), it is enough to show that for

every left ideal J of S[G] and every S[G]-map f : J → Γa(I), there exists an element
m ∈ Γa(I) such that f(x) = xm holds for all x ∈ J . Since I is injective, there
certainly exists an element m′ ∈ I such that f(x) = xm′ for all x ∈ J . Moreover,
since S is noetherian, J is finitely generated as S-module, and hence so is f(J) ⊆
Γa(I). Therefore, there exist a positive integer r such that arf(J) = 0. Further,
f(J) is a submodule of the finitely generated S-module S[G]m′. By the Artin-Rees
Lemma [21, Cor. 1 to Thm. III.3.1], there exists a positive integer t such that for all
n ≥ 0,

an+tS[G]m′ ∩ f(J) = an
(
atS[G]m′ ∩ f(J)

)
⊆ anf(J) .

Therefore, ar+tS[G]m′ ∩ f(J) = 0. This allows us to extend f to f̃ : ar+tS[G] +

J → Γa(I) by defining f̃(x + x′) = x′m′ for all x ∈ ar+tS[G] and x′ ∈ J .
Indeed, if x + x′ = y + y′ with x, y ∈ ar+tS[G] and x′, y′ ∈ J then (x − y)m′ =
(y′ − x′)m′ ∈ ar+tS[G]m′ ∩ f(J) = 0; so x′m′ = y′m′. Once again we use
injectivity of I to find m ∈ I such that f̃(z) = zm holds for all z ∈ ar+tS[G] + J .
If z ∈ ar+t then zm = f̃(z) = f̃(z + 0) = 0. Therefore, m ∈ Γa(I), as required.
This completes the proof that Γa(I) is an injective S[G]-module. As in (a), it follows
that Hn(G, Γa(I)) = 0 for all n > 0. ��

8.7 Annihilators of Cohomology Classes

We continue to assume that R is a commutative ring and G a finite group acting on
R. Moreover, M will denote a left module over the skew group ring R#G. Later on
we will focus on the case where M = R is the canonical R#G-module; see 5.3. For
each r ∈ RG , the map M → M , m �→ rm, is G-equivariant and hence it induces
a map on cohomology r· : H∗(G,M) → H∗(G,M). In this way, H∗(G,M) =⊕

n≥0 Hn(G,M) becomes a module over RG . Our goal in this section is to give
height estimate for the annihilator annRG (x) of an element x ∈ H∗(G,M).

We need a technical lemma. Recall that IG(P) = {g ∈ G | g(r)−r ∈ P ∀r ∈ R}
denotes the inertia group of the prime ideal P ∈ Spec R and RG

H is the image of the
relative trace map trG/H : RH → RG for a subgroup H ≤ G; see 8.5. Furthermore,
as usual, we write gH = gHg−1 for g ∈ G.

Lemma 8.7.1. For any prime ideal P ∈ Spec R,

P ⊇ RG
H ⇐⇒ [IG(P) : IgH(P)] ∈ P for all g ∈ G

Proof. The implication⇐ is a consequence of the identity

trG/H(r) ≡
∑

g∈IG(P)\G/H

[IG(P) : IgH(P)] g(r) mod P (8.8)
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for r ∈ RH. To prove this formula, write G as a disjoint union G =
∐

g IG(P)gH
with g running over IG(P)\G/H, and for each g, let IG(P)gH/H be a set of the
coset representatives ofH in the double coset IG(P)gH. Then, modulo P,

trG/H(r) =
∑

g∈IG(P)\G/H

∑
g′∈IG(P)gH/H

g′(r)

≡
∑

g∈IG(P)\G/H

|IG(P)gH/H|g(r) mod P

where the last ≡ holds because each g′ has the form g′ = fgh with f ∈ IG(P) and
h ∈ H, and so g′(r) ≡ g(r) mod P. Finally, |IG(P)gH/H| = [IG(P) : IgH(P)],
which proves equation (8.8).

For ⇒, assume that P ⊇ RG
H. Note that RG

H = RG
gH for all g ∈ G, since

trG/H(r) = trG/gH(g(r)) holds for all r ∈ RH. Thus, it suffices to show that
[IG(P) : IH(P)] ∈ P. To simplify notation, put I = IG(P)) and let P denote
a Sylow p-subgroup of I ∩ H = IH(P), where p is the characteristic of the field
K = Fract(R/P). (We let P = {1} if p = 0.) Then our desired conclusion,
[I : I ∩ H] ∈ P, is equivalent to

[I : P] ∈ P .

Furthermore, our assumption P ⊇ RG
H implies that P ⊇ RG

P , because trG/P =
trG/H trH/P . Thus, leaving H for P , we may assume that H = P is a p-subgroup
of I.

Let D = {g ∈ G | g(P) = P} denote the decomposition group of P; so I ≤ D.
We claim that

P ⊇ RD
P .

To see this, choose r ∈
⋂

g∈G\D g(P) with r /∈ P. Then s =
∏

g∈D g(r) also be-

longs to
⋂

g∈G\D g(P) but not to P and, in addition, s ∈ RD. Now assume that,

contrary to our claim, there exists an element f ∈ RP so that trD/P(f) /∈ P. Then
trD/P(sf) = s trD/P(f) ∈

⋂
g∈G\D g(P) \P. Hence trG/P(sf) /∈ P, contradict-

ing the fact that P ⊇ RG
P .

By the claim, we may replace G by D, thereby reducing to the case where P is
G-stable. (Note that I is untouched by this replacement.) So G acts on R/P with
kernel I, P is a p-subgroup of I, and RG

P ⊆ P. Thus,

0 ≡ trG/P(r) =
(
trG/I ◦ trI/P

)
(r) ≡ [I : P] ·

∑
g∈G/I

g(r) mod P

holds for all r ∈ RP . Our desired conclusion, [I : P] ∈ P, will follow if we
can show that

∑
g∈G/I g(r) /∈ P holds for some r ∈ RP . But

∑
g∈G/I g induces

a nonzero endomorphism on R/P, by linear independence of automorphisms of
K = Fract(R/P); see [27, Théorème V.6.1]. In other words,

∑
g∈G/I g(s) /∈ P for

some s ∈ R. Putting r =
∏

h∈P h(s), we have r ∈ RP and r ≡ s|P| mod P. Since
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|P| is 1 or a power of p = char K, we obtain
∑

g∈G/I g(r) ≡
∑

g∈G/I g(s|P|) ≡(∑
g∈G/I g(s)

)|P|

≡/ 0 mod P, as required. This completes the proof of the

lemma. ��

We are now ready to give the announced height estimate. Recall that, for any
subgroup H ≤ G, H ⊆ IG(P) is equivalent to P ⊇ IR(H), where IR(H) is the
ideal of R defined in (4.6).

Proposition 8.7.2. (a) For each subgroup H of G, the ideal RG
H of RG annihilates

the kernel of the restriction map resGH : H∗(G,M) → H∗(H,M).
(b) For any x ∈ H∗(G,M),

height annRG (x) ≥ inf{height IR(H) | H ≤ G, resGH(x) �= 0} .

Proof. (a) The action of RG = H0(G, R) on H∗(G,M) can be interpreted as the
cup product

H0(G, R)×H∗(G,M)
∪
−→ H∗(G, R⊗ � M)

·
−→ H∗(G,M) ,

where the map denoted by · comes from the G-equivariant map R⊗ � M → M , r⊗
m �→ rm; see, e.g., Brown [31, Exerc. V.4.1]. Furthermore, the relative trace map
trG/H is identical with the corestriction map corGH : H0(H, R) → H0(G, R); cf. [31,
p. 81]. The transfer formula for cup products [31, V(3.8)] gives

trG/H(r)x = ·
(
trG/H(r) ∪ x

)
= ·
(
corGH(r ∪ resGH(x))

)
for r ∈ RH and x ∈ H∗(G,M). Therefore, if resGH(x) = 0 then trG/H(r)x = 0.

(b) Put X = {H ≤ G | resGH(x) = 0}. By (a), RG
H ⊆ annRG (x) for all H ∈ X.

To prove (b), we may assume that annRG (x) is a proper ideal of RG ; for, otherwise
height annRG (x) = ∞. Let p be any prime ideal of RG with p ⊇ annRG (x) and let
P be a prime of R lying over p. Then heightP = height p, by Lemma 8.5.3(a), and

RG
H ⊆ P for allH ∈ X.

By Lemma 8.7.1, the above inclusion implies that

[IG(P) : IH(P)] ∈ P for allH ∈ X .

Put p = char Fract(R/P) and let P ≤ IG(P) be a Sylow p-subgroup of IG(P).
(Again, P = {1} if p = 0.) Then IR(P) ⊆ P and [IG(P) : P] /∈ P. Hence, P /∈ X

and height IR(P) ≤ heightP = height p. This implies (b). ��

8.8 The Restriction Map for Cohen-Macaulay Invariants

Let R denote a commutative ring and let G a finite group acting by automorphisms
on R. We are now ready to construct our main ring theoretic tool for the investigation
of the Cohen-Macaulay problem for RG .
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Recall from Section 4.5 that an element g ∈ G acts as a k-reflection on R if g be-
longs to the inertia group IG(P) of some prime ideal P ∈ Spec R with height P ≤ k
or, equivalently, if height IR(g) ≤ k; see (4.7). Put

Xk = {H ≤ G | height IR(H) ≤ k} . (8.9)

Thus, eachH ∈ Xk consists of k-reflections on R.

Theorem 8.8.1. Assume that R and RG are both Cohen-Macaulay and that R is
noetherian as RG-module. If Hi(G, R) = 0 for 0 < i < k then the restriction map

resGXk+1
: Hk(G, R) →

∏
H∈Xk+1

Hk(H, R)

is injective.

Proof. We may assume that Hk(G, R) �= 0. Let x ∈ Hk(G, R) be nonzero and put
a = annRG (x). It suffices to show that

grade a ≤ k + 1 . (8.10)

Indeed, grade a = height a, since RG is Cohen-Macaulay. Thus, (8.10) in conjunc-
tion with Proposition 8.7.2(b) implies that k + 1 ≥ height IR(H) for some H ≤ G
with resGH(x) �= 0. The proposition follows from this. Furthermore, R is Cohen-
Macaulay as RG-module, by Proposition 8.5.4. Hence, grade(a, R) = height(a, R)
and, by definition, height(a, R) = height a. Therefore,

grade a = grade(a, R) . (8.11)

To proceed, we use the Ellingsrud-Skjelbred spectral sequences (8.6) and (8.7)
with S = RG and M = R. Recall from (8.2) that grade a = inf{p | Hp

a (RG) �= 0}
and from equation (8.6) that Hp

a (RG) = Ep,0
2 . Thus, (8.10) will follow if we can

show that
Ek+1,0

2 �= 0 . (8.12)

But E0,k
2 �= 0, since x ∈ Γa(H

k(G, R)) = E0,k
2 . Moreover, by equation (8.5),

E0,k
r+1 = Ker d0,k

r for all r ≥ 2, since the spectral sequence vanishes outside the first
quadrant. Now, our hypothesis Hq(G, R) = 0 for 0 < q < k yields that Ep,q

2 = 0
for 0 < q < k and so Ep,q

r = 0 for 0 < q < k and all r ≥ 2. Therefore, d0,k
r = 0

if r �= k + 1. We conclude that E0,k
k+1 = E0,k

2 �= 0 and E0,k
∞ = Ker d0,k

k+1. Thus, in
order to prove (8.12), it suffices to show that

E0,k
∞ = 0 . (8.13)

For, (8.13) implies that d0,k
k+1 embeds E0,k

k+1 �= 0 into Ek+1,0
k+1 (see Fig. 8.2) forcing

the latter to be nonzero, and hence Ek+1,0
2 �= 0 as well.

Now suppose, for a contradiction, that (8.10) is false. Then, by (8.11) and (8.2),
Hq

a(R) = 0 for all q ≤ k + 1. Invoking the E-sequence (8.7) we have Ep,q
2 = 0 if

q ≤ k + 1 and so Hn
a (G, R) = 0 for n ≤ k + 1. Returning to E-sequence (8.6), we

conclude that Ep,q
∞ = 0 if p + q ≤ k + 1, which in particular includes (8.13). This

contradiction completes the proof of the theorem. ��
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Note that the vanishing hypothesis on Hi(G, R) is vacuous for k = 1. Thus,
H1(G, R) is detected by bireflections whenever R and RG are both Cohen-Macaulay
and R is noetherian as RG-module.

8.9 The Case of Multiplicative Invariants

For the remainder of this chapter, we will focus on the special case of multiplicative
actions. Throughout, L will denote a G-lattice, where G is a finite group, and � [L] will
be the group algebra of L over the commutative ring � with the usual multiplicative
G-action (3.2).

To set the stage, we begin with some basic observations:

(a) � [L] is Cohen-Macaulay if and only if the base ring � is Cohen-Macaulay.
(b) If the multiplicative invariant algebra � [L]G is Cohen-Macaulay then � must be

Cohen-Macaulay. Conversely, if � is Cohen-Macaulay and |G| is invertible in �

then � [L]G is Cohen-Macaulay.

Here, (a) follows from the general facts on Cohen-Macaulay rings mentioned in 8.4.
The first assertion in (b) is a consequence of Proposition 8.4.1(a), since the invari-
ant algebra � [L]G is free as � -module by (3.4). Finally, the second assertion in (b)
follows from Corollary 8.5.2, since the hypothesis of |G| amounts to the trace map
trG : � [L] → � [L]G being surjective; see (5.6). Thus, our main interest will be in the
case where � is Cohen-Macaulay but |G| is not invertible in � . In fact, we will later
concentrate on the case where the base ring � is

�
. This is justified in part by the

following lemma.

Lemma 8.9.1. The following are equivalent:

(a)
�
[L]G is Cohen-Macaulay;

(b) � [L]G is Cohen-Macaulay whenever � is;
(c) � [L]G is Cohen-Macaulay for � =

�
/|G|

�
;

(d)
�

p[L]G is Cohen-Macaulay for all primes p dividing |G|.

Proof. (a)⇒ (b): Assume that � is Cohen-Macaulay and put S = � [L]G . By Propo-
sition 8.4.1(a), applied to the free extension of rings � ↪→ S, we know that S is
Cohen-Macaulay if (and only if) all fibres SP/pSP are Cohen-Macaulay, where
P ∈ Spec S and p = P ∩ � . But SP/pSP is a localization of Q( � /p) ⊗ � S ∼=
Q( � /p)[L]G ; see Proposition 3.3.1(b). Therefore, it suffices to show that Q( � /p)[L]G

is Cohen-Macaulay. In other words, we may assume that � is a field. By Bruns and
Herzog [32, Theorem 2.1.10], we may further assume that � =

�
p, because the

case of characteristic 0 is trivial by observation (b) above. But
�

p[L]G ∼=
�
[L]G/(p)

by Proposition 3.3.1(b). Since
�
[L]G is assumed Cohen-Macaulay, [32, Theorem

2.1.3(a)] yields that
�

p[L]G is Cohen-Macaulay, as desired.
(b)⇒ (c) is clear, since

�
/|G|

�
is Cohen-Macaulay (dimension 0).

(c) ⇒ (d): Let � =
�
/|G|

�
and write |G| =

∏
p pnp with np �= 0. Then

(
�
/pnp

�
)[L]G is a localization of � [L]G , and hence (

�
/pnp

�
)[L]G is Cohen-Macaulay.



8.9 The Case of Multiplicative Invariants 117

It follows from [32, Theorem 2.1.3(a)] that
�

(p)[L]G and
�

p[L]G ∼=
�

(p)[L]G/(p) are
Cohen-Macaulay.

(d)⇒ (a): If p does not divide |G| then
�

p[L]G is Cohen-Macaulay by observation
(b) above. Therefore, (d) implies that

�
p[L]G is Cohen-Macaulay for all primes p.

Now let P be a maximal ideal of
�
[L]. Then P ∩

�
= (p) for some prime p and�

[L]GP/(p) is a localization of
�
[L]G/(p) =

�
p[L]G . Thus,

�
[L]GP/(p) is Cohen-

Macaulay and [32, Theorem 2.1.3(a)] further implies that
�
[L]GP is Cohen-Macaulay.

Since P was arbitrary, (a) follows. ��

Since normal rings of Krull dimension at most 2 are Cohen-Macaulay, implica-
tion (d)⇒ (b) of the lemma in particular yields the following corollary.

Corollary 8.9.2. Assume that the lattice L has rank at most 2. Then � [L]G is Cohen-
Macaulay if and only if � is Cohen-Macaulay.

Next, we show that the Cohen-Macaulay property of � [L]G only depends on the
rational type of L, that is, the isomorphism class of L � = L⊗ � � as � [G]-module.

Proposition 8.9.3. If � [L]G is Cohen-Macaulay then so is � [L′]G for any G-lattice
L′ that is rationally isomorphic to L.

Proof. Assume that L � ∼= L′� , say L ⊇ L′ and L/L′ is finite. Then � [L] is finite over
� [L′] which in turn is integral over � [L′]G . Therefore, � [L] is integral over � [L′]G ,
and hence so is � [L]G . In order to show that the Cohen-Macaulay property descends
from � [L]G to � [L′]G , we will use Proposition 8.4.1(b). For the requisite Reynolds
operator, consider the truncation map

π : � [L] → � [L′] ,
∑
m∈L

kmxm �→
∑

m∈L′

kmxm .

This map is a Reynolds operator for the extension � [L] ⊇ � [L′] and π(g(f)) =
g(π(f)) holds for all g ∈ G, f ∈ � [L]. Therefore, π restricts to a Reynolds operator

� [L]G → � [L′]G and the proposition follows. ��

The proposition in particular allows to reduce the general case of the Cohen-
Macaulay problem for multiplicative invariants to the case of effective G-lattices,
that is, lattices L with LG = 0. Recall from §1.6.1 that, for any G-lattice L, the
quotient L/LG is an effective G-lattice.

Corollary 8.9.4. � [L]G is Cohen-Macaulay if and only if this holds for � [L/LG ]G .

Proof. By Proposition 8.9.3, we may replace L by L′ = LG ⊕ L/LG . But � [L′]G ∼=
� [L/LG ]G ⊗ � � [LG ] is isomorphic to the group algebra of the lattice LG over
� [L/LG ]G . Thus, by observation (a) above, � [L′]G is Cohen-Macaulay if and only
if � [L/LG ]G is Cohen-Macaulay. The corollary follows. ��



118 8 The Cohen-Macaulay Property

8.10 Proof of Theorem 8.1.1

The proof of Theorem 8.1.1 is ultimately an application of Theorem 8.8.1. We will
need some preliminary observations on isotropy groups Gm = {g ∈ G | g(m) = m}
of lattice elements m ∈ L and on the nature of the restriction map considered in
Theorem 8.1.1 in the special case of multiplicative actions.

8.10.1 Isotropy Groups

Recall that the group G is said to be perfect if Gab = G/[G,G] = 1.

Proposition 8.10.1. Assume that L is a faithful G-lattice such that all minimal
isotropy groups 1 �= Gm (m ∈ L) are perfect. Then rankL/LH ≥ 8 holds for
every subgroup 1 �= H ≤ G.

In the setting of multiplicative actions, the class of subgroups Xk defined in (8.9)
takes the form

Xk = {H ≤ G | rankL/LH ≤ k} ; (8.14)

see Lemma 4.5.1. Thus, the conclusion of Proposition 8.10.1 can also be stated as
follows:

Xk = {1} for all k < 8.

The proof of Proposition 8.10.1 depends on two lemmas the first of which is
well-known. Recall that the G-action on a module M is called fixed-point-free if
g(m) �= m holds for all 0 �= m ∈ M and 1 �= g ∈ G.

Lemma 8.10.2. (a) The set of isotropy groups {Gm | m ∈ L} is closed under
conjugation and under taking intersections. The unique smallest member of the
set is KerG(L) = {g ∈ G | gL = IdL}.

(b) If Gm (m ∈ L) is a minimal isotropy group such that Gm �= KerG(L) then
Gm/KerG(L) acts fixed-point-freely on L/LGm �= 0.

Proof. Both parts are in effect assertions about the � [G]-module V = L � , because
the collection of isotropy groups Gm remains unchanged when allowing m ∈ V
and G acts fixed-point-freely on L if and only if it does so on V . Moreover, for any
subgroupH ≤ G, L/LH is anH-lattice with L/LH ⊗ � � ∼= V/V H.

(a) The first assertion is clear, since gGm = Gg(m) holds for all g ∈ G and
m ∈ V . For the second assertion, let M be a non-empty subset of V and put GM =⋂

m∈M Gm. We must show that GM = Gm for some m ∈ V . Put W = V GM . If
g ∈ G \ GM then W 〈g〉 = {w ∈ W | g(w) = w} is a proper subspace of W , since
some element of M ⊆ W is not fixed by g. Any m ∈ W \

⋃
g∈G\GM

W 〈g〉 satisfies
Gm = GM . The statement about KerG(L) is now clear, since KerG(L) =

⋂
m∈L Gm.

(b) Let H = Gm be a minimal member of {Gm | m ∈ V } \ {KerG(L)}; so
V H �= V . As � [H]-modules, V ∼= V H ⊕ V/V H . If 0 �= v ∈ V/V H then Hv =
H∩Gv � H. In view of (a), our minimality assumption onH forcesHv = KerG(L).
Thus,H/KerG(L) acts fixed-point-freely on V/V H. ��
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Lemma 8.10.3. Assume that G is a nontrivial perfect group acting fixed-point-freely
on the nonzero lattice L. Then G is isomorphic to the binary icosahedral group
2.A5

∼= SL2(
�

5) and rankL is a multiple of 8.

Proof. Put V = L⊗ � � , a nonzero fixed-point-free � [G]-module. By a well-known
theorem of Zassenhaus (see Wolf [227, Theorem 6.2.1]), G is isomorphic to the bi-
nary icosahedral group 2.A5 and the irreducible constituents of V are 2-dimensional.
The binary icosahedral group has two irreducible complex representations of degree
2; they are Galois conjugates of each other and both have Frobenius-Schur indicator
−1. We denote the corresponding � [G]-modules by V1 and V2. Both Vi occur with
the same multiplicity in V , since V is defined over � . Thus, V ∼= (V1 ⊕ V2)

m for
some m and rankL = 4m. We have to show that m is even. Since both Vi have
indicator −1, it follows that V1 ⊕ V2 is not defined over � , whereas each V 2

i is de-
fined over � ; see Isaacs [96, 9.21]. Thus, letting G0( � [G]) denote the Grothendieck
group of the category of all finitely generated � [G]-modules and similarly for � [G],
the module V1 ⊕ V2 represents an element x of order 2 in the cokernel of the scalar
extension map � ⊗ � : G0( � [G]) → G0( � [G]), and mx = 0. Therefore, m must be
even, as desired. ��

Proof of Proposition 8.10.1. Let 1 �= H ≤ G and put H =
⋂

m∈LH Gm. Then H ⊇

H and LH = LH. Lemma 8.10.2(a) further implies that H = Gm for some m.
Replacing H by H, we may assume that H is a nonidentity isotropy group. If H
is not minimal then replace H by a smaller nonidentity isotropy group; this does
not increase the value of rankL/LH. Thus, we may assume that H is a minimal
nonidentity isotropy group, and hence H is perfect. By Lemma 8.10.2(b), H acts
fixed-point-freely on L/LH �= 0 and Lemma 8.10.3 implies that rankL/LH ≥ 8,
proving the proposition. ��

8.10.2 The Restriction Map

Let X denote any collection of subgroups of G that is closed under conjugation and
under taking subgroups. We will give a reformulation of injectivity of the restriction
map

resGX : Hk(G, � [L]) →
∏
H∈X

Hk(H, � [L])

that was considered in Theorem 8.8.1 in the special case where X = Xk+1.

Lemma 8.10.4. The map resGX : Hk(G, � [L]) →
∏

H∈X Hk(H, � [L]) is injective if
and only if the restriction maps

Hk(Gm, � ) →
∏
H∈X
H≤Gm

Hk(H, � )

are injective for all m ∈ L.
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Proof. As G-module,
� [L] ∼=

⊕
m∈G\L

� [G/Gm] ,

where G\L is any transversal for the G-orbits in L. If H ≤ G is any subgroup of G
then

� [G/Gm]↓GH
∼=

⊕
g∈H\G/Gm

� [H/gGm ∩H] ;

see (1.14). Therefore, resGH : Hk(G, � [L]) → Hk(H, � [L]) is the direct sum of the
restriction maps

Hk(G, � [G/Gm]) → Hk(H, � [G/Gm]) =
⊕

g∈H\G/Gm

Hk(H, � [H/gGm ∩H]) .

Using the Eckmann-Shapiro Lemma (2.6), the latter map can be rewritten as follows:

ρH,m : Hk(Gm, � ) →
⊕

g∈H\G/Gm

Hk(gGm ∩H, � )

[f ] �→ ([h �→f(g−1hg)])g

Here [ . ] denotes the cohomology class of a k-cocycle and h stands for a k-tuple of
elements of gGm ∩H. Therefore,

Ker ρH,m =
⋂

g∈H\G/Gm

Ker
(
resGm

Gm∩Hg : Hk(Gm, � ) → Hk(Gm ∩H
g, � )

)
.

Thus, Ker resGX is isomorphic to the direct sum of the kernels of the restriction maps

Hk(Gm, � ) →
∏
H∈X

Hk(Gm ∩H
g, � )

with m ∈ G\L. Finally, by hypothesis on X, the groups Gm ∩ H
g with H ∈ X are

exactly the groupsH ∈ X withH ≤ Gm. The lemma follows. ��

8.10.3 The Proof

We are now ready to prove Theorem 8.1.1. Recall that, for any subgroup H ≤ G,
R2(H) denotes the subgroup generated by the elements ofH that act as bireflections
on L or, equivalently, by the subgroups ofH that belong to X2; see (8.14). We assume
that

�
[L]G is Cohen-Macaulay. Throughout, we let � =

�
/|G|

�
; so � [L]G is Cohen-

Macaulay as well, by Lemma 8.9.1.
We first show that Gm/R2(Gm) is a perfect group for all m ∈ L. Indeed, Theo-

rem 8.8.1 implies that the restriction H1(G, � [L]) →
∏

H∈X2
H1(H, � [L]) is injec-

tive. By Lemma 8.10.4, this says that all restrictions
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H1(Gm, � ) →
∏

H∈X2
H≤Gm

H1(H, � )

are injective. Now, by our choice of � , H1(H, � ) = Hom(Hab, � ) ∼= Hab and simi-
larly for Gm. Therefore, injectivity of the above map is equivalent to Gab

m being gen-
erated by the images of all H ≤ Gm with H ∈ X2. In other words, Gab

m is generated

by the image ofR2(Gm), and hence,
(
Gm/R2(Gm)

)ab
is trivial, as desired.

Now assume that G acts non-trivially on L. Our goal is to show that some isotropy
group Gm is non-perfect. Suppose otherwise. Replacing G by G/KerG(L) we may
assume that 1 �= G acts faithfully on L. Then Xk = {1} for all k < 8, by Proposi-
tion 8.10.1. Put � = inf{i > 0 | Hi(G, � [L]) �= 0} and suppose that � < 7. Then
Theorem 8.8.1 implies that 0 �= H�(G, � [L]) embeds into

∏
H∈X�+1

H�(H, � [L])

which is trivial, because X�+1 = {1}. This contradiction shows that � ≥ 7. By the
Eckmann-Shapiro Lemma (2.6) (or Lemma 8.10.4 with X = {1}), this says that

Hi(Gm, � ) = 0 for all m ∈ L and all 0 < i < 7.

On the other hand, choosing Gm minimal with Gm �= 1, we know by Lem-
mas 8.10.2(b) and 8.10.3 that Gm is isomorphic to the binary icosahedral group
2.A5. The cohomology of 2.A5 is 4-periodic (see Brown [31, p. 155]). Hence,
H3(Gm, � ) ∼= Ĥ−1(Gm, � ) = ann � (

∑
g∈Gm

g) ∼=
�
/|Gm|

�
�= 0; see (2.2) for

Ĥ−1. This contradiction completes the proof of Theorem 8.1.1. ��

8.11 Examples

Example 8.11.1 (Multiplicative An-invariants of Un). Using the notation of Exam-
ple 3.5.5, we restrict the Sn-action on the standard permutation lattice Un to the
alternating group An. Note that An acts as a bireflection group on Un; this is easy
to see directly and also follows from Proposition 1.7.1. Exactly as in Example 3.5.5,
we have

�
[Un]An =

�
[x1, . . . , xn]An [s−1

n ] ,

where sn =
∏n

1 xi is the nth elementary symmetric function. The ring
�
[x1, . . . , xn]An

of polynomial An-invariants is known (Revoy [163], or see Smith [199, Theorem
1.3.5]):

�
[x1, . . . , xn]An =

�
[s1, . . . , sn]⊕ d

�
[s1, . . . , sn] ,

where si is the ith elementary symmetric function in x1, . . . , xn and

d = 1
2 (∆ + ∆+)

with ∆+ =
∏

i<j(xi +xj) and ∆ =
∏

i<j(xi−xj), the Vandermonde determinant.
Thus,

�
[Un]An =

�
[s1, . . . , sn−1, s

±1
n ]⊕ d

�
[s1, . . . , sn−1, s

±1
n ] (8.15)

This ring is Cohen-Macaulay, being a finite free extension of the mixed Laurent
polynomial ring

�
[s1, . . . , sn−1, s

±1
n ].
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Example 8.11.2 (Multiplicative An-invariants of An−1). Continuing with the nota-
tion of Example 8.11.1, we now consider the root lattice An−1 ⊆ Un as An-lattice.
The invariant algebra

�
[An−1]

An is easily seen to be Cohen-Macaulay. In fact,
the lattice Un is rationally equivalent to An−1 ⊕

�
and so we know from Exam-

ple 8.11.1 and Proposition 8.9.3 that
�
[An−1⊕

�
]An is Cohen-Macaulay. Moreover,

�
[An−1 ⊕

�
]An ∼=

�
[An−1]

An [
�
] and hence

�
[An−1]

An is Cohen-Macaulay, by
observation (a) in 8.9.

Alternatively, exactly as in Example 3.5.6, one obtains that

�
[An−1]

An =
�
[Un]An

0 ,

where
�
[Un]0 denotes the degree-0 component of

�
[Un] =

�
[x±1

1 , . . . , x±1
n ] graded

by total degree in the variables xi. Since all si in d in (8.15) are homogeneous, with
deg d =

(
n
2

)
, we conclude that

�
[An−1]

An =
�
[s1, . . . , sn−1, s

±1
n ]0 ⊕ d

�
[s1, . . . , sn−1, s

±1
n ]−(n

2)
(8.16)

Putting µi = sn
i /si

n as in Example 3.5.6 and in §6.3.5, we obtain a polynomial
subalgebra P =

�
[µ1, . . . , µn] ⊆

�
[s1, . . . , sn−1, s

±1
n ]0 so that both summands in

(8.16) are free over P .

Example 8.11.3 (Sn-lattices). Let L be an Sn-lattice such that
�
[L]Sn is Cohen-

Macaulay. Theorem 8.1.1 implies that Sn acts as a bireflection group on L, and
hence on all simple constituents of the rationalization L � = L ⊗ � � . The simple

� [Sn]-modules are the Specht modules Sλ for partitions λ of n. If n ≥ 7 then
the only partitions λ so that Sn acts as a bireflection group on Sλ are (n), (1n)
and (n − 1, 1); this follows from the lists in Huffman [91] and Wales [221]. The
corresponding Specht modules are the rationalizations of

�
, the sign lattice

� −, and
the root lattice An−1. Thus, if n ≥ 7 and

�
[L]Sn is Cohen-Macaulay then we must

have
L � ∼= � r ⊕

(
� −
)s
⊕ (An−1)

t�

with s + t ≤ 2. In most cases,
�
[L]Sn is easily seen to be Cohen-Macaulay. Indeed,

Corollary 8.9.4 allows us to assume that r = 0. If s+t ≤ 1 then Sn acts as a reflection
group on L and so

�
[L]Sn is Cohen-Macaulay by Corollary 6.1.2(a). When t = 0, the

same conclusion follows from Corollary 8.9.2 or from Example 3.5.3 (with n = 2).
This leaves the cases s = t = 1 and s = 0, t = 2 to consider.

First let s = t = 1. By Corollary 8.9.4, we may add a copy of
�

to L so that L
becomes rationally isomorphic to Un ⊕

� −. Using Example 8.11.1 and its notation
in conjunction with Lemma 3.5.2, we obtain the invariants of Un ⊕

� −:

�
[Un ⊕

� −]Sn = R⊕Rϕ

Here, ϕ = 1
2 (∆+ + ∆)t + 1

2 (∆+ −∆)t−1 with t = x(0Un ,1) ∈
�
[Un ⊕

� −], and
R =

�
[s1, . . . , sn−1, s

±1
n , t + t−1]. Thus,

�
[L]Sn is again Cohen-Macaulay.

If s = 0 and t = 2 then we may replace L by the lattice U2
n = Un ⊕ Un. By

Lemma 8.9.1
�
[U2

n]Sn is Cohen-Macaulay precisely if
�

p[U
2
n]Sn is Cohen-Macaulay
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for all primes p ≤ n. As in Example 3.5.5, one sees that
�

p[U
2
n]Sn is a localization

of the algebra “vector invariants”
�

p[x1, . . . , xn, y1, . . . , yn]Sn . By Kemper [109,
Corollary 3.5], this algebra is known to be Cohen-Macaulay for n/2 < p ≤ n, but
the primes p ≤ n/2 apparently remain to be dealt with.

Example 8.11.4 (Ranks ≤ 4). By Corollary 8.9.2,
�
[L]G is always Cohen-Macaulay

when rankL ≤ 2.
Now let rankL = 3. There are 32 � -classes of finite subgroups G ≤ GL3(

�
).

The orders of these groups all divide M(3) = 48; see §1.10.2. In particular,
the groups G are all solvable and the Sylow 3-subgroup H ≤ G, if nontrivial,
is generated by a bireflection of order 3. Therefore,

�
3[L]H is Cohen-Macaulay;

see Proposition 10.1.1 below for a more general result. Since the relative trace
trG/H :

�
3[L]H →

�
3[L]G is surjective, Lemma 8.5.1 implies that

�
3[L]G is Cohen-

Macaulay for all finite subgroups G ≤ GL3(
�
). Therefore, by Lemma 8.9.1 and

Theorem 8.1.1,
�
[L]G is Cohen-Macaulay if and only if

�
2[L]G is Cohen-Macaulay,

and for this to occur, G must be generated by bireflections. It turns out that 3 of the
32 � -classes consist of non-bireflection groups; these classes are represented by the
cyclic groups 〈(−1

−1
−1

)〉
,
〈(

1
−1

−1

)〉
,
〈( −1

−1
−1

)〉
of orders 2, 4 and 6 (the latter two classes each split into two

�
-classes). For the 29

� -classes consisting of bireflection groups G, Pathak [148] has checked explicitly
by a case-by-case analysis that

�
2[L]G is indeed Cohen-Macaulay. To summarize:

if rankL = 3 then
�
[L]G is Cohen-Macaulay if and only if G acts as a bireflection

group on L, and the correponding G-lattices are known.
In rank 4, there are 227 � -classes of finite subgroups G ≤ GL4(

�
). All but 5

of them consist of solvable groups and 4 of the non-solvable classes are bireflection
groups, the one exception being represented by S5 acting on the signed root lattice� − ⊗ � A4. Thus, if the group G/R2(G) is perfect then it is actually trivial, that is,
G is a bireflection group. It also turns out that, in this case, all isotropy groups Gm

are bireflection groups. There are exactly 71 � -classes that do not consist of bire-
flection groups. By the foregoing, they lead to non-Cohen-Macaulay multiplicative
invariant algebras. The � -classes consisting of bireflection groups have not been sys-
tematically investigated yet. The searches in rank 4 were performed with GAP [71].
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Multiplicative Invariant Fields

9.1 Introduction

This chapter is devoted to invariant fields under group actions. The main theme is the
rationality problem for invariant fields, also known as Noether’s problem. An excel-
lent introduction to this topic and its historical roots can be found in the monograph
[98] by Jensen, Ledet and Yui.

Throughout this chapter, � is assumed to be a commutative field. All actions are
understood to be trivial on � .

9.1.1 G-Fields and Noether’s Problem

Let G be a group. A G-field is a field F together with a given action of G by au-
tomorphisms on F , written as f �→ g(f). As usual, a G-field F is called faithful if
every 1 �= g ∈ G acts non-trivially on F . Morphisms of G-fields are G-equivariant
field homomorphisms. If F/K is an extension of G-fields then the G-action on K is
understood to be the restriction of the action on F .

Recall that a field extension F/K is called rational if F/K is finitely generated
and purely transcendental:

F = K(t1, . . . , td)

with algebraically independent generators ti over K. In its most general form, the
rationality problem for invariant fields, often referred to as the Noether problem, can
be stated follows:

Given a rational extension of G-fields F/K, is the extension of invariant
fields FG/KG again rational?

This problem originated from considerations in constructive Galois theory; see
Noether [141]. The connection will be briefly sketched in §9.1.2. Traditionally, it
is assumed that K is a trivial G-field (i.e., KG = K); we will indicate this by writ-
ing K = � . Even in this case the answer to Noether’s problem is generally negative.
Specifically, given a finite group G, form the rational extension field � (xg | g ∈ G)
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of � and let G act on � (xg | g ∈ G) by g(xh) = xgh and g
∣∣

� = Id � . The invariant
subfield of this action will be denoted by � (G); so

� (G) = � (xg | g ∈ G)G . (9.1)

Lenstra [118] has determined exactly when � (G)/ � is rational for any finite abelian
group G. For example, for the cyclic group C8 of order 8, the extension � (C8)/ �

is not rational; see [118, Corollary 7.2]. Earlier, Swan [208] and Voskresenskiı̆
[218] had shown independently that � (Cp)/ � is non-rational for the primes p =
47, 112, 223, . . . . In view of these examples and others, one often asks for the field
extension FG/KG in Noether’s problem to at least enjoy some weakened version of
rationality.

9.1.2 Versions of Rationality

There are several relaxed notions of rationality for field extensions: a field extension
F/K is called

• stably rational if there is an extension field E ⊇ F such that E/F and E/K are
both rational,

• retract rational if F is the field of fractions of some K-subalgebra R which is a
retract of a localized polynomial algebra K[x1, . . . , xn][1/f ], that is, there are
K-algebra maps

R
µ �� K[x1, . . . , xn][1/f ]
π

��

so that π ◦ µ = IdR,
• unirational if there is an extension field E ⊇ F such that E/K is rational.

We will not be concerned with unirationality in the sequel, because in the setting of
Noether’s problem with K = � , the extension FG/ � is clearly unirational. Retract
rational extensions were introduced by Saltman [175]. They are of importance in
constructive Galois theory: Given � and a finite group G, let � (G) be defined as in
(9.1). By a result due to Saltman [175] for infinite K and to DeMeyer-McKenzie [48]
in general, the extension � (G)/ � is retract rational if and only if there exists a generic
polynomial f = f(t1, . . . , tm)(x) ∈ � (t1, . . . , tm)[x] for Galois field extensions
E/F of K with group G. Explicitly, this means that t1, . . . , tm are indeterminates
over � and f is a separable polynomial in � (t1, . . . , tm)[x] with Galois group G
having the property that, for any Galois extension E/F with Gal(E/F ) = G and
F ⊇ � , there exist λ1, . . . , λm ∈ F so that E is the splitting field of the separable
polynomial f(λ1, . . . , λm)(x) ∈ F [x].

The above versions of rationality are successively weaker:

rational ⇒ stably rational ⇒ retract rational ⇒ unirational .

All these implications are obvious except, perhaps, for the fact that stably rational
extensions are retract rational; see Proposition 9.3.3 below. None of the implications
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is reversible in general. Lenstra [118, Remark 5.7] has shown that if the extension
� (G)/ � in (9.1) is stably rational for a finite abelian group G then � (G)/ � is ac-
tually rational. In particular, the aforementioned non-rational extensions � (Cp)/ �
(p = 47, 112, 223, . . . ) are not stably rational either. However, by a result of Saltman
[177] (see Theorem 9.6.6), � (Cp)/ � is always retract rational, for any prime p, while
Lenstra’s non-rational extension � (C8)/ � is not even retract rational. For further ex-
amples and references to the literature we refer the reader to the book [98] by Jensen,
Ledet and Yui and to Le Bruyn’s excellent survey on the rationality problem, [114].

9.1.3 Linear and Multiplicative G-Fields

Given a linear representation G → GL(V ) of the group G on a finite-dimensional � -
vector space V , we obtain an action of G on the symmetric algebra S(V ) and hence
on the field of fractions

K(V ) = Q(S(V )) .

Note that K(V ) is a rational extension of � ; we will call G-fields of this form linear.
When viewing V as an algebraic variety over � , it is customary to pass to the contra-
gredient representation G → GL(V ∗) and to consider the corresponding G-actions
on the algebra of polynomial functions on V ,

O(V ) = S(V ∗) ,

and on the algebra of rational functions on V ,

K(V ) = K(V ∗) .

Similarly, ordinary and twisted multiplicative G-actions on � [L] and K[L]γ (see
Section 3.8) can be extended to the respective fields of fractions

� (L) = Q( � [L]) and K(L)γ = Q(K[L]γ) .

The resulting G-fields will be called (twisted) multiplicative. The extensions � (L)/ �
and K(L)γ/K are clearly rational. The associated extensions of invariant fields,

� (L)G/ � and K(L)G
γ /KG, and their relations to linear invariant fields will form the

main focal point of this chapter.
The field � (G) in (9.1), for example, can be viewed as the multiplicative invariant

field � (L)G of the regular G-lattice L =
�
[G], and � (G) can also be viewed as

the linear invariant field K(V )G with V = � [G]. A similar remark holds for any
permutation G-lattice L.

It is a remarkable fact that linear invariant fields K(V )G of (infinite) algebraic
groups G are often isomorphic to suitable multiplicative invariant fields � (L)G for a
finite group G. An important instance of this phenomenon occurs when V = Mr

n( � )
is the space of r-tuples of n × n-matrices over � and the group G = PGLn( � )
operates on V by simultaneous conjugation. When � is algebraically closed and r ≥
2, we will see in Theorem 9.8.2 below that

K(Mr
n( � ))PGLn( � ) ∼= � (Un ⊕ Un ⊕A⊗2

n−1 ⊕
(
U⊗2

n

)r−2
)Sn .
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9.2 Stable Isomorphism

Let G be a group. Two G-fields F and F ′ are called stably isomorphic provided there
is an isomorphism of G-fields

F (x1, . . . , xr)
∼
→ F ′(y1, . . . , ys)

for suitable r and s, where the x’s and y’s are G-invariant commuting indeterminates
over F and F ′, respectively. In case F and F ′ contain a common G-subfield K and
the above isomorphism is the identity on K, we say that F and F ′ are stably iso-
morphic over K. Taking G = 〈1〉, one obtains analogous notions for fields without
group action: two fields F and F ′ are said to be stably isomorphic (over a common
subfield K) if there are rational extensions E/F and E′/F ′ so that E ∼= E′ (and the
isomorphism is the identity on K).

Lemma 9.2.1. Let F/K and F ′/K be extensions of G-fields, where G is a finite
group.

(a) If F = K(x1, . . . , xr) for G-invariant indeterminates xi then

FG = KG(x1, . . . , xr)

is rational over KG . Conversely, if K is a faithful G-field and FG/KG is rational
then F = K(x1, . . . , xr) for G-invariant indeterminates xi.

(b) If F and F ′ are stably isomorphic over K then FG and F ′G are stably isomor-
phic over KG .

Proof. (a) If F = K(x1, . . . , xr) for indeterminates xi ∈ FG then K[x1, . . . , xr]
G =

KG [x1, . . . , xr]. Since G is finite, we have FG = Q(K[x1, . . . , xr]
G); see, e.g.,

Bourbaki [22, Prop. V.1.23]. Thus, FG = Q(KG [x1, . . . , xr]) = KG(x1, . . . , xr).
For the converse, assume that FG = KG(x1, . . . , xr) for elements xi that are

algebraically independent over KG . Since K/KG is algebraic, the xi are also alge-
braically independent over K. Put E = K(x1, . . . , xr) ⊆ F . Since E ⊇ FG , we
have EG = FG . By Galois theory, [E : EG ] = |G| = [F : FG ] and so E = F .

(b) By (a), any K-isomorphism of G-fields F (x1, . . . , xr)
∼
→ F ′(y1, . . . , ys)

with G-invariant indeterminates xi, yj restricts to a KG-isomorphism

FG(x1, . . . , xr)
∼
→ F ′G(y1, . . . , ys) .

So FG and F ′G are stably isomorphic over KG . ��

9.3 Retract Rationality

The notion of retract rationality has the flavor of “projectivity”; this will be made
explicit in Lemma 9.3.2 below. We will need the following observation due to Swan
[208, Lemma 8]. For later use it is stated here with an operating group G.
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Lemma 9.3.1. Let F/K be an extension of G-fields. Assume that F = Q(R) =
Q(S) for suitable G-stable affine K-subalgebras R and S. Then there are nonzero
elements r ∈ RG , s ∈ SG so that R[1/r] = S[1/s].

Proof. By [22, Prop. V.1.23], F can be obtained from R by inverting the nonzero
elements of RG , and similarly for S. Since R is affine, we conclude that there is a
nonzero s0 ∈ SG with R ⊆ S[1/s0]. Similarly, S[1/s0] ⊆ R[1/r0] for some nonzero
r0 ∈ RG . Thus, S[1/s0][1/r0] = R[1/r0]. Now, r0 = t/sn

0 for suitable t ∈ SG and
n ∈

�
+, and so S[1/s0][1/r0] = S[1/s0t]. The lemma follows by taking r = r0 and

s = s0t. ��

A homomorphism of K-algebras α : A → B is said to be split if there exists a
homomorphism β : B → A such that α ◦ β = IdB . In this case, B is also called a
retract of A. If B is a retract of A then any localization B[1/b] of B is a retract of
some localization A[1/a]: just consider the extensions of α and β,

B[1/b]
β �� A[1/β(b)]
α

�� , (9.2)

and take a = β(b).
The definition of retract rationality as given in §9.1.2 can be rephrased as fol-

lows: the field extension F/K is retract rational if and only if F = Q(R) for
some K-subalgebra R ⊆ F which is a retract of a localized polynomial algebra
K[x1, . . . , xn][1/f ]. The following lemma gives an alternative formulation.

Lemma 9.3.2. A field extension F/K is retract rational if and only if F/K is finitely
generated and the following condition is satisfied: if F = Q(S) for some affine K-
subalgebra S ⊆ F and α : A � S is an epimorphism of K-algebras then there
exists an a ∈ A such that α(a) �= 0 and the extension of α, A[1/a] � S[1/α(a)], is
split.

Proof. First note that the above version implies the original definition. For, we may
write F = Q(S) for some affine K-subalgebra S ⊆ F , since F/K is finitely
generated. Now choose any epimorphism α : K[x1, . . . , xn] � S and an element
f ∈ K[x1, . . . , xn] such that the extension K[x1, . . . , xn][1/f ] � S[1/α(f)] splits
and take R = S[1/α(f)].

For the converse, assume that F = Q(R) for some K-subalgebra R ⊆ F which
is a retract of a localized polynomial algebra K[x1, . . . , xn][1/f ]. Then F/K is
certainly finitely generated, because R is an affine K-algebra. Write F = Q(S)
where S ⊆ F is some affine K-subalgebra. By Lemma 9.3.1, there are elements
0 �= r ∈ R and 0 �= s ∈ S so that R[1/r] = S[1/s]. By (9.2), R[1/r] = S[1/s]
is a retract of some localization of K[x1, . . . , xn][1/f ]. Any such localization has
the form K[x1, . . . , xn][1/f ′] for some 0 �= f ′ ∈ K[x1, . . . , xn]; see the proof of
Lemma 9.3.1. Thus, we have K-algebra maps

S[1/s]
µ �� K[x1, . . . , xn][1/f ′]
π

��
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so that π ◦ µ = IdS[1/s]. Now consider a K-algebra epimorphism α : A � S.
Choose a0 ∈ A with α(a0) = s and let α : A[1/a0] � S[1/s] be the extension
of α. Further, choose elements ai ∈ A[1/a0] such that α(ai) = π(xi) and define
ϕ : K[x1, . . . , xn] → A[1/a0] by ϕ(xi) = ai. Then α ◦ ϕ = π : K[x1, . . . , xn] →
S[1/s]. In particular, (α ◦ ϕ)(f ′) = π(f ′) is invertible in S[1/s] and so we can
consider the extensions

K[x1, . . . , xn][1/f ′]
ϕ
−→ A[1/a0][1/ϕ(f ′)]

α
� S[1/s]

with α ◦ ϕ = π. Note that A[1/a0][1/ϕ(f ′)] = A[1/a] for some a ∈ A (again, as
in the proof of Lemma 9.3.1) and the map β = ϕ ◦ µ : S[1/s] → A[1/a] satisfies
α ◦ β = α ◦ ϕ ◦ µ = π ◦ µ = IdS[1/s]; so α : A[1/a] � S[1/s] is split. Finally,
since α(A) = S, we have S[1/s] = α(A[1/a]) = S[1/α(a)] and α(a) �= 0. This
completes the proof. ��

Following Saltman [177, Proposition 3.6(a)], we now show that retract rationality
is preserved under stable isomorphism.

Proposition 9.3.3. Let F/K and F ′/K be field extensions.

(a) Assume that F and F ′ are stably isomorphic over K. If F/K is retract rational
then so is F ′/K.

(b) If F/K is stably rational then F/K is retract rational.

Proof. (a) Fix rational extensions E/F and E′/F ′ so that E and E′ are K-
isomorphic. The extension E/K is retract rational, because F/K is. Indeed, E =
F (x1, . . . , xn) with algebraically independent generators xi, and F = Q(R) for
some K-subalgebra R ⊆ F that is a retract of a localized polynomial algebra
K[t1, . . . , td][1/f ]. Thus, R[x1, . . . , xn] is a retract of K[x1, . . . , xn, t1, . . . , td][1/f ]
and Q(R[x1, . . . , xn]) = E, which shows that E/K is retract rational. Hence, we
may assume that F = E.

Write F = F ′(y1, . . . , ym) with algebraically independent yj , and F = Q(R),
as above. Our goal is to show that F ′/K is retract rational. Note that F ′/K is cer-
tainly unirational, as F/K is. In particular, we may assume that F ′ is infinite. For,
otherwise F ′ = K, because K is algebraically closed in F ′, and we are done. Fix an
affine K-subalgebra A ⊆ F ′ with F ′ = Q(A). It will suffice to show that, for some
nonzero a ∈ A, A[1/a] is is a retract of a localized polynomial algebra. To this end,
note that F = Q(R) = Q(A[y1, . . . , ym]); so

R[1/r] = A[y1, . . . , ym][1/t]

holds for suitable nonzero r ∈ R and t ∈ A[y1, . . . , ym], by Lemma 9.3.1. Since A
is infinite, there exists an A-algebra map ϕ : A[y1, . . . , ym] → A with ϕ(t) �= 0; see
Bourbaki [27, Théorème IV.2.2]. Put a = ϕ(t), A′ = A[1/a] and write a = s/re

with 0 �= s ∈ R and e ≥ 0. Then

A′[y1, . . . , ym][1/t] = R[1/rs]
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and ϕ extends uniquely to an A′-algebra map ϕ : A′[y1, . . . , ym][1/t] → A′; so A′

is a retract of R[1/rs]. As we remarked above, R[1/rs] is a retract of a localized
polynomial algebra, as R is, and hence A′ is a retract of a localized polynomial
algebra as well. This completes the proof of (a).

(b) Just note that F/K being stably rational says that F is stably isomorphic to
K over K. Thus, (b) follows from (a). ��

9.4 The “No-name Lemma”

In this section, we gather together some standard facts from field theory. Throughout,
G denotes a finite group. We begin with a lemma often referred to as the Galois
descent lemma, invariant basis lemma or Speiser’s lemma [200]. Recall that K#G
denotes the skew group ring that is associated with the G-field K; see Section 5.3.

Lemma 9.4.1. Let K be a faithful G-field. Then, for any left K#G-module W , we
have W ∼= K ⊗KG WG via multiplication, where WG denotes the G-invariants in
W .

Proof. This lemma is a consequence of the fact that the skew group ring S = K#G is
Morita equivalent to the invariant subfield KG ; see, e.g., Chase, Harrison and Rosen-
berg [36, Remark 1.5(c)]. We give a self-contained argument.

First, we show that S is a simple ring: Let I be a nonzero ideal of S and choose
0 �= f =

∑
g∈G kgg ∈ I so that Supp(f) = {g ∈ G | kg �= 0} has minimal size.

We may assume that f has the form f = 1 +
∑

1�=g∈G kgg. If kg �= 0 for some
1 �= g ∈ G then choose k ∈ K with g(k) �= k and form the element f ′ = kf −fk =∑

1�=g∈G(kkg − kgg(k))g; this is a nonzero element of I whose support is smaller
than Supp(f), contradicting minimality of f . Thus, 1 ∈ I proving simplicity of S.

Applying the foregoing to the ideal of S that is generated by the symmetrizer
t =

∑
g∈G g ∈ S we obtain 1 ∈ StS = KtK; see (5.7). For any left S-module W ,

we have tW ⊆ WG . Consequently, W = KtK ·W = KWG , and hence W has a
K-basis consisting of elements in WG . This basis is easily seen to be a KG-basis of
WG ; so W ∼= K ⊗KG WG . ��

As an application, suppose that the finite group G acts by automorphism on the
ring R and R contains a G-stable subfield K on which G acts faithfully. If R =
〈K,W 〉ring for some G-stable left K-subspace W ⊆ R then, in fact,

R = 〈K,WG〉ring .

To see this, just note that W is a left K#G-submodule of R and apply Lemma 9.4.1.
We now concentrate on field extensions. Various versions of the following rationality
results are referred to in the literature as the “no-name lemma”; the terminology was
introduced by Dolgachev [51].

Lemma 9.4.2. Let K ⊆ F be an extension of faithful G-fields. Assume that F =
〈K,W 〉field for some G-stable K-subspace W ⊆ F . Then:
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(a) F = 〈K,WG〉field and FG = 〈KG ,WG〉field.
(b) If K ⊆W and dimK W = 1 + trdegK F < ∞ then FG/KG is rational.

Proof. (a) The G-action on F and multiplication with K make F a left K#G-module
and W is a K#G-submodule. Therefore, Lemma 9.4.1 implies that W = KWG .
Hence, F = 〈K,WG〉field.

Put E = 〈KG ,WG〉field ⊆ FG . We want to show that equality holds. Indeed, the
E-vector space KE generated by K is a subring of F and dimE KE ≤ dimKG K =
|G|. Thus, KE is a field, and hence KE = 〈K,WG〉field = F . Therefore, dimE F =
dimE KE ≤ |G| = dimFG F . Since E ⊆ FG this is only possible if E = FG .

(b) Choose a KG-basis {1 = b0, b1, . . . , bn} of WG . By part (a), FG =
〈KG , b1, . . . , bn〉field. Since trdegKG FG = trdegK F = n, we conclude that
b1, . . . , bn are transcendental over KG . ��

We now focus on twisted multiplicative G-fields. Recall from Section 3.8 that,
given a G-field K, a G-lattice L and a class γ ∈ Ext � [G](L,K∗), the notation K[L]γ
indicates the group algebra K[L] with the twisted multiplicative G-action (3.19). As
in §9.1.3 we put

K(L)γ = Q(K[L]γ) (9.3)

with the (uniquely) extended G-action. Twisted multiplicative G-fields with trivial
extension class γ are simply written as

K(L) ; (9.4)

the action of G on the group algebra K[L] is then given by formula (3.21).
The following lemma essentially goes back to Masuda [130] and Miyata [134].

Lemma 9.4.3. Let K be a faithful G-field and L a permutation G-lattice. Then any
twisted multiplicative G-ring K[L]γ is a localized polynomial algebra:

K[L]γ ∼= K[x1, . . . , xn][1/f ] ,

where the variables xi and the element f are G-invariant. In particular, K[L]Gγ =

KG [x1, . . . , xn][1/f ] is a localized polynomial algebra over KG and the field exten-
sion K(L)Gγ /KG is rational.

Proof. By Hilbert’s “Theorem 90” (e.g., Serre [193, Proposition X.2]), the G-module
K∗ is H1-trivial, and so Ext � [G](L,K∗) is trivial; see Section 2.5. Therefore,
K[L]γ ∼= K[L]. Fix a

�
-basis {mi}

n
1 of L that is permuted by the action of G

and put ti = xmi ∈ K[L]. Then K[L] = K[t±1
1 , . . . , t±1

n ] = K[t1, . . . , tn][1/f ]
with f =

∏n
1 ti. The group G permutes the variables ti and fixes f . Therefore,

K[L]G = K[t1, . . . , tn]G [1/f ]. Put W =
⊕n

1 Kti ⊆ K[t1, . . . , tn]; this is a left
K#G-submodule of K[t1, . . . , tn]. By Lemma 9.4.1, W has a K-basis consisting of
G-invariant elements x1, . . . , xn. Therefore, K[t1, . . . , tn] = K[x1, . . . , xn] and so
K[L]G = KG [x1, . . . , xn][1/f ], as desired. The assertion about K(L)Gγ /KG is now
clear. ��



9.5 Function Fields of Algebraic Tori 133

The main effect of the foregoing, for our purposes, is that many rationality prob-
lems are essentially equivalent. Parts (a) and (b) of the following proposition are
standard. Part (c) is due to Saltman [179, Corollary 1.6]; see also Reichstein [160].

Proposition 9.4.4. Let G ↪→ GL(V ) be a faithful linear representation of the finite
group G, where V is a finite-dimensional � -vector space.

(a) If U ⊆ V is a faithful subrepresentation then the extension of linear invariant
fields K(V )G/K(U)G is rational.

(b) K(V )G/ � is stably isomorphic to � (L)G/ � for any faithful permutation G-lattice
L.

(c) If � (L)G/ � is retract rational for some faithful G-lattice L then K(V )G/ � is
retract rational as well.

Proof. (a) Apply Lemma 9.4.2(b) with K = K(U) ⊆ F = K(V ) and W = KV ⊆
F . Then dimK W = 1 + dim � V/U = 1 + trdegK F and Lemma 9.4.2(b) yields
the result.

(b) Put K = K(V ), K ′ = � (L) and consider the multiplicative G-field F =
K(L). By Lemma 9.4.3, FG/KG is rational. Note that F can also be written as
F = K(V ′) with V ′ = K ′⊗ � V . Applying Lemma 9.4.2(b) with W = K ′ + V ′, we
also obtain that FG/K ′G is rational. This proves (b).

(c) Fix L and define the fields K, K ′ and F as in the proof of (b) above. Re-
call that FG/K ′G is rational. (This part of the argument only uses faithfulness of
L.) Since K ′G/ � is retract rational, by hypothesis, FG/ � is retract rational as well,
by Proposition 9.3.3(a). Finally, in Proposition 9.5.4(a) below, we will show that if
FG/ � = K(L)G/ � is retract rational then so is KG/ � . ��

We will see in Proposition 9.6.1(b) that L could be taken to be any faithful quasi-
permutation G-lattice in part (b) above. Part (c) implies in particular that, in order
to ensure the existence of a generic polynomial for G over � , it suffices to find one
faithful G-lattice L so that � (L)G/ � is retract rational; see §9.1.2.

9.5 Function Fields of Algebraic Tori

This section focuses on multiplicative G-fields of the form K(L) for a finite group G;
see (9.4). For the most part, the G-field K will be faithful. In view of the connection
with algebraic tori sketched in Section 3.10, the invariant fields K(L)G are often
called fields of torus invariants or function fields of algebraic tori.

Recall that a G-lattice L is called monomial if L has a
�

-basis that is permuted by
G up to a ±-sign; see Section 2.8. The next proposition extends an earlier rationality
result (Lemma 9.4.3) for twisted multiplicative invariant fields K(L)Gγ /KG with L a
permutation G-lattice (γ is trivial in this case).

Proposition 9.5.1. Let G be a finite group and let F = K(L) be a multiplicative
G-field with K a faithful G-field. If the G-lattice L is monomial then FG/KG is
rational.



134 9 Multiplicative Invariant Fields

Proof. Fix a
�

-basis {mi}
n
1 of L that is permuted up to ± by the action of G and put

xi = xmi ∈ F . Then {xi}
n
1 is a transcendence basis for F/K and

g(xi) = x±1
i′ (9.5)

holds for each g ∈ G and each i. Put yi = (1+xi)
−1 ∈ F . (This change of variables

has been borrowed from Hajja and Kang [86].) Then {yi}n
1 is another transcendence

basis for F/K and the G-action (9.5) translates into

g(yi) =

{
yi′ if + holds in (9.5);

1− yi′ if − holds in (9.5).

Thus, Lemma 9.4.2(b) applies with W = K +
∑n

1 Kyi, proving rationality of
FG/KG . ��

The following example shows that Proposition 9.5.1 is not true in general for
twisted multiplicative invariant fields K(L)Gγ with non-trivial γ.

Example 9.5.2 (A non-rational extension). Let G = 〈g1, g2〉 ∼= C2 × C2 act on the
lattice N =

�
e1⊕

�
e2⊕

�
e3 via gi(e3) = −e3+ei and gi(ej) = (2δi,j−1)ej for j =

1, 2. Then M =
�
e1 ⊕

�
e2 is a G-sublattice of N and L = N/M ∼=

�
is monomial,

with both gi acting as −1. Consider the G-fields F = � (N) ⊇ K = � (M); so
F = K(L)γ for some γ. Assuming that char � �= 2 we will show that FG/KG is not
rational. Writing xi = xei as usual, we know (Example 3.5.1) that KG = � (ξ1, ξ2)
with ξi = xi + x−1

i . This field can also be written as KG = � (µ1, µ2), where
µ1 = (x1+1

x1−1 )2 and µ2 = (x2−1
x2+1 )2. The invariant field FG can be determined as in

Hajja and Kang [83, case W14(174)]: FG = � (µ1, σ, τ) with σ = 2
x2
3+x1x2

x3(x1+1)(x2+1)

and τ = 2
x2
3−x1x2

x3(x1−1)(x2−1) . These generators satisfy the relation

µ2τ
2 − µ1σ

2 = (1− µ1)(1− µ2) . (9.6)

Suppose that FG/KG is rational; so FG = KG(y) for some y and σ = σ(y), τ =
τ(y). We may specialize y to a suitable element y0 ∈ KG so that σ0 = σ(y0) and
τ0 = τ(y0) are well-defined nonzero elements of KG = � (µ1, µ2); see Bourbaki
[27, Théorème IV.2.2]. Writing σ0 = s/r and τ0 = t/r with nonzero elements
r, s, t ∈ � [µ1, µ2] with gcd(r, s, t) = 1, relation (9.6) becomes

µ2t
2 − µ1s

2 = (1− µ1)(1− µ2)r
2 (9.7)

in � [µ1, µ2]. Substituting µ2 = 0 in (9.7), we obtain the equation

µ1s(µ1, 0)2 = (µ1 − 1)r(µ1, 0)2

in � [µ1]. This implies that s(µ1, 0) = r(µ1, 0) = 0. (Otherwise, the irreducible fac-
tor µ1 occurs an odd number of times on the left and an even number of times on the
right.) Thus, s = µ2s0 and r = µ2r

′ for some s0, r
′ ∈ � [µ1, µ2]. Similarly, substitut-

ing µ1 = 0 in (9.7), we obtain t = µ1t0 and r = µ1r
′′ for some t0, r

′′ ∈ � [µ1, µ2].
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Therefore, r = µ1µ2r0 for some r0 ∈ � [µ1, µ2]. Substituting the expressions for r
and s into (9.7) gives

µ2t
2 − µ1µ

2
2s

2
0 = (1− µ1)(1− µ2)µ

2
1µ

2
2r

2
0 .

This shows that µ2 divides t in � [µ1, µ2]; so µ2 divides gcd(r, s, t) = 1, a contradic-
tion. Therefore, FG/KG is non-rational.

We now turn to stable rationality and stable isomorphism. The following propo-
sition relates stable isomorphism of multiplicative G-field extensions of the form
K(L)/K to the notion of flasque equivalence∼

fl
that was studied in Section 2.7. Var-

ious versions of the result can be found in the literature. Part (c) is identical with Endo
and Miyata [56, Theorem 1.6]; see also Lenstra [118, Theorem 1.7]. Further relevant
references include Voskresenskiı̆ [217], Colliot-Thélène and Sansuc [41] and Swan
[208]. Recall that a G-lattice L is called quasi-permutation if L ∼

fl
0 or, equivalently,

there is an exact sequence of G-lattices 0 → L → P → Q → 0, where P and Q are
permutation lattices; see 2.7.

Proposition 9.5.3. Let G be a finite group, K a G-field and let L, L′ be G-lattices.

(a) If the G-fields K(L) and K(L′) are stably isomorphic over K then L ∼
fl

L′.

(b) Conversely, assume that L ∼
fl

L′. If K(L) and K(L′) are faithful G-fields then

K(L) and K(L′) are stably isomorphic over K. In particular, K(L)G and
K(L′)G are stably isomorphic over KG in this case.

(c) Assume that the G-field K is faithful. Then the extension K(L)G/KG is stably
rational if and only if L is quasi-permutation.

Proof. (a) Put F = K(L) and F ′ = K(L′). By assumption, there is an isomorphism
of G-fields

E = F (x1, . . . , xr)
∼
→ E′ = F ′(y1, . . . , ys) ,

which is the identity on K. Here, the xi and yj are commuting G-invariant indeter-
minates over F and F ′, respectively. Consider the K-algebras

R = K[L][x1, . . . , xs] ⊆ E and R′ = K[L′][y1, . . . , yt] ⊆ E′ .

Both R and R′ are affine G-stable unique factorization domains, and Q(R) = E,
Q(R′) = E′. By Lemma 9.3.1, there are nonzero elements a ∈ RG and a′ ∈ R′G so
that

R[1/a]
∼
→ R′[1/a′] . (9.8)

Focusing on R for now, put M = U(R[1/a])/K∗ and note that M is a G-module.
Following Swan [208], we will show that there is an exact sequence of G-modules

0 → L −→ M −→ P → 0 , (9.9)

where P is a permutation G-lattice. Indeed, since R is a UFD, the group Q(R)∗/U(R)
is free abelian; a basis is given by a full set of non-associated irreducible elements
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of R. This basis is permuted by the operation of G on Q(R)∗/U(R). Write the el-
ement a ∈ RG in (9.8) as a = upe1

1 pe2
2 . . . pen

n with non-associated irreducibles
pi ∈ R, u ∈ U(R) and ei > 0. Since a is G-invariant, the images of {p1, . . . , pn} in
Q(R)∗/U(R) span a (multiplicative) G-permutation lattice. This will be the lattice
P in (9.9). It is easy to see that U(R[1/a]) = 〈U(R), p1, . . . , pn〉. Hence we have a
short exact sequence of G-modules

1 → U(R) −→ U(R[1/a]) −→ P → 1 .

Finally, U(R) = U(K[L]) = K∗ × L by Lemma 3.4.1. Thus, the sequence above
yields the desired sequence (9.9).

Since all this applies to R′ as well, we have an analogous sequence 0 → L′ −→
M ′ −→ P ′ → 0 with P ′ a permutation G-lattice and M ′ = U(R′[1/a′])/K∗.
The isomorphism (9.8) induces an isomorphism of G-lattices M

∼
→ M ′. In view of

Lemma 2.7.1(c), this proves that L ∼
fl

L′.

(b) Now assume that L ∼
fl

L′; so there are exact sequences of G-lattices 0 →

L → M → P → 0 and 0 → L′ → M → P ′ → 0 with permutation G-lattices P
and P ′. Put F = K(L), F ′ = K(L′) and E = K(M). Identifying L and L′ with
their images in M , we have E = F (P )γ = F ′(P ′)γ′ and, by assumption, F and F ′

are faithful G-fields. Therefore, by Lemma 9.4.3, EG is rational over both FG and
F ′G and, consequently, FG and F ′G are stably isomorphic over KG .

(c) This follows from (a) and (b) by taking L′ = 0: L is quasi-permutation pre-
cisely if L ∼

fl
0 and, putting F = K(L), the extension FG/KG is stably rational if

and only if F is stably isomorphic to K over K; see Lemma 9.2.1(a). ��

The next result is due to Saltman [177], [179], at least for infinite fields K. Our
proof of part (b) below works in general. Recall that SPG denotes the monoid of
stable permutation classes of G-lattices and [L]fl ∈ SPG is the flasque equivalence
class of the G-lattice L; see Sections 2.3 and 2.7.

Proposition 9.5.4 (Saltman). Let G be a finite group, K a faithful G-field and L a
G-lattice. Then:

(a) Assume that K is infinite. If K(L)G is retract rational over the subfield � ⊆ KG

then so is KG .
(b) K(L)G/KG is retract rational if and only if [L]fl is invertible in SPG .

Proof. (a) Put F = K(L); so FG/ � is retract rational and our goal is to show that
KG/ � is retract rational. Note that KG/ � is certainly finitely generated, being a
subextension of the finitely generated extension FG/ � . We first prove the following

Claim. There exists an affine KG-algebra A ⊆ FG such that FG = Q(A) and, for
any 0 �= a ∈ A, there is a KG-algebra map α : A → KG with α(a) �= 0.

Indeed, we may take A = K[L]G . Then Q(A) = FG and, by Noether’s finite-
ness theorem, A is affine over KG , since this certainly holds for K[L]. Now let
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0 �= a ∈ A be given. In order to construct the desired map α, we may re-
place L by any G-lattice containing L. In particular, replacing L by L↓G〈1〉↑

G
〈1〉 (see

(1.13)) we may assume that L is free. Then K[L]G is a localized polynomial alge-
bra KG [x1, . . . , xm][1/g] by Lemma 9.4.3. Since KG is infinite, the existence of a
KG-algebra map α : KG [x1, . . . , xm][1/g] → KG with α(a) �= 0 follows from [27,
Théorème IV.2.2]. This proves the claim.

To complete the proof of part (a), write the algebra A as A = KGS for some
affine � -algebra S ⊆ A. Since KG/ � is finitely generated, we may choose S so
that KG = Q(S ∩ KG). Hence, Q(S) = Q(A) = FG . By Lemma 9.3.2, some
localization of S is a retract of a localized polynomial algebra over � , say

S[1/s]
µ ��

� [x1, . . . , xn][1/f ]
π

�� (9.10)

with π ◦ µ = IdS[1/s]. Let α : A → KG be as in the claim, with α(s) �= 0. Extend
α to A[1/s] → KG and put S′ = α(S[1/s]); this is an affine � -algebra of KG with
S ∩ KG = α(S ∩ KG) ⊆ S′ ⊆ KG = Q(S ∩ KG). Hence, Q(S′) = KG and
S′ ⊆ S[1/s′] for some 0 �= s′ ∈ S ∩KG . By (9.2), the retraction (9.10) extends to

S[1/ss′]
µ ��

� [x1, . . . , xn][1/f ′]
π

��

for some 0 �= f ′ ∈ � [x1, . . . , xn]. Finally, since α : A[1/s] → KG is the identity

on KG , we also have a retraction S′[1/s′]
β ��S[1/ss′]
α

�� , where β is the inclu-

sion. Therefore, S′[1/s′] is a retract of a localized polynomial algebra over � and
Q(S′[1/s′]) = KG , which completes the proof of (a).

(b) First assume that [L]fl is invertible in SPG . Thus, there is an exact sequence
of G-lattices 0 → L → P → M → 0 with P permutation and M invertible.
Put F = K(L) and E = K(P ). Then F is a faithful G-field and we may assume
that F is infinite, because (b) is clear for L = 0. Moreover, E = F (M), because
Hilbert’s “Theorem 90” implies that Ext � [G](M,F ∗) is trivial; see Section 2.5. Fi-
nally, EG/KG is rational by Lemma 9.4.3. Therefore, part (a) implies that FG/KG

is retract rational.
Conversely, assume that FG/KG is retract rational. As in the proof of (a), put

A = K[L]G and recall that A is affine over KG with Q(A) = FG . Therefore,
Lemma 9.3.2 yields KG-algebra maps

A[1/a]
µ ��

KG [x1, . . . , xn][1/f ]
π

��

with π ◦ µ = Id for suitable nonzero a ∈ A and f ∈ KG [x1, . . . , xn]. Apply-
ing K ⊗KG ( . ) to this diagram and using the fact that K ⊗KG A ∼= K[L] (see
Lemma 9.4.1), we obtain G-equivariant K-algebra maps

K[L][1/a]
µ′

�� K[x1, . . . , xn][1/f ]
π′

��
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with π′◦µ′ = Id. Restricting to unit groups modulo K∗ we deduce that the G-module
M = U(K[L][1/a])/K∗ is a direct summand of P = U(K[x1, . . . , xn][1/f ])/K∗.
As in the proof of Proposition 9.5.3(a), one sees that P is a permutation G-lattice: a
G-stable

�
-basis is given by the irreducible factors of f in K[x1, . . . , xn]. Therefore,

M is a permutation projective G-lattice. Moreover, L embeds into M and, exactly as
P , the factor Q = M/L is a permutation G-lattice. Invoking Lemma 2.7.1(a),(b) we
obtain [L]fl = [M ]fl = −[M ], which shows that [L]fl is invertible in SPG . ��

L is monomial
=⇒

Prop. 9.5.1 K(L)G/KG is rational

L is quasi-permutation
([L]fl = [0] in SPG)

⇐⇒

Prop. 9.5.3(c) K(L)G/KG is stably rational

[L]fl is invertible in SPG

⇐⇒

Prop. 9.5.4(b) K(L)G/KG is retract rational

Fig. 9.1. Rationality properties of function fields of tori: G is a finite group, K a faithful
G-field, and L a G-lattice

9.6 Some Rationality Results for Multiplicative Invariant Fields

In this section, we consider ordinary multiplicative G-fields, that is, G-fields of the
form � (L) = Q( � [L]), where G is a finite group, L a G-lattice and � a field with
trivial G-action. For reference, we state the following proposition which is a special
case of results in Section 9.5.

Proposition 9.6.1. Let L and L′ be G-lattices for the finite group G.

(a) If the multiplicative G-fields � (L) and � (L′) are stably isomorphic over � then
L ∼

fl
L′.

(b) Conversely, if L ∼
fl

L′ and L and L′ are faithful then the G-fields � (L) and � (L′)

are stably isomorphic over � . In particular, the fixed fields � (L)G and � (L′)G are
stably isomorphic over � in this case.

(c) Assume that L is faithful and a direct summand of L′. If � (L′)G/ � is retract
rational then � (L)G/ � is retract rational as well.

Proof. Parts (a) and (b) follow from Proposition 9.5.3(a),(b) with K = � , while (c)
follows from Proposition 9.5.4(a) with K = � (L). Note that we may assume that K
is infinite, since (c) is trivial for L = 0. ��
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We now turn to the question when � (L)G/ � is rational. By a case-by-case analy-
sis, it was shown in Hajja and Kang [84] that the extension � (L)G/ � is rational for
all G-lattices L with rankL ≤ 3, with the possible exception of the signed root lat-
tice L = A3 ⊗ �

� − for the symmetric group G = S4; rationality for this lattice
is apparently still open. Starting with rankL = 4, however, the extension � (L)G/ �
need no longer be rational or even retract rational. Indeed, by a result of Saltman
(see Theorem 9.6.6 below), the extension � (C8)/ � for the cyclic group C8 of order
8 is not retract rational. Since C8 acts faithfully on the lattice L =

� 4 through the

matrix

(
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

)
, it follows from Proposition 9.4.4(c) that � (L)C8/ � is not retract

rational either (cf. also Hajja [82, Lemma 3]). Furthermore, for any prime p and any
field � with char � �= p, Saltman [176] has constructed a group G of order p9 such
that � (G)/ � is not retract rational. Smaller examples have subsequently been pro-
duced by Bogomolov [18] and Saltman [179]. All these non-rationality results for
field extensions K/ � are based on computations of the so-called unramified Brauer
group Brur(K/ � ) which was introduced by Saltman in [176],[178]. Retract rational-
ity of K/ � forces the equality Brur(K/ � ) = Br( � ); see [179, Theorem 2.1]. The
unramified Brauer group of (twisted) multiplicative invariant fields was determined
in Saltman [181]; for linear invariant fields, the calculation was done independently
by Bogomolov [18] and Saltman. An alternative calculation of the unramified Brauer
group of (twisted) multiplicative invariant fields, via a reduction to the linear case (cf.
Proposition 3.8.2), can be found in Barge [3], [4]. In other language, the unramified
Brauer group is the case i = 2 of the unramified cohomology Hi

ur as defined by
Colliot-Thélène and Ojanguren in [40]. The unramified cohomology H3

ur of linear
and multiplicative invariant fields forms the subject of Saltman [184] and [185]. Fi-
nally, we mention a result of Beneish [9, Theorem 2.3]: if � algebraically closed and
G is a finite group whose Schur multiplier is zero then for any central extension G′

of G, the fields � (G′) and � (G) are stably isomorphic over � .
The following positive result is due to Farkas [61].

Theorem 9.6.2 (Farkas). If the finite group G acts as a reflection group on the lattice
L then the multiplicative invariant field � (L)G is rational over � .

Proof. By [22, Prop. V.1.23], � (L)G = Q( � [L]G) and Theorem 6.1.1 tells us that
� [L]G = � [M ] for some affine normal semigroup M . Recall from Section 3.4 that
M embeds into some lattice L′ with L′ = 〈M〉group. Then Q( � [M ]) = Q( � [L′]) =

� (L′) and so � (L)G = � (L′) is rational over � . ��

Example 9.6.3 (The multiplicative invariant field ofW(An−1) = Sn). As an illus-
tration, we calculate the multiplicative invariant field of the Sn-root lattice An−1.
Recall from Example 3.5.6 that � [An−1]

Sn = � [M ], where M is the multiplicative
submonoid consisting of all elements

µm =

n−1∏
i=1

sti
i · s

− 1
n � i iti

n =

n−1∏
i=1

(
si

si
1

)ti

·

(
sn
1

sn

) 1
n � i iti

∈ � [An−1]
Sn



140 9 Multiplicative Invariant Fields

with m = (t1, . . . , tn−1) ∈
� n−1

+ and
∑

i iti divisible by n. Here, as usual, si

denotes the ith elementary symmetric function in x1, . . . , xn. The group of frac-
tions 〈M〉group is the free abelian multiplicative group generated by the elements
si/si

1 (i = 2, . . . , n). Thus,

� (An−1)
Sn = � (si/si

1 | i = 2, . . . , n) .

For an alternative proof, without first calculating � [An−1]
Sn , see Hajja and Kang

[85].

The next result, due to Lemire [115], depends on Theorem 9.6.2 but goes far
beyond it. We refer to the original publication [115] for the proof.

Theorem 9.6.4 (Lemire). Let Φ be a reduced root system and G = Aut(Φ) its auto-
morphism group. Then, for any G-lattice L that is rationally isomorphic to the root
lattice of Φ, the multiplicative invariant field � (L)G is rational over � .

Example 9.6.5 (The multiplicative invariant field of Aut(An−1)). We illustrate Le-
mire’s theorem by proving rationality of the invariant field K = � (An−1)

G over
� , where G = Aut(An−1) = {±1} × Sn; see (1.30). By Example 9.6.3, K =
� (σ2, . . . , σn)〈±1〉, where σi = si/si

1. Put g = −1 ∈ G; so g(m) = −m for all m ∈
Un and hence g(xi) = x−1

i , where xi = xei as usual. Therefore, g(si) = sn−i/sn

(with s0 = 1) and hence

g(σi) =
sn−is

i
n

snsi
n−1

= σn−iσ
i−1
n σ−i

n−1 .

This formula shows that g stabilizes the multiplicative sublattice A = 〈σ2, . . . , σn〉
of the field K as well as its sublattice B = 〈σn−1, σn〉. Moreover, A/B is a 〈g〉-
permutation lattice and g acts on the sublattice B as the reflection

(
−n+1 −n
n−2 n−1

)
.

The former implies that K = � (A)〈g〉 is rational over � (B)〈g〉; see Lemma 9.4.3.
Moreover, by Theorem 9.6.2 (or an easy direct verification), � (B)〈g〉 is rational over

� , thereby proving rationality of K/ � .

We conclude this subsection by stating, without proof, a rationality result of Salt-
man [177, Theorem 4.12] that was alluded to earlier. The result is stated in [177] for
linear rather than multiplicative invariant fields but this difference is insubstantial in
view of Propositions 9.4.4(b) and 9.6.1(b).

Theorem 9.6.6 (Saltman). Let G be a finite abelian group, L a faithful quasi-
permutation G-lattice, � an infinite field, and µq( � ) the group of all qth roots of unity
in an algebraic closure � , where q is the largest power of 2 dividing the exponent of
G. Then the extension � (L)G/ � is retract rational if and only if � (µq( � ))/ � is cyclic.

In particular, if G is a finite abelian group then � (G)/ � is retract rational if and
only if G has no element of order 8; see Ireland and Rosen [95, Theorem 4.2′].
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9.7 Some Concepts from Algebraic Geometry

Throughout this section, we assume that � is an algebraically closed field. All alge-
braic varieties and algebraic groups under consideration and all maps between them
are assumed to be defined over � . Furthermore, for simplicity, we assume that all
algebraic varieties are irreducible.

9.7.1 Rational Maps

A rational map of algebraic varieties f : X ��� Y is an equivalence class of regular
maps U → Y , where U is a nonempty open subset of X; two regular maps U1 → Y
and U2 → Y are considered equivalent if they agree on U1 ∩ U2. The domain of
definition dom f of a rational map f is the union of all open subsets U where f
is defined; the complement X \ dom f is called the indeterminacy locus of f . The
rational map f : X ��� Y is called dominant if f(U) is dense in Y for some (and
hence every) nonempty open subset U ⊆ X where f is defined. In this case, for any
rational map g : Y ��� Z, there is a well-defined composite g ◦ f : X ��� Z. In
general, the composite g ◦ f is well-defined provided, for some (and hence every)
nonempty open subset U ⊆ X where f is defined, f(U) is not contained in the
indeterminacy locus of g. Rational maps X ���

� 1 are called rational functions
on X; they form an extension field of � that will be denoted by K(X). There is a
bijection between the set of dominant rational maps f : X ��� Y and the set k-
algebra maps K(Y ) → K(X). A dominant rational map is called birational if the
corresponding map of function fields is an isomorphism.

9.7.2 G-Varieties

Let G be an algebraic group. A G-variety is an algebraic variety X with a regular
action G×X → X . Morphisms of G-varieties are understood to be G-equivariant.
The action of G on X induces actions on the algebras O(X) and K(X) of regular
and rational functions on X . Here, we are mostly interested in the latter, especially
in the invariant subfield K(X)G.

9.7.3 The Rational Quotient

The field K(X)G of invariant rational functions of a G-variety X defines, up to
birational equivalence, an algebraic variety X/G with K(X/G) = K(X)G. The
embedding K(X)G ↪→ K(X) corresponds to a dominant rational map

π : X ��� X/G ,

called the rational quotient of X with respect to G. The following properties of π
will be important for us; see Popov and Vinberg [153, Sect. 2.4] or Reichstein [158,
Sect. 2.3] for details:
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(a) π separates G-orbits in general position in X: there exists a nonempty open
subset X0 ⊆ X such that π is regular on X0 and x, x′ ∈ X0 lie in the same
G-orbit iff π(x) = π(x′) (Rosenlicht [171, 172]).

(b) π is unique in the following sense. If f : X ��� Y is a dominant ratio-
nal map separating G-orbits in general position then there is a birational map
f : X/G

∼
��� Y such that f = f ◦ π.

9.7.4 Relative Sections

Let X be a G-variety. In investigating the structure of the invariant algebra K(X)G

the following notion, originally due to Katsylo [105] (see also Popov [152] and
Popov-Vinberg [153]) is often useful. Let H be a closed subgroup of the algebraic
group G. An H-stable subvariety S ⊆ X is called a (G, H)-section if

(a) GS is dense in X and
(b) there is a nonempty open subset S0 ⊆ S so that gS0 ∩ S �= ∅ implies g ∈ H .

Lemma 9.7.1. Let X be a G-variety and S ⊆ X a (G, H)-section. Then K(X)G ∼=
K(S)H via restriction.

Proof. Let π : X ��� X/G be the rational quotient. The indeterminacy locus of
π is a proper G-invariant closed subvariety of X. In view of condition (a), such a
subvariety cannot contain S. Since S is irreducible, it follows that the restriction
π|S : S ��� X/G is well-defined. Conditions (a) and (b) above imply that π|S is
dominant and separates H-orbits in general position in S. Thus, by uniqueness of
the rational quotient map, S/H

∼
��� X/G, which proves the lemma. ��

9.8 The Field of Matrix Invariants as a Multiplicative Invariant
Field

We continue to assume that � is an algebraically closed field. Let Mn = Mn( � )
denote the space of n × n-matrices over � , and let r be an integer ≥ 2. The group
PGLn = GLn( � )/ �

∗ operates on the space Mr
n of r-tuples of n × n-matrices over

� by simultaneous conjugation:

g(A1, . . . , Ar) = (gA1g
−1, . . . , gArg

−1) (9.11)

for g ∈ PGLn and Ai ∈ Mn. As in §9.1.3, this action gives rise to PGLn-actions on
the algebra of polynomial functions on Mr

n,

O(Mr
n) = S((Mr

n)∗) ,

and on the algebra of rational functions,

K(Mr
n) = Q(O(Mr

n)) .
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Explicitly, O(Mr
n) is the polynomial algebra over � with standard generators x

(�)
i,j

(1 ≤ i, j ≤ n, 1 ≤ � ≤ r), where x
(�)
i,j sends (A1, . . . , Ar) ∈ Mr

n to the (i, j)-entry
of the matrix A�. The field K(Mr

n) is the rational function field of degree rn2 over
� ,

K(Mr
n) = � (x

(�)
i,j | 1 ≤ i, j ≤ n, 1 ≤ � ≤ r) .

The ultimate goal, as yet unachieved, is to prove (stable, retract) rationality of the
invariant field K(Mr

n)PGLn over � . See Le Bruyn [114] and Formanek [66] for ex-
cellent surveys on this and related problems. The algebra O(Mr

n)PGLn has been
determined by Procesi [155] in characteristic 0 and by Donkin [52] in general. For
r = 1, the result is classical: O(Mn)PGLn is a polynomial algebra in n variables
over � ; cf., e.g., Springer [201, Theorem 1.5.7].

The invariant field K(Mr
n)PGLn can be expressed as the multiplicative invariant

field arising from a suitable lattice for the symmetric group Sn; see Theorem 9.8.2
below. In the present very explicit form, the result was proved by Formanek [64, The-
orems 3 and 8] building on work of Procesi [154]. Both these papers are concerned
with the center of the so-called generic division algebra UD( � , n, r), but this center
can be identified with the invariant field K(Mr

n)PGLn ; see Procesi [155] in charac-
teristic 0 and Donkin [52] or Saltman [186] in general. The proof of the Formanek-
Procesi theorem given below, using relative sections, follows the outline of Popov
[152].

We will need the following auxiliary lemma on twisted multiplicative invariant
fields.

Lemma 9.8.1. Let K(L)γ be a twisted multiplicative G-field, where G is an arbi-
trary group acting trivially on the field K and on the lattice L. Then K(L)G

γ =
K(M), where M is the kernel of the map L → Hom(G, K∗), m �→ γm; see (3.20).
In particular, K(L)G

γ /K is rational.

Proof. Recall from (3.19) that G acts on Kγ [L] via

g(
∑
m∈L

kmxm) =
∑
m∈L

kmγm(g)xm

with γm(g) ∈ K∗. By (3.20) the map m �→ γm is a homomorphism L →
Hom(G, K∗). The sublattice M ⊆ L is the kernel of this map. Thus, putting
F = K(M) ⊆ K(L)γ , we clearly have F ⊆ K(L)G

γ . For the reverse inclusion,
consider the G-subring R = FL ⊆ K(L)γ ; so K(L)γ = Q(R).

Claim. R has no nontrivial G-stable ideals and RG = F .

To prove this, fix a transversal T for M in L with 0 ∈ T . Then R =
⊕

t∈T Fxt

and G acts on R via r =
∑

t∈T ftx
t �→ g(r) =

∑
t∈T ftγt(g)xt. If ft �= 0 for some

t �= 0 then r /∈ RG, because γt(g) �= 1 for some g ∈ G. This shows that RG = F .
Next let I be a nonzero G-stable ideal of R and choose 0 �= r ∈ I having a minimal
number of nonzero terms ftx

t. We may assume that f0 = 1. If r �= 1 then, for some
g ∈ G, we have 0 �= r − g(r) =

∑
0�=t∈T ft(1 − γt(g))xt ∈ I; this element has
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fewer nonzero terms than r, contrary to our choice. Therefore, r = 1 which proves
the claim.

Now consider an invariant q ∈ K(L)G
γ . Then I = {r ∈ R | rq ∈ R} is a nonzero

G-stable ideal of R. Hence, the claim implies that q ∈ RG = F , as desired. ��

Recall that Un denotes the standard permutation lattice for the symmetric group
Sn and An−1 is its root sublattice; see §1.3.3.

Theorem 9.8.2 (Formanek, Procesi). Let r ≥ 2. Then there is a � -isomorphism

K(Mr
n)PGLn ∼= � (Ln,r)

Sn

with Ln,r = Un ⊕ Un ⊕ A⊗2
n−1 ⊕

(
U⊗2

n

)r−2
. In particular, K(Mr

n)PGLn is rational
over K(M2

n)PGLn and
K(M2

n)PGLn ∼= � (Ln)Sn ,

where Ln = Un ⊕ Un ⊕A⊗2
n−1.

Proof. Let Tn−1 = ( � m)n/∆ be the maximal torus of PGLn consisting of the im-
ages of the diagonal matrices in GLn. Here, � m = � ∗ is the multiplicative group and
∆ = � m denotes the scalar matrices in ( � m)n. The normalizer N(Tn−1) of Tn−1

in PGLn is generated by Tn−1 and the images in PGLn of the n × n-permutation
matrices; it is isomorphic to the semidirect product Tn−1 � Sn with Sn acting on
Tn−1 by permuting the n copies of � m. The Sn-action on Tn−1 yields an Sn-action
on the character lattice X(Tn−1) = Hom(Tn−1, � m) via (sf)(t) = f(s−1ts) for
t ∈ Tn−1, s ∈ Sn. Explicitly, X( � n

m) ∼=
� n, with i = (i1, . . . , in) ∈

� n correspond-
ing to χi : (λ1, . . . , λn) �→

∏
j λ

ij

j of � n
m. The character χi passes down to Tn−1 if

and only if λ � j ij = 1 holds for all λ ∈ � ∗ which amounts to
∑

j ij = 0. Taking
Sn-actions into account, we see that

X( � n
m) ∼= Un and X(Tn−1) ∼= An−1 (9.12)

as Sn-lattices.
View Mr

n as a PGLn-variety isomorphic to affine space
� rn2

via (9.11). Put
S = Dn⊕Mr−1

n ⊆ Mr
n, where Dn ⊆ Mn is the space of diagonal matrices. Then S

is a (PGLn, N(Tn−1))-section of Mr
n in the sense of §9.7.4. Indeed, the matrices in

Mn with distinct eigenvalues form a PGLn-stable dense open subset E ⊆ Mn (cf.,
e.g., Springer [201, 1.5.6]). The PGLn-orbits in E are in bijection with the Sn-orbits
in D′

n = E ∩Dn via Jordan canonical form, and the isotropy group in PGLn of any
matrix in D′

n is exactly Tn−1. Thus, we may take S0 = D′
n⊕Mr−1

n in §9.7.4 and
Lemma 9.7.1 yields a � -isomorphism

K(Mr
n)PGLn ∼= K(Dn⊕Mr−1

n )Tn−1�Sn .

In order to further simplify the right hand side above, let xi = x
(1)
i,i and x

(�)
i,j

(2 ≤ � ≤ r) be the standard coordinates on Dn and Mr−1
n respectively. In this

coordinate system, the Sn-action on K(Dn⊕Mr−1
n ) is given by
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s(xi) = xs(i) and s(x
(�)
i,j ) = x

(�)
s(i),s(j) . (9.13)

An element t = (t1, . . . , tn) of Tn−1 = ( � m)n/∆ acts via

t(xi) = xi and t(x
(�)
i,j ) = t−1

i tjx
(�)
i,j . (9.14)

Let M ≤ K(Dn⊕Mr−1
n )∗ denote the multiplicative group generated by the coordi-

nates xi, x
(�)
i,j (� ≥ 2). The torus Tn−1 acts on M via

t(m) = γm(t)m (t ∈ Tn−1,m ∈M) ,

where γm : Tn−1 → � m is the character explicitly given by (9.14). Thus, the Tn−1-
fieldK(Dn⊕Mr−1

n ) is the twisted multiplicative Tn−1-field � (M)γ and Lemma 9.8.1
gives

K(Dn⊕Mr−1
n )Tn−1 = � (L) ,

where L denotes the kernel of the homomorphism γ : M → X(Tn−1), m �→ γm.
By (9.13), M is Sn-stable and a simple calculation shows that γ is Sn-equivariant.
Thus, L is an Sn-sublattice of M and

K(Dn⊕Mr−1
n )Tn−1�Sn = � (L)Sn ,

an ordinary multiplicative Sn-invariant field.
In order to establish the first isomorphism in the theorem, we must show that

L ∼= Un⊕Un⊕A⊗2
n−1⊕

(
U⊗2

n

)r−2
as Sn-lattices. Using the notation of §1.3.3, equa-

tions (9.13) show that the multiplicative Sn-lattice M = 〈xi, x
(�)
i,j 〉 is isomorphic to

the additive Sn-lattice Un⊕
(
U⊗2

n

)r−1
via xi �→ ei ∈ Un and x

(�)
i,j �→ ei⊗ej ∈ U⊗2

n .
Identifying X(Tn−1) with An−1 as in (9.12), the map γ : M → X(Tn−1) that

was considered above becomes the map f : Un ⊕
(
U⊗2

n

)r−1
� An−1 that van-

ishes on Un and sends each summand U⊗2
n onto An−1 via (ei ⊗ ej) �→ ej − ei;

see (9.14). Therefore, L = Ker γ ∼= Ker f = Un ⊕ Ker
(
f
∣∣
(U⊗2

n )
r−1

)
. More-

over, Ker
(
f
∣∣
(U⊗2

n )
r−1

)
∼= Ker

(
f
∣∣
U⊗2

n

)
⊕
(
U⊗2

n

)r−2
via (m1, . . . , mr−1) �→

(
∑

mi,m2, . . . , mr−1). Therefore,

L ∼= Un ⊕ L′ ⊕
(
U⊗2

n

)r−2
,

where we have put L′ = Ker
(
f
∣∣
U⊗2

n

)
. It suffices to show that L′ ∼= Un ⊕ A⊗2

n−1.

Note that

U⊗2
n =

(⊕
i

�
(ei ⊗ ei)

)
⊕

⎛⎝⊕
r �=s

�
(er ⊗ es)

⎞⎠ .

The elements ei ⊗ ei span a sublattice of L′ isomorphic to Un. Denoting the second
summand above by P , we recall the Sn-isomorphism (2.19):
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An−1 ⊗ Un
∼
→ P , (es − er)⊗ es �→ er ⊗ es .

With this identification, f |P becomes the map Id⊗εn : An−1 ⊗ Un → An−1 ⊗
�

= An−1 with εn : Un →
�

as in (1.10). Since Ker(Id⊗εn) = A⊗2
n−1, we obtain

L′ ∼= Un ⊕A⊗2
n−1, as desired.

It remains to show that K(Mr
n)PGLn is rational over K(M2

n)PGLn . By the fore-
going, we may identify K(Mr

n)PGLn/K(M2
n)PGLn with � (Ln,r)

Sn/ � (Ln,2)
Sn and

Ln,r = Ln,2 ⊕
(
U⊗2

n

)r−2
. Since

(
U⊗2

n

)r−2
is a permutation Sn-lattice and � (Ln,2)

is a faithful Sn-field, rationality of the extension � (Ln,r)
Sn/ � (Ln,2)

Sn follows from
Lemma 9.4.3. This completes the proof of the theorem. ��

The above description of the field of matrix invariants as a multiplicative Sn-
invariant field, in conjunction with the analysis of the certain relevant Sn-lattices
in Section 2.12, yields the following rationality result. For n = 2, the result ulti-
mately can be traced back to Sylvester [212]; see also Procesi [154, Theorem 2.2].
The cases n = 3 and n = 4 are due to Formanek [64], [65] while degrees n = 5 and
n = 7 were first treated by Bessenrodt and Le Bruyn [17], with subsequent simpli-
fications by Beneish [8]. Retract rationality of K(Mr

n)PGLn/ � for prime degrees n
was originally proved by different means in Saltman [177]; see also [186, Corollary
14.34]. We essentially follow the approach of Colliot-Thélène and Sansuc [42, proof
of Corollary 9.13]. Part (b) is from [117], [127].

Theorem 9.8.3. (a) The extension K(Mr
n)PGLn/ � is rational for n ≤ 4, stably ra-

tional for n = 5 and n = 7, and retract rational for all prime values of n.
(b) For all odd n ≥ 5,K(Mr

n)PGLn is rational over the multiplicative invariant field
� (
∧2

An−1)
Sn .

Proof. We first show that K(Mr
n)PGLn/ � is retract rational for prime degrees n. Re-

call from Theorem 9.8.2 that K(Mr
n)PGLn/ � is isomorphic to � (Ln,r)

Sn/ � where

Ln,r is the Sn-lattice Un ⊕ Un ⊕ A⊗2
n−1 ⊕

(
U⊗2

n

)r−2
. This lattice is faithful and

permutation projective, the latter by Proposition 2.12.2(a). Say Ln,r is a direct sum-
mand of the permutation Sn-lattice P . Proposition 9.6.1(b) implies that � (P )Sn is
stably isomorphic over � to � (Un)Sn = � (s1, . . . , sn); see Example 3.5.5. There-
fore, � (P )Sn/ � is stably rational, and hence retract rational (Proposition 9.3.3(b)).
Retract rationality of � (Ln,r)

Sn/ � now follows from Proposition 9.6.1(c).
Next, we show that � (Ln,r)

Sn/ � is stably rational for n = 5 and n = 7. In
both cases, the Sn-lattice A⊗2

n−1 is flasque equivalent to the weight lattice A∗
n−1;

see Proposition 2.12.2(b). Therefore, Ln,r ∼
fl

A∗
n−1 and Proposition 9.6.1(b) yields

that the fields � (Ln,r)
Sn and � (A∗

n−1)
Sn are stably isomorphic over � . Since

� (A∗
n−1)

Sn/ � is rational, by Example 3.7.1 or Proposition 9.6.2, the cases n = 5
and n = 7 are settled.

For the remainder of the proof we put

Ln = Un ⊕ Un ⊕A⊗2
n−1 ,
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as in Theorem 9.8.2. In view of this result, the objective for the remaining cases
n = 2, 3, 4 of part (a) is to prove that � (Ln)Sn/ � is rational. For (b), we will show
that � (Ln)Sn is rational over � (

∧2
An−1)

Sn for all odd n ≥ 5. Here, we view∧2
An−1 as an Sn-sublattice of A⊗2

n−1 as in Lemma 1.4.1(b).
We first treat the cases n ≤ 3.

n = 2: The S2-lattice A1 is the sign lattice
� −; so A⊗2

1 =
�

and L2 = U2⊕U2⊕
�

.
By Lemma 9.4.3 with L = U2⊕

�
, the field � (L2)

S2 is rational over � (U2)
S2 , which

in turn is rational over � ; see Example 3.5.5. Therefore, � (L2)
S2/ � is rational.

n = 3: Note that the exterior square
∧2

A2 =
�

det A2
is isomorphic to the sign

lattice
� − for S3. By Lemma 2.12.1(c), the symmetric square S2A2 is isomor-

phic to the standard permutation S3-lattice, U3. Therefore, the exact sequence in
Lemma 1.4.1(b) for L = A2 takes the form 0 →

� − → A⊗2
2 → U3 → 0. This

yields an exact sequence of S3-lattices

0 →
� − ⊕ U3 −→ L3 −→ U3 ⊕ U3 → 0 .

Lemma 9.4.3 (with L = U3 ⊕ U3) implies that � (L3)
S3/ � (

� − ⊕ U3)
S3 is rational,

and Proposition 9.5.1 (with L =
� −) gives rationality of � (

� − ⊕ U3)
S3/ � (U3)

S3 .
Since � (U3)

S3 is rational over � , we conclude that � (L3)
S3 is rational over � as well.

(A different rationality proof for K(M2
3)

PGL3 using Clifford algebras can be found
in Revoy [164].)

For n ≥ 4, the Sn-lattice
∧2

An−1 is faithful; in fact,
∧2

An−1 ⊗ � � ∼=

S(n−2,12), the Specht module for the partition (n − 2, 12) of n; see [70, Exercise
4.6]. Furthermore, we know by Lemma 2.12.1(b),(d) that

S2An−1 ⊕ Un ⊕
�

is a permutation lattice for Sn if n = 4 or n is odd. (9.15)

By Lemma 9.4.3 with L = Un,

� (Ln)Sn = � (A⊗2
n−1 ⊕ Un)Sn(t1, . . . , tn)

with transcendental elements ti. The right hand side may also be written as � (A⊗2
n−1⊕

Un ⊕
�
)Sn(t1, . . . , tn−1). The exact sequence in Lemma 1.4.1(b) for L = An−1

leads to an exact sequence of Sn-lattices

0 →
∧2

An−1 −→ A⊗2
n−1 ⊕ Un ⊕

�
−→ S2An−1 ⊕Un⊕

�
→ 0 .

By (9.15) and Lemma 9.4.3, this sequence implies that � (A⊗2
n−1 ⊕ Un ⊕

�
)Sn is

rational over � (
∧2

An−1)
Sn . Hence, if n = 4 or n is odd then � (Ln)Sn = � (A⊗2

n−1⊕

Un ⊕
�
)Sn(t1, . . . , tn−1) is rational over � (

∧2
An−1)

Sn as well. This proves part
(b) of the theorem for n = 4 and all odd n ≥ 5.

It remains to prove rationality of � (L4)
S4/ � .

n = 4: The identity
(∧2

A3

)
∧A3 =

∧3
A3
∼=

�
det A3

=
� − shows that
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A3
∼= Hom(A3,

� −) ∼= A∗
3 ⊗ �

� − .

It is known (but nontrivial) that � (A∗
3 ⊗ � � −)S4 is rational over � . This was verified

by Formanek [65, Theorems 13 and 14] and later again by Hajja and Kang [84,
case W8(198)]. Therefore, � (

∧2
A3)

S4/ � is rational. Since � (L4)
S4/ � (

∧2
A3)

S4 is
rational by the foregoing, it follows that � (L4)

S4 is rational over � . ��

Without proof, we mention the following result, independently due to Schofield
[188] and Katsylo [106], which reduces the investigation of the stable structure of
K(Mr

n)PGLn/ � to the case where n is a prime power; for a later different proof, see
Saltman [183, Theorem 13].

Theorem 9.8.4 (Schofield, Katsylo). Suppose that n = ab with gcd(a, b) = 1. Then
K(Mr

n)PGLn is stably isomorphic over � to the field of fractions of K(Mr
a)PGLa ⊗ �

K(Mr
b)

PGLb .

This theorem allows to extend the stable rationality and retract rationality re-
sults in Theorem 9.8.3(a). Recall that, by Proposition 9.3.3(a), stable isomorphisms
preserve retract rationality.

Corollary 9.8.5. (a) K(Mr
n)PGLn is stably rational over � for all divisors n of

420 = 4 · 3 · 5 · 7.
(b) K(Mr

n)PGLn is retract rational over � if n is either squarefree or twice a square-
free number.
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Problems

We conclude our account by suggesting some problems for future research. The se-
lection reflects the author’s taste and inclinations and surely many further problems,
perhaps even more pressing to some readers, could be added. The level of the prob-
lems discussed below ranges from the “famous unsolved” variety and some long-
range projects to others that may very well be relatively quick and easy to dispose
of. Some of the problems I have not actually tried my hands at myself, while others
are presented along with a detailed discussion and solutions to some special cases.

Throughout this chapter, G denotes a finite group and L is a G-lattice.

10.1 The Cohen-Macaulay Problem

It would be interesting to determine if the conclusion of Theorem 8.1.1 can be
strengthened to the effect that all Gm/R2(Gm) are in fact trivial, that is, the isotropy
groups Gm for m ∈ L are generated by bireflections on L. I do not know if, for the
latter to occur, it is sufficient that just G is generated by bireflections. The correspond-
ing fact for reflection groups is known to be true: if G is generated by reflections on
L (or, equivalently, on the vector space L � ) then so are all isotropy groups Gm; see
Steinberg [203, Theorem 1.5] or Bourbaki [24, Exercise V.6.8(a)].

Problem 1. If
�
[L]G is Cohen-Macaulay are all isotropy groups Gm for m ∈ L

generated by bireflections on L?

Problem 2. Let G ⊆ GL(V ) be a finite linear group, where V is some finite-
dimensional vector space. If G is generated by bireflections are all isotropy groups
Gv for v ∈ V generated by bireflections as well?

Theorem 8.1.1 guarantees that Problem 1 has a positive answer for solvable
groups G. It might be worthwhile to look into Problem 2 more generally for k-
reflections. There is essentially a complete classification of finite linear groups gen-
erated by bireflections. In arbitrary characteristic, this is due to Guralnick and Saxl
[81]; for the case of characteristic zero, see Huffman and Wales [92]. However, other
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than for finite reflection groups G ⊆ GLn(
�
) which can be investigated using root

systems, no general theory appears to be in place for the unified study of bireflection
groups. Therefore, it is not clear if one should expect

�
[L]G to be Cohen-Macaulay

for every finite bireflection group G ⊆ GL(L), or even how to approach this problem.
Nevertheless, we ask

Problem 3. Is
�
[L]G Cohen-Macaulay if and only if G is generated by bireflections

on L?

As we mentioned in Example 8.11.4, Pathak [148] has checked Problem 3 for lat-
tices L of rank 3. In general, the “only if”-direction is of course part of Problem 1. By
Theorem 8.1.1, this direction certainly holds for all groups G whose simple factors
G/N with 1 �= N are abelian. An affirmative answer to Problem 3 would imply that
if

�
[L]G is Cohen-Macaulay over

�
then so is

�
[L′]G for any G-sublattice L′ ⊆ L.

It does not seem obvious that this is indeed the case. The case of abelian groups is
easy to settle:

Proposition 10.1.1. Problem 3 has a positive answer when G is abelian.

Proof. It suffices to show that
�
[L]G is Cohen-Macaulay for any finite abelian group

G acting as a bireflection group on the lattice L. By passing to a rationally isomorphic
lattice (Proposition 8.9.3), we may assume that L =

⊕r
i=1 Li, where each Li is a

rationally irreducible G-lattice. We may further assume that G acts faithfully and
effectively on L; see Corollary 8.9.4. We claim that rankLi ≤ 2 holds for all i. To
see this, choose a bireflection g ∈ G such that gLi

�= IdLi
. Then rank[g, Li] ≤ 2 and

rank[g, Li] = rankLi, because [g, Li] is a nontrivial G-sublattice of Li.
First assume that rankLi = 2 for some i, say i = 1. Let G1 denote the subgroup

of G that is generated by all bireflections g ∈ G such that gL1
�= IdL1

and let H
be the subgroup generated by the bireflections that act trivially on L1. Then G1 ⊆
KerG(M), where we have put M =

⊕
i�=1 Li. Thus, G = G1 × H and (3.5) gives

�
[L]G =

�
[L1]

G1 ⊗ �

�
[M ]H. By Corollary 8.9.2 we know that

�
[L1]

G1 is Cohen-
Macaulay and, arguing by induction on rank, we may assume that

�
[M ]H is Cohen-

Macaulay as well. This easily implies that
�
[L]G is Cohen-Macaulay.

Thus, we may assume that all Li have rank 1; so G ⊆ diag(±1, . . . ,±1)r×r.
Suppose that there is a reflection 1 �= g ∈ G, say gL1

�= IdL1
. Then G = 〈g〉 × H,

where H = KerG(L1), and as above, we conclude that
�
[L]G is Cohen-Macaulay.

Therefore, we may assume that G is generated by certain bireflections gi,j (i �= j)
acting as −1 on Li and Lj and as 1 on all other summands. Defining i ∼ j if i = j
or gi,j ∈ G, we obtain an equivalence relation on {1, . . . , r}. If there is more than
one equivalence class then L and G decompose and, as above, we may conclude
that

�
[L]G is Cohen-Macaulay. On the other hand, if gi,j ∈ G for all i �= j then

G = diag(±1, . . . ,±1)r×r∩SLr(
�
) and the result follows from Example 3.5.3. ��

The “if”-direction of Problem 3 looking like a long shot, it might be wise to try
and establish the Cohen-Macaulay property for some special cases of bireflection
actions first.

Problem 4. Suppose G acts as a reflection group on L.
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(a) Is
�
[L⊕ L]G Cohen-Macaulay?

(b) Is
�
[L]H Cohen-Macaulay for every subgroupH of G such that [G : H] = 2?

Recall that the groups H in (b) do indeed act as bireflection groups on L, by
Proposition 1.7.1. Example 8.11.1 is an explicit example for the situation consid-
ered in (b), while a solution to (a) would in particular resolve the Cohen-Macaulay
problem for

�
[U2

n]Sn which was left open in Example 8.11.3.

10.2 Semigroup Algebras

Recall from Theorem 6.1.1 that
�
[L]G is a semigroup algebra over

�
if G acts as a

reflection group on the lattice L. I do not know if the converse also holds. Thus:

Problem 5. If
�
[L]G is a semigroup algebra over

�
, must G act as a reflection group

on the lattice L?

A partial converse to Theorem 6.1.1 was given in Theorem 7.5.1. For a different
partial converse as well as an alternative proof of Theorem 6.1.1, see Tesemma [215].
Tesemma’s proof is heavily influenced by Reichstein’s article [159]; it avoids the
machinery of root systems and uses monomial orderings (see Section 3.4) and the
geometry of polyhedral cones instead. The topological methods of Panyushev [146]
(see also Popov and Vinberg [153, p. 242–243]) will likely be helpful in tackling
Problem 5. The problem is related to Problem 3 inasmuch as affine normal semigroup
algebras over any Cohen-Macaulay base ring are Cohen-Macaulay (Hochster [89,
Theorem 1], or see Bruns and Herzog [32, Theorem 6.3.5(a)]). As with Problem 3,
an affirmative answer to Problem 5 would imply that if

�
[L]G is a semigroup algebra

over
�

then so is
�
[L′]G for any G-sublattice L′ ⊆ L. It does not seem clear that

this is the case. In fact, if it were known to hold then, arguing as in the proof of
Proposition 10.1.1 and using Lemma 10.2.2 below, it would be easy to show that
Problem 5 had a positive answer at least for abelian G. Other than with the Cohen-
Macaulay problem, it is not even obvious that the question whether or not

�
[L]G is a

semigroup algebra over
�

depends only on the rational type of the G-lattice L. Note
that if

�
[L]G is a semigroup algebra over

�
, say

�
[L]G =

�
[M ], then the monoid

M will have to be an affine normal semigroup; see Section 3.4. Furthermore, the
positive part M/U(M) of M has to be Φ-simplicial in the sense of Gubeladze [80].
Recall that any affine semigroup M embeds into a lattice L = 〈M〉group

∼=
� r . Hence

we may view M ↪→ L � = � r. Moreover, if M is positive then there is a monoid
homomorphism ϕ : M →

�
+ satisfying ϕ(m) > 0 for all 0 �= m ∈ M (cf. Swan

[210, Theorem 4.5]) and we may extend ϕ to a linear form ϕ : � r → � . Following
Gubeladze, we put

Φ(M) = � +M ∩ {x ∈ � r | ϕ(x) = 1} ,

where � +M is the convex cone in � r that is spanned by M . It is easy to see that
Φ(M) is an (r − 1)-dimensional convex polytope; it is the convex hull of the points
mi/ϕ(mi), where {mi} is the Hilbert basis of M ; see Lemma 3.4.3. The monoid
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M is called Φ-simplicial if Φ(M) is a simplex, that is, Φ(M) is the convex hull of r
points. The following proposition follows from Gubeladze [80, Proposition 1.6].

Proposition 10.2.1. Let � [M ] be an affine normal semigroup algebra over the Krull
domain � . Then the class group Cl( � [M ]) is torsion if and only if Cl( � ) is torsion
and M/U(M) is Φ-simplicial.

Since
�
[L]G is an affine normal

�
-algebra with finite class group Cl(

�
[L]G) (see

Theorem 4.1.1), the monoid M/U(M) must be Φ-simplicial if
�
[L]G =

�
[M ].

We now present a technical lemma which allows to substantiate the claims, made
on various occasions in earlier chapters, that certain multiplicative invariant algebras
are not semigroup algebras. For g ∈ G, put L(g) = {m ∈ L |

∑
h∈〈g〉 h(m) = 0}.

Thus, Ĥ−1(〈g〉, L) = L(g)/[g, L]; see (2.2). Elements g ∈ G with rank[g, L] =
ming∈G\KerG(L) rank[g, L] will be called “minimal”.

Lemma 10.2.2. Assume that

(a) no element of G acts as a nonidentity reflection on L, and
(b) for some minimal g ∈ G, L(g) is G-stable and strictly larger than [g, L].

Then � [L]G is not a semigroup algebra over � for any domain � with |G| �= 0 in � .

Proof. Suppose, for a contradiction, that (a) and (b) hold but � [L]G is a semigroup
algebra over � . Replacing G by G/KerG(L), we may assume that L is a faithful
G-lattice. Also, passing to the algebraic closure of the field of fractions of � (see
Proposition 3.3.1(b)), we may assume that � is an algebraically closed field with
|G|−1 ∈ � .

Put X = Spec � [L], Y = Spec � [L]G = X/G and let π : X → Y = X/G denote
the quotient map. Furthermore, let Ysing denote the singular locus of Y . In view of
hypothesis (a), Corollary 7.3.2 says that

Z := π−1(Ysing) =
⋃

1�=g∈G

Xg ,

where Xg is the subvariety of g-fixed points in X , that is, Xg = VX(I � [L](g))
with I � [L](g) as in (4.5). By Lemma 4.5.1, O(Xg) = � [L]/I � [L](g) is a Laurent

polynomial algebra over the finite group algebra � [Ĥ−1(〈g〉, L)]. Thus, each Xg

is a disjoint union of algebraic tori (of dimension equal to rankL〈g〉). The torus
containing the augmentation map ε : � [L] → � is given by VX(Eg � [L]), where Eg

denotes the kernel of the restriction of ε to � [L(g)]. This torus will be denoted by
T (g).

Now consider the element g ∈ G that is provided by hypothesis (b). By mini-
mality, we have dimXg = dimZ and so each irreducible component of Xg is an
irreducible component of Z. Further, Ĥ−1(〈g〉, L) �= 0 and so Xg has an irreducible
component T �= T (g). Finally, since L(g) is G-stable, the above description of T (g)
shows that T (g) is G-stable as well. Therefore, by the separation property of π (see,
e.g., Popov and Vinberg [153, Theorem 4.7]), π(T ) and π(T (g)) are disjoint irre-
ducible components of Ysing.



10.2 Semigroup Algebras 153

On the other hand, since � [L]G is a semigroup algebra, the variety Y is toric;
see the proof of Theorem 7.5.1. The torus action on Y stabilizes each irreducible
component of Ysing. The unique closed orbit in Y (see [153, Cor. to Theorem 4.7])
is contained in each irreducible component of Ysing, and hence in their intersection.
This contradicts our construction of disjoint irreducible components for Ysing. ��

We remark that (a) is always satisfied if G ⊆ SL(L), because nonidentity reflec-
tions have determinant −1. The sublattices L(g) are certainly G-stable when G is
abelian. For an explicit example, let G = diag(±1, . . . ,±1)n×n ∩ SLn(

�
) be the

groups considered in Example 3.5.3. The bireflection s = diag(−1, 1, . . . , 1,−1) is
a minimal element of G with L(s)/[s, L] ∼= (

�
/2

�
)2. Therefore, the lemma implies

that the invariants � [L]G for any domain � of characteristic �= 2 are not semigroup al-
gebras over � . The following corollary covers in particular the groups G7, G8, G9 and
G10 in Table 3.1; these groups represent the conjugacy classes of finite nonidentity
subgroups of SL2(

�
).

Corollary 10.2.3. If G acts fixed-point-freely on L/LG and rankL/LG ≥ 2 then
� [L]G is not a semigroup algebra over � for any domain � with |G| �= 0 in � .

Proof. It is easy to see that if � [L]G is a semigroup algebra then so is � [L]G , where
L = L/LG . Thus, replacing L by L, we may assume that G acts fixed-point-freely
on L and rankL ≥ 2. Then L(g) = L holds for every 1 �= g ∈ G, and L/[g, L] has
order equal to |det(gL−1)|. If g has order p, a prime, then p also divides det(gL−1).
Thus, hypotheses (a) and (b) of the lemma are satisfied. ��

In a different vein, we propose to investigate generalized multiplicative actions
in the following sense.

Problem 6. Study group actions on semigroup algebras � [M ] such that the monoid
M is mapped to itself.

Actions of this kind arise in the study of ordinary multiplicative actions as fol-
lows. As in Section 1.9, let R denote the subgroup of G that is generated by the
elements that act as reflections on the lattice L and recall that G = R � G∆; see
Proposition 1.9.1. The group G/R = G∆ acts on the invariant algebra R = � [L]R

and R is a semigroup algebra � [M ], by Theorem 6.1.1. Using the explicit construc-
tion of the monoid M given in Proposition 6.2.1, it is easy to verify that G∆ does in
fact stabilize M ; so we are in the situation of Problem 6. Moreover, no element of
G∆ acts as a nonidentity reflection on R in the sense of Section 4.5. (More generally,
let G be a finite group acting by automorphisms on the commutative ring S and let
Rk(G) denote the (normal) subgroup of G that is generated by all elements acting as
k-reflections on S. Then no element of G/Rk(G) acts as a nonidentity k-reflection
on the invariant subring SRk(G).) Thus, the action of G∆ on R = � [L]R satisfies the
analog of hypothesis (a) in Lemma 10.2.2.
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10.3 Computational Issues

The algorithmic side of multiplicative invariant theory is relatively unexplored at
present, especially in comparison with polynomial invariants where a highly devel-
oped computational theory is in place; see Derksen and Kemper [49]. The lack of an
invariant grading renders most algorithms for polynomial invariants obsolete in the
setting of multiplicative actions. Nevertheless, the method of computing multiplica-
tive invariants of reflection groups described in Chapter 6 is quite efficient. Using
ideas of Göbel [74] in addition to those presented in Chapter 6, Renault [162] has
constructed an algorithm that computes the multiplicative invariant algebra � [L]G for
any group G that is contained in a finite reflection subgroup of GL(L). Renault has
implemented his algorithm in the computer algebra system MAGMA [20].

Invariants f1, . . . , fn ∈ � [L]G are called primary invariants if the fi are alge-
braically independent over � and � [L]G is finite over the polynomial subalgebra
P = � [f1, . . . , fn]; the members of any finite collection of module generators of

� [L]G over P are called secondary invariants.

Problem 7. Develop algorithms for the computation of multiplicative invariants. As
a start, device an efficient method of finding primary invariants.

We remark that the number of primary invariants is necessarily equal to n =
rankL. Moreover, assuming � to be a PID, we know from Theorem 8.4.2 that

� [L] is free over the polynomial algebra P = � [f1, . . . , fn] of primary invariants,
say � [L] ∼= P r. If G acts faithfully then the order |G| divides r, by Galois theory.
Moreover, if g1, . . . , gm ∈ � [L]G is any collection of secondary invariants then we
must have m ≥ |G|/r. It is possible to find a system of |G|/r secondary invariants
precisely if � [L]G is Cohen-Macaulay; cf., e.g., the proof of Derksen and Kemper
[49, Theorem 3.7.1]. This lends some computational interest to the Cohen-Macaulay
problem.

There is a substantial number of computer algebra packages that are devoted to
the investigation of polynomial invariants of (mostly) finite groups; for a list of pack-
ages and how to obtain them, see Derksen and Kemper [49, pp. 73–74]. No compara-
bly complete package exists as yet for multiplicative invariants. Renault [162] has as-
sembled a collection of functions, written for the computer algebra system MAGMA
[20], which builds on an earlier and more primitive one by the author for GAP 3.4
[71]. 1

Problem 8. Create a library of functions for the automated investigation of multi-
plicative invariants.

Once reasonably efficient computational tools are at hand, it might be worthwhile
to tackle the project of an electronic database for multiplicative invariants. Recall
from Corollary 3.3.2 that, working over a fixed base ring � (ideally � =

�
), there

are only finitely many multiplicative invariant algebras � [L]G up to isomorphism, for

1 Available at www.math.temple.edu/˜lorenz/programs/multinv.g. The
package has not been maintained and is definitely in need of further work.
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any given rankL. For rank 2, the invariant algebras are listed in Table 3.1. In higher
ranks, no such lists exist and the sheer number of the cases to consider, starting with
rank 4, would make such lists rather unwieldy unless they are accessible in electronic
form.

Problem 9. Build a database for multiplicative invariants in low ranks.

The benefits of such a database would include the easy testing of conjectures and,
presumably, the creation of interesting new examples of invariant rings. An analo-
gous database for polynomial invariants is already in existence (Kemper et al. [110]).

10.4 Essential Dimension Estimates

Let G be an affine algebraic group defined over an algebraically closed field � of
characteristic 0. The essential dimension ed(G) of G, introduced for finite groups
by Buhler and Reichstein [33] and in general by Reichstein [158], can be defined
using the language of G-varieties; see §9.7.2. A G-variety X is called generically
free if G acts freely (i.e., with trivial stabilizers) on a dense open subset of X . A
compression of a generically free G-variety X is a dominant G-equivariant rational
map X ��� Y , where Y is another generically free G-variety. Now,

ed(G) = min
Y

dimY/G , (10.1)

where Y runs over all generically free G-varieties for which there exists a G-
compression V ��� Y for some generically free linear G-variety V .

The definition of ed(G) can be rephrased in terms of the functor

H1( . , G) : Fields / � → Sets

as follows; cf. Serre [195], Merkurjev [132], Berhuy and Favi [16]. Define the es-
sential dimension ed(x) of an element x ∈ H1(K,G) as the infimum of all tran-
scendence degrees trdeg � F for subextensions F/ � ⊆ K/ � so that x belongs to the
image of H1(F,G) → H1(K,G). Then ed(G) is the supremum of all ed(x) for
varying K and x.

The value of ed(G) is an interesting invariant of G, albeit generally very difficult
to determine. The essential dimension of G = PGLn, for example, is the minimum
positive integer d such that every central division K-algebra D of degree n with

� ⊆ K can be defined over a field K0 with trdeg � K0 ≤ d, that is, D = D0 ⊗K0
K

for some division K0-algebra D0. Only the following exact values of ed(PGLn) are
known: ed(PGLn) = 2 for n = 2, 3 or 6 (assuming � contains all nth roots of unity)
and ed(PGL4) = 5, the latter being a recent result of Rost [173]. For a finite group
G, the value of ed(G) is a lower bound for (and conjecturally equal to) the minimum
number of parameters in any generic polynomial for G over � (see §9.1.2) if such a
polynomial exists; cf. Jensen et al. [98, Sect. 8.5].
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The connection with the material in this book comes from the fact that upper
bounds for the essential dimensions of certain algebraic groups can be obtained by
using lattice techniques. The following proposition is implicit in Lorenz and Re-
ichstein [126]. A more general version can be found in Lemire [116, Prop. 2.1].
Recall that the character lattice of an algebraic torus T is denoted by X(T ); so
X(T ) = Hom(T, � m).

Proposition 10.4.1. Let H be an algebraic group of the form H = T � G, where T
is an algebraic torus and G a finite group. Given a map of G-lattices

f : L→ X(T ) ,

put Xf = Spec � [L]. Then Xf is an irreducible H-variety with the following prop-
erties:

(a) Functoriality: A commutative diagram of G-lattices

L f
��������

X(T )

L0

µ

��

f0

	�������

(10.2)

leads to a morphism of H-varieties Xµ : Xf → Xf0
. The morphism Xµ is

dominant if and only if µ is injective.
(b) dimXf/H = rank Ker f .
(c) The H-variety Xf is generically free if and only if f is surjective and Ker f is a

faithful G-lattice.
(d) If L is a permutation G-lattice then the H-variety Xf is birationally equivalent

to a linear H-variety Vf .

Corollary 10.4.2. If there is a diagram of G-lattices

L f
��������

X(T )

L0

� �

��

f0

	� 	�������

(10.3)

with L permutation and Ker f0 faithful then ed(H) ≤ rank Ker f0.

The corollary follows from the compression Vf
∼

��� Xf → Xf0
.

Proof of Proposition 10.4.1. Composing the evaluation map T → Hom(X(T ), � ∗)
with the restriction map f∗ : Hom(X(T ), � ∗) → Hom(L, � ∗) along f one obtains a
homomorphism ϕ : T → Hom(L, � ∗) ↪→ Aut � -alg( � [L]) = Hom(L, � ∗) � GL(L);
see (3.22). The corresponding action of T on � [L] is explicitly given by

t(xm) = f(m)(t)xm

for t ∈ T and m ∈ L. The map ϕ is G-equivariant. Thus, ϕ and the structure map
G → GL(L) combine to given an action H = T � G → Aut � -alg( � [L]), thereby
giving Xf = Spec � [L] the structure of an H-variety.
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For (a), note that the given diagram leads to an H-equivariant algebra map
� [L0] → � [L], and hence to a morphism of H-varieties Xµ : Xf → Xf0

.
Part (b) follows from the equalities dimXf/H = dimXf/T = trdeg � � (L)T

and � (L)T = � (Ker f); see Lemma 9.8.1.
To prove (c), we remark that Xf is generically free as H-variety if and only if

Xf is generically free as T -variety and Xf/T is generically free for G = H/T . The
former is equivalent to surjectivity of f ; c.f., e.g., Onishchik and Vinberg [144, The-
orem 3.2.5]. Moreover, as we have seen above, K(Xf/T ) = � (L)T = � (Ker f).
Thus, Ker f is a faithful G-lattice if and only if G acts faithfully on Xf/T or, equiv-
alently, the G-action on Xf/T is generically free (the two notions coincide for finite
groups).

Finally, assume that L is a permutation lattice and fix a
�

-basis m1, . . . , mr that
is permuted by G. Then K(Xf ) = � (L) = � (m1, . . . , mr). Thus, putting Vf =∑

i � mi we obtain an H-invariant � -subspace of K(Xf ) with K(Xf ) = K(Vf ).
This shows that Xf is birationally linearizable. ��

Example 10.4.3 (Essential dimension estimates for PGLn). As in the proof of The-
orem 9.8.2, let Tn−1 denote the maximal torus of PGLn corresponding to the diago-
nal matrices. Recall that the normalizer N(Tn−1) of Tn−1 in PGLn is the semidirect
product Tn−1 � Sn, with Sn acting on Tn−1 by permuting the entries of diagonal
matrices. We claim that

ed(PGLn) ≤ ed(N(Tn−1)) . (10.4)

This is a consequence of the (PGLn, N(Tn−1))-section S = Dn⊕Mn ⊆ X =
M2

n that was constructed in the proof of Theorem 9.8.2. Recall that X and S are
generically free linear varieties for PGLn and N(Tn−1), respectively. The asserted
inequality therefore follows from Reichstein [158, Definition 3.5 and Lemma 4.1].

Next, we use Corollary 10.4.2 above to show that

ed(N(Tn−1)) ≤ n2 − 3n + 1 for n ≥ 4. (10.5)

This result is due to Lemire [116]; combined with (10.4), it yields the best general
estimate for ed(PGLn) known to date. To prove (10.5), let Un =

⊕n
i=1

�
ei denote

the standard permutation lattice for Sn and An−1 its root sublattice; see §1.3.3. Re-
call from (9.12) that X(Tn−1) ∼= An−1 as Sn-lattices. Further, recall from the proof
of Theorem 9.8.2 that there is an exact sequence of Sn-lattices

0 → A⊗2
n−1 −→ P =

⊕
r �=s

�
(er ⊗ es)

f
−→ An−1 → 0

with f(er ⊗ es) = es − er. Define g : P −→ Un by g(er ⊗ es) = es and put
L0 = Ker g. We claim that f(L0) = An−1 if n ≥ 3. Indeed, if {r, s, t} are all
distinct then the element er ⊗ es − et ⊗ es belongs to P0 and maps to et − er under
f . Therefore, we obtain a commutative diagram of Sn-lattices
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P f
��







X(Tn−1) = An−1

L0

� �

��

f0

�� ��������

(10.6)

with P a permutation lattice and f0 = f
∣∣
L0

. Note that rank Ker f0 = rankP −

rankUn − rankAn−1 = n2 − 3n + 1. Thus, the estimate (10.5) will follow form
Corollary 10.4.2 if we can show that Ker f0 is a faithful Sn-lattice for n ≥ 4. For
this, let 1 �= s ∈ Sn, say s(i) �= i. Choose j /∈ {i, s(i)} and choose two distinct
elements r, s /∈ {i, j}. Then the element m = (es − er) ⊗ (ei − ej) ∈ P satisfies
f(m) = 0, g(m) = 0 and s(m) �= m. Therefore, Ker f0 is faithful, as desired.

For odd values of n, one can improve upon (10.5):

ed(N(Tn−1)) ≤

(
n− 1

2

)
for odd n ≥ 5. (10.7)

This estimate, due to Lorenz and Reichstein [126], also follows from Corollary 10.4.2
by constructing a diagram of Sn-lattices like (10.6), with the same permutation lattice
P but a different L0 so that Ker f0

∼=
∧2

An−1. For details, see [126, Proposition
4.4].

Problem 10. Can the estimate (10.7) be further improved for large enough n? Is
there analogous estimate for even values of n improving upon (10.5)? Is there a
bound for ed(PGLn) that is linear in n?

In a similar fashion, bounds for the essential dimensions of other semisimple
algebraic groups G can be obtained from lattices for the Weyl group of G. In detail,
let T be a maximal torus in G, N = NG(T ) its normalizer in G, andW = N/T the
Weyl group. If G is connected with trivial center then

ed(G) ≤ ed(N) ; (10.8)

see Reichstein [158, Proposition 4.3]. The proof involves a relative section due to
Popov [152] which generalizes the one used in Example 10.4.3 above. Thus we may
focus on constructing upper bounds for ed(N). (We remark, however, that the in-
equality (10.8) is often strict.) The problem with the approach used above is that the
group extension 1 → T → N → W → 1 is usually not split, and so Proposi-
tion 10.4.1 and Corollary 10.4.2 do not apply as stated. However, using a construc-
tion of Saltman [180], Lemire [116] has generalized Corollary 10.4.2 to the non-split
case. In this way, several interesting essential dimension bounds have been derived
in [116] by finding suitable epimorphisms ofW-lattices

L
f
� X(T ) , (10.9)

where L is a permutation lattice of smallest possible rank such that Ker f is faithful.
The issue of looking for further “compressions” L0 as in (10.3) still needs to be more
systematically addressed. Thus we propose, somewhat vaguely:

Problem 11. Use lattice techniques to find good upper bounds for the essential di-
mension ed(G) of semisimple algebraic groups G.
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10.5 Rationality Problems

The basic problem is the multiplicative Noether problem:

Problem 12. Find criteria for � (L)G/ � to be rational (stably rational, retract ratio-
nal).

In this generality, the problem is presumably out of reach for now. It might be
worthwhile to investigate more systematically the effect of replacing the lattice L
by suitable related lattices. To a certain extent, this has been addressed in the no-
name lemma (Proposition 9.4.4) and in Proposition 9.6.1, but more needs to be done.
For instance, I do not know how sensitive rationality properties of � (L)G/ � are to
variation of L within its � -class. Note that Theorems 9.6.2 and 9.6.4 only depend on
L � .

We now turn to certain special cases of Problem 12 and related problems. First
and foremost, there is the rationality problem for the field of matrix invariants:

Problem 13. Is K(Mr
n)PGLn rational (stably rational, retract rational) over � for

all n?

This problem can be treated as a special case of Problem 12, as was explained
in Section 9.8. The current state of knowledge has essentially been described there.
Subsequent work of Beneish [10], [11], [13] further explores the approach to Prob-
lem 13 via multiplicative invariant theory. This has resulted in a number of reductions
without, thus far, fully settling the problem for any additional values of n. The first
open case is still n = 8. For a well-written survey on the generic division algebra
UD( � , n, r) and its connection with Problem 13, see Formanek [66]. Currently the
main motivation for studying Problem 13, and potentially a new approach to its solu-
tion, comes from results of Schofield. In [189], it is proved that the moduli space of
representations of a quiver Q with fixed dimension vector α is birationally isomor-
phic to Mr

n /PGLn. (Here, n is the greatest common divisor of the components of α
and r is determined from α/n and the Euler form of Q.) Article [190] gives a similar
result for the moduli space of vector bundles on the projective plane � 2 with given
Hilbert polynomial. Once the rationality problem for these moduli spaces is settled,
Problem 13 will also be resolved.

Turning to a problem of more modest scope, recall that the S4-invariant field of
the signed root lattice

� −⊗ � A3 is the only multiplicative invariant field of transcen-
dence degree at most 3 whose rationality was left undecided in Hajja and Kang [84]
(group W10(198)); all others were shown to be rational. Thus, in order to clean up
the rationality problem for � (L)G/ � with rankL ≤ 3, we ask:

Problem 14. Is � (
� − ⊗ � A3)

S4 rational over � ?

Here is another problem, for linear invariant fields, aiming to clarify a borderline
situation left undecided by previous work.

Problem 15. Let G be a group of order p5 for some prime p and let G → GL(V ) be
a linear representation over a field � containing all eth roots of unity, where e is the
exponent of G. Is K(V )G rational over � ?
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The corresponding problem for groups of order dividing p4 has been affirma-
tively solved by Chu and Kang [38], improving on earlier work of Beneish [12] for
p3. The answer is negative in general for groups of order p6; see Bogomolov [18].
Some cases of Problem 15 are consequences of the following general result due to
Miyata [134] and Vinberg [216]. Recall that a flag in a finite-dimensional vector
space V is a chain of subspaces V1 ⊆ · · · ⊆ Vi ⊆ Vi+1 ⊆ · · · ⊆ Vn = V with
dimVi = i.

Theorem 10.5.1 (Miyata, Vinberg). Let G → GL(V ) be a linear representation of
the (arbitrary) group G over � . If G stabilizes some flag in V then K(V )G/ � is
rational.

A nice exposition of this theorem can be found in Kervaire and Vust [111]. It
covers in particular an earlier result of Kuniyoshi [112] and Gaschütz [72], asserting
rationality of K(V )G/ � for any finite p-group G if char � = p, and a classical result
of Fischer [63] proving rationality of K(V )G/ � for finite abelian groups G provided
the field � contains all eth roots of unity, where e is the exponent of G. Therefore, in
Problem 15 one can assume that G is non-abelian and char � �= p. For the classifica-
tion of all groups of order p5, see Szekeres [213] and Levy [119].

Recall from Section 9.4 that, in order to prove the existence of a generic poly-
nomial for G over � , it suffices to show that � (L)G/ � is retract rational for just one
faithful G-lattice L. To the best of my knowledge, the smallest group for which the
existence of a generic polynomial over � remains to be settled is the special linear
group SL2(

�
3) of order 24. Moreover, for n > 5 it is unknown whether the alter-

nating group An has a generic polynomial (over any field); see Jensen et al. [98]
Thus, the following problem seems worthwhile if admittedly again stated somewhat
vaguely.

Problem 16. For certain interesting groups G (such as SL2(
�

3), A6, . . . ), find one
particular faithful G-lattice L such that � (L)G/ � is retract rational.
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23. Nicolas Bourbaki, Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques
et Industrielles, No. 1314, Hermann, Paris, 1965. MR 41 #5339
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64. Edward Formanek, The center of the ring of 3 × 3 generic matrices, Linear and Multi-

linear Algebra 7 (1979), no. 3, 203–212. MR 80h:16019
65. Edward Formanek, The center of the ring of 4×4 generic matrices, J. Algebra 62 (1980),

no. 2, 304–319. MR 81g:15032
66. Edward Formanek, The ring of generic matrices, J. Algebra 258 (2002), no. 1, 310–320,

Special issue in celebration of Claudio Procesi’s 60th birthday. MR 2004a:16039
67. Robert M. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New

York, 1973, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. MR 52 #3139
68. Shmuel Friedland, The maximal orders of finite subgroups in GLn(Q), Proc. Amer.

Math. Soc. 125 (1997), no. 12, 3519–3526. MR 98b:20064
69. William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131,

Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in
Geometry. MR 94g:14028

70. William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics,
vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.
MR 93a:20069

71. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.3, 2002,
software and further information available at http://www.gap-system.org.
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74. Manfred Göbel, Computing bases for rings of permutation-invariant polynomials, J.
Symbolic Comput. 19 (1995), no. 4, 285–291. MR 96f:13006

75. Nikolai Gordeev, Coranks of elements of linear groups and the complexity of algebras
of invariants, Algebra i Analiz 2 (1990), no. 2, 39–64 (Russian), English translation:
Leningrad Math. J. 2 (1991), 245–267.

76. Nikolai Gordeev and Gregor Kemper, On the branch locus of quotients by finite groups
and the depth of the algebra of invariants, J. Algebra 268 (2003), no. 1, 22–38. MR
2004h:13010

77. Alexandre Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J.
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(1982), no. 4, 427–431. MR 84m:13007

164. Philippe Revoy, Invariants de deux matrices carrées d’ordre 3, C. R. Acad. Sci. Paris
Sér. I Math. 323 (1996), no. 1, 1–6. MR 97e:15028

165. Roger W. Richardson, The conjugating representation of a semisimple group, Invent.
Math. 54 (1979), no. 3, 229–245. MR 81a:14023

166. Roger W. Richardson, Orbits, invariants, and representations associated to involutions
of reductive groups, Invent. Math. 66 (1982), no. 2, 287–312. MR 83i:14042

167. Lorenzo Robbiano and Moss Sweedler, Subalgebra bases, Commutative algebra (Sal-
vador, 1988), Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 61–87. MR
91f:13027

168. Derek J. S. Robinson, A course in the theory of groups, second ed., Graduate Texts in
Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 96f:20001



References 169

169. A. V. Roı̆ter, Integer-valued representations belonging to one genus, Izv. Akad. Nauk
SSSR Ser. Mat. 30 (1966), 1315–1324 (Russian), English translation: Amer. Math. Soc.
Transl. (2) 71 (1968), 49 – 59.

170. James E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London
Math. Soc. (3) 36 (1978), no. 3, 385–447, Corrigenda: Proc. London Math. Soc. (3) 38
(1979), no. 3, 216–218. MR 58 #10996a

171. Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78
(1956), 401–443. MR 18,514a

172. Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963),
487–489. MR 30 #2009

173. Markus Rost, Computation of some essential dimensions, preprint, 2000, available at
http://www.mathematik.uni-bielefeld.de/˜rost/ed.html.
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