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Preface

Ne sois pas lascif et peureux
Comme le lievre et | @moureux.
Mais que toujours ton cerveau soit
la hase pleine qui congoit.1

Guillaume Apollinaire, Bestiaire (1920)

Fairy tales

Fair reader, the preface of a mathematical book is the right place for telling how
it came about, and maybe spawn a few legends.

Once upon a time, in a far away country2, there was a young research mathe-
matician who specialized in nonlinear partial differential equations. In 1984, this
young mathematician was promoted to professor of numerical analysis, a subject
that she mostly ignored. So, in order to teach, she learnt, a fact already known
from the Talmud: Rav Hanina said, “Much have | learnt from my masters, more
from my colleagues, but the most from my own students *”(Talmud of Babylon,
Tractate Taanit, 6)3.

You know how a fairy tale is composed: the heroine has to fall in love: 1 fell
in love with numerical analysis4. And here is the result, or rather the second
iteration of the result, since a first edition appeared in French in 1991.

Sonke Adlung, who is an editor with Oxford University Press, and to whom
I had been introduced by John Ball, thought that it would be nice to have this
book translated and also revised.

The heroine must go through hard times and meet a few fire-spitting dragons
on her way, which would change her into stone just for the fun of it. | was moving

xBe not lewd and fearful/ as the hare and the love-fool./ But let your brain ever be/ the
hare-doe that conceives.

2We have to stick to the traditional format of fairy tales.

iy Srstooi Snoe>*ink nonnal . frcno nmn W>nN m -ion
(@Amun [A22 TiTrtm .pIDO

4Some would consider that bad taste; theirs is the loss.
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so slowly at times that Sonke may well have thought that | had been turned into
a piece of rock.

Since | had agreed to update the 1991 edition, | had to rewrite parts of it,
and add some material. This did not turn out to be easy. One reason is that
my extra-scientific activities graduated from raising two children5 to chairing
a research group of about 50 people, a task which includes dealing with five
different administrations. Another reason is that | am still a research mathe-
matician, writing papers, advising students, and doing whatever the form of life
called mathematics demands. My natural tendency is to consider that the most
important mathematics are tomorrow 3, not yesterday 3 or yesteryear 3.

Though I should not admit it, | may have also fallen in love with my research
group, MAPLY (Laboratoire de Mathematiques Appliquees de Lyon), and with
its future; when | was born, there were trees; so now, | feel obligated to plant
some. | did meet quite a few dragons in the forest6. This being a legend, fair
reader, you have to remember that dragons are in the mind of the beholder.

Acknowledgements

The heroine needs to receive help from many quarters, and so did I.

Sonke found a translator, John Taylor. John, you did a pretty good job,
keeping as much as you could of the colloquialism of the original French style.

Thank you, Sonke, for the idea which enabled me to conclude the task: that
I should find myself someone who would not be so busy, who would be able to
spot typos and mixed up indices7, and who would be knowledgeable enough to
criticize or praise wherever applicable.

And this is how Jean-Frangois Coulombel came in: in February 2000, he
was sitting in one of my graduate courses, and one month later, he was bravely
starting to push me forward, so that the slow motion would not be so slow.
Thank you, Jean-Frangois, you did well, and that must not have been easy for
you.

And thank you again, Sonke, for never relenting before my procrastination.

In the final runs, | shared an office with Stephane Descombes in a faraway

SClaude and Rene, you have built me.

6 . . .
Nel mezzo del cammin di nostra vita
mi ritrovai per une selva oscura
che la diritta via era smarrita.

(In the middle of our life § path/ | found myself in dark woods,/ the clear direct way being
lost.)
Dante, La Divina Commedia

71lguess that | became a mathematician because | have so much trouble with + and — and
with z, j, k, /,and m. And n too; so if there are still some errors, | am the one who put them
in, and | apologize.
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country8, and he was kind enough to provide a stern examination of the spline
chapter. 1 also benefited from a rereading of the multistep chapter by Magali
Ribot, who had a first-hand opportunity to learn about the fallibility of some
thesis advisors.

| have had many sources and | have been influenced in person or in print by
the following authors: K. E. Atkinson [5], J. C. Butcher [13], P. G. Ciarlet [16],
M. Crouzeix and A. L. Mignot [19], C. de Boor [2]], G. H. Golub and C. F.
van Loan [35], E. Hairer, S. P. Norsett, and G. Wanner [43,42], P. Henrici [45],
E. lIsaacson and H. B. Keller [51], A. Iserles [52], D. E. Knuth [38,53,54], H.-O.
Kreiss [56], Y. Meyer [61], A. Ralston and P. Rabinowitz [63], R. D. Richtmyer
and K. W. Morton [A], L. L. Schumaker [71], J. Stoer and R. Bulirsch [73], and
H. S. Wilf [78]. To these, | am deeply indebted.

| have now two institutions to thank: CNRS gave me the initial help in
my research career; since 1995, it gave me the charge of planting mathematical
trees; it told me, in very direct language, that one has to go forward and take
responsibility, or get out of the way; it gave me a temporary research position
which enabled me to remain a mathematician instead of turning into a full-time
administrator. Finally, it gave me a permanent research position.

The other institution is the Technion in Haifa, where | have been a frequent
visitor since 1994. Some of the funding came from the binational Keshet/Arc-en-
ciel binational agreement; | also got funding from the CNRS-MOSA. So, twice
a year, | have some continuous time to myself, with only a few e-mails and faxes
for French business. There is this wonderful library, from which | take out books
on the account of my friend and colleague Koby Rubinstein, who from time to
time gets a message telling him to return some. And the friends that | have
there kindly let me be as bearish as | want; their hospitality is a blessing; | owe
much to the kindness of Iris and Yehuda Pinchover.

Finally, in a fairy tale, the heroine has the use of some life-saving tricks,
spells or magic formulae. They are called T"X, SCILAB, GNUPLOT,
and XFIG; they are all free software, and they are wonderful tools without which
this book would simply not exist.

Contents: a subjective approach

Since this preface is so romantic, let me mention that love for a scientific subject is
exactly the same as love for a human being: you always hate quite a few things
in the loved one, but the balance looks good enough to keep the attachment
going.

So, let me talk subjectively about my subject.

Looks are so important, and, alas, numerical analysis with all its burden of
notations looks more like a heavy matron than a gracious ballerina. So what?
Maybe a heavy matron can take care of a large brood of children. Better a heavy

8lsrael, according to the age-old joke: this is far? far from where?
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theory with many applications than an elegant one without offspring.

Numerical analysis has to do with real life computation: an understanding of
the floating number system and the machine arithmetic is essential. Chapter 1
gives an exercises guided tour to this world. It is highly recommended that you
do the exercises.

| observed that numerical analysis requires more maturity from mathemat-
ics students than other subjects at the same level of difficulty. A naive vision
puts numerical analysis between two stools: the physicist or the engineer wants
methods, and is satisfied with experimental numerics; the mathematician wants
beautiful problems, and is not much interested in constructive solutions using a
fallible and limited machine. However, | believe that numerical analysis sits on
both stools, and has the best of both worlds: motivated problems where getting a
solution and getting it fast can make a difference, and tools which can be, at the
same time, elementary and powerful: not necessarily a contradiction according
to the words of S. S. Abhyankar [1}. Chapter 2gives a flavour of numerical analy-
sis, constructing the logarithm and the exponential from scratch, using methods
which are the daily bread of numerical analysis, and which moreover generalize
to situations where power series do not work.

The daily life of numerical analysts includes much linear algebra; Chapter 3
summarizes some of the required knowledge, and adds to it the theory of block
matrices.

This makes up Part I. Part Il describes polynomial approximation and piece-
wise polynomial approximation, in algebraic or trigonometric versions: inter-
polation and divided differences in Chapter 4, least-squares approximation in
Chapter 5, and splines in Chapter 6. The recent surge of the use of splines in
computer-aided geometrical design and image processing is one of the motiva-
tions for the spline chapter. It also turns out that splines are a nice generalization
of Bernstein polynomials, and that they fit very well with two approaches: di-
vided differences and convex algorithms. | used to hate splines, a baseless and
despicable prejudice. | hate them no longer.

Chapter 7is on Fourier series in one space dimension; it does not tackle any
of the hard questions of which Fourier analysis is so replete. However, it treats
easy and essential questions, including convolution and regularization, and it
makes room for the Gibbs phenomenon, so important in applications.

Chapter 8is about quadrature: approximation by algebraic polynomials leads
to the classical formulae for numerical integration; trigonometric approximation
leads to the Euler-MacLaurin formula and to the fast Fourier transform (FFT),
which may be the most important algorithm in scientific computation. The
FFT is the prototype of recursive algorithms; it is the ancestor of multigrid and
wavelet algorithms; it is the epitome of easy and powerful tools.

Part 11l relates to numerical linear algebra. This part is important because
operation counts are the limiting factor for any serious computation. Any sci-
entific computation program spends most of its time solving linear systems or
approximating the solution of linear systems, even when trying to solve nonlinear
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systems.

Chapter 9 provides the direct methods for the resolution of linear systems
of equations, with an emphasis on operation counts. Operation counts justify
all of the acrobatics of iterative methods, treated in Chapter 11 after extra
information on linear algebra is produced in Chapter 10. Chapter 12 relates
orthogonality methods to the resolution of linear systems and introduces the
QR decomposition.

Part IV treats a selection of nonlinear or complex problems: resolution of
linear equations and systems in Chapter 14, ordinary differential equations in
Chapter 15, single-step schemes in Chapter 16 and multistep schemes in Chap-
ter 17, and introduction to partial differential equations in Section 18.4. It would
have been my natural tendency to put in much more of these, but, since | decided
that this book would avoid any functional spaces beyond spaces of continuous
functions or Lebesgue spaces and, in particular, Sobolev spaces, there was little
possibility to include more than a tiny introduction to partial differential equa-
tions. | tried to select a few important things which are accessible and attractive
on an elementary level. | did the same for the ordinary differential equations
part: | skipped the detailed analysis of the Runge-Kutta methods by trees, be-
cause it is long and difficult; however, | have given a full theory of the analysis
and convergence of multistep schemes, because the use of appropriate norms
makes it possible without tears.

This book started as an elementary book; the revision put in some more
advanced layers, but the layered structure remains; the less elementary parts are
Sections 4.4 and 4.5, Chapter 6, Section 7.2, Section 8.6, and Chapters 17 and
18

A number of problems describe some classical algorithms together with some
newer ones. Since mathematics is not a spectator sport, the more advanced parts
are put into problems: the most exciting things can be found there.

The prerequisites are linear algebra, calculus, and a tiny bit of Lebesgue the-
ory, which is used only in Chapter 5on polynomial least-squares approximation,
Chapter 7 on Fourier analysis, and Chapter 18 which introduces partial differ-
ential equations. | do not use the theory of distributions, though | disguise some
of its ideas in the spline Chapter 6.

Just a short word about notation: | decided not to use bold face for matrices
or vectors, with very few exceptions. The reason is that | very often use block
decomposition of matrices; if | decompose an nxn matrix into an (h—D) x (n—D),
an (n-1)x I,alx(n-1), and a 1x 1block, what notation would make sense?
I could not imagine an efficient answer, and so | dropped the bold faces.

Computation and numerical analysis

There is always a question about the role of computations and software in a
numerical analysis book.
I did not include any numerical software, or even quasi-programs which enable
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one to write one § own software.

The first reason is that good numerical software requires quite a bit of thought
to be really efficient. Some really good scientific software, such as MATLAB can be
bought; but there are also free products of quality, such as SCILAB, distributed
by INRIA, http//www-rocq.inria.fr/scilab, for use under several different
operating systems.

The second is that one must be sceptical of scientific computations: numerical
analysis is concerned with the essence of the scientific method.

But what is the foundation of such an attitude? It is conceivable if we know
that the results are inaccurate, or plainly wrong. But how do we know that?
Well, if we know that our mathematical equations are a good approximation of a
natural phenomenon, and if the computations do not agree with the observations,
then the scientific computation software must be guilty; or must it?

Finding the guilty party may be a very difficult endeavour, because many
factors may be involved: maybe the equations were wrong; maybe the numerical
method was inappropriate; maybe the parameters of the method were badly
chosen; maybe the software was incorrect.

One of the purposes of numerical analysis is to find the specifically mathe-
matical factors which govern the success or failure of numerical computations.

The third reason is that the successful numerical analyst destroys their own
job by finding algorithms which are so clear and efficient that they can be safely
implemented into software.

Therefore, in order to stay in employment, he or she must keep finding new
areas where existing software does not do the job.

Mathematics provides the light which enables us to explore new territory.
Mathematics is also a very cultural subject: for mathematicians, a hundred
years old result can be as good as a new one, even if we do not use it for the
purpose for which it had been initially crafted.

In this book, | try to explain how to make your own light, and how to find
your own way with it. This is obviously much harder—for you and for me—than
inviting you to contemplate nice pictures without telling you how I might have
come across them and how they fit together.

Nevertheless, fair reader, do not believe that | have shyed away from com-
puting: I have only hidden it, since showing it would have led to a completely
different book.

So, in order to gain more understanding, try, dear reader, to program the
most algorithms that you can think of. It may not be of the same high quality as
the commercially or freely available software, but it will teach you much about
the behaviour of computational methods, and about the difficulty of putting
mathematics into code.

Lyon M. S.
September 2000
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Part |

The entrance fee

Most of numerical analysis uses recursive procedures: do the same thing again
and again, until a reasonable degree of accuracy is reached. Even apparently
algebraic problems admitting a solution in finite terms can be efficiently treated
by iterative techniques, as we shall see in Chapter 11. Therefore, since numerical
analysis involves a large number of machine computations, the error must be
analysed.

Numerical analysts are scared stiff of a phenomenon called instability: un-
controlled amplification of error. But where does error come from? It comes
from the fact that we represent real numbers in a finite system, called floating
numbers; therefore, any arithmetic operation leads to loss of precision. The
idiosyncrasies of floating-point operations are examined in Chapter 1

Of course, instability is quite visible: usually one gets a computer message
which says Gverflow 7and at this point the computation stops. What is impor-
tant is to find a cure for instability, and this requires a comprehensive understand-
ing of the mathematical methods which have been used for the computation.

As presented here, numerical analysis is a part of mathematics, but it works
on questions which are strongly related to the use of computers and to applica-
tions from other sciences. Therefore, numerical analysts create in their minds
visions of mathematical objects which may be slightly different from the visions
of other mathematicians. In particular, numerical analysis is about construct-
ing or approximating effective solutions. Of course, numerical analysts do use
existence theorems, and they combine constructive and non-constructive infor-
mation.



2 I. THE ENTRANCE FEE

I have tried to give a flavour of numerical analysis in Chapter 2 through
concrete examples, which are probably well known to the reader.

The fastest way of constructing the natural logarithm is to say that it is the
integral of the function x i>>1/x which vanishes at 1 This information can be
made constructive: in order to compute the integral of x 1/x, we use ap-
proximate formulae, and these formulae enable us to construct from scratch the
natural logarithm. In the same fashion, we can define the exponential as the
reciprocal function of the logarithm, or using its famous entire series expansion.
Unfortunately, neither of these methods leads to an efficient numerical construc-
tion. A good construction method for the exponential is the original method
of Euler, based on a product formula; the exponential can be constructed from
scratch with this method. It is of even more interest that such product for-
mulae are the core of numerical integration for ordinary and partial differential
equations.

Chapter 3 provides a review of standard results from linear algebra. Linear
algebra is pervasive in this book. We cannot do anything without linear algebra,
and we need a bit more than is usually taught at the elementary level. The only
not completely standard feature is block matrices.



Floating numbers

The beginning of a course on numerical analysis naturally includes some fairly ab-
stract considerations of how real numbers are represented in a computer, known
as floating-point representation, and incidentally on systems of counting.

To convince the reader that there is material here which is both surprising
and thought-provoking, the following exercises are more effective than a long
discourse. It is strongly recommended that the reader sharpens his or her mind
by trying them. The level of mathematics and programming required is entirely
elementary, though this does not spoil the fun of doing them.

This chapter owes an enormous debt to the paper by G.E. Forsythe [30],
which presents some striking examples of the calculation difficulties linked to
floating-point numbers.

1.1. Counting in base 3

Exercise 1.1.1. Let /?be an integer greater than 1 Show that, for every integer
n greater than or equal to 1, there exists a unique integer p and integers d*,
O0$ i " p, between 0and /2—1inclusive, with dp ~ O, such that

v
(1.i.)

The right-hand side of eqn (1.1.1) gives the representation of n in base /2,
also denoted by
n = dpdp—+ ==eido .

Normally, we represent numbers in base f3= 10 using the figures O, 1, 2, 3,
4,5 6, 7,8 9 and from an early age we use the result of Exercise 1.1.1 without
guestion, at least in base G= 10.

The choice of base 10 is linked to an anatomical peculiarity of the human
species. We could also have counted in base 20, like the Mayans.

3



4 1 FLOATING NUMBERS

Nevertheless, in the history of humanity, counting with positional numerals
is a relatively recent development which we owe to the Hindus and the Arabs.
Arithmetic operations in roman numerals are very awkward. It is only thanks to
positional numerals that efficient arithmetic algorithms could be developed, and
these spread across Europe only from the twelfth century, finally triumphing in
the eighteenth century. The reader who is interested in the history of numbers
and systems of counting should consult, for example, [48] and [49], and their
translation [B0].

Other systems of counting have been devised by mathematicians, see, in
particular, in [33, pp. 115-23].

Computers, which do not have ten fingers, count in base 2, with the figures O
and 1 (binary or dyadic), in base 8 (octal), with the figures *0to 7, and in base
16 (hexadecimal), with the figures "0 to "9, to which are added the letters "Ato
"F.

The list of 128 ASCII characters is a list of standard characters corresponding
to codes understood by all computers.

Exercise 1.1.2. The ASCII characters are numbered from O to 127; the letter b
has octal number 742. Give its decimal and hexadecimal numbers.

What do we do with the fractional part of a number? By analogy with the
representation of Exercise 1.1.1, consider expressions of the form

X =jn
i—q
where p and q are positive integers or zero and the di are integers from Oto G—1
inclusive. To fix p, we insist that dp ~ O. We write

X —dpdp—* d\d(Q.d~ ... d—,

We can also take g = 00. What does this infinite sum mean? If we know the
properties of real numbers, we claim that the sequence of rationals

v
rn =PI(i

is increasing and bounded by

p
1+ frdi.

i=0
It is therefore a convergent sequence whose limit is the sum of the series with
general term (/?</%)<p.
Warning: this course assumes that the reader is familiar with the properties
of the real numbers. It is wise to revise them before continuing.
A standard difficulty is the occurrence of a real number which can have two
distinct representations in base /2, as we see in the following exercise:
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Exercise 1.1.3. Let b= /8—1 Show that, in every base /2,
1= O.bbbb---.

How many reals are there which have two distinct representations in base /i?
Few, as we will see in the exercise below:

Exercise 1.1.4. Give the general form of the reals possessing two distinct repre-
sentations in base /2. Show that the set of all the reals for which there exists a
base @in which the real number has two distinct representations is exactly the
set of the rationals.

1.2. Expansion of the rational numbers in base

In the decimal base, the quotient of two integers falls exactly or @oes not fall
exactly 7but after a certain point it is always periodic. The following exercises
allow us to verify this periodicity result in any base /2. This section forms a short
problem on elementary arithmetic. Before working on the general case, we will
solve the following particular case:

Exercise 1.2.1. Calculate the decimal expansion of 1/7.

Exercise 1.2.2. Let m and n be two relatively prime integers such that m < n.
Let ro = ra, and define d-j and r_j iteratively as being the quotient and the
remainder, respectively, of the Euclidean division of /?r_j+i by n:

/?r_j+1 =nd-j +r-j, O~ <n

Show that, for everyj ~ 1, 0" d-j < @
Exercise 1.2.3. Show that 0.d-\d-2d-$ ===is the expansion of m/n in base @

Exercise 1.2.4=Show that there exist two integers k and £such that and rt
are equal. (Argue by contradiction.)

Exercise 1.2.5. Deduce from this that the expansion of m/n in base [3is periodic
from a certain point. Generalize this to the case m/n ~ 1

Exercise 1.2.6. When do the divisions m/n fall exactly 7in base /??

Exercise 1.2.7. Give the expansion of 1/5 in bases 2, 8, and 16. (Observe care-
fully the result in base 16.)

1.3. The machine representation of numbers

Several types of numbers can be represented in a computer. The machine integers
are nothing special, the only point to note is that the set of integers which can
be represented is finite, for example from -32768 to +32767. Recall that a bit
of information is a binary digit, i.e., Oor 1, and that a byte is a group of 8 bits.

Since in this example there are exactly 216 different numbers, it is sufficient
to have 16 bits or 2 bytes to represent them.
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The floating-point numbers are more interesting. The set of these numbers
is described by a base /2, a number of significant figures r, and two integers m
and M. Every floating-point number is of the form

5 0.d-id-2 ==--r /3

with j between m and M, 1/ cLi < /2, and, for k> 1, 0" d-k < /2. The letter
s designates the sign of the number. We add the zero to the set of floating-point
numbers. We thus obtain a subset F(/?,r,ra,M) of E which is formed from
numbers whose expansion in base /2 is finite. The expansion 0.d_id_2 ==e-r is
the mantissa of the number and j is its exponent.

The normalization 1~ d-\ < /?is very important. It ensures that all the
figures of all the nonzero floating-point numbers are significant.

If the result of an operation is greater in absolute value than the largest
floating-point number then the machine generally returns Gverflow 7 If the result
of a nonzero operation is rounded to zero then the machine returns Gnderflow 7

Exercise 1.3.1. Forsythe 3 toy floating-point system: take 2= 2 r =3 m = -1,
and M —2 Determine all the floating-point numbers and draw them as a scale
on a straight line segment centred on zero. Does 0.1112~1belong to this system?

As we see from Exercise 1.3.1, there are many gaps between the floating-
point numbers. We therefore need a rounding function A which has the following
properties:

= A is defined for all E;
= A leaves F(/3,r, m,M) invariant;

=Llet x E E. Let [/,/7] be the smallest interval containing x, and whose
extremities are floating-point numbers. Then A(X) is equal to whichever
of the numbers / and f is closest to x;

=|f x is equidistant from / and /*, then A(X) is determined in a variety of
ways, which can be dependent on the machine.

Exercise 1.3.2. Calculate A(1/3) in the toy system F (2,3, -1,2).

Our machine can only recognize the numbers belonging to its floating-point
system. We define arithmetic operations on the floating-point numbers by letting

fQFf = A{f-f),

s® r=Aun,
fo f* = A(f/1).

Exercise 1.3.3. What are the results of the following operations in the toy
floating-point system:
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The program must be able to recognize the overflow and underflow situations.
Exercise 1.3.4=Still in the toy system, calculate

What can we say about the algebraic properties of the operations O and 0?

Exercise 1.3.5. Simulate a small floating-point system in base fl = 10 by using a
programming language such as PASCAL or FORTRAN and making a rounding
procedure.

Begin by fixing r = 3, m = -3, and M —5. From this rounding procedure,
program the floating-point arithmetic operations in F(10,3, —3,5).

Return overflow and underflow when appropriate. A more elaborate version
should allow the simulation of floating-point systems for various values of r, m,
and M, with fl = 10. Passing to any base fl is more delicate, but represents an
interesting exercise for those who can program.

Remark 1.3.6. The unit of speed of a computer, used principally for scientific
calculations, is the flops, or FLoating-point OPeration per Second. We would
therefore talk about a machine calculating at 100 megaflops, that is 108 floating-
point operations per second. Traditionally, when we evaluate the efficiency of
a scientific calculation algorithm, we only count the number of multiplications
and divisions that it demands. It is more reasonable, with the current state of
technology, to also count the additions and subtractions, since the relative time
for multiplications and divisions has decreased.

In the era of parallel machines, we cannot be content with evaluating speed
in flops. We must also take account of the number of processors, and note that
certain algorithms use the structure of the machine more efficiently than others.

1.4. Summation of series in floating-point numbers

When we have a computer at our disposal we are tempted to calculate things

that we did not know how to, or did not want to, calculate by hand. The

preceding exercises have shown that operations on floating-point numbers suffer

from significant arithmetic faults. We will see others which are more analytic.
Let (un)n™o be a sequence of reals. We let

EO=j4(m0) and £n= £n_i OA (un).

This is therefore the sum of the numeric series whose general term is un.

Exercise 1.4.1. Show that if un tends to O as n tends to infinity, and if the sums
£n stay below the level of overflow, the sequence of En is stationary from a
certain point.
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Exercise 1.4-2. We let un = I/n (harmonic series). Is this numeric series con-
vergent? Show that the partial sum of this series is equivalent to Inn.

Exercise 1.4-3. Show that, for n > /¥, the sequence of floating-point partial
sums of the harmonic series is stationary. Find an upper bound for the partial
sum thus obtained.

Exercise 1.4-4=Calculate the sum of the harmonic series working in the sets
F(10,3, -3,5) and in F(10,5, -5,5). This is the moment when the sequence of
£n is stationary.

Although all the series with terms tending to zero are convergent in a ma-
chine, their machine sum depends considerably on the floating-point system used.
We would expect that a series with terms tending to zero is divergent if its sum
depends on the machine.

Exercise 1.4-5. The partial sums of a divergent series with positive terms exceeds,
from a certain point, every given positive number. What must the minimum size
of the mantissa be in base 10 so that the partial sums of the harmonic series
exceed 100? On a computer doing 109flops how much time, in years, is required
to do this? (Take 1lyear = 3 x 107 seconds and make suitable approximations.)

Another peculiarity of the floating-point numbers is calculation instability.
Recall that the series

is convergent for all x £ E.

Exercise 1.4-6. Program: calculate e5and e~5, first using the exponential func-
tion of the chosen scientific programming language, and then in the floating-point
numbers F(10,3, -3,5). Explain the difference between the relative error for e5
and the relative error for e~5. What happens if we reverse the summation order
of the partial sums for e“%5? What happens if we sum the positive and negative
terms separately?

1.5. Even the obvious problems are rotten

Consider the recurrence relation
(5.2 ttn+i = (q+ -p.

Exercise 1.5.1. Verify that the sequence, whose general term is the constant
un —p/q, is a solution of egn (1.5.1). Take q = 3and p = lor p —2, and
program the above recurrence. What do you observe?

Exercise 1.5.2. Take q—4and p —1, 2 or 3, and do the same calculation. Are
the phenomena the same?

Exercise 1.5.3. Give an interpretation of the different behaviours observed.
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1.6. Even the easy problems are hard

The case of solving the second degree equation
6D ax2+bx+c=0

allows us to see the difficulties linked to the orders of magnitude of the numbers
with which we are working, and how the simplest nonlinear formulae can tie us

up in knots.
The roots of egn (1.6.1) are given by the formulae

-b + \Jb2- 4ac —b —\]b2—4ac

(16.2 Xi 2 and #2 o

Exercise 1.6.1. Write a program giving the roots of eqgn (1.6.1), including the
complex case and a test to ensure that a is not zero.

Exercise 1.6.2. Let r be the maximum number of decimals representable in
floating-point, and q the integer part of 1+ (1/2). We take

a=n1, b:—lO\ C—1.

Calculate the roots of eqn (1.6.1). Also calculate them by machine and compare
the result.

Exercise 1.6.3. To avoid the above difficulty, we can write the formulae (1.6.2)
a little differently by noting that

Vy-"/z = y-z
Vv + Vz'
Write the corresponding new formulae, which the program will apply if it detects
the need after having made a test.

Apply the new program to the following choices of coefficients, denoting the
exponent of the largest power of 10 which can be represented by the machine by
M, and denoting the integer part of 1+ (M/2) by n:

®=08 6= 5 a=r
163) a=6x 10°7 6= 5x 10", c= -4 x 107}
[}
1.64) a=10=2 &=<18" =102
(165) a=1 b= 2 c=1- 10~r*1

Note that the case (1.6.3) can be solved by using a suitable scale. For the case
(1.6.4) it is necessary to use more drastic means, for example, the change of
variable y = I/x. Provide tests and modifications of the program to allow the
solution of these problems.
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Denote the smallest root of the equation
(1.6.6) X2 - &+ 1=¢e

by X\(e) and the largest root by X2(e). Calculate the derivatives of xX\ and X2
with respect to e, for e > 0. Explain the phenomena observed and describe the
remedies that can be employed.

1.7. A floating conclusion

If the floating-point numbers have so many faults, why not calculate with other
representations of the numbers? In certain cases, it is wise to use exact rep-
resentations, such as rational numbers, or, more generally, a representation in
some suitable field or ring. For applications arising directly from engineering
science or from nature, such representations are often not convenient since they
assume precise knowledge of the numerical data for the problem. In general,
this knowledge is not accessible. There are, however, less obvious applications:
if we seek the coefficients of a series that we know are rational a priori, it is
natural to use an exact representation, that is, the rationals. More generally,
formal calculation tools allow us to calculate the derivatives, and sometimes the
integrals, of functions for which we possess an explicit expression, to find the
explicit solutions of differential equations, and to give a large palette of tools
which are later available for use in the heart of a scientific calculation program
(it is possible for some formal calculation software to produce a procedure in
FORTRAN, C, or some other language). It is particularly interesting if the pro-
gram relies on complex formulae which are difficult to check. In this case, the
symbolic calculation tool can be remarkably effective, when it is reliable.

But there is always the other side of the coin: the use of symbolic manipula-
tion software leads to extremely complex calculations more rapidly than the use
of scientific calculation software, and is occasionally totally infeasible. Further-
more, this software is still new, and clearly less reliable than scientific calculation
software. If, for example, we ask a formal calculation program to take the inte-
gral of a function which has distinct forms according to the interval considered,
the program is frequently susceptible to giving the wrong answer. Similarly, for-
mal calculation programs are. often bad at simplifying complicated expressions.
Finally, everyone who leaves the beaten track requires tailor-made code and there
exist far fewer libraries of coherent programs than for scientific programming.

For a numerical analyst, floating-point representation is the devil that we
know. Formal calculation software is the devil that we know less well. Whatever
happens, with these two devils, it is necessary to proceed with caution.
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A flavour of numerical
analysis

Teaching numerical analysis, or, more generally, the analysis of calculation pro-
cedures, often has the reputation of being pointless.

Chapter 1 will, I hope, have convinced the reader that it is useful to think
about numerical methods. The present chapter introduces some mathematical
techniques which are extremely common in numerical analysis.

Since mathematics is certainly not a spectator sport, but more an activity
where one only acquires skill and strength by doing it, studying proofs, and
solving exercises, the format of Chapter 2 is similar to that of Chapter 1 It
therefore consists of a self-guided visit in the garden of approximations of the
continuous by the discrete.

We place the discrete in the care of Don Knuth [338], and the continuous in
that of the great Euler [5].

There are no surprising results in this chapter, just the comparison of powers
and exponentials, and the construction of the logarithm and exponential func-
tions. It allows us to sum up results which are generally known to the reader,
but by using an approach which is independent of the classical results of ele-
mentary real analysis. This approach rests on simple arithmetic identities and
inequalities, and has a large place in familiar numerical analysis procedures, but
is little used elsewhere.

We must not be afraid of throwing ourselves th at the deep end “of indices
and limits of sequences of functions. At the beginning, we will, perhaps, not
feel completely at ease, but as we go along and use these tools, it will become
beautiful and natural.

1
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2.1. Comparison of exponentials and powers

There are numerous methods for proving the comparison theorems between ex-
ponentials and powers. The first exercises of this project will allow the reader to
obtain these comparisons in a totally elementary manner, using only algebraic
identities and simple inequalities. The results are eminently classical; the proofs
guided by these exercises are perhaps not.

We begin with some elementary identities.

Exercise 2.1.1. Let m be a strictly positive integer. Let (using notation from

138D
21y ym = y(y+ ) mmmfy+ m - 1)1

Verify the following identities:

212 ym- ¢ Dm
m

2.13 +2m=J2Cmy~Jzl
30

Hint: for identity (2.1.3), let

F(y,z,m) = (y + 2)BeJ.
i=0
Calculate the difference F(y,2,m)-F(y,2 ,m—2) with the aid of identity (2.1.2)
and conclude by means of a recurrence on m.

Exercise 2.1.2. Let x be a number (rational, real, or complex) which is different
from 1 Calculate the sum

n
5m,n) =" xkkm,
k=1
using the fact that «
kw=mY ,jm~1
i=0

and changing the order of the summations. Deduce from this calculation that,

if 0" x < 1, then
m\
orNS X mn N ——-— —r
\Y

a—

and

\
19 0 nmxntl # .m
(iry
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Exercise 2.1.3. Show that for every y E Jx, 1 there exists a number C such that,
for every n O, we have the estimate

nmxn” Cyn.

Show, by using egqn (2.1.3), that there exists a C* such that, for every n ~ 0 and
for every N > n,

215) xkkm AC*(n + Dw

k=n+l

Use the formula found in Exercise 2.1.2 and inequality (2.1.5) to calculate the
limit of 5(x,m,n) as n tends to infinity. What can we say if x is a complex
number of modulus strictly less that 1?

The preceding exercises thus show, in an elementary way, that increasing
exponentials dominate all power functions.

2.2. Convergence and divergence of classic series

The divergence of the harmonic series is a well-known fact, but generally proved
by comparison with the logarithm function. There follows a proof of this diver-
gence which is entirely independent of all knowledge of logarithms:

Let

221 Hn=1+ -+ ... 4— =
221 5 0
Exercise 2.2.1. Show that, for every n ~ 1,

HZ2h —Hzn-1 » —

Deduce the divergence of the harmonic series.
The same technique can be used, suitably modified, to show convergence:
Exercise 2.2.2. Show that, for every a > 1, the series

00
E>>-"
n=1

converges.
Hint: do not delimit the packets exactly as in the preceding exercise.

2 3. Discrete approximation of the logarithm

This section gives a construction of the natural logarithm from scratch; we do
not suppose that the reader has never seen a natural logarithm before, but we
wish to lead him or her to explore known ground with new eyes.
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We call the largest integer less than or equal to the real x the floor of x
and denote it by We call the smallest integer greater than or equal to X
the Ceiling f x and denote it by Y\ These ideas differ from the widely known
idea of the integer part, but are often rather easier to use. Recommendation:
draw graphs of the floor, ceiling and integer part functions to see how they are
different.

We define the following functions for x ~ 1:

23D L x,n) = J/fre{- Hn,

232 L (x,n) = Hynxj - ffn-i =

Exercise 2.3.1. Show that L(x,n) is strictly positive if x > 1 and n * rio(X) =
\{x —1)-1", and that L(x,n) is strictly positive if x ~ 1. and n * 2.

Exercise 2.3.2. Show that, for every real x > 1 and every sufficiently large integer
n, we have the inequalities

L&nNA"L20)LX2n)"LXn).
Exercise 2.3.3. Show that the limits

lim L(x,2n) and Hm)mL(x,zn)

exist and are equal to a function of x, which we will denote by L(X).

Remark 2.3.4=Some simple numerical experiments with x = \/2 will convince
the reader that the sequence of humbers (L(x, n))n>no” is n<1 monotonic and
that, consequently, its convergence is not obvious. On the other hand, we have
just shown that the sequence of numbers (L(X, 2n))2n>no™ is monotonic. We
have thus extracted a subsequence whose convergence is easy to show. There
are a lot of procedures for extracting subsequences. Here we have used an arith-
metic argument but we often call on a compactness argument. It would be a
shame to be happy with only demonstrating the convergence of a subsequence:
we will therefore show the convergence of the two sequences (L(x,n)) n>1 and
(L(x,n))n>1, beginning with the convergence of (L(x,n))n>1 when x is an in-
teger.
Exercise 2.3.5. Show that, if p is an integer which is greater than or equal to 2,
then for every n » 1
L(p,n) » L (o,n-h D).

Deduce from this that, for every integer p which is greater than or equal to 2,
the sequence (L(p, n)) converges to L(p).

What is the value of L(1)?

The function L should be the Napierian logarithm. It is therefore necessary
to verify that it has the additive property

233 L(xy) = LX) + L(Y).

We will first verify this on the integers:
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Exercise 2.3.6. Show that, for all integers p, and n greater than or equal to
2,
L ( pam =k + (.np).
Deduce from this that L(pg) = L(p) + L(q), for all integers p and q greater than
or equal to 1.
This property is immediately generalized as follows:

Exercise 2.3.7. Let a be a dyadic number with finite expansion: x —2~Ir > 1
Show that, for every integer p A~ 1and for every integer n ~ /, we have

L =LK2+L (2n-r)

and deduce from Exercise 2.3.5 that L(px) = L(p) + L(X).

Then show that L(xX) —L(r) - IL(2) and, therefore, for all dyadic numbers
x and y which are greater than or equal to 1and have a finite expansion, L has
the additive property (2.3.3).

The function L has the additive property when it acts on dyadic numbers
of finite expansion. How does it behave on reals greater than or equal to 1? A
density and continuity argument gives the answer:

Exercise 2.3.8. Show that, for all x and y such that 1~ x < y, and every integer
n ~ n0(),

From this deduce the inequalities

239 v N L(Y) y _A

Show that eqn (2.3.3) holds for all reals x and y greater than or equal to 1,
by combining the continuity relation (2.3.4) and the additive property (2.3.3)
already proved for dyadic numbers.

Show that the function L is differentiable on [l,+00). What is the value of
its derivative?

Now we are ready to show that every sequence L(x,n) converges to its limit:
Exercise 2.3.9. Deduce from the inequalities (2.3.4) that

and that, consequently,

L({xn\ + 1D - L+ D~ - [zn))- (n).
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Use the properties (2.3.3) and (2.3.4), and the definition of the floor function to
show that

L (X)"ﬁ_l\ L (xn) ™ L &).

What can we say about L(x,n)?

We have momentarily forgotten the logarithms of numbers less than 1, but
they are treated in an analogous way:
Exercise 2.3.10. Show that, for every x < 1 and for every sufficiently large n,
we have the inequalities

_1—L(x,n) —;F——L(X,Zn)
1 1 1 1
S L 2m) A —L (n).
Eo\ -, F®IT o, TREM

Exercise 2.3.11. Show that, if p and q are integers such that q < p, then
L

Conclude, by using the toolkit developed above, that L(x) — -L(I/x) for
any strictly positive real x.
Calculate the derivative of L at every positive real number.

The function L thus obtained is the Napierian logarithm. It was introduced
without calling on its definition as the integral of 1/x which vanishes at x =
1. Certainly, the integral definition has been hidden: without saying it, we
approximated an integral with a finite sum by means of a rectangle method,
allowing us to even drop the small pieces at the ends of the interval (draw a
picture).

It is recommended that the reader draw the areas defined by L(x,n) and
L(x,n) for x > 1, and compare them with the area defined by f* dy/y. It will
be useful to write, for example,

2.4. Comparison of means

We are also going to construct the exponential function by elementary methods.
To do this we will need classical inequalities between different means.

The proof of these inequalities is very simple, and curiously dyadic—as the
reader will appreciate.

We recall some terminology: the arithmetic mean of a and b is equal to half
of the sum of a and b; the geometric mean of a and b is the square root of the
product of a and b; and the harmonic mean of a and b is the inverse of the
arithmetic mean of 1/a and 1/b.
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Exercise 2-4-L. Show that, for all positive real a and 5, we have the inequalities
2(-+1) AV AbA-(a + b).

We are going to show that, for every integer n, and for every choice of strictly

positive reals a\, az, ..., an, we also have the following inequality:
/ n*y\ 1 1 nn

4.1 N\Y ~ P y/ai« ==g, "
\j=1 ai/ n

Exercise 24-2. Show that inequality (2.4.1) is true when n is a positive integer
power of 2.

Exercise 24-3. Let n < 2m. Show that we can deduce the second inequality
in expression (24.1) for n from the corresponding inequality for 2m, on the
condition that we choose

b _\a if1™j " rn
j ~\g ifn + 1

and we take g to be the geometric mean of the aj.

This elementary proof of the inequality between the geometric and the arith-
metic mean of n numbers can be found in [44, Chapter Il, Section 5].

Exercise 2-4-4=Use a similar procedure to show the first inequality in expression
41

2.5. Elementary construction of the exponential

The construction described below is entirely independent of the construction
of the logarithm which was presented above. We will see in the differential
equations chapter that this construction is a precursor to a lot of the ideas used
for the numerical integration methods for ordinary differential equations.

Just as the logarithm was obtained by an additive approximation of inte-
gration, the exponential will be obtained by a multiplicative approximation of
integration.

I owe the relation between the inequalities on the means and the approxi-
mation of the number e to the small book by P. P. Korovkin [5], and | have
generalized this idea to the approximation of the exponential function. On the
other hand, his proof of the inequalities on the means is more complicated than
that given in the preceding section.

Suppose that x is strictly positive, until indicated otherwise.

We define the following functions:

( 7 ni o /
1H--) and E X m) = (1-—- )

m/ \ m/
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It is proved in all calculus courses that E(*,m) and jE(-,m) converge to the
exponential as m tends to infinity. Here, we shall see that these functions give
a means to construct the exponential from scratch; moreover, we show that the
exponential is the inverse function of the logarithm.

Exercise 25.1. Let x > O. Show that, for every integer m ~ 1, we have
EXxm Em+1).

Hint: apply the second of the inequalities (24.1) withd\ = 1, = === gm+i =
1+x/ra,andn=m+ 1.

Exercise 2.5.2. In the same way, show that, if m > x,
EXm)"E (X,ma-1),

using the first of the inequalities (2.4.1).

Exercise 2.5.3. Show that, for every p > x which is sufficiently large and for
every m greater than or equal to 1,

E(x,p) » E(x,m).

Exercise 2.5.4. Show that, for every m > x, we have
O E (x,m) —E (x,m) EF x,m).

Exercise 2.5.5. Finally, show that, for every x > 0O, the sequences (E(x,m))
and (i£(x,m)) m each have a limit as m tends to infinity and that these limits
coincide.

We will denote by E(x) the common limit of E(x, m) and E(x,m) as m tends
to infinity.
Exercise 2.5.6. Calculate E{O).
Exercise 2.5.1. Show that, if p is greater than or equal to 1, then
E{px) = E{)p.

Exercise 2.5.8. Deduce from the preceding result that, for every positive or zero
rational p/q, we have

Exercise 2.5.9. Show that, if x is positive or zero and if y is strictly greater than
X, then

~x)E (x,m) &1 4—5) N~ E(y,m) - E (x,m)
MY-X)E(Y.m) (1 + )
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From this, deduce that in the limit as m tends to infinity,

G0 4.E)" ( -

Show that E is differentiable for every x > 0 and right differentiable at 0. Cal-
culate E*'(X).

Exercise 2.5.10. Deduce from Exercises 2.5.8 and 2.5.9 that, for every x and y
greater than or equal to O, E satisfies the multiplicative property

5.1 EX+yY)=EXE ().
From now on we are interested in the behaviour of E for x < O.
Exercise 2.5.11. If x is strictly negative, show that the two sequences

(E(X,m))m>_and

are well defined and converge monotonically to E(—x)~I. Then, show that the
property (2.5.1) holds for all real x and y.

The function E is therefore the exponential function. It remains to verify
that it is the inverse of the logarithm.

Exercise 2.5.12. Deduce from expression (2.3.4) that, for every x ~ O,

— — ~AL{I + x) ~X.
1+ X { )

Deduce from this inequality that
—_ N «<E(E*,"=>>

and that consequently, for every x * O,

L(E(X)) = x.

Show that this relation is still true for x < 0, and that we also have, for y > 0,

E(LKY)) =.

Thus, we have constructed the exponential and logarithm functions by en-
tirely elementary methods and we have shown that one is the inverse of the
other.

Equally simple methods can be useful elsewhere—and this is what we are
going to see in the next subsection.
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2.6. Exponentials of matrices

Let AAN be the set of real or complex square matrices with n rows and n columns.
We will verify that M n can be equipped with a norm in the following way: let
A— mid

n
Mill = max y*Ajjl
1=1
Exercise 2.6.1. Show that the expression thus defined really is a norm, that is
to say that, for all matrices A and B of M n and every scalar A we have

PlIi » o, positivity,

PlIx=o ifand only if A= o, the norm is positive definite,
P +X9i~ Plli+ |IEl triangle inequality,

&4l = Welli, homogeneity of order 1.

The matrix norm that we have just defined is linked in a simple way to a
certain n-component vector norm as follows:

Exercise 2.6.2. If X\,X2,... ,xn are the coordinates of some vector x, we let
M i -
i=i
Show that we have the inequality
(26.1) AN A THANIX.

Furthermore, show that, for every matrix A, we can always find a vector x / O
such that

IAX]T = [IALiIX].-
Then, show that
IAX]!
(262 Pill =
W m

Exercise 2.6.3. Show that, if A and B are in Mn, then
HASI . MHAL 11511

Denote by 1 the identity matrix. Calculate |]I}]i.

Exercise 2.6.4- Let P(ra))m*i be a sequence of matrices belonging to M n=
Show that the sequence of norms P(m)||i tends to o if and only if each of the
sequences {Aij(m))m*i tends to o for any i and j between 1 and n.
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Exercise 2.6.5. Show that the sequence of matrices A(m) converges if and only
if it is a Cauchy sequence; in other words, if and only if, for every given number
s > 0O, we can find an integer M such that, for every m and p greater than or
equal to M, JJA(m) —AQ)\\i is less than or equal to e.

The result of the previous exercise states that M n is a complete space, i.e.,
all Cauchy sequences converge.

The preceding ideas are sufficient to construct the exponential of a matrix
A without using power series. We begin by showing an elementary criterion of
invertibility:
Exercise 2.6.6. Let A e M n be a matrix with corresponding norm strictly less
than 1 Show, with the aid of inequality (2.6.1), that 1 —A is injective and,
therefore, invertible. Also show, using eqn (6 .2), that ja - A)-1]li » @ -
MU)-1.

We will now show an elementary identity:

Let C and D be matrices belonging to M n. Show that the following identity
is valid for every integer p ~ 1:

p-1
263 Cp-Dp=7"2<j(C -D)Dp-1+.
j=0

We now use the following approximations to the exponential:

26.9 E(A,m) and E (A,m) "
= H )
Exercise 2.6.7. Verify that the approximations (2.6.4) are well defined for every

sufficiently large m.
Compare [|EGA.M]i, [IEA,m)]]i, EQ\NA\Ni,m), and E{\\A\\i,m).

Exercise 2.6.8. Show that, for every m greater than or equal to 1,

(265) \\E(A,2m) i~ Mill exP(MIIi)
m

Hint: apply egn (2.6.3) with C = (1 -fA/2m)2and D = 1+ A/m.
This inequality allows us to show the convergence of a subsequence:

Exercise 2.6.9. Verify that the sequence E(A, 2m) has a limit, which will be
denoted by E(A), as m tends to infinity.
What can we say about the sequence E(A,2m)?

Exercise 2.6.10. Show that, even if A and B do not commute, we have
(2-6.6) \\E(A) -E(B)\U ™ \A- exp(max(P]].ll-BlID).

Hint: this is another application of identity (2 6 3).
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It remains to illustrate something of the multiplicative property of the expo-
nential:

Exercise 2.6.11. Show that, if A and B commute, then
26.7) E{A+B)=E{AE (B) = E{B)E {A).
Show that, if p is an integer greater than or equal to 1, then
E(A)p = E(PA).
Exercise 2.6.12. Prove that
(2.6.8) PM -1-X1U <2 MH?exp (HAH,).
Hint: estimate \\E(A,2j) - E(A, 2™D)]]i using expression (2.6.5) and sum with

respect to j.

The inequality (2.6.8) allows us to solve the remaining questions, and, in
particular, the convergence of the sequence E(A,p) to E(A):

Exercise 2.6.13. Show that, if p is an integer greater than or equal to 1,

\\E(A,p)-E(A\\* 2exp@M i) M | .
P

This allows us to verify the convergence of E(AIn) to E(A):
Exercise 2.6.H. Show that there exists a constant C such that

\\E(A,p)-E(ANLA -

and estimate its value.

This allows us to consider the real variable function which associates t with
E(tA):

Exercise 2.6.15. Show that the function t => E(tA) is infinitely differentiable
and calculate all of its derivatives.

We can also make some calculations of exponentials in practice:
Exercise 2.6.16. Let A be a diagonal matrix. Calculate E(A).
This was easy. Let us try a more complicated case:

Exercise 2.6.17. Let A be a nilpotent matrix, that is, there exists p (less than
or equal to n) such that A(p) is zero. Calculate exp(A). Show that, for any m,
E(A, m) is a polynomial in A, whose degree is bounded independently of m.

The case of nilpotent matrices is particularly curious, because we have an
analogous behaviour for E(A,m):
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Exercise 2.6.18. Under the conditions of the preceding exercise, show that
E(A,m) is also a polynomial in A whose degree is bounded independently of
m, and find its limit as m tends to infinity.

There are many ways of approximating a matrix exponential. Assume that
the matrix A and the function B(t) are given such that

O - DIl =te (D),
where e(t) is a function of t which tends to o as t tends to o.
Exercise 2.6.19. Show that there exists a constant C such that, for all m,

Therefore, if we assume that e(t) is small compared with t, the approximation
of E(A) by B(I/m)m is more precise than the approximation of E(A) by E(A,m)
or by E(A,m).
Exercise 2.6.20. For sufficiently small t, let

(26.9) B(t) =1+ (I -

Show that

\\B(D)-E(tA)\\I = t3] (D),
where 77 is a function of t which is bounded for sufficiently small t. What is the
relationship between B(t/m), E(tA,m), and JE(tA,m)?

Not only is this type of approximation more precise, but it allows us to
obtain interesting information. Denote the Euclidean scalar product in W1 (or
the Hermitian scalar product in C7D) by (X,y). A matrix A is self-adjoint if,
for any x and y, (Ax,y) = (XAy). It is skew-adjoint if, for any x and v,
(Ax,y) = —(X,Ay). Finally, it is unitary if, for any x and y, (Ax, Ay) = (X,y).
Exercise 2.6.21. Let A be a self-adjoint matrix. Show that E(A) is also self-
adjoint. Let A be a skew-adjoint matrix. Show that the matrix B, defined by
eqn (2.6.9), is unitary and, consequently, that E(A) is unitary.

This is not all; we can estimate matrix exponentials when we have little
information on the matrix itself:

Exercise 2.6.22. Suppose that A is a self-adjoint matrix which is positive in the
sense of quadratic forms, that is

(26.10) AX,x) " 0,

for any x in Rn (or C 2). Show that, for every x, we have
o™ (E(-A)x,X) M (X,X).

tffoL use E(A, n) rather than E(A, n) to obtain the answer.
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What use is such an example? It happens (and we will illustrate this in
a particular case in the last chapter of this book) that a number of practical
numerical analysis operators have the property (2.6.10), but their norm grows
rapidly with the number of degrees of freedom, n, of the discretization; they
arise from differential operators which have no chance of being bounded in a
reasonable vector space. This does not prevent us from analysing them and
doing the calculations which require them, even in practice.

One property of the exponential is lost when we consider matrices: we still
do not have E(A + B) = E{A)E(B). Below is an elementary example of this
phenomenon. Let

-(2 0 0)-
Exercise 2.6.23. Calculate £(.4) and E(B). Is E{A)E{B) unitary?

All of this section can be generalized without difficulty to the case of a unitary
normed algebra, that is, a set A which has a vector space structure and, fur-
thermore, which possesses one multiplication which is distributive with respect
to addition, and a norm for which this space is complete.
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Algebraic preliminaries

This chapter contains some elementary and some very elementary information.
Normally, at level n one has not entirely assimilated the lessons of level n —1
Therefore, the consultation of first year courses and books is strongly recom-
mended in case of difficulty.

3.1. Linear algebra refresher

We assume the reader to be familiar with the ideas of a vector space over the field
K, which could be the real field R or the complex field C, and linear mappings.
We also assume the reader to be familiar with the ideas of linearly independent
sets, spanning sets, dimension, and basis.

3.1.1. The matrix of a linear mapping

Let V be a vector space of dimension n, and W a vector space of dimension m,
over the field K. We choose a basis (V\,..., vn) of V and a basis (W\,..., wm)
of W. Recall how we determine the matrix of the mapping / between these
two bases: the images f(vj) of the vectors of the basis of V have the following
decomposition on the basis Wji

f @) =
i=1

Every element x of V has the following unique decomposition:
n
X = J2 Xivj-
j=i
By the linearity of /,

n \" n n m

[J2Xivi) = '52 xfui) = 527 z

\j=I ' i=1 i=
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and, therefore,

G.11)

The matrix of the mapping / between these two bases is therefore the following
table of numbers belonging to K*

(An Aw === Ain~N
A2l A2 *** An

We frequently denote the element of the matrix A which is situated at the in-
tersection of the i-th row with the j-th column by Aij or (A)ij. The notational
convention consists of first giving the row index and then the column index.
The set of matrices with m rows, n columns and coefficients in IK equipped with
matrix addition and the multiplication by a scalar, forms a vector space denoted
by Afm,n(K)- If m = n, this space is formed from square matrices and we denote
it M n(K). If the choice of the field IKis not important then we will denote it sim-
ply by M m,nor M n- The space .Mnen(K) therefore corresponds to the space of
linear mappings from Ikh to Km, once these two spaces are equipped with bases.
Matrix multiplication corresponds to the composition of linear mappings. If B
belongs to .Mmn(K) and A to -Mnp(K), we define the product AB by

n

In multiplication is an internal law. The identity matrix 1 is the
identity in AIn(®); it will also be denoted by /, or by /n, if we wish to specify the
dimension. A synonym of invertible is regular. A matrix which is not invertible
is said to be singular.

Remark 3.1.1 (Geometric Remark). If we identify V and Wh (or C7D, and simi-
larly W and Rm (or C77), then we can say that the column vectors of the matrix
A are the images of the vectors of the starting basis.

We can perceive the matrix of the linear mapping as the assembly (in the
right order) of the images of the basis vectors. Thus, the identity matrix is
formed from the assembly of the canonical basis vectors of Kn.

The above identification will be automatic in finite dimensions. Unless in-
dicated otherwise, we will identify linear form and row vector, linear mapping
from the basis field IKto V and vector of V, and linear mapping from V to W\
and the matrix of this linear mapping.
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3.1.2. The determinant

We recall the definition of the determinant as well as its principal properties.
To do this, we identify families of n vectors of Kn = V and matrices formed
from the assembly of these n vectors. The set An of alternate multilinear forms
from Vn to K is formed of mappings /, from Vn to K, which have the following
properties:

/M +\W[,V2,.... M) =M,
K", VAf K

/ Q) =\a® )=

where a is a permutation of n objects and e(cr) is its signature.

It can be proved that An is a vector space of dimension 1. The determinant
is the one of these alternate multilinear forms on Kn which has the value 1on
the canonical basis of V. The determinant of a matrix is the determinant of the
family of its n column vectors. The determinant of a linear mapping from W to
itself is the determinant of its matrix, provided that we choose the same basis
before and after the mapping. It can be proved that this determinant does not
depend on the chosen basis.

The explicit expression for the determinant of a matrix is given by the for-
mula

312 det A =
& i=I

where the sum extends to all permutations a of n objects.

We know that a square matrix A is invertible if and only if its determinant
det A is not zero. Similarly, the determinant of a family of vectors is nonzero
if and only if this family is a basis. We also know that the determinant of a
product of matrices is the product of their determinants.

However, this description is of little practical interest, since determinants are
difficult to calculate. We happily calculate the determinant of a 2 x 2 numeric
matrix, and we frequently solve a 2x 2system by employing the Cramer formulae.
For n ~ 4, it is already a bad idea to calculate a determinant with formula
B.12) . We will see in Chapter 9 how the tools used for solving linear systems
give efficient methods for the numerical calculation of determinants.

The determinant of a family of n vectors remains an interesting theoretical
tool, if only because of its geometric significance. It is the volume of a paral-
lelepiped constructed on n vectors. Note that we allow this volume to be negative
if the basis made out of these n vectors has the opposite orientation to the refer-
ence basis of the vector space. Consequently, the determinant of a matrix is the
volume of the parallelepiped constructed from the column vectors of the matrix.

e determinant therefore serves a crucial purpose when we make a change of
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variable in a multiple integration and, consequently, in the study of differential
operators in geometry.

For higher dimensions, the calculation of the determinant can be simplified
by considering structure or symmetry.

As an example of the exploitation of symmetry, we prove the following clas-
sical result, which concerns the determinant of Vandermonde:

Lemma 3.1.2. The following identity holds:

1 1 | e= 1

Xo Xi z2 * Xn

g Z? x\ w03 n

\ oNi<jrn

10 xx = 7R
The determinant thus calculated is called the Vandermonde determinant.
Proof. To verify this identity let

P (x0,xi,...,<<n)

be the Vandermonde determinant. This is a polynomial in the n + 1 variables
X0,Xli,... ,xn. If two of the numbers Xi are identical, the determinant has two
identical columns and, therefore, it vanishes. Consequently, P must be of the
form

Q (XO,X\,....Xfiy n N

with Q being another polynomial. Moreover, examining the formula (3.1.2)
indicates that each term of the determinant, given by Cramer § formulae, is of
global degree

1+ 2+ ...-fn=-n (n+ D).

Consequently, P is a homogeneous polynomial of degree n(n + 1)/2 with real
coefficients and, therefore, Q is a real constant. It remains to calculate this con-
stant and, to do this, we note that, in the formula which gives the Vandermonde
determinant, the monomial

*OQ* | -77*n
can only be obtained by taking a to be the identity permutation. The coefficient
of this monomial in the determinant is 1 It remains to find the coefficient of
this monomial in

.n - n -

o™Mi<j™n

To obtain the term in X™ we must make xn appear n times and, therefore, we

must take
n—

DL G ~ %) =
i=0
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The coefficient of our monomial is therefore the coefficient of

JJ -

By induction, this is 1 |

We will come across this determinant again later when investigating the the-
ory of polynomial interpolation.
To conclude this section, we recall the following two facts:

= A nonzero matrix can have a zero determinant. For example,

=Except in 1dimension, the determinant of the sum of two matrices is not
related to the sum of their determinants. The reader who is in doubt would
do well to compare det(A + B) and det A + det 33 where B is given by

3.1.3. The fundamental theorem of linear algebra and its
consequences

The following theorem will be required frequently:

Theorem 3.1.3. Let / be a linear mapping from a finite-dimensional space V to
a finite-dimensional space W. Then, the dimension of the domain of / is equal
to the sum of the dimension of the kernel of /, and the dimension of the image
of/:

dimIm/ 4dim ker/ = dim V. 0

Here is an interesting exercise:

Exercise 3.1.4. Prove, without using the determinant, that it is equivalent for a
square matrix to be invertible, to have a left inverse, or to have a right inverse.
Hint: if A has a left inverse B, then the kernel of A is reduced to O and the
image of B is the whole space; use then the fundamental theorem of linear
algebra, Theorem 3.1.3.

We can immediately deduce from this the following corollary for the linear
system

AX = 6

whose matrix A is square:
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Corollary 3.1.5. The following properties are equivalent:
() For every vector 6 eqn (3.1.4) has at least one solution;
(i) There exists a vector b for which eqn (3.1.4) has at most one solution.

The linearity of the problem implies that if we have uniqueness for a vector b
then we have uniqueness for all vectors b.

There is a simple criterion which guarantees that a square matrix is invertible:
we say that an n by n matrix is strictly diagonally dominant if, for all j =
1,...,n, the following inequality holds:

lajjl >

Lemma 3.1.6. A strictly diagonally dominant matrix is invertible.

Proof. We will show that the kernel of a strictly diagonally dominant matrix
A is reduced to 0. We assume that there exists a vector x ~ O such that Ax
vanishes, and let i be the index of the component of x with maximum absolute
value. The i-th equation can be written

AuXi = — ~ A AKXk
{k.Ki}

Using the triangle inequality and the definition of i, this relation implies the
inequality
VAl W\ A A A Y\,
{k.kNi}

which, after division by |X], requires that

VAN A A A ,
{k K}

contradicting the assumption on A. Therefore, due to the fundamental theorem
of algebra, A is invertible. (.

3.1.4. Eigenvalues and eigenvectors

Let / be a linear mapping from a vector space V of finite dimension n to itself.
The spectrum of / is the complement of the set of complex numbers Afor which
/ - Xl is invertible. As we are in finite dimensions / —A/ is invertible if and
only if its kernel is reduced to zero. Therefore, if Ais in the spectrum of /, there
exists a vector x (clearly nonzero) for which

f ()= Ax.
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In this case, Ais an eigenvalue of /, and x an eigenvector of /. If we fix the basis
of the space V, we can identify / with its matrix A in this basis, and thus we will
refer to the eigenvalues of A and its eigenvectors. The characteristic polynomial
of /, or of A, s
P{X) =det (XI-A).

The eigenvalues of A are the roots of its characteristic polynomial. It can be
proved that every matrix is similar in the complex field to a triangular matrix
of the form D + N, where D is a diagonal matrix and N is a nilpotent matrix
(that is Nn = 0) which commutes with D.

3.1.5. Scalar products, adjoints, and company

Recall that a scalar product on a real (respectively, complex) vector space V is
a positive definite bilinear (respectively, sesquilinear) form on V x V.
On V = Wh the canonical bilinear scalar product is given by

n

@15 x,x)v =
j=i

and on W = C™ the canonical sesquilinear scalar product is given by
m

¢ Y,y w=
t=l
where yi is the complex number conjugate to yi. The Euclidean length of a
vector X £V is
IMIv = \/(X,X)V ,

with an analogous definition in W. Given two finite-dimensional vector spaces
V and IT, each equipped with a scalar product denoted by (*,*)v and
respectively, the adjoint of a linear mapping / from V to W is the unique linear
mapping f* from W to V such that

)W = C>/*()v 7 Vxg v, Wg w.

If V (respectively, IT) is identified with Ikh (respectively, Km) equipped with
its canonical basis, if the two spaces are equipped with their canonical scalar
products, and if / has A £ M m,n as its matrix, then the matrix A* £ M nm of
/* is given by

The transpose of a matrix A of m rows and n columns is the matrix AT of n
rows and m columns whose coefficients are defined by

(AD)ij = Aji.
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The transpose is the same as the adjoint in the real field; in the complex field,
the adjoint is the conjugate transposed matrix. It is obvious that

@)*=a,
and that
(3.1.6) (A, Y)w = (X, A*Y)V , VX, W.

Sometimes, the transpose of A is denoted by IA, which is somewhat incon-
sistent with the notation for the adjoint.

Definition 3.1.7. A matrix A is said to be Hermitian if it is square and A* = A.
We also say that it is self-adjoint. A matrix A is said to be skew-Hermitian if it
is square and A* = —A.

To be totally rigorous, it is not the same thing for a matrix to be Hermitian
and to be self-adjoint: if we use a non-canonical scalar product, a matrix can be
self-adjoint with respect to this scalar product without being Hermitian. As we
do not treat mappings using these non-canonical scalar products in Kn in this
book, we will use these two terms interchangeably without causing confusion.

The spectral properties of Hermitian matrices are summarized by the follow-
ing assertion:

Theorem 3.1.8. A Hermitian matrix is diagonalizable in an orthonormal basis
and its eigenvalues are real. 0

If the matrix A has real coefficients and is Hermitian, it is said to be sym-
metric. In this case, the diagonalization basis can be taken to be real.

A matrix A is said to be unitary if it is square and its inverse is equal to its
adjoint:

@17 A*A = AA*=L.

The eigenvalues of A are complex with modulus 1 and A is diagonalizable in
an orthonormal basis. If A is a unitary matrix with all real coefficients, we say
that it is orthogonal. However, it should be noted that for an orthogonal matrix
the eigenvectors are, in general, not real. To construct an orthonormal basis of
eigenvectors of this matrix it is, therefore, necessary to use complex numbers.
This idea will rarely be used in this course.

We say that a linear mapping / from V to W conserves the Euclidean length
if

H/(*)Ik = IMlv, V* .

Lemma 3.1.9. Let / be a linear mapping with corresponding matrix A, which is
assumed to be square. Then, A conserves Euclidean lengths if and only if it is
unitary.
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Proof. If A is unitary, we have, on using egn (3.1.6), that
(Ax, AX) = (A*AX,X) = (X,X).

Therefore, A conserves lengths.
Conversely, let A be a linear mapping matrix which conserves lengths. We
then have the relation:

318 A, A) = (X, X), W
To extract information from this relation we are going to pass to the polar form
of the quadratic form x (AX, AX) - (X, X). We first of all remark that we have,
on using the sesquilinearity of the scalar product,
(Ax + Ay, AX + Ay) - (AX - Ay, AX - Ay) =4 2 (Ax, Ay), VX, M.
Similarly,
X+y,x£y) - X-y,x-y)=4FKxy), W M.

It follows, by using eqn (3.1.8), that
@19 J (A AY) = 3K Y), VX M.
If we replace y by \y, the preceding relation becomes
3.1.10) 9 (AX, Ay) = 3 (%,Yy), VX, M.
We deduce from egqns (3.1.9) and (3.1.10) that
B111) A AY) = (xY), WX M.
Using the definition of the adjoint we obtain

((A*A-Dx,y)=Q, VX, M.

which clearly implies that A*A = I. Since A is square, A* is also a right inverse
of A (|

The Schur lemma states that, for every matrix A, there exists a unitary
matrix U such that U~1AU is upper triangular. We call such an upper triangular
matrix, which is unitarily equivalent to A, a Schur form.

More generally, a square matrix is said to be normal if it commutes with its
adjoint. Normal matrices are diagonalizable in an orthonormal basis.
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3.1.6. Triangular matrices

Numerical analysts love triangular matrices because systems (3.1.4), where A
is triangular, are very easy to solve. Suppose, for instance, that A is upper
triangular. Then, the linear system in which we are interested is written

a\\Xi + ai2#2 + ===t G|,n-1#n-1 + nwn = ?

0222 + ===t f|2,n-1"n-1 + n%n = "2

dn-,n=%n—1  dn,M ~ "
® N\ ~

Assuming that none of the are zero, we see that

— 1

dnn
bn— Q'nH,n%n
Xn— —
&n—t,n—4
) 6l —o012~2 - - dinXn
Xi = ————mmmre e

Solving this is completely elementary and requires only a few operations, see
Operation Counts 9.2.2 and 9.3.5.

3.2. Block matrices

Block matrices generalize the concept of decomposition in coordinates. They
come up almost systematically when we discretize differential equations in more
than one variable. They are also very useful.

3.2.1. Block decomposition of a linear mapping or matrix

Suppose that V, the domain space of the mapping / which we have already
considered, decomposes into a direct sum of subspaces vji

3=1

Similarly, suppose that W, the image space of /, decomposes into a direct sum

of subspaces WF.
M

W = Q)Wi.
i—1
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Therefore, every element x of VV decomposes on Vj in a unique way in the form

N
X— X .
3=1

The mapping x — xj is the canonical projection of V to Vj and is denoted by
Vj. The canonical injection Jj is the mapping

Jji:vM v
Xj -> Xj.

In the same way, I* is the canonical injection from Wi to W, and Qi is the
canonical projection from W to Wi.
We can then write the linear mapping / by decomposing it on Vj and Wi as

follows:
N

j=l
and therefore the component of f(x) on Wi is given by

N
y i Qif {7xj) =

1=
Let

fij = Qr<f <0j =
Then, since Xj = VjX,

M N
G212 /(x) = 571ir/y (Pjx).
i=l  j=1

Note the resemblance between egns (3.2.1) and (3.1.1). Relation (3.2.1) is a
generalization of eqn (3.1.1), and egqn (3.2.1) leads to eqn (3.1.1) provided that
M = KVi, and similarly for the Wj.

By analogy with matrix notation, we can write the block decomposition of /
in the form

/ /11 /12 fIN ~

(322) /21 I ti f2N

\/m1 fM2 “*me ImnlJ
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We can obviously replace the fij by their matrices Aij, by fixing the bases of
each of \Vj and and obtaining the block decomposition of the matrix A of /:
(An AR e== Ajn~"
A2l A2 *<& AN
3B23 A=

\Ami Am2 AmnJ

We say that the decompositions V = @ jVj and W = 0 jWj equip / (or A) with
a block structure. It so happens that certain problems impose a block structure.
We are going to show that block decomposition makes matrix multiplication
easier.

3.2.2. Block multiplication

Suppose that / is a mapping from V to W which has a block structure given by

egn (3.2.2). In the same way, g is a mapping from W to X. If we suppose that
L

h=I
with the canonical projections 7Zh and the canonical injections %/, then g has
the block structure

(911 9\2 *=* 9im"
921 922 == O2M

G249
\9li 92 9ImJ
Clearly,
% — <9< >

and, as in eqn (3.2.2),

L M

oY) =""2"Hh*~2ghi(Q
h=1 =1

Consequently, the composition g o / becomes
L M

© ?)(y)?Pllf iE:|9hi f A

L M / M N \
_/iE:I n>§ Vqﬁzl j:ItO f 3/
L M / N \

530 (53 A; j3)1°~
h=l  i=l  \j=I /
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since Qili> = 0 except when V = i. In this case is the identity of Wi. It
follows that go f has the block decomposition (g o f) h with
M
©=f)h = i':ElghiC’hi' h

This formula is obviously the generalization of the matrix product. If the matrix
B of g is decomposed into matrix blocks Bhi, we obtain an analogous formula.
To give an example, let

A4Z ZZ) M

BA = + B12A21 B\iA\2 fB12A2 BnAis +B12AR3) =

It must be remembered from all of this that block multiplication is identical
to normal matrix multiplication, provided that the dimensions of the blocks are
compatible: block B”~i must have as many columns as block Aij has rows.

The Jordan decomposition of a square matrix A of order n makes use of the
idea of block decomposition. Such a matrix has one Jordan form, that is, there
exists one invertible matrix P such that P~1AP = J, where

/J(Xurn) 0 -— 0o \
0] <7(r2>"2) 0 0

0 JAri,nr.) 0
0 0 I, 3

The Jordan blocks J(A,m) are m x m matrices of the form

/A 1 0 === O\

0O A 1 0

JAmM) =
A 1
\° 0o \)

We remark here that the Jordan form is numerically less stable than the Schur
form, see [15].

3.3. Exercises from Chapter 3
3.3.1. Elementary algebra

Exercise 3.3.1. Let Pb a square matrix of order n with generic
given by the formula

Pij =+ij 'h
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where a is a real number, Sij is the Kronecker delta, and m and r are integers
between 1and n.

@ Is the matrix P invertible?
(i) Calculate the inverse of P if it exists;

(iii) Show that an endomorphism whose matrix is independent of basis is a
scaling. To do this, use a change of basis whose transformation matrix is

the form P.

Exercise 3.3.2. Let A be a rectangular matrix of m rows and n columns. Show
that, by applying a change of basis in the domain and image spaces, we can put

A in the form
Ol =0
o O

0 ==
\b V(ob

Reason in the following manner:
= If the matrix A is identically zero there is nothing to do;

=Suppose now that j\ is the index of the first column vector of A which is
not identically zero. With the first change of basis we can move column
ji to the position of column 1 Then, with a second change of basis, we
replace the first column by a column containing only a 1 in its first row
and zeros underneath;

=The general case follows by induction.

3.3.2. Block decomposition

Exercise 3.3.3. Let A be a square matrix of order n. Suppose that it has a
block decomposition Aij of dimensions rij x n®, where 1 ~ i, j ~ m. We
suppose, furthermore, that A is Hermitian and, therefore, diagonalizable in an
orthonormal basis. Determine a sufficient condition such that the transformation
matrix to this orthogonal basis has the same block structure.

Exercise 3.3.4=et A be a square matrix of order n. Suppose that it has a block
decomposition Aij of dimensions n* x rij, where 1~ i, j » m. We say that A is
block triangular if Aij = Ofor every index i and j such that i > j.

Calculate the determinant of A as a function of the determinants of the
blocks.
Hint: begin with a matrix A decomposed into 2x2 blocks. There are at least
two possible proofs of the result:
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() By induction on the dimension of the diagonal blocks;

(i) Show that A is similar to a triangular matrix by a similarity which does
not destroy the block structure.

To complete the proof\ argue by induction on the number of blocks.
Show by means of a counterexample that, in general,

A\2) #+det (An) det (A22) - det (Ai2)det (AZ) .
AZ2j

3.3.3. Graphs and matrices

A simple graph is defined as follows: we begin with a finite set X and a finite
subset U of X x X. Suppose that U contains no element of the form (x,x). The
graph is the pair G = (X, [/). If, for every (x,y) £ U, we also have (y,x) e 17,
we say that the graph is symmetric. We will only consider symmetric graphs,
which is the same as considering U as a set of subsets of two distinct elements
of X. Ifu = (x,y) we say that x and y are the end-points of u.

We say that (X, y) is an edge of the graph if (X, y) belongs to U. We say that
two vertices x and y are adjacent if x and y are linked by an edge. Finally, we
say that an edge u is incident to a vertex x towards the interior if u = (x,y) or
if u = (y,X). The degree do{x) of a vertex x is the number of edges incident to
X.

We define the associated matrix of a graph to be the matrix A(G) such that

Exercise 3.3.5. We say that a graph is properly coloured if we can colour each
vertex in such a way that two adjacent vertices are always of different colours.
It is fc-colourable if we can properly colour it with k colours.

Show that if a graph is fc-colourable, its associated matrix has a block struc-
ture indexed by the colours.
Exercise 3.3.6. The vertex-edge incidence matrix of a graph is the matrix R(G)
defined by

1 if u has x as an end-point;
(«<€)).» ={0 otherwise.

The degree matrix of G is given by

Show that we have
A(G) = R(G)R(G)t -D
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Exercise 3.3.7. If G is a simple graph, we define a new graph S(G) by adding a
new vertex £(u) for each edge u = (x,y) and defining the new set of edges as the
set of the (x,£(u)) and the (£(u),y). Show that the matrix associated to S(G)
is given by

Exercise 3.3.8. We define a matrix B in the following way: for every u G J7,
consider a strictly positive number a(u) and let

A2{u:x is an end-point of u} a(u) if x = y\
By —"aw ifu= (y);
0 otherwise.

Show that the matrix thus defined is symmetric and either positive or zero. What
is the dimension of its kernel?

3.3.4. Functions of matrices

We begin by recalling some essential facts about square matrices. Every square
matrix A of order n has a decomposition of the form

As T4N,

where T and N commute together and with A and, furthermore, T is diagonal-
izable and N is nilpotent, that is, Nn = 0. This fact is clear in the complex
field; in the real field one has to be careful, and to proceed as follows: com-
plexify the problem and combine the projections on the generalized eigenspace
corresponding to two complex conjugate eigenvalues.

Exercise 3.3.9. Calculate the powers of A as functions of T and N.
Exercise 3.3.10. Let Q be a polynomial of the variable x. Show that we have

G3) gM)-o0 M+ N+ W 1 +,.+Q"-1m

Exercise 3.3.11. Let / be a function of the variable x. Suppose that the domain
of definition of / contains the spectrum of the operator A. If this spectrum is
purely real, we will suppose that / is Cn~l on an open subset of E containing
this spectrum. If the spectrum of A contains points which are not real, we will
suppose that / is n—1times continuously differentiable with respect to the com-
plex variable x in a neighbourhood of the spectrum of A. The theory of analytic
functions allows us to confirm that this condition is fulfilled if / is once contin-
uously differentiable, and at every point in the neighbourhood of the spectrum
of A it has a convergent series expansion. Given a finite sequence

we denote by diag(a<<) the diagonal matrix whose elements are ai,..., @\, in this
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order. We extend the definition (3.3.1) by defining, for a diagonal matrix B, a
diagonal matrix

GB32 f(B) = diag (/(&)),
for C = P~1BP a diagonalizable matrix,
(3B33) f(C)=P-If(B)P,

and, for any matrix A,

630 t@-rmermwed PN, o

Show that the definition (3.3.3) does not depend on the matrix P which is
employed for the diagonalization.

Exercise 3.3.12. Show that if g is the reciprocal function of /, with g regular in
a suitable neighbourhood of the spectrum of f(A), we have

g{f(A))=A.

3.35. Square roots, cosines, and sines of matrices

Exercise 3.3.13. Let A be a real matrix of order n which is symmetric and
positive definite. By using the diagonalization of A, show that there exists a
symmetric positive definite matrix B such that

B2= A

Exercise 3.3.14. Let B" be a real symmetric positive definite matrix of order n
such that
A =

Show that A and B 1commute. Deduce from this that B is equal to matrix B
of the preceding question.

Exercise 3.3.15. We want to solve the differential equation system

d2u

4t2 Au —0,

where the unknown u is a function from R to Rn. To do this, let

\éVha)t i§) the first-order differential equation system that is satisfied by the vector
u,v)T?
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Exercise 3.3.16. Let

gitB  ¢—itB gItB Q—|'tB
costB —----- - and sintB= -——-- 5T

Show that, if (u,v)T satisfies the system described in Exercise 3.3.15, then

/u®\ _ f cos (tB) B~Isin (tB)\ (u (O\
yu(£)y — \-B sin (tB) cos (tB) J yu(O)y ~

3.3.6. Companion matrices and bounds of matrix powers

Exercise 3.3.17. Given <+ 1real numbers ao,ai,... ,aq, with ao 0, aq = 1,
consider the recurrence
Q
B35 =0, n™O0
j=o0

Let
P (X)) =xq+ag-\xg-l + ... + a0

be the characteristic polynomial of the recurrence. Write

( Un \
Un+l

\Un+g—/
and determine the square matrix A of order g such that eqn (3.3.5) can be written
in the equivalent form
336) Vn+ = Avn.
Exercise 3.3.18. Let V be the set of polynomials of degree g of the form
P =xq4'R-iXq 1+...+/2\X+ /.

We identify v with a subset of Cq equipped with the Hermitian distance. Show
that the set of elements of VV whose roots are all simple is a dense open subset
of V.

Exercise 3.3.19. Let \K be an eigenvector of A associated to the eigenvalue A*.
What relation is satisfied by the A* and the a*? From this, deduce the identity

(337 P () = det (x| - A).

This question can be answered without calculating any determinant. First
solve the case where all of the eigenvalues of A are distinct, then argue by
continuity using Exercise 3.3.18.
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Exercise 3.3.20. Let

1\
X
N
V() =

ve */
Calculate for all x the following vector with polynomial coefficients:

W) = (A-x)VX).
Exercise 3.3.21. If P has n distinct roots, express the eigenvectors of A as func-

tions of the roots of P and the vector function V.
Exercise 3.3.22. Show that we have the following identity for every integer j:

0 \
A-xD VW)= Vw1 () +

\P ) (*)/

Exercise 3.3.23. Deduce from the preceding exercise that A is diagonalizable if
and only if all the roots of P are distinct. Give the dimension of the Jordan
blocks of Aas a function of the multiplicity of the roots of P.

Exercise 3324ml et J be a Jordan block of order n:
/A1 0 === O\
0O A 1 0
(338 J(AN) =
A 1
\) - 0 \)

Calculate the powers Jm of J for every integer m 1 Show that |kfn]]i is
bounded independently of m if and only if

® A" L and
@) If |4 = 1then n=1

Exercise 3.3.25. Recall that every square matrix of order n is similar to its
Jordan decomposition

fI(AI,ni) 0 — o 7
0 J(\2,712) O 0

(0] \p—+,nr—) 0
\ O 0 J(Ar,nr)y
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where the J(AS,n8) are the Jordan blocks of the form (3.3.8). What is the Jordan
decomposition of a diagonal matrix?

Exercise 3.3.26. Show that the matrix A, defined in egn (3.3.6), satisfies
P m]]ifC, VrO 1
if and only if
@ All of the roots of P are of modulus at most equal to 1; and

(i) If Ais a root of P of modulus 1, it is simple.

3.3.7. The Kantorovich inequality

Exercise 3.3.27. Let a and A > a be positive numbers. Prove the following
inequality:

X +y Al + A \ 2, A

9 < —)& Y X,ye[a,A}.
Exercise 3.3.28. Let Ai < A < ===he g strictly increasing sequence of strictly
positive numbers, and denote by /# = 1/A* the sequence of its reciprocals. To
each finite subset J of N, we associate a [J|-dimensional simplex £(J) defined as

£@ = {&DI£j :xj ~ " xj = 1FF
jed

We define a function on £(J) by

f(x,))= Fv ~jX~ few
\i€ J

and we let
p@ =max{/ x,J) :x GE ()}

Find p(J) when J has exactly two elements.

Exercise 3.3.29. Define the following vectors of RJ:
A= A)jed and p @)= (Pied,

and let c¢j(J) be the vector of RJ whose components are all equal to 1

Assume that J has at least three elements. Check, then, that A(J), pQJ)i
and c¢j(J) are linearly independent.

We shall show by contradiction that / cannot attain its maximum value in
the interior of £(J). Suppose, indeed, that there exists x in the interior of £(*0
such that

/(</,«</K/(*,</), VyE€ £(J).



3.3. EXERCISES FROM CHAPTER 3 45

Prove that, for all z orthogonal to u>(J), we must have
AT DADT) + (DT AC ) =0,
and, therefore, there exists a scalar /? such that
i )T XA+ AT = Pui (J;

Hence, infer a contradiction.
Exercise 3.3.30. Let J = {1,... ,n}. Show that p(J) is given by

An

Al
@339 P =

Exercise 3.3.31. Show that egn (3.3.9) still holds if the Ay are not all distinct.

Exercise 3.3.32. Let A be a symmetric positive definite n x n real matrix and
let Al » A2" ~ An be its eigenvalues. Prove the inequality

XTAXXTA XX (Al + An)2

. Vx € Mh\ {0} .
Ix|4 4AiAN

Exercise 3.3.33. Let A and B be symmetric positive definite n x n real matrices
and define a scalar product on W1by

x,y)B =

Show that B~IA is self-adjoint relative to the scalar product (x,y)s- Hence,
show that the eigenvalues of B~IA are real and strictly positive. They will
be denoted by Ai ~ A2 A N An. Derive the following inequality for all
x eRn\ {0} (the Kantorovich inequality):

(33.10) AAX) (A + AN)2
TR NAAN



Part |l

Polynomial and
trigonometric
approximation of functions

Polynomials are the easiest functions to calculate. Not everything is polynomial,
but everything can be approximated, in some sense or another, by polynomi-
als. We are studying three great classes of approximation. The first two use
approximation by polynomials:

= Interpolation constrains the values of the approximating polynomial to co-
incide with those of the function at a finite number of points;

= |_east-squares approximation, which constrains the average of the square
of the difference between the function and the polynomial to be small.

These two types of approximation have different properties, but are both analys-
able by linear methods. The last class of approximation methods is spline approx-
imation. A spline is a function which coincides with a polynomial on intervals
between knots, and which satisfies some continuity requirements at the knots.

Splines generalize nicely many ideas used both for interpolation and for least-
squares approximation, and they have also recently proved extremely useful in
image analysis and computer-aided design.

47
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It must also be mentioned that certain classes of wavelets are constructed
from splines with uniformly spaced knots. An introduction to wavelets is given
in Subsection 8.8.3.

Much of the lore of polynomial and piecewise polynomial approximation is no
longer used for what it was intended for originally. For instance, divided differ-
ences, which generalize derivatives, were extensively used to construct numerical
tables, and to analyse the noisiness of data.

Numerical tables are now generated by programs, often without the user
being aware of what is going on. For instance, computer scientists can use
efficient algorithms to calculate the usual transcendentals: exp, sin, cos, log,

At times, we may have to calculate a very complicated function. Suppose,
for instance, that each value of this function is obtained by solving a nonlinear
partial differential system which requires two hours of machine time. Then it
makes sense to construct a table for a finite number of values and a means to
fill up the gaps between them. For that purpose, we need interpolation and
approximation.

Similarly, we may have obtained experimental values, which are usually noisy,
and we would like to draw a curve which is at the same time smooth and close
enough to our data. This is what smoothing splines are used for.

However, we do not necessarily have to write software. The existing software
(including freeware and shareware) can perform smoothing and approximation
very efficiently. Some of these packages are user-friendly and it is a good idea to
start with the available libraries.

Curve and surface fitting lead to many mathematically interesting problems,
which are treated, for example, in [23].

Nowadays, divided differences are most often used to create numerical
schemes for ordinary and partial differential equations, and they have non-
commutative versions, which have been studied by the Russian school of V. P.
Maslov, in order to obtain the asymptotics of some partial differential equations
with rapidly oscillating coefficients. Even when their initial motivation is lost,
mathematical methods may prove useful for entirely different purposes.

In numerical analysis, polynomial approximation is used in a very systematic
fashion to create finite element methods and pseudo-spectral methods—two of
the work-horses of the numerical approximation of solutions to partial differential
equations.

Least-squares approximation is used in many areas. Statistics and numerical
resolution of partial differential equations immediately come to mind. However,
more generally, least-squares approximation works because nature seems quite
often to use least-energy principles, termed variational principles. If we are able
to expand an energy functional up to quadratic terms, and we minimize the
resulting expression, we find that the minimizer solves a linear problem.

Fourier analysis is quite close, in many respects, to least-squares polynomial
approximation. For this reason, Fourier series are studied immediately after
polynomial approximation. The elementary theory of the convergence of Fourier
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series is proved to be local. At discontinuities, the convergence is not uniform.
This is the Gibbs phenomenon, which is a serious problem when one uses Fourier
series in order to approximate discontinuous functions, and particularly in the
presence of nonlinear phenomena.

Finally, this part concludes on numerical integration, or quadrature, which
use tools from the theory of polynomial approximation. Numerical integration
formulae are created with the help of the theory of interpolation and also, at
times, using orthogonal polynomials. However, integration formulae are refined
by dividing the interval of integration into small intervals, and this meets the
idea of piecewise polynomial approximation.

The chapter on quadrature concludes with the fast Fourier transform (FFT),
which may be the most widely used of all numerical algorithms, and ranks as a
major discovery in numerical simulations, since it enables us to use O(N log2N)
operations for a discrete Fourier transform on N = 2n points instead of the naive
N2. The FFT uses, most efficiently, the idea of decimation—which should in-
stead be halving in the present environment, i.e., treating differently the odd and
even indices in one direction, and the first N/2 versus the last N/2 in the other
direction, and doing that again and again in a recursive fashion parameterized
by the size of the vectors being manipulated.

The importance of decimation and recursive algorithms cannot be over-
emphasized. In one way or another, all efficient numerical algorithms for large-
sized problems rely on some version of these ideas. This is the case for multigrid
methods, and also the case for wavelets. On top of that, the FFT is easy to
understand and easy to program.

Lest the reader think that all problems are linear, | shall conclude this intro-
duction with the following famous story: a man walking in the street at night
meets another one, who seems to be searching for something under the street
light. ™ay I help you, sir? Tasks the passer-by. Well sure, | can T find my car
keys. o you know where you might have lost them? Zasks the helpful stranger.
RNot really 7says the motorist. So why do you look for them here? = Here, there
is light. =
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Interpolation and divided
differences

4.1. Lagrange interpolation

The problem that we consider in this chapter is the following: let / be a function
which we assume to be continuous on the interval [a, b] and let xqg,aq, ..., xn be
n + 1pairwise distinct points given in the interval [a, B\ We denote by Pn the
vector space of polynomials of degree at most n. It is well known that Pn is of
dimension n + 1

We ask ourselves the following questions:

(@ Can we find an integer m and a polynomial P e Pm which coincides with
/ at the knots (Xj)o<j<n? ~ Is ca™e<* an interpolating polynomial.

@ii) How do we choose m e N to have a solution for every given /?
(iii) How do we choose m so that this solution is unique?
(iv) What error do we commit if we replace f(x) by P(x) when x is not a knot?

Interpolating means that we replace a function by a polynomial which takes
the same values as the function at a set of given knots. It is, however, neces-
sary to know, and this is a common sense remark, that replacing a function by
its interpolant is a step which supposes a minimum of information about the
function. Refer to Figures 4.1 and 4.2 to understand graphically the phenomena
which can appear, where the original function and its interpolant are indicated
by the solid and broken lines, respectively.

41.1. The Lagrange interpolation problem

We begin by answering the first three questions posed above.

51
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Figure 4.1: The function to be in- Figure 4.2: The function to be in-
terpolated is not smooth. terpolated is smooth, but there are
not enough interpolation knots.

Theorem 4 1-1- For all choices of n+1 pairwise distinct knots xo,...,xn and for
all given data f(x0),..., f{xn), there exists a unique interpolating polynomial
P, of degree at most n, which satisfies

@.11) p—/ R Vi=o0

Proof. If we look for a solution in Pm, then we must determine the m =1
unknowns which are the coefficients of P. Let
m

p &) - Y
k=0

then the equations which must be satisfied are

m
Y akXj = f ®, O Mj~n .
k=0

We thus have n +1 equations for m -f Lunknowns. It is natural to choose m = n
and solve the interpolation problem in Pn. We show that we have uniqueness
as follows: let P and P be two polynomials of degree at most ra, which both
interpolate the function /. Consequently, P —P is a polynomial of degree at
most n, which vanishes at n -I-1 points xo,..., xn. By Euclidean division, P - P
is identically zero. Corollary 3.1.5 implies that we have existence for all data.

The matrix of the system (4.1.1) is a Vandermonde matrix, which is invertible.
O

Note that the proof above is purely algebraic and does not require any hy-
pothesis on /, even on the values of / at the points x which are not knots.

It remains to find a practical interpolation formula. To do this, we will]
determine the polynomials ) such that

@412 ©iek) = Sjk.
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Theorem 4.1.1 assures us that, for every choice of knots and for all j =
0,..., n, there exists a unique polynomial of degree less than or equal to n
satisfying eqn (4.1.2). We now explicitly calculate the ()j. For k ” j , we see that
d) vanishes. Therefore, it is of the form

@ ) =a(x) (x - xf).
k-Ky

This product consists of n factors and, as () is of degree at most n, the polyno-
mial a(x) is of degree O. It is a constant which we calculate using the relation

1= @XD=a [l & —XK).

k:kz/ij

We therefore deduce that

The polynomial

f h

of N®
agrees with the interpolation polynomial of / at the knots Xj. As it is of degree
at most n, Theorem 4.1.1 requires that it is therefore equal to the interpolation
polynomial. We can now write the interpolation polynomial in the form

n
POO ="/ (XA (9.
j=0
We also see that the <) form a basis of Pn, the Lagrange basis.
Unfortunately, from a practical point of view, the &4 are not very suitable.

The calculation of P(x) is not very difficult, on the condition that we rewrite it
in the form

4.13) V=3 x-X),
i=0

@149 POX) =109 " (KR Xky

We then need n + 1 multiplications, n + 1 divisions, and 2n + 1 additions or
subtractions to find P{x). What is particularly annoying, is the simple fact that
adding a knot leads to completely changing the basis ()j, without the possibility
Freusing the @) calculated previously. We are therefore going to look for another
approach, with a better behaviour when we add extra points.
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4.2. Newton 3 form of interpolation and divided
differences

4.2.1. Newton 3 basis is better than Lagrange 3 basis

An astronomical application of interpolation is to the problem of plotting the
path of celestial objects. One kept adding more and more observations and
these could not be made at equidistant time intervals, at least before the age
of satellite telescopes, since during the day, or on cloudy nights, we cannot see
much in the sky. Thus, Newton came up with an idea for a basis of polynomials,
which enabled him to add data without recalculating everything.

With a single interpolation point xo, the interpolant of / is

P=(x) = f(xo0).

When we have two interpolation points x0 and #i, the interpolant of / is a
polynomial of degree 1 which is chosen to have the form

P19 =P=()+ 1(x),

since we want to be able to easily add some extra points. Since P 1(x0) = 0)
and P"xi) = f(x ), we must have

R1() = ai(x - x0),
P1(*) = f (xi) - f (x0),
which implies that

If we pass to three interpolation points #o, and x”, we would like to write
the interpolation polynomial P2 of / at these three points in the form

P2(X) = P1(X) + R2(X).

As R2is of degree at most 2 and vanishes at xo and xi, since P 2(xo) = P x{x0)
and P 2(x1) = P x(x1), we must have

R2() = a2(x - x0) (X —x\) .
Newton § form of interpolation therefore consists of writing the interpolation
polynomial P of / at the points xo,-..,xn in the form

n—
(421) PX=a0+al (x-x0)+d2(Xx-x0) (x-xi)+...+ JJ (X-X)=
k=0
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This is possible as the sequence of polynomials

n—
1) X = € "E *)> = || & B

k=o

forms a basis of Pn, Newton ¥ basis, since the first is exactly of degree O, the
second exactly of degree 1, and so on, to the (n+ I)-th, which is exactly of degree
n. It remains now to calculate the dj as functions of P, or more precisely, as
functions of P{xj) = f(xj), since we are in an interpolation setting.

We see immediately that

o= f'0) anli o\ —2XD-/(X0)

cio = f’(x0) anl o\ XX .
We note that do depends only on xo and that d\ depends only on xo and x\.
More generally, when

n—i
PX=do+ai (x- XO)+d2(x- XO)(x- Xi) +...+dnJJ xX- XK),
k=0
we choose aj ™ n and we write
3-1
Q@) =ao +fli(x - xO)+azxX- xO)(x-xi) + ... +GJII xX- XK).
k=0
This polynomial is in Pj and it agrees with P at the points xo,... ,X], since the
remaining terms of P contain the product of factors Yii=o(x ~ xK)- This proves
that Q is the unique interpolation polynomial of / at the points xo,... ,Xj and,
therefore, the coefficients dj depend only on xo,... ,Xj. We therefore introduce
the general notation
dj = f Po, X\,..., Xj),
as a result of which eqn (4.2.2) is rewritten as
n—
@22 P = 801+ / [ao il x#o)+ =
k=0

In view of the explicit expressions already found for ao and d\, and of Lemma
422, which we are going to prove below, /[xo,xi,... ,Xj] is called the j-th
divided difference.

Lemma 4.2.1. For any n, n+1 distinct points xo, ..., xn and, for any permutation
<=0n o,=.,Nn, we have

@23 f [0, =—mXN] —F [cMa)> =t ()] =
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Proof. To simplify the notation we let

Vi = X(R)'

We can consider the decompositions of P, the interpolation polynomial of / at
the points (xk)o<*k<"m on the two bases

n—
1, &-Xaq), JJ (*-&%)
k=0
and 1
1, (x-yO0), n (*““>>m
k=0
We therefore have
n—1
P () =co+a\(x —#0)+ ... + an JJ @ —xk)
k-0
n-1

—bo+ B\ (X —y0) T==+bnJJ (X —yK) =

The coefficient of the term xn in P is an in the first decomposition, since the
only polynomial of the basis 1, (e —a?),..., ““xK) containing terms of
degree n is the last, and the term of degree n appears with a coefficient of 1 In
the same way, the coefficient of the term of degree n in the second decomposition
is bn. We see, therefore, that bn = an, which proves our lemma. [

Lemma J*22. We have the following recurrence relation:

(4.2.4) / [so, ...,xn] = f [a7== Xn~1I] ~
Xo - Xn

Proof. Take yj = xn-j. Therefore, we have

n—L

P(X=a0+ai @- x0) + ... + aa.

k=0
n
=ho+bx(X-xn)+ ...+ bnJJ (X~ xk) .
k=1
We already know that bn —an. We equate the terms of degree n —1in each of

the above two expressions for P to give

n—1 n
an~i an”™ *xk—bn—\ an” ~xk,
k=0 k=1
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from which we obtain
oen\ n—41=8& ("0 Xn)=
Now
an\ —f e=<$izf] and Sa1 Yy ,...,#1])
which proves the recurrence relation (4.2.4). [
We have therefore completely justified the name divided differences.
The practical calculation of divided differences is founded on the recurrence

relation (4.2.4). By hand, we can construct the following table, from which we
will easily deduce an automatic algorithm:

X f (x0)
X Sixi) f[x0,X1,X2]
X2 f(x2)

We calculate P(x) by a Horner-type algorithm, so that, for example,
P(x) = ({f [x0,Xi,x2,XA(x - x2)+ f [x0,xi,xZ

+/ po,xi]) ( - x0)+ /[x0]

when four points are chosen.

To pass from n points to n + 1 points demands n calculations of divided
differences. For example, in the above table, the addition of the point X% de-
mands the calculation of /(a"), f[x2,x2\, f[xi,x2,x3], and f[xo0,xi,x2,X3\ or 4
calculations of divided differences to pass from 3 to 4 points.

4.2.2. Integral representation of divided differences
Let / be a C 1function on an interval containing xq and x\. We then have
f(xi)-f(x0)= J/ f*{x0+t(xi -x0)) (x - x 0)dt,
o

as verified by an elementary calculation. From this, we deduce that

/ POX\] = J/0 f"{xo + t (xi - x0)) dt.

So far, the first divided difference has appeared as an approximation to the first

derivative. Now, we see it as the average of the derivative on the interval with
end-points x0 and x\.

We are going to generalize this result:
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Theorem 4-2.3. Suppose / to be Cn on the interval

L™ XS 5

Then
n t1 rtn-1
. f{n)(x0+ ti(xi-xO0)
4.25) o

4502 (M2 *A1) 4%“em=t in (*'n *n—1)) dEA * > dAi. O

Proof. First of all, examine the domain of integration of this multiple integral.
If n = 1itis the segment [0,1]. If n = 2t is the triangle with vertices (0,0),
(1.0) ,and (1,1). If n = 3t is the tetrahedron with vertices (©,0,0), (1,0,0),
(1.1.0) ,and (1,1,1). In dimension n it is the n-simplex

£n={te W1: O™ tn " tn-1" Nh A1}

of vertices (©,0,...,0), (,0,-..,0), and so on, successively replacing the o by 1
each time to give a new vertex, up to (1,1,..., 1).

We are going to argue by induction: for n = 1 we have already seen that
formula (4.2.5) is true. Suppose that it is true up to n - 1. We note that the
inner integral is

fin-i
| fArC0 N\ A\ —xq)4".. ==tn (xn xn_i)) dtn

Jo
/O BOOAt (i - Xo) + ... 4t - Xy T L
% Y-l _itn=0
- My(n-) ca+ ti Cd — DO += =t iC =1, -2)

Mxo4'1xi X04'...4 1 1 )"
X (xn XnA\)

We therefore have, due to the induction hypothesis,

pi ptn-1
J/o -J/o /) (X04*1 (xi -*0) 4<2(*2-a:i) + ...

4-tn xn xn_i)) dfi ===dtn
=Jo Jo {/<nD)) X0+ tix-%...4 1 -

- /(D) (x04 h(x-x04..4 1(x, i-Xx, 2)
1) (x C ) rya(qx’ q)l(n_>1c_),
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This is equal to

f ; f l)Oﬁ( izn-f ;
fro= .i?f}: . JF .—’S*n—n%!\n—l.*’\nj?r

due to the induction hypothesis. This proves that the formula (4.2.5) is true for
O
n.

It follows, from Theorem 4.2.3, that we can define divided differences of /
on n + 1 distinct or repeated points, provided that / is Cn, by means of the
integral representation (4.2.5). A particularly important case is that in which
Xg= X\ = ==== xn. In this case

/ [O,...,x0] = [[ <==f@HEO)d*ndEn i
N Jo Jo Jo
n+1 arguments

= /@ (xOQ)vn,

where vn is the volume of the n-simplex. We have

ri nn- 1

1l
%'\

|
S~

1 * -,

1
o~
L
—+
L

fl rK-31 2 -t
1
L - / 2"M~2™n~2
1

n!

We have therefore obtained the relation

@29 fUo..... xo] =

n+1 arguments

4.3. Interpolation error

With the aid of divided differences, we can evaluate the interpolation error, that
is, the difference between the function / and its interpolation polynomial at the
Points Xo,...,XN.

Theorem 4-3.1. Let / be a Cn+1 function on an interval [a b] and let P be its
interpolation polynomial on the n-hi points Xo,...,xn belonging to [a,b]. Then,
or every X £ [a 5], there exists a number £« in the interval

min X, min x*j , max "x, max x*»



60 4. INTERPOLATION AND DIVIDED DIFFERENCES

such that

f0)-P = - OV, 0

0

Proof. If x = Xj the conclusion is obvious. If not, let Q be the interpolation
polynomial of / at the knots xo,x\,... ,xn,x. We can then write Q, using its
Newton form, as

n

Q(Y)=P(Vv) + f[x0,...,xn§J (y-xK).

k=0

In particular,

QK PXR=FK PK—f[ovr2==s (= £ W=

fc=0

But, we know that

f [X0) ===xn,X] —J/ } /(D) @O+ *i (@ - d0) + ==
o 0
Ml <€) dEn |i **=eni.

The (n + 1)-simplex £n+i of Rn+1 is a connected set. The image of this
connected set under the continuous real-valued mapping

F :thes/ (D) (x0+ t1(x1- x 0)+ — + tn+1 (X - &n))

is connected. We can apply the mean value theorem for multiple integrals, to
prove that there exists a tx in £n+i such that

F(t) dt=F ldt.

Now, we have previously calculated the volume of the n-dimensional simplex for
all n. We therefore find that

F(tx)
(n+ 1)

We have F(tx) = /(n+1)("a)Jwith
& £ min ~x,minxkj, max *,maxxfcj

which proves the theorem.
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The convergence of a sequence of interpolation polynomials of increasing
degree to the function that we are interpolating is not true in general. We can
find an analytic function / such that the sequence of interpolation polynomials
Pk of degree at most ft, with knots in the interval [a, b] given by

diverges catastrophically. The classic example consists of taking f(x) = 1/
(L4 x2) and [a b] = [-5,5]. This example is known as the Runge phenomenon.
The sequence (Pk)k diverges at many points of the interval. It is represented in
Figures 4.3, 4.4, and 4.5 for different values of k. On these figures, the divergence
phenomenon is quite striking. However, it is also a classical fact that changing
the location of the knots may improve the situation. For instance, if we choose
to interpolate the same function at the Chebyshev points, i.e., at

then the result is much better, as can be seen in Figures 4.6 and 4.7.

We can even prove that, for every sequence of families of interpolation knots,
there exists a function / for which the sequence of interpolation polynomials
does not uniformly converge towards the function we want to approximate. Sup-
plementary information on this remark is given in [19, Chapter 1J.

Agure 4 3. Approximation of f(x) = /(1 Ax2) by interpolation polynomials of
Jgrees , 10, and 15, using equidistant knots.
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Figure 4.4: Approximation of f(x) = /(1 by interpolation polynomials of
degrees 20 and 40, using equidistant knots.

Figure 4.5. The same functions as in Figure 4.4 using an unclipped vertical axs.



43. INTERPOLATION ERROR 63

Figure 4.6. Approximation of f(x) = 1/(1 + x2) by interpolation polynomials of
degrees 5, 10, and 15, using knots at the Chebyshev points.

Figure 4.7: Approximation of f(x) = 1/(1 + x2) by interpolation polynomials of
degrees 20 and 40, using knots at the Chebyshev points.
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4.4. Hermite and osculating interpolation

The section on the integral representation of divided differences shows that it
is natural to approximate a sufficiently smooth function / by a polynomial P
which coincides with /, together with a number of its derivatives, at a finite
number of points. Thus, given xo,..., xn and n -hi positive integers r0O,..., rn,
we seek a polynomial P of the smallest degree, such that

(GXND) /< (%) = P@ (xk) Mc=0,...fn, Vj=0,...,r —
Let
44.2 r=r0+ ... +rn.

The existence and the uniqueness of the solution of eqn (4.4.1) in Pr_i is proved
in the following lemma:

Lemma The mapping L from Pr_i to Rr defined by
LP = (P (xo0) Pir0O~l) (x0) ,...,P (*, ) P@"D(*>>)
is invertible.

Proof. IfLP vanishes for some P G Pr_i,then P is divisible by the polynomials
(x-Xo)r< ..., x—xn)rn. These polynomials are relatively prime and, therefore,
P is divisible by their product, which is of degree r. Since P is of degree at most
r - 1, P vanishes. As Pr_i is of dimension r, the fundamental theorem of linear
algebra enables us to conclude the result of the lemma. [

The polynomial P G Pr-i which satisfies eqn (4.4.1) is called the osculating
polynomial to / at the points X0, ..., xn which agrees at order rj - 1with / at
each Xj.

The following particular case is very important for applications. Suppose
that we choose rj = 2 for all j. Then, the polynomial of degree at most 2n -I-1
which satisfies eqn (4.4.1) is called the Hermite interpolation polynomial of / at
the points xo0, ===xn. It is the unique polynomial of degree at most 2n + 1such
that H

“4.4.3) Pi) =f s>, P(i)=7"(x), Vi=0,...,n

It can be constructed explicitly with the help of a basis which is analogous to
the basis of Lagrange interpolation polynomials.
We seek polynomials hk(x) and hk{x) such that
hk(xj)= Sik, Hk (xj)=0,
> vj,k.
hk (xj) = 0, tik (j) ss SkJ
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We may take hk and hkto have the form
hk{X)=TT (— — " < ),
"k
hk(x)= 17 (——)
j*k 0}A N~ Xk~ XiJ

With the aid of the notation (4.1.2) for the basis of Lagrange polynomials, hk
and hk can be rewritten as

hk (X) = <k (x)Za* (—XK)+ bk) and

The condition hk{xk) = 1limplies that bk = 1 The condition Hk(xk) = O further
implies that

26k OK) fik (xK) + <k (4)2a* = 0

and hence
ak = —26k (k) >
so that
@44 hk() = @- 2 *®
A similar argument gives
@45 hk ( X €k (X)2(x - xKk)

In this basis, the Hermite interpolation polynomial of / is given by

n

= {hiky

j=o

The interpolation error is

where £belongs to the interval [minOMj~nXj, max0*j~nXj] and u has been de-
fined in eqn (4.1.3). The proof of this estimate is completely analogous to the
Proof of Theorem 4.3.1; the details of this proof depend upon the relationship be-
tween divided differences with coincident arguments and osculating polynomials,
B described in the following lemma.
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Lemma Let xo0,... ,xn be n + 1distinct points in the interval [a 6], and
let ro,..., rn be n + 1lintegers which are at least equal to 1. Let / be a function
of class c ro+ *tn-i over the interval [a, 6. Then, the osculating polynomial of
/ at the points Xj, which agrees at order rj —1 with / at each Xj, is given by

P(X) =1 (xO)+ FoX0] (x -S_xO)V:L ... + X0](X - XO)r=
ro arguments

+ /[x0,...,x0,Xi](x-x0)o + ...

roarguments
+ /[X0,...,X0,...,%, ..., XN]J(X XOr<(X-xiyr» w=af- x I “1L. 1
@4¢6) roargfnents V" arguments

Proof. Letrbeasinegn (4.4.2) and let y\,..., yr be r distinct points belonging
to (a, b). Then, we know from egn (4.2.2) that the interpolation polynomial of
/ at the points yj is given by
r—
P(xy) = f(yi) + flyi,y2] Pi+ ==t/ pA 24 ,-
j=1

The integral representation (4.2.5) of divided differences shows that f[yi,... ,yj]
is a continuous function of its arguments. It is clear that the polynomial

r—
N
j=i

depends continuously on the yjS. Denote by d\ the derivative of a function of
two vector arguments with respect to the first one. Therefore, if y tends to any
element y of (g, 6)r,then, forall k= 1,...,r- 1, dfP (& y) converges to d*P (=y)
uniformly on compact sets of the real line and, in particular, uniformly on [a, b].
The reader should be aware that this conclusion is still true if some of the points
yj coincide. Thus, let us assume that

M —**_Up — 70,
VioH — ~—yQjri —Xi,

ArOf..AHn i+ = e jfro-| ... fm = Xn.

We will now show that P(*,y) is the osculating polynomial to / at the points
Xj, which agrees at order rj —1at each xj. It is clear that, for allj = O,.. =

P{xi,y) = f(xj).
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Choose j such that rj > 1. Therefore, we have rj distinct points 2fo+>.+j_1+1,

. =2/0F. bw=at which / - P{-,y) vanishes and, by Rolle 3 theorem, we have
r = 1 points in the interval

min{ys :rO+ ...+ r*-i + 12 s rO+ ... +rj} = 1j ()

at which /* —d\P(-,y) vanishes. By an obvious recursive argument, we see that
there exist rj —2 points at which /" - diP(-,y) vanishes in Ij(y) and, finally,
one point in Ij(y) where —d[J~1P(-, y) vanishes. As y tends to y, all
of these points where the successive derivatives of / —P(-,y) vanish tend to xj
and, therefore, in the limit

d$P(xj,y) = f® (xj), Vi=0 VK=0,...,r - 1
which proves the lemma. —

The relation (4.4.6) shows very clearly that the osculating polynomial at xq
which agrees with / up to order ro—L1is the Taylor expansion of / truncated after
order ro - 1 In general, the osculating polynomial is a combination of Taylor
and interpolation polynomials. This idea is made more precise in Exercise 4.6.1.

Now that Lemma 4.4.2 is proved, it is a simple matter to show that, if / is of
class Cr and P is the osculating polynomial which agrees with / at degree rj —1
at each point xj, then there exists in the smallest convex interval containing
x and the xjs such that

i=0
The proof of this assertion is a complete repetition of the proof of Theorem 4.3.1,
and it is left to the reader.

4.5. Divided differences as operators

The divided difference f[xO,...,xn] can be considered as a function of n + 1
variables. Thus, we may study the mapping

n+1arguments

as a mapping 5n which transforms functions of one variable into functions of
n + lvariables. If we want to make explicit the n + 1 arguments of the divided
difference, we shall write

Sn (£0,...,£n)/ = f[xo,...,xn].

all of the xjs coincide and f is n times continuously differentiable, we have

to~n” Seen **.x) ¢<In(ddes with fA*n\x)/n\. Therefore, the opera-
Or  generalizes differentiation. The notation has been chosen to emphasize
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the similarity between divided differences and differentiation: we need n + 1
parameters in divided differences to make something which resembles an n-th
derivative.

It is clear that Sn is a linear mapping: for all scalars a and all functions /

and g
6n (/ + otg) = Snf maSng.

What is even more interesting is that Leibniz *formula can be generalized to
divided differences:

Lemma 4-5.1. For all / and g and all n -f 1 distinct parameters xo,x\,... ,am,
we have the identity

(4-5-1) 6|"I>(0, ceay X n){ g ): 7

j=0

If / and g are of class Cn, the above relation also holds even when some of the
knots xj coincide.

Proof. For n = O, the left-hand side of eqn (4.5.1) is equal to 5=(x0)(fg) =
f{x0)g(x0) and the right-hand side of eqn (4.5.1) is equal to 5 (x0)5<g(x0).
Therefore, the identity (4.5.1) is verified in this case. Before embarking on the
general case, let us consider the case of n = 1 Then, the left-hand side is

f(x0)g(x0) - /(si)g(si)
X0 X

and the right-hand side is

EM ~f ) A
fx0) — o s H s i),

so that the identity (4.5.1) is also clear in this case. Assume now that identity
(45.1) holds up to some index n. Then, by the definition of divided differences,

6n @0,..., xn){fg) -6ns+) ()

G+l (xq, =, X, +i) € 0 XITH

We now use the induction hypothesis to show that
Sng,...,xn){fg) - S n ) {fg)
n

= [(" (XS X))  ¢se==»xn) 9)

- s3{xL,..., ) (
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However, for each j = 0,..., n,the term in brackets in the above sum can be
rewritten as

S O,.... X)) HEF1(Xj,--.,xn)g - Sn~} )
+ S0, ..., XPF-8B(xu ..., xj+1)f) G~ (+1 XN

which, by the definition of divided differences, is equal to

g-xn+1) ( S(x0, m B @+1-d
+@0 ~Xj+H) @+ (0,...,X

We sum these expressions with respect to j and divide by xO- xn+i to give

Sl (%o, ..., *n+) (/)

=T > r>GEIN ~  Gin+l-J
oo #O ““xn+I
+ T XZ~Xi+Hl (M1 (*0, === ) @3 g).
JAX<- Xn+1
We replace the index jby j +1, changir

the second sum of the above expression to obtain

&+l (aro,...,*n+i)(/s)

xj ~xn+l

XO_Xn+1(S3(xO,.. X)) (8n+l 8l;..
+V]— —— @Ko, Xj S8+l 3(NM, Xn+l ,
_][ 0 &8¢ D7 ¢ (& )9)
and it is now clear that the identity (4.5.1) holds. [

There is a rather obvious corollary to Lemma 4.5.1:

Corollary 4.5.2 (Leibniz® formula). If / and g are of class Cm, then, for all
integers k A~ m, the following formula holds:

jdnf &~3
dxk » "3:OCRdxi dxk~i <
Proof. Use the relation (4.2.6) and the previous lemma. O

Divided differences can also be used in several variables. We will need later
“rly the case of two variables, the case of N variables being analogous.
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Let / be a function of two variables x G [a,b] and y G [c,d\. Given two
sequences of distinct knots xo < X\ < ===< xnin [a, 0] and yo < Vi < === yp
in [c,d], we may apply £n(ro, ===xn) to f(-,y). We write the result as
@52 82(x0 /(-,>),

where the subscript a emphasizes that the finite differences are applied to the
first variable, x, and this parallels the notations dx or d/dx for partial derivatives.
Then, we apply 8p(yo,..., yp) to egn (4.5.2), and the result will be denoted by
O ===2\f) (0, ==5"T) f*
The identity
@ =) (x0,. =<9/ =& (0, -~ sxn)eP (O, ==yP)f

is an algebraic fact, which is an immediate consequence of the linearity of 5™and
8P. The reader may want to set up a recursive proof, if they feel so inclined.

If we assume, for instance, that / and its partial derivatives with respect to

y up to order p are continuous, then the same formula holds with repeated y
knots. Hence, we obtain the following identity for 0O~ " p:

(45.3) (x0, ..., xn) T.y) = 8'€0)..., *»)

This identity will prove very useful in the following sections.

45.1. Finite differences on uniform grids

The forward and backward finite difference operators are defined by

4549 (A hH® = f(x + h)- f (x),
455) VD) =7 - 7 (x- fr).

If A or V are written without index, it means that h is taken to be equal to 1
Divided differences on uniformly spaced points can be expressed in terms of
forward and backward differences:

Lemma 4-5.3. The following identities hold, for all n ~ 1
(4.5.6) Sn (xo,...,x0+nh) f= (A x0),

@457 &E’(x0- nh, . xX0)/ =

Proof. For n = 1, the identities are clear. Assume that they hold up to some
integer n * 1 Now, by the definition of divided differences,

6+l X0 +nh,x0 + (n-f Dh) f
-d@EH+h,...xp-hM-hDh)f - 8 (x0O,...,x0+ nh) f
(n+ Dh
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We use the induction hypothesis to show that the right-hand side of the above
expression is equal to

which is clearly equal to

) («<<m =)"

The proof of the second identity is completely analogous. (.

Due to egn (4.5.6), Newton 3 form of the interpolation polynomial of a func-
tion / at the points x0,x0+ h,... ,xO+ nh is given by

P @0+ hs)= / (z0) +s (A hjx0) + — — -
45.8)
+ + ak<e D™ G~n+ 1DAY)
n\

If we generalize the definition of the binomial coefficients to all real or complex
values of s by letting

(459)
then the formula (4.5.8) can be rewritten in the following more convenient form:
@510 P(xo-fhs) =Ed) MTf) (>d=

k=

0]

There is an analogous formula when the knots make up a decreasing arith-
metic progression:

Xi —x —ih.

The argument which gave us eqn (4.5.10) now gives

@51 p Q0 +hs) = \_((l) M V) )=

Of significant practical importance are the following central differences: the
central difference approximation to the first derivative of a function is
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and the central difference to the second derivative of a function is
V*ARf) ) _f(x + h)-2f(x) + f(x-h)
h2 h2

Finite differences on regular meshes were used extensively in the era of nu-
merical tables; this motivation for using them is now quite slight. However, they
remain an important device to generate numerical methods for the solution of
partial differential equations, being mainly applied to equations where convection
is dominant and time-dependent equations. As we shall see in Chapter 17, they
are an essential ingredient for the construction of some numerical integration
schemes for ordinary differential equations.

4.6. Exercises from Chapter 4
4.6.1. More on divided differences

An osculating polynomial is a combination of Taylor and interpolation polyno-
mials. Beyond that, the maximum regularity needed in order to have the general
integral representation of finite differences is not required: a divided difference
with coincident knots can be defined, provided that the local regularity of the
function at these knots is good enough. The purpose of this problem is to prove
the above statements in a straightforward and elementary fashion.

Exercise 4-6.1. Let / be a function defined on an interval Ja, bif and let xO0, ...,xn
be n + 1distinct points from [a, 6. Prove the identity
n
f[xO0,...,xn]= ”
j—©
] KA

Exercise 4-6.2. Assume that / is a function of class Cnin (a, b). Show that, for
all k™ n,

lim 7 [x, /i,..., kh] = .
hl_l’ﬂ) X, x + /i x + kh] A x)

Exercise 46-3. Assume in the remainder of this problem that yo,-..,yn ag
given distinct points in (g, 6), that the intervals (yj —e,yj + €) are disjoint for
some e > O, and that, for each j = O,..., n, / is of class Cr* on the interval

M - £,yj +e). Write

n - L]
| 1 i -£ +H=
i=0
Show that, for each j and for each k = O,..., r(j), the mapping
gr(@@
X" dx*’ml\ 57> =mrK]

from U to Mis continuous.
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Exercise 4-6.4- Introducing the notation
0 (x0) —f [HPX, ..., Xn]t
show that, for all positive integers k and for all sufficiently small h,
©Do0? d-h)...,xq ki —f Dosxqg 4, ..., xq d=kh,x\,..., x"].
Exercise 4-6.5. Deduce from the previous exercise that, for all x G U,

1 %)

f[xoO,..., Xo,Xi,..., X, 1=
\Y Hoy-dx~f[xo,XI," " ,Xnl

r(65+| -ti-r;les
Exercise 4-6.6. Let

1 ~r(0)
~ 1O~ (0) A K>S Xn]*

Show that, for all positive integers k and for all sufficiently small A,

ip [xi,x\ -fft,..., X\ + kh]

1 9
/q\/l r(o/™ ML ..., X d-kh) X2 «=/n] ?
*&Xq

and deduce that, for all x G U,

f[xQ) ...,Xq , 2%,.. ., X2?==a/n]
FE))H times r(I)+IVtimes

1 £r(O)+()

Exercise 4-6.7. Show, in general, that, for all € and all sequences of integers
*tf), j = 0,...,n, such that k(j) ~ r(j), we have the identity

Xi,y »XXj,...,Xn,., ,xn]
fc(0)+l times fec()+ 1 times fe(n)+l times
1 Qk(O)+k(D)+...+k(n)

= MOr@! =<1 O @ =d"FIf X7XI77 X"

Exercise 4-6.8. Let / be a function of class C2. Assume that Xo and x\ are
,SInct P<ints, and set yO= y2=y4 = x0 and yx = y3= y$ = x Determine
e xPressions f[yO0,... ,?] for O~ j ~ 5. Letting /(X) = sinx, xo = 0O, and

aH —2" Zcalculate an approximation to sin(7r/12). It may be useful to take
vantage of a program for symbolic manipulation, such as M¥LE
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4.6.2. Numerical approximation to the solution of a boundary
value problem for a differential equation by a finite
difference method

Exercise 4-6.9. Let / be a function of class C Aon the interval [0,1]. Derive the
following estimate:

/T2 A, /(*)-/"(X) = o(hd).
Show that, if /7 is assumed to be of class C 2, then we have

lim max {[fe=2VAM/ () —F* () [:h "~ x » 1—h} = 0.

Exercise 4-6.10. We want to approximate the solution of
“46.1) ~u"x)+cPOu=7(x), xe [0]1]

by a finite difference method. For this purpose, we assume that ¢ is non-negative
and continuous, and we complement egn (4.6.1) by the Dirichlet boundary con-
ditions

“4.6.2 uO =u@-=0.
At this point, we do not know that there exists a solution of eqns (4.6.1) and

(4.6.2) ,but we will assume that such a solution exists and that it is unique.

Exercise 4-6.11. Let n ~ 1 be given and define h = I/(n + 1). Consider the
bilinear form a on Rn given by

a(UV)==xh"="ih = i +=%+ C UjVj, I
j=0 =1

where we define, by convention, Uo = Mo = Oand Gn+1 = Vh+i = 0. Show that
a is symmetric and positive definite.
Hint: a ([/,&) = 0 then Uj+\ = Uj, Vj, and conclude.

Exercise 4-6.12. Let | be the linear form on Rn defined by

n
IU= A hf (jh) Uj.
=1

Show that there exists a unique minimizer of the functional

<+ = -a(U,U)-IU.

Show that the minimizer U solves a linear system of equations, and give this
system explicitly. The matrix of this system will be denoted by A.
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Exercise 4-6.13. Solve explicitly the equation
Fi+1-2Fj +~-1

@63 o
under the boundary conditions
@649 Vo —vnf —O.

Hint: seek the solution as a polynomial in j of degree 2.

Exercise 4.6.14- Assume that F = (Fj)i~jrn is avector in w 1 with non-negative
components. Let w be the solution of

465 AW = F.

Show that the coordinates of w are non-negative.
Hint: argue by contradiction and consider the i-th equation in the system (4.6.5),
assuming that i is an index at which j Wj attains a strictly negative minimum.

Exercise 4.6.15. Denote by |Fljoo = maxi”n|P] the maximum norm of
F G Rn=iInfer from the inequalities
|[Flo- Fj~ 0 and |Floo+Fj~ 0, Vj=1,...,n
that, for any F, the solution of eqn (4.6.5) satisfies the inequalities
-\F\ooVj ~ Wj ~ \Fwovj, Vj=1,....n,
where V is the function defined by eqns (4.6.3) and (4.6.4).
Exercise 4-6.16. Let

u@+Dh)y-2u@gh)-hu - Dh)

Fj =/tih)~c u (Jh) + h2

Show that
lim |FJoo = O.
h—0
Exercise 4-6.17. Deduce from the previous question that

r!i_l’l]OmaX{\Uj —u(h\:1~j ~n}=0.

4.6.3. Extrapolation to the limit

The process to be described here is also called Richardson § extrapolation.

Exercise 4-6.18. Suppose that a function / has the limited expansion near x = O
given by
/ () = fo+xfx + O x2),
assume that we know neither fo nor f\, but that we have a reliable process
or calculating f(x) for arbitrarily small values of x > O. Find a combination of
J\x) and f(2x) which gives an approximation of order 2 to fo-
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Exercise 4-6.19. Suppose that a function / has a limited expansion near x = O
given by

f(x) = P(x) + 0{xn+l), P GPn-
The polynomial P is unknown, but we have, as in Exercise 4.6.18, a reliable

process for calculating /. Show that, for every choice of n + 1 positive distinct
numbers r?, there is a linear combination with coefficients such that

J29jP(rjx)=f(0)+0 (xn+l).
j=0

More generally, show that, for each k = 1,..., n, there exists a linear combination

such that N

£ HR@) = k\fk @ + (zntl).
3=0
Exercise 4-0.20. What kind of advantage is there in performing the above pro-
cedure? What difficulties do you foresee?



)

Least-squares
approximation for
polynomials

Section 4.1 was dedicated to polynomial interpolation: we replace a function by a
polynomial of degree at most n which coincides with the function at n + 1 points.
We have seen that the result is not always satisfactory in terms of convergence.

5.1. Posing the problem

In the present chapter, given apriori a distance, we seek a polynomial of degree
at most n for which the distance to the given function / is minimized. The term
least-squares approximation describes the distance under consideration. It is the
distance given by the quadratic mean, whose square is

IP &) —/ Q12w () dx,

where [, b] is a compact interval of M (with a < b) and w is a weight, integrable
on p>&), that we assume to be strictly positive almost everywhere.

511 Least-squares is Pythagoras in many dimensions

Wk hawve, first of all, the following theorem on existence and uniqueness:

Theorem 5.1.1. Let w be an integrable function which is strictly positive almost

everywhere on the compact interval fa, b]. There exists a unique polynomial
P € Pn, such that

\P(X) ~ fFO)\2w (x)dx » \] \Q(X) - f O\w(x)dx, W2 EPn.

77
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This polynomial is called the least-squares approximation to / and is of degree
at most n. 0

The proof of this theorem depends on a very neat trick, which will be used
several times later on, and which is described in the following lemma:

Lemma 5.1.2. Let V be a real or complex finite-dimensional vector space and
let a be a bilinear symmetric or sesquilinear Hermitian form. Assume that a
is non-negative and let | be a semilinear form on V. Then, x minimizes the
function

D&K)= -a &) =3 (1)
if and only if the following identity holds:
Gl12 az)—lz=0, VzGV.

Moreover, a is positive definite if and only if for all z £V, there exists a unique
minimizer of {)over V.

Proof. We treat the case when V is a complex vector space, the real case being
somewhat simpler. If x is a minimizer of O over V, then, for all t £ R and all

2 £V, we must have

O&+12) - (K " o.

Expanding the above inequality, we obtain
G.13) ta (x,2) +ta (z,X) + t2a (z,2) ™ Z(tlz).

First, suppose that t is strictly positive and divide eqgn (6.1.3) by t. Letting t
tend to zero, we obtain

ax,2)+a(zx) ™ &Zt(z).

If, instead of t being positive, we assume t to be negative, the analogous operation

implies that
az)+a(@x)™ &),

ie.,
G199 Sta(x,z) = 8t(lz), VzGVW.
We now replace z in egn (5.1.4) by iz to obtain
Qa(x,z) = QUz), VzeV, 1

which indeed proves that any minimizer verifies the identity (5.1.2).
Conversely, let x verify eqgn (5.1.2). Then, for any w EV, \Y
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However, due to the assumption (5.1.2), the term
xw-x) - RCW- x)

vanishes and there remains

G195 W -OC) = W-xw-Xx),

which is non-negative, owing to the assumption on a.

Assume now that a is positive definite. Relation (5.1.5) immediately implies
the uniqueness of minimizers of 0. Conversely, assume that the minimizers of O
are unigque. Then, if A is the matrix of the form a in an arbitrary basis of V,
the relation (5.1.2) is equivalent to

G.1s) AL = 7,

where £is the vector of coordinates of x, 7 is the vector of coordinates of 7/, and
y is the unique vector in V such that

Iz =z*y, W EW

The system (5.1.6) is linear and, therefore, if for all data it admits at most
one solution, then it also possesses a solution for all data 7z. Conversely, the
uniqueness assumption implies that A is positive definite: if its kernel were not
reduced to o then, for any w in the kernel of a, we would have

o(X+wW) -0 =-a Www),

which contradicts the uniqueness assumption. [

Proof of Theorem 5.1.1. For all continuous / and g on [a, 6], we define

I &) = fw(x) f

which is a sesquilinear form. We let V = Pn and also define a semilinear form L
on Pn by

LP—f w®P O)f () dx.
Ja

The restriction of a to V = Pnis Hermitian and positive definite. Theorem 5.1.1
then implies that there exists a unique P in Pn which minimizes

o{P) = - \] W{X)\P (%2 dx - 5(\] w(x) P )/ () dx.
P also minimizes

\] w{)\P(x) - f ()[2dx,
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which differs from the previous expression by the constant
n \] w |/ (%12 da

In particular, relation (5.1.2) can be rewritten as

G.17) a(/-P,i?) =0, Vi?GPn.
Moreover, if we choose the basis of monomials 1, %, ..., xn for Pn, and if P is
of the form
n
P{x) =

J=0

then the relation (s.1.2) is equivalent to the following system of n + 1 equations
with n -hi unknowns a,Q,...,an:

n Y>3 0]
GG.13) / x**kw(x)dx = / xkf (Qw ()dx, o k" n.
j—o ifl*a

Then, Lemma 5.1.2 tells us that eqn (5.1.8) possesses a unique solution, which
determines the least-squares approximation of / in P, , with respect to the weight
w. It is useful to rewrite eqn (5.1.5) and, in our case, it becomes

G19) a(f-QJ~Q) =a(f-PJ-P)+a(P-Q,P-Q), WQe Pn, |
which is simply Pythagoras theorem. [

Remark 5.1.3. This proof also works on an infinite interval /, with a weight
w, such that every power of x is integrable on | with respect to this weight.
Important examples of weights are: x >»x%xp(-x) (Laguerre weight) on | = BrJ
and x H exp(—x2/2) on | = E (Hermite weight).

5.1.2. Is it really calculable?

We immediately note that the matrix of the system of eqns (5.1.8) is symmetric.
Furthermore, it is positive definite since

w X)x Mk dx = dx = (P,P).

We may believe that the system (5.1.8) is very easy to solve numerically, but it
is nothing of the sort, as we are going to see in a simple case.
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When the weights w are equal to 1 and the interval [a 6] is equal to [0,1],
the matrix of the system (5.1.8) is given by

1 1/2 1/3 - i/(ra+i)\
1/2 1/3 1/4 - 1/(n+2)
1/3 /4 1/5 - |/(n+3)

Hn+1—

yl/(n + 1 /(n+2) I/(n + 3 - I/(2n+ Dy

This matrix is called the Hilbert matrix. We can explicitly calculate the inverse
of this matrix. An explicit formula can be found in [40]. | will be content with
reproducing the inverse of H6, displaying only the elements in the lower triangle,
since #6 is symmetric. The inverse of Hq is given by

36 \
-630 14700
3360 -88200 564480
-7560 211680 -1411200 3628800
7560 -220500 1512000 -3969000 4410000
2772 83160 -582120 1552320 -1746360 698544 /

The examination of the components of this matrix shows that its largest element
is of the order of 4 x 10s and, therefore, it is necessary to know the second term
of egn (.1.8) with an error which is small relative to 10 “®, to obtain acceptable
results.

In other words, the matrices Hn are very poorly conditioned. Let | =] be
some vector norm and let || =] be its subordinate operator norm. The condition
number of a matrix A is the number || [IA-1]] which allows us to write the
sensitivity of the system

Ax =D

to errors SA in A and Sb in b. We shall prove in Subsection 9.5.3 that the relative
error |5xJ/Jx] can be estimated by means of the formula

M < (m ,1MH
i - kOIMIVeii UL Mil/

The conditioning of Hn, based on the Euclidean norm, is of order
*(An)~e7T72.

We therefore have a problem which is untreatable numerically.

52. Orthogonal polynomials

The solution of the system (5.1 .8) is very difficult because the column vectors of
e malrix of this system are nearly collinear. We notice this particularly in the
Case <Tthe Hilbert matrix Hn.
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Nevertheless, the least-squares approximation is commonly used; we remove
the difficulty by choosing an appropriate basis. We return to the system in
the form of egn (5.1.7) and choose a basis of Pn leading to a system which
behaves as well as possible. The best possible behaviour, corresponding to the
technical notion of conditioning, as developed in Subsection 9.5.3 (measured with
Euclidean norms), is that of unitary matrices. This, therefore, leads us back to
finding an orthonormal basis of UnPn.

5.2.1. Definition and construction of orthogonal polynomials

Definition 5.2.1. We call the sequence of polynomials Pq,P\,..., Pn,... orthog-
onal relative to a weight in, which is strictly positive almost everywhere and
integrable on an interval [a 6], if it has the following properties:

@ For any n, Pn is of degree n and the coefficient of its term of degree n is 1;

(i) For any n, Pn is orthogonal to Pn_i, that is, all the polynomials of degree
strictly less than n. The orthogonal polynomials are ordered from number
zero and the n-th orthogonal polynomial is always of degree n.

We call the normalized polynomials

orthonormal to a weight w.

We show, first of all, that such sequences exist and give their most elementary
properties.

Lemma 5.2.2. For any weight w, which is integrable on the closed bounded inter-
val [a 6], there exists a sequence of orthogonal polynomials satisfying Definition
521 If

n—
G2 Pn= Xn-Y~"CinPi
20
then
622
(Pi, Pi)"

Proof. By the process of Gram-Schmidt orthonormalization (Theorem 121-1)
applied to the monomials 1, x, x2, . . xJ in this order, we obtain the sequence
of orthonormal polynomials. If we divide each of them by the coefficient of their
highest term, we obtain the sequence of orthogonal polynomials. The uniqueness
is immediate.
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Using relations (6.2.1) and (6.2.2), we can determine the coefficients of or-
thogonal polynomials relative to a weight w on an interval [a, § by quadrature.
Generally, it would be necessary to integrate numerically, which is not necessar-
ily very economical. But the situation can be a lot better, in various important
cases.

5.2.2. Examples of orthogonal polynomials

For a certain number of simple weights, we know explicit analytic expressions
for the orthogonal polynomials.

Theorem 5.2.3. If [a, 9 = F,1] and if w = 1, then the orthonormal polynomials
are given by the following formula:

623 =

Proof. We show that eqn (5.2.3) defines orthonormal polynomials. To lighten
the notation we will let

Rn~ = dx" A

It is clear that Rn is a polynomial of degree n. We will verify that if p < n then
there exists a polynomial rp(X) such that

[C2- =) (2- D"p=

This relation is clearly true when p —O. Suppose that it is true for p—1 Then,

= [FPICO(*2- D+ 2x(n- + Drp-i O

Suppose that nm.We calculate the scalar products (Rn,Rm) usi

gration by parts as follows:

L w <= #2-")TE= [2- T |._,

nl dm+l
L [! - Tl [*2- D14~

that mte~rate(” term vanishes at x = 1. By an elementary induction, we see

£ <« Xdx=i-iyf [ _ mi] [C> - 1)-] dx,
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forallp ~ n.
Ifm < n, we can take p = m + 1 In this case, the derivative of order
m+p = 2m+ 1of the term [X2- 1)m] is zero, and we see that (Rn,Rm) = 0.
If m = n, we take p = n. The derivative of order 2n of the term @2- Dnis
(2n)! and we have that

(Rn,RnN= @M1/ V x T d*.

Let
In=f (@-x2)ndx

and integrate by parts to obtain
f (d-x2ndx =a (- x2n - [ x(2nx) (I - x2)n 1dx.
i-i x=~1 J-i
We therefore have the recurrence
h—271(In1

so that
2n

/n 2n —f—lln_lJ

and, since Iq = 2, we see that

2n(2n—2) == 0 _ 2n+1n! _ 2nH1 (nH)2
@n+D@n- D=2~ (2n+ D 2N)/2N!1 " 2n+ D)
Finally,
22n+1 (n1)2
PR on+py

This shows that the Pn (=—L1,1) form an orthonormal family of polynomials.
The degree of Pn(=—L,1) is n and the coefficient of the highest term of
Pn(=-1,1) is positive. They are, therefore, orthonormal polynomials relative
to the weight 1on the interval —1,1]. &

We call the polynomials Qn given by

dn
n! 2ndxn

Qn {9

Legendre polynomials. _
We can deduce from egn (5.2.3) the orthonormal polynomials relative to the
weight 1on any interval [a b] in the following way: we seek them in the form

"2x —a

P ;a,b) = aP
n(;a b =aPn b- a
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since the affine mapping x  (2x—a —b)/(b—a) transforms [a 6 to [-1,1]. We
have orthogonality since

2X —a —

b_a -1,1j Pm -1> g

1 rl |
S Jn 12 1) e Dd

By choosing

we ensure the normalization.
Consider now the weight

wx)= (—x2) 1

on the interval [—1,1]. The weight w is singular on [—,1], but it is integrable.
We are going to explicitly determine the orthogonal polynomials with respect to
this weight:

Theorem 5.2.4=Let Arccos be the inverse function of cos defined by
O0—Arccosx <B= OE[0,7r] and x = cosO.

The functions
Qn ) = cos (nArccosx),

defined on the interval [—L,1], are relatively orthogonal to the weight
wx)—((—x2 U2
Furthermore, QN is a polynomial of degree N and

/2 ifnn
@) =1 jn=q

Proof. With the change of variable x = cosO, we calculate the following scalar
Product:

@,om) — ONEEOAM ) MIEdx —  cos (@) cos (vnS)ds$.

Ifm ~ ri, we then have

sin(n+m)6 "~ sin(h- mO
24 n—m

(Q’]’ Qn) _2 = O
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Therefore, the Qn are pairwise orthogonal. Furthermore, if = n" 0.
sin 2n6 + 0 T
QrrQn) on 2
Ifn=m=0,
(Qo,Qo0) = 7

We show that Qn are polynomials. Indeed, for n = O, we have

Q=1
which is obviously a polynomial. For n = 1,
Qi =

which is again a polynomial. We calculate Q 2(X):
Q2(x) = cos (RArccosx) = 2cos2(Arccosx) —1= 2x2- 1

We are going to establish a recurrence relation on the Qn. Still letting O =
Arc cos X, we can write

Qn-i (™) + <2n+l (#) = cos(n - 1)6+ cos(n + 1)#
= 2cos0cosnO=2#Q0n (&) =

Consequently,
(.24 QnH 0 = 2xON'W - Qn—4.) .

Since the degree of Qo is O and the degree of Qi is 1, it suffices to refer to formula
(5.2.4) to see that the degree of Qn is n. Furthermore, if an is the coefficient of
the term of degree n in Qn, we deduce from the recurrence relation (5.2.4) that
an=2n%71,forn ™ 1

The functions Pn defined by

form an orthonormal family of polynomials. These are the polynomials which are
orthonormal relative to the weight (1—x2)-1/2. The polynomials Pn = 2~n+1Q*
are the orthogonal polynomials relative to the weight w in the sense of Definite
5.2.1. These are called Chebyshev polynomials.
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5.2.3. Revival of special functions

The study of orthogonal polynomials, a great subject of the nineteenth century,
has known a recent resurge of interest. Indeed, it is a chapter in the theory of
special functions to which mathematicians have paid little attention in the twen-
tieth century, but which theoretical physicists, or, at least, certain specialists in
guantum mechanics, have found to be of great interest, as we can obtain explicit
expressions of coherent states and their energies by means of special functions.
In a more mathematical language, special functions play a part in the spectra
of certain infinite-dimensional self-adjoint operators. The extreme weakness of
communication between physicists and mathematicians on the subject is cut-
tingly described in the preface of [&2] by Richard Askey. It tells an impressive
story of the duplication of effort and of mutual ignorance, compounded by the
difficulty of getting access to certain slightly old works.

A very readable work on special functions from a classical point of view,
which has several applications in physics, is given in Nikiforov and Uvarov [&4].
Equally good is Miller [62] at a higher level.

Special functions and, in particular, the celebrated hypergeometric function,
appear in all sorts of counting problems. They play as much a part in combina-
torics and computing as in probability and the theory of numbers. To see some
combinatorial applications consult the marvellous Graham et a. [38], and the
more difficult Fine [29]. Some applications in probability are presented in [3],
but, above all, it is recommendable to read Feller [27], which is a masterpiece on
discrete probability.

From a strictly numerical point of view, orthogonal polynomials are useful
outside of polynomial approximation theory. They appear in the convergence
acceleration theory of Pade approximations. In this theory, we approximate
functions by rational fractions, whilst requiring that the order of approximation
at a point is maximal amongst all rational functions whose numerator and de-
nominator are of a given maximum degree. We refer to, for example, the work
of Brezinski [10], or the older book by G. A. Baker [6].

We also find orthogonal polynomials when we solve partial differential equa-
tions by spectral and pseudo-spectral methods, which are very powerful in simple
geometries. These are used, for better or for worse, in weather forecasting and
the study of global climatic models. The greenhouse effect, due to carbon diox-
ide and other gases, seems to lead to global warming. This deduction depends
“ha large number of calculations using orthogonal polynomials, and their use
seems to be growing a lot quicker than the level of the oceans—fortunately!
Introductions can be found in [36,37].

Special functions have never ceased to be part of physics culture, although

ey aave almost disappeared from the training of mathematicians contemporary

* the author of these lines. Weather calculations are the calculations of
ysicists, who have never asked the permission of mathematicians to do them,
1 v It is therefore very difficult to declare a theory dead, as some seem, like
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the phoenix, to be reborn from their ashes when the time is right.

5.2.4. Orthogonal polynomials and least-squares

We can now solve the system (5.1.7). Since the pj form an orthonormal basis of
Pn, it is equivalent to have the relation (5.1.7) and

(G.25 (P,Pj) = {f,Pj¥je{O,...,n}.

From this, we immediately deduce that

i=0

Relation (5.1.7), or equivalently eqn (5.2.5), expresses that P is the orthog-
onal projection of / on the space Pn. Furthermore, relation (6.1.9) for Q = O
implies that

(f-p,f-p) +(p,p) = (),
that is

(5-26) EK /A12*% ()=
j-o

The right-hand term of egn (5.2.6) is independent of n. Consequently, we
can bound from above the supremum of the left-hand term by (/, /), that is

o]0}

G27) Y , U Pi)2 )=

i=o

This is Bessel § inequality.

5.3. Polynomial density: Bernstein polynomials

Amongst other things, the Stone-Weierstrass approximation theorem permits
us to confirm that the polynomials on the compact interval [a, 5 are dense in
C=([a bD). The original proof of this result is not very constructive. We will
present here the proof by Bernstein. JH

Recall that Lagrangian interpolation has poor convergence properties. W
fact, the error estimate (Theorem 4.3.1) requires a lot of regularity on the fuC
tions that we are interpolating. The idea is to use polynomials in greater numb#
than in the case of interpolation, without demanding that the values coincide &
the knots.
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5.3.1. Modulus of continuity

Recall the definition of the modulus of continuity of a function / which is con-
tinuous on a compact set K. It is the increasing function cj from R- to itself,
vanishing at zero, and such that

\f(x) =/ (Y)K uf{\x-y\),
The function u can be obtained from the formula
u(h)=sup \f(X)-f(y)\.

X, YEK

\X-y\.h
We deduce immediately that such a function is increasing and vanishes at zero.
Lemma 5.3.1. Every function / which is continuous on a compact convex set K
of Wlpossesses a modulus of continuity which is continuous at O.

Proof. We are going to verify that the function 1j defined above is continuous.
The continuity of 1j at O is equivalent to the uniform continuity of /, which is
true since / is continuous on a compact set K.

Furthermore, 1; has the property of sub-additivity. In other words, for any
hi and /i2, we have

G (h\ -m12) N w (fti) 15 (h2).

Indeed, if x and y are two elements of K such that ™ —A\ ~ h\ + A2, we can
find a point z on the segment [x,y] joining x and y such that \x —2\ ~ h\ and
- WA "2-We then have

S-S D) -7 @1/ e)-7 &) w(hi) +u
Then, let h > O be fixed and let nh1 tend to zero from above. We have
ui (h hD” g () 4 (i),
from which we deduce that
Iiﬁ__s*%p i (h+h) N ().

However, as 1j is increasing, that is, for h and h* positive or zero, Li{h-\~h") " 1j(K),
we can pass to the limit and

Iirr]n_;Bf uj(h + h7) > 15 (h).

The combination of this relation with the preceding one shows that i; is right-
continuous. In the same way,

Lichy * gCh —h?) Fi5 (07,
which implies that
liminf Ljch —h7) » 15 ().
p fi—o
ombining this last property with the fact that i is increasing, we see that ij is
A-continuous. (|
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5.3.2. Bernstein polynomials and Bernstein approximation

We naturally restrict ourselves to the interval [0,1] and let
OnJ(@) = C*xt(l-x)n-i .

If / is a continuous function on [0,1], the Bernstein polynomial approximation
of / is defined by

631D Bn(/,x) — /B3 (A
j=o
Bernstein 3 theorem is stated as follows:

Theorem 5.3.2. Let / be a continuous function of [O0,1], let w be its modulus
of continuity, and let Bn(f,x) be the Bernstein approximation polynomial of
degree n. We have the following estimate:

(632 angf&(ﬂ I7¢) - Bn(/, )\ » ia; v . 0

Proof. From the binomial theorem
n

633 @+bn=32cxnaj bn-j,
=0
we will deduce that the Onj satisfy the following relations:
n
G349 Pnj =1
=0
n
(539 T =X
Un
(5.3.6) EAn,i(X): +
j=0 \Y 7

First of all, we choose a = x and b = 1- x in egn (6.3.3), which gives ws
egn (6.3.4). If we differentiate eqn (5.3.3) with respect to a once, we obtain

n
n(a + b)n~I =Y "jC
=1
from which we deduce, on multiplying by a and dividing by n, that
n
a(a+
j=i
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On substituting a =and b= 1—x& obtain egqn (6.3.5).
We differentiate egn (5.3.3) once more with respect to a, to get

ng D@+ b)nz= £
j=2

On multiplying by a2 and dividing by n2, we have

Employing the same substitution as the preceding one, we obtain

From this, and using egqn (5.3.5), we deduce that

n 2 ri/. 1
E W E %
=0 j=0 x
which is egn (5.3.6).
The error between / and Bn (f, <@is defined by
n
en (f,x) =/(X)-"E, ,jC)/(-).
j=o
Identity (5.3.4) allows us to transform this error expression into
en,x) = O UE ~71("))>

J=0

which we bound from above, using the triangle inequality, by

e®l ™ £ (Inj(2) 1769 - /(M-

3=0

Fixing x, we are going to bound from above the terms of the sum appearing

~N egn (B.3.7), differently according to whether j/n is close to x or not. To do

Is>we use a positive parameter S, which we will fix later, and note that, if
then
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Consequently,

(5.3.8) £ /2n,i(*) 1/ (*)-70]<<«< W .
j:\x=-{j/n)\"6

Conversely, if & - {i/n)\ > S, let p be the integer part of - (j/n)V/5, that
is, the unique integer such that

(G.3.9 p6 N X —#] < (p+ DS

Let yO,24,..., yp+i be the points

Yo = X, yk:Z+p—+ 1\n—Xy cess Vp+l - n -

As the points yk are pairwise separated by a distance which is, at most, equal
to § we see that

M (%) -7 (-)\< V) -7 G+ =t /) - / FH)| + ==
+ /W) - /()17 DENG R

By virtue of egn (5.3.9), we see that

V()" /() 1*"C, (L+il*—nl) = 8

However, since X - {j/n)] > S, we bound W —{j/n)\/S by its square and,
therefore,

kK(D-/(n)h"Q @+~ (x <n)D"

Hence, we have

J:\x=(j/n)\>6
u{6) T PnjPo+ 2y, n) Pn,j
Lj=o j:()

The first sum within the bracket is equal to 1and the second is calculated by
means of the formulae (5.3.4)-(5.3.6), and as follows:
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The maximum of the function irtx (1-i) on the interval [0,1] is achieved at
X = 1/2 and has the value 1/4. We obtain

j:\x-(j/n)\>6

combining this last expression with eqn (6.3.8), we have the error bound

G3.10) Bl s s @ .-

If we choose 5= 1/y/n, we obtain egn (5.3.2). —

In Figs 5.1 and 5.2 we present the graphs of the four Bernstein polynomials of
degree 3, and the Bernstein approximation of degree 3 of x >»»sin(7rx/2). Notice
that this Bernstein approximation is not very accurate. It is precisely for this
reason that it will be stable. An essential trait of Bernstein polynomials is that
they oscillate very little, and it is this that allows the proof to work.

A consequence of Theorem 5.3.2 is the following density result, the proof of
which is left to the reader:

Corollary 5.3.3. Let [a,b] be a compact interval. Polynomials are dense in
c°(M).

If the function / is Lipschitz with respect to its coefficients, its modulus of
continuity  satisfies
G31D ui® " L5,

for some finite positive number L. Consequently, the estimate (5.3.10) becomes

e\ALS (2+ A )

Figure 5.1 The Bernstein polyno- Figure 5.2 Approximation of
mials of degree 3. f(x) = sin(7/2) over [01] by
Pz(x) = Bs(f,x).
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and the choice S = 1/(2y/2n) leads to the estimate

Even if / is very differentiable, the Bernstein approximation polynomials cannot
converge quicker than n~2. Indeed, we can show that, if / is C2, then

lim nan «,

5.3.3. Application of Bernstein polynomials to graphics
software: the Bezier curves

Bernstein polynomials have known a new vogue since Bezier [9 and Casteljau [2Z]
proposed numerical methods for the approximation of surfaces by bi-dimensional
generalizations of them. First used in the context of the automobile industry,
these generalizations have appeared extensively in graphics software of recent
years. Indeed, Bezier curves and surfaces have great numerical stability, conve-
niently allowing the calculation of certain partial derivatives, and are obtained
by economic algorithms. The interest in graphics software is creating a new field
of research, at the crossroads of algebraic geometry, differential geometry, and
computing. Here is an example of an open problem: there are formal calculation
programs which can find the intersections of two algebraic surfaces which have
equations with rational coefficients. However, in an industrial context, the data
is rarely known with very great precision, and we do not know of a good result
on the stability of the intersections with respect to the coefficients.

Given n + 1points Xi, O™ i ~ n, in the space Rd, a Bezier curve is parame-

terized by
n

X Exq,..., xn)—2Mj() =
j=0
The nice feature of a Bezier curve is the geometric insight given by this para-
meterization, in contrast to a representation in another basis of polynomials, such
as the basis of monomials, the Lagrange basis, or the Newton basis. Indeed, we
see immediately that

X O Xq,..=Xfi) —Xg and X (@ Xq, ===3¥) —3+
Moreover, if n * 2, the tangents at X(0) and -X'(I) have directions given by
X "(O Xqg,...,xn)=n(xi - x0) and X" (x0,...,xn)=n&n- xn-\)*

More generally, the fc-th derivative at 0, X~(0), can be expressed as a linear
combination of the vectors xq,.. ., Xk, and a similar statement holds for the fcth
derivative at 1
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Furthermore, there is a very geometric construction of the points of a Bezier
curve, obtained by a triangular algorithm which is reminiscent of the Pascal
triangle. The Bernstein basis functions satisfy the following recursive definition:

Pnj {O) = tfin-13-1 ©® + AL —b) Pn-ij ().

Therefore, it is clear that the curves X (-;x0, ===#n) also satisfy the recursive
identity:

X EF30 =0 n) —tX ¢, 30, ....Xfi)H@ HXE ,....39.

Geometrically, this means that X(t; X0, ..., xn) is obtained as the barycentre
of X (t;x0,...,xn_i) with weight t and X (t;xi,...,xn) with weight 1- t
Hence, it can be obtained by taking the barycentres between xj and xj+1,
O0<j ™ n- 1, and then the n —1 barycentres between the previously con-
structed barycentres, and so on, in n(n + )/2 operations. If n is not very large,
this is a very efficent algorithm, which is depicted in Fig. 5.3. This construction
is called the de Casteljau algorithm.

The points Xj are called control points. Graphics users learn very quickly that
when pulling out a control point, the Bezier curve follows it. However, Bezier
curves suffer from the limitations of all polynomial approximations: rigidity, and
hence lack of stability. Indeed, it is obvious that changing one of the control

Figure 5.3. The thin solid line is the control polygon, the thicker solid curve is

e Bezier curve, and the successive dotted lines are the barycentres 7ines, the
Wight being t = 0.6.
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points in a Bezier curve changes the whole of the curve. This is the reason why
it is more advantageous to use piecewise Bezier curves; but how does one control
the continuity at the break points? Obtaining this control is the reason for the
use of B-splines in CAGD, see Subsection 6.3.5.

54. Least-squares convergence of a polynomial
approximation

The density of the polynomials in the space of continuous functions on a compact
interval allows us to show that the least-squares approximation to a function /
converges to this function in a sense that we will now define precisely:

Theorem 54 1- Let w be a weight which is strictly positive almost everywhere
and integrable on the compact interval [a, b\ Let / be a continuous function on
[a, B] and let Q n be the polynomial of degree at most n which is its least-squares
approximation relative to w. Then, as n tends to infinity, Qn converges to / in
the quadratic mean (with the weight in), that is

rb
lim /7 \Mf ) - Qn)\N2w(x)dx = 0.
n— Ja

Furthermore, we have Parseval 3 relation:

@® 6
64D $ZI(/>A)|2=/
j=0 Ja

Proof. By the definition of least-squares approximation, the following inequal-j
ity holds for every polynomial R G Pn:

If we take the polynomial R to be the Bernstein polynomial Bn(f,x), then, since
FC) —Bn(f,x) |™ 9u;(/\/™)/4, we see that

- on, f -Qn)T2~ M 14VH) [fa W) ds) * .

This proves the first assertion.
Relation (56.1.9) with P —Qn and Q = O can be written as

(f-Qn,f-Qn) + (Qn,Qn) = (f,f).

From this, we get

E I {f,.P)\2M f,f)-(f-Qn,f-Qn).

o
i=

We can pass to the limit due to the first assertion and then conclude with the
aid of the Bessel inequality (6.2.7).
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Convergence in the quadratic mean is not very precise. In particular, it in
no way implies uniform convergence. We give an example of this phenomenon.
On the line M consider a continuous function / which is positive, not identically
zero, and which has compact support. We define a sequence of functions / by
writing

If we choose a sequence an which decreases to zero, the maximum of fn tends
to infinity. Now we choose @ in such a way that fn tends to O in its quadratic
mean. For this, it is necessary that

tends to zero when n tends to infinity. We therefore choose /3 such that

Nevertheless, we can obtain a uniformly convergent result in the case where
the weight is 1 by imposing regularity conditions on /. For example, we have
the following result:

Theorem 54-2. Let / be C2on the interval [0,1] and let Qn be its least-squares
approximation relative to the weight 1 Then, for every e > O, there exists an N
such that, for all n N,

/ (X - N
L0 IV ) yn QI
The proof of this result may be found in [51]. From the analytical point of
view, the situation is much better than in the interpolation case since, for C2
functions, we always have uniform convergence of least-squares approximations

“hany interval when the weight is 1

55. Qualitative properties of orthogonal polynomials

We now present some general properties of orthogonal polynomials, which will
be of use later.

Theorem 5.5.1. Let w be an integrable weight which is strictly positive almost
everywhere on the compact interval [a, B\ Then, for any n, all the roots of the

orthogonal polynomial Pn are real and simple. Moreover, these roots belong
10the interval Ja,6[. 0

theh=" ket be the roots of Pn in the interval Ja,l, listed with
Ir multiplicities. The number j is at most equal to n and it could be zero.
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Suppose that it is strictly less than n. Since the coefficients of Pn are real, Pn
will change sign at every root with odd multiplicity. If > 0, we let

®= &
k=1
where e(k) is 1if the multiplicity of xj is odd and O otherwise. Ifj = O, we take
Q = I. The product PnQ does not change sign in Ja,b[. On the other hand, Q
is of degree at most n —1 Therefore, we have

Pnx)Q (X w () dx = 0.

As the expression to be integrated does not change sign, it must vanish almost
everywhere, which is a contradiction.

The roots of Pn are all in Ja,b[. It remains to see that they are simple.
Suppose that there is a multiple root, denoted by x\. Then, Pn(X) = p(O)(x -
x\)2, and p and Pn have the same sign. Since p is of degree at most n —2, we
see that

Pn)p GQw () dx = 0.
As before, we have a contradiction. —

Orthogonal polynomials satisfy a remarkable recurrence relation given by the
theorem which follows:
Theorem 5.5.2. Let w be a weight which is integrable and strictly positive almost
everywhere on the compact interval [a b\ Then, for all n ~ 1, the orthonormal
polynomials Pn+i, in, and Pn-i are linked by the following recurrence relation:

Pn+i — (Anx + Bn)Pn —CnPn—,

where the constants An, Bn, and Cn depend only on the polynomials Pn+i, Pm
and Pn-1.

Proof. Denote by and bk the coefficients of the terms of Pk of degree k and
k —1, respectively. The polynomial Pn+i —AXxPnis, in general, of degree n +1-
It will be of degree at most n if its term of highest degree vanishes, that is, if
an+1 —Aan —O0. We therefore let

an+1
Gn

Let Qn = Pn+1 —ANXPn. We expand this polynomial over the basis Pj, fT
O~ j ™ n, as follows:

An

n
Qn =Vi ajBj.
i=0
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We have

Qj= @n.Pj)= (Pn+1,%)) - -4n (xPn,P})
= (MHjPj)— (FP%Pj) =

If xpj is of degree less than or equal to n —1, then pn is orthogonal to xpj and,
therefore, olj is zero for j ~ n —2. Consequently,

Qn = AnPn + C*n—1-fn—1*

As xPn-1 is a polynomial of degree n, we can write it in the form
—1 11
xPh—1— Ph T'on—1
an

where the degree of gn-\ is at most equal to n —1 We can therefore calculate
Oln1= (-*n+1  AnxPnoPN-»H — J p NH- Q- Pn
¢ " ) \ th )
- _ a an—Xx

Hence, we take

an—an+l
Cn— oOlu— —
al
It remains to calculate B n. We write
XPn = — Pn+1 + Pn + ~7iHj
an+l \ an+l /

where rn_i is a polynomial of degree at most n - 1. We therefore have

a, = (P, +1 - AnxPn,Pn)X -An (bn-
( \ an+l / ) (

from which we get

“n+lan  “nan+l
Bn =

We have thus calculated the three coefficients An, s n,and (/. |

5.6. Exercises from Chapter 5
56.1. Laguerre polynomials

Exercise 5.6.1. Let Pb a polynomial of degree d and let p be
Integer or zero. Show that the function
ND
«<(*)=<m dJF<p(*)e*")
*Sa Polynomial and calculate its degree. Derive the coefficient of the highest
rm <FQ as a function of p and the highest degree term of p.
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Exercise 5.6.2. We define the Laguerre polynomials by

We denote by E the set of continuous functions / on [0, +00) such that
\] \f(x)\2e~x

We equip E with a pre-Hilbertian scalar product

r@
(f\g)= f{x
Jo

Show that the Ln are orthogonal relative to this scalar product. It is sufficient
to show that Ln is orthogonal to xp for p < n, by integrating by parts a sufficient
number of times.

Exercise 5.6.3. Calculate (Ln \xn).

Exercise 5.6.4=Calculate the coefficient of the term of Ln which has degree n.
From this, deduce (Ln |Ln).

Exercise 5.6.5. Let L'n = Ln+ Mn. Calculate the highest degree term of Mn
and deduce the value of (Ln |Mn).

Exercise 5.6.6. Calculate (Mn |Mn) and show that
Cn\L'n)=n.

Exercise 5.6.7. Calculate the decomposition of (){X) = e”ax, for a > O, over the
basis Ln. Show that the partial sums

m m
£ ( I— n1<A)L” and E(!’" ’ W“"
n=0 n=0

converge in E when m tends to infinity. What are their respective limits?
Exercise 5.6.8. Calculate Ln(0). Show that the partial sums

m
A (L n,<A)Ln ©)
720

converge in E when m tends to infinity.

Exercise 5.6.9. Deduce from the two preceding questions that the partial surms

m

@~ ~ ~(Lfj,0) Ln
20
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uniformly converge to ¢)on compact subsets of E+. We can estimate the term
(k) - 000 by noting that

5.6.2. Pade type and Pade approximations

Introduction: formal series and orthogonality with respect to indefinite
guadratic forms

The vector space of formal series E[[X]] is formed from the sequences (cj)j”
with coefficients in E. We do not impose any restriction on the growth of the
\o\ at infinity. We associate with (cj)j” the following expression, for which the
radius of convergence could be zero:

66D

For formal series we define some operations analogous to those on polynomials.
The sum of two formal series (Cj)j and (¢")j is (G + Cj)j. The product of a
formal series with a scalar Aiis (Acj)j. Finally, by analogy with the product of
two polynomials, the product of two formal series (Cj)j and (cj)j is the formal
series defined by

k=0
It goes without saying that if 7/ and /', associated with (Cj)j and (c-)j, respec-

tively, have a strictly positive radius of convergence, then the same applies for
/" associated with (¢")j and, as expected,

The order of a formal series is the largest index j such that, for every k < j,

=0

If W(t)/V(t) is a rational function such that V(t)f(t) —W(t) is of order f,
W use the simpler notation

J" the gase where / converges in a neighbourhood of 0, this notation agrees with
e ~sual notation.
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In this problem, we focus on a formal series (Cj)j and the corresponding
expression /.

We define a linear function on the space of real polynomials P by giving its
value on each element of the basis of monomes 1,x, x2,..., Xj ,... as follows:

(.62 c(xj)=Cj.

We will think of eqn (6.6.2) as a generalization of the formula

where w is a weight, which is positive almost everywhere and integrable on [a b}
If g(x,t) is a formal series in two variables of the form

63 _ 90,0 =T
KO

which satisfies the condition

G649 {j :'yk AN @ is finite, Wk™ O,

we naturally define a new formal series by

of{x  g¢( X)) =
KO 0

In summary, and with the exception of the verification of condition (5.6.4),
we shall work with formal series in the same way as with polynomials.

First part: Pade type approximations

Exercise 5.6.10. Show that

Use the formal series expansion

—— = 1+ xt+ x22-f ...
1- xt
and show that it satisfies the condition (5.6.4).

Exercise 5.6.11. Let P* be the space of polynomials of degree at most k, and let

v E Pfc be given by «

®) = bi x3-
3=0
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We write v[x,t] = (?(X) - v(t))/(x - t). This is a divided difference. Let

(565 w(t) =c(x h>Vv[x,t]).
Show that w belongs to F~-i. Calculate the coefficient aj of its term of degree
for j between Oand k —1

Exercise 5.6.12. Let v(t) = tkv(l/t) and w(t) = tk~lw(l/t). Show that v and w
are polynomials. Give their degree. Show, using Exercise 5.6.10, that

v(©) fOw®) = U=

Prom this, deduce that f(t) - w(t)/v(t) = O(tk).

From now on we denote w/v = (k—(1/k))f, and we will say that (k—(1/k))f
is a Pade type approximation of / having v as its polynomial generator.
Exercise 5.6.13. Let v(t) = tk. Calculate (k - (I/&))/.

Exercise 5.6.1". Let

[Ci+t ifj ~" Oandj +t"™ O
otherwise.

G66) cj =

We associate with (cj)j*o the formal integration rule defined by
(*o =4
and the formal series
fl1(*=E cIxi-
i
For k~ Oand I » 1- Kk let
G6.7)
I ...+ct-iV 1+ tr k—/k))je ifi> 0O
ift< O

Show that, for all k » Oand t » 1- f, f(t) - (kK+ | - K)Ff(t) = O(tk+i).
Note that the case | —O has been treated previously and distinguish between
thecases | > Oand | < O. In each of these cases, verify that the numerator of
the rational fraction is of degree at most k+ 1—1 and the denominator of degree

at most k.
Second part: higher-order Pade type approximations
Exercise 5.6.15. Using Exercise 5.6.10, show that, if c(xJv(xX)) = Ofor all O "

1~ m —i?then

m - &-(W 9 ¢
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Establish and use the identity

Xt+... + xAl+ xmtm (i - xtr 1.

Third part: Pade approximations

Exercise 5.6.16. Suppose that k = m. Show that we obtain the coefficients of a
polynomial v of degree exactly k such that c(xJu(x)) = O, for j = 0,..., k—1,
as the solution to a linear system, which should be given explictly. We can
establish a parallel between this question and the following, and the results from
the chapters on orthogonal polynomials and Gaussian quadrature formulae.

Let Hk denote the determinant of this system. From now on, we suppose
that ®

(5.6.9) Hk™ O, VEA O

Exercise 5.6.17. Let Q be a polynomial given by the determinant

oo Aoi Aor

A\o AN = A\r
Q(x) =

Ar-1,0 A%—i,i *oATr—i,r

Q@ QN -= Qr

where the qj(x) are polynomials of degree exactly j and (Aij)onij*r-i is a
regular matrix. Show that q(x) is a polynomial of degree exactly r and that

Moo Aoi Aor
io An Air
c(Q) =
Ar—1,0 ~r-1,1 == Ar—,r

¢(Qo) ¢(QD) == c(Qn

Use the fact that the determinant is a multilinear function with respect to its
columns and rows and, in particular, with respect to the last row.

Exercise 5.6.18. Let
(69] Cl -m
a -

(074
c2 &

H
Pk (x) = Dk

k-1 k <= C2k-I
1 X xk

where DK is real and nonzero.
Show that, for every j = 0,..., k—1, c(Pk (x)xj ) = O. Deduce from condition

.6.9) that, for every fc, ccp%) » Q.
(569 y
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Exercise 5.6.19. The Pade type approximation (k/k - 1)/ of the polynomial
generator Pkis called a Pade approximation. We denote it by |[A—V/

Show that

As in Exercise 5.6.12, we construct the Pade approximations \p/q]f for every
p” Oand g O, with the aid of the fe, on which we make a hypothesis
analogous to egn (5.6.8). Show that

[p/<?]/-7 = o (*p+9+1).

Exercise 5.6.20. Calculate \p/g\f for f(x) and O < N 2 Place them ina
square table using the convention that p = row index and q = column index. Use
the orthogonality relations previously shown. Calculate [2,2]/(l) and compare
it with the number e.



6
Splines

Until now, we have studied two different approaches to polynomial approxima-
tion: interpolation and mean square approximation. Suppose that we seek a
smooth function u from [a 0] to E, which is required to take given values yj at
points Xj, 1~ j ~ n. Then it makes sense to minimize a quantity which mea-
sures the Wiggliness *of u, a good candidate for which is the following energy,
provided that u is m times continuously differentiable over [a, bl:

6.0.1) Em (u)J: M) (x) | 2dx,
under the constraints
602 it ( D=

It is convenient to define
N0 = #n+l = b

This minimization problem is still somewhat vague; its solutions, if they exist,
are called interpolating splines. Originally, a spline was a draughtsman 3 tool.
A spline is a thin flexible beam, which draughtsmen of the pre-CAD (computer
aided design) age would shape by moving weights (called ducks or rats) with
attached arms designed to fit inside a groove of the beam. This device was Lsd
to draw free-form curves. The elastic energy of the spline deformed into the cune
parameterized by (t,u(t)) is given by the integral of the square of the curvature,
namely

(6.03) KO
(+kwi2s

Therefore, the lowest order approximation to egn (6.0.3) is the energy ¥e
is valid only when the gradient of u is small.

106
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The constraints (6.0.2) are very rigid and maybe we should not put too much
trust in them. For instance, the yj may have been obtained by chopping digits
off some calculations or some measurements, or, perhaps, our measurements are
not very precise, but we have some evidence that the phenomenon described by
these measurements is reasonably smooth. Therefore, we do not want to enforce
the constraints (6.0.2) strictly and we should instead estimate how well these
constraints are satisfied. Thus, given strictly positive numbers pj, 1~ j ~ n,
we define

f(>)=E (,w",) m
=1
and we would like to minimize the energy

.04 Em@WT Fp u,y).

A solution of this problem is called a smoothing spline. If the pj tend to O, we
expect minimizers of the energy (6.0.4) to converge to minimizers of expression
(6.0.1) under the conditions (6.0.2). There is much freedom for choosing the value
of the coefficients pj and there are algorithms which play on the values of these
coefficients to obtain an answer with desirable properties, such as monotonicity,
convexity, concavity, and more.

Both kinds of splines, and much more general ones, are currently used in
areas of contemporary high interest, such as image analysis and manipulation,
robotics, and data smoothing.

We start with natural splines, for which we discuss two different types of
questions: how to ascertain the existence and the uniqueness of a solution (Sec-
tion 6.1) of the above two minimization problems, and how to calculate numer-
ically these solutions (Section 6.2). The numerical calculation of interpolating
or smoothing splines for m = 2 (cubic splines) is not difficult. For higher degree
splines, it is a good idea to consider a more general situation, and to work with
the so-called 5-splines, which give a very useful basis of spline space. They are
also quite useful for constructing generalizations of Bezier curves for computa-
tional geometry (Section 6.3).

6-L. Natural splines: the functional approach

In order to find a minimizer of Epor of Em + F],
emma) which will enable us to take ®Weak derivatives 7 i.e., derivatives defined

Ma Integration by parts. The reader who is knowledgeable in distributions will
~cognize a derivative in the sense of distributions. However, we do not assume
any non"Glementary knowledge.

6.11 Weak equality of functions

TH fi . . . . .
rst result gives a weak version of the equality of functions. In all of this

n "W\ denote by Cfi the space of k times continuously differentiable
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functions on Ja, b[ which vanish outside of a compact subset of Ja, b[. We say that
such functions have compact support.

Lemma 6.1.1. Let z be a continuous function from [a,b] to E. If, for all £in Cg,
the following equality holds:

z(dt = 0,
then z is the zero function over [a, b\

Proof. Let O be an arbitrary function in Cfl. Then @2z also belongs to C'&and
we must have that

z2¢pdt = O,
and so (pz vanishes. However, we can construct fairly arbitrary functions O. If

a" is an arbitrary point of Ja,b[ and b" an arbitrary point of Ja',6[, we let, for
instance,

0 ifa™t”™ a’;
K)=<t—a)&—H ifas t" 6
0 ifbl  ~b.

The function O is continuous and has compact support, and, therefore, z vanishes
on Jo', b'[. However, a" and b" are arbitrary and, therefore, z vanishes on the open
set Ja, b[ and, by continuity, on the closed set [a, b]. [

This was really easy; let us graduate to something more interesting:

6.1.2. Weak integrals of functions

Lemma 6.1.2. Let g be a continuous function over [a,b\. Define its successive
integrals by

=9 XK

For all integers m, let 2 be a continuous function over [& b] such that the following
relation holds for all £G C™: “e

Then z —gm is a polynomial of degree at most m —1

Proof. For m = O, the result has been proved in Lemma 6.1.1. If we could
perform integration by parts m times, the result would be obvious; the point is
that we do not know (yet!) that z is m times continuously differentiable. Thus,
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we have to substitute something else for integration by parts. We introduce the

notation
(/>= J:a

where / is a continuous function over [a, 6. An integral of a function » E Cfi
can belong to Cg'ra only if (¢7) vanishes. Thus, we introduce a function £which
is 7i + 1 times continuously differentiable over [a 6], and is equal to O in a
neighbourhood of a and to 1in a neighbourhood of & We could take, for instance,

ifan (2a+ by /3;
m-+l

0]
%
aW = (<__|_r_|_+ ) if Ca+ ©/3 A @+ 26)/3;
0

if@+26)/3" "~ 6§
and

Observe that the integral of £1 is strictly positive, so that the division is legiti-
mate. Then, we define

L)@ = Jfa NMEds - MEM.

It is immediate that, for k'm+21Lmps Cq 1to Moreover, the
identity holds, for allp * m + 1

61D LN = + - D-(r/)+).

Assume, therefore, that the conclusion of the lemma holds for all integers k
up to m. If # is an arbitrary function in C™, then

(-1)m#L 1 72(Lr,)(m+) d
Ja Ja

so that, with the help of the identity (6.1.1), we may write

(-Hym

ds- @HE d

Observe now that
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Thus, we can now see that, for all € C™, the following identity holds:

(- Dm+l f**n(m dt=1" vW (si @) - A()-+ (-
We observe that the m-th integrals of

B - 91(f) - <90 + (-I1)m+1 <~ (m+1))

are equal to the sum of -gm+1 and a polynomial of degree at most m. The
induction hypothesis enables us to conclude the required result. [

We denote by Vm(x,y) the set of functions u of class Cm over [a, b] which

satisfy
uxj) =yiM=1,...,n.

This set is an affine space, obtained by translation from Vm(x,0).

6.1.3. The space of natural splines

We draw the following important consequence from Lemma 6.1.2:

Theorem 6.1.3. () Let u be a minimizer of Em over Vm(X,y). Then, uis a
function of class C2m*2 over [a, B\ which coincides with a polynomial of
degree at most 2m —1on each interval ]xj,Xj+1[, for 1~ j ~ n —1, and
with a polynomial of degree at most m - 1on the end intervals Jx0,x\[ ad
Ixn,#n+l [.

(i) Letpj, 1~ j ~ n, be strictly positive numbers and let u minimize e m +
Fp(-,y) over Cm(J[a,b]). Then, u is a function of class C2m~2 over [ab]
which coincides with a polynomial of degree at most 2m—2Lon each interval
1xj, Xj+a, for 1~ j ~ n—1, and with a polynomial of degree at most
m —21on the end intervals }xq,xi[ and Jxn,xn+[. Moreover, at the knots,
u satisfies the relation

(Chmfu@m-Dh( +0_u@nd( _ O\ + =Q

.12 \Y ' Pi
V=i *
Proof. In the interpolating spline case, we observe that, if u belongs ©
vm(x,y) and v to Fm(x,0), then u + v belongs to Vm(x,y). If uis a mn"

mizer of Em over Vm(X,y), then, arguing as for the proof of Lemma 5.1.2,
get

u@mv mdt=0, VueFm(r,0).

Let [a',b] be a compact sub-interval of ]xj,Xj+\[, 1~ j ~ n —1, with rn
empty interior. Then, u can be chosen arbitrarily in £/ and exten
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by O to the whole interval [a,b]. This v belongs to F m(x,0). Lemma 6.1.2 now
immediately implies that u ~ coincides on [a", b] with a polynomial of degree
at most m —1 This proves, indeed, that the restriction of u to each interval
1xi,£j+1[ Is a polynomial of degree at most 2m —1, for 1~ j ~ n —1 On the
end intervals, there are less restrictions on v. Let w be any continuous function
which vanishes for t ~ X\. Then, the function v defined by

»®) = (°1! T f(m_i)!

belongs to Vm(x,Q) and, therefore, Lemma 6.1.1 shows that u ~ must vanish
on [xo,xi], so that u coincides with a polynomial of degree at most m —1 on
this interval.

In the smoothing spline case, we argue as in the proof of Lemma 5.1.2 and
we see that, for all v G Cm([a,6]),

®.13) f d*+ V
Ja =l Pi

1l
©

If v belongs to Fm(x,0), the sum over the knots vanishes and we are left
with the condition

rb
/
Ja

d t=0, Wve Vi

Then, the argument made for the interpolating case implies that the conclusion
also holds for the smoothing case.

In the case of interpolating splines, let us show now the continuity of u and
its first 2m - 2 derivatives across the knots Xj. By construction, u is m times
continuously differentiable, so that we must only look at the derivatives of order
greater than or equal to m + 1 It is also enough to observe what is happening
around a single knot. Indeed, let v belong to Vm(x,0) and assume that v has
compact support in Ja',5°[, where this interval contains exactly one knot xj, for
some 1~ j ~ n. With m —1 integrations by parts, we can write

fo
o=/ u(mVv m)dt
Ja

= (u(m+1> cg +0) - w(m+1l) &g — 0)) v(m" 2
- Cg + 0) - u<rat+2) £9 — 0)) P+ ...
+ (DM B3 Wiz 0) - u<2m-2) &9 — 0)) v CI-

However, the derivatives of v of order 1 to m - 2 are arbitrary. This proves the
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We can now establish the case of smoothing splines. In egn (6.1.3) we take v
in Cm, not in Vm(x, 0), so that when integrating by parts the product u(mM m)
we get one more term. We also assume that the support of v contains only the
knot Xj. We now obtain the relation

m—
(~ 1) fe+l (<< (m+fc) (0 +0) - u(m+fc)y O - 0)3
k=0 m
+ (“(*)) ~Vi)«(»)) _ O
"]

Since v(xj) and all of its derivatives up to order m are arbitrary, the continuity
of the derivatives of u of order at most 2m - 2 across knots is proved, together
with the relation (6.1.2). [

The space 5*n“1(X) of natural splines with knots at x\,... ,xn is the space
of functions of class C 2m*“2 which coincide with a polynomial of degree at most
2m - lon each of the intervals [xj,Xj+1], 1~ j ~ n- 1, and with a polynomial
of degree at most m —21on each of the end intervals [#o, #] and [xn,xn+\\. The
space s ~ n~1(x) is clearly a space of finite dimension. Later on, we shall compute
its dimension.

The interesting fact is that there is a converse to Theorem 6.1.3 which shows
that the necessary conditions for minimization are also sufficient.

Lemma 6.1.4= (i) Let u belong to swn~1¢(x) and define yj = u(xj). Then, u
minimizes e m OVer v m (x,y).

(i) Let u belong to SA7' 1*) and define yj by relation (6.1.2). Then, u mini-
mizes Em + Fp(-.y) over Cm([af]).

Proof. Let u belong to c 2m~2 and assume that v belongs to v m (x,y). We
have the following identity:

EmM-EmU)=21" << (X% - <am>) dt + Em (v-U).
Ja

Using integration by parts,

J ulfu@) - u(o)) d
n m—1L

=E E (- DumA)

j=0 k=0
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If uis a natural spline and v is of class Cm, then many terms in the above
expression vanish, and we are left with

fbu(m) _u(m)\dt
Ja

= (-DmE & - UED) xj 0)-u2EDj- 0).
j=0
Finally, we obtain the identity

Em ) - Eq@) = Em(u-v) +2(-1)" - u i)
6.14) 30
X i +0)- WZTI*- 0)}.

In the case of the interpolating spline, take v G Vm(X,y), so that v - u
belongs to F m(x,0). Then, we have the identity

®.15 Em@W EmCDH—Em( u)

and the conclusion is immediate.
In the case of the smoothing spline, we remark that

ny)= 2£ €D ZIljl+ £ 7
3=l 3=1

Using again the identity (6.1.4), we find that

Em\) - Em(® + Fp(v,y) - FpU,yEm(v-u) +Y/
(6.1.6)
This concludes the proof of the lemma. [

In order to prove the uniqueness of the smoothing or interpolating splines,
we need to assume that n » m. Then, we have the following lemma:

Lemma 6.1.5. Assume n A~ m. If u and v are splines (belonging to S”n~1(X))
which coincide at the knots, then they are identical.

Proof; Define yj = u(xj). We know from Lemma 6.1.4 that u and v must
Ninimize Em over Vm(X,y). Then, due to the identity (6.1.5), Em(v - u) must
Isil>which implies that v —u coincides over [a, b] with a polynomial of degree
most m ““I1- But u —v vanishes at n ~ m distinct points, which means that
v must vanish identically. [
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The corollary to this is the following uniqueness result:

Theorem 6.1.6. Assume n ® m. There exists at most one interpolation spline
through the points (Xj,yj), 1™ j ™ n, and one smoothing spline relative to the
points 1~ j ~ n, with weights pj > O. 0

Proof. In the case of the interpolating spline, the uniqueness is immediate.
In the case of the smoothing spline, we infer from egn (6.1.6) that any two
minimizers of Em + Fp(-,y) coincide at the knots, and Lemma 6.1.5 then gives
the required conclusion. [

We now obtain our final theoretical result on splines:

Theorem 6.1.7. Assume n » m ~ 1 For any finite sequence of knots x\ <
X2 < ===< xn in the interval Ja,b[ and any sequence of numbers j/i,...,j/n,
there exists a unique interpolating spline u G S"71-1") satisfying the constraint
(6.0.2). Given positive weights p®, there also exists a unique smoothing spline
relative to the points (Xj,yj) and these weights. 0

Proof. In order to prove the existence of interpolating and smoothing splines,
we just have to count dimensions. Thus, we represent splines as polynomials on
each of the intervals between knots as follows:

2m Al
® —"ACjirN jjj» o g on X]j %j+\ -
k=1

Hence, we describe the space SN771-1") using 2m(n + 1) parameters, but they
are not free. First, the coefficients Co,* and cn® vanish form+ 1 A 2n
Next, we must write the transmission conditions at the knots, that is

2m k-1 2n rk-l

VJ = \VZ =
k—+ k=l
Define 2m —1 by 2matrices Afor 1N j < by
/1 HYA === gjlm-1/(2m —:
1  xj — -2)!
Aj =
v 1 Xj J

and m by 2m matrices Aqg and An+i by

0O ==0 0 1 =MD

v ==000 =\/

Ag= An+i =
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Let A denote the matrix

Mo \
Al -4i
A2 A2

An An
\ An+id

Then, the compatibility condition may be written as
Ac = O,
with ¢ the transpose of

(G),l *kk CO,ZT'I Q,\ *kk CI,ZI'T] *kk 1 HHk Cn,zn) -

We claim that the rank of the matrix A is equal to the number of its rows, i.e.,
n@2m- D+ 2m —2m(n + ) —n. Let | be a row vector with 2m(n -f ) - n
columns. If IA vanishes, then lj vanishes for j ~ 2m. We just have to perform
an induction starting from the last column. It remains to find the rank of the
matrix

Mo 0\

ui -v ~
By column combinations, the rank of this matrix is equal to the rank of the
matrix

6.17) Mo 0o\
\Bi -Ax)"

where Bi is the matrix whose first m columns are the same as the first m columns
of Ai and whose last m columns vanish. It is now clear that the matrix (6.1.7)
isof rank 3m- 1 Thus, we have shown that the space S n~1(x) is of dimension
n* Solving for an interpolating spline is a linear problem in c, since it can be

written as
2n  sfe-1
Ac —O, n jyci'k~yj" A7 1,...,n.
k=1

Therefore, if n ~ m, the uniqueness result of Lemma 6.1.5 implies the existence
of an interpolating spline, due to the fundamental theorem of linear algebra.
Oving for a smoothing spline is also a linear problem, which can be written as

Ac = 0,
n /2m t— \
+ AL - =0 Vj=1l...n

Then - . S
the@IT previus argument also works and the uniqueness for n ~ m implies

e*istence of smoothing splines. (|
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6.2. Numerics for cubic natural splines

The construction of the previous section can be made numerical, but it is ex-
tremely awkward, since it requires the solution of a system of 2ra(n+1) equations
in 2m(n + 1) unknowns, where only n of these equations are not homogeneous.
Therefore, in order to be efficient, one has to be smart in choosing the represen-
tation of spline functions.

In the case of cubic natural splines, i.e., m —2, the numerical calculation of
the interpolating or of the smoothing spline is a very simple problem, as will be
shown now. Of course, the choice of coordinates is an essential question. When
m = 2, we know that natural splines are of class C2. Thus, we choose as our
unknowns the values of the second derivative of u at the knots, namely

zj =u"(x)), 1~j~n

We know that
' =zn=0

since u is of degree at most 1 on the end intervals. Therefore, we shall solve a
system of n - 2equations with n —2 unknowns, assuming n > 2 The case n —2
is quite boring (why?). Let us write

AXj = Xj+i - xh  Ayj = yj+1 -=zj+x-
On each interval [xj,Xj+1], 1~ j ~ n- 1, u" is of degree at most 1and is given

by
— X X — Xj

i
— ——r—Zj+]l -
AX Z%+ TAX] "

Therefore, on the interval [xj,xj+1], u is given by the expression

621 «(X) SAL+E - | WA= LI+

We shall express the values of Aj and Bj in terms of the other parameters of the
problem by solving the pair of linear equations

u{xp) =i, u(xj+i) = yj+1.
The first equation gives

o dAX
62.2) Aj =]

and the second gives

6.2.3) Bt AVj AXIAZ]
o B> - AX, 6
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We now maintain the continuity of u" at knots. If 2~ ~ n—1, then we have

u ( Xj+0=Bj—anci u"(x._o)= i+
z z
We replace AZj and Azj-\ by their values, put all the terms including one of the
Z on the left-hand side, and we then obtain the following system of equations
for22j~n- 1
/A X_ AXxj-i Axj-\ Ax* Ayj AN
624 3 + 3 ')” A TOAX) AXj-i

Recall that 2\ and zn vanish, so that the system (6.24) is an n —2 by n —2
system. Its matrix is tridiagonal and strictly diagonally dominant. Hence, it
is very clear now that there exists a cubic interpolating natural spline provided
that n ~ 2 If we define

o\ AX?
6 5

then the matrix of the system is given by:

/2 (ai+a2) az2

az2 2(@2+<¢3) a3
625
on—=2

\V} o-n2 2(a, _2+ a, -i)
The z solution gives the pdue to eqn (6.2.2), the Bj, due t
u on the intervals [xj, Xj+i], 1"j$ n—
intervals, we use the formulae

u(x) =i + uT (X)X - xi),u(x) =yn+ u'(x, YX- %, ).

Let us now consider the case of the smoothing spline. We have to enforce the
following transmission condition at the knots:

626 U+ 0) - vt ( —y+ YD Y
Pi

1l
o

If we define u(xj) = Uj, then the above argument implies that, for 2~ "~ n—1,

6271 « ., AxiN Axj-i_ A
I 3 3 Ji+ 6 6 j+1~ Axj Axj x ~
626" n<W™ave to Set val"e <f Ujfrom

ui = Vi ~ Pj ¢G+ 0 - it"™ X -
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The values of the third derivatives can be readily obtained from the values of z
as:

) Azj .
u,n HO — "~ u"(xj -0) = L.
X HO Ax/ (xj -0) Axj-i"
Therefore,
628 " - Vi 1/ {Azj+i ~ Azj\ {rzi _rzi-1NA
T AKX A Xj Axj \ A Axj) Axj-i))

Substituting the expression (6.2.8) into eqn (6.2.7), we obtain, after the same
kinds of manipulations as those used to obtain (6.2.4),

(AX]  Axj-\\ Axj-i A Xj
hr +-3-j*+-£-*-1+Y *+#

! Pj+jz ( PP+ + | Pi

AXj+iAX] 32 AXjAXj+i AXj AXjAXj-i
, (B +pj 2Pj , Pi-i + A

( AXj AXjAXj-i y 3

( Pi + Pi-i + Pj-1 ;i +._____p_l~_! ______ 2

y AXjAXj-i Axj 1 AXj-i Ax Axj_iAxj 2 J

_ Ay
Axj Aaji ~”

which is a pentadiagonal system of n —2 equations with n —2 unknowns. Of
course, we have to let 2i = zn = 0. Introducing the notation

8 - Pjry.-_EL n
| AxjAxj-i 7 " - ~ -
al = 72-i + 7j+ 273+ § + <5j+i, Dj= @G+ 75+ /2+i + G410,

we see that the matrix of this system is the sum of the matrix (6.2.5) and

/ "2 -62 03

—62 ““63 /M
03 -63 4 -e4 03
04 -64 G5 -h 06

V I. l. l#

If we are interested in higher degree splines then we have to use more sophg©
ticated methods, which are explained in the next section.
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6.3. Spaces of splines, £?-splines
6.3.1. Splines with distinct knots

More generally, given n distinct knots X\ < === xn in the open interval Ja, b[
and an integer k N 1, the space Sk(X) is the space of functions of class Ck~1
over [a b] which coincide with polynomials of degree at most k on each interval
[xj,Xj+1], for O~ j ~ n. Here, we keep the convention xO = a, xn+i = b. The
space Sk(X) is called the space of splines of degree k. For historical reasons,
much of the literature on splines prefers to call this space the space of splines of
order k+ 1. | feel uncomfortable with this terminology, because order is used in
many other circumstances, and this creates confusion.

The first main fact is that the derivative of a spline of degree Ais a spline of
degree k —1

Let us calculate the dimension of Sk(X), arguing as in the proof of Theorem
6.1.7. We represent each function u G Sk(X) by the coefficients of its polynomial
expansion on the interval [xj,Xj+%] as follows:

so that we immerse Sk(X) into a space of dimension (n+ )(fc + 1). Then, the
compatibility conditions can be written

~ (Cj-U - G, =0, Vj=1,...,n, Vm=0,...,A—1
I=m
These relations can be put into the form
Ac = 0,

where A is the nk by (n -f D(& + 1D matrix

(Ax -AXx \
A2 —A2
An AnJ
and Aj is the matrix
@ X xk/K\N\
1 xj-"/ik-iy.
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The matrix A is of maximal rank, as can be immediately checked, so that Sk(X)
is of dimension K+ n+ 1

In order to work easily with splines, we produce good basis elements for the
space Sk().

Denote by r+ the positive part of the real number r, i.e.,

r+ = max (, 0).

By convention, ® is the characteristic function of M+.

We see immediately that the function t  (t—xj)\ is defined for all integers
j e {1,...,n} and that it is of class C k~I over [, b]. It agrees with a polynomial
in each of the intervals [xi,xi+1], so that it belongs to Sk(X).

The functions t  (t- xj)\ are linearly independent. However, the support
of these functions is large, which can be a serious numerical inconvenience, and
there are not enough such functions to make a basis. Of course, this can be
cured by adding to the basis the functions (x-a)1, 0~ * A and then we have
the required number of independent elements to make a basis (check that?).

6.3.2. The beautiful properties of B-splines

However, there is a much better choice of basis. It is possible to define the so-
called H-splines. They are elements of Sk(X) with the smallest possible support,
there is a very stable numerical algorithm to construct them, they are positive
on their support, and they add up to 1on [a b\

However, in order to define ~-splines, we have to increase the number of
knots. In this section we limit ourselves to distinct knots, but in the problem
section (see Subsection 6.4.3) the generalization to the case of coincident knots

is taken up.
Assume that we are given 2k additional points satisfying the inequalities

X—]' N N X_J_ N Xq and 1/\ *kikN

We define a H-spline by the following divided differences formula, where the
index son<5 means that the finite difference operator works on the s variable:

6.3.D) Nitk ®) = ( «<)<5*+1

Let us first show that the family for —k ~.i™ n, can be constructed by a
recursive formula in k, due simultaneously to de Boor [X)] and Cox [18].

Lemma 6.3.1. The n ij satisfy the following recursion:
6.3.2 Nito = 1 -k M i N n+k,
and, for 1~ j ~ kand k" i*n+ k-],

t X fii+H+1 t

6.3.3 -Nij-i mh\ D).
©33) Xi+j  Xi N I()+&i+j—}1 XA ©
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proof. Relation (6.3.2) is clear. Assume now that j is at least equal to 1and
observe that

G- D¥=(s- (

We apply the generalization of Leibniz *formula given in Lemma 4.5.1 to the
finite difference 58+1(xi, ... ,#j+j+i) appearing in the definition (6.3.1) of the
5-spline Nij. For this purpose, we remark that

C -1)

vanishes unless m = Oor m = 1 Then, we see that

NiJ @) = (Ni+Hj+1 —xi) (s *Hdjxi+j) @ <0+ ~

"h #i+ji-]-1 %i) ($s (x ii =——efxt 1) (Nitj+] —N)j ) *
v ‘

6349
The first term on the right-hand side of eqn (6.3.4) is equal to

Xi+ W - XiNu-X
%i+j

In order to identify the second term on the right-hand side of egn (6.3.4), we use
the definition of divided differences as follows:

8+ (Xi,... Xi+j+i)(s -ty+ 1

@ *H)y==t%i+j+l) — €>>===> )@ —O0+

Therefore, using the definition of the 5-splines, we see that

(=41 xP A iDG N ™ Xi+j+i t)

- Lo n
.XI.+j+| .t AE-flI—+ (O Xi+j+1
Xi+j+l  xi+l

635
At,j-i M =

When we substitute egn (6.3.5) into the right-hand side of egn (6.3.4), we obtain
the formula (6.3.3). (.

Formula (6.3.3) gives a B-spline as a convex combination of splines of lower
egree, which is a very stable numerical process.

To be precise, BIk(® = Ni.k(t)/(xi+k+i - xt) is a convex combination of
i.fc-i() and Bi+”~k”it), as the reader may verify. However, we have not yet
Yh that a 5-spline is a spline. This, and other properties, are consequences
emma 6.3.1, and they are summarized in next theorem.
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Theorem 6.3.2. The JB-splines of degree k belong to Sk(x). The support of Niik
is included in [xi,Xi+k+1] and AT%* is non-negative on its support. For k ~ 1,
the derivative of Ar* satisfies the identity

(Nj.k-i ® _ Nh-m—=+@® \

6.3.6

©39 Ni+fe+ 1/

5-splines form a partition of unity:

®6.3.7) EiVa =1 \WKE€ Jo6[. 0

i=—k
Proof. That Niik belongs to the space of splines is immediate from the formula

(6.3.3) by recurrence, as is the statement on the support and on the positivity

of the P-spline.
The formula for derivatives is proved with the help of the identity (4.5.3).
We apply this formula to the t derivative of N*k and we see immediately that

~ik (0 = (xi+tk+1—xi) @* ==xi+k+D (* ““0+
= - (ri+fe+i - Xi)k6k+l (xi,...,Xi+k+1) 8- t)*"1 =

In order to find the value of this expression, we use the definition of divided
differences, and we find

N'ik(0 = -fc (tff @<H, ... xi+b+) (s - )*1 - Sk -

from which the formula (6.3.6) follows.
That the splines of degree O form a partition of unity on Ja, [ is quite clear.
Assume that eqn (6.3.7) holds up to some integer k - 1. We use the de Boor-cox

recursion formula to write
n
£ Ni b
i=—k

e — N-k,k-i @+ ~  Nik-i @) H-——-n+*+l-—mmommomo () g
#0  x—k ®© Ce T 1O xn+k+1 "n+1l ®

However, the support of AL*,~-1(0 is included in [x_",xo] and the support of
Afntifc-i is included in [xn+i, xn+k+i], both of which do not intersect Ja, . This
enables us to conclude the required result.

Now, the important fact is that the A™*form a basis of Sk(X), for -k ~ ~n"
There are n + k +1 such "-splines At It is already clear that they belong4=
Sk(). It remains to prove that they are independent, as is done in following

lemma:
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Lemma 6.3.3. For all integers k, the Zi-splines are independent as functions on
Javr

proof. For k = 0, it is clear that the B-splines Ni$ are independent, since they
have disjoint supports. Assume then that the ~-splines Ni~-i are independent,
and consider the linear relation

n
A iNE
i=—k

Differentiating this relation with respect to t, we find that

Wi+fc  xi M+&+H xi+lJ

with the help of the identity (6.3.6). This relation can be rewritten as

n+1
N ANk (0 = OF
i=——k

However, the first and last terms vanish on Ja, b[. It suffices to reduce the sum-
mation limits to —k + 1and n, where the /i*s are given by

KN N o kg1,
xi+k  Xi

The induction hypothesis implies that all of the \{ should vanish. This gives us
a linear system on the A& whose solution is a constant vector. As the N~k sum
up to 1, we may conclude the required result. [

The following is an interesting formula relating divided differences and B-
splines:

Lemma 6.3.4=For all n ~ 1and all distinct knots xq < ***< xn, the following
identity holds:

©39 6n (x0,...,a?n)/ = J /@WOMon-1 O 4,
(n - 1)1 (xn - xq)
Proof. For n = 1, the left-hand side of egn (6.3.8) is equal to
f(xi)-f(xp)
X\ Xq
and its right-hand side is equal to

f[a?o,xi[ jt)
d
X\ Xq &
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which is clearly equal to the left-hand side.

Assume then that the identity (6.3.8) holds up to some index n, and for all
choice of knots and functions. Due to the support properties of 5-splines, we
may rewrite the right-hand side of (6.3.8) as follows:

VAN
/ (m+DiVo,n dt = l_ r > 'B SB*i (X0, ..,xn+i) (s-f)" df,
#n+l 0 i X0
which we integrate by parts, with the help of the identity (4.5.3), to obtain
n =Ix0 - dt

We now use the definition of divided differences and of the 5-splines to obtain
the following expression for the right-hand side of the identity (6.3.8):

\ ff medf @) fa _ fnf(n) dA .
(n- DI on+i - a) \IA Xmn1- X IO xn-x0 )*
The induction hypothesis then yields the desired result. —

5-splines are interesting in themselves. The reader is invited to try the
exercises in Subsection 6.4.3 in order to understand 5-splines with coincident

Figure 6.1: The splines of degree 1 are piecewise affine functions. There are
6 such splines, but, with the choice (6.3.9) of knots, the first one vanishes, ft
among the three knots appearing in the divided difference, two coincide, then
the 5-spline is not continuous. This is the case for the second, fifth, and sixth

5-splines of this collection.



63 SPACES OF SPLINES, B-SPLINES 125

knots. With the vector of knots
6.3.9 (X0, m=m x7x (0,0,0,1,2,3,3,4),

we have put a portrait gallery “of jB-splines of degrees 1, 2, 3, and 4, as shown
in Figs 6.1, 6.2, 6.3, and 6.4, respectively.

6.3.3. Numerics with B-splines

We can now give the general ideas used for computing with splines and represent
any spline in a basis of B-splines. For instance, if we wish to find the interpolating
natural Spline of degree 2m —1, we write the linear system

n
(63.10) =g Vi=1,....n,
i=——2mH
631 P2 ZM%n-1 ¢1- D =0, V=T1...,.2m- 1,
i=—2m+1
6312 +0) =0, VZ=T0,...,2m —1
i—2m+H

Figure 6.2: The splines of degree 2 are piecewise quadratic functions. For the
choice (6.3.9) of knots, there are 5such splines. If, among the four knots appear-
~ In the divided difference, three coincide, then the B-spline is not continuous.
Is is the case for the first jB-spline of degree 2. If, among the four knots ap-
pearing in the finite difference, two coincide, then the i?-spline is of class C=,
not <fclass C 1. This is the case for the fifth element of the collection.
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Figure 6.3: The splines of degree 3 are piecewise cubic functions. For the choice
(6.3.9) of knots, there are 4 such splines. If, among the five knots appearing in
the divided difference, three coincide, then the £?-spline is not of class C 1. This
is the case for the first B-spline of degree 3.

Figure 6.4: The three ~-splines of degree 4, for the choice (6.3.9) of knots.

This is a system of n -f 2m equations with n + 2m unknowns, and Theorem o-
guarantees the existence of a solution. Moreover, the matrix has few nonzer=
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coefficients: we know that the support of A"2m-i is included in [#*#+z2m]-
Therefore, the lines corresponding to eqns (6.3.10) contain at most 2m—Lnonzero
coefficients, and the same holds for the lines corresponding to egns (6.3.11) and
®312), form ~ I ~ 2m —2 Finally, the lines of egns (6.3.11) and (6.3.12)
corresponding to | = 2m —1 contain at most 2m nonzero coefficients.

An example shows the structure of the matrix. Let m —3and n = 4. Then,
if =denotes the non-vanishing coefficients, the matrix of the linear system has
the following structure:

/= \

-

We will see in Chapter 9 that the numerical resolution of a linear system
whose matrix has the above structure is simple.

6.34. Using 13-splines to understand natural splines

There is another way to look at natural splines with the help of 5-splines:

Lemma 6.35. Assume n A~ m, and let T be the linear span of the 5-splines
===\/n_mm_1, seen as functions from [a, b]Jto R. Let / be a function of
class Cmand let yj = f{xj). Then, u is the interpolating natural spline through

the points (Xj,yj) if and only if u ~ is the projection on T of /~ in the mean
square sense.

Proof. If u is a natural spline of degree 2m —1, its derivative of order m
belongs to the space Sm~I (X), and it vanishes on the end intervals [# ,2:1] and
itn,an )-I]. Therefore, it is clear that u ~ belongs to T. Let v be the least-
squares projection of / on T. The existence of such a projection has been
Proved in Lemma 5.1.2, and it satisfies the following relations:
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We choose an m-th integral w of v which satisfies the following m conditions:

w(xj) = f(xj),

If n = ra, then it is clear that w is an interpolating spline through the points
(xj,yj)- If n > ra, we observe that

-

and we use the identity (6.3.8) to infer from this that
/ [Mle=2Km+T ~ m X\, == #m+] = O,

which immediately implies that w(xm+1) is equal to f(xm+1). By recurrence,
we can see that
wixji) =/xip, Vj=1

This proves that in is a natural interpolating spline through the points (xj,yj).
Let us prove uniqueness without appealing to the results of Section 6.1. If u and
w coincide at all points Xj, then u[xi, ..., £i+m] coincides with w[xi,..., £i+m],
fori = 1,... ,ra —n, and, therefore, due again to the identity (6.3.8), we must
have PN

fori = 1,... ,n —m. Therefore, —u ~ is orthogonal to T. However, it
also belongs to T. Therefore, it vanishes, and in —u is a polynomial of degree
at most m —1 This polynomial vanishes at n  ra points, which means that it
vanishes identically. This proves the lemma.

For the specifics of the numerical analysis of splines and, in particular, the
choice of knots, we refer the interested reader to the literature of the subject,
and, in particular, [23] or the older, but highly readable, [21].

6.3.5. B-splines in CAGD

The use of H-splines and, in particular, of fractions of H-splines in CAGD (com-
puter aided geometric design) is very nicely detailed in [67], which contains many
pretty figures and a large number of algorithms in C which allow for numerous
geometrically motivated operations on curves and surfaces.

The advantage of rational fractions over polynomials comes from a classic
observation: while it is impossible to parameterize exactly an arc of a circle b)
polynomials, the unit circle, without the point (—L,0), is parameterized by

21
6.3.13) y(t) = 1+ t2°
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The choice (6.3.13) is not necessarily the most convenient. It is even better to
use homogeneous coordinates, i.e.,

X()=1-12, Y®=25 Z@®=1+*2

This means that we add a dimension to the space, but we consider two points
to be equivalent if they are not zero and if they lie on the same line through O.
The set of lines of R3 through Ois called the projective plane. The homogeneous
coordinates of a point of the projective plane are the coordinates of any nonzero
vector on the line of R3 associated with that point. The affine plane is identified
with a subset of the projective plane: to the point (aqg,”) we associate the line
through (xi,a?z,1).

This notion is easily generalized to three dimensions; the homogeneous coor-
dinates in projective space are nonzero vectors in R4, with the same equivalence
relation as above.

Curves in three-dimensional space are parameterized with the help of three
splines of one variable:

A= winik {D) Y®= Orily

n n
Z@O= WNjk®GJ: TEO=%>:%* (.
=1 i=1
The numbers Wj are non-negative and they do not all vanish; they give more
freedom to the user. The vectors with coordinates (£),4j,Q) are the vertices
of the control polygon. In the same fashion, a surface can be represented by
products of B-splines:

m n

X @&t =" " AWIijNij O Njk @),
i=1j=1
m n

y .=y wuNu G)Njk®)Tjij,
<=ijA
m n

Z (5,0 ="~ JWIijNij ) Njk {O) Ciji
t=ij—1
m n

TG, = WiijNij ) Njk (D).
i=l j=I

Thus, we have defined NURBS or Non-Uniform Rational 1?-Splines, which have
jAvaded all industries where shape is important: from its origin in metalwork to
Poste® e and shoe industries, and now to the design of character fonts (through

script and its descendents); tools from this section are also used in image
Population and virtual reality.
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Though NURBS use almost nothing of the theory of algebraic curves and
surfaces, they lead to many computational problems. In particular, good algo-
rithms must be fast and flexible; they must allow the construction of surfaces
bounded by given curves, the deformation of a curve or a surface into another
by a finite number of steps, an easy search for intersections, and so on.

In any case, a rather simple program enables us to draw with 5-splines; an
example is given in Figure 6.5.

6.4. Exercises from Chapter 6
6.4.1. Varied exercises on splines

Exercise 6.4-1- Given a degree m and a sequence of n A~ m distinct knots xi <
X2 < =< xnin the open interval Ja, b[ = Jxo, £n+i[, and a sequence of data vj,
let u be an interpolation natural spline of degree 2m - 1 relative to this data.
Let e be a strictly positive number and let u£be the natural smoothing spline
relative to this data and the uniform weights pj = e. Show that u£converges to
u in C2m~2{[a,bD).

Exercise 6.4-2. Let the knot xj be equal to j. Show that the 5-splines of degree
k can be deduced by translation from the 5-spline of degree k with support in
[0 k 1-1], which will be denoted by Nk- Calculate and plot Nk for 0™ k~ 3

Exercise 6.4-3. With the notation of Exercise 6.4.2, let

MEG) =NK(X+— j

Portrait of an unknown

Figure 6.5. Drawing with 5-splines. The mouse captures the control polygO
drawn on screen by the user. The user defines the degree of the spline and
the vector of knots.
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Show that, for all integers k and 1, the convolution of and Mi is given by

=7 I Mk YMY) d

and deduce from this identity that the Fourier transform of MKk is

MK (O = j e~ix*MKQ)dz = (— ~) "H =

Hint: use the following fact of Fourier analysis: the Fourier transform of a
convolution is the product of the Fourier transforms of the factors.

Exercise 6.44- Let

Show that the absolute value of the (m —I)-th derivative of the 5-spline of
degree m —21 on these knots is independent of x on the support of this 5-spline.
Show that this 5-spline is even and plot it for m = 1, 2, and 3.

6.4.2. Approximation by splines

Exercise 6.4-5. Let / be a function of class C= on [a, b]. Suppose that the xj are
given knots, —k " j~ n-f-fc+l, and denote by £the maximum of AXi = Xi+i —Xi,
~k ™ i~ n 4k Define the Lagrange-type spline by

n
Lx, kf(t)=Y,
i=—k
Let w be the modulus of continuity of /, i.e.,
D =max{f x+h)—f Q\:a* x"*x+h~"b 0ON/i*r}.
Derive the following estimate:
a%l%;\)b I/7® - LXK Q] u (/, K+ DE).

SI—#% use the identity (6.3.7) and the fact that the support of the B-splines is

Exercise 64.6. Assume now that / is of class Cl. Prove that
sup |/ @® - LXE @O~ k+ D EYEz,

forall Ik .
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Exercise 6.4-7. From Exercise 6.4.6, determine an upper bound on the distances
in L2(a, b) and in L=<@b) from a function / to Sk(X).

Exercise 64.8. Let / be a function of class Cm on [a,b] and let Xq,...,x"
be a sequence of knots whose diameter £n = max(xj+i —Xi) tends to O as n
tends to infinity. Show that the interpolating natural spline through the points
(x"j,f(xfh) tends uniformly to / as n tends to infinity.

Hint: use Lemma 6.3.5 and Exercise 6.4.5.

Exercise 6.4-9. If / is assumed to be of class Cm, show that the convergence of
the natural interpolating splines sequence of Exercise 6.4.8 is faster.

6.4.3. Coincident knots

Exercise 64 10. Assume that x = (xi,Xz,... ,Xn) is a non-decreasing sequence
of not necessarily distinct points. We will assume that no more than k -f 1 of
these points coincide. The JB-splines N~k on these points are still defined by egn
(6.3.1). Show that the recursion formulae (6.3.2) and (6.3.3) still hold, assuming
that any indeterminate expression 0/0 is replaced by O.

Exercise 6.4-11- Let x0, X\, X2 = x\ + e, and X3 be distinct knots. Show that
the 5-spline of degree 2 on these knots tends to a limit as e tends to O. What
is this limit? Now let X\ be equal to xg + e. What is the limit of the 5-spline
when e tends to 0?

Exercise 6.4-12. Suppose that in the set Xi,..., Xi+k+i a number m ~ k+ 1of
the knots coincide. Show, then, that at this point N~k is not of class Ck~I, but
of class Ck~m+1. Show that if m = k + 1 of these knots coincide, then is

discontinuous.

Exercise 6.4-13. Let X\ = ==== xv = 0 and xp+t\ = -mee= xn+2 = I* Give the
explicit expression for the jB-spline of degree n on these knots.

Exercise 6.4-14=Given a list of integers O ~ ra* ~ k —1 and the knots
X\ N === xn, define the spline space Sk(x,m) asthe space of functions on
[ Bl = [xo,xn+i] which coincide with polynomials of degree at most k on each
of the intervals [a"Xi+i] and which satisfy the following continuity condition at
the XiS: a function of this space is of class Cmi in a neighbourhood of Xi. Find
the dimension of Sk{x,m).

Exercise 6.4-15. Replace the sequence of knots X{ by another sequence in which
Xi is repeated k—nii times. Add to this sequence k auxiliary knots belonging to
(—o0,E0] and k auxiliary knots belonging to [an+i,00). The new sequence will
be denoted by x*. Show that the 5-splines of degree k on the knots x* form a
basis of Sk(x,m).
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Fourier § world

At the end of the eighteenth century and the beginning of the nineteenth century
lived two important men in France. Although they were contemporaries and
possessed the same surname, they were not related. One was Charles Fourier
(1772-1837), philosopher and Utopian, the inspiration behind phalanstery and
of acommunism founded on free cooperation in a harmonious climate of human
goodness. The other was Joseph Fourier, inventor of the series which bears his
name. His series was known to Euler, at least, and played an important role
in [B]. The phalansters did not work and | leave the reader to analyse the
causes since | cannot expound on this subject with all the scientific competence
required in a university text. The Fourier (Joseph) transformation and series are
alive and well, being the subject of multiple theoretical and applied works. As
for human goodness and the free cooperation between individuals, who would
not like to see a little more?

By following these ideas, which, once again, come straight from the eighteenth
and nineteenth centuries, we are trying to approximate functions, this time by
trigonometric polynomials which are, after ordinary polynomials, the easiest
to actually calculate. The theory is, in part, parallel to that of least-squares
Polynomial approximation, but it also has some different characteristics. | have
not shirked from some repetition from the preceding chapter, for which I hope
the reader will forgive me.

"= Trigonometric approximation and Fourier series

k* this chapter, we approximate periodic functions by trigonometric polynomi-
s in the least-squares sense. We show, by a convolution technique, that the
pge=n0etr’CB<"nom”a’s  Peri=d lare dense in the space of continuous com-
periodic functions of period 1 We link trigonometric approximation and

ler series and give some elementary results on the convergence of Fourier
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7.1.1. Trigonometric polynomials
A trigonometric polynomial is an expression of the form

(7-1-1) /\2 akeZAnkx

where the numbers a* are complex, and AT is a positive integer or zero. Such a
trigonometric polynomial is said to be of degree at most N. It is exactly of degree
N if ajsi or a_w is not zero. The vector space of trigonometric polynomials of
degree at most N is a vector space on C of dimension 2N+ 1 It will be denoted
by IV. The trigonometric polynomials have period 1

We denote by @& the space of continuous periodic functions of period 1, from
E to C. This space is equipped with the maximum norm

IMloo = max{Ju(X)| :x £E} .

More generally, £7* is the set of k times continuously differentiable functions on
E and of period 1 We are going to approximate, in the least-squares sense, the
functions / G @ by elements of Tjv- The proof technique will be the same &
for ordinary polynomial approximation since, geometrically, we are making an
orthogonal projection in a pre-Hilbertian space on a space of finite dimension.

7.1,2. Integration of periodic functions

To properly express the operations that we are going to make, we need a coherent
description of the theory of integration of periodic functions of period 1

Let be the vector space of measurable functions from E to C, which are of
period 1 (that is x  f(x + 1) - f(x) is a negligible function), and are integrable
on every compact subset of E. We note that, if / is in and if a is some red
number, then the expression

712 / )dx

does not depend on a, as we can immediately verify. The common value of tre
expressions (7.1.2) will be denoted by

7.13)

We equip with the semi-norm



71 TRIGONOMETRIC APPROXIMATION AND FOURIER SERIES 135

The kernel of this semi-norm is formed from functions which are negligible on
JJ It is a classical fact that the quotient Lj of £j by negligible functions is a
Banach space if we equip it with the norm

.14 \WANi= f\F()\dX.

Almost all of the time functions and their equivalence classes modulo negligible
functions are denoted identically. In the same way, the vector space Cj is the set
of measurable functions from R to C, which have period 1and which are square-
integrable on every compact subset of R. Its quotient by negligible functions is
a Hilbert space denoted by Lj]. It is normed by

715 \\fh = U \f ()\2dx]j
The corresponding scalar product is denoted by

if, §= I{x)
Note that it is sesquilinear since we are referring to complex Hilbert spaces.

7.1.3. Least-squares approximation for trigonometric
polynomials

We begin with an approximation theorem for which the proof is completely
parallel to that of Theorem 5.1.1, and which will therefore be given in brief.

Theorem 7.1.1. Let /GC|< be a periodic function of period 1L For any N in N,
there exists a unique trigonometric polynomial P € T/v, such that

716 [f- p\2dx~ 13
h h

Furthermore, if the fc-th Fourier coefficient of / is defined by

L7 f(k)= [f(x)e~2
then P is given explicitly by
18 P(2)= £ f(Kk)yedh

K

Furthermore, for any e Z,

L
19 1/wNii/iix- 0
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Proof. The proof follows by the application of Lemma 5.1.2. (|

Remark 7.1.2. The expression (==} defines a pre-Hilbertian complex scalar
product on @& , and we have only used the pre-Hilbertian structure in the pre-
ceding proof. However, for every function / E Lj, the Fourier coefficients of /
are defined by egn (7.1.7). In particular, if / is in Ljj, it is also in Lj, has Fourier
coefficients, and we can approximate / in the least-squares sense by a trigono-
metric polynomial of degree at most N. In this case, and without changing a
comma of the preceding proof, the trigonometric polynomial which minimizes
1/ —q Ib? for @ in Tiv is given by eqgns (7.1.7) and (7.1.8). We recognize this
polynomial P as the partial sum of the Fourier series of /. This partial sum is
given by

(7.1.10) SNf(x) =£
\K\"N

As for ordinary polynomials, we have a Bessel inequality:

Corollary 7.1.3. The Fourier coefficients of a function / E  satisfy the Bessel
inequality

Proof. The left-hand side of inequality (7.1.11) is the square of the norm of
the orthogonal projection of / and the right-hand side is the square of the norm
of /. Therefore the inequality is clear.

The Fourier coefficients of a periodic function are very often used in physics
and engineering. This is because physicists need expansions in Fourier series to
explain the vibrations of continuous media with simple geometric boundaries,
and therefore, every sort of phenomenon in acoustics, elasticity, and electromag-
netism, as well as non-vibratory phenomena such as the propagation of heat.

It was precisely to explain the heat equation that Joseph Fourier used the
series which has since borne his name. Section 18.4 presents some of his ideas
on heat. The original work of J. Fourier [31] is lacking in what we would today
call Figour 7in that he believed that his series converged without problem.

7.1.4. Density of trigonometric polynomials in the space of
continuous periodic functions

Just as ordinary polynomials are dense in C=(K) for the maximum norm on a
compact interval K, the trigonometric polynomials are dense in @ . The Weier
strass approximation theorem allows us to obtain this result, but we are ¢
to verify it by using convolution to construct a uniformly convergent sequent
of trigonometric approximations to a continuous periodic function /. We beg*lL
with the lemma:
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Lemma 7.1.4. We define the functions Qn by letting
Pn(X) = @+ cos@7n)In and Qn(X) = Pn (X) Pn () dx\J

Then, the Qn are trigonometric polynomials of degree n, they are positive or
zero, their integral is 1 and, furthermore, for every e £ ]0,1/2],

rl-e
7112 nI_|XmX> fe Qn)dx = 0.
Proof. It is clear that Pn and therefore Qn are positive functions. We can
write
N

Pn(x)= (I + _(e’%Z'X —IX
and it is clear that Pn is a trigonometric polynomial of degree at most n, of
period 1, and so, therefore, is Qn. Qn is also non-negative and has integral 1 by
construction. To prove egn (7.1.12), it is necessary to show that

lim f Pn&)dx/ f Pn()dx =0
e /

Je Jo

Since Pn is invariant under the transformation x H 1- X, we note that

12 fi-€
/  Pn(dx= Pn (X) dx.
Je 212

It is therefore equivalent to show that

risz / ri/a
7113) lim /7 Pn(dx / Pndx=0.
n>="< / /o

To do this, we need to bound the first term of eqn (7.1.13) from above and the
second term from below. Note that

max, Pn() » (L + cos (Zre)n .

€ M2
Moreover,
n/2 re2
/ Pn (x)dx” gix ~ - (1+cos(7Te))n.
-/o 70 n
W& see that
2
| w dx/ P, x)dx< 2 (. 1+cosf f )= (N
p-W X/ 70 c V&Xw? cg(s<(ne)(J e \cos(Ze/Z))(

S
i nceO<e” 1/2, we see that eqn (7.1.13) holds, which proves the lemma. [
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We can now state and prove the density theorem:

Theorem 7.1.5. The periodic trigonometric polynomials of period 1 are dense in
the space @ of continuous periodic functions of period 1 0

Proof. Let / be in (7. Since y i>»>f(x - y)Qn{y) is continuous and of period
1, the function

(7114 ()= h [f& YQn W%

is well defined for every x. We are going to show that, for every n, fnis a
trigonometric polynomial (and therefore, in particular, a continuous function).
Indeed, Qn is a trigonometric polynomial and also a linear combination of the
monomials t  e2inkt. It is sufficient to verify that

X ky fez2inkyf (x —y)dy
h

is a trigonometric polynomial. We make the change of variables y = x - tin the
integral

Jearki(x-y)dy= [

We obtain

[le2Myf(x-y)dy= [* eZ -~ f ©dt
Jo Ix-1
=0 egrdt _ €24
h h

Thus, we see that fn is in Tn. We can now estimate the difference between /
and /, :

Ifn ) /7 @)= I [ f £y Qdy)
\Jt [
1 cl/2 cl/2
=\ f(x-y)Qn(y)dy- f ) Qn@)dy
K “<1/2 1/2

,1/2

/ \[F{x-y)-f(x)1Qn (V)d\
172

[ M&-y)-f)NQn(y)dy

+ \f{x-y) - f
[J"\y\HI/Z ey) -1
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Let u be the modulus of continuity of / (see Lemma 5.3.1), and let a be a strictly
positive number. If we choose e > O such that u;(e) » a/2, then

fOO\QN(y)dy \]u(e)st w(e)n
We fix this e, and we note that

[ \f(x-y)- f(x)\Qn(y)dy’\Zmax\f(x)\[
FES|V2 J\W\A/2

Consequently, Lemma 7.1.4 allows us to choose an n such that this last expression
is less than a/2. Regrouping the terms, we obtain

17¢) -/n(H1 " a,

and we have shown the desired density result. O

7.15. Convergence in the mean square of trigonometric
approximation to continuous functions

The density result of Theorem 7.1.5 allows us to deduce the convergence in
the least-squares sense of the sequence of trigonometric approximations to a
continuous function of period 1

Theorem 7.1.6. For any continuous periodic function /, the partial Fourier sums
of/

115 SN(P)=£
\k\"N

converge to / in the least-squares sense as follows:
lim \f- Sn/I2dx = O
0=
Furthermore, we have Parseval § relation:

(7-116) /1/12dx = A/ (fe) | 2. 0
N)SS k

Proof. From Pythagoras theorem, eqn (56.1.9), with fs defined by eqn (7.1.14),
V¢ have

(/- SM /- SUD),| + (Swf - /n,Sn/ - [\)j = (/ - N T - /ot~

oo tends to zero as N tends to infinity, we see that ||/ —Sjyf H
F stozeroas N tends to infinity. Moreover, using egn (5.1.9) again we obtain

(/ ~ SNf, f - SvD#+ ( SNPt= (/, #,
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and, therefore,

lim £ |/»)]2= \imJSNf,S=(,/),
RN
From this we immediately deduce Parseval 3 relation. |

7.1,6. Asymptotic behaviour of Fourier coefficients

From Parseval § relation it follows that the Fourier coefficients f(k) of a periodic
continuous function / G Cj tend to zero as [ tends to infinity. This phenomenon
can be seen in the following, more general, case:

Lemma 7.1.7 (Riemann-Lebesgue). Let / be in Lj. Then,

lirm 7/ (K)=0.
\k\-+00
Proof. Suppose, first of all, that / isin ® . Then, / is also in Lj] and f(K) tends
to zero when k tends to infinity. Suppose now that / is in Lj. We identify it with
a function in L1{0,1) and apply the result on the density of continuous functions
on [01] in L™O, 1), see, for example, [28]. Therefore, there exists a sequence of
continuous functions on [0,1] denoted by gn such that \gn—f\i\ * 1/n. We can
replace the gn by the fn with compact support. If x is a function of R in the
interval [0,1], increasing, continuous, zero if x A 1, and equal to 1ifx * 2 we
note that
hm,n = mp(Mmx) ip (M (1 - X)) gn x) - gn (X

has support in [0,2/m]JU[l —2/m, 1], and is bounded on this interval by max \gn[
Consequently, we can choose m large enough so that \\jn —/imn|ji ~ 1/n. We
let fn = hmp for this choice of m, and we estimate f(k) by noting that

/()] =\ f(x)e-Z"krdx
wY
d/ (/W - fn X)) e~2Ankxdxl + If fn (X) e~2nkx dx
Ih 1 U#

M-/ 1i+ >,
giving us an e > O, and we fix n so that ||/ - /n]li » e/2. We see that, for
sufficiently large k, |/n(&)] can be made less than or equal to e/2.

Remark 7.1.8. The difficulty in the Riemann-Lebesgue lemma is conceptual:
deed, we can construct elements of Lj whose Fourier coefficients tend to Oa
infinity arbitrarily slowly. Besides, we can show that there exist many chois
of Fourier coefficients a* which decrease to O when YA tends to infinity, a"
which are the Fourier coefficients of no integrable function. We refer to Subs#
tions 7.3.3 and 7.3.4 for the construction of these counterexamples.



7.1 TRIGONOMETRIC APPROXIMATION AND FOURIER SERIES 141

The technique of the proof which we have just used is completely standard
and can be described in the following systematic fashion:

Theorem 7.1.9. Let E and F be Banach spaces on the field K (that is, normed
complete vector spaces), equipped with respective norms | =|E and || =¥ . Let
(An)nen be a sequence of linear mappings from E to F whose operator norm is
uniformly bounded, that is, there exists a number K such that

7117) [ A0 IIf » K\\xYe, Vx 5 Vné N
suppose that there exists a dense subset D of E such that
nlir)réo An(®#), WxGD,

exists. Then, there exists a unique continuous mapping B from E to F which
continues the mapping

D F

X i-* nIlr>n00 An (x).
Furthermore, B is linear from E to F and its operator norm is bounded above
by K. 0

Proof. We begin by showing that the sequence (An(y))n is a Cauchy sequence
for every y E E. For every x in D, we have

M2/ —"m2/|F ~ I-Ani/ << WMHE JAnX — 1F4*H m 3 —"m2/||F
A 2KAN\X - WE + \WAanx - AmXA\F.

Let e > O. Fix x such that K\\x —A\E ~ e/3. This is possible since D is dense
in E. We can then find an M such that

WMnx - AmX\ A Vn,m " M.

Consequently, the sequence (Any)n is a Cauchy sequence, and it converges to
a certain limit which we call By. Clearly, B is linear. Let us show that it is
continuous. The operator norm of B is bounded above as follows:

Yo v By - AnAF + AW A \\By - AnA\F + KA\WANE .
BYPosing to the limit when n tends to infinity, we have
(rU8) BADIF<*11yI].

Let C be another continuous extension ofxi-> limn An(xX) to E, and let x* be a
sequence of elements of D converging to y G E. Then,

ICy - BY\\F < ||[Cy - CxKW + \\Bxk - By\\F.

% Passing to the limit in ft, we see that C coincides with B. This proves the
gueness of the continuous extension. [
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Remark 7.1.10. Suppose that E and F are not Banach spaces but are complete
metric spaces, equipped with distances (le and dF, and that the An are mappings
which are uniformly equi-continuous, in the sense that there exists a modulus of
continuity u (see the definition in Subsection 5.3.1), such that

dF{An (y),An{y)) ~» u{dE (v,y)), VnGN VJ/,y9£E.

Then, the convergence of the Anon the dense subset of E implies the convergence
of the An on all of E and their limit B satisfies

dF{B(y).B(y"))"u>{dE (v.y")), Vy.,y'6E.

The proof of this fact is left to the reader.

We now see that Lemma 7.1.7 is a consequence of Theorem 7.1.9 provided
that, for the space E we take the space Lj, for the dense subset D we take the
space (@, for space F we take the space C2, and for the sequence An we take
the operator /7 i (/(n),/(—n)).

7.1.7. Convergence of trigonometric approximation to L *
functions

Just as we deduced the density of C= (& 6] in LI (a,b) and the density of G* in
Lj, we can deduce the density of C=([a, 6]) in L2(a,6) and the density of CJin
L2. We therefore have the following theorem:

Theorem 7.1.11 (Riesz-Fischer; Parseval). For every function / in Lj], the par-

tial Fourier sums Sw(/) of / converge to / in L2 as N tends to infinity. Fur-
thermore, we have Parseval 3 relation

(7.1.19)

with its polarized form

Conversely, giving the coefficients € C such that

N M 2< 00
Kz

allows the definition of the function / by the series

anginkx
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which converges in the quadratic mean towards a function / € if whose Fourier
coefficients satisfy

f(k) =

insummary, if f2¢) denotes the vector space of complex sequences in
Z which converge quadratically, the mapping

L\ > 122

is a bijective isometry. 0

Proof. We will apply the technique used in the proof of Theorem 7.1.9. Take
as spaces E and F the space Lj|, and as operator An the mapping Sn of the
partial sum. We deduce from Bessel  inequality (7.1.11) that

ISMV/]|3~ 1A

If the dense set D is ® , Theorem 7.1.6 shows that we are in the area of appli-
cability of Theorem 7.1.9, with

lim . SNE /]|2=0, V/¢ &=,
n—yoo

We therefore have the convergence of the partial Fourier sums Sn to / in L?.
Furthermore, as N tends to infinity,

\WSNAN= E /()] 7-> 112
\k\"N

We have Parseval § relation and we pass to the polarized form of this by noting
that

4(Y. =if+g,f+Qt+ (f-9,f-g)t+ (/+iff,/ + i+ (/- iff,/ - if)l =
Conversely, if we let
In x)= E
\KkKN
W note that, if M > N,

WiN-fMwI= B Thackx E M

MMK\> Noa~ra—ru

h . - .
e sequence of the is therefore a Cauchy sequence for the norm LY. Its limit
Is a certain function / e L% If we fix k £Z, we note that for N  [ft],
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As the mapping g i#*g(K) is continuous from Lj to C, we see, by passing to the
limit, that
f(k) = ak.

This gives us the converse, and the conclusion of the theorem is immediate. [

Now we show that a regularity hypothesis on / implies an estimate of the
decrease of the Fourier coefficients of / at infinity:

Lemma 7.1.12. Let / be a Cp function on R of period 1 Then, for every m ~p)
there exists a constant Cm such that

VM 0.
Proof. We note that, ifp A~ 1and k %0,
*y = [f(x)e~2inkxdx= f 1f(x)F"* dx
/() J Jo

f{x)e—2Mkx fl1f ()e~2nkx i
—2mk o Jo —2ink )

Consequently, since / is continuous and of period 1, the integrated term vanishes
and
/; @)
/) = ik

An immediate recurrence gives

/<m) ()
/() = (inkym =

and the constant Cm in the theorem can be taken equal to ||/, [li(2t) m. O

7.1.8. Uniform convergence of Fourier series
|

In the preceding section, we have seen that the partial Fourier sums of a square-
integrable function / converge in Lj| to f. In this section we give sufficient
conditions for the uniform convergence of a Fourier series, which is a lot more
precise than convergence in the quadratic mean.

Lemma 7.1.13. Let / be an element of Lj and suppose that
1T/ (fo)] < +=<=
feez

Then, the partial sums Sftf converge uniformly to a continuous function
which is equal to / almost everywhere.
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proof. We have

f(k)e2inkx
M™MK\>N M™MK\>N

which proves that (Sat/)at is a Cauchy sequence in @ . It is therefore convergent
in @ - We denote its limit by 5/, and it remains to show that this limit is
identical to / almost everywhere. We show that, in fact, / is in LjJ. Using
egqn (7.1-9), we obtain the following inequality:

|E V@Z E K\AN\K\AN

Consequently,
kEZI/V\/|a<nﬂ||EI/<<i—
e
It follows, from Theorem 7.1.11, that / is in L and that
ﬁi_r)n00 IV - Siv/]|2= 0.

Moreover,
ISNf - SA\\2”~ max\SNf (X) - ST (X)].
X £;K

Using the triangle inequality and passing to the limit as N —>00, it can be
deduced that f = Sf almost everywhere on E. —

The following is a useful corollary of this result:

Corollary 7.1.14=Let / £Lj. Then / vanishes almost everywhere if and only if
all of its Fourier coefficients are zero.

Proof. Iff vanishes almost everywhere, it is clear that all its Fourier coefficients
are zero. Conversely, if all the Fourier coefficients of / are zero, then we have
Ae case of Lemma 7.1.13: the series of Fourier coefficients of / is absolutely

convergent and, therefore, / is the uniform limit of its partial Fourier sums,
which are all zero. —

We present some examples of the application of Lemma 7.1.13. If / has the
Property

(u20> E (I +%/(M]|2< +oo0,
kEZ
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then the Fourier series of / converges uniformly to /. Indeed, in this case the
application of the Cauchy-Schwarz inequality gives

v1/2

£ iI'SimeE N
kKN \K\"N
\12/ n N2

/
(Ed”AI/wf) E tef =

which is bounded independently of N by virtue of the hypotheses on / and the
convergence of the series of the general term (1 + A2)-1.

We have an estimate of the type given in eqn (7.1.20) if a function / belongs
to Lj and is the primitive of a function f\ also belonging to L2 in the following
sense:

fO—F = fi(d \ Vi/Glsuchthaty> x

X

The reader may verify that, in this case,
~ (1 + AZ2))/@12= [N+ VU
kez

Here is another case of absolute convergence of the series of Fourier coeffi-
cients of a function / G Lj: suppose that / is the primitive of a function fi 6 Ij,
which is itself the primitive of a function € Lj in the following sense:

f@)-fx=f fi@®dt, Va, VyGl such that 7> a

<X

and
fiy)-/7i@=*1 @B Va, WE Rsuch thaty > x.
J X

The reader may verify that in this case, we have the estimate

(+A7r 2D /@M I/111+ V2L, ViceZ.

7.2. From convolution to pointwise convergence of
Fourier series
7.2.1. Convolution

The convolution has already been employed for the proof of Theorem s
Generally, if / and g belong to (7, the function y i=> f(x —y)g{y) is also in W
and we let

((h Y= /f ()ady.
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The convolution is commutative in @ . Indeed,

Jf_]f(x—y) 9 (y)dy =l f(x-y)g ¢)ay,
and by the change of variable t = x —y, this last expression becomes

[ f{g{x-t)dt= [f ®g(x -t) dt
| J

JIx-

The convolution is also associative in & , as we see by changing the order of the
integration in the following relations:

[(/*9) *n{ xFitij(x-y)g{y-z) h@dz

= o 1 [ [f Xx—dydz

—ru g(y- z)h(z)dz)/(*_ y)d
= [f*(g* ).

Finally, it is distributive with respect to addition. We verify that the vector
space C? is equipped with an algebraic structure by the convolution, and that
the norm Lj is compatible with the convolution on ® , that is,

L1/AMAIIIMIL, - v FEC?.

By the density of (7=, we see that we can extend the convolution to all of Lj. In
fact, the Fubini-Lebesgue theorem, proved in all integration courses, allows us
to state a more precise result:

Theorem 7.2.1. For any functions / and g in £j and almost every X, the function

f(x-y)a{y)
Isin £j, and the function / *g, which is defined almost everywhere by

tr20) *x)= f RQdy
Jt

Is m £J. Furthermore, we have the inequality

2 11/%pli ~ 1Al IMi-

7 convolution is commutative, associative, and distributive with respect
tO addition.



148 7. FOURIERS WORLD

The proof of this result is found, for example, in the book by P. Malliavin
and H. Airault [60, Chapter IlI] (a high level book) and in the book by J.
Dieudonne [24, Chapter XIVV] (the book gives results still more general than the
preceding one). In fact, all good treatments of integration give the elements
needed to prove this theorem, which is an exercise in the application of the
Fubini-Lebesgue theorem.

7.2.2. Regularization

Convolution allows us to regularize:
Theorem 7.2.2. Let / and g be inLj. If/isCm,/ *g is Cm, and

d k,t x d*7 A m.
Furthermore,
7.23) max A max 33*—((} lislli, Mc”™ m
If / and g are in L', then i almost everywhere equal to a f
to C*; we identify f *go this function and we have the inequalit
724 max |¢/*9) QI ~ INIZIME-

If / isin Lj, and g is in Lj, 7/ *g is in L. Furthermore, we have the inequality

(7.25) H/AMI22M1/11i N 2.

Proof. Let Xk be a sequence tending to x, and let / be a Cm periodic function
of period 1 It is clear that, as k tends to infinity, the sequence of functions

hk: V™ f (xk-y)
tends in Cm to the function
h:y f&—y).

It will therefore be a consequence of Lebesgue 3 theorem, in relation to tre
continuity and differentiability of integrals dependent on a parameter, that

X o f(x-y)a(y)dy

is Cm and that its derivatives have the given expression. As for the inequality
(7.2.3), this immediately follows since, if / is in @ ,

q Y9 O < mex{/| el 11
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Let / be in Lj. Then, for every sequence tending to x, the sequence of
functions

hk -v  f (k —y)
tends in Lj] to the function

h:yrf(x-y),
as k tends to infinity. Indeed, if we let f{xk - y), we can apply
1 E = F= L], and D = & . We then see that, if g is in 4],

(hk,g)t -1 (h,0\,

which proves the continuity of / * g -Inequality (7.2.4) comes |
Schwartz inequality:
I*oan 7 Tix- y\| o0l dy
N (I (a-y) | 2dY) = ni2-

Let / be in CP and g in L?. Let h be some element of L? and let
h(x) = h(—x).
The convolution of three factors f *g*h is well defined. From the first assertion

of the theorem, / *g is continuous, and therefore belongs to Zj|,and f *g *h is
also continuous. On the one hand,

(f ’;_Ig P =f {fF*o){y)h{-y)=

On the other hand,

V= gh* = [f(y){g* h) (-y) dy
and from the first two assertions of the theorem
| o] ~ H/llj max < * )| ~ HH |12 ,

Since JAIR = k. We have therefore obtained the following estimate, valid for
every hin L7

(U9) ¥t 16 INRINE-
deduce from inequality (7.2.6), by replacing by /7 * that

1750127 1Al ifflla-
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The linear mapping / f *g is a continuous mapping from @ equipped with
the norm Lj to Lj|. Therefore, there exists a unique analytic continuation of
this mapping to all Lj. We argue as in the proof of Theorem 7.1.9 to make this
continuation, and it satisfies inequality (7.2.5) by continuity. [

7.2.3. Constructive density results

Convolution allows us to prove many constructive density results:

Lemma 7.2.3. Let fn be a sequence of functions belonging to Lj, which have the
following properties:

.27 fn dx —1) VnfEN:

(7.28) I/nlli A Ve N
-

(7.29) lim / I/, (Qldx = O, Va > 0.

Then, for any g in Lj, fn*g tends to g in Lj. Ifg isin L], fn*g tends to g in
L1 Ifg is continuous, fn*g tends to g in @ .

Proof. This proof is obtained by repeated application of Theorem 7.1.9. We
begin with the last assertion: we prove essentially the same result as for Theo-
rem 7.1.5, except that this time the fn are not positive:

(fn*g) (x)-g(x) = /in(y)g(x-y)dy- /

Let 1j be the modulus of continuity of g. Then,

L (fn*gx)-» )1~ 2 (] MA @Hidyy max \gK)|
J / ua).

Given e > O, if we fix a such that Ku(a) ~ c¢/2 and take n sufficiently large,
so that i

2(\fN\(y)dyjmax\g(x)\"\»,

we see that Jfn*g —p|Joo tends to O and, therefore, fn*g tends to g.

Now, if g is in Lj, we let, with the notation of Theorem 7.1.9, E = F =W
Ang = fn*g, and the dense subset D is @ . Theorem 7.2.1 allows us to confirm
that
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and we can conclude the required result.

If g is in ], we take E = F = Lj], An and D as above, and Theorem 7.2.2
provides the estimate

Then, again, we can apply Theorem 7.1.9. (.

Lemma 7.2.3 allows us to see that we can construct approximations to func-
tions which are continuous, integrable, and square-integrable using a sequence
of C==functions. The approximation converges, respectively, uniformly, in the
mean, and in the quadratic mean.

7.24. Convolution and Fourier series

For integrable / and p, we easily calculate the Fourier coefficients of f *g:
Lemma 7.2.4=Let / and g be members of Lj. Then,
7} (k) = f(k)g(k).
Proof. Define a function e* by
ek () = eaink

This function is C=and of period 1 Then, if g belongs to

© ek)(X)=[g( i y) ekx y)hdy =[g ( e-2n
=g ®ek X
From the associativity of the convolution,
fxg{k) = (f*g*ek O =/~ ek)] @

= [/*(f()e"10)
=9(K) (f*ekjo)
=)/

ax*we have the result claimed. —

The difficulty of the summation of Fourier series can be understood by intro-
WinGa kernel which is defined as follows: If / belongs to LI, we have

SNf{x)= ([f(y)e-2*kydy)e2inkx= N edk(x-y) dy.
IK\"N |*|<AT
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Let
(7.2.10) eZafcs.

We thus have
SW/ =/ *Hat.

The kernel Dn is the Dirichlet kernel, and it may be expressed as

(7.211) Dn (O) = 2v+ 1, M, If(z. 1
sm(7nr)

as can be shown by explicit calculation. The Dirichlet kernel has the property

(7.2.7) but neither the property (7.2.8) nor the property (7.2.9). This is why the

summation of Fourier series is a difficult problem.

7.25. Convergence of Fourier series as a local phenomenon

We do, however, have some results on pointwise convergence on the condition
of having some precise information. In particular, if the function is piecewise
continuously differentiable (in a sense which we will clarify), the partial suns
5yw/(x) tend towards the half-sum of the values to the right and left of the

function.
First of all, we show that the convergence of a Fourier series is a local phe-

nomenon.
Lemma 7.25. Let g belong to Lj. Suppose that g vanishes almost everywhere
in an interval Ja, f C M Then the partial Fourier sums of g uniformly converge
to zero on every compact sub-interval of Ja, 0.

Proof. Without loss of generality, we can suppose that g vanishes almost ev-
erywhere on an interval of length strictly less than 1 If not, we can already
conclude the required result due to Corollary 7.1.14. We can make a translation
to move us to the interval }—a,a[, with |Ja| < 1/2. We have

SNg {9 = g{x- y)DNy)dy,
that is,

Sn9K) = - 5
(7212

We can limit ourselves to studying the convergence of the first of the two integra-
in the second term of eqn (7.2.12), the other integral being analogous. We note
that the function

- N\ H _ - N
3 i Siﬂyez dy+ \jg{x y)sinTry4M v

YA By = 9(x -y) Sier:";’ry
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is integrable, provided that sinivy is bounded below on the complement of the
set where y H g(x —Y) vanishes. If we choose x such that pq ~ a —a, then
Isin7B4] ~ sin7ra on this set. It therefore follows, from the Riemann-Lebesgue
lemma, that Sivg{x) tends to O on every compact set included in ]—a,a[.

We have to show that this convergence is uniform. To do this, we will approx-
imate g by a sequence of C I functions, as follows: Let / G Cq be a continuously
differentiable function on M with support included in [—1,1] and integral 1. For
n” 2, we define a function fn GCj by its restriction to the interval —1/2,1/2]
which must be equal tox H nf(nx). It is clear that the sequence fn has the
properties (7.2.7)-(7.2.9). Lemma 7.2.3 implies that the sequence gn = fn *g
tends to g in Lj, and Theorem 7.2.2 says that gn is C1. Furthermore, gn is
identically zero on |2 + a, a —a], provided that n * 1/a.

We let

_ elny
K V) =gn(x-y) sin &y ~
and we suppose, from now on, that a < a/6 is fixed and that n is greater than
1/a.

Let h G C\ be a function which coincides with eIAy sin ny if W\ is included

between 2a and 1/2, and which is zero if W~ a. If WX\~ a —3a then,

K &y)=gn(x-y)h ¥),

since if WM\~ a - 3a and W\ ” 2a, then gn(x —y) vanishes.
We can now bound from above the first integral in (7.2.12) for M\ * a —3a
by decomposing it as

H9~ B&-y)h O e2,nNydy+ *  gn(x-y)h )

The first integral is bounded by \\g—gn|]i/sin(27ra), and we use Lemma 7.1.12
for the second:

y o Ngentdy) o,

which is bounded independently of x by
(7213 A max|/n|max]|ft, | +max| /| max]|fe|*

Fix an e > 0 and choose n such that j<«—<n1k/sin(27ra) ~ e/2. We can then
C 00« N to be large enough so that expression (7.2.13) is less than e/2. [

=26 Pointwise convergence of partial Fourier sums of
absolutely continuous functions

which6 nSV*="n” to s”ow that the partial Fourier sums of an integrable function,
F Is dself the integral of an integrable function, converge pointwise. To this
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end, we introduce a function Ar defined by

J*dn (yd ifx" 0
An ) =
- f<Dn {y)d ifx <O
The properties of Ajv are summarized by the following lemma:

Lemma 7.2.6. The function is odd and uniformly bounded on the interval
[-1/2,1/2] independently of N. Furthermore, we have the following relations:

(7.2.14) * (D=1, 1

(7.2.15) I\Ili_[pocAn x) = ’é Vx> O,

s7.2.16) lim AW—>SO'\2N ﬂf Jb hy dj>4= ~ 0.589489.

Proof. Aiv is odd, since it is the primitive of the even function DN which
vanishes at O. If we use the definition of Dw given in egn (7.2.10), we see that

sin @iy Y2 4

k., 21

which proves the relation (7.2.14).
Let a and b be two numbers between I/(2iV -f 1) and 1/2 with a < b. We
integrate by parts to estimate the following integral:

cos [N fD)Ay] 16  fbcos [(2N -h 1) Tiy] cos (ty)
CAT+ DTrsin (@A) p  Ja (2N + Dsin2(ny)
Our hypothesis on a and b implies that (2N + 1)7rsin(7ri/) is bounded below on

[a, B] independently of N by a certain k. Consequently, the integrated term is
bounded independently of N:

cos [N+ Dny] b

(7217 (2N + 1) 7rsin oxy) a

Moreover, by the concavity of the sine over [0,7/2], there exists a constant 7
such that, for every y between O and 1/2,

sin (ny) ™ jy.
We bound the integral from above as follows:
fbcos [(2Z7V-1-1) ny] cos () ) 1 [bdy
Ja &N -f Dsin2 @xy) % 722 N#aDy2

(7.2.18)

A 72(21 NLI)' %
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Therefore, there exists a constant C such that, for every N, and for every a, b
such that I/(2iV FD) "~ a™ b™ 1/2,

(7.2.19)

Furthermore, if a is fixed as strictly positive, the upper bounds, given in egns
(7.2.17) and (7.2.18), tend to O as AT tends to infinity. This proves eqgn (7.2.15).

We make the change of variables t = (2N + 1)y to estimate the integral
appearing in egn (7.2.16):

ni/(2N+i) Sm -f Dny] 11 sin (itt)
Jo sin(7ry) VvV JO (2N Dsin (nt/ 2N + 1))
As N tends to infinity, this last integral tends to

7 =
Jo nt
by virtue of Lebesgue & theorem, and a numerical calculation gives the value in
egn (7.2.16). To see that Aat is bounded on [-1/2,1/2], it suffices to show that
it is bounded on [0,1/2]. If x  I/(2iV + 1), we bound An(x) ~ O from above by
AM(I/(2N + 1)), which is bounded, since A/v increases over [O, I/(2iV + D). If
x™ I/(2N + 1), we bound |Aat#)] from above by A at(1/(2N 1) + |JAV() ~
AN/ (2iV-F D)], which is bounded as a result of egns (7.2.16) and (7.2.19). [

We can now show the following result:

Lemma 7.27. Let / GLj, and suppose that there exists a function f\ G Lj such
that, for every x and y, where y > x,

fy)~f=[ fi @©dt

In this case, the function / is said to be absolutely continuous. Then, for any x,
$NF(X) tends to f(x).

Proof. A function / which satisfies the conditions of the lemma is necessarily
continuous. Since we can translate the variable x, it suffices to show that Sj\f{0)
lends to /(0) as N tends to infinity. We have

SNO)= J/_]/2 f(
m

ing account of Lemma 7.2.6, we integrate by parts, justifying it by a density
| Sunient, and we get

/U2 + /(-1/72) A2

SNFf{0) = A J/ yzfi ®) Aat (X) dx.
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Lemma 7.2.6 allows us to see that, due to Lebesgue ¥ theorem,

/ ©) —/ (—1/2)
2

u-. r AWANr w * - "<w,-"w>

The conclusion of the lemma is then clear. —

7.2.7. Pointwise convergence of partial Fourier sums of
piecewise absolutely continuous functions

To treat the case of functions having a finite number of discontinuities, we in-
troduce a sawtooth function which we define on a period by

—x —(/2) ifare [-1/2,0}

s(t) =
-X + (1/2) ifae p,1/2]

We immediately calculate the Fourier coefficients of s:

f1/ 2ink) if 7 o;

s(k) =
ifk=o.
The partial Fourier sums of s are given by
] sin(27rfcx)

x) =
k=1

It is obvious that Sns(0) tends to O as N tends to infinity. We can also note
that
(7.2.20) Atv X) = Sns (X) + x.

Theorem 7.2.8 (Dirichlet). Let g be a function of period 1, which has disconti-
nuities at the points x*, 1~ j ~ m (and at all their translations xj + k, kK £2)-
Suppose that there exists a function g\ such that, for every x and y, x < y f?
which Jx,y[ is included in an interval which does not contain a point of discon-

tinuity, we then have

9(y)~9 ®dt

Then, for any x

NIReSNG ) =5 X+ o)+ (x- o)l
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proof. Without loss of generality, we can restrict ourselves to the case of a
single discontinuity, due to Lemma 7.25. We can also suppose, in return for a
translation, that xX\ = O. The function

h= g- +0-9- 0]

is continuous, as we can verify by passing to the limit as x tends to O. Its value
at Ois

M=2fak+ )+
Wk see that Isi a primitive of hi(y) =+"(0+ 0 + #(0 - 0))y/2
F1/2,1/2]. We can therefore apply Lemma 7.2.7, which implies that Snh(0)
tends to h(0). As Sns(0) tends to O, we can conclude the result. I

7.28. Gibbs phenomenon

The convergence of the Fourier series of a discontinuous function, such as in
the statement of Theorem 7.2.8, is not uniform, and this is known as the Gibbs

[ Ue Approximation of a function by a partial Fourier sum for N = 4,8,16.
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phenomenon. A graphical illustration of this phenomenon may be found in
Figures 7.1 and 7.2, where the partial sums of / are represented for N = 2Kk)
*=2,...,7.

Theorem 7.2.9. Under the hypotheses of Lemma 7.2.7, as N tends to infinity we
have, for every j,

SNg(xj + 2yv~l) ~9 + 2F+1) (777 ~( ~ N,
Sn9 {K2ivTl) ~9(*""W Ti) ~(7 O +0) -9 ~ 0=
Here, | is defined by egn (7.2.16). 0

Proof. Again, using the notation of Theorem 7.2.8, we get back to the case of

32,64,128.
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single discontinuity situated at O, and we note that

Lebesgue § theorem shows us that S;vh(l/(2iV + 1)) tends to /i(0) as N tends to
infinity. We can easily analyse the behaviour of Sns(1/(2N + 1)) as N tends to
infinity, due to Lemma 7.2.7 and eqn (7.2.16):

I\llm Sns (ZN ‘Hl/l

We then have
Nim*SNg "27V+t) *” + + *
This allows us to conclude the required result. —

7.3. Exercises from Chapter 7

731 Elementary exercises on Fourier series

We call an expression

5 \ s J2inkx
~ 27, ake -
V4

where the are complex numbers, a formal Fourier series. The word formal
signifies that we do not ask any questions about convergence. In particular, two
formal series are equal if and only if their coefficients of index k are equal for
any k. We equip the vector space of formal Fourier series with its natural vector

space structure. The zero element of this space will be the formal series whose
coefficients are all zero.

We define the conjugate formal series by
S~ —a*sgn K eZinkx,
kez
where the function sgn is defined by
1 ifk>0
sgn(fc) = <-1 ifk<
0 ® =°
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Exercise 7.3.1 Show that we can write

A 00 . . .
S ~ N (ajcos (ZAjx) -fejsin (@rjx)).

i=

Calculate the A, and the s as functions of the a&

Exercise 7.3.2. Let / be in Lj, = /(fc). Show that if / has real values, Aj
and B are real for all j.
Exercise 7.3.3. Let / be in Lj, = /(fc). Show that if / is even (respectively,

odd) then, for every j , Bj (respectively, Aj) is zero.
Exercise 7.3*. Show that if

SN E Ajcos(@njx),
*:O
then
00
5~ 7~ Ajsin (2njx).
k=0

Exercise 7.3.5. Let / be in LJ and let P G Tat be the trigonometric polynomial

p(*)= bk*2[kox-
\KKN

Calculate the Fourier coefficients of the product fP.

Exercise 7.3.6. Let / be in Lj, and let m be an integer which is strictly greater
than 1 Let

fm(=/N
Verify that fm is in LJ, and calculate the Fourier coefficients of fm as functions
of the Fourier coefficients of f.

7.3.2. Fejer, La Vallee Poussin, and Poisson kernels

We define a function Kn (x), called a Fejer kernel of order AT, by

(73D * (*)= £ 2\nkx
kKN
Exercise 7.3.7. Show that, if x N Z,

1 sin[@hDaq™?
KNLCO = AT+ 1 sin (nx)

and that /0v(0) = N -f L
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Exercise 7.3.8. Show that K s has the following two properties:

=1
L
1a

lim L Kn ()dx

N-+oc

0 Va>OQ

Exercise 7.3.9. For every / in Lj, we define the Fejer sum of / by

n2\nkx
(>*)/(*)- £ ("-FTT)/<x)*
KN

Show that a’v is the arithmetic mean of the partial Fourier sums Skf for
(K k™ N.

Exercise 7.3.10. Show that, for every / in Lj, tends to / in Lj. Show that
if, in addition, / is in C <then tends to / in @ .

Exercise 7.3.11. We define the following kernels:

() La Vallee Poussin kernel
Vv (X)) = 2K2at+i ) —Kn x), N e N

(i) Poisson kernel

00
P (xr) =1+ 222 r*cos (tAX), 0~ r< 1
k=1

Extend Exercise 7.3.10 to the kernel Vjy.
Exercise 7.3.12. Show that, for r < 1, we have

1-r2

F(x,r) =
. 1- 2rcos (2nx) 4-r2

Exercise 7.3.13. For every / in Lj, calculate /7 *P(-,r) as a function of the
Fourier coefficients of /. We study the convergence of / *P (=) to / as r tends
1from below, where / *P (=r) is defined by

(FP(-,r)) ()= h[ f{x-y)P{y,r)dy.

What can we say when / isin L?, or incp

E)qrcise 7.3.1\. Verify Corollary 7.1.14 by convolution: use a sequence of square-

w,eM @ e Unctions fn having the properties (7.2.7) to (7.2.9), and give a proof
Ic is independent of Lemma 7.1.13.
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7.3.3. There exists an integrable function whose Fourier
coefficients decrease arbitrarily slowly to O

Let a* be a sequence of positive or zero numbers such that a* = a_* tends to O
as k tends to infinity. Furthermore, suppose that

a*-l + a*+i - 2a* ~0, WMc> 0.

Exercise 7.3.15. Show that a* —a*+i decreases for A> O.

Exercise 7.3.16. Show that ( k+ a* —Aa, decreases forA> O
deduce that
lim ka* -a*+i) -

Kk —HX>

noting that, if this limit is strictly positive, ak will be bounded below by the sum
of a harmonic series. Show that

N
'\Em 57 k (ak-i + ak+1 - 2a*) = aO.
+0C
=1

Exercise 7.3.17. With Kk as the Fejer kernel of order k (see eqn (7.3.1)), we let

00

/(*) =% > @k + ai- 2a¥) i (X)

*:i

Show that this series converges in Lj and that its limit, denoted by /, is positive
or zero.
Exercise 7.3.18. Calculate the Fourier coefficients of /.

Exercise 7.3.19. From this, deduce that the Fourier coefficients of an integrable
function can tend to O arbitrarily slowly.

7.3.4. The existence of sequences of numbers a*, tending to O
as [ic] tends to infinity which are not the Fourier
coefficients of any integrable function

Exercise 7.3.20. Let / be in Lj. Show that, if /(O) = O, then

Fe =] T ody

isin @ .
Exercise 7.3.21. Furthermore, we suppose that, for every A,

/(%1 = -/(-1*1) >o.
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convergence of (Km* P to F(O) (see Exercise 7.3.10), sl

EI/W < +00-
kO K

Exercise 7.3.22. Show that there exist sequences a* tending to O such that a* is
not the fc-th Fourier coefficient of a function / G LJ.

Exercise 7.3.23. Show that we can choose / € Lj in a way that its conjugate
Fourier series is not the Fourier series of any integrable function.

7.35. Discrete least-squares approximation by trigonometric
polynomials

Exercise 7.3.24. Let TVbe an integer which is greater than or equal to 1, and let
xt = n£/N for £varying from 1to Z7V. Calculate

2N
N e ikXt.
1=1

Exercise 7.3.25. We define a bilinear form of the space C([O, 2u]) = F of contin-
uous real-valued periodic functions of period 2#, by

- 2N
(f.0) =
Vi=1
Show that the functions
— , sinx, CosX, sin —Dx, cos(7V —I)x
v awv—In ( )

are relatively orthonormal to this bilinear form.
Exercise 7.3.26. We define a semi-norm of F by

I/l = VUJ)-

N Vi be the subspace of F generated by 1/\/2, sinx, cosX,..., sin(7V —I)x,
as(AT - Dx. For / G F, we say that the function ) E Vjv is the discrete
*-squares trigonometric polynomial approximation of / if

1/—4>\=t'r)Tel|/|rslr |/ - \tb=
Show

| nat, f<F every / in F, there exists a unique ) which is the discrete least-
I ares trigonometric approximation.
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Exercise 7.3.27. Write this @) as
™AL
0 =1 N (dkcos kx + bksin kx).
k=1
Calculate the aj and bj as functions of f .
Exercise 7.3.28. Suppose that / has a uniformly convergent Fourier series:

00

k=1

Calculate the aj and bj as functions of aj and /3.

Exercise 7.3.29. We replace the Fourier coefficients aj and /3 by their approxi-
mations using the left rectangle formula 8.1.3 with equidistant points. Show that
we can choose the discretization step in such a way that the approximations thus
obtained agree with the aj and bj.
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Quadrature

This chapter of the book is dedicated to numerical integration, and it is in prepa-
ration for the last chapter of the book, which will be on differential equations.
The word quadrature has become celebrated by the problem of the quadrature
of a circle. This involves a geometric construction with a ruler and compass
to find a square whose area is equal to that of a given circle. That this is im-
possible is the consequence of two results of the nineteenth century. In 1837,
Wantzel showed that the numbers which can be constructed by ruler and com-
pass are algebraic. More precisely, they are obtained by solving a finite sequence
of quadratic equations with integer coefficients. In 1882, Lindemann showed that
the number n is transcendental, which means that it is not the solution of any
polynomial equation with integer coefficients. The reader may wonder: are there
many transcendental numbers? It is not difficult to see that the set of algebraic
numbers is denumerable: there are as many algebraic numbers as there are ra-
tional numbers and integers; therefore, almost all numbers are transcendental.
However, it is often extremely difficult to show that a given specific number is
transcendental.

This does not prevent anyone from doing quadratures, that is, from calcu-
lating areas or integrals. We manipulate integrals, whether we have an explicit
expression for them or not, or whether this expression makes use of rational or
irrational numbers. However, the effective numerical calculation of integrals, or
the numerical approximation of the solutions of differential systems, becomes an
interesting problem because most functions do not have a primitive which may
be expressed in terms of elementary functions, and most differential systems do
n<t have such solutions.

We therefore seek numerical methods which will allow us to approximate the

jects which we cannot, generally, calculate explicitly.
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8.1. Numerical integration

Numerically solving a differential equation amounts to finding a numerical
approximation of the following problem:

dji
@11 — ® %00) = uo,
where / is a given function from [ti,<]x K*”to K", to belongs to the interval
[t\,£], and uo is given in W1 Before solving this general problem under adequate
conditions on /, we consider the simpler differential equation

— (® = /(t), u(t0)= <q,

where / is an integrable scalar function. The solution is given by
B.1.2 u@® = o +
It will be useful to see how to approximate weighted integrals of the form
w (X)/ x)dx,

where w is an integrable function which is strictly positive almost everywhere,
as in the study of the polynomial least-squares approximation (see Chapter 5.
The function w is called the weight.

An approximation formula for the integral of a function / on an interval is
called a numerical integration formula, or a quadrature formula.

Common sense says that we have little chance of succeeding in numerically
approximating egn (8.1.1) if we do not know how to numerically approximate
egn (8.1.2). Conversely, if we know how to numerically approximate eqn 812
this will aid us, as we will see later, in constructing schemes to numerically
approximate eqn (8.1.1).

One last common sense remark: if / is only integrable in egn (8.1.2) then tre
problem is pathological from the numerical point of view as we do not know how
to discretize functions which are defined almost everywhere without regularizing
them. If we have good reasons for dealing with functions which are only int’
grable, we are then led to either consider them as linear forms on a space of test
functions (as in the measure theory of Radon, or, more generally, the theory @
distributions) or to work with their local means. In any case, we are departing
from the scope of this book.

8.1.1. Numerical integration for dummies 1

In all that follows, we assume that the functions which we are integrating rJ
merically are continuous on a compact interval [a €. Anyone who has stu
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elementary integration theory (integration of continuous functions is sufficient)
has done numerical integration, just as M. Jourdain used to write prose. Indeed,
if / is continuous on the compact interval [a, b] and if we have some points

A—Xgr X\~ o~ A —b)

the left rectangle formula is written
n—1

@13 _ ) = / i) Xi+! ““xi) =
J=0
Here we have a Riemann sum of /, and it is shown in every integration course
that, when maxj (xj+\ —Xj) tends to O, the sequence of numbers | h(f) converges
to a number which is the integral of / between a and b. Geometrically, we
replace the function / by a staircase function having values f(xj) on the interval
[xj,Xj+1], and we trivially integrate the staircase function, see Figure 8.1. The
error made is shown by the shaded region.
In the same way, the right rectangle formula is given by

n—L
819 I = AT (x+1)( - Xj).
j=o0

This is equivalent to replacing / by a staircase function which has values /(xJ+i)
on the interval [xj,xj+i\. The integration is as easy as the preceding one and the
convergence result is the same. The error made is shown by the shaded region
in Figure 8.2. Observe that the sign has to be taken into account.

We can also use the midpoint formula:

(=>=5) cC )= £/ (*i+1 -

Figure 8.2: Right rectangle formula.
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In this case we take the value of the function on [xj,Xj+1] to be the value of /
in the middle of the interval. Referring to Figure 8.3 below, we see that if / is
sufficiently regular then there is some cancellation of the signs of the error, so
the total error made should be less for the midpoint formula than for the left
and right rectangle formulae. The convergence result for the Riemann sums can
again be applied.

The trapezium formula is given by

a9 /,<</)=J_:£0 J

This time we have replaced / by a piecewise linear function, which coincides
with / at the points Xj, O™ j ™ n. As the replacement is more accurate, we
hope that the error will be smaller with trapeziums than with rectangles (left
or right), although the modification only affects the first and last terms of the
quadrature formula. Figure 8.4 shows the greater accuracy, though this higher
precision is not true on each interval.

Finally, in a first year course we generally meet Simpson 3 rule given by

81N N, (N=E£ /fe) +4/(fe +»w)/2>+/(>w) (lj+i _ . |
j=0

We see that this is a linear combination of the midpoint formula and the trapez-
ium formula, and we will show that it is more accurate than either of these two
formulae. Geometrically, it consists of integrating a function which interpolates
/ with a second degree polynomial in each interval [xj,Xj+1], with knots at the
two end-points and the middle of the interval. Formulae (8.1.3) to (8.1.7) are
called composite formulae since they are formed from the juxtaposition on a
given interval of formulae on small intervals. These formulae are obtained by a
change of variable from a simple formula with weight 1

Figure 8.3: Midpoint formula. Figure 8.4: Trapezium formula
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8.2. The analysis of quadrature formulae

In numerical integration, we will pose the following questions:

@ How do we construct quadrature formulae? We have two classes of formu-
lae, namely

simple formulae;
composite formulae.

(i) What is the order of a formula? How do we estimate the quadrature error
in a simple formula?

(i) How do we estimate the quadrature error in a composite formula?

@v) Do the geometric symmetries, such as periodicity, provide an advantage
with regard to an error compensation process?

() Can we find simple formulae of maximal order? More generally, can we
tailor integration formulae to given requirements?

In general, a quadrature formula is an expression of the form

n

@821
i=0

where the points xj are n -1-1 pairwise distinct points in the interval [a, g and
the scalars A are chosen in such a way that the quadrature error

/b n
f Qw (Y N e))

i=0

k not too large in a sense which we will clarify later. We will see later why it
Is mteresting to use a weight w, which we suppose to be integrable and strictly
positive almost everywhere on [a, 6],

8.2.1. Order of a quadrature formula

TO t§sgin with, we look for which classes of functions the rectangle, midpoint,
and Simpson formulae are exact. The right and left formulae are exact for con-
forT “Unc*ons* The midpoint formula is exact for constant functions, but also
inear functions, as shown in Figure 8.5 which demonstrates the error can-

p- allons- The trapezium formula is exact for linear functions, by construction.
y, the geometric interpretation of Simpson 3 rule shows that it is exact for

tm Xmia’s <fup to second order. We therefore have the following definition of
Ofder of a formula:
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Figure 85: The midpoint formula is exact on affine functions: the two shaded
areas are equal.

Definition 8.2.1. We say that the quadrature formula (8.2.1) is of order m if m
is the largest integer such that the formula is exact on Pm, the vector space of
polynomials of degree at most m.

By this definition, the right and left rectangle formulae are of order O, the
trapezium and midpoint formulae are of order 1 (check this) and Simpson 3 rule
is of order at least 2 (and we shall see, in fact, that it is of order 3).

Given the pairwise distinct knots xj, 0" j ~ n, we seek the relations which
must be satisfied by the scalars A so that formula (8.2.1) is of order m. For
each power xk, 0~ k”~ m, we must have the following equalities:

n
822 NA X =/ xkw(x)dx, Ve G{O,... ,m}.
j—o Ja

System (8.2.2) is a system of m + 1equations for n + 1 unknowns. To ensure
a solution, we need at least as many unknowns as equations. Therefore, we
suppose that m ~ n. We look for its rank: the sub-matrix formed from the first
ra+ 1columns is the matrix

/1 1 ... 1\
*0 *1 === xm

W Xy ——

We recognize this to be the matrix of the system (4.1.1) for Lagrange interpo-
lation: it is the Vandermonde matrix, which is invertible. Consequently, system
(8.22) is of rank m + 1 In other words, the dimension of the image of the natrix
of system (8.2.2) is m + 1, which is equal to the number of rows of the system
or, again, the dimension of the image space. Irrespective of the right-hand side
system (8.2.2) has a solution. In fact, it has an affine space of solutions, of ~
mension n —m. If we fix n —m scalars \j, we can find the remaining w +

scalars by solving a system of the type occurring in interpolation. Indeed, ifve
suppose that the Xj are given for j ~ m + 1, we use the basis of Pm formed &1l

X Z
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the functions (&, defined in egn (4.1.1). As the quadrature formula is exact on
polynomials of degree at most m, it is, in particular, exact on the @p:

b

Y =/ () tp (Mdx-
j=o Ja

>

Hence, we obtain the value of \p for 0" p » m:

/ w ) @p 9 dx - "i<Pp(xj)-
j=m+1

A particularly important case is that in which m —n. In this case the system
(B2.2) has a unique solution, which is

@23 A _fa b@& () w () dx.

Formula (8.2.1) can then be written as
In(f) = Y>( f j:o@\% ) O

/Y f( xXPOw (x)dx

rb
= P ) w (X dx,
Ja
where P is the Lagrange interpolation polynomial of / at the points xj. In this
case the quadrature formula can be interpreted as follows: We interpolate / at
the knots (xj)O0"j~n with a polynomial P G Pn, and we replace the integral
</ by the integral of P. Thus, we have obtained a quadrature formula by
interpolation. Hence, we are assured that, for every choice of n + 1 knots, there
exists at least one quadrature formula of order n, namely the quadrature by
interpolation formula.

J=o

822. On the practical interest of weighted formulae

Wk consider the weight I/y/x on the interval [0,1] and we consider an interpo-
lation formula with the knots 0 and 1 We have

X0 X\ ) =2—55 =x3—x and o2 ) = —

Consequently,

I | N\ (h'[/\IA:kFZy/X— |X3/2n = 3= Ai-
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Furthermore,
11
flhp.dx= r~d *= 232
Jo vx Jo Jo
Therefore, we have obtained the integration formula
Al/Md 4/(0)+ 2/(1).
Jo Vx 3 3

We test this formula by taking /(x) = xa for a > 1/2 and compare it with the
trapezium formula: the value obtained by the trapezium formula is 1/2 and the
value obtained by our formula is 2/3. The exact value of the integral is 2/(1+2a).
We see that the error made by the weighted formula is less in absolute value than
the error made by the trapezium formula if

-*->1 (1 +1 1
1-f2a 2 \2 3

or

The error made by the weighted formula is therefore less than the error made
by the trapezium formula if /2 a ~ 14/17. If —1/2 < a ™ 1/2, then the
trapezium formula gives us nothing. Therefore, the weighted formula allows ws
to integrate singularities better, when they are integrable.

8.2.3. Examples of simple formulae
The simple left and right rectangle formulae on [0,1] are given by
/{(/) =/(0) and N=7D,

respectively. These are interpolation formulae. The simple midpoint formula is

given by
= Cz H

This is also an interpolation formula, as is the simple trapezium formula giwll
by

Finally, the simple Simpson ¥ rule is given on [0,1] by

/©+ 4/ @W2)+ /@)
w ) = 6
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We will now calculate its order. It is clear that /.f(0) = 1 We have

«<M =544 +D=i~
and finally,

consequently, Simpson ¥ rule is of exactly order 3 and, in particular, it is an
interpolation formula.

A notable category of quadrature by interpolation formulae is that of the
Newton-Cotes formulae. These are the formulae which are obtained with equidis-
tant knots and weight 1 The closed formulae for n + 1 points are obtained by
including the end-points, and therefore taking as knots

The open formulae for n points are obtained by excluding the end-points,
and therefore taking as knots

Xj=a+- --——, 1

The simple trapezium formula is a closed 2-point Newton-Cotes formula.
The simple Simpson 3 rule is a closed 3-point Newton-Cotes formula. The simple
midpoint formula is an open 1-point Newton-Cotes formula. The Newton-Cotes
formulae are tabulated in numerous works. We find the most common ones
m [19,51]. Their coefficients are calculated using eqn (8.2.3). We can easily
obtain them by using symbolic manipulation software.

824. Composite formulae

Suppose that we have a quadrature formula with weight 1on the interval [0,1]:

i=0

a transformation xto a + x(b —a) we can deduce from this
formu?on any interval fa,b\ Indeed, if g is a continuous function on [a, €], then

9{a fx(—a)) is a continuous function on [0,1], and since

[ 9dy = (b-a)[ g(a +x{b- &) dx,
Jqg Jo
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we have the quadrature formula

/b m
g ( W —

i=0

A composite formula on an interval [a § is constructed as follows: We begin
with a simple formula In on the interval [0,1]. We then subdivide the interval
[a, B] by defining a sequence of points

a=a0< a\< === dp = b

On each of these intervals [aj,aj+1] we perform a quadrature of the type given
in egn (8.2.4) to obtain the formula

p—1 n
In,p (/) — A~ A(&i+l —ai) A AAjF Xj @ tH —ai)) =
i=0 j—0

It goes without saying that the order of the composite formula /rp is at least
equal to the order of the simple formula In from which it came.

8.3. The Peano kernel and error estimates
8.3.1. Definition of the Peano kernel

Just as we introduced the Dirichlet kernel in Subsection 7.2.4 to represent the
action of the partial sum operator of a Fourier series, here we introduce a kermel,
called the Peano kernel, which describes the quadrature error.

Theorem 8.3.1. Let a quadrature formula of order m on [a, b] be denoted by

n

(83.0) In() = Xjf (Xj).

3=0
Let t+ = max(£, 0) and define t+ = 1ift > Oand t+ = Oif t » O. Definea
function G by

G=L[ x=-N™Mw@dx-" \j (-y)m™.

Ja j=0

Then, for any / in Cnm+1 on [a €], we have

T/Mw®dy - In(¢) =—3 b/<m+l) (/) () dy.
Ja m! Ja

The function G is called the Peano kernel.



83. THE PEANO KERNEL AND ERROR ESTIMATES 175

proof. First of all, we make a preliminary remark: ) is the quadrature error
made by replacing the integral on [a, g of i+ - yY™Mby In(X>»= - y)™).
We write / with the aid of the Taylor formula with integral remainder:
f(x) =P ( S NG
where
P(x) =f~f— t(x-a)i
i=0
and X
R(X)=— Ja
is the integral remainder. As we assume the formula to be of order m,
[ POOwWEdAx =InP),
Ja
since the formula is exact for polynomials up to order m.
Note that
Jfa /(D) &) (x- y)md Ja y {mtd) () (X

We are therefore able to change the order of integration when we integrate R:

[WCORCG)dx = [ TW(X) [ f @i~ (y) (x-y)rndydx
Ja 4 Ja

Ja

[ —Iwx))f/7(mD ) G- yY)™dyo
Ja Ja

= m\(J(* -

In the same way, we exchange the summation and integration when we per-
form the quadrature of R:

£ alR D=£ A f /(D@ -dx
j=0 ji=0 m Ja

=£ A-y / /(L - Y+ d
j_gy m*(rm)(V)OG n+

=/ (£ ACa" ID /M) @dy-
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Consequently,
)

/ 7/ Bgdx -In(f)= R(C w( dx- (R
Ja Ja
)@ ™ M- y)tdx - Xj(xj - y)™)dy
Ja m - \Ja J1=q /
= s f 16 @) OIFOLY
which concludes the proof. —

The Peano kernel allows us to make error estimates. The first of these is
given by the following lemma:

Lemma 8.3.2. Let In be a quadrature formula which we suppose to be of order
m, and let / be a Cm#+1 function on [a, b]. Then,

(8.3.2) |f W) dx-1¢) "m ax [/(mD) E) [ \C
| Ja 1 Ja

Proof. The proof is immediate. —

The estimate that we have just made assumes no sign information on G. If
we have some sign information we can do better, indeed, the second mean value
theorem states that if / is continuous, and if g is integrable and positive or zero
almost everywhere on [a, 6], then there exists a real number £ G [a, ], such that

J[ f{x)g )dx =f (O f g () dx.

Ja

This classic result (but often unknown to degree students) is simply proved &
follows. If g is identically zero on [a 6], the result is clear. If not, we have the
following inequalities:

909 min /&) " 0960”96 nax / G,

which we integrate over [a, 6], thus obtaining

rb rb rb
ya\gnl,/(y) / B/ /76 Qdx~ /7 /(X

Consequently, the ratio
J f(x)g(x)dxj J () dx
lies between the minimum and the maximum of / on the interval [ §="

continuity of /, there exists a £such that /(£) is equal to this ratio.
We therefore have an error estimate which is a little less naive, namely
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Lemma 8.3.3. Let In be a quadrature formula of order m, and let / be a Cm+l
function on [a, 6. Then, if G, the Peano kernel of does not change sign on
[a & there exists a £G [o, § such that

[ wOOF ) dx - In ()
@833 °

=  P/<ml) dwyrml dy ~ In (/m+l)) <
Proof. The second mean value formula requires the existence of a £such that

@39 [00dx — In(H =_L jdm+1) Ef (/) dy.
Ja Ja

However, the integral of G over [a, § can be calculated as follows: the quadrature
erroronj/H ymtl is given by

Jl(;j1 w () ym+ldy - In (ym+1) —.J[ (m + D\G(y)dy

a

(m+1D GOy,
Ja

which implies

J Gdy=—~

and proves the lemma. O

Examples of Peano kernels

We will calculate some Peano kernels explicitly, beginning with the rectangle
formula on [O,1]:

h(f) = f(c).

Suppose that ¢ belongs to [0,1] and is different to 1/2, so that the formula is of
“rdr 0. We have

ccly)=f (x-2P dx-(c~ 2P
Jo

= { Ml ©dx~ A =i-y- iLde) =

“Figure 8.6 we give the graphical representation of the Peano kernel Gc- We
t at if does not change sign on [0,1] only ifc = Oor 1
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Figure 8.6: The Peano kernel for the rectangle formula (left), with integration
knot ¢ = 0.4, and for the midpoint formula (right). Note the different scales of
the figures.

Now, if ¢ = 1/2, the formula is of order 1 the midpoint formula. The
calculation of the Peano kernel is therefore a little different:

Two different cases present themselves. If y < 1/2,
1—x' 1 2
GmE)=- f--(-yy-"+y=-=
ify> i/2,
om WFIl— -@G- = - |

The Peano kernel of the midpoint formula does not change sign. Consequent!) =
the error incurred by using the midpoint formula is given by eqn (8.3.3):

i"n) 1 rio
®39) 21 4 24

The graphical representation of this Peano kernel is given in Figure 8.6.
We find the proof of the following results on the order of the Newton t <
formulae and their Peano kernels in [51, Chapter 7].
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Theorem 8.3.4=A closed Newton-Cotes formula on an even number of intervals
(that is, 2p + 1 knots and 2p intervals) is of order 2p+ 1 0

Theorem 8.3.4 leads us to only use Newton-Cotes formulae on an even num-
ber of intervals, since we then gain an order with respect to that predicted by
the general theory of quadrature by interpolation. We make an exception for
the trapezium formula, which is often used. The first closed formula on an even
number of intervals is Simpson 3 rule.

Theorem 8.3.5. An open Newton-Cotes formula on an even number of intervals

(that is, 2p-\ knots and 2p intervals) is of order 2p - 1 0
Theorem 8.3.5 leads us to only use Newton-Cotes formulae on an even num-

ber of intervals. The first open formula on an even number of intervals is the

midpoint formula.

Theorem 8.3.6. The Peano kernel for the Newton-Cotes formulae has constant

sign. 0

83.2. Quadrature error in composite formulae

Given an interval [0,1] and a simple quadrature formula of order m and weight
T
n

@836 /=<()=mEA /().

j=0
We have seen that the composite formula on [a, 1] is given by the decomposition
of [a b] into sub-intervals [ai,a*+1] on which we define new quadrature formulae
based on the elementary one. We thus have

p—i n
@37) In,p (/) = Y2 {di+l - a,) @+ Xj (ai+i - a;)).
i=0 j=0

The quadrature error in a composite formula is estimated by means of the
following result:
Theorem 8.3.7. Let 7p be a composite quadrature formula on [a b] given by
e (8.3.7) and defined by the elementary formula (8.3.6) of order m on [0,1].
Let h = max*(ai+i - a). Then,
b

839 / /GO A 1 () G- ayhmil

max | / (m+1)(X
o mex /@ [ ol
where G is the kernel of the formula (8.3.6). 0
froof- Generally, the formula obtained on an interval [a,/7], based on the
l0mula o the interval [0,1], is

(/3-a)"2 xjf @ + (?- a) xj).
j=o
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Calculating the Peano kernel G of this formula:

We make the natural change of variables

a=a+£f@B—a), y=a+TD0O-a),

to obtain
G{y)*{0-a)ym+IG » — A,
Now let a = a* and /? = On each interval [a,i,ai+1], we have the error
— (0j+i - ai)m+l P % d
v, @ - abmd Vaid  did
Now
[C(— dy =(oj+1 - ai) {
Jdi \&i+l / Jo

and therefore, the error on each interval [ata*+i] is bounded above by

©39) (oi+i —mIOj)rTH-Z ma% y m+iHx)\ (jol \G(V)\dWy

Let h = maxi(ai_|_i —a*). We note that
o-i o-i

63.10) £ (0l - a2 A Al £ (3l - &) = hmtl (b-a).
i=0 i=0

By adding all the error bounds (8.3.9) and using eqn (8.3.10), we deduce estimate
(8.3.8).

The preceding analysis showed that there is no advantage in doing a numerical
integration by a high-order formula on functions which are not very regular. The
precision of a formula is strictly limited by the regularity of the function which
we are integrating.

8.4. Gaussian quadrature

In this section, we call n the number of knots, because it makes the results

easier to remember. Let [a, b] be a compact interval and let w be an integra

weight which is strictly positive almost everywhere on [ b]. Given n *n
#n, there exists a quadrature formula of order at least n — 2> nanl
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the interpolation formula, and we have seen that it is unique. Observe that
if the weight is non-negative almost everywhere, and does not vanish almost
everywhere, the uniqueness still holds. This comes from the fact that, since a
polynomial is determined by a finite number of coefficients, when the integral
of its square multiplied by the weight vanishes, the polynomial itself vanishes,
provided that the weight does not vanish almost everywhere. However, such
weights are of little practical importance, and we will continue with the simpler
hypothesis. We now pose the following problem: how do we determine the knots
X and the weights A so that the quadrature formula is of the highest possible

order, that is
n
/f O w () dx —E

1

vanishes on P* for k as large as possible. We already know that k ~ n —1,
therefore the A} are uniquely determined from the xj by means of the formula

@©41)

If P belongs to P&, we must have

/ 6 n
PQOw()dx =

i=1

W introduce the polynomial

843 p(xX)=
3-1

The Euclidean division of P by p has quotient g and a remainder r, which is a
polynomial of degree at most n - 1

@449 p=pg+r.
Ifk=n_ quotient g is zero. Since P is some polynomial in P*, g is some
Polynomial in P~_n. We can rewrite relation (8.4.2) as follows:
P 0] n
POAGDIWE) dx-f /7 r(QQw ) dx —  Ap Xj)aj) +~  Ar (Xj).
Ja j=i j=i

that this formula is of order at least n—21and that p{xj) is zero for every
n we see that

§ PGIgw)dx =0
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In other words, the scalar product of p and g with weight w must be zero:

84.5) ((sXe)) =0, WQgE P*_n.

The preceding analysis leads us now to present and prove the theorem which
describes the maximal-order formulae, known as Gaussian formulae:

Theorem 84-1=The unique n-point formula of maximal order is the interpola-
tion formula constructed by taking as knots the zeros of the n-th orthogonal
polynomial with respect to the weight w. By convention, the n-th orthogonal
polynomial is of degree n, which implies that we begin numbering them from Q
The formula thus determined, is exactly of order 2n—21and is called a Gaussian
quadrature formula. 0

Proof. Suppose that Pn is the orthogonal polynomial of degree n with respect
to the weight w. We have shown in Theorem 5.5.1 that the zeros of Pn are simple
and are all situated in the open interval Ja, bf. If we make a Euclidean division
of P, belonging to Pzn-i? by Pn we obtain

P =Png+r.
Let the Xj be the zeros of Pn. By definition of orthogonal polynomials
(- q) =0
that is, egn (8.4.5). The formula, thus constructed, is certainly of degree at least

2n —1 It is not of degree 2n, indeed

rb n rb
/ Pn()2dx-"2\jPnx)2= / Pn(x)2dx"0.
Ja j=i Ja
Conversely, if we have a quadrature formula of order k ~ 2n —1,
n
N2 Vif M) =
3=1
this formula is clearly an interpolation formula, since 2n- 1" n. 1 We must
therefore have
(P,<”=0, V"GPfc-n-
Since k-n”™ @2n- D) - n=n- 1 we must, in particular, have

(P,tf) = 0, VgeVn-i-

For the nonzero polynomial p G Pn to be orthogonal to Pn-i, it is necessary ad
sufficient that p be a multiple of the n-th orthogonal polynomial with respect *
w. The yj are therefore the Xj and, since the formula is from interpolation,

p,j are identical to the A.
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8.5. Numerical integration of periodic functions over
a period: Fourier analysis

The error analysis of composite formulae in Theorem 8.3.7 does not take into
account possible global compensation from one interval to another. In the case
of a periodic function (to fix ideas, of period 1), these global compensations
are very interesting, to the point that it is not necessary to employ any other
formula than the rectangle formula. Observe that the left and the right rectangle
formulae give identical results.

Theorem 8.5.1. Let / be a periodic function of period 1on E. If / is Cmon E,
and if we apply the rectangle formula to it with n points uniformly distributed
on the interval [0,1], we have the following error estimate

L CmD

@B5.1) .

In other words, the rectangle formula is of infinite order when applied to periodic
functions. 0

Proof. The idea is to see what the rectangle formula gives for trigonometric
polynomials. We therefore calculate

ekn =T eZinkxdxe2inkj'n.
J< nu

1
N

S = e2inkj/n %

j=o
This is the sum of a geometric series with ratio e2ink/n. If edd*/n = 1, that is, if
nis a divisor of k, S = n. In the converse case

QA _
S = Axnkfu = 0.
We therefore have
n if n divides T
0 otherwise.
Moreover,

/27 Rxdx = sOk.

W& deduce the value of

@852 —1 if n divides kand k* G
O otherwise.
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Consequently, if Ria trigonometric polynomial
P(xX)=Y,
\KKN
we have
1:0<|/n|~ TV

Suppose now that / is Cm and take m to be at least equal to 2, since the case
m = 1is a consequence of estimate (8.3.8). We denote by f(k) the fc-th Fourier
coefficient of /. Since / is at least C2, the Fourier series converges uniformly
and by inverting the order of the summation and integration, which is valid by
virtue of the uniform convergence, we can write

[1f(xX)dx-Y -fU ) =/"£ /7Ke2uxd x -Y -Y f (Her 7"
Jo i=0 n \nj Jo K

= A A/ (®efen
kez

Y
iez\{o}

From the estimate of Lemma 7.1.12
/7)1

we deduce that

acl n~1
/ f(x)dx- YO'/( )\A nm* fr%!-
=

As the series

rso

)(/\

1—1
converges for m ~ 2, we have proved the result claimed.

8.6. From Bernoulli to Euler and MacLaurin: the
delights of integration by parts

We now present another approach to the error analysis for the trapezium fFim
with uniformly distributed knots. This approach consists of representing
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guadrature error in the elementary trapezium formula by means of successive
integration by parts, using derivatives of the function being integrated which are
of arbitrarily high order. We again find a formula for which the kernel (we are
therefore on familiar ground) is a multiple of a Bernoulli polynomial.

The Bernoulli family provided a good dozen scientists in the seventeenth and
eighteenth centuries, of whom at least three were very prominent. Amongst these
were the mathematicians Jacques (1654-1705) and Jean (1667-1748).

On the subject of the personalities and relations between the brothers Jac-
ques and Jean Bernoulli, consult the book by Stefan Hildebrandt and Anthony
Tromba [46, pp. 64-7]. At a time when only a few people in the world under-
stood the infinitesimal calculus of Leibniz, the elder of the brothers had taught
mathematical analysis to the younger, who had a temperament which was, to
say the least, competitive. Lively scientific conflicts between the two brothers
were played out under the watch of contemporary European scholars. It was
Leonhard Euler (1707-1783), a student of Jean Bernoulli, who carried the math-
ematical tradition of the Bernoullis the furthest, adding to it his own originality.
Euler was blessed with numerous descendants, and legend says that he did math-
ematics with his children playing all around him. At the end of his life he lost
his sight, which did not prevent him from continuing to work.

I strongly recommend reading the original works of the great authors. Read-
ing the Introduction of Euler § Introductio in Analysin Infinitorum is an enthus-
ing experience which is entirely accessible to degree level students. It is good to
note that Euler hardly concerned himself with the convergence of the objects on
which he worked. However, his supreme intuition traced the paths for contem-
porary mathematicians, be it as a precursor to non-standard analysis or when he
summed divergent series. The phrase Euler equation “refers to at least two dif-
ferent objects, one in fluid mechanics and the other in the calculus of variations,
both of which are the objects of very active study.

The book by Hildebrandt and Tromba is also very good, and abounds with
beautiful pictures and stimulating questions.

The polynomials mentioned here were brought to prominence by Jacques
Bernoulli, who introduced and studied them for discrete values of their argument
in his work Ars Conjectandi, published posthumously in 1713.

86.1. Detailed analysis of the trapezium formula

st <fall, note that for a periodic function of period 1, the rectangle formula
the trapezium formula are equivalent. We are therefore going to study, in

etau, the error for the elementary trapezium formula. Suppose, first of all, that
/1s C\ Then,
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f fOod*-i[7(0) + /(D]

=\j (O-70C) (/0*0-/(*))dx

¥) o eond)m

Changing the order of the integrations, we see that
N L CNox - a
In the same way,
J f*{y)dy3¥dx = 3 yf'(y)dy.

Consequently,

/Ma- | VO+/@l= Q 2/ ()d#

We are now going to generalize this result:
Lemma 8.6.1. Let / be a C'mt+1 function on the interval [0,1]. Then,

r £ dx-\[f(0)+f(i)]

(8.6.1) n -1
= T A /<o(dx+ / Pl (
i Jo

The real numbers aj and the polynomials pj are defined by

pi0c0=g ““x~ <=0
862

rx
741 () =J/ ©n ~ Pn (), i+l = /0 L ()
o
Furthermore, the ¢2j+i are zero and the pj satisfy the symmetry relation

Pji & = (-Di Pi (1-x).

Proof. Formula (8.6.1) is true for order 1 Suppose that it is true for order n
We note that
Pn ~ & ~ Pn+T
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and consequently, if we integrate
/%, (*)/<"> () dx
Jo
by parts, we find
jf (@an - Pt () /@) (*)d* = Qjf
+ Jf f (N+D){X) Pn+i ¢ dir.
o

By construction, Pn+i(0) = Pn+i(l) = O, which verifies eqn (8.6.1).
Suppose that Pn satisfies Pn(I —x) = (—DnPn(xX). Then, we can write

AL (- x) = J}O|~X{an _ Pn @)dv

an(l-x) + (-Dn+1 [
Jo

a, L-x)+ (—I)n+1Jf Pn (y) dy

a, (I-x) +(-Hnl Pn{y)dyp

=a(@-x)+ (-Dmlan+ (-Dm1 Pl (X) + (-1

an@-x) (1 + (-1f+1) + (-If+LPn+l (X) .

If P3+i(l - X) = —P2j+i(x), the integral on [0,1/2] cancels the integral on
[1/2,1], which implies that azj+1 = O. The above calculation shows us that

o2 - X) =pg+2 X) .
Consequently, as 1-f (-1)2713 = 0, we see that
P2[+3(1 - x) = -P3+3(X).

As the symmetry property holds for Pi, the lemma is completely proved. [

86.2 The Bernoulli polynomials

The Bernoulli polynomials are defined by means of a generator function:

@63 et t) = o
0 el —1
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This has a power series expansion with respect to t of the form

tetx  _ Bn ()"

864
el—1 o ™

The radius of convergence of this expansion for fixed x is equal to 2ir, since
the numerator and denominator are entire functions of t and the denominator
vanishes at 2%, 6 Z, but the singularity in the denominator at t = Ois
compensated by the singularity in the numerator.

It is clear that ¢)is C== with respect to t E R and x G M and the radius
of convergence of the Taylor series in tis Z&. The partial derivative of O, with
respect to x, is

We can also differentiate series (8.6.4) term by term (prove it!), which gives s,
after equating the terms of equal power in t

B.65) Bn( x) ni(a;).

Since BO(X) = 1, we see that all the Bn are polynomials of exactly degree n
Furthermore,

Consequently, for every n ~ 1

The polynomials Bn are Bernoulli polynomials.
We are now going to show that, for every n ~ 1,

8.6.6 Bn ()= (-1)"n! (an - Pn (x)).

Explicit calculation gives

Assume that eqn (8.6.6) holds for rank n —1 Then, due to egn (8.65),
Bn(X)=n(-1)"1(n- D'(an_i - P, _i (X)),

and due to egn (8.6.2), B'n+ (~)nn!P~ is a constant. By construction,

and we have seen that Bn has zero integral on [0,1]. Consequently, we ~av
verified formula (8.6.6).
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8.6.3. The Euler-MacLaurin formula

We are now going to give the Euler-MacLaurin formula which describes the error
in the composite trapezium rule. We extend Pn periodically over all of E, and
let Pn be the periodic function of period 1, thus obtained. For n ~ 2, Pn is
a continuous function. The recurrence relation (8.6.2) shows that Pn is Cn~2.
If the function / is defined on the interval [0, K\ and is C2m+2 on this interval,
then

ff{x)dx-""2(f O +f(g+D)
z j=o0
™ rk rk
- E=1 azi J/o "@( Jo

By a change of variable, we are going to get back to the trapezium formula on
B & let x = a+ th with h = (b—a)/k. We then get

jfF/Md*=1t +£/(, +jA)j +0g a-zhxjf /(< (X)dXx

86.7)
+ f P22 0 dx.

Formula (8.6.7) is called the Euler-MacLaurin formula. It allows us to analyse
quadrature formulae, as well as to precisely approximate sums of the type

j=i
hy comparison with the integral of / from Oto Aand the accurate estimation of
the remainder.
We clearly find the results already claimed for the integration of periodic

functions, since all the terms J» () dx disappear if b—a is a period of /. In
Particular, the trapezium formula is of exactly infinite order for functions with
c=uipact support, integrated over an interval containing their support.

8-7. Discrete Fourier and fast Fourier transforms

~ calculate the Fourier coefficients of a periodic function of period 1, by ap-
ofying the rectangle formula at equidistant points. As the rectangle formula is
Infinite order for periodic functions, as we saw in the preceding section, it is

la'n eSS USe a more sophisticated formula. In its naive version, this calcu-
1n reciuires O (N 2) complex multiplications for the calculation of N Fourier
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coefficients. J. W. Cooley and J. W. Tukey proposed a remarkable algorithm for
fast Fourier transforms (FFT) [17], but it seems that it had been discovered pre-
viously by Danielson and Lanczos in 1942 and that it was also known to Gauss.
To understand the FFT algorithm, it is first of all necessary to note that the
rearrangement of the rows or columns highlights self-similarity properties, which
are due, on the one hand, to the formulae consisting of many multiplications by
lor by -1, and moreover, to the (more or less elementary) arithmetic properties
of the integer which defines the number of points.

In the simplest case, where N is a power of 2, the FFT algorithm requires
O(N log2N) real operations (multiplications or additions) to arrive at the result.

There exist numerous generalizations of FFT, including implementations
which work for numbers N which are the products of powers of 2, 3, 5, and
7. The FFT algorithm is a typical example of a recursive numerical algorithm,
although this is not necessarily the best way to program it. From its multiscale
analysis nature, it is also the ancestor of modern multigrid methods [41] and
multiscale wavelet analysis [61].

8.7.1. Discrete Fourier transforms

The Fourier coefficients of a continuous periodic function /, of period 1, are given
by

The discretization, by the rectangle formula with equidistant points, is written

Note that this formula produces at most N distinct complex numbers. Indeed,

= Uk.

We therefore define the discrete Fourier transform Fn as the linear operate
which associates the sequence of Uk, defined by

N-1

Uk= J2 Uj
30
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to a finite sequence (uj)o”j*N-i of complex numbers. The matrix of Fn is com-
plex symmetric (warning, it is not Hermitian!). The conjugate linear operator is
denoted by Fn, and we have the following elementary and essential result which
implies that, to within a constant factor, Fn is unitary:

Lemma 8.7.1. For all 3V, we have the following identities:

87D FnoFAN=NI—Fn oFn-
Proof. Let n
= Uke2injk/N.
k=0
We calculate T
3=0
We have
N— N-1 N—
Ue~27t/N = Y e
j=o j=0 fe=0
V-1 /N-1 \
= £
KBi=0 /
Now
y le2ir(fe-<)/w= r din divides b
j‘;o $O  otherwise.
Askand | vary from Oto N —1, N can divide k— only if k = I. Consequently,
™1
Y Uje~2inje/N =
i=0
The second equality follows immediately from the first by conjugation. (|

Since FN is a linear operator from CN to itself, a priori it will need N 2complex

nultiplications to calculate the Wk as functions of the uj. We are going to see
tiiat it is nothing of the sort.

872 Principle of the fast Fourier transform algorithm
e Whte the matrices of F2and F4 explictly:

@ 1 1 1IN
/ 11\ . 1 -i -1 i
@@ 1) and Fi= 1 -1 1 -1

\Y; 1 -1 -v
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If we calculate {Uj)o"j"3, we can therefore write

Wo = Wg+ W\ + LRA U,
Ui=uo- iui —u2+ m3,
U2=Ww- U+ W- s,
Us = uo + iui - u2- iu3.

872

We will rewrite this and change the order of the uj as follows:

W= W+ W+ W+ U,
W\ —uo - u2—N\I\ + U3
WR2=Ww+W2- W- U,
Us = uo - u2+ iui - ius.

We can therefore put this in the form
(v~ .

We see, therefore, that the calculation of F4 needs the calculation of two trans-
formations F2 and a multiplication by a 2 x 2 diagonal matrix.
We can also rewrite eqn (8.7.2), changing the order of the rows, as follows:

Uo = u0+ W\ + u2+4Us,
U2= u0- ui + u2- Uk,
W=uo- \NA-u2+ms,
Us = uo + iui - u2- iu3.

We then have

(K M CM :)]-

A O\ / Uo—u\
_\O \J\ul-u3ll

(8.7.4)
=t

In this case, we first of all multiply by the 2x2 diagonal matrix, and then meke
the two transformations F2.

The two ideas above generalize to the case of N = 2n, which is the mos
important thing in practice. In the first case, we say that we have an algon
with decimation-in-time, since the uj were originally seen as states depen
on discrete time j , and in the second case decimation-in-frequency, as the K ar
modes.



g§. DISCRETE FOURIER AND FAST FOURIER TRANSFORMS 193

8.7-3. FFT algorithm: decimation-in-frequency

We present the details of the fast Fourier transform in the case of decimation-
in-frequency. The decimation-in-time case is completely analogous. We will
estimate the number of operations necessary.

We rewrite F/v, firstly grouping all the even modes and then all the odd
modes. Letting M = N/2, we have:

N M— T™V-
U2=Y Uje-4i,rkj/N = Yje - * nki/M + Uje-2i*kj/M
j=0 i—o =M
Note that,
875 e - 1

and consequently,

uo \ / Uo + UM \
u22 W\ + Wm+1

@876 = Fm
\Un-2) \Um-1 + uN-1J

In the same way, the odd modes are given by

U2k+ = Y u £-**(2k+1)j/N
J-0
M— ™4
= Y e~2inkj/M e~2iKj/NUj + Y
j=0 j—™

Using egn (8.7.5) and the relation

e-inj/M _ _e—w
w obtain
Ux \ —UJm AN
U3 I —
= Fm
\Un-iJ
let
b \ Cun?
w™ < Af+l]
u = Uh =

\UNVHIT \«TV-1/
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uo \ Ui \
u2 U3
Ueven — > Uddd —
\Un-2) \Un-i)

If pM = PN/2 denotes the diagonal matrix given by

(PM)jj =

then we have the block factorization

To recover the components of U in the right order, we now need to make a
permutation an of the rows. This is the permutation of 2n objects, numbered
from O to 2n—1, for which the matrix Pa-1 (convention of p. 221) is the matrix
of the transformation
/Cleve, \ n
\UoddJ A~ [Uud ~

If j varies from O to 2n - 1, we associate with it its representation in binary

n—
j = N 22 dk —dn-\dn-2 ==e\do.
k=0
We then verify that
B8.7.8) dn (dnAdn—2 ==e0) —dn—2***dodn—-

Indeed, we see how we pass from the sequence
0,1,...,2n—1
to the sequence
0,2,...,2p,...,2n—2,1,3,...,2pf1,...,2n—1

If j is even, we associate j /2 to it, that isi

i =E
k=0
with do = O. Therefore,
n—1 n—2
-=J2 = E okdk+i dodn-1 -dI=

k=1 k=0
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If jis odd, we associate 24 1+ (j —I)/2 to it. We therefore have

n—
*:o
with do = 1= Therefore,
n-2
2 2fadfc+,
0
and hence,
n—2
N1+ 2"-1=2n 1+ N d*+i o=
k=0

In other words,
Anl(dn-i ===dd) = dodn_i =i,

which implies egn (8.7.8). To take account of the structure of the discrete Fourier
transform, we define the permutation matrices PaRk of 2€ objects by

PTp,p = Pffpl
forp~ 1, and
p = (p0 7
AAHL v o
for k™ p~ 1 At the binary representation level, it is clear that

@79 &k (dfc— **<epdp-idp-2 *<¥do) —d/._i ==elpdp—2 ==eodp_i.
From eqn (8.7.7) we deduce that

F)v/2 0\ /Jjv/2 o v /Bi+ U\

FA'mu=P -1
0 Fnr2d l 0 PNs2y Ul - o,

Obviously, FN/2 has the same structure.
Thus, we can graphically represent the fast Fourier transform by a scheme

consisting of lattices known as butterflies and horizontal arrows. The butterfly
represents the mapping

from C2 to itself. The horizontal arrow simply symbolizes a transfer of data,
and the arrow labelled with a complex number symbolizes multiplication by this
c=nplex number.

then N> ure 8.7 for the case N = 8, n = 3 with w = exp(-i7r/2). At
eend, it is necessary to make the matrix permutation

=P 1

y2,3u03
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Figure 8.7: The FFT butterflies.

to recover the components of U in the natural order. It results from egns (8.7.8)
and (8.7.9) that

&3 =02,3 (d2dido) = 03 (d2d$d\) = dodIG?2-
Generally, we can check that

o <&n—,n =**" =o2,n {dn—Hdn—=2**didoj — dod\ =&n—2dn—\

is the permutation rn, which swaps element p with element rn(p), whose binary
expansion is obtained by reversing the order of the digits of the binary expansion
of p. This explains the order of the elements in the last column of Figure 8.7 and
shows the effects of the structure of decimation-in-frequency: after the algebraic
part of the FFT, represented by the operations appearing in eqgn (B.7.7), it is
advisable to de-interlace the frequencies by permuting them by rn.

Operation Count 8.7.2. Let N = 2n. An FFT on N complex numbers demands
at most 5iVTog2N real operations (additions or multiplications).

Proof. We agree to count real multiplications and additions. The addition of
two complex numbers requires two real additions, and the multiplication of two
complex numbers requires two real additions and four real multiplications. W
an be the number of real operations necessary for an FFT algorithm on N =2
modes. We let M = N/2. From egn (8.7.7), to obtain u\ -f u\\ and W\ - u\h
need 2M complex additions or 2N real operations.

The matrix multiplication of Pm {u\—u\\) by the diagonal matrix Pm requires
M complex multiplications or 6M = 3N real operations. To make the two
Fourier transforms in dimension M, we need 2an_i real operations. We there
have the inequality

an”™ 2an i + 5x2n.
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By induction, and observing that Fi requires no operations, we have
an”™ 5n2n.

We have obtained the estimate
an ™ 5iVIog2N.

Note that the classic count, which only counts complex multiplications, gives
N2"1log2N operations, as can be checked by the reader. —

88. Exercises from Chapter 8

88.1. Summation of series with Bernoulli numbers and
polynomials

This subsection allows us to study the error made in a numerical integration

formula with equidistant knots. All the necessary calculations can be made by
hand.

Bernoulli numbers

Recall the definition (8.6.4) of Bernoulli polynomials.
Exercise 8.8.1. Show that, for all j > 1, B2j+1(0) = O.

Exercise 8.8.2. The Bernoulli numbers are defined by the formula

= B3 (0).
Calculate b2 and b4.
Exercise 8.8.3. Show that, for all j ~ 1,

Exercise 8.8.4. Calculate in terms of Bj-1 and the Bernoulli numbers.

Error estimates and formal computations

tojhis subsection, we will prove an error formula relating to the trapezium rule.
Is formula will be studied for polynomials, by operator calculus.
® nly the last two exercises depend on the first section.

e let P be the space of polynomials of a real variable, and Pn be the space
Oynomials of degree at most n. h is a fixed strictly positive real number.

N
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We define the following linear operators on P:
aH =7/,
(Ef) ® =f(x+ h
V) ) =/ O+ h -,

W)<*) =~ I

We say that two operators A and B are equal if, for any / in P, Af = Bf.
Exercise 8.8.5. Show that, for every / in P, there exists m such that Dmf =
ATZf =0

Exercise 8.8.6. We let

hnDn

8.1 ho _
®8.1 £ N\

Show that the sum defining ehDf is finite for all / in P and that
@882 ehD = E.

Exercise 8.8.7. Show that, for every y £ E, we can define linear operators Ty
and Cy on P by

Ar,/ =/, (ayH) {y) =0,
and
hDCyf = f, (CyDH) (y) =0.
Use the functions

T A N yX- .

and apply A to them to solve the first part of the question.
Show that ryA/ - / and CyDf - / are of degree zero. Calculate ACyhDTy.

Exercise 88.8. Calculate ACyf as a function of J, defined by

rX-\-h

AN )= fit) AL
J

X

Exercise 8.8.9. With O being the function given by eqn (8.6.3) and " defined b>
ip(® = 00",

we let
@883 A = hDTy - N O

i=0
Show, by using Exercise 8.8.3, that A does not depend on y. Calculate AA by
using eqn (8.8.2). What is the value of A?
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Exercise 8.8.10. Show that

jToe-*zmxz(ExXx*) - - £ % £ [/«<<"(F+>»>>-/<*-><x)],

@849
by applying ACy to A.

Application to the summation of series

In this section, we evaluate the error term in egn (8.8.3), if we truncate the
infinite sum at order m.

Exercise 8.8.11. Let / be a (2n+ 2) times differentiable function on [0,1]. Show
that the Euler-MacLaurin formula can be rewritten as
1 vt i

fo 9 Xi¢O+/@Q)=-E ("' /@EDHO- )

@889

(2m_ (X) dx.

We extend B j into a periodic function of period 1 Show that, if / is (2m+ 2)
times differentiable on [a, b] and h = (b—a)/n, we have

n—1
[ fCOdx-hdf @+ / @+h) + -7 ()
Ja Jz
m p
(8.8.6)
/iam2
+
©m + 2)1 J fam+2 () dx.
Exercise 8.8.12. Application of eqn (g s ). Let
. 1
fix) =
X+ 10)32°

By letting m = 1 and with the aid of formula (s s s), evaluate the error incurred

replacing
00
E -

n=10
by an ~“tegral expression, plus the first error term. We give

B+=() = x2(1 —x)24-64.

erctse 8.8.13. How many terms of the series must be added to obtain an
QUracy which is at least as good?
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8.8.2. The Fredholm integral equation of the first kind

Let K be a continuous mapping from [0,1] x [0,1] to R. We define an operator
K on E = C=([0,1D by

88.7) dcu)(x) :JI(:) K X y)u (y)dy.

Recall the definition of a modulus of continuity: if a function / is uniformly
continuous from the convex part of a vector space metric F, provided with a
distance dp, to values in a metric space G, provided with a distance do, there
exists an increasing continuous function ujf from R'L to itself, vanishing at zero,
such that, for every x and x" in F, we have

(888) dG(f £ . f {x")) ~.uf (dF (x,x")).

Exercise 8.8.14=Show that the image of E by /A is included in E. Given a
distance on [0,1] x [0,1] use the modulus of continuity ujk of K.

Exercise 8.8.15. We provide E with the maximum norm, denoted | =] Show
that, for every u in 8,

889 125 | RA 8 | me%] J[0 (X y)\dy.

Exercise 8.8.16. Show that, if K is at least m times continuously differentiable
with respect to its first variable, ICu is Cm.
Exercise 8.8.17. Let

A=072, %7 JAr(>»d|d>) = fol

Show that, for every f in E and for every Ain J—A, A, there exists a unique u
such that

(8.8.10) u-\)Cu = f.

Exercise 8.8.18. Let v G E. Given h = 1/n, we approximate the integral of
on [0,1] by the trapezium formula with equidistant knots yk = kh, O~ k™ h
Write down this formula, and estimate the difference between the integral of v
and its numerical approximation using the modulus of continuity of v. Impr<‘e
this estimate by supposing that v is C2.
Exercise 8.8.19. We want to numerically approximate the solution of
(8.8.10) . To do this, we replace the integral with respect to y by a quadrature,
by means of the trapezium method, with the same knots as in the preceding
question. We denote this expression by

n

h*E/yj(x)u(jh).
3=0
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Evaluate, for every u in E,

[(Xu) (x)-hJd2 7 (*)«<tih)],

supposing, first of all, that K is continuous, and then that K is C 2 with respect
to x.

Exercise 8.8.20. Show that, if K is continuous,
li a = A”L
MR _
Exercise 8.8.21. We define an operator /CAfrom En+l to itself by
(ChU)k=hyT ij (kh)Uj, O~ k~n.
i=o

Providing En+1 with the norm O\ = maxj \UY\, evaluate the norm of the oper-
ator of Kh.

Exercise 8.8.22. Show that, for every Ain J—A, Al and for every h less than a
certain /i0(J]) which should be specified, the problem

u - \JChU = F
possesses a solution, for any F in En+1.
Exercise 8.8.23. Let Fh = {f(kh))Q<k<n. Let Uh be the solution of
Uh - \JChUh = Fh.

In order to evaluate the error committed by the process of numerical approxi-
mation we denote by Vh the vector defined by

(Vh)k = u (kh),
where u is the solution of egn (8.8.10). Show that
[uh- v h- XKhUh+ XIChVh]k = A (IChVh)k - X (Ku) (kh) .
Evaluate the second term of the above expression using Exercise 8.8.17. Show

at (/- AKh)~I exists and is uniformly bounded as h tends to 0. Deduce from
that

rI1i_rryj10|rAnlg/x]I(Uh)k—u & |=0

"ahe this estimate precise if we assume that K is C2 with respect to x and .
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8.8.3. Towards Franklin3 periodic wavelets
Diagonalization of cyclic matrices

We say that a square matrix A is cyclic if it is of the form

do d\ 42 <+ gn-2 dan-1
AN -1 do A\ -m -8 dan =2

an =2 dn -1 do == an-4 an -3

a2 do (z4 do d\

d 2 o - dN — 1 do /
If necessary, we use the notation
A = circu (a0,ai,...,aAr_i),

and denote by 1V the set of N x N cyclic matrices. If necessary, we identify the
finite sequence (aj)os”"TV-i and the infinite periodic sequence defined by

aj+kN = aj, VkGZ, Vj€ {0,...,N - 1}

The vector space of periodic sequences of period N on Z is denoted by t"N.
Then, the Hermitian scalar product of two sequences a, b£ n is given by

A

j=0
Exercise 8.8.24. Show that IV is closed under addition, the multiplication by

a scalar, and under matrix multiplication. Use the convolution of the elements

t"N defined by
™4

@*h) = ~ ~tikbj—k.
k=0
Exercise 8.8.25. Let 1j be an iV-th root of unity and let x be the vector

f 1\
LJ

\UN-1J

Calculate Ax for A in IV-

Exercise 8.8.26. Calculate all the eigenvectors and eigenvalues of the cyclic
trices

circu (00? | === —)
as functions of the coefficients Uj, 0~ j * N - 1
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Exercise 8.8.27. Show that every cyclic matrix can be diagonalized on an or-
thogonal basis. Give a necessary and sufficient condition so that a cyclic matrix
is Hermitian.

Properties of certain function spaces

We denote by Lj the space of functions from R to itself which are periodic of
period 1 and whose restriction to every compact subset of R is integrable. The
integral of the functions / E Lj is defined by

where a is any real number.

We denote by Lj] the space of functions from R to itself which are periodic
of period 1, measurable, and whose restriction to every subspace of R is square-
integrable. The scalar product between functions of L" is defined by

= ) 9 .

The integer N is fixed and greater than or equal to 1, and we let

The space Vn is defined as the subspace of Lj formed from all the continuous

functions whose restriction to each interval [fth, (k + Dh] is a polynomial of at
most degree 1

Exercise 8.8.28. Show that the mapping, which to / E Vjv associates the col-
lection of its values at the points jh, j E Z, is an isomorphism $n from Vn on

Exercise 8.8.29. Let eo be a periodic sequence of period N defined by
(e = 80j, O™ j ~ N.

Giwve the function = ~"(eo) and sketch its behaviour, where N = 8
Exercise 8.8.30. Let r be the translation defined on Vn by

) = f(x-h).

~fh an abuse of the notation, we will also write for the sequences belonging to

(Ta)j = a3~-r
NV the family of (rmO)o”m”iv-i form a basis of Wn.
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Exercise 8.8.31. For every integer m € Z, calculate

For every j and ra, deduce from this the value of

(T3@ Tm<ex

Exercise 8.8.32. For / and g in Vn, let

$n (/) = (ai)jeand @ = (bj)jez =

Write (/#)# as a function of the sequences Oj and bj. Show that the matrix A)
a bilinear form on defined by

is cyclic, real symmetric, and positive definite.

Exercise 8.8.33. We intend to show that there exists an orthogonal basis of W
for the scalar product (==¥¢formed from functions (rm”™)o"m”~N-i, where we
want to determine the real even function N). Let

$IVWO = ¢ = (CjjE Z.
Show that the block column matrix
C*=(c re = rArlo)

is identical to
circu (co,ci,... ,cjv-i) =

Exercise 8.8.34=Show that ifr answers the question posed if and only if
C*AC = /.

Using the first part of the problem, give all the functions ifr which satisfy the
question.

Exercise 8.8.35. Suppose that N is even, and let N = 2M. In this question we
use the notation (¢mand i*m in place of O and ip, respectively, and we introduce
the functions $M and \pm similarly in Vm- We denote by Wm the orthogonal
complement of Vm in Vjy. Construct the function \m belonging to Wm »
that the t 2ttixm form a basis of Wm« We can reduce this to considering functions
\m with support in [-2h, 2h].

Exercise 8.8.36. Reasoning as in Exercise 8.8.34, show that there exists an or
thonormal basis of Wm formed from functions (r2ncrM)o”m”~M-i and determine
&V

Remark 8.8.37. If N = 2n, the successive functions <tm, with M =
periodic Franklin wavelets.
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Numerical linear algebra

I used to think, when | was a student, that linear algebra is this boring subject
where you prove only fairly obvious things, and then you have these gigantic
and stupid calculations. The non-constructive approach to linear algebra has
little interest, because it does not tackle the most important question, which
is the effective construction of the objects whose existence we prove. But the
constructive approach is absolutely fascinating. Take an easy example: suppose
that A is a square positive definite matrix, and that we want to solve the linear
system
Ax = b

know that A can be diagonalized in an orthonormal basis, and in that basis,
the above equation reduces to a diagonal system, i.e. a completely trivial ques-
tion. Fine, but how do we get, practically, the orthonormal basis? It turns out

at getting the orthonormal basis is much more difficult than solving the orig-
irel equation. This problem is treated, at least partially in Chapter 13, and it
Is a highly nonlinear problem, as we shall see. Therefore, one must find efficient
Poetical methods for solving linear systems which do not rely on determining a
8>Ubasis by unspecified means.

n Chapter 9, we treat the so-called direct methods of resolution of linear
iK ms™n Chapter 10, we define a number of analytical tools in order to be
foetidO ta”e *terat*ve methods in Chapter 11 There, we find that iterative
finite=tS”~ MGy e® c’ent *even “or s<vmg problems which admit a solution in

205



206 I11. NUMERICAL LINEAR ALGEBRA

In Chapter 12, we use orthogonality-related constructions to devise other
methods for solving linear systems. These methods also come as a preparation
for finding the eigenvalues and eigenvectors of a matrix, and they have a strong
Lie group-theoretical flavour, but we are not supposed to say so, lest some pure
mathematician might have heard us and be offended that creepy applied mathe-
maticians might walk on their turf, and lest some applied mathematician might
hear it and scream that highbrow pure mathematics is irrelevant in the realm of
numerical analysis and should be shunned as useless theoretical gobbledygook.
But of course, here we are only with friends, and if we do not use big words and
show that the methods are efficient, who cares what they are called?
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Gauss S world

We consider the system of n equations and n unknowns of the form
©01 AXx = b,

where A is a square matrix and x, b belong to Kn. More explicitly, the system
may be written as

d\X\ £&12#2 + ===t d\nxn —&i,

021/ + d22x 2 + 02Axn —&
©02

dnixi A dn2x2 1t ===}fdnnxn —bn.

The objective is to find an equivalent system to eqn (9.0.1), that is, one which has
the same set of solutions as (9.0.1), but is triangular. As we saw in Section 3.1,
such systems with triangular matrices are very easy to solve.

9.1 The Gaussian elimination algorithm without
pivoting

The title of this section will become clear in the lines which follow. We are
concerned with an algorithm for which success is not guaranteed. Since we
discover the criteria for success as we go along, the only thing to do is to try it.
*  therefore, an algorithm for the lucky.

Just elimination

this™ Suppose that the coefficient an = in the system (9.0.2) is not zero—
0 B pivot. We are going to fill the whole of the first column under
zeros, by making linear combinations of row i, i = 2,... ,n with row

207
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1 We must, therefore, subtract dn/ni times the first row from the i-th row to
achieve our objective. The i-th row then becomes

It is clear that the coefficient of X\ in this row vanishes. We keep intact the first
row of the system (9.0.2). We now have a new system which is written as

Iy d\2 d\n \ / h \
d21d\2 d2\d\n d2ibi
0 b2 -
d22 - d2n - -
“11 X =
dn\d\2 dn\d\n dn|bj
dn2  —————- - 4 _
T " m 7 bn m /

The transformation from the system (9.0.2) to the system (9.1.1) can be denoted
in terms of matrices, since we are merely making linear combinations of the rows.
Let us introduce some new notatiam:

/d2 -

©.12) a= 1, p'= A, },), >$69'
\&nly

Let M and L\ be the matrices

(9i3 S =(-V and L\ C o

The inverse of M is L\. Indeed, by block multiplication:

L 3= \PIn-iJ O N I

_(ax1+0x(-p) 12x0+0x7/,_1r \
~V x1+/, 1 x (-P) x0+/, 'x/, D

am

An elementary calculation shows that the system (9.1.1) is equivalent to

149 MAX = Mb.
Another block calculation gives
-
M -V d 0 T=-Co
and
Mb

~ {o W
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If we let

we see that, if we know how to solve the system comprising the last n —1 rows,
the first row gives x\ very simply. Moreover, the set of solutions of the system
(.14 is identical to the set of solutions of the system (9.0.1), since we pass
from one to the other by a premultiplication with a regular matrix.

The system (9.1.4) is, therefore, equivalent to the system (9.0.1), since we
have not eliminated haphazardly, but have used a strategy which does not destroy
information. _

The new matrix MA has the following form (block notation):

where the asterisk denotes coefficients whose precise expressions do not interest
ws for the moment. The matrix Al has n —1 rows and n —1 columns. If the
element in the first column and the first row of Al is not zero (this is the second
pivot), then we can apply the same algorithm to Al that we applied to A and
fill the second column of MA with zeros from the third row, whilst retaining
an equivalent system. This procedure does not change the first or second row
of the matrix MA, since we add a multiple of the second row to the j-th row of
the matrix for j ~ 3.

By induction, provided that we do not meet a zero pivot, we obtain an
equivalent system for which the matrix is given by

/pivot * - * \
0 pivot === *

~ 0 == 0O pivot)

We have therefore described Gaussian elimination. It remains to interpret it
precisely in terms of matrices. This is the object of the next section.

912 Matrix interpretation of Gaussian elimination

N this section, we describe precisely the matrices which are involved in the
Ireflation algorithm.

tljheorem 9.1.1. Let A be an n x n matrix. Suppose that, in the course of
Process of Gaussian elimination, no pivot is zero. Then, there exists a lower
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triangular matrix L, with ones on the diagonal, and an invertible upper triangular
matrix U such that matrix A may be decomposed as

A = LU.

Furthermore, such a decomposition of A is unique. It is called the LU decom-
position of A 0

It is important to be familiar with the following proofs. They give subtle
insights into matrices and provide excellent practice at block multiplication.

Proof of Theorem 9.1.1. We prove the result by induction on the spatial
dimension. If n = 1, it suffices to take L = (1) and U — A. Assume the
statement to be true in dimension n - 1, i.e., for every matrix A of size n- 1
for which the elimination does not produce vanishing pivots, a decomposition
A —LU of the stated type exists.

The analysis of Subsection 9.1.1 shows that a matrix of size n satisfying the
conditions of the statement can be written as

(9.1.6) A = LiAi,
with L\ given by egn (9.1.3) and A\ given by eqn (9.1.5). The induction hx-

pothesis then implies that
A\ = L\U\.

©w,-C

However,
and therefore

Thus, the theorem is proved with

| ~(j/ ﬂ

which gives the existence. Assume now that there exist the two decompositions
A= L\U\ = L2U2

satisfying the stated conditions. Then, it is possible to write
L~L X

In consequence, the upper triangular matrix U2Uf 1would be equal to the I°
triangular matrix L~Li having only ones on the diagonal. Therefore, they *
both equal to the identity, which proves uniqueness.
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The matrix L contains a great deal of information that we are now going to
examine.

lemma 9.1.2. The element Lij of L, for 1$j < i ~ n, is the value by which
the i-th row must be multiplied at the j-th stage of the Gaussian elimination.

Proof. If the dimension n is equal to 1, nothing needs to be proved. Let us
show first that, for n > 1, the n x n matrix A can be written in the form

©L17) A —L\ ===n_\U,

with an upper triangular matrix U and lower triangular matrices L j, having ones
on their diagonal and of the form

with Lj being a square matrix of size (n-f 1-j). Assume that this decomposition
holds for the matrices of size at most n - 1, and let A be a matrix of size n
satisfying the conditions of the lemma. Due to the induction assumption, the
matrix A\ of egn (9.1.5) can be written in the form

©18 A\ = Z2 ==bn-\U,

with an upper triangular matrix u and lower triangular matrices L j, having ones
on their diagonal and of the form

Y,

(*i 0 \ /H e\
Vo =in—2A 0 u)

W& observe that

and that
O_ _ i
(o U-"Ln-\) N0 122 W J

Consequently, by letting
~"d

A using the relation (9.1.6), expression (9.1.7) is proved. Observe that
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with a lower triangular matrix L* having ones on its diagonal. Therefore, if we
let

u=(Wk M
Ve wk) ~
the upper left block being of size k x k, we will have

FHeeer I~=(0C fl
Thus, letting Ak = LkWKk, we may rewrite eqn (9.1.7) as follows:

>= (0° M) -

The analysis of Subsection 9.1.1 implies that

919 *-Gd, ZIL,))(T A+ ~K+int+is

and, by uniqueness, we see that

(9.1.10) L't+l = A*+1= A +1-p"ft+/ forl

l L«
(Pfc+| in—k—1/

On the other hand, if  denotes the first element of p[ and  is the column
vector made out of its remaining n —2 elements, it is possible to write

1 0 o\ 71 0 0\ /1 0 0
p'| 1 0 0 1 0 = =] 1 0
° 4. \o P2 I u P2 In—2

A simple induction now shows that L, which is the product of the matrices Lj, is
a matrix having ones on its diagonal, zeros above and below, and the p* aligned
in order of increasing j.

Remark 9.1.3. Multiplication between L\ and L2is not commutative (exercise).

Neither is that between M\ and Mz. Consequently, we cannot read the coeffi-
cients of the linear combinations which are used in the elimination from L =

O0.2. Putting it into practice: operation counts

9.2.1. The madness of Cramer 3 rule

By way of a comparison, we begin by evaluating the number of operations
essary to solve a system by Cramer 3 rule. From any first year maths co
recall that
D1 )
Xj = i=1...71
DO



g2 PUTTING IT INTO PRACTICE: OPERATION COUNTS 213

where each of the Dj, 1~ j ~ n, is the determinant of a matrix of n rows and n
columns. More precisely, DO is the determinant of the matrix A, and Dj is the
determinant of the matrix obtained from A by replacing the j-th column of A
by b. The cost of the calculation is therefore the same for all the determinants.
The formula for the expansion of a determinant gives

n
DO =det A=
a t=I

Here, a runs through the set of permutations of n objects and e(cr) is the signature
of the permulation a which has the value #1. It is known that there are exactly
n! distinct permutations of n objects. Each product of n factors requires n - 1
operations. Therefore, we must make n!(n —I) multiplications, and add the n!
products obtained, giving in total

nNn—»-fnl —1=n nH—1~ n () floating-point operations.

As we have n + 1 determinants to calculate, the number of operations necessary
to solve a system by Cramer  rule is of order

n((n + DY
as n tends to infinity.

Let us evaluate this quantity when n = 100. We can evaluate the factorial
by using Stirling § formula

N\ ~ nn+(1/2e~nV2H,

which is very accurate. We calculate the second term in this expression as
e~XD~ 104343, since log10e ~ 0.4343, and therefore

100 x 101! = 101 x 100 x 100!
- 100 x 101 x 001005 x 104343 x y/2n
- 10 26-4I0=5/A/ ©
~9.4x 10161

With a computer processing at 100 megaflops (108 floating-point operations per
seeond), we can do

108 x 365 x 86400 operations per year,

|ieqC* We rounc* to 3 x 1015 operations. Therefore, about 3 x 10146 years are

[years S\kour system- Taking into account that the universe is 15 billion
tnJ8Qr* *we w=uld need, therefore, at least 10135 times the age of the universe
I $We our system.
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9.2.2. Putting elimination into practice

In order to solve a linear system in practice, we calculate the LU decomposition
of the matrix of the system, supposing that it is possible, and then solve the
following two systems:

021 Ly=b and Ux=y.

Since the two matrices L and U are invertible, the systems (9.2.1) are equivalent
to the system (9.0.1). Each of the two systems (9.2.1) are very easy to solve
by successive substitution. We will see later that triangular systems require few
operations. We point out that the construction of the matrices L and U is an
intermediate result in the process of elimination. Consequently, it is necessary
to store the LU decomposition when we have to calculate several systems with
matrix A, so as to avoid pointless recalculation.

9.2.3. Operation counts for elimination

For the moment, we count the operations for the LU decomposition. The cost of
constructing Lj is the same as the cost of constructing L'-. This cost is precisely
the cost of calculating p*, a column vector of n - j rows. We therefore have to
make n —j divisions, since the elements of p* are the (Aj-i)kKl /itj, for k from
j + 1to n. Consequently, the total cost of constructing L is

n— n—l / >0
(.22 =
j=1 k=1

As the relations (9.1.9) and (9.1.10) show, the transformation from Aj to Aj+i
is made by modifying all the elements of Aj except the first row, which does
not change, and the first column, set to zero except for its first element. Fom
egn (9.1.10), each element of A j+\ requires a multiplication and a subtraction.

We have, therefore, 2(n - j —I)2operations to perform to construct Aj+\ h<nl
Aj. A
In total, constructing A n-\ requires

Dn@ - 1) 2n3

. _ _ (-
£2(n-j-1)2=2£>2=2
(n-j-1) 6 3

j=0 k=1
If we compare this last estimate with the estimate (9.2.2), we obtain the following
result:

Operation Count 9.2.1. The number of operations necessary to decomp<se »
n x n matrix into the form A = LU is of order 2n3/3, for large n.
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Let us move on to the operation count necessary to solve the systems (9.2.1).
The system Ly —b may be written as

2/i =bu
221 +2/ 2 = &

Lniyi + Ln2V2 + ===t 2h = bn.

To solve the first equation requires O operations, for the second, two operations,
and for the j-th it is necessary to perform j —1 products of 2 factors, j —2
additions, and a subtraction, giving 2(j - 1) floating-point operations. In total,
the solution of Ly = b costs

954 5= 8OITDN A K _1) operations.
j=i
We solve the system Ux =y in the same way, rewriting it in the form

Unn%n = 2/n
Un—,n—+*n—+ Un—HynXn ~ 2h-2?

UnXi + ...+ Ui,n-iXn-i + UinXn = yX

We see that the solution of row n costs one operation, row n —1 costs three,
and row n —j needs 2j —1. Consequently, the cost of solving this triangular
system is equal to the cost of the preceding one plus one operation per row,
giving

(n—Dn+n=n2
Intotal, we obtain the following result:

Operation Count 9.2.2. The total cost of solving the two triangular systems
©@21) of n rows and n columns is of order 2n2, for large n.

If we want to solve a 100 x 100 system by Gaussian elimination it would
c¥us 2x 1003/3 + 2 x 1002 ~ 6.6 x 105 floating-point operations. On the
sare computer as before, that would take 6.6 x 105x 10“8seconds, or less than
? thousandths of a second. It could not be done by hand, but it is certainly
completely within reach, even on a PC, which would take a few tens of seconds.

7% Inverting a matrix: putting it into practice and the
operation count

now ask another practical question: how do we calculate the inverse of a
jarix A? From Chapter 3, the columns v* of A~l are the images by A~I of
canonical basis vectors  and so

Av] = el.
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We are going to exploit the LU decomposition of A to calculate the vj . This is
done in the following two stages:

Lwi = and Uv]

From the preceding results, we would therefore need n x 2n2 operations, or 2n3
operations, to solve the two systems. But this count is too large. Indeed, the
triangular system LwJ = e-7restricted to its first j —1rows and columns has the
zero solution. Therefore, we just have to solve

wj = 1,
Li+i,jwj + Wj+i = O,

LnjW]+

The cost of the solution of this triangular system of n-j + Lrowsand n-j +1
columns is of order (n—j 1) 2operations. Consequently, the cost of constructing
is equivalent to

A-j+D2=" k2-y
=1 k=1
On the other hand, we cannot hope for the same type of economy in the con-
struction of the yi, since there is no reason why the last components of the wj
should be zero. We summarize this result as follows:

Operation Count 9.2.3. Let A be an n x n matrix having an LU decomposition.
Then, 4n3/3 floating-point operations are required to construct A~Il once the
LU decomposition is known, giving in total 2n3/3 + 4n3/3 = 2n3 operations.

9.25. Do we need to invert matrices?

We have just shown that it costs about 3 times as many operations to invert a
matrix than to solve a linear system. However, we may imagine that this loss
is compensated by an economy of scale if we need to solve many linear systems
with the same matrix A. Let us see if this is right.

Suppose that we must solve

Axk = bk,

where k goes from 1to K and K is large compared with 1 If we store the LI
decomposition then we would have to perform

2n3 .
+ 2K n2 operations

to solve all of these systems.
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Now let us consider the other hypothesis. The construction of A~I has cost
us 2n3 operations, including the LU decomposition. The calculation of each
of the n elements of A~Ibk requires n multiplications and n —1 subtractions,
giving n(2n —1) ~ 2n2floating-point operations for the product of a matrix with
avector. In total, this approach would require

2n3+ 2K n 2 operations,

which exceeds the result found previously by 4n3/3.

Consequently, we do not need to calculate the inverse of a matrix to solve
linear systems. It is only when we need the inverse of a matrix explicitly that
we should calculate it, and we use the LU decomposition for this.

For reference, let us calculate the cost of the product of two n x n matrices.
This is the same as doing n matrix-vector multiplications, giving 2n3operations.
This result is remarkable and serves almost as a conclusion to Section 9.2

Operation Count 9.2.4=The number of operations necessary to multiply together
twonxn matrices is of order 2n3. It is equal to the number of operations required
to invert an n x n matrix.

This would be the conclusion if we limited ourselves to the case of sequential
machines. In the case of parallel machines, it could be more advantageous to
calculate the inverse of a matrix once and for all when faced with a repetitive cal-
culation. It is very easy indeed to parallelize a matrix multiplication algorithm.
On the other hand, the algorithm for solving a triangular system by elimination
isnot parallelizable, since, at each step, it makes use of the result of the previous
calculation.

The choice of an efficient algorithm is dependent upon the computer tech-
nology available. It is therefore susceptible to evolution. Furthermore, there
Is not, generally, a simple choice of algorithm, since each problem suggests dif-
ferent choices. It is necessary, therefore, to try to understand the principles of
thre algorithms, with the aim of taking as sensible a decision as possible. It is
rot, however, necessary to program the algorithms which we could need in prac-
tlce, since there exist many program libraries, which are available on all sizes
Fmachines. These are often free, although sometimes, particularly for large
Mechines, they cost money.

93 Elimination with pivoting
=81 The effect of a small pivot

Pivot COUrse <f eliminat=n without pivoting algorithm, we find a zero
does rocess stoPs-” a pivot is very small, without being zero, the process

~ n<tstop, but the result can be tainted by considerable errors, as we are
90Ing 10 soe jn the example below.
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Let eb a small real number and consider the following system of two eq
tions and two unknowns:

ex+y=1

0.3.1
( ) X+y=2

Using elimination without pivoting, we obtain the following equivalent system:

ex+y=1,

Therefore, we immediately have the following value of y:

©.32) y = ~1

By substitution, we obtain

9.33) X = = ~1 |

Suppose that the number e is small enough for information to be lost in the
following floating-point operations:

10c=1 10@0¢=1

This will be the case if the mantissa of the floating-point numbers has k signif-
icant figures (in internal representation) and if e < (3-k~1, where /? denotes the
base of the representation of the numbers in the machine being considered. W
will suppose also that 1/e does not exceed the capacity of the machine.

In this case,

1©(@0c)=—@A0%¢
and
20 (10c)=—@O0¢e).

Consequently, the calculation gives

y=1.

The substitution gives
x = ([@Qy) Oe = 0.

The error committed in y was acceptable, since it was carried in the last decifli
of this number. The error in x is obviously unacceptable.
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Let us try the elimination on the following system, obtained after exchanging
the rows of the system (9.3.1):

X+y=2
ex4y=1

The same process of elimination as before leads to the following equivalent sys-
tem:

X+y=2
(1-6)2/ = 1-26,

which becomes, in floating-point arithmetic,
X+y=2
y=1
The solution, which is completely acceptable this time, is
x=1 and y=1

The error that we made with the first elimination came from dividing a
number by a small pivot e (see eqn (9.3.3)), which considerably amplifies the
errors.

In the same way, we could have swapped the order of the variables in egns
(©31) to obtain the system

y+ex=1
y+x=2

W& improve the results by this process.

932 Partial pivoting and total pivoting: general description
and cost

W& now describe the pivoting algorithms precisely.

In the partial pivoting by column algorithm, one stage of elimination consists
Fselecting from the first column the element an of maximum absolute value,
Yen exchanging row i with row 1, if i / 1, and, finally, filling the first column
. cept the first element) with zeros, using the process of elimination described
m Section 9.1.

In the partial pivoting by row algorithm, we select the element a\j of maxi-
~um ab”lute value from the first row, we exchange the first column with column

/c AN ancMwe an ehmination step. To exchange column 1 with column
QOmes down to making a change of variables

Vij=xi, vyi=xj, yk=xk for
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Finally, in the total pivoting algorithm we combine the two preceding strate*
gies by searching in the whole matrix for the element of maximum absolute
value. After exchanging the first row with the i-th row as well as the first and
j-th columns, we do an elimination step.

From the point of view of operation counts (and therefore the complexity of
the process), a pivot search by column or by row requires a search on n elements
and a total pivot search requires a search on n2 elements. A recursive search
algorithm on N = 2P elements costs p2p~1 tests and permutations. The total
cost of partial pivoting in comparisons and exchanges is

nj
57 «jio&j-
j=2

We find the order of this quantity by writing

i=2 i=2

1 r*2
— Inx — J[_nx—dx
2In2 [2 x=2 J2 A

n2log2n

An analogous calculation in the case of total pivoting gives

g2t

n

j"zléﬁ 2J J

rL £x21in X dX
In2

1 rx3 X=Nn rn
—INnxX
In2 [3 x=2 J2 3

n3log2n

The cost of total pivoting is an order of magnitude larger than that of Pd
pivoting. According to the implementation, comparisons and exchanges are
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or less rapid relative to floating-point operations, but it should be remembered
that total pivoting is much slower than partial pivoting. In fact, partial pivoting
is used more often than total pivoting.

9.3.3. Aside: permutation matrices

To interpret partial pivoting and total pivoting from a matrix perspective, we
need to express row and column exchanges in terms of matrix multiplications.
To this end, we define and study permutation matrices.

Let a be a permutation of n objects. The matrix Pa associated with the
permutation a is the n x n matrix defined by

Mt = 9

where 6y denotes the Kronecker delta.
How do we compose permutation matrices? Let a and a" be two permuation
matrices. Then

n
(Po-"P(n)ik = N 7 MNi(r(k) =
i=1

The nonzero terms in this sum must satisfy i = G*(j) and j = a(k). Conse-
quently, this sum has the value 1ifi = alo a(k) and zero otherwise. We see
then that
©39 Pa*P~Pa‘ov

Note that
Consequently,
935 Pax ={P,y

Regrouping (9.34) and (9.3.5), we see that the matrices Pa are orthogonal,

which is obvious a priori from geometric considerations: changing the order of

the components of a vector in Vh, or in Cn, does not change its Euclidean length.
In other words, the mapping a Pa defines a mapping from the permuta-

tiQh group on n objects into the group of orthogonal matrices On. This mapping

pirgslpecm the structure of the group and, therefore, it is called a group homomor-
Sm.

What is the effect of a left or right multiplication of a permutation matrix
nsome n X N matrix A? We have

(P<rA)ik — Nier(j) Ajk — Aa-i (g)fe.
j=1
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Consequently, the multiplication PaA is equivalent to operating the permutation
cr~l on the rows of A.
In the same way,

(APa)" = = " KT
i=i
The multiplication AP~ is equivalent to applying the permutation a on the
columns of A.

9.3.4. Matrix interpretation of partial and total pivoting

Elimination with partial column pivoting is interpreted as a matrix decomposi-
tion by the following theorem:

Theorem 9.3.1. Let A be an n x n matrix. Then, it is invertible if and only if we
can find a permutation <, a lower triangular matrix L with 1on the diagonal,
and an invertible upper triangular matrix U such that

(©.3.6) PaA = LU.
Decomposition (9.3.6) is not generally unique. 0

Proof. It is obvious that, if P*, L, and u are as given in the theorem, A =
p*L U is invertible.

Conversely, we argue by induction on the spatial dimension. 1fn = 1, nothing
needs to be proved. Assume that the statement is true for every square matrix
of dimension at most n —1, and let A be a square matrix of dimension n. Since
A is invertible, its first column does not vanish identically. Let 7li = an be an
element of maximal absolute value in the first column of A, and let r be the
transposition which exchanges 1 and i. As the square of a transposition is the
identity, we perform an elimination on pTa. As in egn (9.1.6), we let

PTA = L\AIi,

with A\ given by egn (9.1.5). We infer from the induction assumption that there
exists a permutation matrix an upper triangular matrix J7, and a loner
triangular matrix L\ having ones on the diagonal, such that

PalAl= L\U\.

We may now write

PeA= (4 paLkin)

However, we have the identity

©37) RA) /> £’))(0 Li)(o fA)
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If o\ is a permutation on n —1 objects, the permutation p on n objects which
leaves the first one invariant and acts as G\ on the n - 1 following objects has
the matrix

It is also the permutation matrix of Pp. We premultiply the identity (9.3.7) by
p and we then obtain
PpPrA = LU,

with

which proves the theorem.
The decomposition (9.3.6) is not unique, since the choice of transposition g
is not generally unique at each step of the elimination. (|

Elimination with partial row pivoting is interpreted by the following analo-
gous theorem:

Theorem 9.3.2. Let A be an n x n matrix. Then, it is invertible if and only if we
can find a permutation <, a lower triangular matrix L with ones on the diagonal,
and an invertible upper triangular matrix U such that

©398 APa = LU.
The decomposition (9.3.8) is not generally unique. 0

Proof. Let B = A*. From Theorem 9.3.1, B is invertible if and only if it has
the decomposition PaB = LU. Consequently, A is invertible if and only if it has
the following decomposition, obtained on passing to the adjoint:

A (Pa)* = U*L*.
W& have seen that (Pa)* = PG-\. Moreover, let D be the diagonal of U* and let
L'=tTZT1, U =DL\ o' = (H.
en>A is invertible if and only if it has the decomposition
APa, = L'U".
ISIs ex&ctly what we wanted to prove. —
I FinallySthe total pivoting strategy is interpreted by a decomposition
PoAPa. = LU,

B ~ro=*<fwhich is left to the reader.
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9.3.5. The return of the determinant

The determinant is not used to calculate the solutions of linear systems; it is
linear systems which are used to calculate the determinant! More precisely, we
obtain the value of the determinant of an invertible square matrix A from the
decomposition

PaA = LU,

which always exists. By calculating the determinant of each term of this identity,
we obtain

det (Pfi)det (A) = det (L) det (U).

The determinant of Pa is equal to the signature of the permutation o. We
determine an integer m(a) as follows: initially, m equals O, and each time that
we actually make a row permutation, in the search for the maximal pivot by
column, we add 1to m. The value of m at the end of the process is m(a). We

then have

det(P<D = (-Dm(<,).

The calculation of
n

det (U) = JJ Ujj
=1

is completely trivial and explicit, and det(L) equals 1 Therefore, we see that

©.39 det {A) = JJ Ujj.
=1

9.3.6. Banded matrices

A matrix is said to be full if it has few %Zzero coefficients. A matrix which is rot
full is said to be sparse. The most simple example of a sparse matrix is a banded
matrix. This is a matrix which only has nonzero elements on a certain nurber
of diagonals centred around the principal diagonal. We will see in this section
that the solution of a linear system for which the matrix is banded is often easier
than the solution of a system for which the matrix is full.

We begin with the following definition:

Definition 9.3.3. We say that the matrix A of n rows and n columns is banded
if there exists an integer ¢ 1such that

=> Aij=0.

In this case, if we want to specify the integer g, we say that A is a band-tf matrl
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If g = 1, Ais a diagonal matrix. If g = 2 A is a tridiagonal matrix of the

| A Cx O 0 0\
b2 a2 c2 0 0
0O b3 a3 C3 0
0 Bn-i An—+ CnA
\O0 Bn An )

In general, a band-g matrix has at most 2q - 1nonzero diagonals.
Such matrices can arise when we discretize partial or ordinary differential
equations. We consider an example in which we want to solve

-u" () =/7(), xE]O1[ u@=u@®=0

To discretize this problem, we look for an approximation to u at the points jh,
with h = 1/n and j going from 1to n —1 We will denote this approximation
to u(jh) by uj. We replace the second derivative u"(jh) by the finite difference

Uj+l ~ Wj + Uj-1
h2

which is justified by the truncated expansion
u{x-fhy-2u00 +ux-h=ha"  +0 (/4.
We are therefore going to solve the linear problem

U+ —2Uj + 11 B
h2 3=l

The matrix of this problem is

/ 2 -1 (] 0 - O\
-1 2 -1 0 0
0o -1 2 -1 0
0 -1 2 -1

Voo o -1 2

~hich is tridiagonal and symmetric. It has been shown in Subsection 4.6.2 that
Is matnx is positive definite. Another proof of this fact is given in Chapter 11
The essential property of banded matrices, from the point of view of LU
T%omposition, is stated in the following theorem:

ten=rem ~ n ke a band-g matrix. If A has the decomposition A = LU
aen ™ and U are band-gr. Due to their particular structure, L and U each have
most g nonzero diagonals. 0
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Proof. It suffices to reread the proof of Theorem 9.1.1, counting the nonzero
elements. The matrix L\ is given by

where p* is defined by
(An\

Adl
O -

Vel m
and the matrix L\ is therefore banded. In the same way,
t = (An == Alg O ... O0).

As A[ is band-# and pft" has nonzero elements only for the indices i,j ~ q- 1
we see that

Ax=A[ -p'V
is also band-#. The new matrix A\ is band-g. By induction, the result is clear.
|

Let us look at the advantage, in terms of operation counts, of banded matri-
ces.

Operation Count 9.35. Let A be a band-*/ matrix admitting an LU decompo-
sition. Suppose that n g (which implies, in particular, that n > 1). The
number of operations necessary to construct the LU decomposition is of order
n(2(q —1)2+ g —1), and the number of operations necessary to solve the two
systems

Ly —b and Ux =y

is of order n(4q —3).

Proof. The generic elimination step requires the construction of p>, which re
quires q — 1 divisions, and the construction of pPV, which requires @" ®
multiplications, the other elements of this matrix being zero. It is then nec-
essary to subtract from AJ_1, which requires (q —I)2 subtractions. The
construction of LU requires, therefore, at most (q- 1) 4-2(q- )2 floating-PO"
operations per row. There are at most g non-generic rows, and these require
least number of operations. Since n g, the number of operations necessary
construct LU is of order n((q —D + 2(q—1) 2. 1

The generic row of the system Ly = b has g nonzero coefficients, one of w 1
is equal to 1 Redoing Operation Count 9.2.3, the solution of this system requi
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2g- 2 operations. Similarly, the generic row of the system Ux = y involves g
nonzero coefficients and therefore requires 2g—I floating-point operations for its
solution. We thus obtain the count stated. (|

Remark 9.3.6. The preceding operation count shows that about 8n operations
are required to solve a tridiagonal system A. We can compare this estimate to
the number of operations needed to multiply a tridiagonal matrix by a vector
X. The j ~th component of the result is equal to BjXj-i + AjXj + CjXj+i, which
requires 5 floating-point operations. It needs around 5n operations to calculate
Ax, which is only a little less than to calculate A~Ix.

Remark 9.3.7. The inverse of a banded matrix A is generally not a banded matrix
(exercise). In the case where a band-g matrix admits LU decomposition, it is
enormously more advantageous to solve the systems Axk = bk, exploiting the
LU decomposition, than to calculate A~I. Each calculation of A~Ibk requires
0(2n2) operations, while each solution of Lyk — bk and Uxk — yk requires
0(n(4g —3)) operations. The difference is an order of magnitude.

94. Other decompositions: and Cholesky
94.1. The LD U decomposition

We can give a more symmetric character to the LU decomposition:

Definition 9.4-L. A matrix A of n rows and n columns admits an LDU decom-
position if there exists a lower triangular matrix L with ones on the diagonal,
aninvertible diagonal matrix D, and an upper triangular matrix U with ones on
the diagonal such that A = LDU.

We then have the following easy result:

Lemma 9.4-2. A matrix A admits the LDU decomposition if and only if it admits
the LU decomposition. The LDU decomposition is unique.

Proof. The proof of this result is completely parallel to that of Theorem 9.1.1,
the only difference being that at each step the diagonal of U is normalized.
Details are left to the reader. (|

From the algorithmic point of view, the construction of the LDU decompo-
sition is quite analogous to the construction of the LU decomposition, and the
reader can easily modify the constructions of Section 9.1. With the notation
1912) and (9.1.3), we see that the first elimination step consists of writing

g 0\ ATTHV \
0

With respect to the LU decomposition, the extra cost is the computation of
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] 1Efetis n - loperations. Therefore, the total overhead is

n— 2
A j ~ — floating-point operations,
i=i

which is negligible relative to 2n3/3.
When the matrix ,4is Hermitian and admits an LDU decomposition, we can
write
LDU = A= A* = U*D*L\

and deduce from the uniqueness of this decomposition that L = U* and D is
real.

In this case, we calculate about half as many coefficients, and the cost of this
decomposition is of order n3/3, for large n. Nevertheless, we have no guarantee
that decomposition without pivoting will succeed. An example of a symmetric
matrix not possessing an LU decomposition is given by

- C  )m |

If we use partial pivoting we destroy the symmetric structure of the matrix. If
we use total pivoting this will cost a lot more operations. In the section which
follows, we consider a case in which we show that it is useless to proceed by
pivoting.

9.4.2. The Cholesky method

Recall that a Hermitian matrix A is said to be positive definite if
X*Ax N 0, VX and X*Ax=0 => x=0.

If A is a positive definite matrix, it is invertible: if x € ker A then x*Ax =0
and therefore x = 0. The classic decomposition of a symmetric positive definite
matrix is described in the following theorem:

Theorem 9.4-3- Let A be a positive definite Hermitian matrix. Then, there exists
a unique upper triangular matrix C with positive diagonal such that

Remark 94-4- This result shows us that A possesses an LDL* decom positia®
Indeed, let A be the diagonal matrix whose diagonal is equal to that of C,~
let L = C*A-1. As C has a positive diagonal, A is Hermitian. Let D -
Then

LDL* = C*A~IA2A~xC = C*C = A
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proof of Theorem 9.4.3. The proof is by induction on the spatial dimension
n For n = 1, the matrix A is a single element a, and the vector x a single
component £ Consequently, on identifying &* = £),

X*AXx = E* @ £=a H2.

If A'is positive definite, then a > 0 and we have a Cholesky decomposition with

C = (y/a)-
Suppose that the result is true up to dimension n - 1 Let A be ann x n

positive definite Hermitian matrix. Then, it is of the form

= A

It is clear that A is also positive, definite, and Hermitian. We look for an upper
triangular matrix C with positive diagonal of the form

m(2 *)=-
where, of course, B will be upper triangular with a positive diagonal. We must
then have the identity

p2 Pm
(? 1l = a=c Rm*  B*B + m*m)-
Consequently, we must solve the following nonlinear system in /2, m, and B:
©4D p2= a,
©42 om = £
(A3 m*m+ B*B =
We first verify that a ©. Let ei be the first vector of the canc

Then, with the block decomposition

ei
have
t ed  JE a 0 "0 a
can therefore solve eqn (9.4.1) by choosing
u4)
[This relation implies that

©G45 m =
v/5~



230 9. GAUSSS WORLD

from egqn (9.4.2). To solve egn (9.4.3), it suffices to show that A - m*m is a
positive definite Hermitian matrix, and then to use the induction hypothesis. 1t
is clear that we have a Hermitian matrix. To show that it is positive definite,
we will show that, for all x £ C 1-1 (respectively, En_1), there exists a ££C
(respectively, M such that

©4.6) x* (A—m*rnj x = (E*

Here, we have identified £ with the complex conjugate of £ The left-hand side
of eqgn (9.4.6) is equal to
X*AX - X*m*mx

and the right-hand side of eqn (9.4.6) is

aE*E + Z*tx + X*e*£ + X*AX.
Equating these two expressions, we obtain
©4.7) a2+ fix +ix*t+ =0

Noting that (x)* = xX*£* = tx, we use the relations (9.4.4) and (94.5) to se
that eqn (9.4.7) may be written as

[o£+ B2 = 0.

Consequently, the choice of £is given by

It is now clear that eqn (9.4.6) holds for such a £ and we deduce immediately
that A —m™*m is a positive definite Hermitian matrix. Due to the induction
hypothesis, we see that we can find an upper triangular Hermitian matrix B

with positive diagonal that satisfies egn (9.4.3).
We now verify uniqueness. If A = C{C\ = C%C2, it follows from Remark

9.4.4 that A admits the following two decompositions:
A=L\D\L\ = L2D2 2.

Matrix D\ is the square of the diagonal Ai of C\ and matrix D2 is the square
of the diagonal A2z of C2. Furthermore,

Li =CIAfl and L2=C2A~71

The uniqueness of the LDL* decomposition implies that A2 = Af and, &
and A2 are diagonal with positive coefficients, they are equal. As L\ = "27/
see immediately that C\ —C2. We have therefore shown uniqueness.
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9.4.3. Putting the Cholesky method into practice and
operation counts

One step of the Cholesky decomposition consists of calculating
P = y/a,
m=-(A12 == Ain),
B*B —A - m*m.

The calculation of the first row requires the taking of a square root, the calcu-
lation of the second requires n - 1 divisions, and the calculation of the third
requires (n —I)2 multiplications and (n —I)2 subtractions. However, there are
some redundancies, since A and m*m are Hermitian. Therefore, we only need to
calculate the n(n —I)/2 lower triangular terms. Consequently, a Cholesky step
requires the taking of a square root and (n—21) + n(n —1) arithmetic operations,
giving n2 arithmetic operations. The final count is described as follows, after
summation over all the steps:

Operation Count 9.4-5. The Cholesky decomposition for a matrix A of n rows
and n columns requires n square roots and a number of arithmetic operations of
order n3/3.

The Cholesky method for solving a linear system with positive definite Her-
mitian matrix consists of determining the Cholesky decomposition of the matrix
and then solving the two triangular systems, which has negligible cost compared
with the decomposition, at least if the matrix is not a narrow-banded matrix.
In the case of a banded matrix, we can combine the advantages of a Cholesky
decomposition with the particular properties of banded matrices.

Remark 9.4.6. The Cholesky decomposition presents two advantages. We are

assured that a Hermitian matrix admits a decomposition as a product of two

triangular matrices without pivoting. Furthermore, the method requires almost

two times fewer arithmetic operations than the non-Hermitian case. The &lmost ~
corresponds to the cost of the n square roots, which take more or less time

according to the implementation.

95 Exercises from Chapter 9

"=b7]  Exercises on the rank of systems of vectors
P
Xerdse 95.1. What is the rank of the system of vectors:
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Exercise 9.5.2. Give the kernel and the image of the matrix A which has the
preceding vectors as columns.

Hint: the aim of the exercise is to find a method which does not use determinants.
It is particularly recommended to reason geometrically.

Exercise 9.5.3. Let U be the subspace of R5 generated by the vectors

1\ 2\

3 4 3
-2 -3 1 -1
2 4 -2

\ 3/ \2J

and V the subspace of R5 generated by the vectors
f1\ @&\

3 5 5

0 -6 3

2 6 2

W \3J V)

Find a basis of #, V, U + V, and U C\V.
Hint: the beginning of this exercise is identical to the preceding one. To find a
basis of U + V and a basis of U fl VV, geometric reasoning is required.

9.5.2. Echelon matrices and least-squares

In this section in three parts, we generalize the LDU decomposition to the case
of rectangular matrices and we use this generalization to solve general linear
systems by the least-squares method.

Let V =C1, W = C7, and A be a matrix of m rows and n columns. W&
denote by A* the adjoint of A defined by

(A% =Aji
We define the following vector subspaces:
Vi = ker A=
V2= ImA* =A*W,
95.1) .
v Wj=1Im A= AV,
W2 =ker 4* = {* €W A*x = O}.

We equip V and W with their respective canonical scalar products, that is,
n
(X)) = "2 XM ifxix" €
i—1
m
XD = A2 XX A XK N W
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These scalar products are denoted identically, but are distinct.

First part: elementary linear algebra

Exercise 9.5.4=Show that V is the direct orthogonal sum of W\ and \%, and that
W is the direct orthogonal sum of WA and W2.

Exercise 9.5.5. Give a necessary and sufficient condition on the spaces (9.5.1) so
that the system of linear equations

©52) Ax = b

possesses at least one solution.

Exercise 9.5.6. Give a necessary and sufficient condition on the spaces (9.5.1) so
that system (9.5.2) has at most one solution.

Exercise 9.5.7. We define a linear mapping AO from V2to WA by

©53 AOx = Ax, VWxGWV2

Find the kernel and the image of A$.

Exercise 9.5.8. Compare the kernel of A and the kernel of A*A, and deduce that

dimIm A —dim Im A*A.

The common value of these two dimensions is the rank of the matrix A and it
will be denoted by r. Warning! Matrix A is generally not square.

Second part: echelon matrices and the generalization of Gaussian
elimination

W call a matrix A echelon if it has the following properties:
Aij =0 ifj < f (), Aij(i) ~ 0 for all i such that / (i)™ n.

Here, / is a function from N into N which satisfies

/¢t+Dr/ O+ P

and /(i) js arbitrary. We say that an element A{ is a pivot (nonzero by
definition) of A.

E>ﬂ/vr_:ise 9.5.9. Give an example of a nonzero rectangular (m / n) echelon
Metrix.

erc2se 95.10. Count the maximum number of nonzero coefficients that row i

first ~ave* Show that, if A has k nonzero rows, these k nonzero rows are the
rows of the matrix and they are independent.
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Exercise 9.5.11. How many independent columns does A possess? (Use Exercise
9.5.8). Determine a system of independent columns of maximum dimension. You
can make use of the pivots.

Exercise 9.5.12. Let A be some matrix. Show that there exists a permutation
ai on {1,..., m} such that

PaiA = G1Du
where the matrix of the permutation is defined by
(Myis = o

and the matrices G\ and D\ are m xm and m xn matrices, respectively, of the
form

1 00 0 == (N
* 100 0 /dn  * e= *\
* 010 0 0 * == *
* 00 1 o . b= I
- /\O* -*/
\* 0 -V

Here, dn is zero or nonzero, and the asterisks represent arbitrary numbers.
Exercise 9.5.13. Using Exercise 9.5.11 as the first stage of an induction, show
that there exists a permutation r of {1,..., m} such that

©549 PrA = LU,

where L is a square m xm matrix with ones on the diagonal and U is an
m xn echelon matrix. Show how this decomposition permits the solution of the
system (9.5.2) when the condition of Exercise 9.5.5 is satisfied.

Exercise 9.5.14. Show that there exist matrices L and U of dimension m x r ad
r x n, respectively, such that

(955) PtA = LU.

Here, r is the rank of A.
Exercise 9.5.15. Show that UU* and L*L are invertible.
Exercise 9.5.16. We define B = L(L*L)"1L*. Show that

B2=B, ({1-B)x,Bx) = 0, X,

and conclude that B is the orthogonal projection on Im L.

Exercise 9.5.17. Show that ImL = Imi*A
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Third part: solution of a linear system in the least-squares sense

Exercise 9.5.18. Suppose that the sufficient condition for existence in Exercise
955 is not satisfied. We then seek to minimize

4>(X) = \\Ax-b\f.
Show that, if x minimizes “on F, then
©5.6) F{AX, Ay) - R(bAy) =0, £ V.

Derive a linear system satisfied by x. You can replace y by i in egn (9.5.6).

Exercise 9.5.19. Give a necessary and sufficient condition such that the preceding
linear system has a solution.

Exercise 9.5.20. Show that, even if the system (9.5.6) possesses more than one
solution, Ax is unique.

Exercise 9.5.21. If the system does not satisfy the uniqueness condition of Ex-
ercise 9.5.6, let x be such that

Il = min {Y\ : x minimizes O on V} .

Show that this x satisfies

Axelm A and xelm A*.

Express x as a function of B, the projection of Im A to W, and A$.
Exercise 9.5.22. Suppose that PT = 1| in the decomposition (9.5.5). Show that
*=zu*{uu*)~\tLyl*b
satisfies the conditions (9.5.6).
Exercise 9.5.23. Let
A+ = U*(UU*yI{L*L)~1L*.

What are the values of AA+ and A+A2

953 The conditioning of a linear system

W& consider the linear system
AX = G

res® “an *hver*kle square matrix. We perturb the data A and b by 5A and 5b,
Pectively?which results in x being perturbed by 5x. We then have

(A H5A) {x+ 6x) = b+ 5.
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In the following we denote a vector norm by | =] and the subordinate operator
norm of this vector norm by || =J|; see Section 10.3.4 for a definition.
We define the condition number k(A) by writing

k(4)=PIIM ~ 1]
Exercise 9.5.24=Show that, if \oA\ N 1/]]-A-4]|, then

M k{A) A6\ 1IMjN
L " 1-* (ANNSAWV P Wb\ + \\A\\J-
Exercise 9.5.25. Show that the condition number of A is bounded below by the

ratio JAn/Ai|, where An is the largest eigenvalue of A in modulus and Al is the
smallest eigenvalue in modulus.

Exercise 9.5.26. Show that, if |<tis the Euclidean norm (or Hermitian norm, in
the complex case) and the matrix A is normal, then the condition number of A
for this norm is precisely the ratio between the absolute maximum and minimum
eigenvalues.

Exercise 9.5.27. Give examples of matrices of condition number 1

Exercise 9.5.28. Give an example which proves that the condition number de-
pends on the chosen vector norm. Compare the condition number of a rotation
matrix in R3 for the norms 1, 2, and 0o. These norms are defined in eqns (10.23),
(10.2.4), and (10.2.5), respectively.

Exercise 9.5.29. Let

Calculate the eigenvalues of A and give k(A) for a norm of your choice, which
you should define carefully. Solve the two systems

Ax=(2)>» a{x+sx)= (20001) =

Compare the relative variation of the solution \SX\\X\ with that of the right-hand
sides of the systems. What do you conclude?

Exercise 9.5.30. Let

Compare the solutions of the systems
AXx = and A{x+ 5%

What is the amplication factor of the error?
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9.54. Inverting persymmetric matrices

We denote the transpose of some matrix B by BT.
In the following, M n denotes the space of real square matrices of n rows and
n columns. The identity matrix of M n will be written In.

Exercise 9.5.31. Let En be the element of M n defined by

/o 0 0 0 ==0 1\
0000 =10
0001 ==00
0010 ==00
0100 =00
vy 000 =0

We say that an element B of M n is persymmetric if it satisfies
B = EnBTEn.

Show that persymmetric matrices form a vector subspace of M n, denoted Vn.
What is the dimension of this subspace of M n? Show that the inverse of a
regular persymmetric matrix is also persymmetric. Does the subspace Vn form
an algebra for the multiplication of matrices?

Exercise 9.5.32. We say that a matrix is Toeplitz if it is of the form

( re n r2 - ra
r-1 ro n - rn_2
A = r-2 r-i rO -1, -3

Vel r—2 rn+3 **e o /

Show that the inverse of a Toeplitz matrix is generally not a Toeplitz matrix.
To do this, consider the matrix of finite differences given by

2 -1 0 = 0 A
-1 2 -1 - 0 0
0 -1 2 - 0 0
0 0 0O = 2 -1
1 O 0 0 === -1 \V;
Q

W' lat there does not exist a Toeplitz matrix B such that

BAnNn =
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We denote by Tn the set of positive definite symmetric Toeplitz matrices and
we only consider elements of Tn in the following. We propose to solve a system
whose matrix is an element of Tn. Without loss of generality, we can suppose
that ro = 1 We obtain a series (I,n,... ,rn_i) of real numbers such that the
corresponding symmetric Toeplitz matrix Tn is positive definite. We denote by
Tk the element of Tk obtained from Tn by taking the first k columns and the
first k rows. This is, therefore, the symmetric Toeplitz matrix corresponding to
the series (l,ri,... ,r*-i).
Exercise 9.5.33. Let

Rk= (ri,r2,...,r*)T.

Suppose that we know how to solve the system
TRWK = - RKk=

Calculate the block product

(h  EkVK\J ( Tk EKRk\ fh EkVk\
Vo 1 J \RjEk 1 )\o 1

and deduce that 1+ R jyk is strictly positive, by using the fact that Tk+i is
positive definite.

Exercise 9.5.34. Calculate the solution (zT ctk)T of the system

/ Th EKRK\ (*\ = (~Rk\
\RjEk 1 J\akd \-rk+iJ "

We can express z as a function of yk and a*, and then substitute into the equation
in ak.
Exercise 9.5.35. Show that the calculations of the preceding question need O(K)
floating-point operations.
Exercise 9.5.36. Let
Ak — 1d" Rk 9k =
Show that
fik ~ (I ~ "k—) Pk—-
Exercise 9.5.37. Give an algorithm, using the /7, to calculate the solution of the
problem
Tnyn ~ ~Rn
in 0(n2) multiplications or divisions.
Exercise 9.5.38. We propose now to solve the system having the matrix in
an arbitrary right-hand side b. Suppose that we possess the solutions of *e
systems
Tkxk = Bk and Tkyk = -RKk,
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where Bkdenotes a column vector formed from the first k rows of the column
vector b. @Qlculate the solution of

( Tk EKRK\ Bk\

\RjJEk 1jw " w =
whose right-hand side is the vector Bk+\.
Exercise 9.5.39. Give an algorithm based on the solution fn parallel *of the two

systems
TkXk = Bk = (bi,...,bK)T and =-(,——,rMT.

Exercise 9.5.40. Show that this algorithm leads to a solution in 2n2 multiplica-
tions or divisions, plus lower-order terms.
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Theoretical interlude

The rest of the book requires some supplementary knowledge of matrix analysis.
This chapter contains various information which is of a more analytical than
algebraic nature: properties of eigenvalues, matrix norms, spectral radius etc.

Just as the do-it-yourself expert finds himself with dozens of tools spilled over
the ground to do even the simplest repair, the mathematician needs an entire
workshop to understand matrices.

We are therefore on holiday (provisionally) from numerical analysis and, one
by one, we will construct the tools which will allow us to return to it.

10.1. The Rayleigh quotient

We begin with a definition:
Definition 10.1.1. Let A be a Hermitian matrix in a space of dimension n. For
x/0, let

X  X*AX

S rA(xX) = — .

(10.1.1)

The function ta is called the Rayleigh quotient associated with A.

The Rayleigh quotient of A is linked to the spectrum of A. This relation is
expressed by the two following theorems:

Theorem 10.1.2. Suppose that the eigenvalues of the Hermitian matrix A ae
arranged in increasing order:

AI VAN = = WA\ m
Then,

r)l(],%(ta(x)zﬂn and I;f(}jBta(x)=Ai.

240
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proof. Let be an orthonormal basis of eigenvectors of A correspond-
ing to the eigenvalues A. In this basis, x has the decomposition

]

X~ Xei
j=1
and we can therefore write
A
ra{}) = U3 *
It is evident that we have
Al £ : o3

and, therefore, we have the inequalities
Al "ra®”™ An, W™ O
If we take x = ei, then x*Ax = Ai, and if we take x = en, then x*Ax —An. [

The second theorem allows us to get all the eigenvalues of A from the minimax
properties of the Rayleigh quotient.

Theorem 10.1.3. Under the conditions of Theorem 10.1.2 we have

10.1.2) max _ va (x) —A¥,
dlmW k zEW\{O}
aoL3) min__va (X) = An_*+i.

dlm W k xGWA{O}

Proof. The second formula comes from the first on passing from A to —A,
which swaps the maximum and minimum and requires the renumbering of the
eigenvalues. We will therefore content ourselves with proving the first formula.
First of all, let W be the vector space generated by ei, ..., €*. It is of dimension
kand, by application of Theorem 10.1.2, we see that

max _ta X) = AN
xew\{ 0}

This shows us that

inf max__ rwWaO”Afc.
d|mW—Jk x6W\{0}
Q{f\Terse" Tet FUbe some subspace of dimension k. If Z is the space of dimension

be Is generated by e*, ..., en, the intersection of W and Z cannot
e need to zero. If it was reduced to zero then W and Z would be in direct
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sum, and the sum of their dimensions is greater than the dimension of the space,
which is absurd. Therefore, let z € WD

rA@@ " Z€nz1|\?0} rAQ@ =

Consequently,

%m%é rA ~rA()"

Since this property holds for every W, we see that

dinﬁIR]/\];:k xGr\n/\R?{(O} FA@) = \k.

It follows, from the beginning of the proof, that this lower bound is attained. [

10.2. Spectral radius and norms
10.2.1. Spectral radius

Definition 10.2.1. The spectral radius p(A) of a matrix A is the maximum mod-
ulus of its eigenvalues.

The following result is a consequence of this definition and of the theorems
relating to the Rayleigh quotient:

Lemma 10.2.2. Let A be a Hermitian matrix. Then,
(10.2.1) p@A) = r)’r(y% a @] =

The proof is left to the reader.

A classic and subtle exercise consists of showing that, for every square nxn
matrices A and X9,

(10.2.2) p{AB) = p(BA).

It goes without saying, that we make no commutativity hypothesis on A and Bm
We are going to show a stronger result in fact: the spectrum of AB is identical to
the spectrum of BA. Indeed, let (A x) be a pair of eigenvalue and eigenvector o
AB. We therefore have ABx = Xx, or, on pre-multiplying this relation with
BABx = XBx. Suppose, first of all, that Bx = y ~ 0. Then y is an eigenvector
of BA for the eigenvalue A If Bx = O then from the relation ABx = *
deduce that Xx = O, and therefore, B is not invertible. This implies that *
is not invertible: the rank of BA is dimImzZM ~ dimImi? < N. Therefore

is in the spectrum of BA. We have therefore shown that the spectrum oi
contains the spectrum of AB. The converse is obvious.
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10.2.2. Norms of vectors, operators, and matrices

Let V be a vector space of dimension n over K
Definition 10.2.3. The norm M of a vector x is a mapping from V to R+ which
satisfies the following properties:
@ IfNY\=0, then x = 0
@ A= K, Vx GV, VA6 K (homogeneity);
i) X+ W ¥+ W], Vx,y GV (triangle inequality).

We give some examples of norms: if x is a vector with components (%j)i®j™n
we define

i=i
which has already been defined in Exercise 2.6.2,

which is the Euclidean norm, and

(1025

which is the maximum norm, or £< norm. It is simple to show that these
expressions all define norms.
Let p e [1, 00f. The expression

lj=i
isanorm. See the exercises for a proof.

Another example is constructed from a Hermitian positive definite matrix A.
Let

1027 I*L = @ *Ac)V/a

This norm is deduced from a scalar product; it can be written as the sum of
Ihe square of the coordinates, with respect to a basis which is orthogonal in the
can<nical basis but usually not orthonormal. If A coincides with the identity

Natrx, then we fall back on the usual Euclidean norm. We now move on to the
efinition of a matrix nerm.

definitmém 10)2.2=A matrix norm is a norm | -] on a vector space of square
Prices, which satisfies the following algebra property:

102.8) PBIIMIALLLIBII-
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10.3. Topology and norms
10.3.1. Topology refresher

We assume familiarity with the definition of a metric space, and the essential
topological properties of a metric space: open and closed sets, neighbourhoods,
continuity, compactness, Cauchy sequences, and complete metric spaces.

Let Ej be spaces equipped with a distance dj X~ j ~ n). The topology on
the product space E = &j 1Sdefined by the product distance below

d(x,y) = 1max

A product of complete metric spaces is complete (for the product distance). A
product of compact sets is compact.
It is obvious that a norm || =j on a vector space defines a distance by

d(x,y) = |la:-/]|.

On the field K = E (respectively, K = C) the distance between x and y is
the absolute value (respectively, the modulus) of x —y. The product topology
on V = Kn is given by

d(i("},’)rf max \x -yj\.

Therefore, the product topology on V is defined by the norm |x]oo, and this is
the only topology which we will consider from now on.

Let || =] be some norm on V. We have the following inequalities, where
€))i<Nn is the canonical basis of V:

(103.1) m\ = A Wi ARV
3=l 3-1 j=1

We immediately deduce from this that all norms are continuous.

10.3.2. Equivalence of norms

Recall that a subset C of V is compact if and only if it is closed and bounded-
This remark allows us to deduce the following essential result:

Lemma 10.3.1. All norms on V = Kn are equivalent. In other words, if M »
N2 are two norms on V = Kn, there exist constants 7 > o and T N 7 suc™t

(1032 7™V (x) ® N2(x) $ TNi (x), VxeKn.
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Proof. Let 5 be the unit sphere for the norm |*|oo; it is closed and bounded
for the topology of V, and hence compact. Relation (10.3.1) shows that N\ is
continuous over V. Therefore, it attains its minimum and its maximum over 5:

7i M Ni QN Ti, VxeS.

Furthermore, 71 cannot be zero, since there exists y G S such that 71 = Ni(y).
If 71 were zero, then the definition of the norm would imply that y would be
zero, and we could not have \yjoo = 1 If x ~ O, we see that

We give a geometric interpretation of this result. Note that the unit ball for
anorm N on Kn is a convex closed bounded subset of Kn which is invariant
under the transformations x \x if J = 1 In Figure 10.1 we represent the
unit ball for some norm in M2.

It is possible to prove that, for every convex closed bounded subspace C
of non-empty interior, which is invariant under the transformation x Xx for
every A = 1, there exists a norm N such that

C={xeKn: N " 1}.

Agure 10.1: An arbitrary unit ball. Figure 10.2: The previous ball is in-
cluded in a round ball and contains
a round ball.
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This norm is given by the relation

N QG =inf{re M+ : x6rC} .

The equivalence of all norms means that we can insert the unit ball of a norm N
between scalings of the unit ball of another norm, as is indicated in Figure 102
We also give some representations in R2 of unit balls for the classic norms. See
Figures 10.3 to 10.6.

Figure 10.4: The unit ball of i2

Figure 10.5: The unit ball of p = Figure 10.6: The unit ball of "oc-
5

Figure 10.7: The unit ball for the norm | <a-
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Finally, to represent the norm |<a we let A be the diagonal matrix

The perimeter of the unit ball for this norm is an ellipse of semi-axes 1/Ai and
\/\2. Figure 10.7 is representative of the case where A2 X\.

10.3.3. Linear mappings: continuity, norm

Let V be a vector space of dimension n over K.V is isomorphic to Kn: if we
choose a basis ej in V, the isomorphism is a mapping @ which associates a vector
x to the n-tuple of its coordinates in the basis ej. We transport the topology of
Kn to V by this isomorphism, by defining a norm N on V:

N(x) = [0@&)]oo.

It is immediately clear that N is a norm. With the basis (fk)i*.k*n in F, we
define a different isomorphism  which will correspond to a different norm,

M{x) = 1°0*Oloo-

Since all norms are equivalent on &n, these two norms M and N are equivalent,
and the topology of V does not depend on the choice of basis which is used to
meke the isomorphism.

We give a concrete example of this phenomenon: let V be the vector space
of real polynomials of degree at most n. We describe two different coordinate
systems. The first consists of taking for a basis the monomials 1, X 1,X 2,..., X n.
W& obtain the coordinates of a polynomial P in this basis by the following

formula: o
. pt) @O
X -- T, - 01, .. =fly
J
which is simply Taylor § formula. To make the second coordinate system, we fix
n pairwise distinct real points, In the second coordinate system,
j = j =0,l,...,n.

The corresponding basis of V is given by
I m3x>=n frp

that” aie c’ass*ta” Lagrange interpolation polynomials. We easily verify

&) —fik-
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If we equip K" with the maximum norm, we thus construct two equivalent but
different norms. The first is

W O
AR TN
and the second is
max |P<«<j))].

Lemma 10.3.2. All linear mappings from a finite-dimensional space over K to a
finite-dimensional space over K are continuous.

Proof. From the preceding discussion, the study of the continuity of linear
mappings in finite dimensions is equivalent to the study of the continuity of
X Ax from Km to Kn, where A is an m x n matrix. We have the following
obvious inequality:

Py = maxijmAP
J=
<. N M Y Hie
=1 =1

Therefore, there exists a constant C such that

IMX*"CMoo0. VxeP.

We immediately deduce continuity.

10.34. Subordinate norms

In the preceding proof, the choice of norm |-l is a question of convenience. It
is clear that, if M and N are norms given on the finite-dimensional spaces V
and W, respectively, then, for every linear mapping /7 from V to W, there exists
a constant C such that

N )" CM (X).
Theorem 10.3.3. Let V and W be vector spaces of finite dimension over K ad
let M and N be the norms on V and W, respectively. Then, the lower hound
IVlIm,n of numbers C such that

N (f(x))*CM (x)

is a norm on the vector space of linear mappings from V to W and, furthermore
it satisfies

(1033) II/IIM,, - maj NI ®) - « N/

We say that the norm [J/]Im,tv is the operator norm of /, defined from the no
M and N.
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proof. We begin with the last expression: let 5(F) be the unit sphere in V for
the norm M:
S{V) = {xeV: MX) = 1}.

we saw previously, 5(F) is a compact subset of V. Therefore, the continuous
function X N(f(x)) attains its maximum on 5(F). Let F be this maximum.
It follows that

max N (f())=Tr, VrEM,
M (x)=r
which is a consequence of the homogeneity of the norm. From this we deduce
that
sup N ()= sup sup N/ @H)=T.
M (*K 1 1€ [0,1] M(x)=r

It is clear that this upper bound is attained on 5(F). Then, if x ~ 0
N{F{))/M(X) = N(F(X/M(X))). The element x/M(X) is in 5(F) and we again

have
T = max N(CY)
X0 M(x) *

Itis obvious that N(f(x)) » FM(x) for every x in F and therefore, ||[/]|mtv”~ F.
Conversely, since the upper bounds are attained, there exists a y %0 such that
N({y)) = FM(y) and therefore, ||/|]jmat ™ F.

It remains to verify that ||/]Jm,n is a norm. Positivity and homogeneity are
obvious. The triangle inequality is true as

Jmax N (F.09 +9(9) » max N ((9)+ max N(g0))-

Fnally, if |J/]Jmtv = O, N(f(x)) = O for every X, and therefore, / = Q. —

In the particular case of an endomorphism / of F (that is, a linear mapping
from V into itself), we say that the norm of |}J/]Jm,m defined from a vector norm
M is subordinate to the norm M. For simplicity, we will denote this operator
n™ II/lim = |Mljlmm.

Lemma 10.34. Let M n be the n2-dimensional vector space of nxn matrices, and
let N be some vector norm on Kn. Then the operator norm || =|t?subordinate
to the vector norm TV, is a matrix norm.

Pro<t. It suffices to verify that if A, B EM n, then
1034 PBII. “lIAIUB]I,

~onw>we have

N ( ABx) P|]. N ( WAV UBIUN (X) .

P e result is therefore clear. O
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10.3.5. Examples of subordinate norms

We will calculate the corresponding subordinate norms for some of the vector
norms defined previously:

Lemma 10.35. Let Abe an n x real
operator norms |j4]];, to the norm £, for p = 1, 2, and oo, are given by

(1035) Pill = £17~h
1=
(10.36) Plloo = max 2 1 |,
3-1
and
(10.3.7) PlI2= M) = s/AAAN).
Proof. By definition
Pill = X, VAXXK .
X —
Now,
Pxli=z£ £
i=1 3=1
i= J=1
n n
NENFJI**E£P « |-

i=1 i=l
Therefore, we see that

PIli ~ max”™ \Aij\.

In fact, we have equality here: choose k such that

n n
EP<*I = maxV,_1°1
=i 3 &

and Xj = Sjk. Then,

P*lli =£ 7. Aijsjk
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We have therefore shown that

J=1

Similarly,
Plloo = \max, \Moo-
We easily verify that

Plloo < Isisn -

Conwversely, let k be such that

1038

Suppose that the quantity (10.3.8) is not zero. We choose x such that

i {\AijAkj ifAkj O
1= 10 otherwise.

Then, the reader may verify that, for such an x1|xJoo = 1and
n

I"loo = 72 YMk\ m
j-1
This shows us that

Plloo = ¢ E 171 -
i=i

The case of the Euclidean norm is a little different, since we do not generally
have an explicit expression for \WA\2- Indeed,

*AO I*I2
Out VAN = (AX)*Ax = x*A*Ax and, furthermore, W\ = x*x. We recognize
a Rayleigh quotient. To get its value it would be necessary to calculate the
largest eigenvalue of A*A. It is immediate that A*A is Hermitian, positive, and
“mi-definite and, therefore,
\\A\\I=p(A'A),

< Lemma 10.2.2. Using the equality p(A*A) = p(AA*), we see that

Plla=\/pM) = VTIAAY),

*hich Proves the lemma. O
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10.3.6. The Frobenius norm is not subordinate

We have seen that all operator norms are matrix norms (which have the algebra
property). There are matrix norms which are not subordinate to any vector
norm. An example is the Frobenius norm of a matrix, defined by

F (A) = \/trace (a*A).

Recall that the trace of a square matrix 8 is the sum of the diagonal elements.
ﬁe have
Vu = (A % Aji= jr AjiAji = £
j=1 i=1 3=1
Consequently,

FLA?=)r [7]2. j
ij=1

The Frobenius norm is, therefore, nothing other than the Euclidean norm of A
seen as a vector of Kn . It is therefore clear that this is a norm. We verify the
algebra property:

F(AB)2= J2\(AB)ikR="£ " "AijBik = £ & aijBjkAn Bik-
ik Ko ik j,l
Let

uit = E pad vit = E

Then, by virtue of the Cauchy-Schwartz inequality,

1/2

F (aB)2= 22ujevit ~ [ e fe Vjtf) -
it vt )\ )

But
M 2="" AM ANE |jANJE Nj2-

Consequently,

EM2 E LA ijfA

We can derive an analogous formula for B, and we see that

(10.39) F (AB
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We will show that the Frobenius norm is not an operator norm (subordinate
to a vector norm), indeed, the Frobenius norm of the identity has value y/n. On
the other hand, for any vector norm iV, |/]jtv = 1 Therefore, if n ~ 2, the
Frobenius norm is not an operator norm. However, the Frobenius norm gives a
useful estimate of []A]|2, and it is convenient because it is explicit. Indeed, we
know that if A=A has eigenvalues ~ij which are all positive or zero and arranged
in increasing order

M VAN == AN Pm
then
trace (A*A) =~ Hj
j=i
and
P{A A —M-

We therefore have the estimate

p(A*A) " trace (A*A) N np(A*A),
which implies that
(10310) [HI2"F (A) < y/M\A\\2.

It remains to see a simple and useful application of the equivalence of norms
to the convergence of sequences of matrices.

Lemma 10.3.6. The following assertions are equivalent for a sequence of matrices
Bk belonging to Adm,n:

@ {BK)ken converges in yMfim,n equipped with some norm N;
(i) Each of the sequences (Bk)ij converges in K;
(i) For every x € K, B~x converges in km .

Proof. All vector norms are equivalent on a finite-dimensional vector space.
The space M mpn is equipped with a norm N and we let

™ 1,0. = mMax \Bij\,
Inj~An

\%ié:h is also a norm on M mn. Therefore, there exists a constant 7 > 1 such

*% therefore clear that (i) is equivalent to (ii). To show that (i) implies (ii)
< that, if Bk tends to a certain limit B, there is convergence for the norm
I "™n Particular. Then,

Bkx - Bx 1" |Bk -
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and, therefore, BKkX tends towards Bx.

Conversely, from (iii) we deduce that B”ej tends to a certain limit for
every element ej of the canonical basis of Kn. As B”e” is the j-th column of BK)
we see that (BK)ij converges. We can therefore apply (ii), which is equivalent to

. O
10.4. Exercises from Chapter 10

10.4.1. Continuity of the eigenvalues of a matrix with respect
to itself
We say that a norm || =] on Kn (K = Mor C) satisfies the A property if the

operator norm that is subordinate to it satisfies the following condition: for every
diagonal matrix of the form

/Ai 0O =\
A2 O
ID diag (Ai,A2? ==/N)
0O A! O
\0 0 A/

the norm of D is given by
= max |Ai].
Al I<s<n A
All of the matrices considered in this section are square and of order n.

Exercise 104-1- We denote by X{ the i-th component of the vector x € WL
Show that the following norms satisfy the A condition:

IMloo = &%, la”l.

In all that follows, the norm || = satisfies the A property.

Exercise 10.4-2. Calculate the operator norm of
(pIn - diag(Ai,A2,..., An)) 1

when /i is not equal to any of the A
Exercise 10.4-3. Let A be a diagonalizable matrix, whose eigenvalues are denoted
by Aj, with i going from 1to n, and let P be the corresponding transform”dL

matrix
P 1AP = diag(Ai,A2,...,An) = D.
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Let E be some matrix. Show that, for every eigenvalue / of A + E, we have the
inequality

min [/*-A4£]PITIP-1/11125]]-
To do this, denote an eigenvector, associated to the eigenvalue Aof A+ E, by x

and bound from below the norm of (fi—A)~IE, by studying the action of this
operator on X.

Exercise 10.4-4=Deduce from the preceding question that the eigenvalues of a
matrix are continuous with respect to the matrix. Give as precise a formulation
as possible of this assertion.

Exercise 10.4-5. Suppose that the matrix A is normal. Show that we can choose
a norm satisfying the A property such that, for every eigenvalue # of A + E,

mm |jx-Ai]l * |IEll-

104.2. Various questions on norms

Exercise  10.4-6Let p € ]1, 0o[, and let q be defined by
.
P Q

Show that, for every a and f} in R+,

Exercise 104-7. For x in Kn, let
1041

Deduce, from the preceding equation, the Holder inequality
n
MXJVIN sj Yo W .
3=
Exercise 10.4.8. Show that we have the Minkowski inequality

I*+ >3P < Mp + Mp-
\erify that egn (10.4.1) defines a norm on Kn.

Exercise 10.4.9. Let Pn be the vector space of polynomials of degree at most n
w'h coefficients in K Given m ~ n -1-1 distinct points of M Show

Winter = n NP X
0efines 5 norm on Pn.
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Exercise 10.4-10. Let be the space of complex trigonometric polynomials of
degree at most N and period 1 This is formed of functions from R to C of the
form
f(x)= £ aje**-
k\*N

We equip Ta with the norms

104.2) k= (£ 1« /E>;})*
\\M N 0

for k~0. Quickly check that the expressions (10.4.2) do define norms. We
denote by D the differentiation operator from Tyv to itself. Calculate the norms
\D\k+hk and ||PJU,f, for every positive or zero k.



Iterations and recurrence

We know, from Chapter 9, that elimination can be used to solve linear sys-
tems in a finite number of machine operations. However, there are at least two
non-elementary difficulties. The first one is that the LU decomposition is ap-
proximately as bulky as the original matrix, and the Cholesky is about half as
bulky as the original decomposition. However, when discretizing partial differ-
ential equations, we do not even create the matrix as an object in the computer
memory. We are content to describe it by its action on vectors, and for that we
do not need the whole matrix in memory, we just need an algorithm.

The second reason is that, even when it is convenient to create the matrix
on the computer, either as an array of numbers or as a sparse matrix, i.e., by
giving only the indices and values of its nonzero coefficients, we have to deal
with another fact: solving a triangular system is not very efficient on parallel
machines, since we need all the previous results at any given step before we go on
to the next step. But the essential factor which slows down parallel computations
is the communication time between processors. Solving a triangular system
is an essentially sequential task and, therefore, it creates a bottle-neck on a
parallel machine. Hence, it is important to have alternative ways of solving
linear systems.

The alternative is to devise an iterative solution, i.e., to replace a process in
finite terms by a process in infinite terms. This looks like a terribly awkward
thing to do. We lose the safety of algebra to go into the realm of (approximative)
analysis. In fact, this process is applied mainly to very large matrices, which
e usually from an ordinary or partial differential system: we know that we

ave committed an error when discretizing our problem; therefore, if we do not

e our problem exactly, but within an acceptable error, we can safely assume

this is enough for all of the purposes which we have in mind,

ft remains to see how to construct such methods.

. The following methods which are presented in this chapter: Jacobi, Gauss-

and over-relaxation are somewhat passe, since, nowadays, the favoured
F Ive method for solving a linear system is the conjugate gradient in the
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Hermitian case, and its generalizations in other cases. And, to be completely
true, the conjugate gradient method is a method in finite terms, which is used
as an iterative method: if n denotes the spatial dimension, it can be proved that
the conjugate gradient method stops after n iterations; however, in practice, only
m C n iterations are used.

However, there are two important ideas which are—still—widely used in prac-
tice. Firstly, multigrid approximations are based on refined versions of Jacobi§
method. The second is that, with the use of a pre-conditioner, i.e., an approxi-
mate inverse, iterative methods can be made extremely efficient.

Therefore, some of the more refined and modern iterative methods are treated
in the problems section at the end of the chapter: Richardson ¥ pre-conditioned
method, gradient and conjugate gradient methods, and an initiation to multi-
grids. A much more extensive treatment is given in Canuto et a. [14].

Another reason for studying iterative methods is that they are discrete models
of differential equations, and they display, indeed, many of the phenomena found
in differential equations, including exponential growth or decay. Then, they are
termed linear recurrences, and they are, in fact, the key to the understanding of
numerical schemes for ordinary differential equations and, in particular, of mul-
tistep methods. Finally, they give us a few explicit, or almost explicit, solutions
of linear difference equations, which are extremely useful to understand what is
going on in the discretization of linear partial differential equations. Therefore,
they are extremely important building blocks.

11.1. Iterative solution of linear systems

Let A be an n x n matrix. Suppose that
111y A=M-=N,

where M is an invertible matrix. In practice, we assume that the system with
matrix M is easy to solve, for example, if M is diagonal, tridiagonal or triangular.
We define a sequence of vectors xk by a given initial vector xX= and a recurrence
relation:

11.1.2) Mxk+l =N xk +b.

Suppose that the sequence xk is convergent. Then, if X*== lim”~oo0 we ae
the relation
M= = N2 -fb *=> AX°==h

In other words, if the sequence of xk converges, then its limit is the solution
the linear system Ax = h.

We will ask ourselves several questions about this sequence. Is it convergent
At what speed does it converge? What choices can we make when decomp<s
A in the form of eqgn (11.1.1)?

?
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Two examples of iterative methods

For the following two examples we suppose that A is an invertible matrix which
has no zero diagonal element.
The i-th row of the Jacobi method is written

(A113) anx\ + ...+ «t,i-IMf-i + -f + m— =
Knowing xk, we find the value of xk+l by solving each row. We can even solve

these n equations in parallel.
The Gauss-Seidel method is a modification of the Jacobi method which con-

sists of using the values xf+1,..., xK* calculated previously in the i-th equation.
Consequently, this i-th row is written

(114 anxkHl+ ... + aM ixf+/ + au+ a<,j+Hix*+l + ... + ainx, =

We will determine the matrices M and N in each of the cases examined. For
this we define the following decomposition of A:

115 A=D —E —F,

where D, E, and F are given by

d1.16)
a1y
and
A118) -Aij if <
0 otherwise.
Thus Dia diagonal matrix, whose diagonal elements are those of A, - E is lower

triangular with O on the diagonal (in a way, this is the lower triangular part of
Ni and —F is upper triangular with O on the diagonal (the upper triangular
Part of 4). With this notation the Jacobi method is written as

D xk+1 - (E+P)b,
which corresponds to the choice M =8nd N = + The Gauss-Seidel
“tethod is written as

(D - E) xktl = Fxk+ b,

which corresponds to the choice = and N =



260 11 ITERATIONS AND RECURRENCE

Elementary theory of the convergence of iterative methods

We begin with the following elementary result:

Theorem 11.1.1. Let an iterative method be defined by eqns (11.1.1) and (11.1.2).
Suppose that there exists a vector norm | = such that, for the corresponding
subordinate norm denoted || =], we have

(1119 HV"IAL < l=
Then, for every initial a0, sequence (11.1.2) converges. 0

Proof. Let B = M~IN and ¢ = M~Ib,and let kK~ O. Then it is equivalent to
write egn (11.1.2) as

(11.1.10 xk+tl =B xk +c.
Consequently, we have
Xktl- xk= Bxk+ ¢ - Bxk~I - xk~r)
for any r ~k. It follows that
Xkl - x k= Bk ( 1- x°).

Consequently, for k >

xk—xI —  xj+I -~ ~ X] - x99,
j=e j=e
where by convention, B< = I. The triangle inequality allows us to write
1> - E iw ki1-*<]~» k1- *].

This proves that (xk)k™>o is a Cauchy sequence, and therefore that it converges

We can also deduce the convergence result from the fixed point theorem. The
mapping X Bx + ¢ from Kn to itself, equipped with the norm |<=|is a strict
contraction. Therefore, it has a unique fixed point which is obtained as the linT
of the sequence of iterations (11.1.2).

Note that we have obtained a convergence result, which is a result of a top”
logical nature, from a hypothesis on the norm of the matrix A, which is a
pothesis of a metrical nature. This situation is not, in itself, scandalous, but
are going to show in what follows that we can link topological information
information which does not depend on the norm.
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Detailed theory of the convergence of iterative methods

The answer to the question posed at the start of this section is summarized in
the following result:

Theorem 11.1.2. The iterative method (11.1.2) converges for every initial x> and
for every vector b if and only if p(M~IN) <1. 0

This result is often not very applicable since the norms appearing in Theo-
rem 11.1.1 are a lot easier to calculate than the spectral radius. Nevertheless,
Theorem 11.1.2 is a notable theorem. It is a corollary to the theorem given
below:

Theorem 11.1.3. Let ibeannxn matrix with coefficients in C\ The following
two assertions are equivalent:

@ For any x, Akx tends to O as k tends to infinity;
(i) The spectral radius p(A) is strictly less than 1 0

Proof. We show first that (@) implies (ii). Let Abe an eigenvalue of A and let
x be a corresponding eigenvector (of course, x is not a null vector). We have

Akx = \kx.

Itisclear that | < 1
Conversely, recall the following first year result: for every square matrix A
there exists an invertible matrix P, a diagonal matrix D, and an upper triangular
matrix N with zero diagonal and commuting with D , such that
A =P~ (D+ N)P.
It is clear that the diagonal of the matrix D consists only of the eigenvalues of
A Calculating Ak:

Ak= (P-10 AN)P) (P"1{D + N) P) ==(P"1(D AN) P)

k identicél factors
= P"1(D AN)kP.

Therefore, it suffices to calculate (O +N)k, which the binomial formula enables
W to do as follows, due to the commutation hypothesis:

un.11) @+I\]<=_’_‘k2ci BNINE

Tich)S reaC®er may verify N Is nilpotent: Nn = O, since at each multiplica-
IOn number of zero diagonals increases by one. Consequently, the sum in
; Uhl.1D)isasum f mOst n terms for kK~ n:

n—

Jr C BDk-jNj.

j=0
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Let ||« be a matrix norm such that |[E{| = p(D) = p{A). This is the case for the
norms subordinate to |=p for 1" pS 00. We therefore have the

(11.1.12) HO+ M *Y ,Clp{D)k-t\\Ntf.
j=0
It is then clear that, if p(D) < 1, (D + N)k tends to zero as k tends to infinity.

In particular, examination of the inequality (11.1.12) shows that there exists a
constant C < 1 and a constant D, such that

(11.1.13) N4 AC KDD

From this result, we immediately deduce Theorem 11.1.2:

Proof of Theorem 11.1.2. Suppose that p(M~IN) < 1 Then, with the
notation of Theorem 11.1.1, B = M~IN and ¢ = M~Ilh. We have

k-1
xk=Bk=+ J2 bJc”"
j=o
Relation (11.1.13) shows that Bkx= tends to O geometrically and that the se-
quence of partial sums tends to the sum of the convergent series
Zljlo B*c- To show the converse, we first of all consider the complex case. If

p(A) M 1, there exists anx” 0 such that Ax = Xx with 4 = p(A). If we begin
with xX== 0 and ¢ = x, the sequence of Xk is given by

**_(!>*)*_ 1

which diverges.

If we consider the real case, two possibilities present themselves: either A
possesses a real eigenvalue A whose absolute value is equal to p(A), in which
case we return to the preceding situation, or every eigenvalue of A of modulus
p(A) is complex. In the latter case, they appear as complex conjugate pairs.
We define an operator A on C 1 by the following process of complexification :
if x ERnand y G Rn we let 2 = x + iy which we identify with the vector
(xj -f from C 1 The operator A operates on C 1by

A X+ iy) = AX 4iAy.

The reader may verify, as an exercise, that A is C-linear. The characteristic
polynomial of A is the same as that of A, and therefore, they have the sare

1For the reader familiar with the notion of complexifying a real vector space, we return
the preceding case by placing ourselves in the complexified space, see [59].
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eigenvalues. Let A = A+iu= re'e, 0/ k~ be an eigenvalue of A si

p*A) = |A- Therefore, there exists a vector z = x + / 0. such that
Ax+ iy) =+

We have
Ak  (x+iy)=A
We deduce, from this, that

Akx = x+itH) =i A +A
Similarly,
Aky= @+iy) =" A -A
Since 3A O, we verify that y ~ O. If we let ¢ = y and x© =0, we see that

k-1 1k-1

xk = "2 Ay = X3z ~
i=0 Zlj=0

which diverges as n tends to infinity. —

Comparison of the norm of a matrix and its spectral radius

Wk begin by bounding below the norms of matrices by means of the spectral
radius:

Lemma ILL4 Let A be an n x n matrix with complex coefficients and let J|* |
be some matrix norm on M n(fC). Then p(A) * WA\

Proof. Since we are considering the complex case, we know that A possesses
an eigenvector for every eigenvalue A whose modulus is equal to p(A). Let x
be such an eigenvector. If the norm that we are considering is a norm which is
subordinate to TV, it is sufficient to write

P (A)N(x) = N(Ax)"\\A\\n N (x),

and therefore, ||JAllat » p(A). We are going to prove this result for a matrix
norm in the following way: the product xx* is a nonzero n xn matrix. We have

AX —AX,
and therefore, on right multiplying by x*,
AXX* —\XX*.
~ence, on using the algebra property,

W1 AT

gives us the desired result. O



264 11 ITERATIONS AND RECURRENCE

To bound matrix norms from above we restrict ourselves to subordinate MO
and we begin with a result pertaining to matrices with a spectral radius less than
1

Lemma 11.1.5. Let A be an n x n matrix with coefficients in K such that p(A) <
1 For all vector norms M, it is possible to construct a vector norm TV, dependent
on M and A, such that

Mil* < i-
Proof. Let
00
(11.1.14) iv (X) = M (A>X).
j=0

This expression is well defined for all x by virtue of relation (11.1.13), which
assures the geometric convergence of the series which defines TV. We verify that
we have really defined a norm: it is immediate that TM(X) ~ O for every X. Let
Abe a scalar, then

[<o>] <D m
N@A)=1T MEA)TTH A=K ).
j=0 j=0

Finally, if x and y are vectors,

Nx+y)= MA E+yYy)*" MAX+MAY o+
j=0 j=0
If N(X) vanishes, then the first term in the series defining TV vanishes, ad
therefore, M(x) = O, which implies that x vanishes. We therefore see that Vis
a norm on Kn. For N(xX) = 1, we calculate TV(Ar):

00 00
(11.1.15) N (AX) =~ M¢+1x) =3 Tm (
j=0 i=I
As a result
1. PHjv = AT (AX) = -
(11.1.16) jv Nr?x%é 1 A NTXa)é | Q@

The function M attains its minimum on the compact set {x : N(xX) = B a(®
this minimum is not zero. Consequently, we have proved that |f4jtv< L

From the preceding result, we are going to obtain a precise lower bound on tre
spectral radius in terms of a well-chosen subordinate norm:

Theorem 11.1.6. For any matrix A e A4n(K) and any e > O, there exists a vector
norm TV dependent on A and on e, such that

(11.1.17) +
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proof. Let B = A(p(A)-fe) 1t is clear that <1l W
apply the preceding theorem to B and there exists an N, such that

1*11* < 1-
Consequently,
= L1 ell +e)<p(A) +e.
This gives us the result. [

We will now construct an example of a vector norm N for which 141 < 1when

/1/2
““VO 172/
We choose
N ) = alai] + x2\m
Let (1/2) + e = p&1/2,1[ and seek an a, such that

Ao+ 105x2 + N p{a\xjl + g2D.

It suffices to verify that

-]*i] + 102 |x2]+ < (]| tea) xil + Q +e€) H-
We see that it is sufficient that
1024 < 6.

If we take e = 10 *, for instance, which is not very small, we are led to choose
a= 10-26. The unit ball for this norm N is, therefore, the set

{xeR2: 10°B 4| + p2|" 1}.

Geometrically, this unit ball is a lozenge whose diagonals are the axes. The
diagonal along x\ has 1026 times the length of the diagonal along %6 It is
quite difficult to draw since 1026 is a very large number: recall that Avogadro3
nunber is about 6 x 1023 and this is the number of molecules contained in about
p litres of the air which we breathe. Suppose that the small diagonal of our
<zere measures 1 micron. Then the large diagonal has a length of about ten
y Tyears- We would need the aid of the drawing instruments of that celebrated
Crema hero ET to be able to draw this type of figure.
Finally, we prove a limit theorem which allows us to recover the spectral
I uis of a matrix from any norm:
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Theorem 11.1.7. Let A be an n x n matrix with complex coefficients. Then, for
every norm || =< on M n(©),

(11.1.18) un S&f k=p(A).

Proof. For every vector norm M, [JA]Im * p(A), and for every e > O there
exists Ne such that 1 1 ~ p{A) 4-e. We easily verify that p(Ak) = p(A)k by
referring to the Jordan form of A. Consequently, we have the inequalities

(11.1.19) p@* N N (p(4) + e)k.

For the first inequality we have used Lemma 11.1.4 applied to Ak and for the
second the algebra property of subordinate norms has been employed.

If || =f| designates some norm (not necessarily a matrix norm) on AlIn©),
there exists a constant Ce for every e > O, such that, for every matrix B

CrPIk™MIsnMiiBiin.
Using the inequalities (11.1.19), we obtain
C71p{A)k » T1K 1U ~A\NAKYC (], €~ Ce (p{A)
We raise these relations to the power 1/k and we get
(11.1.20) C:I"kp{A) » 11411 ~cy*0>(e4) +e).

Given a > Owe choose e = a/2. There exists a Ce for which egn (11.1.20) holds
for every k~ 1 Since C Xk tends to las fc tends to infinity, we can find an i{a)
such that

Cvk{pA +e)*p{fA+a, VAI@ and C~lI/kpA)>p® - a
This proves the desired estimate.

Remark 11.1.8. It is not necessary to work in M n(C). The result is stin true
in Adn(R) but needs a more delicate argument using norms on the complexified
space.

Some sufficient conditions on the convergence or divergence of iterative
methods

We begin with a theorem on iterative methods for Hermitian matrices:

Theorem 11.1.9. Let A be a Hermitian positive definite matrix, with the decom
position A = M - N, where M is invertible. If M + N* (which is still Hrflug*e /

is positive definite, then the iterative method (11.1.2) converges.
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proof. First of all, we verify that M + N* is still Hermitian:
M+ N*=M+ (M- A*=M+ M* - A

which is Hermitian. We equip C" with the norm |.f]4 = and this
(astute) choice allows us to prove the theorem. Note that M~IN = | —M~XA
and therefore,

W ~1n\Wa = me<{\x - M~1Ax\a /= 1]

But, if we let M~1Ax = y which is equivalent to Ax = My and x*A = y*M?*,
then
O —y*) A(X —y) = X*AX —x* Ay —y*Ax + y*Ay
1- y*M*y - y*My + y*Ay
1-y*(M+ M* - A)y.

The hypothesis that M* + iV is positive definite implies that

mn y*"M+ M*—A)y > Q.
I*U=i
y=M~1Ax

This proves the theorem. —

We are going to apply this convergence criterion to the Gauss-Seidel method
and to a more general method, called the relaxation method. Suppose that

A=D - E - F. The Gauss-Seidel method involves writing the iterations in the
form

(D - E) xk+l = Fxk+ b.

W& see that all of the matrix D acts on the vector xk+| . We introduce a param-

eter a in a way so that a part of D acts on the vector xk+l and the rest on xK.
W& thus write

(aD - E)xk+tl + (A-a)D~ F)xk=h.

Classically, we denote a = I/co and the relaxation method is written as
The matrix M is equal to (D/uj) —E and the matrix N is equal to /uj) +

F The matrix of the relaxation method is

l £'=(8-£)"(i®" D+F)-

> that for ui =1 the relaxation method is equivalent to the Gauss-Seidel
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We have, up till now, supposed D to be the diagonal of matrix A, but we
can decompose A by blocks of size n* x n, with

N

5E>j=« -
3-1

In this case, matrix D is block diagonal and has as diagonal blocks the diagonal
blocks of A. If A = A* then D = D* because the same is true for each of
the blocks An. If A is also positive definite, the same is true of the blocks An.
Indeed, let

(xX\\

be the decomposition of vector x by blocks of rii rows. If all the blocks of x are

zero except the z-th then
X*Ax = x*AnXi,

which shows that An is positive definite and so is D.

It goes without saying that, in this case, -E is formed from blocks situated
under the diagonal of A, and that —F is the matrix formed from blocks situated
above the diagonal of A.

With a decomposition such as A = D - E —F from the block form of A, we
define the block Jacobi method, the block Gauss-Seidel method, and the block
relaxation method in a completely analogous way to the element-wise methods
of the same name.

We can now state a result on the convergence of the relaxation method, by
elements or by blocks, when A has the right properties:

Theorem 11.1.10. Let A be a positive definite Hermitian matrix. If t§j e o,
the element-wise or block relaxation method converges.

Proof. We have

M + N*
Q

By construction, F* = E and D* = D. Consequently,

@2- ub

]
For M 4 N* to be positive definite, it is necessary and sufficient *
(@ —u)lu)x*Dx is strictly positive if and only if x is nonzero. Under
stated hypotheses, D is positive definite and therefore, M + N* is P(h”
definite if and only if (2- u)/u is strictly positive, that is, if & € J0, F ~
therefore conclude the required result with the aid of Theorem 11.1-9.

M + N*
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It is generally more difficult to apply Theorem 11.1.9 to Jacobi§ method.
The proof of convergence often uses the particular properties of A.

We now give a lower bound for the spectral radius of the matrix which
leads to a sufficient condition for divergence.

Theorem 11.1.11. For any 4 =0, we have

pccu)t jw- 1. 0

Proof. The determinant of a block triangular matrix 8 of size n* x rij, is equal
to the product of the determinants of its diagonal blocks. This result is shown
in Exercise 3.34.

We apply this result to the calculation of det

det +F)
det =QL—W'-
de. ( g - E) ( i ) "o

Moreover, since the determinant is the product of the eigenvalues of a matrix,
We see that
p(Ew)n >]det(C)].
We conclude that p(Cu)n ~ |J1—uj\n and we obtain the conclusion of the theorem.
O

We now cite two results which we will not prove. For their proofs we refer to
the book of P. G. Ciarlet [16, pp. 105-9]:

Theorem 11.1.12. Let A be a block tridiagonal matrix. Then the spectral radii
of block Jacobi matrices and the corresponding Gauss-Seidel matrices are linked
by the relation

P(CD =PI\
from which we see that the two methods converge or diverge simultaneously.

When convergent, the Gauss-Seidel method converges more rapidly than the
Jacobi method. 0

We note that there exist matrices A for which the Jacobi method converges
and the Gauss-Seidel method does not converge.

We can also compare the Jacobi method and the relaxation method. Again,
from [16] we have
Theorem 11.1.13. Let A be a block tridiagonal matrix such that every eigenvalue
0 the corresponding block Jacobi matrix is real. Then the block Jacobi method
n ~=ck relaxation method diverge or converge simultaneously for 0 < y <

“ hen they converge, the function u EJ0,2[ p(Cu) has the shape given by

gUre 11-1>where the optimal parameter of relaxation uq is given by
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Figure 11.1: The spectral radius of the relaxation matrix as a function of uj

Figure 11.1 allows us to see that the optimal parameter IO is strictly greater
than 1 It is because of this that the relaxation method is often called the over-
relaxation method. The shape of this figure shows that it is better to overestimate
the relaxation parameter than to underestimate it.

The combination of Theorems 11.1.10 and 11.1.13 confirm that, for a pos-
itive definite block tridiagonal Hermitian matrix A, the methods of Jacobi.
Gauss-Seidel, and relaxation for O < 4 < 2, converge. Furthermore, the op-
timal relaxation parameter is given by formula (11.1.21). If p(J) > O, then
p(CLO) =wo - 1< p(Ci) < p(J).

We will show later the advantage of the over-relaxation method compared to
the Jacobi method and the Gauss-Seidel method.

11.2. Linear recurrence and powers of matrices

In the vector space O 1we consider the linear recurrence

1121 £ A jxJtp =0,

j=0
where the matrices Aj are given in AIn(C) and the linear recurrence is initialized
by giving p vectors x* forj = 0,... —21 We suppose, furthermore, that _
matrix Ap is invertible. If we let Bj ——A~IAj, and if we define a vector y
Cepn by
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x* \
xj+1
VA+p-1/

we see that recurrence (11.2.1) can be put in the form
yH1L =
where the matrix C is given by the following block decomposition:

/0 / 0O == O\
0O O |
11.2.2)

0 /
\Bo B\ Bp-iJ

271

Matrix C is called the companion matrix of the recurrence (11.2.1). The solution

of relation (11.2.1) is given by

yk = Cky<.

The choice of C as the number field is justified by the use of a Jordan de-
composition; however, all the results are also true for real matrices. Using the
Jordan form of C we have, at least theoretically, all the solutions of the recur-
rence. In particular, seeking the eigenvectors of C is equivalent to seeking vectors

X0, ...,"”7, such that

x|l = A,
x2 = Ax],
xp~l = \xp~2,
p-1
Bjxj =Xxp-\
j=o

N s equivalent to find a vector xO0, such that

The equation
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is the characteristic equation of the recurrence (11.2.1). Therefore, it is this
which gives us the eigenvalues of C. The reader can verify that

det A —7 det (Al —C),

where 7 is a constant. If all the eigenvalues of C are pairwise distinct and if
n = 1, then the solution of recurrence (112.1) is a linear combination of the
sequences (ARa>0, where Aruns through the eigenvalues of C.

If n = 1 we consider the decomposition of C in Jordan blocks. We recall
that there exists a transformation matrix P such that C —P~1JP , where J is
a block diagonal matrix, each of the diagonal blocks being of the form

/A 1 0 ... o\
o A 1 0
JA =
) 0 A 1
V> -— 0 \J

If C has Jordan blocks of size strictly greater than 1, then our procedure for
constructing particular solutions does not provide us with enough of them which
are independent. It is simple to calculate the powers of

JA ™= Am+J QO 770).

We therefore have
min(m—,k)
1249 JO\,m)k=
€=0

Each of these powers J(O, m) is given by
Q.25 (7(0,110%)

In this case, the examination of formula (11.2.5) shows that it is necessary to
add the particular solutions of the form [ti A*)fc>0, where j is an integer between
1 and 771-1, and m is the multiplicity of a Jordan block associated with A

Thus, we can answer some questions concerning the recurrence (11.2.1). ffw(
demand that the solution xk tends to o for all initial data as k tends to infimy
the study of Section 11.1 shows that it is necessary and sufficient that p\y)
1. If we demand only that the solution xk to the recurrence (11.2.1) remains
bounded for all initial data as k tends to infinity, we can state the necessary *
sufficient condition, which will be proved in Section 17.3, Lemma 17.3.1
and, for every eigenvalue Aof modulus 1, the corresponding Jordan blocks m
be of dimension 1 This same result is also proved in Subsection 3 35.
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11.21. The spectrum of a finite difference matrix

We have already met, in Subsection 4.6.2, the following matrix which arises from
a finite difference problem:

-1 0 0 - O\

—f 2 -1 0 0
0 -1 2 -1 0
0 -1 2 -1
0 0 -1 2

Seeking an eigenvalue of this matrix corresponds to writing, for a scalar A

2# —x2 = Axi,

=X\ + 2x2 - Xs = Ax2,
G1286) —Xj-i +2X] —Xj+1 = AXj,
Xn—+ Faxn — V>

These relations fall into the class of linear recurrences, with the condition that
xq = O and there existing a A such that xn+i = 0. Matrix A is real and
symmetric, and, therefore, all of its eigenvalues are real. Hence, we will only
concern ourselves with real A The recurrence (11.2.6) can be rewritten as

Xj+1 + (A- DX+ Xj-1 =0
and its characteristic equation is
H27) £(A—2)p-Ti= 0.
The discriminant of this second-order equation is
A= (A-22- 4

A At 104l A is positive and eqn (11.2.7) has two distinct real roots whose
Product is equal to 1. We denote the root with the largest absolute value by p+
and the other by p_. We have

Xj = ap+ HbpL.

e hatial condition x$ forces a = —h. The condition xn+i = O is satisfied if
aP+ 1 - pP™1) = O This is only possible if a = 0, which would imply that
j - o for every j. This choice of Ais impossible since a zero vector is not an
Senvector. If A= Oor A= 4, the solution of the recurrence is of the form

Xj = apj -bbjpj ,
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where p is the double root of eqgn (11.2.7). The initial condition forces a = Oand
the final condition forces b = O. We again have a contradiction, and we must
choose A€ J04[. In this case, the roots of eqn (11.2.7) are complex conjugates
of modulus 1, which we denote by p = eDand p. These solutions have the form

Xj = apJ -+ bp3.
The initial condition forces
a= —s,
which implies that
Xj = 2aisin (jO).

The final condition forces
2aisin((n + DO) = O,
which is possible if we have

n+a
From relation (11.2.7) we get the corresponding value of A

A=2- =2-ew-e~ig=2-2c059
P

The sine function is positive and strictly increasing on the interval p,7/2]
and we have thus obtained n distinct eigenvalues. So, we know that we hawe
found all the eigenvalues of A.

We will apply this result to the methods of Jacobi, Gauss-Seidel, and relax-
ation for A. The Jacobi method is given by the decomposition

(11.2.8) M=D=2) and N=E+F =2I1-A.

Consequently, the eigenvalues of the Jacobi matrix J = M~IN are

- =1 o _____ _\ = (ﬂr>
1 i-2 sinz 2(n+I)TyI COS\7i 1 .

From Definition 10.2.1, the spectral radius of the Jacobi matrix is, therefore.

- A
p(J) = 1£rr1na<xn\cos \n + 1/ COS\fn +.||-jV
Therefore, for large n, we have the truncated expansion

p @) =i L+ ): + 0(n~4).
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From Theorem 11.1.12, we have

P(Ci) =p@)2=1-- - 5 +0(M*"D.
(«<+ 1)

The optimal relaxation parameter gjo, determined in Theorem 11.1.13, is given

by

-i
o = =2 1+ — +0 -2),
i+ sji-p{iy 17

2ir
SR -
Consequently, the optimal spectral radius p(EW0) = wo - 1] is
= -+o0 (n-2).
To see the numerical consequences of these different estimates, we estimate

the number of iteration steps that are needed to halve the error using any of
these methods. With the notation of the proof of Theorem 11.1.2,

k-1
xk = Bk<=+ "2 bJc
ant
0
X=== Ilmk_>00 /3 xk =Bjc.
i=0
Therefore, the error is given by
00
X=- xk="2Bjc-B k<=
=k
Forevery e > O, there exists a vector norm N such that |[|jB]lat * We
therefore have the estimate
NE==- xk) ~ ( B+ @)+ £  ()+e)N(E)
=k

_ N(c) -
= (p(B)+e)k 1-p(B) - + N(X<)

therefore see that, to divide the error by 2, we must have

kin@@®B)+¢e) " - 1Inz
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and therefore, it is necessary that

" hip (BY

If there exists a norm N such that \\B\\n = p(B) (which is the case when s is
Hermitian and the norm N is the Hermitian norm), then this estimate is optimal.
We will be content with this estimate in what follows.

We estimate - Inp(B) when B = J, B = C\, or B = CyjO:

i /X , A 2\ 2u

We see that it needs about 2(n + 1)2Inz2/m2 steps of the Jacobi method to
divide the error by 2, (n + )2Inz2/#2 steps of the Gauss-Seidel method, ad
2(n+ DInz/a steps in the case of relaxation with optimal parameter. Going
from Jacobi to Gauss-Seidel allows us to divide the number of steps needed by
a constant factor, whilst going from Gauss-Seidel or Jacobi to relaxation with
optimal parameter gains an order of magnitude.

It is important to note that exploiting the structure of the matrix and the
astute introduction of parameters in the methods leads to considerable gains in
numerical efficiency. The method of (over-)relaxation is only one of the methods
which allow such gains. Some other methods are studied in the forthcoming

exercises.
11.3. Exercises from Chapter 11
11.3.1. Finite difference matrix of the Laplacian in a redagje

Consider the system of linear equations

113D "fWNHI T Ui—j Htljj— —h fij,

where i varies between 1and m and j varies between 1and n. We let
uo,j = "Mljj = ui O~ ui,ntl=

so that the system (11.3.1) is well defined for i = 1or m and for j = lorn*

Exercise 11.3.1. Explicitly write down the relations satisfied by Uij when i -
or m and when j = 1 or n.
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Exercise 11.3.2. How many unknowns does the system (11.3.1) have, and how
many equations?

Exercise 11.3.3. Give a numbering

Q.32 k = K(i,))

such that the matrix of the system (11.3.1) is in block tridiagonal form. Deter-
mine the blocks explicitly.

Exercise 11.34- Show that, for every (n>>,j)i"$m € Kmn, we have

) 1 vij ((4uij + Ui+ij + uijtl+ vi-13 4-Uij-i) ~ 0.
I"j~An
For which u does this expression vanish?

Exercise 11.3.5. Choose a direct method to solve this system. Justify your
answer by an evaluation of the operation count necessary for its solution.

Exercise 11.3.6. Show that every vector

133 Uij = sinm/isin/?j/i,

where h is a real positive number, satisfies

39 4Ui,j H ~ tli—j —A—AuN?
for2”~ i~ m-1andfor 2~ j ~ n- 1 What is the value of A?

Exercise 11.3.7. Show that, for certain choices of a and /?, the vectors U ij, given
by egn (11.3.3), also satisfy eqgn (11.34) fori =L i=m,j = 1,j = n.

Hint: to do this, use the expression for A found previously and substitute into
egn (11.34) for the particular values of i and j considered here.

Exercise 11.3.8. Give all the eigenvalues and all the eigenvectors of the matrix
Acof the system (113 .1).

Exercise 11.3.9. Calculate the eigenvalues of the Jacobi matrix of the system

(1131 from those of A. From this, deduce the spectral radius of J for large m
and n.

Exercise 11.3.10. Evaluate the condition number

condz (A) = |1z WA 1\,

11-32. Richardson § and pre-conditioned Richardson § methods

Definition of Richardson § method

Etercise 11.311. Let A= M - N be the decomposition given in egn (11.1.1)
define the residual

rk=b-Axk.
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Show that relation (11.1.2) is equivalent to
M (xx+1 - xK) = rk.

Exercise 11.3.12. We wish to accelerate this iterative method. Let ak be a [t
parameter; we shall consider the iterative method

(11.35) M {xk+l - x k) = akrk.

This iterative method is called the pre-conditioned Richardson 3 method-
stationary if ak does not depend on fc, dynamical otherwise. If M is the iden-
tity, the method is called Richardson § method. The matrix M is called the
pre-conditioner. Show that if ak does not depend on f, then egn (11.3.5) can be
written as

Mzk= rk
(11.3.6) xk#l =xk+azk,
rk+l = rk—aAzk,

and that the matrix of this iterative method is aM~1A. Show that the
methods of Jacobi, Gauss-Seidel, and the relaxation method are Richardson§
methods.

Analysis of the stationary pre-conditioned Richardson 3 method

Exercise 11.3.13. Define the Cayley transform on matrices L such that | - Lis
not singular by
r{L = (/ —L)~1 (+1L).

What is the inverse of T(L)? On which set of matrices is it defined? Show thet
the spectrum of a matrix L is contained in the open unit disk {z : A\ < }~*
and only if the spectrum of T(L) is contained in the open right-hand side plare

{z: 9> o0}
Exercise 11.3.14. Find the Cayley transform of | —aM~IA.
Exercise 11.3.15. Infer from Exercise 11.3.14 that a necessary and sufficient

condition of convergence of the method (11.3.6) is that the eigenvalues A of tre
matrix M~IA satisfy the following condition:

a\Xj\2 < 25RA].

Exercise 11.3.16. Show that it is possible to find a such that the method
is a convergent method if and only if the spectrum of M~IA is include

{z: Mz> o}
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Exercise 11.3.17. Assume that the spectrum of M~IA is included in ]O, oo[. Let
its lower bound be Amin and its upper bound be Amax. We wish to choose a
parameter a for which the convergence is fastest. Show that the best a is given

Amin H“Amax
Exercise 11.3.18. Calculate the spectral radius of | —a*M~IA in terms of Amin
and Amax*

Exercise 11.3.19. Assume that M~I A is symmetric and positive definite; denote
by | =f the matrix norm subordinated to the Euclidean norm. Show that

137 IV - a"M~1A\=

“max | Amin

The right-hand side of eqn (11.3.7) will be called p*.

Remark 11.3.20. It is therefore important that Amax/Amin be as close as possible
to 1 This means that if M~1 is a good approximation of A-1, we stand to gain
alot by applying pre-conditioned iterative methods.

Exercise 11.3.21. Assume that M and A are symmetric positive definite. Define
ascalar product on Rd by
)M =X

and denote by \= and [ =J|m the corresponding vector and operator norms.
Show that M ~1 A is self-adjoint with respect to this scalar product. Show that

P ’:Taif—Ma iilvII Ilvf\r:naf ___Am_i e -

""max i Amin

Aralysis d:a dynamical Richardson ¥ method: the pre-conditioned steepest
gradient method

Exercise 11.3.22. Consider zk+l given by the method (11.3.6) as a function of
a; assume M to be symmetric positive definite and A to be regular. Show that

* does not vanish, there exists a number ak at which a i=>>\zkJtIW1 reaches its
%r:;irrum, and give the expression of ak. Give also the value of zk+l and show

1139 ML 1% %7 by [T AZK)

M 1 ’((*‘)TATM~1AZK) vk\M

delude that the sequence k*|m converges.
11.3,23. Assume that A+ AT is positive definite, and let j3> o be such

zt Az » 0\z\& .
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Show that

((ZK)T AzkY U* b

M 2 R 9>%(f/\m >

and conclude that zk converges to o and hence, that xk converges to X = a~1b.

Exercise 11.3.24=Assume that A is symmetric positive definite, and let B be
the M-symmetric positive square root of M~IA (see Subsection 3.3.5), i.e.,

)1 ATM~1Azk \\ATM

B2= M~IA and MB = BtM.
Show that the right-hand side of egn (11.3.8) can be rewritten as
M i
(M ~1A B zkBzZK)M ,Bzk)M
and infer from the Kantorovich inequality (3.3.10) that
MALVER- ANIVE

Exercise 11.3.25. Define the Richardson steepest descent method as the following
algorithm:

rk = b—Axk,
r=)v
Ak = (r*)
(rArf
xk+l = xk + akrk.
Show that, if A is symmetric positive definite, then the error ek - satisfies

the estimate

Remark 11.3.26. The method of Exercise 11.3.25 is simpler than that of Exer-
cise 11.3.24 with M —1 because we have been able to exploit the symmetry of
A

11.3.3. Convergence rate of the gradient method

Exercise 11.3.27. Let A be a symmetric positive definite real dxd matrix. Show
that it is equivalent to solve

(11.3.9) Ax =D

and to find a minimizer of the function
ve\yTay - YTh=1 (V)

over Rd.
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Exercise 11.3.28. Calculate the gradient v = Xf(y) and find the value a which
minimizes

a™ f (y—av).
Exercise 11.3.29. Consider the algorithm

< —b—Ar<,

(11.3.10)

x=+1 = Xk + akrk,
rk+i -b - Axk+l

Let x be the solution of egn (11.3.9). Show that the error ek = xk —x satisfies
the relation
erc+1 = (/ - akA) ek.
Let A= Amin and p —Amex be the smallest and the largest eigenvalues of A,

respectively. We will show that the rate of convergence of the algorithm (11.3.10)
is no better than

Exercise 11.3.30. Let u be an eigenvector of A relative to the eigenvalue A and
let v be an eigenvector of A relative to the eigenvalue p. We will assume that u
and v are of Euclidean norm 1. Show that, if e belongs to the space spanned
by uand v, then ek also belongs to that space, for all integers k.

Exercise 11.3.31. Write
ek = xku + ykv.

Assuming that x= and y=do not vanish, show that
yk+l A xk
X*+1 ii2 yk
Exercise 11.3.32. Writing, from now on,

y 2k y2k+1
~XK ~ X2kH ~

rculate YRFE2AYKn terms of A 7, and p.

tuercise U-3.33. Show that this ratio is maximal for the choice p = \/p and
at it is equal to the square of p*.

H-3.34. Show that the method (11.3.10) is a Richardson 3 steepest
, jnt method with M = /, and hence, that the convergence rate is, at most,
| Wato according to Exercise 11.3.19.
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11.3.4. The conjugate gradient

Let A be a positive symmetric definite d x d real matrix. Let

f(y) =\yTAy-bTy.

We denote by x the solution of Ax = &, where x is the minimizer of / over
Rd. The Euclidean scalar product is denoted by (=<, with corresponding vector
norm |<=tand operator norm || =} The scalar product ¢, 9=a is defined by

@®&)a= A,

and the corresponding vector and operator norms are denoted by |<A and | <*

Exercise 11.3.35. Given p=and x=in Rd, we seek a sequence of vectors pl,...,pk
and a sequence of reals aO0,..., ak such that, for all j = 1,..., fc, the minimum
of / over the affine space
3
V,=I® +0 V
i=0

is attained at xX=+ ap= + ... 4-cx?p?. Give the value of ao in terms of p=and
r<=b- Ax=. Show that the sequence (p*)j must satisfy the relations

{pj ,pHA =0,

and the sequence aj is given by

In order to define an iterative method, we must give an initialization ad
a way of generating p*+1 in terms of pk. Therefore, we define the conjugate
gradient method by the following algorithm:

(11.3.12) Pe= r°—b—Ax,

and while pk does not vanish:

(113.12) o =
<
(11.3.13) X*+1 = a kpk,
11.3.14 rk+l = a kApk,
( ) P
r, v
(11.3.15) )

Ip*
(11.3.16) pk+l _ r*+l + ok+lpk
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Conjugate gradient as a direct method

Exercise 11.3.36. Show that egns (11.3.15) and (11.3.16) imply that
{pk,pk+1)A=o.

Show that eqns (11.3.12) and (11.3.13) imply that
(/,r*+1)=o.

Show that, when the index k is replaced by k- 1in egn (11.3.16), it implies that

(pky ) A=\pkWa-
Show that eqn (11.3.12) implies that

(r*+1,r*)=o.
Conclude that we have the following alternative expressions for ak and :

r*+l|
and K=
b*l,

Exercise 11.3.37. Assume that pk vanishes. Then, show that rk 1 = {3k 1
and 'k = -/3k(rk~1,rk), so that rk vanishes.

Exercise 11.3.38. Show, by induction on fc, that the following relations hold:

(»V) :O, {pi,Pj)A: 0, Ve = 0,...,fC—l, Vi = o« + |,...,fC.

Exercise 11.3.39. Show that the conjugate gradient method converges in a finite
number of steps. Give this number in terms of the dimension d of the space.

Conjugate gradient as an iterative method

When the matrix A is very large, it does not make much sense to perform

e nujnber of steps which are required by the conjugate gradient method to

guarantee us an exact solution—up to round-off error. In modern codes, the

Grjugate gradient is viewed as an iterative algorithm, and its rate of convergence
be analysed with precision.

Show that xk+lI —x=is the orthogonal projection of x-x< onto

tnf? aCe sPanned by p<,... ,p*, where the orthogonality is taken with respect
i e scalar product &, -).

isP\e*5e Let Kk+i(r<) be the space spanned by r<, Ar<,..., Akr<. This
K called a Krylov space. Show that the span of p<,...,pk is equal to
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Exercise 11.3.42. Show that any y ¢ Kk+i(r<) can be written as

k+i

y=YI P AL ( -
i-1

Exercise 11.3.43. Let PJ+1 be the subset of P*+i formed from the polynomials
P of degree at most k+ 1such that P(0) = 1 Show that

\X~Xk+1TWA min {
Denoting the eigenvalues of A by Ai,..., A" show that

(11.3.17) K—la;j\’aﬁ N max.p(Aj) Ix- zO], Vp€ P*+

Exercise 11.3.44=et Amin and Arex be the smallest and the largest eigenvalues
of A, respectively. Let Qk+i be the Chebyshev polynomial of degree 1 defined
in Theorem 5.2.4. Define a polynomial P by

Amax 4" Amin 21 i Amax 4““Am

P(D) = Qk+ Amax  Amp ) / Qk*'!(/"\'max— '\'rrin)*

Show, with the help of the recurrence relation (5.2.4), that

n ( Amax 4" Amin A
Qk+l \ @max I Yuiim /‘]
11.3.18 / s ———X 2*%+2\
( ) \A max " VAmax 4%y Amin A

=2 1+
VAmax + aA n v/Amax  Y/Amin/

Exercise 11.3.45. Infer, from egns (11.3.17) and (11.3.18), that the conjugate
gradient method converges at a rate which is, at most, equal to

\Amax V/An

%Amax + \An

Pre-conditioned conjugate gradient

An improvement over the conjugate gradient method is the pre-conditioned con
jugate gradient: assume that M is a symmetric positive definite matrix s
that linear systems with matrix M are easy to solve. Also assume that M
reasonably small. The pre-conditioned conjugate gradient algorithm is de
by

(11.3.19) r°=b- A=, po=17°= M~Ir<
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and while pkdoes not vanish,

xk+l = xk + akpk,
rk+ i =rkakApk,
Mzk+H =rk+1,

OkH _ a2 >T )
(zk,rk)

pfe+1 = ~ +1 + /3*+V.

Exercise 11.3.46. Show that the analysis of Exercises 11.3.36 to 11.3.45 can be
entirely reproduced in the pre-conditioned case, up to the following changes:
the Euclidean scalar product has to be replaced by the scalar product X,y
XTMy = (X, Y)M in appropriate places, the matrix A must be replaced by M~I1A
and the residual rk by zk = M~Irk. Show that the convergence rate is then

x/Amax (M -"A) - \VVAmin (M-M)
\/Amax (M-1A) + \Anin (M"M) *

11.35. Introduction to multigrid methods

The multigrid method proposes to correct the bad features of classical iterative
methods for systems coming from the discretization of partial differential equa-
tiors. It is a recursive iterative method, the recursion being performed on the
scale of the spatial discretization.

It applies to discretizations of elliptic partial differential equations, or prob-
lems that can be reduced to them, and more generally to network problems,
structural problems and many more. But we shall keep to the simplest case: we
just want to find a fast iterative method for solving

A™X - b,
Wth -4v being the N-D x (V- 1) finite difference matrix given by
f -1 \
= 2 -1
11320 =N2
-1 2 -1
-1 2/
I T

'A main idea of the multigrid method is that some classical iterations, such
arriped Jacobi iterations (113 .21), act as low-pass filters: they significantly
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damp the high frequencies, whilst the low frequencies are not altered much by
one iteration step; therefore, if we want to efficiently reduce the residual, after
it has been, more or less, cleaned from its high frequency components, we will
make a correction on the low frequency modes, using the coarse grid, i.e., a grid
having a space step which is twice as large.

In the bigrid method, we suppose that N is even: we do a damped Jacobi
iteration with an appropriately chosen parameter on the fine grid (h = 1/AV);
then we lift the residual to the coarse grid (h = 2/N); we solve an equation
on the coarse grid, and we interpolate the solution on the fine grid to obtain a
correction on it.

The beauty of the bigrid method is that the spectral radius of the matrix of
the iterations does not depend on the space step. However, we could do more
than one sweep of damped Jacobi iterations on the fine grid; we could also replace
the coarse grid resolution by some other algorithm, for instance, some iterative
method steps.

If we assume that N is a power of 2, the idea of the multigrid method is
extremely simple: instead of solving on the coarse grid, we do one, or several,
damped Jacobi sweeps, and we correct using an even coarser grid, on which we
do a sweep, and so on, until we reach a very simple grid which could have only
one point, and on which the resolution is trivial; then, we successively interpolate
the corrections on all the finer grids, possibly doing more sweeps at each pass.

Many combinations are possible, and multigrid methods are still an active
research subject. They are fascinating objects, and they are very close to the
ideas used in a Fast Fourier Transform, and also in wavelet algorithms.

We will only treat the description of the bigrid method and the reason for its
remarkable convergence. The multigrid method is even more beautiful: we just
give a few indications at the end of the problem, since it is technically heavy to
prove anything about multigrids.

Damped Jacobi methods

Let A be an arbitrary d x d symmetric positive definite matrix. Write A=
D —E —F, with the notation of eqn (11.1.5). A damped Jacobi iteration is a
generalization of the Jacobi iteration, which is written as

(11.3.21) Dxk+X= (1- a)Dxk+u(E + F)xk+ ub.

Exercise 11.3.47. Give the eigenvalues /X(g) of the matrix J(u) of a damped
Jacobi method, as a function of u and of the eigenvalues of J(I) = +

Exercise 11.3.48. When A is equal to An given by eqn (11.3.20), calculate

max{|[[i @l : :~j ~ AT- 1},
and

(11.3.22) max{|/xj @)l : N/2$j ~ N - 1}.



11.3. EXERCISES FROM CHAPTER 11 287

Exercise 11.3.49. Show that the expression (11.3.22) is minimal for uj = 2/3 and
give its value.

Exercise 11.3.50. Justify the statement: the damped Jacobi method with i =
2/3 is a low-pass filter.

Bigrid method

We assume, henceforth, that N is even, and we let n = N/2. The subspace
14,for 1 ~ K™ n—a1, is the subspace of E~ -1 spanned by the vectors uk =
GIin(K7r/N))i<'jA*N-i and vk = GGinAQV -k ) n V  nisspanned by
un = (sin(j7r/2))i™Ar-i. The space WKk is the subspace of En_1 spanned by
VK = (Sin(Ar/n))itj*n_i. We also define a restriction operator R from E~ -1
to M_1 by

(11.3.23) (te)j =

and an interpolation operator S from Kn_1 to RiV~1 by
i )
(11.3.24) (Sx)j = XHz I J !S even;
(X(j—l)/z + £(j+|)/2)/2 |fj is odd.

In this last definition, it is assumed that xo and xn are set equal to Q.

Exercise 11.3.51. Show that R maps WK to Wk and Wh to o. Give, in terms of
k = cos2 (B /2 Ar), the matrix of the restriction of R to 14, equipped with the
basis {uk, WK}, and WK, equipped with the basis wk-

Exercise 11.3.52. Show that 5 maps Wk to 14 and give the matrix of the restric-

tion of S to WK, equipped with the basis wk, and 14, equipped with the basis
{<&<<T.

Exercise 11.3.53. We define the bigrid algorithm as follows: u= R;v_1 is the
initial guess. We perform a Jacobi sweep:

(11.3.25)

W calculate the residual:

(H.3.26) u=b-AW;

W restrict the residual to the coarse grid:
327 = Ru2z;
P 6 e on the coarse grid the following problem:

"u28> AV -
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we interpolate the result on the fine grid:

(11.3.29) us= Su4

and we use the result as a correction to itl:

(11.3.30) u6=ul+ub.

Give the matrix of the iteration described by the algorithm (11.3.25) to (11.3.30),
in terms of R, 5, Aat, An,and J(2/3).

Exercise 11.3.54. For k = 1,..., n, show that the restriction of the matrix of the
iteration to the space WKk, equipped with the basis {Uk,VK}, is given by

(ND<— ->(WV /> ,3-1,/a)- |
Calculate the spectral radius of this matrix. Show that this spectral radius is

bounded by 1/3 for all N and k.

Exercise 11.3.55. We modify the algorithm (11.3.25) to (11.3.30) by performing
v Jacobi sweeps instead of 1

u===
#,r _
30) UT~I+ I D~Ib~
ul= u0~.

What is now the spectral radius pv of the matrix of the iteration? Show that it
satisfies an estimate of the form

. C
v, m

Informal description of the multigrid method

As we understand what the bigrid method does, it suffices now to sketch what
the multigrid method does. Assume that N is equal to 2q; we replace the step
with resolution A”/2 Dby an iterative method. We perform one or several Jacobi
sweeps in dimension (N/2) —1, calculate the residual, and then lift it to a grid
with (N/4) - 1points. If we had a trigrid method, we would apply a resolution
in dimension (iV/4) —1, interpolate the residual, so as to generate a correction
on the grid of dimension (N/2) —1, and finish as in the bigrid method.

There is clearly a recursive definition of the p-grid method. Forp = 2 we get
an iterative method depending on N and N/2. This method can be written as

(11.3.3D) xk+i =M (q,9- Lvg)xk+ (/2*-i - M(q,q- Lva)b,
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where vq is the number of Jacobi sweeps on the grid with g points. The p-grid
method is defined from the (@ - 1)-grid method as follows: suppose that we have
defined M(q - 1,9 - 2,..., ..., i/i,pg_2,... X2), where the  describe
the number of Jacobi sweeps on each grid and the p* describe the number of
iterations used to approximate the inverse of AZi.

We perform vq sweeps of the damped Jacobi iteration with initial guess y and
data b. We obtain a vector 2, we calculate the residual b —A2g , we restrict it
to the grid with 2g~I - 1 points, and we apply iterations of the (p—I)-grid
method to the restriction, with O as an initial guess. Then, we interpolate the
result and we add the corresponding correction to 2.

Exercise 11.3.56. Give a matrix description of the multigrid algorithm with 3
grids.

Exercise 11.3.57. Describe a bigrid algorithm for the case of finite differences
on a rectangle (see Subsection 11.3.1) and calculate the spectral radius of the
corresponding iteration matrix.

Exercise 11.3.58. Describe a multigrid algorithm in the case of finite differences
on a rectangle.
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Pythagoras *world

In this chapter, we discuss good old right angles and all the numerical and
mathematical marvels they give rise to, as much for the solution of systems
of equations as for the various interesting qualitative properties of Hermitian
matrices. The reader will, perhaps, have noticed that this subject has already
been touched upon in Section 3.1, Lemma 3.1.9, and in Section 10.1 in the study

of the Rayleigh quotient.
We have already worked with orthogonality in Chapters 5, 7, and s and we

will return to it in Chapter 13

12.1. About orthogonalization

An essential property of unitary matrices is that they have a norm of 1for the
operator norm subordinate to the Hermitian norm. As a result of this, there
is no (numeric) difficulty with multiplying by such a matrix, since it does not
increase the relative error. We begin by trying to construct an orthonormal basis
from some other basis. This is known as the Gram-Schmidt orthonormalization.

12.1.1. The Gram-Schmidt orthonormalization revisited

w e are going to show that the Gram-Schmidt orthonormalization is equivalent
to a matrix decomposition called QR. More precisely, we are going to recover the
Gram-Schmidt orthonormalization process from the Cholesky decom position.

Theorem 12.1.1. Let A be a matrix belonging to Adn(K)- If A is inertible,
there exists a unitary matrix Q and an upper triangular matrix R, which hesa

positive diagonal, such that

(12.1.1) A= QR.

Furthermore, this decomposition is unique and equivalent to the GramSchnii *
orthonormalization of the basis formed from the column vectors of A.

290
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proof. The matrix A*A is Hermitian and positive definite, since x*A*Ax =
VA is strictly positive and is nonzero if and only if x * o. We then know that
there exists an upper triangular matrix i?, with a positive diagonal, such that
A*A admits the Cholesky decomposition

A*A = R'R.
We let Q = AR~I and calculate Q*Q:
Q*Q = (R¥)-1 A*AR~1=(R*)~I R*RR~" =

consequently, Q is unitary and we have shown the existence of such a decom-
position. Uniqueness is shown as follows: suppose that A = Q\R\ = Q2R2
then,
A*A = RIQIQIR1=RIRX
and
A*A = RIQIQZ2R2= R2R2-
By virtue of the uniqueness of the Cholesky decomposition (Theorem 9.4.3), we
see that R\ = i?2, and we immediately deduce that Q\ = Q2.
Relation (12.1.1) can be written as
n
(212) Aik = QijRjk-
i=1

Noting that Rjk = O ifj > fc, we can rewrite eqn (12.12) as

k

@213 Aik = "£QijRjk.

j-1
We denote the column vectors of A by and the column vectors of Q
by Then, relation (12.1.3) is written vectorially as
@214 fk —" "QRjk=

j=1
For k= 1, we thus have
215 fi —qiRn,

e > o. The vector g\ is of norm 1, since Q is unitary. Therefore, we must

#11 = /],
N relation (12.1.5) is the first step of the Gram-Schmidt orthonormalization.
N &> 1, relation (12.1.4) is interpreted as follows: we choose the coefficients
J< k- 1 such that the vector fk- ]Cj=i QjRjk is orthogonal to gj, for all

than—1 ~  then Write Rkkgk = QjRjk, and we choose RKkk > o such
—a1. This is the A-th step of the Gram-Schmidt orthonormalization. 1
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A consequence of this result is that we can always complete an independent sys-
tem of k orthonormal vectors of Kn to produce an orthonormal basis.
Indeed, there always exists a choice of (n —Kk) vectors from the canonical basis
e*, denoted (eir)i<-r<_fc, such that the family of vectors formed from {qj)i®j<k
and from (eir)i~r*n-k is a basis of Kn. It suffices then, to orthonormalize the
basis thus constructed. The term Gram-Schmidt orthogonalization is also Isd
when an orthogonal basis is constructed by induction from an arbitrary basis,
without performing the normalization step.

A very important lemma, which is usually proved in the first year of a degree,
is the Schur lemma. We reprove it here using block notation:

Theorem 12.1.2 (Schur$ lemma). Let A be a complex n x n matrix. Then A
can be made triangular in an orthonormal basis. 0

Proof. Making A triangular in an orthonormal basis is equivalent to finding a
unitary matrix Q such that QAQ~Xis triangular. We reason by induction on
n, the dimension of the space. If n = 1 the result is trivial. Suppose that it is
true for n, and that A is an (n-f ) x (n+ 1) matrix. We know that A possesses
at least one eigenvector, which we can assume to have norm 1. We denote
this eigenvector by fi and let Abe the corresponding eigenvalue. We complete
the family consisting of only f\ by the vectors /72,...,/n+i in the manner of
constructing an orthonormal basis. We therefore have a unitary transformation
matrix P such that

where B is an n x n matrix. The induction hypothesis tells us that there exists
a unitary matrix U and a triangular matrix T such that

uUBU~I =T.

We let

It is immediate that V is unitary and, furthermore,

fx tu~1I \
\0O UBU-~I)
X iu~l

VO T

We have therefore found a matrix Q = VP such that QAQ 1 is triangular-
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12.1.2. Paths of inertia
From the QR decomposition, we are going to give a topological proof, due to G.
Strang [74], of Sylvester  inertia theorem, which states the following:

Theorem 12.1.3. Let A be a Hermitian matrix and C be some invertible matrix.
Then, the number of strictly positive (respectively, zero, strictly negative) eigen-
values of C*AC is equal to the number of strictly positive (respectively, zero,
strictly negative) eigenvalues of A. 0

The proof of this theorem depends on a continuity result about the eigenval-
ues of Hermitian operators which we will state and prove below; it depends on
the following minimax characterization of the eigenvalues of a Hermitian matrix.

Theorem 12.1.4=lLet A be a Hermitian matrix, be the Rayleigh quotient
associated with A, and AP(A) be the p-th eigenvalue defined by

W@ = min max ).
y dim W=p X¢ W\{0}

Then Ap(™) is a continuous function of A. More precisely, for every p and all
Hermitian matrices A and JB, we have the following inequality:

» (A)-A, (B)KP-B]]2.
Proof. For all Hermitian matrices A and B, we have
rA()=rB )+ ra-B (a)-
W& deduce, from Lemma 10.3.5 and Definition 102 .1, that

< c — *
. WAB\2=max | (M),

and consequently,
Ya(X - rB\ "™ lJA- 2112, Vx GKn\ {O}.
The conclusion of the theorem is then immediate. (|

Wk can order Hermitian matrices by deciding that A~ B ifand only if A- B
Is positive or zero (in the sense of sesquilinear forms). We then have the following
result which links the order of the matrices with the order of their eigenvalues:

Termma 12.15. Let A and B be two Hermitian matrices such that A~ B. Then,
f<raHp=l,...,n, XpA) > XP(B).

Proof- The hypotheses of the theorem imply that, for all r*O,
rA() " rB {x).

e inclusion of the theorem follows immediately from Theorem 10.1.3. (|
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Proof of Theorem 12.1.3. This is a topological proof, unlike the usual proof
which is algebraic.

To begin with, suppose we consider the case of invertible matrices A. Suth a
matrix has exactly p strictly negative eigenvalues and exactly n —p strictly pos-
itive eigenvalues. Let 1>C(t) be a continuous mapping from [0,1] to GLn(K)?
the group of invertible matrices with coefficients in K If we can construct d (01-
tinuous path of invertible matrices, starting at G(o) = C and ending at a I 11/}
matrix C(l), i.e., a matrix satisfying C (1)*=C (1) -1,we will have succeeded Il
proving the result.

Indeed, we remark, first of all, that B(1) = C(1)*AC(1) is similar I A
and therefore, has the same eigenvalues as A. In particular, B(l) has EXﬂCHy
p strictly negative eigenvalues and n —p strictly positive eigenvalues. Suppose
that the number of strictly negative eigenvalues of the Hermitian matrix B(t) =
C()*AC(t) is not constant with respect to t. We denote by p(t) the number 0f
strictly negative eigenvalues of B{t). If p(to) =p, for a certain value to E [O1[
two symmetric cases are then possible: p(to) > p and p(to) < p.

Consider, for example, the first case. Consequently, ApO)(B(t)) < o i
APCO)(EAD)) > O. From Theorem 12.1.4, we have that AJ(*0)(I’(£1)) is a tontin-
uous function of t E [0,1], and therefore, its image is connected. In particular,
there will exist a value t\ of t for which ApG0)(F2(£)) vanishes, which is Il [ 0-
sible since B(t) is invertible for all t. .

Similarly, if we have the case where p(to) < p, then we consider the ([l s
function 1i>>\p B{t)), which takes a negative value at t = 1 and a ) I§I{IV¢ Vlue
at t —

We now show that we can construct a path having the required properties.
Let C = QR be the decomposition studied in Theorem 12.1.1. Let

C(t) = Q((I -t)R + tI).

It is clear that C(t) is continuous with respect to t and that G(o) = C ad
C(1) = Q, which is unitary. Matrix C(t) is invertible since @ - )R Htl isan
upper triangular matrix with a strictly positive diagonal for all t E [01} e
have therefore proved the theorem in the case where A is invertible.

We pass now to the general case. The eigenvalues of A are

Let B(e) = C*(A + el)C, and let Pk(e) be the fc-th eigenvalue of B(e). The
eigenvalues of A + el are

Ai+ter--*"Ap +e<e = Apti = *=m= X< AN +C N N AnAG

The first part of the proof shows us that, if e E JO,—p[, A + el, and
B(c), have exactly p strictly negative eigenvalues and n —p strictly Ps1 #
eigenvalues. Furthermore, if e E }—2e+i,0[, A + el and B(e) have exact>



121 ABOUT ORTHOGONALIZATION 295

strictly negative eigenvalues and n—q strictly positive eigenvalues. In particular,
if 6 is @ small positive number, pq(e) and pp+i(e) are strictly positive, and if e is
asmall negative number, pqgf{e) and pp+i(e) are strictly negative. By continuity,
we see that pg{0) = Ap+i(0) = O. This shows that JFA0) has at least as many zero
eigenvalues as A. We now have to bound below the number of strictly negative
eigenvalues and strictly positive eigenvalues of B(0). For small positive e, B(e)
has exactly p strictly negative eigenvalues. Consequently, from Lemma 12.1.5,
#(E) - eC*C = B(0) has at least p strictly negative eigenvalues. We argue in
the same manner for the positive eigenvalues. [

12.1.3. Topological properties of the Cholesky and Q R
decompositions

We will return to the QR decomposition, whose continuity properties we will
examine, after having looked at those of the Cholesky decomposition.

Lemma 12.1.6. The Cholesky decomposition defines a continuous mapping from
the set of positive definite Hermitian matrices to the set of upper triangular
matrices with a strictly positive diagonal.

Proof. We will use the notation of Theorem 9.4.3. Let A be a positive definite

Hermitian matrix. If n is equal to 1, A = (@), and as the mapping a h* y/a is

continuous on M, we see that the mapping A i>>C = (\A%) is continuous.
Suppose that we have continuity in n —1 dimensions. We write

and from the proof of Theorem 9.4.3 we have A = C*C with

¢ (< b)
ant
= y/ - P pp=AEF
G= y/a, m—y/'-a, AT

is clear that /2 and m are continuous functions of A, mapping to values in
and (n- I)-dimensional linear forms, respectively, provided that a is strictly
Positive. The mapping A i=> A —£*£/a is a continuous mapping to (h —1) X
A1) matrices, and we saw in the proof of Theorem 9.4.3 that it maps to
Positive definite Hermitian matrices. By induction, we know that the mapping
Z 1/a k> B is continuous and maps to (n —1) x (n —a1) upper triangular

a nces w*th strictly positive diagonals. Consequently, the mapping A C is

continuous mapping to values innxn upper triangular matrices with strictly
PCsithve diagonals. [
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Lemma 12.1.7. The QR decomposition defines a continuous mapping from
GLn{C), the group of invertible complex nxn matrices to the product of Un(q
the group of unitary matrices, and T+ (C), the group of complex upper triangular
matrices with strictly positive diagonal.

Proof. We will use the notation of Theorem 12.1.1. Let A £ GLn{C). The
mapping A A*A is clearly continuous, and we have seen that it maps to
positive definite Hermitian matrices. It follows, from Lemma 12.1.6, that the
mapping A >»?, where R is the member of T+ (C) defined by

A*A = R*R,

is continuous. Furthermore, A >»Q = AR~I is continuous, and from the proof
of Theorem 12.1.1, it maps to the elements in the set of unitary matrices. [

12.1.4. Operation counts and numeric strategies

The QR decomposition is extremely useful practically for the solution of linear
systems and, as we will see later, for the search for the eigenvalues and eigen-
vectors of a matrix. Unfortunately, it is slow and pretty unstable in its naive
form:

Operation Count 12.1.8. The QR decomposition of an invertible matrix, viewed
as a Gram-Schmidt orthogonalization, requires n square roots and of order 2ns
arithmetic operations.

Proof. As in Theorem 12.1.1, we denote the column vectors of A by (fj))i®j™n
and the column vectors of Q by For k —1, we have

fi = <A~

We therefore need to calculate Rn = y/\fi\2, which requires n multiplications.
n —1 additions and the taking of a square root. Furthermore, the calculation of
gi requires n divisions: it is necessary to divide each of the components of /i by
Rn. To calculate gk, knowing the gt for £~ k —a1, we write that

k
fk =" qjRjk-
3=
Consequently,
Rtk = (fk,qi)

and the calculation of R” requires n multiplications and n —a additions. Ins 1
it needs (k - 1)@ - 1) operations to calculate the Rtk for £/ k - 1 Wehee

k-1
Rkk = fk ~N QjRjk =
3=1
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each of the components of a vector for which we calculate the norm is calculated
by means of k - 1 multiplications and k—21 additions or subtractions. It therefore
needs N(2k - 2) operations to construct this vector. The calculation of the norm
of this vector needs n multiplications, n —1 additions and a square root. Then,
the calculation of qu needs n divisions. Finally, the calculation of Qk and Ra
for k requires

k-D@n-D+ Zk-2)n+2n-1+n =n@W—1)—Kk

arithmetic operations and the taking of a square root. By summation we find
the number of arithmetic operations is of order 2n3plus N square roots. [

Furthermore, the Gram-Schmidt process is not very stable numerically, as is
shown in [69].

12.15. Hessenberg form

The most practical method of calculating QR decompositions is to apply a nu-
merical strategy which is dependent on the particular properties of so-called
Hessenberg matrices. A square matrix is in upper Hessenberg form if it has the
following form:

V. .
ow LLLIL v
0 = -
Vo - o *

In other words, all the coefficients A{j of this matrix are zero if i > j =+ 1.
Obviously, a matrix A will be lower Hessenberg if A* is upper Hessenberg.
There are two interesting properties of matrices in Hessenberg form. First
al, we can put a matrix into Hessenberg form in 0(n3) operations (which is
not much better than the preceding operation), by a procedure which is stable,
fa addition, the QR decomposition of an upper Hessenberg matrix A produces
matrices Q and R by a stable procedure such that Q and RQ are upper Hessen-

Let us verify that Q and RQ are, indeed, upper Hessenberg, if A is upper
essenberg and invertible. As in Theorem 12.1.1, we denote the column vectors
N ky (fj)inj~An and the column vectors of Q by (qj)i®j*n- We have

fi = gqiRn-

that VB only the first two components of g\ can be nonzero. Suppose
WP to row k - 1, only the first j + 1 components of gj are nonzero. Then,
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fk — QiRjk,
3=1
we deduce that only the first k + 1 components of gk can be nonzero. This little
induction therefore shows us that Q is upper Hessenberg. As for the product
RQ, which we will need later, it is also in upper Hessenberg form. We calculate
its coefficients (RQ)ij, for i > j + 1, as follows:

(RQ)ij =y "RikQkj = y ] RikQkj =
k inkAj+1

12.1.6. Householder transformations

To put a matrix in Hessenberg form, we make use of the Householder transfor-
mations, see [47], which we are now going to introduce.

We describe these Householder transformations: for every v E Cn \ {O}, we
write

Geometrically, Sn(Vv) is the orthogonal reflection with respect to the hyperplane
which is orthogonal to v. Indeed, if x = Ay,

W Vv
Sn (V) x —\v —2\ = —Xv = —X.
Vv
Moreover, if x is orthogonal to v, that is to say v*x = 0, it is clear that
Sn(v)x = x.

The transformation Sn(v) is, at the same time, Hermitian and unitary:

SnwW =/~ 2\—/*\/

is clearly Hermitian. Furthermore,

v *
Sne? =1 A% W 14 ddl o
\VA2Y; (V*V) v*v V*V Vv

Abusing the language a little, we will consider the identity as a Household?1
transformation. The Householder transformations will be useful by virtue ot
following lemma:
Lemma 12.1.9. For all vectors x and y with the same Euclidean norm, " ee
exists a vector v, a Householder transformation Sn(u), and a complex numb?1
of modulus 1 such that

uy = Sn (V) x.
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proof. Suppose, first of all, that x = y = 0. The case is trivial, and any v
and 1 are suitable. Now, if x and y both have nonzero norm but are linearly
dependent, we will take the identity as the Householder transformation, and ij
such that x - ujy = 0. Such an 1j exists since x and y are linearly dependent.
We suppose now that x and y are linearly independent. Then we have

AVVFX

ia% w/,
therefore,
2w*x = (V*v) (X —ujy).

Consequently, v and x - Ljy are linearly dependent. Since Sn(v) depends only
on the direction of u, we may take

V —X —Ujy.

To determine 15 we examine ujy —Sn(Vv)x:

ujy - Sn(v)x:uy—x+zwx

\ V*V)
=[] x>
Fllhee-om ()
W& therefore have, taking account of the equal norms of x and vy,

uy*x = ux*y.

Itis therefore necessary to choose, |j = €10, if y*x * o, where 6 is the argument

of the complex number y*x. If y*x = O, the choice of 6 is immaterial, and we
can take 1j = =+ (.

In practice, the choice of sign in front of e is governed by conditioning con-
siderations. We will choose, in preference, the sign which leads to an x —uy of

targest norm.

1217. QR decomposition by Householder transformations

~ith afinite series of Householder transformations, we can find the QR decom-
P<sdtion of a matrix:

Theorem 12.1.10. Let A be an invertible matrix. Then there exist 1 House-

o er transformations Sni), Sn(\2),..., Sn(wn-i) such that

Sn (W-i)---Sn (vi)A
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is upper triangular. In particular, the QR decomposition of A is given by
R = D~1T, Q=Sn.,_i -~
where D is a diagonal matrix whose coefficients are all of modulus 1 0

Proof. We are going to argue by induction on the dimension of the space. In
one dimension, the result is trivial. Suppose it to be true in dimension n -
Let A be an n x n invertible matrix. It can be put in the form

A= ==

where the fj are the column vectors of A. From Lemma 1219, there exists a
vector W\ in C 1 such that

= |/iwei,

where e\ is the first vector in the canonical basis of C 1. We then have

N (VD A=(\fNuel SnVIlke ~n(vl)/n) = 3

From the induction hypothesis, there exist vectors tfej==gtn-i in Cn_1 such
that
Sn-1(fyi+) <*Sn-1 (2)A —T.

Letting

for2 A~ j ~ n —1, we see that

W~ WY s

Sn (Wm-1)---Sn (V) A= pj.

and that

which proves the possibility of a triangulation by Householder transformations.
The matrix T thus obtained is upper triangular, but its diagonal terms are
not necessarily strictly positive, although they are nonzero. i1f we write

D = diag(T<«/|7;i]),

it is clear that D~IT is upper triangular with a strictly positive diagonal. Mor»
over, D is unitary, therefore QD is unitary, and we have obtained the Q
composition of A
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It is shown how to put this algorithm into practice in [12,34].

The advantage of this method of triangulation is that the transformations
Sn{vj) are all unitary and, therefore, they do not change the conditioning of the
matrix. This decomposition can be used to solve a linear system. However, the
transformation to a triangular system by Householder transformations is more
costly than LU Gaussian decomposition. We can show that it requires order 2n3
arithmetic operations, and 2n square roots. The numerical stability, see [B3],
can balance the greater cost of the calculations.

On the other hand, if A is an upper Hessenberg matrix, the matrices ap-
pearing in the algorithm of Theorem 12.1.10 are all upper Hessenberg, and the
operation count is a lot more favourable:

Theorem 12.1.11. For an upper Hessenberg matrix A, the matrices in the ex-
pression

Snivj** (DA,
described in Theorem 12.1.10, are all upper Hessenberg. 0

Operation Count 12.1.12. The QR decomposition of an upper Hessenberg matrix
requires order n3/3 arithmetic operations, and order n square roots.

Proof. Let C(n) be the number of operations necessary to go from A to the
matrix Sn(vi)A. We write X = /i, v = i, and y = |/ilei. As f\ has at most
two nonzero components, the calculation of |/i] demands 2 multiplications, an
addition and the taking of a square root. To get §j in the complex case, we
must calculate y*x, which demands a multiplication and the calculation of the
modulus of this complex number. We obtain u by division, which involves two
complex operations and the taking of another square root. The calculation of
v = X - Uy demands only a multiplication and a subtraction since y has only
one nonzero component. The calculation of v*v demands 3 complex operations,
and the calculation of v*fk demands, for its part, k H 1 multiplications and k
additions, as /* has at most k -f 1 nonzero components. It needs 2 further arith-
metic operations to get 2v*fk/v*v. Finally, the calculation of fk - (2v*fk/v*v)v
requires 2 subtractions and 2 multiplications since v has only two nonzero com-
ponents. We also note that Sn(v)fk has at most its first + 1 components
nonzero, which proves that A is Hessenberg. In total, we have to make

n—1
2+1+24+2+3+ "2 2%+ 1+ 4 ~ n2 arithmetic operations
k=2

N 2square roots. We therefore have

C(n) ~C (n—1)+ n2.

In total, summing with respect to n, we find the result claimed. O
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12.1.8. Hessenberg form by Householder transformations

Putting a matrix into Hessenberg form is also done by Householder transforma-
tions:

Lemma 12.1.13. For every invertible matrix A of n rows and n columns, there
exists a family of Householder transformations

(Sn (“))\"j*n-2

such that
Sn {M—=)***Sn ("1) ASn () ***Sn (Vhi—=2)

is upper Hessenberg.

Proof. We will prove by induction on the dimension. In two dimensions the
result is obvious, since every 2 x 2 matrix is upper Hessenberg. Suppose that in
n - ldimensions we can find n - 3 vectors in Cn_1, with zero first component,
which allow us to put an invertible matrix into Hessenberg form by Householder
transformations. Let A be an n x n invertible matrix. We can put it into the
form

There exists a vector M in C1 1 such that

sn-1 (vi)p = u\p\eu

where e\ is the first vector in the canonical basis of Cn_1. Then, let

which implies that

Consequently,

From the induction hypothesis, there exist n —3 vectors £,... ,#n-2 m~
with zero first component such that

B = $BdAD "~ Sn-1 ) [$, -! (<< DiBn-1 (<] Sn-X (v2) md>>-1~
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is upper Hessenberg. We then have, on letting

M= () ANJAN -2, (BB V=) ?

the relation
\
Sh (Ur2) S () [S () 41 (] S (2)sh (-2 = VP S):

noting that, for j ~ 2,

*Sn-1 () Sn— (M)p —Sn— (i) p,
since the first component of vj is zero. It is clear that the matrix
an m\
Sn-i(vi)p BJ
is upper Hessenberg —

The number of operations necessary to put a matrix into upper Hessenberg
formis 0(n3), as the reader can calculate. It is sufficient to do this once initially.

122. Exercises from Chapter 12

1221 The square root of a Hermitian positive definite matrix

In all of this problem the basis field is C.
We denote the set o fnxn matrices with complex coefficients by M. Let

U be the subset of M of Hermitian matrices and V be the subset of W formed
from matrices which are positive definite.

We denote the Euclidean norm on Cn by | = and the subordinate operator
nomby | =i

We define a mapping from V to M as follows: if B E V, the Cholesky
decomposition is denoted

w2.1) b = C*C

and we let

1222 F(B) = aa( BxC=F
Exercise 12.2.1. Show that G maps to elements in V.

Brercise 12.2.2. Show that [IGE®II = lISIl = 1IF®)]]2.

_erctse 12.2.3. Let A be a diagonal matrix belonging to \VmShow that there
Ists amatrix H belonging to V such that H2= A, and give H explicitly.
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Exercise 12.2.4=| et A be defined as in the preceding question and let K be a
matrix belonging to V such that K2= A We denote by y/X the matrix F(A)
which is clearly diagonal and in V. Let K = QR, with Q unitary and R upper
triangular with a strictly positive diagonal.

@) Show by calculating K*K that R = VA;

(i) Show that K can only be positive definite if Q has 1as its only eigenvalue.
Suppose that §j is an eigenvalue of Q distinct from 1, associated to an
eigenvector x and obtain a contradiction;

(iii) Conclude that there exists a unique matrix H € V such that H2= A

Exercise 12.2.5. Let B be in V. Deduce from the preceding question that there
exists a unique matrix H in V such that H2 = B. This matrix will be denoted

Vb .
Exercise 12.2.6. Show that if B is symmetric positive definite and real, then VB
is also symmetric positive definite and real.



Part 1V

Nonlinear problems

In this part we treat three different kinds of nonlinear problems: the calculation
of eigenvalues and eigenvectors of a matrix, the resolution of nonlinear equations
and systems, and the numerical integration of ordinary differential equations.

These three problems are deeply related, and I shall write only a few words
about them.

First, for practical applications, it is often necessary to find the modes of
a vibrating structure, for instance, earthquake certification of high buildings
requires the computation of their eigenmodes.

But, of course, eigenmodes are interesting because they appear as special so-
lutions of the differential equation which governs the motion of a large structure.
Currently, nonlinear effects are not taken into account by earthquake certifica-
hon, but if interaction between the nonlinear ground and the structure is consid-
ered, one might have to develop a nonlinear analysis for earthquake certification
of lurge structures.

When integrating nonlinear differential systems, one has often to solve a
n=ulirear system of equations at each step. Being able to solve these nonlinear

systems is then completely crucial in order to obtain reasonable computing times
| reasonable accuracy.
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Spectra

The theoretical problem of finding eigenvectors and eigenvalues of a square ma-
trix A could be considered as being totally solved after a first year course. But
the calculation of these famous eigenelements or spectra is another problem en-
tirely!

The numerical computation of eigenvalues of linear operators is a subject
which has a bad name, for bad and for good reasons. The readers will decide for
themselves after reading this chapter whether the reputation is deserved. But,
in order to make the problems more palatable, let me emphasize some essential
ideas, which might otherwise be lost in the technicalities.

Wk learn in any first year course that the eigenvalues of a matrix are the
roots of its characteristic polynomial. Assume that we have a good method for
computing the characteristic polynomial. If we normalize the leading coefficient
Xnto be equal to 1, the information given by the characteristic polynomial is
totally contained in the sequence of n real numbers. On the other hand, the
matrix we started from contains n2 numbers.

In some cases, there is much more information in the matrix than in its
characteristic polynomial. In particular, if the matrix is self-adjoint, or skew-
adjoint, or unitary, which can be tested with a few operations, or is a consequence
< the nature of the problem, then it is quite clear that we know much about
the eigenvalues and eigenvectors and that this information is not visible in the

characteristic polynomial. On the other hand, if A is a companion matrix of the
form

0 1 0 0 -— 0
0 0 1 0 -— 0
4= 0 0 0 i -— 0

—ai 0P 0B === _agn|
en the characteristic polynomial of A is

det -A) =X NYon ..+ d\X

307
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The amount of information contained in the matrix is exactly the same as the
amount of information contained in the characteristic polynomial.

The computation of eigenvalues and eigenvectors is a part of linear numerical
algebra; but it is not a linear problem: the eigenvalues of A+ B are not the sum
of the eigenvalues of A and the eigenvalues of B. Let us give an elementary
combinatorial argument. If A and B have n distinct eigenvalues, then we might
pair the sums of eigenvalues in n! different ways so as to obtain n! n-tuples; this is
far too many possibilities. The first reason why the computation of eigenelements
can be really difficult is the nonlinearity of the problem.

If an eigenvalue of a linear operator is not simple, the problem is usually
ill-conditioned. This means that the variation of the eigenelements is very large
with respect to perturbations of the elements of the matrix. Let J be ann xn
Jordan block, with zeros on the diagonal, and let A(e) be the perturbed matrix

/0 1 00 (0)N
0 0 10 0
0001 0
(13.0.H Ae) =
0 1
e o/
This matrix is a companion matrix, hence its characteristic polynomial is
P(X;e) = Xn-e,
and we know the eigenvalues explicitly: they are equal to s /' exp(2mk/n), with
k = 0,... ,n —1 This means that a variation of in the elements of the
matrix can correspond to a variation of in the eigenvalues. Moreover,

in general, we will not know that there is a Jordan block of high multiplicity in
the matrix: somehow, the program should be written with a warning to alert us
that something unusual is going on. But this is difficult to implement.

One could say: alright, the matrix (13.0.1) has been made up to make life
really unpleasant; what about a nice 2x2 matrix, with nicely distinct eigenvalues.
Surely, nothing bad can happen in such a simple case? Thus, take the matrices

(13.02) ““9 and ““) - 9
The eigenvalues of A are
Ai =1 A2= 1.
An explicit calculation gives the eigenvalues of A"
X[ = 6- x/249 - 101001, Ar= 6+ V2A9 ~ 10.98990.

This means that a change of 10°5in the elements of the matrix, which is
at most 10"5relative to the eigenvalues, brings a perturbation of order I/
one of the eigenvalues.
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It is not sufficient to observe that the eigenvalues can be very sensitive to
the perturbations of the elements in the matrix: the dependence is much more
dramatic for the eigenvectors. Going back to the matrix (13.0.1): for e > O,
there are n distinct eigenvalues and, hence, n distinct eigenvectors; for n —Q,
these n distinct eigenvectors collapse to a single eigenvector corresponding to the
eigenvalue O. It is interesting to get a more precise picture: letting u be an n-th
root of unity, the normalized eigenvectors are all of the form

/ \
1

(1303 HE)

Here the positive quantity n(s) is given by
ME)2= 1+ £Vn + me=t e2(n_1)/n.

Therefore, the word Collapsing “describes the phenomenon very well: the basis
of eigenvectors, given by expression (13.0.3), for u running through all the n-th
roots of unity, becomes more and more singular as e tends to O. Such a situation
must be considered as systematic: the continuity of eigenvectors with respect to
the elements of the matrix cannot be assumed; we can only expect the continuity
ofgeneralized eigenspaces relative to a cluster of eigenvalues converging to a given
multiple eigenvalue.

The definition of conditioning is not the same for the resolution of a linear
system as for the computation of the eigenelements of a matrix. We have seen
in Chapter 5 that the Hilbert matrix is very well conditioned for the second
situation and very ill-conditioned for the first one. Conversely, the matrix | +
4(@), with A(e) defined by eqn (13.0.1), is very well conditioned for the second
situation and very ill-conditioned for the first one.

In this chapter we will mainly consider two methods: one is the power method
and simple modifications to it; the other one is the QR method. In fact, they
are basically the same, but more on that later.

The idea of the power method is utterly naive: if A has an eigenvalue A
whose modulus is strictly larger than the moduli of every other eigenvalue, and

it happens also to be simple, we take any non-vanishing vector x and we
repeatedly apply A to x. The components along the eigenvector corresponding
to Awill increase fast, relative to the other components. In the limit, the relative
hP<rtance of the other components tends to 0. This is too naive to work: if |
Isstrictly larger than 1, we expect an overflow; if it is strictly smaller than 1, we
expect an underflow. Thus, we must normalize at each step.

Of course, we do not know whether an arbitrary matrix has an eigenvalue
Possessing the property which we have hypothesized. This is not a problem:

*ncal analysts are bold souls and they try numerical methods, in the hope
[ eecting from the output whether the result looks correct.
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Maybe, we are not interested in the eigenvalue which has the largest modulus
but in the eigenvalue which is smallest in modulus. Then, instead of repeatedly
applying A, we repeatedly apply A~Il to x; and, since we know better than to
invert matrices, we repeatedly solve a linear system whose matrix is A, and we
normalize the result. The analysis is the same for this inverse power method
as for the direct power method. Geometrically, we have performed an inversion
and a conjugation in the complex plane.

Now, we can modify the inverse power method and get much more from it.
Intuitively the inverse power method converges the best when the ratio of the
smallest eigenvalue to any other eigenvalue is the smallest. If we translate A by
///, choosing [i to be close to the eigenvalue we want to compute, we get a much
better convergence for the inverse power method, and the method will give the
eigenvalue closest to fi. So, now we can be pedantic and observe that we hawe
performed a homographic transformation in the complex plane completed by oo,
i.e., the Riemann sphere: much ado about nothing.

The QR method can now be explained by waving our hands: we apply the
power method simultaneously to all of the basis vectors and we have to renormal-
ize at each step to get something meaningful. The reader is referred to Section
134 for the definition of the QR method, and to the sequence of exercises in
Subsection 13.5.2. Moreover, there are still many open questions in the mathe-
matical analysis of the QR method.

Time-dependent problems can be solved theoretically by means of decompo-
sitions on a basis of eigenvectors, however, this method is rarely used in practice.
An important case is the calculation of the motion of a linear vibrating structure.
The idea is basically the same as for the argument against inverting matrices in
order to solve a linear system: if there is a method which works as well and is
faster, we choose the faster method. So, though we are brave numerical analysts,
we are not foolhardy: knowing that there are many pitfalls in the computation
of eigenelements, we calculate them only if it cannot be avoided.

We need eigenvalues and eigenvectors if we are interested in the vibration
modes of structures, acoustic or electromagnetic fields, and so on. And, we
should not be surprised to learn that what causes mathematical difficulties can
also cause physical difficulties: the higher the degree of degeneracy of an eigen-
value, the larger the instability at resonance. So, if we care for stability,
try to draw eigenvalues apart at the time of design. Conversely, we may ke
interested in resonance, as in tuning; for example, tuning a bell or any musics
instrument, or tuning for receiving electromagnetic waves. In this case, also, *e
are interested in eigenvalues and eigenvectors.

It would be nice to have an idea of the size of the set of ill-condition
matrices relative to the computation of their eigenelements. This question hes
strong algebraic and geometric flavour: the set of matrices must be strat® e AleS
sub-varieties on which the algebraic and geometric multiplicity of the eigenva
are fixed. Now, how large is the set of matrices which are €lose 7in a sense
be defined, to such sub-varieties? The question looks wide open.
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Let us conclude: it is necessary to calculate eigenvalues and eigenfunctions
of linear operators; in practice, we do use packages, but it is particularly im-
portant to understand the underlying mathematical considerations, in order to
find out whether the results given by the software have any value. There are
all sorts of motivations, coming from fluid and solid mechanics, from physics,
from statistics, from economics etc. The matrices are large, the problems are
not well conditioned, and all the art of the numerical analyst is required to find
a solution.

13.1. Eigenvalues: the na\Ae approach
13.1.1- Seeking eigenvalues and polynomial equations

There exist algorithms to calculate the characteristic polynomial, but they are
little used because the calculation of the roots of a polynomial in the complex
plane is often a badly conditioned problem, a problem which is not limited to the
case of multiple roots. J. H. Wilkinson [/] has proposed the following example:
let

P(X) =(X+1.--(X+20

and let the perturbation be

Q{X)= 2
The calculation gives the following roots for the perturbed polynomial P + Q:

- 1.000000 000,

- 2.000 000000,

-3.000000000,

-4.000 000 000,

-4.999999928,

-6.000006 944,

-6.999 697 234,

-8.007 267603,

-8.917 250 249,
-10.095 266 145 ==0.643 500 904 i,
-11.793 633 881 =+ 1.652 329 728i,
-13.992 358 137 +2.518 830 0701,
-16.730 737 466 +2.812 624 8% i,
-19.502 439 400 =+=1.940 330 3471,
-20.846 908 101
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Note that the perturbation of the zeros is very important. Indeed, this polyno-
mial is badly conditioned for calculating its zeros. This phenomenon is difficult
to predict. There exist algorithms to calculate the characteristic polynomial
(without Cramer 3 formulal), but they are not used to find the eigenvalues and
eigenvectors of a numeric matrix, except in two dimensions.

13.1.2. The bisection method

We begin with a very simple method for finding the eigenvalues of Hermitian
matrices.

Recall the principle of the bisection method for finding the roots of a nonlinear
equation f(x) = 0. We suppose that / is given on an interval [a, ], is continuous,

and satisfies
f(a)f(b)<O0

Let ci = (a+ b)/2 Either /(ci) = O, and in this case we have found a zero
and the algorithm stops, or /(ci) ™~ o, and in this case one of the two products
f(a)f(ci) or f(ci)f(b) is strictly negative. In this case, we denote by [a%i]
the interval [a,Ci] or [ci,s] such that the product of the function values at the
end-points is strictly negative. Having obtained an interval [dk,bK] such that
f{ak)f(bk) < 0, we write ck+1 = (dk -f bk)/2 If f(ck+i) = O, the algorithm
stops. If not, we denote by [ak+\, bk*\] whichever of the intervals [ak,ckH] or
[ck+\,bK] is such that the product of the function values of the end-points is
strictly negative. Thus, in N steps of bisection, we localize at least one zero of
/ with a precision of 2~N( - a).

We are going to couple this bisection method (which has a very general ux)
with Sylvester § inertia theorem. Let A be a Hermitian matrix. Suppose thet
A - pi admits an LD”~L* decomposition, and denote by p(p) the number of
eigenvalues of A which are strictly greater than p. It is clear that p(p) is tre
number of strictly positive eigenvalues of D

For avalue p* < p, A- p"l » A- pi,and consequently, by virtue of Lemma
12.1.5, \p(n)(A—pi) ™ \p* (A —p"1), which shows us that pipD " p{p)- Hence,
in the interval /" /], A has exactly pipD —p{p) eigenvalues.

Suppose that we have already determined that A possesses exactly one eiger+
value in the interval Jp*,p]. Then, by application of the bisection method, ve
can determine this eigenvalue with a precision of 2~N(p —p") in N calculations
of the decomposition LDL*. We will see later that the inverse power method
can be applied to calculate an eigenvalue precisely if we already know a good
approximation.
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13,2. Resonance and vibration
13.2.1. Galloping Gertie

In 1831, near Manchester, a bridge collapsed whilst being crossed by a military
detachment marching in step. Since this time, the military regulations of every
country order the infantry to stop marching in step whilst crossing a bridge.

It was common, at the beginning of aviation, for an aeroplane to crash fol-
lowing uncontrollable oscillations of its wings, as a result of the loss of control
of the elevators.

The earthquake-proof construction of tall buildings is regulated in several
towns in California, by ensuring that the natural frequencies of the buildings
are far from the characteristic frequencies of earthquakes. Furthermore, the
foundations include vibration-damping elements.

The Ariane rocket is designed in such a way that the vibrations created by
the rocket motors do not resonate with the structure (which is a very thin hull
filled with liquid).

Here is another story about the destructive effects of resonance, which | have
adapted from the autobiography of Theodore von Karman, [76, pp. 211-15].

The collapse of the bridge over the straits of Tacoma on the 7th of November
190 in Washington State, USA was due to a subtle resonance created by the
interaction between the bridge and the turbulent movements of the air. This
1.6 Km long suspension bridge was, at the time, the third longest in the world
and was considered at its inauguration to be at the pinnacle of civil engineering.
From the begining, the behaviour of the bridge was bizarre. In winds of 7 or
skm/h, it oscillated with a maximum amplitude surpassing one metre. The
movement of this fine steel ribbon was so spectacular that visitors came from far
anay to cross it and it became nicknamed Galloping Gertie 7

The engineers tried in vain to stabilize the bridge by anchoring it with thick
cables attached to blocks of concrete. Other procedures were also tried, but
nothing worked: Galloping Gertie swayed and for four months they watched its
behaviour. Since this did not change with the passage of time, the Washington
state authorities began to say that the bridge was safe.

The morning of the collapse, nothing foretold what was going to happen. In
sPite of a storm during the night, the bridge continued to sway as usual. At ten
o clock in the morning the wind blew at 67 km/h, the strongest that the bridge

" ever been subjected to. All of a sudden, a few minutes after ten o Clock in the

Corning, the movement changed character: the rhythm of the displacement from
<wto high took place in violent, torsional movements, and as an observer said
It~ emed that the bridge was going to turn over 7 The authorities prohibited
raffic from the bridge.

In the following minutes, the torsional movement continued more and more

IhHunt 7 oneinstantsone end of the road appeared to an observer to be 8.5m
jl ~er ™ an the other. At the following instant, 8.5m lower. The cables of the
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main span, instead of ascending and descending together as in their usual spring
movement, pulled and twisted in opposite directions, inclining the roadway from
one side to the other at 45 degrees. The street lights on the bridge were nearly
horizontal. For half an hour, the steel girders, the suspension cables and the
concrete road were subjected to these terrible stresses. Finally, at eleven o ¢lock
in the morning, the structure could resist no longer. The street lights began to
collapse. The central span exploded and a two hundred metre section detached
itself and collapsed into the bottom of the straits with a deafening noise.

Theodore von Karman analysed the causes of the destruction of the bridge.
Working principally on problems of aerodynamics applied to aircraft, he had
highlighted, in 1911, the formation of vortices in the wake of an obstacle. These
vortices are created alternately from one side of the obstacle and then the other.
The vortices are arranged in staggered rows, like the street lamps from one side
of a street to the other, and from this we get their name: von Karman vortex
streets. This discovery won him international recognition in aeronautical circles.

The Tacoma bridge had a roadway covered in metal, and the plates forming
the wall were pushed by the wind until this formed vortex sheets at their side,
which caused the oscillations and the collapse of the bridge.

The Tacoma bridge was reconstructed with openings in the roadway and the
lateral walls, and it holds till this day. The other great American bridges were
checked and found safe.

13.2.2. Small vibrations

Consider a mechanical system, for which position is described by a point q € M.
We will assume that the masses are included in the chosen coordinates. If the
point g moves under the action of a force —/C/, with U a potential depending
only on q, the fundamental principle of dynamics implies that

(1321 g= ~VU().

We have used here the notation of mechanics and physics: u = du/dt ad
u = d2u/dt2 are the derivatives with respect to time and V is the gradient
operator. We easily verify that the total energy, which is the sum of the potential
energy and Kinetic energy

(1322 E(g,p) = U@ + *,

remains constant when q is a solution to the system of differential eqns (13.23)*
The system has a stable equilibrium qo if U has a local minimum at &
U (which we assume to be sufficiently differentiable) has a second derivati‘e
A = D2U(qo) (the Hessian matrix, or the Hessian) which is positive 4e@n!*
we know that U has a local minimum at go. The small vibration approxin »
consists of replacing U in the neighbourhood of qo by (@ —go)*A(q - Qo)fi »
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thus linearizing the system. W.ithout loss of generality, we can suppose that
= 0, and the system becomes

1323 g= -Ag.

We seek solutions of eqn (13.2.3) which are of the form vcos(ujt + <5, where v is
avector in Rn:
—ujAvcos @t + @ = —Avcos (Wt + A).
Therefore, we must have
AV = U2y,
that is to say, v is an eigenvector of A associated with the positive eigenvalue
a2, since A is positive definite. The number u is the angular frequency of the
vibration, and the frequency of the vibration is a/27r.
Every solution of egn (13.2.3) is of the form
n

N2 vkceos Ukt + ¢K),

k-1
since the orthogonal projection of system (13.2.3) onto the eigenvector vk asso-
ciated with the eigenvalue leads to the equation
1329 xk+ ukxk = 0,

where xk is the component of x on vk.

Consider a linear equation of angular frequency a;, to which we add a small
dissipation coefficient e > 0, and calculate the stationary response of this system
to an excitation eiat. We look for a solution of the form keiat to the differential
equation

X + ex + uPx = eiat.

Asimple calculation shows that

Lj2—a2+ iea
and, therefore, the modulus of k is given by

[t = ((w2- a22-ex2) * ,

whose representative curve has the shape indicated in Figure 13.1.

Therefore, we see that an excitation of unit amplitude and of angular fre-
quercy a gives a solution whose amplitude is inversely proportional to the coef-
ficient of dissipation e.

This abundantly shows the danger of resonance. When the vibrations of a
fystem are of large amplitude, on the one hand, the linearized system (13.2.3)

uo longer a good approximation to the nonlinear system (13.2.4) and, on the

~ hand, we leave the domain of validity of the physical model,
he search for resonance is one case where we are not much interested in the
eigenvectors.
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Figure 13.1: Amplitude of the response of an oscillator to a harmonic excitation
of pulsation a; e= 001, w= 1

13.3. Power method
13.3.1. The straightforward case

The power algorithm is described as follows: A is a matrix in Kn. Given a
linear form y* and an initial vector x<, the vector x*+1 is defined from xk by the
following relations:

Xk+l/2
(1331) xk+1/2 :Axk, ,*Xk+|/2

The convergence properties of the above algorithm are set out as follows:

Theorem 13.3.1. Let A be a matrix in Kn which possesses a simple eigenvalue
Awhose modulus is strictly greater than the moduli of all the other eigenvalues
Then there exists an open set U of Kn x Kn <« K2””whose complement hes
Lebesgue measure zero in K?n such that, for every pair (y,x<) in [7, the sequence
(xk)keN has a limit. The limit of the xk is an eigenvector of A associated win
the eigenvalue A

Remark 13.3.2. Observe that in the real case, if A has a simple eigenvalue®
whose modulus is larger than the modulus of any other eigenvalue, then Aniu
be real.
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proof. We note, first of all, that

k Akx=
X T YEAKe
Indeed, this relation is true for k = 1 If it holds for k we have

12 Ak+Ix<=
y*Akx= *
consequently,
vkt /2 = Y AKX
y*Ake 7
and we see that
AKX y*AkK® Ak
y*Akxo y*Ak+Ix=  y*Ak+Ix=
We present the algorithm in the form (13.3.1) with the aim of avoiding the
overflons and underflows which would spoil the precision of the calculations.
These overflows and underflows can occur if the spectral radius of A is different
from 1, as the study in Section 11.1 shows that Ak grows as k tends to infinity
like p{A)k.
Let v be an eigenvector associated with the eigenvalue A There exists a
subspace W of Kn which is invariant to A, that is AW C W, and such that

K" = Kv 0O W.

We denote by P the projection in W parallel to Kv, and z the vector of Ikh such
that

X = @*x)v+Px, VaEHL
The operator B from W to W, defined by
Bx = \~1Ax, VxeW,

hes spectral radius less than 1from the hypotheses of the theorem.
We have

Ak = Xk @X=) v + AKPx® = \Kk [(@x=)V -F BKPx<] .
Consequently, if y*Akx= does not vanish for any value of kK,

(1332 xk = = )b+
y*AK=  y* [(Za0)v + B kPx<]

Ppose that y*v and x*xQdo not vanish. Then it follows from the study of
tion I1.1 that the numerator of eqn (13.3.2) tends towards (Z*x=)v and that
e denominator of eqn (13.3.2) tends towards {Z*x=){y*v). Consequently,
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We therefore have convergence for all data (y,x=) not belonging to the set F
defined by

Fk = {(y,x)&K2n :y*Akx = 0},
Foe = {y K" :y*v=0}x Kn)UKn x € K" :z*z = 0}),
F = Fi UF2U ===tJ Foo.

We are going to show now that F is a closed set of measure zero. Note that
p(A) = A > 0. Consequently, none of the powers of A is zero. The set Fkis
closed, since it is a level set of the continuous function (y,x) y*Akx. Itisa
set of measure zero. Indeed, let N\ = {x E Kn : Akx = O}. N\ is the kernel of
Ak, which being of co-dimension at least 1, has Lebesgue measure zero in Kn.
For x £ N\,

N ={i/6P: = 0O}

is a hyperplane of Kn and, therefore, the measure of Nx vanishes. From the
Fubini-Lebesgue theorem, the set Fk is therefore negligible, since almost all its
intersections FkCl (Kn x {#}) are negligible relative to the Lebesgue measure in
Kn.

The set Foq is a union of two products having the same structure: each is a
product of Kn with a hyperplane of Kn. It is therefore negligible in K. The
set F is a countable union of negligible sets and is also negligible.

It remains to show that F is closed. Let (yl,xl) be a convergent sequence of
elements of F, which have limit (y,x). We therefore have for each t an index k()
such that (ye,xl) E Fk*y If the number of distinct indices k{t) which appear
in this sequence is finite, it is clear that the limit of {y£xe) is in F. Suppose
for the moment that there appear an infinite number of indices in this sequence.
By extracting a subsequence, we can suppose that k(p) = k(£p) tends towards
infinity. In this case to simplify the notation we let = xip and fp = yip ad
we have

r&A“Wt, = 0.

Reasoning as in the first part of the proof, we see that
T,;[(z*zP)v+B kM psPfo.

If z*x = O, the pair (y,x) isin F. If z*x ~ O, passing to the limit in the &"%e
inequality gives
oVv) (@) =0
and, therefore,
y*v = o,

which implies again that (y,x) is in F. We have therefore shown that F is ¢S p
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13.3.2. Modification of the power method

In this subsection, we work under the hypotheses of Theorem 13.3.1: .1isail xn
matrix which has a simple eigenvalue Awhose modulus is strictly greater than all
the others. We are going to examine a modification to the power method. First
of all, instead of the normalization obtained by dividing xn+1/2 by we
are going to divide xn+l /2 by its norm

= r>+i _
(1333 xn+l/2 = Axn, - knH/2] -

Wk see then that
Ak

X* -

and the analysis made in Theorem 13.3.1 shows that
A= = XKk (Z*x=)v + AKPx=.
Consequently, if Z2x< "~ O,

AkS  TA1* @X)Vv + BkPxS
Bk W I@XS) v+ BKPXS |

We see that the vector Akx=/\AKXA does not converge if Ais not a strictly
positive real number. If A= rell,

* lke(z”*)v + BKkPx=
\@x)v+ BkPxq~

and, therefore,

@x)v

\@x=) v\'

" ot™er words, xk tends towards the eigensubspace associated with A, which

does not necessarily imply the convergence of xk. On the other hand, the ratio
)j/xk of the j-th component of Axk and the j-th component of xk tends

towards A provided that xk is not too small. Therefore, we can have two phe-
n=mera in the real case: xk converges or (—)kxk converges.
To ensure convergence it is also required that

e~Ikoxk

<" 0 and x=£ I ker Ak.
k=1

he union of the kernels of the powers of A is an increasing sequence of vector
dec PaCes w” ch is stationary for sufficiently large k. Jordan 3 theory of the
< uiposition of matrices shows that, since A has a nonzero eigenvalue A this
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space cannot be equal to Kn. Consequently, the set of initial conditions for which
we do not have convergence is closed and of measure zero, as in Theorem 1331

Note that the rate of convergence of xk towards ker(A —XI) is geometric in
p{B)k, where p(B) = JAF-1 max*.™ |A.

The modified power method is particularly interesting when A is Hermitian,
| being the Euclidean norm. The remarkable point is that the sequence defined
by (13.3.3)

nk= (xky Axk

converges twice as fast towards Aas the ratio (Axk)j/xk. Indeed,

k_ Akx<
X ~ \A
which gives
W Axck = X<y AZ+ix=
" AXK= oy Az

Since A is Hermitian, it possesses an eigenvector v of Euclidean norm 1, relative
to the eigenvalue A and we can write

AX —ANV*X) v+ APX,

where P is the orthogonal projection on the orthogonal supplement of Kr.
This orthogonal projection is necessarily Hermitian and idempotent (P2= P)-
Hence,

{XYAZ+IX= = X)) V+ Px= YAZ2HL [{v'x=) V+ Px<]
= [(WX=) V+ Px°y [A2+L (v*x)VA A+ Px=]
= AZeHl W=\ + {X=y PA2k+1Px=.
Similarly,
(z0) ~ AKXE=XXK |2+ (x0)*
We therefore obtain
k [a0R+ A"2*"1(XZ) P A2*+1Px®
>~ I x= 2+ A-2* (x0)* P A A
The convergence of pk to Ais geometric if vx= / 0. The rate of converge”
is obtained from p(PAP/\)2= p(B)2: we have a convergence wt
rapid.

Since A is Hermitian, the hypothesis v*x= " 0O suffices to ensure tha
does not vanish for any k.
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13.3.3. Inverse power method

We have seen that the power method gives only the eigenvalue-eigenvector pair
corresponding to the eigenvalue with the largest modulus. Let € C be such
that

0< K Al< WAL

which implies that A jb simple. Then the largest eigenvalue (in
(A- §D)~xis (A) —ct)-1. Therefore, we have convergence of the sequence
when it is defined by either the relations (13.3.1) applied to ( - cr)~I, that is,

Tk+1/2
(13349 (A-al)xk+l' *=xkand x*+i =

or when it is defined by the relations (13.3.3) applied to M- a/)-1, that is,

xk+1/2
A- al) xkil/2 = xk and  xktl =
(1339 (A-abx x X Wi 1 4\ *

The convergence of the sequence (13.3.4) holds for (7,x<) in an open dense set of
WIx Kn, whose complement is of measure zero. The convergence of the sequence
(1335) holds for x=in an open dense set of Kn, whose complement is of measure
zero.

Practically, it is not necessary to calculate the inverse of A —al. We store
adecomposition A = LU or PTA = LC/, and each solution of the system re-
quires 0(n2) operations, once the initial investment of 0(n3) operations for the
Gaussian decomposition has been made.

One problem presents itself: the conditioning of the matrix A —crl can be
estimated by the ratio of the largest eigenvalue of A —al and the smallest
eigenvalue of A —al. A priori, the matrix is badly conditioned and, therefore,
the calculation of xk+1/2 will be marked with a large error.

What should we do? Must we choose a not too close to A so that A —al is
better conditioned?

We need do nothing of the sort, as was shown by B. N. Parlett [65]. We will
Mow his analysis in the case when A is Hermitian. The real calculations can
be modelled by

(A-al-E)xk+I'2=xk+ ek,
where E models the rounding errors of the method, and ek is the error in the
Vet xk. We write
ek = ek A Exk+1/2.

A=nsequently, instead of solving
{A-al)xk* 2=xkKk,
V¢ have in fact solved

(A-al)xktl/2 = xk+ ek,
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and the error committed is given by
(A-o0l)~1lek.

Using the decomposition of A over Evj & (Knj)x = Kaij @ ImPj, we see that
A-aiyl ek= + - a/)-1P,e*.
A-aiy X - a ( -a/n

Suppose that there exists a constant m such that

\Pjek\*M \v;ek\,

which means that the components of ek perpendicular to vj are not too large
compared to the components of ek parallel to \f. Let

m = min {{d™&k - a\ : Xk # Xj} .
We then have

(B-al)~1Pek ~ - fek 1,1 i v (A - al)~lek
We see that, if m\xj —a] <% m, the error ek is almost all in the direction of \J,
which is the eigenvector which we wanted to calculate.

Even if (A —crl)~lek is of the same order of magnitude as xk+1/2 (since the
matrix A - al is badly conditioned), this is not serious for the calculation of \4,
it is even an advantage. We therefore obtain \j in a few iterations.

13.4. QR method
13.4.1. The algorithm and its basic properties

Recall that every invertible matrix A admits a unique decomposition A = Q&
where Q is unitary and R is upper triangular with a strictly positive diagonal

(see Theorem 12.1.1).
The QR algorithm for finding the eigenvalues of some matrix A is defined as

follows: we use a sequence of translation parameters ak, and we let

AX=A,
(134.1) Ak - (kI = QKRk>>
Ak+i = + RkQk-

Thus, we effect the QR decomposition of matrix Ak, then we invert the ord®
of the factors of the decomposition. The parameters ak will be chosen later,
below for the possible choices.
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Note, first of all, that
(134.2) AN\ —<7// &£ QK (Ak ~ oBl) Qk —QKkAKQK.

Consequently, Ak+\ is unitarily equivalent to Ak and, therefore, for all k, Ak is
unitarily equivalent to A.

The QR method iteratively transforms A into one of its Schur forms. If the
method converges nicely, the limit will be an upper triangular matrix on whose
diagonal we will find the eigenvalues of A<>, which are obviously the same as
those of A. To find the eigenvectors of A, it necessary to do a bit more work,
except if A is a normal matrix, that is, A commutes with its adjoint. In this case
A'is diagonalizable in an orthonormal basis and its Schur forms are also normal.
If an upper triangular matrix commutes with its adjoint, it is diagonal. Then, it
is clear that the eigenvectors can be obtained from the limit U of the products
Qk==8i as k tends to infinity; they are the column vectors of U.

However, the QR method does not always converge nicely, and its limit can
be a block upper triangular matrix, with 2x2 blocks for the pairs of conjugate
eigenvalues.

It is interesting to characterize the matrices A = QR for which Q commutes
with R. There is no simple general answer. If A is unitary, it then admits a QR
decomposition with Q = A and R = /, which obviously commute. In order to
be able to conclude, we need an assumption on the spectrum of A:

Lemma 134 1 Let A be an invertible matrix whose eigenvalues are all simple
and have distinct moduli. If the QR decomposition of A has the property

(1343 A=QR =RQ,
then A is upper triangular and Q is diagonal.

Proof. We argue by induction on the spatial dimension. In dimension d —1,
there is nothing to prove. Assume the result to be true up to a certain dimension
1, and let A be a d x d matrix having all the properties stated in the lemma.
Let /i be an eigenvalue of R and let V be the corresponding eigenspace. We
infer from the commutative property (13.4.3) that QV = V and, therefore, there
exists a basis of V consisting of eigenvectors of Q:

Qxj = ekpiXj.

This implies that the XjS are also eigenvectors for A. Consequently, if the eigen-
values of A are denoted by Ai,..., A%, the eigenvalues of R will be the absolute
values of the A"s and those of Q will be the phase factors \J/AXj\ = eI*.
The assumption on the eigenvalues of A implies that all the eigenvalues of R
g G~ stinct and, in particular, every eigenvector of R is also an eigenvector of
1th = vect=r ei of the canonical basis is an eigenvector of R relative to
, Eigenvalue R\\ — JAj]. Therefore, it is an eigenvector of Q:

Qet =e"ei.
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Thus, the matrix Q is of the form

e’ qQl2  *'* Qlda
0 22 *'* qQ2d

0 Qd2 **% qQddj
and the properties of unitary matrices imply that
Q= *==Qld = o.

We can write now Q and R in block form

(é(C $’M ) O. 1

The commutation relation (13.4.3) now implies that

(\j _ (\j Pp*QA
VO QxRj \0 RxQi)

and, in particular, Q\R\ = R\Q\. We apply the induction hypothesis and the
lemma is proved.

Assume, indeed, that all the eigenvalues of A are distinct and that the s
quences Gk and Ak converge to the limits aD and AQc, respectively. Moreover,
assume that A - (71 is invertible. Then, by continuity of the QR decompo-
sition (Lemma 12.1.7), the matrices Qk and Rk also converge to limits denoted
by Qoo and i?00, respectively. The set of unitary matrices is a compact group
{m; therefore, the set UnA is a compact set of matrices and thus, Aoc is unitar-
ily equivalent to A. Passing to the limit in egns (13.4.1) and (13.4.2) gives the
identities

(349 Acg —(Tool —Q0o {Agq —Ciqgl) Q oo,
(13.45) Aoo Ow/ —QocRoc = RACQo0 =

Then, it is clear that, due to Lemma 13.4.1, the limit Aoco is upper triangular-

13.4.2. Convergence in a special case
We are going to show the convergence of the QR method in a particular case-

Theorem 13.4-2. Let A be a positive definite Hermitian matrix. If the paraflieter
of the translation are all zero, the sequence of matrices (Ak)keN converges t=*
diagonal matrix Aco-
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proof. The proof rests on a link between the Cholesky method and QR de-
composition. Denote by P(ra,C) the set o fnxn Hermitian positive definite
matrices. We will need the square root mapping from P(n, C) into itself, which
associates each element B of P(n, C) with a unique matrix A G P(n,C) such
that A2 = B. The square root is a differentiable function on P(n,C), that we
will denote by 5. If necessary, we will also write A = \[B. If B is diagonal then
Ais also. For the proof of the properties of the square root, see, for example,
the exercises of Chapters 3 or 12
Consider the following Cholesky iteration for B G P(n,C):

(13406) Po = P,
a34.7) Bk = ukuk,
(134.8) Pfc+i = ukuk.

Here, each matrix uk belongs to P+(n,C), the group of upper triangular ma-
trices with a strictly positive diagonal. We know that decomposition (13.4.7) is
unique and that all matrices Bk are in P(n,C). Furthermore, there is a simple
relationship between this sequence of Cholesky iterations and the sequence of
QR iterations defined as follows: let A = \/P and let

1349 AO= A,
(134.10) Ak = QkRK,
(13411) AkHL = R kQk.

The Ak are all unitarily equivalent to one another and belong to P(n,C). We
have the following identities:

A\ = RkAkK=
Ak = AkM\Ak+i = RKQKQKRKk = RKRK.

Consequently, as the Ak are linked by these QR iterations, the Bk are linked
hy Cholesky iterations. By a uniqueness argument, we can identify Bk with
Al (respectively, Rk and UK), for all k, and we can deduce that the Bk are all
unitarily equivalent to P. More precisely, since Rk+i = QI*"RkQk,

<13-4i2) Bk+1 = QIKQUIiQU iRkQk=
will now establish the identities linking the coefficients of D = R*R and
<eof B* = /2/?7, where R belongs to RC We see tl
(B)ij= (RIWide] = {R)12 (R)tj +(R)22,

41, more generally, for j ~ i,

(UUI3) -, ()<-
e=i
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Similarly,
and, more generally, for i ~ j,
(134.19) (%% = £<*>% (%=

i=3
Consequently, we have (B)n ~ (£?")n and, more precisely,
(134.15)

i—2

We generalize eqn (13.4.15) by considering

m
2>"), -1>), m
p=I p=
Note that m mm
I>>. > =ZE B (o7
p=I t=1j=1
and m n|
E=tH<RL
p=I i=1,=t
We can therefore write
m m n
(13.4.16) £2), ~12)» . =£ E «wo/s-
p=I p= i=l j=m+1

13 SPECTRA

For m = n, the right-hand term of eqn (13.4.16) vanishes because the trace of B
is equal to the trace of the equivalent matrix B". Coming back to the sequence

I”fc, we deduce from eqn (13.4.16) that all of the sequences

(13.4.17)

are increasing for m = 1,... ,n. By virtue of eqn (13.4.12), they are bounded

and, consequently, they converge. Therefore, the sequences

{ (") pPHeN

converge for all p = I,...,n. Their respective limits are denoted by
Furthermore, the difference between two consecutive terms of the sequence
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to zero. For p = 1, eqn (13.4.15) implies that (Rk)ij tends to O, for all j ~ 2
& k tends to infinity. Suppose that, for i ® p —21andj ”~ i + 1, the sequences
(RK)ij tenc®  zero- Then, to say that the difference between two consecutive
terms of the sequence (13.4.17), indexed by p, tends to zero implies that (RK)H
tends to zero for j ~ p + 1 Thus, all the non-diagonal terms of Rk tend to zero
& k tends to infinity and, similarly, for the non-diagonal terms of Bk. We see
that Bk converges to the diagonal matrix whose diagonal coefficients are those
of (Boo)pp forp = 1 (|

It is also possible to show the convergence of the product of the Qk to a
transformation matrix, allowing the diagonalization of A. Therefore, we also
have the convergence of the eigenvectors. Many other cases can be treated,
where the proofs are clearly more complicated. There does not currently exist
a general proof of the convergence of the QR method, nor a counterexample
either.

134.3. Effectiveness of Q R

Under this naive form, the algorithm, whose convergence we have just proved,
is numerically very bad. Indeed, the QR decomposition of a matrix, viewed as a
Gram-Schmidt orthogonalization, is slow and not very stable, as seen in Section
21

On the other hand, if we linearize the QR algorithm in the neighbourhood
of A, we can see that, if all of the eigenvalues are pairwise distinct, the con-
vergence is geometric, and its rate is given by

IA]
max —-.
IAKI-M I-M

If two eigenvalues are close to one another, the rate of convergence is very
bad. We have therefore constructed a slow and unstable method, so there is no
place for smugness.

To make the QR method effective, we transform the initial matrix into upper
Hessenberg form (Section 12.1). We then saw that the upper Hessenberg form
Is invariant to the QR algorithm, which is realized by means of Householder
transformations. This makes the problem more stable, and a little slower, but
there is one fundamental improvement, which lies in the choice of translation
parameters.

Once A is in Hessenberg form, the rate of convergence is given by

*i+l
mislx
fA choose a translation parameter close to An, the rate of convergence of the
A cients in the last row is given by

An ~ O
A4 O~
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that is to say, very quick. When we consider that the last row has converged
we use deflation, that is, we strike out this last row and the last column and
we work onan(n-1)x(n-1) matrix, to which we again apply a translation
strategy. The precise definition of the translation strategies is the object of
detailed studies in numerical linear algebra literature. It is implemented in the
QR programs currently on the market.

When we look at the real life case, the QR method cannot converge to an
upper triangular form if A has complex eigenvalues. In this case, the method
converges to a block upper triangular form.

13.5. Exercises from Chapter 13
13.5.1. Spectral pathology

Exercise 13.5.1. Let Aand e be real parameters, and let M be the matrix

"<Fe'>=(0 a+<)- m
What are the eigenvalues of M(A,e)? When does M(A,e) possess a basis of

eigenvectors?
Exercise 13.5.2. Calculate exp(EM(A, €)). The quickest way to do this is to note
that the required matrix is the matrix of the linear mapping which assigns to
the initial conditions X\ and x2 the solution, at time t, of the system of ordinary
differential equations

Xi =AXi+X2, Xi(0) = zu

X2= (A+e)X2, X2@0 = x2.
A first year course shows us how to explicitly calculate the solution to this system.

Exercise 13.5.3. Given the fixed parameter A compare exp(EM(A,e)) ad
exp (tM (A 0)) as e tends to zero. Is the behaviour of these expressions at t =
the same?

13.5.2. QR flow and Lax pairs
The Poisson bracket of two matrices A and B belonging to <dvh(Q is defined b>

[AB] = AB - BA.

Exercise 13.5.4=Let M be a Cl mapping from E to M n(C). Show that titf
following two assertions are equivalent:

(@) There exists a C1 mapping P from E to invertible matrices in
such that
M) =P -1 MOP (t), We E
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(i) There exists a matrix L(t), which should be determined, such that M
satisfies the system of differential equations

M(t) = [L(D).M

Exercise 13.55. Let U be a Cl mapping from E to Mn{C). Show that the
following two assertions are equivalent:

(@ The mapping U is to unitary matrices;

@ii) There exists a continuous mapping A from E to Afn(C), with values in the
set of skew-Hermitian matrices, such that

Ud=A0OU@®), WEE, U (O is unitary.

Exercise 13.5.6. Under the hypotheses of Exercise 13.5.4, show that M(t) is
unitarily equivalent to M(0) if and only if, for all £ L(t) is skew-Hermitian.

Exercise 13.5.7. Let R be a Cl mapping from E to M n(C). Show that the
following two assertions are equivalent:

(@ R maps to invertible upper triangular matrices;

@) R(O) is invertible and upper triangular, and there exists a continuous map-
ping 5 from E to the set of upper triangular matrices, such that

R(t) = R(t)S{t)1 WE E.

Exercise 13.5.8. Show that the QR decomposition is a continuously differentiable
mapping from the set of invertible matrices to the product of the sets of unitary
matrices and of upper triangular matrices.

Exercise 13.5.9. Consider the following QR decomposition:
etB = U(t)S (©)-

Show that U and S are continuously differentiable functions of t. What are the
values of 17(0) and 5(0)?
Show that there exists a continuously differentiable function L from E+ to
the set of skew-symmetric matrices such that
U= -UL.
Exercise 13.5.10. Define a sequence m j by

Arg=eB, Mj—QjRj, Mj+\—RjQj.
PrAethe identity

(35D Mk = Q| X ==€gMgQo*=k-i-
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Exercise 13.5.11. Prove the identity
(1352 ekB = Q0--Qk-iRk-i-Ko,

and give the value of U(K) in terms of the q js.
Exercise 13.5.12. Let M be the unique solution of the matrix-valued system

M=[LM], M@ =MO.
Use identities (13.5.1) and (13.5.2) to prove that
M K = Mk.

Exercise 13.5.13. What is the limit of M(t) as t tends to infinity?

Exercise 13.5.14=Let A be a symmetric positive definite matrix. Show that it
can be written as the exponential of a symmetric matrix and conclude, from the
previous study, that the unitary part Uk of the QR decomposition of the powers
Ak = UkSKk gives the change of basis constructed during the QR algorithm
starting from A.
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Nonlinear equations and
systems

14.1. From the existence of solutions to their
construction

1411 Existence and non-existence of solutions

Let / be a continuous mapping from an open subset of Mh to IRh. We want to
approximate numerically a solution of the system

14.11) /(*) =0,

on condition that such a solution exists.
Some very elementary examples can convince us that the system (14.1.1)
does not always have a solution. Take, for instance,

/0r) = x2+1,

with x a real variable. There is no real number x such that f(x) vanishes. Take
the following slightly more complicated example in two dimensions:

/(X)) = /(x1,x2)= -

I Souti<h of this problem would have to belong to the circle xX\ + X\ —1and to
| te bne XI =  which is parallel to the *2-axis. Figure 14.1 shows that
I r " Clrcle does not intersect the straight line. At this point, |1 would expect the
J~Nin” to Protest loudly and to say that | built naughty examples to prove my
0™ build even more elementary examples to make my point. Let

r Cors*der the linear equations

B12) Ax = h

31
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Figure 14.1: The straight line does not intersect the circle.

If A is not a square invertible matrix, we know a necessary and sufficient con-
dition which enables us to solve the problem: there is a solution if and only ifb
belongs to the image of A. If we assume that the dimension of the target space
is n and that the dimension of the image of A is strictly less than n, then, most
of the time, we will be unable to solve the system (14.1.2). The reason for this
is that the complement of the image of A in the target space is an open set with
full Lebesgue measure.

Why do we care about the existence of solutions, anyway?

The next question comes immediately, this time, not on the mathematical side,
but on the application side: ™y goodness, why should | care about the existence
of solutions? | see them in my experiment/machinery/observation. | do not have
time to waste with irrelevant abstract questions. *Usually, this kind of remark
comes with a big laugh or a slightly commiserating look.

Dear physicist/engineer/performer of experiments: perish the thought that
I should deny facts, but there is quite a distance between fact and theory, &
you must well know. The existence of a solution is a property of equations, the
observation of facts is material data. You claim that you can write a theory
with equations in it, which gives you a useful and, hopefully, faithful descriptiaL
of reality, and through which you are able to predict and understand nature
If | can prove mathematically that your equations do not have any solutions-
shouldn T that say something to you about the value of your model? May /
you assumed that you had a stationary solution to your set of equations: and,
there is no solution, it might mean that, in fact, things are moving. Maybe 3"
could improve your model, or improve your observations. On my side, | d
quantify the amount of motion and we might conclude together that this m
is irrelevant, or that it is very slow and we are not interested in very large ti
However, we would both be wiser with the extra knowledge.
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14.1.2. Existence proofs translate into algorithms

Now that | have made a scientist § case for the existence theory of solutions, | 1l
defend the numerical analyst $ case. There are basically two methods for obtain-
ing the existence of solutions of a nonlinear equation or a system of nonlinear
equations. One is based on topological methods and another one is based on
differentiable methods.

The most elementary example of a topological method is the following: sup-
pose that | have a continuous function / from a compact interval [a, b] which is,
say, positive at one end and negative at the other. Then, we know that there is
a solution somewhere inside the interval. And how do we find it? We use the
bisection method, which is cheap in one-dimensional space.

It is possible to obtain approximate numerical solutions by topological meth-
ods [ in higher-dimensional space. However, this does not come cheap, since
these methods require, for a given precision, a number of function evaluations
which increases exponentially fast with the dimension.

The most elementary example of a method based on differentiability is the
contracting fixed point method. It will work only if the function X X -
f(X) is strictly contracting. However, then it will be quite efficient, and its
performance does not depend on the spatial dimension, since the number of
function evaluations is always one per step.

When only topological methods are available, numerical approximation of so-
lutions is generally slow and painful. When differentiable methods are available,
then the scientific computation is much more tractable. One of the most impor-
tant differentiable methods comes up in the so-called perturbation situations.
Here, the solution sought is close to a solution which is well known, or, more
gererally, it can be reached along a differentiable path. Then, a natural idea is
to somewhere introduce an abstract version of time, and to use ordinary differ-
ential equations as a means to achieve the desired result. This is quite desirable,
since there are many efficient methods for computing solutions of differential
equations, as we will see in Chapters 16 and 17.

1413 A long and exciting history

historically, the Babylonians were the first to solve quadratic equations written
Wth numbers. The ancient Greeks solved geometric problems with a ruler and
c=nipess, and these problems also reduce to quadratic equations. However, the
. u*on <fthe cubic equation took much more time. The sixteenth century Ital-
~ mathematicians Scipione del Ferro, Niccolo Fontana, also known as Tartaglia,
tre ~ ro’amo Cardano found the solution of this equation, and in the middle of
imputation they introduced imaginary numbers. Subsection 14.3.1 enables

I ereader to find Cardano § formulae for themself.
ten 6 degree equation was solved generally by Bombelli in 1572, and
[ n fairy tale starts, or maybe stops, depending on the point of view of
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the reader. In general, the polynomial equation of the fifth degree cannot be
solved by radicals, i.e., by finite expressions involving arithmetic operations and
taking roots of numbers. This impossibility was proved in the nineteenth century
by Galois, who used a deep algebraic method, and who opened the way to an
endless stream of beautiful mathematical thinking. However, from the practical
point of view, the approximation of roots of polynomial equations remains a very
important activity. Think only of the CAD applications: surfaces are represented
by polynomials or, more generally, by rational parameterizations; a machine
tool has to cut metal, just to the right shape, with not too many holes and
each at the right place. How do we ascertain automatically that the machining
will be correct? The computer program has to find intersections of surfaces,
that is, to solve polynomial equations. But the circle closes itself: efficient
computation relies more and more on computer algebra, in particular, in the
area of fast multiplication. And computer algebra is... algebra. If every man
is an island, mathematical humans tend to build bridges in places where they
are not expected. The numerical analyst cares little whether the fifth degree
equation can be solved by radicals, but she cares a lot about the speed ad
reliability of algorithms. If she had to use the most abstract mathematics to
enhance the qualities of a numerical method, then she would, if time and space
would allow it.

14.1.4. An overview of existence proofs

In the case of a single equation (n = 1), if / is continuous on the compact interval
[a, § of E, a sufficient condition for / to vanish on at least one point of [at] is
that

14.1.3) /(<<)/ (6K 0.

The method employed to detect a zero of / under this condition is the classic
bisection method. This method was recalled in Subsection 13.1.2 and it allons
the localization of a zero of / in N steps with precision 2~N (b —a).

The higher-dimensional generalizations rely on the so-called Brouwer 3 fixed
point theorem, or other topological tools.

Theorem H.I.l. Let g be a continuous mapping from the closed unit ball B\ of
En into itself. Then, there exists a point x of B\ such that
9(K =x.

In this theorem, the norm chosen matters little, since all the unit balis of R
are homeomorphic. We deduce from this theorem the following coroliary, Were
¢, @ denotes the Euclidean scalar product:

Corollary 14-1-2. Let / be a mapping from the closed Euclidean unit ball B\O
En into En. Suppose that at the boundary the field / is reentrant, that i<

(14.1.4) ™), ~0, ifNM=I
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Then / has a zero in the ball B\.

We recognize in eqgn (14.1.4) a generalization of eqgn (14.1.3).

To read an introduction to this type of question, the reader is referred to
Subsection 14.3.2, where the degree is defined in dimension 2 and Brouwer 3
fixed point theorem is proved. We also refer the reader to the little book by A
Gramain [39]. The book [7]] is a delightful introduction to fixed point theorems
seen from a topological point of view. The book [63] is a more highbrow vision
of topology; however, it is one of the classics of mathematics.

With another type of information, we could also prove the existence of a
solution to eqn (14.1.1). The following classic case, frequently used in numerical
analysis, is that when we can solve eqn (14.1.1) by minimization:

Lemma Let F be a real C 1function on Mh such that
4.15) lim  F(x) = +oo0.
Iz ke

Then, F attains its minimum at at least one point x of Rn and at this point
DF(x) = 0.

Proof. There exists an R > Osuch that if |z] ® R then F(x) » F(0) + 1 The
closed ball centred at O and of radius R is compact, and the function F reaches
its minimum in it at some point Xg, where, in particular, F(x0) ~ F(0). The
point xo is necessarily interior to the ball. If it was on the edge, we would have
F(x0) » F(0) +1, which contradicts F(x0) ~ F(0). Consequently, DF(x0) = Q.

O

This result is useful in the following case. If / is the gradient of a function F
having the property (14.1.5), or if, more generally, / is a multiple of the gradient
of such a functional F, we are tempted to use Lemma 14.1.3. We could also
hope to use it by putting F(x) = \f(x)\2 and seeking the absolute minimum of
F. If this minimum is zero, we have succeeded. However, practical minimization
calculations can be difficult for different reasons. On the one hand, F could
have several minima, in which the iterative algorithm could get stuck. On the
other hand, in n dimensions the calculation could have a dreadfully slow rate
of convergence if it is badly done. The second difficulty forms the subject of an
optimization course.

The first difficulty corresponds to a very open problem and is currently often
treated by a probabilistic method known as simulated annealing. This method

invented to solve discrete problems, amongst others, the problem of the trav-

ling salesman: find the shortest closed path passing through N towns without
~getting one or passing through the same one twice. This problem belongs
Othe category of problems called NP-complete, for which we do not know of
exact solution algorithm which requires fewer than O(NP) steps, with p an
eger independent of N. In the simulated annealing method applied to the
Idi miza®on <ffunctionals, we modify the descent along the length of the gra-
L a random walk, which grows smaller with time. It has been proved [33]
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that the limit of these iterations is, almost certainly, a point where the absolute
minimum is attained. These methods allow the treatment of problems which are
inaccessible without them. All of this is the subject of extremely active scientific
work, which has applications in computing and in the modelling of the brain,
amongst other fascinating subjects.

In some of the statements which have just been made, there is one underlying
idea: the only systems that we know how to solve well are linear systems. We
therefore want to get back to the linear case by different procedures. To arrive at
the Brouwer theorem, we deform (in the topological sense of the term) the iden-
tity. The proof of Corollary 14.1.2 consists of making a differential deformation
of a statement which is visibly true for a quadratic form.

The situation is much better when we have some local information. In the
scalar case, suppose that we have a point x at which f(x) is small, and that
"W\ * M in the neighbourhood of x. If / is C| then /* has a constant sign in
an interval Jx —a, x + a[. To fix ideas, we suppose that

/"MD" M>0 Wel]lx-ax+al.

If x > vy, then
f(x)=1( Iy yr [ f @d” /@) +(x-

We see that, if 0< f(x) < aM, then
/(x-a "™/ (X)) —aM < 0.

Consequently, / vanishes in the interval Jx —a, x[. The reader should treat the
other cases, with f(x) < Oor f'(xX) < O, by exploiting the symmetries of the
problem. It is necessary to change / to —/ or to use x + a instead of X - &
To end this introduction, we can again note that a nonlinear problem hes
been already treated in this book. The search for eigenvalues and eigenvectors
of linear operators is a nonlinear problem, since the eigenvalues of a sum of
matrices are not generally the sum of the eigenvalues of the matrices.

14.2. Construction of several methods
14.2.1. The strictly contracting fixed point theorem

Let E be a metric space, equipped with a distance d. A strict contraction isa
mapping g from E to itself for which there exists a constant K < 1such that

1420)d @ (x).g &) ~» Kd (xy), W4y GE.

We say that K is the ratio of the contraction g. The strictly contracting
point theorem is stated as follows:
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Theorem 14.21. Let E be a complete metric space and § a strict contraction in
E. Then:

@) There exists a unique fixed point of g, that is, X G E such that g(X) = X.

(i) For every initial data Y<, the sequence YN defined by yn+| = g(yn) con-
verges to X. 0

This theorem is proved in all of the good books on analysis, and, in particular,
in the book by J.-P. Ferrier [28, pp. 139-40].

We construct an algorithm to find the solutions of the equation /(#) = 0
using the fixed point theorem. First of all, we let

g ®= X- f

It is clear that it is equivalent to find a fixed point of J and to find a zero of
/. A sufficient condition for J to have a fixed point in the interval [a, 6] is that
firstly g([&, 6]) is included in [a, B] and secondly that @ is a strict contraction with
respect to K. Suppose that / is Cl (and therefore J is also). Then, it is clear
that the property (14.2.1) is equivalent to

L] i K€ [o,6].

In other words, we have
\i-f(X)\*"K, vxemJ.

This implies that, in particular, f does not vanish and, therefore, that / is
monotonic. We will give below a geometric interpretation of these iterations,
including them in a more general case.

The above choice of § is restrictive. We can generalize it by introducing a
constant A and letting

(14.2.2) g = x- Xf(X).

ft Ais nonzero, we see that it is equivalent to seek either a zero of / or a fixed
Pemt of §. The sufficient conditions for § to have a fixed point in [a D] are that
0(k&]) is included in [a,b] and that g is a strict contraction, giving

(142:3) \I-\F OO\ < 1,
that is,
(1249 1- KM Xfg§il+

IS
s Nation implies that /" does not change sign in [a, 1and that A is of the
me sign as /".
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We give a geometric interpretation of the construction of the sequence of
iterations

yntl =yn-\f(yn).

We note that the line of slope Wpassing through the point (YN,f{yn)) has the
equation

rP= /(3/n)+M £-2/n).

It cuts the x-axis at £ such that

f
t-yn= (yn)

that is,
7 ()

n

If we let [I — 1/A, we see that the point yn+| is obtained as the intersection
of the x-axis with the line of slope 1/A passing through the point (yn,f{yn)).
We therefore start at a point (yO,f(yO)) and follow the line of slope 1/A passing
through this point until we reach the x-axis at the point y:L From the point
{yLfiyD)>we follow the line of slope 1/A until we reach the x-axis, which gives
Y2, and so on. The method thus obtained is called the chord method. Figure
14.2 allows the visualization of these iterations.

14.2.2. Newton's method: geometric interpretation and
examples

If we return to the relation (14.2.3), we see that the iterations will converge as
quickly as the constant K that we take in eqn (14.2.3) is small. It is therefore
natural to replace the constant multiplier A appearing in eqn (14.2.2) by the

Figure 14.2: The chord method.
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function 1//°(x), and to let
(14.25)

If the function /* does not vanish at the zeros of /, it is equivalent to search
for a zero of / and a fixed point of J. The choice (14.2.5) therefore leads us to
consider Newton 3 method given by the iterations

The geometric interpretation of these iterations is as follows. The line of slope
f'(yn)passing through the point (yn,f(yn)) has the equation

v=f(ym+ (t~ymf (yn)

and intersects the x-axis at

Graphically, we start at the point (Y<,f(yQ)) and follow the tangent to the graph
of /, which intersects the x-axis at Y1 We restart from the point (y1,f(y1)) and
follow the tangent up to the x-axis, where it intersects at Y2, and so on. Refer
to Figure 14.3 for a clear picture of this process.

Before giving a theorem on the convergence of Newton 3 method, we treat

explicitly a particular classic case of convergence, namely finding the square root
of a positive number.

Given a > 0, we want to solve

/ (X)) = x2-a=0.

(uo,f(uQy

2,/ M) X

Figure 14.3: Newton 3 method.
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We therefore have

.. f® \t a\

A drawing could suggest the behaviour of the iteration. We make two parallel
drawings, one of the graph of / (Figure 14.4) and the other (Figure 14.5) of the
graph of . The drawings suggest that, if we start from y°> 0, then all the yn
are positive, yn » yn.]ﬂ for N ~ 1, and the sequence converges quickly t0 y{]
This is exactly what we are going to prove.

We start at a point y°> 0. We are first of all going to see that all the yn
remain positive. This is a very elementary recurrence, since, if yn> 0, then

On the other hand, we calculate the difference yn+l —y/a as follows:

J(n)2- 2yny/q+ a _ (yn-
2 ygn

We therefore see that, for N~ 1, yn~» y/a_ Then, the decrease of the Sequence.

Figure 14.4: The function / and the Newton iterations.
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for n™ 1, is proved by

We therefore have a decreasing sequence which is bounded by y/a, for N~ 1. It
is therefore convergent and its limit is a positive or zero fixed point of J. This is
therefore Y/a.

1423 Convergence of Newton®s method

Here we will prove the following convergence result, which can only be local:

Theorem 1\.2.2. Let 7 be a C2function from the interval [a, B] to E, with a< h
Suppose that there exists X G [a, B] such that f(x) = 0 and f'(x) ~ 0. Then,

ere exists e > O such that, for every y© G [x—e,X + €], the sequence of Newton
derations defined, for N ~ O, by

yn+| y nr)

defined rema*ns in the interval [X—e,x+ e], and converges to as n tends

The Proof of this theorem depends on the following lemma:
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Lemma 14-23. Let (rn)n”o be a sequence of positive or zero numbers Which
satisfy
r, +i < r@.

If rO< 1then this sequence converges to 0. Furthermore, we have
m” (
Proof. Let (sn)n”o be the sequence defined by
so = r0O, Sn4-i= sn.
We check that the SN bound from above the n. If SN~ rn, then
H=sn™rn” rntl

and, therefore, by induction, SN~ INfor any N. We now show that the Sequence
SNconverges under the hypotheses of the lemma. We have

Si = Si
S
and, in general, as induction shows immediately,
2
Sn = (So)

As SO < 1, it is obvious that the sequence SN tends to O as N tends to infinity.
The convergence is, moreover, a lot faster than geometric.

Proof of Theorem 14.2.2. We can compare YN and X in the following way:

m I R )
f{yn) " T (yn)”

since f(X) = 0. Reducing to the same denominator, we have

rn 2 71 vnH - x - (y")-/(Cyn)+/w

@a 7 y

Since T is continuous and does not vanish at X, there exist strictly positi‘e
numbers M and a such that

\f G\ > Mwe —

On the other hand, the Taylor expansion gives

1y =/ @J+ X-ymf ¢ )+ F " O K- Da
Jyn
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As / is C2,

D(_m£5?£x+(k] 17" (NI 00.

The absolute value of the numerator of the right-hand side of eqn (14.2.7) is
equal to

\r f{t)(X-t)dt

1IJyn

and is bounded by

2 \Wn - Xi2 -
If we let

_ b -

2 >

we see that

rntH A r,

provided that YNis in [x —a,x + a]. Let

Then, if \yl’l—X\A e, Lemma 14.2.3 and its proof show us that \yn+| —A e,
and, therefore, by induction, the successive iterations are well defined. They
converge to X much more quickly than geometrically. (|

In the case of Newton 3 method for the square root, we look at some iterations
fora= 2 and starting at X = 1

1.00000000000,
1.50000000000,
1.41666666666,
1.41421568628,
1.41421356238.

n the subsequent iterations the sequence is stationary. The value of \/2 given
> the machine used is 1.41421356237. The number of correct decimal places
Practically doubles at each Newton iteration. This remark will be made more
Precise later in the study of order.

Finally, we note that Newton 3 method is used to make proofs of existence for
inear problems in infinite dimensions by means of the Nash-Moser theorems.
n eglobal behaviour of the iterations of Newton 3 method for low degree poly-
Of ,las* the complex plane is the object of a great deal of interest on the part

n

[*Iso am*Ca” systems specialists. We are touching here on questions which are
0 <fgreat current interest to pure as much as to applied mathematicians.
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14.2.4. The secant method

The calculation of a first derivative can be very awkward, even if we have an
analytic expression for the function to be differentiated. The interplay of tre
derivatives of compound functions can create very complicated objects. This is
all the more true when 7/ is implicit or it is obtained by an integration dependlng
on a parameter. In this case, the calculation of derivatives can be formidable. We
are therefore going to replace the derivative f*(XNn) which appears in Newton§
method by a finite difference, obtaining the secant method given by

/fan)
14.2.8 =
¢ ) y flyn,yn-1y
where f[yn,yn -1 is the divided difference
/ [in>2/h-1] _ aifl—1

We now have a two-step method, which requires two starting values y°and yI.
Graphically, the two points {ySHf{y0)) and (y1IH(y1)) determine a line whose
intersection with the x-axis gives the point Y2. We then take the line passing
through {yLf{yD) and (y2,f(y2), whose intersection with the X-axis gives y3
and so on. Refer to Figure 14.6 to see the graphical behaviour of the iteratiors.
As for Newton 3 method, we have a local convergence theorem for theseczart
method:
Theorem 1424~ Let / be a C2 function on the interval [a 6], With a < h
Suppose that there exists a point x such that /(x) =0 and /°(x) ~ 0. Then,
there exists a number e > O such that, if yoand ylare in the interval [x-e,x+e],
the iterations of the secant method are all well defined, remain in tI'E interval

[x —e,x + c], and converge to X.

Figure 14.6: The secant method.
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The proofof this result rests on a lemma of a similar nature to Lemma 14.2.3,
but slightly more complicated.

Lemma 14-25. Let rnbe a sequence of positive reals such that

14.2.9) Tn+1~ rn—-

Then, ifro < l1and I\ < 1, the sequence of the 'Nis bounded by 1and converges
to 0. Furthermore, there exists a constant C,depending on the initial conditions,
such that

(14.2.10) rn~ cvypn,
where r is a number which is strictly less than 1 and

I + %5 1618
P = 2 - -

Proof. If 'N and rn_\ are bounded by 1, it is clear that rn+1 is also. The first
assertion is therefore proved. Now define a sequence SN by

(14.2.11) sO=ro, S\ = ri,
(14.2.12) 5n_(H = snsn_i.

Suppose that 'n~ SN and that rn_i ~ sn_i. Then,

rn+1” rnrn—L ~ snsn—1 — 5n+I*

By induction, the SNform a sequence bounding N from above. If So or Si is zero,
then all the SN are zero for N ~ 1 and the lemma is clear. Suppose, therefore,

that neither sO or S\ is zero and take the logarithm of the equality (14.2.12). We
let

= —InSN

and we obtain

14213 4+1 =/n + 4-1-

As in Section 11.2, we must write the characteristic equation of the relation
(14.2.13) , that is

(14-2.14) f-pi=o.
s<lutiors of this equation are

i + V5 2

Letting
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the solutions of the recurrence relation (14.2.13) are all of the form
en=apn+b(~pyn.

The values of @ and b are determined from the initial conditions (14.2.11). We
must solve the system

0o —d+ b,

N=ap- -

The solution of this system is given by

p(pto-ti) to+pt\
b= i+ - 0=TT?:*~

The hypotheses on rO and r\ imply that to and t\ are strictly positive, and,
therefore, the coefficient @ of PN is strictly positive. Furthermore, the term in
(-p)~n tends to O exponentially as N tends to infinity, and is bounded by |4.
We can therefore bound tn from below:

tn~ apn- 6], Vn £N.
Returning to rn, we see that
rn» exp (—apn)exp (\b\)
If we let ¥ = e~aand C = el6l, then we obtain the inequality (14.2.10).

Proof of Theorem 14.2.4. As in the proof of the theorem on the conver-
gence of Newton 3 method, we compare the iteration yn+| with the solution X
Furthermore, we note that

since f{(X) =0. We therefore have

— /(yn)
ml-x =
Y Yy A
n Gn-x)/Lynal
f[vn,yn~I]
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Using the property (4.2.4) of divided differences, we see that

- x) (X- 2h Df[Lyn,yn %3]
flyn,yn~1]

Let [x —ol,x + a] be an interval on which |/,(2)] »~ M. Since /" is continuous,

it does not change sign on [x—a,x + a], and, from the integral representation

(4.2.5) of divided differences, we see that, if YN and yn~| are in [X—a,x + a],

then

(14.2.15) yn+l oy

\f[yn,yn-xX]\>M..
On the other hand, let L be the upper bound of |/"] on [X— a,x + a]. Again,
from the integral representation of divided differences, we deduce that, if YN and
yn_1 are in [x—a, X + @], then

IfFLyn,yn-\x\\"~.

Consequently, we see that

[th+1 — ] XA\ Wn~l - x\.
Let

= 2M o771

Lete < min(a, 2M/L). Lemma 14.2.5 assures us that, if Y~and Ylare chosen in
the interval [x-e, #+ €], then all the YMremain in this interval and, furthermore,
the sequence of errors \yn —X\ tends to 0, following an estimate of the type
(14.2.10). [

We take the same numerical example for the secant method as we chose for

Newton 3 method, and we seek a zero of f(X) —X2- a. The iterations are
written
_ (yw)2 - a
yml =yn- yp

With a = 2ad the initial conditions y= = 15 and yl 14, the successive
iterations are given by

1.50000000000,

1.40000000000,

1.41379310345,

1.41421568628,

1.41421356206,

1.41421356237,
Ich- ~le Su”seQuent iterations are stationary. The calculation converges to ma-

the 6”rec33n h 6 iterations, instead of 4 in the case of Newton 3 method. On
e other hand, it does not require the calculation of
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14.2.5. The golden ratio and Fibonacci®s rabbits

Remark 142.6. The number P ~ 1.618, which appeared in the proof of Lemma
14.2.5, has been well known since antiquity, under the name of the golden ratio.
It can be defined as the ratio between the length L and the width | of a rectangle
such that, if we remove from this rectangle a square of side £ we find a rectangle
similar to the first, see Figure 14.7.

We therefore have

On letting L = we find

that is,
p2-p- 1=0,

which is exactly the characteristic eqn (14.2.14). Certain aesthetic theories con-
sider the number P to be the most harmonious ratio between the sides of a
rectangle, and painters and architects have composed their works with the aid
of the golden ratio. It appeared in Euclid 3 elements (third century B.C.) and
we believe that the pythagorians knew of it (500 B.C.). We also find it in the
proportions of certain Egyptian pyramids. The pythagorian considerations on
the mystique of numbers and the aesthetics of proportions have been largely

L

Figure 14.7: Geometrical interpretation of the golden Section.
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overtaken by the real beauty of mathematics. Besides, apparently constraining
aesthetic theories leave much freedom to the designer. For example, the mod-
ulor of Le Corbusier was meant to be the heart of a system based upon the
proportions of a human of size 1.83 m and the golden ratio. The opinion that
we have of Le Corbusier should, quite obviously, be founded on the examination
of his architectural work, rather than the underlying theories, in which no one
is constrained to live.

The golden ratio is linked to the Fibonacci sequence of numbers proposed by
Leonardo of Pisa (Fibonacci) in 1202 in the first quantitive model of biological
population growth.

The following information on Fibonacci is found in [75], which contains some
translations from Latin to English of choice morsels from classical mathematics
texts.

Leonardo of Pisa was a merchant who had travelled widely in the Muslim
world. In particular, he knew of the works of Al-Khowarizmi (whose name has
been deformed into the word algorithm). His work is in the spirit of the Arab
mathematicians of the time, but also shows an independent personal contribu-
tion. The Liber Abaci (1202, revised in 1228) was largely circulated in manuscript
form, but was only published in 1857 in Rome, under the title Scritti di Leonardo
Pisan [73].

One of the remarkable traits of this book is that in it Leonardo introduced
and used the decimal system of positional numbering. The first chapter opens
with the following sentence:

Here are the nine figures of the Indians
987654321.

With these nine figures and with the sign O called zephirum, one can write any
number, as we shall demonstrate later. ~
In fact, zephirum transcribes the Arab word as-Sifr, which is the literal trans-
lation of the Sanskrit word Sunya, which signifies emptiness.
We often consider Fibonacci as the first notable western mathematician for
having used decimal positional numbering in preference to roman numerals.
We now describe, in modern terms, the model of the growth of a population
rabbits that was proposed by Fibonacci. A man possesses a pair of (young)
rabbits and a certain place entirely enclosed by walls . . These rabbits are
8<ing to reproduce. How many will there be at the end of a given number of
mg>nths? The model of reproduction is the following. There are two types of
Its: adult rabbits which can reproduce and bring into the world a pair of
becn every month, and young rabbits which cannot yet reproduce and
“Me adults at the end of a month. Initially (at time 0), we have a pair of
<Un8rabbits and no adult rabbits, so that

j(o)=1, a) =o.
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At time 1, we find ourselves with j(I) = 0 pairs of young rabbits and a(l) = j
pairs of adult rabbits. Inevitably, the pair of adult rabbits bring into the world
a pair of young rabbits at time 2, and we will have

i@=1 a2) =1

More generally, if at time N we have j(N) pairs of young rabbits and a(n) pairs
of adult rabbits, we will have, at time N+ 1,

a(ln+n=aqm-fj () adult rabbits,
j(h+ n=am young rabbits.

Consequently, we have the following recurrence relation for a(n):
aln+np=am+ah—1.
We recover the relation (14.2.13) with the initialization
a@O®=0 a@®-= 1

The numbers which are solutions to this relation are the celebrated Fibonacci
numbers. The first terms of the Fibonacci series are given by

1,1,2,3,5,8,13,21,34,55,...

Current work in biology on populations is a lot more sophisticated than this. Itis
largely based on probability and statistics and the theory of nonlinear differential
systems. It forms the basis of all sorts of studies of great practical use: animal
and plant ecology, the propagation of epidemics, choice of vaccination strategy-
impact on mortality tables, and associated problems of insurance.

From the point of view of the forms of development in nature, the Fibonacci
series has been proposed to explain the number of leaves per turn when the leaves
are arranged in a spiral, or to describe the logarithmic spirals appearing in Pllie
cones and sunflowers. This description is not very convincing for contemporary
biologists. We can also refer to the magnificent little book by Hermann Weyl
[77, pp. 77-8], which contains images of great quality and some development-
on the Fibonacci series.

The limit of the ratio a(n + 1)/a(n) is precisely the golden ratio. This tf
rational number is very badly approximated by rational numbers and, in s<hie
sense, is extremal in regard to this property. It is not, however, YVery irration
since it is a quadratic number, that is, it is the root of a second-order equa ™
with integer coefficients. The arithmetic properties of the Fibonacci numbers
the subject of contemporary studies. They occur in optimization, in thet
of dynamical systems, and in combinatorics. For this last subject, see [38F
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14.26. Order of an iterative method

The order of an iterative method can be described in the following way. Let
YNbe a sequence of approximations to a number (or, more generally, a vector)
X Consider the sequence of errors en = \yn—x\. We have seen in the case of
Newton 3 method that, when the starting point of the iteration is close enough
to the zero, these errors satisfy the estimate

where C is a certain positive number. In the case of the secant method, we can
prove that an equivalent error, for large n, is given by

en-Cv """,
where P ~ 1.618 is the golden ratio. From this, we deduce that, asymptotically,
entl ~ C1-" {en)p .

When a method follows from the fixed point algorithm, contracting with constant
K< 1, the errors satisfy

as we can see by reading any proof of this classic result.

Generally, we will say that an iterative method is of order A > 1 if Ais
the supremum of real numbers for which there exists a constant C such that,
asymptotically for large n,

en+l

With this definition, Newton 3 method is of order 2 and the secant method is of
order P~ 1.618. As for the contracting method, it is of order 1. For this iterative
method to converge, it is necessary that C < 1. For a method of order strictly
greater than 1 to converge, we require only that the initial error is sufficiently
small.

The order of an iterative method has a considerable effect on the speed of
convergence. Let PN = —og10en be a measure of the number of correct decimal

Places of YN. If we have, asymptotically,
en+i ~ Ce™*,
with A> 1, then
~Pt+l  1ogjQ O —Xpn,

tha ~ ere’ore “asymptotically, YNl has A times more correct decimal places
Ny . This explains the phenomenon demonstrated just after the end of the
Po°f Of Theorem 14.2.2.
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14.2.7. Ideas on the solution of vector problems

Until now, we have only talked of the search for roots of scalar equations. We
proceed, more or less, on the same lines when searching for the solution of vector
problems. The function / is a Cl function from an open subset of IRn to Rn
The chord method can be generalized as follows. The sequence of iterations

yH1 -y 3- M~If (3)

will be convergent if Y Yy - M~If(y) is a strict contraction which maps a ball
of Mn into itself.
Moreover, if / is C2, we introduce Newton 3 method by letting

yj+l =y3-D f @7-)"17 (),

where Df(X) denotes the Jacobian of / with respect to X. This is a lirear
operator from Rn into itself. We can state the following convergence theorem
for Newton 3 method in the vector case:

Theorem 14-2.7. Let / be a C2function from a closed ball B of Rn to !n.
Suppose that / has a zero X in B and that Df(X) is invertible. Then, there
exists an € > Osuch that, for every initial condition yosatisfying ‘y°- XA e
the sequence of Newton iterations is well defined and converges to O asj tends

to infinity. 0

Proof. The proof is completely identical to that of the scalar case. We note
that

y3H- x=y]-x~Df ¢n-17 ( )
=Df@n-1 W -x -

since / vanishes at X. There exist two strictly positive numbers M and a such
that, for \Y—X ~ a, we have

HE/QRNH_1I M - 1.
The Taylor formula with integral remainder gives us, for every a and b in B,
foy—F@-—-Df@@- a)-= Jfo 1—s)yD2X @+ s - a)) (b- a,b - a)
and, consequently,
17¢) - f(y3~Df (3 il s "L \x-y3\V,

if L bounds \\D2X(Y)\\ in the ball centred on X and of radius a. For [y3- X\ a
we then have the upper bound

W+l ~Xx2m
The rest of the proof is identical to the end of the proof of Theorem 1422-
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The generalization of the secant method to the vector case is much more
tricky. Modern methods for the numerical solution of nonlinear equations call
upon a lot of subtlety and shrewdness. The idea is either to make a Newton
method or to make a chord type method, but to update the matrices M at the
end of several steps. We do not necessarily choose to take M to be the inverse of
Rf(yj ), but a matrix sufficiently close to this inverse to keep something of the
good properties of Newton 3 method and have an order greater than 1. We thus
obtain generalized Newton methods, which are tackled in [16], though always
from an optimization perspective.

It is difficult to give accessible references on the solution of nonlinear systems
of equations. It is a problem which is both very difficult and very open. Each

time it is necessary to exploit the particular structure of the problem under
consideration.

14.3. Exercises from Chapter 14
1431 The Cardano formulae

Exercise 14-3.1. show, by a change of variable of the form Y —X —Xo, that every
cubic equation

y3+ ay2+ by+ c=o0

can be put under the form
(14.3.0) X3+px +q=o.
Bxercise 14-32. show that, if
Xi =u+v, p= —3m;, (= —(@U3+ V3),

then X\ is a solution of eqn (14.3.1).

Bxercise 14.3.3. write U = u3and V = v3. show that U and V are the roots
<fa quadratic equation and give these roots in terms of P and (.

BExercise 14.34- A priori, U and V each have three cubic roots. One could think
that there are nine different combinations of the form U+ V. How can a cubic
Ration have so many roots, if the polynomial does not vanish identically?
Show that the condition P = -3 UV implies that one can choose only three
combinations among the nine, and give explicitly the three solutions of eqn
" 4d.l). it may be convenient to use the complex cubic roots of 1, namely
+ i\/3)/2 and j2 = (—1—i\/3)/2, and to distinguish cases according to
he sign of 4p3+ 2702

B
fon— 14-35. Devise a simple numerical example of eqn (14.3.1) with the

owing properties: all the roots of the equation are real and Cardano 3 formula
i complex numbers.
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14.3.2. Brouwer 3 fixed point theorem in dimension 2

Exercise 14-3.6. Let / be a continuous and periodic function of period L from
E to C. Assume that / does not vanish. Show that there exists a continuous
function ®from E to E, defined up to an additive multiple of 2n, such that

Y~ p 0.

Show that O(L) - 0(0) is an integer multiple of 2N which does not depend on
the choice of 0. We will say that O is the phase of / and that the integer
(O(L) —0(0))/27t is the degree of /.

Exercise 14-37. Let QO be the square [0,1] x [0,1] and let § be a continuous
function from QOto R2. Assume that ( does not vanish on the boundary of QO
and that the boundary of QO is parameterized in terms of arc length as follows:

(t,of ifor tr 1
(M —DT if1r th 2
G-t T if2rtr 3
(0,4 -t)T if3~ tr a4

(14.3.2) 00 (t = <

This parameterization is extended to all of E by periodicity, of period 4. Denote
by no the degree of goiFD. Subdivide Qo into four equal sque
a € {0, 1}2. Therefore,

a\ a\+ 1 Q2 <2+ 1
= X
Q‘_T’Z T T 2

The boundary of <2? is parameterized analogously to the boundary of QO (see
eqn (14.3.2)) by the functions O f. If § does not vanish on any of the boundaries

of the squares Q*, show that the sum of the degrees nf of the Jo is equal to
no-
Exercise 14-38. For all j ~ 1and all @ G {0,..., 21 —1}2, let

a\ a\ + 1 X s C2+ 1
21~ 2 215 2ij

The boundary of Q* is parameterized by 07, as in eqn (14.3.2). Show that, i 9
does not vanish on the boundary of any of the Q then the sum of the degrees
of the «o0 0? is equal to no-

Exercise 14-3.9. Assume that no is not zero and that § does not vanish inside Q0
Show that we have a contradiction by considering a sequence of nested squ
Q*WN\ such that the degree of Jo 0 ?~ does not vanish for any j -
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Exercise 14-310. Let / be a function from the unit ball {xf + €2 1} to itself.
Consider the function

and extend, as follows, this function to the whole square [-1, I]2:

off Xq-1, 112\ {Xj + £2 » D=

Show, with the help of the previous exercise, that TEhas a fixed point in the unit
ball. By taking the limit as € tends to O, derive Brouwer 3 theorem in dimension

2.

14.33. Comparison of two methods for calculating square
roots

In this section, we study two methods for approximating the square root of a
real positive number and we compare them for numerical efficiency.

Reducing the search to the interval [1/4,1]

Exercise 14-3.11. show that we can translate the problem of seeking the square
root of a binary floating-point number 0.d\d2 = dr x2p,with d\ = 1and dj = 0
or 1, if 2~ j N r, to the search for the square root of a binary floating-point
number belonging to the interval [1/4,1].

Bxercise 14-3.12. To get an initial estimate of Y/X, for x € [1/4,1[, we let
/o (x) = aX + /7,
where /0 is the best approximation to ij in [1/4,1] in the maximum norm.
There exist YO, y1? and Y2 in [1/4,1[ such that 1/4 ~ Y0 < Mi < 22~ 1 and
70 O0) - Mro= fo (yi) + y/yi= /0 (22) - Y/Vi,
O= max /o) -y/x\ = X0 - I, j =012

Calculate a and /?, using the fact that x i-»ny is concave on [1/4,1]. Calculate
-

Bxercise 14.313. Let a be a strictly positive real number. Write down the

Ration for Newton 3 method which allows us to find the positive root of the
Ration

X2 = a.
| a%rcise 14-3.14. We denote the iteration thus obtained by

xn+i =g(xn).

Carefull
ydraw the graph of J and give the set of Xo E R+ for which this iterative

Methad converges.
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Exercise 14-3.15. We now intend to estimate the convergence rate of this Newton
method for @ in [1/4,1] and with Xq — fo(a). Calculate the minimum Of /0@)
in the interval [1/4,1]. Carefully show that

NN - Va] A M2'-

Exercise 14-3.16. Single precision on a certain machine corresponds to a MaANtissa
encoded with 21 bits, that is, ' = 21 in the notation of Section 1.3. Double
precision corresponds to r = 52. Calculate the value of N which allows us to
achieve complete convergence in the case of single precision, then in double
precision (error less than 2~I’). We give

log248 ~ 5.585.

Calculate the number of multiplications and divisions necessary in each 2%,
noting that division by 2 is particularly economic and should not be counted.

Acceleration of convergence

Consider the equation
/() = o,

which we solve by the iterative method
An+l —9N) >

where X \ X —g(x) has the same roots as /. We intend to improve its order by
the following argument. Let

en=g(yn)-vn, y'n+I1=9(lIn),

The straight line passing through the points (yn,en) and is well
defined, if the method has not yet converged.

Exercise 14-3.11. Give the equation of the line passing through the points (yn,er)
and (2/n+i>en+i) in the coordinates (?/,e). Calculate the x-coordinate Yn+1
its intersection with Y = 0. For the next stage of the iteration, we choose this
x-coordinate YrHi1-Show that YN\ can be written in the form

2

n

21 —wn
en+1l en
and also in the form
vn+i —G (yn)?
with
9V - B +y'
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Exercise 14-3.18. we start with

@) =s(;c+i)-
Calculate G. What could be the limit of these iterations? W hat is the order of

the method thus constructed?

Exercise 14-3.19. For which strictly positive initial conditions does the method
converge? To make a complete study, it is convenient to change variables to
X= y/y/a, let H(X) = G(y)/y/a, and to use the formula giving tanh3a in terms
of tanha.

Exercise 14-3.20. Show that each iteration of the method requires 4 multiplica-
tions and divisions.

Exercise 14-3.21. We want to estimate the error uniformly for a G [1/4,1], be-
ginning from y0= /o(a), the function constructed in Exercise 14.3.12. Let

U= max Iyj —y/a\.
1

3 ae[41] 13

We recall that //0 = /i, which we calculated in Exercise 14.3.12. Show that
N+ A A OT) >

where the function his given by

6<C=T thid" -

Exercise 14.3.22. calculate the number of iterations necessary to reach Yfa in
single and in double precision. Calculate the number of multiplications and
divisions necessary. Compare this with the result of Exercise 14.3.16 and deduce
the method which should be chosen in practice. We give

InO

46 x 47 x 48 = 103 776, ~ 0.301.
In 10

14.34. Newton § method for finding the square roots of
matrices
Newton § algorithm for the square root of a complex number

14.3.23. Let a be a nonzero complex number and let / be a function
Oln N 1< itself, defined by

/@ —z1—a

fAe d=wn Newton § method for finding the zeros of /.
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Exercise 14-324- Let bbe one of the square roots of @ and let ("n)n>0 be the
sequence of iterations obtained by the Newton algorithm, starting from a given
initial value zqg- What recurrence relation is satisfied by the sequence

zn b

when it is defined?

Exercise 14-3.25. From the preceding question, deduce that we can partition the
complex plane C into three regions RO, and R-, which are each invariant
to iterations of the Newton algorithm. When Zq is in 1Z+ (respectively,
RO), the Newton algorithm converges to D (respectively, —6, does not CI]"NE@)
Describe these three regions both geometrically and analytically.

Square roots of matrices

We say that a square matrix A of order N has a square root if there exists a
square matrix B of order n such that B2= A

Exercise 14-3.26. Show that the matrix

does not have a square root.

Exercise 14-3.27. Show that the matrix

has an infinite number of square roots.

Exercise 14-3.28. Let A be an invertible upper triangular matrix. Show that
there exists a choice of complex numbers (B)jj such that

and

®)jj + (B)kk?0, Vj,Vk*j.

Exercise 14-3.29. From the preceding question, deduce that every invertible n3

trix has a square root.
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Newton § method for the square root of a matrix

Let A be an invertible matrix of order N and let F be the function defined on

Mn(Q by
F(X) = X2-A.

Exercise 14.3.30. calculate the differential DF(A)H of F at the point A, with
an increment of H.
Exercise 14-3.3L. Write down Newton § method for F.

Exercise 14-3.32. Let T be an upper triangular matrix which satisfies the con-
dition
(Miji+ (MK ? o, Vj, Vfc # ]

and let C be a given matrix of order N. Show that the linear system
TH+HT=C

has a unique solution if, which is a square matrix of order N. Show that the
system thus obtained is triangular, on the condition that the unknowns (Bf)jj
are suitably numbered.

Exercise 14-3.33. Let B be a square root of A which satisfies

®ij + Bk, v+~j.
show that DF(X) is invertible for X in the neighbourhood of B.

Bxercise 14-3.34- show that Newton 3 algorithm converges in the neighbourhood
of B.

Bxercise 14-3.35. How can we implement Newton 3 algorithm, as described in
Exercise 14.3.31, in practice? Moreover, what do you think of the practical use

of this algorithm?
Afirst alternative to the Newton algorithm

Bertise 14-3.36. Consider the following algorithms:

14.33) ¥ - AYF

Zk+l =

Inow that, if YO (respectively, Zqg) commutes with A, then the same is true
= of the YK (respectively, ZK), and that the sequence of YK (respectively,
f)is identical to the sequence of Newton iterations with initial condition Yq
Actively, ZO0).
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Exercise 14-3.37. suppose that Ais diagonalizable and that all of its eigenvalues
have a strictly positive real part. Show that, if we start from

(14.3.4) YO=In,

the sequence of F* converges to a square root B of A whose eigenvalues all have
strictly positive real parts.

Exercise 14-3.38. Let
AY~I AY

av =17
calculate DG{B)H.

Exercise 14-3.39. Working in a basis in which B is diagonal, calculate the spec-
tral radius of the operator Y DG(B)Y and find a necessary and Sufficient
condition for which the spectral radius of DG(B) is strictly less than 1.

Exercise 14-340. Deduce from the preceding results that the numerical Method
that we have described can only be stable if the matrix A has a condition nuber
less that 9 in whichever norm is chosen. Here, the condition number of Alis the
product |JAlIl p - 1% and || =] is the matrix norm.

A stable alternative to Newton's algorithm

Consider now the following algorithm:

Po = A,
Qo =1,
(14.3.5) Pks1 Pk+Qil
- 2
Qe = A+ P

2

Exercise 14-341- show that Pk and QK commute with each other and with A
for every value of K for which they are defined.

Exercise 14-342. suppose that Ais diagonalizable and that all of its eigenvalues
have a positive real part. Show that PK tends to B and QK tends to B "1, wrere
B is the limit of the sequence of F*, defined by eqns (14.3.3) and (14.3.4),&
tends to infinity.

Exercise 14-343. we let

(\[r+Q-\

f(P,Q) =
Q) u Q+r-1]

Calculate

DT(B,B~1) (™
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What is the spectral radius of DT(B, £2-1)? what
stability of the method (14.3.5)?

can we conclude about the



15

Solving differential systems

The Cauchy problem for a system of differential equations consists of studying

the solutions of the system

(15.0.1a) u®) = f (t,u ),
(15.0.1b) u () = uo,

where the dot denotes differentiation with respect to time, the unknown is the
function t  u(t), and the data are the initial time t0, the initial condition o,

and the function / : (S,V) (4 f(s,v). The time t belongs to an interval of R
and the state U belongs to an open set of Rd. In the context of the local theory
which is seen in a course of differential calculus, we have a local theory inopen
sets. In our mathematically simpler context of global solutions, we CONSIder the

whole of Rd.

15.1. Cauchy-Lipschitz theory
15.1.1. Idea of the proof of existence for ODEs

The essential point leading to the proof of the theorem which follows is that
the operation of integration produces more regular functions than ﬂ’Eoperation
of differentiation. More precisely, if U is a measurable and essentially bounded
function on a compact interval of R, we have no information on itS derivative
and do not even know if it is differentiable. On the other hand, all of its integra S
are bounded, Lipschitz, and differentiable almost everywhere.

If we integrate eqn (15.0.1a) with respect to time, taking account of theinil

condition (15.0.1b), we obtain
(15.1.1) u(t) = uo+ fT f s, u(s))ds.
0

We are going to show that, under suitable conditions on /, we can sO’VjunC-
(15.1.1) by a strictly contracting fixed point theorem. Furthermore, in a

362



5L CAUCHY-LIPSCHITZ THEORY 33

tion class that we will specify, eqn (15.1.1) is equivalent to egqns (15.0.1a) and
(15.0.1b).

15.1.2. Cauchy-Lipschitz existence theorem

Theorem 15.1.1 (Cauchy-Lipschitz). Suppose that [t\,tZ]is a compact interval

and that 7/ is a continuous function from [t\,Ez] x dinto Rd which satisfies the
following property: there exists a constant L such that

(15.1.2) f(t,v) - fE,w)\ ~ L\v-w\, w ¢ [ti,tZ], vu,w G md.

Here, | =] denotes some norm on Rd. Then, for any t0 in [ti,t2] and U0 in Rd,
there exists a unique continuously differentiable function U from [i\,t2]to Rd
which satisfies eqns (15.0.1a) and (15.0.1b). 0

Proof. As we seek a Uwhich satisfies eqn (15.1.1), we are going to consider the
mapping T defined by

(15.1.3) (Tv)(t)=u0+ 5to f(s,v(s))ds,

with the convention of an orientated integral. We will take account of the orien-
tation by placing an absolute value on the outside of integrals when writing an
upper bound for a norm.

Recall that C=([ti,t2) is the Banach space of real continuous functions on
[ti,tZF R is equipped with the norm maxteflj 2 uE)|. we denote by C= ([tutZ];
MY the space of continuous functions from the compact interval [t\,t2] to Rd.

It is isomorphic to the product of d copies of the Banach space C=([ti, t2]), and
hence also a Banach space. It is equipped with the norm

K1 -
&1 ML= ¢ rinot W

For each £ (TV)(t) is a vector of Rd and, therefore, T is a mapping from
afunction space to a function space. If Vis continuous on [ti,t2], the mapping
N /(s,u(s)) is continuous from [t\,tZ] to Rd. As the integral of a contin-
u=ws function is a continuous function, T maps to itself, and

even to C 1([ti, t2];Erf). We are going to show that T is a strict contraction in
A(CILM 2];Rd) if L is small enough. Now

TVO-TWO= [ (6N ()-F(sw()))ds.

ALk to the hypothesis of the theorem, we have the upper bound

(151'5) NTv()-Tw(\ < \JT%— TW @®] < 1/* L |w]|ds
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from which we deduce
(15.1.6) 1Tv - TV A v ““WA\Lmax(\t2- o], |% - *o]) =

Consequently, if Lma,x(\tz - to\,\\ - to\) is strictly less that 1, T is a strict
contraction in the complete metric space C= ([ti,tZ]; Rd) and it possesses aunique
fixed point.

This conclusion is not satisfactory, since Theorem 15.1.1 stated no condition
on Lmaxnz - 0\ |*i - *o])- We rid ourselves of this condition by using Picard 3
iterations, which we now define.

From eqn (15.1.5), we have that

v - Tw(dr~» LX- o||lv- HI.
We show, by induction, that we have the general estimate

LP\t-tO
(15.1.7) I Tpv® - Tpw @] » ¥ W-HI-

Indeed, if eqn (15.1.7) holds, we see that

\Tp+lv @) - Tp+lw @®| ~ |g LiTpv() - Tpw (|ds
iho

A is,
< — — 110~ "l

which proves that the estimate (15.1.7) holds in general. Now, we have the
identity
Lp1- tOp _ rL\t-to\
P\

Bo

which, in particular, shows us that

pyoo  pi

Therefore, for every L, we can find a P such that

Lpmax (M2- tOy, |n - tOY) .

PI

This implies that TP is a strict contraction in C=([ti, tZ};Md). Consequent
there exists a unique U such that

Tpu —u.
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\Ve show that the set of fixed points of Tpis identical to the set of fixed points of
if Uis a fixed point of T, then it is also clearly a fixed point of Tp. Conversely,
If Uis a fixed point of T p, we can apply T to the equation

Tpu=u
to obtain
Tp+lu = Tu,
which we can rewrite as
Tp(Tu) = Tu.

Therefore, Tu is a fixed point of Tp. As the fixed point of Tp is unique, we have
Tu = u, that is, eqn (15.1.1).

We have thus shown the existence of a unique fixed point of T. As we
remarked earlier, the image of T is included in the set Cl ([t\, £7;0 i)—Therefore,
u, the fixed point of T, is continuously differentiable and we can differentiate the
equality n

u(£)=u0+ / /(s,u(s))ds
Jto
with respect to time to give

u(® = ,

and the initial condition
u(£0) —uo
is satisfied.
Conversely, if u is a C1 solution of eqns (15.0.1a) and (15.0.1b), we inte-
grate eqn (15.0.1a) with respect to time, taking account of the initial condition

(15.0.1b), and obtain eqn (15.1.1), which completes the proof of our theorem.
O

Note that Theorem 15.1.1 has an immediate generalization:

Oorollary 15.1.2. Suppose that Jti,~2[is a non-empty open interval of E, finite
Or infinite, and that / is a continuous mapping from ]%i,~2[x Ef to Rd which
~hsfies the following property, for all compact intervals | in 17,72 [

1518 if¢v) — W)\~ LA W—w\, w £/, vuu; ¢ Rd.

&e™ Tdenotes some norm on Rd. Then, for any to in ]Ai,’\[ and uo in Rd,

lere exists a unique continuously differentiable function u from ]7%i,~2[ to d
ch satisfies eqns (15.0.1a) and (15.0.1b).

jT°°" A js sufficient to note that, ifgo € | C J, with com pact intervals | and

ton” Can “e”“ne a solution u/ (respectively, UJ) of eqns (15.0.1a) and (15.0.1b)
e Interval | (respectively, J). This solution is unique, and it is clear that
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the restriction of uj to | is a solution of eqns (15.0.1a) and (15.0.1b). Since we
have uniqueness, the restriction of uj to | is equal to ui. we can, therefore
continue a solution on a compact interval | into a solution on a growing union
of compact intervals /& and we can choose the IK such that their union is equal
to the interval Jt\, [ (|

Remark 15.1.3. we could have also taken U and / to have values in a complex
vector space. The proof of existence under Cauchy-Lipschitz conditions is iden-
tical. To do this, it suffices to identify C* with R2d. The complex theory is
very useful, particularly in the case of linear differential equations. We can also
construct a theory of systems of differential equations in the complex domain,
that is, with a complex time. This theory is only interesting in the Case where
/ is holomorphic and we study it by means of algebraic and topological tools.
The theory of differential equations in the complex plane is entirely out of the
scope of this course, although the point of departure is a theorem of existence
and uniqueness completely analogous to that which has been proved here.

15.1.3. Systems of order 1 and of order p

Let J be a mapping from [O,T] X (Rd)p to Rd. consider the following differential
system of order P:

(15.1.9) u@E @® =g (t,ut),ukeE-n ().

This ordinary differential system can always be reduced to a system of the first
order. Define, indeed,

yo \ 721 \

v= Mg Rdp, F(t,Y) =
\yp-i/ \O(t,yo,yi = 2/p-i)/
With this notation, the system (15.1.9) is equivalent to
ir(M = F(t,u{t)),

provided that we perform the natural identification
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15.1.4. Autonomous and non-autonomous systems,
transformation of an autonomous system into a
non-autonomous system

An ordinary differential system is said to be autonomous if the time variable
does not appear explicitly in the left-hand side function /. The study of non-
autonomous systems can be reduced to the study of autonomous systems, but
there is a price to pay: this reduction adds one dimension to the system and
possibly destroys its linear character. Consider the first-order system

u(®) = f(t,u(t)).

It can be transformed into an autonomous system through the following trans-
formation: define a function S by

sE =t

If we let

Y =Q ¢ 1dxR, F(Y)=

then

X(>=(>)

X = F(X),

solves the differential system

which is, indeed, autonomous.

Even if we start from the simplest possible linear equation with non-constant
coefficients

(15.1.10) x® = amx®,

the system obtained by the previous transformation is not linear, since it can be
bitten as

@A5LH) X1l=a(X2)X1y X2=1.

Moreover, the Cauchy-Lipschitz existence theorem has been proved under
longer assumptions on the system (15.1.11) than on the system (15.1.10).

152" Linear differential equations
1521 constant coefficient linear systems

Ule” tlost simple example of a system of ordinary differential equations is the
system with constant coefficients and no time-dependent forcing. We have
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a matrix A G -Mf(K), with constant coefficients in K = Mor ¢, according to
whether we are considering a real or complex problem, and we study

(15.2.1) u® = Au(®.

We should check that we really have the conditions needed for the application
of the Cauchy-Lipschitz theorem. We denote by | =] an arbitrary norm on Kd.
In this case, we have

/(£,U) = Au
and, as A is linear, it suffices to find L such that

\AUV L |ul,

It is sufficient to take for L the norm of the matrix A which is subordinate to the
norm | =], and we have existence and uniqueness of the solution to the problem
(15.2.1) , for every initial vaue UOand every initial time 0. We consider now the
following matrix-valued ordinary differential equation

(15.2.23a) M ® =AM @),
(15.2.2b) M ©) = I.

If || =]l denotes a matrix norm satisfying the algebraic property, the function
g(t,M) = AM satisfies the conditions of Corollary 15.1.2 (Cauchy-Lipschitz
conditions). Indeed, we have

\\G{t, M)AWNVANNNIV

and, as Q is linear with respect to M, this is enough for us. Consequently,
the system (15.2.2) has a unique solution M(t). If we consider now the vector
function u(t) = M(t —to)uo, we note that

u®

a M (- tOu0)= M (t- tO)uo
AM (- o) uo=A M (- to) uo) = Au ).

Furthermore, u(to) —Ug. Since we have uniqueness for solutions to the system
(15.2.1) with the initial condition uo, its solution is equal to M(t - to)uo-

The matrix function M(t) has various interesting properties. First of all, it
commutes with A. Indeed, we let

B® =AM ®)- M @®)A.

We then have
B®=AM{)- AM A= AB (D). -

Since £2(0) = O, the uniqueness of the solution to eqn (15.2.2a), for all IV,
conditions, implies that B{t) = 0, for all . The mapping t h* M(t) is a ®
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homomorphism from K into the group of invertible matrices. Indeed, if s is some
real number, consider

C@®=M(@E+s)- MM (s).

We have

C( =AM (t+ 9AM@® () = AC ().
Since C(0) = O, the uniqueness of solutions to eqn (15.2.2a) again implies that
c(t) —O.

1522 Matrix exponentials

W& can summarize the preceding results in the following lemma:

Lemma 15.2.1. The unique solution M(t) of the matrix-valued differential eqns
(15229 and (15.2.20) is called the exponential of the matrix At, and it is
denoted by eAt. It has the following properties:

1523 eAtA = AeAt, M £ K eAN s) = eAteAs, Vs5,te R

Itis an analytic function of t which has the following series expansion:

, . A N AT
(15.2.4) e =E-7T =
3=0

with an infinite radius of convergence. We have the upper bound
(15.25) Herll ~elwiw.

Furthermore, the unique solution of the system (15.2.1), which has the value uo
at t=to, is given by u(t) =

Proof. It only remains to show the relations (15.2.4) and (15.2.5). We note
that

I NS> - dp-

Also, [IAPI" [IAlIP and the series with general term

P\
converges and sums to ell*M, giving eqgn (15.2.5). [

We now study some particular properties of the function eAt, when A belongs
\érious sets of matrices:

~mma 15.2.2. If A is Hermitian, eAt is Hermitian positive definite. If A is
ew'Hermitian, eAt is unitary.
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Proof. Assume that A is Hermitian. If we pass to the adjoint in eqn (15.2.2a)
we get
M®=MO*A

We note that, as M(t) commutes with A, M(t)* also commutes with A* —u
Also, from the relation A7(0)* = | = M(0), we deduce that M(t)* = M(t), since
we have uniqueness for the solutions to eqn (15.2.23).

If X is an eigenvector of A corresponding to the eigenvalue A E IR we see
that

at eAlx= eMAX = e AtXX.

Consequently,
eAIX = extx.

Since we can decompose the space on a basis of eigenvectors of A, we see that
all the eigenvalues of eAt are eAA? where A is an eigenvalue of A. This proves
that eAt is positive definite.

If A is skew-Hermitian and if x is some vector, let

m () = x* (eAt)* e Atx.

We therefore have
m () = x* (AtA)* e Atx + x* (e™)* AeAtx = x* (eA)* (A* AA) eAx =Q
Consequently, for the Hermitian norm \fxFx — [¥],
lerxl = Ix|,

for any t and x. This shows that e” is an isometry and therefore unitary. [
Lemma 15.2.3. We have the following relation:
(15.2.6) det (eAt) = e*trace(Wl).

Proof. We can construct this proof by using the explicit formula (15.24) anda
triangulation of A. Instead, we prove it using the properties of differential equa-
tions, which gives us the opportunity to differentiate the determinant function,
which we denote h. We have, for every matrix B E A4d(K),

det 7 tB)—1

t *
We know that B is equivalent to an upper triangular matrix T, with P &
transformation matrix. Consequently,

det (7 + tP~1TP) —
Dh(I)-B:lLr%eU ) —1

Dh () =B = lim

mlirod<«< (I- “(1+ <am)!mi)- 1 .
t—o t
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Since T is upper triangular, we explicitly calculate det(l +tT), which is equal
to 1 + ftrace(T) + O(t2). Since the trace of a matrix is invariant to similarity,

(1527 Dh () <B = trace (B).
From this, we deduce that
det (e"(*+*)) - det (eAt

L e |—?_ det (pAQ lim,

S S

det (€'4*) —I

det (¢**) Dh (/) .CE (eAs)

8=0

det (@4) trace (A).

Since det(e*<) = det(/) = 1, we have only to integrate the differential equation
— det (eAt) = trace (A) det (eAt), det M0) =o.

This is done by inspection and gives the relation (15.2.6). (|

From Lemma 15.2.3, we deduce that if A is a real skew-symmetric matrix
then eAis an orthogonal matrix with determinant 1. Therefore, eA is a rotation
matrix.

1523 Duhamel®s formula

If the linear constant coefficient system of differential equations that we are
considering possesses a second term, which we suppose to be continuous, we can
still solve it explicitly:

Lemma 15.2.4=Let g be a continuous function from [O,T] to Rd and let A E
Md(R). The system

u@=Au@®®+g@®, u@© =uo

possesses a unique solution, which is defined on [0, T] and given by Duhamel ¥
formula

(1528 u (t) = eAtuo -f é eAN~8g (s)ds.
o

Proof. Let f(t,v) = Av + g(t). We see that
\f(t,v) - A OWAN W —w\.

certainly have the conditions to apply the Cauchy-Lipschitz theorem. Let
v = We note that

v () = -e~AtAu (t) -he~Atu (t)
= —e~AtAU @) fe"KX(Au @) + g )
= e~Atg(t).
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We integrate the differential equation in v by inspection and obtain

vit)=vo+ e Aag{s)ds.
We immediately find formula (15.2.8). 0

15.2.4. Linear equations and systems with variable coefficients

We pass now to the case of linear systems with variable coefficients. Consider
a continuous mapping A from [0, T] to Md{K), a continuous mapping g from
b,T] to Kd, and the system

(15.2.9) i{t) = A{Du(t)+g(t).

If we let f(t,v) = A(v + g(t), the conditions of the Cauchy-Lipschitz theorem
are fulfilled, with

L= te‘foaﬁ IMWII-

We therefore have existence and uniqueness of the solution to the system (15.29).
for any initial condition at any initial time.
We now consider the scalar case, that is

(15.2.10) uM =a®u®+9©,

with a and g continuous on [O,T], If g = O, the equation is integrated by
inspection and has as solution

(15.2.11) u@® = voexp @&\ (),

where we let
(15.2.12) ai(*)= J[ a (s) ds.
0

If g is not identically zero, we apply the variation of parameters method, which
amounts to letting

(15.2.13) v(®) =u @®)exp (i (t)).

Consequently,

i ®exp (—ai ®B) - a(thu )exp (—a\ @)
@@®u -hg ®)exp (-ai ®) - a(Hu O exp (-oi @)
= g(t) exp (—ai (<9).

v(®)
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We can therefore integrate by inspection and obtain

v =vE)+ J/ g(s)exp(-ai(s))ds.
o

Noting that vw(0) = u0O, and returning to the definition of u, we have

(15.2.14) u () = wexp [2®) +J exp@ ()-

In higher dimensions the situation is less simple. Indeed, ifg = O, we do not
have an expression for the solution of the system (15.2.9) making use of a matrix
exponential. We are going to understand this by studying the differentiation of
eB~\ where B is a Cl mapping from R to A'fd(K). We can find the derivative
of this mapping as follows, denoting by m(M) the exponential of M:

m (M + sN) —m (M)

=sl /+M+sN+ 5y (M2 + 5 (MN + NM) fs2N2)

+- (Ms+8(M2N+ MNM + NM 2)
+s2 [MN2 NMN + N2M) + +..
r w
_(/+|\/|+'\r +Ilr )Iﬁ
and, therefore,

Dm (M)-N m (M -hsN) —m (M)

lim
s—0

N +I [MN + NM) + - [M+ MNM + + ...

We therefore have
et) =g BWB@®+B ®B (t)

B ®2s{t) +B@®mB@®s() +B ®B (-2
+ 3 + "

B[t)= [ A[s)ds.
Jo
ess A(t) and B(t) commute for all t, we have little chance of being able to

- system (15.2.9) by a formula of the type (15.2.11). This commuta-
| c=ndition is very restrictive and is generally not satisfied. For instance,



374 15. SOLVING DIFFERENTIAL SYSTEMS

if the eigenvalues of B are distinct on some interval, then this implies that its
eigenspaces are constant on that interval.

Although the solutions are not explicit in dimension n ~ 2, we, nevertheless
have a very nice formalism which allows us to understand many things. Indeed
consider the matrix differential system

(15.2.15) = A(D)G(L,s

It satisfies the Cauchy-Lipschitz criterion and, therefore, it possesses a unique
solution. Note that u(t) = G(t, to)uOis the unique solution of the system (15.29)
when g is identically zero. Indeed,

u = = A(t)G @, to) ( u (D).

Consequently, G(t,s) is the solution operator. It associates the solution of the
system (15.2.9), with g = 0, at time t to an initial condition uo at time s. In
particular, the solution operator is a linear operator, which means that the j-th
column vector of G(t, s) is the value of the vector solution of the system (15.29),
with g = o, at time £ when the initial condition at time s is the j -th vector of the
canonical basis. We call G(t,s) the resolvent matrix of the differential system.

The family of matrices G(t,s) has additive properties which generalize those
of the exponential. Indeed, consider the function

BM@=G(vHG (,s) - G (r,5).

We have
dG (t,
5(r) = dG{r,0) 4 ws) - (t,s)
dr dr
=AMG )G ta)-A (1)
=A@ B @ .

Since B is zero at t = t and is the solution to a differential system satisfying the
Cauchy-Lipschitz conditions, B must be identically zero. Therefore, we have the
following relation, valid for all s, £ r:

(15.2.16) G(r,*)G(M) = G(r,a).

Physically, this expresses a causality relation: the state of the system at t+

instant r is entirely determined by the state of the system at some other irs
With the aid of G(t, s), we will be able to solve the problem with a tw® *

dependent forcing term, and the formula is analogous to the expression (&

Lemma 15.2.5. Let g be a continuous function from [O,T] to Rd. The systen

ufd=A@umw +g @, u@)=uo,
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with data tO€ p,T] and uOE Rd, possesses a unique solution, defined on p,T]
and given by Duhamel § formula

(15.217) u(t) = G(t,t0uo+ [ G(t,s)g(s)ds.

jto
Proof. Since G(-,s) is the solution of a differential system which satisfies the
conditions Of the Cauchy-Lipschitz theorem, it is a C1 function. If we differen-
tiate the formula (15.2.17) with respect to time, taking account of the relation
(15.2.15), we obtain

U@ =A®G &t0)u0+ G Gt - T A®G (s)g G)ds

Jto
A @©Ou®+9(D).

As u also satisfies the initial condition u(to) = uo at t = to, the lemma is
proved. Observe that egn (15.2.17) also makes sense for t £ [0 to] if the integral
is oriented. (|

Just as we calculated the determinant of eAt, we are going to determine a differ-
ential equation satisfied by det(G(t, s)), and then deduce its value. Indeed,

det G @t + h,s)) —det (G @t s)) _ det (G(t+ A,0)G (5) - det (G (& 5))
h ~ h

det (G ¢ ™. D) — 4ot G @ ).

W& therefore need to calculate the derivative

— det(G (M))
t=S

Wsing egn (15.2.7) and the theorem on the derivative of composite functions,

d det (G (t,s)) = trace (4 (5)).
dt t=s

from this, we obtain the result
a/det (G (t,s)) = trace (4 @) det (G (t,5)),

which e integrate by inspection to obtain

05.2.18) det {G (t,5)) = exp «trace ! (cr))dcb

now give an example of the information that we can obtain by these
ues. Suppose that A(t) is a continuous function from p,T] to Asd(M)

W
AChlﬁiq
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and that it is skew-symmetric. Then, all the G(t, s) are isometries. To see this
it is sufficient to differentiate the function 1> and find

-x*G (t,syG (t,s)x
=Xx*G (t,s)*A )G (t,s) X + x*G Es)*™Mt)G Es)x = o.

We are going to use this information to bound the solutions of the System
(15.2.9). We deduce from formula (15.2.17) that

I« < KI + £0 Is () ]ds.

This relation is a lot finer than the estimate that we get from Gronwall § lena,
which we will prove below. In particular, it does not use the norm of AE), but
only some of its qualitative properties.

The result (15.2.18), which follows from the relation (15.2.7), has a geometric
interpretation. We examine the two-dimensional case. If A is some 2x2 matrix,
there exists an orthogonal matrix P such that T = P~IAP is upper triangular.
We have

r=(o ?= "m

Now, the area of the parallelogram constructed from the vectors

CD - (P )

is equal to the area of the rectangle constructed from the vectors

Q) “4 G-

which is itself equal to the determinant of the matrix

Refer to Figure 15.1 to visualize the rectangle and the parallelogram.

We see that the off-diagonal terms of the matrix A do not contribute to the
determinant of the matrix | + tA. They have a purely shearing effect, which does
not modify volumes. We come across shears as geometric basis transformations in
incompressible fluid mechanics, which include most liquid flows. Contemplates
the turbulence which appears in your favourite river, outside periods of (voU\.cj1
shows that very complicated things can happen, even with transformations

conserve volumes.
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©t 1+~ n @©.1+7

1 a +QE0) 1 a+ QEo)
Figure 15.1: Shearing does not modify volumes.

1525. Gronwall's lemma

Gronwall $ lemma is a result which allows us to deduce an estimate from a differ-
ential inequality. There are many forms of Gronwall §lemma and it is difficult to
give a form which has the maximum generality. The general study of differential
inequalities is, moreover, an active area of research. We will content ourselves,
therefore, with a form which will suffice in the area of Cauchy-Lipschitz theory.

Lemma 15.2.6 (Gronwall§ lemma). Let u be a continuously differentiable func-
tion from p,T] to Rd and let (o and ip be integrable functions on p,T] which

are positive or zero almost everywhere. Suppose that u satisfies the differential
inequality

B2V MOl < @) +ROI

almost everywhere on p, Then, if we let

522)

nsatisfies the estimate

Proof. We begin with a formal proof 7 Let

w1 =ffW -

then have

(v g ( B | Ul AE® +ip(O)g ().
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Consequently, g@_ p@@%

which we multiply by e to give

This inequality can be integrated by inspection, leading to
9@ -9D"f
Jo

Multiplying this last relation by we obtain the desired result.

Although this calculation contains all the essential ideas of the [roof, it is
not correct in the preceding form. Indeed, the first line (15.2.22) rests on tre
inequality

which is easy to justify in one dimension or if the norm |«}is differentiable a2y
from O, which is the case for the Euclidean norm. For this, we must uaeﬂ'e
left and right derivatives where Uvanishes. On the other hand, if the MIMIS

not everywhere differentiable away,from o, this inequality is much more diffiait
to justify. In particular, mis not differentiable in the usual Sree of
the term. We can, nevertheless, completely justify this type of inequality ty
calling on ideas from convex analysis. This type of proof is outside the md:
a degree-level course, and also of this book, and is not necessary anyway, e
there is a way to get around this difficulty. Indeed, the formal proof allows LBt
find the bound (15.2.21). We are going to show, by a connectedness agUN®L,
that we have a bound of the type (15.2.21), but with a parameter e > othet ve
are then going to make tend to zero. Let

15.2.23) h@& grt> (MO|+ €) + f D &)Y

We note that t I‘G-,e) is a continuous function and that
MO)|</i(0,e).

Furthermore, hsatisfies the linear differential equation

(15.2.24) he.9= 00 + he.o~ &,

since we recognize a formula of the type (15.2.14) in eqn (15.2.23). By continuity
there exists a maximal interval p,r] in which

M neey, Me DX
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\\£ are going to show that r = Thdeed, since the interval is
then we see that
152%) W)l = h(r.e).
furthermore, if tr,
M| A Mo lu@©lds
| +ip(s) WE)I) ds

A Juo] @) +tp(s)h (s, €)

From eqn (15.2.24), we obtain
| —</*(<«9) ds

= h(t,e) - |wO|-

Fnally,
I<®l * h(t,e) - e.
For t = t, this relation contradicts eqn (15.2.25) and we see that, for any t G

[o,n

w1 ~
We conclude the proof by passing to the limit as e tends to O. —

Note the analogy between the inequality (15.2.19) and the variation of parameter
formula (15.2.14). We agreed to only make legal operations with the inequalities
and it is because of this that we made the positivity hypotheses in Lemma 15.2.6.

1526. Applications of Gronwall § lemma

Weare, first of all, going to show that the solution of egns (15.0.1a) and (15.0.1b)
depends continuously on the set of data, that is on no, and /.
lemma 15.2.7. We denote by C1 the set of continuous functions / on [t\.£]x
which satisfy
t,u)-f V" L\wv], E.l VuyverF

Tren, the mapping which takes (f,to,uo) € x [*,£2] x Rd to the solution of
~rs (15.0.1a) and (15.0.1b) is continuous. Furthermore, we have the estimate

W@ - vl < ei(t ©) (Jw - voi+ Po- sO] max [ ()|)
@152 261 v /

+ I pbeve) Ol ds,
Jin
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for t» to.

Proof. We write

u(t) = f(t,u
v{D =g(t,v

and subtract the second equation from the first to find, on letting w(t) = u(t) -

V@),

w®l ~ 6O - {t,v I+ ¥ ¢ vE©ODI
LAW{DN + Y ( ty® - ®)I.

Consequently, if we let
=\ @EvO) - g9 tvON

we can apply Gronwall§ lemma and find

Ny| ~ eL (t-tO)Jo _
Jto

It remains for us to estimate \uo—v(to)\, which we bound by “ug—20] + |"0* “X)|-
Now, v is differentiable with respect to time and its derivative is bounded. We
can therefore conclude the result of the lemma. [

15.2.7. Smoother solutions

The preceding results suggest that much better properties hold if we suppose
that / is a more regular function. Indeed, suppose that / is Cp, withp * T
The relation (15.0.1a) shows that u is the composite of a Cp function withaC

function. It is, therefore, a C1 function. By an immediate recurrence, u will be
a Cp+1 function. In the following, we will need a result which is a little nore
precise.

Lemma 15.2.8. Let / be a Cp function and let (fk)o*.k"p be the sequence of
functions defined by

(15.2.27) dfu
fkt1 ;) = — (@GQu) + D2fk ,u) f ¢, u).

Then, ifu is C1 and satisfies the differential eqn (15.0.1a), u is C p+1 and satisfieS

d*+1u
® = fk( )), vice {o,...,p}.

15.2.28
(¢ ) dfx+1
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proof. We claim that each of the functions is Cp~k. For k = O, eqn (15.2.28)
is clear. Suppose that eqn (15.2.28) is true for a certain k < p. Then, u is Ck+l,
1 fk(Lu@®) Is least >and we can differentiate eqn (15.2.28) to obtain

dt desstr W = & Tk CTU{t)) = m {t'u{t)) + D2fk {t'u{t))* {O
= fk+l (t,u(t)).
This concludes the proof. (.

We are also going to apply GronwalPs lemma to the differentiable dependence,
with respect to the initial conditions, of the solution of egns (15.0.1a) and
(15.0.1b).

Lemma 15.2.9. Let / be Cp and satisfy the Cauchy-Lipschitz conditions. Then,
the solution of egns (15.0.1a) and (15.0.1b) is Cp with respect to the initial
conditions.

Proof. Denote by u(t) = S(t,Uo) the unique solution of egns (15.0.1a) and
(15.0.1b) and write

uh =S (uq+ hvo),
with some W in Rd. We deduce from the estimate (15.2.26) that
jw(t;h) —u() | wlhel”M~to\
Ifwe formally differentiate the relations
uh)=7¢,u@h)y), ug]h) = u0+ hvO
with respect to ft, we find that the derivative w must satisfy
w@® =D2f {t,u ®w(), w10 =v0.
We are going to show that w really is the derivative that we are looking for. Let
z ;) = u@f)- u® —hw(t).
Then, z(t; ft) satisfies the differential equation
zEGf) =D Gu®) LE)-u® - hDX Gudw®
+o(Ju(f; ) - u®[)

D2f (t,u ®)z ;) + o (ft).
By applying GronwalPs lemma, we see that
\z(t;h)\ = o (ft),

~ich is precisely the definition of differentiability. The derivative D 25(t]JUo) is

s mapping G(t,to) defined as in egn (15.2.15), with A(t) = D 2f(t,u(t)). We
[t recursively the successive derivatives of uo <=S(t;uo). The details are left
Yo reader. (|
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15.3. Exercises from Chapter 15
15.3.1. Lyapunov function for a 2 x 2 linear system

Let M be a 2x 2real matrix and let A be a 2x 2real positive definite symmetric
matrix. We suppose that, for every x o, we have

(1531 (AMXx,x) < 0.

Let (=<denote the canonical scalar product on M.

Exercise 15.3.1. Show that all of the eigenvalues of M have strictly negative real
part.

Exercise 15.3.2. Conversely, if all of the eigenvalues of M have negative real
part, we wish to construct a 2 x 2 real matrix, symmetric and positive definite,
for which eqn (15.3.1) holds. Show that there exists a constant k > 0 and a
constant K > O such that

where || = is some operator norm.
Exercise 15.3.3. Let || > be the Euclidean norm on K2. We let

Show that || =jle defines a Euclidean norm and give the corresponding scalar
product (=%e*

Exercise 15.3.4=Calculate the derivative with respect to time s of

Exercise 15.3.5. Deduce, from the preceding question, that the positive definite
symmetric matrix A such that

e = (Ax.y)
has the property (15.3.1).

15.3.2. A delay differential equation

In this subsection, we are going to study the following differential system with
delay:

(1532 u(t) = /(% i), ti(t-r)).

The data is as follows. The space Rd is equipped with a norm, denoted by |
The function / is defined and continuous on Ix M rfxMd. Furthermore, it satlS
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the following Lipschitz condition: there exists a positive or zero constant L such
that, for every (ui,ui) and (2

(1533 If(t,ui,vD)-f(t,u2,v2) -u 2\+ \Wwx-u2).

The number r satisfies

(1534) r> 0.

This is referred to as the delay. The initial condition is a function O, defined on
the time interval [ —r, ©]. We will suppose that

1535 0 is continuous from [to —r, )] to Rd.

Existence and uniqueness

Exercise 15.3.6. Let T > tOand let E be the set of continuous functions u from
fo- r,T] to Rd such that

u) =o (t), V€ [i0O-r, 0=
\erify that E , equipped with the distance
d(u\,u2) = max{Jui ® - u2@®\:t0~t ~.T},

isacomplete metric space.

Exercise 15.3.7. We define an integral operator T by

. o® 7 iff A fo;
153! = ’
( 6) (Ttl) (t) Q(*O) + 770/ (S, U{S) ,u (S- r)) ds otherwise.

Show that T is well defined on the whole of E and that the image of E by T is
contained in E.

Exercise 15.38. Let u £ E and let Tu = w. Show that the restriction of w
to J*o,T[ is continuously differentiable and that the derivative dw/dt has a right

tonit at =0 and a left limit at T. We then say that w is continuously differentiable
“Moyr].

Bxercise 15.3.9. Show that the following two assertions are equivalent for a
rction u £ E which is continuously differentiable on [to,T]:

(@ u satisfies the system with delay (15.3.2);

® uis a fixed point of the equation

(1537) Yu=u.
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Exercise 15.3.10. We want to solve the system (15.3.2) by a fixed point method
Estimate \Tui(t) - Tu>(t)\ as a function of t and of

o 1 € F

Exercise 15.3.11. Deduce, from the preceding question, that, for each integer p
we have the estimate

Tpuu T pu2
F,\d( puu T pu2y*

Exercise 15.3.12. State and prove the existence and uniqueness theorem relative
to the system (15.3.2), under the hypotheses (15.3.3)-(15.3.5). Take care not to
forget the initial condition o in the statement.

15.3.3. A second-order ordinary differential equation

The space Rd is equipped with an arbitrary norm, denoted by |=j.
The aim of this subsection is to study the system of ordinary differential
equations

(15.3.8) ii(t) = f(t,u(w)).

We will suppose, in everything that follows, that / is a continuous function from
[0 T] x Rd to Rd. Furthermore, there exists a constant L, positive or zero, such
that, for every u\ and u2in Rd,

(15.3.9) I/ Gui) - / € U2\ L ui - u2\.

Exercise 15.3.13. Show that, for all initial data ug and \Mj in Rd and for every
initial time to in [0, t], there exists a unique C2 function u from [0, T] to Rd such
that egn (15.3.8) holds with the initial conditions

(15.3.10) u(@)=uo and u®)="o*

The problem is reduced to the first-order case by writing v(t) = u(t) and

(153]_1.) * < = ( "$)-

and then writing a first-order system satisfied by z in the form
15312 z{t) = <p>{t,z{t)).
~2

Show that, if / is Cm, the solutions of eqns (15.3.8) and (15.3.10) are Cm
The numerical part of this problem is continued in Subsection 1655.
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Single-step schemes

Not all ordinary differential equations have explicit solutions, even when calling
on very complicated special functions and allowing for some finite number of
quadratures (integrations). This is even more true of systems of differential
equations. There are far more equations that we cannot integrate explicitly
than those that we can.

To gain some information on the behaviour of a differential system we can
attempt to find some qualitative information for large time. This is the objec-
tive of the theory of dynamical systems. In addition, we can use techniques of
numerical approximation. These two areas of study are not generally tackled by
the same mathematicians, even though they are related.

Dynamical systems specialists never fail to admire the complicated images
delivered to them by physicists, for example, in turbulence, or the chaotic re-
actions studied in chemistry. The origin of the qualitative theory of differential
systems was initially motivated by a question from astronomy: is the solar sys-
tem stable? Could it be that one day, which can be proved to be far in the
future, our beautiful planet will go plunging into the sun, or, on the contrary,

[ escape from it?

We note that this question is completely open. Amateur astronomers and
lovers of the paradoxical should get hold of the delectable work [7], illustrated
With the author § drawings. It is not exactly an easy text, but in small doses
a degree-level mathematics student can tackle it. For a more physics-related
aPproach, consult the book by Berge, Pomeau, and Vidal g], which is clearly
nore mathematically elementary than the preceding work. It is so well written

I "at the ideas appear easy, which they are not.

| We should not forget the Bible f differential equations seen from the qual-
itative point of view: Ordinary differential equations by V. I. Arnol@ [3]. This

m <%k by Arnold@ is extraordinarily enlightening, and, if possible, add to your

B fading list Mathematical methods of classical mechanics by the same author [4].

moe n<tpretend that these books are elementary, but it is not in the nature
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It is not unusual to present results on the behaviour of a differential system
and, in particular, on its qualitative behaviour for large time, based on numerical
simulations. In general, we cannot prove the convergence, on an infinite time
interval, of the numerical approximations which we will study below. In esti-
mates of convergence a quantity generally appears which grows exponentially as
a function of the length of the time interval, over which we integrate, as we will
see in Theorem 16.1.6 below. Proving that the qualitative behaviour (for large
time) of discrete approximations of a system gives information pertinent to the
behaviour of the system is, in itself, a problem of dynamical systems.

Conversely, the choice of approximation scheme of a differential system de-
pends on the qualitative analysis that we make of the system, however rudimen-
tary. If we expect, for example, to have solutions which are uniformly bounded
in time, we will try to find a method which conserves this property well enough—
and this is not always easy.

Finally, and this is not tackled at all in this book, the truncation errors are not
negligible when we have many iterations. A way of modelling them consists of
assuming them to be independent random perturbations, which must be justified
since we are a priori in a situation which is perfectly deterministic.

It is advisable to be aware that a simulation conducted without precautions
over long time intervals is in more danger of reflecting the (bad) properties of the
approximation, the arithmetic vices of the machine, and the odd habits of the
programmer than the behaviour of the system which we want to understand.

We must, therefore, pose many questions about a numerical result, especially
if it is pretty and in nice colours.

16.1. Single-step schemes: the basics

Since this book does not aim to be an encyclopaedia, we start with the theory
of single-step schemes, with uniform time steps. These are recurrence relations

of the form
(16.1.1) Uk+i=Uk + hF(tk,Uk,h).

We will attempt, as much as possible, to denote discretized quantities by capital
letters. The time step h is strictly positive and belongs to the interval JOAr
The time tk is defined by

(16.1.2) tOgiven, tk+i = tk+ h.

When we consider a given interval of time, we will have more points of Mscre® g
tion for smaller n. We denote by 1(h) the maximum index of discretization. *
is the largest integer « less than or equal to (T —to)/n. The vector uk ot

an approximation of u(tk), if u is the solution of eqn (15.0.1), provided th
initial condition Uo of the scheme approximates the initial condition no O
differential system. The function £ is defined on [to,71 XE N X [Qnh*1-
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16.1.1. Convergence, stability, consistency

\\£ now give some definitions. We are interested in the approximation of a
system

1613 ii{t) = f(t,u(t)), Vi€ [fo,T],
with the initial condition given on Mi
16149 u (t0) = uo-

We will always suppose that / satisfies the Cauchy-Lipschitz conditions.

Definition 16.1.1. The approximation of egns (16.1.3) and (16.1.4) defined by
the one-step scheme (16.1.1) is said to be convergent if, for any initial uo,

(16.15) max _ \u(tk) - U = 0.
v

lim
JB%OAkAJ )

We do not suppose that the scheme has the exact initial condition of the ODE.
Indeed, on one hand, there could be a truncation error in the initial condition.
On the other hand, the initial condition may not be known exactly, being itself
tre result of a calculation, or it could be obtained by a sampling process. This
is necessarily the case when we discretize partial differential equations.

Generally, just as the solution of a differential system is continuous with
respect to the initial data, the solution approximated by a one-step scheme must
be continuous with respect to a perturbation of the initial conditions.

Convergence, as we will see, results from two properties. The first, stability,
isaproperty of the scheme. This ensures that the scheme does not amplify too
much the errors created at each step. The other, consistency, describes a relation
between the scheme and the differential system. It implies that the scheme does
not differ much from the solution locally.

Definition 16.1.2. Scheme (16.1.1) is said to be stable if there exists a constant
M such that, for all Uo E for all Vo G for all h ~ h*, and for every
sequence of vectors e, the sequences Uj and Vj defined by the relations
1 Uj+i  Uj HhF (tj,UjyH),
Nf+Hi = V) + hF Vj,h) 4-C
satisfy the estimate

1617) Ui —V\ M (\Wb—Wo] + 2~ "D, VJEJI(h).
\ k=0 /

~Minition 16.1.3. A scheme (16.1.1) is said to be consistent with the system
3 if, for every solution to system (16.1.3), we have

f1619) fim < tul)" (>u . <
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Figure 16.1: Graphical representation of the local error.

Refer to Figure 16.1 for a graphical interpretation of the second of these
properties, the vector u(tj+1) - u(tj) - hF(tj,u(tj), h) represents the error that
we make by replacing u(tj+\) by the quantity calculated with the aid of the
scheme. This is what we call the local error.

The following theorem is simple and essential. It is generally known by the
name of Consistency plus stability implies convergence 7
Theorem 16.1.4. Let / be a function satisfying the Cauchy-Lipschitz conditions
and let F be a continuous function of t G [to,T], u G and h G [0, ft*], which
defines a one-step scheme (16.1.1). If this one-step scheme is consistent with
system (16.1.3) and it is stable, then it is convergent.

Proof. We let
Vi = u (]

Then,
vi+i - vji - hF (tj, vi,h) = tj

is the local error. We can apply the inequality (16.1.7) and we have

1N-- M (Vo- MMI+£ M
Vv k=0
From the consistency hypothesis, we see that uj —vj tends uniformly to zero
with respect to j as h tends to o.

Reducing the proof of convergence to the verification of consistency an(*sto
bility has a double advantage. On one hand, experimentally this correspon
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different behaviours. A stable scheme which is not consistent certainly calculates
something, but not what we are looking for. On the other hand, an unstable but
consistent scheme calculates a solution which could be initially close to the one
we seek, but which separates from it quickly. Often this happens in an oscilla-
tory manner, more rapidly as the step size is reduced, quickly ending up in an
overflow.

From the theoretical point of view, this approach allows us to divide the
difficulties and makes the proofs more clear.

16.1.2. Necessary and sufficient condition of consistency

We now give conditions which assure stability and convergence.

Theorem 16.1.5. Let F be a continuous function of £E B ,T], u € Rd, and
h e [o, h*], defined by a one-step scheme (16.1.1). A necessary and sufficient
condition S0 that the scheme is consistent with system (16.1.3) is that

(1619 F(t,u,0) = f(t,u), VFfG Vue 0
Proof. The local error G is given by

ej =u(+i) - u G)- hF tj), h).
We can rewrite this in the form

rb+1

=/ [/ (s5,4<9) - / fdd ( @)-F(

aj = [f(s,u(s))-f(tj
fil— [@u (@) 0,
7 = hFGu () ,o ) ().}

Let w be the modulus of continuity of t >> f(t,u(t)) and let uii be the modulus
;I‘éonj[inuity of (t,h) = F(t,u(t),h). We can estimate otj and 7 by means of w
Wi
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Consequently,

r'ﬂb Y* }Ph] =o.
However, the sums

AP () = (Ul A

define the rectangle rule for the continuous function

on the interval [to.to + hJ(h)]. Consequently, they converge to

[ \f(s,u(s))-F(s,u(s),0)\
Jto

We see that

L \f(s,u(s))-F(s,u(s),0)\ds
Jto

and, consequently, for every solution u of eqn (15.0.1a),
=F(t,u(t), o).

Since there is a solution of egn (15.0.1b) passing through each pair ',u”) e
[to,T] x I d, we see that

F(*V,0) = /(*>"), V(*>*) G fc),T] X Md.

We have therefore shown that consistency implies that eqn (16.1.9) holds.
Conversely, if egn (16.1.9) holds, f3 vanishes and we have the upper bound

i\ A h(u(h) +wi (ft).
From this we have that

Y Y\ (T - t0) @@ () + @i (ft)).
We therefore have consistency.

16.1.3. Sufficient condition for stability

We now give a sufficient condition for stability:
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Theorem 16.1.6. For a scheme to be stable, it is sufficient that there exists a
constant A such that

F(t,u,h) - F (t,v,h)|* A\u- v\, W £ [to,T], Vh,v £Rd, Vit £ p,h*].
(16110

Furthermore, the constant M which appears in inequality (16.1.7) can be taken
to be equal to eA(T toK 0

The proof of this result will need a discrete form of Gronwall § lemma, which
we will now prove:

Lemma 16.1.7 (Discrete GronwalVs lemma). Let A and h be two given positive
numbers and let (aj)j*o and (fcj)j™o be two sequences of positive numbers or
zero which satisfy the inequality

@16.111) cij+1" LT AN Qj + by.
Then,

j-1
16112

k=0

Proof. We are going to make an exponential appear in inequality (16.1.11) by
noticing that

16113 1+ X ssex, VXGM+.
Consequently, inequality (16.1.11) implies
(161149 aj+i ~ eanaj -fhj.

As in the proof of Gronwall¥ lemma (Lemma 15.2.6), we make a change of
unknown function:

dj = otjeAh.
Substituting into inequality (16.1.11) we have
aj+leAf+Dh €Caje Alhesh + byj.

The sequence of aj therefore satisfies the inequalities

j-1
ajaO+ "2bke-A* h.
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Proof of Theorem 16.1.6. From egn (16.1.6), if we subtract Uj+i from W+
and apply the triangle inequality, we get

uUj+1% 1Vj - U\ +h\F(tj,V+
From hypothesis (16.1.10), we therefore have the inequality
\Vj+# P a + Ah)\Vj - + \gj\.
We can therefore apply the discrete form of Gronwall § lemma to obtain

31
Weh\b - V ]
k=0

Since jh ~ hJ(h) » T - tO, we can conclude the result of the lemma.

Note that the constant M = e A(T-*) could be absolutely enormous. Indeed,
if we take A = 10 (which is not enormous) and T - to = 10, then M = el(),so
that

M ~ 2.7 X 1043.

Consequently, to have a relative error of O(1) in the solution, we require a
relative error of O(10~43) in the initial conditions. This also implies that the
sum of the truncation errors must never exceed 1o-43 times the absolute value
of the initial data. Therefore, we must typically work in quadruple precision.
This is enormous, and we will see later that this choice of the constant M is the
best possible in many cases. It can still be possible, however, that when / hes
solutions which remain bounded for all time, a judicious choice of scheme leads
to better estimates. They depend on the particular properties of / and of the
scheme, and cannot be simply deduced from this general theorem.

16.2. Order of a one-step scheme

It is not sufficient for schemes to converge, they must also converge sufficiert!”
quickly to be of practical interest. We are therefore going to define a notion o
order for one-step schemes.

Definition 16.2.1. Let p be an integer greater or equal to 1 A scheme (161-1)
said to be of order p if, for every solution u of eqn (16.1.3), there exists a posits(
C such that

(16.2.1) n2 \u{tj+ 1) -u (tj)-hF (tj,u{tj),h)\*Chp.

We immediately get a finer convergence result:
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Theorem 16.2.2. Let / be a function satisfying the Cauchy-Lipschitz conditions,
and let F be a continuous function of t€ [to,
aone-step scheme (16.1.1). If this one-step scheme is of order p, if it is stable,
and if K - UOX C"hp, then

1622 max \u(tk)-U k\* 0

The proof of this result follows from that of Theorem 16.1.4 and is left to the
reader.

We now give a necessary and sufficient condition for a scheme to be of order
p. For this, we recall the notation of Lemma 15.2.8: if / is a Cp function of t
and u, we write

fo(t,u)= f (t,u),fk+L t,w=d Kt — +D 2fk(f
1623
We recall that, if u is a solution of scheme (16.1.1) we have

drtaii
1624) ®=fk U

We then have the following result:

Theorem 16.2.3. Let / be a Cp function with respect to the set of its variables
and let F be a continuous mapping from [to,T] x Rd x [Q ft] to Ed, which is
p-times differentiable with respect to ft and whose p derivatives with respect to
hare continuous functions of all the variables. Then the scheme (16.1.1) is of
order p with respect to the system (16.1.3) if and only if, for every k between o
adp- 1,we have

162 3) S ?2 *U0) =T TP V*e[*o,r], Vué Md. o

Proof. We write the local error € with the aid of Taylor §formula with integral
remainder, in the form

e = u(fy+1) - u(tj)- hF (tj u (tj) f)

~u(t1§+h— (tj§+ (t)
rj+1 {ti++ s)pd )
et o 88 s
~1 dp-~I
_hAF G .o)+ ... Ad ﬁ)] i @,ur

rb(h - syp_1 dpF .
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We let, for O~ kN —1,

We then have

Gj+1pl — fP(s,u(s))ds

(,h- S)p_1
(-

If condition (16.2.5) holds, as fp(t,u(t)) and dpF/dhp)(t,u(t),h) are uniformly
bounded on [to,T] and [to,T]x p,h*], respectively, then

dhP (tj,u(tj) ,s)ds.

M <

where C is a constant which depends only on /, F, and u. Consequently,

Y M A Chp+1J §

Conversely, if the scheme is of order p 1, it is, in particular, consistent and,
therefore, F(t,u, 0) = /(£,u), which implies that @ vanishes for all j. We haw,
on using the triangle inequality and the bounds on /7, for k ~ 2,

Y h2121 " Ci (hp+ h2).

1

Dividing by h, we immediately see that

E —<
1)) .
Reasoning as in Theorem 16.1.5, we see that
I/i (t,u(®)) OF m
ss. £ AN i3 ) 9

NIW-1 Jt=
from which we deduce that

fi ( t,ud

OF
gp GU®.0) 5

for all £in [to. T] and u in WM.
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More generally, we argue by induction. If condition (16.2.5) holds up to index
k-1 then

hk+i \fi\ A Ck
1

Therefore,

. I Sk(t,u(t))

|

Do e ki1 dnk (BU®0) E

lhl-t

Consequently, condition (16.2.5) holds up to index f. O

16.3. Explicit and implicit Euler schemes
16.3.1. The forward Euler scheme

The simplest scheme is the explicit Euler scheme:

163.1) Un+i = U+

We say that it is explicit since, contrary to certain schemes which we will see
later, the calculation of Un+i does not depend on the solution of a nonlinear
system, but only on an evaluation of /. In this case, the function F is defined

by

F(t,u, h) =
It is immediate that the scheme is stable and consistent, and therefore conver-
gent. It is of order 1 if / is C 1 but is not generally of order 2.
h ¢u OF 1
> dh (f,u,0) 5 + £>2/ (t,u) f (t

which does not generally vanish.
We apply the Euler scheme to the differential equation

u= Au,

where Ais a given real number. If we choose tO= o,u0= 1, and h = T/k, we
see that

Ujjd = @-fAn) uj,
which gives us

ad Theorem 16.1.4 allows us to recover the well-known Eulerian formula [2]
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If we choose A= 10and T = 10 we see that the constant M, which appears
in Theorem 16.1.6, cannot be less than e100. Indeed, by a continuity argument
the perturbation on the initial conditions of the scheme cannot have an effect
which is less than the perturbation on the initial conditions of the equation
Since the solution operator of u = I0u is multiplication by el0%, we see that, at
time T = 10, the perturbation a on the initial conditions is multiplied by e10. ft
is in this sense that the estimate of Theorem 16.1.6 is optimal.

Stiffness

On the other hand, if we choose A= —10, we have an unsatisfactory situation
since the exact solution tends very quickly to zero, although the approximate
solution satisfies only a very coarse estimate.

Numerically, furthermore, since all the solutions of u = —10u are bounded
for t o, we would like the same to be true of the numerical solutions. For this,
it is sufficient that the factor 1 —10h be bounded by 1 in absolute value, that
is,

h”o.a2.

This condition could be considered too restrictive on long intervals of time since
we know that the solution must tend very quickly to zero, and thus we use up a
large amount of computer time to little effect.
We say that the ordinary differential equation under consideration is stiff.
Now, there is another way to approximate an exponential by an Eulerian
formula. Indeed,

This corresponds to the scheme
UjH\ a - Ah) = Uj,

or, again,

Uj-H —Uj + XhUj+\.
In this case, if A< 0, we will obtain bounded solutions without restriction on
the time step.

16.3.2. Backwards Euler scheme

It is because of this advantage that we introduce the backwards Euler scheme or
implicit Euler scheme:

(16.32) Uj+1 = Uj 4-hf (tj+i,Uj+\).

This is an implicit scheme: to find Uj+\ it is necessary to solve a system which
is generally nonlinear. However, this is not difficult since we begin with ag
approximation of the solution, namely the value of u at the preceding time step-
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We show that this can be put in the form (16.1.1) of one-step schemes. Write
(633) v = u + hf(s,v).
Let
g(s,u,h,v) = u+ hf (,v).

As / satisfies the Cauchy-Lipschitz conditions, g is a strict contraction with
respect to its argument u, provided that hL < 1. We therefore choose an h*
such that h*L < 1, and we work from now on with h ~ h*. Therefore, there
exists a unique solution of eqn (16.3.3), which we denote by G(s,u,ft). This
function G is continuous with respect to all of its arguments and Lipschitz with
respect to u. Indeed, if

W =u\+ hif (si,vi) and v2=u2+ hZ (s2,v2),

we subtract the second equation from the first and we apply the triangle inequal-
ity, to give

[t -v2\s* K -<«<2] +hiNf(si,vi) - f{si,v2\
+ hi \f(si,v2)- f(s2,v2\+ \hi - |\f(s2,v2)\.

We fix v2, s2, and h2, to obtain

@ h\DN -v2\™ ui ~Uz2l+ a1 |/(i, &) - - h2\\f (s2,v2)\.
Consequently,
K - VA @- h*L) 1 (Jui -up+ hi |/(si,u2)
+\ni - | )-
Wé see that when (si,vi,hi)tends to (s2,v2,h2), u\ tends to u2. F

i f =s2and h\ = h2= h, we have the inequality
@634 lig - VA= | GG, U\
Relation (16.3.2) can now be rewritten as

Uj+1 = G tj Hh,Uj,h).

Consequently,
Uj-H hf (fj «-h, G (§j -f h,Uj, h)).

therefore, we have defined F by

16.3.5) F @uh)=/x-FhG (t+ huh)).
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It now remains to study the properties of F. This is a function Which is
continuous in all of its arguments. G(t,u, 0) is the solution of

v =u+ O0f(t,v),

therefore, G(t,u, 0) = u and F(t,u, 0) = f(t,G(t,u, 0)) = f(t,u). We therefore
have consistency. Furthermore,

IF @.iti, ) —F EWjf)] ~ L |G EHT,iii, ) - G (t+ ft, 112, )]
< (- ftL)-1 Jui - u2K L (@L- h1y1} - ual.

The function F is Lipschitz. Consequently, the backwards Euler scheme is sta-
ble.

16.3.3. 0O-method

In the same way, we can combine the explicit Euler scheme (16.3.1) and the
implicit Euler scheme: thus, we have the ~-method

Uj+l=Uj +» [Of (fj+ulj+x) + @ -0)f @j,Up].

For O = O we recover the explicit Euler scheme and for O = 1 we obtain the
implicit Euler scheme. With the same techniques we can show that the scheme
is well defined for ft  ft*, that it is stable, and that it is consistent. If /7 is Cl
the scheme is of order L If / is C2and O= 1/2 it is of order 2

We have already seen that the explicit Euler scheme is of order 1.

We now move on to the case of the implicit Euler scheme. With the notation
used previously, G(s,u,h) is the unique solution v of eqn (16.3.3). If / is Cl
the implicit function theorem implies that G is C| with respect to its arguments
for (ti,s, ft) e Rd x [to,T] x [0 ft¥]. We have seen previously that F(t,u,h) =
f(t + ft, G(t + ft, u, ft)), and that F(E, u, 0) = f(t, G(t,u, 0)) = f(t,u). Therefore,
the scheme is of order 1. Suppose now that / is C2. We calculate the partial
derivative of F with respect to ft

dF(tuh) 0 E+ ft, G (t+ ft,u, )

BG
B2f (, u, h)) + UM
and, therefore,
— (54,0 = T+ P> Ky — ¢ O0).

It remains for us to calculate the partial derivative of G with respect to f F?
this, we differentiate the relation

G (@t,u, f) = u-fft/ G, G (F, u, f©)
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with respect to h and we find
np a

— ( tu,h) = f ( 483

and it is pointless to calculate the expression between square brackets since we
are only interested in what happens at h = O. Finally, we find

oG
dh (t,u,0) = f{t,u).

We then note that

dF u  » fl ¢ u)
> (" >-— T - 2

The implicit Euler scheme can, therefore, only be of order 2 for very particular
values of the function /, namely those for which f\ is identically zero.

We refer to Subsection 16.5.1 on the ~-method to see the details of a slightly
more complicated order calculation.

164. Relation with quadrature formulae:
Runge-Kutta formulae

W& are going to look for ways to interpret the formulae already studied. We can
rewrite the differential system (16.1.3) and (16.1.4) in the integral form between
tj and tj+1 as follows:

/=4
u@+)=u@H 7/ u(s)ds.

W& can therefore obtain an approximation of u(tj+\) —u(tj) by using a quadra-
ture formula. If we use the left rectangle rule we will have

u (tj+1) —u (1)) ~ hu (1),

which leads us to the explicit Euler scheme. By using the right rectangle rule
we have

u (@-fi) —u (@) —tiu (Gj+i) ,
which leads us to the implicit Euler scheme. Finally, by using a rule with knots
a the extremities of the interval, we write

u (tj+i) - u () ~ tu (G) + Gil (G+1).

A Sth a rule to be of order o as an integration formula, it is necessary that
—h. We therefore obtain the O-method. The case O = h/2, which cor-

resPonds to the trapezium rule, leads to the Crank-Nicolson method, which is
MTe accurate.
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To construct schemes based on integration formulae we argue as follows: We
consider g knots ¢j belonging to p,1], distinct or not, arranged in increasing
order, and the quadrature formulae

16.4.0) f N E&, /(<)
i
and
pC= Q
(16.4.2) /(1) dt —2 a-ijf cj) m
Jo =1

The quadrature formula (16.4.2) differs a little from the formulae which we stud-
ied previously in that we consider points situated at the exterior of the interval
of integration. There is no additional difficulty when we make this hypothesis.

A Runge-Kutta formula consists of constructing an approximation based on
these quadrature formulae, that is, if we let tk,i = tk + c¢*h,

Q
(164.3) Uki —Wk + hn djjf (tkj)Ukj)
-
and J
Q
(16.4.9) Uk+i = Uk+ h” bjfm
j=1

We note that relations (16.4.3) allow us to determine the Ukj explicitly if the at)
are zero for j ~ i. We then say that the Runge-Kutta method is explicit. If the
dij are zero for j > i, but certain an are not, the method is called semi-implicit,
as we can solve each of the egns (16.4.3) in turn by a nonlinear equation solver.
Finally, if there are pairs (i,j), with j > i, for which aij is not zero, eqns (16.4.3)
form a system of ng coupled nonlinear equations, n being the dimension of the

space.
We generally put the coefficients a®, bj, and cj in a table of the following
form:

cl an ai2 eme QOlg

c2 d2i 022 <w* 0,2q

Cg aql 072 ** aqq

16.4.1. Examples of Runge-Kutta schemes
With this presentation, the explicit Euler scheme has the following table.
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00
1
The implicit Euler scheme has the following table:

11
1

The O-method has the following table:

0 0
1 1-0
1-9

© © ©°

The modified Euler method, also known as the Runge-Kutta method of order
2, is constructed by means of a geometric argument. The Euler method consists
of making a step in the direction of the tangent. We note that, as the trajectory
turrs, the speed which allows it to reach the state u{tj+1) is closer to the speed
at u(tj 4-h/2) than to the speed at u(tj). Consequently, we let

(16.45) = A 4

Uj+l = Uj + hf(tj+i/2,Uj+i/2)-

Refer to Figure 16.2 to see this construction.
We show that eqn (16.4.5) defines a scheme of order 2. We have

FEuh)=/7E+h/2,u+ (V2T (tu)).
W& suppose that / is C2. Then,

F(t,u, o) = f(t,u)

Figure 16.2: How to understand the modified Euler method geometrically.
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and
dF A E£2/(*,»)/(*,«)  fl (t,u)
dh (t,u,0) =~/ (t>u)+ 5 5

The table corresponding to this method is given by

0 OO0
1/2 1/2 O
0o 1

An analogous method is the Heun method, given by
Uj,i —Uj mhf (j,U)),
ui+1=f/i + - / G+1,UjA) .

The corresponding Runge-Kutta table is

0O O O
1 1 O
172 1/2

This method is of order 2, as the reader may verify.
Finally, the classic Runge-Kutta method is an explicit method of order 4
given by the table

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0

176 1/3 1/3 176

or also by

UnA = t/n,

Un,2=UnA + -f(tn + h/2,Un.l),
(1646) Un3= UnA + {tn+ h/2* z

Un4—Un hf (tn+ ft/2,Un3),

Ut =t + [/ (<n, unj) + 2

T-2/ (En+ h/2,Uns)+ / (™n+ h,Una)-
inor
We find Runge-Kutta methods of all orders tabulated in the literature.
#from 1to 4, the maximum order of an explicit Runge-Kutta method is Q=

from 5to 7, it is g —1 For « greater than or equal to s,itis q- 2
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other hand, for every q, the maximal order of an implicit Runge-Kutta method is
20. This phenomenon, as well as the better behaviour of implicit Runge-Kutta
methods on stiff problems, that is, those of type u = -Aw, with A large and
positive, is sufficient to justify the study of implicit Runge-Kutta methods.

16.5. Exercises from Chapter 16
16.5.1. Detailed study of the O-scheme

We denote by ||« some norm on Rd which we fix throughout this subsection. Let
f be a C2function from R x W to Kd. We suppose that there exists a positive
constant L such that

@651  W@&w-fEWI™ L N-v]l, VEGR, WGRd, WG Rd.

Exercise 16.5.1. Show that there exists a strictly positive constant ko such that,

for every k satisfying [f] < ko, for every y in Rd, and for every t in R, the system
of nonlinear equations in x

(165.2) x =y + kf (t,x)

hes a unique solution.

Exercise 16.5.2. We will denote the unique solution of the system (16.5.2) by
1653 x = G (ty, k).

What is the value of G(t,y,0)?

Exercise 16.5.3. Show that, if Y\ < f0, G is C2 with respect to t, y, and k.
Apply the implicit function theorem to K(t,x,y,k) = x —y —kf(t, X) and show
that the solution obtained is C2in R x Rd x 10, &

Exercise 16.5.4=Calculate the partial derivative of G with respect to t, y, and
K respectively, at k = o. To do this calculation, substitute G(t,y,k) for x in
the system (16.5.2) and note that the derivatives with respect to t and y can be
deduced from the expression for G(t,y, 0).

Exercise 16.5.5. We wish to study the following O-scheme where 6 is an arbitrary
redl:

@659 t/, +i = Un+ h [Of (tn,Un)+ (1 - 6)f (tn+1,Un+i)].
|Here, we have let
th=1to nh.

“hat scheme do we obtain if 6= 1? And if 6= 0?



404 16. SINGLE-STEP SCHEMES

Exercise 16.5.6. Show that there exists, for every real 6, a value ho{6) such that
for every h E JO, ho(O)[ and for every Un in Rd, Un+\ is uniquely defined by
egn (16.5.4). We will suppose that this condition is satisfied in the rest of this
subsection. Express t/n+1 as a function of tn, t/n, and h with the aid of G. We
let

(16.5.5) Un+i =H (tn,Un,h).

Exercise 16.5.7. Calculate H(t,u,0). Show that

dH dH

— (u,0) =0 DWH (t,u,0) = Id, 0=/
Exercise 16.5.8. Define a function F such that
(16.5.6) Un+1 =Un+ hF (> Un,h),

by using /, 9,and H. What is the value of F(t,u, 0) and dF(t,u,0)/dh? Show
that F is the solution of the implicit equation

(16.5.7) F@¢uMHh= ¢u+@a——6fFf K+ hu+hF Euh)).

Exercise 16.5.9. For which values of O is the scheme (16.5.4) of first order? And
of second order?

Exercise 16.5.10. Prove that, for sufficiently small h, scheme (16.5.4) is stable.
To this end, we can use relation (16.5.7) to prove that the function F is Lipschitz
for sufficiently small h.

16.5.2. Euler scheme with variable step size and asymptotic
error estimates

In this subsection we define a variable step size version of the Euler scheme for
systems of ordinary differential equations. Then, we asymptotically estimate the
error when the time step tends to zero.

The space Rd is equipped with some arbitrary norm denoted by || =}
denote by Cd the space of continuous linear mappings from Rd into itself.

In all that follows we consider a time interval [Xb,7i]. We will consider
functions / from [To,Ti] x Rd to Rd which satisfy the hypotheses of Theorem
15.1.1, that is, that / is continuous with respect to the set of its arguments an
it satisfies eqgn (15.1.2) for t E po,7i] and u E Rd.

Variable-step size Euler scheme
>,

Let {tn)O<n<J be a sequence which increases in time in the interval Tow I*

Tg=1t0 < t\ < £2< ***< tj = T\,
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We let
hji — tm h— §§5<_1hji.
We define a variable-step Euler scheme by letting
Un+i —Un + hnf (tn,Un) =

Exercise 16.5.11. Let uo be a given initial condition and u(t) be the solution of
the problem

(165.8) i) = f(t,u(v)),

(1659 u (To) = uo.

We let g be the modulus of continuity of i 4 f(t,u(t))-, 4 is a continuous
function from into itself, increasing, vanishing at zero, and such that

I7&u@®) - f(s,u ] "u(\t-s]), W,Ec [IO,Ti].
Estimate the vector
(165.10) en —u @ j i) —u @n) —hnf (tn,u (n))

& a function of u and hn.
Exercise 16.5.12. Show that

tsX M -o0.
n=0

Exercise 16.5.13. We suppose that Un and Vh are defined by the data Uo and
\b, respectively, together with the following recurrences:
(165.11) Un+1=Un + hnf(tn,uUn),
(16512) MVl = Wn + hnf(tn,Vn) + an,
where an is an arbitrary sequence of vectors in Rd. Show that we have the
relation

\Uh+i ~ W+
Deduce that there exists a constant M such that

( n—l1

i=0

\LD Vo\ + Y, kod

do this, let 7n = \Uh- Wh\exp(-L(tn-To)) and write a recurrence inequality
mterms of the gn.

Exercise 16.5.14. We suppose Un to be defined by the recurrence (16.5.11). Show
at we have convergence, that is
/Ilﬂwo 1r<r|a<x“_| IUn—u @) = 0
n
WAy
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Asymptotic error estimates

We suppose here that 7 is a continuous function of t G [70,2i] which is strictly
positive and that / is a C | function which satisfies eqn (15.1.2). We will suppose
from now on, that the time steps are given by

(165.13) hn = ri(tn)(h + o(h)).
We will also suppose that the initial condition satisfies
(165.14) Uo-u(0) = h(v + o(D)).

Exercise 16.5.15. Show that every solution of egns (16.5.8) and (16.5.9) is C2
on [To,Ti].

Exercise 16.5.16. Under hypothesis (16.5.13), show that there exists an expres-
sion E such that the consistency error defined by eqn (16.5.10) can be written
in the form

en = hnhE (tn,u (tn) ,7 @)) + hno (h).
Exercise 16.5.17. We define the error at the time tn by
fin ~ Lin —uU (tn).
Verify that there exists a constant C such that
\fim ~ Ch,

for sufficiently small h.
Exercise 16.5.18. We let

Show that 6n satisfies a recurrence relation of the form
=  £hnB {th) 5n +hnC (tn) mwhno (D),

where B(t) is a continuous mapping from po,Ti] to £d, which should be deter-
mined, and C(t) is a continuous mapping from [To, 7i] to Rd which should also
be determined. Write with care the expression for hno{1).

Exercise 16.5.19. Let g be a mapping from [70,7i] x to Rd of the following
form

g(t,u) = B()u + C(1),
where B is continuous from [To,Ti] to £~ and C is continuous from

Rd. Show that this function satisfies the hypotheses of the Cauchy-Lipsc 1L
theorem.
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Exercise 16.5.20. We suppose that eqns (16.5.13) and (16.5.14) are satisfied.

Show that, if wis the solution of
w® —B ®w@® + C (1), e s
(16515 ® Ow® ®
w (TO) = v,
then
. Pn~hw(
1S =0

16.5.3. Numerical schemes for a delay differential equation

We define a numerical scheme to solve the system (15.3.2) in the following way:
We fix the time step h and we let n\ = \r/h\ (the integer part of r/h). Given a
function F from R x Rd x Rd x [0, h*] to Rd, we let tm —to + rah and we define
aone-step scheme for the delay eqn (15.3.2) by

(165.16) U-m= ¢{o- mh) ifO*m”" m,
(165.17) Um+i = Um + hF (fm,Um,Um-m,h) ifO* m~ T/h - 1

Exercise 16.5.21. Let u be a solution of the system (15.3.2) and suppose that F
is continuous on its domain of definition. Furthermore, suppose that

(165.18) F (t,u,v,0) = f (t,u,v), VEGR, Rd.

Show that the sum of the local errors
Ch — A \u@m+D) ~A{tm) hF @m? {tm) 2 {tm—\) >h) |
o\ [T//1]-1

tends to O as h tends to O.

Exercise 16.5.22. Given the number A, which is positive or zero, consider

£'mH = & "b hAam -bhAam_ni -b@m,

where we suppose
aj—0 and —ri\*"m~"O0O
the em are positive numbers or zero for O m ~ M —1 Show that the am
r e Positive or zero for every m from 1to M.
Exercise 16.5.23. Let
am= (I1+ h\)mpm.

jfrte down the difference equation satisfied by Pm. Show that the sequence of
I eftn is increasing.
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Exercise 16.5.24=Using the fact that the sequence of the An is increasing, show
that we have the inequality

om (a.+ ernjexp (

where Kh is a number tending to Aexp(—Ar) as h tends to O.
Exercise 16.5.25. We now suppose that am satisfies the difference inequality

&M N &M 4°h\OLm +hAam_ni + cm.

Show that it satisfies an estimate of the type
nexp (

Exercise 16.5.26. Suppose that the function F defining the one-step scherre
(16.5.17) satisfies the estimate

(16.5.19) |F (t,u,v, h) —F {t,u\,v\, )] * A(u- \\+ W— ),

forany t G R u, v, ui, di G1d, and any h € [O,h*]. Then, consider the
perturbed finite difference scheme
(16.5.20) V-m = ¢&(to—mh) ifO0” ra” ni,
(16521) Untl =v m + hF (tm,Vm,Un_ni,h) + Gm if 0~ m ~ T/h - 1,
where the Om are arbitrary vectors belonging to Rd. Show that there exists a
constant C depending only on T —to, r, and A such that

m—

\Um-vm\"*cJ2\Q\-

j=0
Exercise 16.5.27. Show that, if F is a continuous function of its arguments
which satisfies eqns (16.5.18) and (16.5.19), then the scheme defined by egns
(16.5.16) and (16.5.17) converges to the solution of the system (15.3.2) with
initial condition (&
Exercise 16.5.28. Consider the scheme

(16.5.22) Um+l —Um F hf @m,t/m+i,Um—ni).

Show that this scheme, which is implicit in £m+1, can be put into the form of
eqn (16.5.17). Give the conditions to be able to solve the problem

u=v+ hf (t,u,w),

and denote its solution by G(t,v,w,h). Express F using G.
Exercise 16.5.29. Show that scheme (16.5.22) is convergent.
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16.5.4. Alternate directions
Alternate direction methods

Let T be a strictly positive number and / and g be functions from [0, T] x Rd
to Rd, in the first part equipped with an arbitrary norm denoted by | = We
suppose that these two functions satisfy the hypotheses of the Cauchy-Lipschitz
theorem, that is,

(16.5.23) / and g are continuous on their domain of definition

and there exists a constant L > O such that

0 max. (\f(t,u)-f(t,v)\,\g{t,u)-g{t,v)\) L\u-
*16°5°24) Vu < w v* e [o0,T].
W& let

e=f +g,

and in this problem we will look for numerical methods which allow us to inte-
grate the differential system

(165.%) - =
with the initial condition

165%) u(0) = uo,

taking account of the particular properties of / and g.

We suppose that F (respectively, G) is a continuous function from [0, T]JxMdx
[Qft¥] to Rd, defining a one-step method which is consistent with / (respectively,
d- We recall that the necessary and sufficient condition (other than regularity

conditions which we will not worry about here) for a scheme to be of order p is
that we have

dmF 1
-Q° (t,u,0= m+ 1 fm vt £, Vue€ld,Vm~n-1.

Here the fm have been defined by the recurrence

fo {t, ) —f OfmH tu) = wf w+ (u).

Furthermore, we will suppose that F and G are Lipschitz with respect to u,
wiformly in t and A, with a Lipschitz constant A

Exercise 16.5.30. We define a numerical scheme by
@527~ Un+l'2= Un+ hF{tn,Un,h),
t/ntl = t/n+l/2+ hG (tn,7/n+1/2,1t) .

S'ONVIlhat the scheme (16.5.27) defines a one-step scheme. Give the function E
w ich defines it explicitly.
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Exercise 16.5.31. Show that E defines a scheme which is stable and consistent.

Exercise 16.5.32. We suppose that F and G are sufficiently regular and that
they define schemes of order 2 Is the scheme defined by E , in general, of order
s

Exercise 16.5.33. We define another numerical scheme by

Un+ 14 =Un
U2 =
(16.5.28) b
Un+3/4 =
jin+l = pn+3/4+ A "

Show that the scheme (16.5.28) defines a one-step scheme. We denote by H the
function with defines it, and we can use the notation

E (t,u,h) = G @,u,h) + F @t,u+ hG Eu, h) ,h).

Exercise 16.5.34. Show that iL defines a stable scheme.
Exercise 16.5.35. Suppose that F and (7 define schemes of order 2 Show that

this is also true of H.
Applications

Exercise 16.5.36. We equip  with the Euclidean norm. Let A be adxd positive
definite symmetric matrix. Show that, for every A> O, the linear system

(16.5.29) /+\A)x={I- XA)b
possesses a unique solution and that it satisfies
i*i< i*i=

Argue using a basis of eigenvectors of A.
Exercise 16.5.37. We solve the differential system

16.5.30 ar _ A

( - ) ;t = -AU,

by means of the scheme

(16.5.3D) Ul =Un-""A + Un).

Show that this scheme is of order 2. In this exercise, we restrict ourselves to th
particular form f(t,u) = Au given.
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Exercise 16.5.38. Show that the scheme (16.5.31) is stable and that the constant
M which appears in the definition of stability can be taken to be equal to 1 Use
Exercise 16.5.36.

Exercise 16.5.39. Suppose that A and B are d x d positive definite symmetic
matrices. Furthermore, suppose that A is tridiagonal and there exists a permu-
tation matrix Pa such that P*BPa is also tridiagonal. We let C = A+ B and we
wish to choose a scheme which allows us to solve the linear differential system

du_
At~ CU®
with maximum efficiency, knowing that C is band-p. Compare the following two
schemes, which are both of order 2

(i + un+1/i =(/- un,
(i+ -B~ Ug= (/ - Un+1N
(16532)
(V+ B N /21
(1 + Un+1= - Ci
and
16533) (i+1 (A+B)j Vn+l =

Which has the least cost in terms of arithmetic operations? Give an estimate of
the number of operations in each case. Assume that d > p > 1 This condi-
tion is met by many of the classical cases of discretization of partial differential
equations.

Exercise 16.5.40. We augment the system (16.5.30) by a nonlinear term g satis-
fying the hypotheses of the Cauchy-Lipschitz theorem with a Lipschitz constant
E=0(1). Therefore, we now have the new system

16539 M) = -Au(®+g(tu(D).

Show that we can choose a scheme of order 1of the type given in egn (16.5.27),
Wthout solving nonlinear equations, for which the stability constant M is O(eLT)
ad is independent of the norm of matrix A, which is always symmetric and
Positive definite.

Exercise 16.5.41. Under the conditions of Exercise 16.5.40 show that we can
~oose a scheme of order 2 of the type given in egn (16.5.28) for the system
'~ 3 without solving nonlinear equations, for which the stability constant

isO(eLT) and is independent of the norm of matrix A, which is still symmetric
N positive definite.
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16.5.5. Numerical analysis of a second-order differential
equation
This problem continues from Subsection 15.3.3, and uses the same notation.
Exercise 16.5.42. Let wh a Cunction
choice of reals ao,ai,a_i and So,B\,/?_i such that
e(t,h) = aiw @t + h)+atow () +

(16.5.35) - fO[fiiw (t + h) + /0w () + P-iw (¢ - )]

is uniformly O(ft6) on [0,T]. Normalize Qi by letting aq = 1
Exercise 16.5.43. Let tj = jh and consider the numerical scheme

U+1- 2 Uj+ Uj-i =5 (/ @+x,U+i) + 10/
(16.5.36)

Show that, for every Uj and Uj-1, C/j+i is well defined, provided that his at
most equal to a certain ft*, which you should determine.

Exercise 16.5.44=Let O be an open subset of Rm and let N be a continuous
function defined on O x Rd with values in Rd. The variable £ranges over O and
the variable v ranges over Rd. Suppose that there exists a constant K < 1such
that, for all £in O, v and v in Ml,

Show that the fixed point v of v N(£,v) is a continuous function G of £
Suppose that Rm has a decomposition as a direct sum of the two subspaces
X\ 0 X2 and that £ decomposes as £1 + £?with g1 G X\ and £ € X% Show
that, if there exists a constant K " such that for all £= 1 f£, £= 21 + £?

6 -6

then G is Lipschitz with respect to £1 and calculate its Lipschitz constant.

Exercise 16.545. Denote the fixed point of v =>x + hf(t,u + hv)/12 by
G(t,x,u, f), for ft ~ ft*. Calculate the constants L\ and L2 such that, for
all u, u, x, x in Rrf,all tin [ T], and all ft in [0, ft*],

(16.5.37) IGE x,u, ) - G t,Eu, )] " la X-XA-fL2|u- § =
Exercise 16.5.46. Let
i+i-

Show that we can rewrite the scheme (16.5.36) in the form of a system of e’

tions, the unknowns being Vj+i and the data being Uj, V}, tj, and ft-
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Exercise 16.5.47. We introduce the function
H (u,v,h) = Qo/ Gu) + / {£t- h,u - /iu)).
Determine, with the aid of G and i/, the function C(£, u,v, A) such that
tj+i = C*
Give the function 4> which allows the scheme (16.5.36) to be put in the form of
aone-step scheme:
Zj= (v-"j1 =A N (tj Zjih).

Exercise 16.5.48. Show that this scheme is stable and consistent.

Exercise 16.5.49. Consider the particular case where n = 1, f{t,u) = u. Deter-
mine 4> explicitly and show that the scheme is not of order 2

Exercise 16.5.50. We return to the general case and consider the solution Uj+1
of
_ _h3
Bvi=Y0 48 v= "~/ + 10/
(16538

+/ (*j-i>Ni-i)) +

where (e"- is a sequence of vectors in Rd. Express V)+i = (f/j+i - Uj)/h as a
function of Uj, Vj, tj,h, and 6 with the aid of the functions G and H.
Exercise 16.5.51. Let

Zj
Estimate \Zj+i —Zj+1]as a function of \Zj —Zj\.

Exercise 16.5.52. Suppose that / is C4 and let f/j = it(§). Using Gronwall 3
“mma and the estimate of e, h) defined by eqn (16.5.35), prove that there
exists, for every solution of egns (15.3.8) and (15.3.10), a constant C such that

\wQ®s, VJI<E,

provided that Cq and Ui are suitably chosen.
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Linear multistep schemes

17.1. Constructing multistep methods

When calculating an approximation at time fii+i> the Runge-Kutta methods do
not use information on the results obtained at times prior to tn\on the contrary,
the multistep methods will use this information systematically. Therefore, a
multistep method will be described by the data of 29+ 2 numbers aj and /3, O*
j N g, and will be written as
Q Q

71y QAjun+j = h Pjf (t-nHi Un+j) .

j=o i=0

In what follows, we will systematically use the notation

(1712 Fj = 7(tj,Uj).

We consider only the constant time step case and, therefore,
tj=to+jh,

as for the study performed previously for the Runge-Kutta schemes. The theory
of variable step for the one-step schemes is easy; it has been treated for the Euler
scheme in Subsection 16.5.2. The theory of variable-step multistep schemes goes
beyond the level of this book, and the reader is invited to read [19] or other books
on the numerical analysis of ordinary differential equations, such as [4352].

In order to fix the effective number of time steps used in eqn (17.11)? we

shall assume that

@17.1.3) 0, |a0|+ Vol # O.

We also have to initialize the values Uo,..., Ug-\. This initialization will be
performed in such a way that for u to be a solution of eqgn (15.0.1) we have

U-u()=0(@p+l), 0"j"qg-1

414
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with p being the order of the method under consideration, as defined below in
Section 17.2.

The mathematical theory of the stability of multistep methods has some
subtle aspects, whilst the theory of order is completely straightforward. This is
in complete contrast with the mathematical theory of Runge-Kutta schemes.

We will start by giving some of the best known classes of multistep methods,
then we will successively study the order, the stability, and the convergence of
multistep methods.

17.1.1. Adams methods
Adams, astronomy, and computation

John Couch Adams was an astronomer; he is the co-discoverer of the planet
Neptune, together with Urbain Le Verrier; the existence of an unknown planet
beyond Uranus had been proposed to explain the irregularities in the orbit of
Uranus. Adams was twenty-four years old at the time he finished his calcula-
tion. Initially, he had been encouraged by Airy, the Astronomer Royal, and by
Challis who was the director of the Cambridge Observatory. But Airy adopted a
discouraging attitude, and Adams did not publish before Le Verrier § announce-
ment. Indeed, Le Verrier had embarked on the same task as Adams, both being
unaware of the other ¥ work, and he announced the position of the new planet in
November 1845. The Paris Observatory started a search but did not persevere.
After Airy had received the announcement of Le Verrier, which gave about the
same result as the calculation by Adams, he convinced Challis to search for the
plaret. In July and August 1846, Challis saw the planet, but did not recognize
it

In despair about the situation, Le Verrier wrote to the young Johann Galle,
who was an astronomer in the Berlin Royal Observatory. Galle received per-
mission from the director of his observatory to look for the planet and, indeed,
during the night of 23rd September 1846, together with his assistant Heinrich
dArrest, Galle found a planet at less than one degree of arc from the position
predicted by Le Verrier and less than three degrees of arc from the position
predicted by Adams.

This discovery made a lasting impression, since it evidenced the power of
computations in the discovery of physical phenomena. It is said about Le Verrier
tret Fe discovered a star with the tip of his pen, without any instruments other
then the strength of his calculations alone 7

However, in this particular case, there is more legend than fact. Indeed,
Adams and Le Verrier had assumed that the distance from Neptune to the Sun
J3Bdouble the distance from Uranus to the Sun, whilst this ratio is but 1.57.

e revolution period determined by Adams was 227 years instead of the 165
Jobserved; there were a number of other false hypotheses.

His only thanks to a remarkable series of coincidences that these many errors

c=mpensated one another. They were pointed out by several astronomers during
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the following decades.

A more detailed story of the discovery of Neptune and, more generally, a
description of the evolution of ideas in celestial mechanics can be found in the
excellent and popular book by Ivars Peterson [&5].

Adams conceived numerical methods because he needed them in order to
integrate numerically what cannot be expressed explicitly by algebraic and ana-
lytic means. At the end of his life, he came up with the method to be described
below.

The astronomers introduced the notion of slow and fast variables: a fast
variable would be, for instance, the position of the Earth as a function of time,
and a slow variable would be the eccentricity of its orbit, or the length of its
major semi-axis, or the obliquity of the Earth, i.e., the angle of the Earth § axis
of rotation with respect to the ecliptic plane, i.e., the plane of its orbit. Ifa planet
has a fixed obliquity, its seasons and its climate will be relatively stable. Due to
perturbations from other planets, the parameters of the orbit of the earth change,
but on a time scale which is large with respect to the period, i.e., one year; the
slow variables can also be integrated numerically. The slow variables have been
called secular variables by astronomers, since their effect can be observed only
on very long time scales: for a human being, a century (seculum in Latin) is a
very long scale; for the universe, the matter is quite different—Jacques Laskar
calculated numerically the evolution of slow variables, with time steps of 500
years, and he found that the orbits of the planets are basically unpredictable
after 100 million years. The following is a summary of his findings:

targe-scale chaos is present everywhere in the solar system. It plays a major
role in the sculpting of the asteroid belt and in the diffusion of comets from the
outer region of the solar system. All the inner planets probably experienced large-
scale chaotic behaviour for their obliquities during their history. The Earth§
obliquity is presently stable only because of the presence of the Moon, and the
tilt of Mars undergoes large chaotic variations from O to about 68)=. On a
billion-year time scale, the orbits of the planets themselves present strong chaotic
variations which can lead to the escape of Mercury or collision with Venus in less
than 3.5 Gyr. The organization of the planets in the solar system thus seems
to be strongly related to this chaotic evolution, reaching at all times a state of
marginal stability, that is, practical stability on a time scale comparable to its
age. (Jacques Laskar, [57].)

17.1.2. The multistep methods of Adams

The idea of the explicit Adams methods, also called Adams-Bashforth methods,
is very simple: if u solves eqn (15.0.1) we have

f{t,u(t))dt.
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Then replace f(t,u(t)) by the interpolation polynomial P € P?_! which takes

the value rj = f(tj,Uj) attj,for n-qgq+1~j A" Em

is given by

@arzi14 P (in + hs) =£ ("D ()
i=0

Hence, we obtain

[ tn+,p (t)dt =hfe (-i () (v1
Jin Jo f=0

Define
71= [\-1Y(-*

JO

Thus, the class of explicit Adams methods with g steps or q + 1 levels is given
0y

q-1
17.15) tn+1-t/n=h ~ 7<(ViF)n.
i=0

The coefficients 7i may be calculated recursively; the easy and interesting way
to get them is to use a generating function:

17.16) 700 =y r7<x\
i"O

A priori, the above series is a formal series, and we know nothing about its
convergence. Quoting Herbert Wilf [78], & generating function is a clothes-line
on which we hang a sequence of numbers for display 7 However, there exists
perfectly rigorous mathematical theory which gives sense to an expression of the
form (17.1.6). It suffices to know that the only permissible operations are those
where any arithmetic operations involve only a finite number of terms of the
formal series which we are computing. In particular, it is possible to multiply
tw=formal series by generalizing the multiplication rule for polynomials:

)

Then define

Vir0 / \j~0 ) k~r0 \n=0 /

ox,5) ="~ (7)(-1)1.
ir0
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This expression is the series expansion with respect to x of (1 - x)~8, with s

being an arbitrary real number. This is a convergent expansion for N\ < | an(
for all complex s. Therefore, if 5] < 1, we have

@- x)In@-x

and hence,

The multiplication rule for series now gives

70 = 1,

17.1.8)

The first explicit Adams methods are thus given by the following formulae:

Un+l—  'HLFn,

The particular case g —1 is simply the explicit Euler method.

It is a known fact that the values of an interpolation polynomial outside of the
interval enclosed between the extreme interpolation knots are not a very good
approximation of the interpolated functions. The Adams-Moulton methods, or
implicit Adams methods, consist of approximating the function f{t,u(t)) by a
polynomial interpolating the f(tj,Uj) forn- g+ 1~ j ~ n+ 1 Once again,
using egn (4.5.11), we now obtain

P(tn+hs)=£(-1)" (~T) (VA)n+l

Let us define
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yhe family of implicit Adams methods is therefore given by

Un+1tf>>+ />1>? (V<F)n+1.
i—0

X recurrence relation for the 7 * is proved in Exercise 17.5.1 along the lines of
the derivation of eqns (17.1.8).
The first implicit Adams methods are given by

Un-fl = Lh -shFn+\,

umtl= un 4n 2~y 7
un+l= un+ h F"+i i2~n ~ 12”n-1) ~
un+i = un +h (h Fn+1l+ f=Fn ~ h Fn~Il ~ h

The case g — 1 corresponds to the implicit Euler method, and the case q —2
corresponds to the Crank-Nicolson method.

1713 Backward differentiation

In the backward differentiation method, we interpolate u, and not /, at the
points £ for n - ¢+ 1 i ~ n+ 1 The corresponding interpolation polynomial
is
Q(tn+sh)=j2 (-iym (vM)ntl

i=0

and we impose a collocation relation:
Q" (En+D) = /7 (EnH?2 Cr+Hl) =

Therefore, we will have

E ~ ( Vjt/dn+l= ~n +I,
j=o

and the coefficients Sj are given by

Adirect calculation gives

"0 —o0, &=-, Vj>1
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The first backward differentiation methods are:

un+i Un = hFn+i?

2 "n+i - 2J/In+ 2~n~1= n-fi,
g"tAn+l << 31/n + —Un—4~ 2 — hFn+,
2" 4 1
Y27r+i ~4t/n+ 3itn_i —-uUn-2 + -t/n_3 = hFn+l)
13T 10 5 1
“9O"E™n+H —5t/n + 5J7n_ i — —Un-2 + ~"Un-3 —~Un-4 = /[iFn+lj

— I/l - &/, +yt/n_i- yf/n 2+ ~C/, -3- j*n-4 + -t/n-5 = fcFn+lL

17.1.4. Other multistep methods

The Nystrom extrapolation formulae are constructed in the same fashion as the
Adams-Bashforth formulae, except for the change in the integration interval:
the starting point is

rtn+H

u™+H) =u(nh & J/t 1

and f(s,u(s)) is replaced by the interpolation polynomial P £ P9 i which takes
the values Fj at tj, n- g+ 17 j ~ n. The Nystrom extrapolation methods are

of the form

91

(17.1.9) Un+l = Vn-I +hy, (YjF)n>
j=0

and the first of these methods are as follows:
un+i = un— + 2hFn,
(17.1.10) 1=un-1+ - (7Fn- 2Fn_i + Fn_2),

I/, +1 = un- B ~ (8Fn - 5F, !+ 4F

The first of these methods is called the midpoint method, and it is much stk
The corresponding implicit construction gives the so-called Milne-Sinip{L
formulae; they are of the form

(17.1.11) =nk 25 (VEF)ntL,
i=0
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and the first of these formulae are

(17.1712) Un{i—Un— = 2ftFn+i,
(17.1113) U\  Un— = 2/iF
17114 CnH ~ LJi+ = g (Fn+i + 4Fn+ Fn_i) .

Formula (17.1.12) is of little interest because it is an implicit Euler method,
with double step, and two staggered grids, namely the even numbered times and
the odd numbered times. Formula (17.1.13) is, again, the midpoint formula,
obtained as a Nystrom formula. Formula (17.1.14) reduces to Simpson 3 inte-
gration formula, should /7 depend only on time. This is the reason for the name
of this class of multistep formulae. Milne also provided the following rule:

(17.115) W+1 —Un-3 = —Fn —4Fn_i + sFn_2),

to be used as a predictor formula in conjunction with eqn (17.1.14). For the use
of predictor formulae, see Subsection 17.5.4.

17.2. Order of multistep methods
17.21. The order is nice and easy for multistep methods

Let ub a real function of class C 1The consistency error in the multistep
scheme (17.1.2) is the quantity
Q Q
e (t,w,h) =~ aju @+ jh) —h~ Fijit @+ jh).
j—0 j=o0

Definition 17.2.1. A multistep method is said to be of order p if the consistency
error vanishes uniformly for all polynomials of degree at most p. A method of
order 1 is said to be consistent.

There are equivalent ways of formulating the definition of the order:
Theorem 17.2.2. The following assertions are equivalent:

@ The multistep scheme (17.1.1) is of order p\

@ The following algebraic relations hold:

17.2.1)

17.22) - < =0

In the relation (17.2.2), for 1 = 1, we use the convention 0 <= 1.
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(iii) For all 0 and for all h* > O, there exists a number C such tha
functions u of class Cv+{, the consistency error is estimated as follows:

\e(t,u,h))\ » Chptl max jlu*p+t) )|, ~ * i, VAN K~
ar.2.3)
(iv) Let p ad a be the polynomials
9 9
ar24 p(x) = "£ajxj, = fax3.
j=0 j=0

Then, in a neighbourhood of x = 0O,

(17.25) p (ex) - xa (ex) = O (zp+l) . 0

Proof, () <=> (ii). If a multistep scheme is of order p, we choose u(x) = xl,
and we find that, for 1 = O, the consistency error is given by

Q
j=0

which must therefore vanish. For | ¢ {1,... ,p}, the consistency error is

\j=0 j=0 /

Conversely, if the algebraic relations (17.2.1) and (17.2.2) hold, then the consis-
tency error for the monomials x|, where O~ 1~ p, vanishes.

@ => (iii)). Let wbea function of class Cp+l. Then the Taylor expansion
of it at £is given by

u(t + hs) = P (hs) +fip+1/(£,$, ft),
where P is the truncated Taylor expansion at t and | is the integral term given
by

l Es, )= —- [ (G- s)pu (t + hs")ds'.
P Jo

Similarly, we have

u(t+ hs) =P (hs) + fip/i &5, ft),

where I\ is given by

fiEe ft)— ’(P‘]E )5,! Jro G - SOHP-1 <<P+D) (t + hs") ds".
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Then, due to the order assumption, we see that the local truncation error is
given by

(9 9

Y *ajl(t,jh,h) - ( ,h
j=o0 j—o

If we choose the number C to be equal to
q / jPrl PN

then expression (17.2.3) is proved.
@iii) => (iv). Take u(t) = ee, then

e O, u,h) = p (eh) - ha (eh),

and the conclusion is immediate.
@v) => (ii). The Taylor expansion of p{ex) —xa(ex) at x = O is given by
q p (. ¥ q p-1 (JX)].X + 0(Xp+l),
p (e>) =
=0 M~ * j=0/0
and the conclusion is immediate. (.
17.22. Order of some multistep methods

The order of the Adams methods is very easy to find. As a consequence of
Theorem 17.2.2, it suffices to calculate p(eh) —ha(h), i.e., the consistency error
in the case of the exponential, to understand the error. The value of p(eh)
is ech - and the value of a(eh) is the primitive of the interpolation
polynomial P(-,h) of t e at the points O,..., (@ —Dh. We know, from
Theorem 4.3.1, that the error committed here is

1726 e -P(t,h)=0(h0q),

when t belongs to the interval [ —21)h,gh]. When we integrate eqn (17.2.6) on
tre interval [@ - Dh,gh\, we find that

ech-e@ M- 1* P G,h)ds =0 (hatl) .

Therefore, the Adams-Bashforth methods on q + 1 levels are of order g.

The same argument also proves that the Adams-Moulton methods on g -f 1
fevels are of order g + 1

A very similar argument shows that the backward differentiation method on
AT 1levels is of order g.
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17.3. Stability of multistep methods

The stability of multistep methods needs a linear algebra preparation, like an
infantry battle needs an artillery preparation—at least at the time of WWI.

17.3.1. Multistep methods can be very unstable

Consider the multistep scheme given by the coefficients
1731 a2=1, ai=1 a0=2 =2, A= -

The reader may check that this scheme is of order 3. We apply this scheme to
the differential equation
u= —,

with the initial data
Uo=1 W =exp(-/i).

The results of the numerical simulation for h = 1/50 and h = 1/100 are shown
in Figure 17.1. The coordinates are clipped so as to make visible the onset of
instability.

Not only does instability start earlier with a smaller time step but it is also
much larger, as can be seen from a plot of the logarithm of the absolute value of
the two numerical solutions for the above two time steps, see Figure 17.2.

Figure 17.1: Numerical solution for the scheme (17.3.1), with a time step of I/*
(solid line) and a time step of 1/100 (dashed line).
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Figure 17.2: The logarithms of the absolute value of the numerical solutions of
the multistep scheme defined by the coefficients (17.3.1), for h = 1/50 (solid line)
and for ft = 1/100 (dashed line).

This behaviour is the trademark of instability.
What is the culprit? If we define

2 - 3ft/4 1+ 2h
at+ /4 = ~ 1+

we may rewrite the numerical scheme in the form

with A(h) being the 2x2 matrix given by

*<r>- (44 e

The matrix A(h) is a continuous function of ft; for ft = O, it is equal to
_4<0)=(°

N its spectrum is {1,-2}. Therefore, by continuity of the spectrum with
respect to the matrix, for small values of ft, the eigenvalues of A(h) are close to
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those of A(0). Practically, this means that the component along the eigenvector
relative to the eigenvalue —2, is multiplied by —2 at each time step, while the
other component keeps the same magnitude. Therefore, any initial inaccuracy is
generally multiplied by 2 at each time step and, thus, we should expect that for
a halved time step, the instability increases twice as fast. This is exactly What
Figure 17.2 tells us.

17.3.2. The stability theory for multistep methods
Stable matrices

We will first study the so-called stable matrices, whose properties are subsumed
in the next lemma:

Lemma 17.3.1. The following three assertions are equivalent for a square complex
matrix A Gmd(c):

() There exists a vector norm N on C* such that, for the corresponding matrix
norm J| =\\non m d (C), a satisfies the estimate

Mlln A~

(i) In md¢c), the non-negative powers of A are bounded uniformly;

(i) The eigenvalues of A are of modulus 1 and the algebraic multiplicity of the
eigenvalues of modulus 1is equal to their geometric multiplicity. In other
words, the corresponding Jordan blocks are of dimension 1

Proof. The implication @) => (i) is immediate.
Assume now (i) holds. The Jordan decomposition of A is of the form

A = P~1JP,

with P being a regular matrix, and J is the Jordan form of A:

/3 (Ai,mi) 0 o \
0 (A7) 0
\' o 0 A, mkys

The Jordan blocks are given by

(0 [ | om] 0\
00 1 eo
J A ) —Xim+ Aim, Nm 00 ) we |
00 0 oo |
I 00 e 0y
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Since the matrices An are uniformly bounded with respect to n, the matrices
in= (PAP~Dn= PAnNnP~1are also uniformly bounded with respect to n. But
Jn is equal to

(39 - o\
0 J(A2,m2)N === 0]
r = . .
V o 0 - J{\Kk,mk)n)
A classical calculation gives
m—
= A"7m+ N C*A" V.
=

As the matrices 7,7V,..., Nm~I are linearly independent, the boundedness im-
mediately implies that all of the Aj are of modulus at most 1 If there is an eigen-
value of modulus 1 for which there is a corresponding Jordan block 3 (\j,rrij) of
dimension at least 2, then the coefficient of Nmj in the n-th power of
isequal to nA”21, which cannot be bounded. Hence, the geometric multiplicity
of the eigenvalues of modulus 1is equal to their algebraic multiplicity.

Assume now that (iii) holds. In order to construct the norm TV, we split
the vector space cd into two complementary subspaces: w\ is the direct sum of
the eigenspaces relative to the eigenvalues of A of modulus 1; V<i is the sum of
the generalized eigenspaces relative to the eigenvalues of A of modulus strictly
inferior to 1L Thus, we may write C* as a direct sum as follows:

c* = Vid V<1

The projections on the factors W and V<i of this direct sum are denoted by P\
and P<I5 respectively.
Let vi,..., ve be a basis of eigenvectors of A in v» and define a norm on w

t t
Xx=YIlbvu Ni (=53 I& =

1= 1=

The spectral radius of the restriction of A to V<i is strictly inferior to 1, and we

know from Lemma 11.1.5 that there exists a vector norm JV<i on V<i such that

fhe restriction of A to this space is of norm strictly inferior to 1. We now define
N(x) = N1(PIxX) + N<1(P<1x),

the result is proved. [

We will need the following characterization of a stable block diagonal matrix:



428 17. LINEAR MULTISTEP SCHEMES

Corollary 17.3.2. Let A be a block diagonal matrix:

(Ai 0 -— 0\
0 A2 e-=m O

U 0 - AkJ

The matrix A is stable if and only if the blocks Ak are stable.

Proof. In view of assertion (iii) of Lemma 17.3.1, the statement is immediate.
O

The case of the companion matrix A given by

0 0 1 -
(17.3.2)

o
o
o
|

1
—© -ai -a2 = —dqg-lj

is of particular importance.
Lemma 17.3.3. Let A be the companion matrix given by eqn (17.3.2), and let P
be its characteristic polynomial given by

%-1

P =xq+ "2 a3X*=
j=o

Then A is a stable matrix if and only if the following two conditions are satisfied:

@ All the roots of P are of modulus at most 1;

(i) The roots of modulus 1 are simple.

Proof. The proof of this result has been the object of Subsection 3.36. We
give here a direct proof, whereby we exhibit a Jordan basis for the companion

matrix.
Let the extended binomial coefficients be as in egn (4.5.9). Define the

polynomial-valued vector V(x,m) by the list of its components:
V/(ar,m) = VZ=1
Then, an elementary calculation gives

{AV (x,m)I = (jjx I, 1

p(m) (W
MK ('!>>))! = ——=N + (-)*- -.
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If Ais a root of P of multiplicity at least m + 1, then P(m\X) vanishes, and we
get the relation
AV Am) - XVAm) = v Am - 1),

due to the binomial identity. Now let {Ai,...,A*} be the list of roots of P,
without repetition; the multiplicity of A*is called m*. The vectors v (x*,m),

0" ra” rax —1, are independent. Suppose that there exists a linear
combination

k mi—1
1733 NN N FImV (A5M) = 0

i=1 m=0

When the product
(A- AIN"1{A - \2)n2 em{A- A
is applied to this relation, the only remaining term is

E£l,74—4

which must vanish and, hence, the scalar £,mi_i must vanish. All the coefficients
£iti, 0~ i ~ mi —2 will also vanish, as can be proved by successively applying
the operators

(A- AlDi (A- X2)m2... (A- ADmk, i=m1-2,...,0,

and an obvious induction on the index of the eigenvalues enables us to see that
the coefficients of the linear combination (17.3.3) must all vanish. Since we have
the right number of vectors, we have produced an explicit Jordan basis for A.
Now that we know that the dimension of the Jordan blocks of A is exactly the
multiplicity of the roots of its characteristic polynomial, the proof is achieved.
O

Stability theorem for multistep schemes

W& can now prove a stability result for multistep schemes, which is completely
analogous in its method to that of Theorem 16.1.6.

Theorem 17.3.4=Let / map continuously Mx Rd to Rd and assume that it is
uniformly Lipschitz continuous with respect to its second argument. Its Lips-
chitz constant will be denoted by L. Let eqgn (17.1.1) define a multistep method
and assume that the polynomial p, defined by eqn (17.2.4), has all of its roots in
the unit disk, while its roots of modulus 1are simple. Then, there exists a num-
“er h* and, for all T > O, there exists a number C such that, ifO< h ~ h* and Un
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and Un are sequences satisfying

Q
y i <LjUn+ = h PjFn+j>
j=0 i=0
(17.34) 9 Q
QLjgn+ = fty] PjFn+j A >
i=0 j=0

then the following estimate holds for g * n ~ T/ft:

(17.35) B, -en~"C ~U i - U\+
\j=0 =0

Proof. Due to hypothesis (17.1.3), we may define

- /.r:
ag og > 3 aqg

Let A be the companion matrix

0 0 1 0
(17.3.6) A
0 0 0 — 1

\-<*o -ai —A2 -

Due to the assumptions of our theorem, it is a stable matrix.
gd x gd matrix

( 0 Id 0 0
0 0 1d -— 0
B =
0 0 0 Id
\ —*Oid ~alid ~ot2id 11

A reordering of the canonical basis of R shows that B is similar to a d x d block
diagonal matrix with constant diagonal block equal to the matrix A. Therefore,
according to Corollary 17.3.2, B is also a stable matrix. We let | =] be a vector
norm on Rad for which the corresponding subordinate matrix norm of B is &
most equal to 1

Define vectors in Rgd as follows:

( un \ ( Un

@17.3.7) Vi = vn =

\Un+q—I/ \Un+q~ly
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Define functions O and O from R x Rad x [0 ft*] to Rod by
(Xl > < \

X— L e, —
Xg—+

0

\XV) Pf (t+ gh,Xq)J
/ 0 \
AL, o) =
@, x,f) o

\Ej=0/2j/(* + jft,*j+i)/
The functions O and  are clearly Lipschitz continuous with respect to their
second argument; their respective Lipschitz constants will be denoted and
hp. Finally, we let rjn be the vector of Rgd whose first q—1 d-dimensional blocks

vanish, the last block being equal to en. With these notations, relations (17.3.4)
can be rewritten as

Fn+l ~ BVn 4°ft0 (" V-1 >ft) 4" ft” {tm Vm ft) ,
Tn+l = BVn + h()(ni Vn+I»ft) 4" /A Ln? ft) 47 H

Ifwe subtract the second of these equalities from the first, if we apply the triangle
inequality, and if we recall that B is of norm at most 1, we find

(1738) WhHi —Vh+117 \Wh —Vh A hLE\Wh+H —Vhti [Fhpe\Wn —Vn\+ [].

This is an example of the application of the discrete form of Gronwall § lemma,
and the conclusion follows. (|

There is a converse to Theorem 17.3.4:
Theorem 17.3.5. If a multistep scheme is stable, then the polynomial p satisfies

the conditions of Theorem 17.3.4. 0
Proof. Consider the two scalar sequences Un and {f, defined by
Q
U=0 Vnt"O, 5>;£€ * =0 Vi> >
j=o

where / is chosen to be equal to 0. We take Uj = 5ij for all i,j = 1,...,q—1
Then, the hypothesis of stability implies that there exists, for all h £]0, ft¥] and
foralli = 0,...,q—21, a number Ci such that the following estimate holds:

\i%\<Ci9 Vn€ {0,...,r/ft}.
This means that, if A is the companion matrix (17.3.2), then

Isbounded independently of i and n and, consequently, An is bounded indepen-
ei% of n. Then Lemmas 17.3.1 and 17.3.3 give the conclusion. [
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17.3.3. Stability of some multistep schemes

The stability of the Adams methods immediately results from the fact that the
polynomial p for an Adams method with g + 1 levels is

P(X) = xq- xq-l,
then it is clear that the criteria of Lemma 17.3.3 are satisfied.

It can be proved that the backward differentiation methods are stable for
qg—1,..., 6, but unstable for g —1

17.4. Convergence of multistep schemes

The convergence theory comes very easily from the stability and order theories.
Theorem 174 L Let eqn (17.1.1) define a consistent and stable multistep scheme
of order p. Let / be a function of class Cp from E x Rd to E, which is Lipschitz
continuous with respect to its second argument. Let uq be given in Ed, let T
be a strictly positive number, and let u be the solution of the system (15.0.1).
Then, if the initialization of the numerical scheme satisfies, for sufficiently small
h, the estimate )

a-i

E lUj-u(jh)\*Ch?,

i=0
the scheme is convergent and of order p in the following sense: there exists a
number C such that

. N
(1741 ormﬂ% T \Uh —u(nh)\ ~ Chp. 0

Proof. Due to the regularity result in Lemma 15.2.8, the solution u of the
system (15.0.1) is of class Cp+1. We let

Un —u (fi) and £i = £(@{Du, /i).
Then, the hypothesis on the order tells us that
|£,,] ~ Chp+1.

Then, estimate (17.4.1) is an immediate consequence of the stability estimate

(17.35).

17.4.1. |Initializing multistep methods

The above analysis stressed the importance of the quality of the initialization-
The initial error is carried throughout the calculation and, therefore, we ne »
to get very good approximations of the first g data. One approach is to ust
Taylor formula expansion to obtain them, together with the calculation o *
derivatives of the solution according to eqn (15.2.27). Another option isto0

a Runge-Kutta method of high order.
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17.4.2. Solving in the implicit case

When Pg does not vanish, each step of a multistep scheme requires the resolution
of

-1
ara2 Qgun+g —Hfigf (nHonUn+q) — A {—QLjUn\j + hfijFn+j) .

j=0
The right-hand side of egqn (17.4.2) is known from the previous steps; let us
call it zn+q. The left-hand side contains the (generally) nonlinear function u h>>
aqu - hfigf(t,u). However, if / is Lipschitz continuous, then, for small h, u \»

(Pgf{tn+qg,u) + zn+q)/aq is a strict contraction, and it will suffice to make a
few iterations of the following form:

ar4as3) ntq = Qg {hpqf )+ zn+q) ?

to obtain a reasonable approximation to the solution of eqn (17.4.2) which is
sought here.

In fact, if we fix a priori the number of iterations of the form (17.4.3), and the
process is used to obtain the first approximation, we get the so-called predictor-
corrector methods which are studied in more detail in Subsection 17.5.4.

175. Exercises from Chapter 17
175=L Short exercises

Exercise 17.5.1. Show that the coefficients 7 * of the Adams-Moulton methods
satisfy the following relations:

=1,
= O’
70 7n-i
-0
n+1 2 7

Hnt: reproduce the formal series derivation of egqns (17.1.8), with appropriate
Ganges,
Exercise 17.5.2. Give the recurrence satisfied by the coefficients Ki in the Nys-

methods (17.1.9) and verify the coefficients appearing in eqn (17.1.10).
&rm is the order of a Nystrom method? Is it stable?

Xarise 17.5.3. Give the recurrence satisfied by the coefficients k* appearing in
(17.1.112); calculate the coefficients up to j = 3. What does this result mean
(r the order of the formula (17.1.14)?
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Exercise 17.5.4=Study the order and the stability of the methods (17.1.14) and
(17.1.15).

17.5.2. An alternative formulation of the order condition

Exercise 17.5.5. Show that, for any consistent multistep method, the polynomial
p has 1 as a root.

Exercise 17.5.6. Let xg be a simple root of p. Show that, as a map from Rz to
itself, the map 2 >»p(z) —ha(z) is of class o 2, and calculate its first derivative
at 2 = xqg. Show that, for sufficiently small ft, this derivative is invertible. Show,
with the help of the implicit function theorem, that, for sufficiently small ft, the
polynomial p —ha has one simple root in a neighbourhood of ~o, and that this
simple root, denoted by x(h) is a function of ft, of class C 2. Calculate x(o).

Exercise 17.5.7. If you know about analytic functions, show that x(h) is an
analytic function of ft in a neighbourhood of ft = O. This fact is not needed to
answer the next questions.

Exercise 17.5.8. Assume that x = 1 is a simple root of p. Show that, for real ft,
x(h) is real.

Exercise 17.5.9. Let r(x, ft) = ~(e*) - ha(ex). Show that, in a neighbourhood of
(1,0), d\r(x, ft) is bounded away from o and that djr(x, ft) is bounded.

Exercise 17.5.10. Show that the method is of order p if and only if
X () =e*+ 0 (fip+l) .

Hint: write a Taylor formula with integral remainder to estimate r(x(h), ft) -
r(e/l,ft), and use characterization (17.2.5) of order and Exercise 17.5.9.

17.5.3. Weak instability

Exercise 17.5.11. Simulate numerically the solution of x = —x, X(0) = 1 with

(@ The Adams-Moulton method with three levels;
(i) The Milne-Simpson method (17.1.14).

Initialize using the exact solution, and test several time steps and several time
intervals. Plot the difference between the computed solution and the exact so-
lution. What do you observe?

Exercise 17.5.12. Consider a stable consistent multistep method such that the
polynomial p has a simple root Xo of absolute value 1 which is not equal to
Let x(h,A) be the simple root of p —After which is in the neighbourhood
Calculate the derivative of x with respect to ft at ft = 0. Such a method is ca
weakly unstable.
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Exercise 17.5.13. In the case of the Milne-Simpson method (17.1.14), calculate
this derivative for xo = —..

Exercise 17.5.14. Consider the differential equation x = —x. Show that, if
4A > o and SRA(o0)/xopl(#o)) *s strictly larger than 9?7 then the error
u(tn) ““Un contains a term of magnitude o (2)exp(nh\cr(xo)/xop,(x0)), which
dominates the solution for sufficiently large nh.

Exercise 17.5.15. Explain the numerical observation of Exercise 17.5.11, in view
of Exercises 17.5.13 and 17.5.14.

17.5.4. Predictor-corrector methods

A predictor-corrector method is defined by the data of two multistep schemes:
an explicit one, with data olj, o ~ j * gand /3, o * j » g—1, and an implicit
one with datact;, O~ j ~ gand /%, O™ j ~ g. For simplicity, and without loss
of generality, we shall assume that aqg = aq = 1 We assume the first of these
multistep methods to be of order p and the second to be of order p.

Given Un,..., Un+g-1, the prediction step gives
01 01
j=o j=o

There can be N ” 1 evaluation and correction steps, given by

j=o j=o
Frntq ~ f ("mtg>Un+q) , “\n+g + M/"g'n+g> Vr—0,— N 1.

The final step can be either

in which case we have a P(EC)NE scheme.

Exercise 17.5.16. Let u be a solution of the differential equation u = f(t,u),
With / satisfying the assumption of the Cauchy-Lipschitz theorem and is of
class Cptllet Un = u(tn) and Fn = f{tn,Un). Define

g-1 g-1

=) Urg~ 7 ajun++ hy
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and for all r » o,
ALCIRUNCLA L) O
UnX\ = = - Un+j + hq_I /3jFntj + hftgP™g-
j-o j=o
Derive the following estimate, for all r ~ O

| A+, - AN+, | =0 (M+"-+D). I

Exercise 17.5.17. We start with the study of the PECE method. Define a block

vector Wn+i by
(K+d\
Un

Wi + 1=
\Jn+g)
Show that the PECE method can be written as
(175.2) Wh+1—LWn 4hG (Wn+i, fa+i> h),

where L and G have the following properties: L is a block matrix of the form
L= @ijld)i™ijrq+2 »
G is a function given in block form as

q+2
GW, t,h)t=Y, KT (*+ vjh, ,
i=i

where the notation (W)j stands for the j-th block of W, and v is a vector of
integers given by

vi=q-1, Vi=j-3, Vj=2,....0+2

finally, G is Lipschitz continuous with respect to its second argument.

Exercise 17.5.18. Extend Corollary 17.3.2 to the case of a block triangular iua
trix. Let Ls:#2 be the matrix constructed from L by chopping off its first two
rows of blocks and its first two columns of blocks. Show that L is a stable matrix
if and only if £3++2 is a stable matrix. Infer that the PECE method is stab e 1
and only if the corrector method is stable.
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Exercise 17.5.19. Assume that the corrector method is stable. Let U, . US, Fn,
and be defined as in Exercise 17.5.16. Define

U h+ag\
Un
wnHq =

\Un+qg-/

Derive the estimate
\Wh+! - LWn - hG(tn+1,Wn+1,h) |= O (h"1).

Exercise 17.5.20. Assume that / is sufficiently differentiable and uniformly Lip-
schitz continuous. Also assume that initially

oi

Y A\u(tj)-Uj\= 0(h*).

j=o0
Use the principle of the proof of convergence of multistep methods (Theorem
17.4.1) to show that the PECE method is of order min(p,p + 1).

Exercise 17.5.21. Using the techniques of Exercise 17.5.20, show that the
P(EC)NE method is of order min(p + N,p).

Exercise 17.5.22. For the PEC method, the Wn will be

K \

<
w ax= Ynrg
un =

\Un+q/

Show that all the above arguments can be translated to this case. Show that
this method is of order min (p,p).

Exercise 17.5.23. Define the vector Wnh+1 for a P(EC)N method. Give the
stability condition and the order of such a method.

1755. One-leg methods

Exercise 17.5.24=l_¢t the data ao, ..., ag and /b, ===Pq define a consistent and
stable method. Show that

gaq+ (@Q—1)og-\ + ... +ai * o,
“nd infer that

A+ ...+ fto 7 0.
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Exercise 17.5.25. Assume, without loss of generality, that = 1 Let

and define a one-leg method by

1
(175.3) V™ jun+j - ht (tnego-
hj:o v -1
Define

An+g - QT Pjun+j-
Pj=0

Prove the identity
W,=£ & prw(w<<)
Jo
Exercise 17.5.26. Define
Un \
Wn+l =
£
\«&; /
Show that the one-leg method (17.5.3) can be written in the form
W = LVn +hG @i jwn+1,h),

and give precisely the matrix L and the function G.

Exercise 17.5.27. Show that L is a stable matrix if and only if the original
multistep method is stable.

Exercise 17.5.28. What can you say about the order of the one-leg method
(17.5.3)?
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Towards partial differential
equations

In this chapter, we present the elementary theory and the numerical analysis of
some partial differential equations. In general, the numerical analysis of partial
differential equations requires much more functional analysis than this book aims
to present. However, for the simplest partial differential equations, we can work
without adding any analytical tools to the ones already used.

We will consider two different kinds of partial differential equations: the
advection and wave equations on one hand and the heat equation on the other
hand. The analysis of the numerical methods and most of the theory will be
performed in one-dimensional space. This is certainly not general; however,
enough significant numerical phenomena can be analysed in these cases to make
the study relevant.

An important notation must be introduced here. As an alternative to the
fractional notation for the partial derivatives

du du du
~di* a? and d~

we will often use the subscripted notations ut, ux, and uX or uj, respectively.

181. The advection equation
1811 The advection equation and its physical origin

The advection equation is the partial differential equation which resembles most
an ordinary differential equation, and its solution requires only ordinary differ-
ential equations. This is the reason why we start with it, with a strong emphasis
Onits physical origin.

The simplest setting for the advection equation is in the full d-dimensional
sPace IR1, with time running from O to infinity or from O to T. As is classical,

439
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we let Vu denote the spatial gradient of a function u, which is defined as
(811

Given a vector field a(x,t) on Rd x M+ or on Rd x [O, T], the advection equation
is

(18.1.2)

The physical origin of this equation is the key for understanding its properties.
Equation (18.1.2) describes the transport of matter by a fluid, or analogous
physical phenomena. Here, a is the velocity, at time t, of a fluid particle situated
at the point x; this is called the Eulerian description of a fluid motion. It is very
important to realize that a can be independent of space and time, and yet the
fluid will move. Indeed, if, at the time t, a fluid particle is located at the point x
and has the velocity a, then, at the time t* ~ t, it must be located at the point
X + a(t® —t) and, unless a vanishes, this means that the particle has actually
moved.

If the velocity depends on time and space, the trajectory of the particle which
was at £0 at the time to can be described in terms of differential equations. If
X(t) is its position at time t, we must have

(18.1.3) X(1) =a(X(t),t).

If a is smooth enough, for t close enough to to, there is a unique solution of egn
(18.1.3) satisfying the initial condition

(18.1.4) X () —Xq.

If we want to emphasize the fact that X depends also on to and xo0, we shall
write it as X(t-,to,x0)- The description of a fluid motion by the motion of the
individual particles of fluid is also called its Lagrangian description.

The mapping X is called the flow of the vector field a.

When a does not depend on the time t and is locally Lipschitz continuous,
the dependency of X on t and to takes the simpler form

1815 X@ ) —Y (@ to,X0),
where Y is the solution of
-Y (t,x0) = a(Y(f,x0))

with the initial condition
Y (t,X0) =
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We check this fact by observing that
Y (t-tO;xO\t=to —

and that t  Y(t - to,xo0) satisfies the differential equation
d
—Y ( t 10;x0) = am

Then, by the uniqueness of the solution of differential equations, we obtain the
relation (18.1.5).

If a depends on time and space and is Lipschitz continuous, then we have the
following relation:

(18.16) X (t2;tu X (tiJto,x0)) = X (t2;to,x0), Vto,ti,t2,x0-

This is proved by observing that the function £ : t h> X(t\ £, X(t\; to, #0))
satisfies the differential equation

£0() = a (ECD,
together with the following initial condition at t\:
£(i) = X (ti;t0,x0).

This means that £ and t X(t;to,xo0) satisfy the same system of ordinary
differential equations and coincide at time t\. Hence, due to the uniqueness of
solutions to systems of ordinary differential equations, they coincide at all times.

An obvious consequence of relation (18.1.6) is that the mapping xq =
X(t;t0,x0) has an inverse, which is given by x i=> X(to;t,x):

@asi7 X (tt0, X (t0;t,x)) = x, X (0;t,X (E10,x0)) = xO0.

If, instead of assuming that a is Lipschitz continuous, we had assumed that
it is only locally Lipschitz continuous, we would still have relation (18.1.6), but
only for the space coordinates xo and the times £, t\, and t2 for which the
different expressions in egn (18.1.6) are defined.

In fluid mechanics, the trajectory of a fluid particle is known as a streamline
and a region limited by streamlines, and possibly by planes of constant time, is
known as a stream tube.

The translation to mathematical language thus says that a streamline is the
In*age of the mapping t X(t;to,x0) and that a stream tube is the region
{X{t;t0,x0) = € [t\,tZ],X0 £ U}, with U a region of space. It is limited by the
Planes t = t\ and t = t2, and by the streamlines through (£os#0)?where xo runs

through the boundary of the region U. All of these objects are represented in
Hgure 18.1.
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18.1.2. Solving the advection equation

Suppose that the fluid transports a colorant, which has a certain initial density
uo(x) at time J- For instance, we could stain the fluid with fluoresceine, in
order to track streamlines, and then add a very small quantity of fluid in the
neighbourhood of some point, so that the density of colorant vanishes away from
that point.

As a first approximation, we may assume that there is no diffusion. This
assumption means that the density of colorant is constant along the streamlines,
provided that there are no sources of colorant in the domain under consideration.
Assuming that u is a function of class C1 of x GRd and t € E, we differentiate
the function 1+=>u(X(t; to,x0),t) as follows:

n

— (u (X (t;t0,x0) ,1))

= (4;10,x0)0, x0) + ~ (X,®
=1 3
= (ut+a- Vu) X & X0,#0),t).

Therefore, it is equivalent for a function of class C 1 to be constant along stream
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lines and to satisfy the relation
Wm+a<vu=0.

In particular, if the initial condition at time to is given by a function uo over Rd,
we must have, for all t, to, and xq, the following relation:

(1818 u (X (t tO,xo0) ,t) = tto (z0).

Since we know how to invert xo  X(t;to,x0), due to the relations (18.1.7), we
transform egn (18.1.8) into

(1819 u(x,t) = uo(X (t0;t,x)).

It is important to observe that the relation (18.1.9) makes sense even if uO is
not of class C 1; then, we say that we have a weak or generalized solution of egn
(18.1.2), with / = O. This is, indeed, a solution in the sense of distributions or
a generalized solution. The meaning of these words is analysed in Subsection
1858.

When a is a constant vector, the solution (18.1.9) has the following very
simple form:

(18.1.10) ut =uo (x- at).

Let us solve now eqn (18.1.2) for any continuous function /, when the initial
data are of class C 1.

Theorem 18.1.1. Let a be a vector field over Rd x [0,T] which is uniformly Lip-
schitz continuous with respect to the first variable. Assume that the function /
is continuous over Rd x [0, T] and that the initial data uOis continuously differ-
entiable over Rd. Then, there exists a unique solution to eqn (18.1.2) satisfying
the initial condition

U0 =u (x), x6Rd,
and it is given by
(18111 u(x, t) = uo (X (to;t,x)) + thof(X(s;t,x) ,S)ds. ]
Proof. It is immediate that, if eqn (18.1.2) holds, then
(18112 - (U X (10,x0),*))*=/ (X (t; t0,x0) ,t)

and, therefore, by a direct integration,

u (X (t; t0,x0),t) = uo {xo0) + / f {X (8;10,x0),s) ds.
Jto
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Due to the change of variable x = X(t;to,x0), whose inverse is given by x0 =
X(to;t,x) (see the relation (18.1.7)), and to the identity (18.1.6) applied at
the times f>s, and t, we finally obtain expression (18.1.11). The uniqueness is
immediate: if u and v are solutions of egn (18.1.2) with the same initial condition
uo, then u - v is a solution of eqgn (18.1.2) with vanishing right-hand side and
initial condition; it satisfies the relation

-((u-v) (X ( t; 0,

with vanishing initial condition, which immediately implies that u —v vanishes
on every streamline. —

Observe that the expression (18.1.11) makes sense even if / and uo satisfy

weaker regularity hypotheses.

18.1.3. More general advection equations and systems

The formula (18.1.11) enables us also to solve semilinear advection equations in
d variables and hyperbolic systems in 1 variable.
Replace, indeed, f{x,t) in the right-hand side of eqn (18.1.2) by a function
f(x,t,u). Then, egn (18.1.12) becomes
—UX @ x0),t) —FXE sz0)) "X  *9?0)?

which is simply an ordinary differential equation whose unknown function
v(t) = u(X(t;t0,x0),t) satisfies

v(t) = f{v(D),t).

Consider now the following hyperbolic system of n linear equations in one
dimension:

where M is an n x n matrix, which is continuously differentiable with respect to
X, t and has the following strict hyperbolicity property:

M has n distinct real eigenvalues A (x,t), 17 j ~ n, Vxt

Then, it is possible to find n eigenvectors rj(x,t), for 1~ j ~ n, of M(X,t) and
n eigenvectors lj(x,t), for 1~ j ~ n, of Mr (X,t) such that

Mvj —Xjvi, 1j M = Alj , 1j vk —Sjki

and the vectors rj and |j are continuously differentiable with respect to X and t
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This fact is proved in Subsection 18.5.1.
Now decompose the unknown vector U as

n

UX,) —£ Vi 9rj xt).
3

With this notation, egn (18.1.13) now becomes, after substitution of the new
expression for u and multiplication on the left by /J,

n
(18.1.1% vjtt + XjVjtX M+ MrkxX)\k = 1j
f=X

Thus, we have obtained a system which is essentially composed of equations of
the type (18.1.2), coupled via terms of order Q.

Since the terms of order O already contain a dependency with respect to w, it
makes sense to assume also that / depends on u. Therefore, it will be a function
f(x,t,u).

In order to look for a solution, we reduce eqn (18.1.14) to an integral equation,
with the help of expression (18.1.11). Denoting by Sj(t;to) the transformation
given by

( K to) U) () = u

with Xj the flow associated to rj, we may rewrite eqn (18.1.14) as

MEY =SV = o)+ [ Sj ;99
Jto

where the functions gj are defined as

9 s,V) = 1j 66OT/ (%s,V) - 1j (% OT + Mrkx) (x, ) vk (x, t) .
k=1

Ifthe mappings gj are Lipschitz continuous in u, uniformly with respect to X GR
and to t G [Q, T], then the method of proof of existence for the Cauchy-Lipschitz
theorem by Picard iterations works. For instance, in the functional space ® (R)d
<bounded continuous functions on Rd, the mapping

Lipschitz continuous from C=[R) to itself.

Of course, the solution obtained by this process is a generalized solution;
*e exact significance of this term is explained for the advection equation in
Subsection 18.5.8. | hope that, at this stage, the reader will agree to believe me,
Orelse, refer to more advanced work, such as [26].
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18.2. Numerics for the advection equation
18.2.1. Definition of some good and some bad schemes

Since we have an explicit expression (18.1.11) for the solution of egn (18.1.2),
the reader may well wonder at this point why it is necessary to find a numerical
method for solving egn (18.1.2). After all, we just have to find the stream-
lines, which are also called characteristics, and apply on these characteristics our
favourite quadrature formula to find an approximation of expression (18.1.11).

This is, indeed, the essence of the so-called method of characteristics, which
remains a method of choice for solving the advection equation.

But, if we wish to solve a slightly more complicated problem, such as the
system (18.1.13), other options, rather than the method of characteristics, are
reasonable, and even more so in higher spatial dimensions, where they become
necessary. The wave equation or the elasticity system do not reduce to cou-
pled advection equations, though they share propagation properties with the
advection equation. For them, there is no simple equivalent of the method of
characteristics.

The advection equation should be considered as a toy system on which it is
useful to test ideas before applying them to more complicated situations. This is
the reason why we study the finite difference methods used for the approximation
of the very simple eqn (18.1.2). Even in dimension 1and with a constant velocity
a, we shall see that there is food for thought.

The simplest ideas can be used to construct a discrete approximation of

(18.2.1) ut+ aux = 0.

We replace ut and ux by finite differences and the variables x and t by discrete
variables. According to a traditional notation, we let Ujlbe an approximation
of u(jSx,n5t).

To fix ideas, we let a be a strictly positive number. The results for a negative
are subsequently deduced by transforming x into —x, as can be immediately
seen.

However, we have multiple choices; to keep the computational effort at a
minimum, we settle for an explicit scheme in time. This means that we replace
ut by

u?+1- u? -
5t

But, what about the space difference? We may take

u? ~""-i
6x z

Ui - O
Sx

(182.2)

(18.2.3)
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or

G- O
I +1 -1
(18.24 o&s

and each of these choices will lead to different numerical schemes with widely
differing properties.

In order to have a first approach to the properties of these schemes, we
introduce the notion of a stencil. It is the set of points ((j1—j)Sx, (n* —n)St)
such that are used in the computation of U™*1. Thus, for instance, the
scheme corresponding to the choice (18.2.2) is written as

182 t/;+L g2 (LU')_
+ ’ —

(18235) St ex =7
with stencil made out of the points (0,0), (—&r,0), and (O, &). This scheme is
called the upwind scheme, since the position of the discretization point, used
for differentiating spatially, is translated against the wind: a is the velocity of
the flow, understood as the flow of a fluid, and we go up on the streamlines to
construct the finite difference.

The scheme corresponding to the choice (18.2.3) is the downwind scheme. It
is written as

Up-1- uf u?+i-u?
+

(1826) It & si
and its stencil is made out of the points (0,0), 0). and (O,St). Finally, the
centered scheme, corresponding to the choice (18.2.4), is written as
w827 Jjn+l _ jjn L qum ~UU
' St 2 Sx 1

and its stencil is made out of the points (—&r,0), (8%, 0), and (0,").

We already know that the solution of eqn (18.2.1) is given by the relation
(18.1.10), with u taken to be equal to ug{x) at the initial time t= Q.

Therefore, if our initial data vanish outside the interval [—1,1], at time t,
and the right-hand side / vanishes, the solution must vanish outside the interval
[[1+ at, 1+ at]. If we approximate our initial data by U(j,0) which vanishes
for \)\Sx ~ 1, then we can use the stencil to understand where the numerical
approximation will necessarily vanish and where it might be different from O. It
will be reasonable to take a vanishing right-hand side in either scheme (18.2.5),
(1826) or (18.2.7).

Graphical arguments will impose necessary conditions on the type of scheme
a*d on the numerical parameters. If these conditions are not satisfied, there is
n=hope whatsoever of convergence.

An important number is the CFL (Courant-Friedrichs-Lewy) number, de-
fired as
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Figure 18.2. Upwind numerical scheme (18.2.5), with aSt/Sx > 1 The black
circles denote the points where the numerical approximation can be nonzero and
the shaded region is that where the exact solution can be nonzero. The stencil

is indicated by white squares.

Figure 18.3: Upwind numerical scheme (18.2.5), with aSt/Sx " 1, using the same
graphical conventions as in Figure 18.2.
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Figure 18.4: Downwind numerical scheme (18.2.6), with aSt/8x = 1, using the
same graphical conventions as in Figure 18.2.

Figure 18.5: Central numerical scheme (18.2.7), with aSt/Sx = 1, using the same
graphical conventions as in Figure 18.2.
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For the upwind numerical scheme (18.2.5), if A > 1, then the numerical
method cannot converge. We see on Figure 18.2 that the region where the
solution can be different from zero is not completely included in the region where
the numerical solution can be different from O. On the other hand, if A" 1, as
in Figure 18.3, we see that we do not run into the same difficulty, and we will
show below that this condition is indeed sufficient for convergence.

If we now take the numerical scheme (18.2.6), the same graphical consider-
ations as above show that there is no situation in which this numerical scheme
can ever be convergent. Indeed, the numerical solution propagates in the op-
posite direction to what we expected, see Figure 184. Therefore, downwind
discretization leads to disastrous results, but they are not difficult to recognize
numerically, as is shown in Exercise 18.5.9.

In the last case, i.e. scheme (18.2.7), the graphical representation of Figure
18.5shows that it is necessary that Abe at most equal to 1. We will see below that
this is a very mediocre numerical scheme, since this condition is not sufficient.
However, we need more analysis to understand this phenomenon.

18.2.2. Convergence of the scheme (18.2.6)

The proof of the convergence of the scheme (18.2.6) goes through the same logical
steps as the proof of the convergence of the one-step and multistep schemes for
ordinary differential equations, i.e., consistency plus stability imply convergence.
The new feature here is that we need a functional space, and this is the reason
why the numerical analysis of partial differential equations is more complicated
than the numerical analysis of ordinary differential equations. Moreover, the
convergence is usually proved upon assuming that the initial data are smoother
than what is needed for the existence of solutions.

We choose to take an initial condition uqg of class C 1, with Lipschitz-contin-
uous first derivative. We also choose a Lipschitz-continuous and C 1 right-hand
side /. Then, the function u(x,t) given by the relation (18.1.11) becomes, in
this particular case,

(182.8) u K, = ug (x —at) + lf (x —at + as,s)ds.

Under our smoothness assumption on ug and /, it is clear that u is of class Cl
and satisfies the partial differential eqn (18.2.1) and the initial condition

u(*,0) = no.
Let us first state and prove consistency:

Lemma 18.2.1. Let ug be of class C 1, with Lipschitz-continuous first derivative,
and let / be Lipschitz continuous over R x [0,T]. The local consistency error

defined by
n_ u@Sx,(n+ I)St) —u (Sx,nSt) u(Sx,nst) —u ( - DSx,nSQ
£ = It+a TX



182. NUMERICS FOR THE ADVECTION EQUATION 451

satisfies the estimate
(1829 e\ » C{6x + 6t),
where C depends only on the Lipschitz constants of uOand /.

Proof. Let Lq be the Lipschitz constant of U0 and let L\ be the Lipschitz
constant of /. By Taylor expansions, we have the following estimates:

8x2
Juw - at) - ugl —Sx —at) - &U'0(x - at) |[* LOT

az2St2

\ug (x —at —aSt) —uO(x —at) 4-aStu'0(x - at) | LO 5 =

and similarly
f (x- at - aSt fas,s)ds - 8tf x,f) ~ al'’\ ~ ,

\\J if (x—at - aSt+ as,s) - f (x- at+s,s))ds " aL\St,
0

/ (/ (x—at+ as,s) —f (x—Sx - at+ as,s))ds ™ LiTfe.
Uo

If we summarize all of these estimates, we immediately obtain the relation
(18.29). —

We now turn to the stability statement:

Lemma 18.2.2. Assume that

18.2.10 N = .

C ) 0 % =A<l

Let G(n,j) be a bounded sequence indexed by 6 Z and n 6 [O.T/(it], and let
M be the sequence defined recursively from h W9 by

W?+1l wn Wn_ W«-I|

(18211) 3 3\, 3 3 rrn
— St—---- +a-——- Si—— ~ Gf

There exists a constant C such that, for all St and Sx satisfying the inequality
(18.2,10), the following estimate holds:

m—

(18212) sup \wp\ N QUp\WRA+ ]T StsuP WF\ ). Vm¢€
n=0
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Proof. We write eqn (18.2.11) as
W73 = (1- AWF + A +
The condition (18.2.10) is equivalent to
nL-A+KHN" L
and hence, by the triangle inequality,

sup \W A XAN sup \WN\ + Stsup |G?],
i i i

which immediately implies the estimate (18.2.12), with C —1 [

Remark 18.2.3. Let us give an articulate definition of the concept of stability. A
scheme, depending on a time step St and a space step Sx, associates to discrete
data at time t, depending on Sx, a set of new data at the later time t + St
These data belong to a normed space B(Sx) and, if we consider a linear partial
differential equation with time-independent coefficients and vanishing right-hand
side, we will usually describe the transition from data at time t to data at time
t + St by a linear operator P(Sx,St), from B(Sx) to itself, which is called a
propagator. The requirement of stability can now be phrased as the following
condition: there exist constants C\ and Cz such that the following relation holds:

(18.2.13) \\P(Sx,8t)n\B Cyec *nSt

for all Sx, for all St belonging to an interval starting at O and ending possibly
at a value dependent on Sx, and for all integers n. The norm in the relation
(18.2.13) is the operator norm.

I would like to emphasize a very important fact: the constants C\ and C2
must not depend on St, Sx, and n for stability to be true. We say that a numerical
scheme is conditionally stable if we need to limit St as a function of Sx for the
relation (18.2.13) to hold. We say that we have unconditional stability if the
upper limit of the interval where we take our St does not depend on Sx.

Of course, the condition \\P(Sx, B|| * \-\-C=t implies the relation (18.2.13).
However, condition (18.2.13) is stated in order to treat the situation where the
linear operator U(Sx, St) does not satisfy nice conditions, but, nevertheless, the
product of n copies of the propagator can still be controlled.

How would we modify condition (18.2.13) to treat the time-dependent situa-
tion? Then, instead of having a time-independent transition from data at time t
to data at time t -f St, we have a time-dependent transition P(t,Sx,St), and we
state an analogous property, this time for a time-ordered product of transition
operators. We must also allow for variable time steps.

However, such a situation cannot be treated conveniently in ageneral setting-
To obtain any substantial results, we need to specify which partial differen
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equation or system we are interested in, since the results depend on the details
of the data and coefficients and, in particular, on their regularity.

The last observation is relative to the space X(Sx). When we consider an
advection equation in R, a natural space for finite difference approximation is
£2°@), the space of bounded sequences indexed by Z. However, there are other
options: we could also use the space £2(2) of square-integrable sequences; we shall
see below that the centered scheme (18.2.7) is unstable in £ but stable in
£2(2). Therefore, one should keep in mind that functional spaces are tools which
enable us to measure and understand the behaviour of mathematical objects.
Using different functional spaces means asking different questions and, quite
often, also getting different answers.

We now give a proof of convergence, which includes an order for the approx-
imation error:

Theorem 18.2.4=Assume that ug and / have the regularity described in Lemma
182.1 and that the initial data and the right-hand side satisfy

sup IU? - u0OGSx)I~ CSx, su sup IF? - f Sx,nSt) 1~ C (St+ Sx).
up (39) OBy q )1~ C (St+5x)

Assume, moreover, that the space step Sx and the time step St satisfy the CFL
condition:
ast N Sx.

Then, there exists a number C* for which the following estimate holds:

(18214  sup UM—u (jSx,nSt) |~ C A(St+ Sx), Vj GZ, Vn G [0,T/"].
J

In particular, the numerical scheme (18.2.5) is convergent. 0
Proof. It suffices to define
WJ1= Uj >u ({Sx,nSt)

and
G>=F? +e””

Then, the conclusion (18.2.14) is an immediate consequence of Lemmas 18.2.1
and 18.2.2. —

How do we see that the scheme (18.2.7) is mediocre? First, a simple argument
shows that stability in the supremum norm, i.e., in =<, is not very likely: if
we define U= by

-1 ifj -1;
1 ifj=0orj 1L
0 otherwise,
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then
sup! /¥ = 1+ A
[ I

This means that for the scheme to be stable it would be sufficient to have

(04

However, this condition implies that Sx is bounded away from O. Of course, this
is not sufficient to conclude instability, and so we seek sequences Uj which are
eigenfunctions of the propagator P(5x,8t). Trying trigonometric functions, we
see that, if £is an arbitrary real number and

uj = sin (JE6X),
then a simple computation gives
Uj = (1 + Acos (E&)) sin E8X),

and, therefore,
1= @+ Acos (ES))nsin (JEBX) .

Therefore,

[IP($X,£<)"|UQ0Q) ™ sup |1+ Acos (E&)In = @+ A)n.
vV vn zeu

This proves that the scheme (18.2.7) is unstable in
However, it is stable in t2(2) under the CFL condition

8t~ CSx2,

as proved in Exercise 18.5.12.
Several cures are possible for the defects of the scheme (18.2.7). First, we
may replace it by the Lax-Friedrichs scheme

Ci"-,+vf+l 0
3 2 25x

or by the Lax-Wendroff scheme

(182.15)

(182.16) u? +1 - Uj U?+1-U?-1

Both of the schemes (18.2.15) and (18.2.16) are stable in £7¢) and in t2*)*
provided that the CFL number is at most equal to 1, and their convergence
can be proved along the lines of the proof of Theorem 18.2.4. These questions
are taken up in Subsections 18.5.4 and 18.5.5, which use a very straightforwar
analysis.
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Another possibility is to use ideas in multistep schemes for ordinary differen-
tial equations; thus we get the leap-frog scheme given by

jinf1_ jyn— U+l - J

(18.2.17) )
m + q - W 4-1=0 -

This time it is necessary to use the t2 theory to prove the convergence of this

scheme. Stability is studied in Subsection 18.5.6 and the convergence is left for

a more advanced course, where Sobolev spaces and distributions can be freely

used.

18.3. The wave equation in one dimension

The wave equation is defined as

1d2u dau _

(183.) N2

It is quite interesting to derive it from a model of springs and masses; historically,
this derivation goes back to the eighteenth century.

In one-dimensional space, the wave equation can be understood as a system
of advection equations, about which we know everything. However, here we
shall also be interested in boundary conditions. The numerical analysis would
be quite straightforward if we had the appropriate functional tools. We will
satisfy ourselves with proving the £2stability of one standard numerical scheme.
The convergence and consistency results should be left for more advanced books,
since they use more functional analysis. However, the reader is strongly advised
to simulate numerically the solution of the wave equation so as to get a feeling
for the phenomena that take place.

18.3.1. Masses and springs

We shall approximate a strongly stretched string by a discrete mechanical system.
We consider N material points, each of mass m/N, which are separated by
identical springs of length at rest Lg/(N + 1). The end springs are fixed at the
points of abscissa Oand L > Lgq.

It is assumed that the small springs are made of the same linear homogeneous
material. In other words, we could take an homogeneous spring of length Lq at
rest and cut it into N + 1 identical pieces. The assumption of linearity means
that, when subjected to a force /, a spring of length £ at rest stretches by an
amount 5i proportional to /. On the other hand, the extension is also inversely
Proportional to the length at rest. Suppose that we apply a force / to a spring of
length 280 at rest. The tension is constant along the spring, but the first section
<flength to at rest is stretched by S£/2, and so is the second section. Here it
Is the homogeneity assumption which imposes that the stretching is uniformly
distributed along the length of the spring.
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Therefore, the stiffness of a spring is inversely proportional to its length,
which is a very intuitive statement. It is clearly more difficult to extend by a
given length a very short spring than a very long spring of the same material.
Thus, our small springs have stiffness

Kk (N -hi)/To,

with the number k describing the physical properties of the spring.
Assume that the mass indexed by j has coordinates (\jL/(N+D)]+#j, vij, 4),
and that the extremities of the system are tied at the points with coordinates

(0,0,0) = (£0,2/0%2q) and (T,0,0) = (L+ xn+i,un+i,zn+i).

It will be convenient to use the notation

To

8l=1-i
N+ 1° 1Q

N+1~ 10

The elastic potential energy of the deformed system of springs is

V(XY,2) =2 +17 [(xi+l - Xj + D2
0 j=o

2 2\1/2 12 .
+ M- V) + 1~-2) J N,

since the length of the deformed spring between mass j and mass + 1is

/. . 2 . 2 Lo L 2\1/2 .
yXj+1 ~xj +f) + @+ ~ V) + (@Zj+i - zj) J i

with appropriate modifications for the end springs. The Kinetic energy of the
system is given by

T ( =" & +3$ + *?) =
i=i

The equations of motion are

m d X

m d Tr. X

m ... d

- 2i + d—V(X,y,,S<= 0. H

In this generality, we obtain a highly nonlinear problem about which we &
cannot say much. However, if we are interested in the small vibrations close to
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equilibrium, we shall be content with an approximation to the potential energy
of order at most 2 Thus, we have the following expansion:

/ . 2 2 L AN1R2
ACFJEL - X + )+U+L ~Dj) +zj+ 1- -Co
SE
= 6 2S£ (Xj+i —Xj) -~ (xj-fi —Xj) H — N2fj-+i ~ Vj) (%j+ 1— %)) ~
+ higher-order terms.

Therefore, the potential energy, under the hypothesis of small deformations, can
be written as

k (N -fl) , SEt 2,~ /7 A
~~21 6— +7 w+i-yj) +j(*i+i-zi)y

In order to make our equations more palatable, we introduce other physical
quantities. The linear density of mass is denoted by p, so that the total mass
of the spring is pL. Observe that we have taken the stretched length as the
reference. The tension per unit length of the spring at equilibrium is /o given by

k(L- Lo)
fe -~ Lo

With these notations, the equations of motion for small vibrations can now be
written as follows:

(183.29) —Xj - 7 + N (L <+ *a-1) ==
(183.20) ¥ 7 )Ofo+i <% )= ==
(1832 Nz - @VHLD/0 2+ ~ + = 0.

What is interesting is that the above three equations are decoupled; egns (18.3.2b)
and (18.3.2¢) are identical, whilst eqn (18.3.23) is different. Of course, since we
dropped all of the annoying nonlinear coupling terms, we may have lost the most
interesting features of the problem; but one has to start somewhere...

If we multiply egns (18.3.2) by n/L, we recognize that the expression

(xj+i - Xj+Xj-DN (N + D)
L2
and its analogues are very close to a central finite difference of the second order.
Therefore, as N tends to infinity, the formal limit of eqns (18.3.2) is
dx kL d2x _ d2y d2y
p& O, ~ ==

e equation for 2 being identical to the equation for Here s is the spatial
c=ordinate. Moreover, we expect x,y,and z to vanish for s = Oand s = L.
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18.3.2. Elementary facts about the wave equation

The Cauchy problem for the wave equation in R consists of solving egn (18.3.2)
together with the initial conditions

(183.3) uX,0)=u ), utx,0 =ui((x), xel.
It turns out that there is a completely explicit solution, due to D Alembert.

Define a new variable v by

(18.3.9) Vv = EUt +ux.

We see immediately that v satisfies the equation

(18.35) c vt _

This means that the wave equation in one dimension reduces to two successive
advection equations. We integrate egn (18.3.5), using the relation (18.1.11), and
we find

(a836) v{xH=U ’\XC+ + UOX (X + ct) = c} f (x+ c(t—s) ,5) ds.
0

Then, we integrate eqn (18.3.4), which gives

(18.3.7) u®t = ug(x—ct) + cJ/ v (x+c((—t),s)ds.
o

We substitute into the relation (18.3.7) the value of v given by eqn (18.3.6). we
observe that

WX —ct) +c U\ G+ s —cty + Wo,x (X + 2cs -ct)) ds
a
Ug(x —ct) Flo (x+ct) ~ § et

— ul dy.
2¢ Ix-¢et ey

Similarly, the expression involving / is given by
c2/ / / (x+c(@s—t—r),r)drds
Jo Jo
and, after the change of variable y = x -f ¢(2s —t —r), this expression becomes
rt rX-tCS

0 f(y,s)dyds.

~JO JIx—cs
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Finally, the solution of egn (18.3.1), together with the Cauchy data (18.3.3), is
given by

weo O ey &gy

C t fX+CS

| f(y,s)dyds.
Jo "JX

(18.3.8)

Formula (18.3.8) has been obtained under the assumption that / is continu-
ous, U\ is of class C1, and uo is of class C2, and it produces a classical solution,
i.e., a solution of class C2 of the wave equation. However, formula (18.3.8)
makes sense under much milder assumptions. But, in that case, it does not give
a classical solution, but a generalized solution.

If the right-hand side / of egn (18.3.1) vanishes, the solution is the superpo-
sition of two functions g(x —ct) and h(x 4-ct), whose values can be found from
the initial conditions, see Exercise 18.5.25.

When the data have symmetries, these symmetries are transmitted to the
solution. Thus, if the data are even, odd or periodic with respect to space,
then the solution has the same properties. These facts are proved in Exercises
185.26 and 18.5.27. These symmetries enable us to solve the wave equation on
an interval, with homogeneous Dirichlet boundary conditions (Exercise 18.5.28)
or Neumann boundary conditions (Exercise 18.5.29).

The notion of domain of influence or of dependence is deeper and more im-
portant. The solution at the point (x,£) depends only on the data in the set
{’$ :s » t—W- y\c}, called the cone of dependence of the point (x,t).
Conversely, the data at (X, t) can influence only the solution at points in the set
{(7/,s) :s ™ t-f |g- y\Vc} and this set is called the cone of influence.

These two properties make very precise the fact of propagation in the wave
equation: the effect of a disturbance at (x,t) cannot be felt at {y,s) unless
s M t+ W- Y\, i.e., such a disturbance does not propagate faster than c.
However, in dimension 1, this effect may linger for all time. If we lived in spatial
dimension 1, it would be quite inefficient to transmit information by sound,
since it would not be very well localized. It is easy to experience this effect in
our three-dimensional world, for example, talk in a long corridor with hard walls,
such as a mine gallery, or a large metal pipe, and listen to the sound!

18.3.3. A numerical scheme for the wave equation

We consider the following elementary numerical scheme for the wave equation:

1/741 - 2UJ+ U?-1 UMl 207" +_
(1839) Fi
st2 5x2

We will prove the following stability result:
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Theorem 18.3.1. Ifc8t/Sx ~ 1, the scheme (18.3.9) is stable in the 12norm. More
precisely, if the right-hand side Fjlvanishes and, for all a G ]O,1[, there exists
a constant C such that, for all St and Sx satisfying the relation cSt/Sx ~ 1- q?
then

sup £ |t/;i2 Sx N € (|[/ri2+ \uz\2) Sx.

n"2jez jez

Proof. The proof of this result uses the following fact: if a = (aj)j£Z belongs
to "2(2), i.e.,

ni=(eki2') <o0>
then we can define the Fourier transform of the sequence a by

(18.3.10) d(0 = a j™ 2nKSx Sx.
jez

Definition (18.3.10) is obviously a discretization of the Fourier transform of a
function. However, we need only the theory developed in Chapter 7 and a
change of scale to obtain the inversion formula

rSx

aj=/ 6 (0
JJO(

A2injE6X dE.

Moreover, after a change of scale, the Parseval identity (7.1.16) can be rewritten
as

rl/Sx
(18.3.11) J2\aj\2Sx= /  |d@®)2dE.
i€ Z J<

Another property will be important: the Fourier transform of the sequence 6,
defined by bj = aJ+1, is readily computed as

57N ie-2injtSx6x = Y, ajtie- ARMHDN 6xe2r+6*
jez jez
= a(0 e2" 6x.

We apply a Fourier transform in j to the scheme (18.3.9), defining Un(0 tO
the Fourier transform of (U?)j:

1 j/n+1 _ 2un+ Un~I €A x+ e~ddi" x - 2Un®

(183.12) c2 St2 Sx2

We let
2c25t2 (1 —cos (2ZhES))

w(0 = Sx2
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With this notation, we can rewrite relation (18.3.12) in the matrix form

fuUnt\(2-u -1W
\Y; uny 1 0 wWwvVv

Then, if we can prove that all the positive powers of the matrix

m<>=(27 @ d)

are bounded, our result is a consequence of the identity (18.3.11). The charac-
teristic polynomial of this matrix is

X2-X @-u)+1

and its roots, the eigenvalues of M, are of modulus at most 1 for all f, if and
only if 4 4, as the reader can check. Then, they are the conjugate complex
numbers A+ and A_ given by

Ar= 1AM GEN/(@G-

However, we cannot conclude from the bound on the powers of At that the
powers of M are bounded, since M is not a normal matrix.
The powers of M are given by

It is clear now that, if 1—c6t/Sx is bounded away from O, then M n is bounded
independently of n ~ 1and of £G M This concludes the proof of the theorem.
|

18.4. The heat equation and separation of variables

In this last section, we are going to apply a number of the techniques already de-
scribed to the solution of another partial differential equation, the heat equation.
Furthermore, we are going to show how to approximate it numerically.

184.1. Derivation of the heat equation

We begin with a little physics to understand how the heat equation is derived.
The Theorie Analytique de la Chaleur by J. Fourier (1822) [3] is the classic
Work in this area. The so-called Fourier series was known of by Daniel Bernoulli
aud by Euler, but the Fourier integral is really due to Fourier, contrary to the
wual rule that new results and concepts rarely carry the name of their author.
Nevertheless, Cauchy made considerable contributions to Fourier theory, to the



462 18. TOWARDS PARTIAL DIFFERENTIAL EQUATIONS

point that, if Fourier was the first to announce the inversion formula which bears
his name, then Cauchy published its proof before Fourier.

We begin by the modelling phase which is inherent in the understanding of
every physical problem. To give the explanations which follow, I am aided on
the one hand by Fourier § book and on the other hand by Thermodynamique by
G. Bruhat [11].

When we put two solid bodies, at temperatures ©i and ©2z, in contact for
a long time within an isolated enclosure their temperatures tend to equilibrate.
If the two bodies are of the same mass and the same composition, the final
temperature is half the sum of the initial temperatures. If the compositions are
identical but the masses mi and mz are different, the final temperature is

mi®©i + m2@2

® final — mi + m2

If the compositions are different, the final temperature is

miCi®©! + m2Cze2

Gfinal —  ici + mac2

The numbers C\ and C2 are the specific heats of the two bodies. They
are physical characteristics of the bodies and they describe the capacity of the
bodies to store energy in the form of heat. The measurements for solids are made
at constant pressure so that these are specific heats at constant pressure. By
definition, the quantity of heat stored in a body, of specific heat C and of mass
m, which changes temperature from O to the temperature O + A© is mCAO.
This is a positive or negative quantity which has the dimensions of energy.

We move on now to the notion of heat flux. Imagine a homogeneous body
which fills the interval between two infinite parallel planes Pi and P2 separated
by unit distance. These planes are maintained at the temperatures ©i and ©z,
respectively. If the body is in a steady state, its temperature is constant in each
of the planes parallel to the boundary planes and it is an affine function of the
distance x from the boundary plane Pi, as shown in Figure 18.6

The quantity of heat which crosses any plane parallel to P\ and of unit area
during one second is independent of the distance of this surface from Pi- K
©i —o2 is one degree and the planes are separated by unit distance then this
heat flux is equal to a certain constant K which depends on the chosen units.
Consequently, if S denotes the area of the surface across which the heat passes
and the two planes are separated by distance L, the quantity of heat passing
through the surface in time At is

KAt (o1 - 02)5
L

Suppose now that the distribution of temperature in the slice situated be
tween the two planes is not steady, but is, nevertheless, constant in each Prane
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Figure 18.6: Parallel planes having distinct temperatures and a prism of unit
cross-sectional area.

parallel to P\. Also, suppose that the plane is cut into J slices parallel to Pi,
each of thickness h = Ax. As the temperature is constant in the planes parallel
to Pi, there is no heat flux, except in the x-direction. We can, therefore, consider
a prismatic domain D of unit cross-sectional area and with sides perpendicular
to Pi and P2. There is no heat flux across the sides of D. In each slice numbered
j, and for each jh ~ x ~ (j + Dh, we are going to consider the temperature
to be the constant value Oj . The quantity of heat coming from slice j + 1and
entering slice j is therefore

KAt(ej+1-¢j)
AX

in the interval of time At. In the same way, the quantity of heat entering slice
j and coming from slice j —1is

KAt(@j-i - 0j)
AX
during the interval of time At. During the time interval At, the quantity of heat

(18.4.1) a Q) — Q./+120 j+ 97 1
enters slice j and so the temperature of this slice will increase by AOj, given by

1842 AQI=
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Here m is the mass of the slice of thickness Ax. This has the value dAXx, since
the volume of this slice is Ax, its base having unit area, and d is the density of
the body considered. We therefore have

AOj K 0j+i —20j HOj—

(18.4.3) CAf = cd An

If we pass to the formal limit in the relation (18.4.3), that is, if we make At and
AX tend to zero, we have

80 K d

(1844) dt Cddx2~

which is the heat equation. This equation is satisfied for x in [0,d] and for
tc [0, T]. We are also going to take account of the conditions at the boundary: on
the planes P\ and P2 we fix the temperature at the values 6\ and  respectively,
that is

(184.5) 0(0,0=0, O(L,0=@

We move on to a model of a cylindrical bar of length L, immersed in an infinite
medium of fixed temperature 0. The cross-section of the bar is not necessarily
circular. We can simplify the modelling by supposing that the temperature is
constant in each cross-section of the bar. This is a reasonable approximation
if the bar is not very thick. For the transfers between the elements of the bar
we can reuse the preceding model, but we must additionally take account of the
transfer with the exterior medium, which is given by

AQj = -K TAXAt (0j - 0)

during the time At. Here | is the perimeter of the cross-section of the bar and
K* is a constant which describes the efficiency of the transfer with the exterior
medium. It goes without saying that this loss of heat is proportional to the area
1 Ax of the element of the bar that we are considering. We will then have

CdAXAQj = KAOj+1l ~~ +7  --0),

and, therefore,
AO, K Qj+i - 2Qj + ©j_i K't N
At ~d

It will be useful to rewrite this relation highlighting the discrete time nAt. K
then becomes

Qi_@ K G« 273077

(184.6) At ~ Cd Ax2 Cdy 3 >
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Passing to the formal limit, as we did to obtain eqn (18.4.4), we have

K d K7
(847) Zi - o oy Q-

We can pose the same boundary conditions as previously.

To simplify the solution of our problem, we are going to suppose that 6\ = Gz
is a temperature independent of time and, by means of a translation of the
temperature scale, suppose that this temperature is zero. Our conditions at the
ends of the bar thus become

(18.4.8) 00« = 0(L,t) = Q

We will make a second simplification which consists of supposing that the ex-
terior temperature is equal to the temperature at the extremities and, therefore,
0=0.

We are also going to rewrite our constants so that eqn (18.4.7) becomes

a>> >t

(184.9) at= a7 M~

with a strictly positive and b positive or zero. This amounts to choosing

K , - Kl
a=Cd ““d b=Cd~

with the convention that e = o when we are in the situation of an infinite medium.

We are first of all going to show that eqn (18.4.9) possesses a solution if we
know the initial temperature distribution and if we fix the conditions (18.4.8)
at the ends. Then, we are going to justify passing to the limit in the relation
(18.4.6) and we will show that egn (18.4.6) is a numerical scheme which actually
allows us to approximate the solutions of eqn (18.4.9).

18.4.2. Seeking a particular solution by separation of variables
We seek a solution of egn (18.4.9) in the form
(18.4.10) 9(X,t)=X(X)T(t).

We say that such a solution is in separated variables. In this case
/E)t - agx—“+be =X TO- aX" ¥

If we divide the last equality by XT, which we suppose to be nonzero, we have

TO X0

T® 7 Ox) -
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To the left of the equals sign, we find a function which depends only on t and, to
the right of this sign, we find a function which depends only on x. For them to
be equal, it is necessary and sufficient that there exists a constant Asuch that

(18.4.11) TO | p= _aa
T(t)
XII{X)
(18.4.12) NP

Furthermore, we are going to impose that our particular solution satisfies the
boundary conditions (18.4.8), which gives us here

(18.4.13) X (0)=X(L) =o.
It is clear that egn (18.4.12) has solutions of the form
X () = aezx + f3e~zx,
provided that A= —2. The boundary condition X(0) = O requires that
a+/’=o
and the boundary condition X (L) = O implies that
ezl - e~zZL = o,
if we always exclude the uninteresting case A= 0. We therefore have
zL = i 747,

with m in Z. It follows that X is necessarily of the form

. /m7rx\
X X)=asm ™ ~ J.

From this we have the following value of A

X_ m27
A= ~u~
and, therefore, the following expression for T:

am 27r2t \

T @® = @xp -T2 btj

We have thus found a particular solution of the heat equation of the form

(18.4.14) (13\ m fx,t’)\ = sm

rmirx\ F amZf2t

— Jexp
and this particular solution satisfies the boundary conditions (18.4.8). Note
the parallels between the calculation which has just been done with that o
Subsection 11.2.1 for a finite difference matrix.
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18.4.3. Solution by Fourier series

As 9m is a solution of egn (18.4.9), every linear combination of functions 6m is
a solution of eqn (18.4.9). Taking an infinite linear combination of such func-
tions amounts to writing the solutions in the form of a series and studying their
convergence.
We therefore seek 6(x,t) of the form
00

(18.4.15) 6 (X, E Qmim ).

m=1
For the initial conditions to be satisfied we must have

00

(18.4.16) 0(x,0) = E cmsin (— ).
m=1

In other words, it suffices that O(*,0) can be expanded as a sine series.
By a theory analogous to the theory of complex exponential Fourier series,
we see that, if o (-0) is in L2(,L), then the coefficients cm are defined by

a=Z/ A Osin( ) dZ

and the series defined by the right-hand side of egn (18.4.16) converges in L2, L)
to its sum, which is 0(-,0). Under this hypothesis, we have a very strong regu-
larity result:

Lemma 18.4-1. Suppose that

00

(184.17) E cm< +0=
m—o

The relation (18.4.15) defines a function 8 which is infinitely differentiable on
the set [0 L] x ]O, oof and which satisfies

(18.4.18)
and
(184.19) —O0#,on2dx =o.

Proof. Ifu(-0) is in L2(0, L) then, for every t > O and for every p GN



468 18 TOWARDS PARTIAL DIFFERENTIAL EQUATIONS

since the sum of the exponential terms clearly converges more rapidly than ge-
ometrically, if t > O. Therefore, for each t > O, the series (18.4.15) converges
uniformly towards its limit, which is therefore continuous. In fact, we have more,
since, for every p > o,

bn om\mgexp 120272 g
m

=1 "

CEXE ¢ o)

and, consequently, the series

£ Om (")exp (-57r* -
m—1 X
converges uniformly and defines the derivative dpO/dxp, for every t > Q. This
shows us that, for every fixed t > O, the function 6 given by eqn (18.4.15) is
infinitely differentiable with respect to x, for every t > O. We note that the
following series is uniformly convergent:

/ (amz2ir2 \p . /m7rx\ ( am 272t \
(-DPE On(-£2-+M Sm(— )eXP(--—-L "~ ~ btJ-
m—1 ' X '

By the application of Lebesgue 3 theorem on the differentiation of integrals de-
pending on a parameter to the case of series, we see that the above expression
defines dp6/dtp. This shows us that, for each t > O, dp6/dtp is a continuous func-
tion. The reader can easily convince herself that it is also a C== function, noting
the convergence of the expressions defining dp+q0/dxpdtq. Finally, another ap-
plication of Lebesgue 3 theorem for series shows us that all of the expressions

am2n2\ 9 () fmnx\ ( am 2T2t

, INg (mny (a
CECD Y- AIETEM — o

define continuous functions on [0, L\ x ]0, oo[.

A theorem from differential calculus allows us to confirm that, if a function
of n variables is separately differentiable with respect to each of its n arguments
and if its derivatives are continuous functions, then this function is continuously
differentiable with respect to the set of its variables. We have thus proved that
6 is infinitely differentiable in [0, L\ x JO, oo[.

The estimate (18.4.18) comes from Plancherel ¥ formula:

BB gegr = b on cmexf £-22M22 L0
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We obtain the continuity relation (18.4.19) by rewriting Plancherel § formula as
follows:

(O(x,t) -0(x,0))2Ax=] cM -exp

We then note that, by the application of Lebesgue $ convergence theorem for
series, we obtain the desired result. O

18.4.4. Relation between the heat equation and the discrete

model

The relation (18.4.6) can be seen as the time discretization by an Euler scheme
of the matrix differential equation

=&

where the J x J matrix A is given by

(-2 ! ° o\
1 -2 1 0
4. A= -bl.
(18.4.20) Ax2 b
1 -2 1
\o o 1 -2/

with the factor aAx~2 has
Subsection 11.2.1. The matrix A is obviously symmetric and its eigenvalues are

These eigenvalues are strictly negative and we therefore have
o () =ethe ©).

We are going to show that the discrete solution (18.4.6) is a good approxi-
mation to the continuous solution.

Theorem 184-2- Let 6 be the solution of eqn (18.4.9) with an initial condition

QX, 0) which satisfies
00

< +o00,
me 1

and let O™ be defined by the relation (18.4.6) and the initial condition

G? = 0(jAx,0).
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Then, there exists a constant C", which depends only on 6 and the data of the
problem O(-,0), a, and b, such that

\Qj-e (JAX,nAD\ gj
provided that we have the inequality

AX2
At <
2a

Proof. We rewrite the relation (18.4.6) using the constants a and b as follows:

07#1- 07 _ 0?7+1- 20? + 07!

= -b&i
At a AX2
Let
= 6(JAX,nAt),
if 6 is the exact solution of eqn (18.4.9).
We calculate
_g,n $n+i +
~ At < AN

We are going to suppose for this that 6{x,0) is sufficiently regular, so that O(x, t)
has the following properties:

max az xt) <C<oaoc
el R B&rs & D g, .

We can fulfil these conditions by demanding that

£ milx” < +oo,
77171

as the reader can verify. Under these conditions, a Taylor expansion shows that
0(AX, (n+ 1)AD) - 0(JAX, nAt) = A£d—6 (AX, nAt) 4-0 (At2)
and
0(( -f1)AX, nAt) - 26 (JAX, nAt) +0(§ —1)AX, nAt)
= — (JAX,nAt) + O (Azd) =

In the above two expressions, the terms O(At2) and O(Ax4) are bounded b>
CAt2 and C Ax4, respectively, where C is a constant independent of j and n-
We can therefore write, with the notation (18.4.20),

On+l- tfns1 = @+ AAD (On - tfn) - Aten
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We note that

f—2 1 O o\
1 -2 1 0
aAt
| +
Ax2
0 1 -2 1
\ o 0 1 -2

has positive elements provided that

aAt 1
A= <27

a condition that we will suppose to be satisfied from now on. Under this condi-
tions, we have the following estimate for ek

(184.2) le"] ~ C"AX2.
We explicitly calculate 0-+1 — as follows:
QML _ *>>+l = (o n_x_ a+A+ 0> $?) a-28

+ (0+1 - *7+1) @ + A - 6Ai (0" - ¥?) - A*ey.
We then see that, using the condition (18.4.21),

max O +1 - $?+117(1 + sAt) max |O”™- $?| + A max |¢&?].

By applying the discrete form of GronwalPs lemma (Lemma 16.1.7) and the
estimate (18.4.22), we obtain

max 1 A ~ erbAt

’ max |® —  + C"Ax2
] 1

Here C" is a constant which depends only on a, s, and 6. This allows us to
conclude the proof of convergence. —

There are many more exciting and important results in the field of the nu-
merical analysis of partial differential equations; not one, but several more books
are needed. If this chapter has led the reader to ask for more, my aim will have
been fulfilled.

18.5. Exercises from Chapter 18
18.5.1. The eigenvectors of a strictly hyperbolic matrix

Exercise 18.5.1. Let 1Zbe the set of n x n real matrices with n distinct real eigen-
values. For MgR, let Aj(M), 1~ j ™ n, be the eigenvalues of M, arranged in
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increasing order. Show that the projection Pj{M) onto the eigenspace relative
to the eigenvalue A is a continuous function of M. Conclude, therefore, that, for
all matrices mo 6 7\ it is possible to find a neighbourhood of Mo and a choice
of eigenvectors rj(M) and Ij(M) depending continuously on M and having the
properties

Mrj (M)= Xj (M) rj (M) \
1 vi=1..17
(M)r M = \j(M) [j(M)r 1
i(M)Trk (M)= Sik, 1.0

Hint: start with rj(MO) and Ij(Mo) having the required properties. Define
ri(M) = Pj(M)rj(MO) for M close enough to MO and construct the correspond-
ing vectors |j.

Exercise 18.5.2. Show that, in fact, the dependence of Pj on M is of class C=<.
Exercise 18.5.3. Assume that M is a mapping from an open subset O of Rd to
M n(l) which is of class Cl and takes its values in 7ZZ. Show, with the help of a
partition of unity, that it is possible to find, globally in @, eigenvectors rj and
Ij which are functions of class C1 over O and which satisfy the conditions

MEr®=XC CDri® j
FOTM =X C )1 COTJ
lj ()T rk( x=§k, v =F

18.5.2. More on the upwind scheme

In this section, we consider various supplementary properties of the upwind
scheme (18.2.5).

Exercise 18.5.4. Run some numerical simulations on the upwind scheme, with
several different initial data and several different choices of the CFL number.
Recommended initial data are:

=smooth functions, for instance piecewise polynomial, with high enough
overall differentiability;

=sqguare functions such as

ifoN XN 1;

otherwise.

We did not work on boundary conditions for the advection equation. Due to the
finite velocity of propagation, it is enough to simulate until the numerical wave
hits the boundary of the integration domain, provided that the initial data have
compact support. The integration time depends, therefore, on the distance froin
the support of the initial data to the ends of the spatial interval of integration-
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Exercise 18.5.5. Assume that / vanishes and that tto is bounded and continu-
ously differentiable with uniformly continuous derivative. Show that the upwind
scheme converges.
Hint: use the modulus of continuity of uo to get estimates on the local consis-
tency error.
Exercise 18.5.6. Assume that a depends on x £R and t £ [Q, T]. If a is strictly
positive, define an upwind scheme by

jyn-fi _ yn jin 1

— 77— —+a(sx,ns)— _ 1t -0

$ 550 =,

If a is bounded, show that there is a constant C > O such that, for 5t/5x ~ (7,
this scheme is stable. Find sufficient conditions on the regularity of a, ug, /, and

sup JUji—u (jSx,nSt) |
J

which ensure the convergence of this scheme in C<Rx p,T]), i.e.,

li A " —u ( =o.
|r;1_.o Ui* —u (§Sx,nSHH)\ = o

St/Sx"Cj¢ Z,nSt"T

Hint: this is really the proof of Theorem 18.24.
Exercise 18.5.7. Generalize the study of Exercise 18.5.6 by introducing a right-
hand side /, which will be assumed to be smooth enough to perform a conver-
gence proof.
Exercise 18.5.8. In this exercise, a is a bounded function on Ex [0, T]. We define
an upwind scheme which changes according to the direction of the wind:

fin+1 _ jjn jiin _ jin

e 5 f t _—
S max (@ (Sx,nSt) ,0) X

T .
+ min (& {Sx,nSt), o) '+'SX'U =o.

Show that this scheme is stable and prove its convergence under sufficient con-
ditions of regularity.

Exercise 18.5.9. Assume that a is strictly positive and that the following initial
data is given for the downwind scheme (18.2.6):

1 ifj =o;
o otherwise.

Let A be the CFL number. Calculate explicitly the solution of the downwind
scheme, show that it oscillates strongly, and show that it satisfies the following
equivalence:
. C (2A+ |)n+1
sup 7| i
j s/n
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for n large.
Hint: apply the binomial formula and Stirling"s asymptotic formula for the fac-
torial.

18.5.3. Fourier analysis of difference schemes for the advection
equation

Exercise 18.5.10. Let uj be a square-integrable sequence indexed by Z. Define
its Fourier transform as
e-2inHSxUj6x

u(o =E
i€z

Show that the mapping U U is an isometry from £ (2), equipped with the
norm n

IN= (Eiri2H >
\j€ Z /

to L2(,l/&r), equipped with the standard norm

M FK *) " -

Hint: this is a Fourier series statement, with scale parameters differing from the
standard ones used in Chapter 7.

Exercise 18.5.11. Let r be the operator in 2 (2) defined by
(rU)j = UH1.

Calculate the Fourier transform of tU.

Exercise 18.5.12. Consider the schemes (18.2.5)-(18.2.7). Denoting by Un(O
the Fourier transform of j L/, give the transformation Un(®) Un+1{H
for each of these schemes. Show that it is described by a multiplication by a
function depending on £ Show that the scheme (18.2.5) is stable in P(Z) under
the CFL condition, that the scheme (18.2.6) is never stable, and that the scheme
(18.2.7) is stable under the condition

5t~ C8x2.

18.54. The Lax-Friedrichs scheme

The Lax-Friedrichs scheme for the advection eqn (18.2.1) is defined by the rela-
tion (18.2.15).
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Exercise 18.5.13. Run some numerical simulations to understand the behaviour
of the Lax-Friedrichs scheme. What happens if you take as initial data a square
function? What happens if you take a smooth function? How is this different
from the behaviour of the numerical approximation obtained by the upwind
scheme?

Exercise 18514= Show that the Lax-Friedrichs scheme is stable in i< and
in "2 (2), if A= \a\5t/8x is at most equal to 1.

Exercise 18.5.15. Calculate the consistency error for the Lax-Friedrichs scheme
and show the convergence of this scheme in I=<@).

18.5.5. The Lax-Wendroff scheme

The Lax-Wendroff scheme for the advection egn (18.2.1) is defined by the relation
(18.2.16).

Exercise 18.5.16. Run some numerical simulations to get a feeling for what kind
of approximation the Lax-Wendroff scheme gives, preferably on the same initial
data and with the same initial data as for the Lax-Friedrichs scheme. What
differences do you observe?

Exercise 18.5.17. Show that the Lax-Wendroff scheme is stable in £2=) and in
£(2), if A= \a\5t/5x is at most equal to 1

Exercise 18.5.18. Calculate the consistency error for the Lax-Wendroff scheme
and show that it is of higher order in Sx than the consistency error for the
Lax-Friedrichs scheme or the upwind scheme. Show the convergence of the Lax-
Wendroff scheme in £2<Q.

18.5.6. Stability of the leap-frog scheme

Consider the leap-frog scheme (18.2.17). Denote by Un(¥) the Fourier transform
of j Ujl

Exercise 18.5.19. Run the leap-frog scheme on the same type of initial data as
for the Lax-Friedrichs or the Lax-Wendroff scheme. You have to initialize two
vectors of data, Uj and U j; it is convenient to take simply Uj = uo(jtix) and
Uj = uo(j8x - abt).

Exercise 18.5.20. Show that there is a matrix M(£) such that

and give the explicit expression for this matrix.

Exercise 18.5.21. Calculate the eigenvalues of M(£). Deduce from this compu-
tation that a necessary condition for stability of the leap-frog scheme is that
~ = \a\6t/8x is at most equal to 1.
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Exercise 18.5.22. Calculate a matrix 5(£) which diagonalizes M(£). Show that
S(E£) and S(g)-1 are bounded uniformly in £if and only if Ais strictly less than
1.

Exercise 18.5.23. Show that a sufficient condition for stability in £2(2) of the
leap-frog scheme is that A'is strictly less than 1.

Exercise 18.5.24=What happens when Ais exactly equal to 1?

18.5.7. Elementary questions on the wave equation
Exercise 18.5.25. Knowing that the solution of eqn (18.3.1) is of the form
w(x-ct) +z X+ ct)

when / vanishes, find the values of w and z so as to satisfy the initial conditions
(18.3.3) .

Exercise 18.5.26. Assume that ug and u\ are periodic, with period L, on Mand
that, for all t, x i~ f(x,t) is periodic, with period L, on R. Show that the
solution of the wave eqn (18.3.1) with the initial data (18.3.3) is periodic, with
period L, with respect to x.

Exercise 18.5.27. Assume that wo, ui, and / are even (respectively, odd) with
respect to x. Show that u, the solution of eqn (18.3.1) with the initial data
(18.3.3) ,is even (respectively, odd).

Exercise 18.5.28. Given vg and W\ on [O L\ and g on [0, L\ x [0, 00), define func-
tions uo, W\, and / by the conditions

oo = VO] t[[O,L] “*VI>  /[0,L)x[0,00) =

and the requirement that uo, and x be odd and periodic, with
period 2L. Show that the expression (18.3.8) provides a function u which is
spatially odd and of period 2L. What conditions of regularity must be imposed
on vo, Vi, and / so that u is of class C2? Then, show that the restriction of
u to [0 L\ x [O,00) solves the wave equation on [0, L] x (0, 00), with Dirichlet
boundary conditions, i.e., it(O,£) = u(L,t) = O, for all t ~ O.

Exercise 18.5.29. Under the conditions of Exercise 18.5.28, find the symmetry
necessary for solving the wave equation with Neumann boundary conditions, i.e.,
ux(,t) = ux{L,t) - O

Hint: you need a very small modification of the symmetries used in Exercise
185.28.

18.5.8. Generalized solutions for the advection equation

Exercise 18.5.30. Let Cq be the set of functions of class Ck on Rz which vanish
outside of a compact set. Give examples of nonzero elements of this set for any
order k.

Hint: reread Section 6.1



185. EXERCISES FROM CHAPTER 18 477

Exercise 18.5.31. Let uO belong to Ljoc(R), i.e., the restriction of uo to each
bounded set of R is integrable, and define a function u by u(x,t) = uq(x - at).
Show that, for all functions O in Co(R2), the following identity holds:

/ uEt+ ax)dxdt=o.
Jr2

Exercise 18.5.32. Let / belong to Loc(E2), i.e., assume that / is measurable
and that the integral of its absolute value on any compact set of Rz is finite.
Show that, if, for all O in Cq, the expression

/ /o0 dxidx2

JR2
vanishes, then / also vanishes.
Hint: the proof relies on the same idea as the proof of Lemma 6.1.2. It is useful
to show, for instance, that, for all functions x hi Cq(R2) and all functions 4 in
Cq(R) whose integral is equal to 1, the function

x, 0~ ( [ x(z,s)ds
J—e0 Jr
belongs to Cq(R2).

Exercise 18.5.33. Let / be as in Exercise 18.5.32. Assume that, for all functions
o in Co(E2), the following relation holds:

(185.1) [ fG)tdxdE = O.
Jr2

Then, show that f(x,t) is, almost everywhere on E2, equal to a function g(x).

Exercise 18.5.34. Assume that the relation (18.5.1) holds only for functions with
support in R x JO, oo[. Then, show that the analogous conclusion holds: almost
everywhere on R x b ,00[, / is equal to a function depending only on x.

Exercise 18.5.35. Let u belong to “oc(* x p,00)) and assume that, for all
functions o E Cq(R2) whose support is included in R x Jp,00[, the following
relation holds:

/ u@*+agx)dxdE=o.

Jr X0,
Define the following new variables and function:

y —x —at, s—t, v (y,s) = u(x,t).

Show that v is, almost everywhere on R x b ,00[, equal to a function of space
only and deduce that u(x,t) is of the form ugf{x —at). Conclude that the data
given by the value of u on the line t = o determines uniquely the generalized
solution of the advection equation with vanishing right-hand side.
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18.5.9. Advection-diffusion equation

Exercise 18.5.36. Consider the equation
ut+aux - euxx =0, xG1, t€ JO,T[

with initial data

u(x,0)= uq @ -
Write an explicit numerical scheme which uses a centred scheme for the second-
order differentiation in space and a centred or upwind difference for the advection

term. What must the Courant-Friedrichs-Lewy condition be in these two cases?
Use Fourier analysis to study the 12 stability.

Exercise 18.5.37. Assume that the space variable remains in the interval p,1[
and that Dirichlet boundary conditions are given at the boundary:

u@t=u(d,t =0

Run numerical simulations for both schemes, choosing successively e = 1, e =
102, and e = 10°4. What happens and how do you explain it?
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inequalities, 11 method, 268
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Lagrange, 53, ™4, 64, 65 ceiling, 14
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pre-conditioned, 284
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Cramer formula, 27
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mean-square norm, 96
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continuous periodic
functions, 138
mean-square norm, 139
uniform norm, 136, 138
various functional spaces,
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determinant, 27, 224
derivative of the determinant
function, 370
explicit expression, 27
of a linear mapping, 27
of a matrix, 27
block triangular, 38
practical interest in, 27
theoretical interest in, 27
diagonal, 258
diagonally dominant matrix, 30
differentiable dependence
with respect to initial
conditions, 381
differential systems
continuous dependence on
data, 379
Dirichlet
kernel, 152
theorem, 156
discrete approximation of the
logarithm, 13
discretization

INDEX

partial or ordinary differential
equations, 225
divergence of the harmonic series,
13
divided differences, 48, 55, 57, 67
and 5-splines, 123
integral representation, s7
Leibniz Zformula, es
operators, 67
several variables, 69
uniform grids, 70
with coincident arguments, sg9,
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with coincident knots, 72
Duhamel § formula, 371, 375
dyadic, 4
number, 15

eigenvalue, 31, 240, 273
minimax characterization, 293
eigenvalue problem
QR method, 322
convergence for positive
definite Hermitian
matrices, 324
effectiveness, 327
bisection method, 312
ill-conditioning, 308
information in characteristic
polynomial, 307
information in matrix, 307
inverse power method, 321
error analysis, 321
power method, 309, 316
inverse, 321
modification, 319
eigenvector, 31
strictly hyperbolic matrix, 471
eigenvector problem
ill-conditioning, 309
ET, cinema hero, 265
Euclid, 348
Euclidean
length, 31
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Euler
method
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modified, 401
scheme
backward, 396
explicit, 395, 398-400
forward, 395

implicit, 396, 398, 399, 401
variable step size, 404
Euler-MacLaurin formula, 189
explicit
Adams methods, 416
Euler
method, 418
scheme, 395, 398-400
exponential, 18, 19
construction, 19
by product formula, 17
function, 19
inverse of logarithm, 19
matrix, 2o, 21
approximation, 23
loss of multiplicative
property, 24
multiplicative property, 22
practical calculation, 22
self-adjoint, 23
skew-adjoint, 23
extrapolation
Nystrom, 420
construction, 420
Richardson 3, 75
to the limit, 75

fast Fourier transform, 49

Fejer
kernel, 160
sum, 161
Fibonacci

numbers, 350
series, 350

finite difference, 70, 276
backward difference operator,
70
central, 71, 72
first-order difference, 71
second-order difference, 72
forward difference operator, 70
matrix, 273
problem, 273
finite element methods, 48
fixed point theorem, 362
Brouwer, 334, 336
strictly contracting, 336, 362
floating-point, &
numbers, -8
floor, 14
flop, 7
fluid motion
Eulerian description, 440
Lagrangian description, 440
formal series, 417
forward
Euler scheme, 395
finite difference, 70
Fourier
analysis, 48
Charles, 133
coefficients
decrease as wave number
tends to infinity, 140
numbers which tend to o
and are not Fourier
coefficients of any
integrable function, 162
regularity and asymptotic
behaviour of, 144
slowness of decrease at
infinity, 140, 162
Joseph, 133
partial sums
convergence as a local
phenomenon, 152
convergence in mean-square
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series, 48, 133 Gram-Schmidt orthonormalization,
convergence, 49, 133 82, 290
difficulty of summation, 151 graph, 39
partial sum of, 136 fc-colourable, 39
pointwise convergence, 152 adjacent vertices of, 39
pointwise convergence for degree matrix of, 39
absolutely convergent degree of a vertex, 39
function, 155 properly coloured, 39
uniform convergence, 144 simple, 39
transform symmetric, 39
discrete, 189, 190 vertex-edge incidence matrix,
fast, 49, 189-191 39
of a sequence, 460 Gronwall 3 lemma, 377, 380, 381,
transformation, 133 391
Franklin wavelets, 204 discrete, 391, 392, 471
Fredholm integral equation of the
first kind, 200 harmonic mean, 16
Frobenius norm, 252, 253 heat
fundamental theorem of linear equation, 136, 439
algebra, 29 flux, 462
Hermite
. interpolation, 64
Gauss—Sm_deI, 269, 274, 276 weight, 80
matrix Hermite ¥ basis, 64
block, 269 Hermitian, 32, 240, 293, 369
method, 259, 267 positive definite, 369
block, 268 skew-, 369
Gaussian Hessenberg form, 297
elimination by Householder
band-q matrix, 226 transformations, 302
matrix interpretation, 209 Hilbert matrix, 81
operation counts, 214 Holder inequality, 255
with pivoting, 217 Horner algorithm, 57
without pivot, 207 Householder transformation, 298
quadrature, 180, 182 hyperbolic system, 444
generalized solution, 443, 476
generator function, 187 identity matrix, 20, 26
geometric mean, 16 image
Gibbs phenomenon, 49, 157 analysis, 47, 107
golden ratio, 348, 349 manipulation, 107, 129
gradient method implicit
convergence rate, 280 Adams methods, 418
steepest Euler

pre-conditioned, 279 method, 419
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inequality
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of Kantorovich, 44
instability
of multistep methods, 424
weak, 434
integration
formulae, 49
numerical, 166
of periodic functions, 134
interpolating
polynomial, 51, 52, 59
divergence of, 61
Hermite, 64
spline, 106, 111, 115
interpolation, 47
at Chebyshev points, 61
error, 59
formula, 181
Hermite, 64
Lagrange, 51, 170, 171
Newton, ™4, 71
osculating, 64
iterative
method, 258, 259, 261
convergence, 260, 261
order, 351
sufficient conditions for
convergence, 266
sufficient conditions for
divergence, 266
solution of systems, 258

Jacobi, 274, 276
matrix
block, 269
method, 259, 269
block, 268, 269
damped, 286
Jordan
block, 37, 43, 44, 272
decomposition, 37, 43, 44
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form, 37, 271
Kantorovich inequality, 45, 280

La Vallee Poussin kernel, 161
Lagrange interpolation, 51, 170,
171
Lagrange § basis, 53, 54, 64, 65
Laguerre
polynomial, 99
weight, 80
Laskar, Jacques, 416
Lax pairs, 328
Le Verrier, Urbain, 415
least-energy principle, 48
least-squares
approximation, 47, 48
convergence of sequence of
trigonometric
approximations, 139
discrete trigonometric
approximation, 163
polynomial approximation, 77,
78, 133
convergence, 96
trigonometric approximation,
136
Legendre polynomials, 84
length
conservation of, 32
Leonardo of Pisa, 349
linear
algebra
fundamental theorem, 29
mapping, 25
continuity, 248
determinant, 27
identification with matrix,
>, 26
multistep schemes, 414
recurrence, 270, 273
system
condition number, 235
variable coefficients, 372
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local error, 388
logarithm, 18, 19
additive property, 14
construction, 19
inverse of exponential, 19
Lyapunov functional, 382

machine
integers, 5

representation of numbers, 5

mantissa, 6, s
matrix, 25, 26
as an assembly of image
vectors, 26
band-g, 224
banded, 224
block, 34

companion, 42, 271, 307, 428

cosine, 41

criterion of invertibility, 21
cyclic, 202

determinant, 27

diagonal, 258

diagonally dominant, 30
echelon, 232

exponential, 20, 21, 369, 373

approximation, 23
derivative, 373
loss of multiplicative
property, 24
multiplicative property, 22
practical calculation, 22
functions, 40
Hermitian, 32, 240, 293, 369
square root, 303
Hessenberg, 297
Hilbert, 81
identification with linear
mapping, 26
identity, 20, 26
inversion
is it necessary?, 216
operation counts, 215
invertible, 27

INDEX

linear system
interpolating splines, 117
smoothing splines, 118
multiplication, 26
by blocks, 36
nilpotent, 40, 261
norm, 243, 252, 263
normal, 33, 255
of a linear mapping, 25
of a scaling, 38
orthogonal, 32
permutation, 221
persymmetric, 237
powers of, 270
regular, 26
resolvent, 374
self-adjoint
exponential, 23
sine, 41
singular, 26
skew-adjoint
exponential, 23
skew-Hermitian, 369
square root, 41, 357
stability, 426
block diagonal, 428
strictly hyperbolic
eigenvector, 471
Toeplitz, 237
transpose, 31
triangular, 34, 258
tridiagonal, 258
unitary, 32, 290, 369
Vandermonde, 170
vertex-edge incidence matrix of
graph, 39
maximum norm, 243
midpoint formula, 167, 169, 172,
178
Milne-Simpson
formula, 420
method
construction, 420
minimax, 241, 293
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multiplicative approximation of
integration, 17
multistep
methods, 414
construction, 414
convergence, 432
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initialization, 432
instability, 424
order, 421
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schemes, 414
Adams, 416

Napierian logarithm, 14, 16
natural splines, 112
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Newton §

basis, 54, 55

interpolation, %4, 71

method, 338

convergence, 341
vector case, 352

Newton-Cotes formula, 173, 178
nilpotent, 40, 261

matrix, 22
noisiness, 48
noisy data, 48
nonlinear system

existence of solutions, 331, 334

solution by minimization, sss
norm, 2o

equivalent, 244, 247, 248, 253

Euclidean, 243

Frobenius, 252, 253

matrix, 243, 252, 263

maximum, 243

of vector, 264

operator, 243, 248, 249,

252-254

subordinate, 249, 252, 253,
260, 264
normal matrix, 33
NP-complete, 335
numerical integration, 49, 72, 166
formula, 166
periodic functions over a
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numerical tables, 48
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Nystrom extrapolation, 420
construction, 420

operator norm, 243, 248, 249,
252-254
optimal
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order
Adams methods, 423
iterative method, 351
multistep method, 421
necessary and sufficient
condition, 393
of one-step schemes, 392
orthogonal, 32
polynomials, 49, 81-83, 98
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gualitative properties, 97
recurrence, 98
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osculating
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overflow, s, 389

Pade approximation, 101, 104
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volume of, 27
Parseval §
identity, 460
relation, 139
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pivot
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pivoting

partial, 219

matrix interpretation, 222
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matrix interpretation, 222
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Bernstein, ss, 90
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Sylvester § inertia theorem, 293

Tacoma bridge
collapse of, 313
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trapezium formula, 168, 169, 172
travelling salesman, 335
triangular, 34, 258
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fied with experimental numerics; and that of the mathematicians who seek beau-
tiful problems. However, numerical analysis can offer the best of both worlds:
motivated problems where getting a solution fast is the primary concern, and
tools which

are both elementary and powerful.
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differential equations.
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