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Preface
Ne sois pas lascif et peureux 
Comme le lievre et l’amoureux.
Mais que toujours ton cerveau soit 
la hase pleine qui congoit.1
Guillaume Apollinaire, Bestiaire (1920)

Fairy tales
Fair reader, the preface of a mathematical book is the right place for telling how 
it came about, and maybe spawn a few legends.

Once upon a time, in a far away country2, there was a young research mathe­
matician who specialized in nonlinear partial differential equations. In 1984, this 
young mathematician was promoted to professor of numerical analysis, a subject 
that she mostly ignored. So, in order to teach, she learnt, a fact already known 
from the Talmud: ‘Rav Hanina said, “Much have I learnt from my masters, more 
from my colleagues, but the most from my own students’” (Talmud of Babylon, 
Tractate Taanit, 6)3.

You know how a fairy tale is composed: the heroine has to fall in love: I fell 
in love with numerical analysis4. And here is the result, or rather the second 
iteration of the result, since a first edition appeared in French in 1991.

Sonke Adlung, who is an editor with Oxford University Press, and to whom 
I had been introduced by John Ball, thought that it would be nice to have this 
book translated and also revised.

The heroine must go through hard times and meet a few fire-spitting dragons 
on her way, which would change her into stone just for the fun of it. I was moving

xBe not lewd and fearful/ as the hare and the love-fool./ But let your brain ever be/ the 
hare-doe that conceives.

2We have to stick to the traditional format of fairy tales.
3*im> >*r>tonoi ,>rrcn» *im> n>nnai .’ircno nrnn :w>:n m -ion

(.1 m un  ,'^22 TiTrtm .pIDO
4Some would consider that bad taste; theirs is the loss.
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so slowly at times that Sonke may well have thought that I had been turned into 
a piece of rock.

Since I had agreed to update the 1991 edition, I had to rewrite parts of it, 
and add some material. This did not turn out to be easy. One reason is that 
my extra-scientific activities graduated from raising two children5 to chairing 
a research group of about 50 people, a task which includes dealing with five 
different administrations. Another reason is that I am still a research mathe­
matician, writing papers, advising students, and doing whatever the form of life 
called mathematics demands. My natural tendency is to consider that the most 
important mathematics are tomorrow’s, not yesterday’s or yesteryear’s.

Though I should not admit it, I may have also fallen in love with my research 
group, MAPLY (Laboratoire de Mathematiques Appliquees de Lyon), and with 
its future; when I was born, there were trees; so now, I feel obligated to plant 
some. I did meet quite a few dragons in the forest6. This being a legend, fair 
reader, you have to remember that dragons are in the mind of the beholder.

Acknowledgements
The heroine needs to receive help from many quarters, and so did I.

Sonke found a translator, John Taylor. John, you did a pretty good job, 
keeping as much as you could of the colloquialism of the original French style.

Thank you, Sonke, for the idea which enabled me to conclude the task: that 
I should find myself someone who would not be so busy, who would be able to 
spot typos and mixed up indices7, and who would be knowledgeable enough to 
criticize or praise wherever applicable.

And this is how Jean-Frangois Coulombel came in: in February 2000, he 
was sitting in one of my graduate courses, and one month later, he was bravely 
starting to push me forward, so that the slow motion would not be so slow. 
Thank you, Jean-Frangois, you did well, and that must not have been easy for 
you.

And thank you again, Sonke, for never relenting before my procrastination.
In the final runs, I shared an office with Stephane Descombes in a faraway

5Claude and Rene, you have built me.
6

Nel mezzo del cammin di nostra vita 
mi ritrovai per une selva oscura 
che la diritta via era smarrita.

(In the middle of our life’s path/ I found myself in dark woods,/ the clear direct way being 
lost.)
Dante, La Divina Commedia

71 guess that I became a mathematician because I have so much trouble with + and —, and 
with z, j, k, /, and m. And n too; so if there are still some errors, I am the one who put them 
in, and I apologize.
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country8, and he was kind enough to provide a stern examination of the spline 
chapter. I also benefited from a rereading of the multistep chapter by Magali 
Ribot, who had a first-hand opportunity to learn about the fallibility of some 
thesis advisors.

I have had many sources and I have been influenced in person or in print by 
the following authors: K. E. Atkinson [5], J. C. Butcher [13], P. G. Ciarlet [16], 
M. Crouzeix and A. L. Mignot [19], C. de Boor [20], G. H. Golub and C. F. 
van Loan [35], E. Hairer, S. P. Norsett, and G. Wanner [43,42], P. Henrici [45],
E. Isaacson and H. B. Keller [51], A. Iserles [52], D. E. Knuth [38,53,54], H.-O. 
Kreiss [56], Y. Meyer [61], A. Ralston and P. Rabinowitz [68], R. D. Richtmyer 
and K. W. Morton [70], L. L. Schumaker [71], J. Stoer and R. Bulirsch [73], and
H. S. Wilf [78]. To these, I am deeply indebted.

I have now two institutions to thank: CNRS gave me the initial help in 
my research career; since 1995, it gave me the charge of planting mathematical 
trees; it told me, in very direct language, that one has to go forward and take 
responsibility, or get out of the way; it gave me a temporary research position 
which enabled me to remain a mathematician instead of turning into a full-time 
administrator. Finally, it gave me a permanent research position.

The other institution is the Technion in Haifa, where I have been a frequent 
visitor since 1994. Some of the funding came from the binational Keshet/Arc-en- 
ciel binational agreement; I also got funding from the CNRS-MOSA. So, twice 
a year, I have some continuous time to myself, with only a few e-mails and faxes 
for French business. There is this wonderful library, from which I take out books 
on the account of my friend and colleague Koby Rubinstein, who from time to 
time gets a message telling him to return some. And the friends that I have 
there kindly let me be as bearish as I want; their hospitality is a blessing; I owe 
much to the kindness of Iris and Yehuda Pinchover.

Finally, in a fairy tale, the heroine has the use of some life-saving tricks, 
spells or magic formulae. They are called T^X, SCILAB, GNUPLOT,
and XFIG; they are all free software, and they are wonderful tools without which 
this book would simply not exist.

Contents: a subjective approach
Since this preface is so romantic, let me mention that love for a scientific subject is 
exactly the same as love for a human being: you always hate quite a few things 
in the loved one, but the balance looks good enough to keep the attachment 
going.

So, let me talk subjectively about my subject.
Looks are so important, and, alas, numerical analysis with all its burden of 

notations looks more like a heavy matron than a gracious ballerina. So what? 
Maybe a heavy matron can take care of a large brood of children. Better a heavy

8Israel, according to the age-old joke: this is far? far from where?
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theory with many applications than an elegant one without offspring.
Numerical analysis has to do with real life computation: an understanding of 

the floating number system and the machine arithmetic is essential. Chapter 1 
gives an exercises guided tour to this world. It is highly recommended that you 
do the exercises.

I observed that numerical analysis requires more maturity from mathemat­
ics students than other subjects at the same level of difficulty. A naive vision 
puts numerical analysis between two stools: the physicist or the engineer wants 
methods, and is satisfied with experimental numerics; the mathematician wants 
beautiful problems, and is not much interested in constructive solutions using a 
fallible and limited machine. However, I believe that numerical analysis sits on 
both stools, and has the best of both worlds: motivated problems where getting a 
solution and getting it fast can make a difference, and tools which can be, at the 
same time, elementary and powerful: not necessarily a contradiction according 
to the words of S. S. Abhyankar [1]. Chapter 2 gives a flavour of numerical analy­
sis, constructing the logarithm and the exponential from scratch, using methods 
which are the daily bread of numerical analysis, and which moreover generalize 
to situations where power series do not work.

The daily life of numerical analysts includes much linear algebra; Chapter 3 
summarizes some of the required knowledge, and adds to it the theory of block 
matrices.

This makes up Part I. Part II describes polynomial approximation and piece- 
wise polynomial approximation, in algebraic or trigonometric versions: inter­
polation and divided differences in Chapter 4, least-squares approximation in 
Chapter 5, and splines in Chapter 6. The recent surge of the use of splines in 
computer-aided geometrical design and image processing is one of the motiva­
tions for the spline chapter. It also turns out that splines are a nice generalization 
of Bernstein polynomials, and that they fit very well with two approaches: di­
vided differences and convex algorithms. I used to hate splines, a baseless and 
despicable prejudice. I hate them no longer.

Chapter 7 is on Fourier series in one space dimension; it does not tackle any 
of the hard questions of which Fourier analysis is so replete. However, it treats 
easy and essential questions, including convolution and regularization, and it 
makes room for the Gibbs phenomenon, so important in applications.

Chapter 8 is about quadrature: approximation by algebraic polynomials leads 
to the classical formulae for numerical integration; trigonometric approximation 
leads to the Euler-MacLaurin formula and to the fast Fourier transform (FFT), 
which may be the most important algorithm in scientific computation. The 
FFT is the prototype of recursive algorithms; it is the ancestor of multigrid and 
wavelet algorithms; it is the epitome of easy and powerful tools.

Part III relates to numerical linear algebra. This part is important because 
operation counts are the limiting factor for any serious computation. Any sci­
entific computation program spends most of its time solving linear systems or 
approximating the solution of linear systems, even when trying to solve nonlinear
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systems.
Chapter 9 provides the direct methods for the resolution of linear systems 

of equations, with an emphasis on operation counts. Operation counts justify 
all of the acrobatics of iterative methods, treated in Chapter 11 after extra 
information on linear algebra is produced in Chapter 10. Chapter 12 relates 
orthogonality methods to the resolution of linear systems and introduces the 
QR decomposition.

Part IV treats a selection of nonlinear or complex problems: resolution of 
linear equations and systems in Chapter 14, ordinary differential equations in 
Chapter 15, single-step schemes in Chapter 16 and multistep schemes in Chap­
ter 17, and introduction to partial differential equations in Section 18.4. It would 
have been my natural tendency to put in much more of these, but, since I decided 
that this book would avoid any functional spaces beyond spaces of continuous 
functions or Lebesgue spaces and, in particular, Sobolev spaces, there was little 
possibility to include more than a tiny introduction to partial differential equa­
tions. I tried to select a few important things which are accessible and attractive 
on an elementary level. I did the same for the ordinary differential equations 
part: I skipped the detailed analysis of the Runge-Kutta methods by trees, be­
cause it is long and difficult; however, I have given a full theory of the analysis 
and convergence of multistep schemes, because the use of appropriate norms 
makes it possible without tears.

This book started as an elementary book; the revision put in some more 
advanced layers, but the layered structure remains; the less elementary parts are 
Sections 4.4 and 4.5, Chapter 6, Section 7.2, Section 8.6, and Chapters 17 and 
18.

A number of problems describe some classical algorithms together with some 
newer ones. Since mathematics is not a spectator sport, the more advanced parts 
are put into problems: the most exciting things can be found there.

The prerequisites are linear algebra, calculus, and a tiny bit of Lebesgue the­
ory, which is used only in Chapter 5 on polynomial least-squares approximation, 
Chapter 7 on Fourier analysis, and Chapter 18 which introduces partial differ­
ential equations. I do not use the theory of distributions, though I disguise some 
of its ideas in the spline Chapter 6.

Just a short word about notation: I decided not to use bold face for matrices 
or vectors, with very few exceptions. The reason is that I very often use block 
decomposition of matrices; if I decompose an nxn  matrix into an (n — 1) x (n — 1), 
an (n- l ) x  l , a l x ( n - l ) ,  and a 1 x 1 block, what notation would make sense? 
I could not imagine an efficient answer, and so I dropped the bold faces.

Computation and numerical analysis
There is always a question about the role of computations and software in a 
numerical analysis book.

I did not include any numerical software, or even quasi-programs which enable
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one to write one’s own software.
The first reason is that good numerical software requires quite a bit of thought 

to be really efficient. Some really good scientific software, such as MATLAB can be 
bought; but there are also free products of quality, such as SC I LAB, distributed 
by INRIA, http//www-rocq.in ria .fr/scilab , for use under several different 
operating systems.

The second is that one must be sceptical of scientific computations: numerical 
analysis is concerned with the essence of the scientific method.

But what is the foundation of such an attitude? It is conceivable if we know 
that the results are inaccurate, or plainly wrong. But how do we know that? 
Well, if we know that our mathematical equations are a good approximation of a 
natural phenomenon, and if the computations do not agree with the observations, 
then the scientific computation software must be guilty; or must it?

Finding the guilty party may be a very difficult endeavour, because many 
factors may be involved: maybe the equations were wrong; maybe the numerical 
method was inappropriate; maybe the parameters of the method were badly 
chosen; maybe the software was incorrect.

One of the purposes of numerical analysis is to find the specifically mathe­
matical factors which govern the success or failure of numerical computations.

The third reason is that the successful numerical analyst destroys their own 
job by finding algorithms which are so clear and efficient that they can be safely 
implemented into software.

Therefore, in order to stay in employment, he or she must keep finding new 
areas where existing software does not do the job.

Mathematics provides the light which enables us to explore new territory. 
Mathematics is also a very cultural subject: for mathematicians, a hundred 
years old result can be as good as a new one, even if we do not use it for the 
purpose for which it had been initially crafted.

In this book, I try to explain how to make your own light, and how to find 
your own way with it. This is obviously much harder—for you and for me—than 
inviting you to contemplate nice pictures without telling you how I might have 
come across them and how they fit together.

Nevertheless, fair reader, do not believe that I have shyed away from com­
puting: I have only hidden it, since showing it would have led to a completely 
different book.

So, in order to gain more understanding, try, dear reader, to program the 
most algorithms that you can think of. It may not be of the same high quality as 
the commercially or freely available software, but it will teach you much about 
the behaviour of computational methods, and about the difficulty of putting 
mathematics into code.

Lyon
September 2000

M. S.
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Part I

The entrance fee
Most of numerical analysis uses recursive procedures: do the same thing again 
and again, until a reasonable degree of accuracy is reached. Even apparently 
algebraic problems admitting a solution in finite terms can be efficiently treated 
by iterative techniques, as we shall see in Chapter 11. Therefore, since numerical 
analysis involves a large number of machine computations, the error must be 
analysed.

Numerical analysts are scared stiff of a phenomenon called instability: un­
controlled amplification of error. But where does error come from? It comes 
from the fact that we represent real numbers in a finite system, called floating 
numbers; therefore, any arithmetic operation leads to loss of precision. The 
idiosyncrasies of floating-point operations are examined in Chapter 1.

Of course, instability is quite visible: usually one gets a computer message 
which says ‘overflow’, and at this point the computation stops. What is impor­
tant is to find a cure for instability, and this requires a comprehensive understand­
ing of the mathematical methods which have been used for the computation.

As presented here, numerical analysis is a part of mathematics, but it works 
on questions which are strongly related to the use of computers and to applica­
tions from other sciences. Therefore, numerical analysts create in their minds 
visions of mathematical objects which may be slightly different from the visions 
of other mathematicians. In particular, numerical analysis is about construct­
ing or approximating effective solutions. Of course, numerical analysts do use 
existence theorems, and they combine constructive and non-constructive infor­
mation.

1
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I have tried to give a flavour of numerical analysis in Chapter 2 through 
concrete examples, which are probably well known to the reader.

The fastest way of constructing the natural logarithm is to say that it is the 
integral of the function x i-» 1/x which vanishes at 1. This information can be 
made constructive: in order to compute the integral of x 1/x, we use ap­
proximate formulae, and these formulae enable us to construct from scratch the 
natural logarithm. In the same fashion, we can define the exponential as the 
reciprocal function of the logarithm, or using its famous entire series expansion. 
Unfortunately, neither of these methods leads to an efficient numerical construc­
tion. A good construction method for the exponential is the original method 
of Euler, based on a product formula; the exponential can be constructed from 
scratch with this method. It is of even more interest that such product for­
mulae are the core of numerical integration for ordinary and partial differential 
equations.

Chapter 3 provides a review of standard results from linear algebra. Linear 
algebra is pervasive in this book. We cannot do anything without linear algebra, 
and we need a bit more than is usually taught at the elementary level. The only 
not completely standard feature is block matrices.
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Floating numbers
The beginning of a course on numerical analysis naturally includes some fairly ab­
stract considerations of how real numbers are represented in a computer, known 
as floating-point representation, and incidentally on systems of counting.

To convince the reader that there is material here which is both surprising 
and thought-provoking, the following exercises are more effective than a long 
discourse. It is strongly recommended that the reader sharpens his or her mind 
by trying them. The level of mathematics and programming required is entirely 
elementary, though this does not spoil the fun of doing them.

This chapter owes an enormous debt to the paper by G.E. Forsythe [30], 
which presents some striking examples of the calculation difficulties linked to 
floating-point numbers.

Exercise 1.1.1. Let /? be an integer greater than 1. Show that, for every integer 
n greater than or equal to 1, there exists a unique integer p and integers d*, 
0 $ i ^ p, between 0 and /? — 1 inclusive, with dp ^  0, such that

The right-hand side of eqn (1.1.1) gives the representation of n in base /?, 
also denoted by

Normally, we represent numbers in base f3 = 10 using the figures 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9, and from an early age we use the result of Exercise 1.1.1 without 
question, at least in base (3 = 10.

The choice of base 10 is linked to an anatomical peculiarity of the human 
species. We could also have counted in base 20, like the Mayans.

1.1. Counting in base (3

V
(l.i.i)

n = dpdp—i • • • dido .

3
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Nevertheless, in the history of humanity, counting with positional numerals 
is a relatively recent development which we owe to the Hindus and the Arabs. 
Arithmetic operations in roman numerals are very awkward. It is only thanks to 
positional numerals that efficient arithmetic algorithms could be developed, and 
these spread across Europe only from the twelfth century, finally triumphing in 
the eighteenth century. The reader who is interested in the history of numbers 
and systems of counting should consult, for example, [48] and [49], and their 
translation [50].

Other systems of counting have been devised by mathematicians, see, in 
particular, in [38, pp. 115-23].

Computers, which do not have ten fingers, count in base 2, with the figures 0 
and 1 (binary or dyadic), in base 8 (octal), with the figures '0 to 7, and in base 
16 (hexadecimal), with the figures "0 to "9, to which are added the letters "A to 
"F.

The list of 128 ASCII characters is a list of standard characters corresponding 
to codes understood by all computers.
Exercise 1.1.2. The ASCII characters are numbered from 0 to 127; the letter b 
has octal number 742. Give its decimal and hexadecimal numbers.

What do we do with the fractional part of a number? By analogy with the 
representation of Exercise 1.1.1, consider expressions of the form

x = j ^
i——q

where p and q are positive integers or zero and the di are integers from 0 to (3 — 1 
inclusive. To fix p, we insist that dp ^  0. We write

x — dpdp— * d\d().d—j ... d—q ,
We can also take q = oo. What does this infinite sum mean? If we know the 

properties of real numbers, we claim that the sequence of rationals
v

rn = Pl(li
i— — n

is increasing and bounded by
p

1 + frdi.
i=0

It is therefore a convergent sequence whose limit is the sum of the series with 
general term (/?*</*).<p.

Warning: this course assumes that the reader is familiar with the properties 
of the real numbers. It is wise to revise them before continuing.

A standard difficulty is the occurrence of a real number which can have two 
distinct representations in base /?, as we see in the following exercise:
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Exercise 1.1.3. Let b = /3 — 1. Show that, in every base /?,

1 = O.bbbb---.
How many reals are there which have two distinct representations in base /i? 

Few, as we will see in the exercise below:
Exercise 1.1.4. Give the general form of the reals possessing two distinct repre­
sentations in base /?. Show that the set of all the reals for which there exists a 
base (3 in which the real number has two distinct representations is exactly the 
set of the rationals.

1.2. Expansion of the rational numbers in base
In the decimal base, the quotient of two integers ‘falls exactly’ or ‘does not fall 
exactly’, but after a certain point it is always periodic. The following exercises 
allow us to verify this periodicity result in any base /?. This section forms a short 
problem on elementary arithmetic. Before working on the general case, we will 
solve the following particular case:
Exercise 1.2.1. Calculate the decimal expansion of 1/7.
Exercise 1.2.2. Let m and n be two relatively prime integers such that m <  n. 
Let ro = ra, and define d-j and r_j iteratively as being the quotient and the 
remainder, respectively, of the Euclidean division of /?r_j+i by n:

/?r_j+1 = nd-j + r - j, 0 ^  <  n.

Show that, for every j  ^  1, 0 ^  d-j < (3.
Exercise 1.2.3. Show that 0.d-\d-2d-$ • • • is the expansion of m/n in base (3.
Exercise 1.2.4• Show that there exist two integers k and £ such that and rt 
are equal. (Argue by contradiction.)
Exercise 1.2.5. Deduce from this that the expansion of m/n in base [3 is periodic 
from a certain point. Generalize this to the case m/n ^  1.
Exercise 1.2.6. When do the divisions m/n ‘fall exactly’ in base /??
Exercise 1.2.7. Give the expansion of 1/5 in bases 2, 8, and 16. (Observe care­
fully the result in base 16.)

1.3. The machine representation of numbers
Several types of numbers can be represented in a computer. The machine integers 
are nothing special, the only point to note is that the set of integers which can 
be represented is finite, for example from -32768 to +32767. Recall that a bit 
of information is a binary digit, i.e., 0 or 1, and that a byte is a group of 8 bits.

Since in this example there are exactly 216 different numbers, it is sufficient 
to have 16 bits or 2 bytes to represent them.
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The floating-point numbers are more interesting. The set of these numbers 
is described by a base /?, a number of significant figures r, and two integers m 
and M. Every floating-point number is of the form

s O.d-id-2 • • • d-r /3J
with j  between m and M, 1 ^ cLi <  /?, and, for k >  1, 0 ^  d-k <  /?. The letter 
s designates the sign of the number. We add the zero to the set of floating-point 
numbers. We thus obtain a subset F(/?,r, ra,M) of E which is formed from 
numbers whose expansion in base /? is finite. The expansion 0.d_id_2 • • • d-r is 
the mantissa of the number and j  is its exponent.

The normalization 1 ^ d-\ <  /? is very important. It ensures that all the 
figures of all the nonzero floating-point numbers are significant.

If the result of an operation is greater in absolute value than the largest 
floating-point number then the machine generally returns ‘overflow’. If the result 
of a nonzero operation is rounded to zero then the machine returns ‘underflow’.
Exercise 1.3.1. Forsythe’s toy floating-point system: take /? = 2, r = 3, m = -1, 
and M — 2. Determine all the floating-point numbers and draw them as a scale 
on a straight line segment centred on zero. Does 0.1112~1 belong to this system?

As we see from Exercise 1.3.1, there are many gaps between the floating­
point numbers. We therefore need a rounding function A which has the following 
properties:

• A is defined for all E;
• A leaves F(/3,r, m,M) invariant;
• Let x E E. Let [/, /'] be the smallest interval containing x, and whose 

extremities are floating-point numbers. Then A(x) is equal to whichever 
of the numbers / and f  is closest to x;

• If x is equidistant from / and /', then A(x) is determined in a variety of 
ways, which can be dependent on the machine.

Exercise 1.3.2. Calculate A( 1/3) in the toy system F(2,3, -1,2).
Our machine can only recognize the numbers belonging to its floating-point 

system. We define arithmetic operations on the floating-point numbers by letting

Exercise 1.3.3. What are the results of the following operations in the toy 
floating-point system:

f  Q f  = A {f -  f ) ,
s ® r = A u n ,
f® f'  = A (f/ f).

5
2
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The program must be able to recognize the overflow and underflow situations. 
Exercise 1.3.4• Still in the toy system, calculate

What can we say about the algebraic properties of the operations 0 and 0?
Exercise 1.3.5. Simulate a small floating-point system in base fl = 10 by using a 
programming language such as PASCAL or FORTRAN and making a rounding 
procedure.

Begin by fixing r = 3, m = -3, and M — 5. From this rounding procedure, 
program the floating-point arithmetic operations in F(10,3, —3,5).

Return overflow and underflow when appropriate. A more elaborate version 
should allow the simulation of floating-point systems for various values of r, m, 
and M, with fl = 10. Passing to any base fl is more delicate, but represents an 
interesting exercise for those who can program.
Remark 1.3.6. The unit of speed of a computer, used principally for scientific 
calculations, is the flops, or FLoating-point OPeration per Second. We would 
therefore talk about a machine calculating at 100 megaflops, that is 108 floating­
point operations per second. Traditionally, when we evaluate the efficiency of 
a scientific calculation algorithm, we only count the number of multiplications 
and divisions that it demands. It is more reasonable, with the current state of 
technology, to also count the additions and subtractions, since the relative time 
for multiplications and divisions has decreased.

In the era of parallel machines, we cannot be content with evaluating speed 
in flops. We must also take account of the number of processors, and note that 
certain algorithms use the structure of the machine more efficiently than others.

1.4. Summation of series in floating-point numbers
When we have a computer at our disposal we are tempted to calculate things 
that we did not know how to, or did not want to, calculate by hand. The 
preceding exercises have shown that operations on floating-point numbers suffer 
from significant arithmetic faults. We will see others which are more analytic. 

Let (un)n^o be a sequence of reals. We let

E0 = j4(m0) and £n = £n_i 0 A (un).
This is therefore the sum of the numeric series whose general term is un.
Exercise I.4.I. Show that if un tends to 0 as n tends to infinity, and if the sums 
£n stay below the level of overflow, the sequence of En is stationary from a 
certain point.
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Exercise 1.4-2. We let un = l/n (harmonic series). Is this numeric series con­
vergent? Show that the partial sum of this series is equivalent to In n.
Exercise 1.4-3. Show that, for n > /?r, the sequence of floating-point partial 
sums of the harmonic series is stationary. Find an upper bound for the partial 
sum thus obtained.
Exercise 1.4-4• Calculate the sum of the harmonic series working in the sets 
F(10,3, -3,5) and in F(10,5, -5,5). This is the moment when the sequence of 
£n is stationary.

Although all the series with terms tending to zero are convergent in a ma­
chine, their machine sum depends considerably on the floating-point system used. 
We would expect that a series with terms tending to zero is divergent if its sum 
depends on the machine.
Exercise 1.4-5. The partial sums of a divergent series with positive terms exceeds, 
from a certain point, every given positive number. What must the minimum size 
of the mantissa be in base 10 so that the partial sums of the harmonic series 
exceed 100? On a computer doing 109 flops how much time, in years, is required 
to do this? (Take 1 year = 3 x 107 seconds and make suitable approximations.)

Another peculiarity of the floating-point numbers is calculation instability. 
Recall that the series

is convergent for all x £ E.
Exercise 1.4-6. Program: calculate e5 and e~5, first using the exponential func­
tion of the chosen scientific programming language, and then in the floating-point 
numbers F(10,3, -3,5). Explain the difference between the relative error for e5 
and the relative error for e~5. What happens if we reverse the summation order 
of the partial sums for e“5? What happens if we sum the positive and negative 
terms separately?

1.5. Even the obvious problems are rotten
Consider the recurrence relation

(1.5.1) ttn+i = ( q +  - p .

Exercise 1.5.1. Verify that the sequence, whose general term is the constant 
un — p/q, is a solution of eqn (1.5.1). Take q = 3 and p = 1 or p — 2, and 
program the above recurrence. What do you observe?
Exercise 1.5.2. Take q — 4 and p — 1, 2, or 3, and do the same calculation. Are 
the phenomena the same?
Exercise 1.5.3. Give an interpretation of the different behaviours observed.
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1.6. Even the easy problems are hard
The case of solving the second degree equation 

(1.6.1) ax2 + bx + c = 0

allows us to see the difficulties linked to the orders of magnitude of the numbers 
with which we are working, and how the simplest nonlinear formulae can tie us 
up in knots.

The roots of eqn (1.6.1) are given by the formulae

(1.6.2) Xi -b + \Jb2 -  4ac 
2 a and #2

—b — \]b2 — 4ac 
2 a

Exercise 1.6.1. Write a program giving the roots of eqn (1.6.1), including the 
complex case and a test to ensure that a is not zero.
Exercise 1.6.2. Let r be the maximum number of decimals representable in 
floating-point, and q the integer part of 1 + (r/2). We take

a = 1 , b = - 10\  c — 1 .

Calculate the roots of eqn (1.6.1). Also calculate them by machine and compare 
the result.
Exercise 1.6.3. To avoid the above difficulty, we can write the formulae (1.6.2) 
a little differently by noting that

V y- '/ z = 3/ -  z
Vv + Vz'

Write the corresponding new formulae, which the program will apply if it detects 
the need after having made a test.

Apply the new program to the following choices of coefficients, denoting the 
exponent of the largest power of 10 which can be represented by the machine by 
M, and denoting the integer part of 1 + (M/2) by n:

COII<3 6 = 5, 1IICJ

(1.6.3) a = 6 x 10”, 6 = 5 x 10", c = -4 x 10”,
(1.6.4) a = 10“”, Cr II 1 i—‘ O 3 c = 10”,
(1.6.5) a = 1, cT1II-o c = 1 -  10~r“1

Note that the case (1.6.3) can be solved by using a suitable scale. For the case 
(1.6.4) it is necessary to use more drastic means, for example, the change of 
variable y = l/x. Provide tests and modifications of the program to allow the 
solution of these problems.
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Denote the smallest root of the equation

(1.6.6) x2 - 2x + 1 = e

by X\(e) and the largest root by X2(e). Calculate the derivatives of x\ and X2 
with respect to e, for e >  0. Explain the phenomena observed and describe the 
remedies that can be employed.

1.7. A floating conclusion
If the floating-point numbers have so many faults, why not calculate with other 
representations of the numbers? In certain cases, it is wise to use exact rep­
resentations, such as rational numbers, or, more generally, a representation in 
some suitable field or ring. For applications arising directly from engineering 
science or from nature, such representations are often not convenient since they 
assume precise knowledge of the numerical data for the problem. In general, 
this knowledge is not accessible. There are, however, less obvious applications: 
if we seek the coefficients of a series that we know are rational a priori, it is 
natural to use an exact representation, that is, the rationals. More generally, 
formal calculation tools allow us to calculate the derivatives, and sometimes the 
integrals, of functions for which we possess an explicit expression, to find the 
explicit solutions of differential equations, and to give a large palette of tools 
which are later available for use in the heart of a scientific calculation program 
(it is possible for some formal calculation software to produce a procedure in 
FORTRAN, C, or some other language). It is particularly interesting if the pro­
gram relies on complex formulae which are difficult to check. In this case, the 
symbolic calculation tool can be remarkably effective, when it is reliable.

But there is always the other side of the coin: the use of symbolic manipula­
tion software leads to extremely complex calculations more rapidly than the use 
of scientific calculation software, and is occasionally totally infeasible. Further­
more, this software is still new, and clearly less reliable than scientific calculation 
software. If, for example, we ask a formal calculation program to take the inte­
gral of a function which has distinct forms according to the interval considered, 
the program is frequently susceptible to giving the wrong answer. Similarly, for­
mal calculation programs are. often bad at simplifying complicated expressions. 
Finally, everyone who leaves the beaten track requires tailor-made code and there 
exist far fewer libraries of coherent programs than for scientific programming.

For a numerical analyst, floating-point representation is the devil that we 
know. Formal calculation software is the devil that we know less well. Whatever 
happens, with these two devils, it is necessary to proceed with caution.



2

A flavour of numerical 
analysis
Teaching numerical analysis, or, more generally, the analysis of calculation pro­
cedures, often has the reputation of being pointless.

Chapter 1 will, I hope, have convinced the reader that it is useful to think 
about numerical methods. The present chapter introduces some mathematical 
techniques which are extremely common in numerical analysis.

Since mathematics is certainly not a spectator sport, but more an activity 
where one only acquires skill and strength by doing it, studying proofs, and 
solving exercises, the format of Chapter 2 is similar to that of Chapter 1. It 
therefore consists of a self-guided visit in the garden of approximations of the 
continuous by the discrete.

We place the discrete in the care of Don Knuth [38], and the continuous in 
that of the great Euler [25].

There are no surprising results in this chapter, just the comparison of powers 
and exponentials, and the construction of the logarithm and exponential func­
tions. It allows us to sum up results which are generally known to the reader, 
but by using an approach which is independent of the classical results of ele­
mentary real analysis. This approach rests on simple arithmetic identities and 
inequalities, and has a large place in familiar numerical analysis procedures, but 
is little used elsewhere.

We must not be afraid of throwing ourselves ‘in at the deep end’ of indices 
and limits of sequences of functions. At the beginning, we will, perhaps, not 
feel completely at ease, but as we go along and use these tools, it will become 
beautiful and natural.

11
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2.1. Comparison of exponentials and powers
There are numerous methods for proving the comparison theorems between ex­
ponentials and powers. The first exercises of this project will allow the reader to 
obtain these comparisons in a totally elementary manner, using only algebraic 
identities and simple inequalities. The results are eminently classical; the proofs 
guided by these exercises are perhaps not.

We begin with some elementary identities.
Exercise 2.1.1. Let m be a strictly positive integer. Let (using notation from
[38])

(2.1.1) ym = y(y + 1) ■■■(y + m -  1), 1.

Verify the following identities:

(2.1.2) ym -  (y-  l)m = m y ^ ,
m

(2.1.3) (y + z)m = J 2 CJm y ^ Jz l
3=0

Hint: for identity (2.1.3), let

F(y,z,m) = (y + z)m3 zJ. 
j=0

Calculate the difference F(y, 2 , m)-F(y, 2 , m — 1) with the aid of identity (2.1.2) 
and conclude by means of a recurrence on m.
Exercise 2.1.2. Let x be a number (rational, real, or complex) which is different 
from 1. Calculate the sum

n
5 (x, m, n) = ^  xkkm, 

k= 1
using the fact that

k ___
kw = m Y , jm~1

j =0
and changing the order of the summations. Deduce from this calculation that, 
if 0 ^  x <  1, then

m\0 ^  S (x, m, n) ^  ----- — r
v (1 —

and

0 nmxn+1 ^ m\
( i ^ y(2.1.4)
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Exercise 2.1.3. Show that for every y E ]x, 1[ there exists a number C such that, 
for every n ^ 0, we have the estimate

nm xn ^ Cyn.
Show, by using eqn (2.1.3), that there exists a C' such that, for every n ^  0 and 
for every N >  n,

N

(2.1.5) xkkm ^C '(n  + l)w
k=n+ l

Use the formula found in Exercise 2.1.2 and inequality (2.1.5) to calculate the 
limit of 5(x,m,n) as n tends to infinity. What can we say if x is a complex 
number of modulus strictly less that 1?

The preceding exercises thus show, in an elementary way, that increasing 
exponentials dominate all power functions.

2.2. Convergence and divergence of classic series
The divergence of the harmonic series is a well-known fact, but generally proved 
by comparison with the logarithm function. There follows a proof of this diver­
gence which is entirely independent of all knowledge of logarithms:

Let

(2.2.1) Hn = 1 + - + ... 4— •2 n
Exercise 2.2.1. Show that, for every n ^  1,

H‘2n — Hzn-l ^  —.

Deduce the divergence of the harmonic series.
The same technique can be used, suitably modified, to show convergence: 

Exercise 2.2.2. Show that, for every a >  1, the series
oo
E»-"
n= 1

converges.
Hint: do not delimit the packets exactly as in the preceding exercise.

2.3. Discrete approximation of the logarithm
This section gives a construction of the natural logarithm from scratch; we do 
not suppose that the reader has never seen a natural logarithm before, but we 
wish to lead him or her to explore known ground with new eyes.
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We call the largest integer less than or equal to the real x the ‘floor’ of x 
and denote it by We call the smallest integer greater than or equal to x
the ‘ceiling’ of x and denote it by \x~\. These ideas differ from the widely known 
idea of the integer part, but are often rather easier to use. Recommendation: 
draw graphs of the floor, ceiling and integer part functions to see how they are 
different.

We define the following functions for x ^ 1:
(2.3.1) L (x, n) = J/fna.-| -  Hn,
(2.3.2) L (x, n) = Hynxj -  ffn-i •
Exercise 2.3.1. Show that L(x,n) is strictly positive if x >  1 and n ^ rio(x) = 
\{x — 1)-1"|, and that L(x,n) is strictly positive if x ^  1 and n ^ 2 .
Exercise 2.3.2. Show that, for every real x >  1 and every sufficiently large integer 
n, we have the inequalities

L (x, n) ^  L (x, 2n) ^ L (x, 2n) ^ L (x, n).
Exercise 2.3.3. Show that the limits

lim L(x,2n) and lim L(x,2n)n—>oc n—»oo
exist and are equal to a function of x, which we will denote by L(x).
Remark 2.3.4• Some simple numerical experiments with x = \/2 will convince 
the reader that the sequence of numbers (L(x, n))n>no^  is n°l monotonic and 
that, consequently, its convergence is not obvious. On the other hand, we have 
just shown that the sequence of numbers (L(x, 2n))2n>no^  is monotonic. We 
have thus extracted a subsequence whose convergence is easy to show. There 
are a lot of procedures for extracting subsequences. Here we have used an arith­
metic argument but we often call on a compactness argument. It would be a 
shame to be happy with only demonstrating the convergence of a subsequence: 
we will therefore show the convergence of the two sequences (L(x,n)) n>1 and 
(L(x,n))n>1, beginning with the convergence of (L(x,n) ) n >1  when x is an in­
teger.
Exercise 2.3.5. Show that, if p is an integer which is greater than or equal to 2 , 
then for every n ^  1

L(p,n) ^ L (p, n -h 1).
Deduce from this that, for every integer p which is greater than or equal to 2 , 
the sequence (L(p, n)) converges to L(p).

What is the value of L(l)?
The function L should be the Napierian logarithm. It is therefore necessary 

to verify that it has the additive property
(2.3.3) L(xy) = L(x) + L(y).
We will first verify this on the integers:
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Exercise 2.3.6. Show that, for all integers p, and n greater than or equal to
2,

L ( pq, n) = L(p, + ( , np).
Deduce from this that L(pq) = L(p) + L(q), for all integers p and q greater than 
or equal to 1.

This property is immediately generalized as follows:
Exercise 2.3.7. Let a: be a dyadic number with finite expansion: x — 2~lr >  1. 
Show that, for every integer p ^  1 and for every integer n ^  /, we have

L (%P,2") = L (x, 2") + L (p, 2n~lr),

and deduce from Exercise 2.3.5 that L(px) = L(p) + L(x).
Then show that L(x) — L(r) -  IL(2) and, therefore, for all dyadic numbers 

x and y which are greater than or equal to 1 and have a finite expansion, L has 
the additive property (2.3.3).

The function L has the additive property when it acts on dyadic numbers 
of finite expansion. How does it behave on reals greater than or equal to 1? A 
density and continuity argument gives the answer:
Exercise 2.3.8. Show that, for all x and y such that 1 ^  x <  y, and every integer
n ^ n0(x),

From this deduce the inequalities

(2.3.4) -— - ̂  L(y) -  ̂V x
Show that eqn (2.3.3) holds for all reals x and y greater than or equal to 1, 

by combining the continuity relation (2.3.4) and the additive property (2.3.3) 
already proved for dyadic numbers.

Show that the function L is differentiable on [l,+oo). What is the value of
its derivative?

Now we are ready to show that every sequence L(x, n) converges to its limit: 
Exercise 2.3.9. Deduce from the inequalities (2.3.4) that

and that, consequently,

L ([xn\ + 1) -  L (n + 1) ^  -  [znj) -  (n).
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Use the properties (2.3.3) and (2.3.4), and the definition of the floor function to 
show that

L (x)----^  L (x, n) ^  L (x).n
What can we say about L(x,n)?

We have momentarily forgotten the logarithms of numbers less than 1 , but 
they are treated in an analogous way:
Exercise 2.3.10. Show that, for every x <  1 and for every sufficiently large n, 
we have the inequalities

-  L (x, n) ^  —7— —- - L (x, 2n)n - 1
£

2 n
1 _____

[2xn\ 2n - 1
1 - L (x, 2n) ^ 1 1

|_xnj n — 1
— L (x, n).

Exercise 2.3.11. Show that, if p and q are integers such that q <  p, then

L

Conclude, by using the toolkit developed above, that L(x) — -L(l/x) for 
any strictly positive real x.

Calculate the derivative of L at every positive real number.
The function L thus obtained is the Napierian logarithm. It was introduced 

without calling on its definition as the integral of 1/x which vanishes at x = 
1. Certainly, the integral definition has been hidden: without saying it, we 
approximated an integral with a finite sum by means of a rectangle method, 
allowing us to even drop the small pieces at the ends of the interval (draw a 
picture).

It is recommended that the reader draw the areas defined by L(x,n) and 
L(x,n) for x >  1, and compare them with the area defined by f*  dy/y. It will 
be useful to write, for example,

2.4. Comparison of means
We are also going to construct the exponential function by elementary methods. 
To do this we will need classical inequalities between different means.

The proof of these inequalities is very simple, and curiously dyadic—as the 
reader will appreciate.

We recall some terminology: the arithmetic mean of a and b is equal to half 
of the sum of a and b; the geometric mean of a and b is the square root of the 
product of a and b; and the harmonic mean of a and b is the inverse of the 
arithmetic mean of 1/a and 1/b.
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Exercise 2-4-L Show that, for all positive real a and 5, we have the inequalities

2 (- + l )  ^ V ^ b ^ - ( a  + b).

We are going to show that, for every integer n, and for every choice of strictly 
positive reals a\, a2,..., an, we also have the following inequality:

/ n ̂ y \ _1 1 n ̂
(2.4.1) n \ Y ~  Î  y/ai «2 • • - a„  ^

\j=1 ai/ n

Exercise 2.4-2. Show that inequality (2.4.1) is true when n is a positive integer 
power of 2 .
Exercise 2-4-3. Let n <  2m. Show that we can deduce the second inequality 
in expression (2.4.1) for n from the corresponding inequality for 2m, on the 
condition that we choose

b _ \ a j  if 1 ^  j  ^  n-
j ~ \ g  i fn + l

and we take g to be the geometric mean of the aj.
This elementary proof of the inequality between the geometric and the arith­

metic mean of n numbers can be found in [44, Chapter II, Section 5].
Exercise 2-4-4• Use a similar procedure to show the first inequality in expression
(2.4.1) .

2.5. Elementary construction of the exponential
The construction described below is entirely independent of the construction 
of the logarithm which was presented above. We will see in the differential 
equations chapter that this construction is a precursor to a lot of the ideas used 
for the numerical integration methods for ordinary differential equations.

Just as the logarithm was obtained by an additive approximation of inte­
gration, the exponential will be obtained by a multiplicative approximation of 
integration.

I owe the relation between the inequalities on the means and the approxi­
mation of the number e to the small book by P. P. Korovkin [55], and I have 
generalized this idea to the approximation of the exponential function. On the 
other hand, his proof of the inequalities on the means is more complicated than 
that given in the preceding section.

Suppose that x is strictly positive, until indicated otherwise.
We define the following functions:

( 7‘ \ ni _ / X \
1 H---) and E (x, m) = (1----- )

m / \ m/

— m
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It is proved in all calculus courses that E(*,m) and jE(-,m) converge to the 
exponential as m tends to infinity. Here, we shall see that these functions give 
a means to construct the exponential from scratch; moreover, we show that the 
exponential is the inverse function of the logarithm.
Exercise 2.5.1. Let x >  0. Show that, for every integer m ^  1 , we have

E (x, m) E (x, m + 1).

Hint: apply the second of the inequalities (2.4.1) with d\ = 1, = • • • = am+i =
1 + x/ra, and n = m + 1 .
Exercise 2.5.2. In the same way, show that, if m >  x,

E (x, m) ^  E (x, m 4-1), 

using the first of the inequalities (2.4.1).
Exercise 2.5.3. Show that, for every p >  x which is sufficiently large and for 
every m greater than or equal to 1 ,

E(x,p) ^  E(x,m).

Exercise 2.5.4. Show that, for every m >  x, we have
_ _

0 ^  E (x, m) — E_ (x, m) ^  — E (x, m).m
Exercise 2.5.5. Finally, show that, for every x >  0, the sequences (E(x,m)) 
and (i£(x,m)) m each have a limit as m tends to infinity and that these limits 
coincide.

We will denote by E(x) the common limit of E(x, m) and E(x, m) as m tends 
to infinity.
Exercise 2.5.6. Calculate E{0).
Exercise 2.5.1. Show that, if p is greater than or equal to 1, then

E{px) = E{x)p .
Exercise 2.5.8. Deduce from the preceding result that, for every positive or zero 
rational p/q, we have

Exercise 2.5.9. Show that, if x is positive or zero and if y is strictly greater than 
x, then

(y ~ x) E (x, m) (1 4- —) ^  E(y,m) -  E  (x, m)\ m/
^ { y -x )E (y ,m )( l + —) .\ m /



2.5. ELEMENTARY CONSTRUCTION OF THE EXPONENTIAL 19

From this, deduce that in the limit as m tends to infinity,

(y — x) E(x) 4. E(y)-E( ) ^  ( (y).

Show that E is differentiable for every x >  0 and right differentiable at 0. Cal­
culate E'(x).
Exercise 2.5.10. Deduce from Exercises 2.5.8 and 2.5.9 that, for every x and y 
greater than or equal to 0, E satisfies the multiplicative property

(2.5.1) E (x + y) = E (x) E (y).

From now on we are interested in the behaviour of E for x <  0.
Exercise 2.5.11. If x is strictly negative, show that the two sequences

(E(x,m))m>_xand

are well defined and converge monotonically to E(—x)~l . Then, show that the 
property (2.5.1) holds for all real x and y.

The function E is therefore the exponential function. It remains to verify 
that it is the inverse of the logarithm.
Exercise 2.5.12. Deduce from expression (2.3.4) that, for every x ^  0,

— — ^ L { l + x) ^x .1 + x

Deduce from this inequality that

— ^  «£(£(*,"•» 

and that consequently, for every x ^  0,

L(E(x)) = x.

Show that this relation is still true for x <  0, and that we also have, for y >  0,

E(L(y)) = y.

Thus, we have constructed the exponential and logarithm functions by en­
tirely elementary methods and we have shown that one is the inverse of the 
other.

Equally simple methods can be useful elsewhere—and this is what we are 
going to see in the next subsection.
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2.6. Exponentials of matrices
Let AA.n be the set of real or complex square matrices with n rows and n columns. 
We will verify that M n can be equipped with a norm in the following way: let 
A — mid

n
Mill = max y^|Ajj| 

1=1

Exercise 2.6.1. Show that the expression thus defined really is a norm, that is 
to say that, for all matrices A and B of M n and every scalar A, we have

P||i ^  0 , positivity,
P||x = 0 if and only if A = 0 , the norm is positive definite,

P  + J9||i ^  P||i + ||£||i, triangle inequality,
||Â4||i = |A| p||i, homogeneity of order 1.

The matrix norm that we have just defined is linked in a simple way to a 
certain n-component vector norm as follows:
Exercise 2.6.2. If X\,X2,... ,xn are the coordinates of some vector x, we let

M i ■
i=i

Show that we have the inequality

(2.6.1) \Ax\i ^  ||A||i|x|i.

Furthermore, show that, for every matrix A, we can always find a vector x /  0 
such that

|Ax|i = ||A||i|x|,.
Then, show that

(2.6.2) P ill  = maxx̂ O
|Ax|!
M l '

Exercise 2.6.3. Show that, if A and B are in Mn, then

||A5||1 ^||A||1 ||5||1.

Denote by 1 the identity matrix. Calculate ||l||i.
Exercise 2.6.4- Let P(ra))m^i be a sequence of matrices belonging to M n• 
Show that the sequence of norms P(m)||i tends to 0 if and only if each of the 
sequences {Aij(m))m^i tends to 0 for any i and j  between 1 and n.
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Exercise 2.6.5. Show that the sequence of matrices A(m) converges if and only 
if it is a Cauchy sequence; in other words, if and only if, for every given number 
s >  0, we can find an integer M such that, for every m and p greater than or 
equal to M, ||A(m) — A(p)\\i is less than or equal to e.

The result of the previous exercise states that M n is a complete space, i.e., 
all Cauchy sequences converge.

The preceding ideas are sufficient to construct the exponential of a matrix 
A without using power series. We begin by showing an elementary criterion of 
invertibility:
Exercise 2.6.6. Let A e M n be a matrix with corresponding norm strictly less 
than 1. Show, with the aid of inequality (2.6.1), that 1 — A is injective and, 
therefore, invertible. Also show, using eqn (2 .6 .2), that ||(1 -  A)-1||i ^  (1 -
M U )-1.

We will now show an elementary identity:
Let C and D be matrices belonging to M n. Show that the following identity 

is valid for every integer p ^  1 :
p-1

(2.6.3) C p - D p = ^2  °j (C -  D) Dp- l~j .
j=0

We now use the following approximations to the exponential:

(2.6.4) E(A,m) and E (A, m) = H " )
Exercise 2.6.7. Verify that the approximations (2.6.4) are well defined for every 
sufficiently large m.

Compare ||£(,4,m)||i, ||E(A,m)||i, E{\\A\\i,m), and E{\\A\\i,m).
Exercise 2.6.8. Show that, for every m greater than or equal to 1 ,

(2.6.5) \\E(A,2m) -E||i ^ Mill exP(Mlli) 
m

Hint: apply eqn (2.6.3) with C = (1 -f A/2m)2 and D = 1 + A/m.
This inequality allows us to show the convergence of a subsequence:

Exercise 2.6.9. Verify that the sequence E(A, 2m) has a limit, which will be 
denoted by E(A), as m tends to infinity.

What can we say about the sequence E(A, 2m)?
Exercise 2.6.10. Show that, even if A and B do not commute, we have

(2-6.6) \\E(A) -E(B)\U ^  \\A -  exp(max(P||1,||.B||1)).

Hint: this is another application of identity (2 .6 .3 ).
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It remains to illustrate something of the multiplicative property of the expo­
nential:
Exercise 2.6.11. Show that, if A and B commute, then

(2.6.7) E {A + B) = E {A) E (B) = E{B)E {A).

Show that, if p is an integer greater than or equal to 1 , then

E(A)p = E(PA).

Exercise 2.6.12. Prove that

(2.6.8) P M - l - X I U  < 2  MH?  e x p  (HAH,).

Hint: estimate \\E(A,2j ) -  E(A, 2̂ “1)||i using expression (2.6.5) and sum with 
respect to j.

The inequality (2.6.8) allows us to solve the remaining questions, and, in 
particular, the convergence of the sequence E(A,p) to E(A):
Exercise 2.6.13. Show that, if p is an integer greater than or equal to 1,

\\E(A,p)-E(A)\\!̂  2exp(2M i ) M | .
P

This allows us to verify the convergence of E(A1n) to E(A):
Exercise 2.6.H. Show that there exists a constant C such that

\\E(A,p)-E(A)\\1 ^  -

and estimate its value.
This allows us to consider the real variable function which associates t with 

E(tA):
Exercise 2.6.15. Show that the function t •-> E(tA) is infinitely differentiable 
and calculate all of its derivatives.

We can also make some calculations of exponentials in practice:
Exercise 2.6.16. Let A be a diagonal matrix. Calculate E(A).

This was easy. Let us try a more complicated case:
Exercise 2.6.17. Let A be a nilpotent matrix, that is, there exists p (less than 
or equal to n) such that A(p) is zero. Calculate exp(A). Show that, for any m, 
E(A, m) is a polynomial in A, whose degree is bounded independently of m.

The case of nilpotent matrices is particularly curious, because we have an 
analogous behaviour for E(A,m):
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Exercise 2.6.18. Under the conditions of the preceding exercise, show that 
E(A,m) is also a polynomial in A whose degree is bounded independently of 
m, and find its limit as m tends to infinity.

There are many ways of approximating a matrix exponential. Assume that 
the matrix A and the function B(t) are given such that

||J9 (*) -  (*̂ L)||i = te (t),
where e(t) is a function of t which tends to 0 as t tends to 0 .
Exercise 2.6.19. Show that there exists a constant C such that, for all m,

Therefore, if we assume that e(t) is small compared with t, the approximation 
of E(A) by B(l/m)m is more precise than the approximation of E(A) by E(A, m) 
or by E(A,m).
Exercise 2.6.20. For sufficiently small t, let

(2.6.9) B(t) = ( l +  ( l -  .

Show that
\\B(t)-E(tA)\\l = t3r](t),

where 77 is a function of t which is bounded for sufficiently small t. What is the 
relationship between B(t/m), E(tA,m), and JE(tA,m)?

Not only is this type of approximation more precise, but it allows us to 
obtain interesting information. Denote the Euclidean scalar product in W1 (or 
the Hermitian scalar product in C71) by (x,y). A matrix A is self-adjoint if, 
for any x and y, (Ax,y) = (x,Ay). It is skew-adjoint if, for any x and y, 
(Ax,y) = —(x,Ay). Finally, it is unitary if, for any x and y, (Ax, Ay) = (x,y).
Exercise 2.6.21. Let A be a self-adjoint matrix. Show that E(A) is also self- 
adjoint. Let A be a skew-adjoint matrix. Show that the matrix B , defined by 
eqn (2.6.9), is unitary and, consequently, that E(A) is unitary.

This is not all; we can estimate matrix exponentials when we have little 
information on the matrix itself:
Exercise 2.6.22. Suppose that A is a self-adjoint matrix which is positive in the 
sense of quadratic forms, that is
(2.6.10) (Ax,x) ^  0,
for any x in Rn (or C 1). Show that, for every x, we have

0 ^  (E (-A) x, x) ^  (x, x). 
tffoL use E(A, n) rather than E(A, n) to obtain the answer.
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What use is such an example? It happens (and we will illustrate this in 
a particular case in the last chapter of this book) that a number of practical 
numerical analysis operators have the property (2.6.10), but their norm grows 
rapidly with the number of degrees of freedom, n, of the discretization; they 
arise from differential operators which have no chance of being bounded in a 
reasonable vector space. This does not prevent us from analysing them and 
doing the calculations which require them, even in practice.

One property of the exponential is lost when we consider matrices: we still 
do not have E(A + B) = E{A)E(B). Below is an elementary example of this 
phenomenon. Let

- ( 2  o) o)-
Exercise 2.6.23. Calculate £(.4) and E(B). Is E{A)E{B) unitary?

All of this section can be generalized without difficulty to the case of a unitary 
normed algebra, that is, a set A which has a vector space structure and, fur­
thermore, which possesses one multiplication which is distributive with respect 
to addition, and a norm for which this space is complete.



3

Algebraic preliminaries
This chapter contains some elementary and some very elementary information. 
Normally, at level n one has not entirely assimilated the lessons of level n — 1. 
Therefore, the consultation of first year courses and books is strongly recom­
mended in case of difficulty.

3.1. Linear algebra refresher
We assume the reader to be familiar with the ideas of a vector space over the field 
K, which could be the real field R or the complex field C, and linear mappings. 
We also assume the reader to be familiar with the ideas of linearly independent 
sets, spanning sets, dimension, and basis.

3.1.1. The matrix of a linear mapping
Let V be a vector space of dimension n, and W a vector space of dimension m, 
over the field K. We choose a basis (v\,..., vn) of V and a basis (w\,..., wm) 
of W. Recall how we determine the matrix of the mapping / between these 
two bases: the images f(vj) of the vectors of the basis of V have the following 
decomposition on the basis Wji

m
f  (vj) =

i= 1
Every element x of V has the following unique decomposition:

n
x = J2 xi vj-

j=i
By the linearity of /,

✓ n v n n m

f [ J 2 xi vi ) = '52 xif(ui) = 5Z ’
\j=l ' j=  1 j= l i=X

25
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and, therefore,

(3.1.1)

The matrix of the mapping / between these two bases is therefore the following 
table of numbers belonging to K*

We frequently denote the element of the matrix A which is situated at the in­
tersection of the i-th row with the j-th column by Aij or (A)ij. The notational 
convention consists of first giving the row index and then the column index. 
The set of matrices with m rows, n columns and coefficients in IK, equipped with 
matrix addition and the multiplication by a scalar, forms a vector space denoted 
by Afm,n(K)- If m = n, this space is formed from square matrices and we denote 
it M n(lK). If the choice of the field IK is not important then we will denote it sim­
ply by M m,n or M n- The space .Mm>n(IK) therefore corresponds to the space of 
linear mappings from IKn to Km, once these two spaces are equipped with bases. 
Matrix multiplication corresponds to the composition of linear mappings. If B 
belongs to .Mm,n(lK) and A to -Mn,p(IK), we define the product AB by

In multiplication is an internal law. The identity matrix 1 is the
identity in A1n(^); it will also be denoted by /, or by /n, if we wish to specify the 
dimension. A synonym of invertible is regular. A matrix which is not invertible 
is said to be singular.
Remark 3.1.1 (Geometric Remark). If we identify V and Mn (or C71), and simi­
larly W and Rm (or C771), then we can say that the column vectors of the matrix 
A are the images of the vectors of the starting basis.

We can perceive the matrix of the linear mapping as the assembly (in the 
right order) of the images of the basis vectors. Thus, the identity matrix is 
formed from the assembly of the canonical basis vectors of Kn.

The above identification will be automatic in finite dimensions. Unless in­
dicated otherwise, we will identify linear form and row vector, linear mapping 
from the basis field IK to V and vector of V, and linear mapping from V to W \ 
and the matrix of this linear mapping.

(An Aw • • • Ain ̂
A21 A22 * * * A2n

n
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3.1.2. The determinant
We recall the definition of the determinant as well as its principal properties. 
To do this, we identify families of n vectors of Kn = V and matrices formed 
from the assembly of these n vectors. The set An of alternate multilinear forms 
from Vn to K is formed of mappings /, from Vn to K, which have the following 
properties:

/ (V! + \v[,V2,..., Vn) = f(Vl, V2,. .. ,Vn) + A / (vj, .,
K", VA € K,

/ (v<r(l), tV(2), • • •, Va(n) ) =
where a is a permutation of n objects and e(cr) is its signature.

It can be proved that An is a vector space of dimension 1. The determinant 
is the one of these alternate multilinear forms on Kn which has the value 1 on 
the canonical basis of V. The determinant of a matrix is the determinant of the 
family of its n column vectors. The determinant of a linear mapping from W to 
itself is the determinant of its matrix, provided that we choose the same basis 
before and after the mapping. It can be proved that this determinant does not 
depend on the chosen basis.

The explicit expression for the determinant of a matrix is given by the for­
mula

n
(3.1.2) det A = 2̂c (<r) I I  ,

tt i=l
where the sum extends to all permutations a of n objects.

We know that a square matrix A is invertible if and only if its determinant 
det A is not zero. Similarly, the determinant of a family of vectors is nonzero 
if and only if this family is a basis. We also know that the determinant of a 
product of matrices is the product of their determinants.

However, this description is of little practical interest, since determinants are 
difficult to calculate. We happily calculate the determinant of a 2 x 2 numeric 
matrix, and we frequently solve a 2 x 2 system by employing the Cramer formulae. 
For n ^  4, it is already a bad idea to calculate a determinant with formula
(3.1.2) . We will see in Chapter 9 how the tools used for solving linear systems 
give efficient methods for the numerical calculation of determinants.

The determinant of a family of n vectors remains an interesting theoretical 
tool, if only because of its geometric significance. It is the volume of a paral­
lelepiped constructed on n vectors. Note that we allow this volume to be negative 
if the basis made out of these n vectors has the opposite orientation to the refer­
ence basis of the vector space. Consequently, the determinant of a matrix is the 
volume of the parallelepiped constructed from the column vectors of the matrix. 

e determinant therefore serves a crucial purpose when we make a change of
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variable in a multiple integration and, consequently, in the study of differential 
operators in geometry.

For higher dimensions, the calculation of the determinant can be simplified 
by considering structure or symmetry.

As an example of the exploitation of symmetry, we prove the following clas­
sical result, which concerns the determinant of Vandermonde:
Lemma 3.1.2. The following identity holds:

1 1 l •• 1
Xo Xi z 2 ’ * xn
r2Xq Z? x\ ■■- • rr2xn = n ~

\ 0̂ i<j^n
rj. nx0 xx ■ • Tn xn

The determinant thus calculated is called the Vandermonde determinant. 
Proof. To verify this identity let

P(x0,x i,...,«n)
be the Vandermonde determinant. This is a polynomial in the n + 1 variables 
xo,xi,... ,xn. If two of the numbers Xi are identical, the determinant has two 
identical columns and, therefore, it vanishes. Consequently, P must be of the 
form

Q (x0, X\, . . . , Xfi) n  ^  ’

with Q being another polynomial. Moreover, examining the formula (3.1.2) 
indicates that each term of the determinant, given by Cramer’s formulae, is of 
global degree

1 + 2 + ... -f n = -n (n + 1).
Consequently, P is a homogeneous polynomial of degree n(n + l)/2 with real 
coefficients and, therefore, Q is a real constant. It remains to calculate this con­
stant and, to do this, we note that, in the formula which gives the Vandermonde 
determinant, the monomial

*0*l-”*n
can only be obtained by taking a to be the identity permutation. The coefficient 
of this monomial in the determinant is 1. It remains to find the coefficient of 
this monomial in

n  ^  ■
o ̂ i<j^n

To obtain the term in x™ we must make xn appear n times and, therefore, we 
must take

n—1
j[J[ (xn ~ %i) •
i=0
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The coefficient of our monomial is therefore the coefficient of

in
JJ -  .

By induction, this is 1. □
We will come across this determinant again later when investigating the the­

ory of polynomial interpolation.
To conclude this section, we recall the following two facts:
• A nonzero matrix can have a zero determinant. For example,

• Except in 1 dimension, the determinant of the sum of two matrices is not 
related to the sum of their determinants. The reader who is in doubt would 
do well to compare det(A + B) and det A + det J3, where B is given by

3.1.3. The fundamental theorem of linear algebra and its 
consequences

The following theorem will be required frequently:
Theorem 3.1.3. Let / be a linear mapping from a finite-dimensional space V to 
a finite-dimensional space W. Then, the dimension of the domain of / is equal 
to the sum of the dimension of the kernel of /, and the dimension of the image 
of/:

dim Im / -I- dim ker / = dim V. o
Here is an interesting exercise:

Exercise 3.1.4. Prove, without using the determinant, that it is equivalent for a 
square matrix to be invertible, to have a left inverse, or to have a right inverse. 
Hint: if A has a left inverse B , then the kernel of A is reduced to 0 and the 
image of B is the whole space; use then the fundamental theorem of linear 
algebra, Theorem 3.1.3.

We can immediately deduce from this the following corollary for the linear
system

Ax = 6,
whose matrix A is square:
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Corollary 3.1.5. The following properties are equivalent:
(i) For every vector 6, eqn (3.1.4) has at least one solution;
(ii) There exists a vector b for which eqn (3.1.4) has at most one solution.

The linearity of the problem implies that if we have uniqueness for a vector b 
then we have uniqueness for all vectors b.

There is a simple criterion which guarantees that a square matrix is invertible: 
we say that an n by n matrix is strictly diagonally dominant if, for all j  = 
1,..., n, the following inequality holds:

lajjl >

Lemma 3.1.6. A strictly diagonally dominant matrix is invertible.

Proof. We will show that the kernel of a strictly diagonally dominant matrix 
A is reduced to 0. We assume that there exists a vector x ^  0 such that Ax 
vanishes, and let i be the index of the component of x with maximum absolute 
value. The i-th equation can be written

AuXi = — ^   ̂ AikXk.
{k.k̂ i}

Using the triangle inequality and the definition of i, this relation implies the 
inequality

\Aa\ \x(\ ^  ^   ̂ \x{\,
{k.k̂ i}

which, after division by |xj|, requires that

\Au\ ^  ^   ̂ ,
{k.k̂ i}

contradicting the assumption on A. Therefore, due to the fundamental theorem 
of algebra, A is invertible. □

3.1.4. Eigenvalues and eigenvectors
Let / be a linear mapping from a vector space V of finite dimension n to itself. 
The spectrum of / is the complement of the set of complex numbers A for which 
/ - XI is invertible. As we are in finite dimensions / — A/ is invertible if and 
only if its kernel is reduced to zero. Therefore, if A is in the spectrum of /, there 
exists a vector x (clearly nonzero) for which

f  (x) = Ax.
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In this case, A is an eigenvalue of /, and x an eigenvector of /. If we fix the basis 
of the space V, we can identify / with its matrix A in this basis, and thus we will 
refer to the eigenvalues of A and its eigenvectors. The characteristic polynomial 
of /, or of A, is

P{X) =det (X I-A ).
The eigenvalues of A are the roots of its characteristic polynomial. It can be 
proved that every matrix is similar in the complex field to a triangular matrix 
of the form D + N, where D is a diagonal matrix and N is a nilpotent matrix 
(that is Nn = 0) which commutes with D.

3.1.5. Scalar products, adjoints, and company
Recall that a scalar product on a real (respectively, complex) vector space V is 
a positive definite bilinear (respectively, sesquilinear) form on V x V.

On V = Mn the canonical bilinear scalar product is given by
n

(3.1.5) (x,x')v =
j=i

and on W = C™ the canonical sesquilinear scalar product is given by
m

(: y,y')w =
t=l

where yi is the complex number conjugate to yi. The Euclidean length of a
vector x £ V is

IMIv = \/(x,x)v ,
with an analogous definition in W. Given two finite-dimensional vector spaces 
V and IT, each equipped with a scalar product denoted by (*,*)v and 
respectively, the adjoint of a linear mapping / from V to W is the unique linear 
mapping f* from W to V such that

(/ (*), y)w = (*> /* (y))v ’ Vx g v, Vy g w.
If V (respectively, IT) is identified with IKn (respectively, Km) equipped with 
its canonical basis, if the two spaces are equipped with their canonical scalar 
products, and if / has A £ M m,n as its matrix, then the matrix A* £ M n,m of 
/* is given by

The transpose of a matrix A of m rows and n columns is the matrix AT of n 
rows and m columns whose coefficients are defined by

(AT)ij = Aji.
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The transpose is the same as the adjoint in the real field; in the complex field, 
the adjoint is the conjugate transposed matrix. It is obvious that

(a *)*=a ,

and that

(3.1.6) (Ax, y)w = (x, A*y)v , Vx, Vy.

Sometimes, the transpose of A is denoted by lA, which is somewhat incon­
sistent with the notation for the adjoint.
Definition 3.1.7. A matrix A is said to be Hermitian if it is square and A* = A. 
We also say that it is self-adjoint. A matrix A is said to be skew-Hermitian if it 
is square and A* = —A.

To be totally rigorous, it is not the same thing for a matrix to be Hermitian 
and to be self-adjoint: if we use a non-canonical scalar product, a matrix can be 
self-adjoint with respect to this scalar product without being Hermitian. As we 
do not treat mappings using these non-canonical scalar products in Kn in this 
book, we will use these two terms interchangeably without causing confusion.

The spectral properties of Hermitian matrices are summarized by the follow­
ing assertion:
Theorem 3.1.8. A Hermitian matrix is diagonalizable in an orthonormal basis 
and its eigenvalues are real. o

If the matrix A has real coefficients and is Hermitian, it is said to be sym­
metric. In this case, the diagonalization basis can be taken to be real.

A matrix A is said to be unitary if it is square and its inverse is equal to its 
adjoint:

(3.1.7) A* A = AA* = I.

The eigenvalues of A are complex with modulus 1 and A is diagonalizable in 
an orthonormal basis. If A is a unitary matrix with all real coefficients, we say 
that it is orthogonal. However, it should be noted that for an orthogonal matrix 
the eigenvectors are, in general, not real. To construct an orthonormal basis of 
eigenvectors of this matrix it is, therefore, necessary to use complex numbers. 
This idea will rarely be used in this course.

We say that a linear mapping / from V to W conserves the Euclidean length
if

ll/(*)lk = IMIv, V* V.
Lemma 3.1.9. Let / be a linear mapping with corresponding matrix A, which is 
assumed to be square. Then, A conserves Euclidean lengths if and only if it is 
unitary.
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Proof. If A is unitary, we have, on using eqn (3.1.6), that

(Ax, Ax) = (A*Ax,x) = (x,x).

Therefore, A conserves lengths.
Conversely, let A be a linear mapping matrix which conserves lengths. We 

then have the relation:

(3.1.8) (Ax, Ax) = (x, x), Vx.

To extract information from this relation we are going to pass to the polar form 
of the quadratic form x (Ax, Ax) -  (x, x). We first of all remark that we have, 
on using the sesquilinearity of the scalar product,

(Ax + Ay, Ax + Ay) -  (Ax - Ay, Ax -  Ay) =4 3? (Ax, Ay), Vx, My.

Similarly,

(x + y, x -t- y) -  (x -  y, x -  y) = 4 3? (x, y), Vx, My.

It follows, by using eqn (3.1.8), that

(3.1.9) 3i (Ax, Ay) = 3? (x, y), Vx, My.

If we replace y by \y, the preceding relation becomes

(3.1.10) 9 (Ax, Ay) = 3 (x, y), Vx, My.

We deduce from eqns (3.1.9) and (3.1.10) that

(3.1.11) (Ax, Ay) = (x, y), Vx, My.

Using the definition of the adjoint we obtain

((A*A-I)x,y)=Q, Vx, My.

which clearly implies that A*A = I. Since A is square, A* is also a right inverse 
of A. □

The Schur lemma states that, for every matrix A, there exists a unitary 
matrix U such that U~1AU is upper triangular. We call such an upper triangular 
matrix, which is unitarily equivalent to A, a Schur form.

More generally, a square matrix is said to be normal if it commutes with its 
adjoint. Normal matrices are diagonalizable in an orthonormal basis.
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3.1.6. Triangular matrices
Numerical analysts love triangular matrices because systems (3.1.4), where A 
is triangular, are very easy to solve. Suppose, for instance, that A is upper 
triangular. Then, the linear system in which we are interested is written

a\\X i + ai2#2 + • • • + Gl,n-l#n-l + n%n = 1̂?
022̂ 2 + • • • + fl2,n-l^n-l + n%n = 2̂?

dn—l,n—l%n—1 dn—l,n*̂ n ~ n̂—lj
® nn̂ n ~ n̂*

Assuming that none of the are zero, we see that

— 1dnn
bn—1 Q'n—l,n%n 

X n —l  — 5&n—l,n—1

6l — 012^2 -  ... -  d inX n  
X i =  ------------------------ .

d\\

Solving this is completely elementary and requires only a few operations, see 
Operation Counts 9.2.2 and 9.3.5.

3.2. Block matrices
Block matrices generalize the concept of decomposition in coordinates. They 
come up almost systematically when we discretize differential equations in more 
than one variable. They are also very useful.

3.2.1. Block decomposition of a linear mapping or matrix
Suppose that V, the domain space of the mapping / which we have already 
considered, decomposes into a direct sum of subspaces V ji

v  = m .  |
3=1

Similarly, suppose that W, the image space of /, decomposes into a direct sum 
of subspaces Wf.

M

W = Q )W i.
i— 1
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Therefore, every element x of V decomposes on Vj in a unique way in the form

N

X — X j .
3=1

The mapping x —► xj is the canonical projection of V to Vj and is denoted by 
Vj. The canonical injection J j is the mapping

J j : Vj V,
Xj -> Xj.

In the same way, I* is the canonical injection from Wi to W, and Qi is the 
canonical projection from W to Wi.

We can then write the linear mapping / by decomposing it on Vj and Wi as 
follows:

N

j=l
and therefore the component of f(x) on Wi is given by

N

y i  Q if {*?jxj) •
j=i

Let
fij = Q’i ° f  ° 0j •

Then, since Xj = VjX,

M  N

(3.2.1) /(x) = 5 ^1 i ^ / y ( P j x).
i=l j=1

Note the resemblance between eqns (3.2.1) and (3.1.1). Relation (3.2.1) is a 
generalization of eqn (3.1.1), and eqn (3.2.1) leads to eqn (3.1.1) provided that 
Vi = KVi, and similarly for the Wj.

By analogy with matrix notation, we can write the block decomposition of / 
in the form

/  / l l /12 f lN  ^
/21 I t i f 2N

\ / m  1 f  M 2 * ■• I m n J

(3.2.2)
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We can obviously replace the fij by their matrices Aij, by fixing the bases of 
each of Vj and and obtaining the block decomposition of the matrix A of /:

(3.2.3) A =

( An A12 • • • Ain ̂
A21 A22 * • * A2N

\Ami Am2 AmnJ
We say that the decompositions V = ® jVj and W = ® jWj equip / (or A) with 
a block structure. It so happens that certain problems impose a block structure. 
We are going to show that block decomposition makes matrix multiplication 
easier.

3.2.2. Block multiplication
Suppose that / is a mapping from V to W which has a block structure given by 
eqn (3.2.2). In the same way, g is a mapping from W to X. If we suppose that

L

h=l
with the canonical projections 7Zh and the canonical injections %/*, then g has 
the block structure

(3.2.4)

Clearly,

and, as in eqn (3.2.1),

(911 9\2 *•* 9im ^
921 922 • • • 92M

\9l i  9L2 9lm J

9hi — ° 9 ° >

L M

9(y) ='^2'Hh'^2ghi(Q
h=1 i= 1

Consequently, the composition g o / becomes
L M

(: 9 ° f) (y) = E E 9hi f  ̂
h=1 i=l

L M  /  M  N  \

= E n»E q< E E to (*#*)
/i=l i=l V i' = l j=l /

L M  /  N  \

= 53 9hi ( 53 A; j 3') I ’
h=l i=l \j=l /
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since Qili> = 0 except when V = i. In this case is the identity of Wi. It 
follows that g o  f  has the block decomposition (g o f)hj with 

M

(9° f)hj = ' E ghi° hi' h
i= 1

This formula is obviously the generalization of the matrix product. If the matrix 
B of g is decomposed into matrix blocks Bhi, we obtain an analogous formula. 
To give an example, let

A={Z Z Z )  Md
Then,

BA = + B12A21 B\iA\2 -f B 12A22 B nA is + B 12A23) •
It must be remembered from all of this that block multiplication is identical 

to normal matrix multiplication, provided that the dimensions of the blocks are 
compatible: block B^i must have as many columns as block Aij has rows.

The Jordan decomposition of a square matrix A of order n makes use of the 
idea of block decomposition. Such a matrix has one Jordan form, that is, there 
exists one invertible matrix P such that P~1AP = J, where

/J(Xurn) 0 ••• 0 \
0 <7(̂ 2 >^2) 0 0

J =

0
0 J(Ar_i,nr_i) 0

0 J (Â, J
The Jordan blocks J(A,m) are m x m matrices of the form

/A 1 0 • • • 0\
0 A 1 0

J (A, m) =

\°
A 1
0 \)

We remark here that the Jordan form is numerically less stable than the Schur 
form, see [15].

3.3. Exercises from Chapter 3
3.3.1. Elementary algebra
Exercise 3.3.1. Let Pbe a square matrix of order n with generic element p,; 
given by the formula

Pij = ̂ ij "h
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where a is a real number, Sij is the Kronecker delta, and m and r are integers 
between 1 and n.

(i) Is the matrix P invertible?

(ii) Calculate the inverse of P if it exists;

(iii) Show that an endomorphism whose matrix is independent of basis is a 
scaling. To do this, use a change of basis whose transformation matrix is 
the form P.

Exercise 3.3.2. Let A be a rectangular matrix of m rows and n columns. Show 
that, by applying a change of basis in the domain and image spaces, we can put 
A in the form n 0 ••• 0\ \0 1 ••• 0

0 (0)
V> 0 ••• 

(0)
V

(o b
Reason in the following manner:

• If the matrix A is identically zero there is nothing to do;

• Suppose now that j\ is the index of the first column vector of A which is 
not identically zero. With the first change of basis we can move column 
ji to the position of column 1. Then, with a second change of basis, we 
replace the first column by a column containing only a 1 in its first row 
and zeros underneath;

• The general case follows by induction.

3.3.2. Block decomposition
Exercise 3.3.3. Let A be a square matrix of order n. Suppose that it has a 
block decomposition Aij of dimensions rij x n ,̂ where 1 ^  i, j  ^  m. We 
suppose, furthermore, that A is Hermitian and, therefore, diagonalizable in an 
orthonormal basis. Determine a sufficient condition such that the transformation 
matrix to this orthogonal basis has the same block structure.
Exercise 3.3.4• Let A be a square matrix of order n. Suppose that it has a block 
decomposition Aij of dimensions n* x rij, where 1 ^  i, j  ^  m. We say that A is 
block triangular if Aij = 0 for every index i and j  such that i >  j.

Calculate the determinant of A as a function of the determinants of the 
blocks.
Hint: begin with a matrix A decomposed into 2 x2  blocks. There are at least 
two possible proofs of the result:



3.3. EXERCISES FROM CHAPTER 3 39

(i) By induction on the dimension of the diagonal blocks;
(ii) Show that A is similar to a triangular matrix by a similarity which does 

not destroy the block structure.
To complete the proof\ argue by induction on the number of blocks.

Show by means of a counterexample that, in general,

3.3.3. Graphs and matrices
A simple graph is defined as follows: we begin with a finite set X  and a finite 
subset U of X  x X. Suppose that U contains no element of the form (x,x). The 
graph is the pair G = (X, [/). If, for every (x,y) £ U, we also have (y,x) e 17, 
we say that the graph is symmetric. We will only consider symmetric graphs, 
which is the same as considering U as a set of subsets of two distinct elements 
of X. If u = (x,y) we say that x and y are the end-points of u.

We say that (x, y) is an edge of the graph if (x, y) belongs to U. We say that 
two vertices x and y are adjacent if x and y are linked by an edge. Finally, we 
say that an edge u is incident to a vertex x towards the interior if u = (x, y) or 
if u = (y,x). The degree do{x) of a vertex x is the number of edges incident to 
x.

We define the associated matrix of a graph to be the matrix A(G) such that

Exercise 3.3.5. We say that a graph is properly coloured if we can colour each 
vertex in such a way that two adjacent vertices are always of different colours. 
It is fc-colourable if we can properly colour it with k colours.

Show that if a graph is fc-colourable, its associated matrix has a block struc­
ture indexed by the colours.
Exercise 3.3.6. The vertex-edge incidence matrix of a graph is the matrix R(G) 
defined by

A\2
A22) ± det (An) det (A22) -  det (Ai2) det (A2i) . 

/

(«(c )),„ ={
1 if u has x as an end-point; 
0 otherwise.

The degree matrix of G is given by

Show that we have
A(G) = R(G) R(G)t -  D .
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Exercise 3.3.7. If G is a simple graph, we define a new graph S(G) by adding a 
new vertex £(u) for each edge u = (x, y) and defining the new set of edges as the 
set of the (x,£(u)) and the (£(u),y). Show that the matrix associated to S(G) 
is given by

Exercise 3.3.8. We define a matrix B in the following way: for every u G J7, 
consider a strictly positive number a(u) and let

Exy — ^
^2{u:x is an end-point of u} a(u)

a(u)
0

if x = y \ 
if u = (x,y); 
otherwise.

Show that the matrix thus defined is symmetric and either positive or zero. What 
is the dimension of its kernel?

3.3.4. Functions of matrices
We begin by recalling some essential facts about square matrices. Every square 
matrix A of order n has a decomposition of the form

A s  T 4- N,

where T and N commute together and with A and, furthermore, T is diagonal- 
izable and N is nilpotent, that is, Nn = 0. This fact is clear in the complex 
field; in the real field one has to be careful, and to proceed as follows: com­
plexify the problem and combine the projections on the generalized eigenspace 
corresponding to two complex conjugate eigenvalues.
Exercise 3.3.9. Calculate the powers of A as functions of T and N.
Exercise 3.3.10. Let Q be a polynomial of the variable x. Show that we have

(3-3.1) q  M) -  o  (T) + Q'(T) N + W 1  + „ . + Q '"-1’ m  N - . j

Exercise 3.3.11. Let / be a function of the variable x. Suppose that the domain 
of definition of / contains the spectrum of the operator A. If this spectrum is 
purely real, we will suppose that / is Cn~l on an open subset of E containing 
this spectrum. If the spectrum of A contains points which are not real, we will 
suppose that / is n — 1 times continuously differentiable with respect to the com­
plex variable x in a neighbourhood of the spectrum of A. The theory of analytic 
functions allows us to confirm that this condition is fulfilled if / is once contin­
uously differentiable, and at every point in the neighbourhood of the spectrum 
of A it has a convergent series expansion. Given a finite sequence 
we denote by diag(a«) the diagonal matrix whose elements are a i,..., a ,̂ in this
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order. We extend the definition (3.3.1) by defining, for a diagonal matrix B, a 
diagonal matrix

(3.3.2) f(B) = diag (/(&*)), 

for C = P~1BP a diagonalizable matrix,

(3.3.3) f ( C ) = P - l f(B )P ,

and, for any matrix A,

f" (T) N2 /•(”-!) m  ATn“1
(3.3.4) f  (A) = f  (T) + /' (T) TV + 7 ^  + ... + *...(n̂ j ---- .

Show that the definition (3.3.3) does not depend on the matrix P which is 
employed for the diagonalization.
Exercise 3.3.12. Show that if g is the reciprocal function of /, with g regular in 
a suitable neighbourhood of the spectrum of f(A), we have

g{f(A))=A.

3.3.5. Square roots, cosines, and sines of matrices
Exercise 3.3.13. Let A be a real matrix of order n which is symmetric and 
positive definite. By using the diagonalization of A, show that there exists a 
symmetric positive definite matrix B such that

B2 = A.

Exercise 3.3.14. Let B' be a real symmetric positive definite matrix of order n 
such that

A =
Show that A and B1 commute. Deduce from this that B' is equal to matrix B 
of the preceding question.
Exercise 3.3.15. We want to solve the differential equation system

d2u
d t2 Au — 0,

where the unknown u is a function from R to Rn. To do this, let

What is the first-order differential equation system that is satisfied by the vector 
(u,v)T?
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Exercise 3.3.16. Let
g itB g —itB gitB _ Q—itB

cos tB —-----   and sin tB = ----- —-----.2 2i
Show that, if (u,v)T satisfies the system described in Exercise 3.3.15, then

/u (t)\ _  f  cos (tB) B~l sin (tB)\ (u (0)\ 
yu(£)y — \-B  sin (tB) cos (tB) J yu(0)y ’

3.3.6. Companion matrices and bounds of matrix powers
Exercise 3.3.17. Given <7 + 1 real numbers ao,a i,... ,aq, with ao 7  ̂0, aq = 1 , 
consider the recurrence

Q
(3.3.5) = 0, n ^  0.

j= 0

Let
P (x) = xq + a q-\xq~l + ... + a0 

be the characteristic polynomial of the recurrence. Write

\

/
and determine the square matrix A of order q such that eqn (3.3.5) can be written 
in the equivalent form

(3.3.6) Vn+i = AVn.
Exercise 3.3.18. Let V be the set of polynomials of degree q of the form

P (x) = xq 4" /3q-iXq 1 +...+/?\X + /3o.

We identify V with a subset of C q equipped with the Hermitian distance. Show 
that the set of elements of V whose roots are all simple is a dense open subset 
of V.
Exercise 3.3.19. Let Vk be an eigenvector of A associated to the eigenvalue A*. 
What relation is satisfied by the A* and the a*? From this, deduce the identity

(3.3.7) P (x) = det (xl -  A).

This question can be answered without calculating any determinant. First 
solve the case where all of the eigenvalues of A are distinct, then argue by 
continuity using Exercise 3.3.18.

Vn =

( Un 
Un+1

\Un+q—1
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Exercise 3.3.20. Let
1 \

V(x) =
X
2̂

V® *"/
Calculate for all x the following vector with polynomial coefficients:

W (x) = (A- xl) V (x).

Exercise 3.3.21. If P has n distinct roots, express the eigenvectors of A as func­
tions of the roots of P and the vector function V.
Exercise 3.3.22. Show that we have the following identity for every integer j:

0 \
(A -  xl) Vw) (*) = Vw-1) (*) +

0
\ P {i) (*)/

Exercise 3.3.23. Deduce from the preceding exercise that A is diagonalizable if 
and only if all the roots of P are distinct. Give the dimension of the Jordan 
blocks of A as a function of the multiplicity of the roots of P.
Exercise 3.3.24■ Let J be a Jordan block of order n:

(3.3.8)

/A 1 
0 A

J (A,n) =

\o •••

0 ••• 0\ 
1 0

A 1
0 \)

Calculate the powers Jm of J for every integer rn 1. Show that ||«/m||i is 
bounded independently of m if and only if

(i) |A| ^  1; and
(ii) If |A| = 1 then n = 1.

Exercise 3.3.25. Recall that every square matrix of order n is similar to its 
Jordan decomposition

fJ(Ai,ni) 0 ••• 0 ^
0 J(\ 2 ,712) 0 0

J = : :
0 \<p—i,nr—1) 0

\ 0 0 J(Ar,nr)y
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where the J(AS, n8) are the Jordan blocks of the form (3.3.8). What is the Jordan 
decomposition of a diagonal matrix?
Exercise 3.3.26. Show that the matrix A, defined in eqn (3.3.6), satisfies

P m||i^C , V rO  1

if and only if
(i) All of the roots of P are of modulus at most equal to 1; and

(ii) If A is a root of P of modulus 1, it is simple.

3.3.7. The Kantorovich inequality
Exercise 3.3.27. Let a and A >  a be positive numbers. Prove the following 
inequality:

x y a A ,-  + - ^ - r  + - , Vx,ye[a,A}. y x A a
Exercise 3.3.28. Let Ai <  A2 <  • • • be a strictly increasing sequence of strictly 
positive numbers, and denote by //* = 1/A* the sequence of its reciprocals. To 
each finite subset J of N, we associate a | J|-dimensional simplex £( J) defined as

£ (J) = {(xj)j£ j : xj ^  ^  , xj = l}*

We define a function on £( J) by

jeJ

f( x , j) =  1[ v  ̂ jXj^ f e w
\j€ J

and we let
p (J) = max{/ (x, J) : x G £ (J)}.

Find p( J) when J has exactly two elements.
Exercise 3.3.29. Define the following vectors of RJ :

A («/) = (Aj)jeJ and p (J) = (Pj)jeJ ,

and let cj( J) be the vector of RJ whose components are all equal to 1.
Assume that J has at least three elements. Check, then, that A (J), p(J)i 

and cj(J) are linearly independent.
We shall show by contradiction that / cannot attain its maximum value in 

the interior of £(J). Suppose, indeed, that there exists x in the interior of £(*0 
such that

/(</,«/K/(*,</), Vy€ £(J).
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Prove that, for all z orthogonal to u>(J), we must have

(n (J)T x) (A (J)T z) + (n (J)T z) (A ( x) = 0,

and, therefore, there exists a scalar /? such that

(fi (J)T x)X ( J) + (A (J)T = Pui (J).

Hence, infer a contradiction.
Exercise 3.3.30. Let J = {1,... , n}. Show that p(J) is given by

(3.3.9) P{j) = Al An 
An Xl ‘

Exercise 3.3.31. Show that eqn (3.3.9) still holds if the A j are not all distinct.
Exercise 3.3.32. Let A be a symmetric positive definite n x n real matrix and 
let Ai ^  A2 ^  ^  An be its eigenvalues. Prove the inequality

xT Ax xT A xx (Ai + An)2 
|x|4 4AiAn Vx €  Mn \ {0} .

Exercise 3.3.33. Let A and B be symmetric positive definite n x n real matrices 
and define a scalar product on W1 by

(x,y)B =

Show that B~lA is self-adjoint relative to the scalar product (x,y)s- Hence, 
show that the eigenvalues of B~lA are real and strictly positive. They will 
be denoted by Ai ^  A2 ^  ^  An. Derive the following inequality for all
x eR n \ {0} (the Kantorovich inequality):

(3.3.10) {x^Ax ) (Ai + An)2
(.x T Bx)2 ^ 4AiAn



Part II

Polynomial and 
trigonometric 

approximation of functions
Polynomials are the easiest functions to calculate. Not everything is polynomial, 
but everything can be approximated, in some sense or another, by polynomi­
als. We are studying three great classes of approximation. The first two use 
approximation by polynomials:

• Interpolation constrains the values of the approximating polynomial to co­
incide with those of the function at a finite number of points;

• Least-squares approximation, which constrains the average of the square 
of the difference between the function and the polynomial to be small.

These two types of approximation have different properties, but are both analys- 
able by linear methods. The last class of approximation methods is spline approx­
imation. A spline is a function which coincides with a polynomial on intervals 
between knots, and which satisfies some continuity requirements at the knots.

Splines generalize nicely many ideas used both for interpolation and for least- 
squares approximation, and they have also recently proved extremely useful in 
image analysis and computer-aided design.
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It must also be mentioned that certain classes of wavelets are constructed 
from splines with uniformly spaced knots. An introduction to wavelets is given 
in Subsection 8.8.3.

Much of the lore of polynomial and piecewise polynomial approximation is no 
longer used for what it was intended for originally. For instance, divided differ­
ences, which generalize derivatives, were extensively used to construct numerical 
tables, and to analyse the noisiness of data.

Numerical tables are now generated by programs, often without the user 
being aware of what is going on. For instance, computer scientists can use 
efficient algorithms to calculate the usual transcendentals: exp, sin, cos, log,

At times, we may have to calculate a very complicated function. Suppose, 
for instance, that each value of this function is obtained by solving a nonlinear 
partial differential system which requires two hours of machine time. Then it 
makes sense to construct a table for a finite number of values and a means to 
fill up the gaps between them. For that purpose, we need interpolation and 
approximation.

Similarly, we may have obtained experimental values, which are usually noisy, 
and we would like to draw a curve which is at the same time smooth and close 
enough to our data. This is what smoothing splines are used for.

However, we do not necessarily have to write software. The existing software 
(including freeware and shareware) can perform smoothing and approximation 
very efficiently. Some of these packages are user-friendly and it is a good idea to 
start with the available libraries.

Curve and surface fitting lead to many mathematically interesting problems, 
which are treated, for example, in [23].

Nowadays, divided differences are most often used to create numerical 
schemes for ordinary and partial differential equations, and they have non- 
commutative versions, which have been studied by the Russian school of V. P. 
Maslov, in order to obtain the asymptotics of some partial differential equations 
with rapidly oscillating coefficients. Even when their initial motivation is lost, 
mathematical methods may prove useful for entirely different purposes.

In numerical analysis, polynomial approximation is used in a very systematic 
fashion to create finite element methods and pseudo-spectral methods—two of 
the work-horses of the numerical approximation of solutions to partial differential 
equations.

Least-squares approximation is used in many areas. Statistics and numerical 
resolution of partial differential equations immediately come to mind. However, 
more generally, least-squares approximation works because nature seems quite 
often to use least-energy principles, termed variational principles. If we are able 
to expand an energy functional up to quadratic terms, and we minimize the 
resulting expression, we find that the minimizer solves a linear problem.

Fourier analysis is quite close, in many respects, to least-squares polynomial 
approximation. For this reason, Fourier series are studied immediately a fte r  
polynomial approximation. The elementary theory of the convergence of F ou r ie r
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series is proved to be local. At discontinuities, the convergence is not uniform. 
This is the Gibbs phenomenon, which is a serious problem when one uses Fourier 
series in order to approximate discontinuous functions, and particularly in the 
presence of nonlinear phenomena.

Finally, this part concludes on numerical integration, or quadrature, which 
use tools from the theory of polynomial approximation. Numerical integration 
formulae are created with the help of the theory of interpolation and also, at 
times, using orthogonal polynomials. However, integration formulae are refined 
by dividing the interval of integration into small intervals, and this meets the 
idea of piecewise polynomial approximation.

The chapter on quadrature concludes with the fast Fourier transform (FFT), 
which may be the most widely used of all numerical algorithms, and ranks as a 
major discovery in numerical simulations, since it enables us to use 0(N log2 N) 
operations for a discrete Fourier transform on N = 2n points instead of the naive 
N2. The FFT uses, most efficiently, the idea of decimation—which should in­
stead be halving in the present environment, i.e., treating differently the odd and 
even indices in one direction, and the first N/2 versus the last N/2 in the other 
direction, and doing that again and again in a recursive fashion parameterized 
by the size of the vectors being manipulated.

The importance of decimation and recursive algorithms cannot be over­
emphasized. In one way or another, all efficient numerical algorithms for large­
sized problems rely on some version of these ideas. This is the case for multigrid 
methods, and also the case for wavelets. On top of that, the FFT is easy to 
understand and easy to program.

Lest the reader think that all problems are linear, I shall conclude this intro­
duction with the following famous story: a man walking in the street at night 
meets another one, who seems to be searching for something under the street 
light. ‘May I help you, sir?’ asks the passer-by. ‘Well sure, I can’t find my car 
keys.’ ‘Do you know where you might have lost them?’ asks the helpful stranger. 
‘Not really’, says the motorist. ‘So why do you look for them here?’ ‘Here, there 
is light.’



4

Interpolation and divided 
differences

4.1. Lagrange interpolation
The problem that we consider in this chapter is the following: let / be a function 
which we assume to be continuous on the interval [a, b] and let xq, aq, ..., xn be 
n + 1 pairwise distinct points given in the interval [a, b\. We denote by Pn the 
vector space of polynomials of degree at most n. It is well known that Pn is of 
dimension n + 1.

We ask ourselves the following questions:

(i) Can we find an integer m and a polynomial P e Pm which coincides with 
/ at the knots (xj)o<j<n? ^  ls ca^e<̂  an interpolating polynomial.

(ii) How do we choose m e  N to have a solution for every given /?

(iii) How do we choose m so that this solution is unique?

(iv) What error do we commit if we replace f(x) by P(x) when x is not a knot?

Interpolating means that we replace a function by a polynomial which takes 
the same values as the function at a set of given knots. It is, however, neces­
sary to know, and this is a common sense remark, that replacing a function by 
its interpolant is a step which supposes a minimum of information about the 
function. Refer to Figures 4.1 and 4.2 to understand graphically the phenomena 
which can appear, where the original function and its interpolant are indicated 
by the solid and broken lines, respectively.

4.1.1. The Lagrange interpolation problem
We begin by answering the first three questions posed above.
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Figure 4.1: The function to be in- Figure 4.2: The function to be in­
terpolated is not smooth. terpolated is smooth, but there are

not enough interpolation knots.

Theorem 4 1-1- For all choices of n +1 pairwise distinct knots xo,...,xn and for 
all given data f(x0),..., f{xn), there exists a unique interpolating polynomial 
P, of degree at most n, which satisfies

(4.1.1) P{xj) — / (xj), Vj = 0, l,...,n. o

Proof. If we look for a solution in Pm, then we must determine the m ■f  1 
unknowns which are the coefficients of P. Let

m
p (x) - Y

k=0

then the equations which must be satisfied are
m

Y  akX j =  f  ( xj), O ^ j ^ n .
k=0

We thus have n +1 equations for m -f 1 unknowns. It is natural to choose m = n 
and solve the interpolation problem in Pn. We show that we have uniqueness 
as follows: let P and P be two polynomials of degree at most ra, which both 
interpolate the function /. Consequently, P — P is a polynomial of degree at 
most n, which vanishes at n -I-1 points xo,..., xn. By Euclidean division, P - P 
is identically zero. Corollary 3.1.5 implies that we have existence for all data. 
The matrix of the system (4.1.1) is a Vandermonde matrix, which is invertible.

□

Note that the proof above is purely algebraic and does not require any hy­
pothesis on /, even on the values of / at the points x which are not knots.

It remains to find a practical interpolation formula. To do this, we will| 
determine the polynomials (f)j such that

(4.1.2) (t>j(xk)= S jk.
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Theorem 4.1.1 assures us that, for every choice of knots and for all j  = 
0,..., n, there exists a unique polynomial of degree less than or equal to n 
satisfying eqn (4.1.2). We now explicitly calculate the (j)j. For k ̂  j , we see that 
cf)j vanishes. Therefore, it is of the form

<pj (x) =a(x) (x -  xfc) . 
k-.k̂ j

This product consists of n factors and, as (j)j is of degree at most n, the polyno­
mial a(x) is of degree 0. It is a constant which we calculate using the relation

1 = (pj (Xj) = a || (Xj — Xk).
k:kz/ij

We therefore deduce that

The polynomial
n

f  h  (x)j =0
agrees with the interpolation polynomial of / at the knots Xj. As it is of degree 
at most n, Theorem 4.1.1 requires that it is therefore equal to the interpolation 
polynomial. We can now write the interpolation polynomial in the form

n
P(x) = ^ / ( x j )<Ai (x). 

j=0
We also see that the <f)j form a basis of Pn, the Lagrange basis. 
Unfortunately, from a practical point of view, the <\>j are not very suitable. 

The calculation of P(x) is not very difficult, on the condition that we rewrite it 
in the form

n
V (x) = JJ (x -  Xj) , 

i=o

P(x) = uj(x) g  ̂ (/k)((xk)_ Xky

We then need n + 1 multiplications, n + 1 divisions, and 2n + 1 additions or 
subtractions to find P{x). What is particularly annoying, is the simple fact that 
adding a knot leads to completely changing the basis (j)j, without the possibility 
°f reusing the (j)j calculated previously. We are therefore going to look for another 
approach, with a better behaviour when we add extra points.

(4.1.3)

(4.1.4)
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4.2. Newton’s form of interpolation and divided 
differences

4.2.1. Newton’s basis is better than Lagrange’s basis
An astronomical application of interpolation is to the problem of plotting the 
path of celestial objects. One kept adding more and more observations and 
these could not be made at equidistant time intervals, at least before the age 
of satellite telescopes, since during the day, or on cloudy nights, we cannot see 
much in the sky. Thus, Newton came up with an idea for a basis of polynomials, 
which enabled him to add data without recalculating everything.

With a single interpolation point xo, the interpolant of / is

P°(x) = f(xo).

When we have two interpolation points x0 and #i, the interpolant of / is a 
polynomial of degree 1 which is chosen to have the form

P 1 (x) = P° ( ) + 1 (x),

since we want to be able to easily add some extra points. Since P 1(xo) = o) 
and P^xi) = f(x 1), we must have

R1 (x) = ai(x -  x0),
P 1 (*l) = f  (xi) -  f  (xo),

which implies that
_  /(*l) -a\ —------------- .

X \  X q

If we pass to three interpolation points #o, and x^, we would like to write 
the interpolation polynomial P2 of / at these three points in the form

P2 (x) = P 1 (x) + R2 (x).

As R2 is of degree at most 2 and vanishes at xo and xi, since P 2(x0) = P x{x0) 
and P2(x 1) = P x(x 1), we must have

R2 (x) = a,2 (x -  xo) (x — X \ )  .

Newton’s form of interpolation therefore consists of writing the interpolation 
polynomial P of / at the points xo,-..,xn in the form

n—1
(4.2.1) P (x) = a0 + a! (x -  xo) + d2 (x -  xo) (x -  xi) + ... + JJ (x -  x*) •

k=0
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This is possible as the sequence of polynomials
n—1

1) X •£()? (*£ *̂ o) (•£ *̂ l) > • • • > || (•£ *Efc)
k= 0

forms a basis of Pn, Newton’s basis, since the first is exactly of degree 0, the 
second exactly of degree 1, and so on, to the (n + l)-th, which is exactly of degree 
n. It remains now to calculate the dj as functions of P, or more precisely, as 
functions of P{xj) = f(x j), since we are in an interpolation setting.

We see immediately that

,, . j  / ( x i) - / ( x0)cio = f  (xo) and d\ —------------- .X i Xq

We note that do depends only on x0 and that d\ depends only on x0 and x\. 
More generally, when

n—1
P (X) = do + ai (x -  X0) + d2 (x -  X0) (x -  Xi) -I- . . . + dn JJ (x -  Xk) ,

k= 0

we choose a j  ^  n and we write
3-1

Q (x) = a0 +fli(x -  x0) + a2 (x -  x0) (x -  xi) + ... + Oj- JJ (x -  Xk).
k=0

This polynomial is in Pj and it agrees with P at the points xo,... ,Xj, since the 
remaining terms of P contain the product of factors Yii=o(x ~ xk)- This proves 
that Q is the unique interpolation polynomial of / at the points xo,... ,Xj and, 
therefore, the coefficients dj depend only on xo,... ,Xj. We therefore introduce 
the general notation

dj = f  [xo, X\,..., x j), 
as a result of which eqn (4.2.1) is rewritten as

n—1
(4.2.2) P(x) = f[a;0] + / [a;0 ,a:i] (x -#0) + • .. ,x„ ] JJ (x-X j).

k=0

In view of the explicit expressions already found for ao and d\, and of Lemma 
4.2.2, which we are going to prove below, /[xo,xi,... ,Xj] is called the j-th 
divided difference.
Lemma 4.2.1. For any n, n+ 1  distinct points xo,..., xn and, for any permutation 
° on 0 , •.., n, we have
(4.2.3) f  [xo, • • • 5 Xn] — f  [x^^q) > • • • 5 •̂cr(n)] •
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Proof. To simplify the notation we let

Vj “ X(T{j)'

We can consider the decompositions of P, the interpolation polynomial of / at 
the points (xk)o<̂ k<̂ m on the two bases

n—1
1, (x -X q), JJ (*-&*)

k=0
and n—1

1, ( x - y0), n  (*“»)■
k=0

We therefore have
n—1

P (x) = cio + a\(x — #0) + ... + an JJ (a: — xk)
k—0

n-1
— bo + b\ (x — yo) -T • •. + bn JJ (x — yk) •

k=0
The coefficient of the term xn in P is an in the first decomposition, since the 
only polynomial of the basis 1, (re — a?o),..., “ xk) containing terms of
degree n is the last, and the term of degree n appears with a coefficient of 1. In 
the same way, the coefficient of the term of degree n in the second decomposition 
is bn. We see, therefore, that bn = an, which proves our lemma. □

Lemma Ĵ .2.2. We have the following recurrence relation:

(4.2.4) /  [so, . . . , x n] = f  [a:°’ • •' ’ Xn~ l] ~
Xo -  X n

Proof. Take yj = xn-j. Therefore, we have
n—1

P (x) = a0 + ai (a; - xo) + ... + anJJ (x - Xk)
k = o  
n

= bo + bx (x -  X n ) + . . . + bn JJ (x ~ X k ) .
k=1

We already know that bn — an. We equate the terms of degree n — 1 in each of 
the above two expressions for P to give

n—1 n
an~i CLn ^  ̂  xk — bn—\ an ̂   ̂xk, 

k=0 k=1
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from which we obtain
0>n—\ ^n—1 = &ra (^0 Xn ) •

Now
CLn—\ — f  • • • 5 •Era—l] and 5ra—1 y , . . . , #n] )

which proves the recurrence relation (4.2.4). □
We have therefore completely justified the name divided differences.
The practical calculation of divided differences is founded on the recurrence 

relation (4.2.4). By hand, we can construct the following table, from which we 
will easily deduce an automatic algorithm:

Xo f  (x0)

X\ Six i) f[x0,Xl,X2]

X2 f  (x2)

We calculate P(x) by a Horner-type algorithm, so that, for example,

P(x) = ({f [xo,xi,x2,X2\(x -  x2) + f  [xo,xi,x2})

+ / [xo, xi]) ( - x0) + /[x0]
when four points are chosen.

To pass from n points to n + 1 points demands n calculations of divided 
differences. For example, in the above table, the addition of the point x% de­
mands the calculation of /(a^), f[x2,xz\, f[xi,x2 ,x3], and f[xo,xi,x2,X3\, or 4 
calculations of divided differences to pass from 3 to 4 points.

4.2.2. Integral representation of divided differences
Let / be a C 1 function on an interval containing xq and x\. We then have

f ( x i) - f ( x 0)=  / f'{x0 + t(xi -xo)) (xx - x 0)dt,
Jo

as verified by an elementary calculation. From this, we deduce that

/ [x0, x\] = / f'{xo + t (xi - xo)) dt.
Jo

So far, the first divided difference has appeared as an approximation to the first 
derivative. Now, we see it as the average of the derivative on the interval with 
end-points x0 and x\.

We are going to generalize this result:
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Theorem 4-2.3. Suppose / to be Cn on the interval

min Xj, max xA.L o J O^j^n Ji
Then

n t 1 r tn- l
... / f {n)(x0 + t i ( x i - x 0)

JO(4.2.5)
4“ ^2 (*̂ 2 *^1) 4“ • • • +  i n  (*^n *^n—1)) d£^ * ’ * d ^ i. 0

Proof. First of all, examine the domain of integration of this multiple integral. 
If n = 1 it is the segment [0,1]. If n = 2 it is the triangle with vertices (0,0),
(1.0 ) , and (1,1). If n = 3 it is the tetrahedron with vertices (0 ,0 ,0 ), (1,0,0),
(1.1.0) , and (1,1,1). In dimension n it is the n-simplex

£n = {t e W1 : 0 ^ tn ^ tn-1 ^  ^  h ^  1}
of vertices (0 ,0 ,..., 0 ), (1 ,0 ,..., 0), and so on, successively replacing the 0 by 1 
each time to give a new vertex, up to (1 ,1 ,..., 1).

We are going to argue by induction: for n = 1 we have already seen that 
formula (4.2.5) is true. Suppose that it is true up to n -  1 . We note that the 
inner integral is

rtn-lftn- 1
I f  ̂  ̂(*o t\ (X\ — xq) 4".. • 4~ tn (xn xn_i)) dtn
Jo

/(n 1} (x0 4- ti (xi - Xp) + ... 4- tn (xn - Xn—i))-|*n=*n- 1

-itn=0%n %n—1

_  ^y(n- l) (Xq +  ti (Xi - X0) + •. • +  j ( - I„ -2))

 ̂(xo 4" ̂ 1 (xi X0)4" ... 4" 1 1 2)) ̂

x (xn Xn—\ )
We therefore have, due to the induction hypothesis,

p i  ptn - 1

/ ••• / /(n) (x0 4-*1 (xi - * o )4-<2(*2-a:i) + ...Jo Jo
4~ tn (xn xn_i)) dfi • • • dtn

= Jo Jo {/<n_1) (X0 + ti (x - Xo)4- ... 4- 1 - Xn_2))

- /(n-1) (x0 4- h (x - x0)4-... 4- 1 (x„ _i -  x„ _2))} — ---- tn̂ %%n Xn—1
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This is equal to

f  [*̂05 • • • j •J'n] f  [XO,• • •) Xn—2i2-n—l]   . r ." J F 0 ? • • • 5 *^n—2 5 *^n—1 ? *^nj ?
X n  — Xn—i

due to the induction hypothesis. This proves that the formula (4.2.5) is true for
n. □

It follows, from Theorem 4.2.3, that we can define divided differences of / 
on n + 1 distinct or repeated points, provided that / is C n, by means of the 
integral representation (4.2.5). A particularly important case is that in which 
Xq = X\ = • • • = xn. In this case

/ [x0,...,xo] = [  [  ••• [/(n) (x0)d*nd£n_i
N----V----' Jo Jo Jo
n+1 arguments

= / (n) (x0)vn, 

where vn is the volume of the n-simplex. We have

d£i

r1 rtn- 1
=  /  •• /Jo Jo

r1 rtn-2
=  / • / tn—1 1 * *• d ^ i

Jo Jo
f 1 rK -3 1 2 

/ 2̂ n~2 ™n~2- L -
• • d£i

1
n!

We have therefore obtained the relation 

(4.2.6) f U o .....xo] = n!
n+1 arguments

4.3. Interpolation error
With the aid of divided differences, we can evaluate the interpolation error, that 
is, the difference between the function / and its interpolation polynomial at the 
Points x0,...,xn.
Theorem 4-3.1. Let / be a C n+1 function on an interval [a, b] and let P be its 
interpolation polynomial on the n-hi points Xo,...,xn belonging to [a,b]. Then, 
or every x £ [a, 5], there exists a number £x in the interval

min ^x, min x* j , max ^x, max x*^
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such that
f ( x ) - P  (X) = (X -  Xj)

o
/ (n+1) «,)
(n + 1)! ' o

Proof. If x = Xj the conclusion is obvious. If not, let Q be the interpolation 
polynomial of / at the knots xo,x\,... ,xn,x. We can then write Q, using its 
Newton form, as

n
Q(y) =P(v) + f[x0,...,xn,x]JJ (y-xk).

k=0

In particular,
n

Q (x) P (x) = f  (x) P (x) — f  [̂ 0? • • • » ( • £  VCk) •
fc=0

But, we know that

f  [xo) • • • 5 xn, x] — /
Jo

n̂+1 «̂n)) d£n_|_i * * • d î.

[  / (n+1) (ar0 + *i (a?i -  a?0) + • - • 
Jo

The (n -I- l)-simplex £n+i of Rn+1 is a connected set. The image of this 
connected set under the continuous real-valued mapping

F : t h-» /(n+1) (x0 + t1(x1- x 0) + --- + tn+1 (x -  a?n))

is connected. We can apply the mean value theorem for multiple integrals, to 
prove that there exists a tx in £n+i such that

F(t) d t = F Id  t.

Now, we have previously calculated the volume of the n-dimensional simplex for 
all n. We therefore find that

F(tx) 
(n + 1)!*

We have F(tx) = /(n+1)(̂ a.)J with

& € min ^x,minxkj, max ^,maxxfcj

which proves the theorem. a
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The convergence of a sequence of interpolation polynomials of increasing 
degree to the function that we are interpolating is not true in general. We can 
find an analytic function / such that the sequence of interpolation polynomials 
Pk of degree at most fc, with knots in the interval [a, b] given by

(b — a) j  . ,
Xj = a  + ---k---’ 3 =

diverges catastrophically. The classic example consists of taking f(x) = 1/ 
(1 4- x2) and [a, b] = [-5,5]. This example is known as the Runge phenomenon. 
The sequence (Pk)k diverges at many points of the interval. It is represented in 
Figures 4.3, 4.4, and 4.5 for different values of k. On these figures, the divergence 
phenomenon is quite striking. However, it is also a classical fact that changing 
the location of the knots may improve the situation. For instance, if we choose 
to interpolate the same function at the Chebyshev points, i.e., at

then the result is much better, as can be seen in Figures 4.6 and 4.7.
We can even prove that, for every sequence of families of interpolation knots, 

there exists a function / for which the sequence of interpolation polynomials 
does not uniformly converge towards the function we want to approximate. Sup­
plementary information on this remark is given in [19, Chapter 1].

^gure 4 .3 . Approximation of f(x) = 1/(1 Ax2) by interpolation polynomials of 
Jgrees , 10, and 15, using equidistant knots.
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Figure 4.4: Approximation of f(x) = 1/(1 by interpolation polynomials of 
degrees 20 and 40, using equidistant knots.

Figure 4.5: The same functions as in Figure 4.4 using an unclipped vertical axis.
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Figure 4.6: Approximation of f(x) = 1/(1 + x2) by interpolation polynomials of 
degrees 5, 10, and 15, using knots at the Chebyshev points.

Figure 4.7: Approximation of f(x) = 1/(1 + x2) by interpolation polynomials of 
degrees 20 and 40, using knots at the Chebyshev points.
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4.4. Hermite and osculating interpolation
The section on the integral representation of divided differences shows that it 
is natural to approximate a sufficiently smooth function / by a polynomial P 
which coincides with /, together with a number of its derivatives, at a finite 
number of points. Thus, given xo,..., xn and n -hi positive integers r0,..., rn, 
we seek a polynomial P of the smallest degree, such that

(4.4.1) /«> (**) = P (i) (xk), Vfc = 0,...fn, Vj = 0,...,r* —1.

Let

(4.4.2) r = r0 + ... + rn.

The existence and the uniqueness of the solution of eqn (4.4.1) in Pr_i is proved 
in the following lemma:
Lemma The mapping L from Pr_i to Rr defined by

LP = (P ( X0 ) P ir0~l) ( X0 ) ,...,P ( * „ ) P (r" " 1) (*»)) 

is invertible.

Proof. If LP vanishes for some P G Pr_ i, then P is divisible by the polynomials 
(x-Xo)r°, ..., (x — xn)rn. These polynomials are relatively prime and, therefore, 
P  is divisible by their product, which is of degree r. Since P is of degree at most 
r -  1, P vanishes. As Pr_i is of dimension r, the fundamental theorem of linear 
algebra enables us to conclude the result of the lemma. □

The polynomial P G Pr-i which satisfies eqn (4.4.1) is called the osculating 
polynomial to / at the points x0,..., xn which agrees at order rj -  1 with / at 
each Xj.

The following particular case is very important for applications. Suppose 
that we choose rj = 2 for all j. Then, the polynomial of degree at most 2n -I-1 
which satisfies eqn (4.4.1) is called the Hermite interpolation polynomial of / at 
the points xo, • • •, xn. It is the unique polynomial of degree at most 2n + 1 such 
that H

(4.4.3) P  (xj) = f  (Xj), P* (xj) = /' (xj), Vj = 0,..., n.

It can be constructed explicitly with the help of a basis which is analogous to 
the basis of Lagrange interpolation polynomials.

We seek polynomials hk(x) and hk{x) such that

hk (xj) = Sjk, h'k (xj) =0, ]
> vj,k.

hk (xj) = 0, tik (xj) ss SJk J
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We may take hk and hk to have the form

hk{x)= TT ( —— — 'j ( ),

j^k

hk(x)= TT (—— — )
o }A n ^Xk~ XiJj*k

With the aid of the notation (4.1.2) for the basis of Lagrange polynomials, hk 
and hk can be rewritten as

hk (x) = <t>k (x)2(a* (x — Xk) + bk) and

The condition hk{xk) = 1 implies that bk = 1. The condition h'k(xk) = 0 further 
implies that

2(t>k (%k) fik (xk) + <fik (%k)2 a* = 0
and hence

ak = —2(f>k (Xk ) >
so that

(4.4.4) hk (x) = (1 -  2 <t>'k( xk)(x -  xk))4>k ( x f .

A similar argument gives

(4.4.5) hk ( x) = <t>k (x)2 (x -  xk)

In this basis, the Hermite interpolation polynomial of / is given by
n

p(*) = {hi (x)f ( + ?  (xj)) •j=o

The interpolation error is

where £ belongs to the interval [min0̂ j^n Xj, max0̂ j^n Xj] and u has been de­
fined in eqn (4.1.3). The proof of this estimate is completely analogous to the 
Proof of Theorem 4.3.1; the details of this proof depend upon the relationship be­
tween divided differences with coincident arguments and osculating polynomials, 
95 described in the following lemma.
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Lemma Let xo,... ,xn be n + 1 distinct points in the interval [a, 6], and
let ro,..., rn be n + 1 integers which are at least equal to 1. Let / be a function 
of class C ro+ *+rn-i over the interval [a, 6]. Then, the osculating polynomial of 
/ at the points Xj, which agrees at order rj — 1 with / at each Xj, is given by

P(x) = f  (x0) + J[x0, Xo] (x -  x0) + ... + X0 ] (x -  X0)r°-1s--- v----
ro arguments

+ /[x0,...,xo,xi](x-x0)ro + ...
roarguments

+ /[x0,...,xo,...,x„ ,...,xn] (x x0)r° (x - X i ) r * •••(x -  x„ )r"“1. 1 
(4 4 6) '--- v--- - '--- v--- /\ / roarguments rn arguments

Proof. Let r be as in eqn (4.4.2) and let y\,..., yr be r distinct points belonging 
to (a, b). Then, we know from eqn (4.2.2) that the interpolation polynomial of 
/ at the points yj is given by

r—1
P(x;y) = f(yi) + f[yi,y2] (x-y i) + ••• + / [2/1,2/2 , ••• JJ '

j=1

The integral representation (4.2.5) of divided differences shows that f[yi,... ,yj] 
is a continuous function of its arguments. It is clear that the polynomial

r—1n
j=i

depends continuously on the yjS. Denote by d\ the derivative of a function of 
two vector arguments with respect to the first one. Therefore, if y tends to any 
element y of (a, 6)r, then, for all k = 1,..., r - 1, df P  (*, y) converges to d*P (•, y) 
uniformly on compact sets of the real line and, in particular, uniformly on [a, b]. 
The reader should be aware that this conclusion is still true if some of the points 
yj coincide. Thus, let us assume that

Vl — * * * — Uro — ZO,
Vro+l — ’ ’ m — yrQ-j_ri — Xi,

^r0-f...-|-rn_i+ l = • * • = j/ro-|_....frn = Xn.

We will now show that P(*,y) is the osculating polynomial to / at the points 
Xj, which agrees at order rj — 1 at each xj. It is clear that, for all j  = 0,.. •

P{xj,y) = f(x j) .
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Choose j  such that rj >  1. Therefore, we have rj distinct points ?/ro+>..+rj_1+1, 
. • • >2/r0+...+»•,• at which / -  P{-,y) vanishes and, by Rolle’s theorem, we have 
r • - 1 points in the interval

min {ys : r0 + ... + r^-i + 1 ^  s ^  r0 + ... + rj} = Ij (y)
at which /' — d\P(-,y) vanishes. By an obvious recursive argument, we see that 
there exist rj — 2 points at which /" -  diP(-,y) vanishes in Ij(y) and, finally, 
one point in Ij(y) where — d[J~1P(-, y) vanishes. As y tends to y, all
of these points where the successive derivatives of / — P(-,y) vanish tend to xj 
and, therefore, in the limit

d$P(xj,y) = f (k) (xj), Vj = 0 Vk = 0,... ,rj -  1,
which proves the lemma. □

The relation (4.4.6) shows very clearly that the osculating polynomial at xq 
which agrees with / up to order ro — 1 is the Taylor expansion of / truncated after 
order ro -  1. In general, the osculating polynomial is a combination of Taylor 
and interpolation polynomials. This idea is made more precise in Exercise 4.6.1.

Now that Lemma 4.4.2 is proved, it is a simple matter to show that, if / is of 
class C r and P is the osculating polynomial which agrees with / at degree rj — 1 
at each point x j, then there exists in the smallest convex interval containing 
x and the xj s such that

j=0
The proof of this assertion is a complete repetition of the proof of Theorem 4.3.1, 
and it is left to the reader.

4.5. Divided differences as operators
The divided difference f[x0,...,xn] can be considered as a function of n + 1 
variables. Thus, we may study the mapping

/ •“> / h ......,*]v----v----'
n+ 1 arguments

as a mapping 5n which transforms functions of one variable into functions of 
n + 1 variables. If we want to make explicit the n + 1 arguments of the divided 
difference, we shall write

Sn (£0,...,£n)/ = f[xo,...,xn].
all of the xjs coincide and f  is n times continuously differentiable, we have 

to^n^ Seen ’ * *,x) c°in(ddes with f^n\x)/n\. Therefore, the opera-
0r generalizes differentiation. The notation has been chosen to emphasize
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the similarity between divided differences and differentiation: we need n + 1 
parameters in divided differences to make something which resembles an n-th 
derivative.

It is clear that Sn is a linear mapping: for all scalars a and all functions / 
and g

6n (/ + otg) = Snf  ■+• aSng.
What is even more interesting is that Leibniz’ formula can be generalized to 
divided differences:
Lemma 4-5.1. For all / and g and all n -f 1 distinct parameters xo,x\,... ,arn, 
we have the identity

n
(4.5.1) 6n(x0,..., xn) {f g ) = ^  (S3 f) {6n~3 (xj, ...,x„ )g).

j =o
If / and g are of class C n, the above relation also holds even when some of the 
knots xj coincide.

Proof. For n = 0, the left-hand side of eqn (4.5.1) is equal to 5°(xo)(fg) = 
f{x0)g(x0) and the right-hand side of eqn (4.5.1) is equal to 5°f(xo)5°g(xo). 
Therefore, the identity (4.5.1) is verified in this case. Before embarking on the 
general case, let us consider the case of n = 1. Then, the left-hand side is

f(x0)g(x0) -  /(si)g(si)
Xo X\

and the right-hand side is

, f  M  ~ f  (xx)  ̂f(xo) —  --- ---- H-----      i) ,Xo ~ X\ Xo - X\
so that the identity (4.5.1) is also clear in this case. Assume now that identity
(4.5.1) holds up to some index n. Then, by the definition of divided differences,

<5n+1 (xq, ■ ■ . ,x„ +i) (=
6n (a;0,..., xn){fg) - 6ns„ +i) ( )

Xo xn+i
We now use the induction hypothesis to show that

Sn {xo,...,xn) {fg) - S n {xi,...,xn+x) {fg)
n

=  [ ( ^  (X°’ • • • - xi) f)( (*./.•••» Xn) 9)

-  {S3 {x 1,..., )/) ( xn+i ) J•
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However, for each j  = 0,..., n,the term in brackets in the above sum can be 
rewritten as

(Sj (x0,...,Xj) f)(S’1*1 (xj,...,xn)g -  Sn~} )
+ (Sj(x0, . . . ,X j) f- 83(xu ..., xj+1) f) (6n~j (xj+1 xn+1) g)

which, by the definition of divided differences, is equal to

(Xj - xn+1) ( Sj(x0, ■ ■ -,Xj)f) («5n+1-J ( X j , . . . ,

+ (a:0 -Xj+ i) (<5J+1 (x0,...,Xj+i)f)( .
We sum these expressions with respect to j  and divide by x0 -  xn+i to give 

<Sn+1 (*o,...,*n+l)(/fl)
=  T  X_r-Xn±1 ̂  ^  (̂ jn + l-J  ) Xn+i) g)

#0 “ x n+ lJ=0

+ T  X°~Xi+l ( ^ +1 (* o ,• • •, f) (8n~3 g).
J ^ x°- Xn+1

We replace the index j  by j  + 1, changing accordingly the summation range, in 
the second sum of the above expression to obtain

<5n+1 (aro,...,*n+ i) ( / s )
x j  ~ x n+1 
Xo -  Xn+1 (S3 (x0,.. , X j ) f ) ( 8 n +1  3( l ; ..

+ V] — --—  (83 (x0, Xj) /) (<5"+1 3 (Xj, Xn+l)g) ,—[ x0— Xn+1

and it is now clear that the identity (4.5.1) holds. □

There is a rather obvious corollary to Lemma 4.5.1:
Corollary 4.5.2 (Leibniz' formula). If / and g are of class Cm, then, for all 
integers k ^ m, the following formula holds:

jd^ f &k~3g
dxk ^  ^  C’k dxi dxk~i ‘3=0

Proof. Use the relation (4.2.6) and the previous lemma. □

Divided differences can also be used in several variables. We will need later 
°nly the case of two variables, the case of N variables being analogous.
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Let / be a function of two variables x G [a, b] and y G [c, d\. Given two 
sequences of distinct knots xo <  x\ <  • • • <  xn in [a, b] and yo <  Vi <  • • • < yp 
in [c, d], we may apply £n(:ro, • • • ,xn) to f(-,y). We write the result as
(4.5.2) 82(x0 /(-,»),
where the subscript ar emphasizes that the finite differences are applied to the 
first variable, x, and this parallels the notations dx or d/dx for partial derivatives. 
Then, we apply 8p(yo,..., yp) to eqn (4.5.2), and the result will be denoted by

(l/O? • • • ? Vp) (*0, • • • 5 *̂ n) .f*
The identity

(2/o, • •., 2/P) (xo,. •., «n) / = &x (̂ o, -. •, xn) 6P (y0, • • •, yP) f
is an algebraic fact, which is an immediate consequence of the linearity of 5™ and 
8P. The reader may want to set up a recursive proof, if they feel so inclined.

If we assume, for instance, that / and its partial derivatives with respect to 
y up to order p are continuous, then the same formula holds with repeated y 
knots. Hence, we obtain the following identity for 0 ^  ^  p :

(4.5.3) (xo,..., xn) f(., y) = 8"(x0)..., *») .

This identity will prove very useful in the following sections.

4.5.1. Finite differences on uniform grids
The forward and backward finite difference operators are defined by
(4.5.4) (A hf)(x) = f(x  + h)- f  (x),
(4.5.5) (V*/) (x) = / (x) -  / (x -  ft).
If A or V are written without index, it means that h is taken to be equal to 1.

Divided differences on uniformly spaced points can be expressed in terms of 
forward and backward differences:
Lemma 4-5.3. The following identities hold, for all n ^  1:

(4.5.6) Sn (xo, ...,xo+ nh) f  = (A (x0),

(4.5.7) <5” (x0 -  nh, ..., x0) / = —  (V£/) (x0).

Proof. For n = 1, the identities are clear. Assume that they hold up to some 
integer n ^  1. Now, by the definition of divided differences,

6n+1 , xo -I- nh, xo + (n -f 1) h) f
- <̂n (#o + h,... ,xp -h (n -h 1) h) f  -  8n (x0,..., x0 + nh) f

(n + 1) h
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We use the induction hypothesis to show that the right-hand side of the above 
expression is equal to

which is clearly equal to

)i («<■•)'
The proof of the second identity is completely analogous. □

Due to eqn (4.5.6), Newton’s form of the interpolation polynomial of a func­
tion / at the points x0,x0 + h,... ,x0 + nh is given by

P (ar0 + hs) = / (zo) + s (A hf)(x0) + — — -
(4.5.8)

+ + a (« ~ 1)'' ‘ (s ~ n + 1) (A g/)
n\

If we generalize the definition of the binomial coefficients to all real or complex 
values of s by letting

(459)

then the formula (4.5.8) can be rewritten in the following more convenient form:

(4.5.10) P(xo -f hs) = E d )  M f )  (*»)•
k=0

There is an analogous formula when the knots make up a decreasing arith­
metic progression:

Xi — x — ih.
The argument which gave us eqn (4.5.10) now gives

(4-5.11) p  (Xo +hs) = Y l (7) (Vl/) (*°) •
i= 0

Of significant practical importance are the following central differences: the 
central difference approximation to the first derivative of a function is
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and the central difference to the second derivative of a function is 
(V,* A hf) (x) _ f ( x  + h)-2f(x) + f ( x - h ) 

h2 h2
Finite differences on regular meshes were used extensively in the era of nu­

merical tables; this motivation for using them is now quite slight. However, they 
remain an important device to generate numerical methods for the solution of 
partial differential equations, being mainly applied to equations where convection 
is dominant and time-dependent equations. As we shall see in Chapter 17, they 
are an essential ingredient for the construction of some numerical integration 
schemes for ordinary differential equations.

4.6. Exercises from Chapter 4
4.6.1. More on divided differences
An osculating polynomial is a combination of Taylor and interpolation polyno­
mials. Beyond that, the maximum regularity needed in order to have the general 
integral representation of finite differences is not required: a divided difference 
with coincident knots can be defined, provided that the local regularity of the 
function at these knots is good enough. The purpose of this problem is to prove 
the above statements in a straightforward and elementary fashion.
Exercise 4-6.1. Let / be a function defined on an interval ]a, b[ and let x0,...,xn 
be n + 1 distinct points from [a, 6]. Prove the identity

n
f[x0,...,xn] = II

j—0 k^j
Exercise 4-6.2. Assume that / is a function of class Cn in (a, b). Show that, for 
all k ^  n,

lim / [x, x + /i,..., x + kh] = (x).
h-> o A;!

Exercise 4-6-3. Assume in the remainder of this problem that yo,-..,yn are
given distinct points in (a, 6), that the intervals (yj — e,yj + e) are disjoint for
some e >  0, and that, for each j  = 0,..., n, / is of class C r^  on the interval
(Vj -  £,yj +e). Write

nu = II foi - £’ Vj + £) •
j=0

Show that, for each j  and for each k = 0,..., r(j), the mapping

,*k]
gr(j)

x ^  **(71 ̂  5 **r > • • •dx
from U to M is continuous.
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Exercise 4-6.4- Introducing the notation

0 (x0) — f  [•£()? X\ , . . . , Xn] t 

show that, for all positive integers k and for all sufficiently small h,

(p [xo ? d- h)..., xq kh] — f  [xo 5 xq /i, ..., xq d~ kh, x\,..., x^].

Exercise 4-6.5. Deduce from the previous exercise that, for all x G U,

f [ x 0, . . . ,X o ,X i, . . . ,X „ ]  =...V... y
r(0)+l times

1 $r(0)
H o y - d x ^ f[xo,Xl,' " ,Xnl

Exercise 4-6.6. Let
1 ^r(O)

~ r(0)! ^ ( o)  ̂  ’Xl’ * • * ’Xn] *

Show that, for all positive integers k and for all sufficiently small /i,

ip [xi, x\ -f ft,..., X\ + kh]
1 ĝ (o)
/q\ I r(o7^ *̂ 11 *̂1 d” h-, . . . , Xi d- kh) X2 • • • ? ̂ n] ?

/ * &Xq

and deduce that, for all x G U,

f[xQ) . . . , Xq , 2?i,.. . , , X2? • • • > ̂ n]
V— ------------   V---------'
r(0)+l times r(l)+ l times 1 £r(0)+r(l)

Exercise 4-6.7. Show, in general, that, for all €  and all sequences of integers 
*tf), j  = 0,... ,n, such that k(j) ^  r(j), we have the identity

X i , „ . , X Xj,. . . , X n , . „  , x n ]

fc(0)+l times fc(l) + l times fc(n)+l times
1 Qk(0)+k(l)+...+k(n)

= *(0)!*(1)! • • • *(«)! ̂ (0)̂ (1) • • • d ^ F ] f  [X°’Xl’ ’' ‘ ,X" ]'

Exercise 4-6.8. Let / be a function of class C 2. Assume that Xo and x\ are 
,S lnct P°ints, and set y0 = y2 = y4 = xo and yx = y3 = y$ = x Determine 
e^ xPressions f[y0,... ,?/j] for 0 ^  j  ^  5. Letting /(x) = sinx, xo = 0, and 

aH ~~ ?r̂ ’ calculate an approximation to sin(7r/12). It may be useful to take 
vantage of a program for symbolic manipulation, such as MAPLE.



74 4. INTERPOLATION AND DIVIDED DIFFERENCES

4.6.2. Numerical approximation to the solution of a boundary 
value problem for a differential equation by a finite 
difference method

Exercise 4-6.9. Let / be a function of class CA on the interval [0,1]. Derive the 
following estimate:

/r2v hA „ /(*)-/"(x) = o ( h4).
Show that, if / is assumed to be of class C 2, then we have

lim max {|ft~2V/lA/l/ (x) — f "  (x) | : h ^  x ^  1 — h} = 0.h—>0
Exercise 4-6.10. We want to approximate the solution of

(4.6.1) ~u" (x) + c {x) u = / (x), x e [0,1]

by a finite difference method. For this purpose, we assume that c is non-negative 
and continuous, and we complement eqn (4.6.1) by the Dirichlet boundary con­
ditions

(4.6.2) u(0) = u (1) = 0.

At this point, we do not know that there exists a solution of eqns (4.6.1) and
(4.6.2) , but we will assume that such a solution exists and that it is unique.
Exercise 4-6.11. Let n ^  1 be given and define h = l/(n + 1). Consider the 
bilinear form a on Rn given by

a (U, V) = ± h ^ ± ^ ih ± i + ±  C UjVj, I
j=0 j=1

where we define, by convention, Uo = Vo = 0 and C/n +1 = Vn+i = 0. Show that 
a is symmetric and positive definite.
Hint: a ([/, C/) = 0 then Uj+\ = Uj, Vj, and conclude.
Exercise 4-6.12. Let I be the linear form on Rn defined by

n
IU = ^  h f (jh) Uj.

j= 1
Show that there exists a unique minimizer of the functional

<t>(U) = -a(U,U)-lU.

Show that the minimizer U solves a linear system of equations, and give this 
system explicitly. The matrix of this system will be denoted by A.



4.6. E X E R C I S E S  F R O M  C H A P T E R  4 75

Exercise 4-6.13. Solve explicitly the equation

(4.6.3) Fi+1-2Fj + ̂ - 1 
h?

under the boundary conditions
(4.6.4) Vo — Vn-f-i — 0.
Hint: seek the solution as a polynomial in j  of degree 2.
Exercise 4.6.14- Assume that F  = ( F j ) i ^ j ^ n is a vector in W 1 with non-negative 
components. Let W  be the solution of
(4.6.5) A W  = F.

Show that the coordinates of W  are non-negative.
Hint: argue by contradiction and consider the i-th equation in the system (4.6.5), 
assuming that i is an index at which j  Wj attains a strictly negative minimum.
Exercise 4.6.15. Denote by |F|oo = m a x i ^ n |F)| the maximum norm of 
F G Rn • Infer from the inequalities

|F|oo -  Fj ^  0 and |F|oo + Fj ^  0, Vj = 1,..., n
that, for any F , the solution of eqn (4.6.5) satisfies the inequalities

-\F\ooVj ^  W j ^  \F\ooVj, Vj = 1,...,n,
where V is the function defined by eqns (4.6.3) and (4.6.4).
Exercise 4-6.16. Let

u ((,j  + 1) h) -  2u (jh ) -h u ({j -  1) h)
h2Fj = / tih) ~ c u (Jh) +

Show that
lim |F|oo = 0. 
h—̂0

Exercise 4-6.17. Deduce from the previous question that
lim max {\U j — u (jh)\ : 1 ^  j  ^  n} = 0.
h—>0

4.6.3. Extrapolation to the limit
The process to be described here is also called Richardson’s extrapolation.
Exercise 4-6.18. Suppose that a function / has the limited expansion near x = 0 
given by

/ (x) = fo + xfx + O (x2) ,
assume that we know neither fo nor f\, but that we have a reliable process 

or calculating f(x) for arbitrarily small values of x >  0. Find a combination of 
J\x) and f(2x) which gives an approximation of order 2 to fo-
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Exercise 4-6.19. Suppose that a function / has a limited expansion near x = 0 
given by

f(x) = P(x) + 0{xn+l ), P G Pn-
The polynomial P is unknown, but we have, as in Exercise 4.6.18, a reliable 
process for calculating /. Show that, for every choice of n -I- 1 positive distinct 
numbers r ,̂ there is a linear combination with coefficients such that

J2 9°j P(rj x ) = f ( 0)+O (xn+1).
j =0

More generally, show that, for each k = 1,..., n, there exists a linear combination 
such that n

£  HkjP(rjx) = k\fk (0) + (zn+1) .
3=0

Exercise 4-0.20. What kind of advantage is there in performing the above pro­
cedure? What difficulties do you foresee?



5

Least-squares 
approximation for 
polynomials
Section 4.1 was dedicated to polynomial interpolation: we replace a function by a 
polynomial of degree at most n which coincides with the function at n + 1 points. 
We have seen that the result is not always satisfactory in terms of convergence.

5.1. Posing the problem
In the present chapter, given a priori a distance, we seek a polynomial of degree 
at most n for which the distance to the given function / is minimized. The term 
least-squares approximation describes the distance under consideration. It is the 
distance given by the quadratic mean, whose square is

|P (x) — / (x)|2 w (x) dx,

where [a, b] is a compact interval of M (with a <  b) and w is a weight, integrable 
on [a>&], that we assume to be strictly positive almost everywhere.

5.1.1. Least-squares is Pythagoras in many dimensions
We have, first of all, the following theorem on existence and uniqueness:
Theorem 5.1.1. Let w be an integrable function which is strictly positive almost 
everywhere on the compact interval fa, b]. There exists a unique polynomial 
P € Pn, such that

\P(X) ~ f(x)\2w(x)dx ^  J \Q(x) - f  (x)\2 w(x)dx, V<2 E Pn.

77
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This polynomial is called the least-squares approximation to / and is of degree 
at most n. o

The proof of this theorem depends on a very neat trick, which will be used 
several times later on, and which is described in the following lemma:
Lemma 5.1.2. Let V be a real or complex finite-dimensional vector space and 
let a be a bilinear symmetric or sesquilinear Hermitian form. Assume that a 
is non-negative and let I be a semilinear form on V. Then, x minimizes the 
function

cj) (x) = -a (x, x) — 3? (lx) 

if and only if the following identity holds:

(5.1.2) a (x, z) — Iz = 0, Vz G V.

Moreover, a is positive definite if and only if for all z £ V, there exists a unique 
minimizer of (j) over V.

Proof. We treat the case when V is a complex vector space, the real case being 
somewhat simpler. If x is a minimizer of 0 over V, then, for all t £ R and all 
2 £ V, we must have

(j)(x + tz) -  (j>(x) ^  0 .
Expanding the above inequality, we obtain

(5.1.3) ta (x, z) + ta (z, x) + t2a (z, z) ^  25ft (tlz).

First, suppose that t is strictly positive and divide eqn (5.1.3) by t. Letting t 
tend to zero, we obtain

a (x, z) + a (z, x) ^  25ft (Iz).

If, instead of t being positive, we assume t to be negative, the analogous operation 
implies that

a (x, z) + a (z, x) ^  25ft (Iz),
i.e.,

(5.1.4) 5fta (x, z) = 5ft (Iz), Vz G V.

We now replace z in eqn (5.1.4) by iz to obtain

Qa(x,z) = Q(lz), VzeV, 1

which indeed proves that any minimizer verifies the identity (5.1.2).
Conversely, let x verify eqn (5.1.2). Then, for any w E V, V
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However, due to the assumption (5.1.2), the term
(x, w - x) -  ?R(/ (w -  x))

vanishes and there remains

(5.1.5) (p(w) -(f) (x) = (w -  x, w -  x),

which is non-negative, owing to the assumption on a.
Assume now that a is positive definite. Relation (5.1.5) immediately implies 

the uniqueness of minimizers of 0. Conversely, assume that the minimizers of 0 
are unique. Then, if A is the matrix of the form a in an arbitrary basis of V, 
the relation (5.1.2) is equivalent to

(5 .1.6) A£ = 77,
where £ is the vector of coordinates of x, 77 is the vector of coordinates of 7/, and 
y is the unique vector in V such that

Iz = z*y, Wz E V.
The system (5.1.6) is linear and, therefore, if for all data it admits at most 
one solution, then it also possesses a solution for all data 77. Conversely, the 
uniqueness assumption implies that A is positive definite: if its kernel were not 
reduced to 0 then, for any w in the kernel of a, we would have

0  (x + w) -  0  (x) = -a  (w, w), 

which contradicts the uniqueness assumption. □
Proof of Theorem  5.1.1. For all continuous / and g on [a, 6], we define

a(/>#) = fw (x) f  g (x)
J a

which is a sesquilinear form. We let V = Pn and also define a semilinear form L 
on Pn by

LP — f  w (x) P (x)f (x) dx.
J a

The restriction of a to V = Pn is Hermitian and positive definite. Theorem 5.1.1 
then implies that there exists a unique P in Pn which minimizes

0  {P) = - J w{x)\P (x)|2 dx -  5R J w(x) P  (x)/ (x) dx.

P also minimizes \J w{x)\P(x) -  f  (x)[2dx,
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which differs from the previous expression by the constant

^ J w(x) |/ (x)|2 da;.

In particular, relation (5.1.2) can be rewritten as

(5.1.7) a(/-P ,i?) = 0, Vi? G Pn.

Moreover, if we choose the basis of monomials 1, x,..., xn for Pn, and if P is 
of the form

n
P{x) =

j = 0

then the relation (5 .1 .2) is equivalent to the following system of n + 1 equations 
with n -h i unknowns a,Q,...,an:

n /»b rb
(5 .1.8) / x**kw(x)dx = / xk f  (x) w (x) dx, 0 ^  k ^  n.

j —o ifl *'a

Then, Lemma 5.1.2 tells us that eqn (5.1.8) possesses a unique solution, which 
determines the least-squares approximation of / in P„ , with respect to the weight 
w. It is useful to rewrite eqn (5.1.5) and, in our case, it becomes

(5.1.9) a ( f - Q J ~ Q )  = a ( f - P J - P ) + a ( P - Q , P - Q ), WQ e Pn, j
which is simply Pythagoras’ theorem. □

Remark 5.1.3. This proof also works on an infinite interval /, with a weight 
w, such that every power of x is integrable on I  with respect to this weight. 
Important examples of weights are: x »-» exp(-x) (Laguerre weight) on I = BrJ 
and x H exp(—x2/2) on I  = E (Hermite weight).

5.1.2. Is it really calculable?
We immediately note that the matrix of the system of eqns (5.1.8) is symmetric. 
Furthermore, it is positive definite since

w (x) x^+k dx = d x = (P,P).

We may believe that the system (5.1.8) is very easy to solve numerically, but it 
is nothing of the sort, as we are going to see in a simple case.
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When the weights w are equal to 1 and the interval [a, 6] is equal to [0,1], 
the matrix of the system (5.1.8) is given by

1 1 /2 1/3 • i/(ra+i)\
1 /2 1/3 1/4 •• l/(n + 2)

Hn+1 — 1/3 1/4 1/5 •• l/(n + 3)

yl/(n + !) 1/(n -f* 2) l/(n + 3) • l/(2n + l)y
This matrix is called the Hilbert matrix. We can explicitly calculate the inverse 
of this matrix. An explicit formula can be found in [40]. I will be content with 
reproducing the inverse of H6, displaying only the elements in the lower triangle, 
since # 6  is symmetric. The inverse of Hq is given by

36 \
-630 14700
3360 -88200 564480

-7560 211680 -1411200 3628800
7560 -220500 1512000 -3969000 4410000

-2772 83160 -582120 1552320 -1746360 698544 /
The examination of the components of this matrix shows that its largest element 
is of the order of 4 x 106 and, therefore, it is necessary to know the second term 
of eqn (5 .1.8) with an error which is small relative to 1 0“6, to obtain acceptable 
results.

In other words, the matrices Hn are very poorly conditioned. Let | • | be 
some vector norm and let || • || be its subordinate operator norm. The condition 
number of a matrix A is the number ||A|| ||A-1|| which allows us to write the 
sensitivity of the system

Ax = b
to errors SA in A and Sb in b. We shall prove in Subsection 9.5.3 that the relative 
error |5x|/|x| can be estimated by means of the formula

M  < ( m  , 1MH
1*1 "  i - k (̂ )||M||/p ii U l Mil/'

The conditioning of Hn, based on the Euclidean norm, is of order
*(An) ~ e 7”/2.

We therefore have a problem which is untreatable numerically.

5-2. Orthogonal polynomials
The solution of the system (5 .1.8) is very difficult because the column vectors of 

e malrix of this system are nearly collinear. We notice this particularly in the 
Case °f the Hilbert matrix Hn.
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Nevertheless, the least-squares approximation is commonly used; we remove 
the difficulty by choosing an appropriate basis. We return to the system in 
the form of eqn (5.1.7) and choose a basis of Pn leading to a system which 
behaves as well as possible. The best possible behaviour, corresponding to the 
technical notion of conditioning, as developed in Subsection 9.5.3 (measured with 
Euclidean norms), is that of unitary matrices. This, therefore, leads us back to 
finding an orthonormal basis of UnPn.

5.2.1. Definition and construction of orthogonal polynomials
Definition 5.2.1. We call the sequence of polynomials Pq, P\,..., Pn,... orthog­
onal relative to a weight in, which is strictly positive almost everywhere and 
integrable on an interval [a, 6], if it has the following properties:

(i) For any n, Pn is of degree n and the coefficient of its term of degree n is 1;

(ii) For any n, Pn is orthogonal to Pn_i, that is, all the polynomials of degree 
strictly less than n. The orthogonal polynomials are ordered from number 
zero and the n-th orthogonal polynomial is always of degree n.

We call the normalized polynomials

orthonormal to a weight w.
We show, first of all, that such sequences exist and give their most elementary 

properties.
Lemma 5.2.2. For any weight w, which is integrable on the closed bounded inter­
val [a, 6], there exists a sequence of orthogonal polynomials satisfying Definition 
5.2.1. If

n—1
(5.2.1) Pn = Xn -Y^CinPi

2—0
then

(5.2.2)
(Pi, Pi)'

Proof. By the process of Gram-Schmidt orthonormalization (Theorem 12.1-1) 
applied to the monomials 1 , x, x2, . . xJ in this order, we obtain the sequence 
of orthonormal polynomials. If we divide each of them by the coefficient of their 
highest term, we obtain the sequence of orthogonal polynomials. The uniqueness 
is immediate.
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Using relations (5.2.1) and (5.2.2), we can determine the coefficients of or­
thogonal polynomials relative to a weight w on an interval [a, 5] by quadrature. 
Generally, it would be necessary to integrate numerically, which is not necessar­
ily very economical. But the situation can be a lot better, in various important
cases.

5.2.2. Examples of orthogonal polynomials
For a certain number of simple weights, we know explicit analytic expressions 
for the orthogonal polynomials.
Theorem 5.2.3. If [a, 5] = [—1,1] and if w = 1, then the orthonormal polynomials 
are given by the following formula:

(5.2.3) =

Proof. We show that eqn (5.2.3) defines orthonormal polynomials. To lighten 
the notation we will let

Rn ̂  = dx" ^  1 ‘
It is clear that Rn is a polynomial of degree n. We will verify that if p <  n then 
there exists a polynomial rp(x) such that

[(*2 -  = rp (*) (*2 -  1)"“p •
This relation is clearly true when p — 0. Suppose that it is true for p — 1. Then,

= [r'P-i (x) (*2 -  1) + 2x (n -  + 1) rp-i (x)] (x2 -  1)"~P.
Suppose that m ̂n.We calculate the scalar products (Rn,Rm) using inte-

gration by parts as follows:

L w <*> ■di= I**2 -')”] £= [<i2 - *)"] | ,\x=—l

L  [<i! - ‘i l  [i*2 - 1)“] <i*-
nl dm+1

that mte^rate(  ̂term vanishes at x = ±1. By an elementary induction, we see

£  «. (X,dx = i - i y f  [(x> _  ,)■] [(x> -  1)-] dx,
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for all p ^  n.
If m <  n, we can take p = m + 1. In this case, the derivative of order 

m + p  = 2m + 1 of the term [(x2 -  l)m] is zero, and we see that (Rn,Rm) = 0.
If m = n, we take p = n. The derivative of order 2n of the term (a:2 -  l)n is 

(2n)! and we have that

(Rn,Rn) = (2n)! / V x T d * .

Let
In = f  (1 -  x2)n dx 

and integrate by parts to obtain

f  (l -  x2)n dx = a: (l -  x2)n -  [  x (-2nx) (l -  x2)n 1 dx.
i- i x=~1 J-i

We therefore have the recurrence

■fn — 271 (In—1 -̂n) ?
so that

/n
and, since Iq = 2, we see that

2n
2n -f-1In—1 j

2n (2n — 2) • • • 2 0 _  2n+1n! _  22n+1 (n!)2
(2n + 1) (2n -  1) • • • 3 2 ~ (2n + 1) (2n)!/2"n! "  (2n + 1) (2n)!'

Finally,

n? Rn)
22n+1 (n!)2 
(2n + l) *

This shows that the Pn (•; —1,1) form an orthonormal family of polynomials. 
The degree of Pn (•; —1,1) is n and the coefficient of the highest term of 
Pn (•; -1,1) is positive. They are, therefore, orthonormal polynomials relative 
to the weight 1 on the interval [—1,1]. &

We call the polynomials Qn given by

Qn {x) 1 dn
n! 2n dxn

Legendre polynomials. _
We can deduce from eqn (5.2.3) the orthonormal polynomials relative to the 

weight 1 on any interval [a, b] in the following way: we seek them in the form

Pn (x; a, b) = aPn ' 2x — a
b - a
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since the affine mapping x (2x — a — b)/(b — a) transforms [a, 6] to [-1,1]. We 
have orthogonality since

2x — a — 
b — a

1
2

-1,1 j  Pm -!> da;
r1 l

{b a) JPn I? 1) Pm(*̂ ! 1) d*C ~  2 'mn*

By choosing

we ensure the normalization.
Consider now the weight

w (x) = (l — x2) 1

on the interval [—1,1]. The weight w is singular on [—1,1], but it is integrable. 
We are going to explicitly determine the orthogonal polynomials with respect to 
this weight:
Theorem 5.2.4• Let Arc cos be the inverse function of cos defined by 

0 — Arc cos x <$==> 0E[0,7r] and x = cos0.

The functions
Qn (x) = cos (n Arc cos x), 

defined on the interval [—1,1], are relatively orthogonal to the weight

w (x) — (l — x2) 1//2.

Furthermore, Qn is a p o ly n om ia l o f  d e g ree  n and

(Q?»,<?») = {*
/2 if n ^  1; 

if n = 0.

Proof. With the change of variable x = cos0, we calculate the following scalar 
Product:

(Qn, Qm) — Qn (*r) Qm (*r) rrJ («r) dx — cos (77$) cos (vnS) d$.

If m ^  ri, we then have

(Qn, Qm) — 2 sin (n + m)6 ^  sin (n -  m) O'
72 -f- 771 n — m =  0.
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Therefore, the Qn are pairwise orthogonal. Furthermore, if = n ^  0.

(Q n> Qn) sin 2 n6
2 n + 0

J o

7r 
2

If n = m = 0,
(Q o,Q o) =  7T-

We show that Qn are polynomials. Indeed, for n = 0, we have

Qo = 1,
which is obviously a polynomial. For n = 1,

Q i ==
which is again a polynomial. We calculate Q2(x):

Q2 (x) = cos (2 Arc cos x) = 2 cos2 (Arc cos x) — 1 = 2x2 -  1.

We are going to establish a recurrence relation on the Qn. Still letting 0 = 
Arc cos x, we can write

Qn- i  (^) +  <2n+1 (#) =  c o s( n  -  1)6 +  c o s ( n  +  1)#
= 2 cos 0 cos nO = 2# Qn (#) •

Consequently,

(5.2.4) Qn+l (x) = 2x Qn W - Qn—1 (x) .
Since the degree of Qo is 0 and the degree of Qi is 1, it suffices to refer to form ula
(5.2.4) to see that the degree of Qn is n. Furthermore, if an is the coefficient of 
the term of degree n in Qn, we deduce from the recurrence relation (5.2.4) that 
an = 2n”1, for n ^  1.

The functions Pn defined by

form an orthonormal family of polynomials. These are the polynomials which  are 
orthonormal relative to the weight (1 —x2)-1/2. The polynomials Pn = 2~n+1Q* 
are the orthogonal polynomials relative to the weight w in the sense of Definite 
5.2.1. These are called Chebyshev polynomials.
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5.2.3. Revival of special functions

87

The study of orthogonal polynomials, a great subject of the nineteenth century, 
has known a recent resurge of interest. Indeed, it is a chapter in the theory of 
special functions to which mathematicians have paid little attention in the twen­
tieth century, but which theoretical physicists, or, at least, certain specialists in 
quantum mechanics, have found to be of great interest, as we can obtain explicit 
expressions of coherent states and their energies by means of special functions. 
In a more mathematical language, special functions play a part in the spectra 
of certain infinite-dimensional self-adjoint operators. The extreme weakness of 
communication between physicists and mathematicians on the subject is cut­
tingly described in the preface of [62] by Richard Askey. It tells an impressive 
story of the duplication of effort and of mutual ignorance, compounded by the 
difficulty of getting access to certain slightly old works.

A very readable work on special functions from a classical point of view, 
which has several applications in physics, is given in Nikiforov and Uvarov [64]. 
Equally good is Miller [62] at a higher level.

Special functions and, in particular, the celebrated hypergeometric function, 
appear in all sorts of counting problems. They play as much a part in combina­
torics and computing as in probability and the theory of numbers. To see some 
combinatorial applications consult the marvellous Graham et al. [38], and the 
more difficult Fine [29]. Some applications in probability are presented in [38], 
but, above all, it is recommendable to read Feller [27], which is a masterpiece on 
discrete probability.

From a strictly numerical point of view, orthogonal polynomials are useful 
outside of polynomial approximation theory. They appear in the convergence 
acceleration theory of Pade approximations. In this theory, we approximate 
functions by rational fractions, whilst requiring that the order of approximation 
at a point is maximal amongst all rational functions whose numerator and de­
nominator are of a given maximum degree. We refer to, for example, the work 
of Brezinski [10], or the older book by G. A. Baker [6].

We also find orthogonal polynomials when we solve partial differential equa­
tions by spectral and pseudo-spectral methods, which are very powerful in simple 
geometries. These are used, for better or for worse, in weather forecasting and 
the study of global climatic models. The greenhouse effect, due to carbon diox­
ide and other gases, seems to lead to global warming. This deduction depends 
°n a large number of calculations using orthogonal polynomials, and their use 
seems to be growing a lot quicker than the level of the oceans—fortunately! 
Introductions can be found in [36,37].

Special functions have never ceased to be part of physics culture, although 
ey aave almost disappeared from the training of mathematicians contemporary 
* the author of these lines. Weather calculations are the calculations of 
ysicists, who have never asked the permission of mathematicians to do them,
1 y- It is therefore very difficult to declare a theory dead, as some seem, like
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the phoenix, to be reborn from their ashes when the time is right.

5.2.4. Orthogonal polynomials and least-squares
We can now solve the system (5.1.7). Since the P j  form an orthonormal basis of 
Pn, it is equivalent to have the relation (5.1.7) and

(5.2.5) (P,Pj ) = {f,Pj ),V je{0  ,...,n}.

From this, we immediately deduce that

j=0

Relation (5.1.7), or equivalently eqn (5.2.5), expresses that P is the orthog­
onal projection of / on the space Pn. Furthermore, relation (5.1.9) for Q = 0 
implies that

( f - p , f - p )  + (p,p) = ( f j) ,
that is

(5-2.6) E K / ^ I 2 *  (/>/)•
j -o

The right-hand term of eqn (5.2.6) is independent of n. Consequently, we 
can bound from above the supremum of the left-hand term by (/, /), that is

oo

(5-2.7) Y , U Pi )\2 (̂/>/)•
j = 0

This is Bessel’s inequality.

5.3. Polynomial density: Bernstein polynomials
Amongst other things, the Stone-Weierstrass approximation theorem p e rm it s  
us to confirm that the polynomials on the compact interval [a, 5] are dense in 
C°([a, b]). The original proof of this result is not very constructive. We will 
present here the proof by Bernstein. JH

Recall that Lagrangian interpolation has poor convergence properties. W 
fact, the error estimate (Theorem 4.3.1) requires a lot of regularity on the funC' 
tions that we are interpolating. The idea is to use polynomials in greater numb# 
than in the case of interpolation, without demanding that the values coincide a* 
the knots.
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5.3.1. Modulus of continuity
Recall the definition of the modulus of continuity of a function / which is con­
tinuous on a compact set K. It is the increasing function cj from !R+ to itself, 
vanishing at zero, and such that

\f(x) -/(y)K  u{\x-y\),
The function u can be obtained from the formula

u(h)= sup \f(x)-f(y)\.
x,y£K
\x-y\^.h

We deduce immediately that such a function is increasing and vanishes at zero. 
Lemma 5.3.1. Every function / which is continuous on a compact convex set K 
of W1 possesses a modulus of continuity which is continuous at 0.
Proof. We are going to verify that the function lj defined above is continuous. 
The continuity of lj at 0 is equivalent to the uniform continuity of /, which is 
true since / is continuous on a compact set K.

Furthermore, lj has the property of sub-additivity. In other words, for any 
h i and /i2, we have

cj (h\ -+■ /12) ^  w (fti) -t- lj (h2).
Indeed, if x and y are two elements of K such that \x — y\ ^  h\ + A2, we can 
find a point z on the segment [x,y] joining x and y such that \x — z\ ^  h\ and 
\z - y\ ^  ^2- We then have

1/ (*) -  / (v)I ^  1/ (x) -  / (z)| -I-1/ (2 ) -  / (y)| ^  w (hi) + u .
Then, let h >  0 be fixed and let h! tend to zero from above. We have

uj (h h r) ^  lj (/i) 4~ lj (fi;) ,
from which we deduce that

lim sup lj (h + h') ^  lj (h ).
h'-* 0

However, as lj is increasing, that is, for h and h* positive or zero, Lj{h-\~h') ^  lj(K), 
we can pass to the limit and

lim inf u j(h  +  h') >  lj (h ).h'->0
The combination of this relation with the preceding one shows that lj is right- 
continuous. In the same way,

Lj(h) ^  cj ( h  — h ') -F lj (h*),
which implies that

lim inf L j(h — h') ^  lj (h ).p /i'—̂ 0
ombining this last property with the fact that lj is increasing, we see that lj is
^-continuous. □
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5.3.2. Bernstein polynomials and Bernstein approximation
We naturally restrict ourselves to the interval [0,1] and let

0n J (z) =  C * x t ( l- x ) n-i .

If / is a continuous function on [0,1], the Bernstein polynomial approximation 
of / is defined by

n
(5.3.1) Bn (/, x) — /3nj  (#) f ( —\

j=o
Bernstein’s theorem is stated as follows:

Theorem 5.3.2. Let / be a continuous function of [0,1], let w be its modulus 
of continuity, and let Bn(f,x) be the Bernstein approximation polynomial of 
degree n. We have the following estimate:

(5.3.2) max |/ (x) -  Bn (/,x)\ ^  -a; . oarG[0,l] 4 v /
Proof. From the binomial theorem

n
(5.3.3) (a + b)n = J 2 c3na,j bn-j ,

j=0
we will deduce that the 0nj  satisfy the following relations:

n
(5.3.4) Pn,j (x) = I?

j=0
n

(5.3.5) T  (x) = X,
U n

(5.3.6) E ^ n , i ( x ) =  +
j=o v 7

First of all, we choose a = x and b = 1 -  x in eqn (5.3.3), which gives us 
eqn (5.3.4). If we differentiate eqn (5.3.3) with respect to a once, we obtain

n
n(a + b)n~l = Y ^ jC

j=  1
from which we deduce, on multiplying by a and dividing by n, that

n
a (a + b)n~l = Y  .

j=i
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On substituting a = xand b = 1 — x,we obtain eqn (5.3.5).
We differentiate eqn (5.3.3) once more with respect to a, to get

n (n-  1) (a + b)n~2 = £  -  1) a ^ 2 
j = 2

On multiplying by a2 and dividing by n2, we have

Employing the same substitution as the preceding one, we obtain

From this, and using eqn (5.3.5), we deduce that
n . 2 r i / .
E w Ej=0 j=o x

1+ - X,n

which is eqn (5.3.6).
The error between / and Bn (f, •) is defined by

n
en(f,x) = /(x)-^£„ ,j(x)/(-). 

j=o
Identity (5.3.4) allows us to transform this error expression into 

en(f,x) = (*) (/(*) ~ /(^))>
J'=0

which we bound from above, using the triangle inequality, by

\en(x)| ^  £ ( lnj(z) |/(x) -  /(^)|.
3=0

Fixing x, we are going to bound from above the terms of the sum appearing 
^  eqn (5.3.7), differently according to whether j/n is close to x or not. To do 

ls> we use a positive parameter S, which we will fix later, and note that, if 
then
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Consequently,

(5.3.8) £  / ?n , i( *)|/(*)-/0 |<« W .
j:\x-{j/n)\^6

Conversely, if \x -  {j/n)\ >  S, let p be the integer part of \x -  (j/n)\/5, that 
is, the unique integer such that

(5.3.9) p6 ^

Let y0,2/i,..., yp+i be the points

x - ln <  (p + 1) S.

yo = x, yk = z + — - x Y  ...,p + 1 \n / Vp+1 -  n -

As the points yk are pairwise separated by a distance which is, at most, equal 
to <5, we see that

\f ( * ) - / ( - ) \< 1/(*) - / (»i)l + ••• + !/(»*) - / (»*+i)l + • • •
+ / (i/p) -  / (~) | ^  i) ̂  (<5) • I

By virtue of eqn (5.3.9), we see that

l/(*)"/(n)l*"(',(1 + il*— nl)’ 8
However, since \x -  {j/n)| >  S, we bound \x — {j/n)\/S by its square and, 
therefore,

k (l)- /(n)h"<<) (1 + ̂ (x‘n)!)'
Hence, we have

j:\x-(j/n)\>6

^u{6) T  Pn,j {x) + ^2 y ,  n ) Pn,j
L j= o j =o

The first sum within the bracket is equal to 1 and the second is calculated by 
means of the formulae (5.3.4)-(5.3.6), and as follows:
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The maximum of the function i r t x ( l - i )  on the interval [0,1] is achieved at 
x = 1/2 and has the value 1/4. We obtain

j:\x-(j/n)\>6

C o m b in in g  this last expression with eqn (5.3.8), we have the error bound

(5.3.10) |e„ | s j  uj  (5) (2 +  ^ 2  )  •

If we choose 5 = l/y/n, we obtain eqn (5.3.2). □
In Figs 5.1 and 5.2 we present the graphs of the four Bernstein polynomials of 

degree 3, and the Bernstein approximation of degree 3 of x »-»• sin(7rx/2). Notice 
that this Bernstein approximation is not very accurate. It is precisely for this 
reason that it will be stable. An essential trait of Bernstein polynomials is that 
they oscillate very little, and it is this that allows the proof to work.

A consequence of Theorem 5.3.2 is the following density result, the proof of 
which is left to the reader:
Corollary 5.3.3. Let [a, b] be a compact interval. Polynomials are dense in
c ° (M ).

If the function / is Lipschitz with respect to its coefficients, its modulus of 
continuity uj satisfies
(5.3.11) uj(5) ^  L5,
for some finite positive number L. Consequently, the estimate (5.3.10) becomes

\en\^L S  (2 + ^ )  ,

Figure 5.1: The Bernstein polyno- 
mials of degree 3.

Figure 5.2: Approximation of
f(x) = sin(7rx/2) over [0,1] by 
Pz(x) = Bs(f,x).
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and the choice S = l/(2y/2n) leads to the estimate

Even if / is very differentiable, the Bernstein approximation polynomials cannot 
converge quicker than n~2. Indeed, we can show that, if / is C2, then

lim n2 [Bn (/, x) -  f(x)] = - f "  (x) x (1 -  x).n—>-oo Z

5.3.3. Application of Bernstein polynomials to graphics 
software: the Bezier curves

Bernstein polynomials have known a new vogue since Bezier [9] and Casteljau [22] 
proposed numerical methods for the approximation of surfaces by bi-dimensional 
generalizations of them. First used in the context of the automobile industry, 
these generalizations have appeared extensively in graphics software of recent 
years. Indeed, Bezier curves and surfaces have great numerical stability, conve­
niently allowing the calculation of certain partial derivatives, and are obtained 
by economic algorithms. The interest in graphics software is creating a new field 
of research, at the crossroads of algebraic geometry, differential geometry, and 
computing. Here is an example of an open problem: there are formal calculation 
programs which can find the intersections of two algebraic surfaces which have 
equations with rational coefficients. However, in an industrial context, the data 
is rarely known with very great precision, and we do not know of a good result 
on the stability of the intersections with respect to the coefficients.

Given n + 1 points Xi, 0 ^  i ^  n, in the space Rd, a Bezier curve is parame­
terized by

n
X  (£; xq,..., x n) — ^   ̂/̂ n,j (̂ ) •

j=0
The nice feature of a Bezier curve is the geometric insight given by this para­
meterization, in contrast to a representation in another basis of polynomials, such 
as the basis of monomials, the Lagrange basis, or the Newton basis. Indeed, we 
see immediately that

X. (0, Xq, . . • , Xfi) — Xq and X. (1, Xq, • • • , 3Jn) — 3Cn- 

Moreover, if n ^  2, the tangents at X(0) and -X"(l) have directions given by 

x ' (0; Xq, ..., x n) = n(xi -  x0) and X' (1; x0,..., x n) = n (x n - x n-\) *

More generally, the fc-th derivative at 0, X ^(0), can be expressed as a linear 
combination of the vectors xq,.. . ,Xk, and a similar statement holds for the fc-th 
derivative at 1.

i
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Furthermore, there is a very geometric construction of the points of a Bezier 
curve, obtained by a triangular algorithm which is reminiscent of the Pascal 
triangle. The Bernstein basis functions satisfy the following recursive definition:

Pnj {t) = tfin- 1J-1 (t) + (1 —t) Pn-ij (t) .
Therefore, it is clear that the curves X(-; x0, • • •, #n) also satisfy the recursive 
identity:

X  (t'f 3̂0? • • • j ® n) — tX  (t, 3?o, . . . , Xfi_i) ”h (1 £) -X (£, , . . . , 3?̂ ) .
Geometrically, this means that X(t; x0,..., x n) is obtained as the barycentre 
of X(t;x0,...,xn_i) with weight t and X (t;x i,...,xn) with weight 1 -  t. 
Hence, it can be obtained by taking the barycentres between x j and xj+ 1, 
0 <: j  ^  n -  1, and then the n — 1 barycentres between the previously con­
structed barycentres, and so on, in n(n + l)/2 operations. If n is not very large, 
this is a very efficent algorithm, which is depicted in Fig. 5.3. This construction 
is called the de Casteljau algorithm.

The points Xj are called control points. Graphics users learn very quickly that 
when pulling out a control point, the Bezier curve follows it. However, Bezier 
curves suffer from the limitations of all polynomial approximations: rigidity, and 
hence lack of stability. Indeed, it is obvious that changing one of the control

Figure 5.3: The thin solid line is the control polygon, the thicker solid curve is 
e Bezier curve, and the successive dotted lines are the barycentres’ lines, the 

Weight being t = 0.6.
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points in a Bezier curve changes the whole of the curve. This is the reason why 
it is more advantageous to use piecewise Bezier curves; but how does one control 
the continuity at the break points? Obtaining this control is the reason for the 
use of B-splines in CAGD, see Subsection 6.3.5.

5.4. Least-squares convergence of a polynomial 
approximation

The density of the polynomials in the space of continuous functions on a compact 
interval allows us to show that the least-squares approximation to a function / 
converges to this function in a sense that we will now define precisely:
Theorem 5.4 1- Let w be a weight which is strictly positive almost everywhere 
and integrable on the compact interval [a, b\. Let / be a continuous function on 
[a, b] and let Qn be the polynomial of degree at most n which is its least-squares 
approximation relative to w. Then, as n tends to infinity, Qn converges to / in 
the quadratic mean (with the weight in), that is

rb
lim / \f (x) -  Qn (x)\2 w(x)dx = 0.
n— Ja

Furthermore, we have Parseval’s relation:

(5.4.1)
OO -6
$ZI(/>A)|2= /
j=0 Ja

Proof. By the definition of least-squares approximation, the following inequal-j 
ity holds for every polynomial R G Pn:

If we take the polynomial R to be the Bernstein polynomial Bn(f, x), then, since 
|f(x) — Bn(f,x)| ^  9u;(l/\/^)/4, we see that

(/ -  Qn, f  -  Qn)1'2 ^  M 14/VH) [ fa W (x) ds) ' .

This proves the first assertion.
Relation (5.1.9) with P — Qn and Q = 0 can be written as

( f - Q n , f -Q n )  + (Qn,Qn) = (f,f).
From this, we get

E l  {f,Pj)\2M f , f ) - ( f - Q n , f - Q n ) .
i=°

We can pass to the limit due to the first assertion and then conclude with the 
aid of the Bessel inequality (5.2.7).
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Convergence in the quadratic mean is not very precise. In particular, it in 
no way implies uniform convergence. We give an example of this phenomenon. 
On the line M, consider a continuous function / which is positive, not identically 
zero, and which has compact support. We define a sequence of functions / by
writing

If we choose a sequence an which decreases to zero, the maximum of f n tends 
to infinity. Now we choose (3n in such a way that f n tends to 0 in its quadratic 
mean. For this, it is necessary that

tends to zero when n tends to infinity. We therefore choose /3n such that

Nevertheless, we can obtain a uniformly convergent result in the case where 
the weight is 1 by imposing regularity conditions on /. For example, we have 
the following result:
Theorem 5.4-2. Let / be C2 on the interval [0,1] and let Qn be its least-squares 
approximation relative to the weight 1. Then, for every e >  0, there exists an N 
such that, for all n ^  N,

max |/ (x) -  Qn(x)| ^  . ox€ [0,l] yn

The proof of this result may be found in [51]. From the analytical point of 
view, the situation is much better than in the interpolation case since, for C2 
functions, we always have uniform convergence of least-squares approximations 
°n any interval when the weight is 1.

5.5. Qualitative properties of orthogonal polynomials
We now present some general properties of orthogonal polynomials, which will 
be of use later.
Theorem 5.5.1. Let w be an integrable weight which is strictly positive almost 
everywhere on the compact interval [a, b\. Then, for any n, all the roots of the 

orthogonal polynomial Pn are real and simple. Moreover, these roots belong 
10 the interval ]a,6[. o

theh°̂  k.et be the roots of Pn in the interval ]a,b[, listed with
lr multiplicities. The number j  is at most equal to n and it could be zero.
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Suppose that it is strictly less than n. Since the coefficients of Pn are real, Pn 
will change sign at every root with odd multiplicity. If >  0, we let

Q(x) = (x -xk)e(k),
k=1

where e(k) is 1 if the multiplicity of xj is odd and 0 otherwise. If j  = 0, we take 
Q = l. The product PnQ does not change sign in ]a,b[. On the other hand, Q 
is of degree at most n — 1. Therefore, we have

Pn (x) Q (x) w (x) dx = 0.

As the expression to be integrated does not change sign, it must vanish almost 
everywhere, which is a contradiction.

The roots of Pn are all in ]a,b[. It remains to see that they are simple. 
Suppose that there is a multiple root, denoted by x\. Then, Pn(x) = p(x)(x - 
x\)2, and p and Pn have the same sign. Since p is of degree at most n — 2, we 
see that

Pn (x) p (x) w (x) dx = 0.

As before, we have a contradiction. □

Orthogonal polynomials satisfy a remarkable recurrence relation given by the 
theorem which follows:
Theorem 5.5.2. Let w be a weight which is integrable and strictly positive almost 
everywhere on the compact interval [a, b\. Then, for all n ^  1, the orthonormal 
polynomials Pn+i, in, and Pn-i are linked by the following recurrence relation:

Pn+i — (Anx + Bn) Pn — CnPn—i,

where the constants An, Bn, and Cn depend only on the polynomials Pn+i, Pm 
and Pn- 1.

Proof. Denote by and bk the coefficients of the terms of Pk of degree k and 
k — 1, respectively. The polynomial Pn+i — AxPn is, in general, of degree n +1- 
It will be of degree at most n if its term of highest degree vanishes, that is, if 
an +1 — Aan — 0. We therefore let

An an+1 
Gn

Let Qn = Pn + 1 — AnxPn. We expand this polynomial over the basis Pj, f°r 
0 ^  j  ^  n, as follows: n

Qn = y i  a jB j. 
j = 0
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We have
OLj = (Q n , P j) = (Pn+l,^j) -  -4n ( x P n , P j)

=: (-̂ n+l j P j) — (-Pfi? %Pj) •
If x P j is of degree less than or equal to n — 1, then P n is orthogonal to x P j  and, 
therefore, olj is zero for j  ^  n — 2. Consequently,

Q n  =  OLnP n +  C*n—1-fn—1*

As xPn- 1 is a polynomial of degree n, we can write it in the form
ry   — 1 T) .xPn—1 — Pn "I" Qn—1?

a n
where the degree of qn-\ is at most equal to n — 1. We can therefore calculate

Oln—1 =  (-^n+1 A n x P n 9 Pn—i) — J P n H- Qn—lt Pn)\ Un J
-  _  a an~x—

Hence, we take
Cn — olu —l  — 

It remains to calculate B n . We write

an—lan+l
al

XPn =  —  Pn+1 +  an+l \ an+l / Pn +  ^7i—l j

where rn_i is a polynomial of degree at most n -  1. We therefore have 

a„  =  (P„ +1 -  AnxPn, Pn) = -An (bn- ,\ an+1 /
from which we get

Bn = ^n+lan ^nan+l

We have thus calculated the three coefficients An, B n , and (7n. □

5.6. Exercises from Chapter 5
5-6.1. Laguerre polynomials
Exercise 5.6.1. Let Pbe a polynomial of degree d and let p be any positive 
lnteger or zero. Show that the function

r\P
«(*)=<■ dJF<p ( *)e“ )

*S a Polynomial and calculate its degree. Derive the coefficient of the highest 
rm °f Q as a function of p and the highest degree term of P .
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Exercise 5.6.2. We define the Laguerre polynomials by

We denote by E the set of continuous functions / on [0, + 00) such that

J \f(x)\2e~x

We equip E with a pre-Hilbertian scalar product
r OO

( f\ g)=  f{xJo
Show that the Ln are orthogonal relative to this scalar product. It is sufficient 
to show that Ln is orthogonal to xp for p <  n, by integrating by parts a sufficient 
number of times.
Exercise 5.6.3. Calculate (Ln \ xn).
Exercise 5.6.4• Calculate the coefficient of the term of Ln which has degree n. 
From this, deduce (Ln | Ln).
Exercise 5.6.5. Let L'n = Ln + Mn. Calculate the highest degree term of Mn 
and deduce the value of (Ln | Mn).
Exercise 5.6.6. Calculate (Mn | Mn) and show that

(L'n \ L'n) = n.
Exercise 5.6.7. Calculate the decomposition of (j){x) = e”ax, for a >  0, over the 
basis Ln. Show that the partial sums

m m
£ ( L n,<A)L„  and £(!,„ , <A)L'„
n=0 n=0

converge in E when m tends to infinity. What are their respective limits? 
Exercise 5.6.8. Calculate Ln(0). Show that the partial sums

m
^ ( L n,<A)Ln (0)
72—0

converge in E when m tends to infinity. ____
Exercise 5.6.9. Deduce from the two preceding questions that the partial sums

m
(ftm ~ ^   ̂(Lfj, 0) Ln

72—0
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uniformly converge to (f) on compact subsets of E+ . We can estimate the term 
(t>m(x) -  00*0 by noting that

5.6.2. Pade type and Pade approximations
Introduction: formal series and orthogonality with respect to indefinite 
quadratic forms
The vector space of formal series E[[x]] is formed from the sequences (cj) j^  
with coefficients in E. We do not impose any restriction on the growth of the 
\cj\ at infinity. We associate with (cj) j^  the following expression, for which the 
radius of convergence could be zero:

For formal series we define some operations analogous to those on polynomials. 
The sum of two formal series (Cj)j and (c' )j is (Cj + Cj)j. The product of a 
formal series with a scalar A is (AC j) j. Finally, by analogy with the product of 
two polynomials, the product of two formal series (Cj)j and (cj)j is the formal 
series defined by

k=o
It goes without saying that if / and /', associated with (Cj)j and (c'-)j, respec­
tively, have a strictly positive radius of convergence, then the same applies for 
/" associated with (c")j and, as expected,

If W(t)/V(t) is a rational function such that V(t)f(t) — W(t) is of order fc, 
We use the simpler notation

(5.6.1)

The order of a formal series is the largest index j  such that, for every k <  j,
c* = 0.

J" the case where / 
e ^sual notation.

case where / converges in a neighbourhood of 0, this notation agrees with



102 5. LEAST-SQUARES APPROXIMATION FOR POLYNOMIALS

In this problem, we focus on a formal series (Cj)j and the corresponding 
expression /.

We define a linear function on the space of real polynomials P by giving its 
value on each element of the basis of monomes 1, x, x2,..., xj ,... as follows:

(5.6.2) c(xj )=Cj.

We will think of eqn (5.6.2) as a generalization of the formula

where w is a weight, which is positive almost everywhere and integrable on [a, b]. 
If g(x,t) is a formal series in two variables of the form

(5.6.3) g(x,t) = ]T
jyk̂ O

which satisfies the condition

(5.6.4) {j : 'yjk ^  0} is finite, Wk ^  0,

we naturally define a new formal series by

c{x g ( x, t)) = 
k̂ O j^O

In summary, and with the exception of the verification of condition (5.6.4), 
we shall work with formal series in the same way as with polynomials.

First part: Pade type approximations
Exercise 5.6.10. Show that

Use the formal series expansion

— -—  = 1 + xt + x2t2 -f ...1 -  xt
and show that it satisfies the condition (5.6.4).
Exercise 5.6.11. Let P* be the space of polynomials of degree at most k, and let 
v E Pfc be given by

k
v(x) = bi x3-

3=0
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We write v[x,t] = (i?(x) -  v(t))/(x -  t). This is a divided difference. Let 
(5.6.5) w(t) = c(x  h-> v[x,t]).
Show that w belongs to F^-i. Calculate the coefficient aj of its term of degree 

for j  between 0 and k — 1.
Exercise 5.6.12. Let v(t) = tkv(l/t) and w(t) = tk~lw(l/t). Show that v and w 
are polynomials. Give their degree. Show, using Exercise 5.6.10, that

V (t) f(t)-w(t) = c**•

Prom this, deduce that f(t) -  w(t)/v(t) = 0(tk).
From now on we denote w/v = (k — (l/k))f, and we will say that (k — (l/k))f 

is a Pade type approximation of / having v as its polynomial generator.
Exercise 5.6.13. Let v(t) = tk. Calculate (k -  (1 /&))/.
Exercise 5.6.1̂ . Let

(5.6.6) cj =

We associate with (cj)j^o the formal integration rule defined by

[ Cj+t if j  ^  0 and j  + t ^  0; 
otherwise.

and the formal series

For k ^ 0 and I ^  1 -  k let 
(5.6.7)

(*o = 4

f l (*) = E cJx i-
i 0

I Co ... + ct-iV 1 + tr (k — (l/k))je if i  >  0;
if t <  0.

Show that, for all k ^  0 and t ^  1 -  fc, f(t) -  (k + I -  (1 /k))f(t) = 0(tk+i). 
Note that the case I — 0 has been treated previously and distinguish between 
the cases I >  0 and I <  0. In each of these cases, verify that the numerator of 
the rational fraction is of degree at most k + 1 — 1 and the denominator of degree 
at most k.

Second part: higher-order Pade type approximations
Exercise 5.6.15. Using Exercise 5.6.10, show that, if c(xJ'v(x)) = 0 for all 0 ^  
1 ^ m — i ? then

m - (* - ( W = 9 c
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Establish and use the identity

(i -  i t )-1 = i +  xt +... + xm-1+ xmtm (i -  x t r 1.

Third part: Pade approximations
Exercise 5.6.16. Suppose that k = m. Show that we obtain the coefficients of a 
polynomial v  of degree exactly k such that c(xJu(x)) = 0, for j  = 0,..., k — 1, 
as the solution to a linear system, which should be given explictly. We can 
establish a parallel between this question and the following, and the results from 
the chapters on orthogonal polynomials and Gaussian quadrature formulae.

Let H k  denote the determinant of this system. From now on, we suppose 
that ®
(5.6.9) H k ^  0, Vfc ^  0.
Exercise 5.6.17. Let Q be a polynomial given by the determinant

Q ( x )  =

where the Q j( x )  are polynomials of degree exactly j  and (Aij)o^ij^r-i is a 
regular matrix. Show that Q (x )  is a polynomial of degree exactly r and that

^4oo A o i A o r
A \o An • A \ r

A r-1 ,0 A%—i,i ' * A r — i,r
Qo (z) Q\ (*) • ■• Qr (x)

^4oo A o i A o r
^4io A n A i r

A r —1,0 ^r-1 ,1  ‘’ * A r —l,r
c(Qo) c(Q i) •’* c(Qr)

c(Q) =

Use the fact that the determinant is a multilinear function with respect to its 
columns and rows and, in particular, with respect to the last row.
Exercise 5.6.18. Let

Pk (x ) =  D k

Co Cl • ■ Ck
Cl c2 •• Ck-1-1

Ck-1 Ck • *• C2k-l
1 X xk

where Dk is real and nonzero.
Show that, for every j  = 0,..., k — 1, c(Pk ( x ) x j ) = 0. Deduce from condition

(5.6.9) that, for every fc, c(P% ) ^  0.
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Exercise 5.6.19. The Pade type approximation (k/k -  1)/ of the polynomial 
generator Pk is called a Pade approximation. We denote it by [A' — (1/Jfc)]/. 
Show that

As in Exercise 5.6.12, we construct the Pade approximations \p/q]f for every 
p ^ 0 and q ^  0, with the aid of the f e, on which we make a hypothesis 
analogous to eqn (5.6.8). Show that

[p/<?]/-/ =  o ( * p+9+1).

Exercise 5.6.20. Calculate \p/q\f for f(x) and 0 <  ^  2. Place them in a
square table using the convention that p = row index and q = column index. Use 
the orthogonality relations previously shown. Calculate [2,2]/(l) and compare 
it with the number e.
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Splines
Until now, we have studied two different approaches to polynomial approxima­
tion: interpolation and mean square approximation. Suppose that we seek a 
smooth function u  from [a, b] to E, which is required to take given values y j at 
points Xj, 1 ^  j  ^  n. Then it makes sense to minimize a quantity which mea­
sures the ‘wiggliness’ of u, a good candidate for which is the following energy, 
provided that u  is m  times continuously differentiable over [a, b]:

(6.0.1) Em(u)= f|U<m)(x)|2dx,
J a

under the constraints

(6.0.2) it ( xj) = y j,Vj = 1,...,
It is convenient to define

^0 = #n+l = b.
This minimization problem is still somewhat vague; its solutions, if they exist, 
are called interpolating splines. Originally, a spline was a draughtsman’s tool. 
A spline is a thin flexible beam, which draughtsmen of the pre-CAD (computer 
aided design) age would shape by moving weights (called ducks or rats) with 
attached arms designed to fit inside a groove of the beam. This device was used 
to draw free-form curves. The elastic energy of the spline deformed into the curve 
parameterized by (t, u(t)) is given by the integral of the square of the curvature, 
namely

(6.0.3) K(t) I2 
(i + k w i 2)5/2

At.

Therefore, the lowest order approximation to eqn (6.0.3) is the energy )* ® 
is valid only when the gradient of u is small.

106
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The constraints (6.0.2) are very rigid and maybe we should not put too much 
trust in them. For instance, the yj may have been obtained by chopping digits 
off some calculations or some measurements, or, perhaps, our measurements are 
not very precise, but we have some evidence that the phenomenon described by 
these measurements is reasonably smooth. Therefore, we do not want to enforce 
the constraints (6.0.2) strictly and we should instead estimate how well these 
constraints are satisfied. Thus, given strictly positive numbers pj, 1 ^  j  ^  n, 
we define

f,(..») = E (,w" ,i) ■
j= 1

and we would like to minimize the energy 
(6.0.4) Em (u) T Fp (u, y).
A solution of this problem is called a smoothing spline. If the pj tend to 0, we 
expect minimizers of the energy (6.0.4) to converge to minimizers of expression 
(6.0.1) under the conditions (6.0.2). There is much freedom for choosing the value 
of the coefficients pj and there are algorithms which play on the values of these 
coefficients to obtain an answer with desirable properties, such as monotonicity, 
convexity, concavity, and more.

Both kinds of splines, and much more general ones, are currently used in 
areas of contemporary high interest, such as image analysis and manipulation, 
robotics, and data smoothing.

We start with natural splines, for which we discuss two different types of 
questions: how to ascertain the existence and the uniqueness of a solution (Sec­
tion 6.1) of the above two minimization problems, and how to calculate numer­
ically these solutions (Section 6.2). The numerical calculation of interpolating 
or smoothing splines for m = 2 (cubic splines) is not difficult. For higher degree 
splines, it is a good idea to consider a more general situation, and to work with 
the so-called 5-splines, which give a very useful basis of spline space. They are 
also quite useful for constructing generalizations of Bezier curves for computa­
tional geometry (Section 6.3).

6-1. Natural splines: the functional approach
In order to find a minimizer of Em, or of Em + F],{■■ ]/). we need a functional 
emma) which will enable us to take ‘weak derivatives’, i.e., derivatives defined 
Vla lntegration by parts. The reader who is knowledgeable in distributions will 
^cognize a derivative in the sense of distributions. However, we do not assume 
any non'Glementary knowledge.

6.1.1. Weak equality of functions
Tfl first result gives a weak version of the equality of functions. In all of this 

n’ We denote by Cfi the space of k times continuously differentiable
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functions on ]a, b[ which vanish outside of a compact subset of ]a, b[. We say that 
such functions have compact support.
Lemma 6.1.1. Let z be a continuous function from [a, b] to E. If, for all £ in Cg, 
the following equality holds:

z(dt = 0,

then z is the zero function over [a, b\.

Proof. Let 0 be an arbitrary function in Cfl. Then (j)2z also belongs to C'§ and 
we must have that

z2(/)2 dt = 0,

and so (j>z vanishes. However, we can construct fairly arbitrary functions 0. If 
a' is an arbitrary point of ]a,b[ and b' an arbitrary point of ]a',6[, we let, for 
instance,

<Kt) = <
0
(t — a') (&' — t) 
0

if a ^  t ^  a'; 
if a' t ^  6'; 
if b1 ^b.

The function 0 is continuous and has compact support, and, therefore, z vanishes 
on Jo', b'[. However, a' and b' are arbitrary and, therefore, z vanishes on the open 
set ]a, b[ and, by continuity, on the closed set [a, b]. □

This was really easy; let us graduate to something more interesting:

6.1.2. Weak integrals of functions
Lemma 6.1.2. Let g be a continuous function over [a,b\. Define its successive 
integrals by

9o = 9, 9k

For all integers m, let 2 be a continuous function over [a, b] such that the following 
relation holds for all £ G C™: “

Then z — gm is a polynomial of degree at most m — 1.

Proof. For m = 0, the result has been proved in Lemma 6.1.1. If we could 
perform integration by parts m times, the result would be obvious; the point is 
that we do not know (yet!) that z is m times continuously differentiable. Thus,
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we have to substitute something else for integration by parts. We introduce the 
notation

(/>= [J a
where / is a continuous function over [a, 6]. An integral of a function 77 E Cfi 
can belong to Cq"1”1 only if (77) vanishes. Thus, we introduce a function £ which 
is 77i + 1 times continuously differentiable over [a, 6], and is equal to 0 in a 
neighbourhood of a and to 1 in a neighbourhood of 6. We could take, for instance,

£1 W =

0

(<-+r+ + 26

0

if a ^  (2a + b) /3;
)

m+l
if (2a + 6) /3 ^  (a + 26) /3;

if (a + 26) /3 ^ ^  6,
and

Observe that the integral of £1 is strictly positive, so that the division is legiti­
mate. Then, we define

(Lv)(t) = fJ a
T] (s) ds -  (77) £ (f).

It is immediate that, for k ̂m+ 1, Lmaps Cq 1 to Moreover, the following
identity holds, for all p ^  m + 1:

(6.1.1) (Ljj)(p) = + - 1)-(r/)+ ).

Assume, therefore, that the conclusion of the lemma holds for all integers k 
up to m. If 77 is an arbitrary function in C™, then

(-l)m+1 I ”z(Lr,)(m+1) d
J a J a

so that, with the help of the identity (6.1.1), we may write

(-l)m+1

Observe now that

ds -  (rf) £ d
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Thus, we can now see that, for all r] €  C™, the following identity holds:

(- 1)m+1 f *  *n(m) dt = l ' v W (si (ft) -  91 ( ) -  + ( - i)m+1 ( ^ (m+1>>) d

We observe that the m-th integrals of

t9i (ft) -  9 1 (f) -  < 9 0  +  ( - l ) m+1 < ^ (m+1))

are equal to the sum of - gm + 1 and a polynomial of degree at most m. The 
induction hypothesis enables us to conclude the required result. □

We denote by Vm(x,y) the set of functions u of class Cm over [a, b] which 
satisfy

u(xj) = yj,Vj = 1,.. .  ,n.
This set is an affine space, obtained by translation from Vm(x,0).

6.1.3. The space of natural splines
We draw the following important consequence from Lemma 6.1.2:
Theorem 6.1.3. (i) Let u be a minimizer of Em over Vm(x,y). Then, u is a

function of class C2m“2 over [a, b\ which coincides with a polynomial of 
degree at most 2m — 1 on each interval ]xj,Xj+1[, for 1 ^  j ^  n — 1, and 
with a polynomial of degree at most m -  1 on the end intervals ]x0, X\[ and 
]xn, #n+l [.

(ii) Let p j , 1 ^  j  ^  n, be strictly positive numbers and let u minimize E m + 
Fp(-,y) over Cm([a,b]). Then, u is a function of class C2m~2 over [a,b] 
which coincides with a polynomial of degree at most 2m — 1 on each interval 
]xj,Xj+1[, for 1 ^  j  ^  n — 1, and with a polynomial of degree at most 
m — 1 on the end intervals }xq,xi[ and ]xn,xn+i[. Moreover, at the knots, 
u satisfies the relation

(_l)m fu(2m-l) ( + 0) _ u(2m—1) ( _ 0)\ + = Q,
(6.1.2) V ' Pi

Vj = i *

Proof. In the interpolating spline case, we observe that, if u belongs to 
Vm(x,y) and v to Fm(x,0), then u + v belongs to Vm(x,y). If u is a mini' 
mizer of Em over Vm(x,y), then, arguing as for the proof of Lemma 5.1.2,
get

u(mV m) dt = 0, V u eF m (:r,0).

Let [a', b'] be a compact sub-interval of ]xj,Xj+\[, 1 ^  j  ^  n — 1, with non 
empty interior. Then, u can be chosen arbitrarily in £/]) and exten
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by 0 to the whole interval [a, b]. This v belongs to Fm(x,0). Lemma 6.1.2 now 
immediately implies that u ^  coincides on [a', b'] with a polynomial of degree 
at most m — 1. This proves, indeed, that the restriction of u to each interval 
]xj,£j+1[ls a polynomial of degree at most 2m — 1, for 1 ^  j ^  n — 1. On the 
end intervals, there are less restrictions on v. Let w be any continuous function 
which vanishes for t ^  X\. Then, the function v defined by

»(*) = (“! T  ĵ (m _i)!

belongs to Vm(x,Q) and, therefore, Lemma 6.1.1 shows that u ^  must vanish 
on [xo,xi], so that u coincides with a polynomial of degree at most m — 1 on 
this interval.

In the smoothing spline case, we argue as in the proof of Lemma 5.1.2 and
we see that, for all v G Cm([a,6]),

(6.1.3) f  d* + V  = o.
Ja j=l Pi

If v belongs to Fm(x,0), the sum over the knots vanishes and we are left 
with the condition

rb/ d t =o, Vw e v m (x, o).
J a

Then, the argument made for the interpolating case implies that the conclusion 
also holds for the smoothing case.

In the case of interpolating splines, let us show now the continuity of u and 
its first 2m - 2 derivatives across the knots Xj. By construction, u is m times 
continuously differentiable, so that we must only look at the derivatives of order 
greater than or equal to m + 1. It is also enough to observe what is happening 
around a single knot. Indeed, let v belong to Vm(x,0) and assume that v has 
compact support in ]a',5'[, where this interval contains exactly one knot x j, for 
some 1 ^  j  ^  n. With m — 1 integrations by parts, we can write

f b'o = / u(mV m) dt
J a'

=  (u(m+1> (Xj + 0) -  w(m+1) (Xj - 0)) v (m" 2)

- (Xj +  0) -  u<ra+2) {Xj - 0)) (Xj) + ...

+  ( ~ l)m“3 (ui2m~2) (Xj 0) -  u<2m- 2) (Xj - 0)) v' (Xj). 

However, the derivatives of v of order 1 to m  -  2 are arbitrary. This proves the
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We can now establish the case of smoothing splines. In eqn (6.1.3) we take v 
in Cm, not in Vm(x, 0), so that when integrating by parts the product u(mM m) 
we get one more term. We also assume that the support of v contains only the 
knot Xj. We now obtain the relation

m—1
( ~ l ) fc+1 (« (m+fc) (Xj + 0) -  u (m+fc) (Xj -  0 )J

k=0 m
+  (“ (*j) ~ Vi) « (»j) _  0

']

Since v ( x j)  and all of its derivatives up to order m  are arbitrary, the continuity 
of the derivatives of u of order at most 2m -  2 across knots is proved, together 
with the relation (6.1.2). □

The space 5^n“1(x) of natural splines with knots at x\,... ,xn is the space 
of functions of class C2m“2 which coincide with a polynomial of degree at most 
2m -  1 on each of the intervals [xj,Xj+1], 1 ^  j  ^  n -  1, and with a polynomial 
of degree at most m — 1 on each of the end intervals [#o, #i] and [xn , x n+\\. The 
space S ^ n ~ 1(x) is clearly a space of finite dimension. Later on, we shall compute 
its dimension.

The interesting fact is that there is a converse to Theorem 6.1.3 which shows 
that the necessary conditions for minimization are also sufficient.
L e m m a  6.1.4• (i) Let u  belong to S % n~ 1(x) and define y j  =  u ( x j) . Then, u

minimizes E m  over V m (x ,y ) .

(ii) Let u  belong to S ^71" 1̂ ) and define y j by relation (6.1.2). Then, u  mini­
mizes E m  + F p (-,y) over Cm([a,fc]).

Proof. Let u  belong to C 2m~ 2 and assume that v  belongs to V m (x ,y) . We 
have the following identity:

E m (V) -  E m (U) = 2 I '  «<"»> (»<"*> -  «<m>) dt +  Em (v-U ).
J a

Using integration by parts,

J  u(m)(u(ro) -  u(ro)) d
n m — 1

= E E ( - 1)fcu<m+A!)
j =0 k=0
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I f  uis a natural spline and v is of class Cm, then many terms in the above 
expression vanish, and we are left with

f b u (m) _ u (m ) \ d t
J a

=  (-l)m £  (v (Xj) -  U (Xj)) (X j 0) -  u*2"1-1) (Xj -  0)) .
j =0

Finally, we obtain the identity
n

Em (v) - Em(u) = Em (u -  v) + 2 (-1)” (*j) -  u (xi))
(6.1.4) 3=0

x (Xj + 0) -  u*2”1" 1* -  0)) } .

In the case of the interpolating spline, take v G Vm(x,y), so that v -  u 
belongs to Fm(x,0). Then, we have the identity

(6.1.5) Em (u) Em ('ll) — Em (v u)

and the conclusion is immediate.
In the case of the smoothing spline, we remark that

F„ (v,y)-Fp (n,y) = 2 £  &>}[u (?i) Z l j l  + £  ̂
3=1 3=1

Using again the identity (6.1.4), we find that

Em (v) - Em («) + Fp (v,y) -  Fp ( u,y) = E m(v-u) + Y /
(6.1.6)

This concludes the proof of the lemma. □

In order to prove the uniqueness of the smoothing or interpolating splines, 
we need to assume that n ^  m. Then, we have the following lemma:
Lemma 6.1.5. Assume n ^  m. If u and v are splines (belonging to S ^n~1(x)) 
which coincide at the knots, then they are identical.

Proof; Define yj = u(xj). We know from Lemma 6.1.4 that u and v must 
^inimize Em over Vm(x,y). Then, due to the identity (6.1.5), Em(v -  u) must 

lsil> which implies that v — u coincides over [a, b] with a polynomial of degree 
most m ““ 1- But u — v vanishes at n ^  m distinct points, which means that 
v must vanish identically. □
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The corollary to this is the following uniqueness result:
Theorem 6.1.6. Assume n ^  m. There exists at most one interpolation spline 
through the points (Xj,yj), 1 ^  j  ^  n, and one smoothing spline relative to the 
points 1 ^  j  ^  n, with weights pj >  0. o

Proof. In the case of the interpolating spline, the uniqueness is immediate. 
In the case of the smoothing spline, we infer from eqn (6.1.6) that any two 
minimizers of Em + Fp(-,y) coincide at the knots, and Lemma 6.1.5 then gives 
the required conclusion. □

We now obtain our final theoretical result on splines:
Theorem 6.1.7. Assume n ^  m ^  1. For any finite sequence of knots x\ < 
X2 <  ••• <  xn in the interval ]a,b[ and any sequence of numbers j/i,...,j/n, 
there exists a unique interpolating spline u G S ^71-1̂ ) satisfying the constraint 
(6.0.2). Given positive weights p ,̂ there also exists a unique smoothing spline 
relative to the points (Xj,yj) and these weights. o

Proof. In order to prove the existence of interpolating and smoothing splines, 
we just have to count dimensions. Thus, we represent splines as polynomials on 
each of the intervals between knots as follows:

2m ^-1
(t) — ^   ̂C j^  ^  _  j j j » 0 ^  j ^  x j  %j+\ •

k=1
Hence, we describe the space S^771-1̂ ) using 2m(n + 1) parameters, but they 
are not free. First, the coefficients Co,* and cn^ vanish for m + 1 ^  A: $5 2m. 
Next, we must write the transmission conditions at the knots, that is

2m k-l

k—l

2m

k=l

rk-l
Vj = VZ =

Define 2m — 1 by 2 mmatrices A for 1 ^  j  <; by

/I Xjx]/2\ ••• aj|m-1/(2m —1)!\
1 xj ••• -2)!

Aj = .

V  1 Xj J
and m by 2m matrices Aq and An+i by

0 ••• 0 1 0 •••0 ••• 0 0 1 ••■ 0

V> ••• 0 0 0 ••• V
Aq = An+i =
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Let A denote the matrix
Mo \
Al -4 i

A2 ~~ A2

A n A n
\ An+iJ

Then, the compatibility condition may be written as
Ac = 0,

with c the transpose of
(C0,1 * * * CO,2m C\,\ * * * Cl,2m * * * 1 * * * cn,2m) •

We claim that the rank of the matrix A is equal to the number of its rows, i.e., 
n(2m - 1) + 2m — 2m(n + 1) — n. Let I be a row vector with 2m(n -f 1) -  n 
columns. If IA vanishes, then lj vanishes for j  ^  2m. We just have to perform 
an induction starting from the last column. It remains to find the rank of the 
matrix

Mo 0 \
U i  - V ’

By column combinations, the rank of this matrix is equal to the rank of the 
matrix

(6.1.7) Mo 0 \
\ B i  - A x ) '

where Bi is the matrix whose first m columns are the same as the first m columns 
of Ai and whose last m columns vanish. It is now clear that the matrix (6.1.7) 
is of rank 3m - 1. Thus, we have shown that the space S ^n~1(x) is of dimension 
n* Solving for an interpolating spline is a linear problem in c, since it can be 
written as 2m Jfe-1

Ac — 0, ^  j y ci'k ~~ yj' .̂7 1,..., n.
k=1

Therefore, if n ^  m, the uniqueness result of Lemma 6.1.5 implies the existence 
of an interpolating spline, due to the fundamental theorem of linear algebra. 
0 ving for a smoothing spline is also a linear problem, which can be written as

Ac = 0,
n / 2m fc —1 \

+ i  ^ L _  - = 0, Vj = 1.... n.
Then ■the611' prev*ous argument also works and the uniqueness for n ^  m implies 

e*istence of smoothing splines. □
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6.2. Numerics for cubic natural splines
The construction of the previous section can be made numerical, but it is ex­
tremely awkward, since it requires the solution of a system of 2ra(n+l) equations 
in 2m(n + 1) unknowns, where only n of these equations are not homogeneous. 
Therefore, in order to be efficient, one has to be smart in choosing the represen­
tation of spline functions.

In the case of cubic natural splines, i.e., m — 2, the numerical calculation of 
the interpolating or of the smoothing spline is a very simple problem, as will be 
shown now. Of course, the choice of coordinates is an essential question. When 
m = 2, we know that natural splines are of class C2. Thus, we choose as our 
unknowns the values of the second derivative of u at the knots, namely

zj = u" (xj), 1 ^  j  ^  n.

We know that
Z! = zn =0

since u is of degree at most 1 on the end intervals. Therefore, we shall solve a 
system of n -  2 equations with n — 2 unknowns, assuming n >  2. The case n — 2 
is quite boring (why?). Let us write

Axj = xj+ i -  xh  Ayj = yj+1 -  = zj+x -

On each interval [xj,Xj+1], 1 ^  j  ^  n -  1, u" is of degree at most 1 and is given
by

Ax
— X X — Xj
---Z3 + T ----3 Axj Zj+1 •

Therefore, on the interval [xj,xj+1], u is given by the expression

(6.2.1) «(x) =A 1+ Bj(x -  xj) + A ± L ^) lZi + .6A XjLj

We shall express the values of Aj and Bj in terms of the other parameters of the 
problem by solving the pair of linear equations

u{xj) = yj, u(xj+ i) = yj+1.

The first equation gives

(6.2.2)

and the second gives

Aj = yj

Ft -AVj
B> -  Ax,

Zj Axj

AxjAzj(6.2.3) 6
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We now maintain the continuity of u' at knots. If 2 ^  ^  n — 1, then we have

u' ( Xj + 0) = Bj — anci u' (x . _  o) = i +z z
We replace AZj and Azj-\ by their values, put all the terms including one of the 
Zi on the left-hand side, and we then obtain the following system of equations 
for 2 ^ j  ^  n -  1:

(6.2.4) / A xj_ Axj-i
v 3 + 3r) Axj-\ Ax*

z j  +  — 7— z j -1 +  -
A yj A^_i_
A Xj Axj-i

Recall that Z\ and zn vanish, so that the system (6.2.4) is an n — 2 by n — 2 
system. Its matrix is tridiagonal and strictly diagonally dominant. Hence, it 
is very clear now that there exists a cubic interpolating natural spline provided 
that n ^ 2. If we define

ol\ Ax?
6 5

then the matrix of the system is given by:

/2 ( a i+ a2) a2
a2 2 (a2 + <23) a3

(6.2.5)

V
Otn—2

o-n-2 2(a„ _2+ a„ -i)

The z solution gives the AjS, due to eqn (6.2.2), the B j ,  due to eqn (6.2.3), and 
u on the intervals [xj,Xj+ i], 1 ^  jSj n — 1, due to eqn (6.2.1). On the end
intervals, we use the formulae

u(x) = j/i + u'(xi)(x -  xi), u(x) = y n + u'(x„ )(x -  x„ ).

Let us now consider the case of the smoothing spline. We have to enforce the 
following transmission condition at the knots:

(6.2.6) u'" (xj + 0) -  v!" ( — 0) + u (xj) - y j _
Pi

= 0.

If we define u(xj) = Uj, then the above argument implies that, for 2 ^  ^  n — 1,

(6.2.71 ( ,  A x i~i ̂  _ , A x j - i  _ ,  A _ _  Auj A u ^ i
I  3 3 J i +  6 6 j+1 ~  Ax j  Axj_x ’

(6*2 6^ n°W ^ave to Set val"e °f Uj from the following form of condition 

ui = Vi ~ Pj (u"'(xj + 0) -  it'" (Xj -  0)).
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The values of the third derivatives can be readily obtained from the values of z 
as:

u,n (Xj H- 0) — Azj_
A */ u'"(xj -0) = A x j- i'

Therefore,

(6.2.8) ^ u j  _  ^ V j  _  1 / { A z j + i  ^  A z j  \ {  ^ z j  _  ̂ z j -1 \ A
A x j  A  X j A  x j  \  ̂ A x j )  A x j - i ) )

Substituting the expression (6.2.8) into eqn (6.2.7), we obtain, after the same 
kinds of manipulations as those used to obtain (6.2.4),

( A  X j A x j - \  \  A x j - i  A  X j

h r  + - 3 - j  *  + - £ - * - !  + Y * +1
! Pj+j z ( Pj+it Pj+i + | Pi

Axj+iAxj 3+2 I AxjAxj+i Axj AxjAxj-i

, (  Pj+i + Pj ,2Pj , P i- i + ^
( Axj AxjAxj-i y 3

( Pi + Pi-i +
y AxjAxj-i Axj_1

Pj-1 
Axj-i Ax

• Pj~lZ j —i +  —------- --------Z ?_2J Axj_ iAxj _2 J
_ _  Ayj-i

Axj Aa:j_i ’

which is a pentadiagonal system of n — 2 equations with n — 2 unknowns. Of 
course, we have to let 2 i = zn = 0. Introducing the notation

8 -  Pjry.-_EL ^
P] AxjAxj- i ’ "  ’ ~ ’

ai =  7 ? '- i +  7 j  +  2/3j +  <5j  +  <5 j+ i, bj =  (3j +  7 j  +  / ? j+ i +  <5_,+ i ,

we see that the matrix of this system is the sum of the matrix (6.2.5) and

/  ^2 - 6 2 03
— 62 “63 /?4
03 -63 114 -64 03

04 -64 G5 - h  06

V '• '• '•/
If we are interested in higher degree splines then we have to use more soph|S‘ 

ticated methods, which are explained in the next section.
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6.3. Spaces of splines, £?-splines
6.3.1. Splines with distinct knots
More generally, given n distinct knots x\ <  • • • <  xn in the open interval ]a, b[ 
and an integer k ^  1, the space Sk(x) is the space of functions of class C k~1 
over [a, b] which coincide with polynomials of degree at most k on each interval 
[xj,Xj+1], for 0 ^  j  ^  n. Here, we keep the convention x0 = a, xn+i = b. The 
space Sk (x) is called the space of splines of degree k. For historical reasons, 
much of the literature on splines prefers to call this space the space of splines of 
order k + 1. I feel uncomfortable with this terminology, because order is used in 
many other circumstances, and this creates confusion.

The first main fact is that the derivative of a spline of degree A; is a spline of 
degree k — 1.

Let us calculate the dimension of Sk(x), arguing as in the proof of Theorem 
6.1.7. We represent each function u G Sk(x) by the coefficients of its polynomial 
expansion on the interval [xj,Xj+%] as follows:

so that we immerse Sk(x) into a space of dimension (n + l)(fc + 1). Then, the 
compatibility conditions can be written

^  (Cj-U -  Cj,i) = 0, Vj = 1,... ,n, Vm = 0,..., A; — 1.
l=m

These relations can be put into the form

Ac = 0,

where A is the nk by (n -f !)(& + 1) matrix

(Ax -A x
A2 —A2

\

An AnJ
and Aj is the matrix

(1 Xj
1

xk/k\ \
x j- '/ ik - iy .

1 /
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The matrix A is of maximal rank, as can be immediately checked, so that Sk(x) 
is of dimension k + n+  1.

In order to work easily with splines, we produce good basis elements for the 
space Sk(x).

Denote by r+ the positive part of the real number r, i.e.,
r+ = max (r, 0).

By convention, r®  is the characteristic function of M+.
We see immediately that the function t (t — xj)\ is defined for all integers 

j  e {1,..., n} and that it is of class C k~l over [a, b]. It agrees with a polynomial 
in each of the intervals [xi,xi+1], so that it belongs to Sk(x).

The functions t (t -  xj)\ are linearly independent. However, the support 
of these functions is large, which can be a serious numerical inconvenience, and 
there are not enough such functions to make a basis. Of course, this can be 
cured by adding to the basis the functions (x-a)1, 0 ^  ^  A:, and then we have
the required number of independent elements to make a basis (check that!).

6.3.2. The beautiful properties of B-splines
However, there is a much better choice of basis. It is possible to define the so- 
called H-splines. They are elements of Sk(x) with the smallest possible support, 
there is a very stable numerical algorithm to construct them, they are positive 
on their support, and they add up to 1 on [a, b\.

However, in order to define ^-splines, we have to increase the number of 
knots. In this section we limit ourselves to distinct knots, but in the problem 
section (see Subsection 6.4.3) the generalization to the case of coincident knots 
is taken up.

Assume that we are given 2k additional points satisfying the inequalities

X—j ^  ^  X—j ^  Xq and 1 ^  * * * ^

We define a H-spline by the following divided differences formula, where the 
index son<5 means that the finite difference operator works on the s variable:

(6.3.1) Nitk (t) = ( Xi+k+i-x<)<5*+1
Let us first show that the family for —k ^ . i ^  n, can be constructed by a 
recursive formula in k, due simultaneously to de Boor [20] and Cox [18].
L e m m a  6.3.1. The N i j  satisfy the following recursion:

(6.3.2) Nito = 1 -k ^  i ^  n + k,
and, for 1 ^  j  ^  k and —k ^  i ^  n + k - j,

(6.3.3) t Xi 
Xi+j Xi

-Nij-i ( ) + ffj+j+1 t ■Nt (t).
&i+j-1-1 X{-\. i



6.3. SPACES OF SPLINES, B-SPLINES 121

proof. Relation (6.3.2) is clear. Assume now that j  is at least equal to 1 and 
observe that

(s -  t)}+ = ( s -  (
We apply the generalization of Leibniz’ formula given in Lemma 4.5.1 to the 
finite difference 5Js+1(xi,... ,#j+j+i) appearing in the definition (6.3.1) of the 
5-spline Nij. For this purpose, we remark that

C  -t)

vanishes unless m = 0 or m = 1. Then, we see that

NiJ (t) = (^i+j+1 ~~ xi) (ĵ s * • * j xi+j) (s “ 0+ ^

"h (#i+ji-|-l % i )  ( $ s  ( x i i  • • • >•£*+.;+1) ( ^ i+ j+ l — ^)j_ ) *
(6.3.4) v '
The first term on the right-hand side of eqn (6.3.4) is equal to

Xi+ W - XiN u -X .%i+j

In order to identify the second term on the right-hand side of eqn (6.3.4), we use 
the definition of divided differences as follows:

63s+1 (Xi,...,xi+j+i)(s -ty+ 1
_ (® *+l) • • • j %i+j+l) — (®»» • • • » ) (® — 0 +

Therefore, using the definition of the 5-splines, we see that

(6.3.5)
(•̂i+j+1 X{) (Xj, . . . , i ) (5 )̂_|_  ̂(X i+ j+ i t)

xi+j+l t 
xi+j+l xi+1̂ t-fl J—l (0 xi+j+1 ^Art,j-i M •

When we substitute eqn (6.3.5) into the right-hand side of eqn (6.3.4), we obtain 
the formula (6.3.3). □

Formula (6.3.3) gives a B-spline as a convex combination of splines of lower 
egree, which is a very stable numerical process.

To be precise, Bl k(t) = Ni.k(t)/(xi+k+i -  xt) is a convex combination of 
i.fc-i(t) and Bi+^k^it), as the reader may verify. However, we have not yet 
°Wn that a 5-spline is a spline. This, and other properties, are consequences 
emma 6.3.1, and they are summarized in next theorem.
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Theorem 6.3.2. The JB-splines of degree k belong to S k(x). The support of Niik 
is included in [xi,Xi+k+1] and AT*,* is non-negative on its support. For k ^  1, 
the derivative of AT*,* satisfies the identity

(6.3.6) ( Nj,k-i (*) _  Nh-m—l (t) \ 
^i+fc+l 1 /

5-splines form a partition of unity:

(6.3.7) £ iV a (*) = 1, V< €  ]o,6[. o
i=—k

Proof. That Niik belongs to the space of splines is immediate from the formula
(6.3.3) by recurrence, as is the statement on the support and on the positivity 
of the P-spline.

The formula for derivatives is proved with the help of the identity (4.5.3). 
We apply this formula to the t derivative of N^k and we see immediately that

^ i,k  (0 = (x i+k+1 — x i) (® *> • • • j x i+ k+1) (  ̂“ 0 +

=  -  (^i+ fc+ i -  Xi)k6k+l (xi,...,Xi+k+1) (8 -  t)*”1 •

In order to find the value of this expression, we use the definition of divided 
differences, and we find

N'i,k (0 = -fc (tff (ar<+i,...,xi+Jb+1) (s - )*-1 - 5ka -

from which the formula (6.3.6) follows.
That the splines of degree 0 form a partition of unity on ]a, b[ is quite clear. 

Assume that eqn (6.3.7) holds up to some integer k - 1. We use the de B oo r-C ox  
recursion formula to write

n
£  Ni,k( t)
i=—k

= ------—N-k,k-i (t) + ^  Ni}k-i (t) H-----n+*+1--------------- (t) •
#0 x —k . , , - x n+k+1 ^n+1* = — fe-+-l

However, the support of AL*,^-1(0 is included in [x_^,xo] and the su p p o r t of 
Afn+i?fc-i is included in [xn+i, xn+k+i], both of which do not intersect ]a, b[. This 
enables us to conclude the required result.

Now, the important fact is that the AT*,* form a basis of Sk(x), for -k  ^ ^ n' 
There are n +  k + 1  such ^-splines AT*,*. It is already clear that they be lon g4° 
Sk(x). It remains to prove that they are independent, as is done in following 
lemma:
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Lemma 6.3.3. For all integers k, the Zi-splines are independent as functions on
]a,M*
proof. For k = 0, it is clear that the B-splines Ni$ are independent, since they 
have disjoint supports. Assume then that the ^-splines N i^-i are independent, 
and consider the linear relation

n
A iNitk( t) = 0, Vf e ]a, 6[.

i=—k
Differentiating this relation with respect to t, we find that

A,
\^i+fc xi ^*+&+l xi+l J

with the help of the identity (6.3.6). This relation can be rewritten as
n+1
^   ̂ l îNi^k—1 (0 = 0* 
i=—k

However, the first and last terms vanish on ]a, b[. It suffices to reduce the sum­
mation limits to — k + 1 and n, where the /i*s are given by

k (\j \j—i)
xi+k xi

Vi = — k -f 1,... ,n.

The induction hypothesis implies that all of the \i{ should vanish. This gives us 
a linear system on the A* whose solution is a constant vector. As the N^k sum 
up to 1, we may conclude the required result. □

The following is an interesting formula relating divided differences and B- 
splines:
Lemma 6.3.4• For all n ^  1 and all distinct knots xq <  * * * <  xn, the following 
identity holds:

(6.3.8)

Proof.

6n (x0,...,a?n)/ = J / (W) (t)Mo,n-l (t) 
(n -  1)! (xn -  x q )

d t.

For n = 1, the left-hand side of eqn (6.3.8) is equal to
f( x i) - f(xp )

X\ Xq

and its right-hand side is equal to

f[a?o,xi[ jt) 
X \  Xq

d £,
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which is clearly equal to the left-hand side.
Assume then that the identity (6.3.8) holds up to some index n, and for all 

choice of knots and functions. Due to the support properties of 5-splines, we 
may rewrite the right-hand side of (6.3.8) as follows:

/ (n+1)iVo,n ^  _  1 d t — .#n+l *̂0 r > +i) <5"+i (x0,
j  X 0

..,xn+i) ( s- f) " d f,

which we integrate by parts, with the help of the identity (4.5.3), to obtain

-  .... dtn• Jx 0
We now use the definition of divided differences and of the 5-splines to obtain 
the following expression for the right-hand side of the identity (6.3.8):

________ \_________  f  f  n + 1 f  (n) f a _ f n f(n) dA .
(n - 1)! (xn+i - a?o) \JXl xn+ 1 - X\ Jx0 xn - x0 ) '

The induction hypothesis then yields the desired result. □
5-splines are interesting in themselves. The reader is invited to try the 

exercises in Subsection 6.4.3 in order to understand 5-splines with coincident

Figure 6.1: The splines of degree 1 are piecewise affine functions. There are 
6 such splines, but, with the choice (6.3.9) of knots, the first one vanishes, ft 
among the three knots appearing in the divided difference, two coincide, then 
the 5-spline is not continuous. This is the case for the second, fifth, and sixth 
5-splines of this collection.
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knots. With the vector of knots
(6.3.9) (x0, ■ ■ ■ , x7) = (0,0,0,1,2,3,3,4),
we have put a ‘portrait gallery’ of jB-splines of degrees 1, 2, 3, and 4, as shown 
in Figs 6.1, 6.2, 6.3, and 6.4, respectively.

6.3.3. Numerics with B-splines
We can now give the general ideas used for computing with splines and represent 
any spline in a basis of B-splines. For instance, if we wish to find the interpolating 
n a tu ra l spline of degree 2m — 1, we write the linear system

n
(6.3.10)

i=—2m+l

5?II Vi = l,.. .,n,

(6.3.11) i>2 ZM %n-l (*1
i=—2m+1

-  0) = 0, V/ = TO, .. .,2m -  1,

(6.3.12)
i——2m+l

+ 0) = 0, VZ = TO, ..., 2m — 1.

Figure 6.2: The splines of degree 2 are piecewise quadratic functions. For the 
choice (6.3.9) of knots, there are 5 such splines. If, among the four knots appear- 
^  ln the divided difference, three coincide, then the B-spline is not continuous.

ls is the case for the first jB-spline of degree 2. If, among the four knots ap­
pearing in the finite difference, two coincide, then the i?-spline is of class C°, 

not °f class C 1. This is the case for the fifth element of the collection.
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Figure 6.3: The splines of degree 3 are piecewise cubic functions. For the choice 
(6.3.9) of knots, there are 4 such splines. If, among the five knots appearing in 
the divided difference, three coincide, then the £?-spline is not of class C 1. This 
is the case for the first B-spline of degree 3.

Figure 6.4: The three ^-splines of degree 4, for the choice (6.3.9) of knots.

This is a system of n -f 2m equations with n + 2m unknowns, and T h e o r e m  o- 

guarantees the existence of a solution. Moreover, the matrix has f ew  n on zer°
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coefficients: we know that the support of A^2m-i is included in [#*,#j+2m]- 
Therefore, the lines corresponding to eqns (6.3.10) contain at most 2m—1 nonzero 
coefficients, and the same holds for the lines corresponding to eqns (6.3.11) and
(6.3.12), for m ^  I ^  2m — 2. Finally, the lines of eqns (6.3.11) and (6.3.12) 
corresponding to I = 2m — 1 contain at most 2m nonzero coefficients.

An example shows the structure of the matrix. Let m — 3 and n = 4. Then, 
if • denotes the non-vanishing coefficients, the matrix of the linear system has 
the following structure:

/• \

•/
We will see in Chapter 9 that the numerical resolution of a linear system 

whose matrix has the above structure is simple.

6.3.4. Using 13-splines to understand natural splines
There is another way to look at natural splines with the help of 5-splines:
Lemma 6.3.5. Assume n ^  m, and let T be the linear span of the 5-splines 

• • •, iVn_m m_1, seen as functions from [a, b] to R. Let / be a function of 
class Cm and let yj = f{xj). Then, u is the interpolating natural spline through 
the points (Xj,yj) if and only if u ^  is the projection on T of / ^  in the mean 
square sense.

Proof. If u is a natural spline of degree 2m — 1, its derivative of order m 
belongs to the space S rn~l (x), and it vanishes on the end intervals [#0 ,2:1] and 
i*cn,a:n -)- l]. Therefore, it is clear that u ^  belongs to T. Let v be the least- 
squares projection of / on T. The existence of such a projection has been 
Proved in Lemma 5.1.2, and it satisfies the following relations:
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We choose an m-th integral w of v which satisfies the following m conditions:

If n = ra, then it is clear that w is an interpolating spline through the points 
(xj,yj). If n >  ra, we observe that

which immediately implies that w(xm+1) is equal to f(xm+1). By recurrence, 
we can see that

This proves that in is a natural interpolating spline through the points (xj,yj). 
Let us prove uniqueness without appealing to the results of Section 6.1. If u and 
w coincide at all points Xj, then u[xi,..., £i+m] coincides with w[xi,..., £i+m], 
for i = 1,... ,ra — n, and, therefore, due again to the identity (6.3.8), we must 
have

for i = 1,... ,n — m. Therefore, — u ^  is orthogonal to T. However, it 
also belongs to T. Therefore, it vanishes, and in — u is a polynomial of degree 
at most m — 1. This polynomial vanishes at n ^  ra points, which means that it 
vanishes identically. This proves the lemma.

For the specifics of the numerical analysis of splines and, in particular, the 
choice of knots, we refer the interested reader to the literature of the subject, 
and, in particular, [23] or the older, but highly readable, [21].

6.3.5. B-splines in CAGD
The use of H-splines and, in particular, of fractions of H-splines in CAGD (com­
puter aided geometric design) is very nicely detailed in [67], which contains many 
pretty figures and a large number of algorithms in C which allow for numerous 
geometrically motivated operations on curves and surfaces.

The advantage of rational fractions over polynomials comes from a classic 
observation: while it is impossible to parameterize exactly an arc of a circle b) 
polynomials, the unit circle, without the point (—1,0), is parameterized by

w(xj) = f(xj),

• b

and we use the identity (6.3.8) to infer from this that

/ [̂ 11 • • • ? Km+1] ~ m \X\, • • . , #m+l] = 0,

w ( x j )  = / ( X j ) , \/j = 1

•6

1 + t2'
21(6.3.13) y(t) =
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The choice (6.3.13) is not necessarily the most convenient. It is even better to 
use homogeneous coordinates, i.e.,

X(t) = 1 - t2, Y (;t) = 2*, Z  (t) = 1 + *2.
This means that we add a dimension to the space, but we consider two points 
to be equivalent if they are not zero and if they lie on the same line through 0. 
The set of lines of R3 through 0 is called the projective plane. The homogeneous 
coordinates of a point of the projective plane are the coordinates of any nonzero 
vector on the line of R3 associated with that point. The affine plane is identified 
with a subset of the projective plane: to the point (aq,^) we associate the line 
through (xi,a?2 ,1).

This notion is easily generalized to three dimensions; the homogeneous coor­
dinates in projective space are nonzero vectors in R4, with the same equivalence 
relation as above.

Curves in three-dimensional space are parameterized with the help of three 
splines of one variable:

A" (<) = W jN j'k  {t)
j=i
n

Z (0 = WjNj,k (t) Cj 9
j=1

Y (t) = (t)rjjy
j = i
n

T (<) = $ > ; % *  (*).
i=1

The numbers Wj are non-negative and they do not all vanish; they give more 
freedom to the user. The vectors with coordinates (£j, tjj, Q ) are the vertices 
of the control polygon. In the same fashion, a surface can be represented by 
products of B-splines:

m n
X ($, t) = ^   ̂̂   ̂WijNij (s) Njk (t) ,

i= 1 j= 1 
m n

y  (5 , t) = y  wuNu (s) Njyk (t) Tjij,
<=i j —\ 
m n

Z (s, t) = ^   ̂̂  ] WijNij (s) Njyk {t) Ciji
t=i j —1 
m n

T (s, t) = WijNij (s) Njyk (t).
i=l j=l

Thus, we have defined NURBS or Non-Uniform Rational I?-Splines, which have 
jAvaded all industries where shape is important: from its origin in metalwork to 
Poste^ e  and shoe industries, and now to the design of character fonts (through 

script and its descendents); tools from this section are also used in image 
Population and virtual reality.
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Though NURBS use almost nothing of the theory of algebraic curves and 
surfaces, they lead to many computational problems. In particular, good algo­
rithms must be fast and flexible; they must allow the construction of surfaces 
bounded by given curves, the deformation of a curve or a surface into another 
by a finite number of steps, an easy search for intersections, and so on.

In any case, a rather simple program enables us to draw with 5-splines; an 
example is given in Figure 6.5.

6.4. Exercises from Chapter 6
6.4.1. Varied exercises on splines
Exercise 6.4-1- Given a degree m and a sequence of n ^  m distinct knots xi < 
X2 <  • • * <  xn in the open interval ]a, b[ = ]xo, £n+i[, and a sequence of data yj, 
let u be an interpolation natural spline of degree 2m - 1 relative to this data. 
Let e be a strictly positive number and let u£ be the natural smoothing spline 
relative to this data and the uniform weights pj = e. Show that u£ converges to 
u in C2m~2{[a,b]).
Exercise 6.4-2. Let the knot xj be equal to j. Show that the 5-splines of degree 
k can be deduced by translation from the 5-spline of degree k with support in 
[0, k -1-1], which will be denoted by Nk- Calculate and plot Nk for 0 ^  k ^ 3.
Exercise 6.4-3. With the notation of Exercise 6.4.2, let

Mfc (x) = N k (x + —  j  .

Portrait of an unknown

Figure 6.5: Drawing with 5-splines. The mouse captures the control polyg0 
drawn on screen by the user. The user defines the degree of the spline and 
the vector of knots.
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Show that, for all integers k and I, the convolution of and Mi is given by

(Mk * Mi) (x) = / Mk {x-  y)Mi (y) d = Mk+i+i ( ),
Jr

and deduce from this identity that the Fourier transform of Mk is

Mk (0 = j  e~ix*Mk(x) dz = (— ~ )  "+1 •

Hint: use the following fact of Fourier analysis: the Fourier transform of a 
convolution is the product of the Fourier transforms of the factors.
Exercise 6.4-4- Let

Show that the absolute value of the (m — l)-th derivative of the 5-spline of 
degree m — 1 on these knots is independent of x on the support of this 5-spline. 
Show that this 5-spline is even and plot it for m = 1, 2, and 3.

6.4.2. Approximation by splines
Exercise 6.4-5. Let / be a function of class C° on [a, b]. Suppose that the xj are 
given knots, —k ^ j ^  n-f-fc+l, and denote by £ the maximum of AXi = Xi+i —Xi, 
~k ^ i ^  n -I- k. Define the Lagrange-type spline by

n
Lx,kf(t)= Y,

i= —k

Let w be the modulus of continuity of /, i.e.,

t) = max {| f  (x + h) — f  (x)\ : a ^  x ^  x + h ^  b, 0 ^ / i^ r } .

Derive the following estimate:

sup |/ (t) -  LXikf  (<)| ^  u (/, (k + 1) £).a^t^b
Hint: use the identity (6.3.7) and the fact that the support of the B-splines is
small.
Exercise 6.4.6. Assume now that / is of class C l. Prove that 

sup |/ (t) -  LXtkf  (t)| ^  (k + 1) £)£z,

forall l^ k .
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Exercise 6.4-7. From Exercise 6.4.6, determine an upper bound on the distances 
in L2(a, b) and in L°°(a, b) from a function / to S k(x).
Exercise 6.4.8. Let / be a function of class Cm on [a,b] and let Xq,...,x^ 
be a sequence of knots whose diameter £n = max(xj+i — Xi) tends to 0 as n 
tends to infinity. Show that the interpolating natural spline through the points 
(x'j,f(x1j)) tends uniformly to / as n tends to infinity.
Hint: use Lemma 6.3.5 and Exercise 6.4.5.
Exercise 6.4-9. If / is assumed to be of class Cm, show that the convergence of 
the natural interpolating splines sequence of Exercise 6.4.8 is faster.

6.4.3. Coincident knots
Exercise 6.4 10. Assume that x = (xi,X2 ,... ,xn) is a non-decreasing sequence 
of not necessarily distinct points. We will assume that no more than k -f 1 of 
these points coincide. The JB-splines N^k on these points are still defined by eqn 
(6.3.1). Show that the recursion formulae (6.3.2) and (6.3.3) still hold, assuming 
that any indeterminate expression 0/0 is replaced by 0.
Exercise 6.4-11- Let xo, X\, X2 = x\ + e, and X3 be distinct knots. Show that
the 5-spline of degree 2 on these knots tends to a limit as e tends to 0. What
is this limit? Now let X\ be equal to xq + e. What is the limit of the 5-spline 
when e tends to 0?
Exercise 6.4-12. Suppose that in the set Xi,..., Xi+k+i a number m ^  k + 1 of 
the knots coincide. Show, then, that at this point N^k is not of class C k~l , but 
of class C k~m+1. Show that if m = k + 1 of these knots coincide, then is 
discontinuous.
Exercise 6.4-13. Let x\ = • • • = xv = 0 and xp+\ = • ■ • = xn+2 :=: 1* Give the 
explicit expression for the jB-spline of degree n on these knots.
Exercise 6.4-14• Given a list of integers 0 ^  ra* ^  k — 1 and the knots
X\ ^  ••• ^  xn, define the spline space Sk(x,m) as the space of functions on
[a, b] = [xo,xn+i] which coincide with polynomials of degree at most k on each 
of the intervals [a^Xi+i] and which satisfy the following continuity condition at 
the XiS: a function of this space is of class Cmi in a neighbourhood of Xi. Find 
the dimension of Sk{x,m).
Exercise 6.4-15. Replace the sequence of knots X{ by another sequence in which 
Xi is repeated k — nii times. Add to this sequence k auxiliary knots b e lo n g in g  to 
(—0 0 ,£0] and k auxiliary knots belonging to [a;n+i,oo). The new sequence will 
be denoted by x*. Show that the 5-splines of degree k on the knots x* form a 
basis of Sk(x,m).
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Fourier’s world
At the end of the eighteenth century and the beginning of the nineteenth century 
lived two important men in France. Although they were contemporaries and 
possessed the same surname, they were not related. One was Charles Fourier 
(1772-1837), philosopher and Utopian, the inspiration behind phalanstery and 
of a communism founded on free cooperation in a harmonious climate of human 
goodness. The other was Joseph Fourier, inventor of the series which bears his 
name. His series was known to Euler, at least, and played an important role 
in [31]. The phalansters did not work and I leave the reader to analyse the 
causes since I cannot expound on this subject with all the scientific competence 
required in a university text. The Fourier (Joseph) transformation and series are 
alive and well, being the subject of multiple theoretical and applied works. As 
for human goodness and the free cooperation between individuals, who would 
not like to see a little more?

By following these ideas, which, once again, come straight from the eighteenth 
and nineteenth centuries, we are trying to approximate functions, this time by 
trigonometric polynomials which are, after ordinary polynomials, the easiest 
to actually calculate. The theory is, in part, parallel to that of least-squares 
Polynomial approximation, but it also has some different characteristics. I have 
not shirked from some repetition from the preceding chapter, for which I hope 
the reader will forgive me.

•̂1. Trigonometric approximation and Fourier series
k* this chapter, we approximate periodic functions by trigonometric polynomi- 
s in the least-squares sense. We show, by a convolution technique, that the 

plê°n0Î etr*C B°^nom â ŝ Peri°d 1 are dense in the space of continuous com- 
periodic functions of period 1. We link trigonometric approximation and 
!er series and give some elementary results on the convergence of Fourier

133
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7.1.1. Trigonometric polynomials
A trigonometric polynomial is an expression of the form

(7.1.1) ^2 ake‘2\nkx

where the numbers a* are complex, and AT is a positive integer or zero. Such a 
trigonometric polynomial is said to be of degree at most N. It is exactly of degree 
N if ajsi or a_7v is not zero. The vector space of trigonometric polynomials of 
degree at most N is a vector space on C of dimension 2N + 1. It will be denoted 
by IV. The trigonometric polynomials have period 1.

We denote by C®  the space of continuous periodic functions of period 1, from 
E to C. This space is equipped with the maximum norm

More generally, £7* is the set of k times continuously differentiable functions on 
E and of period 1. We are going to approximate, in the least-squares sense, the 
functions / G C®  by elements of Tjv- The proof technique will be the same as 
for ordinary polynomial approximation since, geometrically, we are making an 
orthogonal projection in a pre-Hilbertian space on a space of finite dimension.

7.1,2. Integration of periodic functions
To properly express the operations that we are going to make, we need a coherent 
description of the theory of integration of periodic functions of period 1.

Let be the vector space of measurable functions from E to C, which are of 
period 1 (that is x f(x + 1) - f(x) is a negligible function), and are integrable 
on every compact subset of E. We note that, if / is in and if a is some real 
number, then the expression

IMIoo = max{|u(x)| : x £ E} .

(7.1.2) / (x)dx

does not depend on a, as we can immediately verify. The common value of the 
expressions (7.1.2) will be denoted by

(7.1.3)

We equip with the semi-norm
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The kernel of this semi-norm is formed from functions which are negligible on 
JU. It is a classical fact that the quotient Lj of £j by negligible functions is a 
Banach space if we equip it with the norm

(7.1.4) \\f\\i= f  \f(x)\dx.

Almost all of the time functions and their equivalence classes modulo negligible 
functions are denoted identically. In the same way, the vector space C j is the set 
of measurable functions from R to C, which have period 1 and which are square- 
integrable on every compact subset of R. Its quotient by negligible functions is 
a Hilbert space denoted by Lj|. It is normed by

(7.1.5) \\fh = U \ f  (x)\2 dxj .

The corresponding scalar product is denoted by

if, 9)# = j j{ x )

Note that it is sesquilinear since we are referring to complex Hilbert spaces.

7.1.3. Least-squares approximation for trigonometric 
polynomials

We begin with an approximation theorem for which the proof is completely 
parallel to that of Theorem 5.1.1, and which will therefore be given in brief.
Theorem 7.1.1. Let /GC|° be a periodic function of period 1. For any N in N, 
there exists a unique trigonometric polynomial P  €  T/v, such that

(7.1.6) [|/ -  p\2 d x ^  [\f-Q\2 dx, MQ €  TN. 
h  h

Furthermore, if the fc-th Fourier coefficient of / is defined by

(? L7) f(k)=  [  f(x)e~2i

then P is given explicitly by
(7-1.8) P(z)=  £  f(k)e

\kK
2\nkx

Furthermore, for any e Z, 
(7.1.9) 1/wN ii/iix- o
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Proof. The proof follows by the application of Lemma 5.1.2. □
Remark 7.1.2. The expression (•,•)# defines a pre-Hilbertian complex scalar 
product on C® , and we have only used the pre-Hilbertian structure in the pre­
ceding proof. However, for every function / E Lj, the Fourier coefficients of / 
are defined by eqn (7.1.7). In particular, if / is in Ljj, it is also in Lj, has Fourier 
coefficients, and we can approximate / in the least-squares sense by a trigono­
metric polynomial of degree at most N. In this case, and without changing a 
comma of the preceding proof, the trigonometric polynomial which minimizes 
11/ — Q lb? for Q  in Tiv is given by eqns (7.1.7) and (7.1.8). We recognize this 
polynomial P as the partial sum of the Fourier series of /. This partial sum is 
given by

(7.1.10) SNf(x) = £  f(k)e2i*k*.
\k\^N

As for ordinary polynomials, we have a Bessel inequality:
Corollary 7.1.3. The Fourier coefficients of a function / E satisfy the Bessel 
inequality

Proof. The left-hand side of inequality (7.1.11) is the square of the norm of 
the orthogonal projection of / and the right-hand side is the square of the norm 
of /. Therefore the inequality is clear.
The Fourier coefficients of a periodic function are very often used in physics 
and engineering. This is because physicists need expansions in Fourier series to 
explain the vibrations of continuous media with simple geometric boundaries, 
and therefore, every sort of phenomenon in acoustics, elasticity, and electromag­
netism, as well as non-vibratory phenomena such as the propagation of heat.

It was precisely to explain the heat equation that Joseph Fourier used the 
series which has since borne his name. Section 18.4 presents some of his ideas 
on heat. The original work of J. Fourier [31] is lacking in what we would today 
call ‘rigour’, in that he believed that his series converged without problem.

7.1.4. Density of trigonometric polynomials in the space of 
continuous periodic functions

Just as ordinary polynomials are dense in C°(K) for the maximum norm on a 
compact interval K , the trigonometric polynomials are dense in C® . The Weier 
strass approximation theorem allows us to obtain this result, but we are g°in̂  
to verify it by using convolution to construct a uniformly convergent sequent 
of trigonometric approximations to a continuous periodic function /. We beg*11 
with the lemma:
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Lemma 7.1.4. We define the functions Qn by letting

Pn (x) = (1 + cos(27rx))n and Qn (x) = Pn (x) Pn (x) dx̂ J

Then, the Qn are trigonometric polynomials of degree n, they are positive or 
zero, their integral is 1 and, furthermore, for every e £ ]0,1/2],

(7.1.12)
r l - e

lim / Qn (x) dx = 0.
n-xx> Je

n2l7TX ^ — 2l7TX

Proof. It is clear that Pn and therefore Qn are positive functions. We can 
write

Pn(x)= ( l + -(e2i*

and it is clear that Pn is a trigonometric polynomial of degree at most n, of 
period 1, and so, therefore, is Qn. Qn is also non-negative and has integral 1 by 
construction. To prove eqn (7.1.12), it is necessary to show that

lim f  Pn (x) dx /  f  Pn (x) dx = 0.
n °̂° J e / J o

Since Pn is invariant under the transformation x H 1 -  x, we note that 
-1/2 /* 1 —€r l/ Z  n l - e

/ Pn (x) d x=  Pn (x) dx. 
J e  J 1/2

It is therefore equivalent to show that
r1/2 / ri/a

(7.1.13) lim / Pn (x) dx / Pn (x) dx = 0.
n->°° / /o

To do this, we need to bound the first term of eqn (7.1.13) from above and the 
second term from below. Note that

Moreover,

We see that 
ri/2

max Pn (x) ^  (1 + cos (27re))n .€ £̂̂ 1/2

ri/2 /*e/2
/ Pn ( x ) d x ^  Pn{x)dx ^  - (1+cos(7Te))n .
•/o 7 o ^

/»! /2
I  p .w dx/ rP„ (x)dx< ? ( 1+cosf f )" = - ( ^ 4 , ) ./ 70 c V 1 + cos (ne) J e \cos(ne/2))

S'i nce 0 < e ^ 1/2, we see that eqn (7.1.13) holds, which proves the lemma. □
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We can now state and prove the density theorem:
Theorem 7.1.5. The periodic trigonometric polynomials of period 1 are dense in 
the space C®  of continuous periodic functions of period 1. o

Proof. Let / be in (7°. Since y i-» f(x -  y)Qn{y) is continuous and of period 
1, the function

(7.1.14) fn (x)= [  f(x y) Qn
h (v) %

is well defined for every x. We are going to show that, for every n, fn is a 
trigonometric polynomial (and therefore, in particular, a continuous function). 
Indeed, Qn is a trigonometric polynomial and also a linear combination of the 
monomials t e2inkt. It is sufficient to verify that

x i—y f  e2inkyf  (x — y) dy
h

is a trigonometric polynomial. We make the change of variables y = x - t in the 
integral

[ e2i*kv f(x-y)dy=  [Jfi Jo
We obtain

[ l e2Myf(x-y)dy=  [* e2' ^ - ^  f  (t) dt 
Jo Jx-1

= [  e 2l*k(x-t)f̂ d t  _  e2i ( dt.
h  h

Thus, we see that fn is in Tn. We can now estimate the difference between / 
and /„ :

I fn (x)-  / (ar)| = I [  f  {x- y) Q n(y) dy - f(x)|
\Jt I
I cl/2  cl/2

= \ f( x - y )Q n(y)dy- f  (x) Qn (y) dy
K “1/2 1/2
,1/2

= / \[f{x-y)-f(x)]Q n (y)dy\
J —  1/2

[  \ f(x -y ) - f{ x ) \Q n (y)dy

+ [  \f{x-y) -  f{J^\y\Hl/2
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Let u be the modulus of continuity of / (see Lemma 5.3.1), and let a be a strictly 
positive number. If we choose e >  0 such that u;(e) ^  a/2, then

f(x)\Qn(y)dy J u(e)Q $  w (e)  ̂

We fix this e, and we note that

[  \ f(x -y ) - f( x ) \Q n (y)dy^2max\f(x)\[
./e£IS/|s?l/2 I0'1! Je^\y\ l̂/2

Consequently, Lemma 7.1.4 allows us to choose an n such that this last expression 
is less than a/2. Regrouping the terms, we obtain

l/(*) -/n(*)| ^  a, 
and we have shown the desired density result. □

7.1.5. Convergence in the mean square of trigonometric 
approximation to continuous functions

The density result of Theorem 7.1.5 allows us to deduce the convergence in 
the least-squares sense of the sequence of trigonometric approximations to a 
continuous function of period 1:
Theorem 7.1.6. For any continuous periodic function /, the partial Fourier sums
of/

(7-1.15) SN(f)= £  f(k)e2i”kx
\k\^N

converge to / in the least-squares sense as follows:

lim [ \f -  Sn /I2 dx = 0.
o° J  j}

Furthermore, we have Parseval’s relation:

(7-116) / l/ l2 dx = ^|/(fc)|2. o
J» kz

Proof. From Pythagoras’ theorem, eqn (5.1.9), with f s  defined by eqn (7.1.14), 
We have

(/ - S^/,/ - Sjv/),| + (Swf - /n ,Sn / -  /jv)j = (/ - fN ,f -  /at)# -
Q*

oo tends to zero as N tends to infinity, we see that ||/ — Sjy f  H2 
F  s to zero as N tends to infinity. Moreover, using eqn (5.1.9) again we obtain

(/ ~ SNf, f  -  Sjv/)# + ( SNf)t = (/, /)#,
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and, therefore,
lim

iV —XX)
£  |/>)|2 = \imJSNf,S  = (/,/)„

\k\^N

From this we immediately deduce Parseval’s relation. □

7.1,6. Asymptotic behaviour of Fourier coefficients
From Parseval’s relation it follows that the Fourier coefficients f(k) of a periodic 
continuous function / G C j tend to zero as |fc| tends to infinity. This phenomenon 
can be seen in the following, more general, case:
Lemma 7.1.7 (Riemann-Lebesgue). Let / be in Lj. Then,

lira / (k) = 0.
\k\-+oo

Proof. Suppose, first of all, that / is in C® . Then, / is also in Lj| and f(k) tends 
to zero when k tends to infinity. Suppose now that / is in L j. We identify it with 
a function in Ll {0,1) and apply the result on the density of continuous functions 
on [0,1] in L^O, 1), see, for example, [28]. Therefore, there exists a sequence of 
continuous functions on [0,1] denoted by gn such that \gn — f\i\ ^  1/n. We can 
replace the gn by the f n with compact support. If xp is a function of R in the 
interval [0,1], increasing, continuous, zero if x ^  1, and equal to 1 if x ^  2, we 
note that

hm,n = rp (mx) ip (m (1 -  x)) gn (x) -  gn (x)
has support in [0,2/m]U[l — 2/m, 1], and is bounded on this interval by max \gn[ 
Consequently, we can choose m large enough so that \\gn — /im,n||i ^  1/n. We 
let f n = hm,n for this choice of m, and we estimate f(k) by noting that

|/(*)| = \ f(x)e-2i"k*dx
\J\t

d / ( / W -  fn (x)) e~2lnkx dxl + I f  f n (x) e~2lnkx dx
I h  I U#

^||/-/»l|i + |/»(*)|,
giving us an e >  0, and we fix n so that ||/ -  /n||i ^  e/2. We see that, for 
sufficiently large k, |/n(&)| can be made less than or equal to e/2.
Remark 7.1.8. The difficulty in the Riemann-Lebesgue lemma is c o n c e p t u a l :  m* 
deed, we can construct elements of Lj whose Fourier coefficients tend to 0 a 
infinity arbitrarily slowly. Besides, we can show that there exist many choi^s
of Fourier coefficients a* which decrease to 0 when \k\ tends to infinity, aî
which are the Fourier coefficients of no integrable function. We refer to Subs# 
tions 7.3.3 and 7.3.4 for the construction of these counterexamples.
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The technique of the proof which we have just used is completely standard 
an d  can be described in the following systematic fashion:
Theorem 7.1.9. Let E and F be Banach spaces on the field K (that is, normed 
c o m p le t e  vector spaces), equipped with respective norms || • ||E and || • \\F. Let 
(An)nen be a sequence of linear mappings from E to F whose operator norm is 
u n if o rm ly  bounded, that is, there exists a number K such that
(7.1.17) II An(x) Ilf ^  K\\x \\e , Vx 5, Vn €  N.
S u p p o s e  that there exists a dense subset D of E such that

lim An (#), \/x G D,n—>oo
exists. Then, there exists a unique continuous mapping B from E to F which 
continues the mapping

D F
x i-* lim An (x).n—>oo

Furthermore, B is linear from E to F and its operator norm is bounded above 
by K. o
Proof. We begin by showing that the sequence (An(y))n is a Cauchy sequence 
for every y E E. For every x in D, we have

||̂ n2/ — ^m2/||F ^  ll-^nj/ ““ ^ u^Hf  ||AnX — 11F’ 4“ H^m3' — ^m2/||F
^  2K\\x -  y\\E + \\Anx -  Amx\\F.

Let e > 0. Fix x such that K\\x — y\\E ^  e/3. This is possible since D is dense 
in E. We can then find an M such that

\\Anx -  Amx\\ ^  Vn,m ^  M.

Consequently, the sequence (Any)n is a Cauchy sequence, and it converges to 
a certain limit which we call By. Clearly, B is linear. Let us show that it is 
continuous. The operator norm of B is bounded above as follows:

\\b v\\f ^  ||By - Any\\F + II^WIIf ^  \\By -  Any\\F + K\\y\\E .
BY Posing to the limit when n tends to infinity, we have

(7'U8) l|B(tf)l|F<*||y||.
Let C be another continuous extension ofxi-> limn An(x) to E, and let x* be a 
sequence of elements of D converging to y G E. Then,

IICy -  By\\F <$ ||Cy -  Cxk\\F + \\Bxk -  By\\F.
%  Passing to the limit in fc, we see that C coincides with B. This proves the 

queness of the continuous extension. □
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Remark 7.1.10. Suppose that E and F are not Banach spaces but are complete 
metric spaces, equipped with distances (Ie and dF, and that the An are mappings 
which are uniformly equi-continuous, in the sense that there exists a modulus of 
continuity u (see the definition in Subsection 5.3.1), such that

Then, the convergence of the An on the dense subset of E implies the convergence 
of the An on all of E and their limit B satisfies

The proof of this fact is left to the reader.
We now see that Lemma 7.1.7 is a consequence of Theorem 7.1.9 provided 

that, for the space E we take the space Lj, for the dense subset D we take the 
space (7® , for space F we take the space C2, and for the sequence An we take 
the operator / i-> (/(n),/(—n)).

7.1.7. Convergence of trigonometric approximation to L * 
functions

Just as we deduced the density of C°([a, 6]) in Ll (a,b) and the density of Cj* in 
Lj, we can deduce the density of C°([a, 6]) in L2(a,6) and the density of CJj* in 
L2. We therefore have the following theorem:
Theorem 7.1.11 (Riesz-Fischer; Parseval). For every function / in Lj|, the par­
tial Fourier sums Sw(/) of / converge to / in L2 as N tends to infinity. Fur­
thermore, we have Parseval’s relation

dF {An (y),An {y')) ^  u{dE (y,y')), Vn G N, Vj/,y9 £ E.

dF {B(y),B(y'))^u>{dE (y,y')), Vy,y'6 E.

(7.1.19)

with its polarized form

Conversely, giving the coefficients €  C such that

^  M 2 <  +0O
k€  Z

allows the definition of the function / by the series
a2inkxake
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which converges in the quadratic mean towards a function / €  i f  whose Fourier 
coefficients satisfy

f(k) =
in summary, if f.2(Z) denotes the vector space of complex sequences indexed by 
Z which converge quadratically, the mapping

L\ -> I2 (Z)

is a bijective isometry. o

Proof. We will apply the technique used in the proof of Theorem 7.1.9. Take 
as spaces E and F the space Lj|, and as operator An the mapping Sn of the 
partial sum. We deduce from Bessel’s inequality (7.1.11) that

I|SJV/||3 ^  11/112-
If the dense set D is C® , Theorem 7.1.6 shows that we are in the area of appli­
cability of Theorem 7.1.9, with

lim || SNf-  /||2 =0, V/ €  <7°.n—yoo *
We therefore have the convergence of the partial Fourier sums Sn to / in L?. 
Furthermore, as N tends to infinity,

\\SNf\\l= E  |/(*)|’-> 11/112-
\k\^N

We have Parseval’s relation and we pass to the polarized form of this by noting 
that

4 (/. = i f  + g,f + g)t + (f -  9,f - g)t + (/ + i ff, / + iff)# + (/ -  iff, / -  iff)fl •
Conversely, if we let

I n  (x ) =  E
\kKN

We note that, if M > N,

Jlxrckx E M2
M^\k\>N

\\fN~fM\\l= E
M̂ \k\>N 

The sequence of the is therefore a Cauchy sequence for the norm L'j. 
ls a certain function / e L%. If we fix k £ Z, we note that for N ^  |fc|,

Its limit
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As the mapping g i~* g(k) is continuous from Lj to C, we see, by passing to the 
limit, that

f(k) = ak.
This gives us the converse, and the conclusion of the theorem is immediate. □

Now we show that a regularity hypothesis on / implies an estimate of the 
decrease of the Fourier coefficients of / at infinity:
Lemma 7.1.12. Let / be a Cp function on R of period 1. Then, for every m ^ p ) 
there exists a constant Cm such that

V M  0.

Proof. We note that, if p ^  1 and k ± 0,

/(*) = [ f(x)e~2inkxdx=  f 1 f(x)i 
J# Jo

-2\nkx dx

f{x)e—2‘inkx

—2mk
f l f  (x) e~2[nkx

o Jo —2ink
dx.

Consequently, since / is continuous and of period 1, the integrated term vanishes 
and

/(*) = /;(fc)
2i7T k

An immediate recurrence gives

/(*) =
/<m) (*)
(2ink)m ’

and the constant Cm in the theorem can be taken equal to ||/!"i,||i (2tt) m. 0

7.1.8. Uniform convergence of Fourier series
■

In the preceding section, we have seen that the partial Fourier sums of a square- 
integrable function / converge in Lj| to f. In this section we give sufficient 
conditions for the uniform convergence of a Fourier series, which is a lot more 
precise than convergence in the quadratic mean.
Lemma 7.1.13. Let / be an element of Lj and suppose that

I
]T|/(fc)| <  +°°-
fee z

Then, the partial sums Sftf converge uniformly to a continuous fun ction  
which is equal to / almost everywhere.
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proof. We have

f(k)e2inkx
M^\k\>N M^\k\>N

which proves that (Sat/) at is a Cauchy sequence in C® . It is therefore convergent 
in C® - We denote its limit by 5/, and it remains to show that this limit is 
identical to / almost everywhere. We show that, in fact, / is in Lj|. Using 
eqn (7.1-9), we obtain the following inequality:

E l/(*)l2< E
| k \ ^N \k \^N

C on sequ en tly ,

EI/wia<n/iiiEI/«l-
keZ

It follows, from Theorem 7.1.11, that / is in L and that

Jim ||/ -  Sjv/||2 = 0.N-> oo

Moreover,
IISNf  -  Sf\\2 ^  max\SNf  (x) - S f  (x)|.

X £;K

Using the triangle inequality and passing to the limit as N —» oo, it can be 
deduced that f  = S f  almost everywhere on E. □

The following is a useful corollary of this result:
Corollary 7.1.14• Let / £ Lj. Then / vanishes almost everywhere if and only if 
all of its Fourier coefficients are zero.

Proof. If f  vanishes almost everywhere, it is clear that all its Fourier coefficients 
are zero. Conversely, if all the Fourier coefficients of / are zero, then we have 
Ae case of Lemma 7.1.13: the series of Fourier coefficients of / is absolutely 
convergent and, therefore, / is the uniform limit of its partial Fourier sums, 
which are all zero. □

We present some examples of the application of Lemma 7.1.13. If / has the 
Property

(U20> £ ( l  + *)! |/(*)|2 < +oo,
k£ Z
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then the Fourier series of / converges uniformly to /. Indeed, in this case the 
application of the Cauchy-Schwarz inequality gives

v 1/2

£  i'<*>i ■ £  ^I kKN \k \^ N

/ \ 1/2 / n N. 1/2
( E d ^ l / w f )  E t t f  •

which is bounded independently of N by virtue of the hypotheses on / and the 
convergence of the series of the general term (1 + A;2)-1.

We have an estimate of the type given in eqn (7.1.20) if a function / belongs 
to Lj and is the primitive of a function f\ also belonging to L2 in the following
sense:

f  (y) — f  (x) = fi (0 d£, Var, V i/G l such that y >  x.J x
The reader may verify that, in this case,

^ ( l + 47r2fc2)|/(fc)|2 = ||/||22 + ||/1||̂.
k e z

Here is another case of absolute convergence of the series of Fourier coeffi­
cients of a function / G Lj: suppose that / is the primitive of a function fi 6 Ij, 
which is itself the primitive of a function €  Lj in the following sense:

f  (y) -  f  (x) = f  fi (t) dt, Var, V y G l  such that ?/
«/ X

>  a:

and
fi (y) -  /i (a;) = f  /2 (£) d£, Va:, Vt/ €  R such that y >  x.

J  X

The reader may verify that in this case, we have the estimate 

(l+47r2fc2)|/(fc)|^||/||1 + ||/2||1, VfceZ.

7.2. From convolution to pointwise convergence of 
Fourier series

7.2.1. Convolution
7.1.5-The convolution has already been employed for the proof of T h e o r em  

Generally, if / and g belong to (7̂ , the function y i-> f(x — y)g{y) is also in W 
and we let

(/ * 9)0*0 = / f  (y) dy.
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The convolution is commutative in C® . Indeed,

f f( x - y )  9 (y)dy = [ f ( x - y ) g  (y) dy,J JJ JO
and by the change of variable t = x — y, this last expression becomes

[  f{ t)g{x- t)d t = [  f  (t) g(x -t) dt.
Jx-l J#

The convolution is also associative in C® , as we see by changing the order of the 
integration in the following relations:

[(/ * g) * h]( x) = j ^ j j ( x - y ) g { y - z )  h (z) dz

= [ [ f  (x — (z) dy dz
Jo Jo-rug( y -  z)h(z)dz) / ( * - y) d

= [f*(g* )] (x).

Finally, it is distributive with respect to addition. We verify that the vector 
space C? is equipped with an algebraic structure by the convolution, and that 
the norm Lj is compatible with the convolution on C® , that is,

11/^lli^ll/llilMl!, v/,fl€C?.
By the density of (7°, we see that we can extend the convolution to all of Lj. In 
fact, the Fubini-Lebesgue theorem, proved in all integration courses, allows us 
to state a more precise result:
Theorem 7.2.1. For any functions / and g in £j and almost every x, the function

f(x-y)g{y)
ls in £jj, and the function / * g, which is defined almost everywhere by

t7-2-1) (/ *g)(x)= f  f{x(y) dy
J t

ls m £J. Furthermore, we have the inequality

(7'2'2) II/*pIIi ^ ll/lli IMIi-
7  convolution is commutative, associative, and distributive with respect
t0 addition.
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The proof of this result is found, for example, in the book by P. Malliavin 
and H. Airault [60, Chapter III] (a high level book) and in the book by J. 
Dieudonne [24, Chapter XIV] (the book gives results still more general than the 
preceding one). In fact, all good treatments of integration give the elements 
needed to prove this theorem, which is an exercise in the application of the 
Fubini-Lebesgue theorem.

7.2.2. Regularization
Convolution allows us to regularize:
Theorem 7.2.2. Let / and g be in Lj. If / is Cm, / * g is Cm, and

d k , t x d*7 Vfc ̂  m.

Furthermore,

(7.2.3) max ^  max d kJ _ ( ,
dx* ( } llslli, Vfc ̂  m.

If / and g are in L'j, then f*gis almost everywhere equal to a function belonging 
to C*; we identify f  * gto this function and we have the inequality
(7.2.4) max |(/ * g) (x)| ^  ||/||2 ||</||2 .

X

If / is in Lj, and g is in Ljj, / * g is in L .̂ Furthermore, we have the inequality

(7.2.5) II/*^II2 ^II/IIi N I2.
Proof. Let Xk be a sequence tending to x, and let / be a Cm periodic function 
of period 1. It is clear that, as k tends to infinity, the sequence of functions

hk : V ^  f  (xk -  y)
tends in Cm to the function

h : y f  (x — y).
It will therefore be a consequence of Lebesgue’s theorem, in relation to the 
continuity and differentiability of integrals dependent on a parameter, that

x f(x-y)g(y)dy
h

is Cm and that its derivatives have the given expression. As for the inequality 
(7.2.3), this immediately follows since, if / is in C® ,

11 f { x - y ) g  (y) d < max|/(x)|||p||1
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Let / be in Lj. Then, for every sequence tending to x, the sequence of 
functions

hk -V f  (xk — y)
tends in Lj| to the function

h : y ^ f ( x - y ) ,

as k tends to infinity. Indeed, if we let f{xk -  y), we can apply
Theorem 7.1.9, with E = F = Lj|, and D = C® . We then see that, if g is in Lj|,

(hk,g)t -1 (h,g\,
which proves the continuity of / * g .Inequality (7.2.4) comes from the Cauchy- 
Schwartz inequality:

|(/ * g) 0*01 ^  / 1 f i x -  y)\ | g(y)| d y
h

^  (/l/(a:-y)|2 dJ/) =|

Let / be in CP and g in L?. Let h be some element of L? and let

n i 2-

h(x) = h (—x).
The convolution of three factors f  *g*h  is well defined. From the first assertion 
of the theorem, / * g is continuous, and therefore belongs to Z/j|, and f  * g *h is 
also continuous. On the one hand,

(f * g *h)(0) = f  {f*g){y)h{-y) =
H

On the other hand,

(/ * g * h)(0) = [  f(y){g* h) (-y) dy
h

and from the first two assertions of the theorem

I [f*g*h](0)| ^  H/llj max |(<7 * h)(-x)| ^  H/Hj ||ff||2 ,

Slnce ||/i||2 = 11/?|12. We have therefore obtained the following estimate, valid for
every h in L'i:»

(U6) \(f*g,h\| ^ ll/lli ||̂||2 ||̂||2 - 
deduce from inequality (7.2.6), by replacing by / * that

ll/*0ll2 ^ ll/lli llfflla-
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The linear mapping / f  * g is a continuous mapping from C®  equipped with 
the norm Lj to Lj|. Therefore, there exists a unique analytic continuation of 
this mapping to all Lj. We argue as in the proof of Theorem 7.1.9 to make this 
continuation, and it satisfies inequality (7.2.5) by continuity. □

7.2.3. Constructive density results
Convolution allows us to prove many constructive density results:
Lemma 7.2.3. Let f n be a sequence of functions belonging to Lj, which have the 
following properties:

(7.2.7) fn dx — 1) VnfEN;

(7.2.8) ll/nlli ^
— Oc

lim / |/„ (x)|dx = 0,

Vn€  N;

(7.2.9) Va >  0.

Then, for any g in Lj, f n * g tends to g in Lj. If g is in Lj|, f n * g tends to g in 
L l  If g is continuous, f n * g tends to g in C® .

Proof. This proof is obtained by repeated application of Theorem 7.1.9. We 
begin with the last assertion: we prove essentially the same result as for Theo­
rem 7.1.5, except that this time the f n are not positive:

( f n * g ) ( x ) - g ( x )  =  / f n ( y ) g ( x - y ) d y -  /

Let lj be the modulus of continuity of g. Then,

I (fn*g)(*)-» (*)! ^  2 \fn (j/)| dy ) max \g(x)|( j  l/n(j/)|dy)

( J / u(a).

Given e >  0, if we fix a such that Ku(a) ^  c/2 and take n sufficiently large, 
so that i

2(J\fn\(y)dyjmax\g(x)\^^,

we see that || f n * g — p||oo tends to 0 and, therefore, f n * g tends to g.
Now, if g is in Lj, we let, with the notation of Theorem 7.1.9, E = F = W 

Ang = f n *g, and the dense subset D is C® . Theorem 7.2.1 allows us to confirm 
that
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and we can conclude the required result.
If g is in Lj|, we take E = F = Lj|, An and D as above, and Theorem 7.2.2 

provides the estimate

Then, again, we can apply Theorem 7.1.9. □

Lemma 7.2.3 allows us to see that we can construct approximations to func­
tions which are continuous, integrable, and square-integrable using a sequence 
of C°° functions. The approximation converges, respectively, uniformly, in the 
mean, and in the quadratic mean.

7.2.4. Convolution and Fourier series
For integrable / and p, we easily calculate the Fourier coefficients of f  * g: 
Lemma 7.2.4• Let / and g be members of Lj. Then,

f7}(k) = f(k)g(k).

Proof. Define a function e* by

ek (x) = e2ink

This function is C°° and of period 1. Then, if g belongs to ,

(. 9* ek) (x)= [ g ( y) ek(x - y) dy = [ g ( e~2,nky d e2'*kx
Jit h

= g (k) ek (x).

From the associativity of the convolution,

f*g{k) = ( f * g * e k) (0) = [/ * ek)] (0)
= [/*(ff(*)e*)](0)
= g(k) (f * ek)(0)
= fl (*)/(*)

an<̂ we have the result claimed. □

The difficulty of the summation of Fourier series can be understood by intro- 
UcinG a kernel which is defined as follows: If / belongs to L l, we have

SNf{x)= ( [ f( y ) e - 2i*kydy)e2inkx= ^  e2i7rk(x~y) dy.
Ik\^N  |*|<AT



152 7. FOURIER’S WORLD

Let
(7.2.10) e2brfc*.

I
We thus have

SW/ = / * Hat.
The kernel Dn is the Dirichlet kernel, and it may be expressed as

(7.2.11) Dn (0) = 21V + 1, = M ,  I f ( z. I
sm(7nr)

as can be shown by explicit calculation. The Dirichlet kernel has the property 
(7.2.7) but neither the property (7.2.8) nor the property (7.2.9). This is why the 
summation of Fourier series is a difficult problem.

7.2.5. Convergence of Fourier series as a local phenomenon
We do, however, have some results on pointwise convergence on the condition 
of having some precise information. In particular, if the function is piecewise 
continuously differentiable (in a sense which we will clarify), the partial sums 
5yv/(x) tend towards the half-sum of the values to the right and left of the 
function.

First of all, we show that the convergence of a Fourier series is a local phe­
nomenon.
Lemma 7.2.5. Let g belong to Lj. Suppose that g vanishes almost everywhere 
in an interval ]a, b[ C M. Then the partial Fourier sums of g uniformly converge 
to zero on every compact sub-interval of ]a, b[.
Proof. Without loss of generality, we can suppose that g vanishes almost ev­
erywhere on an interval of length strictly less than 1. If not, we can already 
conclude the required result due to Corollary 7.1.14. We can make a tran sla tion  
to move us to the interval ]—a,a[, with |a| <  1/2. We have

SNg {x) = g { x -  y) DN (y) dy,

that is,

Sn9 (x) = - 5  [g(x -  — e2î2 J. sin 7ry
(7.2.12)

d y+ \ j g { x - y ) — 4M v ^sin Try

We can limit ourselves to studying the convergence of the first of the two integra - 
in the second term of eqn (7.2.12), the other integral being analogous. We note 
that the function

y ^  (/>{x,y) = g(x -y) einy 
sin Try
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is integrable, provided that sin ivy is bounded below on the complement of the 
set where y H g(x — y) vanishes. If we choose x such that |x| ^  a — a , then 
| sin 7T2/| ^  sin7ra on this set. It therefore follows, from the Riemann-Lebesgue 
lem m a , that Sivg{x) tends to 0 on every compact set included in ] — a,a[.

We have to show that this convergence is uniform. To do this, we will approx­
imate g by a sequence of C l functions, as follows: Let / G Cq be a continuously 
differentiable function on M, with support included in [—1,1] and integral 1. For 
n ^ 2, we define a function f n G C j by its restriction to the interval [—1/2,1/2] 
which must be equal t o x H  nf(nx). It is clear that the sequence f n has the 
properties (7.2.7)-(7.2.9). Lemma 7.2.3 implies that the sequence gn = fn * g 
tends to g in Lj, and Theorem 7.2.2 says that gn is C 1. Furthermore, gn is 
identically zero on [—a + a, a — a], provided that n ^  1/a.

We let
K  {x, V) = gn(x- y) elny 

sin 7xy ’
and we suppose, from now on, that a <  a/6 is fixed and that n is greater than 
1/a.

Let h G C\ be a function which coincides with e17ry/ sin ny if \y\ is included 
between 2a and 1/2, and which is zero if \y\ ^  a. If \x\ ^  a — 3a then,

K  (x, y) = g n (x-y)h  (y),
since if \x\ ^  a -  3a and \y\ ^  2a, then gn(x — y) vanishes.

We can now bound from above the first integral in (7.2.12) for \x\ ^  a — 3a
by decomposing it as

j{ 9 ~  9n) (x - y ) h  (y) e2,nNy dy + ^ gn (x-y)h  (y) d

The first integral is bounded by \\g — gn||i/ sin(27ra), and we use Lemma 7.1.12 
for the second:

|/ <t ̂

which is bounded independently of x by

\\{d<t>n!dy) (x,-)!!.

(7.2.13) ^ max|/n|max|ft,| +max|/^|max|fe|^

Fix an e > 0 and choose n such that ||<7 — <jn 111 / sin(27ra) ^  e/2. We can then 
C 00se N to be large enough so that expression (7.2.13) is less than e/2. □

•̂2.6. Pointwise convergence of partial Fourier sums of 
absolutely continuous functions

which6 n°W ̂°'n^ to s^ow that the partial Fourier sums of an integrable function, 
F ls dself the integral of an integrable function, converge pointwise. To this
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end, we introduce a function A^r defined by

An (x) =
Jo* d n ( y) d if x ^  0;

- f° Dn {y) d if x <  0.
The properties of Ajv are summarized by the following lemma:
Lemma 7.2.6. The function is odd and uniformly bounded on the interval 
[-1/2,1/2] independently of N. Furthermore, we have the following relations:

(7.2.14) * „ ( ! ) =  |, 1

(7.2.15) lim An (x ) = ^ Vx >  0,N-*oc 2

(7.2.16) lim An ( r) = [  — ----- dj/ = ~ 0.589489.v ' N—>oo"\2N + lJ  J0 ny y
Proof. Aiv is odd, since it is the primitive of the even function DN which 
vanishes at 0. If we use the definition of Dw given in eqn (7.2.10), we see that

sin (27r kx) £ = 1/2
27r k x=0

1
21

which proves the relation (7.2.14).
Let a and b be two numbers between l/(2iV -f 1) and 1/2 with a <  b. We 

integrate by parts to estimate the following integral:
cos [(2N -f 1) 7ry] I6 f b cos [(2N -h 1) Try] cos (txy) 

(2AT + 1) Trsin (7rt/) |a Ja (2N + 1) sin2 (ny)
Our hypothesis on a and b implies that (2N + l)7rsin(7ri/) is bounded below on 
[a, b] independently of N by a certain k. Consequently, the integrated term is 
bounded independently of N:

(7.2.17) cos [(2N + 1) ny] b 
(2N + 1) 7rsin (7xy) a

Moreover, by the concavity of the sine over [0,7r/2], there exists a c o n s ta n t 7 
such that, for every y between 0 and 1/2,

sin (ny) ^  jy.
We bound the integral from above as follows:

f b cos [(27V -I-1) ny] cos (7xy) 
J a  (2N -f 1) sin2 (7xy)

.  1 [b dy
% 72 (2 N + 1) .Ja y2
.  1 ( l - 2)^  72 (2 N + 1)u V

(7.2.18)
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Therefore, there exists a constant C such that, for every N , and for every a, b 
such that l/(2iV -F 1) ^  a ^  b ^  1/2,

(7.2.19)

Furthermore, if a is fixed as strictly positive, the upper bounds, given in eqns 
(7.2.17) and (7.2.18), tend to 0 as AT tends to infinity. This proves eqn (7.2.15).

We make the change of variables t = (2N + 1 )y to estimate the integral 
appearing in eqn (7.2.16):

ni/(2N+i) sm -f 1) ny] _  I 1 sin (itt)
Jo sin(7ry) V J0 (2N -F 1) sin (nt/ (2N +  1))

As N tends to infinity, this last integral tends to

7 =
Jo nt

by virtue of Lebesgue’s theorem, and a numerical calculation gives the value in 
eqn (7.2.16). To see that A at is bounded on [-1/2,1/2], it suffices to show that 
it is bounded on [0,1/2]. If x ^  l/(2iV + 1), we bound An(x) ^  0 from above by 
A^(l/(2N + 1)), which is bounded, since A/v increases over [0, l/(2iV + 1)]. If 
x ^ l/(2N -F 1), we bound |Aat(#)| from above by A at(1/(2N -F 1)) + |Ajv(^) ~ 
A^(l/(2iV-F 1))|, which is bounded as a result of eqns (7.2.16) and (7.2.19). □

We can now show the following result:
Lemma 7.2.7. Let / G Lj, and suppose that there exists a function f\ G Lj such 
that, for every x and y, where y >  x,

f ( y ) ~ f  (x) = [  fi (t) dt.
J  X

In this case, the function / is said to be absolutely continuous. Then, for any x, 
$Nf(x) tends to f(x).

Proof. A function / which satisfies the conditions of the lemma is necessarily 
continuous. Since we can translate the variable x, it suffices to show that Sj\f{0) 
lends to /(0) as N tends to infinity. We have

|

SNf(0)= / f(
J-1/2

rp | .
lng account of Lemma 7.2.6, we integrate by parts, justifying it by a density 

Sunient, and we get

SNf{0) = / (1/2) + /(-1/2) 7-1/2
/ fi (x) A at (x) dx.
J-1/22



156 7. FOURIER’S WORLD

Lemma 7.2.6 allows us to see that, due to Lebesgue’s theorem,

u-. r A W ^ w * - ' < w , - ' w > / (0) — / (—1/2) 
2

The conclusion of the lemma is then clear. □

7.2.7. Pointwise convergence of partial Fourier sums of 
piecewise absolutely continuous functions

To treat the case of functions having a finite number of discontinuities, we in­
troduce a sawtooth function which we define on a period by

s(t) =
—x — (1/2) if are [-1/2 ,0]; 
-x  + (1/2) if ar e [0 ,1/2].

We immediately calculate the Fourier coefficients of s:

f 1/ (2ink) if ^  0 ;
s(k) =

0 if k = 0 .

The partial Fourier sums of s are given by

O sin(27rfcx)
(x ) =  - •

k=1
It is obvious that Sns(0) tends to 0 as N tends to infinity. We can also note 
that

(7.2.20) Atv (x) = Sns (x) + x.

Theorem 7.2.8 (Dirichlet). Let g be a function of period 1, which has discon ti­
nuities at the points x ,̂ 1 ^  j  ^  m (and at all their translations xj + k, k £ Z)- 
Suppose that there exists a function g\ such that, for every x and y, x < y f°r 
which ]x,y[ is included in an interval which does not contain a point of discon­
tinuity, we then have

9(y)~9 (t) dt.

Then, for any x

lim SNg (x) = 5  (x + 0 ) + (x -  0 )].N-+OC 2
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proof. Without loss of generality, we can restrict ourselves to the case of a 
s in g le  discontinuity, due to Lemma 7.2.5. We can also suppose, in return for a 
translation, that x\ = 0. The function

h = g - [g(0 + 0) -  g(0 -  0)] s
is continuous, as we can verify by passing to the limit as x tends to 0. Its value 
at 0 is

h(0) = 2 fa (x + °) + 9(x -0)].
We see that his a primitive of hi(y) = + ( (̂0 + 0) + #(0 -  0))y/2 on
[—1/2,1/2]. We can therefore apply Lemma 7.2.7, which implies that Snh(0) 
tends to h(0). As Sns(0) tends to 0, we can conclude the result. □

7.2.8. Gibbs phenomenon
The convergence of the Fourier series of a discontinuous function, such as in 
the statement of Theorem 7.2.8, is not uniform, and this is known as the Gibbs

[ Ure Approximation of a function by a partial Fourier sum for N = 4,8,16.
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phenomenon. A graphical illustration of this phenomenon may be found in 
Figures 7.1 and 7.2, where the partial sums of / are represented for N = 2k) 
* = 2,...,7.

Theorem 7.2.9. Under the hypotheses of Lemma 7.2.7, as N tends to infinity we 
have, for every j,

SNg(x j + 2 y v ^ l)  ~9 + 2 F + l)  (7 ” ^ ( ~ °)1,

Sn9 {Xj"  2 iv T l)  ~9 ( * ' "  W T i )  ~ (7 0  + 0) -  9 (Xj ~ 0)] •

Here, I  is defined by eqn (7.2.16). o

Proof. Again, using the notation of Theorem 7.2.8, we get back to the case of

32,64,128.
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single discontinuity situated at 0, and we note that

159

Lebesgue’s theorem shows us that S;vh(l/(2iV + 1)) tends to /i(0) as N tends to 
infinity. We can easily analyse the behaviour of Sns(1/(2N + 1)) as N tends to 
infinity, due to Lemma 7.2.7 and eqn (7.2.16):

lim Sns ( —T-r-—: I = I- N-+oo \2N “h i /

We then have

l̂irn̂ SNg 2̂7V+t ) ” + + *

This allows us to conclude the required result. □

7.3. Exercises from Chapter 7
7.3.1. Elementary exercises on Fourier series
We call an expression

5 \  s _ J2inkx ~ 2^,ake ’ he z
where the are complex numbers, a formal Fourier series. The word formal 
signifies that we do not ask any questions about convergence. In particular, two 
formal series are equal if and only if their coefficients of index k are equal for 
any k. We equip the vector space of formal Fourier series with its natural vector 
space structure. The zero element of this space will be the formal series whose 
coefficients are all zero.

We define the conjugate formal series by

S~ ^  —ia* sgn (k) e2inkx,
kez

where the function sgn is defined by

1 if k >  0;
-1 if k <  0;
0 oII*4-1

sgn(fc) = <
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Exercise 7.3.1. Show that we can write

A 00S ~ ^  (A j cos (27rjx) -f B j  sin (2irjx)).
j =i

Calculate the A, and the B j  as functions of the a&.
Exercise 7.3.2. Let / be in Lj, = /(fc). Show that if / has real values, Aj 
and B j  are real for all j.
Exercise 7.3.3. Let / be in Lj, = /(fc). Show that if / is even (respectively, 
odd) then, for every j , Bj (respectively, Aj) is zero.
Exercise 7.3.*[. Show that if

S ^  E A jcos(2n jx),
*=o

then oo
5 ~ ^  Aj sin (2njx). 

k=o
Exercise 7.3.5. Let / be in LJ and let P G Tat be the trigonometric polynomial

p (*)=  bk*2[nkx-
\kKN

Calculate the Fourier coefficients of the product fP.
Exercise 7.3.6. Let / be in Lj, and let m be an integer which is strictly greater 
than 1. Let

fm (x) = / N  .
Verify that fm is in LJ, and calculate the Fourier coefficients of fm as functions 
of the Fourier coefficients of f.

7.3.2. Fejer, La Vallee Poussin, and Poisson kernels
We define a function Kn (x), called a Fejer kernel of order AT, by

(7.3.1) *„ (*)= £ '2\nkx

I kKN
Exercise 7.3.7. Show that, if x ^ Z,

Kj\[ (x) = 1
AT+ 1

sin [(AT -h 1) 7tx] 
sin (nx)

n 2

and that /0v(0) = N -f 1.
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Exercise 7.3.8. Show that K s has the following two properties:

= 1,

limN-+oc L
L

1—a
Kn (x) dx = 0, Va >  0.

Exercise 7.3.9. For every / in Lj, we define the Fejer sum of / by

(»*)/(*)- £  ( ' - F T T )/<*)'
n2\nkx

\k\^N

Show that cr̂ v is the arithmetic mean of the partial Fourier sums Skf for 
(K k ^ N.
Exercise 7.3.10. Show that, for every / in Lj, tends to / in Lj. Show that 
if, in addition, / is in C° then tends to / in C® .
Exercise 7.3.11. We define the following kernels:

(i) La Vallee Poussin kernel

Vjv (x) = 2K2at+i (#) — Kn (x ) , N e N;

(ii) Poisson kernel
oo

P (x,r) = 1 + 2 ̂ 2  r* cos (2ttA:x) , 0 ^  r <  1.
k=1

Extend Exercise 7.3.10 to the kernel Vjy.
Exercise 7.3.12. Show that, for r <  1, we have

1 - r 2F(x,r) = 1 - 2r cos (2nx) 4- r2

Exercise 7.3.13. For every / in Lj, calculate / * P(-,r) as a function of the 
Fourier coefficients of /. We study the convergence of / * P (•, r) to / as r tends 

1 from below, where / * P (•, r) is defined by

(f*P(-,r))(x)= [  f{x-y)P{y,r)dy.
h

What
Exi

can we say when / is in L?, or in c p
^rcise 7.3.1\. Verify Corollary 7.1.14 by convolution: use a sequence of square- 

w,ê a^ e Unctions f n having the properties (7.2.7) to (7.2.9), and give a proof 
lc is independent of Lemma 7.1.13.
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7.3.3. There exists an integrable function whose Fourier 
coefficients decrease arbitrarily slowly to 0

Let a* be a sequence of positive or zero numbers such that a* = a_* tends to 0 
as k tends to infinity. Furthermore, suppose that

a*-l + a*+ i -  2a* ^0, Vfc >  0.

Exercise 7.3.15. Show that a* — a*+i decreases for A: >  0.
Exercise 7.3.16. Show that ( k + l)a* — A'a*, decreases for A' >  0. From this,
deduce that

lim k(a* -a*+i) = 0,
k —HX>

noting that, if this limit is strictly positive, ak will be bounded below by the sum 
of a harmonic series. Show that

N
lim 5^ k (ak-i + ak+1 -  2a*) = a0.N-+oc ' 

k= 1

Exercise 7.3.17. With Kk as the Fejer kernel of order k (see eqn (7.3.1)), we let
oo

/(*) = $ >  (ajfe-1  + a 1 -  2a*) i (x).
*=i

Show that this series converges in Lj and that its limit, denoted by /, is positive 
or zero.
Exercise 7.3.18. Calculate the Fourier coefficients of /.
Exercise 7.3.19. From this, deduce that the Fourier coefficients of an integrable 
function can tend to 0 arbitrarily slowly.

7.3.4. The existence of sequences of numbers a*, tending to 0 
as |fc| tends to infinity which are not the Fourier 
coefficients of any integrable function

Exercise 7.3.20. Let / be in Lj. Show that, if /(0) = 0, then

F (x) = [  f  (y) dyJo
is in C® .
Exercise 7.3.21. Furthermore, we suppose that, for every A;,

/(!*!) = -/(-1*1) > o .



Using the convergence of (Km * F)(0) to F(0) (see Exercise 7.3.10), show that
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E l / W  <  +00-
k̂ O K

Exercise 7.3.22. Show that there exist sequences a* tending to 0 such that a* is 
not the fc-th Fourier coefficient of a function / G LJ.
Exercise 7.3.23. Show that we can choose / €  Lj in a way that its conjugate 
Fourier series is not the Fourier series of any integrable function.

7.3.5. Discrete least-squares approximation by trigonometric 
polynomials

Exercise 7.3.24. Let TV be an integer which is greater than or equal to 1, and let 
xt = n£/N for £ varying from 1 to 27V. Calculate

2 N
^ e ikXt.
1=1

Exercise 7.3.25. We define a bilinear form of the space C([0, 2tt]) = F of contin­
uous real-valued periodic functions of period 27t, by

- 2 N
(f,g) =

V t=1
Show that the functions

— , sinx, cosx, sin (TV — l)x, cos(7V —l)xV2
are relatively orthonormal to this bilinear form.
Exercise 7.3.26. We define a semi-norm of F by

l/l = V U J)-

^  Vn be the subspace of F generated by l/\/2, sinx, cosx,..., sin(7V — l)x, 
cos(AT - l)x. For / G F, we say that the function (j) E Vjv is the discrete 

'-squares trigonometric polynomial approximation of / if

1/ -  4>\ = min |/ -  V»l •tpeVisr
ShowI  ^at, f°r every / in F, there exists a unique (j) which is the discrete least- 

I ares trigonometric approximation.
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Exercise 7.3.27. Write this (j) as
TV-1

(j) (x) = ^  ^  (dk cos kx + bk sin kx).
k=1

Calculate the aj and bj as functions of f .
Exercise 7.3.28. Suppose that / has a uniformly convergent Fourier series:

k=1
Calculate the aj and bj as functions of a j and /3j.
Exercise 7.3.29. We replace the Fourier coefficients a j and /3j by their approxi­
mations using the left rectangle formula 8.1.3 with equidistant points. Show that 
we can choose the discretization step in such a way that the approximations thus 
obtained agree with the aj and bj.

oo



8

Quadrature
This chapter of the book is dedicated to numerical integration, and it is in prepa­
ration for the last chapter of the book, which will be on differential equations. 
The word quadrature has become celebrated by the problem of the quadrature 
of a circle. This involves a geometric construction with a ruler and compass 
to find a square whose area is equal to that of a given circle. That this is im­
possible is the consequence of two results of the nineteenth century. In 1837, 
Wantzel showed that the numbers which can be constructed by ruler and com­
pass are algebraic. More precisely, they are obtained by solving a finite sequence 
of quadratic equations with integer coefficients. In 1882, Lindemann showed that 
the number n is transcendental, which means that it is not the solution of any 
polynomial equation with integer coefficients. The reader may wonder: are there 
many transcendental numbers? It is not difficult to see that the set of algebraic 
numbers is denumerable: there are as many algebraic numbers as there are ra­
tional numbers and integers; therefore, almost all numbers are transcendental. 
However, it is often extremely difficult to show that a given specific number is 
transcendental.

This does not prevent anyone from doing quadratures, that is, from calcu­
lating areas or integrals. We manipulate integrals, whether we have an explicit 
expression for them or not, or whether this expression makes use of rational or 
irrational numbers. However, the effective numerical calculation of integrals, or 
the numerical approximation of the solutions of differential systems, becomes an 
interesting problem because most functions do not have a primitive which may 
be expressed in terms of elementary functions, and most differential systems do 
n°t have such solutions.

We therefore seek numerical methods which will allow us to approximate the 
jects which we cannot, generally, calculate explicitly.

165



166 8. QUADRATURE

8.1. Numerical integration
Numerically solving a differential equation amounts to finding a numerical 
approximation of the following problem:

dji
(8.1.1) —  (t) =f(t,u(t)),u(t0) = u0,

where / is a given function from [ti, <2] x K” to K", to belongs to the interval 
[t\, £2], and uo is given in W1. Before solving this general problem under adequate 
conditions on /, we consider the simpler differential equation

—  (t) = /(t), u(t0) = «o,

where / is an integrable scalar function. The solution is given by

(8.1.2) u(£) = Uo +

It will be useful to see how to approximate weighted integrals of the form

w (x) / (x) dx,

where w is an integrable function which is strictly positive almost everywhere, 
as in the study of the polynomial least-squares approximation (see Chapter 5). 
The function w is called the weight.

An approximation formula for the integral of a function / on an interval is 
called a numerical integration formula, or a quadrature formula.

Common sense says that we have little chance of succeeding in numerically 
approximating eqn (8.1.1) if we do not know how to numerically a p p r o x im a te  
eqn (8.1.2). Conversely, if we know how to numerically approximate eqn (8.1.2) 
this will aid us, as we will see later, in constructing schemes to numerically 
approximate eqn (8.1.1).

One last common sense remark: if / is only integrable in eqn (8.1.2) then the 
problem is pathological from the numerical point of view as we do not know how 
to discretize functions which are defined almost everywhere without regu la riz in g 
them. If we have good reasons for dealing with functions which are only inte' 
grable, we are then led to either consider them as linear forms on a space of teSt 
functions (as in the measure theory of Radon, or, more generally, the theory 01 
distributions) or to work with their local means. In any case, we are departing 
from the scope of this book.

8.1.1. Numerical integration for dummies 1
In all that follows, we assume that the functions which we are integrating nU 
merically are continuous on a compact interval [a, 6]. Anyone who has stu
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elementary integration theory (integration of continuous functions is sufficient) 
has done numerical integration, just as M. Jourdain used to write prose. Indeed, 
if / is continuous on the compact interval [a, b] and if we have some points

Cl — Xq ^  X\ ^  ^  ^  —1 ^  — b)

the left rectangle formula is written
n—1

(8.1.3) In(/) = / (xi) (xi+! “ xi) •
j=o

Here we have a Riemann sum of /, and it is shown in every integration course 
that, when maxj (xj+\ —Xj) tends to 0, the sequence of numbers I ln(f) converges 
to a number which is the integral of / between a and b. Geometrically, we 
replace the function / by a staircase function having values f(xj) on the interval 
[xj,Xj+1], and we trivially integrate the staircase function, see Figure 8.1. The 
error made is shown by the shaded region.

In the same way, the right rectangle formula is given by
n—1

(8.1.4) I Tn (f) = ^ T f  (xj+1) ( -  Xj).
j=o

This is equivalent to replacing / by a staircase function which has values /(xJ+i) 
on the interval [xj,xj+i\. The integration is as easy as the preceding one and the 
convergence result is the same. The error made is shown by the shaded region 
in Figure 8.2. Observe that the sign has to be taken into account.

We can also use the midpoint formula:

(*•>•5) C  (/) =  £ /  (* i+1 -  .

Figure 8.2: Right rectangle formula.
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In this case we take the value of the function on [xj,Xj+1] to be the value of / 
in the middle of the interval. Referring to Figure 8.3 below, we see that if / is 
sufficiently regular then there is some cancellation of the signs of the error, so 
the total error made should be less for the midpoint formula than for the left 
and right rectangle formulae. The convergence result for the Riemann sums can 
again be applied.

The trapezium formula is given by

(8-i-6) /;«</) = £ j
j =0

This time we have replaced / by a piecewise linear function, which coincides 
with / at the points Xj, 0 ^  j  ^  n. As the replacement is more accurate, we 
hope that the error will be smaller with trapeziums than with rectangles (left 
or right), although the modification only affects the first and last terms of the 
quadrature formula. Figure 8.4 shows the greater accuracy, though this higher 
precision is not true on each interval.

Finally, in a first year course we generally meet Simpson’s rule given by

(8-1-7) /!„ „  (/) = £ / f e )  + 4/ ( f e  + »w)/2> + /(»w) (lj+i _ . j
j =0

We see that this is a linear combination of the midpoint formula and the trapez­
ium formula, and we will show that it is more accurate than either of these two 
formulae. Geometrically, it consists of integrating a function which interpolates 
/ with a second degree polynomial in each interval [xj,Xj+1], with knots at the 
two end-points and the middle of the interval. Formulae (8.1.3) to (8.1.7) are 
called composite formulae since they are formed from the juxtaposition on a 
given interval of formulae on small intervals. These formulae are obtained by a 
change of variable from a simple formula with weight 1.

Figure 8.3: Midpoint formula. Figure 8.4: Trapezium formula



1698.2. THE ANALYSIS OF QUADRATURE FORMULAE

8.2. The analysis of quadrature formulae
In numerical integration, we will pose the following questions:

(i) How do we construct quadrature formulae? We have two classes of formu­
lae, namely

simple formulae; 
composite formulae.

(ii) What is the order of a formula? How do we estimate the quadrature error 
in a simple formula?

(iii) How do we estimate the quadrature error in a composite formula?

(iv) Do the geometric symmetries, such as periodicity, provide an advantage 
with regard to an error compensation process?

(v) Can we find simple formulae of maximal order? More generally, can we 
tailor integration formulae to given requirements?

In general, a quadrature formula is an expression of the form
n

(8.2.1)
j= 0

where the points xj are n -1-1 pairwise distinct points in the interval [a, 6] and 
the scalars Aj are chosen in such a way that the quadrature error

/ b n
f  (x) w (x Aj f  (Xj)

j=0

|s not too large in a sense which we will clarify later. We will see later why it 
ls mteresting to use a weight w, which we suppose to be integrable and strictly 
positive almost everywhere on [a, 6],

8.2.1. Order of a quadrature formula
T K0 begin with, we look for which classes of functions the rectangle, midpoint, 
and Simpson formulae are exact. The right and left formulae are exact for con- 
forT Ûnĉ ons* The midpoint formula is exact for constant functions, but also 

inear functions, as shown in Figure 8.5 which demonstrates the error can-
p- a||ons- The trapezium formula is exact for linear functions, by construction.

y, the geometric interpretation of Simpson’s rule shows that it is exact for 
thn 10,mia ŝ °f up to second order. We therefore have the following definition of 

0fder of a formula:



170 8. QUADRATURE

Figure 8.5: The midpoint formula is exact on affine functions: the two shaded 
areas are equal.

Definition 8.2.1. We say that the quadrature formula (8.2.1) is of order m if m 
is the largest integer such that the formula is exact on Pm, the vector space of 
polynomials of degree at most m.

By this definition, the right and left rectangle formulae are of order 0, the 
trapezium and midpoint formulae are of order 1 (check this) and Simpson’s rule 
is of order at least 2 (and we shall see, in fact, that it is of order 3).

Given the pairwise distinct knots x j, 0 ^ j  ^  n, we seek the relations which 
must be satisfied by the scalars A j so that formula (8.2.1) is of order m. For 
each power xk, 0 ^  k ^  m, we must have the following equalities:

n
(8.2.2) ^ A jX j = / xkw(x)dx, Vfe G {0,... ,m}.

j—0 Ja

System (8.2.2) is a system of m + 1 equations for n + 1 unknowns. To ensure 
a solution, we need at least as many unknowns as equations. Therefore, we 
suppose that m ^  n. We look for its rank: the sub-matrix formed from the first 
ra + 1 columns is the matrix

/ I  1 ... 1\
*0 *1 • • • xlm

W  xy* ••• x z )

We recognize this to be the matrix of the system (4.1.1) for Lagrange interpo­
lation: it is the Vandermonde matrix, which is invertible. Consequently, system
(8.2.2) is of rank m + 1. In other words, the dimension of the image of the matrix 
of system (8.2.2) is m + 1, which is equal to the number of rows of the system 
or, again, the dimension of the image space. Irrespective of the right-hand side 
system (8.2.2) has a solution. In fact, it has an affine space of solutions, of  ̂
mension n — m. If we fix n — m scalars \j, we can find the remaining w + 
scalars by solving a system of the type occurring in interpolation. Indeed, if we 
suppose that the Xj are given for j  ^  m + 1, we use the basis of Pm formed &0111
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the functions (f>j, defined in eqn (4.1.1). As the quadrature formula is exact on 
polynomials of degree at most m, it is, in particular, exact on the (j)p:

n nb
Y  = / (*) tp (*)dx-
j =o Ja

Hence, we obtain the value of \p for 0 ^  p ^  m:

/b n
w (x) (f)p (x) dx -  ĵ<i>p(xj)-

j=m+1
A particularly important case is that in which m — n. In this case the system 

(8.2.2) has a unique solution, which is
rb

(8.2.3) Aj — / (f>j (x) w (x) dx.
J a

Formula (8.2.1) can then be written as

In(f) = Y>( f  &(*) W dx) f (X>)j= 0 'Ja '

/b n

Y  f  ( xi)(x) w (x)dx
j= o

rb
= P (x) w (x) dx,

J a

where P is the Lagrange interpolation polynomial of / at the points x j. In this 
case the quadrature formula can be interpreted as follows: We interpolate / at 
the knots (xj)0̂ j^ n with a polynomial P G Pn, and we replace the integral 
°f / by the integral of P. Thus, we have obtained a quadrature formula by 
interpolation. Hence, we are assured that, for every choice of n + 1 knots, there 
exists at least one quadrature formula of order n, namely the quadrature by 
interpolation formula.

8*2.2. On the practical interest of weighted formulae
We consider the weight l/y/x on the interval [0,1] and we consider an interpo- 
lation formula with the knots 0 and 1. We have

(x) = 2— “  = 1 — x and 02 (x) = —— —  = x.x0 X\ X i Xq

Consequently,

I I  ̂ dx = i'[^'/i]dx =2y/x -  |x3/2
n

= 3 = Ai-



172 8. QUADRATURE

Furthermore,

f 1 h p . d x=  r ^ d  * =
Jo vx Jo

2 3/2
1 1

Jo

Therefore, we have obtained the integration formula

A1/ M d  4/(0) + 2/(I). 
Jo Vx 3 3

We test this formula by taking /(x) = xa for a >  1/2 and compare it with the 
trapezium formula: the value obtained by the trapezium formula is 1/2 and the 
value obtained by our formula is 2/3. The exact value of the integral is 2/(l+2a). 
We see that the error made by the weighted formula is less in absolute value than 
the error made by the trapezium formula if

- * - > 1 ( 1  + 1) 1
1 -f 2 a  2 \2  3 )

or

The error made by the weighted formula is therefore less than the error made 
by the trapezium formula if 1/2 a ^  14/17. If —1/2 < a ^  1/2, then the 
trapezium formula gives us nothing. Therefore, the weighted formula allows us 
to integrate singularities better, when they are integrable.

8.2.3. Examples of simple formulae
The simple left and right rectangle formulae on [0,1] are given by

/{(/) = /(0) and (/) = / (1),

respectively. These are interpolation formulae. The simple midpoint form ula is 
given by

=/G)- H
This is also an interpolation formula, as is the simple trapezium fo rm u la  g iveI1
by

Finally, the simple Simpson’s rule is given on [0,1] by

W )  =
/ (0) + 4/ (1/2) + / (1)

6
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We will now calculate its order. It is clear that /.f (1) = 1. We have

«M = 5(44  + 1) = i ’
and finally,

C o n se q u e n t ly ,  Simpson’s rule is of exactly order 3 and, in particular, it is an 
interpolation formula.

A notable category of quadrature by interpolation formulae is that of the 
Newton-Cotes formulae. These are the formulae which are obtained with equidis­
tant knots and weight 1. The closed formulae for n + 1 points are obtained by 
including the end-points, and therefore taking as knots

j  (b -  a) xj = a-1----------- , 0 j  ^  n.

The open formulae for n points are obtained by excluding the end-points, 
and therefore taking as knots

X j  = a  + - ---- , 1

The simple trapezium formula is a closed 2-point Newton-Cotes formula. 
The simple Simpson’s rule is a closed 3-point Newton-Cotes formula. The simple 
midpoint formula is an open 1-point Newton-Cotes formula. The Newton-Cotes 
formulae are tabulated in numerous works. We find the most common ones 
m [19,51]. Their coefficients are calculated using eqn (8.2.3). We can easily 
obtain them by using symbolic manipulation software.

8-2.4. Composite formulae
Suppose that we have a quadrature formula with weight 1 on the interval [0,1]:

j=0
a transformation x to a + x(b — a) we can deduce from this a quadratureformula on any interval [a, b\. Indeed, if g is a continuous function on [a, 6], thenX  / i 7 J i  &
9{a -f x(b — a)) is a continuous function on [0,1], and since

[  9(y)dy = ( b - a ) [  g(a + x{b- a)) dx,
Jq Jo
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we have the quadrature formula
/ b n ̂

g ( y) dy~ (b — a) ^  A -  o) Xj).
j=  o

A composite formula on an interval [a, 6] is constructed as follows: We begin 
with a simple formula In on the interval [0,1]. We then subdivide the interval 
[a, b] by defining a sequence of points

a  = ao <  a>\ < • • • <  dp = b.

On each of these intervals [aj,aj+1] we perform a quadrature of the type given 
in eqn (8.2.4) to obtain the formula

p— 1 n
In,p (/) — ^   ̂(&i+l — a i) ^   ̂^ j f  x j  (® t+l — a i)) • 

i=0 j —0

It goes without saying that the order of the composite formula /n?p is at least 
equal to the order of the simple formula In from which it came.

8.3. The Peano kernel and error estimates
8.3.1. Definition of the Peano kernel
Just as we introduced the Dirichlet kernel in Subsection 7.2.4 to represent the 
action of the partial sum operator of a Fourier series, here we introduce a kernel, 
called the Peano kernel, which describes the quadrature error.
Theorem 8.3.1. Let a quadrature formula of order m on [a, b] be denoted by

n
(8.3.1) In (/) = X jf (Xj).

3=0

Let t+ = max(£, 0) and define t+ = 1 if t >  0 and t+ = 0 if t ^  0. Define a 
function G by

G(y)= [  (x- y)™ w (z) dx -  ^  \j (xj -  y)™ .
Ja j=o

Then, for any / in Cm+1 on [a, 6], we have

T  / (y) w (y) dy -  In (/) = —J b /<m+1) (j/) (y) dy.
Ja m! Ja

The function G is called the Peano kernel. o
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proof. First of all, we make a preliminary remark: ) is the quadrature error
made by replacing the integral on [a, 6] of i-+ -  y)™ by In(x >-»• - y)™).
We write / with the aid of the Taylor formula with integral remainder:

f(x) = P  ( x) + (x),

where
P(x) = f ^ f-— t ( x - a ) i

j =0
and x

R (x) = — Ja

is the integral remainder. As we assume the formula to be of order m,

[ P (x) w (x) dx = In (P ),
J a

since the formula is exact for polynomials up to order m.
Note that

f  /(m+1) (y) (x -  y)m d y =[/(m+1) (y) (x -  y)™ d 
J a J a

We are therefore able to change the order of integration when we integrate R:

[ w(x)R(x)dx = [  — w(x) [  f (<m~{~l^(y)(x-y)rndydx
J a  J a  m! J a

= [  —]w (x ) f /(m+1) (y) (a; -  y)™ dy da;
Ja Ja

= J  m \(J  (* -  da:^ /

In the same way, we exchange the summation and integration when we per­
form the quadrature of R:

£  aJR (xj) = £  A A  f  /(m+1) (y) - dx
j =0 j =0 m  Ja

= £  Ai-y  /  /(m+1) (v) (Xj -  y)+ da:j—0 m■ Ja
= /  ( £  Aa (̂ a "  J/)+) / (m+1) (?/) dy-
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Consequently,
rbrO  r o

/ / (x)w(x) dx - I n (f)= R ( w ( dx -  (R)
J a J a

= [  —]f {m+1)( y ) ( [  ™ (*) (x -  y)t dx -  Xj (xj -  y)™) dy
Ja m - \Ja  j =q /

= f b/(m+1) (y) G (y) dy, ml Ja
which concludes the proof. □

The Peano kernel allows us to make error estimates. The first of these is 
given by the following lemma:
Lemma 8.3.2. Let In be a quadrature formula which we suppose to be of order 
m, and let / be a Cm+1 function on [a, b]. Then,

(8.3.2) If w (x) f(x) dx -  In(/) ^ m a x  |/(m+1) (a;) [  \G(y)\dy.
I Ja 1 Ja

Proof. The proof is immediate. □
The estimate that we have just made assumes no sign information on G. If 

we have some sign information we can do better, indeed, the second mean value 
theorem states that if / is continuous, and if g is integrable and positive or zero 
almost everywhere on [a, 6], then there exists a real number £ G [a, 6], such that

[  f{x)g (x) dx = f  (0 f  g (x) dx. 
J a J a

This classic result (but often unknown to degree students) is simply proved as 
follows. If g is identically zero on [a, 6], the result is clear. If not, we have the 
following inequalities:

g (x) min / (y) ^  f  (x) g (x) ^  g (y) max / (y),
y€ [a,6] J/G[a,6]

which we integrate over [a, 6], thus obtaining

mmy£[a
rb rb rb

)in,/(y) / g(x)dxs$ / / (x) (x)dx ^  / /(x)ff(x)dx.
M l J a  J a  J a

Consequently, the ratio

J  f(x)g(x)dx j  J  (x) dx

lies between the minimum and the maximum of / on the interval [a, &]• ^  
continuity of /, there exists a £ such that /(£) is equal to this ratio.

We therefore have an error estimate which is a little less naive, namely
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Lemma 8.3.3. Let In be a quadrature formula of order m, and let / be a Cm+1 
function on [a, 6]. Then, if G, the Peano kernel of does not change sign on 
[a, &], there exists a £ G [o, 6] such that

(8.3.3)
[ w {x) f (x) dx -  In (/)

J a

= ĴTij!/<m+1) Of w ym+1 dy ~ In (2/m+1)) ‘

Proof. The second mean value formula requires the existence of a £ such that

(8.3.4) [  f(x) dx — In (f) = _L jdm+1) (£) f  (j/) dy.
J a Ja

However, the integral of G over [a, 6] can be calculated as follows: the quadrature 
error on j/H  ym+1 is given by

[  w (y) ym+1 dy -  In (ym+1) = —. [  (m + l)\G(y)dy 
Ja Ja

= (m + 1) G (y) dy,
J a

which implies

J  G (y) dy = — ̂

and proves the lemma. □

Examples of Peano kernels
We will calculate some Peano kernels explicitly, beginning with the rectangle 
formula on [0,1]:

h ( f)  =  f(c).
Suppose that c belongs to [0,1] and is different to 1/2, so that the formula is of 
°rder 0. We have

°c (y) = f  (x -  2/)® dx - ( c ~  2/)®
J o

= / Mv,i] (x)dx ~ ![o,c] (y) = i - y - i[o,C] (y) •Jo
^Figure 8.6 we give the graphical representation of the Peano kernel Gc- We 

t at if does not change sign on [0,1] only if c = 0 or 1.
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Figure 8.6: The Peano kernel for the rectangle formula (left), with integration 
knot c = 0.4, and for the midpoint formula (right). Note the different scales of 
the figures.

Now, if c = 1/2, the formula is of order 1: the midpoint formula. The 
calculation of the Peano kernel is therefore a little different:

Two different cases present themselves. If y <  1/2,

1 — xp" 1 t/2
Gm (») = - f -- (i - y)y - ̂  + y = -•

if y >  i/2,

G m  (y) = 1—  - (i - = • I
The Peano kernel of the midpoint formula does not change sign. Consequent!)• 
the error incurred by using the midpoint formula is given by eqn (8.3.3):

(8.3.5) i "  n.)
2!

1
4

r i o
24

The graphical representation of this Peano kernel is given in Figure 8.6.
We find the proof of the following results on the order of the Newton t ° 

formulae and their Peano kernels in [51, Chapter 7].
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T h e o r e m  8.3.4• A closed Newton-Cotes formula on an even number of intervals 
(that is, 2p + 1 knots and 2p intervals) is of order 2p + 1. o

Theorem 8.3.4 leads us to only use Newton-Cotes formulae on an even num­
ber of intervals, since we then gain an order with respect to that predicted by 
the general theory of quadrature by interpolation. We make an exception for 
the trapezium formula, which is often used. The first closed formula on an even 
number of intervals is Simpson’s rule.
T h e o r e m  8.3.5. An open Newton-Cotes formula on an even number of intervals 
(that is, 2 p-\ knots and 2p intervals) is of order 2p - 1. o

Theorem 8.3.5 leads us to only use Newton-Cotes formulae on an even num­
ber of intervals. The first open formula on an even number of intervals is the 
midpoint formula.
Theorem 8.3.6. The Peano kernel for the Newton-Cotes formulae has constant 
sign. o

8.3.2. Quadrature error in composite formulae
Given an interval [0,1] and a simple quadrature formula of order m and weight 
1:

n
(8.3.6) /•<(/)=■£ A,/(*,).

j=0
We have seen that the composite formula on [a, b] is given by the decomposition 
of [a, b] into sub-intervals [ai,a*+1] on which we define new quadrature formulae 
based on the elementary one. We thus have

p— i n
(8-3-7) In,p (/) = Y2 {di+1 -  a,i) (ai + Xj (ai+i -  a;)).

i=0 j=0
The quadrature error in a composite formula is estimated by means of the 

following result:
Theorem 8.3.7. Let 7n>p be a composite quadrature formula on [a, b] given by 
e9n (8.3.7) and defined by the elementary formula (8.3.6) of order m on [0,1]. 
Let h = max*(ai+i -  a*). Then,

rb (1b -  a)hm+1
ml max

xe[a
x | / (m+1)(x) [  (y)|

1 Jo
<8-3-8) /  /(x)d *-/„ ,„ (/)

\J a

where G is the kernel of the formula (8.3.6). o
f roof- Generally, the formula obtained on an interval [a,/?], based on the 
l0rmula on the interval [0,1], is

(/3-a)^2 xj f  (a + (/? - a) xj). 
j=o
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Calculating the Peano kernel G  of this formula:

We make the natural change of variables

a: = a + £ (/3 — a), y = a + T) (0 -  a) ,

to obtain
G { y ) ^ {0 - a )m+lG ^ — ^.

Now let a = a* and /? = On each interval [a,i,ai+1], we have the error

—  (oj+i -  ai)m+1 P +1 dTYl. Ja. V&i+l di J

[  G (——— dy = (oj+1 -  a,i) f|G(jy)|d7?,
J di \&i+l / Jo

and therefore, the error on each interval [at-, a*+i] is bounded above by

(oi+i -  Oj)m+2

Now

(8.3.9) ml max™ y m+iH x)\(jol \G(V)\dVy

Let h = maxi(ai_|_i — a*). We note that
p-i p-i

(8.3.10) £  (oi+1 -  a<)m+2 ^  /iro+1 £  (aj+1 -  a*) = hm+1 (b-a).
i=0 i=0

By adding all the error bounds (8.3.9) and using eqn (8.3.10), we deduce estimate 
(8.3.8).

The preceding analysis showed that there is no advantage in doing a numerical 
integration by a high-order formula on functions which are not very regular. The 
precision of a formula is strictly limited by the regularity of the fu n c t ion  which 
we are integrating.

8.4. Gaussian quadrature
In this section, we call n the number of knots, because it makes the results 
easier to remember. Let [a, b] be a compact interval and let w be an in tegra 
weight which is strictly positive almost everywhere on [a, b]. Given n *n 

#n, there exists a quadrature formula of order at least n — 1> nanl
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the interpolation formula, and we have seen that it is unique. Observe that 
if the weight is non-negative almost everywhere, and does not vanish almost 
everywhere, the uniqueness still holds. This comes from the fact that, since a 
polynomial is determined by a finite number of coefficients, when the integral 
of its square multiplied by the weight vanishes, the polynomial itself vanishes, 
provided that the weight does not vanish almost everywhere. However, such 
w e igh ts  are of little practical importance, and we will continue with the simpler 
hypothesis. We now pose the following problem: how do we determine the knots 
Xj and the weights Aj so that the quadrature formula is of the highest possible 
order, that is /b n

f  (x) w (x) dx — E  
1

vanishes on P* for k as large as possible. We already know that k ^  n — 1, 
therefore the Aj are uniquely determined from the xj by means of the formula

(8.4.1)

If P belongs to P&, we must have
/ 6 n

P (x) w (x) dx =
j =1

We introduce the polynomial
n

(8.4.3) p(x) =
3-1

The Euclidean division of P by p has quotient q and a remainder r, which is a 
polynomial of degree at most n -  1:

(8.4.4) p  = pq + r.

If k = n _ quotient q is zero. Since P is some polynomial in P*, q is some 
Polynomial in P^_n. We can rewrite relation (8.4.2) as follows:

P rb n
P(x)q{x)w(x) dx-f / r (x) w (x) dx — Ajp (x j) q (xj) + ^  Ajr (Xj).

Ja j=i j=i
that this formula is of order at least n — 1 and that p{xj) is zero for every 

^  we see that

fJ a
p (x) q (x) w (x) dx = 0.
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In other words, the scalar product of p and q with weight w must be zero:

(8.4.5) (p, q) = 0, Wq£ P*_n.

The preceding analysis leads us now to present and prove the theorem which 
describes the maximal-order formulae, known as Gaussian formulae:
Theorem 8.4-1 • The unique n-point formula of maximal order is the interpola­
tion formula constructed by taking as knots the zeros of the n-th orthogonal 
polynomial with respect to the weight w. By convention, the n-th orthogonal 
polynomial is of degree n, which implies that we begin numbering them from 0. 
The formula thus determined, is exactly of order 2n — 1 and is called a Gaussian 
quadrature formula. o

Proof. Suppose that Pn is the orthogonal polynomial of degree n with respect 
to the weight w. We have shown in Theorem 5.5.1 that the zeros of Pn are simple 
and are all situated in the open interval ]a, b[. If we make a Euclidean division 
of P, belonging to P2n-i? by Pn we obtain

P = Pnq + r.

Let the Xj be the zeros of Pn. By definition of orthogonal polynomials

(-fn) q) == 0?
that is, eqn (8.4.5). The formula, thus constructed, is certainly of degree at least 
2n — 1. It is not of degree 2n, indeed

rb n rb
/ Pn (x)2 d x - ^ 2 \ jP n (xj)2 = / Pn (x)2 dx^0 .

J a j = i J a

Conversely, if we have a quadrature formula of order k ^  2n — 1,
n

^2 Vif (Vi) ’
3=1

this formula is clearly an interpolation formula, since 2n -  1 ^  n -  1. We must 
therefore have

(P,<?)=0, V^GPfc-n- 
Since k -  n ^  (2n - 1) -  n = n -  1, we must, in particular, have

(P,tf) =  0, VqeVn-i-
For the nonzero polynomial p G Pn to be orthogonal to Pn-i, it is n e c e s sa r y  and 
sufficient that p be a multiple of the n-th orthogonal polynomial with r e s p e c t  ^ 
w. The yj are therefore the Xj and, since the formula is from interpolation, 
p,j are identical to the A j.
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8.5. Numerical integration of periodic functions over 
a period: Fourier analysis

The error analysis of composite formulae in Theorem 8.3.7 does not take into 
a ccou n t possible global compensation from one interval to another. In the case 
o f a periodic function (to fix ideas, of period 1), these global compensations 
are very interesting, to the point that it is not necessary to employ any other 
form u la  than the rectangle formula. Observe that the left and the right rectangle 
form u lae give identical results.
Theorem 8.5.1. Let / be a periodic function of period 1 on E. If / is Cm on E, 
and if we apply the rectangle formula to it with n points uniformly distributed 
on the interval [0,1], we have the following error estimate

(8.5.1)

In other words, the rectangle formula is of infinite order when applied to periodic 
functions. o

£ C (m, f)
n

Proof. The idea is to see what the rectangle formula gives for trigonometric 
polynomials. We therefore calculate

ekn = T  e2inkx dx e2inkj'n.
’ J° n U

Let
71 —  1

S = ^  e2in kj/n % 
j =o

This is the sum of a geometric series with ratio e2lnk/n. If e2l7r*/n = 1, that is, if 
n is a divisor of k, S = n. In the converse case

Q27rifc
s  = -  i

Îxnk/u = o.

We therefore have 

Moreover,

We deduce the value of 

(8.5.2)

S =

/■

n if n divides fc; 
0 otherwise.

>2i”kx dx = s0k.

— 1 if n divides k and k ^  0; 
0 otherwise.
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Consequently, if Pis a trigonometric polynomial

we have

P(x)= Y , 
\kKN

/:0<|/n|̂ 7V

Suppose now that / is Cm and take m to be at least equal to 2, since the case 
m = 1 is a consequence of estimate (8.3.8). We denote by f(k) the fc-th Fourier 
coefficient of /. Since / is at least C2, the Fourier series converges uniformly 
and by inverting the order of the summation and integration, which is valid by 
virtue of the uniform convergence, we can write

[ l f ( x)d x - Y - f U )  = /' £  / (k) e2,vkx d x - Y - Y f  (*) e21̂ 7"
Jo  j=  o n  \ n j  Jo k€Zj=0 n kez

=  ^   ̂/  (&) e fc,n
kez

= -  Y
iez\{o}

From the estimate of Lemma 7.1.12

|/(*)| ^

we deduce that

1 cl n~1
/ f ( x ) d x - Y ! / ( - )n \

, 2
^  nm

o° 1
■ Y  1/  ̂fm'J° j=0 e=i

As the series rso

Y  —/ ̂  pm1=1
converges for m ^  2, we have proved the result claimed.

8.6. From Bernoulli to Euler and MacLaurin: the 
delights of integration by parts

We now present another approach to the error analysis for the trapezium f°rin̂  
with uniformly distributed knots. This approach consists of representing
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quadrature error in the elementary trapezium formula by means of successive 
integration by parts, using derivatives of the function being integrated which are 
of arbitrarily high order. We again find a formula for which the kernel (we are 
therefore on familiar ground) is a multiple of a Bernoulli polynomial.

The Bernoulli family provided a good dozen scientists in the seventeenth and 
eighteenth centuries, of whom at least three were very prominent. Amongst these 
were the mathematicians Jacques (1654-1705) and Jean (1667-1748).

On the subject of the personalities and relations between the brothers Jac­
ques and Jean Bernoulli, consult the book by Stefan Hildebrandt and Anthony 
Tromba [46, pp. 64-7]. At a time when only a few people in the world under­
stood the infinitesimal calculus of Leibniz, the elder of the brothers had taught 
mathematical analysis to the younger, who had a temperament which was, to 
say the least, competitive. Lively scientific conflicts between the two brothers 
were played out under the watch of contemporary European scholars. It was 
Leonhard Euler (1707-1783), a student of Jean Bernoulli, who carried the math­
ematical tradition of the Bernoullis the furthest, adding to it his own originality. 
Euler was blessed with numerous descendants, and legend says that he did math­
ematics with his children playing all around him. At the end of his life he lost 
his sight, which did not prevent him from continuing to work.

I strongly recommend reading the original works of the great authors. Read­
ing the Introduction of Euler’s Introductio in Analysin Infinitorum is an enthus­
ing experience which is entirely accessible to degree level students. It is good to 
note that Euler hardly concerned himself with the convergence of the objects on 
which he worked. However, his supreme intuition traced the paths for contem­
porary mathematicians, be it as a precursor to non-standard analysis or when he 
summed divergent series. The phrase ‘Euler equation’ refers to at least two dif­
ferent objects, one in fluid mechanics and the other in the calculus of variations, 
both of which are the objects of very active study.

The book by Hildebrandt and Tromba is also very good, and abounds with 
beautiful pictures and stimulating questions.

The polynomials mentioned here were brought to prominence by Jacques 
Bernoulli, who introduced and studied them for discrete values of their argument 
in his work Ars Conjectandi, published posthumously in 1713.

8.6.1. Detailed analysis of the trapezium formula
^ rst °f all, note that for a periodic function of period 1, the rectangle formula 

the trapezium formula are equivalent. We are therefore going to study, in 
etau, the error for the elementary trapezium formula. Suppose, first of all, that 

/ls C\ Then,
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f  fOOd*-i[/(0) + /(l)]

= \ j  (/ (x) -  / (°)) (/0*0-/(*))dx

{y) *) r  (/’ m dy) **■
Changing the order of the integrations, we see that

J  ̂  /' (*/)dx = (1 -
In the same way,

J  f'{y)dyS)d x  = J^ yf'(y)dy.

Consequently,

/ (*) da: -  | [/ (0) + / (1)] = Q  “ 2/) /' ( )d2/-

We are now going to generalize this result:
Lemma 8.6.1. Let / be a C'm+1 function on the interval [0,1]. Then,

r  f ( X)d x -\[ f( o)+ f( i) ]
(8.6.1) n -1

= T  aj/ /«> (x) dx + / Pn+1 (x) /<"+1> (x) dx. 
i=l ‘/O Jo

The real numbers a j  and the polynomials P j are defined by

(8.6.2)
p i 0*0 = g “ x’ «1 = 0,

71+1 (x)
rX

== / (c*n ~ Pn Jo
(2/))dy, ^n+l = / n+1 (i/)<ty

Furthermore, the c*2j+i are zero and the P j satisfy the symmetry relation

Pj (x) = (-l)i Pi ( l- x ) .

P r o o f .  Formula (8.6.1) is true for order 1. Suppose that it is true fo r  order n 
We note that

Pn ~ &n ~ Pn+1?
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and consequently, if we integrate

/%„ (*)/<"> (x) 
Jo

dx

by parts, we find

j f  (an -  P'n+ 1 (*)) / (n) (*) d* = Oinj f 1 /<»> (x) dx -  [pn+1 (x) /<"> (x)]

+ f  f (n+1){x) Pn+i (*̂) dir. 
Jo

By construction, Pn+i(0) = Pn+i(l) = 0, which verifies eqn (8.6.1).
Suppose that Pn satisfies Pn(l — x) = (—1 )nPn(x). Then, we can write

rl~xPn+1 (1 - x) = / {an -  Pn (</)) dV Jo
= an ( l-x)  + (-l)n+1 [

Jo
= a„  (1 -  x) + (-l)n+1 f  Pn (y) dy 

J X
= a„ (l -x) + (-l)n+1 Pn {y)dySj

=an (1 -  x) + (-l)n+1 an + (-l)n+1 Pn+1 (x) + (-1)" a nx 
= an (1 -  x) (l + ( - I f +1) + ( - l f +1 Pn+1 (x) .

If P2j+i(l -  x) = — P2j+i(x), the integral on [0,1/2] cancels the integral on 
[1/2,1], which implies that a 2 j+1 = 0. The above calculation shows us that

f*2j +2 (1 -  x) = p 2j +2 (x) .

Consequently, as 1 -f (-1)2-7"1"3 = 0, we see that

P2j+3 (1 -  x) = -P2j+3 (x).

As the symmetry property holds for Pi, the lemma is completely proved. □

8-6.2. The Bernoulli polynomials
The Bernoulli polynomials are defined by means of a generator function:

teixt^+<t>{x,t) = ——  el — 1
(8.6.3)
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This has a power series expansion with respect to t of the form

(8.6.4) e1 — 1 n!n=0
tetx _  Bn (x) ̂

The radius of convergence of this expansion for fixed x is equal to 2ir, since 
the numerator and denominator are entire functions of t and the denominator 
vanishes at 2iA?7r, 6 Z, but the singularity in the denominator at t = 0 is
compensated by the singularity in the numerator.

It is clear that (f) is C°° with respect to t E R and x G M, and the radius 
of convergence of the Taylor series in t is 27r. The partial derivative of 0, with 
respect to x, is

We can also differentiate series (8.6.4) term by term (prove it!), which gives us, 
after equating the terms of equal power in t

Since B0(x) = 1, we see that all the Bn are polynomials of exactly degree n. 
Furthermore,

and due to eqn (8.6.2), B'n + (~l)nn!P^ is a constant. By construction,

(8.6.5) B'n ( x) = ni (a;).

Consequently, for every n ^  1

The polynomials Bn are Bernoulli polynomials.
We are now going to show that, for every n ^  1,

(8.6.6) Bn (x) = (-1)" n! (an -  Pn (x)).
Explicit calculation gives

Assume that eqn (8.6.6) holds for rank n — 1. Then, due to eqn (8.6.5),

B'n (x) = n (-1)"'1 (n -  1)! (an_i -  P„ _i (x)),

and we have seen that Bn has zero integral on 
verified formula (8.6.6).

[0,1]. Consequently, we ^aV
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8.6.3. The Euler-MacLaurin formula
We are now going to give the Euler-MacLaurin formula which describes the error 
in the composite trapezium rule. We extend Pn periodically over all of E, and 
let Pn be the periodic function of period 1, thus obtained. For n ^  2, Pn is 
a continuous function. The recurrence relation (8.6.2) shows that Pn is C n~2. 
If the function / is defined on the interval [0, k\ and is C2m+2 on this interval, 
then

f  f { x ) d x - ^ ^ 2 ( f  (j) + f ( j +  1))
Jo z  j= o

™ rk rk
= E  a2i / ^ (2j) ( X) + / ^ 2m+2 (x) /(2m+2) (x) dx. J=1 Jo Jo

By a change of variable, we are going to get back to the trapezium formula on 
[a, 6]: let x = a + th with h = (b — a)/k. We then get

jf / M d* = ft + £ / ( „  + jA)j + g  a-zjh2* jf  /(«> (x) dx

+  f  P2m+2 (X) dx.
(8.6.7)

Formula (8.6.7) is called the Euler-MacLaurin formula. It allows us to analyse 
quadrature formulae, as well as to precisely approximate sums of the type

j=i
hy comparison with the integral of / from 0 to A; and the accurate estimation of 
the remainder.

We clearly find the results already claimed for the integration of periodic 
functions, since all the terms J^ (x) dx disappear if b — a is a period of /. In
Particular, the trapezium formula is of exactly infinite order for functions with 
c°uipact support, integrated over an interval containing their support.

8-7. Discrete Fourier and fast Fourier transforms
^  calculate the Fourier coefficients of a periodic function of period 1, by ap- 
ofying the rectangle formula at equidistant points. As the rectangle formula is 

lnfinite order for periodic functions, as we saw in the preceding section, it is 
lat*n eSS USe a more sophisticated formula. In its naive version, this calcu- 

10n reciuires 0(N2) complex multiplications for the calculation of N Fourier
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coefficients. J. W. Cooley and J. W. Tukey proposed a remarkable algorithm for 
fast Fourier transforms (FFT) [17], but it seems that it had been discovered pre­
viously by Danielson and Lanczos in 1942 and that it was also known to Gauss. 
To understand the FFT algorithm, it is first of all necessary to note that the 
rearrangement of the rows or columns highlights self-similarity properties, which 
are due, on the one hand, to the formulae consisting of many multiplications by 
1 or by -1, and moreover, to the (more or less elementary) arithmetic properties 
of the integer which defines the number of points.

In the simplest case, where N is a power of 2, the FFT algorithm requires 
0(N log2 N) real operations (multiplications or additions) to arrive at the result.

There exist numerous generalizations of FFT, including implementations 
which work for numbers N which are the products of powers of 2, 3, 5, and 
7. The FFT algorithm is a typical example of a recursive numerical algorithm, 
although this is not necessarily the best way to program it. From its multiscale 
analysis nature, it is also the ancestor of modern multigrid methods [41] and 
multiscale wavelet analysis [61].

8.7.1. Discrete Fourier transforms
The Fourier coefficients of a continuous periodic function /, of period 1, are given 
by

The discretization, by the rectangle formula with equidistant points, is written

Note that this formula produces at most N distinct complex numbers. Indeed,

= Uk.

We therefore define the discrete Fourier transform F'n as the linear operate 
which associates the sequence of Uk, defined by

N- 1
Uk = J2 Uj

3=0
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to a finite sequence (uj)o^j^N-i of complex numbers. The matrix of Fn is com­
plex symmetric (warning, it is not Hermitian!). The conjugate linear operator is 
denoted by Fn , and we have the following elementary and essential result which 
implies that, to within a constant factor, Fn is unitary:
Lemma 8.7.1. For all JV, we have the following identities:
(8.7.1) Fn o F/v = N I — Fn o Fn -
Proof. Let ^

= Uke2injk/N.
k=0

We calculate TV-1

3=0
We have

Now

N—l N- 1 N—l
Y  Uj e~2i7rjt/N = Y  e
j= 0 j= 0 fc=0

JV-1 /N- 1 \
= £

k=0V j= 0  /

y 1 e2i^(fc-<)/w= r nif n  divides b
“  10 otherwise.j=o v

As k and I vary from 0 to N — 1, N can divide k — I only if k = I. Consequently,
TV-1

Y  Uje~2inje/N =
j =0

The second equality follows immediately from the first by conjugation. □
Since FN is a linear operator from CN to itself, a priori it will need N2 complex 
multiplications to calculate the Uk as functions of the uj. We are going to see 
tiiat it is nothing of the sort.

8.7.2. Principle of the fast Fourier transform algorithm
e Write the matrices of F2 and F4 explictly:

(1 1 1 1\
/ I I \  , _ 1 -i -1 i
(1 _1) and Fi = 1 -1 1 

v  1 - 1
-1
- v
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If we calculate {Uj)o^j^3, we can therefore write

Uo = Uq + U\ + U2 A Us,
U i= u o -  iui - u 2 + m3,(8.7.2) U2 = Uo - Ul + U2 - Us,
Us = uo + iui - u2 - iu3.

We will rewrite this and change the order of the uj as follows:

Uo = Uo + U2 + U\ + Us,
U\ — uo - u2 — \u\ + iu3,
U2 = Uo + U2 - U\ - Us,
Us = uo - u2 + iui -  ius.

We can therefore put this in the form

* ( : ) + (o -?)<)■ 1

We see, therefore, that the calculation of F4 needs the calculation of two trans­
formations F2 and a multiplication by a 2 x 2 diagonal matrix.

We can also rewrite eqn (8.7.2), changing the order of the rows, as follows:

Uo = u0 + U\ + u2 -I- Us,
U2 = u0 - ui + u2 - Us,
U\ = uo - \U\ - u 2 + ms,
Us = uo + iui - u2 - iu3.

We then have

(8.7.4) ( K M C M : ) ] -1_____I
£II A  0\ / Uo — u2\

\0 \J \u1- u 3J
In this case, we first of all multiply by the 2x2 diagonal matrix, and then make 
the two transformations F2.

The two ideas above generalize to the case of N = 2n, which is the mos 
important thing in practice. In the first case, we say that we have an algon 
with decimation-in-time, since the uj were originally seen as states depen 
on discrete time j , and in the second case decimation-in-frequency, as the Uk ar 
modes.
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8.7-3. FFT algorithm: decimation-in-frequency
We present the details of the fast Fourier transform in the case of decimation- 
in-frequency. The decimation-in-time case is completely analogous. We will 
estimate the number of operations necessary.

We rewrite F/v, firstly grouping all the even modes and then all the odd 
modes. Letting M = N/2, we have:

8j.  DISCRETE FOURIER AND FAST FOURIER TRANSFORMS

TV—1 M —1 TV-1
U2k = Y  U je-4i,rkj/N =  YUje - * nki/M +  U je-2i*kj/M.

j =0 j —0 j=M

Note that,

(8.7.5) €̂  -  1}, 

and consequently,

U0 \ / Uo + UM \

(8.7.6)
u2

= Fm
U\ + Wm+ 1

\Un-2) \Um-1 + UN-1 J
In the same way, the odd modes are given by

U2k+ i = Y  u .e -**(2k+l)j/N
J—0
M —1 TV—1

=  Y  e~ 2inkj/M e~ 2iKj/NUj +  Y  
j =0 j —M

Using eqn (8.7.5) and the relation
e-inj/M _  _ e—iw

w  obtain

let

Ux \
U3

\Un- iJ

= Fm

Uq-Um \Q—iir/M(Ui —

Uo \ ( Um ^

Ul =
U\

, Uh =
«Af+l

\UM-lJ \«TV-1 /
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U0 \ Ui \

Ueven —
u2

> U0dd —
U3

\Un - 2) \Un - i )
If pM = PN/2 denotes the diagonal matrix given by

(PM)jj =
then we have the block factorization

To recover the components of U in the right order, we now need to make a 
permutation an of the rows. This is the permutation of 2n objects, numbered 
from 0 to 2n — 1, for which the matrix Pa-1 (convention of p. 221) is the matrix 
of the transformation

/C/eve„ \ ^
\Uodd J ^  [UuJ ’

If j  varies from 0 to 2n -  1, we associate with it its representation in binary
n—1

j  = ^   ̂2 dk — dn-\dn-2 • • • d\do. 
k=o

We then verify that

(8.7.8) dn (dn—\dn—2 • • • do) —dn—2 * * * dodn—i-
Indeed, we see how we pass from the sequence

0,1,..., 2n — 1

to the sequence

0,2,..., 2p,..., 2n — 2,1,3,..., 2p -f 1,..., 2n — 1. 
If j  is even, we associate j /2 to it, that is i

i  = E
k=0

with do = 0. Therefore,
. n—1 n—2
- =  J2 =  E  2kdk+ i dodn- l - d l•

k=1 k=0
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If j  is odd, we associate 271 1 + (j — l)/2 to it. We therefore have
n—1

with do = 1- Therefore,
*=o

n -2
2 2fcdfc+i,

and hence,
o

n—2
^ -  1 + 2"-1 = 2n_1 + ^  d*+i =

k=0
In other words,

^n1 (dn-i •••dido) = dodn_i • • • di,
which implies eqn (8.7.8). To take account of the structure of the discrete Fourier 
transform, we define the permutation matrices PaPtk of 2fc objects by

PTp,p = Pffpl
for p ̂  1, and

p  = (p 0̂ ^
<VA!+1 v o

for k ^ p ^ 1. At the binary representation level, it is clear that
(8.7.9) &p,k (dfc—i * * • dpdp-idp-2 * • * do) — d/._i • • • dpdp—2 • • • dodp_i. 
From eqn (8.7.7) we deduce that

F/vu = P -1
F)v/2 0 \ /  Jjv/2  0 \  / U\ +  U\\
0 F n /2 J I 0 P N /2)  \ u l -  u I l,

Obviously, FN/2 has the same structure.
Thus, we can graphically represent the fast Fourier transform by a scheme 

consisting of lattices known as butterflies and horizontal arrows. The butterfly 
represents the mapping

from C2 to itself. The horizontal arrow simply symbolizes a transfer of data, 
and the arrow labelled with a complex number symbolizes multiplication by this 
c°mplex number.
th e^ ^ > ure 8.7 for the case N = 8, n = 3 with w = exp(-i7r/2). At
e end, it is necessary to make the matrix permutation

= P  -1
y 2 ,3 u o 3
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Figure 8.7: The FFT butterflies.

to recover the components of U in the natural order. It results from eqns (8.7.8) 
and (8.7.9) that

&3 °02,3 (d2dido) =  03 (d2d$d\) =  dodlG?2-

Generally, we can check that
0’n ° &n— l,n ° * * ' ° 02,n {dn—ld n —2 * * * d id o j — dod\ • • • d n—2dn—\

is the permutation rn, which swaps element p with element rn(p), whose binary 
expansion is obtained by reversing the order of the digits of the binary expansion 
of p. This explains the order of the elements in the last column of Figure 8.7 and 
shows the effects of the structure of decimation-in-frequency: after the algebraic 
part of the FFT, represented by the operations appearing in eqn (8.7.7), it is 
advisable to de-interlace the frequencies by permuting them by rn.
Operation Count 8.7.2. Let N = 2n. An FFT on N complex numbers dem ands 
at most 5iVTog2 N real operations (additions or multiplications).
Proof. We agree to count real multiplications and additions. The addition of 
two complex numbers requires two real additions, and the multiplication of two 
complex numbers requires two real additions and four real multiplications. W 
an be the number of real operations necessary for an FFT algorithm on N = 2 
modes. We let M = N/2. From eqn (8.7.7), to obtain u\ -f u\\ and u\ - u\h 
need 2M complex additions or 2N real operations.

The matrix multiplication of Pm {u\—u\\) by the diagonal matrix Pm requires 
M complex multiplications or 6M = 3N real operations. To make the two 
Fourier transforms in dimension M, we need 2an_i real operations. We there 
have the inequality

an ^  2an_i + 5 x2n.
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By induction, and observing that Fi requires no operations, we have

197

an ^  5n2n.

We have obtained the estimate

an ^  5iV log2 N.

Note that the classic count, which only counts complex multiplications, gives 
N2'1 log2 N operations, as can be checked by the reader. □

8.8. Exercises from Chapter 8
8.8.1. Summation of series with Bernoulli numbers and 

polynomials
This subsection allows us to study the error made in a numerical integration 
formula with equidistant knots. All the necessary calculations can be made by 
hand.

Bernoulli numbers
Recall the definition (8.6.4) of Bernoulli polynomials.
Exercise 8.8.1. Show that, for all j  >  1, B2j+1(0) = 0.
Exercise 8.8.2. The Bernoulli numbers are defined by the formula

= B2j (0).

Calculate b2 and b4.
Exercise 8.8.3. Show that, for all j  ^  1,

Exercise 8.8.4. Calculate in terms of B j- 1 and the Bernoulli numbers.

Error estimates and formal computations
tojhis subsection, we will prove an error formula relating to the trapezium rule. 

ls formula will be studied for polynomials, by operator calculus.
® nly the last two exercises depend on the first section.

^  e let P be the space of polynomials of a real variable, and Pn be the space 
0 ynomials of degree at most n. h is a fixed strictly positive real number.
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We define the following linear operators on P:
(If) (x) = /(x),
(Ef) (x) = f( x +  h

(A/) (x) = / (x + h) -  (x),

W )<*) = ^ .  I
We say that two operators A and B are equal if, for any / in P, A f = Bf. 
Exercise 8.8.5. Show that, for every / in P, there exists m such that Dmf  = 
A171 f  = 0.
Exercise 8.8.6. We let

(8.8.1) hD
= £

hnDn
n\

Show that the sum defining ehDf  is finite for all / in P and that
(8.8.2) ehD = E.
Exercise 8.8.7. Show that, for every y £ E, we can define linear operators Ty 
and Cy on P by

A r,/ = /, (Tyf) {y) = 0,
and

hDCyf  = f , (Cyf) (y) = 0.
Use the functions

, x (x -  y)(x -  y- h) ■ • • (x -  y -  -  1) 9k (x) = ------------------^ ------------------
and apply A to them to solve the first part of the question.

Show that r yA/ -  / and CyD f  -  / are of degree zero. Calculate ACyhDTy.
Exercise 8.8.8. Calculate ACyf  as a function of J, defined by

rX-\-h

(Jf)(x)= fit) At.
J X

Exercise 8.8.9. With 0 being the function given by eqn (8.6.3) and ^  defined b>
ip(t) = 0(0,*),

we let

(8.8.3) A = hDTy -  ^  (0) .
i= o '

Show, by using Exercise 8.8.3, that A does not depend on y. Calculate AA by 
using eqn (8.8.2). What is the value of A?
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Exercise 8.8.10. Show that

j f  (x> -  *zm ± z(£ ± *) - - £ % £  [/««-" (*+» >-/<*-> <x)],

(8.8.4)
by applying ACy to A.

Application to the summation of series
In this section, we evaluate the error term in eqn (8.8.3), if we truncate the 
infinite sum at order m.
Exercise 8.8.11. Let / be a (2n + 2) times differentiable function on [0,1]. Show 
that the Euler-MacLaurin formula can be rewritten as

-j vrt i
fo f(*) dx -i  (/ (0) + / (1)) = -  E  (^! [/(2i-1) (!) - (°)]

(8.8.5)
(2m—  (x) dx.

We extend B j  into a periodic function of period 1. Show that, if / is (2m+ 2) 
times differentiable on [a, b] and h = (b — a)/n, we have

n—1
[ f  (x) dx -  h d f  (a) + / (a + jh) + -/  ( )]
Ja j=1 

m p
(8.8.6)

+ /i2m+2
(2m + 2)

Exercise 8.8.12. Application of eqn (8 .8 .6 ). Let
1

j J  fam+2 (x) dx.

fix) =
(x + 10)3/2‘

By letting m = 1 and with the aid of formula (8 .8 .6 ), evaluate the error incurred 
replacing

oo
E 3)

n=10 n3/2
by an ^tegral expression, plus the first error term. We give

B±(x) = x2(l — x)2 4- 64.
erctse 8.8.13. How many terms of the series must be added to obtain an 
CUracy which is at least as good?
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8.8.2. The Fredholm integral equation of the first kind
Let K be a continuous mapping from [0,1] x [0,1] to R. We define an operator 
K on E = C°([0,1]) by

(8.8.7) (ICu)(x)=[ K (x, y) u (y) dy.
Jo

Recall the definition of a modulus of continuity: if a function / is uniformly 
continuous from the convex part of a vector space metric F, provided with a 
distance dp, to values in a metric space G, provided with a distance do, there 
exists an increasing continuous function ujf from R"1" to itself, vanishing at zero, 
such that, for every x and x' in F, we have
(8.8.8) dG(f {x) , f {x')) ^.uf (dF (x,x')).
Exercise 8.8.14• Show that the image of E by /C is included in E. Given a 
distance on [0,1] x [0,1] use the modulus of continuity ujk of K.
Exercise 8.8.15. We provide E with the maximum norm, denoted || • ||. Show 
that, for every u in 8,

(8.8.9) ||/Cu|| ^  ||U|| max [  (x,y)\dy.*€ [0,1] Jo
Exercise 8.8.16. Show that, if K is at least m times continuously differentiable 
with respect to its first variable, ICu is Cm.
Exercise 8.8.17. Let

A = ( , ? ,% /  |Ar(i-»)|d») • f l
Show that, for every f  in E and for every A in ] — A, A[, there exists a unique u 
such that
(8.8.10) u-\)Cu = f.
Exercise 8.8.18. Let v G E. Given h = 1/n, we approximate the integral of 
on [0,1] by the trapezium formula with equidistant knots yk = kh, 0 ^ k ^ 1h 
Write down this formula, and estimate the difference between the integral of v 
and its numerical approximation using the modulus of continuity of v. Impr°'e 
this estimate by supposing that v is C2.
Exercise 8.8.19. We want to numerically approximate the solution of
(8.8.10) . To do this, we replace the integral with respect to y by a q u a d r a t u r e ,  

by means of the trapezium method, with the same knots as in the p re c e d in g  

question. We denote this expression by
n

h 'E/,yj(x)u(jh). 
3=o
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Evaluate, for every u in E,

| (Xu) (x)-h J2  7 (*)« tih) |,

su p p o s in g , first of all, that K is continuous, and then that K is  C2 with respect 
to x.
Exercise 8.8.20. Show that, if K is continuous,

lim maxh—t0 0̂ fc<Cn • j=o
= A”1.

Exercise 8.8.21. We define an operator /C71 from En+1 to itself by

(lChU)k = h yj T i j (kh)Uj , O ^ k ^ n .
j =o

Providing En+1 with the norm \\U\\ = maxj \Uj\, evaluate the norm of the oper­
ator of K,h.
Exercise 8.8.22. Show that, for every A in ] — A, A[ and for every h less than a 
certain /i0(|̂ |) which should be specified, the problem

u  -  \JChU = F

possesses a solution, for any F in En+1.
Exercise 8.8.23. Let F h = {f(kh))Q<k<n. Let Uh be the solution of

Uh -  \JChUh = F h.

In order to evaluate the error committed by the process of numerical approxi­
mation we denote by Vh the vector defined by

(Vh)k = u (kh),

where u is the solution of eqn (8.8.10). Show that

[uh - v h -  XKhUh + XIChVh]k = A (IChVh)k -X  (Ku) (kh).

Evaluate the second term of the above expression using Exercise 8.8.17. Show 
at (/ - AKh)~l exists and is uniformly bounded as h tends to 0. Deduce from 

that
lim max | (Uh) k — u (kh) | = 0.h—y 0 l ̂  k ̂  7i

^ahe this estimate precise if we assume that K is C2 with respect to x and y.
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8.8.3. Towards Franklin’s periodic wavelets
Diagonalization of cyclic matrices
We say that a square matrix A is cyclic if it is of the form

d o d \ d 2 •' * d N -2 d N - 1̂
d N - 1 d o d \  • ■ CO1 d N -2
d N -2 d N -1 d o  • •* d N -4 d N -3

d 2 d o (Z4 d o d \

d 2 ‘ ' • d N -1 d o  /

If necessary, we use the notation
A = circu (a0,ai,...,aAr_i),

and denote by IV  the set of N x N cyclic matrices. If necessary, we identify the 
finite sequence (aj)os^TV-i and the infinite periodic sequence defined by

aj+kN = aj, Vfc G Z, Vj €  {0,..., N -  1}.
The vector space of periodic sequences of period N on Z is denoted by t^N. 

Then, the Hermitian scalar product of two sequences a, b £ n is given by
TV-1

j=0

Exercise 8.8.24. Show that IV is closed under addition, the multiplication by 
a scalar, and under matrix multiplication. Use the convolution of the elements 
t^N defined by

TV—1
(a * b)j = ^   ̂tikbj—k. 

k=o
Exercise 8.8.25. Let lj be an iV-th root of unity and let x be the vector

f  1
LJ

X —

\

\UN-1J
Calculate Ax for A in IV-
Exercise 8.8.26. Calculate all the eigenvectors and eigenvalues of the cyclic 
trices

circu (o-o ? j • • • j —i )
as functions of the coefficients Uj, 0 ^  j  ^  N -  1.
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Exercise 8.8.27. Show that every cyclic matrix can be diagonalized on an or­
thogonal basis. Give a necessary and sufficient condition so that a cyclic matrix 
is Hermitian.

Properties of certain function spaces
We denote by Lj the space of functions from R to itself which are periodic of 
period 1 and whose restriction to every compact subset of R is integrable. The 
integral of the functions / E Lj is defined by

where a is any real number.
We denote by Lj| the space of functions from R to itself which are periodic 

of period 1, measurable, and whose restriction to every subspace of R is square- 
integrable. The scalar product between functions of L^ is defined by

(f,9)t = f(*) 9 (dar.

The integer N is fixed and greater than or equal to 1, and we let

The space Vn is defined as the subspace of Lj formed from all the continuous 
functions whose restriction to each interval [fch, (k + 1 )h] is a polynomial of at 
most degree 1.
Exercise 8.8.28. Show that the mapping, which to / E Vjv associates the col­
lection of its values at the points jh, j  E Z, is an isomorphism $n from Vn on

Exercise 8.8.29. Let eo be a periodic sequence of period N defined by

(eo)̂  = 8oj, 0 ^  j  ^  N.

Give the function (j) = ^^(eo) and sketch its behaviour, where N = 8.
Exercise 8.8.30. Let r be the translation defined on Vn by

(r f ) (x) = f( x -h ) .

^ fh  an abuse of the notation, we will also write for the sequences belonging to

(Ta)j = a3~ 1*
°̂W the family of (rm0)o^m^iv-i form a basis of Vn .
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Exercise 8.8.31. For every integer m €  Z, calculate

For every j  and ra, deduce from this the value of
(T3(p, Tm<f>)r

Exercise 8.8.32. For / and g in Vn , let

$ n  (/) =  (a i ) j e za n d  (g) =  ( b j ) j e Z  ■

Write (/,#)# as a function of the sequences Oj and bj. Show that the matrix A) 
a bilinear form on defined by

is cyclic, real symmetric, and positive definite.
Exercise 8.8.33. We intend to show that there exists an orthogonal basis of VN 
for the scalar product (•,•)# formed from functions (rm^)o^m^N-i, where we 
want to determine the real even function i\). Let

$7V WO =  c =  (Cj)j€ Z .

Show that the block column matrix
C* = (c re ••• rAr_1c)

is identical to
circu (co,ci,... ,cjv- i ) •

Exercise 8.8.34• Show that ifr answers the question posed if and only if
C* AC = /.

Using the first part of the problem, give all the functions ifr which satisfy the 
question.
Exercise 8.8.35. Suppose that N is even, and let N = 2M. In this qu estion  we 
use the notation (\>m and î m in place of 0 and ip, respectively, and we introduce 
the functions <j>M and \pm similarly in Vm- We denote by Wm the orthogonal 
complement of Vm in Vjy. Construct the function \m belonging to Wm ^  
that the t 2ttixm form a basis of Wm • We can reduce this to considering functions 
\m with support in [—2h, 2h].
Exercise 8.8.36. Reasoning as in Exercise 8.8.34, show that there ex is ts  an or 
thonormal basis of Wm formed from functions (r2mcrM)o^m^M-i and determine 
&M-
Remark 8.8.37. If N = 2n, the successive functions <tm, with M = 
periodic Franklin wavelets.



Part III

Numerical linear algebra
I used to think, when I was a student, that linear algebra is this boring subject 
where you prove only fairly obvious things, and then you have these gigantic 
and stupid calculations. The non-constructive approach to linear algebra has 
little interest, because it does not tackle the most important question, which 
is the effective construction of the objects whose existence we prove. But the 
constructive approach is absolutely fascinating. Take an easy example: suppose 
that A is a square positive definite matrix, and that we want to solve the linear 
system

Ax = b.
know that A can be diagonalized in an orthonormal basis, and in that basis, 

the above equation reduces to a diagonal system, i.e. a completely trivial ques­
tion. Fine, but how do we get, practically, the orthonormal basis? It turns out 
at getting the orthonormal basis is much more difficult than solving the orig­

inal equation. This problem is treated, at least partially in Chapter 13, and it 
ls a highly nonlinear problem, as we shall see. Therefore, one must find efficient 
Poetical methods for solving linear systems which do not rely on determining a 
8°°d basis by unspecified means.

n Chapter 9, we treat the so-called direct methods of resolution of linear 
i K ms’ *n Chapter 10, we define a number of analytical tools in order to be 
foetid0 ta^e *terat*ve methods in Chapter 11. There, we find that iterative 
finite°tS ^  VGry e® c*ent’ even ôr s°lvrng problems which admit a solution in

205
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In Chapter 12, we use orthogonality-related constructions to devise other 
methods for solving linear systems. These methods also come as a preparation 
for finding the eigenvalues and eigenvectors of a matrix, and they have a strong 
Lie group-theoretical flavour, but we are not supposed to say so, lest some pure 
mathematician might have heard us and be offended that creepy applied mathe­
maticians might walk on their turf, and lest some applied mathematician might 
hear it and scream that highbrow pure mathematics is irrelevant in the realm of 
numerical analysis and should be shunned as useless theoretical gobbledygook. 
But of course, here we are only with friends, and if we do not use big words and 
show that the methods are efficient, who cares what they are called?
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Gauss’s world
We consider the system of n equations and n unknowns of the form 

(9.0.1) Ax = b,

where A is a square matrix and x, b belong to Kn. More explicitly, the system 
may be written as

dl\X\ -f- &12#2 + • • • + d\nxn — &i,
021̂ 1 + d22x2 + 0>2nxn — &2>(9.0.2)

dnix i A dn2x2 “h • • • “h dnnxn — bn.

The objective is to find an equivalent system to eqn (9.0.1), that is, one which has 
the same set of solutions as (9.0.1), but is triangular. As we saw in Section 3.1, 
such systems with triangular matrices are very easy to solve.

9.1. The Gaussian elimination algorithm without 
pivoting

The title of this section will become clear in the lines which follow. We are 
concerned with an algorithm for which success is not guaranteed. Since we 
discover the criteria for success as we go along, the only thing to do is to try it. 
* therefore, an algorithm for the lucky.

Just elimination
this^ Suppose that the coefficient an = in the system (9.0.2) is not zero— 
0 1S pivot. We are going to fill the whole of the first column under

zeros, by making linear combinations of row i, i = 2,... ,n with row

207
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1. We must, therefore, subtract dn/ni times the first row from the i-th row to 
achieve our objective. The i-th row then becomes

( anan\ ( dndin\ _  , aubiI d n ---------I x\ -f ... + I din --------1 xn — b i------- .\ 7TI ) \ 7T1 ) 7Ti
It is clear that the coefficient of x\ in this row vanishes. We keep intact the first 
row of the system (9.0.2). We now have a new system which is written as

(9.1.1)

7Tl d\2 d\n \
0 d2ld\2 d2\d\n

d 22 d2nTTl 7Tl

d n \d\2 dn\d\nd n2 ------  • • dnn /TTl TTl

/

x =
b2-

h  \
d2ibi
TTl

bn ~ dnlbj 
7T1 /

I1CW IlULixLlUIl.

:j, p' = ^-, A=(*Jj,), »=(y)-
I n l J

and L\ - o

The transformation from the system (9.0.2) to the system (9.1.1) can be denoted 
in terms of matrices, since we are merely making linear combinations of the rows. 
Let us introduce some new notation:

/ d2i '
(9.1.2) d! =

\&nl;
Let M and L\ be the matrices

(9i-3) S =(-V
The inverse of M is L\. Indeed, by block multiplication:

LXM ={\,° ) ( \\P In-iJ \ - p I n - l J
_  ( 1 X 1 +  0 X ( - p ' )  1 X 0 +  0 X /„ _! \

~ V  x 1 + /„ _! X (-P1) X 0 + /„ _! X /„ _!)

-(J /!:)
An elementary calculation shows that the system (9.1.1) is equivalent to 
(9.1.4) MAx = Mb.
Another block calculation gives

M - v  aoi o = Co* )
- p T  +  A ' J

Mb ~ {b' -W•

and
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If we let

we see that, if we know how to solve the system comprising the last n — 1 rows, 
the first row gives x\ very simply. Moreover, the set of solutions of the system
(9.1.4) is identical to the set of solutions of the system (9.0.1), since we pass 
from one to the other by a premultiplication with a regular matrix.

The system (9.1.4) is, therefore, equivalent to the system (9.0.1), since we 
have not eliminated haphazardly, but have used a strategy which does not destroy
information. __

The new matrix MA has the following form (block notation):

where the asterisk denotes coefficients whose precise expressions do not interest 
us for the moment. The matrix A! has n — 1 rows and n — 1 columns. If the 
element in the first column and the first row of A! is not zero (this is the second 
pivot), then we can apply the same algorithm to A! that we applied to A and 
fill the second column of MA with zeros from the third row, whilst retaining 
an equivalent system. This procedure does not change the first or second row 
of the matrix MA, since we add a multiple of the second row to the j-th row of 
the matrix for j  ^  3 .

By induction, provided that we do not meet a zero pivot, we obtain an 
equivalent system for which the matrix is given by

/ pivot * • • • * \
0 pivot • • • *

 ̂ 0 • • • 0 pivot)

We have therefore described Gaussian elimination. It remains to interpret it 
precisely in terms of matrices. This is the object of the next section.

9*1-2. Matrix interpretation of Gaussian elimination
^  this section, we describe precisely the matrices which are involved in the 

| reflation algorithm.
I'htj^eorem 9.1.1. Let A be an n x n matrix. Suppose that, in the course of 

Process of Gaussian elimination, no pivot is zero. Then, there exists a lower
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triangular matrix L, with ones on the diagonal, and an invertible upper triangular 
matrix U such that matrix A may be decomposed as

A = LU.

Furthermore, such a decomposition of A is unique. It is called the LU decom­
position of A. o

It is important to be familiar with the following proofs. They give subtle 
insights into matrices and provide excellent practice at block multiplication.

P roo f o f Theorem  9.1.1. We prove the result by induction on the spatial
dimension. If n = 1, it suffices to take L = (1) and U — A. Assume the 
statement to be true in dimension n -  1, i.e., for every matrix A of size n - 1 
for which the elimination does not produce vanishing pivots, a decomposition 
A — LU of the stated type exists.

The analysis of Subsection 9.1.1 shows that a matrix of size n satisfying the 
conditions of the statement can be written as

(9.1.6) A =  LiAi,

with L\ given by eqn (9.1.3) and A\ given by eqn (9.1.5). 
pothesis then implies that

A\ = L\U\.
However,

(o W , )  = C
and therefore

Thus, the theorem is proved with

l ~ ( j/  °nd

The induction hy-

which gives the existence. Assume now that there exist the two decompositions

A = L\U\ = L2U2

satisfying the stated conditions. Then, it is possible to write

L ^ L X

In consequence, the upper triangular matrix U2Uf 1 would be equal to the 1° 
triangular matrix L ^L i having only ones on the diagonal. T h ere fo re , they ^ 
both equal to the identity, which proves uniqueness.
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The matrix L  contains a great deal of information that we are now going to
examine.
lemma 9.1.2. The element Lij of L, for 1 $ j  <  i ^  n, is the value by which 
the i-th row must be multiplied at the j-th stage of the Gaussian elimination.

Proof. If the dimension n is equal to 1, nothing needs to be proved. Let us 
show first that, for n >  1, the n x n matrix A can be written in the form

(9.1.7) A — L \ • • • L n—\U ,

with an upper triangular matrix U and lower triangular matrices L j , having ones 
on their diagonal and of the form

with Lj being a square matrix of size (n-f 1 - j). Assume that this decomposition 
holds for the matrices of size at most n -  1, and let A be a matrix of size n 
satisfying the conditions of the lemma. Due to the induction assumption, the 
matrix A\ of eqn (9.1.5) can be written in the form

(9.1.8) A\ = Z2 • • • Ln-\U,

with an upper triangular matrix U  and lower triangular matrices L j , having ones 
on their diagonal and of the form

We observe that

(*i
Vo

and that

(o U-
Consequently, by letting

^  -  (V

II o \ /7ri e \  
•in—2 A o  u)

r*HIII
o

" L n-\) \0 l 2J Vo _ J

r—tII*o> a
^  using the relation (9.1.6), expression (9.1.7) is proved. Observe that
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with a lower triangular matrix L* having ones on its diagonal. Therefore, if we 
let

u = ( Uk M  
V° w k) ’

the upper left block being of size k x k, we will have

£*+!•••£„ _![/= ( 0* f l

Thus, letting Ak = LkWk, we may rewrite eqn (9.1.7) as follows:

•?» = ( o‘ ^ ) -

The analysis of Subsection 9.1.1 implies that

,9i'9) * - G d ,  /JL ,)(T ^fc+i ~ K+i^t+i/
and, by uniqueness, we see that

(9.1.10) L't+1 = (_ 1 °' A*+1= ^ +1-p'ft+/ fc+1.\Pfc+l 1n—k—1 /
On the other hand, if denotes the first element of p[ and is the column 

vector made out of its remaining n — 2 elements, it is possible to write
' 1 0 0 \ /1 0 0 \ / I 0 0

p'l 1 0 0 1 0 = P'l 1 0

1
-r0

\o P2 I u P2 In—2

A simple induction now shows that L, which is the product of the matrices Lj, is 
a matrix having ones on its diagonal, zeros above and below, and the p' aligned 
in order of increasing j.
Remark 9.1.3. Multiplication between L\ and L2 is not commutative (exercise). 
Neither is that between M\ and M2 . Consequently, we cannot read the coeffi­
cients of the linear combinations which are used in the elimination from L •

9.2. Putting it into practice: operation counts
9.2.1. The madness of Cramer’s rule
By way of a comparison, we begin by evaluating the number of operations 
essary to solve a system by Cramer’s rule. From any first year maths co 
recall that D,

Xj  =— —1
D0 j  =  1, ... ,71,
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where each of the Dj, 1 ^  j  ^  n, is the determinant of a matrix of n rows and n 
columns. More precisely, D0 is the determinant of the matrix A, and Dj is the 
determinant of the matrix obtained from A by replacing the j-th column of A 
by b. The cost of the calculation is therefore the same for all the determinants. 
The formula for the expansion of a determinant gives

n
D0 = det A = e ( ) JJ oi><r(f).

a t=l
Here, a runs through the set of permutations of n objects and e(cr) is the signature 
of the permulation a which has the value ±1. It is known that there are exactly 
n! distinct permutations of n objects. Each product of n factors requires n -  1 
operations. Therefore, we must make n!(n — 1) multiplications, and add the n! 
products obtained, giving in total

n! (n — 1) -f n! — 1 = n (n!) — 1 ~ n (n!) floating-point operations.

As we have n + 1 determinants to calculate, the number of operations necessary 
to solve a system by Cramer’s rule is of order

n((n + 1)!)

as n tends to infinity.
Let us evaluate this quantity when n = 100. We can evaluate the factorial 

by using Stirling’s formula

n\ ~ nn+(1/2)e~n\/27t,

which is very accurate. We calculate the second term in this expression as 
e~100 ~ 10“43-43, since log10e ^  0.4343, and therefore

100 x 101! = 101 x 100 x 100!
-  100 x 101 x lOO100'5 x 10“43-43 x y/2n
-  io 205~44lO°’57v ^
~9.4x 10161.

With a computer processing at 100 megaflops (108 floating-point operations per 
seeond), we can do

108 x 365 x 86 400 operations per year,

|ieqĈ  We rounc* to 3 x 1015 operations. Therefore, about 3 x 10146 years are 
[years^ S°̂Ve our system- Taking into account that the universe is 15 billion 
tn J8,01*’ we w°uld need, therefore, at least 10135 times the age of the universe 

I 1S°lve our system.
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9.2.2. Putting elimination into practice
In order to solve a linear system in practice, we calculate the LU decomposition 
of the matrix of the system, supposing that it is possible, and then solve the 
following two systems:

(9.2.1) Ly = b and Ux = y.

Since the two matrices L and U are invertible, the systems (9.2.1) are equivalent 
to the system (9.0.1). Each of the two systems (9.2.1) are very easy to solve 
by successive substitution. We will see later that triangular systems require few 
operations. We point out that the construction of the matrices L and U is an 
intermediate result in the process of elimination. Consequently, it is necessary 
to store the LU decomposition when we have to calculate several systems with 
matrix A, so as to avoid pointless recalculation.

9.2.3. Operation counts for elimination
For the moment, we count the operations for the LU decomposition. The cost of 
constructing Lj is the same as the cost of constructing L'-. This cost is precisely 
the cost of calculating p', a column vector of n - j  rows. We therefore have to 
make n — j  divisions, since the elements of p' are the (Aj-i)kl /itj, for k from 
j  + 1 to n. Consequently, the total cost of constructing L is

n—1 n—1 / x o
(9.2.2) =

j=1 k=1
A s the relations (9.1.9) and (9.1.10) show, the transformation from A j to Aj+i 
is made by modifying all the elements of A j except the first row, which  does 
not change, and the first column, set to zero except for its first element. From 
eqn (9.1.10), each element of A j+ \ requires a multiplication and a subtraction. 
We have, therefore, 2(n - j  — l)2 operations to perform to construct A j+ \ h°nl 
A j.  ^

In total, constructing A n -\  requires

£ 2 ( n - j - l ) 2= 2 £ > 2 = 2
j=0 k=1

(n - 1) n (2n -  1) 
6

2n3
3

If we compare this last estimate with the estimate (9.2.2), we obtain the following 
result:
Operation Count 9.2.1. The number of operations necessary to decomp° se ^  
n x n matrix into the form A = LU is of order 2n3/3, for large n.
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Let us move on to the operation count necessary to solve the systems (9.2.1). 
The system Ly — b may be written as

2/i = b u
2̂12/1 + 2 / 2  = &2>

Lniyi + Ln2V2 + • • • + 2/n = bn.
To solve the first equation requires 0 operations, for the second, two operations, 
and for the j-th it is necessary to perform j  — 1 products of 2 factors, j  — 2 
additions, and a subtraction, giving 2(j -  1) floating-point operations. In total, 
the solution of Ly = b costs

o • n(n “ l)n / -.X2 2^ J ~ 2------   = n (n — 1) operations.
j = i

We solve the system Ux = y in the same way, rewriting it in the form
U nn%n  =  2/n>

Un—l,n—l^n—1 + Un— lynXn ~ 2/n—1?

UnXi + . . . + Ui,n-iXn-i + UinXn = yX.
We see that the solution of row n costs one operation, row n — 1 costs three, 

and row n — j  needs 2j — 1. Consequently, the cost of solving this triangular 
system is equal to the cost of the preceding one plus one operation per row, 
giving

(n — 1) n + n = n2.
In total, we obtain the following result:
Operation Count 9.2.2. The total cost of solving the two triangular systems
(9.2.1) of n rows and n columns is of order 2n2, for large n.

If we want to solve a 100 x 100 system by Gaussian elimination it would 
c°st us 2 x 1003/3 + 2 x 1002 ~ 6.6 x 105 floating-point operations. On the 
same computer as before, that would take 6.6 x 105 x 10“8 seconds, or less than 
? thousandths of a second. It could not be done by hand, but it is certainly 
completely within reach, even on a PC, which would take a few tens of seconds.

•̂2*4. Inverting a matrix: putting it into practice and the 
operation count

now ask another practical question: how do we calculate the inverse of a 
ĵ atrix A? From Chapter 3, the columns v* of A~l are the images by A~l of 

canonical basis vectors and so
A v J =  e J .
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We are going to exploit the LU decomposition of A to calculate the vj . This is 
done in the following two stages:

Lwi = and U vJ .

From the preceding results, we would therefore need n x 2n2 operations, or 2n3 
operations, to solve the two systems. But this count is too large. Indeed, the 
triangular system LwJ = e-7 restricted to its first j  — 1 rows and columns has the 
zero solution. Therefore, we just have to solve

wj = 1,
Li+i,jwj + Wj+i = 0,

LnjW] + Lnj+1 u^+1 0.

The cost of the solution of this triangular system of n -  j  + 1 rows and n - j  + 1 
columns is of order (n—j  -F l)2 operations. Consequently, the cost of constructing 

is equivalent to
^  (n -  j  + l)2 = ^  fc2 ~ y . 
j=1 k=1

On the other hand, we cannot hope for the same type of economy in the con­
struction of the y i, since there is no reason why the last components of the wj 
should be zero. We summarize this result as follows:
Operation Count 9.2.3. Let A be an n x n matrix having an LU decomposition. 
Then, 4n3/3 floating-point operations are required to construct A~l once the 
LU decomposition is known, giving in total 2n3/3 + 4n3/3 = 2n3 operations.

9.2.5. Do we need to invert matrices?
We have just shown that it costs about 3 times as many operations to invert a 
matrix than to solve a linear system. However, we may imagine that this loss 
is compensated by an economy of scale if we need to solve many linear system s 
with the same matrix A. Let us see if this is right.

Suppose that we must solve

Axk = bk,

where k goes from 1 to K and K is large compared with 1. If we store the Ll 
decomposition then we would have to perform

2n3 + 2Kn2 operations

to solve all of these systems.
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Now let us consider the other hypothesis. The construction of A~l has cost 
us 2n3 operations, including the LU decomposition. The calculation of each 
of the n elements of A~l bk requires n multiplications and n — 1 subtractions, 
giving n(2n — 1) ~ 2n2 floating-point operations for the product of a matrix with 
a vector. In total, this approach would require

2n3 + 2Kn2 operations,

which exceeds the result found previously by 4n3/3.
Consequently, we do not need to calculate the inverse of a matrix to solve 

linear systems. It is only when we need the inverse of a matrix explicitly that 
we should calculate it, and we use the LU decomposition for this.

For reference, let us calculate the cost of the product of two n x n matrices. 
This is the same as doing n matrix-vector multiplications, giving 2n3 operations. 
This result is remarkable and serves almost as a conclusion to Section 9.2:
Operation Count 9.2.4• The number of operations necessary to multiply together 
two nxn matrices is of order 2 n3. It is equal to the number of operations required 
to invert an n x n  matrix.

This would be the conclusion if we limited ourselves to the case of sequential 
machines. In the case of parallel machines, it could be more advantageous to 
calculate the inverse of a matrix once and for all when faced with a repetitive cal­
culation. It is very easy indeed to parallelize a matrix multiplication algorithm. 
On the other hand, the algorithm for solving a triangular system by elimination 
is not parallelizable, since, at each step, it makes use of the result of the previous 
calculation.

The choice of an efficient algorithm is dependent upon the computer tech­
nology available. It is therefore susceptible to evolution. Furthermore, there 
ls not, generally, a simple choice of algorithm, since each problem suggests dif­
ferent choices. It is necessary, therefore, to try to understand the principles of 
the algorithms, with the aim of taking as sensible a decision as possible. It is 
not, however, necessary to program the algorithms which we could need in prac- 
tlce, since there exist many program libraries, which are available on all sizes 
°f machines. These are often free, although sometimes, particularly for large 
Machines, they cost money.

9-3. Elimination with pivoting
•̂3.1. The effect of a small pivot
Pivot C0Urse °f eliminati°n without pivoting algorithm, we find a zero 
does ^rocess stoPs- ^  a pivot is very small, without being zero, the process
going to

n°t stop, but the result can be tainted by considerable errors, as we are
see in the example below.
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Let ebe a small real number and consider the following system of two equa­
tions and two unknowns:

(9.3.1)
ex + y = 1, 
x + y = 2.

Using elimination without pivoting, we obtain the following equivalent system:

ex + y = 1,

Therefore, we immediately have the following value of y:

(9.3.2) y = ~ 1.

By substitution, we obtain

(9.3.3) x = = ~ 1. I

Suppose that the number e is small enough for information to be lost in the 
following floating-point operations:

1 © c = 1, 1 © (2 0 e) = 1.

This will be the case if the mantissa of the floating-point numbers has k signif­
icant figures (in internal representation) and if e <  (3~k~1, where /? denotes the 
base of the representation of the numbers in the machine being considered. We 
will suppose also that 1/e does not exceed the capacity of the machine.

In this case,

1 © (1 0 c) = — (1 0 e)
and

2 © (1 0 c) = — (1 0 e).

Consequently, the calculation gives

y = i.
The substitution gives

x = (1 Qy) 0 e = 0.
The error committed in y was acceptable, since it was carried in the last decifli 
of this number. The error in x is obviously unacceptable.



g,3. ELIMINATION WITH PIVOTING 219

Let us try the elimination on the following system, obtained after exchanging 
the rows of the system (9.3.1):

x + y = 2, 
ex 4- y = 1.

The same process of elimination as before leads to the following equivalent sys­
tem:

x + y = 2,
(1-6)2/ = 1-26,

which becomes, in floating-point arithmetic,

x + y = 2, 
y = 1.

The solution, which is completely acceptable this time, is
x = 1 and y = 1.

The error that we made with the first elimination came from dividing a 
number by a small pivot e (see eqn (9.3.3)), which considerably amplifies the 
errors.

In the same way, we could have swapped the order of the variables in eqns
(9.3.1) to obtain the system

y + ex = 1, 
y + x = 2.

We improve the results by this process.

9.3.2. Partial pivoting and total pivoting: general description 
and cost

We now describe the pivoting algorithms precisely.
In the partial pivoting by column algorithm, one stage of elimination consists 

°f selecting from the first column the element an of maximum absolute value, 
ĥen exchanging row i with row 1, if i /  1, and, finally, filling the first column 
. cept the first element) with zeros, using the process of elimination described 
m Section 9.1.

In the partial pivoting by row algorithm, we select the element a\j of maxi- 
^um ab^lute value from the first row, we exchange the first column with column 
/c  ̂^ anc  ̂we an ehmination step. To exchange column 1 with column 
COmes down to making a change of variables

V j = x  i, y i = X j ,  y k = x k for
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Finally, in the total pivoting algorithm we combine the two preceding strate* 
gies by searching in the whole matrix for the element of maximum absolute 
value. After exchanging the first row with the i-th row as well as the first and 
j-th columns, we do an elimination step.

From the point of view of operation counts (and therefore the complexity of 
the process), a pivot search by column or by row requires a search on n elements 
and a total pivot search requires a search on n2 elements. A recursive search 
algorithm on N = 2P elements costs p2p~1 tests and permutations. The total 
cost of partial pivoting in comparisons and exchanges is

n j
5Z «ji o&j-
j = 2

We find the order of this quantity by writing

i=2 i= 2

J —  I2 In 2 J2 da;

1
2 In 2 

n2 log2 n

r*2, [n X .— In x — 1 — dx
[2 x=2 J2 ^

An analogous calculation in the case of total pivoting gives

h 2 log2 i2 = it, i2 log2 i
j =2 j=2

n 1

^ l n 2 J Jj=2

dx

rx3, x=n rn
—- lnx — — dx

[3 x=2 J2 3

1 r 21r—  / x in xIn 2 J2 
1

In 2 

n3 log2 n

The cost of total pivoting is an order of magnitude larger than that of Pal 
pivoting. According to the implementation, comparisons and e x c h a n g e s  are in°re
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or less rapid relative to floating-point operations, but it should be remembered 
that total pivoting is much slower than partial pivoting. In fact, partial pivoting 
is used more often than total pivoting.

9.3.3. Aside: permutation matrices
To interpret partial pivoting and total pivoting from a matrix perspective, we 
need to express row and column exchanges in terms of matrix multiplications. 
To this end, we define and study permutation matrices.

Let a be a permutation of n objects. The matrix Pa associated with the 
permutation a is the n x n matrix defined by

(^)tj = 9

where 6pq denotes the Kronecker delta.
How do we compose permutation matrices? Let a and a' be two permuation 

matrices. Then n
(Po-' P(r)ik =  ^   ̂ (j)^j(r(k) •

j =1
The nonzero terms in this sum must satisfy i = G'(j) and j  = a(k). Conse­
quently, this sum has the value 1 if i = a1 o a(k) and zero otherwise. We see 
then that

(9.3.4) P a 'P ^P a 'ov

Note that

Consequently,

<9-3-5) Pa-x = {P,y = {Pa)l .

Regrouping (9.3.4) and (9.3.5), we see that the matrices Pa are orthogonal,
which is obvious a priori from geometric considerations: changing the order of
the components of a vector in Mn, or in Cn, does not change its Euclidean length.

In other words, the mapping a Pa defines a mapping from the permuta-
tlQn group on n objects into the group of orthogonal matrices On. This mapping
respects the structure of the group and, therefore, it is called a group homomor­
phism.

What is the effect of a left or right multiplication of a permutation matrix 
n some n x n matrix A? We have

(P<rA)ik — ^icr(j) A jk  — A a - i (j)fc. 
j = 1
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Consequently, the multiplication Pa A is equivalent to operating the permutation 
cr~l on the rows of A.

In the same way,
n

(APa)^ = = ^ i<T(k)*
i=i

The multiplication AP^ is equivalent to applying the permutation a on the 
columns of A.

9.3.4. Matrix interpretation of partial and total pivoting
Elimination with partial column pivoting is interpreted as a matrix decomposi­
tion by the following theorem:
Theorem 9.3.1. Let A be an n x n matrix. Then, it is invertible if and only if we 
can find a permutation <r, a lower triangular matrix L with 1 on the diagonal, 
and an invertible upper triangular matrix U such that
(9.3.6) Pa A = LU.
Decomposition (9.3.6) is not generally unique. o
Proof. It is obvious that, if P^, L, and U  are as given in the theorem, A = 
P * L U  is invertible.

Conversely, we argue by induction on the spatial dimension. If n = 1, nothing 
needs to be proved. Assume that the statement is true for every square matrix 
of dimension at most n — 1, and let A be a square matrix of dimension n. Since 
A  is invertible, its first column does not vanish identically. Let 7Ti = an be an 
element of maximal absolute value in the first column of A, and let r be the 
transposition which exchanges 1 and i. As the square of a transposition is the 
identity, we perform an elimination on P TA . As in eqn (9.1.6), we let

P TA  =  L \ A i ,

with A\ given by eqn (9.1.5). We infer from the induction assumption that there 
exists a permutation matrix an upper triangular matrix J7i, and a lower 
triangular matrix L\ having ones on the diagonal, such that

Pa1A1 = L\U\.
We may now write

PtA = (

However, we have the identity
o P ^L x lh ,I n )

PtA = 0 /»-i)(o £?)( o Li)(o f/i)'(9.3.7)
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If o\ is a permutation on n — 1 objects, the permutation p on n objects which 
leaves the first one invariant and acts as G\ on the n -  1 following objects has 
the matrix

It is also the permutation matrix of Pp. We premultiply the identity (9.3.7) by 
p and we then obtain

PpPrA = LU,
with

which proves the theorem.
The decomposition (9.3.6) is not unique, since the choice of transposition tj 

is not generally unique at each step of the elimination. □

Elimination with partial row pivoting is interpreted by the following analo­
gous theorem:
Theorem 9.3.2. Let A be an n x n matrix. Then, it is invertible if and only if we 
can find a permutation <r, a lower triangular matrix L with ones on the diagonal, 
and an invertible upper triangular matrix U such that

(9.3.8) APa = LU.

The decomposition (9.3.8) is not generally unique. o

Proof. Let B = A*. From Theorem 9.3.1, B is invertible if and only if it has 
the decomposition PaB = LU. Consequently, A is invertible if and only if it has 
the following decomposition, obtained on passing to the adjoint:

A (Pa)* = U*L*.

We have seen that (Pa)* = PG-\. Moreover, let D be the diagonal of U* and let 

L' = tT ZT 1, U* = DL\ o' = (T~l . 

en> A is invertible if and only if it has the decomposition

APa, = L'U'.

lS ls ex&ctly what we wanted to prove. □

I Finally5 the total pivoting strategy is interpreted by a decomposition

PoAPa. = LU, 

B ^ro°̂ °f which is left to the reader.



224 9. GAUSS’S WORLD

9.3.5. The return of the determinant
The determinant is not used to calculate the solutions of linear systems; it is 
linear systems which are used to calculate the determinant! More precisely, we 
obtain the value of the determinant of an invertible square matrix A from the 
decomposition

PaA = LU,

which always exists. By calculating the determinant of each term of this identity, 
we obtain

det (Pff) det (A) = det (L) det (U).

The determinant of Pa is equal to the signature of the permutation o. We 
determine an integer m(a) as follows: initially, m equals 0, and each time that 
we actually make a row permutation, in the search for the maximal pivot by 
column, we add 1 to m. The value of m at the end of the process is m(a). We 
then have

det(P<T) = (-l)m(<,).

The calculation of
n

det (U) = JJ Ujj 
j= 1

is completely trivial and explicit, and det(L) equals 1. Therefore, we see that

(9.3.9) det {A) = JJ Ujj.
j= 1

9.3.6. Banded matrices
A matrix is said to be full if it has ‘few’ zero coefficients. A matrix which is not 
full is said to be sparse. The most simple example of a sparse matrix is a banded 
matrix. This is a matrix which only has nonzero elements on a certain number 
of diagonals centred around the principal diagonal. We will see in this section 
that the solution of a linear system for which the matrix is banded is often easier 
than the solution of a system for which the matrix is full.

We begin with the following definition:
Definition 9.3.3. We say that the matrix A of n rows and n columns is banded 
if there exists an integer q ^  1 such that

= >  A ij=0.

In this case, if we want to specify the integer q, we say that A is a band-tf matrl
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If q = 1, A is a diagonal matrix. If q = 2, A is a tridiagonal matrix of the

I  ̂ Cx 0 0 0 \
b 2 a2 c 2 0 0
0 b 3 a3 C3 0

0
\0

Bn-i An—i Cn—\ 
Bn An )

In general, a band-q matrix has at most 2q -  1 nonzero diagonals.
Such matrices can arise when we discretize partial or ordinary differential 

equations. We consider an example in which we want to solve

- u" (x) = / (x), x E ]0,1[, u (0) = u (1) = 0.

To discretize this problem, we look for an approximation to u at the points jh , 
with h = 1/n and j  going from 1 to n — 1. We will denote this approximation 
to u(jh) by Uj .  We replace the second derivative u"(jh) by the finite difference

Uj+1 ~  W j  +  Uj-1
h2

which is justified by the truncated expansion

u {x -f h) -  2u (x) + u (x -  h) = h2u" (x) + O (/i4) .

We are therefore going to solve the linear problem 
Uj+\ — 2Uj +

h2
The matrix of this problem is

/ 2 - I  
-1 2 
0 -1

0
V o

^hich is tridiagonal and symmetric. It has been shown in Subsection 4.6.2 that 
ls matnx is positive definite. Another proof of this fact is given in Chapter 11. 
The essential property of banded matrices, from the point of view of LU 

Composition, is stated in the following theorem:
Ththen°rem ^ ^  ke a band-g matrix. If A has the decomposition A = LU 
a<.en ^ and U are band-gr. Due to their particular structure, L and U each have 

most q nonzero diagonals. o

1-1 _ 3 = I.---,

0 0 ••• 0\
- l 0 0
2 -1 0

-1 2 -1
0 -1 2)
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Proof. It suffices to reread the proof of Theorem 9.1.1, counting the nonzero 
elements. The matrix L\ is given by

where p' is defined by
(An \

Aql
0 ’

V ° /  m
and the matrix L\ is therefore banded. In the same way,

t  = (An ••• Alq 0 ... 0).
As A[ is band-# and pft' has nonzero elements only for the indices i, j ^ q - 1, 
we see that

Ax =A[ -p'V
is also band-#. The new matrix A\ is band-g. By induction, the result is clear.

□

Let us look at the advantage, in terms of operation counts, of banded matri­
ces.
Operation Count 9.3.5. Let A be a band-*/ matrix admitting an LU decompo­
sition. Suppose that n q (which implies, in particular, that n >  1). The 
number of operations necessary to construct the LU decomposition is of order 
n(2(q — l)2 + q — 1), and the number of operations necessary to solve the two 
systems

Ly — b and Ux = y
is of order n(4q — 3).

Proof. The generic elimination step requires the construction of p>, which re 
quires q — 1 divisions, and the construction of pPV, which requires (q "  *) 
multiplications, the other elements of this matrix being zero. It is then nec­
essary to subtract from AJ_1, which requires (q — l)2 subtractions. The 
construction of LU requires, therefore, at most (q -  1) 4- 2(q -  l)2 floating-P0̂  
operations per row. There are at most q non-generic rows, and these require 
least number of operations. Since n q, the number of operations necessary 
construct LU is of order n((q — 1) + 2(q — l)2). 1

The generic row of the system Ly = b has q nonzero coefficients, one of w 1 
is equal to 1. Redoing Operation Count 9.2.3, the solution of this system requi
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2q- 2 operations. Similarly, the generic row of the system Ux = y involves q 
nonzero coefficients and therefore requires 2q—l floating-point operations for its 
solution. We thus obtain the count stated. □

R e m a r k  9.3.6. The preceding operation count shows that about 8n operations 
are required to solve a tridiagonal system A. We can compare this estimate to 
the number of operations needed to multiply a tridiagonal matrix by a vector 
x. The j ~th component of the result is equal to BjXj-i + AjXj + CjXj+i, which 
requires 5 floating-point operations. It needs around 5n operations to calculate 
Ax, which is only a little less than to calculate A~lx.
R e m a rk  9.3.7. The inverse of a banded matrix A is generally not a banded matrix 
(exercise). In the case where a band-g matrix admits LU decomposition, it is 
enormously more advantageous to solve the systems Axk = bk, exploiting the 
LU decomposition, than to calculate A~l . Each calculation of A~lbk requires 
0(2n2) operations, while each solution of Lyk — bk and Uxk — yk requires 
0(n(4q — 3)) operations. The difference is an order of magnitude.

9.4. Other decompositions: and Cholesky
9.4.1. The L D U  decomposition
We can give a more symmetric character to the LU decomposition:
Definition 9.4-L A matrix A of n rows and n columns admits an LDU decom­
position if there exists a lower triangular matrix L with ones on the diagonal, 
an invertible diagonal matrix D , and an upper triangular matrix U with ones on 
the diagonal such that A = LDU.

We then have the following easy result:
Lemma 9.4-2. A matrix A admits the LDU decomposition if and only if it admits 
the LU decomposition. The LDU decomposition is unique.

Proof. The proof of this result is completely parallel to that of Theorem 9.1.1, 
the only difference being that at each step the diagonal of U is normalized. 
Details are left to the reader. □

From the algorithmic point of view, the construction of the LDU decompo- 
sltion is quite analogous to the construction of the LU decomposition, and the 
reader can easily modify the constructions of Section 9.1. With the notation 
I91-2) and (9.1.3), we see that the first elimination step consists of writing

With

A = h JTl
0

0 \ (1 TTfV \
-

respect to the LU decomposition, the extra cost is the computation of
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7rj 1£',that is n -  1 operations. Therefore, the total overhead is

n—1 2
^  j  ~ — floating-point operations, 
i=i

which is negligible relative to 2n3/3.
When the matrix ,4 is Hermitian and admits an LDU decomposition, we can 

write
LDU = A = A* = U*D*L\

and deduce from the uniqueness of this decomposition that L = U* and D is 
real.

In this case, we calculate about half as many coefficients, and the cost of this 
decomposition is of order n3/3, for large n. Nevertheless, we have no guarantee 
that decomposition without pivoting will succeed. An example of a symmetric 
matrix not possessing an LU decomposition is given by

- C  :)■ I
If we use partial pivoting we destroy the symmetric structure of the matrix. If 
we use total pivoting this will cost a lot more operations. In the section which 
follows, we consider a case in which we show that it is useless to proceed by 
pivoting.

9.4.2. The Cholesky method
Recall that a Hermitian matrix A is said to be positive definite if

x* Ax ^  0, Vx and x* Ax = 0 = >  x = 0.

If A is a positive definite matrix, it is invertible: if x €  ker A then x* Ax = 0 
and therefore x = 0. The classic decomposition of a symmetric positive definite 
matrix is described in the following theorem:
Theorem 9.4-3- Let A be a positive definite Hermitian matrix. Then, there exists 
a unique upper triangular matrix C with positive diagonal such that

Remark 9-4-4- This result shows us that A possesses an LD L * d e c om p o s it101*' 
Indeed, let A b e  the diagonal matrix whose diagonal is equal to th a t o f  C , ^  
let L = C*A-1. As C has a positive diagonal, A is Hermitian. L et D - 
Then

LDL* = C*A~lA2A~xC = C*C = A.
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proof o f Theorem  9.4.3. The proof is by induction on the spatial dimension 
n For n = 1, the matrix A is a single element a, and the vector x a single 
component £. Consequently, on identifying (£)* = (£),

x*Ax = (£)* (a) £ = a |£|2 .
If A is positive definite, then a >  0 and we have a Cholesky decomposition with
C  = (y/a)-

Suppose that the result is true up to dimension n -  1. Let A be an n x n 
positive definite Hermitian matrix. Then, it is of the form

= ( a A\ f  A)

It is clear that A is also positive, definite, and Hermitian. We look for an upper 
triangular matrix C with positive diagonal of the form

■-(2 *)•
where, of course, B will be upper triangular with a positive diagonal. We must 
then have the identity

( ?  1a) = a = c 'c
p 2

pm*
Pm 

B*B + m*m)•
Consequently, we must solve the following nonlinear system in /?, m, and B :
(9.4.1) p2 = a,
(9.4.2) 0m = £,
(94.3) m*m + B*B =
We first verify that a >0. Let ei be the first vector of the canonical basis. 
Then, with the block decomposition

ei

have

t e*lAei~ °) (e* a) (o) ~ ̂ (o) a-
can therefore solve eqn (9.4.1) by choosing

(U4)
[This relation implies that 

(9-4.5) m = v/5’
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from eqn (9.4.2). To solve eqn (9.4.3), it suffices to show that A -  m*m is a 
positive definite Hermitian matrix, and then to use the induction hypothesis. It 
is clear that we have a Hermitian matrix. To show that it is positive defin ite, 
we will show that, for all x £ C 1-1 (respectively, En_1), there exists a £ £ C 
(respectively, M) such that

(9.4.6) x* (̂ A — m*rnj x = (£*

Here, we have identified £* with the complex conjugate of £. The left-hand side 
of eqn (9.4.6) is equal to

x* Ax -  x*m*mx
and the right-hand side of eqn (9.4.6) is

a£*£ + Z*tx + x*e*£ + x*Ax.

Equating these two expressions, we obtain

(9.4.7) a |£|2 + f i x  + ix * t  + = 0.

Noting that (ix )* = x*£* = tx, we use the relations (9.4.4) and (9.4.5) to see 
that eqn (9.4.7) may be written as

|a£ + £x\2 = 0. 

Consequently, the choice of £ is given by

It is now clear that eqn (9.4.6) holds for such a £, and we deduce immediately 
that A — m*m is a positive definite Hermitian matrix. Due to the induction 
hypothesis, we see that we can find an upper triangular Hermitian matrix B 
with positive diagonal that satisfies eqn (9.4.3).

We now verify uniqueness. If A = C{C\ = C%C2, it follows from Remark 
9.4.4 that A admits the following two decompositions:

A = L\D\L\ = L2D2L2.

Matrix D\ is the square of the diagonal Ai of C\ and matrix D2 is the square 
of the diagonal A2 of C2. Furthermore,

Li = C l A f1 and L2 = C2* A”1.

The uniqueness of the LDL* decomposition implies that A2 = Af and, & 
and A2 are diagonal with positive coefficients, they are equal. As L\ = ^2’  ̂
see immediately that C\ — C2. We have therefore shown uniqueness.
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9.4.3. Putting the Cholesky method into practice and 
operation counts

One step of the Cholesky decomposition consists of calculating

P = y/a,

m = - (A 12 ••• Ain) ,

B*B — A -  m*m.

The calculation of the first row requires the taking of a square root, the calcu­
lation of the second requires n - 1 divisions, and the calculation of the third 
requires (n — l)2 multiplications and (n — l)2 subtractions. However, there are 
some redundancies, since A and m*m are Hermitian. Therefore, we only need to 
calculate the n(n — l)/2 lower triangular terms. Consequently, a Cholesky step 
requires the taking of a square root and (n — 1) + n(n — 1) arithmetic operations, 
giving n2 arithmetic operations. The final count is described as follows, after 
summation over all the steps:
Operation Count 9.4-5. The Cholesky decomposition for a matrix A of n rows 
and n columns requires n square roots and a number of arithmetic operations of 
order n3/3.

The Cholesky method for solving a linear system with positive definite Her­
mitian matrix consists of determining the Cholesky decomposition of the matrix 
and then solving the two triangular systems, which has negligible cost compared 
with the decomposition, at least if the matrix is not a narrow-banded matrix. 
In the case of a banded matrix, we can combine the advantages of a Cholesky 
decomposition with the particular properties of banded matrices.
Remark 9.4.6. The Cholesky decomposition presents two advantages. We are 
assured that a Hermitian matrix admits a decomposition as a product of two 
triangular matrices without pivoting. Furthermore, the method requires almost 
two times fewer arithmetic operations than the non-Hermitian case. The ‘almost’ 
corresponds to the cost of the n square roots, which take more or less time 
according to the implementation.

9-5. Exercises from Chapter 9
•̂5-1. Exercises on the rank of systems of vectors
PXerdse 9.5.1. What is the rank of the system of vectors:
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Exercise 9.5.2. Give the kernel and the image of the matrix A which has the 
preceding vectors as columns.
Hint: the aim of the exercise is to find a method which does not use determinants. 
It is particularly recommended to reason geometrically.
Exercise 9.5.3. Let U be the subspace of R5 generated by the vectors

1 \ 2 \
3 4 3
-2 -3 1 -1
2 4 -2

\ 3 / \ 2 J
and V the subspace of R5 generated by the vectors

f l \ (2\
3 5 5
0 -6 3
2 6 2w \ 3 J v )

Find a basis of £/, V, U + V, and U C\V.
Hint: the beginning of this exercise is identical to the preceding one. To find a 
basis of U + V and a basis of U fl V, geometric reasoning is required.

9.5.2. Echelon matrices and least-squares
In this section in three parts, we generalize the LDU decomposition to the case 
of rectangular matrices and we use this generalization to solve general linear 
systems by the least-squares method.

Let V = C 1, W = C 71, and A be a matrix of rn rows and n columns. We 
denote by A* the adjoint of A defined by

( A % = A ji
We define the following vector subspaces:

Vi = ker A = {x€ V : Ax = 0},
V2 = Im A* =A*W,

(9.5.1)v W j= Im  A = AV,
W2 = ker .4* = {* €  W :A*x = 0}.

We equip V and W with their respective canonical scalar products, that is,
n

(X, x') = ^2 Xi^i if xi x' € 
i— 1 
m

(x,x') = ^ 2 XiXi ^  X’X' ^ W*
i= l
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These scalar products are denoted identically, but are distinct.

233

First part: elementary linear algebra
E x e rc is e  9.5.4• Show that V is the direct orthogonal sum of V\ and V2 , and that 
W is the direct orthogonal sum of W\ and W2.
E x e rc is e  9.5.5. Give a necessary and sufficient condition on the spaces (9.5.1) so 
that the system of linear equations

(9.5.2) Ax = b 

possesses at least one solution.
Exercise 9.5.6. Give a necessary and sufficient condition on the spaces (9.5.1) so 
that system (9.5.2) has at most one solution.
Exercise 9.5.7. We define a linear mapping A0 from V2 to W\ by

(9.5.3) A0x = Ax, Vx G V2.

Find the kernel and the image of A$.
Exercise 9.5.8. Compare the kernel of A and the kernel of A* A, and deduce that

dim Im A — dim Im A* A.

The common value of these two dimensions is the rank of the matrix A and it 
will be denoted by r. Warning! Matrix A is generally not square.

Second part: echelon matrices and the generalization of Gaussian 
elimination
We call a matrix A echelon if it has the following properties:

Aij =0 if j  <  f  (i), Aij(i) ^  0 for all i such that / (i) ^  n.

Here, / is a function from N into N which satisfies

/ (* + 1) ^  / (0 + 1?
and /(i) is arbitrary. We say that an element A{ is a pivot (nonzero by 
definition) of A.
Exwcise 9.5.9. Give an example of a nonzero rectangular (m /  n) echelon 
matrix.
Exerc2se 9-5.10. Count the maximum number of nonzero coefficients that row i 
first ^ave* Show that, if A has k nonzero rows, these k nonzero rows are the 

rows of the matrix and they are independent.
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Exercise 9.5.11. How many independent columns does A possess? (Use Exercise 
9.5.8). Determine a system of independent columns of maximum dimension. You 
can make use of the pivots.
Exercise 9.5.12. Let A be some matrix. Show that there exists a permutation 
ai on {1,..., m} such that

PaiA = G1Du 
where the matrix of the permutation is defined by

( ^ l  ) i j  =  or I ( j )

and the matrices G\ and D\ are m xm  and m xn  matrices, respectively, of the 
form

1 0 0 0 ••• ON
* 1 0 0 0 /dn * ••. *\
* 0 1 0 0 0 * • • *
* 0 0 1 0 , D = * I I
•  ̂0 * • */

\* 0 • V
Here, dn is zero or nonzero, and the asterisks represent arbitrary numbers.
Exercise 9.5.13. Using Exercise 9.5.11 as the first stage of an induction, show 
that there exists a permutation r of {1,..., m} such that

(9.5.4) PrA = LU,

where L is a square m x m  matrix with ones on the diagonal and U is an 
m x n  echelon matrix. Show how this decomposition permits the solution of the 
system (9.5.2) when the condition of Exercise 9.5.5 is satisfied.
Exercise 9.5.14. Show that there exist matrices L and U of dimension m x r and 
r x n, respectively, such that

(9.5.5) PtA = LU.

Here, r is the rank of A.
Exercise 9.5.15. Show that UU* and L*L are invertible.
Exercise 9.5.16. We define B = L(L*L)"1 L*. Show that

B2=B , ({I-B)x,Bx) = 0, Vx,

and conclude that B is the orthogonal projection on Im L.
Exercise 9.5.17. Show that ImL = Im i^A
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Third part: solution of a linear system in the least-squares sense
Exercise 9.5.18. Suppose that the sufficient condition for existence in Exercise 
9.5.5 is not satisfied. We then seek to minimize

4>(x) = \\Ax-b\f.

Show that, if x minimizes ^ on  F, then

(9.5.6) 3? {Ax, Ay) -  SR ( b,Ay) = 0, €  V.

Derive a linear system satisfied by x. You can replace y by i in eqn (9.5.6).
Exercise 9.5.19. Give a necessary and sufficient condition such that the preceding 
linear system has a solution.
Exercise 9.5.20. Show that, even if the system (9.5.6) possesses more than one 
solution, Ax is unique.
Exercise 9.5.21. If the system does not satisfy the uniqueness condition of Ex­
ercise 9.5.6, let x be such that

||x|| = min {\\x\\ : x minimizes 0 on V} .

Show that this x satisfies

Ax e lm  A and x e lm  A*.

Express x as a function of B , the projection of Im A to W, and A$.
Exercise 9.5.22. Suppose that PT = I  in the decomposition (9.5.5). Show that

* = u * { u u * ) ~ \ tL y 1L*b

satisfies the conditions (9.5.6).
Exercise 9.5.23. Let

A + = U*(UU*y1{L*L)~1L*. 

What are the values of AA+ and A+A2

9-5-3. The conditioning of a linear system
We consider the linear system

Ax = 6,
res  ̂^*an *nver^kle square matrix. We perturb the data A and b by 5A and 5b, 

Pectively? which results in x being perturbed by 5x. We then have

(A -b 5A) {x + 6x) = b + 5b.
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In the following we denote a vector norm by | • | and the subordinate operator 
norm of this vector norm by || • ||; see Section 10.3.4 for a definition.

We define the condition number k(A) by writing

k (4) =  P I I M ~ 1||.
Exercise 9.5.24• Show that, if \\5A\\ ^  1/||-A—1||, then

M  k {A) (\6b\ ][Mj|\
1*1 "  1 - *  (A)\\SA\\/ P|| \\b\ + \\A\\J-

Exercise 9.5.25. Show that the condition number of A is bounded below by the 
ratio |An/Ai|, where An is the largest eigenvalue of A in modulus and Ai is the 
smallest eigenvalue in modulus.
Exercise 9.5.26. Show that, if | • | is the Euclidean norm (or Hermitian norm, in 
the complex case) and the matrix A is normal, then the condition number of A 
for this norm is precisely the ratio between the absolute maximum and minimum 
eigenvalues.
Exercise 9.5.27. Give examples of matrices of condition number 1.
Exercise 9.5.28. Give an example which proves that the condition number de­
pends on the chosen vector norm. Compare the condition number of a rotation 
matrix in R3 for the norms 1, 2, and oo. These norms are defined in eqns (10.2.3),
(10.2.4), and (10.2.5), respectively.
Exercise 9.5.29. Let

Calculate the eigenvalues of A and give k(A) for a norm of your choice, which 
you should define carefully. Solve the two systems

Ax = (2)» a { x + s x ) = (2 .0 0 0 1) •

Compare the relative variation of the solution \Sx\/\x\ with that of the right-hand 
sides of the systems. What do you conclude?
Exercise 9.5.30. Let

Compare the solutions of the systems

Ax = and A {x + 5x)

What is the amplication factor of the error?
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9.5.4. Inverting persymmetric matrices
We denote the transpose of some matrix B by BT.

In the following, M n denotes the space of real square matrices of n rows and 
n columns. The identity matrix of M n will be written In.
Exercise 9.5.31. Let En be the element of M n defined by

/o 0 0 0 ••• 0 1\
0 0 0 0 ••• 1 0

0 0 0 1 ••• 0 0
0 0 1 0 ••• 0 0
0 1 0 0 ••• 0 0

V 0 0 0 ••• 0 <v
We say that an element B of M n is persymmetric if it satisfies

B = EnBT En.
Show that persymmetric matrices form a vector subspace of M n, denoted Vn. 
What is the dimension of this subspace of M n? Show that the inverse of a 
regular persymmetric matrix is also persymmetric. Does the subspace Vn form 
an algebra for the multiplication of matrices?
Exercise 9.5.32. We say that a matrix is Toeplitz if it is of the form

( r° r\ r2 • rnA
r- 1 ro r\ • • rn_2

A = r- 2 r-1 r0 • r„ —3

V*—n+1 r—n+2 r~n+3 * *• ro /
Show that the inverse of a Toeplitz matrix is generally not a Toeplitz matrix. 
To do this, consider the matrix of finite differences given by

2 -1 0 •• 0 °\
-1 2 -1 •• 0 0
0 -1 2 •• 0 0

0 0 0 •• 2 -1
I  0 0 0 ••• -1 VQi

°W ^lat there does not exist a Toeplitz matrix B such that
BAn =
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We denote by Tn the set of positive definite symmetric Toeplitz matrices and 
we only consider elements of Tn in the following. We propose to solve a system 
whose matrix is an element of Tn. Without loss of generality, we can suppose 
that ro = 1. We obtain a series ( l,n ,... ,rn_i) of real numbers such that the 
corresponding symmetric Toeplitz matrix Tn is positive definite. We denote by 
Tk the element of Tk obtained from Tn by taking the first k columns and the 
first k rows. This is, therefore, the symmetric Toeplitz matrix corresponding to 
the series (l,ri,... ,r*-i).
Exercise 9.5.33. Let

Rk = (ri,r2,...,r*)T .
Suppose that we know how to solve the system

TkVk = - Rk•
Calculate the block product

(h  EkVk\J ( Tk EkRk\ f h  EkVk\
Vo 1 J \R jE k  1 ) \ 0  1 J

and deduce that 1 + R j yk is strictly positive, by using the fact that Tk+i is 
positive definite.
Exercise 9.5.34. Calculate the solution (zT ctk)T of the system

/ Th EkRk\ ( * \  = ( ~ R k \
\ R jE k 1 J \ a kJ \-rk+ iJ  '

We can express z as a function of yk and a*, and then substitute into the equation 
in ak.
Exercise 9.5.35. Show that the calculations of the preceding question need 0(k) 
floating-point operations.
Exercise 9.5.36. Let

^k — Id" Rk 9 k •
Show that

fik ~ (l ~ ^k — l) Pk—1-
Exercise 9.5.37. Give an algorithm, using the /?*, to calculate the s o lu t ion  of the 
problem

Tnyn ~ ~Rn
in 0(n2) multiplications or divisions.
Exercise 9.5.38. We propose now to solve the system having the m atr ix  in  
an arbitrary right-hand side b. Suppose that we possess the so lu t ion s  of * e
systems

TkXk = Bk and Tkyk = -Rk,
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where Bk denotes a column vector formed from the first k rows of the column
v ecto r b. Calculate the solution of

( Tk EkRk\ Bk\
\ R jE k 1 j W ' W ’

whose right-hand side is the vector Bk+\.
Exerc ise  9.5.39. Give an algorithm based on the solution ‘in parallel’ of the two
sy stem s

TkXk = Bk = (bi,...,bk)T and = -  (n,---,r*)T .

Exercise 9.5.40. Show that this algorithm leads to a solution in 2n2 multiplica- 
tions or divisions, plus lower-order terms.
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Theoretical interlude
The rest of the book requires some supplementary knowledge of matrix analysis. 
This chapter contains various information which is of a more analytical than 
algebraic nature: properties of eigenvalues, matrix norms, spectral radius etc.

Just as the do-it-yourself expert finds himself with dozens of tools spilled over 
the ground to do even the simplest repair, the mathematician needs an entire 
workshop to understand matrices.

We are therefore on holiday (provisionally) from numerical analysis and, one 
by one, we will construct the tools which will allow us to return to it.

10.1. The Rayleigh quotient
We begin with a definition:
Definition 10.1.1. Let A be a Hermitian matrix in a space of dimension n. For 
x /0 , let

x x* Ax(10.1.1) rA(x) = —— .x*x
The function ta is called the Rayleigh quotient associated with A.

The Rayleigh quotient of A is linked to the spectrum of A. This relation is 
expressed by the two following theorems:
Theorem 10.1.2. Suppose that the eigenvalues of the Hermitian matrix A are 
arranged in increasing order:

Al ^  * * * ^  An

Then,
max ta (x) = An and min ta (x) =  Ai.x^O x̂ O

240

o
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proof. Let be an orthonormal basis of eigenvectors of A correspond­
ing to the eigenvalues Aj .  In this basis, x  has the decomposition

x
n

~ Xj ei
j=1

and we can therefore write

ra {x) = E U  ^  
E U 3  *

It is evident that we have

Ai £  x]<  EXi x) <
j= i j = i j =i

and, therefore, we have the inequalities

Ai ^  ra (x) ^  An, Vx ^  0.

If we take x = ei, then x*Ax = Ai, and if we take x = en, then x*Ax — An. □

The second theorem allows us to get all the eigenvalues of A from the minimax 
properties of the Rayleigh quotient.
Theorem 10.1.3. Under the conditions of Theorem 10.1.2 we have

(10.1.2)

(10.1.3)

min max va (x ) — A*,dim W=k zEW\{0}
max min va (x) = An_*+i.dim W=k xG W\{0}

Proof. The second formula comes from the first on passing from A to —A, 
which swaps the maximum and minimum and requires the renumbering of the 
eigenvalues. We will therefore content ourselves with proving the first formula. 
First of all, let W be the vector space generated by e i,..., e*. It is of dimension 
k and, by application of Theorem 10.1.2, we see that

This shows us that

Con̂

max ta (x) = A^.
xew\{ o}

inf max rWaO^Afc.dimW=Jk x6W\{0}

n _ Terse^ ’ ̂ et FU be some subspace of dimension k. If Z is the space of dimension 
be ls generated by e*,..., en, the intersection of W and Z cannot

e need to zero. If it was reduced to zero then W and Z would be in direct
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sum, and the sum of their dimensions is greater than the dimension of the space, 
which is absurd. Therefore, let z € WD Z,z ^  0. It is clear that

rA (z) ^  min rA (z) =z€ Z\{ 0}

Consequently,
max rA ^  rA ( ) ^x€  W'\{0}

Since this property holds for every W, we see that

inf maxdim W=k xG W\{0} rA (a;) = \k.

It follows, from the beginning of the proof, that this lower bound is attained. □

10.2. Spectral radius and norms
10.2.1. Spectral radius
Definition 10.2.1. The spectral radius p(A) of a matrix A is the maximum mod­
ulus of its eigenvalues.

The following result is a consequence of this definition and of the theorems 
relating to the Rayleigh quotient:
Lemma 10.2.2. Let A be a Hermitian matrix. Then,

(10.2.1) p (A) = max \ta (#)| •x^O

The proof is left to the reader.
A classic and subtle exercise consists of showing that, for every square n x n 

matrices A and J9,

(10.2.2) p{AB) = p(BA).

It goes without saying, that we make no commutativity hypothesis on A and B■ 
We are going to show a stronger result in fact: the spectrum of AB is identical to 
the spectrum of BA. Indeed, let (A, x) be a pair of eigenvalue and eigenvector o 
AB. We therefore have ABx = Xx, or, on pre-multiplying this relation with 
BABx = XBx. Suppose, first of all, that Bx = y ^  0. Then y is an eigenvector 
of BA for the eigenvalue A. If Bx = 0 then from the relation ABx = ^  
deduce that Xx = 0, and therefore, B is not invertible. This implies that * 
is not invertible: the rank of BA is dimlmZM ^  dimlmi? <  N. Therefore 
is in the spectrum of BA. We have therefore shown that the s p e c t r u m  o i 
contains the spectrum of AB. The converse is obvious.
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10.2.2. Norms of vectors, operators, and matrices
Let V be a vector space of dimension n over K
Definition 10.2.3. The norm \x\ of a vector x is a mapping from V to R+ which 
satisfies the following properties:

(i) If \x\ = 0, then x = 0;
(ii) |Arc| = |A| |x|, Vx G V, VA 6 K (homogeneity);
(iii) \x + y\ ^  |x| + \y|, Vx,y G V (triangle inequality).

We give some examples of norms: if x is a vector with components (^j)i^j^n 
we define

which is the maximum norm, or £°° norm. It is simple to show that these 
expressions all define norms.

Let p e [1, oof. The expression

n

i=i
which has already been defined in Exercise 2.6.2,

J=i
which is the Euclidean norm, and
(10.2.5)

lj=i
is a norm. See the exercises for a proof.

Another example is constructed from a Hermitian positive definite matrix A.
Let
(10.2.7) l*L = (® *Ac)1/a
This norm is deduced from a scalar product; it can be written as the sum of 
Ihe square of the coordinates, with respect to a basis which is orthogonal in the 
can°nical basis but usually not orthonormal. If A coincides with the identity 
^ atr|x, then we fall back on the usual Euclidean norm. We now move on to the 
efinition of a matrix norm.norm.
definition 1 0 .2 .A matrix norm is a norm || - || on a vector space of square 
Prices, which satisfies the following algebra property:

■°n 10.2.4• A matrix norm is a norm || - || on a vector space of square

(10.2.8) PB||^||A||||B||.
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10.3. Topology and norms
10.3.1. Topology refresher
We assume familiarity with the definition of a metric space, and the essential 
topological properties of a metric space: open and closed sets, neighbourhoods, 
continuity, compactness, Cauchy sequences, and complete metric spaces.

Let Ej be spaces equipped with a distance dj (1 ^  j  ^  n). The topology on 
the product space E = &j 1S defined by the product distance below

d(x,y) = max 1

A product of complete metric spaces is complete (for the product distance). A 
product of compact sets is compact.

It is obvious that a norm || • || on a vector space defines a distance by

d(x,y) = ||a:-2/||.

On the field K = E (respectively, K = C) the distance between x and y is 
the absolute value (respectively, the modulus) of x — y. The product topology 
on V = Kn is given by

d(x,y) = max \xj -yj\.l^j^n

Therefore, the product topology on V is defined by the norm |x|oo, and this is 
the only topology which we will consider from now on.

Let || • || be some norm on V. We have the following inequalities, where 
(ej)i<^j^n is the canonical basis of V:

(10.3.1) m\ =
3=1

^  \Xi
3-1

^  \xl
j=1

We immediately deduce from this that all norms are continuous.

10.3.2. Equivalence of norms
Recall that a subset C of V is compact if and only if it is closed and bounded- 
This remark allows us to deduce the following essential result:
Lemma 10.3.1. All norms on V = Kn are equivalent. In other words, if M ̂  
N2 are two norms on V = Kn, there exist constants 7  >  0 and T ^  7  suc^ t

(10.3.2) 77Vi (x ) ^  N2 (x ) $ TNi (x), V xeK n.
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Proof. Let 5 be the unit sphere for the norm | * |oo; it is closed and bounded 
for the topology of V, and hence compact. Relation (10.3.1) shows that N\ is 
continuous over V. Therefore, it attains its minimum and its maximum over 5:

Furthermore, 71 cannot be zero, since there exists y G S such that 71 = Ni(y). 
If 7 ! were zero, then the definition of the norm would imply that y would be 
zero, and we could not have \y|oo = 1. If x ^  0, we see that

We give a geometric interpretation of this result. Note that the unit ball for 
a norm N on Kn is a convex closed bounded subset of Kn which is invariant 
under the transformations x \x if |A| = 1. In Figure 10.1 we represent the 
unit ball for some norm in M2.

It is possible to prove that, for every convex closed bounded subspace C 
of non-empty interior, which is invariant under the transformation x Xx for 
every |A| = 1, there exists a norm N such that

7 i ^  Ni (x) ^  Ti, Vx e S.

C = { x eK n : N (x) ^  1} .

^gure 10.1: An arbitrary unit ball. Figure 10.2: The previous ball is in­
cluded in a round ball and contains 
a round ball.



246 10. THEORETICAL INTERLUDE

This norm is given by the relation

N (x) = inf {r e M+ : x 6 rC} .

The equivalence of all norms means that we can insert the unit ball of a norm N 
between scalings of the unit ball of another norm, as is indicated in Figure 10.2. 
We also give some representations in R2 of unit balls for the classic norms. See 
Figures 10.3 to 10.6.

Figure 10.5: The unit ball of p = 
5.

Figure 10.4: The unit ball of i2.

Figure 10.6: The unit ball of ̂ oc-

Figure 10.7: The unit ball for the norm | • \a-



10.3. TOPOLOGY AND NORMS 247

Finally, to represent the norm | • \a we let A be the diagonal matrix

The perimeter of the unit ball for this norm is an ellipse of semi-axes 1/Ai and 
\/\2. Figure 10.7 is representative of the case where A2 X\.

10.3.3. Linear mappings: continuity, norm
Let V be a vector space of dimension n over K. V is isomorphic to Kn: if we 
choose a basis ej in V, the isomorphism is a mapping (j) which associates a vector 
x to the n-tuple of its coordinates in the basis ej. We transport the topology of 
Kn to V by this isomorphism, by defining a norm N on V:

N(x) = |0(a;)|oo.

It is immediately clear that N is a norm. With the basis (fk)i^.k^n in F, we 
define a different isomorphism which will correspond to a different norm,

M{x) = 1̂ 0*0 loo-

Since all norms are equivalent on &n, these two norms M and N are equivalent, 
and the topology of V does not depend on the choice of basis which is used to 
make the isomorphism.

We give a concrete example of this phenomenon: let V be the vector space 
of real polynomials of degree at most n. We describe two different coordinate 
systems. The first consists of taking for a basis the monomials 1, X 1, X 2,..., X n. 
We obtain the coordinates of a polynomial P in this basis by the following 
formula:

pti) (o)
Xj -- Tj , j  -- 0, 1, . . • , fly

J}-
which is simply Taylor’s formula. To make the second coordinate system, we fix 
n pairwise distinct real points, In the second coordinate system,

Vj = j  = 0,l,...,n.

The corresponding basis of V is given by

I ■»*<*> = n f r p

that̂  aie c*ass*ca  ̂ Lagrange interpolation polynomials. We easily verify

(£j) — fijk-
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If we equip K" with the maximum norm, we thus construct two equivalent but 
different norms. The first is

pU) (o)
max --- —O^j^n j\

and the second is
max |P«j)|.

Lemma 10.3.2. All linear mappings from a finite-dimensional space over K to a 
finite-dimensional space over K are continuous.
Proof. From the preceding discussion, the study of the continuity of linear 
mappings in finite dimensions is equivalent to the study of the continuity of 
x Ax from Km to Kn, where A is an m x n matrix. We have the following 
obvious inequality:

|Axl = max1 100 1 < i < mY AiP
j=i
n< max Y N ̂  Moo Y l̂ jl •l < i <m  *—' z 'j =1 j= 1

Therefore, there exists a constant C such that
IM x ^ C M o o .  V x e P .

We immediately deduce continuity.

10.3.4. Subordinate norms
In the preceding proof, the choice of norm | •loo is a question of convenience. It 
is clear that, if M and N are norms given on the finite-dimensional spaces V 
and W, respectively, then, for every linear mapping / from V to W, there exists 
a constant C such that

N (f (x)) ^  CM  (x).
Theorem 10.3.3. Let V and W be vector spaces of finite dimension over K, and 
let M and N be the norms on V and W, respectively. Then, the lower bound 
||/||m,n of numbers C such that

N (f(x))^CM (x)
is a norm on the vector space of linear mappings from V to W and, furthermore 
it satisfies

(10.3.3) ll/llM,„  -  maj _ JV (/ (*)) -  «  N </«>'

We say that the norm ||/||m,tv is the operator norm of /, defined from the nor̂  
M and N.
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proof. We begin with the last expression: let 5(F) be the unit sphere in V for 
the norm M:

S{V) = { x e V :  M(x) = 1}.
we saw previously, 5(F) is a compact subset of V. Therefore, the continuous 

fun ction  x N(f(x)) attains its maximum on 5(F). Let F be this maximum. 
It follows that

max N (f (x)) = Tr, Vr E M+ ,
M(x)=r

which is a consequence of the homogeneity of the norm. From this we deduce 
that

sup N (/ (x)) = sup sup N (/ (#)) = T.
M (*K  1 r€ [0,1] M(x)=r

It is clear that this upper bound is attained on 5(F). Then, if x ^  0, 
N{f{x))/M(x) = N(f(x/M(x))). The element x/M(x) is in 5(F) and we again
have

T = max x̂ O
N(f(x)) 
M(x) *

It is obvious that N(f(x)) ^  FM(x) for every x in F and therefore, ||/||m,tv ^  F. 
Conversely, since the upper bounds are attained, there exists a y ± 0 such that 
N(f{y)) = FM(y) and therefore, ||/||m,at ^  F.

It remains to verify that ||/||m,n is a norm. Positivity and homogeneity are 
obvious. The triangle inequality is true as

max N (f (x) + g(x)) ^  max N (f (x)) + max N(g(x)).
M{x)=1 v M(x)=1 M(x)=1

Finally, if ||/||m,tv = 0, N(f(x)) = 0 for every x, and therefore, / = 0. □

In the particular case of an endomorphism / of F (that is, a linear mapping 
from V into itself), we say that the norm of ||/||m,m defined from a vector norm 
M is subordinate to the norm M. For simplicity, we will denote this operator
no™ II/IIm = ||/||m,m .
Lemma 10.3.4. Let M n be the n2-dimensional vector space of nxn matrices, and 
let N be some vector norm on Kn. Then the operator norm || • ||at? subordinate 
to the vector norm TV, is a matrix norm.

Pro°f. It suffices to verify that if A, B E M n, then

(10'3-4) PB||„ ^||A|UB||„ .
'̂ow> we have

N ( ABx)̂  P||„  N ( Bx) ^  \\A\\n UBIU N (x) .

P e result is therefore clear. □
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10.3.5. Examples of subordinate norms
We will calculate the corresponding subordinate norms for some of the vector 
norms defined previously:
Lemma 10.3.5. Let A be an n x nreal or complex matrix. The subordinate 
operator norms |j.4||;, to the norm £p, for p = 1, 2, and oo, are given by

(10.3.5) P i l l  = £ l ^ h
1=1

Plloo = max 2 1 I,
3-1

(10.3.6) 

and

(10.3.7) P ll2 = M) = s/^AA^).

Proof. By definition
Pi l l  = max \Ax\x.x|l=l

Now,

P * li = £
i= 1 £

3=1

i=  1 j= l 
n n

^  £ l * j l““*£ P « l-
j=1 i=l

Therefore, we see that

P lli ^  m a x ^  \Aij\.

In fact, we have equality here: choose k such that
n n

£ P < * I  =  max V  1 ^ 17“7 3 7“"7

and Xj = Sjk. Then,
i= 1 t=i

P*lli = £
i= 1

T . AijSjk
i=i i=l
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We have therefore shown that

251

J~=1

Similarly,

We easily verify that
P llo o  =  m ax \Moo- \x\oo = l

Plloo < •lsisn j =1
Conversely, let k be such that

(10.3.8)
j =1 3=1

Suppose that the quantity (10.3.8) is not zero. We choose x such that

/ \Akj\/Akj if Akj 0;Xj =  <10 otherwise.

Then, the reader may verify that, for such an x1 |x|oo = 1 and
n

l^ lo o  = ^2  \Akj\ ■

This shows us that
j -1

Plloo = ™ax E l^ l-I ̂  ^ ni=i
The case of the Euclidean norm is a little different, since we do not generally 
have an explicit expression for \\A\\2- Indeed,

**° |*|2
®ut \Ax\l = (Ax)*Ax = x*A*Ax and, furthermore, \x\\ = x*x. We recognize 
a Rayleigh quotient. To get its value it would be necessary to calculate the 
largest eigenvalue of A* A. It is immediate that A* A is Hermitian, positive, and 
^mi-definite and, therefore,

\\A\\l=p(A'A),
°̂m Lemma 10.2.2. Using the equality p(A*A) = p(AA*), we see that 

*hich
Plla = \/pM) = VTiAÂ ),

Proves the lemma. □
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10.3.6. The Frobenius norm is not subordinate
We have seen that all operator norms are matrix norms (which have the algebra 
property). There are matrix norms which are not subordinate to any vector 
norm. An example is the Frobenius norm of a matrix, defined by

F  (A ) = \/trace (A *A ).

Recall that the trace of a square matrix B  is the sum of the diagonal elements. 
We have

(A*A)u = £ (A %  Aji = j r  AjiAji = £ .
j = 1 j = 1 3=1

Consequently,
F { A ? = j ^  | ^ | 2. j

i , j= 1

The Frobenius norm is, therefore, nothing other than the Euclidean norm of A 
seen as a vector of Kn . It is therefore clear that this is a norm. We verify the 
algebra property:

2

F(AB)2 = J2\(AB)ik\2 = '£
i,k i,k

^   ̂AijBjk 
j

=  £ £  A i j B j k  A n  B ik-
i,k j, l

Let
U jt = E  AijAuand v j t  = E

Then, by virtue of the Cauchy-Schwartz inequality,
1/2

F  ( A B ) 2 =  22u je vjt ^  [ e  f e  \vj t f )  ■
j,t V j,t ) \ j,i )

But

M 2 = ^   ̂ AijAn ^ E i ^ / E ^ i 2-
Consequently,

EM 2̂ E l A i j f ^

We can derive an analogous formula for B , and we see that 

(10.3.9) F (AB
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We will show that the Frobenius norm is not an operator norm (subordinate 
to a vector norm), indeed, the Frobenius norm of the identity has value y/n. On 
the other hand, for any vector norm iV, ||/||tv = 1. Therefore, if n ^  2 , the 
Frobenius norm is not an operator norm. However, the Frobenius norm gives a 
useful estimate of ||A||2, and it is convenient because it is explicit. Indeed, we 
know that if A * A  has eigenvalues ^ ij which are a ll positive or zero and arranged 
in increasing order

Ml ^  * * * ^  Pm
then

trace (A* A) = ^  Hj 
j= i

and
P {A A) — Mn-

We therefore have the estimate
p(A*A) ^  trace (A* A) ^  np(A*A),

which implies that
(10.3.10) |H|2 ^ F (A ) <  y/n\\A\\2.

It remains to see a simple and useful application of the equivalence of norms 
to the convergence of sequences of matrices.
Lemma 10.3.6. The following assertions are equivalent for a sequence of matrices 
Bk belonging to Adm,n:

(i) {Bk)ken converges in yVfm,n equipped with some norm N;
(ii) Each of the sequences (Bk)ij converges in K;
(iii) For every x  €  !Kn, B ^ x  converges in K m .
Proof. All vector norms are equivalent on a finite-dimensional vector space. 
The space M m,n is equipped with a norm N and we let

11* 11,0. = max \B ij\ ,
l^j^n

which is also a norm on M m n. Therefore, there exists a constant 7  >  1 such 
that

* *s therefore clear that (i) is equivalent to (ii). To show that (ii) implies (iii) 
j*°te that, if Bk tends to a certain limit B , there is convergence for the norm 

! "00’ *n Particular. Then,

IB kx  -  B x  1^ ^  ||B k -
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and, therefore, BkX tends towards Bx.
Conversely, from (iii) we deduce that B^ej tends to a certain limit f0r 

every element ej of the canonical basis of Kn. As B^e^ is the j-th column of Bk)

10.4. Exercises from Chapter 10
10.4.1. Continuity of the eigenvalues of a matrix with respect 

to itself
We say that a norm || • || on Kn (K = M or C) satisfies the A property if the 
operator norm that is subordinate to it satisfies the following condition: for every 
diagonal matrix of the form

All of the matrices considered in this section are square and of order n.
Exercise 10.4-1- We denote by X{ the i-th component of the vector x € W1. 
Show that the following norms satisfy the A condition:

we see that (Bk)ij converges. We can therefore apply (ii), which is equivalent to
(i). □

/Ai 0 
0 A2 0

°\

ID diag (Ai, A2 ? • • • > Aĵ )

\0
0 An_! 0 

0 A „ /

the norm of D is given by
||£>|| = max |Ai|.l<s<n

IMloo = max la^l.l̂ t<Cn

In all that follows, the norm || • || satisfies the A property. 
Exercise 10.4-2. Calculate the operator norm of

(pln -  diag(Ai,A2,..., An)) 1

when /i is not equal to any of the A*.
Exercise 10.4-3. Let A be a diagonalizable matrix, whose eigenvalues are denoted 
by Aj, with i going from 1 to n, and let P be the corresponding transform^011 
matrix

P lAP = diag(Ai,A2,...,An) = D.
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L et E be some matrix. Show that, for every eigenvalue // of A + E, we have the
inequality

min |/*-A4|£||P||||P-1||||15||.
To do this, denote an eigenvector, associated to the eigenvalue A of A + E, by x 
and  bound from below the norm of (fi — A)~lE, by studying the action of this 
operator on x.
Exercise 10.4-4• Deduce from the preceding question that the eigenvalues of a 
m a tr ix  are continuous with respect to the matrix. Give as precise a formulation 
as possible of this assertion.
Exercise 10.4-5. Suppose that the matrix A is normal. Show that we can choose 
a norm satisfying the A property such that, for every eigenvalue // of A + E,

3=i
Exercise 10.4.8. Show that we have the Minkowski inequality

l* + »lP <  Mp + Mp-
Verify that eqn (10.4.1) defines a norm on Kn.
Exercise 10.4.9. Let Pn be the vector space of polynomials of degree at most n 
ŵ h coefficients in K Given m ^  n -1-1 distinct points of M. Show

mm |jx-Ai| ^  ||£||.

10.4.2. Various questions on norms
Exercise 10.4-6.Let p €  ]1, oo[, and let q be defined by

--1--
P Q

Show that, for every a and f} in R+,

Exercise 10.4-7. For x in Kn, let

(10.4.1)

Deduce, from the preceding equation, the Holder inequality
n

^\x jV j\ sj \x\p \y\q .

defines
Winter = m ^ l P (Xi) I 1

a norm on Pn.
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Exercise 10.4-10. Let be the space of complex trigonometric polynomials of 
degree at most N and period 1. This is formed of functions from R to C of the 
form

f(x)=  £  aje2̂ *- 
I k\*N

We equip Tat with the norms 

(10-4.2) |/|*=  ( £  ! « / £ > ;) *
\ \M N  0

for k ̂0. Quickly check that the expressions (10.4.2) do define norms. We 
denote by D the differentiation operator from Tyv to itself. Calculate the norms 
\\D\\k+hk and ||P|U,fc, for every positive or zero k.



Iterations and recurrence
We know, from Chapter 9, that elimination can be used to solve linear sys­
tems in a finite number of machine operations. However, there are at least two 
non-elementary difficulties. The first one is that the LU decomposition is ap­
proximately as bulky as the original matrix, and the Cholesky is about half as 
bulky as the original decomposition. However, when discretizing partial differ­
ential equations, we do not even create the matrix as an object in the computer 
memory. We are content to describe it by its action on vectors, and for that we 
do not need the whole matrix in memory, we just need an algorithm.

The second reason is that, even when it is convenient to create the matrix 
on the computer, either as an array of numbers or as a sparse matrix, i.e., by 
giving only the indices and values of its nonzero coefficients, we have to deal 
with another fact: solving a triangular system is not very efficient on parallel 
machines, since we need all the previous results at any given step before we go on 
to the next step. But the essential factor which slows down parallel computations 
is the communication time between processors. Solving a triangular system 
is an essentially sequential task and, therefore, it creates a bottle-neck on a 
parallel machine. Hence, it is important to have alternative ways of solving 
linear systems.

The alternative is to devise an iterative solution, i.e., to replace a process in 
finite terms by a process in infinite terms. This looks like a terribly awkward 
thing to do. We lose the safety of algebra to go into the realm of (approximative) 
analysis. In fact, this process is applied mainly to very large matrices, which 
°̂me usually from an ordinary or partial differential system: we know that we 
ave committed an error when discretizing our problem; therefore, if we do not 
ve our problem exactly, but within an acceptable error, we can safely assume 

this is enough for all of the purposes which we have in mind, 
ft remains to see how to construct such methods.
The following methods which are presented in this chapter: Jacobi, Gauss-Seidel and over-relaxation are somewhat passe, since, nowadays, the favoured

F lve method for solving a linear system is the conjugate gradient in the
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Hermitian case, and its generalizations in other cases. And, to be completely 
true, the conjugate gradient method is a method in finite terms, which is used 
as an iterative method: if n denotes the spatial dimension, it can be proved that 
the conjugate gradient method stops after n iterations; however, in practice, only 
m C n  iterations are used.

However, there are two important ideas which are—still—widely used in prac­
tice. Firstly, multigrid approximations are based on refined versions of Jacobi’s 
method. The second is that, with the use of a pre-conditioner, i.e., an approxi­
mate inverse, iterative methods can be made extremely efficient.

Therefore, some of the more refined and modern iterative methods are treated 
in the problems section at the end of the chapter: Richardson’s pre-conditioned 
method, gradient and conjugate gradient methods, and an initiation to multi­
grids. A much more extensive treatment is given in Canuto et al. [14].

Another reason for studying iterative methods is that they are discrete models 
of differential equations, and they display, indeed, many of the phenomena found 
in differential equations, including exponential growth or decay. Then, they are 
termed linear recurrences, and they are, in fact, the key to the understanding of 
numerical schemes for ordinary differential equations and, in particular, of mul­
tistep methods. Finally, they give us a few explicit, or almost explicit, solutions 
of linear difference equations, which are extremely useful to understand what is 
going on in the discretization of linear partial differential equations. Therefore, 
they are extremely important building blocks.

11.1. Iterative solution of linear systems
Let A be an n x n matrix. Suppose that

(11.1.1) A = M ~ N ,

where M is an invertible matrix. In practice, we assume that the system with 
matrix M is easy to solve, for example, if M is diagonal, tridiagonal or triangular. 
We define a sequence of vectors xk by a given initial vector x° and a recurrence 
relation:

(11.1.2) Mxk+1 = N xk +b.

Suppose that the sequence xk is convergent. Then, if x°° = lim ^oo we ̂ ave 
the relation

Mx°° = Nx°° -f b *=> Ax°° = b.
In other words, if the sequence of xk converges, then its limit is the solution 
the linear system Ax = b. ?

We will ask ourselves several questions about this sequence. Is it convergent 
At what speed does it converge? What choices can we make when decomp°s 
A in the form of eqn (11.1.1)?
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Two examples of iterative methods
For the following two examples we suppose that A is an invertible matrix which 
has no zero diagonal element.

The i-th row of the Jacobi method is written

(11.1.3) anx\ + . . . + «t,i-l^f-i + -f + • • • + =

Knowing xk, we find the value of xk+l by solving each row. We can even solve 
these n equations in parallel.

The Gauss-Seidel method is a modification of the Jacobi method which con­
sists of using the values x f+1,..., xk̂  calculated previously in the i-th equation. 
Consequently, this i-th row is written

We will determine the matrices M and N in each of the cases examined. For 
this we define the following decomposition of A:

(11.1.4) anxk+1 + ... + aM_ixf+/ + au + a<,j+ix*+1 + ... + ainx„  =

(11.1.5) A = D — E — F,

where D, E, and F are given by

(11.1.6)

(11.1.7)

and

(11.1.8) -Aij if <
0 otherwise.

Thus Dis a diagonal matrix, whose diagonal elements are those of A, - E  is lower 
triangular with 0 on the diagonal (in a way, this is the lower triangular part of 
)̂i and —F is upper triangular with 0 on the diagonal (the upper triangular 

Part of 4). With this notation the Jacobi method is written as

Dxk+1 -  (E + F) b,

which corresponds to the choice M = Dand N = + The Gauss-Seidel
“tethod is written as

(D -  E) xk+1 = Fxk + b,
which corresponds to the choice = and N =
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Elementary theory of the convergence of iterative methods
We begin with the following elementary result:
Theorem 11.1.1. Let an iterative method be defined by eqns (11.1.1) and (11.1.2). 
Suppose that there exists a vector norm | • | such that, for the corresponding 
subordinate norm denoted || • ||, we have

(11.1.9) HM " lA1l <  !•

Then, for every initial a:0, sequence (11.1.2) converges. o

Proof. Let B = M~lN and c = M~lb, and let k ^  0. Then it is equivalent to 
write eqn (11.1.2) as

(11.1.10) xk+1 = B x k +c.

Consequently, we have

xk+1 -  x k = Bxk + c -  Bxk~l ( -  xk~r)

for any r ^k. It follows that

xk+1 - x k = Bk ( 1 -  x°).

Consequently, for k >

xk — xl — xj+l ~ ~ X] (xl -  x°) ,
j=e j=e

where by convention, B° = I. The triangle inequality allows us to write

I** -  E  iW  k 1 -  *°| ^  k 1 -  *°|.

This proves that (xk)k̂ >o is a Cauchy sequence, and therefore that it converges 
We can also deduce the convergence result from the fixed point theorem. The 

mapping x Bx + c from Kn to itself, equipped with the norm | • | is a strict 
contraction. Therefore, it has a unique fixed point which is obtained as the lin1̂ 
of the sequence of iterations (11.1.2).

Note that we have obtained a convergence result, which is a result of a top^ 
logical nature, from a hypothesis on the norm of the matrix A, which is a 
pothesis of a metrical nature. This situation is not, in itself, scandalous, but 
are going to show in what follows that we can link topological information 
information which does not depend on the norm.
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Detailed theory of the convergence of iterative methods
The answer to the question posed at the start of this section is summarized in 
the following result:
T h e o re m  11.1.2. The iterative method (11.1.2) converges for every initial x °  and 
for every vector b if and only if p(M~lN) <1. o

This result is often not very applicable since the norms appearing in Theo­
rem 11.1.1 are a lot easier to calculate than the spectral radius. Nevertheless, 
Theorem 11.1.2 is a notable theorem. It is a corollary to the theorem given 
below:
T h eo rem  11.1.3. Let i b e a n n x n  matrix with coefficients in C \  The following 
two assertions are equivalent:

(i) For any x, Akx tends to 0 as k tends to infinity;
(ii) The spectral radius p(A) is strictly less than 1. o

Proof. We show first that (i) implies (ii). Let A be an eigenvalue of A and let 
x be a corresponding eigenvector (of course, x is not a null vector). We have

Akx = \kx.
It is clear that |A| <  1.

Conversely, recall the following first year result: for every square matrix A 
there exists an invertible matrix P, a diagonal matrix D, and an upper triangular 
matrix N  with zero diagonal and commuting with D , such that

A = P~l (D + N)P.
It is clear that the diagonal of the matrix D consists only of the eigenvalues of 
A. Calculating Ak:

Ak = (P-1 (D A N) P) (P"1 {D + N) P) • • • (P"1 (D A N) P )
V---------------------------------- V---------------------------------- '

k identical factors
= P "1 (D A N)k P.

Therefore, it suffices to calculate (D -I- N)k, which the binomial formula enables 
Us to do as follows, due to the commutation hypothesis:

k
un.ll) (£> + N)k = ̂2 ci Dk~jNj.

j=0
Thtic)6 rea(*er may verify N ls nilpotent: Nn = 0, since at each multiplica- 
l0n number of zero diagonals increases by one. Consequently, the sum in 
; Uhl.11) is a sum Qf m0st n terms for k ^  n:

n—1
]r C JkDk-j N j .
j = 0
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Let || • || be a matrix norm such that ||£>|| = p(D) = p{A). This is the case for the 
norms subordinate to | • |p for 1 ^  psC oo. We therefore have the upper bound

(11.1.12) ||(D + JV)‘|| *Y ,C lp { D ) k-t\\Ntf.
j=0

It is then clear that, if p(D) <  1, (D + N)k tends to zero as k tends to infinity. 
In particular, examination of the inequality (11.1.12) shows that there exists a 
constant C <  1 and a constant D , such that

(11.1.13) ||,4fc|| ^ C kD .D

From this result, we immediately deduce Theorem 11.1.2:
P roo f o f Theorem  11.1.2. Suppose that p(M~1N) <  1. Then, with the 
notation of Theorem 11.1.1, B = M~lN and c = M~lb. We have

k-l
xk = Bkx° + J2 bJc' 

j=o
Relation (11.1.13) shows that Bkx° tends to 0 geometrically and that the se­
quence of partial sums tends to the sum of the convergent series
Z ljlo  B*c- To show the converse, we first of all consider the complex case. If 
p(A) ^  1, there exists a n x ^O  such that Ax = Xx with |A| = p(A). If we begin 
with x° = 0 and c = x, the sequence of Xk is given by

* * - ( ! > * ) * .  1

which diverges.
If we consider the real case, two possibilities present themselves: either A 

possesses a real eigenvalue A, whose absolute value is equal to p(A), in which 
case we return to the preceding situation, or every eigenvalue of A of modulus 
p(A) is complex. In the latter case, they appear as complex c o n ju g a t e  pairs. 
We define an operator A on C 1 by the following process of com p lex if ica tion  : 
if x E Rn and y G Rn we let 2 = x + iy which we identify with the vector 
(xj -f from C 1. The operator A operates on C 1 by

A (x + iy) = Ax 4- iAy.

The reader may verify, as an exercise, that A is C-linear. The c h a r a c t e r i s t i c  

polynomial of A is the same as that of A, and therefore, they have t h e  same
1For the reader familiar with the notion of complexifying a real vector space, we return 

the preceding case by placing ourselves in the complexified space, see [59].
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eigenvalues. Let A = /j. + iu = re'e, 0 /  k~ be an eigenvalue of A such that
p̂ A) = |A|. Therefore, there exists a vector z = x + /  0. such that

A (x + iy) = (n + + i .

We have
Ak (x + iy) = A

We deduce, from this, that

Akx = {x + it/)) = i  (A + A .

Similarly,
Aky = (a: + iy)) = ^  (A -  A .

Since 3 A 0, we verify that y ^  0. If we let c = y and x° =0, we see that
k-l 1 k-1

xk = ^2 AJy = -̂2X3z ~
i=o Z1 j=o

which diverges as n tends to infinity. □

Comparison of the norm of a matrix and its spectral radius
We begin by bounding below the norms of matrices by means of the spectral 
radius:
Lemma ILL4- Let A be an n x n matrix with complex coefficients and let || * || 
be some matrix norm on M n(fC). Then p(A) ^ \\A\\.
Proof. Since we are considering the complex case, we know that A possesses 
an eigenvector for every eigenvalue A whose modulus is equal to p(A). Let x 
be such an eigenvector. If the norm that we are considering is a norm which is 
subordinate to TV, it is sufficient to write

P (A)N(x) = N(Ax)^\\A\\n N(x),
and therefore, ||A||at ^  p(A). We are going to prove this result for a matrix 
norm in the following way: the product xx* is a nonzero n x n  matrix. We have

Ax — Ax,
and therefore, on right multiplying by x*,

Axx* — \xx*.
^ence, on using the algebra property,

|A| ||**1 |̂|A||
gives us the desired result. □
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To bound matrix norms from above we restrict ourselves to subordinate norms 
and we begin with a result pertaining to matrices with a spectral radius less than 
1:
Lemma 11.1.5. Let A be an n x n matrix with coefficients in K such that p(A) <
1. For all vector norms M, it is possible to construct a vector norm TV, dependent 
on M and A, such that

M il* <  i-
Proof. Let

oo
(11.1.14) iv  (x) =  M (A>x).

j=o
This expression is well defined for all x by virtue of relation (11.1.13), which 
assures the geometric convergence of the series which defines TV. We verify that 
we have really defined a norm: it is immediate that TV(x) ^  0 for every x. Let 
A be a scalar, then

°° °° m
N (Ax) = ]T  M(A*Ax) ]T  |A| (Aj x) = |A| (x).

j =0 j =0

Finally, if x and y are vectors,

N (x + y) = M (Aj (x + y)) ^  ^  M (Aj x) + M (Aj y) (x) +
j=0 j=0

If N(x) vanishes, then the first term in the series defining TV vanishes, and 
therefore, M(x) = 0, which implies that x vanishes. We therefore see that TV is 
a norm on Kn. For N(x) = 1, we calculate TV(Ar):

oo oo
(11.1.15) N (Ax) = ^  M(A-,+1x) = J T m ( A j x) =  1

j =0 i= l
As a result
(11.1.16) PHjv = max AT (Ax) = max (1 -

N(x)=1 N(x)=l

The function M attains its minimum on the compact set {x : N(x) = 1} an(̂ 
this minimum is not zero. Consequently, we have proved that ||̂4||tv < L
From the preceding result, we are going to obtain a precise lower bound on the 
spectral radius in terms of a well-chosen subordinate norm:
Theorem 11.1.6. For any matrix A e A4n(K) and any e >  0, there exists a vector 
norm TV dependent on A and on e, such that
(11.1.17) +

o
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proof. Let B = A(p(A) -f e) 1.It is clear that <  1. We can therefore
apply the preceding theorem to B and there exists an N, such that

11*11* <  1-
Consequently,

I M I I j v  =  1 1 * 1 1 *  (PM  +e)<p(A) + e.
This gives us the result. □

We will now construct an example of a vector norm N for which 11.411 <  1 when

/1/2
“ VO !/2/

We choose
N (x) = a|a;i| + \x2\■ 

Let (1/2) + e = p & ] 1 /2,1[ and seek an a, such that

^- + 1025x2 + ^  p{a\xj| + |ar2|).

It suffices to verify that

-|*i| + 1025a|x2| + <  (| + ea) lxil + Q  + e) H -

We see that it is sufficient that

1025a <  6.

If we take e = 10 *, for instance, which is not very small, we are led to choose 
a = 10~26. The unit ball for this norm N is, therefore, the set

{ x e R 2 : 10“26 |#i| + |x2| ^  1}.

Geometrically, this unit ball is a lozenge whose diagonals are the axes. The 
diagonal along x\ has 1026 times the length of the diagonal along x%- It is 
quite difficult to draw since 1026 is a very large number: recall that Avogadro’s 
number is about 6 x 1023 and this is the number of molecules contained in about 
p  litres of the air which we breathe. Suppose that the small diagonal of our 
°zenge measures 1 micron. Then the large diagonal has a length of about ten 
y 11 years- We would need the aid of the drawing instruments of that celebrated 
Clnema hero ET to be able to draw this type of figure.

Finally, we prove a limit theorem which allows us to recover the spectral 
I  uis of a matrix from any norm:



266 11. ITERATIONS AND RECURRENCE

Theorem 11.1.7. Let A be an n x n matrix with complex coefficients. Then, for 
every norm || • || on M n(C),

(11.1.18) Urn §Akf k =p(A).

Proof. For every vector norm M, ||A||m ^  p(A), and for every e >  0 there 
exists Ne such that 11̂41 1 ^  p{A) 4- e. We easily verify that p(Ak) = p(A)k by 
referring to the Jordan form of A. Consequently, we have the inequalities

(11.1.19) p  (4)* ^  \\A* ^  (p (4) + e)k.

For the first inequality we have used Lemma 11.1.4 applied to Ak and for the 
second the algebra property of subordinate norms has been employed.

If || • || designates some norm (not necessarily a matrix norm) on Aln(C), 
there exists a constant Ce for every e >  0, such that, for every matrix B

cr1 Plk^llsn^^iiBii^.
Using the inequalities (11.1.19), we obtain

C7 lp{A)k ^  CT 1 K I U  ^  \\Ak\\̂ c ( ||4*||„ € ^  Ce (p{A)

We raise these relations to the power 1 / k and we get

(11.1.20) C : l'kp{A) ^  114*11 ^cy*0>(e4) + e).

Given a >  0 we choose e = a/2. There exists a Ce for which eqn (11.1.20) holds 
for every k ^  1. Since C XJ k tends to 1 as fc tends to infinity, we can find an i{a) 
such that

C\>k {p (A) + e) ^  p {A) + a, V A I (a) and C~ l/kp (A) >  p (A) - a. 

This proves the desired estimate.

Remark 11.1.8. It is not necessary to work in M n(C). The result is st il l true 
in A4n(R) but needs a more delicate argument using norms on the com p lex if ied  
space.

Some sufficient conditions on the convergence or divergence of iterative 
methods
We begin with a theorem on iterative methods for Hermitian matrices:
Theorem 11.1.9. Let A be a Hermitian positive definite matrix, with the decom 
position A = M -  N, where M is invertible. If M + N* (which is still HerflUti*® / 
is positive definite, then the iterative method (11.1.2) converges.
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proof. First of all, we verify that M + N* is still Hermitian:

M +  N* = M +  (M -  A)* = M + M* -  A,

which is Hermitian. We equip C " with the norm |.t]_4 = and this
(astu te) choice allows us to prove the theorem. Note that M~lN = I  — M~XA 
and therefore,

\\M ~1n\\a = max {\x -  M~1Ax\a / = 1}.

But, if we let M~lAx = y which is equivalent to Ax = My and x*A = y*M*, 
then

(x* — y*) A(x — y) = x* Ax — x* Ay — y* Ax + y*Ay 
= 1 -  y*M*y - y* My + y*Ay 
= 1 -  y* (M + M* -  A) y.

The hypothesis that M* + iV is positive definite implies that

min y* (M + M * — A) y >  0.l*U=i
y=M~1 Ax

This proves the theorem. □

We are going to apply this convergence criterion to the Gauss-Seidel method 
and to a more general method, called the relaxation method. Suppose that 
A = D - E - F. The Gauss-Seidel method involves writing the iterations in the 
form

(D -  E) xk+l = Fxk + b.
We see that all of the matrix D acts on the vector xk+l . We introduce a param­
eter a in a way so that a part of D acts on the vector xk+1 and the rest on xk. 
We thus write

(aD -  E ) xk+l + ((1 - a ) D ~  F ) xk = b.
Classically, we denote a = l/co and the relaxation method is written as

The matrix M is equal to (D/uj) — E and the matrix N is equal to /uj) +
F- The matrix of the relaxation method is

I  £" = ( § - £) " ( i ^ D + F )-
,note that for ui = 1 the relaxation method is equivalent to the Gauss-Seidel

Method.
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We have, up till now, supposed D to be the diagonal of matrix A, but we 
can decompose A by blocks of size n* x n ,̂ with

N
5 > i= « -
3-1

In this case, matrix D is block diagonal and has as diagonal blocks the diagonal 
blocks of A. If A = A* then D = D* because the same is true for each of 
the blocks An. If A is also positive definite, the same is true of the blocks An. 
Indeed, let

( x\ \

be the decomposition of vector x by blocks of rii rows. If all the blocks of x are 
zero except the z-th then

x* Ax = x*AnXi,
which shows that An is positive definite and so is D.

It goes without saying that, in this case, - E  is formed from blocks situated 
under the diagonal of A, and that — F is the matrix formed from blocks situated 
above the diagonal of A.

With a decomposition such as A = D - E — F from the block form of A, we 
define the block Jacobi method, the block Gauss-Seidel method, and the block 
relaxation method in a completely analogous way to the element-wise methods 
of the same name.

We can now state a result on the convergence of the relaxation method, by 
elements or by blocks, when A has the right properties:
Theorem 11.1.10. Let A be a positive definite Hermitian matrix. If tj e ]o,2[, 
the element-wise or block relaxation method converges.

Proof. We have

M + N* UJ OJ
By construction, F* = E and D* = D. Consequently,

M + N* (2 -  uj) D
lj

For M 4- N* to be positive definite, it is necessary and sufficient ^  
((2 — u)lu)x*Dx is strictly positive if and only if x is nonzero. Under 
stated hypotheses, D is positive definite and therefore, M + N* is P()h ^  
definite if and only if (2 - u)/u is strictly positive, that is, if a; € ]0, I*  ̂
therefore conclude the required result with the aid of Theorem 11.1-9.
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It is generally more difficult to apply Theorem 11.1.9 to Jacobi’s method. 
The proof of convergence often uses the particular properties of A.

We now give a lower bound for the spectral radius of the matrix which 
leads to a sufficient condition for divergence.
Theorem 11.1.11. For any uj ± 0, we have

p(Cu)̂ |w- 1|. o
Proof. The determinant of a block triangular matrix B  of size n* x r i j , is equal 
to the product of the determinants of its diagonal blocks. This result is shown 
in Exercise 3.3.4.

We apply this result to the calculation of det :

det det + F ) 

de. ( g  -  E) ( i ) " -
= (1 — W)" •

Moreover, since the determinant is the product of the eigenvalues of a matrix, 
we see that

p(£w)n >|det(C)|.
We conclude that p(Cu)n ^  |1 — uj\n and we obtain the conclusion of the theorem.

□

We now cite two results which we will not prove. For their proofs we refer to 
the book of P. G. Ciarlet [16, pp. 105-9]:
Theorem 11.1.12. Let A be a block tridiagonal matrix. Then the spectral radii 
of block Jacobi matrices and the corresponding Gauss-Seidel matrices are linked 
by the relation

P(C1) = P(J)\
from which we see that the two methods converge or diverge simultaneously. 
When convergent, the Gauss-Seidel method converges more rapidly than the 
Jacobi method. o

We note that there exist matrices A for which the Jacobi method converges 
and the Gauss-Seidel method does not converge.

We can also compare the Jacobi method and the relaxation method. Again, 
from [16] we have
Theorem 11.1.13. Let A be a block tridiagonal matrix such that every eigenvalue 
0 the corresponding block Jacobi matrix is real. Then the block Jacobi method 
^  ^°ck relaxation method diverge or converge simultaneously for 0 <  uj <
‘ hen they converge, the function u E ]0,2[ p(Cu) has the shape given by 
gUre 11-1 > where the optimal parameter of relaxation ujq is given by
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Figure 11.1: The spectral radius of the relaxation matrix as a function of uj.

Figure 11.1 allows us to see that the optimal parameter lj0 is strictly greater 
than 1. It is because of this that the relaxation method is often called the over­
relaxation method. The shape of this figure shows that it is better to overestimate 
the relaxation parameter than to underestimate it.

The combination of Theorems 11.1.10 and 11.1.13 confirm that, for a pos­
itive definite block tridiagonal Hermitian matrix A, the methods of Jacobi. 
Gauss-Seidel, and relaxation for 0 <  uj <  2, converge. Furthermore, the op­
timal relaxation parameter is given by formula (11.1.21). If p(J) >  0, then 
p(CU0) = wo -  1 <  p(Ci) <  p(J).

We will show later the advantage of the over-relaxation method compared to 
the Jacobi method and the Gauss-Seidel method.

11.2. Linear recurrence and powers of matrices
In the vector space O 1 we consider the linear recurrence

(11.2.1) £ A jxJ+p = 0,
j=0

where the matrices Aj are given in AIn(C) and the linear recurrence is initialized 
by giving p vectors x* for j  = 0 , . .. — 1. We suppose, furthermore, that _
matrix Ap is invertible. If we let Bj — —A~l A j , and if we define a vector y
Cepn by
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x* \ 
xj+1

V^+p-1/
we see that recurrence (11.2.1) can be put in the form

yJ+1 =
where the matrix C is given by the following block decomposition:

(11.2.2)

/0  / 
0 0

\Bo B\

0 ••• 0 \ 
I

0 /
B p - iJ

Matrix C is called the companion matrix of the recurrence (11.2.1). The solution 
of relation (11.2.1) is given by

yk = C ky°.
The choice of C as the number field is justified by the use of a Jordan de­
composition; however, all the results are also true for real matrices. Using the 
Jordan form of C we have, at least theoretically, all the solutions of the recur­
rence. In particular, seeking the eigenvectors of C is equivalent to seeking vectors 
x0,...,^”1, such that

xl = Ax°, 
x2 = Ax1,

xp~l = \xp~2,
p-1

Bjxj =Xxp-\
j=o

^ is equivalent to find a vector x0, such that

; = o

The equation
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is the characteristic equation of the recurrence (11.2.1). Therefore, it is this 
which gives us the eigenvalues of C. The reader can verify that

det A — 7  det (AI — C ),

where 7  is a constant. If all the eigenvalues of C are pairwise distinct and if 
n = 1, then the solution of recurrence (1 1 .2 .1) is a linear combination of the 
sequences (AA:)a.>0, where A runs through the eigenvalues of C.

If n = 1 we consider the decomposition of C in Jordan blocks. We recall 
that there exists a transformation matrix P such that C — P~1JP , where J is 
a block diagonal matrix, each of the diagonal blocks being of the form

J (A, 771) =

If C has Jordan blocks of size strictly greater than 1, then our procedure for 
constructing particular solutions does not provide us with enough of them which 
are independent. It is simple to calculate the powers of

/A 1 0 ... 0 \
0 A 1 0

0 0 A 1
v> ••• 0 \ j

J (A, 771) =  AIm + J (0, 771).

We therefore have
min(m—l,k)

(11.2.4) J(\,m)k =
e=o

Each of these powers J(0, m) is given by

(11.2.5) (7(0,110*)

In this case, the examination of formula (11.2.5) shows that it is necessary to 
add the particular solutions of the form [ti A*)fc>0, where j  is an integer between 
1 and 771-1, and m is the multiplicity of a Jordan block associated with A.

Thus, we can answer some questions concerning the recurrence (11.2.1). ff w( 
demand that the solution xk tends to 0 for all initial data as k tends to infin1 y> 
the study of Section 11.1 shows that it is necessary and sufficient that p\y)
1. If we demand only that the solution xk to the recurrence (11.2.1) remains 
bounded for all initial data as k tends to infinity, we can state the necessary  ̂
sufficient condition, which will be proved in Section 17.3, Lemma 17.3.1 
and, for every eigenvalue A of modulus 1, the corresponding Jordan blocks m 
be of dimension 1. This same result is also proved in Subsection 3 .3 .6 .
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11.2.1. The spectrum of a finite difference matrix
We have already met, in Subsection 4.6.2, the following matrix which arises from 
a finite difference problem:

H,2. LINEAR RECURRENCE AND POWERS OF MATRICES

2 -1 0 0 ••• 0\
-1 2 -1 0 0
0 -1 2 -1 0

0 -1 2 -1
0 0 -1 2

Seeking an eigenvalue of this matrix corresponds to writing, for a scalar A,
2#i — x2 = Axi,

-x\ + 2x2 -  xs = Ax2,

(11.2 .6) — Xj-i + 2Xj — Xj+1 = Axj,

Xn—i “I- 2x^ — \Xfi»
These relations fall into the class of linear recurrences, with the condition that 
xq = 0 and there existing a A such that xn+i = 0. Matrix A is real and 
symmetric, and, therefore, all of its eigenvalues are real. Hence, we will only 
concern ourselves with real A. The recurrence (11.2.6) can be rewritten as

Xj+1 + (A -  2) Xj + Xj-1 = 0
and its characteristic equation is
(H.2.7) -f- (A — 2) p -T 1 = 0.
The discriminant of this second-order equation is

A = (A -  2)2 -  4.
^ ^ t ]0,4[, A is positive and eqn (11.2.7) has two distinct real roots whose 
Product is equal to 1 . We denote the root with the largest absolute value by p+ 
and the other by p_. We have

Xj = ap+ H- bpL.
Th ' * •e nutial condition x$ forces a = —b. The condition xn+i = 0 is satisfied if 
a(P+ 1 - p™+1) = 0. This is only possible if a = 0, which would imply that 
j - 0 for every j. This choice of A is impossible since a zero vector is not an 
Senvector. If A = 0 or A = 4, the solution of the recurrence is of the form

Xj = apj -b bjpj ,
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where p is the double root of eqn (11.2.7). The initial condition forces a = 0 and 
the final condition forces b = 0. We again have a contradiction, and we must 
choose A €  ]0,4[. In this case, the roots of eqn (11.2.7) are complex conjugates 
of modulus 1, which we denote by p = e10 and p. These solutions have the form

Xj = apJ -1- bp3.

The initial condition forces

which implies that

The final condition forces

a = —6,

Xj = 2ai sin (jO).

2aisin((n + 1)0) = 0,
which is possible if we have

n + 1
From relation (11.2.7) we get the corresponding value of A:

A = 2 -  = 2 - e w -  e~ie = 2 -  2 cos <9
P

The sine function is positive and strictly increasing on the interval [0 ,7r/2] 
and we have thus obtained n distinct eigenvalues. So, we know that we have 
found all the eigenvalues of A.

We will apply this result to the methods of Jacobi, Gauss-Seidel, and relax­
ation for A. The Jacobi method is given by the decomposition
(11.2.8) M = D = 2J and N = E + F = 2 I-A .

Consequently, the eigenvalues of the Jacobi matrix J = M~lN are

1 - . . o / \ ( m7r \= 1 - 2  sin2 ( ------ -T I = cos --- 7 I .\2(n+ l)y \7i 1 /
From Definition 10.2.1, the spectral radius of the Jacobi matrix is, therefore.

p(J) = max cos1<m < n \
= c o s f - ^ T V  \n + 1 / \n + l j

Therefore, for large n, we have the truncated expansion
t 2

p (J) = i -
7r

2 (n + l);
+ 0(n~4).
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From Theorem 11.1.12, we have

P(Ci ) = p(J)2 = 1 -  - - 5  + O (n“4) .
(« + 1)

The optimal relaxation parameter gjo, determined in Theorem 11.1.13, is given
by

-i
u>o =

i + s j i - p { jy
2ir

= 2 1 + — + 0 (n-2) n+ 1 v ’

= 2 ------~ + 0 (n -2).n+ 1 v ’
Consequently, the optimal spectral radius p(£Wo) = |w0 - 1| is

= - + 0 (n~2).

To see the numerical consequences of these different estimates, we estimate 
the number of iteration steps that are needed to halve the error using any of 
these methods. With the notation of the proof of Theorem 11.1.2,

k-1
xk = Bkx° + ^2 b Jc

a n d oo
x°° = lim xk = Bj c.k—>oo /-—J

j = 0
Therefore, the error is given by

oo
x°° - xk = ^2 B j c - B kx°.

j=k
For every e >  0, there exists a vector norm N such that ||jB||at ^  We
therefore have the estimate

N(*°° - xk) ^  ( p(B) + e)kN (ar°) + £  ( ) + e)j N (c)
j=k

= (p(B)+e)k N(c)
1 -p(B) - c + N(x°) .

therefore see that, to divide the error by 2 , we must have

k In (p (B ) + e) ^  -  In 2
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and therefore, it is necessary that

"  hip (BY

If there exists a norm N such that \\B\\m = p(B) (which is the case when B  is 
Hermitian and the norm N is the Hermitian norm), then this estimate is optimal. 
We will be content with this estimate in what follows.

We estimate -  In p(B) when B = J, B = C\, or B = Cuj0:

i / ̂  x , A 2?r \ 2tt

We see that it needs about 2(n + l)2 ln 2/7r2 steps of the Jacobi method to 
divide the error by 2 , (n + l)2 ln2/7r2 steps of the Gauss-Seidel method, and 
2 (n + 1) In 2/7r steps in the case of relaxation with optimal parameter. Going 
from Jacobi to Gauss-Seidel allows us to divide the number of steps needed by 
a constant factor, whilst going from Gauss-Seidel or Jacobi to relaxation with 
optimal parameter gains an order of magnitude.

It is important to note that exploiting the structure of the matrix and the 
astute introduction of parameters in the methods leads to considerable gains in 
numerical efficiency. The method of (over-)relaxation is only one of the methods 
which allow such gains. Some other methods are studied in the forthcoming 
exercises.

11.3. Exercises from Chapter 11
11.3.1. Finite difference matrix of the Laplacian in a rectangle
Consider the system of linear equations

(11.3.1) "f Wĵ -i J “h Ui—i j  “h tljj—i — h f i j,

where i varies between 1 and m and j  varies between 1 and n. We let

u0,j =  ̂ m+ ljj = ui,0 ~ ui,n+1 ==
so that the system (11.3.1) is well defined for i = 1 or m and for j  = 1 or n'
Exercise 11.3.1. Explicitly write down the relations satisfied by U ij when i - 
or m and when j  = 1 or n.
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Exercise 11.3.2. How many unknowns does the system (11.3.1) have, and how 
many equations?
Exercise 11.3.3. Give a numbering
(11.3.2) k = K(i,j)
such that the matrix of the system (11.3.1) is in block tridiagonal form. Deter­
mine the blocks explicitly.
Exercise 11.3.4- Show that, for every (n»,j)i^$<m €  Kmn, we have

)  ] U i j  ( — 4U i j  +  Ui+ i j  +  /U'i,j+1 +  U i - l J  4- U i j - i )  ^  0. 

l^j^n
For which u does this expression vanish?
Exercise 11.3.5. Choose a direct method to solve this system. Justify your 
answer by an evaluation of the operation count necessary for its solution.
Exercise 11.3.6. Show that every vector
(11.3.3) U ij = sinm/isin/?j/i,
where h is a real positive number, satisfies
(11.3.4) 4Ui,j “h ~1“ lli—i j  — 1 — Au^j ?
for 2 ^ i ^ m - 1 and for 2 ^  j  ^  n -  1. What is the value of A?
Exercise 11.3.7. Show that, for certain choices of a and /?, the vectors U ij, given 
by eqn (11.3.3), also satisfy eqn (11.3.4) for i = 1, i = m, j  = 1, j  = n.
Hint: to do this, use the expression for A found previously and substitute into 
eqn (11.3.4) for the particular values of i and j  considered here.
Exercise 11.3.8. Give all the eigenvalues and all the eigenvectors of the matrix 
A of the system (11.3 .1).
Exercise 11.3.9. Calculate the eigenvalues of the Jacobi matrix of the system
(11.3.1) from those of A. From this, deduce the spectral radius of J for large m 
and n.
Exercise 11.3.10. Evaluate the condition number

cond2 (A) = ||j4||2 \\A l \\2.

11-3.2. Richardson’s and pre-conditioned Richardson’s methods
Definition of Richardson’s method
Etercise 11.3.11. Let A = M -  N be the decomposition given in eqn (11.1.1) 

define the residual
rk = b -A x k.
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Show that relation (11.1.2) is equivalent to

M (x* +1 -  xk) = rk.

Exercise 11.3.12. We wish to accelerate this iterative method. Let a k be a r e a l  
parameter; we shall consider the iterative method

(11.3.5) M {xk+l - x k) = akrk.

This iterative method is called the pre-conditioned Richardson’s method- 
stationary if a k does not depend on fc, dynamical otherwise. If M is the iden­
tity, the method is called Richardson’s method. The matrix M is called the 
pre-conditioner. Show that if a k does not depend on fc, then eqn (11.3.5) can be 
written as

Mzk = rk
(11.3.6) xk+1 = x k + a z k,

rk+1 = rk — aAzk,

and that the matrix of this iterative method is aM~1A. Show that the 
methods of Jacobi, Gauss-Seidel, and the relaxation method are Richardson’s 
methods.

Analysis of the stationary pre-conditioned Richardson’s method
Exercise 11.3.13. Define the Cayley transform on matrices L such that I - L is 
not singular by

r  {L) =  ( /  — L)~l (I + L).

What is the inverse of T(L)? On which set of matrices is it defined? Show that 
the spectrum of a matrix L is contained in the open unit disk {z : \z\ < 1}  ̂
and only if the spectrum of T(L) is contained in the open right-hand side plane 
{z : 9tz >  0 }.
Exercise 11.3.14. Find the Cayley transform of I — aM~lA.
Exercise 11.3.15. Infer from Exercise 11.3.14 that a necessary and sufficient 
condition of convergence of the method (11.3.6) is that the eigenvalues Aj of the 
matrix M~l A satisfy the following condition:

a\Xj\2 <  25RAj.

Exercise 11.3.16. Show that it is possible to find a such that the method 
is a convergent method if and only if the spectrum of M~lA is include 
{z : M z> 0 }.
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Exercise 11.3.17. Assume that the spectrum of M~lA is included in ]0, oo[. Let 
its lower bound be Amin and its upper bound be Amax. We wish to choose a 
parameter a for which the convergence is fastest. Show that the best a is given

Amin H“ Amax
E x e rc is e  11.3.18. Calculate the spectral radius of I — a*M~l A in terms of Amin 
and Amax*
E x e rc is e  11.3.19. Assume that M~l A is symmetric and positive definite; denote 
by || • || the matrix norm subordinated to the Euclidean norm. Show that

(11.3.7) ||/ -  a'M~lA\\ =
^max I Amin

The right-hand side of eqn (11.3.7) will be called p*.
Remark 11.3.20. It is therefore important that Amax/Amin be as close as possible 
to 1. This means that if M~l is a good approximation of A-1, we stand to gain 
a lot by applying pre-conditioned iterative methods.
Exercise 11.3.21. Assume that M and A are symmetric positive definite. Define 
a scalar product on Rd by

(x,y)M = x
and denote by \ • \m  and || • ||m the corresponding vector and operator norms. 
Show that M~l A is self-adjoint with respect to this scalar product. Show that

P * Tif—l a ii Amax Amin - a  M M||M = t--- —t--- •
''max i Amin

Analysis of a dynamical Richardson’s method: the pre-conditioned steepest 
gradient method
Exercise 11.3.22. Consider zk+l given by the method (11.3.6) as a function of
a; assume M to be symmetric positive definite and A to be regular. Show that
* does not vanish, there exists a number a k at which a i-» \zkJtl\2M reaches its

onnimum, and give the expression of ak. Give also the value of zk+l and show 
that

(11.3.8) M L - I * * ”!I2 11M _ [{zk)T Azk)
2

M l ’ 1((*‘)T ATM~1Azk) \zk\M

delude that the sequence |z*|m converges.
11.3,23. Assume that A + AT is positive definite, and let j3 >  0 be such

z t A z  ^  0 \ z \2m  .
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Show that

((zk)T AzkY U* I4M >  Q \%k 1̂
,2 ^ c r  Im »(2 * ) 1 ATM~1Azk \\ATM

and conclude that zk converges to 0 and hence, that xk converges to x = A ~ l b.

Exercise 11.3.24• Assume that A is symmetric positive definite, and let B be 
the M-symmetric positive square root of M~lA (see Subsection 3.3.5), i.e.,

B2 = M~lA and MB = B t M.
Show that the right-hand side of eqn (11.3.8) can be rewritten as

__________M i __________
( M ~ 1A B z k ,Bzk)M , B zk)M 

and infer from the Kantorovich inequality (3.3.10) that
y*+i| ^  P*

ak =

I \M ^  H \ IM *
Exercise 11.3.25. Define the Richardson steepest descent method as the following 
algorithm:

rk = b — Axk,
( r * )V

(rArk 
xk+1 = xk + akrk.

Show that, if A is symmetric positive definite, then the error ek -  satisfies 
the estimate

Remark 11.3.26. The method of Exercise 11.3.25 is simpler than that of Exer­
cise 11.3.24 with M — I because we have been able to exploit the sym m etry of 
A.

11.3.3. Convergence rate of the gradient method
Exercise 11.3.27. Let A be a symmetric positive definite real d x d  matrix. Show 
that it is equivalent to solve
(11.3.9) Ax = b
and to find a minimizer of the function

V •-> \ y T  A y  -  yTb = f  (y)

over Rd.



11.3. EXERCISES FROM CHAPTER 11 281

Exercise 11.3.28. Calculate the gradient v = Xf(y) and find the value a which 
minimizes

a ^  f  (y — av).
Exercise 11.3.29. Consider the algorithm

(11.3.10)

r° — b — A:r°,

x* +1 = xk + akrk, 
rk+i - b -  Axk+l

Let x be the solution of eqn (11.3.9). Show that the error ek 
the relation

efc+1 = (/ -  akA) ek.

= xk — x satisfies

Let A = Amin and p — Amax be the smallest and the largest eigenvalues of A, 
respectively. We will show that the rate of convergence of the algorithm (11.3.10) 
is no better than

Exercise 11.3.30. Let u be an eigenvector of A relative to the eigenvalue A and 
let v be an eigenvector of A relative to the eigenvalue p. We will assume that u 
and v are of Euclidean norm 1. Show that, if e° belongs to the space spanned 
by u and v, then ek also belongs to that space, for all integers k.
Exercise 11.3.31. Write

ek = xku + ykv. 
Assuming that x° and y° do not vanish, show that

yk+l _  A2 xk 
x * +1 ii2 yk

Exercise 11.3.32. Writing, from now on,
y 2k y2 k+ l

~̂2k ~ x2k+i ~

^ c u la t e  y‘2k+2/y2k [n  terms of A, /i, and p.
tu ercise U-3.33. Show that this ratio is maximal for the choice p = \/p and 
at it is equal to the square of p*.

H-3.34. Show that the method (11.3.10) is a Richardson’s steepest 
, *jnt method with M = /, and hence, that the convergence rate is, at most, 
| Ua to according to Exercise 11.3.19.
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11.3.4. The conjugate gradient
Let A be a positive symmetric definite d x d real matrix. Let

f(y) = \yTA y - b Ty.

We denote by x the solution of Ax = 6, where x is the minimizer of / over 
Rd. The Euclidean scalar product is denoted by (•, •), with corresponding vector 
norm | • | and operator norm || • ||. The scalar product (*, •)a is defined by

(•£> y)a = Ay,
and the corresponding vector and operator norms are denoted by | • \A and || • ||̂.
Exercise 11.3.35. Given p° and x° in Rd, we seek a sequence of vectors pl ,...,pk 
and a sequence of reals a0,..., ak such that, for all j  = 1,..., fc, the minimum 
of / over the affine space

3
V,=I° + 0 V

i= 0

is attained at x° + a°p° + ... 4- cx?p?. Give the value of a 0 in terms of p° and 
r° = b -  Ax°. Show that the sequence (p*)j must satisfy the relations

{pj ,pi)A =0,

and the sequence aj is given by

In order to define an iterative method, we must give an initialization and 
a way of generating p* +1 in terms of pk. Therefore, we define the conjugate 
gradient method by the following algorithm:

(11.3.11) p° = r° — b — Ax°,
and while pk does not vanish:

(11.3 .12) 0 II
^

 
If

(11.3.13) x* +1 = a kp k ,

(11.3.14) rk+1 = a kA p k ,

(11.3.15) r , v )
Ip* I2

(11.3.16) p k + l  _  r*+l +  0 k + l p k
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Conjugate gradient as a direct method
Exercise 11.3.36. Show that eqns (11.3.15) and (11.3.16) imply that

{pk,pk+1)A = 0 .

Show that eqns (11.3.12) and (11.3.13) imply that

(/,r*+1) = 0 .

Show that, when the index k is replaced by k -  1 in eqn (11.3.16), it implies that

(pky ) A =\pk\2A-
Show that eqn (11.3.12) implies that

(r*+1, r * )= 0 .

Conclude that we have the following alternative expressions for a k and (3k:

Ip*!,
and (3k =

r*+l|

Exercise 11.3.37. Assume that pk vanishes. Then, show that rk 1 = —f3kpk 1 
and \rk\2 = -/3k(rk~1,rk), so that rk vanishes.
Exercise 11.3.38. Show, by induction on fc, that the following relations hold:

( » V )  =0, {pi,Pj )A =  0, V »  =  0,...,fc-1, V j  =  « +  l,...,fc.

Exercise 11.3.39. Show that the conjugate gradient method converges in a finite 
number of steps. Give this number in terms of the dimension d of the space.

Conjugate gradient as an iterative method
When the matrix A is very large, it does not make much sense to perform 
e nujnber of steps which are required by the conjugate gradient method to 

guarantee us an exact solution—up to round-off error. In modern codes, the 
Conjugate gradient is viewed as an iterative algorithm, and its rate of convergence 

be analysed with precision.
Show that xk+l — x° is the orthogonal projection of x-x° onto 

tn f ? aCe sPanned by p°,... ,p*, where the orthogonality is taken with respect 
i e scalar product (*, -)̂ .
i8P^e*5e Let Kk+i(r°) be the space spanned by r°, Ar°,..., Akr°. This
K called a Krylov space. Show that the span of p°,...,pk is equal to
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Exercise 11.3.42. Show that any y 6  Kk+i(r°) can be written as
k+i

y = Y l i i A1 ( ~ x°) •
i-1

Exercise 11.3.43. Let PJ+1 be the subset of P*+i formed from the polynomials 
P of degree at most k + 1 such that P(0) = 1. Show that

\x~xk+1\A ~min { \P(-A) (x — x°) 1̂ : fePJJ+j}.
Denoting the eigenvalues of A by Ai,..., Â , show that

(11.3.17) \p(A)(x-a;°)|^ ^  max.p(Aj) |x -  z 0|̂  , Vp €  P*+1.
1 ^ d

Exercise 11.3.44• Let Amin and Amax be the smallest and the largest eigenvalues 
of A, respectively. Let Qk+i be the Chebyshev polynomial of degree 1 defined 
in Theorem 5.2.4. Define a polynomial P by

P(t) = Qk+ Amax 4" Amin 21

) /
I Am ax 4“ Am

Qk+ !( ^ _  \ . ) *V ''max ''min /Amax Am}n

Show, with the help of the recurrence relation (5.2.4), that

^  ( Amax 4" Amin A
Qk+l I a— r r -  J\ ''max /vmm /

(11.3.18) / , A A ---x 2*+2\ ,

:) )(=  2 1 + \ A  max n
v A  max +  aA  n

\/Amax 4“ y /X  n
v/A max y/\r

Amin A 

Amin /

fc+1

Exercise 11.3.45. Infer, from eqns (11.3.17) and (11.3.18), that the conjugate 
gradient method converges at a rate which is, at most, equal to

\ A  max v/An

%A  max +  \ A  n

Pre-conditioned conjugate gradient
An improvement over the conjugate gradient method is the pre-conditioned con 
jugate gradient: assume that M is a symmetric positive definite matrix  s 
that linear systems with matrix M are easy to solve. Also assume that M 
reasonably small. The pre-conditioned conjugate gradient algorithm is de 
by

(11.3.19) r° = b -  Ax°, p° = z° = M~lr°,
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and while pk does not vanish,

xk+1 = xk + akpk, 
r k+ i = rk -a kApk,

M zk+ i = r k+1,
Ok+l _  \Z >T )

(zk,rk) 
p fe+1 = ^ +1 + /3*+V.

Exercise 11.3.46. Show that the analysis of Exercises 11.3.36 to 11.3.45 can be 
entirely reproduced in the pre-conditioned case, up to the following changes: 
the Euclidean scalar product has to be replaced by the scalar product x, y 
xTMy = (x, y)M in appropriate places, the matrix A must be replaced by M~lA 
and the residual rk by zk = M~lrk. Show that the convergence rate is then

11.3.5. Introduction to multigrid methods
The multigrid method proposes to correct the bad features of classical iterative 
methods for systems coming from the discretization of partial differential equa­
tions. It is a recursive iterative method, the recursion being performed on the 
scale of the spatial discretization.

It applies to discretizations of elliptic partial differential equations, or prob­
lems that can be reduced to them, and more generally to network problems, 
structural problems and many more. But we shall keep to the simplest case: we 
just want to find a fast iterative method for solving

x/Amax ( M - ' A )  -  \/Amin (M -M )
\/Amax (M -1A )  +  \ A n in  ( M " M )  '

A^x - b,
Wlth -4.v being the (N- 1) x (TV -  1) finite difference matrix given by

2 - 1 \ 
-1 2 -12
- 1

\

(11-3.20) = N2
-1 2 -1

-1 2/
I  Tli  ̂main idea of the multigrid method is that some classical iterations, such 

arriped Jacobi iterations (11.3 .2 1), act as low-pass filters: they significantly
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damp the high frequencies, whilst the low frequencies are not altered much by 
one iteration step; therefore, if we want to efficiently reduce the residual, after 
it has been, more or less, cleaned from its high frequency components, we will 
make a correction on the low frequency modes, using the coarse grid, i.e., a grid 
having a space step which is twice as large.

In the bigrid method, we suppose that N is even: we do a damped Jacobi 
iteration with an appropriately chosen parameter on the fine grid (h = 1/iV); 
then we lift the residual to the coarse grid (h = 2/N); we solve an equation 
on the coarse grid, and we interpolate the solution on the fine grid to obtain a 
correction on it.

The beauty of the bigrid method is that the spectral radius of the matrix of 
the iterations does not depend on the space step. However, we could do more 
than one sweep of damped Jacobi iterations on the fine grid; we could also replace 
the coarse grid resolution by some other algorithm, for instance, some iterative 
method steps.

If we assume that N is a power of 2, the idea of the multigrid method is 
extremely simple: instead of solving on the coarse grid, we do one, or several, 
damped Jacobi sweeps, and we correct using an even coarser grid, on which we 
do a sweep, and so on, until we reach a very simple grid which could have only 
one point, and on which the resolution is trivial; then, we successively interpolate 
the corrections on all the finer grids, possibly doing more sweeps at each pass.

Many combinations are possible, and multigrid methods are still an active 
research subject. They are fascinating objects, and they are very close to the 
ideas used in a Fast Fourier Transform, and also in wavelet algorithms.

We will only treat the description of the bigrid method and the reason for its 
remarkable convergence. The multigrid method is even more beautiful: we just 
give a few indications at the end of the problem, since it is technically heavy to 
prove anything about multigrids.

Damped Jacobi methods
Let A be an arbitrary d x d symmetric positive definite matrix. Write A = 
D — E — F, with the notation of eqn (11.1.5). A damped Jacobi iteration is a 
generalization of the Jacobi iteration, which is written as
(11.3.21) Dxk+X = (1 -  a;) Dxk + u (E  + F)xk + uob.
Exercise 11.3.47. Give the eigenvalues /Xj(cj) of the matrix J(u) of a damped 
Jacobi method, as a function of u and of the eigenvalues of J(l) = +
Exercise 11.3.48. When A is equal to An given by eqn (11.3.20), calculate

max {|[ij (cj)| : 1 ^  j  ^  AT -  1} ,
and
(11.3.22) max{|/xj (u;)| : N/2 $ j  ^  N -  1} .
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E x er c is e  11.3.49. Show that the expression (11.3.22) is minimal for uj = 2/3 and 
give its value.
E x erc ise  11.3.50. Justify the statement: the damped Jacobi method with uj =  
2/3 is a low-pass filter.

Bigrid method
We assume, henceforth, that N is even, and we let n = N/2. The subspace 
14, for 1 ^  k ^  n — 1, is the subspace of E^ -1 spanned by the vectors uk = 
(sin(jk7r/N))i<'j ^N-i and vk = (sin(j(JV - k ) n V n is spanned by 
un = (sin(j7r/2))i^^Ar-i. The space Wk is the subspace of En _1  spanned by 
Wk = (sin(j‘A:7r/n))i^j^n_i. We also define a restriction operator R from E^ -1  

to Mn_1 by

(11.3.23) ( t e ) j =

and an interpolation operator S from Kn _1  to RiV ~ 1 by

(11.3.24) (Sx)j = XH2

(X(j-l)/2 + £(j+l)/2 ) / 2

if j  is even; 
if j  is odd.

In this last definition, it is assumed that xo and xn are set equal to 0.
Exercise 11.3.51. Show that R maps Vk to Wk and Vn to 0 . Give, in terms of 
k = cos2(A:7r/2Ar), the matrix of the restriction of R to 14, equipped with the 
basis {uk,Vk}, and Wk, equipped with the basis wk-
Exercise 11.3.52. Show that 5 maps Wk to 14 and give the matrix of the restric­
tion of S to Wk, equipped with the basis wk, and 14, equipped with the basis 
{«*>«*}.
Exercise 11.3.53. We define the bigrid algorithm as follows: u° R;V _1 is the 
initial guess. We perform a Jacobi sweep:

(11.3.25)

We calculate the residual:

(H.3.26) u* = b - A W ;
We restrict the residual to the coarse grid:

(11'3-27) = Ru2-,

P 6 S0*ve on the coarse grid the following problem:

" U28> A.V -  „ >1
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we interpolate the result on the fine grid:

(11.3.29) u5 = Su4

and we use the result as a correction to it1:

(11.3.30) u6 = u1 + u5.

Give the matrix of the iteration described by the algorithm (11.3.25) to (11.3.30), 
in terms of R, 5, Aat, An, and J(2/3).
Exercise 11.3.54. For k = 1,..., n, show that the restriction of the matrix of the 
iteration to the space Wk, equipped with the basis {Uk,Vk}, is given by

( ! ) <—  •>(WV ,/* , 3 - 1 , /a)- I

Calculate the spectral radius of this matrix. Show that this spectral radius is 
bounded by 1/3 for all N and k.
Exercise 11.3.55. We modify the algorithm (11.3.25) to (11.3.30) by performing 
v Jacobi sweeps instead of 1:

3(I )  U°'T~l + l D ~lb’
u0’".

What is now the spectral radius pv of the matrix of the iteration? Show that it 
satisfies an estimate of the form

.  C 
pv ^  „ ■

Informal description of the multigrid method
As we understand what the bigrid method does, it suffices now to sketch what 
the multigrid method does. Assume that N is equal to 2q; we replace the step 
with resolution A^/2 by an iterative method. We perform one or several Jacobi 
sweeps in dimension (N/2) — 1, calculate the residual, and then lift it to a grid 
with (N/4) -  1 points. If we had a trigrid method, we would apply a resolution 
in dimension (iV/4) — 1 , interpolate the residual, so as to generate a correction 
on the grid of dimension (N/2) — 1, and finish as in the bigrid method.

There is clearly a recursive definition of the p-grid method. For p = 2, we get 
an iterative method depending on N and N/2. This method can be written as

u°’° =
,#0,r _

u1 =

(11.3.31) xk+i = M (q,q- 1, vq) xk + (/2*-i -  M (q,q- 1, vq)) b,
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where vq is the number of Jacobi sweeps on the grid with q points. The p-grid 
method is defined from the (p -  l)-grid method as follows: suppose that we have 
defined M(q -  l,q -  2,..., 1, ..., i/i,pg_2,... ,/x2), where the describe
the number of Jacobi sweeps on each grid and the p* describe the number of 
iterations used to approximate the inverse of A2i.

We perform vq sweeps of the damped Jacobi iteration with initial guess y and 
data b. We obtain a vector 2 , we calculate the residual b — A2qz , we restrict it 
to the grid with 2q~l -  1 points, and we apply iterations of the (p— l)-grid 
method to the restriction, with 0 as an initial guess. Then, we interpolate the 
result and we add the corresponding correction to 2.
Exercise 11.3.56. Give a matrix description of the multigrid algorithm with 3 
grids.
Exercise 11.3.57. Describe a bigrid algorithm for the case of finite differences 
on a rectangle (see Subsection 11.3.1) and calculate the spectral radius of the 
corresponding iteration matrix.
Exercise 11.3.58. Describe a multigrid algorithm in the case of finite differences 
on a rectangle.
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Pythagoras’ world
In this chapter, we discuss good old right angles and all the numerical and 
mathematical marvels they give rise to, as much for the solution of systems 
of equations as for the various interesting qualitative properties of Hermitian 
matrices. The reader will, perhaps, have noticed that this subject has already 
been touched upon in Section 3.1, Lemma 3.1.9, and in Section 10.1 in the study 
of the Rayleigh quotient.

We have already worked with orthogonality in Chapters 5, 7, and 8 and we 
will return to it in Chapter 13.

12.1. About orthogonalization
An essential property of unitary matrices is that they have a norm of 1 for the 
operator norm subordinate to the Hermitian norm. As a result of this, there 
is no (numeric) difficulty with multiplying by such a matrix, since it does not 
increase the relative error. We begin by trying to construct an orthonormal basis 
from some other basis. This is known as the Gram-Schmidt orthonormalization.

12.1.1. The Gram-Schmidt orthonormalization revisited
W e  are going to show that the Gram-Schmidt orthonormalization is e q u iv a le n t  

to a matrix decomposition called QR. More precisely, we are going to recover the 
Gram-Schmidt orthonormalization process from the Cholesky d e c o m p o s i t i o n .

Theorem 12.1.1. Let A be a matrix belonging to Adn(K)- If A is invertible, 
there exists a unitary matrix Q and an upper triangular matrix R , which has a 
positive diagonal, such that

(12.1.1) A = QR.

Furthermore, this decomposition is unique and equivalent to the Gram^Schnii  ̂
orthonormalization of the basis formed from the column vectors of A.

290
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proof. The matrix A* A is Hermitian and positive definite, since x*A*Ax = 
\Ax\l is strictly positive and is nonzero if and only if x ^  0 . We then know that 
there exists an upper triangular matrix i?, with a positive diagonal, such that 
A* A admits the Cholesky decomposition

A* A = R'R.
We let Q = AR~l and calculate Q*Q:

Q*Q = (R*)-1 A * A R ~ 1 = (R*)~l R*RR~' =
C on sequ en tly , Q is unitary and we have shown the existence of such a decom­
position . Uniqueness is shown as follows: suppose that A = Q\R\ = Q2R21 
then,

A* A = R IQ IQ1R1 =RlRx
and

A* A = RIQ IQ2R2 = R*2R2- 
By virtue of the uniqueness of the Cholesky decomposition (Theorem 9.4.3), we 
see that R\ = i?2, and we immediately deduce that Q\ = Q2.

Relation (12.1.1) can be written as
n

(12.1.2) Aik = QijRjk-
i= 1

Noting that Rjk = 0 if j  >  fc, we can rewrite eqn (1 2 .1 .2) as
k

(12.1.3) Aik = '£ Q ijRjk.
j - 1

We denote the column vectors of A by and the column vectors of Q
by Then, relation (12.1.3) is written vectorially as

(12.1.4)

For k = 1, we thus have
(12.1.5)

fk — ^   ̂Qj Rj k •
j = 1

fi — q iR n ,
> 0 . The vector q\ is of norm 1 , since Q is unitary. Therefore, we mustn a v e

#11 = |/i |,
^  relation (12.1.5) is the first step of the Gram-Schmidt orthonormalization. 
^  & > 1, relation (12.1.4) is interpreted as follows: we choose the coefficients 
. J < k - 1 such that the vector f k -  ]Cj=i QjRjk is orthogonal to qj, for all
than~~ 1 ^  then Write Rkkqk = QjRjk, and we choose Rkk >  0 such

— 1. This is the A;-th step of the Gram-Schmidt orthonormalization. □
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A consequence of this result is that we can always complete an independent sys­
tem of k orthonormal vectors of Kn to produce an orthonormal basis.
Indeed, there always exists a choice of (n — k) vectors from the canonical basis 
e*, denoted (eir)i<-r<£n_fc, such that the family of vectors formed from {qj)i^j<k 
and from (eir)i^r^n-k is a basis of Kn. It suffices then, to orthonormalize the 
basis thus constructed. The term Gram-Schmidt orthogonalization is also u s e d  
when an orthogonal basis is constructed by induction from an arbitrary basis, 
without performing the normalization step.

A very important lemma, which is usually proved in the first year of a degree, 
is the Schur lemma. We reprove it here using block notation:
Theorem 12.1.2 (Schur’s lemma). Let A be a complex n x n matrix. Then A 
can be made triangular in an orthonormal basis. o

Proof. Making A triangular in an orthonormal basis is equivalent to finding a 
unitary matrix Q such that QAQ~X is triangular. We reason by induction on 
n, the dimension of the space. If n = 1 the result is trivial. Suppose that it is 
true for n, and that A is an (n -f 1) x (n + 1) matrix. We know that A possesses 
at least one eigenvector, which we can assume to have norm 1. We denote 
this eigenvector by fi and let A be the corresponding eigenvalue. We complete 
the family consisting of only f\ by the vectors /2,...,/n+i in the manner of 
constructing an orthonormal basis. We therefore have a unitary transformation 
matrix P  such that

where B is an n x n matrix. The induction hypothesis tells us that there exists 
a unitary matrix U and a triangular matrix T such that

UBU~l = T.

We let

It is immediate that V is unitary and, furthermore,

fx  eu -1 \
\0 UBU~l)

tu~ l
UBU~l

(X iU~l 
VO T

We have therefore found a matrix Q = VP such that QAQ 1 is triangular-
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12.1.2. Paths of inertia
From the QR decomposition, we are going to give a topological proof, due to G. 
Strang [74], of Sylvester’s inertia theorem, which states the following:
Theorem 12.1.3. Let A be a Hermitian matrix and C be some invertible matrix. 
Then, the number of strictly positive (respectively, zero, strictly negative) eigen­
values of C* AC is equal to the number of strictly positive (respectively, zero, 
strictly negative) eigenvalues of A. o

The proof of this theorem depends on a continuity result about the eigenval­
ues of Hermitian operators which we will state and prove below; it depends on 
the following minimax characterization of the eigenvalues of a Hermitian matrix.
Theorem 12.1.4• Let A be a Hermitian matrix, be the Rayleigh quotient 
associated with A, and AP(A) be the p-th eigenvalue defined by

\v (A) = min max (x).
y dim  W =p X€ W\{0}

Then Ap(̂4) is a continuous function of A. More precisely, for every p and all 
Hermitian matrices A and JB, we have the following inequality:

|Ap (A )-A „ (B)KP-B||2.

Proof. For all Hermitian matrices A and B , we have 

rA ( ) =  rB ) +  r A- B  (a:) •

We deduce, from Lemma 10.3.5 and Definition 10.2 .1 , that

\\A “ B\\2 = max | (*)|,x^O
and consequently,

\ra (x) -  rB (x)\ ^  ||A -  £ ||2 , Vx G Kn \ {0}.

The conclusion of the theorem is then immediate. □

We can order Hermitian matrices by deciding that A ^  B if and only if A - B 
ls positive or zero (in the sense of sesquilinear forms). We then have the following 
result which links the order of the matrices with the order of their eigenvalues:
Temma 12.1.5. Let A and B be two Hermitian matrices such that A ^  B. Then, 
f°raHp=l,...,n, Xp(A) >  XP(B).

Proof- The hypotheses of the theorem imply that, for all r ^O ,

rA (x) ^  rB {x).
The inclusion of the theorem follows immediately from Theorem 10.1.3. □
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P roo f o f Theorem  12.1.3. This is a topological proof, unlike the usual proof 
which is algebraic.

To begin with, suppose we consider the case of invertible matrices A. S u c h  a 
matrix has exactly p strictly negative eigenvalues and exactly n —p strictly pos­
itive eigenvalues. Let 11-» C(t) be a continuous mapping from [0,1] to GLn(K)? 
the group of invertible matrices with coefficients in K If we can construct a  c o n ­
tinuous path of invertible matrices, starting at G(0 ) = C and ending at a u n i t a r y  
matrix C(l), i.e., a matrix satisfying C (l)*=C(l)-1,we will have succeeded i n  
proving the result.

Indeed, we remark, first of all, that B( 1) = C(1)*AC(1) is similar t o  A 
and therefore, has the same eigenvalues as A. In particular, B(l) has e x a c t l y  
p strictly negative eigenvalues and n —p strictly positive eigenvalues. S u p p o s e  
that the number of strictly negative eigenvalues of the Hermitian matrix B(t) = 
C(t)* AC(t) is not constant with respect to t. We denote by p(t) the number o f  
strictly negative eigenvalues of B{t). If p(to) ± p, for a certain value t0 E [0,1[. 
two symmetric cases are then possible: p(to) >  p and p(to) <  p.

Consider, for example, the first case. Consequently, Ap(t0)(B(t)) <  0 a n d  
Ap(*0) (£?(1)) >  0. From Theorem 12.1.4, we have that A p ( * 0 ) ( I ? ( £ o ) )  is a c o n t i n ­
uous function of t E [0,1], and therefore, its image is connected. In particular, 
there will exist a value t\ of t for which Ap(*0) (F?(£i)) vanishes, which is i m p o s ­
sible since B(t) is invertible for all t.

Similarly, if we have the case where p(to) <  p, then we consider the c o n t i n u o u s  
function 1i-»> \p (B{t)), which takes a negative value at t = 1 and a p o s i t i v e  v a l u e  
at t — .

We now show that we can construct a path having the required properties. 
Let C = QR be the decomposition studied in Theorem 12.1.1. Let

C(t) = Q((l - t ) R  +  tl).

It is clear that C(t) is continuous with respect to t and that G(0 ) = C and 
C( 1) = Q , which is unitary. Matrix C(t) is invertible since (1 -  t)R H- tl is an 
upper triangular matrix with a strictly positive diagonal for all t E [0,1]- W e  
have therefore proved the theorem in the case where A is invertible.

We pass now to the general case. The eigenvalues of A are

Ai ^  * * * ^  Ap 0 = Ap+i — ■ * * — Aq Aqf-j-i ^  * * * ^  An.

Let B(e) = C*(A + el)C, and let Pk(e) be the fc-th eigenvalue of B(e). The 
eigenvalues of A + el are

A i + e ^ - - * ^Ap  + e < e  = Ap+i = * • • = Xq <  A^+i + c ^  ^  A n A6,

The first part of the proof shows us that, if e E ]0, —Ap[, A + e l, and 
B(c), have exactly p strictly negative eigenvalues and n —p strictly PoS1  ̂
eigenvalues. Furthermore, if e E ]—A9+i,0[, A + el and B(e) have ex a ct>



12.1. ABOUT ORTHOGONALIZATION 295

strictly negative eigenvalues and n — q strictly positive eigenvalues. In particular, 
if 6 is a small positive number, pq(e) and pp+ i(e) are strictly positive, and if e is 
a small negative number, pq{e) and pp+ i(e) are strictly negative. By continuity, 
we see that pq{0) = /xp+i(0) = 0. This shows that JE?(0) has at least as many zero 
eigenvalues as A. We now have to bound below the number of strictly negative 
eigenvalues and strictly positive eigenvalues of B(0). For small positive e, B(e) 
has exactly p strictly negative eigenvalues. Consequently, from Lemma 12.1.5, 
#(e) - eC*C = B(0) has at least p strictly negative eigenvalues. We argue in 
the same manner for the positive eigenvalues. □

12.1.3. Topological properties of the Cholesky and Q R  
decompositions

We will return to the QR decomposition, whose continuity properties we will 
examine, after having looked at those of the Cholesky decomposition.
Lemma 12.1.6. The Cholesky decomposition defines a continuous mapping from 
the set of positive definite Hermitian matrices to the set of upper triangular 
matrices with a strictly positive diagonal.

Proof. We will use the notation of Theorem 9.4.3. Let A be a positive definite 
Hermitian matrix. If n is equal to 1, A = (a), and as the mapping a h* y/a is 
continuous on M+, we see that the mapping A i-» C = (\A*) is continuous. 

Suppose that we have continuity in n — 1 dimensions. We write

and from the proof of Theorem 9.4.3 we have A = C*C with

c =(° b )
a n d

p - £*£(3 = y/a, m = —=, B*B = A ---- .y/a a
is clear that /? and m are continuous functions of A, mapping to values in 
and (n- l)-dimensional linear forms, respectively, provided that a is strictly 

Positive. The mapping A i-> A — £*£/a is a continuous mapping to (n — 1) x 
^1) matrices, and we saw in the proof of Theorem 9.4.3 that it maps to 

Positive definite Hermitian matrices. By induction, we know that the mapping 
Z 1/a k-> B is continuous and maps to (n — 1) x (n — 1) upper triangular 

a nces w*th strictly positive diagonals. Consequently, the mapping A C is 
continuous mapping to values i n n x n  upper triangular matrices with strictly 

POsitlve diagonals. □
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Lemma 12.1.7. The QR decomposition defines a continuous mapping from 
GLn{ C), the group of invertible complex n xn  matrices to the product of Un(q 
the group of unitary matrices, and T+ (C), the group of complex upper triangular 
matrices with strictly positive diagonal.

Proof. We will use the notation of Theorem 12.1.1. Let A £ GLn{C). The 
mapping A A* A is clearly continuous, and we have seen that it maps to 
positive definite Hermitian matrices. It follows, from Lemma 12.1.6, that the 
mapping A »-» i?, where R is the member of T+ (C) defined by

A* A = R*R,

is continuous. Furthermore, A »-> Q = AR~l is continuous, and from the proof 
of Theorem 12.1.1, it maps to the elements in the set of unitary matrices. □

12.1.4. Operation counts and numeric strategies
The QR decomposition is extremely useful practically for the solution of linear 
systems and, as we will see later, for the search for the eigenvalues and eigen­
vectors of a matrix. Unfortunately, it is slow and pretty unstable in its naive 
form:
Operation Count 12.1.8. The QR decomposition of an invertible matrix, viewed 
as a Gram-Schmidt orthogonalization, requires n square roots and of order 2n3 
arithmetic operations.

Proof. As in Theorem 12.1.1, we denote the column vectors of A by (fj)i^j^n 
and the column vectors of Q by For k — 1, we have

fi = <7î n*
We therefore need to calculate Rn = y/\fi\2, which requires n multiplications. 
n — 1 additions and the taking of a square root. Furthermore, the ca lcu la tion  of 
qi requires n divisions: it is necessary to divide each of the components of /i by 
Rn. To calculate qk, knowing the qt for £ ^  k — 1 , we write that

k
fk = ̂  qjRjk-

3=i
Consequently,

Rtk = (fk,qi)
and the calculation of R ^ requires n multiplications and n — 1 additions. In 8^1 
it needs (k - 1)(2n -  1) operations to calculate the Rtk for £ ̂  k - 1. We ha'e

k-1
fk ~ ^  QjRjk •

3=1
Rkk =
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E a ch  of the components of a vector for which we calculate the norm is calculated 
by means of k - 1 multiplications and k—1 additions or subtractions. It therefore 
n e ed s n(2k -  2) operations to construct this vector. The calculation of the norm 
of this vector needs n multiplications, n — 1 additions and a square root. Then, 
the calculation of qu needs n divisions. Finally, the calculation of Qk and Ra 
for k requires

(k -  1) (2n -  1) + (2k -2)n + 2 n - l + n  = n (4A; — 1) — k

arithmetic operations and the taking of a square root. By summation we find 
the number of arithmetic operations is of order 2n3 plus n square roots. □

Furthermore, the Gram-Schmidt process is not very stable numerically, as is 
shown in [69].

12.1.5. Hessenberg form
The most practical method of calculating QR decompositions is to apply a nu­
merical strategy which is dependent on the particular properties of so-called 
Hessenberg matrices. A square matrix is in upper Hessenberg form if it has the 
following form:

/* * ...............  *\
* * ...............  *

0 • , •

Vo ••• 0 * */
In other words, all the coefficients A{j of this matrix are zero if i >  j  -1- 1 . 
Obviously, a matrix A will be lower Hessenberg if A* is upper Hessenberg.

There are two interesting properties of matrices in Hessenberg form. First 
°f all, we can put a matrix into Hessenberg form in 0(n3) operations (which is 
not much better than the preceding operation), by a procedure which is stable, 
fa addition, the QR decomposition of an upper Hessenberg matrix A produces 
matrices Q and R by a stable procedure such that Q and RQ are upper Hessen-

Let us verify that Q and RQ are, indeed, upper Hessenberg, if A is upper 
essenberg and invertible. As in Theorem 12 .1.1, we denote the column vectors 
^ ky (fj)i^j^n and the column vectors of Q by (qj)i^j^n- We have

f i  =  q i R n -

that °̂V̂°US onIy the first two components of q\ can be nonzero. Suppose 
UP to row k - 1, only the first j  + 1 components of qj are nonzero. Then,
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fk — Qj R j k ,
3=1

we deduce that only the first k + 1 components of qk can be nonzero. This little 
induction therefore shows us that Q is upper Hessenberg. As for the product 
RQ, which we will need later, it is also in upper Hessenberg form. We calculate 
its coefficients (RQ )ij, for i > j  + 1, as follows:

(RQ)ij = y  ̂RikQkj == y ] RikQkj =: 0*
k i^k^.j+1

12.1.6. Householder transformations
To put a matrix in Hessenberg form, we make use of the Householder transfor­
mations, see [47], which we are now going to introduce.

We describe these Householder transformations: for every v E Cn \ {0}, we 
write _ , x vv*xSn (v)x = x -  2 — —.v*v
Geometrically, Sn(v) is the orthogonal reflection with respect to the hyperplane 
which is orthogonal to v. Indeed, if x = Au,

Sn (v) x — \v — 2\vv v 
v*v = —Xv = —x.

Moreover, if x is orthogonal to v, that is to say v*x = 0, it is clear that

Sn (V)x  = X.

The transformation Sn(v) is, at the same time, Hermitian and unitary:

SnW  = / ~ 2 -v*v
is clearly Hermitian. Furthermore,

c , ,2 T Av*v vv'vv*Sn (v) = 1 - 4 —  +4- -y
V*v (v*v)

V  V . r1 -4 --- +4--------= I.v*v v*v v*v

Abusing the language a little, we will consider the identity as a Household?1 
transformation. The Householder transformations will be useful by virtue ot 
following lemma:
Lemma 12.1.9. For all vectors x and y with the same Euclidean norm, ^ ere 
exists a vector v, a Householder transformation Sn(u), and a complex numb?1̂ 
of modulus 1 such that

uy = Sn (v) x.
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proof. Suppose, first of all, that x = y = 0. The case is trivial, and any v 
and lj are suitable. Now, if x and y both have nonzero norm but are linearly 
dependent, we will take the identity as the Householder transformation, and lj 
such that x -  ujy = 0. Such an lj exists since x and y are linearly dependent. 
We suppose now that x and y are linearly independent. Then we have

therefore,

^vv*x
v*v = wj/,

2vv*x = (v*v) (x — ujy).
Consequently, v and x -  Ljy are linearly dependent. Since Sn(v) depends only 
on the direction of u, we may take

v — x — ujy. 

To determine lj we examine ujy — Sn(v)x:

ujy -  Sn (v) x = uy - x + 2 vv x 
v*v

\ v*v)

= [^] "■{2x - ">
=  f~7~ l (x * -  uy*) (x  +  w )  ■Li? *V J

We therefore have, taking account of the equal norms of x and y,

uy*x = ux*y.

It is therefore necessary to choose, lj = ±e10, if y*x ^  0 , where 6 is the argument 
of the complex number y*x. If y*x = 0, the choice of 6 is immaterial, and we 
can take lj = ±1. □

In practice, the choice of sign in front of e10 is governed by conditioning con­
siderations. We will choose, in preference, the sign which leads to an x — uy of 
targest norm.

12.1.7. Q R  decomposition by Householder transformations
^ith a finite series of Householder transformations, we can find the QR decom- 
P°sition of a matrix:
Theorem 12.1.10. Let A be an invertible matrix. Then there exist 1 House- 
0 er transformations Sn(vi), Sn(v2),..., Sn(vn-i) such that

Sn (vn-i)---Sn (vi)A
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is upper triangular. In particular, the QR decomposition of A is given by

R = D~1T, Q = Sn( u „ _ i )  • •

where D is a diagonal matrix whose coefficients are all of modulus 1. 0

Proof. We are going to argue by induction on the dimension of the space. In 
one dimension, the result is trivial. Suppose it to be true in dimension n - 
Let A be an n x n invertible matrix. It can be put in the form

A = (flh ■■■
where the f j are the column vectors of A. From Lemma 12.1.9, there exists a 
vector V\ in C 1 such that

= |/i|wei,

where e\ is the first vector in the canonical basis of C 1. We then have

Sn(v1)A=(\f1\ue1 Sn(Vl)h••• ^ » ( v ! ) / n) =

From the induction hypothesis, there exist vectors tfej• • • }t)n-i in 
that

Sn-1 (fyi—l) • * * Sn-1 (£2) A — T.
Letting

for 2 ^  j  ^  n — 1, we see that

Sn(Wj)= (0 Sn-lW) S
and that

Sn (vn-1)---Sn (vl )A=  p j ,

which proves the possibility of a triangulation by Householder t r a n s f o rm a t io n s .
The matrix T thus obtained is upper triangular, but its diagonal terms are 

not necessarily strictly positive, although they are nonzero. I f  we w rite

3
Cn _1 such

D = diag(T<</|7;i|),

it is clear that D~lT is upper triangular with a strictly positive d ia gona l. Mor^ 
over, D is unitary, therefore QD is unitary, and we have obtained the Q 
composition of A.
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It is shown how to put this algorithm into practice in [12,34].
The advantage of this method of triangulation is that the transformations 

Sn{vj) are all unitary and, therefore, they do not change the conditioning of the 
matrix. This decomposition can be used to solve a linear system. However, the 
transformation to a triangular system by Householder transformations is more 
costly than LU Gaussian decomposition. We can show that it requires order 2n3 
arithmetic operations, and 2n square roots. The numerical stability, see [58], 
can balance the greater cost of the calculations.

On the other hand, if A is an upper Hessenberg matrix, the matrices ap­
pearing in the algorithm of Theorem 12.1.10 are all upper Hessenberg, and the 
operation count is a lot more favourable:
Theorem 12.1.11. For an upper Hessenberg matrix A, the matrices in the ex­
pression

Sn iVj) * * * ( l̂) A,
described in Theorem 12.1.10, are all upper Hessenberg. o
Operation Count 12.1.12. The QR decomposition of an upper Hessenberg matrix 
requires order n3/3 arithmetic operations, and order n square roots.

Proof. Let C(n) be the number of operations necessary to go from A to the 
matrix Sn(vi)A. We write x = /i, v = t>i, and y = |/i|ei. As f\ has at most 
two nonzero components, the calculation of |/i| demands 2 multiplications, an 
addition and the taking of a square root. To get lj in the complex case, we 
must calculate y*x, which demands a multiplication and the calculation of the 
modulus of this complex number. We obtain u by division, which involves two 
complex operations and the taking of another square root. The calculation of 
v = x - ujy demands only a multiplication and a subtraction since y has only 
one nonzero component. The calculation of v*v demands 3 complex operations, 
and the calculation of v* fk demands, for its part, k H- 1 multiplications and k 
additions, as /* has at most k -f 1 nonzero components. It needs 2 further arith­
metic operations to get 2v* fk/v*v. Finally, the calculation of fk -  (2v*fk/v*v)v 
requires 2 subtractions and 2 multiplications since v has only two nonzero com­
ponents. We also note that Sn(v)fk has at most its first + 1 components 
nonzero, which proves that A is Hessenberg. In total, we have to make

n—1
2 + 1 + 2 + 2 + 3 + ^2 (2& + 1 + 4) ~ n2 arithmetic operations

k= 2

^  2 square roots. We therefore have

C(n) ~ C (n— 1) + n2.
In total, summing with respect to n, we find the result claimed. □
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12.1.8. Hessenberg form by Householder transformations
Putting a matrix into Hessenberg form is also done by Householder transforma- 
tions:
Lemma 12.1.13. For every invertible matrix A of n rows and n columns, there 
exists a family of Householder transformations

Sn {Vn—2) * * * Sn (^1) ASn (V\ ) * * * Sn (Vn—2) 
is upper Hessenberg.

Proof. We will prove by induction on the dimension. In two dimensions the 
result is obvious, since every 2 x 2 matrix is upper Hessenberg. Suppose that in 
n -  1 dimensions we can find n - 3 vectors in Cn_1, with zero first component, 
which allow us to put an invertible matrix into Hessenberg form by Householder 
transformations. Let A be an n x n invertible matrix. We can put it into the 
form

(Sn (vj))\^j^n-2
such that

There exists a vector Vi in C 1 1 such that

S n-1 ( v i ) p  =  u \ p \ e u

where e\ is the first vector in the canonical basis of Cn_1. Then, let

which implies that

Consequently,

From the induction hypothesis, there exist n — 3 vectors £2,... ,#n-2 m ^ 
with zero first component such that

B = Sn-x{Vn-2) ' ~ Sn-l («») [$„ -! (« l)i‘5n-l («l)] Sn-X (v2) ■ ■ S»-l ̂
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is upper Hessenberg. We then have, on letting

Vj = ('*.)) ^ ^ j ^ n - 2 ,  i(t>i)

the relation

Sn (Vn-2) * * * Sn (V2) [Sn (vi) ̂ 4*5n (î l)] Sn ( 2̂) Sn (vn—2) 

noting that, for j  ^  2 ,

*Sn—1 (f)j) Sn—1 (^i)p — Sn—i (ii) p, 

since the first component of vj is zero. It is clear that the matrix

an m\
Sn-i(vi)p BJ

is upper Hessenberg □

The number of operations necessary to put a matrix into upper Hessenberg 
form is 0(n3), as the reader can calculate. It is sufficient to do this once initially.

12.2. Exercises from Chapter 12
12.2.1. The square root of a Hermitian positive definite matrix
In all of this problem the basis field is C.

We denote the set o f n x n  matrices with complex coefficients by M. Let 
U be the subset of M  of Hermitian matrices and V be the subset of W formed 
from matrices which are positive definite.

We denote the Euclidean norm on Cn by | • | and the subordinate operator 
norm by || • ||.

We define a mapping from V to M  as follows: if B E V, the Cholesky 
decomposition is denoted

U2.2.1) b  = C*C
and we let

(12-2.2) F(B) = C,G ( B) = C* = F .

Exercise 12.2.1. Show that G maps to elements in V.
Exercise 12.2.2. Show that ||G(JB)|| = ||S|| = ||F(B)||2.
_ erctse 12.2.3. Let A be a diagonal matrix belonging to V■ Show that there 
lsts a matrix H belonging to V such that H2 = A, and give H explicitly.
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Exercise 12.2.4• Let A be defined as in the preceding question and let K be a 
matrix belonging to V such that K2 = A. We denote by y/X the matrix F(A) 
which is clearly diagonal and in V. Let K = QR, with Q unitary and R upper 
triangular with a strictly positive diagonal.

(i) Show by calculating K*K that R = \/A;

(ii) Show that K can only be positive definite if Q has 1 as its only eigenvalue. 
Suppose that lj is an eigenvalue of Q distinct from 1, associated to an 
eigenvector x and obtain a contradiction;

(iii) Conclude that there exists a unique matrix H €  V such that H2 = A.
Exercise 12.2.5. Let B be in V. Deduce from the preceding question that there 
exists a unique matrix H in V such that H2 = B. This matrix will be denoted
Vb .
Exercise 12.2.6. Show that if B is symmetric positive definite and real, then \/B 
is also symmetric positive definite and real.



Part IV

Nonlinear problems
In this part we treat three different kinds of nonlinear problems: the calculation 
of eigenvalues and eigenvectors of a matrix, the resolution of nonlinear equations 
and systems, and the numerical integration of ordinary differential equations.

These three problems are deeply related, and I shall write only a few words 
about them.

First, for practical applications, it is often necessary to find the modes of 
a vibrating structure, for instance, earthquake certification of high buildings 
requires the computation of their eigenmodes.

But, of course, eigenmodes are interesting because they appear as special so­
lutions of the differential equation which governs the motion of a large structure. 
Currently, nonlinear effects are not taken into account by earthquake certifica- 
hon, but if interaction between the nonlinear ground and the structure is consid- 
ered, one might have to develop a nonlinear analysis for earthquake certification 
of lurge structures.

When integrating nonlinear differential systems, one has often to solve a 
n°ulinear system of equations at each step. Being able to solve these nonlinear 
systems is then completely crucial in order to obtain reasonable computing times 
| reasonable accuracy.
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Spectra
The theoretical problem of finding eigenvectors and eigenvalues of a square ma­
trix A could be considered as being totally solved after a first year course. But 
the calculation of these famous eigenelements or spectra is another problem en­
tirely!

The numerical computation of eigenvalues of linear operators is a subject 
which has a bad name, for bad and for good reasons. The readers will decide for 
themselves after reading this chapter whether the reputation is deserved. But, 
in order to make the problems more palatable, let me emphasize some essential 
ideas, which might otherwise be lost in the technicalities.

We learn in any first year course that the eigenvalues of a matrix are the 
roots of its characteristic polynomial. Assume that we have a good method for 
computing the characteristic polynomial. If we normalize the leading coefficient 
Xn to be equal to 1, the information given by the characteristic polynomial is 
totally contained in the sequence of n real numbers. On the other hand, the 
matrix we started from contains n2 numbers.

In some cases, there is much more information in the matrix than in its 
characteristic polynomial. In particular, if the matrix is self-adjoint, or skew- 
adjoint, or unitary, which can be tested with a few operations, or is a consequence 
°f the nature of the problem, then it is quite clear that we know much about 
the eigenvalues and eigenvectors and that this information is not visible in the 
characteristic polynomial. On the other hand, if A is a companion matrix of the 
form

0 1 0 o ••• 0
0 0 1 o ••• 0

.4 = 0 0 0 i ••• 0

—ai —0-2 — 03 • • • — CLn—l
en the characteristic polynomial of A is

det -A) = x n“b ® n- .. + d\X
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The amount of information contained in the matrix is exactly the same as the 
amount of information contained in the characteristic polynomial.

The computation of eigenvalues and eigenvectors is a part of linear numerical 
algebra; but it is not a linear problem: the eigenvalues of A + B are not the sum 
of the eigenvalues of A and the eigenvalues of B. Let us give an elementary 
combinatorial argument. If A and B have n distinct eigenvalues, then we might 
pair the sums of eigenvalues in n! different ways so as to obtain n! n-tuples; this is 
far too many possibilities. The first reason why the computation of eigenelements 
can be really difficult is the nonlinearity of the problem.

If an eigenvalue of a linear operator is not simple, the problem is usually 
ill-conditioned. This means that the variation of the eigenelements is very large 
with respect to perturbations of the elements of the matrix. Let J be an n x n 
Jordan block, with zeros on the diagonal, and let A(e) be the perturbed matrix

(13.0.1) A(e) =

/0 1 0 0 
0 0 1 0  
0 0 0 1

0
Ve

0\
0
0

1
0/

This matrix is a companion matrix, hence its characteristic polynomial is
P(X;e) = X n -e,

and we know the eigenvalues explicitly: they are equal to s 1/" exp(2mk/n), with 
k = 0,... ,n — 1. This means that a variation of in the elements of the 
matrix can correspond to a variation of in the eigenvalues. Moreover,
in general, we will not know that there is a Jordan block of high multiplicity in 
the matrix: somehow, the program should be written with a warning to alert us 
that something unusual is going on. But this is difficult to implement.

One could say: alright, the matrix (13.0.1) has been made up to make life 
really unpleasant; what about a nice 2x2 matrix, with nicely distinct eigenvalues. 
Surely, nothing bad can happen in such a simple case? Thus, take the matrices

(13.0.2) “‘) and “') • 9

The eigenvalues of A are
Ai =  1, A2 =  11.

An explicit calculation gives the eigenvalues of A':
X[ = 6 -  x/249 -  1.01001, AJ> = 6 + V2A9 ~ 10.98999.

This means that a change of 10“5 in the elements of the matrix, which is ^ 
at most 10"5 relative to the eigenvalues, brings a perturbation of order 1/ 
one of the eigenvalues.
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It is not sufficient to observe that the eigenvalues can be very sensitive to 
the perturbations of the elements in the matrix: the dependence is much more 
dramatic for the eigenvectors. Going back to the matrix (13.0.1): for e >  0, 
there are n distinct eigenvalues and, hence, n distinct eigenvectors; for n — 0, 
these n distinct eigenvectors collapse to a single eigenvector corresponding to the 
eigenvalue 0. It is interesting to get a more precise picture: letting u be an n-th 
root of unity, the normalized eigenvectors are all of the form

(13.0.3)

/
1

H(s)

\

Here the positive quantity n(s) is given by

M(e)2 = 1 + £Vn + ■ • • + e2(n_1)/n.
Therefore, the word ‘collapsing’ describes the phenomenon very well: the basis 
of eigenvectors, given by expression (13.0.3), for u running through all the n-th 
roots of unity, becomes more and more singular as e tends to 0. Such a situation 
must be considered as systematic: the continuity of eigenvectors with respect to 
the elements of the matrix cannot be assumed; we can only expect the continuity 
of generalized eigenspaces relative to a cluster of eigenvalues converging to a given 
multiple eigenvalue.

The definition of conditioning is not the same for the resolution of a linear 
system as for the computation of the eigenelements of a matrix. We have seen 
in Chapter 5 that the Hilbert matrix is very well conditioned for the second 
situation and very ill-conditioned for the first one. Conversely, the matrix I  + 
4(e), with A(e) defined by eqn (13.0.1), is very well conditioned for the second 
situation and very ill-conditioned for the first one.

In this chapter we will mainly consider two methods: one is the power method 
and simple modifications to it; the other one is the QR method. In fact, they 
are basically the same, but more on that later.

The idea of the power method is utterly naive: if A has an eigenvalue A 
whose modulus is strictly larger than the moduli of every other eigenvalue, and 

it happens also to be simple, we take any non-vanishing vector x and we 
repeatedly apply A to x. The components along the eigenvector corresponding 
to A will increase fast, relative to the other components. In the limit, the relative 
!mP°rtance of the other components tends to 0. This is too naive to work: if |A| 
ls strictly larger than 1, we expect an overflow; if it is strictly smaller than 1, we 
expect an underflow. Thus, we must normalize at each step.

Of course, we do not know whether an arbitrary matrix has an eigenvalue 
Possessing the property which we have hypothesized. This is not a problem: 

*ncal analysts are bold souls and they try numerical methods, in the hope 
[ e ecting from the output whether the result looks correct.
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Maybe, we are not interested in the eigenvalue which has the largest modulus 
but in the eigenvalue which is smallest in modulus. Then, instead of repeatedly 
applying A, we repeatedly apply A~l to x; and, since we know better than to 
invert matrices, we repeatedly solve a linear system whose matrix is A, and we 
normalize the result. The analysis is the same for this inverse power method 
as for the direct power method. Geometrically, we have performed an inversion 
and a conjugation in the complex plane.

Now, we can modify the inverse power method and get much more from it. 
Intuitively the inverse power method converges the best when the ratio of the 
smallest eigenvalue to any other eigenvalue is the smallest. If we translate A by 
///, choosing [i to be close to the eigenvalue we want to compute, we get a much 
better convergence for the inverse power method, and the method will give the 
eigenvalue closest to fi. So, now we can be pedantic and observe that we have 
performed a homographic transformation in the complex plane completed by oo, 
i.e., the Riemann sphere: much ado about nothing.

The QR method can now be explained by waving our hands: we apply the 
power method simultaneously to all of the basis vectors and we have to renormal­
ize at each step to get something meaningful. The reader is referred to Section 
13.4 for the definition of the QR method, and to the sequence of exercises in 
Subsection 13.5.2. Moreover, there are still many open questions in the mathe­
matical analysis of the QR method.

Time-dependent problems can be solved theoretically by means of decompo­
sitions on a basis of eigenvectors, however, this method is rarely used in practice. 
An important case is the calculation of the motion of a linear vibrating structure. 
The idea is basically the same as for the argument against inverting matrices in 
order to solve a linear system: if there is a method which works as well and is 
faster, we choose the faster method. So, though we are brave numerical analysts, 
we are not foolhardy: knowing that there are many pitfalls in the computation 
of eigenelements, we calculate them only if it cannot be avoided.

We need eigenvalues and eigenvectors if we are interested in the vibration 
modes of structures, acoustic or electromagnetic fields, and so on. And, we 
should not be surprised to learn that what causes mathematical difficulties can 
also cause physical difficulties: the higher the degree of degeneracy of an eigen­
value, the larger the instability at resonance. So, if we care for stability, 
try to draw eigenvalues apart at the time of design. Conversely, we may be 
interested in resonance, as in tuning; for example, tuning a bell or any musics 
instrument, or tuning for receiving electromagnetic waves. In this case, also, *e 
are interested in eigenvalues and eigenvectors.

It would be nice to have an idea of the size of the set of ill-condition 
matrices relative to the computation of their eigenelements. This question has 
strong algebraic and geometric flavour: the set of matrices must be strat^ eAue§ 
sub-varieties on which the algebraic and geometric multiplicity of the eigenva 
are fixed. Now, how large is the set of matrices which are ‘close’, in a sense 
be defined, to such sub-varieties? The question looks wide open.
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Let us conclude: it is necessary to calculate eigenvalues and eigenfunctions 
of linear operators; in practice, we do use packages, but it is particularly im­
portant to understand the underlying mathematical considerations, in order to 
find out whether the results given by the software have any value. There are 
all sorts of motivations, coming from fluid and solid mechanics, from physics, 
from statistics, from economics etc. The matrices are large, the problems are 
not well conditioned, and all the art of the numerical analyst is required to find 
a solution.

13.1. Eigenvalues: the naVve approach
13.1.1- Seeking eigenvalues and polynomial equations
There exist algorithms to calculate the characteristic polynomial, but they are 
little used because the calculation of the roots of a polynomial in the complex 
plane is often a badly conditioned problem, a problem which is not limited to the 
case of multiple roots. J. H. Wilkinson [79] has proposed the following example: 
let

P(X) = (X + l).--(X + 20) 
and let the perturbation be

Q{X) = 2

The calculation gives the following roots for the perturbed polynomial P + Q:

-1.000000 000,
- 2.000 000000,
-3.000000000,
-4.000 000 000,
-4.999999928,
-6.000006 944,
-6.999 697 234,
-8.007 267603,
-8.917 250 249,

-10.095 266 145 ± 0.643 500 904 i,
-11.793 633 881 ± 1.652 329 728i,
-13.992 358 137 ± 2.518 830 070 i,
-16.730 737 466 ±2.812 624 894 i,
-19.502 439 400 ± 1.940 330 347 i,
-20.846 908 101.
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Note that the perturbation of the zeros is very important. Indeed, this polyno­
mial is badly conditioned for calculating its zeros. This phenomenon is difficult 
to predict. There exist algorithms to calculate the characteristic polynomial 
(without Cramer’s formula!), but they are not used to find the eigenvalues and 
eigenvectors of a numeric matrix, except in two dimensions.

13.1.2. The bisection method
We begin with a very simple method for finding the eigenvalues of Hermitian 
matrices.

Recall the principle of the bisection method for finding the roots of a nonlinear 
equation f(x) = 0. We suppose that / is given on an interval [a, 6], is continuous, 
and satisfies

f(a)f(b)<0
Let ci = (a + b)/2. Either /(ci) = 0, and in this case we have found a zero 
and the algorithm stops, or /(ci) ^  0 , and in this case one of the two products 
f(a)f(ci) or f(ci)f(b) is strictly negative. In this case, we denote by [a1?6i] 
the interval [a,Ci] or [ci,6] such that the product of the function values at the 
end-points is strictly negative. Having obtained an interval [dk,bk] such that 
f{ak)f(bk) <  0, we write ck+1 = (dk -f bk)/2. If f(ck+i) = 0, the algorithm 
stops. If not, we denote by [ak+\, bk+\] whichever of the intervals [ak,ck+i] or 
[ck+\,bk] is such that the product of the function values of the end-points is 
strictly negative. Thus, in N steps of bisection, we localize at least one zero of 
/ with a precision of 2~N(b - a).

We are going to couple this bisection method (which has a very general use) 
with Sylvester’s inertia theorem. Let A be a Hermitian matrix. Suppose that 
A -  p i admits an LD^L* decomposition, and denote by p(p) the number of 
eigenvalues of A which are strictly greater than p. It is clear that p(p) is the 
number of strictly positive eigenvalues of D

For a value p' <  p, A -  p'l ^  A -  p i , and consequently, by virtue of Lemma
12.1.5, \p(n)(A — pi) ^  \p^ (A  — p' I), which shows us that pip1) ^  p{p)- Hence, 
in the interval ]//',/x], A has exactly p ip1) — p{p) eigenvalues.

Suppose that we have already determined that A possesses exactly one eigen­
value in the interval ]p',p]. Then, by application of the bisection method, we 
can determine this eigenvalue with a precision of 2~N(p — p') in N calculations 
of the decomposition LDL*. We will see later that the inverse power method 
can be applied to calculate an eigenvalue precisely if we already know a good 
approximation.
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13,2. Resonance and vibration
13.2.1. Galloping Gertie
In 1831, near Manchester, a bridge collapsed whilst being crossed by a military 
detachment marching in step. Since this time, the military regulations of every 
country order the infantry to stop marching in step whilst crossing a bridge.

It was common, at the beginning of aviation, for an aeroplane to crash fol­
lowing uncontrollable oscillations of its wings, as a result of the loss of control 
of the elevators.

The earthquake-proof construction of tall buildings is regulated in several 
towns in California, by ensuring that the natural frequencies of the buildings 
are far from the characteristic frequencies of earthquakes. Furthermore, the 
foundations include vibration-damping elements.

The Ariane rocket is designed in such a way that the vibrations created by 
the rocket motors do not resonate with the structure (which is a very thin hull 
filled with liquid).

Here is another story about the destructive effects of resonance, which I have 
adapted from the autobiography of Theodore von Karman, [76, pp. 211-15].

The collapse of the bridge over the straits of Tacoma on the 7th of November 
1940 in Washington State, USA was due to a subtle resonance created by the 
interaction between the bridge and the turbulent movements of the air. This 
1.6 km long suspension bridge was, at the time, the third longest in the world 
and was considered at its inauguration to be at the pinnacle of civil engineering. 
From the begining, the behaviour of the bridge was bizarre. In winds of 7 or 
8 km/h, it oscillated with a maximum amplitude surpassing one metre. The 
movement of this fine steel ribbon was so spectacular that visitors came from far 
away to cross it and it became nicknamed ‘Galloping Gertie’.

The engineers tried in vain to stabilize the bridge by anchoring it with thick 
cables attached to blocks of concrete. Other procedures were also tried, but 
nothing worked: Galloping Gertie swayed and for four months they watched its 
behaviour. Since this did not change with the passage of time, the Washington 
state authorities began to say that the bridge was safe.

The morning of the collapse, nothing foretold what was going to happen. In 
sPite of a storm during the night, the bridge continued to sway as usual. At ten 
0 clock in the morning the wind blew at 67 km/h, the strongest that the bridge 
^  ever been subjected to. All of a sudden, a few minutes after ten o’clock in the 

Corning, the movement changed character: the rhythm of the displacement from 
°w to high took place in violent, torsional movements, and as an observer said 
lt ^ emed that the bridge was going to turn over’. The authorities prohibited 
raffic from the bridge.

In the following minutes, the torsional movement continued more and more 
I hi u nt ^  one instant5 one end of the road appeared to an observer to be 8.5 m 
jl er ^ an the other. At the following instant, 8.5 m lower. The cables of the
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main span, instead of ascending and descending together as in their usual spring 
movement, pulled and twisted in opposite directions, inclining the roadway from 
one side to the other at 45 degrees. The street lights on the bridge were nearly 
horizontal. For half an hour, the steel girders, the suspension cables and the 
concrete road were subjected to these terrible stresses. Finally, at eleven o’clock 
in the morning, the structure could resist no longer. The street lights began to 
collapse. The central span exploded and a two hundred metre section detached 
itself and collapsed into the bottom of the straits with a deafening noise.

Theodore von Karman analysed the causes of the destruction of the bridge. 
Working principally on problems of aerodynamics applied to aircraft, he had 
highlighted, in 1911, the formation of vortices in the wake of an obstacle. These 
vortices are created alternately from one side of the obstacle and then the other. 
The vortices are arranged in staggered rows, like the street lamps from one side 
of a street to the other, and from this we get their name: von Karman vortex 
streets. This discovery won him international recognition in aeronautical circles.

The Tacoma bridge had a roadway covered in metal, and the plates form ing 
the wall were pushed by the wind until this formed vortex sheets at their side, 
which caused the oscillations and the collapse of the bridge.

The Tacoma bridge was reconstructed with openings in the roadway and the 
lateral walls, and it holds till this day. The other great American bridges were 
checked and found safe.

13.2.2. Small vibrations
Consider a mechanical system, for which position is described by a point q € Mn. 
We will assume that the masses are included in the chosen coordinates. If the 
point q moves under the action of a force — VC/, with U a potential depending 
only on q, the fundamental principle of dynamics implies that

(13.2.1) q = ~VU(q).

We have used here the notation of mechanics and physics: u = du/dt and 
u = d2u/dt2 are the derivatives with respect to time and V is the gradient 
operator. We easily verify that the total energy, which is the sum of the potential 
energy and kinetic energy

(13.2.2) E(q,p) = U(q) + ^ ,

remains constant when q is a solution to the system of differential eqns (13.23)* 
The system has a stable equilibrium qo if U has a local minimum at <?o- 
U (which we assume to be sufficiently differentiable) has a second derivati'e 
A = D2U(qo) (the Hessian matrix, or the Hessian) which is p o s i t i v e  4e®n! * 
we know that U has a local minimum at qo. The small vibration approxin1̂ ^  
consists of replacing U in the neighbourhood of qo by (q — qo)* A(q - Qo)fi ̂
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thus linearizing the system. Without loss of generality, we can suppose that 
q0 = 0, and the system becomes
(13.2.3) q = - Aq.
We seek solutions of eqn (13.2.3) which are of the form vcos(ujt + </>), where v is 
a vector in Rn:

—uj2v cos (cdt + (/>) = —Av cos (wt + (/>).
Therefore, we must have

Av = uj2v,
that is to say, v is an eigenvector of A associated with the positive eigenvalue 
a;2, since A is positive definite. The number u is the angular frequency of the 
vibration, and the frequency of the vibration is a;/27r.

Every solution of eqn (13.2.3) is of the form
n

^2 vk cos (uikt + (f)k) ,
k-1

since the orthogonal projection of system (13.2.3) onto the eigenvector vk asso­
ciated with the eigenvalue leads to the equation
(13.2.4) xk + ukxk = 0,
where xk is the component of x on vk.

Consider a linear equation of angular frequency a;, to which we add a small 
dissipation coefficient e >  0, and calculate the stationary response of this system 
to an excitation eiat. We look for a solution of the form keiat to the differential 
equation

x + ex + uPx = eiat.
A simple calculation shows that

Lj2 — a2 + iea 
and, therefore, the modulus of k is given by

|fc| = ((w2 -  a2)2 + e2a2) ' ,
whose representative curve has the shape indicated in Figure 13.1.

Therefore, we see that an excitation of unit amplitude and of angular fre­
quency a gives a solution whose amplitude is inversely proportional to the coef­
ficient of dissipation e.

This abundantly shows the danger of resonance. When the vibrations of a 
fystem are of large amplitude, on the one hand, the linearized system (13.2.3) 
uo longer a good approximation to the nonlinear system (13.2.4) and, on the 
^  hand, we leave the domain of validity of the physical model, 
he search for resonance is one case where we are not much interested in the

eigenvectors.
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Figure 13.1: Amplitude of the response of an oscillator to a harmonic excitation 
of pulsation a; e = 0.01, w = 1.

13.3. Power method
13.3.1. The straightforward case
The power algorithm is described as follows: A is a matrix in Kn. Given a 
linear form y* and an initial vector x°, the vector x*+1 is defined from xk by the 
following relations:

(13.3.1) xk+1/2 =A xk,

The convergence properties of the above algorithm are set out as follows:
Theorem 13.3.1. Let A be a matrix in Kn which possesses a simple eigenvalue 
A whose modulus is strictly greater than the moduli of all the other eigenvalues 
Then there exists an open set U of Kn x Kn « K2” whose complement has 
Lebesgue measure zero in K?n such that, for every pair (y, x°) in [7, the sequence 
(xk)keN has a limit. The limit of the xk is an eigenvector of A associated wutn 
the eigenvalue A.
Remark 13.3.2. Observe that in the real case, if A has a simple eigenvalue  ̂
whose modulus is larger than the modulus of any other eigenvalue, then A niu 
be real.

Xk+l/2
,*xk+l/2
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proof. We note, first of all, that

317

k Akx° x — —y*Akx°
Indeed, this relation is true for k = 1. If it holds for k we have

consequently,

and we see that

.*+1/2 _ Ak+lx° 
y*Akx° ’

y*Xk + '/2 = y*Ak + lX° 
y*Akx° ’

Ak̂ x° y*Akx° _  Ak+Xx° 
y*Akxo y*Ak+1x° y*Ak+lx°

We present the algorithm in the form (13.3.1) with the aim of avoiding the 
overflows and underflows which would spoil the precision of the calculations. 
These overflows and underflows can occur if the spectral radius of A is different 
from 1, as the study in Section 11.1 shows that Ak grows as k tends to infinity 
like p{A)k.

Let v be an eigenvector associated with the eigenvalue A. There exists a 
subspace W of Kn which is invariant to A, that is AW C W, and such that

K" = Kv 0 W.
We denote by P the projection in W parallel to Kv, and z the vector of IKn such 
that

x = (z*x) v + Px, Var E HC1.
The operator B from W to W, defined by

Bx = \~1Ax, VxeW,
has spectral radius less than 1 from the hypotheses of the theorem.

We have
Akx° = Xk (z*x°) v + AkPx° = \k [(z*x°) v -f BkPx°] . 

Consequently, if y*Akx° does not vanish for any value of k,

(13.3.2) xk = = (***°) t> +
y*Akx° y* [(z*a?0) v + BkPx°]

^Ppose that y*v and x*xQ do not vanish. Then it follows from the study of 
tion ll.l that the numerator of eqn (13.3.2) tends towards (z*x°)v and that 

e denominator of eqn (13.3.2) tends towards {z*x°){y*v). Consequently,
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We therefore have convergence for all data (y,x°) not belonging to the set F 
defined by

Fk = {(y,x)&K2n :y*Akx = 0},
Foe = ({y £K" : y*v = 0} x Kn) U (Kn x €  K" : z*z = 0}),

F = Fi U F2 U • • • U Foo.

We are going to show now that F is a closed set of measure zero. Note that 
p(A) = |A| >  0. Consequently, none of the powers of A is zero. The set Fk is 
closed, since it is a level set of the continuous function (y,x) y*Akx. It is a
set of measure zero. Indeed, let N\ = {x E Kn : Akx = 0}. N\ is the kernel of 
Ak, which being of co-dimension at least 1, has Lebesgue measure zero in Kn. 
For x £ N\,

^  = { i / 6 P :  = 0}
is a hyperplane of Kn and, therefore, the measure of Nx vanishes. From the 
Fubini-Lebesgue theorem, the set Fk is therefore negligible, since almost all its 
intersections FkCI (Kn x {#}) are negligible relative to the Lebesgue measure in
Kn.

The set Foq is a union of two products having the same structure: each is a 
product of Kn with a hyperplane of Kn. It is therefore negligible in K271. The 
set F is a countable union of negligible sets and is also negligible.

It remains to show that F  is closed. Let (yl ,xl) be a convergent sequence of 
elements of F, which have limit (y, x). We therefore have for each t an index k(i) 
such that (ye,xl) E Fk̂ y If the number of distinct indices k{t) which appear 
in this sequence is finite, it is clear that the limit of {y£,xe) is in F. Suppose 
for the moment that there appear an infinite number of indices in this sequence. 
By extracting a subsequence, we can suppose that k(p) = k(£p) tends towards 
infinity. In this case to simplify the notation we let = xip and r)p = yip and 
we have

r&A'Wt, = 0.
Reasoning as in the first part of the proof, we see that

T,;[(z*zP)v+BkMpsP] = o .

If z*x = 0, the pair (y,x) is in F. If z*x ^  0, passing to the limit in the ah°ve 
inequality gives

(y*v) (z*x) = 0
and, therefore,

y*v = o,
which implies again that (y, x) is in F. We have therefore shown that F is c ôS p
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13.3.2. Modification of the power method
In this subsection, we work under the hypotheses of Theorem 13.3.1: .1 is ail x n 
matrix which has a simple eigenvalue A whose modulus is strictly greater than all 
the others. We are going to examine a modification to the power method. First 
of all, instead of the normalization obtained by dividing xn+1/2 by we
are going to divide xn+l //2 by its norm

(13.3.3) xn+1/2 = Axn,

We see then that
x* - _____

and the analysis made in Theorem 13.3.1 shows that

r »+i _
-  |xn+l/2| •

Akx°

Akx° = Xk (z*x°)v + AkPx°.

Consequently, if z*x° ^  0,

Akx°
| Akx°

' A 1* (z*x°)v + B kPx°
| A| | (z*x°) v + BkPx° | *

We see that the vector Akx°/\Akx°\ does not converge if A is not a strictly 
positive real number. If A = re10,

* lke( z ^ ) v  + BkPx° 
\(z*x°) v + BkPx°| ’

and, therefore,
e~lk0xk (z*x°) v 

\(z*x°) v\'
^  ot^er words, xk tends towards the eigensubspace associated with A, which 
does not necessarily imply the convergence of xk. On the other hand, the ratio 

)j/xk of the j -th component of Axk and the j -th component of xk tends 
towards A, provided that xk is not too small. Therefore, we can have two phe- 
n°mena in the real case: xk converges or (—l)kxk converges.

To ensure convergence it is also required that

z*x° ^  0 and x° £ |̂ J ker Ak.

The
k=1

union of the kernels of the powers of A is an increasing sequence of vector 
dec PaCes w^ ch is stationary for sufficiently large k. Jordan’s theory of the 

°uiposition of matrices shows that, since A has a nonzero eigenvalue A, this
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space cannot be equal to Kn. Consequently, the set of initial conditions for which 
we do not have convergence is closed and of measure zero, as in Theorem 13.3.1.

Note that the rate of convergence of xk towards ker(A — XI) is geometric in 
p{B)k, where p(B) = |A|-1 max*.^ |A,-|.

The modified power method is particularly interesting when A is Hermitian,
| • | being the Euclidean norm. The remarkable point is that the sequence defined 
by (13.3.3)

nk = (xky  Axk
converges twice as fast towards A as the ratio (Axk)j/xk. Indeed,

k _  Akx°
x ~ \A

which gives

(xk)* Axk = (x°y A2k+ix° 
(x0)* A2kx°

Since A is Hermitian, it possesses an eigenvector v of Euclidean norm 1, relative 
to the eigenvalue A, and we can write

Ax — A (v*x) v + APx,

where P is the orthogonal projection on the orthogonal supplement of Kr. 
This orthogonal projection is necessarily Hermitian and idempotent (P2 = P)- 
Hence,

{x°yA2k+lx° = [{v*x°) V + Px°YA2k+1 [{v*x°) V +  Px°]
= [(v*x°) V + Px°y [A2*+1 (v*x°) V A A2k+lPx°]
= A2fc+1 \v*x°\2 + {x°y PA2k+1Px°.

Similarly,
(z0)’ A2kx° = X2k |n*x°|2 + (x0)*

We therefore obtain

k_  [t>*a;0[2 + A"2* "1 (x°)* PA 2*+1Px°
** ~ |n*x°|2 +  A-2* (x0)* P A ^

The convergence of pk to A is geometric if v*x° /  0. The rate of converge^ 
is obtained from p(PAP/\)2 = p(B)2: we have a convergence which is twice* 
rapid.

Since A is Hermitian, the hypothesis v*x° ^  0 suffices to ensure tha 
does not vanish for any k.
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13.3.3. Inverse power method
We have seen that the power method gives only the eigenvalue-eigenvector pair 
corresponding to the eigenvalue with the largest modulus. Let €  C be such 
that

0 <  |<7 Aj| <  \oA/.1,
which implies that A jis simple. Then the largest eigenvalue (in modulus) of 
(A - <jI)~x is (Aj — ct)-1. Therefore, we have convergence of the sequence 
when it is defined by either the relations (13.3.1) applied to ( -  crl)~l , that is,

Tk+1/2
(13.3.4) (A -a I) xk+1' * = xk and x*+i =

or when it is defined by the relations (13.3.3) applied to (̂ 4 -  a/)-1, that is,

(13.3.5) (A -  al) xk+l/2 = xk and xk+l = xk+1/2 
\Xk+l/*\ *

The convergence of the sequence (13.3.4) holds for (?/, x°) in an open dense set of 
W1 x Kn, whose complement is of measure zero. The convergence of the sequence
(13.3.5) holds for x° in an open dense set of Kn, whose complement is of measure 
zero.

Practically, it is not necessary to calculate the inverse of A — al. We store 
a decomposition A = LU or PTA = LC/, and each solution of the system re­
quires 0(n2) operations, once the initial investment of 0(n3) operations for the 
Gaussian decomposition has been made.

One problem presents itself: the conditioning of the matrix A — crI can be 
estimated by the ratio of the largest eigenvalue of A — a l and the smallest 
eigenvalue of A — al. A priori, the matrix is badly conditioned and, therefore, 
the calculation of xk+l/2 will be marked with a large error.

What should we do? Must we choose a not too close to Aj so that A — a l is 
better conditioned?

We need do nothing of the sort, as was shown by B. N. Parlett [65]. We will 
Mow his analysis in the case when A is Hermitian. The real calculations can 
be modelled by

( A - a I - E ) x k+1'2= x k + ek,
where E models the rounding errors of the method, and ek is the error in the 
Vect°r xk. We write

ek = ek A Exk+1/2.
^°nsequently, instead of solving

{A -a I)x k̂ 2 = x k,
We have in fact solved

(A -a I) xk+1/2 = x k + ek,
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and the error committed is given by

(.A - o I ) ~ l ek.

Using the decomposition of A over Evj ®  (Knj)x = Kaij ®  ImPj, we see that

(A -  a i y 1 ek = + ( -  a/)-1 P,e*.Xj - a

Suppose that there exists a constant M  such that

\ P je k \ ^ M \ v ; e k \,

which means that the components of ek perpendicular to vj are not too large 
compared to the components of ek parallel to Vj. Let

m = min {\Xk -  a\ : Xk # Xj} .

We then have

(B -a I)~ l Pek ^  -  Pek m 1 m  1 J 1 m
v* (A -  a I)~l ek

We see that, if M \X j — cr| <̂ ; m, the error e k is almost all in the direction of vJ, 
which is the eigenvector which we wanted to calculate.

Even if (A — crl)~lek is of the same order of magnitude as xk+1/2 (since the 
matrix A -  a I is badly conditioned), this is not serious for the calculation of Vj, 
it is even an advantage. We therefore obtain Vj in a few iterations.

13.4. Q R  method
13.4.1. The algorithm and its basic properties
Recall that every invertible matrix A admits a unique decomposition A = Q& 
where Q is unitary and R is upper triangular with a strictly positive diagonal 

(see Theorem 12.1.1).
The QR algorithm for finding the eigenvalues of some matrix A is defined as 

follows: we use a sequence of translation parameters ak, and we let

AX=A,
(13.4.1) Ak -  (TkI = QkRk»

Ak+i = + RkQk-
Thus, we effect the QR decomposition o f  matrix Ak, then we invert the ord^ 
of the factors of the decomposition. The parameters ak will be chosen later, 
below for the possible choices.
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Note, first of all, that

(13.4.2) Ak+\ — <7/./ 4“ Qk (Ak ~ o’lel) Qk — QkAkQk.
Consequently, Ak+\ is unitarily equivalent to Ak and, therefore, for all k, Ak is 
unitarily equivalent to A.

The QR method iteratively transforms A into one of its Schur forms. If the 
method converges nicely, the limit will be an upper triangular matrix on whose 
d ia gon a l we will find the eigenvalues of A<*>, which are obviously the same as 
those o f  A. To find the eigenvectors of A, it necessary to do a bit more work, 
except if A is a normal matrix, that is, A commutes with its adjoint. In this case 
A is diagonalizable in an orthonormal basis and its Schur forms are also normal. 
If an upper triangular matrix commutes with its adjoint, it is diagonal. Then, it 
is clear that the eigenvectors can be obtained from the limit U of the products 
Qk • • • Qi as k tends to infinity; they are the column vectors of U.

However, the QR method does not always converge nicely, and its limit can 
be a block upper triangular matrix, with 2x2  blocks for the pairs of conjugate 
eigenvalues.

It is interesting to characterize the matrices A = QR for which Q commutes 
with R. There is no simple general answer. If A is unitary, it then admits a QR 
decomposition with Q = A and R = /, which obviously commute. In order to 
be able to conclude, we need an assumption on the spectrum of A:
Lemma 13.4 1. Let A be an invertible matrix whose eigenvalues are all simple 
and have distinct moduli. If the QR decomposition of A has the property
(13.4.3) A = QR = RQ,
then A is upper triangular and Q is diagonal.
Proof. We argue by induction on the spatial dimension. In dimension d — 1, 
there is nothing to prove. Assume the result to be true up to a certain dimension 

1, and let A be a d x d matrix having all the properties stated in the lemma. 
Let /i be an eigenvalue of R and let V be the corresponding eigenspace. We 

infer from the commutative property (13.4.3) that QV = V and, therefore, there 
exists a basis of V consisting of eigenvectors of Q:

Q x j  = e l<t>jX j.

This implies that the XjS are also eigenvectors for A. Consequently, if the eigen­
values of A are denoted by Ai,..., A<*, the eigenvalues of R will be the absolute 
values of the Â s and those of Q will be the phase factors \j/\Xj\ = e1̂ .

The assumption on the eigenvalues of A implies that all the eigenvalues of R 
qG ̂ stinct and, in particular, every eigenvector of R is also an eigenvector of 

1 th • vect°r ei of the canonical basis is an eigenvector of R relative to
, Eigenvalue R\\ — |Aj|. Therefore, it is an eigenvector of Q:

Qet = e ^ e i .
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Thus, the matrix Q is of the form

e'^ Q l2  * '* Q ld ^
0 Q22 * '* Q2d

o Qd2  * *‘ Q d d j

and the properties of unitary matrices imply that

Q12 =  * • * =  Qld =  0.

We can write now Q and R in block form

«-(C $)• M'o1 1
The commutation relation (13.4.3) now implies that

( \ j  _  ( \ j  p*QA
VO Q x R j  \0 RxQi)

and, in particular, Q\R\ = R\Q\. We apply the induction hypothesis and the 
lemma is proved.

Assume, indeed, that all the eigenvalues of A are distinct and that the se­
quences Gk and Ak converge to the limits a00 and A0c, respectively. Moreover, 
assume that A00 - (7^1 is invertible. Then, by continuity of the QR decompo­
sition (Lemma 12.1.7), the matrices Qk and Rk also converge to limits denoted 
by Qoo and i?oo, respectively. The set of unitary matrices is a compact group 
{7n; therefore, the set UnA is a compact set of matrices and thus, Aoc is unitar- 
ily equivalent to A. Passing to the limit in eqns (13.4.1) and (13.4.2) gives the 
identities

(13.4.4) Aqq — (Tool — Qqo {Aqq — CToqI) Qoo,
(13.4.5) Aoo O"oo / — Qoc Roc = R'OC Qoo •

Then, it is clear that, due to Lemma 13.4.1, the limit Aoo is upper triangular-

13.4.2. Convergence in a special case
We are going to show the convergence of the QR method in a p a r t i c u la r  case-

Theorem 13.4-2. Let A be a positive definite Hermitian matrix. If the paraflieter 
of the translation are all zero, the sequence of matrices (Ak)keN converges t°̂ 
diagonal matrix Aoo-
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proof. The proof rests on a link between the Cholesky method and QR de­
composition. Denote by P(ra,C) the set o f n x n  Hermitian positive definite 
matrices. We will need the square root mapping from P(n, C) into itself, which 
associates each element B of P(n, C) with a unique matrix A G P(n,C) such 
that A2 = B. The square root is a differentiable function on P(n,C), that we 
will denote by 5. If necessary, we will also write A = \[B. If B is diagonal then 
A is also. For the proof of the properties of the square root, see, for example, 
the exercises of Chapters 3 or 12.

Consider the following Cholesky iteration for B G P(n,C):

(13.4.6) Po = P,
(13.4.7) Bk = U'k U k ,

(13.4.8) Pfc+i = U kU k .

Here, each matrix U k belongs to P+(n,C), the group of upper triangular ma­
trices with a strictly positive diagonal. We know that decomposition (13.4.7) is 
unique and that all matrices Bk are in P(n,C). Furthermore, there is a simple 
relationship between this sequence of Cholesky iterations and the sequence of 
QR iterations defined as follows: let A = \/P and let

(13.4.9) A0 = A,
(13.4.10) Ak = QkRk,
(13.4.11) Ak+1 = R kQk.
The Ak are all unitarily equivalent to one another and belong to P(n,C). We 
have the following identities:

A\ = A*kAk = R*kQ lQ  = 
Ak. = Ak+\ Ak+i = RkQkQkRk = RkRk.

Consequently, as the Ak are linked by these QR iterations, the Bk are linked 
hy Cholesky iterations. By a uniqueness argument, we can identify Bk with 
^I (respectively, Rk and Uk), for all k, and we can deduce that the Bk are all 
unitarily equivalent to P. More precisely, since Rk+i = Q l^R kQk,

<13-4i2) Bk+1 = Q lK Q U iQ U i RkQk =
will now establish the identities linking the coefficients of D = R*R and 

1 °se of B' = /?/?’, where R belongs to RC). We see that

(B ) i j  =  ( R )n (R)ij,{B)a j = { R ) 12 (R)tj + ( R ) 22 ,

4n<1, more generally, for j  ^  i,

(UUl3) (*)„ («)«-
e=i
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Similarly,

and, more generally, for i ^  j,

( * %  = £ < * > *  (%•  
i=3

(13.4.14)

Consequently, we have (B)n ^  (£?')n and, more precisely,

(13.4.15)
i—2

We generalize eqn (13.4.15) by considering
m m
2 > ' ) „ -!>)„ ,■
p=l p=l

Note that m m m
! > > .»  = E B  («>«!’p=l t=l j=i

and m m nE<n»=EEI<R>./-p=l i=l ,;=t
We can therefore write

m m m n
(13.4.16) £ > ' ) „ - ! > ) » .  = £  E !<«)./•

p=l p=l i=l j=m+1

For m = n, the right-hand term of eqn (13.4.16) vanishes because the trace of B 
is equal to the trace of the equivalent matrix B '. Coming back to the sequence 
I?fc, we deduce from eqn (13.4.16) that all of the sequences

(13.4.17)

are increasing for m = 1,... ,n. By virtue of eqn (13.4.12), they are bounded 
and, consequently, they converge. Therefore, the sequences

{(^)pP}feGN

converge for all p = l,...,n. Their respective limits are denoted by 
Furthermore, the difference between two consecutive terms of the sequence
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to zero. For p = 1, eqn (13.4.15) implies that (Rk)ij tends to 0, for all j  ^  2, 
aS k tends to infinity. Suppose that, for i ^  p — 1 and j  ^  i + 1, the sequences 
(Rk)ij tenc  ̂ zero- Then, to say that the difference between two consecutive 
terms of the sequence (13.4.17), indexed by p, tends to zero implies that (Rk)Pj 
tends to zero for j  ^  p + 1. Thus, all the non-diagonal terms of Rk tend to zero 
aS k tends to infinity and, similarly, for the non-diagonal terms of Bk. We see 
that Bk converges to the diagonal matrix whose diagonal coefficients are those 
of (Boo)pp for p = 1 □

It is also possible to show the convergence of the product of the Qk to a 
transformation matrix, allowing the diagonalization of A. Therefore, we also 
have the convergence of the eigenvectors. Many other cases can be treated, 
where the proofs are clearly more complicated. There does not currently exist 
a general proof of the convergence of the QR method, nor a counterexample 
either.

13.4.3. Effectiveness of Q R
Under this naive form, the algorithm, whose convergence we have just proved, 
is numerically very bad. Indeed, the QR decomposition of a matrix, viewed as a 
Gram-Schmidt orthogonalization, is slow and not very stable, as seen in Section
12.1.

On the other hand, if we linearize the QR algorithm in the neighbourhood 
of A0o, we can see that, if all of the eigenvalues are pairwise distinct, the con­
vergence is geometric, and its rate is given by

I Ai|max ——-.
IAiKI-M l-M

If two eigenvalues are close to one another, the rate of convergence is very 
bad. We have therefore constructed a slow and unstable method, so there is no 
place for smugness.

To make the QR method effective, we transform the initial matrix into upper 
Hessenberg form (Section 12.1). We then saw that the upper Hessenberg form 
ls invariant to the QR algorithm, which is realized by means of Householder 
transformations. This makes the problem more stable, and a little slower, but 
there is one fundamental improvement, which lies in the choice of translation 
parameters.

Once A is in Hessenberg form, the rate of convergence is given by

maxi
*i+l

If ^  choose a translation parameter close to An, the rate of convergence of the 
^  cients in the last row is given by

An ~  O'

An—1 O’
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that is to say, very quick. When we consider that the last row has converged 
we use deflation, that is, we strike out this last row and the last column and 
we work o n a n ( n - l ) x ( n - l )  matrix, to which we again apply a translation 
strategy. The precise definition of the translation strategies is the object of 
detailed studies in numerical linear algebra literature. It is implemented in the 
QR programs currently on the market.

When we look at the real life case, the QR method cannot converge to an 
upper triangular form if A has complex eigenvalues. In this case, the method 
converges to a block upper triangular form.

13.5. Exercises from Chapter 13
13.5.1. Spectral pathology
Exercise 13.5.1. Let A and e be real parameters, and let M be the matrix

"<*• '>=(o a+<)- m
What are the eigenvalues of M(A,e)? When does M(A,e) possess a basis of 
eigenvectors?
Exercise 13.5.2. Calculate exp(£M(A, e)). The quickest way to do this is to note 
that the required matrix is the matrix of the linear mapping which assigns to 
the initial conditions x\ and x2 the solution, at time t, of the system of ordinary 
differential equations

Xi = A X i + X 2, Xi(0) = z u 
X2 = (A + e)X2, X2(0) = x2.

A first year course shows us how to explicitly calculate the solution to this system.
Exercise 13.5.3. Given the fixed parameter A, compare exp(£M(A,e)) and 
exp (tM (A, 0)) as e tends to zero. Is the behaviour of these expressions at t = 
the same?

13.5.2. Q R  flow and Lax pairs
The Poisson bracket of two matrices A and B belonging to «Mn(Q is defined b>

[A, B] = AB -  BA.
Exercise 13.5.4• Let M be a C l mapping from E to M n(C). Show that tltf 
following two assertions are equivalent:

(i) There exists a C 1 mapping P from E to invertible matrices in 
such that

M(t) = P  (t)-1 M0P  (;t), W e  E;
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(ii) There exists a matrix L(t), which should be determined, such that M 
satisfies the system of differential equations

M(t) = [L(t),M

E x e rc is e  13.5.5. Let U be a C l mapping from E to Mn{C). Show that the 
fo llow in g  two assertions are equivalent:

(i) The mapping U is to unitary matrices;
(ii) There exists a continuous mapping A from E to Afn(C), with values in the 

set of skew-Hermitian matrices, such that

U (t) = A (t) U (t), WE E, U (0) is unitary.

Exercise 13.5.6. Under the hypotheses of Exercise 13.5.4, show that M(t) is 
unitarily equivalent to M(0) if and only if, for all £, L(t) is skew-Hermitian.
Exercise 13.5.7. Let R be a C l mapping from E to M n(C). Show that the 
following two assertions are equivalent:

(i) R maps to invertible upper triangular matrices;
(ii) R(0) is invertible and upper triangular, and there exists a continuous map­

ping 5 from E to the set of upper triangular matrices, such that

R(t) = R(t)S{t)1 WE E.

Exercise 13.5.8. Show that the QR decomposition is a continuously differentiable 
mapping from the set of invertible matrices to the product of the sets of unitary 
matrices and of upper triangular matrices.
Exercise 13.5.9. Consider the following QR decomposition:

etB = U(t)S (t).

Show that U and S are continuously differentiable functions of t. What are the 
values of 17(0) and 5(0)?

Show that there exists a continuously differentiable function L from E+ to 
the set of skew-symmetric matrices such that

U = -UL.
Exercise 13.5.10. Define a sequence M j by

A7q = eB, Mj — Q jR j, Mj+\ — RjQj.
Pr°ve the identity
(13.5.1) Mk = Q l_ x • • • QqMqQo * • • Qk-i-
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Exercise 13.5.11. Prove the identity

(13.5.2) ekB = Q0--Qk-iRk-i-Ko,
and give the value of U(k) in terms of the Q j s.
Exercise 13.5.12. Let M be the unique solution of the matrix-valued system

M = [L, M], M (0) = M0.

Use identities (13.5.1) and (13.5.2) to prove that

M (k) = Mk.

Exercise 13.5.13. What is the limit of M(t) as t tends to infinity?
Exercise 13.5.14• Let A be a symmetric positive definite matrix. Show that it 
can be written as the exponential of a symmetric matrix and conclude, from the 
previous study, that the unitary part Uk of the QR decomposition of the powers 
Ak = UkSk gives the change of basis constructed during the QR algorithm 
starting from A.



14

Nonlinear equations and
systems

14.1. From the existence of solutions to their 
construction

14.1.1. Existence and non-existence of solutions
Let / be a continuous mapping from an open subset of Mn to IRn. We want to 
approximate numerically a solution of the system
(14.1.1) /(*) = 0,
on condition that such a solution exists.

Some very elementary examples can convince us that the system (14.1.1) 
does not always have a solution. Take, for instance,

/Or) = x2 +1,
with x a real variable. There is no real number x such that f(x) vanishes. Take 
the following slightly more complicated example in two dimensions:

/(x) = /(x1,x2)=  *)•

+ x\ — 1 and toI Sôuti°n of this problem would have to belong to the circle x\
I the bne Xl = which is parallel to the ^2-axis. Figure 14.1 shows that
I r ' Clrcle does not intersect the straight line. At this point, I would expect the 
J^in^ to Protest loudly and to say that I built naughty examples to prove my 

?0’  ̂ build even more elementary examples to make my point. Let 
r  Cons*der the linear equations
fa-1.2) Ax = b.

331
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Figure 14.1: The straight line does not intersect the circle.

If A is not a square invertible matrix, we know a necessary and sufficient con­
dition which enables us to solve the problem: there is a solution if and only if b 
belongs to the image of A. If we assume that the dimension of the target space 
is n and that the dimension of the image of A is strictly less than n, then, most 
of the time, we will be unable to solve the system (14.1.2). The reason for this 
is that the complement of the image of A in the target space is an open set with 
full Lebesgue measure.

Why do we care about the existence of solutions, anyway?
The next question comes immediately, this time, not on the mathematical side, 
but on the application side: ‘My goodness, why should I care about the existence 
of solutions? I see them in my experiment/machinery/observation. I do not have 
time to waste with irrelevant abstract questions.’ Usually, this kind of remark 
comes with a big laugh or a slightly commiserating look.

Dear physicist/engineer/performer of experiments: perish the thought that 
I should deny facts, but there is quite a distance between fact and theory, as 
you must well know. The existence of a solution is a property of equations, the 
observation of facts is material data. You claim that you can write a theory 
with equations in it, which gives you a useful and, hopefully, faithful descripti011 
of reality, and through which you are able to predict and understand nature 
If I can prove mathematically that your equations do not have any solutions- 
shouldn’t that say something to you about the value of your model? May /
you assumed that you had a stationary solution to your set of equations: and, ̂
there is no solution, it might mean that, in fact, things are moving. Maybe 3^ 
could improve your model, or improve your observations. On my side, I c0t 
quantify the amount of motion and we might conclude together that this m 
is irrelevant, or that it is very slow and we are not interested in very large ti 
However, we would both be wiser with the extra knowledge.
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14.1.2. Existence proofs translate into algorithms
Now that I have made a scientist’s case for the existence theory of solutions, I’ll 
defend the numerical analyst’s case. There are basically two methods for obtain­
ing the existence of solutions of a nonlinear equation or a system of nonlinear 
equation s. One is based on topological methods and another one is based on 
differentiable methods.

The most elementary example of a topological method is the following: sup­
pose that I have a continuous function / from a compact interval [a, b] which is, 
say, positive at one end and negative at the other. Then, we know that there is 
a solution somewhere inside the interval. And how do we find it? We use the 
bisection method, which is cheap in one-dimensional space.

It is possible to obtain approximate numerical solutions by topological meth­
ods [2] in higher-dimensional space. However, this does not come cheap, since 
these methods require, for a given precision, a number of function evaluations 
which increases exponentially fast with the dimension.

The most elementary example of a method based on differentiability is the 
contracting fixed point method. It will work only if the function x x —  

f(x) is strictly contracting. However, then it will be quite efficient, and its 
performance does not depend on the spatial dimension, since the number of 
function evaluations is always one per step.

When only topological methods are available, numerical approximation of so­
lutions is generally slow and painful. When differentiable methods are available, 
then the scientific computation is much more tractable. One of the most impor­
tant differentiable methods comes up in the so-called perturbation situations. 
Here, the solution sought is close to a solution which is well known, or, more 
generally, it can be reached along a differentiable path. Then, a natural idea is 
to somewhere introduce an abstract version of time, and to use ordinary differ­
ential equations as a means to achieve the desired result. This is quite desirable, 
since there are many efficient methods for computing solutions of differential 
equations, as we will see in Chapters 16 and 17.

14.1.3. A long and exciting history
historically, the Babylonians were the first to solve quadratic equations written 
Wlth numbers. The ancient Greeks solved geometric problems with a ruler and 
c°nipass, and these problems also reduce to quadratic equations. However, the 
. û on °f the cubic equation took much more time. The sixteenth century Ital- 
^  mathematicians Scipione del Ferro, Niccolo Fontana, also known as Tartaglia, 
the ^ ro*amo Cardano found the solution of this equation, and in the middle of 

imputation they introduced imaginary numbers. Subsection 14.3.1 enables 
I  e reader to find Cardano’s formulae for themself.
then 6 degree equation was solved generally by Bombelli in 1572, and
[ n fairy tale starts, or maybe stops, depending on the point of view of
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the reader. In general, the polynomial equation of the fifth degree cannot be 
solved by radicals, i.e., by finite expressions involving arithmetic operations and 
taking roots of numbers. This impossibility was proved in the nineteenth century 
by Galois, who used a deep algebraic method, and who opened the way to an 
endless stream of beautiful mathematical thinking. However, from the practical 
point of view, the approximation of roots of polynomial equations remains a very 
important activity. Think only of the CAD applications: surfaces are represented 
by polynomials or, more generally, by rational parameterizations; a machine 
tool has to cut metal, just to the right shape, with not too many holes and 
each at the right place. How do we ascertain automatically that the machining 
will be correct? The computer program has to find intersections of surfaces, 
that is, to solve polynomial equations. But the circle closes itself: efficient 
computation relies more and more on computer algebra, in particular, in the 
area of fast multiplication. And computer algebra is... algebra. If every man 
is an island, mathematical humans tend to build bridges in places where they 
are not expected. The numerical analyst cares little whether the fifth degree 
equation can be solved by radicals, but she cares a lot about the speed and 
reliability of algorithms. If she had to use the most abstract mathematics to 
enhance the qualities of a numerical method, then she would, if time and space 
would allow it.

14.1.4. An overview of existence proofs
In the case of a single equation (n = 1), if / is continuous on the compact interval 
[a, 6] of E, a sufficient condition for / to vanish on at least one point of [a, b] is 
that

(14.1.3) /(«)/(6K 0.
The method employed to detect a zero of / under this condition is the classic 
bisection method. This method was recalled in Subsection 13.1.2 and it allows 
the localization of a zero of / in N steps with precision 2~N(b — a).

The higher-dimensional generalizations rely on the so-called B rouw e r’s fixed 
point theorem, or other topological tools.
Theorem H.l.l. Let g be a continuous mapping from the closed unit ball B\ of 
En into itself. Then, there exists a point x of B\ such that

9 («) = x.
In this theorem, the norm chosen matters little, since all the unit balls of R 

are homeomorphic. We deduce from this theorem the following coro llary, ŵ ere 
(*, •) denotes the Euclidean scalar product:
Corollary 14-1-2. Let / be a mapping from the closed Euclidean unit ball B\ 0 
En into En. Suppose that at the boundary the field / is reentrant, that is<
(14.1.4) (/(*),*) ^  0, if |x| = l.
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Then / has a zero in the ball B\.
We recognize in eqn (14.1.4) a generalization of eqn (14.1.3).
To read an introduction to this type of question, the reader is referred to 

Subsection 14.3.2, where the degree is defined in dimension 2 and Brouwer’s 
fixed point theorem is proved. We also refer the reader to the little book by A. 
Gramain [39]. The book [72] is a delightful introduction to fixed point theorems 
seen from a topological point of view. The book [63] is a more highbrow vision 
of topology; however, it is one of the classics of mathematics.

With another type of information, we could also prove the existence of a 
solution to eqn (14.1.1). The following classic case, frequently used in numerical 
analysis, is that when we can solve eqn (14.1.1) by minimization:
Lemma Let F be a real C 1 function on Mn such that
(14.1.5) lim F(x) = +oo.|z|—KX>
Then, F attains its minimum at at least one point x of Rn and at this point 
DF(x) = 0.
Proof. There exists an R >  0 such that if |z| ^  R then F(x) ^  F(0) + 1. The 
closed ball centred at 0 and of radius R is compact, and the function F reaches 
its minimum in it at some point Xq, where, in particular, F(xo) ^  F(0). The 
point xo is necessarily interior to the ball. If it was on the edge, we would have 
F(xo) ^ F(0) +1, which contradicts F(xo) ^  F(0). Consequently, DF(xo) = 0.

□

This result is useful in the following case. If / is the gradient of a function F 
having the property (14.1.5), or if, more generally, / is a multiple of the gradient 
of such a functional F, we are tempted to use Lemma 14.1.3. We could also 
hope to use it by putting F(x) = \f(x)\2 and seeking the absolute minimum of
F. If this minimum is zero, we have succeeded. However, practical minimization 
calculations can be difficult for different reasons. On the one hand, F could 
have several minima, in which the iterative algorithm could get stuck. On the 
other hand, in n dimensions the calculation could have a dreadfully slow rate 
of convergence if it is badly done. The second difficulty forms the subject of an 
optimization course.

The first difficulty corresponds to a very open problem and is currently often 
treated by a probabilistic method known as simulated annealing. This method 

invented to solve discrete problems, amongst others, the problem of the trav- 
llng salesman: find the shortest closed path passing through N towns without 

^getting one or passing through the same one twice. This problem belongs 
0 the category of problems called NP-complete, for which we do not know of 

exact solution algorithm which requires fewer than 0(NP) steps, with p an 
eger independent of N. In the simulated annealing method applied to the 

Idi miza^on °f functionals, we modify the descent along the length of the gra- 
L a random walk, which grows smaller with time. It has been proved [33]
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that the limit of these iterations is, almost certainly, a point where the absolute 
minimum is attained. These methods allow the treatment of problems which are 
inaccessible without them. All of this is the subject of extremely active scientific 
work, which has applications in computing and in the modelling of the brain, 
amongst other fascinating subjects.

In some of the statements which have just been made, there is one underlying 
idea: the only systems that we know how to solve well are linear systems. We 
therefore want to get back to the linear case by different procedures. To arrive at 
the Brouwer theorem, we deform (in the topological sense of the term) the iden­
tity. The proof of Corollary 14.1.2 consists of making a differential deformation 
of a statement which is visibly true for a quadratic form.

The situation is much better when we have some local information. In the 
scalar case, suppose that we have a point x at which f(x) is small, and that 
\f'(y)\ ^  M in the neighbourhood of x. If / is C l then /' has a constant sign in 
an interval ]x — a, x + a[. To fix ideas, we suppose that

/' (y) ^  M >  0, Vy e ]x -  a, x + a[.

If x >  y, then

f ( x ) = f  ( y) + [  f  (&) d& ^  / (y) + (x-
Jy

We see that, if 0 <  f(x) <  aM, then

/ (x -  a) ^  / (x) — aM  <  0.

Consequently, / vanishes in the interval ]x — a, x[. The reader should treat the 
other cases, with f(x) <  0 or f'(x) <  0, by exploiting the symmetries of the 
problem. It is necessary to change / to —/ or to use x + a instead of x - a- 

To end this introduction, we can again note that a nonlinear problem has 
been already treated in this book. The search for eigenvalues and eigenvectors 
of linear operators is a nonlinear problem, since the eigenvalues of a sum of 
matrices are not generally the sum of the eigenvalues of the matrices.

14.2. Construction of several methods
14.2.1. The strictly contracting fixed point theorem
Let E be a metric space, equipped with a distance d. A strict contraction isa 
mapping g from E to itself for which there exists a constant K <  1 such that

(14.2.1) d (g (x), g (y)) ^  Kd (x, y), V#, y G E.

We say that K is the ratio of the contraction g. The strictly contracting 
point theorem is stated as follows:
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Theorem 14.2.1. Let E  b e  a  c om p le te  m e tr ic sp a c e  and g a str ic t con tra c t ion  in 
E. Then:

(i) T h ere ex ists a un iqu e fixed p o in t o f  g , tha t is, x G E  su ch  that g(x) =  x.
(ii) For every  in itia l d a ta  y°, th e sequ en ce yn defin ed by  yn+l =  g(yn) c o n ­

verges t o  x. o
Th is th eorem  is p rov ed  in all o f  th e g o o d  b o o k s  on  analysis, and, in particu lar, 

in the b o ok  by  J.-P. Ferrier [28, pp. 139-40].
We con stru c t an a lg o r ithm  to  find th e so lu tion s o f  th e equ a t ion  /(#) =  0 

using the fixed p o in t theorem . F irst o f  all, w e let

g (x) = x -  f  .
It is clear that it is equ iva len t t o  find a fixed p o in t o f  g and t o  find a z e r o  o f  
/. A sufficient co n d it io n  for g t o  have a fixed p o in t in the in terval [a, 6] is tha t 
firstly g([a, 6]) is in c lu d ed  in [a, b] and se con d ly  that g is a  s tr ic t con tra c t ion  w ith  
respect to  K. S u p p o se  tha t /  is C l (and th ere fore g is also). Then, it is c lear 
that the p rop er ty  (14.2.1) is equ iva len t t o

Iff' (*)|^ K,Vx€ [o,6].

In other words, w e have

\ i- f( x ) \ ^K ,  V x e M J .

This im plies that, in particu lar, f  d o e s  n o t van ish  and, therefore, tha t /  is 
monotonic. W e w ill g iv e  b e low  a g e om e tr ic  in terp re ta tion  o f  th ese iteration s, 
including them  in a m o re  gen era l case.

The above ch o ice  o f  g is restrictive. W e can  gen era lize  it by in tro du c in g  a 
constant A and le tt in g

(14.2.2) g (x) =  x -  Xf (x).

ft A is nonzero, w e see tha t it is equ iva len t t o  seek  e ith er a ze ro  o f  /  or a fixed 
P°mt of g. T h e su fficien t co n d it io n s  for g t o  have a fixed p o in t in [a, b] are that 
0(k&]) is in c lud ed  in [a,b] and that g is a str ic t con tra ct ion , g iv in g

(14*2*3) \l-\f'{x)\ <  1,

that is,

(l12-4) 1 -  K ^ X f (x)s$ 1 + K.
Thiss N a tion  im p lies tha t /' d o e s  n o t ch an ge s ign  in [a, 1 and tha t A is o f  the 

me sign as /'.
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W e g iv e  a  g e om e tr ic  in terp re ta tion  o f  th e c o n s tru c t ion  o f  th e sequ en ce of 
ite ra tion s

yn+l = y n - \ f( y n).
W e n o te tha t th e line o f  s lo p e  \x p a ss in g  th rou gh  the p o in t (yn,f{yn)) has the 
equ a tion

r? =  /(3/n) + M £ - 2 / n).

It cu ts th e x-axis at £ such  that

t - y n = f(yn)

tha t is,
/  (yn)

n
I f w e let [i — 1/A, w e see that the p o in t yn+l is ob ta in ed  as the intersection 
o f  th e x-axis w ith  th e line o f  s lo p e  1/A p a ss in g  th rou gh  th e p o in t (yn,f{yn)). 
W e th ere fore s ta rt at a p o in t (y0, f(y0)) and fo llow  the line o f  s lo p e  1/A passing 
th rou gh  th is p o in t until w e reach  th e x-axis at th e p o in t y1. F rom  the point 
{y1, f iy1)) > w e fo llow  the line o f  s lo p e  1/A until w e reach  th e x-axis, which gives 
y2, and so  on. T h e  m e th od  thus o b ta in ed  is ca lled  the ch ord  m eth od. Figure 
14.2 a llow s th e v isu a liza t ion  o f  th ese iteration s.

14.2.2. Newton's method: geometric interpretation and 
examples

If we retu rn  t o  the re la tion  (14.2.3), we see tha t th e ite ra tion s w ill converge as 
qu ick ly  as th e con stan t K that we take in eqn  (14.2.3) is small. It is therefore 
natura l t o  rep la ce  th e con stan t m u lt ip lie r A a p p ea r in g  in eqn  (14.2.2) by the

F igu re 14.2: T h e  ch ord  m eth od.
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function l//'(x), and t o  let

(14.2.5)

If the fun ction  /' d o e s  n o t van ish at th e z e ro s  o f  /, it is equ iva len t to  sea rch  
for a ze ro  o f  /  and a fixed  p o in t o f  g. T h e  ch o ice  (14.2.5) th ere fore lead s us to  
c o n s id e r  N ew ton’s m e th o d  g iv en  by  th e ite ra tion s

The g e om e tr ic  in terp re ta tion  o f  th ese ite ra t ion s is as fo llow s. T h e  line o f  s lo p e  
f'(yn) pa ss in g th rou gh  th e p o in t (yn,f(yn)) has th e equ a t ion

follow the tan gen t u p  t o  th e x-axis, w here it in ter se cts at y2, and so  on. R efer 
to Figure 14.3 for a clear p ic tu re  o f  th is p roce ss.

Before g iv in g  a th eo rem  on  th e con v e rg en ce  o f  N ew ton’s m eth od , w e trea t 
explicitly a p a rticu la r c la ss ic  ca se  o f  convergen ce, n am ely  fin d in g th e squ a re r o o t  
of a positive number.

Given a >  0, w e want t o  so lv e

v = f(yn) + (t~yn)f'(yn)
and in tersects th e x-axis at

Graphically, w e sta rt a t th e p o in t (y°, f(y0)) and fo llow  th e tan gen t to  th e g raph  
of /, which in terse cts th e x-axis at y1. W e resta rt from  th e p o in t (y1,f(y1)) and

/  (x) =  x 2 -  a =  0.

(u0,f(u0))

(«2 , / M )  x

F igu re 14.3: N ew ton’s m eth od .
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W e th ere fore have

. . f  (x) \ t a\

A draw in g co u ld  su g g e s t th e b eh av iou r o f  th e iteration. W e m ake tw o parallel 
draw ings, on e  o f  th e g raph  o f  /  (F igure 14.4) and th e o th er (F igure 14.5) of the 
graph  o f  g. T h e  d raw in gs su g g e s t that, if w e sta rt from  y° >  0, then  all the yn 
are positiv e , yn ^  ynJtl for n ^  1, and th e sequ en ce  con v e rg e s qu ick ly  to y/ci. 
T h is is ex a c tly  what w e are g o in g  t o  prove.

W e sta rt at a p o in t y° >  0. W e are first o f  all g o in g  t o  see that all the yn 
rem a in  positiv e . T h is is a very e lem en tary  recurrence, since, if yn >  0, then

On  th e o th e r  hand, we ca lcu la te  th e d ifferen ce yn+1 — y/a as fo llow s:

=(j/n)2 -  2yny/q +  a _  (yn -  >  Q
2 ynyn '

W e th ere fo re see that, for n ^  1, yn ^  y/a. Then, the d e crea se  o f  the sequence.

F igu re 14.4: T h e fu n ction  /  and th e N ew ton  iterations.
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for n ̂  1, is p rov ed  by

We therefore have a d e crea s in g  sequ en ce wh ich  is b ou n d ed  by  y/a, for n ^  1. It 
is therefore con v ergen t and its lim it is a p o s it iv e  o r  ze ro  fixed p o in t o f  g. T h is  is 
therefore y/a.

14.2.3. Convergence of Newton's method
Here we will p rov e th e fo llow in g con v e rg en ce  result, w h ich  can  on ly  b e  loca l:

Theorem 1\.2.2. L et /  b e  a C2 fun ction  from  th e in terval [a, b] t o  E, w ith  a < b. 
Suppose that there ex is ts  x G [a, b] su ch  that f(x) = 0 and f'(x) ^  0. Then, 

ere exists e >  0 su ch  that, for ev ery  y° G [x — e,x + e], th e sequ en ce o f  N ew ton  
derations defined, for n ^  0, by

yn+l y n r )
f  ( y

defined’ rem a*ns in th e in terval [x — e,x +  e], an d con v e rg e s t o  as n  ten d s

The Proof o f  th is th eo rem  d ep en d s on  th e fo llow in g  lemm a:
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Lemma 14-2.3. L et (rn)n^o  b e  a sequ en ce  o f  p o s it iv e  o r  ze ro  num bers which 
sa tisfy

r„ +i <  r2n.
I f r0 <  1 then  th is sequ en ce con v erg es t o  0. Furtherm ore, w e have

rn ^ ( .
P r o o f .  L et (sn )n^o b e  th e sequ en ce de fin ed  by

so =  r0, sn-j-i =  sn.
W e ch eck  tha t th e sn b ou n d  from  ab ov e  th e rn. I f sn ^  r n , then

5n+l = s n ^ rn ^ rn+1
and, therefore, by  indu ction , sn ^  rn for any n. W e now  sh ow  that the sequence 
sn con v e rg e s under th e h yp o th e se s o f  th e lemm a. W e have

S i  =  s i

S2 =  sl =  Sq

and, in genera l, as in du ct ion  sh ow s im m ed ia te ly ,
2*i

Sn = (So)

A s so <  1, it is o b v io u s  tha t th e sequ en ce  sn ten d s t o  0 as n ten d s to infinity. 
T h e  con v e rg en ce  is, m oreover, a lo t fa ster than geom etr ic.

P r o o f  o f  T h e o r e m  14.2.2. W e can  com p a re  yn and x in th e fo llow ing way:

- m _ I + ' < * >
f'{yn) " ' f'(yn)’

sin ce f(x) = 0. R ed u c in g  t o  the sam e d en om in a to r, w e have

r n  2  71 vn+l - x -  ( y " ) - / ( y n) +  / W
(1 7) y
S in ce f  is con tin u ou s and d o e s  n o t van ish  at x, th ere ex ist strictly positi'e 
num bers M and a  su ch  that

\f (y)\ >  M ,Vy G — +  a ] .

O n  th e o th er hand, th e T ay lor ex pan s ion  g iv es

/ ( * )  =  /  (J /”) +  (X -  yn) f  ( ) +  f  f "  (t) (x - 1) dJyn
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As /  is C2,
m ax  |/" (j/)| oo.

[X — £*,£ + (*]

The ab so lu te  value o f  th e num era tor o f  th e r igh t-hand s id e o f  eqn  (14.2.7) is 
equal to

\ r  f"{t)(X-t)dt
I Jyn

and is b ou n d ed  by

-2 \yn - x i2 -

_ L|y" -  
2 ’

rn+i ^ r*,
provided that yn is in [x — a , x  +  a]. L et

Then, if \yn — x\ ^  e, L em m a 14.2.3 and its p r o o f  sh ow  us that \yn+l — x\ ^  e, 
and, therefore, by  in du ction , th e su cce ss iv e  ite ra tion s are well defined. T h ey  
converge to  x m uch  m o re  qu ick ly  than geom etr ica lly . □

In the case o f  N ew ton’s m e th od  for th e squ a re root, w e lo ok  at som e ite ra tion s 
for a = 2 and s ta r t in g  at x =  1:

If we let 

we see that

1.00000000000,
1.50000000000,
1.41666666666,
1.41421568628,
1.41421356238.

n the subsequent ite ra tion s th e sequ en ce  is sta tionary. T h e  value o f  \/2 giv en  
> the mach ine u sed  is 1.41421356237. T h e  n um ber o f  co rr e c t d e c im a l p la ce s 

Practically d ou b le s at ea ch  N ew ton  iteration. T h is  rem ark  w ill b e  m ad e m ore
Precise later in the s tu d y  o f  order.

Finally, we n o te  tha t N ew ton’s m e th od  is u sed  t o  m ake p r o o fs  o f  ex is ten ce  for 
^  inear p rob lem s in in fin ite d im en sion s by  m ean s o f  th e N ash -M oser theorem s. 
n e global beh av iou r o f  th e ite ra tion s o f  N ew ton’s m e th od  fo r low  d e gree  poly- 
0f ,la s *n the com p le x  p lan e is th e o b je c t  o f  a grea t d ea l o f  in terest on  th e part 

[*lso am*Ca  ̂ sy stem s spec ia lists. W e are tou ch in g  h ere on  qu estion s wh ich  are 
0 °f great curren t in terest t o  ‘pu re’ as m uch  as t o  ‘a p p lie d’ m ath em atic ian s.
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14.2.4. The secant method
T h e ca lcu la t ion  o f  a first deriva tive can  b e  very  awkward, even  if w e have an 
an a ly tic ex p re ss ion  for the fun ction  t o  b e  d ifferen tiated. T h e in terp lay  of the 
deriva tiv es o f  c om p ou n d  fun ction s can  crea te  very com p lic a te d  ob je c ts .  This is 
all th e m o re  tru e when /  is im p lic it o r  it is o b ta in ed  by  an in teg ra tion  depending 
on  a param eter. In th is case, the ca lcu la t ion  o f  der iva tiv es can  b e  form idable. We 
are th ere fo re g o in g  to  rep la ce  the deriva tiv e f'(xn) w h ich  ap p ea r s in Newton’s 
m e th od  by  a fin ite difference, o b ta in in g  th e secan t m e th od  g iv en  by

(14.2.8) yn+1 = / f a n)
f[yn,yn~1Y

where f[yn,yn '] is th e d iv id ed  d ifferen ce

/  [j/n >2/n-1] _  aifl—1

W e n ow  have a tw o-step  m eth od , wh ich  requ ire s tw o s ta r t in g  values y° and yl. 
Graph ica lly , th e tw o p o in ts  {y°1f{y0)) and (y1Jf(y1)) d e te rm in e a line whose 
in ter se ct ion  w ith  the x-axis g iv e s th e p o in t y2. W e then  take the line passing 
th rou gh  {y1,f{y1)) and (y2, f(y2)), w h ose in ter se ct ion  w ith  th e x-axis gives y3. 
and so  on. R efer to  F igu re  14.6 to  see  th e g raph ica l b eh av iou r o f  th e iterations.

A s for N ew ton’s m eth od , we have a lo ca l con v e rg en ce  th eorem  for the secant 
m eth od :
Theorem 14-2.4- Let /  b e  a C2 fun ction  on  the in terval [a, 6], with a < b. 
S u p p o se  tha t there ex is ts  a p o in t x  su ch  tha t /(x) = 0  and /'(x) ^  0. Then, 
th ere ex is ts  a num ber e >  0 such  that, if y° and y1 are in th e in terval [x-e,x+e], 
the ite ra t ion s o f  th e secan t m e th od  are all w ell defined, rem a in  in the interval 
[x — e, x  +  c], and con v e rg e to  x.

F igu re 14.6: T h e secan t m eth od.
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Th e p r o o f  o f  th is resu lt rests on  a lem m a o f  a sim ila r na tu re t o  L em m a 14.2.3, 
but sligh tly  m o re  com p lica ted .
Lemma 14-2.5. L et rn b e  a sequ en ce  o f  p o s it iv e  rea ls su ch  that

(14.2.9) Tn+ 1 ^  f*nrn— 1*

Then, if ro <  1 and r\ <  1, th e sequ en ce  o f  th e rn is b ou n d ed  by  1 and con v e rg es 
to 0. Furtherm ore, th ere ex is ts  a con stan t C , d ep en d in g  on  th e in itia l cond it ion s, 
such that

(14.2.10) rn ^  CYpn,

where r is a n um ber wh ich  is s tr ic t ly  le ss than 1 and

P =
l  +  %/5 

2 1.618.

P roof. If rn and rn_\ are b ou n d ed  by  1, it is c lea r tha t r n +1  is also. T h e  first 
assertion is th ere fore proved. N ow  defin e a sequ en ce  sn by

(14.2.11) s0 = r0, s\ =  r i,
(14.2.12) 5n_(-i =  s ns n_ i.

Suppose that rn ^  sn and that r n_ i  ^  s n_ i.  Then,

rn+1 ^  rnrn—1 ^  s ns n—1 — 5n+l*

By induction, th e sn fo rm  a sequ en ce b ou n d in g  rn from  above. I f so o r  si is zero, 
then all the sn are z e ro  for n ^  1 and th e lem m a is clear. Suppo se, therefore, 
that neither s 0 o r  s\ is ze ro  and take th e lo ga r ithm  o f  the equ a lity  (14.2.12). W e 
let

=  — In sn
and we obta in

(14.2.13) 4+1 =/n + 4-1-
As in Section 11.2, we must write the characteristic equation of the relation
(14.2.13) , that is

(14-2.14) f - p -i =  0.

s°lutions of this equation are

Letting

i  +  V5 and
2

P =
1 + V5

2

2 l + y/5'
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th e so lu tion s o f  th e recu rren ce re la tion  (14.2.13) are all o f  th e fo rm

en = apn + b(~pyn .

T h e va lues o f  a an d b are d e te rm in ed  from  th e in itia l con d it io n s  (14.2.11). We 
m ust so lv e  th e sy s tem

T h e h yp o th e se s on  r0 and r \  im p ly  that t o  and t \  are s tr ic t ly  positive, and, 
therefore, th e coe ffic ien t a o f  pn is s tr ic t ly  posit ive. Furtherm ore, the term in 
( - p)~n ten d s t o  0 exp on en tia lly  as n ten d s t o  infinity, and is b ou n d ed  by |6|. 
W e can  th ere fo re b ou n d  t n from  below :

tn ^  apn -  |6|, Vn £ N.

R etu rn in g t o  r n , w e see that

rn ^  ex p  (—apn) ex p  (\b\).

I f w e let r = e~a and C =  e l6l, then  we ob ta in  the in equa lity  (14.2.10).

P r o o f  o f  T h e o r e m  14.2.4. A s in the p r o o f  o f  th e th eorem  on  the conver­
g en ce  o f  N ew ton’s m eth od , we c om p a re  th e itera tion  yn+l w ith  the solution x. 
Furth erm ore, w e n o te  that

to — cl +  b, 

t\ =  ap - -

T h e so lu tion  o f  th is sy s tem  is g iv en  by

p(pto-ti) to+pt\
b=  i  +  • 0 =  T T ? “'

sin ce f(x) = 0 .  W e th erefore have

yn+1 - x  = y f[yn,yn~1]
(yn - x ) / [ y n,ar]

f[vn,yn~l]

/ ( y n)
1.n 1,n—11

= y.n
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Using th e p ro p e r ty  (4.2.4) o f  d iv id ed  d ifferences, w e see  that

(14.2.15) yn+l — X — (l/w -  x) (x-  2/n 1)f[yn,yn *,3;] 
f[yn,yn~1]

Let [x — o l,x  + a] b e  an interval on  wh ich  |/,(z)| ^  M . S in ce /' is con tinuou s, 
it does n ot ch an ge s ign  on  [x — a,x +  a], and, from  th e in tegra l rep re sen ta tion  
(4.2.5) o f d iv id ed  d ifferences, w e see that, if yn and yn~l are in [x — a,x +  a],
then

\f[yn,yn-x]\>M.
On the o th er hand, let L b e  the u p p e r  b ou n d  o f  |/"| on  [x -  a , x  +  a]. Again, 
from the in tegra l rep re sen ta tion  o f  d iv id ed  d ifferences, w e d e d u ce  that, if yn and 
yn_1 are in [x — a, x + a], then

I f[yn,yn-\x\\^~ .
Consequen tly , we see  th a t

|t/n+1 — | x\ \yn~l - x\.
Let

r "  =  2M to” “ 11
Let e <  m in(a, 2M/L). L em m a 14.2.5 a ssu res us that, if y° and y1 are ch osen  in 
the interval [x-e, # +  e], then  all th e ym rem a in  in th is in terval and, fu rtherm ore, 
the sequence o f  erro rs \yn — x\ ten d s t o  0, fo llow in g  an e s t im a te  o f  th e ty p e  
(14.2.10). □

We take the sam e num erica l ex am p le  for the secan t m e th od  as w e ch o se  for 
Newton’s m eth od, and w e seek  a ze ro  o f  f(x) — x2 - a. T h e ite ra t ion s are 
written

yn+1 = y n - (yw)2 -  a
yn _|_ 1

With a = 2and the initial conditions y° = 1.5 and
iterations are given by y1 1.4, the su cce ss iv e

1.50000000000,
1.40000000000,
1.41379310345,
1.41421568628,
1.41421356206,
1.41421356237,

I ch- ^ le Su^ se9uen t ite ra tion s are stationary. T h e  ca lcu la t ion  con v e rg e s t o  ma- 
the 6 ^ rec’s’on  ‘n 6 iteration s, in stead  o f  4 in the ca se  o f  N ew ton’s m eth od . O n  

e other hand, it d o e s  n o t requ ire th e ca lcu la t ion  o f
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14.2.5. The golden ratio and Fibonacci's rabbits
Remark 14-2.6. T h e  num ber p ~ 1.618, wh ich  a p p ea red  in th e p r o o f  o f  Lemma
14.2.5, has b een  w ell known s in ce antiqu ity, under th e n am e o f  th e g o ld en  ratio. 
It can  b e  defin ed as th e ra tio  b etw een  th e len gth  L and th e w id th  I o f  a rectangle 
su ch  that, if w e rem ove from  th is r e c tan g le  a squa re o f  s id e  £, w e find a rectangle 
sim ila r t o  th e first, see F igu re 14.7.

W e th ere fo re have

O n  le tt in g  L =  w e find

tha t is,
p2 - p -  1 = 0,

wh ich  is ex a c tly  th e ch a ra c te r ist ic  eqn  (14.2.14). C erta in  a e s th e t ic  theories con­
s id er th e num ber p t o  b e  th e m o st h a rm on iou s ra tio  b e tw een  th e sides of a 
rectan g le, and pa in ters and a rch ite c ts  have c om p o s e d  their w ork s w ith  the aid 
o f  th e g o ld en  ratio. It a p p ea red  in E u c l id’s e lem en ts (third cen tu ry  B.C.) and 
w e b e lie v e that th e py th a go r ia n s knew  o f  it (500 B.C.). W e a lso  find it in the 
p r o p o r t io n s  o f  certa in  E gy p t ia n  pyram ids. T h e  p y th a go r ia n  con sideration s on 
the m y stiqu e  o f  num bers and th e a e s th e t ic s  o f  p r o p o r t io n s  have been  largely

L - 1 i

L

F igu re 14.7: G eom etr ic a l in terp re ta tion  o f  th e g o ld en  section.
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overtaken by  th e rea l b eau ty  o f  m a th em atics. B esides, a p pa ren tly  con stra in in g  
aesthetic th eor ie s leave m uch  fr eed om  to  th e designer. F or exam ple, th e m od- 
ulor o f  Le C o rb u s ie r  w as m ean t t o  b e  th e heart o f  a sy s tem  b a sed  u p on  th e 
p roportion s o f  a hum an o f  s ize  1.83 m  and th e g o ld en  ratio. T h e  op in ion  that 
we have o f  Le C o rb u s ie r  shou ld, qu ite  obv iou sly , b e  fou n d ed  on  th e ex am in a tion  
of his arch itectu ra l work, rather than the u n der ly in g theories, in wh ich  n o on e 
is con stra in ed t o  live.

The g o ld en  ra t io  is linked t o  th e F ib on a c c i sequ en ce o f  num bers p r o p o s e d  by 
Leonardo o f  P isa  (F ibonacci) in 1202 in th e first qu an tit iv e m od e l o f  b io lo g ic a l 
popu lation grow th.

The fo llow in g  in form a tion  on  F ib on a cc i is found  in [75], wh ich  con ta in s som e 
translations from  Latin  t o  E n g lish  o f  ch o ice  m orse ls from  cla ss ica l m a th em a tic s  
texts.

L eonardo o f  P isa  w as a m erchan t w h o had trave lled  w id e ly  in th e M uslim  
world. In particu lar, he knew  o f  th e w ork s o f  A l-K how arizm i (whose n am e has 
been d e form ed in to  th e w ord  algorithm ). H is w ork  is in th e sp ir it o f  th e A rab  
mathematicians o f  th e tim e, bu t a lso  sh ow s an in d ep en den t p er son a l con tr ib u ­
tion. The Liber Abaci (1202, rev ised  in 1228) w as la rge ly  c ir cu la ted  in m anu scr ip t 
form, but was on ly  pu b lish ed  in 1857 in R om e, under th e t it le  Scritti di Leonardo 
Pisan [75].

One o f  th e rem arkab le tra its o f  th is b o o k  is that in it L eon a rd o  in tro du ced  
and used the d ec im a l sy s tem  o f  p o s it ion a l num bering. T h e first ch ap ter o p en s 
with the fo llow in g sen tence:

‘Here are th e n ine figu res o f  th e Ind ian s

9 8 7 6 5 4 3 2 1 .

With these n ine figu res and w ith  th e sign  0 ca lled  zeph irum , on e can  w rite any 
number, as w e sha ll d em on stra te  la ter.’

In fact, zephirum tra n scr ib e s th e A rab  w ord  as-sifr, w h ich  is th e litera l tran s­
lation o f the Sanskrit w ord  sunya, w h ich  sign ifies em ptin ess.

We often con s id e r  F ib on a cc i as th e first n o ta b le  w estern  m a th em a tic ian  for 
having used d ec im a l p o s it ion a l n um ber in g in p re feren ce t o  rom an  num erals.

We now describ e, in m od ern  term s, th e m od e l o f  th e grow th  o f  a p o p u la t ion  
rabbits that was p r o p o s e d  by  F ib on a cc i. ‘A m an p o s s e s se s  a pa ir o f  (young) 

rabbits and a certa in  p la ce  en tire ly  en c lo se d  by  w alls . . The s e  ra b b its  are 
8°ing to reproduce. H ow  m any w ill th ere b e  at th e end  o f  a g iv en  n um ber o f  
m<j>nths? Th e m od e l o f  r ep ro d u c t ion  is th e fo llow ing. T h ere are tw o ty p e s  o f  

lts: adult ra b b its wh ich can  r e p ro d u ce  and b r in g  in to  th e w or ld  a pa ir o f  
b e c ^  every m onth, and y ou n g  ra b b its  w h ich  cann o t yet r e p ro d u ce  and

°me adults at th e en d  o f  a m onth. In itia lly  (at t im e 0), w e have a pa ir o f  
°Un§ rabbits and n o adu lt rabb its, s o  that

j( 0) =  1, a (o) =  o.
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At t im e 1, w e find ou rse lv e s w ith  j( l)  =  0 pa irs o f  y ou n g  rab b its and a(l) =  j 
pa irs o f  adu lt rabb its. Inevitably, th e pa ir o f  adu lt ra b b its  b r in g  in to  the world 
a pa ir o f  y ou n g  rab b its at t im e 2, and w e w ill have

i  (2) =  1, a(2) =  1.

M ore genera lly, if at t im e n w e have j(n) pa irs o f  y ou n g  rab b its  and a(n) pairs 
o f  adu lt rabb its, w e w ill have, at t im e n +  1,

a (n + 1) =  a (n) -f j  (n) adu lt rabb its, 
j  (n +  1) =  a (n) y ou n g  rabb its.

C on sequ en tly , w e have th e fo llow in g recu rren ce re la tion  for a(n):

a (n +  1) =  a (n) +  a (n — 1).

W e recover th e re la tion  (14.2.13) w ith  th e in itia liza t ion

a (0) =  0, a (1) =  1.

T h e n um bers wh ich  are so lu tion s t o  th is re la t ion  are th e ce leb ra ted  Fibonacci 
num bers. T h e  first term s o f  the F ib on a cc i ser ies are g iv en  by

1,1,2,3,5,8,13,21,34,55,...

C u rren t w ork  in b io lo g y  on  p op u la t ion s  is a lo t m o re  so p h is t ica te d  than this. It is 
la rge ly  ba sed  on  p rob a b ility  and s ta t is t ic s  and  the th eo ry  o f  n on lin ea r differential 
sy stem s. It fo rm s th e b a sis o f  all so r ts  o f  stu d ie s o f  grea t p ra ct ica l use: animal 
and p lan t eco logy , the p ro p a g a t io n  o f  ep id em ics, ch o ice  o f  va cc in a tion  strategy- 
im pa c t on  m orta lity  tables, and a s so c ia ted  p rob lem s o f  insurance.

F rom  th e p o in t o f  v iew  o f  th e fo rm s o f  d ev e lopm en t in nature, the Fibonacci 
ser ies has b een  p r o p o se d  to  exp la in  th e n um ber o f  leaves p er turn  when the leaves 
are a rran ged  in a spiral, or t o  d e sc r ib e  th e lo ga r ithm ic sp ira ls a p p e a r in g  in P1Iie 
con e s and sunflow ers. T h is d e sc r ip t ion  is n o t very con v in c in g  for contemporary 
b io lo g is ts. W e can  a lso  refer t o  th e m agn ificen t litt le  b o o k  by  H erm a n n  Weyl 
[77, pp. 77-8], wh ich  con ta in s im age s o f  grea t qua lity  and som e development- 
on  th e F ib on a cc i series.

T h e  lim it o f  th e ra tio  a(n +  1 )/a(n) is p rec ise ly  the g o ld en  ratio. This tf 
ra tion a l num ber is very bad ly  a p p rox im a ted  by  ra tion a l num bers and, in s°nie 
sense, is ex trem a l in rega rd  t o  th is property. It is not, however, ‘very irration 
s in ce  it is a qu ad ra t ic number, tha t is, it is th e r o o t  o f  a  second-order equa ̂  
w ith  in teger coeffic ien ts. T h e ar ithm etic p r o p e r t ie s  o f  th e F ib on a cc i numbers 
th e su b je c t  o f  con tem p ora ry  stud ies. T h ey  o c cu r  in op tim iza tion , in the t 
o f  d yn am ica l sy stem s, and in com b in a to r ic s. For th is last su b je ct, see [38J*
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14.2.6. Order of an iterative method
The order o f  an itera tiv e m e th od  can  b e  d e sc r ib ed  in th e fo llow in g  way. Let 
yn be a sequ en ce  o f  a p p rox im a tion s t o  a n um ber (or, m ore  genera lly, a  vector) 
x C on sid er th e sequ en ce  o f  errors e n =  \yn — x\. W e have seen  in th e ca se  o f  
Newton’s m e th od  that, when th e s ta r t in g  p o in t o f  th e ite ra tion  is c lo s e  en ou gh  
to the zero, th e se  erro rs sa tis fy  th e e s t im a te

where C is a certa in  p o s it iv e  number. In th e ca se  o f  th e secan t m eth od , w e can  
prove that an equ iva len t error, fo r la rge n, is g iv en  by

e n - C V ' " ,

where p ~ 1.618 is th e g o ld en  ratio. F rom  this, w e d ed u ce  that, a sym ptotica lly ,

e n+1 ^  C 1- '  {en )p .

When a m e th od  fo llow s from  th e fixed p o in t a lgorithm , con tra c t in g  w ith  con stan t 
K < 1, the errors sa tis fy

as we can see by  read in g  any p r o o f  o f  th is c la ss ic  result.
Generally, w e w ill say th a t an ite ra tiv e m e th od  is o f  o rd er  A >  1 if A is 

the supremum  o f  rea l num bers for wh ich  th ere ex is ts  a con stan t C  su ch  that, 
asymptotically for la rge n,

e n+1

With this defin ition , N ew ton’s m e th od  is o f  o rd er  2 and the secan t m e th od  is o f  
order p ~  1.618. A s fo r the co n tra c t in g  m eth od , it is o f  o rd er  1. For th is itera tiv e 
method to  converge, it is n ece ssa ry  th a t C <  1. F or a m e th od  o f  o rd er  str ic t ly  
greater than 1 to  converge, w e requ ire on ly  tha t th e in itia l error is su fficien tly  
small.

The order o f  an itera tiv e m e th od  has a con s id e ra b le  effect on  th e sp e ed  o f  
convergence. Let pn = — l o g 10 e n b e a m ea su re o f  th e num ber o f  co r r e c t d e c im a l 
Places o f yn. I f w e have, a sym ptotica lly ,

e n+ i ~  C e* ,

with A >  1, then

~~Pn+1 logjQ  O — Xpn,
tha ^ ere ô r e’ a sym ptotica lly , yn+1 has A t im es m ore  co r r e c t d e c im a l p la ce s 

n y . Th is exp la in s th e ph en om en on  d em on stra ted  ju s t  after th e en d  o f  th e 
Pro°f Of Theorem  14.2.2.
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14.2.7. Ideas on the solution of vector problems
Until now, w e have on ly  ta lk ed o f  th e sea rch  for r o o t s  o f  sca la r equations. We 
p roceed , m o re  or  less, on  th e sam e lin es w hen  sea rch in g for th e so lu tion  o f  vector 
prob lem s. T h e  fun ction  /  is a C l fun ction  from  an op en  su b se t o f  IRn to Rn 
T h e ch ord  m e th od  can  b e  gen era lized  as fo llow s. T h e sequ en ce  o f  iteration s

yH1 - y 3 -  M~lf  (y3)
w ill b e  con v ergen t if y y -  M~l f(y) is a  str ic t con tra c t ion  wh ich  m aps a ball 
o f  Mn in to  itself.

M oreover, if /  is C 2, w e in trodu ce  N ew ton’s m e th od  by  le ttin g

yj+1 = y3 - D f  (j/-')"1 /  (yJ) ,

w here Df(x) d en o te s th e Ja cob ia n  o f  /  w ith  r e sp e c t t o  x. T h is  is a linear 
op e ra to r  from  Rn in to itself. W e can  s ta te  th e fo llow in g con v e rg en ce theorem 
for N ew ton’s m e th od  in th e v ec to r  case:
Theorem 14-2.7. Let /  b e  a C2 fu n ction  from  a c lo se d  ba ll B  o f  Rn to ! n. 
S u p p o se  tha t /  has a ze ro  x in B  and tha t Df(x) is invertib le. Then, there 
ex is ts  an e >  0 su ch  that, for ev ery  in itia l co n d it io n  y° sa t is fy in g \y° - x\ ^  e, 
the sequ en ce  o f  N ew ton  ite ra tion s is w ell de fin ed  and con v e rg e s t o  0 as j  tends 
t o  infinity. o
P r o o f .  T h e  p r o o f  is com p le te ly  id en tica l t o  tha t o f  th e sca la r case. We note 
that

y3+l -  x = y] - x ~ D f  (j/'7)-1 /  ( )

=  D f  (j/7) ' 1 (Df(yJ) ( - x) - f  (y3) +  / ( * ) ) ,

s in ce /  van ish es at x. T h ere  ex ist tw o s tr ic t ly  p o s it iv e  num bers M  and a  such 
that, for \y — x\ ^  a, w e have

||£>/(2/)_1 || ^ M - 1.

T h e  T ay lor fo rm u la  w ith  in tegra l rem a in der g iv es us, for every  a and b in B,

f  (b) — f  (a) — D f (a) (b -  a) =  f  (1 — s) D2 f  (a +  s  (b -  a ))  (b -  a,b -  a)
Jo

and, con sequen tly,

|/(*) - f(y3) ~ D f (y3) j/J)| s$ ^L \x-y3\2,
if L b ou n d s  \\D2f(y)\\ in the ba ll cen tred  on  x and o f  rad iu s a. For |y3 - x\ ^  a' 
we then have the u pp e r  b ou n d

\yj+l ~ x\2 ■
The rest of the proof is identical to the end of the proof of Theorem 14.2.2-
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Th e g en era liza tion  o f  th e secan t m e th od  to  th e v ec to r  ca se  is m uch  m ore  
tricky. M od ern  m e th od s  for the num erica l so lu tion  o f  n on lin ea r equ a t ion s ca ll 
upon a lo t o f  su b t le ty  and shrew dness. T h e  id ea  is e ith er to  m ake a N ew ton  
m ethod or to  m ake a ch ord  ty p e  m eth od , bu t to  u p d a te  the m a tr ice s M at the 
end o f severa l steps. W e d o  n ot n ece ssa r ily  ch o o s e  t o  take M t o  b e  the inverse o f  
Rf(yj ), bu t a m a tr ix  su fficien tly  c lo se  to  th is inverse t o  keep som e th in g  o f  the 
good p rop er t ie s  o f  N ew ton’s m e th od  and have an o rd er  g rea te r than 1. W e thus 
obtain gen era lized  N ew ton  m eth od s, w h ich  are ta ck led  in [16], th ou gh  alw ays 
from an o p t im iza t ion  p ersp ectiv e .

It is d ifficu lt t o  g iv e  a c ce ss ib le  referen ces on  th e so lu tion  o f  n on lin ea r sy s tem s 
of equations. It is a  p r ob lem  which is b o th  very d ifficu lt and very open. Each  
time it is n ece ssa ry  t o  ex p lo it  th e p a rticu la r s tru c tu re  o f  th e p r ob lem  under 
consideration.

14.3. Exercises from Chapter 14
14.3.1. The Cardano formulae
Exercise 14-3.1. Show, by  a ch an ge o f  variab le o f  th e fo rm  y — x — xo, tha t every 
cubic equation

y3 +  ay2 +  by +  c =  0

can be put under th e fo rm

(14.3.1) x3 +px + q = 0.

Exercise 14-3.2. Sh ow  that, if

xi = u + v, p =  —3m;, q =  — (u3 +  v3) , 

then x\ is a so lu tion  o f  eqn  (14.3.1).

Exercise 14.3.3. W rite U =  u3 and V = v3. Sh ow  that U and V are th e r o o t s  
°f a quadratic equ a t ion  and g iv e th ese r o o t s  in term s o f  p and q.
Exercise 14.3.4- A priori, U and V ea ch  have th ree cu b ic  roots. O n e c o u ld  th ink 
that there are n ine d ifferen t com b in a t ion s  o f  th e fo rm  u +  v. H ow  can  a cu b ic  
R a t io n  have so  m any roots, if the p o ly n om ia l d o e s  n ot van ish id en tica lly ?

Show that the co n d it io n  p = - 3 uv im p lie s tha t on e can  ch o o se  on ly  th ree 
combinations am on g  th e nine, and g iv e ex p lic it ly  the th ree so lu tion s o f  eqn  
' 4,d.l). it m ay b e  conven ien t to  u se th e c om p le x  cu b ic  r o o t s  o f  1, nam ely  

+  i\/3)/2 and j 2 =  (—1 — i\/3)/2, and t o  d ist in gu ish  ca ses a c co rd in g  to  
he sign o f 4p3 +  27q2.
Exfon—  14-3.5. D ev ise  a s im p le  num erica l ex am p le  o f  eqn  (14.3.1) w ith  the 

owing p roperties: all th e r o o t s  o f  th e equ a t ion  are real and C a rd a n o’s form u la 
i complex numbers.
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14.3.2. Brouwer’s fixed point theorem in dimension 2
Exercise 14-3.6. L et /  b e  a con tin u ou s and p e r io d ic  fun ction  o f  p e r io d  L from 
E  to  C. A ssum e tha t /  d o e s  n o t vanish. Sh ow  tha t th ere ex is ts  a  continuous 
fun ction  <t> fr om  E  to  E, defin ed up t o  an ad d it iv e  m u lt ip le  o f  2n, su ch  that

f(x) =  ex p  (i<f> (x)).

Sh ow  tha t 0(L) -  0(0) is an in teger m u lt ip le  o f  2n wh ich  d o e s  n o t depend on 
the ch o ice  o f  0. W e w ill say tha t 0 is th e ph a se o f  /  and that the integer 
(0(L) — 0(O))/27t is th e d e gree o f  /.

Exercise 14-3.7. Let Qo b e  the squ a re [0,1] x  [0,1] and let g b e  a continuous 
fun ction  from  Q0 t o  R2. A ssum e tha t g d o e s  n o t van ish on  th e b oun da ry  o f Q0 
and tha t th e b ou n da ry  o f  Qo is p a ram ete r ized  in term s o f  arc len gth  as follows:

(14.3.2) 00 (t) = <

(t,o f 
( M  — l ) T 
(3 — t, 1)T

.(0,4 -t)T

if 0 ^  t ^  1; 
i f  1 ^  t ̂  2; 
if 2 ^  t ^  3; 
if 3 ^  t ^  4.

T h is  p a ram ete r iza tion  is ex ten d ed  t o  all o f  E  by  per iod ic ity , o f  p e r io d  4. Denote 
by  no th e d e g r e e  o f  go ip0. S u b d iv id e  Q o in to  fou r equ a l squa res Q f,  with 
a €  {0, l } 2. Therefore,

Q? = a\ a\ +  1
T ’ 2

x OL2 <*2 +  1
T ’ 2

T h e b ou n da ry  o f  <2? is p a ram eter ized  an a lo g ou s ly  t o  th e b ou n da ry  o f Qo (see 
eqn  (14.3.2)) by  th e fu n ction s 0 f . I f g d o e s  n o t van ish on  any o f  the boundaries 
o f  th e squ a res Q*, sh ow  that the sum  o f  th e d e g ree s n f  o f  the g o is equal to 

no-
Exercise 14-3.8. For all j  ^  1 and all a G {0 ,..., 2J — l } 2, let

a\ a\ +  1 <*2 C*2 +  1
21 ’ 21

X 21 5 2i

T h e  b ou n d a ry  o f  Q* is p a ram ete r ized  by  0 ^ , as in eqn  (14.3.2). Show that, i 9 
d o e s  n o t van ish  on  th e b ou n da ry  o f  any o f  th e Q th en  th e sum  o f the degrees 
o f  th e <7 0 0 ?  is equa l t o  no-

Exercise 14-3.9. A ssum e that no is n o t z e ro  and that g d o e s  n ot van ish  inside Qo 
Show  that w e have a con tra d ic t io n  by  co n s id e r in g  a sequ en ce  o f  n ested  squ 
Q*U\ su ch  th a t the d e g ree  o f  g o 0 ? ^  d o e s  n o t van ish for any j -
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Exercise 14-3.10. L et /  b e  a fun ction  from  th e un it ba ll { x f + t2 1} t o  itself. 
Consider th e fu n ction

and extend, as fo llow s, th is fun ction  t o  the w h ole squ a re [-1, l]2:

fe(*) =  feif  X6 [-1, l]2 \ {X j +  £2 ^  !}•

Show, w ith th e h e lp  o f  the p rev iou s exercise, that f£ has a fixed po in t in th e unit 
ball. B y tak in g th e lim it as e ten d s t o  0, deriv e B rouw er’s th eo rem  in d im en sion  
2.

14.3.3. Comparison of two methods for calculating square 
roots

In this section , w e s tu d y  tw o m e th od s  for a p p rox im a t in g  th e squ a re r o o t  o f  a 
real posit iv e n um ber and we c om p a re  th em  for num erica l efficiency.

Reducing the search to the interval [1/4,1]
Exercise 14-3.11. Sh ow  that w e can  tran s la te the p ro b lem  o f  seek in g th e squ a re 
root o f a b inary floa tin g-po in t num ber 0.d\d2 • - dr x2p, w ith  d\ =  1 and dj =  0 
or 1, if 2 ^  j  ^  r, t o  the sea rch  for th e squa re r o o t  o f  a b in ary  floa tin g-po in t 
number b e lon g in g  t o  th e in terval [1/4,1[.
Exercise 14-3.12. T o  g e t an in itia l e s t im a te  o f  y/x, fo r x  €  [1/4,1[, w e let

/o (x) =  ax +  /?,

where /0 is the b e s t a p p rox im a tion  t o  yjx in [1/4,1] in th e m ax im um  norm . 
There exist y0, y 1? an d  y2 in [1/4,1[ su ch  th a t 1/4 ^  yo < Vi <  2/2 ^  1 and

/o (yo) - Vv~o =  fo (yi) +  y/yi =  /o (2/2 ) -  y/yi,
O’ = m ax  |/o (x) -y/x\ = \ f0 -  |, j  =  0,1,2.

Calculate a  and /?, u s in g th e fa ct tha t x  i-» yfx is con cav e  on  [1/4,1]. C a lcu la te  
/*•

Exercise 14.3.13. L et a  b e  a s tr ic t ly  p o s it iv e  rea l number. W rite d ow n  the 
R a t io n  for N ew ton’s m e th od  wh ich  a llow s us t o  find the p o s it iv e  r o o t  o f  the 
R a t io n

x 2 =  a.
| a?erci5e 14-3.14. W e d en o te  th e ite ra tion  thus ob ta in ed  by

Carefully
Method

x n+ i =g(xn).
draw th e graph  o f  g and g iv e the set o f  Xo E R+ for wh ich  th is itera tive

converges.
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Exercise 14-3.15. W e now  in tend to  e s t im a te  th e con v e rg en ce  ra te o f  th is Newton 
m eth od  for a in [1/4,1] and w ith  xq — fo(a). C a lcu la te  th e m in im um  of /0(a) 
in the in terval [1/4,1]. C arefu lly  sh ow  that

\xn -  \/a| ^  M2"-

Exercise 14-3.16. S in g le p rec is ion  on  a certa in  m ach in e c o r r e sp on d s to  a mantissa 
en c od ed  w ith  21 bits, that is, r = 21 in the n o ta t ion  o f  S e c t ion  1.3. Double 
p rec is ion  co r r e sp on d s  to  r  =  52. C a lcu la te  th e value o f  n w h ich  allows us to 
ach ieve com p le te  con v e rg en ce  in th e ca se  o f  s in g le  p recis ion , then  in double 
p rec is ion  (error less than 2~r). W e g iv e

lo g 2 48 ~  5.585.

C a lcu la te  th e num ber o f  m u lt ip lica t ion s and d iv is ion s n ecessa ry  in each case, 
n o t in g  that d iv is ion  by 2 is pa rticu la r ly  e c o n om ic  and sh ou ld  n ot b e  counted.

Acceleration of convergence
C on s id e r  th e equ a t ion

/  (*) =  o,

wh ich we so lv e by  the itera tive m e th od

^n+ l — 9 {xn) >
w here x \ x  — g(x) has th e sam e r o o t s  as /. W e in tend t o  im prove its order by 
th e fo llow in g  argum ent. Let

en =  g(yn)-Vn, y'n+l=9(lIn),

T h e  s tra igh t lin e p a ss in g  th rou gh  the p o in ts  (yn,en) and is well
defined, if th e m e th od  has n ot yet converged.
Exercise 14-3.11. G iv e th e equ a tion  o f  th e line p a ss in g  th rou gh  the po in ts (yn,en) 
and (2/n+i>e n+i) in the co o rd in a te s  (?/,e). C a lcu la te  th e x-coord in a te yn + 1 
its in ter se ct ion  w ith  y = 0. For th e n ex t s ta g e  o f  th e iteration, we c h o o s e  this 
x- coo rd in a te  yn+1- Sh ow  that yn+\ can  b e  w ritten  in the form

2/n-f 1 — Vn
,2n

e n+1 e n

and a lso  in th e form
Vn+i — G  (yn) ?

G(y) = y9^_9iy) -g(;/)2 
9 ° 9 (y) - 2s (y) + y'

w ith
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Exercise 14-3.18. W e sta rt w ith

»(a:) = s( ;c+i)-
Calculate G. W ha t co u ld  b e  th e lim it o f  th e se  ite ra t ion s?  W ha t is th e o rd er  o f  
the m eth od  thus co n s tru c te d ?

Exercise 14-3.19. F or wh ich  s tr ic t ly  p o s it iv e  in itia l c o n d it io n s  d o e s  the m e th od  
converge? T o  m ake a c om p le te  study, it is conven ien t t o  ch an ge variab les to  
x =  y/y/a, let H(x) =  G(y)/y/a, and to  u se th e fo rm u la  g iv in g  ta n h 3 a  in term s 
of tanha.
E x e rc ise  14-3.20. Sh ow  tha t each  ite ra tion  o f  th e m e th od  requ ires 4 m u lt ip lica ­
tions and d iv ision s.

E xercise  14-3.21. W e want t o  e s t im a te  th e error u n iform ly  for a G [1/4,1], b e ­
ginning from  y0 = /o(a), the fun ction  c o n s tru c te d  in E x er c ise  14.3.12. Let

Uj =  m ax  Iyj — y/a\.
3 ae  [1/4,1] 1 J 1

We recall tha t //o =  /i, w h ich  we ca lcu la ted  in E x e r c ise  14.3.12. Sh ow  that

l^j+i ^  ^  iO'j) >
where the fun ction  h is g iv en  by

6<(> = T t h i d ^ -
Exercise 14.3.22. C a lcu la te  th e num ber o f  ite ra tion s n ecessa ry  t o  reach  yfa in 
single and in d ou b le  precis ion . C a lcu la te  th e n um ber o f  m u lt ip lica t ion s and 
divisions necessary. C om p a re  th is w ith  th e resu lt o f  E x erc ise  14.3.16 and d ed u ce  
the m ethod wh ich sh ou ld  b e  ch osen  in practice. W e g iv e

In 0
46 x  47 x 48 =  103 776, ~  0.301.

In 10

14.3.4. Newton’s method for finding the square roots of 
matrices

Newton’s algorithm for the square root of a complex number
14.3.23. L et a b e  a n on zero  c om p le x  n um ber and let /  b e  a fun ction  

0ln ^  1° itself, defin ed by
/  (z) — z1 — a. 

f^ e  d°wn Newton’s method for finding the zeros of /.
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Exercise 14-3.24- L et b b e  on e o f  th e squ a re r o o t s  o f  a and let (^n)n>0 b e  the 
sequ en ce  o f  ite ra tion s ob ta in ed  by  th e N ew ton  a lgorithm , s ta r t in g  from  a given 
in itia l va lue zq- W hat recu rren ce re la t ion  is sa tis fied  by  th e sequ en ce

when it is defin ed?

Exercise 14-3.25. F rom  the p r e ced in g  question , d ed u ce  tha t w e can  partit ion  the 
c om p le x  p lan e C  in to  th ree reg ion s Ro, and R-, w h ich  are ea ch  invariant 
t o  ite ra t ion s o f  th e N ew ton  a lgorithm . W h en  zq is in 1Z+ (respectively,
Ro), th e N ew ton  a lg o r ithm  con v e rg e s t o  b (respectively, —6, d o e s  n ot converge). 
D escr ib e  th e se  th ree reg ion s b o th  g e om e tr ic a lly  and analytically.

Square roots of matrices

W e say tha t a squ a re m a tr ix  A o f  o rd er  n has a squ a re r o o t  if th ere exists a 
squ a re m a tr ix  B o f  o rd er  n su ch  tha t B2 = A.
Exercise 14-3.26. Sh ow  that th e m a tr ix

zn b

d o e s  n o t have a squ a re root.

Exercise 14-3.27. Sh ow  that th e m a tr ix

has an in fin ite num ber o f  squ a re roots.

Exercise 14-3.28. L et A b e  an in vertib le u pp e r  tr ian gu la r m atrix. Show that 
th ere ex is ts  a ch o ice  o f  c om p le x  num bers (B)jj su ch  that

and

(B)jj + (B)kk?0, V j,Vk*j.

Exercise 14-3.29. F rom  the p r e ced in g  question , d ed u ce  that every invertible m3 
tr ix  has a squa re root.
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Newton’s method for the square root of a matrix
Let A b e  an in vertib le m a tr ix  o f  o rd er  n an d let F  b e  th e fun ction  d e fin ed  on
Mn(Q by

F(X) = X 2 -A.
E x e rc is e  14.3.30. C a lcu la te  th e d ifferen tia l DF(A)H o f  F at th e p o in t A, w ith  
an in crem ent o f  H.
E x e rc is e  14-3.31. W rite dow n  N ew ton’s m e th od  for F.
E x e rc is e  14-3.32. L et T b e  an u pp e r  tr ian gu la r m a tr ix  wh ich  sa tisfies th e co n ­
dition

(T)jj +  (T)kk ?  0, Vj, Vfc #  j  
and let C b e  a g iv en  m a tr ix  o f  o rd er  n. Sh ow  that the linear sy stem

TH + HT = C

has a un ique so lu tion  i f ,  w h ich  is a squ a re m a tr ix  o f  o rd er  n. Sh ow  that the 
system thus o b ta in ed  is triangu lar, on  th e co n d it io n  that th e unknow n s (Bf)ij 
are su itab ly num bered.

Exercise 14-3.33. L et B b e  a squ a re r o o t  o f  A w h ich  sa tisfies

(B)jj + (B)kkjtO,Vj, V * * j .

Show that DF(X) is in vertib le for X  in th e n e igh b ou rh o od  o f  B.
Exercise 14-3.34- Sh ow  that N ew ton’s a lg o r ithm  con v e rg e s in the n e igh b ou rh o od  
of B.
Exercise 14-3.35. H ow  can  we im p lem en t N ew ton’s a lgorithm , as d e sc r ib ed  in 
Exercise 14.3.31, in p ra c t ice ?  M oreover, w hat d o  y ou  th ink o f  the p ra c t ica l u se 
of this a lgor ithm ?

14.3. EXERCISES FROM CHAPTER 14

A first alternative to the Newton algorithm
Exercise 14-3.36. C on s id e r  th e fo llow in g  a lgor ithm s:

(14.3.3) Y -  AY* *k+1 — ----

Zk+1 =

2
A +  Zk

| n 0w that, if Y0 (respectively, Zq) c om m u te s  w ith  A, th en  the sam e is tru e 
‘ of the Yk (respectively, Zk), and tha t th e sequ en ce  o f  Yk (respectively, 

fc) is identical t o  th e sequ en ce  o f  N ew ton  ite ra tion s w ith  in itia l co n d it io n  Yq 
A c t iv e ly ,  Z0).
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Exercise 14-3.37. S u p p o se  that A is d ia g on a liz a b le  and tha t all o f  its eigenvalues 
have a s tr ic t ly  p o s it iv e  real part. Sh ow  that, if w e sta rt from

(14.3.4) Y0 = In ,

th e sequ en ce  o f  F* con v e rg e s t o  a squ a re r o o t  B o f  A w h ose e igenva lu es all have 
s tr ic t ly  p o s it iv e  real parts.
Exercise 14-3.38. Let

G(Y) = AY~l A Y 
2

C a lcu la te  DG{B)H.
Exercise 14-3.39. W ork in g in a ba s is  in w h ich  B is d iagona l, ca lcu la te  the spec­
tra l rad iu s o f  th e o p e ra to r  Y DG(B)Y and find a  n ecessa ry  and sufficient 
co n d it io n  for w h ich  th e sp e c tra l rad iu s o f  DG(B) is s tr ic t ly  le ss than 1.
Exercise 14-3.40. D ed u ce  from  th e p r e ce d in g  resu lts tha t th e num erica l method 
tha t w e have d e sc r ib ed  can  on ly  b e  s ta b le  if th e m a tr ix  A has a  con d it io n  number 
less that 9 in w h ich ever n orm  is chosen. Here, the con d it io n  num ber o f  A is the 
p r o d u c t  ||A|| p - 1!! and || • || is th e m a tr ix  norm .

A stable alternative to Newton's algorithm
C on s id e r  n ow  the fo llow in g a lgor ithm :

Po = A,

(14.3.5)

Qo = I,

Pk+1 —

Qk+\ =

Pk + Q i1 
2

Qk + Pj-1
2

Exercise 14-3.41- Sh ow  tha t Pk and Qk com m u te  w ith  ea ch  oth er and with A 
for ev ery  value o f  k for w h ich  th ey  are defined.
Exercise 14-3.42. S u p p o se  th a t A is d ia g on a liz a b le  and tha t all o f  its eigenvalues 
have a p o s it iv e  rea l part. Sh ow  that Pk ten d s t o  B and Qk ten d s t o  B '1, w^ere 
B is th e lim it o f  th e sequ en ce o f  F*, de fin ed  by  eqn s (14.3.3) and (14.3.4), as 
ten d s t o  infinity.
Exercise 14-3.43. W e let

f(P,Q) = (\ [r + Q-x)\ 
U  (Q + r - 1)]

C a lcu la te
DT(B,B~l) ( ^ )
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What is th e sp e c tr a l rad iu s o f  DT(B, £?-1)? W hat 
stability o f  th e m e th od  (14.3.5)?

can  w e con c lu d e  a b ou t th e



15

Solving differential systems
T h e C au ch y  p ro b lem  for a sy s tem  o f  d ifferen tia l equ a t ion s con s is t s  o f  studying 
the so lu tion s o f  th e sy s tem

(15.0.1a) u(t) = f  (t, u (t)),
(15.0.1b) u (to) = uo,

where the d o t  d en o te s d ifferen tia tion  w ith  r e sp e c t to  tim e, the unknown is the 
function t u(t), and the d a ta  are th e in itia l t im e to, th e in itia l condition uo,
and th e fu n ction  / : (s,v) (4 f(s,v). T h e  t im e t b e lon g s  t o  an interval of R 
and th e s ta te  u b e lon g s  t o  an op en  set o f  Rd . In the con tex t o f  the local theory 
wh ich is seen  in a cou rse  o f  differen tia l ca lcu lu s, w e have a lo ca l theory in open 
sets. In ou r m a th em a tica lly  s im p ler con tex t o f  g lo b a l so lu tion s, we consider the 
w hole o f  Rd .

15.1. Cauchy-Lipschitz theory
15.1.1. Idea of the proof of existence for ODEs
T h e essen tia l p o in t lea d in g t o  the p r o o f  o f  th e th eorem  which follows is that 
the o p e ra t ion  o f  in teg ra tion  p rod u ce s  m ore  regu la r fun ction s than the operation 
o f  d ifferen tiation . M ore precisely, if u is a m ea su ra b le  and essentially bounded 
fu n ction  on  a c om p a c t  in terval o f  R, we have n o in form ation  on  its derivative 
and d o  n ot even  know  if it is d ifferen tiable. O n  th e o th er hand, all of its integra s 
are b ounded , L ipsch itz, and d ifferen tiab le a lm ost everywhere.

If w e in teg ra te  eqn  (15.0.1a) w ith  re sp e c t t o  tim e, tak in g a ccoun t o f the ini1 
con d it io n  (15.0.1b), we ob ta in

(15.1.1) u(t) = uo+ f  f  (s, u(s))ds.
ho

W e are g o in g  t o  sh ow  that, under su ita b le  co n d it io n s  on  /, we can s0 V̂junC-
(15.1.1) by  a s tr ic t ly  con tra c t in g  fixed p o in t theorem . Furthermore, in a

362
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tion cla ss th a t w e w ill specify, eqn  (15.1.1) is equ iva len t t o  eqn s (15.0.1a) and 
(15.0.1b).

15.1.2. Cauchy-Lipschitz existence theorem
Theorem 15.1.1 (Cauchy-Lipschitz). S u p p o se  tha t [t\,t2] is a com p a c t  in terval 
and that /  is a con t in u ou s fu n ction  from  [t\, £2] x  d in to  Rd wh ich  sa tis fies th e 
following p rop er ty : th ere ex is ts  a con stan t L su ch  tha t

(15.1.2) |f(t,v) -  f(t,w)\ ^  L\v -w \ , W  €  [ti,t2], Vu,w G Md .

Here, | • | d en o te s s om e  n orm  on  Rd. Then, for any to in [ti,t2] and uo in Rd , 
there ex ists a un iqu e con t in u ou sly  d ifferen tiab le fu n ction  u from  [t\, t2] t o  Rd 
which satisfies eqn s (15.0.1a) and (15.0.1b). o

P roof. A s w e seek  a u w h ich  satisfies eqn  (15.1.1), w e are g o in g  t o  con s id e r  th e 
mapping T  defin ed by

(15.1.3) (Tv)(t)=u0+ [  f(s,v(s))ds,
Jto

with the conv en tion  o f  an o r ien ta ted  in tegra l. W e w ill take a c cou n t o f  th e o r ien ­
tation by p la c in g  an a b so lu te  value on  th e ou t s id e  o f  in tegra ls w hen w r it in g an 
upper b ound for a norm .

Recall tha t C°([ti,t2]) is th e B anach  sp a c e  o f  real con tin u ou s fu n ction s on  
[ti,t2]- R is e q u ip p ed  w ith  th e n orm  maxte[tlj 2] |u(£)|. W e d en o te  by  C°([tut2]; 
M̂ ) the spa ce o f  con tin u ou s fu n ction s from  th e c om p a c t  in terval [t\,t2] t o  Rd. 
It is isom orph ic t o  th e p r o d u c t  o f  d co p ie s  o f  th e B anach  sp a c e  C°([ti, t2]), and 
hence also a B anach  space. It is e q u ip p ed  w ith  th e n orm

(15.1.4) IMI =  > W Ic€ [ti,r2j

For each £, (Tv)(t) is a  v e c to r  o f  Rd and, therefore, T  is a  m a p p in g  from  
a function sp a ce t o  a fun ction  space. I f v is con t in u ou s on  [ti,t2], th e m a p p in g  

^  /(s,u(s)) is con t in u ou s from  [t\,t2] t o  Rd. A s th e in tegra l o f  a  contin- 
u°us function is a con tin u ou s function, T  m ap s t o  itself, and
evcn to C 1 ([ti, t2]; E rf). W e are g o in g  t o  sh ow  that T  is a str ic t con tra c t ion  in 
^ ( [ M 2];Rd ) if L is sm a ll enough. N ow

Tv (t) -  Tw (t) =  [  (f(s,v(s))-f(s,w(s)))ds.
Jt0

^Ue to the h ypo th es is o f  th e theorem , we have th e u p p e r  b ou n d

(151'5) | Tv(t) - Tw (t)| <  I / *  L  || w|| d s
\Jto

\Tv(t)-Tw(t)\ <:
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from  wh ich  w e d edu ce

(15.1.6) 11Tv - Ttv|| ^ llv “ w\\Lmax(\t2 -  *o|, |*i - *o|) •
Consequently, if Lma,x(\t2 -  to\,\t\ -  to\) is strictly less that 1, T is a strict 
contraction in the complete metric space C° ([ti,t2]; R'd) and it possesses a unique 
fixed point.

T h is con c lu s ion  is n o t satisfa ctory, s in ce  T h eo r em  15.1.1 s ta te d  n o condition 
on  L m a x (|^2 -  to\, |*i -  *o|)- W e rid ou rse lv e s o f  th is co n d it io n  by  u s in g P icard’s 
itera tion s, w h ich  w e n ow  define.

F rom  eqn  (15.1.5), we have that

|Tv(t) -  Tw(t)| ^  L \t -  £0| ||v -  H I .

W e show , by  in du ction , that w e have th e gen era l e s t im a te

LP\t-t0\p
(15.1.7) | Tpv(t) -  Tpw (i)| ^ \\v - H I -

Indeed, if eqn  (15.1.7) holds, w e see that

\Tp+lv (it) -  Tp+lw (t)| ^  I f  L |Tpv (s) -  Tpw («)| ds
I ho

^  i s  „
< — — 110- ”11-

wh ich  p rov es that th e e s t im a te  (15.1.7) h o ld s in genera l. Now, we have the 
id en tity

p= 0

Lp 11 -  t0\p _  L\t-t0\
p\

which, in particu lar, sh ow s us that

p—y 00 pi

Therefore, for every  L, w e can  find a p su ch  that

Lp m ax  (\t2 -  t0\p , | î -  t0\p)
P !

T h is im p lie s that Tp is a s tr ic t con tra c t ion  in C°([ti, t2]; Md ). Consequent 
th ere ex is t s  a  un iqu e u su ch  tha t

<  1.

Tpu — u.
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\Ve show  that th e set o f  fixed p o in ts o f  Tp is id en tica l t o  th e set o f  fixed p o in ts o f  
i f  u is a fixed p o in t o f  T , then  it is a lso  c lea r ly  a fixed p o in t o f  Tp. C onverse ly , 

If u is a fixed p o in t o f  T p , we can  a p p ly  T  t o  th e equ a t ion

Tpu =  u

to obta in
Tp+1u = Tu,

which we can  rew rite as
Tp (Tu) =  T u .

Therefore, T u  is a fixed p o in t o f  Tp. A s the fixed p o in t o f  Tp is un ique, w e have 
Tu =  u, that is, eqn  (15.1.1).

We have thus sh ow n  th e ex is ten ce  o f  a un iqu e fixed p o in t o f  T . A s we 
remarked earlier, th e im age  o f  T  is in c lu d ed  in th e set C l ([t\, £2]; ® i )• Therefore, 
u, the fixed p o in t o f  T , is con t in u ou sly  d ifferen tiab le and w e can  d ifferen tia te the 
equality ^

u ( £ ) = u 0 +  / / ( s , u ( s ) ) d s  
Jt0

with respect t o  t im e to  g iv e

u(t) =  ,

and the in itial con d it io n
u(£0) — u0

is satisfied.
Conversely, if u is a C 1 so lu tion  o f  eqn s (15.0.1a) and (15.0.1b), we in te­

grate eqn (15.0.1a) w ith  re sp e c t t o  tim e, tak in g a c cou n t o f  th e in itia l con d it io n  
(15.0.1b), and ob ta in  eqn  (15.1.1), w h ich  com p le te s  th e p r o o f  o f  ou r theorem .

□

Note that T h eo r em  15.1.1 has an im m ed ia te  gen era liza tion :
Corollary 15.1.2. S u p p o se  tha t ] t i, ̂ 2 [ is a n on-em pty  op en  interval o f  E, fin ite 
0r infinite, and tha t /  is a con tin u ou s m a p p in g  from  ]^i, ̂ 2 [ x  E*d t o  Rd wh ich 
^hsfies the fo llow in g property, for all c om p a c t  in tervals I in ]^i, ̂ 2 [-

(15.1.8) | f  (t,v) — f  (t,w)\ ^  L (I) \v — w\, W  £ /, Vu,u; €  Rd.

ere’ I ’ I d en o te s som e n orm  on  Rd . Then, for any to in ] î,^[ and uo in Rd, 
l.ere exists a un iqu e con tin u ou sly  d ifferen tiab le fun ction  u from  ]^i, ^2 [ t o  d 

ch satisfies eqn s (15.0.1a) and (15.0.1b).

j T°°̂  ^  is su fficien t t o  n o te  that, if £0 €  I C  J, w ith  c om p a c t  in terva ls I and 
t o n ^  Can ^ e^ ne a so lu tion  u/ (respectively, uj) o f  eqn s (15.0.1a) and (15.0.1b) 

e lnterval I (respectively, J). T h is so lu tion  is unique, and it is c lea r that
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th e re s tr ic t ion  o f  uj t o  I is a so lu tion  o f  eqn s (15.0.1a) and (15.0.1b). S ince we 
have un iqueness, th e re s tr ic t ion  o f  uj t o  I  is equa l t o  ui. W e can, therefore 
con tin u e a so lu tion  on  a c om p a c t  in terval I  in to  a so lu tion  on  a g r ow in g  union 
o f  c om p a c t  in tervals /&, and w e can  ch o o s e  th e Ik su ch  tha t the ir un ion  is equal 
t o  th e in terval ]t\, [. □

Remark 15.1.3. W e co u ld  have a lso  taken u and /  t o  have values in a complex 
v ec to r  space. T h e  p r o o f  o f  ex is ten ce  under C au ch y -L ip sch itz  con d it io n s  is iden­
tical. T o  d o  this, it su ffices t o  id en tify  C* w ith  R2d. T h e  c om p le x  theory is 
very useful, pa rticu la r ly  in th e ca se  o f  lin ear d ifferen tia l equation s. W e can also 
co n s tru c t a th eory  o f  sy s tem s o f  d ifferen tia l equ a t ion s in th e com p le x  domain, 
tha t is, w ith  a c om p le x  tim e. T h is th eo ry  is on ly  in tere stin g in th e case where 
/  is h o lom orp h ic  and we s tu d y  it by  m ean s o f  a lg eb ra ic  and t o p o lo g ic a l tools. 
T h e  th eo ry  o f  d ifferen tia l equ a t ion s in th e c om p le x  p lan e is en tire ly  ou t of the 
s c o p e  o f  th is course, a lth ou gh  th e p o in t o f  d epa rtu re is a th eo rem  o f  existence 
and un iqu en ess c om p le te ly  an a lo g ou s t o  tha t wh ich  has b een  p rov ed  here.

15.1.3. Systems of order 1 and of order p
Let g b e  a m a p p in g  from  [0, T] x  (Rd)p t o  Rd. C on s id e r  th e fo llow in g  differential 
sy s tem  o f  o rd er  p:

(15.1.9) u (p) (t) = g (t,u(t),u {t),...tt(p~1) ( )) .

T h is  o rd in a ry  d ifferen tia l sy s tem  can  a lw ays b e  redu ced  t o  a sy s tem  o f the first 
order. Define, indeed,

Y =
yo \ 
Vi

G Rdp, F(t,Y) =
2/1
2/2

\

\yp-i / \9(t,yo,yi •,2/p-i)/

W ith  th is n ota tion , th e sy s tem  (15.1.9) is equ iva len t to

ir(t) = F(t,u{t)),

p rov id ed  that w e p er fo rm  th e natu ra l id en tifica tion

U =

( u \
u
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15.1.4. Autonomous and non-autonomous systems,
transformation of an autonomous system into a 
non-autonomous system

An ord inary d ifferen tia l sy s tem  is sa id  to  b e  a u ton om ou s if th e t im e variab le 
does not a p p ea r  ex p lic it ly  in the left-hand s id e  fun ction  /. T h e  s tu d y  o f  non- 
autonom ous sy s tem s can  b e  redu ced  t o  the s tu d y  o f  a u ton om ou s sy stem s, bu t 
there is a p r ice  t o  pay: th is redu c tion  a d d s on e  d im en sion  t o  th e sy s tem  and 
possibly d e stroy s its linear character. C on s id e r  th e first-order sy s tem

u(t) = f(t,u(t)).

It can be tran sfo rm ed  in to  an au ton om ou s sy s tem  th rou gh  the fo llow in g  tran s­
form ation : defin e a fun ction  s by

s (£) =  t.

If we let
Y = Q  €  ! d x  R, F(Y) = ,

then

x(,>=(:<<'>)
solves the d ifferen tia l sy s tem

X = F(X),
which is, indeed, au ton om ou s.

Even if we sta rt from  th e s im p le st p o s s ib le  lin ear equ a t ion  w ith  n on-con stan t 
coefficients

(15.1.10) x (t) =  a (t) x (t),

the system o b ta in ed  by  th e p rev iou s tran sfo rm a tion  is n ot linear, s in ce  it can  b e  
b itten  as

(15-LH) X1=a(X2)X1, X2 = l.
Moreover, the C au ch y -L ip sch itz  ex is ten ce  th eo rem  has b een  p rov ed  under 
lo n g e r  a ssum p tion s on  th e sy s tem  (15.1.11) than  on  the sy s tem  (15.1.10).

15.2.

15.2.1.
Linear differential equations
Constant coefficient linear systems

Th,
Ulle^ tlost s im p le ex am p le  o f  a sy s tem  o f  o rd in a ry  d ifferen tia l equ a t ion s is th e 

system  w ith con stan t co e ff ic ien ts an d n o t im e-dep enden t forcin g. W e have
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a matrix A G -Mrf(K), with constant coefficients in K = M or C, according to 
whether we are considering a real or complex problem, and we study
(15.2.1) u(t) = Au (t) .

W e sh ou ld  ch eck  that w e rea lly have the co n d it io n s  n eed ed  for th e application 
o f  th e C au ch y -L ip sch itz  theorem . W e d en o te  by  | • | an arb itra ry  n orm  on Kd. 
In th is case, w e have

/(£, u) =  Au 
and, as A is linear, it suffices to find L such that

\Au\  ̂ L | u | ,

It is su fficien t t o  take for L the n orm  o f  th e m a tr ix  A w h ich  is su bo rd in a te  to the 
n orm  | • |, and we have ex is ten ce  and un iqu en ess o f  th e so lu tion  t o  the problem
(15.2.1) , for ev ery  in itia l vaue u0 and every  in itia l t im e to. W e con s id er now the 
fo llow in g m atrix-va lu ed ord in a ry  d ifferen tia l equ a tion

(15.2.2a) M (t) = AM (t),
(15.2.2b) M (0) =  I.
I f || • || d en o te s  a  m a tr ix  n orm  sa t is fy in g  th e a lg eb ra ic property, the function 
g(t,M) =  AM sa tis fies the con d it io n s  o f  C o ro lla ry  15.1.2 (Cauchy-Lipschitz 
cond ition s). Indeed, w e have

\\g{t,M)\\̂ \\A\\\\M\\
and, as g is linear w ith  r e sp e c t t o  M , th is is en ou gh  for us. Consequently, 
th e sy s tem  (15.2.2) has a un ique so lu tion  M(t). I f w e con s id e r  now  the vector 
fu n ction  u(t) =  M(t — to)uo, w e n o te  that

u (t) =  —  (M  (t - t0) u0) =  M (t- t0) u0 at
=  (AM (t - to)) u0 = A (M (t - to) uo) =  Au (t).

Furth erm ore, u(to) — uq. S in ce w e have u n iqu en ess for so lu tion s to the system
(15.2.1) w ith  th e in itia l con d it io n  uo, its so lu tion  is equa l t o  M(t - to)uo- 

T h e  m a tr ix  fun ction  M(t) has variou s in tere stin g p ropertie s. First of all, it
com m u te s  w ith  A. Indeed, we let

B (t) = AM (t) - M (t) A.

W e then  have
B (t) = A2M {t) - AM (t) A =  AB (t) . ■'*

S in ce £?(0) =  0, the un iqu en ess o f  th e so lu tion  to  eqn  (15.2.2a), for all llÛ  
con d it ion s, im p lie s tha t B{t) =  0, for all t. T h e  m a p p in g  t h* M(t) is a ®
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homomorphism from K into the group of invertible matrices. Indeed, if s is some 
real number, consider

C (t) = M (t + s) -  M( ) M (s).

We have
C  ( t) = AM (t + s)-AM (t) (s) = AC ( ).

Since C(0) = 0, the uniqueness of solutions to eqn (15.2.2a) again implies that
c(t) = 0.
15.2.2. Matrix exponentials
We can summarize the preceding results in the following lemma:
Lemma 15.2.1. The unique solution M(t) of the matrix-valued differential eqns 
(15.2.2a) and (15.2.2b) is called the exponential of the matrix At, and it is 
denoted by eAt. It has the following properties:

(15.2.3) eAtA = AeAt, Vf €  K, eA^ s) = eAteAs, Vs, t e R  

It is an analytic function of t which has the following series expansion:

, . At ^  Aj tj
(15.2.4) e  = E - 7 T ’

3=0
with an infinite radius of convergence. We have the upper bound

(15.2.5) ||e^|| ^ e lW IW .

Furthermore, the unique solution of the system (15.2.1), which has the value u0 
at t = to, is given by u(t) =

Proof. It only remains to show the relations (15.2.4) and (15.2.5). We note 
that

I ^<°> - •4p-
Also, ||AP|| ^  ||A||P and the series with general term

p\

converges and sums to ell^M, giving eqn (15.2.5). □

We now study some particular properties of the function eAt, when A belongs 
Various sets of matrices:

^ mma 15.2.2. If A is Hermitian, eAt is Hermitian positive definite. If A is 
ew'Hermitian, eAt is unitary.
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P r o o f .  Assume that A is Hermitian. If we pass to the adjoint in eqn (15.2.2a) 
we get

M (t)* =  M (t)* A.
We note that, as M(t) commutes with A, M(t)* also commutes with A* — u4 
Also, from the relation A7(0)* = I = M(0), we deduce that M(t)* = M(t), since 
we have uniqueness for the solutions to eqn (15.2.2a).

If x is an eigenvector of A corresponding to the eigenvalue A E IR, we see 
that

Consequently,
eAtx = eMAx = eAtXx.at

eAtx = extx.
Since we can decompose the space on a basis of eigenvectors of A, we see that 
all the eigenvalues of eAt are eAA? where Aj is an eigenvalue of A. This proves 
that eAt is positive definite.

If A is skew-Hermitian and if x is some vector, let
m (t) = x* (eAt)* eAtx.

We therefore have
m (t) = x* (eAtA)* eAtx + x* (e^*)* AeAtx = x* (eA<)* (A* A A) eAtx = 0. 

Consequently, for the Hermitian norm \fxFx — |x|,
le^xl = |x|,

for any t and x. This shows that e ^  is an isometry and therefore unitary. □ 
Lemma 15.2.3. We have the following relation:
(15.2.6) det (eAt) = e*trace(yl).
Proof. We can construct this proof by using the explicit formula (15.2.4) and a 
triangulation of A. Instead, we prove it using the properties of d ifferen tia l equa­
tions, which gives us the opportunity to differentiate the determinant function, 
which we denote h. We have, for every matrix B E A4d(K),

Dh (7) • B = lim det (7 tB) — 1 
t *

We know that B is equivalent to an upper triangular matrix T, with P & 
transformation matrix. Consequently,

Dh (I) • B = lim*-► 0
det (7 + tP~lTP) — 1

■ lirod« ( l - ‘( I+ «■)!■)- 1 .,.
t-+o tt
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Since T is upper triangular, we explicitly calculate det(I -I- tT), which is equal 
to 1 + ftrace(T) + 0(t2). Since the trace of a matrix is invariant to similarity,
(15.2.7) Dh (I) • B = trace (B).
From this, we deduce that

det (ê (*+*)) -  det (eAt) 
l i m ---- i--------1--------i--- L
s—»0 S

— det (eAt) limV t
det (e'4*) — I

s—►O

= det (e**) Dh (/) • — (eAs) ds
= det (ê 4*) trace (A).

8=0

Since det(ê °) = det(/) = 1, we have only to integrate the differential equation 

— det (eAt) = trace (A) det (eAt) , det (ê 40) = 0 .

This is done by inspection and gives the relation (15.2.6). □
From Lemma 15.2.3, we deduce that if A is a real skew-symmetric matrix 

then eA is an orthogonal matrix with determinant 1. Therefore, eA is a rotation 
matrix.

15.2.3. Duhamel's formula
If the linear constant coefficient system of differential equations that we are 
considering possesses a second term, which we suppose to be continuous, we can 
still solve it explicitly:
Lemma 15.2.4• Let g be a continuous function from [0,T] to Rd and let A E 
Md(R). The system

u (t) = Au (t) + g (t), u (0) = uo
possesses a unique solution, which is defined on [0, T] and given by Duhamel’s 
formula

(15.2.8) u (t) = eAtuo -f / eA^~8̂ g (s) ds.
Jo

Proof. Let f(t,v) = Av + g(t). We see that
\f(t,v) -  ^  \\A\\ \v — w\.

certainly have the conditions to apply the Cauchy-Lipschitz theorem. Let 
v(t) = We note that

v (t) = -e~AtAu (t) -h e~Atu (t)
= -e~AtAu (t) -f e "A< (Au (t) + g (t))
= e~Atg(t).
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We integrate the differential equation in v by inspection and obtain

v (t) = v0 + e Aag{s)ds.

We immediately find formula (15.2.8). □

15.2.4. Linear equations and systems with variable coefficients
We pass now to the case of linear systems with variable coefficients. Consider 
a continuous mapping A from [0, T] to Md{K), a continuous mapping g from 
[0 ,T] to Kd, and the system

(15.2.9) ii{t) = A{t)u(t)+g(t).

If we let f(t,v) = A(t)v + g(t), the conditions of the Cauchy-Lipschitz theorem 
are fulfilled, with

L = “ax IMWII-te[o,T]
We therefore have existence and uniqueness of the solution to the system (15.2.9). 
for any initial condition at any initial time.

We now consider the scalar case, that is

(15.2.10) u(t) = a (t) u (t) + g (t),

with a and g continuous on [0,T], If g = 0, the equation is integrated by 
inspection and has as solution

(15.2.11) u (t) = v0 exp (a\ (t)),

where we let

(15.2.12) ai(*)= [  a (s) ds.
Jo

If g is not identically zero, we apply the variation of parameters method, which 
amounts to letting

(15.2.13) v (t) = u  (t) exp (—ai (t)).

Consequently,

v(t) = ii (t) exp (—ai (£)) - a(t)u (t) exp (—a\ (t))
= (a (t) u(t) -hg (t)) exp (-ai (t)) -  a(t)u (t) exp (-oi (t))
= g(t) exp (—ai («)).
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We can therefore integrate by inspection and obtain

v (t) = v (0 ) + / g(s)exp(-ai(s))ds.
Jo

Noting that v(0) = u0, and returning to the definition of u, we have 

(15.2.14) u (t) = w0 exp [ax (t)) + J  exp (a! ( ) -  ax (s)) g (s) ds.

In higher dimensions the situation is less simple. Indeed, if g = 0, we do not 
have an expression for the solution of the system (15.2.9) making use of a matrix 
exponential. We are going to understand this by studying the differentiation of 
eB^ \  where B is a C l mapping from R to A'fd(K). We can find the derivative 
of this mapping as follows, denoting by m(M) the exponential of M:

m (M + sN) — m (M)

= s-i / + M + sN + -  (M2 + 5 (MN + NM) -f s2N2)Z!
+ -  (M3 + 8 ( M 2N + MNM + NM2)

+ s2 [MN2 + NMN + N2M) + +...

-(
r w M2 M3
/ + M + ^ r  + l !

r3 Mr +-)J
and, therefore,

Dm (M)-N = lims—>0
m (M -h sN) — m (M)

= N + I  [MN + NM) + -  [M + MNM + + ...

We therefore have

Let

e#(t) = g  ̂  B W B (t) + B (t) B (t)

B (t)2 B { t )  + B (t) B (t) B ( t)  + B (t) B (t)2 

+ 3! + '''

B[t)= [  A [s) ds. 
Jo

ess A(t) and B(t) commute for all t, we have little chance of being able to 
-  system (15.2.9) by a formula of the type (15.2.11). This commuta- 

| c°ndition is very restrictive and is generally not satisfied. For instance,
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if the eigenvalues of B are distinct on some interval, then this implies that its 
eigenspaces are constant on that interval.

Although the solutions are not explicit in dimension n ^  2, we, nevertheless 
have a very nice formalism which allows us to understand many things. Indeed 
consider the matrix differential system

(15.2.15) = A(t)G(t,s

It satisfies the Cauchy-Lipschitz criterion and, therefore, it possesses a unique 
solution. Note that u(t) = G(t, to)u0 is the unique solution of the system (15.2.9) 
when g is identically zero. Indeed,

U (t) = =  A(t)G (t, to) ( u  (f).

Consequently, G(t,s) is the solution operator. It associates the solution of the 
system (15.2.9), with g = 0, at time t to an initial condition uo at time s. In 
particular, the solution operator is a linear operator, which means that the j-th 
column vector of G(t, s) is the value of the vector solution of the system (15.2.9), 
with g = 0 , at time £, when the initial condition at time s is the j -th vector of the 
canonical basis. We call G(t,s) the resolvent matrix of the differential system.

The family of matrices G(t, s) has additive properties which generalize those 
of the exponential. Indeed, consider the function

B (r) = G (r, t) G (t, s) -  G (r, 5).

We have

5(r) = dG{r,t) G (t, s) - dG  (t, s)
d r  ’ d r

= A (t)G (t ,t) G ( t,a)-A  (r) (r, s)
= A (t) B (t) .

Since B is zero at t  =  t and is the solution to a differential system satisfying the 
Cauchy-Lipschitz conditions, B must be identically zero. Therefore, we have the 
following relation, valid for all s, £, r:

(15.2.16) G(r,*)G(M) = G(r,a).
Physically, this expresses a causality relation: the state of the system at th* 
instant r is entirely determined by the state of the system at some other ins 

With the aid of G(t, s), we will be able to solve the problem with a tv® * 
dependent forcing term, and the formula is analogous to the expression (1&*
Lemma 15.2.5. Let g be a continuous function from [0,T] to Rd. The systeIT1

u {t) = A (t) u (t) + g  (t ) , u (t0) = u0,
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with data t0 €  [0 ,T] and u0 E Rd, possesses a unique solution, defined on [0 ,T] 
and given by Duhamel’s formula

(15.2.17) u(t) = G(t,t0)u0 + [  G(t,s)g(s)ds.
j  to

Proof. Since G(-,s) is the solution of a differential system which satisfies the 
c o n d i t io n s  of the Cauchy-Lipschitz theorem, it is a C 1 function. If we differen­
tiate the formula (15.2.17) with respect to time, taking account of the relation 
(15.2.15), we obtain

u (t) = A (t) G (*, t0) u0 + G (t, t)g(t) - f  A (t) G (t, s) g (s) ds
J t0

= A (t)u (t) + g(t).

As u also satisfies the initial condition u(to) = uo at t = to, the lemma is 
proved. Observe that eqn (15.2.17) also makes sense for t £ [0, to] if the integral 
is oriented. □
Just as we calculated the determinant of eAt, we are going to determine a differ­
ential equation satisfied by det(G(t, s)), and then deduce its value. Indeed,

det (G (t + h, s)) — det (G (t, s)) _  det (G (t + /i, t) G (t, s)) -  det (G (t, s)) 
h ~ h

det (G (t ■+■ /i, t)) — 1 det (G (t, s)).

We therefore need to calculate the derivative

— det(G (M))
t=S

Using eqn (15.2.7) and the theorem on the derivative of composite functions, 
d
dt det (G (t,s)) = trace (̂ 4 (s)).

t= s

from this, we obtain the result

— det (G (t, s)) = trace (̂ 4 (t)) det (G (t, 5)),CJv
which we integrate by inspection to obtain

05.2.18) (/'det {G (t,s)) = exp trace (̂ 4 (cr))dcr0-
ĉh]
Wee now give an example of the information that we can obtain by these 
niques. Suppose that A(t) is a continuous function from [0 ,T] to A4d(M)
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and that it is skew-symmetric. Then, all the G(t, s) are isometries. To see this 
it is sufficient to differentiate the function 11-» and find

-x*G (t,syG (t,s)x
= x*G (t, s)* A (t)* G (t, s) x + x*G (£, s)* ̂ 4 (t) G (£, s) x = o.

We are going to use this information to bound the solutions of the system
(15.2.9). We deduce from formula (15.2.17) that

l«(OI <  K l + [  |s (s)|ds.Jto
This relation is a lot finer than the estimate that we get from Gronwall’s lemma, 
which we will prove below. In particular, it does not use the norm of A(£), but 
only some of its qualitative properties.

The result (15.2.18), which follows from the relation (15.2.7), has a geometric 
interpretation. We examine the two-dimensional case. If A is some 2x2 matrix, 
there exists an orthogonal matrix P such that T = P~lAP is upper triangular. 
We have

r =(o ?)• "m
Now, the area of the parallelogram constructed from the vectors

CD - (,?*) J
is equal to the area of the rectangle constructed from the vectors

Cv') “a G+%)-
which is itself equal to the determinant of the matrix

Refer to Figure 15.1 to visualize the rectangle and the parallelogram.
We see that the off-diagonal terms of the matrix A do not contribute to the 

determinant of the matrix I  + tA. They have a purely shearing effect, which does 
not modify volumes. We come across shears as geometric basis transformations in 
incompressible fluid mechanics, which include most liquid flows. Contemplates 
the turbulence which appears in your favourite river, outside periods of (̂roÛ .cj1 
shows that very complicated things can happen, even with transformations ̂  
conserve volumes.
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(0t, 1 + 7 n (0 ,1  + 7

1 1 _

1 (1 -|- Q:£, 0 ) 1 (1 + Q(£, 0 )

Figure 15.1: Shearing does not modify volumes.

15.2.5. Gronwall's lemma
Gronwall’s lemma is a result which allows us to deduce an estimate from a differ­
ential inequality. There are many forms of Gronwall’s lemma and it is difficult to 
give a form which has the maximum generality. The general study of differential 
inequalities is, moreover, an active area of research. We will content ourselves, 
therefore, with a form which will suffice in the area of Cauchy-Lipschitz theory.
Lemma 15.2.6 (Gronwall’s lemma). Let u be a continuously differentiable func­
tion from [0 ,T] to Rd and let (p and ip be integrable functions on [0 ,T] which 
are positive or zero almost everywhere. Suppose that u satisfies the differential 
inequality

(15.2.19) M O I  <  <t>(t) + *P|u(t)|
almost everywhere on [0 , Then, if we let

(15.2.20)

n satisfies the estimate

Proof. We begin with a ‘formal p roo f’. Let

lw (01 =ffW -
then have

(15.2.22) g ( t)̂  | u(t)| ^(f>(t) + ip ( ) g (f).
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Consequently, g (t) - ip (t) g (t) ̂<t>(t),
which we multiply by e to give

This inequality can be integrated by inspection, leading to

g (t) - g {0) ̂  f
Jo

Multiplying this last relation by we obtain the desired result.
Although this calculation contains all the essential ideas of the proof, it is 

not correct in the preceding form. Indeed, the first line (15.2.22) rests on the 
inequality

which is easy to justify in one dimension or if the norm | • | is differentiable away 
from 0, which is the case for the Euclidean norm. For this, we must use the 
left and right derivatives where u vanishes. On the other hand, if the norm is 
not everywhere differentiable away from 0 , this inequality is much more difficult 
to justify. In particular, t \u(t)\ is not differentiable in the usual sense of 
the term. We can, nevertheless, completely justify this type of inequality by 
calling on ideas from convex analysis. This type of proof is outside the scope of 
a degree-level course, and also of this book, and is not necessary anyway, since 
there is a way to get around this difficulty. Indeed, the formal proof allows us to 
find the bound (15.2.21). We are going to show, by a connectedness argument, 
that we have a bound of the type (15.2.21), but with a parameter e > 0 that we 
are then going to make tend to zero. Let

(15.2.23) h (t,e) = e*<*> (|w0| + e) + f  (s) ds.Jo
We note that t h(t, e) is a continuous function and that

M0)|</i(0,e).
Furthermore, h satisfies the linear differential equation

(15.2.24) h (t, e) = (j)(t) + h (t, e) ̂  (t),
since we recognize a formula of the type (15.2.14) in eqn (15.2.23). By continuity 
there exists a maximal interval [0 , r] in which

M*)l ̂  h(t,e), Vt e [0, r].
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\Ve are going to show that r = T.Indeed, since the interval is maximal, if r <  T 
then we see that
(15.2.25) |w(r)| = h(r,e).
furthermore, if t  ̂r,

M<)| ^  I Wo | 

^  I Wo | 

^  |u0|

|u (s)| ds

+ip(s) |w (s)|) ds 

(<t> (s) +tp(s)h (s, e))

From eqn (15.2.24), we obtain

I  -</*(«)) ds

= h(t,e) -  |u0| -

Finally,
|«(t)| ^  h(t,e) -  e.

For t = t , this relation contradicts eqn (15.2.25) and we see that, for any t G
[ o , n

|w (01 ^
We conclude the proof by passing to the limit as e tends to 0. □
Note the analogy between the inequality (15.2.19) and the variation of parameter 
formula (15.2.14). We agreed to only make legal operations with the inequalities 
and it is because of this that we made the positivity hypotheses in Lemma 15.2.6.

15.2.6. Applications of Gronwall’s lemma
We are, first of all, going to show that the solution of eqns (15.0.1a) and (15.0.1b) 
depends continuously on the set of data, that is on no, and /.
lemma 15.2.7. We denote by Cl the set of continuous functions / on [t\. t->] x 
which satisfy

1/ ( t,u)- f  (f, v)| ^  L \u -v|, [£1,(2], Vu,v e Rrf.
Then, the mapping which takes (f,to,uo) €  x [^,£2] x Rd to the solution of 
^ ns (15.0.1a) and (15.0.1b) is continuous. Furthermore, we have the estimate

|w (t) -  v (f)| <  ei(t to) ( |u0 -  v0 1 + |*o -  s0| max |v (s)|)
(15.2 261 V /

r*+ / |p (s, v (s)) (s))| ds,
Jtn
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for t ^  to.

Proof. We write

u(t)  = f ( t , u
v{t) =g(t,v

and subtract the second equation from the first to find, on letting w(t) = u(t) - 
v(t),

\w (f)| ^  1/ (t,u (t)) -  f{t,v (<))| + 1/ (t, v (<)) (f))|
^L\w{t)\ + |/ ( t,v ( t)) -  (t))|.

Consequently, if we let

= \f (t,v (t)) -  g (t,v (t))\,

we can apply Gronwall’s lemma and find

\w(t)| ^  eL(t-t0)|Uo _  v(̂o)| + f  e i(<“s)0 (*)d s.
Jto

It remains for us to estimate \uo—v(to)\, which we bound by \uq—̂ o| + |^o“̂(fo)|- 
Now, v is differentiable with respect to time and its derivative is bounded. We 
can therefore conclude the result of the lemma. □

15.2.7. Smoother solutions
The preceding results suggest that much better properties hold if we suppose 
that / is a more regular function. Indeed, suppose that / is C p, with p ^ 1- 
The relation (15.0.1a) shows that u is the composite of a C p function with a C 
function. It is, therefore, a C 1 function. By an immediate recurrence, u will be 
a C'p+1 function. In the following, we will need a result which is a little more 
precise.
Lemma 15.2.8. Let / be a C p function and let (fk)o^.k^p be the sequence of 
functions defined by

(15.2.27) dfu
fk+1 (*, u) = —  (t, u) + D2fk (*, u) f  {t, u).

Then, if u is C 1 and satisfies the differential eqn (15.0.1a), u is Cp+1 and satisfieS

d*+1u (t) = f k ( )), vfc e {0 ,...,p}.(15.2.28) df* +1
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p r o o f .  We claim that each of the functions is Cp~k. For k = 0, eqn (15.2.28) 
is clear. Suppose that eqn (15.2.28) is true for a certain k <  p. Then, u is C k+l, 
11-* fk(Lu(t)) ls least -> and we can differentiate eqn (15.2.28) to obtain

dt d«s+r W = & fk (*’u{t)) = m {t'u{t)) + D2fk {t'u{t))* {t)
= fk+l (t,u(t)).

This concludes the proof. □
We are also going to apply GronwalPs lemma to the differentiable dependence, 
with respect to the initial conditions, of the solution of eqns (15.0.1a) and 
(15.0.1b).
Lemma 15.2.9. Let / be Cp and satisfy the Cauchy-Lipschitz conditions. Then, 
the solution of eqns (15.0.1a) and (15.0.1b) is Cp with respect to the initial 
conditions.
Proof. Denote by u(t) = S(t,Uo) the unique solution of eqns (15.0.1a) and 
(15.0.1b) and write

u (t; h) = S (t, uq + hv0), 
with some Vo in Rd. We deduce from the estimate (15.2.26) that 

|w (t; h) — u(t) | ^  |vo I heL^~to\
If we formally differentiate the relations

u (t; h) = / (t , u (t; h ) ) , u (to] h) =  u0 +  hv0 
with respect to ft, we find that the derivative w must satisfy 

w (t) = D2f  {t, u (t)) w(t), w (t0) = v0.
We are going to show that w really is the derivative that we are looking for. Let 

z (t; ft) = u (t\ ft) -  u (t) — hw ( t) .
Then, z(t; ft) satisfies the differential equation

z (t; ft) = D2f  (t, u (t)) (u (t; ft) -  u (t)) -  hD2f  (t, u (f)) w (t)
+ o(|u(f; ft) -  u(t)|)

= D2f  (t, u (t)) z (t; ft) + o (ft).
By applying GronwalPs lemma, we see that

\z(t;h)\ = o (ft),
^ich is precisely the definition of differentiability. The derivative D2S(t]Uo) is 
s mapping G(t,to) defined as in eqn (15.2.15), with A(t) = D2f(t,u(t)). We 

[ t recursively the successive derivatives of uo «->• S(t;uo). The details are left 
! 10 reader. □
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15.3. Exercises from Chapter 15
15.3.1. Lyapunov function for a 2 x 2 linear system
Let M be a 2 x 2 real matrix and let A be a 2 x 2 real positive definite symmetric 
matrix. We suppose that, for every x ± 0 , we have

(15.3.1) (AMx,x) <  0.

Let (•, •) denote the canonical scalar product on M2.
Exercise 15.3.1. Show that all of the eigenvalues of M have strictly negative real 
part.
Exercise 15.3.2. Conversely, if all of the eigenvalues of M have negative real 
part, we wish to construct a 2 x 2 real matrix, symmetric and positive definite, 
for which eqn (15.3.1) holds. Show that there exists a constant k > 0 and a 
constant K >  0 such that

Show that || • ||e defines a Euclidean norm and give the corresponding scalar 
product (•, *)e*
Exercise 15.3.4• Calculate the derivative with respect to time s of

Exercise 15.3.5. Deduce, from the preceding question, that the positive definite 
symmetric matrix A such that

where || • || is some operator norm.
Exercise 15.3.3. Let || » || be the Euclidean norm on K2. We let

(x,t/)e = (Ax,y)

has the property (15.3.1).

15.3.2. A delay differential equation
In this subsection, we are going to study the following differential system with 
delay:

(15.3.2) u(t) = /(*,ti(t),ti(t-r)).

The data is as follows. The space Rd is equipped with a norm, denoted by I 
The function / is defined and continuous on lxM rfxMd. Furthermore, it satlS
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the following Lipschitz condition: there exists a positive or zero constant L such 
that, for every (ui,ui) and (u2, v2) in Kd x and for every t £ R.

(15.3.3) lf(t,ui,v1) - f( t ,u 2,v2)j - u 2\ + \vx - u 2|).

The number r satisfies

(15.3.4) r >  0.

This is referred to as the delay. The initial condition is a function 0, defined on 
the time interval [£o — r, to]. We will suppose that

(15.3.5) 0 is continuous from [to — r, £o] to Rd.

Existence and uniqueness

Exercise 15.3.6. Let T >  t0 and let E be the set of continuous functions u from 
[t0 - r, T] to Rd such that

u(t) = 0  (t), Vt €  [t0 -  r, *0] •

Verify that E , equipped with the distance

d(u\,u2) = max{|ui (£) -  u2 (t)\ : t0 ^ t  ^.T} ,

is a complete metric space.
Exercise 15.3.7. We define an integral operator T  by

(15.3.6) (Tti) (t) = 0 (f) ^
<t> (*o) + //0 / (s, u{s),u(s- r)) ds

if f ^  fo ; 
otherwise.

Show that T  is well defined on the whole of E and that the image of E by T  is 
contained in E.
Exercise 15.3.8. Let u £ E and let Tu = w. Show that the restriction of w 
to ]*o,T[ is continuously differentiable and that the derivative dw/dt has a right 
tonit at £0 and a left limit at T. We then say that w is continuously differentiable 
°M*o,r].
Exercise 15.3.9. Show that the following two assertions are equivalent for a 
nction u £ E which is continuously differentiable on [to,T]:

(i) u satisfies the system with delay (15.3.2);

(**) u is a fixed point of the equation

(15.3.7) 'Yu = u.
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Exercise 15.3.10. We want to solve the system (15.3.2) by a fixed point method 
Estimate \Tui(t) -  Tu>(t)\ as a function of t and of

max |u! ( s) - (s)|.to^s^t

Exercise 15.3.11. Deduce, from the preceding question, that, for each integer p 
we have the estimate

d(Tpuu T pu2) ̂P\
Exercise 15.3.12. State and prove the existence and uniqueness theorem relative 
to the system (15.3.2), under the hypotheses (15.3.3)-(15.3.5). Take care not to 
forget the initial condition 0  in the statement.

15.3.3. A second-order ordinary differential equation
The space Rd is equipped with an arbitrary norm, denoted by | • |.

The aim of this subsection is to study the system of ordinary differential 
equations

(15.3.8) ii(t) = f(t,u(t)).

We will suppose, in everything that follows, that / is a continuous function from 
[0, T] x Rd to Rd . Furthermore, there exists a constant L, positive or zero, such 
that, for every u\ and u2 in Rd ,

(15.3.9) |/ (£, ui) -  / (t, u2)\ ^  L |ui -  u2\.

Exercise 15.3.13. Show that, for all initial data uq and Vq in Rd and for every 
initial time to in [0, t], there exists a unique C 2 function u from [0, T] to Rd such 
that eqn (15.3.8) holds with the initial conditions

(15.3.10) u (to) = uo and u (£0) = ô*

The problem is reduced to the first-order case by writing v(t) = u(t) and

(15.3.11) * « = ( “$)•

and then writing a first-order system satisfied by z in the form

(15.3.12) z{t) = <j>{t,z{t)).
_̂l_2

Show that, if / is Cm, the solutions of eqns (15.3.8) and (15.3.10) are Cm 
The numerical part of this problem is continued in Subsection 16.5.5.
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Single-step schemes
Not all ordinary differential equations have explicit solutions, even when calling 
on very complicated special functions and allowing for some finite number of 
quadratures (integrations). This is even more true of systems of differential 
equations. There are far more equations that we cannot integrate explicitly 
than those that we can.

To gain some information on the behaviour of a differential system we can 
attempt to find some qualitative information for large time. This is the objec­
tive of the theory of dynamical systems. In addition, we can use techniques of 
numerical approximation. These two areas of study are not generally tackled by 
the same mathematicians, even though they are related.

Dynamical systems specialists never fail to admire the complicated images 
delivered to them by physicists, for example, in turbulence, or the chaotic re­
actions studied in chemistry. The origin of the qualitative theory of differential 
systems was initially motivated by a question from astronomy: is the solar sys­
tem stable? Could it be that one day, which can be proved to be far in the 
future, our beautiful planet will go plunging into the sun, or, on the contrary, 

[ escape from it?
We note that this question is completely open. Amateur astronomers and 

lovers of the paradoxical should get hold of the delectable work [7], illustrated 
Wlth the author’s drawings. It is not exactly an easy text, but in small doses 
a degree-level mathematics student can tackle it. For a more physics-related 
aPproach, consult the book by Berge, Pomeau, and Vidal [8], which is clearly 
more mathematically elementary than the preceding work. It is so well written 

I ^at the ideas appear easy, which they are not.
I We should not forget the ‘Bible’ of differential equations seen from the qual­

itative point of view: Ordinary differential equations by V. I. Arnol’d [3]. This
■ °ok by A rnol’d is extraordinarily enlightening, and, if possible, add to your 
B fading list Mathematical methods of classical mechanics by the same author [4].
■ ô e n°t pretend that these books are elementary, but it is not in the nature

f — 385
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It is not unusual to present results on the behaviour of a differential system  

and, in particular, on its qualitative behaviour for large time, based on num erical 
simulations. In general, we cannot prove the convergence, on an infinite time 
interval, of the numerical approximations which we will study below. In esti­
mates of convergence a quantity generally appears which grows exponentially as 
a function of the length of the time interval, over which we integrate, as we will 
see in Theorem 16.1.6 below. Proving that the qualitative behaviour (for large 
time) of discrete approximations of a system gives information pertinent to the 
behaviour of the system is, in itself, a problem of dynamical systems.

Conversely, the choice of approximation scheme of a differential system de­
pends on the qualitative analysis that we make of the system, however rudimen­
tary. If we expect, for example, to have solutions which are uniformly bounded 
in time, we will try to find a method which conserves this property well enough— 
and this is not always easy.

Finally, and this is not tackled at all in this book, the truncation errors are not 
negligible when we have many iterations. A way of modelling them consists of 
assuming them to be independent random perturbations, which must be justified 
since we are a priori in a situation which is perfectly deterministic.

It is advisable to be aware that a simulation conducted without precautions 
over long time intervals is in more danger of reflecting the (bad) properties of the 
approximation, the arithmetic vices of the machine, and the odd habits of the 
programmer than the behaviour of the system which we want to understand.

We must, therefore, pose many questions about a numerical result, esp ec ia lly  
if it is pretty and in nice colours.

16.1. Single-step schemes: the basics
Since this book does not aim to be an encyclopaedia, we start with the theory 
of single-step schemes, with uniform time steps. These are recurrence relations 
of the form

(16.1.1) Uk+ i=U k  + hF(tk,Uk,h).

We will 
letters.
The time tk is defined by

(16.1.2) t0 given, tk+i = tk + h.

When we consider a given interval of time, we will have more points of ̂ ŝcrê g 
tion for smaller h. We denote by J ( h )  the maximum index of discretization.  ̂
is the largest integer k  less than or equal to (T — t o ) / h . The vector Uk ot 
an approximation of u(tk), if u is the solution of eqn (15.0.1), provided th 
initial condition Uo of the scheme approximates the initial condition no 0 
differential system. The function F  is defined on [ to ,T ] x E n x [0,h*]-

attempt, as much as possible, to denote discretized quantities by capital 
The time step h is strictly positive and belongs to the interval ]0,A r
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16.1.1. Convergence, stability, consistency
\Ve now give some definitions. We are interested in the approximation of a
system
(16.1.3) ii{t) = f(t,u(t)), Vt€ [fo,T],
with the initial condition given on Md
(16.1.4) u (t0) = u0-
We will always suppose that / satisfies the Cauchy-Lipschitz conditions. 
Definition 16.1.1. The approximation of eqns (16.1.3) and (16.1.4) defined by 
the one-step scheme (16.1.1) is said to be convergent if, for any initial uo,
(16.1.5) lim max \u(tk) -  Uk\ = 0.v h-t-0 O^k^J(h)Uq—̂Uq

We do not suppose that the scheme has the exact initial condition of the ODE. 
Indeed, on one hand, there could be a truncation error in the initial condition. 
On the other hand, the initial condition may not be known exactly, being itself 
the result of a calculation, or it could be obtained by a sampling process. This 
is necessarily the case when we discretize partial differential equations.

Generally, just as the solution of a differential system is continuous with 
respect to the initial data, the solution approximated by a one-step scheme must 
be continuous with respect to a perturbation of the initial conditions.

Convergence, as we will see, results from two properties. The first, stability, 
is a property of the scheme. This ensures that the scheme does not amplify too 
much the errors created at each step. The other, consistency, describes a relation 
between the scheme and the differential system. It implies that the scheme does 
not differ much from the solution locally.
Definition 16.1.2. Scheme (16.1.1) is said to be stable if there exists a constant 
M such that, for all Uo E for all Vo G for all h ^  h*, and for every 
sequence of vectors ê , the sequences Uj and Vj defined by the relations

1 Uj+i Uj H- hF (t j, Uj y H),
ĵf+i = Vj + hF Vj,h) 4- Cj

satisfy the estimate

(16.1.7) \Uj — Vj\ M ( \Uo — Vo| + ̂  |e*|) , V j£J(h).
\ k=0 /

^finition 16.1.3. A scheme (16.1.1) is said to be consistent with the system 
1*3) if, for every solution to system (16.1.3), we have

f16'1'8) lim 1“ " u (*i)"  (^>u . °-
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Figure 16.1: Graphical representation of the local error.

Refer to Figure 16.1 for a graphical interpretation of the second of these 
properties, the vector u(tj+1) -  u(tj) -  hF(tj,u(tj), h) represents the error that 
we make by replacing u(tj+\) by the quantity calculated with the aid of the 
scheme. This is what we call the local error.

The following theorem is simple and essential. It is generally known by the 
name of ‘consistency plus stability implies convergence’.
Theorem 16.1.4. Let / be a function satisfying the Cauchy-Lipschitz conditions 
and let F be a continuous function of t G [to,T], u G and h G [0, ft*], which 
defines a one-step scheme (16.1.1). If this one-step scheme is consistent with 
system (16.1.3) and it is stable, then it is convergent.
Proof. We let

Then,
V j =  u  (t j  .

V j+ i -  V j -  hF (tj, V j,h )  =  t j

is the local error. We can apply the inequality (16.1.7) and we have

1^-- M (Vo - MMI + £  MV k=0
From the consistency hypothesis, we see that U j — V j tends uniformly to zero 
with respect to j  as h tends to 0 .

Reducing the proof of convergence to the verification of consistency an(* St^0 
bility has a double advantage. On one hand, experimentally this correspon
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different behaviours. A stable scheme which is not consistent certainly calculates 
something, but not what we are looking for. On the other hand, an unstable but 
consistent scheme calculates a solution which could be initially close to the one 
we seek, but which separates from it quickly. Often this happens in an oscilla­
tory manner, more rapidly as the step size is reduced, quickly ending up in an
overflow .

From the theoretical point of view, this approach allows us to divide the 
difficulties and makes the proofs more clear.

16.1.2. Necessary and sufficient condition of consistency
We now give conditions which assure stability and convergence.
Theorem 16.1.5. Let F be a continuous function of £ E [£0 ,T], u €  Rd, and 
h E [0, h*], defined by a one-step scheme (16.1.1). A  necessary and sufficient 
cond ition  so that the scheme is consistent with system (16.1.3) is that
(16.1.9) F(t,u,0) = f(t,u), Vf G Vue O

Proof. The local error Cj is given by
ej = u (tj+i) -  u (t j) -  hF tj), h).

We can rewrite this in the form
rb+1

= / [/ (s,«(«)) - / (tj,u (tj))]d ( (tj)) -  F  ( (tj), 0)]

OLj = [f(s,u(s))-f(tj

fij —' [f(tj,u (tj)) , 0)],
7 j  = h[F(tj,u (tj), 0 ) , (tj), h)}.

Let w be the modulus of continuity of t >—> f(t,u(t)) and let uii be the modulus 
°f continuity of (t,h) i—> F(t,u(t),h). We can estimate o t j and 7  by means of u> 
and wi:
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Consequently,

However, the sums

lim V* \Pj\ = 0 .h-+0 ^  1 Jl

h  \f(*j> (*;))- F  (^>u (*j) > °)i

define the rectangle rule for the continuous function

on the interval [to. to + hJ(h)]. Consequently, they converge to

[  \f(s,u(s))-F(s,u(s),0)\
Jto

We see that
[  \ f( s ,u ( s) ) - F ( s ,u ( s) ,0 ) \ d s

Jto

and, consequently, for every solution u of eqn (15.0.1a),

=F(t,u(t), 0).

Since there is a solution of eqn (15.0.1b) passing through each pair (t',u') 6
[to,T] x l d, we see that

F ( * V , 0 )  =  / ( * > ' ) ,  V ( * > ' )  G fc),T] X Md .

We have therefore shown that consistency implies that eqn (16.1.9) holds. 
Conversely, if eqn (16.1.9) holds, f3j vanishes and we have the upper bound

\ej\ ^  h(u(h) +wi (ft)).

From this we have that

Y  \ej\ ^  (T -  t0) (cj (ft) + (Ji (ft)).

We therefore have consistency.

16.1.3. Sufficient condition for stability
We now give a sufficient condition for stability:
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Theorem 16.1.6. For a scheme to be stable, it is sufficient that there exists a 
constant A such that

(16.1.10)

Furthermore, the constant M which appears in inequality (16.1.7) can be taken

The proof of this result will need a discrete form of Gronwall’s lemma, which 
we will now prove:
Lemma 16.1.7 (Discrete GronwalVs lemma). Let A and h be two given positive 
numbers and let (aj)j^o and (fcj)j^o be two sequences of positive numbers or 
zero which satisfy the inequality

Proof. We are going to make an exponential appear in inequality (16.1.11) by 
noticing that

|F(t,u,h) -  F  (t,v,h)| ^  A \u -  v\, W £ [to,T], Vn, v £ Rd, Vft £ [0 ,h*].

to be equal to eA(T toK o

(16.1.11)

Then,

cij+1 ^ (1 T* Ah) CLj + bj.

j -1
(16.1.12)

k=0

(16.1.13) 1 + x $5 ex, VxGM+.

Consequently, inequality (16.1.11) implies

(16.1.14) aj+ i ^  e Aha,j -f bj.

As in the proof of Gronwall’s lemma (Lemma 15.2.6), we make a change of 
unknown function:

dj = otjeAih.
Substituting into inequality (16.1.11) we have

aj+1eA(j+1)h <C ajeAjheAh + bj. 

The sequence of a j therefore satisfies the inequalities

j -1
a j ^ a 0 + ^2 bke-Â h.

□
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P roo f o f Theorem  16.1.6. From eqn (16.1.6), if we subtract Uj+i from V̂+1 
and apply the triangle inequality, we get

\vj+ i-  Uj+ 1 \̂  IVj -  Uj\ +h\F(tj ,V + .

From hypothesis (16.1.10), we therefore have the inequality

\vj+i-  Uj+i| ^  (1 + Ah)\Vj -  + \tj \.

We can therefore apply the discrete form of Gronwall’s lemma to obtain

3- 1
I Uj-  Vj\̂ e ^ h \Uo -  V |£fc|.

k=0

Since jh  ^  hJ(h) ^  T -  t0, we can conclude the result of the lemma.

Note that the constant M = eA(T-*°) could be absolutely enormous. Indeed, 
if we take A = 10 (which is not enormous) and T - to = 10, then M = e100, so 
that

M ~ 2.7 x 1043.
Consequently, to have a relative error of 0(1) in the solution, we require a 
relative error of O(10~43) in the initial conditions. This also implies that the 
sum of the truncation errors must never exceed 10“43 times the absolute value 
of the initial data. Therefore, we must typically work in quadruple precision. 
This is enormous, and we will see later that this choice of the constant M is the 
best possible in many cases. It can still be possible, however, that when / has 
solutions which remain bounded for all time, a judicious choice of scheme leads 
to better estimates. They depend on the particular properties of / and of the 
scheme, and cannot be simply deduced from this general theorem.

16.2. Order of a one-step scheme
It is not sufficient for schemes to converge, they must also converge sufficient!' 
quickly to be of practical interest. We are therefore going to define a notion o 
order for one-step schemes.
Definition 16.2.1. Let p be an integer greater or equal to 1. A scheme (16.1-1) 
said to be of order p if, for every solution u of eqn (16.1.3), there exists a posits(
C such that

(16.2.1) ^2 \u{tj+ l) -u ( t j )-hF(tj,u{tj ),h)\^Chp.

We immediately get a finer convergence result:
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Theorem 16.2.2. Let / be a function satisfying the Cauchy-Lipschitz conditions, 
and let F be a continuous function of t€ [to, T € and h €  [0, /»*], defining 
a one-step scheme (16.1.1). If this one-step scheme is of order p, if it is stable, 
and if K  -  U0\ ̂  C'hp, then
(16.2.2) max \u(tk) -Uk\̂  o

The proof of this result follows from that of Theorem 16.1.4 and is left to the
reader.

We now give a necessary and sufficient condition for a scheme to be of order 
p. For this, we recall the notation of Lemma 15.2.8: if / is a Cp function of t 
and u, we write

fo(t,u) = f  (t,u), fk+1 (t, u) = d^kQt' — + D2fk ( if
(16.2.3)

We recall that, if u is a solution of scheme (16.1.1) we have
d^'t1 ii

(16.2.4) (*) = fk U .

We then have the following result:
Theorem 16.2.3. Let / be a Cp function with respect to the set of its variables 
and let F be a continuous mapping from [to,T] x Rd x [0, ft*] to Ed, which is 
p-times differentiable with respect to ft and whose p derivatives with respect to 
h are continuous functions of all the variables. Then the scheme (16.1.1) is of 
order p with respect to the system (16.1.3) if and only if, for every k between 0 
and p -  1, we have

(16'2’5) S ? (*’U,0) =  ;T T P  V* e [ * o , r ] ,  Vu€ M d . O

Proof. We write the local error € j with the aid of Taylor’s formula with integral 
remainder, in the form

ei = u(fy+1) -  u(tj) -  hF (tj,u (tj), ft)
,. x , du , x hp dpu . x~ u ( t j)+ h—  (tj) + ... + - — (tj)

rtj+1 {tj+i-  s)p dp+1u+ dtp+1 (s) d s-u(tj)sJtj
r hp~l dp~lF

-h ^F  (tj,u(tj), 0 ) + ... + fj] (tj,U ̂

rh (h -  s )p _ 1  dpF  . u . , .1
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We let, for 0 ^  k ̂ — 1,

We then have

(ij+1pl — f P(s,u(s))ds

(,h -  s )p _1  

(p -  1)! dhP(tj,u(tj) ,s)ds.

If condition (16.2.5) holds, as f p(t,u(t)) and (dpF/dhp)(t,u(t),h) are uniformly 
bounded on [to,T] and [to,T] x [0 , h*], respectively, then

M <

where C is a constant which depends only on /, F, and u. Consequently,

Y  M  ^  Chp+lJ (ĥ

Conversely, if the scheme is of order p ^  1, it is, in particular, consistent and, 
therefore, F(t,u, 0) = /(£,u), which implies that (3® vanishes for all j. We have, 
on using the triangle inequality and the bounds on /?*, for k ^  2 ,

Y  h2 |/?|| ^  Ci (hp + h2) .
1

Dividing by h, we immediately see that

H  E = °-h—►()
1

Reasoning as in Theorem 16.1.5, we see that

Ss, £ *WI - Jj^JW-1 Jt°
l/i (t,u(t)) OF m
----2-------J jf (<.«(*). 0) ds,

from which we deduce that
OF
dh (t,u(t), 0 ) fi ( t,u{))

for all £ in [to. T] and u in Wl.
2
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More generally, we argue by induction. If condition (16.2.5) holds up to index 
k - 1  then

hk+i \fi\ ^  Ck
1

Therefore,

lim
h-> o Ilh'l-t

I Sk(t,u(t))
k+  1 dhk (t,u(t), 0) d£.

Consequently, condition (16.2.5) holds up to index fc. □

16.3. Explicit and implicit Euler schemes
16.3.1. The forward Euler scheme
The simplest scheme is the explicit Euler scheme:

(16.3.1) Un+i = U +

We say that it is explicit since, contrary to certain schemes which we will see 
later, the calculation of Un+i does not depend on the solution of a nonlinear 
system, but only on an evaluation of /. In this case, the function F is defined
by

F(t,u, h) =
It is immediate that the scheme is stable and consistent, and therefore conver­
gent. It is of order 1 if / is C 1 , but is not generally of order 2 . Indeed,

h  (t, u)
2

OF
dh (f,u,0) 1

2 +  £ > 2 / (t,u) f  (t

which does not generally vanish.
We apply the Euler scheme to the differential equation

I

u = A u,

where A is a given real number. If we choose t0 = 0 , u0 = 1, and h = T/k, we 
see that

U j. j-i =  (1 -f Ah) U j ,
which gives us

and Theorem 16.1.4 allows us to recover the well-known Eulerian formula [25]
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If we choose A = 10 and T = 10 we see that the constant M, which appears 
in Theorem 16.1.6, cannot be less than e100. Indeed, by a continuity argument 
the perturbation on the initial conditions of the scheme cannot have an effect 
which is less than the perturbation on the initial conditions of the equation 
Since the solution operator of u = lOu is multiplication by e10*, we see that, at 
time T = 10, the perturbation a on the initial conditions is multiplied by e10. ft 
is in this sense that the estimate of Theorem 16.1.6 is optimal.

Stiffness
On the other hand, if we choose A = —10, we have an unsatisfactory situation 
since the exact solution tends very quickly to zero, although the approximate 
solution satisfies only a very coarse estimate.

Numerically, furthermore, since all the solutions of u = —10u are bounded 
for t ^  0 , we would like the same to be true of the numerical solutions. For this, 
it is sufficient that the factor 1 — 10h be bounded by 1 in absolute value, that 
is,

h ^  0 .2 .
This condition could be considered too restrictive on long intervals of time since 
we know that the solution must tend very quickly to zero, and thus we use up a 
large amount of computer time to little effect.

We say that the ordinary differential equation under consideration is stiff. 
Now, there is another way to approximate an exponential by an Eulerian 

formula. Indeed,

This corresponds to the scheme

Uj+\ (1 -  Ah) = Uj,
or, again,

Uj-|-i — Uj + XhUj+\.
In this case, if A < 0, we will obtain bounded solutions without restriction on 
the time step.

16.3.2. Backwards Euler scheme
It is because of this advantage that we introduce the backwards Euler scheme or 
implicit Euler scheme:

(16.3.2) Uj+1 = Uj 4- hf (tj+i,Uj+\).
This is an implicit scheme: to find Uj+\ it is necessary to solve a system which 
is generally nonlinear. However, this is not difficult since we begin with a g 
approximation of the solution, namely the value of u at the preceding time step-
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We show that this can be put in the form (16.1.1) of one-step schemes. Write 

(16.3 .3) v = u + hf(s,v).

Let
g(s,u,h,v) = u + hf (s, v).

As / satisfies the Cauchy-Lipschitz conditions, g is a strict contraction with 
respect to its argument u, provided that hL <  1. We therefore choose an h* 
such that h*L <  1, and we work from now on with h ^  h*. Therefore, there 
exists a unique solution of eqn (16.3.3), which we denote by G(s,u,ft). This 
function G is continuous with respect to all o f its arguments and Lipschitz with 
respect to u. Indeed, if

v\ = u\ + h if (si,vi) and v2 = u2 + h2f  (s2,v2),

we subtract the second equation from the first and we apply the triangle inequal­
ity, to give

|t>i - v 2\ s* K  -«2| +hi\f(si,vi) -  f{si,v2)\
+ hi \f(si,v2) -  f( s2,v2)\ + \hi -  |\f(s2,v2)\.

We fix v2, s2, and h2, to obtain

(1 - h\L) |vj - v 2\ ^  |ui -U 2 I + /11 |/(si, V2) -  -  h2\\f (s2,v2)\.

Consequently,

K - v2\̂ (1 -  h*L) 1 (|ui - u 2| + hi |/(si,u2) -  f{ s2,v2)\
+ \hi -  | ) •

We see that when (si,vi,hi) tends to (s2,v2,h2), u\ tends to u2. Furthermore, 
i f = s2 and h\ = h2 = h, we have the inequality

(16.3.4) |iq -  V2\ = | G (s, U\, h) — G (s,u ̂(1 -  hL)-1 |ui -  u2| •

Relation (16.3.2) can now be rewritten as

Uj+1 = G (tj H- h,Uj, h). 

Consequently,
Uj-|-i h f (tj 4- h, G (tj -f h,Uj, h)).

therefore, we have defined F by

d6.3.5) F (t, u, h) = / (t -f h, G (t + h, u, h)).
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It now remains to study the properties of F. This is a function which is 
continuous in all of its arguments. G(t, u, 0) is the solution of

v = u + 0f(t,v),

therefore, G(t,u, 0) = u and F(t,u, 0) = f(t,G(t,u, 0)) = f(t,u). We therefore 
have consistency. Furthermore,

|F (t, iti, ft) — F (£,U2 j ft)| ^  L |G (£ H- ft, iii, ft) -  G (t + ft, 112, ft)|
< L(1 - ftL)-1 |ui - u2K  L (1 - h’L y1 |Ul - ua|.

The function F is Lipschitz. Consequently, the backwards Euler scheme is sta­
ble.

16.3.3. 0-method
In the same way, we can combine the explicit Euler scheme (16.3.1) and the 
implicit Euler scheme: thus, we have the ^-method

Uj+1 =U j + h  [Of (tj+uUj+x) + (1 -0 ) f (itj, Uj)].
For 0 = 0 we recover the explicit Euler scheme and for 0 = 1 we obtain the 
implicit Euler scheme. With the same techniques we can show that the scheme 
is well defined for ft ^  ft*, that it is stable, and that it is consistent. If / is Cl 
the scheme is of order 1. If / is C2 and 0 = 1/2 it is of order 2.

We have already seen that the explicit Euler scheme is of order 1.
We now move on to the case of the implicit Euler scheme. With the notation 

used previously, G(s,u,h) is the unique solution v of eqn (16.3.3). If / is Cl 
the implicit function theorem implies that G is C l with respect to its arguments 
for (ti,s, ft) e Rd x [to,T] x [0, ft*]. We have seen previously that F(t,u,h) = 
f(t + ft, G(t + ft, u, ft)), and that F(£, u, 0) = f(t, G(t, u, 0)) = f(t, u). Therefore, 
the scheme is of order 1. Suppose now that / is C 2. We calculate the partial 
derivative of F with respect to ft:

dF(t,u,h) 0 , .--- 7^ (£ + ft, G (t + ft, u, ft))
BG+D2f  (t, u, h)) + u, /»).

and, therefore,

—  («, u, 0) = (t,«) + I>2/ (<, u) —  (t, 0).

It remains for us to calculate the partial derivative of G with respect to ft- F°r 
this, we differentiate the relation

G (t, u, ft) = u -f ft/ (i, G (f, u, ft))
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with respect to h and we find
n p  a

—  ( t,u,h) = f  ( t, G(t, u,h)) + —  [/ (<, ( u, ft))],

and it is pointless to calculate the expression between square brackets since we 
are only interested in what happens at h = 0. Finally, we find

We then note that

OG
dh (t,u,0) = f{t,u).

dF u ^
» ('.“■ ° >-— T “

fl (t, u) 
2

The implicit Euler scheme can, therefore, only be of order 2 for very particular 
values of the function /, namely those for which f\ is identically zero.

We refer to Subsection 16.5.1 on the ^-method to see the details of a slightly 
more complicated order calculation.

16.4. Relation with quadrature formulae: 
Runge-Kutta formulae

We are going to look for ways to interpret the formulae already studied. We can 
rewrite the differential system (16.1.3) and (16.1.4) in the integral form between 
tj and tj+1 as follows:

/•*;+1
u (tj+i) = u (tj) H- / u(s)ds.

We can therefore obtain an approximation of u(tj+\) — u(tj) by using a quadra­
ture formula. If we use the left rectangle rule we will have

u (tj+1) — u (tj) ~ hu (tj),

which leads us to the explicit Euler scheme. By using the right rectangle rule 
we have

u (tj-fi) — u (tj) — tiu (tj+i) ,
which leads us to the implicit Euler scheme. Finally, by using a rule with knots 
at the extremities of the interval, we write

u (tj+i) -  u (tj) ~ tu (tj) + Oil (tj+1).

^0r SUch a rule to be of order 0 as an integration formula, it is necessary that 
— h. We therefore obtain the 0-method. The case 0 = h/2, which cor- 

resPonds to the trapezium rule, leads to the Crank-Nicolson method, which is 
m°re accurate.
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To construct schemes based on integration formulae we argue as follows: We 
consider q knots cj belonging to [0 ,1], distinct or not, arranged in increasing 
order, and the quadrature formulae

(16.4.1) f  f{t)Ai~  £&,/(<*)
Joj=i

and
p  C • Q

(16.4.2) / f(t) dt — ̂ 2 a-ijf (c j)  ■
Jo j=1

The quadrature formula (16.4.2) differs a little from the formulae which we stud­
ied previously in that we consider points situated at the exterior of the interval 
of integration. There is no additional difficulty when we make this hypothesis.

A Runge-Kutta formula consists of constructing an approximation based on 
these quadrature formulae, that is, if we let tk,i = tk + c*h,

Q
(16.4.3) Uk,i — Uk + h ̂  d jjf (tkj)Ukj)

j=iand
Q

(16.4.4) Uk+i = Uk + h ̂  b jf ■
j = 1

We note that relations (16.4.3) allow us to determine the Ukj explicitly if the atJ 
are zero for j  ^  i. We then say that the Runge-Kutta method is explicit. If the 
dij are zero for j  >  i, but certain an are not, the method is called semi-implicit, 
as we can solve each of the eqns (16.4.3) in turn by a nonlinear equation solver. 
Finally, if there are pairs (i, j), with j  >  i, for which aij is not zero, eqns (16.4.3) 
form a system of nq coupled nonlinear equations, n being the dimension of the 
space.

We generally put the coefficients a^, bj, and cj in a table of the following 
form:

C l a n a i2  • ■• Ol q
C2 d 2 i 022 • ■* 0,2q

Cg a q l 0^2 * * a qq

b i b 2 • b q

16.4.1. Examples of Runge-Kutta schemes
With this presentation, the explicit Euler scheme has the following table.
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0 0
1

The implicit Euler scheme has the following table:

1 1 
1

The 0-method has the following table:

0 0 0

1 1-0  9
1-9  9

The modified Euler method, also known as the Runge-Kutta method of order 
2, is constructed by means of a geometric argument. The Euler method consists 
of making a step in the direction of the tangent. We note that, as the trajectory 
turns, the speed which allows it to reach the state u{tj+1) is closer to the speed 
at u(tj 4- h/2) than to the speed at u(tj). Consequently, we let

(16.4.5) = ^  +
Uj+1 =  Uj +  hf(tj+i/2,Uj+i/2)-

Refer to Figure 16.2 to see this construction.
We show that eqn (16.4.5) defines a scheme of order 2 . We have

F (£, u, h) = / (£ + h/2, u + (h/2) f  (t, u)).

We suppose that / is C2. Then,

F(t,u, 0) = f(t,u)

Figure 16.2: How to understand the modified Euler method geometrically.
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and
dF
dh (t,u,0) = ^ / ( t > u) + £ 2/(*,»)/(*,«) 

2
The table corresponding to this method is given by

fl (t, u) 
2

0 0 0
1/2 1/2 0

0 1
An analogous method is the Heun method, given by 

Uj,i — Uj ■+* hf (t j, Uj), 

u i + 1 = f/i + - / (tj+1,UjA). 

The corresponding Runge-Kutta table is
0 0 0
1 1 0

1/2 1/2
This method is of order 2, as the reader may verify.

Finally, the classic Runge-Kutta method is an explicit method of order 4 
given by the table

0 0 0 0 0

1 /2 1 /2 0 0 0

1 /2 0 1 /2 0 0

1 0 0 1 0

1 /6 1/3 1/3 1 /6

or also by

UnA =  t/n,

Un,2=U nA +  - f ( t n +  h/2,Un.l),

(16 4 6 ) Un'3 = UnA + {tn + h/2' ’
Un,4 — Un h f  (tn +  ft/2 , Un,3) ,

t / „ + l  =  t / „  +  -  [ /  (<n, Un,i )  +  2 (tn +  2, o
T- 2 /  (£n +  h /2 ,  Un,s) +  /  (^n +  h, Un,4)] •

ir0r
We find Runge-Kutta methods of all orders tabulated in the literature.

# from 1 to 4, the maximum order of an explicit Runge-Kutta method is Q• 
from 5 to 7, it is q — 1. For <7 greater than or equal to 8 , it is q - 2.
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other hand, for every q, the maximal order of an implicit Runge-Kutta method is 
2q. This phenomenon, as well as the better behaviour of implicit Runge-Kutta 
methods on stiff problems, that is, those of type u = -Aw, with A large and 
positive, is sufficient to justify the study of implicit Runge-Kutta methods.

16.5. Exercises from Chapter 16
16.5.1. Detailed study of the 0-scheme
We denote by || • || some norm on Rd which we fix throughout this subsection. Let 
f be a C2 function from R x Wl to Kd. We suppose that there exists a positive 
constant L such that

(16.5.1) ||/ (t, u) -  f  (t,v)|| ^  L  \\u -  v||, V£ G R, Vw G Rd, Vw G Rd.

Exercise 16.5.1. Show that there exists a strictly positive constant ko such that, 
for every k satisfying |fc| <  ko, for every y in Rd, and for every t in R, the system 
of nonlinear equations in x

(16.5.2) x = y + kf (t,x)

has a unique solution.
Exercise 16.5.2. We will denote the unique solution of the system (16.5.2) by

(16.5.3) x = G (t,y, k).

What is the value of G(t, y, 0 )?
Exercise 16.5.3. Show that, if \k\ <  fc0, G is C2 with respect to t, y, and k. 
Apply the implicit function theorem to K(t,x,y,k) = x — y — kf(t, x) and show 
that the solution obtained is C2 in R x Rd x ]—fc0, &o[.
Exercise 16.5.4• Calculate the partial derivative of G with respect to t, y, and 
K respectively, at k = 0 . To do this calculation, substitute G(t,y,k) for x in 
the system (16.5.2) and note that the derivatives with respect to t and y can be 
deduced from the expression for G(t,y, 0).
Exercise 16.5.5. We wish to study the following 0-scheme where 6 is an arbitrary 
real:

(16-5-4) t/„ +i =  Un +  h [Of (tn, Un) +  (1 -  6) f  (tn+1,Un+i)].

| Here, we have let
tn = to nh.

^hat scheme do we obtain if 6 = 1? And if 6 = 0?
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Exercise 16.5.6. Show that there exists, for every real 6, a value ho{6) such that 
for every h E ]0, ho(0)[ and for every Un in Rd, Un+\ is uniquely defined by 
eqn (16.5.4). We will suppose that this condition is satisfied in the rest of this 
subsection. Express t/n +1 as a function of tn, t/n, and h with the aid of G. We 
let

(16.5.5) Un+i = H ( tn,Un,h).

Exercise 16.5.7. Calculate H(t,u,0). Show that

dH dH—  (<,u,0) = 0, DUH (t,u,0) = Id, 0) = /

Exercise 16.5.8. Define a function F such that

(16.5.6) Un +1 =U n + hF (tn> Un, h),

by using /, 9, and H. What is the value of F(t,u, 0) and dF(t,u,0)/dh? Show 
that F is the solution of the implicit equation

(16.5.7) F (t, u, /i) = (t, u) + (1 — 6) f  (t + h, u + hF (£, u, h)).

Exercise 16.5.9. For which values of 0 is the scheme (16.5.4) of first order? And 
of second order?
Exercise 16.5.10. Prove that, for sufficiently small h, scheme (16.5.4) is stable. 
To this end, we can use relation (16.5.7) to prove that the function F is Lipschitz 
for sufficiently small h.

16.5.2. Euler scheme with variable step size and asymptotic 
error estimates

In this subsection we define a variable step size version of the Euler sch em e for 
systems of ordinary differential equations. Then, we asymptotically e st im a te  the 
error when the time step tends to zero.

The space Rd is equipped with some arbitrary norm denoted by || • ||- 
denote by Cd the space of continuous linear mappings from Rd into itself.

In all that follows we consider a time interval [Xb,7i]. We will consider 
functions / from [To,Ti] x Rd to Rd which satisfy the hypotheses of Theorem 
15.1.1, that is, that / is continuous with respect to the set of its arguments an 
it satisfies eqn (15.1.2) for t E po,7i] and u E Rd.

Variable-step size Euler scheme
rr» .

Let {tn)0<n<J be a sequence which increases in time in the interval To t0 l'

Tq = to <  t\ <  £2 <  * * * <  t j  = T\.
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We let
hji — tm h — max hji.0<Cn̂  J—1

We define a variable-step Euler scheme by letting
Un+i — Un + hnf  (tn, Un) •

Exercise 16.5.11. Let uo be a given initial condition and u(t) be the solution of 
the problem
(16.5.8) ii(t) = f(t,u(t)),
(16.5.9) u (To) = uo.
We let cj be the modulus of continuity of i 4  f(t,u(t))-, uj is a continuous 
fun ction  from into itself, increasing, vanishing at zero, and such that

|/ (t, u (t)) -  f(s,u (*))| ^ u ( \ t-  s|), Vs,£ G [T0, Ti].
Estimate the vector
(16.5.10) en — u (£n_j_i) — u (tn) — hnf  (tn, u (tn))
as a function of u and hn.
Exercise 16.5.12. Show that

t s X M - o .
n=0

Exercise 16.5.13. We suppose that Un and Vn are defined by the data Uo and 
Vo, respectively, together with the following recurrences:
(16-5.11) Un+1=U n + hn f( tn,Un),
(16-5.12) Vn+1 = Vn + hnf( tn,Vn) + an,
where an is an arbitrary sequence of vectors in Rd. Show that we have the 
relation

\Un+i ~ Vn+1\̂  eLh" |  
Deduce that there exists a constant M such that

( n—1
\U0  -Vo\ + Y , l«»l

j =0

do this, let 7 n = \Un -  Vn\ exp(-L(tn-To)) and write a recurrence inequality 
m terms of the <yn.
Exercise 16.5.14. We suppose Un to be defined by the recurrence (16.5.11). Show 
at we have convergence, that is

lim max IUn — u (£n)| = 0./i—>0 1 <n <J Uq—̂Uq
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Asymptotic error estimates
We suppose here that 77 is a continuous function of t G [7o,2i] which is strictly 
positive and that / is a C l function which satisfies eqn (15.1.2). We will suppose 
from now on, that the time steps are given by

(16.5.13) hn = ri(tn)(h + o(h)).

We will also suppose that the initial condition satisfies

(16.5.14) U0 -u(0) = h(v + o (1)).

Exercise 16.5.15. Show that every solution of eqns (16.5.8) and (16.5.9) is C2 
on [T0 ,Ti].
Exercise 16.5.16. Under hypothesis (16.5.13), show that there exists an expres­
sion E such that the consistency error defined by eqn (16.5.10) can be written 
in the form

en = hnhE (tn,u (tn), 77 (£n)) + hno (h).
Exercise 16.5.17. We define the error at the time tn by

fin ~  Lfn — U (tn) .

Verify that there exists a constant C such that

\fin\ ^  Ch,

for sufficiently small h.
Exercise 16.5.18. We let

Show that 6n satisfies a recurrence relation of the form

= 4“ hnB {tn) 5n -f- hnC (tn) ■+■ hno (1) ,

where B(t) is a continuous mapping from po,Ti] to £d, which should be deter­
mined, and C(t) is a continuous mapping from [To, 7i] to Rd which should also 
be determined. Write with care the expression for hno{ 1).
Exercise 16.5.19. Let g be a mapping from [7o,7i] x to Rd of the following 
form

g(t,u) = B(t)u + C(t),
where B is continuous from [To,Ti] to £<* and C is continuous from
Rd. Show that this function satisfies the hypotheses of the Cauchy-Lipsc 11
theorem.
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Exercise 16.5.20. We suppose that eqns (16.5.13) and (16.5.14) are satisfied. 
Show that, if w is the solution of

(16.5.15)
w (t) — B (t) w (t) + C (t), e ,

w (T0) = v,

then
limh—lO

Pn ~ hw ( 
h =  0.

16.5.3. Numerical schemes for a delay differential equation
We define a numerical scheme to solve the system (15.3.2) in the following way: 
We fix the time step h and we let n\ = \r/h\ (the integer part of r/h). Given a 
function F from R x Rd x Rd x [0, h*] to Rd, we let tm — to + rah and we define 
a one-step scheme for the delay eqn (15.3.2) by

(16.5.16) U-m = (j> (to - mh) if 0 ^  m ^  m,
(16.5.17) Um+i = Um + hF (fm, Um, Um-m , h) if 0 ^  m ^  T/h -  1.

Exercise 16.5.21. Let u be a solution of the system (15.3.2) and suppose that F 
is continuous on its domain of definition. Furthermore, suppose that

(16.5.18) F (t,u,v,0) = f  (t,u,v), V£ G R, Rd.

Show that the sum of the local errors

Ch — ^   ̂ \u (tm+1) ^ {tm) hF (tm? ̂  {tm) ? ̂  {tm—n\ ) > h) |
0 r̂a^[T//t]-l

tends to 0 as h tends to 0.
Exercise 16.5.22. Given the number A, which is positive or zero, consider 

£*m+l = &m "b hAam -b hAam_ni -b 6m,

where we suppose
aj — 0 and — ri\ ^  m ^  0

the em are positive numbers or zero for 0 m ^  M — 1. Show that the am 
r e Positive or zero for every m from 1 to M.
Exercise 16.5.23. Let

am = (I + h\)m pm.
jfr'te down the difference equation satisfied by Pm. Show that the sequence of 

I e ftn is increasing.



408 16. SINGLE-STEP SCHEMES

Exercise 16.5.24• Using the fact that the sequence of the /3m is increasing, show 
that we have the inequality

0m ̂  (a. + ernj exp ( ), J H

where Kh is a number tending to Aexp(—Ar) as h tends to 0.
Exercise 16.5.25. We now suppose that am satisfies the difference inequality

&m-1-1 ^  &m 4“ h\OLm -f- hAam_ni + cm.
Show that it satisfies an estimate of the type

am ̂exp ( mh(A + ^ ̂  . j f l

Exercise 16.5.26. Suppose that the function F defining the one-step scheme
(16.5.17) satisfies the estimate
(16.5.19) |F (t,u,v, h) — F {t,u\,v\, h)| ^  A (|u -  u\ \ + \v — |),
for any t G IR, u, v, ui, di G l d, and any h €  [0,h*]. Then, consider the 
perturbed finite difference scheme
(16.5.20) V-m = <t> (to — mh) if 0 ^  ra ^  ni,
(16.5.21) Um+1 = V m + hF (tm, Vm, Um_ni, h) + Cm if 0 ^  m ^  T/h - 1,
where the Cm are arbitrary vectors belonging to Rd. Show that there exists a 
constant C depending only on T — to, r, and A such that

m—1
\Um-vm\ ^ cJ 2 \Q \ -

j=0
Exercise 16.5.27. Show that, if F is a continuous function of its arguments 
which satisfies eqns (16.5.18) and (16.5.19), then the scheme defined by eqns 
(16.5.16) and (16.5.17) converges to the solution of the system (15.3.2) with 
initial condition (\>.
Exercise 16.5.28. Consider the scheme
(16.5.22) Um+l — Um F h f (tm, t/m+ i, Urn—ni ) .
Show that this scheme, which is implicit in £/m+1, can be put into the form of 
eqn (16.5.17). Give the conditions to be able to solve the problem

u = v + hf (t,u,w),
and denote its solution by G(t,v,w,h). Express F using G.
Exercise 16.5.29. Show that scheme (16.5.22) is convergent.
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16.5.4. Alternate directions
Alternate direction methods
Let T be a strictly positive number and / and g be functions from [0, T] x Rd 
to Rd , in the first part equipped with an arbitrary norm denoted by | • |. We 
su p p o se  that these two functions satisfy the hypotheses of the Cauchy-Lipschitz 
theorem, that is,
(16.5.23) / and g are continuous on their domain of definition
and there exists a constant L >  0 such that

o max.(\f(t,u)-f(t,v)\,\g{t,u)-g{t,v)\)^L\u-
*16'5'24) Vu <e w  v* e  [ o ,T ] .

We let
e = f + g,

and in this problem we will look for numerical methods which allow us to inte­
grate the differential system

(16.5.25) —  =

with the initial condition
(16.5.26) u( 0) = u0,
taking account of the particular properties of / and g.

We suppose that F (respectively, G) is a continuous function from [0, T]xMdx 
[0, ft*] to Rd , defining a one-step method which is consistent with / (respectively, 
g). We recall that the necessary and sufficient condition (other than regularity 
conditions which we will not worry about here) for a scheme to be of order p is 
that we have

dmF 1-Qj^ (t,u,0) = m + l fm Vt £ [0, Vu €  l d , V m ^ - 1 .

Here the fm have been defined by the recurrence

fo {t, xi) — f  (t,u), fm+ i (t, u) = u) f  u) + ( u).

Furthermore, we will suppose that F  and G are Lipschitz with respect to u, 
uniformly in t and /i, with a Lipschitz constant A.
Exercise 16.5.30. We define a numerical scheme by
(16 5 27 ̂ Un+l '2 =  Un +  hF {tn,Un,h),

t/n+1 = t/n+1/2 + hG ('tn, ?7n+1/2, ft) .

Ŝ 0W lhat the scheme (16.5.27) defines a one-step scheme. Give the function E 
w ich defines it explicitly.
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Exercise 16.5.31. Show that E defines a scheme which is stable and consistent.
Exercise 16.5.32. We suppose that F and G are sufficiently regular and that 
they define schemes of order 2. Is the scheme defined by E , in general, of order 
2?
Exercise 16.5.33. We define another numerical scheme by

Un+ 1/4 = U n + -F(tn, , i

Un+1/2 = Jjn+1/4 + (tn, 1) ,
(16.5.28) '

U n+ 3/4 =  V n+ 1/2 +  ( t n + * t U n+1/2 ^

jjn+1 = pn+3/4 + ^  + ^  ^  _

Show that the scheme (16.5.28) defines a one-step scheme. We denote by H the 
function with defines it, and we can use the notation

E (t, u,h) = G (t, u,h) + F (t, u + hG (£, u, h) ,h).
Exercise 16.5.34. Show that iL defines a stable scheme.
Exercise 16.5.35. Suppose that F and (7 define schemes of order 2. Show that 
this is also true of H.

Applications
Exercise 16.5.36. We equip with the Euclidean norm. Let A be a dxd positive 
definite symmetric matrix. Show that, for every A >  0, the linear system
(16.5.29) (/ + \A)x = { I-  XA) b
possesses a unique solution and that it satisfies

i* i <  i*i •
Argue using a basis of eigenvectors of A.
Exercise 16.5.37. We solve the differential system

d ir(16.5.30) —  = -Au,at
by means of the scheme

(16.5.31) Un+1 = U n - ^ A  + Un) .

Show that this scheme is of order 2. In this exercise, we restrict ourselves to th 
particular form f(t,u) = Au given.
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Exercise 16.5.38. Show that the scheme (16.5.31) is stable and that the constant 
M which appears in the definition of stability can be taken to be equal to 1. Use 
Exercise 16.5.36.
Exercise 16.5.39. Suppose that A and B are d x d positive definite symmetic 
matrices. Furthermore, suppose that A is tridiagonal and there exists a permu­
tation matrix Pa such that P*BPa is also tridiagonal. We let C = A + B and we 
wish to choose a scheme which allows us to solve the linear differential system

d u _
At ~ CU' 

with maximum efficiency, knowing that C is band-p. Compare the following two 
schemes, which are both of order 2:

(i + un+1/i = (/ - un,

( i +  - B ^  Un+1/2 =  (  /  -  Un+1/\
(16.5.32)

(V+ jjn+3/i_ ^  1/21

( /  +  Un+1 =  -  C/n+3/4

and

(16.5.33) ( i + 1 (A + B)j Vn+1 = Vn ĵ .

Which has the least cost in terms of arithmetic operations? Give an estimate of 
the number of operations in each case. Assume that d >  p >  1. This condi­
tion is met by many of the classical cases of discretization of partial differential 
equations.
Exercise 16.5.40. We augment the system (16.5.30) by a nonlinear term g satis­
fying the hypotheses of the Cauchy-Lipschitz theorem with a Lipschitz constant 
E = 0(1). Therefore, we now have the new system

(16.5.34) ^ ( t )  = -Au(t)+g(t,u(t)).

Show that we can choose a scheme of order 1 of the type given in eqn (16.5.27), 
Wlthout solving nonlinear equations, for which the stability constant M is 0(eLT) 
and is independent of the norm of matrix A, which is always symmetric and 
Positive definite.
Exercise 16.5.41. Under the conditions of Exercise 16.5.40 show that we can 
^oose a scheme of order 2 of the type given in eqn (16.5.28) for the system 
' ^  34) without solving nonlinear equations, for which the stability constant 

is 0(eLT) and is independent of the norm of matrix A, which is still symmetric 
^  positive definite.
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16.5.5. Numerical analysis of a second-order differential 
equation

This problem continues from Subsection 15.3.3, and uses the same notation.
Exercise 16.5.42. Let wbe a C6function on [0,T]. Show that there exists a 
choice of reals ao,a i,a_i and So, B\, /?_i such that

e (t,h) = aiw  (t + h)+ atow ( ) + a_i«; ( — h)
(16.5.35) «-  ft2 [fiiw (t + h) + /?0w (t) + P-iw (t - ft)]

is uniformly 0(ft6) on [0,T]. Normalize Qi by letting aq = 1.
Exercise 16.5.43. Let tj = jh  and consider the numerical scheme

Uj + 1 - 2 Uj + Uj-i =  §  (/ (tj+x,Uj+i) + 10/ + / .
(16.5.36)

Show that, for every Uj and Uj-1, C/j+i is well defined, provided that h is at 
most equal to a certain ft*, which you should determine.
Exercise 16.5.44• Let O be an open subset of Rm and let N be a continuous 
function defined on O x Rd with values in Rd. The variable £ ranges over O and 
the variable v ranges over Rd. Suppose that there exists a constant K < 1 such 
that, for all £ in O, v and v in Md,

Show that the fixed point v of v N(£,v) is a continuous function G of £. 
Suppose that Rm has a decomposition as a direct sum of the two subspaces 
X\ 0 X2 and that £ decomposes as £1 + £2? with £1 G X\ and £2 €  X*i- Show 
that, if there exists a constant K ' such that for all £ = £1 -f £2 , £ = £1 + £2?

6 - 6

then G is Lipschitz with respect to £1 and calculate its Lipschitz constant.
Exercise 16.5.45. Denote the fixed point of v •-» x + hf(t,u + hv)/12 by 
G(t,x,u, ft), for ft ^  ft*. Calculate the constants L\ and L2 such that, for 
all u, u, x, x in Rrf, all t in [0, T], and all ft in [0, ft*],

(16.5.37) |G (t, x, u, ft) -  G (t, £, u, ft)| ^  la  \x -  x\ -f L2 |u - 6| •

Exercise 16.5.46. Let
3 _ i+i-

Show that we can rewrite the scheme (16.5.36) in the form of a system 
tions, the unknowns being Vj+i and the data being U j, V}, t j, and ft-

of eq«a'
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Exercise 16.5.47. We introduce the function

H (t, u, v, h) = (10/ (£, u) + / {t -  h, u -  /iu)).

Determine, with the aid of G and i/, the function C(£, u, v, /i) such that

tj+ i = C* .

Give the function 4> which allows the scheme (16.5.36) to be put in the form of 
a one-step scheme:

Z j = (v-'j 1 = ^  ^  (tj’Z jih ).

Exercise 16.5.48. Show that this scheme is stable and consistent.
Exercise 16.5.49. Consider the particular case where n = 1, f{t,u) = u. Deter­
mine 4> explicitly and show that the scheme is not of order 2.
Exercise 16.5.50. We return to the general case and consider the solution Uj+1 
of

h2//, , , -  9/7, 4- //, , =
(16.5.38)

i 2
£>;+i -  + £^_! = — (/ + 10/

+/ (*j-i>^i-i)) +

where (e^- is a sequence of vectors in Rd. Express V)+i = (f/j+i -  Uj)/h as a 
function of Uj, Vj, tj,h, and 6j with the aid of the functions G and H.
Exercise 16.5.51. Let

Z j

Estimate \Zj+i — Zj+1| as a function of \Zj — Zj\.
Exercise 16.5.52. Suppose that / is C4 and let f/j = it(£j). Using Gronwall’s 
^mma and the estimate of e(£, h) defined by eqn (16.5.35), prove that there 
exists, for every solution of eqns (15.3.8) and (15.3.10), a constant C such that

\Uj-u(tj)\$Ch4, VJ<£ ,

provided that C/q and Ui are suitably chosen.
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Linear multistep schemes

17.1. Constructing multistep methods
When calculating an approximation at time £n+i> the Runge-Kutta methods do 
not use information on the results obtained at times prior to tn\ on the contrary, 
the multistep methods will use this information systematically. Therefore, a 
multistep method will be described by the data of 2q + 2 numbers aj and /?j, 0 ̂  
j  ^  q, and will be written as

Q Q
(17.1.1) OLjUn+j = h P jf (t-n+ji Un+j) .

j=o i=o
In what follows, we will systematically use the notation
(17.1.2) Fj = / (tj,Uj).
We consider only the constant time step case and, therefore,

tj = to + jh ,
as for the study performed previously for the Runge-Kutta schemes. The theory 
of variable step for the one-step schemes is easy; it has been treated for the Euler 
scheme in Subsection 16.5.2. The theory of variable-step multistep schemes goes 
beyond the level of this book, and the reader is invited to read [19] or other books 
on the numerical analysis of ordinary differential equations, such as [43,52].

In order to fix the effective number of time steps used in eqn (17.11)? we 
shall assume that
(17.1.3) 0, |a0| + |/?o| # 0.

We also have to initialize the values Uo,..., Uq-\. This in itia lization  will be 
performed in such a way that for u to be a solution of eqn (15.0.1) we have

Uj -  u (tj) = O (ftp+1) , 0 ^  j  ^  q -  1,

414
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with p being the order of the method under consideration, as defined below in 
Section 17.2.

The mathematical theory of the stability of multistep methods has some 
subtle aspects, whilst the theory of order is completely straightforward. This is 
in complete contrast with the mathematical theory of Runge-Kutta schemes.

We will start by giving some of the best known classes of multistep methods, 
then we will successively study the order, the stability, and the convergence of 
multistep methods.

17.1.1. Adams methods
Adams, astronomy, and computation
John Couch Adams was an astronomer; he is the co-discoverer of the planet 
Neptune, together with Urbain Le Verrier; the existence of an unknown planet 
beyond Uranus had been proposed to explain the irregularities in the orbit of 
Uranus. Adams was twenty-four years old at the time he finished his calcula­
tion. Initially, he had been encouraged by Airy, the Astronomer Royal, and by 
Challis who was the director of the Cambridge Observatory. But Airy adopted a 
discouraging attitude, and Adams did not publish before Le Verrier’s announce­
ment. Indeed, Le Verrier had embarked on the same task as Adams, both being 
unaware of the other’s work, and he announced the position of the new planet in 
November 1845. The Paris Observatory started a search but did not persevere. 
After Airy had received the announcement of Le Verrier, which gave about the 
same result as the calculation by Adams, he convinced Challis to search for the 
planet. In July and August 1846, Challis saw the planet, but did not recognize 
it.

In despair about the situation, Le Verrier wrote to the young Johann Galle, 
who was an astronomer in the Berlin Royal Observatory. Galle received per­
mission from the director of his observatory to look for the planet and, indeed, 
during the night of 23rd September 1846, together with his assistant Heinrich 
d’Arrest, Galle found a planet at less than one degree of arc from the position 
predicted by Le Verrier and less than three degrees of arc from the position 
predicted by Adams.

This discovery made a lasting impression, since it evidenced the power of 
computations in the discovery of physical phenomena. It is said about Le Verrier 
that ‘he discovered a star with the tip of his pen, without any instruments other 
than the strength of his calculations alone’.

However, in this particular case, there is more legend than fact. Indeed, 
Adams and Le Verrier had assumed that the distance from Neptune to the Sun 
J38 double the distance from Uranus to the Sun, whilst this ratio is but 1.57. 
he revolution period determined by Adams was 227 years instead of the 165 

1 observed; there were a number of other false hypotheses.
H is only thanks to a remarkable series of coincidences that these many errors 

c°mpensated one another. They were pointed out by several astronomers during
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the following decades.
A more detailed story of the discovery of Neptune and, more generally, a 

description of the evolution of ideas in celestial mechanics can be found in the 
excellent and popular book by Ivars Peterson [66].

Adams conceived numerical methods because he needed them in order to 
integrate numerically what cannot be expressed explicitly by algebraic and ana­
lytic means. At the end of his life, he came up with the method to be described 
below.

The astronomers introduced the notion of slow and fast variables: a fast 
variable would be, for instance, the position of the Earth as a function of time, 
and a slow variable would be the eccentricity of its orbit, or the length of its 
major semi-axis, or the obliquity of the Earth, i.e., the angle of the Earth’s axis 
of rotation with respect to the ecliptic plane, i.e., the plane of its orbit. If a planet 
has a fixed obliquity, its seasons and its climate will be relatively stable. Due to 
perturbations from other planets, the parameters of the orbit of the earth change, 
but on a time scale which is large with respect to the period, i.e., one year; the 
slow variables can also be integrated numerically. The slow variables have been 
called secular variables by astronomers, since their effect can be observed only 
on very long time scales: for a human being, a century (seculum in Latin) is a 
very long scale; for the universe, the matter is quite different—Jacques Laskar 
calculated numerically the evolution of slow variables, with time steps of 500 
years, and he found that the orbits of the planets are basically unpredictable 
after 100 million years. The following is a summary of his findings:

‘Large-scale chaos is present everywhere in the solar system. It plays a major 
role in the sculpting of the asteroid belt and in the diffusion of comets from the 
outer region of the solar system. All the inner planets probably experienced large- 
scale chaotic behaviour for their obliquities during their history. The Earth’s 
obliquity is presently stable only because of the presence of the Moon, and the 
tilt of Mars undergoes large chaotic variations from 0° to about 60°. On a 
billion-year time scale, the orbits of the planets themselves present strong chaotic 
variations which can lead to the escape of Mercury or collision with Venus in less 
than 3.5 Gyr. The organization of the planets in the solar system thus seems 
to be strongly related to this chaotic evolution, reaching at all times a state of 
marginal stability, that is, practical stability on a time scale comparable to its 
age.’ (Jacques Laskar, [57].)

17.1.2. The multistep methods of Adams
The idea of the explicit Adams methods, also called A d a m s - B a s h f o r t h  methods, 
is very simple: if u solves eqn (15.0.1) we have

f{t,u(t))dt.
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Then replace f(t,u(t)) by the interpolation polynomial P  €  P?_! which takes 
the value F j  = f(tj,Uj) at tj, for n -  q + 1 ^  j  ^  Employing eqn (4.5.11), P
is given by

(17.1.4) P  (tn + hs) = £  ("!)' (7) (V*F)n .
i=0

Hence, we obtain

[ tn+,p ( t)dt = hf £  (- i (-*) (v‘f) w ds.
Jtn Jo f=0

Define
71= [\-lY(-'

JO

Thus, the class of explicit Adams methods with q steps or q + 1 levels is given
b y

q-1
(17.1.5) t/n+1 -t/n = h ^ 7 <(ViF)n .

i=0

The coefficients 7 i may be calculated recursively; the easy and interesting way 
to get them is to use a generating function:

(17.1.6) 7 (x) = y ^ 7 <x\
i^O

A priori, the above series is a formal series, and we know nothing about its 
convergence. Quoting Herbert Wilf [78], ‘a generating function is a clothes-line 
on which we hang a sequence of numbers for display’. However, there exists 
perfectly rigorous mathematical theory which gives sense to an expression of the 
form (17.1.6). It suffices to know that the only permissible operations are those 
where any arithmetic operations involve only a finite number of terms of the 
formal series which we are computing. In particular, it is possible to multiply 
tw° formal series by generalizing the multiplication rule for polynomials:

(17 L7)
Vi^O / \ j^ 0  )  k^O \n=0 /

Then define

0(x,5) = ^ ^ ( 7 ) ( - 1 ) 1. 
i^O



418 17. LINEAR MULTISTEP S C H E M E S

This expression is the series expansion with respect to x of (1 - x)~8, with s 
being an arbitrary real number. This is a convergent expansion for \x\ < l an(j 
for all complex s. Therefore, if |s| <  1, we have

The first explicit Adams methods are thus given by the following formulae:

The particular case q — 1 is simply the explicit Euler method.
It is a known fact that the values of an interpolation polynomial outside of the 

interval enclosed between the extreme interpolation knots are not a very good 
approximation of the interpolated functions. The Adams-Moulton m ethods, or 
implicit Adams methods, consist of approximating the function f{t,u(t)) by a 
polynomial interpolating the f(tj,Uj) for n -  q + 1 ^  j  ^  n + 1. Once again, 
using eqn (4.5.11), we now obtain

(1 -  x) In (1 -  x)

and hence,

The multiplication rule for series now gives

7o =  1,

(17.1.8)

Un+1 — "H LFn,

P(tn + hs)= £ (-! ) ' (~T) (V ^)n+1

Let us define
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yhe family of implicit Adams methods is therefore given by

Un+1 =tf»+ / > ! > ?  (V<F)n+1.
i—0

X recurrence relation for the 7 * is proved in Exercise 17.5.1 along the lines of 
the derivation of eqns (17.1.8).

The first implicit Adams methods are given by

Un-fl :=: LJn -+■ hFn+\,

Un+1 =  U n 4- h  2 ^™ )  ’

U n+1 =  U n +  h  F"+ i i 2 ^ n ~  12^n-1) ’

u n + i =  u n + h  ( h Fn+1  +  f± F n  ~  h F n ~ l  ~  h F n ~ 2)  ■

The case q — 1 corresponds to the implicit Euler method, and the case q — 2 
corresponds to the Crank-Nicolson method.

17.1.3. Backward differentiation
In the backward differentiation method, we interpolate u, and not /, at the 
points £*, for n -  </ + 1 ^ i  ^  n + 1. The corresponding interpolation polynomial 
is

Q(tn + s h ) = j2 ( - i y m  ( v ^ ) n+1
i= 0

and we impose a collocation relation:

Q' (£n+l) =  / (£n+l? C^n+l) •

Therefore, we will have

E ^ ( V jt/)n+l = ^ n +l,
j= 0

and the coefficients Sj are given by

A direct calculation gives

^0 — 0 , <5* = -, Vj >  1. 
' .7
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The first backward differentiation methods are:

U n+ i “ U n =  h F n+ i ?

2 ^n + i -  2J7n +  2 ^ n~1 =  n-fi,

“g"t^n+l “ 3l/n +  —Un—1 ~ 2 — hFn+1,
2^ 4 1
Y 2 ^+ i ~ 4t/n + 3i7n_ i — - U n -2 + -t/n_3 =  h F n+1)

13T 10 5 1
“gO"E^n+l — 5 t/n +  5J7n_ i ---- —Un-2 +  ~̂ Un-3 — ~Un-4 =  /iF n+lj

—  l/n+1 - 6f/„  + y t/n_i - y f/n_2 + ^C/„ -3 -  j^n-4 + -t/n-5 = fcFn+1.

17.1.4. Other multistep methods
The Nystrom extrapolation formulae are constructed in the same fashion as the 
Adams-Bashforth formulae, except for the change in the integration interval: 
the starting point is

rtn + l
u (̂ n+l) = u (̂ n—l) 4" /Jtn-1

and f(s,u(s)) is replaced by the interpolation polynomial P £ P9_i which takes 
the values F j at tj, n - q + 1 ^  j  ^  n. The Nystrom extrapolation methods are 
of the form

9-1
(17.1.9) U n+1 =  V n - l  +  hY, (y jF )n >

j=0

and the first of these methods are as follows:

U n+i = U n —\ + 2 h F n ,

(17.1.10) 1 = U n-1 + -  (7Fn -  2Fn_ i + Fn_ 2) ,

l/„ +! = u n -  1 + ^  (8Fn -  5F„ _! +  4Fn_2 -  Fn_ 3) .

The first of these methods is called the midpoint method, and it is much used- 
The corresponding implicit construction gives the so-called Milne-Sinips01 

formulae; they are of the form

= h  X > 5  ( V * F ) n + 1 ,
j = 0

(17.1.11)
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and the first of these formulae are 
(17.1*12) Un-|_i — Un—i = 2ftFn+i,
(17.1*13) Un+\ Un—i = 2/iF

(17.1.14) Ĉ n+i ~ LJfi—i = g (Fn+i + 4Fn + Fn_ i) .

Formula (17.1.12) is of little interest because it is an implicit Euler method, 
with double step, and two staggered grids, namely the even numbered times and 
the odd numbered times. Formula (17.1.13) is, again, the midpoint formula, 
obtained as a Nystrom formula. Formula (17.1.14) reduces to Simpson’s inte­
gration formula, should / depend only on time. This is the reason for the name 
of this class of multistep formulae. Milne also provided the following rule:

(17.1.15) Un +1 — Un ~ 3 = — (SFn — 4Fn_i + 8Fn_2),

to be used as a predictor formula in conjunction with eqn (17.1.14). For the use 
of predictor formulae, see Subsection 17.5.4.

17.2. Order of multistep methods
17.2.1. The order is nice and easy for multistep methods
Let ube a real function of class C 1. The consistency error in the multistep
scheme (17.1.1) is the quantity

Q Q
e (t , w, h) = ^  a jU  (t +  jh) — h ̂  fijit (t + jh ) .

j—0 j= 0

Definition 17.2.1. A multistep method is said to be of order p if the consistency 
error vanishes uniformly for all polynomials of degree at most p. A method of 
order 1 is said to be consistent.

There are equivalent ways of formulating the definition of the order:
Theorem 17.2.2. The following assertions are equivalent:
(i) The multistep scheme (17.1.1) is of order p\
(h) The following algebraic relations hold:

(17.2.1)
Q

= 0
i= i

Q Q
(17.2.2) OIIW

!

i

In the relation (17.2.2), for I = 1 , we use the convention 0° = 1 .
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(iii) For all t > 0  and for all h* >  0, there exists a number C  such that, for all 
functions u of class C v+{, the consistency error is estimated as follows:

\e(t,u,h)\ ^  Chp+1 max j|u*p+1) (s)|, ^  ^  j , V/i ^  h*.
(17.2.3)

(iv) Let p and a be the polynomials
9 9

(17.2.4) p(x) = '£ a jx j , = fax3.
j=0 j=0

Then, in a neighbourhood of x = 0,

(17.2.5) p (ex) -  xa (ex) = O (zp+1) . o

Proof, (i) <=> (ii). If a multistep scheme is of order p, we choose u(x) = xl, 
and we find that, for I = 0, the consistency error is given by

Q

j=o
which must therefore vanish. For I G {1,... ,p}, the consistency error is

\ j=0 j=0 /
Conversely, if the algebraic relations (17.2.1) and (17.2.2) hold, then the consis­
tency error for the monomials xl, where 0 ^  I ^  p, vanishes.

(i) = >  (iii). Let wb e a  function of class Cp+1. Then the Taylor expansion 
of it at £ is given by

u(t + hs) = P (hs) -I- ftp+1/(£,$, ft),

where P is the truncated Taylor expansion at t and I is the integral term given 
by

I (£, 5 , ft) = -- [  (s -  s')p u (t + hs') ds'.
P Jo

Similarly, we have

u (t + hs) = P (hs) + ftp/i (£, 5, ft),

where I\ is given by

, 1- v, r  (s -  S')P-1 «<P+1) (t + hs') ds'.(P“ X)! Jo-fi (£? ft) —
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Then, due to the order assumption, we see that the local truncation error is 
given by

( 9 9
Y^ajl(t,jh,h) -  ( ,h)
j = 0 j—0

If we choose the number C to be equal to
q / jP+ 1 jP\

then expression (17.2.3) is proved.
(iii) = >  (iv). Take u(t) = ee, then

e (0, u,h) = p (eh) -  ha (eh) ,

and the conclusion is immediate.
(iv) = >  (ii). The Taylor expansion of p{ex) — xa(ex) at x = 0 is given by

q p ( . x/ q p-1
p ( e > ) =

j=0 /=0 * j=0 /=0
and the conclusion is immediate. □

(jx)1 x + 0(xp+1),

17.2.2. Order of some multistep methods
The order of the Adams methods is very easy to find. As a consequence of 
Theorem 17.2.2, it suffices to calculate p(eh) — ha(h), i.e., the consistency error 
in the case of the exponential, to understand the error. The value of p(eh) 
is eqh - and the value of a(eh) is the primitive of the interpolation
polynomial P(-,h) of t e* at the points 0,..., (q — 1 )h. We know, from 
Theorem 4.3.1, that the error committed here is

(17.2.6) e* -P ( t,h )= 0 (h q),

when t belongs to the interval [(</ — 1 )h,qh]. When we integrate eqn (17.2.6) on 
the interval [(q -  1 )h,qh\, we find that

eqh -  e(<?" 1)/l -  I*  P (5, h)ds = 0 (hq+1) .

Therefore, the Adams-Bashforth methods on q + 1 levels are of order q.
The same argument also proves that the Adams-Moulton methods on q -f 1 

fevels are of order q + 1.
A very similar argument shows that the backward differentiation method on 

 ̂T 1 levels is of order q.
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17.3. Stability of multistep methods
The stability of multistep methods needs a linear algebra preparation, like an 
infantry battle needs an artillery preparation—at least at the time of WWI.

17.3.1. Multistep methods can be very unstable
Consider the multistep scheme given by the coefficients

(17.3.1) a2 = 1, ai = 1, a0 = 2, =2, A> = -•

The reader may check that this scheme is of order 3. We apply this scheme to 
the differential equation

u = — u,
with the initial data

Uo = 1, U\ = exp(-/i).
The results of the numerical simulation for h = 1/50 and h = 1/100 are shown 
in Figure 17.1. The coordinates are clipped so as to make visible the onset of 
instability.

Not only does instability start earlier with a smaller time step but it is also 
much larger, as can be seen from a plot of the logarithm of the absolute value of 
the two numerical solutions for the above two time steps, see Figure 17.2.

Figure 17.1: Numerical solution for the scheme (17.3.1), with a time step of l/^ 
(solid line) and a time step of 1/100 (dashed line).
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Figure 17.2: The logarithms of the absolute value of the numerical solutions of 
the multistep scheme defined by the coefficients (17.3.1), for h = 1/50 (solid line) 
and for ft = 1/100 (dashed line).

This behaviour is the trademark of instability. 
What is the culprit? If we define

2 -  3ft/4 1 + 2h
a ~l + /i/4 ’ ~ 1 +

we may rewrite the numerical scheme in the form

with A(h) being the 2x2  matrix given by

*<*>-(“ !)•
The matrix A(h) is a continuous function of ft; for ft = 0, it is equal to

-4<0)=(°

^  its spectrum is {1,-2}. Therefore, by continuity of the spectrum with 
respect to the matrix, for small values of ft, the eigenvalues of A(h) are close to
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those of A(0). Practically, this means that the component along the eigenvector 
relative to the eigenvalue —2, is multiplied by —2 at each time step, while the 
other component keeps the same magnitude. Therefore, any initial inaccuracy is 
generally multiplied by 2 at each time step and, thus, we should expect that for 
a halved time step, the instability increases twice as fast. This is exactly w h a t  
Figure 17.2 tells us.

17.3.2. The stability theory for multistep methods
Stable matrices
We will first study the so-called stable matrices, whose properties are subsumed 
in the next lemma:
Lemma 17.3.1. The following three assertions are equivalent for a square complex 
matrix A  G M d ( C ) :

(i) There exists a vector norm N on C* such that, for the corresponding matrix 
norm || • \\n on M d ( C), A  satisfies the estimate

MIIn ^

(ii) In M d ( C ) ,  the non-negative powers of A  are bounded uniformly;
(iii) The eigenvalues of A  are of modulus 1 and the algebraic multiplicity of the 

eigenvalues of modulus 1 is equal to their geometric multiplicity. In other 
words, the corresponding Jordan blocks are of dimension 1.

Proof. The implication (i) = >  (ii) is immediate.
Assume now (ii) holds. The Jordan decomposition of A  is of the form

A =  P ~ 1JP,

with P being a regular matrix, and J is the Jordan form of A:
/J (Ai,mi) 0

0 J( A2,77l2) 0 \0

\ o o
The Jordan blocks are given by

J (A, 772) — XIm + ATm, Nm

J {  A f c , m k)J

(0 1 0  •• ■ 0 0 \0 0 1  •• • 0 0

0 0 0  •• • 1 0
0 0 0  •• • 0 1

V > 0 0  •• • 0 0 /
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Since the matrices An are uniformly bounded with respect to n, the matrices 
J n = (PAP~1)n = PAnP~1 are also uniformly bounded with respect to n. But
J n is equal to

( J {\0 ••• 0 \
0 J(A2,m2)n ••• 0

r  = . . .

V o  0 ••• J{\k,mk)n)

A classical calculation gives
m —1

= A"7m + ^  C*A ""‘JV*,.
1=1

As the matrices 7,7V,..., Nm~l are linearly independent, the boundedness im­
mediately implies that all of the Aj are of modulus at most 1. If there is an eigen­
value of modulus 1 for which there is a corresponding Jordan block J ( \ j , r r i j )  of 
dimension at least 2, then the coefficient of Nmj in the n-th power of 
is equal to nA”-1, which cannot be bounded. Hence, the geometric multiplicity 
of the eigenvalues of modulus 1 is equal to their algebraic multiplicity.

Assume now that (iii) holds. In order to construct the norm TV, we split 
the vector space C d into two complementary subspaces: V\ is the direct sum of 
the eigenspaces relative to the eigenvalues of A of modulus 1; V<i is the sum of 
the generalized eigenspaces relative to the eigenvalues of A of modulus strictly 
inferior to 1. Thus, we may write C* as a direct sum as follows:

c* = Vi ® V<1.

The projections on the factors V\ and V<i of this direct sum are denoted by P\ 
and P<l5 respectively.

Let v i , . . . , v e  be a basis of eigenvectors of A  in V\ and define a norm on V\
by

t t
x = Y l b vu Ni (x) = 5 3  I&I •

i=l i=l
The spectral radius of the restriction of A  to V<i is strictly inferior to 1, and we 
know from Lemma 11.1.5 that there exists a vector norm JV<i on V<i such that 
fhe restriction of A  to this space is of norm strictly inferior to 1. We now define

N(x) = N1(Plx) + N<1(P<1x),

the result is proved. □

We will need the following characterization of a stable block diagonal matrix:
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Corollary 17.3.2. Let A be a block diagonal matrix:

(A i 0 ••• 0 \
0 A2 • ■•• 0

U 0 ••• AkJ

The matrix A is stable if and only if the blocks Ak are stable.

Proof. In view of assertion (iii) of Lemma 17.3.1, the statement is immediate.
□

The case of the companion matrix A given by

(17.3.2)

0 1 0 •• 0 \0 0 1 •• 0

0 0 0 •• 1

— ClO -ai - a 2 •• —dq-lj
is of particular importance.
Lemma 17.3.3. Let A be the companion matrix given by eqn (17.3.2), and let P 
be its characteristic polynomial given by

<7-1

P (x) = xq + ^2  a3X* • 
j= 0

Then A is a stable matrix if and only if the following two conditions are satisfied: 

(i) All the roots of P are of modulus at most 1;
(ii) The roots of modulus 1 are simple.

Proof. The proof of this result has been the object of Subsection 3.3.6. We 
give here a direct proof, whereby we exhibit a Jordan basis for the companion 
matrix.

Let the extended binomial coefficients be as in eqn (4.5.9). Define the 
polynomial-valued vector V(x,m) by the list of its components:

V/(ar,m) =  VZ =  1

Then, an elementary calculation gives

{AV (x,m))l = ( j jx 1 m, 1,
p(m) (Vv

MK (.,»)), = ----^  + (•)*•-.
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If A is a root of P of multiplicity at least m + 1, then P(m\X) vanishes, and we 
get the relation

AV (A, m )  -  XV (A, m )  =  V  (A, m  -  1),
due to the binomial identity. Now let {Ai,...,A*} be the list of roots of P , 
without repetition; the multiplicity of A * is called m*. The vectors V (X  *,m), 
0 ^ ra ^  ra* — 1, are independent. Suppose that there exists a linear
combination

k mi — 1
(17.3.3) ^   ̂ ^   ̂ £i,mV (A*,?n) = 0.

i= l m=0

When the product

(A -  Aj/)"11-1 {A -  \2I)m2 ■■■{A- A 

is applied to this relation, the only remaining term is

£l ,77li —1

which must vanish and, hence, the scalar £i,mi_i must vanish. All the coefficients 
£iti, 0 ^  i ^  mi — 2 will also vanish, as can be proved by successively applying 
the operators

(A -  A 1I)i (A -  X 2J)m2... (A -  A kI)mk, i = m1-2,...,0,

and an obvious induction on the index of the eigenvalues enables us to see that 
the coefficients of the linear combination (17.3.3) must all vanish. Since we have 
the right number of vectors, we have produced an explicit Jordan basis for A.

Now that we know that the dimension of the Jordan blocks of A is exactly the 
multiplicity of the roots of its characteristic polynomial, the proof is achieved.

□

Stability theorem for multistep schemes
We can now prove a stability result for multistep schemes, which is completely 
analogous in its method to that of Theorem 16.1.6.
Theorem 17.3.4• Let / map continuously M x Rd to Rd and assume that it is 
uniformly Lipschitz continuous with respect to its second argument. Its Lips- 
chitz constant will be denoted by L. Let eqn (17.1.1) define a multistep method 
and assume that the polynomial p, defined by eqn (17.2.4), has all of its roots in 
the unit disk, while its roots of modulus 1 are simple. Then, there exists a num- 
êr h* and, for all T >  0, there exists a number C such that, if 0 <  h ^  h* and Un
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and Un are sequences satisfying
Q

(17.3.4)
y i  °LjUn+j = h PjFn+j >
j=0 i=0
9 Q

QLj&n+j = ft y] PjFn+j A £n->
j= 0 j=0

then the following estimate holds for q ^  n ^  T/ft: 

(17.3.5)

Proof. Due to hypothesis (17.1.3), we may define

|£/„  -  t>n| ^  C ^ U i  -  Uj\ +
\j=0 j=0

a i /?' =3 Otq ’ 3 aq
Let A be the companion matrix

(  0 1 0 ••• 0 ^
0 0 1 0

(17.3.6) A
0 0 0 ••• 1

\ - < * o - a i --a'2 ■■■

Due to the assumptions <of our theorem, it is a stable matrix.
qd x qd matrix

( 0 Id 0 0
0 0 Id  ••• 0

B =
0 0 0 Id

\ — c*0 Id  ~ ai I d ~-Ot2Id 11

A reordering of the canonical basis of R9d shows that B is similar to a d x d block 
diagonal matrix with constant diagonal block equal to the matrix A. Therefore, 
according to Corollary 17.3.2, B is also a stable matrix. We let | • | be a vector 
norm on Rqd for which the corresponding subordinate matrix norm of B is at 
most equal to 1.

Define vectors in Rqd as follows:
(  U n  \ (  U n

V n = vn =
\ U n + q —l / \ U n + q ~  ly

(17.3.7)
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Define functions 0 and 0 from R x Rqd x [0, ft*] to Rqd by
( Xi > ° \

X —
Xq—i

\X V )
, (i> (t, x ,  ft) —

0
\P'qf  (t + qh,Xq)J

/ 0 \
^  (t,x, ft) =

0
\£j=o/?j/(* + jft,*j+i)/

The functions 0 and are clearly Lipschitz continuous with respect to their 
second argument; their respective Lipschitz constants will be denoted and 
hp. Finally, we let r]n be the vector of Rqd whose first q — 1 d-dimensional blocks 
vanish, the last block being equal to en. With these notations, relations (17.3.4) 
can be rewritten as

Fn+l ~ BVn 4“ ft0 (̂ n? Vn+1 > ft) 4" ft^ {tm Vm ft) ,
Tn+1 =  BVn +  h(f)(tni Vn+l» ft) 4" ft̂ A Ln? ft) 4” 'Hn-

If we subtract the second of these equalities from the first, if we apply the triangle 
inequality, and if we recall that B is of norm at most 1, we find
(17.3.8) \Vn+i — Vn+11 ^  \Vn — Vn\ *f hL(p\Vn+i — Vn+i | -F hLxp\Vn — Vn \ + |£n|.
This is an example of the application of the discrete form of Gronwall’s lemma, 
and the conclusion follows. □

There is a converse to Theorem 17.3.4:
Theorem 17.3.5. If a multistep scheme is stable, then the polynomial p satisfies 
the conditions of Theorem 17.3.4. o
Proof. Consider the two scalar sequences Un and {7n, defined by

Q
Un = 0, Vn^O, 5 > ;£ ’+; = 0> Vi >  °»

j= 0

where / is chosen to be equal to 0. We take Uj = 5ij for all i, j = 1,..., q — 1. 
Then, the hypothesis of stability implies that there exists, for all h £ ]0, ft*] and 
for all i = 0,..., q — 1, a number Ci such that the following estimate holds:

\ i% \<C i9 Vn€ {0,...,r/ft}.
This means that, if A is the companion matrix (17.3.2), then

ls bounded independently of i and n and, consequently, An is bounded indepen- 
ei%  of n. Then Lemmas 17.3.1 and 17.3.3 give the conclusion. □
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17.3.3. Stability of some multistep schemes
The stability of the Adams methods immediately results from the fact that the 
polynomial p for an Adams method with q + 1 levels is

p(x) = xq - xq~l ,
then it is clear that the criteria of Lemma 17.3.3 are satisfied.

It can be proved that the backward differentiation methods are stable for 
q — 1,..., 6, but unstable for q — 1.

17.4. Convergence of multistep schemes
The convergence theory comes very easily from the stability and order theories.
Theorem 17.4 L Let eqn (17.1.1) define a consistent and stable multistep scheme 
of order p. Let / be a function of class Cp from E x Rd to E, which is Lipschitz 
continuous with respect to its second argument. Let uq be given in Ed, let T 
be a strictly positive number, and let u be the solution of the system (15.0.1). 
Then, if the initialization of the numerical scheme satisfies, for sufficiently small 
h, the estimate

q-i
E l  U j-u( jh)\^Ch?, 
j =0

the scheme is convergent and of order p in the following sense: there exists a 
number C such that
(17.4.1) max \Un — u(nh)\ ^  Chp. o0 ̂  nh ̂  T
Proof. Due to the regularity result in Lemma 15.2.8, the solution u of the 
system (15.0.1) is of class C p+1. We let

Un — u (tfi) and £fi = £ (tfD u, /i).
Then, the hypothesis on the order tells us that

|£„ | ^  Chp+1.
Then, estimate (17.4.1) is an immediate consequence of the stability estimate
(17.3.5).

17.4.1. Initializing multistep methods
The above analysis stressed the importance of the quality of the in itia lization- 
The initial error is carried throughout the calculation and, therefore, we ne  ̂
to get very good approximations of the first q data. One approach is t o  us^  
Taylor formula expansion to obtain them, together with the c a l c u la t i o n  o  ^  
derivatives of the solution according to eqn (15.2.27). Another o p t i o n  i s t0 
a Runge-Kutta method of high order.
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17.4.2. Solving in the implicit case
When Pq does not vanish, each step of a multistep scheme requires the resolution 
of

<7-1
(17.4.2) QlqUn+q — Hfiqf (̂ n-fqn Un+q) — ^   ̂{—QLjUn-\-j + hfijFn+j) .

j=o
The right-hand side of eqn (17.4.2) is known from the previous steps; let us 
call it z n+ q . The left-hand side contains the (generally) nonlinear function u h-» 
aqu - hfiqf(t,u). However, if / is Lipschitz continuous, then, for small h, u \-> 
(hPqf{tn+q,u) + z n+ q ) / a q is a strict contraction, and it will suffice to make a 
few iterations of the following form:

(17.4.3) ^ntq = ~  {hpqf f) + z n+q) ?OLq
to obtain a reasonable approximation to the solution of eqn (17.4.2) which is 
sought here.

In fact, if we fix a priori the number of iterations of the form (17.4.3), and the 
process is used to obtain the first approximation, we get the so-called predictor- 
corrector methods which are studied in more detail in Subsection 17.5.4.

17.5. Exercises from Chapter 17
17.5=1. Short exercises
Exercise 17.5.1. Show that the coefficients 7 * of the Adams-Moulton methods 
satisfy the following relations:

= 1, 
= 0,

7o 7n-i
n + 1 2 + 7; 0.

Hint: reproduce the formal series derivation of eqns (17.1.8), with appropriate
Ganges,
Exercise 17.5.2. Give the recurrence satisfied by the coefficients Ki in the Nys- 

methods (17.1.9) and verify the coefficients appearing in eqn (17.1.10). 
hat is the order of a Nystrom method? Is it stable?&
Xercise 17.5.3. Give the recurrence satisfied by the coefficients k* appearing in

(17.1.11); calculate the coefficients up to j  = 3. What does this result mean 
0r the order of the formula (17.1.14)?
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Exercise 17.5.4• Study the order and the stability of the methods (17.1.14) and
(17.1.15).

17.5.2. An alternative formulation of the order condition
Exercise 17.5.5. Show that, for any consistent multistep method, the polynomial 
p has 1 as a root.
Exercise 17.5.6. Let xq be a simple root of p. Show that, as a map from R2 to 
itself, the map 2 »-> p(z) — ha(z) is of class 0 2, and calculate its first derivative 
at 2 = xq. Show that, for sufficiently small ft, this derivative is invertible. Show, 
with the help of the implicit function theorem, that, for sufficiently small ft, the 
polynomial p — ha has one simple root in a neighbourhood of ̂ o, and that this 
simple root, denoted by x(h) is a function of ft, of class C2. Calculate x(0).
Exercise 17.5.7. If you know about analytic functions, show that x(h) is an 
analytic function of ft in a neighbourhood of ft = 0. This fact is not needed to 
answer the next questions.
Exercise 17.5.8. Assume that x = 1 is a simple root of p. Show that, for real ft, 
x(h) is real.
Exercise 17.5.9. Let r(x, ft) = ^(e*) -  ha(ex). Show that, in a neighbourhood of 
(1 ,0 ), d\r(x, ft) is bounded away from 0 and that djr(x, ft) is bounded.
Exercise 17.5.10. Show that the method is of order p if and only if

x (ft) = e* + 0 (ftp+1) .

Hint: write a Taylor formula with integral remainder to estimate r(x(h), ft) - 
r(e/l,ft), and use characterization (17.2.5) of order and Exercise 17.5.9.

17.5.3. Weak instability
Exercise 17.5.11. Simulate numerically the solution of x = —x, x(0) = 1 with

(i) The Adams-Moulton method with three levels;

(ii) The Milne-Simpson method (17.1.14).

Initialize using the exact solution, and test several time steps and several time 
intervals. Plot the difference between the computed solution and the exact so­
lution. What do you observe?
Exercise 17.5.12. Consider a stable consistent multistep method such that the 
polynomial p has a simple root Xo of absolute value 1 which is not equal to 
Let x(h, A) be the simple root of p — After which is in the neighbourhood 
Calculate the derivative of x with respect to ft at ft = 0. Such a m eth od  is ca 
weakly unstable.
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Exercise 17.5.13. In the case of the Milne-Simpson method (17.1.14), calculate 
this derivative for xo = —1.
Exercise 17.5.14. Consider the differential equation x = —\x. Show that, if 
3tA >  0 and 5R(A<7(x0)/xop1 (#o)) *s strictly larger than 5RA, then the error 
u(tn) “ Un contains a term of magnitude 0 (1) exp(nh\cr(xo)/xop,(xo)), which 
dominates the solution for sufficiently large nh.
Exercise 17.5.15. Explain the numerical observation of Exercise 17.5.11, in view 
of Exercises 17.5.13 and 17.5.14.

17.5.4. Predictor-corrector methods
A predictor-corrector method is defined by the data of two multistep schemes: 
an explicit one, with data olj, 0 ^  j  ^  q and /3j, 0 ^  j  ^  q — 1, and an implicit 
one with data ct;, 0 ^  j  ^  q and /?j, 0 ^  j  ^  q. For simplicity, and without loss 
of generality, we shall assume that aq = aq = 1. We assume the first of these 
multistep methods to be of order p and the second to be of order p.

Given Un,..., Un+q- 1, the prediction step gives

q-1 q-1

j=o j=o
There can be N ^  1 evaluation and correction steps, given by

j=o j=o
Fn+q ~ f  (̂ n+g> Un+q) , ““ ^n+g + ^/^g^n+g> Vr — 0,-- ,N 1.

The final step can be either

in which case we have a P(EC)NE scheme.
Exercise 17.5.16. Let u be a solution of the differential equation u = f(t,u), 
Wlth / satisfying the assumption of the Cauchy-Lipschitz theorem and is of 
class Cp+1.Let Un = u(tn) and Fn = f{tn,Un). Define

g-1 g-1
Un+q ~ 7  ajUn+j + h y(17.5.1)
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)•

and for all r ^  0 ,

n̂+q f (tn+qi&n+q
q- i q- i

UnX\ =  “ Un+j +  h /3jFn+j +  hftqF̂ +q- 
j - o  j= o

Derive the following estimate, for all r ^  0:

| ^ +, - ^ n +,|=0(^+'-+1). I
Exercise 17.5.17. We start with the study of the PECE  method. Define a block 
vector Wn+i by

(K+q\
Un

Wn +  1 =  .

\JJn+qJ
Show that the PECE  method can be written as

(17.5.2) Wn +1 — LWn 4- hG (Wn+i, £n+i> h),

where L and G have the following properties: L is a block matrix of the form

L =  (aijld)i^ij^ q + 2 »

G is a function given in block form as

q+2
(G (W, t, h))t = Y, K f  (* + vjh, ,

i=i

where the notation (W)j stands for the j-th block of W, and v is a vector of 
integers given by

v i= q - l ,  Vj = j- 3 ,  Vj = 2,...,g + 2;

finally, G is Lipschitz continuous with respect to its second argument.
Exercise 17.5.18. Extend Corollary 17.3.2 to the case of a block tr ian gu la r iua 
trix. Let Ls:q+2 be the matrix constructed from L by chopping off its first two 
rows of blocks and its first two columns of blocks. Show that L is a s ta b le  matrix 
if and only if £3 ^+ 2  is a stable matrix. Infer that the PECE method is stab e 1 
and only if the corrector method is stable.
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Exercise 17.5.19. Assume that the corrector method is stable. Let U„ . U°, Fn, 
and be defined as in Exercise 17.5.16. Define

w n+q =

(U°n+q\
Un

\U n+q- /

Derive the estimate
\Wn+! -  LWn - hG(tn+1,Wn+1,h) | = O (h ^1) .

Exercise 17.5.20. Assume that / is sufficiently differentiable and uniformly Lip- 
schitz continuous. Also assume that initially

q-i
Y ,\u(tj ) - U j \ =  0(h*).
j = 0

Use the principle of the proof of convergence of multistep methods (Theorem 
17.4.1) to show that the PECE  method is of order min(p,p + 1).
Exercise 17.5.21. Using the techniques of Exercise 17.5.20, show that the 
P(EC)NE method is of order min(p + N,p).
Exercise 17.5.22. For the PEC  method, the Wn will be

K  \

W ^x = u°Un+q
Un ’

\U n+q/

Show that all the above arguments can be translated to this case. Show that 
this method is of order min (p,p).
Exercise 17.5.23. Define the vector Wn +1 for a P(EC)N method. Give the 
stability condition and the order of such a method.

I

17.5.5. One-leg methods
Exercise 17.5.24• Let the data ao,..., a q and /?o, • • •, Pq define a consistent and 
stable method. Show that

qaq + (q — 1) ocq-\ + ... + ai ^ 0 ,
^nd infer th a t

/3q +  ... +  fto 7̂  0.
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Exercise 17.5.25. Assume, without loss of generality, that = 1. Let

i=o
and define a one-leg method by

1(17.5.3)
h

Define

Prove the identity

V ̂ & j U n + j  —  h f  ( t n + q  ? ' 

j= 0 V ~1

^ n + g  -  Q T  P jU n+ j-  
P j = 0

VL, = £ af )2^J + w(w«+I).
J—0

Exercise 17.5.26. Define
Un \

Wn+1 =
£?n-fg—1
V <4+, /

Show that the one-leg method (17.5.3) can be written in the form 

Wn+i = LVn + hG (£n+i j Wn+1, h),
and give precisely the matrix L and the function G.
Exercise 17.5.27. Show that L is a stable matrix if and only if the original 
multistep method is stable.
Exercise 17.5.28. What can you say about the order of the one-leg method 
(17.5.3)?



18

Towards partial differential 
equations
In this chapter, we present the elementary theory and the numerical analysis of 
some partial differential equations. In general, the numerical analysis of partial 
differential equations requires much more functional analysis than this book aims 
to present. However, for the simplest partial differential equations, we can work 
without adding any analytical tools to the ones already used.

We will consider two different kinds of partial differential equations: the 
advection and wave equations on one hand and the heat equation on the other 
hand. The analysis of the numerical methods and most of the theory will be 
performed in one-dimensional space. This is certainly not general; however, 
enough significant numerical phenomena can be analysed in these cases to make 
the study relevant.

An important notation must be introduced here. As an alternative to the 
fractional notation for the partial derivatives

du du du
~di’ a ?  and d ^

we will often use the subscripted notations ut, ux, and uXj or uj, respectively.

18.1. The advection equation
18.1.1. The advection equation and its physical origin
The advection equation is the partial differential equation which resembles most 
an ordinary differential equation, and its solution requires only ordinary differ- 
ential equations. This is the reason why we start with it, with a strong emphasis 
0n its physical origin.

The simplest setting for the advection equation is in the full d-dimensional 
sPace IRd, with time running from 0 to infinity or from 0 to T. As is classical,

439
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we let Vu denote the spatial gradient of a function u, which is defined as

Given a vector field a(x, t) on Rd x M+ or on Rd x [0, T], the advection equation 
is

The physical origin of this equation is the key for understanding its properties. 
Equation (18.1.2) describes the transport of matter by a fluid, or analogous 
physical phenomena. Here, a is the velocity, at time t, of a fluid particle situated 
at the point x; this is called the Eulerian description of a fluid motion. It is very 
important to realize that a can be independent of space and time, and yet the 
fluid will move. Indeed, if, at the time t, a fluid particle is located at the point x 
and has the velocity a, then, at the time t' ^  t, it must be located at the point 
x + a(t' — t) and, unless a vanishes, this means that the particle has actually

If the velocity depends on time and space, the trajectory of the particle which 
was at £o at the time to can be described in terms of differential equations. If 
X(t) is its position at time t, we must have

If a is smooth enough, for t close enough to to, there is a unique solution of eqn 
(18.1.3) satisfying the initial condition

If we want to emphasize the fact that X  depends also on to and xo, we shall 
write it as X(t-,to,xo)- The description of a fluid motion by the motion of the 
individual particles of fluid is also called its Lagrangian description.

The mapping X  is called the flow of the vector field a.
When a does not depend on the time t and is locally Lipschitz continuous, 

the dependency of X  on t and to takes the simpler form

(18.1.1)

(18.1.2)

moved.

(18.1.3) X(t) =a(X(t),t).

(18.1.4) X  (to) — Xq.

(18.1.5) X (tj to,xq) — Y (t to, X0),

where Y is the solution of

-Y(t,xo) = a(Y(f,xo))

with the initial condition
Y (t,Xo) =
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We check this fact by observing that

Y ( t- t0;x0)\t=to — 

and that t Y(t -  to,xo) satisfies the differential equation 

d—Y ( t- 10; x0) = a ■

Then, by the uniqueness of the solution of differential equations, we obtain the 
relation (18.1.5).

If a depends on time and space and is Lipschitz continuous, then we have the 
following relation:

(18.1.6) X(t2;tu X  (ti]to,xo)) = X  (t2;to,xo), Vto,ti,t2,xo-

This is proved by observing that the function £ : t h-> X(t\ £i, X(t\; to, #o)) 
satisfies the differential equation

£(*) = a (£(*)),

together with the following initial condition at t\:

£ (*i) = X  (ti;t0,x0).

This means that £ and t X(t;to,xo) satisfy the same system of ordinary 
differential equations and coincide at time t\. Hence, due to the uniqueness of 
solutions to systems of ordinary differential equations, they coincide at all times.

An obvious consequence of relation (18.1.6) is that the mapping xq •-> 
X(t;t0,x0) has an inverse, which is given by x i-> X(to;t,x):

(18.1.7) X (t; t0, X  (t0; t, x)) = x, X  (t0; t, X  (£; t0, x0)) = x0.

If, instead of assuming that a is Lipschitz continuous, we had assumed that 
it is only locally Lipschitz continuous, we would still have relation (18.1.6), but 
only for the space coordinates xo and the times £0, t\, and t2 for which the 
different expressions in eqn (18.1.6) are defined.

In fluid mechanics, the trajectory of a fluid particle is known as a streamline 
and a region limited by streamlines, and possibly by planes of constant time, is 
known as a stream tube.

The translation to mathematical language thus says that a streamline is the 
ln*age of the mapping t X(t;to,xo) and that a stream tube is the region 
{X{t;t0,x0) • t €  [t\,t2],Xo £ U}, with U a region of space. It is limited by the 
Planes t = t\ and t = t2, and by the streamlines through (£o5#o)? where xo runs 
through the boundary of the region U. All of these objects are represented in 
Figure 18.1.
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18.1.2. Solving the advection equation
Suppose that the fluid transports a colorant, which has a certain initial density 
uo(x) at time Jo- For instance, we could stain the fluid with fluoresceine, in 
order to track streamlines, and then add a very small quantity of fluid in the 
neighbourhood of some point, so that the density of colorant vanishes away from 
that point.

As a first approximation, we may assume that there is no d if fu s io n .  T h is 
assumption means that the density of colorant is constant along the s tr eam lin e s,  
provided that there are no sources of colorant in the domain under c o n s id e r a t io n .  
Assuming that u is a function of class C l of x G Rd and t €  E, we d iffe r en t ia te  
the function 11-» u(X(t; to,xo),t) as follows:

r\

— (u (X (t;t0,x0) ,t))

= (t;t0,x0),t){t;t0,x0) + ^  (X ,*)
j=1 3

= (ut +a- Vu) (X  (J; J0, #o), t).
Therefore, it is equivalent for a function of class C 1 to be constant along s tream
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lines and to satisfy the relation

Ut + a • Vu = 0.

In particular, if the initial condition at time to is given by a function uo over Rd, 
we must have, for all t, to, and xq, the following relation:

(18.1.8) u (X  (t; t0, xo) ,t) = tt0 (zo).

Since we know how to invert xo X(t;to,xo), due to the relations (18.1.7), we 
transform eqn (18.1.8) into

(18.1.9) u(x,t) = u0 (X (t0;t,x)).

It is important to observe that the relation (18.1.9) makes sense even if u0 is 
not of class C 1; then, we say that we have a weak or generalized solution of eqn
(18.1.2), with / = 0. This is, indeed, a solution in the sense of distributions or 
a generalized solution. The meaning of these words is analysed in Subsection 
18.5.8.

When a is a constant vector, the solution (18.1.9) has the following very 
simple form:

(18.1.10) u (x, t) = uo (x -  at).

Let us solve now eqn (18.1.2) for any continuous function /, when the initial 
data are of class C 1.
Theorem 18.1.1. Let a be a vector field over Rd x [0,T] which is uniformly Lip- 
schitz continuous with respect to the first variable. Assume that the function / 
is continuous over Rd x [0, T] and that the initial data u0 is continuously differ­
entiable over Rd. Then, there exists a unique solution to eqn (18.1.2) satisfying 
the initial condition

u (x, 0) = uo (x), x 6 Rd,
and it is given by

(18.1.11) u(x, t) = uo (X (to;t,x)) + f  f(X(s;t,x) ,s)ds. o
Jt0

Proof. It is immediate that, if eqn (18.1.2) holds, then

(18.1.12) -  (u (X (t; t0, x0) ,*))*=/ (X (t; t0, x0), t)

and, therefore, by a direct integration,

u (X (t; t0, xo), t) = uo {xo) + / f  {X (8; t0, x0), s) ds.
J t0
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Due to the change of variable x = X(t;to,xo), whose inverse is given by x0 = 
X(to;t,x) (see the relation (18.1.7)), and to the identity (18.1.6) applied at 
the times £0> s, and t, we finally obtain expression (18.1.11). The uniqueness is 
immediate: if u and v are solutions of eqn (18.1.2) with the same initial condition 
uo, then u -  v is a solution of eqn (18.1.2) with vanishing right-hand side and 
initial condition; it satisfies the relation

- ( ( u - v ) (X  ( t; 0,

with vanishing initial condition, which immediately implies that u — v vanishes 
on every streamline. □

Observe that the expression (18.1.11) makes sense even if / and uo satisfy 
weaker regularity hypotheses.

18.1.3. More general advection equations and systems
The formula (18.1.11) enables us also to solve semilinear advection equations in 
d variables and hyperbolic systems in 1 variable.

Replace, indeed, f{x,t) in the right-hand side of eqn (18.1.2) by a function 
f(x,t,u). Then, eqn (18.1.12) becomes

— (u (X  (t; x0), t)) — f  (X  (£, 5 zo)) ^ (X (t, *̂ o) ? 0) ?

which is simply an ordinary differential equation whose unknown function
v(t) = u(X(t;t0,xo),t) satisfies

v(t) = f{v(t),t).

Consider now the following hyperbolic system of n linear equations in one 
dimension:

(i8ii3> |j
where M is an n x n matrix, which is continuously differentiable with r e s p e c t  to 
x, t and has the following strict hyperbolicity property:

M has n distinct real eigenvalues Aj (x, t), 1 ^  j  ^  n, Vx, t.

Then, it is possible to find n eigenvectors rj(x,t), for 1 ^  j  ^  n, of M(x,t) and 
n eigenvectors lj(x,t), for 1 ^  j  ^  n, of M r (x,t) such that

Mvj — Xjvj, lj M = Ajlj , lj vk — Sjki

and the vectors rj and lj are continuously differentiable with r e s p e c t  t o  x and  t
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This fact is proved in Subsection 18.5.1.
Now decompose the unknown vector u as

n
U (X, t) — £  Vj (x, t) rj (x, t).

3=1
With this notation, eqn (18.1.13) now becomes, after substitution of the new 
expression for u and multiplication on the left by /J,

n
(18.1.14) vjtt + XjVjtX (rM + Mrk,x) Vk = l j

fc=X
Thus, we have obtained a system which is essentially composed of equations of 
the type (18.1.2), coupled via terms of order 0.

Since the terms of order 0 already contain a dependency with respect to w, it 
makes sense to assume also that / depends on u. Therefore, it will be a function
f(x,t,u).

In order to look for a solution, we reduce eqn (18.1.14) to an integral equation, 
with the help of expression (18.1.11). Denoting by Sj(t;to) the transformation 
given by

( Sj( t; to) u) (x) = u (Xj ; t0, x0)), 
with Xj the flow associated to rj, we may rewrite eqn (18.1.14) as

Vj (•, t) = Sj (t;to) Vj (•, to) + [  Sj ; s) gj s, v) ds,
Jto

where the functions gj are defined as
n

9j (x, s, v) = lj (x, £)T / (x, s, v) -  lj (x, t)T + Mrk,x) (x, t) vk (x, t).
k=1

If the mappings gj are Lipschitz continuous in u, uniformly with respect to x G R 
and to t G [0, T], then the method of proof of existence for the Cauchy-Lipschitz 
theorem by Picard iterations works. For instance, in the functional space C® (R)d 
°f bounded continuous functions on Rd, the mapping

Lipschitz continuous from C°(R)d to itself.
Of course, the solution obtained by this process is a generalized solution; 

*be exact significance of this term is explained for the advection equation in 
Subsection 18.5.8. I hope that, at this stage, the reader will agree to believe me, 
0r else, refer to more advanced work, such as [26].
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18.2. Numerics for the advection equation
18.2.1. Definition of some good and some bad schemes
Since we have an explicit expression (18.1.11) for the solution of eqn (18.1.2), 
the reader may well wonder at this point why it is necessary to find a numerical 
method for solving eqn (18.1.2). After all, we just have to find the stream­
lines, which are also called characteristics, and apply on these characteristics our 
favourite quadrature formula to find an approximation of expression (18.1.11).

This is, indeed, the essence of the so-called method of characteristics, which 
remains a method of choice for solving the advection equation.

But, if we wish to solve a slightly more complicated problem, such as the 
system (18.1.13), other options, rather than the method of characteristics, are 
reasonable, and even more so in higher spatial dimensions, where they become 
necessary. The wave equation or the elasticity system do not reduce to cou­
pled advection equations, though they share propagation properties with the 
advection equation. For them, there is no simple equivalent of the method of 
characteristics.

The advection equation should be considered as a toy system on which it is 
useful to test ideas before applying them to more complicated situations. This is 
the reason why we study the finite difference methods used for the approximation 
of the very simple eqn (18.1.2). Even in dimension 1 and with a constant velocity 
a, we shall see that there is food for thought.

The simplest ideas can be used to construct a discrete approximation of

(18.2.1) ut + aux = 0.

We replace ut and ux by finite differences and the variables x and t by discrete 
variables. According to a traditional notation, we let Uj1 be an ap p rox im a tion  
of u(jSx,n5t).

To fix ideas, we let a be a strictly positive number. The results for a negative 
are subsequently deduced by transforming x into — x, as can be im m ed ia te ly 
seen.

However, we have multiple choices; to keep the computational effort at a 
minimum, we settle for an explicit scheme in time. This means that we replace 
ut by

u ?+1- u?  ■
5t

But, what about the space difference? We may take

(18.2.2) u?  ~ ^"- i
6x ’

r/« _  TjnUj+1 Uj
Sx(18.2.3)
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or

(18.2.4)
Tjn _  TJn Uj+1 Uj -1

2&r
and each of these choices will lead to different numerical schemes with widely 
differing properties.

In order to have a first approach to the properties of these schemes, we 
introduce the notion of a stencil. It is the set of points ((j1 — j)Sx, (n' — n)St) 
such that are used in the computation of U™*1. Thus, for instance, the
scheme corresponding to the choice (18.2.2) is written as

(18.2.5)
t/;+1 u?

St + CLU? -
8x = * ?

with stencil made out of the points (0,0), (—&r,0), and (0, <5£). This scheme is 
called the upwind scheme, since the position of the discretization point, used 
for differentiating spatially, is translated against the wind: a is the velocity of 
the flow, understood as the flow of a fluid, and we go up on the streamlines to 
construct the finite difference.

The scheme corresponding to the choice (18.2.3) is the downwind scheme. It 
is written as

(18.2.6) Up-1 -  u f  
It + a u?+i - u ?

si
and its stencil is made out of the points (0,0), 0). and (0, St). Finally, the
centered scheme, corresponding to the choice (18.2.4), is written as

(18.2.7)
Jjn+l _  jjn

St + Clu_m ~ U_U  _
2 Sx 1

and its stencil is made out of the points (—&r,0), (8x, 0), and (0,^).
We already know that the solution of eqn (18.2.1) is given by the relation 

(18.1.10), with u taken to be equal to uq{x) at the initial time t = 0.
Therefore, if our initial data vanish outside the interval [—1,1], at time t, 

and the right-hand side / vanishes, the solution must vanish outside the interval 
[-1 + at, 1 + at]. If we approximate our initial data by U(j,0) which vanishes 
for \j\Sx ^  1, then we can use the stencil to understand where the numerical 
approximation will necessarily vanish and where it might be different from 0. It 
will be reasonable to take a vanishing right-hand side in either scheme (18.2.5), 
(18.2.6) or (18.2.7).

Graphical arguments will impose necessary conditions on the type of scheme 
ar*d on the numerical parameters. If these conditions are not satisfied, there is 
n° hope whatsoever of convergence.

An important number is the CFL (Courant-Friedrichs-Lewy) number, de­
fined as
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Figure 18.2: Upwind numerical scheme (18.2.5), with aSt/Sx >  1. The black 
circles denote the points where the numerical approximation can be nonzero and 
the shaded region is that where the exact solution can be nonzero. The stencil 
is indicated by white squares.

Figure 18.3: Upwind numerical scheme (18.2.5), with aSt/Sx ^  1, using the same 
graphical conventions as in Figure 18.2.
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Figure 18.4: Downwind numerical scheme (18.2.6), with aSt/8x = 1, using the 
same graphical conventions as in Figure 18.2.

Figure 18.5: Central numerical scheme (18.2.7), with aSt/Sx = 1, using the same 
graphical conventions as in Figure 18.2.
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For the upwind numerical scheme (18.2.5), if A >  1, then the numerical 
method cannot converge. We see on Figure 18.2 that the region where the 
solution can be different from zero is not completely included in the region where 
the numerical solution can be different from 0. On the other hand, if A ^  1, as 
in Figure 18.3, we see that we do not run into the same difficulty, and we will 
show below that this condition is indeed sufficient for convergence.

If we now take the numerical scheme (18.2.6), the same graphical consider­
ations as above show that there is no situation in which this numerical scheme 
can ever be convergent. Indeed, the numerical solution propagates in the op­
posite direction to what we expected, see Figure 18.4. Therefore, downwind 
discretization leads to disastrous results, but they are not difficult to recognize 
numerically, as is shown in Exercise 18.5.9.

In the last case, i.e. scheme (18.2.7), the graphical representation of Figure 
18.5 shows that it is necessary that A be at most equal to 1. We will see below that 
this is a very mediocre numerical scheme, since this condition is not sufficient. 
However, we need more analysis to understand this phenomenon.

18.2.2. Convergence of the scheme (18.2.6)
The proof of the convergence of the scheme (18.2.6) goes through the same logical 
steps as the proof of the convergence of the one-step and multistep schemes for 
ordinary differential equations, i.e., consistency plus stability imply convergence. 
The new feature here is that we need a functional space, and this is the reason 
why the numerical analysis of partial differential equations is more complicated 
than the numerical analysis of ordinary differential equations. Moreover, the 
convergence is usually proved upon assuming that the initial data are smoother 
than what is needed for the existence of solutions.

We choose to take an initial condition uq of class C 1, with Lipschitz-contin- 
uous first derivative. We also choose a Lipschitz-continuous and C 1 right-hand 
side /. Then, the function u(x,t) given by the relation (18.1.11) becomes, in 
this particular case,

(18.2.8) u (x, t) = uq (x — at) + /Jo f  (x — at + as, s) ds.

Under our smoothness assumption on uq and /, it is clear that u is of class Cl 
and satisfies the partial differential eqn (18.2.1) and the initial condition

u(',0) = no.
Let us first state and prove consistency:

Lemma 18.2.1. Let uq be of class C 1, with Lipschitz-continuous first derivative, 
and let / be Lipschitz continuous over R x [0,T]. The local consistency error 
defined by

n _  u (jSx, (n + 1) St) — u (jSx, nSt) u (jSx, nSt) — u ((j  -  1) Sx,nStQ
£> = It +a Tx
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satisfies the estimate

(18.2.9) \e]\ ^  C{6x + 6t),

where C depends only on the Lipschitz constants of u'0 and /.

Proof. Let Lq be the Lipschitz constant of u'0 and let L\ be the Lipschitz 
constant of /. By Taylor expansions, we have the following estimates:

|uo (x -  at) -  uq(x — Sx — at) -  8xu'0 (x -  at) | ^  L0 

\uq (x — at — aSt) — u0 (x — at) 4- aStu'0 (x -  at) | ^  L0

8x2
T ’
a2St2 

2 ’
and similarly

f  (x -  at -  aSt -f as, s) ds -  8tf (x, t) 

\ i f  (x — at -  aSt + as, s) -  f  (x -  at + s, s)) ds
\J o
/ (/ (x — at + as, s) — f  (x — Sx - at + as, s)) ds 

Uo

r^  aL\ ^ ,

^  aL\St, 

^  LiTfe.

If we summarize all of these estimates, we immediately obtain the relation
(18.2.9). □

We now turn to the stability statement:
Lemma 18.2.2. Assume that

(18.2.10) 0 ^  = A<1.OX
Let G(n,j) be a bounded sequence indexed by 6 Z and n 6 [0. T/(it], and let 
M7 be the sequence defined recursively from h  W®  by

(18.2.11)
W ?+1 _  W n W n _  W « - l
3 3 \ „  3 3   r^n

---- St-----+ a ----- S i---- ~ Gf

There exists a constant C such that, for all St and Sx satisfying the inequality
(18.2,10), the following estimate holds:

m—1
(18.2.12) sup \wp\ ^  Csup \Wf\ + ]T  StsuP \FF\ ) . Vm €  [1 .

n=0
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Proof. We write eqn (18.2.11) as

W”+1 = (1 -  A) Wf + A + 

The condition (18.2.10) is equivalent to

|1 -  A| + |A| ^  1,

and hence, by the triangle inequality,

sup \W ^X\ ^  sup \W^\ + St sup |G?|,
j  j  j

which immediately implies the estimate (18.2.12), with C — 1. □

Remark 18.2.3. Let us give an articulate definition of the concept of stability. A 
scheme, depending on a time step St and a space step Sx, associates to discrete 
data at time t, depending on Sx, a set of new data at the later time t + St. 
These data belong to a normed space B(Sx) and, if we consider a linear partial 
differential equation with time-independent coefficients and vanishing right-hand 
side, we will usually describe the transition from data at time t to data at time 
t + St by a linear operator P(Sx,St), from B(Sx) to itself, which is called a 
propagator. The requirement of stability can now be phrased as the following 
condition: there exist constants C\ and C2 such that the following relation holds:

(18.2.13) \\P(Sx,8t)n\\C(B(Sx))̂  Cyec *nSt

for all Sx, for all St belonging to an interval starting at 0 and ending possibly 
at a value dependent on Sx, and for all integers n. The norm in the relation
(18.2.13) is the operator norm.

I would like to emphasize a very important fact: the constants C\ and C2 
must not depend on St, Sx, and n for stability to be true. We say that a numerical 
scheme is conditionally stable if we need to limit St as a function of Sx for the 
relation (18.2.13) to hold. We say that we have unconditional stability if the 
upper limit of the interval where we take our St does not depend on Sx.

Of course, the condition \\P(Sx, <S£)|| ^  \ -\-C2St implies the relation (18.2.13). 
However, condition (18.2.13) is stated in order to treat the situation where the 
linear operator U(Sx, St) does not satisfy nice conditions, but, n everth e le ss, the 
product of n copies of the propagator can still be controlled.

How would we modify condition (18.2.13) to treat the time-dependent situa­
tion? Then, instead of having a time-independent transition from data at time t 
to data at time t -f St, we have a time-dependent transition P(t,Sx,St), a n d  we 
state an analogous property, this time for a time-ordered product of transition  
operators. We must also allow for variable time steps.

However, such a situation cannot be treated conveniently in a g en e ra l setting- 
To obtain any substantial results, we need to specify which partial differen
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equation or system we are interested in, since the results depend on the details 
of the data and coefficients and, in particular, on their regularity.

The last observation is relative to the space X(Sx). When we consider an 
advection equation in R, a natural space for finite difference approximation is 
£°°(Z), the space of bounded sequences indexed by Z. However, there are other 
options: we could also use the space £2(Z) of square-integrable sequences; we shall 
see below that the centered scheme (18.2.7) is unstable in £°°(Z) but stable in 
£2(Z). Therefore, one should keep in mind that functional spaces are tools which 
enable us to measure and understand the behaviour of mathematical objects. 
Using different functional spaces means asking different questions and, quite 
often, also getting different answers.

We now give a proof of convergence, which includes an order for the approx­
imation error:
Theorem 18.2.4• Assume that uq and / have the regularity described in Lemma 
18.2.1 and that the initial data and the right-hand side satisfy

sup IU? -  u0 (,jSx) I ^  CSx, sup sup IF? -  f  (jSx, nSt) I ^  C  (St + Sx).j O^nSt^T j
Assume, moreover, that the space step Sx and the time step St satisfy the CFL 
condition:

aSt ^  Sx.
Then, there exists a number C' for which the following estimate holds:

(18.2.14) sup \U™ — u (jSx,nSt) | ^  C’ (St + Sx), Vj G Z, Vn G [0,T/^].
j

In particular, the numerical scheme (18.2.5) is convergent. o

Proof. It suffices to define

WJ1 = Uj’ ~u  (jSx, nSt)

and
G» = F? + e”.

Then, the conclusion (18.2.14) is an immediate consequence of Lemmas 18.2.1 
and 18.2.2. □

How do we see that the scheme (18.2.7) is mediocre? First, a simple argument 
shows that stability in the supremum norm, i.e., in f°°(Z), is not very likely: if
we define U° by

-1
1

if j  = -1;
if j  = 0 or j  1;

0 otherwise,
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then
sup|[/.*| = 1 + A.
J€ Z

This means that for the scheme to be stable it would be sufficient to have

—OX
However, this condition implies that Sx is bounded away from 0. Of course, this 
is not sufficient to conclude instability, and so we seek sequences Uj which are 
eigenfunctions of the propagator P(5x,8t). Trying trigonometric functions, we 
see that, if £ is an arbitrary real number and

U j = sin (j£6x),

then a simple computation gives

Uj = (1 + A cos (£&r)) sin (j£8x),

and, therefore,
C/j1 = (1 + A cos (£<Sx))n sin (j£8x).

Therefore,

||P($x,£<)"|U<00(Z)) ^  sup |1 + A cos (£&r)|n = (1 + A)n .
v v n zeu

This proves that the scheme (18.2.7) is unstable in
However, it is stable in t2(Z) under the CFL condition

8t ^  CSx2,

as proved in Exercise 18.5.12.
Several cures are possible for the defects of the scheme (18.2.7). First, we 

may replace it by the Lax-Friedrichs scheme

(18.2.15) C i"-,+ v f+1 o 
3 2 2Sx

or by the Lax-Wendroff scheme

(18.2.16) u? +1 -  Uj U?+1-U?-1

Both of the schemes (18.2.15) and (18.2.16) are stable in £°°(Z) and in t2^) ' 
provided that the CFL number is at most equal to 1, and their convergence 
can be proved along the lines of the proof of Theorem 18.2.4. These questions 
are taken up in Subsections 18.5.4 and 18.5.5, which use a very straightforwar 
analysis.
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Another possibility is to use ideas in multistep schemes for ordinary differen­
tial equations; thus we get the leap-frog scheme given by

(18.2.17)
j j n -f 1 _  jyn —1

m
u?+l - j

+ q - W -j .1 = 0 -

This time it is necessary to use the t2 theory to prove the convergence of this 
scheme. Stability is studied in Subsection 18.5.6 and the convergence is left for 
a more advanced course, where Sobolev spaces and distributions can be freely 
used.

18.3. The wave equation in one dimension
The wave equation is defined as

(18.3.1) 1 d2u d2u _
^ J t 2

It is quite interesting to derive it from a model of springs and masses; historically, 
this derivation goes back to the eighteenth century.

In one-dimensional space, the wave equation can be understood as a system 
of advection equations, about which we know everything. However, here we 
shall also be interested in boundary conditions. The numerical analysis would 
be quite straightforward if we had the appropriate functional tools. We will 
satisfy ourselves with proving the £2 stability of one standard numerical scheme. 
The convergence and consistency results should be left for more advanced books, 
since they use more functional analysis. However, the reader is strongly advised 
to simulate numerically the solution of the wave equation so as to get a feeling 
for the phenomena that take place.

18.3.1. Masses and springs
We shall approximate a strongly stretched string by a discrete mechanical system. 
We consider N material points, each of mass m/N, which are separated by 
identical springs of length at rest Lq/(N + 1). The end springs are fixed at the 
points of abscissa 0 and L >  Lq.

It is assumed that the small springs are made of the same linear homogeneous 
material. In other words, we could take an homogeneous spring of length Lq at 
rest and cut it into N + 1 identical pieces. The assumption of linearity means 
that, when subjected to a force /, a spring of length £q at rest stretches by an 
amount 5i proportional to /. On the other hand, the extension is also inversely 
Proportional to the length at rest. Suppose that we apply a force / to a spring of 
length 2£0 at rest. The tension is constant along the spring, but the first section 
°f length to at rest is stretched by S£/2, and so is the second section. Here it 
ls the homogeneity assumption which imposes that the stretching is uniformly 
distributed along the length of the spring.
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Therefore, the stiffness of a spring is inversely proportional to its length, 
which is a very intuitive statement. It is clearly more difficult to extend by a 
given length a very short spring than a very long spring of the same material. 
Thus, our small springs have stiffness

k (N -hi)/ To,

with the number k describing the physical properties of the spring.
Assume that the mass indexed by j  has coordinates (\jL/(N+l)]+#j, yj, Zj), 

and that the extremities of the system are tied at the points with coordinates

(0,0,0) = (£o,?/o5zq) and (T,0,0) = (L + xn+i ,un+i ,zn+i ) .

It will be convenient to use the notation

N + 1’ to
To

N + 1' 81 = 1- iQ.

The elastic potential energy of the deformed system of springs is

V (x, y, z) = -̂  + ^  [((xi+1 -  Xj + 1)2
0 j=o

2 2 \1/2 l 2+ (V 1 -  Vj) + 1 ~ zj) J ^oj ,

since the length of the deformed spring between mass j  and mass + 1 is

/ 2 2 2 \ 1/2y(xj+1 ~ xj + f) + (2/j+i ~ Vj) +  (zj+ i -  zj) J i

with appropriate modifications for the end springs. The kinetic energy of the 
system is given by

T  ( x,y,z) =  ^  &  +  $  +  *?) •
i=i

The equations of motion are
m .. d _ _ . x

m .. d Tr . x

m .. d x- 2i + d -V (X,y,,) = 0. H

In this generality, we obtain a highly nonlinear problem about w h ich  we &re 
cannot say much. However, if we are interested in the small vibrations close to
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equilibrium, we shall be content with an approximation to the potential energy 
of order at most 2. Thus, we have the following expansion:

/ 2 2 9 \ 1/2^ ( * j+ l -  xj + I) + (Uj+1 ~Dj) + ( Z j+  1 -  -Co

S £
=  6£ 2S£ (X j+ i — X j) -+- (x j- fi — X j) H — ^(2/j-+-i ~  Vj) (%j+ 1 — %j) ^

+ higher-order terms.
Therefore, the potential energy, under the hypothesis of small deformations, can 
be written as

k (N -fl) , S£ t 2 , ^  / ^i\
~~2l ~0— + 7  w + i -y j) + j( * i+ i  - zi) y

In order to make our equations more palatable, we introduce other physical 
quantities. The linear density of mass is denoted by p, so that the total mass 
of the spring is pL . Observe that we have taken the stretched length as the 
reference. The tension per unit length of the spring at equilibrium is /o given by

k(L - Lo) 
f ° ~  L o  '

With these notations, the equations of motion for small vibrations can now be 
written as follows:

(18.3.2a) — xj -  -7 + ^  (*>+1 “ + *2- 1) = °>

(18.3.2b) jj-yj-  (̂ 7 )/0 fo+ i “ + ) = °’

(18.3.2c) ^ z j  -  (JV+L1)/0 (*2+i ~ + = 0.
What is interesting is that the above three equations are decoupled; eqns (18.3.2b) 
and (18.3.2c) are identical, whilst eqn (18.3.2a) is different. Of course, since we 
dropped all of the annoying nonlinear coupling terms, we may have lost the most 
interesting features of the problem; but one has to start somewhere...

If we multiply eqns (18.3.2) by N / L ,  we recognize that the expression
( x j+ i  -  2X j +  X j - 1) N  ( N  + 1)

L2
and its analogues are very close to a central finite difference of the second order. 
Therefore, as N  tends to infinity, the formal limit of eqns (18.3.2) is

d2x kL d2x _  d2y d2y _
plw~'uds2~ 0, ~ °’

^e equation for 2 being identical to the equation for Here s is the spatial 
c°ordinate. Moreover, we expect x, y, and z to vanish for s = 0 and s = L.
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18.3.2. Elementary facts about the wave equation
The Cauchy problem for the wave equation in R consists of solving eqn (18.3.1) 
together with the initial conditions

(18.3.3) u (x, 0) = uo (x), ut (x, 0) = ui (x),

It turns out that there is a completely explicit solution,
Define a new variable v by

(18.3.4) v = -ut -I- ux.c
We see immediately that v satisfies the equation

(18.3.5) -vt -  vxc

This means that the wave equation in one dimension reduces to two successive 
advection equations. We integrate eqn (18.3.5), using the relation (18.1.11), and 
we find

(18.3.6) v {x, t) = Ul X̂ + + u0,x (x + ct) = c [  f  (x + c(t — s) ,s) ds.C Jo
Then, we integrate eqn (18.3.4), which gives

x e I.

due to D’Alembert.

(18.3.7) u (x, t) = uq (x — ct) + c / v (x + c (s — t), s) ds.
Jo

We substitute into the relation (18.3.7) the value of v given by eqn (18.3.6). We 
observe that

Uq (x — ct) + c
a

u\ (x + 2cs — ct) + Uo,x (x + 2cs -ct)) d s

Uq (x — ct) -f Uo (x + ct) ^  12 f-x+ct
— Ul ( ) dy.
2c Jx-et

Similarly, the expression involving / is given by

c2 /  /  / (x + c (2s — t — r), r) dr ds
Jo Jo

and, after the change of variable y = x -f c(2s — t — r), this expression becom es

r t  r X + C Sr l  rX-t-CS

o f(y,s)dyds.
^ JO J x —cs
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Finally, the solution of eqn (18.3.1), together with the Cauchy data (18.3.3), is 
given by

u ( x, t)
(18.3.8)

Uo (x — ct) + (x + ct) 
2

j  r X + c t

+ 7T «i (y) dy2c Jx-Ct
C t f X  +  CS

I IJO Jx
f(y,s)dyds.

Formula (18.3.8) has been obtained under the assumption that / is continu­
ous, u\ is of class C 1, and uo is of class C2, and it produces a classical solution, 
i.e., a solution of class C 2 of the wave equation. However, formula (18.3.8) 
makes sense under much milder assumptions. But, in that case, it does not give 
a classical solution, but a generalized solution.

If the right-hand side / of eqn (18.3.1) vanishes, the solution is the superpo­
sition of two functions g(x — ct) and h(x 4- ct), whose values can be found from 
the initial conditions, see Exercise 18.5.25.

When the data have symmetries, these symmetries are transmitted to the 
solution. Thus, if the data are even, odd or periodic with respect to space, 
then the solution has the same properties. These facts are proved in Exercises 
18.5.26 and 18.5.27. These symmetries enable us to solve the wave equation on 
an interval, with homogeneous Dirichlet boundary conditions (Exercise 18.5.28) 
or Neumann boundary conditions (Exercise 18.5.29).

The notion of domain of influence or of dependence is deeper and more im­
portant. The solution at the point (x,£) depends only on the data in the set 
{(?/,$) : s ^  t — \x - y\/c}, called the cone of dependence of the point (x,t). 
Conversely, the data at (x, t) can influence only the solution at points in the set 
{(?/, s) : s ^  t -f |a; -  y\/c} and this set is called the cone of influence.

These two properties make very precise the fact of propagation in the wave 
equation: the effect of a disturbance at (x, t) cannot be felt at {y,s) unless 
s ^ t + \x -  y\/c, i.e., such a disturbance does not propagate faster than c. 
However, in dimension 1, this effect may linger for all time. If we lived in spatial 
dimension 1, it would be quite inefficient to transmit information by sound, 
since it would not be very well localized. It is easy to experience this effect in 
our three-dimensional world, for example, talk in a long corridor with hard walls, 
such as a mine gallery, or a large metal pipe, and listen to the sound!

18.3.3. A numerical scheme for the wave equation
We consider the following elementary numerical scheme for the wave equation:

(18.3.9) 1 f/ "+1 -  2UJ +  U?-1 U?+1 2(7” +  _
St2 5x2 Fi

We will prove the following stability result:
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Theorem 18.3.1. If c8t/Sx ^  1, the scheme (18.3.9) is stable in the I2 norm. More 
precisely, if the right-hand side Fj1 vanishes and, for all a G ]0,1[, there exists 
a constant C such that, for all St and Sx satisfying the relation cSt/Sx ^  1 - q ? 
then

sup £ |t/;i2 Sx ^  c£  (|[/ri2 + \uz\2) Sx.
n^2jez jez

Proof. The proof of this result uses the following fact: if a = (aj)j£Z belongs 
to ^2(Z), i.e.,

ni=(eki2̂ ) <oo>
then we can define the Fourier transform of the sequence a by

(18.3.10) d(0 = a j ^ 2'nKSx Sx. 
jez

Definition (18.3.10) is obviously a discretization of the Fourier transform of a 
function. However, we need only the theory developed in Chapter 7 and a 
change of scale to obtain the inversion formula

rSx
aj = / ®  (0Jo

^2inj£6 x d£.

Moreover, after a change of scale, the Parseval identity (7.1.16) can be rewritten 
as

(18.3.11)
rl/Sx

J2\aj\2Sx=  / |d (£)|2 d£.
i€ Z J°

Another property will be important: the Fourier transform of the sequence 6, 
defined by bj = aJ+1, is readily computed as

5^ ie -2injtSx 6x = Y , aj+ie-2i’rW+1)^* 6xe21**6* 
jez jez

= a( 0  e2l̂ 6x.

We apply a Fourier transform in j  to the scheme (18.3.9), defining Un(0 t0 
the Fourier transform of (U?)j:

(18.3.12) 

We let

1 j/n+1 _  2u n + Un~l (e2i7r̂ x + e~2i7r̂ x -  2) Un (£) 
c2 St2 Sx2

w(0 =
2c2St2 (1 — cos (27r£<Sx)) 

Sx2
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With this notation, we can rewrite relation (18.3.12) in the matrix form

fUn+1\(2-u - l W
V Un )V 1 0 W w'V  '

Then, if we can prove that all the positive powers of the matrix

m«>=(27 ({) o1)
are bounded, our result is a consequence of the identity (18.3.11). The charac­
teristic polynomial of this matrix is

X 2 -  X (2 -  u) + 1

and its roots, the eigenvalues of M, are of modulus at most 1 for all f, if and 
only if uj ^  4, as the reader can check. Then, they are the conjugate complex 
numbers A+ and A_ given by

A± = ^ ^2 -  uj ± i\/(4 - .

However, we cannot conclude from the bound on the powers of A± that the 
powers of M are bounded, since M is not a normal matrix.

The powers of M are given by

It is clear now that, if 1 — c6t/Sx is bounded away from 0, then M n is bounded 
independently of n ^  1 and of £ G M. This concludes the proof of the theorem.

□

18.4. The heat equation and separation of variables
In this last section, we are going to apply a number of the techniques already de­
scribed to the solution of another partial differential equation, the heat equation. 
Furthermore, we are going to show how to approximate it numerically.

18.4.1. Derivation of the heat equation
We begin with a little physics to understand how the heat equation is derived. 
The Theorie Analytique de la Chaleur by J. Fourier (1822) [32] is the classic 
Work in this area. The so-called Fourier series was known of by Daniel Bernoulli 
aud by Euler, but the Fourier integral is really due to Fourier, contrary to the 
usual rule that new results and concepts rarely carry the name of their author. 
Nevertheless, Cauchy made considerable contributions to Fourier theory, to the
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point that, if Fourier was the first to announce the inversion formula which bears 
his name, then Cauchy published its proof before Fourier.

We begin by the modelling phase which is inherent in the understanding of 
every physical problem. To give the explanations which follow, I am aided on 
the one hand by Fourier’s book and on the other hand by Thermodynamique by
G. Bruhat [11].

When we put two solid bodies, at temperatures ©i and ©2, in contact for 
a long time within an isolated enclosure their temperatures tend to equilibrate. 
If the two bodies are of the same mass and the same composition, the final 
temperature is half the sum of the initial temperatures. If the compositions are 
identical but the masses mi and m2 are different, the final temperature is

® final —
mi©i + m2@2 

mi + m2
If the compositions are different, the final temperature is

Gfinal — miCi©! + m2C2© 2

mi Ci + m2C2
The numbers C\ and C2 are the specific heats of the two bodies. They 

are physical characteristics of the bodies and they describe the capacity of the 
bodies to store energy in the form of heat. The measurements for solids are made 
at constant pressure so that these are specific heats at constant pressure. By 
definition, the quantity of heat stored in a body, of specific heat C and of mass 
m, which changes temperature from 0 to the temperature 0 + A© is mCAO. 
This is a positive or negative quantity which has the dimensions of energy.

We move on now to the notion of heat flux. Imagine a homogeneous body 
which fills the interval between two infinite parallel planes Pi and P2 separated 
by unit distance. These planes are maintained at the temperatures ©i and ©2, 
respectively. If the body is in a steady state, its temperature is constant in each 
of the planes parallel to the boundary planes and it is an affine function of the 
distance x from the boundary plane Pi, as shown in Figure 18.6

The quantity of heat which crosses any plane parallel to P\ and of unit area 
during one second is independent of the distance of this surface from Pi- K 
© i — © 2 is one degree and the planes are separated by unit distance then this 
heat flux is equal to a certain constant K which depends on the chosen units. 
Consequently, if S denotes the area of the surface across which the heat passes 
and the two planes are separated by distance L, the quantity of heat passin g 
through the surface in time At is

KAt (©1 -  02) 5 
L

Suppose now that the distribution of temperature in the slice s i t u a t e d  b e  
tween the two planes is not steady, but is, nevertheless, constant in e a ch  P^ane
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Figure 18.6: Parallel planes having distinct temperatures and a prism of unit 
cross-sectional area.

parallel to P\. Also, suppose that the plane is cut into J slices parallel to Pi, 
each of thickness h = Ax. As the temperature is constant in the planes parallel 
to Pi, there is no heat flux, except in the x-direction. We can, therefore, consider 
a prismatic domain D of unit cross-sectional area and with sides perpendicular 
to Pi and P2. There is no heat flux across the sides of D. In each slice numbered 
j, and for each jh  ^  x ^  (j + 1 )h, we are going to consider the temperature 
to be the constant value 0j . The quantity of heat coming from slice j  + 1 and 
entering slice j  is therefore

KA t(ej+1- e j)
Ax

in the interval of time At. In the same way, the quantity of heat entering slice 
j and coming from slice j  — 1 is

KAt(@j-i -  0j)
Ax

during the interval of time At. During the time interval At, the quantity of heat

(18.4.1) a Qj — (Q ./+1 ~  2 ® j +  9 ,7- 1)

enters slice j  and so the temperature of this slice will increase by A0j, given by

(18-4.2) A Qj =J Cm
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Here m is the mass of the slice of thickness Ax. This has the value dAx, since 
the volume of this slice is Ax, its base having unit area, and d is the density of 
the body considered. We therefore have

(18.4.3) AOj K 0j+i — 20j H- 0 j—i 
~A f = Cd A ^

If we pass to the formal limit in the relation (18.4.3), that is, if we make At and 
Ax tend to zero, we have

(18.4.4) 80 _  K d20
dt Cd dx2 ’

which is the heat equation. This equation is satisfied for x in [0,d] and for 
t G [0, T]. We are also going to take account of the conditions at the boundary: on 
the planes P\ and P2 we fix the temperature at the values 6\ and respectively, 
that is

(18.4.5) 0(0,0 = 01, 0(L,O = 02.

We move on to a model of a cylindrical bar of length L, immersed in an infinite 
medium of fixed temperature 0. The cross-section of the bar is not necessarily 
circular. We can simplify the modelling by supposing that the temperature is 
constant in each cross-section of the bar. This is a reasonable approximation 
if the bar is not very thick. For the transfers between the elements of the bar 
we can reuse the preceding model, but we must additionally take account of the 
transfer with the exterior medium, which is given by

AQ'j = -K ’lAxA t (0j -  0)

during the time At. Here I is the perimeter of the cross-section of the bar and 
K' is a constant which describes the efficiency of the transfer with the exterior 
medium. It goes without saying that this loss of heat is proportional to the area 
I Ax of the element of the bar that we are considering. We will then have

CdAxAQj = K A<0j+1 ~ ^  + ^  -  -  0),

and, therefore,

A0, K Qj+i -  2Qj + ©j_i K't ^  ^
At ~Cd Ax2 Cd lUj Uj '

It will be useful to rewrite this relation highlighting the discrete time nAt. K 
then becomes

(18.4.6)
Qn+i _ ©n K 0«+i _ 20” + 0”_,

At ~ Cd Ax2 Cd y 3 ’
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Passing to the formal limit, as we did to obtain eqn (18.4.4), we have

(18.4.7) ee _  k  d2e 
dt ~ c2

K7
Cd (e-Q).

We can pose the same boundary conditions as previously.
To simplify the solution of our problem, we are going to suppose that 6\ = 02 

is a temperature independent of time and, by means of a translation of the 
temperature scale, suppose that this temperature is zero. Our conditions at the 
ends of the bar thus become

(18.4.8) 0(O,«) = 0(L,t) = O.

We will make a second simplification which consists of supposing that the ex­
terior temperature is equal to the temperature at the extremities and, therefore, 
0 = 0.

We are also going to rewrite our constants so that eqn (18.4.7) becomes

(18.4.9) a» »<t 
a t= “a ?  “ M’

with a strictly positive and b positive or zero. This amounts to choosing

K , . K'l 
a = Cd “d b = C d ’

with the convention that 6 = 0 when we are in the situation of an infinite medium.
We are first of all going to show that eqn (18.4.9) possesses a solution if we 

know the initial temperature distribution and if we fix the conditions (18.4.8) 
at the ends. Then, we are going to justify passing to the limit in the relation 
(18.4.6) and we will show that eqn (18.4.6) is a numerical scheme which actually 
allows us to approximate the solutions of eqn (18.4.9).

18.4.2. Seeking a particular solution by separation of variables
We seek a solution of eqn (18.4.9) in the form

(18.4.10) 9(x,t)=X(x)T(t).

We say that such a solution is in separated variables. In this case

^  -  a 77— + be = X(x) T'(t) -  aX" (x) T (t) + bX (x) T (f) = 0.Ot (7X“
If we divide the last equality by XT, which we suppose to be nonzero, we have

T'(t) X"(x)
+  0 =  0-T(t) X(x) •
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To the left of the equals sign, we find a function which depends only on t and, to 
the right of this sign, we find a function which depends only on x. For them to 
be equal, it is necessary and sufficient that there exists a constant A such that

(18.4.11)

(18.4.12)

+ b =T'(t) 
T(t) 
X"{x) 
X(x)

—aA, 

-A.

Furthermore, we are going to impose that our particular solution satisfies the 
boundary conditions (18.4.8), which gives us here
(18.4.13) X ( 0 ) = X(L) = 0 .
It is clear that eqn (18.4.12) has solutions of the form

X  (x) = aezx + f3e~zx, 
provided that A = —z2. The boundary condition X(0) = 0 requires that

a + /? = 0
and the boundary condition X  (L) = 0 implies that

ezL -  e~zL = 0 ,
if we always exclude the uninteresting case A = 0. We therefore have

zL = i 7717T,
with m in Z. It follows that X  is necessarily of the form

. /m7rx\X  (x) = asm  ̂ ^  J .

From this we have the following value of A:
x _  m27r2
A = ~ u ~

and, therefore, the following expression for T :
(  a m 27r2t \T (t) = (3 exp I ----—---- btj .

We have thus found a particular solution of the heat equation of the form
f\ / * \ . rmirx\ ( am27r2t(18.4.14) em (x,t) = sm — J exp I ----—---- btj ,

and this particular solution satisfies the boundary conditions (18.4.8). Note 
the parallels between the calculation which has just been done with that o 
Subsection 11.2.1 for a finite difference matrix.
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18.4.3. Solution by Fourier series
As 9m is a solution of eqn (18.4.9), every linear combination of functions 6m is 
a solution of eqn (18.4.9). Taking an infinite linear combination of such func­
tions amounts to writing the solutions in the form of a series and studying their 
convergence.

We therefore seek 6(x,t) of the form
oo

(18.4.15) 6 (x, E  Cm#m t) .
m=1

For the initial conditions to be satisfied we must have
oo

(18.4.16) 0(x,O) = E  cm sin (— ).
m=1

In other words, it suffices that 0(*,O) can be expanded as a sine series.
By a theory analogous to the theory of complex exponential Fourier series, 

we see that, if 0 (-,O) is in L2(0 , L), then the coefficients cm are defined by

Cm = Z /  ^ ’O) sin( ^ ) d2/
and the series defined by the right-hand side of eqn (18.4.16) converges in L2(0, L) 
to its sum, which is 0(-,O). Under this hypothesis, we have a very strong regu­
larity result:
Lemma 18.4-1. Suppose that

oo
(18.4.17) E  cm <  +0°-

m—0

The relation (18.4.15) defines a function 8 which is infinitely differentiable on 
the set [0, L] x ]0, oof and which satisfies

(18.4.18)

and

(18.4.19) — 0 (#,0 ))2 dx = 0 .

Proof. If u(-, 0) is in L2(0, L) then, for every t >  0 and for every p G N,
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since the sum of the exponential terms clearly converges more rapidly than ge­
ometrically, if t >  0. Therefore, for each t >  0, the series (18.4.15) converges 
uniformly towards its limit, which is therefore continuous. In fact, we have more, 
since, for every p >  0 ,

f  , , p / a m 27r2t \
2 ^  \cm\mpexp I ----—---- btj
m=1 ' '

<  (£ <4.)1/2 ( £ ( -  -  2«) )1/2 <  + 0 0  

and, consequently, the series

£  Cm ( ^ ) e x p  ( - 5 ^ *  -
m—1 x '

converges uniformly and defines the derivative dp0/dxp, for every t >  0. This 
shows us that, for every fixed t >  0, the function 6 given by eqn (18.4.15) is 
infinitely differentiable with respect to x, for every t >  0. We note that the 
following series is uniformly convergent:

/ ( a m 2ir2 \ p . /m 7 rx\ (  a m 27r2t \
(-l)P £ Cm ( - £ 2 - + M  Sm( —  ) eXP( ----L ^ ~ btJ-

m— 1 ^ ' x '
By the application of Lebesgue’s theorem on the differentiation of integrals de­
pending on a parameter to the case of series, we see that the above expression 
defines dp6/dtp. This shows us that, for each t >  0, dp6/dtp is a continuous func­
tion. The reader can easily convince herself that it is also a C°° function, noting 
the convergence of the expressions defining dp+q0/dxpdtq. Finally, another ap­
plication of Lebesgue’s theorem for series shows us that all of the expressions

, lNg ( m n y  ( a m 2n 2 \ 9 .( ) f m n x \  (  a m 2TT2t<-’> £ ( — ) (-y- +*) S1"“ (— M — - ht)m—\ x 7 x '
define continuous functions on [0, L\ x ]0, oo[.

A theorem from differential calculus allows us to confirm that, i f  a fun ction  
of n variables is separately differentiable with respect to each of its n a rgum en ts 
and if its derivatives are continuous functions, then this function is c on tin u ou s ly  
differentiable with respect to the set of its variables. We have thus p r o v e d  that 
6 is infinitely differentiable in [0, L\ x ]0, oo[.

The estimate (18.4.18) comes from Plancherel’s formula:
[L a t .\2 , L 2 ( 2am27x2t \J  ̂ e t) dx = -  2 ^ c2m exp ^----—2----- 2btj
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We obtain the continuity relation (18.4.19) by rewriting Plancherel’s formula as 
follows:

(0(x,t) -0(x,O))2 Ax= |  cm̂1 - e x p  '

We then note that, by the application of Lebesgue’s convergence theorem for 
series, we obtain the desired result. □

18.4.4. Relation between the heat equation and the discrete 
model

The relation (18.4.6) can be seen as the time discretization by an Euler scheme 
of the matrix differential equation

f=-4e'
where the J x J matrix A is given by

(18.4.20) A = Ax2

(-2 1 0 0 \
1 - 2  1 0

0 1 - 2 1

\ o 0 1 - 2/
with the factor aAx~ 2 has

-bl.

Subsection 11 .2 .1. The matrix A is obviously symmetric and its eigenvalues are

These eigenvalues are strictly negative and we therefore have

0  (t) = etAe  (0 ).

We are going to show that the discrete solution (18.4.6) is a good approxi­
mation to the continuous solution.
Theorem 18.4-2- Let 6 be the solution of eqn (18.4.9) with an initial condition 
Q(x, 0) which satisfies

oo

<  + 00,
m= 1

and let O™ be defined by the relation (18.4.6) and the initial condition

G? = 0(jAx,O).
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Then, there exists a constant C", which depends only on 6 and the data of the 
problem 0(-, 0), a, and b, such that

\ Q j - e  (jAx,nAt)\ sj
provided that we have the inequality

At < Ax2 

2 a
Proof. We rewrite the relation (18.4.6) using the constants a and b as follows:

0”+1 -  0? _  0?+1 -  20? + 0?_!
At = a Ax2

- b & i

Let
= 6(jAx,nAt),

if 6 is the exact solution of eqn (18.4.9).
We calculate

_  q,n $n+i _  +
~ At ° A ^

We are going to suppose for this that 6{x, 0) is sufficiently regular, so that 0(x, t) 
has the following properties:

max
(x,i)6[0,L]xR+ l \— (xt l&r4

t)
d'2e 
dt2 (x,t) <  C <  oc.

We can fulfil these conditions by demanding that

£  m 10c ^  <  +oo,
771=1

as the reader can verify. Under these conditions, a Taylor expansion shows that
d60 (jAx, (n + 1) At) -  0 (jAx, nAt) = A£— (j Ax, nAt) 4- O (At2)

and

0 ((j -f 1) Ax, nAt) -  26 (jAx, nAt) -I- 0 ((j  — 1) Ax, nAt)

= —  (jAx, nAt) + O (Az4) •

In the above two expressions, the terms 0(At2) and 0(Ax4) are bounded b> 
CAt2 and CAx4, respectively, where C is a constant independent of j  and n- 
We can therefore write, with the notation (18.4.20),

0n+1 -  tfn+1 = (J + A At) (0n -  tfn) -  A ten
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0 \
0

-2 1 
1 — 2/

A = <  2 ’
a condition that we will suppose to be satisfied from now on. Under this condi­
tions, we have the following estimate for e1-:

(18.4.22) |e"| ^  C'Ax2.

We explicitly calculate 0”+1 — as follows:

Qn+1 _  *»+l = (0 n_x _  (1 + A) + (0 » - $?) (1 -  2A)
+ (0" +1 -  *7+1) (1 + A) -  6Ai (0" -  ¥?) - A*ey. 

We then see that, using the condition (18.4.21),

max |0" +1 -  $?+11^(1 + 6At) max |0” -  $?| + A max |e?|.

By applying the discrete form of GronwalPs lemma (Lemma 16.1.7) and the 
estimate (18.4.22), we obtain

18.5. EXERCISES FROM CHAPTER 18 

We note that

I  + aAt
Ax2

f —2 1 0
1 - 2  1

0 1
\ 0 0

has positive elements provided that
aAt 1

max 10 ^ j 1 J
^  enbAt max |0®  — + C" Ax2

Here C" is a constant which depends only on a, 6, and 6. This allows us to 
conclude the proof of convergence. □

There are many more exciting and important results in the field of the nu­
merical analysis of partial differential equations; not one, but several more books 
are needed. If this chapter has led the reader to ask for more, my aim will have 
been fulfilled.

18.5. Exercises from Chapter 18
18.5.1. The eigenvectors of a strictly hyperbolic matrix
Exercise 18.5.1. Let 1Z be the set of n x n real matrices with n distinct real eigen­
values. For M g R ,  let Aj(M), 1 ^  j  ^  n, be the eigenvalues of M, arranged in
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increasing order. Show that the projection Pj{M) onto the eigenspace relative 
to the eigenvalue Aj is a continuous function of M. Conclude, therefore, that, for 
all matrices M o G 7̂ , it is possible to find a neighbourhood of M0 and a choice 
of eigenvectors rj(M) and lj(M) depending continuously on M and having the 
properties

Mrj (M) =  Xj (M) rj (M) \
} V7 =  1, .... 71,

lj(M)r  M = \j(M) lj(M)r I  
lj(M)T rk(M) = Sjk, 1,... ,n.

Hint: start with rj(M0) and lj(Mo) having the required properties. Define 
rj(M) = Pj(M)rj(M0) for M close enough to M0 and construct the correspond­
ing vectors l j .
Exercise 18.5.2. Show that, in fact, the dependence of Pj on M is of class C°°.
Exercise 18.5.3. Assume that M is a mapping from an open subset O of Rd to 
M n(l) which is of class C l and takes its values in 7Z. Show, with the help of a 
partition of unity, that it is possible to find, globally in (9 , eigenvectors rj and 
lj which are functions of class C 1 over O and which satisfy the conditions

M (x) rj (x) = Xj ( (x)) rj (x) j
lj (x)T M (x) = Xj ( (x)) lj (x)T J

Vj = 1

lj (*)T rk ( x= Sjk, £i-HII:>

18.5.2. More on the upwind scheme
In this section, we consider various supplementary properties of the upwind 
scheme (18.2.5).
Exercise 18.5.4. Run some numerical simulations on the upwind scheme, with 
several different initial data and several different choices of the CFL number. 
Recommended initial data are:

• smooth functions, for instance piecewise polynomial, with high e n ou gh  
overall differentiability;

• square functions such as

if 0 ^  x ^  1 ; 
otherwise.

We did not work on boundary conditions for the advection equation. Due to the 
finite velocity of propagation, it is enough to simulate until the numerical wave 
hits the boundary of the integration domain, provided that the initial data have 
compact support. The integration time depends, therefore, on the distance froin 
the support of the initial data to the ends of the spatial interval of integration-
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Exercise 18.5.5. Assume that / vanishes and that tt0 is bounded and continu­
ously differentiable with uniformly continuous derivative. Show that the upwind 
scheme converges.
Hint: use the modulus of continuity of u0 to get estimates on the local consis­
tency error.
Exercise 18.5.6. Assume that a depends on x £ R and t £ [0, T]. If a is strictly 
positive, define an upwind scheme by

jy n - f i _  y n  j jn
—— 77— — + a (jSx, nSt) —  ot

U:j -1
5x =  0.

If a is bounded, show that there is a constant C >  0 such that, for 5t/5x ^  (7, 
this scheme is stable. Find sufficient conditions on the regularity of a, uq, /, and

sup | Uj1 — u (jSx,nSt) |
j

which ensure the convergence of this scheme in C°(R x [0 , T]), i.e.,

lim
Sx—►O

S t / S x ^ C j € Z , n S t ^ T

^  | Uj' — u (jSx,nSt)\ = 0 .

Hint: this is really the proof of Theorem 18.2.4.
Exercise 18.5.7. Generalize the study of Exercise 18.5.6 by introducing a right- 
hand side /, which will be assumed to be smooth enough to perform a conver­
gence proof.
Exercise 18.5.8. In this exercise, a is a bounded function on Ex [0, T]. We define 
an upwind scheme which changes according to the direction of the wind:

jjn + l _  j jn  j jn  _  j jn
—------ — -f max (a (jSx, nSt), 0 ) —----St Sx

+ min (a (jSx, nSt), 0 )
77ni+i ■Uj

Sx = 0 .

Show that this scheme is stable and prove its convergence under sufficient con­
ditions of regularity.
Exercise 18.5.9. Assume that a is strictly positive and that the following initial 
data is given for the downwind scheme (18.2.6):

1 if j  = 0 ;
0 otherwise.

Let A be the CFL number. Calculate explicitly the solution of the downwind 
scheme, show that it oscillates strongly, and show that it satisfies the following 
equivalence:

sup I *7" I
j

C (2A + l )n+1

s/n
r*j
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for n large.
Hint: apply the binomial formula and Stirling's asymptotic formula for the fac­
torial.

18.5.3. Fourier analysis of difference schemes for the advection 
equation

Exercise 18.5.10. Let U j be a square-integrable sequence indexed by Z. Define 
its Fourier transform as

u(o = E e -2in H SxU j6 x

j€  Z

Show that the mapping U U is an isometry from £2(Z), equipped with the 
norm ^

l^l= ( E i^ i2H  >
\j€ Z /

to L2(0 , l/&r), equipped with the standard norm

M fK *) '-
Hint: this is a Fourier series statement, with scale parameters differing from the 
standard ones used in Chapter 7.
Exercise 18.5.11. Let r be the operator in ^2(Z) defined by

(rU)j = UH1.

Calculate the Fourier transform of tU.
Exercise 18.5.12. Consider the schemes (18.2.5)-(18.2.7). Denoting by Un(0 
the Fourier transform of j  L/J1, give the transformation Un(£) Un+1{£)
for each of these schemes. Show that it is described by a multiplication by a 
function depending on £. Show that the scheme (18.2.5) is stable in P(Z) under 
the CFL condition, that the scheme (18.2.6) is never stable, and that the scheme
(18.2.7) is stable under the condition

5t ^  C8x2.

18.5.4. The Lax-Friedrichs scheme
The Lax-Friedrichs scheme for the advection eqn (18.2.1) is defined by the rela­
tion (18.2.15).
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Exercise 18.5.13. Run some numerical simulations to understand the behaviour 
of the Lax-Friedrichs scheme. What happens if you take as initial data a square 
function? What happens if you take a smooth function? How is this different 
from the behaviour of the numerical approximation obtained by the upwind
scheme?
Exercise 18.5.14• Show that the Lax-Friedrichs scheme is stable in i°°(Z) and 
in ^2(Z), if A = \a\5t/8x is at most equal to 1.
Exercise 18.5.15. Calculate the consistency error for the Lax-Friedrichs scheme 
and show the convergence of this scheme in I°°(Z).

18.5.5. The Lax-Wendroff scheme
The Lax-Wendroff scheme for the advection eqn (18.2.1) is defined by the relation
(18.2.16).
Exercise 18.5.16. Run some numerical simulations to get a feeling for what kind 
of approximation the Lax-Wendroff scheme gives, preferably on the same initial 
data and with the same initial data as for the Lax-Friedrichs scheme. What 
differences do you observe?
Exercise 18.5.17. Show that the Lax-Wendroff scheme is stable in £°°(Z) and in 
£2(Z), if A = \a\5t/5x is at most equal to 1.
Exercise 18.5.18. Calculate the consistency error for the Lax-Wendroff scheme 
and show that it is of higher order in Sx than the consistency error for the 
Lax-Friedrichs scheme or the upwind scheme. Show the convergence of the Lax- 
Wendroff scheme in £°°(Z).

18.5.6. Stability of the leap-frog scheme
Consider the leap-frog scheme (18.2.17). Denote by Un(£) the Fourier transform 
of j  Uj1.
Exercise 18.5.19. Run the leap-frog scheme on the same type of initial data as 
for the Lax-Friedrichs or the Lax-Wendroff scheme. You have to initialize two 
vectors of data, Uj and U j; it is convenient to take simply Uj = uo(jtix) and 
Uj = uo(j8x -  a5t).
Exercise 18.5.20. Show that there is a matrix M(£) such that

and give the explicit expression for this matrix.
Exercise 18.5.21. Calculate the eigenvalues of M(£). Deduce from this compu­
tation that a necessary condition for stability of the leap-frog scheme is that 
 ̂= \a\6t/8x is at most equal to 1.
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Exercise 18.5.22. Calculate a matrix 5(£) which diagonalizes M(£). Show that 
S(£) and S (£)-1 are bounded uniformly in £ if and only if A is strictly less than 
1.
Exercise 18.5.23. Show that a sufficient condition for stability in £2(Z) of the 
leap-frog scheme is that A is strictly less than 1.
Exercise 18.5.24• What happens when A is exactly equal to 1?

18.5.7. Elementary questions on the wave equation
Exercise 18.5.25. Knowing that the solution of eqn (18.3.1) is of the form

w (x - ct) + z (x + ct)
when / vanishes, find the values of w and z so as to satisfy the initial conditions
(18.3.3) .
Exercise 18.5.26. Assume that uq and u\ are periodic, with period L, on M and 
that, for all t, x i-> f(x,t) is periodic, with period L, on R. Show that the 
solution of the wave eqn (18.3.1) with the initial data (18.3.3) is periodic, with 
period L, with respect to x.
Exercise 18.5.27. Assume that wo, ui, and / are even (respectively, odd) with 
respect to x. Show that u, the solution of eqn (18.3.1) with the initial data
(18.3.3) , is even (respectively, odd).
Exercise 18.5.28. Given vq and v\ on [0, L\ and g on [0, L\ x [0, oo), define func­
tions uo, U\, and / by the conditions

U o\[OyL] =  v0j ttl|[0,L] “ Vl> /l[0,L)x[0,oo) =
and the requirement that uo, and x ^  be odd and periodic, with
period 2L. Show that the expression (18.3.8) provides a function u which is 
spatially odd and of period 2L. What conditions of regularity must be imposed 
on vo, Vi, and / so that u is of class C2? Then, show that the restriction of 
u to [0, L\ x [0, oo) solves the wave equation on [0, L] x (0, oo), with Dirichlet 
boundary conditions, i.e., it(0,£) = u(L,t) = 0, for all t ^  0.
Exercise 18.5.29. Under the conditions of Exercise 18.5.28, find the symmetry 
necessary for solving the wave equation with Neumann boundary conditions, i.e., 
ux(0,t) = ux{L,t) -  0.
Hint: you need a very small modification of the symmetries used in Exercise
18.5.28.

18.5.8. Generalized solutions for the advection equation
Exercise 18.5.30. Let Cq be the set of functions of class C k on R2 which vanish 
outside of a compact set. Give examples of nonzero elements of this set for any 
order k.
Hint: reread Section 6.1.
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Exercise 18.5.31. Let u0 belong to L}oc(R), i.e., the restriction of uo to each 
bounded set of R is integrable, and define a function u by u(x,t) = uq(x -  at). 
Show that, for all functions 0 in Co(R2), the following identity holds:

/ u (<f>t + ac/)x) dx dt = 0 .
Jr2

Exercise 18.5.32. Let / belong to L11oc(E2), i.e., assume that / is measurable 
and that the integral of its absolute value on any compact set of R2 is finite. 
Show that, if, for all 0 in Cq , the expression

/ / 0  dx idx2 
J R2

vanishes, then / also vanishes.
Hint: the proof relies on the same idea as the proof of Lemma 6.1.2. It is useful 
to show, for instance, that, for all functions x hi Cq (R2) and all functions uj in 
Cq(R) whose integral is equal to 1, the function

(x,t)*~> ( [  x(z,s)ds
J—oo Jr

belongs to Cq(R2).
Exercise 18.5.33. Let / be as in Exercise 18.5.32. Assume that, for all functions 
0  in Co(E2), the following relation holds:

(18.5.1) [  f(j)t dxd£ = 0.
Jr2

Then, show that f(x,t) is, almost everywhere on E2, equal to a function g(x).
Exercise 18.5.34. Assume that the relation (18.5.1) holds only for functions with 
support in R x ]0, oo[. Then, show that the analogous conclusion holds: almost 
everywhere on R x ]0 , oo[, / is equal to a function depending only on x.
Exercise 18.5.35. Let u belong to ^oc(* x [0 , oo)) and assume that, for all 
functions 0  E Cq(R2) whose support is included in R x ]0 , oo[, the following 
relation holds:

/ u (0 * + acj)x) dx d£ = 0 .
J r  x]o,<x>[

Define the following new variables and function:

y — x — at, s — t, v (y,s) = u(x,t).

Show that v is, almost everywhere on R x ]0 , oo[, equal to a function of space 
only and deduce that u(x,t) is of the form uq{x — at). Conclude that the data 
given by the value of u on the line t = 0 determines uniquely the generalized 
solution of the advection equation with vanishing right-hand side.
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18.5.9. Advection-diffusion equation
Exercise 18.5.36. Consider the equation

ut + aux - euxx =0, x G 1, t €  ]0, T[

with initial data
u (x,0 ) = uq (a?) .

Write an explicit numerical scheme which uses a centred scheme for the second- 
order differentiation in space and a centred or upwind difference for the advection 
term. What must the Courant-Friedrichs-Lewy condition be in these two cases? 
Use Fourier analysis to study the I2 stability.
Exercise 18.5.37. Assume that the space variable remains in the interval ]0 ,1[ 
and that Dirichlet boundary conditions are given at the boundary:

u (0, t) = u (L,t) = 0.

Run numerical simulations for both schemes, choosing successively e = 1, e = 
10“2, and e = 10“4. What happens and how do you explain it?
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K, 25
fc-colourable, 39 
LDU decomposition, 227 
LU decomposition, 210 

band-g matrix, 226 
operation counts, 214

M m,n, 26
M m,n(K), 26
Mn, 26 
M„ (K), 26 
n-simplex, 58 

volume, 59
QR

decomposition, 290 
by Householder 

transformations, 299 
of Hessenberg matrix, 301 
operation counts, 296 
topological properties, 295, 

324 
flow, 328
method for calculating 

eigenvalues and 
eigenvectors, 322

T N, 134 
19-

method, 398, 401 
scheme, 403

Adams
John Couch, 415 
methods 

explicit, 416 
implicit, 418 
order, 423

stability, 432 
multistep schemes, 416 

Adams-Bashforth methods, 416 
construction, 416 
order, 423 

Adams-Moulton methods, 418 
construction, 418 
order, 423 

additive approximation of 
integration, 17 

adjacent, 39 
adjoint, 31
advection equation, 439 

central scheme, 447 
CFL, 454
instability in £°°, 454 
stability in ^2, 454 

downwind scheme, 447 
consistency, 450 
convergence, 450, 453 
order, 453 
stability, 451 

generalized solution, 476 
Lax-Friedrichs scheme, 454,

474
Lax-Wendroff scheme, 454,

475
leap-frog scheme, 455 
numerical scheme, 446 

Fourier analysis, 474 
physical origin, 439 
semilinear, 444 
upwind scheme, 447, 472 

lack of convergence, 450 
Al-Khowarizmi, 349

485
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algebra property, 243, 252 
alternate multilinear form, 27 
approximation 

Bernstein, 90 
by C°° functions, 151 
by ordinary polynomials, 96 
by splines, 131
by trigonometric polynomials, 

133
Pade, 101, 104 

Arab, 349
arithmetic identities and 

inequalities, 11 
arithmetic mean, 16 
asymptotic error estimate, 404 
Avogadro’s number, 265

B-splines, 107, 119, 120 
numerics, 125 
properties, 120
with coincident knots, 125, 132 

backward
differentiation 

construction, 419 
order, 423 
stability, 432 

Euler scheme, 396 
finite difference, 70 

base /?, 3 
basis

Hermite, 64
Lagrange, 53, 54, 64, 65 
Newton, 54, 55 

Bernoulli, 185
polynomial, 185, 187, 188 

Bernstein
approximation, 90 

convergence, 90 
polynomial, 8 8 , 90 

Bessel’s inequality 
for trigonometric

approximation, 136 
Fourier coefficients, 136 
ordinary polynomials, 88

Bezier curves, 94, 107 
bigrid method, 286, 287 
bilinear, 31 
binary, 4
binomial coefficients, 71, 428 
bisection method, 312, 333, 334 
block, 268

decomposition, 34-36, 38 
dimensions 

compatibility of, 37 
Gauss-Seidel 

matrix, 269 
method, 268 

Jacobi 
matrix, 269 
method, 268, 269 

matrix, 34
multiplication, 36, 37 
relaxation method, 268, 269 
structure, 36, 39 

boundary conditions, 466 
boundary value problem for an 

ODE, 74
Brouwer’s fixed point theorem, 334, 

336

Cauchy problem, 362 
Cauchy-Lipschitz, 387 

theorem, 363, 375 
theory, 362, 377 

causality relation, 374 
ceiling, 14
central finite difference, 71, 72
CFL, 447
chaos

chemical reactions, 385 
solar system, 416 

characteristic
equation, 272, 273 
polynomial, 31, 307 

characteristics, 446 
method, 446 

Chebyshev 
points, 61
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polynomials, 86 
Cholesky decomposition, 228 

and Gram-Schmidt
orthonormalization, 290 

operation counts, 231 
topological properties, 295 

chord method, 338 
companion matrix, 42, 271, 307, 

428
Jordan basis, 428 

comparison of means, 16 
comparison of powers and 

exponentials, 11 
complex differential equations, 366 
complexified, 262 

space, 266 
computer-aided design, 47 
condition number, 277 
conjugate gradient, 282 

direct method, 283 
iterative method, 283 
pre-conditioned, 284 

conservation of length, 32 
consistency, 387

necessary and sufficient 
condition, 389 

plus stability implies 
convergence, 388 

with one-step schemes, 387 
construction of the logarithm and 

exponential functions, 11 
continuity

absolute, 155 
of linear mapping, 248 

control
points, 95 
polygon, 129 

convergence
of Fourier series, 49, 133 
of iterative methods, 260, 261 
of multistep methods, 432 
of one-step schemes, 387 
of the relaxation method, 268 
of trigonometric approximation

to Lj| functions, 142 
ordinary polynomial 

approximation 
in the quadratic mean, 97 
uniform, 97 

partial Fourier sums 
mean-square norm, 139 
uniform norm, 144 

convergence and divergence of 
classic series, 13 

convolution, 136, 146, 147 
and constructive density 

results, 150 
and Fourier series, 151 
and regularization, 146, 148 
in C° periodic, 146 
in L1 periodic, 147 

cosine matrix, 41 
counting in base /?, 3 
Courant-Friedrichs-Lewy, 447 
Cramer formula, 27 
Cramer’s rule

operation counts, 212  
Crank-Nicolson method, 399, 419 
curve and surface fitting, 48 
cyclic matrix, 202

damped Jacobi method, 286 
data smoothing, 107 
de Boor-Cox recursion, 120 
de Casteljau algorithm, 95 
decimal system, 349 
decimation

-in-frequency, 192 
-in-time, 192 

decomposition 
LDU, 227 
LU, 210 

band-# matrix, 226 
operation counts, 214 

QR, 290 
by Householder 

transformations, 299 
of Hessenberg matrix, 301
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operation counts, 296 
topological properties, 295 

Cholesky, 228 
and Gram-Schmidt 

orthonormalization, 290 
operation counts, 231 
topological properties, 295 

demographic model, 349 
density

constructive results, 150 
ordinary polynomial, 88 

mean-square norm, 96 
uniform norm, 93 

trigonometric polynomial 
continuous periodic 

functions, 138 
mean-square norm, 139 
uniform norm, 136, 138 
various functional spaces, 

142
determinant, 27, 224

derivative of the determinant 
function, 370 

explicit expression, 27 
of a linear mapping, 27 
of a matrix, 27

block triangular, 38 
practical interest in, 27 
theoretical interest in, 27 

diagonal, 258
diagonally dominant matrix, 30 
differentiable dependence 

with respect to initial 
conditions, 381 

differential systems
continuous dependence on 

data, 379
Dirichlet

kernel, 152 
theorem, 156 

discrete approximation of the 
logarithm, 13 

discretization

partial or ordinary differential 
equations, 225 

divergence of the harmonic series, 
13

divided differences, 48, 55, 57, 67 
and 5-splines, 123 
integral representation, 57 
Leibniz’ formula, 68 
operators, 67 
several variables, 69 
uniform grids, 70 
with coincident arguments, 59 , 

65
with coincident knots, 72 

Duhamel’s formula, 371, 375 
dyadic, 4

number, 15

eigenvalue, 31, 240, 273
minimax characterization, 293 

eigenvalue problem 
QR method, 322 

convergence for positive 
definite Hermitian 
matrices, 324 

effectiveness, 327 
bisection method, 312 
ill-conditioning, 308 
information in characteristic 

polynomial, 307 
information in matrix, 307 
inverse power method, 321 

error analysis, 321 
power method, 309, 316 

inverse, 321 
modification, 319 

eigenvector, 31
strictly hyperbolic matrix, 471 

eigenvector problem 
ill-conditioning, 309 

ET, cinema hero, 265 
Euclid, 348 
Euclidean

length, 31



INDEX 489

norm, 243 
Euler

method 
explicit, 418 
implicit, 419 
modified, 401 

scheme 
backward, 396 
explicit, 395, 398-400 
forward, 395
implicit, 396, 398, 399, 401 
variable step size, 404 

Euler-MacLaurin formula, 189 
explicit

Adams methods, 416 
Euler 

method, 418 
scheme, 395, 398-400 

exponential, 18, 19 
construction, 19 

by product formula, 17 
function, 19 
inverse of logarithm, 19 
matrix, 2 0 , 21 

approximation, 23 
loss of multiplicative 

property, 24 
multiplicative property, 22 
practical calculation, 22 
self-adjoint, 23 
skew-adjoint, 23 

extrapolation
Nystrom, 420 

construction, 420 
Richardson’s, 75 
to the limit, 75

fast Fourier transform, 49 
Fejer

kernel, 160 
sum, 161 

Fibonacci
numbers, 350 
series, 350

finite difference, 70, 276
backward difference operator, 

70
central, 71, 72 

first-order difference, 71 
second-order difference, 72 

forward difference operator, 70 
matrix, 273 
problem, 273 

finite element methods, 48 
fixed point theorem, 362 

Brouwer, 334, 336 
strictly contracting, 336, 362 

floating-point, 6 
numbers, 6 -8  

floor, 14 
flop, 7 
fluid motion

Eulerian description, 440 
Lagrangian description, 440 

formal series, 417 
forward

Euler scheme, 395 
finite difference, 70 

Fourier
analysis, 48 
Charles, 133 
coefficients 

decrease as wave number 
tends to infinity, 140 

numbers which tend to 0 
and are not Fourier 
coefficients of any 
integrable function, 162 

regularity and asymptotic 
behaviour of, 144 

slowness of decrease at 
infinity, 140, 162 

Joseph, 133 
partial sums

convergence as a local 
phenomenon, 152 

convergence in mean-square 
norm, 139
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series, 48, 133 
convergence, 49, 133 
difficulty of summation, 151 
partial sum of, 136 
pointwise convergence, 152 
pointwise convergence for 

absolutely convergent 
function, 155 

uniform convergence, 144 
transform 

discrete, 189, 190 
fast, 49, 189-191 
of a sequence, 460 

transformation, 133 
Franklin wavelets, 204 
Fredholm integral equation of the 

first kind, 200  
Frobenius norm, 252, 253 
fundamental theorem of linear 

algebra, 29

Gauss-Seidel, 269, 274, 276 
matrix 

block, 269 
method, 259, 267 

block, 268 
Gaussian

elimination
band-q matrix, 226 
matrix interpretation, 209 
operation counts, 214 
with pivoting, 217 
without pivot, 207 

quadrature, 180, 182 
generalized solution, 443, 476 
generator function, 187 
geometric mean, 16 
Gibbs phenomenon, 49, 157 
golden ratio, 348, 349 
gradient method

convergence rate, 280 
steepest 

pre-conditioned, 279

Gram-Schmidt orthonormalization, 
82, 290 

graph, 39
fc-colourable, 39 
adjacent vertices of, 39 
degree matrix of, 39 
degree of a vertex, 39 
properly coloured, 39 
simple, 39 
symmetric, 39
vertex-edge incidence matrix, 

39
Gronwall’s lemma, 377, 380, 381, 

391
discrete, 391, 392, 471

harmonic mean, 16 
heat

equation, 136, 439 
flux, 462 

Hermite
interpolation, 64 
weight, 80 

Hermite’s basis, 64 
Hermitian, 32, 240, 293, 369 

positive definite, 369 
skew-, 369 

Hessenberg form, 297 
by Householder

transformations, 302 
Hilbert matrix, 81 
Holder inequality, 255 
Horner algorithm, 57 
Householder transformation, 298 
hyperbolic system, 444

identity matrix, 2 0 , 26 
image

analysis, 47, 107 
manipulation, 107, 129 

implicit
Adams methods, 418 
Euler 

method, 419
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scheme, 396, 398, 399, 401 
incident edge, 39 
inequality

between means, 16 
of Kantorovich, 44 

instability
of multistep methods, 424 
weak, 434 

integration
formulae, 49 
numerical, 166 
of periodic functions, 134 

interpolating
polynomial, 51, 52, 59 

divergence of, 61 
Hermite, 64 

spline, 106, 111, 115 
interpolation, 47

at Chebyshev points, 61 
error, 59 
formula, 181 
Hermite, 64 
Lagrange, 51, 170, 171 
Newton, 54, 71 
osculating, 64 

iterative
method, 258, 259, 261 

convergence, 260, 261 
order, 351
sufficient conditions for 

convergence, 266 
sufficient conditions for 

divergence, 266 
solution of systems, 258

Jacobi, 274, 276 
matrix 

block, 269 
method, 259, 269 

block, 268, 269 
damped, 286

Jordan
block, 37, 43, 44, 272 
decomposition, 37, 43, 44
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form, 37, 271

Kantorovich inequality, 45, 280

La Vallee Poussin kernel, 161 
Lagrange interpolation, 51, 170,

171
Lagrange’s basis, 53, 54, 64, 65 
Laguerre

polynomial, 99 
weight, 80 

Laskar, Jacques, 416 
Lax pairs, 328 
Le Verrier, Ur bain, 415 
least-energy principle, 48 
least-squares

approximation, 47, 48 
convergence of sequence of 

trigonometric 
approximations, 139 

discrete trigonometric 
approximation, 163 

polynomial approximation, 7 7 , 
78, 133 

convergence, 96 
trigonometric approximation, 

135
Legendre polynomials, 84 
length

conservation of, 32 
Leonardo of Pisa, 349 
linear

algebra 
fundamental theorem, 29 

mapping, 25 
continuity, 248 
determinant, 27 
identification with matrix,

25, 26 
multistep schemes, 414 
recurrence, 270, 273 
system

condition number, 235 
variable coefficients, 372
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local error, 388 
logarithm, 18, 19

additive property, 14 
construction, 19 
inverse of exponential, 19 

Lyapunov functional, 382

machine
integers, 5
representation of numbers, 5 

mantissa, 6 , 8 
matrix, 25, 26

as an assembly of image 
vectors, 26 

band-g, 224 
banded, 224 
block, 34
companion, 42, 271, 307, 428 
cosine, 41
criterion of invertibility, 21 
cyclic, 202  
determinant, 27 
diagonal, 258 
diagonally dominant, 30 
echelon, 232
exponential, 20, 21, 369, 373 

approximation, 23 
derivative, 373 
loss of multiplicative 

property, 24 
multiplicative property, 22 
practical calculation, 22 

functions, 40
Hermitian, 32, 240, 293, 369 

square root, 303 
Hessenberg, 297 
Hilbert, 81
identification with linear 

mapping, 26 
identity, 2 0 , 26 
inversion

is it necessary?, 216 
operation counts, 215 

invertible, 27

linear system
interpolating splines, 117 
smoothing splines, 118 

multiplication, 26 
by blocks, 36 

nilpotent, 40, 261 
norm, 243, 252, 263 
normal, 33, 255 
of a linear mapping, 25 
of a scaling, 38 
orthogonal, 32 
permutation, 221 
persymmetric, 237 
powers of, 270 
regular, 26 
resolvent, 374 
self-adjoint 

exponential, 23 
sine, 41 
singular, 26 
skew-adjoint 

exponential, 23 
skew-Hermitian, 369 
square root, 41, 357 
stability, 426 

block diagonal, 428 
strictly hyperbolic 

eigenvector, 471 
Toeplitz, 237 
transpose, 31 
triangular, 34, 258 
tridiagonal, 258 
unitary, 32, 290, 369 
Vandermonde, 170 
vertex-edge incidence matrix of 

graph, 39 
maximum norm, 243 
midpoint formula, 167, 169, 172,

178
Milne-Simpson 

formula, 420 
method 

construction, 420 
minimax, 241, 293



INDEX 493

Minkowski inequality, 255 
modulus of continuity, 89, 139, 389 
multigrid method, 49, 285, 288 
multiplicative approximation of 

integration, 17
multistep

methods, 414 
construction, 414 
convergence, 432 
implicit schemes, 433 
initialization, 432 
instability, 424 
order, 421 
stability, 424, 429 

schemes, 414 
Adams, 416

Napierian logarithm, 14, 16 
natural splines, 112 
Neptune (planet), 415 
Newton’s

basis, 54, 55 
interpolation, 54, 71 
method, 338 

convergence, 341 
vector case, 352 

Newton-Cotes formula, 173, 178 
nilpotent, 40, 261 

matrix, 22 
noisiness, 48 
noisy data, 48 
nonlinear system

existence of solutions, 331, 334 
solution by minimization, 335  

norm, 20
equivalent, 244, 247, 248, 253 
Euclidean, 243 
Frobenius, 252, 253 
matrix, 243, 252, 263 
maximum, 243 
of vector, 264 
operator, 243, 248, 249, 

252-254

subordinate, 249, 252, 253, 
260, 264 

normal matrix, 33 
NP-complete, 335 
numerical integration, 49, 72, 166 

formula, 166 
periodic functions over a 

period, 183 
numerical tables, 48 
NURBS, 129
Nystrom extrapolation, 420 

construction, 420

operator norm, 243, 248, 249, 
252-254

optimal
relaxation parameter, 269, 275 
spectral radius, 275 

order
Adams methods, 423 
iterative method, 351 
multistep method, 421 
necessary and sufficient 

condition, 393 
of one-step schemes, 392 

orthogonal, 32
polynomials, 49, 81-83, 98 

and least-squares, 88 
qualitative properties, 97 
recurrence, 98 

orthonormal polynomials, 82 
osculating

interpolation, 64 
polynomial, 64, 6 6 , 67 

over-relaxation method, 270 
overflow, 6 , 389

Pade approximation, 101, 104 
parallelepiped 

volume of, 27 
Parseval’s

identity, 460 
relation, 139 

partial pivoting, 219
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matrix interpretation, 222 
operation counts, 220  

Peano kernel, 174, 176-178 
periodicity in base /?, 5 
permutation 

matrix, 221 
of n objects, 27 

signature, 27 
Picard’s iterations, 364 
pivot

small, 217 
pivoting

partial, 219
matrix interpretation, 222 
operation counts, 220  

total, 219, 220
matrix interpretation, 222 
operation counts, 220  

Planchereks formula, 468 
Poisson kernel, 161 
polar form, 33 
polynomial

Bernstein, 8 8 , 90 
interpolation, 29, 51, 52, 59 
least-squares approximation, 

77, 78 
convergence, 96 

orthogonal, 49, 81-83, 98 
and least-squares, 88 
Chebyshev, 86 
Laguerre, 99 
Legendre, 84 
qualitative properties, 97 
recurrence, 98 

orthonormal, 82 
osculating, 64, 6 6 , 67 
trigonometric, 133, 134, 256 

density, 133 
positional numbering, 349 
power method, 309, 316 

inverse, 321 
modification, 319 

pre-conditioned steepest gradient 
method, 279

projective
plane, 129 
space, 129 

properly coloured, 39 
pseudo-spectral methods, 48 
Pythagoras’ theorem, 77, 80, 139 
pythagorians, 348

quadrature, 49, 165
error, 169, 174-177, 179 
formula, 166, 399, 400 

composite, 169, 179 
order of, 169 
simple, 169
simple, of maximal order, 

169
Gaussian, 180, 182 
of a circle, 165 
simple formula, 172 
to define the logarithm, 16

Rayleigh quotient, 240, 241, 251 
rectangle

formula, 183 
left, 169, 172, 390 
right, 167, 169, 172 

method, 16 
recurrence

linear, 270, 273 
relation, 258 

recursive numerical algorithm, 49, 
190 

regular, 26
regularization by integration, 362 
relaxation, 274, 276 

method, 267 
block, 268, 269 
convergence, 268 

parameter 
optimal, 269, 275 

representable 
integers, 5 
numbers, 5 

resolvent matrix, 374
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resonance, 313, 315 
Richardson’s

extrapolation, 75 
method, 277 

dynamical, 279 
stationary, 278 

Riemann-Lebesgue, 140 
Riesz-Fischer, 142 
robotics, 107 
roman numerals, 349 
roots of polynomial

ill-conditioned problem, 311 
Runge-Kutta 

formula, 399 
table, 400 

method 
order 2, 401 
order 4, 402

Sanskrit, 349 
scalar product, 31 
scaling, 38 
Schur

form, 33, 37, 323 
lemma, 33, 292 

secant method, 344
local convergence, 344 

second mean value theorem, 176 
separation of variables, 465 
sesquilinear, 31, 33 
signature, 27 
significant figures, 6 
Simpson

formula, 169, 421 
rule, 168-170, 172, 173, 179 

simulated annealing, 335  
sine matrix, 41 
single-step schemes, 386 
singular, 26
skew-Hermitian, 32, 369 
small pivot, 217
smoothing splines, 48, 107, 111, 115 
solution

in separated variables, 465

in the sense of distributions, 
443

spectral radius, 242, 261-265, 269, 
274 

optimal, 275 
spectrum, 30, 40, 240 
splines, 47, 48, 106

approximation, 131 
B-, 107, 119, 120 

numerics, 125 
properties, 120 
with coincident knots, 125, 

132
distinct knots, 119 
draughting tool, 106 
interpolating, 106, 1 11 , 115 

matrix of linear system, 117 
uniqueness, 113 

natural, 107, 112 
space of, 110 

numerics
for cubic splines, 116 

smoothing, 48, 107, 111, 115 
matrix of linear system, 118 
uniqueness, 113 

space of, 119 
square root

matrix, 41, 357
of a Hermitian positive definite 

matrix, 303 
real positive number, 355  

stability, 387
backward differentiation, 432 
block diagonal matrix, 428 
matrix, 426
of multistep methods, 424 

theorem, 429 
of one-step schemes, 387 
sufficient condition, 390, 391 

stencil, 447 
stiff, 396

ordinary differential equations, 
396

stream tube, 441
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streamline, 441 
strict

contraction, 336, 363 
hyperbolicity, 444 

strictly contracting fixed point 
algorithm, 337 
theorem, 336 

strictly hyperbolic matrix 
eigenvectors, 471 

sub-additivity, 89 
sufficient condition 

for convergence
iterative method, 266 

for divergence, 269 
iterative method, 266 

Sylvester’s inertia theorem, 293

Tacoma bridge
collapse of, 313 

Toeplitz, 237 
total pivoting, 219, 220

matrix interpretation, 222 
operation counts, 220  

toy floating-point system, 6 , 7 
transport of matter, 440 
transpose of a matrix, 31 
trapezium formula, 168, 169, 172 
travelling salesman, 335 
triangular, 34, 258 
tridiagonal, 258 
trigonometric

approximation, 133 
Bessel’s inequality, 136 

polynomial, 133, 134, 256

density in continuous 
periodic functions, 138 

density in various functional 
spaces, 142 

turbulence, 385

underflow, 6 
unitary, 32, 290, 369 
upper triangular, 33

Vandermonde, 28 
matrix, 170 

variation of parameters, 372 
vector norm, 264 
vertex-edge incidence matrix of a 

graph, 39 
vibration, 313 

small, 314 
virtual reality, 129

wave equation, 439, 455
approximation by masses and 

springs, 455 
domain of 

dependence, 459 
influence, 459 

elementary facts, 458 
numerical scheme, 459 
symmetries, 459 

wavelets, 48, 49 
weak

equality of functions, 107 
instability, 434 
integrals of functions, 108 

weighted formula, 171



L ook s are im portan t and, sadly fo r n um erica l analysis, its bu rden  o f  n o ta tion  
d o e s  n o t m ake it o b v iou s ly  attractive. Furtherm ore, it appears to  be betw een  
tw o cam ps: that o f  the physicist and en g in eer w h o  want m e th od s and are satis­
fied w ith  experim en ta l num erics; and that o f  the m athem atician s w h o seek b eau ­
tiful prob lem s. However, num erica l analysis can o ffer the best o f  b o th  w orlds: 
m otivated  p rob lem s where gettin g a so lu t ion  fast is the p r im ary  concern , and 
to o ls  w h ich
are b o th  e lem en tary and pow erful.

Th is b o o k  is d iv id ed  in to fou r parts. Part I starts w ith  a gu id ed  tou r o f  floatin g 
n um ber system s and m ach in e arithmetic. E xpon en tia ls and loga rithm s are 
on stru cted  from  scratch to  presen t a new  p o in t o f  v iew  on  w ell-known questions, 
and the linear algebra n eed ed  to  d o  th is is a lso summ arized . Part II starts w ith 
p o ly n om ia l a pp rox im a tion  (po lyn om ia l in terpola tion , m ean-square approxi-ma- 
tions, splines). It then deals w ith  Fourier series, p rov id in g  the tr ig on om e tr ic  
version  o f  least-square approx im ation s, and on e  o f  the m o st im portan t n um er i­
cal a lgorithm s, the fast F ourier transform . Any scien tific c om pu ta tion  p ro g ram  
spen d s m o st o f  its tim e so lv in g linear system s o r  a pp rox im a tin g the so lu tion  o f  
linear systems, even w hen try in g to  so lve non-linear systems. Part III is therefore 
abou t num erica l linear algebra, w h ile Part IV  treats a se lection  o f  non-linear 
c om p le x  p rob lem s: reso lu tion  o f  linear equ a tion s and systems, ord in ary  d ifferen ­
tial equation s, single-step and multi-step schem es, and an in trodu ct ion  to  partial 
d ifferentia l equations.

The b o o k  d o e s  n o t assum e any p rev iou s kn ow led ge  o f  n um erica l m ethods, and 
is w ritten for advanced undergraduate students in m athem atics w h o  are in ter­
ested in the sp ice and sp irit o f  num erica l analysis. It w ill a lso b e  usefu l to  s c ien ­
tists and en g in eers w ish in g to learn what m ath em atics has to  say a bou t why their 
num erica l m eth od s w ork— or fail.
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n T „ Z 7 T  ',Sa<“r fM o f notationd o e s  n o t make it obv iou sly  attractive. F u r t h H W ^ * ^ v ,irs to be between
nvo cam ps: that o f  the physicist and e n g in e d W m m r n ^ h o ik  and are satis- 
fied w ith experim enta l num erics; and fhat h f ^ n n m , em a u c ia n s  w ho seek beau­
tiful prob lem s. However, num erica l a n a h ^  cOT o t l ^ K ^ b c s i  o f  both  worlds: 
m otivated p rob lem s where gettin g a s tt t f fon  fast is tW p r im a ry  concern , and 
to o ls  wh ich
are b o th  elem entary and powerful. .

This b o o k  is d iv ided  in to fou r parts. Part l . s t ^ 4 ^ ^ 4 , (gj4i(4ed tou r o f  floating 
num ber system s and m ach ine arithmetic. loga r ithm s are
on stru cted  from  scratch to  present a new  well-known questions,
and the linear algebra n eeded  to d o  this is.aka..su^i|y '* , ^ l  Part II starts with 
po lyn om ia l approx im ation  (polynom ia l i n m e n n  - m ] i n re  approxi-ma- 
tions, splines). It then deals w ith Fourier 1 ; the tr igon om etr ic
version  o f  least-square approx im ation s, and on e^p ^K e liio s t im portan t num eri­
cal a lgorithm s, the fast F ourier transform . Any ^ ^ ^ ^̂ ^ com pu ta tion  p rogram  
spen d s m ost o f  its tim e so lv in g linear system s o r  approx im atin g the so lu tion  o f  
linear systems, even when try ing to solve non-linear \ f is. Part III is therefore 
abou t num erica l linear algebra, while Part IV treats a^eYection o f  non-linear 
com p le x  prob lem s: reso lu tion  o f  linear equation s ai¥cfsysfems, ord inary differen­
tial equations, single-step and multi-step schemesraft’Sf^ri in trodu ction  to partial 
differential equations.

The b o o k  d o e s  n o t assum e any prev iou s kn ow ledge 6 f num erica l m ethods, and 
is w ritten for advanced undergraduate students in m athem atics w ho are inter 
ested in the sp ice and spirit o f  num erica l analysis. It w ill also b e  usefu l to scien ­
tists and en g in eers w ish in g to learn what m athem atics has to  say abou t why their 
num erica l m eth od s w ork— or  fail.
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