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SERIES EDITOR’S STATEMENT

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive change of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the nonspecialist, and a
thorough bibliography are required of each author. Volumes will appear in no
particular order, but will be organized into sections, each one comprising a
recognizable branch of present-day mathematics. Numbers of volumes and
sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied but
where it has not yet penetrated because of insufficient information.

Gian-Carlo Rota



PREFACE

This book is the second in a three-volume series, the first of which is Theory of
Matroids, and the third of which will be called Combinatorial Geometries:
Advanced Theory. The three volumes together will constitute a fairly complete
survey of the current knowledge of matroids and their closely related cousins,
combinatorial geometries. As in the first volume, clear exposition of our
subject has been one of our main goals, so that the series will be useful not only
as a reference for specialists, but also as a textbook for graduate students and a
first introduction to the subject for all who are interested in using matroid
theory in their work.

This volume begins with three chapters on coordinatization or vector
representation, by Fournier and White. They include a general chapter on
‘Coordinatizations,” and two chapters on the important special cases of
‘Binary Matroids’ and ‘Unimodular Matroids’ (also known as regular
matroids). These are followed by two chapters by Brualdi, titled ‘Introduction
to Matching Theory’ and ‘Transversal Matroids,” and a chapter on ‘Simplicial
Matroids’ by Cordovil and Lindstrém. These six chapters, together with
Oxley’s ‘Graphs and Series-Parallel Networks’ from the first volume, consti-
tute a survey of the major special types of matroids, namely, graphic matroids,
vector matroids, transversal matroids, and simplicial matroids. We follow
with two chapters on the important matroids invariants, ‘The Mobius
Function and the Characteristic Polynomial’ by Zaslavsky and ‘Whitney
Numbers’ by Aigner. We conclude with a chapter on the aspect of matroid
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theory that is primarily responsible for an explosion of interest in the subject in
recent years, ‘Matroids in Combinatorial Optimization’ by Faigle.

My deepest thanks are due to the contributors to this volume, and to all
others who have helped, including chapter referees. I am particularly indebted
to Henry Crapo for continued support in securing the graphics work for all
three of these volumes. Richard Brualdi thanks the National Science
Foundation for their partial support of his work under grant DMS-8320189.

University of Florida Neil L. White
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Coordinatizations

NEIL WHITE

1.1. Introduction and Basic Definitions

The purpose of this chapter is to provide background and general results
concerning coordinatizations, while the more specialized subtopics of binary
and unimoduiar matroids are covered in later chapters. The first section of this
chapter is devoted to definitions and notational conventions. The second
section concerns linear and projective equivalence of coordinatizations.
Although they are not usually explicitly considered in other expositions of
matroid coordinatization, these equivalence relations are very useful in
working with examples of coordinatizations, as well as theoretically useful as
in Proposition 1.2.5. Section 1.3 involves the preservation of coordinatiza-
bility under certain standard matroid operations, including duality and
minors. The next section presents some well-known counterexamples, and
Section 1.5 considers characterizations of coordinatizability, especially char-
acterizations by excluded minors. The final five sections are somewhat more
technical in nature, and may be omitted by the reader who desires only an
introductory survey. Section 1.6 concerns the bracket conditions, another
general characterization of coordinatizability. Section 1.7 presents technigues
for construction of a matroid requiring a root of any prescribed polynomial in
a field over which we wish to coordinatize it. These techniques are extremely
useful in the construction of examples and counterexamples, yet are not
readily available in other works, except Greene (1971). The last three sections
concern characteristic sets, the use of transcendentals in coordinatizations,
and algebraic representation (i.e., modeling matroid dependence by algebraic
dependence). Some additional topics which could have been considered here,
such as chain groups, are omitted because they are well-covered in other
readily available sources, such as Welsh (1976).

Since the prototypical example of a matroid is an arbitrary subset of a finite
dimensional vector space, that is, a vector matroid, and since many matroid
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operations have analogs for vector spaces, which are algebraic and therefore
easier to employ, a natural and important problem is to determine which
matroids are isomorphic to vector matroids. This leads directly to the concept
of coordinatization. In this chapter we assume that matroids are finite.

A coordinatization of a matroid M(S) in a vector space V is a mapping
{:S—V such that for any A= S, 4 is independent in M<>{], is injective
(one-to-one) and {(A) is linearly independent in V.

Thus we note that a dependent set in M may either be mapped to a linearly
dependent set in V' or mapped non-injectively.

We note that {(s) =0 if and only if s is a loop. Moreover for non-loops s
and t, {(s) is a non-zero scalar multiple of {(¢)if and only if {s, t} is a circuit (i.e., s
and ¢ are parallel). Thus {(s) = {(t) only if {s,t} is a circuit, and we see that
non-injective coordinatizations exist only for matroids which are not com-
binatorial geometries. Furthermore, we also see that coordinatizing a matroid
is essentially equivalent to coordinatizing its associated combinatorial
geometry.

If B is any basis of M(S), then let W be the span of {(B) in V. Then dim
W=rk M and {(S)= W. Thus we may restrict the range of { to W, and thus,
without loss of generality, all coordinatizations will be assumed to be in a
vector space of dimension equal to the rank of the matroid. If » is the rank of
M(S), then for a given field K there is, up to isomorphism, a unique vector
space V of dimension n over K. Thus we may also speak of a coordinatization of
M over K, meaning a coordinatization in V.

Let GF(gq) denote the finite field of order q. A matroid which has a
coordinatization over GF(2), or GF(3), s called binary, or ternary, respectively.
A matroid which may be coordinatized over every field is called unimodular (or
regular). Further characterizations of these classes of matroids will be given
later in this chapter and in the following chapters.

It is often convenient to represent a coordinatization in matrix form. If {:S —
V is a coordinatization of M(S) of rank n, and E a basis of V, let A, ; be the
matrix with n rows and with columns indexed by S whose a-th column, for
aes$, is the vector {(a) represented with respect to E. Since the matrix A, ; also
determines the coordinatization { if we are given E, we often simply say 4, zisa
coordinatization of M(S).

1.2. Equivalence of Coordinatizations and
Canonical Forms

If ¢:V -V is a non-singular linear transformation and {:S—V is a
coordinatization of M(S), then ¢o{:S— V is also a coordinatization. If Q is
the non-singular n x n matrix representing ¢ with respect to the basis E
of V, then A, ,=QA,;. On the other hand, we may easily check that



Coordinatizations 3

Ayor g = Ap 4~15, SO multiplying 4, ; on the left by Q may also be regarded as
simply a change of basis for the coordinatization (.

We recall from elementary linear algebra that multiplying 4, ; on the left by
a non-singular matrix Q is equivalent to performing a sequence of elementary
row operations on A, g, and that any such sequence of elementary row
operations on A,  may be realized by an appropriate choice of Q. We will say
A, gand QA, g are linearly equivalent (where Q is non-singular), and any matrix
linearly equivalent to A4, ; may be regarded as representing the same
coordinatization { of the same matroid with respect to a new basis of V.

Conversely, given a coordinatization matrix 4, ;, we may choose any new
basis E' of V, and A is linearly equivalent to A, 5. As a special case of
this, we pick E' = {(B), where B is a fixed basis of the matroid M(S).

Then, by reordering the elements of S so that the first n elements are the
elements of B, we have a matrix A, in echelon form

BS—B
Ap= (I, L)

where I, is the n x n identity matrix, with columns indexed by B, and L is an
n x (N — n) matrix with columns indexed by S — B, where N =|S|.

As yet another way of viewing linear equivalence, let W, be the subspace
spanned by the rows of 4, ;. in an N-dimensional vector space U. What we
have seen is that W, is independent of E’, and that indeed the choice of E’
actually amounts to a choice of a basis for W,. Thus every linear equivalence
class of n x N matrices coordinatizing M(S) corresponds to an n-dimensional
subspace of U. Conversely, every n-dimensional subspace of U corresponds to
a coordinatization of some rank n matroid on S, which is a weak-map image of
M(S).

Remark. Algebraic geometers regard the collection of all n-dimensional
subspaces of an N-dimensional vector space as a Grassmann manifold, and
the coordinatizations of M{(S) correspond to a certain submanifold.

Besides row operations, another operation on A, ; which leaves invariant
the matroid coordinatized by A, is non-zero scalar multiplication of
columns. This may be accomplished by multiplying A, ¢ on the right by an
N x N diagonal matrix with non-zero diagonal entries. Combining this with
the previous operations, we say that two n x N matrices 4 and A’ are
projectively equivalent if there exist Q, an n x n non-singular matrix, and D, an
N x N non-singular diagonal matrix, such that A'= QAD.

Let us recall that projective n — 1 dimensional space P is obtained from V by
identifying the non-zero vectors of each one-dimensional subspace of V to give
a point of P. Let n:V — P U {0} be the resulting map, where 0 is an element
adjoined to P which is the image of 0e V. Then if {:§ — V is a coordinatization,
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no{ is an embedding of M(S) into P L {0}, except that parallel elements become
identified in PU {0}. If T":V — V is a linear transformation, let T = noT'on ™/,
which is well-defined since T' preserves scalar multiples. Then we call T a
linear transformation of Pu{0}. Since non-zero scalar multiples in V are

identified in P u {0}, we immediately have the following:

1.2.1. Proposition. Let J and L be n x N matrices over the field K. Then if J
coordinatizes M(S) and J is projectively equivalent to L, then L also coordina-
tizes M(S). J and L are projectively equivalent if and only if their corresponding
coordinatizations {; and {; determine the same projective embedding up to
change of basis in PU {0}, i.e., no{; = Tomo{,, where T is a non-singular linear
transformation of Pu {0}.

We next ask whether there exists a canonical form for a projective
equivalence class of coordinatizations, as echelon form was for a linear
equivalence class. For a given coordinatization

A=(I,[L)

in echelon form with respect to a basis B, let L* be the matrix obtained by
replacing each non-zero entry of L by 1. In fact, L™ is just the incidence matrix
of the elements of B with the basic circuits of the elements of S — B, so it is
independent of the particular coordinatization. Now let ' be the bipartite
graph whose adjacency matrix is L*. Thus each entry of 1 in L* corresponds
to an edge of I'. Let T be a basis (i.e., spanning tree) of I'.

1.2.2, Proposition. (Brylawski and Lucas, 1973) A is projectively equivalent to a
matrix A’ which is in echelon form with respect to B, and which has 1 for each
entry corresponding to an edge of T.

Proof. This may be accomplished by non-zero scalar multiplication of rows
and columns, and is left as an exercise. O

The matrix A’ of the preceding proposition is said to be in (B, T)-canonical
form, or when B and T are understood, canonical projective form. The simplest
canonical projective form and most useful version of this canonical form
occurs when M(S) has a spanning circuit C. Then by choosing B to be C — {c}
for some ceC, the column corresponding to ¢ in L has no zeros, hence we may
pick T to correspond to the n entries of column ¢, together with the first non-
zero entry in every other column of L.

A major use of this projective canonical form is in actual computation with
coordinates and in presenting examples.

1.2.3. Example. Let M(S) be the 8-point rank 3 geometry whose affine
diagram appears in Figure 1.1. If we choose the standard basis B = {b,, b,, b,}
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Figure 1.1. An 8-point rank 3 geometry.

and spanning circuit C = {b, b,, b3, ¢}, we may coordinatize M over Q by the
following matrix in canonical projective form:

b, b, by ¢ d e [ ¢
1 0 0 1 11 01
0 1 0 110 1 0
o 0 1 101 -1 2

1.24. Example. Let M(S) be the 4-point line, that is, U, ,, the uniform
geometry of cardinality 4 and rank 2, whose bases are all of the subsets of S of
cardinality 2, where | S| = 4. Then any coordinatization of M(S) over any field
K may be put in the following projective echelon form:

1 0 11
01 1 «

where ae K — {0, 1}. Thus we can say that up to projective equivalence, there is
a one-parameter family of coordinatizations of U, ,. We note that this
parameter « is equivalent to the classical cross-ratio of four collinear points
in projective geometry.

Since U, , is the simplest non-binary matroid, one might be led to surmise
the following, first proved by White (1971, Proposition 5.2.5), and later by
Brylawski and Lucas (1973) using more elementary techniques. The proof is
omitted here, because of its fairly technical nature.

1.2.5. Proposition. Let M(S) be a binary matroid and K a field over which M
has a coordinatization. Then any two coordinatizations of M over K are
projectively equivalent.

Brylawski and Lucas (1973) have investigated t' . question of which
matroids have, over a particular field K, any two coordinatizations projec-
tively equivalent. Such matroids are said to be uniquely coordinatizable over K,
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and among their findings is that ternary matroids are uniquely coordinatiz-
able over GF(3) (although not over an arbitrary field, as the example of U, ,
shows).

1.2.6. Example. We return to Example 1.2.3. Thisexample is, in fact, a ternary
matroid, which is uniquely coordinatizable not only over GF(3), but over
every field K such that char K # 2. To see this, we first note that the matrix
given over Q may be regarded as a coordinatization of M over every field
K such that char K # 2. If we take an arbitrary coordinatization of M over
any such field K and put that coordinatization in canonical projective form
with respect to B and C, the elements by, b,, b,, and ¢ are assigned the vectors
shown, and then the vector for d is determined since d is on the intersection
of the two lines b;b, and bjc. Likewise eeb,bynb,c, feb,bynde, and
geb,bsncf.

1.3. Matroid Operations

We now note that coordinatizability is preserved under various matroid
operations, including duality, minors, direct sums, and, in a restricted sense,
truncation. This material is also found scattered through Chapter 7 of White
(1986), and is collected here for convenience.

1.3.1. Proposition. Let A, coordinatize M(S) over a field K, and let W, be the
row-space of A, in U, avector space of dimension N = | S| over K. Then if M*(S)
denotes the dual matroid of M, the subspace Wj orthogonal to W, is the subspace
of U corresponding to a coordinatization of M*. Thus M is coordinatizable over
K if and only if M* is.

Furthermore, if A, i is in echelon form, A, g = (I,,, L), then A* = (— L', I _,) is
a coordinatization of M*, where t denotes transpose.

Proof. Let Bbe a basis of M(S)and we may assume A,  is in echelon form with
respect to B, since W, is invariant under linear equivalence. Thus 4, ; = (I,, L),
and we note that A* = (— L', Iy_,) has each of its rows orthogonal to each row
of A, g, hence the rows of A* are a basis of W;. Let M'(S) be the matroid
coordinatized by the columns of A*. Since S — B corresponds to the columns

Figure 1.2. A 7-point rank 3 matroid M.
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of Iy_,in A* we see that S — Bis a basis of M". Conversely, if B’ is any basis of
M',S — B'is a basis of M by a similar argument. Since B was an arbitrary basis
of M, M' = M* and the theorem follows. O

1.3.2. Example. Let M(S) be the 7-point rank 3 matroid shown in Figure 1.2,
along with a coordinatization 4 over R given below. Then M*, a rank 4
matroid which is shown in Figure 1.3, has the coordinatization A* over R
as in the preceding proposition.

a b c d e f g
1 001110
A4=10 1 0 1 1 0 17,
0011011
a b ¢c d e f g
~1 -1 -1 1 0 0 0
A*:_l —1 001 00
-1 0 -1 0 01 0
0 -1 —-1.0 0 0 1

Figure 1.3. M*, the dual of the matroid M in Figure 1.2, where abfyg, aceg, bcef are
coplanar sets.

1.3.3. Proposition. Let M(S) be a matroid.
(1) If M is coordinatizable over a field K, then so is every minor of M.
2) If M =M, ®M,, then M is coordinatizable over K if and only if both M,
and M, are coordinatizable over K.
(3) If K is sufficiently large and M is coordinatizable over K, then the
truncation T(M) is coordinatizable over K.

Proof. (1) If A ; coordinatizes M, then any submatroid M — X is coordinat-
ized by deleting the columns of 4, ; corresponding to X. Since contraction is
the dual operation to deletion, (1) follows from the preceding proposition.
For a direct construction of a coordinatization of a contraction, see the
following remark and example.

(2)If AV and A® are matrices coordinatizing M | and M, respectively, then
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A0
<0 A<2>>

is a coordinatization of M = M, @ M,. The converse follows from (1).

(3) The construction of truncation (to rank n—1, say) described in
Section 7.4 of White (1986) may be carried out within the vector space V
provided only that the field is sufficiently large to guarantee the existence of a
free extension (by one point) within V. O

the matrix direct sum

1.3.4. Remark. To construct the coordinatization of a contraction M(S)/X
from a coordinatization A, ; of M, we first choose a basis I of the set X. By row
operations on A, we may make the first n — k entries 0 in each column
corresponding to I, where k =|I|. Then delete the columns corresponding to
X, as well as the last k rows.

This construction really amounts to simply taking a linear transformation
T from V, the vector space in which M is coordinatized, to a vector space of
dimension n — k, such that the kernel of T is precisely span ({X).

1.3.5. Example. Let M be the matroid shown in Figure 1.4, with coordinatiz-
ation 4 over Q. Let X = {e,f}. Then row operations on 4 lead to the matrix 4’,
and deletion of the appropriate rows and columns gives A", a coordinatization
of M/X, which is put into canonical projective form 4”. The matroid M/X is
shown in Figure 1.5.

=l e
o0 = o
O = OO0
—_ 0 O O

(%) Q
S =1 W =
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Figure 1.4. A matroid M.

Figure 1.5. M/X, with M as Figure 1.4.
dh gb i

1.4. Non-coordinatizable Geometries
We now give several examples of combinatorial geometries which may not be
coordinatized over any field.

The first example is a rank 3 matroid obtained from the Desargues
configuration by replacing the 3-point line klm by three 2-point lines, ki, km,
and Im, as shown in Figure 1.6. Coordinatization of this matroid over a field K
is equivalent to embedding this configuration in the projective plane P(2, K).
However, P(2, K) is a Desarguesian plane, which means simply that in this
configuration, klm must be collinear, so coordinatization is impossible. This
matroid is called the non-Desargues matroid.

Figure 1.6. The non-Desargues matroid.
Kk
1

A second example of a non-coordinatizable geometry, the non-Pappus
matroid, is obtained from the Pappus configuration in a manner similar to that
just given for the Desargues configuration. This is illustrated in Figure 1.7,
where x, y, and z are non-collinear, violating the usual assertion of Pappus’
Theorem.

A third example is a class of examples which are the smallest non-
coordinatizable geometries in terms of cardinality. The simplest member of
this class, discovered by Vamos (1971), is described by letting S
={a,b,c,d,a,b,c',d'}, and letting the bases of M(S) be all the 4-element
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Figure 1.7. The non-Pappus matroid.
1 2 3
X%g; %Z
4 5 6

Figure 1.8. A Vamos cube.

subsets of S except aa’ bb', bb' cc', cc’ dd', ad’ dd', aa’ ¢c’. This matroid of rank 4
may be illustrated by the affine diagram in Figure 1.8, even though it cannot
actually exist in an affine space as a consequence of its non-coordinatizability.

First we verify that M is actually a combinatorial geometry. This is easy in
terms of circuit exchange. The circuits of M are the five 4-element subsets
which are not bases, as listed above, together with each 5-element subset of S
which does not contain any of the 4-element circuits. Now if C; and C, are
circuits with C, # C,, and xeC, nC,, we first note that |C, U C,| = 6, since
circuits are incomparable and no two of the 4-element circuits have an
intersection of more than two elements. Hence (C, U C,) — x has cardinality
at least 5, and contains a circuit. Hence M(S) is a geometry.

Next we show that M is, in fact, non-coordinatizable. Suppose, to the
contrary, that M has been embedded in P(3, K) for some field K. Then dd’,
which is not coplanar with aa’cc’, must intersect the plane ad’cc’ in a point e.
But since ecaa'dd' mncc'dd’, we must have eeaa’ ncc’. By a symmetric
argument, bb’ must also intersect aa'cc’ in e, but then b,b’, d, and d’ are
coplanar, contradicting the fact that bb'dd’ is a basis of M(S).

Finally we note that further members of this class of examples may be
constructed by taking the same set S and the five 4-element circuits given for
M, and then listing additional 4-element circuits (and letting all other 4-
element subsets of S remain as bases) subject to two constraints:

(i) bb'dd’ remains a basis;

(ii) no two of the 4-element circuits intersect in more than two elements.
The argument that the result is a combinatorial geometry which is non-
coordinatizable proceeds exactly as above.

The member of this class of examples which has the maximum number of 4-
element circuits is the one which has, besides the five given 4-element circuits,
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abcd, a’b'c’d’,abc'd’,ab'cd’,ab’'c'd, a’bed’, a'bc'd, and a'b'cd. If bb' dd’ were also to
be made a circuit, the resulting geometry would be isomorphic to a three-
dimensional binary affine space, AG(3,2).

The members of a fourth (and very large) class of non-coordinatizable
geometries are obtained by taking two geometries G, and G, such that there is
no field over which both G, and G, may be coordinatized, and then
constructing a geometry G, which has both G; and G, as minors. There are
many ways of constructing such a geometry G,, with perhaps the two most
natural being the direct sum of G, and G,, and the direct sum truncated to a
rank equal to the rank of G, or G,, whichever is larger.

1.5 Necessary and Sufficient Conditions
for Coordinatization

The most successful coordinatization conditions are the excluded minor
characterizations of the classes of matroids coordinatizable over certain fields.
We will discuss these first, and follow with a consideration of conditions for
coordinatizability over arbitrary fields.

If A is a class of matroids, an excluded minor characterization of A is
collection E of matroids with the property that for every matroid M, Me 4 if
and only if there does not exist NeE with N isomorphic to a minor of M.
Although E could be either finite or infinite, we are primarily interested in this
type of characterization when E is finite. It is elementary to check that 4 has an
excluded minor characterization if and only if A is a hereditary class, that is, a
class of matroids closed under the taking of minors.

The class of binary matroids is by far the best understood class of matroids,
because of its particularly simple structure.

1.5.1. Proposition. A matroid is binary if and only if it has no minor isomorphic
to the 4-point line, U, ,.

This and many other characterizations of binary matroids are given in
Chapter 2.

A particular binary matroid we will frequently refer to is F-, the Fano plane,
given by the following binary coordinatization:

S = O o
—_ o O
»—Aa-—no&..,3

g
1
1|
1

-0 = 8

d
1
|
0

S O = 8

This matroid is also sometimes referred to as PG(2, 2), the projective plane over
GF(2), and is illustrated in Figure 1.9.
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Figure 1.9. The Fano matroid, F.

The excluded minor characterization of ternary matroids was discovered
and proved by R. Reid, ¢. 1971, but never published. The result, which follows,
was published independently by Bixby (1979) and by Seymour (1979).

1.5.2. Proposition. A matroid is ternary if and only if it has no minor isomorphic
to one of

U, s, U% 5 (which is U; 5), F,, or F%.

A third excluded minor characterization, that of unimodular matroids by
Tutte (1958), stands as one of the crowning achievements of matroid theory.
This theorem is very deep, as it was first proved by way of Tutte’s Homotopy
Theorem. There are other proofs now available which are more elementary
(Seymour 1979).

1.5.3. Theorem. A matroid is unimodular if and only if it has no minor
isomorphic to one of

U, 4 F,, FE.

Another equally striking characterization of unimodular matroids was
found by Seymour (1980). He shows that every unimodular matroid may be
built up in certain ways from graphic matroids, cographic matroids, and
copies of a particular matroid called R,,.

These and several other characterizations of unimodular matroids are
discussed in Chapter 3.

There are some very interesting excluded minor characterizations for
several classes of graphic matroids. These characterizations are discussed
more completely in Chapter 2, but are included here for the sake of
completeness.

1.5.4. Theorem. (Tutte 1959). A matroid is graphic if and only if it has no minor
isomorphic to

U, s Fr F%, M(K5)*, or M(Ks,s)*-
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Here K5 and K5 5 are the Kuratowski graphs, the complete graph on five
vertices, and the complete bipartite graph on two sets of three vertices,
respectively. Also, M(G) is the polygon or cycle matroid of the graph G, and
M(G)* is the orthogonal matroid of M(G), namely the bond matroid of G. By
duality,a matroid is cographic if and only if it has no minor isomorphicto U, ,,
F,, F%, M(Ks), or M(K; ;). The excluded minor characterization of planar
graphic matroids is a very pleasing generalization of Kuratowski’s Theorem,
which states that a graph is planar if and only if it has no homeomorphic image
of a subgraph isomorphic to K5 or K3 3. A matroid is planar graphic if and
only if it has no minor isomorphic to U, 4, F,, F%, M(K;), M(K5)*, M(K; ),
M(K; ;)*, or, equivalently, if and only if it is graphic with no minor isomorphic
to M(Ks) or M(K; ;). Thus the planar graphic matroids are precisely those
matroids which are both graphic and cographic. One more interesting
subclass of the graphic matroids is the class of series-parallel matroids, which
are characterized by the excluded minors U, 4 and M(K,).

A number of interesting relations may be deduced from these excluded
minor characterizations. For example, a hereditary class is closed under
duality if and only if the dual of each excluded minor is also an excluded minor.
This is the case for each of the classes considered above, except graphic and
cographic matroids, which are duals of each other.

We can also see that a hereditary class A4 is contained in another hereditary
class 4" if and only if every excluded minor of A’ has itself some minor which is
an excluded minor for A. For example, graphic and cographic matroids are
unimodular, and unimodular matroids are binary as well as ternary.

We now turn to general necessary and sufficient conditions for coordinati-
zation. The following result of Tutte was the first such set of conditions and it
was also an important step in his proof of the excluded minor characterization
of unimodular matroids.

1.5.5. Proposition. Let M(S) be a matroid and assume that for every hyperplane
(or copoint) H of M is given a function Fy:S— K, where K is a field, so that
(1) kernel Fy = H for every hyperplane H.
(2) For every three hyperplanes H,, H,, H; of M containing a common coline,
there exist constants oy, o, 03,€K, all non-zero, such that a\Fy, +
o, Fy, +oa3Fy,=0.
Then M may be coordinatized over K. Conversely, any coordinatization of M
over K may be used to construct functions Fy satisfying (1) and (2).

In order to prove this proposition, we first need a lemma. Let W denote the
vector space of all functions from § into K, and V the subspace of W spanned
by {fy|H is a hyperplane of M}.
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1.5.6. Lemma. Let {f} be given satisfying the hypotheses of Proposition 1.5.5,
and let B={b,b,,...,b,} be a basis of M(S). Then the functions fy,
corresponding to the basic hyperplanes H,= B — b; form a basis of V.

Proof of lemma. A={fy, fu,-..,fu, is linearly independent in V¥, for
Sfu(b)#0ifand only if i = j, for 1 <i<n,1<j<n It remains to be shown
that fyespan A for every hyperplane H.

Let H be an arbitrary hyperplane of M, and let h=n—1 —|HNB|. We use
induction on A, noting that the case h =0 is trivial, since then fyeA.

Assume by induction hypothesis that f;espan A4 for all hyperplanes J such
that n—1—|JnB|<h.

Now we assume by re-indexing that HNB = {b,b,,..., b}, I=n—h—1.
Since HnB is independent, we may extend it to a basis
{by,byy...,bpa14+1,a;54,...,a,—1} of H. Then

L= {bl,bz,'--ablsal+17al+29~'-aan—Z}

is a coline of M contained in H. By choosing b’eB— L,b"eB— H', we
construct distinct hyperplanes H'=Lub’ and H” = Lubd”. Furthermore,
|HnB]=|H"nB|=1+ 1, hence H and H” are distinct from H, and f}. and
fu~are in span A. But by hypothesis (2) of the proposition, since H, H and H”
are distinct hyperplanes containing L, fyespan { fy., fy-} S span 4, complet-
ing the proof of the lemma. O

Proof of Proposition 1.5.5. For any seS, we define a linear functional L on V
by L{f)= f(s)eK for all feV. Then the mapping g:S— V* s— L, will
coordinatize M(S) if we can show that independent and dependent sets are
preserved under o (since V*, the dual space of V, is a vector space over K).
Clearly it suffices to consider maximal independent sets, or bases of M, and
minimal dependent sets.

Let {b,,b,,...,b,} = B be any basis of M(S). Then from the lemma we
obtain the basis { fy,, fu,,--- fu,} of ¥V, where fy (b;) #0if and only if i = j.
Thus L, (fy,) # 0if and only if i = j, s0 Ly, Ly,, - .., Ly, are independent in V*.

Now let {bo,b;,...,b,} be a minimal dependent set in M, k <n. Then the
independent set {b , b,,...,b,} may be extended to a basis {b;,b,,...,b,} =B
of M(S). As before, the lemma provides a basis {fy,, fu,...-, fu,} of V with
L, (fu)#0if and only if i = j. But boe{b,,b,,..., b } € B—{b;} foralli> k.
Thus L, (fy,) =0 for all i > k. Since the linear functional L, is determined by
its values on the basis { fy,, fu,,--->fn,} of V, we have L, =>¥_ oL, , where
o; =Ly (fu )/ Ly,(fu) Thus Ly,L,,,...,L, are linearly dependent in V*,
completing the proof of the sufficiency of (1) and (2).

The converse is easy to prove. If {:S — V is a coordinatization of M over K,
then for any hyperplane H, {(H) spans a subspace U which is a hyperplane of V
(that is, a subspace of dimension one less than V). Now, there is a unique (up to
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non-zero scalar multiple) linear functional f;: ¥V — K whose kernel is U, and
fu=fue{ is the desired function, since conditions (1) and (2) may easily be
checked. O

Another sufficient condition for coordinatization, due to Kantor (1975), is
that each coline has at least three hyperplanes and each rank 4 minor is
coordinatizable over a fixed prime field GF(p).

1.6. Brackets

Among the most useful general conditions for coordinatizability are the
bracket conditions. If {: M(S) — V is a coordinatization into a vector space V of
dimension n over a field K, where n=rank M, and if vectors in V are
expressed as column vectors with respect to a standard basis B, then for any
X1,Xg,---,%,€S, we define [x,,x,,...,x,]=det({x,,{x,,...,{x,). These
determinants are called the brackets of {, and are often denoted [ X], where X
is the sequence (x4, X5, ..., X,).

The following proposition is closely related to a result widely known to
invariant theorists in the nineteenth century. This result says that assigning
values to the brackets so that certain relations (called syzygies) are satisfied
determines (uniquely, up to linear equivalence) a set of vectors having the
assigned bracket values. Thus a map of S into V is determined simply by
specifying the values of the brackets arbitrarily, provided the syzygies are
satisfied. However, this classical result did not predetermine which bracket
values were to be zero.

1.6.1 Proposition. Ler M(S) be a matroid of rank n, and let [x,,x,,...,x,] be
assigned a value in the field K, for every x;, x,,...,x,€S. A necessary and
sufficient condition for the existence of a coordinatization { of M over K whose
brackets are precisely the assigned values is that the following relations (or
syzygies) be satisfied:
(1) [xy,%3,...,%,) =0ifand onlyif {x,,x,,...,x,} is either dependent in M or
contains fewer than n distinct elements.
(2) (Antisymmetry) [xy,X5,...,%X,] —(sgn 6)[X,1,X42,---»X4,] =0 for every
permutation ¢ of {1,2,...,n}, for every x,,%,,...,X,€ES.
(3) [xlax2a'--’xn] [yl’yz,"'ayn]_Z?=1[yi’x27""xn] [J’p)’z,---,)’i—b
X1, Vit 1s-sVul =0 for every xq,...,%Xu Y1,.++5 Ya€S.

Proof: We first check the necessity. Let { be a coordinatization of M(S). From
elementary properties of determinants, we see immediately that (1) and (2) are
satisfied by the brackets of {. To verify (3), we first note that the equation is
trivial unless some summand is non-zero, and hence either {x,, x,,...,x,} and
{¥1,V2,---,¥a} are both bases of M, or else for some i, {y; x,,...,x,} and
{¥1sY2s-++sVic15X1> Vit 1o---» Vu} are both bases. In fact, we may assume the
former of these, for if {y;, X,,...,%,} and {¥y,¥2,-- s ¥ic 1, X1, Vis 1o+ -5V} AIE
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both  bases, the syzygy of type (3) with [y,xs...,%,]
(V1sV2seeesVie1rX1s Vit 1r---> Vo] as first term is easily checked to
be equivalent to the original syzygy with [x,...,x,][V1,-...,.] as first term,
using antisymmetry. We now apply the non-singular linear transformation
T:V -V which maps {x; to the j-th unit vector e; of V, for each j. Let T({y;)
=w;eV, and let W be the n x n matrix whose j-th column is w;. Applying T
multiplies every determinant in (3) by the same constant, hence (3) is equivalent
to

(det I)(det W)

n
= Z det(w,e,,...,e, det(W;, Wy,...,W,_ €, Wii1,...,W,)

Z wyi(— 1)t det Wy, (1.1)

where W,; is the minor of W with row 1 and column i deleted. But equation
(1.1)isjust the Laplace expansion of det W by its first row. Since T is invertible,
the syzygy (3) is verified.

We now prove the sufficiency. We assume that [x, x,,..., x,] is given as an
element of K for every x,, x,,...,x,€S so that the syzygies are satisfied. We
must construct a coordinatization { whose brackets are equal to the assigned
values, that is

det ({xy, (x5 ... 0x) =X, X250 -5 X, ] (1.2)

Let Y={y;,y5,.-.,V,} be a basis of M(S). Then [Y]#0, and we may
normalize the bracket values by dividing each of them by [Y]. Since the
syzygies are each homogeneous, they are still satisfied by the normalized
bracket values, and thus we may assume [Y] = 1. We now define the i-th
coordinate of the vector {(x) by {(x) = [V 1, Var- s Vi 15X, Vis 15+ - - » Vul- We will
now show that {:S — K" is the desired coordinatization. Actually, it suffices to
show that (1.2) holds for all x,x,,...,x,, for then the fact that { is a
coordinatization follows from syzygy (1).

Let x,,x,,...,Xx,€S be arbitrary. We may assume that these n elements are
distinct, for otherwise [x;,x,,...,x,] =det({x,,{x,,...,{x,)=0. Let X =
{xy,X3,...,X,} and k=] X — Y|. We now show (1.2) by induction on k. If k =
0 or 1, then (1.2) holds by the definition of {, so suppose k > 2. Then, using
the induction hypothesis,

[x1y]= 'Z1 i Xase e s X Ve 5 Vic 15 X1, Vit 15+ 05 Yud

= 3 4oty Lo L) et (e D 61 D1 )
= det({ X)det({Y)
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since we have already verified that determinants satisfy the syzygy (3). But [Y] =
det({Y) =1, hence we have proved (1.2). We may reverse the normalization
by multiplying the first coordinate of every vector {x by the original [ Y], thus
completing the proof. |

An immediate corollary is one of the characterizations of binary matroids
(see Chapter 2).

1.6.2. Corollary. A matroid M(S)is binary if and only if for every pair of bases
X and Y of M and x,e€X, there are exactly an odd number of y,€Y such that
Y —y,+x; and X — x, + y; are both bases.

Proof. If K = GF(2), the field of two elements, then according to syzygy (1),
we must assign [X] =1 if X is a basis, and [ X] = 0 otherwise. Syzygy (2) is
then always satisfied, and syzygy (3) is satisfied if and only if M(S) satisfies
the stated exchange condition. 0

The above proposition is the foundation of the theory of the bracket ring, a
tool which has proved useful in the study of several coordinatization
questions, especially those relating to transcendence degree of coordinatiz-
ations, unimodular coordinatizations, and coordinatizations of rank-
preserving weak-map images. The bracket ring is constructed from a
polynomial ring, with an indeterminate for each bracket, by dividing by the
ideal generated by all polynomials corresponding to the syzygies. Thus the
‘brackets’ in the bracket ring are forced to satisfy the syzygies, and Proposi-
tion 1.6.1 now says that a coordinatization of M(S) over K is equivalent to a
ring homomorphism of the bracket ring into K having no non-zero bracket in
its kernel. This in turn is equivalent to the existence of a prime ideal in the
bracket ring containing no bracket of a basis of M(S). Thus many coordinatiz-
ation problems may be transformed into ring-theoretic questions involving
the prime ideal structure of the bracket ring (see White 1980).

An idea that is similar in spirit to the bracket ring was developed
independently by Vamos (1971). He starts with an n x|S| matrix of
indeterminants which he wishes to turn into a coordinatization matrix for
M(S). Then, in the appropriate polynomial ring, he considers the ideal I
generated by all n x N determinants which correspond to non-bases of M, and
the multiplicatively closed subset T generated by all n x n determinants which
correspond to bases. Then M(S) is coordinatizable if and only if TnI=¢.
Indeed, similarly to the bracket ring, a coordinatization corresponds to a
homomorphism of the polynomial ring whose kernel contains I and does not
intersect T, and hence to prime ideals which contain I and do not intersect T.

The Vamos ring has recently been further developed and its algebraic
relation to the bracket ring made explicit by Fenton {(1981). In particular, he
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obtains a ring which is a universal coordinatization ring in a stronger sense
than either the bracket ring or the Vamos ring.

1.7. Coordinatization over Algebraic Extensions

The object of this section is to prove the following proposition of MacLane,
which appeared in one of the earliest papers (MacLane, 1936) in matroid
theory. MacLane only considered the case of characteristic zero, although the
extension to arbitrary characteristic is straightforward.

Let K be a prime field, that is, K is the field of rationals of GF(p) for some
prime p. The proposition says, roughly, that any field L which is algebraic of
finite degree over K is the unique ‘minimal’ coordinatizing field of some
matroid.

1.7.1. Proposition. Let L be a finite algebraic extension field of K. Then there
exists amatroid M of rank 3 which may be coordinatized over L, such that if L' is
any extension field of K which permits a coordinatization of M, then L' contains a
subfield isomorphic to L.

We first prove the following lemma.

1.7.2. Lemma. Let N(S) be a matroid of rank 3 with a given coordinatization {
over a field L, which includes among its image vectors
(1,0,0),(0,1,0),(0,0, 1)%,(1,1,1),,(1,0,a) and (1,0,b)' for any a,beL. Then we
may extend N to a matroid coordinatizable by an extension of { such that the
image vectors in such an extension must include (1,0,a + b), (1,0, ab), (1,0, — a),
or (1,0,a™ Y if a # 0, (in each case up to scalar multiple), whichever we prefer.

Proof.
c d e f y z g h i s t u vow
1 0 0 1 t 1 1 1 0 1 0 1 1 1
6 1 0 1 0 0 I 0 1t 1t 1 0 a 0
6 01 1 a b 0 1 -1 a-b a+b 0 ab

Let us denote the elements of S with the given image vectors ¢, d, ¢, f, y, and
z, respectively. Let us extend N by successively adjoining
gecdnef,hedf nceicghnde,sedynef,tezgnde,uest nce,veyincd, wety
~ce. Then each of these elements must be assigned the coordinates shown up
to scalar multiple in any extension of {. Adjoin an additional element r on ce,
and construct the element u as above with r in place of z, and then identify u
with ¢. This forces the coordinates (1,0, — a)' to be assigned to r. A similar
construction yields the multiplicative inverse (1,0,a ) if a # 0. If not all of the



Coordinatizations 19

four constructed vectors are desired, suitable restrictions of the constructed
matroid may be employed. O
1.7.3. Comment. The constructions we have just given are a ‘geometric’
analog of the algebraic operations of addition and multiplication, and their
inverses, and are of considerable importance in the construction of coordinat-
izations of Desarguesian projective planes. The affine diagrams of these
constructions, Figures 1.10 and 1.11, are illuminating. We let cd be the line at
infinity, and for any vector with first coordinate equal to 1, we may take its last
two coordinates as affine coordinates. We have reversed the order of these two
coordinates in the following diagrams, to correspond to ordinary Cartesian
coordinates. In Figure 1.10, gz and su are parallel lines (meeting at the point ¢
on the line at infinity). Their slope is — 1/b. In Figure 1.11, gh and vy are
parallel, of slope — 1, and gz and vw are paraliel of slope — 1/b.

Figure 1.10. Geometric addition.

s f
g (a,h) 4,1
(eX))

e
00 @0 (0 (ab0)
Figure 1.11. Geometric multiplication.

v
(0,0)

g
(o,l)

e h z y w
(0,0} (1,00 (b,0){a,00 f{ab,0)

Proof of Proposition 1.7.1. From field theory, since L is either finite or of
characteristic zero, we know that there exists a primitive element a, that is, ae L
such that L = K[o]. Let p(x) be the minimal polynomial of « over K. We will
now construct a matroid M which is coordinatizable over L, such that a root of
p(x) is required in any extension field L' of K over which it may be
coordinatized. The proposition will then follow from standard field theory.

Beginning with the five vectors (1, 0, 0), (0, 1,0),(0,0, 1), (1,1, 1),(1,0, 1) in a
three-dimensional vector space V over L, we can construct a vector (1,0, a)' for
any integer a in K, by repeatedly adding 1 to itself and by using additive
inverse. Since K is a prime field, we may assume that p(x) has integral
coefficients.
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Now we adjoin (1,0,a), and by successive use of the addition and
multiplication constructions, adjoin all elements necessary to construct p(«).
But since we are working in a vector space over L, p(a) = 0, thus the last vector
in our construction, (1,0, p(«))!, is in fact (1,0,0). We now check that the
matroid M consisting of all the vectors used in the construction is the required
matroid. It has rank 3 and is a priori coordinatizable over L. Let L’ be an
extension field of K over which M may be coordinatized. By putting this
coordinatization into projective canonical form, we may assume that
(1,0,0),(0,1,0),(0,0, 1), and (1, 1, 1) (of the original coordinatization over L)
are assigned the same coordinates over L. But then our addition construction
forces (1,0, a)' to be assigned the same coordinates over L’ for any integer ac K.
Finally (1,0, &', since it is collinear with (1, 0,0)" and (0,0, 1), must be assigned
coordinates (1,0, ), for some feL’. But we have all the vectors necessary for
the construction of (1, 0, p(B))', and we know that this element of our matroid is
equalto(1,0,0). Hence B is a root of p(x), and since p(x) is irreducible, standard
field theory tells us there is an isomorphism of L into L', by taking the identity
map on K and mapping « to f. O

1.7.4. Remark. The construction of M was accomplished inside a vector
space over L in order to assure the coordinatizability of M over L. Although
the arithmetic constructions can be carried out on an abstract matroid, there
may be additional dependencies not accounted for in the construction which are
necessary for coordinatization over L. As an example of this, if p(x) = x% +
x+1, then we would use the vectors (1,¢,0) and (0,1, —«?)' in our
construction, but a? + « + 1 = 0 forces these two vectors to be collinear with
(1,0,1), since &> — 1 = (o — D> + a + 1) =0.

These constructions may also be used to provide examples of matroids
coordinatizable only over certain characteristics. Example 1.2.3 may be
regarded as the geometric construction of the arithmetic statement 2 # 0.

1.8. Characteristic Sets

Let P = {p:p is a prime number } U {0}. The characteristic set C(M) of a finite
matroid M is the subset of P consisting of the characteristics of fields which
coordinatize M. Ingleton (1971) raised the problem of determining which
subsets of P are characteristic sets. The existence of unimodular and non-
coordinatizable matroids shows that P and ¢ are characteristic sets. Rado
(1957) proved that 0e C(M)=- C(M) is cofinite, i.c., C(M)} includes all but a finite
number of primes. Vamos (1971) showed that 0¢ C(M)= C(M) is finite. Reid
{unpublished) showed that all cofinite subsets of P which include O are
characteristic sets, leaving open only the question of finite characteristic sets.
Recently Jeff Kahn (1981) has completely settled the problem by proving that
all finite subsets of P which do not include 0 are characteristic sets.
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1.8.1. Proposition. If Q < P, then Q = C(M) for some finite matroid M if and
only if either Q is cofinite and includes 0, or Q is finite and excludes 0.

Kahn’s proof for finite subsets Q is rather interesting. If O = {p,p>,..., Pi}>
let N=p,p,...p. We wish to construct a matroid using the methods of the
previous section (but on abstract matroids rather than within a particular
vector space), in such a way that the vector (1,0, N)! must be used; we then
identify that point of the matroid with the point assigned the vector (1,0, 0)',
thus forcing the algebraic relation N = 0. Kahn actually works with a multiple
of N which is of the form 2* — 1. This idea is certainly not new; however there
are several difficulties to overcome. For example, as intermediate powers 2/ are
formed on the way to 2% some of the primes in Q may divide 2/ — 1. Then
(1,0,2/) = (1,0, 1)!in a coordinatization over such primes, but we want these to
be distinct points. Another difficulty is that ‘random’ collinearities such as
mentioned in Remark 1.7.4 may occur over one prime p,eQ but not over
another p;eQ. Kahn has devised ingenious remedies to these difficulties. For
example, he may require three lines, [, 1,, I, to be coincident at some point x,
but the point x is collinear with another line [ over p; but not over p;. He then
replaces the point x by a Desargues configuration, as shown in Figure 1.12,
which forces the coincidence of I, 1,, 15 in any coordinatization, but since x is
no longer a point in the matroid, its collinearity with / is no longer an issue.

Figure 1.12. Kahn’s trick.

The actual construction of a reasonably small matroid with a given finite
characteristic set is far from easy, if at least two primes are involved. Lazarson
(1958) provided the construction for singletons {p}. Reid (unpublished)
constructed a matroid for {1103,2089}(see Exercise 1.6).

1.9. Coordinatizations over Transcendental Extensions

We might logically ask, after having considered coordinatizations over
algebraic extensions of fields, when a matroid has a coordinatization over an
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arbitrary extension of a given field. Our first result, due to MacLane (1936) is
that it is never necessary to use a non-algebraic extension.

1.9.1. Proposition. Let K be a field and M(S) a finite matroid which is
coordinatizable over an extension field L over K. Then there exists an algebraic
extension field L' over K such that M is coordinatizable over L'.

Nevertheless, coordinatizations using transcendentals are very useful.
Transversal matroids may be characterized using transcendental coordinati-
zations (see Theorem 5.4.7). We have seen in Chapter 7 of White (1986) that
coordinatizations for many of the matroid constructions may be conveniently
obtained using transcendentals, including principal extension, principal lift,
truncation, Dilworth truncation, and matroid union.

It is often useful to coordinatize a matroid using transcendentals, and then
later specialize the transcendentals. Let M(S) be coordinatized over L=
K(xy,%3,...,Xx,) where x,, x,,..., x, are transcendental over K, and suppose
that every entry in the coordinatization matrix is in the subring R=
K[x,%5,...,x,] of L. That is, {:S— L"{(S)< R"< L". Then if L' is any field
extension of K, we can define a ring homomorphism f:R — L’ by specifying
the images of x,, x,,..., x,, and mapping K identically to K. If f":R* —(L')"is
the map induced by applying f coordinatewise, and if the composition "~ is
a coordinatization of M, we call this coordinatization a specialization of {.
Analogous definitions may be made if we take R to be Z[x,, x,,..., x,] where
Z is the ring of integers; then a coordinatization may be specialized to
coordinatizations of distinct characteristics.

A number of matroids have the interesting property that they possess a
coordinatization which is universal with respect to such specializations.

1.9.2. Proposition. Let M be a unimodular matroid and B a basis of M. Then M
has a coordinatization (o over Z[x,,X,,...,X,], for appropriate m, which is in
echelon form with respect to B, such that every coordinatization { of M over any
field, with { in echelon form with respect to B, is a specialization of {,.

Proof. Let (I|A4) be any unimodular coordinatization of M over Z, in echelon
form with respect to B. We obtain {, by multiplying the rows and columns of 4
by distinct indeterminants x,, x,, . .., X,,. Now if { is any coordinatization of M
over a field K, in echelon form with respect to B, it is projectively equivalent to
(I, A) by Proposition 1.2.5, and hence may be obtained from (I, 4) (with entries
viewed as in K) by scalar multiplications on the rows and columns of 4. Hence
{ is a specialization of {,. O

It is easy to check that principal transversal matroids (Brylawski 1975, White
1986, Proposition 7.4.2, part 3) also have such universal coordinatizations, and
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so do many other matroids. It is not known, however, whether the class of
transversal matroids always have such universal coordinatizations.

1.9.3. Example. The 9-point planar matroid illustrated in Figure 1.13 is
transversal with the given coordinatization using 18 indeterminates corres-
ponding to its maximal transversal presentation:

X, X3 X3 X7 Xg Xg O 0 0
x4 X5 X¢ O 0 0 x5 x4 Xg5
0 0 0 xy0 X3 X12 X6 Xy7 Xig

Figure 1.13. A 9-point transversal matroid.

However, this coordinatization cannot be specialized to any coordinatization
in which the three non-trivial lines are coincident in the ambient space. But this
matroid has another coordinatization where y,, y,, y; are chosen to make the
three 3 x 3 minors dependent. Although y,,y,, y; may be written as rational
functions in the x,’s, denominators may be cleared to obtain a representation
in Z{x,,x,,...,X,4] which is universal with respect to specializations:

Xy Xz X3 X7 Xg  Xg X3 Xzq4 Y3
X4 X5 Xg Xz1 Xz Y2 X33 Xy4 Xys
X109 X20 V1 Xi0 X111 X132 X316 X317 X1

1.10. Algebraic Representation

An interesting alternative to coordinatization (linear representation) of a
matroid is algebraic representation. Let K be a field of finite transcendence
degree over the field k. It is well-known (MacLane, 1938) that K forms a
matroid by defining independence to mean algebraic independence over k.
This provides another interesting special class of matroids, and raises the
natural problem of determining when a given matroid M is isomorphic to such
an algebraic independence matroid. We assume that M is finite.

Thus we say that {:S— K is an algebraic representation of M(S) over k if
A < Sisindependent in M if and only if {| , is injective and {(A) is algebraically
independent over k. Equivalently, by restricting our attention to the subfield
K’ of K generated by {(S), an algebraic representation { of M may also be
characterized by: B < S is a basis of M if and only if { | is injective and {(B)is a
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transcendence basis of K'/k. If there exists such an algebraic representation of
M over k, we say that M is algebraic over k.

1.10.1. Proposition. If M is coordinatizable over k, then M is algebraic over k.

Proof. Let{:S— V bea coordinatization of M over k. Pick a basis {b;}{., of V
and an algebraically independent set {¢;}}_ ; inan appropriate extension K of k
and define ¢:V - K by ¢(3 ;b)) = ot Then the composition ¢o{ is the
desired algebraic representation of M, as the reader can easily verify. [

The converse is not true, as shown by Counterexample 1.10.6, but in
characteristic 0 the converse is true.

1.10.2. Proposition. (See, for example, Lang 1965, Chapter 10, Proposition 10)
If M is algebraic over a field k of characteristic O then M is coordinatizable over
some finite transcendental extension of k.

1.10.3. Proposition. (Lindstrém 1985a) If M is algebraic over the transcend-
ental extension k(T) of k, then M is algebraic over k.

1.10.4. Corollary. If M is algebraic over a field k of characteristic O then M is
coordinatizable over k, where k is the algebraic closure of k.

1.10.5. Corollary. (Lindstrém 1985a) If M is algebraic over k then M is
algebraic over the prime field of k.

1.10.6. Counterexample. (Lindstrém 1985b) The non-Pappus matroid (see
Figure 1.7 is algebraic over any finite field.

As we have previously noted, the non-Pappus matroid (Figure 1.7} is non-
coordinatizable over every field, and is also non-algebraic over every field of
characteristic 0, by Corollary 1.10.4.

Several examples of matroids non-algebraic over every field are known,
including the non-Desargues matroid (Lindstrom 1984) and the Vamos cube
(Ingleton and Main 1975). See Figures 1.6 and 1.8.

In analogy with characteristic sets C(M) for linear representation of
matroids, as discussed in Section 1.8, we may consider characteristic sets for
algebraic representation. Thus for a matroid M, we define the algebraic
characteristic set, A(M), to be the subset of P = {primes} U {0} consisting of the
characteristics of fields over which M has an algebraic representation.

The results above show that: (1) for all matroids, C(M)< A(M); (2)
0e A(M)=0eC(M); (3) 0e A(M)=> A(M) is cofinite. The only known cofinite
algebraic characteristic sets are P and P — {0}(e.g., non-Pappus). All sin-
gletons {p} except {0} are algebraic characteristic sets, specifically for the
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Lazerson matroids, which, as we have noted, also have {P} for their linear
characteristic sets (Lindstrom 1985c). A number of finite, non-singleton,
algebraic characteristic sets are known (Gordon 1987).

It is not hard to show the following proposition (see Welsh 1976, p. 187).

1.10.7. Proposition. If M(S) is algebraic over F and A < S, then the contraction
M/ A is algebraic over a transcendental extension of F, and hence over F.

1.10.8. Corollary. If M is algebraic over F, then so is every minor of M.

An obvious question then is to investigate excluded minor characterizations
for algebraic representation over various fields. Very little has been done on
this problem.

It is known (Welsh 1976) that the class of algebraic matroids is closed under
truncations and matroid unions. The obviously important question of
whether it is closed under duality is still open.

We close this section with some examples. The set {x,y,z,x +y,x +z,
y+z, x4+ y+z} in F(x,y,z) algebraically represents the Fano matroid (see
Figure 1.9) if F is of characteristic 2, and the non-Fano matroid (see
Figure 1.14) otherwise, where x, y, and z are algebraically independent
transcendentals over F. In both cases, the algebraic representation is just the
image of a linear representation via Proposition 1.10.1. On the other hand,
{x,y,z,xy,xz,yz,xyz} represents the non-Fano matroid over all fields F.
Ingleton (1971) combined these two over F of characteristic 2 to provide a
matroid with 11 elements which is algebraic over F of characteristic 2 but is
linear over no field.

Figure 1.14. The non-Fano matroid.

Finally we provide an algebraic representation of the non-Pappus matroid
over GF(2), due to Lindstrom (1983). As we have noted, this matroid is actually
algebraic over any finite field. With the points denoted as in Figure 1.7, we let

GU=&HE=X+%H$=%&®=;¥;+x+%&$#z

a®=;§;+x+xam=xzaw=§%%+xxan=yz

It must be arduously checked that every triple of collinear points is mapped by
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{ to algebraically dependent elements of GF(2)(x, y,z), and that every non-
collinear triple is mapped to algebraically independent elements.

1.1.

1.2,

14.

1.5,

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

112

1.13.

Exercises

If M is coordinatizable, characterize the hyperplanes of M in terms of the
placement of zeros in coordinatizations of M.

Characterize the circuits of a vector matroid, and show directly that they satisfy
the various circuit elimination axioms.

Construct a matroid M requiring the golden mean, « =(1 + \/g)/Z, to be an
element of F if F is a subfield of R over which M may be coordinatized.
Verify that the symmetric subset basis exchange axiom holds for coordinatizable
matroids. This axiom states: for all B, B’, A such that Be#, B'e%, A < B, there
exists A' = B’ such that (B— A)uA'eB, (B'— A)uAeB.

Prove algebraically, by directly trying to construct a coordinatization, that the
non-Desargues configuration and the Vamos matroid are both non-
coordinatizable.

Construct a matroid which may be coordinatized over the field K if and only if the
characteristic of K is 1103 or 2089. (Hint: 22° — 1 = 1103-2089-233.)

Let R, , be the binary matroid with binary coordinatization as shown. Show that
R, is self dual. Show that all minors of R, are either graphic or cographic.

1000011100
6100001110
0010000111
0001O0T1O0O0T1°1
0000111001

Prove that principal transversal matroids have coordinatizations which are
universal with respect to specialization, for coordinatizations in echelon form
with respect to the canonical basis.

Prove that if F, or F* is coordinatizable over the field K, then K must have
characteristic 2.

Prove that F* has, up to isomorphism, only two distinct binary rank-4 1-element
extensions, one of which is AG(3, 2). Each of these two matroids is isomorphic to
its own orthogonal matroid.

Construct a matroid which may be coordinatized over characteristic p, for a
given prime number p, but over no other characteristic.

Let M be the 10-element matroid coordinatized by the given matrix over Q.
Determine an algebraic representation of M over GF(2).

1 00 110 1 1 0 1
6010 101 —1 0 11
001 011 0 -1 -1 1

(Ingleton and Main 1975) Show that the Vamos matroid (Figure 1.8) is not
algebraic.
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Binary Matroids

JC. FOURNIER

Binary matroids play an important theoretical role, partly because they were
the first class of coordinatizable matroids to be completely characterized, but
also because the class of binary matroids contains the unimodular matroids
and the graphic matroids, two classes fundamental to matroid theory. There
are numerous characterizations of binary matroids, very different in nature,
and expressive of the richness of the concept.

2.1. Definition and Basic Properties

2.1.1. Definition. A matroid is binary if it is representable (coordinatizable)
over the two-element field GF(2).

According to the general definition of representable matroids, (see Chap-

ter 1), a matroid M(E) on a finite set E is binary if there is a mapping « of E
into a GF(2)-vector space V such that a subset X < E isindependent in M(E) if
and only if the restriction of # to X is injective and the set {a(x)| xe X } of vectors
in V is linearly independent. The mapping « is then called a binary
representation of the matroid M(E).
2.1.2. Example. Denote by U, , up to isomorphism, the matroid on a set of n
elements, in which the bases are those subsets which have r elements. Then
U, , is binary. (This matroid is identified with the projective line over the field
GF(2).) On the other hand, U, , is not binary; this matroid, which consists of
four geometric points on a line, is a typical non-binary matroid, and serves to
characterize the binary matroids, as we shall see later.

2.1.3. Proposition. If a matroid M is binary, each of its minors is binary.

2.1.4. Proposition. If a matroid M is binary, its orthogonal matroid M* is
binary.
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These propositions are special cases of general theorems concerning
matroids representable over a field. But we can prove them directly. The first is
quite trivial; the second follows from the equivalence of conditions (0) and (6)
in Theorem 2.2.1, below.

We will use A to denote symmetric difference of sets.

2.2. Characterizations of Binary Matroids

2.2.1. Theorem. The following are equivalent conditions concerning a matroid
M(E):
(0) M(E) is binary.
{1) For every basis B and every circuit C, if we let C(x) denote the fundamental
circuit formed by an element xe C\B with respect to the basis B,

C= A C{x),

xeC\B

that is, C is the mod 2 sum of those circuits.

(2) Given any k circuits C,,C,,...,C,, their symmetric difference
C,AC,A - ACy is a disjoint union of circuits (perhaps empty).

(3) Given any k circuits C,,C,,...,C,, their symmetric difference
C,AC, A --- AC, is either empty, or it contains a circuit.

(4) Given any two distinct circuits C,, C,, then C{ A C, contains a circuit.

(5) Given any two circuits C,, C,, which form a modular pair, where C, and C,

are distinct but not disjoint, then C; A\ C, is a circuit.

(6) For every circuit C and every cocircuit (or bond) C*,|CC*]| is even.

(7) M(E) contains no minor isomorphic to the matroid U, , (the geometry of

four points on a line).

(8) Every coline is contained in at most three copoints (hyperplanes).

(9) Given any two bases B, and B,, and an element yeB,, there are an odd

number of elements xe B, such that B, — x + y and B, — y + x are bases.
(10) Given any two distinct circuits C, and C,, and two elements a and b of
C, N C,, there is a circuit C3 = (C,uCy)\{a,b}.

Conditions (1) through (4), which appear in various forms in Whitney (1935),
Rado (1957), Tutte (1965), Lehman (1964), and Minty (1966), express
characteristic properties of the cycle space of binary matroids. Condition (5),
concerning modular pairs of circuits, is due to N.L. White (1971). Condition (9)
expresses a property of ‘syzygies’ due to G.-C. Rota and C. Greene, as
described in the proof of Corollary 1.6.2. Condition (10), more recent,
strengthens the axiom of elimination between two circuits in the form of an
axiom of ‘double elimination’ (due to J.-C. Fournier).

By Proposition 2.1.4, each of the conditions of the theorem, when applied to
the dual matroid M*(E), is also a property characteristic of binary matroids.
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Thus, by duality, condition (8) of the theorem corresponds to the Tutte (1965)
condition: every line has at most three points (‘line’ and ‘point’ are here taken in
the sense of Tutte 1965), a condition which is expressed somewhat differently
by condition (5) of the theorem (we see the duality between conditions (8) and
(5) again in the proof of the theorem). Condition (6), due to Minty, is of
particular interest in that it is identical to its own dual condition: we say it is
self-dual.

Conditions (7) and (8) concern excluded configurations. They can be
interpreted in the language of lattices. For example, condition (7) gives the
following property of the lattice of flats of the matroid: every interval of length 2
has at most five elements.

The following proof of the theorem makes use of some minor technical
results concerning modular pairs of circuits. Since these results are not of
immediate concern in the context of binary matroids, they are relegated to an
appendix to this chapter.

Proof of the theorem. We will show first of all the equivalence of conditions (1),
(2),(3),(4),(5), (6),(9), and (10), (those which involve circuits) by establishing the
implications

3)=Q2)=4)=(10)=(5)=(1)=(6)=(9)=(6)=(3).

We then show the equivalence of these conditions with (0), by proving
(3)=(0)=(4). Finally we show the equivalence with (7) and (8) by proving
(0)=>(7)=>(8)=(0).

3)=(2):

If the set C; AC, A --- A C, is not empty, it contains a circuit D,, and we
have

(C,AC, A AC)\D,=CyACyA - AC,AD,,

a set which in turn, if it is not empty, contains a circuit D, disjoint from D,, and
we have

(C,AC, 0 AC,AD)\D,=CyACy A AC,AD, AD,.

The sets under consideration being finite, we have thus a finite number of
mutually disjoint circuits Dy,..., D, such that

C,AC, A AC,AD, A AD =,

and thus such that C, AC, A --- AC,= D, + --- + D, (disjoint union).
@)=
This is trivial, by the observation that C, A C, # (J because C; # C,.
4)=(10):
Trivial.
10)=(5):
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Given a modular pair of distinct circuits C; and C,, and an element
aeC;nC,, we know in general that there is a unique circuit C; such that
C; €(C, UCH\{a}, and that moreover, C; 2 C; A C, (see appendix). Thus, in
this case if C; # C, A C,, the existence of an element be C;\(C; A C,), that s,
such that be C; " C, and beCj;, and the uniqueness of C; contradict condition
(10). Thus C3;=C, A C,.

(5)y=(1».

We reason by induction on the number of elements in the set C\B. If | C\B| =
1, the required condition is trivial. Suppose then that |C\B| > 2. There exist
two circuits C; and C, forming a modular pair, such that C; #C,,
CinCy# ¢, and C; AC,<=C (see appendix). Since, according to (5),
C, A C, is a circuit, we have in fact C = C; A C,, and consequently the sets
C,\B and C,\B partition C\B. Furthermore, since [C,\B|<|C\B| and
|C,\B| <|C\Bj|, we have, by the induction assumption,

Ci= A Cx) and C, A C(x),

xeCy\B xeCy\B
whence

C=C,ACy= A C(x).
xeC\B

(1)=(6)

Given any cocircuit (bond) C* of a matroid, there exists a basis B such that
[BAC*| =1, as it is easy to see. Let BAC* = {y}. For any clement x¢ B we
have yeC(x) if and only if xeC* (C* is the fundamental bond containing y,
relative to the cobasis E\B*)". Consequently, C(x) C* = (J or {x, y}. Hence
the set

CmC*=< A C(x))r\C*= A (C(x)n C*)

xeC\B xeC\B

is of even cardinality, being the symmetric difference of sets of even cardinality.
6)=(9):

Note that in (9), the expression B; — x + y means (B;\{x})u{y}. When
ye B, the condition (9) is trivially verified, because in that case x and y must be
equal. So suppose that y¢B, and denote by Cp (y) the fundamental circuit
formed by y with respect to the basis B, and by C¥,(y) the fundamental
cocircuit formed by y relative to the cobasis E\B,. It is easy to show that
B, — x + yis a basis if and only if xeCy (y), and similarly that B, —y+ xisa
basis if and only if xe C%,(y). Since the set Cg (v) " C§,(y) has an even number of
elements, and moreover has only the element y notin B, [as does Cg (y)], there

*In general, in a matroid M(E), given a basis B, we have the following principle of
reciprocity between circuits and cocircuits which is, moreover, easy to prove: for any
clements xe E\B and yeB, ye C(x)<>xeC*(y).
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are thus an odd number of elements
xeB; N Cg (»)n CE, (),

that is, of elements x satisfying condition (9).

9)=(6):

Let C and C* be any circuit and cocircuit, respectively. We can assume they
have a non-empty intersection, and let yeCnC*. Thereisa basis B, o C —y
and a cobasis BY > C*—y; let B, = E\B}. Thus we have C= Cy(y), the
fundamental cycle of y with respect to By, and C* = C% (), the fundamental
cocycle of y with respect to E\B,. Condition (9), applied to By, B,, and y,
taking into account the necessary and sufficient conditions given in the
preceding proof in order that B, — x + y and B, — y + x be bases, shows that
B, Cg,(y)nC%,(y}! is odd, and, on adjoining the element y, |Cp,(y) " CE,(»)| =
|CC*| is even.

6)=(3):

If the set A =C; A --- A C, were non-empty and independent, there would
exist a cocircuit C* such that |C*nA]=1, as it is easy to see (consider a
fundamental cocircuit relative to a cobasis disjoint from A4). We then reach a
contradiction because C*N{(C,; A ---AC)=(C*nC)A---A(C*NC,) is a
set of even cardinality, the sets C*n C, all being even.

(3)=(0):

In the GF(2) vector space Z(E) of subsets of the set E (addition in this space
being symmetric difference, and scalar product being trivial), let I' be the
subspace spanned by the circuits of the matroid M(E). For any element x€E,
let ax) be the congruence class of x modulo I' in Z(E). There is no difficulty
in showing that the map « of E into the GF(2) quotient space V =Z(E)/T
is a binary linear representation of M(E) (see the definition).

(0)=(4):

Let o be a binary representation of M(E) in a vector space V over GF(2).
Given any circuit C in M(E), we show we have the ‘dependence relation’
Y cecx) =0. Given any two circuits C; and C,, by forming the sum of the
corresponding dependence relations we find Y ¢, ac, #(X) = 0, a relation which
shows that «(C, A C,)isdependentin V and thus that C, A C, is dependent in
M(E) and must contain a circuit.

0)=(7:

This is an immediate consequence of Proposition 2.1.3, and of the fact that
the matroid U, , is not binary. [We see, for example, that it does not satisfy
condition (4).]

(7)=(8):

If there were to exist in M(E) a coline L contained in four hyperplanes
(copoints) H, H,, H,, H,, there would be a minor M(H, VH,UH;UH,)/L
isomorphic to U, 4.
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(8)=(0):

In fact we will show that (8) = (5)*, the dual of condition (5). This is sufficient
because if M(E) satisfies (5)*, that is, if M*(E) satisfies (5), then, as we have shown
above [equivalence of (5) and (0)], M*(E) is binary and so M(E) is too by
Proposition 2.1.4. Let C¥ and C%¥ be two cocircuits in M*(E), forming a
pair and such that C¥ # C% and C¥~C% # . The hyperplanes H, = E\C%
and H, = E\C% in M(E) have thus a coline L as intersection (see appendix),
and we have H,UH, # E. Since there is at most one other hyperplane
containing L, (E\(H, VH,))vL=E\(H, A H,) is a hyperplane of M(E),
whence, on looking back at the dual, C¥ A C% is a circuit in M*(E). This
completes the proof of the theorem. O

The proofs of equivalence we have given are all direct and make no appeal to
other theorems concerning the representation of matroids. The general
representation theorem of Tutte (Proposition 1.5.5) would, for example, have
given directly the implication (5)=>(0). In the same way, the ‘scum theorem’
(see White 1986, Theorem 8.4.1) would give directly the equivalence of
conditions (7) and (8), these conditions being interpreted in the language of
lattice theory, as indicated above for condition (7).

Finally, we note that one can see directly that the matroid U, 4, that unique
smallest non-binary matroid, in the sense of condition (7), is not binary,
because the projective line over the field GF(2) has only three points, whereas
U, 4 has four points.

Remark. Tt follows from condition (1) that a binary matroid is completely
defined by the fundamental system of circuits relative to any one basis. This is
false for arbitrary matroids, as the following example illustrates: let M be the
matroid of the (muiti-) graph G of Figure 2.1, with edges numbered 1 to 4, and
let P be the matroid U, , on the set {1,2,3,4}. Then M and P both admit
B={1,2} as basis, and have the same fundamental system of circuits with
respect to B, thatis, C(3) = {1, 2, 3}, C(4) = {1, 2,4}. The matroids are, however,
different, one being binary (that is, M, which is graphic, concerning which, see
below), the other not, as we have already seen.

Figure 2.1. A multigraph.

g

4

2.3. Related Characterizations

Certain of the conditions characterizing binary matroids in theorem 2.2.1 can
be weakened.
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Condition (1) can be stated as applying to one single basis (Las Vergnas
1980). It becomes:

(1') There is a basis B such that for every circuit C,
C= A C(x).
XeC\B

In the case of connected matroids, condition (4) can be stated as applying
only to those circuits which contain a given element in E (Bixby 1974). This
comes from the fact that a connected binary matroid is determined by those
circuits which contain a given element in E. Thus if M(E) is connected, we have
the following characterization:

(4") Let e be an element in the set E. Given any two distinct circuits C,, C, not
containing e, then C, A C, contains a circuit.

Condition (6) can be weakened as follows (Seymour 1976):

(6') For any circuit C and any cocircuit C*, |CnC*| # 3.

The last following characterization is stated in terms of a new property of
circuits (Fournier 1974b). We say that a circuit C, distinguishes circuits C, and
C, if C,\C, # C;5\C,. Then, a matroid is binary if and only if for any three
circuits C,, C,, C5, such that C, nC,nCy # &, there is at least one of the three
circuits which distinguishes the other two.

2.4. Spaces of Circuits of Binary Matroids

When a matroid M(E) is binary, the disjoint unions of circuits of M(E) form,
with symmetric difference as operation, a group of subsets of E [see condition
(2) of Theorem 2.2.1], which is in fact a vector space, a subspace of the GF(2)
vector space of subsets of E. This group is the space (or group) of circuits of
M(E). It is spanned by the circuits of M(E), which are the minimal elements
with respect to inclusion of subsets of E. Conversely, given a set of subsets of E,
which form a group with symmetric difference as operation, it is easy to verify
that the minimal members of this group are the circuits of a binary matroid in
E. The matroid which defines in this way the space of circuits of a given
matroid M(E) is the matroid M(E) itself, and the space of circuits of the
matroid defined by a group of subsets is the group itself.

Thus, binary matroid and group of subsets of E are two equivalent
structures [the term ‘group of subsets’ was chosen by Ghouila-Houri (1964),
who studied binary matroids in this context.]

Duality of matroids is interpreted, in the case of binary matroids, in a
remarkable way, as orthogonality between a space of circuits and a space of
cocircuits. To be precise, let M(E) be a binary matroid, I the space of circuits
of M(E), and I'* the space of cocircuits of M(E), that is, the space of circuits of
M#*(E). Then I and I'* are orthogonal with respect to the inner product in the
space of subsets of E given by (A4, B) =|An B|, (remainder modulo 2).



Binary Matroids 35

2.5. Coordinatizing Matrices of Binary Matroids

Given a matroid M(E), let B= {e,,...,¢,} be a basis of M(E), and assume that
E={e,,...,eneyus1,...,ey}. Denote by C(e)) the fundamental circuit of e; with
respect to the basis B, if j >n+ 1, and let C(e;) = {e;} if j<n. Let & =(a;;)
be the matrix with 1 <i<n, I<j<N

and

1 i e;eCley)
@ = 0 otherwise.

Then condition (2) implies that .# is the coordinatizing matrix in echelon
form with respect to the basis B of M(E) as discussed in Chapter 1.

2.6. Special Classes of Binary Matroids; Graphic Matroids

Another very important class of binary matroids is that of the unimodular (or
regular) matroids, those matroids which are coordinatizable over every field.
They can be represented by a totally unimodular matrix, that is, by a matrix in
which the determinant of every square submatrix is 0, +1 or — 1. These
matroids are discussed in Chapter 3. We here simply recall that regular
matroids were characterized by Tutte as those binary matroids not having as
minor either the projective plane over GF(2) (the Fano matroid) or its dual.

Among the unimodular matroids there is a special class which has been
considered since the early days of matroid theory, in the work of Whitney
(1935). These are the graphic and cographic matroids, which have also been
examined in Chapter 6 of White (1986).

Given a graph G =(V, E), it is easy to show that the elementary cycles, as
subsets of the set of edges (that is, those sets of edges of G which span a
connected subgraph in which every vertex has valence 2), are the circuits of a
matroid on the set E of edges of G. This matroid is the cycle matroid of the
graph G.

A matroid is graphic if it is isomorphic to the cycle matroid of a graph.

In the same way, the elementary cocycles of a graph G are the circuits of a
matroid on E, called the cocycle matroid of G. This matroid is dual to the cycle
matroid of G. Such matroids form the class of cographic matroids, the dual of
the class of graphic matroids.

Itis well-known that, in a graph, the symmetric difference of two elementary
cycles is the disjoint union of elementary cycles. From this fact, it is clear that
graphic matroids, and thus also cographic matroids, are binary. In fact, these
matroids are representable over any field, that is, they are unimodular.

Characterization by excluded configurations. The following theorem of Tutte
(1965, see also Ghouila Houri 1964) is one of the most remarkable results of
matroid theory.
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2.6.1. Theorem. A matroid is graphic if and only if it has no minor isomorphic to
the matroid U, 4, to the Fano matroid F, to its dual F*, or to the cocycle matroid
of either of the two Kuratowski graphs K 5 or K s(see Figure 2.2).

For a new proof of this theorem, see Seymour (1979).

Figure 2.2. The two Kuratowski graphs.

v BK

Ks K 3,3

Remarks. (1) The excluded minors U, 4, F, F* characterize, as we have seen,
the unimodular matroids. Thus the graphic matroids are characterized as
those unimodular matroids which have no minor isomorphic to the cocycle
matroids of the two graphs K5 and K ;.
(2) Note that the cographic matroids are characterized by the exclusion as
minors of the duals of the cocycle matroids of those two graphs, that is, by the
exclusion as minors of the cycle matroids of K5 and K ;.

Tutte’s theorem is a generalization to matroids of the celebrated theorem of
Kuratowski, which characterizes planar graphs. The generalization is by way
of the no less celebrated theorem of Whitney:

2.6.2. Theorem. A graph is planar if and only if its cocycle matroid is graphic.

An elementary proof of this theorem which depends on Kuratowski’s
Theorem for graphs may be found in Theorem 6.1.7. of White (1986). By
applying the condition in Tutte’s theorem to the cocircuit matroid, we obtain
the characterization of planar graphs by the exclusion as minors of the two
Kuratowski graphs (or rather, by the exclusion of subdivisions of these two
graphs).

Note moreover that, in general, every characterization of graphic matroids
provides in this way a characterization of planar graphs, or generalizes such a
characterization. On this subject see, among others, the papers of Welsh
(1969a) and Fournier (1974a, 1974b).

The main significance of Whitney’s theorem has to do with the fact that
duality of matroid parallels duality of planar graphs, and, as Whitney observed,
even if a graph does not always have a dual, its cycle matroid always does.
And when this dual of the cycle matroid is graphic, under certain conditions an
associated graph is a planar dual of the given graph.

Remark. The Euler relation for planar graphs is nothing but the expression
for the equality between the ranks of two isomorphic matroids: the cycle
matroid M of the given graph, and the cocycle matroid M’ of a planar dual. In
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detail if G’ is a planar dual of G, denoting by n and »’ the numbers of vertices of
the graphs G, G', respectively, by m the common number of edges of G and G,
the rank of M isequal ton — 1, that of M’ isequal to m — (n’ — 1), and since n’ is
also the number of faces of the planar representation of G (dual to that of G'),
we arrive at the Euler relation

n—m+f=2.

We could continue to give many properties of graphic matroids, for instance
to describe their independent sets and bases (which correspond to maximal
trees in the graph), or to describe their circuit and cocircuit spaces (which
correspond to the spaces of cycles and cocycles, elementary or not, in the

graphs), or to make precise the duality relation between them. For all this, we
refer the reader to the specialised references, and to Chapter 6 of White (1986).

2.7 Appendix on Modular Pairs of Circuits in a
Matroid

Two circuits C, and C, in a matroid M(E), in which r is the rank function, form
a modular pair if they satisfy the modular relation:
HC)+1(Cy)=r(C,uC)+HCnCy)

This relation implies, when C; # C,, that

HC,uCy)={CuC,|—2
We then verify easily that given two distinct circuits C, and C, in M(E), and
looking at the hyperplanes H¥ = E\C,, H¥ = E\C, in M*(E), we have:
C, and C, form a modular pair if and only if H¥ ~nH% is a coline in M*(E).

2.7.1. Lemma. (White 1971) Let C, and C, be a modular pair of circuits such that
C, #C,,C,nC, # J,and let a be an element of C; n L ,. There exists a unique
circuit C; such that

C3S(CyuCy)\{a},
and furthermore,

C,>C AC,

Proof. The existence of C; is easier to see on passing to the dual: the
modularity of C, and C, implies that of H¥ = E — C, and H% = E — C,; there
is one and only one hyperplane H% containing the coline H¥ A H*¥ and the
element a; this is the hyperplane spanned by (H}~H%)u{a}, and, fur-
thermore, H¥n(H¥ A H%)= & because H¥nHf = H¥nH% = H¥~nH%. So
C; = E\H% satisfies the stated conditions. O
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2.7.2. Lemma. Given a basis B and a circuit C such that |C\B| = 2, there is a
modular pair C;, C, of circuits such that C,#C,, C,nC,# & and
C,AC,=C.

Proof. Let H* = E\C, a hyperplane in M*(E). There is a coline L* in M*(E)
such that E\(Bu C)c L* < H* (otherwise one would have H* = E\(Bu (),
and B < C, which is impossible). Let e; be an element in C\B, let H¥ be the
hyperplane spanned in M*(e) by L*uU{e,}, and choose an element e, in
C\(BUH¥). This set C\(BUH¥) is non-empty because otherwise the
hyperplane H¥ in M(E) would contain the basis E\B. Finally, let H% be
the hyperplane spanned in M*(E) by I*U{e,}. Then the circuits C, =
E\H¥ and C,=E\H% are distinct (as are H¥ and H%), they form a
modular pair (because H¥ nH¥ is a coline), and they satisfy the condition
C,nC, #  (because H¥ UH?Z # E, there being elements of H* outside of
H¥UH%)and C=2C, AC, [because H¥*n(H¥ A H¥)= ¥ ]. |

Exercises

2.1. Giveadirect proof of Propositions 2.1.3 and 2.1.4, without using general theorems
about coordinatizable matroids.

2.2. For what values of r and n is the matroid U, , binary?

2.3. Given a matroid M on a set E, its collection .# of independent subsets, and an
integer k less than or equal to the rank of M, the rank k truncation of M is the
matroid on E that has as its family of independent sets the set

S ={L|Les and |L| <k}.

Show that the truncation of a binary matroid is not, in general, binary.

2.4. A matroid M on a set E is said to be Eulerian if E can be expressed as the disjoint
union of circuits of M. M is said to be bipartite if every circuit of M has even
cardinality. Show that a binary matroid is Eulerian if and only if its dual is
bipartite, (Welsh 1969b).

2.5. Let V be a finite dimensional GF(2)-vector space of functions from a finite set E
into GF(2). Letf | X denote the restriction of the function fto a subset X. We define

for each subset X < E,W(X)={feV|f|X =0}, and
for each subset U = V,k(U) = {xeE| f(x)=0,YfeU}.

Show that the mapping ¥ = k-h is the dependence closure of a binary matroid on
E. Study the converse. Deduce a characterization of binary matroids in terms of
binary function spaces.
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Unimodular Matroids

NEIL WHITE

3.1. Equivalent Conditions for Unimodularity

Unimodular matroids were defined in Chapter 1 as the class of matroids
which may be coordinatized over every field. In Theorem 3.1.1 we give a
number of equivalent characterizations of this class. Certainly the two most
striking and powerful of these are Tutte’s excluded minor characterization and
Seymour’s decomposition [conditions (8) and (9) of Theorem 3.1.1]. We first
need some definitions and notation.

A coordinatization of M(S) over Q given by n x N matrix A with integer
entries, and n < N, is said to be totally unimodular if every k x k submatrix has
determinant equal to 0 or + 1, for all k, 1 <k < n, and is said to be locally
unimodular if every n x n submatrix has determinant equal to O or + 1.

Let D be the bond-element incidence matrix of M(S). That is, if
R, R,,...,R, arc the bonds of M and S = {x;, x,,..., Xy}, then D = (b;)), with
b;;=11if x;eR;, and b;; = 0 otherwise. Similarly, let E be the circuit-element
incidence matrix of M. Suppose that it is possible to change some of the entries
of D from 1 to — 1 to get a matrix D', and similarly, change E to E’, so that
D'(E'} = 0 over Q (where t denotes transpose). Then we say that M is signable.
[This is closely related to the notion of orientability, considered in a chapter of
White (1988).]

In Section 7.6 of White (1986) 1-sums, 2-sums, or (for binary matroids) 3-
sums of two matroids M,(E,) and M,(E,) were defined as P (M, M,) — x,
where P, (M, M ,)is the generalized parallel connection across a flat x, and x is
empty, a point, or a 3-point line (respectively). To avoid triviality we insist that
P (M,, M,)— x have larger cardinality than M, or M,. For binary matroids,
with which we are concerned here, an equivalent definition is to say that each
of these three sums is the matroid M, A M, on the symmetric difference
E, A E, which has as its cycles (i.e., disjoint unions of circuits) all subsets of the
form C; A C,, where C; is a cycle of M;. Then
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(A) M; AM, is the 1-sum of M, and M, if E,nE,=( and E, # J,
E, # .

(B) M, A M, isthe2-sumof M; and M, if E; nE, = {e}, e is neither a loop
nor an isthmus of M, or of M,, and |E,| =3, [E,| = 3.

(C) M, AM,isthe3-sumof M, and M, ifE,nE,=L,where|L|=3,Lisa
line (and therefore L is a circuit) in each of M| and M, L includes no
bond of M, or M,, and |E,| =7, |E,|=7.

In fact, the 1-sum is just direct sum. The 2-sum is just pasting together of M,
and M, at the common element e, followed by the deletion of e, so that the
rank of M; AM, is as large as possible, namely rM, + rM, — 1. The 3-sumisa
similar pasting together along a common line, again keeping the rank as large
as possible, namely rM, +rM, — 2.

The matroid R, in the following theorem is given in Exercise 1.7. U, 4 is the
4-point line, F, the 7-point Fano plane, and F* the orthogonal dual of F,.

A matroid is called unimodular (or regular) if it satisfies any of the conditions
of the following theorem.

3.1.1. Theorem. The following conditions are equivalent, for a matroid M(S).

(1) M has a totally unimodular coordinatization over Q.

(2) M has a locally unimodular coordinatization over Q.

(3) The brackets for M may be assigned the values 0, + 1 in Q so that the
syzygies of Proposition 1.6.1 are satisfied.

(4) M may be coordinatized over K, for every field K.

(5) M may be coordinatized over GF(2) and over K, for some K with char
K#2.

(6) M is signable.

(7) For every hyperplane H of M there exists a function Fy:S — Q such that
kernel Fy = H for every H, image Fy < {0,1, — 1}, and for every three
hyperplanes H,, H,, and H; containing a common coline, there exists
oy, 00, and aye{l, — 1} such that o, Fy, + a,Fy, +03Fy, =0.

(8) M has no minor isomorphic to U, 4, F,, or F%.

(9) M may be constructed by 1-,2-, and 3-sums from graphic matroids,
cographic matroids, and matroids isomorphic to R .

Proof of the equivalent of (1) through (5). (1)=(2) and (4)=-(5) are trivial, and
(2)=>(3)=(4) are immediate from Proposition 1.6.1, where the bracket values
0, + 1eQ are simply regarded as elements of the field K. Since the syzygies
hold over Q, they also hold mod p, where p = char K.

We now have only to prove (5)=>(1). This proof is due to Brylawski (1975).
Let A =(I,|L) be a coordinatization of M(S) over K, where M(S) is binary and
char K #2. We assume that A4 is in (B, T)-canonical form, where T is a
spanning tree of the bipartite graph I' whose adjacency matrix is determined
by L (see Section 1.2). We now claim that each entry in L (and hence in 4)is 0
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or +1. Let w be a non-zero entry of L, other than one of the entries
corresponding to T. Then w corresponds to an edge of I — T, and hence has a
basic circuit C in I'. We will prove that w = + 1 by induction on the size of C.
It is not difficult to see that the edges of C correspond to a cyclic sequence of
2k non-zero entries of L, for some k > 2, with the property that each odd-
numbered entry in the sequence is in the same column as its predecessor, and
each even-numbered entry in the same row as its predecessor. For example, the
submatrix containing the sequence of entries may look like the following:

0110
1100
1 0 0 1°
0 0 1 w

Now either these 2k entries are the only non-zero entries in a k x k
submatrix of L, or if there are other entries, w forms a circuit of size less than 2k
with entries which are either in T or themselves have basic circuits of size < 2k.
By the induction hypothesis, these other entries are all + 1, hence in any case
we get a j x j submatrix J of L having exactly 2 j non-zero entries, with 2 in
each row and column, and each entry except w equal to + 1. But then J is
uniquely the sum of two permutation matrices, so det J = + 1 £+ w. But since
M(S) is binary, it may also be coordinatized over GF(2) by replacing each non-
zero entry in A by 1 in GF(2), since basic circuits of M must be preserved. But
then over GF(2), det J =0, hence we must also have det J=0 over K to
preserve dependence. Therefore w= + 1.

The proof of (1)—(5) will now be complete if we prove the following lemma, by
regarding A as a matrix over Q, since the operations in the proof of the lemma
do not depend on the characteristic.

3.1.2. Lemma. Let M(S) be a binary matroid which is coordinatized by a matrix
A in echelon form over Q, with every entry of A equal to 0 or + 1. Then A is
totally unimodular.

Proof. Let W be a square submatrix of A. We now do row operations on W to
reduce it to echelon form. Given w;; # 0, since w;; = + 1, weadd — w;;w,,; times
row i to row h for each h, to get w;; to be the only non-zero entry in column j.
Now consider an entry wy, in the original submatrix W, where h # i,k #j.
Then the above row operations replace wy, by wy, — w;;w, ;w,, which is 0 or
+ 1 unless wy, = —w;;w,;w; #0. But then the following 2 x 4 submatrix

existed in the matrix A4:
I 0wy wy
0 1 wy wy |

This submatrix coordinatizes a minor of M(S) which is isomorphic to L, a
contradiction to the assumption that M(S) is binary.
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Thus the reduction of W to echelon form may be completed while keeping
all entries 0 or + 1. Thus det W =0 or + 1, and A4 is totally unimodular
d

Proof of equivalence of (1) through (7). First we will show (1)=(6)=(5).
Let 4 be a totally unimodular matrix over @ coordinatizing M(S) and in
echelon form with respect to the basis B. Then the i-th row of 4 is non-zero on

precisely the elements of the basic bond § — B — {b;} corresponding to the i-th
element of B. Furthermore, by row operations, we may bring 4 into echelon
form A’ with respect to any other basis B', thus obtaining a row for any bond of
M. Furthermore, A’ must still be totally unimodular, since n x n determinants
are preserved by the row operations, and any k x k determinant of A’ may be
augmented by columns from B’ to obtain an n x n determinant, at most
changing the sign of the determinant.

Now let D’ be a matrix obtained by taking such a row for each bond of M.
D’ is then just the bond-element incidence matrix with some 1’s changed to
—1I’s, and the row-space of D' is the same as the row-space of 4. By
Proposition 1.3.1, M*(S) also has a coordinatization A* obtained from 4 by
transposing. It is very easy to check that A4* is also totally unimodular.
Letting E’ be the matrix obtained for the bonds of M* as D’ was for M, we
see that E’ is just the circuit-element incidence matrix of M with some 1’s
changed to — U’s. Furthermore, the rows of D' and the rows of E' are
orthogonal, again by Proposition 1.3.1, hence D'(E’) =0, proving (1)=(6).

Now suppose that we are given D’ and E’ as above, with D'(E’)' =0. Since
each row of D" is orthogonal to each row of E’, we see immediately thatif Risa
bond and C a circuit of M(S), then |[R ~ C|is even. Thus from Theorem 2.2.1, M
is binary.

Let B be a basis of M(S) and assume the elements of S have been ordered so
that the elements of B come first. The basic bonds S — B — {b;} for b;e B give us
a submatrix D" of D,

D" =(I'lU),

where I is the matrix of columns corresponding to the elements of B', and I' is
an n x n identity matrix with some of the entries possibly changed from 1 to
— 1. Now, the dimension of the row-space of D’ is at least n, the dimension of
the row-space of D”.

Similarly, by taking the rows of E’ corresponding to the basic circuits of B,
we have

E'=(V|D),

where 1" is the matrix of columns corresponding to S — B, and [” isan (N —n)
x (N — n) identity matrix with some of the entries possibly changed from
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1 to — 1. The dimension of the row-space of E’ is at least N — n, the dimension
of the row-space of E". Since the row-spaces of D’ and E’ are orthogonal
subspaces of an N-dimensional vector-space over Q, we have equality in both
cases, that is, row-rank (D')=n and row-rank (E')=N —n.

We will now show that D” is a totally unimodular matrix coordinatizing
M(S). Let B’ be any basis of M. If we construct D” from the basic bonds of B’ as
we did D” from B (but keeping the ordering of the elements of S fixed), we see
that D" and D" are row-equivalent, since the rows of each are a basis of the row
space of D’. Thus the columns of D” corresponding to B’ are linearly
independent.

Let C be a circuit of M(S). Then C corresponds to a row e, of E’ which is
orthogonal to the rows of D", and hence the entries of e, are the coefficients of a
linear dependence of the columns of D” corresponding to the elements of C.
Thus D" is a coordinatization of M, and by Lemma 3.1.2 it is also unimodular.

Thus (1)—(6) are equivalent. The equivalence of these with (7) now follows
casily by noting that the functions f; correspond to rows of the signed bond-
element matrix D', with f in particular corresponding to the row for the bond
S—H.

Proof of conditions (8) and (9). The implication (5)=>(8) is easy, since L,
cannot be a minor if M is binary, and F, or F% cannot be coordinatized over
any field whose characteristic is not 2 (see Exercise 1.9). The converse was
proved by Tutte using his very deep Homotopy Theorem {Tutte 1958), and is
certainly one of the most beautiful and important results in matroid theory.
We state the Homotopy Theorem and sketch the proof of (8)=>(7) in the next
section.

The implication (9)=(5) is easy by observing that 1-sums, 2-sums, and 3-
sums preserve coordinatizability over GF(2) and GF(3) [see p. 186 of White
(1986)]. Seymour’s Theorem (1980) is (8)=>(9). The proof is much too long to
be included here. One advantage of this result is that it includes Tutte’s
Theorem as a corollary. O

3.2 Tutte’s Homotopy Theorem and Excluded Minor
Characterization

We now give a careful statement of Tutte’s Homotopy Theorem, and sketch its
use to prove Tutte’s excluded minor characterization of unimodular matroids.
There are several reasons why we choose to do so. The first is the historical
importance of Tutte’s work, despite the fact that his excluded minor
characterization can now also be proved by Seymour’s method. The second is
the importance of the ideas involved for further work in coordinatizations.
This importance seems restricted by Tutte’s heavy use of the crucial property
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of binary matroids that coline is contained in at most three distinct
hyperplanes (or copoints). Nevertheless, both Reid (unpublished) and Bixby
(1979) were able to extend Tutte’s methods to obtain the excluded minor
characterization of ternary matroids. The third reason is that such a sketch of
Tutte’s ideas is not available in accessible form elsewhere, except in Tutte’s
own writing. Although Tutte’s terminology and notation are perhaps suitable
for someone who is interested primarily in the graph-theoretical aspects of
matroid theory, they are quite confusing to the large majority of matroid
theorists who use terminology similar to that used in these volumes. For
example, what Tutte calls a point is in our terminology a bond, and for our
purposes is best complemented to get a hyperplane. It is hoped that the
translation provided here will be useful not only as an overview of Tutte’s
methods, but also as an entry point to Tutte’s papers for those who wish to
study them in detail.

We first need some definitions. A copoint (or hyperplane), coline, or coplane
in a matroid M(E) of rank nis a flat of rank n — 1,n — 2, or n — 3 (respectively).
A flat Y is T-connected if M(E)/Y is connected. A path in M is a sequence
(X1, X5,...,X,) of copoints such that for 1<i<k—1, X;nX;,,is a T-
connected coline. Thus each such coline X;n X, , is contained in a third
copoint distinct from X; and X, ,. A collection ¥ of copoints of M is a linear
subclass of copoints (see White 1986, Exercise 7.8} if whenever X |, X ,, and X,
are distinct copoints all containing a common coline, and X, €% and X ,€%,
then X;€%. A path is off € if no copoint of the path is a member of €. A path is
closed if the first and last copoints in the path are identical. We now describe
four types of closed paths which will be called elementary paths off €, for a
particular linear subclass €.

(1) (X, Y, X), an arbitrary closed path of length 2 off ¥.

(2) (X,Y,Z, X),aclosed path of length 3 off € such that X n Y n Ziseithera

coline or a coplane.

(3) (X,Y,Z,T,X), a closed path of four distinct copoints off 4, where
XnYnZnTisacoplane P, XnY and Zn T spana copoint A, XN T
and Y nZ span a copoint B, A€¥, Be¥, and every T-connected coline
containing P is contained either in A or in B.

4) (A,X,B,Y,A), a closed path of four distinct copoints off ¥ where
AnXnBnY =D and the contraction M(E)/D is a matroid of rank 4
containing six distinct points Py, P,,...,P¢ with A/D spanned by
{P,,P3,Ps, Pg}, B/D by {P,,P3,P,,Ps}, X/D by {P2,P3,P,}, Y/D by
{P,,P,,P¢},and with {P,, P,, P,, P} spanning another copoint off ¢/D,
where 4/D ={X/D:Xe%¥}. Furthermore, {P,,P,,P;}, {P,,Ps, Ps},
{P,,P,, Pg},and {P;, P,, P5} all span copoints which are in €/D, and all
other points of M/D are on the three lines P, P,, P,Ps, and P,Pq.

Now, if P=(X,,X,,...,X,) and R=(X,, Xy +1,...,X,,) are two paths, we
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define their product PR as the path (X, X5,..., X,,... X,). [0 =(X,,..., X})
is one of the elementary paths defined above, we say that PQR and PR are
elementary deformations of each other with respect to . Two paths P and P’ off
% are homotopic with respect to € if one may be obtained from the other by a
finite sequence of elementary deformations with respect to ¥. Homotopy is
clearly an equivalence relation.

3.2.1 Proposition. Let ¥ be a linear subclass of copoints in a connected matroid

M(E), and let X and Y be copoints of M such that Y ¢ €. Then there exists a path

from X to Y which is off € with the possible exception of the first copoint X.
A proof of this in our notation may be found in Crapo & Rota (1970).

3.2.2. Proposition. (Tutte’s Homotopy Theorem). Let € be any linear subclass
of the matroid M(E), and let P be any closed path off €. Then P is homotopic to a
trivial path with respect to €.

We omit the proof of Proposition 3.2.2 since it is fairly long and technical.
We prefer instead to show how it is applied to prove the excluded minor
characterization for unimodular matroids.

3.2.3. Theorem. A matroid M is unimodular if and only if M is binary and has no
minor isomorphic to the Fano plane F, or the orthogonal matroid F%.

Proof. We have already observed that the necessity is easy. To prove the
sufficiency, suppose that M is a minimal matroid such that M is binary with no
minor isomorphic to F, or F¥ and yet M is not unimodular. Then for arbitrary
aeE,M — a = M’ is unimodular. Let € be the linear subclass of copoints X of
M’ such that aecl(X) in M.

Now we fix a unimodular coordinatization of M’, given by fy:E—
{0, + 1} = Q for every copoint X of M’, as in Proposition 1.5.5. Our task is
to construct such an fy for every copoint X of M.

Let X and Y be copoints of M’ on a T-connected coline, with X and Y off %.
Then there exists xeE — (X U Yu{a}). Let ¢(X, Y) = fx(x) fy(x). Then t(X, Y)
is independent of the choice of x, for if yeE—(XuYu{a}) and
IxxX) fy(x) # fx(¥) fy(»), then the coordinatizing matrix can easily be shown
to have a submatrix

10 fx(x) fx(»
0 1 fix) fr(y)
which implies a minor L, of M’, a contradiction.

Now let R=(X,,X,,...,X,) be any path in M’ off ¥. We define w(R) =
T2 i4(X,, X, ;)= + 1, and claim that u(R) = 1 for every closed path off €.
To prove this claim, it suffices by the Homotopy Theorem to prove that
u(R) =1 for each of the four elementary paths off %.
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(1) Let R=(X,Y,X), then (R)=t(X,Y)?=1.

(2) Let R=(X,Y,Z,X). Then X, Y, Z cannot contain a common coline L,
since none of them contains the point a, and the binary matroid M
cannot have four copoints on L. Therefore X, Y, and Z intersect in a
coplane P. If there is a point x¢XuYuZ, then wR)=
Fx () () fy(%) f2(x) f2(x) fx(x) = 1. If there is no such point x, then for
R to be a path, we must have eeX —(YUZ), feY — (X uZ),geZ
— (X uY).Since YnZisacoline, theremustalsobe be(Y nZ) — X, and
similarly ce(X nZ)— Y,de(X nY) — Z. Then these six points together
with the point ¢ induce a Fano configuration in M/P, a contradiction.
In this case, we have fy, fy, fz, frand it is easy to see from Lemma 1.5.6
that these four functionals are linearly dependent, since XnYnNZn T is
a coplane P. This dependence implies that the following determinant is
zero, where be(XNY)—P, ce(YNnZ)—P, de(ZnT)— P, ee(TNnX)
—P:

3

~—

0 0 fzb) fr(b)
Ao 00 fa] g
xd) fr@d O 0

0 fyle fie) 0

which implies u(R) = 1.

(4) This case leads directly to F¥ when we include the point ¢ and contract

by D, again a contradiction.

Now we are ready to construct the coordinatization of M, by defining fy for
every copoint X of M. For each copoint X, either

(A) a¢X and X is a copoint of M’ (with X ¢%),

(B) aeX and X —a is a copoint of M’ (with X — ae¥), or

(C) aeX and X —a is a coline of M.

In cases (A) and (B), we already have f defined on E — {a}. We fix a copoint
X, satisfying case (4), and set fy (@) = 1. Then for every copoint X in case (4),
there must be a path R in M’ from X to X off €, by Proposition 3.2.1. Let
fx(a) =u(R). Since we have already shown that u(R)=1 when R is a closed
path, we see that f,(a) is well-defined.

In case (B), set fy(a)=0. In case (C), X —a=L must be a disconnected
coline of M’ (since M is binary), that is, there are copoints Y and Z of M’
containing L, with E = Y U Z u {a}. Simply define fx = fy + f, choosing the
coefficient of f; so that fx(a)=0.

To complete the proof, we need to show that for every three copoints
X,Y,Z onacoline L, fy, fy, and f, are linearly dependent. Suppose first that
a¢ L. Then ae X, without loss of generality. If X — a = L, then X is of type (C)
above, and by the construction of fy, we have the required linear dependence.
If X —az L, then there exists beX —L,b#a. In M’, we have afy_,+
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Bfy+7vfz=0. Since fy(a)=fx(b)=0 by case (B), and fy(a)fAa)=u(R)=
1(Y,Z) follows from case (4) using the path R=(Y,Z) off ¢, and since
WY,Z)=fy(b)fz(b), we have that afx(a)+pfxla)+7yfda)= +(Bfv(b)+
7f2b)) =0, hence afx + Bfy+7/,=0.

The remaining case is ae L. If L — a is still a coline in M, then fy, fy,and f,
are dependent on E — {a}, and take the value zero on 4, hence are dependent
on E.If L — ais a coplane, it is necessary to construct some additional copoints
and use dependences among their f’s to deduce the desired dependency. We
omit the details, which are in Tutte (1958). |

3.3. Applications of Unimodularity

An important application of Seymour’s characterization of unimodular
matroids [condition (9) in Theorem 3.1.1] is a polynomial algorithm for
recognizing whether a matrix is totally unimodular, or more generally,
whether an arbitrary matroid M is unimodular. In the general case, the
number of independent sets in the matroid may be exponential compared to
the rank and cardinality of the matroid, so for the problem to make sense we
must assume that M is given by an independence oracle, a ‘black box’ that tells
us in one step whether a given subset is independent in M. In the case of a
vector matroid, for example, the independence oracle is simply a subroutine
for checking linear independence. The algorithm proceeds roughly as follows:

3.3.1. Algorithm.

(1) Check for decompositions into 1-sums, 2-sums, or 3-sums, using algorithms
by Bixby and Cunningham (1981) and Cunningham and Edmonds
(unpublished) for k-separations.

(2) Taking indecomposable matroids resulting from (1), check for graphic-
ness by Bixby and Cunningham (1980), for cographicness by taking the
orthogonal dual and checking for graphicness, and for isomorphism with
Ry,

This algorithm may be modified to check whether a given matrix A is

unimodular as follows:

3.3.2. Algorithm.

(1) Check that all entries of A are 0, + 1.

(2) Letting M be the binary matroid on the columns of Ay, the binary matrix
obtained by changing — I's to I's in A, apply Algorithm 3.31 to determine
whether M is unimodular (where we note that Algorithm 3.3.1 is easier to
implement for binary matroids).

(3) If M is unimodular, determine a unimodular signing A, of A, (whichmay be
determined from such signings of the graphic, cographic, and R, pieces,
which are easy to sign).
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(4) Applying Proposition 1.2.5, we check whether A, is projectively equivalent
to A, using only scalar multiplications of + 1.

A second application of unimodularity is in linear programming.

3.3.3. Proposition. (Heller 1957). The linear program

maximize ¢'x
subject to Ax<b, x=0

has a solution x with integer coordinates, for every choice of a vector b with
integer coordinates, if and only if A is totally unimodular.

In fact many of the most efficiently solved combinatorial optimization
problems, such as matroid intersection and bipartite matching, may be
realized as unimodular programming problems. Indeed, this proposition
makes the distinction between integer programming and linear programming
no longer an issue for such problems.

There is a polynomial algorithm for solving unimodular programming
problems, according to Bland and Edmonds (unpublished); see Bixby and
Cunningham (1980). This algorithm uses the Seymour decomposition to
reduce to the case that A4 is graphic or cographic. However, this case is
essentially a network flow problem or its dual. One might regard this
algorithm to be of no interest because of the recent highly publicized
polynomial algorithms for the general linear programming problem. How-
ever, network flow problems are so efficiently solved that one can still hope for
more efficient algorithms for the unimodular case than the general one.

As a third application, we consider the integer max-flow-min-cut property.
This is a well-known property of directed graphs (networks), but Seymour
(1977) has characterized an interesting generalization to matroids. A special
element e of M(FE) is singled out (corresponding to an auxiliary edge from sink
to source in the network case). A capacity is assigned to each element of M(E)
— e and a flow is an assignment of a scalar to each circuit of M, such that the
flow summed over all circuits containing an element x does not exceed the
capacity of x. Then M has the integer max-flow-min-cut property if for every
choice of ¢ and an integer-valued capacity, there exists a non-negative integer-
valued flow whose total value at e equals the minimum capacity of a cocircuit
(‘cut-set’) of M containing e. Gallai (1959) and Minty (1966) proved
independently that unimodular matroids have this property. However,
Seymour{1977) has completely characterized the connected matroids with this
property: they are the binary matroids with no minor isomorphic to F*. This
class of matroids is dual to that denoted by #’ in Table 7.1 of White (1986).
Thus they are either unimodular or contain an F, minor. But more is true.
Matroids in £’ must always be 2-sums of unimodular matroids and copies of
F,. This remarkable fact is an example of Seymour’s concept of a splitter: a
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matroid N belonging to a hereditary class # which fits so tightly in # that any
matroid M in & having N as a proper minor has a l-sum or 2-sum
decomposition. Thus any matroid in & is composed by 1-sums and 2-sums
from copies of N and matroids in &% having no minor isomorphic to N. This
concept plays an important role in Seymour’s proof of his characterization of
unimodular matroids, in that R,, is a splitter for the class of unimodular
matroids. Thus a stronger version of Seymour’s theorem may be stated: a
unimodular matroid may always be realized by 1-sums and 2-sums of copies of
R, and additional matroids which are 1-sums, 2-sums, and 3-sums of graphic
and cographic matroids.

Finally, we mention one more application of unimodular matroids, namely,
the characterization of zonotopes which pack n-dimensional Euclidean space
E" Let & = {xy,Xy,..., xq} be a set of vectors in E”. Without loss of generality
we may assume that these vectors are non-zero and distinct up to scalar
multiple, that is, that the vector matroid given by & is actually a combinatorial
geometry. The zonotope determined by % is the set of vectors

9
Z= {v:v = Y ax;, where —1<o;<1 forall i}.

abd

ad
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Equivalently, we may say that Z is the vector sum of the g line segments L, =
convex hull (— x;,x;). We call & the vector star of Z. Zonotopes are convex,
centrally symmetric polytopes with many interesting properties. A three-
dimensional example is given in Figure 3.1. In this example, abc and bde are
chosen to be collinear. The vertices of the zonotope are vectors with each
o; = + 1, and we have labelled each vertex by the vectors having a; = + 1 at
that vertex.

An interesting question is whether Z packs E”, (where n is the dimension of
Z), that is, whether translates of Z may be placed to fill up E” while intersecting
each other only on their exterior faces. Shephard (1974) and McMullen (1975)
have completely answered this question, via the following proposition. We
assume that & spans E".

3.3.4. Proposition. A zonotope packs E" if and only if its vector star is a binary
matroid.

But, in fact, the vector star is given as a vector matroid over the field R.
Hence by Theorem 3.1.1. condition (5), the vector star is binary if and only if it
is unimodular.

The zonotope pictured in Figure 3.1 does satisfy the conditions of
Proposition 3.3.4. so it does pack E3.

Exercises

3.1. Show that graphic and cographic matroids are signable.

3.2. Provethatamatroid M(E) may be decomposed as a 2-sum of two matroids if and
only if M has a 2-separation, that is, a partition (X, X,) of E with
1 X1122,1X,|22,r X, +rX, <rE+ 1.

3.3, Show that the class of unimodular matroids is not filtered in the sense of
Brylawski and Kelly (1980), that is, that there exist unimodular matroids of the
same rank »n which are not both submatroids of any unimodular matroid of rank
n.

3.4. (Aigner 1979) If A is a locally unimodular coordinatization (over @) of a
unimodular matroid M(E), A is n x N where n=rank M,N =|E|, then det
(AA) = the number of bases of M.

3.5. Provethat 1-,2-, and 3-sums of unimodular matroids are unimodular. What are
the corresponding operations on coordinatizing matrices?

3.6. Show that the binary coordinatization for R, described in Exercise 1.7 is
projectively equivalent to one in which each column has the same number of
zeros. Thus determine that this matroid has a doubly transitive group of
automorphisms. Use this information to show that R, is unimodular, but
neither graphic nor cographic.

3.7. If M(E) is unimodular, eeE, such that M — e is isomorphic to R,,, show that e
must be a loop, isthmus, or parallel element [i.e., M is the parallel extension of
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some element of M — e: see White (1986), p. 180)]. This is essentially all that is
needed to check that R, is a splitter for the class of unimodular matroids (see
White 1986, Exercise 7.50).

3.8. Prove that for each vector v in the vector star of a zonotope Z, the set of edges
of Z parallel to v form a ‘zone’, or minimal cut-set of the graph G determined by
the edge-skeleton of Z, i.e., a bond in M(G).

3.9. Prove that a zonotope in E? is space-filling if and only if all of its projections
onto a plane orthogonal to a vector in its star yield tessalations (quadrilateral or
hexagonal) of the plane.

3.10. Let C, ,denote the binary matroid determined by the binary matrix consisting of
the n x nidentity matrix next to an n x n matrix consisting of all cyclic shifts of a
column of k ones followed by n — k zeros. Show that C, , is always graphic, that
C;.518 Ry, and Cj;, is not unimodular for all n> 5.

3.11. Is C,, unimodular for any k > 4,n > k?
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Introduction to Matching Theory

RICHARD A. BRUALDI

4.1. Matchings on Matroids

One of the many fascinating aspects of matching theory is the interdependence
of the theorems of the subject. There are many theorems that can be regarded
as basic, and it seems that one can begin the theory with any one of them and
use it as an important step in the proofs of the others. It follows that a result
derived as a consequence of another theorem should not necessarily be
regarded only as a corollary. It may have just as much claim to centrality and
importance as the theorem itself. Different approaches exhibit different
relationship between the theorems. Thus we have considerable latitude in
choosing our starting point and our progression through some of the
important results of matching theory. We begin with the notion of a relation
between two sets.

Let S, and S, be two finite sets and R= S, x S, a relation between the
elements of S, and those of S,. We suppose, as we may without loss of
generality, that S, and S, are disjoint. Thus the relation R can be modelled by
means of a finite bipartite graph I'=T1(S,,S;). The vertices of I" are the
elements of §; US,, and there is an edge [x, y] joining xeS, and yeS, if and
only if xRy. A matching (of cardinality k) of T is a set ® of edges
[xi,yids-o s [Xeyi] of T where x,,...,x, are distinct elements of S; and
V1,-..., ¥, are distinct elements of S,. Thus the matching @ is a set of pairwise
vertex disjoint edges, and these edges match the subset {x,,...,x,} of §; with
the subset {y;,..., yx} of S,. A separating set of " is a set Z of vertices of I' such
that for each edge [x, y] of " either xeZ or yeZ. f Z=(Z S} u(ZNnS,)isa
separating set of I, then there are no edges which join a vertexin §; —(Zn S))
and a vertex in S, —(ZnNS,).

We now have the following fundamental result.

4.1.1. Propesition. (D. Kénig 1931) The maximum cardinality of a matching of
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the bipartite graph T'(S,, S,) equals the minimum cardinality of a separating set of
'S, S,).

Let I'(S,, S,) be a bipartite graph and let X = S,. We define X to be the set
of vertices y of S, such that [x,y] is an edge of I' for some xeX. It is
readily verified that for all X = §,, 0X (S, — X) is a separating set of T
A similar definition can be made for Y = S,. Now let Z be a separating set
of TwithZ,=ZnS,and Z,=ZnS,. Let X =S, — Z,. Then it follows that
0X = Z,, and hence dX U(S; — X) is a separating set contained in Z. Thus
from Proposition 4.1.1 we obtain the following.

4.1.2. Proposition. The maximum cardinality of a matching of the bipartite
graph I'(S,S,) equals

min{|0X|+|S, — X|: X =S,}.

A number of interesting theorems can be deduced from Propositions 4.1.1
and 4.1.2. Let I and S be finite sets, and let .&/(I) = (4;:i€l) be a family of subsets
of S indexed by I. A family (x;:iel) of elements of S is a system of representatives
(SR) of (1) if x,€ A;(iel), and a system of distinct representatives (SDR) if in
addition x; # x; for i,jel with i #j. A transversal of </(I) is a set T for which
there exists a bijection 6: T— I such that xe 4, for xe T. It follows that T isa
transversal if and only if its elements can be indexed by I to form an SDR of
(). A set P for which there exists an injection :P —I such that xeA,, for
xePiscalled a partial transversal of «/(I). Thus a partial transversal of &/(I)isa
transversal of a subfamily «/(J) = (A4;:ieJ) of «/(I) for some J = I.

With the finite family «/(I) = (A;:i€l) of subsets of the finite set S there is
associated a finite bipartite graph I' , =I"_ (I, S} where we suppose, without
loss of generality, that IS = . There is an edge joining iel and seS if and
only if seA,;. It follows that for J < I, a set P is a partial transversal of the
subfamily .« (J) if and only if there is a matching of I, which matches J with P.
For J= I, 8J = J,c;A; and we denote this set by A(J).

From Proposition 4.1.2 we immediately obtain the following.

4.1.3. Propesition. (0. Ore 1955) The maximum cardinality of a partial
transversal of the finite family </(I) is given by

min{|A(J)| + I - J|:J < I}.

As a corollary we obtain the following result.

4.1.4. Proposition. (P. Hall 1935) The finite family </(I) has a transversal if and
only if
AN =] <)



Introduction to Matching Theory 55

Propositions 4.1.3 and 4.1.4 can be generalized by assuming that M(S) is a
finite matroid and requiring the partial transversal or transversal to be an
independent set of the matroid.

4.1.5. Proposition. (H. Perfect 1969b) Let M(S) be a finite matroid with rank
function r, and let /(1) be a finite family of subsets of S. Then the maximum
cardinality of a partial transversal of </(I) which is an independent set of M(S) is
given by

min {r(A(J)) + I —-J|:J = I}.
A special case of this proposition is the following.

4.1.6. Proposition. (R. Rado 1949) Let M(S) be a finite matroid with rank
Sunction r, and let o/ (I) = (A;:i€l) be a finite family of subsets of S. Then /(I)
has a transversal which is an independent set of M(S) if and only if

r(AN = <D

Note that Propositions 4.1.3 and 4.1.4 result from Propositions 4.1.5 and
4.1.6 respectively, when the matroid M(S) is the free matroid on S whose rank
function is the cardinality function. We also note that there is a kind of converse
to Proposition 4.1.6 due to Rado (1949) which we discuss briefly. Let S be a
non-empty set and let # be a non-empty collection of subsets of S. Suppose for
each finite family /()= (A;:iel) of subsets of S, one of the following
conditions holds if and only if the other does:

(i) «/(I) has a transversal which belongs to .#;

(ii) for each J < I, A(J) contains a subset of cardinality |J| which belongs to

S
Then .# is the collection of independent sets of a matroid M(S). Its follows that
in Proposition 4.1.6 the matroid structure is essential.

The above propositions can be further generalized and for this we return to
the setting of bipartite graphs. Let I'(S,,S,) be a finite bipartite graph and let
M,(S,) and M,(S,) be finite matroids with rank functions r, and r,,
respectively. We are now interested in matchings of I' which match an
independent subset of M,(S,) with an independent subset of M ,(S,). Let @ bea
matching which matches the independent set X, of M,(S,) with the
independent set X, of M,(S,), and let Z =2, UZ, be a separating set of I'
where Z, =S, and Z, = S,. Then for each edge [x,y] of © either xeZ, or
yeZ,, and it follows that

O|<r(X,nZ))+r,(X,nZ))
S1(Zy) +15(Zy).
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4.1.7. Theorem. The maximum cardinality m of a matching of the bipartite
graphI'(S,, S,) which matches an independent set of M (S ) with an independent
set of M,(S,) equals n where

n=min{r(Z,)+r,(Z,):z,=8,,2,=S,,Z,UZ, a separating set} or,
equivalently,

n=min{r(S; — X)+r,(0X):X =8,}.

Proof. That the two expressions for n have the same value follows, since every
separating set Z contains a separating set of the form (S; — X)udX for some
X < §,. The calculation above has shown that m < n, so that it suffices to show
that there exists a matching of cardinality » of the required type. f n=0or 1,
this is readily verified. Thus we suppose n > 2 and use inductionon | S, U S,|. It
is convenient to consider two cases.

Case 1. The only separating sets Z,UZ,(Z,<S,,Z,< S,) with r(Z,)
+r(Z,)=nsatisfy Z,=F or Z, = .

Choose an edge [x, y] of I" such that {x} is an independent set of M ((S,) and
{y} is an independent set of M,(S,). Let T, =S, — {x} and T, =S, — {y}. Let
I'*(T,, T,) be the bipartite graph obtained from I by deleting the vertices x and
y and all edges meeting x or y. Finally consider the contractions M, /{x} and
M,/{y} with rank functions rf and r%, respectively. Let Z¥UZ% be a
separating set of I'* where Z¥< T, and Z%¥< T,. Then Z,UZ, where
Z,=Z%¥u{x}and Z¥u{y} isa separating set of I with Z, # (J # Z,, and it
follows that

n+ 1<r(Z)+r(Z)=riZ)+ 1 +r}(Z3) + 1
and thus
n—1<r¥(Z% +ri(Z%).

By the inductive assumption there exists a matching ©* of I'* of cardinality
n — 1 which matches an independent set of M, /{x} with an independent set of
M,/{y}. It follows that ® = ®@* U {[x,y]} is the required matching.

Case 2. There exists a separating set Z, VZ,(Z, €8,,Z, = S,) with ry(Z,)
+7r,(Z,)=nwhere Z, # F#Z,.

First we consider the bipartite graph T'*(Z,,S, — Z,) obtained from I by
deleting the vertices of S, — Z, and those of Z, and all edges meeting at least
one of these vertices. We also consider the matroids M,(Z,) and M,/Z, with
rank functions r* and r%, respectively. Let Z¥ U Z¥ be a separating set of T'*
where Z¥* < Z,and Z5¥ = S, — Z,. Then Z* U(Z% U Z,)is a separating set of T',
and it follows that

n<r(Z¥)+r(Z30Z,)
SriZY) +13(Z%) +ry(Z,),
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and thus
ri(Z)=n—ry(Z,)<r{(Z}) +13(Z3).

It follows from the inductive assumption that there exists a matching ®* of
I'* of cardinality r,(Z,) which matches an independent set of M,(Z,) with
an independent set of M, /Z,. In a similar way we can define a graph I'** and
obtain a matching @** of I'** of cardinality r,(Z,) which matches an
independent set of M,/Z, with an independent set of M,(Z,). Then
® = O* U ®**is a matching of cardinality n =r,(Z,) + r,(Z,) which matches
an independent set of M,(S,) with an independent set of M,(S,).

Thus the theorem holds by induction. |

Each of Propositions 4.1.1 to 4.1.6 is a special case of Theorem 4.1.7, so that all
are now proved.

The notion of a matching of a bipartite graph can be extended to any finite
graph I'=T(V). Here V is the finite vertex set of I", and the edges of I are
unordered pairs of vertices [x, y] with x # y. A matching of T is a set © of
pairwise vertex disjoint edges. A set X of vertices is said to meet the matching ©
ifeach vertex in X is a vertex of a (unique) edge of ®; there may be vertices not
in X which are also vertices of edges of ®. A perfect matching (also called a 1-
factor)is a matching which ¥V meets. Thus in a perfect matching @ each vertex
of I'is a vertex of an edge of ®. Clearly, a necessary condition for the graph I to
have a perfect matching is that the number of its vertices be even. A less
obvious necessary condition is that the deletion of k vertices of I and all edges
meeting at least one of them results in a graph with at most k connected
components with an odd number of vertices (there may be any number of
connected components with an even number of vertices). In a remarkable
discovery Tutte (1947) proved that this condition (for k=0,1,...,|V])is also
sufficient for the existence of a perfect matching. We shall prove an extension of
Tutte’s theorem due to Berge (1958) and then deduce Tutte’s theorem as a
special case. Then we shall see how matching gives rise to matroids. To
formulate this theorem we introduce the following notation.

Let I'=T'(V) be a finite graph and let S < V. By I'(S) we denote the graph
obtained from I" by deleting all vertices not in S and all edges at least one of
whose verticesis not in S. Note thatif T < Sand I'y = I'(S), then I(T) =T ((T).
For S € V, the graph I'(V — §) has in general several connected components.
We denote by p(I'; S) the number of odd components of I'(V — S), that is the
number of connected components of I'(V — S) having an odd number of
vertices. We note that for all S< V, |V ]+ (S| — p(T;S) is even.

4.1.8. Proposition. Let I'(V) be a finite graph. Then the maximum cardinality o
of a matching satisfies

20 =min{|V|+|S|—pT;S):ScV}.
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Proof. Denote the above minimum by 2m. Let ® be a matchingandletS< V.
Each odd component of I'(V — S) contains a vertex x such that either x does
not meet ® or else there exists a vertex seS such that [x,s] is an edge of ©.
Hence the number of vertices which meet @ is at most

WV|—(@T;8)—IS)=2m
and it follows that
2|0 <2m.

Hence « < m. We now prove by induction on m that I' has a matching of
cardinality m, from which the proposition follows. The case m =0 being
obvious, we suppose m > 1.

Let 1 be the collection of maximal subsets T of V for which

[VI+IT|—pI;T)=2m.
Let Tet and suppose that I'(V — T) has an even component (a component

with an even number of vertices). Let x be any vertex of such a component.
Then p(I'; Tu{x}) > p(I'; T) + 1 and hence

VI+1To{x}| = p; Tu{x})<|V]+|T-pI;T).

It follows that equality holds above and we contradict Tet. Thus for all Ter,
I'(V — T) has no even components. We now distinguish two cases.

Case 1. There exists Tet such that either T # J or I'(V — T) has at least
two odd components with more than one vertex.

Let I'; = I'(T}) (ie]) be the odd components of I'(V — T). Thus |I| = p(T; T),
the T;(iel) are disjoint sets with an odd number of vertices, and

2m=Y (IT|—1)+2|T].

Because of our assumption in this case, | T;] — 1 < 2(m — 1) (iel). Let i be an
arbitrary but fixed element of I, and suppose that for some ze T, the graph
I} =T{(T;— {z}) did not have a matching of cardinality (| T;| — 1)/2. By the
inductive assumption there exists S < T, — {z} such that
ITi| —1>|T{ = 1+|S|—p(IsS)
or, equivalently,
p'; Sy >1S|.
Since I'; has an even number of vertices, it follows that

p(;8) =18+ 2.
We then calculate that
p;TuSU{z})=p(l; T)— 1 + p(I'; S)
2|Vi+|T|-2m—1+|S|+2
2 |VI+|TuSu{z}|—2m.
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It follows that equality holds throughout, and we contradict the fact that Tet.
Hence for each iel and each zeT,, I'; has a perfect matching @z).

We now consider the bipartite graph I'* = I'*(T, I) whose edges are the
pairs [t,i] such that teT, iel, and there is an edge of I joining ¢ and some
vertex in T;. Suppose that I'* did not have a matching which T meets (thatis, a
matching of cardinality equal to | T'|). It then follows from Proposition 4.1.6 (or
Proposition 4.1.2) that there exists a set S< T and a set J =1 such that |J|
< |§| and no edge of I'* is of the form [s,i] where seS and iel — J. We then
conclude that

pI;T=8) 21| -|J|=p;T)—|J|,
and we calculate that

IN+IT =8| =pT=8)<|VI+|T|-|S| - p(I; T)+ |J|
<2m—(|S|—1J1)

<2m.

From this contradiction we conclude that I'* has a matching which T meets.
Thus there exist K = I and z,e T, for ie K such that I has a matching ® which
matches T with {z;:ieK}. For iel — K, let z; be any element of T;. Then

eu < U @,.(z,.)>

iel
is a matching of I' having cardinality

ITI+ 3 (T = D2=m

Case 2.t = {Z} and I has exactly one odd component with more than one
vertex.
Thus for all S< V with S # (,

2m<|V|+18|—p(T3;S),
and hence
2m+2<|V|+1S|—pT;S),

while 2m = | V| — p(T’; &), where p(['; &) is the number of (odd) components of
I'. The component of I" with more than one vertex has 2m + 1 vertices. Let x
and y be any pair of vertices such that [x, y] is an edge, and consider the graph
I'*=T(V*) where V* =V —{x,y}. Let S$* < V* and let S = S* U {x, y}. Then
p(I';S) = p(I'*;S*) and, since S # ¢,

2m+2< |V + 18| —pT;S)
K| V*+ 2+ 8%+ 2 —p(I*, 5%
so that
Am — 1) <|V*[ +|S*| — p(I'*, $*).
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Since this inequality holds for all S* < V*, it follows from the inductive
hypothesis that I'* has a matching ®* of cardinality m—1. Hence
©*u{[x,y]} is a matching of G of cardinality m.

The proof of the Proposition is now complete. a

In proving Proposition 4.1.8 we have proved more than the statement that
the maximum number m of edges in a matching of a finite graph I" equals

Lmin {|V|+1{S| - p(T;8):ScV}.

We have, in addition, described the structure of the matchings of I of
cardinality m.

4.1.9. Proposition. Let I'(V) be a finite graph, and let m be the maximum
cardinality of a matching of T'. Then there exists T = V such that the connected
components of I' (V — T) have vertex sets T(icl) of odd cardinality and the
following property holds.

Let T*(T, I) be the bipartite graph such that for te T and il, [t,i] is an edge if
and only if [t,x] is an edge of T for some xeT,. Then every matching of T of
cardinality m is obtained in the following way:

(i) Choose a matching ®* = {[t,i,]:te T} of cardinality |T| of T'*.

(ii) For each jel choose a vertex z;€T; such that when j =i, for some teT,

[t,z,] is an edge of T'. Let ® = {[t,z, ]:teT}.
(ii1) For each i€l choose a matching ®; of T'(T}) of cardinality (| T;| — 1)/2 such
that z; does not meet ®,.
(iv) Then ® U(| Ji;®)) is a matching of cardinality m.
Moreover, for any choice of ®* satisfying (i) and any choice of © satisfying (ii),
there exists @(iel) satisfying (iii).

Proof. Suppose T satisfies Case 1 of the proof of Proposition 4.1.8. Then in
examining the proof of Proposition 4.1.8 we see that steps (i), (ii), and (iii) can
be carried out and in carrying them out we always obtain a matching of
cardinality m as described in (iv). Moreover, it follows from considerations of
cardinality that every matching of cardinality m arises by carrying out steps (i)
to (iv). Now suppose that T satisfies Case 2 of the proof of Proposition 4.1.8.
Then, in particular, T = ¢J. Then steps (i) and (ii) above are vacuous, and
exactly one of the sets T;(iel) has more than one vertex. If T, is this set, then a
proof like that used in Case 1 shows that for each z, €T} there is a matching of
[(T,) of cardinality (| T, — 1)/2 which z, does not meet. The Proposition now
follows. O

As a special case of Proposition 4.1.8 we obtain the following.

4.1.10. Proposition. (W.T. Tutte 1947) Let I' (V') be a finite graph. ThenT has a
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perfect matching if and only if
pI;8)<|[S] (ScV)

Proof. By taking S = ¢J in the inequality, we see that I" has an even number of
vertices. The theorem now readily follows from Proposition 4.1.8. O

Let I'(V) be a finite graph and let S, 4 < V. We define p(T; S, A) to be the
number of odd components of I'(V — T') the set of whose vertices is a subset of
A. Thus p(T;S)=p(T’; S, V). We now obtain the following generalization of
Proposition 4.1.8.

4.1.11. Proposition. (R.A. Brualdi 1971) Let I'(V) be a finite graph and let
A € V. Then the maximum cardinality of a subset of vertices of A which meets a
matching of T equals

min{{A|+ 8] —p(T;S,A):S< V}.
Proof. We first show that A meets a matching of I" if and only if
pI5S, A <IS| (S=V).

That this inequality must hold if 4 meets a matching of I is readily verified,
and we turn to the converse. Let the maximum cardinality of a matching of I’
bem.Let Whbeasetwith VAW = and |W|=|V|—2m. Let I*(V U W) be
the graph obtained from I' by including as vertices the elements of W and
including as edges the pairs [x, y] whenever xe W, yeV — 4 or x, ye W with
x # y. Then I'* has an even number of vertices, and it is straightforward to
check that A meets a matching of I if and only if I'* has a perfect matching.
Suppose p(I;S, A)<|S|(ScV). Let TeVuW. f WcT, then by
Proposition 4.1.8,
pI*5T)=pI;TAV)S|Vi+|TV|—2m
<IW|+|TAV]
<|{T]|.

Now suppose W & T. Then it follows from the definition of I'* that
pI*T)<pl;TV;A4)+1
<|TnV]|+1.
Since I'* has an even number of vertices,
pI'* T)<|T|.

Hence, by Proposition 4.1.10, T'* has a perfect matching so that I" has a
matching which 4 meets.
Now let £ be a non-negative integer with ¢ < | 4]. To prove the proposition it
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suffices to show that there exists a matching of I which at least ¢ vertices of 4
meet if and only if

|41 +1S|—pI;S, )=t (S=V).

It is readily verified that this inequality holds if ¢ vertices of A meet a matching
of I'. To prove the converse, we suppose the inequality holds. If t = [ 4|, then
the converse has been proved above. So suppose that ¢t < |A]. We first consider
the case where thereis no edge [x, y]in I where xe A and yeV — A. For S 4,

p(I'(A);8) = p(I; S, A) < | 4] + [S] — 1.

It now follows from Proposition 4.1.8 that I'(4) has a matching of cardinality
at least t/2 and hence there exists a matching of I" which at least t vertices of 4
meet. We now assume that there is at least one edge of I which joins a vertex of
Atoavertexnotin A. Let Wbeaset with VAW = Jand |W|=|A| —t Let
[*(V u W) be the graph obtained from I' by including as vertices the elements
of W and by including as edges the pairs [x, y] whenever xe W and ye 4. tis
readily verified that there is a matching of I which at least t vertices of A meet if
and only if 4U W meets a matching of I'*. From the first part of the proof it
suffices to show that
pI* T, AOW)SI|T| (TSVUW)
Let TeVUW.If A< T, then
pIsT,AoW)=|W -T|<|W|=|4|-t<|A|<|T].
If W< T then
pI* T,AUW)=p;T—W, A <|A|+|T—W]|—t=|T|.

Thus we may suppose that A€ T and W & T. From the definition of I'* it
follows that p(T'; T, A) = 0 or 1. Hence if T+ (7,

pCx T, AuW)<1<|T|

If T = (&, then since it is assumed that there is an edge joining a vertexin A to a
vertex not in A4,

pr*;T,AoW)y=0=|T|.

Thus 4 U W meets a matching of I'* and hence there is matching of I" which at
least ¢ vertices of A meet. O

4.2. Matching Matroids

We now show how matchings can be used to construct some interesting
matroids whose rank functions can be obtained from previous theorems. Let
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I'(V) be a finite graph and denote by .#. the collection of subsets of V which
meet some matching of I'. We then have the following.

4.2.1. Theorem. (Edmonds and Fulkerson 1965). For any finite graph I'(V),
S is the collection of independent sets of a matroid M (V).

Proof. We prove the theorem by showing that .#- satisfies the independence
axioms for a matroid. Since (I, ) and (I,) are obvious, we direct our attention to
verifying (I;). Let U, and U, be in 4 with [U,|<|U,|. There exist
matchings @, and O, of I' such that U, meets @, and U, meets ©,. If some
vertex xeU, — U, meets @, then U, U {x} meets @, and hence U, U {x}e S .
Thus we may suppose that no vertex xeU, — U, meets ®,. We consider the
subgraph I'* of I' whose edges are the edges of E = ®, U®, and whose vertices
are the vertices of the edges in E. Then each vertex of I'* meets either one or
two edges of I'*, and it follows that the connected components of I'* are either
elementary chains joining two distinct vertices or elementary cycles of even
length; in either case, since ®; and ®, are matchings, the edges alternate
between ®, and @,. Since no xeU, — U, meets @, it follows that a connected
component of I'* which is a cycle, contains at least as many vertices of U as of
U,. The components of I'* which are chains are of one of three types,
determined by the nature of the first and last edges: (i) both are edges of ® , (ii)
both are edges of ®@,, (iii) the first is an edge of @, and the last is an edge of @,
(or vice versa). Type (i) chains contain at least as many vertices of U, as of
U,. The vertices of U, that belong to a type (ii) chain y are vertices of the
edges of @, that belong to y. If the first vertex of a type (iii) chain y belongs
to U,, then y contains at least as many vertices of U, as of U,; otherwise
all vertices of y that belong to U, are vertices of the edges of @, that belong
to y. Since | U, | <|U,|, it follows that there is a chain y* which is a component
of I'* having the properties that it contains more vertices of U, than of U,
and each vertex of U, which belongs to y* is a vertex of an edge of ®,. Let
@) be the edges of y* which belong to ®,, and let @} be the edges of y*
which belong to @,. Then @, =(0; — ©])u®) is a matching for which
thereis a vertex xe U, — U, such that U, U {x} meets ;. Thus U, u{x}e.fT,
(I3) holds, and the theorem is proved. O

Proposition 4.1.11 furnishes an explicit formula for the rank function of
M(V), and we state this fact as a corollary.
4.2.2. Corollary. Let I'(V) be a finite graph, and let r denote the rank function of
the matroid M (V). Then for A<V,
r(d)=min{|A| +|S|—p([;S,A):ScV}.

We call the matroid M (V) the matching matroid of the finite graph
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['(V), and define a matching matroid to be any restriction M(S) of the
matching matroid of a finite graph. Thus in a matching matroid M(S), §
is a subset of the vertices of a graph. There may be edges of the
graph having one of their two vertices outside of S [edges having neither vertex
in S can be deleted from the graph with no change in M(S)]. A special (see,
however, Proposition 4.2.6) kind of matching matroid is a transversal matroid
defined as follows. Let o7(I) = (A;:iel) be a finite family of subsets of a finite set
S, indexed by I, and let I (I, S) be the associated bipartite graph. Then the
matching matroid of T, restricted to S, M (S), is a matroid whose
independent sets are the partial transversals of .&7. We call such a matroid the
transversal matroid of the family o of subsets of § and denote it by M _(S). (If
one restricts the matching matroid of I', to I, one obtains a matroid whose
independent sets are the subsets J of I such that the subfamily .&/(J) has a
transversal. Such a matroid is the transversal matroid of the family #(S)=
(B,:seS) of subsets of I where B, = {i:icl,scA;} for seS.) Note that for
X < 8§, the restriction Mu(X) is a transversal matroid, indeed it is the
transversal matroid of the family «/(I) = (4;~ X:iel) of subsets of X. From
Proposition 4.1.3 we can obtain a formula for the rank function of a
transversal matroid.

4.2.3. Proposition. Let o/(I) = (A;:i€l) be a finite family of subsets of a finite set
S, and let r denote the rank function of the transversal matroid M (S). Then for
XcS,

rX)=min{|AN)nX|+ I -J]:J <}

Proof. Let X = 8. Then r(X) is the maximum cardinality of a subset of X which
is a partial transversal of &/ and this equals the maximum cardinality of a
partial transversal of the family (4;~ X:iel). The formula now follows from
Proposition 4.1.3. O

Matching matroids arise from matchings in graphs, while transversal
matroids arise from matchings in bipartite graphs. Since bipartite graphs are,
in general, more elementary combinatorial objects than graphs, one might
expect that transversal matroids would constitute a small subclass of the class
of matching matroids. As a matter of fact these two classes of matroids are
identical. Before deriving this result of Edmonds and Fulkerson from the
structure of maximum cardinality matchings as given in Proposition 4.1.9, we
prove two lemmas.

4.2.4. Lemma. Let M(S) be a finite matroid, and let Z be a collection of
isthmuses of M(S). Then M(S) is a transversal matroid if and only if the restriction
M(S — Z) is a transversal matroid.
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Proof. Wehave already noted that any restriction of a transversal matroid is a
transversal matroid. Suppose M(S — Z)is the transversal matroid of the family
(A;siel) of subsets of S — Z. Let K be a set with KnI = @ and |K|=|Z|, and
consider the family (K U I) of subsets of S where B; = Z if jeK and B; = 4; if
jel. Since each basis of M(S)is the union of Z and a basis of M(S — Z), it readily
follows that M(S) is the transversal matroid of (K U I). O

Let M(S) be a finite matroid and let xeS. Let E be a set such that EnS = (.
Recall that the series extension of M(S) at x by E is the matroid M (SUE)
whose bases are the following sets:

(i) BUE, where B is a basis of M(S),

(ii) Bu{x}U(E — {y}), where Bis a basis of M(S) not containing x and yeE.
It follows that each basis of M (S U E) contains all but at most one element of
Eu{x}. Moreover, for each ye E, M (S U E) is the series extension of M (S - x
+y)at y by E—y+ x, where S — x + y denotes (S — {x})u{y}. A sequence
of series extensions at distinct elements of E can be done in any order.

4.2.5. Lemma. The series extension M (Su E) is a transversal matroid if and
only if M(S) is a transversal matroid.

Proof. Since M(S)= M ,(S), it follows that M(S) is a transversal matroid if
M (SUE) is. Suppose M(S) is the transversal matroid of the family «/(I)=
(A;:iel) of subsets of S. Let K be a set such that KnI= ¢ and |K|=|E]|.
Consider the family Z(K UI) of subsets of SUE where B;= Eu {x} if jeK,
B;=A;UEIf jel and xe 4, and B; = A;if jel and x¢ A4;. It is straightforward
to check that M(SUE) is the transversal matroid of Z(K U I). O

4.2.6. Proposition. {Edmonds and Fulkerson 1965) A matching matroid is a
transversal matroid.

Proof. Since a matching matroid is a restriction of the matching matroid of a
graph and since a restriction of a transversal matroid is a transversal matroid,
it suffices to show that the matching matroid of a graph is a transversal
matroid. Let I'(V) be a finite graph. Let I'*(T,I) be the bipartite graph
described in Proposition 4.1.9, whose notation we freely use. For each iel,
choose x;eT, and let S={x;:iel}. Let o/(T)=(A,:teT) be the family of
subsets of S wherefor te T, A, = {x;:[t,i] isan edge of '*}. Then itfollows from
Proposition 4.1.9 that the matroid M(V — T)is obtained from the transversal
matroid M _(S) by the sequence of series extensions at x; by T; — {x;} (iel). It
now follows from Lemma 4.2.5 that MV — T)is a transversal matroid. From
Proposition 4.1.9 we see that T is a collection of isthmuses of M (V). Hence by
Lemma 4.2.4 the matching matroid M (V) is a transversal matroid. O

The construction for transversal matroids can be generalized to show how a
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matroid may induce a new matroid across a relation or bipartite graph. Let
I'(S,, S) be a finite bipartite graph and let M(S) be a finite matroid whose rank
function is denoted by r. Let ©® be a matching of I' which matches the subset 4,
of §; with the subset 4 of S. We call @ an M-matching provided A is an
independent set of M(S). In case M(S) is a free matroid, every matching of I is
an M-matching.

4.2.7. Theorem. The collection ¥, of subsets of S, which meet an M-matching
of I'(S,, S) are the independent sets of a matroid M ((S,) with rank function r;
where for each X = §,,

riX)=min{r(0A)+|X — Al: A= X}.

Proof. We verify that 4, satisfies the independence axiom (I;), axioms (I,)
and (I,) being obvious. Let U,, T,e#, where |U,| <|T|. Thus there exist
matchings ® and Q where ® matches U, with an independent set U of M(S)
and Q matches T, with an independent set T of M(S). We may suppose that
© and Q have been chosen so that |U n T} is as large as possible. The bipartite
graph I'| whose edges are those edges of I" which belong to @ or Q and
whose vertices are the vertices of these edges has connected components
which are either elementary chains joining distinct vertices or elementary
cycles of even length. Since |U,| <|Ty|, |U| <|T| and it follows from axiom
(I3) for M(S) that there exists te T — U such that U U {t} is an independent
set of M(S). This t meets an edge of Q but not an edge of ©, and it follows
that there is a connected component of I'; which is an elementary chain y
joining t to some vertex x where xeU — T or xeT, — U,. Suppose that
xeU —T. Let ®@ = (0O — yg)Uyg Where yg consists of those edges of y which
belong to @ and yq consists of those that belong to Q. Then @’ is a matching
of I which matches U, with U — x + ¢. Since U u {t} is an independent set
of M(S),sois U — x + t. Hence ©' is an M-matching. Since |(U —x + )N T| =
1 +jUnT|, we have a contradiction. Therefore xe T, — U,. The matching
©’ defined above then matches UL {x} with U u {t}. It follows that @' is an
M-matching and hence U; u{x}e#,. Hence axiom (I;) is satisfied, and .#
is the collection of independent sets of a matroid M,(S,). The formula for the
rank function of M (S, ) follows readily from Proposition 4.1.2 (or Proposition
4.1.5). O

4.3. Applications

To conclude we give several applications of some of the previous theorems.
Let «/(I)=(A;:iel) be a finite family of subsets of a finite set S. Then the
collection of partial transversals of .« are the independent sets of a matroid
M _(S). Suppose =/ has a transversal so that the bases of M _(S) are the
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transversals of o7. Since every independent set of a matroid can be enlarged to
a basis, we obtain the following result first proved by Hoffman and Kuhn
(1956) before the discovery of transversal matroids.

4.3.1. Proposition. Let /(1) = (A;:i€l) be a finite family of subsets of a finite set
S, and let X = S. Then &/ has a transversal containing X if and only if </ has
a transversal and X is a partial transversal of &/.

Let r denote the rank function of M _(S). Then X is a partial transversal of &/
if and only if r(X)=|X]|. Thus Propositions 4.1.4 and 4.2.3 in combination
Proposition 4.3.1 furnish criteria for X to be a subset of a transversal of /.

4.3.2. Proposition. (Ford and Fulkerson 1958) Let o/ (I} = (A;:iel) and %(I) =
(B;:i€l) be finite families of subsets of a finite set S. Then there exists T < S
such that T is a transversal of both o/(I) and (1) if and only if

[A)NBK)| 2 |J[+IK|-|I] (J, K]

Proof. we consider the transversal matroid M _(S) whose independent sets are
the partial transversals of .«/. Then .« and # have a common transversal T if
and only if # has a transversal which is an independent set of M _(S). Let r
denote the rank function of M (S). Then by Proposition 4.1.6 there is an
independent set of M _(S) which is a transversal of 4 if and only if

HB(K))= K| (K&

It follows from Proposition 4.2.3 by setting X = B(K) that the previous
inequality holds for all K < I if and only if

[ANNBK) +11-J[2[K| (J, K<),
and the proposition follows. O

The previous proof can be easily modified to obtain a criterion for there to
exist a set T of prescribed cardinality m which is a common partial transversal
of /(1) and %(I,), both finite families of subsets of S, equivalently for there to
exist a common independent set of cardinality m of the two matroids M (S)
and MgS). More generally we have the following result attributed to
Edmonds (1970).

4.3.3. Proposition. Let M ,(S) and M,(S) be two finite matroids with rank
functions r| and r,, respectively. Let m be a non-negative integer. Then there
exists T < S such that T is an independent set of both matroids M (S) and M ,(S)
if and only if

riX)+r,(S—X)=zm forall XcS8.
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Proof. Briefly, we consider the bipartite graph I" whose vertices consist
of two disjoint ‘copies’ of S where the only edges are the |S| edges joining
the two copies of each element of S. The result now follows easily from
Theorem 4.1.7. O

Finally, we indicate a proof of the following.

4.3.4. Proposition. (Edmonds and Fulkerson 1965) Let M (S),..., M(S) be
finite matroids with rank functions r,,...,r,, respectively. Then there exist
pairwise disjoint subsets B,,...,B, of S such that B; is a basis of M(S;) for
i=1,....,kif and only if

_f r(d) +1S - A > _i r{S) (4<9).

Proof. Let S,,...,S, be ‘copies’ of S such that S,S,,...,S, are pairwise
disjoint. Consider the bipartite graph I'(S,S,; v ---uS,) where for each seS
there is an edge joining s to each of its k ‘copies’. Let M(S;u---US,) be the
matroid which is the direct sum of the matroids M (S,),..., M(S,). The rank
function r of this matroid satisfies

r(Ay v VA)=ri(A)+ - +r(4) (4,cS,i=1,...,k).

It follows easily that there exist pairwise disjoint bases if M,(S),...,
M,(S) if and only if I' has a matching which matches a subset of S of
cardinality r,(S)+ --- +r,(S) with an independent set of M(S,u---US)).
Using Theorem 4.1.7, we see that such a matching exists if and only if

k k
Y (A +|S—A|= Y r(S) (A4<S),
i=1 i=1

where A®? is the ‘copy’ of 4 in S;. Since r,(49) =r,(A) (i = 1,...,k), the result
now follows. |

Notes

Theorem 4.1.7 appeared in an unpublished manuscript (Symmetrized form
of R. Rado’s theorem on independent representatives, 1967) by Brualdi. It
occurs in a more general form in Brualdi (1970) and also in Aigner and
Dowling (1971). The proof given here follows that in the unpublished
manuscript. There are many known proofs of Rado’s theorem
(Proposition 4.1.6) and Hall’s theorem (Proposition 4.1.4). The reader is
referred to Mirsky (1971) and the many references therein and also to Welsh
(1976). The proof of Berge’s extension of Tutte’s theorem in Proposition 4.1.8
is based in Anderson’s (1971) proof of Tutte’s theorem and Brualdi’s (1971)
proof of Proposition 4.1.11 for infinite graphs, but the method of proof was
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first used by Gallai (1963). Proposition 4.1.11 was rediscovered by Las
Vergnas (1973). The proof given here is based on McCarthy (1975); the first
half of the proof establishes a result of Lovasz (1970). Transversal matroids
were rediscovered by Mirsky and Perfect (1967). The proof of
Proposition 4.2.6 is based in Brualdi (1971). Theorem 4.2.7 was discovered
by Perfect (1969a), but the proof given here is based on an unpublished
manuscript of Brualdi (1967). The proof of Proposition 4.3.2 is from Mirsky
and Perfect (1967). For different approaches to many of the theorems proved
here and for other related results, see Welsh (1976). For a more comprehensive
treatment of transversal theory, see Mirsky (1971).

Exercises

[A general reference for most of the results contained in the exercises is Mirsky

(1971)]

4.1. Let(A,,..,A,) be a family of subsets of a set S and let p,,...,p, be non-negative
integers. Then there exists a family (X4,...,X,) of pairwise disjoint sets with
X, € A;and | X;|=p; for i=1,...,nif and only if

ADI> Tpy U {1eweom)

(P.R. Halmos and H.E. Vaughan)

42, Let o/(I)=(A;:iel) be a finite family of subsets of S, and let k be a positive
integer. Then there is a partition I,,...,I, of I such that o/(I;) has a transversal
for 1 <j<k if and only if

kAW =1Jl (<))

(R. Rado)

4.3. Leto/(I)=(A;:iel)be afinite family of subsets of S. Let I’ < T and let S’ = S. Then
the following are equivalent:
(i) /(I') has a transversal, and §' is a partial transversal of «/(I).
(i1) There exists $” with §’' = §” < Sand there exists I"” with I' < I” < I such that §”
is a transversal if </(I”).
(A.L. Dulmage and N.S. Mendelsohn)

44. Letsof =(A,,...,A,) be afamily of subsets of S and let r,...,r, be non-negative
integers less than or equal to n. Then &/ has m pairwise disjoint, partial
transversals of cardinalities r,,...,r, respectively if and only if

[ADIZ Y (I =n+r)" (T
ieJ
Here for a real number a we define a* to be a unless a < 0 in which case a* =0.
(P.J. Higgins)
4.5. A bipartite graph is regular of degree k if each vertex meets exactly k edges. Prove
that the edges of a regular bipartite graph of degree k can be partitioned into k
perfect matchings. (Konig 1931)
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4.6. Annby nmatrix is doubly stochastic if its entries are non-negative numbers which
sum up to 1 in each row and column. Prove that a doubly stochastic matrix can be
written as ¢,P, +-.- +¢,P, where P,,...,P, are permutation matrices and
Cy,---,C, are positive numbers summing up to 1. (G. Birkhoff)

4.7. Let #(I)=(A;:icl) and #(J)=(B;:jeJ) be two finite families of a set S. Then
the maximum integer p such that there exists a set T of cardinality p which is
a partial transversal of both «/(I) and %#(J) equals

[T} +1J1+ min {| A(K)n B(L)| — | K| —|L|}
K,.L
where the minimum is taken over all subsets K of I and L of J.

4.8. Prove that a graph which is a tree has at most one perfect matching.

4.9. Let M (S),..., M(S)be finite matroids with rank functionsr , ..., 7, respectively.
Prove that there is a partition of S into sets S,,...,S; such that §; is an
independent set of M(S) for i=1,...,k if and only if

X[ <r(X)+ - +rlX)
for all X = 8. (Edmonds and Fulkerson 1965)

4.10. Prove that the Fano matroid is not a transversal matroid.

4.11. Prove that the duals of the polygon matroids of the complete graph K and the
complete bipartite graph K ; are not transversal matroids.

4.12. Let o(I)={(A;:iel) and B(J) = (B;:jeJ) be two finite families of subsets of the

finite sets S. Show by example that the collection of subsets of S which are partial
transversals of both «Z(I) and #(J) need not be the collection of independent sets
of a matroid.
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Transversal Matroids

RICHARD A. BRUALDI

5.1 Introduction

In this chapter we study more comprehensively the transversal matroids
which were introduced in the preceding chapter. Recall that these matroids
are defined as follows. Let «/(I) =(A;:iel) be a finite family of subsets of a
finite set S. There is no loss of generality in taking the index set I to be
{1,2,...,n}, and we write &/ =(A4,,4,,...,4,). The transversal matroid
M 4(S) of the family o of subsets of S is the matroid on S whose collection .¥ ,
of independent sets is the set of partial transversals of o/. We say that a
matroid M(S) is a transversal matroid provided there is some finite family
o of subsets of S such that M(S) coincides with M _(S). The family .« is then
called a presentation of M. It is readily discovered that a transversal matroid
has in general many presentations. As an example, take S to be {a, b, ¢, d, e} and
take M(S) to be the 3-uniform matroid on S whose independent sets are all
subsets of S with at most three elements. Then with 4, ={a,b,c}, 4, =
{a,b,d}, and A, = {a,b,e}, (4,,A,,A;) is a presentation of M(S). But then so
is (X, X,, X3) whenever 4, X; = S for i =1,2,3. While a presentation of a
transversal matroid is not uniquely determined, we show in the next section
that a transversal matroid of rank k has a unique ‘maximal presentation’
(M, M,,...,M,). For the matroid M(S) above, the maximal presentation is
(S, 8,S).

We begin with some general properties of presentations and first observe
that a transversal matroid of rank k can be presented by k (but clearly no
fewer) sets.

5.1.1. Lemma. Let M(S) be a transversal matroid of rank k with presentation
A =(Ay, Ay,..., A,). Let {iy,i,,..., 5} be any subset of {1,...,n} of cardinality
k such that the subfamily o' =(A;,, A A;) of o has a transversal. Then
' is also a presentation of M(S).

[PSRRER)
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Proof. The proof is very similar to the proof of Theorem 4.2.7 and
consequently we omit it. O

Let F be a flat (or more generally a set of elements) of the matroid M(S).
Then F is cyclic provided F has no isthmuses, that is, provided each element
of F is in a circuit which is entirely contained in F. In terms of the rank
function, F is cyclic if and only if #(F\{a})=r(F) for all aeF. Let B be a
basis of F and for xeF\B let C, be the unique circuit with xeC,
S Bu{x}. Then it is straightforward to check that F is cyclic if and only if
Bc U, pC,. We say that the matroid M(S) is cyclic when § is cyclic. The
following result of Mason (1970) and Brualdi and Mason (1972) is a kind of
converse of Lemma 5.1.1 for cyclic matroids.

5.1.2. Lemma. Let M(S) be a cyclic transversal matroid of rank k and
let (4,,A,,...,A4,) be a presentation of M(S). Then exactly k of the sets
A, A, ..., A, are non-empty.

Proof. Let B={b,,...,b,} be a basis of M(S). We may suppose without
loss of generality that b,ed;(i=1,...,k). We then need to show that
Ay =-=A4,=¢. Since M(S) has rank k, it follows that 4, B for
i=k+1,..,n Suppose 4., #J, and let b;eA, . Since M(S) is cyclic,
there exists xeS\B and a circuit C, such that {x,b;} = C, < Bu{x}. Then
(Bu{x})\{b;} is a basis of M(S) and by Lemma (5.1.1) is a transversal of
(Ay,..., Ay). Since b;e A, . ;, Bu{x} is a transversal of (44, ..., A, A, + ), which
contradicts the fact that B is a basis of M(S). Hence A4, , , = (&, and similarly
A= foralli=k+1,...,n O

5.1.3. Corollary. Let M(S) be a transversal wmatroid with presentation
(A, A,,...,A,). For F a cyclic flat of rank k,

[{i:FNA; # &} =k

Proof. We need only apply the preceding lemma to the restriction
M(F), a transversal matroid of rank k presented by (4, nF, A, nF,...,A,nF).
O

The next lemma was first observed by Brualdi and Dinolt (1972). It exhibits
an important connection between a transversal matroid and the sets in a
presentation.

5.1.4. Lemma. Let M(S) be a transversal matroid with presentation
(A}, Ap,..., A,). Then S\A; is a flat for i=1,...,n.

Proof. 1t suffices to prove that S\A, is a flat. This is surely the case
when A; = ¢, so we suppose A, # (J. Let B be a basis of the restriction
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M(S\A,), a transversal matroid with presentation (4,\A;,...,4,\4,). Let
xeA;. Since B is a partial transversal of (4,\4,,...,4,\A4,), it follows that
Bu{x} is a partial transversal of (4;,A4,,...,4,). Hence for all xed,,
(S\4;)u{x} has a larger rank than S\A4,, and we conclude
S\ A4, is a flat. |

In the next section we consider more specific properties of
presentations of transversal matroids which lead to a characterization of this
interesting class of matroids.

5.2. Presentations

Because of Lemma 5.1.1 we restrict our attention to presentations
(A4,..., Ay) of transversal matroids of rank k. The first three results are due
to Bondy and Welsh (1971).

5.2.1. Lemma. Let o =(A,,...,A,) be a presentation of the transversal
matroid M(S) of rank k. Let P be a transversal of (4,, ..., A,) such that Pn A,
has minimum cardinality. Then /' =(A;\P, A,,..., Ay) is also a presentation
of M(S).

Proof. We note that the cardinality of Pn A, equals (k — 1) — t where ¢ is the
rank of the transversal matroid with presentation (4,\A4,,..., 4,\A4,). Since
every transversal of o/’ is a transversal of «/, it suffices to prove that every
transversal of o7 [basis of M(S) ] is a transversal of o«/'. Let B= {b,,..., b, } bea
transversal of o/ with b,c4;fori=1,...,k. Let P = {p,,...,p;} with p;e 4;forj=
2,...,k,and set X equal to PnA,.If b€ A4,\P, then B is a transversal of ./’
Hence we may assume that b, € P. Without loss of generality let b, = p,, so that
in particular p,ePnA;. If b,eA, — P, then {b,,b; =p,,b;,....b,} =B is a
transversal of .«/’. Thus we may assume that b,¢ 4, — P. Suppose b,¢P. Then
it follows that P’ = {b,,ps,...,p,} is a transversal of (4,,..., 4;) and hence
|[PnA{|<|P'nA,|.Since p,ePn A,, we conclude that b,e 4, and hence that
b,eA,; — P, a contradiction. We conclude that b,eP, and without loss of
generality we take b, = p;. The above argument may be repeated. Since | B]
> | P|, eventually we determine a j such that with properly chosen notation,
{bi,b; =ps,by=ps,....,b;_1 =p;,b;.1,..., b} = B is a transversal of &/". []

Consider a transversal matroid M(S) of rank k with presentation
(A, Ay,...,Ay). Then clearly A; # F(i=1,...,k) and using Lemma 5.1.4 we
conclude that each S\A; is a flat with rank at most k — 1. Suppose, for
instance, S\A, has rank equal to k—1. Then S\A4, is a hyperplane,
equivalently A, is a cocircuit, and hence (41, A,, ...,4,) is not a presentation
of M(S) for any proper subset A7 of A;. We now show that M(S) has a
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presentation of k cocircuits, which then is a minimal presentation in the sense
that no element can be removed from any set of the presentation. But first
we remark that in a presentation (A4, A,,..., 4,) of M(S), if two sets are
equal, say A, = A,, then (4,\{a}, A,,..., 4;) is a presentation for any ac4,.
It follows that the cocircuits in any minimal presentation are necessarily
distinct.

5.2.2. Theorem. Let of =(A,, A,,...,A,) be a presentation of the transversal
matroid M(S) of rank k. Then there exist distinct cocircuits D1, D,,...,D, such
that D;c A, (i=1,...,k) and 9 =(D,,D,,...,D,) is a presentation of M(S).

Proof. We refer to Lemma 5.2.1. We have that &' =(4,\P, A,,...,A4,)
is a presentation of M(S) and P is a transversal of (4,,..., 4,) which is disjoint
from A,\P. Hence P < S\(4,\P) and it follows that S\(4,\P) is a flat of
rank equal to k — 1, that is, a hyperplane. Hence 4,\P is a cocircuit of M(S).
Applying Lemma 5.2.1 to A,,..., A, in turn, we arrive at a presentation
(D, D,,...,D,) where D;< A; and D; is a cocircuit (i=1,2,...,k). These
cocircuits are necessarily distinct and the theorem follows. O

We note that a transversal matroid may have many different minimal
presentations. For instance, let M(S) be the 3-uniform matroid on
S={a,b,c,d,e}. Then

({a,b,c},{a,b,d},{a,b,e})
and
({b,c,a},{b,c,d},{b,c,e})

are both minimal presentations of M(S). We have already remarked that
a transversal matroid has a unique maximal presentation (apart from the
ordering of the sets). As a step towards proving this fact, we determine when
a set in a presentation may be enlarged without changing the matroid
presented.

5.2.3. Proposition. Let of =(A,,A4,,...,A,) be a presentation of the trans-
versal matroid M(S) of rank k,and let acS\A,. Then o' = (A U{a}, A,,..., A\)
is also a presentation of M(S) if and only if a is an isthmus of the restriction
M(S\A,).

Proof. The matroid M(S\A4,) is a transversal matroid with presentation
(A,\A 4, ..., A\A,). First suppose that /' is a presentation of M(S), and let
B be a basis of M(S\A4,). Then B is a partial transversal of (4,\A4,,...,4,\4,)
and hence of (4,,...,4,). Thus Bu{a} is a partial transversal of </’ and
hence, by our assumption, of &. Since (Bu {a})n A4, = &, Bu{a} is a partial
transversal of (4,\A4,,...,4,\A4,). Since B is a basis of M(S\A4,), it follows
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that aeB. Since B is an arbitrary basis of M(S\A4,), it follows that a is an
isthmus of M(S\A4,).

Conversely, suppose a is an isthmus of M(S\A4,). It then follows that every
transversal P of (4,,..., 4,) has a non-empty intersection with A; U {a}. We
choose a P so that PN (A4, u{a}) has minimum cardinality as follows. We
take a maximum partial transversal P’ of (4,\A4,..., A,\4,). Since a is an
isthmus of M(S\A4,), aeP'. Then we observe that P’ is a partial transversal
of (4,,...,A4,) and hence can be enlarged to a transversal P of (4,,..., 4,).
This P has minimum cardinality intersection with 4, U {a}. We now apply
Lemma 5.2.1 to the transversal matroid M’(S) with presentation .o7’. Since
aeP, we conclude that (4,\P, A,,..., A,) is a presentation of M’'(S) and hence
that of =(A, A,,..., A,) is a presentation of M'(S). Hence M(S) = M'(S), and
it follows that ¢’ is a presentation of M(S). O

We say that the presentation (4,,..., 4,) of the transversal matroid M(S)
of rank k is a maximal presentation provided every presentation (A4},..., 4;)
of M(S) with A;c A4; for i=1,...,k satisfies A,=A\(i=1,...,k). A
transversal matroid always has at least one maximal presentation.

5.2.4. Corollary. Let (A,,...,A,) be a maximal presentation of the transversal
matroid M(S) of rank k. Then S\A; is a cyclic flat for i=1,...,k.

Proof. This is an immediate consequence of Lemma5.14 and
Proposition 5.2.3. 0

In Theorem 5.2.6 we shall verify an algorithm for determining a maximal
presentation of a transversal matroid. A consequence of this algorithm will
be the uniqueness of a maximal presentation. The first step of the algorithm
is contained in the next lemma.

5.25. Lemma. Let & =(A,,...,A,) be a presentation of the transversal
matroid M(S) of rank k. Let F,,...,F, be the distinct cyclic hyperplanes of
M(S). Then after possibly renumbering the sets in o/, we have

A;=S\F, (i=1,..,1)
A;#S\F; (j=t+1,...ki=1,...,0.

If (M4,...,M,) is a maximal presentation of M(S) and F is a hyperplane
different from F,...,F,, then M;# S\F for i=1,...,k.

Proof. Since the S\F, are cocircuits, it suffices to consider only maximal
presentations (M 4, ..., M,). Consider the cyclic hyperplane F,. It follows from
Corollary 5.1.3 that F, has a non-empty intersection with exactly k — 1 of
the sets M,...,M,. Relabeling, if necessary, we may suppose that F;n
M, = & so that M, < S\ F,. Since S\ F, is a cocircuit, we now conclude that
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M, =8\F,. Continuing like this, we obtain that M,=S\F, for i=1,...,¢
Suppose there were a j with ¢ <j < k such that M; = S\ F; with 1 <i<t. Then
M;= M, Ifais any element of M ;, we may replace M; by M\ {a} and still have
a presentation of M(S). Since M is a cocircuit, this is a contradiction. Hence
M;# S\F;fort <j<kand1<i<t Finally, let F be any hyperplane different
from F,,..., F,. Then F is not cyclic, and it follows from Corollary 5.2.4 that
M;#S\Ffori=1,...,k. O

Let M(S) be a matroid of rank & with lattice of flats . Let & be the subset
of & consisting of the cyclic flats of M(S). The join in 7 of two cyclic flats
is again a cyclic flat and hence & is a join subsemilattice of &. For a cyclic
flat F we let o' (F) denote the set of all cyclic flats which properly contain
F. For a real number q, let a* equal a if a> 0 and 0, otherwise. We define
an integer-valued function 7 on & recursively as follows: we set 7(S) =0 if
§ is a cyclic flat of M(S) [otherwise 7(S) is undefined]. For j=1,...,k, let #;
be the set of cyclic flats of rank k —j. For j=1,...,k, and each Fe %, let

o(F) = [k —-rF)— Y r(K)J+

Kex'(F)

SIEPRCIE

KeX(F)

It follows from this definition that if Fe% |, that is, F is a cyclic hyperplane,
then o(F) = 1. Ife&, so that F is a cyclic flat of rank k—2, ©(F)=2,1, or O
according as there are 0, 1, or more than 1 cyclic hyperplanes containing F. In
generalif Fe# ,0 < 1(F) <j. Welet# = (F,..., F,) be the family of cyclic flats
defined by the property that each cyclic flat F of M(S) occurs 7(F) times in 4.
We call 4 the distinguished family of cyclic flats of M(S). We note that since the
closure & of the empty set J is a cyclic flat of rank O which is properly
contained in every cyclic flat of rank at least 1, the number »n of flats in 4 is at
least k.

The significance of the family # is contained in the following result of
Brualdi and Dinolt (1972).

5.2.6. Theorem. Let M(S) be a transversal matroid of rank k with distinguished
family of cyclic flats # =(F4,...,F,). Then
(i) D kewiryt(K) < k —r(F) for each cyclic flat F,
() n=k,
(iii) (S/F4,...,S/F,) is, apart from order, the unique maximal presentation of
M(S).

Proof. Let #4 =(M4,...,M,)be any maximal presentation of M(S). We prove
by induction on j that if Fe# ,, then (i) holds and S/F occurs exactly 7(F) times
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in . . Since the S/M, are cyclic flats, the theorem will follow. For j=1, the
conclusion holds by Lemma 5.2.5 and the definition of 7. We assume j > 1 and
proceed by induction. Let Fe% ; so that F is a cyclic flat of rank k —j. It
follows from Corollary 5.1.3 that thereexists I < {1,...,k} with |I| = k — jsuch
that FnM; # & for iel and F = S/M, for i¢l. For each i with F & S/M,
S/M, is a cyclic flat of rank at least k — (j — 1) which properly contains F so
that S/M,e " (F). By the inductive assumption for each Ke #(F), S/K occurs
exactly ©(K) times in .. 1t follows that

Y uK)=|{i:F g S\M}| <j=k—rF)
KeX(F)
and that exactly (F) of the sets S\ M, equal F. Hence the induction is complete.
It follows from the definition of T and (i) applied to & that n=k. O

We note that Theorem 5.2.6 furnishes an algorithm for obtaining a maximal
presentation of a transversal matroid. The uniqueness of a maximal present-
ation is a consequence of this algorithm. This uniqueness was first proved by
Mason (1970).

Theorem 5.2.6 furnishes a necessary condition for a matroid of rank k& to be
a transversal matroid, namely

k—r(F)— 3 t(K)=0 for all cyclic flats F. (5.1)
KeX'(F)

But (5.1) is not a sufficient condition as the following example shows.
5.2.7. Example. Let M(S) be the rank 3 matroid on S={1,2,3,4,5,6,7}
whose bases are all the 3-element subsets of S except F,={1,2,3},
F,=1{1,4,5},and F;={1,6,7}. Then M(S) is the affine matroid pictured in
Figure 5.1. The set & of cyclic flats of M(S) is {J,Fy,F,,F3,S}, and the
distinguished family of cyclic flats of M(S)is & =(F,, F,, F3), and (5.1} holds.
But it is readily established that M(S)is not a transversal matroid [see also (5.2)
below].

We now determine necessary and sufficient conditions on the distinguished
family & of cyclic flats in order that a matroid be a transversal matroid. As a
first step we prove the following.

Figure 5.1. A non-transversal matroid.
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5.2.8. Lemma. Let M(S) be a matroid of rank k, and let M'(S) be the transversal
matroid with presentation of =(A,, A,,..., A,). Then every independent set of
M(S) is also an independent set of M'(S) if and only if

r(ﬂ(S\Ai)><k—|I|, forall I<{l,....k} (5.2)

Proof. Firstsuppose(5.2) holds and let B be a basis of M(S). We show that Bis
a transversal of .7, equivalently that B is a transversal of (4, N B,..., 4,n B).
Suppose that for some I < {1,...,k},

(VD

Bm(S\UAi)

iel

<|IJ.

Then

>k—|I+1,

r(Q(S\Ai)>>

contradicting (5.2). Hence |({ Jie;A:)nB| = |I] for all I<{1,...,k}, and by
Hall’s theorem (Proposition 4.1.4), (4, N B,..., A, n B) has a transversal. Since
M(S) has rank k, | B| = k and B is that transversal. It follows that B is a basis of
M'(S).

Now suppose every basis of M(S) is a basis of M’(S). Then for each basis B of
M(S), B is a transversal of (A,,...,4,) and hence (4, B,...,A,nB) has a
transversal. By Hall’s theorem again,

(o)

iel
for each I < {1,...,k} and each basis B of M(S), and (5.2) follows. O

The following characterization of transversal matroids is due to Brualdi and
Dinolt (1972).

5.2.9. Proposition. Let M(S) be a matroid of rank k and let # =(F ,,...,F,) be
its distinguished family of cyclic flats. Then M(S) is a transversal matroid if and

only if
r(ﬂFi><k—lI|, forall I<{l,...,n}. (5.3)
iel

Proof. 1t follows from Theorem 5.2.6 that M(S) is a transversal matroid if
and only if n=k and M(S) is the transversal matroid M'(S) of the family
o =(S\Fy,...,S\F,). Combining this with Lemma 5.2.8 we conclude that if
M(S) is a transversal matroid, then 5.3 holds.

Now suppose (5.3) holds. By taking I = {1,...,n} in (5.3) we see that n < k.
Since it is always the case that n > k, we conclude n = k. Tt follows from Lemma
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5.2.8 that every independent set of M(S) is also an independent set of M'(S).
Hence to complete the proof we need only show that every transversal of o is
an independent set of M(S). Suppose to the contrary that T is a transversal of
o/ but T is not an independent set of M(S). Then T contains a circuit, and we
let F be the cyclic flat which is spanned by the union D of the circuits contained
in T. Let r(F)=k — j where j > 1. Then

k—j=rD)<[D|, |T\D|<j—L

Let I ={i:F = F;}. Then Fn(S\F;)= for iel, and it follows from the
definition of & that |I| =j. From (5.3) we get

k—j=r(F)<r<ﬂFi><k—[1[.
iel

Hence |1} <j, so that we now have |I|=j. Thus F intersects only k —j sets
of the family /. Since D € F,D intersects at most k —j sets of /. Since
|D| > k — j and since D, by virtue of being a subset of the transversal T of «¢, is
a partial transversal of &, we have a contradiction. Hence every transversal T
of &7 is an independent set of M(S), and the proposition follows. O

5.2.10. Remark. The characterization of transversal matroids given in Propo-
sition 5.2.9 is readily seen to be equivalent to the following. Define an integer-
valued function 7’ on the set & of cyclic flats of a matroid M(S) of rank k by

T(F)=k—rF)— > 1K)
Ke#(F)
Let # =(F},..., F,,) be the family of cyclic flats whereby each cyclic flat F of
M(S) occurs exactly [7'(F)]™ times in #'. If M(S)is a transversal matroid, then
1(F) = 7'(F) for each cyclic flat F, and 4 = #'. In general, M(S) is a transversal
matroid if and only if

r(ﬂF}><k—lI| forall I<({1,...,m}.
iel

There is a characterization of transversal matroids due to Mason (1970)
which was the first characterization discovered. His characterization involves
all the cyclic sets of a matroid and as a result is more difficult to apply.

The following result of Brualdi and Dinolt (1972) characterizes all
presentations of a transversal matroid in terms of the maximal presentation
which can be found by Theorem 5.2.6.

5.2.11. Propeosition. Let M(S) be a transversal matroid of rank k with maximal
presentation(M,,...,M}). Let o/ =(A,,..., A) be a family of sets with A, = M,
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fori=1,....k Then o is a presentation of M(S) if and only if

r(ﬂ(S\AJ)Sk—II[ forall I1<{1,... k}.
iel

Proof. We first note that since the maximal presentation is unique, the
assumption that 4, M, for i=1,...,k is without loss of generality. The
proposition now is an immediate consequence of Lemma 5.2.8. |

The following characterization of transversal matroids is due to Ingleton
(1975).

5.2.12. Proposition. Let M(S) be a matroid of rank k. Then M(S)is a transversal
matroid if and only if there exists a family (H,,...,H,) of hyperplanes such
that

r<ﬂHi><k—|I!, forall I<{l,... k}, (54)
iel
and
for each circuit C there exists J = {1,...,k} with |J{=|C|-1
such that C < (\H,. (5.5)

ieJ

When (5.4) and (5.5) are satisfied, (S\H y,...,S\H,) is a presentation of M(S)
consisting of k cocircuits, a minimal presentation.

Proof. First suppose that M(S) is a transversal matroid. By Theorem 5.2.2
there is a family 2 = (D,..., D,) consisting of k distinct cocircuits such that &
is a presentation of M(S). Let H; = S\D;fori=1,...,k. Then(H,,...,H,)is a
family of k hyperplanes, and it follows from Proposition 5.2.11 that (5.4) is
satisfied and from Corollary 5.1.3 that (5.5) is satisfied.

Now suppose there is a family (H,,..., H,) of hyperplanes satisfying (5.4)
and (5.5), and let M'(S) be the transversal matroid with presentation & =
(S\H,,...,S\H,). It follows from Lemma 5.2.8 that every independent set of
M(S) is also an independent set of M'(S). Suppose M(S) were different from
M'(S). Then there exists a circuit C of M(S) which is an independent set in
M'(S), that is, C is a partial transversal of /. This contradicts (5.5) and the
proposition follows. O

By Theorem 5.2.2 every transversal matroid has a presentation consisting of
cocircuits. The following result of Brualdi and Dinolt (1972) determines the
cardinalities of these cocircuits with reference to the maximal presentation.

5.2.13. Propeosition. Let M(S) be a transversal matroid of rank k with maximal
presentation (M ,,...,M,),and let (D,..., D,) be a presentation of M(S) where D,



82 Richard A. Brualdi

is a cocircuit and D; < M, for i=1,..., k. Then
[D;| =1{M;| — ((k — 1) — r(S\M,))
fori=1,. .k

Proof. Itsuffices to obtain the above identity for i = 1. From the hypotheses it
follows that both (D, D,,...,D,) and (M,,D,,...,D,) are presentations of M(S).
Hence by Proposition 5.2.3 each element of M,\D; is an isthmus of the
restriction M(S\D,). Hence

k—1=r(S\D,)=r(S\M,)+[M,\D|
from which the proposition follows. O

From the preceding theorem we obtain the following result of Bondy
(1972a).

5.2.14. Corollary. With the notation of Proposition 5.2.13,|D,] is the maximum
cardinality of the cocircuits contained in M, for i=1,...,k. In particular the
cardinalities of the cocircuits in the minimal presentations of a transversal
matroid are uniquely determined.

Proof. If D is a cocircuit contained in M,, then
ID| < |M;| —(r(S\D) — (S\M)))
=[M;|—((k— 1) —r(S\M))).

The result now follows from Proposition 5.2.13. ]

5.3. Duals of Transversal Matroids

The dual of a transversal matroid need not be a transversal matroid, and the
purpose of this section is to identify those matroids which are the duals of
transversal matroids. As an example, let S = {a, b, ¢, d, e, f} and let M(S) be the
rank 4 matroid which is pictured affinely in Figure 5.2. The distinguished

Figure 5.2. A transversal matroid whose dual is not transversal.
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family of cyclic flats of M(S) is #=(F,F,, F,, F,) where F, ={b,c,e,f},
F,={ad,c,f},Fy={a,b,d,e}, and F,=¢J. It is easily verified that #
satisfies (5.3) and hence, by Proposition 5.2.9, M(S) is a transversal
matroid with maximal presentation (M, M,, M4, M) where M, = {a,d},
M, ={b,e}, My={c,f}, and M, = S. The matroid dual to M(S) is the rank 2
matroid M*(S) which is pictured affinely in Figure 5.3. One easily checks that
M*(S) is not a transversal matroid (or use Proposition 5.2.9).

Figure 5.3. The dual of the matroid in Figure 5.2.

° C
a

£
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To characterize the duals of transversal matroids we define a new class of
matroids by the use of directed graphs (digraphs, for short). This class of
matroids was first introduced by Perfect (1968), and we shall follow the general
development of Ingleton and Piff (1973) which leads to their identification as
the duals of transversal matroids.

Let I' = I'(S) be a digraph with a finite set S of vertices. Thus each arc of T is
an ordered pair st of distinct vertices, and we generally denote the set of arcs of
I'by E. A path in T is a sequence y = (Sq, S1,---,5;) of distinct vertices where
k = 0 (at least one vertex) and where s;_,s;is an arc fori=1,..., k. The arcs
5081>8182, .-+ » Sk _ 15 are called the arcs of y and their number k is the length of 7.
The initial vertex of y is s, and the terminal vertex is s,, and y is said to join sy to
s, We empbhasize that we have allowed the path y to have length 0, in which
case it has no arcs and the terminal vertex is the same as the initial vertex. Two
paths  y=(8¢,81,---,8) and O={(ty,ty,...,t;) are vertex disjoint if
{S0sS1sevs Sy N {tost15---, ;) =&. The digraph T is said to be bipartite
provided its vertex set S can be partitioned into two sets S; and S, such that
each arc of I' has initial vertex in S, and terminal vertex in S,. We note that
every bipartite graph I'(S,,S,) can be regarded as a bipartite digraph by
directing each edge from S, to S,.

Let 4 and B be subsets of the vertex set S of the digraph I' = I'(S). Then A is
said to be linked into B in I" provided there exists a collection ® of pathsin I”
with the following properties:

1) 10]=]Al

(ii) The paths in © are pairwise vertex disjoint.

(iii) Theinitial vertex of each pathin ® belongs to 4 while the terminal vertex
belongs to B.
A collection © of paths satisfying (1), (ii), and (iii) is said to be a linking of A into
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B. It follows that a linking of A into B defines in particular an injective
mapping f:A — Bby: for ae 4, let f(a) equal the terminal vertex of the path in
® whose initial vertex is a. When | 4| = | B|, the mapping f is a bijection, and ®
is called a linking of A onto B and A is said to be linked onto Bin I'. For B fixed,
the collection of subsets of S which are linked into B are the independent sets of
a matroid of which B is a basis. Before proving this statement, we obtain the
following result of Ingleton and Piff (1973). For each vertex s of T, let

A,={t:st isanarcof T}u{s}
5.3.1. Lemma (The fundamental linking lemma). Let I" = I'(S) be a digraph, and

let A and B be subsets of S. Then A is linked onto B in T if and only if S\A is a
transversal of the family of =(A;:seS\B).

Proof. First suppose that © is a linking of A onto B, so that in particular
|A| = |B]. We define a function ¢:S\A— S as follows (see Figure 5.4):

s, if st is an arc of one of the paths in ©,
t, otherwise.

Figure 5.4. A path of ©.

a=ly) y=d(x) x= (b} b

Suppose teS\A. If t is not the terminal vertex of an arc of a path of ®, then t¢ B
and ¢(t) =teS\B. If t is the terminal vertex of an arc of a path of ®, then
¢ (1) # t and p{t)eS\B. Hence ¢:S\ 4 — S\ B. Since the paths in ® are pairwise
vertex disjoint, ¢ is an injection. Since | A{ = | B[, we now conclude that ¢:S\ A
— S\Bis a bijection. From the definition of the sets of the family .o/, te 4, for
each teS\ 4 and it follows that S\ A is a transversal of ./ (the mapping ¢!
defines a system of distinct representatives corresponding to the transversal
S\ A).

Now suppose that S\ 4 is a transversal of the family .« = (A4,:5€S\B). Then
there exists a bijection ¢:S\ A — S\ B such that te¢(t) for each teS\ 4. Hence, by
definition of the sets of .o, for each teS\ A either ¢(t) =t or ¢(t)tisan arc of .
Now consider ¢ with t€ B\ 4, and consider the sequence t, ¢(t), p2(t),... Since S
is finite, either there exists an integer m so that ¢™(t)e A, in which case ¢™ " (1) is
not defined, or there exist integers k and ! with k <[ such that ¢*(t) = ¢¥(t).
Since te B and since the function values of ¢ are in S\B, it follows that in the
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latter case k > 1. Suppose there were such a k and / and choose & to be minimal.
Then ¢*(t) = ¢'(¢) implies P(d* (1)) = H(¢'~1(t)). Since ¢ is a bijection,
¢~ 1(t) = ¢’ (t) contradicting the minimality of k. It follows that there exists
a positive integer m, such that t, ¢(¢),..., ¢™(t) are distinct vertices such that
¢™M(t)eA and y, =(d™(2),...,d(t),t) is a path in I'. Since ¢ is a bijection, the
collection of paths (y,:te B\ A) are pairwise vertex disjoint. For te A n B, let 7,
be the path (¢) of length 0. Then the set of paths @ = {y,:te B} is a linking of 4
onto B. O

Let I'(S) be a digraph and let B be a subset of S. Let £ - 5(S) be the collection
of all subsets 4 of S which are linked into B, and note that Be.# gx(S). That
J 1 5(S) is the collection of independent sets of a matroid on S was first proved
by Perfect (1968). That these matroids are precisely the duals of transversal
matroids was discovered by Ingleton and Piff (1973).

5.3.2. Theorem. Let I' =I(S) be a digraph and let B< S. Then 9 g(S) is the
collection of independent sets of a matroid My g(S). Moreover, a matroid M(S)
is the dual of a transversal matroid if and only if there is a digraph T'(S) and a
subset B of S such that M(S) = M g(S).

Proof. We have that Ae #- y(S)if and only if A is linked onto a subset B’ of B,
that is, by Lemma 5.3.1 if and only if S\ 4 is a transversal of (A,:seS\B’). We
use this fact to show that Ae.#- g(S)if and only if S\ 4 contains a transversal of
(A,:seS\B). If S\ 4 is a transversal of (4;:s€ S\ B') for some B’ < B, then clearly
S\ A contains a transversal of (4;:seS\B). Now suppose that S\ 4 contains a
transversal of (4,:s€S\B). Then it follows from Lemma 5.3.1 that there exists
A’'< S with A € A’ such that A’ is linked onto Bin I'. Since A € 4’, A is linked
into B in I" and hence Ae.# g(S). It follows that £ 4x(S) consists of those
subsets 4 of S which are contained in the complement of some transversal of
(A,:seS\B). Hence #- g(S) is the collection of independent sets of the dual of
the transversal matroid with presentation (A4,:s€S\B).

Now suppose M(S) is the dual of the transversal matroid M*(S) of rank k
with presentation of = (4;:1 <i<k). Let T = {t;:1 <i <k} be a transversal of
&/ where t;eA; fori=1,...,k. Let I =I(S) be the digraph with vertex set S
whose arcs are those ordered pairs t;y where yeA\{t;} and i=1,... k.
Finally, let B = S\T. We show that M(S) = M. 5(S). First, let S\ U be a basis of
M(S). Then U is a transversal of &/ and we write U = {u;:1 <i <k} where
u;eA;fori=1,..., k. From the definition of I', we conclude that t;u; is an arc of
I whenever t; # u;. Let J = {i:t; #u;, i = 1,...,k}. Corresponding to each jeJ
there is a uniquely determined path y; which joins t;to U n(S\T) such that the
pathsin {y;:jeJ} are pairwise vertex disjoint. The path y; is defined as follows.
Determine the integer p such that w;=¢;,u; =t;,u;,=t;,....,u;,=
t eUn(S\T). Then Vi=(Eptintipntis-nost; , sUj) For

Jp+1° Uj, 2 Vip+1
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se(S\T)n(S\U), define y, to be the path (s) of length 0. Then the collection of
paths {y;jeJ}u{y:se(S\T)n(S\U)} is a collection of pairwise vertex
disjoint paths which links S\ U onto S\T. It follows that S\ U is also a basis of
M 5(S).

Now suppose S\U is a basis of M gx(S). Then there is a collection ® of
pairwise vertex disjoint paths of I" which link S\U onto B=S\T. Let ¢; be an
element of (S\U)~ T and let y; be the path in ® with initial vertex ¢; and
terminal vertex in S\ T. Since the paths in ® are pairwise vertex disjoint, each
vertex of y; except for ¢; belongs to U, indeed the terminal vertex belongs to
U (S\T) and the others belong to U T. Let ueU and let u be a vertex of y;.
Then there is a vertex t,,, €T immediately preceding u in y,. From the
definition of T, it follows that ue Ay, If ue U is not a vertex of any path in ©,
then ueU T so that u =t¢, for some i with 1 <i<k, and we define 0(u) = i.
Since the paths in © are pairwise vertex disjoint, 8: U — {1,..., k} is a bijection
with ue Ay, for all ueU. Hence U is a transversal of &/ and hence a basis
of M*(S). It follows that M(S) = My g(S). O

A matroid of the form My 4(S) where I'(S) is a digraph and B < S has been
called by Mason (1972) and others a strict gammoid while for X = S, the
restriction M x(X) has been called a gammoid. The rank function of the
matroid M g(S) or My g(X) is given by a classical theorem of Menger (see
Theorem 5.3.3). Because of this historical connection and because of the
artificiality of the term gammoid, we prefer to call these matroids strict Menger
matroids and Menger matroids, respectively. Thus a Menger matroid is
obtained by choosing a digraph I'(S) and two subsets X and B of the vertex set
S; the independent sets are all those subsets of X which can be linked into B.
When X = §, we obtain a strict Menger matroid having B as basis.

Suppose S, and S, are disjoint sets and I' = I'(S, §,) is a bipartite graph. As
already remarked we may regard I as a bipartite digraph by directing all its
edges from S, to S,. The Menger matroid My ¢ (S,) is then the transversal
matroid on S, corresponding to the bipartite graph I'(S,, S,). In particular,
transversal matroids are Menger matroids. The strict Menger matroid
M (S, US,) is also a transversal matroid which has been termed a principal
transversal matroid or fundamental transversal matroid. To see this let S be a
‘copy’ of S; and let I be the bipartite graph I'(S,, S} US,) obtained from
I'(S,,S,) by adding an edge xx' between each vertex x in S, and its copy x’ in
S’ . Then the transversal matroid on S’ U S, corresponding to I"" is isomorphic
to the strict Menger matroid My g (S; U S,). While transversal matroids are
Menger matroids, not every Menger matroid is a transversal matroid. Indeed
the matroid of rank 2 pictured affinely in Figure 5.3 is a strict Menger matroid
(since it is the dual of a transversal matroid) but it is not a transversal matroid.

The class of Menger matroids being the class of restrictions of strict Menger
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matroids is clearly closed under restriction. On the other hand, by Theorem
5.3.2 the class of strict Menger matroids is identical to the class of duals of
transversal matroids. Since the class of transversal matroids is closed under
restriction, the class of duals of transversal matroids is closed under
contraction. Hence the class of strict Menger matroids is closed under
contraction. It now follows that the class of Menger matroids is closed
under both restriction and contraction, that is, under taking minors. Thus
the class of Menger matroids is a minor-closed class of matroids. It also
follows now that the class of Menger matroids is identical to the class of
contraction of transversal matroids.

We now obtain a proof of Menger’s theorem for digraphs, which gives the
rank function of a strict Menger matroid. The proof we give is due to Ingleton
and Piff (1973) and is based on Lemma 5.3.1. If X, Y, and Z are sets of vertices
of a digraph T, then Z separates X from Y provided every path with initial
vertex in X and terminal vertex in Z has at least one of its vertices in Y.

5.3.3. Theorem. (Menger’s theorem). Let I" = I'(S) be a digraph and let A and B
be subsets of S. Then A can be linked into B if and only if no set of fewer than
| A| vertices separates A from B.

Proof. We first note that if there is a linking ® of A into B, then since ®
consists of | 4| pairwise vertex disjoint paths from A to B, a set of vertices which
separates A from B has cardinality at least equal to |A|. It follows from
Lemma 5.3.1 that 4 can be linked into B if and only if S\A contains a
transversal of the family ./ = (A,:s€S\B) where recall

Ag={t:st is an arc of '} U {s}.

By Hall’s theorem, Proposition 4.1.4, S\ A contains a transversal of o/ if and
only if

(UAS>0(S\A)JZIX| forall X <S\B. (5.6)
seX
Thus we need to show (5.6) is equivalent to the statement that no fewer than | 4|
vertices separate A from B.

Suppose C separates A from B, and let A’ be the set consisting of all those
vertices which are separated from B by C. In particular AuC< 4", Let
X = A'\C. Then it follows that X < S\B and that U y4,< A". Hence

(U As>n(S\A)

seS

<A nS\A)=|C|+|X]|—|4].

Hence if (5.6) holds, | C| = | A|. (In view of our earlier comment, this part of the
proof is redundant.)
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Now suppose (5.6) does not hold, so that there exists some X & S\B such
that

<|X!.

(U A )m(S\A

Let Z = { J,exA, so that X = Z. Then [Z| — |Zn A| <|X], so that

1Zl - X|<|ZnA|

Let Y=2Z\X. Then | Y| <|Zn A], and since X < S\B, Y separates Z from B
and hence separates Z n A from B. Therefore C = Y U(A\Z) separates A from
B where

ICI<IY|+|AZ|<|ZnA| +|A\Z| = |A]|.

Hence if (5.6) does not hold it is possible to separate A from B using fewer than
[ A| vertices, and the theorem now follows. O

5.3.4. Corollary. If r denotes the rank function of the strict Menger matroid
M g(S) then for each A = 8, r(A) is the minimum cardinality of a set of vertices
which separates A from B.

Proof. Let k be the minimum cardinality of a set of vertices which separates A
from B. Let I'" be the digraph obtained from I" by adjoining a set A’ of k new
vertices with an arc from each of them to each of the vertices of A. Then kis also
the minimum cardinality of a set of vertices which separates A’ from Bin I".
The result now follows readily from Theorem 5.3.3. d

By Theorem 5.3.2 transversal matroids are precisely the duals of strict
Menger matroids. Hence Proposition 5.2.9 can be used to give a characteri-
zation of strict Menger matroids. We first observe that the complements of the
cyclic flats of a matroid are precisely the cyclic flats of its dual.

Let M(S) be a matroid of rank &, and for a cyclic flat F, let #"(F) denote the
set of all cyclic flats which are properly contained in F. We define recursively
an integer-valued function ¢ on the partially ordered set & of cyclic flats of
M(S) by o(P) =0 and, for & # FeF,

o(F)=(F|—HF)— 3}, oD)".
Ked'(F)

Let #* = (F%,..., F}) be the family of cyclic flats in which each cyclic flat F of
M occurs o(F) times in #*.

5.3.5. Proposition. The matroid M(S) is a strict Menger matroid if and only if

r(i(E)IF;")s UF¥

—{I|, forall I1<{1,....m}.

iel
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Proof. By Theorem 5.3.2 M(S) is a strict Menger matroid if and only if its dual
M*(S)is a transversal matroid. Applying Proposition 5.2.9 to M*(S) we obtain
the theorem. »

A different but related characterization of strict Menger matroids is due to
Mason (1972), and other proofs of his theorem have been given by Ingleton
and Piff (1973) and Kung (1978).

5.4. Other Propefties and Generalizations

In this final section we discuss some additional properties of transversal
matroids and their duals, and also mention without proof generalizations of
some of the results in the preceding section.

Let M(S) be a matroid and let B, and B, be bases. Then there always exist
bijections ¢:B;—>B, and 1:B;—B, such that (B;\{x})u{s(x)} and
(B,\{r(x)} u {x} are bases for each xeB;. For xe B; N B,, necessarily a(x) =
7(x) = x. When xeB,\B,, ag(x)eB,\B,; and must be chosen so that x is an
element of the unique circuit contained in B;u{o(x)}. Similarly for
xeB;\B,, 1(x)e B,\B, and 1(x) is in the unique circuit contained in B, U {x}.
Given any xeB,\B, it is always possible to find a yeB,\B; such that both
(B \{x})u{y} and (B,\{y} U {x} are bases, and it is natural to entertain the
possibility that the bijections ¢ and t above can be chosen so that ¢ = 7. That
this is not always possible can be seen by consideration of the cycle matroid of
the complete graph on four vertices drawn in Figure 5.5 with edges labeled
1,2,3,4,5,6. For the bases B, = {1,2,3} and B, = {4, 5, 6}, it is straightforward
to check that o and t cannot be chosen to be equal. This leads to the following
concept which was introduced in the work of Brualdi and Scrimger (1968) and
Brualdi (1969). The matroid M(S) is said to be base orderable if given any two
bases B; and B, there is a bijection 7n: B; — B, such that both (B, \{x})u {n(x)}
and (B, \{a(x)})w {x} are bases for all xe B;. Such a bijection = is called a base
ordering bijection for (B, B,). Thus the cycle matroid of the complete graph K,
is not base orderable but it is easy to show that the cycle matroid of every
proper subgraph is.

The reason for our interest in base orderable matroids here comes from the
following result of Brualdi and Scrimger (1968).

Figure 5.5. The complete graph K,.
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5.4.1. Lemma. A transversal matroid is base orderable.

Proof. Let M(S) be the transversal matroid of rank k on S given by the
bipartite graph I'(S, S,). It follows from Lemma 5.1.1, using the correspondence
between bipartite graphs and families of sets, that we may assume {S,| = k.
Let B, and B, be two bases of M(S), and let @, and ®, be matchings such that
B, meets ©, and B, meets @,. Let I’ =I"(B; U B,, S,) be the bipartite graph
with vertices as indicated whose edges are those in ®, U ®,. Then each vertex
xeB,;\B, is in a connected component of I’ which is a chain joining x to a
vertex m(x)eB,\B,. It is easy to see that this defines a bijection n:B,;\B,
— B,\B; such that both (B, \{x})u {n(x)} and (B,\{n(x)}) U {x} are bases for
each xeB,\B,. Extending 7 to B, by defining n(x) = x for xeB, N B,, we
conclude that M(S) is base orderable. O

By Lemma 5.4.1 the property of being base orderable is a necessary
condition for a matroid to be a transversal matroid, but it is by no means
sufficient. The cycle matroid M(S) of the graph in Figure 5.6 is base orderable,
but M(S) is not a transversal matroid. The next two lemmas show that, unlike
the class of transversal matroids, the class of base orderable matroids is a
minor-closed class of matroids.

Figure 5.6. A graph whose cycle matroid is base orderable but not transversal.

5.4.2. Lemma. Let M(S) be a base orderable matroid. Then for each T < S, the
restriction M(T) is base orderable.

Proof. Let A, and A4, be bases of M(T). Then there exists X < S\T such that
both B, = A, u X and B, = A, U X are bases of M(S). Let n: B, - B, be a base
ordering bijection for (B,, B,). Restricting © to 4,, we obtain a base ordering
bijection for (4, 4,). We conclude M(T) is base orderable. |

5.4.3. Lemma. The dual of a base orderable matroid is base orderable.

Proof. Let M(S) be a base orderable matroid, and let B} and B, be bases of its
dual M*(S). Then B, = S\B] and B, = S\B, are bases of M(S) where B,\B, =

5\B; and B,\B, = B{\B). Let n:B; — B, be a base ordering bijection for
(B,, B,). Define n': B, - B} by

n(x) if xeB,\Bj,
'(x) = . S
x if xeB)nBj.



Transversal Matroids 91

Then 7’ is a base ordering bijection for (B, B}). It follows that M*(S) is base
orderable. 0O

5.4.4. Corollary. Each minor of a base orderable matroid is base orderable.

Proof. This is an immediate consequence of Lemmas 5.4.2 and 54.3. [

5.4.5. Proposition. 4 Menger matroid is a base orderable matroid.

Proof. By Theorem 5.3.2, strict Menger matroids are duals of transversal
matroids. Hence by Lemmas 5.4.1 and 5.4.3, a strict Menger matroid is base
orderable. Since Menger matroids are restrictions of strict Menger matroids,
the theorem now follows from Lemma 5.4.2. O

The class of Menger matroids and the class of base orderable matroids are
both minor-closed classes of matroids with the former contained in the latter.
This containment is proper. An example of a base orderable matroid that is not
a Menger matroid can be obtained from the 9-point configuration which
violates Pappus’ theorem of projective geometry.

A property stronger than base orderability was shown to be true for
transversal matroids by Brualdi and Scrimger (1968). A matroid M(S)is said to
be strongly base orderable if given any two bases B, and B, there exists a
bijection n: B, — B, such that both (B,\4) U n(A) and (B,\n(A4))u A are bases
for all A = B,. A base orderable matroid need not be strongly base orderable,
although examples are not easy to find. The first example of a matroid which is
base orderable but not strongly base orderable was found by Ingleton (1971).

5.4.6. Example. Let M(S) be the matroid on S = {a,,a,,a;3,a,4,b,b;,b3,b,}
whose bases are all 4-element subsets of S except for

{al’bl’bz,b4}a {aZ)blabZ’b:’,}, {a19a3’a49b3}
{ay,a3,a4,b,}, {ay,a3,b3,b,}.

It is not difficult to check that M(S) is a matroid. It can be checked that M(S}is
base orderable. But M(S) is not strongly base orderable since the defining
property is not satisfied by the two bases {a,,a,,as,a,} and {b;,b,,b3,b,}.

Lemmas 54.1 to 54.3 and Corollary 5.4.4 remain true when base
orderability is replaced by strong base orderability. Except for the obvious
changes, the proofs are identical. In particular we conclude that Menger
matroids are strongly base orderable.

In Chapter 7 of White {(1986) the construction matroid union was defined
and it was pointed out, indeed is a straightforward consequence of definitions,
that a matroid is a transversal matroid if and only if it is a union of matroids of
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rank 1. In particular, since matroids of rank 1 are vector matroids over every
field, it follows from Proposition 7.6.14 of White (1986) that transversal
matroids are vector matroids over every sufficiently large field. Since strict
Menger matroids are duals of transversal matroids and since the dual of a
vector matroid over a field F is also a vector matroid over F, strict Menger
matroids and hence Menger matroids are also vector matroids over every
sufficiently large field.

Transversal matroids have matrix representations as vector matroids in
which the non-zero entries are algebraically independent transcendentals over
afield, say the real field R. As a result, transversal matroids are vector matroids
which are ‘as free as possible’. To make this statement more precise, let M(S) be
a transversal matroid of rank k with presentation o =(A4,,...,4,). Let|S|=n
and let the elements of § be listed as s,,...,s,. We then form the k by n
incidence matrix P=[p;;] where fori=1,...,kand j=1,...,n

1 if S,

Pi=l0 if €S,
Let X = [x;,;] be the matrix obtained from P by replacing the non-zero entries
of P by algebraically independent transcendentals over R. We call X a

transcendental incidence matrix of the family o7 of subsets of S. The following
result was first observed by Edmonds (1967) and Mirsky and Perfect (1967).

5.4.7. Theorem. Let M(S) be a transversal matroid of rank k with presentation
o =(Ay,..., A, and let X be atranscendental incidence matrix of /. Then A is
an independent set of M(S) if and only if the corresponding columns of X are
linearly independent over R(X), the field obtained by adjoining the transcend-
ental entries of X to R.

Proof. Let A be a subset of E consisting of the ¢ elements s,,...,s;. Let
X'=X[1,...,ki,...,i,] be the k by t submatrix of X corresponding to these
elements. Then the columns of X" are linearly independent if and only if X" has
at by t submatrix with a non-zero determinant. Consider any ¢ by ¢ submatrix
X" of X', say the submatrix X" = X[1,...,t;iy,...,i,] formed by the first t rows
of X'. Since the non-zero entries of X” are algebraically independent
transcendentals over R, det X" 0 if and only if there is a permutation j,,...,J,
of 1,...,t such that x; ;, #0,...,x;, #0. The latter property is equivalent to
the fact that s;,,...,s, is a transversal of (4,,..., 4,). It follows that X' has
linearly independent columns if and only if 4 is a partial transversal of ..

O

Suppose now that M(S) is a principal transversal matroid of rank k with
presentation &/ =(A4,,..., A;). Then the incidence matrix can be taken to have
the form

P =[L|P]
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where I, is the k by k identity matrix. Let X be the corresponding
transcendental incidence matrix so that the columns of X determine a vector
matroid isomorphic to M(S). (Actually the 1’s of the identity matrix I, above
need not be replaced by transcendentals.) As shown by Brylawski (1975), M(S)
can be regarded as a special kind of affine matroid over R which is termed a
free simplicial affine matroid with spanning simplex B. The set B of vertices of
the simplex corresponds to the first k columns of X. Let ¢ be any other column
of X. Then ¢ depends on a subset 4 of the first k columns of X, and we choose a
point corresponding to ¢ in the interior of the face F(A) of the simplex
determined by A. The points chosen on the faces corresponding to the columns
of X are to be freely situated on the respective faces. This means the following.
Let S’ be the points of the simplex corresponding to the columns of X (the
elements of S). Let p be a point in §’ and suppose p is in the interior of the face
F(A) determined by the set A of vertices. Then p is freely situated on F(A) if for
all Q = 8’ with p¢Q, p is in the affine closure of Q if and only if F(A) is in the
affine closure of Q. For example, the affine matroid defined by Figure 5.7 is a
free simplicial geometry with spanning simplex B = {b;,b,,b;}. If in this
picture p, were chosen so that p, was on the line joining p, and b,, then p,
would not be freely situated on the face whose interior contains it.

Figure 5.7. A free simplicial geometry.
b,

P Ps

@r:
b by

Since every transversal matroid is a restriction of a principal transversal
matroid, it follows that a transversal matroid can be represented as a free
simplicial affine matroid (some of the vertices of the simplex may be deleted).
For more details on this construction, one may consult Brylawski (1975) or
Brualdi and Dinolt (1975). In the latter paper a synthetic algorithm is given for
obtaining a free simplicial affine matroid isomorphic to a given transversal
matroid.

In the previous chapter we showed how a matroid induces a new matroid by
means of a bipartite graph and we derived a formula for its rank function in
terms of the rank function of the given matroid and the bipartite graph. This
construction can be generalized by replacing the bipartite graph with an
arbitrary digraph. The result is a generalization of (strict) Menger matroids
and of Menger’s theorem. We omit the proofs of the remaining results and refer
the reader to the references given.
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5.4.8. Proposition. Let I'(S) be a digraph and let M(S) be a matroid. Then the
collection of subsets of S which are linked onto an independent set of M(S) are the
independent sets of a matroid M'(S).

This theorem was first proved by Brualdi (1971b) (see also Brualdi 1975) and
Mason (1972). A proof using Lemma 5.3.1 was also given by Ingleton and Piff
(1973). The rank function of the matroid M'(S) above is a consequence of the
following generalization of Menger’s theorem due to Brualdi (1971a).

5.4.9. Proposition. Let I'(S) be a digraph and let M,(S) and M,(S) be two
matroids on S of equal rank with rank functions denoted by r, and r,, respectively.
Then the maximum k such that there are sets A,, A, < S of cardinality k such that
A, islinked onto A,, A, is an independent set of M {(S), and A, is an independent
set of M,(S) equals

min{r{(Z) +r,(Z,)+1Z,|}

where the minimum is taken over all triples (Z o, Z , Z,) suchthat Z, = S,Z, = S,
and Z, separates S\Z, and S\Z, in I'(S).

As shown by McDiarmid (1972), the maximum evaluated in Proposition

5.4.9 also equals
( U As>\Zl + rZ(Z)}
seZ

min{r1 <S\ U As> +
zcv seZ

where as before, for se€ S, A, consists of s and all those vertices ¢ for which st is an
arc. Welsh (1976, p. 226) shows the equivalence of the two expressions. If in
Proposition 5.4.9 we take M(S) to be the free matroid on S (whose rank
function is then the cardinality function of S), then we obtain the rank function
for the matroid M'(S) of Proposition 5.4.8.

Finally we mention the following. Let G be a graph. Then Bondy (1972b) has
shown that the cycle matroid of G is a transversal matroid if and only if G
contains no subgraph homeomorphic from the complete graph K, on four
vertices or the square CZ of a cycle of length k > 3. (CZ is the graph obtained
from a cycle of length k by doubling each edge.) The cycle matroid of G is base
orderable if and only if G contains no subgraph homeomorphic from K.

Notes

More information about the presentations of transversal matroids can be
found in Bondy (1972a) and Brualdi and Dinolt (1972). A different approach to
some of the properties of transversal matroids can be found in Dawson
(preprint), who begins with Ingleton’s characterization of transversal matroids
given in Proposition 5.2.12. Mason (1972) was the first to consider what are



Transversal Matroids 95

called strict Menger matroids in this chapter. That these matroids have a
fundamental role was an important discovery and his paper contains many
insightful results. Piff and Welsh (1970) showed that a transversal matroid is a
vector matroid over every sufficiently large field. Atkin (1972) gives a lower
bound on the size in terms of the rank and number of elements. A
generalization of some of the ideas in the characterization of transversal
matroids given in Proposition 5.2.9 can be found in Brualdi (1974b).

Exercises

k
5.1. Provethata transversal matroid of rank k has at most < ) >cyclic flats of rank j for
J

Jj=0,1,... k. (Brualdi and Mason 1972)

5.2.  Let M(S) be a transversal matroid of rank k with presentation (4,, 4,,. .., 4,). Let
the restriction M(S\A,) have rank m and let xe 4. Suppose x4, (2 <i<t)and
x¢A; (t + 1 <i<k). Prove that (4,\{x}, 4,,..., 4,) is a presentation of M(S) if
and only if for some p with 2 < p <t the transversal matroid with presentation

(A\Ay, - Ay \A, Ap 1 \Ay, ..., A4\ A,) has rank m. (Brualdi and Dinolt
1972)

5.3. Let M(S) be a transversal matroid of rank k with maximal presentation
(M,,...,M,). Suppose (4,,...,A,) is also a presentation of M(S) where A, = M,
and r(S\A)=m,; for i=1,...,k. Prove that for each i=1,...,k |4, is the
maximum cardinality of all subsets of M; whose complement has rank m,.
(Brualdi and Dinolt 1972)

5.4. Let M(S) be a transversal matroid with maximal presentation (M, M,,..., M,).
Let C be a maximum cardinality cocircuit contained in M,. Show by example
that (C, M,,..., M,) need not be a presentation of M(S).

5.5. Let M(S) be a transversal matroid with maximal presentation (M, M,,..., M,).
Let C, be a cocircuit of maximum cardinality contained in M,. Prove that
(C, M,,..., M,)is a presentation of M(S) if and only if (M ,\C,,..., M,\C,) hasa
transversal. (Brualdi and Dinolt 1972)

5.6. Let M(S) be a transversal matroid with maximal presentation (M,..., M,).
Let C; be a cocircuit with C; = M, for i=1,...,k. Prove that (Cy,...,C,) is a
(minimal) presentation of M(S) if and only if for each i=1,...,k, C; is a
maximum cardinality cocircuit contained in M; and
(CN\Cye-., Cio ) \Ci, €1 \Cis.-.., C\C)) has a transversal. (Bondy 1972a)

5.7. Let M(S) be a transversal matroid. Show by example that a cocircuit of M(S) need
not be a subset of some set of the maximal presentation.

5.8. Show by example that a truncation of a transversal matroid need not be a
transversal matroid.

5.9. Prove that a truncation of a base orderable matroid is base orderable.

5.10. Prove that the dual of a principal transversal matroid is a principal transversal
matroid. (Las Vergnas, see Brualdi 1974a)

5.11. Let M(S) be a matroid where |S| = n. Prove that if M(S) has rank at least n — 2,
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then M(S) is a transversal matroid. Conclude that a matroid of rank 1 or 2 is the
dual of a transversal matroid. (Ingleton and Piff 1973)
5.12. Prove that a Menger matroid of rank 3 is the dual of a transversal matroid.
5.13. Let M(S) be a matroid. For a subset X of S let # (X) be the set of all flats properly
contained in X. Define an integer-valued function « on subsets of S recursively by:

wXy=1X]-rX)— 3 oF).

FeF(X)
Prove that M(S) is a strict Menger matroid if and only if «(X) >0 for all X = S.
{Mason 1972)
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Simplicial Matroids

RAUL CORDOVIL AND BERNT LINDSTROM

6.1. Introduction

A
Given a finite set 4 = {a;,d,,...,a,} and an integer k with 0 <k <, let <k>

denote the set of all k-element subsets of 4. A k-element set will also be called a
k-simplex, but we must warn the reader that topologists would prefer the name
(k — 1)-simplex since the topological realization has dimension k — 1. Formal

A\ . . .
linear combinations of k-simplices in < k) with coefficients from a field F give a

vector space F @) of dimension (Z) over F.

A 4
For Xe( k) define the boundary 5X€F("_1)

o) =0, 6.1)
a{a})=0, (6.2)

k
6({a,~l,...,aik})=ZI(—l)j‘l{ail,...,dij,...,a,.k}, iy <--<iy. (6.3)
=

The roof” over a letter means ‘delete it’.
The boundary operation is extended by linearity to all elements of F

(#)

6( Y c,,X,,>= Y ¢,0(X,), wherecy,...,c,eF. (6.4)
v v=1

The following important property of the boundary operation is left as an
€asy exercise:

9*X =0, XeF("), k>1. (6.5)
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A
6.1.1. Definition. A subset {X,,...,X,} g( k) is independent in the full
simplicial matroid SE[F] if &(X,),...,8(X,,) are linearly independent over F.
A
The restriction of SA[F] to a subset E E( k) is a k-simplicial geometry

(matroid) if k =2 (if k=0 or 1).

It is easy to prove that the matroids S{[F] and SP[F] are isomorphic
when | 4| =|B| = n. In particular, the linear order of A4 (used in (6.3)) does
not matter. The matroid is therefore also denoted by S;[F], where n is called
the order.

6.1.2. Example. Consider a finite simple graph with vertex set 4 and edge set
Ec </; ) The 2-simplicial geometry on E over a field F is the cycle matroid of
the graph (which does not depend on F).

Sometimes it is desirable to order the elements of a simplex in a linear
order different from the initial linear order of 4. Consider a k-simplex

X ={a;,a;,...,a,}, wherei; <i, < --- <i,and assume that aj,0;,,...,a;182
permutation of X. Then we define the oriented simplex
] igiy iy
(@855 .. ,85) = 81gn< S ){a,.‘,...,a,.k}, (6.6)
JiJ2 Tk

where the sign, + or —, depends on the parity of the permutation. One can
prove as an exercise

&a;,, a5, .., ;) = sign ( 12 '.") Ay a). 6.7)
.

Jilz2*

6.1.3. Example. Consider the triangulation of the real projective plane in
Figure 6.1. It is easy to verify

o[(1,2,4)+(1,2,6)+ (1,4,3) +(1,5,3) +(2,3,5) +(2,3,6)
+(1,6,5)+(2,5,4)+(3,4,6) + (4,5,6) 1 =2[(1,2) + (2,3) + (3, 1)] =0

Figure 6.1. A triangulation of the real projective plane.

2 3

Yiy
A
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if and only if the characteristic of F is 2. The set of simplexes of the
triangulation is therefore a circuit of S§[F] if and only if the characteristic of F
is 2.

6.1.4. Example. If we triangulate a closed orientable surface, e.g. the topologi-
cal 2-sphere in Figure 6.2, we will always get a circuit of a simplicial matroid,
i.e., the characteristic of the field F does not matter.

Figure 6.2. A triangulated 2-sphere.

—1
6.1.5. Proposition. The rank of the simplicial matroid Si[F] is (: 1). All

circuits have cardinality at least k + 1.
Proof. Fork =20, 1, or n, the proposition is trivial. Then assume 2 <k <n—1.
A
Let#, <
(4

that {(X): X €4,} is a linearly independent set of vectors. We claim that #,isa
base of S{[F].

A— VA
Let Z’e( K a). Then B,0{Z'} contains( >

) be the set of k-simplices containing a fixed ae A. It is easy to see

a>, which is the boundary
of a k-simplex and therefore a circuit of S;[ F] (cf. Example 6.1.4). It follows

-1
" 1), this is the rank.

that 4, is a base of S;[F]. Since |%,| = (k _

Let C be any circuit of S;[F]. Choose YeC. Then if Ze(k Y1> there is

X
XeC,X #Y such that Z e( o 1). Distinct Z’s give distinct X’s. There are
k Z’s, hence at least k X’s, XeC. Therefore |[C| =k + 1. O

6.2. Orthogonal Full Simplicial Matroids

The main result of this section was first proved in Crapo and Rota (1970) with
the aid of Alexander’s duality theorem for manifolds, applied to simplices. We
give an elementary proof depending on matrix algebra. For another elemen-
tary proof see White (1986, Section 5.5.).

6.2.1. Theorem. The orthogonal Si[F1* of Si[F] is isomorphic to S;_,[F].
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A A
The bijection X—>A— X with Xe< k) and A— Xe( k> gives the
n—
isomorphism.

6.2.2. Definition. Let A be ordered by a,,a,,...,a, Then we order k-simplices
lexicographically. The simplicial matrix S(n,k) = (s, ,) has rows and columns

A A
labeled by the sets of ( X 1) and < k > respectively in the lexicographic order,

withs, ,=0ifpgqgands, ;= (- Vifg—p={a,},q={ai,....a1,-...a,_},
g<iy<-<i_y, k=1

6.2.3. Example. It may be instructive to see a simple example. We choose
S(4,3). Rows are labeled by 2-simplices, columns by 3-simplices in the
lexicographic order.

{1,2,3}{1,2,4}{1,3,4}{2,3,4}

1 1 0 07 {1,2}
—1 0 1 0 |{1,3}

S4,3) = 0 -1 -1 0| {1,4)
1 0 0 1| {2,3)

0 1 0 —1|{24

L 0 0 1 1] (3,4

It follows easily by Definition 6.2.2 that S(n,k) has the following block
structure when 2<k<n—1:

S(n, k)=(_S("—1k_l).0> (6.8)

6.2.4. Definition. A matrix S with entries from a field F is a coordinatization
matrix of a matroid M(E) if the columns of § are labeled by the elements of E
such that {e,,...,e,} is an independent set of M(E) if and only if the column
vectors labeled by e,,..., e, are linearly independent over F.

6.2.5. Proposition. The matrix S(n, k) with entries in a field F is a coordinati-
zation matrix of the full simplicial matroid Si[F].

Proof. This follows by (6.3) and the Definitions 6.1.1 and 6.2.2. O
6.2.6. Proposition. The matrix [1,S(n— 1,k)] with entries in F is a coordina-
tization matrix of the full simplicial matroid S;[F].

Proof. Theresult follows by Proposition 6.2.5 and since the rank of the matrix

_ -1
S(n, k) is (Z i) by Proposition 6.1.5, which implies that the first (Z B 2)

-1
rows of S(n, k) are linear combinations of the <Z 1> last rows. d
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The transpose of a matrix S is denoted by S

6.2.7. Proposition. The matrix (— S(n— 1, k), I) with entries in F is a co-

ordinatization matrix of Si{F1*, and so is S(n, k + 1)\

Proof. The first statement follows from Proposition 1.3.1 and 6.2.6. The

second statement follows by (6.8) (with k + 1 in the place of k), since the last
k+

-1 —
(n ) rows since the rank of the matroid S}, [F] is (n k 1). O

—1 . . .
(n 1) rows of the matrix S(n, k + 1) are linear combinations of the first

k

6.2.8. Definition. Let S and S’ be matrices with entries in the field F. We shall
say that S and §' are projectively equivalent, and write S X §"if § can be
obtained from S after a sequence of the following operations:
(a) add or delete a row of O,
(b) multiply the entries of a row or column by a non-zero element of F,
{c) add a scalar multiple of one row to another row.
This is equivalent to the definition of projective equivalence given in
Section 1.2, except for operation (a), which is essentially trivial.

6.2.9. Definition. If two matrices S and S’ over F and F’ respectively
coordinatize the same matroid, then we say that S and S’ are geometrically
equivalent and write S Rs.

It is clear that S §' implies S~ 8. This implication is not in general
reversible.

6.2.10. Definition. Given a matrix S let S* denote the matrix which is obtained
if we read the rows and columns of S in reverse order. The matrix S is called
the reverse of S.

We now recall that S(n,k)=(s,,) has rows and columns labeled by

A
P€<kf 1) and qe<k>, with A ={ay,...,a,}. Define

signB= [[ (—1 when Bc 4, B#(,

i:aEeB
sign & = 1.
Then we define the matrix S(n, k) = (5, ,) by
5,4 = (sign p)(sign g)s, ,.

We obviously have

S(n, k) ~ S(n, k). (6.9)
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By (6.8) we find easily for 2<k<n—1

_ Sn—1,k—1): 0
S(n, k) —( 1 : -—"§(_n-:-1-,-k-)>’ (6.10)
Stn—1,ky" 0
LA B b e
S(n, k) —< i g 1)")' (6.11)
We shall prove
S k)= —Stn,n—k+ 1", 1<k<n. (6.12)

by induction on n for n > 1. The case n =1 is trivial. Let n > 1. Assume that
{(6.12) holds for n— 1. If k =1 or n then (6.12) holds by

S_(n’ 1)=(_ 1’ 1, - 1, 17-“,): —S(n,n)“,
Sm=(—1,—1,...,— 1) = — S(n, D"

If 2<k <n—1, then (6.12) follows by (6.10) and (6.11) using the induction
hypothesis.

Proof of Theorem 6.2.1. By Proposition 6.2.7 we know that S(n,k+ 1)' is a
coordinatization matrix of S;[F]*. By (6.9) and (6.12), we have

Sk + 1) X Sk + 1) = — S(m,n — k).
The last matrix represents S;_,[F] with the order of columns (and rows)

A
reversed. The reversed lexicographic order of ( k) corresponds to the

A
lexicographic order of the complements in ( P ) O

6.3. Binary and Unimodular Full Simplicial Geometries
The full simplicial geometries S3[F] and S;._,[F] are graphic and cographic
respectively. It is well-known (see Section 2.6) that graphic and cographic
matroids are unimodular ( = regular), hence also binary. In this section we
shall determine which full simplicial geometries S}[F1], 2 <k <n—2, are (a)
binary, (b) unimodular. The results are due to Cordovil and Las Vergnas
(1979) and Lindstrém (1979).

6.3.1. Theorem. S%[Fland S, _,[F] are binary matroids. Si[F],3 <k <n-—3,
is binary if and only if the characteristic of F is 2. Si[F], 2<k<n-—2, is

unimodular if and only if k=2 or n—2.

The proof depends on three lemmata.
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Table 6.1

123 124 125 126 134 135 136 145 146 156

234 1 1 |
235 { 1 1

236 1 | 1

245 1 % 1

246 1 * 1

256 | * 1
345 1 * *

346 1

356 1
456 1 5 *

*
~2

6.3.2. Lemma. The geometry SS[F] is binary only if the characteristic of F is 2.
6.3.3. Lemma. The geometry SS[F] is not unimodular.

6.3.4. Lemma. The geometry S$[F] is a minor of S}[F] when 3<k<n—3.

Proof of Lemma 6.3.2. Let A={1,2,3,4,5,6}. We consider S4[F]. For
brevity we will write ijk in place of {i, j, k} and (ijk) in place of (i, j, k).

Let C = {123,124,135,145,235,245} and C’' = {123,126, 134, 145, 156, 236,
346,456}. Both C and C’ are triangulations of topological 2-spheres, hence
circuits of the geometry S4[F1. The reader may also verify that the symmetric
difference C A C’ is the triangulation of the real projective plane in Figure 6.1.
The symmetric difference of two circuits of a binary matroid is either a circuit
or a disjoint union of circuits of the matroid (Theorem 2.2.1). By Example
6.1.3 we conclude that the characteristic of F is 2. O

Proof of Lemma 6.3.3. We recall that S4[F] has a base which consists of all
3-setsin 4 = {1,2, 3,4, 5,6} which contain some fixed element (say 1) (cf. proof
of Proposition 6.1.5). Elements not in this base have fundamental circuits
of size 4 with respect to the base. In Table 6.1 we show all non-zero entries
of A', when (I, A) is a coordinatizing matrix.

If the matroid is unimodular, then the matrix may be chosen to be totally
unimodular by Theorem 3.1.1, condition (6). We may assume that the first
element in each row and each column is 1 (multiply all entries of the row or
column by —1, if necessary).

The entries o, B, 7, and also those indicated by = are either 1 or — 1. The
3 x 3 submatrices {234,235,245} x {123,124,125} and {234,236,346} x {123,
134, 136} have determinants — 1 —a and — 1 — B respectively, which implies
thata = — 1 and f = — 1 by the total unimodularity. Then the determinants of
the submatrices {235, 236,245, 346,456} x {123,125,136, 145,146} and {234,
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245, 346, 456} x {124, 134, 145, 146} are —y —J and y — § respectively. If
y,0e{l, — 1} atleastoneofthesedeterminantsequals + 2, whichcontradictsthe
total unimodularity. Therefore S$[F] can not be unimodular. ]

Proof of Lemma 6.3.4. Obviously S§[F] is a submatroid of S§*™[F], when
m > 0. Then it follows by Theorem 6.2.1 that S§[F] ~ S[F]* is a minor of
S§:™F], hence also a minor of %, [F], when n > 6 + m, which was to be
proved. O

Proof of Theorem 6.3.1. 1f the characteristic of F is 2, then S{(n, k) gives a binary
coordinatization of S{[F] by Proposition 6.2.5. S3{F} and S?_,[F] are
graphic and cographic respectively, and therefore unimodular. The conditions
are thus sufficient.

The necessity of the conditions follows by Lemmata 6.3.2-6.3.4 and since
minors of binary (unimodular) matroids are binary (respectively unimodular).

t

Exercise 6.1 gives another proof that S§[Z,] is not unimodular, since the
Fano matroid and its orthogonal are not unimodular. In fact this shows that
the restriction of S§[Z,] to the 13 elements C, U C, U C, is not unimodular.
Cordovil proved in his Ph.D. thesis that smaller submatroids of S§[Z,] are
unimodular.

6.4. Uniquely Coordinatizable Full Simplicial Matroids
The uniqueness results proved in this section were discovered by Cordovil
(1978a, 1980). Uniquely coordinatizable matroids were studied by Brylawski
and Lucas (1976).

6.4.1. Definition. A matroid M is uniquely F-coordinatizable if it can be
coordinatized by a matrix over the field F, and all such coordinatizing matrices
are projectively equivalent (cf. Definition 6.2.9).

The main results are

6.4.2. Proposition. S;[F] is uniquely F-coordinatizable.

6.4.3. Proposition. If the matroid S;[F] is coordinatizable over a field F', then
SilF]=S[F].
The bulk of the proofs of these results consists in the proof of the following

proposition.

6.4.4. Proposition. Let S=S(nk) be the simplicial matrix over F of
characteristic # 2, and let T be a matrix over a field F'. Then (6.13) implies (6.14),
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where
(1,51~ [L,T), (6.13)

S=D,TD,, (6.14)

where D, and D, are non-singular diagonal matrices [we identify the matrix
S{(n, k) over F and the matrix S(n, k) over F').

The following proposition will be useful [Proposition 2.2 of Brylawski and
Lucas (1976)]. We may omit the proof.

6.4.5. Proposition. Let [I, A] and [I, A'] be matrices over the fields F and F'
respectively. Then [I, A] R [1, A"] holds if and only if every subdeterminant of A
vanishes exactly when the corresponding subdeterminant of A’ vanishes. In
particular, the entry a;; of A is 0 if and only if the entry a;; of A" is O.

Proof of Proposition 6.44. If k=1 or n— 1 the theorem is evident. Let
2 <k <n—2. There are non-singular diagonal matrices D, and D, over F’
such that the first non-zero entries in each row and column of the matrix
R=D;TD, are equal to the corresponding entries in the simplicial matrix
S(n, k). We shall prove that this implies the equality

R =8(nk)=(s,4), (a,b)e(kf 1) X (:)

We suppose that the non-zero entries of the matrix R = (r, ) are ordered by
the lexicographic order of the indices (a,b). We prove by induction on this
ordered set that r, , = s, ;.

Suppose thatr, ;. = s, , holds when (@', b') < (a, b). Let x be the first element
of the set A —b, let b —a = {y}, and let z be the last element of the set b.

We have x <y < z. For if y < x (respectively y = z) then r, , is the first non-
zero entry of the row a of the matrix S(n, k) [respectively r,, is the first non-zero
entry of the column b of the matrix S(n, k)].

Let a;,=(a—{z})uix}, ay=(a—{z})u{y}, by=0b—-{z})u{x}, b,=
(b—{y})u{x}. Let S, (respectively R,) be the submatrix of S (respectively R)
indexed by rows a,,d,,a and columns b,,b,,b. The non-zero entries
Yavboo Tanbe Tasbs Tasi Farp, Of the matrix R are then equal to the corresponding
elements of the matrix S by the hypothesis of induction because a, <a, <a
and b, <b, <b. If

b={...%......,2},
g—1 k
by={..x..,¥...}, and b,={..,x..,9...,z}
P 4 p k
with elements in increasing order from left to right and position numbers
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indicated below, then the submatrix §; will be

b, b, b
(__1)q+1 (_1)k+1 0 a,
S1=[(—1)p+1 0 (_1)k+1 a,.
0 (=™t (=17 Ja

Since det S, =0, the determinant of the corresponding submatrix of R, is
also 0 by (6.13) and Proposition 6.4.5. Since r,. ,- = s, ,» when (@', b) < {(a, b), by
the induction hypothesis, it follows that

Tab ™= = Saib;Say.b;5az65a6, = (— ¥ = Saps
which was to be proved. Od

Proof of Theorem 6.4.2. If the characteristic of F is 2, then S;[F] is a
binary matroid, and binary matroids are uniquely coordinatizable (by
Proposition 6.4.5).

Then assume that the characteristic of F is not 2. We apply Proposition 6.4.4
with F' = F. Since (6.14) implies [I,S]< [I,T] and [1,S] < [I, T] implies
(6.13), we conclude that [1,S] < [, T]and [1,5] < [I, T] are equivalent. The
theorem follows easily from this equivalence. |

Proof of Theorem 6.4.3. If both F and F’ have characteristic 2, then S[F] =
Si[Z,]1=SiF'].

If the characteristic of F is 2 and the characteristic of F’ is distinct from 2,
then the matroid is unimodular (=regular) by a theorem of Tutte (cf.
Brylawski 1975). It follows then by Theorem 6.3.1 that S{[ F] is either graphic
or cographic, and S;[F] = S;[F'] follows.

Finally, if the characteristic of F is not 2, the theorem follows by
Proposition 6.2.6 and 6.4.4. O

6.5. Matroids on the Bases of Matroids
It is well-known that the set # of bases of a matroid M(E)= M ofrank risa

subset of < > We may therefore consider the restriction of the full simplicial
r

matroid, SE[ F1(£), which will be denoted by S(M, F). This simplicial matroid
was studied by Lindstrom (1981a). The main reason for studying this matroid
was an interesting duality S(G*, F)* ~ H(G, F)*, where G is a geometry and
H(G, F) is a matroid on the bases of G, the definition of which depends on the
order complex A(L) of the geometric lattice L = L(G) associated with G.
Before we define H(G, F), we shall consider S(M, F) in some detail.

6.5.1. Definition. S(M, F) = SE[F](#), where 4 is the set of bases of M =
M(E), a matroid of rank r.
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6.5.2. Proposition. S(M*, F)* ~ Sf[F]/<<E> — g,;)
r

Proof. Let |E| =n. Let #* denote the set of bases of M*. With the aid of
Tutte’s relation (M/A)* = M* — A and Theorem 6.2.1, we get

(Sf[FJ/((f) - %)) ~ SELFT%(@)

=58, [F1(#*) = S(M*F). O

6.5.3. Proposition. The rank of the matroid S(M,F) is |B| — [(M¥*), where
WM*) is the Médbius invariant of the orthogonal M* of M[(M*)=0 if M*
has a loop, i(M*) = | (0, 1)| in case of no loops, where i is the Mbius function
of the geometric lattice of M*].

Proof (sketch). The independent sets of M form a simplicial complex IN (M) of
topological dimension » — 1. The Betti number f,_ (IN(M))= ji(M*) by a
theorem of Bjorner (see White 1988). By a rank formula for simplicial matroids
of Crapo and Rota (1971) we have r(#)=|%|— B,- (%) in SE[F]. Hence
rS(M,F))=| 2| — i(M*). O
We consider now a finite geometric lattice L and its associated geometry G.
The supremum operation in L will be denoted by v . The partial order in L is
denoted by <. Let 0 and 1 denote the minimal and maximal element of L
respectively. The linearly (< )-ordered subsets of L —{0,1} give the order
complex A (L), the homology of which was first determined by Folkman
(1966). Folkman proved that the Betti number f, _,( A (L)) = #(G) = | (0, 1)].
For sets A ={a,,a,,...,a,} of atoms in L define

B(A) = Z(_ 1)“")(“"(1)’ Ar1y VY A2y -5 Ayy vV 10 V an(r—l))’
k4

where the sum is over all permutations n(1),...,7{r} of 1,...,7 and i(n) is the
number of inversions of 7. The terms of the sum are oriented simplices of size
r— 1 of A(L) with coefficients in the fixed field F.

6.5.4. Definition. Let H(G, F) be the vector matroid of all §(B), where B is a
base of G.
A direct computation verifies (Bjorner 1982, p. 117)

dB(4) =0 for any A = {a,,...,a,} of atoms.
Another computation verifies [Orlik and Solomon 1980, (3.8)]
p(Ay=0 when 4 is dependent in G.
Orlik and Solomon (1980, Theorem 4.3) proved that S(B) with Be#
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generate the homology group H,_ ,( A (L)) of rank fi(G). There is also a proof
of this by Bjorner (1982, Theorem 4.2) using so-called neat base-families. Since
H,_,( A(L))is torsion-free, it follows (by the universal coefficient theorem) for
any F

rank H(G, F) = i(G). (6.15)

6.5.5. Proposition. Let G be a geometry. Then for any field F
H(G, F) ~ S(G*, F)*.

E
Proof. When A = {al,...,a,_l}e<r 1),E= E(G), define

o(A) = Z( —1y! H(")(anu),a 2y VY gy s lny ¥ 0 V o 1)),
T

where the sum is over all permutations 7 of 1,...,r — 1. The following identity
can easily be verified:

o(0(B)) = B(B), Be(f) (6.16)

Let V.,V,, V5 be vector spaces over F generated respectively by
E
{0(B): Be 8}, {6(B):Be< . ) — % },and {f(B): Be #}, where 4 is the set of bases

of G.
The map ¢ can be extended to a linear map o of V, onto ¥, by equation
(6.16). Since a(V,)=0, there is an induced linear map &:V,/(V,nV,) -V,

E
(onto). Therefore there is a strong map of the matroid SE[F]/ (( >— Q)
r

onto H(M, F). The rank of the first mentioned matroid is {G) by Propositions
6.5.2 and 6.5.3, which is also the rank of H(G, F) by equation (6.15). The strong
map is therefore an isomorphism. The theorem then follows by Proposition
6.5.2. O

We may mention that A. Bjorner (1982, Proposition 6) has proved that the
geometry H(G,F) is 2-partitionable. A geometry G(E) is said to be 2-
partitionable if for every xeE there is a partition E — {x} = E; UE,, E;nE,
= (7, such that x¢ E, and x¢E, (E; is the span of E; in G). M. Feinberg (1972)
proved that a 2-partitionable vector geometry of rank r can not contain more

1 .
than <r _; ) elements. It follows then by equation (6.15) that any geometry G

1
has at most (“; > bases, where u = fi(G) is the Mobius invariant of G.
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6.5.6. Example. We show by an example that the matroid H(G, F) is not
necessarily unimodular. Let G = U$§ be the uniform geometry of rank 3 on 6
elements. Then (US)* = US. Note that S(U$S, F) = S§[F],and H(US, F) ~ S§[F]
by Proposition 6.5.5. Then see Lemma 6.3.3!

6.6. Sperner’s Lemma for Geometries

We recall the classical lemma in topology discovered by E. Sperner.

Sperner’s lemma. Let A be a triangulation of a topological d-sphere. Label
the vertices of A by elements in a set E of size d + 1. Then if some d-
dimensional simplex of A is labeled by all elements of E, then there are at least
two simplices of A labeled by all elements of E.

Lovasz (1980) observed that if we label the vertices of A by elements of a
geometry G of rank d + 1 such that at least one simplex is labeled by all
elements of base of G, then at least two simplices of A are labeled in this way.

This generalization of Sperner’s lemma was extended to cycles of simplices
over a field F by Lindstrom (1981b). Cordovil (1982b) observed that one can
not use loops as labels, i.c., the result does not hold for matroids in general!

A set of r-simplices ¢,,...,06, is called an r-cycle over F, if for non-zero
aeF, 37 2;0(0) =0.

6.6.1. Proposition. If the points of an r-cycle are labeled by elements of a
geometry G of rank r and some simplex is labeled by all elements of a base of
G, then at least two simplices are labeled by entire bases of G.

Proof. Let f:V—E be the labeling of vertices by elements of the geometry
G(E). If (vy,...,v,) = o is a simplex, let f(c) = (f(v4),..., f(v,)) and extend the
map to linear combinations of simplices. Note that the operators f and ¢
commute. We have now > 7_, a;0(f(c;)) = 0. Apply the linear operator o of
Proposition 6.5.5 (proof) and (6.16) gives 37— a,8(f(0,))=0. If f(5;) is a
base of G, then B(f(s;)) # 0. Then for some k # j, B( f(})) # O, which implies
that f(o,) is also a base of G.

Krynski (1983) observed that Lovasz’ generalization of Sperner’s lemma
follows easily from this lemma and showed that Proposition 6.6.1 is a
consequence of a generalized Sperner lemma by Sperner (1980). Cordovil
(1982b) has an elementary proof of Proposition 6.6.1, which depends on an
equivalence with the following interesting result.

6.6.2. Propesition. Let M(E) be a matroid of rank r without isthmus. Then, for
every field F, the simplicial matroid S(M, F) = SE[F] (%) on the set B of bases of
M is also a matroid without isthmus.
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One can even show that S(M, F) is an inseparable matroid using the method
of Cordovil (1982b).

6.7. Other Results

Crapo and Rota (1970) considered simplicial matroids over the rational
numbers. Simplicial matroids over prime fields were studied by R. Reid (1970),
but his results were not published. For the following theorem of Reid there is
an elementary proof by Cordovil (1982a).

6.7.1. Proposition. Let M be a matroid representable over a prime field F. Then
there is a 3-simplicial matroid M’ over F, which is a series extension of M.

Binary simplicial matroids were studied by M.J. Todd (1976b). There is also
a paragraph in the book by Welsh (1976) on simplicial matroids over Z,. See
also Todd (1976a) and Tiima (1984).

E.D. Bolker (1976) applied simplicial matroids over the rational numbers in
studying transportation polytopes.

Cordovil (1978a) proved the formula for rank in k-simplicial matroids and
any F (B, is the k:th Betti number):

00=1x1=00= (37 )= x=(f)

In Crapo and Rota (1970} this is the definition of #(X) and it is proved that this

. . A
gives a rank function of a geometry on ( P )

Exercises

6.1. Verify that the following three circuits of S§[Z,] generate a Fano matroid F., (see
Figure 1.9):
C, =1{123,124,134,234},
C, = {123,124, 135, 145,235,245},

C, ={123,126,134, 145,156,236, 346,456}
Also verify that the minor
(S§[Z,1/{156,235,236,245,346,456})

({123,124, 126,134, 135, 145,234})

is isomorphic to the orthogonal of the Fano matroid F*.

6.2. Given a finite simple graph G = (V, E), let p and g be two points not in V. Consider
the set S of all 2-simplices {u, v, p}, {u, v, g} for {u, v} e E. Prove that the 2-simplicial
matroid over F on § is isomorphic to a graphic matroid.

6.3. From the simplicial matroid S§{F] delete four simplices which contain two of the
points (e.g. the simplices {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}). Prove that the
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restriction of the matroid to the 16 remaining simplices is isomorphic to a
cographic matroid and therefore regular.

6.4. (For those who know homology.) Assume that the bases of a simplicial matroid
have torsion-free homology. Prove that the matroid is regular.

6.5. The triangulation of the real projective plane in Figure 6.1 contains 10 of the
simplices of S§{Z,]. Verify that the remaining simplices give another triangu-
lation of the real projective plane and show that these triangulations give two
circuits which are also cocircuits of the matroid S§[Z,].

6.6. Let N,N,,...,N, be disjoint points sets with N;=n; (1 <i<k). The direct
product N, x N, x ... x N, contains nn,---n, k-simplices. Consider the k-
simplicial matroid of these k-simplices over a field F. Prove that the rank of the
matroidis nyn,---n, — (n, — 1)(n, — 1)---(n, — 1). Prove that the matroid is regular
when n, =n, = ---n, =2. These matroids with F =R (the real numbers) occur
implicitly in Bolker (1976). One can prove that the 3-simplicial matroid with
ny =n, =ny =23 is non-regular. (Lindstrém 1983)

6.7. Even if G is unimodular, H(G, Z,) need not be unimodular. Let G = M(K,), the
cycle matroid of the complete graph K. The edges of K, can be labeled such that
C,uC,uC, gives 13 spanning trees in K,, where C,C,, C; generate a Fano
configuration (see Exercise 6.1). (Lindstrom 1983)
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7

The Mobius Function and the
Characteristic Polynomial

THOMAS ZASLAVSKY

The effort to generalize graph theory to matroids has yielded analogs of the
chromatic polynomial and related graph invariants and (although there is still
no exact analog for an arbitrary matroid) a partial extension of vertex
coloring. The ‘characteristic polynomial’ provides every matroid with an
algebraic analog of the chromatic polynomial; Crapo and Rota’s ‘critical
problem’ defines a kind of proper coloring for submatroids of finite vector
spaces. We shall begin our account with the characteristic polynomial, its
logical building block the combinatorial Mébius function, and the related beta
invariant; then we present examples including the connection with graph
coloring and conclude with the critical problem.

As usual in enumeration we assume throughout this chapter that all
matroids, lattices, and other combinatorial objects are finite.

7.1. The Mébius Function

The combinatorial Mobius function, which we will need for geometric
lattices, can just as easily be defined for any finite partially ordered set. Let
P be such a set and consider integral functions P x P— Z. The function p
(or pp) which satisfies

Y oux,y)=08(x2 if x<z (7.1

xgy<z
(where & is the Kronecker delta) together with ordering property
wx,z)=0 if x<«z

is called the Mébius function of P. [Hall (1936). Weisner (1935) for lattices. The
basic reference is Rota (1964). A good recent treatment is Aigner (1979).]
To see that u exists and is uniquely defined, let us rewrite (7.1) as two
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equations:
wx,x)=1, (7.2)
wx,zy=— 3 plx,y) if x<z (7.3)
xgy<z

We can calculate u(x, z) first for z = x from (7.2), then recursively from (7.3)
for successively higher z by induction on the length of the longest chain from
x to z. Thus the value of up(x, z) depends only on the order structure of the
interval [x, z] and not on the rest of P.

To understand the Mobius function better, let us introduce the incidence
algebra I(P): the set of all functions ¢: P x P — Z such that ¢(x,y)=0if x Ky,
with pointwise addition and the convolution product

@*P)(x,2)= 3 X Y0,2).

Xgy<sz

This product is a form of matrix multiplication. If we extend <, to a linear
ordering of P denoted by subscripts, so p;<pp; implies i<j, then an
incidence function is a | P| by | P| upper-triangular matrix and convolution is
matrix multiplication. Hence multiplication is associative and has ¢ for
identity. Also, any incidence function ¢ with ¢(x, x) = 1 is invertible. The zeta
function of P is the function {eI(P) with

=1 if x<y

We can now restate the definition (7.1); u is the left inverse of {.
The recursive formula (7.3) is an effective way to compute the Mobius
function of a small interval. Some useful values are the following.

7.1.1. Proposition. In a partially ordered set,

Hx, x)=1,
wx,y)=—1 if y covers x,
wx,z)=n—1 if [x,z] is an n-point line.
Proof. Exercise. 0

Before we concentrate on geometric lattices, we shall give some important
general properties of the Mobius function.

7.1.2. Proposition. The Mdbius function of P can be defined by replacing (7.1)
by

Y uy,z)=08x2) if x<z

xX<y<z
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or by replacing (7.3) by

Wxz)=— Y Wz f x<z

xX<y<z

Proof. Exercise. 0

The raison d’étre of the Mobius function is the inversion property. This is the
common generalization of the principle of inclusion and exclusion (which is
Moébius inversion on the power set of a set) and of number-theoretic Mébius
inversion [in which P is the set of natural numbers ordered by divisibility; the
classical p(n) = pp(1,n)]. If pel(L) and f:P — A (an abelian group, which will
often be the integers), define

(p*N)(x Z P (x, ) ),

(f*d)y) = Z fX)o(x, ).

These are the incidence-algebra versions of the product of a vector by a matrix.

7.1.3. Proposition (Mébius Inversion). Let P be a finite poset. Let f and g be
functions on P with values in any ring (or Z-module, i.e., abelian group). Then

gx)= 3 f»

yex
implies

x)= 3 up(x, 9)g()s
y=x
and vice-versa. In addition

g =3 f®

Xy
implies

FO) =Y g(x)up(x, y),

x<y
and vice versa.

Proof. Exercise. O

Now we specialize to the case of a finite matroid M = M(E). Its lattice of flats
L has Mobius function y;. [The value u;(0,1) is often called the Mébius
invariant of L and written u(L). As we noted earlier, the M6bius invariant of an
interval [x,y] in L, u([x, y]), is equal to u;(x, y).] The Mobius function of M is
defined by

u X, F)=p (X,F) if X, FelL,
(X, F)=0 if X¢L, FelL;

U X, F)is not defined if F ¢ L. The purpose of this extended definition of u,, is
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to allow matroids in which ¢ is not closed to obey the same formulas as other
matroids—the same reason for which the chromatic polynomial of a graph with
loops is taken to be identically 0. (These two cases are virtually the same, as our
discussion of the chromatic polynomial will show.)

One such formula of basic importance is the following expansion (valid
more generally for any closure on S). It seems to originate with Weisner. The
non-trivial case (Where WelL)is a special case of Weisner (1935), Equation (15)
with property P’ = ‘minimal’. For a graphic matroid it is implied by a resulit
of Whitney (1932).

7.1.4. Proposition (Boolean Expansion Formula). Let L be the lattice of flats
of the matroid M = M(E). Let W< E and FeL. Then

m(W,F)= Y (—1F™,

WeXcF
clX=F

Proof. See Exercise 7.9. O

7.1.5. Example. Uniform matroids, Boolean algebras, and circuits. In the
uniform matroid U,,, of rank r on an m-set E, the flats of rank k (for k < r)
are the k-subsets of E. We have

r—1
lt(Urm)=Z(~l)"“<rZ>, if 0O<r<m
k=0

In particular for the Boolean algebra B,,= U,,, we have u(B,,)=(— 1)™. For
the m-point circuit C,, = U, ,, we have y(C,) = (— 1)" " '(m — 1). (Exercise.)
Another useful formula, also valid for any closure, is:

7.1.6. Proposition. [Special case of Weisner's theorem (Weisner 1935,
Theorem 9; Rota 1964, p. 351, Corollary)] In the matroid M = M(E) let F be a
flat,ea pointin F,and F |, F,,... the flats suchthat F covers F;and e¢F,. Then

Proof. For fixed e and any flat F containing e, let
SF)=pp( D, F) + 3 1D, F).

We want to show f = 0. Since that is trivially true if ¢ is not closed, we may
assume cl(e) is an atom A in the lattice L of flats. Let

gF)= Y SF)

A<SF<F

-3 | uopr+ S |
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Each flat E’ < F appears exactly once in the latter sum. For if E' > A4, then E' is
an F';butif E' 2 A, then E' is one of the F} associated with that F’ which equals
E' v A. Hence

gF)= ) wJ,E)=0

E<F

since F > A > 0. We therefore have

Y. fIF)=g(F)=
F'e[A,F]
Applying Mébius inversion (Proposition 7.1.3), we see that f = 0. O

Now we are ready to prove the main properties of the Mobius function of a
matroid. The first theorem is the core of Brylawski (1972, Theorem 4.2), which
will reappear in Theorem 7.2.4 and Section 7.4.

7.1.7. Theorem. The Mdbius invariant of a matroid M = M(E) satisfies:
(1) the deletion-contraction rule: if ecE is not an isthmus,
wM) = (M —e) — u(M/e);
(ii) the direct sum rule: if M = M, ® M,, then

w(M) = u(M,)u(M,).

Proof of (i). If e is a loop, M — e = M/e and both sides of the equation are 0.
Suppose then that e is neither an isthmus nor a loop.
We rewrite the left-hand side by Proposition 7.1.4:

pMy= 3y (=¥
XcE
cX=E
= Y (=1 — F (=¥ (7.4)
XcE—e ecXcE
clX=E cX=E

Since e is not an isthmus, a set X € E — e spans M if and only if it spans M — e.
Hence the first sum in (7.4) equals (M — e). The second sum equals u(M/e), for
an X containing e spans M if and only if X — e spans M/e.

Proof of (ii). See Exercise 7.10. 4

Next is the fundamental theorem on the sign of x in a geometric lattice.
7.1.8. Theorem. (Rota 1964, Theorem 4, p. 357) The Mdbius function of a
geometric lattice L is non-zero and alternates in sign. Precisely,

(=™, (x,y)>0 if x<y in L.
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Proof. 1t will suffice to prove
(= 1y®p0,1)> 0. (7.5)

We use induction on the rank and nullity of the combinatorial geometry
G = G(E) whose points are the atoms of L.

If G has nullity 0, it is a Boolean algebra. Hence by Example, 7.1.5, ug(0,1) =
(= 1) =(— 1y, whence (7.5) is immediate. This case includes lattices with
rank 0 or 1.

If G has positive nullity, it is not a Boolean algebra. Hence there is a point ¢
which is not an isthmus. By induction on rank, (— 1)®/9u(G/e)>0. By
induction on nullity, (— 1)¢~9u(G — ¢) > 0. By Theorem 7.1.7,

(= Ou(G)=(—1y"““u(G/e) + (— 1y~ u(G —e),

which is positive by the previous observations. Thus we have the theorem.
O

7.1.9. Corollary. (Brylawski 1972, Theorem 4.2 and Corollary 4.3) The magni-
tude of the Mébius invariant of a matroid satisfies

[u(M)] = | (M — e)| + [u(M]e)|
if ecE is neither an isthmus nor a loop, and

|(M @ M,)| = |pu(M)] |(M)]. O

The last result on u is an expansion formula which will be needed to prove
Stanley’s modular-element factorization of the characteristic polynomial,
Theorem 7.2.5 below.

7.1.10. Lemma. Let x be a fixed element of the lattice L and let vel. Then

wO,0)= Y%  u0,y)u0,2).

y
y<x,zAax=0
yvz=v

Proof. Let f(v) denote the right-hand side. Then

ﬁ‘z fy=Y ¥ wo,»u0,z)

yEXAV <0
zZAx=0

=0(0,x Av) > p(0,2).

Z€Y
zAx=0

Either 6(0, x A v) =0, or else x A v =0 so that the z-sum ranges over all z< v
and consequently equals 6(0,v). Thus 3", _, f(u) = (0, v). Inverting this sum
yields f(v) = (0, v), as desired. O
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7.2. The Characteristic Polynomial

The characteristic polynomial is the matroid analog of the chromatic
polynomial of a graph. While it does not count proper colorings—indeed there
is no way known to color a general matroid corresponding to vertex coloring
of a graph—the characteristic polynomial has most of the algebraic properties
of the chromatic polynomial and can for many examples be interpreted in an
interesting way related to coloring (in the ‘critical problem’).

The characteristic polynomial’ of a matroid M is defined to be

pM;A) =Y pup(D, F)A0—r®,
Fel

where L denotes the lattice of flats of M. Clearly, p(M; 1) is monic of degree r{M)
except when ¢J is not closed, in which case p(M;A) =0. The coefficient of
A=k is known as the k-th Whitney number of the first kind of M, written
w(M) (cf. Chapter 8); thus

r(M

)
pM; )= w(MAMO-k

k=0

wi(M) = Z w3, F).

FelL
rFy=k
We also see that u(M)= p(M;0). Because of this, many properties of the
Mbius invariant are specializations of those of the characteristic polynomial.
We also define the characteristic polynomial of a geometric lattice L; it is

p(L;A) = Y, uy 0, )40 7m0,
xeL

This polynomial is always monic of degree r(L); its coefficients are the Whitney
numbers (of the first kind) of L. (Frequently in the literature p(M; 1) is defined
to be p(L; A) where L is the lattice of M. This is adequate for simple matroids
but our definition is better in general.)

From our knowledge of the Mobius function we get at once two useful
results. Setting W = ¢ and summing over all FeL in Proposition 7.1.4:

7.2.1. Proposition. The characteristic polynomial of the matroid M = M(E) has
the Boolean expansion

pM; )= ¥ (— Xpran—r®, -

XcE
7.2.2. Example. Uniform matroids, Boolean algebras, and circuits. For the

'Also called the Birkhoff or Poincaré polynomial.
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uniform matroid U,,, with 0 <r <m we have

PUmi )= 3 (= 1)"(',:’)[1'-" -1

=(-1T-D Y, (- z)f(r'f:j).

In particular p(B,,;4) = (4 — 1)" and

(i—l)m_l——(— l)m_l‘

P(CpiA)=(A—1) ]

From Rota’s sign theorem, Theorem 7.1.8:

7.2.3. Proposition. If L is a geometric lattice, then the coefficients of
(— 1Y®p(L; 1 — ) are all positive. In other words,

lwiL)] = (= 1)*wy(L). O

And from Proposition 7.2.1 we can deduce an analog of Theorem 7.1.7
contained essentially in Brylawski (1972, Theorem 4.2).

7.2.4. Theorem. The characteristic polynomial of a matroid M = M(E)
satisfies:
(i) the deletion-contraction rule: if ecE is not an isthmus,

p(M;2) = p(M — e;A) — p(M/e; A);
(ii) the direct sum rule: if M=M,®M,,
p(M;A) = p(M ;2)p(M ,; A).

Proof. Exercise. See also Section 7.4. O

Theorem 7.2.4(ii) shows that some characteristic polynomials factor in an
interesting way. We can find a second kind of factorization by setting 1 = 1.
From the definition of u,,, p(M;1) =0 for every matroid M whose point set is
not empty. Hence A — 1 divides p(M; 2). Both factorizations are special cases of
a theorem due to Stanley.

7.2.5. Theorem. [ Modular factorization (Stanley 1971, Theorem 2)] If x is a
modular element of the geometric lattice L, then

p(L; ) =p([0,x];2) Y w(0,z)A 0 -r@-re,

2eL
zAx=0
Proof. The right-hand side equals
> Y w0, y)p(0, )BT, (71.6)

ysx zAax=0
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We now need a lemma. Recall that (v, w)M means v and w are a modular pair in
L.

7.2.6. Lemma. If (v,w)M and v A w <u < v, then (u, w)M.
Proof of Lemma. We want to prove that
unwvit)=(uaw)ver forall r<u

The inequality > is a lattice identity, so it suffices to prove <. We have, by the
assumption (v, w)M,

vawvi)=@vawyve forall t<vo.
Note that v A w=u A w and v > u. Hence
urnwv)<uawyve forall <o,
which is stronger than what we need. 4

In the theorem, (x,z)M because x is a modular element; and x A z=
0 < y < x. The lemma implies (y, z)M, whence

rM+r@=ryvz+ry az)=r(y vz
Thus (7.6) equals

z Z 10, y)u(o, Z)'<L)—r(y vz)

ysxzax=0

=Y PNy w0, )0, 2).

veL yE€X zAx=0
yvz=v

The inner double sum equals u(0,v) by Lemma 7.1.10. Thus we have the
theorem. 4

To see that Stanley’s theorem includes the direct-sum factorization, suppose
M=M,®M,. Then L=L(M)=L, x L,. In L the element x=(1,,0) is
modular; moreover z A x =0 if and only if ze{0} x L,. Thus in Stanley’s
theorem the first factor is p(L,;4) and the second is p(L,;4).

We can use Theorem 7.2.5 to determine the cofactor of A — L in p(L;4). Let a
be any atom of L; then p([0,a];4) = 41— 1. Let L{a) = L — [a, 1]; then L{a) is an
ideal in L. Define

pLayd) = Y. p 0,z)m0 717,

zeL(a)

Since any atom is a modular flat, we have:

7.2.7. Corollary. Let a be any atom in the geometric lattice L. Then p(L; 1) =
(A — Dp(L(a); A). O
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7.2.8. Corollary. The polynomial p(L(a); 1) is the same for every atom aclL.
d

7.2.9. Proposition. [ Brylawski 1971, Theorem 6.16(v)] Let M be the parallel
connection of M, and M, with respect to the basepoint p, and assume p is not a
loop in either M, or M,. Then

P(M:A) = P(M1;A¥7(1M2;/1) .

Proof. The assumptions imply that p is not a loop in M either. Hence by
Corollary 7.2.7 the proposition is equivalent to the assertion that

p(L{p);A) = p(L(p); Ap(L,(p); A), (7.7

where L; is the lattice of flats of M, provided that ¥ is closed in M, and M,
which we may clearly assume. In full, (7.7) says

¥ a0, =1 =
FeL
p¢F

= T T uu 0 F)py,(0,F )0t -rEa=riry,

Fiely Fiel,
P#Fy péFz

since r(L)—1=[r(L,})— 1]+ [r(L,)— 1]. By Brylawski (1971, Proposition
5.11) (see White 1986, Chapter 9), the flats F not containing p are precisely the
unions F,UF, of flats of M, and M, where p¢F, and p¢F,, and
[0,F]=[0,F,]x[0,F,]. So r(Fy=r(F)+r(F,) and u(0,F)=
w(0, F)u(0, F,), which is just what we need to prove the equation. O

7.3. The Beta Invariant

An informative number associated with a matroid is Crapo’s beta invariant.
With it one can decide whether a matroid is connected and whether it comes
from a series-parallel network. The invariant can sometimes also establish
that two matroids are not dual.

The beta invariant of the matroid M = M(E), whose lattice of flats is L, is
defined by

4 - d .
ﬁ(M)=(~ 1) 0 lap(M,l),
which equals (— 1™ =13y, (&, F)[r(M) — r(F)], so that

BM) =(— 1)"M’IZLﬂM(@,F)r(F)-
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In view of Proposition 7.2.1 we could equally well define

BM) = (—1y*™0 ¥ (- 1)*r(X),
X<cE _
as Crapo (1967) did when introducing the invariant. Some simple properties of
f are summarized in Proposition 7.3.1.

7.3.1. Proposition. Let M = M(E), L = the lattice of flats of M.
(@) If M has no loops, B(M) depends only on L.
(b) PB@sthmus)= 1.
(c) BM)=0if E= J or if M contains a loop.
(d) If ecE is not a loop,
BM)=(—1y™71 3 (D, F).

FelL
e¢F

Proof. Exercise 7.17. O

We define the beta invariant of a geometric lattice to be that of the
underlying combinatorial geometry. Proposition 7.3.1 shows that f(L)=0 if
HL)=0, 1 if (L)y=1.

The fundamental properties of § are those in Theorem 7.3.2.

7.3.2. Theorem. (Crapo 1967} The beta invariant of the matroid M = M(E)
satisfies

(a) p(M)=0.

(b) B(M) >0 if and only if M is connected and is not a loop.

(c) If ecE is neither an isthmus nor a loop,

BM) = B(M — ) + p(M e).
(d) B(M*)= B(M) except when M is an isthmus or a loop.
Proof of (c). Exercise 7.18. O
Proof of (a). Exercise 7.18. O

Proof of (b). By Exercise 7.18, S(M)=0 if M is disconnected. We have to
prove B(M)>0 if M is connected and not a loop. If M is connected and
|E| = 3, then [White 1986, Proposition 7.69 (1)] for every element e either
M /eis connected or M — e is connected. Then, by induction, since |E —e| > 2,
either p(M/e) >0 or (M — e} > 0, hence by (c) and (a) we have (M) > 0.
The cases with |E| < 2 are easily checked to start the induction. O

Proof of (d). Since M is disconnected if and only if M* is, the disconnected
case follows from (b). We may now assume that M is connected and |E] > 2.
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Since no point is an isthmus or a loop, we have from (c):

BM) = B(M — e) + (M]e),
BM*) = B(M* — e) + p(M*/e)
= P((M/e)*) + f((M — €)*).

Then (d) follows by induction on | E| provided |[E — e| = 2. Butif |[E —e| =1, M
and M* are both isomorphic to the 2-point circuit; (d) follows. [

One of the uses of the beta invariant is to characterize series-parallel
networks. First we establish the behaviour of f under series and parallel
connections.

7.3.3. Proposition. [Brylawski 1971, Theorem 6.16 (vi)] Let M = M(E) be the
series or parallel connection of two matroids M | and M ,, each having at least two
points, with respect to the basepoint p. Then (M) = B(M)(M,).

Proof. Suppose M is the parallel connection. The proposition follows from
Proposition 7.3.1(d), Corollary 7.2.7, and Proposition 7.2.9.

But if M is the series connection, M* is the parallel connection of M¥ and
M%; the result follows from the former case and Theorem 7.3.2(d). O

7.3.4. Propeosition. [Brylawski 1971, Theorem 7.6(2)] M is the matroid of a
series-parallel network if and only if it is not an isthmus and (M) = 1.

Proof. The smallest series-parallel matroid is the 2-point circuit C,. By
Proposition 7.3.1, (C,) = 1. As White (1986, Chapter 6) shows, any series-
parallel matroid is obtained from C, by a succession of parallel duplications of
a point [which by Proposition 7.3.1(a) leave f unaltered] and dualizations
[which do not change f due to Theorem 7.3.2(d)]. Hence (M) =1if M is the
matroid of a series-parallel network.

Conversely, suppose that $(M) =1 and let ecE, the point set of M. If |[E{ =1,
M must be an isthmus. Assuming now |E| > 2, M is connected [by Theorem
7.3.2 (b)] so Theorem 7.3.2(c) holds; since f is always a non-negative integer,
we conclude that (M — e) =0 or B(M/e) =0. Say the former: then M — e =
M(E,)® M(E,); and B(M)= (M — E,)B(M — E,) by Proposition 7.3.3. So
M is the series connection of two matroids with § = 1, which by induction on
| E| are series-parallel matroids. But then M is a series-parallel matroid. []

Oxley [ 1982, Proposition (2.5)] extends Proposition 7.3.4 to larger values of
B. He shows that, if S(M) = k > 1, then either M is a series-parallel extension of
a 3-connected matroid with f = k or M is a 2-sum of two matroids with § < k.
See Oxley’s paper for the definitions and proofs.

The beta invariant may be regarded as almost the Mobius inverse of the
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rank function. Let L be a geometric lattice; then the signed beta function
B(x) = (— 1y "™pB(L/x) equals

Y, br(x, y)r(y).

yzx

Inverting,

rx)= Y B().

yzx

An expression essentially equivalent to this one appears in the cluster analysis
of percolation processes on a graph (cf. Essam 1971, Sections 3.6-3.7).

7.4. Tutte—Grothendieck Invariance

The rank generating function of a matroid M = M(E), introduced in Crapo
(1970), is the two-variable polynomial

R(M;u,0)= Y a0 =r@0piXi=nx)
X<cE
The Boolean expansion theorems 7.1.5 and 7.2.1 amount to saying that u(M)
and p(M;A) are approximately specializations of R(M;u, v); specifically,
,U(M) = (_ 1)r(M)R(M;07 - 1)5

p(M;4) = (— 1y¥R(M; — 4, — 1).
Those observations and all the ideas of this section are based on Tutte (1947),
where they were developed for graphs. Their extension to matroids is due to
Crapo, Rota, and Brylawski.

The rank generating polynomial has an important property which general-
izes Theorems 7.1.7 and 7.2.4. We need some definitions. An invariant of
matroids is any function f of matroids which is the same for isomorphic
matroids:

M=M implies f(M)= f(M".
(We are only concerned, as usual, with finite matroids.) A Tutte—Grothendieck
invariant of matroids is an invariant satisfying the direct-sum ruie
JM @M,)= f(M)f(M,)
and the deletion-contraction rule

f(M) = f(M —e) + f(M/e)

for each point e of M that is neither a loop nor an isthmus.

7.4.1. Proposition. The rank generating function is a Tutte—Grothendieck
invariant of matroids.
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Proof. Exercise 7.24. This result is implicit in Crapo (1970, Propositions 9
and 10), and is made explicit in Brylawski (1972). ]

Theorems 7.1.7 and 7.2.4 are special cases because any specialization of
R(M;u,v) is automatically a Tutte—Grothendieck invariant. The remarkable
thing is that there is a converse.

7.4.2. Proposition. (Brylawski 1972) If f(M) is a Tutte—Grothendieck invar-
iant of matroids, then it is an evaluation of R(M;u,v). It is obtained by setting
u = f(isthmus) — 1 and v = f(loop) — 1.

Proof: Exercise 7.25. O

This is a fundamental result but it still does not capture the essence of the
characteristic polynomial. For that we need to define a Tutte—Grothendieck
invariant of geometries. This is a matroidal Tutte—Grothendieck invariant with
the additional property that

f(M)=f(GM)) if M is loopless.

7.4.3. Theorem. (Brylawski 1972, Corollary 4.4) The invariant (— 1™ p(M; 2)
is a Tutte—Grothendieck invariant of geometries. Moreover, it is a universal such
invariant: if f is any such invariant, then (M) = (— 1)"® p(M;1 — f(isthmus)).

Proof. The geometric invariance of (— 1y™p(M;4) follows from the defi-
nition of p(M; 1) and from Theorem 7.2.4. Given f, in view of Proposition 7.4.2
it is enough to show that f(B¥)=0. Let us consider M = C,, the 2-point
circuit. We have

J(By) = f(Cy) = f(C, — p) + f(Co/p) = f(By) + f(BY),
whence f(B¥)=0. O

7.5. Examples

Aside from the graphic matroids, chosen for their historical and motivating
importance, our examples are of matroids whose characteristic polynomials
are particularly simple in form because they belong to the class of ‘supersolv-
able’ geometries.

The chromatic polynomial. One of the raisons d’étre of the characteristic
polynomial, indeed its original motivation, is that it generalizes the chromatic
polynomial of a graph. Let y(I';4) be the chromatic polynomial, ¢(I") the
number of components, and M the matroid of the graph I'.

7.5.1 Proposition. y(I"; 1) = ATp(M;A).
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This formula can be traced back to G.D. Birkhoff’s paper of 1912, where it
was stated (not for graphs, but for maps) in the form

n—

ATA= Y 4 T (= De0n—0, (7.8)
n being the number of vertices and ¢,(0, n — i) the number of chains of length k
from rank O to rank n —i in the lattice of contractions of I" [isomorphic to
L(M)]. The equivalence of (7.8) with Proposition 7.5.1 is a consequence of
Philip Hall’s theorem (Exercise 7.13) and the fact that ¢(I') = n — r(M) (White
1986, Chapter 6).

Proposition 7.5.1 is often proved by observing that y(I";1)/A°T is, like
p(M;A), a Tutte—Grothendieck invariant of graphic matroids, comparing the
two for a loop and an isthmus, and deducing their equality. But that approach
does not explain the appearance of the Mobius function. For that it is better to
carry out a proof by M&bius inversion (due essentially to Whitney 1932).

Proof. Let y be any coloring of I' in A colors, whether proper or not, and let
I(y) be the set of edges which are improperly colored, that is, e I(y) if and only if
I(y) gives the same values to the two end points of e. It is easy to see that I(y) is
closed in the graphic matroid M. Let L be the lattice of closed sets, and let
v(F) = the number of colorings y for which I{y) = F. Clearly

Y wWF)= A"

FeL
More generally,

Y. W(F)= A",

FzF
since the colorings y being counted, those which are improper on F’ at least,
have to be constant on each component of F'. Inverting,

Y, WE, )" = oF).

FzF
Setting F' =0, on the left we have 1“Dp(M ;1) and on the right y(T';4). (The
trivial case where (J is not closed can be handled separately.) d

Supersolvable geometric lattices (Stanley 1972). A geometric lattice is
supersolvable when it contains a complete chain of modular elements. For such
a lattice the modular-element factorization theorem makes computation of the
characteristic polynomial easy.

7.5.2. Proposition. (Stanley 1971, p.217; 1972, Theorem 4.1) Suppose L is a
geometric lattice of rank r with a complete chain 0 <x; <x,<---<x,=1
consisting of modular flats. Let N, = the number of atoms which are < x; but
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& Xy ;. Then
ML) = (= D= N)JA = Ny) (i = N,),
ML) =(—1fN NN,
BL) = (N, — 1)(Ny — 1)-+(N, — 1),
wi(L) = (= Do, N;,Ns,...,N)),
where o, is the k-th elementary symmetric function. O

One class of supersolvable geometric Iattices is the Boolean algebras, or
lattices of free matroids. Less trivial examples appear below.
Partitions. The partition lattice Il, has characteristic polynomial
pIl; A=A —-1(A—=2)--(A—n+1) (7.9)

The coefficient of 4* in A(A—1)---(A—n+1) is by definition the Stirling
number s(n, k) of the first kind [hence the name “Whitney number of the first
kind’ for w,_,, since by (7.9), the Whitney number w, _(I1,) equals the Stirling
number s(n,k)].

Projective geometries. Consider Lj, the lattice of subspaces of the n-
dimensional vector space over GF(g), equivalently of the projective geometry
PG}~ '. Let g, denote the k-th elementary symmetric function.

7.5.3. Proposition. We have
pLg; Ay =(4— 1)(& —(h—q*)---(h—q"""),
L) = (— 1yg®,
Wk(LZ) = (— l)kak(la q, qz’ e 9qn_ 1)
=(_ l)k Z qi1+iz+-~~+ik,
Ogit<ig<--<ip<n
BLY) =(q—D(g*—1)---(g" ' = 1).

Proof. Excercise. O

From this proposition it is possible to compute W, (L7), the number of
distinct (k — 1)-dimensional subspaces of PG}~ '. See Exercise 7.31 (c).

7.6. The Critical Problem

The problem of coloring a graph is solved by finding the smallest positive
integral argument such that y{4) > 0. In the matroidal analog introduced
by Crapo and Rota (1970), colors become vectors over the finite field of
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order q and one must find the smallest positive integral exponent d for which
p(M; 4% > 0.

The problem concerns a set E of vectors in the n-dimensional vector space
K" over K = GF(q). Let M(E) be the linear dependence matroid of E and L(E)
the lattice of flats of M(E). A set of linear functionals f;:K” - K is said to
distinguish E if for each point pe E some functional is non-zero on p; or in other
words the intersection of the hyperplanes Ker f; is disjoint from E. The critical
problem is to find the smallest size of a distinguishing set for E. We call this
number c the critical exponent of E.

7.6.1. Theorem. [Critical Theorem(Crapo and Rota 1970, Theorem 16.1)] Let
EcK'm=dimE, and d>0. The number of (ordered) d-tuples of linear
Sfunctionals which distinguish E (equivalently, the number of linear mappings
f1K"—= K9 whose kernel avoids E) is equal to (q°)' ™p(M(E);q%.

The most important conclusion to be drawn is that the critical exponent of E
is the smallest non-negative integer ¢ such that p(M(E);q°) > 0. We also see:

7.6.2. Corollary. Let E be a non-empty subset of a linear (or projective) space
over GF(q), not containing the zero vector. Then there is an integer ¢ > 0 such
that p(M(E);,q*) =0 if 0<d < ¢ but p(M(E);q*)> 0 for all d> c. O

Proof of Theorem. The proof is similar to that of Proposition 7.5.1. First we
observe that, given X < K" with dim X = e, the number of linear mappings
f:K"— K* whose kernel contains X is ¢*"~; for if we extend X to a spanning
set by adjoining p.4,...,P., We get such an f by setting f|X =0 and
choosing f(p;) arbitrarily from among the g° vectors of K¢ fori=e+1,...,n.
Now for each F € K", let us write v(F) for the number of linear f: K" — K?such
that EnKer f = F. Obviously E~Ker f'is closed in M(E), so we have for each
XeL(E).
> WF) =g

FzX

After M6bius inversion and setting X =0=cl (7,

Y. ug0, F)(g")*™ 4™ = w(0).
FeL(E)

But the left-hand side equals (g%)" "p(L(E);q%). Modulo obvious remarks
about the case where ¢ is not closed, this is the theorem. (|

The case of critical exponent 1 is easy to interpret geometrically. A
combinatorial geometry is affine if it is isomorphic to the affine dependence
matroid of a point set in an affine geometry AGj. (We regard g as fixed.) A
subset of PG} is affinely embedded if it lies in the complement of a hyperplane.



The Mobius Function and the Characteristic Polynomial 131

Clearly M(E) s affine if E is affinely embedded. We have the following converse
and criterion. (The criterion, i.e., ¢ = 1, is Theorem 16.2 of Crapo and Rota
1970. It is a g-analog of the Two-Color Theorem of graph theory; see below.)

7.6.3. Corollary. Let E < PG}. The following are equivalent:
(1) E is affinely embedded.
(ii) M(E) is affine.
(iii) E has critical exponent 1.

Proof. Exercise. O

The Critical Theorem shows in principle how to find the critical number
(although drawing conclusions in specific cases is another matter!), but what it
counts is not very geometrical. One can deduce more complicated expressions
for the number of d-tuples of hyperplanes (as distinct from functionals) which
distinguish E and the number of e-dimensional subspaces which avoid E.

7.6.4. Corollary. Let E< K" and let m=dim E. (Or let E< PG} ' and
m =1+ dim E.) The number of d-tuples of hyperplanes which distinguish E (i.e.,
whose intersection avoids E) is equal to

(g—1n~* Z,O(~ 144(q°)" " p(M(E);q°)

m qn—k —1 d
=2 wk(M(E))( ) :
k=0 q—1
Proof. Let k, (respectively v,) be the number of d-tuples of hyperplanes
(respectively functionals) that distinguish E. We have to take account of two
factors: some functionals are 0 (not corresponding to any hyperplane), and one
hyperplane corresponds to g — 1 functionals.

We can obtain all d-tuples f of functionals that distinguish E in the
following way. First we choose e =0, 1,..., or d (e will be the number of non-
zero functionals in f) and one of the «k, e-tuples of distinguishing hyperplanes,
h=(hy,h,,...,h,). Next for each h; we pick one of the ¢ — 1 functionals g; with
h; for kernel. Then we pick e indices, 1 <i; <i, <---<i,<d, and we let
fi,= g5 but f;=0if i is not one of the selected indices. This determines f, and
since the e-tuple h is recoverable from f, we obtain in this way all possible f. So

d d
Vo= Z Ke(q_ 1)e<e).

e=0

Inverting this binomial relation,

4 d
Ki=lg=17 Y (- 1>e(e)ve.

We obtain the value of v, from the Critical Theorem.
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The alternate form of x; arises upon expanding p(M(E),q%)=
S w(M(E))(g™ *) and rearranging the sum. O

Finally, we have the most geometrical version of the Critical Theorem. But
first this lemma.

7.6.5. Lemma. Let x be an (n — e)-dimensional subspace of K". The number of
linear mappings f:K"— K* whose kernel is x equals

(@ - D@ ~q-@ —q"),
interpreted as 1 if e=0.

Proof. There is a one-to-one correspondence between such f and the
mappings f:K"/x— K? with zero kernel. To count the latter is a critical
problem: we want the number of mappings f:K°®— K¢ whose kernel avoids
E=K¢®—{0}. This number is p(M(E);q%). But we know that polynomial
from Proposition 7.5.3 since L(E) = L;. So we have the lemma. O

7.6.6. Proposition. (Dowling 1971, Theorem 2, p. 220) Let E < K" have dimen-
sion m. The number of (n — d)-dimensional subspaces of K" not meeting E is equal
to

5 (= D" "pM(E);¢") '
e=0(qe—— 1)(qe_1 — 1)(q_ 1)(qd-e__ 1)(qd-e_q)‘“(qd—e_qd—e—l)

Notice that the terms with e > d — ¢, ¢ the critical exponent of E, are all 0.

Proof. Let o, _,denote the number of (n — d)-dimensional subspaces avoiding
E. We will set up and solve a recurrence for a,,_ ;.

Each subspace counted by o, _, is the kernel of the number of mappings
K" — K* given by Lemma 7.6.5. So the total number of mappings K" — K*
whose kernels avoid E is given by

d e=1
z Op—e 1—[ (qd_ql)'
e=0 i=0

The number of such mappings is also given by the Critical Theorem; thus we
have

d e—1
(@) "pM(E):q) = ¥, on-. [] @'~ ).

The trick is to rewrite this as an identity involving the Gaussian coefficients,

[d] _@=D@ =g =)

e @—-Dg ' =Dg—1

which is to be proved in Exercises 7.5 and 7.31 to equal the number of
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e-dimensional subspaces of K¢ That is, we want to prove

e—1

d d i
( d)n MP(M E) q = Z: o, e[e].l_:{)(qe_ql). (710)

Equation (7.10) has the form

¢ [d
a;= g;obe[e]’ (7.11)

valid for all d > 0. We wish to solve for b,.. That we can do by defining, for xe L]
with dim x =d,

ax)=a, and b(x)=b,
Now (7.11) can be written

ax)=Y. b(y),

ys<x

which by Mébius inversion in L} becomes

bix)= Y a(y)u(x,y).

y<x

The interval [x, y] being a projective geometry, its Mobius invariant is given
by Proposition 7.5.3; converting back to the notation of (7.11) we have

d e d
by = z ag-o — l)eq(2)|: :'
e=0 (4
The result of inverting (7.10) in this fashion is
d—1 p X d (2)
an-a [] ('~ 4)= % (= 1) [ ](q" Fp(M(E),q" ).
Isolating ¢,_, and simplifying yields the result. O

7.6.7. Corollary. The largest dimension of a substance of K" not meeting E is
n—c, where c is the critical exponent of E. d

7.6.8. Example. Independent sets. Any independent set of points has critical
exponent 1 and therefore lies in the complement of a hyperplane in K",
Graph coloring as a critical problem. Since a graphic matroid can be
represented by vectors over any field, it has a critical problem for each prime
power g. Let I', a graph with n vertices, be represented by the vector set
E(T') € K", where K = GF(q), in the usual way: vertex v; corresponds to the i-th
coordinate and an edge e;; corresponds to the vector p; — p; (or p; — p,), {p:}
being the standard basis of K". Each linear mapping f: K" — K¢ corresponds to
a coloring of I by K¢, that is, a map y: V(I') - K¢ defined by y(v;) = f(p,); and



134 Thomas Zaslavsky

conversely each y determines one linear mapping f. Moreover, f distinguishes
E(I") if and only if, for each edge ¢;; of I', f(p; — p;) # 0; in other words, y is a
proper coloring. So in the graphic case the Critical Theorem says that x(I';q%)
is the number of proper colorings of T by vectors in K% the critical exponent is
the smallest dimension d for which there is a proper coloring by K% (One
should now reread Corollary 7.6.3 as a g-color theorem!)

The most interesting case is the binary one, for the statement: the critical
exponent of a planar graph, over GF(2), is at most 2,is the Four-Color Theorem.
An aim of Crapo and Rota in formulating the critical problem was to put the
Four-Color Problem in a general setting which might lead to techniques
powerful enough to solve it and other problems of the type. (‘The fact that the
problem of coloring a graph was the first historically to arise, was a distressing
accident, which prevented it from being studied at that level of generality
which has been found indispensible in solving most problems of mathema-
tics.”) It must be admitted that this hope has not yet been realized, although it is
undoubtedly worthy of continued pursuit. :

Linear codes and the critical problem. Another example was pointed out by
Dowling (1971). A linear code in K" with distance d is a linear subspace whose
non-zero vectors have minimum weight d. (The weight of a vector is the
number of non-zero coordinates.) The problem of linear coding theory is to
find large codes with given dimension and given (or bigger) distance. Suppose
we let

E;={peK": 0 <wt(p) <4},

and c; = the critical exponent of E;. Then a code with distance > § is merely a
subspace avoiding Ej; by the Critical Theorem the largest dimension of such a
subspace is n — ¢z and its size is "~ . So if we can calculate p(M(E;);A) we will
know the maximum size of a linear code with distance > o.

This is a difficult calculation in general, although easy when 6 = 1 (Exercise).
Dowling accomplished the calculation for 6 =2. Then L(E,) is the Dowling
lattice Q(K*) of the multiplicative group K* of K (Dowling 1973a; for the
Dowling lattices of any finite group see Dowling 1973b). The characteristic
polynomial of Q,(K*) evaluated at ¢° equals

JSa =1\ ¢ -1 g —1
(g—1) <q_—1><q_1 —1>---<q_1 —n+1>,

by Dowling’s results. Thus ¢, is the integer such that

22" lgn<2? if g=20r

62—1_1 c2
q wn<? &
qg—1 q—1

it g>2.
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Then we know the maximum size of a linear code over GF(q) that corrects one
error (which is what ¢ = 2 signifies). This problem was what led Dowling to
investigate his lattices and thence to the theory of Dowling (1973b).

Unfortunately, for § = 3 this approach does not succeed. The reason is
roughly that M(E,) is essentially graphic, as one can see from the presentation
given in Dowling (1973a, p. 109); moreover, it is supersolvable. For larger o,
M(E;) is no longer graphic; the techniques to calculate its characteristic
polynomial have not been discovered. This is one of the important open
problems in matroid theory.

A different connection between linear codes and the critical problem and
also one between codes and the rank generating function (Section 7.4) are
developed in Greene (1976).

Exercises

7.1. Prove Proposition 7.1.1 using the recursive definition, equations (7.1)—(7.3).
7.2. Prove Proposition 7.1.2: first from the definition of g, then using the incidence
algebra.
7.3. (a) Evaluate u(U,,,) (Example 7.1.5).
(b) Find and factor the characteristic polynomial of the m-point line U,,,,.
(c) Deduce Example 7.2.2 from Proposition 7.2.1. Calculate the Whitney
numbers of the first kind of U,,,, B,,, C,.
74. (a) For the partition lattice I1,, evaluate u(I1,):
(i) from the definition (7.1.) for n=4;
(ii) from the alternative recurrence (Proposition 7.1.2)(Frucht and Rota

1963).
(ii) Deduce that, if # < 7 in I1, and = partitions n; different blocks of ©
into i parts each for i=1,2,3,..., then

w7y = (— DFH)m2nms(3hm. .
(Schiitzenberger 1954)
(b) Deduce a formula for p(Il,; ) from the definition of the characteristic
polynomial and Exercise 7.4(a). What are the Whitney numbers w,(I1,)?

7.5. (a) For the lattice L} of the projective geometry PG, ' of dimension n— 1

over GF(g), evaluate u(L7). Then calculate p(L(4G}~')), where AG; ' is
the affine geometry. (You may express the result in terms of the numbers
W, (L) of rank k subspaces of PG, *.)

(b) Find the characteristic polynomial and Whitney numbers of the first kind
of Ly, based on your solution to (a). Do the same for L(AG}™").

7.6. Let ¥V, consist of all the points in the real affine space AG"(R) with coordinates
+ 1; we call this the verticial hypercube. If n=3, it is called the real affine cube. For
the geometric lattice of its affine dependence matroid, compute the Mdbius
invariant and the characteristic polynomial when n < 3. The general problem is
unsolved, difficult, and important. It would yield an exact formula for the number
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7.17.

7.8.
7.9.

7.10.

7.1L

7.12.

7.13.

7.14.
7.15.

7.16.

7.17.
7.18.
7.19.
7.20.

7.21.

7.22.

Thomas Zaslavsky

of threshold switching functions of n variables (Winder 1966; Zaslavsky 1975,
Section SF).

(a) Let D, consist of all the points in the real vector space R" with exactly two
non-zero coordinates, whose values are in the set { + 1, — 1}. Let B, be D,
with the unit basis vectors adjoined. Let L denote the lattice of the linear
dependence matroid. Compute y(L(D,)) and u(L(B,)) for n < 3, then n = 4 if
time allows. [For general n, see Zaslavsky (1981).]

{b) Like Exercise 7.5(b) but for D, and B,. Hint: p(L(B,); 1) = (A — 1)( — 3)--
A—2n+1).

Prove Proposition 7.1.3.
Prove Proposition 7.1.4. Hints: For the case W¢L, factor the sum. For Wel,
define the function

G(W,F)= Z (- l)lX—Wl
WeXcF
cdX=F

and employ the incidence algebra.

Prove Theorem 7.1.7 (ii). Hint: Use Proposition 7.1.4.

Prove that the sum iy — i; + i, — --- & i,, where i, is the number of independent
sets of rank k in a matroid M of rank r, equals zero if and only if M has an isthmus.
Hint: Use Proposition 7.1.4.

Prove Rota’s sign theorem, Theorem 7.1.8, from Weisner’s theorem, Proposition
7.1.6. (Rota 1964}

[Philip Hall’s Theorem: Hall 1936, (2.21); Rota 1964, Proposition 6, p. 346.] For
x,yeP and i 2 0, let ¢{x, y) be the number of chains x = x, < x; < -+ <x;=yof
length i from x to y. Let

(x, ¥) = colx, y) — ¢ (%, ¥) + ¢,5(x, y) — ¢5(x, ) + .

Prove that u(x, y) = ¢(x,y).

Prove Theorem 7.2.4 in a manner analogous to the proof of Theorem 7.1.7.
If xeL is modular, L(x)={yel: yax=0}, and p(Lx)l)=
S {0, WAL T TO): yel(x)}, is (A—1)p(L(x); A) always the characteristic
polynomial of a matroid? (Brylawski 1975, Section 7)

Discover and prove an analog of Proposition 7.2.9 for the generalized parallel
connection of M, and M, along a common modular flat F (Brylawski 1975,
Section 5; see White 1986, Chapter 9. Hint: Remember Stanley’s theorem,
Theorem 7.2.5 (Brylawski 1975, Theorem 7.8)).

Prove Proposition 7.3.1.

Prove Theorem 7.3.2(c), (a). Also show that S(M)=0 when M is disconnected.
Use Theorem 7.3.2 to evaluate the beta invariant of (a) the m-point line U,,, and
(b) 11,.

Determine the value of f(U,,,). For which values of m and r is U,,, a series-parallel
matroid?

Calculate f for the examples of Exercises 7.5, 7.6, 7.7. Is any one a series-parallel
matroid?

Prove that B(L)=(— 1™ 'TT{u(0,x): xeL,x # a} for every atom a of the
geometric lattice L (Zaslavsky 1975, Section 7).



7.23
7.24
7.25
7.26

7.27.

7.28.

7.29.
7.30.

7.31.

7.32.

7.33.
7.34.
7.35.
7.36.
7.37.
7.38.
7.39.

7.40.
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. Calculate the rank generating function of U,,, directly from the definition.
. Prove Proposition 7.4.1.
. Prove Proposition 7.4.2. Hint: Use induction on the size of M.
. Calculate R(U,,,; u, v)from the Tutte-Grothendieck recurrence and the values for
m< 1.
Compute R(M(K,);u,v), where M(K,) is the graphic geometry of the complete
graph. How does your result, evaluated at v= — 1 and u = — A, compare with
p(I1,;2) from Exercise 7.4?
(a) Prove that II, is supersolvable. (Hint: What about a partition with only
one non-singleton block?) Deduce (7.9) and u(I1,) and B(I1,).
(b) Prove (7.9) by graph theory via Proposition 7.5.1, since I, = L{(M(K,)).
(c) Compare (7.9) to your answer to Exercise 7.4(b). What Stirling number
identity is thereby proved?
Prove Proposition 7.5.1 by the Tutte—Grothendieck method.
Prove Proposition 7.5.2.
("= D" = 1)-(g" " —1)
(@ =D ' =1)-(g -1

(a) Prove that W(L))= by counting

ordered bases.
(b) Deduce p and u of Proposition 7.5.3 from supersolvability (Stanley 1972,
Example 4.2).
(c) Compare with your results from Exercise 7.5(a). Deduce that
Wp= Y gk
0<jy<ips - Shpsn—k
(a) Calculate the critical exponent over K =GF(g) of an m-point line
Upm2<m<q+1.1Is Uy, affine in PG}~ 1?
(b) The same, for a circuit C,,, of rank r > 3. Is C, ., affine in PG} '? Hint:
Almost always.
(c) The same, for U,,, where 2 < r <m — 1. (Assume U,,, is such that it embeds
in PGA71)
How many hyperplanes avoid a fixed non-empty set E < K"? How many (n — 2)-
dimensional subspaces?
Prove Example 7.6.8. How many (n — d)-dimensional subspaces avoid a fixed
basis?
If g = p%, PG}, is a spanning subset of PG;. What is its critical exponent?
Prove Corollary 7.6.3.
Deduce Corollary 7.6.7 directly from the Critical Theorem.
Calculate the critical exponent of the set 4, of all vectors in K" * ! with exactly two
non-zero coordinates, one equal to + 1 and the other equal to — 1 (note that + 1 =
—1, if q is even). Hint: M(A,) =~ M(K, . ,), the complete-graph matroid.
What is the critical exponent of B,? (See Exercise 7.7. Assume q is odd. Hint: The
matroid of B, is the same for K = R and K = GF(q) as long as q is odd.)
(a) Calculate the critical exponent ¢, of E,. What is the maximum size of a
linear code with distance > 2 (a code that detects one error)?
(b) Express compactly the maximum size of a linear code with distance > 3 (a
code that corrects one error).
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8
Whitney Numbers

MARTIN AIGNER

8.1. Introduction

To every matroid we associate its lattice of flats and the lattices that arise in
this way are known as geometric lattices and characterized (in the finite case)
as (upper-) ssmimodular point lattices. Among the many numerical invariants
of a finite geometric lattice such as rank, number of points, Mébius number,
etc., we study in this chapter two sequences of numbers, the Whitney numbers
of the first and of the second kind. After introducing these numbers and stating
some of the basic results and problems in Section 8.2, we collect in Section 8.3
some material on the Mdbius function that is needed in the subsequent
Sections 8.4 and 8.5 where a survey of the known results on Whitney numbers
is presented.

8.2. The Characteristic and Rank Polynomials

Let L be a finite graded lattice with 1, rank function r and (1) =r. To L we
associate two polynomials (over Q), the characteristic polynomial p(L; 1) and
the rank polynomial p(L; ), defined by:

8.2.1. Definition,

() pLsdy= Y, w0, V™" @ = 3 w A,
aelL k=0

(i) p(L;a)= ) ArV7r@= 5 WAk,
acL k=0

where u denotes the M6bius function of L (cf. Chapter 7). The coefficients w,
and W,,0 < k <r, are called the Whitney numbers of the first and second kind,
respectively, ie.,
we= > w0,a)
ara)=k
W, =|{aeL:r(a)=k}|.
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It was shown in Chapter 7 that for geometric lattices the numbers 1 = w,,

Wi, Wy,...,w, are all non-zero with alternating sign whence
wi =(=Dw=(=1 ¥ p0,a)
arfay=k

ispositive for k =0,...,r. For ease of reference we will prove this result again in
Corollary 8.3.5 below. For our purposes it is more convenient to consider the
numbers w,” which are sometimes called the unsigned W hitney numbers of the
first kind.

It is the object of this chapter to study the sequences (w, :0 <k <r) and
(W, :0 < k < r)for geometric lattices. All lattices involved will be assumed to be
finite.

Let us look at some basic examples first.
8.2.2. Examples.
(i) Let L = B, be the Boolean lattice of rank n. Then u(0,a) =(— 1™, and

thus wS =W, = (Z) for all k, p(B,;4) =(L— 1), p(B,;A) = (4 + 1)" (see

Proposition 7.5.2).
(i) Let L=L(n,q) be the lattice of a projective space PG(n—1,q) of

r(a)
dimension n—1 over GF(q). Then u(0,a)=(— 1)“@gq ) (see Propo-
k
sition 7.5.3) and thus w; =[Z]q(2), Wk=[2} where I:Z:l are the

Gaussian coefficients, also denoted Z (cf. Aigner 1979, p. 78 and
q

Exercise 7.31),  yielding  p(L(n,qid) =TTizs(A —4*),  p(L(n,q))

=Z;:O[ZJ,1"”‘.

(iii) Let L =TT, be the partition lattice on n elements. A partition a has rank i
iff it consists of n — i blocks, hence W, = S, ,_, where §, ; are the Stirling
numbers of the second kind, thus p(I1,; ) = >%_, S, ,A*~*. Furthermore
we saw in (7.9) that p(I1,; ) = (4 — 1}(4 — 2)--- (A — n + 1). With the usual
expansion AA—1)---(A—n+1)=37_,5, ;A7 =301 235,, A" ¥, we see
that the numbers wy = (— 1)s, ,— = |5, are the absolute values of
the Stirling numbers of the first kind. This is, in fact, the origin of the
name ‘Whitney numbers of the first and second kind’.

Let us gather some facts for an arbitrary graded lattice L of rank r.

wo =Wy =1, w; = W, = number of points of L

(= elements covering 0), w," = (— 1Yu(0,1), W, = 1. (8.1)

The set-up of the polynomials p and p as a convolution product suggests the
introduction of the incidence algebra A(L) over the ring Q[4]. (See Doubilet,
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Rota, and Stanley 1972.) Let us define 7e A(L) by 7(a, b) = "®~"@_Then, by
Definition 8.2.1,

p(L;A) = (uxr)(0, 1),
p(L;A) = (£*7)(0,1)
where { is the {-function in A(L) and x denotes the convolution product. Since

{*(a,b) =|[a,b]| we conclude from (8.2) the following formula relating the
polynomials p and p:

8.2

p(L;2) = ZLI [0,a]lp(La, 11;2). (83)

Since {, ¢ and 7 are multiplicative functions we obtain a first decomposition
theorem.

8.2.3. Proposition. Let L =L, x L, be a graded lattice. Then

P(L; ) = p(Ly;4) p(Ly;4),
p(L;2) = p(Ly;4) p(Ly; 4). O

So far all our results are valid for arbitrary graded lattices. Now let us
specialize to geometric lattices. An investigation of the Whitney numbers of
lattices of small rank and of the main examples has led to the following
conjectures.

Call a sequence (vg,vy,-..,0,) of non-negative real numbers unimodal if
v; = min (v, v,) for all 0 <h <i<j<r. In other words,

00<01<"’vi—l<vi="'zvj>vj+1>“'>vr' (84)
The sequence is logarithmically concave if
V20U, for 1£k<r—1 (8.5

It is easily seen that every log-concave sequence is unimodal. More precisely, a
log-concave sequence is either monotone (increasing or decreasing) or
unimodal with one or two maximal values.

8.2.4. Conjectures. Let L be a geometric lattice.
(i) The Whitney numbers (wi :0 <k <r) and (W,:0 <k <r) form unimodal
sequences.
(iiy The Whitney numbers (w}:0<k<r) and (W, :0<k<r) form log-
concave sequences.
The remainder of this chapter will report on the progress towards proving
these two conjectures of which (ii) is, of course, stronger than (i). While the
general conjectures remain open, Conjecture 8.2.4 (ii) has been verified for
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several infinite classes of geometric lattices and there appears to be good hope
that its truth may be established in the near future.

The main reason for mostly studying the stronger condition Conjecture
8.2.4 (ii) is that it is algebraically more readily accessible as the following
Proposition 8.2.6 demonstrates. As a first result we note:

8.2.5. Proposition. If the real polynomials p,() and p,(1) have log-concave
coefficient sequences then so does the product p,(A)p,(A).

Proof. Just group the coefficients carefully together. O

In view of Proposition 8.2.3 we may therefore confine ourselves to
indecomposable geometric lattices when attempting to verify Conjecture 8.2.4
(ii). A very useful sufficient condition is given in the next result.

8.2.6. Proposition. Let p(A) = 3% _ov,A" ¥ be a polynomial with positive real
coefficients v,. If p(A) has only real roots then

k+1r—k+1

220 Vs —— I<k<r—1).
Uk Z U —1Uk+1 k — ( r )

Hence, the v.’s form a log-concave sequence with at most two maximal values.

Proof. Consider the polynomial g(4,6) = Y7 ,v;,A""‘c’. Setting 1 =01 we
have q(4,06)=Si_ov,6" v o' = 0" Y _ov7 " = 0"p(r). Hence every root
(4,6) #(0,0) of g has real quotient 7 = A/6. Note that ¢ # 0 because v, > 0.
Applying Rolle’s theorem we conclude that the same holds for éq/04 and dq/d0
and hence by induction for every derivative ¢' */q/0A'0¢’, and thus in particular
for 0" ~2q/0A" "%~ 1d¢* 1. Substituting again 4 = o7 we obtain a polynomial of
second degree of which the discriminant must be > 0, and this is precisely the
inequality of the theorem. dJ

8.2.7. Examples. Proposition 8.2.6 gives us the means to settle Conjecture
8.2.4 (ii) for the standard examples in Example 8.2.2. For the characteristic
polynomial of the lattices B,, L(n, q), and I1, this follows by a direct application
of Proposition 8.2.6. Let us take a look at the Stirling numbers of the second
kind. We set p,(4) = p(I1,; 1) =X%-; S, A 1. From the recursion formula for
the numbers S,, (Aigner 1979) we infer p,. (1) = Ap,(4)+ d(dp,(4))/dA.
Setting f,(1) = €*Ap,(4) we have B, ,(4) = Ad B,(4)/d A for all n. Hence B, ,(4)
has by induction only real roots and thus so does p,(4), which proves the log-
concavity for the sequence (S, ;:k=1,...,n). It is a still unproven conjecture
that (S,,:k=1,..., n) attains a unique maximum for n> 3.

We note further that, by Proposition 7.5.2 and Proposition 8.2.6, the
sequence (w; :k=0,...,7) is log-concave for any supersolvable lattice.
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Whether this also holds (in the geometric case) for the sequence of Whitney
numbers of the second kind is unknown.

8.3. The Mobius Algebra

To obtain sharper results on the Whitney numbers we must take a closer look
at the behaviour of the Mdbius function p. Let us recall the definition (see
Chapter 7). Let P be a finite poset. Then p is an integer-valued function on the
set Int(P) of non-empty intervals of P defined inductively by

ua,a)=1 (acP)
ab)=— ¥ pax)=- Y urb) (a<b).

asx<b a<y<b

(8.6)

Alternatively, u is the inverse of the zeta-function { in the incidence algebra of
P.Having looked at it in this way we immediately deduce the Mdbius inversion
principle:

(i) Let f,g be functions on P into a field of characteristic 0. Then

g@= Y f(x) (@aeP)=fl@= } ulx,a)g(x) (aeP)

xx<a xx<a

Dually:
(ii) Let f, g be functions on P into a field of characteristic 0. Then

g@= Y flx) (@aeP)=fla)= ) wa,x)g(x) (aeP).
From now on, let L be a lattice. We denote by V(L) the free vector space over Q
generated by L where the basis element of V(L) corresponding to ac L shall be
denoted by &,. Hence the elements 7e V(L) are all linear combinations 7=
> .t(a)e, with 7(a) being the coefficient of ¢,.

8.3.1. Definition. The vector space V(L) together with the componentwise
product X .., 6(a)e, > ser.T(@)e,:= 2 sor(a(a)T(a))e, is called the Mébius algebra
of L (over Q).

We define two sets 1, (aeL) and x,(aeL) of elements in V(L).

() = > & (ael),
xx<a (87)
(ii) k= Y. & (ael).

8.3.2. Proposition. Let acL. Then:
() o= Y Hlx,0)1,

xx<a
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(i) x,= Y plx, 1)1,

xxza

(iii) pla, Diy= Y pla, x)x,.

xxza

Proof. Mobius inversion on part (i) of (8.7) yields (i). As to (ii), we have by
(8.6) and (8.7)

Y oux =Y ux1) Y e

xxza xxza 22X
=Z{ Y u(x,l)}s,z Y e =k,
z xxzzva zzva=1
(iii) now follows through Mdbius inversion on (ii). O

8.3.3. Corollary.
(i) The set {1,:aeL} is a basis of V(L).
(i) If u(a,1) #0 for all aeL, then {k,:a€L} is also a basis of L, and we have
Mz, @)u(z, X)
iil) g,= » wa,x)k, where v(a,x)= —_
(ii1) ; (a,x) (a,x) mgm e

From Proposition 8.3.2 (iii) we can now deduce a very useful formula for p.

8.34. Corollary. Let L be a lattice and 0 < beL. Then

Z /‘(09 x) =0

xxvbh=1

Proof. Set a=0 in Proposition 8.3.2 (iii) and compare coefficients for b. [J

Corollary 8.3.4, in turn, yields an easy proof of the fact that the Whitney
numbers of the first kind of a geometric lattice have alternating sign.

8.3.5. Corollary. Let L be a geometric lattice of rank r. Then (— 1)"14(0,1) > 0
and thus w =(— 1) 2 ara=k#(0,8) >0 for k=0, 1,...,r. As a consequence,
a, b) # 0 whenever a < b.

Proof. Since every interval of a geometric lattice is itself geometric we may
assume by induction that (— 1)~ (0, x) > 0 for every copoint x. Let p be a
point. Then by Corollary 8.3.4,

pO, =~ 3 p0.x)

X copoint
pEx

and thus (— 1)"u(0,1)> 0. O

From the definition of the product in V(L) we obtain another interesting
description of u. First, note that ¢,6, = 8,6, and thus 1,1, =1, ,,.
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8.3.6. Proposition. Let L be a lattice with copoint-set C. Then u(0,1)=
<o (—1)r, where r, is the number of k-sets A= C with inf A=0. In
particular, u(0,1) =0 if 0 is not a meet of copoints.

Proof. Let 1.€V(L) where ceC. Then clearly 1, —1,=3% . é,, and thus
&3 = [lcec(t; — 1) since ¢, is the only ¢, which appears in all factors of the
right-hand side. If we now express both sides in terms of the basis {7,:xe L} and
compare coefficients for OeL, the formula results. O

The expression for u(0,1) just obtained furnishes an alternative descrip-
tion for the characteristic polynomials of geometric lattices, which turns out to
be useful in the study of Whitney numbers.

8.3.7. Corollary. Let L be a geometric lattice with point-set E. Then p(L;A} =
ZA‘ACE( — 1)"4',1'(1) ~r(supA).

Proof. This is a restatement of Proposition 7.2.1. O

Let us return to Corollary 8.3.3. The fact that the k,’s form a basis of V(L)
can be translated into a very interesting property of the lattice L.

8.3.8. Propesition. Suppose L is a lattice and p(a, 1) # 0 for all acL. Then there
exists a bijection ¢:L— L such that av ¢(a)=1 for all a.

Proof. By Corollary 8.3.3(ii), the x,’s form a basis. Writing them in terms of
the basis {¢,;aeL}, we conclude that the integral matrix [k,,], 5, With

(1 ifavb=1,
%710 otherwise

is non-singular. Hence some term in the determinant expansion does not
vanish which is precisely the statement of the theorem. O

The dual statement holds, of course, as well and we may combine the two to
give:

8.3.9. Proposition. Let L be a lattice such that u(0,a)u(a, 1) #0 for all acL.
Then there exists a bijection ¢:L— L with av ¢(a}y=1, a A ¢p(@)=0 for all
acL.

Proof. We define the elements t,eV(L),aeLl, by 1,=2 . 0, x)k, By
Mobius inversion we have u(0, ajx, =3 ., . px, a)t, for aeL, hence {7,:aeL}
is also a basis of V(L). Using (8.7)(ii) we have 7,=3 . . .u(0,X)Y .., . &,
=3[ xcaxvo1#(0,X)]e,. If a vz <1, then the coefficient of ¢, is 0, so
assume a v z = 1. In order to imitate the argument in the proof of Proposition
8.3.8 it remains to be shown that > ._,u(0,x)=0 whenever a A z>0.
This is certainly true for z=1, so assume z<1 and let @ ={x:x=a or
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x<a, xvz<1}<[0,a] with Mdbius function p,. Since x, yeQ implies
x A yeQ, Q is a lattice. We define the mapping x+ X from [0,4] to Q by

T x if xvz<l
“la if xvz=1.

By our hypothesis, 0 = 0. Now we have

Z N(O9 X) = Z #(Os x) = Z ,U(O, X)ég(jc., a)

xxgaxvz=1 xx<axX=a xx<a

= T u0.x) Y ol a)

x:x<a we@g:ix <w

Z ,u(O, X) Z ,UQ(W, a)

xx<a weQ:ix < w

(since X< Wwex<W)

Z { Z (0, x)}#Q(W, a) = pyl(0, a).

weQ Lxx<w

Now it is easily seen that a A zis alower bound for all copoints of Q whence by
Proposition 8.3.6 we conclude y,(0, a) = 0 whenever a A z > 0. O

8.3.10. Corollary. Ina geometric lattice L there exists a bijection ¢:L — L such
that av ¢(a)=1,a A ¢(a) =0 for all aclL.

8.4. The Whitney Numbers of the First Kind

Let L be a geometric lattice of rank r. By Definition 8.2.1 and Corollary 8.3.5,
the polynomial W(L:4)=3i_ow;} A" ' =(—1yp(L; — 4) has positive coeffi-
cients w;*. Using Corollary 8.3.7, we may rewrite y(L; 1) as

l//(L, A) — Z (__ I)IAI—r(supA)lr—r(supA)' (88)

AASE

The right-hand side of (8.8) is, of course, the value of the rank generating
function evaluated at (4, — 1) (see Crapo 1969, Heron 1972, and Chapter 7).
Equation (8.8) permits an inductive argument which establishes the following
major result.

8.4.1. Theorem. Let L be a geometric lattice of rank r. Then
YLd)y= 3 t{A+1y""
i=0 -

with all coefficientst,eZ, t;=0.
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Proof. For the lattice of rank 1 we have, by (8.8), Y/(L; 1) = A + 1. Suppose the
theorem holds for all geometric lattices of rank at most r — 1, and let L have
rank r. Within rank r we use induction on the cardinality | E| of points in L. If
|E| = rthen L = B, is the Boolean algebra. Hence, by Examples 8.2.2, y(L;4) =
(A + 1). Otherwise, there exists a point p not in the center of L (i.e., [0, p] is
not a factor of L) and by separating the sets A < E according as to whether or
not they contain p, we obtain

WL A) = Y(L34) + Y(L"4) (89)

where L' and L” are the lattices of flats of the restriction to E —p and
contraction through p, respectively. Now, L' has one point less than L and
L’ =~ [p, 1] has rank one less than L. Thus by induction their polynomials y
have the form as required in the theorem and hence so does y(L;4). O

Theorem 8.4.1 allows us to deduce the result that the unimodality of the
(unsigned) Whitney numbers of the first kind can only fail to hold in the upper
half of the lattice.

8.4.2. Corollary. Let L be a geometric lattice of rank r = 2, and suppose L # B,.
Then
@) wi <w fort<k<r2andk<I<r—k.
In particular,
(i) wg <wi < <Weriy2p
(i) wi <w_ for 0<k<r/2.

Proof. By Theorem 84.1,
ko (r—i L ; r—i
F=Y1y , L= — it . 8.10
B ) WO YT e N
Hence to=1,t; =w{ —r=W,; —r>0 (since L#B,), and ;>0 for j=>2.

Now, for 0<k<r/2 and k<l<r—k we have (;:l><<;:;> for

l) < t,-(r B l) with inequality holding for

i=0,...,k and therefore ¢; r .
k—i 1—i

i=1 O

It is now apparent that further knowledge of the coefficients ¢; will imply
stronger conditions on the sequence (wy :k=0,...,r). (See Bjorner 1987,
Brylawski 1977a, and Heron 1972.) The formulae (8.10) give as a byproduct an
interesting lower bound for the w; ’s.

8.4.3. Corollary. Let L be a geometric lattice of rank r =2 and point-set E,
|E| = n. Suppose that all e-subsets of E are independent (i.e., r(sup A)=|A] for
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|A| < e). Then

e NS
wi > Z(" T )(; '.) O<k<r)
i=0 —1

i
In particular,

|u(0,1)1>ff("‘“f"‘1>.

i=0 14

. —r+i—1
Proof. By (8.10) it suffices to show that ¢, = (n g + : )for 0<i<e—1
i

By the hypothesis, [0, a] ~ B,, if a has rank i<e— 1. Thus W,=w; = <n>

fori=0,...,e— 1. We now conclude from (8.10) for k <e—1:

0,
& (—r+k—=1\(n
-5

n—r+k—1
(1) :

Since in a geometric lattice all 2-subsets are independent we may
supplement Corollary 8.4.3 by listing two general bounds for the Whitney
numbers w;” of any geometric lattice.

8.4.4. Corollary. Let L be a geometric lattice of rank r =2 and with n points.

Then
r r—1 + h -
<k)+(n—r)<k_l)<wk <<k> (k=0,...,r)

The only lattices that attain equality on the upper bound for some k =2 (or
equivalently all k) are the Boolean algebras B,. The only lattices that attain
equality on the lower bound for some k =2 (or equivalently all k) are direct
products of a rank 2 lattice with a Boolean algebra.

Proof. The upper bound for w; and the characterization of the extremal
lattices as B, follow directly from the inductive argument in (8.9). The lower
bound is just the case e = 2 in Corollary 8.4.3. Suppose now the lower bound
is attain for some k >2. By (8.10) this implies ¢; =0 for 2 <i<k, and thus

—1
w; =<Z>+(n—r)<z 1) for 0<i<k. We show next that if w(k=2)

attains the lower bound then so does w;, ;. If L = B,, then there is nothing to
show. Otherwise, there exists a point not in the center and we may apply (8.9)
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which says
wy =wp+wi_, 8.11)

where w;, w{ are the (unsigned) i-th Whitney numbers of the lattices L' and L”,
respectively. Hence

—1
<;>+(n—r)<;_1)=wk+

=W, + Wi, ><1:>+("‘ 1 —r)(,’;j)
+<I:ii>+(m—r+ 1)(2:2)

=(;>+(n—r)<;:i>+(m—r+ 1)(1’(3) 8.12)

where m < n— 1 is the number of points in L".

Hence w;,w;_,; both attain the lower bound and further m=r— 1. By
induction, we conclude that w, . ,,wy attain the lower bound as well. Using
(8.11) with k + 1 instead of k the same must then be true for w;', . Since L= L,
x L, implies $(L;2) = Y(L,; AW(L,;A), the lattices mentioned in the theorem
attain the lower bounds. Suppose now L attains the lower bound for all k,
where L # B,. Then from (8.12) L’ and L” also attain the lower bounds, and in
additionm=r — l,ie.,L"=[p,1] = B,_,. By induction, L'~ B,_, x M, and
M) =2, which together with L” =~ B, _, yields the theorem. O

For special classes of lattices the bounds in Corollary 8.4.4 can be
considerably sharpened, e.g., for indecomposable lattices (see Bjorner 1987,
Brylawski 1977a).

8.4.5. Example. In Section 7.5 the chromatic polynomial x(I'; 1) of a graph I
was related to the characteristic polynomial p(L;41) of the
lattice L of the flats of the graphic matroid associated with I" by means of

215 2) = AOp(L; 2),

where ¢(I") is the number of connected components of I'. Hence the results of
this section, in particular Corollary 8.4.2, apply to the coefficients of y(I";A).
Whether the absolute values of the coefficients do indeed form a unimodal
sequence is still open.

8.5. The Whitney Numbers of the Second Kind

We have seen in Section 8.2 that the numbers W, form a unimodal sequence, in
fact, a log-concave sequence for the standard examples B,, L(n, q),I1,. A few
more classes are known to possess this property, e.g. affine lattices, Hartmanis
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(partition) lattices (see Aigner 1979, p. 258), the lattices of matroid designs (see
Young, Murty, and Edmonds 1970), and, in general, all geometric lattices with
up to eight points (see Blackburn, Crapo, and Higgs 1973).

In analogy to the Whitney numbers of the first kind, as a first step towards
verifying Conjecture 8.2.4(i) one would like to prove Corollary 8.4.2 for the
numbers W,. While this has not yet been done, the following result points in
this direction.

8.5.1. Proposition. Let L be a geometric lattice of rank r. Then
W1+W2+"‘+Wk<m_1+VI/,._2+“‘+W,_k (1<k<r—1), (8.13)
with equality for some k if and only if L is modular.

Proof. Let V(L) be the free vector space of L over QO as defined in Section 8.3
and denote by V(L) the subspace generated by {¢,:aeL,r(a) < k}. Thus, dim
Vi{L)=Yk_, W, Let n:V(L)— V,(L) be the linear projection onto V,(L), i.e.,

(e,) = g, if ra<k
“7 10 otherwise.

Fromthedefinition(8.7)(ij)and thesemimodularrank inequality weinfer n(x,) =
0 whenever r(b) <r — k. Since the set {k,:-beL} is a basis of V(L) we infer
from Corollary 8.3.3 (ii) that the set {n(x,):r(b) > r — k} spans V,(L) and hence
that the stated inequality holds. For modular lattices we have equality since
the dual of a modular geometric lattice is again geometric. Now suppose we
have equality in (8.13) for some k. By our argument, this implies that
{n(k,):r(b) = r — k} is a basis of Vi(L) and, in particular, linearly independent.
Take aeL with r(a) > k. Then by Corollary 8.3.3 (iii), we have 0 = rn(e,) =
Zx:r(x)}r—k va, x)n(k,), and hence v(a,x)= Zz:zsa,\xu(z5 a)ul(z, x)/ulz,1)=0
for all a, xeL with r(a) = k + 1 and r(x) = r — k. This implies, in particular,
that a A x > 0 for all such pairs since otherwise va, x) = (0, a)u(0, x)/u(0, 1) # 0.
But this last condition, as is well-known, implies the modularity of L. [

The k-truncation L™ of L is obtained by identifying all elements of L with
rank > k, keeping the lower part up to rank k — 1 unchanged. If L is geometric
then, clearly, so is L®. Hence we have:

8.5.2. Corollary. Let L be a geometric lattice of rank r > 3. Then

k k
@ Y W<y W, (I<k<I-2I<r-1),
i=1 i=1
k k -
(i) Y W,< Y W,_,, with equality for some k iff L is modular.
i=1 i=1

Proof. We have just seen (ii). (i) now follows easily by considering the
truncation LY. |
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Let us denote by Bot,(L) and Top,(L) the lower part of L from rank 1 up to
rank k and the top part from corank 1 down to corank k, i.e., Bot,(L)=
{aeL:1<r(a) <k}, TopyL)={aeLir—k<r(@<r—1}. Thus |Bot(L)|=

-1 W, |Top (L) =3X*_,W,_,. Proposition 8.5.1 raises the question
whether there exist injections from Bot,(L) into Top,(L) using the ordering
relation of L or its complement.

8.5.3. Propeosition. Let L be a geometric lattice of rank r 22 and let 1 <k <
r — 1. Then there exist injections f,g:

(i) f:Bot(L)— Top{L) with a < f(a) for all acBot,{L),

(ii) g:Bot,(L)y— Top(L) with a <« g(a) for all aeBot,(L).

Proof. Proposition 8.3.9 proves (ii) by noticing that any complementing map
takes O into 1. Let n: V(L) — V(L) be the projection of Proposition 8.5.1. We
observed in the proof of Proposition 8.5.1 that {n(k,):r(a) > r — k} spans V(L).
Hence, by Proposition 8.3.2 (i), {n(1,):7(a) = r — k} also spans V,(L). Therefore,
the matrix I = (i, ,) indexed by {acL:r(a) <k} and {beL:r(b) >r — k} with

. 1 if a<b
“*70 if agh

has rank Y *_, W, which implies the existence of an injection f:Bot(L)u
{0} > Top(L)u {1} with a < f(a) by the same argument as in the proof of
Proposition 8.3.8. It remains to show that f can be chosen to map O into 1. To
this end, it suffices, because of iy ; =1, to prove that the submatrix I' = I
consisting of all rows except row 0 and all columns except column 1 has rank
*_, W,. Now, by Corollary 8.3.3 (iii) and Proposition 8.3.2 (ii),
go= ) v0,x)nlx,)

xr{x)zr—k

= ¥ 0% ¥ uw rla)

xrx}zr—k wiw 2= X

=Z( ¥ v(O,x)y(W,1)>7T(lw)-

W \xrx)2r—k
x<w

The coefficient of n(z,) in the last sum is

e ).

”(Oa 1)xr(x)>r k xr{x)<r—k

((: 1)'“1““ 0(0, 1) #0.

We conclude that n(1,) is in the span of {n(z,):r — k < r(a) <r}ue,, and hence
that this latter set also spans V,(L). There exists therefore a non-singular
square submatrix of (I — column 1)uUcolumn 0 of rank Y*_,W,, where 0/
has a one in row 0 and zeros elsewhere, and thus a required non-singular
square submatrix of I’ of rank >%_, W,
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The inequalities in Proposition 8.5.1 can be sharpened, as spelled out in the
following result.

8.54. Proposition. Let L be a geometric lattice of rankr 22, let 1 <k <r—1,
and let aeL with r(@y<r—k. Then

|Boty(L)| <|Top(L)| — | TopyLa, 1])|
+ [Boty([a, 1) < | TopL)|.

Proof. The inequality on the right is clear by Proposition 8.5.1. Let a,e V(L),
zel, be defined by «, =3, ,_,&. Then 4, =3, . o, for all beL, b>a.
If m:V(L)— V,(L) is the projection as before, it follows from the semimodular
inequality that n(x,) =0 for all zeL,z > a with r(z) > r(a) + k. Since we have
seen in the proof of Proposition 8.5.3 that {n(s,):r(b) >r — k} spans V(L) it
follows that the set {n(1,):b # a,r(b) > r — k} U {n(a,):z = a,r(z) <r(a) + k} also
spans V,(L), and this is just the required inequality. O

Note that Proposition 8.5.4 implies again that |Bot,(L})| = | Top,(L)| forces
the lattice to be modular, since it is known (see Wille 1971) that a geometric
lattice L of rank r > S is modular if all of its intervals [p, 1], p point, are
modular (the cases r < 4 being trivial).

In analogy to Corollary 8.4.4 let us now bound the Whitney numbers of the
second kind for arbitrary geometric lattices.

8.5.5. Proposition. Let L be a geometric lattice of rank r = 3 and with n points.

Then
-2
<;_1>("")+<,2>< Wk<<2) O<k<n).

Equality holds on the right for all k iff L = B, and on the left for all k iff L is a
direct product of a modular lattice of rank 3 and a Boolean algebra.

Proof. The inequality on the right is trivial since any k independent points
span a unique flat of rank k. That equality for all k characterises B, is also
clear. For the first inequality we use induction on the rank r. For r = 3 the resuit
is true by Proposition 8.5.1 including the case of equality. Within rank r we use
induction on k. Again, for k = 0 or 1 there is nothing to prove. So let us assume
r>=4 and k=2 where by Proposition 8.5.1 we may assume k <r—2. The
following notation is useful:

Afu,v)={xe[u,v]:r(x)=j}, afu,v)=]A44u,v)l,
Bju,v) = {x¢[u,v]:r(x) = j}, bju,v)=|Bfu,v)l

Let p be a point of L. Then W, = a(p, 1) + by(p, 1). I p is covered by ! lines then,
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by induction,

ak(p,1)><;:;>(1—r+1)+<;:1>. (8.14)

The mapping x—x V p from B(p,!) to A, (p,1) is a surjection mapping
a,(0, y) — ai(p, y) elements of B,(p, 1) onto y for each yeA,, (p,1). Now, by
Proposition 8.5.4 applied to [0,y], we have a,(0,y)— a.p,y)= a,(0,y)—
a,(p,y) and thus

b, )2 Y a0y)- Y by

yedy 4 1(p:1) yeAy 4 1(p,1)

Interchanging the order of summation in each of the summands we obtain

Z a;(0,y)=a,+1(p, ) + z (@1(0,9) — Va4 1(g, 1)

yedy 4 1(p,1) geAa(p,1)

and

Yooapy= Y a.lg)).

yedy 4 1(:1) ged2(p,1)

Using induction and the fact that 3 4,,.1,(@1(0,9) — 1) =n — 1, we infer

-3 —1 )
b,,(p,1)><£_1>(1—r+1)+<rk >+(n—1—1)(£_1> (8.15)

and thus by (8.14) and (8.15)

Wie=alp,1)+ bp, 1) = <;: ?)(n -1+ <l:>

As for equality, it is easy to verify that any direct product of a modular lattice of
rank 3 and a Boolean algebra does indeed satisfy the left-hand side with
equality. Suppose now, L satisfies the left-hand side with equality for all k.
Then by Proposition 8.5.1 L is modular and if there is no line with more than
two points, L must be a Boolean algebra. So we may suppose that there is a line
g containing at least three points. Since we must have equality in (8.15), it
follows that [g,1] =~ B,_,. Hence if h is a minimal complement of g then
{0, h] = B, _, (cf. Aigner 1979, Proposition 2.4.4). If for every point peither p< g
or p< h, we have L ~[0,g] x B,_, and so we are finished (see Aigner 1979,
Theorem 2.45). Hence let p be a point with p£ g and p £ h. Let ¢ be the
modular plane g v p. Then there is a unique point p’<h with c=g v p’
(remember [g, 1] = B, _,). In order to show L =~ [0,¢] x B,_; we have to prove
that for every point q,q £ g, g & h, we must have g < c. Suppose not. Then let
q' < h be the unique point with g v q =g v ¢'. By induction, we must have
¢, 1]1=[q,q9 vc]x[q,h] where [q,h]=B,_, and K is spanned by
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{q¢' vsis<h, s#q,p'}. But now, clearly, gvq £q vcand qvqg £h, a
contradiction. |

The striking similarity of Proposition 8.5.5 and Corollary 8.4.4 raises the
question whether the Whitney numbers of the second kind are the face
numbers of some (shellable) complex, the same way the Whitney numbers of
the first kind are the face numbers of the broken circuit complex (see Brylawski
1977b). If so, inequalities analogous to Corollary 8.4.2 could be deduced for
the numbers W, as well.

As in the case of the Whitney numbers of the first kind, additional
hypotheses on the structure of L allow sharper bounds in Proposition 8.5.5.

Proposition 8.5.3 (i) says for k =1 that we can always map L, = {aeL:r(a)
=1} injectively into L,={aeL:r(a)=1},1<I<r—1, respecting the order
relation in L. That this matching property does not hold in general between
any two consecutive levels L, and L, ., was shown in Dilworth and Greene
(1971). It is, surprisingly, not even satisfied in the lattice of partitions (see
Canfield 1978). There is wide belief, however, that we can always match L, into
L, _,. That there is always a partial matching of cardinality W, between any
two consecutive levels is shown in the following result which is established by
an application of Menger’s theorem to L, viewed as a directed graph from 0 to
1.

8.5.6. Proposition. In a geometric lattice L there exist W, maximal pairwise
disjoint chains from the points into the copoints of L.
Let us, finally, consider the log-concave property
Wiz W Wier (<k<r—1) (8.16)
for the sequence (W,, W,,..., W,) of a geometric lattice L.
Inequality (8.16) is true for k=1, since W, < (2’1) < W32, and for
k=r—1, since any coline is the infimum of a pair of copoints whence
W,_, <<W'2_1)< W2_,. By considering the truncation L**? it is clear

that we may assume r =k + 2 when proving (8.16).

Since (8.16) implies W,/W, ., < W, /W, ;., for all k,j and [, it may be
easier to establish such ‘wider’ inequalities. Let again L, denote the set of
elements of rank k. Inequality (8.16) suggests looking for a suitable injection
from L, _, x L, into L, x L,.

8.5.7. Proposition. Let L be a binary geometric lattice of rank r and let
2<k<r. Then W, W, < W,W,_,; in particular, W, W, < W3.

Proof. Assume first L to have rank k + 1. To L we associate a bipartite graph
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G with vertex sets

A={(p,H)eL, x Li:pv H,=1} and
B={(I;,Jy-1)€Ly X Ly_y:Iy v Jy -y =1}

where (p, H,) and (I,, J, - ;) are joined by an edge iff there exists a point g such
that Hy=qv J,_, and I,=q v p. For A, < 4 let b(A,) < B be the set of
vertices in B joined to some vertex in 4,, and similarly a(B,) < 4 for B, = B.
For each Fye L5 we define analogously a bipartite graph G(F ;) with vertex sets
A(F3)={(p,H))eL, x Ly:p<F3,H,<F3, pvH,=F;} and B(F;)=
{I3,r)eLy x Ly:I, < Fa,r <F3,I, vr=F3;} where (p,H,) and (I,,r) are
joined by an edge iff there exists a point g suchthat H, =g vrand I, =q v p.
Obviously, |A(F;)|=|B(F3)| and it is easily checked that G(F;) always
contains a perfect matching, i.e., a matching containing | A(F,)| edges. (There
are only six binary lattices of rank 3.)

Now pick H,_,eL,_, such that F;v H,_,=1. By mapping each
(p,H,)eA(F;) omnto (p,H,v H,_,)eA, each (I,,r)eB(F;) onto
(I,,r v H,.,)eB, and joining (p, H, v H,_,)and (I,,r v H,_,) iff (p, H,) and
(I, r) are joined in G(F,), we obtain a subgraph G(F5, H, _,) of G. Since clearly
| A(F3)| = | A(F 3, H, - )| and | B(F 3)| = | B(F 5, Hy - ;) , the two graphs G(F ;) and

G(F,, H, - ,) are, in fact, isomorphic for each H,_,. As is easily seen,
a(B(F3, Hy_5))=A(F3,H,-,) and 8.17)
b(A(F 3, Hi - 5)) 2 B(F3, Hy - 5)-

Since any (p,H,)eA can be written as (p,H, v H,_,) and similarly any
(I5,Jx-1)eB as (I5,r v H)_,) for some H,, H,_,,r and H;_,, we have

A= U A(F3,H,_;) and B= U B(F3,H,-»).
(F3.Hy—p)eLyx Ly (F3,Hy - p)elyx Ly
FyvH_,=1 F3vH, ,=1

Listing the subgraphs G(F,, H, _,) in some linear order we may [by (8.17)]
extend the matchings step by step until all of A is exhausted whence |4} < |B|.
Now let L have arbitrary rank r > k + 1. Then we may write

W1Wk= U {(Gl,Gk)ELl XLk:Gl \ Gk=Gk+1}
G+ 16Lg 41
+ U {(Gy,GeLy x Li:G; <Gy}
Grely
and
WyW,_1= U {(GzaGk—1)€L2XLk—13GZVGk—1=Gk+1}
Gis16li+1
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+ U {(G2, Gy 1)Ly x Ly_:G, v Gy = Gy}
GreLly

+ U {(G1,Gy- 1)Ly x Ly :G, < Gy, }|.
Gy— el —y

We have just shown that the first summand in W, W, is (for each G, ,, ;) less than
or equal to the first summand in W, W, _; (for the corresponding G, ,). The
same holds for each G,eL, in the second summands since in W, W, the
number of points below G, are counted whereas in W,W, _, each copoint
below G, is counted at least once.

Unfortunately, the argument used in Proposition 8.5.7 cannot be gen-
eralized to arbitrary geometric lattices since not every geometric lattice of rank
3 has a matching as required in Proposition 8.5.7. But the following result
certainly adds strength to the log-concave conjecture (8.16). To verify (8.16) for
k it suffices to consider lattices L of rank k + 2 as remarked before Proposition
8.5.7. Now by the same argument as in the proof of Proposition 8.5.7 it would
be enough to prove

ILI< IR 8.19)
where
L=1{(G¢_1,Gys1)€Ly_1 X Ly 1,Gy—1 V Giyy =1}
and
R={(Ii,J)€Ly x Li, I, v J = 1}].

Let G be the bipartite graph on vertex sets Land R with (G, _(, G+ () ~ (I}, J)
iff there exists a point ¢ with G,_; v g=J,, G, ,, = I, v q. While (8.18) is not
known in general, it can be shown that in G there is no matching from all of R
into L.

Let us finally derive some sufficient conditions for (8.16). For ae L, denote by
la}=|{peL,:p < a}| the number of points below a and set z(a) =|{(p,b):b
<a,peL,,bv p=a}|. Let d;, D, be the averages of these numbers, i.e.,

d, Y lal k=1,...,n,

Wk aely

1 (8.19)
Dy=—- 3 za) k=2,..,r

k acLy

8.5.8. Proposition. Let L be a geometric lattice with the numbers d,, D, defined
asin (8.19), k>2. If d, >d,_, and D, > D, then W} > W,_,W,,,.
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Proof. We have

Y zla)y= 3} (Z(Ial lbl) ) (Z lal—!bl))= Y. (W —1bi).

aeLx aely \ b bely_q \ a bely _ 4
b<a a>b

From D, ., = D, we infer

1 1
Wy—la))=—- (W, —1b])
VVk+1 agk ! VkaelgA1 '
and hence
Wk(W1 _dk) Wk—l(Wl _dk—l)
Wit Wi |
ie, W2 W,_ W, since d,_, <d, < W,. ]

8.5.9. Example. Suppose the geometric lattice L has the property that for all
k=1,...,rany aeL, contains the same number p, of points [called a matroid
desxgn in Young, Murty, and Edmonds (1970)]. Then, trivially, d, = p, and
d, = d,_, + 1for all k. By an inductive argument it is easy to see that any aeL,
also covers the same number ¢, of elements, in fact,

kﬁz Pr—D;

Cp = ,
i=0Pyr-1 — Di

whence z(a) = ¢,(p, — P - 1) depends only on k. From this it follows right away
that D,,, > D, + 1. By examining the proof of Proposition 8.5.8 we may
derive the even stronger inequality

Wi >W1—k+1

= 1<k<gr—1). 8.20
WeWiny” Wik ) (820

That (8.20) holds for all geometric lattices was conjectured by Mason (1972)

where he conjectured that even

w3 >W1—k+1k+1
WioiWir1 Wi—k k

A<k<r—1) (8.21)

may hold for all geometric lattices.
Inequality (8.21) has been verified for k=2 in the case when any line
contains at most four points (Seymour 1982).

8.6. Comments

To conclude, we make a few remarks on the original development of the
various notions and results mentioned in this chapter. Related surveys that
have appeared are Mason (1972) and Welsh (1976, Chapters 15, 16).
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Section 8.2: The chromatic polynomial of a graph was first studied by
Birkhoff and Lewis (1946) and Whitney (1932a and b) where it is proved that
the corresponding Whitney numbers of the first kind are alternating in sign;
see also Read (1968) and Tutte (1954). Rota gave the general definition of the
characteristic polynomial of a lattice and extended the above results to
arbitrary geometric lattices (Rota 1964). It was Rota also who proposed the
unimodality conjectures (Rota 1970). The concept of an incidence algebra of a
poset has its origin in the theory of arithmetic functions in number theory; for a
thorough account see Doubilet, Rota, and Stanley (1972). The proof of
Proposition 8.2.6 is taken from Comtet (1970).

Section 8.3: Mobius algebras were introduced by Solomon (1967) and studied
further by several authors, particularly Greene (1971, 1973). The very elegant
procedure outlined in (8.7) to Corollary 8.3.3 and in Proposition 8.3.8 is due to
Dowling and Wilson (1975); Proposition 8.3.9 appears in Dowling (1977).
Corollary 8.3.4 is known as Weisner’s theorem, and Proposition 8.3.6 was
proved in Rota (1964). For general results on the Mdbius function see Rota
(1964), Crapo (1966), Aigner (1979, Chapter 4), and Chapter 7.

Section 8.4: The inductive procedure used in the proof of Theorem 8.4.1 belongs
to the field of arithmetical invariants in matroids, which originated with the
work of Tutte in (1947). (See, e.g., Crapo 1969). In this setting, (8.9) says that y is
a chromatic invariant. The inequalities in Corollary 8.4.3 were proved in
Heron (1972), the characterization of the left-hand equality in Dowling and
Wilson (1974). Refinements are due to Brylawski (1977) and Bjorner (1987) (see
also White 1988).

Section 8.5: The hyperplane theorem W, < W, _, was proved by many authors,
e.g. Basterfield and Kelly (1968), Greene (1970), Heron (1973), and Motzkin
(1951), with the more precise matching results Proposition 8.5.3 (for k = 1) first
appearing in Greene (1970) where, also, equality is characterized by the
modularity of the lattice. The generalization Proposition 8.5.6 was given by
Mason (1973). Our development Proposition 8.5.1 to Proposition 8.5.5 is due
to Dowling and Wilson (1975) who also established the bounds in Proposition
8.5.5 and characterized the lattices for which equality holds (Dowling and
Wilson 1974). Inequality 8.16 was proved for graphs by Stonesifer (1975);
the more general results Proposition 8.5.7 and (8.21) are due to Aigner and
Schoene (preprint) and Seymour (1982).
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9

Matroids in Combinatorial
Optimization

ULRICH FAIGLE

Matroids enter combinatorial optimization problems at various levels.
Whitney’s (1935) motivation to introduce matroids as combinatorial objects
in their own right stemmed from his interest in approaching the Four-Color
Problem algebraically and combining the combinatorial and algebraic—
geometric aspects of graphs into the notion of a matroid.

Graphs furnish the most important models for combinatorial optimization
problems. Thus it is natural to ask to what extent graph properties actually are
properties of the underlying matroid and to study more general classes of
matroids that enjoy, for example, the ‘max-flow-min-cut’ property of network
flows (cf. Seymour 1977). This approach leads to fundamental structural
questions about matroids per se which, nevertheless, have many practical
implications. One of the foremost results in this area is Seymour’s (1980)
decomposition theory for regular matroids exhibiting regular matroids as
being essentially built up by graphic and cographic matroids. As a conse-
quence, efficient procedures can be developed to test whether a matrix is
totally unimodular or whether certain linear programs actually are (better
tractable) network problems (see, e.g., Welsh 1982 and Bixby 1982 for an
introduction into this aspect of matroid theory).

Matroids also compose the combinatorial structure of linear programming
(Minty 1966, Rockafellar 1969). Indeed, pivoting in linear programming may
be carried out purely ‘combinatorially’ (Bland 1977).

A third aspect brings in matroids not only as a combinatorial abstraction of
optimization problems but as an essential tool in their combinatorial analysis.
It is this aspect that we want to focus on here.

Many combinatorial optimization problems can be modeled as optimiz-
ation problems over an independence system on a ground set E, which we will
always assume to be finite (see Section 9.1 for details). Already Boruvka (1926)
discovered that the greedy heuristic affords an optimal strategy if the
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independence system is the collection of independent sets of a matroid. The
optimization problem is also tractable if the independence system in question
is the intersection of two matroid independence systems. The classical example
of such a problem is the matching problem on bipartite graphs. In fact, the
matroid intersection algorithm we describe in Section 9.2 can be understood as
a generalization of Konig’s (1936) augmenting path technique to solve the
bipartite matching problem. Here is where matroids enter essentially. Intersec-
tions of matroids generally do not result in matroids. The dual construction,
matroid union, preserves the matroid property — but may lead out of a
particular class of matroids. For example, the union of two graphic matroids
need not be graphic itself. In other words, the framework of graphs does not
capture this construction.

In Section 9.3 we introduce integral matroids. They are the collections of
integral vectors of integral polyhedral matroids in the sense of Edmonds
(1970). Another viewpoint allows the interpretation of integral matroids not
just as integral points in certain convex polyhedra but as matroids on
multisets. The framework of integral matroids is an appropriate means for
many combinatorial optimization problems whose constraints are presented
by integer-valued submodular set functions. Yet, the Dilworth completion,
which generalizes Dilworth’s construction for embedding arbitrary lattices
into geometric lattices (cf. Crawley and Dilworth 1973, Chapter 14), reduces
the theory of integral matroids to ‘classical’ matroid theory.

Submodular functions and supermodular functions determine fundamental
discrete structures ranging from information theory (Fujishige 1978a) and
game theory (cf. the survey of Rosenmiiller 1983) and engineering (cf. Iri
1983) to cluster analysis (cf. Barthélemy, Leclerc, and Monjardet 1984).

They are the discrete analogs of convex and concave functions in non-linear
optimization (see Lovasz 1983, Fujishige 1984b). Concentrating on systems
determined by integral sub- and supermodular functions, we will outline in
Section 9.4 how their theory can be developed within the framework of integral
matroids and hence of matroids.

The final Section 9.5 discusses the network flow model with submodular
restrictions of Edmonds and Giles (1977). It comprises the network flow model
of Ford and Fulkerson (1962) as a special case and we will spend time to take a
close look at this model from a matroid point of view. We end with an efficient
combinatorial algorithm to minimize a submodular function over the power
set of the ground set E.

Our purpose here is not to provide the reader with a comprehensive
introduction into the theory of combinatorial optimization. We want to
exhibit the particular role matroids play within an analysis of combinatorial
optimization problems. For a more detailed introduction into the general
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theory of combinatorial optimization and its applications, we refer the reader
to, e.g., the textbooks of Lawler (1976) or Papadimitriou and Steiglitz (1982).

9.1. The Greedy Algorithm and Matroid Polyhedra

Let us consider a very general optimization problem in a combinatorial
setting. There we are given a real-valued weight function ¢:E— R on the
ground set E and a (non-empty) family # < 2F of subsets of E. For every subset
A € E, we have the induced weight

c(A) = ZEc(a), 9.1

where, as usual, ¢() = 0is understood. The optimization problem can now be
stated as

max c(F) subjectto Fe#. 9.2)
Note that we could equaliy well formulate the standard problem as
minc(F) subject to Fe#.

Indeed, maximizing ¢ is equivalent to minimizing the negative weighting (— c).
The following three examples represent typical problems of this kind. We state
them in the language of graph theory and denote by I' = I'(V, E) a graph with
vertex set ¥ and edge set E. So c:E— R is a weighting on the edges of T".

9.1.1. Minimum Spanning Tree. & consists of the edge sets of the spanning
trees of I'. Determine one with the least weight.

9.1.2. Traveling Salesman. & consists of the edge sets of all closed paths of T’
which meet every vertex. Find a ‘shortest’ one.

9.1.3. Bipartite Matching. % consists of those edge sets of the bipartite graph T’
which only contain pairwise non-incident edges. Construct one with best possible
weight.

A problem of type (9.1.1), for instance, occurs when a communications
network connecting all vertices has to be established and the weight c(e)
reflects the cost of a direct link between the two terminal vertices of the edge e.
Problem (9.1.2) seems to be similar: every vertex of I' has to be visited so that
the total length of the tour is minimal, where c(e) measures the distance
between the two end vertices of the edge e. We have already encountered the
third problem in Chapter 4 for the weight function ¢ = 1. We allow now for the
possibility that different pairings of vertices in I' may have different values.
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Problem (9.1.2) is a representative of the class of so-called NP-complete
problems (cf. Garey and Johnson 1979), which appear hard to solve efficiently.
In spite of its similarity, however, 9.1.1 is ‘easy’ and also 9.1.3 is quite tractable
as we will see. Without going too much into details, let us be a little more
specific.

All three problems above can be solved with the following straightforward
method: list all members of # together with their weights and select an
optimal one. Since the ground set E is finite, this procedure will certainly
terminate, after a finite amount of time, with the correct result. But is this
method practical? In most cases, # will be prohibitively large. The complete
graph K,, for example, has n"~? spanning trees (Cayley’s theorem)! Thus
procedures are called for which substantially reduce the amount of work. Here
the amount of work is measured by the number of steps the execution of the
procedure requires when implemented on an ideal computer. A (correct)
procedure is said to be a good algorithm for a class of problems if this number
of steps is bounded by a polynomial in the size of the problems (J. Edmonds).
In this sense, no good algorithm is known for the Traveling Salesman
Problem.

Let us return to the general optimization problem (9.2) and let us assume
from now on that & is an independence system, ie., for all A A BS E

Be# and AcB implies Ae#.

Then we can try the following simple heuristic, which builds up a member of #
‘greedily’ from the empty set by adjoining in each step the best element
currently available to the set already constructed.

9.1.4. Greedy Algorithm.
(i) Order the elements of E so that c(e() = cle;) = -+ = cle,);

(i) B ;

(iil) i 1;

(iv) IF Bu{ee# THEN B« Bu{e};

(v) i—i+1;

(vi) IFi<n THEN GOTO (iv)
(vii) STOP.
It is easy to see that the greedy algorithm need not produce a solution to (9.1)
even when the weight function ¢:E— R, is non-negative. What are the
independence systems for which the greedy algorithm is optimal with respect
to every non-negative weight function? It is interesting to note that the answer
was given by the electrical engineer O. Boruvka (1926) before the birth proper
of matroid theory. He essentially proved the following fundamental result.

9.1.5. Theorem. The non-empty independence system % < 2F of subsets of E is
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the collection of independent sets of some matroid on E if and only if, for every
non-negative weight function ¢:E—R™, the greedy algorithm 9.1.4 solves the
optimization problem (9.1).

Proof. We show the necessity of the matroid property by verifying the basis

exchange axiom for the collection # = #(#) of maximal members of # .

Sufficiency will follow from the discussion in the remainder of this section.
For A, Be# and ac A\B, we define a weighting c:E—-> R, by

c(e)={1 if ee(4A\{a})uB

0 otherwise.

Ordering the elements of E so that A\{a} is in accordance with the greedy
algorithm, we see that 9.1.4 can only be successful if there exists an element
beB\A with (4A\{a})u{b}eB. O

The non-negativity requirement for the weight function in Theorem 9.1.5,
of course, is no real restriction. The greedy algorithm can always be adjusted in
the obvious manner (see Exercise 9.1).

Boruvka’s theorem has been rediscovered many times. For graphic
matroids, the greedy algorithm yields Kruskal’'s (1956) solution of the
minimum spanning tree problem 9.1.1. Rado (1957) gives a general matroid
formulation. The full power of the greedy algorithm was realized by Edmonds
(1971).

The greedy algorithm can be looked at as a purely combinatorial
construction (cf. Exercise 9.2). Edmond’s (1970) idea to set it in the framework
of linear programming, however, helps to gain further insight into the
structure of combinatorial optimization problems. Let us recall a few basic
facts first (for more details see, e.g., Chvatal 1983).

With respect to the (m x n) matrix 4 and vectors beR™, ceR" we state the
(primal) linear program (LP):

maxc-x subjectto Ax<b and x=0. 9.3)
With the LP (9.3) we associate its dual:
minb-y subjectto yA=c and y=0. 9.4)

[Note that (9.4) may also be expressed in the form (9.3) and hence also isa LP].
The next lemma is fundamental because it gives an optimality criterion for
linear programs.

9.1.6. Lemma. Let the vector xeR" and the vector yeR™ satisfy the restrictions
of (9.3) and (9.4) respectively. Then

cx<by.



166 Ulrich Faigle

Hence, if c:x=b-y, x and y must be optimal solutions to the respective LP’s.
Proof. Exercise 9.3. O

In our application to optimization problems over matroids, we consider RZ
rather than just R" that is, the space R" with components indexed by the
distinct elements of E. Equivalently, we could see RE as the collection of all
real-valued functions on E. This collection contains in particular the
characteristic or (0, 1)-incidence vectors of the subsets of E, i.e., forevery A € E

the vector y,, where
© 1 if eeAd,
e)= .
x4 0 otherwise.

Furthermore, for xeRE and A c E, the notation x(A) refers to the sum of all
components of x with index in A4 as in (9.1).

So let M be a matroid on E with rank function r and collection & of
independent sets. If x = x5 for some S < E, we have

Se# if and only if x(4A)<r(A4) forall ACE.
Hence the following optimization problem generalizes (9.2):

maxc-x subject to xeP(r), 9.5)
where
P(r)= {xeRE:x >0, x(4)<rHA4) forall AcE}.

P(r) is called the matroid polyhedron (or polymatroid for short) associated with
the matroid rank function r.

The reader should notice that (9.5) in fact is a LP of the form (9.3), where the
rows of the matrix of restrictions are exactly the (0, 1)-incidence vectors of the
subsets of E, whose ranks are the corresponding components of the vector b.
We can now close the gap in the proof of Theorem 9.1.5.

9.1.7. Proposition. Let F be the collection of independent sets of the matroid M
with rank function r:28 > N and let ¢: E — R, be non-negative. Then if x*cRE is
the characteristic vector of a greedy solution B* of (9.2), x* is an optimal solution
of (9.5). Hence, also B* is optimal.

Proof. Because x*eP(r), it suffices, by Lemma 9.1.6, to exhibit an appropriate
solution of the dual LP:

min ) r(A)y, subjectto y,>0 and,forall ecE,
AcE

Y {yazecd} = cle). (9.6)

Assume the greedy algorithm 9.1.4 uses the ordering c(e,) = cle;) = -+ = c(e,)
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to generate B* and define the vector y* indexed by subsets

* —

{c(ei)—c(ei_l) if A=A, forsomei=1,...,n,
* =

0 otherwise,
where we set c(eg) =0 and, fori=1,...,n,
Ai={e,es,...,¢}.
It is not difficult to see that y* satisfies the restrictions of (9.6) and that
o(B*)= ), r(4)yi. O

AcE

The set family & in the bipartite matching problem 9.1.1 generally is not a
matroid independence system. Hence the procedure 9.1.4 need not generate an
optimal solution [it is interesting, however, that already Monge (1781) solves
certain assignment problems by the greedy algorithm (see also Derigs, Goecke
and Schrader 1984)]. So the question arises: how good is the greedy heuristic
9.1.4 for general independence systems? An answer is provided by the
approach of Jenkyns (1976) and Korte and Hausmann (1978), which we briefly
outline.

With respect to the general independence system # < 2£, we define for every
ACE.its

rank rA)=max{|F.FS A, FeF}

and
I —rank p(A)=min {|F|:Fe#, F<A and

Fu{a}¢F forall aeA\F}.

Then we obtain

9.1.8. Proposition. Let ¢:E— R, be non-negative and let B* be an optimal
solution of the optimization problem (9.2) over the arbitrary independence system
F < 25, Furthermore, let Bg be a greedy solution for (9.2) obtained from 9.1 4.
Then

Proof. Assuming c(e;) < cle,) < -+ < cfe,), we define, as in the proof of
Proposition 9.1.7, for i=1,...,n,

A;={eg,e,...,e}.

Hence, with c(e,, ;) =0, we obtain

dBo)= 3. |BonvAilete) = cleis)
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and

o(B%) = 3, 1B* nAifele) — cle ).

By the definition of 9.1.4, B; N A, is a maximal member of # contained in 4,,
ie., p(A4;) <|Bgn A;|. Hence 1(A4;) =|B* n A;| implies

[Bon il > 1B*n Al L) > 1B n A min s,
Thus
. p(4
(Bo)> c(B*) minZ ). -

If # is a matroid independence system, the rank functions r and p coincide.
Proposition 9.1.8, therefore, provides another proof for the sufficiency
condition in Theorem 9.1.5. This is a special case of the following general lower
bound for the quotients in Proposition 9.1.8.

9.1.9. Proposition. Let F = n*_, #, wherefori=1,... k, %, is the system of
independent sets of a matroid M; on E with matroid rank function r,. Then
1 < minM.
k= 4cer(4)
Proof. We proceed by induction on the cardinality | E] of the ground set and
consider an arbitrary subset 4 € E.
Choosing sets B, B'e# so that B,B'< 4 and n(A4) = |B| and p(4) =|B'}, we
may assume B'¢ B.
Let beB"\B and denote by .#,...,.#;, %  the systems induced by the
contractions M,/b,..., M, /b. Thus

p(A\{b}) =B\ {b}| = p(4) — 1,
r(A\{b}) = r(4) — k,

where the last inequality follows by augmenting the set {b} with elements from
B with respect to each of the k matroids M,..., M,.
By induction, we have r'(A\{b}) <k-p'(A\{b}) and hence r(4) < k- p(A).
O

Let us illustrate Proposition 9.1.9 with the bipartite matching problem. If
I' =TI(S,, S,; E)is a bipartite graph with disjoint vertex sets S; and S, and edge
set ES S, x §,, we may assume that we are also given matroids M, = M(S,)
and M, = M(S,) on the two vertex sets (in 9.1.3, M, and M, are free matroids).
M{i=1,2) induces a matroid ﬁ, on E, where I = E is independent if I is
incident with an independent set of M, of cardinality |I|. Matchings then are
those edge sets which are independent in both M, and M,. So Proposition
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9.1.9 applies with k = 2. In other words, the greedy strategy 9.1.4 is guaranteed
to yield at least 509, of the optimum for the bipartite matching problem.

One can do better than using the greedy heuristic in order to tackle the
optimization problem (9.2) over the intersection of two matroid independence
systems efficiently. We describe an efficient algorithm for an exact solution in the
next section. Not too surprisingly, the greedy algorithm is an integral part of it.

What about independence systems that are intersections of three or more
matroids? No efficient solution algorithms for optimization problems over such
systems are known. In fact, we can represent the following problem, which is
known to be NP-complete (cf. Garey and Johnson 1979), in this form.

In the directed graph G = (V, E) with set V of nodes and set E of arcs, we want
to find out whether G possesses a directed Hamiltonian path, i.e., a directed path
meeting each node exactly once. Letting .#, consist of the circuit-free edge
sets of G (considered as undirected graph), £, comprise all arc sets such that
no two tails are incident with the same node, and, similarly, .#; be the
collection of arc sets with no pair of incident heads, then our problem reduces
to deciding whether the equation

max {|I[|:Ief nF,nF3}=|V|-1
is valid.

9.2. Intersections and Unions of Matroids

We will now describe an algorithm to solve the optimization problem (9.2)
over an independence system which can be expressed as the intersection of two
matroid independence systems. The algorithm is good in the sense of Section
9.1 provided we have procedures at hand allowing to check efficiently whether
a given subset of the ground set is independent with respect to the two
matroids (cf. Exercise 9.6).

For the ‘classical’ bipartite matching problem an algorithmic solution of
Konig (1936) employs the following fundamental idea: rather than simply
adjoining element after element until the solution is obtained, one proceeds from
an object which is optimal among all objects of cardinality k to an optimal
object of cardinality k + | and so on, where the transformation is carried out
according to a suitable ‘augmenting path’ with respect to the former object.

The general matroid problem was solved by Edmonds (1968, 1979) and also
has attracted other researchers (cf. Lawler 1975, Iri and Tomizawa 1975). Our
exposition here is based on Frank (1981). We concentrate on describing how to
find an ‘augmenting path’ that allows us to transform an optimal k-object
into an optimal (k + 1)-object.

Solet # =4,nF, where M, =(E, #,)and M, =(E, .#,) are matroids with
rank functions r,; and r, and systems ., and .#, of independent sets.
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Given c¢:E - R, we consider the problem
max ¢(F) subjectto Fe#. 9.7)
With the notation
F*={Fe#F:|F|=k},
we will actually solve the seemingly stronger problem
max c(F) subject to FeZF* 9.8)

[Adding a suitable constant as to make ¢:E — R non-negative, however, it is
easy to see that (9.7) and (9.8) are, in fact, equivalent].

Introducing further notation, we write C(I, x) for the (unique!) fundamental
circuit contained in I'ux whenever [ is an independent set of the matroid
M(E, #) and xeE is such that TUux¢.#.

Calling the set Ie.#* c-maximal in #* if ¢(J) < c¢(I) holds for every Je.#*, we
now observe

9.2.1. Lemma. Assume Be.#* is c-maximal in #* and x,,x,,...,x,€ E\B and
V1sY2s---» VEB are elements so that

Bux;¢f and y,eC(B,x,), 9.9)
c(xi) = c(yi)s (9.10)
cly)=cly;) and i<jimplies y;¢C(B,x;). 9.11)

Then B' = (B\{y,,...,»})U{xy,..., %} is c-maximal in F*.

Proof. We must show B'e.#* Since the case | = 1is obvious, let us assume [ > 1
and choose y; as the element which lexicographically minimizes (c(y;), ).

Then i#j implies y,¢C(B,x;) since, otherwise, y,eC(B,x;) implies
c(y) = clx;) = cly;), ie, c(y)=c(y;) by the choice of y, and hence i<j
contradicts (9.11) and i > j contradicts the choice of y,.

We now claim that B = (B\y,) U x; satisfies the hypothesis of the lemma with
respect to {yy, ya,...,yi)\y; and {xy,...,x,}\x; which finishes the proof by
induction on L

For ease of notation, assume i =1 and suppose Bux,e.#. But then we
arrive at the contradiction Bux,€.# since, in view of y,eC(B, x,), B and B
generate the same closed set in the matroid M =(E,.#). Furthermore, we
conclude from y, ¢ C(B, x,) that, in fact, C(B, x,) = C(B, x,). So (9.9) must hold.

Similarly, also (9.11) is verified. O

Returning to the intersection problem, we state, setting .#%, = #% N #%,

9.2.2, Lemma. Assume that c¢;E—R (i=1,2) are functions such that
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¢=c, + ¢, and that 1€ #%, is c,-maximal in #*. Then I is c-maximal in 5%,
O

The algorithm to solve the problem (9.7) constructs, for k=0,1,2,...,
c-optimal members of #%,(=%¥%). We show how to carry out the step
kok+1.

Thus, let Ie#%, and ¢;:E—R (i=1,2) be such that the hypothesis of
Lemma 9.2.2 is satisfied. We then set, for i=1,2,

m;=max {c(y):y¢l and Iuyes},
X;={xeE\I'Iuxef; and c{x)=m;}.

An auxiliary directed graph G = (E, 4) is now defined with the set E as set of

nodes and the set A < E x E of arcs, where for all x, yeE,

x,yyed if Tux¢s,,yeCi(l,x), and c,(x)=c(y);

(3, x)ed if Tuxé¢s,, yeC,(,x), and c,{x)=c,(y).
There are two cases to consider. The first case will deal with an augmenting
path yielding a c-maximal member of #%3 !. In the second case, we may modify
the current weightings ¢;: E — R and then repeat the whole procedure until
eventually either the first case occurs and an augmentation is possible or #5751
is seen to be empty.

Noting that the arcs of G either enter I or leave I, depending on whether they
are defined with respect to the first or to the second matroid, let us try to find a
directed path U from some node in X, to some node in X,;. This can be
accomplished, for example, by adding a new ‘source node’ s and arcs
(8, x;), x,€X,, to G and then using an efficient shortest path procedure (cf,

e.g., Lawler 1976) to find shortest paths from s to all reachable nodes of G.

Case (i). There exists a path U with node sequence (Xg, V1, X1, Va5 Vi» X;)
from x,eX, to x,e X and U is as short as possible.

9.23. Lemma. I'=(I\{yy,..., y1})U{X0, X1,....X;} and c; = ¢(i = 1,2) satisfy
the conditions of Lemma 9.2.2. Moreover, c(I'y — c(I) = m; + m,.

Proof. Since B = I U x, is obtained according to the greedy algorithm from the
c¢,-optimal Ie.#% , B must be ¢,-maximal in #4* 1.

Clearly, Bux;¢.%,, y;,€C,(B,x;), and c(x)=c(y,) for i=12,...,1 Fur-
thermore, c(y;) = c(y;) and i <j must imply y,¢C,(B, x;) since, otherwise, U
would admit a shortcut from y; to x; and, therefore, not be minimal. Hence
we conclude from Lemma 9.2.1 that I is ¢j-maximal in #%*1,

The same argument with respect to U traversed in the reversed order now
shows that I’ also is ¢;-maximal in #%**. O

Thus, in Case (i), U is an augmenting path of the desired kind for Ie.#%,.

Case (ii). There is no path connecting X, with X,.
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Let T consist of those nodes of G that can be reached via a directed path
from X,, and set

6, =min {c,(y) — c,(x):Tux¢F ,xeT,yeC(I, x\T},
0, =min{m, —c,(x):Iuxef ,xeT\I},
03 =min {c,(y) — co(x): T Ux¢ I, x¢T,yeCo(1,x)n T},

8y =min {m, —c,(x):Tued,,x¢TUI},
where min () is understood to be co.
9.24. Lemma. § =min {6,,0,,03,04} >0.

Proof. Consider é,, for instance. ye C,(I, x) implies c,{y) = c,(x) since I was c,-
maximal in .#%. ¢,(y) = ¢,(x) would reveal (x, y) as an arc of G and hence ye T if
xeT. Thus, we must have §; > 0.

For d,, note that m, = ¢,(x) would, in particular, give xe X ;. So xe T would
mean that there is a path from X, to X , contradicting the assumption of Case
(ii).

05 and &, can be dealt with similarly. OdJ

9.2.5. Lemma. I' = I and c;:E — R satisfy the conditions of Lemma 9.2.2, where

ci(x)+0 ifxeT,
¢i(x)= { :
¢y(x) if x¢T,
and
¢ (x) = e(x) — ¢y (x).
Proof. We show that I' is ¢;-maximal in #%. The analogous statement about
¢, again can be verified similarly.
Suppose I is not c¢;-maximal in #%. By the optimality of the greedy
algorithm (9.1.4), there must exist elements x¢I and yel so that ¢j(x) > ¢} ().
If I uxef |, then necessarily ¢j(y) = ¢,(y) and ¢} (x) = c,(x} + J since the ¢,-
maximality of I in .#% yields ¢,{x) < c,(y). In particular, xe T. But xe T implies
0 <6, <my —c,(x). Hence c¢,(y) = m, reveals the inequality c}(x) < c\(y), a
contradiction.
If I'ux¢.#,, we may assume yeC (I, x) since the greedy algorithm produces
a ¢;-maximal member of #* in such a way that in each step the weight of the
element chosen does not exceed the weights of the elements chosen previously.
Then, as before, ¢ (y) = c,(y) and ¢ (x) =c,(x) + 5. Whence 6 <, <c,(y)—
c;(x) and ¢ (x) < c}(y), a contradiction. d0

We thus have proved the validity of the following algorithmic solution of the
optimization problem (9.7) with respect to the weight function c:E - R, the
matroids M, =(E,.#,)and M, =(E, #,), and the independence system & =
J.nS,.
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9.2.6. Weighted Matroid Intersection Algorithm.

0) k0,1« F;ci < 0;c+¢;

(1) Construct the auxiliary directed graph G with respect to ¢, ¢,, I,

(2) IF Case (ii) occurs THEN GOTO (8);

(3) Find a shortest path U = (X, ¥1,..., Vi X)) from X, to X y;

(4) I(_(I\{yl,"',yl})u{xo’xl""axl};

(5) Output k, I,

6) k—k+1;

(7) GOTO (1);

(8) IF 6 = oo THEN GOTO (11);

9) ¢, « ¢ and c, < ¢, as in Lemma 9.2.5;
(10) GOTO (1);
(11) STOP.

Algorithm (9.2.6) generates, for k=1, 2,..., a c-maximal member of .#%, if
one exists. Indeed, if 6 = co is attained, none of the quantities 6,,0,,05,5, is
defined and, hence,

r{T)y=|InT| and r,(E\T)=|I\T)].
Since, for all I'e# n.#, and SSE,
I <1y(8) + ra(E\S)

generally holds (cf. also Corollary 9.2.9 below), I must have maximal
cardinality in # = .#,. The finiteness of the algorithm can be seen as follows.

Whenever Case (i) occurs, the size of |I| is increased by one, i.e., Case (i)
occurs at most | E| times. Assume now that Case (i1) occurs twice in a row. Then
the new auxiliary graph G’ will contain all the arcs of the old graph G that only
involve nodes of T. Because X', 2 X ,, the property d, > 0 shows that the new
T’ will strictly include T. In other words, Case (ii) cannot occur more than | E|
times in a row.

Like the greedy algorithm for matroids, the matroid intersection algorithm
has a natural setting in the context of linear programming, For this discussion
we will retain the same notation as before and start with some observations
about possible modifications of the algorithm.

If Case (ii) occurs, we may update the current weightings ¢, and ¢, with any
number &,0< 6 <4d, without affecting the validity of Lemma 9.2.5. In
particular, ¢’ = min {J,m,} is permissible as long as m, > 0.

Since the algorithm starts with ¢, =0, we have m; =0 at any stage of the
algorithm regardless whether Case (i) or Case (ii) has occurred.

If we are just interested in a solution to the optimization problem (9.7) we
can stop the algorithm as soon as m, <0 or m, is not defined.

Assume now that [*e.#, n.#,, |[I*|=k, is the optimal solution to (9.7)
generated by the algorithm 9.2.6 after k augmentations. If, at this stage, m, is
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no longer defined, let ¢¥ and c% denote the current weightings. If m, > 0, carry
out the updating of Case (ii) with 6’ = min {6, m,} so that m, =0 is achieved,
and let ¢f and % denote the weightings after this update.

9.2.7. Lemma. Under the conditions above, c¥ = 0. Moreover, for every xeE,

e3(x) = 0 if xeE\I* and I*uxefz,.
2 =0 if xel*

Proof. Since c* =0 is immediate from the definitions, we only verify the
second statement.

If Ie#%~ 1 n.#%1 denotes the predecessor of I* during the algorithm, we
must have m, > 0 at that stage (otherwise no augmentation would be carried
out). Thus c¢,(x) <0 for some xel* would imply x¢1 (and hence contradict
m, > 0) or show that I was not c,-maximal in #%~!, which is impossible.

Suppose c¥(x) <0 for some xel*. Then we must have had ¢,(x) <d' <m,
and hence c,(I* U y) = c,(I*) + m, > c,(I*) for some y¢I* with [*Uye st~
which violates the assumed c,-maximality of I* in #%. O

Consider now the primal linear program [cf. also (9.5)]:

ry

A
max c-x subject to <A>x<< > and x>0, 9.12)

ra
where A is the (0, 1)-matrix of the characteristic vectors associated with the
subsets of E. (9.12) has the dual

min Y yy(S)ra(S) + 3. y2(S)ro(S) 6.13)

ScE ScE
. 4
subject to (y;,¥,) L and y,;,y,=>0.

We want to show not only that (the characteristic vector of ) I* is an optimal
solution to (9.12) but also how the weightings ¢} and c¢%, defined above, yield
an optimal solution to (9.13). For simplicity, we assume here that neither
M,=(E, #,)nor M, =(E,.#,) has a loop.

Order the elements of I*={e,...,e,}={f1.....fi} according to
ctle)) 2 =cte) >0 and c3(f))=--2c3(f)=20 and set cl(e.,)=
cX(fi+ 1) = 0. Denoting by cl; and cl, the closure operators of M, and M,, let
furthermore

E;=cl {e,...,e;} and F,=cl,{fy,....f;} (i=1,...k).
The vectors y¥, y% >0 can then be defined via, for S E,

c¥e)—c¥e;, ) S=E, 1<i<k,
* — 1&g 1\&i+1 i
yi(®) {0 otherwise,
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A(f)—cifivy) ifS=F, 1<i<k,
0 otherwise.

y3(S) ={

To verify that y¥ and y¥ satisfy the restrictions of (9.13), we must check for all
xekE,

Y {yH(S) + y¥(S):xeS, SSE}=c(x),

which, with the help of Lemma 9.2.7 is not very difficult to do and, therefore,
left to the reader. Moreover, we compute
cI*)= 3 yHSIriS) + Y. y3(S)raAS) (9.14)
ScE ScE
and thus conclude the desired optimality from Lemma 9.1.6.

Of particular importance is the case where the objective functionc:E—Ris
integral, that is, takes on integer values only. Our discussion shows that in this
case also ¢; and ¢, remain integral. In particular, the linear program (9.13)
affords an integral solution. In the terminology introduced by Edmonds and
Giles (1977), the linear program (9.12), therefore, is totally dual integral, ie.,
admits an integral dual solution whenever the primal program has an integral
objective function (and, of course, solutions exist at all).

Let us remark that a totally dual integral linear program of the form (9.3)
necessarily also has an integral (primal) solution (no matter whether the weight
vector ceR" is integral or not) if an optimal solution exists. This follows from
Hoffman’s (1974) theorem which says that a linear program admits integral
optimal solutions if for every integral ceR”, the optimal value maxc-x is an
integer.

We combine the discussion of the matroid intersection algorithm into a
result, due to Edmonds (1970).

9.2.8. Theorem. Let P(r,) and P(r,) be two matroid polyhedra in RE. Then the
linear program

max c'x subject to xeP(r)nP(r,)

is totally dual integral. Moreover, the vertices of the polytope P(r)nP(r,) are
integral. O

Totally dual integral systems often arise from combinatorial structures for
which the min-max theorem of linear programming (Lemma 9.1.3) then turns
into a combinatorial min-max result. For more general information we refer
the reader to the survey articles of Edmonds and Giles (1984) and Schrijver
(1983, 1984).

An important special case of Theorem 9.2.8 is the matroid intersection
theorem, which we implicitly have aiready stated above:
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9.2.9. Corollary. Let M, =(E,.#,)and M, =(E, # ,) be two matroids with rank
functions ry and r,. Then

max {[I|:1€FnF,} =min{r (S)+r,(E\S):S < E}. 9.15)

Proof. The left-hand side of (9.15) is the LP (9.12) with ¢ = 1. The right-hand
side follows from (9.13), using the fact that optimal solutions can be required to
be integral. (9.14) furnishes the claimed equality. O

The intersection of two matroid independence systems generally is not a
matroid independence system. However, a dual construction, the union or sum
of two matroids, always results in a matroid. In the same sense as matroid
intersection may be understood as a statement about covering the ground set E
minimally [cf, e.g., the right-hand side of (9.15), the special case of (9.13) ], the
union of matroids allows us to analyze packing problems with matroids. The
latter, indeed, initiated this construction (cf. Nash-Williams 1964 and Ed-
monds 1965).

We define the union or sum of the matroids M, =(E, #,)and M, =(E, .#,)
to be the matroid M = (E, .#) [alsodenotedby M =M, VM, =(E, #, V #,)]
where

I=5 VI, ={1,ul,:1,ed,,1,65,}.
Note that we have not yet shown that M, V M, is a matroid. Our next

fundamental lemma will also be of interest for the construction of the Dilworth
completion in Section 9.3.

9.2.10. Lemma. Let % be a collection of subsets of E such that JeF and
AuBe% and AnBe% whenever A,Be¥F. Furthermore, let f:F - N be a
submodular function with (&) = 0. Then the function r, given by

r(S) = min { f(X) +|S\X|: XeF}
for all S € E, is a matroid rank function.

Proof. r clearly has the unit increase property. For the submodularity of r,
consider S, T < E and choose X, Ye& so that

HS)=f(X)+|S\X| and r(T)=f(Y)+|T\Y].
Then
IS\X[+IT\YIZ[SUTNX U Y)[+ (SN TNX YY)
implies
HS)+HT) Zf(XOY)+f(XnY)+IS\X|+[T|Y]
ZfXUY)+[(SUTINXUY)
+f(XNY)+I(SNTINXNY)]
Z2rSuT)+HSAT). B
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9.2.11. Theorem. If M, and M, are matroids with rank functions r, and r,
then M, V M, is a matroid with rank function

r(S) = min {r,(X) + r,(X) + |S\X|: X < E}.

Proof. Denoting by .# the collection of independent sets with respect to the
matroid rank function r, i.e,,

J ={I< E:|InS|<r(S)for all S < E},

it is straightforward to verify #, v #, = .4. We show 4, v 4,2 4.

Let Be.# be arbitrary. We must find I,€.#, and I,e.#,sothat B I, Ul,.
To do this, we restrict M, and M, if necessary so that we can assume B=E,
and consider the Whitney dual M% of M, with rank function r§. Then for every
ScE(=B),

ri(S) + r3(E\S) = ry(S) + ro(S) + | E\S| — ro(E)
= r(E) —ry(E)
=|E| —r,(E)
= r¥(E).
Hence, by (9.15), there exists a basis I of M, so that I¥€.#, N #,. ThusI, = I}
and I, = E\I% yield a partition of B into sets I, €.9,,1,€.4,. O

9.2.12. Corollary. Let M, =(E, #,),...,M, = (E, #,) be k matroids with rank
functions ry,...,r,. Then the matroid sum M =M v --- v M, has the rank
function r given by

i=1

k
r(S)=min{Z ri(X)+|S\X|:X§E}. (9.16)
Proof. We proceed by induction on k and just show the case k = 3.
In view of Theorem 9.2.11, there are sets X, Y < E so that
HS)=r(Y)+ ry(Y) + | X\Y| +rs(x) + [S\X],
where we may assume Y < X ©S. Thus
HS)=r(Y)+r(Y)+ri(X)+|S\Y|
2rY)+r(Y)+r(Y)+[S\Y]

On the other hand, given T < E, we choose disjoint sets [, €.# ,[,€.5,,[;€.%,
with I, vI,ul;< S and |I,]|+|I,| 4+ |I;3] =7r(S). Then

rS)= LTI+ ,nT|+|{I;nT|+ (I, 01, I\T|
STy +7roT) +r3(T) +IS\T.

So (9.16) must hold. O
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Immediate consequences are the matroid partitioning theorems of Edmonds
(1965) and Nash-Williams (1964):

9.2.13. Corollary. Let M = (E, #) be a matroid with rank functionr. Then E can
be covered with k or less independent sets if and only if for every S < E,

[S| < k-r(S).
Moreover, M has at least k pairwise disjoint bases if and only ifforall S € E,
k-(r(E) —r(S)) <|E\S| O

In the special case of graphic matroids, we obtain the results of Nash-
Williams (1961, 1964) and Tutte (1961). Let G = (V, E) be an undirected graph.
Then the minimum number of forests needed to cover E is equal to

max [TV]L—T:" 9.17)

where the maximum ranges over all subsets W < V with |W|>2 and (< W)
denotes the set of edges of the subgraph induced by W. If G is connected,
the maximum number of pairwise disjoint spanning trees is equal to

min [m‘)_—lj', (918)

where the minimum ranges over all subsets S < E so that the number x(V, S) of
the graph (V, S) is at least two.

At the end of Section 9.1, we observed that the intersection problem may be
computationally very hard if more than two matroids are involved.

Note that this is not the case for the matroid partitioning problem. The
proof of Theorem 9.2.11 reduces the problem to partition a subset B < E into
disjoint sets I, and I, which are independent with respect to two prescribed
matroids to a matroid intersection problem. To test whether the arbitrary
subset S < E can, for example, be partitioned into sets I;,€.#,i= 1,2, 3, where
M, =(E, #,) are prescribed matroids, we first try to decompose S with respect
to M, V M, and M,, say, to obtain S = I, Ul and then decompose I, , with
respect to M, and M,, etc.

As a consequence, we observe that there are good algorithms to solve the
optimization problems whose optimal values are described by (9.17)and (9.18).

The matroid intersection problem admits a generalization to the matroid
matching problem (Lovasz 1980) or matroid parity problem (Lawler 1976). Here
we start with a submodular function f on a set E which is ‘almost’ a matroid
rank function. More precisely, we assume f:2F — N to satisfy for all A,B< E
and beE,

J(@)=0,
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SAY<fAUb)<f(A)+2,
f(AuB)+f(AuB) < f(A4)+f(B)
It will follow from Theorem 9.3.1 in the next section that all set functions f
which satisfy the above conditions are constructible in the following fashion.

Let M be a matroid with rank function r on some set E', E a subset of the
collections of points and lines of M, and define f2E — N via, for all A S E,

fA)=r({JA).
Under the stated conditions, the matroid matching problem is
max|X| subjectto f(X)=2'|X]|.

As an illustration, let us look at two examples.

9.2.14. Matroid Intersection. If M, =(E,I,) and M,={(E,I,) are two
matroids with rank functions r, and r,, then we have for every X C E,

Xel,nl, iff 2:1X|=r(X)+r,(X).

In other words, the intersection problem reduces to the matching problem for
f=ri+r,.

9.2.15. Graph Matching. Consider a (not necessarily bipartite) graph
G =(V,E) and let for every A< E,

A=V,

where V(A) denotes the collections of vertices of the subset A of edges of G. Thus
the edge sets X < E with the property

J(X)=2"1X]|

cannot contain any pair of adjacent edges in G, i.e., are matchings in a general
sense.

For the matroid parity problem, we are given a matroid M = (E, I) with rank
function r on the set E, | E| = 2k, where E is partitioned into k pairs 4, [A4;] =2,
of elements of E:

E=A,0A4,U---UA,.

Among all independent sets of M which can be expressed as unions of suitable
A;’s we are to find one with the largest possible cardinality. We leave it to the
reader to formulate 9.2.14 and 9.2.15 as matroid parity problems.

Like matroid intersection graph matching also affords an efficient
combinatorial optimization algorithm (Edmonds 1965, see also, e.g., Lawler
1976). Can one hope for an efficient algorithm that solves the general matroid
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matching problem? The answer is negative. Any solution algorithm for the
matroid matching problem will generally require an exponential number of
steps with respect to | E| (Lovasz 1980, Jensen and Korte 1982). We will outline
the argument in the setting of the matroid parity problem.

Assume k = 2m is an even number and define two matroids M, and M, on
E, |E| = 2k, as follows:

(1) The bases of M, consist exactly of those k-element subsets of E that

cannot be expressed as unions of m of the pairs 4,
(2) Fixmdistinct pairs A; and let B denote their union. The bases of M, then
are the set B and all bases of M.

It is straightforward to check that M, and M, are indeed matroids and that
the parity problem yields 2(m — 1) as an optimal solution for M, but 2m as an
optimal solution for M,. Hence every correct combinatorial matroid parity
algorithm in particular must be able to distinguish M, from a matroid of type
M,.

We now have to specify how matroids are presented in our computational
model. Suppose this is done via a basis oracle, ie., a subroutine which
computes for any subset offered in the course of the algorithm whether or not it
is a basis of the matroid under investigation.

2
Then ( m) calls to the oracle are needed to make sure that the collection of
m

bases is that of M, and not that of a matroid of the form M ,, which implies an
exponential lower bound.

Although the matroid matching problem appears to be generally intrac-
table, there are subclasses of problems that admit efficient solutions. We have
seen this for matroid intersection in this section. Lovasz (1981) is able to derive
a polynomial algorithm for the cardinality matching problem in the case
where the underlying matroid is linear and a linear representation is explicitly
available. Tong, Lawler and Vazirani (1984) observe that the weighted parity
problem for gammoids can be reduced to the weighted matching problem on
graphs and, therefore, is polynomially solvable.

9.3. Integral Matroids

Many combinatorial optimization problems call for an extension of the
matroidal model that we used in the last section. Consider, for example, the
bipartite graph G = (S, T;E) with disjoint sets S and T of nodes and set E of
edges. Furthermore, suppose we are given vectors aeNS and deNT. Thinking
of S and T as sets of ‘supply’ and ‘demand’ nodes, where a(s) denotes the
amount of the commodity in question available at s S and, similarly, d(¢) is the
demand at te T, we may ask whether the demand can be satisfied with ‘flows’
along edges of E and, if so, how it can be done. Moreover, a capacity vector
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ceNE may have to be observed limiting the flow capacity of the edge ecE to
c(e).

This problem is closely related to the matching problem in bipartite graphs.
Indeed, it reduces to the matching problemifa=1,d=1,and ¢ = 1, whichisa
consequence of the results of Section 9.2: linear optimization over the
intersection of two matroid polyhedra always admits an integral optimal
solution. As in the matching problem, we associate with each U< T the
function value

f(U) = maximum total amount of flow possible from § into U.

Thus we obtain the condition
fWy=dUy forall UcT

as a necessary generalization of the condition in Hall’s marriage theorem. It is
not difficult to check that f(U)is submodular on the subsets of T, but need not
be a matroid rank function.

In this section, we will study systems that are determined by submodular
functions. Edmonds (1970) introduced such systems as polymatroids in RE, i.e.,
‘matroid’ polyhedra, where the defining submodular function need not be unit-
increasing, while Helgason (1974) investigated hypermatroids as generalized
matroids on E with a submodular rank function lacking the unit-increase
property. As we will see, the power of polymatroids and hypermatroids lies in
the equivalence of these concepts.

We say that f:28 N is a ground set rank function if for all A,B<E,

1(@)=0,
A< B implies f(A4)< f(B),
f(AuB) + f(AnB) < f(A) + f(B).

(E, f)then s a hypermatroid on E. With the hypermatroid (E, f) we associate
the integral polymatroid (or integral matroid for short)

O(f) = {xeNE:x(S)< f(S) forall ScE}, (.19)

where x(S) = Y .5 x(s) is the sum of the components of the vector x with index
in S.

Note that each xeNE can be viewed as a multiset on E, where the component
x(e) indicates the multiplicity of the element ee E occurring in x.

A third aspect is order theoretic. Let ce NE be a bounding vector for Q(f), that
is, for all xeQ(f)

x<c e, x(ey<cle) forall ecE

[for instance, every vector ¢’eNE with c(e) > f(e) for all ecE is bounding since
f is a ground set rank function]. There is a natural correspondence between
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the e-th component of ¢ and the set
Cle)={le) <2(e) < --- <|c(e)l(e)}
with |c(e)| elements [C(e) = & if c(e) = 0]. The disjoint union of the chains
C(e),ecE,
P(o)= ] C(e)

ecE

is ordered by the induced ordering. Thus every vector x < ¢ may be interpreted
as an order ideal of P(c) (and conversely) in the obvious way. [Recall that
I P(c) is an order ideal if acl and beP(c) implies bel whenever b < a.]
Unions and intersections of order ideals are order ideals and reflect the vector
operations for x, yeNE,

xvy=(...,max{x(e), ye)},...),

X Ay=(...,min{x(e), y(e)},...).

A special role is played by the collection & (c) of all order ideals C(A4), 4 = E, of
P(c) of the form

c4) = | Cle).

ecA
The ground set rank function f naturally extends to & (c) via
S(C(A))=f(4) forall AcE.

Hence Lemma 9.2.10 yields the Dilworth embedding M(f;c) of the integral
matroid Q(f):

9.3.1. Theorem. With respect to the mtegral matroid Q(f)< NE and the
bounding vector ceNE for Q(f),

r(S) = min { f(C(4)) + |S\C(A4)|:4 < E},

S < P(c), is the rank function of a matroid M = M(f;c) on P(c). Moreover, the
ideals of P(c) corresponding to vectors of Q(f) are exactly those ideals of P(c) that
are independent in M(f;c).

Proof. Inview of Lemma 9.2.10 and the definition (9.19) of Q(f), it remains to
show that for every independent ideal X < P(c) with corresponding vector
xeNE x < ¢, we have xeQ(f).

From r(X)=|X|, however, we immediately conclude

x(A) =X N C(A)| =r(X) — [ X\C(A)| < f(A). O

For the members of #(c), the rank in M(f;c) is just the value of the ground
set rank function. To see this, we first prove a useful lemma.
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9.3.2. Lemma. Let f,,f,:25>R be such that f, is submodular and f, is
supermodular, i.e., for A,B< E,
fAAUB) + f(ANB) = f5(A) + fB).

Then if f, = f5, Df1, )= {ASE:f(4) = f5(4)}

is closed under union and intersection.

Proof. Let A, Be2(f,, f,)- Then

Ji(A)+ f1(B) = f((AUB)+ f(ANB)
2 fo(AUB) + f,(ANB)
2 f2(4) + f,5(B)
implies equality. Od

We apply the lemma to show that the integral matroid Q(f) determines its
ground set rank function.

9.3.3. Propesition. Let Q(f) be an integral matroid on E with ground set rank
Sunction f. Then for A< E,

£(4) = max {x(4):xeQ(f)}.

Proof. Byinduction on |E|, we may assume A = E and choose xeQ(f) so that
x(E) is maximal.
Set ?={SSE:x(S)=f(S)} and D=|[J{S:Se2}.

If D=E, then Lemma 9.3.2 implies x(E) = f(E) because S—x(S) is a
supermodular function.

If zeE\D, then x(S)< f(S) for all S< E with zeS. Hence x + zeQ(f)
contradicts the maximality of x, where in the notation ‘x + z’ the element z is
identified with its characteristic vector on E. - 0

9.34. Corollary. If ceNE is a bounding vector for Q(f), then for all A< E,
S(4)=r(C(4)). O

Let us further clarify the relation between the integral matroid Q(f) and its
Dilworth completion M(f;c) on P(c). It is convenient to introduce an
operation that ‘pushes down’ a set S = P(c) as much as possible to turn it into
an order ideal of the same cardinality. Thus for S = P(c), we let id(S) be the
unique ideal in P(c) such that

[id(S)nC(e)| =1SnC(e)| for every ecE.

The vector associated with id(S) is the vector xeQ(f) so that x(e) ={S n C(e)|
for all ecE.
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9.3.5. Proposition. Let M (f;c) be the Dilworth embedding of the integral
matroid Q(f). Then for every S E,

r(8) =r(id(3)). O

This proposition now allows us to immediately carry over the structural
results derived for matroids in Section 9.2 to integral matroids. In particular,
Corollary 9.2.9 yields the intersection theorem for integral matroids:

9.3.6. Corollary. Let O(f,) and Q(f,) be two integral matroids in NE
Then

max {x(E):xeQ(f1)n Q(f2)} = min { f1(A) + fo(E\A): A < E}.

Proof. By Proposition 9.3.5, we may compute the left-hand side in the
Dilworth embeddings M(f,; ¢} and M(f,; c), where c is chosen so as to bound

both Q(f,) and Q(f).
By Corollary 9.2.9, there exists S < P(c) so that

ri(S) + rao(P(e\S)
attains the optimal value of the left-hand side. Let A < E be such that
ri(8) = f1(A) +|S\C(4)|.

Then we can assume S 2 C(A) since we want to minimize the right-hand side.
Thus

S1(A)=r(S)—IS\C(4)] and
J2AENA) <1(P(0\S) + IS\C(A)].

Hence

f1(A) + f(E\A) < max {x(E):xeQ(f1) N Q(f2)}
< fi(4) + fL(E\A). O

A similar argument applies to the weighted case. Let w:E — R be a weighting.
Then w extends to w:P(c)— R vig, for seP(s),

w(s)=w(e) if and only if seCle).

With respect to the Dilworth embedding M(f;c), consider a chain
B=8,8,€- =858+, =P

of subsets of P(c) and a vector y = 0 such that

y(S)#0 implies S=S; forsome i=1,...,k (9.20)
and
Y {7(S):teS,S = P(c)} = w(t) for all teP(c). (9.21)
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We want to minimize

Y ySIrS)+ Y yS)ry(S)

S< P} S<P)

respecting conditions (9.20) and (9.21).

Suppose there exist some ec E and te P(c) so that t¢S,. Then the chain C(e} is
not needed in order to satisfy (9.20) and (9.21), that is, we may assume for all
ecE, either C(e) = S, or C(e)n S, = &. Thus S, can be assumed to be of the
form S, = C(A) for some A < E. Similarly, if teC(e) is such that reS; and

VS + WSi 1) + - + WSk 1) = W)
and
WSiv )+ -+ WSk 1) < WD),

then C(e) = S; must hold and S;_; nC(e) = & can be assumed for (9.20) and
(9.21) to hold. Hence all the S;’s may be chosen to be of the form C(A).

Whence we obtain a generalization of Theorem 9.2.8 to the case of two
ground set rank functions f; and f, and

P(f,) = {xeRE:x > 0,x(4) < f(4) for A<SE},
P(f,) = {xeRE:x > 0,x(4) < f(4) for ASE}.

9.3.7. Proposition. The linear program
maxw-x  subject to  xeP(f))NP(f,) (9.22)

is totally dual integral.

Proof. We compute the optimal solution with respect to Q(f,) N Q(f,) in the
matroids M(f,;c) and M(f,;c).

As the preceding discussion shows, the dual optimal solutions with respect
to M(f; c)and M(f,; c) can be interpreted to be optimal dual solutions for the
LP-dual of (9.22):

min Z yi(A) f1(4) + Z V2(A) f2(4)

A<E AcE
subject to y,, ¥ =0 and for all ecE,
2 {1(A) + yy(A):ee4, 4 < E} > wle). O

As a special case we obtain a solution for the linear optimization problem
over one integral matroid Q(f):

maxw-x subject to xeQ(f) (9.23)
The greedy algorithm for (9.23) generalizes the greedy algorithm 9.1.4.
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9.3.8. Greedy Algorithm.
(i) Order the elements of E so that

wiey) = w(ez) > - 2 wle) > 02 wlegs 1) > -+ > wie,);

(i) A ;i 1;
@iii) IF i>k THEN GOTO (vii);
(iv) x() f(Aue)— f(A);
(v) A—Aue;iei+1;
(vi) GOTO (iii);
(vii) x(i)<0;
(viil) ii+1;
(ix) IF i <n THEN GOTO (vii);
(x) STOP.

9.3.9. Corollary. The greedy algorithm 9.3.8 is optimal for the optimization
problem (9.23). O

Also the greedy algorithm 9.3.8, of course, can be interpreted within
the Dilworth embedding M(f; ¢) of the integral matroid Q(f) (see Exercise 9.9).
In fact, a closer look at our analysis of the ‘primal’ optimization problems
considered so far reveals that the structure of integral matroids relies mainly
on the ordinal but not so much on the cardinal properties of the natural
numbers. From this point of view, integral matroids may be seen as instances of
‘supermatroids’ (cf. Dunstan, Ingleton, and Welsh 1972, Welsh 1976) as well as
‘matroids on (partially) ordered sets’ (cf. Faigle 1980). Whereas the former
abstract the notion of independence systems, the latter offer a theory of general
semimodular closure operators. The greedy algorithm 9.3.8 can, in this
context, be exhibited as a special case of a more general greedy algorithm for
ordered sets (cf. Faigle 1979, 1985).

The matroid-sum construction was introduced in the previous section. It
presents itself as a geometrically more natural notion in the context of integral
matroids. As before, sums and intersections of two integral matroids are, in a
sense, dual notions. So, let us first study the notion of a (Whitney) dual of an
integral matroid Q(f) with Dilworth embedding M(f;c).

Formally, given the ground set rank function f, we define for every A < E,

SHA) = c(4) + f(E\A) — f(E) (9.24)

and call f* the c-dual of f (McDiarmid 1975). Apparently, f* also is a
ground set rank function of an integral matroid bounded by ¢ (Exercise 9.10).

9.3.10. Proposition. If f* is the c-dual of the ground set rank function f, then
M* = M(f*;c) is the Whitney dual of M = M(f;c¢).
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Proof. Denoting by r* the rank function of M*, we have
r*(S) =min { f*(A) + |S\(4)|:A < E}

=min { f(E\A) + S| - |SnC(4)| + |C(A)|:A = E} — f(E)

=151+ min { f(E\A) + |(P(O\S\C(E\A)|: 4 < E} —f(E)

=S|+ r(P(c)\S) — r(P(c)). O

Definition (9.24) yields a very strong dependence on the particular choice of

the bounding vector c. In our investigation until now, this did not matter so
much. The bounding vector ¢ just offered a convenient way to reduce integral
matroid theory to ‘classical’ matroid theory. This dependence can be
dispensed with as follows.

With the ground set rank function f we associate its supermodular (!) dual f*,
where for all ASE,

fHA) = f(E) - f(E\A),
and the unbounded supermodular system
O*f*) = {xeZF:x(A) = fH(A) forall AcE}.
Purely formally, (f#)* = f and for the c-dual f* of f, f*=c— f.

9.3.11. Proposition. Ler B(f) = {xeQ(f):x(E)= f(E)} be the set of bases of
O(f). Then

B(f)= 0NN QY.

Moreover, for every A<E,

THA) = min {x(A):xeQ*(f*)}.
Proof. Exercise 9.11. O
Thus, if we set Q*(f) = {xeQ¥(f*):x < ¢}, then Q*(f) essentially describes
the integral matroid Q(f*) associated with the c-dual f* of f.
Let us now return to the sum of two integral matroids Q(f,) and Q(f,).
Observing that f = f, + f, again is a ground set rank function, we call the

integral matroid Q(f; + f,) the sum of Q(f,) and Q(f,). The sum theorem for
integral matroids then says:

9.3.12. Theorem. Q(f; + f,) is the vector sum of Q(f;) and Q(f>,), i.e.,

Of1 + f2) = Q1) + Qf2) = {x1 + x2:x,€Q(f1), x,€Q(f>)}-

Proof. Since Q(f,) + Q(f,) < O(f1 + f,) is clear, suppose there exists a vector
beQ(f, + f,) such that b # x, + x, whenever x,€Q(f,) and x,=Q(f,). With-
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out loss of generality, we may assume that b is a basis of Q(b, + b,), ie,
W(E) = f1(E) + fa(E).
Consider the ground set rank function f', where
£4(8)=min {£,(X) + [S\X|:X S E}
(cf. Exercise 9.11). We claim beQ(f + f,). If not, we must have
b(4) > f1(A) + f(4)

for some A < E. We now can find a set Z < A so that f|(4) = f1(Z) + |A\Z]|.
But then

b(Z) = b(A) — b(A\Z) > f{(Z) + [A(4) = f1(Z) + fAZ)

contradicts the choice of b.
Thus f(E) = f,(E). Moreover, since f < f, we may assume that b bounds

0(f,)and Q(f,) (otherwise, wereplace f, and f, by f, and f*). Let (/%) be the
b-dual of @(f,) and apply Corollary 9.3.6 to Q(f,) and Q(f%). Forevery A € E,

f1(A) + [3ENA) = f1(A) + BE\A) + f,(4) — fH(E) = f1(E).
Therefore, there exists x,€Q(f;)NQ(f%) with x,(E)= f,(E). Hence
WE)= f{(E)+ f,(E) implies x,=b—x,€Q(f;), contradicting the
choice of b. d

A direct application of the sum theorem yields the integral separation
theorem for sub- and supermodular functions of Frank (1982):

9.3.13. Corollary. Let f,g:25—>Z be functions such that g < f,9({Z)=0=
f(D).f is sub- and g is supermodular. Then there exists a function m:2% -7
which is modular, i.e., both sub- and supermodular, and satisfies g <m< f.

Proof. Observe that (— g) is submodular and choose the vector veN¥ with
large enough components so that f + v and (— g) + v are ground set rank
functions.

Because f — g >0, we have for all AC E,

20(A) < (f +v)(A) + (— g + v)(A).
Hence, there are y,€Q(f + v) and y,eQ(— g + v) with
u=y,+y,.

Now
0=(,—v)+,—v)

yields
yi—v=—(y,—0)
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and, therefore, m = y, — veZF satisfies, for all A < E,
g(4) <m(4) < f(4). |

Note that the matroid union M, V M, which we considered previously, can
also be cast into the framework of sums of integral matroids: we represent M,
and M, by the collections Q, and Q, of characteristic vectors of their
respective independent sets. The independent sets of M,V M, then
correspond to the restriction of @, + @, to

D(1)={xeNE:x(e)<1 forall ecE}.

In summary, we have seen that integral matroids allow a structural matroid-
theoretic analysis via their Dilworth embeddings. In this sense, all structural
properties are just ordered versions of matroid properties.

In particular, our trans-shipment problem at the beginning of this section is
a matroid intersection problem. If G =(S, T; E) is the bipartite graph with
supply vector aeN> and demand vector de N7, we define two integral matroids
on the set E of edges:

Qs = {xeNE:x(U)< a(U) forall UcS},
Qr={xeNE:x(V)<d(V) forall V<T}.

It is not difficult to see that Qg and Q, are indeed integral matroids. Thus the
demand can be satisfied if and only if

max {x(E):xeQsnQr} = d(T).

A capacity restriction ce N on E can be taken care of similarly by restricting
Qg and Q@ suitably.

The question now arises whether an even more general extension of matroid
theory exists. For example, do submodular functions fit into this context when
they are not necessarily integer valued or non-decreasing?

The answer is yes. The linear programming approach of Edmonds (1970)
makes no general integrality assumption. On the other hand, rational-valued
submodular functions are essentially integral. We only have to multiply the
(finitely many) rationals by a suitable large integer. The general case of real
numbers can then be handled by straightforward rational approximation (cf.
McDiarmid 1975).

The separation theorem (Corollary 9.3.13) already indicates that monotoni-
city of the sub- and supermodular functions in question is not really essential.
Moreover, the discussion of integral matroid duality hints at the possibility of
including systems which need not be bounded (or non-negative, for that
matter). Furthermore, the ground set rank function need not be defined for all
subsets of E. We will turn our attention to such systems in the next section.
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9.4. Submodular Systems

The generalizing step from matroids to integral matroids consisted in allowing
monotone submodular ground set rank functions which no longer need to
have the unit increase property. We will now relax the axiomatic requirements
our ‘ground set rank functions’ should satisfy even further and thus broaden
the scope of the theory. Yet, we will still be able to reduce structural questions
to questions about matroids.

Rather than considering all subsets of the ground set E, we assume we are
given a collection 2 < 2F of subsets such that

€2 and Ee2, 9.25)
AuBe? and AnBe2 forall A,Be2. (9.26)

We say that the integer-valued function f: 2 — 7 is normalized submodular
on 2 if

[ =0, (9.27)
f(AUB)+ f(AnB)< f(4)+ f(B) forall A,Be2. (9.28)
Following Fujishige (1984a), we call (2, f) a submodular system if (9.25)~

(9.28) hold. With the submodular system (92, f) we associate the submodular
structure

S(2D, f)={xeZE:x(A) < f(4) forall Aeg}.

Thus submodular structures are unbounded analogs of integral matroids.
In the same way, (2, 9) is a supermodular system if the function g:92 —>27
satisfies

9(9) =0,
gAUB)+g(AnB)=g(A)+g(B) forall A,Be2,

and thus is normalized supermodular. The associated supermodular structure is
defined as

S*(D,9) = {xeZE:x(4) = g(A) forall AeP}.
The supermodular system (2, g) is dual to the submodular system (2, f) if
9 =9*={A<E:E\Ae%},
g(A)= fHA)= f(E\f(E\A) forall AeP*.

The next relation follows directly from the definition of sub- and super-
modular structures:

B2, f) = {xeS(2, /):x(E) = f(E)}
= {xeS*D*, *):x(E) = fHE)}
= S(2, f)n SHD*, *).



Matroids in Combinatorial Optimization 191

B(2, ) is the basis structure of (2, f) and (27, f*) respectively. We will see
below that it determines both £ and f uniquely. For this purpose, we associate
with the submodular system (&, f) an auxiliary integral matroid by a
construction which we already have used in the proof of Corollary 9.3.13.

Choose a vector ve NE such that the submodular function 4 — f(A) + v(A4)is
strictly increasing on 2, i.e, for all A, Be 2 with A # B,

A< B implies f(A4)+ v(4) < f(B)+ v(B).
We now extend f + v to a submodular function f, defined for all subsets S = E
via
FAS)=min{f(4) + v(A):S< A, AeD}.
1t is not difficult to verify that £, is indeed a ground set rank function in the sense

of Section 9.3. We are interested in the non-negative part of the translation
B(f + v) of the basis structure B(f).

9.4.1. Theorem. Under the conditions above,
{xeB(f + v):x >0} = {x€Q(J,):x(E) = f(E) + o(E)}. O

9.4.2. Corollary. The submodular system (2, f) is uniquely determined by its
basis structure B (f).

Proof. Choosing the vector veN¥ as in the hypothesis of Theorem 9.4.1, we
note that B(f) determines the collection of bases of the integral matroid Q(f,)
and hence, by Proposition 9.3.3, the ground set rank function f,. Furthermore,
by the construction of f, from the strictly increasing function f + v, we have

F(A=f(A)+v(4) forall Ae2,
ie.,
fA)= f(A)—v(A) forall Ae2,
and
P ={ACE f(A)<ff(Aux) forall xeE\A}. |

With the same method of proof, we obtain the sum theorem for submodular
systems:

9.4.3. Corollary. Let (2, f,) and (2,, f,) be submodular systems and consider
the submodular system (2, f), where D=2, D, and [ = f, + f,. Then the
associated submodular structures satisfy
S(2, f)=S(21, f1) + 8(D, f>)
={x+ y:xeS(@l,’fl), yeS(D, f3)}-
Proof. Exercise 9.13. O
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The intersection theorem for submodular systems, which was seen to imply
the sum theorem in the last section, can also be regarded as a consequence of
the sum theorem:

9.4.4. Corollary. Let (2,, f,) and (2,, f5) be submodular systems and keZ a
fixed integer. Then there exists xeS(D 1, f1) N S(D,, f,) with x(E) = k if and only
if for all Ae 9, so that (E\A)e2D,,

filA) + fAENA) = k. (9.29)

Proof. Condition (9.29) is obviously necessary. Let us show sufficiency.
We may assume that both f, and f, are non-decreasing on 2, and 2,

[otherwise, we add a suitable veNE to f; and f, and replace k by k + v(E)].

Replacing fi(i = 1,2) by min {f, k} if necessary, we furthermore assume

fl(E) = fAE)=k.

If 2% is now the family of set-theoretic complements of 2,, we conclude from
(9.29) for all Ae2, 2%,

0< f1(4) — f3(A).
By Corollary 9.4.3, we can thus find xeS(D,, f;) and yeS(2%, — f,) so that
O=x+y.
Because f;(E)— f#E)=0, the vector 0 must be a basis vector of

S(@,ND%, f, — f#). Hence we must have x(E) = f,(E) = k. Moreover, for every
Be2,,

x(B) = x(E) + y(E\B) < k — f}(E\B) < f,(B),
i.e., x is also a member of S(2,, f,) with the desired properties. O
Let us turn our attention to the optimization problem
maxw-x subject to xeB(f), (9.30)

where B (f)is the basis structure of the submodular system (&, f)and w:E—> R
is a weight vector. We assume that w is Z-compatible, ie., for every ceR,

{xeE:w(x)>c}€2, 9.31)

since the problem (9.30) is unbounded otherwise (cf. Exercise 9.14). We extend
the greedy algorithm 9.3.3 and define a greedy solution for (9.30) to be a vector
x*cZF obtained by the following construction.

Let J=DycD,cD,c--cD,=E be a maximal chain of sets in &
containing all the sets of the form (9.31). Choose k elements e;eD\D;_,,
i=1,...,k, and set

* {f(Di)—‘f(Di—l) ife=e, 1 i<k,
x*(e) = .
0 otherwise.
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9.4.5. Proposition. If w.E— R is @-compatible, then the greedy solution x* is
optimal for the optimization problem (9.30).

Proof. Choose veNF¥ as in the proof of Corollary 9.4.2 and observe that the
vector x* + v is in compliance with the greedy algorithm 9.3.8 with respect to
£, and, therefore, optimal for the optimization problem

maxw-y subject to ye{beB(f +v):b>0}.

Suppose there exists x'eB(f) with w-x’ > x*. Then, choosing v in addition as to
satisfy (x' + v) = 0, we have

(x"+v)e{beB(f +v):b=20} and w-(x'+v)>w(x*+0),
which is contradiction. |

A further generalization of integral matroids is due to Frank (1981). We
consider a submodular system (2, f) and a supermodular system (2,,g)
such that for all Ae2, and Be2,,

A\BeZ, and B\Ae,, 9.32)
f(4) — g(B) = f(4\B) — g(B\A). (9.33)
Then
S(gl’f;gbg) = S(gbf)ms#(@bg)

is the generalized integral matroid determined by (2,, f) and (2,,g). (We
remark that this definition can be given, seemingly more generally, in terms of
the ‘intersecting families’ below.)

With respect to S(24, f;92,,g) let us adjoin a new element é to our ground set
E and set

E=Eu{é}.
We furthermore define
A; = {E\B:BEQZ}’
D=2,0D%
and note that 9 is closed under taking unions and intersections and contains

the new ground set £ as a member.
Fixing an arbitrary integer meZ, we define f:9 — 7 by

m ifX=E,
fXO={/X) if Xed,,
FEYy—g(E\X) if XeP%.

To see that f is submodular on 9, consider Xe %, and Y e@%. Then (9.32) and
(9.33) imply

JX nY)=f(X\E\Y)) < f(X) + g((E\Y\X) — g(E\Y),
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and, therefore,
XU+ (X nY)=m—g(ENXUY))+ f(XnY), < J(X)+ f(Y).

The result of Schrijver (1982) and Fujishige (1984b) reduces generalized
matroid theory to the study of basis structures:

9.4.6. Proposition. S(2,, [;2,,9) is the projection of the basis structure B(f)
along é, i.e.,
(D, [;2,,9) = {xeZE: there exists *%eB(f)

so that X(e)=x(e) forall ecE}.
Proof. Assume %£eB(f). Then Ae9, implies

M <FA)=r(4),
and BeZ, implies
%(B) = %(E) — (E\B) > (E) - J (E) + g(B) = ¢(B).

Conversely, if xeS(2,, f;9,,9) we define XeZF by

2e) = x(e) if ecE,

=V E) —xE) ife=e
To verify XeB(f), we just note for E\Be %,

*(E\B) = %(E) — x(B) < f(E) — g(B). a

A converse of Proposition 9.4.6 can be obtained as follows. Distinguish an
arbitrary element éc E and set E' = E\{é}. Then associate with the submodular
system (2, f) on E the submodular system (2, f*) on E’ and the supermodular
system (D,,g) on E’, where

9D, ={AeD:é¢ A},
2,={E\X:éeX,X€2},
f(A)=f(A) forall Ae2,,
g(B)= f¥(B)= f(E)— f(E\B) for all Be2,.
S(2,, 1:92,,9) is then the projection of B(f) along é (cf. Exercise 9.15).

The generalized matroids of Tardos (1983) comprise the case where 2, and

9, contain all subsets of E and r, and r, are rank functions of matroids on E

(in the ‘classical’ sense). Since we can identify subsets of E with characteristic
vectors, we thus consider

M(r,#)={A S Er,(E)—ry(E\X)<|AnX|<r{(X) forall X cE}

Observe that each set Ae M(r,, %) not only is independent in the matroid M(r,)
but also satisfies r,(A4) = r,(E), i.e., is spanning in the matroid M(r,). In other
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words, generalized matroids are intersections of the collections of independent
and of spanning sets of pairs of matroids.

The construction of Proposition 9.4.6 allows us to represent M(r,,r?)
as the projection of the collection of bases of some integral matroid Q(f).
Embedding Q(f ) into its Dilworth completion with respect to a vector ce NE
such that c(e) < 1 for all ecE, essentially yields

94.7. Corollary. A non-empty collection ¥ of subsets of E is a generalized
matroid if and only if . is the projection onto E of the collection of bases of a
matroid defined on EU T, where the set T is disjoint from E. O

So far, the sub- and supermodular functions we have considered as
generalized ground set rank functions were defined on families of subsets
which are closed under union and intersection. This model can be relaxed even
further.

We say that the two subsets A, B< E are intersecting if AnB# . An
intersecting family is a non-empty collection ¢ of subsets of E such that (F¢. ¢
and for all intersecting members A, Be.xX',

AnBeX and AuBeX .

The function f: 4 — Z is submodular on the intersecting family ¢ if for all
intersecting members A, Be A,

J(AuB)+ f(AnB) < f(4) + f(B).

Similarly, g: " — Z is supermodular on A" if (— g) is submodular. The key for
the analysis of sub- and supermodular functions on intersecting families is
provided by the next two fundamental observations:

9.4.8. Lemma. Let A be an arbitrary family of subsets of E and {4 > 7 a
function. Then

{xeZE:x(A) < f(A) for all Ae A} = {xeZE:x(A) < f(A) for all AeH },

where X is the collection of all subsets of E which can be partitioned into
members of A, i.e.,

Ji_/={XSE:X=X1U..-UXm,Xi€f}U{g} (9.34)
and
F=1" if X =g,
f(X) - {min {Zf(X:)X =X,u-uUX, X,-ef} otherwise. (9.35)

94.9. Lemma. Let X" be an intersecting family and f: " — Z submodular.
Furthermore, let A" and f be defined as in (9.34) and (9.35). Then

(@) A is closed under union and intersection,

(b) . K - Z is submodular.
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Proof. Exercise 9.16. O

It should be noted that (,f) is not necessarily already a submodular
system when f># — Z is submodular on the intersecting family . The set E
namely need not belong to . In this case, however, we may adjoin E to
and prescribe an arbitrary value fg(E) in order to obtain a submodular system
(X 5, fx)- An application of this principle yields

9.4.10. Proposition. Let ;4 — N and g: 4 — N be a sub- and a supermodular
function on the intersecting family A and assume g(A) < |A| for all Ac X", Then
(@) S(AN)={I < E:|\InA|<f(A) for all AeX'} is the collection of inde-
pendent sets of a matroid on E.
(b) S¥X(A',9)={S<E:{SUA|=g(A) for all AeA'} is the collection of
spanning sets of a matroid on E.

Proof. Without loss of generality, assume Eef". (Otherwise, adjoin E to &~
and set ggz(E)=|E| and fg(E)=|E|.)

In view of Lemma 9.2.10, f:#" — N induces a matroid rank function on the
subsets of E via

HS)=min {f(X)+|S\X [ XeX }.

Clearly, r(S) = | S| if and only if SeS(",f). Hence (a) must hold.
To verify (b), we consider the submodular function 4 — f(4) = | 4| — g(A4) on
A". By (a), f induces a matroid M on E. Now

ISnA|=g(A4) iff [SnA[>|A4]-f(4)
iff f(4)=[A4\S]=|(E\S)n4)|.

Thus the members of $¥(J7", g) are exactly the set-theoretic complements of the
members of S(2¢",f) and hence are the spanning sets of the matroid dual M*.

O

The most general notion of a family of sets for which sub- and super-
modularity of a function can be defined is due to Edmonds and Giles (1977).

Two subsets A,B< E form a crossing pair if AnB# & and, dually,
AUB # E. A collection " of subsets of E is a crossing family if 5, E¢ %" and
for all crossing pairs, A, Be A~

AuBeX and AnBeX.

f: A > Z is submodular on the crossing family " if for all crossing pairs
A, BeX

SAUB)+f(AnB)<f(A)+f(B). 9.36)

g: A — 7 is supermodular if (— g) is submodular.
This is a very weak notion of submodularity since property (9.36) is only
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required to hold for pairs of subsets whose union does not cover the ground set
E completely in case they intersect non-trivially at all. Let us look at an
example to which we will come back in more detail in Section 9.5.

Let N = (V, E; ¢) be a network, i.e., a directed graph with set V of nodes, set E
of arcs, and a capacity function ¢: E — N. We consider the crossing family ¢ on
the set Vof nodes of N consisting of all subsets of V except (F and E. For each
Uext’, we denote by U the cut determined by U, that is, the set of those arcs of
N which have their initial node in U and their terminal node in V\U. ¢(U) is
defined to be the sum of the capacities of the arcs in U. Then U - ¢(U) is
submodular on .

As Frank and Tardos (1982) have observed, the analogue of Proposition
9.4.10 is no longer true in the context of crossing families.

9.4.11. Example. Let X :{{a, b}, {b,c}, {a,c}} be a crossing family on E
= {a,b,c}. The function 4 — N with f({a,b}) =2 and f{b,c} = 1= f{a,c}
is submodular on . Both {a,b} and {c} are maximal members of

S fy={I<E{InA|<f(A) forall AeA'}
and have different cardinality, which is impossible in matroid independence
systems. O

In spite of the example, however, the theory of submodular functions on
crossing families can be subsumed under the theory of integral matroids (and
hence of matroids) in a manner similar to our treatment of submodular
functions on intersecting families. Thus, let us fix a crossing family " on the
ground set E and a submodular function f:. " — Z. We will complete 4~ with
respect to intersection and, dually, with respect to union and also use Lemma
9.4.9 with respect to submodularity and with respect to supermodularity in
order to arrive at the desired equivalent basis structure.

As before, we associate with ¢ the family

H={XSEX#EX=X,0-0X,, X eX}u{} (9.37)

of proper subsets of E which can be expressed as disjoint unions of members of
X Tt is straightforward to verify for all X, Ye# such that XU Y #%E,

XuYeX and XnYeX.
Passing to complements, we therefore obtain the intersecting family
(HA)*={A< E:E\AeX}.
9.4.12. Proposition. Let f: 4 —Z be a submodular function on the crossing
family . Then for every keZ,
BA ,f) = {xeZE:X(E) =k, x(4) <f(A) for all Ae X"}

is the basis structure of a (unique) submodular system.
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Proof. Consider the crossing family
A*={E\A:AeX}
and the supermodular function g: #™* — Z given by
g(B)=k —f(E\B)

for all Bex™*. Extend J™* to (X'*) as in (9.37) and g to the supermodular
function §:("*) —» Z as in Lemma 9.4.9 i.e., for all De(X'*),

g(D)=max {Y g(D):D=D,U---UD,,D;eX*}.
Then
A’ = ()
is an intersecting family and f': 4" — Z, given for all AeX” by

f'(A) =k —g(E\A4)
is submodular on .
Complete now %™ to A" and observe E€ X * because ¥ e(X™). (5{;’,]77) isa
submodular system with f_'(E) =k and we have for every xeZE,

x(A) < f(4) for all dest”
iff x(E\A) > k—f(4) for all (E\A)ex*
iff xD) = g(b) for all De(2®)
iff x(E\D) < f(E\D) forall (E\D)exX"
if x(B) < f(B) for all BeX”

Since the basis structure determines the associated submodular system
uniquely (cf. Corollary 9.4.2), the proposition follows. a

In this formulation, Proposition 9.4.12 is due to Fujishige (1984c). The
matroidal version (Corollary 9.4.13 below) was proved by Frank and Tardos
(1982).

Let us now briefly discuss how fundamental matroid operations are
reflected in submodular structures and focus on the operations of restriction
and contraction. (2,f) here is an arbitrary but fixed submodular system with
submodular structure S(Z,f).

For a given vector ceZE,we define the vector rank

r(c) = max {x(E): xeS(2, f),x < c}.
The intersection theorem (Corollary 9.4.4) then implies
r(c) = min { f(4) + «(E\A): A 2}.

On the other hand, finduces a submodular function f° on the Boolean algebra
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2 of all subsets of E via
FS)=min { f(A) + c(S\A): AT}

(cf. Exercise 9.11). In particular, f(E) = r(c).
It is not hard to verify that the restriction of S(2,f) to {xeZ:x < ¢} is given
by

{xeS(D,f):x < c} = {xeZF:x(S) < f(S) for all S E}.

Dually, {xeS(2,f):x >0} is either empty or an integral matroid (cf.
Theorem 9.4.1). Hence for every veS(2, f) the contraction of S(Z, f) by the
vector v is the translation of an integral matroid by the vector v, ie.,

{xeS(@.f):x = v} =v+ Qf),

where f(S) = min { f(4) — ®(4):S = 4, Ae D}.
In other words, for every two vectors v,ceZE such that veS(2,f) and v <,
the minor

{xeS(Z,f)v<x<c}

of S(2,f) can be understood as the translation of some integral matroid Q( %)
by the vector v, where the ground set rank function of Q(f%) satisfies for all
Se®B,

“(S)=min {f(T)+ (c —v)(S\T): T < E}.

Thus, minors of submodular structures essentially are integral matroids.
Choosing v=(0,0,...,0) and c¢=(1,1,...,1), Proposition 9.4.12 therefore
implies

9.4.13. Corollary. Letf: 4 — N be a submodular function on the crossing family
A . Then for every keN,

WA f)={B< E:|B|=k,|BNA|<f(A) forall AeX}

is the collection of bases of a matroid on E. |

9.5. Submodular Flows

A graph-theoretical model was suggested by Edmonds and Giles (1977) which
generalizes the model of network flows (cf. Ford and Fulkerson 1962) and
provides a unified setting for many combinatorial optimization problems.

We consider a network N =(V,E;c,c), where V is the set of nodes of a
directed graph with set E of arcs, a lower capacity function ¢c:E—Z, and an
upper capacity function ¢: E — Z such that ¢ < ¢. (If ¢ = 0, we will also just use
the notation N(V, E;c) and refer to ¢ as ‘the’ capacity function of N).
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Forevery ecE, we denote by 8 ¢(0 ™~ e) the initial (terminal) node of the arce.
Similarly, for every veV, we set
0*v={ecE:0Te=0},
0 v={ecE:d"e=v}.
The boundary 0x:V — Z of the vector xeZF is given by
x()= 3 x(e)— Y. x(e)
ecsv eed v

and extends to a function on all subsets U of nodes via

ax(U)y="Y dx(v).

vel

Let " be a crossing family on the set V of nodes of the network Nand f: 4" > Z
a submodular function. We seek a feasible flow x:E — Z on N with respect to
(A.f), i.e., a vector x satisfying

c<x<G (9.38)
ox(U)<f(U) forall Uex. (9.39)

Thus, feasible flows are subject to the requirement that the lower and upper
capacity bounds have to be observed and that the net flow out of certain given
sets of nodes is limited by a submodular function.

The classical network flow models are special cases in the above setting.

Taking

A ={{v}:veV}, (9.40)
f(v)=0 for all veV, (9.41)

the feasible flows are feasible circulations on N. The network model of Ford
and Fulkerson (1962) distinguishes a source node seV and a sink node teV
together with a return arc e, =(t,s)eE and investigates the optimization
problem

max x(e,,), where x is a feasible circulation on N.

In this case, x(e,) is called the value of the flow x from the source s to the sink ¢.
Generally, given a weighting w:E — R, we may consider the optimization
problem

max w-x, where x is a feasible flow on N 9.42)
with respect to arbitrary submodular functions f: #” — Z on crossing families

A of nodes.

9.5.1. Example. Let Q(f,) and Q(f,) be two integral matroids on a common
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ground set E, and let ce N* be a common bounding vector for Q(f;) and Q(f>).
We now construct a network N =(V, E; 6.

The nodes of N are the elements of E and a disjoint copy E’ together with an
additional node s and sink node t.

The arcs of N are of the form (e, ¢'), (s, ¢) and (¢', ¢) for all ee E and a return arc

{t,s).

The lower capacity of N is zero and the upper capacity é(e, €'} = c(e) for all
eeE and &(x, y) = ¢(E) otherwise.

Letting #” consist of all non-empty subsets of E together with all non-empty
subsets of E’ and defining f: 4" — N through f, with respect to E and f, with
respect to E, it is clear that (9.42) in this setting is precisely the intersection
problem for integral matroids. |

9.5.2. Example. Let G =(V,E) be a directed graph and let
A ={DsV:F#D#V,no arc of G leaves D}

be the crossing family of those sets of nodes which correspond to directed cuts
of G. Taking
c=(0,0,...,0),
Q=(_ 1,_ 1,”'9 - 1),
fU)=1forall Uex,

every feasible flow on G arises from a set of arcs which meets every directed cut.

a

Let us now return to a network analysis from a matroidal viewpoint. Given
N ={(V,E; c), we define for every U<V,

U = c(0), (9.43)
where U = {e€E;0*ecU,d e¢ U} is the cut of N determined by U.

9.5.3. Theorem. Let N =(V,E;c) be a network with non-negative capacity c.
Let yeV* be arbitrary. Then there exists a flow vector ¢NF¥ such that

0<¢p<c and d¢p=y
if and only if
yWy=0 and yU)KHU) forall UcV. (9.44)

Proof. Condition (9.44) is obviously necessary. We show sufficiency. Observ-
ing that the zero vector y, = 0 is the boundary vector of the (admissible) zero
flow in N, it suffices to show that y, can be transformed to y by a sequence of
feasible exchange operations. Thus, the theorem will be proved if we can verify
the following claim.
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Let x = 0¢ for some admissible flow ¢ in N and let s, ¢ be two distinct nodes
such that condition (9.44) holds for x', where

x(v) ifveV\{s,t},
x'(v) = {x(s) +1 ifv=s,
xt)—1 ifv=t.

Then there is an admissible flow ¢’ in N with the property d¢’ = x'.
To verify the statement, we claim for every U < V containing the ‘source’ s
but not containing the ‘sink’ ¢,

x(U) < &U).
Indeed, if B(¢) denotes the basis structure of the submodular system (4, &),
x'eB(¢) implies
x(U) < x'(U)< &U).
Hence the augmenting path technique of Konig (1936) or Ford and Fulkerson
(1962) can be applied to obtain the desired admissible flow ¢’.

Here we call a path P from sto anode ve V in N augmenting with respect to ¢
if for every arc e in P,

¢(e) < c(e) ifeis a forward arc in P,
0<¢(e) ifeis a backward arc in P.

Letting U, consist of all vertices of N which can be reached by an augmenting
path from s, we observe te U, since, otherwise, t¢ U, apparently implies

XUy = &Uy,

in contradiction to the claim before.

Thus the flow ¢ may be transformed into an admissible flow ¢’ by increasing
¢ by one unit on the forward arcs and decreasing ¢ by one unit on the
backward arcs along an augmenting path from s to t. The resulting flow ¢’
satisfies x' = 0¢’. 0

Let us come back to the network flow model (9.40) and (9.41) and call ¢peNE
a proper k-flow from source s to sink ¢ in the network N =(V, E; ¢} if

0<d<c, (9.45)
0 ifveV\{st},
dpvy=<{ k ifv=s, (9.46)
—k ifv=t

Then the ‘max-flow-min-cut’ theorem of Ford and Fulkerson, which
equates the minimum cut capacity with the maximal value of a proper flow,
can be stated as
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9.54. Corollary. The network N =(V, E:c) admits a proper k-flow from s to t if
and only if

k< &) 9.47)
for all U < Vsuch that seU and t¢U.
Proof. Define yeZ” by

k ifv=s,
yvy=<—k ifv=t,
0 otherwise.

Then (9.47) is equivalent to (9.44). O
In the presence of two capacities in the network N =(V,E; ¢ ¢), we set
c=¢—¢

and compute ¢ with respect to ¢ as in (9.43). The translation of the basis
structure B(¢) by the vector dc yields the basis structure B(é + dc), which is the
set of boundaries of admissible flows in N.

Hence the question whether 0eB(¢ + d¢) or, equivalently, — dceB(¢) yields,
by (9.44), Hoffman’s (1960) criterion for the existence of feasible circulations:

9.5.5. Corollary. There exists a feasible circulation in the network N =
(V,E;c,0)if and only if for al U<V,

Y {cle):0*ecV\U,0 eeU} <) {éle):0"ecV\U,0 ecV\U}. O

We have studied network flows so far via the matroidal structures induced
by the boundaries on the set of nodes of the network. A construction of Frank
(1981), on the other hand, reveals the Edmonds—Giles model as a projection of
the intersection of two basis structures on the set of arcs.

As in Example 9.5.1, we construct a bipartite graph taking E and a disjoint
copy E’ as set of nodes and arcs of the form (e, €'), e E. Thus each ‘old’ arc of the
network N =(V, E; ¢, ¢) is represented as an independent arc in the auxiliary
graph G(N), where G has a set S, |S| =2-|E}, of new nodes.

With each node veV, we associate the subset

Y(v)={ecE:ww=0%e}u{ecEv=0"¢}
of the node set Sand setforall U< V,

YU = ¥

vel

The function i maps any crossing family 2" on V onto a crossing family y(")
on S.
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Thus we obtain the two basis structures
B, = {yeZ%:(S) =0, yY(U)) < (¢ + 0c)(U), U = V} (9.48)
[ie., B, is the basis structure induced by B(¢ + dc)] and
B, = {yeZ®:(S) =0,y(y(U)) <f(U), Ue X'} (9.49)

[i.e., B, is induced by the basis structure B(¢, f; f,(v) = 0)]. Consider now the
projection map t:75 — 77, where T = E is considered as the set of ‘tails’ of the
arcs of G, given by

(ty)(e) = yle)
for all ecT and yeZ5.

9.5.6. Proposition. The feasible flows xeZE in N with respect to (A',f) are in
one-to-one correspondence with the vectors of the projection t(B, N B,).

Proof. Assume yeB, nB,. Then we define the vector x = x,eZ* via, for all
eckE,

x,(e) = y(e).

In view of (9.48) and (9.49), x, satisfies the conditions (9.38) and (9.39).
Conversely, let xe ZE satisfy (9.38) and (9.39) and define y = y, e Z” via, for all
ecT,

y:le) = x(e).

y, is the projection of the vector zeZ%, where

z(s)={ x(e) ifs=e,

—x(e) ifs=e.
Since x satisfies (9.38) and (9.39), z must belong to both B, and B,. O

Proposition 9.5.6 reduces also the general submodular flow optimization
problem to a matroidal intersection problem. This could in theory be solved
with the matroid intersection algorithm of Section 9.2. The Dilworth embedd-
ing, however, may have to be defined on a ground set of exponential size with
respect to the input size of the original problem. Hence, this algorithm could
not be expected to be efficient.

The crucial step here is the passage from the matroid intersection problem in
Section 9.2 to the integral matroid intersection problem in Section 9.3. Yet,
taking a closer look, the situation is not as bad as it seems. With the help of
Proposition 9.3.5, the intersection algorithm with respect to the Dilworth
completions can be translated directly into an intersection algorithm for the
integral matroids without explicit construction of the Dilworth completion.
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The only additional ingredient needed is an efficient way to compute the vector
rank of an integral vector with respect to an integral matroid. This amounts to
minimizing a submodular function.

Many direct algorithms for submodular flow problems have been deve-
loped generalizing augmenting path techniques as well as simplex methods
(e.g., Fujishige 1978b, Schonsleben 1980, Lawler and Martel 1982a, b, Frank
1984, Cunningham and Frank 1985, Barahona and Cunningham 1984). All of
these algorithms assume the availability of an efficient subroutine for
minimizing submodular functions.

While the construction of such a subroutine is not hard for special classes of
submodular functions, it generally is a challenging problem. The results of
Grdtschel, Lovasz, and Schrijver (1981) show that, via the ellipsoid method,
the problem of optimizing over a given polyhedron is polynomially equivalent
to the problem of testing arbitrary vectors for membership in the polyhedron.
The optimization problem over integral matroid polyhedra is easily solved by
the greedy algorithm. Hence, with the ellipsoid method, also the membership
problem is polynomially solvable. The latter, however, consists exactly in
determining the vector rank of an arbitrary vector with respect to some
integral matroid.

Since the ellipsoid method cannot be considered practically efficient, the
issue is to devise an efficient combinatorial procedure which solves the
optimization problem

min {f(X): X < E},

where f:2E > 7 is a submodular function.

Submodular relaxations of the standard network flow model have also been
studied from different view points. For example, the polymatroidal network
flow model of Hassin (1981) and Lawler and Martel (1982b) considers a
directed graph N = (V, E) where, for every ve V, two ground set rank functions
F} and F; withrespect to 8 and 8, are given. A feasible circulation x:E — N
now has to satisfy

x(A)< fI(4) forall A<céd), veV, 9.50)
x(B)< f,(B) forall B<d,, veV, 9.51)
x(0])=x(0,) for all veV. (9.52)

Extending the construction of Example 9.5.1, we can formulate the
polymatroidal circulation problem on N with the restrictions (9.50)—(9.52) as a
submodular circulation problem on an auxiliary graph G(N) of the form (9.38)
and (9.39), where the set S of nodes of G(N) consists of the old node set V
together with two disjoint copies ¥+ and ¥V~ of ¥ and where the members of
the arc set E’ of G(N) are of the form (v*,w™), (v, w™*), and (v™, v) in accordance
with the following cases:
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(@) (v,w)eE implies (v*,w~) and (v,w*)eFE,

(i) v =0"e for some ecE implies (v, v)eE'.

We define a crossing family 2#" on S consisting of

(a) the singleton sets {v}, where veV,

(b) the subsets 4* = V*, where A< d™v, veV,

{c) the subsets B~ = V~, where B 0 v,veV.

Choosingf: " — N to agree with the functions f andf, in the obvious way
and letting f ({v}) = 0, the restrictions (9.50)—(9.52) take on the form (9.38) and
(9.39).

Another far-reaching approach to a theory of optimization under sub-
modular constraints was originated by Johnson (1975) and further developed
by Hoffman (1976), Hoffman and Schwartz (1978), and Gréflin and Hoffman
(1982) through the notion of lattice polyhedra. The idea thereby is to consider
polyhedra similar to matroid polyhedra. The restrictions here arise from
functions that are not necessarily submodular with respect to the lattice
structure of the underlying power set but with respect to suitable lattice
structures externally imposed onto the power set. In this setting, results
analogous to Theorem 9.2.8 can be obtained. A general algorithmic theory for
lattice polyhedra, however, is currently not available and it is an open question
whether the Edmonds—Giles model also subsumes lattice polyhedra.

Exercises

9.1. Let # <2F be the collection of independent set of a matroid on E and let
c:E—> R be arbitrary. Show that if Be# is in accordance with the greedy
algorithm, then ¢(B) > ¢(A4) whenever Ae# and |A]|=|B|.

9.2. Give a direct (combinatorial) proof of Theorem 9.1.2.

9.3. Prove Lemma 9.1.6.

9.4. Show that every independent system can be obtained as an intersection of
suitable matroid independence systems.

9.5. Show that the lower bound in Proposition 9.1.6. can, in general, not be improved
(Korte and Hausmann 1978).

9.6. Show that the weighted intersection algorithm requires only a polynomially
bounded number of steps with respect to | E| = n provided matroid independence
can be checked efficiently and addition, subtraction, and comparison of two real
numbers are counted as one step each (Frank 1981).

9.7. A branching of the directed graph G = (V, E) rooted at v,€V is a circuit-free set B
of arcs of G such that for every veV, there is a unique directed path from v, to v
using only arcs of B. Show how optimal weighted branchings can be found with
the matroid intersection algorithm (Edmonds 1970).

9.8. Prove Corollary 9.2.13.

9.9. Give a matroid-theoretic proof of Corollary 9.3.9.

9.10. Show that the c-dual of a ground set rank function is a ground set rank function.
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9.11. Letf be a ground set rank function and ce N¥ a vector and define the convolution
[ *c via

(f *e)(S) =min { f(X) + c(S\X): X € E}.

Show that fc is a ground set rank function and Q(f*c) is the restriction of Q( f)
to the set D(c) = {xeNF:x < c}.

9.12. Prove the symmetric basis exchange property of matroids (Brylawski 1973,
Greene 1973): for every pair X, Y of bases of the matroid M on E and partition X =
X,uX, into independent sets X, and X,, there is a partition Y=Y, U Y, of Y
into independent subsets Y; and Y, such that both X; U X, and Y, U Y, are bases
of M. [Hint:show that y is in the sum of the contraction matroids M/X, and
M/X, (cf. Woodall 1974).]

9.13. Prove Corollary 9.4.3.

9.14. Show that the optimization problem admits a finite optimal objective value if
and only if the weight w is Z-compatible.

9.15. Establish the converse of Proposition 9.4.6.

9.16. Prove Lemma 9.4.9.
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