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Preface

This book is concerned with results in graph theory in which linear algebra and
matrix theory play an important role. Although it is generally accepted that linear
algebra can be an important component in the study of graphs, traditionally, graph
theorists have remained by and large less than enthusiastic about using linear
algebra. The results discussed here are usually treated under algebraic graph theory,
as outlined in the classic books by Biggs [20] and by Godsil and Royle [39]. Our
emphasis on matrix techniques is even greater than what is found in these and
perhaps the subject matter discussed here might be termed linear algebraic graph
theory to highlight this aspect.

After recalling some matrix preliminaries in the Chap. 1, the next few chapters
outline the basic properties of some matrices associated with a graph. This is
followed by topics in graph theory such as regular graphs and algebraic connec-
tivity. Distance matrix of a tree and its generalized version for arbitrary graphs, the
resistance matrix, are treated in the next two chapters. The final chapters treat other
topics such as the Laplacian eigenvalues of threshold graphs, the positive definite
completion problem, and matrix games based on a graph.

We have kept the treatment at a fairly elementary level and resisted the temp-
tation of presenting up-to-date research work. Thus, several chapters in this book
may be viewed as an invitation to a vast area of vigorous current research. Only a
beginning is made here with the hope that it will entice the reader to explore further.
In the same vein, we often do not present the results in their full generality, but
present only a simpler version that captures the elegance of the result. Weighted
graphs are avoided, although most results presented here have weighted, and hence
more general, analogs.

The references for each chapter are listed at the end of the chapter. In addition, a
master bibliography is included. In a short note at the end of each chapter, we
indicate the primary references that we used. Often, we have given a different
treatment, as well as different proofs, of the results cited. We do not go into an
elaborate description of such differences.

It is a pleasure to thank Rajendra Bhatia for his diligent handling of the man-
uscript. Aloke Dey, Arbind Lal, Sukanta Pati, Sharad Sane, S. Sivaramakrishnan,

v

http://dx.doi.org/10.1007/978-1-4471-6569-9_1


and Murali Srinivasan read either all or parts of the manuscript, suggested changes
and pointed out corrections. I sincerely thank them all. Thanks are also due to the
anonymous referees for helpful comments. Needless to say I remain responsible for
the shortcomings and errors that persist. The facilities provided by the Indian
Statistical Institute, New Delhi, and the support of the JC Bose Fellowship,
Department of Science and Technology, Government of India, are gratefully
acknowledged.

New Delhi, India Ravindra B. Bapat
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About the Second Edition

In this edition, besides correcting some errors and typos in the first edition, we
have added a new chapter on the line graph of a tree.

I sincerely thank Nazli Besharati, Arbind K. Lal, Ambat Vijayakumar, Anu
Varghese, and Seethu Varghese for pointing out corrections in the first edition. I
also thank Souvik Dhara, Ibrahim Ghorbani, and Rajesh Kannan for a careful
reading of the new chapter and for helpful suggestions.
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Chapter 1
Preliminaries

In this chapter we review certain basic concepts from linear algebra. We consider
only real matrices. Although our treatment is self-contained, the reader is assumed
to be familiar with the basic operations on matrices. Relevant concepts and results
are given, although we omit proofs.

1.1 Matrices

Basic Definitions

An m × n matrix consists of mn real numbers arranged in m rows and n columns.
The entry in row i and column j of the matrix A is denoted by aij. An m × 1 matrix is
called a column vector of order m; similarly, a 1× n matrix is a row vector of order
n. An m × n matrix is called a square matrix if m = n.

Operations of matrix addition, scalar multiplication and matrix multiplication are
basic and will not be recalled here. The transpose of the m × n matrix A is denoted
by A′.

A diagonal matrix is a square matrix A such that aij = 0, i �= j. We denote the
diagonal matrix ⎡

⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎦

by diag(λ1, . . . ,λn).When λi = 1 for all i, this matrix reduces to the identity matrix
of order n, which we denote by In or often simply by I if the order is clear from the
context. The matrix A is upper triangular if aij = 0, i > j. The transpose of an upper
triangular matrix is lower triangular.

© Springer-Verlag London 2014
R.B. Bapat, Graphs and Matrices, Universitext,
DOI 10.1007/978-1-4471-6569-9_1
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2 1 Preliminaries

Trace and Determinant

Let A be a square matrix of order n. The entries a11, . . . , ann are said to constitute
the (main) diagonal of A. The trace of A is defined as

traceA = a11 + · · · + ann.

It follows from this definition that if A, B are matrices such that both AB and BA are
defined, then

traceAB = traceBA.

The determinant of an n × n matrix A, denoted by det A, is defined as

det A =
∑
σ

sgn(σ)a1σ(1) · · · anσ(n),

where the summation is over all permutations σ(1), . . . ,σ(n) of 1, . . . , n, and sgn(σ)

is 1 or −1 according as σ is even or odd. We assume familiarity with the basic
properties of determinant.

Vector Spaces Associated with a Matrix

Let IR denote the set of real numbers. Consider the set of all column vectors of
order n (n × 1 matrices) and the set of all row vectors of order n (1 × n matrices).
Both of these sets will be denoted by IRn. We will write the elements of IRn either
as column vectors or as row vectors, depending upon whichever is convenient in a
given situation. Recall that IRn is a vector space with the operations matrix addition
and scalar multiplication.

Let A be an m × n matrix. The subspace of IRm spanned by the column vectors of
A is called the column space or the column span of A. Similarly the subspace of IRn

spanned by the row vectors of A is called the row space of A.
According to the fundamental theorem of linear algebra, the dimension of the

column space of a matrix equals the dimension of the row space, and the common
value is called the rank of the matrix. We denote the rank of the matrix A by rankA.

For any matrix A, rankA = rankA′. If A and B are matrices of the same order,
then rank(A + B) ≤ rankA + rankB. If A and B are matrices such that AB is defined,
then rankAB ≤ min{rankA, rankB}.

Let A be an m × n matrix. The set of all vectors x ∈ IRn such that Ax = 0 is easily
seen to be a subspace of IRn. This subspace is called the null space of A, and we
denote it by N (A). The dimension of N (A) is called the nullity of A. Let A be an
m × n matrix. Then the nullity of A equals n – rankA.
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Minors

Let A be an m × n matrix. If S ⊂ {1, . . . , m}, T ⊂ {1, . . . , n}, then A[S|T ] will
denote the submatrix ofA determined by the rows corresponding to S and the columns
corresponding toT .The submatrix obtained by deleting the rows in S and the columns
in T will be denoted by A(S|T). Thus, A(S|T) = A[Sc|Tc], where the superscript
c denotes complement. Often, we tacitly assume that S and T are such that these
matrices are not vacuous. When S = {i}, T = {j} are singletons, then A(S|T) is
denoted A(i|j).

Nonsingular Matrices

A matrix A of order n × n is said to be nonsingular if rankA = n; otherwise the
matrix is singular. If A is nonsingular, then there is a unique n×n matrix A−1, called
the inverse of A, such that AA−1 = A−1A = I. A matrix is nonsingular if and only
if det A is nonzero.

The cofactor of aij is defined as (−1)i+j det A(i|j). The adjoint of A is the n × n
matrix whose (i, j)th entry is the cofactor of aji. We recall that if A is nonsingular,

then A−1 is given by
1

det A
times the adjoint of A.

Amatrix is said to have full column rank if its rank equals the number of columns,
or equivalently, the columns are linearly independent. Similarly, a matrix has full row
rank if its rows are linearly independent. If B has full column rank, then it admits a
left inverse, that is, a matrix X such that XB = I. Similarly, if C has full row rank,
then it has a right inverse, that is, a matrix Y such that CY = I.

If A is an m × n matrix of rank r then we can write A = BC, where B is m × r of
full column rank and C is r ×n of full row rank. This is called a rank factorization of
A. There exist nonsingular matrices P and Q of order m × m and n × n, respectively,
such that

A = P

[
Ir 0
0 0

]
Q.

This is the rank canonical form of A.

Orthogonality

Vectors x, y in IRn are said to be orthogonal, or perpendicular, if x′y = 0. A set of
vectors {x1, . . . , xm} in IRn is said to form an orthonormal basis for the vector space
S if the set is a basis for S, and furthermore x′

ixj is 0 if i �= j, and 1 if i = j. The
n × n matrix P is said to be orthogonal if PP′ = P′P = I. One can verify that if P is
orthogonal then P′ is orthogonal.
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If x1, . . . , xk are linearly independent vectors then by the Gram–Schmidt orthog-
onalization process we may construct orthonormal vectors y1, . . . , yk such that yi is
a linear combination of x1, . . . , xi; i = 1, . . . , k.

Schur Complement

Let A be an n × n matrix partitioned as

A =
[

A11 A12
A21 A22

]
, (1.1)

where A11 and A22 are square matrices. If A11 is nonsingular then the Schur comple-
ment of A11 in A is defined to be the matrix A22 − A21A−1

11 A12. Similarly, if A22 is
nonsingular then the Schur complement of A22 in A is A11 − A12A−1

22 A21.

The following identity is easily verified:

[
I 0

−A21A−1
11 I

] [
A11 A12
A21 A22

] [
I −A−1

11 A12
0 I

]
=

[
A11 0
0 A22 − A21A−1

11 A12

]
. (1.2)

The following useful fact can be easily proved using (1.2):

det A = (det A11) det(A22 − A21A−1
11 A12). (1.3)

We will refer to (1.3) as the Schur complement formula, or the Schur formula, for
the determinant.

Inverse of a Partitioned Matrix

Let A be an n × n nonsingular matrix partitioned as in (1.1). Suppose A11 is square
and nonsingular and let A/A11 = A22−A21A−1

11 A12 be the Schur complement of A11.

Then

A−1 =
[

A−1
11 + A−1

11 A12(A/A11)
−1A21A−1

11 −A−1
11 A12(A/A11)

−1

−(A/A11)
−1A21A−1

11 (A/A11)
−1

]
.

Note that ifA andA11 are nonsingular, thenA/A11 must be nonsingular. Equivalent
formulae may be given in terms of the Schur complement of A22.
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Cauchy–Binet Formula

Let A and B be matrices of order m × n and n × m respectively, where m ≤ n. Then

det(AB) =
∑

det A[{1, . . . , m}|S] det B[S|{1, . . . , m}],

where the summation is over all m-element subsets of {1, . . . , n}.
To illustrate by an example, let

A =
[
2 3 −1
4 0 2

]
, B =

⎡
⎣
1 −2
0 3
5 1

⎤
⎦ .

Then det(AB) equals

det

[
2 3
4 0

] [
1 −2
0 3

]
+ det

[
2 −1
4 2

] [
1 −2
5 1

]
+ det

[
3 −1
0 2

] [
0 3
5 1

]
.

1.2 Eigenvalues of Symmetric Matrices

Characteristic Polynomial

LetA be an n×nmatrix. The determinant det(A−λI) is a polynomial in the (complex)
variable λ of degree n and is called the characteristic polynomial of A. The equation

det(A − λI) = 0

is called the characteristic equation of A. By the fundamental theorem of algebra
the equation has n complex roots and these roots are called the eigenvalues of A.

We remark that it is customary to define the characteristic polynomial of A as
det(λI − A) as well. This does not affect the eigenvalues.

The eigenvalues might not all be distinct. The number of times an eigenvalue
occurs as a root of the characteristic equation is called the algebraic multiplicity of
the eigenvalue.

We may factor the characteristic polynomial as

det(A − λI) = (λ1 − λ) · · · (λn − λ).

The geometric multiplicity of the eigenvalue λ of A is defined to be the dimension
of the null space of A − λI. The geometric multiplicity of an eigenvalue does not
exceed its algebraic multiplicity.
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If A and B are matrices of order m × n and n × m, respectively, where m ≥ n,

then the eigenvalues of AB are the same as the eigenvalues of BA, along with 0 with
a (possibly further) multiplicity of m − n.

If λ1, . . . ,λn are the eigenvalues of A, then det A = λ1 · · · λn, while trace A =
λ1 + · · · + λn.

A principal submatrix of a square matrix is a submatrix formed by a set of rows
and the corresponding set of columns. A principal minor of A is the determinant of
a principal submatrix. A leading principal minor is a principal minor involving rows
and columns 1, . . . , k for some k.

The sum of the products of the eigenvalues, of A, taken k at a time, equals the
sum of the k × k principal minors of A. When k = 1 this reduces to the familiar fact
that the sum of the eigenvalues equals the trace.

If λ1, . . . ,λn are the eigenvalues of the n×n matrix A, and if q(A) is a polynomial
in A, then the eigenvalues of q(A) are q(λ1), . . . , q(λn).

If A is an n × n matrix with the characteristic polynomial p(A), then the Cayley–
Hamilton theorem asserts that p(A) = 0. The monic polynomial q(x) of minimum
degree that satisfies q(A) = 0 is called the minimal polynomial of A.

Spectral Theorem

A square matrix A is called symmetric if A = A′. The eigenvalues of a symmetric
matrix are real. Furthermore, if A is a symmetric n × n matrix, then according to the
spectral theorem there exists an orthogonal matrix P such that

PAP′ =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎦ .

In the case of a symmetric matrix the algebraic and the geometric multiplicities of
any eigenvalue coincide. Also, the rank of the matrix equals the number of nonzero
eigenvalues, counting multiplicities.

Let A and B be symmetric n × n matrices such that they commute, i.e., AB = BA.

Then A and B can be simultaneously diagonalized, that is, there exists an orthogonal
matrix P such that PAP′ and PBP′ are both diagonal, with the eigenvalues of A
(respectively, B) along the diagonal PAP′ (respectively, PBP′).

Positive Definite Matrices

An n × n matrix A is said to be positive definite if it is symmetric and if for any
nonzero vector x, x′Ax > 0. The identity matrix is clearly positive definite and so is
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a diagonal matrix with only positive entries along the diagonal. Let A be a symmetric
n × n matrix. Then any of the following conditions is equivalent to A being positive
definite:

(i) the eigenvalues of A are positive;
(ii) all principal minors of A are positive;
(iii) all leading principal minors of A are positive;
(iv) A = BB′ for some matrix B of full column rank;
(v) A = TT′ for some lower triangular matrix T with positive diagonal entries.

A symmetric matrix A is called positive semidefinite if x′Ax ≥ 0 for any x.
Equivalent conditions for a matrix to be positive semidefinite can be given similarly.
However, note that the leading principal minors of A may be nonnegative and yet A

may not be positive semidefinite. This is illustrated by the example

[
0 0
0 −1

]
. Also,

in (v), the diagonal entries of T need only be nonnegative.
If A is positive semidefinite then there exists a unique positive semidefinite matrix

B such that B2 = A. The matrix B is called the square root of A and is denoted by
A1/2.

Let A be an n × n matrix partitioned as

A =
[

A11 A12
A21 A22

]
, (1.4)

where A11 and A22 are square matrices.
The following facts can be easily proved using (1.2):

(i) If A is positive definite then A22 − A21A−1
11 A12 is positive definite;

(ii) Let A be symmetric. If A11 and its Schur complement A22 −A21A−1
11 A12 are both

positive definite then A is positive definite.

Interlacing for Eigenvalues

The following result, known as the Cauchy interlacing theorem, finds considerable
use in graph theory.

Let A be a symmetric n × n matrix and let B be a principal submatrix of A of
order n − 1. If λ1 ≥ · · · ≥ λn and μ1 ≥ · · · ≥ μn−1 are the eigenvalues of A and B,
respectively, then

λ1 ≥ μ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ μn−1 ≥ λn. (1.5)

A related interlacing result is as follows. Let A and B be symmetric n×n matrices
and let A = B + xx′ for some vector x. If λ1 ≥ · · · ≥ λn and μ1 ≥ · · · ≥ μn are the
eigenvalues of A and B respectively, then
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λ1 ≥ μ1 ≥ λ2 ≥ · · · ≥ λn ≥ μn. (1.6)

Let A be a symmetric n × n matrix with eigenvalues λ1(A) ≥ · · · ≥ λn(A),

arranged in nonincreasing order. Let ||x|| denote the usual Euclidean norm,(∑n
i=1 x2i

) 1
2 . The following extremal representation will be useful:

λ1(A) = max||x||=1
{x′Ax}, λn(A) = min||x||=1

{x′Ax}.

Setting x to be the ith column of I in the above representation we see that

λn(A) ≤ min
i

{aii} ≤ max
i

{aii} ≤ λ1(A).

1.3 Generalized Inverses

Let A be an m × n matrix. A matrix G of order n × m is said to be a generalized
inverse (or a g-inverse) of A if AGA = A. If A is square and nonsingular then A−1

is the unique g-inverse of A. Otherwise, A has infinitely many g-inverses, as we will
see shortly.

Let A be an m × n matrix and let G be a g-inverse of A. If Ax = b is consistent
then x = Gb is a solution of Ax = b.

Let A = BC be a rank factorization. Then B admits a left inverse B−
� and C admits

a right inverse C−
r . Then G = C−

r B−
� is a g-inverse of A, since

AGA = BC(C−
r B−

� )BC = BC = A.

Alternatively, if A has rank r then there exist nonsingular matrices P, Q such that

A = P

[
Ir 0
0 0

]
Q.

It can be verified that for any U, V , W of appropriate dimensions,

[
Ir U
V W

]

is a g-inverse of [
Ir 0
0 0

]
.

Then

G = Q−1
[

Ir U
V W

]
P−1
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is a g-inverse of A. This also shows that any matrix that is not a square, nonsingular
matrix admits infinitely many g-inverses.

Another method that is particularly suitable for computing a g-inverse is as fol-
lows.LetAbeof rank r.Choose any r×r nonsingular submatrix ofA.For convenience
let us assume

A =
[

A11 A12
A21 A22

]
,

where A11 is r × r and nonsingular. Since A has rank r, there exists a matrix X such
that A12 = A11X, A22 = A21X.Now it can be verified that the n×m matrixG defined
as

G =
[

A−1
11 0
0 0

]

is a g-inverse of A. (Just multiply AGA out to see this.) We will often use the notation
A− to denote a g-inverse of A.

A g-inverse of A is called a reflexive g-inverse if it also satisfies GAG = G.

Observe that if G is any g-inverse of A then GAG is a reflexive g-inverse of A.

Let A be an m × n matrix, G be a g-inverse of A and y be in the column space
of A. Then the class of solutions of Ax = y is given by Gy + (I − GA)z, where z is
arbitrary.

A g-inverse G of A is said to be a minimum norm g-inverse of A if, in addition to
AGA = A, it satisfies (GA)′ = GA. If G is a minimum norm g-inverse of A, then for
any y in the column space of A, x = Gy is a solution of Ax = y with minimum norm.
A proof of this fact will be given in Chap.9.

A g-inverse G of A is said to be a least squares g-inverse of A if, in addition to
AGA = A, it satisfies (AG)′ = AG. If G is a least squares g-inverse of A then for any
x, y, ||AGy − y|| ≤ ||Ax − y||.

Moore–Penrose Inverse

If G is a reflexive g-inverse of A that is both minimum norm and least squares then
it is called a Moore–Penrose inverse of A. In other words, G is a Moore–Penrose
inverse of A if it satisfies

AGA = A, GAG = G, (AG)′ = AG, (GA)′ = GA. (1.7)

Wewill show that such aG exists and is, in fact, unique.We first show uniqueness.
Suppose G1, G2 both satisfy (1.7). Then we must show G1 = G2. The derivation is
as follows.

http://dx.doi.org/10.1007/978-1-4471-6569-9_9
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G1 = G1AG1 = G1G′
1A′ = G1G′

1A′G′
2A′ = G1G′

1A′AG2

= G1AG1AG2 = G1AG2 = G1AG2AG2 = G1AA′G′
2G2

= A′G′
1A′G′

2G2 = A′G′
2G2 = G2AG2 = G2.

We will denote the Moore–Penrose inverse of A by A+. We now show the exis-
tence. Let A = BC be a rank factorization. Then it can be easily verified that

B+ = (B′B)−1B′, C+ = C′(CC′)−1

and then
A+ = C+B+.

Let A be a symmetric n × n matrix and let P be an orthogonal matrix such that

A = P diag(λ1, . . . ,λn)P
′.

If λ1, . . . ,λr are the nonzero eigenvalues then

A+ = P diag
(

1

λ1
, . . . ,

1

λr
, 0, . . . , 0

)
P′.

In particular, if A is positive semidefinite, then so is A+.

1.4 Graphs

We assume familiarity with basic theory of graphs. A graph G consists of a finite
set of vertices V(G) and a set of edges E(G) consisting of distinct, unordered pairs
of vertices. We usually take V(G) to be {1, . . . , n} and E(G) to be {e1, . . . , em}.
We may refer to edges j1, j2, . . . when we actually mean edges ej1 , ej2 , . . . . We
consider simple graphs, that is, graphs without loops and parallel edges. Our
emphasis is on undirected graphs. However, we do consider directed graphs as
well.

If ek is an edge with end-vertices i and j, then we say that ek and i or ek and j are
incident. We also write ek = {i, j}. The notation i ∼ j is used to indicate that i and j
are joined by an edge, or that they are adjacent.

Notions such as connected graph, subgraph, degree, path, cycle and so on are
standard and will not be recalled here. The complement of the graph G will be
denoted byGc.The complete graph on n verticeswill be denoted byKn.The complete
bipartite graph with partite sets of cardinality m, n, will be denoted by Km,n. Note
that K1,n is called a star. Further notions will be recalled as and when the need arises.
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Exercises

1. Let A be an m × n matrix. Show that A and A′A have the same null space. Hence
conclude that rankA = rankA′A.

2. Let A be a matrix in partitioned form:

A =

⎡
⎢⎢⎢⎣

A11 0 · · · 0
A21 A22 · · · 0
...

. . .
...

Ak1 Ak2 · · · Akk

⎤
⎥⎥⎥⎦ .

Show that rankA ≥ rankA11 + · · ·+ rankAkk, and that equality holds if Aij = 0,
i > j.

3. Let A be an orthogonal n × n matrix. Show that a11 and det A(1|1) have the same
absolute value.

4. LetA andG bematrices of orderm×n and n×m, respectively. Show thatG = A+
if and only if A′AG = A′ and G′GA = G′.

5. If A is a matrix of rank 1, then show that A+ = αA′ for some α. Determine α.

It would be difficult to list the many excellent books that provide the necessary
background outlined in this chapter. A few selected references are indicated below.

The books [Bap00] and [HJ85] contain the required matrix theory preliminaries,
while [BM08] and [Wes02] are standard introductions to graph theory. The books
[BG03] and [CM79] are comprehensive references on generalized inverses.
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Chapter 2
Incidence Matrix

Let G be a graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. Suppose each
edge of G is assigned an orientation, which is arbitrary but fixed. The (vertex-edge)
incidence matrix of G, denoted by Q(G), is the n×m matrix defined as follows. The
rows and the columns of Q(G) are indexed by V (G) and E(G), respectively. The
(i, j)-entry of Q(G) is 0 if vertex i and edge e j are not incident, and otherwise it is
1 or −1 according as e j originates or terminates at i, respectively. We often denote
Q(G) simply by Q. Whenever we mention Q(G) it is assumed that the edges of G
are oriented.

Example 2.1 Consider the graph shown. Its incidence matrix is given by Q.

Q =

⎡
⎢⎢⎢⎢⎣

−1 1 −1 0 0 0
1 0 0 −1 0 0
0 −1 0 0 1 0
0 0 1 0 0 −1
0 0 0 1 −1 1

⎤
⎥⎥⎥⎥⎦

© Springer-Verlag London 2014
R.B. Bapat, Graphs and Matrices, Universitext,
DOI 10.1007/978-1-4471-6569-9_2
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2.1 Rank

For any graph G, the column sums of Q(G) are zero and hence the rows of Q(G)

are linearly dependent. We now proceed to determine the rank of Q(G).

Lemma 2.2 If G is a connected graph on n vertices, then rank Q(G) = n − 1.

Proof Suppose x is a vector in the left null space of Q := Q(G), that is, x ′Q = 0.
Then xi − x j = 0 whenever i ∼ j. It follows that xi = x j whenever there is an
i j-path. Since G is connected, x must have all components equal. Thus, the left null
space of Q is at most one-dimensional and therefore the rank of Q is at least n − 1.
Also, as observed earlier, the rows of Q are linearly dependent and therefore rank
Q ≤ n − 1. Hence, rank Q = n − 1. �

Theorem 2.3 If G is a graph on n vertices and has k connected components then
rank Q(G) = n − k.

Proof Let G1, . . . , Gk be the connected components of G. Then, after a relabeling
of vertices (rows) and edges (columns) if necessary, we have

Q(G) =

⎡
⎢⎢⎢⎣

Q(G1) 0 · · · 0
0 Q(G2) 0
...

. . .
...

0 0 · · · Q(Gk)

⎤
⎥⎥⎥⎦ .

Since Gi is connected, rank Q(Gi ) is ni − 1, where ni is the number of vertices
in Gi , i = 1, . . . , k. It follows that

rank Q(G) = rank Q(G1) + · · · + rank Q(Gk)

= (n1 − 1) + · · · + (nk − 1)

= n1 + · · · + nk − k = n − k.

This completes the proof.

Lemma 2.4 Let G be a connected graph on n vertices. Then the column
space of Q(G) consists of all vectors x ∈ IRn such that

∑
i xi = 0.

Proof Let U be the column space of Q(G) and let

W =
{

x ∈ IRn :
n∑

i=1

xi = 0

}
.

Then dim W = n − 1. Each column of Q(G) is clearly in W and hence U ⊂ W. It
follows by Lemma 2.2 that
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n − 1 = dimU ≤ dim W = n − 1.

Therefore, dimU = dim W. Thus, U = W and the proof is complete. �

Lemma 2.5 Let G be a graph on n vertices. Columns j1, . . . , jk of Q(G) are linearly
independent if and only if the corresponding edges of G induce an acyclic graph.

Proof Consider the edges j1, . . . , jk and suppose there is a cycle in the corresponding
induced subgraph. Without loss of generality, suppose the columns j1, . . . , jp form
a cycle. After relabeling the vertices if necessary, we see that the submatrix of Q(G)

formed by the columns j1, . . . , jp is of the form

[
B
0

]
,where B is the p×p incidence

matrix of the cycle formed by the edges j1, . . . , jp. Note that B is a square matrix
with column sums zero. Thus, B is singular and the columns j1, . . . , jp are linearly
dependent. This proves the “only if” part of the lemma.

Conversely, suppose the edges j1, . . . , jk induce an acyclic graph, that is, a forest.
If the forest has q components then clearly k = n − q, which by Theorem 2.3, is
the rank of the submatrix formed by the columns j1, . . . , jk . Therefore, the columns
j1, . . . , jk are linearly independent.. �

2.2 Minors

A matrix is said to be totally unimodular if the determinant of any square submatrix
of the matrix is either 0 or ±1. It is easily proved by induction on the order of the
submatrix that Q(G) is totally unimodular as seen in the next result.

Lemma 2.6 Let G be a graph with incidence matrix Q(G). Then Q(G) is totally
unimodular.

Proof Consider the statement that any k × k submatrix of Q(G) has determinant 0
or ±1. We prove the statement by induction on k. Clearly the statement holds for
k = 1, since each entry of Q(G) is either 0 or ±1. Assume the statement to be true
for k − 1 and consider a k × k submatrix B of Q(G). If each column of B has a
1 and a −1, then det B = 0. Also, if B has a zero column, then det B = 0. Now
suppose B has a column with only one nonzero entry, which must be ±1. Expand
the determinant of B along that column and use induction assumption to conclude
that det B must be 0 or ±1. �

Lemma 2.7 Let G be a tree on n vertices. Then any submatrix of Q(G) of order
n − 1 is nonsingular.

Proof Consider the submatrix X of Q(G) formed by the rows 1, . . . , n − 1. If we
add all the rows of X to the last row, then the last row of X becomes the negative
of the last row of Q(G). Thus, if Y denotes the submatrix of Q(G) formed by the
rows 1, . . . , n − 2, n, then det X = − det Y. Thus, if det X = 0, then det Y = 0.



16 2 Incidence Matrix

Continuing this way we can show that if det X = 0 then each (n − 1) × (n − 1)
submatrix of Q(G) must be singular. In fact, we can show that if any one of the
(n−1)×(n−1) submatrices of Q(G) is singular, then all of themmust be so.However,
by Lemma 2.2, rank Q(G) = n − 1 and hence at least one of the (n − 1) × (n − 1)
submatrices of Q(G) must be nonsingular. �

We indicate another argument to prove Lemma 2.7. Consider any n − 1 rows of
Q(G). Without loss of generality, we may consider the rows 1, 2, . . . , n − 1, and let
B be the submatrix of Q(G) formed by these rows. Let x be a row vector of n − 1
components in the row null space of B. Exactly as in the proof of Lemma 2.2, we
may conclude that xi = 0 whenever i ∼ n, and then the connectedness of G shows
that x must be the zero vector.

Lemma 2.8 Let A be an n × n matrix and suppose A has a zero submatrix of order
p × q where p + q ≥ n + 1. Then det A = 0.

Proof Without loss of generality, suppose the submatrix formed by the first p rows
and the first q columns of A is the zero matrix. If p ≥ q, then evaluating det A by
Laplace expansion in terms of the first p rows we see that det A = 0. Similarly, if
p < q, then by evaluating by Laplace expansion in terms of the first q columns, we
see that det A = 0. �

We return to a general graph G, which is not necessarily a tree. Any submatrix
of Q(G) is indexed by a set of vertices and a set of edges. Consider a square sub-
matrix B of Q(G) with the rows corresponding to the vertices i1, . . . , ik and the
columns corresponding to the edges e j1 , . . . , e jk . We call the object formed by these
vertices and edges a substructure of G. Note that a substructure is not necessarily a
subgraph, since one or both end-vertices of some of the edges may not be present in
the substructure.

If we take a tree and delete one of its vertices, but not the incident edges, then
the resulting substructure will be called a rootless tree. In view of Lemma 2.7, the
incidence matrix of a rootless tree is nonsingular. Clearly, if we take a vertex-disjoint
union of several rootless trees, then the incidence matrix of the resulting substructure
is again nonsingular, since it is a direct sum of the incidencematrices of the individual
rootless trees.

Example 2.9 The following substructure is a vertex-disjoint union of rootless trees.
The deleted vertices are indicated as hollow circles.
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The incidence matrix of the substructure is given by
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 −1 0
0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

and is easily seen to be nonsingular. Note that the rows of the incidence matrix are
indexed by the vertices 1, 3, 4, 5, 8, and 9, respectively.

Let G be a graph with the vertex set V (G) = {1, 2, . . . , n} and the edge set
{e1, . . . , em}. Consider a submatrix X of Q(G) indexed by the rows i1, . . . , ik and
the columns j1, . . . , jk . It can be seen that if X is nonsingular then it corresponds
to a substructure which is a vertex-disjoint union of rootless trees. A sketch of the
argument is as follows. Since X is nonsingular, it does not have a zero row or column.
Then, after a relabeling of rows and columns if necessary, we may write

X =

⎡
⎢⎢⎢⎣

X1 0 · · · 0
0 X2 0
...

. . .

0 0 Xt

⎤
⎥⎥⎥⎦ .

If any Xi is not square, then X must have a zero submatrix of order p × q with
p + q ≥ k + 1. It follows by Lemma 2.8, that det X = 0 and X is singular. Hence,
each Xi is a square matrix. Consider the substructure Si corresponding to Xi . If Si

has a cycle then by Lemma 2.5 Xi is singular. If Si is acyclic then since, it has an
equal number of vertices and edges, it must be a rootless tree.

2.3 Path Matrix

Let G be a graph with the vertex set V (G) = {1, 2, . . . , n} and the edge set E(G) =
{e1, . . . , em}. Given a path P in G, the incidence vector of P is an m × 1 vector
defined as follows. The entries of the vector are indexed by E(G). If ei ∈ E(G) then
the i th element of the vector is 0 if the path does not contain ei . If the path contains ei

then the entry is 1 or −1, according as the direction of the path agrees or disagrees,
respectively, with ei .

Let G be a tree with the vertex set {1, 2, . . . , n}. We identify a vertex, say n, as
the root. The path matrix Pn of G (with reference to the root n) is defined as follows.
The j th column of Pn is the incidence vector of the (unique) path from vertex j to
n, j = 1, . . . , n − 1.
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Theorem 2.10 Let G be a tree with the vertex set {1, 2, . . . , n}. Let Q be the inci-
dence matrix of G and let Qn be the reduced incidence matrix obtained by deleting
row n of Q. Then Q−1

n = Pn .

Proof Let m = n − 1. For i �= j, consider the (i, j)-element of Pn Qn, which is∑m
k=1 pikqk j . Suppose ei is directed from x to y, and e j is directed from w to z.

Then qkj = 0 unless k = w or k = z. Thus,

m∑
k=1

pikqk j = piwqw j + pizqz j .

As i �= j, we see that the path from w to n contains ei if and only if the path from
z to n contains ei . Furthermore, when piw and piz are nonzero, they both have the
same sign. Since qw j = 1 = −qzj , it follows that

∑m
k=1 pikqk j = 0.

If i = j, then we leave it as an exercise to check that
∑m

k=1 pikqki = 1. This
completes the proof. �

2.4 Integer Generalized Inverses

An integer matrix need not admit an integer g-inverse. A trivial example is a matrix
with each entry equal to 2. Certain sufficient conditions for an integer matrix to
have at least one integer generalized inverse are easily given. We describe some such
conditions and show that the incidence matrix of a graph belongs to the class.

A square integer matrix is called unimodular if its determinant is ±1.

Lemma 2.11 Let A be an n × n integer matrix. Then A is nonsingular and admits
an integer inverse if and only if A is unimodular.

Proof If det A = ±1, then
1

det A
adjA is the integer inverse of A.Conversely, if A−1

exists and is an integer matrix, then from AA−1 = I we see that (det A)(det A−1) =
1 and hence det A = ±1. �

The next result gives the well-known Smith normal form of an integer matrix.

Theorem 2.12 Let A be an m × n integer matrix. Then there exist unimodular
matrices S and T of order m × m and n × n, respectively, such that

S AT =
[

diag(z1, . . . , zr ) 0
0 0

]
,

where z1, . . . , zr are positive integers (called the invariant factors of A) such that
zi divides zi+1, i = 1, 2, . . . , r − 1. Furthermore, z1 . . . zi = di , where di is the
greatest common divisor of all i × i minors of A, i = 1, . . . ,min{m, n}.
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In Theorem 2.12 suppose each zi = 1. Then it is easily verified that T

[
Ir 0
0 0

]
S

is an integer g-inverse of A.

Note that if A is an integer matrix which has integer rank factorization A = F H,

where F admits an integer left inverse F− and H admits an integer right inverse
H−, then H−F− is an integer g-inverse of A.

We denote the column vector consisting of all 1 s by 1. The order of the vector
will be clear from the context. Similarly the matrix of all 1 s will be denoted by J.

We may indicate the n × n matrix of all 1 s by Jn as well.
In the next result we state the Smith normal form and an integer rank factorization

of the incidence matrix explicitly.

Theorem 2.13 Let G be a graph with vertex set V (G) = {1, 2, . . . , n} and edge set
{e1, . . . , em}. Suppose the edges e1, . . . , en−1 form a spanning tree of G. Let Q1 be
the submatrix of Q formed by the rows 1, . . . , n − 1 and the columns e1, . . . , en−1.

Let q = m − n + 1. Partition Q as follows:

Q =
[

Q1 Q1N
−1′Q1 −1′Q1N

]
.

Set

B =
[

Q−1
1 0
0 0

]
,

S =
[

Q−1
1 0

1′ 1

]
, T =

[
In−1 −N
0 Iq

]
,

F =
[

Q1
−1′Q1

]
, H = [

In−1 N
]
.

Then the following assertions hold:

(i) B is an integer reflexive g-inverse of Q.

(ii) S and T are unimodular matrices.

(iii) SQT =
[

In−1 0
0 0

]
is the Smith normal form of Q.

(iv) Q = F H is an integer rank factorization of Q.

The proof of Theorem 2.13 is by a simple verification and is omitted. Also note
that F admits an integer left inverse and H admits an integer right inverse.
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2.5 Moore–Penrose Inverse

We now turn our attention to the Moore–Penrose inverse Q+ of Q. We first prove
some preliminary results. The next result is the well-known fact that the null space
of A+ is the same as that of A′ for any matrix A. We include a proof.

Lemma 2.14 If A is an m × n matrix, then for an n × 1 vector x, Ax = 0 if and
only if x ′ A+ = 0.

Proof If Ax = 0 then A+ Ax = 0 and hence x ′(A+ A)′ = 0. Since A+ A is symmet-
ric, it follows that x ′ A+ A = 0. Hence, x ′ A+ AA+ = 0, and it follows that x ′ A+ = 0.
The converse follows since (A+)+ = A. �

Lemma 2.15 If G is connected, then I − Q Q+ = 1
n J.

Proof Note that (I − Q Q+)Q = 0. Thus, any row of I − Q Q+ is in the left null
space of Q. Since G is connected, the left null space of Q is spanned by the vector
1′. Thus, any row of I − Q Q+ is a multiple of any other row. Since I − Q Q+ is
symmetric, it follows that all the elements of I − Q Q+ are equal to a constant. The
constant must be nonzero, since Q cannot have a right inverse. Now using the fact
that I − Q Q+ is idempotent, it follows that it must equal 1

n J. �

Let G be a graph with V (G) = {1, 2, . . . , n} and E(G) = {e1, . . . , em}. Suppose
the edges e1, . . . , en−1 form a spanning tree of G. Partition Q as follows:

Q = [
U V

]
,

where U is n × (n − 1) and V is n × (m − n + 1). Also, let Q+ be partitioned as

Q+ =
[

X
Y

]
,

where X is (n − 1) × n and Y is (m − n + 1) × n.

There exists an (n − 1) × (m − n + 1) matrix D such that V = U D. By Lemma
2.14 it follows that Y = D′ X. Let M = I − 1

n J. By Lemma 2.15

M = Q Q+ = U X + V Y = U X + U DD′ X = U (I + DD′)X.

Thus, for any i, j,
Ui (I + DD′)X j = M(i, j),

where Ui is U with row i deleted, and X j is X with column j deleted.
By Lemma 2.7, Ui is nonsingular. Also, DD′ is positive semidefinite and thus

I + DD′ is nonsingular. Therefore, Ui (I + DD′) is nonsingular and

X j = (Ui (I + DD′))−1M(i, j).
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Once X j is determined, the j th column of X is obtained using the fact that Q+1 = 0.
Then Y is determined, since Y = D′ X.

We illustrate the above method of calculating Q+ by an example. Consider the
graph

with the incidence matrix
⎡
⎢⎢⎣

1 0 0 1 0
−1 1 0 0 1
0 −1 −1 0 0
0 0 1 −1 −1

⎤
⎥⎥⎦ .

Fix the spanning tree formed by {e1, e2, e3}. Then Q = [
U V

]
where U is

formed by the first three columns of Q. Observe that V = U D, where

D =
⎡
⎣

1 0
1 1

−1 −1

⎤
⎦ .

Set i = j = 4. Then Q+ =
[

X
Y

]
where

X4 = (U4(I + DD′))−1M(4, 4) = 1

8

⎡
⎣
3 −2 −1
1 2 −3
1 0 −3

⎤
⎦ .

The last column of X is found using the fact that the row sums of X are zero. Then
Y = D′ X. After these calculations we see that

Q+ =
[

X
Y

]
= 1

8

⎡
⎢⎢⎢⎢⎣

3 −2 −1 0
1 2 −3 0
1 0 −3 2
3 0 −1 −2
0 2 0 −2

⎤
⎥⎥⎥⎥⎦

.
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2.6 0–1 Incidence Matrix

We now consider the incidence matrix of an undirected graph. Let G be a graph
with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. The (vertex-edge) incidence
matrix of G, which we denote by M(G), or simply by M, is the n × m matrix
defined as follows. The rows and the columns of M are indexed by V (G) and E(G),

respectively. The (i, j)-entry of M is 0 if vertex i and edge e j are not incident, and
otherwise it is 1. We often refer to M as the 0–1 incidence matrix for clarity. The
proof of the next result is easy and is omitted.

Lemma 2.16 Let Cn be the cycle on the vertices {1, . . . , n}, n ≥ 3, and let M be
its incidence matrix. Then det M equals 0 if n is even and 2 if n is odd.

Lemma 2.17 Let G be a connected graph with n vertices and let M be the incidence
matrix of G. Then the rank of M is n − 1 if G is bipartite and n otherwise.

Proof Suppose x ∈ IRn such that x ′M = 0. Then xi + x j = 0 whenever the vertices
i and j are adjacent. Since G is connected it follows that |xi | = α, i = 1, . . . , n, for
some constant α. Suppose G has an odd cycle formed by the vertices i1, . . . , ik . Then
going around the cycle and using the preceding observations we find that α = −α

and hence α = 0. Thus, if G has an odd cycle then the rank of M is n.

Now suppose G has no odd cycle, that is, G is bipartite. Let V (G) = X ∪ Y be a
bipartition. Orient each edge of G giving it the direction from X to Y and let Q be
the corresponding {0, 1,−1}-incidence matrix. Note that Q is obtained from M by
multiplying the rows corresponding to the vertices in Y by−1.Consider the columns
j1, . . . , jn−1 corresponding to a spanning tree ofG and let B be the submatrix formed
by these columns. By Lemma 2.7 any n − 1 rows of B are linearly independent and
(since rows of M and Q coincide up to a sign) the corresponding rows of M are also
linearly independent. Thus, rank M ≥ n − 1.

Let z ∈ IRn be the vector with zi equal to 1 or −1 according as i belongs to X or
to Y, respectively. Then it is easily verified that z′M = 0 and thus the rows of M are
linearly dependent. Thus, rank M = n − 1 and the proof is complete. �

A connected graph is said to be unicyclic if it contains exactly one cycle. We omit
the proof of the next result, since it is based on arguments as in the oriented case.

Lemma 2.18 Let G be a graph and let R be a substructure of G with an equal number
of vertices and edges. Let N be the incidence matrix of R. Then N is nonsingular
if and only if R is a vertex-disjoint union of rootless trees and unicyclic graphs with
the cycle being odd.

We summarize some basic properties of the minors of the incidence matrix of an
undirected graph.

Let M be the 0–1 incidencematrix of the graphG withn vertices. Let N be a square
submatrix of M indexed by the vertices and edges, which constitute a substructure
denoted by R. If N has a zero row or a zero column then, clearly, det N = 0. This
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case corresponds to R having an isolated vertex or an edge with both endpoints
missing. We assume this not to be the case.

Let R be the vertex-disjoint union of the substructures R1, . . . , Rk . After a rela-
beling of rows and columns if necessary, we have

N =

⎡
⎢⎢⎢⎣

N1 0 · · · 0
0 N2 0
...

. . .

0 0 Nk

⎤
⎥⎥⎥⎦ ,

where Ni is the incidence matrix of Ri , i = 1, . . . , k.

If Ni is not square for some i, then using Lemma 2.8, we conclude that N is
singular. Thus, if Ri has unequal number of vertices and edges for some i then
det N = 0.

If Ri is unicyclic for some i, with the cycle being even, then det N = 0. This
follows easily from Lemma 2.16.

Now suppose each Ni is square. Then each Ri is either a rootless tree or is unicyclic
with the cycle being odd. In the first case, det Ni = ±1 while in the second case
det Ni = ±2. Note that det N = ∏k

i=1 det Ni , Thus, in this case det N = ±2ω1(R),

where ω1(R) is the number of substructures R1, . . . , Rk that are unicyclic.
The concept of a substructure will not be needed extensively henceforth. It seems

essential to use the concept if one wants to investigate minors of incidence matrices.
We have not developed the idea rigorously and have tried to use it informally.

2.7 Matchings in Bipartite Graphs

Lemma 2.19 Let G be a bipartite graph. Then the 0–1 incidence matrix M of G is
totally unimodular.

Proof The proof is similar to that of Lemma 2.6. Consider the statement that any
k × k submatrix of M has determinant 0 or ±1. We prove the statement by induction
on k. Clearly the statement holds for k = 1, since each entry of M is either 0 or 1.
Assume the statement to be true for k −1 and consider a k ×k submatrix B of M. If B
has a zero column, then det B = 0. Suppose B has a column with only one nonzero
entry, which must be 1. Expand the determinant of B along that column and use the
induction assumption to conclude that det B must be 0 or ±1. Finally, suppose each
column of B has two nonzero entries. Let V (G) = X ∪ Y be the bipartition of G.

The sum of the rows of B corresponding to the vertices in X must equal the sum of
the rows of B corresponding to the vertices in Y. In fact both these sums will be 1′.
Therefore, B is singular in this case and det B = 0. This completes the proof. �
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Recall that a matching in a graph is a set of edges, no two of which have a vertex in
common. The matching number ν(G) of the graph G is defined to be the maximum
number of edges in a matching of G.

We need some background from the theory of linear inequalities and linear pro-
gramming in the following discussion.

Let G be a graph with V (G) = {1, . . . , n}, E(G) = {e1, . . . , em}. Let M be the
incidence matrix of G.Note that a 0–1 vector x of order m ×1 is the incidence vector
of a matching if and only if it satisfies Mx ≤ 1. Consider the linear programming
problem:

max{1′x} subject to x ≥ 0, Mx ≤ 1. (2.1)

In order to solve (2.1) we may restrict attention to the basic feasible solutions,
which are constructed as follows. Let rank M = r. Find a nonsingular r ×r submatrix
B of M and let y = B−11.Set the subvector of x corresponding to the rows in B equal
to y and set the remaining coordinates of x equal to 0. If the x thus obtained satisfies
x ≥ 0, Mx ≤ 1, then it is called a basic feasible solution. With this terminology
and notation we have the following.

Lemma 2.20 Let G be a bipartite graph with incidence matrix M. Then there exists
a 0–1 vector z which is a solution of (2.1).

Proof By Lemma 2.19, M is totally unimodular and hence for any nonsingular
submatrix B of M, B−1 is an integral matrix. By the preceding discussion, a basic
feasible solution of x ≥ 0, Mx ≤ 1 has only integral coordinates. Hence there is a
nonnegative, integral vector z which solves (2.1). Clearly if a coordinate of z is >1,
then z cannot satisfy Mz ≤ 1. Hence z must be a 0–1 vector. �

A vertex cover in a graph is a set of vertices such that each edge in the graph is
incident to one of the vertices in the set. The covering number τ(G) of the graph G
is defined to be the minimum number of vertices in a vertex cover of G.

As before, let G be a graph with V (G) = {1, . . . , n}, E(G) = {e1, . . . , em}. Let
M be the incidence matrix of G. Note that a 0–1 vector x of order n × 1 is the
incidence vector of a vertex cover if and only if it satisfies M ′x ≥ 1. Consider the
linear programming problem:

min{1′x} subject to x ≥ 0, M ′x ≥ 1 (2.2)

The proof of the next result is similar to that of Lemma2.20 and hence is
omitted.

Lemma 2.21 Let G be a bipartite graph with the incidence matrix M. Then there
exists a 0–1 vector z which is a solution of (2.2).

The following result is the well-knownKönig–Egervary theorem, which is central
to the matching theory of bipartite graphs.

Theorem 2.22 If G is a bipartite graph then ν(G) = τ(G).
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Proof Let M be the incidence matrix of G. The linear programming problems (2.1)
and (2.2) are dual to each other and their feasibility is obvious. Hence, by the duality
theorem, their optimal values are equal. As discussed earlier, the optimal values of the
two problems are ν(G) and τ(G), respectively. Hence it follows that ν(G) = τ(G).

�

Exercises

1. Let G be an oriented graph with the incidence matrix Q, and let B be a k × k
submatrix of Q which is nonsingular. Show that there is precisely one permutation
σ of 1, . . . , k for which the product b1σ(1) . . . bkσ(k) is nonzero. (The property
holds for the 0–1 incidence matrix as well.)

2. Let G be a connected graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}.
Suppose the edges of G are oriented, and let Q be the incidence matrix. Let y
be an n × 1 vector with one coordinate 1, one coordinate −1, and the remaining
coordinates zero. Show that there exists an m ×1 vector x with coordinates 0,±1
such that Qx = y. Give a graph-theoretic interpretation.

3. Let each edge of Kn be given an orientation and let Q be the incidence matrix.
Determine Q+.

4. Let M be the 0–1 incidence matrix of the graph G. Show that if M is totally
unimodular then G is bipartite.

5. Let A be an n × n 0–1 matrix. Show that the following conditions are equivalent:

(i) For any permutation σ of 1, . . . , n, a1σ(1) . . . anσ(n) = 0.
(ii) A has a zero submatrix of order r × s where r + s = n + 1.

Biggs [Big93] and Godsil and Royle [GR01] are essential references for the material
related to this chapter as well as that in Chaps 3–6. Relevant references for various
sections are as follows: Sect. 2.3: [Bap02], Sect. 2.4: [BHK81], Sect. 2.5: [Ij65],
Sect. 2.6: [GKS95], Sect. 2.7: [LP86].
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Chapter 3
Adjacency Matrix

Let G be a graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. The adjacency
matrix of G, denoted by A(G), is the n × n matrix defined as follows. The rows and
the columns of A(G) are indexed by V (G). If i �= j then the (i, j)-entry of A(G) is
0 for vertices i and j nonadjacent, and the (i, j)-entry is 1 for i and j adjacent. The
(i, i)-entry of A(G) is 0 for i = 1, . . . , n. We often denote A(G) simply by A.

Example 3.1 Consider the graph G:

Then

A(G) =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 0
1 0 1 0 0
1 1 0 1 1
1 0 1 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

.

Clearly A is a symmetric matrix with zeros on the diagonal. For i �= j, the
principal submatrix of A formed by the rows and the columns i, j is the zero matrix

if i �∼ j and otherwise it equals

[
0 1
1 0

]
. The determinant of this matrix is−1. Thus,

the sum of the 2 × 2 principal minors of A equals −|E(G)|.
Consider the principal submatrix of A formed by the three distinct rows and

columns, i, j, k. It can be seen that the submatrix is nonsingular only when i, j, k are
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adjacent to each other (i.e., they constitute a triangle). In that case the submatrix is

⎡
⎣
0 1 1
1 0 1
1 1 0

⎤
⎦.

The determinant of this matrix is 2. Thus, the sum of the 3 × 3 principal minors of
A equals twice the number of triangles in G.

We make an elementary observation about the powers of A. The (i, j)-entry of
Ak is the number of walks of length k from i to j. This is clear from the definition
of matrix multiplication.

Let G be a connected graphwith vertices {1, . . . , n}.The distance d(i, j) between
the vertices i and j is defined as the minimum length of an (i j)-path. We set
d(i, i) = 0. The maximum value of d(i, j) is the diameter of G.

Lemma 3.2 Let G be a connected graph with vertices {1, . . . , n} and let A be the
adjacency matrix of G. If i, j are vertices of G with d(i, j) = m, then the matrices
I, A, . . . , Am are linearly independent.

Proof We may assume i �= j. There is no (i j)-path of length less than m. Thus,
the (i, j)-element of I, A, . . . , Am−1 is zero, whereas the (i, j)-element of Am is
nonzero. Hence, the result follows. �

Corollary 3.3 Let G be a connected graph with k distinct eigenvalues and let d be
the diameter of G. Then k > d.

Proof Let A be the adjacencymatrix of G.ByLemma 3.2, thematrices I, A, . . . , Ad

are linearly independent. Thus, the degree of the minimal polynomial of A, which
equals k, must exceed d. �

3.1 Eigenvalues of Some Graphs

Let G be a graph with adjacency matrix A. Often we refer to the eigenvalues of A
as the eigenvalues of G. We now determine the eigenvalues of some graphs.

Theorem 3.4 (i) For any positive integer n, the eigenvalues of Kn are n − 1 with
multiplicity 1 and −1 with multiplicity n − 1. (ii) For any positive integers p, q, the
eigenvalues of K p,q are

√
pq,−√

pq and 0 with multiplicity p + q − 2.

Proof First consider Jn, the n ×n matrix of all ones. It is a symmetric, rank 1 matrix,
and hence it has only one nonzero eigenvalue, which must equal the trace. Thus, the
eigenvalues of Jn are n with multiplicity 1 and 0 with multiplicity n − 1. Since
A(Kn) = Jn − In, the eigenvalues of A(Kn) must be as asserted in (i).
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To prove (ii), note that

A(K p,q) =
[

0 Jpq

Jqp 0

]
,

where Jpq and Jqp are matrices of all ones of the appropriate size. Now

rank A(K p,q) = rank Jpq + rank Jqp = 2,

and hence A(K p,q) must have precisely two nonzero eigenvalues. These must be of
the form λ and −λ, since the trace of A(K p,q) is zero. As noted earlier, the sum of
the 2× 2 principal minors of A(K p,q) is negative the number of edges, that is, −pq.

This sum also equals the sum of the products of the eigenvalues, taken two at a time,
which is −λ2. Thus, λ2 = pq and the eigenvalues must be as asserted in (ii). �

For a positive integer n ≥ 2, let Qn be the full-cycle permutation matrix of order
n. Thus, the (i, i + 1)-element of Qn is 1, i = 1, 2, . . . , n − 1, the (n, 1)-element of
Qn is 1, and the remaining elements of Qn are zero.

Lemma 3.5 For n ≥ 2, the eigenvalues of Qn are 1, ω, ω2, . . . , ωn−1, where

ω = e
2π i

n , is the primitive nth root of unity.

Proof The characteristic polynomial of Qn is det(Qn − λI ) = (−1)n(λn − 1).
Clearly, the roots of the characteristic polynomial are the n roots of unity. �

For a positive integer n, Cn and Pn will denote the cycle and the path on n vertices,
respectively.

Theorem 3.6 For n ≥ 2, the eigenvalues of Cn are 2 cos 2πk
n , k = 1, . . . , n.

Proof Note that A(Cn) = Qn + Q′
n = Qn + Qn−1

n is a polynomial in Qn . Thus, the
eigenvalues of A(Cn) are obtained by evaluating the same polynomial at each of the
eigenvalues of Qn . Thus, by Lemma 3.5, the eigenvalues of A(Cn) are ωk + ωn−k,

k = 1, . . . , n. Note that

ωk + ωn−k = ωk + ω−k

= e
2π ik

n + e− 2π ik
n

= 2 cos
2πk

n
,

k = 1, . . . , n, and the proof is complete. �

Theorem 3.7 For n ≥ 1, the eigenvalues of Pn are 2 cos πk
n+1 , k = 1, . . . , n.

Proof Let λ be an eigenvalue of A(Pn) with x as the corresponding eigenvector. By
symmetry, (−xn,−xn−1, . . . ,−x1) is also an eigenvector of A(Pn) for λ.



30 3 Adjacency Matrix

It may be verified that

(x1, . . . , xn, 0,−xn, . . . ,−x1, 0)

and

(0, x1, . . . , xn, 0,−xn, . . . ,−x1)

are two linearly independent eigenvectors of A(C2n+2) for the same eigenvalue. We
illustrate this by an example. Suppose x = (x1, x2, x3)′ is an eigenvector of A(P3)

for the eigenvalue λ. Then

⎡
⎣
0 1 0
1 0 1
0 1 0

⎤
⎦

⎡
⎣

x1
x2
x3

⎤
⎦ = λ

⎡
⎣

x1
x2
x3

⎤
⎦.

We obtain an eigenvector of A(C8) for the same eigenvalue, since it may be verified
that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
0

−x3
−x2
−x1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
0

−x3
−x2
−x1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Continuingwith the proof, we have established that each eigenvalue of Pn must be
an eigenvalue of C2n+2 of multiplicity 2. By Theorem 3.6, the eigenvalues of C2n+2
are 2 cos 2πk

2n+2 = 2 cos πk
n+1 , k = 1, . . . , 2n+2.Of these, the eigenvalues that appear

twice, in view of the periodicity of the cosine, are 2 cos πk
n+1 , k = 1, . . . , n, which

must be the eigenvalues of Pn . �

3.2 Determinant

We now introduce some definitions. Let G be a graph with V (G) = {1, . . . , n}
and edge set E(G). A subgraph H of G is called an elementary subgraph if each
component of H is either an edge or a cycle. Denote by c(H) and c1(H) the number
of components in a subgraph H which are cycles and edges, respectively.
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Theorem 3.8 Let G be a graph with V (G) = {1, . . . , n} and let A be the adjacency
matrix of G. Then

det A =
∑

(−1)n−c1(H)−c(H)2c(H),

where the summation is over all spanning elementary subgraphs H of G.

Proof We have

det A =
∑
π

sgn(π)a1π(1) · · · anπ(n),

where the summation is over all permutations of 1, . . . , n. Consider a term

a1π(1) · · · anπ(n),

which is nonzero. Since π admits a cycle decomposition, such a termwill correspond
to some 2-cycles (i j) of π, which designate an edge joining i and j in G, as well as
some cycles of higher order, which correspond to cycles in G. (Note that π(i) �= i for
any i.) Thus, each nonzero term in the summation arises from an elementary subgraph
of G with vertex set V (G). Suppose the term a1π(1) · · · anπ(n) corresponds to the
spanning elementary subgraph H.The sign ofπ is (−1) raised to n minus the number
of cycles in the cycle decomposition of π, which is the same as (−1)n−c1(H)−c(H).

Finally, each spanning elementary subgraph gives rise to 2c(H) terms in the sum-
mation, since each cycle can be associated to a cyclic permutation in two ways. In
view of these observations the proof is complete. �

Example 3.9 Consider the graph G:

There are three spanning elementary subgraphs ofG, given by H1, H2 and H3,where

V (H1) = V (H2) = V (H3) = {1, 2, 3, 4},

and

E(H1) = {12, 34}, E(H2) = {14, 23}, E(H3) = {12, 23, 34, 41}.

By Theorem 3.8, det A = 2(−1)4−2−020 + (−1)4−0−121 = 0. This fact is also
evident since A has two identical columns.

Theorem 3.10 Let G be a graph with vertices {1, . . . , n} and let A be the adjacency
matrix of G. Let
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φλ(A) = det(λI − A) = λn + c1λ
n−1 + · · · + cn

be the characteristic polynomial of A. Then ck = ∑
(−1)c1(H)+c(H)2c(H), where the

summation is over all the elementary subgraphs H of G with k vertices, k = 1, . . . , n.

Proof Observe that ck is (−1)k times the sum of the principal minors of A of order
k, k = 1, . . . , n. By Theorem 3.8,

ck = (−1)k
∑

(−1)k−c1(H)−c(H)2c(H),

where the summation is over all the elementary subgraphs H of G with k vertices.
Hence, ck is as asserted in the theorem. Note that c1 = 0. �

At the beginning of this chapter we gave an interpretation of c2 and c3, which can
be regarded as special cases of Theorem 3.10.

Corollary 3.11 Let G be a graph with vertices {1, . . . , n} and let A be the adjacency
matrix of G. Let

φλ(A) = det(λI − A) = λn + c1λ
n−1 + · · · + cn

be the characteristic polynomial of A. Suppose c3 = c5 = · · · = c2k−1 = 0. Then
G has no odd cycle of length i, 3 ≤ i ≤ 2k − 1. Furthermore, the number of
(2k + 1)-cycles in G is − 1

2c2k+1.

Proof Since c3 = 0, there are no triangles in G. Thus, any elementary subgraph
of G with 5 vertices must only comprise of a 5-cycle. It follows by Theorem 3.10
that if c5 = 0 then there are no 5-cycles in G. Continuing this way we find that if
c3 = c5 = · · · = c2k−1 = 0, then any elementary subgraph of G with 2k +1 vertices
must be a (2k + 1)-cycle. Furthermore, by Theorem 3.10,

c2k+1 =
∑

(−1)c1(H)+c(H)2c(H),

where the summation is over all (2k + 1)-cycles H in G. For any (2k + 1)-cycle H,

c1(H) = 0 and c(H) = 1. Therefore, c2k+1 is (−2) the number of (2k + 1)-cycles
in G. That completes the proof. �

Corollary 3.12 Using the notation of Corollary 3.11, if c2k+1 = 0, k = 0, 1, . . . ,
then G is bipartite.

Proof If c2k+1 = 0, k = 0, 1, 2, . . . , then by Corollary 3.11, G has no odd cycles
and hence G must be bipartite. �

We now proceed to show that bipartite graphs can be characterized in terms of
the eigenvalues of the adjacency matrix. We first prove the following.

Lemma 3.13 Let G be a bipartite graph with adjacency matrix A. If λ is an eigen-
value of A with multiplicity k, then −λ is also an eigenvalue of A with multiplicity k.
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Proof Let V (G) = X ∪ Y be a bipartition of G. We may assume |X | = |Y | by
adding isolated vertices if necessary. This does not affect the property we wish to
prove, since A only gets changed in the sense that some zero rows and columns are
appended. So suppose |X | = |Y | = m; then by a relabeling of vertices if necessary,
we may write A =

[
0 B
B ′ 0

]
, where B is m × m. Let x be an eigenvector of A

corresponding to λ. Partition x conformally so that we get the equation

[
0 B
B ′ 0

] [
x (1)

x (2)

]
= λ

[
x (1)

x (2)

]
.

Then it may be verified that

[
0 B
B ′ 0

] [
x (1)

−x (2)

]
= −λ

[
x (1)

−x (2)

]
.

Thus, −λ is also an eigenvalue of A. It is also clear that if we have k linearly
independent eigenvectors for λ, then the above construction will produce k linearly
independent eigenvectors for −λ. Thus, the multiplicity of −λ is also k. That com-
pletes the proof. �
Theorem 3.14 Let G be a graph with vertices {1, . . . , n} and let A be the adjacency
matrix of G. Then the following conditions are equivalent.

(i) G is bipartite;
(ii) if φλ(A) = λn + c1λn−1 + · · · + cn is the characteristic polynomial of A, then

c2k+1 = 0, k = 0, 1, . . .;
(iii) the eigenvalues of A are symmetric with respect to the origin, i.e., if λ is an

eigenvalue of A with multiplicity k, then −λ is also an eigenvalue of A with
multiplicity k.

Proof The fact that (i) =⇒ (iii) has been proved in Lemma 3.13.
We now show that (iii) =⇒ (ii). Let λ1, . . . , λk,−λ1, . . . ,−λk be the nonzero

eigenvalues of A.Hereλ1, . . . , λk are not necessarily distinct. Then 0 is an eigenvalue
of A with multiplicity n −2k. The characteristic polynomial of A equals λn−2k(λ2 −
λ21) · · · (λ2 − λ2k). It follows that c2k+1 = 0, k = 0, 1, . . . , and hence (ii) holds.

Finally, it follows from Corollary 3.12, that (ii) =⇒ (i), and the proof is
complete. �

3.3 Bounds

We begin with an easy bound for the largest eigenvalue of a graph.

Theorem 3.15 Let G be a graph with n vertices, m edges and let λ1 ≥ · · · ≥ λn be

the eigenvalues of G. Then λ1 ≤ (
2m(n−1)

n )
1
2 .
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Proof As noted earlier, we have
∑n

i=1 λi = 0 and
∑n

i=1 λ2i = 2m. Therefore,
λ1 = −∑n

i=2 λi and hence

λ1 ≤
n∑

i=2

|λi |. (3.1)

By the Cauchy–Schwarz inequality and (3.1),

2m − λ21 =
n∑

i=2

λ2i ≥ 1

n − 1

(
n∑

i=2

|λi |
)2

≥ λ21

n − 1
.

Hence,

2m ≥ λ21

(
1 + 1

n − 1

)
= λ21

(
n

n − 1

)

and therefore λ21 ≤ 2m(n−1)
n . �

We now obtain bounds for the largest and the smallest eigenvalues of a graph
in terms of vertex degrees and the chromatic number. Our main tool will be the
extremal representation for the largest and the smallest eigenvalues of a symmetric
matrix.

Let G be a graph with n vertices and with eigenvalues λ1 ≥ · · · ≥ λn . We denote
λ1 and λn by λ1(G) and λn(G), respectively. Similarly, λ1(B) and λn(B)will denote
the largest and the smallest eigenvalues of the symmetric matrix B.

Lemma 3.16 Let G be a graph with n vertices and let H be an induced subgraph
of G with p vertices. Then λ1(G) ≥ λ1(H) and λn(G) ≤ λp(H).

Proof Note that A(H) is a principal submatrix of A(G). The result follows from
the interlacing inequalities relating the eigenvalues of a symmetric matrix and of its
principal submatrix. �

For a graph G, we denote by Δ(G) and δ(G), the maximum and the minimum
of the vertex degrees of G, respectively.

Lemma 3.17 For a graph G, δ(G) ≤ λ1(G) ≤ Δ(G).

Proof Let A be the adjacency matrix of G and let x be an eigenvector of A cor-
responding to λ1(G). Then Ax = λ1(G)x . From the i th equation of this vector
equation we get

λ1(G)xi =
∑
j∼i

x j , i = 1, . . . , n. (3.2)

Let xk > 0 be the maximum coordinate of x . Then from (3.2),
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λ1(G)xk =
∑
j∼k

x j ≤ Δ(G)xk,

and hence λ1(G) ≤ Δ(G).

To prove the lower bound, first recall the extremal representation

λ1(A) = max||x ||=1
{x ′ Ax} = max

x �=0

{
x ′ Ax

x ′x

}
.

It follows by the extremal representation that

λ1(G) ≥ 1′ A1
1′1

= 2m

n
, (3.3)

where m is the number of edges in G.

If d1, . . . , dn are the vertex degrees of G, then 2m = d1 + · · · + dn ≥ nδ(G) and
it follows from (3.3) that λ1(G) ≥ δ(G). �

Recall that the chromatic number χ(G) of a graph G is the minimum number of
colours required to colour the vertices so that adjacent vertices get distinct colours
(such a colouring is called a proper colouring). The following result is attributed to
Wilf.

Theorem 3.18 For any graph G, χ(G) ≤ 1 + λ1(G).

Proof The result is trivial if χ(G) = 1. Let χ(G) = p ≥ 2. Let H be an induced
subgraph of G such that χ(H) = p and furthermore, suppose H is minimal with
respect to the number of vertices. That is to say, χ(H \{i}) < p for any vertex i of H.

We claim that δ(H) ≥ p − 1. Indeed, suppose i is a vertex of H with degree less
than p − 1. Since χ(H \ {i}) < p, we may properly colour vertices of H \ {i} with
p − 1 colours. Since the degree of i is less than p − 1, we may extend the colouring
to a proper (p −1)-colouring of H, a contradiction. Hence the degree of each vertex
of H is at least p − 1 and therefore δ(H) ≥ p − 1.

By Lemmas 3.16 and 3.17 we have

λ1(G) ≥ λ1(H) ≥ δ(H) ≥ p − 1

and hence λ1(G) ≥ p − 1. �

We now prove some results in preparation of the next bound involving chromatic
number and eigenvalues.

Lemma 3.19 If B and C are symmetric n × n matrices, then

λ1(B + C) ≤ λ1(B) + λ1(C).
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Proof By the extremal representation of the maximum eigenvalue of a symmetric
matrix,

λ1(B + C) = max||x ||=1
{x ′(B + C)x}

≤ max||x ||=1
{x ′ Bx} + max||x ||=1

{x ′Cx}
= λ1(B) + λ1(C).

This completes the proof. �

Lemma 3.20 Let B be an n × n positive semidefinite matrix and suppose B is
partitioned as

B =
[

B11 B12
B21 B22

]
,

where B11 is p × p. Then λ1(B) ≤ λ1(B11) + λ1(B22).

Proof Since B is positive semidefinite, there exists an n × n matrix C such that

B = CC ′. Partition C =
[

C1
C2

]
so that

B =
[

B11 B12
B21 B22

]
=

[
C1C ′

1 C1C ′
2

C2C ′
1 C2C ′

2

]
.

Now

λ1(B) = λ1(CC ′)
= λ1(C

′C)

= λ1(C
′
1C1 + C ′

2C2)

≤ λ1(C
′
1C1) + λ1(C

′
2C2) byLemma3.19

= λ1(C1C ′
1) + λ1(C2C ′

2)

= λ1(B11) + λ1(B22),

and the proof is complete. �

Lemma 3.21 Let B be an n × n symmetric matrix and suppose B is partitioned as

B =
[

B11 B12
B21 B22

]
,

where B11 is p × p. Then

λ1(B) + λn(B) ≤ λ1(B11) + λ1(B22).
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Proof We have

B − λn(B)In =
[

B11 − λn(B)Ip B12
B21 B22 − λn(B)In−p

]
.

Since B − λn(B)In is positive semidefinite, by Lemma 3.20 we get

λ1(B − λn(B)In) ≤ λ1(B11 − λn(B)Ip) + λ1(B22 − λn(B)In−p).

Therefore,

λ1(B) − λn(B) ≤ λ1(B11) − λn(B) + λ1(B22) − λn(B),

and hence

λ1(B) + λn(B) ≤ λ1(B11) + λ1(B22).

This completes the proof. �
Lemma 3.22 Let B be a symmetric matrix partitioned as

B =

⎡
⎢⎢⎢⎣

0 B12 · · · B1k

B21 0 · · · B2k
...

...
. . .

...

Bk1 Bk2 · · · 0

⎤
⎥⎥⎥⎦.

Then λ1(B) + (k − 1)λn(B) ≤ 0.

Proof We prove the result by induction on k. When k = 2 the result follows by
Lemma 3.21. So assume the result to be true for k − 1. Let C be the principal
submatrix of B obtained by deleting the last row and column of blocks. If λmin(C)

denotes the minimum eigenvalue of C, then by the induction assumption,

λ1(C) + (k − 2)λmin(C) ≤ 0. (3.4)

By Lemma 3.21,

λ1(B) + λn(B) ≤ λ1(C). (3.5)

Since the minimum eigenvalue of a symmetric matrix does not exceed that of a
principal submatrix,

λn(B) ≤ λmin(C). (3.6)

From (3.4) and (3.5) we get

λ1(B) + λn(B) + (k − 2)λmin(C) ≤ 0. (3.7)
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Using (3.6) and (3.7) we have

λ1(B) + (k − 1)λn(B) ≤ 0

and the proof is complete. �

We are now ready to prove the following bound due to Hoffman.

Theorem 3.23 Let G be a graph with n vertices and with at least one edge. Then

χ(G) ≥ 1 − λ1(G)

λn(G)
.

Proof Let A be the adjacency matrix of G. If χ(G) = k, then after a relabeling of
the vertices of G we may write

A =

⎡
⎢⎢⎢⎣

0 A12 · · · A1k

A21 0 · · · A2k
...

...
. . .

...

Ak1 Ak2 · · · 0

⎤
⎥⎥⎥⎦.

By Lemma 3.22,

λ1(A) + (k − 1)λn(A) ≤ 0. (3.8)

If G has at least one edge then the eigenvalues of G are not all equal to zero, and
λn(A) < 0. Thus, from (3.8),

χ(G) = k ≥ 1 − λ1(A)

λn(A)
= 1 − λ1(G)

λn(G)
.

This completes the proof. �

3.4 Energy of a Graph

An interesting quantity in Hückel theory is the sum of the energies of all the
electrons in a molecule, the so-called total π -electron energy Eπ . For a molecule
with n = 2k atoms, the total π -electron energy can be shown to be Eπ = 2

∑k
i=1 λi ,

where λi , i = 1, 2, . . . , k, are the k largest eigenvalues of the adjacency matrix
of the graph of the molecule. For a bipartite graph, because of the symmetry of
the spectrum, we can write Eπ = ∑n

i=1 |λi |, and this has motivated the following
definition.
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For any (not necessarily bipartite) graph G, the energy of the graph is defined
as ε(G)= ∑n

i=1 |λi |, where λ1, . . . , λn are the eigenvalues of the adjacency
matrix of G.

Characterizing the set of positive numbers that can occur as energy of a graph
has been a problem of interest. We now prove that the energy can never be an odd
integer. In fact, we show that if the energy is rational then it must be an even integer.
Some inequalities for energy and a characterization of graphs with maximum energy
will be treated in a later section.

We need some preliminaries. Let A and B be matrices of order m × n and p × q,

respectively. The Krönecker product of A and B, denoted A ⊗ B, is the mp × nq
block matrix [ai j B]. It can be verified from the definition that

(A ⊗ B)(C ⊗ D) = AC ⊗ B D. (3.9)

Several important properties of the Kronecker product are consequences of (3.9).
The next result, although proved for symmetric matrices, is also true in general.

Lemma 3.24 Let A and B be symmetric matrices of order m ×m and n ×n, respec-
tively. Ifλ1, . . . , λm andμ1, . . . , μn are the eigenvalues of A and B, respectively, then
the eigenvalues of A⊗ In+ Im ⊗B are given by λi +μ j ; i = 1, . . . , m; j = 1, . . . , n.

Proof Let P and Q be orthogonal matrices such that

P ′ AP = diag(λ1, . . . , λm), Q′B Q = diag(μ1, . . . , μn).

Then by (3.9),

(P ⊗ Q)(A ⊗ In + Im ⊗ B)(P ′ ⊗ Q′) = P AP ′ ⊗ Q Q′ + P P ′ ⊗ Q B Q′

= diag(λ1, . . . , λm) ⊗ In + Im ⊗ diag(μ1, . . . , μn).

The proof is complete in view of the fact that diag(λ1, . . . , λm) ⊗ In + Im ⊗
diag(μ1, . . . , μn) is a diagonal matrix with λi + μ j ; i = 1, . . . , m; j = 1, . . . , n,

on the diagonal. �

The following result is similarly proved.

Lemma 3.25 Let A and B be symmetric matrices of order m × m and n × n,

respectively. If λ1, . . . , λm and μ1, . . . , μn are the eigenvalues of A and B, respec-
tively, then the eigenvalues of A⊗B are given by λiμ j ; i = 1, . . . , m; j = 1, . . . , n.

Let G and H be graphs with vertex sets V (G) and V (H), respectively. The
Cartesian product of G and H, denoted by G × H, is the graph defined as follows.
The vertex set of G× H is V (G)×V (H).The vertices (u, v) and (u′, v′) are adjacent
if either u = u′ and v is adjacent to v′ in H, or v = v′ and u is adjacent to u′ in G.

Let |V (G)| = m, |V (H)| = n, and suppose A and B are the adjacency matrices
of G and H, respectively. It can be verified that the adjacencymatrix of G × H is A⊗
In + Im ⊗ B. The following result follows from this observation and by Lemma 3.24.
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Lemma 3.26 Let G and H be graphs with m and n vertices, respectively. If
λ1, . . . , λm and μ1, . . . , μn are the eigenvalues of G and H, respectively, then the
eigenvalues of G × H are given by λi + μ j , i = 1, . . . , m; j = 1, . . . , n.

We are now in a position to prove the next result, which identifies the possible
values that the energy of a graph can attain, among the set of rational numbers.

Theorem 3.27 Let G be a graph with n vertices. If the energy ε(G) of G is a rational
number then it must be an even integer.

Proof Let λ1, . . . , λk be the positive eigenvalues of G. The trace of the adjacency
matrix is zero, and hence the sum of the positive eigenvalues of G equals the sum of
the absolute values of the negative eigenvalues of G. It follows from the definition
of energy that ε(G) = 2(λ1 + · · · + λk). Note that by Lemma 3.26, λ1 + · · · + λk

is an eigenvalue of G × · · · × G, taken k times. The characteristic polynomial of
the adjacency matrix is a monic polynomial with integer coefficients, and a rational
root of such a polynomial must be an integer. Thus, if λ1 + · · · + λk is rational,
then it must be an integer. It follows that if ε(G) is rational, then it must be an even
integer. �

3.5 Antiadjacency Matrix of a Directed Graph

We consider directed graphs in this section. Let G be a directed graph with
V (G) = {1, . . . , n}. The adjacency matrix A of G is defined in a natural way.
Thus, the rows and the columns of A are indexed by V (G). For i �= j, if there is an
edge from i to j, then ai j = 1, otherwise ai j = 0. We set aii = 0, i = 1, . . . , n.

The matrix B = J − A will be called the antiadjacency matrix of G. Recall that a
Hamiltonian path is a path meeting all the vertices in the graph. It turns out that if G
is acyclic, i.e., has no directed cycles, then det B = 1 if G has a directed Hamiltonian
path, otherwise det B = 0.Wewill prove a result that is more general. First we prove
a preliminary result.

Lemma 3.28 Let B be a 0 − 1 n × n matrix such that bi j = 1 if i ≥ j. Then det B
equals 1 if b12 = b23 = · · · = bn−1n = 0; otherwise det B = 0.

Proof If b12 = 1 then the first two columns of B have all entries equal to 1, and hence
det B = 0. So let b12 = 0. In B subtract the second column from the first column.
Then the first column has all entries equal to 0, except the (1, 1)-entry, which equals
1. Expand the determinant along the first column and use induction on n to complete
the proof. �

Corollary 3.29 Let G be a directed, acyclic graph with V (G) = {1, . . . , n}. Let B
be the antiadjacency matrix of G. Then det B = 1 if G has a Hamiltonian path, and
det B = 0, otherwise.
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Proof Suppose G has a Hamiltonian path, and without loss of generality, let it be
1 → 2 → · · · → n. Since G is acyclic, there cannot be an edge from i to j for
i > j and hence bi j = 1, i ≥ j.Also, b12 = · · · = bn−1,n = 0, and by Lemma 3.28
det B = 1.

Conversely, suppose G has no Hamiltonian path. Since G is acyclic, there must be
a vertex ofG which is a source, i.e., a vertex of in-degree 0.Without loss of generality,
let it be 1. In G \ {1} there is a source, which we assume to be 2. Continuing this
way, let i be the source in G \ {1, . . . , i − 1}, i = 2, . . . , n. Then there is no edge
from j to i, j > i, and hence B has ones on and below the main diagonal. Since G
has no Hamiltonian path, there must exist i in {1, . . . , n − 1} such that bi,i+1 = 1.
Then by Lemma 3.28 det B = 0. �

Theorem 3.30 Let G be a directed, acyclic graph with V (G) = {1, . . . , n}. Let B
be the antiadjacency matrix of G, and let

det(x B + I ) =
n∑

i=0

ci xi .

Then c0 = 1 and ci equals the number of directed paths of i vertices in G,

i = 1, . . . , n.

Proof By expanding the determinant it can be seen that the coefficient of xi in
det(x B + I ) is the sum of the principal minors of B of order i, i = 1, . . . , n. By
Corollary 3.29, a principal minor of B is 1 if and only if the subgraph induced by
the corresponding vertices has a Hamiltonian path. Note that this induced subgraph
cannot have another Hamiltonian path, otherwise it will contain a cycle. Thus, the
sum of the nonsingular i × i principal minors of B equals the number of paths in G
of i vertices. This completes the proof. �

Example 3.31 Consider the acyclic directed graph G:

The antiadjacency matrix of G is given by

B =

⎡
⎢⎢⎢⎢⎣

1 0 1 1 1
1 1 0 1 0
1 1 1 1 1
0 0 1 1 0
1 1 0 1 1

⎤
⎥⎥⎥⎥⎦

.
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It can be checked that det(x B + I ) = x5 + 4x4 + 7x3 + 7x2 + 5x + 1. The
directed paths of G are listed Table 3.1, according to the number of vertices in the
path:

Thus, the coefficient of xi in det(x B + I ) equals the number of directed paths of
i vertices, i = 1, . . . , 5.

3.6 Nonsingular Trees

The adjacency matrix of a tree may or may not be nonsingular. For example, the
adjacency matrix of a path is nonsingular if and only if the path has an even number
of vertices. We say that a tree is nonsingular if its adjacency matrix is nonsingular.
A matching in a graph is a set of edges, no two of which have a common vertex. A
matching is perfect if every vertex in the graph is incident to an edge in the matching.
A simple criterion for a tree to be nonsingular is given in the next result.

Lemma 3.32 Let T be a tree with V (T ) = {1, . . . , n}, and let A be the adjacency
matrix of T . Then A is nonsingular if and only if T has a perfect matching.

Proof Using the notation of Theorem 3.8,

det A =
∑

(−1)n−c1(H)−c(H)2c(H),

where the summation is over all spanning elementary subgraphs H of T . If det A is
nonzero then T has an elementary spanning subgraph. In the case of a tree, c(H) = 0
for any H. Thus, an elementary spanning subgraph consists exclusively of edges,
which clearly must form a perfect matching.

To prove the converse, first observe that if T has a perfect matching then it must
be unique. This statement is easily proved by induction on the number of vertices.
Thus, if T has perfect matching then only one nonzero term is obtained in the above
summation and hence det A must be nonzero. This completes the proof. �

Our next objective is to provide a formula for the inverse of the adjacency matrix
of a nonsingular tree. If i and j are vertices of the tree then we denote by P(i, j)
the unique i j-path in the tree. The length of P(i, j) is d(i, j), the distance between
i and j.

Table 3.1 Directed paths in
the graph G

Number of vertices Directed path(s)

5 41253

4 1253, 4125, 4123, 4253

3 123, 125, 412, 423, 425, 453, 253

2 12, 23, 25, 41, 42, 45, 53

1 1, 2, 3, 4, 5
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If T has a perfect matchingM , then P(i, j) will be called an alternating path if
its edges are alternately inM andM c, the first edge and the last edge being inM .

If P(i, j) has only one edge and that edge is in M , then P(i, j) is also considered
to be alternating. We note that if P(i, j) is alternating then d(i, j) must be odd.

Theorem 3.33 Let T be a nonsingular tree with V (T ) = {1, . . . , n} and let A be
the adjacency matrix of T . Let M be the perfect matching in T . Let B = [bi j ] be
the n × n matrix defined as follows: bi j = 0 if i = j or if P(i, j) is not alternating.
If P(i, j) is alternating, then set

bi j = (−1)
d(i, j)−1

2 .

Then B = A−1.

Proof We assume, without loss of generality, that 1 is adjacent to 2, . . . , k, and that
the edge {1, 2} ∈ M . Since a1 j = 0, j > k, then a1 j b j1 = 0, if j > k. For
j = 3, . . . , k, P( j, 1) is not alternating and hence a1 j b j1 = 0 for these values of
j. Finally, a12b21 = 1, since a12 = 1 and P(1, 2) is alternating. Combining these
observations we see that

n∑
j=1

a1 j b j1 = 1. (3.10)

Let Ti be the component of T \ {1}, containing i, i = 2, . . . , k. If 
 ∈ V (T2) then
there is no alternating path from 
 to j, j = 2, . . . , k, and hence

n∑
j=1

a1 j b j
 = 0. (3.11)

Now suppose 
 ∈ V (Ti ) for some i ∈ {3, . . . , k}. Note that P(
, j) is not alter-
nating if j ∈ {3, . . . , k}\{i}.Also, if P(
, i) is alternating then P(
, 2) is alternating
as well, and furthermore, d(
, i) = d(
, 2) − 2. Thus, b
j = 0, j ∈ {3, . . . , k} \ {i},
and b2
 + bi
 = 0. It follows that

n∑
j=1

a1 j b j
 = 0. (3.12)

From (3.10), (3.11) and (3.12) it follows that the first row of AB is the same as
the first row of I. We can similarly show that any row of AB is the same as the
corresponding row of I and hence B = A−1. �
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A signature matrix is a diagonal matrix with±1 on the diagonal. A pendant vertex
is a vertex of degree 1.

Theorem 3.34 Let T be a nonsingular tree with V (T ) = {1, . . . , n} and let A be
the adjacency matrix of T . Then there exists a signature matrix F such that F A−1F
is the adjacency matrix of a graph.

Proof We assume, without loss of generality, that 1 is a pendant vertex of T . By
Lemma 3.32, T has a perfect matching, which we denote by M . For i = 1, . . . , n,

let ni be the number of edges in P(1, i) that are not in M . (We set n1 = 0.) Let
fi = (−1)ni , i = 1, . . . , n, and let F = diag( f1, . . . , fn). Let B = A−1 and note
that a formula for B is given in Theorem 3.33. The (i, j)-element of F B F is fi f j bi j ,

which equals 0 if and only if bi j = 0.
Let i, j ∈ V (T ) and suppose bi j �= 0. By Theorem 3.33, P(i, j) is an alternating

path. Let k be the vertex in P(i, j) that is nearest to 1. Let r = d(i, j)−1
2 , which is the

number of edges in P(i, j) that are not in M . It can be verified that

ni + n j − 2nk = r. (3.13)

It follows by (3.13) and Theorem 3.33 that

fi f j bi j = (−1)ni (−1)n j (−1)r = (−1)2nk = 1.

Thus, each entry of F B F is either 0 or 1, and clearly, F B F is symmetric. Hence,
F B F is the adjacency matrix of a graph. �

The inverse of the nonsingular tree T will be defined as the graph with adjacency
matrix F A−1F as given in Theorem 3.33. We denote the inverse of T by T −1.

Example 3.35 Consider the tree T as shown. Edges in the perfect matching are
shown as dashed lines.
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The graph T −1 is as follows:

In Example 3.35 it turns out that T −1 is a tree as well, though this is not always
the case. If T has an alternating path of length at least 5, then it will result in a cycle
in T −1, as can be seen from Theorem 3.33. We now proceed to identify conditions
under which T −1 is a tree.

Let T be a nonsingular tree with adjacency matrix A. The adjacency matrix of
T −1 is obtained by taking A−1 and replacing each entry by its absolute value.

Lemma 3.36 Let T be a nonsingular tree with V (T ) = {1, . . . , n}. Then T −1 is a
connected graph.

Proof Let A and B be the adjacency matrices of T and T −1, respectively. If T −1 is
disconnected then, after a relabeling of vertices,

B =
[

B11 0
0 B22

]
.

Since B and A−1 have the same pattern of zero-nonzero entries, A must also be a
direct sum of two matrices. This is a contradiction, as T is connected, and the proof
is complete. �

Corollary 3.37 Let T be a nonsingular tree with V (T ) = {1, . . . , n}. Then the
number of alternating paths in T, which equals the number of edges in T −1, is at
least n − 1.

Proof Let A be the adjacency matrix of T . As seen in the proof of Theorem 3.33,
each alternating path in T corresponds to a nonzero entry in A−1, which in turn,
corresponds to an edge in T −1. By Lemma 3.36, T −1 is connected and hence it has
at least n − 1 edges. �

A corona tree is a tree obtained by attaching a new pendant vertex to each vertex
of a given tree.
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Theorem 3.38 Let T be a nonsingular tree with V (T ) = {1, . . . , 2n}. Then the
following conditions are equivalent:

(i) the number of alternating paths in T has the minimum possible value 2n − 1;
(ii) T −1 is a tree;

(iii) T is a corona tree;
(iv) T −1 is isomorphic to T .

Proof (i) ⇒ (i i): As remarked earlier, the number of alternating paths in T equals
the number of edges in T −1. If there are 2n − 1 alternating paths in T, then T −1 has
2n − 1 edges, and since by Lemma 3.36, T −1 is a connected graph, it follows that
T −1 is a tree.

(i i) ⇒ (i i i): Suppose T −1 is a tree. If T has 4 vertices, then T must be the path
on 4 vertices, and it can be verified that T −1 is also the path on 4 vertices. Therefore,
we may assume that T has at least 6 vertices. Let M be the perfect matching in T,

and we assume that the edges in M are {ui , vi }, i = 1, . . . , n. We claim that for
any edge {ui , vi } in M , either ui or vi is a pendant vertex. Otherwise, ui must be
adjacent to a vertex other than vi , say u j , while vi must be adjacent to a vertex other
than ui , say vk . Then v j − u j − ui − vi − vk − uk is an alternating path of length
5 in T, in which case T −1 cannot be a tree. Thus, one of the vertices of {ui , vi } is a
pendant vertex for each i = 1, . . . , n. It follows that T is a corona tree.

(i i i) ⇒ (iv): Let T be a corona tree and assume, without loss of generality, that
vertices n + 1, . . . , 2n are pendant. Let B be the adjacency matrix of the subtree
induced by {1, . . . , n}. Then the adjacency matrix A of T has the form

A =
[

B I
I 0

]
.

Then

A−1 =
[
0 I
I −B

]
.

Therefore, the adjacency matrix of T −1 is

[
0 I
I B

]
.

It follows that T and T −1 are isomorphic and the proof is complete.
(iv) ⇒ (i): If T −1 is isomorphic to T then it must have 2n − 1 edges. Since T −1

is connected by Lemma 3.36, T −1 must be a tree. �
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Exercises

1. Verify that the following two graphs are nonisomorphic, yet they have the same
eigenvalues.

2. List the spanning elementary subgraphs of K4. Hence, using Theorem 3.8, show
that det A(K4) = −3.

3. Using the notation of Theorem 3.10, show that c4 is equal to the number of pairs
of disjoint edges minus twice the number of 4-cycles in G.

4. Let G be a planar graph with n vertices. Show that λ1(G) ≤ −3λn(G).

5. Determine the energies of Kn and Km,n . Conclude that any even positive integer
is the energy of a graph.

6. Let G and H be graphs with vertex sets V (G) and V (H), respectively. The tensor
product of G and H, denoted G ⊗ H, is the graph with vertex set V (G)× V (H),

and two vertices (u, v) and (u′, v′) are adjacent if and only if u, u′ are adjacent in
G, and v, v′ are adjacent in H. Show that if A and B are the adjacency matrices
of G and H, respectively, then A ⊗ B is the adjacency matrix of G ⊗ H. Hence,
show that ε(G ⊗ H) = ε(G)ε(H).

7. Let G be a graph with at least one edge. Show that the graphs G ⊗ K2 ⊗ K2 and
G ⊗ C4 have the same energy, though they are not isomorphic.

8. Let G be a graph with n vertices and let A be the adjacency matrix of G. Let

G1 and G2 be the graphs with 2n vertices with adjacency matrices

[
0 A
A 0

]
and

[
A A
A A

]
, respectively. Show that G1 and G2 have the same energy.

9. Let T be a tree with V (T ) = {1, . . . , n}, and let A be the adjacency matrix of T .

Show that A is totally unimodular.
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Much of the basic material covered in this chapter can be found in [SW78]. Other rel-
evant references are: Sect. 3.4: [BP04], [IV06], Sect. 3.5: [ST96], Sect. 3.6: [BNP06].
Theorem 3.33 can be found in [BDH88]. Exercises 6 and 7 are from [BA04]. For a
wealth of information on the spectrum of the adjacency matrix, see [CDS95].
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Chapter 4
Laplacian Matrix

Let G be a graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em}. The Laplacian
matrix of G, denoted by L(G), is the n × n matrix defined as follows. The rows and
columns of L(G) are indexed by V(G). If i �= j then the (i, j)-entry of L(G) is 0 if
vertex i and j are not adjacent, and it is −1 if i and j are adjacent. The (i, i)-entry of
L(G) is di, the degree of the vertex i, i = 1, 2, . . . , n.

LetD(G) be the diagonal matrix of vertex degrees. IfA(G) is the adjacencymatrix
of G, then note that L(G) = D(G) − A(G).

Suppose each edge of G is assigned an orientation, which is arbitrary but fixed.
Let Q(G) be the incidence matrix of G. Then observe that L(G) = Q(G)Q(G)′. This
can be seen as follows. The rows of Q(G) are indexed by V(G). The (i, j)-entry of
Q(G)Q(G)′ is the inner product of the rows i and j of Q(G). If i = j then the inner
product is clearly di, the degree of the vertex i. If i �= j, then the inner product is −1
if the vertices i and j are adjacent, and zero otherwise.

The identity L(G) = Q(G)Q(G)′ suggests that the Laplacian might depend on the
orientation, although it is evident from the definition that theLaplacian is independent
of the orientation.

Example 4.1 Consider the graph

Its Laplacian matrix is given by

L(G) =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 0 −1 −1 0
−1 3 −1 0 −1 0
0 −1 2 0 −1 0

−1 0 0 2 −1 0
−1 −1 −1 −1 5 −1
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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4.1 Basic Properties

We begin with a preparatory result.

Lemma 4.2 Let X be an n × n matrix with zero row and column sums. Then the
cofactors of any two elements of X are equal.

Proof As usual, let X(i|j) denote the matrix obtained by deleting row i and column
j of X. In X(1|1) add all the columns to the first column. Then the first column of
X(1|1) becomes the negative of [x21, . . . , xn1]′, in view of the fact that the row sums
of X are zero. Thus, we conclude that det X(1|1) = − det X(1|2). In other words,
the cofactors of x11 and x12 are equal. A similar argument shows that the cofactor of
xij equals that of xik, for any i, j, k.

Now using the fact that the column sums of X are zero, we conclude that the
cofactor of xij equals that of xkj, for any i, j, k. It follows that the cofactors of any
two elements of X are equal. �

Some elementary properties of the Laplacian are summarized in the next result.

Lemma 4.3 Let G be a graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em}.
Then the following assertions hold.

(i) L(G) is a symmetric, positive semidefinite matrix.
(ii) The rank of L(G) equals n−k, where k is the number of connected components

of G.

(iii) For any vector x,
x′L(G)x =

∑
i∼j

(xi − xj)
2.

(iv) The row and the column sums of L(G) are zero.
(v) The cofactors of any two elements of L(G) are equal.

Proof (i) It is obvious fromL(G) = Q(G)Q(G)′ thatL(G) is symmetric andpositive
semidefinite.

(ii) This follows from the fact that

rankL(G) = rank Q(G)Q(G)′ = rank Q(G)

and by using Theorem 2.3.
(iii) Note that x′L(G)x = x′Q(G)Q(G)′x. The vector x′Q(G) is indexed by E(G).

In fact, the entry of x′Q(G), indexed by the edge e = {i, j}, is xi − xj. Hence
the result follows.

(iv) This follows from the definition L(G) = D(G) − A(G).

(v) This is evident from Lemma 4.2 and (iv). �

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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4.2 Computing Laplacian Eigenvalues

Recall that J denotes the square matrix with all entries equal to 1, and the order of
the matrix will be clear from the context.

Lemma 4.4 The eigenvalues of the n × n matrix aI + bJ are a with multiplicity
n − 1, and a + nb with multiplicity 1.

Proof As observed in the proof of Theorem 3.4, the eigenvalues of J are 0 with
multiplicity n − 1, and n with multiplicity 1. It follows that the eigenvalues of bJ
are 0 with multiplicity n − 1, and nb with multiplicity 1. Then the eigenvalues of
aI + bJ must be a with multiplicity n − 1, and a + nb with multiplicity 1. �

It follows fromLemma4.4 thatL(Kn) = nI−J has eigenvalues nwithmultiplicity
n − 1, and 0 with multiplicity 1. The following result is often useful in calculating
the eigenvalues of Laplacians.

Lemma 4.5 Let G be a graph with V(G) = {1, 2, . . . , n}. Let the eigenvalues of
L(G) be λ1 ≥ · · · ≥ λn−1 ≥ λn = 0. Then the eigenvalues of L + aJ are λ1 ≥ · · · ≥
λn−1 and na.

Proof There exists an orthogonal matrix P whose columns form eigenvectors of
L(G). We assume that the last column of P is the vector with each component 1√

n
;

this being an eigenvector for the eigenvalue 0. Then P′L(G)P = diag(λ1, . . . , λn).

Note that any column of P other than the last column is orthogonal to the last column,
and hence

JP =

⎡
⎢⎢⎢⎣

0 · · · 0 √
n

0 · · · 0 √
n

...

0 · · · 0 √
n

⎤
⎥⎥⎥⎦ .

It follows that P′JP = diag(0, . . . , 0, n). Therefore,

P′(L(G) + aJ)P = diag(λ1, . . . , λn−1, na)

and hence the eigenvalues of L(G) + aJ must be as asserted. �

An application of Lemma 4.5 is illustrated in the next result.

Lemma 4.6 Let G be the graph obtained by removing p disjoint edges from Kn, n ≥
2p. Then the eigenvalues of L(G) are n − 2 with multiplicity p, n with multiplicity
n − p − 1, and 0 with multiplicity 1.

Proof Assume, without loss of generality, that the edges

{1, 2}, {3, 4}, . . . , {2p − 1, 2p}

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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are removed fromKn to obtain G. Then L(G)+J is a block diagonal matrix, in which

the block

[
n − 1 1
1 n − 1

]
appears p times, and nIn−2p appears once. Therefore, the

eigenvalues of L(G) + J are n − 2 with multiplicity p, and n with multiplicity n − p.

It follows by Lemma 4.5 that the eigenvalues of L(G) are n−2 with multiplicity p, n
with multiplicity n − p − 1, and 0 with multiplicity 1. �

4.3 Matrix-Tree Theorem

Theorem 4.7 Let G be a graph with V(G) = {1, 2, . . . , n}. Let W be a nonempty
proper subset of V(G). Then the determinant of L(W |W) equals the number of
spanning forests of G with |W | components in which each component contains one
vertex of W .

Proof Assign an orientation to each edge of G and let Q be the incidence matrix. We
assume, without loss of generality, that W = {1, 2, . . . , k}.

By the Cauchy–Binet formula,

det L(W |W) =
∑

(det Q[Wc|Z])2,

where the summation is over all Z ⊂ E(G) with |Z| = n − k.

Since by Lemma 2.6 Q is totally unimodular, then (det Q[Wc|Z])2 equals 0 or 1.
Thus, det L(W |W) equals the number of nonsingular submatrices of Q with row set
Wc.

In view of the discussion in Sect. 2.2, Q[Wc|Z] is nonsingular if and only if each
component of the corresponding substructure is a rootless tree. Hence, there is a
one-to-one correspondence between nonsingular submatrices of Q with row set Wc

and spanning forests of G with |W | components in which each component contains
one vertex of W . �

The following result, which is an immediate consequence of Lemma 4.3 and
Theorem 4.7, is the well-known matrix-tree theorem.

Theorem 4.8 Let G be a graph with V(G) = {1, 2, . . . , n}. Then the cofactor of
any element of L(G) equals the number of spanning trees of G.

Proof Setting W = {1} in Theorem 4.7, it follows that det L(1|1) equals the number
of spanning forests of G with one component, which is the same as the number of
spanning trees of G. By Lemma 4.3 all the cofactors of L(G) are equal and the result
is proved. �

We remark that in Theorem 4.8 it is not necessary to assume that G is connected.
For, if G is disconnected then it has no spanning trees. At the same time, the rank of
L(G) is at most n − 2 and hence all its cofactors are zero.

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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The wheel Wn is a graph consisting of a cycle on n vertices, 1, 2, . . . , n, and the
vertex n + 1, which is adjacent to each of 1, 2, . . . , n. The wheel W6 is shown in the
figure.

Let Cn denote the cycle on n vertices.

Lemma 4.9 The eigenvalues of L(Cn) are 2 − 2 cos 2π j
n , j = 1, . . . , n.

Proof By Theorem 3.6, the eigenvalues of A(Cn) are 2 cos
2π j

n , j = 1, . . . , n. Since
L(Cn) = 2I − A(Cn), the result follows. �

If we delete row n + 1 and column n + 1 from L(Wn), we obtain the matrix
L(Cn) + In. By Lemma 4.9 its eigenvalues must be 3 − 2 cos 2π j

n , j = 1, . . . , n.

Thus, the determinant of L(Cn) + I equals

n∏
j=1

(
3 − 2 cos

2π j

n

)
,

which is the number of spanning trees of Wn. Another consequence of Theorem 4.7
is the following.

Corollary 4.10 Let G be a tree with V(G) = {1, 2, . . . , n}. Let i, j be distinct ver-
tices of G and suppose that the unique path between i and j has length �. Then
det L(i, j|i, j) = �.

Proof By Theorem 4.7 det L(i, j|i, j) equals the number of spanning forests of G
with two components, one of which contains i and the other contains j. Since there
is a unique path between the two vertices, the only way of obtaining such a forest is
to delete an edge on the unique ij-path. �

Let G be a graph with V(G) = {1, 2, . . . , n}. Let the eigenvalues of L(G) be
λ1 ≥ · · · ≥ λn−1 ≥ λn = 0. Recall that the sum of the principal minors of L(G)

of order n − 1 equals the sum of the products of the eigenvalues, taken n − 1 at a
time. Note that each principal minor of L(G) equals the number of spanning trees of
G. Since λn = 0, the sum of the products of the eigenvalues, taken n − 1 at a time,
equals λ1 · · · λn−1. Thus, we have proved the following result.

Theorem 4.11 Let G be a graph with V(G) = {1, 2, . . . , n}. Let the eigenvalues of
L(G) be λ1 ≥ · · · ≥ λn−1 ≥ λn = 0. Then the number of spanning trees of G equals
λ1 · · · λn−1/n.

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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Since a graph is connected if and only if it has a spanning tree, by Theorem 4.11
we get another proof of the fact that G is connected if and only if λn−1 > 0.

The eigenvalues of L(Kn) are n with multiplicity n − 1, and 0 with multiplicity 1.
Therefore, Kn has nn−1/n = nn−2 spanning trees, which is Cayley’s theorem.

4.4 Bounds for Laplacian Spectral Radius

Let G be a graph with V(G) = {1, 2, . . . , n}. Let the eigenvalues of L(G) be λ1 ≥
· · · ≥ λn−1 ≥ λn = 0. Also, let Δ be the maximum vertex degree.

It follows from the well-known maximal representation of the eigenvalues of
a symmetric matrix (see Chap.1) that λ1 ≥ Δ. We now proceed to establish the
stronger statement, that λ1 ≥ Δ + 1.

Theorem 4.12 Let G be a graph with V(G) = {1, 2, . . . , n} and with at least one
edge. Let the eigenvalues of L(G) be λ1 ≥ · · · ≥ λn−1 ≥ λn = 0. Then λ1 ≥ Δ + 1.

Proof We assume, without loss of generality, that d1, the degree of vertex 1, is the
maximum vertex degree. There exists a lower triangular matrix T with nonnegative
diagonal entries such that L(G) = TT ′. Then d1 = �11 = t211, and hence t11 =√

d1. Comparing the first column of both sides of L(G) = TT ′, we see that �i1 =√
d1ti1, i = 1, 2, . . . , n. Thus, the first diagonal entry of T ′T equals

n∑
i=1

t2i1 = 1

d1

n∑
i=1

�2i1 = 1

d1
(d2

1 + d1) = d1 + 1.

The largest eigenvalue of T ′T exceeds or equals the largest diagonal entry of T ′T ,

and hence it exceeds or equals d1 + 1. The proof follows in view of the fact that the
eigenvalues of L(G) = TT ′ and T ′T are the same. �

We now obtain an upper bound for λ1.

Theorem 4.13 Let G be a graph with vertex set V = {1, . . . , n}. Let L be the
Laplacian of G with the maximum eigenvalue λ1. Then

λ1 ≤ max{di + dj − c(i, j) : 1 ≤ i < j ≤ n, i ∼ j},

where c(i, j) is the number of vertices that are adjacent to both i and j.

Proof We assume that G has at least one edge, since the result is trivial for an empty
graph. Let x be an eigenvector of L corresponding to λ1. Then Lx = λ1x. Choose i
such that xi = maxk xk . Furthermore, choose j such that xj = mink{xk : k ∼ i}. The
ith and the jth equations from the vector equation Lx = λ1x can be expressed as

λ1xi = dixi −
∑

k : k∼i

xk (4.1)

http://dx.doi.org/10.1007/978-1-4471-6569-9_1
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and
λ1xj = djxj −

∑
k : k∼j

xk . (4.2)

From (7.2) and (7.3) we get

λ1xi = dixi −
∑

k : k∼i, k∼j

xk −
∑

k : k∼i, k �∼j

xk (4.3)

and
λ1xj = djxj −

∑
k : k∼j, k∼i

xk −
∑

k : k∼j, k �∼i

xk . (4.4)

Subtracting (4.4) from (7.8),

λ1(xi − xj) = dixi − djxj −
∑

k : k∼i, k �∼j

xk +
∑

k : k∼j, k �∼i

xk

≤ dixi − djxj − (di − c(i, j))xj + (dj − c(i, j))xi

= (di + dj − c(i, j))(xi − xj). (4.5)

If xj = xi for all j ∼ i, then from (7.2) we see that λ1 = 0, which is not possible if
the graph has at least one edge. Therefore, there exists j such that i ∼ j and xi > xj.

Now from (4.5) we see that

λ1 ≤ di + dj − c(i, j),

and the result follows. �
Corollary 4.14 Let G be a graph with the vertex set V = {1, . . . , n}. Let L be the
Laplacian of G with maximum eigenvalue λ1. Then

λ1 ≤ max{di + dj : 1 ≤ i < j ≤ n, i ∼ j}.

4.5 Edge-Laplacian of a Tree

Let G be a graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em}. Assign an
orientation to each edge, and let Q be the n × m incidence matrix. The matrix
K = Q′Q has been termed the edge-Laplacian of G. The rows and the columns of
K are indexed by E(G). For i �= j, the (i, j)-element of K is 0 if the edges ei and ej

have no vertex in common. If they do have a common vertex then the (i, j)-element
of K is −1 or 1 according as ei and ej follow each other, or not, respectively. The
diagonal entries of K are all equal to 2. Note that rankK = rank Q, and it follows
that the edge-Laplacian of a tree is nonsingular. In the remainder of this section we

http://dx.doi.org/10.1007/978-1-4471-6569-9_7
http://dx.doi.org/10.1007/978-1-4471-6569-9_7
http://dx.doi.org/10.1007/978-1-4471-6569-9_7
http://dx.doi.org/10.1007/978-1-4471-6569-9_7
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consider the edge-Laplacian of a tree and obtain a combinatorial description of its
inverse.

Let T be a tree with the vertex set {1, . . . , n} and the edge set {e1, . . . , en−1}.
Assign an orientation to each edge of T and let Q be the incidence matrix.

Lemma 4.15 Let H be the (n − 1) × n matrix defined as follows. The rows and the
columns of H are indexed by the edges and the vertices of T , respectively. Set hij = 1
if edge ei is directed away from vertex j, and hij = 0 otherwise. Then HQ = In−1.

Proof Fix i �= j. Suppose edge ej joins vertices u, v and is directed from u to v. Then
quj = 1, qvj = −1 and qkj = 0, k �= u, k �= v. Thus, the (i, j)-element of HQ equals

n∑
k=1

hikqkj = hiu − hiv.

Note that ei is either directed away from both u and v or is directed towards both u
and v. Therefore, hiu = hiv and hence the (i, j)-element of HQ is zero. If i = j then
hiu = 1 and hiv = 0 and then

∑n
k=1 hikqkj = hiu − hiv = 1. This completes the

proof. �

By Lemma 4.15 HQH = H and therefore H is a g-inverse of Q. It is well known
that the class of g-inverses of Q is given by H + X(I − QH) + (I − HQ)Y , where
X and Y are arbitrary. Since HQ = I by Lemma 4.15, the class of g-inverses of Q
is given by H + X(I − QH), where X is arbitrary. We now determine the X that
produces the Moore–Penrose inverse of Q.

By Lemma 2.2, rankHQ = rankQ = n − 1. Also rank (I − QH) = n −
rank (QH) = 1. Therefore, rankX(I − QH) ≤ 1 and hence X(I − QH) = uv′
for some vectors u and v. Thus, we conclude that Q+ = H + uv′ for some vectors u
and v, which we now proceed to determine.

For i = 1, . . . , n − 1, the graph T\ei has two components, both trees, one of
which is closer to the tail of ei, while the other is closer to the head of ei. We refer
to these as the tail component and the head component of ei, respectively. Let ti be
the number of vertices in the tail component of ei. Let t = (t1, . . . , tn−1)

′. It is clear
from the definition of H that H1 = t.

Considering Q+ = H + uv′ and Q+1 = 0, we get H1 + (v′1)u = 0, and hence
(v′1)u = −H1 = −t.

Also, I = Q+Q = HQ + uv′Q = I + uv′Q, and hence uv′Q = 0. Since Q+ �= H,

u and v are nonzero vectors. Hence, v′Q = 0 and v = α1 for some α. Therefore,
t = −(v′1)u = −α1′1u = −αnu. It follows that

Q+ = H + uv′

= H − t

αn
(α1′)

= H − 1

n
t1′.

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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Thus, we have obtained the formula for Q+ given in the next result.

Theorem 4.16 The rows and the columns of Q+ are indexed by the edges and the
vertices of T , respectively. The (i, j)-element of Q+ is − ti

n if j is in the head component
of ei, and it equals 1 − ti

n if j is in the tail component of ei.

Example 4.17 Consider the following tree:

The incidence matrix is

Q =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0

−1 1 1 0
0 0 −1 −1
0 0 0 1

⎤
⎥⎥⎥⎥⎦

.

Then

H =

⎡
⎢⎢⎣
1 0 0 0 0
1 0 1 1 1
1 1 1 0 0
0 0 0 0 1

⎤
⎥⎥⎦

satisfies HQ = I, while the Moore–Penrose inverse of Q is given by

Q+ = 1

5

⎡
⎢⎢⎣

4 −1 −1 −1 −1
1 −4 1 1 1
2 2 2 −3 −3

−1 −1 −1 −1 4

⎤
⎥⎥⎦ .

It is well known (see Exercise 6) that for any matrix A, (AA′)+ = (A+)′A+. Thus,
using Theorem 4.16 we may obtain an expression for L+, where L = QQ′ is the
Laplacian of the tree. We state the expression and omit the easy verification. We first
introduce some notation. If i is a vertex and ej an edge of T , then f (ej, i) will denote
the number of vertices in the component of T\{ej} that does not contain i. Also, for
vertices i, j and edge ek, α(i, j, ek)will be−1 or 1 according as ek is on the (i, j)-path
or otherwise, respectively.
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Theorem 4.18 For i, j = 1, . . . , n, the (i, j)-element of L+ is given by

1

n2

n−1∑
k=1

α(i, j, ek)f (ek, i)f (ek, j).

As observed earlier, since rankK = rankQ′Q = rankQ = n − 1, then K is
nonsingular. It is easily seen by the Cauchy–Binet formula that det K = n. Since
K−1 = K+ = Q+(Q+)′,we may obtain an expression for K−1 using Theorem 4.16.
Again, we only state the expression. Extending our earlier notation, let us denote by
f (ej, ei) the number of vertices in the component of T\{ej} that does not contain ei.

Suppose edge ei has head u and tail v, while edge ej has head w and tail x. We
say that ei and ej are similarly oriented if the path joining u and w contains precisely
one of x or v. Otherwise, we say that ei and ej are oppositely oriented.

Theorem 4.19 For i, j = 1, . . . , n − 1, the (i, j)-element of K−1 is given by

±1

n
(n − f (ei, ej))(n − f (ej, ei)),

where the sign is positive or negative according as ei and ej are similarly oriented
or oppositely oriented, respectively.

Exercises

1. Let G be a graph with n vertices and let L be the Laplacian of G. Show that the
number of spanning trees of G is given by 1

n2
det(L + J).

2. Let G × H be the Cartesian product of graphs G and H. Determine L(G × H) in
terms of L(G) and L(H). Hence, determine the Laplacian eigenvalues of G × H
in terms of those of G and H.

3. Let G be a graph with n vertices and m edges. Show that κ(G), the number of
spanning trees of G, satisfies

κ(G) ≤ 1

n

(
2m

n − 1

)n−1

.

4. Let G be a graph with vertex set V(G) = {1, . . . , n}. Let L be the Laplacian of G
with maximum eigenvalue λ1. Show that λ1 ≤ n.

5. Let T be a tree with vertices {1, . . . , n} and edges {e1, . . . , en−1}. Show that the
edges of T can be oriented in such a way that the edge-Laplacian K becomes an
entrywise nonnegative matrix.

6. Let A be an m × n matrix. Show that (A′)+ = (A+)′ and that (AA′)+ = (A′)+A+.



Exercises 59

Basic properties of the Laplacian are discussed in the books by Biggs and by
Godsil and Royle quoted in Chap.2. Other relevant references are as follows:
Sect. 4.4: [GM94, AM85, Das03], Sect. 4.5: [Bap97, Mer89, Moo95].
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Chapter 5
Cycles and Cuts

Let G be a graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. Assign an
orientation to each edge of G and let Q be the incidence matrix. The null space of
Q is called the cycle subspace of G whereas the row space of Q is called the cut
subspace of G. These definitions are justified as follows.

Consider a cycleC in G and choose an orientation of the cycle. Let x be the m ×1
incidence vector of the cycle. We claim that Qx = 0, that is, x is in the null space
of Q. The i th element of Qx is (Qx)i = ∑m

j=1 qi j x j . If vertex i and C are disjoint,
then clearly (Qx)i = 0.Otherwise there must be precisely two edges ofC which are
incident with i. Suppose ep with endpoints i, k and es with endpoints i, � are in C . If
ep has head i and tail k and if es has head i and tail �, then we have qip = 1, qis = 1
and qi j x j = 0 for j �= p, j �= s. Also, x p = −xs . It follows that (Qx)i = 0. The
cases when ep and es have other orientations are similar. Therefore, (Qx)i = 0 for
each i and hence x is in the null space of Q.

We now turn to cuts. Let V (G) = V1 ∪ V2 be a partition of V (G) into nonempty
disjoint subsets V1 and V2. The set of edges with one endpoint in V1 and the other
endpoint in V2 is called a cut. Denote this cut by K . Given a cut K we define its
incidence vector y as follows. The order of y ism ×1 and its components are indexed
by E(G). If ei is not in K , then yi = 0. If ei ∈ K , then yi = 1 or −1 according
as ei is directed from V1 to V2, or from V2 to V1, respectively.

Let u be a vector of order n × 1 defined as follows. The components of u are
indexed by V (G). Set ui = 1 or −1 according as i ∈ V1 or i ∈ V2, respectively.
Observe that y′ = 1

2u′Q and hence y is in the row space of Q.

5.1 Fundamental Cycles and Fundamental Cuts

We continue to use the notation introduced earlier. If G is a graph with k connected
components, then by Theorem2.3 rank Q = n −k.Hence the dimension of the cycle
subspace of G is m −n +k,whereas the dimension of the cut subspace of G is n −k.

We now describe a procedure to obtain bases for these two subspaces.
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The cycle subspace of G is the direct sum of the cycle subspaces of each of its
connected components. A similar remark applies to the cut subspace of G.Therefore,
for the purpose of determining bases for the cycle subspace and the cut subspace, we
may restrict our attention to connected graphs.

Let G be a connected graph and let T be a spanning tree of G. The edges
E(G)\E(T ) are said to constitute a cotree of G, which we denote by T c, the com-
plement of T . If ei ∈ E(T c) then E(T ) ∪ {ei } contains a unique cycle, which we
denote by Ci . The cycle Ci is called a fundamental cycle. The orientation of Ci is
taken to be consistent with the orientation of ei .

Theorem 5.1 Let G be a connected graph with n vertices, m edges, and let T be
a spanning tree of G. For each ei ∈ E(T c), let xi be the incidence vector of the
fundamental cycle Ci . Then {xi : ei ∈ E(T c)} forms a basis for the cycle subspace
of G.

Proof As observed earlier, xi is in the cycle subspace of G. Note that |E(T c)| =
m − n + 1. Since the dimension of the cycle subspace of G is m − n + 1, we only
need to prove that {xi : ei ∈ E(T c)} are linearly independent.

If ei ∈ E(T c) then the fundamental cycle Ci contains precisely one edge, namely
ei , from E(T c), while all the remaining edges of Ci come from E(T ). Thus, ei does
not belong to any other fundamental cycle. In other words, xi has a nonzero entry at
a position where each x j , j �= i, has a zero. Hence, {xi : ei ∈ E(T c)} is a linearly
independent set. �

The procedure for finding a basis for the cut subspace of G also uses the spanning
tree. Let ei ∈ E(T ). The graph obtained by removing ei from T is a forest with
two components. Let V1 and V2 be the vertex sets of the two components. Then
V (G) = V1 ∪ V2 is a partition. We assume that ei is directed from V1 to V2. LetKi

denote the cut of G corresponding to the partition V1 ∪ V2 and let yi be its incidence
vector. The cut Ki is called a fundamental cut.

Theorem 5.2 Let G be a connected graph with n vertices, m edges, and let T be
a spanning tree of G. For each ei ∈ E(T ), let yi be the incidence vector of the
fundamental cut Ki . Then {yi : ei ∈ E(T )} forms a basis for the cut subspace
of G.

Proof Since |E(T )| = n − 1, which is the dimension of the cut subspace of G, we
only need to prove that {yi : ei ∈ E(T )} is a linearly independent set. As in the
proof of Theorem5.1, each fundamental cut contains precisely one edge from E(T )

and that edge is in no other fundamental cut. Hence, {yi : ei ∈ E(T )} is a linearly
independent set. This completes the proof. �
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Example 5.3 Consider the graph G:

•1 e2 ��

e1

��

•3

e7

���
��

��
��

��
��

��
��

�
e4 �� •5

e8

��
•2 •4 e5

��
e6

��

e3

��

•6

Let T be the spanning tree formed by {e1, e2, e3, e4, e5}. The fundamental cycle
associated with e6 is 1 − 2 − 4 − 3 − 1 and its incidence vector is

[−1 1 −1 0 0 1 0 0
]
.

The fundamental cut associated with e3 corresponds to the partition V1 = {4, 6},
V2 = {1, 2, 3, 5} and its incidence vector is

[
0 0 1 0 0 1 −1 −1

]
.

5.2 Fundamental Matrices

Let G be a connected graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. Let
T be a spanning tree of G. We assume that E(T ) = {e1, . . . , en−1}. Then the cotree
T c has edge set E(T c) = {en, . . . , em}. As usual, we assume that the edges of G
have been assigned an orientation.

The fundamental cut matrix B of G is an (n − 1) × m matrix defined as follows.
The rows of B are indexed by E(T ), while the columns are indexed by E(G). The
i th row of B is the incidence vector of the fundamental cut Ki associated with
ei , i = 1, . . . , n − 1. Since ei is the only edge of T that is inKi , i = 1, . . . , n − 1,
B must be of the form [I, B f ] where B f is of order (n − 1) × (m − n + 1).

The fundamental cycle matrix C of G is an (m − n + 1) × m matrix defined as
follows. The rows of C are indexed by E(T c), while the columns are indexed by
E(G).The i th row ofC is the incidence vector of the fundamental cycleCi associated
with ei , i = n, . . . , m. Since ei is the only edge of T c that is in Ci , i = n, . . . , m,

C must be of the form [C f , I ] where C f is of order (m − n + 1) × (n − 1).

Lemma 5.4 B f = −C ′
f .

Proof Let Q be the incidence matrix of G. As seen earlier, each row vector of B is
in the row space of Q. Also, the transpose of any row vector of C is in the null space
of Q. It follows that BC ′ = 0. Therefore,
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[
I B f

] [C ′
f

I

]
= 0,

and hence C ′
f + B f = 0. Thus, B f = −C ′

f . �

Example 5.5 Consider the graph G and the spanning tree T as in Example 5.3. Then

B =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 1 −1 −1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦

and

C =
⎡
⎣

−1 1 −1 0 0 1 0 0
0 0 1 0 −1 0 1 0
0 0 1 1 −1 0 0 1

⎤
⎦.

Let Q be the incidence matrix of G. There is a close relationship between Q, B
and C, as we see next.

Theorem 5.6 Let Q1 be the reduced incidence matrix obtained by deleting the last
row of Q and suppose Q1 is partitioned as Q1 = [Q11, Q12], where Q11 is of order
(n − 1) × (n − 1). Then B f = Q−1

11 Q12 and C f = −Q′
12(Q′

11)
−1.

Proof The rank of Q11 equals n − 1, which is the rank of Q. Therefore, the rows
of Q1 form a basis for the row space of Q. Since each row of B is in the row space
of Q, there exists a matrix Z such that B = Z Q1. In partitioned form, this equation
reads [

I B f
] = Z

[
Q11 Q12

]
.

It follows that Z Q11 = I and Z Q12 = B f . Thus, Z = Q−1
11 and B f = Q−1

11 Q12.

The second part follows, since by Lemma5.4, C f = −B ′
f . �

5.3 Minors

We continue to use the notation introduced earlier. We first consider minors of B and
C containing all the rows.

Theorem 5.7 Let G be a connected graph with n vertices, m edges, and let B be the
fundamental cut matrix of G with respect to the spanning tree T . Then the following
assertions hold:

(i) a set of columns of B is a linearly independent set if and only if the corresponding
edges of G induce an acyclic graph;



5.3 Minors 65

(ii) a set of n − 1 columns of B is a linearly independent set if and only if the
corresponding edges form a spanning tree of G;

(iii) if X is a submatrix of B of order (n − 1) × (n − 1), then det X is either 0 or
±1;

(iv) det B B ′ equals the number of spanning trees of G.

Proof Recall that the columns of B are indexed by E(G). Let Q be the incidence
matrix of G. Let Q1 be the reduced incidence matrix and let Q1 = [Q11, Q12] as in
Theorem5.6. By Theorem5.6, B = Q−1

11 Q1. Let Y be the submatrix of B formed by
the columns j1, . . . , jk, and let R be the submatrix of Q1 formed by the columnswith
the same indices. Then Y = Q−1

11 R, and hence, rankY = rank R. In particular, the
columns of Y are linearly independent if and only if the corresponding columns of R
are linearly independent. By Lemma2.5, the columns of R are linearly independent
if and only if the corresponding edges of G form an acyclic graph. This proves (i).
Assertion (ii) follows easily from (i).

To prove (iii), note that det X is det Q−1
11 multiplied by the determinant of a

submatrix of Q1 of order (n − 1) × (n − 1). Since Q is totally unimodular (see
Lemma2.6), it follows that det X is either 0 or ±1.

To prove (iv), first observe that, by the Cauchy–Binet formula, det B B ′ =∑
(det Z)2, where the summation is over all (n − 1) × (n − 1) submatrices Z of

B. By (ii), det Z is nonzero if and only if the corresponding edges form a spanning
tree of G, and then by (iii), det Z must be ±1. Hence, det B B ′ equals the number
of spanning trees of G. �

We now turn to the fundamental cycle matrix. Let C be the fundamental cycle
matrix of G with respect to the spanning tree T . Recall that the columns of C are
indexed by E(G).

Lemma 5.8 Columns j1, . . . , jk of C are linearly dependent if the subgraph of G
induced by the corresponding edges contains a cut.

Proof As usual, let Q be the incidence matrix of G. Suppose that the edges of G
indexed by j1, . . . , jk contain a cut. Let u be the incidence vector of the cut. As
observed earlier, u′ is in the row space of Q and hence u′ = z′Q for some vector z.
Then Cu = C Q′z = 0, since C Q′ = 0. Note that only the coordinates of u indexed
by j1, . . . , jk can possibly be nonzero. Thus, from Cu = 0 we conclude that the
columns j1, . . . , jk are linearly dependent. �

If E(G) = E1 ∪ E2 is a partition of the edge set of the connected graph G into
disjoint subsets, and if E1 does not contain a cut, then E2 must induce a connected,
spanning subgraph. We will use this observation.

Lemma 5.9 Let X be a submatrix of C of order (m − n + 1) × (m − n + 1). Then
X is nonsingular if and only if the edges corresponding to the column indices of X
form a cotree of G.

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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Proof Let the columns of X be indexed by F ⊂ E(G). If X is nonsingular, then by
Lemma5.8, the subgraph induced by F does not contain a cut. Then Fc induces a
connected, spanning subgraph. Since |Fc| = n −1, the subgraph must be a spanning
tree of G. Therefore, the edges in F form a cotree.

Conversely, suppose the edges in F form a cotree Sc, where S is a spanning tree
of G. Let D be the fundamental cycle matrix with respect to S.Note that the columns
of C, as well as D, are indexed by E(G), listed in the same order. Since the rows of
C, as well as D, are linearly independent, and since their row spaces are the same,
there exists a nonsingular matrix Z of order (m − n + 1) × (m − n + 1) such that
C = Z D. Therefore, an (m − n + 1) × (m − n + 1) submatrix of C is nonsingular
if and only if the corresponding submatrix of D is nonsingular. The submatrix of
D indexed by F is the identity matrix. Hence, the submatrix of C indexed by F is
nonsingular. �

We now prove the converse of Lemma5.8.

Lemma 5.10 Let F ⊂ E(G) and suppose the columns of C indexed by F are
linearly dependent. Then the subgraph of G induced by F contains a cut.

Proof If the subgraph of G induced by F does not contain a cut, then the subgraph
of G induced by Fc is spanning and connected. Therefore the subgraph induced by
Fc contains a spanning tree S of G. By Lemma5.9, the columns of C indexed by
the edges in the cotree Sc are linearly independent. These columns include all the
columns indexed by F . Then the columns of F must also be linearly independent.
This is a contradiction and the result is proved. �

Our next objective is to show that the fundamental cut matrix and the fundamental
cycle matrix are totally unimodular.

Lemma 5.11 Let G be a connected graph with n vertices, m edges, and let B be the
fundamental cut matrix of G with respect to the spanning tree T . Then B is totally
unimodular.

Proof Consider a k ×k submatrix D of B, and suppose D is indexed by E1 ⊂ E(T )

and E2 ⊂ E(G). If k = n − 1, then by Theorem5.7, det D is either 0 or ±1. So,
suppose k < n − 1. If det D = 0 then there is nothing to prove. So, suppose D is
nonsingular. Then the columns of B indexed by E2 are linearly independent, and
by Theorem5.7, the corresponding edges induce an acyclic subgraph of G. We may
extend this subgraph to a spanning tree S, using only edges from T . The submatrix
of B formed by the columns corresponding to the edges in S is a matrix of order
(n − 1) × (n − 1), and it is nonsingular by Theorem5.7. Thus, det S = ±1. We
may expand det S using columns coming from the identity matrix and therefore
det S = ± det D. Hence, det D = ±1. �

Lemma 5.12 Let G be a connected graph with n vertices, m edges, and let C be the
fundamental cycle matrix of G with respect to the spanning tree T . Then C is totally
unimodular.
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Proof Recall that if B is the fundamental cut matrix with respect to the spanning
tree T, then B = [I, B f ] and C = [−B ′

f , I ]. Consider a submatrix F of C. If F is
a submatrix of −B ′

f , then it follows by Lemma5.11 that det F is either 0 or ±1. If
F contains some part from the identity matrix, then we may expand det F along the
columns coming from the identity matrix and again conclude that det F is either 0
or ±1. �

We saw in Theorem5.7 that det B B ′ equals the number of spanning trees in G.

We now give an interpretation of the principal minors of B B ′.

Theorem 5.13 Let G be a connected graph with n vertices, m edges, and let B be
the fundamental cut matrix of G with respect to the spanning tree T . Let E ⊂ E(T )

and let B B ′[E |E] be the submatrix of B B ′ with rows and columns indexed by E .

Then det B B ′[E |E] equals the number of ways of extending Ec to a spanning tree
of G.

Proof Let |E | = k. By the Cauchy–Binet formula,

det B B ′[E |E] =
∑

F⊂E(G),|F |=k

(det B[E |F])2, (5.1)

where B[E |F] denotes the submatrix of B indexed by the rows in E and the columns
in F. Note that since B[E(T )|E(T )] is the identity matrix, B[E |F] is nonsingu-
lar if and only if B[E(T )|F ∪ Ec] is nonsingular, in which case by Lemma5.11,
det B[E |F] = ±1. Now B[E(T )|F ∪ Ec] is nonsingular if and only if the edges
F ∪ Ec form a spanning tree of G, and hence the result follows by (5.1). �
Corollary 5.14 Let G be a connected graph with n vertices, m edges, and let B be
the fundamental cut matrix of G with respect to the spanning tree T . Let ei ∈ E(T )

and let B B ′(ei |ei ) be the submatrix of B B ′ with row and column indexed by ei

deleted. Then det B B ′(ei |ei ) equals the number of spanning forests of G with two
components, such that the endpoints of ei are in different components.

Proof By Theorem5.13, det B B ′(ei |ei ) equals the number of ways of extending ei

to a spanning tree of G, which is precisely the number as asserted in the result. �
It may be mentioned that the theory of fundamental matrices may be developed

for undirected graphs, resulting in 0–1 matrices. The treatment is similar, except the
underlying field is that of integers modulo 2.

Exercises

1. Let G be a connected graph with n vertices, m edges, B the fundamental cut
matrix, and C the fundamental cycle matrix of G. Show that the m × m matrix[

B
C

]
is nonsingular.
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2. Let Ki be a cut in G with incidence vector xi , i = 1, . . . , n − 1. Suppose
x1, . . . , xn−1 are linearly independent. Show that all nonzero (n − 1) × (n − 1)
minors of the matrix X = [x1, . . . , xn−1] are equal.

3. Let G be a connected graphwith n vertices,m edges, and letC be the fundamental
cycle matrix of G with respect to the spanning tree T . Let E ⊂ E(T )c. Show that
det CC ′[E |E] equals the number of ways of extending Ec to a cotree of G.

4. Let G be a connected graphwith n vertices,m edges, and let B be the fundamental
cut matrix of G with respect to the spanning tree T . Let T1 be a subtree of T .

Show that det B B ′[E(T1)|E(T1)] equals det L(V (T1)|V (T1)), where L is the
Laplacian matrix of G.

5. Let G be a connected planar graph and let G∗ be its dual. Let T be a spanning
tree of G and let T ∗ be its dual spanning tree of G∗. Show that the fundamental
cut matrix of G with respect to T equals the fundamental cycle matrix of G∗ with
respect to T ∗.

The material in this chapter is generally covered in most basic texts, but the level and
the depth to which it is covered may vary.We list below only two selected references:
[D74] is recommended for an elementary treatment, while [R89], Chap.1, is more
advanced. The statements and the proofs of several results in Sect. 5.3 have not
appeared in the literature in the present form.
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Chapter 6
Regular Graphs

A graph is said to be regular if all its vertices have the same degree. If the degree
of each vertex of G is k, then G is said to be k-regular. Examples of regular graphs
include cycles, complete graphs and complete bipartite graphs with bipartite sets of
the same cardinality.

6.1 Perron–Frobenius Theory

We prove those aspects of the Perron–Frobenius theorem that are required for appli-
cation to graphs. First we introduce some notation.

For a vector x we write x ≥ 0 to indicate that each coordinate of x is nonnegative,
while x > 0 means that each coordinate of x is positive. Similar notation applies to
matrices. For matrices A and B, A ≥ B denotes that A − B ≥ 0. Similarly, A > B
denotes thatA−B > 0.The spectral radius ρ(A) of a squarematrixA is themaximum
modulus of an eigenvalue of A. The spectral radius of a graph G, denoted ρ(G), is
the spectral radius of the adjacency matrix of the graph.

Lemma 6.1 Let G be a connected graph with n vertices, and let A be the adjacency
matrix of G. Then (I + A)n−1 > 0.

Proof Clearly, (I + A)n−1 ≥ I + A + A2 + · · · + An−1. Since G is connected, for
any i �= j, there is an (ij)-path, and the length of the path can be at most n − 1. Thus,
the (i, j)-element of I + A + A2 + · · · + An−1 is positive. If i = j, then clearly, the
(i, j)-element of I + A + A2 + · · · + An−1 is positive. Therefore, (I + A)n−1 > 0 and
the proof is complete. �

Lemma 6.2 Let G be a connected graph with n vertices, and let A be the adjacency
matrix of G. If x ≥ 0 is an eigenvector of A, then x > 0.

Proof If Ax = μx, then clearly, μ > 0. We have (I + A)n−1x = (1 + μ)n−1x. By
Lemma 6.1, (I + A)n−1 > 0 and it follows that x > 0. �
© Springer-Verlag London 2014
R.B. Bapat, Graphs and Matrices, Universitext,
DOI 10.1007/978-1-4471-6569-9_6
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Theorem 6.3 Let G be a connected graph with n ≥ 2 vertices, and let A be the
adjacency matrix of G. Then the following assertions hold:

(i) A has an eigenvalue λ > 0 and an associated eigenvector x > 0.
(ii) for any eigenvalue μ �= λ of A,−λ ≤ μ < λ. Furthermore, −λ is an eigenvalue

of A if and only if G is bipartite.
(iii) if u is an eigenvector of A for the eigenvalue λ, then u = αx for some α.

Proof Let

Pn =
{

y ∈ IRn : yi ≥ 0, i = 1, . . . , n;
n∑

i=1

yi = 1

}
.

We define f : Pn → Pn as f (y) = 1∑
i(Ay)i

Ay, y ∈ Pn. Since G is connected A has

no zero column and hence for any y ∈ Pn, Ay has at least one positive coordinate.
Hence, f is well-defined. Clearly, Pn is a compact, convex set, and f is a continuous
function from Pn to itself. By the well-known Brouwer’s fixed point theorem, there
exists x ∈ Pn such that f (x) = x. If we let λ = ∑n

i=1(Ax)i, then it follows that Ax =
λx. Now (1 + λ)n−1x = (I + A)n−1x > 0 by Lemma 6.1. Hence, (1 + λ)n−1x > 0
and therefore x > 0. This proves (i).

Let μ �= λ be an eigenvalue of A and let z be an associated eigenvector, so that
Az = μz. Then

|μ||zi| ≤
n∑

j=1

aij|zj|, i = 1, . . . , n. (6.1)

Using the vector x in (i), we get from (6.1),

|μ|
n∑

i=1

xi|zi| ≤
n∑

i=1

xi

n∑
j=1

aij|zj|

=
n∑

j=1

|zj|
n∑

i=1

aijxi

= λ

n∑
j=1

xj|zj|. (6.2)

It follows from (6.2) that |μ| ≤ λ, that is, −λ ≤ μ < λ. If μ = −λ is an
eigenvalue of A with the associated eigenvector z, then we see from the above proof
that equality must hold in (6.1) for i = 1, . . . , n; that is,

λ|zi| =
n∑

j=1

aij|zj| =
∑
j∼i

|zj|. (6.3)
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Thus, |z| = (|z1|, . . . , |zn|)′ is an eigenvector of A for λ, and, as seen in the proof of
(i), |zi| > 0, i = 1, . . . , n. Also, Az = −λz gives

−λzi =
∑
j∼i

zj, i = 1, . . . , n. (6.4)

From (6.3) and (6.4),

λ|zi| =
∣∣∣∣∣∣
∑
j∼i

zj

∣∣∣∣∣∣
≤
∑
j∼i

|zj| ≤ λ|zi|.

Therefore, for any i, zj has the same sign for all j ∼ i.
Let V1 = {i ∈ V(G) : zi > 0} and V2 = {i ∈ V(G) : zi < 0}. Then it can be

seen that G is bipartite with the bipartition V(G) = V1 ∪ V2. If G is bipartite, then
by Theorem 3.14, −λ is an eigenvalue of A. This completes the proof of (ii).

Let u be an eigenvector of A for the eigenvalue λ. We may choose a scalar β

such that x − βu ≥ 0 and x − βu has a zero coordinate. If x − βu �= 0, then
it is an eigenvector of A for the eigenvalue λ with all the coordinates nonnega-
tive. As seen in the proof of (i), we may conclude that all its coordinates must be
positive, a contradiction. Therefore, x − βu = 0 and, setting α = 1/β, (iii) is
proved. �

The eigenvalue λ of G, as in (i) of Theorem 6.3, is called the Perron eigenvalue
of G, and the associated eigenvector x is called a Perron eigenvector. Note that by
(ii) of the theorem, the Perron eigenvalue of G is the same as the spectral radius
ρ(G). The Perron eigenvector is unique, up to a scalar multiple, as seen in (iii)
of the theorem. For graphs that are not necessarily connected we may prove the
following.

Theorem 6.4 Let G be a graph with n vertices, and let A be the adjacency matrix
of G. Then ρ(G) is an eigenvalue of G and there is an associated nonnegative
eigenvector.

Proof Let G1, . . . , Gp be the connected components of G, and let A1, . . . , Ap be
the corresponding adjacency matrices. We assume, without loss of generality, that
ρ(G1) = maxi ρ(Gi). Then by Theorem 6.3 there is a vector x > 0 such that
A1x = ρ(G1)x. The vector obtained by augmenting x by zeros is easily seen to be
an eigenvector of A corresponding to the eigenvalue ρ(G) = ρ(G1). �

In view of Theorem 6.4, we refer to ρ(G) as the Perron eigenvalue of the graph G,

which may be connected or otherwise. We now turn to somemonotonicity properties
of the Perron root.

Lemma 6.5 Let G be a connected graph with n vertices, and let H �= G be a
spanning, connected subgraph of G. Then ρ(G) > ρ(H).

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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Proof Let A and B be the adjacency matrices of G and H, respectively. By Theo-
rem 6.3 there exist vectors x > 0, y > 0, such that Ax = ρ(G)x, By = ρ(H)y.
Since 0 �= A − B ≥ 0 and since x > 0, y > 0, then y′Ax > y′Bx. But
y′Ax = y′(ρ(G)x) = ρ(G)y′x and y′Bx = ρ(H)y′x. Therefore, ρ(G) > ρ(H). �

Lemma 6.6 Let G be a connected graph and let A be the adjacency matrix of G.

Let μ > 0, x ≥ 0 be such that Ax ≥ μx, Ax �= μx. Then μ < ρ(G).

Proof By Theorem 6.3, there exists y > 0 such that Ay = ρ(G)y. We have

(ρ(G) − μ)y′x = y′ρ(G)x − μy′x
= y′Ax − μy′x
= y′(Ax − μx) > 0,

since Ax − μx ≥ 0, Ax − μx �= 0. As y′x > 0, it follows that μ < ρ(G). �

Lemma 6.7 Let G be a connected graph with n vertices and let H �= G be a vertex-
induced subgraph of G. Then ρ(G) > ρ(H).

Proof Let A and B be the adjacency matrices of G and H, respectively. Then B is a

principal submatrix of A. We assume, without loss of generality, that A =
(

B C
C′ E

)
.

By Theorem 6.4, there exists z ≥ 0 such that Bz = ρ(H)z. Let x = [z′, 0]′. Then

Ax =
(

B C
C′ E

)(
z
0

)

=
(

Bz
C′z

)

=
(

ρ(H)z
C′z

)

≥ ρ(H)x.

If Ax = ρ(H)x, then by Lemma 6.2, x > 0, which is a contradiction. Thus Ax −
ρ(H)x ≥ 0, Ax − ρ(H)x �= 0. It follows from Lemma 6.6 that ρ(G) > ρ(H). �

Theorem 6.8 Let G be a connected graph and let H �= G be a subgraph of G. Then
ρ(G) > ρ(H).

Proof Note that H must have a connected component H1 such that ρ(H) = ρ(H1),

and H1 is a spanning subgraph of a vertex-induced, connected subgraph H2 of G.

If H2 = G, then by Lemma 6.5, ρ(H1) < ρ(H2). If H2 �= G, then by Lemma 6.7,
ρ(H2) < ρ(G). Also by Lemma 6.5, ρ(H1) ≤ ρ(H2) (equality holds if H1 = H2)
and hence ρ(H1) < ρ(G). This completes the proof. �
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If G is a connected graph, then by Theorem 6.3 (iii), ρ(G) is an eigenvalue of G
with geometricmultiplicity 1.Since the adjacencymatrix is symmetric, the following
result is immediate.

Theorem 6.9 Let G be a connected graph with n vertices. Then ρ(G) is an eigen-
value of G with algebraic multiplicity 1.

The following result for regular graphs is a consequence of the results obtained
thus far.

Theorem 6.10 Let G be a k-regular graph. Then ρ(G) equals k, and it is an eigen-
value of G. It has algebraic multiplicity 1 if G is connected.

Proof Let A be the adjacency matrix of G. By Theorem 6.3 there exists 0 �= x ≥ 0
such that Ax = ρ(G)x. Since G is k-regular, A1 = k1. Hence, 1′Ax = k(1′x), and
also 1′Ax = ρ(G)(1′x). Therefore, ρ(G) = k. If G is connected then by Theorem
6.9 k has algebraic multiplicity 1. �

We now obtain some bounds for the Perron eigenvalue.

Theorem 6.11 Let G be a connected graph with n vertices, and let A be the adjacency
matrix of G. Then for any y, z ∈ IRn, y �= 0, z > 0,

y′Ay

y′y
≤ ρ(G) ≤ max

i

{
(Az)i

zi

}
. (6.5)

Equality holds in the first inequality if and only if y is an eigenvector of A corre-
sponding to ρ(G). Similarly, equality holds in the second inequality if and only if z
is an eigenvector of A corresponding to ρ(G).

Proof The first inequality follows from the extremal representation for the largest
eigenvalue of a symmetric matrix. The assertion about equality also follows from
the general result about symmetric matrices.

To prove the second inequality, suppose that for z > 0, ρ(G) > maxi

{
(Az)i

zi

}
,

i = 1, . . . , n. Then Az < ρ(G)z. Let x > 0 be the Perron vector of A so that
Ax = ρ(G)x. It follows that ρ(G)z′x = z′Ax = x′Az < ρ(G)x′z, which is a
contradiction. The assertion about equality is easily proved. �

Corollary 6.12 Let G be a connected graph with n vertices and m edges. Let d1 ≥
· · · ≥ dn be the vertex degrees. Then the following assertions hold:

(i) 2m
n ≤ ρ(G) ≤ d1;

(ii) 1
2m

n∑
i=1

∑
i<j,j∼i

√
didj ≤ ρ(G) ≤ maxi

⎧⎨
⎩

1
di

∑
j∼i

√
didj

⎫⎬
⎭.

Furthermore, equality holds in any of the above inequalities if and only if G is regular.
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Proof To prove (i), set y = z = 1, whereas to prove (ii), set y = z =
[√d1, . . . ,

√
dn]′ in Theorem 6.11. �

We conclude this section with an application of the Perron–Frobenius theorem to
obtaining a proof of Turan’s theorem.

Theorem 6.13 Let G be a graph with n vertices, m edges, and no triangles. Then

m ≤ n2
4 .

Proof Let A be the adjacency matrix of G. Let ρ(G) = λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of A. Let, if possible, m > n2

4 . By (i), Corollary 6.12,

λ1 ≥ 2m

n
>

√
m. (6.6)

Recall that the trace of A2 equals
∑n

i=1 λ2i , and it also equals 2m. It follows from
(6.6) that 2m = ∑n

i=1 λ2i > m +∑n
i=2 λ2i , and hence

λ21 > m >

n∑
i=2

λ2i . (6.7)

By the Perron–Frobenius theorem, λ1 ≥ |λi|, i = 2, . . . , n, and hence

∣∣∣∣∣
n∑

i=2

λ3i

∣∣∣∣∣ ≤
n∑

i=2

|λi|3 ≤ λ1

(
n∑

i=2

|λi|2
)

< λ31, (6.8)

in view of (6.7).
Each triangle in a graph gives rise to 6 closed walks of length 3. Thus, the number

of triangles in G equals 1
6 traceA3 = 1

6

∑n
i=1 λ3i . Now

1

6

6∑
i=1

λ3i = λ31

6
+
∑n

i=2 λ3i

6
,

which must be positive by (6.8). This is a contradiction, as G has no triangles, and
hence m ≤ n2

4 . �

6.2 Adjacency Algebra of a Regular Graph

If B is an n × n matrix, then the algebra generated by B is defined as the set of all
linear combinations of I, B, B2, . . . . In other words, the algebra generated by B is the
set of matrices that are polynomials in B. If G is a graph with adjacency matrix A,

then the algebra generated by A is called the adjacency algebra of G. The following
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result due to Hoffman characterizes regular graphs in terms of the adjacency algebra.
Recall that the matrix of all 1 s is denoted by J.

Theorem 6.14 Let G be a graph with n vertices. Then G is a connected, regular
graph if and only if J is in the adjacency algebra of G.

Proof Let A be the adjacency matrix of G. First suppose that J is in the adjacency
algebra of G. Then there exist real numbers α0, α1, . . . , αt for some t such that

J = α0I + α1A + · · · + αtA
t . (6.9)

It follows from (6.9) that AJ = JA. Note that if d1, . . . , dn are the vertex degrees,
then

AJ =
⎡
⎢⎣

d1
...

dn

⎤
⎥⎦ 1′,

while JA=1[d1, . . . , dn]. Therefore, AJ = JA implies that di = dj for all i, j, and
hence G is regular. If G is disconnected, then there exist vertices i, j such that there
is no (ij)-walk. Then the (i, j)-entry of Ap is 0, p ≥ 0, and clearly this contradicts
(6.9). Hence, G is connected.

Conversely, suppose G is connected and k-regular. Let p(λ) be the minimal poly-
nomial of A. Since k is an eigenvalue of A, then p(λ) = (λ − k)q(λ) for some
polynomial q(·). From p(A) = 0 we get Aq(A) = kq(A). Thus, each column of q(A)

is an eigenvector of A corresponding to k = ρ(G). By Theorem 6.3 each column of
q(A) must be a multiple of 1. Since q(A) is symmetric it follows that q(A) = αJ for
some α. Thus, J is in the adjacency algebra of G. �

The constant α in the proof of Theorem 6.14 can be determined explicitly. Let
k = λ1 > λ2 > · · · > λp be the distinct eigenvalues of A. Then p(λ) = (λ − k)(λ −
λ2) · · · (λ − λp) = (λ − k)q(λ) is the minimal polynomial of A. As seen in the proof
of Theorem 6.14, q(A) = αJ for some α. The eigenvalues of q(A) are q(k), and
q(λ2) = · · · = q(λp) = 0. Comparing the largest eigenvalue of q(A) and αJ we see

that q(k) = αn, and hence α = q(k)
n .

6.3 Complement and Line Graph of a Regular Graph

If G is a regular graph then there are simple relations between its adjacency matrix
and Laplacian matrix, as well as the corresponding matrices of Gc, the complement
of G, and G�, the line graph of G. These relations lead to several statements about
the characteristic polynomials of regular graphs, some of which will be proved now.
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Theorem 6.15 Let G be a k-regular graph with n vertices. Let A and A be the
adjacency matrices of G and Gc, respectively. If k = λ1, λ2, . . . , λn are the eigen-
values of A, then n − 1 − λ1,−1 − λ2, . . . ,−1 − λn are the eigenvalues of A.

Proof SinceG is k-regular, 1 is an eigenvector ofA corresponding to k. Set z = 1√
n

1,

and let P be an orthogonal matrix with its first column equal to z such that P′AP =
diag(λ1, λ2, . . . , λn). Since A + A = J − I, it follows that

P′AP = P′(J − I − A)P

= P′JP − I − P′AP

= diag(n − 1 − λ1,−1 − λ2, . . . ,−1 − λn),

where we have used the fact that any column of P other than the first column is
orthogonal to the first column. Hence, the eigenvalues of A are as asserted. �

Let G be a graph with adjacency matrix A. The characteristic polynomial of A is
given by det(λI − A). We refer to this polynomial as the characteristic polynomial
of G and denote it φ(G, λ).

Corollary 6.16 Let G be a k-regular graph with n vertices. Then

φ(Gc, λ) = (−1)n λ + k + 1 − n

λ + k + 1
φ(G,−λ − 1).

Proof Let k = λ1, λ2, . . . , λn be the eigenvalues of G. Then φ(G, λ) = (λ −
λ1)(λ − λ2) · · · (λ − λn). By Theorem 6.15, n − 1− λ1,−1− λ2, . . . ,−1− λn are
the eigenvalues of Gc, and hence

φ(Gc, λ) = (λ − n + 1 + λ1)(λ + 1 + λ2) · · · (λ + 1 + λn).

Therefore,

φ(Gc, λ)

φ(G,−λ − 1)
= (λ − n + 1 + λ1)(λ + 1 + λ2) · · · (λ + 1 + λn)

(−λ − 1 − λ1)(−λ − 1 − λ2) · · · (−λ − 1 − λn)

= (−1)n λ − n + 1 + λ1

λ + 1 + λ1

and the proof is complete. �
Theorem 6.17 Let G be a k-regular graph with n vertices. Then the number of
spanning trees of G is given by 1

nφ′(G, λ)|λ=k .

Proof IfA andL are the adjacencymatrix and theLaplacianmatrix ofG, respectively,
then L = kI − A. Let k, λ2, . . . , λn be the eigenvalues of A. Then the eigenvalues of
L are 0, k − λ2, . . . , k − λn. By Theorem 4.11 the number of spanning trees of G is
given by 1

n (k − λ2) · · · (k − λn). Since φ(G, λ) = (λ − k)(λ − λ2) · · · (λ − λn), we
see that 1

nφ′(G, λ)|λ=k = 1
n (k − λ2) · · · (k − λn) and the proof is complete. �

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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We now turn to line graphs. Let G be a graph with V(G) = {1, . . . , n} and
E(G) = {e1, . . . , em}. Recall that the line graph G� of G has vertex set E(G). For
i �= j, ei and ej are said to be adjacent if they have a common vertex. If G is k-regular
then G� is (2k − 2)-regular. We first prove a preliminary result. Recall the definition
of the 0 − 1 incidence matrix M of G given in Chap.2.

Lemma 6.18 Let G be a graph with n vertices. Let A and B be the adjacency matrices
of G and of G�, respectively. If M is the incidence matrix of G, then M ′M = B + 2I.
Furthermore, if G is k-regular then MM ′ = A + kI.

Proof Any diagonal entry of M ′M clearly equals 2. If ei and ej are edges of G then
the (i, j)-element of M ′M is 1 if ei and ej have a common vertex, and 0 otherwise.
Hence, M ′M = B + 2I. To prove the second part, note that for a k-regular graph,
MM ′ = −L + 2kI, where L is the Laplacian of G. Hence, A = kI − L = MM ′ − kI.
Therefore, MM ′ = A + kI. �

We note in passing a consequence of Lemma 6.18.

Corollary 6.19 Let G be a graph. If μ is an eigenvalue of G� then μ ≥ −2.

Proof Let B be the adjacency matrix of G�. By Lemma 6.18 B + 2I = M ′M is
positive semidefinite. If μ is an eigenvalue of B then μ + 2, being an eigenvalue of
a positive semidefinite matrix, must be nonnegative. Hence, μ ≥ −2. �

Theorem 6.20 Let G be a k-regular graph with n vertices. Then

φ(G�, λ) = (λ + 2)
n
2 (k−2)φ(G, λ + 2 − k).

Proof Let A and B be the adjacency matrices of G and of G�, respectively. Let
M be the incidence matrix of G. If G has m edges then M is of order n × m. Let
k = λ1, λ2, . . . , λn be the eigenvalues of A. By Lemma 6.18 the eigenvalues of
MM ′ are 2k, λ2 + k, . . . , λn + k. Note that the eigenvalues of M ′M are given by the
eigenvalues of MM ′, together with 0 with multiplicity m − n. Therefore, again by
Lemma 6.18, the eigenvalues of B are 2k − 2, λ2 + k − 2, . . . , λn + k − 2, and −2
with multiplicity m − n. Since

φ(G, λ) = (λ − k)(λ − λ2) · · · (λ − λn),

then

φ(G, λ + 2 − k) = (λ + 2 − 2k)(λ + 2 − k − λ2) · · · (λ + 2 − k − λn).

Also,

φ(G�, λ) = (λ + 2 − 2k)(λ + 2 − k − λ2) · · · (λ + 2 − k − λn)(λ + 2)n−m.

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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Hence,
φ(G�, λ)

φ(G, λ + 2 − k)
= (λ + 2)m−n. (6.10)

Since G is k-regular then 2m = nk and hence m − n = n
2 (k − 2). Substituting in

(6.10) the result is proved. �

6.4 Strongly Regular Graphs and Friendship Theorem

Let G be a k-regular graph with n vertices. The graph G is said to be strongly regular
with parameters (n, k, a, c) if the following conditions hold:

(i) G is neither complete, nor empty;
(ii) any two adjacent vertices of G have a common neighbours;
(iii) any two nonadjacent vertices of G have c common neighbours.

For example,C5 is strongly regularwith parameters (5, 2, 0, 1),while the Petersen
graph is strongly regular with parameters (10, 3, 0, 1).

Lemma 6.21 Let G be a strongly regular graph with parameters (n, k, a, c) and let
A be the adjacency matrix of G. Then

A2 = kI + aA + c(J − I − A). (6.11)

Proof Let B = kI + aA + c(J − I − A). Any diagonal entry of A2 clearly equals k
and so does any diagonal entry of B. If i and j are adjacent vertices of G, then the
(i, j)-element of B is a. The (i, j)-element of A2 equals the number of walks of length
2 from i to j, which also equals a since G is strongly regular. A similar argument
shows that the (i, j)-elements of A2 and B are equal when i and j are nonadjacent.
Hence, A2 = B and the proof is complete. �

The following statement, which is essentially a converse of Lemma 6.21, is easy
to prove using the definition of a strongly regular graph.

Lemma 6.22 Let G be a graph which is neither complete nor empty, and let A be
the adjacency matrix of G. Then G is strongly regular if A2 is a linear combination
of A, I and J.

We now determine the eigenvalues of a strongly regular graph.

Theorem 6.23 Let G be a strongly regular graph with parameters (n, k, a, c) and
let A be the adjacency matrix of G. Let Δ = (a−c)2+4(k −c). Then any eigenvalue
of A is either k or 1

2 (a − c ± √
Δ).

Proof Since G is k-regular, k is an eigenvalue of A with 1 as the corresponding
eigenvector. Letμ �= k be an eigenvalue ofAwith y as the corresponding eigenvector,
so that Ay = μy. Note that y′1 = 0. By Lemma 6.21,
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A2 = kI + aA + c(J − I − A),

and hence
A2y = ky + aAy + c(−y − Ay). (6.12)

It follows from (6.12) that

μ2 = k + aμ + c(−1 − μ).

Thus, μ is a solution of the equation

x2 − (a − c)x − (k − c) = 0.

The solutions of this equation are 1
2 (a−c±√

Δ),which must be the possible values
of μ. �

Theorem 6.24 Let G be a connected, strongly regular graph with parameters
(n, k, a, c). Let Δ = (a − c)2 + 4(k − c). Then the numbers

m1 = 1

2

(
n − 1 + (n − 1)(c − a) − 2k√

Δ

)

and

m2 = 1

2

(
n − 1 − (n − 1)(c − a) − 2k√

Δ

)

are nonnegative integers.

Proof By Theorem 6.23 the eigenvalues of G are k and 1
2 (a − c ± √

Δ). Since G is
connected, k has multiplicity 1. Let m1 and m2 be the multiplicities of the remaining
two eigenvalues. Then

1 + m1 + m2 = n. (6.13)

Since the sum of the eigenvalues equals the trace of the adjacency matrix, which
is 0, we have

k + m1

2
(a − c + √

Δ) + m2

2
(a − c − √

Δ) = 0. (6.14)

From (6.13) m2 = n − 1 − m1. Substituting in (6.14) we get

k + m1

2
(a − c + √

Δ) + n − 1 − m1

2
(a − c − √

Δ) = 0.

Thus,

m1
√

Δ + k + n − 1

2
(a − c − √

Δ) = 0,
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or

m1 = 1√
Δ

(
−k − n − 1

2
(a − c − √

Δ)

)
= 1

2

(
n − 1 + (n − 1)(c − a) − 2k√

Δ

)
,

as asserted. The value of m2 is obtained using m2 = n − 1 − m1 and is seen to be

m2 = 1

2

(
n − 1 − (n − 1)(c − a) − 2k√

Δ

)
.

Since m1 and m2 are multiplicities, they must be nonnegative integers and the proof
is complete. �

We recall the result (see Corollary 3.3) that if G is a connected graph then the
diameter of G is less than the number of distinct eigenvalues of G.

Theorem 6.25 Let G be a connected regular graph with exactly three distinct eigen-
values. Then G is strongly regular.

Proof Let G have n vertices and suppose it is k-regular. Since G has three distinct
eigenvalues, by the preceding remark, it has diameter at most 2. Since G is connected
and is neither complete nor empty, its diameter cannot be 0 or 1 and hence itmust be 2.
Since G is k-regular one of its eigenvalues must be k. Let the other two eigenvalues
be θ and τ, and let p(x) = (x − θ)(x − τ). Then (A − kI)p(A) = 0. Since G is
connected k has multiplicity 1, and hence the null space of A − kI is spanned by 1.

As (A − kI)p(A) = 0, each column of p(A) is a multiple of 1. Furthermore, since
p(A) is symmetric it follows that p(A) = αJ for some α. Thus,

(A − θ I)(A − τ I) = αJ.

It follows that A2 is a linear combination of A, I and J.We conclude by Lemma 6.22,
that G is strongly regular. �

As an application of the integrality condition obtained in Theorem 6.24, we prove
the next result, known as the friendship theorem.

Theorem 6.26 Let G be a graph in which any two distinct vertices have exactly one
common neighbour. Then G has a vertex that is adjacent to every other vertex, and,
more precisely, G consists of a number of triangles with a common vertex.

Proof First observe that from the given hypotheses it easily follows that G is con-
nected.

Let i and j be nonadjacent vertices of G, and let N(i) and N(j) be their respective
neighbour sets. With x ∈ N(i), we associate the y ∈ N(j), which is the unique
common neighbour of x and j. Set y = f (x) and observe that f is a one-to-one
mapping from N(i) to N(j). Indeed, if z ∈ N(i), z �= x, satisfies f (z) = y, then x
and z would have two common neighbours, namely i and y,which is a contradiction.

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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Therefore, f is one-to-one and hence |N(i)| ≤ |N(j)|. We may similarly show that
|N(j)| ≤ |N(i)| and hence |N(i)| = |N(j)|.

Suppose G is k-regular. By the hypotheses, G must be strongly regular with
parameters (n, k, 1, 1). By Theorem 6.24, m1 − m2 = k√

k−1
is an integer. So k − 1

divides k2, which is possible only if k = 0 or 2. If k = 0 then, since G is connected,
n = 1. Then the theorem holds vacuously. If k = 2 then, in view of the hypothesis
that any two vertices have exactly one common neighbour, G must be the complete
graph on 3 vertices and again the theorem holds.

Finally, suppose G is not regular. Then by the first part of the proof there must be
adjacent vertices i and j with unequal degrees. Let x be the unique common neighbour
of i and j, and we assume, without loss of generality, that the degrees of i and x are
unequal. Let y be any vertex other than i, j and x. If y is not adjacent to both i and j,
then then degrees of i and j would be equal to that of y,which is not possible. Hence,
y is adjacent to either i or j. Similarly y is adjacent to either i or x. Since y cannot be
adjacent to both j and x (j and x already have i as their common neighbour) then y
must be adjacent to i. It follows that all the vertices other than x and j are adjacent to
i. The proof also shows that G consists of a number of triangles with i as the common
vertex. �

According to Theorem 6.26, if any two individuals in a group have exactly one
common friend, then there must be a person who is a friend of everybody. This
justifies the name “friendship theorem.” The following figure shows an example of
a graph satisfying the hypotheses of Theorem 6.26.
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6.5 Graphs with Maximum Energy

Let G be a graph with V(G) = {1, . . . , n}. Let A be the adjacency matrix of G,

and let λ1, . . . , λn be the eigenvalues of A. Recall that the energy of G is defined
as ε(G) = ∑n

i=1 |λi|. We now obtain some bounds for the energy of a graph and
consider the cases of equality.
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Theorem 6.27 Let G be a graph with n vertices, m edges, and suppose 2m ≥ n.

Then

ε(G) ≤ 2m

n
+
√√√√(n − 1)

[
2m −

(
2m

n

)2
]
. (6.15)

Proof As noted before, traceA2 = ∑n
i=1 λ2i = 2m. Hence,

n∑
i=2

λ2i = 2m − λ21. (6.16)

It follows from (6.16) and the Cauchy–Schwarz inequality that

n∑
i=2

|λi| ≤
√

(n − 1)(2m − λ21). (6.17)

From (6.17) we thus have

ε(G) ≤ λ1 +
√

(n − 1)(2m − λ21). (6.18)

Consider the function

f (x) = x +
√

(n − 1)(2m − x2).

It is easily seen that f (x) decreases on the interval
√

2m
n < x ≤ √

2m.By (i), Corollary

6.12, λ1 ≥ 2m
n , and hence √

2m

n
≤ 2m

n
≤ λ1.

Hence, f (λ1) ≤ f (
√

2m
n ). This fact and (6.18) immediately give (6.15) and the proof

is complete. �

We now consider the case of equality in (6.15). The eigenvalues of Kn are n − 1
(with multiplicity 1) and −1 (with multiplicity n − 1). Hence, it can be seen that
equality holds in (6.15) for Kn. If n is even, then equality holds in (6.15) for the graph
consisting of n

2 copies of K2 as well.
Conversely, suppose equality holds in (6.15). From the proof of Theorem 6.27, we

see that λ1 = 2m
n . Thus, by Corollary 6.12, G is k-regular with k = 2m

n . Furthermore,
equality must hold in the Cauchy–Schwarz inequality used in the proof of Theorem
6.27, and hence

|λi| =
√
2m − (2m/n)2√

n − 1
, i = 2, . . . , n.
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Now there are three possibilities:

(i) G has two eigenvalues with equal absolute value: The eigenvaluesmust be of the
same multiplicity as the sum of the eigenvalues is 0. Then the eigenvalues are
symmetric with respect to 0, and hence by Theorem 3.14, G must be bipartite.
Also the diameter of G is 1, and hence G must be a disjoint union of edges.

(ii) G has two eigenvalues with distinct absolute values: Again the diameter of each
component of G is 1, and hence each component of G is a complete graph.
Since G is k-regular with k = 2m

n , it follows that G must be Kn.

(iii) G has three eigenvalueswith distinct absolute values equal to 2m
n or

√
2m−(2m/n)2√

n−1
:

In this case it follows by Theorem 6.25 that G is strongly regular.

Theorem 6.28 Let G be a graph with n vertices, m edges, and suppose 2m ≤ n.

Then
ε(G) ≤ 2m. (6.19)

Proof Since 2m is the sum of the vertex degrees and 2m ≤ n, G must have n − 2m
isolated vertices. LetH be the graph obtained fromG by removing the n−2m isolated
vertices. ThenH has 2m vertices andm edges. By Theorem 6.27 ε(G) = ε(H) ≤ 2m,

and the proof is complete. �

By the discussion of the case of equality in Theorem 6.27 it follows that equality
holds in (6.19) if and only if G is a disjoint union of isolated vertices and edges. In
the next result we give a bound on the energy, without assuming any hypothesis on
the number of vertices and edges.

Theorem 6.29 Let G be a graph with n vertices. Then

ε(G) ≤ n

2
(1 + √

n). (6.20)

Proof Let G have m edges. First suppose 2m ≥ n. Let

f (x) = 2x

n
+
√√√√(n − 1)

(
2x −

(
2x

n

)2
)

,
n

2
≤ x ≤ n2

2
.

We claim that the maximum of f (x) over x in the interval [ n
2 ,

n2
2 ] is attained at

x = n2+n
√

n
4 . We sketch the proof of this claim:

(i) A tedious calculation shows that f ′(x) = 0 has two roots, x = n2+n
√

n
4 and

x = n2−n
√

n
4 .

(ii) when x = n2+n
√

n
4 , f (x) = n

2 (1 + √
n).

(iii) when x = n2−n
√

n
4 , f (x) = n

2 (1 + √
n) − √

n.

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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(iv) at x = n
2 and at x = n2

2 , f (x) = n.

Examining the value of f at the critical points and the boundary points of the

interval [ n
2 ,

n2
2 ], we conclude that f (x) attains its maximum at x = n2+n

√
n

4 , and the
claim is proved. Substituting this value of x in place of m in (6.15), we see that (6.20)
is proved.

If 2m ≤ n, by Theorem 6.28 ε(G) ≤ n, and (6.20) follows immediately. �
As before, we conclude that equality holds in (6.20) if and only if G is strongly

regular, in which case, the parameters can be seen to be (n, k, a, c), where

k = n + √
n

2
, a = c = n + 2

√
n

4
.

The existence of an infinite family of such graphs is known. However, we do not
venture into the vast literature on the existence and construction of strongly regular
graphs.

Theorem 6.29 provides an upper bound on the energy of a graph with n vertices.
The bound is attained for some values of n for which the existence of certain strongly
regular graphs, as described above, can be ascertained. For other values of n the
problem of finding a graph with maximum energy among all graphs with n vertices
remains open.

Exercises

1. Let G be a connected graph. Let μ be an eigenvalue of G with an associated
nonnegative eigenvector. Show that μ = ρ(G).

2. Let G be a graph with ρ(G) < 2. Show that G must be acyclic and the degree of
any vertex is at most 3.

3. The join G1 + G2 of graphs G1 and G2 is defined as G1 + G2 = (Gc
1 ∪ Gc

2)
c. If

Gi is a ki-regular graph with ni vertices, i = 1, 2, show that

φ(G1 + G2, λ)

φ(G1, λ)φ(G2, λ)
= λ2 − (k1 + k2)λ + k1k2 − n1n2

(λ − k1)(λ − k2)
.

4. If G is a strongly regular graph then show that Gc is strongly regular. Determine
the parameters of Gc in terms of those of G.

5. If G is k-regular then show that

ε(G) ≤ k +√
k(n − 1)(n − k).

Conclude that if G is a 3-regular graph with n vertices then ε(G) ≤ ε(Kn).

6. Let G be a graph with n vertices and let A be the adjacency matrix of A. Suppose
A is nonsingular. Show that ε(G) ≥ n.
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We mention [BR97, BP94] as references for Perron–Frobenius theory. Sections6.2–
6.4 follow the treatment in [Cam78]. For more on strongly regular graphs, see
[God93]. Section6.5 is based on [KM01].
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Chapter 7
Line Graph of a Tree

Let G be a graph with V (G) = {1, . . . , n} and let A(G) (or simply, A) denote the
adjacency matrix of G. If Δ is the diagonal matrix of vertex degrees, then recall that
L = Δ − A is the Laplacian matrix of G. The matrix K = Δ + A is called the
signless Laplacian of G. Let Q be the vertex-edge incidence matrix of the graph
obtained by orienting each edge of G, and let M be the 0− 1 vertex-edge incidence
matrix of G. Then L = Q Q′ and K = M M ′.

By the eigenvalues of G we mean the eigenvalues of A. Similarly G is singular
(nonsingular) if A is singular (nonsingular). The eigenvalues of L or M, will be
termed as the Laplacian eigenvalues or the signless Laplacian eigenvalues of G,

respectively.
The line graph of the graph G is denoted LG . Note that A(LG) + 2I = M ′M.

This simple fact allows us to relate the eigenvalues of LG , to the eigenvalues of
M M ′, and hence to the signless Laplacian eigenvalues of G. Since L ≡ K mod 2,
we can use the Matrix-Tree Theorem to derive certain statements regarding K . The
central, although not the most general, result in this Chapter is (see Theorem 7.12)
that the nullity of the line graph of a tree is at most 1. We obtain extensions of this
result and prove several related statements.

7.1 Block Graphs

We first recall some basic facts. A block of the graph G is a maximal connected
subgraph of G that has no cut-vertex. Note that if G is connected and has no cut-
vertex, then G itself is a block.

If an edge of a graph is contained in a cycle, then the edge by itself cannot be a
block, since it is in a larger subgraph with no cut-vertex. An edge is a block if and
only if it is a cut-edge. In particular, the blocks of a tree are precisely the edges of
the tree. If a block has more than two vertices, then it is 2-connected. Alternatively,
a block of G may be defined as a maximal 2-connected subgraph.

© Springer-Verlag London 2014
R.B. Bapat, Graphs and Matrices, Universitext,
DOI 10.1007/978-1-4471-6569-9_7
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The complete graph with n vertices is denoted as usual by Kn . A block graph is a
graph in which each block is a complete graph. Examples of a block graph include a
complete graph, a tree and the line graph of a tree. A block graph whose blocks are
K2, K2, K3, K4 and K5 is shown below.
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We consider the adjacency matrix of a block graph and derive a formula for its

determinant.
As observed in Sect. 3.6, a tree is nonsingular if and only if it has a perfect

matching. Moreover, when a tree is nonsingular, there is a formula for its inverse in
terms of alternating paths. Since a tree is a block graph, it is natural to investigate
the adjacency matrix of a general block graph.

A pendant vertex is a vertex of degree 1. A block is called a pendant block if it
has only one cut-vertex or if it is the only block in that component. A graph is called
even (odd) if it has an even (odd) number of vertices. An isolated vertex in a graph
is considered to be a block of the graph.

Let G be a block graph and let B1, . . . , Bk be the blocks of G. If S ⊂ {1, . . . , k},
then GS will denote the subgraph of G induced by the blocks Bi , i ∈ S. We first
prove a preliminary result.

Lemma 7.1 Let G be a block graph with n vertices. Let B1, . . . , Bk be the blocks
of G where Bi is the complete graph with bi vertices, i = 1, . . . , k. Let (α1, . . . , αk)

be a k-tuple of nonnegative integers satisfying the following conditions:

(i)
k∑

i=1

αi = n

(ii) for any nonempty S ⊂ {1, . . . , k},
∑
i∈S

αi ≤ |V (GS)|. (7.1)

If Bi is a pendant block, then αi equals either bi or bi − 1.

Proof Clearly by (7.1), with S = {i}, we must have 0 ≤ αi ≤ bi . Setting S =
{1, . . . , k}\{i} in (7.1) we see from (i) and (ii) that α1 + · · · + αn − αi = n − αi ≤
n − bi + 1, and hence αi ≥ bi − 1. That completes the proof. �

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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In the next result we obtain a formula for the determinant of the adjacency matrix
of a block graph. The proof is based on induction and the details may be skipped in
the first reading.

Theorem 7.2 Let G be a block graph with n vertices. Let B1, . . . , Bk be the blocks
of G. Let A be the adjacency matrix of G. Then

det A = (−1)n−k
∑

(α1 − 1) · · · (αk − 1) (7.2)

where the summation is over all k-tuples (α1, . . . , αk) of nonnegative integers satis-
fying the following conditions:

(i)
k∑

i=1

αi = n

(ii) for any nonempty S ⊂ {1, . . . , k},
∑
i∈S

αi ≤ |V (GS)|. (7.3)

Proof We prove the result by induction on k. The result is clearly true for a block
graph with one block. Assume the result to be true for a block graph with at most
k − 1 blocks and proceed. We consider two cases.

Case (i): The graph G has a pendant block with exactly 2 vertices.
Let B1 = K2 be a pendant block in G. Let the vertices of B1 be 1 and 2, where

1 is pendant. We assume that the vertex 2 is in blocks B1, . . . , Bp and we further
assume that among these blocks, the first q blocks B1, . . . , Bq are equal to K2. It is
possible that q = 1. Let G1 = G\1. The matrix A has the form

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 · · ·
0
...

... A1
0

⎞
⎟⎟⎟⎟⎟⎠

, (7.4)

where A1 is the adjacency matrix of G2 = G1\2. It follows from (7.4) that det A =
− det A1. The graph G2 has k − q blocks given by Ci , i = q + 1, . . . , k, defined
as follows: Ci = Bi \2, i = q + 1, . . . , p and Ci = Bi , i = p + 1, . . . , k. First
consider the case when q > 1 and that there is at least one pendant block among
B2, . . . , Bq . let us assume, without loss of generality, that B2 is a pendant block.
We also assume that V (B2) = {2, 3}. Then the first and the third columns of A are
identical and det A = 0. Also if (α1, . . . , αk) is a k-tuple of nonnegative integers
satisfying the conditions in the Theorem, then at least one of α1 or α2 must equal 1
and hence the summation in (7.2) is zero. Therefore the result is proved in this case.
We therefore assume that none of the blocks among B2, . . . , Bq is pendant.
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Consider
(−1)n−k

∑
(α1 − 1) · · · (αk − 1) (7.5)

where the summation is over all k-tuples (α1, . . . , αk) of nonnegative integers satis-
fying conditions (i), (ii) of the Theorem.

By Lemma 7.1, α1 equals either 1 or 2. If α1 = 1, then the corresponding term in
(7.5) is zero, so we assume α1 = 2. Then it follows from (ii) that none of α2, . . . , αq
can be 2. For example, if α2 = 2, then α1 + α2 = 4, whereas the graph induced
by blocks B1 and B2 has 3 vertices, thus violating (7.3). Thus each of α2, . . . , αq is
either 0 or 1, and again we may assume that α2 = · · · = αq = 0. In view of these
observations (7.5) equals

(−1)n−k(−1)q−1
∑

(αq+1−1) · · · (αk−1) = −(−1)n−2−(k−q)
∑

(αq+1−1) · · · (αk−1).

(7.6)
The summation in (7.6) is over all (k − q)-tuples (αq+1, . . . , αk) of nonnegative
integers satisfying the following conditions:

(i)
k∑

i=q+1

αi = n − 2

(ii) for any nonempty S ⊂ {q + 1, . . . , k},
∑
i∈S

αi ≤ |V (GS)|. (7.7)

By the induction assumption, the right side of (7.6) equals − det A1 and since
det A = − det A1, it follows that det A equals (7.5). Therefore the proof is complete
in this case.

Case (ii): The graph G does not have a pendant block with exactly 2 vertices.
Let B1 be a pendant block of G and let V (B1) = {1, . . . , b1}, b1 ≥ 3. Let b1 be

the cut vertex in B1. Let H = G\{B1\b1} be the block graph with n −b1 +1 vertices
having blocks B2, ..., Bk and let A1 be the adjacency matrix of H . After a suitable
relabeling of the vertices in G we may write

A =
(

D C
C ′ A1

)
(7.8)

where D is the adjacency matrix of the subgraph induced by the vertex set V (B1\b1),
C is a (b1 − 1)× (n − b1 + 1)matrix with ci j = 1 if j = b1, and ci j = 0 otherwise.
Thus D = J − I where J is the matrix of all ones and C has the form

⎛
⎜⎝
1 0 · · · 0
...

...
...

1 0 · · · 0

⎞
⎟⎠ .

Note that the first row of A1 corresponds to the vertex b1.
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By the Schur complement formula [see (1.3)] we have

det A = det D · det(A1 − C ′ D−1C). (7.9)

We note the following simple facts: (i) det D = (−1)b1−2(b1 − 2) (ii) D−1 =
1

b1−2 J − I (iii) The matrix C ′ D−1C has all entries zero except the entry in the first

row and the first column, which is (−1)b1 b1−1
det D .

Let M be the adjacency matrix of H \b1. Thus M is the submatrix of A1 formed
by its last n − b1 rows and columns. It follows from (i)–(iii) that

det (A1 − C ′ D−1C) = det A1 − (−1)b1 b1 − 1

det D
det M. (7.10)

From (7.9) and (7.10) we have

det A = (det D)

(
det A1 − (−1)b1 b1 − 1

det D
det M

)

= (det D)(det A1) − (−1)b1(b1 − 1) det M

= (−1)b1−2(b1 − 2) det A1 − (−1)b1(b1 − 1) det M. (7.11)

We assume that b1 is in blocks B1 and B2, . . . , Bp. If there are any blocks equal to K2
containing b1, then we enumerate them as B2, . . . , Bq . The remaining blocks, which
do not contain b1 are Bp+1, . . . , Bk . If there are no blocks equal to K2 containing b1,
then we set q = 1. The graph H\b1 has k − q blocks given by Ci , i = q + 1, . . . , k,

defined as follows: Ci = Bi \b1, i = q + 1, . . . , p and Ci = Bi , i = p + 1, . . . , k.

Consider
(−1)n−k

∑
(α1 − 1) · · · (αk − 1) (7.12)

where the summation is over all k-tuples (α1, . . . , αk) of nonnegative integers satis-
fying (i) and (ii) of the Theorem.

By Lemma 7.1, α1 equals either b1 or b1 −1. If α1 = b1, then each of α2, . . . , αq

must be either 0 or 1. For example, if α2 = 2, then α1 + α2 = b1 + 2, whereas the
graph induced by blocks B1 and B2 has b1+1 vertices, thus violating (7.3). If αi = 1
for some i ∈ {2, . . . , q}, then the corresponding term in (7.12) is zero and hence we
assume α2 = · · · = αq = 0. Then it can be seen by the induction hypothesis, that the
sum of the terms in (7.12) corresponding to α1 = b1 equals−(−1)b1(b1 −1) det M.

Similarly, by the induction hypothesis, the sum of the terms in (7.12) correspond-
ing to α1 = b1 − 1 equals (−1)b1−2(b1 − 2) det A1. It follows that the sum in (7.12)
equals

(−1)b1−2(b1 − 2) det A1 − (−1)b1(b1 − 1) det M,

which is det A by (7.11). That completes the proof. �
As observed earlier in Sect. 3.6, a tree is nonsingular if and only if it has a perfect

matching. We now derive this result from Theorem 7.2.

http://dx.doi.org/10.1007/978-1-4471-6569-9_1
http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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Corollary 7.3 Let T be a tree with n vertices and let A be the adjacency matrix of
T . Then A is nonsingular over reals if and only if T has a perfect matching.

Proof First suppose that A is nonsingular. Then at least one term in the summation in
(7.2) must be nonzero. If (α1, . . . , αn−1) is an (n − 1)-tuple of nonnegative integers
satisfying (i) and (ii) of Theorem7.2 and if the corresponding term in (7.2) is nonzero,
then each αi is either 0 or 2. Moreover if two edges have a common vertex, then
the corresponding α’s cannot both be nonzero, in view of (ii). Thus there must be
a perfect matching in T and αi = 2 if and only if the corresponding edge is in the
matching.

Conversely, suppose T has a perfect matching. As noted in the first part of the
proof, a nonzero term in the summation in (7.2) corresponds to a perfect matching.
We invoke the elementary fact, easily proved by induction, that if a tree has a perfect
matching then it must be unique. Thus there must be precisely one nonzero term in
the summation in (7.2) which renders det A nonzero. Thus A is nonsingular and the
proof is complete. �

Example 7.4 Consider the block graph
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Its adjacency matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We see, by Theorem 7.2, that det A = (−1)6−2((3−1)(3−1)+(2−1)(4−1)) = 7.

A tree with no perfect matching is an example of a singular block graph. There
are other examples. The following block graph is singular since the adjacency matrix
has two identical columns corresponding to the pendant vertices.
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7.2 Signless Laplacian Matrix

We will repeatedly use the following fact (see Sect. 1.2): If A and B are matrices of
order m × n and n × m, respectively, where m ≥ n, then the eigenvalues of AB are
the same as the eigenvalues of BA, along with 0 with a (possibly further) multiplicity
of m − n.

Lemma 7.5 Let G be a connected graph with n vertices and let K be the signless
Laplacian of G. If G is bipartite, then K is singular with rank n − 1. If G is non-
bipartite, then K is nonsingular.

Proof Let M be the 0−1 incidence matrix of G so that K = M M ′.By Lemma 2.17,
the rank of M is n − 1 if G is bipartite, and n otherwise. Since rank K = rank M,

the result follows. �

Corollary 7.6 Let G be a graph with n vertices and let K be the signless Laplacian
of G. Then the rank of K equals n minus the number of bipartite components of G.

Lemma 7.7 Let G be a connected graph with n vertices, let L be the Laplacian and
let K be the signless Laplacian of G. There exists an orthogonal matrix P such that
L = PKP′ if and only if G is bipartite.

Proof First suppose that G is bipartite and let V (G) = X ∪ Y be a bipartition of
G. Let P be the diagonal matrix with pii = 1 if i ∈ X and pii = −1 if i ∈ Y.

Then it can be seen that PM = Q, where Q is the vertex-edge incidence matrix
of the directed graph obtained from G by orienting each edge from X to Y. Thus
PKP′ = PMM′ P ′ = QQ′ = L .

Conversely, let L = PKP′ where P is orthogonal. Since L is singular, so is K ,

and by Lemma 2.17, G is bipartite. �

Let G be a graph with V (G) = {1, . . . , n}. A subgraph of G is called acyclic
if it has no cycles, or equivalently, each of its components is a tree. A subgraph
of G whose components are trees, or unicyclic graphs with odd cycles, is called a
TU-subgraph of G. If the TU-subgraph H of G contains c unicyclic graphs and trees
T1, . . . , Tk, then the weight w(H) of H is defined by

http://dx.doi.org/10.1007/978-1-4471-6569-9_1
http://dx.doi.org/10.1007/978-1-4471-6569-9_2
http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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w(H) = 4c
k∏

i=1

(1 + e(Ti )),

where e(Ti ) denotes the number of edges of Ti . The weight of an acyclic subgraph
is defined similarly with c = 0.

Theorem 7.8 Let G be a graph with V (G) = {1, . . . , n}. Let M be the 0−1 vertex-
edge incidence matrix of G, and let K = M M ′ be the signless Laplacian. Let W be
a nonempty, proper subset of V (G). Then the determinant of K (W |W ) equals

∑
H

4c(H),

where the summation runs over all spanning TU-subgraphs H of G with c(H)

unicyclic components, and |W | tree components, each containing a vertex of W.

Proof By the Cauchy-Binet formula, det K (W |W ) equals the sum of squares of
the determinants of the square submatrices M(W |F) where F is a set of n − |W |
edges of G. By Lemma 2.18, the only nonzero contributions to this sum come from
substructures R of G, each component of which is a rootless tree, or a unicyclic graph
with an odd cycle, and the contribution is (±2)2 = 4 for each unicyclic component.
The rootless treesmay be suppliedwith the roots (which are necessarily in W ) and the
resulting graph is a spanning TU-subgraph of G. This gives the required description
of the determinant of K (W |W ). �

Theorem 7.9 Let G be a graph with V (G) = {1, . . . , n}. Let L and K be the
Laplacian and the signless Laplacian of G, respectively. Let pL(x) = xn +�1xn−1+
· · ·+ �n−1x and pK (x) = xn +q1xn−1 +· · ·+qn be the characteristic polynomials
of L and K respectively. Then

(i) � j = (−1) j ∑
Fj

w(Fj ), j = 1, 2, . . . , n − 1; where the summation runs over
all acyclic subgraphs Fj of G with j edges.

(ii) q j = (−1) j ∑
Hj

w(Hj ), j = 1, 2, . . . , n; where the summation runs over all
TU-subgraphs Hj of G with j edges.

Proof (i) Note that � j equals (−1) j times the sum of the j × j principal minors of
L . Thus

� j = (−1) j
∑

|W |=n− j

det L(W |W ).

By Theorem 4.7, the determinant of L(W |W ) equals the number of spanning forests
of G with n − j components (and hence, with j edges) in which each component
contains a vertex of W. Fix a spanning forest Fj of G with n − j trees T1, . . . , Tn− j .

Since Tk has 1+e(Tk) vertices, k = 1, . . . , n− j, such a forest will feature
∏n− j

k=1 (1+
e(Tk)) = w(Fj ) times in the summation above. Hence � j = (−1) j ∑

Fj
w(Fj ),

where the summation runs over all acyclic subgraphs Fj of G with j edges.

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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(ii) As in (i), q j equals (−1) j times the sum of the j × j principal minors of K .

Thus
q j = (−1) j

∑
|W |=n− j

det K (W |W ).

By Theorem 7.8, the determinant of K (W |W ) equals the number of spanning TU-
subgraphs of G with j edges in which each component is either unicyclic, or a
tree containing a vertex of W. Fix a spanning TU-subgraph Hj of G. Then it con-
tributes w(Hj ) to the summation above. Hence q j = (−1) j ∑

Hj
w(Hj ), where the

summation runs over all TU-subgraphs Fj of G with j edges. �

7.3 Nullity of the Line Graph of a Tree

Lemma 7.10 Let A be an n × n integer matrix such that det A = ±1. Then any
rational eigenvalue of A is ±1.

Proof Let f (λ) = anλn + an−1λ
n−1 + · · · a1λ + a0 be the characteristic polynomial

of A. We use the basic result that if p/q is a root of f, where p and q are coprime
integers, then q divides an and p divides a0. Note that an = 1 and a0 = ±det A =
±1. It follows that p/q = ±1 and the proof is complete. �
Lemma 7.11 Let T be a tree with n vertices. If the integer μ > 1 is a Laplacian
eigenvalue of T, then any eigenvector of the Laplacian for μ has no zero coordinate.
If the integer μ > 1 is a signless Laplacian eigenvalue of T, then any eigenvector of
the signless Laplacian for μ has no zero coordinate.

Proof Let the integer μ > 1 be an eigenvalue of L with x as the corresponding
eigenvector. Let, if possible, x have a zero coordinate, and without loss of generality
we assume xn = 0. Let the vertex n have degree k. We may partition L as

L =

⎛
⎜⎜⎜⎜⎜⎝

L1 0 · · · 0 ·
0 L2 · · · 0 ·
...

...
. . .

... ·
0 0 · · · Lk ·
· · · · · · k

⎞
⎟⎟⎟⎟⎟⎠

.

Writing the equation Lx = μx in partitioned form we observe that there exists
i, 1 ≤ i ≤ k, and a nonzero vector z (which is a subvector of x) such that Li z = μz.
Note that Li equals the Laplacian of a component (which is a tree) of T −{n},with a
1 added to one of its diagonal elements. By Laplace expansion and the Matrix-Tree
Theorem we find that det Li = 1. Then by Lemma 7.10 we conclude that μ = ±1,
which is a contradiction. Therefore x has no zero coordinate.

As observed in the proof of Lemma 7.7, L = PKP′, where P is a diagonal
matrix with ±1 along the diagonal. Thus any eigenvector of K is obtained from
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an eigenvector of L by negating sum of its entries. Thus the statement about an
eigenvector of the signless Laplacian follows. �

Theorem 7.12 The nullity of the line graph of a tree is at most 1.

Proof Recall that M ′M = 2I + A(LT ), and hence the nullity of LT equals the
multiplicity of 2 as an eigenvalue of M ′M, which in turn equals the multiplicity of 2
as an eigenvalue of MM′ = K .By Lemma 7.11, any eigenvector of K corresponding
to 2 has no zero coordinate. Hence it has at most one eigenvector up to a scalar
multiple. For, if x and y are linearly independent eigenvectors, both corresponding
to the eigenvalue 2, then we may take a linear combination of x and y and get an
eigenvector with a zero coordinate. Therefore the multiplicity of 2 as an eigenvalue
of K is at most 1. �

Lemma 7.13 Let G be a bipartite graph. Then LG is singular if and only if 2 is a
Laplacian eigenvalue of G.

Proof Since M ′M = 2I + A(L(G)), L(G) is singular if and only if 2 is a signless
Laplacian eigenvalue of G. Since G is bipartite, by Lemma 7.7, K and L are similar,
and therefore they have the same eigenvalues. This completes the proof. �

Theorem 7.14 Let T be a tree with n vertices where n is an odd integer. Then LT

is nonsingular.

Proof IfLT is singular, then by Lemma 7.13, 2 is a Laplacian eigenvalue of T . Let
φ(λ) be the characteristic polynomial of the Laplacian L of T . Since L is singular,
φ(λ) = λφ1(λ) for some polynomial φ1 with integer coefficients. We may write
φ1(λ) = λφ2(λ) + φ1(0), for some polynomial φ2 with integer coefficients. Since
2 is a Laplacian eigenvalue of T, φ(2) = 0. Hence φ1(2) = 0, and therefore
2φ2(2) = −φ1(0). Note that φ1(0) is the coefficient of λ in φ(λ), which is the sum
of the (n − 1) × (n − 1) principal minors of L . By the Matrix-Tree Theorem, each
(n − 1) × (n − 1) principal minor of L is 1, and hence 2φ2(2) = −n. Thus n must
be even, which is a contradiction. This completes the proof. �

Lemma 7.15 Let G be a graph with an odd number of spanning trees and let k be
an even integer. Then the multiplicity of k as an eigenvalue of LG is at most 1.

Proof Since M ′M = A(LG) + 2I, the multiplicity of k as an eigenvalue of LG

equals the multiplicity of k + 2 as an eigenvalue of M ′M. If k 
= −2, then the
multiplicity of k + 2 as an eigenvalue of M ′M equals the multiplicity of k + 2 as an
eigenvalue of M M ′ = K .

Let Q be the vertex-edge incidence matrix of the directed graph obtained by
orienting each edge of G, and let L = QQ′ be the Laplacian. Since Q ≡ M modulo
2, the determinants of K (1|1) and L(1|1) are equal modulo 2. Since G has an odd
number of spanning trees, det L(1|1), and hence det K (1|1) are nonzero. If X =
K − (k +2)I, then det X (1|1) ≡ det K (1|1) modulo 2, and hence det X (1|1) 
= 0.
Thus the multiplicity of k +2 as an eigenvalue of K is at most 1. (Here we have used



7.3 Nullity of the Line Graph of a Tree 97

the fact, which easily follows by interlacing, that if B is a symmetric, singular n × n
matrix and if det B(1|1) 
= 0, then the nullity of B is at most 1.)

Now suppose k = −2. Since G has an odd number of spanning trees, G is
connected. By Lemma 7.5, the nullity of K is at most 1, and hence the multiplicity
of k + 2 = 0 as an eigenvalue of K is at most 1. This completes the proof. �

Corollary 7.16 Let G be a graph with an odd number of spanning trees. Then the
nullity of LG is at most 1.

Proof The result follows by setting k = 0 in Lemma 7.15. �

Lemma 7.17 Let G be a bipartite graph with an odd number vertices and an odd
number of spanning trees. Then LG is nonsingular.

Proof If LG is singular, then by Lemma 7.13, 2 is a Laplacian eigenvalue of G.

Suppose Ly = 2y for some nonzero vector y. We may take y to be an integer vector
with its coordinates relatively prime. If yi mod 2 equals 0, then L(i |i), reduced
modulo 2, must be singular. However, since G has an odd number of spanning
trees, by the Matrix-Tree Theorem, det L(i |i) modulo 2 is nonzero, which is a
contradiction. Thus y modulo 2 has no zero coordinate. Thus each yi is an odd integer.
Since 1 is an eigenvector of L , y must be orthogonal to 1, and hence

∑n
i=1 yi = 0.

This is a contradiction as each yi is odd and n is odd. This completes the proof. �

Theorem 7.18 Let G be a graph with 2t s spanning trees where t ≥ 0, s > 0 are
integers and s is odd. Then the multiplicity of any even integer μ as an eigenvalue
of K is at most t + 1.

Proof Since 2t s 
= 0, G is connected. By Theorem 2.12, there exist unimodular
matrices U and V such that

UAV = diag(s1, . . . , sn−1, 0),

where s1, . . . , sn−1 are positive integers with s1 · · · si = di , where di is the greatest
common divisor of all i × i minors of L , i = 1, . . . , n − 1.

By the Matrix-Tree Theorem, dn−1 = s1 · · · sn−1 equals the number of spanning
trees of G. Since G has 2t s spanning trees with s odd, at most t of the si are even.
Therefore the rank of L , and hence the rank of K , over Z2, the field of integers
modulo 2, is at least n − t − 1. Recall that any symmetric matrix of rank r (over
any field) has a principal r × r submatrix of full rank. Hence K has a nonsingular
principal submatrix B of order n − t − 1. By interlacing, if an even integer μ is an
eigenvalue of K with multiplicity at least t + 2, then any principal submatrix of K
of order n − t − 1 has μ as an eigenvalue. So μ is an eigenvalue of B. It follows,
as in the proof of Lemma 7.10, that μ divides det B. Thus det B is even, which is a
contradiction as B is nonsingular over Z2. This completes the proof. �

Corollary 7.19 Let G be a graph with 2t s spanning trees where t ≥ 0, s > 0 are
integers and s is odd. Then the nullity of LG is at most t + 1.

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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Note that Corollary 7.19 implies Corollary 7.16.

Theorem 7.20 Let G be a graph with an odd number vertices and an odd number
of spanning trees. If an even integer μ is an eigenvalue of the signless Laplacian K
of G, then 4 divides μ.

Proof Let G have n vertices. From Theorem 7.9, it follows that for j = 1, . . . ,
n − 1, q j = � j + 4s j for some integer s j and qn = 4sn . This implies that pK (x) =
pL(x) + f (x), where f (x) is an integer polynomial. Note that �n−1 = (−1)n−1

times the number of spanning trees, which is an odd integer. It follows that if an even
integer μ is congruent to 2 modulo 4, then so is pL(μ). Thus pK (μ) is nonzero for
any even integer μ congruent to 2 modulo 4. Therefore if an even integer μ is an
eigenvalue of K , then 4 divides μ. This completes the proof. �

The next result is more general than Lemma 7.17.

Corollary 7.21 Let G be a graph with an odd number of vertices and an odd number
of spanning trees. Then LG is nonsingular.

Proof Let M be the 0 − 1 incidence matrix of G and K = MM′. Since M ′M =
A(LG) + 2I, if LG is singular, then 2 is an eigenvalue of M ′M and hence of K .

This is a contradiction in view of Theorem 7.20 and the proof is complete. �

Exercises

7.1. Let G be a connected block graph. Show that the following statements are equiv-
alent: (i) G is the line graph of a tree (ii) G does not have the complete bipartite
graph K1,3 as an induced subgraph (iii) Any cut-vertex of G is contained in at
most one block.

7.2. Let v be a pendant vertex in the graph G, adjacent to the vertex w. Show that
the nullities of G − v − w and G are the same.

7.3. Let G be a graph with a pendant vertex v, which is adjacent to w. Show that G
is singular if and only if the nullity of G − w is greater than 1. (We assume that
G has at least 3 vertices.)

7.4. The star S1,r consists of a central vertex joined to r pendant vertices. The double
star Tr,s consists of two stars S1,r and S1,s joined together so that they share an
edge. Let T be the double star Tr,s, r ≥ 3. Determine det(A(LT )).

7.5. Let T be the tree consisting of two stars S1,r , S1,s; r, s ≥ 3, joined by an edge.
Determine det(A(LT )).

7.6. Find a treewhose line graph has no pendant vertices and the line graph is singular.
7.7. Let G be a graph with an odd number of vertices. Show that det(A(G)) is even.
7.8. Let A be an n × n integral symmetric matrix with even entries on the diagonal.

Show that if n ≡ 0 mod 4, then det A ≡ 0 or 1 mod 4, and if n ≡ 2 mod 4,
then det A ≡ 0 or −1 mod 4.

7.9. Let G be a graph with no perfect matching and let A be the adjacency matrix of
G. Show that det A is even.
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7.10. Let G be a graph with n vertices, let A be the adjacency matrix of G. Show that
if det A = 1, then n ≡ 0 mod 4, and if det A = −1, then n ≡ 2 mod 4.

7.11. Show that the adjacency matrix of a tree is totally unimodular. Hence conclude
that any rational eigenvalue of a nonsingular tree is ±1.

7.12. Let T be a tree such thatLT is singular. Let T +e be the tree obtained by adding
a pendant edge to T . ThenLT +e is nonsingular. Let T − v be the tree obtained
from T be deleting the pendant vertex v. Then LT −v is nonsingular.

7.13. Let T be a tree with n vertices. Show that det(A(LT )) = n modulo 2.
7.14. Let T be a tree with n vertices such thatLT is singular. Show that any (n −2)×

(n − 2) principal minor of A(LT )) is odd.

Section7.1 is based on [Bap11]. The remaining sections are mainly based on
[Bap11, Gho12, GS01]. Some further extensions are proved in [Gho13]; for example,
it is shown that if a graph G has odd order and its number of spanning trees is not
divisible by 4, then A(LG) is nonsingular. An early reference is [GS01], where it was
observed that the nullity of the line graph of a tree is at most 1. Exercises 7.8–7.10
are based on [AK07].
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Chapter 8
Algebraic Connectivity

Let G be a graphwith V (G) = {1, . . . , n}.Let L be the Laplacian of G and 0 = λ1 ≤
λ2 ≤ · · · ≤ λn be the eigenvalues of L . The second smallest eigenvalue, λ2, is called
the algebraic connectivity of G and is denoted byμ(G), or simplyμ.Recall that if G
is connected, then λ1 = 0 is a simple eigenvalue, that is, it has algebraic multiplicity
1 and in that caseμ > 0.Conversely ifμ = 0, then G is disconnected. The complete
graph Kn which may be regarded as “highly connected” has λ2 = · · · = λn = n.

These observations justify the term “algebraic connectivity”, introduced by Fiedler.

8.1 Preliminary Results

The following simple property of positive semidefinite matrices will be used.

Lemma 8.1 Let B be an n × n positive semidefinite matrix. Then for any vector x
of order n × 1, x ′ Bx = 0 if and only if Bx = 0.

Proof Note that B = C ′C for some n × n matrix C. Now x ′ Bx = 0 ⇒ x ′C ′Cx =
0 ⇒ (Cx)′(Cx) = 0 ⇒ Cx = 0 ⇒ C ′Cx = 0, and hence Bx = 0. The converse
is obvious. �

Let G be a connected graph with V (G) = {1, . . . , n}. Let L be the Laplacian of
G andμ be the algebraic connectivity. Let x be an eigenvector of L corresponding to
μ. Then x is indexed by V (G) and thus it gives a labeling of V (G). That is, we label
vertex i by xi .We call vertex i positive, negative or zero according as xi > 0, xi < 0
or xi = 0, respectively. Let

V + = {i : xi ≥ 0}, V − = {i : xi ≤ 0}.

With this notation we have the following basic result.

© Springer-Verlag London 2014
R.B. Bapat, Graphs and Matrices, Universitext,
DOI 10.1007/978-1-4471-6569-9_8
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102 8 Algebraic Connectivity

Theorem 8.2 The subgraphs induced by V + and V − are connected.

Proof Since x is orthogonal to 1, the eigenvector of L corresponding to 0, then
both V + and V − are nonempty. We assume, without loss of generality, that V + =
{1, . . . , r}. Let, if possible, the subgraph of G induced by V + be disconnected and
suppose, without loss of generality, that there is no edge from {1, . . . , s} to {s +
1, . . . , r}. Then we may partition L as

L =
⎡
⎣

L11 0 L13
0 L22 L23

L31 L32 L33

⎤
⎦,

where L11 is s × s and L22 is (r − s)× (r − s). Partition x conformally and consider
the equation ⎡

⎣
L11 0 L13
0 L22 L23

L31 L32 L33

⎤
⎦

⎡
⎣

x1

x2

x3

⎤
⎦ = μ

⎡
⎣

x1

x2

x3

⎤
⎦. (8.1)

From (8.1) we have
L11x1 + L13x3 = μx1. (8.2)

Since L13 ≤ 0 and x3 < 0, we have L13x3 ≥ 0. Since G is connected, L13 has a
nonzero entry and hence L13x3 �= 0. It follows from (8.2) that

(L11 − μI )x1 ≤ 0, (L11 − μI )x1 �= 0. (8.3)

From (8.3) we have
(x1)′(L11 − μI )x1 ≤ 0. (8.4)

We claim that L11 − μI is not positive semidefinite. Indeed, if L11 − μI is
positive semidefinite, then (x1)′(L11 − μI )x1 ≥ 0, which, together with (8.4) gives
(x1)′(L11 −μI )x1 = 0. It follows by Lemma 8.1 that (L11 −μI )x1 = 0. However,
this contradicts (8.3) andhencewe conclude that L11−μI is not positive semidefinite.
Thus, L11 has an eigenvalue less than μ. A similar argument shows that L22 has an

eigenvalue less than μ. Thus, the second smallest eigenvalue μ′ of
[

L11 0
0 L22

]
is

less than μ. However, by the interlacing theorem, μ ≤ μ′, which is a contradiction.
Therefore, the subgraph induced by V + is connected. It can similarly be proved that
the subgraph induced by V − is also connected. �

An eigenvector corresponding to the algebraic connectivity is called a Fiedler
vector.
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Example 8.3 Consider the graph G:

•1 •2 •3 •4

��
��

��
��

•5 •6 •7
It may be verified that the algebraic connectivity of G is 0.5926. A Fiedler vector,
rounded to two decimal places, is given by

[0.71, 0.29,−0.06,−0.21, 0.04,−0.23,−0.56]′.

Thus, vertices 1, 2 and 5 are positive and they induce a connected subgraph.
Vertices 3, 4, 6 and 7 are negative and they induce a connected subgraph as well.

8.2 Classification of Trees

We now consider the case of trees in greater detail. Let T be a tree with V (T ) =
{1, . . . , n} and the edge set E(T ) = {e1, . . . , en−1}. Let L be the Laplacian of T and
μ be the algebraic connectivity. Let x be an eigenvector of L corresponding to μ.

We refer to x as a Fiedler vector of L . First, suppose that x has no zero coordinate.
Then

V + = {i : xi > 0}, V − = {i : xi < 0}

give a partition of V (T ). By Theorem 8.2, the subgraphs induced by V + and V −
must be connected and then, clearly, they must both be trees. Recall that a vertex i is
positive or negative according as xi > 0 or xi < 0, respectively. Then there must be
precisely one edge such that one of its end-vertices is positive and the other negative.
Such an edge is called a characteristic edge (with respect to x). Any other edge has
either both its end-vertices positive or both negative.

We turn to the casewhere a Fiedler vector has a zero coordinate. This case requires
a closer analysis by means of some subtle properties of interlacing of eigenvalues.
Note that Lx = μx implies that

∑
j∼i

x j = (di − μ)xi , (8.5)

where di is the degree of i. If xi = 0 then (8.5) implies that either x j = 0 for all j
adjacent to i or i is adjacent to a positive vertex as well as a negative vertex. A zero
vertex is called a characteristic vertex (with respect to x) if it is adjacent to a positive
vertex and a negative vertex. It is evident from (8.5) that a pendant vertex cannot be
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a characteristic vertex. Our goal is to prove the interesting fact that corresponding to
any Fiedler vector a tree has at most one characteristic vertex.

We first develop some preliminary results. If A is an n × n symmetric matrix,
then p+(A), p−(A) and p0(A) will denote, respectively, the number of positive,
negative and zero eigenvalues of A. Thus, p+(A) + p−(A) + p0(A) = n. The
3-tuple (p+(A), p−(A), p0(A)) is called the inertia of A.

Lemma 8.4 Let B be a symmetric n × n matrix and let c be a vector of order n × 1.
Suppose there exists a vector u such that Bu = 0 and c′u �= 0. Let

A =
[

B c
c′ d

]
,

where d is a real number. Then

p+(A) = p+(B) + 1, p−(A) = p−(B) + 1 and p0(A) = p0(B) − 1.

Proof First note that u �= 0 since c′u �= 0. Then Bu = 0 implies that B is singular
and 0 is an eigenvalue of B. If c were in the column space of B, then c would be
equal to By for some vector y. Then u′c = u′ By = 0, since Bu = 0. This is a
contradiction since c′u �= 0. Therefore, c is not in the column space of B. Thus,

rank(A) = rank[B, c] + 1 = rank(B) + 2. (8.6)

Since the rank of an m × m symmetric matrix is m minus the multiplicity of the
zero eigenvalue, it follows from (8.6) that p0(A) = p0(B) − 1. By the interlacing
theorem, p+(B) ≤ p+(A) ≤ p+(B)+1 and p−(B) ≤ p−(A) ≤ p−(B)+1. These
conditions together imply that p+(A) = p+(B) + 1 and p−(A) = p−(B) + 1. That
completes the proof. �
Corollary 8.5 Let A be a symmetric matrix partitioned as

A =
[

A11 A12
A21 A22

]
,

where A11 and A22 are square. Let u be a vector such that A11u = 0 and A21u �= 0.
Then p−(A) ≥ p−(A11) + 1.

Proof Since A21u �= 0, there exists a column c of A12 such that c′u �= 0. Let d be
the diagonal entry of A22 corresponding to the column c of A12. Consider the matrix

X =
[

A11 c
c′ d

]
.

By Lemma 8.4, p−(X) = p−(A11)+1. Also, since X is a principal submatrix of A,

by the interlacing theorem, p−(A) ≥ p−(X). It follows that p−(A) ≥ p−(A11)+1.
�
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In Theorem 6.3, Chap. 6, we proved the main aspects of Perron–Frobenius theory
confining ourselves to adjacency matrices. The theorem can be proved, essentially
by the same method, for any nonnegative, “irreducible” matrix. Here we do not yet
need the theorem in its full generality, however we do need it for a small modification
of the adjacency matrix. The result is stated next. The proof is along the lines of that
of Theorem 6.3.

Theorem 8.6 Let G be a connected graph with n ≥ 2 vertices, and let A be the
adjacency matrix of G. Let E ≥ 0 be a diagonal matrix. Then the following assertions
hold:

(i) E + A has an eigenvalue λ > 0 and an associated eigenvector x > 0.
(ii) For any eigenvalue μ �= λ of E + A, −λ ≤ μ < λ.

(iii) If u is an eigenvector of E + A for the eigenvalue λ, then u = αx for some α.

We will refer to the eigenvalue λ in (i) of Theorem 8.6 as the Perron eigenvalue
of E + A.

Corollary 8.7 Let G be a connected graph with n vertices and let A be the adjacency
matrix of G. Let E be a diagonal matrix of order n and let τ1 ≤ τ2 · · · ≤ τn be the
eigenvalues of E − A. Then the algebraic multiplicity of τ1 is 1 and there is a positive
eigenvector of E − A corresponding to τ1.

Proof Let B = k I − (E − A), where k > 0 is sufficiently large so that k I − E ≥ 0.
The eigenvalues of B are k − τ1 ≥ k − τ2 · · · ≥ k − τn . Since B = (k I − E)+ A, by
Theorem 8.6 k − τ1, which is the Perron eigenvalue of B, has algebraic multiplicity
1 and there is a positive eigenvector corresponding to the same. It follows that τ1,

as an eigenvalue of E − A, has algebraic multiplicity 1 with an associated positive
eigenvector. �

For a symmetric matrix B, let τ(B) denote the least eigenvalue of B.

Theorem 8.8 Let T be a tree with V (T ) = {1, . . . , n}. Let L be the Laplacian of
T and μ the algebraic connectivity. Let x be a Fiedler vector and suppose n is a
characteristic vertex. Let T1, . . . , Tk be the components of T \ {n}. Then for any
j = 1, . . . , k, the vertices of V (Tj ) are either all positive, all negative or all zero.

Proof Recall that since n is a characteristic vertex, xn = 0 and n is adjacent to a
positive as well as a negative vertex. As observed earlier, n cannot be a pendant vertex
and hence k ≥ 2. Partition L and x conformally so that Lx = μx is expressed as

⎡
⎢⎢⎢⎢⎢⎣

L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

... w
0 0 · · · Lk

w′ dn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xk

0

⎤
⎥⎥⎥⎥⎥⎦

= μ

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xk

0

⎤
⎥⎥⎥⎥⎥⎦

, (8.7)

http://dx.doi.org/10.1007/978-1-4471-6569-9_6
http://dx.doi.org/10.1007/978-1-4471-6569-9_6
http://dx.doi.org/10.1007/978-1-4471-6569-9_6
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where L j is the submatrix of L corresponding to vertices in Tj , j = 1, . . . , k, and dn

is the degree of n. We must show that for j = 1, . . . , k, x j > 0, x j < 0 or x j = 0.
Suppose x1 �= 0, x2 �= 0. From (8.7), L j x j = μx j , j = 1, 2. Thus, μ is

an eigenvalue of L j , j = 1, 2, and hence τ(L j ) ≤ μ, j = 1, 2. First suppose
τ(L1) �= τ(L2) and we first consider the case τ(L1) < τ(L2). Let L(n, n) be the
principal submatrix of L obtained by deleting the row and the column n.ByCorollary
8.7 there exists a vector u > 0 such that L2u = τ(L2)u. Augment u suitably by
zeros to get the vector ũ = [0, u, 0, . . . , 0]′, which satisfies L(n, n)ũ = τ(L2)ũ.

There is a vertex of T2 adjacent to n and hence ũ′w �= 0. By Corollary 8.5 it follows
that

p−(L − τ(L2)I ) ≥ p−(L(n, n) − τ(L2)I ) + 1. (8.8)

Since τ(L1) < τ(L2), then p−(L(n, n) − τ(L2)I ) ≥ 1, and it follows from (8.8)
that p−(L − τ(L2)I ) ≥ 2. We conclude that μ < τ(L2), which contradicts the
earlier observation that τ(L2) ≤ μ. Hence, it is not possible that τ(L1) < τ(L2).

By a similar argument we can show that τ(L2) cannot be less than τ(L1).

Now suppose τ(L1) = τ(L2) ≤ μ. Then

[
L1 0
0 L2

]
has at least two eigenvalues

not exceeding μ. By the interlacing theorem, L must have two eigenvalues not
exceeding τ(L1). It follows that τ(L1) = τ(L2) = μ. By Corollary 8.7 it follows
that x j > 0 or x j < 0 for j = 1, 2.A similar argument shows that for j = 3, . . . , k,

if x j �= 0 then either x j > 0 or x j < 0. That completes the proof. �

Corollary 8.9 Let T be a tree with V (T ) = {1, . . . , n}. Let L be the Laplacian of
T and μ the algebraic connectivity. Let x be a Fiedler vector. Then T has at most
one characteristic vertex with respect to x .

Proof Suppose i �= j are both characteristic vertices with respect to x . Then xi =
x j = 0. By Theorem 8.8 all vertices of the component of T \ {i} that contains j are
zero vertices. Then j cannot be adjacent to a nonzero vertex and thus it cannot be a
characteristic vertex. �

Let A be a symmetric n × n matrix. We may associate a graph G A with A as
follows. Set V (G A) = {1, . . . , n}. For i �= j, vertices i and j are adjacent if and
only if ai j �= 0.

Lemma 8.10 Let A be a symmetric n ×n matrix such that G A is a tree, and suppose
A1 = 0. Then rank(A) = n − 1.

Proof We prove the result by induction on n. The proof is easy when n = 2.Assume
the result to be true for matrices of order n−1.We assume, without loss of generality,
that vertex n is pendant and is adjacent to n − 1. Let z be a vector such that Az = 0.
Then the nth equation gives an−1,nzn−1 + annzn = 0. Since an−1,n = −ann �= 0, it
follows that zn−1 = zn . As usual, let A(n, n) be the submatrix obtained by deleting
row and column n of A. Also, let z(n) be the vector obtained by deleting the last
coordinate of z. The first n − 1 equations from Az = 0 give
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⎛
⎜⎝A(n, n) +

⎡
⎢⎣
0 · · · 0
...

. . .
...

0 · · · −ann

⎤
⎥⎦

⎞
⎟⎠ z(n) = 0. (8.9)

Let B = A(n, n)− diag(0, . . . , 0, ann), which is the matrix on the left side of (8.9).
Note that G B is the tree T \ {n} and B1 = 0. By, induction assumption it follows
that rank(B) = n − 2 and therefore z(n) must be a scalar multiple of 1. It follows
that z is a scalar multiple of 1 and hence rank(A) = n − 1. �

Theorem 8.11 Let G be a tree with V (G) = {1, . . . , n}. Let L be the Laplacian of
G and μ the algebraic connectivity. Suppose there exists a Fiedler vector with no
zero coordinate. Then μ has algebraic multiplicity 1.

Proof Let Ly = μy where yi �= 0, i = 1, . . . , n. Let E = diag(y1, . . . , yn) and let
C = E(L − μI )E . Then GC is a tree and C1 = 0. It follows by Lemma 8.10 that
rank(C) = n − 1. Then rank(L − μI ) is n − 1 as well, and hence μ has algebraic
multiplicity 1. �

Let T be a tree with V (T ) = {1, . . . , n}. Let L be the Laplacian of T and μ the
algebraic connectivity. Let x be a Fiedler vector and suppose x has no zero coordinate.
Then by Theorem 8.11, μ has algebraic multiplicity 1, and hence any other Fiedler
vector must be a scalar multiple of x . Thus, in this case there is an edge of T that
is the characteristic edge with respect to every Fiedler vector. An analogous result
holds for a characteristic vertex as well, as seen in the next result.

Theorem 8.12 Let T be a tree with V (T ) = {1, . . . , n}. Let L be the Laplacian of
T and μ the algebraic connectivity. Let x and y be Fiedler vectors. Then a vertex i
is a characteristic vertex with respect to x if and only if it is a characteristic vertex
with respect to y.

Proof At the outset we note a consequence of Theorem 8.8, which will be used. If x
is a Fiedler vector of a tree and has a zero coordinate, then for any vertices i, j and
k of the tree such that j is on the i − k path, if xi = xk = 0 then x j = 0.

We turn to the proof. If μ has algebraic multiplicity 1 then x is a scalar multiple
of y and the result is obvious. So, suppose μ has algebraic multiplicity greater than
1, and let

V0 = { j ∈ V (T ) : z j = 0, for any Fiedler vector z}.

If V0 = φ then for each vertex j we can find a Fiedler vector z j such that the j th
coordinate of z j is nonzero. Then there must be a vector z with no zero entry that is a
linear combination of z j , j = 1, . . . , n. Note that z is a Fiedler vector, contradicting
Theorem 8.11. Therefore, V0 �= φ.

There must be a vertex k ∈ V0 that is adjacent to a vertex not in V0. Suppose there
are two vertices k1, k2 ∈ V0 adjacent to vertices not in V0. Specifically, suppose k1
is adjacent to �1 �∈ V0 and k2 is adjacent to �2 �∈ V0. Then there are Fiedler vectors
w1 and w2 such that the ki -coordinate of wi is zero, while the �i -coordinate of wi is
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nonzero, i = 1, 2. We may take a linear combination w of w1 and w2, which then
is a Fiedler vector, with respect to which both k1 and k2 are characteristic vertices,
contradicting Corollary 8.9. Hence, k ∈ V0 is the unique vertex adjacent to a vertex
not in V0.

We claim that k is the characteristic vertex with respect to any Fiedler vector.
Suppose i �= k is the characteristic vertex with respect to the Fiedler vector x . There
must be a vertex j adjacent to i such that x j �= 0. Since i �∈ V0, there is a Fiedler
vector y such that yi �= 0. Since xi = xk = 0 and x j �= 0, by the structure implied
by Theorem 8.8, i is on the j − k path. It follows by the observation in the beginning
that y j �= 0.

We may take a linear combination z of x and y satisfying z j = 0 and zi �= 0.
However, zk = 0, which again contradicts the observation in the beginning since i
is on the j − k path. We conclude that k is the characteristic vertex with respect to
any Fiedler vector. �

We are now in a position to describe a classification of trees. Let T be a tree with
V (T ) = {1, . . . , n}. We say that T is of Type I if it has a characteristic vertex with
respect to any Fiedler vector, while T is said to be of Type II if it has a characteristic
edgewith respect to any Fiedler vector. As discussed earlier, neither the characteristic
vertex nor the characteristic edge depend on the particular Fiedler vector. Note that
every tree must be of one of the two types. A tree cannot be both Type I and Type II.
Indeed, in that caseμmust have algebraicmultiplicity at least 2 and then, byTheorem
8.11, it cannot have a Fiedler vector with all coordinates nonzero, a contradiction.

It must be remarked that if μ has algebraic multiplicity greater than 1 then T is
necessarily of Type I. However, the converse is not true. If T is the path on 3 vertices
then the central vertex is a characteristic vertex, although the algebraic multiplicity
of μ = 1 is 1.

8.3 Monotonicity Properties of Fiedler Vector

The coordinates of a Fiedler vector exhibit a monotonicity property in the case of
both Type I and Type II trees. We first prove a preliminary result, which will be used
in proving the monotonicity.

Lemma 8.13 Let T be a tree with V (T ) = {1, . . . , n}. Let L be the Laplacian of T .

Let λ be an eigenvalue of L and let z be a corresponding eigenvector. Let e = {i, j}
be an edge of T . Then

zi − z j = −λ
∑

k

zk

where the summation is over all the vertices k in the component of T \ {e} that
contains j.
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Proof We assume, after a relabeling, that the edge e has endpoints s and s + 1,
and furthermore, the two components of T \ {e} have vertex sets {1, . . . , s} and
{s + 1, . . . , n}. Let u be the vector of order n × 1 with ui = 1, i = 1, . . . , s, and
ui = 0, i = s + 1, . . . , n. Note that

u′L = [0, . . . , 0, 1,−1, 0, . . . , 0],

where the 1 and the −1 occur at positions s and s + 1, respectively. Therefore,
u′Lz = zs − zs+1. Hence, from u′Lz = λu′z we conclude that

zs − zs+1 = λ

s∑
k=1

zk . (8.10)

Since z is orthogonal to 1, the expression on the right side of (8.10) equals

−λ
n∑

k=s+1
zk . This completes the proof. �

The following result has been partly proved in the earlier discussion.

Theorem 8.14 Let T be a tree with V (T ) = {1, . . . , n}. Let L be the Laplacian
of T and μ the algebraic connectivity. Let x be a Fiedler vector. Then one of the
following cases occur.

(i) No entry of x is zero. In this case there is a unique edge e = {i, j} such that
xi > 0 and x j < 0. Further, along any path in T that starts at i and does not
contain j, the entries of x increase, while along any path in T that starts at j
and does not contain i, the entries of x decrease.

(ii) Some entry of x is zero. In this case the subgraph of T induced by the zero vertices
is connected. There is a unique vertex k such that xk = 0 and k is adjacent to
a nonzero vertex. Further, along any path in T that starts at k, the entries of x
either increase or decrease.

Proof (i) First suppose no entry of x is zero. In this case, by Theorem 8.2 there is
a unique edge (the characteristic edge) e = {i, j} such that xi > 0 and x j < 0.
Consider any edge f = {u, v} on a path that starts at i and does not contain j.
Assume that u is closer to i than v. By Lemma 8.13,

xu − xv = −μ
∑

k

xk, (8.11)

where the summation is over all vertices k in the component of T \ { f } that contains
v. Note that all the vertices in this component are positive and hence it follows from
(8.11) that xu < xv. Thus, along any path in T that starts at i and does not contain
j, the entries of x increase. The second part of (i) is proved similarly.

(ii) Suppose x has a zero coordinate. By Theorem 8.8 there is a unique vertex
(the characteristic vertex) k such that xk = 0 and k is adjacent to a nonzero vertex.
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Further, the vertices in any component of T \{k} are either all positive, all negative or
all zero. It follows that the subgraph of T induced by the zero vertices is connected.
The proof of the second part is similar to the one given for (i). �

8.4 Bounds for Algebraic Connectivity

The following representation for the second smallest eigenvalue of a symmetric
matrix will be used. It is easily derived from the spectral theorem.

Lemma 8.15 Let A be a symmetric n × n matrix with eigenvalues λ1 ≥ · · · ≥
λn−1 ≥ λn . Let u be an eigenvector of A corresponding to λn . Then

λn−1 = min

{
x ′ Ax

x ′x

}
,

where the minimum is taken over all nonzero vectors x, orthogonal to u.

We introduce somenotation. LetG be a connected graphwithV (G) = {1, . . . , n}.
If i, j ∈ V (G), then as usual the distance between i and j, denoted d(i, j), is
defined to be the length (that is, the number of edges) in the shortest (ij)-path. We
set d(i, i) = 0, i = 1, . . . , n. If V1, V2 ⊂ V (G) are nonempty sets then define

d(V1, V2) = min{d(i, j) : i ∈ V1, j ∈ V2}.

If V1 = {i} we write d(V1, V2) as d(i, V2).

Theorem 8.16 Let G be a connected graph with V (G) = {1, . . . , n}. Let V1 and
V2 be nonempty disjoint subsets of V (G), and let G1 and G2 be the subgraphs
induced by V1 and V2, respectively. Let L be the Laplacian of G and μ the algebraic
connectivity. Then

μ ≤ 1

d(V1, V2)2

(
1

|V1| + 1

|V2|
)

(|E(G)| − |E(G1)| − |E(G2)|).

Proof Let

g(i) = 1

|V1| − 1

d(V1, V2)

(
1

|V1| + 1

|V2|
)
min{d(i, V1), d(V1, V2)},

i = 1, . . . , n. Note that if i ∈ V1 then g(i) = 1
|V1| , and if i ∈ V2 then g(i) = − 1

|V2| .
Also, if i ∼ j then |d(i, V1) − d( j, V2)| ≤ 1 and hence

|g(i) − g( j)| ≤ 1

d(V1, V2)

(
1

|V1| + 1

|V2|
)

. (8.12)
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Let g = 1
n

∑
j∈V (G) g( j), and let f (i) = g(i) − g, i = 1, . . . , n. Let f be the

vector of order n × 1 with the i th component f (i), i = 1, . . . , n. Then f ′1 = 0. It
follows from Lemma 4.3 (iii) that

f ′L f =
∑
i∼ j

( f (i) − f ( j))2 =
∑
i∼ j

(g(i) − g( j))2. (8.13)

If i and j are both in V1 or are both in V2, then g(i) = g( j). If {i, j} is any edge
not in E(G1) ∪ E(G2), then by (8.12),

(g(i) − g( j))2 ≤ 1

d(V1, V2)2

(
1

|V1| + 1

|V2|
)2

. (8.14)

We conclude from (8.13) and (8.14) that

f ′L f ≤ 1

d(V1, V2)2

(
1

|V1| + 1

|V2|
)2

(|E(G)| − |E(G1)| − |E(G2)|). (8.15)

Observe that

f ′ f =
∑

i∈V (G)

f (i)2

≥
∑

i∈V1∪V2

f (i)2

= |V1|
(

1

|V1| − g

)2

+ |V2|
(

1

|V2| + g

)2

≥ 1

|V1| + 1

|V2| . (8.16)

Since f ′1 = 0, it follows from Lemma 8.15 that

μ f ′ f ≤ f ′L f. (8.17)

The result follows from (8.15), (8.16) and (8.17). �

We indicate some consequences of Theorem 8.16.

Corollary 8.17 Let G be a connected graph with V (G) = {1, . . . , n}. Let L be the
Laplacian of G and μ the algebraic connectivity. Let δ be the minimum vertex degree
in G. Then μ ≤ n

n−1δ.

Proof Let i be a vertex of degree δ. Let V1 = {i} and V2 = V (G) \ {i}. Then
d(V1, V2) = 1.Using the notation of Theorem 8.16 we see that |E(G)|− |E(G1)|−
|E(G2)| = δ. The result easily follows by an application of Theorem 8.16. �

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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Corollary 8.18 Let G be a connected, k-regular graph with n vertices and with
algebraic connectivity μ. Let H be an induced subgraph of G with p vertices. Then
the average degree of a vertex in H is at most pμ

n + k − μ.

Proof Let V1 = V (H), V2 = V (G) \ V (H). Then d(V1, V2) = 1. Applying The-
orem 8.16 we see that the total number of edges between the vertices of H and the
vertices not in H is at least μ

p(n−p)
n . Thus, the sum of the degrees (in H ) of the

vertices in H is at most

kp − μ
p(n − p)

n
= p

( pμ

n
+ k − μ

)
.

Hence, the average degree of a vertex in H is at most pμ
n + k − μ. �

Let G be a connected graph with V (G) = {1, . . . , n}. Let V1 be a nonempty
subset of V (G) and let b(V1) be the number of edges with precisely one endpoint
in V1. The minimum value of b(V1)|V1| taken over all V1 with |V1| ≤ n

2 is called the
isoperimetric number of G. It is an easy consequence of Theorem 8.16 that the
isoperimetric number is at least μ

2 .

We conclude with yet another inequality that can be derived from Theorem 8.16.

Corollary 8.19 Let G be a connected graph with V (G) = {1, . . . , n}. Let V1 and V2
be nonempty disjoint subsets of V (G) and let G1 and G2 be the subgraphs induced by
V1 and V2 respectively. Let L be the Laplacian of G and μ the algebraic connectivity.
Let Δ be the maximum vertex degree in G. Suppose d(V1, V2) > 1. Then

μ ≤ Δ

d(V1, V2)2
· n

|V1||V2| (n − |V1| − |V2|).

Proof Since d(V1, V2) > 1, every edge in E(G)\ (E(G1)∪ E(G2)) is incident with
at least one of the n−|V (G1)|−|V (G2)| vertices of the set V (G)\(V (G1)∪V (G2)).

Thus,

|E(G)| − |E(G1)| − |E(G2)| ≤ Δ(n − |V (G1)| − |V (G2)|). (8.18)

By Theorem 8.16 and (8.18) we get

μ ≤ 1

d(V1, V2)2

(
1

|V1| + 1

|V2|
)

(|E(G)| − |E(G1)| − |E(G2)|) (8.19)

≤ 1

d(V1, V2)2

(
1

|V1| + 1

|V2|
)

(n − |V1| − |V2|)Δ (8.20)

≤ Δ

d(V1, V2)2
· n

|V1||V2| (n − |V1| − |V2|) (8.21)

and the proof is complete. �
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In the next result we give an inequality between the algebraic connectivity of a
graph and that of an induced subgraph.

Theorem 8.20 Let G be a connected graph with V (G) = {1, . . . , n}. Let L be the
Laplacian of G and μ the algebraic connectivity. Let V1 and V2 be nonempty disjoint
subsets of V (G) with V1 ∪ V2 = V (G). Let H be the subgraph induced by V1 and
let μ1 be the algebraic connectivity of H. Then

μ ≤ μ1 + |V2|.

Proof Let x be a unit Fiedler vector of H. Augment x by zeros resulting in a vector
of order n × 1, which we denote by z. Then z is also a unit vector and z′1 = 0. It
follows by Lemma 8.15 and Lemma 4.3 that

μ ≤ z′Lz =
∑
i∼ j

(zi − z j )
2.

Decompose the preceding sum into three parts: edges (i, j) with no endpoint in V1,

one endpoint in V1 and both endpoints in V1. Ignore the first sum and observe that
the second sum is bounded above by |V2|. Finally, the third sum equals μ1 and the
result follows. �

Exercises

1. Determine the algebraic connectivity of the star K1,n−1.

2. Let G be a connected graph and let x be a Fiedler vector. If xi > 0 then show
that there exists a vertex j ∼ i such that xi > x j .

3. Let x be a Fiedler vector of a unicyclic graph with vertex set {1, . . . , n} and
suppose x has no zero coordinate. Show that there are at most two edges such
that their end-vertices are of different signs.

4. Let Pn be the path with n vertices, where n ≥ 3 is odd. Show that the central
vertex is a characteristic vertex.

5. Let G be a connected graph with n = 2m vertices. Let V1 and V2 be disjoint
subsets of V (G) with |V1| = |V2| = m. Let μ be the algebraic connectivity of
G. Show that the number of edges of G with one endpoint in V1 and the other in
V2 is at least

μm
2 . Show that equality is attained for the n-cube Qn, n ≥ 2, by

taking suitable V1 and V2.

6. Let G be a connected graph with n = 3m vertices. Let V1, V2 and V3 be disjoint
subsets of V (G) with |V1| = |V2| = |V3| = m. Let μ be the algebraic connec-
tivity of G. Show that the number of edges of G with one endpoint in Vi and the
other in Vj for some i �= j is at least mμ.

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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7. Let G be a connected graph with V (G) = {1, . . . , n}. Let μ be the algebraic
connectivity of G. Let V1 ⊂ V (G) and suppose the graph induced by V (G)\ V1
is disconnected. Show that μ ≤ |V1|.

8. Show that the algebraic connectivity does not exceed theminimumvertex degree.
(This statement is stronger than Corollary 8.17

9. Show that the algebraic connectivity of Pn, the path on n vertices, does not
exceed 12

n2−1
.

10. Is it true that the algebraic connectivity necessarily decreases when a vertex is
deleted?

The basic theory outlined in Sects. 7.1–7.3 is due to Fiedler [F73, F75]. We have
also incorporated results and proof techniques from [BP98, BBT92, GR01, M87] in
these sections. Section7.4 is based on [AM85]. Bounds for the isoperimetric number
are important in the study of expander graphs; see [CR09].
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Chapter 9
Distance Matrix of a Tree

Let G be a connected graph with V(G) = {1, . . . , n}. Recall that the distance d(i, j)
between the vertices i and j of G is the length of a shortest path from i to j. The
distance matrix D(G) of G is an n × n matrix with its rows and columns indexed
by V(G). For i �= j, the (i, j)-entry dij of G is set equal to d(i, j). Also, dii = 0,
i = 1, . . . , n. We will often denote D(G) simply by D. Clearly, D is a symmetric
matrix with zeros on the diagonal. The distance, as a function on V(G) × V(G),

satisfies the triangle inequality. Thus, for any vertices i, j and k,

d(i, k) ≤ d(i, j) + d(j, k).

The proof is easy. If d(i, j) is the length of the (ij)-path P1 and d(j, k) is the

length of the (jk)-path P2, then P1 ∪ P2 contains an (ik)-path. Therefore, the
length of a shortest (ik)-path cannot exceed the sum d(i, j) + d(j, k).

Example 9.1 Consider the tree

•1 •2

��
��

��
��

•3

��
��

��
��

•4 •5

��
��

��
��

•6

•7 •8 •9
The distance matrix of the tree is given by
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 2 3 4 3 4 4
1 0 1 1 2 3 2 3 3
2 1 0 2 1 2 3 2 2
2 1 2 0 3 4 1 4 4
3 2 1 3 0 1 4 1 1
4 3 2 4 1 0 5 2 2
3 2 3 1 4 5 0 5 5
4 3 2 4 1 2 5 0 2
4 3 2 4 1 2 5 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the case of a tree, the distance matrix has some attractive properties. As an
example, the determinant of the distance matrix of a tree depends only on the number
of vertices, and not on the structure of the tree, as seen in the next result.

Theorem 9.2 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
of T . Then the determinant of D is given by

det D = (−1)n−1(n − 1)2n−2. (9.1)

Proof After a relabeling of the vertices we may assume that the vertex n is a pendant
and is adjacent to n − 1. Note that

d(i, n) = d(i, n − 1) + 1, i = 1, . . . , n − 1.

In D, subtract the column n − 1 from the column n and the row n − 1 from the row
n. Call the resulting matrix D1. The last row and column of D1 has all entries 1,
except the (n, n)-entry, which is −2. Relabel the vertices 1, . . . , n − 1, so that n − 1
is pendant and is adjacent to n − 2. The resulting matrix is obtained by permuting
the rows and the columns of D1. In that matrix subtract the column n − 2 from the
column n − 1, and the row n − 2 from the row n − 1. Continuing in this way we
finally obtain the following matrix

D2 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1
1 −2 0 · · · 0
1 0 −2 · · · 0
...

...
. . .

...

1 0 0 · · · −2

⎤
⎥⎥⎥⎥⎥⎦

.

Clearly det D = det D2. By the Schur complement formula for the determinant

we have,

det D2 = det(−2In−1)(−1′(0 − 2In−1)
−11)

= (−2)n−1 × n − 1

2
= (−1)n−1(n − 1)2n−2,

and the proof is complete. �
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9.1 Distance Matrix of a Graph

We now show that Theorem 9.2 does admit an extension to arbitrary graphs.We need
some preliminaries. We assume familiarity with the basic properties of the blocks
of a graph. Here we recall the definition and some basic facts. A block of the graph
G is a maximal connected subgraph of G that has no cut-vertex. Note that if G is
connected and has no cut-vertex, then G itself is a block.

If an edge of a graph is contained in a cycle, then the edge by itself cannot be a
block, since it is in a larger subgraph with no cut-vertex. An edge is a block if and
only if it is a cut-edge. In particular, the blocks of a tree are precisely the edges of
the tree. If a block has more than two vertices, then it is 2-connected. Alternatively,
a block of G may be defined as a maximal 2-connected subgraph.

We introduce some notation. If A is an n × n matrix, then cof A will denote the
sum of all cofactors of A. Note that if A is nonsingular, then

cof A = (det A)(1′A−11). (9.2)

Recall that J denotes the matrix with each entry equal to 1.

Lemma 9.3 Let A be an n × n matrix. Then

det(A + J) = det A + cof A. (9.3)

Proof First suppose A is nonsingular. By the Schur formula applied in two different
ways, we have

det

[
1 −1′
1 A

]
= det(A + J) = (det A)(1 + 1′A−11). (9.4)

It follows from (9.2) and (9.4) that

det(A + J) = (det A)

(
1 + cof A

det A

)
= det A + cof A.

When A is singular we may prove the result using a continuity argument, by
approximating A by a sequence of nonsingular matrices. �

As usual, A(i|j) will denote the submatrix obtained by deleting row i and column
j of A.

Lemma 9.4 Let A be an n × n matrix. Let B be the matrix obtained from A by
subtracting the first row from all the other rows and then subtracting the first column
from all the other columns. Then

cof A = det B(1|1).
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Proof Let C be the matrix obtained from A + J by subtracting the first row from
all the other rows and then subtracting the first column from all the other columns.
Let E11 be the n × n matrix with 1 in position (1, 1) and zeros elsewhere. Then
C = B + E11 and hence det C = det B + det B(1|1). It follows by Lemma 9.3 that

det C = det(A + J) = det A + cof A = det B + cof A,

and the result follows. �

Theorem 9.5 Let G be a connected graph with V(G) = {1, . . . , n}. Let G1, . . . , Gk
be the blocks of G. Then the following assertions hold:

(i) cof D(G) =
k∏

i=1

cof D(Gi)

(ii) det D(G) =
k∑

i=1

det D(Gi)
∏
j �=i

cof D(Gj).

Proof We assume, without loss of generality, that G1 is an end block of G, that
is, it contains only one cut-vertex of G. We assume the cut-vertex to be 1. Let
G∗
1 = G \ (G1 \ {1}) be the remainder of G. Note that the cut-vertex 1 is present in

G∗
1. Furthermore, the blocks of G∗

1 are G2, . . . , Gk . We assume V(G1) = {1, . . . , m}
and V(G∗

1) = {1, m + 1, . . . , n}. Let

D(G1) =
[
0 a′
a E

]
, D(G∗

1) =
[
0 f ′
f H

]
.

Thus,

D(G) =
⎡
⎣
0 a′ f ′
a E a1′ + 1f ′
f f 1′ + 1a′ H

⎤
⎦ .

In D(G) subtract the first column from all the other columns and the first row
from all the other rows. The resulting matrix has the same determinant and thus

det D(G) = det

⎡
⎣
0 a′ f ′
a E − a1′ − 1a′ 0
f 0 H − f 1′ − 1f ′

⎤
⎦

= det

[
0 a′
a E − a1′ − 1a′

]
det(H − f 1′ − 1f ′)

+ det

[
0 f ′
f H − f 1′ − 1f ′

]
det(E − a1′ − 1a′). (9.5)



9.1 Distance Matrix of a Graph 119

Clearly,

det D(G1) = det

[
0 a′
a E

]
= det

[
0 a′
a E − a1′ − 1a′

]
(9.6)

and

det D(G∗
1) = det

[
0 f ′
f H

]
= det

[
0 f ′
f H − f 1′ − 1f ′

]
. (9.7)

It follows from Lemma 9.4 that

cof D(G1) = det(E − a1′ − 1a′) (9.8)

and
cof D(G∗

1) = det(H − f 1′ − 1f ′). (9.9)

Substituting (9.6), (9.7), (9.8) and (9.9) in (9.5) we get

det D(G) = det D(G1)cof D(G∗
1) + det D(G∗

1)cof D(G1) (9.10)

It also follows from Lemma 9.4 that

cof D(G) = det

[
E − a1′ − 1a′ 0

0 H − f 1′ − 1f ′
]

= det(E − a1′ − 1a′) det(H − f 1′ − 1f ′)
= cof D(G1)cof D(G∗

1) (9.11)

Note that the proof is complete at this point if k = 2, while the result is trivial
if G is itself a block. We prove the result by induction on k. Since G∗

1 has blocks
G2, . . . , Gk, by induction assumption we have

cof D(G∗
1) =

k∏
i=2

cof D(Gi) (9.12)

and

det D(G∗
1) =

k∑
i=2

det D(Gi)
∏
j �=i

cof D(Gj). (9.13)

The proof is completed by substituting (9.12) and (9.13) in (9.10) and (9.11). �

According to Theorem 9.5 the determinant of the distance matrix of a graph does
not change if the blocks of the graph are reassembled in some other way. In the
case of a tree the blocks are precisely the edges, and thus the determinant of the
distance matrix of a tree depends only on the number of edges. The formula given in
Theorem 9.2 follows easily from Theorem 9.5. To see this suppose T is a tree with
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V(T) = {1, . . . , n} and E(T) = {e1, . . . , en−1}. Then the blocks of T are the edges;
more precisely, the blocks G1, . . . , Gn−1 are the graphs induced by e1, . . . , en−1,

respectively. Then D(Gi) =
[
0 1
1 0

]
, i = 1, . . . , n − 1, and hence det D(Gi) = −1

and cof D(Gi) = −2, i = 1, . . . , n − 1. It follows by (ii) of Theorem 9.5 that

det D(T) = (n − 1)(−1)n−12n−2,

which is Theorem 9.2.
In the case of a unicyclic graph, Theorem 9.5 implies that the determinant of the

distance matrix depends only on the length of the cycle and the number of edges.

9.2 Distance Matrix and Laplacian of a Tree

Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix of T and L the
Laplacian of T . It follows by Theorem 9.2 that D is nonsingular. It is an interesting
and unexpected fact that the inverse of D is related to the Laplacian through a rather
simple formula. Before proving the formula we need some preliminaries. As usual,
let di be the degree of the vertex i and let τi = 2 − di, i = 1, . . . , n. Let τ be the
n × 1 vector with components τ1, . . . , τn. We note an easy property of τ. Recall that
1 denotes the vector of 1 s of appropriate size.

Lemma 9.6 1′τ = 2.

Proof Since the sum of the degrees of all the vertices is twice the number of edges,
we have

n∑
i=1

τi =
n∑

i=1

(2 − di) = 2n − 2(n − 1) = 2.

This completes the proof. �

Lemma 9.7 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
of T . Then

Dτ = (n − 1)1. (9.14)

Proof We prove the result by induction on n. The result is obvious for n = 1. For

n = 2, D =
[
0 1
1 0

]
and τ =

[
1
1

]
. Then it is easily verified that Dτ = 1. So let

n ≥ 3 and assume the result to be true for trees with less than n vertices. We may
assume, without loss of generality, that the vertex n is pendant and is adjacent to
n − 1. Partition D and τ as

D =
[

D(n, n) x
x′ 0

]
, τ =

[
τ(n)

1

]
.
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Note that τn = 2 − dn = 1. Then

Dτ =
[

D(n, n)τ (n) + x
x′τ(n)

]
. (9.15)

The distance matrix of T \ {n} is D(n, n). Furthermore, the degree of the vertex
n − 1 in T \ {n} is dn−1 − 1. Let τ̂ be the vector obtained by adding 1 to the last
component of τ(n). By an induction assumption,

D(n, n)τ̂ = (n − 2)1. (9.16)

Let y be the last column of D(n, n). It follows from (9.16) that

D(n, n)τ (n) = (n − 2)1 − y. (9.17)

Since d(i, n) = d(i, n − 1) + 1, i = 1, 2, . . . , n − 1, then

x = y + 1. (9.18)

It follows from (9.17) and (9.18) that

D(n, n)τ (n) + x = (n − 2)1 − x + 1 + x = (n − 1)1. (9.19)

It follows from (9.15) and (9.19) that (9.14) is valid, except possibly in coordinate
n, which corresponds to a pendant vertex. Since a tree with 3 or more vertices has
at least 2 pendant vertices, we may repeat the argument with another pendant vertex
and conclude that (9.14) holds in the coordinate n as well. This completes the proof.

�

Lemma 9.8 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
of T and let L be the Laplacian of T . Then

LD + 2I = τ1′. (9.20)

Proof Fix vertices i, j ∈ {1, . . . , n}. Let the degree of i be di = k, and we assume,
without loss of generality, that i is adjacent to {1, . . . , k}. First suppose i �= j. The
graph T \{i} is a forest with k components and we assume, without loss of generality,
that j is in the component of T \ {i} that contains 1. Then

d(v, j) = d(1, j) + 2 = d(i, j) + 1, v = 2, . . . , k. (9.21)
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It follows from (9.21) that

(LD + 2I)ij = (LD)ij

= did(i, j) − (d(1, j) + · · · + d(k, j))

= kd(i, j) − (kd(i, j) + k − 2)

= 2 − k

= τi. (9.22)

If j = i then

(LD + 2I)ii = −(d(i, 1) + · · · + d(i, k)) + 2

= 2 − k

= τi. (9.23)

It follows from (9.22) and (9.23) that

(LD + 2I)ij = τi

for all i, j and hence (9.20) holds. This completes the proof. �
We are now in a position to give a formula for the inverse of the distance matrix

in terms of the Laplacian.

Theorem 9.9 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
of T and L be the Laplacian of T . Then

D−1 = −1

2
L + 1

2(n − 1)
ττ ′. (9.24)

Proof We have

(
−1

2
L + 1

2(n − 1)
ττ ′

)
D = −1

2
LD + 1

2(n − 1)
ττ ′D

= −1

2
LD + 1

2
τ1′ by Lemma 9.7

= −1

2
(LD − τ1′)

= −1

2
(−2I) by Lemma 9.8

= I.

Therefore (9.24) holds and the proof is complete. �
We introduce some notation. Let i, j ∈ {1, . . . , n}, i �= j. Denote by eij the n × 1

vector with the ith coordinate equal to 1, the jth coordinate equal to −1, and zeros
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elsewhere. Note that if B is an n × n matrix then

e′
ijBeij = bii + bjj − bij − bji.

Recall that H is a g-inverse of A if AHA = A.

Lemma 9.10 Let G be a connected graph with V(G) = {1, . . . , n}, and L be the
Laplacian of G. Let i, j ∈ {1, . . . , n}, i �= j. If H1 and H2 are any two g-inverses of
L, then

e′
ijH

1eij = e′
ijH

2eij.

Proof Since G is connected, by Lemma 4.3 the rank of L is n − 1. Thus, 1 is the
only vector in the null space of L, up to a scalar multiple. Since 1′eij = 0, then eij is
in the column space of L. Therefore, there exists a vector z such that eij = Lz. Then

e′
ij(H

1 − H2)eij = z′L(H1 − H2)Lz = z′(LH1L − LH2L)z = 0,

since LH1L = LH2L = L. This completes the proof. �

Lemma 9.11 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
and L, the Laplacian of T . Then

LDL = −2L.

Proof By Lemma 9.8,
LD + 2I = τ1′. (9.25)

Post-multiplying (9.25) by L, and keeping in view that L1 = 0, we have

LDL + 2L = τ1′L = 0,

and the proof is complete. �

Recall that the Moore–Penrose inverse of the matrix B is the unique g-inverse B+
of B that satisfies B+BB+ = B+ and that BB+ and B+B are symmetric.

Theorem 9.12 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
and L the Laplacian T . If H is a g-inverse of L then

hii + hjj − hij − hji = d(i, j).

In particular,
d(i, j) = �+

ii + �+
jj − 2�+

ij . (9.26)

Proof Let S = −D
2 . By Lemma 9.11, S is a g-inverse of L. It follows by Lemma

9.10 that

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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hii + hjj − hij − hji = sii + sjj − sij − sji.

The result follows in view of sii = sjj = 0 and sij = sji = − d(i,j)
2 . �

Let G be a graph with V(G) = {1, . . . , n}. Let D = [d(i, j)] be the distance
matrix of G. The Wiener index W(G) of G, which has applications in mathematical
chemistry, is defined as

W(G) =
∑
i<j

d(i, j).

Lemma 9.13 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
and L, the Laplacian of T . Let λ1 ≥ · · · ≥ λn−1 > λn = 0 be the eigenvalues of L.

Then

W(T) = n
n−1∑
i=1

1

λi
.

Proof Note that L+1 = L+LL+1 = (L+)2L1 = 0, that is, the row sums of L+ are
zero. By (9.26),

d(i, j) = �+
ii + �+

jj − 2�+
ij . (9.27)

Summing both sides of (9.27) with respect to i, j and using L+1 = 0, we get

∑
i<j

d(i, j) = 1

2

n∑
i=1

n∑
j=1

d(i, j) = n
n∑

i=1

�+
ii . (9.28)

The eigenvalues of L+ are given by 1
λn−1

≥ · · · ≥ 1
λ1

> 0. It follows from (9.28)
that

W(G) =
∑
i<j

d(i, j) = n
n∑

i=1

�+
ii = n(traceL+) = n

n∑
i=1

1

λi

and the proof is complete. �

Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix and L, the
Laplacian of T . Suppose each edge of T is oriented and let Q be the n × (n − 1)
vertex-edge incidence matrix of T . Then L = QQ′. With this notation we have the
following result.

Lemma 9.14 Q′DQ = −2I.

Proof By Lemma 9.11, LDL = −2L and hence

QQ′DQQ′ = −2QQ′. (9.29)
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By Lemma 2.2, Q has full column rank and hence it admits a left inverse, say H. It
follows from (9.29) that

HQQ′DQQ′H ′ = −2HQQ′H ′

and hence Q′DQ = −2I. This completes the proof. �

9.3 Eigenvalues of the Distance Matrix of a Tree

We begin with an observation, which is an immediate consequence of Theorem 9.2.

Lemma 9.15 Let T be a tree with V(T) = {1, . . . , n}, n ≥ 2. Let D be the distance
matrix of T . Then D has 1 positive and n − 1 negative eigenvalues.

Proof If n = 2 then D =
[
0 1
1 0

]
, which has eigenvalues 1 and −1. Assume that the

result is true for a tree with n−1 vertices and proceed by induction on n. If vertex i is
a pendant vertex of T , then the matrix D(i, i), obtained by deleting row and column
i of D, is the distance matrix of the tree T \ {i}. By an induction assumption, D(i, i)
has 1 positive and n − 2 negative eigenvalues. It follows by the interlacing theorem
that D has either 1 or 2 positive eigenvalues. By Theorem 9.2,

det D

det D(i, i)
= −2(n − 1)

n − 2
< 0.

Thus, D must have 1 positive eigenvalue. �
Wenowobtain an interlacing inequality connecting the eigenvalues of the distance

matrix and the Laplacian.

Theorem 9.16 Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix
and L the Laplacian of T . Let μ1 > 0 > μ2 ≥ · · · ≥ μn be the eigenvalues of D
and let λ1 ≥ · · · ≥ λn−1 > λn = 0 be the eigenvalues of L. Then

0 > − 2

λ1
≥ μ2 ≥ − 2

λ2
≥ · · · ≥ − 2

λn−1
≥ μn.

Proof Let each edge of T be given an orientation and let Q be the n× (n−1) vertex-
edge incidence matrix. There exists an (n − 1) × (n − 1) nonsingular matrix M such
that the columns of QM are orthonormal. (This follows from an application of the
Gram–Schmidt process on the columns of Q.) Since 1′Q = 0 it is easily verified that

the matrix U defined as U =
[

QM, 1√
n

1
]
is orthogonal. Now

U ′DU =
[

M ′Q′DQM 1√
n

M ′Q′D1
1√
n

1′DQM 1
n 1′D1

]
. (9.30)

http://dx.doi.org/10.1007/978-1-4471-6569-9_2
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Let K = Q′Q be the edge-Laplacian matrix. Then K is nonsingular and M ′KM =
M ′Q′QM = I.Hence,K−1 = MM ′.Thus,K−1 andM ′M have the same eigenvalues.
It follows from Lemma 9.14 and (9.30) that the leading (n − 1) × (n − 1) principal
submatrix ofU ′DU is−2M ′M.By the interlacing theorem the eigenvalues ofU ′DU,

which are the same as the eigenvalues of D, interlace the eigenvalues of −2M ′M =
−2K−1. The eigenvalues of K are the same as the nonzero eigenvalues of L. Hence
the eigenvalues of K−1 are the same as the nonzero eigenvalues of L+, and the proof
is complete. �

We now obtain some results for the eigenvalues of the Laplacian of a tree.Wemay
then use Theorem 9.16 to obtain results for the eigenvalues of the distance matrix.

Theorem 9.17 Let T be a tree with V(T) = {1, . . . , n}. Let L be the Laplacian of T .

Suppose μ > 1 is an integer eigenvalue of L with u as a corresponding eigenvector.
Then the following assertions hold:

(i) μ divides n.
(ii) No coordinate of u is zero.
(iii) The algebraic multiplicity of μ is 1.

Proof Since det L = 0 then zero is an eigenvalue of L, and hence the characteristic
polynomial det(λI −L) of L is of the form λf (λ).Wemaywrite f (λ) = λg(λ)−f (0),
where g(λ) is a polynomial with integer coefficients. The coefficient of λ in the
characteristic polynomial ofL is, up to a sign, the sumof the (n−1)×(n−1) principal
minors of L, which equals n, since by the matrix-tree theorem, each cofactor of L is
1. It follows that f (0) = n. Thus, 0 = f (μ) = μg(μ) − n and hence μg(μ) = n.

This proves (i).
To prove (ii) suppose u has a zero coordinate and, without loss of generality, let

un = 0. Let T1, . . . , Tk be the components of T \ {n}. Partition L and u conformally
so that Lu = μu is expressed as

⎡
⎢⎢⎢⎢⎢⎣

L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

... w
0 0 · · · Lk

w′ dn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

...

uk

0

⎤
⎥⎥⎥⎥⎥⎦

= μ

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

...

uk

0

⎤
⎥⎥⎥⎥⎥⎦

, (9.31)

where Lj is the submatrix of L corresponding to vertices of Tj, j = 1, . . . , k.

Since ui �= 0 for some i = 1, . . . , k, we assume, without loss of generality, that
u1 �= 0. Then L1u1 = μu1 implies that μ is an eigenvalue of L1. There must be a
vertex of T1 which is adjacent to n and, without loss of generality, we assume that 1
is adjacent to n. Then L1 = L(T1)+E11, where L(T1) is the Laplacian of T1 and E11
is the matrix with 1 at position (1, 1) and zeros elsewhere. Then det(L1) can be seen
to be equal to det L(T1), which is zero plus the cofactor of the (1, 1), element of
L(T1), which is 1 by the matrix-tree theorem. Thus, det(L1) = 1. It follows that L−1

1
is an integer matrix. Since any rational root of a polynomial with integer coefficients
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must be an integer, any rational eigenvalue of L−1
1 must be an integer. However, 1

μ

is an eigenvalue of L−1
1 , which is a contradiction. This proves (ii).

If there are two linearly independent eigenvectors of L corresponding toμ, we can
produce an eigenvector with a zero coordinate, contradicting (ii). Hence the algebraic
multiplicity of μ is 1 and the proof is complete. �

We introduce some notation. For a tree T , p(T)will denote the number of pendant
vertices of T . A vertex is called quasipendant if it is adjacent to a pendant vertex.
The number of quasipendant vertices will be denoted by q(T). We assume that each
edge of the tree is oriented, let Q be the vertex-edge incidence matrix and K = Q′Q
the edge-Laplacian.

Theorem 9.18 Let T be a tree with V(T) = {1, . . . , n}, n ≥ 2, and L be the Lapla-
cian of T . If μ is an eigenvalue of L then the algebraic multiplicity of μ is at most
p(T) − 1.

Proof Let k = p(T). We assume, without loss of generality, that 1, . . . , k are the
pendant vertices of T , and furthermore, 1 is adjacent to the quasipendant vertex k+1.
We first make the following claim, which we will prove by induction on n. The claim
is that if x is an eigenvector of L, then among x1, . . . , xk, at least two coordinates
must be nonzero. To prove the claim let x be an eigenvector of L corresponding to
μ. If x1, . . . , xk are all nonzero, there is nothing to prove. So suppose x1 = 0. Let y
be the vector obtained by deleting x1 from x. (We continue to list the coordinates of
y as y2, . . . , yn rather than as y1, . . . , yn−1.) From Lx = μx it follows that xk+1 = 0,
and that y is an eigenvector of the Laplacian of T \ {1} for μ. The pendant vertices
of T \ {1} are either {2, . . . , k} or {2, . . . , k + 1}. Since yk+1 = xk+1 = 0, by an
induction assumption it follows that at least two coordinates among y2, . . . , yk must
be nonzero, and the claim is proved.

Suppose the multiplicity of μ is at least p(T) = k. Let z1, . . . , zk be linearly
independent eigenvectors of L corresponding toμ.Wemay find a linear combination
z of z1, . . . , zk such that among the first k coordinates of z, at most one is nonzero.
Then z is an eigenvector of L for which the claim proved earlier does not hold. This
contradiction proves that the multiplicity of μ is at most k − 1. �

Corollary 9.19 Let T be a tree with V(T) = {1, . . . , n}, n ≥ 2. Let D be the
distance matrix of T . If μ is an eigenvalue of D then the algebraic multiplicity of μ

is at most p(T).

Proof If the algebraic multiplicity of μ is greater than p(T), then by Theorem 9.16
the multiplicity of − 2

μ
, as an eigenvalue of −2K−1, will be greater than p(T) − 1.

But then the multiplicity of−μ
2 , as an eigenvalue of L,will be greater than p(T)−1,

contradicting Theorem 9.18. �

Theorem 9.20 Let T be a tree with V(T) = {1, . . . , n}, n ≥ 2. Let L be the
Laplacian of T . Then μ = 1 is an eigenvalue of L with multiplicity at least
p(T) − q(T).
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Proof Let s = q(T), let 1, . . . , s be the quasipendant vertices of T and suppose they
are adjacent to r1, . . . , rs pendant vertices, respectively. (These pendant vertices
are necessarily distinct, since the same pendant vertex cannot be adjacent to two
quasipendant vertices.) Recall that for vertices i �= j, eij is the n × 1 vector with
1 at the ith place, −1 at the jth place, and zeros elsewhere. Suppose i and j are
pendant vertices of T , adjacent to a common quasipendant vertex. Then it is easily
verified that eij is an eigenvector of L, corresponding to the eigenvalue 1. This way
we can generate (r1 − 1) + · · · + (rs − 1) linearly independent eigenvectors of L
corresponding to the pendant vertices for the eigenvalue 1. Hence the multiplicity of
1, as an eigenvalue of L, is at least

s∑
i=1

(ri − 1) =
s∑

i=1

ri − s = p(T) − q(T)

and the proof is complete. �

Corollary 9.21 Let T be a tree with V(T) = {1, . . . , n}, n ≥ 2. Let D be the distance
matrix of T . Then −2 is an eigenvalue of D with multiplicity at least p(T)−q(T)−1.

Proof The result follows from Theorem 9.20 and Theorem 9.16. �

Example 9.22 Consider the tree T :

•1

��
��

��
��

•2 •3

��
��

��
��

•4

��
��

��
��

•5 •6

��
��

��
��

•7 •8

•9 •10 •11 •12
Then T has eight pendant vertices: 1, 2, 3, 4, 5, 8, 10, 12, and four quasipendant
vertices: 6, 7, 9, 11. Thus, p(T) = 8 and q(T) = 4. Therefore, the Laplacian of T
has 1 as an eigenvalue with multiplicity at least 4, while the distance matrix of T has
−2 as an eigenvalue with multipliity at least 3. In this case the actual multiplicities
can be verified to be 4 in both the cases.

Exercises

1. Let T be a tree with V(T) = {1, . . . , n} and E(T) = {e1, . . . , en−1}. Suppose
edge ei is given the weight wi, i = 1, . . . , n − 1. The distance between vertices
i and j is defined to be the sum of the weights of the edges on the unique ij-path.
The distance matrix D is the n × n matrix with dij equal to the distance between
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i and j if i �= j, and dii = 0, i = 1, . . . , n. Show that

det D = (−1)n−12n−2

(
n−1∑
i=1

wi

)
n−1∏
i=1

wi.

2. Let T be a tree with V(T) = {1, . . . , n} and E(T) = {e1, . . . , en−1}. For a real
number q, the q-distance matrix Dq = [dq

ij] of T is the n × n matrix defined as

follows: dq
ij is equal to 1 + q + q2 + · · · + qd(i,j)−1 if i �= j, and dq

ii = 0, i =
1, . . . , n. Show that

det Dq = (−1)n−1(n − 1)(1 + q)n−2.

3. Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix of T . As
usual, let J be the matrix of all 1 s. Show that for any real number α,

det(D + αJ) = (−1)n−12n−2(2α + n − 1).

4. Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix and L the

Laplacian of T . Show that (D−1 − L)−1 = 1
3 (D + (n − 1)J).

5. Let T be a tree and let G be a graph with V(T) = V(G) = {1, . . . , n}. Let D be
the distance matrix of T and let S be the Laplacian of G. Show that D−1 − S is
nonsingular.

6. Let T be a tree with V(T) = {1, . . . , n}, n ≥ 2. Let D be the distance matrix
and L the Laplacian of T . Fix i, j ∈ {1, . . . , n}, i �= j. Define the n × n matrix H
as follows. The ith row and column of H has all zeros, while H(i, i) = L(i, i)−1.

Show that H is a g-inverse of L. Hence, using the fact that e′
ijHeij = d(i, j),

conclude that d(i, j) = det L(i, j; i, j), where L(i, j; i, j) is the submatrix of L
obtained by deleting rows i, j and columns i, j. (This provides another proof of
Corollary 4.10.)

7. Let T be a tree with V(T) = {1, . . . , n}, and suppose n is odd. Show that the
Wiener index of T is even.

8. Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix of T .

Show that D is a squared Euclidean distance matrix, that is, there exist points
x1, . . . , xn in IRk for some k such that d(i, j) = ||xi − xj||2, i, j = 1, . . . , n.

9. Let T be a tree with V(T) = {1, . . . , n}. Let i, j, k, � ∈ {1, . . . , n} be four
vertices of T , which are not necessarily distinct. Show that among the three
numbers d(i, j) + d(k, �), d(i, k) + d(j, �) and d(i, �) + d(j, k), two are equal
and are not less than the third.

10. Let T be a tree with V(T) = {1, . . . , n}. Let D be the distance matrix of T and
let μ1 > 0 > μ2 ≥ · · · ≥ μn be the eigenvalues of D. Suppose T has k pendant
vertices. Show that μk ≥ −2 and μn−k+2 ≤ −2.

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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Theorem 9.2 is due to Graham and Pollak [GP71]. Section8.1 is based on [GHH77].
An extension of Theorem 9.5 for a more general class of “additive distances”, which
includes resistance distance, has been given in [BG08]. Theorem9.9 is due toGraham
and Lovász [Gra78]. The proof technique and several other results in Sect. 8.2 are
adapted from [Bap04, BKN05]. Section8.3 is based on [Far85, GMS90, Mer90].
Exercises 1–5 are based on [BKN05, BLP06].
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Chapter 10
Resistance Distance

Let G be a connected graph with V(G) = {1, . . . , n}. The shortest path distance
d(i, j) between the vertices i, j ∈ V(G) is the classical notion of distance and is
extensively studied. However, this concept of distance is not always appropriate.
Consider the following two graphs:

•

��
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��
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i•
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��

��
��

• •j

��
��

��
�

i• • •j

•
In both theses graphs, d(i, j) = 2. But it is evident that in the first graph there are

more paths connecting i and j (we might say that there is a better “communication”
between i and j), and hence it is reasonable that the “distance” between i and j should
be smaller in the first graph in comparison to that in the second graph. This feature
is not captured by classical distance. Also, classical distance is not mathematically
tractable unless the graph is a tree.

Another notion of distance, called “resistance distance”, in view of an interpre-
tation of the notion vís-a-vís resistance in electrical networks, captures the notion
of distance in terms of communication more appropriately. Resistance distance is
mathematically more tractable, as well. Furthermore, in the case of a tree, resistance
distance and classical distance coincide.

Resistance distance admits several equivalent definitions. As a starting point we
present a definition in terms of g-inverse.

Let G be a connected graph with V(G) = {1, . . . , n} and let L be the Laplacian of
G. We assume that the edges of G are oriented, although the orientations do not play
any role as far as the resistance distance is concerned. Let i, j ∈ {1, . . . , n}, i �= j.
Recall the definition of the n ×1 vector eij, which has a 1 at the ith place, a −1 at the
jth place, and zeros elsewhere. By Lemma9.10, e′

ijHeij is invariant with respect to a
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g-inverse H of L. We define the resistance distance between i and j, denoted r(i, j),
as

r(i, j) = e′
ijHeij = hii + hjj − hij − hji,

where H is a g-inverse of L. If i = j then we set r(i, j) = 0.
We remark that if H is a symmetric g-inverse of L then r(i, j) = hii + hjj − 2hij.

In particular, setting M = L+, r(i, j) = mii + mjj − 2mij.

If G is disconnected then we may define the resistance distance between the two
vertices i and j in the same component ofG if we restrict ourselves to that component.
The resistance distance between vertices in different components may be defined as
infinity, although we will not encounter this case.

10.1 The Triangle Inequality

Let G be a connected graph with V(G) = {1, . . . , n} and let ρ : V(G)×V(G) → IR.
Ifρ is to represent ameasure of distance between a pair of vertices then it is reasonable
to expect that ρ should satisfy the following properties:

(i) (Nonnegativity) ρ(i, j) ≥ 0 for all i, j, with equality if and only if i = j.
(ii) (Symmetry) ρ(i, j) = ρ(j, i).
(iii) (Triangle inequality) ρ(i, j) + ρ(j, k) ≥ ρ(i, k).

Classical distance d(i, j) clearly satisfies these properties.We now show that these
properties are enjoyed by resistance distance as well.

If n ≤ 2, then the properties are easy to prove, so assume n ≥ 3. Let L be the
Laplacian matrix of G and let M = L+. Since L is symmetric, so is M. Also, L is
positive semidefinite and it follows that M = MLM is also positive semidefinite.
Thus,

r(i, j) = e′
ijMeij ≥ 0.

Since LML = L and MLM = M, then rank M = rank L, and as noted in
Lemma4.3 rank L = n − 1 since G is connected. Thus, any 2 × 2 principal minor
of M is positive, i.e., for i �= j, miimjj > m2

ij. It follows by the arithmetic mean–
geometric mean inequality that mii + mjj > 2mij. Thus, for any i �= j,

r(i, j) = mii + mjj − 2mij > 0.

This shows that the resistance distance satisfies (i). Clearly,

r(i, j) = e′
ijMeij = r(j, i)

and hence (ii) holds. We now show that the resistance distance satisfies (iii). We first
prove a preliminary result.

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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Lemma 10.1 Let G be a connected graph with n vertices and let L be the Laplacian
of G. If B is any proper principal submatrix of L, then B−1 is an entrywise nonnegative
matrix.

Proof Let B be a k × k principal submatrix of L, 1 ≤ k ≤ n − 1. Since det B > 0, B
is nonsingular. We prove the result by induction on k. The proof is easy for k ≤ 2.
Assume the result to be true for principal submatrices of order less than k. It will
be sufficient to show that all the cofactors of B are nonnegative. The cofactor of a
diagonal entry ofB is the determinant of a principal submatrix of L,which is positive.
We show that the cofactor of the (1, 2)-element of B is nonnegative, and the case of
other cofactors will be similar. Partition B(1|2) as

B(1|2) =
[

b21 x′
y B(1, 2|1, 2)

]
.

Then
det B(1|2) = (det B(1, 2|1, 2))(b21 − x′(B(1, 2|1, 2)−1y). (10.1)

By induction assumption, B(1, 2|1, 2)−1 ≥ 0. Also x and y have all entries non-
positive. Furthermore, det B(1, 2|1, 2) > 0 and b21 ≤ 0. It follows from (10.1) that
det B(1|2) ≤ 0. Thus, the cofactor of the (1, 2)-element of B is nonnegative and the
proof is complete. �

We return to the proof of the fact that the resistance distance satisfies the triangle
inequality. In order to prove r(i, j) + r(j, k) ≥ r(i, k), we must show that for any
g-inverse H of L,

hii + hjj − 2hij + hjj + hkk − 2hjk ≥ hii + hkk − 2hik,

and this is equivalent to
hjj + hik − hij − hjk ≥ 0. (10.2)

Let B = L(j|j). By Lemma 10.1B−1 ≥ 0. We choose the following g-inverse of
L : In L, replace entries in the jth row and column by zeros and replace L(j|j) by
B−1. Let the resulting matrix be H. It is easily verified that LHL = L, and hence H
is a g-inverse of L. Note that hjj = hij = hjk = 0, while hik ≥ 0 since B−1 ≥ 0,
as remarked earlier. Thus, (10.2) is proved and the resistance distance satisfies the
triangle inequality.

We make the following observation in passing. Letting H be the g-inverse as
defined above, we see that

r(i, j) = hii + hjj − hij − hji = hii = det L(i, j|i, j)

det L(i|i) . (10.3)

The corresponding result for a tree was noted in Corollary 4.10.

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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10.2 Network Flows

If x is a vector of order n × 1 then the norm ||x|| is defined to be the usual Euclidean
norm; ||x|| = (

∑n
i=1 x2j )

1
2 . We prove a preliminary result, which we will used.

Lemma 10.2 Let A be an n × m matrix and let b be a vector of order n × 1 in the
column space of A. Let H be a g-inverse of A such that HA is symmetric. Then z = Hb
is a solution of the equation Ax = b with minimum norm.

Proof Note that Ax = b is consistent, as b is in the column space of A. Let y
be a solution of Ax = b, so that Ay = b. We must show ||Hb|| ≤ ||y||, or that
||HAy|| ≤ ||y||. Squaring both sides of this inequality it will be sufficient to show
that y′A′H ′HAy ≤ y′y. Now

y′A′H ′HAy = y′(HA)′HAy = y′HAHAy = y′HAy,

since H satisfies AHA = A and A′H ′ = HA. Since HA is a symmetric, idempotent
matrix, its eigenvalues are either 0 or 1, and hence I − HA is positive semidefinite.
It follows that y′(I − HA)y ≥ 0 and the result is proved. �

Let G be a connected graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em}.
We interpret the resistance distance between the two vertices i and j in terms of an
“optimal” flow from i to j. First we give some definitions. Let the edges of G be
assigned an orientation and let Q be the vertex-edge incidence matrix. A unit flow
from i to j is defined as a function f : E(G) → IRsuch that

Q

⎡
⎢⎢⎢⎣

f (e1)
f (e2)

...

f (em)

⎤
⎥⎥⎥⎦ = eij. (10.4)

The interpretation of (10.4) is easy: At each vertex other than i, j, the incoming flow
is equal to the outgoing flow; at i the outgoing flow is 1 whereas at j, the incoming
flow is also 1. The norm of a unit flow f is defined to be

||f || =
⎧⎨
⎩

m∑
j=1

f (ej)
2

⎫⎬
⎭

1
2

.

Let L be the Laplacian matrix of G. As noted in the proof of Lemma 9.10, eij

is in the column space of L, and hence in the column space of Q. Therefore,
(10.4) is consistent. By Lemma 10.2, a solution of (10.4) with minimum norm
is given by f0 = Q−eij, where Q− is a minimum norm g-inverse of Q, that
is, satisfies QQ−Q = Q, and that Q−Q is symmetric. Since Q+ is a minimum

http://dx.doi.org/10.1007/978-1-4471-6569-9_9
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norm g-inverse of Q, f0 = Q+eij is a solution of (10.4) with minimum norm.
Then

||f0||2 = e′
ij(Q

+)T Q+eij = e′
ijL

+eij

since L+ = (QQT )+ = (QT )+Q+ = (Q+)T Q+ by well-known properties of the
Moore–Penrose inverse. Thus, we have proved that r(i, j) = e′

ijL
+eij is the minimum

value of ||f ||2 where ||f || is a unit flow from i to j.
We illustrate the interpretation to calculate r(u, v) in the following simple exam-

ple.

Example 10.3 Consider the graph following:

•1

���
��

��
��

��
��

��
��

��
�

•2

���������������

u•

��������������������

���������������

���
��

��
��

��
��

��
��

��
��

�
...

•v

...

•p

��																				

A unit flow from u to v is given by f ({u, k}) = αk, f ({k, v}) = −αk, k =
1, 2, . . . , p, where α1 + · · · + αp = 1. Clearly

||f ||2 = 2(α2
1 + · · · + α2

p)

is minimized when αk = 1
p , k = 1, 2, . . . , p; in which case the value of ||f ||2 is 2

p .

It follows that r(u, v) = 2
p .

In the next result we show that resistance distance is dominated by classical
distance.

Theorem 10.4 Let G be a connected graph with V(G) = {1, . . . , n} and E(G) =
{e1, . . . , em}, and let i, j ∈ V(G). Then

r(i, j) ≤ d(i, j). (10.5)
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Proof If i = j then r(i, j) = d(i, j) = 0.Assume that i �= j.Choose and fix an ij-path
P of length d(i, j). Orient each edge inP in the direction from i to j and assign an
arbitrary orientation to the remaining edges of G. If g : E(G) → IRis defined as

g(ek) =
{
1, if ek ∈ P
0, otherwise

then g is a unit flow from i to j. Since r(i, j) is the minimum value of the squared
norm of a unit flow from i to j, we have

d(i, j) = ||g||2 ≥ r(i, j),

and the proof is complete. �

It can be shown that equality holds in (10.5) if and only if there is a unique ij-path.
Before proving this statement we need a preliminary result.

Lemma 10.5 Let G be a connected graph with V(G) = {1, . . . , n} and E(G) =
{e1, . . . , em}. Assume that each edge of G is oriented and let Q be the vertex-edge
incidence matrix. Let y be a vector of order m×1 such that Qy = 0. If ek is a cut-edge
of G, then yk = 0.

Proof Since ek is a cut-edge,G\{ek} has two components, sayG1 andG2.Weassume
that ek is oriented in the direction from V(G1) to V(G2). Let z be the incidence vector
of V(G1). Thus, z is a vector of order n × 1 with its components indexed by V(G).

The component corresponding to a vertex is 1 if it is in V(G1), and 0 otherwise. Then
it can be verified that z′Q is a vector of order 1× m with all the components 0 except
that zk = 1. It follows that z′Qy = yk . Since Qy = 0, we conclude that yk = 0. �

Theorem 10.6 Let G be a connected graph with V(G) = {1, . . . , n} and E(G) =
{e1, . . . , em}, and let i, j ∈ V(G). Then r(i, j) = d(i, j) if there is a unique ij-path.
In particular, resistance distance and classical distance coincide for a tree.

Proof Let g : E(G) → IR be the unit flow from i to j as defined in the proof of
Theorem 10.4. Let g also denote them×1 vector with components g(e1), . . . , g(em).

Then a general unit flow from i to j is given by g + y, where Qy = 0. If there is a
unique ij-path, sayP, then every edge onP must be a cut-edge and then, by Lemma
10.5, the components of y corresponding to the edges onP are zero. Thus, any unit
flow from i to j coincides with g onP. Therefore, r(i, j),which equals the minimum
value of the squared norm of a unit flow from i to j, must be ||g||2 = d(i, j). �

The converse of Theorem 10.6 is true and the proof will be left as an exercise.
The fact that resistance distance and classical distance coincide for a tree is also clear
from Theorem 9.12.

http://dx.doi.org/10.1007/978-1-4471-6569-9_9
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10.3 A Random Walk on Graphs

Let G be a connected graph with V(G) = {1, . . . , n} and E(G) = {e1, . . . , em}.
Suppose a particle moves from vertex to vertex according to the following rule: If
the particle is at the vertex k, then it moves to any of the neighbouring vertices
with equal probability. Let i, j ∈ V(G), i �= j, be fixed. For k ∈ V(G) let P(k)

denote the probability that a particle starting at k, and moving according to the law
stated above will visit i before visiting j. Then clearly, P(i) = 1 and P(j) = 0. For
k ∈ V(G), we denote byN (k) the set of vertices adjacent to k. A simple argument
using conditional probability shows that for k �= i, j,

P(k) =
∑

s∈N (k)

1

dk
P(s), (10.6)

where dk denotes the degree of k. We summarize Eq. (10.6), together with P(i) = 1
and P(j) = 0, in matrix notation as follows. Let L be the Laplacian matrix of G. Let
Ik denote the kth column of the identity matrix and let C be the matrix obtained from
L by replacing its ith and jth rows by I ′

i and I ′
j , respectively. Then (10.6) is equivalent

to
CP = Ii, (10.7)

where P = (P(1), . . . , P(k))′. Since det C = det L(i, j|i, j) > 0, the system (10.7)
has a unique solution. By Cramer’s rule the solution is given by

P(k) = (−1)i+k det L(i, j|k, j)

det L(i, j|i, j)
, (10.8)

for k �= i, j, while P(i) = 1 and P(j) = 0.
The following identity obtained by the Laplace expansion will be useful.

det L(j|j) = didet L(i, j|i, j) −
∑

k∈N (i)

(−1)i+kdet L(i, j|k, j). (10.9)

Suppose the particle starts at i and moves according to the prescribed law. Let
P(i → j) denote the probability that the particle visits j before returning to i. Then

1 − P(i → j) =
∑

k∈N (i)

1

di
P(k)

= 1

di

∑
k∈N (i)

(−1)i+k det L(i, j|k, j)

det L(i, j|i, j)
by (10.8)
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= 1

di

didet L(i, j|i, j) − det L(j|j)
det L(i, j|i, j)

by (10.9)

= 1 − 1

di

det L(j|j)
det L(i, j|i, j)

.

Thus,

P(i → j) = 1

di

det L(j|j)
det L(i, j|i, j)

and hence

r(i, j) = 1

diP(i → j)
.

We have thus obtained an interpretation of r(i, j) in terms of the random walk on G.

The interpretation is justified intuitively. If vertices i and j are far apart then a particle
starting at i is more likely to return to i before it visits j.

There is a close connection between the interpretation of r(i, j) in terms of the
random walk and the one based on electrical networks, which we discuss in the next
section.

10.4 Effective Resistance in Electrical Networks

Let G be a connected graph with V(G) = {1, . . . , n}, and let i, j ∈ V(G), i �= j. We
think of G as an electrical network in which a unit resistance is placed along each
edge. Current is allowed to enter the network only at vertex i and leave it only at j.
Let v(k) denote the voltage at the vertex k. We set v(i) = 1 and v(j) = 0. By Ohm’s
law, the current flowing from x to y, where {xy} ∈ E(G), is given by v(x) − v(y).
According to Kirchhoff’s law, at any point k ∈ V(G), k �= i, j,

∑
y∈N (k)

(v(k) − v(y)) = 0.

If we set v = (v(1), . . . , v(n))′, then v satisfies the equation

Cv = ei, (10.10)

where C is precisely the matrix defined in the previous section. As in the previous
section, the solution of (10.10) is given by

v(k) = (−1)i+k det L(i, j|k, j)

det L(j|j) (10.11)

for k �= j and v(j) = 0. The current flowing into the network at vertex i is given by
the sum of the currents from y to i for each y ∈ N (i) and this equals
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∑
y∈N (i)

(v(y) − v(i)) =
∑

y∈N (i)

(v(y) − 1) =
∑

y∈N (i)

v(y) − di.

Carrying out this calculation using (10.10), (10.11) as in the previous section we find
that the current flowing into the network is

det L(j|j)
det L(i, j|i, j)

,

which is precisely the reciprocal of r(i, j), in view of (10.3). The reciprocal of the
current is called the “effective resistance” between i, j and this justifies the term
“resistance distance”.

The standard techniques of finding resistance in an electrical network, such as
series-parallel reduction, may be employed to find resistance distance. We leave it
as an exercise to verify that the resistance distance between i and j in the following
graph is 4

9 :
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10.5 Resistance Matrix

Let G be a connected graph with V(G) = {1, . . . , n}. The resistance matrix R of G
is an n × n matrix defined as follows. The rows and the columns of R are indexed
by V(G). For i, j ∈ {1, . . . , n}, the (i, j)-entry of R is defined as rij = r(i, j), the
resistance distance between i and j.When G is a tree R reduces to the distance matrix
D of the tree. We show that certain formulas involving the distance matrix of a tree
extend naturally to the case of the resistance matrix. These include a formula for the
inverse of the resistance matrix.

We introduce some notation. Let L be the Laplacian of G. By Lemma 4.5 the
eigenvalues of L + 1

n J are positive and hence the matrix is nonsingular. We set

X =
(

L + 1

n
J

)−1

.

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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It is easily verified, using X
(
L + 1

n J
) = (

L + 1
n J

)
X = I, that

L+ = X − 1

n
J.

Let X̃ be the diagonal matrix diag(x11, . . . , xnn). With this notation we have the
following:

Lemma 10.7 R = X̃J + JX̃ − 2X.

Proof The (i, j)-element of X̃J + JX̃ − 2X equals

xii + xjj − 2xij = �+
ii + �+

jj − 2�+
ij ,

since L+ = X − 1
n J. The result follows by the definition of resistance distance. �

For i = 1, . . . , n, let
τi = 2 −

∑
j∼i

r(i, j).

Let τ be the n × 1 vector with components τ1, . . . , τn.

Lemma 10.8 τ = LX̃1 + 2
n 1.

Proof Let di be the degree of vertex i, i = 1, . . . , n. Since
(
L + 1

n J
)

X = I,we have

dixii −
∑
j∼i

xij + 1

n

n∑
j=1

xij = 1, i = 1, . . . , n. (10.12)

The row sums of L + 1
n J are all 1 and hence the row sums of X are 1 as well. It

follows from (10.12) that

dixii −
∑
j∼i

xij = 1 − 1

n
, i = 1, . . . , n. (10.13)

For i = 1, . . . , n,

τi = 2 −
∑
j∼i

r(i, j)

= 2 −
∑
j∼i

(xii + xjj − 2xij) by Lemma 10.7

= 2 −
∑
j∼i

xii −
∑
j∼i

xjj + 2
∑
j∼i

xij
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= 2 − dixii −
∑
j∼i

xjj + 2
∑
j∼i

xij

= 2 − dixii −
∑
j∼i

xjj +
(
2dixii − 2 + 2

n

)
by (10.13)

= dixii −
∑
j∼i

xjj + 2

n
,

which is clearly the ith entry of LX̃1 + 2
n 1. Hence, the proof is complete. �

Lemma 10.9
∑n

i=1
∑

j∼i r(i, j) = 2(n − 1).

Proof Recall that LL+ = I − 1
n J.Also, since the row sums of L are zero, LX = LL+.

By Lemma 10.7,

LR = L(X̃J + JX̃ − 2X)

= LX̃J − 2LX

= LX̃J − 2LL+

= LX̃J − 2

(
I − 1

n
J

)
. (10.14)

It is easily verified that
n∑

i=1

∑
j∼i

r(i, j) = −trace LR. (10.15)

It follows from (10.14) and (10.15) that

n∑
i=1

∑
j∼i

r(i, j) = −trace LR

= −trace LX̃J + 2(n − 1)

= −trace LX̃11′ + 2(n − 1)

= −1′LX̃1 + 2(n − 1)

= 2(n − 1),

and the proof is complete. �

The next result is an extension of Lemma 9.6.

Corollary 10.10 1′τ = 2.

http://dx.doi.org/10.1007/978-1-4471-6569-9_9
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Proof By Lemma 10.9,

1′τ = 2n −
n∑

i=1

∑
j∼i

r(i, j) = 2n − 2(n − 1) = 2,

and the result is proved. �

Let x̃ denote the n × 1 vector whose components are the diagonal elements of X̃.

Lemma 10.11 τ ′Rτ = 2x̃′Lx̃ + 8
n trace (L+).

Proof By Lemma 10.8,

τ ′Rτ =
(

1′X̃L + 2

n
1′

)
R

(
LX̃1 + 2

n
1
)

= 1′X̃LRLX̃1 + 4

n
1′X̃LR1 + 4

n2
1′R1. (10.16)

By Lemma 10.7,

LRL = L(X̃J + JX̃ − 2X)L

= −2LXL = −2LL+L = −2L. (10.17)

It follows from (10.17) that

1′X̃LRLX̃1 = −2x̃′Lx̃. (10.18)

Again, using (10.14) we get
1′X̃LR1 = nx̃′Lx̃. (10.19)

Finally, using Lemma 10.7 and the fact that X has row sums 1,

1′R1 = 2n trace (X) − 2n = 2n trace (L+). (10.20)

The result follows from (10.17), (10.18), (10.19) and (10.20). �

The next result generalizes the formula for the inverse of the distance matrix of a
tree, obtained in Theorem 9.9.

Theorem 10.12 R−1 = − 1
2L + 1

τ ′Rτ
ττ ′.

Proof It follows from Lemma 10.7 and (10.14) that

LR + 2I = LX̃J + 2

n
J = τ1′. (10.21)

http://dx.doi.org/10.1007/978-1-4471-6569-9_9
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Using (10.21) and Corollary 10.10 we have

(LR + 2I)τ = τ1′τ = 2τ,

and hence LRτ = 0. From Lemma 10.11 we conclude that Rτ is a nonzero vector
and then, since LRτ = 0, there must be a nonzero scalar α such that Rτ = α1. Then,
by Corollary 10.10, τ ′Rτ = ατ ′1 = 2α and hence α = τ ′Rτ

2 . Therefore,

Rτ = τ ′Rτ

2
1. (10.22)

It follows from (10.21) and (10.22) that

(
−1

2
L + 1

τ ′Rτ
ττ ′

)
R = −1

2
LR + 1

τ ′Rτ
ττ ′R

= I − 1

2
τ1′ + 1

τ ′Rτ

(
τ ′Rτ

2

)
τ1′

= I,

and the proof is complete. �

Exercises

1. Let G be a connected graph with V(G) = {1, . . . , n}, let L be the Laplacian of G
and let λ1 ≥ · · · ≥ λn−1 > λn = 0 be the eigenvalues of L. Show that

n∑
i=1

n∑
j=1

r(i, j) = 2n
n−1∑
i=1

1

λi
.

2. Let Cn be the cycle on the n vertices {1, . . . , n}. Show that for i = 1, . . . , n,

∑
j∼i

r(i, j) = 2 − 2

n
.

3. Let G be a connected graph and let i, j be distinct vertices of G. If r(i, j) = d(i, j),
show that there is a unique ij-path.

4. Show that the resistancematrix of a connected graph on n ≥ 2 vertices has exactly
one positive eigenvalue.

5. Let G be a connected graph with V(G) = {1, . . . , n}. Let i, j ∈ V(G) and suppose
that an ij-path contains k, which is a cut-vertex. Show that r(i, j) = r(i, k) +
r(k, j).
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6. Let G be a connected graph with V(G) = {1, . . . , n}. Let i, j ∈ V(G) be adjacent
vertices, joined by the edge ek . Let κ(G) be the number of spanning trees in G
and let κ ′(G) be the number of spanning trees in G containing ek . Show that
r(i, j) = κ ′(G)

κ(G)
.

7. Let G be a planar graph and let G∗ be the dual graph of G. Let ek be an edge of
G with endpoints u, v, and let e′

k be the corresponding edge in G∗ with endpoints
u′, v′. If r(u, v) is the resistance distance between u, v in G, and r′(u′, v′) is the
resistance distance between u′, v′ in G∗, show that

r(u, v) + r′(u′, v′) = 1.

8. Let G be a connected graph with V(G) = {1, . . . , n}. Show that

n∑
i=1

∑
j∼i

r(i, j) = 2(n − 1).

9. Let G be a connected graph with n vertices, R be the resistance matrix of G, τ

be as defined after Lemma 10.7 and κ(G) be the number of spanning trees in G.

Show that

det R = (−1)n−12n−3 τ ′Rτ

κ(G)
.

10. Let T be a tree with V(T) = {1, . . . , n}, D be the distance matrix of T , and
τi = 2 − di, where di is the degree of vertex i, i = 1, . . . , n. Let τ be the n × 1
vector with components τ1, . . . , τn. Show that τ ′Dτ = 2(n−1).Hence, conclude
that Theorem 9.9 is a special case of Theorem 10.12.

The term “resistance distance” was introduced by Klein and Randić [KR93]. The
treatment in this chapter is based on [B99, B04], where further references can be
found. Bollobás [B98] and Doyle and Snell [DS84] are classical references for a
graph theoretic treatment of resistance.
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Chapter 11
Laplacian Eigenvalues of Threshold Graphs

Threshold graphs have an interesting structure and they arise in many areas. We will
be particularly interested in the Laplacian eigenvalues of threshold graphs. We first
review some basic aspects of the theory of majorization.

11.1 Majorization

If x ∈ IRn, let x[1] ≥ · · · ≥ x[n] be a rearrangement of the coordinates of x in
nonincreasing order. If x, y ∈ IRn then x is said to be majorized by y, denoted x ≺ y,
if the following conditions hold:

k∑
i=1

x[i] ≤
k∑

i=1

y[i], i = 1, . . . , n − 1, (11.1)

and
n∑

i=1

xi =
n∑

i=1

yi. (11.2)

If x ≺ y, then, intuitively, coordinates of x are less “spread out” than coordinates
of y. As an example, [2, 3, 2, 3]′ is majorized by [5, 1, 1, 3]′. If x ∈ IRn and if x is the
arithmetic mean of x1, . . . , xn, then it can be verified that [x, . . . , x]′ is majorized by
x. If x and y are 1 × n vectors then we say that x ≺ y if x′ ≺ y′. For x, y ∈ IRn, if
x ≺ y we often say that x1, . . . , xn are majorized by y1, . . . , yn.

Let A be an n × n matrix. Recall that A is said to be doubly stochastic if aij ≥ 0
for all i, j, and the row and the column sums of A are all equal to 1. The next result
is the Hardy–Littlewood–Polya theorem. We prove only the sufficiency part.

Theorem 11.1 Let x, y ∈ IRn. Then x ≺ y if and only if there exists an n × n doubly
stochastic matrix A such that x = Ay.

© Springer-Verlag London 2014
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Proof (Sufficiency) Let A be an n × n doubly stochastic matrix such that x = Ay.
Clearly,

n∑
i=1

xi =
n∑

i=1

⎛
⎝

n∑
j=1

aijyj

⎞
⎠ =

n∑
j=1

yj

(
n∑

i=1

aij

)
=

n∑
j=1

yj. (11.3)

Let k be fixed, 1 ≤ k ≤ n − 1. We assume, without loss of generality, that
x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn, since this ordering only amounts to permuting
rows and columns of A, which again results in a doubly stochastic matrix. Let

tj =
k∑

i=1

aij, j = 1, . . . , n.

Note that
n∑

j=1

tj =
n∑

j=1

k∑
i=1

aij =
k∑

i=1

n∑
j=1

aij = k.

We have

k∑
i=1

(xi − yi) =
k∑

i=1

⎛
⎝

n∑
j=1

aijyj

⎞
⎠ −

k∑
i=1

yi

=
n∑

j=1

yj

(
k∑

i=1

aij

)
−

k∑
i=1

yi

=
n∑

j=1

yjtj −
k∑

i=1

yi + yk

(
k −

n∑
i=1

ti

)

=
k∑

j=1

(yj − yk)(tj − 1) +
n∑

j=k+1

tj(yj − yk)

≤ 0.

Hence,
k∑

i=1

xi ≤
k∑

i=1

yi, k = 1, . . . , n − 1. (11.4)

It follows from (11.3) and (11.4) that x ≺ y and the proof is complete. �
An important consequence of Theorem 11.1 is stated in the next result.

Theorem 11.2 Let A be a symmetric n × n matrix and let λ1, . . . , λn be the eigen-
values of A. Then

(a11, . . . , ann) ≺ (λ1, . . . , λn).
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Proof By the spectral theorem there exists an orthogonal matrix P such that

A = P

⎡
⎢⎣

λ1 · · · 0
...

. . .
...

0 · · · λn

⎤
⎥⎦P′.

Hence,

aii =
n∑

j=1

p2ijλj, i = 1, . . . , n. (11.5)

Since P is orthogonal, it follows that the n × n matrix with (i, j)-element p2ij is
doubly stochastic. The result follows from (11.5) and Theorem 11.2. �

Corollary 11.3 Let G be a graph with V(G) = {1, . . . , n}. Let L be the Laplacian
of G and λ1, . . . , λn be the eigenvalues of L. If d1, . . . , dn are the vertex degrees,
then

(d1, . . . , dn) ≺ (λ1, . . . , λn).

Wenow consider themajorization relation between vectors of integer coordinates.
Let b1, . . . , bn be integers and suppose bi > bj for some i, j. Define

b′
i = bi − 1, b′

j = bj + 1

and
b′

k = bk, k �= i, j.

We say that b′
1, . . . , b′

n are obtained from b1, . . . , bn by a transfer, or, more specifi-
cally, a transfer from i to j. We say that the vector b is obtained from the vector a by
a transfer if the coordinates of b are obtained from those of a by a transfer.

Theorem 11.4 Let a, b be n × 1 vectors of integers. Then a ≺ b if and only if a is
obtained from b by a finite number of transfers.

Proof First, suppose that a is obtained from b by a single transfer. Then clearly
the sum of the largest k elements from b1, . . . , bn cannot be less than the sum of
the largest k elements from a1, . . . , an, k = 1, . . . , n − 1. It is also obvious that∑n

i=1 ai = ∑n
i=1 bi and hence a ≺ b. By a repeated application of this observation

we conclude that a ≺ b when a is obtained from b by a finite sequence of transfers.
To prove the converse, assume a ≺ b, a �= b, and, without loss of generality, let

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn. Let � be the largest integer for which

�∑
i=1

ai <

�∑
i=1

bi.
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Then a�+1 > b�+1, and there is a largest integer p < � for which ap < bp. Thus,

bp > ap > a�+1 > b�+1.

Let b′ be obtained from b by a transfer from p to �+1. Then a ≺ b′ ≺ b. Continuing
this process we see that a is obtained from b by a finite number of transfers. �

Let a1, . . . , an be nonnegative integers. Define

a∗
j = |{ai : ai ≥ j}|, j = 1, 2, . . .

Thus, a∗
j is the number of ai that are greater than or equal to j. We say that the

sequence a∗
1, a∗

2, . . . is conjugate to (or the conjugate sequence of) a1, a2, . . . , an.

Often we may ignore some, or all, of the zeros in the two sequences. As an example,
7, 5, 4, 3, 2 is the conjugate sequence of 5, 5, 4, 3, 2, 1, 1.

It is instructive to consider another interpretation of conjugate sequence. Let a1 ≥
· · · ≥ an be nonnegative integers. The Ferrers diagram corresponding to a1, . . . , an

consists of n left-justified rows of boxes, where the ith row consists of ai boxes,
i = 1, . . . , n. If ai = 0, the ith row is absent. For example, the Ferrers diagram
corresponding to 5, 3, 3, 3, 2, 1 is

� � � � �
� � �
� � �
� � �
� �
�

Let a1 ≥ · · · ≥ an be nonnegative integers and consider the corresponding Ferrers
diagram. Then note that a∗

i is the number of boxes in the ith column of the Ferrers
diagram, i = 1, . . . , n. As an immediate consequence of this observation we see that
if a∗

1, . . . , a∗
m is the conjugate sequence of a1, . . . , an, then

n∑
i=1

ai =
n∑

i=1

a∗
i .

We now state the Gale–Ryser Theorem. We prove only the necessity.

Theorem 11.5 Let r1 ≥ · · · ≥ rm and c1 ≥ · · · ≥ cn be nonnegative integers such
that ri ≤ n, i = 1, . . . , m, and

∑m
i=1 ri = ∑n

i=1 ci. Then there exists an m × n
(0 − 1)-matrix A with row sums r1, . . . , rm and column sums c1, . . . , cn if and only
if c1, . . . , cn is majorized by r∗

1 , . . . , r∗
n .

Proof (necessity) Let A be an m × n(0 − 1)-matrix with row sums r1, . . . , rm and
column sums c1, . . . , cn. We assume, without loss of generality, that c1 ≥ · · · ≥ cn.
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Suppose there exist i, j such that aij = 0 and aij+1 = 1. Let B be the matrix defined
as

bij = 1, bij+1 = 0,

and bk� = ak�, otherwise. If c′
1 . . . , c′

n are the column sums of B then c′
j = cj +

1, c′
j+1 = cj+1 − 1 and c′

k = ck, k �= j, j + 1. Thus, c1, . . . , cn can be obtained from
c′
1 . . . , c′

n by a transfer from j + 1 to j. It follows by Theorem 11.4 that c1, . . . , cn

is majorized by c′
1, . . . , c′

n. Continuing this process we obtain the m × n matrix C
whose row sums are r1, . . . , rm, inwhich row i consists of ri 1s followed by zeros, and
whose column sums majorize c1, . . . , cn. As seen in the context of Ferrers diagram,
the column sums of C are r∗

1 , . . . , r∗
n and the result follows. �

Consider the matrix

A =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 1 0 1 1
1 0 1 1 1 1 1 0
1 0 0 1 1 1 1 0
1 1 0 0 0 1 0 1
1 0 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

.

The row sums of A are 5, 6, 5, 4, 3 and the column sums are 4, 2, 3, 2, 3, 3, 3, 3. The
conjugate sequence of the row sum sequence is 5, 5, 5, 4, 3, 1, 0, 0, which clearly
majorizes the sequence of column sums. It may be remarked that in this example the
matrix C constructed in the proof of Theorem 11.5 is

C =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

and it has the column sums 5, 5, 5, 4, 3, 1, 0, 0, which is the conjugate sequence of
the sequence of column sums.

Corollary 11.6 Let G be a graph with V(G) = {1, . . . , n}. Let d1, . . . , dn be the
degree sequence of G. Then, d1, . . . , dn is majorized by d∗

1 , . . . , d∗
n .

Proof Let A be the adjacency matrix of G. Then, A is a (0 − 1)-matrix and the
row sums as well as the column sums of A are d1, . . . , dn. The result follows from
Theorem 11.5. �

11.2 Threshold Graphs

Threshold graphs are best defined using a recursive procedure. A vertex is called
dominating if it is adjacent to every other vertex. A graph G with V(G) = {1, . . . , n}
is called a threshold graph if it is obtained by the following procedure. Start with K1,
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a single vertex, and use any of the following steps, in any order, an arbitrary number
of times:

(i) Add an isolated vertex.
(ii) Add a dominating vertex, that is, add a new vertex and make it adjacent to each

existing vertex.

For example, the star K1,n is a threshold graph. The following graphs are also
threshold:

•

��
��

��
� • • •

��
��

��
�

��
��

��
� •

• • • •
Given a graph G, we have the following recursive procedure to check whether G

is a threshold graph:

(i) If G is connected then in order for it to be threshold, it necessarily has a dominat-
ing vertex. After deleting that vertex the connected components of the resulting
graph must consist of a single connected component, say H, together with pos-
sibly some isolated vertices. Furthermore, G is threshold if and only if H is so.
We check whether H is threshold.

(ii) If G is disconnected then in order for it to be threshold it necessarily has a single
connected component, say K, together with possibly some isolated vertices.
Furthermore, G is threshold if and only if K is so. We check whether K is
threshold.

We now prove a preliminary result.

Lemma 11.7 Let G be a graph with V(G) = {1, . . . , n}. Let d1 ≥ · · · ≥ dn be
the degree sequence of G and suppose d1 = n − 1. Let H = G \ {1} and L(G)

and L(H) be the Laplacians of G and H, respectively. Then n is an eigenvalue of
L(G). Furthermore, if λ2, . . . , λn−1, n and 0 are the eigenvalues of L(G), then the
eigenvalues of L(H) are λ2 − 1, . . . , λn−1 − 1 and 0.

Proof Note that

L(G) + Jn =

⎡
⎢⎢⎢⎣

n 0 · · · 0
0
... L(H) + Jn−1 + In−1
0

⎤
⎥⎥⎥⎦ . (11.6)

By Lemma 4.5 the eigenvalues of L(G)+Jn are λ2, . . . , λn−1, and nwithmultiplicity
2. By (11.6), the eigenvalues ofL(H)+Jn−1+In−1 areλ2, . . . , λn−1 and n.Therefore,
the eigenvalues of L(H) + Jn−1 are λ2 − 1, . . . , λn−1 − 1 and n − 1. It follows from
Lemma 4.5 that the eigenvalues of L(H) are λ2 − 1, . . . , λn−1 − 1 and 0, and the
proof is complete. �

http://dx.doi.org/10.1007/978-1-4471-6569-9_4
http://dx.doi.org/10.1007/978-1-4471-6569-9_4
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The Laplacian eigenvalues of a threshold graph enjoy an interesting property,
which is proved next.

Theorem 11.8 Let G be a threshold graph with V(G) = {1, . . . , n}. Let L(G) be
the Laplacian and d1, . . . , dn the degree sequence of G. Then d∗

1 , . . . , d∗
n are the

eigenvalues of L(G).

Proof The result will be proved by induction on n. For n = 1 the result is trivial.
Assume the result to be true for threshold graphs of at most n − 1 vertices and
consider G,which is a threshold graph with n vertices. Clearly, it will be sufficient to
prove the result for a connected threshold graph, since an isolated vertex contrbutes
a 0 to the degree seqence, as well as to the Laplacian eigenvalues. So we assume
that G is connected. It follows from the definition of a threshold graph that G has
a dominating vertex, which we assume to be 1. Let H = G \ {1} and let L(H) be
the Laplacian of H. Let λ1, . . . , λn−1 and λn = 0 be the eigenvalues of L(G). By
Lemma 11.7 n is an eigenvalue of L(G), and we assume that λ1 = n.By Lemma 11.7
the eigenvalues of L(H) are λ2 − 1, . . . , λn−1 − 1, and 0. Observe that if we add k
isolated vertices to a graph then both the degree sequence as well as the eigenvalues
get augmented by k zeros. Thus, if the Laplacian eigenvalues of a graph are given
by the conjugate of its degree sequence then this property continues to hold when
some isolated vertices are added. Since the connected components of H consist of a
threshold graph, and possibly some isolated vertices, by the induction assumption,
λ2−1, . . . , λn−1−1, 0 is the conjugate sequence of the degree sequence ofH,which
is d2 − 1, . . . , dn − 1. Since λ1 = n and d1 = n − 1, it follows that λ1, . . . , λn−1, 0
is the conjugate sequence of d1, . . . , dn and the proof is complete. �

The converse of Theorem 11.8 is also true and is stated next. The proof, which is
similar to that of Theorem 11.8, will be left as an exercise.

Theorem 11.9 Let G be a connected graph with V(G) = {1, . . . , n}. Let L(G) be the
Laplacian and d1, . . . , dn the degree sequence of G. If d∗

1 , . . . , d∗
n are the eigenvalues

of L(G) then G is a threshold graph.

11.3 Spectral Integral Variation

Agraph is calledLaplacian integral if the eigenvalues of its Laplacian are all integers.
Threshold graphs are Laplacian integral. Besides threshold graphs there are other
Laplacian integral graphs as well. As an example, we describe another class of
Laplacian integral graphs, which includes threshold graphs. A graph is called a
cograph if it is constructed using the following rules:

(i) K1 is a cograph.
(ii) The complement of a cograph is a cograph.
(iii) The union of two vertex-disjoint cographs is a cograph.



152 11 Laplacian Eigenvalues of Threshold Graphs

Note that the definition gives a recursive procedure to construct a cograph. We
may take the union of two vertex disjoint cographs. Then its complement is again a
cograph.

It is easy to see that a cograph is Laplacian integral, the proof of which will be
left as an exercise. It is also clear that threshold graphs are cographs. However, the
converse is not true. The cycle C4 is a cograph, but not a threshold graph.

We now obtain some results concerning the effect of a rank 1 perturbation on the
eigenvalues of a symmetric matrix. The results will be applied to examine the change
in the Laplacian eigenvalues of a graph, when a single edge is added to the graph.
We first prove some preliminary results.

Lemma 11.10 Let A be a symmetric n × n matrix partitioned as

A =
[

a11 x′
x A(1|1)

]
.

If the eigenvalues of A(1|1) consist of n − 1 eigenvalues of A then x = 0.

Proof Letμ1, . . . , μn be the eigenvalues of A and suppose the eigenvalues of A(1|1)
are

μ1, . . . , μk−1, μk+1, . . . , μn,

where 1 ≤ k ≤ n. Then

traceA − traceA(1|1) = μk, traceA2 − traceA(1|1)2 = μ2
k . (11.7)

Using the partition of A,

traceA − traceA(1|1) = a11, traceA2 = a211 + 2x′x + traceA(1|1)2. (11.8)

It follows from (11.7) and (11.8) that a11 = μk, and hence x′x = 0. Therefore,
x = 0 and the proof is complete. �

Lemma 11.11 Let A be a symmetric n × n matrix partitioned as

A =
[

a11 x′
x A(1|1)

]

and let

B =
[

a11 + β x′
x A(1|1)

]
,

where β �= 0. Suppose the eigenvalues of A are μ1, . . . , μn and the eigenvalues of
B are μ1, . . . , μk−1, μk + β,μk+1, . . . , μn for some k, 1 ≤ k ≤ n. Then x = 0.
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Proof The characteristic polynomials of A and B are

det(λI − A) = (λ − μ1) · · · (λ − μn)

and
det(λI − B) = (λ − μ1) · · · (λ − μk − β) · · · (λ − μn),

respectively. Hence,

det(λI−B) = det(λI−A)−β(λ−μ1) · · · (λ−μk−1)(λ−μk+1) · · · (λ−μn). (11.9)

From the partition of B, we have

det(λI − B) = det(λI − A) − β det(λI − A(1|1)). (11.10)

Since β �= 0, it follows from (11.9) and (11.10) that

det(λI − A(1|1)) = (λ − μ1) · · · (λ − μk−1)(λ − μk+1) · · · (λ − μn).

This implies that the eigenvalues of A(1|1) consist of n − 1 eigenvalues of A, and it
follows from Lemma 11.10 that x = 0. �
Theorem 11.12 Let A be a symmetric n × n matrix with eigenvalues μ1, . . . , μn.

Let B be a symmetric n × n matrix of rank 1, and let β be the nonzero eigenvalue of
B. Then the eigenvalues of A + B are μ1, . . . , μk−1, μk +β,μk+1, . . . , μn for some
k, 1 ≤ k ≤ n if and only if AB = BA.

Proof If AB = BA then A and B can be simultaneously diagonalized. Thus, there
exists an orthogonalP such thatPAP′ andPBP′ are both diagonalwith the eigenvalues
of A along the diagonal and the eigenvalues of B along the diagonal, respectively.
Then P(A + B)P′ is diagonal with the diagonal entries equal to μ1, . . . , μk−1, μk +
β,μk+1, . . . , μn for some k, 1 ≤ k ≤ n. This proves the “if” part.

To prove the converse we may assume, using the spectral theorem, that B =
diag(β, 0, . . . , 0). Let A be partitioned as

A =
[

a11 x′
x A(1|1)

]
.

Then

A + B =
[

a11 + β x′
x A(1|1)

]

and has eigenvalues μ1, . . . , μk−1, μk + β,μk+1, . . . , μn for some k, 1 ≤ k ≤ n. It
follows from Lemma 11.11 that x = 0. Then

A =
[

a11 0
0 A(1|1)

]
,
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and it follows that AB = BA. �

We now turn to Laplacians. Let G be a graph with V(G) = {1, . . . , n}. Let i, j
be nonadjacent vertices of G, and let H be the graph obtained from G by adding
the edge {i, j}. Then L(H) = L(G) + eije′

ij. Thus, if λ1 ≥ · · · ≥ λn = 0 are the
eigenvalues of L(G), and μ1 ≥ · · · ≥ μn = 0 are the eigenvalues of L(H), then

μ1 ≥ λ1 ≥ μ2 ≥ · · · ≥ λn−1 ≥ μn ≥ λn. (11.11)

Suppose G is Laplacian integral. Since traceL(H) = traceL(G) + 2, then in view
of (11.11) H will also be Laplacian integral if either

(a) n − 1 eigenvalues of L(G) and L(H) coincide and one eigenvalue of L(G) in-
creases by 2, or

(b) n − 2 eigenvalues of L(G) and L(H) coincide, and two eigenvalues of L(G)

increase by 1.

We say that spectral integral variation occurs in 1 or 2 places according as (a) or
(b) holds, respectively. The case (a) is characterized in the next result. We denote by
N(i) the neighbourhood, that is the set of vertices adjacent to, the vertex i.

Theorem 11.13 Let G be a Laplacian integral graph with V(G) = {1, . . . , n}. Let
i, j be nonadjacent vertices of G, and H be the graph obtained from G by adding
the edge (i, j). Then n − 1 eigenvalues of L(G) and L(H) coincide if and only if
N(i) = N(j).

Proof As observed earlier, L(H) = L(G) + eije′
ij. By Theorem 11.12, n − 1 eigen-

values of L(G) and L(H) coincide if and only if L(G)eije′
ij = eije′

ijL(G). It is easy to
see that this condition is equivalent to N(i) = N(j). �

Corollary 11.14 Let G be a graph with V(G) = {1, . . . , n}. Let i, j be nonadjacent
vertices of G such that N(i) = N(j), and let H be the graph obtained from G by
adding the edge (i, j). Then G is Laplacian integral if and only if H is Laplacian
integral.

Exercises

1. Let G be a connected graph with V(G) = {1, . . . , n}. Let d1 ≥ · · · ≥ dn be the
degree sequence of G. Show that G is threshold if and only if any sequence that
majorizes, but does not equal, d1, . . . , dn is not the degree sequence of a graph.

2. Show that for n ≥ 2 the number of nonisomorphic threshold graphs on n vertices
is 2n−1.

3. Prove Theorem 11.9.
4. Show that a cograph is Laplacian integral.
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5. Show that if a graph contains P4, the path on 4 vertices, as an induced subgraph,
then it is not a cograph.

6. Let G be a graph with V(G) = {1, . . . , n}. The graph G is called a split graph
if there exists a partition V(G) = V1 ∪ V2 such that the graph induced by V1 is
complete, the graph induced by V2 has no edge and every vertex in V1 is adjacent
to every vertex in V2. Find the Laplacian eigenvalues of a split graph. Hence, find
the number of spanning trees in Km \ G, where m ≥ n.

7. Let X1, Y1, X2, Y2 be disjoint sets with |X1| = |X2| = |Y1| − 1 = |Y2| − 1 = r,
and let

Y1 = {a1, . . . , ar+1}, Y2 = {b1, . . . , br+1}.

Let G be the graph with vertex set X1 ∪Y1 ∪X2 ∪Y2 and with the edge set defined
as follows. Every vertex in Xi is adjacent to every vertex in Yi, i = 1, 2, and aj is
adjacent to bj, j = 1, . . . r + 1. Show that G is not a cograph but it is Laplacian
integral.

8. LetG×H denote the Cartesian product of the graphsG andH. Show thatKn ×K2
is not a cograph but it is Laplacian integral.

Marshall and Olkin [MO79] is the classical reference on majorization. An encyclo-
pedic reference on threshold graphs is Mahadev and Peled [MP95]. Sections10.2
and 10.3 are based on Merris [M94] and Wasin So [S99], respectively. A construc-
tion of an infinite family of Laplacian integreal graphs that are not cographs is given
in [GM08]. A conjecture of Grone and Merris [GM94] asserts that the Laplacian
eigenvalues of any graph are majorized by the conjugate of its degree sequence. The
conjecture has been settled by Hua Bai [Bai11].
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Chapter 12
Positive Definite Completion Problem

Several problems in mathematics can be viewed as completion problems. Matrix
theory is particularly rich in such problems. Such problems nicely blend graph theo-
retic notionswithmatrix theory. In this chapterwe consider one particular completion
problem, the positive definite completion problem, in detail.

12.1 Nonsingular Completion

We illustrate the idea of matrix completion problems by a simple example. We first
introduce some terminology. Let G be a bipartite graph with the bipartition (R, C),

where R = (R1, . . . , Rn) and C = (C1, . . . , Cn). A G-partial n × n matrix is a
matrix in which ai j is specified if and only if Ri is adjacent to C j . By a completion
of a G-partial matrix we mean a specification of all the unspecified entries in the
matrix. The graph G is called shape nonsingular completable if any G-partial matrix
admits a nonsingular completion.

Example 12.1 Consider the graph G and the G-partial matrix A:

R1•

��
��

��
��

•C1

��
��

��
��

��
��

��
�

R2• •C2

R3• •C3

A =
⎡
⎣

3 5 ?
? −6 ?

−8 ? 7

⎤
⎦ .
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It is easy to see that we can fill up the unspecified entries of A (indicated by
the question marks) so that the resulting matrix is nonsingular. In fact any G-partial
matrix can be completed to a nonsingular matrix, and hence G is nonsingular com-
pletable.

IfG is a bipartite graphwith the bipartition (R, C) thenGc will denote the bipartite
complement of G. Thus, Ri and C j are adjacent in Gc if and only if they are not
adjacent in G. The characterization of nonsingular completable graphs is stated in
the next result.

Theorem 12.2 Let G be a bipartite graph with bipartition (R, C), where

R = (R1, . . . , Rn), C = (C1, . . . , Cn).

Then G is nonsingular completable if and only if Gc has a perfect matching.

Proof First suppose that Gc has a perfect matching, and suppose it is given by the
edges (Ri , Cσ(i)), i = 1, . . . , n, where σ is a permutation. Let A be a G-partial
matrix. Consider the matrix A(x) obtained by letting the (Ri , Cσ(i))-entry of A be
x, i = 1, . . . , n, and specifying the remaining unspecified entries as zero. Then
det A(x) is a polynomial in x of degree n, in which the leading term is ±xn . Thus,
for some value of x, det A(x) is nonzero and hence A(x) is nonsingular. Therefore,
G is nonsingular completable.

Conversely, suppose Gc has no perfect matching. Then by the König–Egervary
theorem, Gc has a vertex cover of size less than n. Without loss of generality, let the
vertices R1, . . . , Rk and C1, . . . , Cs form a vertex cover of Gc, where k + s < n.

Let A be the n × n G-partial matrix in which ai j = 0 whenever Ri is adjacent to
C j in G. Then the submatrix of A formed by the rows k + 1, . . . , n and the columns
s + 1, . . . , n is zero. Let B be an arbitrary completion of A. Then, since k + s < n,

it can be seen by Laplace expansion along the first k rows, that det B = 0. Thus, G
is not nonsingular completable and the proof is complete. �

Note that Theorem12.2 by itself is easy to prove and not a profound result. How-
ever, it points to a fertile area of matrix completion problems one may consider.
A particularly elegant matrix completion problem is considered in the following
sections.

12.2 Chordal Graphs

The class of chordal graphs will be relevant in connection with the positive definite
completion problem. Chordal graphs admit many equivalent definitions and arise
inseveral areas. A connected graph G is said to be chordal (or triangulated) if it does
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not have Ck, the cycle on k vertices, k ≥ 4, as an induced subgraph. Equivalently,
G is chordal if any Ck, k ≥ 4, in the graph has a “chord”, that is, an edge joining
two intermediate vertices in the cycle.

Examples of chordal graphs include Kn, trees and threshold graphs. The following
graph, denoted Tn, is also chordal:
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n − 1• •n

Let G be a graph with V (G) = {1, . . . , n}. An ordering i1, . . . , in of 1, . . . , n is
called a perfect elimination ordering if, for j = 1, . . . , n − 1, the subgraph induced
by {ik : k > j, ik ∼ i j } is a clique (a complete graph).

The following characterization of chordal graphs is well known. We omit the
proof.

Theorem 12.3 A graph is chordal if and only if its vertices admit a perfect elimina-
tion ordering.

As an example, the following graph is chordal and a perfect elimination ordering
is given by 1, 2, . . . , 8:
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A clique in a graph is said to be shape maximal if it is not properly contained in
another clique. We now obtain some results concerning chordal graphs that will be
used.

Lemma 12.4 Let G be a chordal graph with V (G) = {1, . . . , n}. Let e = {i, j}
be an edge of G such that G \ {e} is also chordal. Then i, j, together with all the
vertices adjacent to both i and j, form a maximal clique.

Proof Let K be the subgraph induced by the vertices i, j and all the vertices adjacent
to both i and j. If u, v are distinct vertices adjacent to both i and j then we claim
that u ∼ v. Otherwise, i, j, u, v would induce a C4 in G \ {e}, contradicting the fact
that G \ {e} is chordal. Thus, the claim is proved. It follows that K is a clique and it
contains i and j. Furthermore, K is maximal in the sense that there is no clique K ′
that properly contains K . �

Lemma 12.5 Let G �= Kn be a chordal graph with V (G) = {1, . . . , n}. Then there
exist i, j ∈ V (G) such that i is not adjacent to j, and the graph H = G +e obtained
by adding the edge e = {i, j} to G is chordal.

Proof We assume, without loss of generality, that 1, 2, . . . , n is a perfect elimination
ordering of V (G). Let i be the largest integer with the property that the subgraph
induced by {i, i + 1, . . . , n} is not a clique. The existence of i is guaranteed since
G �= Kn . Then there exists j > i, j �∼ i. Let e = {i, j}, and let H = G + e.
Then 1, 2, . . . , n is a perfect elimination ordering of H as well, and hence H is
chordal. �

12.3 Positive Definite Completion

Apartial symmetric n×n matrix is an n×n matrix inwhich some entries are specified
and some are unspecified, such that for i �= j, if the (i, j)-entry is specified, then so
is the ( j, i)-entry, and it is equal to the (i, j)-entry. We also assume that the diagonal
entries are all specified. A partial positive definite matrix is a partial symmetric
matrix in which any principal submatrix that is completely specified has a positive
determinant. A partial positive semidefinite matrix is a partial symmetric matrix
in which any principal submatrix that is completely specified has a nonnegative
determinant.

Let A be a partial symmetric n ×n matrix. The specification graph G A associated
with A is defined as follows. The vertex set of G A is {1, . . . , n}. For i �= j the
vertices i and j are adjacent if and only if ai j (and hence a ji ) is specified. We also
say that A has specification graph G A or that G A is the specification graph of A.

(The word “specificatio” is used since normally the graph associated with a matrix
uses the zero-nonzero structure of the matrix.)

Example 12.6 Consider the following matrix A. The unspecified entries are indi-
cated by the question marks.



12.3 Positive Definite Completion 161

A =

⎡
⎢⎢⎢⎢⎣

2 1 ? −1 0
1 3 ? 1 ?
? ? 2 0 ?

−1 1 0 2 0
0 ? ? 0 1

⎤
⎥⎥⎥⎥⎦

.

It can be checked that A is partial positive definite.

Let G be a graph with V (G) = {1, . . . , n}. We say that G is positive definite
completable if any partial positive definite matrix A with the specification graph G is
completable to a positive definitematrix. Similarly, we say that G is positive semidef-
inite completable if any partial positive semidefinite matrix A with the specification
graph G is completable to a positive semidefinite matrix.

Lemma 12.7 A graph is positive definite completable if and only if it is positive
semidefinite completable.

Proof First suppose that the graph G is positive semidefinite completable and let
A be a partial positive definite matrix with the specification graph G. There exists
ε > 0 such that B = A − ε I is partial positive definite. Since the specification graph
of B is G as well, B is completable to a positive semidefinite matrix, say B̃. Then
Ã = B̃ + ε I is a positive definite completion of A. Therefore, G is positive definite
completable.

Conversely, suppose G is positive definite completable. Let A be a partial positive
semidefinite matrix. For any positive integer k, let Bk = A + 1

k I. Then Bk is a
partial positive definite matrix with the specification graph G and therefore Bk is
completable to a positive definite matrix, say B̃k . Note that the off-diagonal entries
of a positive semidefinite matrix are bounded in modulus by the largest diagonal
entry. Since the diagonal entries of B̃k are bounded by maxi {aii + 1}, the matrices
B̃k, k = 1, 2, . . . (or a subsequence thereof) converge to a matrix, say B. Then B is a
positive semidefinite completion of A.Hence, G is positive semidefinite completable
and the proof is complete. �
Lemma 12.8 C4 is not positive definite completable.

Proof ByLemma12.7 it will be sufficient to show thatC4 is not positive semidefinite
completable. Let

B =
⎡
⎣
1 1 x
1 1 1
x 1 1

⎤
⎦ .

Then det B = −(1 − x)2. It follows that B is positive semidefinite if and only
if x = 1. Consider the partial positive semidefinite matrix A with the specification
graph C4:

A =

⎡
⎢⎢⎣
1 1 ? 0
1 1 1 ?
? 1 1 1
0 ? 1 1

⎤
⎥⎥⎦ .
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It follows by the preceding observation that in order to complete A to a pos-
itive semidefinite matrix, the (1, 3), (2, 4) entries (and hence the (3, 1), (4, 2)
entries) must be set equal to 1. But then, since the (1, 4)-entry is 0, a positive
semidefinite completion is not possible. Therefore, C4 is not positive semidefinite
completable. �

The Jacobi identity for determinants asserts that if A is a nonsingular n×n matrix,
and if B = A−1, then for any nonempty, proper subsets S, T of {1, . . . , n}, with
|S| = |T |,

det B[S|T ] = det A(T |S)

det A
.

The identity can be proved using the formula for the inverse of a partitioned matrix,
and the Schur complement formula for the determinant.

Lemma 12.9 Let A be an n × n matrix and let i, j ∈ {1, . . . , n}, i �= j. Then

det A(i |i) det A( j | j) − det A(i | j) det A( j |i) = (det A)(det A(i, j |i, j)).

Proof It will be sufficient to prove the result when A is nonsingular, as the general
case can be derived by a continuity argument. So suppose A is nonsingular, and let
B = A−1. By the Jacobi identity for the determinant,

det B[i, j |i, j] = det A(i, j |i, j)

det A
. (12.1)

Note that

B[i, j |i, j] = 1

det A

[
det A(i |i) (−1)i+ j det A(i | j)

(−1)i+ j det A(i | j) det A( j | j)

]
,

and therefore

det B[i, j |i, j] =
(

1

det A

)2

(det A(i |i) det A( j | j) − det A(i | j) det A( j |i).
(12.2)

The result follows from (12.1) and (12.2). �

Lemma 12.10 Let i, j ∈ {1, . . . , n}, i �= j, and let e = {i, j} be an edge of Kn .

The graph Kn \ {e} is positive definite completable.

Proof We assume, without loss of generality, that e = {1, n}. Let A be an n × n
matrixwith the specification graph Kn \{e}, and suppose A is partial positive definite.
Specify the (1, n)-entry of A as x . We continue to denote the resulting matrix as A
for convenience. Since A is symmetric, by Lemma12.9,

det A(1|1) det A(n|n) − (det A(1|n))2 = (det A)(det A(1, n|1, n)). (12.3)
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Note that

det A(1|n) = (−1)n+1x det A(1, n|1, n) + α (12.4)

for some α. Since A is partial positive definite, det A(1, n|1, n) > 0. Let

x0 = (−1)n α

det A(1, n|1, n)
.

Specify the (1, n)-entry of A as x0. We continue to denote the resulting matrix by
A. By (12.4) det A(1|n) = 0 and hence by (12.3),

det A = det A(1|1) det A(n|n)

det A(1, n|1, n)
> 0. (12.5)

For k = 1, . . . , n − 1, the leading principal minor of A formed by the rows and
the columns {1, . . . , k} is positive since A is partial positive definite. As observed in
(12.5), det A > 0 and hence A is positive definite. Thus, any partial positive definite
matrix A with the specification graph Kn\{e} admits a positive definite completion
and hence Kn\{e} is positive definite completable. �

We are now in a position to present a characterization of positive definite com-
pletable matrices.

Theorem 12.11 Let G be a graph with vertices {1, . . . , n}. Then G is positive defi-
nite completable if and only if G is chordal.

Proof First suppose G is chordal. If G = Kn then clearly G is positive definite
completable. So suppose G �= Kn . By Lemma12.5 there exist i, j ∈ V (G) such
that i is not adjacent to j, and the graph H = G + e obtained by adding the edge
e = {i, j} to G is chordal. By Lemma12.4 there exists a maximal clique K in H
containing i, j and and all the vertices adjacent to both i and j. Let A be a partial
positive definite matrix with the specification graph G.

Let B be the principal submatrix of A, indexed by the rows and the columns
in V (K ), the set of vertices of K . Note that B is partial positive definite, and its
specification graph is a complete graph, with a single missing edge. By Lemma12.10
we can complete B to a positive definite matrix. Thus, we can specify the (i, j)-entry
(and the ( j, i)-entry) of A so that the resulting matrix, say A1, is partial positive
definite. The specification graph of A1 is H, which is chordal. We may continue this
process until we obtain a positive definite completion of A.

Conversely, suppose G is not chordal. Then G has C4 as an induced subgraph.
By Lemma12.8 C4 is not positive definite completable and hence G is not positive
definite completable. This completes the proof. �
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Exercises

1. Let m, n be positive integers and let 1 ≤ k ≤ min{m, n}. The specification graph
of a partial m × n matrix is a bipartite graph, with bipartite sets of cardinality m
and n defined in the usual way. Call a graph G rank k completable if any partial
matrix with the specification graph G can be completed to a matrix of rank at
least k. Characterize rank k completable graphs.

2. Let G be a graph with V (G) = {1, . . . , n}. Recall that the graph G is called a
split graph if there exists a partition V (G) = V1 ∪ V2 such that the graph induced
by V1 is complete and the graph induced by V2 has no edge. Show that if G is a
split graph, then both G and Gc are chordal.

3. Give an example of a graph G that is not chordal and a partial positive definite
matrix A with specification graph G,which admits a positive definite completion.

4. Give an example to show that the positive definite completion of a partial positive
definite matrix need not be unique.

5. Show that the followingmatrix can be reduced to a diagonal matrix by elementary
row and column operations so that the zero entries in the matrix are never made
nonzero: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 1 0 0 0 0
0 6 1 0 0 0 1
1 1 6 1 1 1 1
0 0 1 6 0 1 1
0 0 1 0 6 0 0
0 0 1 1 0 6 1
0 1 1 1 0 1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6. Let A be an n ×n orthogonal matrix and let S and T be nonempty, proper subsets
of {1, . . . , n}, with |S| = |T |. Show that

det A[S|T ] = ± det A(S|T ).

Theorem12.11 was proved in [GJSW84]. Our exposition is partly based on
[BS03]. Chordal graphs are discussed in greater detail in [GOL80].
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Chapter 13
Matrix Games Based on Graphs

In this chapter we consider two-person zero-sum games, or matrix games, in which
the pure strategies of the players are the vertices, or the edges of a graph, and the
payoff is determined by the incidence structure. We identify some cases where the
value and the optimal strategies can be explicitly determined. We begin with a brief
overview of the theory of matrix games.

13.1 Matrix Games

Suppose there are two players, I and II. Player I has m pure strategies {1, . . . , m},
while Player II has n pure strategies {1, . . . , n}. If Player I selects the strategy i and
Player II selects the strategy j, then Player I receives the amount ai j from Player II,
i = 1, . . . , m; j = 1, . . . , n. The m × n matrix A = [ai j ] is called the payoff matrix
of this game. Since the gain of Player I is the loss of Player II, a matrix game is also
known as a two-person zero-sum game.

The strategy set naturally extends to mixed strategies. A mixed strategy for a
player is a probability distribution over the set of pure strategies. LetPk denote the
set of probability vectors of order k × 1. Thus,

Pk =
{

x ∈ IRk : xi ≥ 0, i = 1, . . . , k;
k∑

i=1

xi = 1

}
.

If Player I selects x ∈ Pm and Player II selects y ∈ Pn, then the payoff to
Player I from Player II is taken to be the expected value of the payoff, which equals
x ′ Ay = ∑m

i=1
∑n

j=1 ai j xi y j .

A pair of strategies (x, y) ∈ Pm × Pn are said to be in equilibrium, or they are
a pair of optimal strategies, if x is a best response of Player I if Player II chooses
y; and y is a best response of Player II if Player I chooses x . Equivalently, x ∈ Pm

is optimal for Player I if it maximizes
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min
z∈Pn

{x ′ Az},

while y ∈ Pn is optimal for Player II if it minimizes

max
z∈Pm

{z′ Ay}.

We now state the well-known minimax theorem of von Neumann.

Theorem 13.1 Let Players I and II have m and n pure strategies, respectively, and
let A be the m × n payoff matrix. Then there exist optimal strategies x ∈ Pm and
y ∈ Pn . Furthermore, there is a unique real number v (known as the value of the
game) such that

x ′ A ≥ v1′, Ay ≤ v1.

If A is an m × n matrix we denote the value of the matrix game A by v(A).

Corollary 13.2 Let A be an m × n matrix. Let p ∈ Pm, q ∈ Pn, and let α be a
real number, such that

p′ A ≥ α1′, Aq ≤ α1. (13.1)

Then v(A) = α, and p and q are optimal strategies for Players I and II, respectively.

Proof Let x and y be optimal strategies for Players I and II, respectively, as guaran-
teed by Theorem 13.1, so that

x ′ A ≥ v(A)1′, Ay ≤ v(A)1. (13.2)

It follows from (13.1) to (13.2) that

p′ Ay ≥ α, p′ Ay ≤ v(A) (13.3)

and
x ′ Aq ≥ v(A), x ′ Aq ≤ α. (13.4)

Using (13.3) and (13.4) we conclude that α = v(A). Then by (13.1), p and q are
optimal for Players I and II, respectively. �

Example 13.3 Consider the two payoff matrices

A =
[
3 2
4 1

]
, B =

[
3 5
6 4

]
.

It can be verified that for the matrix game A, there are pure optimal strategies for
both the players, strategy 1 for Player I and strategy 2 for Player II. The value of the
game is 2. In the case of the matrix game B, there are no pure optimal strategies.
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If x = [ 12 , 1
2 ]′, y = [ 14 , 3

4 ]′, then x and y are optimal for the two players, respectively.
The value of the game is 9

2 .

Let A be an m × n matrix. The set of optimal strategies of Player I and Player II
will be denoted by OptI (A) and OptI I (A), respectively. The dimension of OptI (A)

is defined as the dimension of the vector space spanned by OptI (A), minus 1. The
dimension of OptI I (A) is defined similarly. Note that a player has a unique optimal
strategy if and only if the dimension of the set of its optimal strategies is zero. A
pure strategy is called essential if it is used with positive probability in some optimal
strategy. Otherwise it is called inessential.We now state two classical results, without
proof.

Theorem 13.4 Let A be an m × n matrix. Let S ⊂ {1, . . . , m}, T ⊂ {1, . . . , n} be
the sets of essential strategies of Players I and II, respectively. Let B = A[S|T ].
Then

dim(OptI (A)) = nullity(B ′) − 1 = |S| − rank B − 1

and
dim(OptI I (A)) = nullity(B) − 1 = |T | − rank B − 1.

Theorem 13.5 Let A be an m × n matrix. Let f1 and f2 be the number of essential
strategies of Players I and II, respectively. Then

f1 − dim(OptI (A)) = f2 − dim(OptI I (A)).

13.2 Vertex Selection Games

Let G be a directed graph with V (G) = {1, . . . , n}. In the vertex selection game,
Players I and II independently select a vertex of G. If Player I selects i and Player II
selects j, then Player I receives 1 or −1 from Player II according as there is an edge
from i to j or from j to i, respectively. If i = j or if i and j are not adjacent then
Player I receives nothing from Player II. The payoff matrix of the vertex selection
game is the n × n matrix A defined as follows. The rows and the columns of A are
indexed by V (G). If i = j or if i and j are not adjacent then ai j = 0. Otherwise
ai j = 1 or −1 according as there is an edge from i to j or from j to i, respectively.
We will refer to A as the skew matrix of the graph G. This terminology is justified
since A is skew-symmetric. We assume that the graph G has at least one edge,
although this fact may not be stated explicitly.

If a matrix is skew-symmetric then the associated game is symmetric with respect
to the two players. A special property enjoyed by such matrix games is given in the
next result.

Lemma 13.6 Let A be an n × n skew-symmetric matrix. Then v(A) = 0. Further-
more, Players I and II have identical optimal strategy sets.
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Proof Let x and y be optimal strategies for Players I and II, respectively. Then

x ′ A ≥ v(A)1′, Ay ≤ v(A)1. (13.5)

Since A′ = −A, it follows from (13.5) that

Ax ≤ −v(A)1, y′ A ≥ −v(A)1′. (13.6)

Following the proof of Corollary 13.2, we obtain from (13.5) and (13.6) that v(A) =
−v(A), and hence v(A) = 0. It is evident from (13.6) that x is optimal for Player
II and y is optimal for Player I. Therefore, Players I and II have identical optimal
strategy sets. �

The vertex selection game associated with the graph G is the matrix game
with payoff matrix A, which is the skew matrix of G. Since the skew matrix is
skew-symmetric, we conclude from Lemma 13.6 that the vertex selection game has
value zero and the two players have identical strategy sets.Wewill now be concerned
with some properties of the optimal strategies in vertex selection games. We begin
with some preliminary observations. Recall that a vertex of a directed graph is called
a source if its indegree is zero, while a vertex is called a sink if its outdegree is zero.

Lemma 13.7 Let G be a directed graph with V (G) = {1, . . . , n}, and let A be the
skew matrix of G. The pure strategy i is optimal (for either player) if and only if the
vertex i is a source.

Proof Let ui be the n ×1 unit vector, that is, the vector with the i th coordinate equal
to 1 and the remaining coordinates equal to 0. The pure strategy i is represented by
the vector ui . As observed earlier, v(A) = 0. Thus, the strategy ui is optimal for
Player I if and only if u′

i A ≥ 0, or, equivalently, if the i th row of A has no negative
element. Clearly, this is equivalent to vertex i having indegree 0. �

Example 13.8 Consider the directed path on 5 vertices,

with the skew matrix ⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦

.

The vertex 1 has indegree zero and the pure strategy 1 represented by the vector
[1, 0, 0, 0, 0]′ is optimal. It may be noted that the strategy [ 13 , 0, 1

3 , 0,
1
3 ]′ is also

optimal, and this strategy selects the vertex 5 with positive probability, even though
this vertex is a sink.
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13.3 Tournament Games

We first prove a preliminary result.

Lemma 13.9 Let A be an m × n matrix and let x and y be optimal strategies for
Players I and II respectively. Then xi > 0 implies (Ay)i = v(A), and y j > 0 implies
(x ′ A) j = v(A).

Proof Since x and y are optimal for Players I and II, respectively,

x ′ A ≥ v(A)1′, Ay ≤ v(A)1.

From these inequalities we easily derive that x ′ Ay = v(A). If xi > 0 and (Ay)i <

v(A) for some i, then it would lead to x ′ Ay < v(A),which is a contradiction. Hence,
xi > 0 implies (Ay)i = v(A). The second part is proved similarly. �

Corollary 13.10 Let A be an n × n skew-symmetric matrix and let x and y be
optimal strategies for Players I and II, respectively. Then yi > 0 implies (Ax)i = 0.

Proof By Lemma 13.6, v(A) = 0. Now the result follows from Lemma 13.9. �

A tournament is defined as a directed graph obtained by the orienting of each
edge of a complete graph. A tournament with n vertices may represent the results
of a competition among n players in which any two players play against each other
and there are no draws. We now consider vertex selection games corresponding to
tournaments. The well-known “scissors, paper and stone” game is the same as the
vertex selection game corresponding to the directed 3-cycle, or a tournament with
3 vertices. We define a tournament game as the vertex selection game corresponding
to a tournament; such a game provides a generalization of the scissors, paper and
stone game.

Lemma 13.11 Let T be a tournament with V (T ) = {1, . . . , n} and let A be the
skew matrix of T . Then the rank of A is n if n is even and n − 1 if n is odd.

Proof Replace each off-diagonal entry of A by 1 and let B be the resulting matrix.
First observe that det A and det B are either both even or are both odd. By Theo-
rem 3.4 the eigenvalues of B are n − 1 and −1 with multiplicity n − 1. Therefore,
det B = (n − 1)(−1)n−1. Thus, if n is even then det B, and hence det A is odd.
Therefore, det A is nonzero and the rank of A is n. If n is odd, we may apply the
same argument to a subtournament of T, consisting of n−1 vertices, and deduce that
the rank of A is at least n − 1. Note that since A′ = −A then det A′ = (−1)n det A,

and since n is odd it follows that det A = 0. Thus, A is singular and its rank must
be n − 1. �

Corollary 13.12 Let T be a tournament with V (T ) = {1, . . . , n}, and suppose there
is an optimal strategy x with x > 0 in the corresponding tournament game. Then n
is odd.

http://dx.doi.org/10.1007/978-1-4471-6569-9_3
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Proof Let A be the skewmatrix of T .ByCorollary 13.10, xi > 0 implies (Ax)i = 0.
Since xi > 0 for each i, Ax = 0 and hence rank A < n. It follows by Lemma 13.11
that n is odd. �

We now prove themain result concerning optimal strategies in tournament games.

Theorem 13.13 Let T be a tournament with V (T ) = {1, . . . , n}. Then there is a
unique optimal strategy for the corresponding tournament game.

Proof Let A be the skew matrix of T . Let p and q be optimal strategies for the
tournament game corresponding to T . Let

S = {i : 1 ≤ i ≤ n, pi > 0 or qi > 0}.

Let B = A[S|S] and let pS and qS be the subvectors of p and q corresponding
to S, respectively. Now using Lemma 13.6 and Corollary 13.10, it follows that
BpS = BqS = 0. Since pS �= 0, and since by Lemma 13.11 the nullity of B is
at most 1, then qS = αpS for some α �= 0. Since 1′ pS = 1′qS = 1, it follows that
pS = qS, and hence p = q. Therefore, A has a unique optimal strategy. �

Corollary 13.14 Let G be a graph with V (G) = {1, . . . , n}. Then G = Kn if and
only if the vertex selection game corresponding to any orientation of G has a unique
optimal strategy.

Proof If G = Kn then by Theorem 13.13 the vertex selection game corresponding
to any orientation of G has a unique optimal strategy. For the converse, suppose
G �= Kn, and, without loss of generality, suppose vertices 1 and 2 are not adjacent.
We may endow G with an orientation in which both 1 and 2 are source vertices.
By Lemma 13.7, in the corresponding vertex selection game the pure strategy 1 as
well as the pure strategy 2 are both optimal. Thus, there is an orientation of G such
that the corresponding vertex selection game does not have a unique optimal strategy,
and the proof is complete. �

We now indicate another approach to Theorem 13.13. Let G be a directed graph
with V (G) = {1, . . . , n}. Let A be the skew matrix of G and consider the corre-
sponding matrix game. Recall that the optimal strategy sets of Players I and II are
identical, and hence so are the essential strategies of the two players. Thus, in this
case we obtain the following consequence of Theorem 13.4.

Theorem 13.15 Let G be a directed graph with V (G) = {1, . . . , n}. Let A be
the skew matrix of G and let S ⊂ {1, . . . , n} be the set of essential strategies. Let
B = A[S|S]. Then

dim(Opt I (A)) = dim(Opt I I (A)) = nullity(B) − 1 = |S| − rank B − 1.

Let T be a tournament with V (T ) = {1, . . . , n}, and let A be the skew matrix
of T . Let S ⊂ {1, . . . , n} be the set of essential strategies and let B = A[S|S]. By
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Lemma 13.11, the rank of B is either |S| or |S| − 1. In view of Theorem 13.15 we
see that the rank must be |S| − 1, since the dimension cannot be negative. It also
follows that the dimension of OptI (A) and OptI I (A) is zero, and hence the optimal
strategy is unique, leading to another verification of Theorem 13.13.

13.4 Incidence Matrix Games

Let G be a directed graph with V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}.
Consider the following two-person zero-sum game. The pure strategy sets of Players
I and II are V (G) and E(G), respectively. If Player I selects i and Player II selects
e j , then the payoff to Player I from Player II is defined as follows. If i and e j are
not incident then the payoff is zero. If e j originates at i then the payoff is 1, while
if e j terminates at i then the payoff is −1. Clearly the payoff matrix of this game is
the (vertex-edge) incidence matrix Q of G. We refer to this game as the incidence
matrix game corresponding to G.

Lemma 13.16 Let G be a directed graph with V (G) = {1, . . . , n} and E(G) =
{e1, . . . , em}. Let Q be the n × m incidence matrix of G. Then 0 ≤ v(Q) ≤ 1.
Furthermore, v(Q) = 0 if G has a directed cycle, and v(Q) = 1 if G is the star
K1,n−1, with the central vertex being a source.

Proof The strategy z = 1
n 1 for Player I satisfies z′Q = 0. Let y be optimal for Player

II so that Qy ≤ v(Q)1. Then v(Q) ≥ z′Qy = 0. Since qi j ≤ 1 for all i, j, it follows
that v(Q) ≤ 1.

Suppose G has a directed cycle with k vertices. Consider the strategy z for Player
II, who chooses each edge of the cycle with probability 1

k . Then Qz = 0. Let x be
optimal for Player I, so that x ′Q ≥ v(Q)1′. Hence, v(Q) ≤ x ′Qz = 0. Since we
have shown earlier that v(Q) ≥ 0, it follows that v(Q) = 0.

Now suppose G = K1,n−1, and let 1 be the central vertex, which is assumed to be
a source. It can be verified that the pure strategy 1 for Player I and any pure strategy
for Player II are optimal and v(Q) = 1. �

It is evident from Lemma 13.16 that if G has a directed cycle, then the incidence
matrix corresponding to G has value 0, and the optimal strategies are easily deter-
mined. We now assume that G is acyclic. As usual, let V (G) = {1, . . . , n} and
E(G) = {e1, . . . , em}. For each i ∈ V (G) let P(i) denote a path originating at i and
having maximum length. Let ρ(i) denote the length (the number of edges) in P(i).
If i is a sink then we set ρ(i) = 0. For each edge e j ∈ E(G), let η(e j ) denote the
number of vertices i such that e j is on the path P(i). With this notation we have the
following.
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Lemma 13.17
n∑

i=1

ρ(i) =
m∑

j=1

η(e j ).

Proof Let B be the n × m matrix defined as follows. The rows of B are indexed by
V (G), and the columns of B are indexed by E(G). If i ∈ V (G) and e j ∈ E(G) then
the (i, j)-entry of B is 1 if e j ∈ P(i) and 0, otherwise. Observe that the row sums
of B are ρ(1), . . . , ρ(n) and the column sums of B are η(e1), . . . , η(em). Since the
sum of the row sums must equal that of the column sums, the result is proved. �

Theorem 13.18 Let G be a directed graph with V (G) = {1, . . . , n} and E(G) =
{e1, . . . , em}. Let Q be the n × m incidence matrix of G. Let

n∑
i=1

ρ(i) =
m∑

j=1

η(e j ) = 1

θ
.

Then v(Q) = θ. Furthermore, θρ and θη are optimal strategies for Players I and II,
respectively, where ρ is the n × 1 vector with components ρ(1), . . . , ρ(n) and η is
the m × 1 vector with components η(e1), . . . , η(em).

Proof First note that by Lemma 13.17,

n∑
i=1

ρ(i) =
m∑

j=1

η(e j ),

and hence θ is well-defined. Fix j ∈ {1, . . . , m} and suppose the edge e j is from �

to k. We have

θ

n∑
i=1

qi jρ(i) = θ(ρ(�) − ρ(k)), (13.7)

Note that ρ(�) ≥ ρ(k) + 1 and therefore it follows from (13.7) that

θ

n∑
i=1

qi jρ(i) ≥ θ. (13.8)

Fix i ∈ {1, . . . , n} and let

U = { j : e j originates at i}, W = { j : e j terminates at i}.

We have

θ

n∑
j=1

qi jη(e j ) = θ

⎛
⎝∑

j∈U

η(e j ) −
∑
j∈W

η(e j )

⎞
⎠ . (13.9)
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If U = φ, that is, if i is a sink, then the right hand side of (13.9) is clearly
nonpositive. Suppose that U �= φ. Observe that for any vertex s �= i, the path P(s)
either contains exactly one edge from U and one edge from W or has no intersection
with either U or W. Thus, for any s �= i, the path P(s) either makes a contribution
of 1 to both

∑
j∈U η(e j ) and

∑
j∈W η(e j ), or does not contribute to either of these

terms. Also, the path P(i) makes a contribution of 1 to
∑

j∈U η(e j ) but none to∑
j∈W η(e j ). Thus, if i is not a sink, then

∑
j∈U

η(e j ) −
∑
j∈W

η(e j ) = 1.

In view of these observations, we conclude from (13.9) that for i ∈ {1, . . . , n},

θ

n∑
j=1

qi jη(e j ) ≤ θ. (13.10)

The result is proved combining (13.8) and (13.10). �

Corollary 13.19 Let G be a directed graph with V (G) = {1, . . . , n} and E(G) =
{e1, . . . , em}, and let Q be the n × m incidence matrix of G. Then v(Q) = 0 if and
only if G has a directed cycle, and v(Q) = 1 if and only if G is a star with the central
vertex being a source.

Proof The “if” parts were proved in Lemma 13.16, while the “only if” parts follows
from Theorem 13.18. �

Theorem 13.20 Let G be a directed graph with V (G) = {1, . . . , n} and E(G) =
{e1, . . . , em}. Let Q be the n × m incidence matrix of G. Consider the incidence
matrix game corresponding to G. Then Player I has a unique optimal strategy.

Proof Suppose {φ(i), i ∈ V (G)} is optimal for Player I. Let k ∈ V (G) be a sink. Let
y ∈ Pm be optimal for Player II. If φ(k) > 0 then by Corollary 13.10, we must have

m∑
j=1

qkj y j = v(Q). (13.11)

Since k is a sink, qkj ≤ 0, j = 1, . . . , m, whereas by Theorem 13.18 v(Q) > 0.
This contradicts (13.11) and hence φ(k) = 0.

Let u ∈ V (G) be a vertex that is not a sink, and let u = u0, u1, . . . , uk = w be a
directed path of maximum length, originating at u. Since φ is optimal,

φ(ui ) − φ(ui+1) ≥ v(Q), i = 0, 1, . . . , k − 1.
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Thus,
k−1∑
i=0

(φ(ui ) − φ(ui+1)) ≥ kv(Q),

and hence
φ(u) − φ(w) ≥ ρ(u)v(Q).

Since w must necessarily be a sink, φ(w) = 0 by our earlier observation, and hence

φ(u) ≥ ρ(u)v(Q). (13.12)

Thus,
1 =

∑
u∈V (G)

φ(u) ≥ v(Q)
∑

u∈V (G)

ρ(u) = 1,

where the last equality follows from Theorem 13.18. Thus, equality must occur in
(13.12), and

φ(u) = ρ(u)v(Q), u ∈ V (G).

Therefore, the strategy of Player I is unique. �

Example 13.21 Consider the directed, acyclic graph G:

Longest paths emanating from each vertex are given below:

v P(v)
1 e1, e5, e6
2 e5, e6
3 φ

4 e3, e1, e5, e6
5 e6

It can be verified that ρ(1) = 3, ρ(2) = 2, ρ(3) = 0, ρ(4) = 4, ρ(5) = 1,whereas
η(e1) = 2, η(e2) = 0, η(e3) = 1, η(e4) = 0, η(e5) = 3, η(e6) = 4. These,
multiplied by 1/10, are the optimal strategies for Players I and II, respectively, in
the incidence matrix game corresponding to G, and the value of the game is 1

10 .

We turn to the optimal strategy space for Player II. Let G be a directed graph with
V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. Let Q be the n × m incidence matrix
of G. Consider the incidence matrix game corresponding to G. By Theorem 13.20
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the optimal strategy for Player I is unique. By Theorem 13.18 any vertex that not
a sink is essential for Player I. Let s be the number of sinks in G and let t be the
number of inessential strategies (that is, edges) for Player II. Using the notation of
Theorem 13.5, we have f1 = n − s, f2 = m − t. Since dim(OptI (A)) = 0, we
conclude by Theorem 13.5 that

dim(OptII(A)) = m − n − t + s.

We now consider the 0–1 incidence matrix of an undirected graph and discuss
some results for the value of the corresponding matrix game. Let G be a graph with
V (G) = {1, . . . , n} and E(G) = {e1, . . . , em}. We recall some terminology. A set
of edges constitute a matching if no two edges in the set are incident with a common
vertex. The maximum cardinality of a matching is called the matching number of G,

denoted by ν(G). A set of vertices of G form a vertex cover if they are collectively
incident with all the edges in G. The minimum cardinality of a vertex cover is the
vertex covering number of G, denoted by τ(G).

Lemma 13.22 Let G be a graph with n vertices and m edges. Let M be the n × m,

0–1 incidence matrix of G. Then

1

τ(G)
≤ v(M) ≤ 1

ν(G)
.

Proof Let τ(G) = k, ν(G) = �, and suppose, without loss of generality, that the
vertices 1, . . . , k form a vertex cover and that the edges e1, . . . , e� form a matching.
If Player I chooses the vertices 1, . . . , k uniformly with probability 1

k , then against
any pure strategy of Player II, Player I is guaranteed a payoff of at least 1k . Similarly, if
Player II chooses the edges e1, . . . , e� uniformly with probability 1

�
, then against any

pure strategy of Player I, Player II loses at most 1
�
. These two observations together

give the result. �

A graph is said to have a perfect matching if it has a matching in which the edges
are collectively incident with all the vertices. A graph is Hamiltonian if it has a cycle,
called a Hamiltonian cycle, containing every vertex exactly once.

In the next result we identify some classes of graphs for which the value of the
corresponding game is easily determined.

Theorem 13.23 Let G be a graph with V (G) = {1, . . . , n} and E(G) =
{e1, . . . , em}. Let M be the n × m (0–1)-incidence matrix of G. Then the follow-
ing assertions hold.

(i) If G is bipartite then v(M) = 1
ν(G)

.

(ii) If G is the path then v(M) = 2
n if n is even, and 2

n−1 if n is odd.

(iii) If G has a perfect matching then v(M) = 2
n .
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(iv) If G is Hamiltonian then v(M) = 2
n .

(v) If G = Kn then v(M) = 2
n .

Proof If G is bipartite, then by the König–Egervary theorem, ν(G) = τ(G), and
(i) follows by Lemma 13.22. Since a path is bipartite, (ii) follows from (i) and the
fact that the matching number of a path on n vertices is n

2 if n is even and n−1
2 if n

is odd.
If G has a perfect matching then ν(G) = τ(G) = n

2 , and (iii) follows from (i).
To prove (iv), first suppose that G is the cycle on n vertices. Then n = m and

the strategies for Players I and II, which choose all pure strategies uniformly with
probability 1

n , are easily seen to be optimal. Thus, v(M) = 2
n .

Suppose G is Hamiltonian. The value of M is at least equal to the value of
the game corresponding to a Hamiltonian cycle in G and thus v(M) ≥ 2

n , in view
of the preceding observation. If Player II chooses only the edges in the Hamiltonian
cycle with equal probability, then against any pure strategy of Player I, Player II loses
at most 2

n . Therefore, (iv) is proved.
Finally, (v) follows since a complete graph is clearly Hamiltonian. �

Exercises

1. Let the matrix A be the direct sum of the matrices A1, . . . , Ak, that is,

A =

⎡
⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

⎤
⎥⎥⎥⎦ .

If v(Ai ) > 0, i = 1, . . . , k, then show that

v(A) =
{

k∑
i=1

1

v(Ai )

}−1

.

Hence, determine the value of a square diagonal matrix.
2. Let G be a directed graph and let A be the skew matrix of G. Consider the matrix

game A. Show that the dimension of the optimal strategy set and the number of
essential strategies of a player are of the same parity.

3. Let G be a directed graph and let A be the skew matrix of G. Consider the matrix
game A. Suppose every pure strategy is essential. Show that the dimension of the
optimal strategy set equals n − 1 − rank A.

4. Let G be an acyclic directed graph with n vertices, m edges, m ≥ 2, and let Q
be the incidence matrix of G. Show that v(Q) ≥ 2

m(m−1) .

5. Consider the graph G:
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Show that there are more than one optimal strategies for Player I in the corre-
sponding incidence matrix game.

For an introduction to game theory, including matrix games, see [Ow82, Tij03].
Proofs of Theorems 13.4 and 13.5 can be found in [BKS50, GS50]. Relevant ref-
erences for various sections are as follows: Sect. 12.2: [MQ06], Sect. 12.3: [FR92],
Sect. 12.4: [BT97].
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Chapter 1

1. Ax = 0 clearly implies A′ Ax = 0. Conversely, if A′ Ax = 0 then x ′ A′ Ax = 0,
which implies (Ax)′ Ax = 0, and hence Ax = 0.

4. If G = A+ then the two equations are easily verified. Conversely, suppose
A′ AG = A′ and G ′G A = G ′. Since rank A′ A = rank A, we may write
A = X A′ A for some X. Then A = X A′ A = X A′ AG A = AG A. Also,
A′ AG = A′ implies G ′ A′ = G ′ A′ AG = (AG)′ AG, which is symmetric. Sim-
ilarly, using G ′G A = G ′, we may conclude that G AG = G and that G A is
symmetric.

5. A = xy′ for some column vectors x and y. First determine x+ and y+. α =
( trace A′ A)−1.

Chapter 2

2. Suppose yi = 1, y j = −1 and yk = 0, k �= i, k �= j. Consider an (i j)-path P.

Let x be a vector with its coordinates indexed by E(G). Set xk = 0 if ek is not
in P. Otherwise, set ek = 1 or ek = −1 according as ek is directed in the same
way as, or in the opposite way to,P, respectively. Verify that Qx = y.

3. Q+ = Q′(Q Q′)+. Note that Q Q′ has a simple structure.
4. If G is not bipartite, then it has an odd cycle. Consider the submatrix of M

corresponding to the cycle.
5. This is the well-known Frobenius–König theorem. Let G be the bipartite graph

with bipartition (X, Y ), where X = Y = {1, . . . , n}, and i and j are adjacent if
and only if ai j = 1. Condition (i) is equivalent to ν(G) < n. Use Theorem 2.22.
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Chapter 3

1. The characteristic polynomial of either graph is λ6 − 7λ4 − 4λ3 + 7λ2 + 4λ− 1.
5. (Kn) = 2(n − 1), (Kmn) = 2

√
mn.

6. Use Lemma 3.25.
7. Use the previous exercise to find the eigenvalues of the two graphs.

8. Note that A(G1) =
[
0 1
1 0

]
⊗ A and A(G2) =

[
1 1
1 1

]
⊗ A, respectively. Use

Lemma 3.25.
9. Let n be pendant and suppose it is adjacent to n −1.Assume the result for T \ {n}

and proceed by induction on n.

Chapter 4

1. A repeated application of Laplace expansion shows that det(L + J ) is equal to
the sum of det L and the sum of all cofactors of L . (Also see Lemma 9.3.) Use
Theorem 4.8.

2. Let |V (G)| = n and |V (H)| = m. Then L(G × H) = L(G)⊗ Im + In ⊗ L(H). If
λ1, . . . ,λn and μ1, . . . ,μm are the eigenvalues of L(G) and L(H), respectively,
then the eigenvalues of L(G × H) are λi + μ j ; i = 1, . . . , n; j = 1, . . . , m.

3. Use Theorem 4.11 and the arithmetic mean-geometric mean inequality.
4. Use Theorem 4.13.
5. Let (X, Y ) be a bipartition of T . Make all edges oriented from X to Y. The result

holds for any bipartite graph.
6. For the first part, verify that (A+)′ satisfies the definition of the Moore–Penrose

inverse of A′. Then, for the second part note, using the first part, that

AA′(A′)+ A+ AA′ = AA′(A+)′ A+ AA′.

Since the column space of A′ is the same as that of A+, it follows that
A+ AA′ = A′. Substituting in the previous equation and using the first part shows
that (A′)+ A+ is a g-inverse of AA′. The other Moore–Penrose conditions are
proved similarly.

Chapter 5

1. Note that

[
B
C

]
=

[
I B f

−B ′
f I

]
. By the Schur complement formula the determi-

nant of

[
B
C

]
is seen to be nonzero.
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2. Let B be the fundamental cut matrix. There exists an (n−1)×(n−1) nonsingular
matrix Z such that X ′ = Z B. Use the fact that B is totally unimodular.

3. The proof is similar to that of Theorem 5.13.
4. First show that det B B ′[E(T1)|E(T1)] is the number of spanning trees of G

containing T1 as a subtree. Use this observation and Theorem 4.7.

Chapter 6

1. Let A be the adjacency matrix of G and suppose u ≥ 0 satisfies Au = μu. There
exists x > 0 such that Ax = ρ(G)x . Consider u′ Ax .

2. The Perron eigenvalue of a cycle and of K1,4 is 2.
3. Use Corollary 6.16.
4. If G is strongly regular with parameters (n, k, a, c) then Gc is strongly regular

with parameters (n, k1, a1, c1), where k1 = n − k − 1, a1 = n − 2k − 2+ c and
c1 = n − 2k + a.

5. For the first part use Theorem 6.27.
6. Let λ1, . . . ,λn be the eigenvalues of A. Since A is nonsingular, the eigenvalues

are nonzero. By the arithmetic mean-geometric mean inequality,

n∑
i=1

|λi | ≥ n
n∏

i=1

|λi | 1n = n| det A| 1n ≥ n.

Chapter 7

2. Let vertex 1 be pendant, with neighbour 2. Then the adjacency matrix has the
form

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 · · · · ·
0 ·
0

... B
0 ·

⎞
⎟⎟⎟⎟⎟⎠

.

It follows, using the determinantal definition of rank, that rank A = rank B + 2.
4. (−1)r+s−1((r − 1)(s − 2) + (r − 2)(s − 1)).
5. (r − 1)(s − 1) − (r − 2)(s − 2).
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6.

• •

• • • • •

• • •

7. If B is obtained from A by changing some 1’s into −1’s, then the parity of the
determinant does not change. We may obtain B from A by changing some 1’s
into −1’s, so that B is skew-symmetric. Now use the fact that a skew-symmetric
matrix of odd order is singular.

8. If n = 2, the result holds. Let n > 2. If all entries are even, then det A ≡ 0mod 4.

So let P =
(

x1 y
y x2

)
be a principal submatrix,where x1, x2 are even and y is odd.

Then P−1 ≡
(−x1 y

y −x2

)
mod 4. Without loss of generality, A =

(
P B
B ′ C

)
.

Use the formula det A = (det P) det(C − B ′ P−1B) and proceed by induction
on n.

9. Use Theorem 3.8. Note that Exercise 7 is an easy consequence.
10. Use the preceding two Exercises.
11. For the first part, use induction on the number of vertices.

Chapter 8

1. The Laplacian L of K1,n−1 has In−1 as a principal submatrix. Therefore, the rank
of L − In−1 is 2 and hence its nullity is n − 2. Thus, 1 is an eigenvalue of L with
multiplicity n − 2. Clearly, 0 is an eigenvalue. The remaining eigenvalue, easily
found using the trace, is n.

4. Use a symmetry argument.
5. The first part is an easy consequence of Theorem 8.16. For the second part, using

the fact that Qn is the n-fold Cartesian product of Q2, show that the algebraic
connectivity of Qn is 2. Also see the remark following Corollary 8.18.

6. Let f : V (G) → {0, 1,−1} be defined by setting it equal to 0 on V1, 1 on V2
and −1 on V3. Use the inequality f ′L f ≥ μ f ′ f where L is the Laplacian. For a
generalization and an application to “competitive learning process”, see [3].

7. This is an easy consequence of Theorem 8.20.
8. Use Exercise 7.
9. Let fi = (n + 1) − 2i, i = 1, . . . , n. Note that f ′1 = 0. Use (8.17).
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Chapter 9

1. Follow an argument similar to that in the proof of Theorem 9.2.

3. For α �= 0 evaluate

∣∣∣∣
−D 1
1′ 1

α

∣∣∣∣ two different ways.
5. Suppose (D−1 − S)x = 0 for some vector x . Premultiply this equation by 1′ and

use the formula for D−1 given in Theorem 9.9 to conclude τ ′x = 0 and hence
that (− 1

2 L − S)x = 0, where L is the Laplacian of T . Then x ′(− 1
2 L − S)x = 0,

and since 1
2 L + S is positive semidefinite, conclude that x = 0.

7. For any i, j, k ∈ V (T ), di j = dik + dkj mod 2.
8. Use (9.26) and that L+, being positive semidefinite, is a Gram matrix, that is,

there exist points x1, . . . , xn in IRn such that �+
i j = (xi )′x j , i, j = 1, . . . , n.

10. Observe that Ik is a principal submatrix of the Laplacian matrix of T . Use inter-
lacing and then apply Theorem 9.16.

Chapter 10

2. The resistance distance between any two vertices of the cycle is easily found by
series-parallel reduction. Lemma 10.9 and a symmetry argument may also be
used.

3. First prove the result when there is a cycle containing i and j. Then use the fact
that if there are two (i j)-paths then there is an (i j)-path that meets a cycle.

4. By Theorem 10.12, if x is an n × 1 vector orthogonal to τ , then x ′ Rx ≤ 0.
6. Use (10.3) and Theorem 4.7.
7. There is a one-to-one correspondence between the spanning trees of G not con-

taining the edge ek and the spanning trees of G∗ containing e′
k . Use the equation

χ′(G)

χ(G)
+ χ(G) − χ′(G)

χ(G)
= 1

and the previous exercise.
9. Use Theorem 10.12, the multilinearity of the determinant and the fact that each

cofactor of L equals χ(G).

10. Assume that n is a pendant vertex and that the formula holds for T \ {n}. Use
induction on the number of vertices.

Chapter 11

1. Use the recursive definition of a threshold graph and induction.
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2. We may encode a threshold graph by a binary sequence b1, . . . , bn, with b1 = 1.
In the recursive procedure to obtain the graph we add an isolated vertex if bi = 0,
and a dominating vertex if bi = 1.

3. Use the recursive definition of a threshold graph and induction.
4. Use the recursive definition of a cograph and the fact that the union of two Lapla-

cian integral graphs is Laplacian integral and the complement of a Laplacian
integral graph is Laplacian integral.

5. Whether a graph G is a cograph or not can be checked recursively. Take the
complement of G. Then it should split into connected components, each of which
must be a cograph. Thus, if we take components of Gc and repeat the procedure
of taking complements, we must end up with isolated vertices if the graph is
a cograph. The presence of P4 will not lead to this situation since P4 is self-
complementary. Incidentally, it is known that the property of not containing a P4
as an induced subgraph characterizes cographs.

6. The eigenvalues of L(G) are: n with multiplicity |V1|, |V1| with multiplicity
|V2| − 1; and 0. The number of spanning trees in Km\G is

mm−n−1(m − |V1|)|V2|−1(m − n)|V2|.

7. The eigenvalues of L(G) are given by: 2r + 2, 2r + 1, r + 2 with multiplicity r,
r + 1 with multiplicity 2r − 2, r with multiplicity r, 1 and 0.

8. The eigenvalues of L(Kn × K2) are: n + 2 with multiplicity n − 1; n with
multiplicity n − 1; 2; and 0. (see [2].)

Chapter 12

1. A graph is rank k completable if and only if its bipartite complement has a
matching of size k.

2. Use the definition of chordal graph. If G is a split graph then so is Gc.

5. Let G be the graph with V (G) = {1, . . . , 7} and with i ∼ j if and only if
ai j �= 0. Then G is chordal and a perfect elimination ordering for G is given
by 1, 2, 4, 5, 6, 7, 3. Perform Gaussian elimination using pivots according to this
ordering. So, first subtract a suitable multiple of a first row from the other rows to
reduce all entries in the first column to zero except the (1, 1)-entry. Then subtract
a suitable multiple of the first column from the remaining columns to reduce all
entries in the first row to zeros, except the (1, 1)-entry. Repeat the process with
the second row and column, then with the fourth row and column, and so on. In
the process, no zero entry will be changed to a nonzero entry.

6. Use the Jacobi identity.
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Chapter 13

2. Use Theorem 13.4 and the fact that the rank of a skew-symmetric matrix is even.
3. The optimal strategy set comprises the vectors inPn that are in the null space of

A.

4. It is sufficient to show that
∑

v ρ(v) ≤ m(m−1)
2 . Let u be a source. Assume the

result for G\{u} and proceed by induction on the number of vertices.
5. [ 13 , 1

3 ,
1
3 , 0]′ and 1

41′ are both optimal for Player I.
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Adjacency algebra, 74
Adjacency matrix, 27

characteristic polynomial of, 32
determinant of, 31

Adjoint, 3
Algebraic connectivity, 101

bounds for, 110
Alternating path, 43
Antiadjacency matrix, 40

B
Bipartite complement, 158
Block, 87

pendant, 88
Block graph, 88
Block of a graph, 117

C
Cartesian product of graphs, 39
Cauchy interlacing theorem, 7, 126
Cauchy–Binet formula, 5
Cayley–Hamilton theorem, 6
Characteristic edge, 103
Characteristic equation, 5
Characteristic polynomial, 5
Characteristic vertex, 103
Chord, 159
Chordal, 158
Chordal graph, 158–164
Chromatic number, 34, 35
Clique, 159

maximal, 160, 163
Cofactor, 3
Cograph, 151

Column space, 2
Column span, 2
Complete graph, 10
Conjugate sequence, 148
Corona tree, 45
Cotree, 62
Cut, 61

incidence vector of, 61
Cut subspace, 61
Cut-vertex, 87, 117
Cycle, 29

eigenvalues of a, 29
Cycle subspace, 61

D
Degree sequence, 149
Determinant, 2
Direct sum, 176
Distance, 28, 115
Distance matrix, 115

eigenvalues of, 125
of a graph, 117
of a tree, 116
of a weighted tree, 128
q-analog, 129

Dominating vertex, 149
Duality theorem, 25

E
Edge-Laplacian matrix, 55, 126
Effective resistance, 139
Eigenvalue, 5
Eigenvalues of a graph, 28

bounds for, 33
Eigenvalues of a path, 29
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Elementary subgraph, 30
Energy of a graph, 39, 81
Energy of complete graphs, 47
Equilibrium, 165
Expander graphs, 114

F
Ferrers diagram, 148
Fiedler vector, 102

monotonicity of, 108
Flow, 134
Friendship theorem, 80
Fundamental cut, 62
Fundamental cut matrix, 63, 66
Fundamental cycle, 62
Fundamental cycle matrix, 63, 66

G
G-inverse, 8

least squares, 9
minimum norm, 9
reflexive, 9

G-partial matrix, 157
Gale–Ryser theorem, 148
Generalized inverse, 8
Gram–Schmidt process, 4
Graph, 10

bipartite, 32
characteristic polynomial of, 76
complement of, 10
diameter of, 28, 80
directed, 10
nonsingular, 87
nonsingular completable, 157
regular, 69, 75
spectral radius of, 69
strongly regular, 78, 83
undirected, 10
unicyclic, 22, 113, 120

H
Hamiltonian cycle, 175
Hamiltonian path, 40
Hardy–Littlewood–Polya theorem, 145

I
Incidence matrix, 13

of an undirected graph, 22, 175
reduced, 18, 64, 65

Incidence matrix game, 171

Inertia, 104
Inverse, 8
Isoperimetric number, 112

J
Jacobi identity, 162

K
König–Egervary theorem, 24, 158, 176
Krönecker product, 39

L
Laplacian integral graph, 151
Laplacian matrix, 49–59, 76, 101, 131–142,

147–155
eigenvalues of, 51
g-inverse of, 123
of a tree, 103, 120
spectral radius of, 54

Line graph, 77, 87
Linear programming, 24

M
Majorization, 145
Matching, 24, 175

number, 175
Matrix, 1

diagonal, 1
doubly stochastic, 145
integer, 18
nonsingular, 3
positive definite, 6

partial, 160
positive semidefinite, 7

partial, 160
signature, 44
skew-symmetric, 167
square root of, 7
symmetric, 6
totally unimodular, 15
unimodular, 18

Matrix completion problem, 157
Matrix game, 165

value of, 166
Matrix-tree theorem, 52, 126
Minimal polynomial, 6
Mixed strategy, 165
Moore–Penrose inverse, 9, 20, 56, 123, 135
Multiplicity

algebraic, 5
geometric, 5
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N
Nonsingular tree, 42
Null space, 2
Nullity, 2

O
Optimal strategies, 165
Orthonormal basis, 3

P
Partial symmetric matrix, 160
Path matrix, 17
Payoff matrix, 165
Perfect elimination ordering, 159
Perfect matching, 158, 175
Perron eigenvalue, 71, 105

bounds for, 73
Perron eigenvector, 71
Perron–Frobenius theorem, 69, 105
Petersen graph, 78
Principal minor, 6

leading, 6
Principal submatrix, 6
Proper colouring, 35
Pure strategy, 165

Q
Quasipendant vertex, 127

R
Random walk on a graph, 137
Rank, 2
Rank canonical form, 3
Rank completable graph, 164
Rank factorization, 3
Reflexive g-inverse, 9
Resistance distance, 132
Resistance matrix, 139

determinant of, 144
inverse of, 142

Rootless tree, 16, 52

S
Schur complement, 116, 162
Series-parallel reduction, 139

Signless Laplacian, 87
Singular, 3
Sink, 168
Skew matrix, 167, 176
Smith normal form, 18
Source, 168
Specification graph, 160
Spectral integral variation, 154
Spectral radius, 69
Spectral theorem, 6
Split graph, 155, 164
Star, 10, 171, 173
Strategy

essential, 167, 176
inessential, 167

Submatrix, 3
Substructure, 16

T
Tensor product of graphs, 47
Threshold graph, 149, 159

Laplacian eigenvalues of, 151
Tournament, 169
Trace, 2
Transfer, 147
Trees of type I and II, 108
Triangulated graph, 158
TU-subgraph, 93
Turan’s theorem, 74
Two-person zero-sum game, 165

U
Unit flow, 134

V
Vertex cover, 24, 175
Vertex covering

number, 175
Vertex selection game, 167
Vertex-edge, 13

W
Wheel, 53
Wiener index, 124

of a tree, 124, 129
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