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Preface

I felt compelled to write an introductory textbook about formal logic for a
number of reasons, most of which are pedagogic. I began teaching formal
logic to undergraduates at the University of Edinburgh in 1985 and have
continued to teach formal logic to undergraduates ever since. Speaking
frankly, I have always found teaching the subject to be a particularly
rewarding pastime. That may sound odd. Formal logic is widely perceived
to be a difficult subject and students can and often do experience problems
with it. But the pleasure  have found in teaching the subject does not derive
from the anxious moments which every student experiences to some extent
when approaching a first course in formal logic. Rather, it derives from later
moments when self-confidence and self-esteem take a significant hike as
students (many of whom will always have found mathematics daunting)
realise that they can manipulate symbols, construct logical proofs and reason
effectively in formal terms. The educational value and indeed the personal
pleasure which such an achievement brings to a person cannot be
overestimated. Enabling students to take those steps forward in intellectual
and personal development is the source of the pleasure I derive from teaching
formal logic. In these terms, however, the problem with existing textbooks
is that they generally make too little contribution to that end.

For example, each and every year during my time at Edinburgh the formal
logic class contained a significant percentage of arts students with symbol-
based anxieties. More worryingly, these often included intending honours
students who had either delayed taking the compulsory logic course, failed
the course in earlier years or converted to Philosophy late. Many of these
students were very capable people who only needed to be taught at a gentler
pace or to be given some individual attention. Moreover, even the best of
those students who were not so daunted by symbols regularly got into
difficulties simply through having missed classes—often for the best of
reasons. Given the progressive nature of the formal logic course these
students frequently just failed to catch up. As a teacher, it was immensely
frustrating not to be able to refer students (particularly those in the final



PREFACE xiii

category) to the textbook in any really useful way. The text we used was
E.J.Lemmon’s Beginning Logic [1965]. Undoubtedly, Lemmon’s is, in many
ways, an excellent text but the majority of students simply did not find it
sufficiently accessible to be able to teach themselves from it. In all honesty,
I think that this is quite generally the case with the vast majority of
introductory texts in formal logic, i.e. inaccessibility is really only a matter
of degree (albeit more so in the case of some than others). And this is no
mere inconvenience for students and teachers. The underlying worry is that
the consequent level of fail rates in formal logic courses might ultimately
contribute to a decline in the teaching of formal logic in the universities or
to a significant dilution of the content of such courses. For all of these reasons,
I think it essential that we have a genuinely accessible introductory text
which both covers the ground and caters to the whole spectrum of intending
logic students, i.e. a text which enables students to teach themselves. That
is what I have tried to produce here.

Logic covers the traditional syllabus in formal logic but in a way which
may significantly reduce the kind of fail rates which, without such a text,
are perhaps inevitable in compulsory courses in elementary logic offered
within the Faculty of Arts. In the present climate, many faculties and, indeed,
many philosophy departments consider such fail rates to be wholly
unacceptable. Hence, the motivation to dilute the content of courses is
obvious, e.g. by wholly omitting proof-theory. Personally, I believe that this
cannot be a step in the right direction. In the last analysis, such a strategy
either diminishes formal logic entirely or results in an unwelcome
unevenness in the distribution of formal analytical skills among graduates
from different institutions. I believe that the solution is to make available to
students a genuinely accessible textbook on elementary logic which even
the most anxious students in the class can use to teach themselves. Thus,
Logic is not designed to promote my own view of formal logic as such or to
promote the subject in any narrow sense. Rather, it is designed to promote
formal logic in the widest sense, i.e. to make a subject which is generally
perceived as difficult and inaccessible open and readily accessible to the
widest possible audience.

To that end, the text is deliberately written in what I hope is a clear and
user-friendly style. For example, formal statements of the rules of inference
are postponed until the relevant natural deduction motivation has been
outlined and an informal rule-statement has been specified. The text also
makes extensive use of summary boxes of key points both during and at
the end of chapters. Initial uses of key terms (and some timely reminders)
are given in bold and such items are further explained in the glossary. Mock
examination papers are also set at regular intervals in the text by way of
dress rehearsal for the real thing. Given that accessibility is a crucial
consideration, the pace of Logic is deliberately slow and indulgent. But this
need not handicap either students or teachers. The text is exercise-intensive
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and brighter students can simply move to more difficult exercises more
quickly. Moreover, the very point of there being such a text is to enable
students to teach themselves. So teachers need not move as slowly as the
text, i.e. the pace of the course may very well be deliberately faster than that
of the text. The point is that the text provides the necessary back-up for
slower students anyway. Further, those who miss classes can plug gaps for
themselves, and while I have no doubt that certain students will still have
problems with formal logic the text is specifically designed to minimise the
potential for anxiety attacks.

I should also add that the text is tried and tested at least in so far as a
desktop version has been used successfully at the University of Aberdeen
for the past three academic sessions, over which, as I write, class numbers
have trebled. The success of the text is reflected as much in course evaluation
responses as in the pass rate for Formal Logic 1 (only one student failed
Formal Logic 1 over sessions 1994-5 and 1995-6). Further, the pass rate for
the follow-on course, Formal Logic 2, was 100 per cent in the first academic
session and 95 per cent in the second academic session. Despite the increase
in class numbers, pass rates in both courses remain very high and the
contents of course evaluation forms suitably reassuring.

A certain amount of motivation for writing Logic also stems from some
unease not just about the style but about the content of existing textbooks.
For although many excellent texts are available, there is something of an
imbalance in most. For example, while a number of familiar texts are quite
excellent on semantic methods these tend to be wholly devoid of (linear or
Lemmon-style) proof-theory. In contrast, texts such as Lemmon, for example,
show a clear bias towards proof-theory and are not as extensive in their
treatment of semantic concepts and methods as they might be. Indeed, certain
texts in this latter category are either devoid of semantic methods at the
level of quantificational logic or devote a very limited amount of space to
such topics. Yet another group of familiar texts involves rather less in the
way of formal methods generally. Ultimately, I think, such texts include too
little in that respect for purposes of teaching formal logic to undergraduates.
Hence, there is a strong argument for an accessible textbook which strikes a
fair balance between syntactic and semantic methods. To that end, Logic
combines a comprehensive treatment of proof-theory not just with the truth-
table method but also with the truth-tree method. After all, the latter method
is quite mechanical throughout both propositional logic and the monadic
fragment of quantificational logic. Moreover, if that method is given
sufficient emphasis at an early stage students can also be enabled to apply
the method beyond monadic quantificational logic. Of course, in virtue of
undecidability with respect to invalidity at that level, there is no guarantee
of the success of any purely mechanical application of the truth-tree method,
i.e. infinite branches and infinite trees are possible. But the application of
the method at that level, together with examples of infinite trees and



PREFACE xv

branches, vividly illustrates the consequences of undecidability to students
and goes some way towards making clear just what is meant by
undecidability. Finally, given that the method is also useful at the
metatheoretical level, supplementing truth-tables with truth-trees from the
outset seems a sound investment. In terms of content, then, the text covers
the same amount of logical ground as any other text pitched at this level
and, indeed, more than many.

In summary, Logic is primarily intended as a successful teaching book
which students can use to teach themselves and which will enable even the
most anxious students to grasp something of the nature of elementary logic.
It is not intended to be a text which lecturers themselves will want to spend
hours studying closely. Rather, it is intended to make a subject which is
generally perceived as difficult and inaccessible open and easily accessible
to the widest possible audience. In short, I hope that Logic constitutes a
solution to what I believe to be a substantive teaching problem. However, if
the text does no more than make formal logic accessible, comprehensible
and above all useful to anxious students for whom it would otherwise have
remained a mystery, then it will have fulfilled its purpose.

Paul Tomassi
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1
How to Think Logically

I
Validity and
Soundness

Above all, a logician is someone who worries about arguments. The

arguments which logicians worry about come in all shapes and sizes,
from every corner of the intellectual globe, and are not confined to any one
particular topic. Arguments may be drawn from mathematics, science,
religion, politics, philosophy or anything else for that matter. They may be
about cats and dogs, right and wrong, the price of cheese, or the meaning of
life, the universe and everything. All are equally of interest to the logician.
Argument itself is the subject-matter of logic.

The central problem which worries the logician is just this: how, in general,
can we tell good arguments from bad arguments? Modern logicians have a
solution to this problem which is incredibly successful and enormously
impressive. The modern logician’s solution is the subject-matter of this book.

In daily life, of course, we do all argue. We are all familiar with arguments
presented by people on television, at the dinner table, on the bus and so on.
These arguments might be about politics, for example, or about more
important matters such as football or pop music. In these cases, the term
‘argument’ often refers to heated shouting matches, escalating interpersonal
altercations, which can result in doors being slammed and people not
speaking to each other for a few days. But the logician is not interested in
these aspects of argument, only in what was actually said. It is not the
shouting but the sentences which were shouted which interest the logician.

For logical purposes, an argument simply consists of a sentence or a small
set of sentences which lead up to, and might or might not justify, some other
sentence. The division between the two is usually marked by a word such as
‘therefore’, ‘so’, ‘hence’ or ‘thus’. In logical terms, the sentence or sentences
leading up to the ‘therefore’-type word are called premises. The sentence

I I 1o study logic is to study argument. Argument is the stuff of logic.
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which comes after the ‘therefore” is the conclusion. For the logician, an
argument is made up of premises, a ‘therefore’-type word, and a conclusion
—and that’s all. In general, words like ‘therefore’, ‘so’, ‘hence’” and ‘thus’
usually signal that a conclusion is about to be stated, while words like
‘because’, ‘since” and ‘for” usually signal premises. Ordinarily, however, things
are not always as obvious as this. Arguments in daily life are frequently rather
messy, disordered affairs. Conclusions are sometimes stated before their
premises, and identifying which sentences are premises and which sentence
is the conclusion can take a little careful thought. However, the real problem
for the logician is just how to tell whether or not the conclusion really does
follow from the premises. In other words, when is the conclusion a logical
consequence of the premises?

Again, in daily life we are all well aware that there are good, compelling,
persuasive arguments which really do establish their conclusions and, in
contrast, poor arguments which fail to establish their conclusions. For
example, consider the following argument which purports to prove that a
cheese sandwich is better than eternal happiness:

1. Nothing is better than eternal happiness.
2. Buta cheese sandwich is better than nothing.
Therefore,

3. A cheese sandwich is better than eternal happiness.'

Is this a good argument? Plainly not. In this case, the sentences leading up to
the “therefore’, numbered ‘1" and ‘2’ respectively, are the premises. The sentence
which comes after the ‘therefore’, Sentence 3, is the conclusion. Now, the
premises of this argument might well be true, but the conclusion is certainly
false. The falsity of the conclusion is no doubt reflected by the fact that while
many would be prepared to devote a lifetime to the acquisition of eternal
happiness few would be prepared to devote a lifetime to the acquisition of a
cheese sandwich. What is wrong with the argument is that the term ‘nothing’
used in the premises seems to be being used as a name, as if it were the name
of some other thing which, while better than eternal happiness, is not quite as
good as a cheese sandwich. But, of course, ‘nothing” isn’t the name of anything.

In contrast, consider a rather different argument which I might construct
in the process of selecting an album from my rather large record collection:

1. If it's a Blind Lemon Jefferson album then it’s a blues album.
2. 1t's a Blind Lemon Jefferson album.
Therefore,

3. It's a Blues album.



4 HOW TO THINK LOGICALLY

Now, this argument is certainly a good argument. There is no misappropriation
of terms here and the conclusion really does follow from the premises. In fact,
both the premises and the conclusion are actually true; Blind Lemon Jefferson
was indeed a bluesman who only ever made blues albums. Moreover, a little
reflection quickly reveals that if the premises are true the conclusion must
also be true. That is not to say that the conclusion is an eternal or necessary
truth, i.e. a sentence which is always true, now and forever. But if the premises
are actually true then the conclusion must also be actually true. In other words,
this time, the conclusion really does follow from the premises. The conclusion
is a logical consequence of the premises. Moreover, the necessity, the force of
the ‘must” here, belongs to the relation of consequence which holds between
these sentences rather than to the conclusion which is consequent upon the
premises. What we have discovered, then, is not the necessity of the consequent
conclusion but the necessity of logical consequence itself.

In logical terms the Blind Lemon Jefferson argument is a valid argument,
i.e. quite simply, if the premises are true, then the conclusion must be true,
on pain of contradiction. And that is just what it means to say that an
argument is valid: whenever the premises are true, the conclusion is
guaranteed to be true. If an argument is valid then it is impossible that its
premises be true and its conclusion false. Hence, logicians talk of validity
as preserving truth, or speak of the transmission of truth from the premises
to the conclusion. In a valid argument, true input guarantees true output.

Is the very first argument about eternal happiness and the cheese sandwich
a valid argument? Plainly not. In that case, the premises were, indeed, true
but the conclusion was obviously false. If an argument is valid then whenever
the premises are true the conclusion is guaranteed to be true. Therefore,
that argument is invalid. To show that an argument fails to preserve truth
across the inference from premises to conclusion is precisely to show that
the argument is invalid.

The Blind Lemon Jefferson example also illustrates the point that logic is
not really concerned with particular matters of fact. Logic is not really about
the way things actually are in the world. Rather, logic is about argument. So
far as logic is concerned, Blind Lemon Jefferson might be a classical pianist,
a punk rocker, a rapper, or a country and western artist, and the argument
would still be valid. The point is simply that:

If it’s true that: If it’s a Blind Lemon Jefferson album then it’s
a blues album.

And it’s true that: It's a Blind Lemon Jefferson album.

Then it must be true that:  It’s a blues album.

However, if one or even all of the premises are false in actual fact it is still
perfectly possible that the argument is valid. Remember: validity is simply



HOW TO THINK LOGICALLY 5

the property that if the premises are all true then the conclusion must be
true. Validity is certainly not synonymous with truth. So, not every valid
argument is going to be a good argument. If an argument is valid but has
one or more false premises then the conclusion of the argument may well
be a false sentence. In contrast, valid arguments with premises, which are
all actually true sentences must also have conclusions which are actually
true sentences. In Logicspeak, such arguments are known as sound
arguments. Because a sound argument is a valid argument with true
premises, the conclusion of every sound argument must be a true sentence.
So, we have now discovered a very important criterion for identifying good
arguments, i.e. sound arguments are good arguments. But surely we can say
something even stronger here. Can’t we simply say that sound arguments
are definitely, indeed, definitively good arguments? Well, this is a
controversial claim. After all, there are many blatantly circular arguments
which are certainly sound but which are not so certainly good.
For example, consider the following argument:

1. Bill Clinton is the current President of the United States of America.
Therefore,

2. Bill Clinton is the current President of the United States of America.

We can all agree that this argument is valid and, indeed, sound. But can we
also agree that itis really a good argument? In truth, such arguments raise a
number of questions some of which we will consider together later in this
text and some of which lie beyond the scope of a humble introduction to
whatis ultimately a vast and variegated field of study. For present purposes,
it is perfectly sufficient that you have a grasp of what is meant by saying
that an argument is valid or sound.

To recap, sound arguments are valid arguments with true premises. A
valid argument is an argument such that if the premises are true then the
conclusion must be true. Hence, the conclusion of any sound argument
must be true. But do note carefully that validity is not the same thing as
truth. Validity is a property of arguments. Truth is a property of
individual sentences. Moreover, not every valid argument is a sound
argument. Remember: a valid argument is simply an argument such that
if the premises are true then the conclusion must be true. It follows that
arguments with one or more premises which are in fact false and
conclusions which are also false might still be valid none the less. In such
cases the logician still speaks of the conclusion as being validly drawn
even if it is false. On false conclusions in general, one American logician,
Roger C.Lyndon, prefaces his logic text with the following quotation from
Shakespeare’s Twelfth Night: ‘A false conclusion; I hate it as an unfilled
can.”? That sentiment is no doubt particularly apt as regards a false
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conclusion which is validly drawn. None the less, it is perfectly possible
for a false conclusion to be validly drawn. For example:

1. If I do no work then | will pass my logic exam.
2. lwill do no work.
Therefore,

3. lwill pass my logic exam.

So, not all valid arguments are good arguments, but the important point is
that even though the conclusion is false, the argument is still valid, i.e. if its
premises really were true then its conclusion would also have to be true.
Hence, the conclusion is validly drawn from the premises even though the
conclusion is false.

Moreover, valid arguments with false premises can also have actually
true conclusions. For example:

1. My uncle’s cat is a reptile.
2. All reptiles are cute, furry creatures.
Therefore,

3. My uncle’s cat is a cute, furry creature.

This time both premises are false but the conclusion is true. Again, the
argument is valid none the less, i.e. it is still not possible for the conclusion
to be false if the premises are true. Further, while we might not want to say
that this particular argument is a good one, it is worth pointing out that
there are ways in which we can draw conclusions from a certain kind of
false sentence which leads to a whole class of arguments which are
obviously good arguments. We will consider just this kind of reasoning in
some detail later in Chapter 3. For now, remember that validity is not
synonymous with truth and that validity itself offers no guarantee of truth.
If the premises of a valid argument are true then, certainly, the conclusion
of that argument must be true. Butjust as a valid argument may have true
premises, it may just as easily have false premises or a mixture of both
true and false premises. Indeed, valid arguments may have any mix of
true or false premises with a true or false conclusion excepting only that
combination of true premises and false conclusion. Only sound arguments
need have actually true premises and actually true conclusions. Therefore,
soundness of argument is the criterion which takes us closest to capturing
our intuitive notion of a good argument which genuinely does establish
its conclusion. Whether we can simply identify soundness of argument
with that intuitive notion of good argument remains controversial. But
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what is surely uncontroversial is that validity and soundness of argument
are integral parts of any attempt to make that intuition clear.

II
Deduction and
Induction

In the ordinary business of daily life (and particularly in films about
Sherlock Holmes) we generally find the term ‘deduction” used in a very
loose sense to describe the process of reasoning from a set of premises to a
conclusion. In contrast, logicians tend to use the same term in a rather
narrower sense. For the logician, deductive argument is valid argument,
i.e. validity is the logical standard of deductive argument. Hence, you will
frequently find valid arguments referred to as deductively valid arguments.

In Logicspeak the premises of a valid argument are said to entail or
imply their conclusion and that conclusion is said to be deducible from
those premises. But deduction is not the only kind of reasoning
recognised by logicians and philosophers. Rather, deduction is one of a
pair of contrasting kinds of reasoning. The contrast here is with
induction and inductive argument. Traditionally, while deduction is just
that kind of reasoning associated with logic, mathematics and Sherlock
Holmes, induction is considered to be the hallmark of scientific
reasoning, the hallmark of scientific method. For the logician deductive
reasoning is valid reasoning. Therefore, if the premises of a deductive
argument are true then the conclusion of that argument must be true, i.e.
validity is truth-preserving. But validity is certainly not the same as
truth and deduction is not really concerned with particular matters of
fact or with the way things actually are in the world. In sharp contrast,
and just as we might expect of scientists, induction is very much
concerned with the way things actually are in the world.

We can see this point illustrated in one rather simple kind of inductive
argument which involves reasoning, as we might put it, from the particular
to the general. Such arguments proceed from a set of premises reporting a
particular property of some specific individuals to a conclusion which
ascribes that property to every individual, quite generally. Inductive
arguments of this kind proceed, then, from premises which need be no
more than records of personal experience, i.e. from observation-statements.
These are singular sentences in the sense that they concern some particular
individual, fact or event which has actually been observed. For example,
suppose you were acquainted with ten enthusiastic and very industrious
logic students. You might number these students 1, 2, 3 and so on and
proceed to draw up a list of premises as follows:
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1. Logic student #1 is very industrious.
2. Logic student #2 is very industrious.
3. Logic student #3 is very industrious.

4. Logic student #4 is very industrious.

10. Logic student #10 is very industrious.

In the light of your rather uniform experience of the industriousness of
students of logic you might well now be inclined to argue thus:

Therefore,

11. Every logic student is very industrious.

Arguments of this kind are precisely inductive. From a finite list of singular
observation-statements about particular individuals we go on to infer a
general statement which refers to all such individuals and attributes to those
individuals a certain property. For just that reason, the great American
logician Charles Sanders Peirce described inductive arguments as
‘ampliative arguments’, i.e. the conclusion goes beyond, ‘amplifies’, the
content of the premises. But, if that is so, isn’t there a deep problem with
induction? After all, isn’t it perfectly possible that the conclusion is false
here even if we know that the premises are true? Certainly, the
industriousness of ten logic students does not guarantee the industriousness
of every logic student. And, indeed, if that is so, induction is invalid, i.e. it
simply does not provide the assurance of the truth of the conclusion, given
the truth of the premises, which is definitive of deductive reasoning. But
aren’tinvalid arguments always bad arguments? Certain philosophers have
indeed argued that that is so.> On the other hand, however, couldn’t we at
least say that the premises of an inductive argument make their conclusion
more or less likely, more or less probable? Perhaps a list of premises reporting
the industriousness of a mere ten logic students does not make the conclusion
that all such students are industrious highly probable. But what of a list of
100 such premises? Indeed, what of a list of 100,000 such premises? If the
latter were in fact the case, might it not then be highly probable that all such
students were very industrious?

Many philosophers have considerable sympathy with just such a
probabilistic approach to understanding inductive inference. And despite
the fact that induction can never attain the same high standard of validity
that deduction reaches, some philosophers (myself included!) even go so
far as to defend the claim that there are good inductive arguments none the
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less. We cannot pursue this fascinating debate any further here. For, if there
are good inductive arguments, these have a logic all of their own. Interested
parties can find my own account of the logic of scientific reasoning and a
defence of the idea that there can be good inductive arguments in my paper
‘Logic and Scientific Method’.* For present purposes, it is sufficient to
appreciate that inductive reasoning is not valid reasoning.

11
The Hardness of
the Logical "‘Must’

In the previous section we again noted that invalid arguments fail to establish
the truth of their conclusions even when the premises of such an argument
are actually true. In contrast, given that the premises are true, the conclusion
of any valid argument must be true. So, what is it about a valid argument
with true premises which compels us to accept the conclusion of that
argument? In the course of ordinary daily life, we find that many different
things can compel us to accept the conclusion of an argument as a
consequence of its premises: large persons of a violent disposition will often
secure agreement to the conclusions of their arguments, for instance. But it
is not the threat of violence that compels us to accept the logicians’
conclusions. Rather, it is logical force, the force of reason. Again, we can
appeal to the definition of validity to cash out quite what logical force comes
to: valid arguments establish their conclusions conditionally upon the truth
of all their premises. Consider a very clear example of valid argument:

1. All human beings are mortal.
2. Prince is a human being.
Therefore,

3. Prince is mortal.

Of course, the premises may not be true. Some human beings may be
immortal. Prince may not be a human being. But if all human beings are
mortal and if Prince is a human being then it must follow that Prince is
mortal. So, once I have accepted the truth of the premises here I am forced
to accept the truth of the conclusion. Why? Because if I do not accept the
truth of the conclusion having accepted the truth of the premises then I
have blatantly contradicted myself. In this case the contradiction consists in
believing that all human beings are mortal and that Prince is a human being
who is not mortal. It cannot be rational to believe contradictions. Therefore,
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I must accept the truth of the conclusion, on pain of irrationality. (Check
that this is also the case in each of the valid examples given earlier.) The
hardness of the logical ‘must’ is the hardness of reason. Logical force is the
force of reason.

This point gives some insight into the traditional definition of logic as
‘the science of thought’, the study of the rationality of thinking. In the last
analysis, we ourselves may not want to defend quite such a subjective,
psychologistic definition of the subject, but supposing that we can identify
the laws of logic and represent them mathematically (we shall see later
that we can) we can at least make clear sense of George Boole’s account of
the laws of logic, in his Mathematical Analysis of Logic [1847]:

The laws we have to examine are the laws of one of the most important of
our mental faculties. The mathematics we have to construct are the
mathematics of the human intellect.

IV
Formal Logic and
Formal Validity

Earlier, I noted that logic is not really about matters of fact or particular
cause and effect relations but is concerned instead with validity which is
independent of any such worldly, factual or, in philosophical terms,
empirical matters. Recall the Blind Lemon Jefferson example. Perhaps you
find it unconvincing. You might think that Blind Lemon may have been a
milkman rather than a bluesman. But if you substitute the name of your
own favourite blues performer the argument at once appears convincing
and sound.

In one sense, it really doesn’t matter which particular performer’s name
I actually used: we can legitimately substitute the name of any performer or
any band and still retain a valid argument. Indeed, it needn’t even be a
Blues band. What is important is not the name of the band but the pattern
of argument. When you substitute the name of your favourite band for ‘Blind
Lemon Jefferson’ something changes. But something also remains the same:
the pattern or structure of the argument. In fact, the only thing that changes
is the particular name used in each sentence. The type of sentence is the
same and the overall structure of the argument is the same. What is in
common between your favourite example and my favourite example is the
logical form of the argument. What is important to the formal logician is
not the content of the argument but its form.
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Change the name of the supposed bluesman as you will, the form of
argument remains exactly the same. So, logic is not really about
particular matters of fact and it is not really about particular bluesmen
either. Rather, formal logic is about argument-forms (logically enough).
Most importantly, as we shall see, the formal logician can use the notion
of logical form to investigate the concept of validity. For example,
consider the Blind Lemon Jefferson argument. Clearly, it is a valid
argument. If the premises are true the conclusion must be true. But, as
we have just seen, we can change the name of the bluesman or even
substitute the name of any band and still get a valid argument.
Moreover, as you will see, we can in fact change the most basic sentences
which make up the premises and conclusion and still produce a valid
argument. What makes this possible is the fact that the validity of this
argument does not depend on particular matters of fact or particular
bluesmen. Rather, it is the form and structure of the sentences in the
argument and the relations between those sentences which guarantee
that we cannot have true premises with a false conclusion in any such
argument.

It follows that any argument of that particular logical form will also be a
valid argument. Thus, formal logicians use the notion of logical form to
investigate the concept of validity. Indeed, many formal logicians will now
encourage us to replace the intuitive definition of validity we have been
working with so far in favour of the following purely formal definition of
validity:

An argument is valid if, and only if, it is an instance of a valid logical form.

Hence, formal logic is fundamentally concerned with valid logical forms of
argument. Formal logic, we might say, investigates formal validity. Further,
it can be argued that the intuitive or modal definition is not an entirely
adequate one (the term ‘modal’ is appropriate here because it refers to the
notion of necessity, the ‘must” element of our definition). For example,
consider the following argument carefully:

1. Snow is white.

Therefore,

2. 1+1=2.

This argument seems to satisfy the modal definition. But the conclusion
surely is not a logical consequence of the premise. However, the argument
is not an instance of any valid logical form of argument. Therefore, it is
formally invalid. So, perhaps we should adopt a purely formal definition.
But is validity always a formal matter? In all honesty, it is not entirely clear
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that it is. Some arguments are intuitively valid, i.e. valid in terms of the
modal definition, even though they seem to exhibit no valid logical form.
Here is an example:

1. The Statue of Liberty is green.
Therefore,

2. The Statue of Liberty is coloured.

In fact, although this particular argument is intuitively valid, it is, as we
shall see, an instance of at least one obviously invalid logical form.
Moreover, the problem here is a deep, intractable one for there does not
seem to be any way in which we can faithfully amend the sentences
composing the argument which would result in the argument becoming
formally valid. For example, consider another case which might seem
similar:

1. All unmarried men are unmarried men.
Therefore,

2. All bachelors are unmarried men.

Again, the problem is precisely that the argument is an instance of an invalid
logical form. In this case, however, the premise is obviously a necessary or
logical truth while the conclusion is not obviously so. But the terms
‘bachelors” and “‘unmarried men” are synonyms. And if we substitute the
term ‘bachelors’ in the conclusion with ‘unmarried men” we generate the
following argument:

1. All unmarried men are unmarried men.
Therefore,

2. All unmarried men are unmarried men.

This argument is obviously circular but it is also obviously valid and sound,
and, crucially, it can now be shown to be an instance of a valid logical form.
So, while we cannot honestly say that the first version of the argument is an
instance of a valid logical form we can say that it is an argument which will
become an instance of a valid logical form after appropriate substitution of
synonymes.

But now consider the example about the Statue of Liberty again. In
this case, synonym substitution is not legitimate. The terms ‘green/
coloured” do not represent a synonym pair. Certainly all green things
are coloured. But not all coloured things are green! What does this
prove? In the last analysis, it may well prove that validity cannot be
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completely explained in purely formal terms. In truth, however, this
again is a matter of some controversy. As we shall see, the notion of
logical form is not an absolute one, i.e. the same argument can be an
instance of more than one form. Perhaps we have simply failed to find
that valid form of which our argument about the Statue of Liberty is
an instance. Perhaps not. Alternatively, we could simply adopt the
formal definition and find another term to describe those arguments
which seem to slip through the formal net, as it were. Be that as it may,
our hand is not forced here. And so, although we should note this
important controversy carefully, we will not abandon the intuitive or
modal conception of validity we have been working with to date in
favour of a purely formal definition.

While it is not incumbent upon us to resolve the controversy about the
definition of validity here, it is crucially important to appreciate that
logic is a discipline which contains many fascinating and important
controversies. Indeed, within formal logic itself there is even room for
disagreement about the validity of the argument-forms sanctioned by a
given formal system, i.e. about the correctness of the formal system itself.
Notably, it is precisely that possibility which Captain James T.Kirk
regularly overlooks in the well-known television programme Star Trek
when he accepts Mr Spock’s allegations of illogicality. What Kirk fails to
realise is that there exist a number of distinct, competing systems of
formal logic which sanction distinct sets of argument-forms. Hence, in
one sense, there is no single correct logic. It follows that a proper formal
definition of validity is only fully specified for a particular set of forms
and so one can only really make an informed judgement once that set
has been laid out. The particular system of formal logic upon which we
will focus in this text is the traditional or classical logic which was
formulated first. In all honesty, alternative systems are best (and most
easily) understood as revisions of that traditional system which arise
from both formal and philosophical thinking about classical logic. So, it
is the classical system to which we should devote ourselves first.

Finally, in the light of the possible limitation to the adequacy of the formal
definition of validity considered above, one might wonder whether logicians
should concentrate on purely formal logic. Would we do better to pursue
our logical investigations informally?

This is a ticklish question. Part of the answer to it is just that formal logic
embodies many of the very standards we would need to pursue our informal
investigations! So, the best student of informal logic will be the one who
has first mastered formal logic. Moreover, even if we do accept that the
formal logician cannot completely explain validity in purely formal terms,
classical formal logic captures a huge class of valid forms none the less.
Therefore, formal logic remains a crucially important and highly effective
means of investigating the concept of validity.
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\Y%
Identifying
Logical Form

In the previous section, we noted that the formal analysis of validity may
be incomplete. However, we should not be too daunted by that fact. The
job of the formal logician consists in unearthing valid forms of argument
and the sheer extent to which the formal logician is able to do that job
effectively is astonishing. But just how far does formal validity go? To
provide an answer to that very question is the purpose of this book. And
where better to begin than with old Blind Lemon Jefferson? In the Blind
Lemon Jefferson case, the structure of the sentences and the pattern of
argument are very easy to see. The first sentence is clearly an ‘If...then—’
sentence:

1. Ifit's a Blind Lemon Jefferson album then it's a blues album.
2. 1t's a Blind Lemon Jefferson album.
Therefore,

3. It'sablues album.

Stripped bare, as it were, this argument has the form:

1. If...then—-
2.

Therefore,

3. —

Looked at in this way, there are two gaps or places to be filled in the first
premise, i.e.”...” (pronounced ‘dot, dot, dot”) and ‘—’ (pronounced ‘dash,
dash, dash’). So, the structure of the first premise is just: If...then —. In
the Blind Lemon Jefferson case, the first gap is filled in by the sentence
‘It’s a Blind Lemon Jefferson album” which is precisely the same sentence
as the second premise. The second gap is filled by the sentence ‘It’s a
blues album” which is precisely the same sentence as the conclusion:
‘It’s a blues album.” But now it is clear that as long as we stick precisely
to the same form of argument we could have used any two sentences
and we would still have had a valid argument. Hence, any argument of
this form is bound to be valid, i.e. any argument consisting of any
sentences in those relations must be valid. And that is just what it means
to say that a form of argument is valid. So, not only is logic not concerned
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with particular matters of fact, or particular bluesmen, it is not even
concerned with particular sentences.

Logically enough, formal logic is fundamentally concerned with
forms of argument. Forms of argument are really argument-frames or
schemas, i.e. patterns of inference with gaps which, for present
purposes, can be filled using any particular sentences we choose to
pick, provided only that we do complete the form exactly. Since it
doesn’t matter which particular sentences are involved in a given
form it would be useful to have symbols which just marked the gaps,
place-markers, for which we could substitute any sentence. This
would save us writing out whole sentences, or marking gaps with
‘... and '—.

In algebra, mathematicians generally use the symbols x” and “y’ to
stand for any numbers. Because such symbols mark a place for any
number they are called variables. But the logician has no need to
borrow these variables. Logicians have their own variables. In the
present context, the logicians’ variables mark places not for numbers
but for sentences or, in more traditional logical terms, propositions.
A proposition is thought of as identical with the meaning or sense of
a sentence rather than with the actual sentence itself. So, intuitively,
two different sentences which are really just two different ways of
saying exactly the same thing are said to express one and the same
proposition. For example, the following two sentences would be said
to express only one proposition:

1. Edinburgh lies to the north of London.

2. London lies to the south of Edinburgh.

Talking of propositions rather than sentences can constitute a linguistic
economy and many find the concept of a proposition both natural and
intuitive. The idea is not uncontroversial and a fascinating debate has grown
up around the simple questions of whether there are such things as
propositions and, if so, just what kind of thing they might be. Those interested
in these questions would do well to read the first chapter of W.V.O. Quine’s
Philosophy of Logic,” though, unfortunately, such questions lie beyond the
scope of the present text.

For present purposes, we will bypass this particular debate by simply
taking the lower-case letters ‘p’, /q’, r" and so on as being sentential variables,
i.e. variables whose values are simply well-formed sentences.

As schematic letters, sentential variables make it very easy to express
precisely the bare pattern or logical form of an argument. For example, we
can easily represent the logical form of the Blind Lemon Jefferson argument,
as follows:
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1. Ifpandg
2. p
Therefore,

3. q

When formalising a given argument, the crucial point to note is just that the
same variable must mark a place for the same sentence throughout that
formalisation. (The example about the logic examination also has exactly
the same logical form we have just identified. This time, however, the
variables ‘p” and ‘gq" mark places for two different sentences—work out
which.)

Above all, the formal logician is interested in forms of argument.
Therefore, the central problem for the logician becomes: how are we to tell
good forms of argument from bad forms of argument? In other words, how
do we distinguish valid forms from invalid forms? According to the formal
logician, a form of argument is valid if, and only if, every particular instance
of that argument-form is itself valid. Thus valid argument forms are patterns
of argument which, when followed faithfully, should always lead us to
construct particular valid arguments as instances. For obvious reasons, this
is known as the substitutional criterion of validity. I will offer a precise
definition later but for the moment here is an analogy. Consider the following
simple algebraic equation: 2x+2x=4x. For every particular value of the
variable x in this equation, be it apples, pears or double-decker buses, it
will always be true that two of them added to another two will add up to
four in total. Analogously, for any valid argument form, every particular
argument which really is a substitution-instance of that form will itself be
avalid argument, whether it concerns Blind Lemon Jefferson, passing your
exams or anything else.

Unfortunately, we may have to recognise another limitation to the purely
formal account later. Certain logicians have argued that the substitutional
criterion is ultimately incomplete, just as it stands. These logicians allege
that the criterion turns out to sanction as valid certain forms which have
obviously invalid instances.® If that is so, we must indeed recognise another
limitation to the purely formal account. This particular allegation raises a
number of questions which, again, lie beyond the scope of the present text.
Be that as it may, it should now be clear that formal logic is fundamentally
concerned with valid forms of argument. Indeed, the traditional or classical
logic which we will consider together in this text is one attempt to identify
and elucidate all the valid forms of argument.

As such, logic is the study of the structure and principles of reasoning
and of the nature of sound argument. But it is important to note that logicians
need not always arrive at those principles of deductive inference which
form the subject-matter of their field of study by collecting data about the
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way people actually argue. Boole’s rather traditional definition might well
give that impression but the relation between formal logic and actual
argument is more complex. The two interact. As we have already seen, logic
has traditionally been described as the science of thought. If it is a science,
however, logic is a theoretical science, not an empirical science.

A good way of elucidating this distinction is with an analogy to games.
Chess, in particular, is an excellent example. Logic, in the analogy, is like
the rules of the game of chess, the rules of play which govern the game and
define what chess is. The relation between the logical principles of deductive
inference and the actual arguments people use, the inferences made by ‘the
person in the street” or ‘the person on the Clapham omnibus’, as it used to
be said, is analogous to the relation between the rules of the game of chess
and the actual playing of the game. The famous Austrian philosopher
Ludwig Wittgenstein, in Remark 81 of his Philosophical Investigations, quotes
a definition of logic by the mathematical logician EP.Ramsey as a ‘normative
science’.” This is a good description which allows us to develop (and update)
our definition of formal logic: formal logic constitutes a set of rules and
standards, ideals of inference, or norms, independent of the thinking of any
actual individual, in terms of which we appraise and assess the actual
inferences which individuals make. So, in its concern with the ways in which
people do actually argue, logic is scientific but in so far as logic provides
standards of argument it is also normative.

To sum up, formal logic is fundamentally concerned with the form and
structure of arguments and not, primarily, with their content. In terms of
the chess analogy, it is the study of the rules of the game, not of the strategies
of any particular player.

VI
Invalidity

According to the modal definition of validity an argument is valid if, and
only if, whenever its premises are true its conclusion must also be true, i.e.
if, and only if, it would be impossible for its premises to be true and its
conclusion false. It follows logically that no valid argument can have true
premises and a false conclusion. Indeed, to show that an argument is invalid
is precisely to show a way in which that argument could have true premises
and a false conclusion. In general then, an argument is invalid if it is such
that its premises could all be true and its conclusion false.

Therefore, in order to demonstrate that a given argument is invalid
it is sufficient to indicate that even if the premises are true the
conclusion is actually false, or could be false, while the premises
were true. For example, the former is precisely what is the case as



18 HOW TO THINK LOGICALLY

regards the very first argument concerning the cheese sandwich
which we considered at the outset of this chapter. Therefore, that
argument is invalid. However, particular arguments are of interest to
the formal logician only in so far as they exhibit logical forms of
argument. Above all, logic is the study of forms of argument.
Therefore, the fundamental question at this stage is just: how do we
show that a given form of argument is invalid?

Recall the substitutional criterion: a form of argument really is valid if,
and only if, every substitution-instance of that form is itself a valid argument.
It follows that an argument-form is valid if, and only if, it is not the case that
there is any instance of that form which has true premises and a false
conclusion.

In order to demonstrate that a given form of argument is invalid, then,
it is sufficient to exhibit some particular example of the form in question
that could have actually true premises and a false conclusion. Any such
invalid particular instance of a form is known as a counterexample to
that form. The method of proving invalidity by means of a
counterexample is known as refutation by counterexample. In practice,
it is a devastatingly effective argumentative technique. Consider the
following argument-form:

1. Ifptheng
2. q
Therefore,

3. p

Here is a counterexample to the form concerning my black cat, Zebedee (for
the purposes of many of the examples in this book it is worth bearing in mind
that I am the proud owner of two small black cats called Tiffin and Zebedee):

1 If all cats are black then Zebedee is black.

2. Zebedee is black.

Therefore,

3. All cats are black.

Now check for yourself:

1. That the argument is an instance of the logical form in question.
2. That the premises are actually true in this case.

3. Thatthe conclusion is actually false.
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Consider another argument-form:

1. If pthen notq

2. Notp
Therefore,
3. g

Here is a counterexample to this form:

1. IfTiffin is a dog then it is not the case that Tiffin is an elephant.
2. Tiffin is not a dog.
Therefore,

3. Tiffin is an elephant.
Again, check for yourself:

1. That the argument really is an instance of the form in question.
2. That the premises are true.

3. That the conclusion is false.

It is important to note that I am not using any algorithm, i.e. any step-by-
step, mechanical decision-procedure, to produce these counterexamples.
At this stage, producing actual counterexamples requires art and imagination
(and a fair bit of practice!). So, don’t worry if you cannot come up with your
own examples. It is sufficient that you understand the particular examples
given.

VII
The Value of
Formal Logic

Many students are very daunted by the prospect of a first logic course and
feel extremely anxious at the outset of their course. If that is your experience,
you can at least rest assured that you are not alone in your angst. In fact,
many formal logicians will themselves have felt just as you do at this stage
in the inquiry. So, the point is not simply that you have company but rather
that you are in good company. Moreover, I feel sure that you will have found
at least some of the ground we have covered together in the present chapter
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both accessible and intuitive. It is important to realise why that should be
so. The point is a very simple one: as a matter of fact, we do all reason
logically in daily life perfectly successfully and in ways which are often just
as complex as those we will consider together in the present text.

Aswenoted earlier, formal logic is the study of the rules of the game rather
than the strategy of the individual player. None the less, we should never
lose sight of the fact that we do all reason logically in ordinary life. As I might
put it, we all do on at least a part-time basis what the formal logician does
full-time. And that fact is underwritten by a still more fundamental point:
human beings are born with a natural ability to argue, to reason and to think
logically. In his later work, Wittgenstein rightly made much of the simple
point that many of our attitudes and abilities, ways of acting and ways of
reacting, follow from the form of life we share just as human beings. Fortunately,
the ability to argue and to reason logically is part of that natural legacy.

To realise that the study of formal logic is not really a matter of memorising
and applying daunting mechanical rules but is rather a reflective study of
how well we can all naturally reason at our very best is to realise the true
value of the study of formal logic. The logician A.A.Luce puts this point
very well when he notes that:

the study acquires a new status and dignity when viewed as a conscious
awakening of an unconscious natural endowment.?

As this book develops, our concern with argument will inevitably focus
upon forms of argument rather than the particular arguments which we
might construct day to day in a natural language such as English. But we
should never lose sight of the fact that formal logic has its roots in just such
natural language arguments and has enormous applicability to arguments
in natural language, quite generally.

For the philosopher in particular, formal logic is a potentially devastating
weapon which can and should be deployed in debate. If you lose sight of
the applicability of formal logic to natural language arguments then you
will miss out on a crucial aspect of the power and value of formal logic and
much of its excitement. Something of the applicability of formal logic should
be clear already. After all, the classical logician has provided us with some
powerful tools for telling good arguments from bad, for identifying logical
forms of argument, and for exposing the invalidity both of particular
arguments and of argument-forms.

It is often difficult to exploit formal logic in debate but when it can be
brought to bear it can be extremely effective. There is a famous story of a
debate between the eminent classical logician Bertrand Russell and Father
Frederick Copleston which clearly illustrates just how useful knowledge of
formal logic can be. The debate in question concerned a particular argument
known as the ‘cosmological argument’. This argument is one of the
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traditional arguments (we cannot say “proof’, for that begs the question) for
the existence of God. The argument moves from the premise that every
event has a cause to the conclusion that there must, at some point, be a first
cause and this is God. Father Copleston defended the cosmological argument
in the debate. What is of interest to us here is the way in which Russell
attacked the argument.

In effect, Russell represented the cosmological argument as follows:

1. Every event has a cause.
Therefore,

2. Some event is the cause of every event.

Next, Russell tried to identify the form of the argument, thought hard about
the validity of that form, and then produced the following counterexample:

1. Everyone has a mother.
Therefore,

2. Someone is the mother of everyone.

What Russell attempted to show is that the cosmological argument is
invalid because it is an instance of an invalid form of argument. The
form of reasoning which Russell highlights is certainly an invalid one.
Indeed, arguments of that form exemplify a well-known fallacy, the
quantifier switch or quantifier shift fallacy. Stating the form of this
particular fallacy requires more logical machinery than is available to us
at this stage. But, as we will see in Chapter 5, the form of the fallacy
certainly can be made explicit. However, even if Russell has shown that
the argument is an instance of that invalid form this does not prove that
the cosmological argument is invalid. As we noted in Section 1V, a
particular argument may be an instance of more than one form. So, on
one level of analysis, the argument might well be shown to be an instance
of an invalid form but if we are not careful we may overlook the fact that
it is also an instance of a more complex valid form. Perhaps Russell is
biased and has given a very simplistic account of the argument form
involved. Perhaps a deeper analysis would reveal that the cosmological
argument is also an instance of a more complex form that is in fact valid.
Perhaps the argument is valid but not in virtue of form. Perhaps not.
The question of the nature of logical form is one to which we will often
return. But the question of the logical form of the cosmological argument
need not worry us here. It is sufficient to note just how powerful and
valuable an ally formal logic can be in debate in natural language,
whatever the topic under discussion might be.
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In truth, the form which Russell appeals to here is of quite a high level of
complexity; as, indeed, is the very first example about eternal happiness
and the cheese sandwich which we considered on p. 3. Formal logic can
handle forms of this level of complexity with ease and can, in fact, handle
still more complex forms of argument. (Such argument forms will be
considered in detail later in Chapter 5.) Classical formal logic will prove
itself to be an enormously efficient instrument for investigating the nature
of argument and the concept of validity itself. To discover precisely how
and why that should be the case can be genuinely exciting and will, on
occasion, lead to some rather surprising results. Not all of the surprises are
pleasant ones, however. Formal logic has its limits.

As we have already seen, for example, there are serious questions about
whether the formal logician can ultimately account for validity in purely
formal terms. Worse still, perhaps, is the fact that classical formal logic
sanctions as valid some forms of argument which are rather less than
intuitive. These particular limits will be considered later when we are in a
better position to appreciate them for what they are. None the less, the
existence of certain possible limitations to the formal logician’s project
detracts not one iota from the value of studying logic in general and classical
formal logic in particular.

Provided that you do not lose sight of the applicability of formal logical
considerations to ordinary discourse, you will quickly realise that the study
of formal logic tends to produce clear-thinking, articulate individuals who
can present and develop complex arguments in a rigorous way. In acquiring
these communications skills you will also acquire the ability to lead
discussion in a structured way and to persuade others. Further, as we have
noted, formal logic provides impressive analytical machinery with which
to identify the logical structure of an opponent’s arguments and provides
an arsenal of weaponry which may well enable one to destroy the apparent
force of those arguments. All these skills are obviously valuable and useful
to their possessor. Less obviously, perhaps, they are also highly coveted by
many employers, particularly in the business environment.

Finally, no logic student should ever lose sight of the enormous practical
value of formal logic. In 1879, while Professor of Mathematics at Jena
University in Germany, Gottlob Frege [1848-1925] produced the first formal,
mathematical language capable of expressing argument-forms as complex
as and even more complex than those we have been considering here. The
publication of Frege’s Begriffsschrift is an event whose significance in the
development of formal logic is inestimable. The publication of Frege’s text
certainly heralds the dawn of the modern tradition of classical formal logic
with which we are concerned. Moreover, Frege’s work not only constituted
the first system of modern formal logic but also laid much of the foundations
for the contemporary programming languages which have become such an
integral part of modern daily life, from the university, college or office
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software package to automatic cash dispensers and bar tills. The name of
the programming language PROLOG, for example, is simply shorthand for
Logic Programming. Logic is, and always has been, an integral part of
philosophy. Students of philosophy in particular should be pleased to be
able to lay to rest so easily the old but still popular misconception that their
subject is ‘impractical” and “unproductive’!

VIII
A Brief Note on the
History of Formal Logic

In all honesty, it will be some time before you become fully aware of the
value and extent of Frege’s contribution to the development of formal logic.
In fact, this will not really become clear until we consider the logic of general
sentences (sentences involving terms such as ‘all” and ‘some’, ‘most” and
‘many’) and arguments composed of such sentences, again, in Chapter 5 of
the present text. The logic of such sentences and arguments is known as
quantificational logic and the design of the logical machinery of
quantificational logic is due, above all, to Gottlob Frege. It is precisely that
design which is undoubtedly the crowning glory of Frege’s contribution to
the development of formal logic and, perhaps, the crowning glory of formal
logic itself.

As a first step towards an appreciation of the value of Frege’s contribution
consider the following historical sketch carefully.

The first system of logic which allowed philosophers to investigate the
logic of general sentences formally was designed by Aristotle some 2,000
years before Frege. The importance of Aristotle’s own role in the history of
formal logic is also unique and inestimable just because formal logic itself
originates in the work of that author. As the logician Benson Mates puts it:

Aristotle, according to all available evidence, created the science of logic
absolutely ex nihilo.?

Moreover, the science which Aristotle created is, as we might put it, properly
formal, for it embodies the insight that the validity of certain particular
arguments consists in the logical forms which they exemplify. Further,
Aristotle’s approach to formal logic is generally systematic, i.e. it identifies
and groups together the valid forms of argument in an overall system.
Aristotle’s system of logic is known as syllogistic just because it confines
itself to a certain kind of argument known as a syllogism. A syllogism consists
of two premises and a conclusion each of which is a general or categorical
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sentence, i.e. a sentence which makes an assertion about sets of things.
Typically, such sentences will tell us that some set is or is not contained in
another. So, for example, sentences such as “All A is B’ and ‘Some B is C” are
categorical sentences. In fact, Aristotle distinguished four different kinds of
categorical sentence as foundational in his system of logic. Given a careful
analysis of the place and role of the key terms in each such sentence, and of
the place of each sentence in a syllogism, no fewer than 256 kinds or moods
of syllogism can ultimately be distinguished.

As a whole, however, the system of syllogistic is a limited one which
does not consider the logic of relations, for example. Moreover, certain
elements of the system are, to say the least, controversial. In particular, it
is not at all clear that the nature and consequences of general sentences
involving ‘all” are properly represented. Here we must be very careful.
No sentence of the form ‘All As are B’ ever implies that there actually
exist any As. That would be an independent claim. What does follow is
just that if there is something which is A then that something is also B. To
ignore this point can lead to legitimating fallacious reasoning. But it may
well be the case that Aristotelian syllogistic does ignore this point. Bertrand
Russell points out that just such a fallacy is involved in certain instances
of one particular mood of Aristotelian syllogistic. During the Middle Ages
the syllogisms were given rather exotic names such as ‘Barbara’ and
‘Celarent” by the medieval logicians who studied them. The syllogism
which Russell highlights here is known as ‘Darapti” and is of the following
form:

All As are B.
All As are C.
Therefore,

Some Bs are C.

As you might expect, Russell offers a counterexample which, this time,
concerns a mythical fire-breathing animal, the chimera:

All chimeras are animals.
All chimeras breathe flame.
Therefore,

Some animals breathe flame.
Aristotle’s syllogistic was developed and extended by logicians and

philosophers throughout the Middle Ages and, indeed, in subsequent
centuries. Moreover, the medieval logicians conducted their own logical
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investigations of general sentences and made considerable progress towards
a systematic theory of the logic of such sentences."

The next major step forward in the development of the subject did not
occur until well into the nineteenth century when the English logicians
George Boole [1815-64] and Augustus De Morgan [1806-71] approached
formal logic in terms of abstract algebra and, for the first time, developed
algebraic logic. To this day, the algebraic perspective remains a useful and
insightful one. In that mathematisation of the subject a new level of formal
rigour and systematisation was achieved and, as we shall see in Chapter
4, De Morgan also contributed some extremely useful logical laws. In a
sense, these logicians realised the dream of the great German philosopher
and logician G.W.Leibniz [1646-1716], who had already outlined the idea
of a universal calculus into which arguments could be translated and
assessed. But it was not until the work of Frege in the late nineteenth
century that the level of systematisation which formal logic now enjoys
was achieved. As we shall see, contemporary formal logic is nothing less
than a formal language into which arguments can be translated and in
which they can be proved to be valid or invalid. Further, Frege not only
realised Leibniz’s dream but also contributed the machinery of
quantificational logic, which enables the logician to dig into even the
internal grammatical structure of natural language sentences. So, the
particular moment in which we are studying formal logic together is one
at which the subject has attained its highest level of achievement in an
evolution of more than 2,000 years.

I shall say no more about the historical evolution of formal logic here.
Interested parties can explore the development of logic in William and
Martha Kneale’s useful and accessible text The Development of Logic [1962].
A much briefer discussion can also be found in Chapter 12 of Benson Mates’s
Elementary Logic [1972] and, indeed, Mates’s Stoic Logic [1953] remains a
classic in the field. On Aristotelian logic in particular, I also warmly
recommend both Jan Lukasiewicz’s Aristotle’s Syllogistic from the Standpoint
of Modern Formal Logic [1951] and Jonathan Lear’s Aristotle and Logical Theory
[1980].

Before we turn to the first exercise in this text, Exercise 1.1, note carefully
that at the end of each chapter I give a summary box of salient points, all of
which are generally helpful for the exercises which follow them. (Because
certain chapters cover a considerable amount of material you can also expect
to find similar summary boxes at regular intervals during the course of
relevant chapters.) You might also have noticed that during this chapter
key words have been written in bold. Information on these items can be
found in the glossary before the index at the end of the text and you will
also find entries under these items in the index. Do study the contents of
each summary box carefully before attempting subsequent exercises! The
first summary box is Box 1.1.
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BOX 1.1
¢ An argument consists of premises, a ‘therefore’-type word and a conclusion.

¢ An argument is valid if, and only if, it is impossible that its premises be true
and its conclusion false.

¢ An argument is invalid if, and only if, it is possible that its premises be true
and its conclusion false.

¢ A sound argument is a valid argument with true premises.

¢ The claim of the formal logician is that an argument is valid purely in virtue
of being a substitution-instance of a valid argument form.

¢ An argument form is valid if and only if every substitution-instance of that
form is valid.

¢ An argument form is invalid if some substitution-instance of that form is
invalid.

¢ A counterexample to a form is a substitution-instance of that form which is
itself an invalid argument.

EXERCISE 1.1

1 For logical purposes, an argument is a set of sentences in which some
sentences (the premises) purport to give reasons for accepting another
sentence (the conclusion). But not every set of sentences constitutes an
argument. Consider the following sets of sentences carefully. In each
case, state whether or not that set of sentences constitutes an argument.
Give reasons for your answers.

A Professor Plum was in the drawing room. Miss Scarlet was in the
kitchen. The murderer used the knife and the evil act was
committed in the hall.

B If Professor Plum was in the drawing room then Colonel Mustard
was the murderer. Professor Plum was in the drawing room. So,
Colonel Mustard was the murderer.

C Every student of logic is wise and knowledgeable. Anyone
attempting this exercise is a student of logic. Therefore, anyone
attempting this exercise is wise and knowledgeable.
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D Iam absolutely sick and tired of getting wet every time it rains.
From now on I will never forget to take my umbrella with me in
the morning. Even if the weather looks fine when I leave I shall
certainly make a point of taking that umbrella.

In an argument the premises purport to give reasons for accepting the
conclusion. In general, the examples considered in this chapter have
listed the premises before stating the conclusion. In ordinary discourse,
however, premises are not always stated before their conclusions. Study
the following arguments carefully. In each case, state which sentences
you consider to be premises and which the conclusion. Give reasons
for your answers.

A Professor Plum was in the drawing room and Miss Scarlet was in
the conservatory. If Professor Plum was in the drawing room and
the murder weapon was found in the drawing room then Professor
Plum is in big trouble. So, if the murder weapon was found in the
drawing room then Professor Plum really is in big trouble.

B All human beings are mortal. So, it stands to reason that Socrates
is mortal. After all, he is a human being.

C  Very few elephants can fly. Very few elephants are pink. So, the
pink flying elephant is truly a rare creature for fewer pink
elephants than ordinary elephants can actually fly.

D  Professor Plum was obviously the murderer in this instance. For
the murderer used the knife and Professor Plum had the knife.
And the murder was committed in the hall and Professor Plum
was certainly in the hall earlier.

An argument is valid if and only if it is impossible that its premises be
true and its conclusion false. Consider the following questions carefully
before responding. In each case give reasons for answering as you do.
When is an argument invalid?

Can a valid argument have a false conclusion?

Can a valid argument have actually true premises but a false
conclusion?

Can an argument have true premises and a true conclusion but
not be valid?

Can an argument be sound but invalid?

Must the conclusion of a sound argument be true?

When is an argument-form valid?

When is an argument-form invalid?

O Ow»

T O Tt

Consider the following arguments carefully. In each case, indicate
whether the argument is valid or invalid. If you find any to be valid
indicate whether or not the argument is also sound:
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A 1. If Abraham Lincoln was French then the Moon is made of green
cheese.

2. Abraham Lincoln was French.
Therefore,

3. The moon is made of green cheese.

B 1. The Washington Redskins are better than the Miami Dolphins.
2. But the Miami Dolphins are better than the Buffalo Bills.
Therefore,

3. The Washington Redskins are better than the Buffalo Bills.

C 1. |Ifall cats are black then Tiffin is black.
2. Tiffin is black.
Therefore,

3. All cats are black.

D 1. |Ifall cats are black then Zebedee is black.
2. Some cats are not black.
Therefore,

3. Zebedee is not black.

g4

5 (i) Using only: ‘If...then—;’, 'p’, ‘g’, and "not” exhibit the logical
form of arguments C and D in 4 above.

(ii) State whether or not my natural language arguments C and
D constitute counterexamples to those logical forms. Give
reasons for your answers.

6  Provide a counterexample to the following argument-form:

1. If pthennotg

2. Notp
Therefore,
3. Notg

7 Using only sentential variables exhibit the logical form of the following
argument:



HOW TO THINK LOGICALLY 29

1. The team strip is red.
Therefore,

2. The team strip is coloured.

State: (i) whether the form is valid or not and (ii) whether the particular
argument itself is valid or not.

For discussion:
What, in your view, do your answers imply as regards the purely formal
definition of validity?

Notes

1 Iam indebted to John Slaney for the kind of example involved here.

2 Lyndon, Roger C., [1966], Notes on Logic, Van Nostrand Mathematical Studies #6,
Princeton NJ, D.Van Nostrand, preface, p. iii.

3 See, forexample, Popper, K.R., [1972], Conjectures and Refutations, fourth edition, London
and Henley, Routledge & Kegan Paul, Ch. 3.

4 In Phillips, Calbert (ed.), [1995], Logic in Medicine, London, British Medical Journal
Publishing Group, Ch. 2. But see also Ch. 1 of this volume.

5  Quine, W.V.O,, [1986], Philosophy of Logic, second edition, Cambridge MA and London,
Harvard University Press.

6 I am indebted to Stephen Read for this point which was made in correspondence.
However, the point is also well made in Read, Stephen, [1995], Thinking about Logic:
An Introduction to the Philosophy of Logic, Oxford, Oxford University Press, Ch. 2.
Interested parties will find a substantive discussion of relevant issues there and a
useful guide to further reading in the area.

7 Wittgenstein, Ludwig, [1967], Philosophical Investigations, Oxford, Blackwell, Remark
81.

8  Luce, A.A,, [1958], Logic, London, English Universities Press, p. 9.

9  Mates, Benson, [1972], Elementary Logic, second edition, New York, Oxford University
Press, p. 206.

10 We cannot pursue this fascinating aspect of the development of formal logic but

interested parties might profitably consult Broadie, Alexander, [1987], Introduction to
Medieval Logic, Oxford, Clarendon Press. See also Boehner, Philotheus, [1952], Medieval
Logic: An Outline of its Development from 1250 to c¢.1400, Manchester, Manchester
University Press.
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How to Prove that You
Can Argue Logically #1

I
A Formal Language
for Formal Logic

language such as English are only really of interest to the formal

logician as instances of logical forms of argument. Formal logic is the
study of argument-forms; hence, formal logic. Classical formal logic
constitutes one ambitious attempt to capture every logical form of argument
in a single language. But that language is not English. It is not any natural
language. Rather, it is a formal language, i.e. a symbolism or notation in
which we can express arguments so that their forms show up clearly. As we
shall see, we can go on to add certain rules to that formal language so that
we can demonstrate when one sentence in the language follows logically
from other sentences.

Unlike English, the simplest sentences in the vocabulary of the formal
language are not actual sentences but symbols which abbreviate particular
sentences and stand in their place. These new symbols which stand for
specific sentences are just letters of the alphabet and so they are often called
sentence-letters. In the last chapter we saw that we could use sentential
variables such as p’, ’q’, r’ etc. to mark a gap or place in an argument-frame
which might be filled by any sentence whatsoever. In contrast, sentence-
letters stand in place of specific sentences. In more formal terms, sentence-
letters are not sentential variables but sentential constants. This distinction
is an important one. Variables are not the same thing as constants. Each
does a distinct job for the formal logician and different symbols are used to
mark that distinction. So, while sentential variables are represented by lower-
case letters, ‘p’, ’q’, 'r’, etc., sentential constants will be represented by upper-
case capital letters, ‘P’, ‘Q’, ‘R” and so on.

I ogic is the study of argument. But particular arguments in a natural
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Before we go any further, it is instructive to make an important point
about the notation we will use in this and subsequent chapters. Note
carefully that when we mention rather than actually use a sentential
variable or a sentential constant in an English sentence as we did at the
end of the previous paragraph, for example, the symbol is placed in
quotation marks. In effect, quotation marks are used to form an English
name for each symbol, i.e. an expression which refers to the symbol itself,
not to the referent of that symbol. In practice, though this is perfectly
correct, it can also become perfectly tedious for both the reader and, indeed,
the writer. Hence, from now on we will use these symbols in English
language contexts as names of themselves or, as logicians say, we will use
these symbols autonymously. More generally, we can now understand any
sentence of the formal language as a name of itself, i.e. as an autonym.
This subtle point will be clarified as we go. For now, it is enough to see
that it allows us to reduce the use of quotation marks vastly and thus,
hopefully, affords us a greater clarity of expression.

With that point in mind, consider a simple example. Suppose that we
wanted to represent the Blind Lemon Jefferson argument in our formal
language using sentence-letters, i.e. the argument that:

1. Ifit's a Blind Lemon Jefferson album then it's a blues album.
2. 1t's a Blind Lemon Jefferson album.
Therefore,

3. It's a Blues album.

First, we must study the argument closely so as to identify clearly the
sentences which compose it. In the first instance, what we are looking for
here are not complex sentences such as Premise 1 but rather the most simple
or basic sentences such as Premise 2 and the conclusion, i.e. we are looking
for the shortest possible well-formed sentences involved. Given our stock
of sentence-letters we can easily represent any such sentence formally. Hence,
we simply let the first sentence-letter P stand for the first such basic sentence
involved, i.e. ‘It’s a Blind Lemon Jefferson album’, and then let the second
sentence-letter Q stand for the second basic sentence involved, i.e. ‘It's a
blues album.” Having done so, we can abbreviate the first premise to:

1. IfPthenQ

Now, the second premise is exactly the same sentence that we used P to
stand for. So, we may rewrite Premise 2 as:



34 HOWTO PROVE THAT YOU CAN ARGUE LOGICALLY #1

Finally, the conclusion is exactly the sentence that we used Q to stand for.
So, we complete the formalisation by rewriting 3 as:

3. Q

Obviously, sentence-letters are just as easy to use as sentential variables.
But do remember that sentence-letters stand for particular sentences. As
such, they are constants and not variables. We could simply continue to use
the more formal term ‘sentential constant’, but ‘sentence-letter’ is much more
user-friendly and using that term may also serve to remind us that it is
always particular sentences which are involved in this type of formalisation.
So, I will stick to ‘sentence-letter’ in what follows.

II
The Formal
Language PL

Let me call the particular formal language which I will construct here PL;
for “prepositional logic’. The simplest possible sentences in the formal
language PL are just the sentence-letters P, Q, R and so on. So, consider
again the Blind Lemon Jefferson argument:

1. Ifit's a Blind Lemon Jefferson album then it's a blues album.
2. 1t's a Blind Lemon Jefferson album.
Therefore,

3. It'sablues album.

Let P stand for: ‘It’s a Blind Lemon Jefferson album’ and Q for ‘It’s a blues
album.’

In a natural language such as English individual sentences can be
combined or conjoined, using “and’, for example. Equally, the basic elements
of the logicians” formal language can also be combined in certain ways,
according to some simple grammatical rules, and combinations of basic
elements can be separated out, again according to simple rules. In this way,
ultimately, actual arguments can be represented formally, studied, and tested
for validity within the formal language.

PL is a formal language and so PL should contain symbols that allow us
to combine or connect sentence-letters into complexes. For obvious reasons,
these symbols are known as logical connectives. PL contains five logical
connectives which we read as follows:
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& And

v Or

- If...then

< : Ifandonly if
~ : Not

Just as we can combine sentences in English using English language
connectives so we can combine sentence-letters in PL using the logical
connectives. But note that only the first four connectives need actually
connect two sentence-letters; ‘not’ may apply to a single sentence-letter. This
is perhaps easier to see if we spell out the connectives and their English
language readings as follows:

...&— Both...and—-

...v— Either...or—
...—>— If...then—
...>— ...ifand only if—-

~ ... It is not the case that...

Clearly, while the first four connectives require a minimum of two
sentence-letters, ‘not” requires only one. Connectives which require at
least two sentence-letters are known as binary connectives. Those
connectives which can be applied to a single sentence-letter are known
as unary connectives. ‘Not’ is the only unary connective in PL. So, just
as we may conjoin two sentences in English using ‘and” we may conjoin
two sentence-letters in PL using ‘&’, e.g. P & Q. As we shall see, each
time we form a compound PL formula that formula should be enclosed
in brackets, e.g. (P & Q). For the moment, however, we can safely omit
these. The PL formula is simply read in English ‘P and Q’. To connect P
and Q using the logical connective ‘&’ is to form the conjunction P & Q
in PL. For present purposes, P & Q formalises the English language
conjunction: ‘It’s a Blind Lemon Jefferson album and it’s a blues album.”
(Note that we do not now need to place the complex PL sentences
mentioned in this paragraph in quotation marks to form the name of
each such PL sentence as these too are autonyms, i.e. names for
themselves.)

To connect P and Q using ‘v’ is to form the disjunction P v Q in PL.

To connect P and Q using ‘—’ is to form the conditional P — Q in PL.

To connect P and Q using ‘<>’ is to form the biconditional P <> Q in PL.

To connect ‘~” with any sentence-letter is to form the negation of that
sentence-letter, e.g ~P, ~Q, etc., in PL.
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Now run through the list yourself spelling out the English language
equivalents for each as I did for the case of conjunction.

Every such compound or complex of the sentence-letters of PL formed
using the connectives as described above is known as a formula of PL or,
more solemnly, as a well-formed formula of PL. The individual sentence-
letters are themselves well-formed formulas of PL. Each simple,
individual sentence-letter is known as an atomic formula of PL. Any
well-formed formula produced from the sentence-letters of PL using the
connectives is known as a compound formula of PL. To date, we have
only considered compound formulas constructed from atomic formulas.
These are the simplest kind of compound formula and, in fact, such
compound formulas can themselves be combined in turn, using the
connectives, to produce more complex compound formulas. When
constructing complex compound formulas we must be careful to avoid
ambiguity and to say clearly exactly what we mean. Ambiguity can easily
be avoided by following some simple rules; two for the binary
connectives and another two for our lone unary connective. For example,
although the following two sentences are made up of the same basic
sentences and use the same connectives they clearly have very different
meanings:

1. Either I'll stay in bed and read my logic book or I'll have a shower.

2. I'll stay in bed and either Ill read my logic book or I'll have a shower.

Let’s formalise Sentences 1 and 2. When attempting to formalise any natural
language argument it is crucial first to establish exactly how many basic
sentences are involved so as to determine how many sentence-letters are
required. To that end, it can help to draw up a key (especially for those
beginning formal logic). In the case of sentences 1 and 2, there are three
basic sentences involved and so we require three sentence-letters. The key
should look like this:

Key

(i) Il stay in bed. P
(i) I'll read my logic book. Q
(iii)  I'll have a shower. R

Thus, let P, Q and R stand for Sentences (i), (ii) and (iii) respectively. Next,
carefully identify the connectives involved. The only connectives used in 1
and 2 are ‘and” and ‘or’. So, we will only need the logical connectives ‘&’
and ‘v’
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Now consider the original sentences carefully. Sentence 1 is clearly
a disjunction: ‘Either...or—". However, the first gap, the first disjunct,
is itself a compound formula. Look closely at the sentence which
plugs the first gap before the ‘or’. That sentence is the conjunction:
‘T'll stay in bed and read my logic book’, i.e. P & Q. As noted, when
we form a complex PL formula we should enclose that formula in
brackets, i.e. (P & Q). Shortly, we will see why this is an important
practice. But for now let’s complete the formalisation at hand. The
rest of Sentence 1 is simply our third basic sentence: ‘I'll have a
shower’, i.e. R. So, Sentence 1 is a disjunction, whose first disjunct is
the conjunction (P & Q) and whose second disjunct is just R.
Formally:

' P&Q)vR

But look closely at Sentence 2. It is not a disjunction. Rather, it is a
conjunction, i.e. ...&—. The first gap, the first conjunct, is simply the basic
sentence: ‘I'll stay in bed’, i.e. P. However, the second conjunct is a
compound. In fact, it is the disjunction: ‘either I'll read my logic book or
I'll have a shower’, i.e. (Q v R). Formally then, we have a very different
compound formula:

2" P&(QVR)
This simple example clearly illustrates the rules for binary connectives:

1. Always make sure that each binary connective connects two formulas.

2. If any one of those formulas is compound put it in parentheses first.

In fact, we are all already perfectly familiar with these grammatical rules of
thumb. Why? Just because we follow exactly the same rules in arithmetic.
(10+5)x3 is a very different operation and gives a different result from
10+(5x3) and we mark that difference precisely by using brackets to specify
which operation we mean. Now look closely at the formal sentences 1" and
2’. In both cases we have two connectives but in each case one is inside
brackets while the other is not. In effect, the connective inside the brackets
only connects the formulas within those brackets. But the connective outside
the brackets connects the whole bracketed expression with everything else.
Clearly, there is a difference here. The difference lies in what the logician
calls the scope of the connective:

The scope of a connective consists of the connective itself together with
what it actually connects.
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So, the scope of ‘&” in 1 is just (P & Q). But the scope of “v" in 1" is the
whole sentence (P & Q) v R (work out the scope of each connective in 2’
for yourself).

Given the notion of scope we can easily define another important notion,
that of a main connective:

For any formula of any complexity, the main connective is just the one
whose scope is the entire formula.

In other words, the main connective will not occur within the scope of any
other connective in the formula. This notion is extremely useful because the
main connective tells us just what type of formula we are dealing with, i.e.
if the main connectiveis ‘&’ the formula is a conjunction, and so on (identify
the main connectives in 1" and 2" and work out which type of formula is
involved in each case).

So much for the binary connectives. What of our lone unary
connective? Again, we should be careful to say what we mean
clearly so as to avoid any ambiguity. In practice, this means clearly
identifying the scope of the negation operator in any given case, i.e.
working out exactly which formula the negation sign belongs to.
There are two kinds of case to consider here. First, the negation sign
may simply be applied to a single sentence-letter, an atomic
formula, such as P, to produce the negation of P, i.e. ~P.
Alternatively, the negation sign may negate a compound formula
such as (P & Q) to produce its negation, i.e. ~(P & Q). Note the
difference in scope in the two different cases. In the first case, the
scope of the negation operator is ~P. In the second, the scope of the
negation operator is ~(P & Q).

Finally, note carefully that the negation sign is always taken to apply to
the smallest following formula. So, for example, ~P & Q is properly read as:
(~P) & Q rather than as: ~(P & Q). Strictly speaking, then, (~P) & Q is the
correct form here. In order to minimise the proliferation of brackets I will
generally omit the brackets in this and similar cases and simply write ~P &
Q. However, to assert ~(P & Q) brackets must first be placed around P & Q.

To sum up:

1. To negate an atomic formula simply connect the negation sign with
the sentence-letter.

2. Tonegate acompound formula be sure to place that formula in brackets
before connecting the negation sign with it.

Hence, for both binary and unary connectives, we can always use brackets
to make clear exactly which type of formula is involved. Fortunately, brackets
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form part of the language of PL. So, we can always avoid ambiguity when
formalising in PL. As Wittgenstein once said:

Everything that can be thought at all can be thought clearly. Everything
that can be put into words can be put clearly.’

Before we turn to the final topic of this section, let’s reflect briefly on
the formulas available to us in PL. The atomic formulas of PL are
simply sentence-letters. Every complex formula formed from atomic
formulas using the connectives, in terms of the grammatical rules
given above, is a compound formula of PL. All such formulas belong
to PL. In Chapter 4 we will consider a new type of variable which
ranges over the well-formed formulas of PL and, in the final section
of that chapter, we will go on formally to define the class of well-
formed formulas exactly. But already we have reached the very heart
of PL and the essence of prepositional logic. For the plain truth of the
matter is that prepositional logic is the logic of sentences formed
from sentence-letters, by the appropriate rules, using what logicians
call an adequate set of connectives. We will consider adequacy in
more detail later. For the moment, rest assured that our set of five
connectives {&, v, =, <>, ~} is certainly an adequate set. Indeed, we
might even call it a generous set. As we shall see, we could have used
three connectives, two connectives or even just one binary connective.
Consider the contents of Box 2.1 carefully.

Finally, let’s consider another way of analysing complex compound
formulas into their constituent parts. Every complex formula can be

BOX 2.1

¢ The basic elements of PL are the sentence-letters P, Q, R, etc., which may
be combined into compound formulas using the logical connectives: &, v,
=, &, ~.

¢ When forming a compound formula always make sure that (i) each binary
connective connects two formulas and (ii) that if any of those formulas is itself
compound it is put in parentheses first.

¢ The scope of a connective consists of the connective itself together with the
formula(s) it connects.

¢ The main connective in any formula is the one whose scope is the entire
formula.
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represented as a sort of tree, known as a syntactical tree, which clearly
displays the overall syntactic structure of a formula in diagrammatic
form. To set up the trees we need some new symbols for some old
ideas. First, we have considered two kinds of formula: compound
formulas and atomic formulas. For convenience as regards tree-
construction, we will simply designate any formula, compound or
atomic, by ‘F” and adopt the symbol ‘A’ specifically for any atomic
formula.

Equally, we have talked about two kinds of connective: unary and binary
connectives. For present purposes, we will simply abbreviate these as “U”
and ‘B’ respectively. This is all we need to get our trees off the ground
(pardon the pun). In fact, our trees are not really normal trees. Rather,
they are upside-down trees. This is because we will start off from a
compound formula, as large as you like, which we will just represent as
‘F’. Below that symbol we will construct branches with a symbol at the
end of each branch in order to spell out what the compound formula is
made up of, i.e. smaller compound formulas ‘F’s, atomic formulas “A’s,
connectives, and so on.

In turn, those branches will themselves branch until we finally make the
actual symbol explicit. The following development rules (for PL formulas)
make clear how to rewrite any given symbol. In the dullest case, our formula
‘F’ will itself be an atomic formula. So, we have a rule which allows us to
rewrite ‘F" as ‘A"

1. F

A

More interestingly, the original formula might be a compound formula. Any
compound formula will either be the negation of some formula or it will
consist of two formulas connected by one of the other connectives. Hence,
we can go on to add two further rules:

F .
/] /A
F B F U F
The only unary connective in PL is ‘~". So,

4.U
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However, PL has four binary connectives, so:

5. 6. B 7. 8.
|
v

B B
| |
- ©

B
|
&
Finally, we need to be able to spell out exactly which atomic formula is
involved in any actual case. For present purposes, the following rules will
suffice:
9. A 10. A 1. A 12. A

| | I |

P Q R S
We are now in a position to consider some examples. Here is the (upside-

down) tree for the compound formula P & Q:

1. P&Q

F

|

A

|
P Q

Next, consider the tree for ~(P — Q):

2. ~(P>Q)

Question 4 of Exercise 2.1 contains some examples which you can try for
yourself.
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EXERCISE 2.1

1. Identify the main connective in each of the following formulas. State
which kind of formula you consider each to be, e.g. conjunction,
disjunction, etc.

i) P&Q (vi) P&Q)v(Q&R)
(ii) ~(P & Q) (vi) P—Q
(iii) ~P & ~Q (viil) (P = Q) & (Q = R)

(iv) ~(P& Q) & (P & ~Q) (ix) P&Q)«<(Q&P)
(v) PvQ x) ~(P&Q) < (Q&DP))

2. Specify the scope of each and every occurrence of the negation operator
in formulas (ii), (iii), (iv) and (x).

3. Translate the following natural language sentences into PL. In each
case make your key explicit:
(i) Blind Lemon Jefferson is not the only bluesman.

(i) Dr Strangely Strange is not a bluesman and neither is Mr Oddly
Normal.

(iii)  If Blind Lemon Jefferson is a milkman then he certainly isn't a
bluesman.

(iv)  It's just not true that if Blind Lemon recorded it then it's a blues
album.

(v)  Blind Lemon was either a bluesman or a milkman.

(vi) Blind Lemon was neither a bluesman nor a milkman.

4. Construct syntactical trees for formulas (i) to (x) of Question 1 above
using the development rules given at the end of the last section.

11
Arguments and
Sequents

The formal language PL employs a slightly different terminology for
describing arguments. Premises are still premises and a conclusion remains
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a conclusion but arguments, pieces of reasoning in PL, are represented by
sequents. A sequent consists of a finite (possibly empty) set of well-formed
formulas (the premises) together with a single well-formed formula (the
conclusion). So, just like an argument, a sequent consists of a finite (possibly
empty) set of premises together with a conclusion which may or may not
follow logically from those premises. We can think of a sequent of the
formal language as capturing a putative or purported proof whose validity
isnot yet decided. Therefore, sequents really just represent comprehensible
pieces of reasoning in PL, valid or not.

Let’s formalise the Blind Lemon Jefferson argument and represent it as a
sequent in PL:

1. If it's a Blind Lemon Jefferson album then it’s a blues album.
2. It's a Blind Lemon Jefferson album.

Therefore,
3. It's ablues album.
Let the sentence-letter P stand for the sentence ‘It’s a Blind Lemon Jefferson

album’ and the sentence-letter Q stand for the sentence ‘It’s a blues album.”
Hence, we can rewrite this particular argument as follows:

1. If Pthen Q
2. P
Therefore,

3. Q

Given our earlier discussion of the logical connectives, PL allows us to
formalise a little further. The first premise is clearly a conditional, i.e. a
combination of P and Q using ‘If...then—'. So, we can replace 1 with: 1" P
— Q. If we stretch the whole argument out on a single line we may write:

P — Q, P Therefore, Q

We can eliminate the last natural language expression from the
argument simply by choosing a symbol to mark the distinction between
the premises and the conclusion. I will use the colon “:” to mark just that
distinction. So, we replace ‘therefore” with “:" and, at last, we can
represent the Blind Lemon Jefferson argument in purely formal terms as
a sequent in PL:

P—Q, P:Q
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Quite generally, anything consisting of a bunch of formulas of PL (the
premises), a colon symbol and a single formula of PL (the conclusion) is a
sequent in PL. Hence, sequents simply represent comprehensible pieces of
reasoning in PL. But this raises an obvious question: how are we to
distinguish good, valid reasoning from bad, invalid reasoning in the
language PL? Well, if we just do not know whether a given conclusion really
does follow logically from a given set of premises in PL then we simply
separate the conclusion of that sequent from the premises using the colon
symbol “". This reflects the fact that we are entertaining or considering that
sequent but do not as yet know whether the conclusion of the sequent really
does follow from that set of premises in PL. (You might think of the colon
almost as a question mark, i.e. does that conclusion really follow from those
premises? Or even as a challenge, i.e. can you show that the conclusion
really does follow from just those premises?) When a particular conclusion
really does follow logically from a given set of premises in PL then we may
replace the colon symbol with another symbol which indicates precisely
that the conclusion really does follow logically from those premises. For
obvious reasons this symbol is known as the turnstile: ‘-". Remember: only
if the conclusion really does follow logically from those premises in PL can
we replace the colon with the turnstile symbol ‘+’. Further, note that the
turnstile says something about PL. We could subscript the turnstile with
‘PL’ to make clear that it is exactly that formal language we’re talking about.
I'll say more about that shortly but for the moment, the point is simply that
anything consisting of a finite set of formulas of PL (premises), a turnstile
symbol and a single formula of PL (the conclusion) is explicitly asserted to
be a sequent whose conclusion really does follow logically from those
premises in the formal language PL.

The distinction marked by colon and turnstile is one which is glossed over
in many introductory logic texts® but it is an important distinction none the
less and we will make it explicit. The presence of the turnstile in a sequent
represents a sort of guarantee that the conclusion really does follow from
those premises in the formal language PL (or at least represents the assertion
that this is so). The question is how to show that the conclusion really does
follow logically from the premises. When does a conclusion follow logically
from a set of premises in the formal language PL? If the conclusion does follow
logically from just that set of premises in PL then a proof of that conclusion
can be constructed from those premises in PL without the need for any
additional premises. A more precise definition will be given later, but for the
moment we can take a proof in PL to be a step-by-step way of getting from
the premises to the conclusion, each step being justified by a rule.

In PL, proofs prove sequents. If a sequent can be proved in PL then that
sequent is said to be provable or derivable in PL (though some logicians
distinguish between the two, we will use these terms interchangeably).
Hence, the presence of the turnstile in a sequent guarantees the existence of
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a proof or derivation of that conclusion from just those premises in PL,
according to the rules of the game, as it were. The turnstile therefore asserts
provability or derivability in PL. Moreover, for deep reasons which we will
consider later, we know that if a sequent is provable in PL then it is indeed
avalid sequent of PL. Hence, when the turnstile applies the conclusion really
does follow from those premises in PL, i.e. the turnstile characterises the
relation of logical consequence in PL. Therefore, provability or derivability
in PL provides one answer to the fundamental question in logic, at least in
the context of PL, namely, when does a sentence follow logically from some
other sentences? In PL, we can answer that fundamental question precisely
in terms of provability, i.e. a given formula follows logically from a set of
formulas if the former is derivable from the latter. In other words:

A conclusion follows logically from a set of premises in PL if there is a
proof of that conclusion from just those premises in PL.

More precisely, the notion of derivability, of provability, represents logical
consequence in PL syntactically. Syntactic just means ‘concerning the symbols
of the formal language PL considered purely formally and not in terms of
the meanings of those symbols’; as formal logicians put the point, ‘concerning
the symbols of PL as wholly uninterpreted’. So, odd as it may sound, syntax
is not really concerned with questions about truth or meaning (though, as
we shall see, syntactic rules and principles may themselves embody
meaningful intuitions). First and foremost, syntax is concerned with the
form, literally, the shape of formulas. Indeed, we can construct formal
languages with vocabularies of squares and circles, triangles and rectangles
and so on.* The notion of syntax will become clearer as we go. For the moment
concentrate on the idea that it is the shape of the formulas which will be
important to us in the rest of this chapter and in the next.

Consider the contents of Box 2.2 carefully before you attempt Exercise 2.2.

EXERCISE 2.2

Represent the following arguments as sequents of PL. In each case, construct
a key specifying precisely which sentence-letter of PL stands for which
natural language sentence. Replace ‘so’, ‘therefore’, etc., with “:" in each of
your answers. (At the end of this chapter you might consider whether there
is any case in which we can replace “” with “+".)

1 Big Bill Broonzy is either a Delta bluesman or a Chicago bluesman. If
he was not born in Mississippi then he is definitely a Chicago bluesman.
He wasn’t born in Mississippi. Therefore, Big Bill Broonzy was not a
Delta bluesman.
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BOX 2.2
¢ Arguments or inferences in PL are represented by sequente.

¢ A sequent consists of a finite (possibly empty) set of well-formed formulas
(premises), the colon symbol " and a single well-formed formula (the
conclusion).

¢+ Every sequent of PL either is or is not valid.

¢ A valid sequent of PL is a sequent whose conclusion is a logical
consequence of its premises in PL.

¢ A sequent of PL can be shown to be valid by constructing a proof of the
conclusion of the sequent from all and only the premises of that sequent.

¢ The presence of the turnstile symbol ‘=" in a sequent indicates the
provability of that sequent.

¢ A valid sequent consists of a finite (possibly empty) set of well-formed
formulas (premises), the turnstile symbol and a single well-formed formula
(the conclusion).

¢ The turnstile symbol represents the notion of logical consequence in PL
syntactically.

It is plainly not true both that Etta James was an angel and that Robert
Johnson sold his soul to the devil. But Etta James was an angel. So,
Robert Johnson surely sold his soul to the devil.

If there’s no light on in the Venue, the band aren’t on stage yet. It’s not
true both that there is a light on in the Venue and that it’s not going to
be a great night. It really is going to be a great night. So, the band are
definitely on stage.

Either there’s a punk rock band playing at the Venue tonight or the
music is strictly classical. If the punk rock band are playing then there
will be no blues at the Venue tonight. But if the music is strictly classical
there won't be any blues at the Venue tonight. So, there will be no
blues at the Venue tonight.
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5  If there’s a band on stage and the music is groovy then it can’t be the
Nasal Flute Orchestra. So, if it’s the Nasal Flute Orchestra then, if there
really is a band on stage, then the music certainly is not groovy.

v
Proof and the Rules of
Natural Deduction

Because proofs prove sequents, each proof will begin with the relevant set
of premises and will end with the conclusion proved from those premises
(at this early stage, it may help to think of literally making the conclusion
out of the raw material of the premises). Proofs are constructed in PL by
manipulating the premises we have been given by applying certain rules
for such manipulations. These rules are known as rules of inference in PL,
just because the rules determine which inferences can legitimately be drawn
in PL. That part or, better, fragment of prepositional logic which is concerned
with actually constructing proofs in terms of the rules of inference is known,
rather solemnly, as the prepositional calculus. The version of prepositional
calculus which we will consider here involves twelve simple rules of
inference.

For each of the binary logical connectives in PL, there is both an
introduction-rule, which brings that connective into a line of proof, and an
elimination-rule, which takes the connective back out of a line of proof. In
addition, a small number of important rules govern the behaviour of the
negation symbol, ‘~’, in proofs. Such rules are syntactic, i.e. via the
connectives, each rule exploits the form and shape of formulas in PL.
However, many logicians feel that these principles of inference, to a great
extent, fix the meaning of the logical connectives just by spelling out exactly
what we can and can’t infer from them. On this view, the introduction- and
elimination-rules for each connective are thought of as capturing our core
understanding of each connective in a very immediate way. This is a subtle
point which requires a little reflection, but each of the introduction- and
elimination-rules is perfectly simple and intuitive. In the process of proof-
construction, these simple rules can be combined in complex strategies just
as each of the pieces in chess has a simple move and yet they combine
intricately. In this way, important traditional laws of logic and some very
complex sequents become provable.

Every proof consists of a number of lines of proof. Each line of proof
consists of four parts. The first is a line number. Lines are simply numbered
consecutively: 1,2,3...with each new number written on the line below the
last until the final line, the line of the conclusion, is reached, i.e.:
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The second part of any line of proof is a formula on that line. In the simplest
case, this would be a single sentence-letter, i.e. an atomic formula. For
example:

1. P

Each and every step in a proof, from one line to the next, must be
made in terms of a rule of inference and the actual rule used must
be cited. Citing the name of the rule, the rule annotation, is the
third part of the line of proof. The first and most basic rule of
inference is the rule of Premise-Introduction. It simply allows us to
enter the relevant premises of any sequent onto lines of proof.
According to the rule of premise-introduction any well-formed
formula may be entered as a premise on any line of a proof. This
rule is simply cited as ‘Premise’. To introduce P as a premise on
line 1, for example, we write:

1. P Premise

So far then, we know which formula is on which specific line of proof and
that we entered the formula on that line by a particular rule. But the line of
proof is still incomplete, for we do not yet know whether that formula itself
depends upon any other formulas. In practice, the formula on the line of
proof frequently does depend upon other formulas and it is crucial to be
able to express that fact and to specify exactly which other formulas are
being leaned on. To that end, we set aside a space to the left of the line
number and there we simply list the line numbers of any other formulas
which that formula depends upon. These numbers are the formula’s
dependency-numbers. Because a formula often has more than one
dependency-number, and so that we do not confuse dependency-numbers
with line numbers, we place the set of dependency-numbers inside curly
brackets ‘{ }.

In practice, this part of a line of proof is always very easy to get hold of
just because every rule of inference contains a recipe for making the set of
dependency-numbers. For example, here is the rule of premise-introduction
in full:
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Premise-Introduction: Any well-formed formula may be introduced as a
premise on any line of proof. The dependency-number of that line is identical
with the line number of that line of proof.

So, the dependency-number of any formula introduced as a premise is
always the same as the line number of the line where it is introduced. In
an important sense, every premise is self-sufficient. It is not derived from
anything else and its presence on a line of proof depends upon nothing
other than the fact that we have asserted that premise. Hence, the formula
on any line annotated ‘premise’ depends only upon itself. Now,
dependency-numbers are always entered in brackets behind the line
number. In the example above, where P was introduced as a premise on
line number one, its dependency-number is the same as its line number,
so the set of dependencies is simply {1}. The complete line of proof looks
like this:

{1} 1. P Premise

Suppose I now introduce Q as a second premise on line number two. The
proof now looks like this:

{1} 1. P Premise
{2} 2. Q Premise

(Work out how the proof would look if I next introduced R as a premise on
line 3.)

So far, the proof consists of two premises: P on line 1 and Q on line
two. But remember: PL is a language and just as I may conjoin two
sentences in English using ‘and” so two formulas in PL can be conjoined
using ‘&’. In both English and PL, we create a conjunction. Every
conjunction consists of two conjuncts. The rule of inference which
permits this move is called &-introduction (and-introduction). To cite it,
write the line number of each line used, followed by “&I’. Here is the
rule in full:

&l: Any two well-formed formulas may be conjoined. The relevant line
numbers and ‘&!” must be cited. The dependency-numbers of the new line
consist of all the dependency-numbers of both lines used.

For example, to conjoin P from line 1 with Q from line 2, on a new line, say
3, I simply cite lines 1 and 2, write ‘&I’, and pool the dependency-numbers
of both to get the dependency-numbers of the new line 3, i.e.:

{1,2} 3. P&Q 1,2 &I
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To recap:
{1} 1. P Premise
{2} 2. Q Premise
{1,2} 3. P&Q 1,2 &1

I have now constructed a proof of the conclusion P&Q from premises P
and Q. Therefore, I may write P, Q + P & Q. This simple proof
illustrates a number of important points about proof-construction: first,
proofs proceed from premises to conclusion. The premises are just
those formulas listed on the left-hand side of the turnstile. The
conclusion is the formula on the right of the turnstile. Distinct
premises are separated on the left by commas. Each distinct premise
should be asserted on its own line of proof. The natural way to do this
is just to enter each premise on a separate line of proof in the order in
which they are given, i.e. just as originally listed on the left-hand side
of the turnstile or colon symbol.

Note that the proof proceeds via the introduction of premises P and Q on
lines 1 and 2 and ends with the conclusion P & Q on the last line of proof.
Note also that, in this case, the conclusion is literally constructed from the
premises using the rules of inference. Finally, note that all of this
information is encoded in the last line. Recall the four parts of any line of
proof. In this instance, what these tell us is exactly that the conclusion P &
Q was constructed on line 3 by the rule of &-introduction and that the set of
its dependencies is {1,2}. These dependency-numbers just refer back to
earlier line numbers. If we check back, we can see that the line numbers
cited are line numbers 1 and 2. These lines contain the premises P and Q
respectively. Therefore, the conclusion has been derived from just those
premises and does not depend upon any other formula. Further, note the
way in which the introduction rule for ‘&” works. As noted earlier the
introduction rule brings the connective in, in a line of proof. But recall that
each connective also has an elimination-rule. The elimination-rule for ‘&,
&E, is as follows:

&E: One conjunct may be removed from a conjunction by one application
of &E. The line number of the conjunction must be cited together with
‘&E’. The dependency-numbers of the new line are identical with those of

the original line containing the conjunction.

Suppose I introduce P & Q on line 1:

{1} 1. P&Q Premise
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&E allows me to infer:

{1} 2. P 1 &E

Hence, I have proved that:

P&QFP

Equally, introducing P & Q on line 1:

{1} 1. P&Q Premise

&E allows me to infer:,

{1} 2. Q 1 &E

This time I have proved that:

P&QFQ

&E allows me to take either conjunct out of the conjunction and, in fact, I
can take both conjuncts out. The only constraint is that I cannot take both
out with a single application. Each conjunct requires a separate application
of the rule. Note how &E as an elimination-rule effectively removes the
connective from the line of proof which we use it to construct: line 2 does
not contain ‘&’. In both cases, the application of the elimination-rule removes
the connective from the new line. As we shall see, this holds quite generally
for the rules governing each connective. Now consider the following proof
which combines both rules for &:

Q&R),PFP&Q) &R

{1} 1. (Q&R) Premise
{2} 2 P Premise
{1} 3 Q 1 &E
{1} 4. R 1 &E
{1,2} 5 P&Q 2,3 &l
{1,2} 6 P&Q) &R 4,5 &I

So, &I can both be used to conjoin two atomic formulas, as in line 5, and to
conjoin an atomic formula with a compound formula. Equally, &I can also
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be used to conjoin two compound formulas. Note also the pattern of the
proof: first, the premises are set out. Next, compound formulas, like the
formula on line 1, are broken down into their simple constituents. Finally,
those simple constituents are put back together slightly differently so as to
construct the desired conclusion depending only on its premises. In effect,
we construct a formula with a certain specific shape (the conclusion) from
the premises. This pattern is common to many proofs in prepositional
calculus and reflects the attempt to derive the conclusion from the premises.

\Y
Defining:
‘Proof-in-PL’

We are now in a position to begin to construct a rigorous and precise
definition of what exactly counts as a proof in the formal language PL.

BOX 2.3
¢ A proof consists of a set of consecutively numbered lines of proof.

¢ Each line of proof is composed of four parts: (i) a line number; (ii) a formula
on that line; (iii) the name of the rule in virtue of which the formula was
entered on that line; (iv) the formula’s dependency-numbers, i.e. a set of line
numbers each of which refers back to a formula upon which the current
formula depends.

¢ Each step in a proof must be made in terms of a rule of inference. So far, we
have outlined the following rules:

¢ Premise-Introduction: Any well-formed formula may be introduced as a
premise on any line of proof. The dependency-number of that line is identical
with the line number of that line of proof.

¢ &lI: Any two well-formed formulas may be conjoined. The relevant line-
numbers and ‘&l” must be cited. The dependency-numbers of the new line
consist of all the dependency-numbers of both lines used.

¢ &E: A conjunct may be removed from a conjunction by an application of
‘&E’. The line number of the conjunction must be cited together with ‘&E’. The
dependency-numbers of the new line are identical with those of the original
line.
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Because we have not yet considered every rule of inference the definition
will not be as specific as possible. But we can arrive at a useful, general
definition: a proof-in-PL is a finite sequence of consecutively numbered
lines, each consisting of a well-formed formula of PL, together with a set of
numbers known as the dependency-numbers of that line, the entire sequence
being constructed using the rules of inference of PL.

In order to make the definition fully specific we replace the last four
words “...of inference of PL” with a list of the names of the rules. At this
stage we might begin as follows ‘Premise-Introduction, &I, &E...”, but we
cannot fill in the dots until we have considered the remaining rules of
inference. In the meantime, study the contents of Box 2.3 carefully before
attempting Exercise 2.3.

EXERCISE 2.3

1 Name and explain each of the four parts of a line of proof.

2 Prove that the following sequents are valid sequents of PL. If you
succeed in constructing a proof you may replace " with ‘+" in the
sequent. (The numbers in brackets next to each sequent indicate the
number of lines in my proof of that sequent. If your proof turns out
to be longer or shorter than that check each line of proof carefully.)

1. PQP&Q (3)
2. PQR(P&Q) &R (5)
3. PQRS(P&Q) & R&S) @)
4  P&QP @)
5. P&QQ @)
6. (P&Q)&RP 3)
7. (P&Q)& (R&S)P 3)
8. (Q&R),P:(P&Q)&R (6)

VI
Conditionals 1: MP

The next rules of inference to consider govern the connective marked by
the arrow ‘=’ which is read as ‘If...then—'. In PL, sentences of this type are
known as conditionals. The arrow is a binary connective which connects two
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formulas. In the simplest case, for example, P — Q. In any conditional, the
formula occurring before the arrow symbol is known as the antecedent of
the conditional. The formula occurring after the arrow is the consequent of
the conditional.

Like every other binary connective in PL there is an introduction-rule
for arrow and an elimination-rule. In the case of this connective, however,
these rules are honoured with traditional names. We could simply replace
these traditional names with arrow-introduction and arrow-elimination.
But most logicians still use the traditional terms and it is more difficult to
impress your friends with rather mundane names such as ‘arrow-
elimination’. The traditional name for arrow-elimination is modus ponendo
ponens, which is usually shortened to modus ponens, or just MP. This
particular Latinism is most readily understood as ‘way of putting’, i.e.
way of putting the consequent (on a line), having already put the
antecedent (on an earlier one). This rule of inference is already perfectly
familiar: the conclusion of the Blind Lemon Jefferson argument is inferred
by MP:

MP: Given a conditional formula on one line of proof and its
antecedent on another line, its consequent may be inferred. The line
numbers of each must be cited together with MP. The dependency-
numbers of the new line consist of the dependency-numbers of both
cited lines.

Here is a simple example of MP which should look familiar:

P->Q,PFQ
{1 1. P->Q Premise
{2} 2. P Premise
{1,2} 3. Q 1,2 MP

This particular sequent of PL is of exactly the same logical form as the original
Blind Lemon Jefferson argument. Further, note that MP genuinely is the
elimination-rule for arrow: it eliminates arrow from the line of proof which
it is used to construct. Many logicians refer to MP as the rule of detachment.
This is very appropriate, i.e. it is almost as if, given P on line 2, we use MP
literally to detach the consequent Q from the conditional P ® Q on line 1, to
end up on its own on line 3.

Again, the simplest conditionals will contain only atomic formulas, e.g.
P — Q. But note that the antecedent of any conditional may be a compound
formula, e.g. (P & Q) — R. Equally, the consequent may be compound, e.g.
P — (Q & R). Indeed, both may be compound. MP applies none the less. Be
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it simple or complex, provided that the antecedent of the relevant conditional
is also on a line of its own then the consequent of that conditional may be
inferred by MP.

Now try Exercise 2.4.

EXERCISE 2.4

1  Prove that the following sequents are valid in PL. If you succeed in
constructing a proof you may replace " with ‘+’" in the sequent. (Again,
the numbers in brackets next to each sequent indicate the number of
lines in my proof of the sequent. If your proof is longer or shorter check
each line of proof carefully.)

1. P->Q,PQ 3)
2. P->P-Q),PQ 4)
3. P>P&Q),PQ 4)
4. P->(Q—->R),P—>Q PR (6)

2 Consider the following arguments carefully. Note that although I have
identified the premises and the conclusion in the first two, you must
identify the premises and the conclusion in the remaining cases.
Represent each argument as a sequent of PL and, in each case, prove
that the sequent in question is valid in PL:

(i)  Premise 1: If Blind Lemon Jefferson was a bluesman then I'm a
Dutchman and | will eat my hat.

Premise 2: Blind Lemon Jefferson was a bluesman and | am a
Dutchman.

Therefore: Blind Lemon Jefferson was a bluesman and | will eat my
hat.

(i)  Premise 1: If it's really true that if Blind Lemon Jefferson was a
bluesman then he lived in utter poverty, then if he wanted to
have an income then he undoubtedly worked as a part-time
postman in Mississippi.

Premise 2: If Blind Lemon Jefferson was a bluesman then he did live in
utter poverty.

Premise 3: Blind Lemon Jefferson was a bluesman and he wanted to
have an income.

Therefore: Blind Lemon Jefferson undoubtedly worked as a part-time
postman in Mississippi.
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(iii)  Miss Scarlet was in the kitchen. If Miss Scarlet was in the kitchen
then Reverend Green was in the conservatory. Therefore, Miss Scarlet
was in the kitchen and Reverend Green was in the conservatory.

(iv) Reverend Green was in the conservatory. If Reverend Green was in
the conservatory then the murder weapon was the knife. If Reverend
Green was in the conservatory then if the murder weapon was the
knife then Colonel Mustard was the murderer. Therefore, Reverend
Green was in the conservatory and Colonel Mustard was the murderer.

(v)  The murder weapon was the knife. If the murder weapon was the
knife then Professor Plum is plainly innocent. If the murder weapon
was the knife then if Professor Plum is plainly innocent then Colonel
Mustard was the murderer. If Colonel Mustard was the murderer then
Miss Scarlet was in the kitchen. Therefore, the murder weapon was
the knife and Professor Plum is plainly innocent. And Colonel Mustard
was the murderer and Miss Scarlet was in the kitchen.

VII
Conditionals 2: CP

The introduction-rule for arrow is known as conditional proof or CP. For
both theoretical and practical reasons, this is by far the most important rule
of inference we have considered to date. Before examining the formal rule
of inference itself it will help if we briefly explore, informally, the way in
which we reason with conditional sentences in general. This is a strategy
which we will often exploit: appealing to ordinary practices and our
intuitions first, and then moving on to formal considerations. Justifying a
particular conditional sentence is not the same thing as justifying the entire
rule of conditional proof. None the less, some important aspects of ordinary
reasoning with conditionals are involved in the use of CP as a formal rule of
inference.

For example, recall the conditional sentence which we considered as the
tirst premise of the very first example of valid argument:

If it's a Blind Lemon Jefferson album then it’s a blues album.

Under what conditions might this conditional sentence be justified? Note
carefully just what kind of claim a conditional sentence makes: the claim
is not that the antecedent is actually true but just that if it is then the
consequent should also be true, i.e. if it is a Blind Lemon album then it is
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a blues album. The consequent, we might say, is conditional upon the
antecedent in the sense that if the antecedent is true then we do expect
the consequent to be true also. We may not be able to establish the truth
of the consequent just on the basis of the antecedent alone. Some other
premises may be required. For example, we might also need to know
that Blind Lemon was a truly miserable bluesman who only ever played
the blues. Be that as it may, if the conditional is justified then we would
expect that when the antecedent is true the consequent is also true. Then,
surely, we are justified in asserting the conditional sentence itself. But
how are we to determine whether or not this is the case? The natural
strategy, surely, is first to assume that the antecedent is true and then
consider whether or not the consequent is also true, i.e. assume that the
album really is by Blind Lemon and then ask: is it a blues album? Given
what we already know in this case, we know that the consequent certainly
is true, that it is indeed a blues album, and so this particular conditional
really is justified.

At this point it is worth warning against a very popular mistake. Perhaps
you are tempted to reason erroneously as follows: “Well, if P entails Q then
obviously Q follows from P. So, the conditional P — Q just means that Q is
a logical consequence of P, i.e. that P - Q.” Making this particular mistake
could certainly result in failing a logic exam. Why is it a hanging matter?
Just because it confuses and conflates two very different relations between
formulas. Think hard for a moment about the meaning of the turnstile
symbol. We know that it replaces the word “Therefore” but note that it also
has a quite different function: the presence of the turnstile in a sequent
represents the assertion that the conclusion of that sequent really does follow
logically from its premises in PL. So, we might say, the turnstile means
something like: ‘In the formal language PL this conclusion is a logical
consequence of these premises.’

Note how this assertion begins: ‘In the formal language PL...". Clearly,
the turnstile is saying something about PL. It is not itself an assertion in
PL. In fact, the turnstile belongs to a language beyond PL which we use to
talk about PL. The language to which the turnstile belongs is called the
metalanguage. The prefix ‘meta’ derives from Ancient Greek and means
‘after’. Therefore, the metalanguage is a language coming after PL which
we use to talk about PL. For our purposes, we can simply consider English
supplemented with ‘+" and the other formal symbols we have introduced
to date as forming the metalanguage, i.e. in Haskell B. Curry’s terms, we
can understand the metalanguage as ‘the totality of linguistic conventions
which, at the moment, we understand’.®> From the viewpoint of the
metalanguage, PL is known as the object language. So, why shouldn’t we
confuse turnstile and arrow? For starters, the turnstile is a symbol
belonging to the metalanguage while ‘= is a logical connective belonging
to the object language. So, these two don’t even belong to the same



58 HOW TO PROVE THAT YOU CAN ARGUE LOGICALLY #1

language. Moreover, the turnstile represents the relation of provability,
derivability and therefore consequence in PL while the arrow represents
no such thing. The turnstile is one way of representing logical consequence
between formulas of PL. Arrow is not. The arrow is simply a logical
connective which represents a much weaker, grammatical, relation known
as material implication. If P materially implies Q, that just means that Q
is not false when P is true—and that’s all. And this is exactly what we
would expect. Take the Blind Lemon Jefferson case: the conditional is
justified, we said, as long as the consequent is true when the antecedent is
true. So, the conditional itself will not be true if the consequent is false
when the antecedent is true. And that is just what is meant by material
implication, i.e. the relation which the arrow represents.

To recap: in general, a conditional will have been justified if, having
assumed the antecedent, the consequent can also be shown to hold. Equally,
if we assume the antecedent and the conclusion does not hold then, surely,
the conditional is not justified. Now, it is exactly this kind of reasoning which
is involved in any application of conditional proof: to prove a conditional,
first assume its antecedent, then try to derive its consequent from the
antecedent alone or together with some other premises. Only if you succeed
in deriving the consequent can you take the conditional itself as having
been proved.

The practical significance of this particular rule is substantial:
conditional proof isn’t simply a rule, it is a strategy, and a highly
economical one at that. Why? Given any sequent with a conditional as its
conclusion we know exactly how to prove it: assume the antecedent and
then attempt to derive the consequent using the antecedent and whatever
else is available. Most importantly, if, having assumed the antecedent,
you succeed in deriving the consequent, conditional proof allows you to
enter that conditional on a line of proof without it depending on that
assumption. Why? Remember that the conditional does not involve the
claim that its antecedent is actually true. So, we do not need to assert
that it is true either.

Rather, we simply assume the antecedent and then try to show that
under those circumstances the consequent also holds. So our reasoning,
we might say, is only hypothetical. Hence, though we may seem to have
an extra premise in the form of the antecedent, in reality we do not. We
have only an extra assumption and CP allows us to eliminate or discharge
that assumption. For precisely that reason logicians refer to CP as a
discharge rule: the assumed antecedent is simply discharged once the
conditional itself is proved. The distinction between premises and
assumptions is again one which is often glossed over in introductory
logic texts but it is a good distinction none the less: premises are explicitly
asserted to be true and conclusions are proved from them. Such reasoning
is categorical reasoning. But assumptions are merely assumed.
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Reasoning with assumptions is hypothetical. So, any assumption that we
might make for CP will certainly be involved in a proof, but not as a
premise. For that reason we require a new rule which allows us to make
clear that a formula has been assumed rather than asserted as a premise.
Unsurprisingly, the new rule is known as the rule of assumptions and
its annotation is just ‘assumption’ or, even more briefly, “A’. Here is the
rule in full:

A: Any formula may be assumed on any line of proof. The line must be
annotated ‘A’ for ‘assumption’. The dependency-number of the assumed
formula is identical with the line number of the line on which it is assumed.

Obviously, this rule-statement is similar in some respects to the one
given for premise-introduction and you might be tempted to think of
assumptions as being rather like premises, perhaps as temporary
premises. For example, you might think of an assumption as a premise
for any formula which is derived from it. That thought is not entirely
false but it is potentially misleading in so far as it obscures a useful
distinction. Any formula on a line annotated ‘A’ is only assumed to be
true. Hence, it is an assumption. It is not explicitly asserted to be true.
So, it is not a premise. Most importantly, always remember that, at the
last line of proof, the conclusion should never include among its
dependencies any number which refers back to an assumption. Why
not? Because all assumptions should have been discharged by that
stage, leaving the conclusion to rest only on its premises. As we have
seen, the distinction between premises and assumptions is ultimately
well grounded in ordinary reasoning in natural language and I hope
that you find it intuitive. We will return to the same distinction again
in the next chapter, where we will find that we can sharpen that
distinction a little further, again, just in terms of the role and use of
premises and assumptions in the proof-theory of PL.°

We are now in a position to consider the rule of conditional proof formally,
but let’s recap on the strategy. To prove a conditional:

1 First, assume the antecedent. When you assume the antecedent
annotate that line ‘assumption” and write ‘for CP” alongside. Then
enter the line number as the dependency-number (this practice makes
clear why the assumption has been made and allows you to keep
track of the number you will later discharge).

2 Next, use the antecedent, and anything else available, to derive the
consequent.

3 Finally, take the antecedent from its line, the consequent from its line
and introduce the arrow between them. Annotate the new line with
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those line numbers and ‘CP’. But always remember: CP is a discharge
rule. Once CP is applied the dependency-number of the antecedent
should always be removed from the set of dependencies of the line
annotated CP.

Every proof with a conditional conclusion can be proved using CP. Here is
a statement of the rule in full. It is well worth learning by rote:

CP: Assume the antecedent. Derive the consequent. Enter the
conditional on a line along with ‘CP’. The line numbers are both
those where the antecedent is assumed and those where the
consequent is derived. Discharge the dependency-number of the
antecedent. Pool the remaining dependency-numbers to complete
the line.

Note: In any application of CP, the dependency-number of the antecedent
must always appear in both lines used in the CP. Otherwise, the consequent
has not been proved to follow from the antecedent, and CP cannot be used.
This is an important constraint but one that is easy to meet in practice.
Consider some simple examples:

1.P->QR—-PFR—-Q

{1} 1. P—-Q Premise

{2} 2 R—>P Premise

{3} 3 R Assumption for CP [antecedent of R — Q]
{2,3} 4. P 2,3 MP

{1,2,3} 5 Q 1,4 MP

{1,2} 6 R—>Q 3,5CP

Note how MP detaches the consequent of the conditional to which it is
applied and eliminates the arrow from the line it is used to construct
(lines 4 and 5). Note also that the application of CP introduces the arrow
to the line it is used to construct. So, we can think of CP as taking two
formulas, one from line 3, the other from line 5, and introducing the
arrow between them. And note very carefully that there is indeed a
number in common between the two lines used for CP (3, in bold type).
Moreover, that common number is precisely the dependency-number of
the assumed antecedent.

Consider another example. This time the conditional we want to prove
has a complex consequent. But the other rules make it easy to derive that
consequent:
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2. P>QP>RFP>S(Q&R)

{1} 1. P->Q Premise

{2} 2 P->R Premise

{3} 3 P Assumption for CP

{1,3} 4. Q 1,3 MP [detaching Q]

{2,3} 5 R 2,3 MP [detaching R]

{1,2,3} 6 Q&R 4,5 &I [deriving the consequent]
{1,2} 7 P> (Q&R) 3,6 CP

Note again how MP detaches the two formulas needed to derive the
consequent. This time they must be conjoined using &I (line 6). Again,
the common number is 3. And again that is just the dependency-number
of the antecedent, which is precisely what CP allows us to discharge.
The conclusion P = (Q & R) on line 7 now has as dependency-numbers
only 1 and 2. It is easy to check back up the proof to see that lines 1 and
2 are just where the original premises lie. Therefore, P — (Q & R) has
been proved from P — Q and P — R alone.

Consider a final example of CP, (P & Q) - R+ P — (Q — R). This time
the formula on the right-hand side of the turnstile is a conditional. Its
antecedent is just P but its consequent is itself a conditional, Q — R.
Conditionals of this level of complexity and greater levels of complexity
are known as nested conditionals. CP makes it very easy to handle nested
conditionals of this kind in proofs. Recall CP as a strategy: assume the
antecedent then derive the consequent. To handle nested conditionals we
simply keep applying the strategy; we iterate CP. So, first assume the
antecedent of the whole conditional to the right of the turnstile, i.e. .
But note that the consequent we want to derive is also a conditional: Q
— R. So, we simply assume its antecedent, i.e. Q, and then derive its
consequent, R. The rest is perfectly straightforward. Here is the complete
proof:

{1} 1. P&Q)—>R Premise

{2} 2. P Assumption for CP [antecedent of conclusion]
{3} 3. Q Assumption for CP [antecedent of Q — R]
{2,3} 4. P&Q 2,3 &I [for MP]

{1,2,3} 5. R 1,4 MP [deriving the consequent of Q — R]
{1,2} 6. Q=R 3,5 CP [discharging 3]

{1} 7. P->(Q->R) 2,6CPIdischarging 2]
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Note that I simply assume each antecedent in turn, derive the
consequent, R, by &I and MP, and then discharge each of the ‘extra’
dependency-numbers in turn, leaving the conclusion to depend only on
its premise, dependency-number 1. You should now study each of the
proofs given in this section very carefully, noting down what the
sequent is and making a mental note of how each is proved (you should
learn CP as a strategy by rote). Next, turn the book over and try to prove
each sequent on your own, without cheating! Once you’ve mastered
these proofs you can recap with Box 2.4 and then hone your skills on the
sequents in Exercise 2.5.

EXERCISE 2.5

1 Consider the following ten sequents carefully. In each case the formula
to the right of the turnstile is a conditional. However, in sequents 4-10,
that conditional is either nested or composed of other compound

BOX 2.4
¢ Each and every sequent with a conditional conclusion can be proved using CP.

¢ The strategy for CP is simply this: assume the antecedent then derive the
consequent.

¢ Reasoning from assumptions is hypothetical. Reasoning from premises is
categorical.

¢ Assumptions may be discharged and CP allows us to discharge assumptions
at the point at which we apply that rule, i.e. at the line annotated ‘CP’.

Learn the following rule-statements by heart

¢ A: Any formula may be assumed on any line of any proof. The line must be
annotated ‘A’. The dependency-number of the assumed formula is identical
with the line number of the line on which it was assumed.

¢ CP: Assume the antecedent. Derive the consequent. Enter the conditional
on a line along with ‘CP’. The line numbers are both those where the
antecedent is assumed and those where the consequent is derived. Discharge
the dependency-number of the antecedent. Pool the remaining dependency-
numbers and complete the line.
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formulas. In constructing a proof of a nested conditional it is important
to assume each antecedent in turn. In constructing a proof of a complex
conditional composed of other compound formulas remember to
assume the whole antecedent each time. Prove that each of these
sequents is valid in PL. (Again, the numbers in brackets indicate the
number of lines in my proof of the sequent.)

1. P>Q&R):P—Q 5)
2. P&Q)—R,PQ—R 6)
3. P&Q),(P&R)—>S:R—S 7)
4. P&Q) —-RP—-(Q—R) (7)
5. PoQP&R) > R&Q) (7)
6. P->QQ—->R)~>((P—>R) (7)
7. R2>PQ->8F->Q~>[R~5) ©)
8. P-Q:P—-R)—»P—->(Q&R)) (8)
9. P>@Q->Rp(5->Q—> P~ (S—R)) (10)
10. PoQ(R&Q)—S) > (R&P)—>9) (10)

VIII
Augmentation: Conditional
Proof for Exam Purposes

Earlier I noted the following crucial constraint on the use of CP: in any
application of CP, the dependency-number of the antecedent must always
be included among the dependencies of both lines used for CP. Otherwise,
the consequent has not been derived from the antecedent. The proofs we
have considered so far have posed no problems in this respect. Looking
back, the common dependency-number (of the antecedent) is obvious. But
that may not always be the case. For example, suppose I want to prove that:
Q F P — Q. Given that the conclusion to be proved is a conditional, the
strategy to crack the proof is CP. So, assume the antecedent and derive the
consequent. But note carefully what results:

{1} 1. Q Premise
{2} 2. P Assumption for CP
3. P—-Q 2
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First, we introduce the premise, Q. Next, we assume the antecedent, P, for
CP. We now want to apply CP. But we cannot: there is no number common
to the sets of dependency-numbers for lines 1 and 2. So, the formulas on
lines 1 and 2 have nothing whatever to do with one another. To apply CP,
the formulas must work together such that we derive the consequent from
the antecedent. Only in that way will we ever get the desired common
dependency-number that will allow us to apply CP. In practice, this
stumbling block is easily overcome. We can always get the formulas to work
together by &I-ing them together and then &E-ing them apart again, i.e. we
exploit the rules for ‘&’ to get the dependency-numbers just as we want
them, like so:

QFP—-Q

{1} 1. Q Premise

{2} 2. P Assumption for CP
{1,2} 3. P&Q 1,2 &I

{1,2} 4 Q 3 &E

{1} 5 P->Q 24 CP

Note that the formulas on lines 1 and 4 are the same, namely Q. But
note also that each occurrence of the sentence-letter Q has different
dependency-numbers. The set of dependencies belonging to line 4 is
larger than that of line 1 because the formula on line 4 is the result of
conjoining Q with P and then taking Q back out of that conjunction. In
virtue of those moves, the rules do now permit us to apply CP to lines 2
and 4 just because there is a common number, namely, 2. That number is
precisely the dependency-number of P and P is precisely the antecedent.
It is tempting to describe this useful strategy as ‘cheating with CP for
exam purposes’. However, according to certain logicians, known as
‘relevance’ logicians, if one cheats in order to get the right answer by
illicit means then this is worse than cheating, for in their view it is just
to get the wrong answer.

That is not to say that relevance logicians object to the rules of &I and
&E. These rules are not considered problematic in themselves. Rather,
the objection is that exploiting the rules in that way legitimates CP on
the result. Again, however, this is controversial territory and, for our
purposes, this strategy for CP is a perfectly legitimate one. Indeed, it has
the solemn and impressive title of augmentation, i.e. Q may be
augmented by P using the & rules. Moreover, the legitimacy of
augmentation as a strategy is underpinned by the definition of validity
which we stated in Chapter 1. Remember: the truth of the premises is
sufficient to guarantee the truth of the conclusion. But if the conclusion
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follows from some true premises and we simply add a few more true
premises the conclusion must still follow. More generally:

If a given formula follows from a particular set of formulas then the same
formula follows from any augmentation of that set of formulas.

This property of PL is known as monotonicity: if a given formula follows
from some set of formulas then any addition of further formulas to that set
results in a set from which the original formula will still follow. Fortunately
for those facing exams in PL, PL is a monotonic logic.

IX
Theorems

CP is the first rule of inference we have encountered which allows us to
discharge assumptions. But it will not be the last. Discharge rules are
especially useful for proving sequents which represent the traditional laws
of logic or logical truths in PL. Why should this be so? Remember that CP is
a discharge rule which allows us to discharge assumptions, and that
applications of that rule may be iterated. Suppose we only have assumptions
to worry about in a given case. Further suppose that we can and do keep
iterating CP until there are no assumptions left for the conclusion to depend
upon. What are we to say of a conclusion derived in this way? Does it follow
from nothing? After all, sequents representing such formulas will have
nothing on the left-hand side of the turnstile, i.e. no premises will be
involved. So, they will consist just of a turnstile followed by a formula of
PL. Certainly, these formulas require no premises, but that does not mean
that they follow from nothing. Rather, the mere form of such a formula is
always sufficient to guarantee its truth.

Those sequents of PL whose set of premises is the empty set, i.e. which
have no premises, are known as theorems of PL. The theorems of PL include
the traditional laws of logic. And this is unsurprising. Theorems are logical
truths. Recall the definition of validity: an argument is valid if and only if it
is impossible for the conclusion to be false when the premises are true. But
logical truths are never false. No matter how we interpret the sentence-letters
involved in any logical truth it still comes out true.

For example, consider the law of identity: - P — P. There is no possible
interpretation under which the formula P — P is false. If it’s raining then it’s
raining. If the sun is shining then the sun is shining. And so on, ad nauseam.
The very form of this formula ensures that no matter how we translate or
interpret its constituent sentence-letters it will always be true. Hence, the
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law of identity is a logical truth. It is also a theorem of PL and because the
formula is a conditional we prove it by CP. In the following proof of the law
of identity note how a well-formed formula in effect takes itself as
assumption. This is a perfectly respectable application of CP and one which
is eminently useful at times:

FP—->P

{1} 1. P Assumption for CP

— 2. PP 1,1CP

Keep this strategy in mind when you attempt Exercise 2.6 (particularly when
you try to prove the first theorem).

EXERCISE 2.6

1. Prove that the following sequents are theorems of PL.:

L «(P->P)»Q—-Q ©)
2. (P>Q~(Q—>R)—~>(P—R) (8)
3. «(Q->R)=>((P—-Q—(P—R) (8)
4 P—=>(Q— (P &Q)) (5)

X
The Biconditional

While the nature of material implication is still fresh in your mind and the
strategy for conditional proof is still echoing round your head and tripping
off your tongue, the time is just right to consider another connective: the
biconditional.

The very name of this connective, the ‘biconditional’, at once suggests a
connection with conditionals and that is entirely appropriate. However,
when it comes to asserting a biconditional, rather than merely asserting ‘if
P then Q' I am asserting ‘P if and only if Q’. Let’s unpack this a little using an
example. What exactly do I imply when I assert that ‘Logic students pass
their logic exams if and only if logic students do their homework’? Well,
surely I imply two things, i.e. I imply both that logic students pass their
logic exams if they do their homework and that logic students pass logic
exams only if they do their homework. The first of these implications, ‘Logic
students pass logic exams if they do their homework’, is just equivalent to
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the conditional: ‘If logic students do their homework then logic students
pass their exams.” And it’s easy to see that the second implication simply
reverses that conditional, i.e. it is equivalent to: ‘If Logic students pass their
exams then they have done their homework!”

This point is even easier to see formally. Consider the assertion: ‘P if and
only if Q’. This implies both ‘P if Q" and ‘P only if Q". ‘P if Q" is equivalent to
‘If Q then P” while ‘P only if Q" is equivalent to ‘If P then Q’. It follows
logically that to assert ‘P if and only if Q” is to assert both ‘If Q then P’ and ‘If
P then Q" or, equivalently, ‘If P then Q" and ‘If Q then P’. In virtue of its
equivalence to the conjunction of these two conditionals, we refer to ‘<" as
the biconditional.

Moreover, because ‘P if and only if Q" is equivalent to ‘if P then Q and if
Q then P, i.e. in formal terms to (P —» Q) & (Q — P), we can always rewrite
the former as the latter whenever it occurs and be sure that the truth-
value is preserved. For exactly that reason, a number of systems of
propositional logic make the equivalence explicit and define the
biconditional in terms of that equivalence. Such a definition is considered
to make the meaning of ‘<" explicit in terms of the equivalence. Therefore,
whenever a biconditional features as a premise (or anywhere else for that
matter) in a proof, such formal logicians simply rewrite the biconditional
formula as the conjunction of the relevant two conditionals on the next
line and annotate the new line with the original line number and ‘Df. <,
i.e., ‘Df’ for ‘Definition’. The dependency numbers of the new line formed
in this way are exactly those of the old line. Thereafter, the conjunction of
the two conditionals is just handled using the original rules as, for example,
in the following proof:

1.P<QEQeP

{1} 1. P—->Q Premise
{1} 2. P—->Q) & (Q—DP) 1Df. <
{1 3. P-Q 2&E
{1} 4. Q-P 2 &E
{1} 5. Q-P)&P—-Q) 4,3 &I
{1} 6. Q—-P 5Df. &

Given P — Q on a line (such as line 3) and Q — P on another (such as line 4)
it is perfectly valid to infer that P <» Q. After all, the latter is equivalent to
the former pair of conditionals.

However, certain systems of propositional logic do make explicit
an introduction-rule for ‘<’, ©I. The rule-statement is just as we’d
expect:
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<1: Given a pair of conditionals on two lines such that the
antecedent of the first is the consequent of the second and the
consequent of the first is the antecedent of the second you may write
‘' between the two formulas, antecedent and consequent, on a new
line. The new line is annotated with the line numbers of both lines
used and ‘<I’. The dependency-numbers of the new line are all of
those of both lines used.

On this approach, we must also go on to make explicit an elimination-rule
for “<’, ©E. Unsurprisingly, we eliminate the biconditional by rewriting
that formula in terms of the conjunction of the pair of conditionals to which
the formula is equivalent. So:

<E: Given a biconditional on a line we may rewrite that formula as
the conjunction of the relevant pair of conditionals on the next line of
proof. The new line is annotated with the line number of the old line
and takes as dependency-numbers all and only those of the old line.

This describes just the kind of inference we made on line 2 of the previous
proof, but given that, what’s the point in adopting introduction and
elimination-rules for ‘«>’? First, the fact that such rules can be specified keeps
faith with my earlier claim that there is an introduction-rule and an
elimination-rule for each connective. Moreover, the introduction-rule will
always save us one line of proof against the definition-based approach, just
because it does not require us to make explicit the conjunction of the pair of
conditionals as the definition-based approach does. So, we can abbreviate
our six-line proof to a mere five-line proof. As you will see, there is much
fun to be had in trying to find the shortest proof; not least when you succeed
(as you undoubtedly will) in finding a shorter proof than the logic teacher—
myself included!

1”7 PoQFQeP

{1} 1. P«+<Q Premise
1 2 E-2Q&Q-D) 1<E
{1} 3. P-Q 2&E
{1} 4. Q-P 2 &E
{1} 5. Q-P 4,3 ol

Exercise 2.7 gives you the opportunity to construct some proofs for yourself.
Before attempting the exercise you should first establish whether the system
of formal logic you are using involves a definition-based approach or explicit
introduction/elimination rules.
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Note: Please note carefully that those who are only concerned to master
the mechanics of proof-construction can safely ignore the final section of
this chapter and jump ahead to the beginning of the next; once they have
completed Exercise 2.7 !

EXERCISE 2.7

1 Prove that the following are valid sequents of PL:

1. PPoQQ (5)
2. P&(PeoQ:P&Q (7)
3. P&Q)&PP—-Q 7)
4. P->QQ->P)->F<Q (4)
5. P2>QeR:(P&Q) R 9)
6. PoQ Q«oRP<R (17)

XI
Entailment and
Material Implication

In Section VII we took some time to distinguish entailment carefully
from material implication in PL. As we noted, the turnstile which
represents entailment and the arrow which represents material
implication belong to different languages, i.e. the turnstile belongs to
the metalanguage while the arrow belongs to the object language. That
distinction is an important one, but students of first logic are often
intrigued by these two notions and many will wonder if the two are
not unrelated none the less. In fact, the two are related and, having
spent so much time considering conditionals, biconditionals and
conditional proof, it may be insightful to come clean at this point about
the nature of the connection.

The relation between the two can be seen vividly in what is known as the
deduction theorem for PL. This particular theorem is not a theorem of PL
but is rather a theorem about PL, i.e. it is a metatheorem. Intuitively, the
theorem, which was first proved by the Polish logician Alfred Tarskiin 1921,
asserts that if a set of PL formulas together with a particular PL formula
entails another formula then the original set of formulas entails a conditional
with the first particular formula as antecedent and the second as consequent.
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This is undoubtedly clearer in formal terms. But now we need a way of
representing both a set of PL formulas and an arbitrary particular PL formula.
For the first purpose, let X’ be any set of PL formulas. For the second purpose,
we introduce a new set of variables: ‘A’, ‘B’, “‘C” and so on, each of which
simply stands for any PL formula. These variables are names of PL formulas
and so are not themselves formulas of PL. In other words, these variables
belong to the metalanguage and are as such metalinguistic variables. With
this much formal vocabulary at hand, the deduction theorem for PL can
simply be stated as follows:

IfX, A Bthen X+ A —B

A little reflection should now reveal the nature of the connection between
the two notions we are concerned with here. Technically, however, the
theorem is not properly stated here. Again, the problem is just the one we
noted in Section VII. The symbols involved belong to different languages,
i.e. the variables and the turnstile belong to the metalanguage while the
arrow belongs to the object language. Logicians usually overcome this kind
of problem by placing such hybrid sentences in corner or quasi quotes thus:

F1fX,A-BthenX+FA—>B]

Such parentheses can perturb students and may distract from the content of
the sentences the quotes enclose. So, in what follows I will not make such
quotes explicit, i.e. I will ‘continue to speak with the vulgar’.” Where
necessary, the reader might supply the relevant quotes. Finally, note carefully
that the deduction theorem for PL also holds, as  might put it, in the other
direction, i.e.:

fX+A—=Bthen X, A+ B

Therefore, we can clarify the relation between the turnstile and the arrow in
terms of the following equivalence:

Al Bifand onlyif - A—B

Notes

1 Wittgenstein, Ludwig, [1961], Tractatus Logico-Philosophicus, London, Routledge & Kegan

Paul, Remark 4.116.

The following set of rules is based on a set designed by John Slaney.

3 On this point see Read, Stephen, [1988], Relevant Logic, Oxford, Blackwell, pp. 54-5. The
distinction was first pointed out to me by John Slaney.

N
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See, for example, Hunter, Geoffrey, [1971], Metalogic: An Introduction to the Metatheory of
Standard First-Order Logic, London and Basingstoke, Macmillan, Part One, Section One.
Curry, Haskell B., [1976], Foundations of Mathematical Logic, New York, Dover Publications,
p- 28. To many readers this account of the metalanguage will seem rather vague. However,
as Curry also points out: “This may seem vague, but in that vagueness we are no worse
off than in any other field of study. Every investigation in any subject whatsoever, must
presuppose that same datum’ (p. 28).

See below, Chapter 3, Section VL.

Boolos, George S., and Jeffrey, Richard C., [1996], Computability and Logic, third edition,
Cambridge, Cambridge University Press, p. 98.
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I
Conditionals Again

P — Q. In any conditional, the formula occurring before the arrow is
known as the antecedent of the conditional, and the formula occurring
after the arrow is the consequent. So, in the case in question, P is the antecedent
and Q the consequent. Here, I want to consider four different inferences
which people may make using conditionals. All four inferences are
commonplace in ordinary discourse—despite the fact that two of them are
obviously invalid! To understand fully the four inferences in question we
tirst need to understand the nature of negation. It is intuitive to think of
negation as working by simply reversing truth-values. In other words, if
the sentence ‘I am now reading this book” is true then the negation of that
sentence ‘I am not now reading this book” must be false. Similarly, if the
sentence ‘It’s raining in Old Aberdeen today’ is true then the negation of
that sentence, namely ‘It’s not raining in Old Aberdeen today’, will, again,
be false. But this is only half of the story. If the negation of a given sentence
is true then the original sentence must be false, i.e. if the sentence ‘I am not
now reading this book” is true then the sentence ‘I am now reading this
book’ is false. Equally, if the sentence ‘It’s not raining in Old Aberdeen today’
is true, then the sentence ‘It’s raining in Old Aberdeen today’ is false.
These intuitions about negation are central to the account of negation
given in PL. The kind of negation involved in PL is called classical negation.
Classical negation is denial and the net effect of negating a sentence is
precisely to reverse the truth-value of that sentence. To deny that P is true is
to assert that ~P is true. To deny that ~P is true is to assert that P is true. We
can easily tabulate this state of affairs for an arbitrarily chosen formula, say
P, and represent the reversal of truth-value which negation effects as follows:

I I 1o connect P with Q using the arrow ‘=’ in PLis to form the conditional
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P ~P
True False
False True

With these points about negation in mind, we can now consider four basic
inferences which people may make. Note carefully the way in which these
differ just in terms of whether the antecedent or the consequent is affirmed
or denied in the course of the inference. Crucially, note also how this affects
the validity of each inference.

First, recall the original Blind Lemon Jefferson argument and its formal
counterpart in PL. It is itself a prime example of one of the four inferences,
i.e. recall the natural language argument:

1. If it's a Blind Lemon Jefferson album then it’s a blues album.
2. It's a Blind Lemon Jefferson album.
Therefore,

3. It's a blues album.

As you know, this argument can be formally represented in PLas P — Q, P:
Q. In this case, given P — Q, we assert the antecedent, P, and then infer the
consequent, Q. In more traditional logical terms, we affirmed the antecedent
P and then concluded that Q. Does Q logically follow? It certainly does.
Indeed, just this kind of reasoning is represented by one of our rules of
inference, modus ponens. So affirming the antecedent is a perfectly valid
form of inference.

But suppose that, rather than affirm the antecedent, we affirm the
consequent instead, i.e. that, given P — Q, we affirm Q and infer P. Is this
inference a valid inference? It certainly is not! To affirm the consequent is to
commit a traditional fallacy, i.e. to reason in a perfectly invalid way. The
following counterexample demonstrates that this so:

1. If all cats are black then Tiffin is black. P—>Q
2. Tiffin is black. Q
Therefore,

3. All cats are black. P

Hence, affirming the consequent is invalid. (You might remember that this
particular example featured earlier in Exercise 1.1. In the course of that
exercise you should have proved yourself that the form of argument involved
is indeed an invalid one.)
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The two remaining inferences both involve negation and hence denial
rather than assertion or affirmation. The first case involves denying the
antecedent. For example, consider the following sequent: P — Q, ~P:~Q.
Is this a valid sequent of PL? Again, it certainly is not. Here is a
counterexample:

1. If all cats are black then Zebedee is black. P—-Q

2. It's not the case that all cats are black. ~P
Therefore,
3. It's not the case that Zebedee is black. ~Q

Again, we met this example in Exercise 1.1 and so you should
already have proved there that this particular argument is indeed an
instance of an invalid logical form. Hence, denying the antecedent is
tallacious.

One last possibility remains, namely, that of denying the consequent. Is
the following sequent valid in PL, P — Q, ~Q:~P? This sequent is indeed
valid in PL. And again, we frequently make inferences of this type in natural
language. For example:

1. If it's a Blind Lemon Jefferson album then it’s a blues album. P — Q

2. It's not a blues album. ~Q
Therefore,
3. It's not a Blind Lemon Jefferson album. ~P

This particular argument is certainly a valid argument and it is also an
instance of a valid logical form of argument. Moreover, like the first type
of inference we considered in this section, inferences of this last type also
have a traditional name, not modus ponens but modus tollens. Further,
we can easily incorporate this mode of inference into our proof-theory for
PL simply by adding a new rule. Logically enough, the new rule is called
modus tollens and its annotation is just ‘MT’. Here is the rule-statement
in full:

MT: Given a conditional on one line and the negation of its
consequent on another, infer the negation of the antecedent.
Annotate the new line with the line numbers of both lines used and
‘MT’. The dependency-numbers of the new line are all those of both
lines used.

Consider the simplest possible example of the rule MT in action in the proof
of the sequent P — Q, ~Q I~ ~P:
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P->Q,~QF~P

{1} 1. P—-0Q Premise
{2} 2. ~Q Premise
{1,2} 3. ~P 1,2 MT

MT works well with our existing stock of rules. For example, consider the
proof of the following sequent P — Q + ~Q — ~P. Because the main
connective in the conclusion is a conditional the strategy for proof is CP. So,
assume the antecedent, ~Q, and try to derive the consequent, i.e. ~P. Given
MT, ~P is easy to derive:

{1} 1. P—-Q Premise

{2} 2 ~Q Assumption for CP
{1,2} 3. ~P 1,2 MT

{1} 4 ~Q— ~P 2,3CP

In the next case (Exercise 3.1), MT works together with MP to give us the
desired conclusion. Try this one yourself.

EXERCISE 3.1

1 Construct a proof of the following sequent (as ever, the number in
brackets indicates the number of lines in my proof):

PP—(Q—->R),~R:~Q (5)

IT
Conditionals, Negation
and Double Negation

MT is a useful and intuitive rule which works well with our existing
stock of rules. Moreover, it is the first rule of inference we have considered
which involves negation. Indeed, because any conclusion inferred by
MT is always and only a negation you might think that MT is something
of an introduction-rule for negation. But this is not the case. Certainly,
MT yields a negated conclusion but only if we already have a negated
formula, i.e. MT transfers negation from consequent to antecedent. So,
although MT allows us to infer a negated conclusion for the first time, it
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is not the introduction-rule for negation. The actual introduction-rule
for negation has the rather solemn Latin title of ‘reductio ad absurdum’.
We will consider this rule in detail a little later, in Section VII of the
present chapter.

While it is not appropriate to consider the introduction-rule for negation
just yet, we can usefully consider the elimination-rule for negation at this
stage (recall that every connective has both an introduction-rule and an
elimination-rule). So, what of negation-elimination? In order to appreciate
fully the force of this particular rule we must explore the nature of classical
negation a little further. In the process, we will also make clear that MT is
even more useful than it has appeared to date.

The question about negation which is of particular interest to us now
is just: what happens when we negate a negation? Logically enough,
when we negate a negation we produce what'’s called a double negation.
Quite simply, this is achieved by putting another negation sign in front
of the original negation sign. Classical negation is therefore desperately
easy to use. To negate P we simply connect the negation sign to it, i.e. ~P.
To negate ~P, again, just connect the negation sign to that negated
formula, i.e. ~~P.

To negate any formula in PL simply place a negation sign in front of it. If
the formula is already a negation, say, ~P, negating it produces a double
negative, in this case ~~P.

But suppose that I wanted to negate ~~P. Could I just prefix a third negation
sign to it? We could indeed adopt that practice if we liked but, in an important
sense, anything beyond a double negative is really totally redundant. Why?
Remember the point we noted earlier: classical negation reverses truth-value.
So, consider P. If P is true then ~P is false. And, if ~P is true, then P is false.
Now consider the negation of ~P, i.e. ~~P. If it is true then ~P is false. But if
~P is false then P must be true. So, adding a single negation to a formula
reverses the truth-value of that formula. And negating that negation simply
reverses the truth-value back to ‘true’. It follows that when ~~P is true, so is
P. So, although we could continue to prefix negation signs to double
negatives, because we recognise only two truth-values, any and every string
of negation signs beyond two must reduce back to one of those two truth-
values. Even numbers of negation signs would just reduce to ‘true” while
odd numbers would just reduce to ‘false’.

Moreover, the point is not simply that if ~~P is true then so is P. In fact,
the opposite is also true and the two are logically equivalent. This is
intuitive and is easily shown. If I asked: ‘Is it raining?” and you, having
just read your logic book, replied: “Well, it’s certainly not the case that it
isn’t raining’, I might feel you were being a bit awkward or pedantic but I
could easily work out from what you said that it was raining. Here, we
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might say, two negatives make a positive. The elimination-rule for negation
embodies just this intuition. To keep things crystal clear, the rule is known
as double negation-elimination (DNE). This rule allows us to collapse
any double-negative back into the original positive formula. Here is the
rule in full:

DNE: Given the double negation of a formula on any line of proof you may
write the original un-negated formula on a new line. Annotate the new
line ‘DNE’ together with the line number of the line containing the double
negative. The dependency-numbers of the new line are identical with those
of the old line.

Again, this is only half of the story. Remember, if P is true then ~P is false.
But if ~P is false then both P and ~~P must be true. For example, if ‘It’s
raining’ is true then ‘It is not raining” must be false. So, the negation of that
negation must be true, i.e. it must also be true that it’s not the case that it
isn’t raining! In short, any formula is logically equivalent to its double
negation. So, given any un-negated formula, we can always validly infer
the double negation of that formula. This is just the converse of the point we
made above about double negation-elimination. There we noted that given
a double negative we could validly infer the original un-negated formula.
Here, we note that, given an un-negated formula, we can always validly
infer or introduce its double negative. Hence, we can adopt another rule as
regards double negatives: double negation-introduction (DNI). Here is the
rule in full:

DNI: Given an un-negated formula on any line of proof you may write the
double negative of that formula on a new line. Annotate the new line
‘DNI" together with the line number of the line containing the original
formula. The dependency-numbers of the new line are identical with those
of the old.

Let’s have a quick look at these rules in practice. DNE will allow us to prove
immediately that ~~P I- P as follows:

{1} 1. ~~P Premise
{1} 2. P 1 DNE

DNI allows us to make precisely the same move in the opposite direction,
i.e. to prove that P - ~~P:

{1} 1. P Premise
{1} 2. ~~P 1 DNI
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You will quickly find that MT works particularly well with both DNE and
DNI in the proof-theory of PL. For example, DNI can often be used to provide
a negation when we need one in order to apply MT. The usefulness of DNI
for enabling the application of MT is clearly illustrated in the following proof:

P—-~Q QF~P

{1} 1. P—--~Q Premise
{2} 2. Q Premise
{2} 3. ~~Q 2 DNI
{1,2} 4. ~P 1,3 MT

Note carefully that we cannot simply infer the conclusion ~P from the
formulas on lines 1 and 2 just as they stand. Why not? Just because Q on
line 2 is not a negated formula. Therefore, it certainly is not the negation of
the consequent of the conditional on line 1. However, Q is logically
equivalent to a negated formula, namely, its own double negation ~~Q.
That formula is the negation of the consequent of the conditional on line 1.
(Remember: the negation of a given formula always has one more negation
sign than that given formula.)

Therefore, we can now infer the negation of the antecedent of the conditional
on line 1 by MT and that gives us the desired conclusion, ~P. Those facing
exams in PL should note this enabling application of DNI very carefully. Many
logicians delight in deducting marks from students who fail to make use of
DNI to enable the proper application of MT. Although this is a relatively minor
logical sin it is a logical sin none the less. Further, also note carefully that MT
works equally well with DNE. This time, it’s not that DNE enables the
application of MT. Rather, DNE allows us to derive a positive conclusion
when MT has supplied us with a double negative. Again, we must make each
step explicit; particularly the DNE step. Consider the following proof:

~P->Q,~QFP

{1} 1. ~P—-Q Premise
{2} 2. ~Q Premise
{1,2} 3. ~~P 1,2 MT
{1,2} 4. P 3 DNE

Here, the important point is that we cannot infer line 4 directly from lines 1
and 2 using MT. The conclusion we want to prove is P. But MT does not give
us P on line 3. It only gives us ~~P. So we must go on to use DNE to collapse
that double negative back into the positive formula P.

Use Box 3.1 to recap the chapter so far.
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BOX 3.1
¢ Negation reverses the truth-value of any sentence to which it is applied.
¢ To negate a formula in PL simply connect the negation sign ‘~’ to the formula.

¢ The negation of a formula always has one more negation sign than the
original formula.

So far, three rules of inference allow us to manipulate negated formulas:

¢ MT: Given a conditional on a line and the negation of its consequent on
another, infer the negation of the antecedent. Annotate the new line with the
line numbers of both lines used and ‘MT’. The dependency-numbers of the
new line are all those of both lines used.

¢ DNE: Given the double negation of a formula on any line of proof you may
write the original un-negated formula on a new line. Annotate the new line ‘DNE’
together with the line number of the line featuring the double negative. The
dependency-numbers of the new line are identical with those of the old line.

¢ DNI: Given an un-negated formula on any line of proof you may write the
double negative of that formula on a new line. Annotate the new line ‘DNI’
together with the line number of the line featuring the original formula. The
dependency-numbers of the new line are identical with those of the old line.

Exercise 3.2 contains ten proofs for you to try yourself. The first proof simply
involves the double negation rules without MT. The following five proofs
can all be proved quite straightforwardly by various combinations of MT
and the rules for double negation. As ever, you will have to ensure that in
addition to the relevant conditional you also have the negation of the
consequent, if you are to apply MT properly.

The remaining four proofs are considerably more difficult. Each of these
proofs requires that you first derive the relevant conditional and then apply
MT. In each case, you will have to derive the conditional by augmenting the
premises. In these cases it is crucial to identify clearly the formula you
ultimately want to derive, i.e. the conclusion of the particular sequent you
are trying to prove. If that formula is a sentence-letter try assuming the
negation of that sentence-letter. If the formula you want is already a negated
sentence-letter try assuming the original sentence letter un-negated. Finally,
make sure that the conditional you derive has as its antecedent the formula
which you ultimately want to negate by MT.
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Before attempting this particular exercise it is crucial to appreciate that,
at this stage, mastery of the first six proofs alone is perfectly adequate. The
remaining four proofs really are very difficult. But they are challenging and
the attempt to crack them will sharpen your proof-theoretical abilities. Later
in this chapter we will go on to consider another rule of inference which
enables those same sequents to be proved much more easily. So, it is
extremely unlikely that you will ever be asked to attempt these proofs
without that new rule. If you succeed in constructing the proofs at this stage
reward yourself enormously. But the point is not to be put off if you do not
succeed. Consider the hints about strategy in the preceding paragraph

carefully before you begin, and good luck!

EXERCISE 3.2

1 Prove that the following sequents are valid in PL:

1.

~~(P&Q):~~(Q&P)

(6)
(6)

9)
(11

2. ~P->~-Q:Q->P
3. :(P->Q)—> (-Q—>~P) The principle of transposition (5)
4. Q-HoR:(~Q->~P)=>(P—->R)
5. P&Q)>~R:R->P—>-~-Q)
6. P:[(~(Q—->R)—>~P) - [(~-R—~Q)]
7. P~Q:~(P—>Q)
8. P~P:Q
9. ~-P>P-Q) The law of Duns Scotus
10. P—>-~P:~P
II1
Introducing
Disjunction

We are now in a position to consider the rules which govern ‘v’, the formal
counterpart of ‘or’, in one sense of that term anyway, in natural language.
As ever, there is an introduction-rule for this connective, which brings v’
into a line of proof, and an elimination-rule, which takes the connective out
of a line of proof. Let’s consider the introduction-rule, vintroduction or vI,

first.
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In essence, given any formula on any line of proof, vintroduction allows
us to infer immediately the disjunction of that formula with any other well-
formed formula we care to choose. In other words, vintroduction allows us
to take any formula from any line of proof, to write that formula on a new
line together with ‘v’ and to complete the disjunction with absolutely any
other well-formed formula we might like the look of.

You may feel that this is remarkably generous on the part of the logician,
for we seem to be getting something for nothing here. After all, it’s entirely
up to us which formula we pick to complete the disjunction. In fact, the
generosity is only apparent. Logically speaking, the disjunctive conclusion
is weaker than the original premise. We can think of logical strength as a
relation between formulas measured in terms of the logical consequences
of those formulas. If each entails the other, then the two have the same degree
of logical strength. If the first entails the second but the second does not
entail the first then the first is logically stronger than the second. So, consider
the formulas Pand Pv Q. P entails P v Q and we can always use vIntroduction
to infer P v Q from P. But P v Q does not entail that P. Clearly, P v Q might
well be true even if P is not true, i.e. just in the case where Q is in fact true.
So, P v Qis logically weaker than P and the logician’s generosity is, indeed,
only apparent.

It follows logically that all that is required for a disjunction to be true is
just that at least one of its disjuncts is true, e.g. even if P is false P v Q can still
be true, as long as Q is true. Of course, both P and Q might be true and the
sense in which we use ‘v” in PL certainly includes the possibility that both
disjuncts are true. For that reason, the formal logician refers to our use of ‘v’
as the inclusive sense of disjunction. Logically enough, inclusive disjunction
contrasts with exclusive disjunction, which excludes the possibility that a
disjunction is true when both its disjuncts are true. Either way, a disjunction
is true if even one of its disjuncts is true.

It is precisely this fact that underwrites the validity of the type of inference
we make using vIntroduction. For example, it’s raining in Old Aberdeen
today so ‘It’s raining in Old Aberdeen today’ is true. But suppose I now
infer that: ‘Either it’s raining in Old Aberdeen today or the moon is made of
green cheese.” Now, the moon is not made of green cheese, but because the
tirst disjunct is true the whole disjunction is true anyway. So it really doesn’t
matter which sentence we choose to complete the disjunction. If the original
premise is true then any conclusion derived from it by vintroduction must
also be true. Therefore, inferences made using vIntroduction are indeed
truth-preserving, valid inferences.

Finally, note carefully that when I formed the disjunction ‘Either it’s
raining in Old Aberdeen today or the moon is made of green cheese’ from
the premise ‘It’s raining in Old Aberdeen today’ I did so by writing the “or’
after that sentence followed by the second disjunct. In fact, I might equally
have written the ‘or” before the premise and in effect reversed the order of
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the disjuncts like so: “Either the moon is made of green cheese or it’s raining
in Old Aberdeen today.” The fact that the order of the disjuncts is reversed
makes no difference to the truth-value of the conclusion. Hence, it should
be no surprise to find that in PL we can introduce ‘v’ to the right of a given
formula, i.e. after the original formula, and that we can equally well introduce
‘v’ to the left of a given formula, i.e. before the original formula. For obvious
reasons, I will refer to these as right-handed vIntroduction and left-handed
vIntroduction respectively.
Here is the rule in full:

vl: Given a formula on a line of proof you may infer the disjunction of that
formula with any other well-formed formula on a new line of proof. Annotate
the new line with the line number of the old line and ‘vI’. The dependency-
numbers of the new line are identical with those of the old line.

Consider two simple proofs which illustrate the distinction between right-
handed and left-handed vI. First, P+ P v Q:

PEPvQ
{1} 1. P Premise
{1} 2. PvQ 1vI

Imagine taking the formula P from line 1, putting it on a new line, introducing
‘v’ to the right of that formula and then choosing Q to complete the
disjunction on the new line. This is right-handed vI. Compare the following
proof of PF Qv P:

PFQVP
{1} 1. P Premise
{1} 2. QvP 1vI

This time imagine taking the formula P from line 1 and putting it on a
new line, introducing ‘v’ to the left of that formula and choosing Q to
plug the gap before the ‘v’ to complete the disjunction. This is left-
handed vI.

These simple proofs illustrate the bare minimum we can infer using vI.
But we are by no means confined to introducing atomic formulas.
Remember: we can disjoin the original formula with any other formula,
no matter how complex. The two proofs also show that vI can be useful
when we want to derive a disjunction as conclusion, i.e. when the formula
on the right-hand side of the turnstile has v’ as its main connective. You
should not be surprised to learn that logic exams rarely contain such easy
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proofs and, as we shall see, arriving at a disjunction as conclusion usually
requires a bit more work.

Again, vI works well with the existing set of rules allowing us to infer
disjunctions as required. Look closely at the following sequent (P v Q) —
R: (P - R) & (Q — R). In this case, the conclusion we want to derive is a
conjunction of which each conjunct is a conditional. So we must derive
each conditional separately and then use ‘&I’ to conjoin them. As ever, we
derive each conditional using CP. Hence, in each case, assume the
antecedent and try to derive the consequent. But note that the consequent
of both conditionals is R. How are we to derive R? As you will see from the
tirst few steps of the following proof (Exercise 3.3), this is precisely where
we can enlist the help of ‘vI". However, all you will see of that proof is the
tirst few steps. I have deliberately left the proof incomplete. My version
of the proof has ten lines. Fill in the gaps in the ‘gappy proof” to complete
my version. Where vlis involved specify whether the application is right-
or left-handed.

EXERCISE 3.3
1 Complete the following proof:

PvQ) >RFP->R)&(Q—-R)

{1} 1. (PvQ)—>R Premise
2} 2. P Assumption for CP
{2} 3. PvQ 2 vI (right-hand)
{1,2} 4.

5. 2,4CP

6. Assumption for CP
{6} 7. PvQ

8. 1,7 MP
{1} 9. 6,8 CP

10. P->R)&(Q—-R)
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v
vElimination

In the previous section we considered the introduction-rule for ‘v’ in PL.
There we saw how to use VI to arrive at a disjunction as conclusion and
noted that vI can be useful within proofs in conjunction with the other rules.
In each of these cases we were only really concerned with reasoning to a
disjunction either as conclusion or as a helpful step in a proof of something
else. What of reasoning from a disjunction? When can we legitimately infer
a conclusion from a disjunction? This is a question about disjunctions not as
conclusions but as premises. We already know that under certain
circumstances we can infer a disjunction as conclusion using vI; but under
which circumstances can we infer a conclusion from a disjunction as a
premise? Well, we can already draw a number of valid inferences from
disjunctive formulas using the existing rules of inference in PL. For example,
we can use the rule we’ve just considered, vI, to prove in a mere two lines
that PvQEF PvQ)v(RvS):

PvQFrPvQ)v(RvS)
{1} 1. PvQ Premise
{1} 2. PvQ)v(RvS) 1 vI (right-hand)

However, inferences of this kind (inferences from a well-formed formula to
the disjunction of that formula with another well-formed formula) can be
made from any kind of well-formed formula in PL, i.e. such inferences do
not depend upon the disjunctive logical form of the premise. Moreover, the
existing rules do not permit us to represent every kind of inference which
can be validly drawn from a disjunction and so certain obviously valid
sequents cannot yet be proved, e.g. Pv Q - Q v P. How are we to demonstrate
the validity of such sequents? The answer to this question lies in the
elimination-rule for disjunction: vElimination, VE for short. If the formal
logician seemed very generous in the previous section, apparently giving
us something for nothing in applications of vI, the same logician may now
seem rather mean-spirited, penurious and pedantic. Why? Imagine asking
the formal logician: when, in general, can I legitimately infer a conclusion
from a disjunction in virtue of its having a disjunctive logical form? The
reply will be as follows:

“You may infer a conclusion from a disjunction if you can prove to me first
that, assuming the first disjunct, the conclusion follows from that disjunct
and second that, assuming the second disjunct, the same conclusion also
follows from that disjunct.’
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If one and the same conclusion follows from both disjuncts then we can
certainly say that it follows from either and, therefore, that the same
conclusion follows from the disjunction itself. This is certainly perfectly
intuitive but a bit laborious in practice, for in any such derivation from a
disjunction we must derive the conclusion from each disjunct in the course
of the proof before we can derive that same conclusion from the original
disjunction. This time then, we certainly do not get something for nothing.
As we shall see, everything must be spelled out step by step.

Recall the formal logician’s claim: we can infer a conclusion from a
disjunction as premise in virtue of its disjunctive logical form only if we can
show both that (1) having assumed the first disjunct, the conclusion can be
shown to follow from it and that (2) having assumed the second disjunct,
the conclusion can also be shown to follow from it. This is precisely how
vElimination works in practice as a strategy for proof.

First, we begin with a disjunction as premise on a line of proof. Next, we
assume the first disjunct. Third, we use any and every available rule and
formula to derive the conclusion from the first disjunct. Fourth, we assume the
second disjunct. Fifth, we derive the conclusion from the second disjunct. Finally,
we simply repeat the conclusion on the next line of proof. That final line is
the line which we annotate ‘vE'.

We must also take care to keep track of each of the lines we use in the
process of vElimination. So, in addition to ‘vE’, we annotate the final line
with five numbers. What are these? Just look at the first five italicised
phrases in the paragraph above. These are the five numbers. Just to spell
things out:

The first number is: the line number of the original disjunction as premise.
The second number is: the dependency-number of the first disjunct
assumed.

The third number is: the line-number of the conclusion derived from the
first disjunct.

The fourth number is: the dependency-number of the second disjunct
assumed.

The fifth number is: the line number of the conclusion derived from the
second disjunct.

Finally, the beauty of VE is that it is a discharge rule. Remember that we
entered each disjunct into the proof as an assumption. So, our reasoning here
was ultimately hypothetical. Hence, just as CP allows us to discharge any
assumption we make for it, so VE allows us to discharge the dependency-
numbers of both assumed disjuncts. Having done so, we are free to infer
the conclusion from the original disjunctive premise and its dependency-
numbers; together with anything else we might have used other than the
two assumed disjuncts. And this is quite natural. Remember, if we can derive
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the conclusion from the assumption of the first and second disjuncts then
we can infer that conclusion from the original disjunctive premise.

Let’s have a look at VE in action in the proof of the sequent which
frustrated us earlier, i.,e. P v Q  Q v P. Before we begin, note
carefully that the premise is the disjunction P v Q. The conclusion we
want to derive is also a disjunction, i.e. Q v P. But if we want to
derive that conclusion from the premise P v Q we will first have to
assume each of the disjuncts P and Q and derive that same
conclusion from each of them. So:

{1} 1. PvQ Premise

— enter the disjunctive premise
{2} 2. P Assumption

- assume the first disjunct
{2} 3. QvP 2 vl

— derive the conclusion from the first disjunct
{4} 4. Q Assumption

— assume the second disjunct
{4} 5. QvP 4 vl

— derive the conclusion from the second disjunct
{1 6. QvP 1,2,3,4,5VE

- now apply VvE and discharge

Note the pattern of the proof: enter the disjunction as a premise as usual.
Assume the first disjunct. Try to derive the conclusion from it. (Here we
used left-hand vI to derive the conclusion from the first disjunct straight
away on line 3.) Next, assume the second disjunct and derive the conclusion
from it. (Here we used right-hand vI to derive the same conclusion on line
5.) Now repeat the conclusion on a new line, annotate that line ‘vE” and
check back through the proof for the five numbers. Remember to discharge
the dependency-numbers of both assumed disjuncts and to check carefully
to see whether any formulas other than the disjuncts were used (here none
was). Finally, we can infer the conclusion from the original disjunction and
its dependencies. You might well find it useful to annotate each line as
appropriate to the right of the rule-annotation, as I did, when you construct
your own proofs. This practice allows you (and examiners!) to keep track of
exactly what you are up to.
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The strategy for any vE is always the same and, like CP, it is one
which is well worth learning by rote: assume the first disjunct, derive
the conclusion. Assume the second disjunct, derive the conclusion.
Repeat the conclusion on a new line. Annotate the new line VE. Select
the five numbers. Next, discharge the dependency-numbers of the
assumed disjuncts and replace them with the dependency-numbers of
the original disjunctive premise. Finally, remember to include the
dependency-numbers of any other formula you have used, if any, in the
course of deriving the conclusion from each disjunct. Exercise 3.4 gives
you an opportunity to try some simple vEliminations for yourself.
First, however, study Box 3.2 carefully.

BOX 3.2
To infer a disjunction use vl:

¢ vl: Given a formula on a line of proof you may infer the disjunction of that
formula with any other well-formed formula on a new line of proof. Annotate
the new line with the line number of the old line and ‘vI’. The dependency-
numbers of the new line are identical with those of the old line.

¢ Note carefully that you may introduce the new formula and the disjunction
sign ‘v’ on either the right or the /eft of the original formula and that you can
only introduce one disjunction sign per application of vl.

To draw an inference from a disjunction use vE:

¢ vE: To draw an inference from a disjunction as such you must derive the
desired formula from each disjunct first, i.e. assume each disjunct in turn and
derive the desired formula from each. Having done so, you may repeat the
conclusion on a new line of proof. Annotate the new line with five numbers
followed by ‘VE". The five numbers are: (i) the line number of the disjunction;
(ii) the dependency-number of the first disjunct assumed; (iii) the line number
of the conclusion derived from the first disjunct; (iv) the dependency-number
of the second disjunct assumed; (v) the line number of the conclusion derived
from the second disjunct.

¢ Note carefully that VE is a discharge rule. Hence, at the line annotated ‘vE’
you may discharge the dependency-numbers of each disjunct and replace
them with the dependency-number of the original disjunction together with
the dependency-number of any other formula you used to derive the
conclusion.
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EXERCISE 3.4

1 Each line of proof annotated ‘vE’ is also annotated with five numbers.
What exactly do these numbers refer to?

2 Prove that the following sequents are valid in PL:

1. PvQ:(PvR)v(QVR) (8)
2 (P&QVP&R):P&(QVR) (12)
3 Pv(P&Q):P (5)
4 PvP:P (3)

A%

More on

vElimination

To date we have only considered vEliminations of the simplest kind. In
every case, our check for extra dependency-numbers beyond those of the
original disjunction has been fruitless. This reflects the fact that no
premise other than the disjunctive premise was involved. It should come
as no surprise, however, that other premises can be involved and that vE
works well with our existing stock of rules. Let’s now consider cases in
which the check for extra dependencies will bear fruit. For example,
consider the sequent P v R, P - S + R v S. This time, in addition to a
disjunctive premise, we also have a conditional as premise, namely P —
S. Because we still have a disjunction as premise we will still require VE.
But note how and when the second premise helps in applying VE. Let’s
consider the proof carefully:

PvR,P—-SFRvVS

{1} 1. PvR Premise

{2} 2 P—5S Premise

{3} 3 P Assumption [first disjunct]
2,3} 4. S 2,3 MP

{2,3} 5 RvS 4 vI [conclusion from first]
{6} 6 R Assumption [second disjunct]
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{6} 7. RvS 6 vI [conclusion from second]

{1,2} 8. RvS 1,3,5,6,7VE

The second premise comes into the proof at line 4. There, using the first
assumed disjunct from line 3 and MP, we derive the first disjunct of the
conclusion R v S. This means that the dependency-number of the second
premise will feature in the set of dependencies of the conclusion derived from
the first disjunct on line 5. Now, although vE allows us to discharge the
dependency-numbers of each of the assumed disjuncts, that is all that vE allows
us to discharge. It follows that we cannot discharge dependency-number 2.
After all, that number refers back to the formula P — S, which certainly is not
one of the assumed disjuncts. And so we must include dependency-number
2 among the set of dependencies belonging to the final line.

Just as the last proof illustrates how MP can help in the process of an VE,
the next proof (Exercise 3.5) illustrates how MT can also assist in applying
VE. In fact, the next proof brings together all of the rules we have considered
so far in this chapter (and MP). This time, there are two premises other than
the disjunction. So, there should be two dependency-numbers other than
that of the disjunctive premise on the final line of proof. Try this one for
yourself.

EXERCISE 3.5

1 Prove that the following sequent is a valid sequent of PL:
1. RvS, ~Q—~R,S—>QQvP (12)

As we have seen, vE works well with the existing rules. These allow us to
manipulate any other premises we might have when deriving the desired
conclusion. So far, we have only considered examples involving
conditionals as premises working together with a disjunction as premise
in a proof. But there is nothing to prevent a disjunction as premise working
together with another disjunction as premise in the course of a proof. If
we want to derive a conclusion from a disjunction we must apply vE. So,
if we want to derive a conclusion from two disjunctions we must apply vE
in both cases, i.e. we must make two uses of VE. In the course of such a
proof it is crucial to keep track of the dependencies involved at each stage
and to be clear about which dependency-numbers are discharged in each
application of vE. However, provided we are rigorous in applying the
strategy for VE such proofs can be perfectly straightforward. The proof of
the following sequent constitutes a very clear example of two disjunctions
working together as premises:
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PvQ,PvRFPV(Q&R)

{1} 1. PvQ Premise

{2} 2. PvR Premise

(3} 3. P A [note that this is the first disjunct of both

premises]

{3} 4, Pv(Q&R) 3 vI [conclusion derived from the first
disjunct of both]

{5} 5. Q A [the second disjunct of the first premise
assumed]
{6} 6. R A [the second disjunct of the second

premise assumed]
{5,6} 7. Q&R 5,6 &I

{5,6} 8. Pv(Q&R) 7 vI [conclusion derived from the second
disjunct of bothl

{2,5} 9. Pv(Q&R) 2,3,4,6,8 vE [first elimination on premise 2]

{1,2} 10. Pv(Q&R) 1,3,4,5,9 VE [second elimination on
premise 1]

This proof has a number of interesting features. Because P is the first disjunct
of both disjunctions I need only derive the conclusion from P once. This
came straight away on line 4 by vI. At this stage, half the job is already
completed. To complete the task I must now derive the conclusion from the
second disjunct of both disjunctions. Hence, I assume the second disjunct of
each disjunction on separate lines of proof. But I can now employ another
labour-saving device: I can use &I to conjoin both disjuncts and now, with a
single application of vI, I can derive the desired conclusion from the
conjunction of both disjuncts at line 8. Moreover, because both disjuncts are
involved, there is no need to repeat the process. The task has been completed
very rapidly here (the conclusion only actually features twice in the proof!)
but it is complete none the less. It only remains to make the appropriate
applications of vE. Hence, at line 9, I carry out my first application of VE,
repeat the conclusion, and infer the conclusion directly from the second
premise. Thus, the dependency number of the second premise, 2, enters
into the set of dependencies on line 9. I can now discharge the dependency-
numbers of the assumptions relevant to that premise. But note that I also
made essential use of the formula on line 5. So, its dependency-number
must also be included among the set of dependencies belonging to line 9.
Further, note that I cannot discharge dependency-number 5 at this point
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just because that number refers back to line 5 and to the assumption of a
formula which is no part of the second premise. Check back for yourself.
You will see that the formula sitting on line 5 is just Q. But that formula is
the second disjunct of the first disjunctive premise and I have not yet applied
VE to that premise.

So, at line 10, I move to apply VE for a second time and infer the
conclusion directly from the first premise. When I do, I can legitimately
discharge 5 just because it is the dependency-number of the second
disjunct of the first premise. However, 2 must remain among the set of
dependencies belonging to line 9. That number clearly features among
the dependencies of the line which was cited as the conclusion derived
from the second disjunct of the first disjunction. Further, it is not the
dependency number of any assumption we made for the elimination on
the first disjunction. So, it cannot be discharged. Hence, line 10 depends
upon lines 1 and 2, which are exactly the dependency-numbers of the
original premises. Therefore, the proof is complete.

Finally, it’s worth noting the order in which applications of VE are
made when more than one application of the rule is involved in a
proof. Note that I worked from the inside out, as it were, dealing with
the second premise first, i.e. the first application of VE to 2, the second
to 1. You will find that the order of application can make a difference
in such cases. Work out for yourself what the implications would be
for the set of dependency-numbers belonging to the final line if I had
reversed the order of application of vE. In general, you will find that it
pays to work from the inside out in such cases.

The best way to become adept at using VE is to practise using the rule
in proofs. Equally, practise with double VEs is the only way to end up
feeling really at home with inferences of that complexity. In the latter
case even more than the former, it is crucial to annotate your proof
briefly so as to keep track of where things are. To that end, try the proofs
in Exercise 3.6 for yourself.

Note: the first proof is only a slight modification of the one we have
just considered. So, study that proof carefully. Write down the new
sequents. Turn the book over and try these for yourself first.

EXERCISE 3.6

1 Prove that the following are valid sequents of PL:

1. PvQ)&(PvR):Pv(Q&R) an
2. Pv(QVvR):Qv{(PVR) (12)
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VI
Arguing Logically for Exam Purposes:
How to Construct Formal Proofs

(1) Initial Advice

We have now considered most of the rules of inference for PL. In fact, only
one further rule remains to be added. In the course of this chapter and the
previous one we have also considered quite a number of different proofs
and noted how well the simple rules of inference work together to produce
proofs of quite complex sequents. Now, you may say, that is all very well.
But, seated in the examination hall facing a number of daunting proofs some
Monday morning, how should I go about trying to crack those proofs? How
do I know which rules to apply on any given occasion? What strategy should
I use? These (crucially important!) questions are not about how to apply a
given rule. Rather, they are questions about knowing which rules to try to
apply and when: how, in any given case, do I identify the correct strategy
for proof? Fear not. We will now consider questions of strategy from the
very beginning.

As you will no doubt have noticed, certain kinds of proof are very
straightforward. For example, recall the proofs involving only &I and &E in
Exercise 2.3. These are all perfectly easy to prove. There, we simply used
the relevant elimination-rule to dismantle the premises and then applied
the relevant introduction rule, one step at a time, to derive the desired
conclusion. In general then, when we want to arrive at a conjunction as
conclusion, the strategy will just be to derive each conjunct on a separate
line of proof before conjoining the formulas on those lines to arrive at the
desired conclusion.

Equally, proofs which only involve MP, or MP together with the &
rules, such as those in Exercise 2.4, are also perfectly straightforward.
Further, proofs which involve a disjunctive conclusion can often be
proved very quickly. In such cases, the strategy will just be to derive
either disjunct and then to arrive at the whole disjunction by vI. However,
you should not be surprised to learn that such simple proofs are not
always at the top of the examiner’s agenda! What if your exam contains
more difficult proofs?

1 The first point to make about strategy is simply this: a conclusion must
be derived from its premises. In any given case in which there are premises,
i.e. when we are not trying to prove a theorem, we always know exactly
what those premises are. We also know that each premise must be
entered on a line of proof in the order given. So, no matter how complex
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or difficult a proof might turn out to be, we always know how to start
the proof.

Moreover, we also know exactly which conclusion should be
derived from those premises. Hence, we always know which
formula should appear on the last line of proof. Further, even
though we do not know in advance what the actual line number
of that final line will be, we do know the dependency-numbers of
that line. Remember: the conclusion must depend only on its
premises. Premises must be entered at the outset of a proof, on
separate lines, using premise-introduction. So, if we have one
premise, it will be entered on line 1 and, by premise-introduction,
its dependency-number is just 1. Hence, the dependency-number
of the conclusion inferred from that premise will also be 1. If we
have two premises, these will be entered on lines 1 and 2; hence,
the dependency-numbers of the conclusion will be both 1 and 2;
and similarly if we have three, four or more premises. In all those
cases where the set of premises is non-empty, then, we know both
how to start the proof and, to a large extent, what the last line of
proof should look like.

So, begin the proof by entering the premises. Leave a gap of a few

lines under the premises, take a new line, imagine that it’s the last line,
and number it ‘n’. Enter the conclusion as the formula on that line.
Pool the dependency-numbers of the premises and write those in as
the dependency-numbers of the final line n”. Now the trick is to bridge
the remaining gap.
But how do we build the bridge? In two ways. By working in two
directions: both from the top down and from the bottom up. By
exploiting all available resources we try to make the proof grow in
both directions, rather like stalactites and stalagmites!

First, try to develop the proof from the top down like a stalactite.
Check whether or not there are any obvious routes from the premises
to the conclusion. Ask yourself: are there any obvious inferences I can
make? If so, make them and look again for a route or some further
step. If you come to a halt try the stalagmite approach: look again at
the formula on the last line. Ask yourself whether there is an obvious
rule which you might have applied to arrive at that conclusion. If so,
what else would you need to apply that rule? Remember: you can
always enter any formula on any line of proof by rule of assumptions.
In practice, you should be able to pick up some points for your efforts
here even if, in the end, you are still unable to build the bridge and
fully complete the proof.

But what if, having followed all these instructions, you do come to a
grinding halt and fail to bridge the gap? And what if you are faced
with an empty set of premises? How should you proceed?
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3 Fear not. In just those situations we can appeal to a very useful rule
of thumb. The rule is not absolutely guaranteed to provide the right
strategy for every proof straight off, hence, ‘rule of thumb’. But those
faced with ticklish proofs in exams should find it invaluable. So, I
will call this rule the golden rule. The rule addresses the question
of the strategy for proof quite generally and can as readily be used
at the very outset of proof-construction as at any subsequent stage.
(We should always be ready to exploit all available resources at every
stage of proof-construction. After all, in constructing a proof we are
always trying to bridge the gap.) In fact, you should quickly find
that merely by scrutinising the sequent and reflecting on the rule
you can crack the question of strategy before you even put pen to
paper.

However, there are certain proofs whose construction is eased by
following the instructions above first and then applying the rule. So, if
you experience a little difficulty in getting started on a proof under
exam conditions follow the original instructions first, just to get going,
and then apply the rule if you fail to build that bridge between premises
and conclusion. Rest assured: when following the initial instructions
above has still not delivered the goods, the golden rule will always
suggest a strategy for deriving the conclusion from the premises.

(i) The Golden Rule

The golden rule consists of three parts: two questions and a recommendation.
The first part and the first question to ask yourself is just this:

1. Is the main connective in the conclusion a conditional?

If the answer to that question is ‘yes’ then the overall strategy is conditional
proof. This is familiar territory. As we noted in Chapter 2, the strategy for
CP isjust to assume the antecedent of the conditional and then try to derive
the consequent. If we succeed in deriving the consequent then we can simply
discharge the ‘extra” dependency-number of the assumption for CP, leaving
the conclusion to rest only on its premises. This part of the golden rule clearly
gives the right overall strategy for all the proofs we considered in Exercise
2.5 and for proofs 2-7 in Exercise 3.2. But note that it will also give the right
strategy for the theorems we proved in Exercise 2.6 just because question 1
only concerns the form of the conclusion. So, it really doesn’t matter whether
the set of premises is empty or not. But perhaps we knew this much already
from our understanding of CP. What if the conclusion is not a conditional?
What if our answer to the first question is ‘no’? In that case move to part
two of the golden rule.
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The second part of the golden rule and the second question to ask yourself
is just:

2. Is the main connective in any or all of the premises a disjunction?

If the answer to that question is “yes’ then the overall strategy may well
involve VE, and this is familiar territory. The strategy for vE, we noted, is
just: assume the first disjunct and try to derive the conclusion. Assume the
second disjunct and try to derive the conclusion. If you succeed, you can
always discharge the ‘extra” dependency-numbers of those assumptions
when you apply VE. Again, the conclusion will depend only on its premises.
This part of the golden rule immediately yields the correct strategy for every
vE proof we have considered so far in this chapter, excepting only the first
proof in Exercise 3.6 (for more on that one see Exercise 3.8 below).

However, note carefully that simply identifying the conclusion as a
disjunction is not sufficient to establish VE as the appropriate overall strategy.
Remember that we can always infer a disjunction by vI. Therefore, the real
clue to identifying vE as the appropriate strategy is having a disjunction as
a premise rather than as a conclusion.

It should be clear even from the first two parts of the golden rule that
even if the rule is not absolutely foolproof or exceptionless (and it isn’t!) it
does cover an enormous number of cases and is extremely useful none the
less. In fact, it is even more useful than it might first appear, and before
considering the last part of the rule it’s worth making a little more of its
utility clear.

(iii) Digging Deeper: Proof and Sub-Proof

Imagine for a moment that you find yourself facing a proof in a logic exam.
Suppose that you have followed the initial instructions above but that you
have failed to bridge the gap and must have recourse to the golden rule.
Further suppose that the answer to the first question is “Yes, the main
connective in the conclusion is a conditional.” You decide to employ CP and
assume the antecedent. How is the consequent to be derived? Again,
remember that the conclusion must be derived from its premises and that
all available resources should be exploited, in both directions, at each and
every stage of proof-construction. In certain proofs we may only need to
apply MP in order to derive the consequent from the assumed antecedent,
as, for example, in the proof of P - Q, R = P R — Q (check for yourself
that this is the case). In others, we may only need MP together with rules for
‘&', eg.P—-Q,P—RIFP—(Q&R) (again, check for yourself that this is
s0). Similarly, certain CP proofs will require MT or MT with ONE or DM or
both, e.g. as in the proof of ~P - ~Q + Q = P.
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More complex CPs may require a little more in the way of inference to
get us from the assumed antecedent to the derived consequent. Just how
to proceed once we’ve assumed the antecedent may not always be clear
immediately. Here’s where the golden rule can help. This time we're
asking questions not about the overall strategy for proof but about the
appropriate strategy for deriving one formula from another within a
proof. Let’s call this idea of a “proof within a proof” a sub-proof. Again,
whenever the moves are not simple or obvious we can apply the golden
rule. So, first ask: is the formula we want to infer in the sub-proof a
conditional? If it is, assume its antecedent and apply CP again (note that
this strategy covers all those cases in Chapter 2 where we iterated CP).
But suppose that the consequent is not a conditional. What then? Simply
move to question two: is the formula we’re inferring from a disjunction?
If so, apply VE. Consider the following sequent, for example, P — (Q v
R), Qv R:P - R.

Let’s follow the initial instructions: set out the premises and the conclusion
and try to bridge the gap:

{1} 1. P—->(QvR) Premise
{2} 2. Q—->R Premise
{1,2} n. P—>R 2

In this case, there doesn’t appear to be any obvious move to make
straightaway. So, apply the golden rule. First, ask yourself: is the conclusion
a conditional? Here, the conclusion is indeed a conditional. So the overall
strategy for proof is CP. Hence, assume the antecedent P and try to derive
the consequent R:

{1} 1. P->(QvVR) Premise
{2} 2. Q->R Premise
{3} 3. P Assumption for CP

Remember: we must always be prepared to exploit all available resources
to bridge the gap. So, again, check for obvious moves. This time, there is an
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obvious move which we can make straight away, namely MP with 1 and 3,
so let’s make that move:

{1} 1. P> (QvR) Premise
{2} 2. Q->R Premise
{3} 3. P Assumption for CP
{1,3} 4. QVvR 1,3 MP

We are now faced with deriving R from Q v R. But how should we go about
doing so? If the correct strategy is not immediately obvious, simply apply
the golden rule a second time: is the formula we want to derive a conditional?
No. Is the formula we are deriving from a disjunction? This time the answer
is “yes’. It follows that the correct strategy for sub-proof in this case is VE. So,
we proceed to derive R from Q v R by VE:

{5} 5. Q Assumption [first disjunct]
{2,5} 6. R 2,5 MP

{7} 7. R Assumption [second disjunct]
{1,2,3} 8. R 4,5,6,7,7 vE

{1,2} 9. P—-R 3,8CP

To sum up, the overall strategy for proof is indeed CP. But there is an
important sub-proof of the consequent R from Q v R by vE which runs from
line 4 to line 8. Note that Premise 2 becomes involved during the VE in the
derivation of the conclusion from the first disjunct. Note also that because
R is both the second disjunct and identical with the formula we want to
derive from that disjunct, there is no need to do anything other than assume
it and cite that line number twice in the annotation for vE.

Finally, a little reflection on the completed proof highlights an important
point. Note that the strategies for proof and sub-proof are CP and vE
respectively. The reasoning involved in applying such strategies is, of course,
hypothetical. Hence, we make some assumptions and proceed with a sub-
proof towards the final overall proof. But note that although assumptions
are involved within such strategies, those assumptions are only used within
the context of those strategies and are not exported out of those strategic
contexts. When all hypothetical reasoning is complete all assumptions have
been discharged. In sharp contrast, premises (in this case Premise 2, for
example) are often imported into hypothetical contexts and may also be used
outwith those contexts. When all the hypothetical reasoning is complete
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the dependency-numbers of the original premises will still feature among
the dependencies of the final line. And this is quite intuitive. After all, a
conclusion must follow from its premises. To sum up, we shall refer to this
principle as the import-export law (of logic!).! Quite simply:

While premises may be freely imported into contexts involving hypothetical
reasoning, assumptions may not be exported outside contexts involving
hypothetical reasoning.

The following proofs (Exercise 3.7) involve similar sub-proofs to the one we
have just considered. Try these for yourself.

EXERCISE 3.7

1 Prove that the following are valid sequents of PL:

1. P>QVvR,R->S:P->(QvS) (11)
2. Q-oR:(PvQ) > (PVR) 9)

By now you should be beginning to get something of a feel for strategic
thinking. Invariably, what we are looking for is the right strategy for deriving
one formula from another (or others), be it as an overall strategy for proof
or as a strategy for sub-proof. At the moment, there are really only two
important strategies to note: CP and VvE. So, at each stage of proof-
construction, we are invariably looking to see whether the formula we are
trying to derive is a conditional or whether a disjunction is lurking among
the set of formulas we are trying to derive that formula from. These are the
only kinds of formula we are looking for at this stage.

Further, it’s worth making a final, simple, point about strategic thinking
in this context: always scrutinise each of the formulas you are concerned with very
carefully. Remember the kinds of formula we are concerned with at the
moment: conditional conclusions and disjunctive premises. Always
scrutinise both premises and conclusions very carefully—look inside the
formulas. Are any of the component formulas conditionals or disjunctions?
This awareness will develop as you practise constructing proofs, and it
should help you to see the applicability of the golden rule even in cases
which are technically exceptions to the Rule. For example, consider the
sequent P & (Q v R):(P & Q) v (P & R).

The conclusion is not a conditional. The premise is not a disjunction. Itis a
conjunction. But the second conjunct of that conjunction is a disjunction!
Following the initial instructions about bridge-building at each and every
stage of proof-construction should lead you to carry out the required &E and
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make the disjunction explicit in any case; but always study the formulas you
are given very carefully and try to see where the work will lie before you
actually begin. This should at least take care of that class of exceptions to the
rule which results from simply conjoining premises (note that our earlier
exception, Proof 1 of Exercise 3.6, is a case in point here). Further, careful
scrutiny of formulas should also help with those exceptions which result from
conjoining conclusions. With that advice in mind consider each of the sequents
in Exercise 3.8 carefully, scrutinise the formulas involved, try to work out
your strategy for proof first, and then attempt to construct the proof.

EXERCISE 3.8

1 Prove that the following are valid sequents of PL:

1. P&QVR):P&Q)v(P&R) (10)
2. (PvQ -oR:P->R)&(Q—-R) (10)

With even this much strategic thinking under your belt you will be well
placed to tackle many of the proofs which occur in first-level logic exams in
propositional logic. But there remains one possibility which we have not
yet considered. Remember: no matter how complex it might turn out to be,
we know both what the beginning of the proof should look like and what
the final line of proof should look like. Always be prepared to exploit all
available resources to bridge the remaining gap and take any obvious steps
you can in both directions. Look closely at the formulas which feature as
premises and conclusion. Scrutinise their components. Ask: (1) Is the
conclusion a conditional? If not, ask: (2) Are all or any of the premises
disjunctions? But what if the answer to that question is ‘no’? If the answer
to that question is ‘no” the final part of the golden rule makes the following
recommendation: try reductio ad absurdum.

VII
Reductio Ad
Absurdum

The Latin name for this particular rule of inference simply means ‘reduction
to absurdity’; a phrase which accurately and succinctly describes the strategy
for enabling the application of that rule in a proof. More specifically, if
assuming a particular formula leads us to a contradiction then, by reductio,
we may infer that the formula in question is false.
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In logical terms, a contradiction is just the conjunction of any formula
with the negation of that same formula. In many logic courses, you will
find the formula P & ~P given as an example of a contradiction. But note
that this is just the simplest possible case. (P & Q) & ~(P & Q), for example,
is just as much a case in point, even though compound formulas are
involved.

Remember: a contradiction consists of the conjunction of a formula with
its negation; there is no stipulation on the complexity of the formula involved.
Now, if assuming some formula enables us to derive a contradiction within
a proof then reductio allows us to conclude that that formula must be false.
The reasoning involved is surely highly intuitive. After all, no contradiction
can possibly be true. Aristotle makes the point strikingly around one possible
type of contradiction in his Metaphysics [1005b19-20] when he identifies the
‘First Principle of all First Principles”:

the same attribute cannot at the same time belong and not belong to the
same subject and in the same respect.

Contradictions are absurd or logically false sentences. Any sentence which
entails a contradiction or logical falsehood must itself be false; and it is
exactly this fact which is exploited in any application of reductio: if a
contradiction can be shown to be derivable from a formula then, on that
basis alone, we may validly assert the negation of that formula. Hence,
reductio is often referred to as “proof by contradiction’.

Certain logic texts,” and certain courses in formal logic, introduce a special
symbol at this stage to stand for any contradiction. Typical notational devices
include: ‘#, “A” and “L’". The first two symbols are somewhat arbitrary but
we can think of the third symbol as an upside-down “T". If “T” stands for
‘true’ then we can think of “1” as the opposite, i.e. as ‘the false’. Either way,
all these symbols represent contradiction. Here, I will not introduce a special
symbol. There is an argument against doing so simply from linguistic
economy, and adopting one particular symbol might mask the possibility
of different kinds of contradiction, i.e. among atoms, among conjunctions
and so on.

The foregoing considerations about the status of contradictions as logical
talsehoods quickly lead to an obvious strategy for proof. Suppose you want
to show that a given formula is false. If you could demonstrate that a
contradiction followed from that formula then you could certainly validly
infer that the formula in question is false. So, first assume the formula whose
falsity you want to prove. Next, try to derive a contradiction from that
assumption. If you succeed, reductio will enable you to infer the negation
of that assumption.

But note two points carefully. First, reductio always and only allows us
to infer the negation of a formula. Hence, reductio is negation-introduction
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and a number of systems of formal logic refer to it explicitly as the
introduction-rule for negation. (We will denote it RAA.) Second, reasoning
with reductio is not categorical. Rather, it is hypothetical: we assume a
particular formula and look to see whether or not a contradiction would
follow from that assumption. If so, reductio allows us to conclude that the
assumption is false.

Further, and crucially, not only does reductio allow us to derive the
negation of a given assumption, if we successfully derive a contradiction
from it, it also allows us to discharge the dependency-number of that
assumption. So, the final addition to our propositional proof-theory is a
third discharge rule. As we shall see, the addition of reductio to the system
also adds a last, enormously helpful, strategy for proof which we will
frequently utilise. Moreover, that strategy is both simple and intuitive: to
demonstrate the negation of a formula, assume the formula and try to
derive a contradiction from it. Reductio will then allow you to derive the
desired negation. For example, consider the sequent P— Q, P — ~Q:~P.
The conclusion we want to derive is a negation. We know that we can
prove the negation of a formula if that formula can be shown to entail a
contradiction. The formula whose negation we are after is P. So, assume P
and attempt to derive a contradiction. In this case, deriving the
contradiction is perfectly straightforward:

P->QP—~QF-~P

{1} 1. P->Q Premise

{2} 2 P—--Q Premise

{3} 3 P Assumption for RAA
{1,3} 4 Q 1,3 MP

{2,3} 5. ~Q 2,3 MP

{1,231 6 Q&-Q 45&l

{1,2} 7 ~P 3,6 RAA

The “extra’” dependency number, 3, of the assumption for RAA is indeed
discharged when we apply RAA on line 7, leaving the conclusion resting
only on the premises on lines 1 and 2. Note also that RAA does indeed
introduce the negation sign (to the formula on line 3) and that applications
of RAA are usually preceded by &I; just because we must always explicitly
form the contradiction before RAA can be applied. Further, note that the
line annotation for RAA involves two line numbers: the line number of a
contradiction and the line number of the formula from which that logical
falsehood was derived.
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Note the way in which the set of dependency-numbers grows in the course
of the proof up to line 6. The two uses of modus ponens bring the
dependency-number of the assumption for RAA into the sets of
dependencies belonging to each of Q and ~Q. Those formulas are then
conjoined on line 6 to form a contradiction. The presence of the dependency-
number of the assumption for RAA, 3 in bold type, among the dependencies
of line 6 reflects the fact that that assumption is integral to the derivation of
the contradiction. And that is crucial. The contradiction must depend upon
the assumption if we are to apply RAA legitimately to that assumption.
Finally, the set of dependencies shrinks on line 7 when we deduce the
negation of that assumption by RAA and discharge the dependency-number
of the assumption. Here is the rule-statement in full:

RAA: If a contradiction has been shown to be derivable from an assumption
we may write the negation of that assumption on a new line of proof.
Annotate the new line with the line number of the line of the contradiction,
the line number of the assumption and ‘RAA’. The dependency-numbers
of the new line will consist of all those of the old lines except that of the
assumption from which the contradiction has been derived.

You will quickly discover that reductio is an extremely useful strategy for
proof. In fact, any proof which can be constructed using MT coupled with
DNI and/or DNE can be constructed using RAA coupled with DNI and/
or DNE instead. What’s more, RAA will often provide a more obvious
strategy for proof and may also shorten the proof of that sequent
significantly. You will appreciate the extent to which that is the case if, at
the end of this section, you consider again the four very difficult MT proofs
included in Exercise 3.2 !

One last aspect of the utility of RAA remains to be made clear. What if the
conclusion we want to infer is not a negated formula?

RAA may still be applicable none the less. All we need do is assume the
negation of the formula we are interested in and then try to derive a
contradiction from that negated formula. If we succeed, RAA will allow us to
negate that negation, i.e. to infer the double negation. We can then exploit DNE
to convert that double negative back into the positive formula we were after
in the first place. The proof of the following sequent is a case in point:

~P—->PFP

{1} 1. ~P—>P Premise

{2} 2 ~P Assumption for RAA
{1,.2} 3. P 1,2 MP

{1,2} 4 P& -~P 2,3 &l
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{1} 5. ~P 2,4 RAA
(1} 6. P 5 DNE

Even here, reductio remains negation-introducing. The formula we infer by
RAA on line 5 is the double negative ~~P. What then allows us to infer that P
is not RAA itself but DNE, which we apply on the next line. Because RAA is
always going to give us a negation it is wise to assume the opposite of what
you want before attempting to apply RAA. So, if you want to derive the
negation of a formula, assume the formula un-negated. If you want to derive
an un-negated formula, assume its negation. There are a number of clues to
look out for when you are trying to determine when to apply RAA. If the
desired conclusion is a negated formula, RAA may well be worth a try.
Moreover, when the conclusion is an atomic formula, a negated atomic
formula or a conjunction of such formulas and the proof is not of a very
simple kind, RAA will be your best bet. This is when RAA really comes into
its own. And that should be no surprise. Remember the golden rule: if it’s not
a terribly obvious proof, ask: is ita CP? If not, ask: isita vE? If not, try RAA!

Finally, note that, as ever, applications of RAA can be iterated, RAA works
well with the existing stock of rules, and RAA is often a useful strategy for
a sub-proof even if it itself is not the appropriate overall strategy for the
whole proof. With all these points in mind, Exercise 3.9 gives twenty proofs
involving RAA in roughly ascending order of difficulty for you to try
yourself. Again, the numbers in brackets next to each sequent indicate the
number of lines in my proof of that sequent. (Note: this is not a guarantee
that there is no shorter proof of the sequent in question!) Try Exercise 3.9
after studying Box 3.3.

BOX 3.3

¢ RAA rests on the principle that if a contradiction is derivable from a formula
that formula must be false. Hence, to infer a negation as conclusion use RAA:

¢ RAA: If a contradiction is shown to be derivable from a formula you may
write the negation of that formula on a new line of proof. Annotate the new
line with the line number of the line of contradiction, the line number of the
relevant formula and ‘RAA’. The dependency-numbers of the new line consist
of all those of the old lines except that of the formula from which the
contradiction was derived.

¢ Note carefully that we can use DNE to convert double negatives into
unnegated formulas. Hence, to derive an un-negated formula, assume its
negation, apply RAA and, finally, apply DNE to the result.
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EXERCISE 3.9

1 Prove that the following are valid sequents of PL:

1. :~«(P&-~P) 2)
2. P>-~P:~P (5)
3. P-QQ—->~P:~P (7)
4, P->Q,~-P->Q:Q (8)
5. ~«(PvQ):~P (5)
6. ~PvQ),R—->P:~R {(7)
7. P&Q)—>~R:R—> P —-~Q) (10)
8. Po(Q—-R&~R):P>-~-Q (7)
9. ~(P&-Q):P>Q (8)
10. P>Q:~P&~Q) (7)
11. «P>Q):P&-Q (12)
12. P>Q:(Q—>-~P)—>-~P (8)
13. P-»RQ-~R:~(P&Q) 9)
14. ~P:P->Q (9)
15. P~P:Q (8)
16. :Pv-~P law of excluded middle 9)
17. PvQ:~(~P & ~Q) (1
18. ~PvQ):~P&~Q (10)
19. ~(~-P&~Q):PvQ (14)
20. :(P->Q)v{Q—->R)) (20)
VIII
The Golden Rule
Completed

We can now update our earlier discussion of strategy for proof-
construction. In the first instance, try to apply the golden rule straight
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away before you begin the proof. On most occasions you will find that
you can crack the question of strategy before you even put pen to paper. If
not, begin the proof by entering the premises, write out the last line as
fully as possible and use all available resources to try to bridge the
remaining gap. Remember to scrutinise the formulas involved carefully
and to make any obvious moves in either direction. Finally, if you still
cannot complete the proof, try again to apply the Golden Rule, i.e. ask
yourself:

1. Is the main connective in the conclusion a conditional? If so, apply
the strategy for CD, i.e. assume the antecedent and try to derive the
consequent. If not, ask:

2. Is the main connective of any member of the set of premises a
disjunction? If so, apply the strategy for vE, i.e. assume the first
disjunct and try to derive the conclusion, assume the second disjunct
and try to derive the conclusion. Finally, draw that same conclusion
from the original disjunctive premise by VE. If not:

3.  Try RAA.Remember: the trick here is to assume the opposite of what
you want and then try to derive a contradiction from that assumption
together with any other formula or formulas already available in
the proof. The double negation rules will allow you to finish things
off to suit your purposes.

Finally, remember that some or even all of these strategies can work together
within a single proof, one strategy providing a sub-proof of something useful
for another. Remember also that the golden rule is not absolutely fail-safe
and that in some cases we just have to keep bashing away, trying first one
line of attack then another.

In the last analysis, the true ‘golden rule’ of proof-construction is
simply that practice makes perfect. To that end, I present four sets of
revision exercises below. Within each exercise the level of difficulty is
generally on the increase from one proof to the next, and each exercise
involves proofs of a higher level of difficulty than its predecessor. In
conjunction, Exercises I-III recap fairly comprehensively on the proof-
theory of the last two chapters, but Exercise IV consists of sequents we
have not considered so far. In all honesty, cases 5-10 of Exercise IV are
very difficult. None the less, practice at proof-construction in Exercises
I-III should help to develop your intuitions about strategies for proof
and sub-proof and your skill in actual proof-construction so as to enable
you to attempt Exercise IV. Once you have mastered every proof you
have nothing whatsoever to fear from the proof-theory of propositional
logic.

Before you try Revision Exercises I-1V, study Box 3.4 carefully.
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BOX 3.4
Strategies for proof-construction:

¢ Always scrutinise the component formulas of any sequent carefully before
attempting a proof.

¢ In unobvious cases, set out the premises, leave a gap then set out the
conclusion and apply the golden rule, i.e. ask: (i) is the conclusion a
conditional? If it is, apply CP. If not, ask: (ii) are any or all of the premises
disjunctions? If so, apply VE. If not, assume the negation of the desired
conclusion and try the RAA strategy.

¢ Never lose sight of the fact that each and all of the above strategies can
work together in a single proof, i.e. the pursuit of an overall strategy may
necessitate a sub-proof which itself requires a distinct strategy. Hence, apply
the golden rule at the outset to identify overall strategy and then reapply as
necessary throughout the process of proof-construction.

REVISION EXERCISE |

1 Prove that the following are valid sequents of PL:

1. P5>Q:(R&Q) >S5 = (R&P)—>9) (10)
2. (P&Q)—-R:R= (P—~Q) (10)
3. :P=>Q) —»(-~-Q—>-~P) (5)
4, PvQ:(PvR)V(QVR) (8)
5. P5>RQ—5:(PvQ)— (RvS) (11)
6. P5(QVvR),Q—>R:P>R (9)
7. PvQ)—»R:(P>R)&(Q—R) (10)
8. (P&~Q):P-Q 8)
9. P> (QeR):(P&Q)—>R 9
10. :~P->P->Q) (10)
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REVISION EXERCISE 11

1 Prove that the following are valid sequents of PL:

1. PvP:P (3)
2, P:(P->Q)—>Q 4)
3. P:(~(Q—-R)>~P)>((-R—>~Q)) 9)
4. P>(QvR),R->S:P>(QvVvYS) (11)
5. Q> ~R,Rv55-0Q:QvP (12)
6. ~PvQ):~P&~Q (10)
7. ~Pv-Q):(P—->~Qv(-Q—>P) (12)
8. PvQeP:Q-P (7)
9. P&Q)v(P&R):P&(QVR) (12)
10. :Pv-~P 9)

REVISION EXERCISE 111

1 Prove that the following are valid sequents of PL:

1. ((P->P)»Q—-Q (5)
2. ~(P->Q):P&-Q (12)
3. PvQ & RvVS):
(P&R)v(P&S)v(Q&R)v(Q&Y)) (15)
4, PvQ,~Q:P a1
5. PvQ,~P:Q (11)
6. ((-P->R)&(~-Q—-R)) > (~(P&Q)—>R) (15)
7. PvQ,PvR:Pv(Q&R) (10)
8. PoQ,QoR:PoR (17)
9. :Pv(P->Q) (16)
10. :(P->Qv(Q—R)) (20)
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REVISION EXERCISE 1V

1 Prove that the following are valid sequents of PL:

1. :PvQ)->(QvDP) (4)
2. ~PvQ)—>-P (6)
3. ~«(P&Q),P:~Q (6)
4 ~(P&Q):~Pv-Q (14)
5. Pv(QvR):(PvR)vQ (12)
6. ~P~Q:~PvQ) (14)
7. PoQvR):(P->Q)v(P—-R) (14)
8. P»~Q,P->~R,QvR:P—-(~-QVR) (16)
9. Pv~Q,Pv~-R,QVvR:P (23)
10. P&Q)—>R:(P->R)v(Q—-R) 24)

IX
A Final Note on Rules
of Inference for PL

We have now completed the set of rules of inference for PL and by now you
should be familiar both with each individual rule and with the ways in which
those simple rules can be combined in proof-construction. However, so far in
our discussion, we have omitted any mention of an important distinction
which may be drawn between two different kinds of rule of inference for PL.
It is precisely that distinction which I consider in the present section.

The distinction in question is that between primitive rules and derived
rules. In the present context, we can simply consider our set of rules of
inference for PL as a set of primitive rules. To say that a rule is primitive is
just to say that the addition of that rule to the set of rules of inference for a
formal system allows new sequents to become provable in that system. In
contrast, a derived rule is a rule whose addition to that set of rules will not
allow anything new to be proved in the formal system. In all honesty,
drawing the distinction in this way turns out to imply that not all of our
existing stock of rules are primitive, i.e. certain of those rules can, in fact, be
derived within the system, given the remaining rules. This should not be
too surprising. As I admitted earlier, any proof involving RAA can, with a



HOW TO PROVE THAT YOU CAN ARGUE LOGICALLY #2 111

little hard work, also be proved using MT and DNE (in the not too distant
future you will have the opportunity to prove that this is so).

For present purposes, however, focus on the idea of a derived rule of
inference as a rule whose addition to the system does not allow anything
new to be proved in that system. As such, derived rules may seem rather
dull: aren’t such rules, in a sense, redundant? Indeed. But they offer
important advantages none the less. As we shall see, derived rules can be
used to abbreviate long, tedious proofs. As such, they constitute a logical
(proof-theoretic) economy. The two particular derived rules which I consider
here are designed precisely in order to maximise the possibility of exploiting
that proof-theoretic economy.

The first such rule is known as theorem-introduction, or TI. Quite simply,
the rule allows us to enter any theorem which we have already proved on
any line of any proof with an empty set of dependency-numbers and
annotated “TI". The point about the dependency-numbers here reflects the
familiar fact that a theorem is a logical truth, as we discussed in Chapter 2.
So, at any point in the process of proof-construction, we may enlist the help
of any potentially useful theorem free of charge. Something of the usefulness
of TI should be obvious already but, in fact, this rule is even more useful
than might first appear. For not only can we introduce a particular proved
theorem using TI but we can also introduce any formula of that form. To
illustrate, not only can we introduce on an arbitrary line—call it line ‘'n”" —
the theorem - P — P, as follows:

——— n PoP Tl

but we could also introduce:
— N P->Q—->FP-Q Tl
Equally, we could introduce:
— N (P>Q—->R=9)—=>(P->Q —(R—=S) Tl

In fact, provided the formula in question can be constructed from the original
theorem simply by uniformly replacing the same original constituent
formula with the same new well-formed formula, then that resulting formula
may be introduced by TI. This practice of careful replacement, careful
swapping, of old constituent formulas with new constituent formulas is
known as uniform substitution. Simple as it may seem, uniform substitution
is of crucial importance in formal logic generally and we will have cause to
appeal to that notion again later.

The second derived rule we will consider here extends still further the
possibilities for introducing formulas to lines of proof during the process of
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proof-construction. This rule is not theorem-introduction but sequent-
introduction, SI. In short, the rule of sequent-introduction allows us to
exploit our existing stock of proved sequents analogously to the way in
which theorem-introduction allowed us to exploit our existing stock of
proved theorems. Thus, if in the process of proof-construction, you were to
come across the formulas P — Q and P — ~Q on separate lines of proof, SI
would enable you to write ~P on the next line of proof without having to go
through the obvious RAA which would usually be required. Instead, you
could simply enter ~P, annotate the new line with the line numbers of the
two formulas involved and ‘SI’, and complete the line by pooling the
dependency-numbers of the old lines to create the set of dependency-
numbers of the new line. Again, something of the usefulness of Sl is apparent
and, again, via the notion of uniform substitution we can amplify the utility
of SI by allowing it to apply not only to proved sequents but also to any
substitution-instance of a proved sequent.

This particular pair of derived rules maximises the possibilities for making
proof-theoretic economies in the process of proof-construction, and both
are extremely useful in allowing us to see how we might prove new, complex
sequents which we have not already proved. However, a few words of
warning are apt here. First, many logicians forbid the use of both rules for
exam purposes, i.e. ‘Tl and SI may not be used” is a commonplace of formal
logic exam papers. Alternatively, a numbered list of legitimate theorems
and/or sequents may be made explicit in the exam paper and applications
of TI and/or SI may be restricted to that list (there is also no guarantee that
such a list will be available prior to the exam).

These particular rules can also be the source of some cruel (if amusing)
trickery on the part of logicians. In my own first logic course, for example,
the logic lecturer (who shall remain nameless) pointed out that we should
feel free to use TI as we pleased during the logic exam. Further, he also
helpfully pointed out that our textbook contained a numbered list of
theorems which we could use and, indeed, encouraged us to learn that list
by rote (the course textbook was in fact Elementary Logic by Benson Mates
[1972] which, in a number of respects, is a truly excellent text). When I and
fellow students consulted the text we found that Mates began his list over
pp- 98-9 where theorems 1-7 were stated and continued over pages 100-1.
Allin all, ten theorems were stated over these pages. But we quickly found
that the list continued up to p. 106 until no fewer than 100 theorems had
been listed. Finally, look out for the equally amusing strategy of allowing
the use of TTin an exam provided you also include a proof of the theorem in
your exam paper!

In the light of these facts, I will not give any more emphasis to TI and SI
in particular but will instead look very briefly at derived rules in general
and the question of how to show that a rule is derivable in particular. To
exhibit the derivability involved in derived rules, i.e. to show a rule to be
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derivable, is really just to show a way of getting from the inputs for the rule
to the outputs for the rule without actually using the rule itself. Hence, we
show a rule to be derivable within a system by deriving the output of the
rule from the input for the rule using only the other rules of that system, i.e.
by exploiting only the remaining stock of primitive rules. In the present
context, for any derived rule, we will separate the input from the output by
a line thus:

input

output

Looked at in this way, showing a rule to be derivable comes to showing
how to derive the output from the input. For that purpose, we need not
adapt or extend our notation any further, i.e. both inputs and outputs will
be given in the usual notation. Moreover, to show that a rule is derivable in
PL we can simply construct a proof of the given output from the given input
using only the other rules of the system. Exercise 3.10 contains some
examples of derived rules. Consider each rule carefully. Many of these rules
exemplify principles of inference which are honoured with traditional names
and, as appropriate, I have stated the name next to the rule. In each case,
construct a proof of the stated output for the rule from the stated input in
the usual manner. Of course, TI and SI may not be used!

EXERCISE 3.10
1 Show the following rules to be derivable in PL:

1. PvQ,-~P
—_— disjunctive syllogism

2. P-QQ-R
_ hypothetical syllogism

constructive dilemma

destructive dilemma
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5. ~-P->P
consequentia mirabilis
P
6. P-o-~P
~P

X
Defining ‘Formula of PL": Syntax,
Structure and Recursive Definition

We turn now to the problem of defining accurately just what we mean by a
well-formed formula of PL. You will already have a good understanding of
just what it is to be a well-formed formula of PL in virtue of your
understanding of the proof-theory of PL. And, in fact, the notion of a formula
is completely defined by the set of rewrite rules that allowed us to construct
syntactical trees in Chapter 2. So, in an important sense, we have already
completed this task. Hence, you might think that we could simply avoid
this issue here. However, our earlier approach was not the standard one to
supplying the definition we require, and the standard approach exemplifies
a special kind of logical definition which it would be a great pity to overlook.

Indeed, the particular logical construction involved in this definition may
represent the most important and insightful of all the formal devices we
have considered to date. Formal definitions of this type may have a
fundamentally important role to play in explaining how it is that human
beings learn natural languages. Detailed consideration of these issues lies
beyond the present text and what follows is not even a thumbnail sketch. In
all honesty, it is no more than a hint at a fascinating and potentially
momentous area of study which is aptly termed mathematical linguistics. None
the less, it would be misleading, I think, to omit any mention of the promise
which lies in this area and I will conclude with some pointers to useful texts
for interested parties.

Throughout our study of formal prepositional logic we have taken very
seriously the idea that PL is a formal language: formal certainly, but a
language none the less. I have also argued that we might understand a formal
language like PL as being analogous to certain natural languages. For
example, we might consider PL as an analogue of English. PL is certainly
notidentical with English, but according to many formal logicians, linguists
and philosophers of language there is an important sense in which formal
languages like PL are analogous to natural languages. According to such
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authors, PL-type deductive structures share some genuinely analogous
structural features with natural languages at the deepest level.

Most famously, the great American linguist Noam Chomsky [1928-],
Institute Professor of Linguistics and Philosophy at the Massachusetts
Institute of Technology, has pointed out that in language-acquisition a child
is only ever exposed to a finite amount of linguistic input before it becomes
able to produce a potentially infinite linguistic output. Moreover, once it has
achieved language-mastery, the child is able both to recognise and to
construct meaningful sentences which it has never before confronted. How
is this possible? This problem has come to be known as the creativity
problem, i.e. how are we to explain the extraordinary creative ability
involved in language-acquisition?

If we closely examine the syntactical structure of a formal language
such as PL, we can see one possible way in which an infinite linguistic
output might be achieved on the basis of a finite amount of input, given
some simple linguistic (grammatical) rules whose application can be
iterated. Such a set of simple rules or basic grammar for a language is
provided in terms of a special kind of definition called a recursive
definition. As regards English, for example, John Lyons, one of Chomsky’s
commentators, notes:

We may begin by defining the language that is described by a particular
grammar as the set of all the sentences it generates...We will also assume
that the number of distinct operations that are involved in the generation
of English sentences is finite in number. There is no reason to assume that
this is an implausible assumption; and if they were not, this would mean
that the sentences of English could not be generated by means of a
specifiable set of rules.

If the grammar is to consist of a finite set of rules operating upon a finite
vocabulary and is to be capable of generating an infinite set of sentences,
it follows that at least some of the rules must be applicable more than once
in the generation of the same sentence. Such rules and the structures they
generate are called recursive. Once again, there is nothing implausible in
the suggestion that the grammar of English should include a certain number
of recursive rules.?

What is being asserted here is not just that English itself may ultimately be
a recursive structure but also that it is with reference to that property that
we can begin to construct a solution to the creativity problem and, thus, an
explanation of language-acquisition itself. Moreover, recursion is exactly
the kind of definition we will exploit in order to determine what is to count
as a well-formed formula of PL.

To get our definition off the ground here we need to be able to represent
formally a new level of generality, for which purpose our present notation
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is inadequate. Hence, we introduce a new set of variables: ‘A’, ‘B, ‘C"....
These variables simply range over all the well-formed formulas of PL, simple
and complex. So, ‘A’ stands for any well-formed formula of PL and ‘B’ stands
for any well-formed formula and so on. Because these variables represent
formulas of PL they do not themselves belong to PL. Rather, the variables
‘A’,'B’, 'C/, etc., belong to the metalanguage—call it ‘ML’ in which we talk
about PL as object language. Logically enough, the new variables “A’, ‘B’, ‘C’
...are known as metalinguistic variables. As such, the values of those variables
are simply the well-formed formulas of PL. Armed with our new class of
metalinguistic variables we can proceed with the recursive definition as
follows.

First, we define a bracket as one of the two marks ‘(, ’)’, left-hand and
right-hand respectively. Next, we define the following familiar marks, purely
ostensively (i.e. directly, just as those marks), as logical connectives: ‘&, ‘v’,
‘~,'=’,"«". Wenow define P, Q, R...as sentence-letters, leaving the list open-
ended to emphasise that there is no theoretical upper limit to it. In fact, it is
easy to extend the list beyond the alphabet simply by using a stroke to mark
a distinct sentence-letter: P, P’, P”....

A symbol is then defined as any mark already defined and a sequence of
symbols as an ordered list of symbols. Finally, we can define a formula as a
sequence of symbols and pick out the class of well-formed formulas in terms
of a few simple rules. To do so, we exploit the metalinguistic variables ‘A’
and ‘B’. The rules we require are as follows:

1 Any sentence-letter is an atomic well-formed formula.
2 IfAis a well-formed formula then ~A is a well-formed formula.

3 If A and B are well-formed formulas then (A & B) is a well-formed
formula.

4 If A and B are well-formed formulas then (A v B) is a well-formed
formula.

5 If A and B are well-formed formulas then (A — B) is a well-formed formula.
6 IfAand B are well-formed formulas then (A — B) is a well-formed formula.

7 Nothing else is a well-formed formula.

We have now defined the grammar of PL, i.e. we have explicitly defined
all and only those constructions in the language PL which are properly or
grammatically well-formed formulas. Note also that the type of syntactical
structure which I have defined here actually allows me to generate an
indefinitely large number of well-formed formulas, i.e. a potentially infinite
number of well-formed formulas, from a finite base. The problem of
explaining how, in the process of language-acquisition, a child who is only
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ever exposed to a finite amount of linguistic input becomes able to produce
a potentially infinite linguistic output is at the very heart of the creativity
problem. Hence, definitions of this kind may well give us some insight
into the nature of language-acquisition. After all, it was just the possibility
of there being a similar grammar at the heart of the English language which
Lyons hinted at above. Therefore, definitions of this kind, recursive
definitions, might provide some basis at least for a syntactical answer to
Chomsky’s question: creative abilities in a particular language might well
be accounted for in terms of the speakers’ possession of a grammar in
which the set of grammatically well-formed sentences is defined
recursively, i.e. by the repeated application of a finite set of rules to a finite
vocabulary in ways which make possible the generation of an infinite set
of sentences.

To some extent the possibility of the kind of explanation I am alluding to
here remains controversial. What is uncontroversial is that in the process of
outlining the recursive definition given above, we have arrived at a formal
definition of the class of well-formed formulas for PL. Unfortunately, that
definition also exposes what may seem to be something of a lack of rigour
as regards constructing well-formed formulas of PL in this text so far. For
note carefully that Rules 3-6, which cover the binary connectives, actually
generate formulas which are enclosed in pairs of outer brackets. Strictly
speaking, then, many formulas in this chapter and earlier chapters of the
text are not well-formed!

In mitigation, as E.].Lemmon notes in his logic text: ‘human beings cannot
stand very much proliferation of brackets’.* Moreover, as noted in Chapter
2, much of the usefulness of brackets consists in their potential for
disambiguating formulas. But no ambiguity is introduced simply by omitting
outermost pairs of brackets. Hence, we adopt that convention here and so
legitimate our earlier practice. With this in mind, it is easy to convince
yourself that the definition really does capture the class of well-formed
formulas of PL simply by picking a few examples and working out which
particular subset of {1...7} above sanctions well-formedness. For example,
consider the following formula:

(P—>Q)&R&S)

First, the well-formedness of the whole conjunction is sanctioned by Rule 3
above. The well-formedness of the first conjunct is sanctioned by Rule 5
while the well-formedness of the second conjunct is again sanctioned by
Rule 3. Finally, the well-formedness of each individual sentence-letter as a
formula of PL is sanctioned by Rule 1.

Interested parties with no background in Linguistics would do well
to begin with the rigorous but none the less accessible account of
Chomsky’s work in this area given by V.].Cook and Mark Newsom in
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Chomsky’s Universal Grammar: An Introduction [1996]. Chomsky himself,
of course, is the author of a number of seminal texts and articles,
prime among them: Syntactic Structures [1957], Aspects of the Theory of
Syntax [1965], Rules and Representations [1980], Knowledge of Language:
Its Nature, Origin and Use [1986], and Language and Problems of
Knowledge [1988]. Readers will find that Cook and Newsom provide an
extensive bibliography for Chomsky. However, that bibliography does
not include his most recent paper, ‘Language as Natural Object’, which
is published in the journal Mind [1995] (and which might have been
more aptly entitled ‘Language as Neurophysiological Object’, I think).

There now follows the first of four mock examination papers in formal
logic which are designed to let you test what you have learned to date.
However, you should not assume that every course in formal logic involves
examinations of the same kind. Always check the methods and materials
appropriate to your course carefully. Good luck!

Examination 1 in
Formal Logic

Answer every question.

1 Consider the following arguments carefully then (i) represent each argument
as a sequent of PL and (ii) construct a proof of each of your sequents.

1. Ifitrains again this afternoon then I'll eat my hat. Therefore, if
it’s true that if it snows and | eat my hat then | am probably
madder than a hatter then if it snows and it rains again this
afternoon then | probably am madder than a hatter.

2. Either it's raining today or the sun is shining gloriously. So, it
can’t both be the case that it’s not raining and that the sun is
not shining gloriously.

3. Either it’s raining or it’s not raining.

2 When two formulas mutually entail one another it is possible to derive
the one from the other no matter which way round they are given.
Such formulas are said to be logically equivalent and inter derivable.
Interderivability is represented by writing the turnstile in both
directions between the formulas, i.e. “4+’. This represents the fact that
each formula can be derived from the other. Prove that the following
formulas are interderivable:
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1. P-Q4F~PvQ
2. PvQ4+~-P=0Q

3 The following proof has deliberately been left incomplete. Complete the proof:

1.

{3}

{1,2,3} 10.
11.
{12} 12.
13.
14.
15.
16.
{1} 17.
18.
19.
20.

4  Prove that

2
3
4
5
6.
7
8
9
0

~-PoQ

~P->Q

Premise

Assumption for RAA

1 <E
2 «E
5 &E
4 &E

5 &E
12,13 MP
11,14 &1

11,18 &I
2,19 RAA

(i) given the other rules of inference, MT can be considered to be a
derived rule in PL.

(ii) given the other rules of inference, RAA can be considered to be a
derived rule in PL.
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As logical falsehoods, contradictions cannot possibly be true. Hence,
any argument from contradictory premises cannot possibly have true
premises and a false conclusion simply because the premises of such
an argument could never be true. If it is impossible that the premises
of an argument be true while the conclusion is false then that argument
is valid. Hence, we may regard any argument from contradictory
premises as implying its conclusion, i.e. we may regard inferences from
contradictory premises to any conclusion whatsoever as exemplifying
a valid form of argument. As a result of such reflections, many logicians
maintain that anything follows from a contradiction just in the sense
that any sentence whatsoever follows from a contradiction.” In PL, it is
indeed the case that any formula can be derived from a contradiction
as premise. This fact is exemplified in a principle of inference known
as ex falso quodlibet, meaning literally, ‘from the (logically) false
anything follows’. Represent ex falso quodlibet as a rule of inference as simply
as possible and then show that rule to be derivable in PL.

Notes

= W

I believe that this expression is due to John Slaney.

See, for example, Tennant, Neil, [1978], Natural Logic, Edinburgh, Edinburgh University
Press, p. 40.

Lyons, John, [1970], Chomsky, Fontana Modern Masters, Fontana/Collins, Ch. 5, pp. 48-9.
Lemmon, E.], Beginning Logic, [1965], London, Thomas Nelson and Sons, p. 46.

I first became acquainted with this argument as a tutor in logic at the University of
Edinburgh. However, it seems clear that the argument in the form I have it is in fact
derived from Read, Stephen and Wright, Crispin, [1993], Read and Wright: Formal Logic,
An Introduction to First Order Logic, fifth edition revised, departmental publication, St
Andrews, University of St Andrews. See, for example, Chapter 5, Negation’.
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Formal Logic and Formal
Semantics #1

I
Syntax and
Semantics

properties, i.e. properties belonging to the formulas and sequents of
PLin virtue of their form or shape. As regards formulas, for example,
we first tried to spell out our intuitions about which formulas were well
formed, in terms of syntactical trees which were concerned precisely with
the form or shape of formulas. Finally, in the last section of Chapter 3, we
considered a recursive definition of the set of well-formed formulas of PL,
i.e. a definition which again exploited the shape or form of formulas.
Moreover, in our earlier discussion of inference and reasoning in PL,
we developed our understanding of formulas and the logical connectives
in terms of which inferences were licensed by formulas with a particular
logical connective as the main connective. In the light of these
considerations, we were able to construct a set of rules of inference for PL.
In formal logical terms, when we constructed that set of rules of inference
for PL we added a deductive apparatus to the formal language PL and in
so doing we established a formal system. Given the full set of rules of
inference for PL, the formal definition of the notion of “proof-in-PL” which
we began in Section V of Chapter 2 can now be completed. Further, we
can exploit that definition to go on to define proof-theoretic consequence
in PL just in terms of what is provable using the rules of inference of PL.
Proof-theoretic consequence characterises the notion of logical consequence
in PL syntactically and it is that relation of syntactical consequence which
the turnstile represents.
From first to last, then, our discussion has focused on the syntax of PL. In
formal logical terms, syntax concerns the formulas of the formal language

f ; o far, our discussion of formal logic has centred upon syntactical
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as uninterpreted, i.e. without primary regard to questions about the meaning
or content of those formulas. In a sense, the rules of inference for PL fix the
meaning of the logical connectives of PL and reflect our core understanding
of the connectives in a very immediate way, i.e. by spelling out which kinds
of inference are sanctioned by formulas of each shape or kind. But there is
another way to consider the formulas of PL, namely, in terms of the
conditions under which those formulas are true or false. If I know exactly
those conditions under which a given well-formed sentence of a language
is going to turn out to be true and I know exactly those conditions under
which that same sentence will turn out to be false then, surely, I know what
that sentence means. Therefore, to specify what we may call the truth-
conditions for a sentence is just to spell out the meaning of that sentence, i.e.
meaning and truth-conditions are one and the same. So, when we investigate
the truth-conditions of formulas of PL we investigate the meaning of those
formulas.! When we concern ourselves primarily with questions about the
meaning of formulas of PL we go beyond the syntax of PL to the semantics
of PL. Therefore, we are no longer concerned with the symbols of PL as
uninterpreted shapes. Rather, we are explicitly concerned with the
interpretation of the well-formed formulas of PL. In PL, an interpretation of
a formula is just: any assignment of truth-values to each of the atomic formulas
which go to make up that formula. So, an interpretation is simply an assignment
of truth-values. Any interpretation of a formula which makes that whole
formula true is a model of that formula. Therefore, a model of a formula is
just any assignment of truth-values to the atomic constituents of the formula
which brings that whole formula out as true.

II
The Principle
of Bivalence

As we have seen, PL is a formal language into which we can translate
sentences and arguments of natural language. PL is at least analogous to
natural language; thus, more precisely, we might well think of PL as an
analogue of that fragment of a natural language such as English which
involves indicative sentences, i.e. statements or assertions. But how close is
the analogy here? Much of what we will do in the course of the next few
sections is to consider just what is involved in the claim that PL is an analogue
of natural language.

Sentences in a natural language such as English may well be either true
or false, and the same certainly holds for the formulas of PL. In fact, unlike
natural language, we can say with absolute certainty that every well-formed
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formula of PL must be either true or false and can only be true or false. In
philosophical terms, the formal language PL works under the strict
governance of what is known as the principle of bivalence. The principle
of bivalence is the most famous, perhaps infamous, of semantic principles.
As a semantic principle we would expect it to say something about sentences
and their truth-values, and it does: every sentence is either true or false but not
both and not neither. In other words, each and every formula of PL has exactly
one of two truth-values, i.e. true or false. Just because that principle holds
true for all the formulas of PL, our formal language is said to be bivalent.

It is very important not to confuse the principle of bivalence with the law
of excluded middle + P v ~P. The former is a semantic principle which
generally asserts a sort of pre-established harmony between reality and claims
in a given language about reality, i.e. that reality is such as to make any claim
we make about it in that language either true or false, right here and now, as
it were. In contrast, the latter simply asserts that, for any sentence, it is a
logical truth that either it holds or its negation does. In general, it is certainly
true that whenever the principle of bivalence holds the law of excluded middle
holds. The former entails the latter. But note that the former is a logically
stronger claim and the converse does not hold here. Consider a sentence in
natural language about a future event: There will be a sea battle tomorrow’;
the example is given by Aristotle in his De Interpretatione [IX]. Here and now,
today, as it were, bivalence clearly does not hold for that sentence just because
there is nothing about the world presently which could make the sentence
either true or false. Bivalence fails here and it looks as if our sentence is not
presently truth-valued at all or perhaps takes a new truth-value: neither true
nor false’. Be that as it may, the disjunction: ‘Either there will be a sea battle
tomorrow or there will not be a sea battle tomorrow” must be true none the
less, i.e. the disjunction is true now and forever. Hence, the law of excluded
middle still holds. Therefore, the law of excluded middle does not in general
entail the principle of bivalence.

Moreover, although PL is bivalent it is not the case that every system of
formal logic obeys the principle of bivalence. The Polish formal logician Jan
Lukasiewicz [1878-1956], who was for many years Professor of Philosophy
at Warsaw, famously rejected the principle precisely because the truth-value
of such future contingent sentences was (presently) undetermined. Instead,
Lukasiewicz proposed three truth-values: the true, the false and the as-yet-
undetermined. Lukasiewicz’s objection to the classical view was endorsed
and developed slightly differently by another important formal logician,
Arend Heyting, who proposed a distinct three-valued account.

Continuing and developing some important work in the philosophy of
mathematics by L.E.] Brouwer, Heyting’s* work led to the birth of an alternative
school of formal logic known as intuitionism. Most famously, (or infamously
perhaps) the law of excluded middle is not a theorem of the intuitionist formal
system. That is not to say that intuitionists assert the negation of this sequent.
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Indeed, the double negation of the sequent is a theorem. But the intuitionist
rejects double negation-elimination. Hence, the law of excluded middle is
not provable within the system (recall the classical proof from Exercise 3.9).
(To get a good picture of intuitionist PL subtract DNE from classical PL and
replace it with ex falso quodlibet.) The intuitionist account of formal logic has
been further developed by certain contemporary formal and philosophical
logicians; particularly Michael Dummett.> We need not pursue intuitionist
logic any further here, however, and, for present purposes, it is sufficient to
note that in classical PL the law of excluded middle certainly is a theorem
and, moreover, that bivalence always holds. Therefore, in PL no well-formed
formula lacks a truth-value. Every well-formed formula is either true or false
and so no well-formed formula is neither true nor false. There is, as it were,
no third option in PL. Formulas always and only alternate between two poles:
the true and the false.

11
Truth-Functionality

Given that PL is bivalent we know that each atomic formula of PL can only
be true or false. However, this is not the end of the matter but only the
beginning. As you know, we can always combine atomic formulas to form
more complex formulas using the logical connectives. In turn, such complex
formulas may themselves be combined, again, using the logical connectives.
The interesting question is: what is the truth-value of a complex formula
constructed from simpler formulas using the connectives? The answer to
that question is that the truth-value of a complex formula depends upon
two things and only upon those two things: first, the original truth-values
of the constituent formulas; second, the particular connective used to form
the complex formula. If we know both of these things, we can then work
out the truth-value of the complex formula quite mechanically. Impressively,
this property holds for each and every complex formula of PL.

In more formal terms, the overall truth-value of any compound formula
of PLis said to be a function of the truth-values of its component parts. For
our purposes, a function is just any operation which, when applied to a
number of specified objects, generates another specific object. The objects
which we put into the function are known as arquments for that function.
The specific object which the function gives us back is the value of that
function for those arguments. Functions are really already perfectly familiar
from arithmetic. We give the square function ‘X*" numbers as arguments
and it gives us back a number as value. For the argument 2’, “X*" gives us
back ‘4’ as its value and so on, ad nauseam. In PL, of course, we are not
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concerned with numbers but with formulas and their truth-values. We put
truth-values in and get a truth-value back. Hence, in Logicspeak, the complex
formulas of PL are said to be truth-functional, which simply means that the
truth-value of any such complex formula can always be computed on the
basis of the assignments of truth-values to the component parts of that
complex formula.

But this is very general. Different kinds of complex formula can be arrived
at by using different connectives. And the resulting overall truth-value of
the complex formula depends both upon the original values of the
component formulas and upon the particular connective employed.
Therefore, the resulting overall truth-value may well vary from connective
to connective. So, to answer our original question about the truth-value of
complex formulas more precisely we must consider each connective in turn.

A%
Truth-Functions, Truth-Tables
and the Logical Connectives

First, let’s consider together the simplest possible cases: the truth-conditions
for the most basic truth-functional compounds of PL. A more general formal
definition is given at the end of this section but, in fact, these simple cases
exemplify the meanings of the logical connectives in PL. Recall our
discussion of the nature of classical negation in Chapter 3. There we noted
that negation is denial and that the effect of negating a formula is to reverse
the truth-value of that formula. So, for example, when P is true ~P is false
and when P is false ~P is true. Earlier, we tabulated that situation as follows:

P ~P

True False
False  True

For the sake of linguistic economy, I will introduce two new symbols here
(again, as autonyms) which we can use to produce a briefer notation for the
tabulation, i.e. we will now simply enter T in place of “True” and F in place of
‘False’ in any such tabulation. Hence, we can produce a leaner-looking table
with the same content:

P -P
T F
F T
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The tabulation exemplifies both the reversal of truth-value which
negation effects and the functional nature of that connective: we put a
truth-value in and get another truth-value out. More specifically, for any
formula of PL, given T as argument the classical negation function gives
F as its value. Given F as argument the classical negation function gives
T as its value. So, negation is indeed a function which takes a truth-value
as its argument and gives a truth-value as its value. Any function whose
arguments and values are both truth-values is a truth-function.
Therefore, negation is a truth-function and, as we shall see, so is every
other connective of PL. Before we go on to consider the remaining
connectives look again at the tabulation for ‘~’. The table clearly spells
out the effect of the negation function on the atomic formula P taking P’s
truth-values as its range of arguments. In the case of each connective,
we will spell out the function involved using a similar tabulation. Because
these tables tabulate truth-values they are known, logically enough, as
truth-tables.

Given the principle of bivalence, the first column of truth-values in
the table under P represents all the possibilities for P’s truth-value.
Moreover, each entry in that column represents an assignment of
truth-values to the component formula P. So, each entry, T and F, is
itself an interpretation of the formula P, and together those two
interpretations exhaust all the possibilities for assigning truth-values
to P. This is the simplest possible case. When we move to consider
binary connectives we must consider assignments of truth-values to
two formulas and, again, we must be sure to cover every possible
case. But this is perfectly straightforward. Each atomic formula can
only be either true or false. So, when we are concerned with two
such formulas, both may be true, one may be true and the other false
or, finally, both may be false. That exhausts the possibilities for truth-
value assignments to two atomic formulas. You can see how all these
possibilities are represented in a truth-table below. But, before you
consider the table, recall the argument given in Section I to the effect
that meaning and truth-conditions are intimately related. It should
now be clear that we can use truth-tables to define the connectives
just in terms of the conditions under which formulas having any
particular connective as the main connective are true or false, i.e. the
meanings of the logical connectives of PL are characterised truth-
conditionally. Hence, for the connectives of PL, meaning is indeed
identical with truth-conditions. Finally, any connective which can be
completely defined by a truth-table and which takes truth-valued
formulas as arguments to give other truth-valued formulas as values
is a truth-functional connective. As we shall see, in PL, every
connective is a truth-functional connective.

Now study Box 4.1, which recaps the chapter so far.
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BOX 4.1
¢ Formal Semantics explicitly concerns the interpretation of formulas of PL.

¢ An interpretation of a PL formula is just any assignment of truth-values to its
component atomic formulas.

¢ Any interpretation which results in the whole formula being true overall is a
model of that formula.

¢ PL is bivalent, i.e. every PL formula has just one truth-value: T or F, and
there are only those two truth-values.

¢ The truth-value of any compound PL formula is a function of (i) the truth-
values of its atomic constituents and (ii) the particular connective/s used to
form that formula.

¢ The meaning of each of the logical connectives is fixed by a truth-table
which takes truth-valued formulas as arguments and gives truth-valued
formulas as values. Any such connective is truth-functional. Every PL
connective is a truth-functional connective.

Here is the truth-table for the simple conjunction P & Q in PL:

P Q P&Q
T T T
T F F
F T F
FF F

Note that the conjunction P & Q is only true when both conjuncts are true.
Otherwise, it is false. This is surely intuitive: we would not want to say that
a conjunction in natural language was true if either or both of its conjuncts
were not true. Earlier I noted that we could consider PL as an analogue of
natural language and, in this instance at least, we seem to have a very close
approximation. So, does ‘&’ in PL faithfully represent our use of ‘and” in
natural language? The truth-table certainly represents one aspect of the use
of natural language ‘and’, namely, that unless both conjuncts are true we
will not allow that the conjunction is true. However, there are other respects
in which “&” does not represent standard natural language usage. In PL, the
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truth-value of P & Q is wholly indifferent to the order of the conjuncts. But
this is by no means always the case in natural language. ‘I got out of bed
and had a shower’ is by no means equivalent to ‘I had a shower and got out
of bed.” In the latter case, it seems to follow that I showered in bed! Natural
language ‘and’ possesses a sense of temporal direction, ‘and then...”, while
‘&’ is strictly atemporal. Gordon Baker and Peter Hacker give the following,
particularly pungent, illustration of the point:* ‘He died and was buried’!
More topically A.A.Luce points out that: ““He learned Logic and died” is
not the same as “He died and learned Logic”.”

Perhaps we could employ a new formal connective which did this job,
however. We might invent a formal counterpart for ‘whereupon’, for
example. Clearly, there is more to the truth of ‘I got out of bed whereuponI
had a shower’ than simply the truth of ‘I got out of bed and I had a shower.”
But that is precisely the problem for the formal logician: if anything other
than the truth-values of the component formulas can make a difference to
the truth-value of the overall formula then that connective cannot be a truth-
functional connective. Adding in any non truth-functional connective would
spoil the game. “‘Whereupon’ is not truth-functional and so adding it in would
deprive PL of its impressive truth-functionality.

Moreover, ‘and” does not always occur as a connective in natural language:
‘The television in the hotel room was only a black and white one’, etc. Worse
still, while it is common to translate ‘but’ in terms of ‘&’ in PL, ‘but’ and
‘and’ plainly are not equivalent in natural language. For example, try
swapping ‘but’ for ‘and” in the following sentence: ‘The students all did
very well and I was happy.’

What are we to conclude here? First, we must again recognise the existence
of a controversy in formal logic and, perhaps, confront a limit to the success
of the formal logician’s enterprise. Ideally, ‘&” would faithfully represent every
aspect of the use of ‘and” in natural language. But it does not. In so far as it
does, so far might it be held to be an analogue of ‘and’. But we are not forced
to press that point. Remember: truth-tables are used to define the meaning of
the connective which stands on its own two feet, as it were. Moreover, just as
PL is of great interest, importance and practical utility as an autonomous
formal language independent of any natural language so too ‘& is of interest
and importance just in itself, without any reference to ‘and’.

It may seem surprising, especially in semantics, to learn that bouncing
your intuitions off natural language is not always the best way to deepen
your understanding of the formal language. But there is some truth in that
claim none the less. Further, classical formal logic is only one among many.
We have noted that both relevance and intuitionist logicians propose rather
different systems which revise classical logic. Perhaps these are better
analogues. Perhaps not. At this stage, the important point to note is that
unless you have a good grasp of classical formal logic you will not be in a
good position to assess the merits of systems which revise it.
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Moreover, recall our earlier analogies between formal logic and chess.
When we learn how a given piece moves in that game we come to know
what it means to be that piece in that game. It doesn’t make a great deal of
sense to ask: but why does the bishop move in diagonals of one colour
only? Similarly, it can be more useful to accept that the truth-table definitions
of the connectives define the nature of those connectives in the game of
classical formal logic, in the formal logic language-game. Looked at in this
way, each logical language-game is of interest just in its own right; and
none more so than the classical one. With these points in mind let’s consider
the truth-tables for the most basic compounds formed using the remaining
connectives.

Here is the table for the disjunction P v Q in PL:

P Q PvQ
T T T
T F T
F T T
F F F

Note that P v Q is only false when both disjuncts are false. The truth of one
disjunct is sufficient for the truth of the whole disjunction. But note that the
disjunction is also true when both disjuncts are true. This reflects the fact
noted earlier that in PL disjunction is used in the inclusive sense, i.e. it
includes the possibility that both disjuncts are true.

Again, there is something analogous to natural language ‘or” in the truth-
table for P v Q just in so far as we would want to recognise the sufficiency
of the truth of one disjunct for the truth of the disjunction. However, we
often use ‘or” in the exclusive sense in natural language: ‘Either Paul is
revising for his logic exam or he is sleeping the sleep of the wicked.” In
this case, while either disjunct might be true, both surely cannot be true at
one and the same time! But this time the formal logician is rather better
off. Exclusive disjunction is certainly definable in terms of inclusive
disjunction, namely, as ((P v Q) & ~(P & Q)) and both senses are truth-
functional.

Here is the truth-table for P — Q:

P Q P-Q

mm o~
M-
— =4 -
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This particular truth-table exposes the arrow as the least analogous of the
logical connectives to their natural language counterparts. Note that the
conditional is only false if the consequent is false just when the antecedent
is true. Perhaps that much seems intuitive. But what of the other
interpretations of those formulas? Why should the conditional be considered
true when both its antecedent and its consequent are false, for example?
Here, the classical formal logician may appeal to the fact noted in earlier
chapters that both Q and ~P independently entail P — Q, i.e. I proved in
Chapter 2 that: Q - P - Q and you will yourself have proved in Chapter 3
that ~P P — Q. So, the argument goes, as long as Q is true or P is false then
P — Q must be true. But this is not an end to the matter. The relevance
logician, for example, is quick to amend classical proof theory so that neither
of these controversial sequents is provable. In truth, the conditional gives
rise to a plethora of controversies and we will not have space or time even
to mention them all! But cast your mind back to our chess analogy.
Remember: the truth-table is used to define the conditional in the language-
game of classical formal logic, and that really is an end to the matter.

Before we move to consider the table for the simplest biconditional
formula in PL it’s worth noting that the connectives we have considered to
date can be used to represent another English connective, namely, “‘unless’.
For example, ‘Q unless P’ can fairly be rendered as ‘if not P then Q" and thus
as ~P — Q in PL. Moreover, this formula is in turn equivalent to the simple
disjunction P v Q and so we could also faithfully translate unless using
disjunction. Finally, here is the truth-table for the simple biconditional
formula P < Q:

P Q PoQ
T T T
T F F
FoooT F
F F T

If the truth-table for the basic conditional formula was the least intuitive
and least analogous to natural language, the truth-table for the basic
biconditional formula is surely the most intuitive. The relation of material
equivalence between formulas which is expressed by the biconditional only
holds true if both formulas are true together or both are false together. In
this case, then, there really does seem to be an analogy between the truth-
table for the connective ‘e>” and natural language use of the ‘if and only if’
construction.

Actual use of ‘if and only if” in natural language may seem rather thin on
the ground but, in fact, the construction is extremely useful in both
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mathematics and the natural sciences, where it is frequently exploited in
definitions of formal and technical terms. In ordinary discourse it is much
more common to find elements such as ‘if’ and, indeed, ‘only if’ on their
own, as it were, but we should be very wary about translating any such use
in terms of the biconditional. After all, as we noted in Section X of Chapter
2, both ‘P only if Q" and ‘P if Q" are accurately translated as conditionals, i.e.
‘P only if Q" should be rendered as P — Q, while the use of ‘if’ reverses the
order of the antecedent and consequent, and so ‘P if Q” is accurately
translated as Q — P. As you know, the biconditional P <> Q is equivalent to
the conjunction of both these conditionals. Therefore, the biconditional does
indeed translate ‘if and only if’".

We can now summarise all of the truth-tables for the most basic truth-
functional compounds formed using the connectives which we have
considered in this section and condense them all into a single, rather longer
table. Because there are four options for truth-value assighments to the binary
connectives but only two options for our lone unary connective, the columns
for that connective are only half as long as their binary counterparts:

P ~P P Q P&Q PvQ P-Q PoQ
T F T T T T T T
F T T F F T F F
- - F T F T T F
- - F F F F T T

Fortunately, we are by no means confined to these most basic of truth-
functional compounds. Any well-formed formula of PL no matter how
complex may be negated and the result of negating that formula will be
precisely to reverse the truth-value. Any two well-formed formulas may be
conjoined, disjoined, conditionalised or biconditionalised, to coin a phrase.
In order to represent the level of generality involved here and to give truth-
tables which really do define the connectives of PL quite generally we must
again have recourse to the variables “A’, ‘B’, ‘C’, etc., which I first introduced
in the final section of Chapter 2. As we noted there, these variables range
over well-formed formulas of PL, i.e. A" stands for any well-formed formula
of PL, ‘B” stands for any well-formed formula and so on. Because these
variables represent formulas of PL they do not themselves belong to PL.
Rather, they belong to the metalanguage in which we talk about PL as object
language, i.e. these are metalinguistic variables. We can utilise just those
variables to express the effect of each connective on the well-formed formulas
of PL. In so doing, we can at last construct truth-tables which formally define
the logical connectives. The table in Box 4.2 summarises the relevant truth-
tables.
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A&B AvB A->B AoB

E E 17 T T F T -
R R AT F T F F
- 2 F T F T T F
= = F F F F T T
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Constructing

Truth-Tables

Given the truth-table definitions of the logical connectives we can now go
on to calculate quite mechanically the truth-value of any complex formula
of PL for any assignment of truth-values to its constituent atomic formulas.
This kind of semantic investigation reveals some interesting properties of
certain formulas of PL. But, before we go on to look at some actual cases,
let’s first consider how truth-tables are constructed via three simple
examples.

First, consider the simplest possible kind of case, a negated sentence-
letter. Suppose that we are interested in the overall truth-values of ~P, for
example. How should we proceed to construct the truth-table? Well, the
very first thing to do is to draw a horizontal line at least one and a half times
as long as the formula involved and write out the formula to the right of
that line. So, for example, in the case of ~P we write:

~P

Next, we identify each and every sentence-letter involved in the formula, list
these in alphabetical order to the left of the formula and separate the two
with a vertical line. In the present case we only have P to worry about so:

P ~P

We must now assign truth-values to the sentence-letter listed on the left. The
number of truth-value assignments required, i.e. the number of rows of
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assignments to the sentence-letter(s) on the left, is just 2" where ‘n’” is the
number of sentence-letters involved. So, if only one sentence-letter is involved,
as in the present case, the number of rows of assignments is 2, i.e. 2.

Having done so, we construct the required number of truth-value
assignments as follows: under the sentence-letter nearest the formula itself
list the required number of truth-value assignments (in this case 2) beginning
with T and alternating with F to the relevant number, e.g.:

P| ~P

1. T
F

To complete the truth-table (i.e. to complete the blank box under the formula
itself) consider each complete truth-value assignment, i.e. each row of the
table (in this case rows numbered 1-2) very carefully, then, in each case,
begin by simply writing the truth-value assigned to the sentence-letter by
that assignment under each and every occurrence of the relevant sentence-
letter in the formula itself. So, for example, because row 1 assigns T to P, we
enter T under the occurrence of P on that line in the formula, and because
row 2 assigns F to P we enter F under P on that assignment, like so:

P| ~P
. T T
F| F

Next, we identify the main connective and highlight the column below it
by enclosing it in a box with ‘m.c.” written underneath. Thus, we
emphasise that this column is the main column, i.e. the column in which
the overall truth-value of the whole formula will be recorded under each
assignment.

m.c.

Finally, for each assignment, consider the truth-value assigned to P itself
and then simply exploit the truth-table for the relevant connective (in
this case ‘~’) to compute the overall values of the formula. According to
the table for ‘~’, of course, when a formula is true its negation is false
and when a formula is false its negation is true. Hence, we complete the
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table by entering just those overall values under the main connective as
follows:

m.C.

We have considered the simplest possible case here and you should not
be surprised to learn that your logic exam will contain slightly more
complex cases. None the less, the procedure is very similar, if a little more
articulated. For example, consider the formula (P & Q) — (Q v P). Again,
we write the formula on a line, identify every sentence-letter involved in
the formula and list these in alphabetical order on the left, separating the
two with a vertical line:

P Q I P&Q) —(PvQ)

Next, we assign truth-values to the sentence-letters listed on the left.
The number of truth-value assignments required is 2" where ‘n’ is the
number of sentence-letters involved. So, when two sentence-letters
are involved, as in the present case, the number of rows of
assignments is 27, i.e. 4. Again, we begin with the sentence-letter
nearest the formula itself (in this case Q) and assign truth-values
beginning with T and alternating with F to the requisite number (in
this case 4).

P Q P&Q)—->(PvQ)

W=
n—~ -

Under the remaining sentence-letter (in this case P) we again list the required
number of truth-value assignments but this time beginning with two Ts and
alternating with two Fs to the required number:
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=
@

P&Q) - (PvQ)

i
nmHH
nm=mA

As before, we begin to complete the table simply by writing the truth-value
assigned to the sentence-letter by that assignment under each and every
occurrence of the relevant sentence-letter in the formula itself. So, for
example, because row 1 assigns T to P and to Q, we enter T under each and
every occurrence of P and Q on that line like so:

P Q |(P&Q)—>(PVQ)

1. TT\TT TT

Next, we must again identify the main connective and highlight the column
below it by enclosing it in a box marked ‘m.c.” to emphasise that this column
is the main column, i.e. the column in which the overall truth-value of the
whole formula will be recorded under each assignment:

P Q P&Q) - (PvQ)
. T T T T||T T
2. T F
3. F T
4, F F
m.cC.

The main connective in this formula is the ar row. So, the whole formula is
a conditional. However, its antecedent is a conjunction and its consequent
is a disjunction. In order to calculate the overall truth-value then we must
tirst calculate the value of the antecedent using the table for ‘&’, then calculate
the value of the consequent using the table for “v’, and write these values
under the relevant connectives. To that end, consider the first assignment
carefully. Because both P and Q are true the conjunction P & Q is also true,
and we record that fact by entering T under the connective ‘&’. Further,
because both P and Q are true, the disjunction P v Q is also true, and we
record that fact by writing T under the disjunction symbol. So far, then, line
1 looks like this:
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P Q |(P&Q)—>(PVQ)

1. T T ‘TTT|_|TTT

In turn, these two results now provide our input truth-values for the final
calculation, which we make simply by using the truth-table for ‘—’. Consider
line 1, for example; the antecedent (P & Q) is true and so is the consequent
(P v Q). When that is so the truth-table for the conditional assures us that
the whole conditional is true. Therefore, the overall value of the whole
formula (P & Q) — (P v Q) under the first assignment of truth-values is T.
So, we may complete line 1 as follows:

P Q |(P&Q)—>(PVQ)

1, T T ‘TTTmTTT

To complete the truth-table in its entirety, we simply follow the same
procedure for the remaining assignments 2—4. The completed truth-table
looks like this:

P Q P&Q)—>(PvQ

. T T TTT[T|TTT

2. T F TFF|T|TTF

3. F T FFT|T|FTT

4 F °F FFF|T|FFF
m.cC.

By now, you will have a fair idea of how to go about constructing truth-
tables but, before we go on to tackle an exercise, I will sum up the
procedure and give one last illustration, namely, the table for the
formula P & (Q v R). So, to construct a truth-table observe the following
procedure carefully:

1 Draw a horizontal line at least one and a half times as long as the
formula(s) involved and enter the formula(s) to the right of that line, e.g.

P& (QVR)

2 Identify all the sentence-letters involved in the formula(s), list these in
alphabetical order to the left of the formula and separate the two with
a vertical line, e.g.
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P Q R |P&(QvR)

3  Assign truth-values to the sentence-letters listed on the left. The
number of truth-value assignments required, i.e. the number of rows
of assignments to the sentence-letters on the left, is just 2" where n’
is the number of sentence-letters involved. So, if only one sentence-
letter is involved, the number of rows of assignments is 2!, i.e. 2. If
two sentence-letters are involved, the number of rows of
assignments is 2% i.e. 4. If, as in the present case, three sentence-
letters are involved, the number of rows of assignments is 2°, i.e.
(2x2)x2, so 8. Construct the required number of truth-value
assignments as follows:

(i) Under the sentence-letter nearest the formula itself (in this
caseR) list the required number of truth-value assignments
(in this case 8) beginning with T and alternating with F to the
relevant number, e.g.:

P Q R P& (QvR)

O N O U DW=
Mm-S~

(i) Under the next sentence-letter to the left (in this case Q) again
list the required number of truth-value assignments but this
time beginning with two Ts and alternating with two Fs to
the required number, thus:



4

FORMAL LOGIC AND FORMAL SEMANTICS #1
P Q R P& (QVR)
1 T T
2 T F
3 F T
4 F F
5 T T
6 T F
7 F T
8 F F

(iii) Under the next sentence-letter to the left (in this case P) again

list the required number of truth-value assignments but this
time beginning with four Ts and alternating with four Fs to
the required number, thus:

P Q R P& (QVR)

N LT WY =
MMM -~
MmMMmA 4T A
M4 44T A
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To complete the truth-table consider each truth-value assignment, i.e.
each row of the table (in this case rows numbered 1-8), then:

(i)

(ii)

In each case, begin by entering the truth-value assigned to
each sentence-letter by that assignment under each and every
occurrence of the relevant sentence-letter in the formula itself.
In this case, because row 1 assigns T to P, Q and R, we can
enter T under each and every occurrence of P, Q and R in the
formula like so:

P Q R |P&(QVR)

1. TTT‘TTT

Identify the main connective and highlight the column below
it by enclosing it in a box with “m.c.” written underneath it
thus:
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P Q R P& (QVR)
1. T T T B
2. T T F
3. T F T
4. T F F
5. F T T
6. F T F
7. F F T
8. F F F ||
m.cC.

(iii) Identify the scope of every other connective involved and,

(iv)

for each assignment, using the truth-values already assigned
to the sentence-letters involved and the truth-tables for the
relevant connectives, establish the overall truth-value of
each sub-formula.

In the present case the formula is a conjunction whose
first conjunct is P and whose second conjunct is (Q v R). On
assignment 1 every sentence-letter is assigned T and so we
simply appeal to the truth-table for disjunction to establish
that when both disjuncts are true the disjunction is true.
Hence, the overall value of the formula (Q v R) is also T:

P Q R ‘P&(QvR)

1. T T T ‘T|_|TTT

Next, using the truth-values of the sub-formulas we have
just worked out as inputs, we simply use the appropriate
truth-table for the main connective to compute the overall
value of the whole formula under each assignment of truth-
values. In the case above, the conjunction has two true
conjuncts, namely, P and (Q v R). A conjunction with two
true conjuncts is itself true, so we complete this line by
entering T in the column belonging to the main connective
like so:

P Q R |P&@vm

1. T T 7T ‘TmTTT

Finally, repeat steps (i)—(iv) for every other assignment in-
volved.
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Before attempting Exercise 4.1 note carefully that while the main
connective in the formula ~P & (Q v R) is ‘&’ the main connective in the
formula ~(P & (Q v R)) is ‘~’. Therefore, in that latter case, and in the case of
every other negated formula, the overall truth-value of the formula must
be stated under that occurrence of the connective. (Anyone who wants a
refresher course on the notion of the scope of a connective might like to
reread Section II of Chapter 2 before attempting the following exercise.)

EXERCISE 4.1

1 Construct and complete truth-tables for the following formulas of PL:

1. P>@P&D)
2. P&-~P

3. Pv~P

4. P->(Q-P)

5. P&Q e (Q&P)

6. PvQ)e-~-Q

7. P->Q) - (-Q->-P)

8. ~(PvQ) & (~-P&~Q)

9. ~P&(QVR)

0. «(P&(QVR))

11. ~~(P & ~P)

12. (P>Q) > Q—>R)—>(P—->R)
13. ~(P->Q->Q->R)—>P-—->R)
14. P->(Q->R)v~R)v-~-Q

15. (P&Q) > (Rv-S)—>T

VI

Tautologous, Inconsistent and
Contingent Formulas in PL

Your answers to Exercise 4.1 should have revealed three possible types of
truth-table which any formula may have:
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1 First, a formula may have a mixture of true and false overall values
recorded in the main column. Whether such a formula comes out true
or not depends upon the particular assignment of truth-values to its
constituent atomic formulas. In logical terms, the overall truth-value
of the formula is contingent upon that prior truth-value assignment
and, logically enough, any such formula with a mixed bag of overall
values is said to be a contingent formula. For the formal logician, a
contingent formula is contingent in virtue of its logical form, i.e. that
formula has a contingent form and any other instance of that form
must also be contingent. This point will be easier to see when we have
considered a rather different kind of truth-table.

2 Youshould already have noticed that certain formulas in Exercise 4.1
are true under every interpretation. No matter which particular
assignment of truth-values we consider, these formulas are always
and only true, i.e. such formulas have T for each and every entry in
the main column. This special class of formulas of PL which come
out true overall under every single assignment of truth-values to their
component parts are known as tautologies in Logicspeak. Tautologies
are formulas of a logical form such that, given the meanings of the
logical connectives, those formulas cannot but be true. Hence, the
formal logician’s claim that tautologies are tautological in virtue of
having a tautological form (and, indeed, the earlier claim about
contingent formulas being of a contingent form). Moreover, because
a tautology must be true under every interpretation tautologies are
often described as empty or vacuous. What tautologies are ‘empty’
of is just any factual or, in philosophical terms, empirical content.
Tautologies are not factual, empirical truths but logical truths. The
laws of logic are definitively logical truths. So, it should be no surprise
that the laws of logic are tautologies. This is intuitive and can easily
be proved. For example, let’s test the law of excluded middle which
I mentioned earlier, - P v ~P. Is it a tautology?

P |PV~P

TiTlF T
FIT]T F

m.cC.

1. T
2. F

This formula is true under every interpretation. Therefore, as we would
expect, this formula is indeed a tautology.

3 There is one last possibility which we have still to consider. Certain
formulas never have the overall value T. When each and every entry in
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BOX 4.3

¢ Given the meanings of the logical connectives, we can use truth-tables to
distinguish three kinds of formula in PL:

¢ Formulas which have a mixture of land F as overall truth-values recorded in
the main column are contingent formulas.

¢ Formulas which have T for each and every entry in the main column are
tautologies.

¢ Formulas which have F for each and every entry in the main column are
inconsistent formulas.

Note carefully that this classification is exhaustive.

the main column is F the formula is a logical falsehood. A logical false-
hood cannot possibly be true. Any such formula is strictly self-
contradictory. Formulas of this third type are said to be inconsistent
formulas. As ever, it is the logical form of an inconsistent formula which
guarantees that the formula is logically false.

Finally, note that the tripartite classification of formulas into
tautologies, contingent and inconsistent formulas is exhaustive. Each
and every formula of PL belongs to one of the three categories. This is
summarised in Box 4.3.

EXERCISE 4.2

Consider again each of the fifteen formulas in Exercise 4.1. For each
formula say whether it is (i) contingent, (ii) tautologous or (iii)
inconsistent. In each case, give reasons for your answer.

In terms of the tripartite distinction between formulas given above,
what is the status of (i) the negation of any tautologous formula and
(ii) the negation of any contingent formula?

Suppose that you had been asked simply to test Formula 15 of Exercise
4.1 for tautologousness. How many lines of the truth-table for that
formula would you have had to construct and why?
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VII
Semantic
Consequence

So far, truth-tables have proved useful in providing us with an entirely
mechanical procedure for determining the overall truth-value of any
complex formula of PL. Given any formula whatsoever, we can always use
the truth-tables to determine the overall truth-value of the formula for each
and every interpretation of its constituents. But that is by no means an end
to the usefulness of truth-tables. Reflect once more upon the definition of
validity: a valid argument is an argument such that whenever the premises
are true, the conclusion must be true. Hence, if an argument is valid it is
impossible that its conclusion should be false when its premises are true.

In more formal terms, this amounts to saying that a sequent is valid if
and only if there is no interpretation (i.e. no possible assignment of truth-
values to the component formulas) under which all the premises of that
sequent are true while the conclusion is false. To define validity in these
terms is to define validity semantically. But recall that a sequent simply
consists of some set of formulas as premises together with a formula as
conclusion, the two being separated by the colon.

Now, it is easy to see that we can always use the truth-tables to determine
whether or not a given sequent is semantically valid. All we need do is
construct a truth-table for the formulas constituting that sequent, then look
and see whether there is any interpretation under which the premises are
true while the conclusion is false. If there is, the sequent is not semantically
valid; but if not, then that sequent will indeed be semantically valid. In
other words, we simply lay the whole sequent out on a line and construct a
truth-table carefully calculating the overall truth-value of each premise and
the overall truth-value of the conclusion for each assignment. Such a truth-
table is often said to be a comparative truth-table just because we compare
the truth-values of the premises with the truth-value of the conclusion to
determine semantic validity.

For example, consider the sequent P — Q, Q:P. Is this sequent semantically
valid? We can easily construct a comparative truth-table to show that it is
not:

P Q |P5QQ P
. T T |TTv 7T
2. T F | TFIF F T
3. F T |FTT TF
4. F F | F|ITIF F F
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Under the third assignment of truth-values both premises are true while the
conclusion is false. Therefore, there is a way in which the conclusion can be
false while the premises are true. So, this particular sequent is semantically
invalid. Moreover, we also learn from the truth-table exactly which assignment
of truth-values to its constituent formulas demonstrates the invalidity of the
sequent. Look closely at the third interpretation: here P is false, while Q is
true. This assignment of truth-values is exactly that interpretation which
invalidates the sequent. In Logicspeak, any such invalidating interpretation
is an invalidating PL interpretation, or IPLI for short. Now, any IPLI tells us
a great deal about what we might call the general character of a counterexample
to that sequent, i.e. it tells us precisely which truth-values should be assigned
to precisely which atomic formulas so as to generate true premises together
with a false conclusion. In fact, to get from an IPLI to an actual counterexample
all we need to dois to study the IPLI carefully, identify which atomic formulas
are assigned T and which are assigned F, and then assign an actually true
natural language sentence to each formula assigned T and an actually false
natural language sentence to each formula assigned F.

For example, in the present case, we simply pick a false sentence for P, a
true sentence for Q, and then mimic the logical form of the original sequent
exactly. So, let P stand for the false sentence that “All cats are black.” Let Q
stand for the true sentence that ‘Zebedee is black.” To generate an actual
counterexample all that remains is to mimic the form of the sequent, making
appropriate (uniform) substitutions thus:

1. If all cats are black then Zebedee is black P->Q
2. Zebedee is black. Q
Therefore,

3. All cats are black. P

Hence, we can always exploit the truth-table of any invalid sequent to arrive
at an IPLI of that sequent, and it is a short step from there to an actual
counterexample.

Further, suppose that we are interested in the following sequent: P v Q,
~Q:P. Is this sequent semantically valid? Again, we can easily use the truth-
tables to get an answer:

P Q |PvQ -QP
. T T |T|T|TFTT
2. T F |TITIFTFT
3. F T |FITITFTF
4. F F |F|IF|[FTFF
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Remember: the sequent is semantically valid if and only if there is no
interpretation under which the premises are all true when the conclusion is
false. Now, the conclusion, P, is only false under the last two of the four
assignments. Is it the case that both premises are true under either of those
assignments? No. In each case, only one premise is true. This time there is
no interpretation under which all the premises are true when the conclusion
is false, i.e. there is no IPLI for this sequent. Therefore, the sequent P v Q,
~Q:P is semantically valid. Because we established the validity of this
sequent semantically rather than syntactically we cannot use the syntactic
single turnstile ‘" to mark the relation of consequence involved here. Instead,
we use the semantic double turnstile ‘=" to mark this notion of consequence.
The double turnstile therefore represents the notion of semantic
consequence in PL. Semantic consequence is defined as follows: a given
formula of PL is a semantic consequence of some set of formulas of PL if
and only if there is no interpretation which assigns T to each member of that
set of formulas which does not also assign T to the given formula. Formally,
we can subscript the first of our metalinguistic variables, namely ‘A’, to
make a countable but possibly infinite set of such metalinguistic variables
explicit, i.e. {A, A, A,. ... AL

We can now consider any such set as representing a set of premises in PL.
Further, let ‘B’ represent any conclusion alleged to follow as a consequence
from that set of premises. We can now represent the general form of a
sequent as:

{A,. ... .A}B

S
In the present context we are specifically interested in the notion of semantic
consequence represented by . So, we formally represent the relation of
semantic consequence in PL as follows:

{A,. ... .A }E B ifand only if every interpretation which assigns T to
each of the formulas {A,. .... A} also assigns T to formula B.

Finally, where the sequent in question has no premises there will be no
formulas to the left of the colon symbol to consider. In such cases, the test
for semantic consequence simply reduces to a test for tautologousness of
the formula on the right of the colon symbol (the conclusion). If the
conclusion is always true under every interpretation then the sequent is
certainly valid in PL. A given formula is a tautology, of course, only if the
overall truth-value of the formula is T for every interpretation.

We have now arrived at two characterisations of the notion of logical
consequence in PL, namely, the syntactical and the semantic. And it may
well look as if we have two different answers to the fundamental question:
when does one formula follow logically from some other formula or formulas
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in PL? At this stage, it is natural to compare the two characterisations of
consequence and, indeed, to wonder exactly how the two stand to one
another.

In the last analysis, you may feel that the notion of semantic consequence,
being so explicitly concerned with the preservation of truth across inference,
exemplifies the notion of soundness of argument which we have been trying
to capture since Chapter 1. But consider again, for example, the sequent P v
Q, ~Q:P. We already knew both that Pv Q, ~Q + P and that Pv Q, ~P+ Q
(you should yourself have proved both sequents in Revision Exercise III in
Chapter 3).° These syntactical results may well have led you to anticipate
that P v Q, ~Q:P would indeed turn out to be semantically valid as well. In
fact, you would have been perfectly justified in anticipating the semantic
validity of this sequent just on the strength of its provability. Strikingly, the
same holds true for every provable sequent of PL: every provable sequent is
also a semantically valid sequent. In other words, all the syntactically valid
sequents turn out to be semantically valid sequents anyway. This striking
property of PL is known as Soundness. At this level, what is Sound is not
some particular argument or sequent but rather the entire set of syntactic
rules of inference. To prove Soundness of PL is just to prove that each and
every rule of inference is truth-preserving and really can be relied upon to
yield only valid sequents. A proof of Soundness is a guarantee that no rule
will ever allow any semantically invalid step into a proof and that truth will
always be preserved in every proper application of each and every rule. If
no rule of proof allows anything invalid in and every application of every
rule preserves validity then only what is valid will be provable.

Unsurprisingly, you will not be expected to be familiar with the nuts and
bolts of a Soundness proof in your first-level course in formal logic. However,
you may well be expected to know what the term means. Here it is important
to distinguish clearly between uses of the terms ‘sound” and ‘Soundness’.
Remember: to say that an argument is sound is just to assert that it is a valid
argument with actually true premises. But to prove Soundness of PL is to
demonstrate that every provable conclusion in the language is also a
semantic consequence of the set of premises from which it is proved. Thus,
Soundness ties together both our characterisations of logical consequence
in PL, i.e. it ties ‘+" and & together. But note that Soundness ties these
notions together, we might say, in one particular direction. At this point, we
need new logical symbols to express ourselves clearly. If we adopt a
metalogical arrow, ‘=, to express the connection between the two turnstiles
and the symbol S for ‘Sequent’, we can represent Soundness as follows:

Soundness: FS=ES

As far as consequence in PL is concerned, Soundness is only half the story
and reflects only half of the tremendous integrity between these two notions
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of consequence. In fact, PL has another, equally striking, complementary
property known as Completeness. This property guarantees that every
semantically valid sequent is also provable using the rules of inference.
Therefore, there is no semantically valid sequent of which a proof cannot be
constructed. Therefore, we know that everything we want in the system is
in and that nothing has been overlooked or left out. Hence, the Complete in
Completeness. Another common way to put the point is that every truth-
functional tautology of PL is also represented by a theorem of PL. We will
consider the point in this form again at the very end of this chapter. However
we might putit, it should be clear that Completeness also ties the two notions
of consequence together but in the opposite direction:

Completeness:ES=FS

Again, you will not be required to be familiar with the Completeness proof
for first-level purposes, though, again, you may well be expected to know
what the term means.

In conclusion, it should be clear that the two properties of Soundness
and Completeness together exemplify a tremendous closeness and integrity
between the proof-theory and the semantics of PL, i.e. between ‘+" and .
In virtue of those properties the ‘two’, seemingly very different, notions of
logical consequence in fact turn out to be one.

Now study Box 4.4.

Guide to Further
Reading

Space does not permit the inclusion of Soundness or Completeness proofs
in the present text. For interested parties I include some historical
background and pointers to texts which do contain these proofs. Note,
however, that you really would be well advised to finish working through
the present text before proceeding to another.

As noted in Chapter 1, modern formal logic begins with the work of the
great German mathematical logician Gottlob Frege [1848-1925], Professor
of Mathematics at Jena University in Germany from 1879 to 1918. Frege
tirst published a rigorous formal system of logic as early as 1879 in his
Begriffsschrift. This particular text contains a version of prepositional logic
but it also contains much more besides. In fact, it contains much of the logical
machinery which we will go on to consider later in the text.

The point is often made that Frege’s genius was lost on many of his
contemporaries. Although the point is a good one, it certainly does not
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BOX 4.4

¢ A sequent is semantically valid if and only if there is no interpretation (i.e.
no possible assignment of truth-values to the component formulas) under
which all the premises of that sequent are true while the conclusion is false.

¢ To determine whether or not a given sequent is semantically valid, construct
a comparative truth-table for the formulas constituting that sequent and
consider whether there is any interpretation under which the premises are true
while the conclusion is false (such a truth-table is said to be comparative
simply because we compare the truth-values of the premises with the truth-
value of the conclusion to determine semantic validity). If there is such an
interpretation, the sequent is not semantically valid; if not, the sequent is
semantically valid.

¢ Any interpretation under which the premises of a given sequent are true
while the conclusion is false makes explicit an assignment of truth-values to
the constituent formulas of that sequent which demonstrates the invalidity of
that sequent. Any such interpretation is an invalidating PL interpretation, an
IPLI, of that sequent.

¢ To generate an actual counterexample from an IPLI: replace each sentence-
letter assigned F with a false natural language sentence, each sentence-letter

assigned T with a true natural language sentence, and mimic the logical form
of the original sequent exactly.

apply to Bertrand Russell [1872-1970]. While a Fellow, and later Lecturer,
of Trinity College, Cambridge [1895-1915], Russell became aware of the
tremendous philosophical significance of Frege’s work and, together with
Alfred North Whitehead [1861-1947], set about developing his own system
of formal logic. This work resulted in the publication of Russell and White-
head’s Principia Mathematica, in three volumes, between 1910 and 1913.
Again, this text contains a version of prepositional logic; and again much
more besides. However, it was the American mathematician E.L.Post [1897—
1954] who first proved about the system of propositional logic contained
in Principia the metatheoretical result that the system was Complete, in
our sense. In fact, Post’s proof was the basis of his doctoral thesis for
Columbia University in 1920.

Since 1920 a number of formal logicians have arrived at the same result
in different ways. Perhaps the best known alternative version was presented
by Leon Henkin in 1947. This version of the Completeness proof is considered
to be somewhat simpler and quicker than many of its rivals, and the term
‘Henkin proof” is a commonplace of metatheoretical logical parlance.
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More historical detail together with an outline of Post’s proof’” and
a full Henkin proof of completeness® is given by Geoffrey Hunter in
his Metalogic. Hunter’s text represents a remarkable combination of
rigour and accessibility at the metatheoretical level. It is therefore
strongly recommended, though, sadly, it is presently out of print.
However, interested parties will also find concise and very useful
proofs of both the Soundness and Completeness of formal
propositional logic in A.G.Hamilton’s Logic for Mathematicians.’
Interested parties should not be put off by the title. The text is quite
readable and contains useful exercises. The relevant proofs can be
found over pp. 27-45 of Chapter 2. Notably, Hamilton refers to the
pair of results as establishing the adequacy of propositional logic. This
is slightly non-standard. As we noted in Chapter 2, this term is
usually used to describe a property of various sets of logical
connectives (see below: Section XII). Finally, I again emphasise the
importance of finishing at least the first part of the present text before
proceeding to another.

Now try Exercise 4.3.

EXERCISE 4.3

1 Construct comparative truth-tables for the following sequents. For each
sequent state whether it is semantically valid or not. If you find any to
be semantically invalid make an IPLI explicit.

—_

PvQ:P

Pv-~Q,~Q:~P
Q:~(-P&-Q)
~Pv-Q):~-P&Q
P->QQ—-oR:R-P
P>Q->R):Q—»P->R)
P&-Q:~(P—-Q)
Q—oPPvQ:PVvR
H{((-P>Q)—>~P)>-~P
~(Pv~-Q) > (-P&Q)
~R->Q:PvQ)—=(~-R—>DP)

© © ® N o v~ W

R —y
—t
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12, ~P->(QvVvR),~P—-~R:Q

13. P&QVv(Q-R):(P&Q)v(P&~Q)v(P&R))
14. :PvQ & ~«(~(Q&-P)&~(P— Q)

15. (PvQ)eo (-RvS):R—-> (P ~(R &~8))

VIII
Truth-Tables Again:
Four Alternative Ways to Test for Validity

The truth-table test for semantic consequence has a mechanical straight-
forwardness which recommends it as a formal method for establishing
the validity or invalidity of sequents of PL. Indeed, the method is
sufficiently mechanical for machines to be programmed to carry out truth-
table tests and to churn out results, we might say, unthinkingly. Further,
the truth-table method contrasts with attempts to construct a proof for a
given sequent just because, on a bad enough day, we may fail to construct
a proof even if the sequent is ultimately provable. In contrast, the truth-
table method offers a uniformly decisive test for validity which can be
applied quite mechanically. As such, that method is known in formal terms
as an effective decision-procedure, i.e. a procedure which, when followed
correctly, always gives us a ‘yes” or ‘no” answer to our question about
validity. However, the very mechanical nature of this test does not inspire
a great deal of reflection about the notion of validity which we use that
method to explore. So, before we become complete ‘mechanicals’, and in
the hope of gaining a little more insight, let’s consider four alternative
methods for exploiting the truth-tables.

1 In the previous section we exploited truth-tables to test sequents for
validity. There we noted the general form of a sequent:

(A, ....A}B

B
The truth-table tests we have employed so far simply involve taking a
given sequent, constructing tables for premises and conclusion, and
comparing the overall truth-values under every interpretation. However,
the definition of validity allows at least one other approach. Suppose
that the sequent we are dealing with really is semantically valid. If that
is so, then there can be no interpretation under which the premises {A.
... .A } are all true while the conclusion, B, is false. Therefore, for any
valid sequent, the set of formulas consisting of the conjunction of each
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of the premises of that sequent together with the negation of the conclusion
of that sequent must be strictly inconsistent.

Recall the original Blind Lemon Jefferson argument once more.
Earlier, we noted that the argument could be formalised in PL as the
sequent P, P — Q:Q. We know that this particular sequent is provable.
So, by Soundness, we also know that it will turn out to be semantically
valid. Note what happens when we run a truth-table test on the set of
formulas consisting of the conjunction of each of the premises of that
sequent with the negation of its conclusion:

P Q| P&P-Q)&~Q

. T T|TT|T|T{T|FIFT

2. T F | T|F|T|F|F|F|TF

3. F T | F|FIF|T|T|F|FT

4. F F | F|F|F|TIF|F|TF
m.cC.

Just as we would expect, the whole set of formulas is inconsistent. In
other words, there is no way in which all of these formulas could
possibly be true together. It follows that the sequent is semantically
valid. Of course, if that set of formulas had not turned out to be strictly
inconsistent then there would indeed have been at least one way in
which those formulas could all be true together and therefore the
sequent would have been shown to be semantically invalid.

2 Again, recall the general form of a sequent:

(A A )B

1

Once more, suppose that the sequent we are considering genuinely is
a valid sequent. Finally, recall the truth-table definition of A — B.
Remember that the conditional is only false in one case, namely, when
its antecedent is true while its consequent is false. Now, given any
valid sequent, we ought to be able to conjoin the premises of that
sequent, take that conjunction as the antecedent of a conditional and
then take the conclusion as the consequent to form a conditional
which is tautologous. Why? Just because, if the sequent really is valid,
then the premises cannot be true while the conclusion is false, i.e. the
antecedent of the conditional we have constructed cannot be true
while the consequent of the conditional is false. So, if the original
sequent really is valid the conditional cannot possibly be false. Again,
consider the sequent which represents the Blind Lemon Jefferson
argument in PL:
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PQ|FP&P—-Q)—Q
LT T T|TT|T|TTT
2. T F | T|F|T|F|F|T|F
3. F T | FIF|F|T|T|T|T
4. F F | F|F|F|T|F|T|F

m.cC.

Just as we would expect, the conditional we have constructed is a
tautology and therefore the original sequent from which we
constructed that conditional must be valid. Of course, had an F
turned up in the main column there would indeed have been an
interpretation under which the premises were true while the
conclusion was false. In such a case we would have shown the
original sequent to be invalid.

Alittle further thought about the truth-table for the conditional in PL
quickly reveals that we can in fact conditionalise the entire sequent we
are interested in and construct a nested conditional from it. That is,
rather than form the conjunction of the set of premises as we did in (2)
above, we could simply conditionalise those premises and take the
resulting complex conditional as the antecedent of a more complex
conditional with the conclusion as consequent.

Formally, given any sequent of the form {A.. .....A_}:B we can always
construct a corresponding conditional:

A - (A, —>(..A —B)

Logically enough, such a conditional is known as the
corresponding conditional. Now, if the original sequent is valid
then its corresponding conditional must be a tautology. Recall our
reasoning in (2) above: a conditional is false if, and only if, its
antecedent is true while its consequent is false. For any valid
sequent, however, the conditional which consists of the set of
premises as antecedent and the conclusion as consequent cannot
be false. If it were, then there would have to be a way in which all
the premises were true while the conclusion was false. But, if the
original sequent really is valid, that is impossible. When we
construct a corresponding conditional it is just such reasoning
which we exploit. Again, consider the sequent P, P — Q:Q. The
corresponding conditional is just (P — ((P — Q) — Q)). The table
for that formula is as follows:
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P Ql ®-((P->Q-Q)
LT T TTT|T|T|T|T
2. T F| T|T|T|F|F|T|F
3. F T | F|IT|F|T|T|T|T
4. F F| F|T|F|T|F|F|F

m.c.

As we had anticipated, the corresponding conditional is indeed
tautologous.

4  As you will undoubtedly have gathered from the exercises in this
chapter, truth-tables can reach monstrous proportions of 16, 32, 64, 128
lines and worse, depending upon the number of sentence-letters
involved. You may also have noticed how daunting it is to be faced
with constructing such monsters and, indeed, how easy it is to get lost
in a table of such proportions. So, it would be immensely valuable if
we could discover some sort of short cut which might save our time
and energy. Fortunately, just such a method is available. The short-cut
method relies upon a good working knowledge of the truth-tables for
the connectives so, if you have not yet learned the tables by rote, now
is the time to do so.

In essence, our truth-table investigations into the validity of a given
sequent really proceed by attempting to falsify that sequent. In each
row of the table we construct a new interpretation and look to see
whether that interpretation establishes the invalidity of the sequent.
Only when every assignment fails to establish invalidity can we at last
take the validity of the sequent to be established. Of course, if a sequent
isinvalid then there must be an assignment of truth-values under which
the premises are all true and the conclusion is false. But each type of
formula: negation, conjunction, etc., is only false under certain
circumstances, i.e. when the unnegated formula is true, when one
conjunct is false, and so on.

The short-cut method involves identifying the types of formula
involved as premises and conclusion and the circumstances under
which such formulas are true or false. We then go straight for the throat,
as it were, and just consider that assignment which would bring the
conclusion out as false and the premises out as true. So, we begin by
simply writing T under the main connective of each premise and F
under the main connective in the conclusion. In each case, we number
the truth-values in order of assignment, writing each number
immediately underneath the relevant truth-value. Next, we carefully
consider the conclusion, note the type of formula involved and spell
out the assignments to the sentence-letters which must hold if that
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formula really is going to turn out to be false. At each stage, we continue
to number each new truth-value as we go.

Obviously, the assignment of truth-values to the sentence-letters in
the conclusion will have implications for the truth-values of the same
sentence-letters in the premises. So, we now look to see whether the
premises really are true for such an assignment. In the best of all possible
worlds, the premises will turn out to be true when the conclusion is
false and we will have established the invalidity of a complex sequent
with a one-line truth-table.

For example, consider the sequent R — Q, P v Q:P v R. First, assign
T to each premise and F to the conclusion, numbering each assignment
in order:

R-QPvQ:PvR
T T F
1 2 3

The only way in which the conclusion, P v R, could be false is if both P
and R are false. This insight gives us four more assignments which we
list and number as follows:

RoQPvQ:Pv R
FT FT FFF
41 5 2 6 3 7

In turn, that assignment of truth-values has implications for the truth
values of the complex formulas which form the premises of the sequent.
Remember: both P and R are false. Now, because the antecedent of the
conditional R — Q is false that conditional will be true whether its
consequent is true or false. However, because the first disjunct of the
second premise is false, the second disjunct must be true if the
disjunction is to be true. Hence, we must assign T to Q. On just this
assignment of truth-values the conclusion is indeed false while the
premises are true. So, the sequent is invalid. Most importantly, a sequent
involving three sentence-letters has been shown to be invalid by a truth-
table which simply consists of one line. Finally, we assign T to Q to
complete the table:

R->QPvQ:PvR
FTTFTT FFF
41 85209 637

What of valid cases, though? In every valid case you will find that, at
some point down the line, you need to assign both truth-values
simultaneously to one and the same sentence-letter! But that is clearly
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absurd. And that is surely just what we would expect: if the sequent
really is valid then the attempt to show the sequent to be invalid should
reduce to absurdity. For example, consider the following sequent: Q —
P,Pv Q: Pv R. First, assign F to the conclusion and T to the premises:

Q-oPPvQ:PvR
T T F
1 2 3

Again, the conclusion will only be false if both P and R are false, so:

Q Q: P

N )

P
F
5

N - <
w T <
o MR

Remember: both premises must come out true. Now, if Q — P, is to be
true Q must be false. But if P v Q is also to be true Q must be true!
Here is an absurdity. The attempt to show the sequent to be invalid
has failed. What we learn is just that there is no assignment of truth-
values to the sentence-letters which brings the premises out as true
while the conclusion is false. Hence, the original sequent is indeed
semantically valid.

The short-cut method outlined here goes by a number of names, e.g. ‘the
indirect method’, ‘the oblique method” or ‘the quick-test method’.
Occasionally, it remains nameless. A rose by any other name (or even no
name at all) no doubt smells as sweet. The method should be a breath of
fresh air after unwieldy truth-tables and use of it should enhance your
understanding of the meanings of the connectives of PL. However, it is
important to realise that the method doesn’t always generate single, one-
line tabulations. A little reflection on the nature of the formulas involved in
our examples makes clear why these were guaranteed to result in one-line
tables. All the formulas involved were either disjunctions or conditionals.
But any such formula can only be false in one way. Hence, one particular
interpretation of the conclusion is forced on us from the start. When we
turn to the premises these again can only be false in one way and so, again,
we are pushed in one particular direction. Of the remaining connectives,
negation can also only be false in one way, namely, if the un-negated formula
is true. However, any conjunction or biconditional can be false in more than
one way, which opens up the possibility that, faced with formulas of these
types, we might have to make more than one attempt.

In general, we will get a one-line table if either the conclusion can be false
in only one way or the premises can all be true in only one way. If there is
more than one way in which the conclusion can be false and it’s not the case
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that the premises can only be true in one way, then we may well have to try
again on a new line or even look at two new lines. Be that as it may, the
method still generates short cuts, if slightly longer ones, and the ticklish
cases are good mental exercise.

For example, consider the following sequent: P <> Q, Q <> P:P & Q. This
time there are no fewer than three ways in which the conclusion might be
false. So, the mere falsity of the conclusion doesn’t push us in any one
direction. Worse still, there are two ways in which each premise might be
false. So the truth of the premises doesn’t push us in any single direction
either. But we can at least begin the test. After all, we know what we would
like the end result to look like:

PeoQ Qe P : P&Q
T T F
1 2 3

But which move should we make next? In any such case, we may simply
pick any sentence-letter, assign any value to it and begin to complete the
table on that basis. For example, suppose that P is true, i.e.:

1.
PQQeP : P&Q
TT TT TF
41 25 6 3

Now, if P & Q is to be false, Q must be false. But if the premises are to be true
Q must be true! Our first attempt ends in absurdity. But let’s try again.
Suppose that P is false:

2.
PQQoeP : P&Q
FT TF F F
4 1 25 6 3

If the premises are to be true Q must also be false. But this time assigning F
to Q will also ensure that P & Q is false, as the completed table shows:

3.
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Now we have, indeed, succeeded in showing the sequent to be invalid—
but not at the first attempt. None the less, the short-cut method delivered
the verdict in only two lines.

Box 4.5 summarises the four alternative ways to test for validity. Study it now.
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BOX 4.5

¢ For any valid sequent, the set of formulas consisting of the conjunction of
each of the premises of that sequent together with the negation of the
conclusion of that sequent must be inconsistent. Hence, we can always
conduct a truth-table to test for validity simply by forming just such a
conjunction and testing it for consistency.

¢ For any valid sequent, the conditional consisting of the conjunction of the
premises of that sequent as antecedent and the conclusion as consequent
must be tautologous; just because, if the sequent really is valid, then the
premises cannot be true while the conclusion is false. Hence, we can always
conduct a truth-table to test for validity simply by forming such a conditional
and testing it for tautologousness.

¢ Where the general form of a sequent is {A ...... A }:B the corresponding
conditional is the formula:

A = (A~ (..A —B))

For any valid sequent, the corresponding conditional must be tautologous.
Hence, we can always conduct a truth-table to test for validity simply by
forming such a conditional and testing it for tautologousness.

¢ The short-cut method exploits the fact that each type of formula is only false
under certain circumstances, i.e. it involves identifying the types of formula
involved as premises and conclusion and the types of circumstance under
which such a formula can be true or false. We then consider just that
assignment which would bring the conclusion out as false and the premises
out as true, i.e. we write T under the main connective of each premise and F
under the main connective in the conclusion; in each case numbering the
truth-values in order of assignment and writing each number immediately
underneath the relevant truth-value.

Next, consider the conclusion, note the type of formula involved and spell out
the assignments to the sentence-letters which must hold if that formula really
is going to get F. In each case, continue to number each new truth-value. In
turn, that assignment has implications for the truth-values of the same
sentence-letters in the premises. In the best of all possible worlds, the
premises will turn out to be true when the conclusion is false and we establish
the invalidity of a complex sequent with a one-line truth-table. If, however,
there is more than one way in which the conclusion can be false and it’s not
the case that the premises can only be true in one way, then we may well
have to try again on anew line or even look at two possible new lines.
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With these four alternative ways of testing for validity clearly in mind it is
time to attempt a few examples for yourself in Exercise 4.4.

EXERCISE 4.4

1

Test each of the following sequents for validity by constructing a truth-
table which shows that the set consisting of the conjunction of the
premises (if any) together with the negation of the conclusion is
inconsistent.

1. ~(Pv~-Q):~P&Q

2 P->QQ—>R,P:R

3. Q-o(-P-Q),~Q:(-P->Q

4. P->Q->R),P~R:~Q

5. :(P->Qv(Q-R)
Test each of the following sequents for validity by constructing a truth-
table which shows that the conditional whose antecedent is the

conjunction of all the premises and whose consequent is the conclusion
is tautologous.

1. P-QQ—->R:P—>R

2 P->Q ~-Q:P—>R

3 P->(Q—->R),E~R:~Q

4. PQ&R):(P&Q)v(P&R)
5. PQOQoR:PoR

Consider again sequents 1- 5 of (1) above. Test each of those sequents
for validity by constructing a truth-table which shows that the
corresponding conditional for each sequent is tautologous.

Use the short-cut method to test the following sequents for validity. In
each case, assign numerals to indicate the order of your interpretation.

1. P~(P&Q):~Q

2 Po>(Q->R):Q—>(P->R)
3 Q-oR:(-Q—>~P)>(P—-R)
4. ~P->Q),Qv(R&S):R&S
5. P& Qv(Q&-P):PeQ
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IX
Semantic
Equivalence

We can now explore another very important and extremely useful semantic
notion, namely, that of semantic equivalence. In essence, semantic
equivalence is truth-functional equivalence:

Two or more compound formulas of PL are semantically equivalent if and
only if for each and every assignment of truth-values to their component
sentence-letters the overall truth-values of those formulas are one and the
same.

To identify semantic equivalences we can exploit the truth-tables once again,
i.e. to construct comparative truth-tables for the formulas we are interested
in. This time, however, we are only interested in whether or not each formula
takes the same truth-value under the same interpretation. If so, those
formulas are semantically equivalent. If not, those formulas are not
semantically equivalent. Now, semantically equivalent formulas don’t just
happen to have the same truth-values under every interpretation. Rather,
they must have the same truth-values. The reason for this is precisely the
same as the one we invoked to explain tautologousness. Just as a given
formula is a tautology in virtue of its form so two or more formulas are
equivalent in virtue of sharing the same form. In an important sense, two
semantically equivalent formulas are really one and the same: they both
express one and the same meaning in different ways. Hence, it should be no
surprise that semantic equivalence between formulas exemplifies mutual
or two-way semantic consequence, i.e. each formula is demonstrably a
semantic consequence of the other. It follows that any two semantically
equivalent formulas can be interchanged in the context of any sequent with
a guarantee that the validity or invalidity of that sequent will remain wholly
unaffected. Remember: if two compound formulas are semantically
equivalent, then any interpretation which falsifies one falsifies the other
and under any interpretation for which one is true so is the other. Hence,
validity is always preserved under substitution of semantically equivalent
compounds.

Investigating the particular semantic equivalences which hold in
PL should again deepen your understanding of the logical
connectives of PL. We use the connectives to form compound
formulas and we define the meanings of those connectives just in
terms of their truth-conditions. Identifying semantic equivalences
between truth-functional compounds involving different connectives
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can be informative and, as we shall see later, practically useful.
Moreover, semantic equivalences between compound formulas which
involve distinct connectives underwrite some important logical laws.
Among the most important of these are four laws due to the English
mathematician and formal logician Augustus De Morgan in his
Formal Logic [1847], as mentioned in Chapter 1. De Morgan’s laws are
particularly useful because they allow us to express any conjunction
in terms of disjunction and negation and to express any disjunction in
terms of conjunction and negation. Further, they also allow us to
express negated conjunctions in terms of disjunction and negation
and, again, negated disjunctions in terms of conjunction and
negation. To express De Morgan’s laws concisely I will use double
semantic turnstile, i.e * =5 I . (Just as double syntactic turnstile
indicates mutual or ‘two-way’ syntactic consequence so double
semantic turnstile indicates mutual or ‘two-way’ semantic
consequence.) Here are De Morgan’s laws:

1. P&QH F ~(~-Pv~Q)
2. PvQHk ~(-P&~Q)
3. (P&Q)4F (-Pv-Q)
4. ~PvQ) 4k (~P&~Q)

As you know, given the Completeness of PL, we could in fact replace
the double semantic turnstile in each case with the double syntactic
turnstile. It follows that the compound formulas involved in each law
are interderivable.

To appreciate that De Morgan’s laws exemplify semantic equivalences
between compound formulas of just these forms is to understand why
the compound formulas involved in each law should be interderivable.
It is not just that we happen to be able to derive one compound from the
other and vice versa in the case of each law, but rather that each formula
conveys exactly the same meaning and has the same content as the
other. As we might put it, each formula simply expresses the same point
in a different way. In the case of each law, the formula on the right-hand
side of the turnstiles re-expresses or, as we shall say, rewrites the formula
on the left and vice versa. To prove that, in each case, a semantic
equivalence is involved we must construct comparative truth-tables and
compare overall truth-values under each interpretation. Remember: two
formulas are semantically equivalent only if their overall truth-value is
the same under every interpretation. For ease of comparison it is most
convenient to put both formulas on a single line, as below, in the case of
the first law:
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1. P&Q:~(~-Pv~Q)

PQ|P&Q ~(-Pv-~Q

TT|T|T|T |T|FT|F|FT

TF|TIFIF [FIFT|T|TF

FT| F|F|T |F|TF|T|F T

FF|F|FIF |F|TF|T|TF
% *

The asterisks mark the main columns which we are concerned to compare,
and it is obvious at once from those columns that the overall truth-value is
the same under each and every interpretation. Hence, De Morgan’s first
law does indeed exemplify a semantic equivalence.

Box 4.6 summarises semantic equivalence, and Exercise 4.5 contains some
examples for you to try yourself.

EXERCISE 4.5

1 Show that each of De Morgan’s laws exemplifies a semantic
equivalence.

2 Represent the following arguments as sequents in PL, making your
key explicit. In each case, show that the formulas involved are
semantically equivalent:

(i) If Professor Cameron’s car is in the car park then he is in his
office. Therefore, if Professor Cameron is not in his office then
his car is not in the car park.

(i)  If you eat your cake then you won't still have it. Therefore,
you can’t eat your cake and still have it.

BOX 4.6

¢ Two or more compound formulas of PL are semantically equivalent if and
only if for each and every assignment of truth-values to their component
sentence-letters the overall truth-values of those formulas are one and the
same.

¢ To identify a semantic equivalence simply construct a comparative truth-
table for the relevant formulas and consider whether or not each formula takes
the same truth-value under the same interpretation. If so, those formulas are
semantically equivalent. If not, then those formulas are not semantically
equivalent.
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(iii) Students love logic exams if and only if they are very
enlightened. Therefore, if students do love logic exams then
they are very enlightened students and if students are very
enlightened then they do love logic exams.

(iv) The sun is shining and everything in the garden is coming up
roses. So, it's not the case that either the sun is not shining or
not everthing in the garden is coming up roses.

3 Usecomparative truth-tables to determine whether or not the following
pairs of formulas are semantically equivalent:

(i) ~Pv-~Q P—-~Q

(i) ~(P—-Q) P& ~Q

(i) Po>(P>Q) P->Q

(ivi PvQ ~(~P & ~Q)
) Pv(~Q&R) Q- (P&-~R)

v PvQé&~P&Q  ~(P&Q
i) P>Qv~(~-R>S) (-PvQVv(RvVvS)

4 We can make further use of our metalinguistic variables to represent
semantic equivalences between types of compound formulas in PL
quite generally. Show that I have correctly identified the following pairs
as semantically equivalent.

) A-B ~AvB
(i) ~(A—B) A&-~B
(i) ~(A & B) ~Av~B
(iv) ~(AvB) ~A & ~B
v) AoB (A& B) v (-A & ~B)
(vi) ~(A©B) (A & ~B) v (~A & B)

X
Truth-Trees

You will be pleased to learn that the final semantic method which we will
consider together in this chapter is a deceptively simple one which is
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remarkably easy to use. The method also has enormous potential which we
will be able to exploit to our advantage both in this section and beyond. As
we shall see, when the new method is combined with certain insights which
we have already gained in the course of this chapter we will have arrived at
a semantic method which we will still be able to exploit in the final chapter
of this book.

The new method provides a straightforward way of testing formulas for
consistency. The idea of consistency between sentences in a language is of
fundamental importance in logic. In formal logic, however, the term
‘consistency’ is used in a number of importantly different senses. In the
present context, the consistency of a set of well-formed formulas just implies
that each and every well-formed formula in that set can be true at one and
the same time, i.e.:

A set of well-formed formulas of PL is consistent if and only if every member
of that set can be true simultaneously.

It follows that a proof of consistency in this sense is a proof of the existence
of a true interpretation of all the members of that set. Earlier in this chapter,
we defined a true interpretation as a model. So, in the present context, we
can equally well say that a proof of consistency is a proof of the existence
of a model. The new method is precisely a test for consistency in that
sense, i.e. it provides an answer to the question: could the formulas
comprising a given set of formulas all be true together? In fact, the new
method guarantees us an answer to just that question. If there is a true
interpretation for all the formulas in the set then the new method will find
it. In other words, the new method is an effective procedure for model-
detection in PL.

The way in which the method proceeds to answer questions about
consistency is by constructing what is known as a consistency-tree for a set
of formulas. The tree format used is not entirely dissimilar to the format we
exploited for the syntactical trees which we considered in Chapter 2. Like
syntactical trees, consistency-trees are upside-down trees which break
complex formulas down into their simple constituents. Indeed, consistency-
trees can be more tree-like than their syntactical counterparts just because,
when we construct a consistency-tree, we first list each formula on a separate
line, one underneath the other. This procedure reflects the most obvious
way in which the formulas might all be true together and gives a nice, trunk-
like aspect to the inverted tree. Having listed the complex formulas we are
interested in we then begin to break down or ‘develop” each complex formula
in terms of certain development rules. As ever, the development rules exploit
the type of formula involved, i.e. conjunction, disjunction, etc.

The rule for conjunction simply requires us to write each conjunct on a
separate line one below the other, like so:
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®p>— &

In contrast, the rule for disjunction requires us to create two new branches,
placing each disjunct on the end of a separate branch. This produces a
pleasing, tree-like, branching effect:

2. AvB
/A
/A

A B

If we always develop every conjunction before we develop any disjunction
then we will preserve the trunk-like effect for as long as possible and we
will ensure that all the branching occurs at the top of the tree. Just as you
would expect, that is exactly how we do proceed.

Having developed each formula in terms of that procedure we then
carefully study the formulas in each branch, reading up from the tip of the
branch back to the very beginning of the trunk. What we are looking for are
contradictions among the formulas lying on that branch. If a branch does
not contain any contradiction that branch is live and we mark that fact by
writing a ‘v’ under that branch. However, if a branch does contain a
contradiction then that branch is dead and we record that fact by writing an
"X’ under it. If every branch dies then the tree is dead.

Although consistency-trees are easy to construct and produce pleasant-
looking structures we should never lose sight of the fact that we use the
trees to test for consistency. Indeed, each branch represents a different
possible way in which all the formulas involved might be true together. So,
for example, in the case of disjunction, our splitting the branch represents
two possible ways in which the disjunction might be true, i.e. if either disjunct
is true. But because there is only one way in which a conjunction can be
true, namely, when both conjuncts are true, we do not split the branch. This
represents the fact that there is only one possibility involved here.

In fact, each branch represents an attempt to assign truth-values to the
component sentence-letters of the formulas so as to bring those formulas
out as true simultaneously. Hence, each branch represents an interpretation.
Moreover, because each branch represents an interpretation of the
components of each formula, we know that when a branch dies that
particular interpretation results in a contradiction, i.e. an inconsistency. If
every branch dies then there is no interpretation which does not result in
inconsistency. But, if that is so, then there is no way in which all the formulas
being tested could all be true together. Therefore, that set of formulas is
inconsistent. Conversely, if there is even one live branch then there is one
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way in which all the formulas being tested could be true together, i.e. a true
interpretation or model. So, that set is consistent.
Let’s consider some examples:

1. P&-Q,PvQ,P

1. P& -~Q

2 PvQ

3 P

4, P From line 1

5 ~Q From line 1
/ \

6. r Q From line 2

v X 5,6

Reading up the right-hand branch, we have a contradiction between Q
on line 6 and ~Q on line 5. So, the right-hand branch is dead. However,
there is no contradiction in the left-hand branch. So, we have a live
branch on the left. Remember: each branch represents an attempt to
assign truth-values to the sentence-letters composing the formulas in a
way which makes all those formulas true. And a live branch represents
an assignment which does not result in inconsistency. So, in this case
there is an assignment which does not result in inconsistency and
therefore this set is a consistent set.
Consider another case:

2. P&(QVvR),~Pv-~Q,~R

1. P& (QVR)

2 ~Pv~Q

3 ~R

4, P From line 1

5 QvR From line 1

/ \

6. Q R From line 5
/N X 3,6

7. ~P  ~Q From line 2
X X
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This time, all three branches are dead. So there is no interpretation under
which all the original formulas could all be true together. It follows that this
set is inconsistent.

Note carefully how each line containing one of the original formulas is
developed as the tree progresses. In each case, I have annotated each new
line with the number of the line developed at that point. Although this is a
useful device for making explicit exactly which line is developed at which
point, you may well find that you are not required so to annotate your trees
in your particular course in formal logic. The same point holds for
subscripting each contradiction with the line numbers of formulas which
contradict one another. None the less, in the first few cases you attempt on
your own, you may well find that these devices help you to keep track.

Before we move on, Exercise 4.6 gives a few examples for you to try
yourself.

EXERCISE 4.6

1 Test the following sets of formulas for consistency using consistency-
trees:

1. P&QR&-S,PvS
2. P&Q,~Pv-~Q-~Q
3. P&(QVR),~-Qv-~R,~R
4. (-Pv-Q)VR,~P&~Q,R
5. (~Pv-Q VR P&Q,~R

X1
More on
Truth-Trees

At the outset of the last section I promised that we could further
exploit the new method by combining it with some insights we had
already gained in the course of the present chapter. It is now time to
consider just how we might proceed in that respect. It is extremely
useful to have an effective test for consistency for sets of formulas of
PL. But aren’t we interested, first and foremost, in validity rather than
consistency? Perhaps. But the gap between these two fundamental
notions is not as wide as it might first appear. In fact, the two notions
are intimately related.
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First, as we noted earlier, a well-formed formula of PL is semantically valid if
and only if the negation of that formula is inconsistent. Second, as regards
sequents, recall the first of the four alternative ways of using truth-tables to
test for validity which we considered in Section VIII. That method involved
testing the set of formulas consisting of the conjunction of all the premises
of a sequent together with the negation of the conclusion of that sequent for
consistency. If such a test resulted in inconsistency then we could conclude
that the original sequent must be valid. The reasoning is simple: a sequent is
valid if and only if the set consisting of the conjunction of the premises together
with the negation of the conclusion is inconsistent.

Such a set is often referred to as a counterexample set. If the
counterexample set to a sequent is consistent then there is an interpretation
under which the premises of the original sequent are true while the
conclusion is false. But, if that is so, the original sequent must be invalid.
Conversely, if the counterexample set is inconsistent then there is no way in
which the premises can be true while the conclusion is false, and we know
that the original sequent is valid. So, consistency and validity are indeed
intimately related, and this allows us to exploit consistency-trees to test
sequents for validity. The consistency-tree test for validity in particular is
known as the truth-tree method. But it is important to realise that we do not
have two different kinds of tree here. In both cases, we simply have a
consistency-tree. However, when we test for validity rather than testing the
set of formulas composing the original sequent, we test that sequent’s
counterexample set for consistency.

Recall again the alternative truth-table test. This required us to conjoin
all the premises with the negated conclusion. The first part of that
requirement is already met by the consistency-tree method. That is precisely
the point of listing all the original formulas at the start, i.e. in the trunk, just
as we would break down a conjunction. So, all we have left to do is to
substitute the negation of the conclusion of the sequent for the original
conclusion and include it in the trunk together with the premises. In this
way, we have designed a new and very elegant test for validity for sequents
of PL, which is just as effective a procedure as truth-tables but is much less
overtly mechanical and leads to less cumbersome diagrams.

Consider an old favourite: P v Q, ~P:Q. First, list the premises together
with the negation of the conclusion. Next, break the complex disjunction
down, keeping a watchful eye for contradictions:
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1 PvQ Premise 1
2. ~P Premise 2
3. ~Q Negated conclusion
/ \
/ \

4, P Q From line 1

X X

2,4 3,4

In this case, both branches die in contradiction. Therefore, there is no way
in which these formulas could be true together. The counterexample set is
strictly inconsistent and so the original sequent must be valid.

Consider another example:

P&Q,Pv(Q&R):R

1. ~P&Q Premise 1
2 Pv(Q&R) Premise?2
3 ~R Negated conclusion
4, ~P From line 1
5 Q
/A

6 P Q&R From line 2

X
7 4,6 Q
8 R

X 3,8

Again, both branches die. The counterexample set is shown to be inconsistent
and, therefore, the original sequent is valid.

So far, we have only considered sets of formulas involving conjunction
and disjunction. But now, we want to extend the truth-tree method to sets
of formulas involving the other connectives. What’s more, we also want to
be able to develop the negations of complex formulas formed using any of
the logical connectives of PL. In order so to extend the applicability of the
method we require new development rules (for PL truth-trees), which are
guaranteed to preserve truth across developments and so to preserve the
validity or invalidity of the counterexample set. What might such new
development rules look like? In fact, we have already answered this question.
As we noted in Section IX, truth and validity are preserved across
substitutions of semantically equivalent formulas. So, all we have to do is
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to make sure that we develop complex formulas in terms of semantically
equivalent formulas. In the final question of Exercise 4.5, we used
metalinguistic variables to establish quite general semantic equivalences
between forms involving precisely the remaining connectives together with
negated cases for each and every connective. The new development rules
we need simply exploit those equivalences. Hence, when disjunction is
represented by splitting a branch and conjunction is represented by not
splitting a branch, the equivalences we established in Exercise 4.5 generate
the following set of development rules:

1. A—>B 2. ~A— B)
/A |
~A B A
-B
3.  ~(A&B) 4. ~(Av B)
/A |
~-A -B ~A
~B
5 Ao B 6. ~(A© B)
/A /A
A -A A A
B -B -B B

Finally, it is useful (and truth-preserving) to include a rule which allows us
to eliminate double negations:

7. ~~A

|
A

We are now in a position to apply the truth-tree method to sequents involving
formulas of any level of complexity. But before we do we should consider a
final example which illustrates an important point: if a tree has already
branched and there is more than one surviving branch then, if we have to
develop another branching formula, that formula should be developed over
every surviving branch. This last example concerns one of a pair of logical
laws known as distributive laws (to get the other in this pair, simply swap
the premise with the conclusion in the sequent below):
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P&QvR): P&Q)v(P&R)

1. P& (QVR) Premise
2, ~[(P & Q) v (P & R)] Negated conclusion
3. ~(P & Q) From line 2
4. ~(P & R)
5. P From line 1
6. Q v R
/ \
7 Q R From line 6
/ \ / \
8 ~P ~Q ~P ~Q From line 3
X X X |
5,8 7,8 5,8 / \
9 ~P ~R From line 4
X X
59 7,9

Now, every branch is dead. Therefore, the counterexample set is inconsistent
and so we have shown that this distributive law is semantically valid. The
tree also illustrates the point that branching formulas must be developed
over all surviving branches. Hence, at line 8 we must develop the branching
formula from line 3 over both existing branches. At line 9, however, only
one branch remains live, so we need only develop the branching formula
from line 4 over that live branch.

To date, we have not applied the truth-tree method to an invalid sequent.
But, in fact, there is more to be gained from the truth-tree method when the
sequent being tested is invalid. Certainly the method shows that the sequent
is invalid, but it also highlights just those interpretations under which it is
consistent to assert the truth of the premises and the falsity of the conclusion.
For example, consider the following tree carefully:

P->QQ:P

1. P->Q Premise

2. Q Premise

3. ~P Negated conclusion
/A

4. ~P Q From line 1
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This time, both branches are live. So, the counterexample set is consistent.
Moreover, not only do we learn from the tree that the original sequent is invalid
but we can also go on to identify the particular assignment of truth-values to
the sentence-letters which will generate a counterexample, i.e. an IPLI of the
sequent. And there is nothing new to do here! All the information we require is
contained in the tree already. To make the IPLI explicit all we need do is list the
sentence-letters involved in the sequent and then read up any live branch to
identify the relevant assignment of truth-values to those sentence-letters. When
the live branch contains an unnegated sentence-letter that letter on your list
should get the value T. When the live branch contains a negated sentence-letter
that letter should get the value F. In this case, the only sentence-letters involved
are P and Q. Reading up the first or left-hand branch we can see that ~P holds
there so P should be assigned F. However, Q is unnegated on that branch, so Q
should be assigned T. And that is exactly the assignment of truth-values we
require to construct the IPLI which is shown below.

IPLI:  P: {F} Q: {T}

Alittle reflection shows that this assignment of truth-values to the sentence-
letters of the original sequent does indeed generate true premises together
with a false conclusion. Note, however, that we have two live branches here.
In such a case, how do we know which to pick? The answer is that it doesn’t
matter. Either way, each live branch represents an IPLI. In the present case,
we would arrive at the same assignment and the same IPLI. In other cases,
as you will see, distinct live branches may represent distinct assignments.
This simply reflects the fact that there is more than one IPLI for the sequent.
And, of course, either will do the job.

In a sense, then, once we have constructed the tree we have already identified
the IPLL The IPLIis a free gift of the method. We simply read it off any surviving
branch. Moreover, to get from the IPLI to an actual counterexample, simply
substitute obviously false sentences for sentence-letters assigned F and obviously
true sentences for sentence-letters assigned T. For exam purposes, it is advisable
to choose clear-cut arithmetical sentences. Prime false sentences might be ‘0=1’,
2+2=5" and so on. Prime true sentences might be “1=1", “2+2=4" and so on. In
the present case we need a false sentence for P and a true sentence for Q. So, let
P stand for ‘0=1" and let Q stand for 2+2=4"

Actual counterexample:

If0=1then2+2=4 P->Q
2+2=4 Q
Therefore,

0=1 P
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Consider a final example:

PvQ, R—-Q:R—-P

1. PvQ Premise
2. R->Q Premise
3. ~R—>P) Negated conclusion
4. R
5. ~P From line 3
/ \
6. ~R Q From line 2
X 4,6 / \
7. P Q From line 1
X 5,7 v

This time, the branch on the extreme right is live. Therefore, this set of
formulas is also consistent and the original sequent is, therefore,
invalid. Further, simply reading up the live branch reveals the
following IPLI:

[PLI: P:AF}  Q:{T} R: {T}
Finally, we proceed to construct a counterexample, again, by substituting

actually true sentences and actually false sentences for the sentence-letters
as indicated by the IPLIL:

EitherO=1or1+1=2 PvQ
f2+2=4then1+1=2 R—>Q
Therefore,

f2+2=4then0=1 R—-P

Box 4.7 summarises the main points about the truth-tree method and restates
both the procedural rules (for PL truth-trees) and the development rules
(for PL truth-trees). The classic statement of the truth-tree method is due to
Richard C Jeffrey."” Famously, Jeffrey presents very helpful flow charts for
checking the proper construction of truth-trees according to the rules. In the
spirit of Jeffrey, I offer my own attempt at such a flow chart immediately
prior to Exercise 4.7 (Figure 4.1). If that chart is useful, all credit is due to
Richard C Jeffrey. Study the contents of Box 4.7 and Figure 4.1 carefully before
attempting Exercise 4.7.
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¢ Having developed each formula, carefully study the formulas in each
branch, reading up from the tip of the branch back to the very beginning of
the trunk. If a branch does contain a contradiction the branch is dead and we
write an ‘X’ under it. If every branch dies then the tree is dead.

The truth-tree test for validity:

¢ A well-formed formula of PL is semantically valid if and only if the negation
of that formula is inconsistent, and:

¢ a sequent is valid if and only if the set consisting of the conjunction of the
premises together with the negation of the conclusion is inconsistent.

¢ Any such set is a counterexample set.

¢ If the counterexample set is consistent then there is an interpretation under
which the premises of the original sequent are true while the conclusion is
false. If that is so, the original sequent must be invalid.

¢ Conversely, if the counterexample set is inconsistent then the original
sequent is valid.

¢ It follows that we can use the truth-tree method to test for validity simply by
using that method to test a sequent’s counterexample set for consistency.

To construct a truth-tree test for validity, observe two further procedural rules:

¢ Always develop every non-branching formula before any branching
formula.

¢ Where a tree has already branched such that there is more than one
surviving branch any other branching formula must be developed over every
surviving branch.

Exercise 4.7 gives you the opportunity to construct some trees for yourself.
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On a separate line and in the order given enter
(i) the premises and (ii) the negation of the conclusion.

Eliminate all double negations and write each
unnegated formula on a new line.

Write ‘X’ under any branch containing
a formula and its negation.

’——{ Ask: is every branch dead?

Yes No
¥
Stop! the sequent
is valid.

—| Ask: has every formula been fully developed?

Yes No
Stop! the sequent | Develop each remaining undeveloped formula |—>—
is invalid.

Figure 4.1 A Jeffrey-style flow chart for truth-tre

EXERCISE 4.7

1 Test the following sequents for validity using the truth-tree method.
For any sequent which you find to be invalid give: (i) an IPLI of the
sequent and (ii) an actual counterexample.

1. P>Q,~P:~Q

2. ~P->Q:Q—-P

3. P->QQ—->R:P>R
4. P->Q)—>P:P

5. «(Pv~Q):(-P&Q)
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6. :PvP)>P

7. ((~-P->Q)—>~P)>-~P

8. P->Q)>»R:~-R->P

9. :(P—Q)—(-Q—-P)

00 P>~Q,~R—->P:Q—->R

11. :(Pv-~-P)> (Qv~(QVR))

12. (P Q) ~P&~Q)

13. ~R->Q:PvQ)—>(~-R->DP)

14, P&Q) >R ~-P-S:Q—>(RVS)

15, PvQ)&RvVv~S):((-Pv~-R) & (-PVvS)) - ((Q&R) v (P & ~5))

XII
The Adequacy of the
Logical Connectives

Towards the end of Section II of Chapter 2, I promised to discuss the adequacy
of the logical connectives at a later moment. Given what we have learned in
the present chapter, that moment is now. So, what does the formal logician
mean by the claim that the connectives of PL are adequate? Intuitively, what
is meant is that not only do the five connectives represent the particular
truth-functions with which you have become familiar during this chapter
but, in fact:

Each and every possible truth-function can be represented just in terms of
those connectives.

This is a striking and very heartening fact about the connectives. You should
find it heartening because it means that every truth-function which can
possibly be expressed in PL will just reduce to some combination of the
familiar connectives. You will also find it striking if it lets you feel something
of the sheer expressive power of the connectives stretching throughout the
deep structure of the language.

Certain facts about the complex formulas of PL may already have made
you optimistic about the expressive power of the connectives. In particular,
during our discussion of semantic equivalence, you will have picked up on
the fact that different complex formulas are interdefinable. We explained
this by saying that equivalent complexes exemplify the same forms in
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different ways. That possibility clearly suggests that we at least have more
than the bare minimum of complex forms. Moreover, equivalence also
exemplifies the fact that complex forms need not be wholly independent of
one another. Indeed, we exploited just that fact in our discussion of the
development rules for truth-trees in the last section when we used
metalinguistic variables to establish quite general equivalences between
complex formulas. In fact, we obtained these results in virtue of the
interdefinability of the connectives themselves. So, for example, we saw
that any conditional formula can be rewritten in terms of disjunction and
negation in a way which preserves truth and validity.

Let’s explore the idea of adequacy a little more formally. When we first
introduced truth-tables we noted that the number of rows in any table would
just be 2" where ‘n’ is the number of sentence-letters involved. And, as we
noted in Section II of this chapter, because the principle of bivalence holds
for PL, any given formula of PL can only be either true or false. There are
only the two options. It follows that, for any table, there must be possible
outcomes truth-value wise. In this way, we can get a complete picture of the
number of possible truth-functions for any given number of sentence-letters.
Let’s pick an easy case, that of two sentence-letters. In this case, there will
be 16 possible truth-functions, i.e. and so 16 possible columns. These will
range from the case where the function gives T as value for every argument
to the case where we have a function which gives F as value for every
argument.

Further, because there are two sentence-letters (> and Q) and two truth-
values there must be four rows of truth-value assignments, i.e. 2% Finally,
because the list is exhaustive, it must include the truth-functions represented
by our four binary connectives. Below is the complete table of truth-functions
for the two sentence letters P and Q with the four familiar cases indicated:

PQ|1v3456c&910111213141516
TT|TTTTTTTTFFFFFFFF
TF|TTTTFFFFTTTTFFFF
FT|TTFFTTFFTTFFTTFF
FF|TFTFTFTFTFTFTFTF

In this context, the question about the adequacy of the connectives boils
down to the question: can every single one of these truth-functions be
expressed just in terms of those connectives? Obviously, we can certainly
express four of the sixteen columns, but what of the other twelve? The short
answer here is ‘yes’, we can indeed express the other twelve using only the
familiar connectives. To show that this is so it suffices to establish semantic
equivalences between the unfamiliar ‘nameless’ truth-functions for two
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sentence-letters and complexes constituted solely from the familiar ones.
Here are some examples of such equivalences for the first four nameless
cases. As an exercise, find equivalences for the remaining cases to complete
the list:

1. Pv~-P)vQ

3. Pv-Q

4. P&(Qv-~Q)

6. P&QVv(-P&Q)
9. ?

10. ¢

16. ¢

It is crucial to realise that the complete list, even if correct, is nothing more
than a useful illustration. It is certainly not a proof—that would require us
to show that every possible truth-function for any number of sentence-letters
could always be represented using the connectives. In effect, a proof would
guarantee that given any nameless truth-function we can always construct
a complex formula involving only the familiar connectives which will have
exactly the same truth-table as the nameless truth-function. We certainly
have not shown here that this is the case. None the less, it is indeed the case
and has been proved to be so. In fact, formal proofs usually establish the
adequacy of a subset of our set of connectives. Over pp. 64—6 of his Metalogic,
for example, Geoffrey Hunter proves that the following set of three
connectives {~, &, v} is sufficient to express every truth-function. Further,
Hunter goes on to prove that the following sets consisting of only two
connectives are also adequate: {~, =}, {~, &}, {~, v}. Hence my remark in
Chapter 2 that our set of five connectives might be called a generous set!
Now, it is no accident that each of the adequate subsets we have
considered included ‘~’. Negation is crucial to adequacy. A little reflection
reveals why. Recall the complete table of truth-functions for two sentence-
letters. The values of those functions range from the case in which they
are true for every input to the case in which they are false for every input.
But without negation no subset of the connectives could possibly result in
a complete column of F’s, i.e. without negation we cannot construct a
formula which is strictly inconsistent. Hence, the set {&, v, —, <>} is not
adequate. Nor are any of its subsets adequate. The crucial importance of
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negation is also illustrated by another striking fact about adequacy, namely,
that a single binary connective alone is adequate. That connective
represents not simple denial but joint denial, e.g. ‘neither...nor—'".
Obviously, negation is essential to joint denial. Strikingly, C.S.Peirce [1839-
1914], an American physicist and philosopher whose work founded the
tradition of American pragmatism, realised the adequacy of joint denial
as early as 1880, though he did not prove that this was so. The proof was
finally provided in 1913 by an American logician, Henry Sheffer [1883-
1964],"* for which Sheffer is justly famous.

In fact, following Sheffer, we can separate out two senses of joint denial,
one of which involves ‘&” while the other involves ‘v’. ‘Neither...nor—’
clearly exploits ‘v’, i.e. this function is false if either disjunct is true. Therefore,
the function will take the value T only if both disjuncts are false. Hence, this
function is often alternately referred to as ‘Not...and not—". Thus, where A
and B are understood in the usual way and “/’ represents ‘neither ...nor—’
we have the following truth-table:

A B A/B
T T F
T F F
F T F
F F T

Alternatively, we can use ‘&’ to formulate joint denial in the sense of
‘Not both A and B’. Obviously, this function will again take the value T
when both A and B are false but it will also take the value T if just one
of A or B is false. Hence, this function is often referred to as ‘Not A or
not B’. It is this particular sense of joint denial which is usually
associated with Sheffer, and the symbol for this truth-function “|” is
most commonly called Sheffer’s stroke. Sheffer’s stroke gives us the
contrasting table:

A B A | B
T T F
T F T
F T T
F F T

Now, suppose we take Hunter’s word that the set {~, v} is adequate. Could
we then show that Sheffer’s stroke is adequate? Strictly speaking, we should
really first establish the adequacy of {~, v} ourselves. But Hunter is a capable
and veritable logician and if we may take him at his word it is very easy to
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prove that Sheffer’s stroke alone must be adequate too. As you might expect,
the proof proceeds by finding semantically equivalent truth-functions for
‘~"and ‘v’ in terms of “ | alone. So, there are only two cases to worry about.
Here are the relevant equivalences:

1 Negation:
i A -~A i) A A | A
T F T TF T
F T F FTF
2 Disjunction:
i AB AvB i) AB ((A| A | B | B)
TT TTT TT T FTTTFT
TF TTF TF T FTTFTF
FT FTT FT FTFTTFT
FF FFF FF F TFFFTF

Given these equivalences, we can now translate formulas of PL involving
only ‘~" and ‘v’ into formulas which only involve Sheffer’s stroke. For
example, consider ~P v ~Q. We write the formula on a line and then replace
each connective with an equivalence, one at a time, writing each replacement
on a line below:

1. ~Pv~Q

2. (@P|IP)v-~Q

3. (PIP)vQIQ)

4. (PIP)PIP)(QID]Q]Q)

Considering the obvious lengthening of formulas involved one might well
wonder why we should be interested in Sheffer’s stroke at all. It is a striking
fact that every possible truth-function in PL can be represented in terms of a
single binary connective but Sheffer’s Stroke has also been considered to be
of philosophical significance and practical importance. It's worth considering
each point in turn.

Sheffer’s Stroke plays a crucial role in Wittgenstein’s early philosophy of
language as exemplified in his Tractatus Logico-Philosophicus.'* The Tractatus
is a remarkable text in many respects, not least because it is ultimately
composed of only seven sentences. That skeletal structure is fleshed out by
remarks subordinated to each of the seven sentences by decimal numbering,
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but seven sentences constitute the heart of the enterprise. The central theme
of the text concerns the nature of, and the connection between, thought,
language and reality. Wittgenstein’s own thinking on these topics is often
difficult to discern, in part because he states the conclusions of his arguments
before their premises. But we might reconstruct Wittgenstein’s reasoning
as follows.

Natural language contains sentences which can only be either true or
false, sentences which have perfectly determinate meanings. How must
thought, language and the world stand to one another to guarantee
that language contains such sentences? In the last analysis, language
must be able to represent reality so clearly as to ensure that what is
said about reality can only be true or false. Determinacy of meaning
therefore demands the existence of a fragment of language which can
model and mirror reality precisely. For the Wittgenstein of the Tractatus
those linguistic mirrors are the elementary propositions.’* The clarity with
which elementary propositions must represent reality requires that the
linguistic building blocks from which those propositions are
constructed are not complex signs but simple signs. For Wittgenstein,
these simple signs are names. In turn, he thought, the meanings of
these signs, the fundamental constituents of reality, must themselves
be simple. Hence, he arrived at a picture of reality as ultimately
composed of unalterable, self-subsistent objects. Logical investigation
thus revealed not physical atoms but logical atoms.

These intellectual discoveries enabled Wittgenstein to explain linguistic
representation as follows. Elementary propositions are composed of names
but such propositions are not mere bundles of names. Rather they are precise
structures of names. Such propositions reach out to reality not only via the
naming-relation but also structurally, in terms of order-relations. Every
elementary proposition reflects a possible structure of objects in reality but
a true elementary proposition corresponds to an actual ordered set of objects,
an atomic fact, and shares with that fact a common structure, a common form.

False elementary propositions do not share a structure with a fact. When
false, there is nothing for the proposition to correspond to. Negated
elementary propositions do not refer to non-existent facts. Rather, a negated
elementary proposition is true when the unnegated elementary proposition
is false. False propositions do have form, just as a possibility of structure in
reality which is actualised in the fact of the proposition itself. Form is shown
in the proposition itself; in the way in which the elements of an elementary
proposition are combined we see what would be the case if it were true.
Hence we can understand a proposition in advance of knowing its truth-
value: we know what would be the case if it were true and what would be
the case if it were false.

For present purposes, Wittgenstein’s crucial insight was to realise that
complex propositions could be formed from elementary propositions using
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truth-functional logical connectives. In turn, such complex propositions
could themselves be combined, again, using truth-functional connectives
and so on to ever greater levels of complexity. Each and every such complex
proposition could now be shown to have a unique overall truth-value given
the truth-values of the elementary propositions and definitions of the truth-
functional connectives. (Wittgenstein independently invented the truth-
table method for just that purpose.) Thus, each and every complex
proposition of natural language is a truth-function of its elementary
constituents. But every truth-function can be represented using Sheffer’s
stroke. As Wittgenstein puts the point, the general form of a truth-function
is given by Sheffer’s stroke. Moreover, that function gives us the general
form of a proposition itself just because each and every possible complex
proposition can be represented using only the stroke function. So, for the
early Wittgenstein, Sheffer’s discovery of the stroke function represents
the discovery of the deepest element of the logical grammar of natural
language.

In all honesty, the Tractatus has its fair share of critics, none more
vicious or vociferous than the later Wittgenstein himself!"* But the
Tractatus remains a landmark in the philosophy of language and is a
particularly exciting text for students of formal logic. Moreover, the only
way to appreciate the full force of Wittgenstein’s later thought is to
grasp first the nature of his early work. I can pursue the nature of the
Tractarian philosophy of language no further here but I will offer some
suggestions for further reading in the area.

Both Max Black’s A Companion to Wittgenstein's Tractatus [1964] and Elizabeth
Anscombe’s An Introduction to Wittgenstein’s Tractatus [1963] rightly remain
classic commentaries. A clear and accessible exposition of much of the formal
logic to be found in the Tractatus is given by H.O.Mounce in his Wittgenstein's
Tractatus: An Introduction [1981]. Interested parties would also do well to read
Peter Carruthers’s excellent texts Tractarian Semantics: Finding Sense in
Wittgenstein’s Tractatus [1989] and The Metaphysics of the Tractatus [1990].

Finally, Sheffer’s stroke also has some very valuable practical applications;
asindeed do all of the truth-functions expressed by our familiar connectives.
In fact, these functions form the basis of all electronic switching engineering
and are therefore foundational in computer design. To appreciate the point
it is only necessary to imagine that the variables A and B represent two
switches which are connected in series to a battery:

(b] / /
A

Electricity will flow through the circuit only if both switches are closed. But
if we let T represent the fact that a switch is closed then electricity will flow
only if both A and B are T. We might well call our circuit an ‘& circuit’ just
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because it operates in exactly the same way as ‘&” does in PL, i.e. the two
have a common character.

More generally, our truth-functional connectives can be used to
characterise a set of circuits known as logic circuits. Suppose that a given
circuit has two inputs and one output. Imagine that we are interested in
voltage. Input voltage may be either high or low. Equally, output voltage
may be either high or low. Suppose that output is high only if both inputs
are high. Here, we have an ‘&’ circuit. Consider a circuit where output is
high only if one or both of the inputs is low. This time we have what electronic
engineers refer to as a nand circuit, i.e. a ‘not and” circuit. Now, label the
inputs A and B and take T to mean ‘high” and F to mean ‘low’. The truth-
table for Sheffer’s stroke gives exactly the output values of the nand circuit.
Again, the two have a common character.

What is common to both the logic of switching circuits and the logic of the
connectives is the same basic algebraic structure. These algebraic structures
are known as Boolean algebras, after the English mathematical logician
George Boole, mentioned in Chapter 1, who first articulated the basic
algebraic structures. Boole’s “algebra of classes’ can readily be represented as
a formal system. The reason for this is just that Boolean algebra is structurally
isomorphic to formal logic. More precisely, all the key algebraic operations
correspond exactly to logical operations. For example, the algebraic
operation known as ‘complementation” corresponds precisely to classical
negation, the algebraic operation known as ‘logical sum” has an exact
counterpart in our sense of disjunction and so on.

Given these facts, it should be unsurprising that an algebraic perspective
can give deep insights into the character of formal logic and indeed that
algebraic logic is an area of interest in its own right.

Earlier in this chapter I referred to Gottlob Frege as the founding father
of modern formal logic. You may now feel that the title really belongs to
George Boole. Be that as it may, I hope that the foregoing discussion
highlights something of the theoretical and practical significance of our set
of connectives and the striking property of adequacy which belongs to that
set. Formally, adequacy is an extremely important property and, like
Soundness and Completeness, it is vital to the ambitions of the formal
logician. The point is nowhere better put than by Hunter:'"

What do logicians want? The Holy Grail of logic would be a system or set
of systems which caught all truths of pure logic. This nobody has yet found
...So we ask: ‘What do we want that we have some hope of getting?’ Here
an answer is: ‘All truths of pure truth-functional logic’ [and] there is a
sense in which [PL] does catch all the truths of pure truth-functional logic...
In the first place, the language...is adequate for the expression of any truth-
function...Second,...every truth-functional tautology [can be] represented
in a natural way by some theorem.
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Now try Exercise 4.8, and then Examination 2.

EXERCISE 4.8

Consider again the complete table of truth-functions for two sentence-
letters given above. Find semantically equivalent formulas for each of
the nameless cases using the following sets of connectives:

(l) {~/ v, &}
(i) {~ vl

Represent the following formulas using only Sheffer’s stroke. Show
each substitution of a connective on a separate line.

i PvQ
(i) ~PvQ
(i) (~Pv-~Q)v-~R

Given that {~, &} is an adequate set of connectives prove that { | } must
also be an adequate set.

Given that {~, —} is an adequate set of connectives prove that { | } must
also be an adequate set.

Examination 2 in
Formal Logic

Answer every question.

1

Study the following arquments carefully. Represent each arqument as a sequent
in PL. In each case make your key explicit. Test each sequent for validity using
comparative truth-tables. Finally, construct a proof of any sequent which you
find to be valid.

1. If pigs had wings then pigs would fly and air traffic
controllers would have nightmares. Therefore, if pigs had
wings then pigs would fly.

2. Professor Plum was in the drawing room and Miss Scarlet
was in the kitchen. If Professor Plum was in the drawing
room and the murder weapon was found in the drawing
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room then Professor Plum is in big trouble. Therefore, if the
murder weapon was found in the drawing room then
Professor Plum is in big trouble.

3. Ifit’s notthe case both that Professor Plum was in the study
and Miss Scarlet was in the conservatory then the murderer
was Reverend Green. But if it’s not the case that Reverend
Green was the murderer then Miss Scarlet was in the
conservatory and Colonel Mustard was no doubt there too.
So, if Reverend Green is not the murderer then Professor
Plum was in the study and Colonel Mustard was there too.

2 Test the following sequents for validity using the truth-tree method. For any
sequent which you find to be invalid state: (i) an IPLI of the sequent and (ii)
an actual counterexample to the sequent.

1. R>QPvQ:PvR

2 P& (P->Q)—>Q

3 (P> Q) ~P&~Q)

4. P&QVR):(P&Q)v(P&R)

5 PvQ)—>~R:((P&~R)— ~R) & ((Q & R) —» ~R)
6 P&Q) > R&S):(Po(Q-oR)&P—->(Q—Y9)

3 Show that the English language connective ‘unless’ is semantically equivalent
to the PL connective ‘v’.

Notes

1 This claim is not entirely uncontroversial and raises questions which lie beyond the
scope of this book.

2 See, for example, Benacerraf, Paul and Putnam, Hilary (eds), [1983], Philosophy of
Mathematics: Selected Readings, second edition, Cambridge, Cambridge University Press.
Part One of the text contains two papers (each) by Heyting and Brouwer. These are
warmly recommended.

3 See, for example, Dummett, Michael, [1977], Elements of Intuitionism, Oxford, Clarendon
Press. But also Dummett, Michael, [1978], “The Philosophical Basis of Intuitionist Logic’,
in Truth and Other Enigmas, London, Duckworth.

4  Baker, G.P, and Hacker, PM.S,, [1984], Language, Sense and Nonsense: A Critical
Investigation into Modern Theories of Language, Oxford, Blackwell, p. 171.

5 Luce, A.A,, [1958], Logic, London, English Universities Press, p. 4.

6  See above, Chapter 3, Revision Exercise III, numbers 4 and 5.

7 Hunter, Geoffrey, [1971], Metalogic: An Introduction to the Metatheory of Standard First-

Order Logic, London and Basingstoke, Macmillan. pp. 92—-6.
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Hamilton, A.G., [1978], Logic for Mathematicians, revised edition, Cambridge, Cambridge
University Press.

Jeffrey, Richard C, [1967], Formal Logic: Its Scope and Limits, New York, McGraw-Hill.
Sheffer, Henry M., [1913], “A Set of Five Independent Postulates for Boolean Algebras,
with Applications to Logical Constants’, Transactions of the American Mathematical Society,
X1V, pp. 481-8.

Wittgenstein, Ludwig, [1961], Tractatus Logico-Philosophicus, London, Routledge &
Kegan Paul.

The expression elementary proposition translates Wittgenstein’s German term
elementarsatz. Although that term has come to be rendered in terms of English
proposition, Wittgenstein has a highly distinctive view of the nature of both satz and
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discussed in Chapter 2.

See Wittgenstein, Ludwig, [1967], Philosophical Investigations, Oxford, Blackwell,
Remarks 1-37.
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An Introduction to First Order
Predicate Logic

I
Logical Form Revisited:
The Formal Language QL

lies in distinguishing good argument from bad argument, quite

generally. As we have seen, the logician attempts to draw that
distinction by exploiting the concept of validity. The claim of the formal
logician in particular is just that the concept of validity can profitably be
investigated in purely formal terms, i.e. that particular arguments are valid
or invalid purely in virtue of the logical forms they exemplify. Above all,
the primary task of the formal logician is to exhibit logical forms of argument.
The programme of formal logic consists in the attempt to exhibit logical
forms of argument and, further, to capture every valid form in a single formal
language.

In Chapter 1 we noted certain possible limits to the success of that
programme. The range of types of valid argument is a broad one which
may not yield completely to the investigations of the formal logician. None
the less, we were able to identify an impressive number of argument forms
and to capture all of the valid ones in the formal language PL. Subsequently,
we developed PL in two ways. First, we used rules of inference to exploit
the different kinds of well-formed formula belonging to PL and arrived at a
formal system for PL, a propositional calculus. Next, we went on to interpret
the well-formed formulas of PL in terms of truth-values and to supplement
our syntactic formal method of proof with formal semantic methods, i.e.
truth-tables and truth-trees. Strikingly, we noted a perfect agreement between
the syntax and the semantics of PL when we realised that, whatever method
we used, we would arrive at an endorsement of exactly the same set of
sequents.

For all the power, sophistication and remarkable formal integrity of PL,
the sentence-letters which form its basic sentences are very limited

I ogic is the study of argument. The central problem for the logician
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instruments when it comes to representing the character of natural language
sentences. In fact, the humble sentence-letter can only stand for a natural
language sentence in its entirety, i.e. it can represent nothing of the internal
grammatical structure of any such sentence. Indeed, PL s precisely the logic
of those argument-forms whose validity does not depend in any way upon
the internal grammatical structure of the atomic sentences which compose
them. As a result, PL often fails to capture the form of natural language
arguments in a satisfying way. Consider the following argument, for
example:

1. All folk singers are groovy.
2. Arlo Guthrie is a folk singer.
Therefore,

3. Arlo Guthrie is groovy.

While the soundness of this argument is disputable, the intuitive
validity of the argument is surely obvious. But note what happens
when we try to formalise the argument as a sequent of PL. Because
three distinct sentences are involved, three distinct sentence-letters
must be used. Thus, the argument translates into PL as follows P, Q:R.
But that sequent is obviously invalid! A valid argument may be an
instance of a number of invalid argument-forms but the point is to
show that it is also an instance of some valid argument-form. The
problem here is that the validity of this particular argument depends
not merely upon the relations between the sentences which make it up
but also upon the internal grammatical structure of those sentences.
But sentence-letters can represent nothing of the internal structure of a
sentence. Therefore, we cannot accurately represent the form of this
argument using sentence-letters. It follows that we will never be able
to represent any argument of that form in PL accurately. Moreover, PL
is inadequate for representing the form of any argument whose validity
hinges on the internal structure of the sentences which make it up.
Such forms certainly can be adequately represented formally but their
representation requires a little more in the way of formal machinery
than a language like PL provides. To that end, look closely at sentences
2 and 3 of the argument. Sentences of this type are subject-predicate
sentences, i.e. sentences which attribute a property or properties to
some individual person, place or object. In logical terms, such
sentences predicate a property or properties of some particular subject.
Thus, sentence 2 predicates ‘being a folk singer” of the subject Arlo
Guthrie while sentence 3 predicates ‘being groovy’ of that same
subject. Further, because such sentences predicate a property of a
single subject they are singular sentences.
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To formally represent such sentences adequately, we need to be able to
distinguish subjects from predicates in our notation and to express the
subject-predicate relation formally. Therefore, we must introduce some new
symbols which belong not to PL but to a new formal language which I will
call QL, for quantificational logic (the meaning of this term will become
clearer as we go). First, we will let lower-case italic letters from the beginning
of the alphabet be names denoting individual subjects, e.g. we may simply
use a to denote Arlo Guthrie, b to denote Blind Lemon Jefferson, and so on.
Next, we identify upper-case italic letters from F onwards as predicate-letters.
Hence, we may use F to represent the predicate “...is a folk singer’. Again,
for clarity, we will use these new symbols (and the sentences of QL which
they compose) autonymously, i.e. we will let these symbols act as names for
themselves and so keep our use of quotation marks to a minimum.

Note that while names are complete symbols, predicates are incomplete
symbols, i.e. predicates contain a gap. Hence, when we write out the natural
language expression which the predicate-letter represents we use a few dots
to mark that gap or place, asin’...is a folk singer’. Subject-predicate sentences
are formed simply by plugging the gap in the predicate with a name. So, if
a stands for Arlo Guthrie, and F represents the predicate ’...is a folk singer’,
the sentence “Arlo Guthrie is a folk singer” is simply translated as Fa. (It
may seem more natural to write aF here but later, when we consider relational
expressions, you will see why following that convention could lead to
confusion. Hence, the name should always be written after the predicate
and not before it.)

Given these new elements of formal vocabulary, the conclusion: ‘Arlo
Guthrie is groovy’ can easily be translated. As agreed, a stands for Arlo
Guthrie. So, all we need to do is to pick a distinct predicate-letter to represent
the new predicate ’...is groovy’. For that purpose, we may just use the next
letter after Fin the alphabet, i.e. we let G stand for the predicate ’...is groovy’
and so formalise the conclusion as Ga.

So far in our formalisations we have followed the convention of picking
letters for names and predicates which are identical with the first letters of
the expressions we want to formalise; excluding the “is” of predication, of
course. This is often a convenient way of remembering what is representing
what in any given context. But we are quite free not to follow that convention
if we choose. For example, we could choose b as the formal name for Arlo
Guthrie, or c and so on. Equally, we could have chosen L to represent *...is a
folk singer’, or M and so on. Although these practices may seem odd there is
nothing in logic to forbid them. In fact, there will be occasions when we are
forced to choose different symbols; for example, if we want to formalise two
names which begin with the same letter or, indeed, two such predicates.

To complete the formalisation of the argument at hand, premise 1 must
be formalised. This sentence is not a singular sentence but a general sentence,
i.e. a sentence which makes a claim about all the members of a certain class.
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here, about the class of folk singers. To formalise this kind of general
sentence, then, we need a way to capture formally what is said in an “All’
or, equivalently, an ‘Every’-type sentence. This is done in three steps.

First, we adopt another new set of symbols known as variables. For that
purpose, we will use lower-case italic letters from the end of the alphabet,
i.e. x, y, z. Each and every such variable can simply be read as meaning
‘thing’. Secondly, we adopt the following symbol V, upside-down ‘A’, which
you can think of as formally expressing the term ‘Every’ or, better, the term
‘Any’. Next, we place a variable, x, for example, alongside our upside-down
‘A’ like so: Vx. The new expression which we have formed here is known as
a quantifier and, logically enough, it allows us to talk about a given quantity
of things, i.e. it enables us to quantify over sets of things. The use of a
quantifier always carries with it an implicit recognition that there is a set of
things over which we are quantifying, although on any particular occasion
of use, that set may well be undefined or might even be thought of as
including absolutely everything that we can think of as a thing at all. Now,
because we will always use this particular quantifier to help us make
assertions about every such thing or any such thing we will invariably use
the new expression to indicate that we are quantifying over everything,
over anything, quite universally. Hence, this quantifier is the universal
quantifier. Simply, the expression indicates that we are quantifying
universally, i.e. over every or any member of the set of things we are talking
about.!

It is tempting to think of the expression Vx as simply meaning everything.
But that is not quite true. For this expression cannot meaningfully occur
just on its own, i.e. Vx is not itself a well-formed formula of QL. However,
we can certainly use that expression to construct well-formed formulas.
Keeping things intuitive, the quantifier must always be followed by a further
expression which occurs in square brackets, i.e. the quantifier will be part
of a formula whose overall shape will generally look like this:

Vx [...]

In an important sense, the square brackets are an integral part of the
quantifier just because they indicate what it is that the quantifier applies to
or, in Logicspeak, governs. Still keeping things intuitive, we can think of
the expression we have just added to the quantifier as representing the scope
of the quantifier, i.e. the square brackets indicate the scope of that universal
quantifier. Hence, we can properly read formulas of this form as meaning,
literally, “For anything, x,...” or ‘Consider anything, x,...". So, we do now
have a way of expressing part of what is said in an ‘All” or ‘Every’-type
sentence.

In contrast with subject-predicate sentences, to form general sentences in
QL with the universal quantifier, variables must always be used, i.e. rather
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than talking about specific named individuals in quantified formulas, we
talk instead about any and every thing. The variable associated with the
quantifier is said to range over the set of things we are talking about. That
set which the variable ranges over is known as the universe of discourse,
literally that world or universe about which we are talking or, more simply,
as the domain where the domain is said to consist of elements (henceforth,
I will use the simpler expression the domain). This is a crucially important
concept to which we will return but, for the moment, it is sufficient to grasp
that the term ‘domain’ refers to just that set of things which we are talking
about in the general sentences we are concerned with and the quantified
formulas which represent them in QL.

As noted, while use of a universal quantifier carries with it an implicit
domain that domain may well be unspecified. In fact, it is common practice
among formal logicians to leave the domain in just such an indefinite state.
Further, I 