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Preface

In the 1980s, Mehta and Ramanathan made important breakthroughs in the study of
Schubert varieties by introducing the notion of a Frobenius split variety and compatibly
split subvarieties for algebraic varieties in positive characteristics. This was refined by
Ramanan and Ramanathan via their notion of Frobenius splitting relative to an effective
divisor.

Even though most of the projective varieties are not Frobenius split, those which are
have remarkable geometric and cohomological properties, e.g., all the higher cohomol-
ogy groups of ample line bundles are zero. Interestingly, many varieties where a linear
algebraic group acts with a dense orbit turn out to be Frobenius split. This includes
the flag varieties, which are split compatibly with their Schubert subvarieties, relative
to a certain ample divisor; Bott–Samelson–Demazure–Hansen varieties; the product of
two flag varieties for the same groupG, which are split compatibly with theirG-stable
closed subvarieties; cotangent bundles of flag varieties; and equivariant embeddings of
any connected reductive group, e.g., toric varieties.

The Frobenius splitting of the above mentioned varieties yields important geometric
results: Schubert varieties have rational singularities, and they are projectively normal
and projectively Cohen–Macaulay in the projective embedding given by any ample
line bundle (in particular, they are normal and Cohen–Macaulay); the corresponding
homogeneous coordinate rings are Koszul algebras; the intersection of any number
of Schubert varieties is reduced; the full and subregular nilpotent cones have rational
Gorenstein singularities; the equivariant embeddings of reductive groups have rational
singularities. Moreover, their proofs are short and elegant.

Further remarkable applications of Frobenius splitting concern the representa-
tion theory of semisimple groups: the Demazure character formula; a proof of the
Parthasarathy–Rango Rao–Varadarajan–Kostant conjecture on the existence of certain
components in the tensor product of two dual Weyl modules; the existence of good fil-
trations for such tensor products and also for the coordinate rings of semisimple groups
in positive characteristics, etc.

The technique of Frobenius splitting has proved to be so powerful in tackling nu-
merous and varied problems in algebraic transformation groups that it has become an
indispensable tool in the field. While much of the research has appeared in journals,
nothing comprehensive exists in book form. This book systematically develops the
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theory from scratch. Its various consequences and applications to problems in alge-
braic group theory have been treated in full detail bringing the reader to the forefronts
of the area. We have included a large number of exercises, many of them covering
complementary material. Also included are some open problems.

This book is suitable for mathematicians and graduate students interested in geo-
metric and representation-theoretic aspects of algebraic groups and their flag varieties.
In addition, it is suitable for a slightly advanced graduate course on methods of pos-
itive characteristics in geometry and representation theory. Throughout the book, we
assume some familiarity with algebraic geometry, specifically, with the contents of the
first three chapters of Hartshorne’s book [Har–77]. In addition, in Chapters 2 to 6 we
assume familiarity with the structure of semisimple algebraic groups as exposed in the
books of Borel [Bor–91] or Springer [Spr–98]. We also rely on some basic results of
representation theory of algebraic groups, for which we refer to Jantzen’s book [Jan–
03]. We warn the reader that the text provides much more information than is needed
for most applications. Thus, one should not hesitate to skip ahead at will, tracing back
as needed.

The first-named author owes many thanks to S. Druel, S. Guillermou, S. Inamdar,
M. Decauwert, and G. Rémond for very useful discussions and comments on pre-
liminary versions of this book. The second-named author expresses his gratitude to
A. Ramanathan, V. Mehta, N. Lauritzen and J.F. Thomsen for all they taught him about
Frobenius splitting. The second-named author also acknowledges the hospitality of the
Newton Institute, Cambridge (England) during January–June, 2001, where part of this
book was written. This project was partially supported by NSF. We thank J.F. Thom-
sen, W. van der Kallen and two referees for pointing out inaccuracies and suggesting
various improvements; and L. Trimble for typing many chapters of the book. We thank
Ann Kostant for her personal interest and care in this project and Elizabeth Loew of
TEXniques for taking care of the final formatting and layout.

Michel Brion and Shrawan Kumar
September 2004

Notational Convention

Those exercises which are used in the proofs in the text appear with a star.
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Chapter 1

Frobenius Splitting: General Theory

Introduction

This chapter is devoted to the general study of Frobenius split schemes, a notion intro-
duced by Mehta–Ramanathan and refined further by Ramanan–Ramanathan (see 1.C
for more precise references).

Any scheme over a field of characteristic p > 0 possesses a remarkable endomor-
phism, the (absolute) Frobenius morphism F which fixes all the points and raises the
functions to their p-th power. A scheme X is called Frobenius split (for short, split), if
the p-th power map OX → F∗OX splits as a morphism of sheaves of OX-modules.

In Section 1.1, we give various examples of Frobenius split schemes. These include
all nonsingular affine varieties (Proposition 1.1.6), their quotients by finite groups of
order prime to p (Example 1.1.10.1), and also all projective spaces (Example 1.1.10.3).
The existence of a splitting is preserved under taking images under certain morphisms
(Lemmas 1.1.8 and 1.1.9). Thus, the total space of a line bundle over a split scheme is
split (Lemma 1.1.11), and so is the affine cone over a split complete variety (Lemma
1.1.14). The compatibility of splittings with closed subschemes is also investigated.

Section 1.2 presents some of the fundamental properties of split schemes: they
are reduced (Proposition 1.2.1) and not “too singular;” specifically, they are weakly
normal (Proposition 1.2.5; which is a key step in the proof of normality of Schubert
varieties presented in 3.2.2). Further, line bundles on projective split schemes satisfy
remarkable homological properties: all the higher cohomology groups of ample line
bundles vanish (Theorem 1.2.8), and the Kodaira vanishing theorem holds under the
additional assumption of Cohen–Macaulayness (Theorem 1.2.9). We also present two
relative vanishing results (Lemma 1.2.11 and Theorem 1.2.12), to be further developed
in Section 1.3.

Section 1.3 is primarily devoted to establishing various geometric criteria for the
existence of a splitting, including Proposition 1.3.11 and Theorem 1.3.8. The latter
asserts that a complete nonsingular variety X is split if and only if there exists a global
section ϕ of ω1−p

X , and a closed point x ∈ X with local coordinates t1, . . . , tn, such that
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the monomial (t1 · · · tn)p−1 occurs in the local expansion of ϕ at x. Here ωX denotes
the (invertible) sheaf of differential forms of top degree, and ω1−p

X is the (1 − p)-th
tensor power. This shows that complete split varieties are very special, e.g., among all
the nonsingular projective curves, only the projective line and elliptic curves of Hasse
invariant 1 are split.

These criteria rely on a closed formula in local coordinates for the trace map of
the finite flat morphism F (Lemma 1.3.6). In turn, this formula is derived from results
of Cartier on differential calculus in characteristic p, which are presented in detail
in Section 1.3. This section ends with a version of the Grauert–Riemenschneider
vanishing theorem for split varieties (Theorem 1.3.14) which will play an important
role in proving that certain varieties admit “rational resolutions” (see Chapters 3 and 6).
We also obtain a version of the Kawamata–Viehweg vanishing theorem in the presence
of splitting (Theorem 1.3.16).

In Section 1.4, the notion of splitting relative to a divisor is developed. This yields
versions of the vanishing theorems in Section 1.2, which apply to all semi-ample line
bundles (Theorem 1.4.8; which is an essential ingredient in the proof of the Demazure
character formula in Chapter 3).

Section 1.5 presents applications of splitting to syzygies. Specifically, if X is a
normal projective variety, and X × X is split compatibly with the diagonal, then any
ample line bundle on X is very ample, and X is projectively normal in the correspond-
ing embedding θ into projective space (Corollaries 1.5.3 and 1.5.4). If, in addition,
X × X × X is split compatibly with the two partial diagonals �12 and �23, then the
image of X in the embedding θ is an intersection of quadrics (Proposition 1.5.8).

More generally, the existence of splittings of all products X× · · · ×X, compatible
with all the partial diagonals �i,i+1, implies that the homogeneous coordinate ring of
X is Koszul, i.e., the trivial module over this graded ring admits a linear resolution
(Theorem 1.5.15). This result, together with its refinement to closed subschemes, is
motivated by its applications to syzygies of flag varieties and their Schubert varieties,
presented in Chapter 3.

The techniques of Frobenius splitting obviously involve positive characteristics
in an essential way. But, some of their main applications concern certain varieties
in characteristic 0, which are defined over the integers (possibly with finitely many
primes inverted) and hence may be reduced modulo large primes. The relevant tools of
semi-continuity are gathered in Section 1.6.

1.1 Basic definitions, properties, and examples

We begin by fixing notation and conventions on schemes; our basic reference is [Har–
77]. Let k be an algebraically closed field of positive characteristic p. We will consider
separated schemes of finite type over k; these will be called schemes for simplicity.
A variety is an integral scheme (in particular, irreducible). The structure sheaf of a
scheme X is denoted by OX, and the ideal sheaf of a closed subscheme Y is denoted
by IY .
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Let Xreg be the regular locus of a scheme X. For a closed point x ∈ Xreg, a system
of local coordinates (t1, . . . , tn) of X at x is a minimal system of generators of the
maximal ideal of the local ring OX,x ; then, n is the dimension ofX at x. The choice of
a system of local coordinates identifies the completed local ring ÔX,x with the ring of
formal power series k[[t1, . . . , tn]].

The monomial t i11 . . . t
in
n will be denoted by t i, where i = (i1, . . . , in) ∈ Nn, N being

the set of nonnegative integers. The monomial (t1 . . . tn)p−1 will play a prominent role;
we denote it by tp−1. We write i ≤ p − 1 if ij ≤ p − 1 for j = 1, . . . , n.

Next, we introduce the Frobenius morphism. Consider first a commutative, asso-
ciative k-algebra A. Then, the p-th power map

F : A −→ A, a �→ ap,

is a ring endomorphism, called the Frobenius morphism; its image is a subalgebra
denoted by Ap. Notice that F is not a k-algebra homomorphism: it is semilinear with
respect to the Frobenius endomorphism of k.

Here are some basic properties of the Frobenius morphism.

1.1.1 Lemma. Let A be a localization of a finitely generated k-algebra. Then, the
Ap-module A is finitely generated.

If, in addition, A is regular, then the Ap-module A is locally free. Specifically, let
M be a maximal ideal of A and let t1, . . . , tn be a minimal set of generators of the
maximal ideal MAM of the local ring AM; then, the monomials

t i, i ≤ p − 1

form a basis of the (AM)p-module AM.

Proof. In the case where A is the polynomial ring k[t1, . . . , tn], we have Ap =
k[tp1 , . . . , tpn ], and the monomials t i, i ≤ p − 1, clearly form a basis of the Ap-module
A.

Now, letA be a finitely generated algebra. SinceA is a quotient of a polynomial ring,
it follows that the Ap-module A is finitely generated. Further, let S be a multiplicative
subset of A; then, S−1A = (Sp)−1A and (S−1A)p = (Sp)−1Ap. It follows that
(S−1A)p-module S−1A is finitely generated.

For the second assertion, we may assume thatA is local with maximal ideal M. We
claim that the monomials t i, i ≤ p − 1, generate the Ap-module A. By Nakayama’s
lemma, it suffices to show that their classes in the quotient A/F(M)A are a basis of
that space, where F(M) consists of all p-th powers of elements of M, and F(M)A

denotes the ideal generated by F(M). Clearly,

F(M)A = (t
p
1 , . . . , t

p
n ),

where we denote by (f1, . . . , fm) the ideal of A generated by f1, . . . , fm ∈ A. In
particular, F(M)A differs from the p-th power Mp of the ideal M, consisting of all
sums of products of p elements of M. However, F(M)A contains the pn-th power



4 Chapter 1. Frobenius Splitting: General Theory

Mpn, as every monomial of total degree pn in t1, . . . , tn is divisible by tpi for some i.
Since A/Mpn � k[t1, . . . , tn]/(t1, . . . , tn)pn, it follows that

A/F(M)A = A/(F (M)A+ Mpn) � k[t1, . . . , tn]/(tp1 , . . . , tpn ),
which implies our claim.

Next, we check that the monomials t i, i ≤ p − 1, are linearly independent overAp.
Consider a relation

∑
i≤p−1 a

p

i t
i = 0, where ai ∈ A for all i. Regard A as a subring

of its completion k[[t1, . . . , tn]] and notice that tpj+i = tpj′+i′ implies that i = i′ and
j = j′, whenever i, i′ ≤ p − 1. It follows that ai = 0.

We now extend the definition of Frobenius morphism to schemes.

1.1.2 Definition. Let X be a scheme; then, the absolute Frobenius morphism

FX : X −→ X

is the identity on the underlying space of X, and the p-th power map on the structure
sheaf OX.

We will abbreviate FX by F if the reference to X is clear; likewise, we will denote
the associated map

F #
X : OX −→ F∗OX

by F #. Then, F # is just the p-th power map.
By Lemma 1.1.1, F is a finite morphism of schemes (but not of k-schemes), sur-

jective on closed points. If, in addition, X is regular, then F is flat.
For any morphism f : X −→ Y of schemes, the diagram

X
f−−−−→ Y

FX

⏐⏐� FY

⏐⏐�
X

f−−−−→ Y

commutes.
Observe that, for a sheaf F of OX-modules, F∗F equals F as sheaves of abelian

groups, but the OX-module structure on F∗F is given by f ∗ s = f ps, for any local
sections f of OX and s of F . In particular, z ∗ s = zps, for any z ∈ k.
1.1.3 Definition. (i) A scheme X is Frobenius split (or simply split) if the OX-linear
map F # : OX −→ F∗OX splits, i.e., there exists an OX-linear map

ϕ : F∗OX −→ OX
such that the composition ϕ ◦ F # is the identity map of OX. Any such ϕ is called a
splitting.
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(ii) A closed subscheme Y ofX is compatibly split if there exists a splitting ϕ ofX such
that

ϕ(F∗IY ) ⊂ IY .
(iii) More generally, closed subschemesY1, . . . , Ym ofX are simultaneously compatibly
split (or simply compatibly split) if they are compatibly split by the same splitting of
X.

1.1.4 Remarks. (i) A splitting of X is nothing but an endomorphism ϕ : OX −→ OX
of the sheaf OX, considered only as a sheaf of abelian groups on X, satisfying the
following:

(a) ϕ(f pg) = f ϕ(g), for f, g ∈ OX, and
(b) ϕ(1) = 1.

Indeed, (a) is equivalent to the requirement that ϕ ∈ Hom(F∗OX,OX); and if (a)
holds, then ϕ(f p) = f ϕ(1) for f ∈ OX. (Here and subsequently in the book we
have abbreviated HomOX

(F∗OX,OX) as Hom(F∗OX,OX).) In other words, for any
ϕ ∈ Hom(F∗OX,OX), the composition ϕ ◦F # is the multiplication by ϕ(1), a regular
function on X. Thus, ϕ is a splitting if and only if ϕ(1) = 1.

Assume now that X is a complete variety, so that every regular function on X is a
constant. Thus, ϕ ∈ Hom(F∗OX,OX) is a nonzero scalar multiple of a splitting if and
only if ϕ(1) is not identically zero.

(ii) If ϕ compatibly splits a closed subscheme Y ofX, then clearly ϕ induces a splitting
ϕY of Y , such that the diagram

0 −−−−→ F∗IY −−−−→ F∗OX −−−−→ F∗OY −−−−→ 0

ϕ

⏐⏐� ϕ

⏐⏐� ϕY

⏐⏐�
0 −−−−→ IY −−−−→ OX −−−−→ OY −−−−→ 0

commutes.

(iii) Let ϕ ∈ Hom(F∗OX,OX) be a splitting and let I be an ideal sheaf of OX. Then,

I ⊂ ϕ(F∗I),

since f = ϕ(f p) for any local section f of OX.

1.1.5 Example. The affine space An over k is split compatibly with all its coordinate
subspaces. Indeed, consider an additive map

ϕ : k[t1, . . . , tn] −→ k[t1, . . . , tn]
such that ϕ(f pg) = f ϕ(g) for all f , g in k[t1, . . . , tn], and ϕ(1) = 1. By Remark 1.1.4
(i), any such ϕ uniquely extends to a splitting of An by setting ϕ(f

g
) = 1

g
ϕ(fgp−1),

for a regular function f
g

on any open subset of An, where f, g ∈ k[t1, . . . , tn].
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Any such map ϕ is uniquely determined by its values at the monomials t i, i ≤ p − 1,
and i 
= (0, . . . , 0). Conversely, assigning arbitrary polynomials to t i for nonzero
i ≤ p − 1 uniquely extends to a map ϕ satisfying the above conditions. Now, choose
ϕ(t i) = 0 for all nonzero i ≤ p − 1. Then, we have for arbitrary i ∈ Nn:

ϕ(t i) = t i/p :=
{
t j if i = pj, j ∈ Nn,

0 otherwise.

In particular, ϕ maps every monomial to a monomial with the same support, or to 0.
Thus, the ideal generated by any subset of the coordinate functions is invariant under
ϕ.

This example may be generalized as follows.

1.1.6 Proposition. LetX be a nonsingular affine variety and let Y be a closed nonsin-
gular subvariety. Then, X is split compatibly with Y .

Proof. We adapt the argument of Example 1.1.5. Let X = Spec(A), where A is a
regular, finitely generated k-algebra, and let I be the ideal of Y in X. LetM be the set
of all additive maps ϕ : A −→ A such that ϕ(f pg) = f ϕ(g) for all f, g ∈ A, and
let MI be the subset of those ϕ such that ϕ(I) ⊂ I . Then, the splittings of X that are
compatible with Y are those ϕ ∈ MI such that ϕ(1) = 1.

Note that M is an abelian group under pointwise addition; in fact, an A-module
via (f ϕ)(g) = f ϕ(g); further, MI is an A-submodule. Any ϕ ∈ M is uniquely
determined by its values at a set of generators of the Ap-module A (and these values
have to satisfy all the relations between these generators). By Lemma 1.1.1, it follows
that the A-modulesM andMI are finitely generated.

The map
ε : MI −→ A, ϕ �→ ϕ(1),

is A-linear, and X is split compatibly with Y if and only if ε is surjective. By the
finiteness of theA-moduleMI , this is equivalent to the surjectivity of ε after taking the
completion of the localization at every maximal ideal of A. Thus, we are reduced to
the case where A = k[[t1, . . . , tn]] and the ideal I is generated by t1, . . . , tm for some
m ≤ n. (Recall that the ideal of any nonsingular subvariety at any point of a nonsingular
variety is generated by a subset of a suitably chosen system of local coordinates.) Now,
the formula

ϕ(
∑

i

ait
i) =
∑
i, p|i

a
1/p
i t i/p

defines a compatible splitting, as in Example 1.1.5.

Another source of examples is the following.

1.1.7 Lemma. (i) If a scheme X is split under ϕ ∈ Hom(F∗OX,OX) compatibly with
a closed subscheme Y , then for every open subscheme U of X, ϕ restricts to a splitting
of U , compatible with U ∩ Y .
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(ii) Conversely, if U is a dense open subscheme of a reduced scheme X, and if ϕ ∈
Hom(F∗OX,OX) restricts to a splitting of U , then ϕ is a splitting ofX. If, in addition,
Y is a reduced closed subscheme of X such that U ∩ Y is dense in Y and compatibly
split by ϕ|U , then Y is compatibly split by ϕ.

(iii) If X is a normal variety and U is an open subset with complement of codimension
at least 2, then X is split if and only if U is. In fact, any splitting of U is the restriction
of a unique splitting of X. In particular, X is split if and only if its regular locus is.

Proof. (i) Clearly, ϕ yields an OU -linear map F∗OU −→ OU . And since ϕ(1) = 1,
this map is a splitting of U . It is compatible with U ∩ Y , since ϕ(F∗IY ) ⊂ IY .

(ii) The regular function ϕ(1) equals 1 onU , and hence on the whole ofX. (Indeed,
we may regard ϕ(1) − 1 as a morphism from X to A1, and its fiber at 0 contains the
dense open subset U ). By Remark 1.1.4 (i), it follows that ϕ is a splitting ofX. For the
compatibility of this splitting with Y , we need to check that ϕ(F∗IY ) ⊂ IY . Notice that
ϕ(F∗IY ) is a coherent ideal sheaf of OX, containing IY by Remark 1.1.4 (iii). Thus,
we have ϕ(F∗IY ) = IZ for some closed subscheme Z of X contained in Y . Further,
U ∩ Z = U ∩ Y , since ϕ|U is compatible with U ∩ Y . Thus, the ideal sheaf of Z
(regarded as a closed subscheme of Y ) vanishes on the dense subset U ∩ Y . Since Y is
reduced, this ideal sheaf vanishes on the whole of Y , so that Z = Y .

(iii) If X is split, then so is U by (i). Conversely, assume that U is split by ψ and
denote the inclusion by i : U −→ X. Then, i∗OU = OX, sinceX is normal andX \U
contains no divisors of X. Hence, the map

ϕ : F∗OX −→ OX, f �→ i∗ψi#(f ),

is well defined, and extends ψ : F∗OU −→ OU . Further, ϕ is OX-linear (since ψ is
OU -linear). Thus, ϕ is a splitting of X by (ii). The uniqueness of ϕ is easy to see from
i∗OU = OX.

Next, we show that the existence of a splitting is preserved by taking images under
certain morphisms.

1.1.8 Lemma. Let f : X −→ Y be a morphism of schemes such that the map f # :
OY −→ f∗OX is an isomorphism. Let Z be a closed subscheme ofX and letW be the
scheme-theoretic image ofZ in Y , cf. [Har–77, Chap. II, Exercise 3.11(d)]. Identifying
f∗OX with OY via f #, we have:

(i) IW = f∗IZ .

(ii) If X is split, then so is Y . If, in addition, Z is compatibly split, then so isW .

Proof. (i) SinceW is the scheme-theoretic image of Z, we have

IW = (f #)−1(f∗IZ).

This proves (i), since f # is an isomorphism.
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(ii) Let ϕ : F∗OX −→ OX be a splitting; consider the direct image

f∗ϕ : f∗F∗OX −→ f∗OX = OY .
Since f∗F∗OX = F∗(f∗OX) = F∗OY , we see that f∗ϕ maps F∗OY to OY , and 1 to 1.
Thus, f∗ϕ is a splitting of Y .

If, in addition, Z is compatibly split by ϕ, then ϕ(F∗IZ) = IZ , whence

(f∗ϕ)(F∗IW) = (f∗ϕ)(F∗(f∗IZ)) = f∗IZ = IW .

The following variant of Lemma 1.1.8 gives rise to further examples of split schemes.

1.1.9 Lemma. Let f : X −→ Y be a morphism of schemes such that the map f # :
OY −→ f∗OX splits as a morphism of OY -modules. If X is split, then so is Y .

Proof. Let ϕ : F∗OX −→ OX be a splitting of X and let π : f∗OX −→ OY be a
OY -module splitting of f #. Then, the diagram

F∗OY F∗f #

−−−−→ f∗F∗OX
f∗ϕ
⏐⏐�

OY π←−−−− f∗OX
yields the desired candidate

ψ = π ◦ (f∗ϕ) ◦ F∗f #

for a splitting of Y . (One easily checks that ψ : F∗OY −→ OY is a morphism of
OY -modules such that ψ(1) = 1.)

1.1.10 Examples. (1) LetG be a finite group of automorphisms of a nonsingular affine
variety X = Spec(A). Then, G acts on the algebra A, and the invariant subalgebra
AG is finitely generated [Eis–95, Theorem 13.17]. Let Y = X/G := Spec(AG) be the
corresponding affine variety. The inclusion ofAG intoA yields the quotient morphism

f : X −→ Y.

Denote by d the order ofG. If d is not divisible by p, then Y is split. Indeed,X is split
by Proposition 1.1.6. Further, the inclusion

f # : AG −→ A

is split by the projection

π : A −→ AG, a �→ 1

d

∑
g∈G

g · a,
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so that Lemma 1.1.9 applies.

(2) More generally, consider a finite surjective morphism between varieties

f : X −→ Y,

where Y is assumed to be normal. Define the degree d of f as the degree of the field
extension k(X)/k(Y ) and the trace map Tr as the trace of this field extension. Since
f∗OX is a sheaf of OY -algebras finite over OY , and contained in the constant sheaf
k(X),

Tr(f∗OX) ⊂ OY
(as the latter is integrally closed in k(Y )). Further, the restriction of Tr to OY is d times
the identity map. If d is not divisible by p, then 1

d
Tr splits f #; thus, Y is split if X is.

(3) Let
f : E −→ X

be a vector bundle over a scheme X, with zero section E0, and let

g : P(E) −→ X

be the corresponding projective bundle (so that the fibers of g are the projective spaces
consisting of the lines in the fibers of f ). Consider the induced morphism

h : E \ E0 −→ P(E).

Then, the natural action of the multiplicative group Gm on E \ E0 yields a grading
of the sheaf h∗OE\E0 , with degree zero component equal to OP(E). Thus, the map
h# : OP(E) −→ h∗OE\E0 splits as a morphism of OP(E)-modules. Further, all the
fibers of g being projective spaces, the map g# : OX −→ g∗OP(E) is an isomorphism.

By Lemmas 1.1.8 (ii) and 1.1.9, if E is split, then so are P(E) and X. As a
consequence, the projective space Pn over k is split.

A converse is provided by the following.

1.1.11 Lemma. LetX be a scheme, Y a closed subscheme,L a line bundle overX, and
LY the preimage of Y in L. If X is split compatibly with Y , then L is split compatibly
with its zero section and with LY .

More generally, let E be a vector bundle over X, and let EY be the preimage of Y .
If the associated projective bundle P(E) is split compatibly with P(EY ), then E is split
compatibly with its zero section and with EY . As a consequence, X is split compatibly
with Y .

Proof. Denote by L the sheaf of local sections of the dual line bundle L∗ and, for any
integer ν, let Lν be the corresponding tensor power of the invertible sheaf L. Then, the
projection f : L −→ X satisfies f∗OL =⊕∞

ν=0 Lν . Now, let ϕ : F∗OX −→ OX be
a splitting, compatible with Y . Define ψ : F∗OL −→ OL by setting

ψ(gσν) =
{
ϕ(g)σ ν/p if ν ≡ 0 (mod p),

0 otherwise,
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for any local section g of OX and local trivialization σ of L.
We claim that ψ is well defined. Let σ1 be another trivialization and g1 another

function, such that gσν = g1σ
ν
1 . Then, σ1 = uσ for some local unit u in OX, and

g1 = gu−ν . Now,

ϕ(g1)σ
ν/p
1 = ϕ(gu−ν)uν/pσ ν/p = ϕ(g)σ ν/p,

which proves our claim.
One checks easily thatψ is a splitting ofL, preserving the ideals of the zero section

and of LY .
Now, letf : E −→ X be a vector bundle, and letOP(E)(−1) be the total space of the

tautological line bundle over P(E). Then, we have a morphism π : OP(E)(−1) −→
E (the blowing-up of the zero section E0). This morphism is proper and satisfies
π∗OOP(E)(−1) = OE . Further, E0 is the scheme-theoretic image of the zero section
of OP(E)(−1) under π . By Lemma 1.1.8, it suffices to prove that OP(E)(−1) is split,
compatibly with its zero section and with OP(EY )(−1). But, this follows from the first
part of the lemma, since P(E) is split compatibly with P(EY ).

To conclude this section, we show that the existence of a splitting is preserved under
taking “affine cones.” Recall first the following.

1.1.12 Definition. An invertible sheaf L on a scheme X is called semi-ample if some
positive power of L is generated by its global sections.

Consider a complete varietyX equipped with a semi-ample invertible sheaf L. Let
L−1 be the total space of the dual line bundle, with projection f : L−1 −→ X and zero
section L−1

0 . Then, f∗OL−1 = ⊕∞
ν=0 Lν , so that the graded algebra 
(L−1,OL−1)

equals

R(X,L) :=
∞⊕
ν=0


(X,Lν).

This is a graded algebra, with R(X,L)0 = 
(X,OX) = k.

1.1.13 Lemma. (i) With the notation and assumptions as above, R(X,L) is a finitely
generated domain.

Let X̂ be the corresponding affine variety and let 0 ∈ X̂ be the closed point defined
by the irrelevant ideal ofR(X,L). Let π : L−1 −→ X̂ be the morphism corresponding
to 
(L−1,OL−1) = 
(X̂,O

X̂
). Then,

(ii) π is proper and satisfies π∗OL−1 = O
X̂

. Further, π−1(0) = L−1
0 (as sets).

(iii) If, in addition, L is ample, then π restricts to an isomorphism π0 : L−1 \L−1
0 −→

X̂ \ {0}.
Proof. (i) Since L−1 is a variety, R(X,L) is a domain. To show that it is finitely
generated, choose a positive integer νo such that Lνo is generated by its global sections.
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Consider the inclusion
∞⊕
ν=0

Lννo ⊂
∞⊕
ν=0

Lν,

and the corresponding morphism α : L−1 −→ L−νo , a finite surjective map. Thus, we
may regard OL−1 as a coherent sheaf of algebras over OL−νo .

Let V := 
(X,Lνo ) and let P be the projective space of hyperplanes in V . Since
Lνo is generated by its global sections, we have a morphism ϕ : X −→ P such that
Lνo = ϕ∗OP(1). LetOP(−1) be the total space of the tautological line bundle over the
projective space P, with projection map g : OP(−1) −→ P. Then, we have a Cartesian
square

L−νo ψ−−−−→ OP(−1)

f

⏐⏐� g

⏐⏐�
X

ϕ−−−−→ P.

Thus, ψ is proper, so that the composition γ := ψ ◦ α is proper as well. As a
consequence, γ∗OL−1 is a coherent sheaf over OP(−1). Further, we have a proper
morphism OP(−1) → V ∗ (the blowing-up of the origin in V ∗). As a consequence,
R(X,L) = 
(L−1,OL−1) = 
(OP(−1), γ∗OL−1) is a finite module over the algebra
of regular functions onV ∗, that is, the symmetric algebra ofV . In particular, the algebra
R(X,L) is finitely generated.

(ii) Let X̂νo := SpecR(X,Lνo ). Since the algebra R(X,L) is integral over its sub-
algebra R(X,Lνo ), we have a finite surjective morphism X̂ −→ X̂νo . Its composition
with π equals the composition of πνo : L−νo −→ X̂νo with the finite surjective mor-
phism α : L−1 −→ L−νo . Thus, to show that π is proper, we may replace L with Lνo ,
and hence assume that L is generated by its global sections. Then, with the preceding
notation, the morphism X̂ −→ V ∗ is finite, and its composition L−1 −→ X̂ −→ V ∗
with π factors asψ : L−1 −→ OP(−1) (a proper morphism) followed by the blowing-
up OP(−1) −→ V ∗. Therefore, this composition is proper, and hence so is π .

To show the remaining assertions, note that, by definition, X̂ is affine and

(L−1,OL−1) equals 
(X̂,O

X̂
), so that the map O

X̂
−→ π∗OL−1 is an isomor-

phism. Moreover, since the elements of 
(X,Lνo ) have no common zeroes in X, the
(set-theoretic) preimage of 0 under π is the zero section.

(iii) We may choose the positive integer νo such that Lνo is very ample. Then,
X̂ \ {0} is covered by the affine open subsets X̂σ := {x ∈ X̂ | σ(x) 
= 0}, where
σ ∈ 
(X,Lνo ) is nonzero (σ is to be thought of as a function on X̂). Further, the
preimage of X̂σ under π is the pullback of L−1 \L−1

0 to the corresponding open subset
Xσ := {x ∈ X | σ(x) 
= 0} of X. Since Lνo is ample, every subset Xσ is affine, and
hence the pullback of L−1 \L−1

0 to Xσ is affine as well. Thus, π0 is affine. But, since
π is proper, it follows that π0 must be finite. Finally, since π∗OL−1 = O

X̂
, it follows

that π0 is an isomorphism.
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1.1.14 Lemma. Let L be a semi-ample invertible sheaf over a complete varietyX, and
let X̂ := SpecR(X,L) be the corresponding “affine cone”.

If X is split, then X̂ is split compatibly with the subvariety 0.
Conversely, if L is ample and X̂ is split, then X is split as well.

Proof. IfX is split, then by Lemma 1.1.11, the line bundleL−1 is split compatibly with
its zero section. Further, the morphism π : L−1 −→ X̂ is proper, maps the zero section
to 0, and satisfies π∗OL−1 = O

X̂
by Lemma 1.1.13. Observe that the scheme-theoretic

image of L−1
0 is the reduced subscheme 0 since L−1

0 is reduced, being isomorphic with
X. By Lemma 1.1.8, it follows that X̂ is split compatibly with 0.

For the converse, notice that X̂ \ {0} is split as well. By Lemma 1.1.13 again,
X̂ \ {0} � L−1 \ L−1

0 is equipped with a morphism h : X̂ \ {0} −→ X, such that h#

identifies OX with the degree 0 component of the graded sheaf h∗OX̂\{0}. Thus, h#

splits, and our assertion follows from Lemma 1.1.9.

1.1.E Exercises

In the following Exercises 1–4, X denotes a scheme endowed with invertible sheaves
L1, . . . ,Lr ; the corresponding line bundles are denoted by L1, . . . , Lr respectively.

(1)Assuming thatX is split, show that theWhitney sumL1⊕· · ·⊕Lr is split, compatibly
with all partial sums.

(2∗) Let R(X; L1, . . . ,Lr ) := ⊕
(X,Lν1
1 ⊗ · · · ⊗ Lνrr ) (sum over all nonnegative

integers ν1, . . . , νr ). Assuming that X is a complete variety and that L1, . . . ,Lr are
semi-ample, show that the algebra R(X; L1, . . . ,Lr ) is finitely generated.

The corresponding affine variety X̂ is called the multicone over X associated with
L1, . . . ,Lr .
(3∗)With the notation and assumptions of (2), generalize Lemma 1.1.13 to the morphism
π : L−1

1 ⊕ · · · ⊕ L−1
r −→ X̂.

(4) With the notation and combined assumptions of (1) and (2), show that X̂ is split
compatibly with all the multicones associated with subsets of {L1, . . . , Lr}.
(5) Let G be a linearly reductive group [MFK–94, Chapter 1] acting on a scheme X
such that f : X −→ Y is a good quotient, where good quotient means that f is an
affine G-invariant morphism and the map f # : OY → (f∗OX)G is an isomorphism.
Assume further that X is split. Then, show that Y is split.

Hint: Use the Reynolds operator of [loc cit.].

1.2 Consequences of Frobenius splitting

We begin with an easy but important observation.

1.2.1 Proposition. Let X be a split scheme, then X is reduced.
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If the closed subschemes Y and Z are compatibly split, then so are their scheme-
theoretic intersection Y ∩Z, their union Y ∪Z, and the irreducible components of all
these schemes. In particular, the scheme-theoretic intersection Y ∩ Z is reduced.

Proof. Let ϕ be a splitting of X. Consider an affine open subscheme U of X, and
a nilpotent element f ∈ 
(U,OU). Thus, there exists a positive integer ν such that
f p

ν = 0. It follows that

f p
ν−1 = (ϕ ◦ F #)(f p

ν−1
) = ϕ(f p

ν

) = 0,

and hence, by induction, f = 0. Thus, X is reduced.
Recall that

IY∩Z := IY + IZ and IY∪Z := IY ∩ IZ.
If ϕ is compatible with Y and Z, then we have

ϕ(F∗IY∪Z) = ϕ(F∗(IY ∩ IZ)) ⊂ ϕ(F∗IY ) ∩ ϕ(F∗IZ) = IY ∩ IZ = IY∪Z;
and, similarly, ϕ(F∗IY∩Z) ⊂ IY∩Z . Thus, Y ∪Z and Y ∩Z are compatibly split by ϕ.

To complete the proof, it suffices to show that ϕ is compatible with every irreducible
component of X. Let A be such a component and let B be the union of all the other
components. Then, ϕ(F∗IA) is a coherent sheaf of ideals of OX containing IA. Further,
ϕ(F∗IA) and IA coincide onX\B, since IA restricts to the zero sheaf onX\B = A\B.
Since X \ B is dense in A, it follows that ϕ(F∗IA) = IA as in the proof of Lemma
1.1.7.

1.2.2 Example. The affine plane X = A2 is split compatibly with the coordinate line
Y := (y = 0) (Example 1.1.5); it is also split compatibly with the nonsingular curve
Z := (y = x2) by Proposition 1.1.6. But, Y and Z are not simultaneously compatibly
split in X, since Y ∩ Z is not reduced.

Next, we obtain a restriction on the singularities of any split scheme. To formulate
it, we need the following.

1.2.3 Definition. A morphism f : Y −→ X between reduced schemes is birational
if there exist dense open subsets U ⊂ X and V ⊂ Y such that f restricts to an
isomorphism V −→ U .

A reduced schemeX is weakly normal if every finite birational bijective morphism
f : Y −→ X is an isomorphism. We refer to [AnBo–69], [Man–80] for more on this
notion and on the (weaker) notion of semi-normality.

1.2.4 Examples. (1)A varietyX is normal if and only if every finite birational morphism
to X is an isomorphism [Har–77, Chap. II, Exercise 3.8]. Thus, normal varieties are
weakly normal.

(2) The cuspidal cubic curve X := (y2 = x3) in A2 is not weakly normal. (The
morphism A1 −→ X, t �−→ (t2, t3), is bijective, finite and birational, but is not an
isomorphism.) But, the nodal cubic curve X := (y2 = x2(x + 1)) in A2 is weakly
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normal if p 
= 2. (Let f : Y −→ X be a finite birational bijective morphism. Then, the
normalization η : A1 −→ X, t �−→ (t2 −1, t (t2 −1)), factors through f . Further, η is
an isomorphism above X− {0, 0}, and the scheme-theoretic fiber η−1(0, 0) equals the
reduced scheme {−1, 1}. It follows that the scheme-theoretic fibers of the factorization
A1 −→ Y are the same as those of η. Thus, f is an isomorphism.)

1.2.5 Proposition. Every split scheme is weakly normal.

Proof. Let X be a split scheme and let f : Y −→ X be a finite birational bijective
morphism. To check that f is an isomorphism, we may assume that X is affine. Then,
Y is affine as well, since f is finite. Let X = Spec(A) and Y = Spec(B); then, A and
B are finitely generated algebras with the same total quotient ring K (the localization
at all nonzero divisors), and A ⊂ B ⊂ K , the A-module B being finitely generated.
Let ϕ be a splitting of X. Then, ϕ extends uniquely to an additive map ϕ : K −→ K

satisfying ϕ(xpy) = xϕ(y) and ϕ(1) = 1.
Consider the conductor

I := {a ∈ A | aB ⊂ A}.
This is a nonzero ideal of B contained in A. We claim that ϕ(I) = I . To check this, let
a ∈ I and b ∈ B, then ϕ(a)b = ϕ(abp) ∈ ϕ(A) = A, so that ϕ(I) ⊂ I . The opposite
inclusion follows from Remark 1.1.4 (iii).

By the above claim and Proposition 1.2.1, the ring A/I is reduced. Likewise, if
b ∈ B and bp ∈ I then b = ϕ(bp) ∈ ϕ(I) = I ; it follows that B/I is reduced as well.
The closed subset E of X corresponding to A/I consists of all those points where f
is not birational, by definition of I . Thus, E contains no irreducible components of X.
By the claim, X is split compatibly with E.

Assume that I 
= A and let P be a minimal prime ideal of A over I . Then, P is the
ideal of an irreducible component ofE, so thatϕ(P ) = P by Proposition 1.2.1. Further,
the localization (A/I)P is a field, and (B/I)P is a nontrivial, purely inseparable field
extension (since B/I is reduced, and f restricts to a finite bijective, nowhere birational
morphism Spec(B/I) −→ Spec(A/I) = E). Thus, there exists b ∈ BP such that
its image b̄ ∈ (B/I)P satisfies b̄p ∈ (A/I)P , but b̄ /∈ (A/I)P . Then, bp ∈ AP and
b = ϕ(bp) ∈ AP , a contradiction. Hence, I = A, and B = A.

Further consequences of the existence of a Frobenius splitting concern the vanishing
of all higher cohomology groups of line bundles, or equivalently of invertible sheaves.
To establish them, we need the following preliminary result.

1.2.6 Lemma. Let L be an invertible sheaf on a scheme X. Then,

F ∗L � Lp and F∗(F ∗L) � L ⊗OX
F∗OX.

Proof. Recall that
F ∗L := F−1L ⊗F−1OX

OX,
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where the map F−1OX −→ OX arises from F # : OX −→ F∗OX. Now, F is the
identity map on points, and F # is the p-th power map. It follows that

F ∗L = L ⊗OX
OX,

where OX acts on itself by the p-th power map; in other words, σf ⊗ g = σ ⊗ f pg
for all local sections σ of L, and f , g of OX. Thus, the map

F ∗L −→ Lp, σ ⊗ f �−→ σpf,

is well defined. Clearly, this map is OX-linear and surjective; this implies the first
isomorphism. The second isomorphism follows from the projection formula.

1.2.7 Lemma. Let L be an invertible sheaf on a split scheme X.

(i) If Hi(X,Lν) = 0 for a fixed index i and all ν � 0, then Hi(X,L) = 0.

(ii) If a closed subscheme Y is compatibly split, and the restriction map
H 0(X,Lν) −→ H 0(Y,Lν) is surjective for all ν � 0, then the restriction map
H 0(X,L) −→ H 0(Y,L) is surjective. (Here and elsewhere, when no confusion is
likely, we have abused the notation and denoted L|Y by L itself.)

Proof. (i) Let ϕ : F∗OX −→ OX be a splitting of F # : OX −→ F∗OX. Then, id ⊗ϕ
splits the map

id ⊗F # : L −→ L ⊗OX
F∗OX.

It follows that the induced map in cohomology

Hi(id ⊗F #) : Hi(X,L) −→ Hi(X,L ⊗OX
F∗OX)

is split, and hence injective. But,

Hi(X,L ⊗OX
F∗OX) � Hi(X, F∗(F ∗L)) � Hi(X, F∗(Lp)) � Hi(X,Lp)

by Lemma 1.2.6 and the fact that the morphism F is finite, hence affine. (Here the
isomorphism on the extreme right is only semilinear.) This yields a split injection
Hi(X,L) −→ Hi(X,Lp) (as abelian groups). As a consequence,Hi(X,L) is a direct
factor of Hi(X,Lpν ) for any positive integer ν.

(ii) We have a commutative diagram (of abelian groups)

H 0(X,L) −−−−→ H 0(X,Lp)⏐⏐� ⏐⏐�
H 0(Y,L) −−−−→ H 0(Y,Lp),

where the horizontal arrows areH 0(id ⊗F #), and the vertical arrows are the restriction
maps. Since Y is compatibly split, the horizontal arrows are compatibly split as well.
Thus, the surjectivity of H 0(X,Lp) −→ H 0(Y,Lp) implies that of H 0(X,L) −→
H 0(Y,L).
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We now come to the main results of this section.

1.2.8 Theorem. LetX be a proper scheme over an affine scheme, and let L be an ample
invertible sheaf on X.

(i) If X is split, then Hi(X,L) = 0 for all i ≥ 1.

(ii) If, in addition, a closed subscheme Y is compatibly split, then the restriction map
H 0(X,L) −→ H 0(Y,L) is surjective, and Hi(Y,L) = 0 for all i ≥ 1. As a conse-
quence, Hi(X, IY ⊗ L) = 0 for all i ≥ 1.

Proof. By the Serre vanishing theorem [Har–77, Chap. III, Proposition 5.3], we have for
ν � 0:

Hi(X,Lν) = Hi(X, IY ⊗ Lν) = Hi(Y,Lν) = 0.

On the other hand, the short exact sequence of sheaves

0 −→ IY ⊗ Lν −→ Lν −→ Lν |Y −→ 0

yields the long exact sequence of cohomology groups

0 → H 0(X, IY ⊗ Lν) → H 0(X,Lν) → H 0(Y,Lν) → H 1(X, IY ⊗ Lν) → · · · ·
It follows that the restriction map H 0(X,Lν) −→ H 0(Y,Lν) is surjective for ν � 0.
Combined with Lemma 1.2.7, this implies the theorem.

1.2.9 Theorem. Let X be a split projective scheme equipped with an ample invertible
sheaf L.

IfX is Cohen–Macaulay with dualizing sheaf ωX, thenHi(X,L⊗ωX) = 0 for all
i ≥ 1.

If, in addition,X is equidimensional, thenHi(X,L−1) = 0 for all i ≤ dim(X)−1.

Proof. Assume thatX is Cohen–Macaulay and equidimensional. Then,Hi(X,L−ν) =
0 for all ν � 0 and i ≤ dim(X) − 1, by [Har–77, Chap. III, Theorem 7.6]. Using
Lemma 1.2.7, this implies the second assertion.

Now, the first assertion follows by applying Serre duality [Har–77, Chap. III,
Corollary 7.7] to all connected components of X; these are equidimensional, since X
is Cohen–Macaulay.

1.2.10 Remarks. (i) In particular, the Kodaira vanishing theorem holds for every split
projective nonsingular varietyX, i.e.,Hi(X,L⊗ωX) = 0 for any i ≥ 1 and any ample
invertible sheaf L.

(ii) The vanishing of all the higher cohomology groups of all ample invertible sheaves
on a given projective schemeX is a very strong condition that seldom holds. Consider,
for example, the case whereX is a projective nonsingular irreducible curve of genus g.
If g ≥ 2, then the invertible sheaf ωX is ample [Har–77, Chap. IV, Corollary 3.3], and
H 1(X, ωX) � H 0(X,OX)∗ � k. Hence, X is not split.



1.2. Consequences of Frobenius splitting 17

As another class of examples, consider a hypersurfaceX of degree d in the projective
space Pn. Then, X is Cohen–Macaulay with dualizing sheaf OX(d − n− 1). Thus,

Hn−1(X,OX(1)) � H 0(X,OX(−1)⊗ ωX)∗ � H 0(X,OX(d − n− 2))∗

is nonzero whenever d ≥ n+ 2; in this case, X is not split.
(iii) We saw in Proposition 1.1.6 that any nonsingular affine variety is split; but,

this does not extend to nonsingular quasi-affine varieties. Consider, for example, a
projective nonsingular irreducible curve X of genus g ≥ 2, an ample invertible sheaf
L on X, and the corresponding cone X̂ := SpecR(X,L) over X, with vertex 0. Then,
X̂ \ {0} is a nonsingular quasi-affine surface, which is not split by the proof of Lemma
1.1.14 and the above Remark (ii). In particular, notice that the normal affine surface X̂
is not split as well.

Next, we obtain two “relative” vanishing results in the presence of Frobenius split-
ting.

1.2.11 Lemma. Let f : X −→ Y be a proper morphism of schemes, letD be a closed
subscheme ofX, and let i ≥ 1. IfX is split compatibly withD, and ifHi(Xy, ID) = 0
for all points y ∈ Y (where y is not necessarily closed, and Xy denotes the scheme-
theoretic fiber at y), then Rif∗(ID) = 0.

Proof. We may assume that Y is affine. Then, by [Har–77, Chap. III, Proposition 8.5],
it suffices to prove the vanishing of Hi(X, ID). By [loc cit., Chap. III, Theorem 8.8
and Remark 8.8.1], theH 0(Y,OY )-moduleHi(X, ID) is finitely generated. Let y ∈ Y
be the generic point of an irreducible component of the support of this module. Then,
the localization Hi(X, ID)y is a module of finite length over the local ring OY,y . By
the theorem on formal functions [loc cit., Chap. III, Theorem 11.1 and Remark 11.1.1],
we have

(1) Hi(X, ID)y = lim← s
H i(Xs, ID,s),

where ID,s is the pullback of ID to Xs := X ×Y Spec(OY,y/Ms
y), for s ≥ 1. (Here

My is the maximal ideal of OY,y .)
We claim that the canonical map

Hi(X, ID)y −→ Hi(Xs, ID,s)

is injective for s � 0. To check this, denote byKs the kernel of this map. Then, (Ks)s≥1
is a decreasing sequence of OY,y-submodules of Hi(X, ID)y . Since the latter OY,y-
module has finite length, this sequence is constant for s � 0. But,

⋂
s≥1Ks = {0},

whence the claim.
Thus, we may choose s such that Ks = 0. Consider the actions of the Frobenius

morphism F on Hi(Xs, ID,s) and Hi(X, ID)y ; the latter action is injective, since the
map ID −→ F∗ID splits (asD is compatibly split inX). On the other hand, the action
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of F on Hi(Xs, ID,s) is nilpotent. Indeed, F(Mν
yID) ⊂ Mpν

y ID for any positive
integer ν, so that F acts nilpotently on Hi(Xs,MyID,s). Further,

Hi(Xs, ID,s/MyID,s) � Hi(Xy, ID)

vanishes by assumption; thus, the map

Hi(Xs,MyID,s) −→ Hi(Xs, ID,s)

is surjective.
Since the action of F on the subspaceHi(X, ID)y ofHi(Xs, ID,s) is injective and

nilpotent, we conclude that Hi(X, ID)y = 0.

The next relative vanishing theorem will be a key ingredient in obtaining versions
of the Grauert–Riemenschneider and Kawamata–Viehweg theorems in the presence of
a splitting (Theorems 1.3.14 and 1.3.16).

1.2.12 Theorem. Let f : X −→ Y be a proper morphism of schemes. LetD, resp. E,
be a closed subscheme of X, resp. Y , and let i ≥ 1 be such that:

(i) D contains f−1(E) (set-theoretically),
(ii) Rif∗(ID) vanishes outside E,
(iii) X is split compatibly with D.

Then, Rif∗(ID) = 0 everywhere.

Proof. We begin with reduction arguments similar to those of the proof of Lemma
1.2.11. We may assume that Y is affine; then, it suffices to prove the vanishing of
Hi(X, ID). We argue by contradiction, and assume that Hi(X, ID) is nonzero. Then,
this H 0(Y,OY )-module is finitely generated, with support in E by assumption (ii).
Choose an irreducible component of this support, with generic point y. Then, the
localization Hi(X, ID)y is a nonzero module of finite length over OY,y , and hence
over its completion ÔY,y .

Choose a field of representatives K for the complete local ring ÔY,y ; then, there
exist t1, . . . , tn ∈ My such that the natural map

K[[t1, . . . , tn]] −→ ÔY,y
is surjective. Let R := K[[t1, . . . , tn]]; this is a regular local ring, and Hi(X, ID)y
becomes an R-module of finite length via the above homomorphism. The Frobenius
morphism F and its iterates F r act on R and on Hi(X, ID)y ; these actions are com-
patible, and the action of F on Hi(X, ID)y is split injective by the assumption (iii).

For any nonnegative integer r , let R ⊗pr H i(X, ID)y denote the base change of
Hi(X, ID)y under the endomorphism F r of R; then, we have

a ⊗ bm = abp
r ⊗m,
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for all a, b in R and m in Hi(X, ID)y . This yields maps (for any r ≥ 1)

fr : R ⊗pr H i(X, ID)y −→ R ⊗pr−1
Hi(X, ID)y, a ⊗m �→ a ⊗ F(m),

that define a projective system

· · · −→ R ⊗pr H i(X, ID)y −→ R ⊗pr−1
Hi(X, ID)y −→ · · · −→ Hi(X, ID)y,

and a projective limit
lim← r

R ⊗pr H i(X, ID)y.
On the other hand by (1.2.11.1),

Hi(X, ID)y = lim← s
H i(Xs, Is),

where Xs := X ×Y Spec(Oy/Ms
y), and Is = ID,s denotes the pullback of ID to Xs .

Since R is a finitely generated, free R-module under F r by Lemma 1.1.1,

lim← r
R ⊗pr H i(X, ID)y = lim← r

R ⊗pr (lim← s
H i(Xs, Is)

)
= lim← r

lim← s
R ⊗pr H i(Xs, Is) = lim← s

lim← r
R ⊗pr H i(Xs, Is).

Further, F acts nilpotently on Is (indeed, some positive power of ID is contained in
MyOX, since y ∈ E and f−1(E) ⊂ D). It follows that

lim← r
R ⊗pr H i(Xs, Is) = 0,

so that
lim← r

R ⊗pr H i(X, ID)y = 0.

On the other hand, all the R-modules in the above projective system have finite length,
and every map

R ⊗pr H i(X, ID)y −→ Hi(X, ID)y
is nonzero, since it sends every 1 ⊗ m to F r(m), and since F r is split injective on
Hi(X, ID)y . By Lemma 1.2.13, we obtain a contradiction to the assumption that
Hi(X, ID) 
= 0.

1.2.13 Lemma. Let
· · · −→ M2 −→ M1 −→ M0

be a projective system of modules of finite length over a ring R, with transition maps

f
j
i : Mj −→ Mi, for j ≥ i ≥ 0.

If f i0 
= 0 for all i, then lim← r
Mr is nonzero.
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Proof. Let

Mstab
i :=
⋂
j≥i
f
j
i (Mj ).

SinceMi has finite length, we haveMstab
i = f

j
i (Mj ) for all j � 0. Thus,

f i+1
i (Mstab

i+1) = f i+1
i f

j
i+1(Mj ) = f

j
i (Mj )

for all j � 0, so that f i+1
i (Mstab

i+1) = Mstab
i . Therefore, {Mstab

i } is a projective sub-
system with nonzero surjective maps: its projective limit is a nonzero submodule of
lim← r

Mr .

1.2.E Exercises

(1) LetX be a reduced scheme with normalization f : Y −→ X. Show thatX is weakly
normal if and only if OX, regarded as a subsheaf off∗OY , consists of those local sections
that are constant on all set-theoretic fibers of f . In particular, weakly normal curves
are those reduced curves having only ordinary multiple points as singularities.

(2) Show that every affine, weakly normal curve is split.

(3) Let f : Y −→ X be a proper surjective morphism of varieties, such that (a) Y is
normal, (b) the fibers of f are connected, and (c) X is split. Show that X is normal.

Hint: Factoring f through the normalization η : X̃ −→ X, show that η is bijective.
Then, apply Proposition 1.2.5.

(4) Let X be a reduced scheme with normalization f : Y → X. Let E be the closed
subset of X where f is not an isomorphism, endowed with its reduced subscheme
structure, and put Z := f−1(E). Show that any splitting ϕ of X is compatible with E
and, moreover, it lifts to a splitting of Y , compatible with Z.

In particular, the normalization of a split scheme is split.
Hint: Reduce to the case where X = Spec(A) and Y = Spec(B) are affine. Let I

be the conductor as in the proof of Proposition 1.2.5. By that proof, ϕ(I) = I ; further,
I is the ideal of E in A, and of Z in B. Show that Iϕ(b) ⊂ I for any b ∈ B. Deduce
that Iϕ(b)N ⊂ I for any N ≥ 0, and that ϕ(b) is integral over A.

1.3 Criteria for splitting

In this section, we obtain several useful criteria for a given scheme X to be split.
Recall from Remark 1.1.4 (i) that a splitting ofX is anOX-linear mapϕ : F∗OX −→

OX such that ϕ(1) = 1. Therefore, to know if X is split and to determine all the
splittings, we need to understand the evaluation map

ε : Hom(F∗OX,OX) −→ 
(X,OX), ϕ �→ ϕ(1).
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In fact this map is defined on sheaves:

ε : HomOX
(F∗OX,OX) −→ OX, ϕ �→ ϕ(1).

Further, HomOX
(F∗OX,OX) is a coherent sheaf of F∗OX-modules on X. Since F is

a finite morphism by Lemma 1.1.1, there exists a unique coherent sheaf F !OX on X
such that

HomOX
(F∗OX,OX) = F∗(F !OX),

cf. [Har–77, Chap. II, Exercise 5.17 and Chap. III, Exercise 6.10].
If X is regular, then F is flat by Lemma 1.1.1. Then, the duality for the finite flat

morphism F [Har–66] yields an isomorphism

F !OX � HomOX
(F ∗ωX,ωX)

(where ωX denotes the dualizing sheaf of X), together with a trace map (defined in
1.3.5)

τ : F∗ωX −→ ωX,

such that the evaluation map

ε : F∗HomOX
(F ∗ωX,ωX) � HomOX

(ωX, F∗ωX) −→ OX
may be identified with the map

HomOX
(ωX, F∗ωX) −→ EndOX

(ωX) � OX, u �→ τ ◦ u.
Together with Lemma 1.2.6, from the duality as above, it follows that

F !OX � ω
1−p
X .

In particular, this sheaf is invertible.
We will recover these results in a more direct and explicit way later in this section.

We begin with the simplest

1.3.1 Example. Let X = An be the affine n-space over k, with coordinates t1, . . . , tn.
Recall that the k[t1, . . . , tn]-module

Hom(F∗OAn ,OAn) = 
(An, F∗(F !OAn))

is the space of all additive maps

ϕ : k[t1, . . . , tn] −→ k[t1, . . . , tn]
such that ϕ(f pg) = f ϕ(g) for all f, g ∈ k[t1, . . . , tn]; where k[t1, . . . , tn] acts by

(f ϕ)(g) := f ϕ(g).
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This space has another structure of k[t1, . . . , tn]-module, via

(f ∗ ϕ)(g) := ϕ(fg),

and the latter k[t1, . . . , tn]-module is 
(An, F !OAn) by [Har–77, Chap. II, Exercise
5.17]. Notice the relationf p∗ϕ = f ϕ between the two k[t1, . . . , tn]-module structures.

Let Tr : k[t1, . . . , tn] −→ k[t1, . . . , tn] be the unique additive map such that

Tr(ct i) =
{
c1/pt j if i = p − 1 + pj for some j ∈ Nn,

0 otherwise,

for any c ∈ k and i = (i1, . . . , in) ∈ Nn (where we recall the notation t i := t
i1
1 · · · t inn ).

Clearly, Tr ∈ 
(An, F !OAn). We claim that Tr is a free generator of this module (as a
module over k[t1, . . . , tn] under ∗).

Let ϕ ∈ 
(An, F !OAn). Set (identifying 
(An, F !OAn) with Hom(F∗OAn ,OAn)

as abelian groups as above)

f :=
∑

i≤p−1

ϕ(t i)p tp−1−i.

Then, one easily checks that ϕ = f ∗ Tr. Thus, Tr generates the k[t1, . . . , tn]-module

(An, F !OAn). On the other hand, if f ∗ Tr = 0, then 0 = f p ∗ Tr = f Tr, whence
f = 0. This completes the proof of the claim.

Now, the evaluation map ε : 
(An, F !OAn) −→ k[t1, . . . , tn] is given by

ε(f ∗ Tr) = (f ∗ Tr)(1) = Tr(f ).

Thus, the map f ∗ Tr splits An if and only if

(a) the monomial tp−1 occurs in f with coefficient 1, and
(b) f contains no monomial tp−1+pj where j ∈ Nn, j 
= 0.

Observe that the splitting of Example 1.1.5 equals tp−1 ∗ Tr.

We now aim at extending the results of Example 1.3.1 to all nonsingular varieties.
To this end, we first develop some differential calculus for arbitrary schemes in char-
acteristic p; we begin with the case of an affine scheme X = Spec(A). Let �1

A be the
A-module of Kähler differentials of A over k (cf. [Har–77, Chap. II, §8]) , equipped
with the k-derivation

d : A −→ �1
A, a �→ da.

Notice that d(ap) = pap−1da = 0 for every a ∈ A, so that d is Ap-linear.
Next, let

�•
A := ∧•�1

A =
∞⊕
i=0

∧i�1
A
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be the exterior algebra of�1
A over A (where ∧0�1

A := A). Then,�•
A is the associative

A-algebra generated by da (a ∈ A) with product ∧ and relations: da ∧ da = 0,
d(ab) − a(db) − (da)b = 0, for a, b ∈ A. For any α ∈ �iA = ∧i�1

A, and β ∈ �jA,
we have

β ∧ α = (−1)ij α ∧ β,
that is, �•

A is a graded-commutative A-algebra.
The mapd : A −→ �1

A extends uniquely to a map, still denoted byd : �•
A −→ �•

A,

such that
d(a1da2 ∧ · · · ∧ dai) = da1 ∧ da2 ∧ · · · ∧ dai

for a1, . . . , ai ∈ A. One easily checks that

d(α ∧ β) = (dα) ∧ β + (−1)iα ∧ dβ,
for α ∈ �iA and β ∈ �•

A. So, d is a k-derivation of the graded-commutative algebra
�•
A. Further, d is Ap-linear and satisfies d2 = 0. The complex (�•

A, d) is called the
De Rham complex of A (over k). Here are some basic properties of its cohomology
spaces.

1.3.2 Lemma. The space

Z•
A := {α ∈ �•

A | dα = 0}
is a graded Ap-subalgebra of �•

A, and the space

B•
A := d�•−1

A = {dα | α ∈ �•−1
A }

is a graded ideal of Z•
A.

Thus, the quotient
H •
A := Z•

A/B
•
A

is a graded-commutative Ap-algebra.
If, in addition,A is a localization of a finitely generated algebra, then theA-module

�•
A is finitely generated, and theAp-modules Z•

A, B•
A andH •

A are finitely generated as
well.

Proof. Clearly, Z•
A and B•

A are graded subspaces of �•
A. Since d is an Ap-linear

derivation, Z•
A is an Ap-subalgebra, and contains B•

A as an ideal.
For the second assertion, letA be a localization of an algebra generated by t1, . . . , tn.

Then, the A-module �1
A is generated by dt1, . . . , dtn. Thus, the A-module ∧i�1

A is
generated by dtj1 ∧· · ·∧dtji , where 1 ≤ j1 < · · · < ji ≤ n. It follows that ∧i�1

A = 0
for all i > n, and that the A-module �•

A is finitely generated.
Since the Ap-module A also is finitely generated by Lemma 1.1.1, the same holds

for the Ap-module �•
A and its submodules Z•

A and B•
A.

Next, we construct a homomorphism γ : �•
A −→ H •

A. Consider the map

γ : A −→ �1
A, a �→ ap−1da.
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1.3.3 Lemma. With the notation as above, we have for all a, b in A:

(i) γ (ab) = apγ (b)+ bpγ (a).
(ii) dγ (a) = 0.

(iii) γ (a + b)− γ (a)− γ (b) ∈ B1
A.

Proof. (i) and (ii) are straightforward. For (iii), notice that

d(a + b)p = p(a + b)p−1d(a + b) = p(ap−1da + bp−1db)+
p−1∑
i=1

(
p

i

)
d(aibp−i )

in the space of Kähler differentials of the polynomial ring Z[a, b] over Z, i.e., in
Z[a, b]da ⊕ Z[a, b]db. Since every binomial coefficient

(
p
i

)
, 1 ≤ i ≤ p − 1, is

divisible by p, it follows that

(a + b)p−1d(a + b)− ap−1da − bp−1db = dQp(a, b)

for some polynomialQp with integral coefficients.

By Lemma 1.3.3, the composition

A
γ−−−−→ Z1

A −−−−→ Z1
A/B

1
A = H 1

A

is a k-derivation, whereA acts on itself by multiplication, and onH 1
A viaF : A −→ Ap.

We still denote this derivation by γ . Now, the universal property of Kähler differentials
(cf. [Har–77, Chap. II, §8]) yields an A-linear map

γ : �1
A −→ H 1

A, adb �−→ apbp−1db (mod dA).

Since every γ (da) has square zero, we obtain an A-algebra homomorphism

γ : �•
A −→ H •

A,

a1da2 ∧ · · · ∧ dai �−→ a
p
1 a
p−1
2 da2 ∧ · · · ∧ ap−1

i dai (mod B•
A),

where A acts on H •
A via F : A → Ap.

1.3.4 Theorem. If A is regular, then γ : �•
A −→ H •

A is an isomorphism.

Proof. Using Lemma 1.3.2, it suffices to show that γ is an isomorphism after local-
ization and completion at every maximal ideal. Hence, we may assume that A =
k[[t1, . . . , tn]]. We now argue by induction on n, the case where n = 0 being evident.

We check first that γ is surjective. Let α ∈ �iA such that dα = 0. Write

α =
∞∑
j=0

t
j
n (αj + βj ∧ dtn),
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where αj ∈ �ik[[t1,...,tn−1]] and βj ∈ �i−1
k[[t1,...,tn−1]]. Since dα = 0, we obtain

(1) dαj = 0 and (−1)i(j + 1)αj+1 + dβj = 0

for all j ≥ 0. It follows that

t
j+1
n αj+1 + tjnβj ∧ dtn = (−1)i−1

j + 1
d(t

j+1
n βj ),

whenever j + 1 is not divisible by p. Hence,

α ≡
∞∑
j=0

t
pj
n αpj + tpj−1

n βpj−1 ∧ dtn (mod d�i−1
A ),

where β−1 := 0. Since dαpj = 0 for all j , the image of tpjn αpj inHiA lies in the image

of γ by the induction hypothesis. The same holds for the image of tpj−1
n βpj−1 ∧ dtn in

HiA, since βpj−1 ∈ �i−1
k[[t1,...,tn−1]] and dβpj−1 = 0 by (1). This proves the surjectivity

of γ .
For the injectivity, let α ∈ �iA such that γ (α) = 0. Write as above α =∑∞
j=0 t

j
n (αj + βj ∧ dtn). Then,

γ (α) =
∞∑
j=0

t
pj
n (γ (αj )+ tp−1

n γ (βj ) ∧ dtn) (mod B•
A)

is represented in ZiA by
∞∑
j=0

t
pj
n (α

′
j + tp−1

n β ′
j ∧ dtn),

whereα′
j := γ (αj ) ∈ Zik[[t1,...,tn−1]] andβ ′

j := γ (βj ) ∈ Zi−1
k[[t1,...,tn−1]]. Since γ (α) = 0,

we have ∞∑
j=0

t
pj
n (α

′
j + tp−1

n β ′
j ∧ dtn) ∈ BiA := d�i−1

A .

It follows as above that α′
j ∈ Bik[[t1,...,tn−1]] and β ′

j ∈ Bi−1
k[[t1,...,tn−1]] for all j . By the

induction hypothesis, this implies αj = βj = 0 for all j .

The preceding constructions extend to any schemeX: they yield the sheaf of graded-
commutative algebras �•

X of Kähler differential forms of X over k, endowed with a
differential d of degree +1 such that the induced differential on F∗�•

X is OX-linear. By
Lemma 1.3.2, the cohomology sheaves HiF∗�•

X are coherent sheaves of OX-modules;
and Lemma 1.3.3 yields a unique homomorphism

γ : �•
X −→

∞⊕
i=0

HiF∗�•
X
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of sheaves of graded-commutative OX-algebras, such that: γ (f ) = f p and γ (df ) =
f p−1df (mod dOX), for any f ∈ OX.

If X is a nonsingular variety of dimension n, then the sheaf �1
X is locally free of

rank n, so that�iX = 0 for all i > n; and�nX = ωX, the dualizing sheaf of X. Further,
γ is an isomorphism by Theorem 1.3.4.

1.3.5 Definition. Let X be a nonsingular variety of dimension n. Then, the inverse of
the isomorphism γ is called the Cartier operator

C =
n∑
i=0

Ci :
n⊕
i=0

HiF∗�•
X −→ �•

X.

The composition of the quotient map F∗ωX = F∗�nX −→ F∗(�nX/d�
n−1
X ) with Cn :

F∗(�nX/d�
n−1
X ) −→ �nX is, by definition, the trace map

τ : F∗ωX −→ ωX.

Since γ is OX-linear, so is τ .

We now express the trace map in local coordinates.

1.3.6 Lemma. Let X be a nonsingular variety of dimension n and let t1, . . . , tn be a
system of local coordinates at x ∈ X. Then, the trace map at x is given by

τ(f dt1 ∧ · · · ∧ dtn) = Tr(f )dt1 ∧ · · · ∧ dtn,
where f ∈ OX,x ⊂ k[[t1, . . . , tn]] and

Tr

(∑
i

fit
i

)
:=
∑

f
1/p
i t j,

where the summation on the right side is taken over those i such that i = p − 1 + pj
for some j ∈ Nn. In particular, Tr(f ) ∈ OX,x .

Proof. Since dt1∧· · ·∧dtn is a generator of the stalkωX,x ; this identifies the completion
of ωX,x with k[[t1, . . . , tn]]. Then, the completion of ωX,x/d�

n−1
X,x gets identified with

k[[t1, . . . , tn]]/J , where J denotes the space spanned by all the partial derivatives of
all formal power series, since

d(f dt2 ∧ · · · ∧ dtn) = (∂t1f )dt1 ∧ · · · ∧ dtn, for f ∈ k[[t1, . . . , tn]].
Hence, J consists of all series

∑
i ait

i, where i = (i1, . . . , in) is such that ij + 1 is
not divisible by p for some j ; and the set of all series

∑
j ajt

p−1+pj forms a system of
representatives of k[[t1, . . . , tn]]/J . Now, the map

γ : k[[t1, . . . , tn]] −→ k[[t1, . . . , tn]]/J
sends every f to the class of tp−1f p (mod J ). This implies our formula.
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Notice that the formula for Tr gives back the generator of 
(An, F !OAn) found in
Example 1.1.5. More generally, we have the following.

1.3.7 Proposition. Let X be a nonsingular variety. Then, the map

ι : HomOX
(ωX, F∗ωX) −→ HomOX

(F∗OX,OX)
given by the equality in ωX:

ι(ψ)(f )ω = τ(fψ(ω)),

for all local sections ψ ∈ HomOX
(ωX, F∗ωX), f ∈ OX, and local generator ω ∈ ωX,

is well defined and is an isomorphism of F∗OX-modules. Further, the diagram

HomOX
(ωX, F∗ωX)

ι−−−−→ HomOX
(F∗OX,OX)

τ̂

⏐⏐� ε

⏐⏐�
EndOX

(ωX)
�−−−−→ OX

commutes, where ε is defined in the beginning of this section and τ̂ (ψ) := τ ◦ ψ .

Proof. Let u be a local unit of OX and let ω1 = uω. If ι(ψ)(f )ω = τ(fψ(ω)), then

ι(ψ)(f )ω1 = uτ(fψ(ω)) = τ(upfψ(ω)) = τ(fψ(uω)) = τ(fψ(ω1)).

Hence, ι is well defined. To check that it is F∗OX-linear, let g ∈ OX; then,

ι(gψ)(f )ω = τ(f (gψ)(ω)) = τ(fgψ(ω)) = ι(ψ)(fg)ω.

Further, since ε(ι(ψ)) = ι(ψ)(1) and ι(ψ)(1)ω = τ(ψ(ω)), the diagram commutes.
We now check that ι is an isomorphism; for this, we argue in a system of local

coordinates t1, . . . , tn at x. A local generator of theF∗OX-module HomOX
(ωX, F∗ωX)

is the map ψ0 given by

ψ0(f dt1 ∧ · · · ∧ dtn) = f pdt1 ∧ · · · ∧ dtn.
By the definition of ι, we have ι(ψ0) = Tr; and the latter is a local generator of the
F∗OX-module HomOX

(F∗OX,OX) by Example 1.3.1.

Notice that

HomOX
(ωX, F∗ωX) � F∗HomOX

(F ∗ωX,ωX) � F∗(ω1−p
X ),

by the projection formula and Lemma 1.2.6. Together with the isomorphism ι of
Proposition 1.3.7, this yields an isomorphism

ι̂ : F∗(ω1−p
X ) −→ HomOX

(F∗OX,OX).
We say that an element ϕ ∈ H 0(X, ω

1−p
X ) � H 0(X, F∗(ω1−p

X )) splits X, if ι̂(ϕ) splits
X.

We can now state an important characterization of split varieties, which follows
immediately from Proposition 1.3.7 and Lemma 1.3.6.
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1.3.8 Theorem. Let X be a nonsingular variety. Then, via the above isomorphism ι̂,
the evaluation map ε : HomOX

(F∗OX,OX) −→ OX is identified with the map

τ̂ : F∗(ω1−p
X ) → OX

given at any closed point x by

τ̂ (f (dt1 ∧ · · · ∧ dtn)1−p) = Tr(f ), for all f ∈ OX,x.

Here, t1, . . . , tn is a system of local coordinates at x, and Tr is as defined in Lemma
1.3.6. Thus, an element ϕ ∈ H 0(X, ω

1−p
X ) splits X if and only if τ̂ (ϕ) = 1.

IfX is complete (and nonsingular), then ϕ splitsX if and only if the monomial tp−1

occurs with coefficient 1 in the local expansion of ϕ at some (and hence every) closed
point x ∈ X.

1.3.9 Remarks. (i) In particular, a necessary condition for a nonsingular variety X to
be split is the existence of nonzero sections of ω1−p

X .
This yields another proof for the fact that nonsingular projective irreducible curves

of genus g ≥ 2, and nonsingular hypersurfaces of degree d ≥ n+ 2 in Pn are not split
(Remark 1.2.10).
(ii) Consider a complete, nonsingular variety X of dimension n. Then, the evalu-
ation map ε : Hom(F∗OX,OX) −→ H 0(X,OX) yields, by Serre duality, a map
Hn(X,ωX) −→ Hn(X,ωX ⊗ F∗OX). Now, ωX ⊗ F∗OX � F∗(F ∗ωX) � F∗(ωpX),
whence ε induces a map Hn(X,ωX) −→ Hn(X,ω

p
X), which turns out to be the pull-

back F ∗.
Thus, X is split if and only if the map

F ∗ : Hn(X,ωX) −→ Hn(X,ω
p
X)

is nonzero.
For example, an elliptic curve X is split if and only if X is not supersingular (as

defined in [Har–77, Chap. IV, §4]).

Next, we obtain a sufficient condition for the existence of a splitting, which is simpler
than Theorem 1.3.8 and applies to many examples. To formulate this condition, we
need the following.

1.3.10 Definition. Let X be a nonsingular variety of dimension n and let Y1, . . . , Ym
be prime divisors in X, i.e., closed subvarieties of codimension 1.

We say that the scheme-theoretic intersection Y1 ∩· · ·∩Ym is transversal at a closed
point x ∈ X if (a) x is a nonsingular point of Y1, . . . , Ym, and (b) the Zariski tangent
space Tx(Y1 ∩ · · · ∩ Ym) equals Tx(Y1) ∩ · · · ∩ Tx(Ym), and has dimension n−m.

Equivalently, there exists a system of local coordinates t1, . . . , tn at x such that each
Yi has local equation ti = 0.
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1.3.11 Proposition. Let X be a nonsingular variety of dimension n.
If X is complete and if there exists σ ∈ H 0(X, ω−1

X ) with divisor of zeros

(σ )0 = Y1 + · · · + Yn + Z,
where Y1, . . . , Yn are prime divisors intersecting transversally at a point x, and Z
is an effective divisor (as defined in [Har–77, Chap. II, §6]) not containing x, then
σp−1 ∈ H 0(X, ω

1−p
X ) splits X compatibly with Y1, . . . , Yn.

Conversely, if σ ∈ H 0(X, ω−1
X ) is such that σp−1 splits X, then the subscheme of

zeros of σ is compatibly split. In particular, this subscheme is reduced.

Proof. Choose a system of local coordinates t1, . . . , tn at x ∈ X such that each Yi has
local equation ti = 0. Then, by our assumptions, the local expansion of σ at x is given
by

t1 · · · tng(t1, . . . , tn)(dt1 ∧ · · · ∧ dtn)−1,

where g(t1, . . . , tn) is a formal power series with nonzero constant term. Thus, the
coefficient of tp−1 in the series tp−1g(t1, . . . , tn)

p−1 is nonzero as well. Hence, σp−1

splitsX by Theorem 1.3.8. Further, the corresponding splitting ϕ (via the isomorphism
ι) satisfies

ϕ(f (t1, . . . , tn)) = Tr(tp−1g(t1, . . . , tn)
p−1f (t1, . . . , tn));

thus, ϕ(tif (t1, . . . , tn)) is divisible by ti for any i. In other words, ϕ is compatible with
the zero loci of the coordinates at x, i.e., with Y1, . . . , Yn in a neighborhood of x. By
1.1.7, ϕ is compatible with Y1, . . . , Yn everywhere.

Conversely, let σ ∈ H 0(X, ω−1
X ) be such that σp−1 splits X, and choose a nonsin-

gular closed point x of the zero scheme of σ . Let Y be the unique irreducible component
of this zero scheme containing x, and let f be a local equation of Y at x. Since Y is
nonsingular at x, we may choose a system of local coordinates t1, . . . , tn at x such that
f = t1. Let

tm1 g(t1, . . . , tn)(dt1 ∧ · · · ∧ dtn)−1

be the local expansion of σ at x, where g(t1, . . . , tn) is not divisible by t1; then, m ≥ 1
is the order of vanishing of σ along Y . Since σp−1 splits X, the coefficient of tp−1

in tm(p−1)
1 g(t1, . . . , tn)

p−1 is nonzero. Hence, m = 1, and the splitting of X by σp−1

is compatible with Y at x. It follows that the zero scheme of σ is reduced (since it is
a generically reduced hypersurface in a nonsingular variety). Applying Lemma 1.1.7
again, we conclude that our splitting is compatible with the subscheme of zeros of
σ .

1.3.12 Remark. Most of the results of this section adapt to any normal variety X, as
follows. Let i : Xreg −→ X be the inclusion of the regular locus. Let

ωX := i∗ωXreg .
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This is the canonical sheaf of X; we have

ωX = OX(KX)
for some Weil divisorKX onX, the canonical divisor (defined up to linear equivalence).
If, in addition, X is Cohen–Macaulay, then ωX is its dualizing sheaf.

For any integer ν, define the ν-th power of ωX by

ωνX = i∗(ωνXreg);
then ωνX = OX(νKX). Notice that H 0(X, ωνX) = H 0(Xreg, ωνXreg), and that the ν-th
tensor power of ωX has a natural map to ωνX; but, this map need not be an isomorphism.

By Lemma 1.1.7(iii) and Theorem 1.3.8, a normal variety X is split if and only if
there exists ϕ ∈ H 0(X, ω

1−p
X ) such that τ̂ (ϕ) = 1, where τ̂ : F∗(ω1−p

X ) −→ OX is
given by the formula of Theorem 1.3.8 at any point of Xreg.

If, in addition, X is complete, then every regular function on Xreg is constant.
Hence, X is split if and only if there exists ϕ ∈ H 0(X, ω

1−p
X ) such that the monomial

tp−1 occurs with coefficient 1 in the local expansion of ϕ at some nonsingular closed
point.

We say that a normal variety Y is Gorenstein if its canonical sheaf ωY is invertible;
equivalently, the canonical divisor is Cartier. (In the literature, sometimes Gorenstein
varieties are assumed to be Cohen–Macaulay, but we do not require this assumption.)

Given a Gorenstein variety Y , a normal varietyX, and a proper, birational morphism
f : X −→ Y , the sheaves ωX and f ∗ωY coincide outside the exceptional locus of f .
Recall that, by the exceptional locus of f , we mean the closed subsetX \f−1(U) ofX,
whereU is the largest open subset of Y such that the restriction f : f−1(U) → U is an
isomorphism. Thus, we may write ωX = (f ∗ωY )(D), where D is a Weil divisor on X
supported in this exceptional locus. The divisor D is called the discrepancy divisor of
f . Further, f is called crepant if D is trivial, i.e., f ∗ωY = ωX; then, X is Gorenstein
as well.

With this terminology, we can state the following result that provides a partial
converse to Lemma 1.1.8.

1.3.13 Lemma. Let f : X −→ Y be a crepant morphism, where X, Y and f are as
above. If Y is split, then so is X.

Proof. Note that f ∗(ωνY ) = ωνX for any integer ν. Further, as f is proper and birational,
and Y is normal, we have f∗OX = OY . Thus,

f∗(ωνX) = f∗f ∗(ωνY ) = ωνY ⊗ f∗OX = ωνY ,

since ωY is invertible. This implies an isomorphism

H 0(X, ω
1−p
X ) � H 0(Y, ω

1−p
Y ),

compatible with the maps τ̂ .
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Next, we obtain versions of the Grauert–Riemenschneider and Kawamata–Viehweg
vanishing theorems in the presence of Frobenius splitting.

1.3.14 Theorem. LetX be a nonsingular variety and f : X −→ Y a proper birational
morphism. Assume that there exists σ ∈ H 0(X, ω−1

X ) such that

(i) σp−1 splits X, and
(ii) σ vanishes identically on the exceptional locus of f .
(Then, the zero scheme of σ is reduced by Proposition 1.3.11). Let D be an effective
subdivisor of (σ )0, containing the exceptional locus. Then, Rif∗(OX(−D)) = 0 for
all i ≥ 1. In particular, Rif∗(ωX) = 0 for all i ≥ 1.

Proof. We use the relative vanishing Theorem 1.2.12. Let E be the image in Y of
the exceptional locus. Then, by assumption, D contains f−1(E) (set-theoretically).
Further, Rif∗(OX(−D)) = 0 outside E, since f is an isomorphism above Y \ E.
Finally,X is split compatibly withD by assumption (i) and Proposition 1.3.11. Hence,
the assertion follows from Theorem 1.2.12 and [Har–77, Chap. II, Proposition 6.18].
The “In particular” statement follows since OX((σ )0) � ω−1

X .

1.3.15 Definition. Let L be a semi-ample invertible sheaf on a complete variety X
of dimension n. Then, the ring R(X,L) = ⊕∞

ν=0 H
0(X,Lν) is finitely generated

(Lemma 1.1.13), and we have a morphism

ϕ : X −→ Y := ProjR(X,L)
such that ϕ∗OX = OY . In particular, ϕ is surjective, with connected fibers (which
follows from [Har–77, Chap. III, Corollary 11.3] for projective X and from [Gro–61,
Corollaire (4.3.2)] forX complete). The dimension ofY is called the Kodaira dimension
of L and denoted by κ(L); then, the general fibers of ϕ have dimension n− κ(L). The
exceptional locus of L is the set of those x ∈ X such that dim ϕ−1ϕ(x) > n− κ(L).

Note that κ(L) = n if L is ample; in this case, its exceptional locus is empty. On
the other hand, since L is semi-ample, κ(L) = 0 if and only if some positive power of
L is trivial.

1.3.16 Theorem. Let L be a semi-ample invertible sheaf on a complete nonsingular
variety X of dimension n. Assume that there exists σ ∈ H 0(X, ω−1

X ) such that

(i) σp−1 splits X, and
(ii) σ vanishes identically on the exceptional locus of L.
Then, Hi(X,Lν ⊗ ωX) = 0 for all i > n − κ(L) and ν ≥ 1. Equivalently,
Hi(X,L−ν) = 0 for all i < κ(L) and ν ≥ 1.

Proof. We may assume that κ(L) > 0, i.e., no positive power of L is trivial. With the
notation of Lemma 1.1.13, consider the square

L−1 \ L−1
0

π0−−−−→ X̂ \ {0}
f 0

⏐⏐� g

⏐⏐�
X

ϕ−−−−→ Y,
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where f 0 is the restriction of f : L−1 → X to L−1 \ L−1
0 and similarly π0 is the

restriction of π : L−1 → X̂ to L−1 \ L−1
0 . This square is commutative; the morphism

π0 is proper and surjective (by Lemma 1.1.13), and restricts to a finite map on any
fiber of f 0 (since a positive power of L is generated by its global sections). Thus, the
product map π0 × f 0 is quasi-finite. It follows that f 0 restricts to a quasi-finite map
on every fiber of π0, onto the corresponding fiber of ϕ. (Actually, this restriction is
finite, since both fibers are complete.)

LetZ ⊂ X be the zero scheme of σ , then IZ � ωX. Consider the closed subscheme

D := L−1
0 ∪ f−1(Z)

of L−1. Then, we have

ID = I
L−1

0
∩ If−1(Z) � I

L−1
0

⊗ f ∗ωX.

It follows that

f∗ID �
∞⊕
ν=1

Lν ⊗ ωX.

Further, let E be the set of those ξ ∈ X̂ such that dim π−1(ξ) > n − κ(L). This is a
closed subscheme of X̂.

We check that the morphism π : L−1 −→ X̂, the subschemes D and E, and the
index i > n− κ(L) satisfy the assumptions of Theorem 1.2.12.

Clearly, π−1(E) contains L−1
0 , and π−1(E) \L−1

0 is the preimage under f 0 of the
exceptional locus of L (as sets). Thus, π−1(E) is contained in D (as sets).

Since i > n− κ(L) and all the fibers of π outside E have dimension ≤ n− κ(L),
we obtain Riπ∗(ID) = 0 outside E.

Finally, sinceX is split compatibly with Z, Lemma 1.1.11 yields a splitting of L−1

compatible with L−1
0 and f−1(Z), hence with their union D.

Thus, Theorem 1.2.12 applies and yields Riπ∗(ID) = 0 everywhere. Since X̂ is
affine, it follows that Hi(L−1, ID) = 0; thus, Hi(X, f∗ID) = 0 as f is an affine
morphism. This yields the vanishing of Hi(X,Lν ⊗ ωX) for all ν ≥ 1. By Serre
duality, it follows that Hj(X,L−ν) = 0 for all j < κ(L).

1.3.E Exercises

(1) Consider the projective space Pn. Recall that ωPn = O(−n − 1), and that
H 0(Pn, ω1−p

Pn
) is the space of all homogeneous polynomials of degree (n+ 1)(p − 1)

in the variables x0, . . . , xn. Show that ϕ ∈ H 0(Pn, ω1−p
Pn
) splits Pn if and only if the

monomial (x0 · · · xn)p−1 occurs with coefficient 1 in ϕ.

(2) We say that a nonsingular variety X is split by a (p − 1)-th power if there exists
σ ∈ H 0(X, ω−1

X ) such that σp−1 splits X. (For example, by the above exercise, Pn is
split by the p − 1-th power of x0 · · · xn.)
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Assuming that nonsingularX is complete and split, and that the multiplication map

H 0(X, ω−1
X )

⊗p−1 −→ H 0(X, ω
1−p
X ), σ1 ⊗ · · · ⊗ σp−1 �→ σ1 · · · σp−1,

is surjective; show that X is split by a (p − 1)-th power.
Hint: Use the identity in Z[t1, . . . , tn]:

n! t1 · · · tn =
∑

1≤i1<···<ij≤n
(−1)n−j (ti1 + · · · + tij )n .

(3*) Consider a nonsingular varietyX, and a closed subscheme Y of pure codimension
1. Assume that X is split by ϕ ∈ H 0(X, ω

1−p
X ). Show that ϕ is compatible with Y if

and only if ϕ ∈ H 0(X, ω
1−p
X ((1 − p)Y )).

Next, take X = Pn; then, Y is a hypersurface, with equation (say) f . Show that a
splitting ϕ of Pn is compatible with Y , if and only if ϕ is divisible by f p−1.

(4*) Let X be a nonsingular variety and Y a nonsingular prime divisor in X; denote
byσ the canonical section of the invertible sheaf OX(Y ) (cf. [Ful–98, §B.4.5]). Letψ ∈
H 0(Y, ω

1−p
Y ); assume that ψ admits a lift ψ̃ under the natural map

H 0(X, ω
1−p
X ((1 − p)Y )) −→ H 0(Y, ω

1−p
Y ) (induced by the isomorphism

ωX(Y )⊗OX
OY � ωY ).

If ψ splits Y , show that the product σp−1ψ̃ ∈ H 0(X, ω
1−p
X ) splits X compatibly

with Y and the induced splitting of Y coincides with that by ψ .
In particular, if Y is split by a (p − 1)-th power and the restriction map

H 0(X, ω−1
X (−Y )) −→ H 0(Y, ω−1

Y ) is surjective, thenX is split by a (p−1)-th power,
compatibly with Y .

(5) Let Y be a nonsingular irreducible hypersurface of degree d in X = Pn, where
n ≥ 2. Show that the map H 0(X, ω

1−p
X ((1 − p)Y )) −→ H 0(Y, ω

1−p
Y ) is surjective.

So, by Exercise 4, if Y is split then it is compatibly split in Pn; thus, d ≤ n+ 1 in this
case.

In the case where d = n + 1, show that Y given by an equation f is split if and
only if the monomial (x0 · · · xn)p−1 occurs with nonzero coefficient in f p−1.

(6∗) LetX be a toric variety, i.e., a normal variety containing a torus T � (Gm)n as an
open subset, such that the action of T on itself by multiplication extends to an action
on X. Let ∂X = X \ T be the boundary of X. Show that X is split compatibly with
∂X.

Hint: Let t1, . . . , tn be the coordinates on T coming from Gm; then,

θ = dt1 ∧ · · · ∧ dtn
t1 · · · tn

is a rational section of ωX, having a pole of order 1 along each irreducible component
of ∂X [Ful–93, §4.3]. Thus, θ−1 ∈ H 0(X, ω−1

X (−∂X)); and θ1−p
|T splits T by Example

1.3.1.
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Using the classification of toric varieties in terms of fans [Ful–93, §§1.4, 5.1], show
that any closed T -stable subvariety ofX is the (set-theoretic) intersection of a family of
irreducible components of ∂X. Deduce thus that θ1−p compatibly splits all the closed
T -stable subvarieties.

Also, show that the above splitting is the unique T -invariant splitting of X.

(7) Let f : X −→ Y be a morphism of nonsingular varieties, such that f # : OY −→
f∗OX is an isomorphism. Then, we have a canonical map of OY -modules

f∗HomOX
(F∗OX,OX) −→ HomOY

(F∗OY ,OY ), ϕ �−→ f∗ϕ,

(see the proof of Lemma 1.1.8). In view of the isomorphism of OX-modules

HomOX
(F∗OX,OX) � F∗(ω1−p

X )

(Theorem 1.3.8) and the analogous isomorphism forY , this yields a map of OY -modules

f∗(F∗(ω1−p
X )) −→ F∗(ω1−p

Y ),

compatible with the evaluation maps.
Assume now that Y is split, and the induced map

H 0(X, ω
1−p
X ) −→ H 0(Y, ω

1−p
Y )

is surjective. Then, show that X is split.

(8) Let X1, X2 be split schemes, with splittings ϕ1, ϕ2. Show that the tensor product

ϕ : F∗OX1×X2 −→ OX1×X2 , f1 ⊗ f2 �−→ ϕ1(f1)⊗ ϕ2(f2)

is a splitting of X1 × X2. If, in addition, ϕ1, resp. ϕ2, is compatible with a closed
subscheme Y1 ⊂ X1, resp. Y2 ⊂ X2, then show that ϕ is compatible with bothX1 ×Y2
and Y1 ×X2.

If bothX1 andX2 are nonsingular, then each ϕi ∈ Hom(F∗OXi ,OXi ) corresponds

to σi ∈ H 0(Xi, ω
1−p
Xi
). Show that ϕ corresponds to σ1 ⊗ σ2 ∈ H 0(X1 ×X2, ω

1−p
X1×X2

).

(9) Show that, in general, an affine Gorenstein variety is not split.
Hint: Take a homogeneous polynomial of degree d in n variables such that the

corresponding affine hypersurface X ⊂ An is normal. Then, X is Gorenstein but not
split if d > n.

(10) Let X be a nonsingular variety of dimension n and D ⊂ X a reduced effective
divisor. We say thatD has residually normal crossing at x ∈ X if there exists a system
of local coordinates t1, . . . , tn at x and functions f0, . . . , fn−1 in ÔX,x such that:

(i) f0 is a local equation of D at x, and
(ii) fi ≡ ti+1fi+1 mod (t1, . . . , ti ), for i = 0, 1, . . . , n−1, where we set fn = 1.

Show that any reduced divisor with n irreducible components through x, such that
they intersect transversally at x, has residually normal crossing. Show that the converse
holds for n = 2, but not for n ≥ 3.
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(11) LetX be a complete nonsingular variety. Assume that there exist σ ∈ H 0(X, ω−1
X )

and x ∈ X such that the divisor (σ )0 is reduced and has residually normal crossing at
x (in the sense of the preceding exercise). Then, show that σp−1 splits X.

(12) Let X be a nonsingular variety, Y a nonsingular closed subvariety of codimension
d ≥ 2, X̃ the blowing-up of X with center Y , and E the exceptional divisor. Assume
that X is split by σ ∈ H 0(X, ω

1−p
X ) and denote by ordY (σ ) the order of vanishing of

σ along Y . Then, show that:

(i) ordY (σ ) ≤ d(p − 1).
(ii) ordY (σ ) ≥ (d − 1)(p − 1) iff σ lifts to a (unique) splitting σ̃ of X̃, where “σ

lifts to σ̃” means that the splitting of X induced from σ̃ via Lemma 1.1.8(ii) is σ .
(iii) The splitting σ̃ of X̃ is compatible with E iff ordY (σ ) ≥ d(p − 1).

We say that Y is compatibly split by σ with maximal multiplicity if ordY (σ ) =
d(p−1). (Observe that, in this case, Y is automatically compatibly split by σ by using
(ii) and (iii) and Lemma 1.1.8(ii).)

(13) Let f : X → Y be a proper morphism between nonsingular varieties such that
f∗OX = OY . Let Z be a nonsingular closed subvariety of X such that f is smooth
at some point of Z. If Z is compatibly split in X with maximal multiplicity (in the
sense of the preceding exercise), then show that the induced splitting of Y has maximal
multiplicity along the nonsingular locus of f (Z).

1.4 Splitting relative to a divisor

In this section, we present a useful refinement of the notion of Frobenius splitting,
which yields stronger versions of the vanishing Theorem 1.2.8.

1.4.1 Definition. (i) Let X be a scheme and D an effective Cartier divisor on X, with
support Supp(D) and canonical section σ . Then, X is Frobenius split relative toD (or
simply D-split) if there exists a OX-linear map

ψ : F∗(OX(D)) −→ OX
such that the composition

ϕ := ψ ◦ F∗(σ ) ∈ Hom(F∗OX,OX)

is a splitting of X; in this case, ψ is called a D-splitting. In particular, it is split if it is
D-split. From now on, we will abbreviate F∗(OX(D)) by F∗OX(D). Thus, we have a
commutative diagram

F∗OX F∗(σ )
F∗OX(D)

ϕ ψ

O .X
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(ii) Further, let Y be a closed subscheme of X; then, Y is compatibly D-split (or X is
D-split compatibly with Y ) if: (a) Supp(D) contains no irreducible component of Y ,
and (b) Y is compatibly split by ϕ.

(iii) More generally, closed subschemesY1, . . . , Ym ofX are simultaneously compatibly
D-split (or simply compatibly D-split) if they are compatibly D-split by the same D-
splitting.

1.4.2 Remarks. (i) Any ψ ∈ HomOX
(F∗OX(D),OX) is a D-splitting if and only if

ψ(F∗(σ )) = 1.

(ii) IfE is another effective Cartier divisor onX such thatD−E is effective, then every
D-splitting yields an E-splitting, as follows. Let τ , resp. η, be the canonical section
of E, resp. D − E. We regard τ as an OX-linear map OX −→ OX(E). Similarly,
since OX(D) � OX(E) ⊗OX

OX(D − E), we may regard η as an OX-linear map
OX(E) −→ OX(D). Then, σ : OX −→ OX(D) is the composition

OX τ−−−−→ OX(E) η−−−−→ OX(D).
It follows that ψ ◦ F∗(η) : F∗OX(E) −→ OX is an E-splitting.

1.4.3 Proposition. Let D be an effective Cartier divisor on a scheme X, let Y be a
closed subscheme of X and let ψ ∈ HomOX

(F∗OX(D),OX). If ψ is a D-splitting of
X compatible with Y , then ψ(F∗IY (D)) = IY , and ψ induces a D ∩ Y -splitting of
Y , where D ∩ Y denotes the pullback of D to Y (which is also the scheme theoretic
intersection of Y with D regarded as a closed subscheme of X).

Proof. Consider the sheaf ψ(F∗IY (D)). This is a coherent subsheaf of
ψ(F∗OX(D)) = OX, i.e., a coherent sheaf of ideals of OX. LetZ be the corresponding
closed subscheme of X. Since

ψ(F∗IY (D)) ⊃ ψ(F∗(σ )F∗IY ) = ϕ(F∗IY ) = IY ,
with equality outside Supp(D), we haveZ ⊂ Y andZ \Supp(D) = Y \Supp(D). But,
Supp(D) contains no irreducible component of Y ; hence, Z = Y , and ψ(F∗IY (D)) =
IY . It follows that ψ induces a D ∩ Y -splitting of Y .

Likewise, we obtain the following generalizations of Lemmas 7.3.5 and 1.1.8.

1.4.4 Lemma. (i) If a scheme X is D-split under ψ ∈ HomOX
(F∗OX(D),OX) com-

patibly with a closed subscheme Y , then for every open subscheme U of X, ψ restricts
to a D ∩ U -splitting of U , compatible with Y ∩ U .

(ii) Conversely, if U is a dense open subscheme of a reduced scheme X, and if ψ ∈
HomOX

(F∗OX(D),OX) restricts to aD ∩U -splitting of U , then ψ is aD-splitting of
X. If, in addition, Y is a reduced closed subscheme of X such that U ∩ Y is dense in
Y and compatibly D ∩ U -split by ψ|U , then Y is compatibly D-split by ψ .

(iii) Let X be a normal variety and U an open subset of X, with complement of codi-
mension at least 2. Then, X is D-split if and only if U is D ∩ U -split. In fact, any
D ∩ U -splitting of U is the restriction of a unique D-splitting of X.
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1.4.5 Lemma. Let f : X −→ Y be a proper morphism of schemes such that the map
f # : OY −→ f∗OX is an isomorphism and let E be an effective Cartier divisor on Y ,
with pullback D in X.

(i) If ψ is a D-splitting of X, then f∗ψ is an E-splitting of Y .

(ii) If, in addition, a closed subscheme Z of X is compatibly D-split by ψ , then f (Z)
is compatibly E-split by f∗ψ .

(Note that under assumption (ii), no irreducible component of Z is contained in
Supp(D), so that no irreducible component of f (Z) is contained in Supp(E).)

1.4.6 Lemma. Let X be D-split by ψ , compatibly with closed subschemes Y and Z.
Then, Y ∪ Z and its irreducible components are D-split by ψ . If, in addition, no
irreducible component of Y ∩ Z is contained in Supp(D), then Y ∩ Z is also D-split
by ψ .

Next, we obtain a generalization of Lemma 1.2.7.

1.4.7 Lemma. Let X be a scheme equipped with an effective Cartier divisor D and
with an invertible sheaf L.

(i) If X is D-split and if

Hi(X,Lpν ((pν−1 + pν−2 + · · · + 1)D)) = 0

for a fixed index i and some ν ≥ 1, then Hi(X,L) = 0.

(ii) If a closed subscheme Y is compatibly D-split, and if the restriction map

H 0(X,Lpν ((pν−1 +pν−2 +· · ·+1)D)) −→ H 0(Y,Lpν ((pν−1 +pν−2 +· · ·+1)D))

is surjective for some ν ≥ 1, then the restriction map H 0(X,L) → H 0(Y,L) is
surjective.

Proof. We adapt the proof of Lemma 1.2.7.
(i) Let ψ : F∗OX(D) −→ OX be a D-splitting. Then, id ⊗ψ splits the map

id ⊗(F∗(σ ) ◦ F #) : L −→ L ⊗OX
F∗OX(D).

It follows that the induced map in cohomology

Hi(id ⊗(F∗(σ ) ◦ F #)) : Hi(X,L) −→ Hi(X,L ⊗OX
F∗OX(D))

is split, and hence injective. But,

Hi(X,L ⊗OX
F∗OX(D)) � Hi(X, F∗((F ∗L)(D)))

� Hi(X, F∗(Lp(D))) � Hi(X,Lp(D)).
This yields a split injection of abelian groups

Hi(X,L) −→ Hi(X,Lp(D)).
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Iterating this process and composing all the resulting maps, we obtain an injective
additive map

Hi(X,L) −→ Hi(X,Lpν ((pν−1 + pν−2 + · · · + 1)D))

for every ν ≥ 1. This proves (i).
(ii) We have a commutative diagram (of abelian groups)

H 0(X,L) −−−−→ H 0(X,Lp(D))⏐⏐� ⏐⏐�
H 0(Y,L) −−−−→ H 0(Y,Lp(D)),

where the horizontal arrows areH 0(id ⊗(F∗(σ ) ◦F #)), and the vertical arrows are the
restriction maps. Since Y is compatibly D-split, the horizontal arrows are compatibly
split as well. Thus, the surjectivity ofH 0(X,Lp(D)) −→ H 0(Y,Lp(D)) implies that
of H 0(X,L) −→ H 0(Y,L). Iterating this argument as in (i) completes the proof of
(ii).

1.4.8 Theorem. LetX be a proper scheme over an affine scheme; let L be a semi-ample
invertible sheaf on X, and let D be an ample effective Cartier divisor on X.

(i) If X is D-split, then Hi(X,L) = 0 for all i ≥ 1.

(ii) If a closed subschemeY is compatiblyD-split, then the restriction mapH 0(X,L) −→
H 0(Y,L) is surjective, and Hi(Y,L) = 0 for all i ≥ 1. As a consequence,
Hi(X, IY ⊗ L) = 0 for all i ≥ 1.

Proof. Since L is semi-ample andD is ample, Lpν ((pν−1+pν−2 +· · ·+1)D) is ample
for every positive integer ν (this follows from the definition of ampleness in [Har–77,
Chap. II, §7]). The assertions now follow from Lemma 1.4.7 and Theorem 1.2.8.

1.4.9 Remark. In fact, Theorem 1.4.8 extends to any invertible sheaf L such that L⊗M
is ample for any ample invertible sheaf M on X. Such a sheaf is called numerically
effective, or nef for brevity; cf. [Har–70, Chapter 1] for other characterizations and
examples of nef invertible sheaves.

Next, we obtain a criterion for D-splitting of a scheme X, generalizing Theorem
1.3.8. For this, we consider the evaluation map

εD : HomOX
(F∗OX(D),OX) −→ OX, ψ �→ ψ(F∗(σ )).

Notice that X is D-split under ψ if and only if εD(ψ) = 1.
By [Har–77, Chap. III, Exercise 6.10], applied to the finite morphism F , we have

an isomorphism

(1) HomOX
(F∗OX(D),OX) � F∗HomOX

(OX(D), F !OX)
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sending a local section ψ to the local homomorphism

F∗OX(D) −→ F∗
(
F !OX
) = HomOX

(F∗OX,OX), s �→ (f �→ ψ(f s)).

If X is a nonsingular variety, then F !OX � ω
1−p
X (see Section 1.3), so that

(2) F∗HomOX
(OX(D), F !OX) � F∗(ω1−p

X (−D)).
This isomorphism (under the identification (1)) fits into the commutative diagram

D τ ◦ F∗(σ )
OX

HomO (F∗OX(D),OX) F∗(ω1−p
X (−D))

X

,

where τ̂ : F∗(ω1−p
X ) → OX is as in Theorem 1.3.8. Together with Exercise 1.3.E.3,

this implies the following refinement of Theorem 1.3.8.

1.4.10 Theorem. LetX be a nonsingular variety andD an effective divisor onX. Then,
ϕ ∈ H 0(X, ω

1−p
X (−D)) provides a D-splitting of X under the above identifications

(1) and (2) if and only if τ̂ (ϕσ ) = 1.
In particular, ifX is split by ϕ ∈ H 0(X, ω

1−p
X ), thenX is split relative to the divisor

of zeros of ϕ.
As another consequence, ϕ ∈ H 0(X, ω

1−p
X ) splitsX compatibly withD if and only

if ϕ provides a (p − 1)D-splitting of X.

The last assertion of the above theorem and the proof of Lemma 1.4.7 imply the
following result, which will be used in Chapter 3.

1.4.11 Lemma. Let X be a nonsingular variety, split compatibly with an effective
divisorD. By Proposition 1.2.1,D is reduced; letD =∑rj=1Dj be its decomposition
into prime divisors. Then, for any integer ν ≥ 1, any integers 0 ≤ a1, . . . , ar < p

ν

and any invertible sheaf L on X, there is a split injection of abelian groups:

Hi(X,L) −→ Hi(X,Lpν (
r∑
j=1

ajDj )),

for all i ≥ 0.

Proof. By Theorem 1.4.10,X is (p−1)(
∑r
j=1Dj)-split. Thus, it is also

∑r
j=1 aj,1Dj -

split for any 0 ≤ a1,1, . . . , ar,1 < p by Remark 1.4.2 (ii). Arguing as in the proof of
Lemma 1.4.7, this yields a split injection

Hi(X,L) −→ Hi(X,Lp(
r∑
j=1

aj,1Dj)).
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Iterating ν times, we get a split injection

Hi(X,L) −→ Hi(X,Lpν (
r∑
j=1

(pν−1aj,1 + pν−2aj,2 + · · · + aj,ν)Dj )),

for any 0 ≤ aj,� < p. To complete the proof, note that any number 0 ≤ aj < p
ν can

be written as pν−1aj,1 + pν−2aj,2 + · · · + aj,ν for some (unique) 0 ≤ aj,� < p.

We also record the following stronger version of the first part of Proposition 1.3.11,
which follows from the first part of Proposition 1.3.11, Theorem 1.4.10 and Remark
1.4.2(ii).

1.4.12 Proposition. Let X be a complete nonsingular variety of dimension n. If there
exists σ ∈ H 0(X, ω−1

X ) such that its divisor of zeroes

(σ )0 = Y1 + · · · + Yn + Z,
where Y1, . . . , Yn are prime divisors intersecting transversally at a closed point x, and
Z is an effective divisor not containing x, then σp−1 provides (p− 1)Z-splitting of X,
compatible with Y1, . . . , Yn.

1.4.13 Remark. As in Remark 1.3.12, the results of this section extend to the setting
of normal varieties. Given such a variety X and an effective Weil divisor D on X, we
say that X is D-split, if U is D ∩ U -split for some nonsingular open subset U of X,
with complement of codimension at least 2. (This definition makes sense in view of
Lemma 1.4.4.)

1.4.E Exercises

(1) Consider a hyperplane H and a hypersurface Y of degree d in Pn.
If d ≤ n and Y is general (that is, Y belongs to a certain nonempty open subset of

the projective space of hypersurfaces of degree d), show that Pn is H -split compatibly
with Y .

If d ≥ n+ 1, show that Pn is not H -split compatibly with Y .

(2) Let X be a normal variety which is split compatibly with an effective Weil divisor
D. LetE be an effective Weil divisor onX such that Supp(E) is contained in Supp(D),
and let L be an invertible sheaf on X. Then, show the existence of a split injection
Hi(X,L) → Hi(X,Lpν (E)) for all i ≥ 0 and ν � 0.

(3) With the notation and assumptions of the preceding exercise, assume further thatX
is proper over an affine variety, E is ample, and L is semi-ample. Then, show that the
conclusion of Theorem 1.4.8(i) holds.

(4) Let L be a semi-ample invertible sheaf on a projective toric varietyX. Deduce from
Exercises 1.3.E.6 and 1.4.E.3 that Hi(X,L) = 0 for all i ≥ 1.

(5) Show that any split Gorenstein varietyX is split relative to −KX for some canonical
divisor KX.
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1.5 Consequences of diagonal splitting

Consider an invertible sheaf L on a complete varietyX. If L is semi-ample (in the sense
of Definition 1.1.12), then the graded algebra R(X,L) := ⊕∞

ν=0 
(X,Lν) is finitely
generated by Lemma 1.1.13. We will derive some nice presentations of this algebra
from the splitting properties of products X × · · · ×X, compatibly with certain partial
diagonals.

Indeed, the multiplication of sections may be interpreted geometrically as the re-
striction to the diagonal, as follows. Let M be another invertible sheaf onX. Consider
the multiplication map

m = m(L,M) : 
(X,L)⊗ 
(X,M) −→ 
(X,L ⊗ M)

s ⊗ t �−→ (x �−→ s(x)⊗ t (x)).
Consider also the product X × X with projections p1, p2 : X × X −→ X, and the
diagonal embedding i : X −→ X ×X with image �. Then, L � M := p∗

1L ⊗ p∗
2M

is an invertible sheaf on X×X, such that 
(X×X,L � M) = 
(X,L)⊗ 
(X,M)

and i∗(L � M) = L ⊗ M. Further, the multiplication m(L,M) may be identified
with the restriction map


(X ×X,L � M) −→ 
(�,L � M).

This easily implies the following.

1.5.1 Proposition. LetX be a complete variety. With the notation as above,m(L,M)

is surjective, if either

(a) L, M are ample and � is compatibly split in X ×X, or
(b) L, M are semi-ample and � is compatibly X ×D-split in X ×X for some ample
effective Cartier divisor D on X.

Proof. If (a) holds, then the proposition follows from Theorem 1.2.8.
If (b) holds, then by Lemma 1.4.7, it suffices to show that

m(Lr ,Mr (sD)) : 
(X,Lr )⊗ 
(X,Mr (sD)) −→ 
(X,Lr ⊗ Mr (sD))

is surjective for all r, s ≥ 1. Since M is semi-ample and D is ample, Mr (sD) is
ample as well. By the (a) part, it follows that m(Lr ,Mr (sD)) is surjective for ample
L. Therefore,m(L,M) is surjective if L is ample. Exchanging both factors ofX×X,
we see that it is D × X-split compatibly with �, so that m(L,M) is surjective if
M is ample. In particular, m(Lr ,Mr (sD)) is surjective under assumption (b); this
completes the proof.

1.5.2 Corollary. Let L be an invertible sheaf on a complete varietyX. Then, the graded
algebraR(X,L) is generated by its subspace 
(X,L) of elements of degree 1, if either

(a) L is ample and � is compatibly split in X ×X, or
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(b) L is semi-ample and� is compatiblyX×D-split inX×X for some ample effective
Cartier divisor D on X.

Moreover, we have the following.

(a′) Assume (a) and assume further that the splitting of X×X is compatible also with
Y × X for a closed subvariety Y of X. Then, the restriction R(X,L) → R(Y,L) is
surjective.
(b′) Assume (b) and assume further that the X × D-splitting of X × X is compatible
also with Y ×X for a closed subvariety Y ofX such that Y is not contained in Supp(D).
Then, again, the restriction R(X,L) → R(Y,L) is surjective.

Thus, in either of cases (a′) or (b′), the algebra R(Y,L) is generated by degree 1
elements.

Proof. By Proposition 1.5.1, the multiplication map

m(L,Lν) : 
(X,L)⊗ 
(X,Lν) −→ 
(X,Lν+1)

is surjective for all ν ≥ 1. By induction on ν, it follows that the multiplication map

(X,L)⊗ν −→ 
(X,Lν) is surjective as well.

Assume now that the splitting of X × X is compatible with Y × X. Since � � X

and�∩ (Y ×X) � Y via the first projection, it follows thatX is split compatibly with
Y . Hence, in case (a), the restriction maps 
(X,Lν) −→ 
(Y,Lν) are surjective for
all ν ≥ 1 by Theorem 1.2.8. In case (b), X is D-split compatibly with Y , so that the
surjectivity follows from Theorem 1.4.8.

1.5.3 Corollary. Let X be a complete variety.

(a) If X × X is split compatibly with �, then any ample invertible sheaf on X is very
ample.
(b) IfX×X isX×D-split compatibly with� for some ample effective Cartier divisor
D, then any semi-ample invertible sheaf on X is generated by its global sections.

Proof. (a) Let L be an ample invertible sheaf on X; then, L is globally generated by
Corollary 1.5.2. Consider the standard morphism

ϕ : X −→ P(
(X,L)∗).
Choose ν ≥ 1 such that Lν is very ample and let

ϕν : X −→ P(
(X,Lν)∗)
be the corresponding closed immersion. Since the multiplication map


(X,L)⊗ν −→ 
(X,Lν)
is surjective, the corresponding map X −→ P((
(X,L)⊗ν)∗) is a closed immersion.
But, this map factors through ϕ followed by the Segre embedding P(
(X,L)∗) −→
P((
(X,L)⊗ν)∗), so that ϕ is a closed immersion as well.

(b) Let L be a semi-ample invertible sheaf on X; then, Corollary 1.5.2 implies that
the global sections of L have no common zeroes in X.
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Recall that a closed subvariety X ⊂ Pn is said to be projectively normal, also
called arithmetically normal, if the affine cone over X in An+1 is normal. Then, X
itself is normal, but there are closed normal varieties in projective space which are not
projectively normal [Har–77, Chap. I, Exercise 3.18]. In fact, a closed normal variety
X ⊂ Pn is projectively normal if and only if the restriction map


(Pn,OPn(ν)) −→ 
(X,OX(ν))
is surjective for any ν ≥ 0 [loc cit., Chap. II, Exercise 5.14]. Since the multi-
plication map Sν(
(Pn,OPn(1))) −→ 
(Pn,OPn(ν)) is an isomorphism [loc cit.,
Chap. III, Theorem 5.1], this amounts in turn to the surjectivity of 
(Pn,OPn(1)) −→

(X,OX(1)), together with the generation of the algebraR(X,OX(1)) by its elements
of degree 1.

Likewise, a closed subschemeX ⊂ Pn is said to be arithmetically Cohen–Macaulay
(also called projectively Cohen–Macaulay) if its affine cone is Cohen–Macaulay. Then,
again, X is Cohen–Macaulay, but the converse does not hold in general. By [Eis–
95, Exercise 18.16], an equidimensional closed subscheme X ⊂ Pn is arithmetically
Cohen–Macaulay if and only if it satisfies the following conditions:

(a) The natural map

k[t0, . . . , tn]/IX −→
⊕
ν∈Z


(X,OX(ν))

is surjective, where IX denotes the homogeneous ideal of X. (This map is always
injective, cf. [Har–77, Chap. II, Exercise 5.10].)

(b) Hi(X,OX(ν)) = 0 for 1 ≤ i < dim(X) and all ν ∈ Z.

(On the other hand,X is Cohen–Macaulay if and only ifHi(X,OX(ν)) = 0 for all
i < dim(X) and ν � 0, by [Har–77, Chap. III, Proof of Theorem 7.6].)

Any very ample invertible sheaf L on a projective variety X yields a projective
embedding X ⊂ P(
(X,L)∗). By the preceding discussion, X is projectively normal
in this embedding if and only if it is normal, and the algebra R(X,L) is generated by
its elements of degree 1. Moreover, by the above discussion, a projectively normal,
Cohen–Macaulay closed subvariety X ⊂ Pn is arithmetically Cohen–Macaulay if and
only it satisfies (b) as above. Together with Lemma 1.2.7, Theorem 1.4.8 and Corollary
1.5.2, this implies the following.

1.5.4 Corollary. If X is a normal projective variety, and X × X is split compatibly
with �, then X is projectively normal in P(
(X,L)∗) for any (very) ample invertible
sheaf L.

If, in addition,X is Cohen–Macaulay andX×X isX×D-split compatibly with�
for some ample effective Cartier divisor D, then X is arithmetically Cohen–Macaulay
in P(
(X,L)∗) for any ample invertible sheaf L.

We have seen that the existence of a splitting of X2 compatible with the diagonal
implies that R(X,L) is generated in degree 1 for ample L (Corollary 1.5.2). Likewise,
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we will show that the existence of a splitting ofX3 compatible with the partial diagonals
implies that the relations of R(X,L) are generated in degree 2. For this, we need the
following.

1.5.5 Definition. LetR =⊕∞
ν=0 Rν be a commutative, graded k-algebra withR0 = k,

and letM =⊕∞
ν=−∞Mν be a graded R-module.

(i)R is quadratic if it is generated as a k-algebra by its subspaceR1 of degree 1 elements,
and the kernel of the multiplication map

T (R1) :=
∞⊕
ν=0

R⊗ν
1 −→ R

is generated by its subspace of degree 2 elements, as an ideal of the tensor algebra
T (R1) (called the ideal of relations).

(ii) M is quadratic if it is generated by M0 as an R-module, and the kernel of the
multiplication map R⊗M0 −→ M is generated by its subspace of degree 1 elements,
as an R-module (called the module of relations), where R⊗M0 is an R-module under
the multiplication on the first factor. In particular, for a quadraticM ,Mν = 0 for ν < 0.

1.5.6 Remarks. (i) For any k-vector space V , the symmetric algebra S(V ) is quadratic,
since it is the quotient of T (V ) by the ideal generated by x ⊗ y − y ⊗ x, x, y ∈ V .
Further, the S(V )-module S(W) is quadratic, for any quotient spaceW of V .

The definitions of quadratic algebras and modules make sense, more generally, for
noncommutative graded rings. In our commutative setting, we may replace the tensor
algebra with the symmetric algebra in (i). But, as we will see, it is easier to handle
relations in the tensor algebra.

(ii) Let R be a quadratic algebra. Let V = R1 (the space of generators) and let
W be the kernel of the multiplication map V ⊗ V −→ R2 (the space of quadratic
relations). Then, R is the quotient of the tensor algebra T (V ) by its graded two-sided
ideal T (V )WT (V ). Thus, the multiplication map

πν : V⊗ν −→ Rν

is surjective, with kernel

ker(πν) =
ν−1∑
i=1

V⊗i−1 ⊗W ⊗ V⊗ν−i−1.

For any quadraticR-moduleM , similarly letW(M) be the kernel of the multiplica-
tion map V ⊗M0 −→ M1, and let πν(M) : V⊗ν ⊗M0 −→ Mν be the multiplication.
Then,

ker(πν(M)) =
ν∑
i=1

V⊗i−1 ⊗W(M)⊗ V⊗ν−i .
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(iii) Let R be a quadratic algebra and I ⊂ J ⊂ R two homogeneous ideals, giving rise
to surjective maps

R −→ R/I =: S −→ R/J =: T .
Then, S and T are graded algebras, generated by their elements of degree 1. If the
R-modules S and T are quadratic, then the ideals I and J are also generated by their
elements of degree 1. In this case, the algebras S and T are quadratic, and T is a
quadratic S-module.

We now obtain a criterion for algebras or modules to be quadratic.

1.5.7 Lemma. Let R be a graded k-algebra with R0 = k. For any triple (ν1, ν2, ν3)

of nonnegative integers, let Kν1,ν2,ν3 be the kernel of the multiplication map

mν1,ν2,ν3 : Rν1 ⊗ Rν2 ⊗ Rν3 −→ Rν1+ν2+ν3

and let Kν1,ν2 := Kν1,ν2,0. Then, R is quadratic if and only if mν1,ν2,ν3 is surjective
and

Kν1,ν2,ν3 = Kν1,ν2 ⊗ Rν3 + Rν1 ⊗Kν2,ν3 ,

for all triples (ν1, ν2, ν3) of nonnegative integers.
Further, let M be a graded R-module and similarly let Kν1,ν2,ν3(M) be the kernel

of the multiplication map

mν1,ν2,ν3(M) : Rν1 ⊗ Rν2 ⊗Mν3 −→ Mν1+ν2+ν3 .

Then,M is quadratic if and only if mν1,ν2,ν3(M) is surjective and

Kν1,ν2,ν3(M) = Kν1,ν2 ⊗Mν3 + Rν1 ⊗Kν2,ν3(M),

for all triples of nonnegative integers, where Kν2,ν3(M) := Kν2,ν3,0(M).

Proof. We give the argument for algebras, the case of modules being similar. Let R be
a graded algebra generated byR1 =: V , and letW ⊂ V⊗2 be the subspace of quadratic
relations. Let ν1, ν2, ν3 be positive integers with sum ν. Then, Kν1,ν2,ν3 is the image
of ker(πν) under the map

πν1 ⊗ πν2 ⊗ πν3 : V⊗ν −→ Rν1 ⊗ Rν2 ⊗ Rν3 .

If R is quadratic, then we have

ker(πν) =
ν−1∑
i=1

V⊗i−1 ⊗W ⊗ V⊗ν−i−1

= V⊗ν1 ⊗ ker(πν2+ν3)+ ker(πν1+ν2)⊗ V⊗ν3 .

It follows that Kν1,ν2,ν3 = Kν1,ν2 ⊗ Rν3 + Rν1 ⊗Kν2,ν3 .
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For the converse, consider the multiplication m : R ⊗ V −→ R and its degree ν
component mν : Rν ⊗ V −→ Rν+1, where ν ≥ 2. Then, ker(mν) is the image of
K1,ν−1,1 under the map

mν−1 ⊗ id : R1 ⊗ Rν−1 ⊗ R1 −→ Rν ⊗ R1.

Since K1,ν−1,1 = K1,ν−1 ⊗ R1 + R1 ⊗ Kν−1,1, it follows that ker(mν) =
(mν−1 ⊗ id)(R1 ⊗ ker(mν−1)). By induction, we conclude that the graded R-module
ker(m) is generated byW .

1.5.8 Proposition. Let L be an invertible sheaf on a complete varietyX, and letZ ⊂ Y

be closed subvarieties ofX. Consider the triple productX3 = X×X×X, with partial
diagonals �12 := (x1 = x2) and �23 := (x2 = x3). Assume that either

(a) L is ample and X3 is split compatibly with Y ×X2, Z ×X2, �1,2, �2,3, or
(b) L is semi-ample and X3 is X2 ×D-split compatibly with Y × X2, Z × X2, �1,2,
�2,3, for some ample effective Cartier divisor D on X. Moreover, Z is not contained
in Supp(D).

Then, the algebra R(X,L) is quadratic, and R(Y,L), R(Z,L) are quadratic modules
over R(X,L) under the restriction, so that they are quadratic algebras as well.

Thus, in case (a), Y embeds into the projective space P(
(Y,L)∗), its homogeneous
ideal is generated by quadratic forms, and the homogeneous ideal ofZ inY is generated
by linear forms.

Proof. By intersecting with �23 � X2, we see that X, Y,L and X,Z,L satisfy the
assumptions of Corollary 1.5.2. Thus, the algebras R = R(X,L), S = R(Y,L) and
T = R(Z,L) are generated by their elements of degree 1, and the restrictionsR −→ S,
R −→ T are surjective, so that S −→ T is surjective as well. Further, L is very ample
in case (a), resp. generated by its global sections in case (b), by Corollary 1.5.3.

We now reduce case (b) to case (a), as follows. Let X′ := Proj(R) with its ample
invertible sheaf L′, and let f : X −→ X′ be the natural map (see 1.3.15). Then,
f∗OX = OX′ and L = f ∗L′, so that R(X′,L′) = R. Similarly, since R −→ S

is surjective, we also have f∗OY = OY ′ , where Y ′ := Proj(S); thus, f (Y ) = Y ′,
and R(Y ′,L′) = S. Likewise, we obtain for Z′ := Proj(T ) that f (Z) = Z′ and
R(Z′,L′) = T . Further, by Lemma 1.1.8, X′3 is split compatibly with Y ′ × X′2,
Z′ ×X′2, �′

12, �′
23.

Next, we show that R is quadratic by checking that the criterion of Lemma 1.5.7
applies. With the notation of that lemma, we have

Rν1 ⊗ Rν2 ⊗ Rν3 = 
(X3,Lν1 � Lν2 � Lν3),

Rν1+ν2+ν3 = 
(�123,Lν1 � Lν2 � Lν3),

where �123 := (x1 = x2 = x3) is the small diagonal in X3. Thus, we obtain

Kν1,ν2,ν3 = 
(X3, I�123 ⊗ (Lν1 � Lν2 � Lν3)),
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Kν1,ν2 ⊗ Rν3 = 
(X3, I�12 ⊗ (Lν1 � Lν2 � Lν3)),

Rν1 ⊗Kν2,ν3 = 
(X3, I�23 ⊗ (Lν1 � Lν2 � Lν3)).

Further,�123 = �12 ∩�23 as schemes, by the assumption of compatible splitting and
Proposition 1.2.1. So, I�123 = I�12 +I�23 fits into the Mayer–Vietoris exact sequence

0 −→ I�12∪�23 −→ I�12 ⊕ I�23 −→ I�123 −→ 0.

Tensoring this sequence with Lν1 � Lν2 � Lν3 and taking cohomology yields the exact
sequence:

(Kν1,ν2 ⊗ Rν3)⊕ (Rν1 ⊗Kν2,ν3) −→ Kν1,ν2,ν3

−→ H 1(X3, I�12∪�23 ⊗ (Lν1 � Lν2 � Lν3)).

Further,H 1(X3, I�12∪�23 ⊗(Lν1 �Lν2 �Lν3)) = 0 for any positive integers ν1, ν2, ν3,
by Theorem 1.2.8. Therefore, R is quadratic by Lemma 1.5.7.

One checks similarly that the R-module S is quadratic by using the fact that the
small diagonal of Y equals (Y×X2)∩�12 ∩�23. Likewise, T is a quadratic S-module.
The final assertion of the Proposition follows from Remark 1.5.6 (iii).

We now investigate higher syzygies, in relation to the splitting properties of multiple
products. For this, we present the following algebraic notion.

1.5.9 Definition. Let R = ⊕∞
ν=0 Rν be a graded k-algebra with R0 = k, and let

M =⊕∞
ν=−∞Mν be a graded R-module.

(i) R is Koszul if the trivial R-module k admits a graded R-module resolution

· · · −→ L2 −→ L1 −→ L0 −→ k −→ 0,

where each Lν is a graded free R-module, generated by its subspace of degree ν.
(ii)M is Koszul if it admits a graded R-module resolution

· · · −→ L2 −→ L1 −→ L0 −→ M −→ 0,

where each Lν is a graded free R-module, generated by its subspace of degree ν.

1.5.10 Remarks. (i) Let V be a k-vector space, with symmetric algebra S(V ). Then,
the Koszul complex

· · · −→ S(V )⊗ ∧ν(V ) −→ · · · −→ S(V )⊗ V −→ S(V ) −→ k −→ 0

is a graded free resolution of the S(V )-module k. Thus, the algebra S(V ) is Koszul.
Likewise, the S(V )-module S(W) is Koszul, for any quotient spaceW of V .

(ii) Consider a graded algebra R and the minimal graded free resolution

· · · −→ L2 −→ L1 −→ L0 = R −→ k −→ 0
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of the trivial R-module k. Then, one easily checks that each Lν (the ν-th syzygy
module) is generated by its subspace of degree ≥ ν. As a consequence, R is Koszul if
and only if each Lν is generated by its degree ν component. Since

TorRν (k, k) = Lν ⊗R k,
this amounts to each graded space TorRν (k, k) being concentrated in degree ν.

Likewise, a graded R-module M is Koszul if and only if each graded space
TorRν (M, k) is concentrated in degree ν.

(iii) Clearly, any Koszul module is quadratic. We show that this also holds for algebras.

1.5.11 Lemma. Any Koszul algebra is quadratic.

Proof. Let R be a Koszul algebra and put R+ :=⊕∞
ν=1 Rν ; this is the irrelevant ideal

of R. Choose a graded subspace V ⊂ R+ which generates the ideal R+ and which is
minimal for this property, i.e., the induced map V → R+ ⊗R k = R+/(R+)2 is an
isomorphism. Consider the multiplication map

m : R ⊗ V −→ R.

LetW ⊂ R⊗V be a graded subspace which generates theR-module ker(m) and which
is minimal in the above sense. Then, we have an exact sequence of graded R-modules

R ⊗W −→ R ⊗ V −→ R −→ k −→ 0,

which can be completed to a minimal graded free resolution of k. Therefore,V , resp.W ,
is concentrated in degree 1, resp. 2. Since V generates the irrelevant ideal R+, it also
generates the algebra R. Thus, V = R1. Now, the exact sequence

W −→ V ⊗ V = R⊗2
1 −→ R2 −→ 0

identifiesW with the space of quadratic relations.
Assume thatW does not generate the ideal of relations. Then, there exists a homo-

geneous relation x ∈ V⊗ν of degree ν > 2, not belonging to the ideal generated by
relations of smaller degree. The multiplication map πν : V⊗ν −→ Rν factors as

V⊗ν πν−1⊗id−−−−−→ Rν−1 ⊗ V mν−1−−−−→ Rν,

so that (πν−1 ⊗ id)(x) ∈ ker(mν−1), where mν−1 is the multiplication map. Hence,
(πν−1 ⊗ id)(x) ∈ (mν−2 ⊗ id)(Rν−2 ⊗ W). As a consequence, there exists y ∈
V⊗ker(πν−1) such that (πν−1⊗id)(x) = (πν−1⊗id)(y). Thus, x−y ∈ ker(πν−1)⊗V ,
and x ∈ ker(πν−1)⊗ V + V ⊗ ker(πν−1), a contradiction.

Next, we will obtain a criterion for quadratic algebras or modules to be Koszul. To
formulate this criterion, we introduce additional notation.
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Let R be a quadratic algebra with spaces V of generators of degree 1, and W of
quadratic relations. For any positive integer ν, let

U(ν) := V⊗ν and U(ν)i := V⊗i−1 ⊗W ⊗ V⊗ν−i−1 (1 ≤ i ≤ ν − 1).

Also, let U(0) := k. Then, the multiplication map U(ν) −→ Rν is surjective and its
kernel is U(ν)1 + · · · + U(ν)ν−1 (Remark 1.5.6(ii)).

For any quadratic R-module M , denote by W(M) the kernel of the multiplication
map V ⊗M0 −→ M1, and similarly let

U(ν)(M) := V⊗ν ⊗M0, U
(ν)
i (M) := V⊗i−1 ⊗W(M)⊗ V⊗ν−i .

Then, each U(ν)i (M) can be identified with a subspace of U(ν)(M); further, the multi-

plication map U(ν)(M) −→ Mν is surjective, with kernel U(ν)1 (M)+ · · · + U(ν)ν (M).
As a final preparation, recall that a set U of subspaces of a k-vector space U is a

lattice if U is stable under finite intersections and sums. The lattice U is distributive if

U1 ∩ (U2 + U3) = (U1 ∩ U2)+ (U1 ∩ U3)

for all U1, U2, U3 in U .
We now formulate our criterion for a quadratic algebra to be Koszul.

1.5.12 Lemma. With the notation as above, a quadratic algebra R is Koszul if for any
ν ≥ 1, the lattice of subspaces of U(ν) generated by U(ν)1 , . . . , U

(ν)
ν−1 is distributive.

Likewise, a quadraticR-moduleM is Koszul if for any ν ≥ 1, the lattice of subspaces
of U(ν)(M) generated by U(ν)1 (M), . . . , U

(ν)
ν (M) is distributive.

Proof. We give the argument in the case of algebras; the case of modules is similar and
left to the reader. For any ν ≥ 2, let

Kνν := U
(ν)
1 ∩ · · · ∩ U(ν)ν−1,

and putK0
0 := k,K1

1 := V . Then, eachKνν is a subspace of U(ν). LetKν := R⊗Kνν ;
this is a graded free R-module, where Kνν is assigned degree ν. The map

d : R ⊗ U(ν) −→ R ⊗ U(ν−1), x ⊗ v1 ⊗ · · · ⊗ vν �→ xv1 ⊗ v2 ⊗ · · · ⊗ vν,
isR-linear and preserves degrees; one easily checks that d(Kν) ⊂ Kν−1 and d2(Kν) =
0 for all ν. Thus, (K•, d) is a complex of graded free R-modules. It suffices to show
that this complex is a resolution of k.

For this, we decompose K• into its homogeneous components K•
ν . This splits up

(K•, d) into subcomplexes (for any ν ≥ 1)

0 −→ Kνν −→ R1 ⊗Kν−1
ν−1 −→ · · · −→ Rν−1 ⊗K1

1 −→ Rν −→ 0
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with entries Kiν := Rν−i ⊗Kii . Writing

Ri = V⊗i/
i−1∑
j=1

V⊗j−1 ⊗W ⊗ V⊗i−j−1

and

Kν−iν−i =
ν−i−1⋂
j=1

V⊗j−1 ⊗W ⊗ V⊗ν−i−j−1,

we obtain

Kν−iν = Ui+1 ∩ · · · ∩ Uν−1/(U1 + · · · + Ui−1) ∩ Ui+1 ∩ · · · ∩ Uν−1,

where we set for simplicityU(ν)j =: Uj . Further, the differential diν : Kν−iν → Kν−i−1
ν

is induced by the inclusion Ui+1 ∩ · · · ∩Uν−1 ⊂ Ui+2 ∩ · · · ∩Uν−1. Thus, its kernel is

(U1 + · · · + Ui) ∩ Ui+1 ∩ · · · ∩ Uν−1/(U1 + · · · + Ui−1) ∩ Ui+1 ∩ · · · ∩ Uν−1,

while the image of di−1
ν is

Ui ∩ · · · ∩ Uν−1/(U1 + · · · + Ui−1) ∩ Ui+1 ∩ · · · ∩ Uν−1.

It follows that (K•
ν , dν) is exact if and only if

(U1 + · · · + Ui) ∩ Ui+1 ∩ · · · ∩ Uν−1 =
(Ui ∩ · · · ∩ Uν−1)+

(
(U1 + · · · + Ui−1) ∩ Ui+1 ∩ · · · ∩ Uν−1

)
,

for 0 ≤ i ≤ ν. This is the distributivity condition for Ui+1 ∩ · · · ∩ Uν−1, Ui and
U1 + · · · + Ui−1.

1.5.13 Lemma. Let R be a Koszul algebra, I ⊂ J ⊂ R two homogeneous ideals, and
S := R/I , T := R/J . If the graded algebras S and T are Koszul as R-modules, then
they are Koszul algebras as well, and T is a Koszul S-module.

Proof. We first show that the algebra S is Koszul. For this, we use the homology
spectral sequence

E2
i,j = TorSi (TorRj (S, k), k) ⇒ TorRi+j (k, k).

Since S acts on each TorRj (S, k) via its quotient S/S+ = k, we have

E2
i,j = TorSi (k, k)⊗ TorRj (S, k).

If S is not Koszul, then there exist an index i and a degree ν 
= i such that the subspace
TorSi (k, k)ν is nonzero. Let io be the minimal such index; then, (E2

io,0
)ν 
= 0. But, since

io is minimal, TorSi (k, k) is concentrated in degree i for i < io. Further, TorRj (S, k)
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is concentrated in degree j for all j , since the R-module S is Koszul. Hence, E2
i,j is

concentrated in degree i + j whenever i + j < io. The differential

dr : Eri,j −→ Eri−r,j+r−1

preserves degrees, so that dr((Erio,0)ν) = 0 for all r ≥ 2. Therefore, (E∞
io,0
)ν = (E2

io,0
)ν

is nonzero, i.e., TorRio(k, k)ν 
= 0. But, this contradicts the assumption that the algebra
R is Koszul.

Thus, both S and T are Koszul algebras. To show that the S-module T is Koszul
as well, we use the homology spectral sequence

E2
i,j = TorSi (TorRj (S, k), T ) ⇒ TorRi+j (k, T ).

Likewise, we have
E2
i,j = TorSi (k, T )⊗ TorRj (S, k),

and the same arguments complete the proof.

Before applying these algebraic results to diagonal splitting, we need a geometric
lemma. Consider a scheme X, an invertible sheaf L on X, and a family S of closed
subschemes of X such that X ∈ S, and S is stable under finite intersections and finite
unions. Let U := 
(X,L) and, for any Y ∈ S, let UY be the kernel of the restriction
map 
(X,L) −→ 
(Y,L). In other words, UY = 
(X, IY ⊗ L).
1.5.14 Lemma. With the notation as above, assume that any subscheme Y ∈ S is
reduced, and that H 1(Y2, IY1 ⊗ L) = 0 whenever Y1 ⊂ Y2 and Y1, Y2 ∈ S. Then, the
UY , Y ∈ S, form a distributive lattice of subspaces of U .

Proof. We claim that UY1 +UY2 = UY1∩Y2 for all Y1, Y2 in S. For this, as in the proof
of Proposition 1.5.8, we consider the Mayer–Vietoris exact sequence

0 −→ IY1∪Y2 −→ IY1 ⊕ IY2 −→ IY1∩Y2 −→ 0.

Tensoring this sequence with L and taking cohomology, we obtain

0 −→ UY1∪Y2 −→ UY1 ⊕ UY2 −→ UY1∩Y2 −→ H 1(X, IY1∪Y2 ⊗ L).

Further, this H 1 vanishes, since Y1 ∪ Y2 ∈ S. This proves our claim.
Now, UY1∪Y2 = UY1 ∩ UY2 for all Y1, Y2 ∈ S. Moreover, for Y ∈ S, we have

Y ∪ (Y1 ∩Y2) = (Y ∪Y1)∩ (Y ∪Y2) as subsets ofX, and hence as reduced subschemes.
Together with the claim, it follows that

UY ∩ (UY1 + UY2) = (UY ∩ UY1)+ (UY ∩ UY2).
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For any positive integer ν, let Xν be the ν-fold product X × · · · ×X (ν times); for
1 ≤ i ≤ ν − 1, let

�i,i+1 = {(x1, . . . , xν) ∈ Xν | xi = xi+1}
be the corresponding partial diagonal in Xν .

1.5.15 Theorem. Let X be a complete variety, L an invertible sheaf on X, and Z ⊂ Y

closed subvarieties of X. Assume that either

(a) L is ample andXν is split compatibly with Y ×Xν−1, Z×Xν−1,�1,2, . . . , �ν−1,ν
for any ν ≥ 1, or
(b) L is semi-ample and Xν is Xν−1 ×D-split compatibly with Y ×Xν−1, Z ×Xν−1,
�1,2, . . . , �ν−1,ν for any ν ≥ 1, where D is an ample effective Cartier divisor on X.
Moreover, Z is not contained in Supp(D).

Then, R(X,L) is a Koszul algebra, and R(Y,L), R(Z,L) are Koszul modules over
R(X,L). Thus, the algebras R(Y,L), R(Z,L) and the R(Y,L)-module R(Z,L) are
Koszul as well.

Proof. By Proposition 1.5.8, the algebraR := R(X,L) is quadratic, and theR-modules
S := R(Y,L), T := R(Z,L) are quadratic as well. Further, case (b) reduces to the
case (a), as in the proof of that Proposition.

We now show that the algebra R is Koszul. For this, we will apply Lemma 1.5.14
to the scheme Xν , the invertible sheaf L�ν , and the smallest subset S of closed
subschemes of Xν which contains Xν , Y × Xν−1, �1,2, . . . , �ν−1,ν , and which is
stable under finite unions and finite intersections. By our assumptions and Propo-
sition 1.2.1, all subschemes in S are compatibly split, and hence reduced. Further,
H 1(Y2, IY1 ⊗ L�ν) = 0 for any Y1 ⊂ Y2 in S, by Theorem 1.2.8. Thus, the assump-
tions of Lemma 1.5.14 are satisfied.

By this lemma, the subspaces V⊗i−1 ⊗W ⊗V ν−i−1 of V⊗ν generate a distributive
lattice, whereV := H 0(X,L) andW := ker

(
H 0(X2,L�2) → H 0(�,L2)

)
. Together

with Lemma 1.5.12, this implies that the algebra R is Koszul.
Since the small diagonal in Y ν equals (Y ×Xν−1)∩�1,2 ∩ · · · ∩�ν−1,ν , the same

arguments show that the R-module S = R(Y,L) is Koszul as well. Likewise, the
R-module T is Koszul. By Lemma 1.5.13, it follows that the algebras S, T and the
S-module T are Koszul.

1.5.E Exercises

(1) LetX be a complete variety and L a globally generated invertible sheaf onX. Then,
if X×X is split compatibly with its diagonal, show that the ring R(X,L) is generated
in degree 1. In particular, if X is normal, then its image in P(
(X,L)∗) is projectively
normal.

Hint: Reduce to the case where L is ample by using the construction of Lemma
1.1.13.
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In the following exercises, let L1, . . . ,Lr be ample invertible sheaves on a com-
plete variety X and let Z ⊂ Y ⊂ X be closed subvarieties. Let R(X; L1, . . . ,

Lr ) be the algebra introduced in Exercise 1.1.E.2. This algebra is multigraded by
r-tuples of nonnegative integers (ν1, . . . , νr ); we will consider its grading by the total
degree ν1 + · · · + νr .
(2) If X × X is split compatibly with � and Y × X, then show that the algebra
R(X; L1, . . . ,Lr ) is generated in degree 1 and that the restriction map

R(X; L1, . . . ,Lr ) −→ R(Y ; L1, . . . ,Lr )

is surjective.

(3) If X3 is split compatibly with Y × X2, �12 and �23, then show that the alge-
bra R(X; L1, . . . ,Lr ) is quadratic, and R(Y ; L1, . . . ,Lr ) is a quadratic module over
R(X; L1, . . . ,Lr ).
(4) If Xν is split compatibly with Y ×Xν−1,�12, . . . , and�ν−1,ν for all ν ≥ 1, show
that the algebraR(X; L1, . . . ,Lr ) is Koszul, andR(Y ; L1, . . . ,Lr ) is a Koszul module
over R(X; L1, . . . ,Lr ).
(5) Adapt the preceding exercises to semi-ample invertible sheaves and splitting relative
to an ample effective Cartier divisor.

1.6 From characteristic p to characteristic 0

In this section, we collect some results which will allow one to apply the positive
characteristic techniques of Frobenius splitting to certain schemes in characteristic zero.
Contrary to our assumption in earlier sections, by schemes in this section we will mean
separated schemes of finite type over Spec(Z), or, more generally, over Spec(Z[S−1]),
where S denotes a set of prime numbers.

Given a scheme X over Spec(Z[S−1]), we will often assume that quasi-coherent
sheaves over X are flat over Spec(Z[S−1]). This assumption is not very restrictive, as
shown by the following.

1.6.1 Remarks. (i) Since Z[S−1] is a principal ideal domain, flatness is equivalent to
being torsion-free.
(ii) If F is coherent, then there exists a finite set S′ of primes such that the sheaf
FZ[(S∪S′)−1] (obtained by base change) is flat, cf. [Eis–95, Theorem 14.4].

If S consists of all the primes except a unique onep, then we denote Z[S−1] = Z(p),
the ring of rational numbers with denominators prime to p. The spectrum of this
discrete valuation ring consists of two points: the closed point pZ(p) with residue field
Fp := Z/pZ, and the generic point 0 with residue field Q.

Thus, given a scheme X over Z(p) and a quasi-coherent sheaf F on X , we have the
special fiber Fp (also called the reduction mod p), resp. the generic fiber FQ; these



54 Chapter 1. Frobenius Splitting: General Theory

are quasi-coherent sheaves over Xp, resp. XQ. By the base change with the algebraic
closure F̄p, resp. Q̄, we obtain the geometric fiber Fp̄, resp. FQ̄.

By [Har–77, Chap. III, Proposition 9.3], we have for any i ≥ 0:

Hi(Xp,Fp)⊗Fp F̄p = Hi(Xp̄,Fp̄),

and a similar statement holds over Q̄. Together with the semicontinuity theorem [Har–
77, Chap. III, Theorem 12.8], this implies the following.

1.6.2 Proposition. Let X be a projective scheme over Z(p), let F be a coherent sheaf
on X , flat over Z(p), and let i ≥ 0. If Hi(Xp̄,Fp̄) = 0, then Hi(XQ̄,FQ̄) = 0.

In particular, for a scheme X which is projective and flat over Z(p), together with
a coherent, OX -torsion-free sheaf F , if Hi(Xp̄,Fp̄) = 0, then Hi(XQ̄,FQ̄) = 0.

Applying the above proposition to the sheaf F = IY ⊗L, we obtain the following.

1.6.3 Corollary. Let X be a projective and flat scheme over Z(p), let Y ⊂ X be a closed
subscheme and let L be an invertible sheaf over X such that the following conditions
are satisfied:

(a) H 1(Xp̄,Lp̄) = 0.
(b) The restriction map H 0(Xp̄,Lp̄) −→ H 0(Yp̄,Lp̄) is surjective.

Then, the restriction map H 0(XQ̄,LQ̄) −→ H 0(YQ̄,LQ̄) is surjective.

1.6.4 Proposition. Let X be a closed subscheme of Pn
Z(p)

, flat over Z(p). If Xp̄ is

equidimensional, then XQ̄ is equidimensional of the same dimension.
If, in addition, Xp̄ is Cohen–Macaulay, resp. arithmetically Cohen–Macaulay, then

XQ̄ is Cohen–Macaulay, resp. arithmetically Cohen–Macaulay.

Proof. The assertion on equidimensionality follows from the theorem on fiber dimen-
sions of flat morphisms [Eis–95, Theorem 10.10].

If Xp̄ is equidimensional and Cohen–Macaulay, then Hi(Xp̄,O(ν)) = 0 for any
i < dim(Xp̄) and ν � 0, cf. [Har–77, Chap. III, Theorem 7.6]. Thus, the same
vanishing holds over Q̄ by Proposition 1.6.2. Now, the proof of [Har–77, Chap. III,
Theorem 7.6] implies that XQ̄ is Cohen–Macaulay.

Next, by the criterion after Corollary 1.5.3, Xp̄ is arithmetically Cohen–Macaulay
if and only if the natural map

F̄p[t0, . . . , tn]/IXp̄ −→
⊕
ν∈Z

H 0(Xp̄,O(ν))

is surjective, and Hi(Xp̄,O(ν)) = 0 for all 1 ≤ i < dim(Xp̄) and all ν. The first
condition is equivalent to the vanishings: H 0(Xp̄,O(ν)) = 0 for all ν < 0, and
H 1(Pn

F̄p
, IXp̄ (ν)) = 0 for all ν ≥ 0. By Proposition 1.6.2 again, it follows that XQ̄ is

arithmetically Cohen–Macaulay.
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1.6.5 Proposition. Let X be a scheme over Z[S−1], where S is a finite set of primes.
If Xp̄ is reduced for all p � 0, then XQ̄ is reduced.

Proof. We may assume that X is affine, and (enlarging S) that it is flat over Z[S−1]
and Xp̄ is reduced for all p /∈ S; then, Xp is reduced as well. Let X = Spec(A); then,
A is finitely generated as a Z[S−1]-algebra, and hence as a ring. Moreover, A/pA is
reduced for all p /∈ S. Let N be the ideal of A consisting of all the nilpotent elements.
Then, N ⊂ pA for any p /∈ S; thus, N = pN since p is a nonzero divisor in A.

If N 
= 0, then N contains a proper subideal N ′ such that the A-module N/N ′ is
isomorphic toA/I , for some proper ideal I . Then,A/I is a Q-algebra, since any p ∈ S
is invertible in A, and any p /∈ S satisfies N = pN . On the other hand, since I is a
proper ideal of A, it is contained in some maximal ideal M. Now, A/M is a finitely
generated ring and also a Q-algebra. But, this is impossible in view of the general form
of the Nullstellensatz [Eis–95, Theorem 4.19]. Thus, N = 0, that is, X is reduced.
Hence, XQ is reduced, and since Q̄ is separable over Q, XQ̄ is reduced as well.

1.6.6 Corollary. Let X be a scheme over Z[S−1], where S is a finite set of primes; let
Y , Z be closed subschemes. If the scheme-theoretic intersection Yp̄ ∩ Zp̄ is reduced
for all p � 0, then YQ̄ ∩ ZQ̄ is reduced.

Proof. Again, we may assume that X is affine. Put X = Spec(A) and let I , J be the
ideals ofA corresponding to Y , Z . Then, Xp := Spec(A/pA), Yp = Spec(A/I+pA)
and Zp = Spec(A/J +pA), so that (Y ∩Z)p = Yp ∩Zp. It follows that (Y ∩Z)p̄ =
Yp̄ ∩ Zp̄, and likewise for Q̄. Now, applying Proposition 1.6.5 to Y ∩ Z completes the
proof.

1.6.E Exercises

In the following exercises, X denotes a scheme of finite type over a field K of charac-
teristic 0.

(1) Show that there exists a subring R of K , finitely generated as a Z-algebra, and a
scheme XR of finite type over Spec(R), such that

X = XR ×
Spec(R)

Spec(K).

(2) Let X,R be as above and let m be a maximal ideal of R. Show that the field R/m
is finite. Show also that any sufficiently large prime number p is the characteristic of
R/m for some maximal ideal m.

Then,XR ×
Spec(R)

Spec(R/m) is called a reduction mod p ofX, and denoted byXp.

(3) Let X be a nonsingular projective variety of dimension n over K and let L be
an ample invertible sheaf on X. Show that Xp is a nonsingular projective variety of
dimension n for all p � 0. Show also that (for suitable R) Lp exists and is an ample
invertible sheaf on Xp for p � 0.



56 Chapter 1. Frobenius Splitting: General Theory

(4) Let X, n,L be as in the above exercise (3). Show that the map

F ∗ : Hn(Xp,L−1
p ) → Hn(Xp,L−p

p )

is injective for p � 0.
Hint: Using the notation of Section 1.3, show that there are exact sequences of

coherent sheaves on Xp for i = 0, 1, . . . , n:

(a) 0 → F∗Zi → F∗�i
d→ F∗Bi+1 → 0,

(b) 0 → F∗Bi → F∗Zi → �i → 0, where �i := �iXp .

Further, show that (a) for i = 0 may be identified with

(c) 0 → OXp
F #→ F∗OXp

d→ F∗B1 → 0.

Using (c), show that the desired result follows from the vanishing of
Hn−1(Xp,L−1

p ⊗ F∗B1). Using (b), the latter follows in turn from the vanishings of
Hn−2(Xp,L−1

p ⊗ �1) and Hn−1(Xp,L−1
p ⊗ F∗Z1). Deduce from the Kodaira–

Akizuki–Nakano theorem [EsVi–92, Corollary 6.4] that

Hn−2(Xp,L−1
p ⊗�1) = 0 for p � 0.

Also, show that the vanishing of Hn−1(Xp,L−1
p ⊗ F∗Z1) follows from those of

Hn−1(Xp,L−1
p ⊗ F∗�1) � Hn−1(Xp,L−p

p ⊗ �1) and Hn−2(Xp,L−1
p ⊗ F∗B2).

Complete the argument by induction.

(5) Recall that a nonsingular projective varietyX overK is called Fano ifω−1
X is ample.

Under this assumption, deduce from the above exercise that Xp is split for all p � 0.
Hint: Use Remark 1.3.9 (ii).

1.C. Comments

The notion of Frobenius splitting was introduced by Mehta–Ramanathan in their sem-
inal article [MeRa–85]. Ramanan–Ramanathan [RaRa–85] refined it further by intro-
ducing the notion of splitting relative to a divisor.

By [Kun–69], a Noetherian local ring A of characteristic p is regular if and only
if it is reduced and flat over Ap. This yields a stronger version of Lemma 1.1.1; the
present version is sufficient for our purposes. Most of the subsequent results in Section
1.1 are due to Mehta–Ramanathan [MeRa–85], although we have not seen Proposition
1.1.6 and Lemma 1.1.14 explicitly stated in the literature.

Proposition 1.2.1 is due to Ramanathan [Ram–85]; Proposition 1.2.5 was first for-
mulated in [Mat–89a]. It is an immediate consequence of the following result of Itoh
[Ito–83] and Yanagihara [Yan–83]. A reduced affine scheme X = Spec(A) with nor-
malization Y = Spec(B) is weakly normal if and only if: b ∈ B and bp ∈ A imply that



1.6. From characteristic p to characteristic 0 57

b ∈ A. But, the proof presented here yields more information on the normalization of
split schemes, see the result in Exercise 1.2.E.4 (due to J.F. Thomsen).

The cohomology vanishing results 1.2.7, 1.2.8 and 1.2.9 are due to Mehta–Ramana-
than [MeRa–85]. Kodaira obtained his vanishing theorem for ample invertible sheaves
on complex projective manifolds; this theorem fails for certain (nonsplit) nonsingular
projective varieties in positive characteristic, cf. [Ray–78], [Lau–92] and [LaRa–97]
for specific examples.

A slightly weaker form of Lemma 1.2.11 is due to Mehta–Srinivas [MeSr–89]; and
Theorem 1.2.12 is due to Mehta–van der Kallen [MeVa–92b]. The result of Exercise
1.2.E.3 was obtained by Mehta–Srinivas [MeSr–87] in their proof of the normality of
Schubert varieties.

The criterion for Frobenius splitting in terms of the sections ofω1−p
X (as in Theorem

1.3.8) was first obtained in [MeRa–85], via Serre duality for projective nonsingular
varieties. Our approach via duality for the Frobenius morphism follows [Van–93]; it is
valid for any nonsingular (not necessarily projective) variety. The results 1.3.2–1.3.5
on differential calculus in positive characteristic are due to Cartier [Car–57]. They play
a fundamental role in several other applications of positive characteristic methods in
algebraic geometry. See, e.g., [DeIl–87].

The role of the Cartier operator may be replaced with a version of the change
of variables formula in positive characteristic obtained by Mathieu in [Mat–87]; this
is developed in [Mat–00]. Remark 1.3.9 and Proposition 1.3.11 are due to Mehta–
Ramanathan [MeRa–85]. Lemma 1.3.13 was first obtained in [KuTh–01] as a crucial
step towards the splitting of certain Hilbert schemes; see Chapter 7.

Theorem 1.3.14, due to Mehta–van der Kallen [MeVa–92b], is a version for split
varieties of the Grauert–Riemenschneider vanishing theorem: Rif∗(ωX) = 0 for all
i ≥ 1 wheneverf : X → Y is a proper birational morphism between complex algebraic
varieties and X is nonsingular. See, e.g., [EsVi–92, p. 59]. This result does not extend
to positive characteristic in general, as follows from the failure of the Kodaira vanishing
theorem. Likewise, Theorem 1.3.16 is a version of the Kawamata–Viehweg vanishing
theorem, see [loc cit., 5.12].

The study of splittings of hypersurfaces in projective spaces, sketched in Exercises
1.3.E.3, 1.3.E.5 and 1.4.E.1, is due to Kock [Koc–97]. He showed that any split com-
plete intersection in Pn is compatibly split, and arises as an intersection of irreducible
components of a hypersurface (f = 0) of degree n+ 1 such that f p+1 splits Pn.

The result of Exercise 1.3.E.4 yields an inductive construction of a splitting of a
variety X, starting with a splitting of a complete intersection in X. This construction
has been used in several contexts, including the splittings of the moduli space of rank-2
vector bundles on a generic curve [MeRam–96] and of the wonderful compactifications
of certain homogeneous spaces [Str–87], [BrIn–94], [DeSp–99]. See also Chapter 6.

The notions and results of Exercises 1.3.E.10–13 are due to Lakshmibai–Mehta–
Parameswaran [LMP–98]. For further results in this direction for the flag varieties, see
the comments to Chapter 2.

The notion of splitting relative to a divisor was introduced in [RaRa–85] (also see
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[Ram–87]). Most of the exposition in 1.4 is taken from [Ram–87].
The first applications of diagonal splitting to syzygies (1.5.1)–(1.5.8) are due to Ra-

manathan [Ram–87]. They were developed further in [KeRa–87] and [InMe–94a,b] to
yield versions of Theorem 1.5.15 and Exercises 1.5.E. The present version was obtained
later in the unpublished e-print [Bez–95] from which our exposition is taken. Koszul
graded algebras appear in algebraic geometry (sometimes under the name “wonderful”),
cf. [Kem–90], [Kem–92] and in representation theory [BGSo–96].

The results of Section 1.6 are quite standard though we could not locate them in the
literature explicitly stated.

There are examples of smooth projective Fano varietiesX (i.e., ω−1
X is ample) such

thatX is not split. Such examples are provided byG/P , for some nonreduced parabolic
subgroup schemes P in a semisimple algebraic group G (cf. [Lau–93]). However, the
reduction mod p of any Fano variety is split for p � 0, as shown in Exercises 1.6.E.

Finally, let us mention some recent developments based on the notions of F -
rationality, F -regularity and tight closure, which are closely related to the Frobenius
splitting. We refer to the exposition [Smi–01] for an excellent survey of these topics,
and for further references.



Chapter 2

Frobenius Splitting of Schubert
Varieties

Introduction

The main aim of this chapter is to prove that the flag varietiesG/P are split compatibly
splitting all the Schubert subvarieties. Similarly, it is proved that the product variety
G/P ×G/Q is split compatibly splitting all theG-Schubert subvarieties. In fact, these
varieties are shown to haveD-splittings for certain ample divisorsD. More specifically,
the content of this chapter is as follows.

Section 2.1 is devoted to establishing the basic notation associated to semisimple
groups. By G we mean a connected, simply-connected, semisimple algebraic group
over an algebraically closed field k of characteristic p > 0. We fix a Borel subgroup
B, and a maximal torus T ⊂ B with the associated Weyl group W . Let B ⊂ P be
a parabolic subgroup. For any w ∈ W , we have the Schubert variety XPw and also
the opposite Schubert variety X̃Pw in XP := G/P . This notation will be followed
throughout the book.

Section 2.2 starts off with the definition and well known elementary properties of
the Bott–Samelson–Demazure–Hansen (for short, BSDH) varieties, including the de-
termination of their canonical bundles (Proposition 2.2.2). By using a general criterion
of splitting proved in Chapter 1 (Proposition 1.3.11), these BSDH varieties are proved
to be split compatibly splitting all the BSDH subvarieties (Theorem 2.2.3). As an im-
mediate consequence, one obtains the important result due to Mehta–Ramanathan that
the flag varietiesXP are split (for any parabolic subgroupP ) compatibly splitting all the
Schubert subvarietiesXPw . In fact, as proved by Ramanan–Ramanathan, these varieties
are shown to be simultaneously (p − 1)∂−XP -split (Theorem 2.2.5), where ∂−XP is
the reduced divisor ofXP defined as the complement of the big open cell U−P/P . As
another consequence of the splitting of the BSDH varieties, it is shown that the product
variety X P,Q := XP ×XQ is split compatibly splitting all theG-Schubert subvarieties
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X P,Q
w under the diagonal action of G, where P,Q are any parabolic subgroups of G

(Corollary 2.2.7).
Section 2.3 is devoted to determining all possible splittings of X = G/B is terms

of the Steinberg module St. There is the canonical multiplication map m : St ⊗ St →
H 0(X, ω

1−p
X ). Since St is self-dual, there exists a G-invariant nondegenerate bilinear

form χ : St ⊗ St → k. Then, as proved by Lauritzen–Thomsen, it is shown that
m(f ) splits X for f ∈ St ⊗ St iff χ(f ) 
= 0 (Corollary 2.3.5). To prove this, we first
show explicitly that m(f+ ⊗ f−) provides a

(
(p − 1)(∂−X + ∂X)

)
-splitting of X,

(p− 1)∂−X-splitting all the Schubert subvarieties Xw and (p− 1)∂X-splitting all the
opposite Schubert subvarieties X̃w simultaneously (Theorem 2.3.1), where f+ (resp.
f−) is the highest (resp. lowest) weight vector of St and ∂X is the complement of
BwoB/B (wo being the longest element ofW ).

If we take f ∈ St ⊗ St such that χ(f ) 
= 0 andm(f ) = σp−1 for a section σ of an
appropriate homogeneous line bundle onX, then the splitting ofX provided bym(f ) is
a (p−1)Z(σ )-splitting, compatibly splittingZ(σ), whereZ(σ) is the zero scheme of σ
(Proposition 2.3.7). This simple result immediately gives that X = X×X is (p−1)D′-
split such that all the G-Schubert subvarieties Xw are compatibly (p − 1)D′-split, D′
being the reduced divisor ∂X × X ∪ X × ∂−X (Theorem 2.3.8). In fact, a slightly
sharper result is proved in Theorem 2.3.8.

Similar results are obtained for XP and X P,Q by considering the canonical mor-
phisms X → XP and X → X P,Q (Theorem 2.3.2 and Corollary 2.3.9). As an
immediate consequence of the above, one obtains that any subscheme of XP , obtained
by taking unions and intersections of the Schubert subvarieties and opposite Schubert
subvarieties of XP , is reduced (Corollary 2.3.3). Also, one obtains a certain analogue
of these results for the n-fold products (G/P )n (Theorem 2.3.10).

In Exercise 2.3.E.3, a proof is outlined to show that St is an irreducible self-dual
G-module.

2.1 Notation

We begin by fixing notation and reviewing some known facts on algebraic groups; we
refer the reader to [Bor–91], [Spr–98] for details.

Let H be an affine algebraic group over k. A scheme X together with an action
of H is called an H -scheme if the action map θ : H × X → X is algebraic. By an
H -linearized sheaf (also called H -equivariant sheaf) on X we mean a quasi-coherent
sheaf S of OX-modules on X together with an isomorphism φ : θ∗(S) � π∗

2 (S) of
OH×X-modules, where π2 : H × X → X is the projection onto the second factor.
The isomorphism φ must be “associative” in the sense that it satisfies the usual cocycle
condition

(π∗
23φ) ◦ ((I × θ)∗φ) = (m× I )∗φ

on H × H × X, where I is the identity map, m : H × H → H is the multiplication
map, and π23 is the projection onto the second and third factor.
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For a finite-dimensional vector space V over k, a morphism of algebraic groups
ρ : H → Aut V is called a rational (or algebraic) representation of H in V . More
generally, an abstract representation of H in a (not necessarily finite-dimensional) k-
vector space V is called rational if, for any v ∈ V , there exists a finite-dimensional
H -stable subspaceMv ⊂ V containing v such that the representation ρ|Mv is rational.

Also, recall the definition of the hyperalgebra of H from [Jan–03, Part I, §7.7],
which we will denote by UH . (In [loc cit.] it is called the algebra of distributions of H
and denoted by Dist (H ).)

We now consider a connected, simply-connected, semisimple algebraic group G
over an algebraically closed field k and denote B ⊂ G, resp. T ⊂ B, a fixed Borel
subgroup, resp. a maximal torus. LetU be the unipotent radical ofB, so thatB = T U .
Let W := N(T )/T be the Weyl group of G, where N(T ) is the normalizer of T in
G. We denote the Lie algebras ofG,B, T ,U respectively by g, b, t, u. In fact, we will
denote the Lie algebra of any closed subgroup of G by the corresponding lower case
Gothic character.

For the hyperalgebra UG of G, there is a canonical isomorphism

UG � k ⊗Z UZ(g
C),

where UZ(g
C) is the Kostant Z-form of the enveloping algebra U(gC) over C, and gC

is the Lie algebra over C of the corresponding complex algebraic group G(C).
Let X∗(T ) denote the group of characters of T , i.e., the group of algebraic group

morphisms T → Gm. Similarly, letX∗(T ) denote the group of cocharacters of T , i.e.,
the group of algebraic group morphisms Gm → T . Then, X∗(T ) and X∗(T ) are both
free abelian groups of rank �, where � is the dimension of T (which is called the rank
of G). Moreover, the standard pairing 〈·, ·〉 : X∗(T ) × X∗(T ) → Z, (λ ◦ µ∨)(z) =
z〈λ,µ∨〉, for z ∈ Gm, λ ∈ X∗(T ), µ∨ ∈ X∗(T ), is perfect, i.e., identifies X∗(T ) with
HomZ(X∗(T ),Z).

Let � ⊂ X∗(T ) be the set of roots (i.e., the set of nonzero weights for the adjoint
action of T on g) and �+ ⊂ � the set of positive roots with respect to the choice
of B, i.e., �+ is the set of weights for the action of T on u. The set of negative
roots is �− := −�+, associated with the opposite Borel subgroup B− = T U−. For
any α ∈ �±, we have the root subgroup Uα ⊂ U± normalized by T , together with
an algebraic group isomorphism εα : Ga → Uα such that tεα(z)t−1 = εα(α(t)z),
for t ∈ T and z ∈ Ga . Moreover, the multiplication map

∏
α∈�± Uα → U± is a

T -equivariant isomorphism of varieties for any prescribed ordering of �±.
Let {α1, . . . , α�} ⊂ �+ be the set of simple roots, and {s1, . . . , s�} ⊂ W the

corresponding set of simple reflections. These generate the group W ; given w ∈
W , a decomposition w = si1 · · · sin into a product of simple reflections is called a
reduced expression also called a reduced decomposition if n is minimal among all such
decompositions. Then, n is called the length of w and denoted �(w). Moreover,

(1) �+ ∩ w−1(�−) = {αin, sin(αin−1), . . . , sin · · · si2(αi1)},
and these roots are distinct. There exists a unique element wo of maximal length,
characterized by wo(�+) = �−.
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For any w ∈ W with a representative ẇ in N(T ), the double coset BẇB depends
only onw; we denote it byBwB. By the Bruhat decomposition,G is the disjoint union
of the locally closed subsets BwB, where w ∈ W ; moreover, the map

(2) (U ∩ wU−w−1)× B −→ BwB, (u, b) �→ uẇb

is an isomorphism, and the multiplication map

(3)
∏

α∈�+∩w(�−)
Uα −→ U ∩ wU−w−1,

under any ordering of �+ ∩ w(�−), is an isomorphism as well. In particular, BwoB
is an open subset of G, isomorphic to U × B. Recall that for any simple reflection si
and w ∈ W , we have

(BsiB) · (BwB) =
{
BsiwB, if �(siw) > �(w)

(BsiwB) ∪ (BwB), otherwise.
(4)

Any subgroup P of G which contains B is called a standard parabolic subgroup, and
any subgroup of G which is conjugate to a standard parabolic subgroup is called a
parabolic subgroup. It is well known that any parabolic subgroup is closed. Moreover,
the standard parabolic subgroups are in bijective correspondence with the subsets I of
{1, . . . , �}, under

(5) I � PI :=
⊔
w∈WI

BwB,

whereWI denotes the subgroup ofW generated by the si , i ∈ I . In particular, P∅ = B,
P{1,...,�} = G and there are exactly 2� standard parabolic subgroups of G. For any
1 ≤ i ≤ �, the subgroup Pi = P{i} := B ∪ BsiB is called a standard minimal
parabolic subgroup of G.

For any closed subgroupH ofG, the coset spaceG/H acquires a natural structure
of a quasi-projective variety such that the action ofG onG/H via the left multiplication
is algebraic and the projection map πH : G → G/H is a smooth morphism. Under
this structure, the parabolic subgroups are precisely those closed (reduced) subgroups
such that G/P is a projective variety.

In particular,G/B is a projective variety, the (full) flag variety ofG, parametrizing
all the Borel subgroups. By the Bruhat decomposition,G/B is the disjoint union of the
Bruhat cells Cw := BwB/B; by (2)-(3), Cw is a locally closed subset isomorphic to
U ∩wU−w−1, an affine space of dimension �(w). The closure ofCw inG/B equipped
with the reduced subscheme structure is called the Schubert variety Xw. This closed
B-stable subvariety of G/B is the disjoint union of the Bruhat cells Cx with x ≤ w,
where ≤ denotes the Bruhat–Chevalley order on W . Let w = si1 . . . sin be a reduced
expression. Then, x ≤ w iff x is obtained from w by deleting some sij ’s, i.e., there
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exists 1 ≤ j1 < · · · < jp ≤ n such that x = sij1
. . . sijp (cf. [Spr–98, Proposition

8.5.5]). The “boundary”

(6) ∂Xw := Xw \ Cw =
⊔
x<w

Cx

is the union of all the Schubert subvarieties of codimension one in Xw. In particu-
lar, G/B = Xwo , and its boundary ∂G/B is the union of all the Schubert divisors
Xwos1 , . . . , Xwos� . On the other hand, the Schubert curves (i.e., the one-dimensional
Schubert varieties) are the Xsi = Pi/B, isomorphic to the projective line.

Likewise, we have the opposite Bruhat cell C̃w := B−wB/B, with closure the
opposite Schubert variety X̃w, and boundary ∂−X̃w := X̃w \C̃w. SinceB− = woBwo,
each C̃w is an affine space of codimension �(w) inG/B, and X̃w =⊔x≥w C̃x , ∂−X̃w =⊔
x>w C̃x . In particular, C̃1 = U−B/B � U− is open inG/B, so that πB : G → G/B

is a locally trivial principal B-bundle. Moreover, ∂−G/B = ∂−X̃1 is the union of the
opposite Schubert divisors X̃s1 , . . . , X̃s� .

More generally, for any standard parabolic subgroup P and any w ∈ W , we define
the Bruhat cellCPw := BwP/P ⊂ G/P , the Schubert varietyXPw := CPw , its boundary
∂XPw := XPw \ CPw , and similarly the opposite Bruhat cell C̃Pw := B−wP/P , opposite

Schubert variety X̃Pw := C̃Pw and boundary ∂−X̃Pw . Then, C̃P1 = B−P/P is isomorphic
to the unipotent radical of the opposite parabolic subgroup P−. As above, it follows
that πP : G → G/P is a locally trivial principal P -bundle. Moreover, the morphism

fP : G/B → G/P

is a locally trivial fibration with fiber P/B, and each XPw (resp. X̃Pw ) is the scheme-
theoretic image of Xw (resp. X̃w) under fP .

The set of simple coroots {α∨
1 , . . . , α

∨
� } ⊂ X∗(T ) forms a basis of X∗(T )

(cf. [Spr–98, 7.4.3] for the definition of coroots). The dual basis of X∗(T ) is, by
definition, the fundamental weights {χi}i≤i≤�. A weight λ ∈ X∗(T ) is called dominant
if 〈λ, α∨

i 〉 ≥ 0 for all the simple coroots α∨
i ; equivalently, if all the coefficients of λ in

the basis of fundamental weights are nonnegative. The set of dominant weights will be
denoted by X∗(T )+. We put ρ := χ1 + · · · + χ�; then ρ equals the half sum of all the
positive roots.

The group of characters X∗(B) can be identified with X∗(T ) under the restriction
map. Thus, any character λ of T can uniquely be extended to a character (still denoted
by) λ of B. Let kλ be the associated one-dimensional representation of B. Then, we
have the G-equivariant line bundle

(7) L(λ) := G×B k−λ → G/B

associated to the locally trivial principal B-bundle πB : G → G/B via the representa-
tion k−λ of B. (We use the additive notation for X∗(T ), thus −λ denotes the character
λ−1.) In fact, any (not necessarily G-equivariant) line bundle on G/B is isomorphic
to L(λ), for some λ ∈ X∗(T ). More generally, for any rational B-module V , by L(V )
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we mean theG-equivariant vector bundleG×B V → G/B associated to the principal
B-bundle πB : G → G/B. Thus, in this notation, L(λ) = L(k−λ). It is easy to see
that, as a G-equivariant line bundle,

(8) ωG/B � L(−2ρ).

For an arbitrary λ, the space of global sections H 0(G/B,L(λ)) is a finite-dimen-
sional rationalG-module, which is nonzero if and only if λ is dominant; then this space
contains a unique B-stable line, and the corresponding weight is −wo(λ) (since anyU -
invariant section is determined by its value at the pointwoB). Moreover, all the weights
ofH 0(G/B,L(λ)) are ≤ −wo(λ). Recall that, for λ,µ ∈ X∗(T ), by definition, λ ≤ µ
if and only ifµ−λ ∈∑�i=1 Nαi . The dual moduleV (λ) := H 0(G/B,L(λ))∗ contains
aB-stable line with weight λ and all the weights of V (λ) are ≤ λ. This module is called
the Weyl module with highest weight λ.

2.2 Frobenius splitting of the BSDH varieties Zw

We follow the notation as above. In particular, G is a connected, simply-connected,
semisimple algebraic group over an algebraically closed field k of any characteristic
p > 0. For subsections 2.2.1–2.2.2, we could take p = 0 as well. Varieties are reduced
and irreducible schemes as earlier.

Let w ∈ W and choose a reduced expression w = si1si2 · · · sin . Then, we have by
2.1.4, BwB = (Bsi1B) · (Bsi2B) · · · · · (BsinB) = Bsi1Bsi2B · · ·BsinB, and it follows
(cf. [Spr–98, p. 150]) that

Xw = Pi1Pi2 · · ·Pin/B.
Further, the product map Pi1 × Pi2 × · · · × Pin → Xw is invariant under the action of
Bn from the right via

(∗) (p1, . . . , pn)� (b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn).

This motivates the following.

2.2.1 Definition. (Bott–Samelson–Demazure–Hansen variety) Let w = (si1 , . . . , sin)
be any ordered sequence of simple reflections inW , called a word inW .

Define the Bott–Samelson–Demazure–Hansen (for short BSDH) variety Zw as the
orbit space

(1) Zw := Pw/B
n,

where Bn acts on the product variety Pw := Pi1 × · · · × Pin via (∗) as above.
Now, we put a smooth projective variety structure on Zw such that the orbit map

πw : Pw → Zw is a locally trivial principal Bn-bundle. Define the Bn-equivariant
morphism of varieties φn : Gn → Gn by

(2) (g1, . . . , gn) �→ (g1, g1g2, . . . , g1 · · · gn−1gn),
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where Bn acts on the domain via

(3) (g1, . . . , gn)� (b1, . . . , bn) = (g1b1, b
−1
1 g2b2, . . . , b

−1
n−1gnbn)

and on the range via the right multiplication componentwise:

(4) (g1, . . . , gn) · (b1, . . . , bn) = (g1b1, g2b2, . . . , gnbn),

for gj ∈ G and bj ∈ B.

It is easy to see that φn is an isomorphism with the inverse given by
(h1, . . . , hn) �→ (h1, h

−1
1 h2, h

−1
2 h3, . . . , h

−1
n−1hn). We put the unique reduced scheme

structure on Zw so that the horizontal maps in the following diagram are closed em-
beddings:

Pw

φn|Pw−−−−→ Gn⏐⏐�πw

⏐⏐�
Zw −−−−→

φw

(G/B)n,

where

(5) φw[p1, . . . , pn] = (p1B,p1p2B, . . . , p1 · · ·pnB)
and [p1, . . . , pn] denotes the Bn-orbit through (p1, . . . , pn). Thus, Zw is a projective
variety andπw is the pullback of the locally trivial principalBn-bundleGn → (G/B)n.
In particular, πw is a locally trivial principalBn-bundle. Thus, Zw is smooth, since Pw

is smooth. The left multiplication of Pi1 on the first factor makes Zw into a Pi1 -variety.
The projection of φw on the last factor gives rise to the Pi1 -equivariant morphism
θw : Zw → G/B, i.e.,

(6) θw[p1, . . . , pn] = p1 · · ·pnB.
Since Pi = B ∪ BsiB and the map Uαi × B → BsiB, (u, b) �→ uṡib is an

isomorphism by (2.1.2), we see that

Zow := ((Bsi1B)× · · · × (BsinB)
)
/Bn

is an open subset of Zw isomorphic to
∏n
j=1 Uαij

, an affine n-space.
For any subsequence J : 1 ≤ j1 < j2 < · · · < jm ≤ n, there is a closed embedding

i = iwJ ,w : ZwJ
→ Zw,(7) [

pj1 , . . . , pjm
] �→ [1, . . . , 1, pj1 , . . . , pjm, 1, . . . , 1],

where wJ is the subsequence
(
sij1
, . . . , sijm

)
of w, pjq is put in the jq -th slot and the

remaining slots are filled by 1. Clearly, i is a morphism and it is easy to see that it is
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injective. Moreover, since ZwJ
is a projective variety, Im i is closed [Har–77, Chap.

II, Theorem 4.9]. Finally, to prove that i : ZwJ
→ Im i is an isomorphism with the

closed subvariety structure on Im i, it suffices to consider the morphism

Bj1−1 × Pij1 × Bj2−j1−1 × Pij2 × · · · × Bjm−jm−1−1 × Pijm × Bn−jm
→ Pij1

× · · · × Pijm ,
(p1, . . . , pn) �→ (p1 . . . pj1 , pj1+1 · · ·pj1+j2 , . . . , pjm−1+1 · · ·pjm

)
,

which descends to give the inverse of i on Im i.
For any 1 ≤ m ≤ n, consider the subsequence w[m] := (si1 , . . . , sim) of w. Then,

there is a morphism ψw,m : Zw → Zw[m], given by [p1, . . . , pn] �→ [p1, . . . , pm].
For m = n− 1, we abbreviate ψw,m by ψw. Thus,

(8) ψw,m = ψw[m+1] ◦ · · · ◦ ψw[n−2] ◦ ψw[n−1] ◦ ψw.

We next show thatψw is a locally trivial P1-fibration: Let v := w[n−1]. Consider
the locally trivial principal B-bundle

Pv/(B
n−2 × 1)

π ′
v−→ Zv = Pv/B

n−1.

Then, we have an isomorphism γ from the associated fiber bundle (with fiber Pin/B)
to Zw making the following diagram commutative:

γ

∼Pv/(B
n−2 × 1) ×B Pin/B Zw

Zv,

π̄v ψw

where π̄v is induced from π ′
v and γ is induced from the map(

(p1, . . . , pn−1) mod Bn−2, p̄n
) �→ [p1, . . . , pn],

for (p1, . . . , pn−1) ∈ Pv and p̄n ∈ Pin/B. By constructing the inverse of γ explicitly,
it is easy to see that γ is an isomorphism. Thus, ψw is a locally trivial P1-fibration
since so is π̄v. Hence, by (8), ψw,m is a smooth morphism. Furthermore, we have the
following commutative diagram:

(D)

Zw
θw−−−−→ G/B

ψw

⏐⏐� ⏐⏐�fin
Zv

fin◦θv−−−−→ G/Pin,

where v := w[n − 1] and fi = fPi : G/B → G/Pi is the canonical morphism.
In fact, by Exercise 2.2.E.1, Zw is the fiber product Zv ×G/Pin G/B via the above
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diagram (D). The fibration ψw admits a section σw : Zv → Zw, [p1, . . . , pn−1]
�→ [p1, . . . , pn−1, 1].

For any λ ∈ X∗(T ), define the line bundle Lw(λ) on Zw as the pullback of the
line bundle L(λ) on G/B via the morphism θw. More generally, for any algebraic
B-module V , let Lw(V ) be the vector bundle on Zw obtained as the pullback of the
homogeneous vector bundle L(V ) on G/B via θw.

We define the “boundary” ∂Zw of Zw by

(9) ∂Zw :=
n⋃
j=1

Zw(j)

equipped with the closed reduced subscheme structure, where w(j) is the subsequence(
si1 , . . . , ŝij , . . . , sin

)
and Zw(j) is identified with a divisor of Zw via the embedding

iw(j),w of Zw(j). Then, Zw(1), . . . , Zw(n) are the irreducible components of ∂Zw;
they are nonsingular prime divisors with normal crossings in Zw; and, as schemes,

(10) ZwJ
�
⋂
j /∈J

Zw(j), for any J ⊂ {1, . . . , n}.

This can be proved by considering the pullback via the smooth morphism πw : Pw →
Zw. In particular,

(11)
n⋂
i=1

Zw(i) = {[1, . . . , 1]}.

Moreover, Zow = Zw \ ∂Zw.
If w is a reduced sequence, i.e., if si1 · · · sin is a reduced expression in W , then

θw(Zw) = Xw, where w := si1 · · · sin . Moreover, θw(Zow) = Bsi1B · · ·BsinB/B
equals the Bruhat cell Cw, and θw restricts to an isomorphism Zow → Cw. Thus, θw is
a desingularization of the Schubert variety Xw.

The following proposition is crucially used to show that Zw is split.

2.2.2 Proposition. Let w = (si1 , . . . , sin) be any sequence of simple reflections ofW .
Then, the canonical bundle ωZw of Zw is given by

(1) ωZw � OZw

(−∂Zw

)⊗ Lw(−ρ).

In fact, as B-equivariant line bundles,

(2) ωZw � OZw

(−∂Zw

)⊗ Lw(−ρ)⊗ k−ρ,

where k−ρ is the trivial line bundle onZw equipped with theB-equivariant line bundle
structure coming from the representation k−ρ of B.
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Proof. We prove (1) by induction on �(w) := n. For n = 1, Zw = Pi1/B � P1 and
hence ωZw � OP1(−2xo), for any point xo ∈ P1 (cf. [Har–77, Chap. II, Example
8.20.1]). It can easily be seen that Lw(−ρ) � OP1(−xo). So, (1) follows in this case.

Recall the P1-fibration ψw : Zw → Zw(n) and the section σw from 2.2.1. By
induction, we assume the validity of (1) forZw(n). Further, it is easy to see that the line
bundle Lw(ρ) is of degree 1 along the fibers of ψw. Now, (1) follows from [Kum–02,
Lemmas A.18 and A.16] by observing that

(3) σ ∗
wLw(ρ) = Lw(n)(ρ).

Since Zw is projective, it is easy to see that for any two B-equivariant line bundles L1
and L2 such that L1 and L2 are isomorphic as nonequivariant line bundles, there exists
a character λ ∈ X∗(T ) such that L1 � L2 ⊗ kλ as B-equivariant line bundles. So, to
prove (2), it suffices to show that the actions of T on the fibers of the two sides of (2)
over [1, . . . , 1] are given by the same character. The latter is easy to verify from the
definition of the T -actions on the two sides of (2).

As a corollary of the above proposition, we obtain the following.

2.2.3 Theorem. With the notation as in Proposition 2.2.2, Zw is split by σp−1, where
σ ∈ H 0(Zw, ω

−1
Zw
) vanishes on all the divisors Zw(j), 1 ≤ j ≤ n.

Thus, for any subsequence wJ of w, ZwJ
is compatibly split by σp−1, where ZwJ

is identified with its image in Zw via the closed embedding iwJ ,w.

Proof. Let σ ′ ∈ H 0
(
Zw,OZw(∂Zw)

)
be the canonical section [Har–77, Chap. II,

§7], with divisor of zeros
(σ ′)0 = ∂Zw.

Since H 0(G/B,L(ρ)) 
= {0}, by choosing a G-translate if needed, we get a section
σ ′′ ∈ H 0(G/B,L(ρ)) such that σ ′′(1 ·B) 
= 0. Now, by Proposition 2.2.2, the section
σ ′ ⊗ θ∗

wσ
′′ provides a section of ω−1

Zw
. Thus, the first part of the theorem follows from

Proposition 1.3.11 together with (2.2.1.11).
Let wJ be the subsequence

(
sij1
, . . . , sijm

)
. Then, by (2.2.1.10) and Proposition

1.2.1 we conclude that ZwJ
is compatibly split. (We can also use Proposition 1.2.1

to conclude that the scheme-theoretic intersection of the right side of (2.2.1.10) is
reduced.)

2.2.4 Remark. Let σ ′′ ∈ H 0(G/B,L(ρ)) be a section such that σ ′′(1 ·B) 
= 0 and let
(σ ′′)0 be the associated divisor of zeros. Let Dσ ′′ be the pullback divisor θ∗

w((σ
′′)0).

Then, by Proposition 1.4.12, Lemma 1.4.6, and the above proof, we see that Zw is
(p − 1)Dσ ′′ -split compatibly (p − 1)Dσ ′′ -splitting all the ZwJ

.

As a consequence of Theorem 2.2.3, we get the following important result. We will
study all possible splittings of G/P in the next section.



2.2. Splitting of the BSDH varieties 69

2.2.5 Theorem. LetP ⊂ G be any standard parabolic subgroup. Then, the flag variety
G/P is (p − 1)∂−G/P -split compatibly (p − 1)∂−G/P -splitting all the Schubert
subvarieties XPw (for any w ∈ W ).

Proof. We first consider the case P = B. Take a reduced expression wo = si1 · · · siN .
Let wo be the sequence

(
si1 , . . . , siN

)
. Then, by 2.2.1, θwo : Zwo → G/B is a

(surjective) birational morphism. Thus, by Zariski’s main theorem [Har–77, Chap. III,
Proof of Corollary 11.4],

(1) θwo∗OZwo
= OG/B.

Moreover, for any w ∈ W , there exists a subsequence w = (sij1 , . . . , sijm ) of wo such
that w = sij1

· · · sijm is a reduced expression (as w ≤ wo). Hence, by 2.2.1,

(2) θwo (Zw) = Xw,

where Zw is identified with a subvariety of Zwo via the embedding iw,wo .
Thus, the theorem for P = B follows from (1)–(2) together with Exercise 2.2.E.4,

Theorem 2.2.3, Remark 2.2.4 and Lemma 1.4.5. Now, the theorem for an arbitrary P
follows from that for B by using Lemma 1.4.5 again and observing the following: For
the projection f = fP : G/B → G/P ,

(3) f∗ OG/B = OG/P .
This follows easily since f is a locally trivial fibration with fiber the projective vari-
ety P/B. Moreover, f being a smooth morphism, f ∗(∂−G/P) is the reduced divisor
f−1(∂−G/P) ⊂ ∂−G/B. In particular, by Remark 1.4.2(ii), G/B is
(p − 1) f ∗(∂−G/P)-split.

2.2.6 Definition. Consider the flag variety G/P × G/Q for any standard parabolic
subgroups P,Q. Then, it is a G-variety under the diagonal action of G. Moreover,
there is a G-equivariant isomorphism

(1) ξ : G×P (G/Q) → G/P ×G/Q, (g, g′Q) �→ (gP, gg′Q).

From this it is easy to see that anyG-stable closed irreducible subset ofG/P×G/Q
is given by ξ(G×P Y ), for a closed irreducibleP -stable subset Y ofG/Q. In particular,
takingP = Q = B, the closed irreducibleG-stable subsets ofG/B×G/B are precisely
of the form {ξ(G×B Xw)}w∈W . Denote, for any w ∈ W ,

Xw := ξ(G×B Xw)
equipped with the structure of a closed subvariety of G/B × G/B. Then, any closed
irreducible G-stable subset of G/P × G/Q is of the form fP,Q(Xw), for some (but
not necessarily unique) w ∈ W , where fP,Q : G/B × G/B → G/P × G/Q is the
projection. Observe that Xe is the diagonal in G/B × G/B. We denote X P,Q

w :=
fP,Q(Xw) again equipped with the structure of a closed subvariety of G/P × G/Q.
These are called G-Schubert varieties in G/P ×G/Q.
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2.2.7 Corollary. For any standard parabolic subgroups P,Q ⊂ G, the variety
G/P ×G/Q is split compatibly splitting all the G-Schubert varieties X P,Q

w , w ∈ W .

Proof. We first consider the case P = Q = B. Fix a reduced decomposition wo =
si1 · · · siN and let wo be the word

(
si1 , . . . , siN

)
. Let Z′

wo
be the pullback principal

B-bundle

Z′
wo

θ ′
wo−−−−→ G

π ′
⏐⏐� ⏐⏐�π
Zwo −−−−→

θwo

G/B.

Since θwo is birational (2.2.1), so is θ ′
wo

. Consider the morphism

θ : Z → G×B G/B, θ(z′, z) = (θ ′
wo
(z′), θwo (z)),

where Z := Z′
wo

×B Zwo . Then, θ is a birational (surjective) morphism and hence

(1) θ∗(OZ) = OG×BG/B.

Further, it is easy to see that there is a canonical isomorphism

(2) Z � Z(wo,wo),

where (wo,wo) is the word
(
si1 , . . . , siN , si1 , . . . , siN

)
.

By Theorem 2.2.3, Z is split compatibly splitting all the subvarieties ZwJ
, for

any subsequence wJ of (wo,wo). Since any Schubert variety Xw is the image of a
subvariety ZwJ

⊂ Zwo under θwo , for some subword wJ of wo (2.2.5.2), we obtain
from Lemma 1.1.8 that G×B G/B is split compatibly splitting each G×B Xw. Now,
using the isomorphism

ξ : G×B G/B � G/B ×G/B (2.2.6.1),

we get the corollary for the case P = Q = B. The general case follows from this case
by using Lemma 1.1.8 again.

2.2.E Exercises

For the following exercises, the characteristic of k is arbitrary (including 0).

(1∗) With the notation as in 2.2.1, show that for any sequence w = (si1 , . . . , sin) of
simple reflections, Zw is the fiber product Zw[n−1] ×G/Pin

G/B via the diagram (D) of
2.2.1.

(2) Show that any opposite Schubert divisor X̃si intersects the Schubert curve Xsi
transversally at the unique point siB, and intersects no other Schubert curve. Show
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also that the Picard group Pic(G/B) is freely generated by the classes [X̃s1 ], . . . , [X̃s� ]
of the opposite Schubert divisors. Deduce the equality in Pic(G/B):

[L] = (L ·Xs1)[X̃s1 ] + · · · + (L ·Xs�)[X̃s� ]
for the class of any line bundle L on G/B, where (L · Xsi ) denotes the degree of the
restriction of L to Xsi � P1.

(3) Deduce from Exercise (2) the equality

[L(λ)] = 〈λ, α̌1〉[X̃s1 ] + · · · + 〈λ, α̌�〉[X̃s� ]
in Pic(G/B). Show that this group is isomorphic to X∗(T ) via λ �→ [L(λ)]. If λ is
dominant, show that any nonzero σ ∈ H 0(G/B,L(λ)) satisfies

[(σ )0] = 〈λ, α̌1〉[X̃s1 ] + · · · + 〈λ, α̌�〉[X̃s� ],
where (σ )0 is the divisor of zeroes of σ .

In fact, if σ is an eigenvector with respect to the action of B−, then show that the
above equality holds as divisors (not merely as divisor classes).

(4∗) Let P = PI be a standard parabolic subgroup of G. Generalize the results of
Exercises (2) and (3) to G/P .

Define ρP ∈ X∗(T ) by ρP (α∨
i ) = 0 if αi ∈ I , and ρP (α∨

i ) = 1 for all the other
simple coroots. Then, show that ρP extends to a character of P . Observe that ρB = ρ.

Show further that the divisor of any B−-eigenvector in H 0(G/P,LP (ρP )) is pre-
cisely equal to ∂−G/P , where LP (ρP ) is the line bundle on G/P associated to the
character −ρP .

(5∗) Let P be any standard parabolic subgroup ofG. Show that, for the divisor ∂−G/P
⊂ G/P ,

OG/P (∂−G/P) � LP (ρP ),
where ρP ∈ X∗(P ) is defined above. Similarly,

OG/P (∂G/P ) � LP (ρP ).

(6∗) Let λ ∈ X∗(T ) be a dominant weight. Show that the tensor product
H 0(G/B,L(λ))⊗H 0(G/B,L(−woλ)) has a unique nonzero G-invariant vector (up
to nonzero scalar multiples).

Hint: Use the Frobenius reciprocity [Jan–03, Part I, Proposition 3.4] and [Jan–03,
Part I, Proposition 5.12(a)] to conclude that

HomG

(
H 0(G/B,L(λ))∗, H 0(G/B,L(−woλ))

)
� HomB

(
H 0(G/B,L(λ))∗, kwoλ

)
.
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(7∗) For anyG-moduleM andB-moduleV , show that there is aG-module isomorphism

ξ : M ⊗H 0(G/B,L(V )) → H 0(G/B,L(M ⊗ V )),
ξ(m⊗ σ)(gB) = [g, g−1m⊗ σ̄ (g)],

for m ∈ M and σ ∈ H 0(G/B,L(V )), where σ(gB) = [g, σ̄ (g)].

2.3 Some more splittings of G/B and G/B ×G/B
We give a self-contained and an entirely different proof of Theorem 2.2.5 in this section.
In fact, we determine all possible splittings of G/B.

We continue to follow the same notation as in the beginning of this chapter. In
particular, G is a connected, simply-connected, semisimple algebraic group over an
algebraically closed field k of characteristic p > 0. But we abbreviate G/B, resp.
G/P , by X, resp. XP , and H 0(G/B,L(λ)) by H 0(λ) in the rest of this chapter.

The G-module H 0((p − 1)ρ) is called the Steinberg module, denoted by St. Let
f+, resp. f−, be a nonzero highest, resp. lowest, weight vector of St; then the weight
of f± is ±(p − 1)ρ.

Observe that the multiplication of sections gives rise to the morphism ofG-modules

m : H 0(λ)⊗H 0(µ) → H 0(λ+ µ),
for λ,µ ∈ X∗(T )+. In particular, we have a map

m : St ⊗ St → H 0(2(p − 1)ρ).

Furthermore,
H 0(2(p − 1)ρ) = H 0(X, ω

1−p
X )

by (2.1.8). Thus, the splittings of X are elements of this space, by Theorem 1.3.8.

2.3.1 Theorem. The section m(f+ ⊗ f−) provides, up to a nonzero scalar multiple, a(
(p − 1)(∂−X + ∂X))-splitting of X.

Further, this splitting compatibly (p − 1)∂−X-splits all the Schubert subvarieties
Xw and (p − 1)∂X-splits all the opposite Schubert varieties X̃w (w ∈ W).
Proof. Let f := f+ ⊗ f−. Then, the section m(f ) is given by

(1) m(f )(gB) = (g, f+(gv+) · f−(gv+)
)

mod B,

for gB ∈ X, where v+ is a highest weight vector of the Weyl module V ((p − 1)ρ) :=
St∗.

For g ∈ U−, (1) simplifies to

(2) m(f )(gB) = (g, f+(gv+)
)

mod B.
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Order the positive roots�+ = {β1, . . . , βN } and choose isomorphisms εi = ε−βi :
Ga → U−βi as in Section 2.1. Then, there exists a root vector fβi ∈ g−βi (called a
Chevalley generator) such that for any algebraic representation V of G, v ∈ V and
z ∈ Ga ,

(3) εi(z) v =
∑
m≥0

zm
(
f
(m)
βi

· v),
where f (m)βi

denotes the m-th divided power of fβi (cf. [Jan–03, Part I, §§7.8–7.12]).
Recall the variety isomorphism (2.1.3):

ε : kN −→∼ U−, ε(z1, . . . , zN) = ε1(z1) · · · εN(zN).

Thus, under the identification ε, m(f )|(U−B/B) can be written as

m(f )(z1, . . . , zN)

=
(
ε(z1, . . . , zN), f+

( ∑
(k1,...,kN )∈ZN+

z
k1
1 · · · zkNN f

(k1)
β1

· · · f (kN )βN
v+
))

mod B.

Thus, trivializing the line bundle L(2(p− 1)ρ) over U−B/B, the section m(f ) corre-
sponds to the function

(z1, . . . , zN) �→
∑

(k1,...,kN )∈ZN+

z
k1
1 · · · zkNN f+

(
f
(k1)
β1

· · · f (kN )βN
v+
)
.

By Exercise 2.3.E.2,

f
(p−1)
β1

· · · f (p−1)
βN

v+ = v−,

up to a nonzero scalar multiple, where v− is a lowest weight vector of V ((p − 1)ρ).
Thus, the coefficient of zp−1

1 · · · zp−1
N in the above function is nonzero and hence, by

Theorem 1.3.8, m(f ) provides a splitting of X (up to a scalar multiple).
We next calculate the divisor Z of the zeroes of the section m(f ).
Under the multiplication map

ϕ : H 0(ρ)⊗p−1 → H 0((p − 1)ρ) = St,

ϕ
(
v̄

⊗p−1
+
) = f+ and ϕ

(
v̄

⊗p−1
−
) = f−,(4)

for a highest, resp. lowest, weight vector v̄+, resp. v̄−, of H 0(ρ). From (1),

m(f )|∂−X∪∂X ≡ 0.

Moreover, from (4),

(5) m(f ) = σp−1,



74 Chapter 2. Splitting of Schubert Varieties

for a section σ ∈ H 0(2ρ).
Hence, the divisor Z− (p− 1)(∂−X+ ∂X) is effective. Thus, by Theorem 1.4.10,

m(f ) provides a (p − 1)(∂−X + ∂X)-splitting of X.
We now prove the compatible splitting of Xw. By Proposition 1.3.11, the zero

scheme of σ is compatibly split and thus reduced. In particular, by Proposition 1.2.1,
each Schubert divisor Xwosi (for any simple reflection si) is compatibly split. Now,
let Xw be a Schubert variety of codimension ≥ 2. By [BGG–75, Lemma 10.3] there
exist distinct v1, v2 in W such that w < v1, w < v2 and �(v1) = �(v2) = �(w) + 1.
It follows that Xw set-theoretically is an irreducible component X′

w of the intersection
Xv1 ∩ Xv2 . Thus, by decreasing induction on �(w) using Proposition 1.2.1 again, X′

w

is compatibly split and hence reduced. Since Xw is reduced by definition, the schemes
Xw and X′

w coincide. This proves the compatible splitting of Xw. Since no Xw is
contained in Supp ∂−X, each Xw is compatibly (p − 1)∂−X-split. The proof for X̃w
is the same.

We now get the following parabolic analogue of Theorem 2.3.1, which is a slight
strengthening of Theorem 2.2.5.

2.3.2 Theorem. For any standard parabolic subgroup P of G, the flag variety XP is(
(p − 1)(∂−XP + ∂XP )

)
-split, compatibly (p − 1)∂−XP -splitting all the Schubert

varietiesXPw and (p− 1)∂XP -splitting all the opposite Schubert varieties X̃Pw (for any
w ∈ W ).

Proof. The theorem follows by applying Lemma 1.4.5 and Theorem 2.3.1 to the mor-
phism X → XP (see the last part of the proof of Theorem 2.2.5).

As an immediate consequence of Theorem 2.3.2 and Proposition 1.2.1, we get the
following.

2.3.3 Corollary. Let P ⊂ G be a standard parabolic subgroup. Let {Yi}1≤i≤m and
{Zj }1≤j≤n be any collections of Schubert varieties and opposite Schubert varieties
in XP , i.e., {Yi, Zj ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ⊂ {XPv , X̃Pw ; v,w ∈ W

}
, and let

Y = Y1 ∪ · · · ∪ Ym, Z = Z1 ∪ · · · ∪ Zn be their unions equipped with the reduced
scheme structures. Then, the scheme-theoretic intersection Y ∩ Z is reduced.

This corollary remains true in characteristic 0 by Corollary 1.6.6.

2.3.4 Definition. Recall from [Jan–03, Part II, §§3.18 and 10.1] that the Steinberg
module St is irreducible and self-dual (see also Exercise 2.3.E.3). Fixing a G-module
isomorphism χ̄ : St → St∗, which is unique up to a scalar multiple, we get aG-invariant
nondegenerate bilinear form

(1) χ : St ⊗ St → k, χ(v ⊗ w) = χ̄(v)w.

As another corollary of Theorem 2.3.2, we determine all possible splittings of X.
Analogous splittings of XP will be given in Chapter 5.
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2.3.5 Corollary. For any f ∈ St ⊗ St, m(f ) splits X up to a nonzero scalar multiple
iff χ(f ) 
= 0.

Proof. Recall from Section 1.3 the natural isomorphism

(1) Hom(F∗OX,OX) � F∗H 0(X, ω
1−p
X ).

This yields a natural k-linear isomorphism

(2) Hom(F∗OX,OX)[−1] � H 0(2(p − 1)ρ),

where, for a k-vector space V , V [−1] denotes the k-vector space with the same under-
lying abelian group as V , whereas the k-linear structure is twisted as

(3) z� v = z1/pv, for z ∈ k and v ∈ V .
Since the isomorphism (1) is natural, it is easy to see that under the canonical G-
structures on F∗OX and OX, the isomorphism R[−1] � H 0(2(p − 1)ρ) (as in (2)) is
G-equivariant, where R := Hom(F∗OX,OX). Define the k-linear G-module map

e : R[−1] → k, e(σ ) = σ(1)p, for σ ∈ R,
where σ(1) ∈ k is the constant function σ|OX

: OX → OX. (This is the p-th power
of the evaluation map ε considered in Section 1.3.) By the definition of splitting, any
σ ∈ R splits X up to a nonzero scalar multiple iff e(σ ) 
= 0.

Under the above identification (2), composingmwith e, we get a k-linearG-module
map

χ ′ : St ⊗ St → k.

Thus, χ ′ = zoχ , for some zo ∈ k. Moreover, by Theorem 2.3.1, zo 
= 0. (An
alternative proof for the surjectivity of χ ′ is outlined in Exercise 2.3.E.1.) This proves
the corollary.

2.3.6 Remark. As we will see in the next chapter, the map m is surjective (Theorem
3.1.2(c)). Thus, all possible splittings of X are provided by Corollary 2.3.5.

2.3.7 Proposition. Let f ∈ St ⊗ St be such that χ(f ) 
= 0 and m(f ) = σp−1 for a
section σ ∈ H 0(2ρ) (e.g., f = v̄

p−1
+ ⊗ v̄

p−1
− , where v̄± is as in (2.3.1.4)). Then, the

splitting ofX provided bym(f ) up to a nonzero scalar multiple (Corollary 2.3.5) is, in
fact, a (p − 1)Z(σ )-splitting, where Z(σ) is the divisor of zeroes of σ .

Moreover, Z(σ) is compatibly split. In particular, it is a reduced scheme.

Proof. By Corollary 2.3.5, m(f ) splits X. By Theorem 1.4.10, m(f ) provides a
(p − 1)Z(σ )-splitting and, by Proposition 1.3.11, Z(σ) is compatibly split.

Recall the definition of the map ξ from (2.2.6.1). As a corollary of Proposition
2.3.7, we get the following.
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2.3.8 Theorem. The product variety X := X × X is (p − 1)D-split, where D is
the reduced divisor ξ(G ×B ∂X)∪ (∂X × X)∪ (X × ∂−X). Further, this splitting
compatibly splits the reduced subscheme D.

Moreover, all theG-Schubert varieties Xw,w ∈ W , are compatibly (p−1)D′-split,
where D′ is the reduced divisor (∂X ×X) ∪ (X × ∂−X).

In particular, X is (X × ∂−X)-split compatibly with the diagonal �.

Proof. Let G2 be the product group G × G with the Borel subgroup B2 := B × B.
We apply Proposition 2.3.7 with G replaced by G2. The Steinberg module St2 for G2

is given by
St2 = H 0(X ,L((p − 1) ρ � (p − 1)ρ)

) � St ⊗ St,

where L(λ� µ) denotes the line bundle L(λ)� L(µ) on X .
By Exercise 2.2.E.6, St2 has a unique G-invariant nonzero vector fo up to scalar

multiples. In fact, fo is the (p− 1)-th power of aG-invariant f̄o ∈ H 0(X ,L(ρ � ρ)).
Also, consider f+ ⊗ f− ∈ St2, where f± is defined just before Theorem 2.3.1. Then,
it is easy to see that

(1) χ2(fo ⊗ (f+ ⊗ f−)) 
= 0,

where χ2 : St2 ⊗ St2 → k is theG2-invariant pairing. In particular, by Corollary 2.3.5,
σ splits X , where σ := m2(fo ⊗ (f+ ⊗ f−)) and

m2 : H 0(X ,L((p − 1)ρ � (p − 1)ρ)
)⊗2 → H 0(X ,L(2(p − 1)ρ � 2(p − 1)ρ)

)
is the standard multiplication map. Also, by (2.3.1.4), f+, resp. f−, is a (p − 1)-th
power of a section v̄+, resp. v̄−, ∈ H 0(ρ).

We next calculate the zero set of σ : By an analogue of (2.3.1.1), the zero set

(2) Z(f+ ⊗ f−) = (∂X ×X) ∪ (X × ∂−X) set-theoretically.

Also, clearly Z(fo) is a G-stable subset of X . We next show that (1, ẇ) ∈ Z(fo) for
any w 
= wo, ẇ being a representative of w in N(T ):

For any t ∈ T ,

(t · fo)(1, ẇ) = t · (fo(1, ẇ))
= e−(p−1)(ρ+wρ)(t) fo(1, ẇ).(3)

But since fo is G-invariant, we get

(4) e−(p−1)(ρ+wρ)(t) fo(1, ẇ) = fo(1, ẇ), for all t ∈ T .
Since theW -isotropy of ρ is trivial and woρ = −ρ, (4) forces

fo(1, ẇ) = 0, for all w 
= wo.
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The G-orbit closure of (1, ẇ) being Xw, we get that

(5) Z(fo) ⊇
⋃
w 
=wo

Xw.

Moreover, fo(1, ẇo) 
= 0. Otherwise, Z(fo) ⊇ Xwo = X , forcing fo ≡ 0, a contra-
diction. Thus, we have equality:

(6) Z(fo) =
⋃
w 
=wo

Xw = ξ
(
G×B ∂X

)
(set-theoretically).

Combining (2) and (6), we get

(7) Z(σ) = D (set-theoretically).

Since σ = σ
p−1
o for a section σo ∈ H 0

(X , ω−1
X
)
, and σ splits X , by Proposition

1.3.11, the zero scheme Z(σo) of σo is reduced. Thus, as divisors,

(σ )0 = (p − 1)D.

Now, by Theorem 1.4.10, σ provides a (p−1)D-splitting of X and, by Proposition
1.3.11, σ compatibly splitsD. Thus, by Proposition 1.2.1, each Xw is compatibly split
(see the proof of Theorem 2.3.1). Finally, since no Xw is contained in D′, Xw’s are
compatibly (p − 1)D′-split.

As an immediate corollary of Theorem 2.3.8 and Lemma 1.4.5, we get the following.

2.3.9 Corollary. For any standard parabolic subgroups P,Q ⊂ G, the variety
XP × XQ is (p − 1)((∂XP × XQ) ∪ (XP × ∂−XQ))-split, compatibly
(p − 1)((∂XP ×XQ) ∪ (XP × ∂−XQ))-splitting all the G-Schubert varieties X P,Q

w ,
w ∈ W .

To study the defining ideal of the Schubert varieties in Section 3.5, we will need
the following.

2.3.10 Theorem. LetP ⊂ G be any standard parabolic subgroup. Then, for anyn ≥ 1,
(XP )n is (p − 1)((XP )n−1 × ∂−XP )-split, compatibly (p − 1)((XP )n−1 × ∂−XP )-
splitting all the following subvarieties:{

XPw × (XP )n−1, (XP )q × X P,P
w × (XP )n−2−q; w ∈ W, 0 ≤ q ≤ n− 2

}
.

Proof. We first consider the case P = B and use Proposition 2.3.7 for G replaced by
Gn. The idea of the proof is similar to that of the proof of Theorem 2.3.8, so we will
be brief. Similar to the pairing χ (see (2.3.4.1)), consider the Gn-invariant pairing

χn : St⊗n⊗ St⊗n → k, defined by

χn(f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gn) = χ(f1 ⊗ g1) · · ·χ(fn ⊗ gn).
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Similarly, consider the multiplication map

mn : St⊗n⊗ St⊗n := H 0(Xn,L((p − 1)ρ � · · · � (p − 1)ρ)
)⊗2 −→

H 0(Xn,L(2(p − 1)ρ � · · · � 2(p − 1)ρ)
)
.

Now, we define an element θn ∈ St⊗n⊗ St⊗n. Its definition depends upon whether
n is even or odd. If n = 2m, define the element

θn = f⊗m
o ⊗ (f+ ⊗ f⊗m−1

o ⊗ f−
) ∈ St⊗n⊗ St⊗n,

where fo, f± are as in the proof of Theorem 2.3.8. If n = 2m+ 1, define

θn = (f⊗m
o ⊗ f−)⊗ (f+ ⊗ f⊗m

o ) ∈ St⊗n⊗ St⊗n .

In either case, the zero set of mn(θn) is equal to the following closed subset of Xn:

Zn :=
( ⋃

1≤i≤�,
0≤q≤n−2

Xq × Xwosi ×Xn−2−q
)

∪ (Xn−1 × ∂−X) ∪ (∂X ×Xn−1).

It is easy to see that χn(θn) 
= 0 and, moreover, mn(θn) = θ̄
p−1
n for some sec-

tion θ̄n ∈ H 0
(
Xn,L(2ρ � · · · � 2ρ)

)
. Thus, by Proposition 2.3.7, mn(θn) provides a

(p−1) Z(θ̄n)-splitting ofXn, where Z(θ̄n) is the zero scheme of the section θ̄n. More-
over, Z(θ̄n) is a reduced subscheme of Xn. Thus, mn(θn) provides a
(p − 1)

(
Xn−1 × ∂−X

)
-splitting of Xn compatibly (p − 1)

(
Xn−1 × ∂−X

)
-splitting

all the (reduced) subvarieties Xq × Xw ×Xn−2−q , and Xw ×Xn−1, w ∈ W .
Now, the case of an arbitraryP follows from that ofB, by considering the morphism

Xn → (XP )n and applying Lemma 1.4.5.

2.3.E Exercises

(1∗) Use the following result (∗) of [And–80a], [Hab–80] to give an alternative proof
for the surjectivity of the map χ ′ : St ⊗ St → k defined in the proof of Corollary 2.3.5.

As G-equivariant OX-modules, for X = G/B,

(∗) F∗
(L((p − 1)ρ)

) � St ⊗kOX.
Hint: Consider the maps

St = HomOX

(OX,L((p − 1)ρ)
) β1−→

HomOX

(
F∗OX, F∗(L((p − 1)ρ))

)
, σ �→ F∗σ,
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and

St∗ β2−→∼ HomOX

(
F∗(L((p − 1)ρ)),OX

) � HomOX
(St ⊗kOX,OX).

Now, define the k-linear G-module map

χ̂ : St ⊗ St∗ → R[−1], f ⊗ v �→ β2(v) ◦ β1(f ),

where R := Hom(F∗OX,OX) is as in the proof of Corollary 2.3.5. Show that for
any nonzero f ∈ St, there exists v ∈ St∗ such that χ̂(f ⊗ v)|OX

is nonzero. Prove
the uniqueness of χ̂ by using (2.3.5.2) and the Frobenius reciprocity. Finally, use the
uniqueness of χ̂ to show that, under the identification (2.3.5.2), χ̂ = m up to a nonzero
scalar multiple, where m is the multiplication map.

(2∗) Let wo = siN · · · si1 be a reduced decomposition of the longest element of the
Weyl group W . This gives an enumeration of the positive roots {β1, . . . , βN }, where
βj := siN · · · sij+1αij . Let fβ be a Chevalley generator of the negative root space g−β
(see the proof of Theorem 2.3.1). Then, for any m ≥ 1, show that in the Weyl module
V (mρ) := H 0(mρ)∗,

v− = f
(m)
β1

· · · f (m)βN
· v+

up to a nonzero scalar multiple, where v+, resp. v−, is a highest, resp. lowest, weight
vector of V (mρ).

Prove further that f (m)β1
· · · f (m)βN

·v+ is independent of the ordering of positive roots
for m = p − 1.

Hint: Show by induction on j that (up to a nonzero scalar multiple)

(sij · · · si1)v+ = f (m)sij ···si2αi1 · f (m)sij ···si3αi2 · · · f (m)αij
v+.

(3∗) Using Frobenius splitting of G/B, show that the Steinberg module St :=
H 0((p − 1)ρ) is an irreducible, self-dual G-module.

More generally, show that H 0((pr − 1)ρ) is an irreducible, self-dual G-module,
for any r ≥ 1.

Hint: Use the identification for any smooth variety X (as in Section 1.3):
Hom(F∗OX,OX) � F∗H 0(X, ω

1−p
X ), and the multiplication map m : St ⊗ St →

H 0
(
G/B,ω

1−p
G/B

)
to get a G-invariant pairing χ : St ⊗ St → k. Show that this pairing

is nondegenerate by showing that, for a nonzero highest, resp. lowest, weight vector
f+, resp. f−, m(f+ ⊗ f−) splits G/B. Finally, to prove the irreducibility of St, use
the isomorphism (induced by χ ) St →∼ St∗ and the fact that St∗ is generated, as a

G-module, by its highest weight vector (cf. [Jan–03, Part II, Lemma 2.13(b)]).

2.C. Comments

The most important contributions to the results in this chapter are due to Mehta, Ra-
manan and Ramanathan.
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The Bott–Samelson–Demazure–Hansen varieties were first introduced by Bott–
Samelson [BoSa–58] in a differential geometric and topological context; Demazure
[Dem–74] and Hansen [Han–73] adapted the construction in algebro-geometric situa-
tion and used it to desingularize the Schubert varieties and to determine the Chow group
ofG/B. Proposition 2.2.2 for the case when w comes from a reduced decomposition of
the longest element ofW is due to Mehta–Ramanathan [MeRa–85]. This proposition,
in general, is due to Ramanathan [Ram–85] (though he only determined it nonequiv-
ariantly). Theorem 2.2.3 is due to Mehta–Ramanathan [MeRa–85]. The splitting of
G/P compatibly splitting the Schubert subvarieties was proved by Mehta–Ramanathan
[MeRa–85]. The (p − 1)∂−G/P splitting as in Theorem 2.2.5 is due to Ramanan–
Ramanathan [RaRa–85]. Corollary 2.2.7 is due to Mehta–Ramanathan [MeRa–88],
though the proof given here is slightly different and is due to Mathieu [Mat–89b]. A
special case of Corollary 2.2.7 was earlier obtained by Ramanathan [Ram–87]. For
Exercise 2.2.E.7, see, e.g., [Jan–03, Part I, Proposition 3.6].

Theorems 2.3.1 and 2.3.2, apart from providing an explicit splitting, are slightly
stronger than Theorem 2.2.5. In their present form they are proved in [Ram–87]. How-
ever, the very simple and direct proof we give here is new (as far as we know). Corollary
2.3.3 is due to Ramanathan [Ram–85]. This was conjectured earlier by Lakshmibai–
Seshadri [LaSe–86] and proved by them for classical groups. For arbitrary groups but
for “special” Schubert varieties it was proved by Kempf [Kem–76a]. Corollary 2.3.5
and Proposition 2.3.7 are due to Lauritzen–Thomsen [LaTh–97] (see also the works
[Kan–94b, 95]). Both of these results play a crucial role in the proofs of Theorems
2.3.8 and 2.3.10. Theorem 2.3.8 and its Corollary 2.3.9 in their full strength do not
seem to be available in the literature. However, as mentioned above, slightly weaker
results are available in [Ram–87] and [MeRa–88]. Theorem 2.3.10 for an arbitrary n
is essentially contained in [LaTh–97]; the case n = 3 is due to Ramanathan [Ram–87]
(see also [InMe–94a] for a weaker result). A version of Theorem 2.3.10 can also be
found in [Bez–95].

The alternative proof of the surjectivity of χ ′ outlined in Exercise 2.3.E.1 is due to
Lauritzen–Thomsen [LaTh–97]. Of course, the fact that St is a self-dual and irreducible
G-module is well known, and has played a fundamental role in several important
problems (cf. [Jan–03, Part II, Chap. 10]). However, the proof outlined in Exercise
2.3.E.3 using Frobenius splitting is due to Mehta–Venkataramana [MeVe–96].

Recently most of the results of this chapter have been obtained purely algebraically
using quantized enveloping algebras at a p-th root of unity by Kumar–Littelmann
[KuLi–02].

It may be mentioned that Mehta–Ramadas [MeRam–96] proved that for a generic
irreducible projective curve X of genus g over an algebraically closed field of charac-
teristic p ≥ 5, the moduli space of rank−2 parabolic bundles on X is split.

For any line bundle L on a smooth toric variety, Thomsen [Tho-00a] has proved
that the direct image F∗(L) is a direct sum of some explicitly determined line bundles
(see also [Bog-98] for some generalizations of this result).

It is conjectured in [LMP–98] that for any parabolic subgroup P ofG,G/P ×G/P
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admits a splitting which has the “maximum” multiplicity, (p − 1)dimG/P , along the
diagonal�. By Exercise 1.3.E.12, this conjecture is equivalent to the conjecture that the
blowing-up ofG/P ×G/P along its diagonal is split compatibly with the exceptional
divisor. This conjecture implies Wahl’s conjecture in characteristic p > 0, which
asserts that the restriction map

H 0(G/P ×G/P, I� ⊗ (LP (λ)� LP (µ)))→ H 0(G/P,�1
G/P ⊗ LP (λ+ µ))

is surjective for any ample line bundles LP (λ) and LP (µ) on G/P , where I� is the
ideal sheaf of � in G/P × G/P and �1

G/P is the sheaf of differential 1-forms on
G/P . This conjecture in characteristic 0 for an arbitrary G/P was proved by Kumar
[Kum–92]; and in an arbitrary characteristic by Mehta–Parameswaran [MePa–97] for
G/P the Grassmannians.

Also, it is an open question whether the Schubert varieties XPw are diagonally split.
Further, it is not known if all the homogeneous spaces G/H are split, where G is

any connected linear algebraic group and H is a closed connected subgroup which is
reduced as a subscheme.



Chapter 3

Cohomology and Geometry
of Schubert Varieties

Introduction

The main aim of this chapter is to derive various algebro-geometric and representation-
theoretic consequences of the Frobenius splitting results proved in the last chapter.

By the general cohomological properties of aD-split projective variety Y , whereD
is an ample divisor on Y , and compatibly D-split subvariety Z ⊂ Y proved in Chapter
1, together with the Frobenius splitting properties of the flag varietiesXP := G/P and
their double analogues X P,Q := G/P ×G/Q obtained in Chapter 2, we immediately
obtain the following fundamental result. For dominant charactersλ,µ ofP andw ∈ W ,
one has the cohomology vanishing: Hi

(
XPw,LPw(λ)

)= Hi
(X P,Q
w ,LP,Qw (λ�µ)

) = 0
for all i > 0. Moreover, the restriction maps

H 0(G/P,LP (λ))→ H 0(XPw,LPw(λ)) and

H 0(G/P ×G/Q,LP,Q(λ� µ)
)→ H 0(X P,Q

w ,LP,Qw (λ� µ)
)

are both surjective (Theorems 3.1.1 and 3.1.2). We also prove that for any sequence of
simple reflections w = (si1 , . . . , sin) and any 1 ≤ q ≤ r ≤ n such that the subsequence
(siq , . . . , sir ) is reduced, the cohomologyHi

(
Zw,L
(∑r

j=q −Zw(j)

)) = 0 for all i > 0
and any globally generated line bundle L on the BSDH variety Zw, where Zw(j) is the
j -th divisor defined in 2.2.1 (Theorem 3.1.4). A systematic study of line bundles on
Zw is made in Exercise 3.1.E.3.

In Section 3.2 we prove that any Schubert variety XPw is normal by making use of
the splitting ofXPw (Theorem 3.2.2). We give two other proofs of normality ofXPw , one
using theH 0-surjectivity result mentioned above (Remark 3.2.3) and the other outlined
in Exercise 3.2.E.1 which does not use Frobenius splitting. We also prove that the linear
system on XPw , given by any ample line bundle, embeds XPw as a projectively normal
variety (Theorem 3.2.2), the proof of which uses theH 0-surjectivity mentioned above.
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Section 3.3 is devoted to the proof of the Demazure character formula (Theo-
rem 3.3.8). Recall that the Demazure character formula gives the T -character of
H 0(Xw,Lw(λ)) for any dominant character λ in terms of the Demazure operators
(defined in 3.3.6). This is achieved by showing that, for a reduced decomposition
w = si1 · · · sin with the associated word w = (si1 , . . . , sin), the canonical morphism
θw : Zw → Xw is rational (Theorem 3.3.4(b)). In addition, we need to use the co-
homology vanishing result for Xw proved in Section 3.1 (mentioned above). We also
show that the canonical morphism π : Xw → XPw is rational; in particular, for a locally
free sheaf S onXPw ,Hi(XPw,S)� Hi(Xw, π

∗S) (Theorem 3.3.4(a)). The same result
is true for the canonical morphism between G-Schubert varieties (Exercise 3.3.E.3).
Moreover, it is proved that the B-module H 0(Xw,Lw(λ)) is isomorphic to the dual of
the Demazure submodule Vw(λ) of the Weyl module V (λ), where Vw(λ) is generated
as a B-module by a weight vector of weight wλ.

In Section 3.4 we show, by using the Frobenius splitting ofZw proved in Section 2.2,
that the morphism θw : Zw → Xw (as in the above paragraph) is a rational resolution
(Theorem 3.4.3). Moreover, if Xw → XPw is birational, then the composite map
Zw → XPw is again a rational resolution. In particular, any XPw is Cohen–Macaulay.
In addition, XPw is projectively Cohen–Macaulay in the projective embedding given by
any ample line bundle (Corollary 3.4.4). As another consequence of the result that θw
is a rational resolution, we prove that for any dominant characters λ1, . . . , λr of P , the
multicone C

(
XPw ; LPw(λ1), . . . ,LPw(λr)

)
, defined in Exercise 1.1.E.2, admits a rational

resolution (Theorem 3.4.7). An expression for the canonical sheaf of Xw is given in
Exercise 3.4.E.1.

Finally in Section 3.5, we study the defining ideals of Schubert varieties XPw with
respect to any line bundle LPw(λ). It is shown that for any dominant character λ ofP and
any v ≤ w ∈ W , the line bundle LPw(λ) onXPw is normally presented andXPv is linearly
defined in XPw with respect to LPw(λ) (Theorem 3.5.2). Similar results are available for
G-Schubert varieties X P,Q

w (Exercise 3.5.E.2). Further, the homogeneous coordinate
ring R(XPw,LPw(λ)) := ⊕m≥0H

0(XPw,LPw(mλ)) is shown to be Koszul and, for any
v ≤ w, R(XPv ,LPv (λ)) is a Koszul module over R(XPw,LPw(λ)) under the standard
restriction (Theorem 3.5.3). The main ingredient in the proof of both of these results is
the Frobenius splitting property of the n-fold product (G/P )n obtained in Chapter 2,
specifically Theorem 2.3.10. Analogues of both of these results are true for multiho-
mogeneous coordinate rings of XPw with respect to line bundles LPw(λ1), . . . ,LPw(λr)
for dominant characters λ1, . . . , λr of P (Exercise 3.5.E.1).

Notation. We continue to follow the notation from Section 2.1. In particular, G is a
semisimple, connected, simply-connected algebraic group over an algebraically closed
field k of characteristic p > 0.

Let X∗(P ) be the character group of P = PI which can canonically be identified,
under the restriction, as the subgroup ofX∗(T ) consisting of thoseλ such that 〈λ, α∨

i 〉 =
0, for all i ∈ I . For any rational P -module V , by LP (V ) we mean the G-equivariant
vector bundle G ×P V → G/P associated to the locally trivial principal P -bundle
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πP : G → G/P . For λ ∈ X∗(P ), we denote LP (k−λ) by LP (λ). Then, any (not
necessarily G-equivariant) line bundle on G/P is isomorphic to LP (λ), for some λ ∈
X∗(P ). As in Section 2.1, we shall abbreviate LB(V ) by L(V ).

The restriction of L(λ), resp. LP (λ), to Xw, resp. XPw , is denoted by Lw(λ), resp.
LPw(λ). Then, any line bundle on XPw is isomorphic to LPw(λ), for some λ ∈ X∗(P ).

For λ ∈ X∗(P ), µ ∈ X∗(Q), and w ∈ W , let LP,Qw (λ � µ) be the line bundle
LP (k−λ)� LQ(k−µ) restricted to X P,Q

w . If P = Q = B, we abbreviate LP,Qw (λ�µ)
by Lw(λ� µ). If w = wo, we abbreviate LP,Qw (λ� µ) by LP,Q(λ� µ).

3.1 Cohomology of Schubert varieties

For any standard parabolic subgroup P = PI of G, define

δP = ρ + wPo ρ ∈ X∗(P ) ⊂ X∗(T ),

where wPo is the longest element of the Weyl groupWP := WI of P . Then,

ωG/P � LP (−δP ).
Clearly, δP − 2ρP is a dominant weight, where ρP ∈ X∗(P ) is defined in Exercise
2.2.E.4.

We have the following important result on the cohomology of Schubert varieties.

3.1.1 Theorem. Let P be any standard parabolic subgroup of G. Then, for any
dominant λ ∈ X∗(P ) and w ∈ W ,

(a) Hi
(
XPw,LPw(λ)

) = 0, for all i > 0.

(b) The restriction map H 0
(
G/P,LP (λ))→ H 0

(
XPw,LPw(λ)

)
is surjective.

For XPw = G/P , we have the following stronger vanishing:

(c) For any λ ∈ X∗(P ) such that λ+ρ
P

is dominant,Hi(G/P,LP (λ)) = 0, for all
i > 0.

Proof. By Theorem 2.2.5, G/P is (p − 1)∂−G/P -split, compatibly (p − 1)∂−G/P -
splitting all the Schubert subvarietiesXPw . Moreover, by Exercises 2.2.E.5 and 3.1.E.1,
∂−G/P is an ample divisor onG/P . By Exercise 3.1.E.1, for any dominantλ ∈ X∗(P ),
LP (λ) is semi-ample. So, the statements (a) and (b) of the theorem follow fromTheorem
1.4.8.

We now prove the (c) part. By Serre duality,

Hi
(
G/P,LP (λ)

)
� Hn−i

(
G/P,LP (−λ− δP )

)∗
,

where n := dimG/P . Since λ+ρP is dominant by assumption, LP (λ+2ρP ) is ample
and hence so is LP (λ+ δP ). Thus, the (c) part follows from Theorem 1.2.9.
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3.1.2 Theorem. Let P,Q be two standard parabolic subgroups and let λ ∈ X∗(P ),
µ ∈ X∗(Q) be dominant weights. Then, for any w ∈ W ,

(a) Hi
(X P,Q
w ,LP,Qw (λ� µ)

) = 0, for all i > 0.

(b) The restriction map

H 0(G/P ×G/Q,LP,Q(λ� µ)
)→ H 0(X P,Q

w ,LP,Qw (λ� µ)
)

is surjective.

(c) In particular, for dominant λ,µ ∈ X∗(P ), the product map

H 0(G/P,LP (λ))⊗H 0(G/P,LP (µ))→ H 0(G/P,LP (λ+ µ))
is surjective.

Proof. By Corollary 2.3.9,G/P ×G/Q is (p−1)
(
∂G/P ×G/Q ∪ G/P ×∂−G/Q

)
-

split, compatibly (p−1)(∂G/P ×G/Q ∪ G/P ×∂−G/Q
)
)-splitting anyG-Schubert

variety X P,Q
w . Thus, the (a) and (b) parts of the theorem follow from Theorem 1.4.8

coupled with Exercises 2.2.E.5 and 3.1.E.1.
The (c) part is a special case of the (b) part by takingQ = P and w = e.

3.1.3 Remark. (a) LetP be any standard parabolic subgroup ofG and letXPw1
, . . . , XPwq

be a collection of Schubert subvarieties ofG/P . Let Y :=⋃qi=1X
P
wi

be the union taken
with the reduced scheme structure. Then, the same proof as that of Theorem 3.1.1 gives
that for any dominant λ ∈ X∗(P ),

(1) Hi
(
Y,LP (λ)|Y

) = 0, for all i > 0, and

(2) H 0(G/P,LP (λ)) → H 0(Y,LP (λ)|Y ) is surjective.

(b) Similarly, for any standard parabolic subgroups P,Q ⊂ G and any dominant
weights λ ∈ X∗(P ), µ ∈ X∗(Q), we have

(3) Hi
(Y,LP,Q(λ� µ)|Y

) = 0 for all i > 0 and

(4) H 0(G/P ×G/Q,LP,Q(λ� µ)
)→ H 0(Y,LP,Q(λ� µ)|Y

)
is surjective,

where Y is any union (with the reduced scheme structure) of G-Schubert subvarieties
of G/P ×G/Q.

3.1.4 Theorem. Let w = (si1 , . . . , sin) be any word and let 1 ≤ q ≤ r ≤ n be integers
such that the subword (siq , . . . , sir ) is reduced. Then, for any globally generated line
bundle L on Zw,

(1) Hi
(
Zw,L
( r∑
j=q

−Zw(j)

))
= 0, for all i > 0,
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where Zw is the BSDH variety and Zw(j) are its divisors (2.2.1).
Also,

(2) Hi(Zw,L) = 0, for all i > 0.

Before we prove the theorem, we need the following lemma.

3.1.5 Lemma. With the notation and assumptions as in the above theorem, there exist
integers m1, . . . , mn and m ≥ 0 such that

(a) mj ≥ 0 for j /∈ {q, q + 1, . . . , r},
(b) mj ≤ 0 for j ∈ {q, q + 1, . . . , r} and mr = −1, and

(c) the line bundle O
(∑n

j=1mj Zw(j)

)
⊗ Lw(mρ) is globally generated, where we

have abbreviated OZw by O.

Proof. Let v := w[n − 1] = (si1 , . . . , sin−1) and let ψ = ψw : Zw → Zv be the
P1-fibration as in 2.2.1.

We first show that for any s ≥ 4, the line bundle
Fs := Lw(sρ)⊗O(Zw(n))⊗ψ∗Lv(−ρ) is globally generated. Sinceψ is the pullback
(Exercise 2.2.E.1)

Zw −−−−→ G/B

ψ

⏐⏐� ⏐⏐�fin
Zv −−−−→ G/Pin,

the relative tangent bundle Tψ of ψ is given by Lw(αin). On the other hand,

Lw(αin) � Tψ = ω−1
Zw

⊗ ψ∗ωZv(1)

� Lw(ρ)⊗ O(Zw(n))⊗ ψ∗(Lv(−ρ)), by Proposition 2.2.2.

Now, for s ≥ 4, (s − 1)ρ + αin is dominant, thus Fs (s ≥ 4) is globally generated by
(1).

Now, we come to the proof of the lemma. Assume first that r < n. By in-
duction on n, we can choose integers m1, . . . , mn−1,m satisfying all three properties
(a)–(c) of this lemma for w replaced by v. In particular, the pullback line bundle

O
(∑n−1

j=1mj Zw(j)

)
⊗ψ∗Lv(mρ) is globally generated. Now, choose s ≥ 0 such that

Lw(sρ)⊗O(Zw(n))⊗ψ∗Lv(−ρ) is globally generated. Since L(ρ) is ample onG/B

(Exercise 3.1.E.1), this is possible. Thus, O
(∑n

j=1mj Zw(j)

)
⊗Lw(smρ) is globally

generated, where mn := m. So, this case is taken care of.
Now, consider the case r = n. We freely follow the notation and results from

Exercise 3.1.E.3. Since the line bundles Ow(δn) and O(Zw(n)) both are of degree 1
along the fibers P1 of ψ , we can write

(2) Lw(χin) = Ow(δn) = O
(
Zw(n) +

n−1∑
j=1

bjZw(j)

)
.
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Considering the restriction of the equation (2) to the fibers of ψw,q−1 : Zw →
Zw[q−1], we get

Lu(χin) = OZu

(
Zu(n−q+1) +

n−q∑
j=1

bj+q−1Zu(j)

)
,

where u is the subword (siq , . . . , sin). Thus, from Exercise 3.1.E.3(e), we get bj ≥ 0
for q ≤ j ≤ n − 1. This is the place where we have used the assumption that u is a
reduced word.

Now, the line bundle

Lw(ρ − χin) � Lw(ρ)⊗ O
(

−Zw(n) −
n−1∑
j=1

bj Zw(j)

)

is globally generated since it is the pullback of globally generated line bundle
L(ρ − χin). Finally, by Exercise 3.1.E.3(f), there exist integers a1, . . . , aq−1 > 0

such that OZx

(∑q−1
j=1 aj Zx(j)

)
is ample on Zx; in particular, it is globally generated,

where x := (si1 , . . . , siq−1). Now, taking a large enough b > 0 such that baj ≥ bj for
all 1 ≤ j ≤ q − 1, we get the lemma in this case as well.

Now, we are ready to prove Theorem 3.1.4.

3.1.6 Proof of Theorem 3.1.4. We first prove (3.1.4.2), i.e.,Hi(Zw,L) = 0, for i > 0.
By the proof of Theorem 2.2.3, there exists a section σ ∈ H 0

(
Zw, ω

−1
Zw

)
such that σp−1

splits Zw and the zero scheme Z(σ) of σ is given by

(1) Z(σ) =
n∑
j=1

Zw(j) +D,

whereD is the divisor of a section of Lw(ρ). By Exercise 3.1.E.3(f), there exist integers

a1, . . . , an > 0 such that S := O
(∑n

j=1 aj Zw(j)

)
is ample on Zw. Take m > 0

such that each aj < pm. Then, by (1) and Lemma 1.4.11, there exists an injection of
abelian groups

(2) Hi(Zw,L) ↪→ Hi
(
Zw,Lpm ⊗ S

)
.

Since L is globally generated and S is ample, Lpm ⊗ S is ample as well. Thus, by
Theorem 1.2.8, Hi

(
Zw,Lpm ⊗ S) = 0 for all i > 0, and hence Hi(Zw,L) = 0 for

i > 0, by (2).
Now, we come to the proof of (3.1.4.1). Letmj andm be the integers as in Lemma

3.1.5. Choose t > 0 such that |m1|, . . . , |mn|, m < pt . Then, by (1) and Lemma
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1.4.11, we have an injection of abelian groups:

(3) Hi
(
Zw,L
(
−

r∑
j=q

Zw(j)

))
↪→ Hi
(
Zw,M

(
−
r−1∑
j=q

Zw(j)

))
,

where M := Lpt ⊗ Lw

(
(pt − 1 −m)ρ)⊗ [O(∑nj=1mjZw(j)

)
⊗ Lw(mρ)

]
.

By Lemma 3.1.5, M is globally generated (since Lw

(
(pt − 1 −m)ρ) is globally

generated, being the pullback of a globally generated line bundle). Thus, by induction
on r − q, the right side of (3) is 0 for any i > 0. This proves that the left side of (3) is
0 as well, thus completing the proof of the theorem.

3.1.7 Remark. Taking w = (si, si) and q = 1, r = 2, it is easy to see that the
assumption in Theorem 3.1.4 that (siq , . . . , sir ) be reduced is essential in general.

3.1.E Exercises

For the following exercises (1), (3) and (4), the characteristic of k is arbitrary.

(1∗) Show that the homogeneous line bundle LP (λ) onG/P , for λ ∈ X∗(P ), is ample
if and only if λ− ρP is a dominant weight. Moreover, in this case, it is very ample.

Further, for λ ∈ X∗(P ), LP (λ) is globally generated if and only if λ is dominant.

(2) For a vector space V over a field k of characteristic p > 0, recall the definition of
V [−1] from the proof of Corollary 2.3.5. For any dominant λ ∈ X∗(T ), show that the
k-linear map

ϕλ : H 0(G/B,L(λ))[−1] ⊗H 0(G/B,L((p − 1)ρ))

→ H 0(G/B,L(pλ+ (p − 1)ρ)), σ ′ ⊗ σ ′′ �→ σ ′pσ ′′,

is an isomorphism of G-modules.
Hint: Show first, by the Weyl dimension formula, that the domain and the range of

ϕλ have the same dimensions. Next, if λ is of the form (pr − 1)ρ for some r ≥ 1, then
show that ϕλ is an isomorphism by using the irreducibility of H 0

(
G/B,L((pr+1 −

1)ρ)
)

(Exercise 2.3.E.3). Now, for any dominant λ, choose r large enough such
that (pr − 1)ρ − λ is dominant. Take a nonzero section s ∈ H 0

(
G/B,

L((pr − 1)ρ − λ)
)
. Tensoring with sp gives an injection H 0

(
G/B,L(λ))[−1] →

H 0
(
G/B,L((pr − 1)ρ)

)[−1]. Use this to conclude that ϕλ is injective and hence an
isomorphism.

(3∗) Line bundles on Zw: Let w = (si1 , . . . , sin) be any word. Recall the definition of
the BSDH variety Zw and the morphism ψw,m : Zw → Zw[m], for any 1 ≤ m ≤ n

from 2.2.1, where w[m] is the subword (si1 , . . . , sim). Define the line bundle

(1) Ow(δm) := ψ∗
w,m

(Lw[m](χim)
)
, for any 1 ≤ m ≤ n,
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where χim is the im-th fundamental weight (as in Section 2.1). Thus, Ow(δn) =
Lw(χin).

Now, for any (j1, . . . , jn) ∈ Zn, define the line bundle

(2) Ow(j1, . . . , jn) :=
n⊗
m=1

(Ow(δm)
⊗jm).

Also, recall the definition of the divisors Zw(m) of Zw, 1 ≤ m ≤ n, from 2.2.1.
Prove the following:

(a) The line bundles Ow(δm), 1 ≤ m ≤ n, are globally generated. Moreover,
Ow(δn) is of degree 1 along the fibers P1 of ψw,n−1.

Also, the divisor Zw(n) has degree 1 along the fibers of ψw,n−1.

(b) By induction on n, show that

Pic Zw =
n⊕
m=1

Z Ow(δm), and also

Pic Zw =
n⊕
m=1

Z OZw(Zw(m)).

(c) Show that Ow(j1, . . . , jn) is very ample on Zw iff each jm > 0.

Thus, ample line bundles on Zw are very ample.

Hint: Consider the morphism fw : Zw → G/Qi1 × . . . × G/Qin,

[p1, . . . , pn] �→ (p1Qi1 , p1p2Qi2 , . . . , p1 · · ·pnQin
)
, where Qij is the max-

imal parabolic subgroup of G such that sij /∈ WQij
. Then, fw is a closed

embedding.

Show now that for any (j1, . . . , jn) ∈ Zn,

f ∗
w

(
LQi1 (j1χi1)� . . .� LQin (jnχin)

)
= Ow(j1, . . . , jn).

Thus, conclude that for j1, . . . , jn > 0, Ow(j1, . . . , jn) is very ample on Zw.

For the converse part, prove that the restriction Ow(j1, . . . , jn)|Zw(1) =
Ow(1)(j2, . . . , jn). Thus, by induction on n, j2, . . . , jn > 0. Also, if si1 
= si2 ,
prove that Ow(j1, . . . , jn)|Zw(2) = Ow(2)(j1, j3, . . . , jn). Thus, j1 > 0 as well.
Finally, if si1 = si2 , use the decomposition Zw � (Pi1/B)× Zw(1) to conclude
that j1 > 0.

(d) Use (c) to show that the line bundle Ow(j1, . . . , jn) on Zw is globally generated
iff each jm ≥ 0.

Hint: Use the fact that the tensor product of an ample line bundle with a globally
generated line bundle is ample.
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(e) Let w be a reduced word. Then, the line bundle L := OZw

(∑n
m=1 jm Zw(m)

)
is effective iff each jm ≥ 0.

Hint: If each jm ≥ 0, L is clearly effective. Conversely, if L is effective, take a
B-invariant line M in H 0(Zw,L). Conclude that the zero scheme Z(σ) of any
nonzero σ ∈ M satisfies Z(σ) =∑nm=1 jm Zw(m), for some jm ≥ 0.

(f) Show that there exist integers j1, . . . , jn > 0 such that OZw

(∑n
m=1 jm Zw(m)

)
is ample on Zw.

Hint: Let v = w[n−1]. By induction, OZv

(∑n−1
m=1 jm Zv(m)

)
is ample for some

j1, . . . , jn−1 > 0. Now, Zw(n) has degree 1 along the fibers of ψw,n−1. Thus,

for q > 0 sufficiently large, OZw

(∑n−1
m=1 jmqZw(m) + Zw(n)

)
is ample on Zw.

(4) Prove the analogue of Theorem 3.1.4 for Zw := G×B Zw. More specifically, for
any word w = (si1 , . . . , sin) and 1 ≤ q ≤ r ≤ n such that the subword (siq , . . . , sir ) is
reduced, prove that

Hi
(
Zw,L ⊗ O

( r∑
j=q

−Zw(j)

))
= 0, for all i > 0,

and any globally generated line bundle L on Zw, where Zw(j) := G×B Zw(j).

3.2 Normality of Schubert varieties

We continue to follow the notation as in 2.1. As preparation for the proof of Theorem
3.2.2, we begin with the following.

3.2.1 Proposition. Let v ∈ W , s a simple reflection, andP = B∪BsB the correspond-
ing standard minimal parabolic subgroup. Then, the product morphism
f : P ×B Xv → PXv has connected fibers, and satisfies Rif∗OP×BXv = 0 for
all i ≥ 1.

Proof. If sv < v, then PXv = Xv , P ×B Xv � P/B ×Xv , and f identifies with the
projection P/B × Xv → Xv with fiber P/B � P1. Both the assertions are clear in
that case; thus, we may assume that sv > v. Then, by equation (2.1.4), PXv = Xw,
where w := sv.

For the first assertion, let x ∈ Xw. Then,

f−1(x) � {p ∈ P | p−1x ∈ Xv}/B,
where the right action of B is given by p · b = pb. In particular, f−1(x) is a closed
subscheme of P/B � P1. By the P -equivariance of f , to prove the connectedness of
f−1(x), we may assume that x ∈ W and, moreover, x < sx ≤ w. Then, f−1(x) is
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stable under the standard action of T on P/B. So, if this fiber is not connected, then it
consists of the T -fixed pointsB and sB inP/B. Thus, x < sx ≤ v, so that x−1(α) > 0
(where α is the simple root corresponding to s), and hence sUαx is contained in Xv .
Hence, f−1(x) also contains UαsB, a contradiction.

For the second assertion, since all the fibers of f have dimension ≤ 1, we may
assume that i = 1. Now, factor f as

ι : P ×B Xv → P/B ×Xw, (p, x)B �→ (pB, px)

(a closed immersion) followed by the projection π : P/B × Xw → Xw. Then,
R1f∗OP×BXv = R1π∗(ι∗OP×BXv ), by [Har–77, Chap. III, Exercise 4.1]. Further, the
surjection OP/B×Xw → ι∗OP×BXv and the vanishing ofR2π∗F for any coherent sheaf
F on P/B ×Xw yield a surjection

R1π∗(OP/B×Xw) → R1π∗(ι∗OP×BXv ).

Now, R1π∗(OP/B×Xw) = 0, since H 1(P1,OP1) = 0.

Recall the notion of projectively normal subvarieties X ⊂ PN from Section 1.5.
Observe that, by Exercise 3.1.E.1, LP (λ+ρP ) is very ample onG/P for any dominant
λ ∈ X∗(P ). In particular, LPw(λ+ ρP ) is very ample on XPw .

3.2.2 Theorem. For any standard parabolic subgroup P of G, and any w ∈ W , the
Schubert variety XPw is normal.

Moreover, for any dominant λ ∈ X∗(P ), the linear system on XPw given by
LPw(λ+ ρP ) embeds XPw as a projectively normal variety. In particular,

XPw � Proj
(
R(XPw,LPw(λ+ ρP ))

)
.

Proof. We first prove the normality of XPw . From the fibration π : G/B → G/P with
smooth fiber P/B, the normality of XPw is equivalent to the normality of π−1(XPw).
Since π−1(XPw) is a B-stable closed subvariety of G/B, it is of the form Xv , for some
v ∈ W . Thus, it suffices to prove the normality of Xw. We prove this by induction on
�(w). Of course, for �(w) = 0, sinceXw is a point, it is normal. So, take aw ∈ W with
�(w) > 0 and let si be a simple reflection such that siw < w. Let Pi = B ∪ BsiB be
the corresponding standard minimal parabolic subgroup. Then, the product morphism

f : Pi ×B Xsiw → Xw

is birational; and by Proposition 3.2.1, it has connected fibers. Moreover,Xsiw is normal
by the induction assumption. Thus, the normalization θ : X̃w → Xw is bijective (use
[Har–77, Chap. II, Exercise 3.8]). But, Xw is split, and hence weakly normal by
Proposition 1.2.5. So, θ is an isomorphism, and Xw is normal.

The second part of the theorem means that the embedding XPw → P(E∗), x �→
H 0(x,LPw(λ + ρP )|x)∗, is projectively normal, where E := H 0(XPw,LPw(λ + ρP )).
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By the normality of XPw and the characterization of projectively normal varieties given
before Corollary 1.5.4, it suffices to show that the product map

H 0(XPw,LPw(nµ))⊗H 0(XPw,LPw(mµ))→ H 0(XPw,LPw((n+m)µ))
is surjective for all n,m ≥ 0, where µ := λ + ρP . But this follows from Theorem
3.1.2(c) coupled with Theorem 3.1.1(b).

3.2.3 Remark. An alternative proof of the normality of the Schubert varieties Xw,
w ∈ W , can be given as follows.

Let si be a simple reflection such that wsi < w. Consider the fibration πi :
G/B → G/Pi , where Pi is the minimal parabolic subgroup corresponding to the
singleton I = {i}. Then, πi|Xw → X

Pi
w is a P1-fibration and πi|Xwsi : Xwsi → X

Pi
w is a

birational (surjective) morphism (cf. [Kem–76a, §2, Lemma 1]). Thus, Xw is normal
iff XPiw is normal. By induction, Xwsi is normal, so the normality of XPiw is equivalent
to

(1) (π̄i)∗OXwsi = O
X
Pi
w
,

where π̄i := πi|Xwsi .
For any dominant λ ∈ X∗(Pi), the map

(π̄i)
∗ : H 0
(
XPiw ,LPiw (λ)

)
→ H 0(Xwsi ,Lwsi (λ))

is surjective since we have the commutative diagram:

H 0
(
G/Pi,LPi (λ)

) π∗
i−−−−→ H 0

(
G/B,L(λ))⏐⏐� ⏐⏐�

H 0
(
X
Pi
w ,LPiw (λ)

) π̄∗
i−−−−→ H 0

(
Xwsi ,Lwsi (λ)

)
,

where the vertical maps are the canonical restriction maps, which are surjective by
Theorem 3.1.1(b). Moreover,π∗

i is an isomorphism, since the fibrationπi has connected
projective fibers. Thus, π̄∗

i is surjective, and hence an isomorphism (for any dominant
λ ∈ X∗(Pi)). Hence, (1) follows from Lemma 3.3.3(b), proving the normality of Xw.

3.2.E Exercises

(1) Let k be an algebraically closed field of arbitrary characteristic. We give here the
outline for an alternative proof of the normality of the Schubert varieties Xw without
using the Frobenius splitting methods.

Prove the normality of Xw, w ∈ W , by downward induction on �(w). Let
θ : X̃w → Xw be the normalization of Xw. For any simple reflection si such that
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v := siw > w, consider the product map f : Z = Pi ×B Xw → Xv , which is a bira-
tional morphism. Also, let� : Z̃ = Pi ×B X̃w → Z be the morphism induced from θ .
Set f̃ := f ◦�. For anyB-equivariant sheaf S onXw, let IndPiB S be thePi-equivariant
sheaf on Z induced from S. The exact sequence of B-equivariant sheaves:

0 → OXw → θ∗OX̃w → Q := (θ∗ OX̃w )/OXw → 0

gives rise to an exact sequence of Pi-equivariant sheaves on Z:

0 → OZ → �∗OZ̃ → IndPiB (Q) → 0.

Then, we have the following property (a) by Proposition 3.2.1.

(a) Rif∗OZ = 0, for all i ≥ 1.

Thus, we get an exact sequence of Pi-equivariant sheaves on Xv:

0 → f∗OZ → f∗(�∗ OZ̃) → f∗
(
IndPiB (Q)

)→ 0.

(b) Show that f∗
(
IndPiB (Q)

) = 0, by showing that f∗OZ = f∗(�∗OZ̃) = OXv .
(Use the normality of Xv by induction.)

Let � ⊂ Xw be the locus of nonnormal points of Xw. Then, � is the support of
the sheaf Q; it is B-stable. Let Xu be an irreducible component of �. Define a
subsheaf Qu ⊂ Q on Xw by


(V,Qu) := {σ ∈ 
(V,Q) : 
(V, IXu) · σ = 0
}
,

for any open subset V ⊂ Xw, where IXu is the ideal sheaf of Xu in Xw. By
definition, the sheaf Qu is killed by IXu , so that it may be regarded as a sheaf on
Xu.

Choose a standard minimal parabolic subgroup Pj such that PjXu 
= Xu, i.e.,
sju > u. Then, show that

(c) sjw > w, and thus we could take si = sj .

By the (b) part and the exactness of Ind
Pj
B , show that

(d) for the morphism f ′ : Pj ×B Xu → Xsju,

f ′∗(Ind
Pj
B (Qu)) = 0.

Finally, show that

(e) the support of Ind
Pj
B (Qu) is the whole of Pj ×B Xu.

This contradicts (d) and thus � is empty, proving that Xw is normal.
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3.3 Demazure character formula

3.3.1 Definition. Let f : X → Y be a morphism of schemes. Following [Kem–76a,
page 567], f is called a rational morphism if the induced map OY → f∗OX is an
isomorphism and the direct images Rif∗OX vanish for i > 0. (Kempf calls it a trivial
morphism, but we prefer to call it a rational morphism.)

The following lemma follows immediately from the Leray spectral sequence [God–
58, Chap. II, Theorem 4.17.1] and the projection formula [Har–77, Chap. III, Exercise
8.3].

3.3.2 Lemma. Let f : X → Y be a rational morphism between schemes. Then, for
any locally free sheaf S on Y ,

Hi(Y,S) ∼→ Hi(X, f ∗S), for all i ≥ 0.

If, in addition, g : Y → Z is another rational morphism, then g ◦ f : X → Z is
rational as well.

The next lemma is very useful in proving that certain morphisms are rational.

3.3.3 Lemma. Let f : X → Y be a morphism between projective schemes and let L
be an ample invertible sheaf on Y .

(a) Assume that Hq(X, f ∗Ln) = 0, for all q > 0 and all sufficiently large n. Then,

Rqf∗OX = 0, for all q > 0.

(b) Assume that f is surjective and

H 0(Y,Ln) → H 0(X, f ∗Ln)

is an isomorphism for all sufficiently large n. (We do not impose the assumption
as in (a).) Then,

f∗OX = OY .

Proof. (a) The Ep,q2 term of the Leray spectral sequence for the morphism f and the
sheaf f ∗Ln on X is given by

E
p,q
2 = Hp

(
Y,Rqf∗(f ∗Ln))

� Hp
(
Y, (Rqf∗OX)⊗ Ln),

by the projection formula. Thus, by [Har–77, Chap III, Theorem 8.8 and Proposition
5.3], Ep,q2 = 0 for all p > 0 provided n � 0. In particular, for n � 0,

Hq(X, f ∗Ln) � H 0(Y, (Rqf∗OX)⊗ Ln),
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which is 0 for q > 0 (by assumption). By the definition of an ample invertible sheaf (cf.
[Har–77, Definition on page 153]), for any coherent sheaf S on Y , S ⊗ Ln is globally
generated for large enough n. Thus,

Rqf∗OX = 0 for q > 0.

(b) Consider the sheaf exact sequence on Y :

0 → OY → f∗OX → Q → 0,

where Q, by definition, is the quotient sheaf f∗OX/OY . Tensoring this sequence over
OY with the locally free sheaf Ln and taking cohomology (and using the projection
formula), we get

0 → H 0(Y,Ln) → H 0(X, f ∗Ln) → H 0(Y,Q ⊗ Ln) → H 1(Y,Ln) → . . . .

But, since L is ample, H 1(Y,Ln) = 0, for all n � 0. In particular, by the assumption,
H 0(Y,Q ⊗ Ln) = 0 for all n � 0. Now, by [Har–77, Chap. III, Theorem 8.8], f∗OX,
and hence Q, is a coherent sheaf on Y . But then, since L is ample, we conclude that Q
itself is 0, i.e., OY = f∗OX, proving the lemma.

3.3.4 Theorem. (a) For any standard parabolic subgroup P ofG and any w ∈ W , the
canonical morphism π : Xw → XPw is rational.

In particular, for any locally free sheaf S on XPw , and any i ≥ 0,

π∗ : Hi(XPw,S) → Hi(Xw, π
∗S)

is an isomorphism.
(See Exercise 3.3.E.3 for the corresponding result for X P,Q

w .)

(b) Let w = (si1 , . . . , sin) be a reduced word and let a(w) := si1 · · · sin ∈ W . Then,
the standard morphism θw : Zw → Xw ((2.2.1.6)) is rational, wherew := a(w). Thus,
for any locally free sheaf S on Xw and any i ≥ 0,

θ∗
w : Hi(Xw,S) → Hi(Zw, θ

∗
wS)

is an isomorphism.

Proof. (a) By the argument used in Remark 3.2.3, for any dominant λ ∈ X∗(P ),

π∗ : H 0(XPw,LPw(λ)) → H 0(Xw,Lw(λ))
is surjective and, π being surjective, of course it is injective. Moreover, by Theorem
3.1.1(a), Hi(Xw,Lw(λ)) = 0 for all i > 0. Thus, the (a) part follows from Lemmas
3.3.2 and 3.3.3.

(b) We argue by induction on n = �(w); if n = 1, then θw is an isomorphism. For
an arbitrary reduced w, let v = (si2 , . . . , sin) and v = a(v). Then, v is a reduced word,
and θw factors as

Pi1 ×B θv : Pi1 ×B Zv → Pi1 ×B Xv
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followed by the product morphism f : Pi1 ×B Xv → Xw. By induction, the morphism
θv is rational; thus it follows easily that Pi1 ×B θv is rational as well. On the other
hand, f is rational by normality of Xw and Proposition 3.2.1. Thus, θw is rational by
Lemma 3.3.2.

3.3.5 Remark. Theorem 3.3.4(b) can also be obtained immediately by using (3.1.4.2)
and Lemma 3.3.3(a). But we still need to use the normality of Xw.

Moreover, Theorem 3.3.4(b) is true for an arbitrary w by Exercise 3.3.E.2.

3.3.6 Definition. (Demazure operators) For any simple reflection si , 1 ≤ i ≤ �,
following Demazure, define the Z-linear operator Dsi : A(T ) → A(T ) by

Dsi (e
λ) = eλ − esiλ−αi

1 − e−αi , for eλ ∈ X∗(T ),

where A(T ) := Z[X∗(T )] is the group algebra of the character group X∗(T ) and αi is
the i-th simple (positive) root. It is easy to see that Dsi (e

λ) ∈ A(T ). In fact, one has
the following simple lemma.

3.3.7 Lemma.

Dsi (e
λ) =

⎧⎪⎨⎪⎩
eλ + eλ−αi + · · · + esiλ , if 〈λ, α∨

i 〉 ≥ 0

0, if 〈λ, α∨
i 〉 = −1

−(eλ+αi + · · · + esiλ−αi ), if 〈λ, α∨
i 〉 < −1.

Now, for any word w = (si1 , . . . , sin), define Dw = Dsi1
◦ · · · ◦ Dsin : A(T ) →

A(T ).
The ring A(T ) admits an involution defined by eλ = e−λ. We denote Dw(eλ) by

D̄w(e
λ).

Now, we are ready to prove the following Demazure character formula. For any
finite-dimensional representation M of B, by Lw(M) we mean the pullback vector
bundle θ∗

w(L(M)).
3.3.8 Theorem. For any (not necessarily reduced) word w and any finite-dimensional
representationM of B, we have

(1) χ(Zw,Lw(M)) = D̄w(chM), as elements of A(T ),

whereχ(Zw,Lw(M)) :=∑p(−1)p ch Hp(Zw,Lw(M)) ∈ A(T ) and, for any finite-
dimensional T -module N , chN denotes its formal T -character.

In particular, for λ ∈ X∗(T ) and any reduced word w with w = a(w),

(2) χ(Xw,Lw(λ)) = D̄w(e
λ).

Hence, if λ ∈ X∗(T )+,

(3) chH 0(Xw,Lw(λ)) = D̄w(e
λ).
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Proof. For any exact sequence

(4) 0 → M1 → M → M2 → 0

of finite-dimensional representations of B we have, from the corresponding long exact
cohomology sequence (Lw being an exact functor),

(5) χ(Zw,Lw(M)) = χ(Zw,Lw(M1))+ χ(Zw,Lw(M2)).

We prove (1) by induction on the length n of w = (si1 , . . . , sin). If n = 1, (1)
follows for any one-dimensional representation M of B from Exercise 3.3.E.1. Now,
by (5), we get the validity of (1) for general M (in the case n = 1), since any nonzero
B-module M has a B-fixed line by using the Borel fixed point theorem (cf. [Spr–98,
Theorem 6.2.6]). Assume the validity of (1) for w[n − 1] by induction (and any M).
The Leray spectral sequence for the fibration ψ = ψw,n−1 : Zw → Zw[n−1] takes the
form

E
p,q
2 = Hp

(
Zw[n−1],Lw[n−1](Hq(Pin/B,Lsin (M)))

)
,

and it converges to Hp+q(Zw,Lw(M)).
From this it is easy to see that

∑
p,q

(−1)p+q chHp
(
Zw[n−1],Lw[n−1](Hq(Pin/B,Lsin (M)))

)
= χ(Zw,Lw(M)).(6)

But, by the induction hypothesis and the case n = 1, the left side of (6) is given by

∑
q

(−1)q χ

(
Zw[n−1],Lw[n−1](Hq(Pin/B,Lsin (M)))

)
= D̄w[n−1](D̄sin (chM))

= D̄w(chM).

This, together with (6), proves (1) for w and thereby completes the induction.
(2) follows from (1) by Theorem 3.3.4(b) and (3) follows from (2) by Theorem

3.1.1(a).

The following corollary follows immediately from (3.3.8.2).

3.3.9 Corollary. For any reduced word w, the operatorDw : A(T ) → A(T ) depends
only on the Weyl group element a(w).

For w ∈ W , we set Dw = Dw for any reduced word w with a(w) = w.

(This corollary also admits a purely algebraic proof.)
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3.3.10 Definition. For λ ∈ X∗(T )+ recall some elementary properties of the Weyl
module V (λ) := H 0(G/B,L(λ))∗ from Section 2.1. Forw ∈ W , define the Demazure
module Vw(λ) as the B-submodule of V (λ) generated by a nonzero vector of weight
wλ in V (λ). Observe that, since the λ-weight space V (λ)λ of V (λ) is one-dimensional,
so is

(1) dimV (λ)wλ = 1.

Thinking of the line bundle L(λ) asG×B
(
Hom(kλ, k)

)
, the identification θ : V (λ)∗ →

H 0(G/B,L(λ)) is explicitly given by

(2) θ(f )(gB) = (g, f̄g)modB, for g ∈ G and f ∈ V (λ)∗,
where f̄g : kλ = V (λ)λ → k is defined by f̄g(vλ) = f (gvλ).

The following corollary follows from Theorems 3.3.8 and 3.1.1(b) for P = B.

3.3.11 Corollary. For λ ∈ X∗(T )+ and w ∈ W , as B-modules,

(1) H 0(Xw,Lw(λ))∗ � Vw(λ).

In particular, for any reduced word w with w = a(w),

(2) ch Vw(λ) = Dw(e
λ).

Proof. By Theorem 3.1.1(b), the restriction map (under the identification θ )

γ : V (λ)∗ → H 0(Xw,Lw(λ))
is surjective. Since B · w̄ ⊂ Xw is a dense (open) subset, where w̄ is the coset wB,

Ker γ = {f ∈ V (λ)∗ : γ (f )|B·w̄ ≡ 0}
= {f ∈ V (λ)∗ : f|Vw(λ) ≡ 0}.

From this (1) follows and (2) follows from (3.3.8.3).

3.3.E Exercises

For the following exercises, the characteristic of k is arbitrary.

(1∗) Let Pi be any minimal parabolic subgroup of G and let λ ∈ X∗(T ) = X∗(B).
Then, show that with the notation as in Theorem 3.3.8,

χ(Pi/B,L(kλ)) = D̄si (e
−λ).
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(2∗) Let w be any, not necessarily reduced, word. Then, the image of the morphism
θw : Zw → G/B is an irreducible, closed, B-stable subset of G/B. Thus, Im θw =
Xw, for some w ∈ W . Show that

θw : Zw → Xw is a rational morphism.

Hint: Consider the fibrationZw → Pi1/B with fiberZw′ , where w = (si1 , . . . , sin)

and w′ := (si2 , . . . , sin). Assume the validity of the exercise for w′ by induction on the
length n of w.

(3∗) Prove the analogue of Theorem 3.3.4(a) forXw replaced by Xw. More specifically,
show that for any standard parabolic subgroups P and Q of G and any w ∈ W , the
canonical morphism π : Xw → X P,Q

w is rational. In particular, for any locally free
sheaf S on X P,Q

w and any i ≥ 0,

π∗ : Hi(X P,Q
w ,S) → Hi(Xw, π∗S)

is an isomorphism.

3.4 Schubert varieties have rational resolutions

3.4.1 Definition. A proper birational morphism f : X → Y of varieties is called a
rational resolution if X is nonsingular, f∗OX = OY and

Rif∗(OX) = Rif∗(ωX) = 0, for all i > 0.

If such a resolution exists, then Y is said to admit a rational resolution. Recall that
in characteristic 0, the requirement Rif∗(ωX) = 0 is automatically satisfied by the
Grauert–Riemenschneider vanishing theorem, cf. [GrRi–70] or [EsVi–92, p. 59].

A fundamental property of such resolutions is the following well known result (cf.
[KKMS–73, p. 50–51]).

3.4.2 Lemma. Let f : X → Y be a rational resolution. Then, Y is Cohen–Macaulay
with dualizing sheaf f∗ωX.

Proof. The assertion being local in Y , we may assume that Y is a closed subvariety of a
nonsingular affine variety Z. Let ι : Y → Z be the inclusion, and put g = ι ◦ f . Then,
g∗OX = ι∗OY , and Rig∗OX = 0 for all i ≥ 1. Applying the local duality theorem
[Har–66] to the proper morphism g and the sheaves OX and ωZ , we obtain

RHom(ι∗OY , ωZ) = RHom(Rg∗OX , ωZ) = Rg∗RHom(OX , g
!ωZ)

= Rg∗g!ωZ = Rg∗ωX[−d] = g∗ωX[−d],
that is, Exti

Z(ι∗OY , ωZ) = 0 for all i 
= d , and Extd
Z(ι∗OY , ωZ) = g∗ωX ,

where d := codim Y = dimX − dimZ. This means that Y is Cohen–Macaulay with
dualizing sheaf f∗ωX.
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3.4.3 Theorem. For any reduced w, the resolution θw : Zw → Xw is rational, where
w := a(w). If, in addition, the natural map Xw → XPw is birational for a standard
parabolic subgroup P of G, then the composition θPw : Zw → XPw is a rational
resolution as well.

Proof. By Theorem 3.3.4, it suffices to show the vanishing ofRiθw∗ωZw , and likewise
for θPw, for i > 0. But by Theorem 2.2.3,Zw is split byσp−1, whereσ ∈ H 0(Zw, ω

−1
Zw
)

vanishes identically on the exceptional loci of θw and of θPw. So, the desired vanishing
follows from Theorem 1.3.14.

3.4.4 Corollary. Any Schubert variety XPw ⊂ G/P is Cohen–Macaulay.
Moreover, for any ample line bundle L = LP (λ) on G/P , XPw is projectively

Cohen–Macaulay in the projective embedding given by Lw := L|XPw . In particular, for

any such L, Hi
(
XPw,L−1

w

) = 0, for all i < dimXPw .

Proof. The first assertion follows from Lemma 3.4.2 and Theorem 3.4.3.
To prove the second assertion, since XPw is projectively normal by Theorem 3.2.2,

it suffices to show (by the discussion before Corollary 1.5.4) that

Hi(XPw,Lnw) = 0, for all 0 < i < dimXPw and all n ∈ Z.

Since XPw is Cohen–Macaulay, this holds for all 0 ≤ i < dimXPw and all n � 0 (by
[Har–77, Chap. III, Theorem 7.6(b)]) and hence for all n < 0, by the splitting of XPw .
For n ≥ 0, this follows from Theorem 3.1.1(a).

The “In particular” statement follows fromTheorem 1.2.9. This proves the corollary.

3.4.5 Remark. The assertion that for any w ∈ W and dominant regular λ ∈ X∗(T ),

Hi(Xw,Lw(−λ)) = 0, for all i < �(w),

can also be obtained immediately from Theorems 3.1.4 and 3.3.4(b) as follows. By
Theorem 3.3.4(b),

Hi(Xw,Lw(−λ)) � Hi(Zw,Lw(−λ)),
where w is a reduced word with a(w) = w. By Serre duality and Proposition 2.2.2,

Hi
(
Zw,Lw(−λ)

) � H�(w)−i
(
Zw,Lw(λ)⊗ ωZw

)∗
= H�(w)−i

(
Zw,Lw(λ− ρ)⊗ O(− n∑

j=1

Zw(j)

))∗
= 0 , by (3.1.4.1).

Let X be a complete variety and let L1, . . . ,Lr be semi-ample line bundles
on X. Then, recall the definition of the multicone C(X; L1, . . . ,Lr ) :=
SpecR(X; L1, . . . ,Lr ) from Exercise 1.1.E.2.
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3.4.6 Proposition. Let X be a projective variety admitting a rational resolution and
let L1, . . . ,Lr be semi-ample line bundles on X such that L1 ⊗ · · · ⊗ Lr is ample.
Then, the multicone C(X; L1, . . . ,Lr ) admits a rational resolution if the following
conditions (a)-(b) are satisfied for all m1, . . . , mr ≥ 0.

(a) Hi
(
X,Lm1

1 ⊗ · · · ⊗ Lmrr
) = 0, for all i ≥ 1.

(b) Hi
(
X,L−1−m1

1 ⊗ · · · ⊗ L−1−mr
r

) = 0, for all i < dimX.

Proof. Let V be the total space of the vector bundle L−1
1 ⊕ · · · ⊕ L−1

r on X, with the
projection map

f : V → X.

Then,
f∗OV =

⊕
m1,...,mr≥0

Lm1
1 ⊗ · · · ⊗ Lmrr ,

so that 
(V,OV) = R(X; L1, . . . ,Lr ). This yields a dominant morphism

π : V → C(X; L1, . . . ,Lr ).

Observe that π is projective (hence surjective) and satisfies π∗OV = OC(X;L1,...,Lr ), by
Exercise 1.1.E.3. Thus, the fibers of π are connected by [Har–77, Chap. III, Corollary
11.3]. On the other hand, the assumption that L1 ⊗ · · · ⊗ Lr is ample easily implies
that dim V = dimC(X; L1, . . . ,Lr ). It follows that π is birational.

The assumption (a) amounts to Hi(V,OV) = 0 for all i ≥ 1. Since
C(X; L1, . . . ,Lr ) is affine, it follows that Riπ∗OV = 0 for all i ≥ 1. Moreover,
sinceX is Cohen–Macaulay (Lemma 3.4.2), V is Cohen–Macaulay as well, with dual-
izing sheaf

ωV = f ∗(ωX ⊗ L1 ⊗ · · · ⊗ Lr ).
Now, (b), together with Serre duality, implies that Riπ∗ωV = 0 for all i ≥ 1.

On the other hand, any rational resolution ϕ : X̃ → X yields a rational resolution
ψ : ϕ∗V → V. By Lemma 3.4.2 and the Grothendieck spectral sequence [Gro–57],
π ◦ ψ : ϕ∗V → C(X; L1, . . . ,Lr ) is a rational resolution.

As a consequence of the above proposition and Theorem 3.4.3, we obtain the fol-
lowing.

3.4.7 Theorem. Let P be any standard parabolic subgroup of G and let XPw ⊂ G/P

be a Schubert variety. Then, for any dominant λ1, . . . , λr ∈ X∗(P ), the multicone
C
(
XPw ; LPw(λ1), . . . ,LPw(λr)

)
admits a rational resolution.

Proof. By taking a larger parabolicQ ⊃ P (if needed) and using Theorem 3.3.4(a), we
can assume that λ1 +· · ·+λr −ρP is dominant, where ρP is as in Exercise 2.2.E.4. In
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view of Proposition 3.4.6 and Theorem 3.4.3, it suffices to show that for any dominant
λ ∈ X∗(P ), the following are satisfied.

Hi
(
XPw,LPw(λ)

) = 0, for i > 0, and(1)

Hi
(
XPw,LPw(−λ− ρP )

) = 0, for all i < dimXPw .(2)

Now, (1) is nothing but Theorem 3.1.1(a) and (2) follows from Corollary 3.4.4.

3.4.E Exercises

For the following exercises, the characteristic of k is arbitrary.

(1) Let Xw ⊂ G/B be any Schubert variety. Then, show that the canonical sheaf of
Xw is given by OXw(−∂Xw)⊗ Lw(−ρ), where ∂Xw is the union of codimension one
Schubert subvarieties of Xw.

(2) Show that for anyw ∈ W , standard parabolic subgroupsP,QofG and any dominant
λ ∈ X∗(P ), µ ∈ X∗(Q), the linear system on X P,Q

w given by
LP,Qw
(
(λ+ ρP )� (µ+ ρQ)

)
embeds X P,Q

w as a projectively normal and projectively
Cohen–Macaulay variety.

3.5 Homogeneous coordinate rings of Schubert
varieties are Koszul algebras

3.5.1 Definition. Let L be a line bundle on a schemeX. Then, consider the Z+-graded
algebra

R(X,L) :=
⊕
m≥0

H 0(X,Lm)

with respect to the line bundle L. The line bundle L on X is said to be normally
presented if the canonical Z+-graded algebra homomorphism

ξ :
⊕
m≥0

Sm(H 0(X,L)) → R(X,L)

is surjective and the kernel Ker(ξ) is generated as an ideal in the symmetric algebra
S(H 0(X,L)) by its elements of degree 2; that is, R(X,L) is a quadratic algebra in the
sense of Definition 1.5.5.

If Y is a closed subscheme of X, then Y is said to be linearly defined in X with
respect to L if the restriction map

R(X,L) → R(Y,L|Y )

is surjective and its kernel is generated by its degree 1 elements. If H 0(Y,OY ) is one-
dimensional, Y is linearly defined in Xwith respect to L if and only if R(Y,L|Y ) is a
quadratic R(X,L)-module in the sense of Definition 1.5.5.
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3.5.2 Theorem. Let P ⊂ G be any standard parabolic subgroup and let v ≤ w ∈ W .
Then, for any dominantλ ∈ X∗(P ), the line bundle LPw(λ) onXPw is normally presented.
Moreover, XPv is linearly defined in XPw with respect to LPw(λ).
Proof. By Proposition 1.5.8, it suffices to show that (G/P )3 is

(
(G/P )2 × ∂−G/P

)
-

split compatibly splittingXPw × (G/P )2,XPv × (G/P )2, X P,P
e ×G/P ,G/P ×X P,P

e .
Now, applying Theorem 2.3.10, we get such a splitting of (G/P )3. Since XPv and XPw
are both linearly defined inG/P ,XPv is linearly defined inXPw (Remark 1.5.6(iii)).

As another consequence of Theorem 2.3.10, we get the following strengthening of
Theorem 3.5.2. Recall that the Koszul algebras and Koszul modules are defined in
1.5.9.

3.5.3 Theorem. Let P ⊂ G be any standard parabolic subgroup. Then, for any
v ≤ w ∈ W and dominant λ ∈ X∗(P ), the algebra R(XPw,LPw(λ)) is Koszul. In
particular, R(G/P,LP (λ)) is a Koszul algebra. Moreover, R(XPv ,LPv (λ)) is a Koszul
module over R(XPw,LPw(λ)).
Proof. Apply Theorem 1.5.15 together with Theorem 2.3.10.

Even though the results in this chapter were obtained under the assumption of
positive characteristic, most of them remain true in characteristic 0 and follow from the
corresponding results in positive characteristic by applying the semicontinuity theorems
from Section 1.6 (specifically Proposition 1.6.2 and Corollary 1.6.3). More precisely,
we state the following.

3.5.4 Theorem. Theorems 3.1.1, 3.1.2, 3.1.4, 3.2.2, 3.3.4, 3.3.8, 3.4.3 and 3.4.7; Re-
mark 3.1.3; and Corollaries 3.3.11 and 3.4.4 remain true over an algebraically closed
field of an arbitrary characteristic.

Proof. For Theorems 3.1.1, 3.1.2 and Remark 3.1.3, use these results in characteristic
p > 0 and Proposition 1.6.2 and Corollary 1.6.3. Similarly, for Theorem 3.1.4 use this
result in characteristic p > 0 and Proposition 1.6.2 together with Exercise 3.1.E.3(d).
For the normality ofXPw (Theorem 3.2.2), follow the same argument as in Remark 3.2.3;
alternatively the proof outlined in Exercise 3.2.E.1 works over any k. The projective
normality ofXPw (Theorem 3.2.2) follows by the same argument. Theorem 3.3.4 follows
by the same argument since Proposition 3.2.1, Lemmas 3.3.2 and 3.3.3 are characteristic
free. Theorems 3.3.8, 3.4.3 and Corollary 3.3.11 follow by the same proof; observe that
Riθw∗ωZw is automatically zero in characteristic 0 (Definition 3.4.1). Corollary 3.4.4,
first part, follows by the same argument since Lemma 3.4.2 is characteristic free; and
the second part follows by the same argument once we use Proposition 1.6.2. Theorem
3.4.7 follows by the same argument since Proposition 3.4.6 is characteristic free.

3.5.5 Remark. All the above results (with possibly an exception of Remark 3.1.3) in
characteristic 0 can also be proved directly by characteristic 0 methods (cf. [Kum–87,
88, 02]).
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3.5.E Exercises

(1) Let L1, . . . ,Lr be line bundles on a scheme X. Then, the Zr+-graded algebra

R(X; L1, . . . ,Lr ) =
⊕

(m1,...,mr )∈Zr+

H 0(X,Lm1
1 ⊗ · · · ⊗ Lmrr )

is called the multihomogeneous coordinate ring of X with respect to the line bundles
L1, . . . ,Lr . Any nonzero element of H 0(X,Lm1

1 ⊗ · · · ⊗ Lmrr ) is said to be of total
degree
∑
mi . Consider the canonical Zr+-graded algebra homomorphism

ψ :
⊕

(m1,...,mr )∈Zr+

Sm1
(
H 0(X,L1)

)⊗ · · · ⊗ Smr (H 0(X,Lr )
)→ R(X; L1, . . . ,Lr ).

Then, the line bundles L1, . . . ,Lr on X are said to be normally presented, if ψ is
surjective and its kernel is generated by its elements of total degree 2.

Let Y be a closed subscheme of X. If the restriction map R(X; L1, . . . , Lr ) →
R(Y ; L1|Y , . . . ,Lr|Y ) is surjective and its kernel is generated as an ideal by its elements
of total degree 1, thenY is said to be linearly defined inXwith respect to the line bundles
L1, . . . ,Lr .

LetP ⊂ G be a standard parabolic subgroup and letλ1, . . . , λr be dominant weights
in X∗(P ). Then, for any v ≤ w ∈ W , prove the following:

(a) The line bundles LPw(λ1), . . . ,LPw(λr) on XPw are normally presented.

(b) XPv is linearly defined inXPw with respect to the line bundles LPw(λ1), . . ., LPw(λr).
(c) The ring R

(
XPv ; LPv (λ1), . . . ,LPv (λr)

)
is Koszul, and it is a Koszul module over

R
(
XPw ; LPw(λ1), . . . ,LPw(λr)

)
.

Hint: Use the Exercises 1.5.E.

(2) Show that for any standard parabolic subgroups P,Q of G and any dominant
λ ∈ X∗(P ), µ ∈ X∗(Q), the line bundle LP,Qw (λ�µ) on X P,Q

w is normally presented
for any w ∈ W . Moreover, for v ≤ w, X P,Q

v is linearly defined in X P,Q
w with respect

to LP,Qw (λ� µ).
Hint: Take an appropriate splitting of X3 and use Proposition 1.5.8, where X =

G/P × G/Q. This splitting is slightly different from that of Theorem 2.3.10, but
obtained by a similar method.

(3) Show that for X = G/B, X3 does not admit a splitting such that all the partial
diagonals are compatibly split.

Hint: Take X = P1 and consider the ample line bundle L on X3 with multidegree
(1, 1, 1). Then, show that the restriction mapH 0(X3,L) → H 0(Y,L) is not surjective,
where Y is the union of the three partial diagonals.

Alternatively, show that the intersection of any partial diagonal with the union of
the remaining two partial diagonals is not reduced.
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3.C. Comments

In their full generality Theorems 3.1.1(a)–(b) and 3.1.2(c) are due to Andersen [And–
85] and Ramanan–Ramanathan [RaRa–85]; and Remark 3.1.3(a) is due to Ramanathan
[Ram–85]. For an alternative proof of Theorem 3.1.2(c), see [Ram–87]. Theorem
3.1.1(a)–(b) in the case whenLP (λ) is ample was earlier obtained by Mehta–Ramanathan
[MeRa–85] and Theorem 3.1.1(c) follows readily from [loc cit.]. Also recall that
Theorem 3.1.1(a)–(b) for “special” Schubert varieties was obtained by Kempf [Kem–
76a] and so was their normality and Cohen–Macaulayness; and different (from that of
Kempf) proofs of Theorem 3.1.1(a) forXPw = G/B were given byAndersen [And–80a]
and Haboush [Hab–80]. Theorem 3.1.2 in characteristic 0 was obtained first by Ku-
mar [Kum-88] and over an arbitrary characteristic it can be deduced from [MeRa–88].
Theorem 3.1.4 in characteristic 0 (and for line bundles L on Zw which are pullback
from the globally generated line bundles on G/B) is due to Kumar [Kum-87]. In its
present form (in an arbitrary characteristic) it is due to Lauritzen–Thomsen [LaTh–04].
Exercise 3.1.E.3 is taken from [loc cit.] and Exercise 3.1.E.1 is taken from [Jan–03,
Part II, §§ 4.4 and 8.5].

Theorem 3.2.2 in its full generality is due to Ramanan–Ramanathan [RaRa–85]. The
normality ofXPw was also proved by Andersen [And–85]. The proof of the normality of
XPw given in 3.2.2 is influenced by the proof due to Mehta–Srinivas [MeSr–87]; the proof
given in [RaRa–85] is outlined in 3.2.3; and yet another proof of the normality ofXPw in
an arbitrary characteristic due to Seshadri [Ses–87] (though with some simplifications)
is outlined in Exercise 3.2.E.1. This proof of Seshadri predates all the other proofs of
normality in an arbitrary characteristic. It can be modified to prove the normality and
Cohen–Macaulayness of a certain class of subvarieties of G/P which includes all the
Schubert subvarieties (cf. [Bri–03b]).

As is well known (and pointed out by V. Kac), the original proof of the Demazure
character formula (3.3.8.3) as in [Dem–74] has a serious gap. Subsequently, Joseph
[Jos–85] proved the Demazure character formula in characteristic 0 for “large” dom-
inant weights. Since the validity of the Demazure character formula over k (for any
algebraically closed field k) for large powers of an ample line bundle onG/B is equiva-
lent to the normality of the Schubert varieties over k, Joseph’s above cited work provided
the first proof of the normality of Schubert varieties over k of characteristic 0. Now,
Theorem 3.1.1(a)–(b) over any k for P = B implies the Demazure character formula
over k and thus the results of Ramanan–Ramanathan [RaRa–85] provide a proof of the
Demazure character formula in an arbitrary characteristic. Similarly, the normality of
the Schubert varieties over k together with the validity of Theorem 3.1.1(a)–(b) over k
for P = B and only for ample line bundles L(λ) again imply the Demazure character
formula over k. Thus, the works [Ses–87] and [MeRa–85] together provide another
proof of the Demazure character formula. Yet another proof of the Demazure character
formula is due to Andersen [And–85]. Still another proof of the Demazure character
formula in characteristic 0 was given by Kumar [Kum–87] crucially using Theorem
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3.1.4. Lemma 3.3.3(a) is due to Kempf (cf. [Dem–74]) and 3.3.3(b) is taken from
[Kum–87].

Theorem 3.4.3 and Corollary 3.4.4 in their full generality are due to Ramanathan
[Ram–85]; Theorem 3.4.3 in characteristic 0 was also obtained by Andersen [And–85].
([Mehta–Srinivas [MeSr–89] gave a different proof of the Cohen–Macaulayness ofXPw .)
Such results were proved earlier by Hochster [Hoch–73], Kempf [Kem–76a,b], Laksov
[Lak–72], Musili [Mus–72] for Schubert varieties in Grassmannians; by de Concini–
Lakshmibai [DeLa–81] for the Schubert varieties XPw for P of “classical” type; by
Musili–Seshadri [MuSe–83] for Xw ⊂ SLn/B. Proposition 3.4.6 and Theorem 3.4.7
are due to Kempf–Ramanathan [KeRa–87] and so is Exercise 3.5.E.1(a)–(b). Theorem
3.5.2 and Exercise 3.4.E.1 are due to Ramanathan [Ram–87], however his proof of
Theorem 3.5.2 is different. Recall that by a well known result of Kostant, the full ideal of
G/P inside P(H 0(G/P,LP (λ))∗), for an ample line bundle LP (λ), is generated by an
“explicit” set of quadratic equations generalizing the Plücker equations (cf. [Gar–82],
[Kum–02, §10.1]). Theorem 3.5.3 and Exercise 3.5.E.1(c) are due to Inamdar–Mehta
[InMe–94a,94b]. For Theorems 3.5.2 and 3.5.3, also see [Bez–95]. Earlier, Kempf
[Kem–90] had proved that the homogeneous coordinate ring of a Grassmannian in its
Plücker embedding is Koszul.

Several of the results of this chapter for the case of classical groups were obtained
earlier by the Standard Monomial Theory developed by Seshadri–Lakshmibai–Musili
(cf. the survey article [LaSe–91]).

It may be mentioned that Kashiwara [Kas–93] has given a proof of the Demazure
character formula using his crystal base and Littelmann [Lit–98] has given another
proof using his “LS path model.” Many of the results of this chapter have been obtained
algebraically via the quantum groups at roots of unity by Kumar–Littelmann [KuLi–02].

It will be very interesting to see if the results of the Standard Monomial Theory
(as completed by Littelmann [Lit–94, 95, 98]) can be recovered by Frobenius splitting
methods. Some results in this direction have been obtained by Brion–Lakshmibai
[BrLa–03], where the classical groups are handled.



Chapter 4

Canonical Splitting and
Good Filtration

Introduction

This chapter is devoted to the study of B-canonical splittings of a B-scheme and its
various consequences, including the existence of good filtrations for the space of global
sections of G-linearized line bundles on G-schemes admitting B-canonical splittings.
In addition, we prove the Parthasarathy–Ranga Rao–Varadarajan–Kostant (for short
PRVK) conjecture and its refinement (proved by Kumar in characteristic 0 and Mathieu
in characteristic p).

Section 4.1 is devoted to the study of B-canonical splittings. We begin by defin-
ing the notion of a B-canonical Frobenius-linear endomorphism of a commutative
B-algebra R over k. Let EndF (R) be the additive group of all the Frobenius-linear
endomorphisms of R. Then, it is canonically an R-module with an action of B. It
is shown that the B-canonical Frobenius-linear endomorphisms φ of R arise from B-
module maps St ⊗k(p−1)ρ → EndF (R) (Lemma 4.1.2). Further, as shown in Proposi-
tion 4.1.8, any B-canonical φ ∈ EndF (R) takes B-submodules of R to B-submodules.
In fact, if R is a G-algebra, it is shown that any B-canonical φ takes G-submodules of
R to G-submodules (Proposition 4.1.10). The notion of B-canonical Frobenius-linear
endomorphism of a B-algebra can easily be “sheafified” to allow one to define the no-
tion of B-canonical splittings of a B-schemeX. It is shown that the flag varietiesG/P
admit a unique B-canonical splitting. Moreover, this compatibly splits all the Schubert
subvarieties XPw .

Further, it is shown that for a B-scheme X which admits a B-canonical splitting σ ,
theG-scheme X̃ := G×B X admits aB-canonical splitting σ̃ extending the originalB-
canonical splitting onX = e×X ⊂ X̃ (Proposition 4.2.17). Moreover, if σ compatibly
splits a closedB-subscheme Y ofX, then σ̃ compatibly splits all the closed subschemes
{BwB ×B X,G ×B Y ;w ∈ W } (Exercise 4.1.E.4). In Exercise 4.1.E.2, the BSDH
varieties are asserted to admit B-canonical splittings compatibly splitting the BSDH
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subvarieties. Also, for any B-equivariant morphism f : X → Y between B-schemes
such thatX admits a B-canonical splitting and f∗OX = OY , then the induced splitting
of Y is B-canonical (Exercise 4.1.E.3). Let X, Y be two G-schemes which admit B-
canonical splittings. Then, so is their product X × Y (Exercise 4.1.E.5). In particular,
for any parabolic subgroups Pi , 1 ≤ i ≤ n,G/P1 × · · · ×G/Pn admits a B-canonical
splitting under the diagonal action of B.

Recall that a filtration F 0 = (0) ⊂ F 1 ⊂ · · · of a G-moduleM by G-submodules
F i is called a good filtration if the successive quotients are isomorphic to direct sums
of dual Weyl modulesH 0(G/B,L(λ)). The relevance of this property is, of course, in
characteristic p > 0. The modules which admit a good filtration have many features
akin to characteristic 0 theory. This makes such modules “easier” to handle. It is shown
that the G×G-module k[G] admits a good filtration for the G×G-action (Theorem
4.2.5). This is used to give the most useful cohomological criterion to decide when a
G-module M admits a good filtration. It is shown that M admits a good filtration iff
Ext1

G(V (λ),M) = 0 for all the Weyl modules V (λ) (Theorem 4.2.7 and Remark 4.2.8).

We now come to the most important representation-theoretic result forG-schemesX
which admit B-canonical splittings, proved by Mathieu. This result asserts that for any
suchX (i.e.,X is aG-scheme admitting a B-canonical splitting), and anyG-linearized
line bundle L onX, theG-moduleH 0(X,L) admits a good filtration (Theorem 4.2.13).
In fact, it is this result which makes the notion of B-canonical splittings a very useful
tool in characteristic p > 0 representation theory.

For the reader’s convenience, we break the proof of this theorem into several
steps. The basic idea of the proof is as follows. We first take the product G-scheme

Y := G/B × X under the diagonal action of G and consider its open subset
◦
Y :=

BwoB/B × X. Let L̃ be the line bundle ε � L on Y , ε being the trivial line bundle

on G/B. Let
◦
C be the graded B-algebra

⊕
n≥0

◦
Cn, where

◦
Cn := H 0(

◦
Y , L̃n) and C

its graded subalgebra
⊕
n≥0 Cn, where Cn := H 0(Y, L̃n), which actually is a graded

G-algebra. Fix a height function h : X∗(T ) → R (as in 4.2.1) and λ ∈ X∗(T )+
and let Fnλ(Cn), resp. F−

nλ(Cn), be the largest B-submodule of Cn such that each
weight µ of Fnλ(Cn), resp. F−

nλ(Cn), satisfies h(µ) ≤ h(nλ), resp. h(µ) < h(nλ);

Fnλ(
◦
Cn) and F−

nλ(
◦
Cn) are defined similarly. Now, consider the graded G-subalgebra

C(λ) := ⊕n Fnλ(Cn) of C and G-stable graded ideal C(λ)− = ⊕n F−
nλ(Cn) of C(λ);

◦
C(λ) and

◦
C(λ)− are defined similarly. Finally, consider the quotient algebras C(λ) :=

C(λ)/C(λ)− and
◦
C(λ) := ◦

C(λ)/
◦
C(λ)−. Then, C(λ) is a graded G-algebra such that

the component C(λ)n is nλ-isotypical as a B-module. Similarly,
◦
C(λ) is a graded

(UG,B)-algebra such that
◦
C(λ)n is nλ-isotypical, where UG is the hyperalgebra of

G. We next show, using the B-canonical splitting of X, that the algebras C(λ) and
◦
C(λ) are reduced (i.e., they do not contain nonzero nilpotent elements). Further, we

show that
◦
C(λ) is an injective B-module. Finally, we show that C(λ)1 = Dλ(C(λ)1)



4.1. Canonical splitting 111

:= H 0(G/B,L((C(λ)1)woλ)). This shows that C1 has a filtration such that the succes-
sive quotients are isomorphic to {Dλ(C(λ)1)}λ∈X∗(T )+ , proving that C1 admits a good
filtration, thereby finishing the proof of the theorem.

As an immediate consequence of the above result, one obtains that the tensor prod-
uct G-module H 0(G/B,L(λ))⊗H 0(G/B,L(µ)) admits a good filtration (Corollary
4.2.14), originally proved (in almost all the cases) by Donkin by long case-by-case
analysis. Similarly, for a parabolic subgroup P of G with the Levi subgroup LP , the
G-moduleH 0(G/B,L(λ)) admits a good filtration as aLP -module (Corollary 4.2.15).

Section 4.3 is devoted to the proof of the PRVK conjecture (proved by Kumar in char-
acteristic 0 and Mathieu in characteristic p). It asserts that for λ,µ ∈ X∗(T )+ andw ∈
W , there exists a unique nonzero G-module homomorphism (unique up to scalar mul-
tiples) V (−λ− wµ)→ H 0(Xw,Lw(λ�µ)), where −λ− wµ is the unique dominant
weight in theW -orbit of −λ−wµ and Xw ⊂ G/B×G/B is theG-Schubert variety as in
Section 2.2 (Theorem 4.3.2). Moreover, the dual
H 0(Xw,L(λ � µ))∗ is canonically isomorphic to the G-submodule of V (λ) ⊗ V (µ)

generated by vλ ⊗ vwµ. Apart from the above identification, which relies on the H 0-
surjectivity result of Section 3.1, the main ingredients of the proof are: (1) The iden-
tification of H 0(Xw,Lw(λ� µ)) with H 0(G/B,L(k−λ ⊗ Vw(µ)∗)), Vw(µ) ⊂ V (µ)

being the Demazure submodule, and (2) a result of Joseph and Polo on the annihilator
of the B-module Vw(µ) (Proposition 4.3.1).

In fact, we prove a refinement of the above result due to Kumar asserting that for
λ,µ and w as above, let {Wλw1Wµ,Wλw2Wµ, . . . ,WλwnWµ} be the distinct double
cosets inW such that λ+ wiµ = λ+ wµ for all i. Then,

dim HomG

(
V
(−λ− wµ), H 0

( m⋃
i=1

X Pλ,Pµ
wi ,LPλ,Pµ(λ� µ)

))
= m,

for all 1 ≤ m ≤ n, where Wλ is the isotropy of λ and Pλ is the parabolic subgroup
BWλB (Theorem 4.3.5). Thus, the dual Weyl moduleH 0(G/B,L(−λ− wµ)) appears
in V (λ)∗ ⊗ V (µ)∗ with multiplicity at least n. These results immediately imply the
corresponding results in characteristic 0 by semicontinuity (Theorem 4.3.8). In Exercise
4.3.E.1, a formula for the Euler–Poincaré characteristic of Xw with coefficients in any
line bundle Lw(λ � µ) is given in terms of the Demazure operators generalizing a
well-known result of Brauer.

4.1 Canonical splitting

We follow the notation as in Section 2.1. In particular, G is a connected, simply-
connected, semisimple algebraic group over an algebraically closed field k of charac-
teristic p > 0, B is a Borel subgroup of G and T ⊂ B a maximal torus. For any root
β, let Uβ be the corresponding root subgroup. Then, as in 2.1, there exists an algebraic
group isomorphism εβ : Ga → Uβ satisfying

tεβ(z)t
−1 = εβ(β(t)z),
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for z ∈ Ga and t ∈ T . For any β ∈ �+, similar to the root vector fβ ∈ g−β (as in
(2.3.1.3)), there exists a root vector eβ ∈ gβ such that for any algebraic representation
V of G, v ∈ V and z ∈ Ga ,

εβ(z) v =
∑
m≥0

zm
(
e
(m)
β · v),

where e(m)β denotes them-th divided power of eβ . If β is a simple root αi , we abbreviate
eβ by ei . Similarly, we abbreviate fβ by fi .

4.1.1 Definition. Let R be a (not necessarily finitely generated) commutative associa-
tive k-algebra with multiplicative identity 1. Then, an additive map φ : R → R is
called a Frobenius-linear endomorphism if it satisfies the following:

(1) φ(apb) = aφ(b), for a, b ∈ R.
Let EndF (R) be the additive group of all the Frobenius-linear endomorphisms of

R. Then, EndF (R) is an R-module under

(2) (a ∗ φ)(b) = φ(ab), for a, b ∈ R and φ ∈ EndF (R).

In particular, k acts on EndF (R) via

(3) (z ∗ φ)(b) = φ(zb) = z1/pφ(b).

Assume now that R is a B-algebra, i.e., B acts algebraically on R via k-algebra
automorphisms (in particular, B acts locally finitely on R). Then, B acts k-linearly on
EndF (R) via

(4) (x ∗ φ)(a) = x(φ(x−1a)), for x ∈ B, a ∈ R and φ ∈ EndF (R).

A Frobenius-linear endomorphism φ ∈ EndF (R) is called B-canonical if the fol-
lowing two conditions are satisfied:

(c1) t ∗ φ = φ, for all t ∈ T , and

(c2) For any simple root αi , 1 ≤ i ≤ �, there exist φi,j ∈ EndF (R), 0 ≤ j ≤ p − 1,
such that

(5) εαi (z) ∗ φ =
p−1∑
j=0

zj ∗ φi,j , for all z ∈ k.

In fact, if we only require that φi,j : R → R are additive maps satisfying (5), then
automatically φi,j ∈ EndF (R). It is easy to see from (c1) that φ(Rλ) ⊂ Rλ/p, for
any λ ∈ X∗(T ), where Rλ is the weight space of R corresponding to the weight λ. In
particular,

(6) φ(Rλ) = 0 unless
λ

p
∈ X∗(T ).
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4.1.2 Lemma. Let R be a B-algebra and let φ ∈ EndF (R). Assume further that the
B-submodule of EndF (R) generated by φ is a finite-dimensional algebraic B-module.

Then, φ is B-canonical iff e(n)i ∗ φ = 0 for all 1 ≤ i ≤ � and n ≥ p(1)

and, moreover, φ is T -invariant,

where e(n)i ∗ φ denotes the action of e(n)i on φ obtained by differentiating the action of
εαi (Ga) on φ.

Thus, φ is B-canonical iff there exists a B-module (k-linear) map

θφ : St ⊗k(p−1)ρ → EndF (R) such that θφ(f− ⊗ f+) = φ,

where kλ (for any λ ∈ X∗(T )) is the one-dimensional B-module as in Section 2.1
associated to the character λ, f− is a nonzero lowest weight vector of St and 0 
= f+ ∈
k(p−1)ρ .

Proof. For any 1 ≤ i ≤ �, φ ∈ EndF (R) and z ∈ k,
(2) εαi (z) ∗ φ =

∑
n≥0

zn ∗ (e(n)i ∗ φ).
From this (1) follows.

Let UU be the hyperalgebra of the unipotent radicalU of B, i.e., it is the subalgebra
of UG generated by {e(n)β ;β ∈ �+, n ∈ Z+}. Then, the map γ : UU → St, a �→ a ·f−,

is a surjective UU -module map with kernel precisely equal to the left ideal
∑

1≤i≤�
n≥p

UU ·e(n)i .

From the above description of Ker γ , the second part of the lemma follows.
(Observe that f− ⊗ f+ is T -invariant.)

4.1.3 Remarks. (a) In the above lemma, assume that R is a finitely generated k-
algebra. Then, for any φ ∈ EndF (R), the B-submodule of EndF (R) generated by
φ is automatically a finite-dimensional algebraic B-module. To see this take a finite-
dimensional B-submodule V of R such that the multiplication map Rp ⊗k V → R is
surjective for the subalgebra Rp := {ap : a ∈ R}. This is possible since R is a finitely
generated k-algebra and hence a finitely generated Rp-module (Lemma 1.1.1). Thus,
under the restriction map, EndF (R) is a B-submodule of Homk(V [1], R)[−1]. From
this the remark follows.

(b) By the identities (4.1.2.1)–(4.1.2.2), for any B-canonical φ ∈ EndF (R) such
that the B-submodule of EndF (R) generated by φ is a finite-dimensional algebraic
B-module (for a B-algebra R), and any 1 ≤ i ≤ �, 0 ≤ j ≤ p − 1,

(1) φi,j = e
(j)
i ∗ φ,

where φi,j is as in Definition 4.1.1.
Moreover,

(2) e
(j)
i ∗ φ = 0, for j ≥ p.
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We now “sheafify” the Definition 4.1.1 for any B-scheme X as follows.

4.1.4 Definition. Recall from 1.1.2 that for any scheme X, the absolute Frobenius
morphism F : X → X gives rise to an OX-module structure F # : OX → F∗OX.
Let EndF (X) := Hom(F∗OX,OX) be the additive group of all the OX-module maps
F∗OX → OX. As in 1.1.2, F∗OX can canonically be identified with OX as a sheaf
of abelian groups on X. Under this identification, however, the OX-module structure
is given by f � g := f pg, for f, g ∈ OX. We define the OX-module structure on
EndF (X) by (f ∗ ψ)s = ψ(f s), for f, s ∈ OX and ψ ∈ EndF (X). In particular, the
k-linear structure on EndF (X) is given by

(z ∗ ψ)s = ψ(zs) = z1/pψ(s),

for z ∈ k, ψ ∈ EndF (X) and s ∈ OX.
IfX is anH -scheme for an algebraic groupH , thenH acts k-linearly on EndF (X)

by
(h ∗ ψ)s = h(ψ(h−1s)), for h ∈ H,ψ ∈ EndF (X) and s ∈ F∗OX,

where the action of H on F∗OX is defined to be the standard action of H on OX
under the identification F∗OX = OX (as sheaves of abelian groups). Moreover, for
h ∈ H, f ∈ OX and ψ ∈ EndF (X),

h ∗ (f ∗ ψ) = (hf ) ∗ (h ∗ ψ).
Let X be a B-scheme and let φ ∈ EndF (X). Then, φ is called B-canonical if it

satisfies the following:

(a) φ is T -invariant, i.e.,
t ∗ φ = φ, for all t ∈ T .

(b) For any simple root αi , 1 ≤ i ≤ �, there exist φi,j ∈ EndF (X), 0 ≤ j ≤ p − 1,
such that

(1) εαi (z) ∗ φ =
p−1∑
j=0

zj ∗ φi,j , for all z ∈ Ga.

In fact, as in 4.1.1, if we only require that φi,j : OX → OX are additive maps
satisfying (1), then automatically φi,j ∈ EndF (X).

A splitting φ ∈ EndF (X) (see Remark 1.1.4(i)) is called a B-canonical splitting if
φ is B-canonical.

As in 4.1.1, it is easy to see from (a) that, under the identification F∗OX = OX,
φ(OX(λ)) ⊂ OX

(
λ
p
), for any λ ∈ X∗(T ), where OX(λ) ⊂ OX denotes the subsheaf

of T -eigenfunctions corresponding to the weight λ, i.e., on any T -stable open subset
V of X, OX(λ)(V ) = {f ∈ OX(V ) : t · f = λ(t)f, for all t ∈ T }. In particular,

(2) φ(OX(λ)) = 0, unless
λ

p
∈ X∗(T ).
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4.1.5 Remark. Instead of the terminology “B-canonical,” the term “semi-B-invariant”
would have been more appropriate.

Recall [Kem–78, §11] that for a B-scheme X and a B-linearized quasi-coherent
sheaf S onX, there is a natural action of the divided power e(n)α on S for any n ≥ 0 and
any root vector eα ∈ gα (for α ∈ �+).

Since EndF (X) is an algebraic B-module by [Har–77, Chap. III, Exercise 6.10(a)]
and [Kem–78, Theorem 11.6(a)], following the same proof as that of Lemma 4.1.2, we
get the following.

4.1.6 Lemma. Let X be a B-scheme and let φ ∈ EndF (X).

Then, φ is B-canonical iff e(n)i ∗ φ = 0 for all 1 ≤ i ≤ � and n ≥ p(1)

and, moreover, φ is T -invariant.

Thus, φ is B-canonical iff there exists a B-module (k-linear) map

θφ : St ⊗k(p−1)ρ → EndF (X)

such that θφ(f− ⊗ f+) = φ.

4.1.7 Remark. Similar to Remark 4.1.3(b), we see that for aB-canonicalφ ∈ EndF (X),

φi,j = e
(j)
i ∗ φ, for any 1 ≤ i ≤ �, 0 ≤ j ≤ p − 1 and(1)

e
(j)
i ∗ φ = 0, for all j ≥ p,(2)

where φi,j is as in Definition 4.1.4(b).

4.1.8 Proposition. Let R be a B-algebra and let φ ∈ EndF (R) be B-canonical. Then,
for any n ≥ 0 and 1 ≤ i ≤ �,
(1) φ

(
e
(pn)
i s
) = e

(n)
i φ(s), for all s ∈ R.

In particular, φ takes B-submodules to B-submodules.

Proof. Since φ is B-canonical, for any z ∈ k and s ∈ R,

(2)
(
εαi (−zp) ∗ φ

)
s =

p−1∑
j=0

(−z)jφi,j (s),

for some φi,j ∈ EndF (R). On the other hand(
εαi (−zp) ∗ φ

)
s = εαi (−zp)

(
φ(εαi (z

p)s)
)

=
∑
m,n≥0

(−1)m zpm e(m)i

(
φ(zpne

(n)
i s)
)

=
∑
m,n≥0

(−1)m zpm+n e(m)i

(
φ(e

(n)
i s)
)
.(3)
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Since the highest power of z in the right side of (2) is p − 1, we see from (3) (by
collecting terms involving zd for d ∈ pZ+) that

(4) φ(s) =
∑
m,n≥0

(−1)m zpm+pn e(m)i

(
φ(e

(pn)
i s)
)
.

Moreover, by (2)–(4), for any 0 ≤ j ≤ p − 1,

(5) (−1)jφi,j (s) = φ(e
(j)
i s).

Now,

(6) εαi (−zp)
(∑
n≥0

φ
(
(zp)pn e

(pn)
i s
))

=
∑
m,n≥0

(−1)m zpm+pne(m)i

(
φ(e

(pn)
i s)
)
.

Combining (6) with (4) we get∑
n≥0

zpn φ(e
(pn)
i s) = εαi (z

p) φ(s)

=
∑
n≥0

zpne
(n)
i (φ(s)).

Equating the coefficients of the above equality, we get

φ(e
(pn)
i s) = e

(n)
i (φ(s)), for all n ≥ 0.

This proves (1).
By (1), we see that the image of any B-submodule N of R under φ is closed under

each e(n)i and thus under εαi (z), for any z ∈ k. Moreover, φ being T -equivariant,
φ(N) is stable under T . Thus, φ(N) is stable under B; B being generated by T and
{εαi (z); z ∈ k, 1 ≤ i ≤ �}. This proves the proposition.

4.1.9 Remarks. (a) For any B-algebra R and B-canonical φ ∈ EndF (R), we have, by
the identity (4.1.8.5),

(1) φi,j (s) = (−1)j φ(e(j)i s), for any 1 ≤ i ≤ �, 1 ≤ j ≤ p − 1 and s ∈ R,

where φi,j is as in (4.1.1.5).

(b) We have the following converse of Proposition 4.1.8. Let R be a B-algebra
and let φ ∈ EndF (R) be a T -invariant element such that φ satisfies (4.1.8.1) for all
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1 ≤ i ≤ � and all n ≥ 0. Then, φ is B-canonical. To show this, by (4.1.8.3),(
εαi (−zp) ∗ φ

)
s =
∑
m,n≥0

0≤j≤p−1

(−1)m zpm+pn+j e(m)i

(
φ(e

(pn)
i e

(j)
i s)
)

=
∑
(−1)m zp(m+n) e(m)i e

(n)
i

(
zjφ(e

(j)
i s)
)

=
(∑
d≥0

( d∑
m=0

(−1)m
(
d

m

))
e
(d)
i z

pd

)(p−1∑
j=0

zjφ(e
(j)
i s)

)

=
p−1∑
j=0

zj φ(e
(j)
i s).

This proves that φ is B-canonical.

As in Section 2.1, let B− be the Borel subgroup of G opposite to B containing
the maximal torus T . Then, similar to the notion of a Frobenius-linear endomorphism
φ ∈ EndF (R) of aB-algebraR to beB-canonical, we have the notion of B−-canonical
φ ∈ EndF (R) of a B−-algebra R.

4.1.10 Proposition. Let R be a G-algebra and let φ ∈ EndF (R) be B-canonical. As-
sume further that theG-submodule of EndF (R) generated by φ is a finite-dimensional
algebraicG-module. (This condition is redundant ifR is a finitely generated k-algebra,
(see Remark 4.1.3(a).)) Then, φ is automatically B−-canonical.

In particular, φ takes G-submodules to G-submodules.

Proof. By (4.1.3.2), for 1 ≤ i ≤ �,
(1) e

(j)
i ∗ φ = 0, for any j ≥ p.

Moreover, since φ is T -invariant, by Exercise 4.1.E.1,

f
(j)
i ∗ φ = 0, for any j ≥ p.

Thus, by (4.1.2.1), φ is B−-canonical.
Since the group G is generated by its subgroups B and B−, by Proposition 4.1.8,

φ takes G-submodules to G-submodules.

The following example provides an important class of B-algebras.

4.1.11 Example. Let X be a scheme and let L be a line bundle on X. Consider the
Z+-graded algebra (as considered in 1.1.12):

(1) RL = R(X,L) :=
⊕
n≥0

H 0(X,Ln)

under the standard product obtained by the multiplication of sections.
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IfX is aH -scheme and L is aH -linearized line bundle onX, then eachH 0(X,Ln)
is an algebraic H -module (cf. [Kem–78, Theorem 11.6]) and thus RL is a H -algebra,
where H is any affine algebraic group.

4.1.12 Definition. LetX be a scheme and let φ ∈ EndF (X). Then, for any line bundle
L on X, φ gives rise to an additive map φL : RL → RL as follows. (In fact, φL is
obtained from a sheaf morphisms φ̃Lm : Lpm → Lm of sheaves of abelian groups by
taking global sections.)

If n is not divisible by p, we set

(1) φL|H0(X,Ln) ≡ 0.

On the other hand if n = pm, as in Section 1.2, there is an isomorphism of sheaves of
abelian groups on X

ξLm : F∗OX ⊗OX
Lm ∼→ Lpm, f ⊗ s �→ f sp,

for f ∈ F∗OX � OX and s ∈ Lm. Thus, the Frobenius-linear endomorphism φ :
F∗OX → OX gives rise to the OX-module map

φ ⊗ ILm : F∗OX ⊗OX
Lm → Lm

and thus using the isomorphism ξLm of sheaves of abelian groups, we get a sheaf
morphism (of sheaves of abelian groups)

φ̃Lm : Lpm → Lm.

Taking the global sections, we get a homomorphism of abelian groups
H 0(X,Lpm) → H 0(X,Lm). This is, by definition, the map φL|H0(X,Lpm) .

As we will see in the proof of Lemma 4.1.13, φL ∈ EndF (RL).

4.1.13 Lemma. Let X be a B-scheme and let L be a B-linearized line bundle on
X. Then, for any B-canonical φ ∈ EndF (X), the induced map φL : RL → RL is
B-canonical.

Moreover, if φ is a splitting, then so is φL (i.e., φL(1) = 1).

Proof. We first prove that φL is Frobenius-linear, i.e., for a ∈ H 0(X,Ln), b ∈
H 0(X,Lm),

(1) φL(apb) = a φL(b).

If m is not divisible by p, then φL(apb) = 0 = φL(b) and thus (1) is satisfied. So,
assume that m is divisible by p. Take a nowhere vanishing section s of L on a small
enough open set V ⊂ X. Then, any section a ofH 0(V ,Ln) can be written as a = f sn,
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for some f ∈ H 0(V ,OX), and also b ∈ H 0(V ,Lm) can be written as b = gsm, for
some g ∈ H 0(V ,OX). Thus, denoting L|V by LV ,

φLV (a
pb) = φLV (f

pg spn+m)

= φ(f pg) s
n+m

p

= f φ(g) s
n+m

p

= aφLV (b).

This proves (1).
Since φ is B-canonical (in particular, T -invariant), it is easy to see that φL is T -

invariant. So, we just need to check the property (c2) as in 4.1.1. As above, take a
nowhere vanishing section s of L on a small enough open set V ⊂ X. Then, any
section a ∈ H 0(V ,Lmp) can be written as a = f smp, for some f ∈ H 0(V ,OX).
Thus, for any 1 ≤ i ≤ � and z ∈ k,(

εαi (z) ∗ φL)a = εαi (z)
(
φL(εαi (−z)a)

)
= εαi (z)

(
φL
(
(εαi (−z) f )(εαi (−z)s)mp

))
= εαi (z)

((
φ(εαi (−z) f )

)
(εαi (−z)s)m

)
= ((εαi (z) ∗ φ) f ) sm
=
p−1∑
j=0

(φi,j (z
jf )) sm, since φ is B-canonical

=
p−1∑
j=0

φL
i,j (z

j a),

where the Frobenius-linear endomorphism φL
i,j : RL → RL is, by definition, (φi,j )L.

This proves the lemma.

4.1.14 Lemma. Let X be a smooth H -scheme for an algebraic group H . Then, the
isomorphism (defined in 1.3.7)

ῑ : H 0(X, ω
1−p
X ) → EndF (X)

is a k-linear H -module isomorphism, where the notation EndF (X) is as defined in
4.1.4.

Proof. Let {t1, . . . , tn} be a system of local parameters on an open set V ⊂ X and let
dT be the volume form dt1 ∧ · · · ∧ dtn on V . Then, for any s ∈ H 0(X, ω

1−p
X ), by

definition

ῑ(s) f = τ(f θsdT )

dT
, for f ∈ 
(V,OX),
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where s|V = θs(dT )
1−p and τ is the trace map defined in 1.3.5 (see also Lemma 1.3.6).

By the definition of τ , it is easy to see that ῑ(s) ∈ EndF (X). Moreover, from the
definition of ῑ, it follows easily that it is a k-linear H -module map.

4.1.15 Theorem. For any standard parabolic subgroup P ⊂ G, there exists a unique
(up to nonzero scalar multiples) nonzero B-canonical φ ∈ EndF (G/P ).

Moreover, this φ is a splitting ofG/P (up to scalar multiples) compatibly splitting
all the Schubert subvarieties and the opposite Schubert subvarieties {XPw, X̃Pw }w∈W .

Proof. As in the beginning of Section 3.1,

(1) ωG/P � LP (−δP ), as G-equivariant bundles,

where δP := ρ + wPo ρ,wPo being the longest element of the Weyl groupWP of P .
Thus, by Lemmas 4.1.6 and 4.1.14, it suffices to prove (for the first part of the

theorem) that the dimension of the B-module maps

(2) dim HomB

(
St ⊗k(p−1)ρ,H

0(G/P,LP ((p − 1)δP ))
) = 1.

Now,

HomB

(
St ⊗k(p−1)ρ,H

0(G/P,LP ((p − 1)δP ))
)

� HomB

(
St, H 0(G/P,LP ((p − 1)δP ))⊗ k−(p−1)ρ

)
� HomG

(
St, H 0(G/P,LP ((p − 1)δP ))⊗ St

)
,

by [Jan–03,Part I, Propositions 3.4 and 3.6]

� HomP (St, k−(p−1)δP ⊗ St), again by [loc cit.].(3)

But St is generated as a B-module; in particular, as a P -module, by its lowest weight
vector f− of weight −(p − 1)ρ. Moreover, the weight space of St corresponding to
the weight (p − 1)δP − (p − 1)ρ is one-dimensional since

(p − 1) δP − (p − 1) ρ = (p − 1) wPo ρ.

Thus, by (3), we get

(4) dim HomB

(
St ⊗k(p−1)ρ,H

0(G/P,LP ((p − 1)δP ))
) ≤ 1,

proving the uniqueness of φ.
To prove the existence of φ, we first take P = B. By Theorem 2.3.1 and Lemmas

4.1.6 and 4.1.14, there exists aB-canonical splitting ofG/B compatibly splitting all the
Xw, X̃w. But then, by Exercise 4.1.E.3,G/P admits aB-canonical splitting compatibly
splitting all theXPw, X̃

P
w by Lemma 1.1.8. This proves the reverse inequality in (4) and

so the theorem is fully established.
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4.1.16 Definition. Let X be a scheme and let Y ⊂ X be a closed subscheme. Then,
φ ∈ EndF (X) is said to be compatible with Y if

(1) φ(F∗IY ) ⊂ IY ,
where IY ⊂ OX is the ideal sheaf of Y . Clearly such a φ induces φY ∈ EndF (Y ).

Assume further that X is a B-scheme and Y ⊂ X a (closed) B-stable subscheme.
Then, for a B-canonical φ ∈ EndF (X) which is compatible with Y , the induced en-
domorphism φY ∈ EndF (Y ) is again B-canonical. To see this, let EndF (X, Y ) be the
B-submodule of EndF (X) consisting of those φ ∈ EndF (X) such that φ is compatible
with Y . Then, the induced map

EndF (X, Y ) → EndF (Y ), φ �→ φY ,

is a B-module map. Thus, if φ ∈ EndF (X, Y ) is B-canonical, so is φY by Lemma
4.1.6.

For a B-scheme X, let Endcan
F (X) be the linear subspace of EndF (X) consisting of

B-canonical Frobenius-linear endomorphisms of X.

4.1.17 Proposition. Let X be a B-scheme. Then, there exists a “natural” injective
map (described in the proof below)

� : Endcan
F (X) → Endcan

F (X̃),

where X̃ := G×B X.
Moreover, � takes a B-canonical splitting σ of X to a B-canonical splitting σ̃ of

X̃ which compatibly splits X = e ×X ⊂ X̃ and such that σ̃|X = σ .
In fact, for any σ ∈ Endcan

F (X),�(σ) is compatible with X and �(σ)|X = σ .

Proof. By Lemma 4.1.6, we have the isomorphism

Endcan
F (X) � HomB(St,EndF (X)⊗ k−(p−1)ρ),

taking φ �→ θ̄φ such that θ̄φ(f−) = φ ⊗ 1, where f− ∈ St is a nonzero lowest weight
vector, 1 is a nonzero element of k−(p−1)ρ and HomB(M,N) denotes the space of all
the k-linear B-module homomorphisms from M to N . Together with the Frobenius
reciprocity, this yields the isomorphism

Endcan
F (X) � HomG(St, IndGB (EndF (X)⊗ k−(p−1)ρ)),

where, for a B-module M , IndGB (M) denotes the space of global sections
H 0(G/B,L(M)). Composing the above isomorphism with the evaluation at f−, we
obtain the injective map

� : Endcan
F (X) → IndGB (EndF (X)⊗ k−(p−1)ρ)

of weight −(p − 1)ρ with respect to T .
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We provide a geometric interpretation of � as follows. Let X′ be the scheme
associated with the ringed space (X,Op

X). Then, X′ is a B-scheme; we put X̃′ :=
G ×B X′. This is a G-scheme, equipped with the projection π : X̃′ → G/B and the
inclusion i : X′ → X̃′. We may regard X̃′ as the scheme associated with the ringed
space (X̃,OG/B⊗Op

G/B
Op

X̃
). (Indeed, both areG-schemes mapping toG/B, with fiber

at the base point the B-scheme X′.) So, the structure sheaf OX̃′ strictly contains Op

X̃
.

Note that i∗ yields an equivalence from the category of G-linearized coherent
sheaves on X̃′, to the category ofB-linearized coherent sheaves onX′. This is proved in
[Bri–03b, Lemma 2]. Here is the construction of its inverse. Consider the pullback G of
a B-linearized coherent sheaf F onX′ toG×X′ under the second projection. Then, G
isG×B-linearized, for the action ofG×B onG×X′ by (g, b)(h, x) = (ghb−1, bx).
Since the quotientG×X′ → G×B X′ = X̃′ is a locally trivialB-bundle, G descends to
aG-linearized sheaf on X̃′. One checks that the pullback of this sheaf to X′ (identified
with B ×B X′) is the original sheaf F . The inverse of i∗ will be denoted IndGB ; then


(X̃′, IndGB F) = IndGB 
(X
′,F),

for any B-linearized coherent sheaf F on X′.
Put L := π∗L((p − 1)ρ); this is a G-linearized line bundle on X̃′. Further,

i∗L = OX′ ⊗ k−(p−1)ρ = Op
X ⊗ k−(p−1)ρ . Thus,

i∗HomO
X̃′ (OX̃,L) = HomOX′ (OX, i∗L) = EndF (X)⊗ k−(p−1)ρ,

and hence
HomO

X̃′ (OX̃,L) = IndGB (EndF (X)⊗ k−(p−1)ρ).

Taking global sections, we obtain an isomorphism

HomO
X̃′ (OX̃,L) = IndGB (EndF (X)⊗ k−(p−1)ρ).

Thus, we may regard � as an injective map

Endcan
F (X) → HomO

X̃′ (OX̃,L),
still denoted by �. For any σ ∈ Endcan

F (X), its image �(σ) is a T -eigenvector of

weight −(p − 1)ρ, killed by all e(n)i , n ≥ p. This follows from the definition of �,

since e(n)i f− = 0 in St for all n ≥ p.
Next, recall that the canonical map OG/B ⊗k St → L((p − 1)ρ) (obtained from

the definition St := 
(G/B,L((p − 1)ρ)) restricts to an isomorphism of sheaves of
Op
G/B -modules Op

G/B⊗St � L((p−1)ρ) (this is a reformulation of Exercise 2.3.E.1).

This yields an isomorphism of G-linearized sheaves of Op

X̃
-modules:

Op

X̃
⊗ St � L.

Let u be a T -eigenvector of weight 2(p−1)ρ in the restricted enveloping algebra ofU .
Then, u is unique up to scalars; it isU -invariant, and maps f− to f+ (see, e.g., Exercise



4.1. Canonical splitting 123

2.3.E.2 for the latter assertion). Thus, u acting on L maps Op

X̃
⊗ St to Op

X̃
⊗ kf+

yielding the map

HomO
X̃′ (OX̃,L) → HomOp

X̃

(OX̃,Op

X̃
⊗ kf+) = EndF (X̃)⊗ k(p−1)ρ .

(Here we have used the fact that the action of u on L is Op

X̃
-linear since any root vector

kills Op

X̃
.) We thus obtain a map

 : HomO
X̃′ (OX̃,L) → EndF (X̃)

which is U -invariant, of weight (p − 1)ρ. So, � :=  ◦ � maps Endcan
F (X) to

Endcan
F (X̃).
Now, let σ ∈ Endcan

F (X) be a splitting of X, that is, σ(1) = 1. Then, one checks
that�(σ)(1) = f−, where f− ∈ St = 
(G/B,L((p−1)ρ)) is regarded as an element
of 
(X̃′,L). It follows that �(σ)(1) = 1. Thus, �(σ) is a splitting of X̃.

Further, by construction,�(σ) : OX̃ → L maps the ideal sheaf IX to IX′L, and the
map induced from�(σ) on OX identifies with σ⊗f− : OX → i∗L = Op

X⊗k−(p−1)ρ .
Finally, as IX′L is stable under U , and u is in the restricted enveloping algebra of U ,
we have that umaps IX′L to the kernel of the induced map u(L) → u(i∗L) = i∗u(L),
that is, to the kernel of the map Op

X̃
⊗kf+ → Op

X⊗kf+. It follows that�(σ)maps IX
to IpX, and restricts to σ onX. In particular,� is injective, proving the proposition.

4.1.18 Remarks. (i) Even though we do not prove it, the map � induces a bijection
between the B-canonical splittings of X and those B-canonical splittings of X̃ which
compatibly split e ×X ⊂ X̃ (cf. [Mat–00, §5]).

(ii) There is a different proof of Proposition 4.1.17 given in [Van–01, §4], which
relies on representation-theoretic methods.

4.1.E Exercises

(1∗) Let V be an algebraic representation of SL2(k), where k is any algebraically closed

field. Let vo ∈ V be fixed under the maximal torus T :=
{(

z 0
0 z−1

)
: z ∈ k∗

}
.Assume

that e(n)vo = 0 for all n ≥ m (for a fixed positive integer m). Then, prove that
f (n)vo = 0, for all n ≥ m, where e := ( 0 1

0 0

)
, f := ( 0 0

1 0

) ∈ sl2(k).
(2) For any sequence w = (si1 , . . . , sin) of simple reflections, show that the BSDH va-
rietyZw admits a uniqueB-canonical splitting, compatibly splitting all the subvarieties
ZwJ

for any subsequence wJ of w.
Hint: This exercise can be obtained easily by using Proposition 4.1.17 and Remark

4.1.18(i). However, we outline a direct proof. For the existence, by Lemmas 4.1.6 and
4.1.14, it suffices to construct a B-module map

φ : St ⊗k(p−1)ρ → H 0(Zw, ω
1−p
Zw

)
,
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such thatφ(f−⊗f+) is a splitting ofZw, wheref± is as in Lemma 4.1.2. By Proposition
2.2.2, as B-linearized line bundles,

ω
1−p
Zw

� OZw

[
(p − 1)∂Zw

]⊗ Lw((p − 1)ρ)⊗ k(p−1)ρ .

The map θw : Zw → G/B, defined by (2.2.1.6), induces the B-module map

θ∗
w : St → H 0(Zw,Lw((p − 1)ρ)).

Also, consider the canonical section σ ∈ H 0(Zw,OZw [(p − 1)∂Zw]) (with the asso-
ciated divisor of zeroes (σ )0 = (p − 1)∂Zw). It is easy to see that σ is B-invariant.
Combine θ∗

w and the section σ to construct φ. Now, show that φ(f− ⊗f+) is a splitting
of Zw compatibly splitting all the subvarieties ZwJ

by using Proposition 1.3.11. To
prove the uniqueness assertion, use Exercises 1.3.E.3, 3.3.E.2 and Proposition 2.2.2.

(3∗) Letf : X → Y be aB-equivariant morphism ofB-schemes such thatf∗OX = OY .
Assume that X admits a B-canonical splitting. Then, show that the induced splitting
of Y given by Lemma 1.1.8 is again B-canonical.

(4) With the notation and assumptions as in Proposition 4.1.17, show that for any
B-canonical splitting σ of X, which compatibly splits a closed B-stable subscheme
Y ⊂ X, the induced B-canonical splitting σ̃ := �(σ) of X̃ := G ×B X compatibly
splits the closed subschemes {BwB ×B X,G×B Y }w∈W .

(5) Let X, Y be two G-schemes which admit B-canonical splittings. Then, show that
the product G-scheme X × Y also admits a B-canonical splitting. (This, in general, is
false for B-schemes.)

Hint: Construct aG-module map St ⊗ St → St⊗2 ⊗ St⊗2 under the diagonal action
of G.

(6∗) Analogous to Theorem 4.1.15, show that, for any parabolic subgroups P,Q ofG,
G/P × G/Q admits a B-canonical splitting, compatibly splitting all the G-Schubert
subvarieties {X P,Q

w }w∈W .

(7) Let n ≥ 1. Show that the splitting of (G/B)n given bymn(θn) in the proof of Theo-
rem 2.3.10 is aB-canonical splitting. Recall from the proof of Theorem 2.3.10 that this
splitting compatibly splits all the subvarieties

{
Xw ×Xn−1, Xq ×Xw ×Xn−2−q; w ∈

W, 0 ≤ q ≤ n− 2
}
.

Hint: Construct aG-module map St ⊗ St → St⊗n⊗ St⊗n under the diagonal action
of G.

4.2 Good filtrations

We continue to follow the notation from Section 2.1. In particular, G is a connected,
simply-connected, semisimple algebraic group over an algebraically closed field k of
characteristic p > 0, B ⊂ G a Borel subgroup with the unipotent radical U and let
T ⊂ B be a maximal torus.
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All the modules in this section will be assumed to be rational, so we will abbreviate
rational H -modules simply by H -modules, for any affine algebraic group H .

4.2.1 Definition. For any dominant λ ∈ X∗(T ), define the (rational) G-module

(1) ∇(λ) := H 0(G/B,L(−woλ)),
and recall the definition and elementary properties of the Weyl module

(2) V (λ) := ∇(−woλ)∗,
from Section 2.1, where wo is the longest element ofW . We have by Theorem 3.3.8,

(3) ch ∇(λ) = ch V (λ) = Dwo (e
λ),

where wo is a reduced word with a(wo) = wo.
A filtration of a G-module V by G-submodules:

F 0 = (0) ⊂ F 1 ⊂ F 2 ⊂ · · ·
is called a good filtration of V if

(c1)
⋃
j F

j = V , and
(c2) For any j ≥ 1, as G-modules,

(4) Fj/F j−1 �
⊕
λ

∇(λ)⊗k A(λ, j),

for some trivialG-modulesA(λ, j), where the summation runs over the set of dominant
integral weights X∗(T )+.

Choose an injective additive map, called a height function, h : X∗(T ) → R such
that

(5) h(αi) > 0 for all the simple roots αi.

Since the root lattice
⊕�
i=1 Zαi is of finite index (say d) inX∗(T ), the injectivity of

h is equivalent to the condition that {h(α1), . . . , h(α�)} are linearly independent over
Q. Since h(αi) > 0,

(6) h(λ) < h(µ) for λ < µ.

Moreover, since for any λ ∈ X∗(T )+, dλ =∑ niαi with ni ∈ Z+ (Exercise 4.2.E.4),
we get that h(X∗(T )+) is a discrete subset of R+. This allows us to totally order the
set X∗(T )+ as

(7) {λ1 = 0, λ2, λ3, . . .} such that h(λi) < h(λi+1), for i ≥ 1.

For any B-module M , define a filtration of M (depending upon the choice of the
height function h) as follows:

(8) M0 = (0) ⊂ M1 ⊂ M2 ⊂ · · · ,
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where Mj = Mj(h) is the largest B-submodule of M such that any weight λ of Mj

satisfies:

(9) h(λ) ≤ h(λj ).
Clearly,

⋃
Mj = M . The filtration (Mj )j≥0 is called the h-canonical filtration ofM .

When the reference to the height function h is clear, we simply write the canonical
filtration and drop the adjective “h.”

For any B-module M and λ ∈ X∗(T ), let M(B)
λ be the B-eigenspace of M with

weight λ, i.e.,

(10) M
(B)
λ := {m ∈ M : bm = λ(b)m, for all b ∈ B}.

Then, for aG-moduleM and λ ∈ X∗(T )+, by the Frobenius reciprocity, there exists a
k-linear isomorphism

(11) iλ : HomG(V (λ),M)
∼→ M

(B)
λ , φ �→ φ(vλ),

where vλ is a nonzero B-eigenvector of V (λ) with weight λ.
For any λ ∈ X∗(T )+ and G-moduleM , set

h0(M, λ) := dimM(B)
λ = dim HomG(V (λ),M), and(12)

h1(M, λ) := dim Ext1G(V (λ),M),(13)

where the k-space Ext1G(N,M), forG-modulesN,M , has for its underlying set the set
of isomorphism classes of extensions of rational G-modules:

0 → M → M̃ → N → 0.

Equivalently, it is the “Ext1” functor in the category of rational G-modules. We allow
h0(M, λ) and h1(M, λ) to be ∞.

Define a partial order ≤ in the group algebra A(T ) := Z[X∗(T )] by declaring

(14)
∑

λ∈X∗(T )
aλe

λ ≤
∑

λ∈X∗(T )
bλe

λ ⇔ aλ ≤ bλ for all λ.

A (rational) T -moduleM is called an admissible T -module if all the weight spaces
of M are finite-dimensional. For an admissible T -module M , we define its formal
character ch by

(15) chM =
∑

λ∈X∗(T )
(dimMλ)e

λ ∈ Â(T ),

where Mλ is the weight space of M corresponding to the weight λ and Â(T ) is the
set of all the formal linear combinations

∑
λ∈X∗(T ) nλe

λ with nλ ∈ Z (where we allow
infinitely many of nλ’s to be nonzero).
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4.2.2 Lemma. LetM be a G-module and let λ ∈ X∗(T )+.

(a) If Ext1
G(V (λ),M) 
= 0, then there is a weight µ ofM such that µ > λ.

(b) If Ext1
G(M,∇(λ)) 
= 0, then again there is a weight µ ofM such that µ > λ.

In particular, for any λ,µ ∈ X∗(T )+, we have

(c) Ext1
G(V (λ),∇(µ)) = 0.

Proof. (a) Consider a nontrivial extension in the category of rational G-modules:

(1) 0 → M
i−→ Ṽ (λ)

π−→ V (λ) → 0 .

Take a preimage ṽλ ∈ Ṽ (λ) of the highest weight vector vλ ∈ V (λ) such that ṽλ is
a weight vector (of weight λ). Then, ṽλ can not be a B-eigenvector; for otherwise,
the sequence (1) would split. Thus, the B-submodule of Ṽ (λ) generated by ṽλ must
contain nonzero weight vectors v of weight µ > λ. Of course, v ∈ i(M), proving (a).

To prove (b), take a nontrivial extension

(2) 0 → ∇(λ) i−→ M̃ → M → 0.

Choose a T -module projection β : M̃ → kwoλ such that β ◦ i 
= 0. Assume, if possible,
that there does not exist any weight µ of M such that µ > λ. Then, it is easy to see
that β is a B-module map. On inducing β, it gives rise to a G-module map β̂ : M̃ →
∇(λ). By the Frobenius reciprocity, HomG(∇(λ),∇(λ)) � HomB(∇(λ), kwoλ) is one-
dimensional and hence β̂ ◦ i = I∇(λ) (up to a nonzero scalar multiple), splitting (2).
This is a contradiction, proving (b). (Observe that, if M is finite-dimensional, (a) and
(b) are equivalent by the duality of the Ext functor.)

(c) Assume, if possible, that Ext1
G(V (λ),∇(µ)) 
= 0. Then, by the (a) part, µ > λ

and, by the (b) part, λ > µ. This is a contradiction, proving (c).

4.2.3 Proposition. Let M be a G-module. Then, for the canonical filtration (Mj )j≥0
ofM , we have the following.

(a) EachMj is a G-submodule ofM .
(b) There is a G-module embedding, for any j ≥ 1,

πj : Mj

Mj−1 ↪→ ∇(λj )⊗k M(B)
λj
,

whereM(B)
λj

is equipped with the trivial G-module structure.
In particular, ifM is finite-dimensional,

(1) chM ≤
∑

λ∈X∗(T )+
h0(M, λ) ch ∇(λ).

(c) The filtration (Mj )j is a good filtration ofM iff each πj is an isomorphism.
In particular, ifM is finite-dimensional, (Mj )j is a good filtration ofM iff we have

equality in (1).
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Proof. (a) Let UG,UB,UU− be the hyperalgebras over k of G,B and U− respectively
(Section 2.1). By an analogue of the Poincaré–Birkhoff–Witt theorem (cf. [Jan–03,
Part II, §1.12]),

UG = UU− · UB,

and thus,Mj being a B-submodule,

UG ·Mj = UU− ·Mj.

Since h(αi) > 0, any weight λ of UU− ·Mj satisfies

h(λ) ≤ h(λ′) ≤ h(λj ), for some weight λ′ ofMj.

Moreover, since UG ·Mj is aG-submodule ofM; in particular, a B-submodule, by the
maximality ofMj we getMj = UG ·Mj and thusMj is a G-submodule ofM .

(b) Consider the T -module projection onto the woλj -weight space π̂j : Mj →
M
j
woλj

. Since Mj is a G-module and no weight of Mj is > λj by (4.2.1.9), we get

that π̂j is a B-module map, where the range Mj
woλj

is equipped with the B-module
structure via the character woλj of B. Moreover, as vector spaces,

(2) M
j
woλj

� M
j
λj

= (Mj )
(B)
λj

= M
(B)
λj
.

Thus, on inducing π̂j , we get aG-module map π̄j : Mj → ∇(λj )⊗kM(B)
λj

, whereM(B)
λj

is equipped with the trivialG-module structure. It is easy to see that π̄j |
M
j
woλj

: Mj
woλj

→ ∇(λj )woλj ⊗k M(B)
λj

is bijective and hence so is π̄j |
M
j
λj

:Mj
λj

→ ∇(λj )λj ⊗k M(B)
λj

.

Let K := Ker π̄j . Let µ be a weight of K and let µ+ be the dominant weight in the
W -orbit of µ. Then, K being a G-module, µ+ also is a weight of K . Since π̄j |

M
j
λj

is

injective, µ+ 
= λj and thus h(µ+) < h(λj ). From this we get that h(µ) ≤ h(λj−1),
proving that K ⊂ Mj−1.

Conversely, if possible, assume that Mj−1⊂/K . Then, π̄j (Mj−1) 
= 0. Choose a
B-eigenvector of weight λ in π̄j (Mj−1). Then, by the definition ofMj−1,

(3) h(λ) ≤ h(λj−1) < h(λj ).

But, as observed in Section 2.1, ∇(λj ) has a unique B-eigenvector (up to scalar multi-
ples) and it is of weight λj . This contradicts (3), showing thatMj−1 ⊂ K . Thus,

Ker π̄j = Mj−1,

proving (b).
(c) If each πj is an isomorphism, (Mj ) is a good filtration ofM by definition.
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Conversely, assume that (Mj ) is a good filtration ofM . Since ∇(λj ) has a unique
B-stable line and it has weight λj , we get from the injectivity of πj that, asG-modules,

(4)
Mj

Mj−1 � ∇(λj )⊗ Aj , for some trivial G-modules Aj .

Moreover, from the isomorphism π̄j|Mj
λj

: Mj
λj

∼→ ∇(λj )λj ⊗M(B)
λj

proved in the

(b) part and (2), it is easy to see that πj induces an isomorphism between B-eigen
spaces:

(5)

(
Mj

Mj−1

)(B)
λj

�
(
∇(λj )⊗M(B)

λj

)(B)
λj
.

By Lemma 4.2.2(b) together with (4) and [Jan–03, Part I, Lemma 4.17], the image of
πj is a G-module direct summand in ∇(λj ) ⊗ M

(B)
λj

. But, since πj is injective, by
using (5) we get that πj is an isomorphism. This proves the proposition.

4.2.4 Definition. (a) For any λ ∈ X∗(T )+ andG-moduleM admitting a good filtration,
the dimension ofM(B)

λ is called the multiplicity of ∇(λ) inM . The multiplicity of ∇(λ)
inM is the number of times it occurs in any good filtration ofM (Exercise 4.2.E.5); in
particular, this number is independent of the choice of the good filtration ofM .

(b) For any algebraic group H , define the H × H -module structure on the affine
coordinate ring k[H ] as follows:

(1)
(
(h1, h2)·f

)
(h) = f (h−1

1 hh2), for h, h1, h2 ∈ H and f ∈ k[H ].
The restriction of this action to H × 1, resp. 1 × H , is called the left, resp. right,
regular representation of H , and denoted respectively by k[H ]� and k[H ]r . Thus,
k[H ]� denotes the representation of H in k[H ] defined by

(2) (h1 · f )(h) = f (h−1
1 h).

Let M be a (rational) H -module and let M triv be the trivial H -module with the
same underlying vector space as M . Then, there exists an H -module embedding ε :
M → k[H ]�⊗M triv defined as follows. View k[H ]�⊗M triv as the space of morphisms
φ : H → M under the H -module structure given by

(h1 · φ)h = φ(h−1
1 h), forh, h1 ∈ H.

Now, define ε by
ε(m)h = h−1m, forh ∈ H,m ∈ M.

Clearly, ε is an H -module embedding.

In the following, G is as in the beginning of this section.
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4.2.5 Theorem. The G×G-module k[G] admits a filtration by G×G-submodules:

F0 = 0 ⊂ F1 ⊂ F2 ⊂ · · · ,
such that

⋃
j F j = k[G] and, for all j ≥ 1,

F j

F j−1 � ∇(µj )⊗ ∇(−woµj ), as G×G-modules,

where the first copy of G acts only on the first factor ∇(µj ) and the second copy of G
acts only on the second factor and {µj } is some bijective enumeration of X∗(T )+.

In particular, {F j }j is a good filtration of the G×G-module k[G].
Proof. We apply Proposition 4.2.3 for the groupG replaced byG×G. We takeB×B,
resp. T × T , for the Borel subgroup, resp. maximal torus, ofG×G. Choose a height
function h̃ : X∗(T )×X∗(T ) → R as in 4.2.1. This gives rise to the canonical filtration
of the G×G-moduleM = k[G] by G×G-submodules

M0 = (0) ⊂ M1 ⊂ M2 ⊂ · · · .
Then, by Proposition 4.2.3(b), we have a G×G-module embedding

(1)
Mj

Mj−1 ↪→ [∇(λj )⊗ ∇(µj )] ⊗M(B×B)
(λj ,µj )

,

where {(λj , µj )}j≥1 is the enumeration of X∗(T )+ ×X∗(T )+ given by (4.2.1.7).
We next prove that for any (λ, µ) ∈ X∗(T )+ ×X∗(T )+,

h0(M, (λ, µ)) = 0 if µ 
= −woλ, and(2)

h0(M, (λ,−woλ)) = 1.(3)

SinceUTwoU ⊂ G is an open (dense) subset,M ↪→ k[UTwoU ], where Two denotes
T ẇo for any coset representative ẇo of wo in N(T ). Thus, the U × U -invariants

MU×U ↪→ k[UTwoU ]U×U � k[Two]
β
∼→ k[T ] =

⊕
λ∈X∗(T )

kλ ,

where the isomorphism β is induced from the variety isomorphism T → Two, t �→
tẇo. Observe next that, for the character λ : T → k∗, β−1(λ) is an eigenvector for the
action of T × T with weight (−λ,woλ) since(

(t1, t2) · (β−1λ)
)
(sẇo) = (β−1λ)(t−1

1 sẇot2)

= (β−1λ)(t−1
1 sẇot2ẇ

−1
o ẇo)

= λ(t−1
1 )(β−1λ)(sẇo)(woλ)(t2).



4.2. Good filtrations 131

This shows that, for (λ, µ) ∈ X∗(T )+ ×X∗(T )+,

dimM(B×B)
(λ,µ) = 0 unless µ = −woλ, and(4)

dimM(B×B)
(λ,−woλ) ≤ 1.(5)

Forλ ∈ X∗(T )+, let vλ be a nonzero highest weight vector of the Weyl moduleV (λ)
and let f−woλ ∈ V (λ)∗ be a nonzero B-eigenvector (of weight −woλ). Consider the
function θλ : G → k defined by g �→ f−woλ(g−1vλ). Then, θλ is a B ×B-eigenvector
of weight (λ,−woλ) and thus we have equality in (5), i.e.,

(6) dimM(B×B)
(λ,−woλ) = 1 for any λ ∈ X∗(T )+.

Taking the associated Chevalley group schemeGZ over Z (i.e., the split form ofG over
Z), we have, for any ring R,

R[GR] = Z[GZ] ⊗Z R ,

where GR is the group of R-rational points of GZ and R[GR] is its affine coordinate
ring over R. Thus, in our notation, Gk = G.

Analogous to the filtration {Mj }j≥0 of k[G], we have the filtration {Mj(Q)}j of
Q[GQ]. Now, for any j ≥ 0, set

(7) Mj(Z) := Mj(Q) ∩ Z[GZ].
Then,Mj(Z) is a finitely generated (and hence free) Z-module with

(8) rankMj(Z) = dimQM
j(Q).

Clearly, Z[GZ]/Mj (Z) is torsion free and thus we have a canonical injection

Mj(Z)⊗Z R ↪→ R[GR].
In particular,

(9) Mj(Z)⊗Z k ↪→ Mj.

By (1), (4) and (6), for any j ≥ 1,

(10) Mj 
= Mj−1 ⇐⇒ µj = −woλj ,
and, similarly,

(11) Mj(Q) 
= Mj−1(Q) ⇐⇒ µj = −woλj .
Let r(1) be the smallest integer such thatMr(1) 
= 0, r(2) be the smallest integer such
thatMr(2) � Mr(1), and so on. Set F j = Mr(j) for any j ≥ 1. Then, by (1), (4), (6),

(12) πj : F j

F j−1 ↪→ ∇(µj )⊗ ∇(−woµj ),
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where {µ1, µ2, . . .} is a bijective enumeration of X∗(T )+.
Similarly, letting

F j (Q) = Mr(j)(Q),

by (10), (11),

(13) F j−1(Q) � F j (Q),

and, moreover, we have a GQ ×GQ-module injection

(14) π
Q
j : F j (Q)

F j−1(Q)
↪→ ∇Q(µj )⊗ ∇Q(−woµj ),

where∇Q(µj ) is the same as∇(µj )over the base field Q. Since∇Q(µj )⊗∇Q(−woµj )
is an irreducible GQ ×GQ-module, by (13), πQ

j is an isomorphism for all j ≥ 1.

Assume now by induction that F i = Mr(i)(Z) ⊗Z k, and πi is an isomorphism
for all i ≤ j − 1. Thus, πQ

j being an isomorphism, by (8), (9) and (12), we get that

F j = Mr(j)(Z) ⊗Z k, and πj is an isomorphism. This completes the induction and
proves the theorem.

4.2.6 Corollary. For any finite-dimensional G-moduleM ,

(1) chM ≥
∑

λ∈X∗(T )+

(
h0(M, λ)− h1(M, λ)

)
ch ∇(λ).

Observe that, sinceM is finite-dimensional, h0(M, λ) is nonzero only for finitely many
λ ∈ X∗(T )+ and also, by Lemma 4.2.2(a), h1(M, λ) is nonzero only for finitely many
λ. Moreover, for any λ, h0(M, λ) is clearly finite and h1(M, λ) is finite by (2)–(3)
below.

Proof. By 4.2.4, there is a G-module embedding ε : M ↪→ k[G]� ⊗M triv. Since M
is finite-dimensional, there exists a large enough F jo such that ε(M) ⊂ F jo

� ⊗M triv,

where {F j } is the filtration as in Theorem 4.2.5 and F j
� denotes F j considered only as

a G = G× e-module.
The exact sequence

0 → M → F jo
� ⊗M triv → Q → 0,

where Q := (F jo
� ⊗ M triv)/ε(M), gives rise to the exact sequence (for any λ ∈

X∗(T )+):

0 → HomG(V (λ),M) → HomG(V (λ),F jo
� ⊗M triv) →

(2)

HomG(V (λ),Q) → Ext1
G(V (λ),M) → Ext1

G(V (λ),F jo
� ⊗M triv) → · · · .
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By Theorem 4.2.5 and Lemma 4.2.2(c),

(3) Ext1
G(V (λ),F jo

� ⊗M triv) = 0.

Thus,

(4) h0(M, λ)− h0(F jo
� ⊗M triv, λ)+ h0(Q, λ)− h1(M, λ) = 0.

Since {F j } is a good filtration of the G × G-module k[G] and also it is part of the
canonical filtration of k[G] (see Theorem 4.2.5 and its proof), we get by Proposition
4.2.3(c),

(5) ch F jo
� ⊗M triv =

∑
λ∈X∗(T )+

h0(F jo
� ⊗M triv, λ) ch ∇(λ),

and, by Proposition 4.2.3(b),

(6) chQ ≤
∑

λ∈X∗(T )+
h0(Q, λ) ch ∇(λ).

Combining (4)–(6), (1) follows.

The following cohomological criterion for the existence of good filtrations is very
useful.

4.2.7 Theorem. For any finite-dimensionalG-moduleM , the following are equivalent:

(a) The canonical filtration ofM is a good filtration.
(b) There exists a good filtration ofM .
(c) Ext1

G(V (λ),M) = 0, for all λ ∈ X∗(T )+.

Thus, for two finite-dimensional G-modules M1,M2, M1 ⊕ M2 admits a good
filtration iff both ofM1 andM2 admit good filtrations.

Proof. Of course (b) is a particular case of (a).
(b)⇒(c): Let F 0 = (0) ⊂ F 1 ⊂ F 2 ⊂ · · · be a good filtration of M . Then,

considering the long exact Ext sequence associated to the short exact sequence:

0 → Fj−1 → Fj → Fj/F j−1 → 0,

and using Lemma 4.2.2(c), we get that

Ext1
G(V (λ), F

j ) = 0 for all j and any λ ∈ X∗(T )+.

Thus, (c) follows by taking large enough j such that Fj = M .
(c)⇒(a): By Corollary 4.2.6, since h1(M, λ) = 0 by assumption,

chM ≥
∑

λ∈X∗(T )+
h0(M, λ) ch ∇(λ).

Thus, (a) follows by applying Proposition 4.2.3 (b)–(c).
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4.2.8 Remark. The above theorem continues to hold for an arbitrary (rational) G-
moduleM . The implication (b) ⇒ (c) follows by the same proof given above together
with [Jan–03, Part I, Lemma 4.17]. For the proof of the implication (c)⇒(a), consider
the canonical filtration (Mj )j≥0 of M . It is easy to see that for any j ≥ 0 and λ ∈
X∗(T )+,

HomG

(
V (λ),M

)→ HomG

(
V (λ),M/Mj

)
is surjective. Thus, we get Ext1

G

(
V (λ),Mj

) = 0.
Consider the embedding, as in Proposition 4.2.3(b),

πj : Mj

Mj−1 ↪→ ∇(λj )⊗M(B)
λj

and letQj be the cokernel. By (4.2.3.5) and (4.2.1.11), the induced map

HomG

(
V (λ),

Mj

Mj−1

)
→ HomG

(
V (λ),∇(λj )⊗M(B)

λj

)
is surjective and thus

(1) HomG

(
V (λ),Qj ) ↪→ Ext1

G

(
V (λ),

Mj

Mj−1

)
.

Assume by induction that πm is an isomorphism for all 1 ≤ m ≤ j − 1 and use the
following vanishing for any λ,µ ∈ X∗(T )+:

(2) ExtqG
(
V (λ),∇(µ)) = 0 for all q > 0

(cf. [Jan–03, Part II, Proposition 4.13]) to show that

(3) Ext1
G

(
V (λ),

Mj

Mj−1

)
= 0.

To prove (3), consider the long exact Ext sequence corresponding to the short exact
sequence:

0 → Mj−1 → Mj → Mj/Mj−1 → 0.

Thus, from (1), we get that HomG(V (λ),Qj ) = 0 and thus πj is an isomorphism. This
proves that (Mj ) is a good filtration ofM .

4.2.9 Definition. Recall the definition of hyperalgebra UH from Section 2.1. A UG-
moduleM is called a (UG,B)-module if the UB -action onM “integrates” to a rational
B-module structure onM , i.e.,M is a B-module such that the associated action of UB
coincides with the restriction of the UG-action. For a (UG,B)-moduleM , letMint ⊂ M

be the subspace of UG-finite vectors ofM , i.e.,

(1) Mint := {v ∈ M : dim(UG · v) < ∞}.
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Then, by Verma’s conjecture proved in [CPS–80] and [Sul–78],Mint is the biggest
UG-submodule such that the UG-action integrates to a rational G-action.

For aB-moduleM andλ ∈ X∗(T ),M is calledλ-isotypical if all theB-eigenvectors
ofM have λ as their weight.

For λ ∈ X∗(T ), define the tensor product B-module

(2) I (λ) = k[B/T ] ⊗ kλ,
where k[B/T ] is aB-module under the left multiplication ofB onB/T . Then, I (λ) has
a unique line kλ of B-eigenvectors. In particular, it is an indecomposable B-module.
Moreover, from the B-equivariant fibration B → B/T , we get

(3) k[B] =
⊕

µ∈X∗(T )
I (µ).

Further, for any algebraic group H , k[H ] is an injective H -module in the category of
rational H -modules (cf. [Jan–03, Part I, Proposition 3.10]). This follows since, by the
Frobenius reciprocity [Jan–03, Part I, Proposition 3.4(b)], for any H -moduleM ,

HomH (M, k[H ]) � Homk(M, k)

under θ �→ e ◦ θ , where e : k[H ] → k is the evaluation at 1. Thus, I (λ) is an injective
B-module, and hence it is the injective hull (cf. [Jan–03, Part I, §§3.16–3.17]) in the
category of rational B-modules of the one-dimensional B-module kλ .

In fact, I (λ) acquires the structure of a (UG,B)-module by identifying

I (λ) � H 0(BwoB/B,L(−woλ))
under B/T → BwoB/B, b mod T �→ bwo mod B and applying [Kem–78, §11].

4.2.10 Lemma. Let λ ∈ X∗(T ) and let M,N be two λ-isotypical (UG,B)-modules
(i.e., M,N are λ-isotypical as B-modules). Then, any B-module map f : M → N is
automatically a UG-module map.

In particular, a λ-isotypicalB-moduleM admits at most one (UG,B)-module struc-
ture extending the original B-module structure.

Proof. Since M,N are UG-modules and UG is a Hopf algebra, the space of all the
k-linear maps Homk(M,N) is canonically a UG-module. Let f be a B-module map
and assume that it is not a UG-module map. Then, f being a B-module map, there
exists a negative simple root vector fi = fαi such that f (m)i · f 
= 0 for some m ≥ 1.

Take the smallest mo ≥ 1 such that fo := f
(mo)
i · f 
= 0. Then, since f (m)i commutes

with e(n)αj for any i 
= j ,

(1) e(n)αj · fo = 0 for all n ≥ 1 and j 
= i.

Moreover, by the s�2 commutation relation [Hum–72, Lemma 26.2],

(2) e(n)αi · fo = 0 for all n ≥ 1.
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Thus, fo is U -invariant and has weight −moαi , where U is the unipotent radical
of B. Take a nonzero B-eigenvector vo ∈ fo(M) (of weight λ). Then, f−1

o (kvo)

contains a nonzero B-eigenvector of weight λ + moαi . This is a contradiction since
each B-eigenvector ofM has weight λ. Thus, f is a UG-module map.

4.2.11 Definition. Let λ ∈ X∗(T )+. For a G-module M which is λ-isotypical as a
B-module, define

Dλ(M) := H 0(G/B,L(Mwoλ)),
where the woλ-weight space Mwoλ of M is regarded as a B-module under the trivial
action of U . Then,

Dλ(M) � ∇(λ)⊗k M triv
woλ
, as G-modules,

where M triv
woλ

is the space Mwoλ with the trivial G-module structure. Thus, Dλ(M) is
λ-isotypical. Moreover, the projection onto the woλ-weight space π : M → Mwoλ
induces aG-module map iM : M → Dλ(M) (sinceM is λ-isotypical, π is a B-module
map). Further, iM is injective. Otherwise, Ker iM would contain a nonzero vector of
weightwoλ (since Ker iM would contain a B-eigenvector of weight λ), a contradiction.
Since theG-module map iM restricted to the weight spaces corresponding to the weight
woλ is an isomorphism, we get that iM restricts to an isomorphism

(1) Mλ � (Dλ(M))λ.
Thus, iM induces an isomorphism between U -invariants:

(2) MU � Dλ(M)U .
4.2.12 Proposition. Let λ ∈ X∗(T )+ and let R =⊕n≥0 Rn be a commutative asso-
ciative reduced graded G-algebra. Assume further that each Rn is nλ-isotypical as a
B-module and that

(1) R1 
= Dλ(R1).

Then, there exists y ∈ Dnλ(Rn)\Rn for some n ≥ 0 such that yp ∈ Rnp.
(Observe that DR :=⊕n≥0 Dnλ(Rn) is canonically a graded G-algebra canoni-

cally containing R as a graded G-subalgebra. Moreover, DR is a reduced algebra.)

Proof. Writing (R1)woλ as a direct sum of one-dimensional spaces, decompose Dλ(R1)

as a direct sum of G-submodules each isomorphic with ∇(λ). By the assumption (1),
there exists a G-submodule N ⊂ Dλ(R1) such that N � ∇(λ) and N is not contained
in R1. Take a nonzero x ∈ Nwoλ ⊂ R1. Since R is reduced, the subalgebra Rx

of R generated by x is the polynomial algebra k[x] on one generator x. Let DRx
be the graded subalgebra

⊕
n≥0H

0(G/B,L(Rxn)) of DR, where Rxn is regarded as a
B-module under the trivial action of U . Then, (DRx)1 = N and

(2) DRx �
⊕
n≥0

∇(nλ), as graded algebras.
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Consider the subalgebra Sx := DRx ∩ R of R. Then, we claim that the algebras
DRx and Sx are finitely generated and the morphism θ : Spec(DRx) → Spec Sx ,
induced from the inclusion Sx ↪→ DRx , is finite and bijective. Let A ⊂ DRx be the
subalgebra generated by

⊕
w∈W Nwλ and let A+ be the irrelevant ideal of A. Since

L(λ) is semi-ample (Exercise 3.1.E.1), by Lemma 1.1.13(i), the algebra DRx is a
finitely generated domain.

Moreover, the spectrum Spec (DRx) can be identified with the subsetG·v+∪{0} ⊂
∇(λ)∗, the affine cone over the image of G/B ↪→ P(∇(λ)∗), gB �→ g[v+], where
v+ is a highest weight vector of ∇(λ)∗. Using the following variant of the Bruhat
decomposition:

G =
⋃
w∈W

wU−B,

for any g ∈ G we can find w = wg ∈ W such that

gv+(wx) 
= 0.

Since wx ∈ A+, the radical
√A+ · DRx = DRx+, where DRx+ is the irrelevant ideal

of DRx . Since DRx is a finitely generated algebra; in particular, noetherian, we get
that
(√A+ · DRx)n ⊂ A+ · DRx for some n ≥ 1. Thus, DRx/(A+ · DRx) is a finite-

dimensional vector space over k. This proves that DRx is a finite A-module. Since
Nwλ ⊂ R1, we have A ⊂ Sx . In particular, DRx is a finite Sx-module and thus Sx

is a finitely generated algebra. This shows that the canonical map θ : Spec (DRx) →
Spec Sx is finite and surjective. To show that θ is injective, it suffices to observe that
the stabilizers of the lines kv+ and kv′+ in G are the same parabolic subgroups, where
v′+ is a highest weight vector of (N ∩ R1)

∗.
We first prove the proposition assuming that the algebra Sx is not normal. Take its

normalization S̄x . Since DRx is normal (Theorem 3.2.2), we get

Sx ⊂ S̄x ⊂ DRx.
Moreover, from the bijectivity of θ and since DRx is a finite Sx-module, we get that
the induced map i : Spec (S̄x) → Spec (Sx) is bijective and, of course, i (being
the normalization) is an isomorphism on a nonempty open subset. In fact, by the G-
equivariance, i is an isomorphism outside {0}. Thus, we get Sxn = S̄xn for all large
enough n. Take a homogeneous y ∈ S̄x\Sx of maximal degree. Then, yp ∈ R and
y ∈ DR\R, proving the proposition in the case Sx 
= S̄x .

So, assume now that Sx is normal, i.e., Sx = S̄x and consider the field KSx and
KDRx of fractions of the domains Sx and DRx respectively. Since (DRx)1 = N andN
is not contained inR1, Sx 
= DRx , so isKSx 
= KDRx . But the extensionKSx ⊂ KDRx
is purely inseparable, since θ is a bijection. In particular, there exists a power q of p
withKqDRx ⊂ KSx . Thus, we can find y ∈ DRx\Sx such that yp ∈ KSx . But Sx being
normal, we have yp ∈ Sx , proving the proposition in this case as well.

4.2.13 Theorem. LetX be aG-scheme which admits aB-canonical splitting. Then, for
anyG-linearized line bundle L onX, theG-moduleH 0(X,L) admits a good filtration.



138 Chapter 4. Splitting and Filtration

Proof. Let Y be the product space G/B × X under the diagonal action of G. Then,
Y has an open dense B-stable subset Yo := BwoB/B × X. Moreover, there is a
B-equivariant biregular isomorphism

(1) B/T → BwoB/B, bT �→ bwoB.

Consider the G-linearized line bundle L̃ := ε � L on Y , where ε is the trivial line
bundle on G/B. Then, of course,

(2) H 0(X,Ln) � H 0(Y, L̃n), as G-modules.

Define the graded B-algebra

◦
C :=
⊕
n≥0

◦
Cn, where

◦
Cn := H 0(Y o, L̃n),

and the graded G-algebra

C :=
⊕
n≥0

Cn, where Cn := H 0(Y, L̃n).

Then, of course, C is a graded subalgebra of
◦
C. By [Kem–78, §11],

◦
C is a (UG,B)-

algebra.
We now break the proof of the theorem in several steps.

Step 1: Construction of the algebras C(λ) and
◦
C(λ).

Fix a height function h : X∗(T ) → R as in 4.2.1. For any λ ∈ X∗(T )+ define the

following graded subalgebras of C and
◦
C respectively.

C(λ) :=
⊕
n

Fnλ(Cn), and

◦
C(λ) :=

⊕
n

Fnλ(
◦
Cn),

where Fnλ(Cn) is the largest B-submodule of Cn such that each weight µ of Fnλ(Cn)
satisfies

h(µ) ≤ h(nλ),
and Fnλ(

◦
Cn) is defined similarly. We define the B-stable ideals C(λ)− of C(λ) and

◦
C(λ)− of

◦
C(λ) by

C(λ)− :=
⊕
n

F−
nλ(Cn), and

◦
C(λ)− :=

⊕
n

F−
nλ(

◦
Cn),
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where F−
nλ(Cn) is the largest submodule of Cn such that each weight µ of F−

nλ(Cn)
satisfies

h(µ) < h(nλ)

and similarly for F−
nλ(

◦
Cn).

By Proposition 4.2.3(a), C(λ) is a gradedG-algebra and C(λ)− is aG-stable graded

ideal. Moreover, by Exercise 4.2.E.1,
◦
C(λ) is a (UG,B)-algebra and

◦
C(λ)− is a (UG,B)-

stable ideal of
◦
C(λ). Consider the quotient algebras

C(λ) := C(λ)/C(λ)−, and
◦
C(λ) := ◦

C(λ)/
◦
C(λ)−.

Then, C(λ) is a graded G-algebra such that the homogeneous component C(λ)n of

C(λ) of degree n is nλ-isotypical as a B-module. Similarly,
◦
C(λ) is a graded (UG,B)-

algebra such that
◦
C(λ)n is nλ-isotypical as a B-module. Clearly, C(λ) is a graded

subalgebra of
◦
C(λ).

Step 2: The algebras C(λ) and
◦
C(λ) are reduced.

Let φ be a B-canonical splitting of X. Then, φ induces a B-canonical Frobenius-

linear endomorphism φ ◦
C(λ)

of the B-algebra
◦
C(λ) keeping the subalgebra C(λ) stable.

To see this, observe first that, by Proposition 4.1.17, Y admits a B-canonical splitting.

Thus, by Lemma 4.1.13, φ induces a B-canonical φ ◦
C ∈ EndF (

◦
C). Since φ ◦

C is T -

invariant and takes B-submodules to B-submodules (Proposition 4.1.8), it induces

a B-canonical φ ◦
C(λ)

∈ EndF (
◦
C(λ)). Moreover, φ ◦

C(λ)
(1) = 1. It is easy to see

that φ ◦
C(λ)

(C(λ)) ⊂ C(λ). Let φC(λ) := (φ ◦
C(λ)

)|C(λ). Using the Frobenius-linear

endomorphism φ ◦
C(λ)

, we immediately obtain that
◦
C(λ) is reduced and hence so is

C(λ).

Step 3:
◦
C(λ) is an injective B-module.

We prove that, for any n ≥ 0, the n-th graded component
◦
C(λ)n is an injective

B-module (which is nλ-isotypical).
For any B-moduleM , there is a B-module isomorphism

ξ : k[B/T ] ⊗M triv � k[B/T ] ⊗M
defined as follows, whereM triv is the same asM as a T -module, but U acts trivially on
M triv. For m ∈ M , let Mm be the (finite-dimensional) B-submodule of M generated
by m. Take a basis {mi} ofMm and the dual basis {m∗

i } ofM∗
m. Now, define

(3) ξ(f ⊗m) =
∑

f · θmi ⊗mi,
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where θmi (u) = m∗
i (um), for u ∈ U � B/T . Since k[BwoB/B] � k[B/T ]

((4.2.13.1)) has a unique B-eigenvector, from the isomorphism ξ we conclude that

(4) Fnλ(
◦
Cn) � ξ

(
k[BwoB/B] ⊗

( ⊕
µ∈X∗(T )
h(µ)≤h(nλ)

(Ctriv
n

)
µ

))
.

Thus,

(5)
◦
C(λ)n � ξ

(
k[BwoB/B] ⊗ (Ctriv

n

)
nλ

)
.

In particular, by 4.2.9 and the isomorphism ξ ,
◦
C(λ)n is an injective B-module.

Thus, the B-module inclusion C(λ)n ⊂ ◦
C(λ)n extends to a B-module map θ :

Dnλ(C(λ)n) → ◦
C(λ)n, where we identify C(λ)n ↪→ Dnλ(C(λ)n) via iC(λ)n (as in

4.2.11). In fact, θ is unique. For let θ ′, θ ′′ be two such extensions. Then, θ ′ − θ ′′ is a
B-module map which is identically zero on C(λ)n. By (4.2.11.1), the nλ-weight space

(C(λ)n)nλ = (Dnλ(C(λ)n))nλ. Thus, Im(θ ′ − θ ′′) ∩ (( ◦
C(λ)n)nλ

) = (0). Since
◦
C(λ)n

is nλ-isotypical, this forces θ ′ = θ ′′. Further, θ is injective by using (4.2.11.2).
By Lemma 4.2.10, θ is a UG-module map. So, we can canonically identify

C(λ)n ⊂ Dnλ(C(λ)n) ⊂ ◦
C(λ)n.

Step 4: We have the following:

(6) C(λ)1 = Dλ(C(λ)1).
If (6) were false, there exists an element x ∈ Dnλ(C(λ)n)\C(λ)n by Proposition

4.2.12 for some n ≥ 0 such that xp ∈ C(λ)np. Applying φ ◦
C(λ)

we get φ ◦
C(λ)

(xp) =
x ∈ C(λ)n, which is a contradiction to the choice of x. Thus, (6) is proved.

This shows that C1 has a filtration such that the successive quotients are isomorphic
with {Dλ(C(λ)1)}λ∈X∗(T )+ . Thus, C1 admits a good filtration, proving the theorem by
using the identification (2).

4.2.14 Corollary. For λ,µ ∈ X∗(T )+, the tensor product ∇(λ)⊗∇(µ) admits a good
filtration, where ∇(λ) is defined by (4.2.1.1). More generally, for any w ∈ W , the
G-module H 0

(Xw,Lw(λ� µ)
)

admits a good filtration.

Proof. By Theorem 4.1.15, there exists a B-canonical splitting of G/B and thus, by
Proposition 4.1.17, there exists a B-canonical splitting of G ×B (G/B) �
G/B × G/B (alternatively use Exercise 4.1.E.6). Now, apply Theorem 4.2.13 to the
G-variety G/B ×G/B under the diagonal action of G together with the G-linearized
line bundle L((−woλ)� (−woµ)). This proves the first part of the corollary.

The more general statement follows by the same argument. Use Exercise 4.1.E.6
and Theorem 4.2.13.
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Even though we defined earlier the notion of good filtration of a G-module for a
semisimple, simply-connectedG, the same definition works for any connected reductive
G. Similarly, the definition ofB-canonical splittings extends without change to a Borel
subgroup of any reductiveG. Then, Theorem 4.2.13 remains true (with the same proof)
for any reductive G.

As another consequence of Theorem 4.2.13, we obtain the following.

4.2.15 Corollary. LetP be a standard parabolic subgroup ofGwith the Levi component
LP ⊃ T . Then, for any λ ∈ X∗(T )+, the G-module ∇(λ) admits a good filtration
considered as a module for the reductive group LP .

More generally, for any P -stable closed reduced subscheme Y ⊂ G/B,
H 0(Y,L(λ)|Y ) admits a good filtration considered as a module for the group LP .

Proof. By Theorem 4.1.15, there exists a B-canonical splitting of G/B compatibly
splitting Y . Of course, aB-canonical splitting is in particular aBLP -canonical splitting,
where BLP ⊂ B is a Borel subgroup of LP . Thus, the corollary follows from Theorem
4.2.13.

4.2.E Exercises

(1∗) Let h : X∗(T ) → R be a height function as in 4.2.1 and let M be a (UG,B)-
module. For any λ ∈ X∗(T )+, consider the largest B-submodule Fλ(M) of M such
that each weight µ of Fλ(M) satisfies

h(µ) ≤ h(λ).
Then, show that Fλ(M) is a (UG,B)-submodule ofM .

(2∗) Let X be a G-scheme and Y ⊂ X a closed G-stable subscheme. Assume that
X admits a B-canonical splitting compatibly splitting Y . Then, show that for any
G-linearized line bundle L on X, the kernel of the restriction map H 0(X,L) →
H 0(Y,L|Y ) admits a good filtration.

Hint: Follow the proof of Theorem 4.2.13.

(3) Show that ifM admits a good filtration then, for any λ ∈ X∗(T )+,

ExtqG(V (λ),M) = 0, for all q > 0.

Use this to prove that for an exact sequence of G-modules:

0 → V ′ → V → V ′′ → 0,

such that V ′ and V admit good filtrations, then so does V ′′. Similarly, if V ′ and V ′′
admit good filtrations, then so does V .

(4∗) Show that for any λ ∈ X∗(T )+, dλ =∑i niαi with ni ∈ Z+, where d is the index
of the root lattice

⊕
i Zαi in X∗(T ).
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(5∗) LetM be aG-module admitting a good filtration. Show that, for any λ ∈ X∗(T )+,
dimM(B)

λ (= dim HomG(V (λ),M) by (4.2.1.11)) is the number of times ∇(λ) appears
in any good filtration ofM .

4.3 Proof of the PRVK conjecture and its refinement

In this section k is taken to be an algebraically closed field of any characteristic (in-
cluding 0). We follow the notation as in Section 2.1. In particular, G is a connected,
simply-connected, semisimple algebraic group over k, B ⊂ G a Borel subgroup with
the unipotent radicalU , T ⊂ B a maximal torus andW the associated Weyl group. Also
recall that UG denotes the hyperalgebra ofG. For any β ∈ �+, eβ ∈ gβ is a root vector
as in the beginning of Section 4.1. For any λ ∈ X∗(T )+, V (λ) := H 0(G/B,L(λ))∗ is
the Weyl module. For θ ∈ X∗(T ), there exists a unique θ̄ ∈ X∗(T )+ in theW -orbit of
θ , i.e.,

W · θ ∩X∗(T )+ = {θ̄}.
In this section, when we refer to a specific result from Chapter 3, we also mean to

use the corresponding result in characteristic 0 as given in Theorem 3.5.4. Also, in char-
acteristic 0, any filtration of aG-module byG-submodules is, of course, automatically
a good filtration.

We begin by recalling the following result on the structure of the Demazure module
Vw(µ) (Definition 3.3.10) as a UU -module, where UU is the hyperalgebra of U .

4.3.1 Proposition. For µ ∈ X∗(T )+ and w ∈ W , consider the UU -module map

ξ : UU → Vw(µ), a → a · vwµ,
where vwµ is a nonzero vector of Vw(µ) of weight wµ. (Recall from (3.3.10.1) that
vwµ is unique up to scalar multiples.) Then, ξ is surjective and Ker ξ is generated as

a left UU -ideal by the elements {e(m)β ;β ∈ �+,m ≥ δβ(wµ)}, where δβ(ν) for any
ν ∈ X∗(T ) is defined by

(1) δβ(ν) = 1 + max{−〈ν, β∨〉, 0}.
In particular, for any B-module N , we have a k-linear isomorphism

HomB(Vw(µ),N)
∼→(2)

{x ∈ Nwµ : e(m)β x = 0 for all β ∈ �+ and m ≥ δβ(wµ)}, f �→ f (vwµ).

Proof. (an indication) Since, by definition, Vw(µ) is generated by the vector vwµ as
a U -module, by [Jan–03, Part I, Lemma 7.15], the map ξ is surjective. Moreover, for
any β ∈ �+ and any m ≥ δβ(wµ), it is easy to see that

〈wµ+mβ,wµ+mβ〉 > 〈µ,µ〉.
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But, any weight λ of V (µ) satisfies 〈λ, λ〉 ≤ 〈µ,µ〉. Thus, the elements e(m)β do belong
to Ker ξ .

Let I be the left ideal of UU generated by the elements e(m)β as β runs over �+
and m runs over m ≥ δβ(wµ), and let Q be the quotient UU -module UU/I. Then, ξ
induces the (surjective) UU -module map ξ̄ : Q → Vw(µ). In particular,

(3) dimQ ≥ dim Vw(µ).

Moreover, it is easy to see that Q is a finite-dimensional vector space over k and it is
a (UU , T )-module under the adjoint action of T . Thus, the UU -module structure onQ
“integrates” to give a U -module structure (cf. [CPS–80, Theorem 9.4]). Let 1 denote
the coset 1 + I of Q. Then, 1 generates Q as a UU -module, and thus as a U -module.
Further, since e(m)β ∈ I for all β ∈ �+ ∩ w(�+) and m ≥ 1, it follows that 1 is fixed

by the subgroup U ∩ wUw−1 of U .
We next construct an injective UU -module map

θ : Q∗ → H 0(Cw,L(µ)|Cw)
as follows. Recall from Section 2.1 thatCw denotes the Schubert cellBwB/B, isomor-
phic toU/U∩wUw−1 under u �→ uwB. Fix a representative ẇ ofw inN(T ). For any
f ∈ Q∗ and x = uẇb ∈ BwB for u ∈ U and b ∈ B, define θ(f )(x) = µ(b)f (u · 1).
Then, θ(f ) is well defined (i.e., it does not depend on the choices of u and b) and,
moreover, from its equivariance properties it gives a section of L(µ) over Cw. Since 1
generatesQ as a U -module, the map θ is injective.

Finally, one proves that for any f ∈ Q∗, the section θ(f ) extends to a section of
Lw(µ) on the closure Xw of Cw. One checks that θ(f ) extends to any Schubert cell
Cv of codimension 1 inXw, and hence θ(f ) extends toXw by the normality ofXw (cf.
[Pol–89, Proof of Proposition 2.1] for the details). In particular,

(4) dimQ = dimQ∗ ≤ dimH 0(Xw,Lw(µ)) = dim Vw(µ),

where the last equality follows from Corollary 3.3.11.
Combining (3) and (4), we get that dimQ = dim Vw(µ). Thus, ξ̄ is forced to be an

isomorphism, proving the proposition.

We come to the proof of the Parthasarathy–Ranga Rao–Varadarajan–Kostant (for
short PRVK) conjecture.

4.3.2 Theorem. Let λ,µ ∈ X∗(T )+ and w ∈ W and let M := UG · (vλ ⊗ vwµ) be
the G-submodule of the tensor product V (λ) ⊗ V (µ) generated by vλ ⊗ vwµ. Then,
setting θ = λ+ wµ, and θ ′ = (−θ),
(1) dim HomG

(
V (θ ′),M∗) = 1.

In fact, this G-module map is induced from a surjective G-module map ψ : M �
V (θ̄), composed with theG-module map q : V (θ̄) → V (θ ′)∗ (constructed in the proof
below) and then taking duals.
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Proof. Assertion I. Analogous to Corollary 3.3.11, we first make the identification

(2) M∗ � H 0(Xw,Lw(λ� µ)
)
, as G-modules.

By Theorem 3.1.2(b), the restriction map

γ : V (λ)∗ ⊗ V (µ)∗ = H 0(G/B ×G/B,L(λ� µ)
)→ H 0(Xw,Lw(λ� µ)

)
is surjective. SinceG · (1, w̄) ⊂ Xw is a dense (open) subset, whereG acts diagonally
on G/B ×G/B and w̄ is the coset wB,

Ker γ = {f ∈ V (λ)∗ ⊗ V (µ)∗ : γ (f )|G·(1,w̄) ≡ 0}
= {f ∈ (V (λ)⊗ V (µ))∗ : f|M ≡ 0}, by (3.3.10.2).

Thus, we get an exact sequence

0 →
(V (λ)⊗ V (µ)

M

)∗ → (V (λ)⊗ V (µ))∗ → H 0(Xw,Lw(λ� µ)
)→ 0.

From this we get (2).

Assertion II. There is a canonical G-module isomorphism

(3) H 0(Xw,Lw(λ� µ)
) � H 0(G/B,L(k−λ ⊗ Vw(µ)∗)

)
.

From the fibration π1 : Xw → G/B obtained from the projection onto the first
factor: Xw ⊂ G/B ×G/B → G/B, we get that

H 0(Xw,Lw(λ� µ)
) � H 0(G/B, π1∗(Lw(λ� µ))

)
.

But since π1 is a G-equivariant morphism under the diagonal action of G on Xw,
π1∗(Lw(λ � µ)) is a G-equivariant vector bundle on G/B associated to the tensor
productB-module k−λ⊗H 0(Xw,Lw(µ)). So, the assertion (3) follows from Corollary
3.3.11.

Assertion III. For any δ ∈ X∗(T )+,

(4) HomG(V (δ),M
∗) � HomB

(
kλ ⊗ Vw(µ), V (δ)∗

)
.

Combining (2)–(3), we get

HomG(V (δ),M
∗) � HomG

(
V (δ),H 0(G/B,L(k−λ ⊗ Vw(µ)∗))

)
� HomB(V (δ), k−λ ⊗ Vw(µ)∗),

by Frobenius reciprocity

� HomB(kλ ⊗ Vw(µ), V (δ)∗).
This proves (4).
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Assertion IV.

(5) dim HomB(kλ ⊗ Vw(µ), V (θ ′)∗) = 1.

By (4.3.1.2), we get

HomB

(
kλ ⊗ Vw(µ), V (θ ′)∗

) = HomB

(
Vw(µ), k−λ ⊗ V (θ ′)∗

)
� {v ∈ (V (θ ′)∗)θ : e(m)β v = 0 for all β ∈ �+ and m ≥ δβ(wµ)

}
.(6)

Since the θ̄ -weight space of V (θ ′)∗ is one-dimensional, so is

(7) dim(V (θ ′)∗)θ = 1.

Consider the quotient map qθ ′ : V (θ ′) � L(θ ′), where L(θ ′) is the irreducible
G-module with highest weight θ ′. Now, L(θ ′)∗ � L(θ̄). Thus, we get the G-module
maps

V (θ̄)
qθ̄−→ L(θ̄) � L(θ ′)∗ ↪→ V (θ ′)∗,

where the last map is the dual of qθ ′ . Let q : V (θ̄) → V (θ ′)∗ be the composite map.
Then, being extremal weight, q induces an isomorphism of one-dimensionalT -modules

V (θ̄)θ
∼→ (V (θ ′)∗)θ .

Now, applying Proposition 4.3.1 to the G-module V (θ̄) and extremal weight vector
vθ ∈ V (θ̄)θ , we get e(m)β vθ = 0 for all β ∈ �+ andm ≥ δβ(θ). In particular, by virtue
of the G-module map q and the above isomorphism, for v ∈ (V (θ ′)∗)θ ,

(8) e
(m)
β v = 0 for all β ∈ �+ and m ≥ δβ(θ).

Next, for any β ∈ �+ such that 〈θ, β∨〉 ≤ 0,

δβ(θ) := 1 − 〈θ, β∨〉
= 1 − 〈λ+ wµ, β∨〉
= 1 − 〈wµ, β∨〉 − 〈λ, β∨〉
= δβ(wµ)− 〈λ, β∨〉.

Thus, for any β ∈ �+,

(9) δβ(θ) ≤ δβ(wµ).
Combining (6)–(9), we get

dim HomB

(
kλ ⊗ Vw(µ), V (θ ′)∗

) = dim(V (θ ′)∗)θ = 1,

proving (5).
Finally, the assertions III–IV put together prove (1). The “In fact” part of the

theorem follows from the above proof of Assertion IV.
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4.3.3 Remark. By (4.3.2.2),(
UG · (vλ ⊗ vwµ)

)∗ � H 0(Xw,Lw(λ� µ)).

Moreover, by Corollary 4.2.14, theG-moduleH 0(Xw,Lw(λ�µ)) admits a good filtra-
tion. From the above theorem we see that the multiplicity of ∇(θ ′) in
H 0(Xw,Lw(λ � µ)) is exactly one (Exercise 4.2.E.5). In particular, by Exercise
4.2.E.2, the multiplicity of ∇(λ+ wµ) in ∇(λ) ⊗ ∇(µ) is at least one. This mul-
tiplicity is often more than 1, as we will see in the refinement of Theorem 4.3.2 proved
below.

4.3.4 Definition. Fix λ,µ ∈ X∗(T )+ and letWλ, resp. Wµ, be the stabilizer of λ, resp.
µ, in W . Then, the map W → X∗(T )+, w �→ λ+ wµ, factors through the double
coset set to give the map

η : Wλ\W/Wµ → X∗(T )+.

As is well known (cf. [Bou–81, Chap. V, Proposition 3.3.1]), Wλ is generated by
the simple reflections it contains. Let Pλ be the parabolic subgroup BWλB. Then, the
double coset set Wλ\W/Wµ bijectively parametrizes the G-orbits in G/Pλ × G/Pµ
under the diagonal actional of G. The correspondence is given by

WλwWµ �→ G · (1 modPλ,wmodPµ).

From the Bruhat decomposition and the product formula (2.1.4) together with the
isomorphism (2.2.6.1) we indeed see that the above correspondence is bijective.

The following theorem provides a refinement of Theorem 4.3.2.

4.3.5 Theorem. For λ,µ ∈ X∗(T )+, w ∈ W and 1 ≤ m ≤ n,

(1) dim HomG

(
V (θ ′),H 0(Ym,LPλ,Pµ(λ� µ)|Ym

)) = m,

where η−1
(
η(WλwWµ)

) = {Wλw1Wµ, . . . ,WλwnWµ}, Ym := ⋃mi=1 X Pλ,Pµ
wi , and

θ ′ = −(λ+ wµ) (in particular, n := #η−1
(
η(WλwWµ)

)
).

Moreover, the G-module Lm := H 0
(Ym,LPλ,Pµ(λ� µ)|Ym

)
admits a good filtra-

tion. Thus, ∇(θ ′) appears in Lm with multiplicity exactly equal to m.
Observe that Lm is a G-module quotient of the tensor product G-module

∇(−woλ)⊗ ∇(−woµ) by (3.1.3.4) and Theorem 3.3.4(a).

As a preparation for the proof of the above theorem, we first prove the following.

4.3.6 Lemma. Take any λ,µ ∈ X∗(T )+, w ∈ W and assume that w is of minimal
length in its double cosetWλwWµ (even though we do not need it, such a w is unique).
Then, for any u < w,

HomG

(
V (θ ′),H 0(Xu,Lu(λ� µ)

) = 0,

where (as in the above theorem) θ ′ := (−θ) and θ := λ+ wµ.
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Proof. Consider the exact sequence of G-modules

0 → K → H 0(Xw,Lw(λ� µ)) γ−→ H 0(Xu,Lu(λ� µ)) → 0,

where K is, by definition, the kernel of the restriction map γ . For any δ ∈ X∗(T )+,
considering the corresponding long exact Ext∗G(V (δ),−) sequence and the Ext1

G van-
ishing result as in Theorem 4.2.7, together with Exercise 4.2.E.2, we get that the induced
map

(1) f : HomG

(
V (δ),H 0(Xw,Lw(λ� µ))

)→ HomG

(
V (δ),H 0(Xu,Lu(λ� µ))

)
is surjective.

By (4.3.2.2) and (4.3.2.4),

(2) HomG

(
V (δ),H 0(Xw,Lw(λ� µ))

) � HomB(kλ ⊗ Vw(µ), V (δ)∗),
and a similar statement with w replaced by u. Moreover, by Assertion IV of the proof
of Theorem 4.3.2, there exists a unique B-module map (up to scalar multiples)

ξ : kλ ⊗ Vw(µ) → V (θ ′)∗.

Of course, ξ takes theB-module generator 1λ⊗vwµ of kλ⊗Vw(µ) to the unique vector
(up to scalar multiples) in (V (θ ′)∗)θ .

Assume now that u → w (i.e., �(u) = �(w)− 1 and u ≤ w). Let β be the positive
root such that sβu = w. In this case,

(3) e
(a)
β vwµ = vuµ, where a := 〈uµ, β∨〉.

(Observe that a ≥ 0 by [Bou–81, Chap. VI, Proposition 1.6.17], since u−1β ∈ �+.)
To prove (3), we first observe that for any i > 0,

f
(i)
β vwµ = w

(
e
(i)

−w−1β
vµ
) = 0, since w−1β = −u−1β ∈ �−,

where fβ ∈ g−β is a negative root vector as in the proof of Theorem 2.3.1.
Now, using the hyperalgebra USL2 corresponding to the root β, (3) follows since

wµ+ aβ = uµ.
In view of (1)–(3), the lemma is equivalent to the following assertion:

(4) e
(a)
β · ((V (θ ′)∗)θ

) = 0.

From the G-module map q : V (θ̄) → V (θ ′)∗ defined in the Assertion IV of the
proof of Theorem 4.3.2, to prove (4), it suffices to show that

(5) e
(a)
β · (V (θ̄)θ ) = 0.

Since w is of smallest length in its double coset WλwWµ, sβ /∈ Wλ and thus
〈λ, β∨〉 ≥ 1. Also, since u−1w /∈ Wµ, we get a > 0. Thus, (5) follows from
Proposition 4.3.1. Now, for any u < w, there exists u ≤ u′ → w. Thus, the lemma
follows for u from u′ and (1). (Use (1) for w replaced by u′.)
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4.3.7 Corollary. (of the above proof) For any λ,µ, θ ∈ X∗(T )+ and u ≤ w ∈ W , the
restriction map

HomB(kλ ⊗ Vw(µ),∇(θ)) → HomB(kλ ⊗ Vu(µ),∇(θ))
is surjective.

Proof. We get the corollary from (4.3.6.1) and the identification (4.3.6.2).

We now come to the proof of Theorem 4.3.5.

Proof. By Exercise 4.1.E.6, Ym admits a B-canonical splitting. Thus, by Theorem
4.2.13, the G-module Lm admits a good filtration.

We next prove (1) of Theorem 4.3.5 by induction on m. The case m = 1 follows
from Theorem 4.3.2 together with (4.3.2.2) and Exercise 3.3.E.3. We assume now the
validity of (1) for Ym by induction on m and prove the same for Ym+1.

We have the sheaf exact sequence on Ym+1:

(1) 0 → IYm(Ym+1) → OYm+1 → OYm → 0,

where IYm(Ym+1) is the ideal sheaf of the closed subscheme Ym in Ym+1. Abbreviate
the line bundle LPλ,Pµ(λ� µ) on G/Pλ ×G/Pµ by L. Then, tensoring the sequence
(1) with the line bundle L|Ym+1

and taking cohomology, we obtain the following long
exact sequence:

0 → H 0
(
Ym+1, IYm(Ym+1)⊗ L|Ym+1

)
→ H 0
(
Ym+1,L|Ym+1

)
(2)

γ−→ H 0
(
Ym,L|Ym

)
→ 0,

where the surjectivity of the restriction map γ follows from (3.1.3.4).
But, as is fairly easy to see,

IYm(Ym+1) � IX P
wm+1

∩Ym
(X P
wm+1

)
,

where we abbreviate X Pλ,Pµ
wi by X P

wi
, the intersection Ym∩X P

wm+1
is the scheme theoretic

intersection and the sheaf IX P
wm+1

∩Ym
(X P
wm+1

)
, which is defined on X P

wm+1
, is extended

to the whole of Ym+1 by defining it to be zero on the open set Ym+1\X P
wm+1

. In particular,

(3) H 0
(
Ym+1, IYm(Ym+1)⊗ L|Ym+1

)
� H 0
(
X P
wm+1

, IX P
wm+1

∩Ym
(X P
wm+1

)⊗ L|XPwm+1

)
.

Similarly, the sheaf exact sequence

0 → IX P
wm+1

∩Ym
(X P
wm+1

)→ OX P
wm+1

→ OX P
wm+1

∩Ym → 0
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gives rise to the long exact sequence

0 → H 0
(
X P
wm+1

, IX P
wm+1

∩Ym
(X P
wm+1

)⊗ L|XPwm+1

)
→ H 0
(
X P
wm+1

,L|XPwm+1

)
(4)

γ ′
−→ H 0

(
X P
wm+1

∩ Ym,L|XPwm+1 ∩Ym

)
→ 0.

Again the surjectivity of the restriction map γ ′ follows from (3.1.3.4).
We further claim that

(∗) X P
wi

is not contained in X P
wj

for i 
= j.

If possible, assume that
X P
wi

⊂ X P
wj

for some i 
= j.

We can of course take wj to be of minimal length in its double coset. Then, under the
canonical map π : G/B ×G/B → G/Pλ ×G/Pµ,

π(Xwj ) = X P
wj

and π(Xu) = X P
wi

for some u ≤ wj . Moreover, u 
= wj since X P
wi


= X P
wj

as Wλ\W/Wµ bijectively
parametrizes the G-orbits in G/Pλ ×G/Pµ (4.3.4).

By Exercise 3.3.E.3,

(5) H 0(Xu,Lu(λ� µ)) � H 0
(
X P
wi
,LPwi (λ� µ)

)
.

Thus, by the (already established) case m = 1 of this theorem,
HomG

(
V (θ ′),H 0(Xu,Lu(λ�µ))

)
is nonzero, contradicting Lemma 4.3.6 for u < wj .

Thus, the claim (∗) is established.
Thus, X P

wm+1
∩ Ym being reduced and G-stable,

X P
wm+1

∩ Ym =
⋃

X P
u ,

where the above union is taken over some u ∈ W with u < wm+1 and wm+1 is chosen
to be of smallest length in its double cosetWλwm+1Wµ. In particular,

H 0
(
X P
wm+1

∩ Ym,L|XPwm+1 ∩Ym

)
↪→
⊕
u

H 0(X P
u ,L|XPu

)
.

Thus, by Lemma 4.3.6 and Exercise 3.3.E.3,

(6) HomG

(
V (θ ′),H 0

(
X P
wm+1

∩ Ym,L|XPwm+1 ∩Ym

))
= 0.

From the exact sequence (4), using (6) and Theorem 4.2.7, we get

(7) HomG

(
V (θ ′),H 0

(
X P
wm+1

, IX P
wm+1

∩Ym
(X P
wm+1

)⊗ L|XPwm+1

))
� HomG

(
V (θ ′),H 0

(
X P
wm+1

,L|XPwm+1

))
,
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and

(8) Ext1
G

(
V (θ ′),H 0

(
X P
wm+1

, IX P
wm+1

∩Ym
(X P
wm+1

)⊗ L|XPwm+1

))
= 0.

Hence, from the exact sequence (2), using (3) and (7)–(8), we get the exact sequence:

0 → HomG

(
V (θ ′),H 0

(
X P
wm+1

,L|XPwm+1

))
→

HomG

(
V (θ ′),H 0(Ym+1,L|Ym+1

))→ HomG

(
V (θ ′),H 0(Ym,L|Ym

))→ 0.

By induction onm, the last space ism-dimensional and the first space is one-dimensional
(for the case m = 1 of the theorem). Thus,

dim HomG

(
V (θ ′),H 0(Ym+1,L|Ym+1

)) = m+ 1,

proving (1) of Theorem 4.3.5.
The assertion that ∇(θ ′) appears in H 0

(Ym,L|Ym
)

with multiplicity m follows
immediately from (1) and Exercise (4.2.E.5). This completes the proof of the theorem.

Specializing Theorems 4.3.2 and 4.3.5 in characteristic 0, we obtain the following
result proving the original PRVK conjecture and its refinement. We follow the same
notation as in Theorems 4.3.2 and 4.3.5; U(g) denotes the enveloping algebra of the
Lie algebra g of G, which is the same as UG in characteristic 0.

4.3.8 Theorem. Let the base field be any algebraically closed field of characteristic 0.
For any λ,µ ∈ X∗(T )+, and w ∈ W , theG-submodule U(g) (vλ ⊗ vwµ) of the tensor
product G-module V (λ)⊗ V (µ) contains a unique copy of V (λ+ wµ).

In fact, for any 1 ≤ m ≤ n,H 0
(Ym,LPλ,Pµ(λ�µ)|Ym

)∗
, which is aG-submodule

of V (λ)⊗ V (µ), contains exactly m copies of V (λ+ wµ).
In particular, the multiplicity mw(λ,µ) of V (λ+ wµ) in V (λ)⊗ V (µ) satisfies

(1) mw(λ,µ) ≥ #η−1(η(WλwWµ)).
Thus, the total numberm(λ,µ) of irreducible components inV (λ)⊗V (µ) (counted

with multiplicities) satisfies

(2) m(λ,µ) ≥ #Wλ\W/Wµ.
4.3.9 Remark. The inequality (4.3.8.1) is often strict and hence so is (4.3.8.2). This
is illustrated by the following example of G = G2 and λ = µ = ρ. In this case, the
full decomposition of the tensor product (over C):

V (ρ)⊗ V (ρ) =
⊕

ν∈X∗(T )+
mνV (ν)

is given by the following table. We follow the convention of indexing the simple roots
as in [Bou–81, Planche IX].
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ν 2ρ 3χ2 5χ1 3χ1 + χ2 χ1 + 2χ2 4χ1 2χ1 + χ2

mν 1 1 1 2 1 2 3
#η−1(ν) 1 1 1 2 0 1 0

2χ2 3χ1 ρ 2χ1 χ2 χ1 0
2 3 2 2 2 1 1
1 0 2 0 1 1 1

The above chart also shows that there are some components in V (ρ)⊗V (ρ)which
are not of the form ρ + wρ.

To generate many more examples where the inequality (4.3.8.2) is strict (and for an
arbitrary g), take any µ ∈ X∗(T )+ and λ = nλ′, with λ′ regular and n a large enough
integer (depending upon µ).

4.3.E Exercises

(1) For any λ,µ ∈ X∗(T ) (not necessarily dominant), and any w ∈ W , prove that

χ
(Xw,Lw(λ� µ)

) = D̄wo(e
λ ·Dw(eµ)),

wherewo is the longest element ofW ,Dw is as in Corollary 3.3.9 andχ(Xw,Lw(λ�µ))
denotes

∑
i (−1)i chHi(Xw,Lw(λ � µ)). In particular, for λ,µ ∈ X∗(T )+, this

specializes to the following result due to Brauer:

ch(V (λ)⊗ V (µ)) = Dwo(e
λ ·Dwoeµ).

4.C. Comments

The notion of canonical splitting was introduced by Mathieu and most of the results
in Section 4.1, including Exercises 4.1.E.2–4, are due to him [Mat–90a] (see also
[Mat-00]). However, Mathieu takes the characterization (4.1.6.1) as the definition of a
B-canonical splitting. The definition of B-canonical splitting we give in 4.1.1 is taken
from [Van–93, Definition 4.3.5]. In [loc cit.] van der Kallen has studied filtrations of
B-modules (including the notion of excellent filtrations) in relation to the F -splitting.
However, in our book we focus on filtrations of G-modules. For a slightly different
exposition of some of the results in Sections 4.1 and 4.2, we refer to [Jan–03, Chap.
G].

Lemma 4.2.2 and Exercise 4.2.E.3 are due to Cline–Parshall–Scott–van der Kallen
[CPSV–77]. Theorem 4.2.5 is due independently to Donkin [Don–88] and Koppinen
[Kop-84]. The equivalence of (b) and (c) in Theorem 4.2.7 is due to Donkin [Don–81]
and its extension to an arbitrary G-module as in Remark 4.2.8 is due to Friedlander
[Fri–85] who also introduced the canonical filtration. Proposition 4.2.3, Corollary
4.2.6, the equivalence of (a) and (b) in Theorem 4.2.7, Lemma 4.2.10, Proposition
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4.2.12 and Theorem 4.2.13 are all due to Mathieu [Mat–90a, 00]. The first part of
Corollary 4.2.14 is due to Wang [Wan–82] for p = char. k large, and, in general, due
to Donkin [Don–85] except for p = 2 if G has a component of type E7 or E8. Also,
the first part of Corollary 4.2.15 is due to him [loc cit.] under the same restriction on
p. His proof involves an elaborate case-by-case analysis. In contrast, both the parts
of Corollaries 4.2.14–15 follow immediately from Mathieu’s uniform result Theorem
4.2.13. For other accounts of Mathieu’s proof of Corollaries 4.2.14–15 we refer to
[Van–93] and [Kan–94a]. Exercise 4.2.E.5 is taken from [Don–85, 12.1.1]. There are
other subsequent proofs via quantum groups: by Paradowski [Par–94] using Lusztig’s
canonical basis; and Kaneda [Kan–98] using Lusztig’s results on based modules.

In the nineteen sixties, Parthasarathy–Ranga Rao–Varadarajan (for short PRV) con-
jectured (unpublished) that for any λ,µ ∈ X∗(T )+ and w ∈ W , the irreducible G-
module over complex numbers V (λ+ wµ) occurs in the tensor product V (λ)⊗V (µ).
They proved this in the case where w is the longest element of the Weyl group [PRV–
67]. Then, Kostant (in the mid eighties) came up with a more precise form of their
conjecture suggesting that V (λ+ wµ) should occur with multiplicity exactly one in
the G-submodule of V (λ) ⊗ V (µ) generated by the vector vλ ⊗ vwµ (again over C),
to which we refer as the Parthasarathy–Ranga Rao–Varadarajan–Kostant (for short
PRVK) conjecture. Theorems 4.3.2 and 4.3.8 prove this conjecture and its analogue
in an arbitrary characteristic. It was proved by Kumar [Kum-88] in characteristic 0
using characteristic 0 methods and was extended by Mathieu [Mat–89b] to an arbitrary
characteristic. Proposition 4.3.1 is due to Joseph [Jos–85] in characteristic 0 and was
extended to an arbitrary characteristic by Polo [Pol–89].

The refinement of Theorem 4.3.2 as in Theorem 4.3.5 was proved by Kumar [Kum–
89] in characteristic 0. This refinement in characteristic 0 was conjectured by D.N.
Verma (unpublished) after the work [Kum-88] appeared. Its extension to characteristic
p (as in Theorem 4.3.5) appears here for the first time (to our knowledge). The proof
given here is a slight modification of the original proof given in [Kum–89]. The table
as in Remark 4.3.9 is taken from [Kum–88]. Exercise 4.3.E.1 is taken from [loc cit.].

Subsequently, other proofs of the original PRV conjecture appeared. Lusztig men-
tioned in 1989 that his results on the intersection homology of generalized Schubert
varieties associated to affine Kac–Moody groups give a proof of the PRV conjecture.
Rajeswari [Raj–91] gave a proof for classical G using Standard Monomial Theory;
Littelmann [Lit–94] gave a proof using his LS path models.

Let G be a connected semisimple group and H a closed connected reductive sub-
group. Then, (G,H) is called a Donkin pair if any G-module with a good filtration
admits a good filtration as an H -module. Brundan [Bru–98] conjectured that if G is
simply-connected and either H is the centralizer of a graph automorphism of G; or H
is the centralizer of an involution of G and characteristic is at least three, then (G,H)
is a Donkin pair. Combining Corollaries 4.2.14, 4.2.15 and [Bru–98], the conjecture
was proved by van der Kallen [Van–01] by some case-by-case analysis. It is desirable
to give a case-free proof of Brundan’s conjecture.



Chapter 5

Cotangent Bundles of Flag Varieties

Introduction

The main aim of this chapter is to give a family of Frobenius splittings of the cotangent
bundle T ∗(G/P ) of any flag varietyG/P due to Kumar–Lauritzen–Thomsen and thus
obtain a cohomology vanishing result for T ∗(G/P )with coefficients in the line bundles
obtained by pullback fromG/P . This cohomology vanishing result is applied to study
the geometry of nilpotent and subregular cones.

Let P ⊂ G be any parabolic subgroup with unipotent radical UP . We begin by
showing that the canonical bundle of theG-variety XP := G×P UP isG-equivariantly
trivial, where P acts on UP via conjugation. Thus, a splitting of XP can be thought
of as a regular function on XP . If the characteristic p of k is a good prime for G (for
the classical groups all the odd primes are good; see 5.1.8 for a complete list of good
primes), then by Proposition 5.1.9 and Corollary 5.1.11, the cotangent bundle T ∗(G/P )
is G-equivariantly isomorphic to XP . Now, consider the map ψP : St ⊗ St → k[XP ],
defined by ψP (v1 ⊗ v2)(g, u) = χ(v1 ⊗gug−1v2) for v1, v2 ∈ St, g ∈ G and u ∈ UP ,
where χ : St ⊗ St → k is a G-invariant nondegenerate bilinear form. Then, the main
result of this section, Theorem 5.1.3, asserts that for any f ∈ St ⊗ St, ψP (f ) splits XP
iff χ(f ) 
= 0. This result is obtained by comparing the splittings ofG/P with those of
XP (Lemma 5.1.5) and then studying the splittings ofG/P . As an immediate corollary
of this result (Theorem 5.1.3), one obtains that for any p which is a good prime for
G, the cotangent bundle T ∗(G/P ) is split. In Example 5.1.15, we explicitly work out
the example of G = SLn(k) recovering in this case the splitting of T ∗(G/B) given by
Mehta–van der Kallen. This splitting compatibly splits the subvarieties G ×B uP for
any parabolic subgroup P , where uP = LieUP (Exercise 5.1.E.6). In Exercises 5.1.E,
we assert that the varietiesG,G×B B andG×B b are B-canonically split; in fact,G is
B × B-canonically split. (The canonical splitting of the first two can also be obtained
from Theorem 6.1.12 in the next chapter.)

For any parabolic subgroup P ⊂ G, let πP : T ∗(G/P ) → G/P be the standard
projection. For the Borel subgroup B, we abbreviate πB by π . In Section 3.2 we prove
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that if the characteristic p of k is a good prime forG, thenHi(T ∗(G/B), π∗L(λ)) = 0
for all i > 0 and λ ∈ C := {µ ∈ X∗(T ) : 〈µ, β∨〉 ≥ −1 for all the positive roots β}
(Theorem 5.2.1). This is the main result of this section. Here is an outline of its proof.
Since the morphism π is affine, we can make the identification

Hi
(
T ∗(G/B), π∗L(λ)) � Hi

(
G/B,L(S(u∗))⊗ L(λ)),

where u = LieUB . Assume first that λ is dominant. By using the Koszul resolution
corresponding to the exact sequence of B-modules:

0 → (b/u)∗ → b∗ → u∗ → 0,

we show that the vanishing ofHi
(
G/B,L(S(u∗))⊗L(λ)) follows provided we show the

vanishing ofHi
(
G/B,L(S(b∗))⊗L(λ)). Now, the vanishing of the latter (for dominant

λ) follows from the diagonality of the Hodge cohomology: Hi
(
G/B,�

j
G/B

) = 0 for
i 
= j ; splitting of T ∗(G/B); and the Koszul resolution corresponding to the exact
sequence:

0 → (g/b)∗ → g∗ → b∗ → 0,

where�jG/B is the sheaf of j -forms inG/B. Now, the result for general λ ∈ C follows
from the dominant case by using the following simple result (Lemma 5.2.4). For a
simple root α and any λ ∈ X∗(T ) such that 〈λ, α∨〉 = −1,

Hi
(
G/B,L(V )⊗ L(λ)) = 0, for any i ≥ 0 and any Pα-module V .

We prove a slightly weaker P -analogue of the above main theorem. For any
parabolic subgroup P ⊂ G and any ample line bundle LP (λ) on G/P ,

Hi
(
T ∗(G/P ), π∗

PLP (λ)) = 0, for any i > 0 (Theorem 5.2.11).

It is natural to conjecture that this vanishing remains true for any dominant λ ∈ X∗(P ).
As a consequence of the above vanishing theorem for B and making use of the

above two Koszul resolutions, we obtain the Dolbeault vanishing (Theorem 5.2.9). For
any λ ∈ C and p a good prime for G,

Hi
(
G/B,�

j
G/B ⊗ L(λ)) = 0 for any i > j.

Finally, in Section 5.3, we use the main cohomology vanishing result of Section
5.2 to show that the nilpotent cone and the subregular cone of g are normal Gorenstein
varieties with rational singularities (again under the assumption that p is a good prime
forG). Also, by Exercises 5.3.E, the closure of SLn(k)-conjugacy class of any nilpotent
matrix N ∈ s�n(k) is a normal Gorenstein variety with rational singularities.

Notation. We follow the notation from Section 2.1. In particular, G is a connected,
simply-connected, semisimple algebraic group over an algebraically closed field k of
characteristic p > 0. We fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B
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and let U ⊂ B be the unipotent radical of B. Let B ⊂ P be a (standard) parabolic
subgroup with the unipotent radical UP and the Levi component LP containing T ; so
that P is the semidirect product P = LP �UP . Let U−

P be the unipotent radical of the
opposite parabolic P−. We denote the Lie algebras of G,P,B, T ,U,UP ,LP by the
corresponding Gothic characters: g, p, b, t, u, uP , lP , respectively.

By a volume form on a smooth varietyX, we mean a nowhere vanishing differential
form of top degree on X.

5.1 Splitting of cotangent bundles of flag varieties

We begin with the following lemma valid in any characteristic (including 0).

5.1.1 Lemma. Let P be any parabolic subgroup of G and let P act on UP by the
conjugation action and on uP by the adjoint action. Let G act on G ×P UP and
G×P uP via the left multiplication on the first factor. Then, the canonical line bundles
of the G-varieties G×P UP and G×P uP are G-equivariantly trivial.

Proof. AbbreviateG×P UP by XP and let π̄P : XP → G/P be the projection. Then,
the canonical bundle ωXP of XP is G-equivariantly isomorphic to the tensor product
of (π̄P )∗ωG/P with the relative canonical bundle ωπ̄P of the fibration π̄P . Now, as in
the beginning of Section 3.1, as G-bundles,

(1) ωG/P � LP (−δP ).
Also, as G-bundles,

(2) ωπ̄P � G×P ωUP .
But, as P -bundles,

(3) ωUP � k−δP ,

where k−δP denotes the trivial line bundle on UP together with the action of P via its
character −δP . Thus, as G-bundles,

(4) G×P ωUP � (π̄P )
∗(LP (δP )).

Combining (1), (2) and (4), we get the lemma for G×P UP . The proof for G×P uP
is similar.

5.1.2 The map ψP . As earlier in 2.3.4, the Steinberg module

St := H 0(G/B,L((p − 1)ρ))

has a G-invariant nondegenerate bilinear form

(1) χ : St ⊗ St → k,
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which is unique up to a scalar multiple.
Define a k-linear G-module map

(2) ψP : St ⊗ St → k[XP ]
by ψP (v1 ⊗ v2)(g, u) = χ(v1 ⊗ gug−1v2), for g ∈ G, u ∈ UP and v1, v2 ∈ St,
where XP := G ×P UP . Clearly, ψP (v1 ⊗ v2) is a well defined regular function on
the quotient variety XP .

By Lemma 5.1.1, there exists aG-invariant (nowhere vanishing) volume form θXP
on the (smooth) variety XP . In fact, any two volume forms on XP are nonzero scalar
multiples of each other, since there are no nonconstant regular functions XP → k∗.
(Use, e.g., the fact that U−

P × UP is dense open in XP .) Thus, the map St ⊗ St →
H 0
(
XP , ω

1−p
XP

)
, f �→ ψP (f ) θ

1−p
XP

, is a k-linear G-module map. Recall from 1.3.7

that there is a canonical identification H 0(X, ω
1−p
X ) � EndF (X), for any smooth

scheme X.

5.1.3 Theorem. For any f ∈ St ⊗ St, ψP (f ) θ
1−p
XP

∈ H 0
(
XP , ω

1−p
XP

)
splits XP up to

a nonzero scalar multiple iff χ(f ) 
= 0.
In particular, XP admits a B-canonical splitting.

Before we come to the proof of the theorem, we need the following preparatory
work.

5.1.4 The map φP . Let the standard parabolic subgroup P be given by P = PI for

a subset I ⊂ {1, . . . , �}, and set �±
I := �± ∩

(
⊕i∈I Zαi

)
. Recall the definition of

δP ∈ X∗(P ) from the beginning of Section 3.1. Then,

(1) δP =
∑

α∈�+\�+
I

α .

Choose T -eigenfunctions {xα}α∈�+\�+
I

⊂ k[UP ] with xα(1) = 0 and xα of weight
−α such that, as T -algebras over k,

(2) k[UP ] � k[xα]α∈�+\�+
I
.

Similarly, choose T -eigenfunctions {yα}α∈�+\�+
I

⊂ k[U−
P ] with yα(1) = 0 and yα of

weight α such that, as T -algebras over k,

(3) k[U−
P ] � k[yα]α∈�+\�+

I
.

These are guaranteed by [Spr–98, Lemma 8.2.2], also see Section 2.1. It is easy
to see that the ideal 〈xpα 〉α∈�+\�+

I
⊂ k[UP ] is P -stable under the conjugation action

of P on UP . Moreover, by (1)–(2), the P -module k[UP ]/〈xpα 〉 has all its weights ≥
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−(p−1)δP and the weight space of k[UP ]/〈xpα 〉 corresponding to the weight−(p−1)δP
is one-dimensional spanned by

∏
α∈�+\�+

I
x
p−1
α . (Observe that k[UP ]/〈xpα 〉 is the

coordinate ring of the first Frobenius kernel of UP , cf. [Jan–03, Part I, Chap. 9].) Let

(4) φP : k[UP ] → k−(p−1)δP

be the composition of the quotient map k[UP ] → k[UP ]/〈xpα 〉 with the T -equivariant
projection onto the lowest weight space spanned by the vector

∏
α∈�+\�+

I
x
p−1
α . Fur-

ther, the above map φP is a P -module map since the sum � of the weight spaces in
k[UP ]/〈xpα 〉 of weight > −(p − 1)δP is stable under the action of P . (Clearly, � is
stable under the action of B. Further, any simple reflection si , for i ∈ I , fixes δP , thus
keeps � stable. By (2.1.5) this shows that � is P -stable.)

Inducing the map φP , we get the G-module map

H 0(φP ) : k[XP ] = H 0(G/P,L(k[UP ]))→ H 0(G/P,LP ((p − 1)δP )
)
.

Also, define the G-module map

(5) ψ̄ : St ⊗ St → k[G], ψ̄(v1 ⊗ v2)g = χ(v1 ⊗ gv2),

where G acts on k[G] via the conjugation action. Restricting ψ̄ to UP , we get the
P -module map

(6) ψ̄P : St ⊗ St → k[UP ].
Inducing ψ̄P we get the G-module map (see Exercise 2.2.E.7)

(7) H 0(ψ̄P ) : St ⊗ St → H 0(G/P,L(k[UP ])) = k[XP ].
By Exercise 5.1.E.3, the above map

(8) H 0(ψ̄P ) = ψP ,

where ψP is the map as in (5.1.2.2).
The composite P -module map φP ◦ ψ̄P : St ⊗ St → k−(p−1)δP induces the G-

module map

(9) η
P

:= H 0(φP ◦ ψ̄P ) : St ⊗ St → H 0(G/P,LP ((p − 1)δP )
)
.

Recall from the beginning of Section 3.1 that LP (−δP ) � ωG/P .

5.1.5 Lemma. For any f ∈ St ⊗ St, η
P
(f ) splitsG/P up to a nonzero scalar multiple

iff ψP (f ) θ
1−p
XP

splits XP up to a nonzero scalar multiple, where ψP is the map defined
in (5.1.2.2).
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Proof. For any f ∈ St ⊗ St, write

(1) ψP (f )(y, x) =
∑

n,m∈Z
NI+

cn,my
nxm,

for (y, x) ∈ U−
P ×UP , where cn,m = cn,m(f ) ∈ k,NI := |�+\�+

I |, n = (nα)α∈�+\�+
I

,

m = (mα) and yn := ∏α ynαα , xm := ∏α xmαα . Then, ψP (f ) θ
1−p
XP

splits XP up to a
nonzero scalar multiple iff

(2) cp−1+pn,p−1+pm = 0

if at least one of n or m is nonzero and

(3) cp−1,p−1 
= 0,

where, as in Chapter 1, p − 1 is the constant sequence (p − 1, p − 1, . . . , p − 1) ∈
ZNI+ (use Lemma 1.1.7(ii) and Example 1.3.1). Since ψP (f ) lies in the image of

k[G] ⊗ (St ⊗ St)
I⊗ψ̄P−→ k[G] ⊗ k[UP ] (by (5.1.4.8)) and any weight of St ⊗ St is

≥ −2(p − 1)ρ, cn,m = 0 unless

−wt(m) ≥ −2(p − 1)ρ, i.e., wt(m) ≤ 2(p − 1)ρ,

where
wt(m) :=

∑
α∈�+\�+

I

mαα.

Thus,

(4) cn,p−1+pm = 0, if m is nonzero

(since wt(p − 1 + pm) � 2(p − 1)ρ if m is nonzero).
Assume first that η

P
(f ) splits G/P and consider the coefficients cn,p−1. Since

η
P
(f ) splits G/P ; in particular, η

P
(f )|U−

P
splits U−

P . By the definition of the map η
P

as in (5.1.4.9) and Example 1.3.1, for nonzero n,

(5) cp−1+pn,p−1 = 0, and cp−1,p−1 
= 0.

(Use the composite map k[G]⊗(St ⊗ St)
I⊗ψ̄P−→ k[G]⊗k[UP ] I⊗φP−→ k[G]⊗k−(p−1)δP .)

Thus, (2) and (3) are established, proving that ψP (f ) θ
1−p
XP

splits XP up to a nonzero
scalar multiple.

Conversely, assume that ψP (f ) θ
1−p
XP

splits XP . Then, (2) and (3) are satisfied; in

particular, (5) is satisfied. Thus, η
P
(f )|U−

P
splits U−

P up to a nonzero scalar multiple
and hence η

P
(f ) splits G/P up to a nonzero scalar multiple by Lemma 1.1.7(ii).
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5.1.6 Theorem. For any f ∈ St ⊗ St, ηP (f ) splitsG/P up to a nonzero scalar multiple
iff χ(f ) 
= 0.

Proof. We first consider the case P = B and show that η = ηB is nonzero. To show
this, it suffices to show that the composite map φB ◦ ψ̄B : St ⊗ St → k−2(p−1)ρ (see
5.1.4) is nonzero.

By Theorem 2.3.1, m(f+ ⊗ f−) splits X = G/B up to a nonzero scalar multiple,
where f−, resp. f+, is a lowest, resp. highest, weight vector of St and m is the
multiplication map St ⊗ St → H 0

(
G/B,L(2(p−1)ρ)

)
as in the beginning of Section

2.3. Now, by (2.3.1.2), under the standard trivialization of L(2(p − 1)ρ) over U−,
m(f+ ⊗ f−)|U− is given by

(1) g �→ χ(gf+ ⊗ f+), for g ∈ U− .

(Observe that, by the definition of χ as in 2.3.4, χ(gf+ ⊗ f+) = f+(gv+), where f+
corresponds to v+ under the identification χ̄ : St → St∗.) Since m(f+ ⊗ f−) splits
X; in particular, m(f+ ⊗ f−)|U− splits the open subset U− ⊂ X. Thus, the monomial
yp−1 occurs with nonzero coefficient inm(f+ ⊗f−)|U− (where the notation yp−1 is as
in the proof of Lemma 5.1.5). Conjugating this by the longest element wo of the Weyl
groupW , we get that xp−1 occurs with nonzero coefficient in the function

g �→ χ(gf− ⊗ f−), g ∈ U.
This proves that

(2) φB ◦ ψ̄B(f− ⊗ f−) 
= 0.

Thus, the G-module map η : St ⊗ St → H 0(G/B,L(2(p − 1)ρ)) is nonzero.
By the Frobenius reciprocity,

dimk HomG

(
St ⊗ St, H 0(G/B,L(2(p − 1)ρ))

)
(3)

= dimk HomB

(
St ⊗ St, k−2(p−1)ρ

)
= 1,

since the weight space of St ⊗ St corresponding to the weight −2(p − 1)ρ is one-
dimensional and it is of smallest weight.

Thus,

(4) m = η up to a nonzero scalar multiple.

Thus, the proposition for P = B follows from Corollary 2.3.5.
We now come to the general P . By the above case (i.e., P = B) and Lemma 5.1.5,

ψB(f+ ⊗ f−) θ1−p
XB

splits XB := G×B U up to a nonzero scalar multiple. We claim,

in fact, that ψP (f+ ⊗ f−) θ1−p
XP

splits XP for any P up to a nonzero scalar multiple.
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For any root β, as in Section 2.1, there exists an algebraic group isomorphism
εβ : Ga → Uβ onto the root subgroup Uβ satisfying

(5) tεβ(z)t
−1 = εβ(β(t)z), for all t ∈ T , z ∈ Ga.

Order the roots �+\�+
I = {β1, . . . , βNI

}
.

Now, define the variety isomorphisms (Section 2.1)

(6) ε : kNI → UP , ε
(
t1, . . . , tNI

) = εβ1(t1) · · · εβNI (tNI ),
and

(7) ε̄ : kNI → U−
P , ε̄
(
s1, . . . , sNI

) = ε−β1(s1) · · · ε−βNI (sNI ).

For g = ε̄(s) ∈ U−
P , write

(8) g−1f+ =
∑

n∈Z
NI+

snvn, for some vn ∈ St,

where s := (s1, . . . , sNI ) and sn := s
n1
1 · · · snNINI

. For a T -eigenvector v, let weight(v)
denote its weight. Then, it is easy to see that vn is a weight vector with

(9) weight(vn) = (p − 1)ρ −
NI∑
i=1

niβi .

Similarly, write for u = ε(t) ∈ UP ,

(10) u f− =
∑

m∈Z
NI+

tmwm, for some wm ∈ St .

Then,

(11) weight(wm) = −(p − 1)ρ +
NI∑
i=1

miβi.

Thus, for g ∈ U−
P and u ∈ UP ,

(12) χ(f+ ⊗ gug−1f−) = χ(g−1f+ ⊗ uf−) =
∑
n,m

sn tm χ(vn ⊗ wm).

We claim that, for the constant sequence p − 1 = (p − 1, . . . , p − 1) ∈ ZNI+ ,

(13) vp−1+pn = 0 = wp−1+pn if n 
= 0.
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By (9) and (5.1.4.1),

weight (vp−1+pn) = (p − 1)ρ − (p − 1)δP −
NI∑
i=1

pniβi

= −(p − 1) wPo ρ −
NI∑
i=1

pniβi,

where wPo is the longest element of the Weyl group WP of P . Since wPo permutes the
roots in �+\�+

I , the weight space of St corresponding to the weight

−(p − 1) wPo ρ −∑NIi=1 pniβi is zero-dimensional. This proves the first equality of
(13). The second equality follows similarly. We next show that vp−1 andwp−1 are both
nonzero; thus they are the unique (up to nonzero multiples) extremal weight vectors of
St corresponding to the weights −(p − 1) wPo ρ and (p − 1) wPo ρ respectively.

Analogous to ε, define a variety isomorphism ε′ : kN−NI → U(LP ), where N :=
|�+| and U(LP ) := U ∩LP is the unipotent radical of the Borel subgroup B ∩LP of
LP . Similarly, define

ε̄′ : kN−NI → U(LP )
−.

For g = ε̄(s) ε̄′(s′) ∈ U−, where s′ = (sNI+1, . . . , sN
)
, and s ∈ kNI , write

(14) g−1f+ =
∑

n∈Z
NI+

sn(ε̄′(s′)−1 vn
)
,

for some vn ∈ St. Similarly, for u = ε′(t′)ε(t) ∈ U , write

(15) uf− =
∑

m∈Z
NI+

tm(ε′(t′) wm
)
,

for somewm ∈ St. SinceψB(f+ ⊗f−) θ1−p
XB

splits XB up to a nonzero scalar multiple,

the coefficient of sp−1 s′p−1 tp−1 t′p−1 in χ(g−1f+ ⊗uf−) is nonzero (see the proof of
Lemma 5.1.5). This is possible only if vp−1 and wp−1 are both nonzero (use (14) and
(15)). Thus, χ

(
vp−1 ⊗ wp−1

) 
= 0 (since vp−1 and wp−1 are extremal weight vectors
of opposite weights). This proves (by virtue of (12)) that the monomial sp−1 tp−1

occurs with nonzero coefficient in the function (g, u) �→ χ(f+ ⊗ gug−1f−), for
(g, u) ∈ U−

P × UP . Combining this with (13), we get that ψP (f+ ⊗ f−) θ1−p
XP

splits
XP up to a nonzero scalar multiple (see the proof of Lemma 5.1.5). Thus, by Lemma
5.1.5, ηP (f+ ⊗ f−) splits G/P up to a nonzero scalar multiple.

To complete the proof of the theorem, we follow the argument as in the proof of
Corollary 2.3.5. As in (2.3.5.2), since ωY � LP (−δP ) (see the beginning of Section
3.1), identify (via a k-linear G-module isomorphism)

H 0
(
Y,LP ((p − 1) δP )

)
� Hom

(
F∗OY ,OY

)[−1]
,
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where Y = G/P . Further, consider the k-linear G-module map

e : Hom(F∗OY ,OY )[−1] → k

defined by e(σ ) = σ(1)p. Then, since Y is irreducible and projective, we have that σ ∈
Hom(F∗OY ,OY ) splits Y (up to a nonzero scalar multiple) iff e(σ ) 
= 0. Combining
the above two maps, we get a k-linear G-module map

θ : H 0(Y,LP ((p − 1)δP )) → k

and thus a k-linear G-module map

θ ◦ ηP : St ⊗ St → k.

Moreover, sinceηP (f+⊗f−) splitsY up to a nonzero scalar multiple, θ◦ηP (f+⊗f−) 
=
0. Thus, θ ◦ηP = χ (up to a nonzero scalar multiple) and hence ηP (f ) splitsG/P up to
a nonzero scalar multiple iff χ(f ) 
= 0. This completes the proof of the theorem.

5.1.7 Proof of Theorem 5.1.3. Combining Lemma 5.1.5 and Theorem 5.1.6, the first
part of Theorem 5.1.3 follows immediately. For the “In particular” statement, the
splitting of XP given byψP (f− ⊗f+)θ1−p

XP
provides a B-canonical splitting of XP (up

to a nonzero scalar multiple) by Lemmas 4.1.14 and 4.1.6.

5.1.8 Definition. Let G be a connected, simply-connected, simple algebraic group.
Then, a prime p is said to be a good prime for G if p is coprime to all the coefficients
of the highest root of G written in terms of the simple roots. A prime which is not
a good prime for G is called a bad prime for G. A prime p is called good for a
connected, simply-connected, semisimple algebraic group if p is good for all its simple
components.

For simple G of type A� no prime is bad; for G of type B�,C�,D� only p = 2 is
a bad prime; for G of type E6, E7, F4,G2 only p = 2, 3 are bad primes; and for G of
type E8 only p = 2, 3, 5 are bad primes.

5.1.9 Proposition. Let G be a connected, simply-connected, semisimple algebraic
group over any algebraically closed field k. Assume that the characteristic of k is 0
or a good prime for G. Then, there exists a B-equivariant isomorphism of varieties
ξ : U ∼→ u which restricts to a P -equivariant isomorphism ξP : UP ∼→ uP , for any
standard parabolic subgroup P of G.

Proof. The existence of a B-equivariant isomorphism ξ taking 1 to 0 is proved in [Spr–
69, Proposition 3.5]. We now prove that ξ restricts to an isomorphism ξP . By [Spr–98,
Exercise 8.4.6(5)], there exists a one-parameter subgroup γ : Gm → B such that:

(1) UP is the set of those g ∈ G such that γ (z)gγ (z)−1 has limit 1 when z tends to
zero, and

(2) uP is the set of those x ∈ g such that Ad(γ (z))x has limit 0 when z tends to 0.



5.1. Splitting of cotangent bundles 163

Using (1)–(2) and the B-equivariance of ξ , it follows easily that ξ takes UP surjec-
tively onto uP . From this, of course, we get that ξP is an isomorphism. Since ξP is a
B-equivariant morphism between affine P -varieties, it is automatically P -equivariant
(because P/B is projective).

A proof for the following can be found in [Spr–69, Lemma 4.4].

5.1.10 Proposition. Let G and k be as in the above proposition. Assume, in addition,
thatG does not have simple components of typeA�. Then, there exists a nondegenerate
symmetric G-invariant bilinear form on g.

Also, there exists a nondegenerate symmetric GLn(k)-invariant bilinear form on
Mn(k) = LieGLn(k), for any k.

As an immediate consequence of the above proposition, we get the following.

5.1.11 Corollary. Let G and k be as in Proposition 5.1.9. Then, for any parabolic
subgroup P ⊂ G, the cotangent bundle T ∗(G/P ) is G-equivariantly isomorphic to
the homogeneous vector bundle G×P uP .

As a corollary of Theorem 5.1.3, we get the following.

5.1.12 Corollary. Let G be as in the beginning of this chapter and assume that the
characteristic of k is a good prime for G. Then, for any standard parabolic subgroup
P ⊂ G, the cotangent bundle T ∗(G/P ) is B-canonically split.

Proof. By Corollary 5.1.11, T ∗(G/P ) � G×P uP . Further, by Proposition 5.1.9,

(1) G×P uP � G×P UP .
Thus, the corollary follows from Theorem 5.1.3.

Let π̄P : XP → G/P and πP : T ∗(G/P ) → G/P be the canonical projections.
Then, both of these morphisms are G-equivariant. The following corollary follows
immediately by combining Theorems 5.1.3 and 4.2.13.

5.1.13 Corollary. For any (not necessarily dominant) λ ∈ X∗(P ), the G-module
H 0
(
XP , π̄

∗
PLP (λ)) admits a good filtration.

In particular, if the characteristic of k is a good prime for G, then
H 0
(
T ∗(G/P ), π∗

PLP (λ)) admits a good filtration.

5.1.14 Homogeneous splittings of T ∗(G/P ). With the notation and assumptions of
Corollary 5.1.11, the ring of functions

(1) k[T ∗(G/P )] � k[G×P uP ] � [k[G] ⊗ S(u∗
P )]P ,

where P acts on k[G] via the right regular representation.

(2) (p · f )g = f (gp), for f ∈ k[G], p ∈ P and g ∈ G,
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and the action of P on S(u∗
P ) is induced from the adjoint action.

Taking the standard grading S(u∗
P ) = ⊕d≥0 S

d(u∗
P ), we get a grading on

k[T ∗(G/P )] via the isomorphism (1) declaring k[G] to have degree 0. For any d ≥ 0,
let

κd : k[T ∗(G/P )] → [k[G] ⊗ Sd(u∗
P )]P

be the projection onto the d-th homogeneous component.
Let Y be a smooth variety together with a (nowhere vanishing) volume form θY .

Of course, in general, θY does not exist. Then, a function f ∈ k[Y ] is called a splitting
function (with respect to θY ) if f θ1−p

Y ∈ H 0
(
Y, ω

1−p
Y

)
splits Y up to a nonzero scalar

multiple. In the case θY is unique up to a scalar multiple (e.g., T ∗(G/P ) by 5.1.2), we
can talk of a splitting function (without any reference to θY ).

If f ∈ k[T ∗(G/P )] is a splitting function, then so is κ(p−1)NI f , where NI :=
dim G/P (as earlier), since (κ(p−1)NI f )|U−

P ×uP
is a splitting function by Example

1.3.1. In particular, by Theorem 5.1.3, for any f ∈ St ⊗ St such that χ(f ) 
= 0,
the function κ(p−1)NI (ψP (f )) is a splitting function of T ∗(G/P ), where we consider
the function ψP (f ) ∈ k[G ×P UP ] as a function on T ∗(G/P ) via the identification
G×P UP � T ∗(G/P ) given by (5.1.12.1) and Corollary 5.1.11. These splitting func-
tions κ(p−1)NI (ψP (f )) have an advantage of being homogeneous in the fiber direction;
thus they give rise to a splitting of the projectivized cotangent bundle P(T ∗(G/P ))
consisting of lines in T ∗(G/P ) (Example 1.1.10(3)).

5.1.15 Example. We consider the example of G = SLn+1(k), where k is an alge-
braically closed field of an arbitrary characteristic p > 0. In this case, the Springer
isomorphism (Proposition 5.1.9)

ξ : U → u is explicitly given by A �→ A− I,
whereU , resp. u, is the set of upper triangular unipotent matrices, resp. upper triangular
nilpotent matrices, and I is the identity (n + 1) × (n + 1) matrix. We consider the
element f− ⊗ f+ ∈ St ⊗ St. Then, the function ψB(f− ⊗ f+), under the identification
G×B U � G×B u, is given by

(1) ψB(f− ⊗ f+)(g,A) = χ(f− ⊗ g(I + A)g−1f+), for g ∈ G,A ∈ u.

We identify the above function more explicitly as follows. Let V = kn+1 be the
standard representation of SLn+1(k) with standard basis {e1, . . . , en+1}. Then, for
any 1 ≤ i ≤ n, ∧iV is a Weyl module with the i-th fundamental weight χi as its
highest weight and highest weight vector e1 ∧· · ·∧ ei . Moreover, we have aG-module
embedding (St sitting as the “Cartan” piece)

(2) i : St ↪→ (V ⊗ ∧2V ⊗ · · · ⊗ ∧nV )⊗p−1
,

taking f+ �→ (e1 ⊗ (e1 ∧ e2)⊗ · · · ⊗ (e1 ∧ · · · ∧ en)
)⊗p−1. The existence of i follows

from the self-duality of St and [Jan–03, Part II, Lemma 2.13(a)]. Moreover, since St is
irreducible (Exercise 2.3.E.3), i is an embedding.
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Similarly, replacing B by the opposite Borel B−, there is a G-module embedding

i′ : St ↪→ (V ∗ ⊗ ∧2(V ∗)⊗ · · · ⊗ ∧n(V ∗)
)⊗p−1

taking f− �→ (e∗1 ⊗ (e∗1 ∧ e∗2)⊗ · · · ⊗ (e∗1 ∧ · · · ∧ e∗n)
)⊗p−1, where {e∗1, . . . , e∗n+1} is

the dual basis of V ∗ : e∗i (ej ) = δi,j . Further, the G-invariant pairing χ : St ⊗ St → k

is the restriction of the pairing(
V ∗ ⊗ ∧2(V ∗)⊗ · · · ⊗ ∧n(V ∗)

)⊗p−1 ⊗ (V ⊗ ∧2V ⊗ · · · ⊗ ∧nV )⊗p−1 → k

induced by the standard pairing V ∗ ⊗ V → k. So,

ψB(f− ⊗ f+)(g,A) = χ(f− ⊗ g(I + A)g−1f+)
= (detM1 detM2 · · · detMn)

p−1,(3)

where M = M(g,A) is the matrix g(I + A)g−1 and, for any 1 ≤ i ≤ n, Mi is the
matrix obtained fromM by taking the first i rows and the first i columns.

For any fixed g, by (3), the map A �→ ψB(f− ⊗ f+)(g,A) is a (not necessarily
homogeneous) polynomial on u of degree (p−1)(1+2+· · ·+n) = (p−1) n(n+1)

2 =
(p − 1) dimG/B. The splitting function κ(p−1)N (ψB(f− ⊗ f+)) (where N :=
dimG/B) on T ∗(G/B) was originally used by [MeVa-92a] to split T ∗(SLn+1 /B).

5.1.E Exercises

In the following exercises (1), (2) and (5), k is of arbitrary characteristic p ≥ 0. More-
over, unless otherwise stated, G denotes a connected, simply-connected, semisimple
algebraic group.

(1) Show that there are no nonconstant regular maps G → k∗ for any connected,
semisimple algebraic group over k. In particular, up to a nonzero scalar multiple, there
exists a unique volume form on G.

Hint: Any (connected) unipotent subgroup H being isomorphic, as a variety, to an
affine space, there are no nonconstant regular maps H → k∗.

(2) More generally, for any connected algebraic groupG, any regular map f : G → k∗
with f (1) = 1 is a character.

This is a result due to Rosenlicht.

(3∗) Show that the mapH 0(ψ̄P ) as in (5.1.4.7) is the same as the mapψP as in (5.1.2.2).

(4) Show that the function φ : G → k defined by g �→ χ(f+ ⊗ gf−) χ(f+ ⊗ g−1f−)
is a splitting function, where f+, f− are highest and lowest weight vectors respectively
of St and χ is the pairing as in (5.1.2.1). (By Exercise (1), there exists a unique volume
from θG on G up to a nonzero scalar multiple.) Moreover, the associated splitting of
G is B × B-canonical under the action (b1, b2) · g = b1gb

−1
2 .
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Hint: First show that θG|U−UT = t−ρθU− ∧ θU ∧ θT , where θT is the volume form
dt1∧· · ·∧dt�; ti being the function tχi for the i-th fundamental weight χi . In particular,
for u− ∈ U−, u+ ∈ U and t ∈ T ,

(φθ
1−p
G )(u−u+t) = χ(u−1− f+ ⊗ u+f−)t(p−1)ρ (θU−(u−) ∧ θU (u+) ∧ θT (t)

)⊗1−p
.

Now, use Theorem 5.1.3.
In fact, consider the linear function � : (St � St)⊗ (St � St) → k[G] defined by

�(v � v′ ⊗ w � w′) = χ(v ⊗ gv′)χ(w ⊗ gw′).

Then, show that�(v�v′ ⊗w�w′) is a splitting function iff χ(v⊗w)χ(v′ ⊗w′) 
= 0.

(5) Let P be any parabolic subgroup ofG. Show that the canonical bundle ofG×P P
isG-equivariantly trivial, where P acts on P via the conjugation. Prove the same result
for G×P p.

Show further thatG×P p has a unique volume form (up to a nonzero scalar multiple),
but it is false for G×P P for any parabolic subgroup P � G.

Hint: For the first part use ideas similar to the proof of Lemma 5.1.1. For the
nonuniqueness part, observe that any nontrivial character χ of P induces a nonconstant
regular function on G×P P (as χ is invariant under conjugation).

(6) Let G = SLn+1(k), where k is an algebraically closed field of any characteristic
p > 0. Show that the splitting of T ∗(G/B) given by the function h =
κ(p−1)N (ψB(f− ⊗ f+)) (as in 5.1.15), i.e., the splitting hθ1−p

T ∗(G/B) of T ∗(G/B) com-
patibly splits all the subvarieties G ×B uP ⊂ G ×B u � T ∗(G/B), for any standard
parabolic subgroup P ⊂ G.

(7) By Exercise (5), there exists a volume form θ on G ×B B such that θ|U−×T U =
θU− ∧ θT ∧ θU . Show that αθ1−p provides a B-canonical splitting of G×B B up to a
nonzero scalar multiple, where α is the function given by α(g, b) = χ(f−⊗gbg−1f+),
for g ∈ G, b ∈ B.

In fact, for any f = ∑ vi ⊗ wi ∈ St ⊗ St such that χ(f ) 
= 0, αf (g, b) :=∑
i χ(vi ⊗ gbg−1wi) is a splitting function on G ×B B with respect to the volume

form θ .

Hint: Use Theorem 5.1.3.

(8)Assume thatp is a good prime forG and, moreover,G does not have any components
of the form SLn(k). Recall that there exists a G-equivariant morphism (cf. [BaRi–85,
Proposition 9.3.3]) ξG : G → g, taking 1 �→ 0, such that the differential

(∗) (dξG)1 : g → g

is the identity map. By [Spr–98, Proposition 8.4.5], there exists a one-parameter sub-
group γ : Gm → B such that B, resp. b, is the set of those g ∈ G, resp. x ∈ g, such
that γ (z)gγ (z)−1, resp. Ad(γ (z))x, has a limit when z tends to zero. Using such a γ ,
show that ξG restricts to a morphism ξ = ξB : B → b.
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Then, ξ induces a map at the level of the top degree forms

ξ∗ : H 0(b, ωb) → H 0(B, ωB),

where ω denotes the canonical bundle. Fix a volume form θb on b and a volume form
θB = θT θU on B = T U . Then, ξ∗(θb) = �θB , for some � ∈ k[B]. Moreover,
�(1) 
= 0, by (∗).

The map ξ induces an isomorphism of algebras

ξ̂∗ : k̂[b] ∼→ k̂[B],
where k̂[b], resp. k̂[B], is the completion of k[b] at the maximal ideal corresponding
to 0, resp. of k[B] at 1.

Write
α(g, b) =

∑
j

α′
j (g) α

′′
j (b),

for some α′
j ∈ k[G] and α′′

j ∈ k[B], where α : G ×B B → k is as in Exercise (7).
Define the regular function α̂ : G× b → k by

α̂ =
∑
j

α′
j ⊗
((
ξ̂∗)−1(

α′′
j �

p−1))
o
,

where (·)o denotes the homogeneous component of degree (p− 1) dimB. Now, prove
the following.

(a) α̂ descends to a function on G×B b.
Hint: Show that � is B-invariant under the adjoint action.

(b) α̂ provides a B-canonical splitting ofG×B b with respect to the unique (up to a
nonzero scalar multiple) volume form on G×B b.

(c) This splitting ofG×B b descends to a splitting of g under the mapG×B b → g,
(g, x) �→ (Ad g)x.

Hint: Use the arguments in [MeVa-92a, Proof of Theorem 4.3] to show that it
suffices to prove that α̂ descends to a function on g. To prove the latter assertion,

show that the composite map G × B
πB→ B

�→ k descends to a map on G via
the map G × B → G, (g, b) �→ gbg−1, where πB is the projection onto the
B-factor.

(d) Let P ⊂ G be any standard parabolic subgroup. Give a construction similar to
that given above to split G×P uP using the splittings of G×P UP provided by
Theorem 5.1.3.

(e) The splitting of G×B B given by αθ1−p (up to a nonzero scalar multiple) as in
Exercise (7) descends to a splitting of G via the map G ×B B → G, (g, b) �→
gbg−1.
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(9) Show the following negative results.

(a) Let Ui ⊂ U be the unipotent radical of a standard minimal parabolic subgroup
Pi of G. Then, none of the splittings of G ×B U provided by Theorem 5.1.3
compatibly split G×B Ui .
Hint: Show that, for any f ∈ St ⊗ St such that χ(f ) 
= 0, ψB(f ) does not
identically vanish on G× x, for any x ∈ U . Now, use Exercise 1.3.E.3.

(b) For any simple reflection si, 1 ≤ i ≤ �, let Di ⊂ G/B be the corresponding
Schubert divisor BwosiB/B. Then, none of the splittings of G×B U provided
by Theorem 5.1.3 give a D̂i-splitting ofG×B U , where D̂i := π−1(Di); π being
the quotient map G×B U → G/B.

Hint: Show that, for any f ∈ St ⊗ St, if ψB(f ) vanishes identically on D̂i then
it vanishes identically on G×B Ui as well. Now, use the (a) part.

(10) Let p 
= 2. Then, show that for G = SOn(k) and Sp2n(k), the Cayley transform
C : U → u, g �→ (1 − g)(1 + g)−1, is a B-equivariant isomorphism. So, C provides
an explicit Springer isomorphism in these cases.

Hint: In fact, C is defined on square matrices x such that 1 + x is invertible.
Moreover, for such an x, 1 + C(x) is again invertible and C2x = x.

(11) LetB � P ⊂ G be a parabolic subgroup. Fix a volume form θ onG×P P (which
exists by Exercise (5)). Then, show that (up to a nonzero scalar multiple)

θ|
U

−
P

×(L−
P

×U×T ) = tβ t−ρθU−
P

∧ θL−
P

∧ θU ∧ θT ,

for some character tβ of T which extends to a character ofLP , whereL−
P := LP ∩U−.

Show further that, for any f ∈ St ⊗ St, ψ(f )θ1−p is not a splitting of G ×P P ,
where ψ(v ⊗ w)(g, p) = χ(v ⊗ gpg−1w).

Hint: For the first part, take the right invariant volume form θP on P . Then,
θ|
U

−
P

×P = γ θU−
P

∧ θP , where γ is a nowherevanishing function on P , thus descends to

a function on P/UP . Now, use Exercise (1).
For the second part, take weight vectors v,w ∈ St. Then, for g ∈ U−

P , h ∈ L−
P ,

u ∈ U , t ∈ T ,
ψ(v ⊗ w) (g, hut) = χ(g−1v ⊗ hut g−1w).

The coefficient of the monomial t (p−1)ρ in
(
ψ(v⊗w)(g, hut)) · t (p−1)(ρ−β) is given by

χ
(
g−1v ⊗ hu(g−1w)(p−1)β

)
, where (g−1w)(p−1)β denotes the component of g−1w

in the weight space corresponding to the weight (p − 1)β. Now, the monomial∏
α∈�+ x

p−1
α (5.1.4) would occur in χ

(
g−1v ⊗ hu(g−1w)(p−1)β

)
with nonzero co-

efficient only if the weight spaces in St corresponding to the weights (p − 1)β and
(p − 1)β + 2(p − 1)ρ are both nonzero. This is possible only if β = −ρ. But t−ρ is
not a character of LP unless P = B.
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5.2 Cohomology vanishing of cotangent bundles of flag
varieties

We continue to follow the same notation as in the beginning of this chapter.
Let π : T ∗(G/B) → G/B denote the projection and let

C := {µ ∈ X∗(T ) : 〈µ, β∨〉 ≥ −1, for all β ∈ �+}.

We begin with the statement of one of the main results of this section.

5.2.1 Theorem. Let the characteristic of k be a good prime forG. Then, for any λ ∈ C,

Hi
(
T ∗(G/B), π∗L(λ)) = 0, for all i > 0.

Before we come to the proof of the theorem, we need several preparatory results.

5.2.2 Lemma. Let the characteristic of k be a good prime for G, or 0. Then, for any
parabolic subgroup P ⊂ G and any vector bundle V on G/P , there is a canonical
isomorphism

Hi
(
T ∗(G/P ), π∗

PV) � Hi
(
G/P,LP (S(u∗

P ))⊗ V), for all i ≥ 0,

where S(·) denotes the symmetric algebra and πP : T ∗(G/P ) → G/P is the projec-
tion.

Proof. By Corollary 5.1.11, the cotangent bundle

(1) T ∗(G/P ) � G×P uP , as G-equivariant vector bundles.

(Here we have used the assumption that the characteristic of k is a good prime for G,
or 0.)

The projection πP : T ∗(G/P ) → G/P is clearly an affine morphism. Now, we
use the projection formula [Har–77, Chap. II, Exercise 5.1(d)] and a degenerate case
of the Leray spectral sequence [Har–77, Chap. III, Exercise 8.2] to get

Hi
(
T ∗(G/P ), π∗

PV) � Hi
(
G/P, πP ∗(OT ∗(G/P ))⊗ V).

The fiber of πP at the base point eP can be identified with uP (under the identification
(1)). Thus, from the G-equivariance, the sheaf πP ∗

(OT ∗(G/P )
)

can be identified with
the homogeneous vector bundle LP (S(u∗

P )).

5.2.3 Definition. (Koszul resolution) Let

0 → V ′ p1→ V
p2→ V ′′ → 0
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be a short exact sequence of vector spaces (over any field k). For any n > 0, consider
the sequence:

0 → ∧n(V ′) → · · · → Sn−i (V )⊗ ∧i (V ′) δi−1−→ Sn−i+1(V )⊗ ∧i−1(V ′)

→ · · · → Sn−1(V )⊗ V ′ δ0−→ Sn(V )
p̂2−→ Sn(V ′′) → 0,(1)

where p̂2 is induced by the map p2 and δi−1 : Sn−i (V ) ⊗ ∧i (V ′) →
Sn−i+1(V )⊗ ∧i−1(V ′) is defined by

(2) δi−1(f ⊗ v1 ∧ · · · ∧ vi) =
i∑
j=1

(−1)j−1(p1vj )f ⊗ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vi .

Then, as is well known, the above sequence (1) is an exact complex called the Koszul
complex (cf. [Ser–89, Chap. IV.A]). The direct sum of the resolutions (1) over all n ≥ 0
provides a resolution of the S(V )-module S(V ′′) � S(V )/V ′ · S(V ), called the Koszul
resolution of the S(V )-module S(V ′′).

5.2.4 Lemma. Let k be a field of an arbitrary characteristic (including 0). Let Pα
be the standard minimal parabolic subgroup corresponding to a simple root α and let
λ ∈ X∗(T ) satisfy 〈λ, α∨〉 = −1. Then, for any Pα-module V ,

Hj
(
G/B,L(V )⊗ L(λ)) = 0, for all j ≥ 0.

Proof. For the projection f : G/B → G/Pα , since f ∗LPα (V ) � L(V ), by the
projection formula [Har–77, Chap. III, Exercise 8.3],

(1) Rjf∗(L(V )⊗ L(λ)) � LPα (V )⊗ Rjf∗(L(λ)).
But, from theG-equivariance,Rjf∗(L(λ)) is the homogeneous vector bundle onG/Pα
associated to the Pα-module Hj(Pα/B,L(λ)|Pα/B ). Since L(λ)|Pα/B , by assumption,
is a line bundle of degree −1 on the projective line P1 � Pα/B,

Hj
(
Pα/B,L(λ)|Pα/B

) = 0, for all j ≥ 0.

Thus, by (1),
Rjf∗(L(V )⊗ L(λ)) = 0, for all j ≥ 0.

Hence, the lemma follows from the Leray spectral sequence associated to the morphism
f .

5.2.5 Corollary. Let k be a field of an arbitrary characteristic. Suppose that λ ∈ C
and 〈λ, α∨〉 = −1 for a simple root α. Then, sαλ ∈ C and

(1) Hi
(
G/B,L(Sn(u∗))⊗ L(λ)) � Hi

(
G/B,L(Sn−1(u∗))⊗ L(sαλ)

)
for all i ≥ 0 and n > 0.
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Proof. As sα permutes �+\{α} and sαα = −α, we get that sαλ ∈ C.
For the isomorphism (1), apply the Koszul resolution (5.2.3.1) to the short exact

sequence of B-modules:

0 → k−α → u∗ → u∗
Pα

→ 0,

to obtain the exact sequence of B-modules:

0 → Sn−1(u∗)⊗ k−α → Sn(u∗) → Sn(u∗
Pα
) → 0.

Thus, we get an exact sequence of homogeneous vector bundles on G/B:

0 → L(Sn−1(u∗))⊗ L(λ+ α) → L(Sn(u∗))⊗ L(λ) → L(Sn(u∗
Pα
))⊗ L(λ) → 0.

Now, taking the associated long exact cohomology sequence and applying Lemma 5.2.4
(to get the vanishingHj

(
G/B,L(Sn(u∗

Pα
))⊗L(λ)) = 0, for all j ≥ 0), we obtain (1).

(Observe that, by assumption since 〈λ, α∨〉 = −1, sαλ = λ+ α.)

5.2.6 Relative Kähler Differentials. For a scheme over any field k, recall the definition
of the sheaf of Kähler differentials �1

X = �X/k from [Har–77, Chap. II, §8]. For any
k-morphism f : X → Y between schemes, the sheaf of relative Kähler differentials
�1
X/Y (which we will abbreviate as�1

f ) is defined as the quotient sheaf�1
X/i(f

∗�1
Y ),

where i : f ∗�1
Y → �1

X is the canonical map. Thus, these fit into an exact sequence of
sheaves on X:

(1) f ∗�1
Y

i−→ �1
X → �1

f → 0.

Assume further that X and Y are smooth varieties and f is a smooth morphism.
In this case, i is injective and �1

X and �1
f are locally free OX-modules (cf. [Har–77,

Chap. III, Proposition 10.4]). Fix j ≥ 0 and let �jX := ∧jOX
(�1
X) be the sheaf of

differential j -forms on X. Then, by (1) and [Har–77, Chap. II, Exercise 5.16], there
exists a decreasing filtration

{Ff
i (�

j
X)
}
i≥0 of�jX by locally free OX-submodules such

that the associated graded sheaf

(2) Gr(Ff (�
j
X)) �
⊕
i≥0

f ∗(�iY )⊗�j−if ,

where �sf := ∧sOX
(�1
f ).

For dominant regular λ, the following lemma is a special case of the Serre vanishing
theorem [Har–77, Chap. III, Proposition 5.3].

5.2.7 Lemma. Let λ be a dominant weight. Then, there exists mo = mo(λ) such that
for any i > j ,

(1) Hi
(
G/B,�

j
G/B ⊗ L(mλ)) = 0, for all m ≥ mo.



172 Chapter 5. Cotangent Bundles of Flag Varieties

Proof. For λ = 0, from the diagonality of the Hodge cohomology [Jan–03, Part II,
Proposition 6.18],

(2) Hi
(
G/B,�

j
G/B

) = 0 for all i 
= j.

Thus, (1) is true in this case.
For λ 
= 0, letB ⊂ P ⊂ G be the (unique) parabolic subgroup such that L(λ) is the

pullback of an ample line bundle LP (λ) onG/P via the projection f : G/B → G/P .
(Of course, P = PI , where I := {1 ≤ q ≤ � : λ(α∨

q ) = 0}.) Applying (5.2.6.2) to the
(smooth) morphism f , to prove (1), it suffices to show that for i > j ,

(3) Hi
(
G/B, f ∗�rG/P ⊗�j−rf ⊗ L(mλ)) = 0, for all 0 ≤ r ≤ j and all m ≥ mo.

By the projection formula, theEs,t2 term of the Leray spectral sequence for the fibration
f may be written as

E
s,t
2 = Hs

(
G/P,�rG/P ⊗ LP (mλ)⊗ Rtf∗�j−rf

)
,

which converges to H ∗(G/B, f ∗�rG/P ⊗�j−rf ⊗ L(mλ)).
Since LP (λ) is an ample line bundle on G/P , by the Serre vanishing theorem

[Har–77, Chap. III, Proposition 5.3], there exists mo such that for all m ≥ mo,

(4) Hs
(
G/P,�rG/P ⊗ LP (mλ)⊗ Rtf∗�j−rf

) = 0,

for all s > 0, and all j, r, t ≥ 0.
Further, Rtf∗�j−rf is the homogeneous vector bundle on G/P associated to the

P -module Ht
(
P/B,�

j−r
P/B

)
. Again, the diagonality of the Hodge cohomology (this

time for P/B) gives

(5) Ht
(
P/B,�

j−r
P/B

) = 0, unless t = j − r.
Combining (4) and (5), we obtain

Hs
(
G/P,�rG/P ⊗ LP (mλ)⊗ Rtf∗�j−rf

) = 0,

unless s = 0 and t = j − r . Thus,

E
s,t
2 = 0, unless s = 0 and t = j − r.

Hence,
Hi
(
G/B, f ∗�rG/P ⊗�j−rf ⊗ L(mλ)) = 0,

for all m ≥ mo, unless i = j − r . This proves (3) and thus (1) for any i > j .

With this preparation, we are ready to prove Theorem 5.2.1.
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5.2.8 Proof of Theorem 5.2.1. We begin by proving the following for any dominant
λ.

(1) Hi(G/B,L(S(u∗))⊗ L(λ)) = 0, for all i > 0.

Consider the Koszul resolution (5.2.3.1) for any n > 0:

0 → ∧n((b/u)∗) → · · · → Sn−s(b∗)⊗ ∧s((b/u)∗) δs−1−→ · · ·(2)

→ Sn−1(b∗)⊗ (b/u)∗ δ0−→ Sn(b∗) → Sn(u∗) → 0,

corresponding to the short exact sequence of B-modules:

0 → (b/u)∗ → b∗ → u∗ → 0.

LetKs := Image δs . Then, the exact sequence (2) breaks up into several short exact
sequences of B-modules (for any s ≥ 1):

(3)s 0 → Ks → Sn−s(b∗)⊗ ∧s((b/u)∗) δs−1−→ Ks−1 → 0, and

(4) 0 → K0 → Sn(b∗) → Sn(u∗) → 0.

Fix a dominant λ and assume that

(5) Hi(G/B,L(S(b∗))⊗ L(λ)) = 0 for all i > 0.

Considering the long exact cohomology sequences corresponding to the short ex-
act sequences (3)s and (4) of B-modules tensored with the B-module k−λ and using
assumption (5) and the fact that b/u is a trivial B-module, we see that for any i > 0
and any s ≥ 1,

Hi+1(G/B,L(Ks)⊗ L(λ)) � Hi(G/B,L(Ks−1)⊗ L(λ)), and

Hi+1(G/B,L(K0)⊗ L(λ)) � Hi(G/B,L(Sn(u∗))⊗ L(λ)).
Thus, by iteration, for any s ≥ 0,

(6) Hi(G/B,L(Sn(u∗))⊗ L(λ)) � Hi+s+1(G/B,L(Ks)⊗ L(λ)).
Since Ks = 0 for large enough s, from (6), we deduce that

(7) Hi(G/B,L(Sn(u∗))⊗ L(λ)) = 0, for any i > 0.

Thus, (1) follows for (dominant) λ if we prove (5), which we prove now.
Again, fix any n > 0 and consider the Koszul resolution:

0 → ∧n((g/b)∗) → · · · → Sn−s(g∗)⊗ ∧s((g/b)∗) δ̂s−1−→ · · ·(8)

→ Sn−1(g∗)⊗ (g/b)∗ δ̂0−→ Sn(g∗) → Sn(b∗) → 0,
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corresponding to the short exact sequence of B-modules:

0 → (g/b)∗ → g∗ → b∗ → 0.

By Lemma 5.2.7, there exists mo such that

(9) Ht(G/B,�
j
G/B ⊗ L(mλ)) = 0, for t > j and all m ≥ mo.

Thus, by [Jan–03, Part I, Proposition 4.8],

(10) Ht
(
G/B,L(S(g∗)⊗ ∧j ((g/b)∗))⊗ L(mλ)

)
= 0,

for all t > j and m ≥ m0, since

(11) �
j
G/B � L(∧j ((g/b)∗)).

Considering the short exact sequences similar to (3)s and (4) (obtained from the Koszul
resolution (8)) and using (10) we obtain (similarly to (6)), for any s ≥ 0 and i > 0,

(12) Hi
(
G/B,L(Sn(b∗))⊗ L(mλ)) � Hi+s+1(G/B,L(K̂s)⊗ L(mλ)),

where K̂s := Image δ̂s . Taking s large enough, we obtain (for any n > 0)

(13) Hi
(
G/B,L(Sn(b∗))⊗ L(mλ)) = 0, for all i > 0 and m ≥ mo.

The above vanishing for n = 0 is a particular case of (9).
This proves (5) for λ replaced by mλ (for any m ≥ mo) and thus we obtain

(14) Hi
(
G/B,L(S(u∗))⊗ L(mλ)) = 0, for all i > 0 and m ≥ mo.

(Observe that, so far, we have not used the assumption that the characteristic of k is a
good prime for G, which we use now.) By Lemma 5.2.2,

(15) Hi
(
T ∗(G/B), π∗L(mλ)) � Hi

(
G/B,L(S(u∗))⊗ L(mλ)).

Thus, by (14), Hi(T ∗(G/B), π∗L(mλ)) = 0, for all i > 0 and m ≥ mo. Since
T ∗(G/B) is split (Corollary 5.1.12), by Lemma 1.2.7(i),

Hi
(
T ∗(G/B), π∗L(λ)) = 0.

This proves the theorem for dominant λ.
Finally, we prove the theorem for an arbitrary λ ∈ C. Take n ≥ 0 and assume by

induction that Hi
(
G/B,L(Sj (u∗)) ⊗ L(λ)) = 0, for all i > 0 and j < n. If λ is

dominant, then (as proved above) Hi
(
G/B,L(Sn(u∗))⊗ L(λ)) = 0. So, assume that

λ ∈ C is not dominant. Then, there exists a simple root α such that 〈λ, α∨〉 = −1. For
n = 0, Hi(G/B,L(λ)) = 0 by Lemma 5.2.4. For n > 0, by Corollary 5.2.5,

Hi
(
G/B,L(Sn(u∗))⊗ L(λ)) � Hi

(
G/B,L(Sn−1(u∗))⊗ L(sαλ)

)
,

and sαλ ∈ C. Thus, by induction, Hi
(
G/B,L(Sn(u∗))⊗ L(λ)) = 0.

This finishes the proof of the theorem by Lemma 5.2.2.
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As a consequence of Theorem 5.2.1 and its proof, we obtain the following Dolbeault
vanishing.

5.2.9 Theorem. Let the characteristic of k be a good prime forG. Then, for any λ ∈ C,

(1) Hi
(
G/B,�

j
G/B ⊗ L(λ)) = 0, for all i > j.

Proof. We first show that

(2) Hi
(
G/B,L(S(b∗))⊗ L(λ)) = 0, for all i > 0.

As in the proof of Theorem 5.2.1, consider the exact sequence of B-modules:

0 → (b/u)∗ → b∗ → u∗ → 0.

Associated to the above sequence, for any r ≥ 0, there is a decreasing filtration (by
B-submodules):

Sr(b∗) = F0 ⊃ F1 ⊃ · · · ⊃ Fr ⊃ Fr+1 = (0)

such that
Gr F =

⊕
j≥0

Sj ((b/u)∗)⊗ Sr−j (u∗)

(cf. [Har–77, Chap. II, Exercise 5.16]).
Thus, to prove (2), it suffices to show that

(3) Hi
(
G/B,L(S((b/u)∗))⊗ L(S(u∗))⊗ L(λ)) = 0, for all i > 0.

But since b/u is a trivial B-module, (3) follows from Theorem 5.2.1 and Lemma 5.2.2.
Fix n ≥ 1 and assume by induction that

(4) Hi
(
G/B,L(∧j ((g/b)∗))⊗ L(λ)) = 0 for all i > j and j < n.

(Observe that Hi(G/B,L(λ)) = 0, for i > 0, as this is a particular case of (3).)
Recall the Koszul resolution from (5.2.8.8):

0 → ∧n((g/b)∗) → · · · → Sn−s(g∗)⊗ ∧s((g/b)∗) δ̂s−1−→ · · · →
Sn−1(g∗)⊗ (g/b)∗ δ̂0−→ Sn(g∗) → Sn(b∗) → 0.

As in 5.2.8, break this into short exact sequences (for any s ≥ 1):

0 → K̂s → Sn−s(g∗)⊗ ∧s((g/b)∗) δ̂s−1−→ K̂s−1 → 0, and(5)s

0 → K̂0 → Sn(g∗) → Sn(b∗) → 0,(6)
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where K̂s := Image δ̂s . Then,

K̂n = 0 and K̂n−1 � ∧n((g/b)∗).
From the long exact cohomology sequences associated to (5)s tensored with k−λ (for
1 ≤ s ≤ n− 1), and using the induction hypothesis (4), we get (for any i > n):

Hi
(
G/B,L(∧n((g/b)∗))⊗ L(λ)) � Hi−1(G/B,L(K̂n−2)⊗ L(λ)) �

· · · � Hi−n+1(G/B,L(K̂0)⊗ L(λ)) � Hi−n
(
G/B,L(Sn(b∗))⊗ L(λ)),

where the last isomorphism is obtained from (6). The last term is 0 by (2) and hence
so is the first term. This completes the induction and we get

Hi
(
G/B,L(∧j ((g/b)∗))⊗ L(λ)) = 0, for all i > j.

Now, the theorem follows from (5.2.8.11).

5.2.10 Remark. We obtained the Dolbeault vanishing Theorem 5.2.9 from Theorem
5.2.1 and its proof. We can reverse the steps in the proof of Theorem 5.2.9 and obtain
Theorem 5.2.1 as a consequence.

We extend a slightly weaker version of Theorem 5.2.1 to an arbitrary parabolic
subgroup.

5.2.11 Theorem. Assume that the characteristic of k is a good prime for G. Then,
for any standard parabolic subgroup P ⊂ G and a dominant weight λ ∈ X∗(P ) such
that LP (λ) is ample on G/P (equivalently, if λ− ρP remains dominant; see Exercise
3.1.E.1),

(1) Hi
(
T ∗(G/P ), π∗

P LP (λ)) � Hi
(
G/P,LP (S(u∗

P ))⊗ LP (λ)) = 0,

for all i > 0.

Proof. The first isomorphism in (1) of course is a particular case of Lemma 5.2.2.
Regard T ∗(G/P ) � G×P uP (Corollary 5.1.11) as a closed subvariety of

(2) G×P g � G/P × g,

where the last isomorphism is given by (g, x) �→ (gP,Ad g(x)). Then, the projection
onto the second factor gives rise to a proper morphism α : T ∗(G/P ) → g. Let εg be
the trivial line bundle on g. Then, π∗

PLP (λ) can be identified with the restriction of the
product line bundle LP (λ)� εg to T ∗(G/P ) under the identification (2). In particular,
π∗
P LP (λ) is ample on T ∗(G/P ). Thus, the vanishing ofHi

(
T ∗(G/P ), π∗

P LP (λ)), for
i > 0, follows from Theorem 1.2.8(i) and Corollary 5.1.12. This proves the theorem.

The following result follows from the corresponding result in characteristic p > 0
and the semicontinuity theorem.
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5.2.12 Theorem. Theorems 5.2.1, 5.2.9 and 5.2.11 remain true over an algebraically
closed field of characteristic 0.

Proof. For Theorem 5.2.1, resp. 5.2.11, in characteristic 0, use Lemma 5.2.2, Theorem
5.2.1, resp. 5.2.11, and Proposition 1.6.2. For Theorem 5.2.9 in characteristic 0, use the
same proof as that of Theorem 5.2.9 (and use Theorem 5.2.1 in characteristic 0).

5.2.E Exercises

(1) Let X be a smooth projective variety over any field k and let TX be its tangent
bundle. Assume that there is an exact sequence of vector bundles:

0 → K → εX → TX → 0,

where εX is a trivial vector bundle on X (for some vector bundle K on X). Then, for
any vector bundle S on X, prove that the following two assertions are equivalent for
any fixed t ≥ 0.

(a) Hq(X,�pX ⊗ S) = 0, for all q − p > t .
(b) Hq(X, Sj (K∗)⊗ S) = 0, for all j ≥ 0 and q > t .

Hint: Use an appropriate Koszul resolution and ideas similar to those used in the
proofs of Theorems 5.2.1 and 5.2.9.

(2) Give an alternative proof of Theorem 5.2.11 along the following lines.
Considering the Koszul resolution corresponding to the short exact sequence of

P -modules:

0 → (g/uP )
∗ → g∗ → u∗

P → 0,

first show that, for any fixed i ≥ 0, if

Hi+j
(
G/P,L(∧j ((g/uP )∗))⊗ LP (λ)) = 0, for all j ≥ 0,

then so is

Hi(T ∗(G/P ), π∗
P LP (λ)) = 0.

Now, since LP (λ) is an ample line bundle on G/P , there exists a large enough
mo such that Hi

(
G/P,L(∧j ((g/uP )∗)) ⊗ LP (mλ)) = 0, for all i > 0, j ≥ 0 and

m ≥ mo. Thus, we get the vanishing

Hi(T ∗(G/P ), π∗
PLP (mλ)) = 0, for all i > 0.

Finally, use the splitting of T ∗(G/P ) to complete the proof.
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5.3 Geometry of the nilpotent and subregular cones

In this section we assume that G is a simple (connected, simply-connected) group and
the characteristic of k is a good prime for G or 0. Recall that by a desingularization,
or resolution, of a variety Y , we mean a nonsingular variety Ỹ together with a proper
birational morphism Ỹ → Y . We will also use the notion of a rational resolution,
defined in 3.4.1.

We now review basic definitions and properties of the unipotent, resp. nilpotent
varieties and their subregular varieties as given in, e.g., [Hum–95b, Chapter 6]. Let U
be the unipotent variety of G, i.e., the closed subset of G (with the reduced scheme
structure) consisting of all the unipotent elements of G. Then, U is irreducible, and
normal by [Spr–69, §1]. Further, the map

φ : G×B U → U, (g, u) �→ gug−1,

is aG-equivariant desingularization, called the Springer resolution, whereG acts on U
via conjugation. The unipotent variety U contains a dense openG-orbit U reg consisting
of the regular unipotent elements. Moreover, the complement S := U \ U reg is an
irreducible closed subset of U , which we endow with the (reduced) subvariety structure.
The subvariety S is called the subregular variety. It contains a dense openG-orbit Sreg.

Similarly, let N ⊂ g be the nilpotent cone consisting of all the nilpotent elements.
Then, N is closed, irreducible, and invariant under scalar multiplication. We endow N
with the closed subvariety structure; then, N is normal as well. In fact, U and N are
isomorphic as G-varieties under the adjoint actions (cf. [BaRi–85, Corollary 9.3.4]).
As a consequence, the map

φ̃ : G×B u → N , (g,X) �→ Ad g ·X,
is a G-equivariant resolution, called the Springer resolution. Further, N contains a
dense open G-orbit N reg consisting of the regular nilpotent elements. Moreover, the
complement S := N \N reg is an irreducible closed subset of N , invariant under scalar
multplication, and containing a dense open G-orbit Sreg. Endowed with the (reduced)
subvariety structure, S is called the subregular cone. By [BaRi–85, Corollary 9.3.4]
again, S and S are isomorphic as G-varieties.

Let P = Pα be the minimal parabolic subgroup associated to a short simple root
α. Then, φ|G×BUP factors through

φα : G×P UP → U,

with image exactly equal to S.
Similarly, the restriction of φ̃ toG×B uP factors throughG×P uP to give the map

φ̃α : G×P uP → N ,

with image exactly equal to S.



5.3. Geometry of the nilpotent and subregular cones 179

5.3.1 Lemma. Let α be a short simple root. Then, all the maps φ, φα , φ̃ and φ̃α are
projective morphisms.

Further, φα and φ̃α are both birational onto their images S and S respectively.

Proof. The map φ is the composition

G×B U ↪→ G×B G � G/B ×G π2−→ G,

where the first map is the standard closed embedding, the second isomorphism is defined
by (g1, g2) �→ (g1B, g1g2g

−1
1 ) and the last map π2 is the projection onto the second

factor. Since π2 is a projective morphism, so is φ. The assertion that the maps φα , φ̃
and φ̃α are projective morphisms can be proved similarly.

It is a consequence of [Ste–74, Theorem 2 on page 153] that φα is bijective over
Sreg. Indeed, by [loc cit.], any element g ∈ Sreg lies in the unipotent radical of a
unique conjugate of Pα . Now, to show that φα is birational, it suffices to recall from
[SpSt–70] that the orbit maps are separable for unipotent conjugacy classes. The proof
for φ̃α is similar.

5.3.2Theorem. The nilpotent cone N and the subregular cone S are normal Gorenstein
varieties. Further, φ̃ and φ̃α are rational resolutions, where α is any short simple root.

Proof. As mentioned above, the unipotent variety U , and hence the nilpotent cone N ,
is normal. We begin by proving that φ̃ is a rational resolution. In characteristic 0, this
follows at once from the triviality of the canonical bundle of G ×B u (Lemma 5.1.1)
together with the Grauert–Riemenschneider vanishing theorem (cf. [GrRi–70]). In
positive characteristics, by Lemma 5.1.1 again, it suffices to show thatRiφ̃∗(OG×Bu) =
0 for all i > 0. Since N is affine, this is equivalent to

Hi(G×B u,OG×Bu) = 0, for all i > 0,

cf. [Har–77, Chap. III, Proposition 8.5]. But, G ×B u = T ∗(G/B) by Corollary
5.1.11; thus, Theorem 5.2.1 yields the desired vanishing. This completes the proof of
the rationality of the resolution φ̃. Together with Lemma 3.4.2 and the triviality of the
canonical bundle of G×B u again, it follows that the nilpotent cone N is Gorenstein.

Next, we turn to the subregular cone. We first show that the natural restriction map

(1) k[G×B u] → k[G×B uP ] is surjective,

where P = Pα is the minimal parabolic subgroup corresponding to any short simple
root α.

Fix n > 0 and consider the exact sequence ofB-modules (proof of Corollary 5.2.5):

0 → Sn−1(u∗)⊗ k−α → Sn(u∗) → Sn(u∗
P ) → 0.

This gives rise to the long exact cohomology sequence:

0 → H 0(G/B,L(Sn−1(u∗))⊗ L(α))→ H 0(G/B,L(Sn(u∗))
)→(2)

H 0(G/B,L(Sn(u∗
P ))
)→ H 1(G/B,L(Sn−1(u∗))⊗ L(α))→ · · · .
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By [Bou–81, Page 278], any positive short root belongs to C, where C is defined in
the beginning of Section 5.2. By Theorem 5.2.1 in characteristic p > 0 and Theorem
5.2.12 in characteristic 0, and Lemma 5.2.2, for any i > 0,

(3) Hi
(
G/B,L(S(u∗))⊗ L(α)) = 0, since α ∈ C.

In particular, we get the surjection

H 0(G/B,L(S(u∗))) � H 0(G/B,L(S(u∗
P ))).

Using a degenerate case of the Leray spectral sequence for the affine morphisms
G×B u → G/B and G×B uP → G/B (see the proof of Lemma 5.2.2), we get (1).

We now show that S is normal. Considering the P1-fibrationG×B uP → G×P uP ,
we get

(4) k[G×B uP ] � k[G×P uP ].
Consider the commutative diagram:

k[G×B u] k[N ]

k[G×P uP ] φ∗
α

k[S],

φ∗
∼

where the left vertical map is induced from the natural restriction followed by the
isomorphism (4) and thus is surjective (by (1)), and the right vertical map is induced
from the inclusion. The map φ̃∗ is an isomorphism since N is normal and φ̃ is birational.
Thus, φ̃∗

α is surjective, and, of course, it is injective since φ̃α is surjective. Now, the
affine varietyG× uP being normal, k[G× uP ] is integrally closed in its quotient field.
In particular, k[G ×P uP ] � k[G × uP ]P is integrally closed in its quotient field,
proving that the affine variety S is normal.

Finally, we prove that φ̃α is a rational resolution. As in the case of φ̃, in characteristic
0, this follows from the Grauert–Riemenschneider vanishing theorem. Thus, we may
assume that the characteristic is positive. As for φ̃ again, it suffices to prove that

(5) Hi
(
G×P uP ,OG×PuP

) = 0, for all i > 0.

Further, by Corollary 5.1.11 and Lemma 5.2.2,

Hi
(
G×P uP ,OG×PuP

) � Hi
(
G/P,LP (S(u∗

P ))
)

(6)

� Hi
(
G/B,L(S(u∗

P ))
)
,

where the last isomorphism follows from Theorem 3.3.4(a). Now, the vanishing

(7) Hi
(
G/B,L(S(u∗

P ))
) = 0, for all i > 0,
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follows from the long exact sequence (2) and the vanishing (3) and using the following
consequence of Theorem 5.2.1 and Lemma 5.2.2:

(8) Hi
(
G/B,L(S(u∗))

) = 0, for all i > 0.

Thus, we obtain (5) (from (6) and (7)), thereby showing that φ̃α is a rational resolution.
Finally, the assertion that S is Gorenstein follows again from Lemma 3.4.2, since the
canonical bundle of G×P uP is trivial by Lemma 5.1.1.

5.3.3 Remark. Let {αi1 , . . . , αim} be a set of mutually orthogonal short simple roots
and let P = PI be the standard parabolic subgroup corresponding to the subset I :=
{i1, . . . , im}. Then, Thomsen [Tho–00b] has proved that, if the characteristic of k is
a good prime for G, the closure G · uP is a normal, Gorenstein variety which admits
a rational resolution. This generalizes the corresponding result in characteristic 0 by
Broer [Bro–94].

5.3.E Exercises

(1) Let G = SLn(k). Take any nilpotent matrix N ∈ s�n(k) and let C(N) be its
G-conjugacy class under the adjoint action.

(a) Using the normality of the full nilpotent cone N ⊂ s�n(k), show that the closure
C(N) ⊂ s�n(k) is a normal variety.

Also, show that the ring of regular functions k[C(N)] admits a good filtration as a
G-module.

Hint: Use the fact that there exists a parabolic subgroup P = PN such that φP :
G ×P uP → C(N), (g, x) �→ Ad g(x), is a proper birational morphism (cf. [Hum–
95b, Proposition 5.5]). Moreover, by a result of Spaltenstein (cf. [MeVa-92a, Theorem
4.8]), all the fibers of φP are connected. Now, use Exercises 5.1.E.6 and 1.2.E.3.

(b) Show that the above map φP : G ×P uP → C(N) is a rational resolution.
Hence, prove that C(N) is Gorenstein.

Hint: Consider the splitting ofG×B uP given by Exercise 5.1.E.6, which of course
descends to give a splitting ofG×P uP . Now, apply Theorem 1.3.14 to the morphism
φP by showing that the above splitting satisfies the hypotheses of the theorem. Finally,
use Lemma 5.1.1 and the normality ofC(N) to conclude that φP is a rational resolution.
To prove that C(N) is Gorenstein, use Lemmas 3.4.2 and 5.1.1.

5.C. Comments

All of the results of Section 5.1 are due to Kumar–Lauritzen–Thomsen [KLT–99], except
for Propositions 5.1.9 and 5.1.10 which are due to Springer [Spr–69] and the explicit
splitting of the cotangent bundle T ∗(G/B) for G = SLn(k) given in Example 5.1.15
which is due to Mehta–van der Kallen [MeVa–92a]. Lemma 5.1.1 in the special case
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G = SLn(k) and P = B, and Exercise 5.1.E.6 are also due to Mehta–van der Kallen
[MeVa–92a]. Exercises 5.1.E.4 (the first part), 7, 8 (except for (d), (e)) are taken from
[KLT–99] and we have learnt of Exercises 5.1.E.4 (the “in fact” part) and 5.1.E.8(e)
from Thomsen.

Theorem 5.2.1 was obtained byAndersen–Jantzen [AnJa–84] by some case-by-case
analysis for the case where p > h (h being the Coxeter number ofG) and either λ = 0
or λ is strongly dominant (i.e., 〈λ, α∨

i 〉 ≥ h − 1 for all the simple coroots α∨
i ). For

p ≥ h−1 and all the components ofG classical orG2, they proved this theorem for any
dominant λ. Theorem 5.2.1 in full generality in characteristic 0 was proved by Broer
[Bro–93]. In fact, Broer showed that C is precisely the set of weights for which the
vanishing as in Theorem 5.2.1 holds (in characteristic 0). Lemma 5.2.4 is the simple key
lemma in Demazure’s very simple proof of the Borel–Weil–Bott theorem [Dem–76].
Corollary 5.2.5 is essentially due to Broer [Bro–94]. Theorem 5.2.9, which is equivalent
to Theorem 5.2.1 by using an appropriate Koszul resolution (see Remark 5.2.10), is
due to Broer [Bro–97] in characteristic 0 and Kumar–Lauritzen–Thomsen [KLT–99] in
characteristic p. In fact, Broer proved the corresponding result in characteristic 0 for
an arbitrary G/P and for an arbitrary λ ∈ X∗(P ) ∩ C. Theorem 5.2.11 is again due to
Broer [Bro–94] in characteristic 0 (in fact he proves it for an arbitrary λ ∈ X∗(P )+)
and Kumar–Lauritzen–Thomsen [KLT–99] in characteristicp, although the proof given
here is new.

Theorem 5.3.2 for the subregular cone in characteristic 0 is due to Broer [Bro–93].
As observed in [KLT–99], his proof carries over to give the same result in characteristic
p once one uses the cohomology vanishing Theorem 5.2.1. The normality of the
nilpotent cone N in characteristic 0 is a classical result due to Kostant [Kos–63]; and
Hesselink [Hes–76] proved that φ̃ is a rational resolution of N in characteristic 0.
Exercise 5.3.E.1 is taken from [Don–90], [MeVa–92a]. In characteristic 0 this was
proved by Kraft–Procesi [KrPr–79].

We believe that Theorem 5.2.11 should remain true for any dominant λ ∈ X∗(P ).
This will follow if, e.g., we can prove that the cotangent bundle T ∗(G/P ) of the flag
variety G/P is split relative to an ample divisor.



Chapter 6

Equivariant Embeddings
of Reductive Groups

The main result of this chapter asserts that any equivariant embedding of a connected
reductive groupG admits a canonical splitting which compatibly splits all theG×G-
orbit closures. Here, by an equivariant embedding ofGwe mean a normalG×G-variety
containing an open orbit isomorphic to G itself, where G × G acts on G by left and
right multiplications.

This result is first established for a special class of embeddings: the wonderful com-
pactifications of adjoint semisimple groups. Any such group Gad admits a projective
nonsingular equivariant embedding X such that the complement of the open orbit is a
union of nonsingular prime divisors, the boundary divisors, intersecting transversally.
Further, the Gad × Gad-orbit closures in X are the partial intersections of boundary
divisors, and the intersection of all of these divisors is the unique closed orbit. The
construction and main properties of X, due to de Concini–Procesi in characteristic 0,
were extended to positive characteristic by Strickland who also obtained its splitting.

Another special class of embeddings consists of toric varieties, which are precisely
the equivariant embeddings of tori. For these, the existence of an invariant splitting
compatible with all the orbit closures is easily established (Exercise 1.3.E.6). The
case of arbitrary equivariant embeddings of reductive groups combines the features of
wonderful embeddings and those of toric varieties, as will be made more precise in this
chapter. We assume some familiarity with the theory of toric varieties, for which we
use [Ful–93] as a general reference.

Section 6.1 begins by constructing the wonderful compactification X and studying
its line bundles. In particular, the Picard group of X is shown to be isomorphic to
the weight lattice of Gad such that the globally generated, resp. ample, line bundles
correspond to the dominant, resp. regular dominant, weights. Then, it is shown that X
admits a canonical splitting, compatible with all the boundary divisors and also with the
Schubert divisors and opposite Schubert divisors (Theorem 6.1.12). As consequences,
the vanishing of the higher cohomology groups of globally generated line bundles is
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obtained (Corollary 6.1.13), and good filtrations for the spaces of global sections of
line bundles over X are constructed (Corollary 6.1.14).

Section 6.2 is devoted to some results of Rittatore on equivariant embeddings of a
connected reductive groupG. A special role is played by those embeddings that admit
an equivariant morphism to the wonderful compactification of the associated adjoint
group. Such embeddings are called toroidal, as theirG×G-orbit structure turns out to
be that of a toric variety (Proposition 6.2.3). A combinatorial classification of toroidal
embeddings by fans with support in the negative Weyl chamber is obtained (Proposition
6.2.4). Also, it is shown that any equivariant embedding admits an equivariant resolution
of singularities by a toroidal embedding (Proposition 6.2.5). Then, it is shown that any
equivariant embeddingX ofG admits a canonical splitting (Theorem 6.2.7), compatible
with the boundary divisors, the Schubert divisors and the opposite Schubert divisors.
An important consequence is the rationality (in the sense of Definition 3.4.1) of any
toroidal resolution π : X̃ → X (Corollary 6.2.8). In particular,X is Cohen–Macaulay.

In Subsection 6.2.C, these results are applied to the normal reductive monoids,
i.e., to the normal varieties endowed with an associative multiplication and with a unit
element such that the group of invertible elements is reductive. Indeed, the normal
(reductive) monoids M with unit group G turn out to be exactly the affine equivariant
embeddings ofG (Proposition 6.2.12). Since these admit a canonical splitting, Theorem
4.2.13 implies that the coordinate ring k[M] has a good filtration as a G×G-module.
The associated graded module is shown to be the direct sum of ∇(λ) � ∇(−woλ),
where λ runs over the weights of T in the coordinate ring k[T ], T being the closure in
M of the maximal torus T (Theorem 6.2.13). Again, these results are due to Rittatore,
generalizing earlier works of Doty, Renner, and Vinberg.

When applied to M = G, this yields an alternative proof of the existence of a
good filtration of theG×G-module k[G] with the associated graded module being the
direct sum of all the ∇(λ) � ∇(−woλ) (Theorem 4.2.5). As another application, it is
shown that the closure of a maximal torus in any equivariant embedding ofG is normal
(Corollary 6.2.14).

6.1 The wonderful compactification

6.1.A Construction

We follow the notation as in Section 2.1. In particular,G denotes a connected, simply-
connected, semisimple algebraic group over an algebraically closed field k of charac-
teristic p ≥ 0. LetGad be the corresponding adjoint group. We have a homomorphism
of algebraic groups π : G → Gad which is the quotient by the scheme-theoretic cen-
ter Z of G, a finite (possibly non-reduced) subgroup-scheme of G. In fact, Z is the
subgroup-scheme of T obtained as the intersection of the kernels of all the simple roots;
the Lie algebra z of Z is the center of g. Further, Z is reduced if and only if p does not
divide the index of the root lattice in the weight lattice of G.

We shall construct a “nice” compactification X of Gad equipped with an action of
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the group Gad × Gad extending its action on Gad by left and right multiplication. In
other words, X is an equivariant compactification of the homogeneous space

Gad = (Gad ×Gad)/ diag(Gad) = (G×G)/((Z × Z) diag(G)),

where diag(Gad) denotes the diagonal in Gad ×Gad, and similarly for diag(G).
The idea is to embed Gad into the projective linear group PGL(M), where M is a

suitable G-module, and to regard PGL(M) as an open stable subset of the projective
space P End(M) of the space of endomorphisms of M , equipped with the action of
PGL(M) × PGL(M) via left and right composition. Thus, the closure of Gad in
P End(M) is an equivariant projective compactification of Gad.

Our first result specifies the properties ofM that we will use.

6.1.1 Lemma. Given a regular dominant weight λ, there exists a rational, finite-
dimensional G-moduleM = M(λ) satisfying the following properties:

(i) The T -eigenspaceMλ of weight λ is a line of B-eigenvectors. All the other weights
ofM are < λ.
(ii) g−αMλ 
= 0 for all the positive rootsα. The morphismG/B → P(M), gB �→ g·Mλ
is a closed immersion.
(iii) Let M∗−λ be the T -eigenspace of weight −λ in the dual module M∗. Then, M∗−λ
is a line of B−-eigenvectors. The morphism G/B− → P(M∗), gB− �→ g ·M∗−λ is a
closed immersion.
(iv) The action ofG, resp. g, on P(M) factors through a faithful action ofGad, resp. gad.

Proof. Recall that a rational, finite-dimensionalG-moduleM is called tilting if bothM
andM∗ admit good filtrations. By [Don–93] (cf. also [Mat–00]), there exists a unique
indecomposable tilting module M(λ) with highest weight λ. Further, M(λ) satisfies
(i) and (ii), and M(λ)∗ � M(−woλ). In particular, the highest weight line in M(λ)∗
satisfies (ii). Applying wo to this line yields (iii).

Since all the weights µ ofM(λ) are such that µ− λ is in the root lattice, the group
scheme Z acts trivially on P(M). Thus, the action of G factors through an action of
Gad. This action is faithful, since P(M) contains a G-orbit isomorphic to G/B. The
Lie algebra assertion is proved similarly. This completes the proof of (iv).

6.1.2 Remark. In characteristic 0, we may take for M(λ) the simple G-module with
highest weight λ. In characteristic p > 0, we may take forM((p− 1)ρ) the Steinberg
module St, which is a tilting module by 2.3.4.

Fix λ,M as in Lemma 6.1.1, and consider theG×G-module End(M) � M∗ ⊗M .
Let h ∈ End(M) be the identity, with image [h] in the projectivization P End(M).

6.1.3 Lemma. The orbit (G×G) · [h] (with its structure of locally closed reduced sub-
scheme of P End(M)) is isomorphic to the homogeneous space
G×G/((Z × Z) diag(G)) � Gad.
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Proof. The isotropy group (G×G)[h] consists of those pairs (g1, g2) such that g1g
−1
2

acts on M by a scalar. By Lemma 6.1.1 (iv), this is equivalent to g1g
−1
2 ∈ Z, i.e.,

(g1, g2) ∈ (Z ×Z) diag(G). Likewise, the isotropy Lie algebra (gad × gad)[h] (for the
induced action ofGad ×Gad) consists of those pairs (x1, x2) such that x1 −x2 acts onM
by a scalar. By Lemma 6.1.1 (iv) again, this is equivalent tox1 = x2. Thus, the orbit map
G×G → (G×G) · [h] factors through an isomorphismG×G/((Z×Z) diag(G)) �
(G×G) · [h].

Next, we put P := P End(M) and we denote by X the closure in P of (G×G) · [h].
By Lemma 6.1.3, X is a projective compactification of Gad, equivariant with respect
to Gad × Gad. To study the structure of X, we begin by analyzing the closure of the
orbit (T ×T ) · [h]. This is motivated by the following result, whereG is any connected
reductive group.

6.1.4 Lemma. Let X be a G × G-variety and let x ∈ X. Assume that the orbit
(G×G) · x is open in X and that the isotropy group (G×G)x contains diag(G). Put
X′ := (T × T ) · x. Then, the following hold:

(i) Any G×G-orbit in X meets X′.
(ii) X contains only finitely many G×G-orbits.
(iii) X is complete if and only if X′ is complete.

Proof. (i) We follow the argument as in the proof of the Hilbert–Mumford criterion in
[MFK–94]. The map ϕ : G → X, g �→ (g, 1) · x, is a G × G-equivariant dominant
morphism since diag(G) ⊂ (G × G)x . Further, ϕ restricts to a dominant T × T -
equivariant morphism T → X′.

Given any point y ∈ X, we can find a nonsingular irreducible curveC, a point z ∈ C,
and a morphism ψ : C \ {z} → G such that the composition ϕ ◦ ψ : C \ {z} → X

extends to a morphism C → X sending z to y. This yields a commutative diagram

C \ {z} ψ−−−−→ G⏐⏐� ϕ

⏐⏐�
C −−−−→ X.

Choose a local coordinate t of C at z. This defines an isomorphism of the completion
of the local ring OC,z with the power series ring k[[t]] and, in turn, a commutative
diagram

Spec k((t)) −−−−→ C \ {z} ψ−−−−→ G⏐⏐� ⏐⏐� ϕ

⏐⏐�
Spec k[[t]] −−−−→ C −−−−→ X.

Thus, we obtain a point g(t) ∈ G(k((t))) such that ϕ(g(t)) is defined at t = 0 and
ϕ(g(0)) = y. Now, recall the decomposition

(1) G(k((t))) = G(k[[t]]) T (k((t)))G(k[[t]]),
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cf. [IwMa–65]. Write accordingly g(t) = g1(t)h(t)g2(t)
−1. Then, (g1(0), g2(0))

are in G × G, and y = (g1(0), g2(0)) · ϕ(h(0)). Thus, the G × G-orbit of y meets
ϕ(T ) = X′.

(ii) By (i), it suffices to show that X′ contains only finitely many T -orbits (for the
left action of T ). But, this follows from the fact that the normalization of X′ is a toric
variety for a quotient of T .

(iii) Since X′ is closed in X, the completeness of X implies that of X′. For the
converse, by the valuative criterion of properness (cf. [Har–77, Chap. II, Theorem 4.7
and Exercise 4.11]), it suffices to show that every morphism Spec k((t)) → X extends
to a morphism Spec k[[t]] → X. But, this follows from (1) as in the proof of (i).

Returning to our simply-connected, semisimple groupG, we put Tad := π(T ), this
is the quotient of T by its subgroup-scheme Z. Then, the simple roots α1, . . . , α� form
a basis of the character groupX∗(Tad). We may identify Tad with the orbit (T ×T ) · [h]
by Lemma 6.1.3; let Tad be the closure in X of this orbit. Write h = ∑µ hµ, where
each hµ is a T -eigenvector of weight µ for the action of 1 ×T on End(M). If (mi) is a
basis of T -eigenvectors ofM , and (m∗

i ) is the dual basis ofM∗, then hµ =∑m∗
i ⊗mi

(the sum over those i such that mi has weight µ). Together with Lemma 6.1.1, this
immediately implies the following.

6.1.5 Lemma. (i) hλ = m∗
λ⊗mλ, wheremλ ∈ Mλ andm∗

λ ∈ M∗−λ satisfy 〈m∗
λ,mλ〉 =

1. In particular, hλ 
= 0.
(ii) hλ−α 
= 0 for all the positive roots α.
(iii) If hµ 
= 0 then µ ≤ λ.

Note thatmλ⊗m∗
λ, regarded as an element ofM⊗M∗ = End(M)∗, is an eigenvector

of B × B−. As earlier, put P End(M) =: P and denote by P0 the complement in P
of the hyperplane (mλ ⊗ m∗

λ = 0). Then, P0 is isomorphic to the affine hyperplane
(mλ ⊗m∗

λ = 1) of End(M). Also, put

(1) X0 := X ∩ P0 and Tad,0 := Tad ∩ P0.

These are affine open subsets of X and Tad respectively; stable underB×B− and T ×T
respectively.

6.1.6 Lemma. (i) Embed Tad into affine space A� by

t �→ (α1(t
−1), . . . , α�(t

−1)).

Then, the inclusion of Tad into Tad,0 extends to an isomorphism

γ : A� → Tad,0.

(ii) The diagonal subgroup diag(W) ofW ×W acts on Tad, and Tad = diag(W) ·Tad,0.
In particular, Tad is a nonsingular toric variety (for Tad) with fan consisting of the Weyl
chambers and their faces.
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Proof. (i) For any t ∈ T ,

(1 × t)h =
∑
µ

µ(t)hµ = λ(t)
∑

(n1,...,n�)∈N�

α1(t
−n1) · · ·α�(t−n�)hλ−n1α1−···−n�α�

by Lemma 6.1.5. Thus, the surjective map T → (T × T )[h], t �→ (1, t)[h] induces a
morphism γ : A� → Tad,0. Since each hλ−αi is nonzero, γ is an isomorphism.

(ii) By (i), Tad,0 is the toric variety associated with the negative Weyl chamber. On
the other hand, the Weyl group W acts diagonally on Tad and hence on Tad. It follows
that Tad contains the toric variety associated with the fan of Weyl chambers. The latter
toric variety being complete, it equals Tad.

The main ingredient in the analysis of X is the following description of theB×B−-
action on X0.

6.1.7 Proposition. The map


 : U × U− × A� → X0, (u, v, z) �→ (u, v) · γ (z),
is a U × U−-equivariant isomorphism, where γ is the isomorphism of Lemma 6.1.6,
and U ×U− acts on U ×U− × A� via multiplication componentwise on the first two
factors. As a consequence, X0 is isomorphic to an affine space.

Proof. Note that the restriction U × U− × Tad → X0 of 
 is just the product map
(u, v, t) �→ utv−1 in Gad. By the Bruhat decomposition, this restriction is an isomor-
phism onto the open cell in Gad. In particular, 
 is birational.

To show that 
 is an isomorphism, it suffices to construct a U × U−-equivariant
morphism β : X0 → U × U− such that

(1) (β ◦ 
)(u, v, t) = (u, v) on U × U− × Tad.

Indeed, this equality, together with theU×U−-equivariance ofβ, implies that
 induces
an isomorphism U ×U− × β−1(1, 1) → X0. In particular, the scheme-theoretic fiber
β−1(1, 1) is a variety (since X0 is), of dimension dim X0 − dimU − dimU− = �. By
(1), this fiber contains 
(1 × 1 × A�) = γ (A�) = Tad,0 as a closed subset. But, both
have the same dimension �, so that β−1(1, 1) = Tad,0.

To construct β, we regard P as a space of rational maps

ϕ : P(M)− − → P(M).

Then, P0 consists of those rational maps in P that are defined at [mλ] and, moreover,
send this point to a point of P(M)0 := (m∗

λ 
= 0). Now, any ϕ ∈ Gad is a regular
self-map of P(M) preserving the subvariety G · [mλ] � G/B. Thus, each element of
X0 defines a rational self-map of G/B. Note that

G · [mλ] ∩ P(M)0 = U− · [mλ] � U−,
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by the Bruhat decomposition again. Hence, any ϕ ∈ X0 maps [mλ] to u− · [mλ] for
a unique u− = u−(ϕ) ∈ U−, and the map ϕ �→ u−(ϕ) is a morphism. Likewise,
regarding P = P End(M) = P End(M∗) as a space of rational self-maps of P(M∗)
yields a morphism X0 → U . The product morphism β : X0 → U × U− is clearly
U × U−-equivariant and sends any ϕ ∈ Tad to (1, 1). Thus, β satisfies (1).

We now come to the main result of this section.

6.1.8 Theorem. (i) X is covered by the G × G-translates of X0. In particular, X is
nonsingular.
(ii) The boundary ∂X := X\Gad is the union of �nonsingular prime divisors X1, . . . ,X�
with normal crossings.
(iii) For each subset I ⊂ {1, . . . , �}, the intersection XI := ⋂i∈I Xi is the closure of
a unique Gad ×Gad-orbit OI . Conversely, any Gad ×Gad-orbit in X equals OI for a
unique I . Further, OI ⊇ OJ if and only if I ⊂ J .

In particular, X contains a unique closed orbit

Y := O{1,...,�} = X1 ∩ · · · ∩ X�,

which is isomorphic to G/B ×G/B.
(iv) X is independent of the choices of λ andM .

The variety X is called the wonderful compactification of the semisimple adjoint
group Gad.

Proof. (i) By Lemma 6.1.6 (ii), Tad =⋃w∈W(w,w) ·Tad,0. Further, X = (G×G) ·Tad
by Lemma 6.1.4 (i). Thus, X = (G×G) · X0.

For (ii) and (iii), notice that the complement of Tad in A�, under the embedding of
Lemma 6.1.6 (i), is the union of the coordinate hyperplanes. Thus, it is the disjoint
union of the orbits Tad · [hI ], where I ⊂ {1, . . . , �} is not empty, and [hI ] ∈ A� has i-th
coordinate 0 if i ∈ I , and 1 otherwise. Further, hI ∈ End(M) is the projection to the
sum of those weight subspaces Mµ, where λ − µ ∈ ∑i /∈I Nαi . In particular, [hI ] /∈
Gad. Together with Proposition 6.1.7, it follows that 
 restricts to an isomorphism
U × U− × (A� \ Tad) → ∂X ∩ X0. This readily implies our assertions.

(iv) Let X′, X′′ be two compactifications of Gad associated with different choices
of λ andM . Let X be the closure ofGad embedded diagonally in X′ × X′′. Then, X is
a projectiveGad ×Gad-equivariant compactification ofGad equipped with equivariant
projections π ′ : X → X′, π ′′ : X → X′′. By Lemma 6.1.6 (ii), the closures of Tad in
X′, X′′ are isomorphic, so that the closure of Tad in X is mapped isomorphically to both.
Let X0 be the preimage of X′

0 under π ′. Then, using Proposition 6.1.7, we obtain an
isomorphism X0 � U × U− × Tad,0. Thus, π ′ is an isomorphism over X′

0. Since this
open subset meets all theGad ×Gad-orbits in X′, π ′ is an isomorphism everywhere.

6.1.B Line bundles

We begin with a very simple description of the Picard group Pic(X), regarded as the
group of linear equivalence classes of divisors on X.
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6.1.9 Lemma. The irreducible components of X \ X0 are the prime divisors BsiB−,
where, as in 2.1, si ∈ W denotes the simple reflection associated with αi . Further, the
abelian group Pic(X) is freely generated by the classes of these divisors.

Proof. Since X0 is affine, X\X0 has pure codimension 1 by [Har–70, Chap. II]. Further,
X \ X0 contains no Gad ×Gad-orbit by Theorem 6.1.8(i). Thus, Gad \ X0 is dense in
X\X0. But,Gad∩X0 = UTadU

− by Proposition 6.1.7. Now, the Bruhat decomposition
of Gad yields the first assertion.

LetD be a divisor in X, thenD ∩ X0 is principal as X0 is an affine space. Thus,D
is linearly equivalent to a combination of the BsiB−. The corresponding coefficients
are unique, since any regular invertible function on X0 is constant.

6.1.10 Definition. We put

(1) Di := BsiwoB = (1, wo) · BsiB−

and

(2) D̃i := (wo,wo) · Di = (wo, 1) · BsiB− = B−wosiB−.

We call D1, . . . ,D� the Schubert divisors and D̃1, . . . , D̃� the opposite Schubert divisors
in X.

Note that Di and D̃i are both linearly equivalent to BsiB−, since Gad × Gad acts
trivially on Pic(X). Thus, the classes of the (opposite) Schubert divisors form a basis
of Pic(X).

We now obtain another description of Pic(X), regarded as the group of isomorphism
classes of invertible sheaves on X. SinceG is semisimple and simply-connected, and X
is nonsingular (and hence normal), any invertible sheaf L over X admits a uniqueG×G-
linearization (cf. [Dol–03, Theorem 7.2]). Thus, the restriction of L to the (unique)
closedGad ×Gad-orbit Y � G/B×G/B is isomorphic as aG×G-linearized invertible
sheaf to L(λ)� L(µ), where λ, µ ∈ X∗(T ) are uniquely determined. We put

(3) LY (λ) := L(−woλ)� L(λ).

Also, we denote by τi the canonical section of the invertible sheaf OX(Di ) and by σi
the canonical section of OX(Xi ), where Xi is the boundary divisor defined in Theorem
6.1.8 (ii). Then, τi is a B ×B-eigenvector (for the action ofG×G on 
(X,OX(Di ));
whereas σi is G×G-invariant. We may now state the following.

6.1.11 Proposition. (i) The restriction map resY : Pic(X) → Pic(Y) is injective, and
its image consists precisely of the classes LY(λ), λ ∈ X∗(T ).

For λ ∈ X∗(T ), let LX(λ) be the unique element of Pic(X) such that resY LX(λ) =
LY(λ). Thus, the map X∗(T ) → Pic(X), λ �→ LX(λ) is an isomorphism of groups.

(ii) OX(Di ) = LX(χi) and OX(Xj ) = LX(αj ), for i, j = 1, . . . , �, where {χi}1≤i≤�
are the fundamental weights (Section 2.1).
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(iii) For λ ∈ X∗(T ), LX(λ) is globally generated, resp. ample, if and only if λ is
dominant, resp. regular dominant.

(iv) For any dominant λ ∈ X∗(T ), LX(λ) has a nonzero global section τλ such that
τλ is a B × B-eigenvector of weight (λ,−woλ). Further, τλ is unique up to nonzero
scalar multiples; and its divisor is given by

(1) (τλ)0 =
�∑
i=1

〈λ, α̌i〉Di .

In particular, τχi = τi (up to a nonzero scalar multiple).

(v) A canonical divisor KX for X is given by

(2) KX = −2
�∑
i=1

Di −
�∑
j=1

Xj .

Equivalently,

(3) ωX = LX(−2ρ − α1 − · · · − α�).
Proof. Note that the closure inG ofBsiwoB is the divisor of a nonzero regular function
onG, which is unique (up to a nonzero scalar multiple) and which is aB×B-eigenvector
of weight (χi,−woχi). Thus, the canonical section τi of OX(Di ) is aB×B-eigenvector
of the same weight. It follows that (see Section 2.1)

resY OX(Di ) = LY(χi).

Together with Lemma 6.1.9, this implies (i) and the first assertion of (ii). The second
assertion of (ii) follows from the structure of X0 (Proposition 6.1.7).

We now prove (iii) and (iv) simultaneously. Let λ ∈ X∗(T ). If LX(λ) is globally
generated, resp. ample, then so is its restriction to Y. Thus, λ is dominant, resp. regular
dominant (Exercise 3.1.E.1). For the converse, note first that since Di contains no
G×G-orbit, theG×G-translates of the canonical section τi have no common zeroes.
Thus, OX(Di ) is globally generated. Now, write λ as

λ =
�∑
i=1

〈λ, α̌i〉χi.

In particular, for dominant λ, all the coefficients are nonnegative. It follows that LX(λ)

is globally generated and admits a global section

τλ =
�∏
i=1

τ
〈λ,α̌i 〉
i ,
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which is a B×B-eigenvector of weight (λ,−woλ), satisfying (1). If τ ∈ 
(X,LX(λ))

is another B × B-eigenvector of the same weight, then the quotient ττ−1
λ is a rational

function on X which is B × B-invariant. Since X contains an open B × B-orbit, this
rational function must be constant, i.e., τ is a scalar multiple of τλ. This proves (iv).

To complete the proof of (iii), it remains to show that LX(λ) is ample for regular
dominant λ. For this, choose a very ample invertible sheaf L = LX(µ). Then,Nλ−µ
is dominant forN � 0. Thus, LX(λ)

⊗N ⊗L−1 is globally generated, so that LX(λ)
⊗N

is very ample.
For (v), note that Y is the transversal intersection of X1, . . . ,X� (Theorem 6.1.8).

Thus, the normal bundle of Y in X equals OY(X1 + · · · + X�) = LY(α1 + · · · + α�).
So, the adjunction formula [Har–77, Chap. II, Proposition 8.20] yields

resY ωX = ωY ⊗ LY(−α1 − · · · − α�).
Since ωY = LY(−2ρ) (by 2.1.8), this proves (3) and hence (2).

6.1.C Canonical splitting

By Theorem 4.1.15, the flag variety G/B admits a B-canonical splitting which is
compatible with all the Schubert subvarieties and all the opposite Schubert subvarieties.
We generalize this to the wonderful compactification X of Gad.

6.1.12 Theorem. The wonderful compactification X admits a B × B-canonical split-
ting given by the (p − 1)-th power of a global section of ω−1

X . This splitting can be
chosen to be compatible with all the boundary divisors Xi and with all the Di and D̃i
simultaneously.

Proof. By Proposition 6.1.11 (iv), the G×G-module H 0(X,LX((p− 1)ρ)) contains
a unique line of B×B-eigenvectors of weight ((p− 1)ρ, (p− 1)ρ). By the Frobenius
reciprocity and self-duality of St (Exercise 2.3.E.3), this yields a G×G-module map

γ : St � St → H 0(X,LX((p − 1)ρ))

such that γ (f+ � f+) = τ(p−1)ρ , where f+ ∈ St is a highest weight vector, and
τ(p−1)ρ is a section as in Proposition 6.1.11 (iv). We thus obtain a homomorphism of
G×G-modules

γ 2 : (St � St)⊗2 → H 0(X,LX(2(p − 1)ρ))
(x1 � y1)⊗ (x2 � y2) �→ γ (x1 � y1) · γ (x2 � y2),

where the dot denotes the multiplication of sections. Let f− := wof
+ be a lowest

weight vector in St and put τ := γ 2((f− � f−)⊗ (f+ � f+)). Then,

τ = γ (f− � f−) · γ (f+ � f+) = τ−(p−1)ρ · τ(p−1)ρ,

where τ−(p−1)ρ := (wo,wo)·τ(p−1)ρ . In particular, τ is nonzero; by Proposition 6.1.11
(iv), its divisor is (p − 1)

∑�
i=1(Di + D̃i ).
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Now, consider
∏�
i=1 σ

p−1
i , aG×G-invariant global section of the invertible sheaf

OX((p− 1)(X1 + · · · + X�)) = LX((p− 1)(α1 + · · · + α�)). The composition of the
multiplication by this section with γ 2 is a homomorphism of G×G-modules

θ : (St � St)⊗2 −→H 0(X,LX((p − 1)(2ρ + α1 + · · · + α�)))
= H 0(X, ω1−p

X ) = EndF (X),

where the last equality follows from Lemma 4.1.14. Further,

σ := θ((f− � f−)⊗ (f+ � f+)) = τ

�∏
i=1

σ
p−1
i

is nonzero; thus, σ ∈ EndF (X) isB×B-canonical (use Lemma 4.1.6) and it is a splitting
(up to a nonzero scalar multiple) by successively using Exercise 1.3.E.4. Regarding σ
as a global section of ω1−p

X , its divisor is

(σ )0 = (p − 1)
�∑
i=1

(Xi + Di + D̃i ).

Thus, σ is the (p− 1)-th power of a section of ω−1
X . Hence, the splitting given by σ is

compatible with Xi , Di and D̃i by Proposition 1.3.11.

6.1.13 Corollary. Let Y be a closedGad ×Gad-stable reduced subscheme of X and let
λ be a dominant weight. Then, the restriction map

resY : H 0(X,LX(λ)) → H 0(Y,LX(λ)|Y )

is surjective. Further, Hi(Y,LX(λ)|Y ) = 0 for all i ≥ 1.

Proof. By Theorems 1.4.10 and 6.1.12, X is split relative to the divisor
∑�
i=1 Di . This

divisor is ample by Proposition 6.1.11 (ii) and (iii), and contains no irreducible com-
ponent of Y since it contains noGad ×Gad-orbit. Further, since each Xi is compatibly
split, then so is Y by Theorem 6.1.8 (iii). Now, the assertions follow from Theorem
1.4.8.

Another consequence of Theorem 6.1.12 is the existence of a good filtration for the
G × G-module H 0(X,LX(λ)), where λ is an arbitrary weight (Theorem 4.2.13). In
fact, such a filtration may be constructed from the geometry of X as follows.

Let IY be the ideal sheaf of the closed orbit Y, with positive powers InY. Put

FnH
0(X,LX(λ)) := H 0(X,LX(λ)⊗ InY),

the subspace of sections that vanish with order ≥ n along Y. This yields a decreasing
filtration ofH 0(X,LX(λ)) byG×G-submodules; furthermore, FnH 0(X,LX(λ)) = 0
for n � 0 (depending on λ).
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We now construct a refinement of this filtration. Since Y is the transversal in-
tersection of the boundary divisors X1, . . . ,X� (Theorem 6.1.8), the OX-module IY
is generated by σ1, . . . , σ�. Further, these are G × G-invariant and form a regular
sequence. Thus, InY is generated by the monomials

σ n :=
�∏
i=1

σ
ni
i ,

where n = (n1, . . . , n�) ∈ N� and n = |n| := ∑�i=1 ni . The multiplication by σ n

defines an injective map of G×G-modules

σ n : H 0(X,LX(λ−
∑

niαi)) → H 0(X,LX(λ)).

LetFnH
0(X,LX(λ))be the image ofσ n; this is aG×G-submodule ofFnH 0(X,LX(λ)),

where n = |n|.
6.1.14 Corollary. With the notation as above,

(1) FnH
0(X,LX(λ)) =

∑
|n|=n

FnH
0(X,LX(λ)).

Furthermore, the associated graded of the filtration {FnH 0(X,LX(λ))}n≥0 satisfies

(2) grn H
0(X,LX(λ)) =

⊕
µ

H 0(G/B,L(−woµ))�H 0(G/B,L(µ))

asG×G-modules, where the sum is taken over those dominant weightsµ = λ−∑ niαi
such that (n1, . . . , n�) ∈ N� and

∑
ni = n. In particular, as G×G-modules,

grH 0(X,LX(λ)) =
⊕
µ≤λ

H 0(G/B,L(−woµ))�H 0(G/B,L(µ)).

Proof. From the exact sequence of sheaves on X:

0 → LX(λ)⊗ In+1
Y → LX(λ)⊗ InY → LX(λ)⊗ InY/In+1

Y → 0,

we see that grn H
0(X,LX(λ)) injects into H 0(Y,LY(λ) ⊗ InY/In+1

Y ). Since IY is
generated by the regular sequence {σ1, . . . , σ�}, we obtain

InY/In+1
Y =

⊕
∑
ni=n

(
∏
σ
ni
i )LY(−

∑
niαi),

so that

(3) H 0(Y,LY(λ)⊗ InY/In+1
Y ) =

⊕
∑
ni=n

(
∏
σ
ni
i )H

0(Y,LY(λ−
∑

niαi)).
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Furthermore, since Y � G/B ×G/B and LY(µ) � L(−woµ)� L(µ) for any weight
µ (6.1.10), the space H 0(Y,LY(µ)) is nonzero if and only if µ is dominant; then,

resY : H 0(X,LX(µ)) → H 0(Y,LY(µ))

is surjective by Corollary 6.1.13. Therefore, for any n = (n1, . . . , n�) ∈ N�,

resY : FnH
0(X,LX(λ)) → H 0(Y,LY(λ−

∑
niαi))

is surjective, where FnH
0(X,LX(λ)) is identified with H 0(X,LX(λ −∑ niαi)) via

σ n. This implies

FnH
0(X,LX(λ)) = Fn+1H

0(X,LX(λ))+
∑
|n|=n

FnH
0(X,LX(λ)).

Replacing n by n + 1, n + 2, . . . and using the inclusion Fn′H 0(X,LX(λ)) ⊂
FnH

0(X,LX(λ)) if n′ ≥ n for the product ordering of Nn, we obtain

FnH
0(X,LX(λ)) = Fn+tH 0(X,LX(λ))+

∑
|n|=n

FnH
0(X,LX(λ))

for any t ≥ 1. Since Fn+tH 0(X,LX(λ)) = 0 for t � 0, this implies (1).
To prove (2), using (1), we obtain a surjective map⊕

∑
ni=n

H 0(X,LX(λ−
∑

niαi)) −→ grn H
0(X,LX(λ)),

and, by (3), an injective map

ιn : grn H
0(X,LX(λ)) −→

⊕
∑
ni=n

H 0(Y,LY(λ−
∑

niαi)).

The composition of these two maps is the direct sum of the restriction maps

resY : H 0(X,LX(λ−
∑

niαi)) −→ H 0(Y,LY(λ−
∑

niαi)),

which are all surjective. Thus, ιn is an isomorphism.

6.1.15 Remark. The wonderful compactification X is not always diagonally split. For
example, consider the groupG = SLn(k) over k of characteristic p = 2 and any n ≥ 4.
Then, for the line bundle L = LX(χ2), H 0(X,L) can be identified with the subspace
V of the polynomial ring k[xi,j ]1≤i,j≤n spanned by all the 2 × 2 minors of the matrix
(xi,j )1≤i,j≤n. Moreover, the algebraR(X,L) can be identified with the integral closure
of the subalgebra of k[xi,j ]1≤i,j≤n generated by V . Let S be the subalgebra generated
by V . Then, by [Brun–91, Remarks 5.2], the ring S is not normal; in particular, S is a
proper subring of R(X,L). Thus, by Exercise 1.5.E.1, X is not diagonally split.
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We learnt from de Concini that, for k of arbitrary characteristic p and for the group
G = SL2p(k), the product map

H 0(X,LX(χp))
⊗2 −→ H 0(X,LX(2χp))

is not surjective. In particular, in this case, X is not diagonally split (use Exercise
1.5.E.1).

It may be mentioned that Kannan [Kann–02] shows that, for any dominant weights
λ and µ, the product map

H 0(X,LX(λ))⊗H 0(X,LX(µ)) −→ H 0(X,LX(λ+ µ))
is surjective in characteristic 0. However, his claim of the same result in characteristic
p is incorrect, as the above examples show.

6.1.E Exercises

(1) Let M be the submonoid of X∗(T ) generated by the simple roots α1, . . . , α� and
the fundamental weights χ1, . . . , χ�. Show that the invertible sheaves on X admitting
nonzero global sections are precisely those LX(λ), where λ ∈ M.

(2) Define
R(X) :=

⊕
λ∈X∗(T )

H 0(X,LX(λ)).

Then, by the above exercise, R(X) is a k-algebra graded by the monoid M. We may
regard R(X) as the multihomogeneous coordinate ring of X (see Exercise 3.5.E.1).

Now, show that the sections σ1, . . . , σ�, regarded as homogeneous elements of
R(X) of degrees α1, . . . , α�, form a regular sequence in R(X), and that the quotient
R(Y) := R(X)/(σ1, . . . , σ�) satisfies

R(Y) �
⊕
µ

H 0(Y,LY(µ)),

where the sum runs over all the dominant weights µ.

(3) Put Li := LX(χi) for 1 ≤ i ≤ �. Show that the algebra R(Y) is generated by
its subspaces H 0(Y,L1|Y), . . . , H 0(Y,L�|Y). Deduce then that the algebra R(X) is
generated by its subspaces H 0(X,L1), . . . , H

0(X,L�), together with σ1, . . . , σ�. In
particular, the algebras R(X), R(Y) are finitely generated.

(4) Let Ŷ be the affine scheme corresponding to R(Y). Show that Ŷ is the multicone
over Y associated with L1|Y, . . . ,L�|Y (as defined in Exercise 1.1.E.2). This yields a

proper birational morphism π : L−1
1 ⊕ · · · ⊕ L−1

r → Ŷ, where Li is the line bundle
corresponding to the invertible sheaf Li |Y. Show that π is a rational resolution.

(5) Deduce from (4) that the rings R(Y) and R(X) are Cohen–Macaulay.

(6) For any subset I of {1, . . . , �}, show that the ideal of R(X) generated by σi , i ∈ I ,
is prime. In particular, R(X) is a domain; show that it is normal.
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(7) Show that the localizationR(X)[σ−1
1 , . . . , σ−1

� ] is isomorphic to the ring of regular
functions on G×Z T , the quotient of G× T by the diagonal action of the center Z of
G.

6.2 Reductive embeddings

In this section,G denotes a connected reductive algebraic group,Z its scheme-theoretic
center, and Gad := G/Z the corresponding adjoint semisimple group. Let π : G →
Gad be the quotient map and put T := π−1(Tad), B := π−1(Bad), etc. Then, Tad =
T/Z, Bad = B/Z, etc.

6.2.A Toroidal embeddings

6.2.1 Definition. An equivariant embedding ofG is a normal varietyX equipped with
an action ofG×G and containing the homogeneous spaceG = (G×G)/ diag(G) as
an open orbit.

In other words,X is a normalG×G-variety containing a point x such that the orbit
(G ×G)x is open and isomorphic to G via the orbit map. For brevity, we say that X
is a reductive embedding, or a G-embedding if we wish to specify the group G.

Since G is an affine open subset of X, the complement ∂X := X \ G has pure
codimension 1, cf. [Har–70, Chap. II]. Thus, all the irreducible components of ∂X :=
X \G are prime divisors in X, called the boundary divisors.

IfG = T is a torus, then the left multiplication by any t ∈ T equals the right multi-
plication by t−1. Thus, the T -embeddings are just the toric varieties for T . Returning
to an arbitrary G, we now introduce a class of G-embeddings which turn out to be
closely related to toric varieties.

6.2.2 Definition. A G-embedding X is toroidal if the quotient map π : G → Gad
extends to a morphism from X to the wonderful compactification X of Gad.

Then, this extensionπ : X → X is unique andG×G-equivariant, whereG×G acts
on X through its quotientGad ×Gad. We put X0 := π−1(X0); this is a B ×B−-stable
open subset of X. Also, put X′ := (T × T ) · x (i.e., X′ is the closure of T in X), and
X′

0 := π−1(Tad,0). We may now formulate the following generalization of Proposition
6.1.7 and Theorem 6.1.8.

6.2.3 Proposition. Let X be a toroidal G-embedding. Then, the following properties
hold.

(i) The mapU×U−×X′
0 → X0, (u, v, z) �→ (u, v)·z is an isomorphism. Furthermore,

the irreducible components of X \ X0 are precisely BsiB−, where i = 1, . . . , �; they
contain no G×G-orbit.
(ii) X′

0 meets any G×G-orbit in X along a unique T × T -orbit. Furthermore, X′ =
diag(W) ·X′

0, so that X′ is a toric variety for T , with a compatible action ofW .
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(iii) Any G × G-orbit closure in X is the intersection of the boundary divisors which
contain it.
(iv) X is nonsingular (resp. complete, quasi-projective) if and only if X′ is.
(v) If X is complete, then any closed G×G-orbit is isomorphic to G/B ×G/B.

Proof. (i) The first assertion follows from the corresponding statement for X (Propo-
sition 6.1.7). It implies that X \ X0 contains no G × G-orbit. As X \ X0 is of pure
codimension 1, it follows that X \ X0 is the closure of G \ X0. On the other hand,
G ∩ X0 = UTU−, since Gad ∩ X0 = UTadU

− and π extends the quotient map
G → Gad. By the Bruhat decomposition of G, the irreducible components of G \X0
are the closures of BsiB− in G. This completes the proof of (i).

(ii) Since X is normal, then so is X′
0 by (i). Furthermore, diag(W) acts on X′, and

by Lemma 6.1.6(ii),
X′ ⊂ π−1(Tad) = diag(W)X′

0.

Thus, X′ = diag(W)X′
0. It follows that X′ is normal, and hence it is a toric variety for

T .
By (i), X0 meets all the G×G-orbits in X. Furthermore,

∂X ∩X0 = (U × U−)∂X′
0,

where ∂X′
0 := ∂X∩X′

0. Hence, each boundary divisor ofX meets ∂X′
0 along a unique

boundary divisor ofX′
0. Since every orbit closure in a toric variety is the intersection of

the boundary divisors which contain it, it follows readily thatX′
0 meets anyG×G-orbit

along a unique T × T -orbit.
(iii) follows from (i) and (ii), together with the corresponding result for toric vari-

eties.
(iv) By (i) and (ii), X is nonsingular if and only if X′ is. On the other hand, X is

complete if and only if X′ is, by Lemma 6.1.4 (iii).
If X is quasi-projective, then so is its closed subset X′. Conversely, if X′ is quasi-

projective, then so is X′
0. Thus, a positive linear combination of the boundary divisors

of X′
0 is ample. Now, the same linear combination of the corresponding boundary

divisors of X is a G × G-invariant divisor, and, moreover, by (i) and (ii), it is ample
relative to π . Since X is projective, it follows that X is quasi-projective.

(v) follows easily from the corresponding assertion for X (Theorem 6.1.8).

Next, we obtain a classification of toroidalG-embeddings in terms of toric varieties
equipped with a compatible action of the Weyl group.

6.2.4 Proposition. (i) Any toroidal G-embedding X is uniquely determined by its
associated toric variety X′. The latter admits a morphism to Tad, which is equivariant
with respect to the actions of T andW .
(ii) Any toric variety for T , equipped with a compatible action of W and with an
equivariant morphism to Tad, arises from a toroidal G-embedding.
(iii) The toroidal G-embeddings are classified by the fans in X∗(T )R := X∗(T )⊗Z R
with support in the negative Weyl chamber. The nonsingular embeddings correspond
to those fans whose all the cones are generated by subsets of bases of X∗(T ).
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Proof. (i) follows from Proposition 6.2.3 (i) by arguing as in the proof of the uniqueness
of wonderful compactification (Theorem 6.1.8 (iv)).

(ii) may be deduced from the embedding theory of spherical homogeneous spaces,
cf. [Kno–91]. However, we sketch a direct proof as follows.

Let X′ be a toric variety for T equipped with a compatible action of W and with
an equivariant morphism to Tad. LetX′

0 be the preimage of Tad,0 under this morphism.
Then, X′ = W ·X′

0, and X′
0 is a toric variety whose fan � is contained in the negative

Weyl chamber; the fan of X′ consists of all the cones wσ , where w ∈ W and σ ∈ �.
Fix such a σ and denote by T σ the corresponding affine toric variety. Then, the ring
k[T σ ], regarded as a subring of k[T ], is generated by a finite set F of characters; these
also generate the dual cone C of σ . Since σ is contained in the negative Weyl chamber,
C contains all the negative roots.

Choose a regular dominant weightλ such thatλ+ϕ is regular dominant for allϕ ∈ F .
ChooseG-modulesM(λ),M(λ+ϕ) (ϕ ∈ F ) satisfying the properties of Lemma 6.1.1.
(This lemma, though stated for semisimple groups, holds for all connected reductive
groups, cf. [Don–93].) Let h(λ) ∈ End(M(λ)) be the identity and define likewise
h(λ+ ϕ) ∈ End(M(λ+ ϕ)). Consider the point

h := h(λ)+
∑
ϕ∈F

h(λ+ ϕ)

of the G×G-module
End
(
M(λ)⊕

⊕
ϕ∈F

M(λ+ ϕ)),
and the orbit closure (G×G)[h] in the projectivization of this module. Let Xσ be the
open subset of (G×G)[h], where the projection to P End(M(λ)) is defined. Clearly,
Xσ is a quasi-projective G × G-variety equipped with an equivariant morphism π :
Xσ → X via the projection to P End(M(λ)). Using the fact that C contains all the
negative roots, one checks that π−1(X0) � U×U− ×T σ . As a consequence, π−1(X0)

is normal; hence, so is Xσ , since π−1(X0) contains no G × G-orbit. Thus, Xσ is a
toroidalG-embedding. The fan of its associated toric variety consists of the cones wσ
(w ∈ W ) and their faces.

Finally, one checks that Xσ , σ ∈ �, can be glued into the desired toroidal G-
embedding.

(iii) follows from (i) and (ii), together with the classification of toric varieties.

Next, we show that any G-embedding admits a toroidal resolution.

6.2.5 Proposition. For anyG-embeddingX, there exists a nonsingular quasi-projective
toroidalG-embedding X̃ and a projective morphism f : X̃ → X extending the identity
map of G.

Proof. The quotient π : G → Gad may be regarded as a rational map X − − → X.
The normalization of the graph of this rational map yields a toroidal G-embedding
K equipped with an equivariant projective morphism to X. Now, the toric variety
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K ′
0 admits an equivariant resolution by a (nonsingular) quasi-projective toric variety.

Together with Proposition 6.2.4, this yields the desired resolution X̃ of X.

We now extend the description of the canonical divisor of X (Proposition 6.1.11
(v)) to any G-embedding.

6.2.6 Proposition. LetX be aG-embedding,X1, . . . , Xn its boundary prime divisors,
and put Di = BsiwoB for i = 1, . . . , �. Then, a canonical divisor for X is given by

(1) KX = −2
�∑
i=1

Di −
n∑
j=1

Xj .

Proof. We may replace X with any open G × G-stable subset with complement of
codimension ≥ 2; hence, we may assume that X is nonsingular. Next, observe that
the indeterminacy locus of the rational map X − − → X is G × G-stable and has
codimension ≥ 2 in X. (Indeed, consider the graph Z of this rational map, with
projection π : Z → X. Then, π is a projective birational morphism ; since X is
normal, the exceptional locus of π has codimension ≥ 2 by Zariski’s main theorem.)
Hence, we may also assume that X is toroidal.

Now, consider the open subset

UTU− � U × T × U−

ofG ⊂ X. Its dualizing sheaf is freely generated by σ := θU∧θ ′
T ∧θU− , where θU , θU−

are the unique (up to nonzero scalar multiples) volume forms on U , U− respectively,
and θ ′

T := dt1∧···∧dtr
t1···tr . Here t1, . . . , tr are the coordinate functions on T � (Gm)r . Note

that σ is a volume form on UTU−, invariant under (U ×U−) diag(T ), where diag(T )
denotes the diagonal subgroup of T × T . We may regard σ as a rational section of ωX
with zeros and poles along the irreducible components of X \ UTU−, i.e., along Xi
and BsjB− = (1, wo) ·Dj .

By Proposition 6.2.3 and the structure of the dualizing sheaf of a toric variety, σ
has poles of order 1 along each of X1, . . . , Xn (see Exercise 1.3.E.6). To complete the
proof, it suffices to check that σ has a pole of order 2 along any divisor (1, wo) ·Dj . To
prove this, denote by Pj the minimal parabolic subgroupB∪BsjB, byQj the opposite
parabolic subgroup containing T , and by Lj their common Levi subgroup. Then, the
multiplication map Ru(Pj )×Lj ×Ru(Qj ) → G is an open immersion, and its image
meets Dj . Using the U × U−-invariance of σ , we may replace G with Lj , and hence
assume thatG has semisimple rank 1. Then,G/B− = P1 and σ = τ ⊗ π∗η under the
decomposition ωG = ωπ ⊗ π∗ωG/B− , where π : G → G/B− is the projection, τ is a
nowhere vanishing section of ωπ , and η is a rational differential form on P1 having a
pole of order 2 at the U -fixed point.
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6.2.B Canonical splitting

We begin by generalizing Theorem 6.1.12 to all the (normal) G-embeddings. Since
these are possibly singular, we use the notation and results of Remark 1.3.12 concerning
splittings of normal varieties.

6.2.7 Theorem. AnyG-embeddingX admits a B ×B-canonical splitting given by the
(p − 1)-th power of a global section of ω−1

X . This splitting is compatible with all the
G×G-orbit closures and with the Schubert divisors Di := BsiwoB and the opposite
Schubert divisors D̃i := (wo,wo) ·Di .
Proof. By Lemma 1.1.8 and Proposition 6.2.5, we may assume that X is nonsingular,
toroidal, and quasi-projective. Then, Proposition 6.2.4 implies thatX admits an equiv-
ariant completion by a nonsingular toroidal projectiveG-embedding; thus, we may also
assume that X is projective.

Let X1, . . . , Xn be the boundary divisors of X and let σ1, . . . , σn be the canoni-
cal sections of the associated invertible sheaves OX(X1), . . . ,OX(Xn), respectively.
Let τ ∈ H 0(X,LX(2(p − 1)ρ)) be as in the proof of Theorem 6.1.12. Since (τ )0 =∑�
i=1(p − 1)(Di + D̃i ), τ lifts to a global section τ̃ of the invertible sheaf

OX(
∑�
i=1(p − 1)(Di + D̃i)). Put σ̃ := τ̃

∏n
i=1 σ

p−1
i . Then, by Proposition 6.2.6, σ̃

is a nonzero section of ω1−p
X . Arguing as in the proof of Theorem 6.1.12, one checks

that σ̃ yields the desired splitting of X.

6.2.8 Corollary. LetX be aG-embedding and let f : X̃ → X be a toroidal resolution
as in Proposition 6.2.5. Then, f∗(OX̃) = OX and Rif∗(OX̃) = Rif∗(ωX̃) = 0 for all
i ≥ 1, i.e., f is a rational resolution.

Proof. SinceX is normal, f∗(OX̃) = OX. To show the remaining assertions, we begin
by reducing to the case where X is projective. For this, note that the normal G × G-
varietyX is covered byG×G-stable open subsets admitting locally closed embeddings
into projectivizations of G×G-modules. Further, since the assertions are local on X,
we may replace X by any of these open subsets, and then by the normalization of its
closure. Thus, we may assume that X is projective.

We now show thatHi(X̃, L̃) = 0 for any i ≥ 1 and any semi-ample invertible sheaf
L̃. For this, note that X̃ is projective (sinceX and f are projective), so that it admits an
ample effectiveB×B−-invariant divisorA. Then,Amust have support in X̃ \UTU−,
the complement of the open B×B−-orbit. Now, X̃ is split compatibly with its reduced
divisor X̃ \ UTU−, as a consequence of Theorem 6.2.7. Write A = ∑nj=1 ajAj ,
where the aj are nonnegative integers and theAj are certain irreducible components of
X̃ \UTU−. Then, we have a split injectionHi(X̃, L̃) −→ Hi(X̃, L̃pν (A)), whenever
a1, . . . , an < pν (Lemma 1.4.11). Further, L̃pν (A) is ample, since L̃ is semi-ample
and A is ample. So, Theorem 1.2.8 yields the desired vanishing.

Taking L̃ = f ∗L, where L is an ample invertible sheaf on X, and using Lemma
3.3.3(a), we obtain that Rif∗(OX̃) = 0 for all i ≥ 1.
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Further, X̃ is split by σp−1, where σ is a global section ofω−1
X̃

vanishing identically
on all the boundary divisors; and the exceptional locus of f is contained in the union
of these divisors. Thus, we may apply Theorem 1.3.14 which yields Rif∗(ωX̃) = 0 for
i ≥ 1.

The preceding corollary, combined with Lemma 3.4.2, implies the following.

6.2.9 Corollary. Any G-embedding is Cohen–Macaulay.

6.2.C Reductive monoids

We begin with a brief discussion of linear algebraic monoids, referring to [Put–88] for
details.

6.2.10 Definition. A linear algebraic monoid is an affine variety M endowed with
a morphism m : M × M → M , (x, y) �→ x · y, such that the multiplication m is
associative and admits a unit element.

The unit group of M is the group G(M) consisting of all the invertible elements;
this is a linear algebraic group, open inM . In particular,G(M) is irreducible and hence
connected.

For example, the space End(V ) of all linear endomorphisms of a finite-dimensional
vector space V is a linear algebraic monoid with unit group GL(V ). In fact, any linear
algebraic monoidM admits a closed embedding into some End(V )which is compatible
with the multiplication and satisfies G(M) = M ∩ GL(V ).

6.2.11 Definition. A linear algebraic monoid M is called reductive if its unit group
G(M) is reductive;M is called normal if its underlying variety is normal.

6.2.12 Proposition. The normal (reductive) monoids with unit group G are precisely
the affine G-embeddings.

Proof. LetX be an affineG-embedding; we regard its coordinate ring k[X] as a subring
of k[G], stable under theG×G-action. The multiplicationm : G×G → G yields an
algebra homomorphism

m# : k[G] → k[G×G] � k[G] ⊗ k[G],
the comultiplication. Sincem extends to morphismsG×X → X and toX×G → X,
the map m# restricts to an algebra homomorphism

k[X] → (k[G] ⊗ k[X]) ∩ (k[X] ⊗ k[G]) ⊂ k[G] ⊗ k[G].
But, (k[G] ⊗ k[X]) ∩ (k[X] ⊗ k[G]) = k[X] ⊗ k[X] by Exercise 6.2.E.1. Thus, m#

restricts to a morphism k[X] → k[X×X], i.e.,m extends to a morphismX×X → X.
It follows thatX is a linear algebraic monoid and thatG is an open subgroup of its unit
groupG(X). Thus,G is also closed inG(X). SinceG(X) is irreducible, we conclude
that G = G(X).
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Conversely, any normal (reductive) monoidM with unit groupG is clearly an affine
G-embedding for the action of G×G by left and right multiplication.

Next, we obtain a structure theorem for normal monoids with unit group G and a
description of their coordinate rings as G×G-modules.

6.2.13 Theorem. LetM be a normal (reductive) monoid with unit groupG; let T be the
closure of T inM and let C = CM be the convex cone in X∗(T )R generated by all the
weights of T in the coordinate ring k[T ], where T acts on T via the left multiplication.
Then, the following hold.

(i) T is an affine toric variety for T , and C is aW -stable rational polyhedral cone with
nonempty interior.

(ii) The G×G-module k[M] admits a filtration with associated graded

(1)
⊕

λ∈C∩X∗(T )+
H 0(G/B,L(−woλ))�H 0(G/B,L(λ)).

(iii) The assignment M �→ CM yields a bijection from the isomorphism classes of
normal (reductive) monoids with unit group G, to the W -stable rational polyhedral
cones in X∗(T )R with nonempty interior.

Proof. We prove (i) and (ii) simultaneously. By Theorems 4.2.13 and 6.2.7 and Propo-
sition 6.2.12, the G × G-module k[M] admits a good filtration. Write the associated
graded as a direct sum of tensor products

H 0(G/B,L(−woλ))�H 0(G/B,L(µ))

with corresponding multiplicitiesmλ,µ. Then, by Exercise 4.2.E.5,mλ,µ is the dimen-
sion of the space of B × B−-eigenvectors in k[M] with weight (λ,−µ); i.e., mλ,µ is
the multiplicity of the weight (λ,−µ) in the invariant subalgebra k[M]U×U−

of k[M].
We determine these multiplicities in terms of the geometry of M as follows. Let

O1, . . . ,On be theG×G-orbits of codimension 1 inM . Together withG, they form an
open G×G-stable subset X ⊂ M whose complement has codimension ≥ 2. Further,
X is a toroidal G-embedding, since the rational map M − − → X is clearly G×G-
equivariant and is defined in codimension 1 (see the proof of Proposition 6.2.6). Let
X0 be the open subset of the toroidal G-embedding X defined in 6.2.2. Then, G ∪X0
is a B × B−-stable open subset of X whose complement has codimension ≥ 2. Thus,
k[M] � k[G∪X0] via restriction. It follows that k[M]U×U−

consists of those elements
of k[G]U×U−

that extend to X0 or, equivalently, to X′
0, since X0 � U × U− ×X′

0 by
Proposition 6.2.3 (i).

The fan of the toric variety X′
0 consists of n rays (1-dimensional cones), generated

by indivisible one-parameter subgroups θ1, . . . , θn lying in the negative Weyl chamber.
On the other hand, any T × T -eigenvector f ∈ k[G]U×U−

has weight (λ,−λ) for
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some dominant weight λ, and f is determined by λ up to a scalar multiple, by Theorem
4.2.5. Then, f extends to X′

0 if and only if

(2) 〈λ, θi〉 ≥ 0 for i = 1, . . . , n.

Thus, we have proved that the weights of k[M]U×U−
are the pairs (λ,−λ), where

λ is a dominant weight satisfying (2); all such weights have multiplicity 1. Let σ be the
cone ofX∗(T )R generated by these weights λ. Then, σ is a finite intersection of closed
rational half-spaces, and hence a rational polyhedral convex cone. Further, the interior
of σ is nonempty. Indeed, the algebras k[M] and k[G] have the same quotient field, so
that the subalgebras k[M]U×U−

and k[G]U×U−
have the same quotient field as well.

Thus, any dominant weight is a difference of two weights in σ . Next, letC = Wσ ; this
is also a rational polyhedral convex cone (Exercise 6.2.E.2) with nonempty interior.

We now show thatC∩X∗(T ) is the set of weights of T ×1 in k[T ]. Indeed, any such
weight lies inC, as the T ×T -module k[T ] is a quotient of k[M], and all the T -weights
of H 0(G/B,L(−woλ)) lie in the convex hull of the orbitWλ. On the other hand, any
weight λ ∈ σ is also a weight of k[T ], since the restriction map k[M]U×U− → k[T ] is
injective (Proposition 6.2.3(i)). Since T is diag(W)-stable, it follows that any weight
λ ∈ C occurs in k[T ]. In particular, T is normal; it is the affine toric variety with cone
the dual of the cone C. This completes the proof of (i) and (ii).

For (iii), note that M is uniquely determined by C as k[M] = k[X], where X
is the toroidal G-embedding associated with the extremal rays of the intersection σ
of C with the positive Weyl chamber. Further, given a W -stable rational polyhedral
cone C ⊂ X∗(T )R with nonempty interior, let σ be its intersection with the positive
Weyl chamber and let X be the toroidal G-embedding defined as above. Then, k[X]
is an integrally closed G×G-stable subalgebra of k[G]; by the preceding arguments,
this subalgebra admits a good filtration whose associated graded is given by (1). It
follows that the algebra k[X] is finitely generated with quotient field k(G); thus, the
corresponding affine variety is a normal reductive monoid with unit groupG and cone
C.

6.2.14 Corollary. For any G-embedding X, the closure of T in X is normal.

Proof. In the case whereX is affine, the assertion follows from Proposition 6.2.12 and
Theorem 6.2.13. We now show how the general case reduces to this one.

First, arguing as in the proof of Corollary 6.2.8, we may reduce to the case where
X is projective. Then, we can find a very ample, G-linearized invertible sheaf L on
X such that X is projectively normal in the corresponding projective embedding. The
connected reductive group Ĝ := G× Gm acts on the affine cone X̂, which, in fact, is
an affine Ĝ-embedding. Therefore, the closure in X̂ of T̂ := T ×Gm (a maximal torus
of Ĝ) is normal. In other words, the closure of T in X is projectively normal in the
embedding associated with L.
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6.2.E Exercises

(1∗) Let E be a vector space over a field K and let F ⊂ E be a subspace. Show that
(E ⊗K F) ∩ (F ⊗K E) = F ⊗K F , where the intersection is taken in E ⊗K E.

(2∗) Let σ ⊂ X∗(T )R be the intersection of the positive Weyl chamber with finitely
many closed half-spaces θi ≥ 0, where θi ∈ X∗(T )R lies in the negative Weyl chamber.
Show that the subsetWσ ⊂ X∗(T )R is a rational polyhedral convex cone.

(3) Let X̂ be the affine variety associated with the algebraR(X) considered in Exercises
6.1.E; we may regard X̂ as the “universal” multicone over X.

Show that X̂ is a normal reductive monoid with unit group G ×Z T (the quotient
of G× T by the center Z of G embedded diagonally).

Hence, Corollary 6.2.9 yields another proof for the Cohen–Macaulayness of X̂
(Exercise 6.1.E.5).

(4) Let π : X̂ → A� be the morphism associated with the regular functions σ1, . . . , σ�
on X̂ (defined in 6.1.10). Show that π is flat with reduced and irreducible fibers; the
fibers over Tad ⊂ A� (embedded via the characters α1, . . . , α�) are all isomorphic to
G.

(5) Regarding A� as a monoid under the pointwise multiplication, show that π is a
morphism of linear algebraic monoids. Also, show that π is universal for morphisms
from A� to commutative algebraic monoids, i.e., for any morphism of linear algebraic
monoids ϕ : X̂ → A, where A is commutative, there exists a unique morphism of
linear algebraic monoids ϕ̄ : A� → A such that ϕ = ϕ̄ ◦ π .

6.C. Comments

In characteristic 0, the results of 6.1 (except for Theorem 6.1.12) were obtained by
de Concini–Procesi [DePr–83] for the wonderful compactification of any adjoint sym-
metric space, i.e., of any homogeneous space Gad/G

θ
ad, where θ denotes an involutive

automorphism of Gad and Gθad denotes its fixed point subgroup. This includes the
space Gad = (Gad ×Gad)/ diag(Gad), since diag(Gad) is the fixed point subgroup of
the involution of Gad ×Gad exchanging the two factors.

Then, Strickland [Str–87] extended these results to positive characteristics and ob-
tained the existence of a splitting which is compatible with all the boundary divisors for
the wonderful compactification of Gad. This was generalized by de Concini-Springer
[DeSp–99] to all the adjoint symmetric spaces in characteristic p 
= 2 (cf. also [Fal–
97]).

The exposition in 6.1.A and 6.1.B follows rather closely [DeSp–99]. The arguments
of 6.1.C are adapted from [BrPo–00]. In [loc cit.], it is observed that the splitting of
Theorem 6.1.12 is also compatible with the closures BwB, w ∈ W , called the large
Schubert varieties. Further, the description of line bundles over X and the structure of
their spaces of global sections are generalized to all the large Schubert varieties, which
are shown to be normal and Cohen–Macaulay.
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It is tempting to extend these results to the wonderful compactification X of an
arbitrary adjoint symmetric space, by replacing the large Schubert varieties with the
orbit closures of a Borel subgroup B. However, examples show that X may not be
split compatibly with B-orbit closures, and that some of these are neither normal nor
Cohen–Macaulay. We refer to [Bri–01] and [Pin–01] for such examples, and to [Bri–
03b] for some positive results concerning a class of varieties that includes Schubert
varieties and large Schubert varieties.

All the results of Section 6.2 are taken from [Rit–98] and [Rit–03], where these
results are deduced from the Luna-Vust theory (generalized by Knop [Kno–91] in an
arbitrary characteristic) of equivariant embeddings of spherical homogeneous spaces
(i.e., those homogeneous spaces under a connected reductive group G that contain an
open orbit of a Borel subgroup). Actually, in characteristic 0, the results of Section 6.2
(except for Theorem 6.2.7) extend to equivariant embeddings of spherical homogeneous
spaces, cf. [BrIn–94], where it is also shown that the reduction mod. p of any such
embedding is split for p � 0, compatibly with all theG-orbit closures. Here, we have
attempted to give self-contained proofs in the setting of reductive group embeddings.

The classification of reductive monoids M (Theorem 6.2.13 (iii)) was obtained by
Renner [Ren–85] under the additional assumption that M has a 1-dimensional center;
whereas the structure of their coordinate ring as a representation (Theorem 6.2.13 (ii))
is due to Doty [Dot–99] under the same assumption. In characteristic 0, Proposition
6.2.12 and a different version of Theorem 6.2.13 (iii) are in [Vin–95]. The “univer-
sal” multicone X̂ studied in Exercises 6.1.E and 6.2.E is nothing but the “enveloping
semigroup” of [loc cit.], as proved in [Rit–01].

Given a flag variety X = G/B and an orbit closure Y ⊂ X of a spherical subgroup
ofG, it is not known under what conditions is X split compatibly with Y . Similarly, it
is not known when Y is normal or Cohen–Macaulay.



Chapter 7

Hilbert Schemes of Points on Surfaces

Introduction

The main aim of this chapter is to prove the following result of Kumar–Thomsen.
For any nonsingular split surface X, the Hilbert scheme X[n] (parametrizing length-n
subschemes of X) is split as well. Here, as earlier in this book, by split we mean
Frobenius split. The proof relies on some results of Fogarty on the geometry of X[n]
and a study of the Hilbert–Chow morphism γ : X[n] −→ X(n), where X(n) denotes
the n-fold symmetric product of X (parametrizing effective 0-cycles of degree n), and
γ maps any length-n subscheme to its underlying cycle.

In Section 7.1, some fundamental properties of symmetric productsX(n) are estab-
lished, where X is an arbitrary quasi-projective scheme. In particular, it is shown that
X(n) is a Gorenstein, Q-factorial variety of dimension nd, if X is a nonsingular variety
of dimension d (Lemmas 7.1.7 and 7.1.9). Further, the singular locus of X(n) is the
complement of the locusX(n)∗∗ of sum of n distinct points ofX, if d ≥ 2 (Lemma 7.1.6).
On the other hand, every X(n) is nonsingular if d = 1 (Exercise 7.1.E.5).

Section 7.2 presents some general results on Hilbert schemes of points on quasi-
projective schemes: their existence (Theorem 7.2.3) and the description of their Zariski
tangent spaces (Lemma 7.2.5). Also, the punctual Hilbert scheme X[n]

x (parametrizing
length-n subschemes supported at a given point x) is introduced, and it is shown that
X

[n]
x is projective and connected (Proposition 7.2.9).

The Hilbert–Chow morphism is introduced and studied in Section 7.3, again in the
setting of quasi-projective schemes. The existence of a projective morphism of schemes
γ : X[n] −→ X(n) which yields the cycle map on closed points is deduced from work
of Iversen (Theorem 7.3.1). The fibers of γ are products of punctual Hilbert schemes;
their connectedness implies that X[n] is connected if X is (Corollary 7.3.4). Then, the
loci X[n]∗∗ , resp. X[n]∗ , consisting of subschemes supported at n distinct points, resp.
at least n − 1 distinct points, are considered. In particular, it is shown that X[n]∗ is a
nonsingular variety of dimension nd, and the complement X[n]∗ \X[n]∗∗ is a nonsingular



208 Chapter 7. Hilbert Schemes of Points

prime divisor, if X is a nonsingular variety of dimension d (Lemma 7.3.5).
Section 7.4 is devoted to Hilbert schemes of points on a nonsingular surface X.

Each X[n] is shown to be a nonsingular variety of dimension 2n (Theorem 7.4.1) and
the Hilbert–Chow morphism is shown to be birational, with exceptional set being a
prime divisor (Proposition 7.4.5). Finally, the Hilbert–Chow morphism is shown to be
crepant (Theorem 7.4.6), a result due to Beauville in characteristic 0 and to Kumar–
Thomsen in characteristic p ≥ 3.

Section 7.5 begins with the observation that any symmetric product of a split quasi-
projective scheme is split as well (Lemma 7.5.1). Together with the crepantness of the
Hilbert–Chow morphism, this implies the splitting of X[n], where X is a nonsingular
split surface (Theorem 7.5.2). In turn, this yields the vanishing of higher cohomology
groups of any ample invertible sheaf on X[n], if X is split and proper over an affine
variety (Corollary 7.5.4). This applies, in particular, to the nonsingular projective split
surfaces and also to the nonsingular affine surfaces (since these are split by Proposition
1.1.6). Further, we obtain a relative vanishing result for the Hilbert–Chow morphism
(Corollary 7.5.5).

Notation. Throughout this chapter, X denotes a quasi-projective scheme over an alge-
braically closed field k of characteristic p ≥ 0, and n denotes a positive integer. By
schemes, as earlier in the book, we mean Noetherian separated schemes over k; their
closed points will just be called points.

7.1 Symmetric products

The symmetric group Sn acts on the n-fold product Xn = X × · · · × X by permuting
the factors. Let

X(n) := Xn/Sn

be the set of orbits, with quotient map

π : Xn −→ X(n).

We endow X(n) with the quotient topology, i.e., a subset is open if and only if its
preimage under π is. In particular, π is continuous. On the topological space X(n), we
have the sheaf of rings π∗OXn = π∗(O�n

X ). Since π is invariant, Sn acts on this sheaf.
Let

OX(n) := (π∗OXn)Sn
be the subsheaf of Sn-invariants, then (X(n),OX(n)) is a ringed space.

More generally, any sheaf F on X yields a sheaf F�n on Xn endowed with an
action of Sn, and hence a sheaf

F (n) := (π∗(F�n))Sn

of OX(n) -modules.
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7.1.1 Lemma. (i) With the preceding notation, (X(n),OX(n)) is a quasi-projective
scheme, and π is a finite surjective morphism. Moreover, π satisfies the following
universal property:

For any Sn-invariant morphism ϕ : Xn −→ Z, where Z is a scheme (with trivial
action of Sn), there exists a unique morphism ψ : X(n) −→ Z such that ϕ = ψ ◦ π .
(ii) If Y is an open, resp. closed, subscheme of X, then Y (n) is an open, resp. closed,
subscheme of X(n).
(iii) If F is a coherent sheaf on X, then the sheaf F (n) on X(n) is coherent.
(iv) If, in addition, F is invertible, then so is F (n), and

F�n � π∗F (n).

Further, if F is ample, resp. very ample, then so is F (n).

Proof. (i) First we consider the case whereX is projective. Then, let L be a very ample
invertible sheaf on X. Then, L�n is a very ample invertible sheaf on Xn, and Sn acts
on the graded algebra

R := R(Xn,L�n) =
∞⊕
ν=0


(Xn, (L�n)ν)

by automorphisms. The invariant subalgebra

S := RSn

is also graded. Since the algebra R is finitely generated (Lemma 1.1.13(i)), then so is
S, and the S-module R is finite, cf. [Eis–95, Exercise 13.2 and Theorem 13.17]. This
yields a finite surjective morphism

π̄ : Xn = Proj(R) −→ Proj(S).

We claim that π may be identified with this morphism.
To see this, let σ be a nonzero global section of L. Then, τ := σ�n is a nonzero

Sn-invariant global section of L�n, thus, an element of degree 1 in S. The open affine
subset Proj(S)τ is the spectrum of the subring S[τ−1]0 of homogeneous elements of
degree 0 in the localization S[τ−1]. Moreover,

π̄−1(Proj(S)τ ) = Proj(R)τ = (Xn)τ = (Xσ )
n,

where Xσ denotes the complement of the zero subscheme of σ . Therefore, the natural
map

OProj(S)τ −→ (π̄∗O(Xσ )n)Sn
is an isomorphism. Thus, by [Eis–95, Proposition 13.10], it follows that the topological
space Proj(S)τ is the orbit space (Xn)τ /Sn. To complete the proof (in the case where
X is projective), observe that Xn is covered by its open affine Sn-stable subschemes
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(Xn)τ = (Xσ )
n. Indeed, any finite subset of a projective space is contained in the

complement of some hyperplane.
By the above proof, X(n) is a projective scheme, and π is a finite surjective mor-

phism; its universal property is evident. Note that the twisting sheaf OProj(S)(1) is
invertible, and that

L�n � π∗OProj(S)(1).

Next, let Y ⊂ X be a closed subscheme, where X is still assumed to be projective;
then, we obtain an injective morphism Y (n) −→ X(n). We check that this morphism is
a closed immersion. For this, by taking an affine open cover, we may reduce as above
to the case where X = Spec(A) is affine. Then, Y = Spec(B), where B = A/I for
some ideal I of A. Therefore, X(n) = Spec((A⊗n)Sn ) and Y (n) = Spec((B⊗n)Sn). We
may write A = C ⊕ I , where C � B is a subspace of A. Then,

A⊗n = C⊗n ⊕ In,
where In := ⊕n−1

i=0 A
⊗i ⊗ I ⊗ A⊗n−i−1 is an Sn-stable subspace of A⊗n. Thus, the

map
(A⊗n)Sn −→ (B⊗n)Sn

is surjective, as desired.
In the case where X is quasi-projective, we may write X = X̄ \ Y , where X̄ is

projective and Y ⊂ X̄ is a closed subscheme. Then, one checks thatX(n) = X̄(n) \Y (n)
(as ringed spaces).

(ii) The assertion for open subschemes follows from the definition and universal
property of π ; the assertion for closed subschemes has been established in the proof of
(i).

(iii) Since F�n is coherent on Xn and π is finite, π∗(F�n) is a coherent sheaf on
X(n). Thus, its subsheaf of Sn-invariants is coherent as well.

(iv) Let again L be a very ample invertible sheaf onX. Then, by [Har–77, Chap. II,
Theorem 7.6], there exists a positive integerm such that the invertible sheaf F ⊗OX

Lm
is very ample. As observed in the proof of (i), both L�n and (F ⊗OX

Lm)�n are
pullbacks of invertible sheaves onX(n). Thus, there exists an invertible sheaf G onX(n)

such that
F�n � π∗G.

By the projection formula, it follows that π∗(F�n) � G ⊗O
X(n)

π∗OXn . Taking Sn-

invariants, we obtain F (n) � G, which completes the proof of the first part of (iv).
If F is very ample, then so is F (n) by the proof of (i). Now, if F is ample, then Fν

is very ample for some ν ≥ 1. But, (Fν)(n) � (F (n))ν by the preceding argument, so
that F (n) is ample as well.

7.1.2 Definition. The scheme X(n) is called the n-fold symmetric product of X.

The points of X(n) may be regarded as 0-cycles on X as follows. Recall that the
group of 0-cycles onX, denoted Z0(X), is the free abelian group on all points. In other
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words, a 0-cycle on X is a finite formal sum z =∑ nixi , where the xi are points of X,
and the ni are integers. The degree of z is, by definition,

∑
ni , and z is effective if all

ni are nonnegative. Now, for any point (x1, . . . , xn) of Xn, its Sn-orbit π(x1, . . . , xn)

is uniquely determined by x1 +· · ·+ xn ∈ Z0(X). This allows us to identify the points
of X(n) with the effective 0-cycles of degree n on X.

7.1.3 Lemma. Let n1, . . . , nr be positive integers with sum n and let x1, . . . , xr be
distinct points of X. Then, the map π : Xn −→ X(n) factors through a morphism
X(n1) × · · · ×X(nr ) −→ X(n) which is étale at the point n1x1 + · · · + nrxr .
Proof. This follows from the argument in [Mum–70, pp. 68–69]. Specifically, as
in the proof of Lemma 7.1.1, we may reduce to the case where X is affine. Then,
Xn = Spec(R) for some k-algebra R and X(n) = Spec(S), where S := RSn . Let
z := n1x1 + · · · + nrxr and M the corresponding maximal ideal of S; let R̂, Ŝ be
the completions of R, S respectively, for the M-adic topology. Then, Ŝ = ÔX(n),z by

definition, and the map Ŝ ⊗S R −→ R̂ is an isomorphism, since R is finite over S.
The assumption that S is the ring of Sn-invariants in R is equivalent to S being the

kernel of the (S-module) map

R −→
∏
σ∈Sn

R, f �−→ (σ (f )− f )σ∈Sn .

Since Ŝ is flat over S, it follows that Ŝ is the kernel of the corresponding map Ŝ⊗SR −→∏
σ∈Sn Ŝ ⊗S R. As a consequence, the isomorphism Ŝ ⊗S R � R̂ restricts to an

isomorphism
Ŝ � R̂Sn .

The prime ideals of R containing M are exactly the maximal ideals of the points of the
set-theoretic fiber π−1(z); this yields an isomorphism

R̂ �
∏

y∈π−1(z)

ÔXn,y,

which is equivariant for the action of Sn by permuting the points of π−1(z). Moreover,
the isotropy group of

y := (x1 (n1 times), . . . , xr (nr times))

is the product Sn1 × · · · × Snr . Thus, taking Sn-invariants in R̂ yields an isomorphism

Ŝ � ÔSn1×···×Snr
Xn,y .

Since
OSn1×···×Snr
Xn,y = OX(n1)×···×X(nr ),(n1x1,...,nrxr )

,

the proof is completed.
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We shall apply this lemma to describe the loci of X(n) where all the points are
distinct, or at most two may coincide. Specifically, for 1 ≤ i < j ≤ n, let �i,j be the
partial diagonal (xi = xj ) in Xn, and put

Xns :=
⋃
i<j

�i,j .

This is a closed Sn-stable subscheme of Xn; we put

Xn∗∗ := Xn \Xns ,
an open Sn-stable subscheme of Xn. The points of Xn∗∗ are the n-tuples of distinct
points ofX. The image ofXn∗∗ inX(n) will be denotedX(n)∗∗ ; this is an open subscheme
of X(n). Likewise, we denote X(n)s the image of Xns in X(n), a closed subscheme of
X(n). Now, Lemma 7.1.3 implies the following.

7.1.4 Lemma. With the preceding notation, π restricts to an étale surjective morphism
Xn∗∗ −→ X

(n)∗∗ . Thus, if X is nonsingular, then so is X(n)∗∗ .

Likewise, consider the partial diagonals �i,j,k := (xi = xj = xk), where 1 ≤
i < j < k ≤ n. Let Xn∗ be the complement of their union, which is a Sn-stable open
subscheme of Xn, containing Xn∗∗. Put X(n)∗ := π(Xn∗); this is an open subscheme of
X(n) with points being the 0-cycles x1 + x2 + · · · + xn, where only x1 and x2 may
coincide. Also, putX(n)s∗ := X

(n)∗ ∩X(n)s , a closed subscheme ofX(n)∗ , with points being
the 0-cycles 2x1 + x3 + · · · + xn, where x1, x3, . . . , xn are pairwise distinct.

For example, if n = 2 then X2∗ = X2, and X2
s∗ = X2

s is just the diagonal.
Finally, let (X(2) × X(n−2))∗ be the image in X(2) × X(n−2) of the open sub-

scheme Xn \⋃(i,j) 
=(1,2) �i,j . Since this subscheme is invariant under S2 × Sn−2,

(X(2) × X(n−2))∗ is open in X(2) × X(n−2). Its points are the pairs
(x1 + x2, x3 + · · · + xn), where only x1 and x2 may coincide.

7.1.5 Lemma. The quotient morphismXn∗ −→ X
(n)∗ factors through an étale surjective

morphism

(X(2) ×X(n−2))∗ −→ X(n)∗ , (x1 + x2, x3 + · · · + xn) �−→ x1 + · · · + xn,
which restricts to an isomorphism

(X(2)s ×X(n−2))∗ � X(n)s∗ ,

where (X(2)s ×X(n−2))∗ := (X
(2)
s ×X(n−2))∩(X(2)×X(n−2))∗.Moreover, the restriction

of the quotientX2 −→ X(2) to the diagonal induces a bijective morphismX −→ X
(2)
s ,

which is an isomorphism if p 
= 2, and which may be identified with the Frobenius
morphism F : X −→ X if p = 2.
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Proof. By Lemma 7.1.3, the quotient map π : Xn −→ X(n) factors through a sur-
jective morphism X(2) × X(n−2) −→ X(n). Let (X(2) × Xn−2)∗ be the preimage of
(X(2) × X(n−2))∗ in X(2) × Xn−2. Then, by Lemmas 7.1.4 and 7.1.3, the morphisms
(X(2) × Xn−2)∗ −→ (X(2) × X(n−2))∗ and (X(2) × Xn−2)∗ −→ X

(n)∗ are étale and
surjective. Thus, the morphism (X(2) × X(n−2))∗ −→ X

(n)∗ is étale and surjective as
well. Its pullback to X(n)s∗ yields an étale morphism

(X(2)s ×X(n−2))∗ −→ X(n)s∗ , (2x1, x3 + · · · + xn) �−→ 2x1 + x3 + · · · + xn,
which is bijective on points, and hence an isomorphism.

Clearly, the quotient map π : X2 −→ X(2) maps the diagonal� bijectively toX(2)s .
If p 
= 2, then the restriction � −→ X

(2)
s is an isomorphism by Exercise 7.1.E.1. To

check the assertion for p = 2, we may reduce to the case where X = Ad by using
Lemma 7.1.1 (ii). Then, X2 = A2d with coordinates t1, . . . , td , u1, . . . , ud such that
the nontrivial element σ ∈ S2 exchanges each ti with ui . Now, the S2-invariants in the
polynomial ring k[t1, . . . , td , u1, . . . , ud ] are spanned by the invariant monomials (that
is, by the monomials in the products tiui), together with the sumsM+σ(M)whereM
is a non-invariant monomial. So, the restrictions of these S2-invariants to the diagonal
(t1 = u1, . . . , td = ud) are just the polynomials in t21 , . . . , t

2
d .

Note also that π restricts to a finite surjective morphism �1,2 −→ X
(n)
s . Together

with Lemma 7.1.5 and purity of the branch locus, this yields the following.

7.1.6 Lemma. IfX is a variety of dimension d , thenX(n) is a variety of dimension nd,
and X(n)s is a subvariety of codimension d, containing X(n)s∗ as a dense open subset.

If, in addition, X is nonsingular, then so is X(n)s∗ ; but X(n)∗ is singular along X(n)s∗
when d ≥ 2. In fact, the singular locus of X(n) is then X(n)s .

(If X is nonsingular of dimension 1, then X(n) is nonsingular as well (Exercise
7.1.E.5).)

Next, we assume that X is a normal variety. Recall from 1.3.12 that the canonical
sheaf ωX is defined as the sheaf i∗ωXreg , where i : Xreg −→ X denotes the inclusion of
the nonsingular locus, and ωXreg denotes the sheaf of differential forms of top degree.
Then, ωX is divisorial, i.e., it is the sheaf of local sections of a Weil divisor (the
canonical divisor, uniquely defined up to linear equivalence). Recall from 1.3.12 that
X is Gorenstein if ωX is invertible, that is, if the canonical divisor is Cartier.

Note that each Xn is normal with canonical sheaf ω�n
X ; as a consequence, Xn is

Gorenstein if and only if X is.

7.1.7 Lemma. (i) If X is a normal variety, then X(n) is a normal variety as well.
Moreover, for any divisorial sheaf F on X, the sheaf F (n) is divisorial.
(ii) If, in addition, dim(X) ≥ 2, then ωX(n) � (ωX)

(n).
(iii) If X is Gorenstein, then so is X(n).
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Proof. (i) For the normality of X(n), we may assume that it is affine; then X is affine,
since π is finite. Now, the assertion follows from Exercise 7.1.E.2.

Let F be a divisorial sheaf on X. Then, there exist an open subscheme U of
X, and an invertible sheaf L on U such that X \ U has codimension at least 2 and
F = i∗L, where i : U −→ X denotes the inclusion. This yields open immersions
in : Un −→ Xn and i(n) : U(n) −→ X(n), and (by Lemma 7.1.1) an invertible sheaf
M on U(n) such that L�n � π∗M. Moreover, F�n = (in)∗L�n, so that

π∗(F�n) = (i(n))∗π∗(L�n) = (i(n))∗(M ⊗O
U(n)

OUn).

Therefore, F (n) = (i(n))∗M. Since X(n) \ U(n) has codimension at least 2 in X(n), it
follows that F (n) is divisorial.

(ii) To check this isomorphism between divisorial sheaves, we may replace X(n)

with any open subset U such that the codimension ofX(n) \U is at least 2. By Lemma
7.1.6 and the assumption on dim(X), we may takeU = (Xreg)

(n)∗∗ ; in particular, we may
assume that X is nonsingular. Then, the restriction Xn∗∗ = π−1(U) −→ U is étale by
Lemma 7.1.4. Thus, we have an isomorphism π∗ωU � ωXn∗∗ . Applying π∗ and taking
Sn-invariants yields the desired isomorphism.

(iii) follows from Lemma 7.1.1 (iv) and the second part of this lemma.

7.1.8 Definition. A normal variety X is called Q-factorial at a point x, if the divisor
class group of the local ring OX,x is torsion. If this holds at all points, then X is called
Q-factorial. This is equivalent to the following condition:

For any divisor D of X, there exists a positive integer N such that the divisor ND
is Cartier.

7.1.9 Lemma. If X is nonsingular, then X(n) is Q-factorial.

Proof. We may assume that dim(X) ≥ 2. As in the proof of Lemma 7.1.3, we consider
a point y ofXn, and its image z = n1x1+· · ·+nrxr inX(n), where the points x1, . . . , xr
are distinct. We put 
 := Sn1 × · · · × Snr and N := |
| = n1! · · · nr !. Then, the ring
O

Xn,y is étale over its subring OX(n),z, and both are normal. Thus, the divisor class

group of OX(n),z injects into that of O

Xn,y by [Bou–98, Chap. VII, §1.10]. Further,

O

Xn,y = OX(n1)×···×X(nr ),(n1x1,...,nrxr )

. Thus, it suffices to show thatX(n1)×· · ·×X(nr )
is Q-factorial at (n1x1, . . . , nrxr ).

Let
ϕ : Xn −→ X(n1) × · · · ×X(nr )

be the quotient map. Let D be a prime divisor in X(n1) × · · · × X(nr ) containing the
point (n1x1, . . . , nrxr ). Since ϕ is étale in codimension 1, we may define the pullback
ϕ∗(D), a multiplicity-free sum of prime divisors in Xn. Clearly, ϕ∗(D) is invariant
under 
. Let f ∈ OXn,y be a local equation of ϕ∗(D). Then,

∏
γ∈
(γ · f ) is a local

equation of Nϕ∗(D), and belongs to O

Xn,y . Thus, ND admits a local equation at

(n1x1, . . . , nrxr ).
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7.1.10 Remarks. (i) More generally, for any quasi-projective scheme Y endowed with
an action of a finite group G, we may consider the quotient map π : Y −→ Y/G

and the quotient topology on Y/G. Then, the ringed space (Y/G, (π∗OY )G) is again
a quasi-projective scheme. Further, π is a finite, surjective morphism, universal for
G-invariant morphisms with source Y .

If, in addition, Z is an open G-stable subscheme of Y , then Z/G is an open sub-
scheme of Y/G (for these results, see, e.g., [Mum–70, Chap. II, §7]).

On the other hand, if Z is a closed G-invariant subscheme of Y , then the map
Z/G −→ Y/G is a closed immersion when the order of G is prime to p, but not in
general (Exercise 7.1.E.1).

(ii) ForG, Y , π as above, and a point y of Y with isotropy groupGy , the map π factors
through a morphism Y/Gy −→ Y/Gwhich is étale at the image of y (as may be shown
by the argument of Lemma 7.1.3). In particular, π is étale at the points with trivial
isotropy group.

(iii) For G, Y , π as above, if Y is a normal variety, then so is Y/G (Exercise 7.1.E.2).
If, in addition, Y is Q-factorial and π is étale in codimension 1, then Y/G is Q-factorial
by the proof of Lemma 7.1.9.

7.1.E Exercises

(1∗) Let R be a ring, I an ideal, and G a finite group of automorphisms of R that
leaves I stable. If the order ofG is prime to the characteristic of R, show that the map
RG −→ (R/I)G is surjective.

Deduce that the map Z/G −→ Y/G is a closed immersion, for a quasi-projective
scheme Y endowed with an action of a finite groupG and a closedG-stable subscheme
Z ⊂ Y , if the order of G is prime to p. Show by examples that the latter assumption
cannot be omitted.

(2∗) Let R be a normal domain and let G be a finite group of automorphisms of R.
Show that the invariant subring RG is a normal domain.

(3) Regarding the affine n-space as the space of polynomials in one variable t of degree
at most n and constant term 1, show that the map

π : (A1)n −→ An, (x1, . . . , xn) �−→ (1 + tx1) · · · (1 + txn)
factors through an isomorphism (A1)(n) � An.

(4) Likewise, show that the map

π : ([x1, y1], . . . , [xn, yn]) �−→ [(y1 + tx1) · · · (yn + txn)]
factors through an isomorphism (P1)(n) � Pn.

(5∗) LetX be a nonsingular curve (in particular,X is quasi-projective). Show thatX(n)

is nonsingular; deduce that π : Xn −→ X(n) is flat. Also, show that

ωX(n) � (π∗(ωXn(−Xns )))Sn .
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7.2 Hilbert schemes of points

7.2.1 Definition. A length-n subscheme of X is a finite subscheme Y such that the
k-vector space 
(Y,OY ) has dimension n.

Examples are the reduced unions of n distinct points x1, . . . , xn ofX. More gener-
ally, we associate to any length-n subscheme Y its connected components Y1, . . . , Yr ;
then each Yi is a subscheme of finite length, supported at a unique point xi . We say that
the length ni of Yi is the multiplicity of Y at xi . Then, 
(Y,OY ) = OY,x1 ×· · ·×OY,xr
and ni = dimk(OY,xi ) for 1 ≤ i ≤ r; thus, n = n1 + · · · + nr .

Next, we define a relative version of length-n subschemes.

7.2.2 Definition. A flat family of length-n subschemes ofX over a scheme S is a closed
subscheme Y ⊂ X × S, finite over S via the restriction π : Y −→ S of the projection
X × S −→ S, and such that π∗OY is a locally free OS-module of rank n.

Equivalently, π is finite and flat, with fibers being length-n subschemes of X.

Given such a family Y ⊂ X× S and a morphism of schemes f : S′ −→ S, we can
form the cartesian square

Y ×S S′ π ′−−−−→ S′

f ′
⏐⏐� f

⏐⏐�
Y π−−−−→ S.

Then, π ′ : Y ×S S′ −→ S′ is a flat family of length-n subschemes of X over S′, called
the pullback of π under f .

We may now formulate the following fundamental result, which is a special case
of the existence of the Hilbert scheme of a quasi-projective scheme [Gro–62]. For the
proof, we refer to loc cit.

7.2.3 Theorem. Fix n ≥ 1 and let X be a quasi-projective scheme. Then, there exists
a unique scheme X[n], together with a flat family πn : X̃[n] −→ X[n] of length-n
subschemes of X, satisfying the following universal property:

For any flat family π : Y −→ S of length-n subschemes ofX, there exists a unique
morphism f : S → X[n] such that π is the pullback of πn under f .

Further, X[n] and X̃[n] are quasi-projective. In fact, if X −→ X̄ is an open
immersion into a projective scheme, then X̄[n] is projective, and X[n] can be identified
with the open subscheme of X̄[n] parametrizing length-n subschemes with support in
X.

7.2.4 Definition. The scheme X[n] is called the Hilbert scheme of n points on X. The
morphism πn : X̃[n] −→ X[n] is called the universal family.

The universal property of X[n] implies that its points are precisely the length-n
subschemes of X. This property also allows to determine its Zariski tangent spaces as
follows.
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7.2.5 Lemma. For any point Y of X[n], the Zariski tangent space TYX[n] equals

HomOX
(IY ,OY ) = HomOY

(IY /I2
Y ,OY ).

As a consequence,

TYX
[n] = TY1X

[n1] ⊕ · · · ⊕ TYrX[nr ],

whereY1, . . . , Yr are the connected components ofY , and n1, . . . , nr the corresponding
multiplicities.

Proof. Let S := Spec(k[ε]/(ε2))with (unique) point s. Then, the Zariski tangent space
TYX

[n] consists of those morphisms S → X[n] that map s to Y . By Theorem 7.2.3,
these morphisms may be identified with the closed subschemes Y ⊂ X × S, finite
and flat over S, with fiber Y at s. These are the infinitesimal deformations of Y in X,
classified by HomX(IY ,OY ), cf. [Har–77, Chap. III, Exercise 9.7].

Next, we study the connected length-n subschemes. We begin with the following
easy result.

7.2.6 Lemma. Let Y be a length-n subscheme of X, supported at a unique point x.
Then,

Mn
x ⊂ IY ⊂ Mx,

where Mx denotes the maximal ideal of the local ring OX,x of X at x.

Proof. Clearly, IY ⊂ Mx . To show the other inclusion, consider the local algebra
R := 
(Y,OY ) � OX,x/IY , its maximal ideal M := Mx/IY , and its positive powers
Mν ; these form a decreasing sequence of subspaces of R. By Nakayama’s lemma,
Mν+1 
= Mν unless Mν+1 = 0. Since the dimension of R as a k-vector space is n, it
follows that Mn = 0.

7.2.7 Definition. Let x be a point ofX and letXx := Spec(OX,x/Mn
x) (a finite-length

subscheme ofX, supported at x). The n-th punctual Hilbert scheme ofX at x is defined
to be the Hilbert scheme X[n]

x .

In the case where n = 2, Lemma 7.2.6 readily implies a complete description of
X

[n]
x .

7.2.8 Lemma. The ideal sheaves of length-2 subschemes of X supported at x are
exactly the preimages in Mx of hyperplanes in Mx/M2

x . Thus, X[2]
x is isomorphic to

P(TxX), the projective space of lines in TxX.

Returning to arbitrary lengths, we have the following.

7.2.9 Proposition. X[n]
x is projective and connected.
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Proof. LetR := OX,x/Mn
x , a local k-algebra with maximal ideal M := Mx/Mn

x . By
Lemma 7.2.6, the ideals of length-n subschemes ofXx are exactly those linear subspaces
I ⊂ M of codimension n − 1 such that MI ⊂ I . Since 1 + x is invertible for any
x ∈ M, the latter condition amounts to (1 + M)I = I . This realizes the underlying
set of X[n]

x as the subset of the Grassmannian variety, Grassn−1(M), consisting of
the subspaces of codimension n − 1, fixed by the action of the group 1 + M via
multiplication in R. Since Grassn−1(M) is projective, X[n]

x is projective as well.
To show that X[n]

x is connected, note that the group 1 + M is abelian and has a
decreasing filtration by the subgroups 1 + Mν . Since Mn = 0, this filtration is finite;
its successive quotients

(1 + Mν)/(1 + Mν+1) � Mν/Mν+1

are finite-dimensional k-vector spaces, thus, products of copies of the additive group
Ga . So, the proof will be completed by the following result.

7.2.10 Lemma. LetX be a complete connected scheme equipped with an action of the
additive group Ga . Then, the fixed point subscheme XGa is connected.

Proof. By the Borel fixed point theorem (cf. [Bor–91, Theorem 10.4]), any non-empty
complete scheme with an action of Ga contains fixed points. Thus, we may reduce to
the case where X is irreducible. We argue by induction on the dimension d of X.

If d = 1, consider the normalization

f : X̃ → X.

Then, X̃ is a complete nonsingular irreducible curve, and the action of Ga lifts to X̃ so
that f is equivariant. Hence, either Ga fixes X̃ pointwise, or X̃ is a projective line and
Ga acts by translations. In both cases, X̃Ga is connected. Since XGa equals f (X̃Ga ),
it is connected as well.

If d > 1, then there exists a nonconstant Ga-invariant rational function f on X.
Let Ga act on X × P1 via its action on X and the trivial action on P1, and let X̃ be the
closure inX×P1 of the subset of pairs (x, t) such that: f is defined at x, and t = f (x).
Then, X̃ is a complete variety, stable under Ga ; the first projection π : X̃ −→ X is
Ga-equivariant, surjective and birational, and the second projection

f̃ : X̃ −→ P1

is a surjective Ga-invariant morphism. Consider the Stein factorization

X̃
ϕ−−−−→ C

ψ−−−−→ P1

of f̃ , where C := SpecO
P1
(f̃∗OX̃). Then, ψ is finite and surjective. Further, all the

fibers ϕ−1(c) are non-empty and connected of dimension d−1. Note that Ga acts onC
and that both ϕ andψ are equivariant (with the trivial action of Ga on P1). But, sinceψ
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is finite and f̃ = ψ ◦ϕ is invariant, it follows that Ga fixed C pointwise. Thus, ϕ maps
X̃Ga onto C with fibers ϕ−1(c)Ga ; these are connected by the induction assumption.
By Exercise 7.2.E.1, it follows that X̃Ga is connected. Hence, XGa = π(X̃Ga ) is
connected as well.

7.2.E Exercises

(1*) Let f : X → Y be a proper surjective morphism of schemes. Assume that Y and
all the fibers of f are connected. Then, show that X is connected.

Hint: Use the Stein factorization.

In the exercises below, we shall sketch a description of the punctual Hilbert schemes
in terms of linear algebra; the case where X is a surface will be developed further in
Exercises 7.4.E.

(2*) Let x be a nonsingular point ofX. Show thatX[n]
x is isomorphic to (Ad)[n]0 , where

d denotes the dimension of X at x, and 0 denotes the origin of the affine space Ad .

(3*) Let Y be a point of (Ad)[n]0 . Then, 
(Y,OY ) is a module of length n over the local
ring

R := k[x1, . . . , xd ]/(x1, . . . , xd)
n,

generated by one element (for example, the identity); we say that this module admits a
cyclic vector. Moreover, the annihilator of this vector is the ideal of Y .

Conversely, let V be an R-module of length n admitting a cyclic vector v. Show
that the annihilator of v is the ideal of a point of (Ad)[n]0 .

(4*) Let Nd,n be the subset of Mn(k)d consisting of d-tuples of nilpotent, pairwise
commuting n × n matrices, where Mn(k) is the space of all the n × n matrices over
k. For any (A1, . . . , Ad) ∈ Nd,n, note that the subring k[A1, . . . , Ad ] ⊂ Mn(k) is a
quotient of R, where R is as in the above exercise; this yields an R-module structure
on kn. Let Zd,n ⊂ Nd,n × kn be the subset of those (A1, . . . , Ad; v) such that v is a
cyclic vector for the R-module kn.

Show that Nd,n is closed in Mn(k)d , and that Zd,n is open in Nd,n × kn. Also,
show that the map f : Zd,n −→ (Ad)[n]0 , which takes any (A1, . . . , Ad; v) to the zero
subscheme of the annihilator of v in R, is a morphism.

(5*) The group GLn(k) acts inMn(k)d × kn by

g · (A1, . . . , Ad; v) = (gA1g
−1, . . . , gAdg

−1; gv),
and this action leaves Zd,n stable. Show that f is invariant under GLn(k), with its
(set-theoretic) fibers being exactly the orbits.

(6*) Show that the isotropy group of any point of Zd,n is trivial; prove the same for
the isotropy Lie algebra. Deduce that the quotient Zd,n −→ Zd,n/GLn(k) exists
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and is a principal GLn(k)-bundle, and that f factors through a bijective morphism
Zd,n/GLn(k) −→ (Ad)[n]0 . Conclude that

dim(X[n]
x ) = dim(Zd,n)− n2,

for any nonsingular point x ∈ X.

7.3 The Hilbert–Chow morphism

Any length-n subscheme Y of X defines an effective 0-cycle of degree n,

[Y ] = n1x1 + · · · + nrxr ,
where x1, . . . , xr are the (distinct) points of Y , with respective multiplicities n1, . . . , nr .
This yields a cycle map

X[n] −→ X(n), Y �→ [Y ],
a surjective map of sets.

7.3.1 Theorem. There exists a canonical morphism of schemes

γ = γn : X[n] −→ X(n)

having the cycle map as underlying map of sets. Further, γ is projective.

Proof. The first assertion follows from [Ive–70, II.2, II.3]. Specifically, any flat family
Y ⊂ X× S of length-n subschemes is a n-fold section of the projection X× S −→ S,
in the sense of [loc cit., Definition II.3.1]. So, by [loc cit., II.2], this family yields a
canonical morphism from S to the n-fold symmetric product Y(n)S , the image of the
n-fold product

Y ×S Y ×S · · · ×S Y ⊂ Xn × S
in X(n) × S. Since Y(n)S is a closed subscheme of X(n) × S, we obtain a canonical
morphism S −→ X(n). Taking S = X[n] yields γ : X[n] −→ X(n). On the other hand,
taking S to be a point yields a length-n subscheme Y of X, and a point of X(n), which
is nothing but [Y ] by [loc cit., II.4. Appendix]. It follows that γ (Y ) = [Y ], by the
compatibility property of [loc cit., II.2.3].

IfX is projective, then so is γ , sinceX[n] is projective in this case. For an arbitrary
X, letX −→ X̄ be an open immersion into a projective scheme. By [loc cit., II.2], this
yields a Cartesian diagram

X[n] −−−−→ X̄[n]

γ

⏐⏐� γ̄

⏐⏐�
X(n) −−−−→ X̄(n),

where γ̄ is projective; thus, so is γ .
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7.3.2 Definition. The morphism γ of Theorem 7.3.1 is called the Hilbert–Chow mor-
phism.

Now, Proposition 7.2.9 and Theorem 7.3.1 imply the following.

7.3.3 Lemma. Let n1, . . . , nr be positive integers with sum n, and let x1, . . . , xr be
distinct points of X. Then, the fiber of γ at the point n1x1 + · · · + nrxr equals
X

[n1]
x1 × · · · ×X[nr ]

xr . As a consequence, all the fibers of γ are connected.

If X is connected, then X(n) is connected as well. Combined with Lemma 7.3.3
and Exercise 7.2.E.1, this yields

7.3.4 Corollary. If X is connected, then so is X[n].

Taking the preimages under γ ofX(n)∗∗ ,X(n)∗ ,X(n)s ,X(n)s∗ , we obtain open subschemes
X

[n]∗∗ ⊂ X
[n]∗ ofX[n], a closed subschemeX[n]

s , and a locally closed subschemeX[n]
s∗ :=

X
[n]∗ ∩X[n]

s respectively. Likewise,

(X[2] ×X[n−2])∗ := (γ2 × γn−2)
−1((X(2) ×X(n−2))∗)

is an open subscheme of X[2] × X[n−2]; its points consist of the pairs (Y, Z) where
Y ∈ X[2] and Z ∈ X[n−2]∗∗ have disjoint supports.

We now obtain an analogue of Lemmas 7.1.4, 7.1.5 and 7.1.6 for these subschemes.

7.3.5 Lemma. Let X be a nonsingular variety of dimension d. Then, we have the
following.

(i) γ ′ : X[n]∗∗ −→ X
(n)∗∗ is an isomorphism, where γ ′ is the restriction of γ . As a

consequence, X[n]∗∗ is a nonsingular variety of dimension nd.
(ii) X[n]∗ is also a nonsingular variety of dimension nd. In particular, X[2] is a nonsin-
gular variety of dimension 2d .
(iii) The map

u : (X[2] ×X[n−2])∗ −→ X[n]∗ , (Y, Z) �−→ Y ∪ Z,
is an étale surjective morphism, which restricts to an isomorphism

(X[2]
s ×X[n−2])∗ � X[n]

s∗

compatible with the isomorphism (X
(2)
s × X(n−2))∗ � X

(n)
s∗ (Lemma 7.1.5), where

(X
[2]
s ×X[n−2])∗ := (X

[2]
s ×X[n−2]) ∩ (X[2] ×X[n−2])∗.

(iv) X[n]
s∗ is a nonsingular prime divisor of X[n]∗ , and −X[n]

s∗ is ample relative to the
restriction γ |

X
[n]∗ : X[n]∗ −→ X

(n)∗ . Moreover, any (set-theoretic) fiber F of γ |
X

[n]
s∗ is

isomorphic to Pd−1. Under this isomorphism, the determinant of the normal sheaf
N
F,X

[n]∗ becomes OPd−1(−2).
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Proof. (i) Clearly, γ ′ is bijective. Moreover,X(n)∗∗ is a nonsingular variety of dimension
nd by Lemma 7.1.4; and the Zariski tangent space of X[n]∗∗ at any point has dimension
nd as well by Lemma 7.2.5. Thus, X[n]∗∗ is also a nonsingular variety of dimension nd.
To complete the proof, we construct the inverse of γ ′ as follows.

Let Y ⊂ X × Xn be the union of the partial diagonals (x = x1), . . . , (x = xn).
Clearly, Y is finite over Xn, and the intersection Y∗∗ := Y ∩ (X×Xn∗∗) is a flat family
of length-n subschemes of X. This yields a morphism α : Xn∗∗ −→ X[n] which is
Sn-invariant, with image X[n]∗∗ , and hence a morphism β : X(n)∗∗ −→ X

[n]∗∗ which is the
desired inverse.

(ii) SinceX(n)∗ is connected and γ is proper with connected fibers,X[n]∗ is connected
by Exercise 7.2.E.1. Thus, it suffices to show that TYX[n] has dimension nd, for any
point Y ofX[n]∗ . By (i), we may assume that Y ∈ X[n]

s∗ . Write [Y ] = 2x1 +x3 +· · ·+xn,
where x1, x3, . . . , xn are distinct. Then, by Lemma 7.2.5,

TYX
[n] = TZX

[2] ⊕ Tx3X ⊕ · · · ⊕ TxnX,

where Z is a point of X[2]
x1 . By Lemma 7.2.8, there exist local coordinates t1, . . . , td

at x1 such that IZ is generated by t1, . . . , td−1, t
2
d . Since the latter form a regular se-

quence, their classes modulo I2
Z form a basis of the
(Z,OZ)-module IZ/I2

Z . Further,
since the vector space 
(Z,OZ) has dimension 2, it follows that the k-vector space
HomOZ

(IZ/I2
Z,OZ) = TZX

[2] has dimension 2d. This completes the proof.
(iii) Let Y ⊂ X × S, resp. Z ⊂ X × T , be a flat family of length-2, resp. length-

(n − 2), subschemes. Let YT , ZS be their pullbacks to S × T . If YT ∩ ZS is empty,
then YT ∪ ZS is a flat family of length-n subschemes. It follows that the map u is a
morphism. By construction and Lemma 7.2.5, the differential of u at any point is an
isomorphism. Therefore, u is étale, since its source and target are nonsingular by (ii).
Over X[n]

s∗ , u induces a bijective map, and hence an isomorphism. The compatibility
follows from the construction.

(iv) By using (iii), we may reduce to the case where n = 2. Then, X[2]
s∗ = X

[2]
s =

γ−1(X
(2)
s ); its pullback along the morphism X −→ X

(2)
s parametrizes the pairs (Y, x)

where Y is a length-2 subscheme of X supported at x. By Lemma 7.2.8, this pullback
is isomorphic to P(TX), the projective bundle of lines in the Zariski tangent space to
X. Together with Lemma 7.1.5, it follows that X[2]

s is a nonsingular prime divisor in
X[2], and that the (set-theoretic) fibers of γ over X(2)s are isomorphic to Pd−1.

By (i), (ii) and Theorem 7.3.1, γ : X[2] −→ X(2) is a projective, birational mor-
phism. Thus, it is the blowing-up of X(2) along a closed subscheme Z, and the ideal
sheaf of γ−1(Z) is a relatively ample invertible sheaf, by (i), (ii) and [Har-77, Chap.
II, §7]. But, the exceptional divisor γ−1(Z)must be a positive multiple ofX[2]

s , so that
−X[2]

s is relatively ample.
Let x ∈ X with local coordinates t1, . . . , td and consider the point

Y := Spec(OX,x/(t1, . . . , td−1, t
2
d ))
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of X[2]
s . Let F = P(TxX) � Pd−1 be the corresponding fiber of γ ; we may regard

t1, . . . , td as homogeneous coordinates on F . Consider the family

Y := Spec(OX,x[a1, . . . , ad, b1, . . . , bd ]/I),
where I is the ideal generated by

t1 + a1td + b1, . . . , td−1 + ad−1td + bd−1, t
2
d + adtd + bd

together with all the monomials of degree 2 in ai and bj . This is a flat family of length-2
subschemes of X over Spec(k[ai, bj ]/(aiaj , aibj , bibj )), with fiber Y at the (unique)
point. Further, the differential of the induced morphism

Spec(k[ai, bj ]/(aiaj , aibj , bibj )) → X[2]

at the unique point yields an isomorphism k2d � TYX
[2], where ai, bj are the coordinate

functions on k2d . Under this identification, the tangent subspace to the fiber F is given
by (b1 = · · · = bd−1 = bd = ad = 0). This shows that the normal bundle toF � Pd−1

is homogeneous, and that its determinant is isomorphic to OPd−1(−2).

7.3.E Exercises

(1) LetX be a nonsingular curve. Show that the Hilbert–Chow morphism γ : X[n] −→
X(n) is an isomorphism, and that the quotient morphism π : Xn −→ X(n) can be
identified with the universal family.

In the following sequence of exercises, we assume that X is a nonsingular variety,
and p 
= 2. The aim behind the following exercises is to study the geometry of X[n]∗ in
more detail, beginning with X[2].
(2) Let π2 : X̃[2] −→ X[2] be the universal family. Show that X̃[2] is a variety, and that
π2 is separable. Thus, we may write

π2∗OX̃[2] = OX[2] ⊕ L,
where L is the kernel of the trace map ; this is an invertible sheaf over X[2]. We define
an action of S2 on the sheaf π2∗OX̃[2] by letting the nontrivial element σ act by 1 on
OX[2] , and −1 on L. Show that S2 acts by automorphisms of the sheaf of algebras
π2∗OX̃[2] . In other words, S2 acts on X̃[2], and π2 is the quotient morphism.

(3) Let π1 : X̃[2] −→ X be the standard projection and let

γ2 := (π1, π1 ◦ σ) : X̃[2] −→ X2.

Show that the diagram

X̃[2] γ2−−−−→ X2

π2

⏐⏐� π

⏐⏐�
X[2] γ−−−−→ X(2)
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commutes, and that γ2 is an isomorphism above the complement of the diagonal � ⊂
X2.

(4) Show that the square of the ideal sheaf I2
� ⊂ OX2 is generated by I

X
(2)
s

⊂ OX(2) .
As the pullback of I

X
(2)
s

in X[2] via γ is invertible (Lemma 7.3.5), it follows that the

pullback of I� in X̃[2] is invertible as well, so that γ2 factors through a morphism
β : X̃[2] −→ Bl�(X2) (the blowing-up of X2 along the diagonal). Using Zariski’s
main theorem, show that β is an isomorphism.

(5) Show that γ : X[2] −→ X(2) is the blowing-up of X(2) along X(2)s . Deduce that
the restriction of the Hilbert–Chow morphismX[n]∗ −→ X

(n)∗ is the blowing-up ofX(n)∗
along X(n)s∗ .

7.4 Hilbert schemes of points on surfaces

In this section,X denotes a nonsingular surface, i.e., a nonsingular variety of dimension
2; then,X is quasi-projective (cf. [Har–77, Chap. II, Remark 4.10.2] and the references
therein).

7.4.1 Theorem. X[n] is a nonsingular variety of dimension 2n.

Proof. By Corollary 7.3.4,X[n] is connected; and by Lemma 7.3.5, it contains an open
subvariety X[n]∗ of dimension 2n. Thus, it suffices to show that the dimension of the
Zariski tangent space TYX[n] at any point Y of X[n] is at most 2n. By decomposing Y
into connected components and using Lemma 7.2.5, we reduce further to proving the
following.

7.4.2 Lemma. Let (R,M) be a regular local ring of dimension 2 and let I be an ideal
of R such that the R-module R/I has finite length. Then,

�(HomR(I, R/I)) ≤ 2�(R/I),

where �(M) denotes the length of an R-moduleM .

Proof. Since the R-module R/I is Artinian, its depth at M is zero. By the Auslander-
Buchsbaum formula [Eis–95, Theorem 19.9], it follows thatR/I has projective dimen-
sion 2. So, the surjection R −→ R/I fits into an exact sequence of R-modules

0 −→ Rr −→ Rs −→ R −→ R/I −→ 0,

where r and s are positive integers. Considering ranks, we obtain s = r + 1, whence
an exact sequence

0 −→ Rr −→ Rr+1 −→ I −→ 0.
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It yields an exact sequence

0 −→ HomR(I, R/I) −→ HomR(R
r+1, R/I) −→ HomR(R

r, R/I)

−→ Ext1
R(I, R/I) −→ Ext1

R(R
r+1, R/I),

that is,

0 −→ HomR(I, R/I) −→ (R/I)r+1 −→ (R/I)r −→ Ext1
R(I, R/I) −→ 0.

Therefore, theR-module Ext1
R(I, R/I) has finite length, and we obtain by the additivity

of the length function:

�(HomR(I, R/I)) = �(R/I)+ �(Ext1
R(I, R/I)).

Likewise, the exact sequence

0 −→ I −→ R −→ R/I −→ 0

and the vanishing of ExtiR(R,−) for i ≥ 1 yield an isomorphism

Ext1
R(I, R/I) � Ext2

R(R/I, R/I).

Thus, it suffices to show the inequality

�(Ext2
R(R/I, R/I)) ≤ �(R/I).

For this, we use the exact sequence

Ext2
R(R/I, R) −→ Ext2

R(R/I, R/I) −→ Ext3
R(R/I, I )

together with the vanishing of Ext3
R(R/I,−) (since R/I has projective dimension 2)

to obtain
�(Ext2

R(R/I, R/I)) ≤ �(Ext2
R(R/I, R)).

Further, Ext2
R(R/M, R) � R/M and ExtiR(R/M, R) = 0 for i 
= 2 (as seen from

the Koszul resolution of the R-module R/M). Therefore, by induction on �(M), any
R-moduleM of finite length satisfies

�(Ext2
R(M,R)) ≤ �(M).

TakingM = R/I yields the desired inequality.

Next, we determine the dimensions of the fibers of the Hilbert–Chow morphism;
for this, we first record the following result proved in [Iar–77] (an alternative proof is
sketched in Exercises 7.4.E.1–3).

7.4.3 Lemma. For any point x ofX, the n-th punctual Hilbert schemeX[n]
x has dimen-

sion n− 1.



226 Chapter 7. Hilbert Schemes of Points

Together with Lemma 7.3.3, this readily implies the following.

7.4.4 Lemma. (i) The fiber γ−1(n1x1 + · · · + nrxr), where x1, . . . , xr are distinct
points of X, has dimension n− r .
(ii) X[n] \X[n]∗ has codimension 2 in X[n].

In turn, this lemma has important geometric consequences:

7.4.5 Proposition. γ : X[n] −→ X(n) is birational, with exceptional set X[n]
s . The

latter is a prime divisor of X[n], and its negative is γ -ample.

Proof. The first assertion follows from Lemmas 7.3.5(i), 7.4.4, and the irreducibility
of X[n] (which is a consequence of Theorem 7.4.1).

Since X[n] is nonsingular and X(n) is Q-factorial (Lemma 7.1.9), the exceptional
set of γ has pure codimension 1, cf. [Deb–01, 1.40]. Together with Lemma 7.4.4 (ii),
it follows that X[n]

s∗ is dense in X[n]
s . But, X[n]

s∗ is irreducible by Lemma 7.3.5, so that
X

[n]
s is irreducible as well. Finally, the γ -ampleness of −X[n]

s is obtained by the proof
of Lemma 7.3.5 (iv).

Recall from 1.3.12 that a proper, birational morphism f : Y −→ Z between
Gorenstein varieties is called crepant if f ∗ωZ � ωY . Now, X(n) is Gorenstein by
Lemma 7.1.7, andX[n] is nonsingular by Theorem 7.4.1, so that the following statement
makes sense.

7.4.6 Theorem. The morphism γ : X[n] −→ X(n) is crepant.

Proof. By Lemma 7.4.4 (ii), it suffices to check that the restriction γ |
X

[n]∗ is crepant.

Now, by Lemma 7.3.5, this restriction is an isomorphism outside X[n]
s∗ , which is a

nonsingular prime divisor of X[n]∗ . So, there exists an integer t such that

ω
X

[n]∗ � (γ ∗ω
X
(n)∗
)(tX[n]

s∗ ).

To determine t , we restrict both sides to an exceptional fiber F , i.e., to a (set-theoretic)
fiber at a point ofX(n)s∗ ; recall from Lemma 7.3.5 (iv) that F � P1. We have the equality
of degrees:

degF (ωX[n]∗ ) = degF
(
(γ ∗ω

X
(n)∗
)(tX[n]

s∗ )
) = degF (γ

∗ω
X
(n)∗
)+ t (X[n]

s∗ , F ).

Further, degF (γ
∗ω
X
(n)∗
) = 0 since γ maps F to a point; and the intersection number

(X
[n]
s∗ , F ) is negative since −X[n]

s∗ is relatively ample (by Lemma 7.4.5). On the other
hand, by [Har–77, Chap. II, Proposition 8.20],

degF (ωX[n]∗ ) = degF (ωF )− degF (
2n−1∧

N
F,X

[n]∗ ),

where N
F,X

[n]∗ denotes the normal sheaf. Moreover, degF (ωF ) = −2 as F � P1, and

degF (
∧2n−1 N

F,X
[n]∗ ) = −2 by Lemma 7.3.5 (iv). It follows that degF (ωX[n]∗ ) = 0, so

that t = 0.
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7.4.E Exercises

(1∗) Let A be a nilpotent n × n matrix with coefficients in k. Let td1 , . . . , tds be the
elementary divisors of kn as a k[t]-module, where t acts on kn as A. For any exponent
i, let ri be the number of dj ’s equal to i.

Show that the centralizer of A in Mn(k) is isomorphic to the direct product of a
nilpotent ideal of dimension

∑
i (
∑
j≥i rj )2−r2

i , with the product of the matrix algebras
Mri (k).

(2∗) Let N2,n(A) be the set of those pairs (A1, A2) of commuting nilpotent n× n ma-
trices, such that A1 is conjugate to A. Show that N2,n(A) is a locally closed subvariety
ofMn(k)×Mn(k), of dimension n2 −∑i ri .
(3∗) With the notation of Exercise 7.2.E.4, show that dim(Z2,n) = n2 + n− 1. Using
Exercise 7.2.E.6, this immediately gives dim(X[n]

x ) = n− 1, for any nonsingular point
x in a surface X.

7.5 Splitting of Hilbert schemes of points on surfaces

In this section, k denotes an algebraically closed field of characteristic p > 0.

7.5.1 Lemma. Let X be a quasi-projective scheme. If X is split, then any symmetric
product X(n) is split.

Proof. Let ϕ : F∗OX −→ OX be a splitting. Then, ϕ�n : F∗OXn −→ OXn is
a splitting of Xn, equivariant for the action of Sn. Thus, ϕ�n restricts to a map
(F∗OXn)Sn −→ OSn

Xn that yields a splitting of X(n).

Next, recall from Lemma 1.3.13 that for any crepant morphism f : Y −→ Z, Y is
split if Z is. Together with Theorem 7.4.6, this yields the following main result of this
section.

7.5.2 Theorem. LetX be a nonsingular surface. IfX is split, thenX[n] is split as well.

7.5.3 Remarks. (i) The list of split surfaces includes:
• the nonsingular affine surfaces (Proposition 1.1.6),
• the toric surfaces (Exercise 1.3.E.6); in particular, all rational ruled surfaces,
• those projective nonsingular surfaces with trivial canonical class that are ordinary,
i.e., the map F ∗ : H 2(X,OX) −→ H 2(X,OX) is nonzero (Remark 1.3.9 (ii)). In
particular, all ordinary K3 or abelian surfaces are split.

On the other hand, non-ordinary projective surfaces with trivial canonical class are
not split, as well as the projective surfaces with Kodaira dimension at least 1 (Remark
1.3.9 (i)).

(ii) For split X, one would like X[n] to be split compatibly with its exceptional divisor
X

[n]
s . But, this does not always hold. Consider, for example, X = C × C where C

is an ordinary elliptic curve. Then, X is split, but X[2] is not split compatibly with
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X
[2]
s . Otherwise, X(2) would be split compatibly with X(2)s (Lemma 1.1.8). Thus, the

restriction mapH 0(X(2),L(2)) −→ H 0(X
(2)
s ,L(2)) would be surjective for any ample

invertible sheaf L on X (Theorem 1.2.8). As a consequence, the multiplication map

H 0(X,L)⊗H 0(X,L) −→ H 0(X,L2)

would be surjective as well. But, this fails for L = OC(D)�2, where D is a divisor of
degree 2 on C.

Theorem 7.5.2 implies the following global vanishing result.

7.5.4 Corollary. LetX be a nonsingular surface which is split and which is proper over
an affine variety. Then, Hi(X[n],L) = 0 for any i ≥ 1 and for any ample invertible
sheaf L on X[n].

Proof. By assumption, there exists a proper morphism f : X −→ Y , where Y is an
affine variety. Then, f n : Xn −→ Yn is also proper, so that the induced morphism
f (n) : X(n) −→ Y (n) is proper as well (since the quotient maps Xn −→ X(n), Yn −→
Y (n) are finite and surjective). Since the Hilbert–Chow morphism γ : X[n] −→ X(n)

is proper, it follows that X[n] is proper over the affine scheme Y (n). Now, the corollary
is a consequence of Theorems 1.2.8 and 7.5.2.

Another consequence of Theorem 7.5.2 is the following relative vanishing result
for the Hilbert–Chow morphism.

7.5.5 Corollary. Riγ∗OX[n](−νX[n]
s ) = 0 for any nonsingular surfaceX and all i ≥ 1,

ν ≥ 1.

Proof. Since X is quasi-projective, any finite subset is contained in some open affine
subset. Therefore, X(n) is covered by its open affine subsets U(n), where U runs
over the open affine subsets of X. Thus, we may assume that X is affine, and hence
split. Further, X[n] is proper over the affine variety X(n) by Theorem 7.3.1, and
the divisor −X[n]

s is ample by Proposition 7.4.5. Hence, Theorem 1.2.8 (i) yields:
Hi(X[n],OX[n](−νX[n]

s )) = 0 for any i ≥ 1 and ν ≥ 1, which is equivalent to the
desired vanishing, since X(n) is affine.

7.5.6 Remark. In characteristic 0, Corollary 7.5.5 is a direct consequence of Theorem
7.4.6, Lemma 7.1.7(iii) and the Grauert–Riemenschneider vanishing theorem (since
−X[n]

s is a γ -ample divisor by Proposition 7.4.5), which imply also thatRiγ∗OX[n] = 0
for any i ≥ 1.
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7.C. Comments.

The results of Section 7.1 are classical, and many of them extend to quotients by arbi-
trary finite groups, at least in characteristic 0. But, we could not locate an appropriate
reference for the symmetric products in positive characteristics, thus we have endeav-
oured to give a detailed exposition.

The construction of Hilbert schemes is due to Grothendieck [Gro–62]. He obtained
the existence of a universal flat family of subschemes of a fixed projective space Pr ,
having a fixed Hilbert polynomial P ; the base of this family is a projective scheme,
the Hilbert scheme HilbP (Pr ). Taking P to be the constant polynomial equal to n
yields the existence of the Hilbert scheme Hilbn(Pr ) = (Pr )[n] parametrizing length-n
subschemes of Pr and, in turn, the existence ofX[n] for an arbitrary quasi-projectiveX
(Theorem 7.2.3).

The description of the Zariski tangent spaces toX[n] (Lemma 7.2.5) is also a special
case of a result of Grothendieck [Gro–62]. The subsequent results of Section 7.2 are
due to Fogarty [Fog–68] and [Fog–73]; a stronger version of Lemma 7.2.10 is due to
Horrocks [Hor–69].

The approach to punctual Hilbert schemes of affine spaces in terms of linear algebra,
sketched in Exercises 7.2.E, is developed by Nakajima in [Nak–99].

Our definition of the Hilbert–Chow morphism is based on results of Iversen [Ive-
70]; it yields a refinement of the morphism constructed in [Fog–68], which had for
its source the reduced subscheme of the Hilbert scheme, and for its target the Chow
variety of effective 0-cycles. See [Nee–91] for another construction of the Hilbert–
Chow morphism, in the case of a projective space.

Lemma 7.3.3 and Corollary 7.3.4 are originally in [Fog–68]; Lemma 7.3.5 is a
version of Lemma 4.4 in [Fog–73], but some details in [loc cit.] are not clear to us.

The fundamental Theorem 7.4.1 is again due to Fogarty [Fog–68]; our presentation
follows the original proof closely. In characteristic 0, Lemma 7.4.3 was obtained
by Briançon [Bria–77] in a stronger form: the n-th punctual Hilbert scheme X[n]

x is
irreducible, of dimension n − 1 (cf. also [Gran–83]). This stronger result continues
to hold in characteristic p > n, cf. [Iar–77]; where it is also shown that Lemma 7.4.3
holds in an arbitrary characteristic (without the irreducibility of X[n]

x ).
As shown by Baranovsky [Bar–01], the irreducibility of X[n]

x (in an arbitrary char-
acteristic) is equivalent to the irreducibility of the space N2,n of pairs of commuting
nilpotent n×nmatrices. Basili [Bas–03] established directly the irreducibility of N2,n
in characteristic 0 and in characteristic p ≥ n/2. The case of an arbitrary characteristic
is due to Premet [Pre–03]; in fact, his main result describes all the irreducible compo-
nents of the space of pairs of commuting nilpotent elements of the Lie algebra of any
semisimple group G in good characteristic.

Proposition 7.4.5 is stated in [Fog–73]. Theorem 7.4.6 is classical in characteristic
0; in fact, symmetric products of nonsingular surfaces admit a unique crepant resolution
given by the Hilbert–Chow morphism, cf. [FuNa–04]. Theorem 7.4.6 in positive char-
acteristic is due to Kumar–Thomsen [KuTh–01]; the proof presented here is somewhat
different from theirs.
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The results of Section 7.5 are all taken from [KuTh–01], except for Corollary
7.5.5. Haiman [Hai–98] conjectures the vanishing of higher cohomology groups of
all the tensor powers of the tautological vector bundle (i.e., the image of the structure
sheaf of the universal family) on (A2)[n], and he presents remarkable combinatorial
consequences of this conjecture. He proved his conjecture in characteristic 0 [Hai–02].
Further cohomology vanishing results for Hilbert schemes of points on nonsingular
projective surfaces are due to Danila [Dan–01, 04], again in characteristic 0.

It is not known if the Hilbert–Chow morphism for a nonsingular surface is a rational
morphism. (This would, in particular, imply that symmetric products of nonsingular
surfaces are Cohen–Macaulay.) Further, it is not known if the total space of the universal
family over the Hilbert scheme of a smooth split surface is again split. This question is
motivated by the vanishing theorems of Danila and Haiman mentioned above.
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