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Preface

In the 1980s, Mehta and Ramanathan made important breakthroughs in the study of
Schubert varieties by introducing the notion of a Frobenius split variety and compatibly
split subvarieties for algebraic varieties in positive characteristics. This was refined by
Ramanan and Ramanathan via their notion of Frobenius splitting relative to an effective
divisor.

Even though most of the projective varieties are not Frobenius split, those which are
have remarkable geometric and cohomological properties, e.g., all the higher cohomol-
ogy groups of ample line bundles are zero. Interestingly, many varieties where a linear
algebraic group acts with a dense orbit turn out to be Frobenius split. This includes
the flag varieties, which are split compatibly with their Schubert subvarieties, relative
to a certain ample divisor; Bott—Samelson—-Demazure—Hansen varieties; the product of
two flag varieties for the same group G, which are split compatibly with their G-stable
closed subvarieties; cotangent bundles of flag varieties; and equivariant embeddings of
any connected reductive group, e.g., toric varieties.

The Frobenius splitting of the above mentioned varieties yields important geometric
results: Schubert varieties have rational singularities, and they are projectively normal
and projectively Cohen—Macaulay in the projective embedding given by any ample
line bundle (in particular, they are normal and Cohen—Macaulay); the corresponding
homogeneous coordinate rings are Koszul algebras; the intersection of any number
of Schubert varieties is reduced; the full and subregular nilpotent cones have rational
Gorenstein singularities; the equivariant embeddings of reductive groups have rational
singularities. Moreover, their proofs are short and elegant.

Further remarkable applications of Frobenius splitting concern the representa-
tion theory of semisimple groups: the Demazure character formula; a proof of the
Parthasarathy—Rango Rao—Varadarajan—Kostant conjecture on the existence of certain
components in the tensor product of two dual Weyl modules; the existence of good fil-
trations for such tensor products and also for the coordinate rings of semisimple groups
in positive characteristics, etc.

The technique of Frobenius splitting has proved to be so powerful in tackling nu-
merous and varied problems in algebraic transformation groups that it has become an
indispensable tool in the field. While much of the research has appeared in journals,
nothing comprehensive exists in book form. This book systematically develops the
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theory from scratch. Its various consequences and applications to problems in alge-
braic group theory have been treated in full detail bringing the reader to the forefronts
of the area. We have included a large number of exercises, many of them covering
complementary material. Also included are some open problems.

This book is suitable for mathematicians and graduate students interested in geo-
metric and representation-theoretic aspects of algebraic groups and their flag varieties.
In addition, it is suitable for a slightly advanced graduate course on methods of pos-
itive characteristics in geometry and representation theory. Throughout the book, we
assume some familiarity with algebraic geometry, specifically, with the contents of the
first three chapters of Hartshorne’s book [Har—77]. In addition, in Chapters 2 to 6 we
assume familiarity with the structure of semisimple algebraic groups as exposed in the
books of Borel [Bor—91] or Springer [Spr—98]. We also rely on some basic results of
representation theory of algebraic groups, for which we refer to Jantzen’s book [Jan—
03]. We warn the reader that the text provides much more information than is needed
for most applications. Thus, one should not hesitate to skip ahead at will, tracing back
as needed.

The first-named author owes many thanks to S. Druel, S. Guillermou, S. Inamdar,
M. Decauwert, and G. Rémond for very useful discussions and comments on pre-
liminary versions of this book. The second-named author expresses his gratitude to
A. Ramanathan, V. Mehta, N. Lauritzen and J.F. Thomsen for all they taught him about
Frobenius splitting. The second-named author also acknowledges the hospitality of the
Newton Institute, Cambridge (England) during January—June, 2001, where part of this
book was written. This project was partially supported by NSF. We thank J.F. Thom-
sen, W. van der Kallen and two referees for pointing out inaccuracies and suggesting
various improvements; and L. Trimble for typing many chapters of the book. We thank
Ann Kostant for her personal interest and care in this project and Elizabeth Loew of
TeXniques for taking care of the final formatting and layout.

Michel Brion and Shrawan Kumar
September 2004

Notational Convention

Those exercises which are used in the proofs in the text appear with a star.
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Chapter 1

Frobenius Splitting: General Theory

Introduction

This chapter is devoted to the general study of Frobenius split schemes, a notion intro-
duced by Mehta—Ramanathan and refined further by Ramanan—Ramanathan (see 1.C
for more precise references).

Any scheme over a field of characteristic p > 0 possesses a remarkable endomor-
phism, the (absolute) Frobenius morphism F' which fixes all the points and raises the
functions to their p-th power. A scheme X is called Frobenius split (for short, split), if
the p-th power map Oy — F,.Ogx splits as a morphism of sheaves of Ox-modules.

In Section 1.1, we give various examples of Frobenius split schemes. These include
all nonsingular affine varieties (Proposition 1.1.6), their quotients by finite groups of
order prime to p (Example 1.1.10.1), and also all projective spaces (Example 1.1.10.3).
The existence of a splitting is preserved under taking images under certain morphisms
(Lemmas 1.1.8 and 1.1.9). Thus, the total space of a line bundle over a split scheme is
split (Lemma 1.1.11), and so is the affine cone over a split complete variety (Lemma
1.1.14). The compatibility of splittings with closed subschemes is also investigated.

Section 1.2 presents some of the fundamental properties of split schemes: they
are reduced (Proposition 1.2.1) and not “too singular;” specifically, they are weakly
normal (Proposition 1.2.5; which is a key step in the proof of normality of Schubert
varieties presented in 3.2.2). Further, line bundles on projective split schemes satisfy
remarkable homological properties: all the higher cohomology groups of ample line
bundles vanish (Theorem 1.2.8), and the Kodaira vanishing theorem holds under the
additional assumption of Cohen—Macaulayness (Theorem 1.2.9). We also present two
relative vanishing results (Lemma 1.2.11 and Theorem 1.2.12), to be further developed
in Section 1.3.

Section 1.3 is primarily devoted to establishing various geometric criteria for the
existence of a splitting, including Proposition 1.3.11 and Theorem 1.3.8. The latter
asserts that a complete nonsingular variety X is split if and only if there exists a global

section ¢ of a);_p , and a closed point x € X with local coordinates 71, . . ., #,, such that
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the monomial (¢ - - - #,)?~! occurs in the local expansion of ¢ at x. Here wyx denotes
the (invertible) sheaf of differential forms of top degree, and a);(_p is the (1 — p)-th
tensor power. This shows that complete split varieties are very special, e.g., among all
the nonsingular projective curves, only the projective line and elliptic curves of Hasse
invariant 1 are split.

These criteria rely on a closed formula in local coordinates for the trace map of
the finite flat morphism F (Lemma 1.3.6). In turn, this formula is derived from results
of Cartier on differential calculus in characteristic p, which are presented in detail
in Section 1.3. This section ends with a version of the Grauert-Riemenschneider
vanishing theorem for split varieties (Theorem 1.3.14) which will play an important
role in proving that certain varieties admit “rational resolutions” (see Chapters 3 and 6).
We also obtain a version of the Kawamata—Viehweg vanishing theorem in the presence
of splitting (Theorem 1.3.16).

In Section 1.4, the notion of splitting relative to a divisor is developed. This yields
versions of the vanishing theorems in Section 1.2, which apply to all semi-ample line
bundles (Theorem 1.4.8; which is an essential ingredient in the proof of the Demazure
character formula in Chapter 3).

Section 1.5 presents applications of splitting to syzygies. Specifically, if X is a
normal projective variety, and X x X is split compatibly with the diagonal, then any
ample line bundle on X is very ample, and X is projectively normal in the correspond-
ing embedding 6 into projective space (Corollaries 1.5.3 and 1.5.4). If, in addition,
X x X x X is split compatibly with the two partial diagonals A1> and Aj3, then the
image of X in the embedding 6 is an intersection of quadrics (Proposition 1.5.8).

More generally, the existence of splittings of all products X x --- x X, compatible
with all the partial diagonals A; ;4 1, implies that the homogeneous coordinate ring of
X is Koszul, i.e., the trivial module over this graded ring admits a linear resolution
(Theorem 1.5.15). This result, together with its refinement to closed subschemes, is
motivated by its applications to syzygies of flag varieties and their Schubert varieties,
presented in Chapter 3.

The techniques of Frobenius splitting obviously involve positive characteristics
in an essential way. But, some of their main applications concern certain varieties
in characteristic 0, which are defined over the integers (possibly with finitely many
primes inverted) and hence may be reduced modulo large primes. The relevant tools of
semi-continuity are gathered in Section 1.6.

1.1 Basic definitions, properties, and examples

We begin by fixing notation and conventions on schemes; our basic reference is [Har—
77]. Let k be an algebraically closed field of positive characteristic p. We will consider
separated schemes of finite type over k; these will be called schemes for simplicity.
A variety is an integral scheme (in particular, irreducible). The structure sheaf of a
scheme X is denoted by Oy, and the ideal sheaf of a closed subscheme Y is denoted
by Ty.
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Let X™& be the regular locus of a scheme X. For a closed point x € X™¢, a system
of local coordinates (11, ...,1t;) of X at x is a minimal system of generators of the
maximal ideal of the local ring Ox ,; then, n is the dimension of X at x. The choice of
a system of local coordinates identifies the completed local ring o x.x with the ring of
formal power series k[[f1, ..., t,]].

The monomial tf‘ .. t,i" will be denoted by i, wherei = (i1, ...,iy) € N',Nbeing
the set of nonnegative integers. The monomial (¢; .. . ,)”~! will play a prominent role;
wedenoteitbytl’_l. Wewritei <p—1ifi; <p-—1forj=1,...,n.

Next, we introduce the Frobenius morphism. Consider first a commutative, asso-
ciative k-algebra A. Then, the p-th power map

F:A— A, ar— d?,

is a ring endomorphism, called the Frobenius morphism; its image is a subalgebra
denoted by A”. Notice that F' is not a k-algebra homomorphism: it is semilinear with
respect to the Frobenius endomorphism of k.

Here are some basic properties of the Frobenius morphism.

1.1.1 Lemma. Let A be a localization of a finitely generated k-algebra. Then, the
AP-module A is finitely generated.

If; in addition, A is regular, then the AP-module A is locally free. Specifically, let
M be a maximal ideal of A and let t1, ..., t, be a minimal set of generators of the
maximal ideal M A rq of the local ring Az, then, the monomials

fi<p-1

form a basis of the (A pq)P-module A pg.

Proof. In the case where A is th_e polynomial ring k[t1,...,t,], we have A? =
k[tf, ..., tF1, and the monomials 71, i < p — 1, clearly form a basis of the A”-module
A.

Now, let A be a finitely generated algebra. Since A is a quotient of a polynomial ring,
it follows that the A”-module A is finitely generated. Further, let S be a multiplicative
subset of A; then, S~!A = (SP)"!A and (S~1A)? = (SP)"1AP. Tt follows that
(S'A)P-module S~ A is finitely generated.

For the second assertion, we may assume that A is local with maximal ideal M. We
claim that the monomials ¢i, i < p — 1, generate the A”-module A. By Nakayama’s
lemma, it suffices to show that their classes in the quotient A/F (M)A are a basis of
that space, where F (M) consists of all p-th powers of elements of M, and F (M)A
denotes the ideal generated by F'(M). Clearly,

FIM)A=(],....t)),

where we denote by (fi, ..., fi) the ideal of A generated by f1,..., fin» € A. In
particular, F (M)A differs from the p-th power MP of the ideal M, consisting of all
sums of products of p elements of M. However, F (M)A contains the pn-th power
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MP" as every monomial of total degree pn inty, ..., t, is divisible by tip for some .
Since A/ MP* >~ k[t1, ..., t,]/(t1, ..., t,)P", it follows that

A/F(M)A = A/(F(M)A + MP") > k[t ... t,]/ (], .. 8,

which implies our claim.
Next, we check that the monomials #,i < p — 1, are linearly independent over A”.

Consider a relation Zigp—l aip = 0, where aj € A for all i. Regard A as a subring
of its completion k[[#1, . . . , t,]] and notice that rPiti = P+ implies that i = i’ and
j=1j, wheneveri, i’ <p — 1. It follows that a; = 0. O

We now extend the definition of Frobenius morphism to schemes.

1.1.2 Definition. Let X be a scheme; then, the absolute Frobenius morphism
Fy : X — X

is the identity on the underlying space of X, and the p-th power map on the structure
sheaf Oy.

We will abbreviate Fx by F if the reference to X is clear; likewise, we will denote
the associated map
F¥.0x — F.Ox

by F*. Then, F¥ is just the p-th power map.
By Lemma 1.1.1, F is a finite morphism of schemes (but not of k-schemes), sur-
jective on closed points. If, in addition, X is regular, then F is flat.
For any morphism f : X — Y of schemes, the diagram
f

X — Y

Fxl Fyl
x — vy
commutes.
Observe that, for a sheaf F of Ox-modules, F,F equals F as sheaves of abelian
groups, but the Ox-module structure on F,F is given by f xs = fPs, for any local
sections f of Oy and s of F. In particular, z x s = z”s, for any z € k.

1.1.3 Definition. (i) A scheme X is Frobenius split (or simply split) if the Ox-linear
map F*: 0Oy — F.Ox splits, i.e., there exists an Ox-linear map

¢: F,Ox — Oy

such that the composition ¢ o F# is the identity map of Oy. Any such ¢ is called a
splitting.
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(i1) A closed subscheme Y of X is compatibly split if there exists a splitting ¢ of X such
that
p(FZy) CZLy.

(iii) More generally, closed subschemes Y1, . . ., Y, of X are simultaneously compatibly
split (or simply compatibly split) if they are compatibly split by the same splitting of
X.

1.1.4 Remarks. (i) A splitting of X is nothing but an endomorphism ¢ : Ox — Ox
of the sheaf Oy, considered only as a sheaf of abelian groups on X, satisfying the
following:

@ o(fPg) = fe(g), for f, g € Ox, and
() (1) = 1.

Indeed, (a) is equivalent to the requirement that ¢ € Hom(F,Ox, Ox); and if (a)
holds, then ¢(f?) = fe(1) for f € Ox. (Here and subsequently in the book we
have abbreviated Homp, (FxOx, Ox) as Hom(F,Oyx, Ox).) In other words, for any
¢ € Hom(F,Oyx, Ox), the composition ¢ o F¥ is the multiplication by ¢(1), a regular
function on X. Thus, ¢ is a splitting if and only if ¢ (1) = 1.

Assume now that X is a complete variety, so that every regular function on X is a
constant. Thus, ¢ € Hom(F,Oyx, Oyx) is a nonzero scalar multiple of a splitting if and
only if ¢(1) is not identically zero.

(ii) If ¢ compatibly splits a closed subscheme Y of X, then clearly ¢ induces a splitting
@y of Y, such that the diagram

0 —— FIy —— F,.Ox —— F,0Oy —— 0
‘| (| |
0O — Zy —— Ox —— Oy —— 0

commutes.
(iii) Let ¢ € Hom(F,Oyx, Ox) be a splitting and let Z be an ideal sheaf of Ox. Then,

1 C p(FI),
since f = ¢(fP) for any local section f of Oy.

1.1.5 Example. The affine space A" over k is split compatibly with all its coordinate
subspaces. Indeed, consider an additive map

o k[t ..., ty] — klt1, ..., t]

suchthatp(f?Pg) = fe(g) forall f, gink[t1,...,t,],andp(1) = 1. By Remark 1.1.4
(i), any such ¢ uniquely extends to a splitting of A" by setting <p(£) = é(p(fgp_l),

for a regular function f on any open subset of A", where f, g € k[t1, ..., t,].
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Any such map ¢ is uniquely determined by its values at the monomials #1,i < p — 1,
and i # (0,...,0). Conversely, assigning arbitrary polynomials to ¢! for nonzero
i < p — 1 uniquely extends to a map ¢ satisfying the above conditions. Now, choose
(p(ti) = 0 for all nonzero i < p — 1. Then, we have for arbitrary i € N":
oy = /= |1 Ti=pi j el

0 otherwise.

In particular, ¢ maps every monomial to a monomial with the same support, or to 0.
Thus, the ideal generated by any subset of the coordinate functions is invariant under

®.
This example may be generalized as follows.

1.1.6 Proposition. Let X be a nonsingular affine variety and let Y be a closed nonsin-
gular subvariety. Then, X is split compatibly with Y.

Proof. We adapt the argument of Example 1.1.5. Let X = Spec(A), where A is a
regular, finitely generated k-algebra, and let I be the ideal of Y in X. Let M be the set
of all additive maps ¢ : A —> A such that ¢(fPg) = fe(g) forall f,g € A, and
let M; be the subset of those ¢ such that ¢ (/) C I. Then, the splittings of X that are
compatible with Y are those ¢ € M such that (1) = 1.

Note that M is an abelian group under pointwise addition; in fact, an A-module
via (fo)(g) = fo(g); further, M; is an A-submodule. Any ¢ € M is uniquely
determined by its values at a set of generators of the A”-module A (and these values
have to satisfy all the relations between these generators). By Lemma 1.1.1, it follows
that the A-modules M and M| are finitely generated.

The map

€M — A, o ¢(1),

is A-linear, and X is split compatibly with Y if and only if € is surjective. By the
finiteness of the A-module M7, this is equivalent to the surjectivity of € after taking the
completion of the localization at every maximal ideal of A. Thus, we are reduced to
the case where A = k[[t1, ..., #,]] and the ideal [/ is generated by 1, ..., t,, for some
m < n. (Recall that the ideal of any nonsingular subvariety at any point of a nonsingular
variety is generated by a subset of a suitably chosen system of local coordinates.) Now,

the formula ) )
@(Z ait') = Zail/p 1/p
i i, pli
defines a compatible splitting, as in Example 1.1.5. O

Another source of examples is the following.

1.1.7 Lemma. (i) If a scheme X is split under ¢ € Hom(F,Ox, Ox) compatibly with
a closed subscheme Y, then for every open subscheme U of X, ¢ restricts to a splitting
of U, compatible with U N'Y.
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(ii) Conversely, if U is a dense open subscheme of a reduced scheme X, and if ¢ €
Hom(F,Ox, Ox) restricts to a splitting of U, then ¢ is a splitting of X. If, in addition,
Y is a reduced closed subscheme of X such that U N'Y is dense in Y and compatibly
split by ¢y, then Y is compatibly split by ¢.

(iii) If X is a normal variety and U is an open subset with complement of codimension
at least 2, then X is split if and only if U is. In fact, any splitting of U is the restriction
of a unique splitting of X. In particular, X is split if and only if its regular locus is.

Proof. (i) Clearly, ¢ yields an Oy -linear map F,Oy —> Op. And since ¢(1) = 1,
this map is a splitting of U. It is compatible with U N Y, since ¢(FZy) C Zy.

(i1) The regular function ¢ (1) equals 1 on U, and hence on the whole of X. (Indeed,
we may regard (1) — 1 as a morphism from X to A!, and its fiber at O contains the
dense open subset U). By Remark 1.1.4 (i), it follows that ¢ is a splitting of X. For the
compatibility of this splitting with Y, we need to check that ¢ (F,Zy) C Zy. Notice that
¢(FyZy) is a coherent ideal sheaf of Oy, containing Zy by Remark 1.1.4 (iii). Thus,
we have ¢(F,Zy) = Zz for some closed subscheme Z of X contained in Y. Further,
UNZ = UNY,since ¢|y is compatible with U N Y. Thus, the ideal sheaf of Z
(regarded as a closed subscheme of Y) vanishes on the dense subset U N Y. Since Y is
reduced, this ideal sheaf vanishes on the whole of Y, sothat Z =Y.

(iii) If X is split, then so is U by (i). Conversely, assume that U is split by ¢ and
denote the inclusion by i : U —> X. Then, i, Oy = Oy, since X is normal and X \ U
contains no divisors of X. Hence, the map

¢ F,Ox — Ox, [ iyi*(f),

is well defined, and extends ¢ : F,Oy —> Op. Further, ¢ is Ox-linear (since ¢ is
Oy -linear). Thus, ¢ is a splitting of X by (ii). The uniqueness of ¢ is easy to see from
i.0y = Ox. O

Next, we show that the existence of a splitting is preserved by taking images under
certain morphisms.

1.1.8 Lemma. Let f : X —> Y be a morphism of schemes such that the map f* :
Oy —> f«Ox is an isomorphism. Let Z be a closed subscheme of X and let W be the
scheme-theoreticimage of Z in'Y, cf. [Har-77, Chap. II, Exercise 3.11(d)]. Identifying
f«Ox with Oy via f#, we have:

(D) Iw = fslz.
(ii) If X is split, then so is Y. If, in addition, Z is compatibly split, then so is W.

Proof. (i) Since W is the scheme-theoretic image of Z, we have
Iy = (fH 7' (fI2).

This proves (i), since f# is an isomorphism.
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(i) Let ¢ : F,Ox — Oy be a splitting; consider the direct image
fro: [ F.Ox — f.Ox = Oy.

Since f FxOx = Fi(f«Ox) = F,.Oy, we see that f,¢ maps F,Oy to Oy, and 1to 1.
Thus, fye is a splitting of Y.
If, in addition, Z is compatibly split by ¢, then ¢ (F.Zz) = Zz, whence

(f+0)(FZw) = (frp)(Fu(fiL2)) = filz = Iw.
O
The following variant of Lemma 1.1.8 givesrise to further examples of split schemes.

1.1.9 Lemma. Let f : X —> Y be a morphism of schemes such that the map ¥ :
Oy —> [ Ox splits as a morphism of Oy-modules. If X is split, then so is Y.

Proof. Let ¢ : F,Ox —> Oy be a splitting of X and let 7 : f,Ox —> Oy be a
Oy-module splitting of f#. Then, the diagram

Fyf*
F.Oy ——— f,F.Ox

f*wl
Oy «Z— f.0x
yields the desired candidate
V=70 (fsp)o Fif?

for a splitting of Y. (One easily checks that ¥ : F,Oy —> Oy is a morphism of
Oy-modules such that ¢ (1) = 1.) O

1.1.10 Examples. (1) Let G be a finite group of automorphisms of a nonsingular affine
variety X = Spec(A). Then, G acts on the algebra A, and the invariant subalgebra
A% is finitely generated [Eis—95, Theorem 13.17]. LetY = X/G := Spec(AG) be the
corresponding affine variety. The inclusion of A® into A yields the quotient morphism

f:X—Y.

Denote by d the order of G. If d is not divisible by p, then Y is split. Indeed, X is split
by Proposition 1.1.6. Further, the inclusion

.46 — A
is split by the projection

1
. G
T:A— AY, a|—>EE g-a,
geG
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so that Lemma 1.1.9 applies.
(2) More generally, consider a finite surjective morphism between varieties

f:X—Y,

where Y is assumed to be normal. Define the degree d of f as the degree of the field
extension k(X)/k(Y) and the trace map Tr as the trace of this field extension. Since
f«Ox is a sheaf of Oy-algebras finite over Oy, and contained in the constant sheaf
k(X),

Tr(f<Ox) C Oy

(as the latter is integrally closed in k(Y')). Further, the restriction of Tr to Oy is d times
the identity map. If d is not divisible by p, then 5 Tr splits £#; thus, Y is split if X is.
(3) Let

f:E—X

be a vector bundle over a scheme X, with zero section E(, and let
g:P(E) — X

be the corresponding projective bundle (so that the fibers of g are the projective spaces
consisting of the lines in the fibers of f). Consider the induced morphism

h:E\Ey — P(E).

Then, the natural action of the multiplicative group G,, on E \ Ej yields a grading
of the sheaf h.Op\g,, with degree zero component equal to Op(gy. Thus, the map
h* : Oppy —> hsOp\E, splits as a morphism of Op(g)-modules. Further, all the
fibers of g being projective spaces, the map g* : Oy — 8+Op(k) is an isomorphism.

By Lemmas 1.1.8 (ii) and 1.1.9, if E is split, then so are P(E) and X. As a
consequence, the projective space P" over k is split.

A converse is provided by the following.

1.1.11 Lemma. Let X be a scheme, Y a closed subscheme, L a line bundle over X, and
Ly the preimage of Y in L. If X is split compatibly with Y, then L is split compatibly
with its zero section and with Ly.

More generally, let E be a vector bundle over X, and let Ey be the preimage of Y.
If the associated projective bundle P(E) is split compatibly with P(Ey), then E is split
compatibly with its zero section and with Ey. As a consequence, X is split compatibly
with Y.

Proof. Denote by L the sheaf of local sections of the dual line bundle L* and, for any
integer v, let £ be the corresponding tensor power of the invertible sheaf £. Then, the
projection f : L — X satisfies f,Or = ;2 L". Now, let ¢ : F,Ox —> Ox be
a splitting, compatible with Y. Define ¥ : F,O; —> Op by setting

@(g)a"/P if v =0 (mod p),
0 otherwise,

V(go") = :
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for any local section g of Oy and local trivialization o of L.

We claim that ¢ is well defined. Let o1 be another trivialization and g; another
function, such that goV = gioy. Then, o1 = uo for some local unit u in Oy, and
g1 = gu~". Now,

0(g1)0)"" = p(gu™"u"PoV/P = (g)a"!?,

which proves our claim.

One checks easily that v is a splitting of L, preserving the ideals of the zero section
and of Ly.

Now, let f : E —> X be avector bundle, and let Op(g)(—1) be the total space of the
tautological line bundle over P(E). Then, we have a morphism 7 : Opg)(—1) —>
E (the blowing-up of the zero section Ep). This morphism is proper and satisfies
71*(’)0]1,,( (=) = Ofg. Further, Ej is the scheme-theoretic image of the zero section
of Op(g)(—1) under 7. By Lemma 1.1.8, it suffices to prove that Op(g)(—1) is split,
compatibly with its zero section and with Op(g,)(—1). But, this follows from the first
part of the lemma, since P(F) is split compatibly with P(Ey). O

To conclude this section, we show that the existence of a splitting is preserved under
taking “affine cones.” Recall first the following.

1.1.12 Definition. An invertible sheaf £ on a scheme X is called semi-ample if some
positive power of L is generated by its global sections.

Consider a complete variety X equipped with a semi-ample invertible sheaf £. Let
L~! be the total space of the dual line bundle, with projection f : L~! — X and zero
section L(;]. Then, f,O;-1 = @Sio LY, so that the graded algebra (L, Or-1)
equals

R(X. L) =EPrx. .
v=0

This is a graded algebra, with R(X, £)g = I'(X, Ox) = k.

1.1.13 Lemma. (i) With the notation and assumptions as above, R(X, L) is a finitely
generated domain.

Let X be the corresponding affine variety and let 0 € X be the closed point defined
by the irrelevant ideal of R(X, L). Letw : L™' — X be the morphism corresponding
toT(L™', 0, 1) = (X, Oy). Then,

(ii) 7 is proper and satisfies 7w, O -1 = O. Further, 77 10) = Lal (as sets).
(iii) If, in addition, L is ample, then  restricts to an isomorphism 7° : L™ \La1 —

X\ {0}

Proof. (i) Since L™! is a variety, R(X, £) is a domain. To show that it is finitely
generated, choose a positive integer v, such that £ is generated by its global sections.
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Consider the inclusion
o0 o0
DemcDe
v=0 v=0

and the corresponding morphism « : L™! — L™, a finite surjective map. Thus, we
may regard O -1 as a coherent sheaf of algebras over Op -, .

Let V := I'(X, L") and let P be the projective space of hyperplanes in V. Since
LY is generated by its global sections, we have a morphism ¢ : X — [P such that
LY = ¢*Op(1). Let Op(—1) be the total space of the tautological line bundle over the
projective space [P, with projection map g : Op(—1) —> P. Then, we have a Cartesian
square

L —V s op(=1)

/| |

x 2. P.

Thus, v is proper, so that the composition y := ¥ o « is proper as well. As a
consequence, ¥ -1 is a coherent sheaf over Op(—1). Further, we have a proper
morphism Op(—1) — V* (the blowing-up of the origin in V*). As a consequence,
R(X,L)=T(L"!, Op-1) =T'(0Op(—1), yxOp-1) is a finite module over the algebra
of regular functions on V*, that is, the symmetric algebra of V. In particular, the algebra
R(X, L) is ﬁnitely generated.

(1) Let XVvo .= Spec R(X, L"). Since the algebra R(X L) is 1ntegral over its sub-
algebra R(X, L"), we have a finite sur_lectlve morphism X — XV 1Its composition
with 7 equals the composition of % : L™"% — XY with the finite surjective mor-
phism o : L~! — L~ Thus, to show that 7 is proper, we may replace £ with £,
and hence assume that £ i is generated by its global sections. Then, w1th the preceding
notation, the morphism X — V* is finite, and its composition L~™' —> X — v*
with r factorsas i : L~ — Op(—1) (a proper morphism) followed by the blowing-
up Op(—1) —> V*. Therefore, this composition is proper, and hence so is 7.

To show the remaining assertions, note that, by definition, X is affine and
rL!, O, -1) equals F(X, 03), so that the map Oy —> 7,01 is an isomor-
phism. Moreover, since the elements of I"(X, £"?) have no common zeroes in X, the
(set-theoretic) preimage of 0 under 7 is the zero section.

(iii) We may choose the positive integer v, such that £ is very ample. Then,
X \ {0} is covered by the affine open subsets X, = {x € X | o(x) # 0}, where
o € I'(X, ,C"”) is nonzero (o is to be thought of as a function on X ). Further, the
pre1mage of X, under 7 is the pullback of L=\ L0 to the corresponding open subset

Xo :={x € X |o(x) # 0} of X. Since L" is ample, every subset X, is affine, and
hence the pullback of L] \ Ly T'to X, is affine as well. Thus, 79 is affine. But, since
7 is proper, it follows that 79 must be finite. Finally, since 7,O;-1 = O » it follows
that 7° is an isomorphism. O
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1.1.14 Lemma. Let L be a semi-ample invertible sheaf over a complete variety X, and
let X = Spec R(X, L) be the corresponding “affine cone”.

If X is split, then X is split compatibly with the subvariety 0.

Conversely, if L is ample and X is split, then X is split as well.

Proof. If X is split, then by Lemma 1.1.11, the hne bundle L™ !is split compatibly with
its zero section. Further, the morphismz : L™ — Xis proper, maps the zero section
to 0, and satisfies 7,0y -1 = Oy by Lemma 1.1.13. Observe that the scheme-theoretic
image of L ! is the reduced subscheme 0 since L, !is reduced, being isomorphic with
X. By Lemma 1.1.8, it follows that X is split compatibly with 0.

For the converse, notice that X \ {0} is split as well. By Lemma 1.1.13 again,
X \ {0} =~ L7\ L_1 is equipped with a morphism # : X \ {0} — X, such that ¥
identifies Ox with the degree 0 component of the graded sheaf & OX\ 0)° Thus, i*
splits, and our assertion follows from Lemma 1.1.9. O

1.1.E Exercises

In the following Exercises 1-4, X denotes a scheme endowed with invertible sheaves
L1, ..., L, ; the corresponding line bundles are denoted by L, ..., L, respectively.

(1) Assuming that X is split, show that the Whitney sum L ®- - -@ L, is split, compatibly
with all partial sums.
(2*) Let R(X; L1, ..., L) == @T(X, L)' ® --- ® L") (sum over all nonnegative
integers vy, ..., V). Assuming that X is a complete variety and that £y, ..., £, are
semi-ample, show that the algebra R(X; Ly, ..., £,) is finitely generated.

The corresponding affine variety X is called the multicone over X associated with
Li,..., L.
(3% W1th the notat10n and assumptlons of (2), generalize Lemma 1.1.13 to the morphism
7Ly 69 -®L — X.

(4) With the notation and combined assumptions of (1) and (2), show that X is split
compatibly with all the multicones associated with subsets of {L{, ..., L,}.

(5) Let G be a linearly reductive group [MFK-94, Chapter 1] acting on a scheme X
such that f : X — Y is a good quotient, where good quotient means that f is an
affine G-invariant morphism and the map f* : Oy — (f,Ox)Y is an isomorphism.
Assume further that X is split. Then, show that Y is split.

Hint: Use the Reynolds operator of [loc cit.].

1.2 Consequences of Frobenius splitting

We begin with an easy but important observation.

1.2.1 Proposition. Let X be a split scheme, then X is reduced.
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If the closed subschemes Y and Z are compatibly split, then so are their scheme-
theoretic intersection Y N Z, their union Y U Z, and the irreducible components of all
these schemes. In particular, the scheme-theoretic intersection Y N Z is reduced.

Proof. Let ¢ be a splitting of X. Consider an affine open subscheme U of X, and
a nilpotent element f € I'(U, Oy). Thus, there exists a positive integer v such that
fP" = 0. It follows that

P = @o FH(FP ) = o(f7) =0,

and hence, by induction, f = 0. Thus, X is reduced.
Recall that
Iynz :==Zy +7Zz and Zyyuz :=Zy NZy.

If ¢ is compatible with Y and Z, then we have
o(FuIyuz) = o(Fe(Iy N1Iz)) C o(FIy) Ne(Flz) =1y N1z = Iyuz;

and, similarly, ¢ (FxZynz) C Zynz. Thus, Y U Z and Y N Z are compatibly split by ¢.

To complete the proof, it suffices to show that ¢ is compatible with every irreducible
component of X. Let A be such a component and let B be the union of all the other
components. Then, ¢ (F,Z4) is a coherent sheaf of ideals of Ox containing Z4. Further,
@(FyZy)and Z4 coincide on X \ B, since Z 4 restricts to the zero sheafon X\ B = A\ B.
Since X \ B is dense in A, it follows that ¢(F.Z4) = Z4 as in the proof of Lemma
1.1.7. O

1.2.2 Example. The affine plane X = A? is split compatibly with the coordinate line
Y := (y = 0) (Example 1.1.5); it is also split compatibly with the nonsingular curve
Z := (y = x?) by Proposition 1.1.6. But, Y and Z are not simultaneously compatibly
splitin X, since Y N Z is not reduced.

Next, we obtain a restriction on the singularities of any split scheme. To formulate
it, we need the following.

1.2.3 Definition. A morphism f : ¥ —> X between reduced schemes is birational
if there exist dense open subsets U C X and V C Y such that f restricts to an
isomorphism V — U.

A reduced scheme X is weakly normal if every finite birational bijective morphism
f 1Y — X is an isomorphism. We refer to [AnBo—69], [Man—80] for more on this
notion and on the (weaker) notion of semi-normality.

1.2.4 Examples. (1)A variety X is normal if and only if every finite birational morphism
to X is an isomorphism [Har-77, Chap. II, Exercise 3.8]. Thus, normal varieties are
weakly normal.

(2) The cuspidal cubic curve X := (y2 = x3) in AZ is not weakly normal. (The
morphism Al — X, t — (t2, t3), is bijective, finite and birational, but is not an
isomorphism.) But, the nodal cubic curve X := (y? = x3(x + 1)) in A2 is weakly
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normal if p # 2. (Let f : Y — X be a finite birational bijective morphism. Then, the
normalization 7 : Al — X, t—> (2=1,1(:2=1)), factors through f. Further, n is
an isomorphism above X — {0, 0}, and the scheme-theoretic fiber 7 (0, 0) equals the
reduced scheme {—1, 1}. It follows that the scheme-theoretic fibers of the factorization
Al — Y are the same as those of 7. Thus, f is an isomorphism.)

1.2.5 Proposition. Every split scheme is weakly normal.

Proof. Let X be a split scheme and let f : ¥ —> X be a finite birational bijective
morphism. To check that f is an isomorphism, we may assume that X is affine. Then,
Y is affine as well, since f is finite. Let X = Spec(A) and Y = Spec(B); then, A and
B are finitely generated algebras with the same total quotient ring K (the localization
at all nonzero divisors), and A C B C K, the A-module B being finitely generated.
Let ¢ be a splitting of X. Then, ¢ extends uniquely to an additive map ¢ : K —> K
satisfying ¢ (x”y) = x¢(y) and (1) = 1.
Consider the conductor

I:={aeA|aB C A}.

This is a nonzero ideal of B contained in A. We claim that ¢ (/) = I. To check this, let
a € I and b € B, then ¢(a)b = p(ab?) € p(A) = A, so that ¢(I) C I. The opposite
inclusion follows from Remark 1.1.4 (iii).

By the above claim and Proposition 1.2.1, the ring A/ is reduced. Likewise, if
b e Band b? € I then b = ¢(b?) € ¢(I) = I; it follows that B/I is reduced as well.
The closed subset E of X corresponding to A/l consists of all those points where f
is not birational, by definition of /. Thus, E contains no irreducible components of X.
By the claim, X is split compatibly with E.

Assume that I # A and let P be a minimal prime ideal of A over /. Then, P is the
ideal of an irreducible component of E, so that ¢ (P) = P by Proposition 1.2.1. Further,
the localization (A/I)p is a field, and (B/I)p is a nontrivial, purely inseparable field
extension (since B/ is reduced, and f restricts to a finite bijective, nowhere birational
morphism Spec(B/I) —> Spec(A/I) = E). Thus, there exists b € Bp such that
its image b € (B/I)p satisfies b” € (A/I)p,butbh ¢ (A/I)p. Then, b” € Ap and
b = ¢(b”) € Ap, acontradiction. Hence, I = A, and B = A. O

Further consequences of the existence of a Frobenius splitting concern the vanishing
of all higher cohomology groups of line bundles, or equivalently of invertible sheaves.
To establish them, we need the following preliminary result.

1.2.6 Lemma. Let L be an invertible sheaf on a scheme X. Then,
F*L >~ LP and F.(F*L) ~ L ®p, F.Ox.

Proof. Recall that
F*L:=F7 'L ®p-10, Ox,
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where the map F 1Oy — Oy arises from F* : Oy —> F,Ox. Now, F is the
identity map on points, and F* is the p-th power map. It follows that

F*L = L ®0p, Ox.

where Oy acts on itself by the p-th power map; in other words, 6 f @ ¢ = 0 ® fPg
for all local sections o of £, and f, g of Ox. Thus, the map

F*L—LP, 0@ fr—olf,

is well defined. Clearly, this map is Ox-linear and surjective; this implies the first
isomorphism. The second isomorphism follows from the projection formula. O

1.2.7 Lemma. Let L be an invertible sheaf on a split scheme X.

(i) If H (X, L") = 0 for a fixed index i and all v > 0, then H (X, L) = 0.

(ii) If a closed subscheme Y is compatibly split, and the restriction map
HY(X, L") — HO(Y, L) is surjective for all v > 0, then the restriction map
HX, L) — HOY, L) is surjective. (Here and elsewhere, when no confusion is
likely, we have abused the notation and denoted Ly by L itself.)

Proof. (i) Let ¢ : F,Ox —> Oyx be a splitting of F* : Oy — F,Ox. Then, id ®¢
splits the map
deF* . L — L®p, F.Ox.

It follows that the induced map in cohomology
H (d®F" : H (X, L) — H'(X, L ®0, FxOx)
is split, and hence injective. But,
H' (X, L ®0, FOx) =~ H' (X, Fu(F*L)) ~ H' (X, F.(LF)) ~ H' (X, L)

by Lemma 1.2.6 and the fact that the morphism F is finite, hence affine. (Here the
isomorphism on the extreme right is only semilinear.) This yields a split injection
Hi(X, L) — H'(X, LP) (as abelian groups). As a consequence, Hi(X, L) is adirect
factor of H'(X, £LP") for any positive integer v.

(ii) We have a commutative diagram (of abelian groups)

H°(X,L£) —— HYX, LP)

l l

HOY, £) —— HY(Y, L£P),

where the horizontal arrows are H%(id ® F*), and the vertical arrows are the restriction
maps. Since Y is compatibly split, the horizontal arrows are compatibly split as well.
Thus, the surjectivity of HO(X, £P) — HO(Y, £P) implies that of HO(X, £) —
HOY, L). O
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We now come to the main results of this section.

1.2.8 Theorem. Let X be a proper scheme over an affine scheme, and let L be an ample
invertible sheaf on X.

(i) If X is split, then H(X, £) = 0 forall i > 1.

(i) If, in addition, a closed subscheme Y is compatibly split, then the restriction map
HY(X, L) — HO(Y, L) is surjective, and H (Y, L) = 0 for all i > 1. As a conse-
quence, H' (X, Ty ® L) =0 foralli > 1.

Proof. By the Serre vanishing theorem [Har—77, Chap. III, Proposition 5.3], we have for
v > 0:
H(X,LNY=HX, Iy ® LY = H' (Y, L") = 0.

On the other hand, the short exact sequence of sheaves
0 —-Iy L — L' — L'y — 0
yields the long exact sequence of cohomology groups
0> H' X, Zy® L") - H X, L") - H'(V, L") - H' X, Ty ® L") — ----

It follows that the restriction map H(X, £”) — H(Y, L") is surjective for v > 0.
Combined with Lemma 1.2.7, this implies the theorem. O

1.2.9 Theorem. Let X be a split projective scheme equipped with an ample invertible
sheaf L.

If X is Cohen—Macaulay with dualizing sheaf wx, then H' (X, L ® wx) = 0 for all
i>1

If. in addition, X is equidimensional, then H (X, L™') = 0 foralli < dim(X) — 1.

Proof. Assume that X is Cohen-Macaulay and equidimensional. Then, H' (X, £L7") =
Oforall v > 0andi < dim(X) — 1, by [Har—77, Chap. III, Theorem 7.6]. Using
Lemma 1.2.7, this implies the second assertion.

Now, the first assertion follows by applying Serre duality [Har—77, Chap. III,
Corollary 7.7] to all connected components of X; these are equidimensional, since X
is Cohen—Macaulay. O

1.2.10 Remarks. (i) In particular, the Kodaira vanishing theorem holds for every split
projective nonsingular variety X, i.e., H' (X, L& wyx) = Oforanyi > 1 and any ample
invertible sheaf L.

(i1) The vanishing of all the higher cohomology groups of all ample invertible sheaves
on a given projective scheme X is a very strong condition that seldom holds. Consider,
for example, the case where X is a projective nonsingular irreducible curve of genus g.
If g > 2, then the invertible sheaf wy is ample [Har-77, Chap. IV, Corollary 3.3], and
H'(X, wx) ~ HY(X, Ox)* ~ k. Hence, X is not split.
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As another class of examples, consider a hypersurface X of degree d in the projective
space P". Then, X is Cohen—Macaulay with dualizing sheaf Ox (d — n — 1). Thus,

H'" (X, 0x(1) ~ H' (X, Ox(-1) ® wx)* ~ H* (X, Ox(d —n — 2))*

is nonzero whenever d > n + 2; in this case, X is not split.

(iii) We saw in Proposition 1.1.6 that any nonsingular affine variety is split; but,
this does not extend to nonsingular quasi-affine varieties. Consider, for example, a
projective nonsingular irreducible curve X of genus g > 2, an ample invertible sheaf
L on X, and the corresponding cone X = Spec R(X, L) over X, with vertex 0. Then,
X \ {0} is a nonsingular quasi-affine surface, which is not split by the proof of Lemma
1.1.14 and the above Remark (ii). In particular, notice that the normal affine surface X
is not split as well.

Next, we obtain two “relative” vanishing results in the presence of Frobenius split-
ting.

1.2.11 Lemma. Let f : X —> Y be a proper morphism of schemes, let D be a closed
subscheme of X, and leti > 1. If X is split compatibly with D, and if H' (Xy,Zp) =0
for all points y € Y (where y is not necessarily closed, and X denotes the scheme-
theoretic fiber at y), then R f.(Ip) = 0.

Proof. We may assume that Y is affine. Then, by [Har—77, Chap. III, Proposition 8.5],
it suffices to prove the vanishing of H'(X, Zp). By [loc cit., Chap. III, Theorem 8.8
and Remark 8.8.1], the HO(Y, Oy)-module H (X, Zp) is finitely generated. Lety € Y
be the generic point of an irreducible component of the support of this module. Then,
the localization H (X, Zp) y is a module of finite length over the local ring Oy,,. By
the theorem on formal functions [loc cit., Chap. III, Theorem 11.1 and Remark 11.1.1],
we have

(1) H' (X, ZIp)y =lim H (X, Ip.y),
<5

where Zp ; is the pullback of Zp to X := X xy Spec(Oy,y/M3), for s > 1. (Here
M, is the maximal ideal of Oy y.) )
We claim that the canonical map

H (X, Ip)y — H' (Xs,Ipys)

isinjective for s > 0. To check this, denote by K the kernel of this map. Then, (K;)s>1
is a decreasing sequence of Oy ,-submodules of H “X,Ip) y. Since the latter Oy, -
module has finite length, this sequence is constant for s > 0. But, ;- K; = {0},
whence the claim. B

Thus, we may choose s such that K; = 0. Consider the actions of the Frobenius
morphism F on Hi(X,, Ip,s) and Hi(X, Ip)y; the latter action is injective, since the
map Zp —> F,Zp splits (as D is compatibly split in X). On the other hand, the action
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of F on Hi(XS,ID,s) is nilpotent. Indeed, F(M;ID) C MfVID for any positive
integer v, so that F acts nilpotently on H (X, M yIp,s). Further,

H'(Xs, Ip,s/MyIp.s) = H'(X,, Ip)
vanishes by assumption; thus, the map
Hi (Xs, MyID,s) i Hi(Xsa ID‘s)

is surjective.
Since the action of F on thg subspace H' (X, Zp), of H'(Xy, Ip) is injective and
nilpotent, we conclude that H' (X, Zp), = 0. O

The next relative vanishing theorem will be a key ingredient in obtaining versions
of the Grauert-Riemenschneider and Kawamata—Viehweg theorems in the presence of
a splitting (Theorems 1.3.14 and 1.3.16).

1.2.12 Theorem. Let f : X —> Y be a proper morphism of schemes. Let D, resp. E,
be a closed subscheme of X, resp. Y, and let i > 1 be such that:

(i) D contains f~'(E) (set-theoretically),
(ii) Rif* (Zp) vanishes outside E,
(iii) X is split compatibly with D.

Then, R' f,.(Zp) = 0 everywhere.

Proof. We begin with reduction arguments similar to those of the proof of Lemma
1.2.11. We may assume that Y is affine; then, it suffices to prove the vanishing of
H(X,Ip). We argue by contradiction, and assume that H (X, Zp) is nonzero. Then,
this H°(Y, Oy)-module is finitely generated, with support in E by assumption (ii).
Choose an irreducible component of this support, with generic point y. Then, the
localization H' (X,Zp), is a nonzero module of finite length over Oy, y» and hence
over its completion @y’ y-

Choose a field of representatives K for the complete local ring @y, y; then, there
existfq, ..., t, € M, such that the natural map

Kl[t1. ... ta]] — Oy,

is surjective. Let R := K[[t1, ..., #;]]; this is a regular local ring, and Hi(X, Ip)y
becomes an R-module of finite length via the above homomorphism. The Frobenius
morphism F and its iterates F" act on R and on H (X, Ip)y; these actions are com-
patible, and the action of F on H' (X, Ip)y is split injective by the assumption (iii).

For any nonnegative integer r, let R ®”" H'(X,Zp) y denote the base change of
H! (X, Zp)y under the endomorphism F” of R; then, we have

a®bm=ab” @m,
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forall a, b in R and m in Hi(X, 1Ip)y. This yields maps (for any r > 1)
fri R HI(X.Ip)y, — R H(X.Ip)y, a®m+> a® F(m),
that define a projective system
. — R®" HI(X,Ip)y — R®" ' H'(X.Ip)y —> --- —> H(X.Tp),,

and a projective limit .
lim R ®" H'(X,Ip)y.
<r

On the other hand by (1.2.11.1),

H'(X,Ip)y = lim H'(X,,T,),
)

where X := X xy Spec(Oy/Mi,), and Zy = Zp  denotes the pullback of Zp to Xj.
Since R is a finitely generated, free R-module under F” by Lemma 1.1.1,

lim R®” H'(X,Ip)y =lim R®" (lim H'(X,Z))
<~ r <~ r <~

= lim lim R ®” H'(X,,Z,) = lim lim R ®” H(X,,T,).
s <r

e <«
Further, F acts nilpotently on Z; (indeed, some positive power of Zp is contained in
M, Ox, since y € E and f~YE) c D). It follows that

lim R®” H'(X;,Z;) =0,

~r
so that ‘

lim R®? H'(X,Ip)y, =0.

~r

On the other hand, all the R-modules in the above projective system have finite length,
and every map ' _
R®" H'(X,Ip), — H'(X,Ip),

is nonzero, since it sends every 1 @ m to F "(m), and since F” is split injective on
H f(X ,2p)y. By Lemma 1.2.13, we obtain a contradiction to the assumption that
H'(X,Zp) #0. O

1.2.13 Lemma. Let
c— My — M| — My

be a projective system of modules of finite length over a ring R, with transition maps
fliMj— My, forj=i>0.

Iffé # 0 forall i, then 1121 M, is nonzero.
r



20 Chapter 1. Frobenius Splitting: General Theory

Proof. Let
M = () £/ (M),

j=i
Since M; has finite length, we have Mlt“ab = fij(Mj) for all j > 0. Thus,
ST ) = f S (M) = f ()
for all j > 0, so that ff“ (M%) = M3, Therefore, {M;'*"} is a projective sub-
system with nonzero surjective maps: its projective limit is a nonzero submodule of
lim M,. O
<r

1.2.E Exercises

(1) Let X be areduced scheme with normalization f : Y — X. Show that X is weakly
normal if and only if Oy, regarded as a subsheaf of f,, Oy, consists of those local sections
that are constant on all set-theoretic fibers of f. In particular, weakly normal curves
are those reduced curves having only ordinary multiple points as singularities.

(2) Show that every affine, weakly normal curve is split.

(3) Let f : Y — X be a proper surjective morphism of varieties, such that (a) Y is
normal, (b) the fibers of f are connected, and (c) X is split. Show that X is normal.

Hint: Factoring f through the normalization n : X —> X, show that n is bijective.
Then, apply Proposition 1.2.5.

(4) Let X be a reduced scheme with normalization f : Y — X. Let E be the closed
subset of X where f is not an isomorphism, endowed with its reduced subscheme
structure, and put Z := f~!(E). Show that any splitting ¢ of X is compatible with E
and, moreover, it lifts to a splitting of Y, compatible with Z.

In particular, the normalization of a split scheme is split.

Hint: Reduce to the case where X = Spec(A) and Y = Spec(B) are affine. Let /
be the conductor as in the proof of Proposition 1.2.5. By that proof, ¢(I) = I; further,
I is the ideal of E in A, and of Z in B. Show that I¢(b) C I for any b € B. Deduce
that Io(b)N C I for any N > 0, and that ¢(b) is integral over A.

1.3 Criteria for splitting

In this section, we obtain several useful criteria for a given scheme X to be split.

Recall from Remark 1.1.4 (i) thata splitting of X isan Ox-linearmap¢ : F,Ox —
Oyx such that ¢(1) = 1. Therefore, to know if X is split and to determine all the
splittings, we need to understand the evaluation map

€ : Hom(F,Ox, Ox) — I'(X, Ox), ¢ +— ¢(1).
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In fact this map is defined on sheaves:
€ : Homo, (FiOx, Ox) —> Ox, ¢+ ¢(1).

Further, Homo,, (FxOx, Ox) is a coherent sheaf of F,,Ox-modules on X. Since F is
a finite morphism by Lemma 1.1.1, there exists a unique coherent sheaf F'Ox on X
such that

Homo, (FxOx, Ox) = F.(F'Ox),

cf. [Har-77, Chap. II, Exercise 5.17 and Chap. III, Exercise 6.10].
If X is regular, then F is flat by Lemma 1.1.1. Then, the duality for the finite flat
morphism F [Har-66] yields an isomorphism

F'Ox ~ Homo, (F*wx, wx)

(where wy denotes the dualizing sheaf of X), together with a trace map (defined in
1.3.5)
T Froxy — wy,

such that the evaluation map
€ : FHomo, (F*wx, wx) ~ Homo, (wx, Frwox) — Ox
may be identified with the map
Homoy (wx, Frox) — Endoy (wx) >~ Ox, ut> tou.
Together with Lemma 1.2.6, from the duality as above, it follows that
F'Ox ~ a);{p.

In particular, this sheaf is invertible.
We will recover these results in a more direct and explicit way later in this section.
We begin with the simplest

1.3.1 Example. Let X = A" be the affine n-space over k, with coordinates ¢, .. ., .
Recall that the k[tq, . . ., t;]-module

Hom(FyOpn, Opn) = T (A", Fo(F' Opn))
is the space of all additive maps
o k[t ..., ty)] — klt1, ..., t]
such that o (fPg) = fe(g) forall f, g € k[t1, ..., t,]; where k[t1, ..., t,] acts by

(fo)(g) = fo(g).
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This space has another structure of k[t1, ..., t,]-module, via

(f x9)(g) :=0p(fg),

and the latter k[¢1, ..., t,]-module is I'(A", F !OAn) by [Har—77, Chap. II, Exercise
5.17]. Notice therelation f”x¢@ = fpbetweenthetwok[tq, ..., t,]-module structures.
Let Tr : k[z1, ..., t,] — k[t1, ..., t;] be the unique additive map such that
Tr(er) — cl/rd ifi= P- 1+ pj for some j € N",
0 otherwise,
forany ¢ € kandi = (i, ..., i,) € N" (where we recall the notation = ti‘ . -t,il").

Clearly, Tr € I'(A", F'Opn). We claim that Tr is a free generator of this module (as a
module over k[¢1, ..., t,] under *).

Let ¢ € T'(A", F'Opn). Set (identifying T'(A”", F'Ogn) with Hom(F,Ogn, Opn)
as abelian groups as above)

fi= ) ehp e

i<p—1

Then, one easily checks that ¢ = f % Tr. Thus, Tr generates the k[71, ..., t,]-module
(A", F'Opn). On the other hand, if f  Tr = 0, then 0 = f? % Tr = f Tr, whence
f = 0. This completes the proof of the claim.

Now, the evaluation map € : I'(A”, F'Opn) —> k[t1, ..., ty]is given by

e(f xTr) = (f = Tr)(1) = Tr(f).

Thus, the map f * Tr splits A" if and only if

(a) the monomial P~ occurs in f with coefficient 1, and
(b) f contains no monomial P~1+PJ where j € N”, j # 0.

Observe that the splitting of Example 1.1.5 equals P~ % Tr.

We now aim at extending the results of Example 1.3.1 to all nonsingular varieties.
To this end, we first develop some differential calculus for arbitrary schemes in char-
acteristic p; we begin with the case of an affine scheme X = Spec(A). Let Qk be the
A-module of Kdhler differentials of A over k (cf. [Har—77, Chap. 1I, §8]) , equipped
with the k-derivation
d:A— QY aws da.

Notice that d(a?) = paP?~'da = 0 for every a € A, so that d is AP-linear.
Next, let
o
Q= A0l =Pl
i=0
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be the exterior algebra of 52114 over A (where AOQ 114 := A). Then, Q9 is the associative
A-algebra generated by da (a € A) with product A and relations: da A da = 0,
d(ab) — a(db) — (da)b = 0, fora,b € A. Forany a € Q, = A'Ql,, and g € @,
we have

BAra=(=D7anB,

that is, 2% is a graded-commutative A-algebra.
Themapd : A — 9}4 extends uniquely to amap, stilldenoted by d : 25 — QY
such that
d(aldaz/\-“Ada,') =da; ANdax N --- Nda;

foray,...,a; € A. One easily checks that
d(a A B) = (da) A B+ (=1)ia AdB,

fora € Qi‘ and B € Q. So, d is a k-derivation of the graded-commutative algebra
Q5. Further, d is AP-linear and satisfies d* = 0. The complex (2%, d) is called the
De Rham complex of A (over k). Here are some basic properties of its cohomology
spaces.

1.3.2 Lemma. The space
Z5 ={a € Q% | da =0}
is a graded AP -subalgebra of QS,, and the space
By :=dQy ! ={da|a e Q")

is a graded ideal of Z,.
Thus, the quotient
H} = 73/B}

is a graded-commutative AP-algebra.

If, in addition, A is a localization of a finitely generated algebra, then the A-module
Q5 is finitely generated, and the AP-modules Z5, B} and H} are finitely generated as
well.

Proof. Clearly, Z5 and Bj are graded subspaces of Q%. Since d is an AP-linear
derivation, Z is an AP-subalgebra, and contains B as an ideal.

For the second assertion, let A be alocalization of an algebra generated by 71, . . ., t,.
Then, the A-module Q}L‘ is generated by dtq, ..., dt,. Thus, the A-module A"Qk is
generated by dtj; A---Adtj, where 1 < j; < --- < j; < n. Itfollows that /\’Qk =0
for all i > n, and that the A-module Q2% is finitely generated.

Since the A”-module A also is finitely generated by Lemma 1.1.1, the same holds
for the A”-module 2% and its submodules Z% and Bj. O

Next, we construct a homomorphism y : Q% —> H3. Consider the map

y:A— QY ar a’ da.
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1.3.3 Lemma. With the notation as above, we have for all a, b in A:
(i) y(ab) = a?y (b) + bPy(a).

(ii)dy(a) = 0.

(i) y (a + b) — y(a) — y(b) € B).

Proof. (i) and (ii) are straightforward. For (iii), notice that
p—1
d(a+b)? = pla+b)P~'da+b) = pa” 'da+b""'db)+ > (‘.’)d(aibl’—i)
i
i=1

in the space of Kihler differentials of the polynomial ring Z[a, b] over Z, i.e., in
Zla,blda ® Zla, bldb. Since every binomial coefficient (‘?), 1 <i<p-1,is
divisible by p, it follows that

(a+b)Plda+b)—a’'da—b""'db =dQ,(a,b)
for some polynomial Q, with integral coefficients. O

By Lemma 1.3.3, the composition

14

A z, z\/B, = H}

is a k-derivation, where A acts on itself by multiplication, and on H /i viaF : A — AP,
We still denote this derivation by . Now, the universal property of Kéhler differentials
(cf. [Har—77, Chap. II, §8]) yields an A-linear map

y QL — H),  adb+—> a?b?"'db (mod dA).
Since every y (da) has square zero, we obtain an A-algebra homomorphism

. L] []
Yy QA —> ' HA1 .
ajday A --- Nda; +—— afag daz/\n-/\aip da; (mod BY),

where A actson Hj via F : A — A”.
1.3.4 Theorem. If A is regular, then y : QS —> H3} is an isomorphism.

Proof. Using Lemma 1.3.2, it suffices to show that y is an isomorphism after local-

ization and completion at every maximal ideal. Hence, we may assume that A =

k[[t1, ..., t;]]. We now argue by induction on n, the case where n = 0 being evident.
We check first that y is surjective. Let a € Q’A such that do = 0. Write

o
a=> tia;+pj Adt),
j=0
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' 1
wherea; € Q. jyand B € € Q; k..

L Since do = 0, we obtain
(M) daj =0 and (—1>"(j+1>a,-+1+dﬂj =0
for all j > 0. It follows that

_1\i—1
(.) A8,

j+l1 j
th a1+ B Ad, =

whenever j + 1 is not divisible by p. Hence,

a= Zrn apj +t27 Byi1 Adt, (mod dQITY),

where 81 := 0. Since da; = 0 for all j, the image of t,fjoz,,j in H;;_ lies in the image
of 4 by the induction hypothesis. The same holds for the image of £/’ - Bpj—1 Adt, in
I-?‘, since Bpj-1 € Q;cﬁtlh.‘.,t,,_] jand dppj—1 = 0 by (1). This proves the surjectivity
of y.

For the injectivity, let « € !, such that y(¢) = 0. Write as above a =
Z?io 1] (aj + Bj Adty). Then,

) =Yt (v + 15" y(B) Adty) (mod BY)
j=0

is represented in qu by

)
j -1
Ztrf](a} +tr€) ,3; Adty),

._ . i — . i—1 ; —
Whe;feoz} =y (@) € Ziypsy i) andﬂ} =y(Bj) € le([[tla-wtn—l]]' Since y (o) = 0,
we have

o
S i@ + 1 By Adty) € Bl =i

It follows as above that a;. € Bli[[tl,m,tn_ll] and [3/ € B,’([ tll _,q forall j. By the
induction hypothesis, this implies at; = 8; = for all j. O

The preceding constructions extend to any scheme X: they yield the sheaf of graded-
commutative algebras QS of Kéhler differential forms of X over k, endowed with a
differential d of degree +1 such that the induced differential on F, 2% is Ox-linear. By
Lemma 1.3.2, the cohomology sheaves H' F. Q% are coherent sheaves of Ox-modules;
and Lemma 1.3.3 yields a unique homomorphism

o
Yy Qy — @HiF*Q&
i=0
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of sheaves of graded-commutative Ox-algebras, such that: y(f) = f? and y(df) =
fP~ldf (mod dOx), for any f € Oy.

If X is a nonsingular variety of dimension »n, then the sheaf Qﬁ( is locally free of
rank n, so that Q’X = 0foralli > n; and Q% = wy, the dualizing sheaf of X. Further,
y is an isomorphism by Theorem 1.3.4.

1.3.5 Definition. Let X be a nonsingular variety of dimension n. Then, the inverse of
the isomorphism y is called the Cartier operator

n n
c=> ¢ :PHFray — ax.
i=0 i=0
The composition of the quotient map Fywx = F, Q' —> F*(Q’}(/dQ’)’(_l) with C,, :
Fo (% /d Q’;{l) — QY is, by definition, the trace map
T: Foox — wy.
Since y is Ox-linear, so is .
We now express the trace map in local coordinates.

1.3.6 Lemma. Let X be a nonsingular variety of dimension n and let t1, ..., t, be a
system of local coordinates at x € X. Then, the trace map at x is given by

t(fdty A--- Adty) =Tr(f)di A -+ Adty,

where f € Ox . C kl[t1,...,t,]] and

where the summation on the right side is taken over those i such thati = p — 1+ pj
for some j € N*. In particular, Tr(f) € Ox x.

Proof. Sincedt A- - -Adt, is a generator of the stalk wyx x; this identifies the completion
of wy x with k[[#1, ..., t,]]. Then, the completion of wyx ,/d Q’;{x] gets identified with
kl[t1, ..., 1,11/ T, where J denotes the space spanned by all the partial derivatives of
all formal power series, since

d(fdto N ANdty) = 0y f)dty A -+ Adty, for f e k[[t1, ..., t,]].

Hence, J consists of all series ) ; airt, where i = (i1, ..., in) is such thati; + 1 is
not divisible by p for some j; and the set of all series Zj ajtp_H“ forms a system of
representatives of k[[#1, ..., t,]]1/J. Now, the map

y cklln, . 6]l —> kMo, ..o 01/ T

sends every f to the class of P~1 £7 (mod 7). This implies our formula. O
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Notice that the formula for Tr gives back the generator of I'(A”, F'Oax) found in
Example 1.1.5. More generally, we have the following.

1.3.7 Proposition. Let X be a nonsingular variety. Then, the map
t: Homo, (wx, Fyox) — Homp, (F+Ox, Ox)
given by the equality in wx:
L) (o =t(f{(w),

forall local sections € Homo, (wx, Fywx), f € Ox, and local generator o € wy,
is well defined and is an isomorphism of FyOx-modules. Further, the diagram

Homo, (wx, Frwx) LN Homo, (FyOx, Ox)
() !
Endo, (wx) — Ox
commutes, where € is defined in the beginning of this section and T(Y¥) := T o V.
Proof. Let u be alocal unit of Oy and let w; = uw. If t(¥)(f)w = t(f¥(w)), then
W) (NHor =ut(fY(w) =T’ [ (w) = T(fY ) = t(f (o).
Hence, ¢ is well defined. To check that it is F,,Ox-linear, let g € Oy; then,

L@V (o =t(f(g¥) () = t(fg¥ (@) = () (fQw.

Further, since € (¢ (¥)) = t(¥)(1) and t(¥)(1)w = (¥ (w)), the diagram commutes.

We now check that ¢ is an isomorphism; for this, we argue in a system of local
coordinatest, ..., t, at x. Alocal generator of the F;.Ox-module Homo, (wx, Fywx)
is the map o given by

Yo(fdry A - Ndty) = fPdty A -+ Adty.

By the definition of ¢, we have ((y9) = Tr; and the latter is a local generator of the
F,Ox-module Homo, (F:Ox, Ox) by Example 1.3.1. O

Notice that
1_
Homoy (wx, Frwx) ~ FyHomo, (Frox, wx) ~ Fuwy V),

by the projection formula and Lemma 1.2.6. Together with the isomorphism ¢ of
Proposition 1.3.7, this yields an isomorphism

: F*(a);_p) — Homp, (F.Ox, Ox).

We say that an element ¢ € H(X, w;(_P) ~ HY(X, F, (a);(_p)) splits X, if 1(¢) splits
X.

We can now state an important characterization of split varieties, which follows
immediately from Proposition 1.3.7 and Lemma 1.3.6.
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1.3.8 Theorem. Let X be a nonsingular variety. Then, via the above isomorphism 1,
the evaluation map € : Homo, (FyOx, Ox) —> Oy is identified with the map

T: F*(a)}(_p) — Ox
given at any closed point x by
T(f(dty A - Adty)' TP) = Te(f), forall f € Ox..

Here, t1, ..., t, is a system of local coordinates at x, and Tr is as defined in Lemma
1.3.6. Thus, an element ¢ € H°(X, a);(_p) splits X if and only if T(¢) = 1.

If X is complete (and nonsingular), then ¢ splits X if and only if the monomial P~
occurs with coefficient 1 in the local expansion of ¢ at some (and hence every) closed
point x € X.

1.3.9 Remarks. (i) In particular, a necessary condition for a nonsingular variety X to
be split is the existence of nonzero sections of w;(_p .

This yields another proof for the fact that nonsingular projective irreducible curves

of genus g > 2, and nonsingular hypersurfaces of degree d > n + 2 in P are not split
(Remark 1.2.10).
(ii) Consider a complete, nonsingular variety X of dimension n. Then, the evalu-
ation map € : Hom(F,Oyx, Ox) — HO(X, Ox) yields, by Serre duality, a map
H"(X,wx) — H"(X,0x ® F.Ox). Now, wx ® F.Ox ~ Fu(F*wyx) ~ F.(o}),
whence € induces a map H" (X, wx) — H"(X, a)f(), which turns out to be the pull-
back F*.

Thus, X is split if and only if the map
F*: H"(X, wx) — H"(X, 0%)

is nonzero.
For example, an elliptic curve X is split if and only if X is not supersingular (as
defined in [Har-77, Chap. 1V, §4]).

Next, we obtain a sufficient condition for the existence of a splitting, which is simpler
than Theorem 1.3.8 and applies to many examples. To formulate this condition, we
need the following.

1.3.10 Definition. Let X be a nonsingular variety of dimension n and let Yq, ..., Y,
be prime divisors in X, i.e., closed subvarieties of codimension 1.

We say that the scheme-theoretic intersection Y1 N - - -NY,, is transversal at a closed
point x € X if (a) x is a nonsingular point of Y1, ..., ¥}, and (b) the Zariski tangent
space Tx (Y1 N ---NYy,) equals Ty (Y1) N - - - N Ty (Yy), and has dimension n — m.

Equivalently, there exists a system of local coordinates 1, . . ., f,, at x such that each
Y; has local equation #; = 0.
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1.3.11 Proposition. Let X be a nonsingular variety of dimension n.
If X is complete and if there exists o € H(X, w;(l) with divisor of zeros

@o=Y1+-+Ya+Z

where Y1, ..., Y, are prime divisors intersecting transversally at a point x, and Z
is an effective divisor (as defined in [Har-77, Chap. II, §6]) not containing x, then
ol e HOX, a);(_p) splits X compatibly with Yy, ..., Y.

Conversely, ifo € HO(X, w;{l) is such that o~ splits X, then the subscheme of
zeros of o is compatibly split. In particular, this subscheme is reduced.

Proof. Choose a system of local coordinates 71, ..., t, at x € X such that each Y; has
local equation #; = 0. Then, by our assumptions, the local expansion of o at x is given
by

-1
where g(t1,...,1,;) is a formal power series with nonzero constant term. Thus, the
coefficient of P~ in the series tp_lg(tl, e, t,,)p_l is nonzero as well. Hence, o?~!

splits X by Theorem 1.3.8. Further, the corresponding splitting ¢ (via the isomorphism
1) satisfies

(p(f(tlv cey t}’l)) = Tr(tp_lg(t17 AL ] t}’l)p_lf(tl’ ce t)’l))’

thus, ¢(#; f (21, ..., t;)) is divisible by ¢#; for any i. In other words, ¢ is compatible with
the zero loci of the coordinates at x, i.e., with Y1, ..., Y, in a neighborhood of x. By
1.1.7, ¢ is compatible with Y7, ..., ¥, everywhere.

Conversely, let 0 € H 0(X , a);(]) be such that 71 splits X, and choose a nonsin-
gular closed point x of the zero scheme of . Let Y be the unique irreducible component
of this zero scheme containing x, and let f be a local equation of Y at x. Since Y is
nonsingular at x, we may choose a system of local coordinates 71, . . ., #, at x such that
f=t. Let

tMg(ty, ... t)dty A Adty) !

be the local expansion of o at x, where g(71, ..., t,) is not divisible by #1; then, m > 1
is the order of vanishing of o along Y. Since o”~! splits X, the coefficient of rP~1
in t;n(pfl)g(tl, ..., t)P~1is nonzero. Hence, m = 1, and the splitting of X by o7~!
is compatible with Y at x. It follows that the zero scheme of o is reduced (since it is
a generically reduced hypersurface in a nonsingular variety). Applying Lemma 1.1.7
again, we conclude that our splitting is compatible with the subscheme of zeros of

0. O

1.3.12 Remark. Most of the results of this section adapt to any normal variety X, as
follows. Leti : X™8 — X be the inclusion of the regular locus. Let

Wx = Iywxres.
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This is the canonical sheaf of X; we have
wx = Ox(Kx)

for some Weil divisor Ky on X, the canonical divisor (defined up to linear equivalence).
If, in addition, X is Cohen—Macaulay, then wy is its dualizing sheaf.
For any integer v, define the v-th power of wx by

CL)VX = l* (w;(reg ),

then w4 = Ox(vKx). Notice that H(X, o%) = H*(X™, wY.), and that the v-th
tensor power of wy has a natural map to wY ; but, this map need not be an isomorphism.

By Lemma 1.1.7(iii) and Theorem 1.3.8, a normal variety X is split if and only if
there exists ¢ € HO(X, a);{p) such that 7(¢) = 1, where T : F*(a);;p) — Oy is
given by the formula of Theorem 1.3.8 at any point of X,

If, in addition, X is complete, then every regular function on X™2 is constant.
Hence, X is split if and only if there exists ¢ € H(X, w;(_p ) such that the monomial
=1 occurs with coefficient 1 in the local expansion of ¢ at some nonsingular closed
point.

We say that a normal variety Y is Gorenstein if its canonical sheaf wy is invertible;
equivalently, the canonical divisor is Cartier. (In the literature, sometimes Gorenstein
varieties are assumed to be Cohen—Macaulay, but we do not require this assumption.)

Given a Gorenstein variety Y, anormal variety X, and a proper, birational morphism
f + X — Y, the sheaves wyx and f*wy coincide outside the exceptional locus of f.
Recall that, by the exceptional locus of f, we mean the closed subset X \ f~!1(U) of X,
where U is the largest open subset of ¥ such that the restriction f : f~1(U) — U isan
isomorphism. Thus, we may write wy = (f*wy)(D), where D is a Weil divisor on X
supported in this exceptional locus. The divisor D is called the discrepancy divisor of
f. Further, f is called crepant if D is trivial, i.e., f*wy = wy; then, X is Gorenstein
as well.

With this terminology, we can state the following result that provides a partial
converse to Lemma 1.1.8.

1.3.13 Lemma. Let f : X —> Y be a crepant morphism, where X, Y and f are as
above. If Y is split, then so is X.

Proof. Note that f*(wy) = w} for any integer v. Further, as f is proper and birational,
and Y is normal, we have f,Ox = Oy. Thus,

Fo(@%) = fuf (@) = 0} ® £u0x = o},
since wy is invertible. This implies an isomorphism
HY X, 0y ") = HOY, 0, 77),

compatible with the maps 7. O
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Next, we obtain versions of the Grauert—-Riemenschneider and Kawamata—Viehweg
vanishing theorems in the presence of Frobenius splitting.

1.3.14 Theorem. Let X be a nonsingular variety and f : X —> Y a proper birational
morphism. Assume that there exists o € HO(X, a);(l) such that

(i) o P~ splits X, and

(ii) o vanishes identically on the exceptional locus of f.

(Then, the zero scheme of o is reduced by Proposition 1.3.11). Let D be an effective
subdivisor of (o), containing the exceptional locus. Then, R f«(Ox(=D)) = 0 for
alli > 1. In particular, R"f*(a)x) =0foralli > 1.

Proof. We use the relative vanishing Theorem 1.2.12. Let E be the image in ¥ of
the exceptional locus. Then, by assumption, D contains f~!(E) (set-theoretically).
Further, R’ f«(Ox(—D)) = 0 outside E, since f is an isomorphism above Y \ E.
Finally, X is split compatibly with D by assumption (i) and Proposition 1.3.11. Hence,
the assertion follows from Theorem 1.2.12 and [Har—77, Chap. II, Proposition 6.18].
The “In particular” statement follows since Ox ((0)g) =~ a);(l. O

1.3.15 Definition. Let £ be a semi-ample invertible sheaf on a complete variety X
of dimension n. Then, the ring R(X, £) = @2, H 0(X, L£V) is finitely generated
(Lemma 1.1.13), and we have a morphism

¢:X — Y :=ProjR(X, L)

such that ¢,Ox = Oy. In particular, ¢ is surjective, with connected fibers (which
follows from [Har—77, Chap. III, Corollary 11.3] for projective X and from [Gro—61,
Corollaire (4.3.2)] for X complete). The dimension of Y is called the Kodaira dimension
of £ and denoted by « (£); then, the general fibers of ¢ have dimension n — x (£). The
exceptional locus of L is the set of those x € X such that dim ¢~ 'p(x) > n — k(L).

Note that « (£) = n if L is ample; in this case, its exceptional locus is empty. On
the other hand, since £ is semi-ample, « (£) = 0 if and only if some positive power of
L is trivial.

1.3.16 Theorem. Let L be a semi-ample invertible sheaf on a complete nonsingular
variety X of dimension n. Assume that there exists o € H°(X, a)}l) such that

(i) o P~ splits X, and

(it) o vanishes identically on the exceptional locus of L.

Then, H (X,L" @ wx) = 0 foralli > n—«(L) and v > 1. Equivalently,
H' (X, L™)=0foralli <k(L)andv > 1.

Proof. We may assume that « (£) > 0, i.e., no positive power of L is trivial. With the
notation of Lemma 1.1.13, consider the square

70

L'\ Ly' T X\ {0}

vl |

X AN Y,
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where f0 is the restriction of f : L™' — X to L~!\ Ly and similarly ¥ is the
restriction of 7 : L™! — X to L™} \ Ly !, This square is commutative; the morphism
70 is proper and surjective (by Lemma 1.1.13), and restricts to a finite map on any
fiber of O (since a positive power of £ is generated by its global sections). Thus, the
product map 70 x f9 is quasi-finite. It follows that £ restricts to a quasi-finite map
on every fiber of 7%, onto the corresponding fiber of ¢. (Actually, this restriction is
finite, since both fibers are complete.)

Let Z C X be the zero scheme of o, then Z; ~ wx. Consider the closed subscheme

D:=Ly'uf (2
of L~1. Then, we have
Ip :ILal ﬂIf—l(z) :IL(;I R fFfwx.

It follows that
o0
f«Ip =~ @ﬁv R wyx.

v=1

Further, let E be the set of those & € X such that dim 7! (&) > n—«(L). Thisis a
closed subscheme of X.

We check that the morphism 7 : L' — X , the subschemes D and E, and the
index i > n — k(L) satisfy the assumptions of Theorem 1.2.12.

Clearly, 7~ (E) contains Lal, and 7~ 1(E) \ Lal is the preimage under £9 of the
exceptional locus of £ (as sets). Thus, 7~ 1(E) is contained in D (as sets).

Since i > n — x (L) and all the fibers of 7 outside E have dimension < n — (L),
we obtain R 7, (Zp) = 0 outside E.

Finally, since X is split compatibly with Z, Lemma 1.1.11 yields a splitting of L~
compatible with L "and f~Y(Z), hence with their union D.

Thus, Theorem 1.2.12 applies and yields R, (Zp) = 0 everywhere. Since X is
affine, it follows that H' (L™, Zp) = 0; thus, H' (X, fsZp) = 0 as f is an affine
morphism. This yields the vanishing of Hi(X, LY ® wy) for all v > 1. By Serre
duality, it follows that H/ (X, £L7") = 0 for all j < «(L). O

1.3.E Exercises

(1) Consider the projective space P". Recall that wp» = O(—n — 1), and that
HO(P", a)ﬁpn—p ) is the space of all homogeneous polynomials of degree (n + 1)(p — 1)
in the variables xq, ..., x,. Show that ¢ € H O(IE””, wﬂlj,;p ) splits P" if and only if the
monomial (xq - - - x,)?~! occurs with coefficient 1 in ¢.

(2) We say that a nonsingular variety X is split by a (p — 1)-th power if there exists
o e HY(X, w;l) such that 7~ ! splits X. (For example, by the above exercise, P" is
split by the p — 1-th power of xq - - - x;,.)
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Assuming that nonsingular X is complete and split, and that the multiplication map
HO(X, a);(l)‘g’[’_1 — HYX, a);(_p), O1® - ®0p_1 = 01--0p_1,

is surjective; show that X is split by a (p — 1)-th power.
Hint: Use the identity in Z[z1, ..., t,]:

nltgety= Y (D)W )"

I<ij<--<ij=<n

(3*) Consider a nonsingular variety X, and a closed subscheme Y of pure codimension
1. Assume that X is split by ¢ € HO(X, wi{p ). Show that ¢ is compatible with Y if
and only if g € HO(X, 0y " ((1 = p)Y)).

Next, take X = P”; then, Y is a hypersurface, with equation (say) f. Show that a
splitting ¢ of P is compatible with Y, if and only if ¢ is divisible by fP~!.

(4*) Let X be a nonsingular variety and Y a nonsingular prime divisor in X; denote
by o the canonical section of the invertible sheaf Ox (Y) (cf. [Ful-98, §B.4.5]). Let ¢ €
H 0(Y , w;fp ); assume that ¢ admits a lift 17; under the natural map
H(X,wy "((1 — p)Y)) —> HO(Y,w, ") (induced by the isomorphism
wx(Y) ®0, Oy = wy).

If ¢ splits Y, show that the product o ” _1{5 e HO(X, w;p ) splits X compatibly
with Y and the induced splitting of Y coincides with that by .

In particular, if Y is split by a (p — 1)-th power and the restriction map
HO(X, w;l (=Y)) — HO%, a);l) is surjective, then X is split by a (p — 1)-th power,
compatibly with Y.

(5) Let Y be a nonsingular irreducible hypersurface of degree d in X = P", where
n > 2. Show that the map H(X, a);p((l - p)Y)) — HOY, a)ll,_p) is surjective.
So, by Exercise 4, if Y is split then it is compatibly split in P"?; thus, d < n 4+ 1 in this
case.

In the case where d = n + 1, show that Y given by an equation f is split if and
only if the monomial (xg - - - x,,)? —1 occurs with nonzero coefficient in 7!,

(6%) Let X be a toric variety, i.e., a normal variety containing a torus T =~ (G,,;)" as an
open subset, such that the action of T on itself by multiplication extends to an action
on X. Let 09X = X \ T be the boundary of X. Show that X is split compatibly with
aX.

Hint: Let 1y, ..., t, be the coordinates on 7' coming from G, ; then,

dty A --- ANdty,
- -ty

0

is a rational section of wy, having a pole of order 1 along each irreducible component
of 9X [Ful-93, §4.3]. Thus, 6! € H(X, wy' (—3X)); and el‘;” splits 7 by Example
1.3.1.
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Using the classification of toric varieties in terms of fans [Ful-93, §§1.4, 5.1], show
that any closed T-stable subvariety of X is the (set-theoretic) intersection of a family of
irreducible components of 8 X. Deduce thus that 6'~7 compatibly splits all the closed
T -stable subvarieties.

Also, show that the above splitting is the unique 7 -invariant splitting of X.

(7) Let f : X — Y be a morphism of nonsingular varieties, such that f* : Oy —
f+«Ox is an isomorphism. Then, we have a canonical map of Oy-modules

fiHomo, (FOx, Ox) — Homp, (FiOy, Oy), ¢ +— fip,
(see the proof of Lemma 1.1.8). In view of the isomorphism of Ox-modules
Homo, (F.Ox, Ox) = Fu(wy ")
(Theorem 1.3.8) and the analogous isomorphism for Y, this yields a map of Oy-modules
Fe(Fuwy ) — Fulwy D),

compatible with the evaluation maps.
Assume now that Y is split, and the induced map

HOX, 0y ) — HO(Y, 0} ")

is surjective. Then, show that X is split.
(8) Let X1, X7 be split schemes, with splittings ¢1, ¢2. Show that the tensor product

¢ F.Ox,xx, — Ox,xx5, [1® fo— 01(f1) @ ¢2(f2)

is a splitting of X x X,. If, in addition, ¢, resp. @2, is compatible with a closed
subscheme Y| C X1, resp. Yo C X», then show that ¢ is compatible with both X| x Y»
and Y1 x X».

If both X and X» are nonsingular, then each ¢; € Hom(F,Oy,, Oy, ) corresponds
too; € HO(X;, a);”). Show that ¢ corresponds to o1 ® o3 € HO(X| x X3, w;(_lzxz).
(9) Show that, in general, an affine Gorenstein variety is not split.

Hint: Take a homogeneous polynomial of degree d in n variables such that the
corresponding affine hypersurface X C A" is normal. Then, X is Gorenstein but not
splitif d > n.

(10) Let X be a nonsingular variety of dimension n and D C X a reduced effective
divisor. We say that D has residually normal crossing at x € X if there exists a system
of local coordinates 1, . . ., #, at x and functions fp, ..., f,—1 in Ox x such that:

() fo is a local equation of D at x, and
(i) fi = ti+1fi+1 mod (¢1,...,t), fori =0,1,...,n—1, where we set f, = 1.

Show that any reduced divisor with #n irreducible components through x, such that
they intersect transversally at x, has residually normal crossing. Show that the converse
holds for n = 2, but not for n > 3.
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(11) Let X be a complete nonsingular variety. Assume that there exist o € H(X, a);(] )
and x € X such that the divisor ()¢ is reduced and has residually normal crossing at
x (in the sense of the preceding exercise). Then, show that o7~ splits X.

(12) Let X be a nonsingular variety, ¥ a nonsingular closed subvariety of codimension
d > 2, X the blowing-up of X with center Y, and E the exceptional divisor. Assume
that X is splitby 0 € HO(X, a);(_p ) and denote by ordy (o) the order of vanishing of
o along Y. Then, show that:

() ordy (o) <d(p — ). N

(ii) ordy (o) > (d — 1)(p — 1) iff o lifts to a (unique) splitting & of X, where “o
lifts to & means that the splitting of X induced from o via Lemma 1.1.8(ii) is o.

(iii) The splitting & of X is compatible with E iff ordy (¢) > d(p — 1).

We say that Y is compatibly split by o with maximal multiplicity if ordy (o) =

d(p —1). (Observe that, in this case, Y is automatically compatibly split by o by using
(i1) and (iii) and Lemma 1.1.8(ii).)
(13) Let f : X — Y be a proper morphism between nonsingular varieties such that
f«Ox = Oy. Let Z be a nonsingular closed subvariety of X such that f is smooth
at some point of Z. If Z is compatibly split in X with maximal multiplicity (in the
sense of the preceding exercise), then show that the induced splitting of ¥ has maximal
multiplicity along the nonsingular locus of f(Z).

1.4 Splitting relative to a divisor

In this section, we present a useful refinement of the notion of Frobenius splitting,
which yields stronger versions of the vanishing Theorem 1.2.8.

1.4.1 Definition. (i) Let X be a scheme and D an effective Cartier divisor on X, with
support Supp(D) and canonical section o. Then, X is Frobenius split relative to D (or
simply D-split) if there exists a Ox-linear map

¥ 1 Fu(Ox (D)) — Ox
such that the composition
¢ := Y o Fy(0) € Hom(F,Ox, Ox)

is a splitting of X; in this case, ¥ is called a D-splitting. In particular, it is split if it is
D-split. From now on, we will abbreviate F,(Ox (D)) by F,Ox (D). Thus, we have a
commutative diagram

Fi
F.O0x 0 F.ox(D)

bt
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(i1) Further, let Y be a closed subscheme of X; then, Y is compatibly D-split (or X is
D-split compatibly with Y) if: (a) Supp(D) contains no irreducible component of Y,
and (b) Y is compatibly split by ¢.

(iii) More generally, closed subschemes Y1, . . ., Y, of X are simultaneously compatibly
D-split (or simply compatibly D-split) if they are compatibly D-split by the same D-
splitting.

1.4.2 Remarks. (i) Any ¥ € Homp, (FxOx (D), Ox) is a D-splitting if and only if
V(F(o)) = 1.

(i1) If E is another effective Cartier divisor on X such that D — E is effective, then every
D-splitting yields an E-splitting, as follows. Let 7, resp. n, be the canonical section
of E, resp. D — E. We regard t as an Ox-linear map Ox —> Ox(E). Similarly,
since Ox (D) ~ Ox(E) ®o, Ox(D — E), we may regard n as an Ox-linear map
Ox(E) — Ox (D). Then, o : Ox —> Ox(D) is the composition

Ox —— Ox(E) —— Ox(D).
It follows that ¢ o Fy(n) : FxOx(E) — Oy is an E-splitting.

1.4.3 Proposition. Let D be an effective Cartier divisor on a scheme X, let Y be a
closed subscheme of X and let y € Homp, (FxOx (D), Ox). If ¥ is a D-splitting of
X compatible with Y, then W (F.Zy (D)) = Ly, and v induces a D N Y -splitting of
Y, where D N'Y denotes the pullback of D to Y (which is also the scheme theoretic
intersection of Y with D regarded as a closed subscheme of X ).

Proof. Consider the sheaf  (Fy.Zy(D)). This is a coherent subsheaf of
Y (F.Ox (D)) = Oy, i.e., acoherent sheaf of ideals of Ox. Let Z be the corresponding
closed subscheme of X. Since

V(F Iy (D)) D Y (Fi(0o)FiIy) = ¢(Fly) =1y,

with equality outside Supp(D), we have Z C Y and Z\ Supp(D) = Y \ Supp(D). But,
Supp(D) contains no irreducible component of Y; hence, Z = Y, and ¥ (F,Zy (D)) =
Zy. It follows that ¥ induces a D N Y-splitting of Y. O

Likewise, we obtain the following generalizations of Lemmas 7.3.5 and 1.1.8.

1.4.4 Lemma. (i) If a scheme X is D-split under y € Homp, (FOx (D), Ox) com-
patibly with a closed subscheme Y, then for every open subscheme U of X, ¥ restricts
to a D N U-splitting of U, compatible with Y N U.

(ii) Conversely, if U is a dense open subscheme of a reduced scheme X, and if ¥ €
Homop, (FxOx (D), Ox) restricts to a D N U-splitting of U, then v is a D-splitting of
X. If, in addition, Y is a reduced closed subscheme of X such that U NY is dense in
Y and compatibly D N U-split by Yy, then Y is compatibly D-split by .

(iii) Let X be a normal variety and U an open subset of X, with complement of codi-
mension at least 2. Then, X is D-split if and only if U is D N U-split. In fact, any
D N U-splitting of U is the restriction of a unique D-splitting of X.
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1.4.5 Lemma. Let f : X —> Y be a proper morphism of schemes such that the map
f*: Oy — f.Ox is an isomorphism and let E be an effective Cartier divisor on Y,
with pullback D in X.

(i) If ¥ is a D-splitting of X, then f\ is an E-splitting of Y.
(ii) If, in addition, a closed subscheme Z of X is compatibly D-split by v, then f(Z)
is compatibly E-split by f.r.

(Note that under assumption (ii), no irreducible component of Z is contained in
Supp(D), so that no irreducible component of f(Z) is contained in Supp(E).)

1.4.6 Lemma. Let X be D-split by r, compatibly with closed subschemes Y and Z.
Then, Y U Z and its irreducible components are D-split by . If, in addition, no
irreducible component of Y N Z is contained in Supp(D), then Y N Z is also D-split

by .
Next, we obtain a generalization of Lemma 1.2.7.

1.4.7 Lemma. Let X be a scheme equipped with an effective Cartier divisor D and
with an invertible sheaf L.

(i) If X is D-split and if
H (X, LV (p" ' 4+ p" 2+ -+ 1)D) =0

for a fixed index i and some v > 1, then Hi(X,L)=0.
(ii) If a closed subscheme Y is compatibly D-split, and if the restriction map

HOX, L7 (p" ' 4 p' 244+ 1)D)) — HO(Y, LP (p" '+ p" 2 4---+1)D))

is surjective for some v > 1, then the restriction map HYX, L) —» H%Y, L) is
surjective.

Proof. We adapt the proof of Lemma 1.2.7.
(i) Let ¢ : F,Ox (D) —> Ox be a D-splitting. Then, id ® splits the map

id®(Fy(0) o F*): L — L ®0, F:Ox(D).
It follows that the induced map in cohomology
H (id ®(Fi(0) o F*) : H(X, L) — H'(X, L ®0, F:Ox(D))
is split, and hence injective. But,

H' (X, L ®p, F.Ox(D)) ~ H' (X, F.(F*L£)(D)))
~ H! (X, F.(LP(D))) ~ H (X, LP(D)).

This yields a split injection of abelian groups

H (X, L) — H'(X, LP(D)).
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Iterating this process and composing all the resulting maps, we obtain an injective
additive map

H (X, L) — H' X, LP (p" '+ p" 2 +---+1)D))

for every v > 1. This proves (i).
(ii) We have a commutative diagram (of abelian groups)

HY(X,£) —— HYX, £P(D))

l l

HOY, L) —— HOY, LP (D)),

where the horizontal arrows are H 0(id ®(Fy (o) o F*)), and the vertical arrows are the
restriction maps. Since Y is compatibly D-split, the horizontal arrows are compatibly
split as well. Thus, the surjectivity of HO(X, £LP(D)) — HO(Y, L (D)) implies that
of HY(X, £) — H(Y, £). Iterating this argument as in (i) completes the proof of
(ii). O

1.4.8 Theorem. Let X be a proper scheme over an affine scheme; let L be a semi-ample
invertible sheaf on X, and let D be an ample effective Cartier divisor on X.

(i) If X is D-split, then H (X, £) = 0 forall i > 1.

(it) Ifa closed subscheme Y is compatibly D-split, then the restrictionmap H 09X, L) —
H?(Y, L) is surjective, and H' (Y, L) = 0 for all i > 1. As a consequence,
H' (X, Iy @ L) =0 foralli > 1.

Proof. Since £ is semi-ample and D is ample, £P" ((p*~ !4 p*~2+---+1)D) is ample
for every positive integer v (this follows from the definition of ampleness in [Har-77,
Chap. II, §7]). The assertions now follow from Lemma 1.4.7 and Theorem 1.2.8. [

1.4.9 Remark. Infact, Theorem 1.4.8 extends to any invertible sheaf £ such that L& M
is ample for any ample invertible sheaf M on X. Such a sheaf is called numerically
effective, or nef for brevity; cf. [Har—70, Chapter 1] for other characterizations and
examples of nef invertible sheaves.

Next, we obtain a criterion for D-splitting of a scheme X, generalizing Theorem
1.3.8. For this, we consider the evaluation map

€p : Homoy (F,Ox(D), Ox) — Ox, ¥ > ¥ (Fy(0)).

Notice that X is D-split under ¢ if and only if ep (/) = 1.
By [Har—77, Chap. III, Exercise 6.10], applied to the finite morphism F, we have
an isomorphism

(1) Homo, (FxOx (D), Ox) =~ FHomo, (Ox (D), F'Ox)
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sending a local section ¥ to the local homomorphism
F,Ox(D) —> F.(F'Ox) = Homo, (F:Ox, Ox), s> (f = ¥(fs)).
If X is a nonsingular variety, then F' !OX ~ w;p (see Section 1.3), so that

) FHomo, (Ox(D), F'Ox) ~ F(wy "(—=D)).

This isomorphism (under the identification (1)) fits into the commutative diagram

Homp, (FLOx (D), Ox) —— Fy(wy "(—=D))

Gk* /0 Fy(o)
Ox,

where 7 : F*(a)}(p) — Qg is as in Theorem 1.3.8. Together with Exercise 1.3.E.3,
this implies the following refinement of Theorem 1.3.8.

1.4.10 Theorem. Let X be a nonsingular variety and D an effective divisor on X. Then,
¢ € HO(X, a)}(_p (—=D)) provides a D-splitting of X under the above identifications
(1) and (2) if and only if T (po) = 1.

In particular, if X is splitby ¢ € HO(X, a);(_p), then X is split relative to the divisor
of zeros of ¢.

As another consequence, ¢ € H(X, a);;p ) splits X compatibly with D if and only
if  provides a (p — 1) D-splitting of X.

The last assertion of the above theorem and the proof of Lemma 1.4.7 imply the

following result, which will be used in Chapter 3.

1.4.11 Lemma. Let X be a nonsingular variety, split compatibly with an effective
divisor D. By Proposition 1.2.1, D is reduced; let D = Z;’:l Dj be its decomposition
into prime divisors. Then, for any integer v > 1, any integers 0 < ay,...,a, < p*
and any invertible sheaf L on X, there is a split injection of abelian groups:

H'(X,L) — H'(X, L' ()_a;D))),
j=1

foralli > 0.

Proof. By Theorem 1.4.10, X is (p—1)(3_";_; D;)-split. Thus,itisalso > _; a;1D;-
split for any O < ay.1,...,a,1 < p by Remark 1.4.2 (ii). Arguing as in the proof of
Lemma 1.4.7, this yields a split injection

H'(X, L) — H'(X.L"()_a;1D))).
j=1
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Iterating v times, we get a split injection

,
H'(X,L) — H' X, L7 Q_(p" 'aji+p"Paj2+ - +a;,)D)),
Jj=1

forany 0 < aj¢ < p. To complete the proof, note that any number 0 < a; < p" can
be written as p”_la./,l + p"_zaj,z +---+aj,, for some (unique) 0 < aj¢ < p. O

We also record the following stronger version of the first part of Proposition 1.3.11,
which follows from the first part of Proposition 1.3.11, Theorem 1.4.10 and Remark
1.4.2(ii).

1.4.12 Proposition. Let X be a complete nonsingular variety of dimension n. If there
exists o € HO(X, a);l) such that its divisor of zeroes

(@ =Yi+-+ Y, +Z,

where Y1, ..., Y, are prime divisors intersecting transversally at a closed point x, and
Z is an effective divisor not containing x, then o?~ provides (p — 1) Z-splitting of X,
compatible with Y1, ..., Y.

1.4.13 Remark. As in Remark 1.3.12, the results of this section extend to the setting
of normal varieties. Given such a variety X and an effective Weil divisor D on X, we
say that X is D-split, if U is D N U-split for some nonsingular open subset U of X,
with complement of codimension at least 2. (This definition makes sense in view of
Lemma 1.4.4.)

1.4.E Exercises

(1) Consider a hyperplane H and a hypersurface Y of degree d in P".

If d <nandV is general (that is, Y belongs to a certain nonempty open subset of
the projective space of hypersurfaces of degree d), show that P" is H-split compatibly
with Y.

Ifd > n + 1, show that P" is not H-split compatibly with Y.

(2) Let X be a normal variety which is split compatibly with an effective Weil divisor
D. Let E be an effective Weil divisor on X such that Supp(E) is contained in Supp(D),
and let £ be an invertible sheaf on X. Then, show the existence of a split injection
H (X, L) — H' (X, LP' (E))foralli > 0andv > 0.

(3) With the notation and assumptions of the preceding exercise, assume further that X
is proper over an affine variety, E is ample, and £ is semi-ample. Then, show that the
conclusion of Theorem 1.4.8(i) holds.

(4) Let £ be a semi-ample invertible sheaf on a projective toric variety X. Deduce from
Exercises 1.3.E.6 and 1.4.E.3 that H' (X, £) = O foralli > 1.

(5) Show that any split Gorenstein variety X is split relative to — K y for some canonical
divisor K x.
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1.5 Consequences of diagonal splitting

Consider an invertible sheaf £ on a complete variety X. If £ is semi-ample (in the sense
of Definition 1.1.12), then the graded algebra R(X, £) := ;2 I'(X, L") is finitely
generated by Lemma 1.1.13. We will derive some nice presentations of this algebra
from the splitting properties of products X x --- x X, compatibly with certain partial
diagonals.

Indeed, the multiplication of sections may be interpreted geometrically as the re-
striction to the diagonal, as follows. Let M be another invertible sheaf on X. Consider
the multiplication map

m=mL M): T(X, L) QT(X, M) — X, L M)
s®t — (x> s(x) ®1(x)).

Consider also the product X x X with projections py, p» : X x X — X, and the
diagonal embedding i : X — X x X with image A. Then, LK M := piL ® p; M
is an invertible sheaf on X x X, suchthat I'(X x X, LR M) =T'(X, L)  I'(X, M)
and i*(L X M) = £ ® M. Further, the multiplication m (L, M) may be identified
with the restriction map

NX xX,LRM) — I'(A, LK M).
This easily implies the following.

1.5.1 Proposition. Let X be a complete variety. With the notation as above, m(L, M)
is surjective, if either

(a) L, M are ample and A is compatibly splitin X x X, or
(b) L, M are semi-ample and A is compatibly X x D-split in X x X for some ample
effective Cartier divisor D on X.

Proof. If (a) holds, then the proposition follows from Theorem 1.2.8.
If (b) holds, then by Lemma 1.4.7, it suffices to show that

m(L", M (sD)) :T(X, L)@ (X, M"(sD)) — I'(X, L ® M"(sD))

is surjective for all r,s > 1. Since M is semi-ample and D is ample, M"(sD) is
ample as well. By the (a) part, it follows that m(L", M” (s D)) is surjective for ample
L. Therefore, m(L, M) is surjective if £ is ample. Exchanging both factors of X x X,
we see that it is D x X-split compatibly with A, so that m(L, M) is surjective if
M is ample. In particular, m(L", M" (s D)) is surjective under assumption (b); this
completes the proof. O

1.5.2 Corollary. Let L be an invertible sheaf on a complete variety X. Then, the graded
algebra R(X, L) is generated by its subspace I' (X, L) of elements of degree 1, if either

(a) L is ample and A is compatibly split in X x X, or
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(b) L is semi-ample and A is compatibly X x D-splitin X x X for some ample effective
Cartier divisor D on X.
Moreover, we have the following.

(d') Assume (a) and assume further that the splitting of X x X is compatible also with
Y x X for a closed subvariety Y of X. Then, the restriction R(X, L) — R, L) is
surjective.
(b') Assume (b) and assume further that the X x D-splitting of X x X is compatible
alsowith Y x X for a closed subvariety Y of X such that Y is not contained in Supp(D).
Then, again, the restriction R(X, L) — R(Y, L) is surjective.

Thus, in either of cases (a') or (b'), the algebra R(Y, L) is generated by degree 1
elements.

Proof. By Proposition 1.5.1, the multiplication map
m(L, L") :T(X,L)®T(X, L") — I'(X, £t

is surjective for all v > 1. By induction on v, it follows that the multiplication map
(X, £)® — I'(X, L") is surjective as well.

Assume now that the splitting of X x X is compatible with ¥ x X. Since A >~ X
and AN (Y x X) > Y via the first projection, it follows that X is split compatibly with
Y. Hence, in case (a), the restriction maps I'(X, L") — T'(Y, L") are surjective for
all v > 1 by Theorem 1.2.8. In case (b), X is D-split compatibly with Y, so that the
surjectivity follows from Theorem 1.4.8. O

1.5.3 Corollary. Let X be a complete variety.

(a) If X x X is split compatibly with A, then any ample invertible sheaf on X is very
ample.

(b) If X x X is X x D-split compatibly with A for some ample effective Cartier divisor
D, then any semi-ample invertible sheaf on X is generated by its global sections.

Proof. (a) Let £ be an ample invertible sheaf on X; then, £ is globally generated by
Corollary 1.5.2. Consider the standard morphism

0: X — P((X, £)).

Choose v > 1 such that £V is very ample and let
o, X — P(I'(X, L))

be the corresponding closed immersion. Since the multiplication map
X, 0% — X, L"

is surjective, the corresponding map X —> P((I'(X, £)®")*) is a closed immersion.
But, this map factors through ¢ followed by the Segre embedding P(I'(X, £)*) —>
P((I'(X, £)®V)*), so that ¢ is a closed immersion as well.

(b) Let £ be a semi-ample invertible sheaf on X; then, Corollary 1.5.2 implies that
the global sections of £ have no common zeroes in X. O
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Recall that a closed subvariety X C P" is said to be projectively normal, also
called arithmetically normal, if the affine cone over X in A"t s normal. Then, X
itself is normal, but there are closed normal varieties in projective space which are not
projectively normal [Har—77, Chap. I, Exercise 3.18]. In fact, a closed normal variety
X C P" is projectively normal if and only if the restriction map

L (P", Opn(v)) — (X, Ox(v))

is surjective for any v > O [loc cit., Chap. II, Exercise 5.14]. Since the multi-
plication map SV(I'(P", Op:«(1))) —> T'(P", Opx(v)) is an isomorphism [loc cit.,
Chap. III, Theorem 5.1], this amounts in turn to the surjectivity of I'(P", Opn (1)) —>
(X, Ox (1)), together with the generation of the algebra R(X, Ox (1)) by its elements
of degree 1.

Likewise, a closed subscheme X C P" is said to be arithmetically Cohen—Macaulay
(also called projectively Cohen—Macaulay) if its affine cone is Cohen—Macaulay. Then,
again, X is Cohen—Macaulay, but the converse does not hold in general. By [Eis—
95, Exercise 18.16], an equidimensional closed subscheme X C P” is arithmetically
Cohen—Macaulay if and only if it satisfies the following conditions:

(a) The natural map

kito. ... tal/Ix — EPT (X, Ox(v))
VEZL

is surjective, where Ix denotes the homogeneous ideal of X. (This map is always
injective, cf. [Har—77, Chap. II, Exercise 5.10].)

(b) H(X,Ox(v)) =0forl <i < dim(X) and all v € Z.

(On the other hand, X is Cohen—Macaulay if and only if H' (X, Ox(v)) = 0 for all
i <dim(X) and v « 0, by [Har—77, Chap. III, Proof of Theorem 7.6].)

Any very ample invertible sheaf £ on a projective variety X yields a projective
embedding X C P(I"(X, £)*). By the preceding discussion, X is projectively normal
in this embedding if and only if it is normal, and the algebra R(X, £) is generated by
its elements of degree 1. Moreover, by the above discussion, a projectively normal,
Cohen—Macaulay closed subvariety X C P” is arithmetically Cohen—Macaulay if and
only it satisfies (b) as above. Together with Lemma 1.2.7, Theorem 1.4.8 and Corollary
1.5.2, this implies the following.

1.5.4 Corollary. If X is a normal projective variety, and X x X is split compatibly
with A, then X is projectively normal in P(U (X, £)*) for any (very) ample invertible
sheaf L.

If, in addition, X is Cohen—Macaulay and X x X is X x D-split compatibly with A
for some ample effective Cartier divisor D, then X is arithmetically Cohen—Macaulay
in P(C(X, £)*) for any ample invertible sheaf L.

We have seen that the existence of a splitting of X? compatible with the diagonal
implies that R(X, £) is generated in degree 1 for ample £ (Corollary 1.5.2). Likewise,
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we will show that the existence of a splitting of X compatible with the partial diagonals
implies that the relations of R(X, £) are generated in degree 2. For this, we need the
following.

1.5.5 Definition. Let R = @30:0 R, be a commutative, graded k-algebra with Ry = k,
andlet M = @°2___ M, be a graded R-module.

V=—00
(1) R is quadratic if it is generated as a k-algebra by its subspace R of degree 1 elements,
and the kernel of the multiplication map

o0
T(Ri):=EPRY — R
v=0

is generated by its subspace of degree 2 elements, as an ideal of the tensor algebra
T (R1) (called the ideal of relations).

(i1) M is quadratic if it is generated by My as an R-module, and the kernel of the
multiplication map R ® My —> M is generated by its subspace of degree 1 elements,
as an R-module (called the module of relations), where R ® My is an R-module under
the multiplication on the first factor. In particular, for a quadratic M, M, = Oforv < O.

1.5.6 Remarks. (i) For any k-vector space V, the symmetric algebra S(V') is quadratic,
since it is the quotient of 7' (V) by the ideal generated by x  y — y ® x, x,y € V.
Further, the S(V)-module S(W) is quadratic, for any quotient space W of V.

The definitions of quadratic algebras and modules make sense, more generally, for
noncommutative graded rings. In our commutative setting, we may replace the tensor
algebra with the symmetric algebra in (i). But, as we will see, it is easier to handle
relations in the tensor algebra.

(ii) Let R be a quadratic algebra. Let V = R (the space of generators) and let
W be the kernel of the multiplication map V ® V. — R» (the space of quadratic
relations). Then, R is the quotient of the tensor algebra T (V) by its graded two-sided
ideal T(V)WT (V). Thus, the multiplication map

7, VO — R,

is surjective, with kernel

v—1
ker(m,) = Z vo-lgowgyer—i-l

i=1

For any quadratic R-module M, similarly let W (M) be the kernel of the multiplica-
tion map V ® My — M, and let ,(M) : V¥’ ® My —> M, be the multiplication.
Then,

ker(m,(M)) = Z vl e wMm) @ ve.

i=1
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(iii) Let R be a quadratic algebra and I C J C R two homogeneous ideals, giving rise
to surjective maps
R— R/I=S— R/J=T.

Then, § and T are graded algebras, generated by their elements of degree 1. If the
R-modules S and T are quadratic, then the ideals / and J are also generated by their
elements of degree 1. In this case, the algebras S and T are quadratic, and T is a
quadratic S-module.

We now obtain a criterion for algebras or modules to be quadratic.

1.5.7 Lemma. Let R be a graded k-algebra with Ry = k. For any triple (vi, v2, v3)
of nonnegative integers, let K, ., ., be the kernel of the multiplication map

Myy vy 0 Ry @ Ryy @ Ryy —> R4y

and let K, v, := Ky, v,,0. Then, R is quadratic if and only if m,, ., v, is surjective
and
Kvl,vz,V3 - KU1,U2 ® RV3 + va ® sz,\)3a

for all triples (v1, va, v3) of nonnegative integers.
Further, let M be a graded R-module and similarly let K., ., v, (M) be the kernel
of the multiplication map

My vy (M)t Ry @ Ryy @ Myy —> My 4rvy405-
Then, M is quadratic if and only if my, v, v, (M) is surjective and

Ky s (M) = Ky v, @ My; + Ry ® Ky 13 (M),
for all triples of nonnegative integers, where K, ,,(M) := K, y; 0(M).

Proof. We give the argument for algebras, the case of modules being similar. Let R be
a graded algebra generated by Ry =: V,and let W C V®? be the subspace of quadratic
relations. Let vy, v, v3 be positive integers with sum v. Then, K,, ,,,,; is the image
of ker () under the map

Ty @ Ty, @y : V' — R, @ R, ® Ry,.

If R is quadratic, then we have

v—1

ker(m,) = Z V®i71 QW® V®v7i71
i=1

=V @ ker (7wy, +v3) + ker (7wy, +1,) ® ven.,

It follows that K, 1,03 = Ky 0, ® Ry + Ry @ Koy 0.
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For the converse, consider the multiplication m : R ® V — R and its degree v
component m, : R, ® V. —> R,41, where v > 2. Then, ker(m,) is the image of
K1,y—1,1 under the map

my_1 ®id: Ri®R,_1 ® Rf — R, ® Ry.

Since Ki,-11 = Kiv-1 ® Ri + R1 ® K,_1,1, it follows that ker(m,) =
(my—1 ® id)(R; ® ker(m,_1)). By induction, we conclude that the graded R-module
ker(m) is generated by W. O

1.5.8 Proposition. Let L be an invertible sheaf on a complete variety X, andlet Z C Y
be closed subvarieties of X. Consider the triple product X3 = X x X x X, with partial
diagonals A1y := (x1 = x2) and A3 := (x2 = x3). Assume that either

(a) L is ample and X3 is split compatibly with Y x Xz, Z x Xz, A1, Ay 3, 0r
(b) L is semi-ample and X3 is X* x D-split compatibly with Y x X, Z x X2, A1,
Ay 3, for some ample effective Cartier divisor D on X. Moreover, Z is not contained
in Supp(D).
Then, the algebra R(X, L) is quadratic, and R(Y, L), R(Z, L) are quadratic modules
over R(X, L) under the restriction, so that they are quadratic algebras as well.

Thus, in case (a), Y embeds into the projective space P(I'(Y, £)*), its homogeneous
ideal is generated by quadratic forms, and the homogeneous ideal of Z in Y is generated
by linear forms.

Proof. By intersecting with A3 =~ X2, we see that X, Y, L and X, Z, L satisfy the
assumptions of Corollary 1.5.2. Thus, the algebras R = R(X, £), S = R(Y, £) and
T = R(Z, L) are generated by their elements of degree 1, and the restrictions R —> S,
R — T are surjective, so that S —> T is surjective as well. Further, £ is very ample
in case (a), resp. generated by its global sections in case (b), by Corollary 1.5.3.

We now reduce case (b) to case (a), as follows. Let X’ := Proj(R) with its ample
invertible sheaf £’, and let f : X —> X’ be the natural map (see 1.3.15). Then,
f+Ox = Oxr and L = f*L’, so that R(X’, £') = R. Similarly, since R — S
is surjective, we also have f,Oy = Oys, where Y’ := Proj(S); thus, f(Y) = Y/,
and R(Y', L) = S. Likewise, we obtain for Z’' := Proj(T) that f(Z) = Z’ and
R(Z', L) = T. Further, by Lemma 1.1.8, X’3 is split compatibly with ¥’ x X'2,
Z' x X%, A\, Ny

Next, we show that R is quadratic by checking that the criterion of Lemma 1.5.7
applies. With the notation of that lemma, we have

Ry ® Ry, ® Ry, = ['(X>, LY K L2 K L),

Rututus = D(Ap23, £ K L2 K L),

where A123 := (x; = xp = x3) is the small diagonal in X 3. Thus, we obtain

Kooy = D(X3, Ta s @ (LK L2 K L13)),
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Ky ® Ry, = T(X3, Ta,, ® (LY K L2 K L)),
Ry ® Kyyopy = T(X3, Ta,y ® (L1 L2 K L)),

Further, Aj23 = A1 N As3z as schemes, by the assumption of compatible splitting and
Proposition 1.2.1. S0, Za,,; = Za,, +Za,; fits into the Mayer—Vietoris exact sequence

0 — Zapuay = Zayp ®Zay, —> Zayp; — 0.

Tensoring this sequence with £"' K £2 X £"3 and taking cohomology yields the exact
sequence:

(Kv1,uz ® RV3) @ (Rv| ® sz,V3) — Kul,uz,U3
— H' (X3, Tauny, ® (LK L2 K L)),

Further, H (X3, TApUA,; @(LRLY2 K LY)) = 0 for any positive integers v1, V7, V3,
by Theorem 1.2.8. Therefore, R is quadratic by Lemma 1.5.7.

One checks similarly that the R-module S is quadratic by using the fact that the
small diagonal of ¥ equals (Y x X2)NA12N Ass. Likewise, T is a quadratic S-module.
The final assertion of the Proposition follows from Remark 1.5.6 (iii). ]

We now investigate higher syzygies, in relation to the splitting properties of multiple
products. For this, we present the following algebraic notion.

1.5.9 Definition. Let R = @, R, be a graded k-algebra with Ry = k, and let
M =@} _ ., M, be agraded R-module.

(1) R is Koszul if the trivial R-module k admits a graded R-module resolution
~~~—>L2—>Ll—>L0—>k—>0,

where each LV is a graded free R-module, generated by its subspace of degree v.
(ii) M is Koszul if it admits a graded R-module resolution

~~-—>L2—>L1—>LO—>M—>0,

where each LV is a graded free R-module, generated by its subspace of degree v.

1.5.10 Remarks. (i) Let V be a k-vector space, with symmetric algebra S(V). Then,
the Koszul complex

s SV @A) — i = S(V)QV —> S(V) —> k —> 0

is a graded free resolution of the S(V)-module k. Thus, the algebra S(V') is Koszul.
Likewise, the S(V)-module S(W) is Koszul, for any quotient space W of V.

(ii) Consider a graded algebra R and the minimal graded free resolution

11— I1"—R—k—0
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of the trivial R-module k. Then, one easily checks that each LV (the v-th syzygy
module) is generated by its subspace of degree > v. As a consequence, R is Koszul if
and only if each LV is generated by its degree v component. Since

Tor®(k, k) = LY @g k,

this amounts to each graded space Torf (k, k) being concentrated in degree v.
Likewise, a graded R-module M is Koszul if and only if each graded space
Torf (M, k) is concentrated in degree v.

(iii) Clearly, any Koszul module is quadratic. We show that this also holds for algebras.
1.5.11 Lemma. Any Koszul algebra is quadratic.

Proof. Let R be a Koszul algebra and put Ry := @D, R,; this is the irrelevant ideal
of R. Choose a graded subspace V C R4 which generates the ideal R4 and which is
minimal for this property, i.e., the induced map V — R, ®g k = R, /(R4)?* is an
isomorphism. Consider the multiplication map

m:R®V — R.

Let W C R®YV be a graded subspace which generates the R-module ker(m) and which
is minimal in the above sense. Then, we have an exact sequence of graded R-modules

RW —RQV —R—k—0,

which can be completed to a minimal graded free resolution of k. Therefore, V, resp. W,
is concentrated in degree 1, resp. 2. Since V generates the irrelevant ideal R, it also
generates the algebra R. Thus, V = R;. Now, the exact sequence

W—>V®V:R?2—>R2—>O

identifies W with the space of quadratic relations.

Assume that W does not generate the ideal of relations. Then, there exists a homo-
geneous relation x € V® of degree v > 2, not belonging to the ideal generated by
relations of smaller degree. The multiplication map 7, : V&’ — R, factors as

my—1 ®id
-

yev Ry @V 271 R,

so that (m,—1 ® id)(x) € ker(m,_1), where m,_1 is the multiplication map. Hence,
(my—1 ®id)(x) € (my—2 ® id)(R,—» ® W). As a consequence, there exists y €
V®ker(m,_1) suchthat (r,—1 ®id)(x) = (7y,—1®id)(y). Thus,x—y € ker(m,_1)®V,
and x € ker(my—1) ® V + V ® ker(sr,,—1), a contradiction. O

Next, we will obtain a criterion for quadratic algebras or modules to be Koszul. To
formulate this criterion, we introduce additional notation.
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Let R be a quadratic algebra with spaces V of generators of degree 1, and W of
quadratic relations. For any positive integer v, let

UV = v®and U = v l@weVve® ! (1<i<v-1).

Also, let U := k. Then, the multiplication map U") — R, is surjective and its
kernel is U™ + - - + U (Remark 1.5.6(ii)).

For any quadratic R-module M, denote by W (M) the kernel of the multiplication
map V ® My —> M, and similarly let

U(V)(M) = V®U ® M()’ Ul(v)(M) = V®i—l ® W(M) ® V®v—i'

Then, each Ul.(v) (M) can be identified with a subspace of U (M); further, the multi-
plication map U™ (M) —> M, is surjective, with kernel Ul(”)(M) + 4+ UM ().

As a final preparation, recall that a set I/ of subspaces of a k-vector space U is a
lattice if U is stable under finite intersections and sums. The lattice U/ is distributive if

UiNU+Us)= U NU) + (U NU3)

forall Uy, Uy, Uz in U.
We now formulate our criterion for a quadratic algebra to be Koszul.

1.5.12 Lemma. With the notation as above, a quadratic algebra R is Koszul if for any
v > 1, the lattice of subspaces of U") generated by U l(v), ey Ulfv_)l is distributive.

Likewise, a quadratic R-module M is Koszul if forany v > 1, the lattice of subspaces
of U™ (M) generated by Ul(v)(M), e, Ulgv)(M) is distributive.

Proof. We give the argument in the case of algebras; the case of modules is similar and
left to the reader. For any v > 2, let
k! =u"n...nuW,

and put K(()) =k, Kl1 := V. Then, each K is a subspace of U LetK':=R® K};
this is a graded free R-module, where K is assigned degree v. The map

d:RUY — RQU"™Y, x@u® - Qu- x0100u®- - Qu,

is R-linear and preserves degrees; one easily checks thatd(K") C K v=landd?(KV) =
0 for all v. Thus, (K*, d) is a complex of graded free R-modules. It suffices to show
that this complex is a resolution of k.

For this, we decompose K* into its homogeneous components K. This splits up
(K*, d) into subcomplexes (for any v > 1)

O—>K5—>R1®Kl‘j:ll—>---—>Rv_1®K11—>R,,—>O
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with entries K} := R,_; ® K!. Writing

i—1
Ry =V®)Y veilgwgy®i-
j=1

and
v—i—1
i ®j—1 Qu—i—j—1
K:i;—ﬂvj QW VerTiT/7h
we obtain
Ky =Uipi N NU, /(Ui + -+ Uim) VUi NN U,

where we set for simplicity U;U) =: U;. Further, the differential & : K}~ — K}='~!
is induced by the inclusion U; 41 N---NU,—1 C Ujy2N---NU,—_1. Thus, its kernel is

Ur+--+U)NUip N ---NU—1 /U + -+ Ui N Ui N - N Uy,
while the image of @/~ is
uin---nU,_1/(Ui+---+Ui—p)NUip N---N U, .
It follows that (K, d)) is exact if and only if

Ui+---+UpNnUip1N---NU, 1 =
Uin--NU—) + (U +-- 4+ Ui) NUiz1 NN Uy—y),

for 0 < i < v. This is the distributivity condition for U;+1 N --- N U,_1, U; and
U +--+U1. O

1.5.13 Lemma. Let R be a Koszul algebra, I C J C R two homogeneous ideals, and
S:=R/I, T := R/J. If the graded algebras S and T are Koszul as R-modules, then
they are Koszul algebras as well, and T is a Koszul S-module.

Proof. We first show that the algebra S is Koszul. For this, we use the homology
spectral sequence

E}; = Tor; (Tor} (S, k), k) = Tor[ (k. k).

1

Since § acts on each T0r§e (S, k) via its quotient S/S4 = k, we have

E}; = Tor; (k, k) ® Tor§ (S, k).

If S is not Koszul, then there exist an index i and a degree v # i such that the subspace
Toris (k, k), isnonzero. Let i, be the minimal such index; then, (£ 120 o)v 7 0. But, since

i, 1s minimal, Tor;.g (k, k) is concentrated in degree i for i < i,. Further, Torf (S, k)
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is concentrated in degree j for all j, since the R-module S is Koszul. Hence, El2 j is
concentrated in degree i + j whenever i + j < i,. The differential

dr 1 Ef; —> E[_, i1,y
preserves degrees, SO thatd,((Eiro o)v) = Oforallr > 2. Therefore, (Elioo)u = (Ei20 oy
is nonzero, i.e., ToriR; (k, k), # 0. But, this contradicts the assumption that the algebra
R is Koszul.

Thus, both S and T are Koszul algebras. To show that the S-module T is Koszul
as well, we use the homology spectral sequence

E}; = Tor} (Torf (S, k), T) = Torf (k. T).

Likewise, we have
E}; = Tor} (k, T) ® Tor’ (S, k),

and the same arguments complete the proof. O

Before applying these algebraic results to diagonal splitting, we need a geometric
lemma. Consider a scheme X, an invertible sheaf £ on X, and a family S of closed
subschemes of X such that X € S, and S is stable under finite intersections and finite
unions. Let U := I'(X, £) and, for any Y € S, let Uy be the kernel of the restriction
map ['(X, £) — I['(Y, £). In other words, Uy = I'(X, Zy ® L).

1.5.14 Lemma. With the notation as above, assume that any subscheme Y € S is
reduced, and that H' (Y, Zy, ® L) = 0 whenever Y1 C Yo and Y1, Y, € S. Then, the
Uy, Y € S, form a distributive lattice of subspaces of U.

Proof. We claim that Uy, + Uy, = Uy,ny, forall Y1, Y» in S. For this, as in the proof
of Proposition 1.5.8, we consider the Mayer—Vietoris exact sequence

00— IY]UYZ —> Iyl @Iyz — Iy]myz — 0.
Tensoring this sequence with £ and taking cohomology, we obtain
0 — Uy,uy, —> Uy, ® Uy, — Uy,ny, — H'(X, Zy,ur, ® L).

Further, this H! vanishes, since Y| U Y, € S. This proves our claim.

Now, Uy,uy, = Uy, N Uy, for all Yy, Y, € S. Moreover, for ¥ € S, we have
YU1NY,) = (YUY)N(YUY,) as subsets of X, and hence as reduced subschemes.
Together with the claim, it follows that

Uy N (Uy, + Uy,) = (Uy NUy,) + (Uy N Uy,).
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For any positive integer v, let X" be the v-fold product X x --- x X (v times); for
1<i<v-—1,let

Ajipr ={(x1, . x0) € XV [ X = xiq1)
be the corresponding partial diagonal in X".

1.5.15 Theorem. Let X be a complete variety, L an invertible sheafon X, and Z C Y
closed subvarieties of X. Assume that either

(a) L is ample and X" is split compatibly with Y x X"~', Z x X"~1, A1,y Ay
foranyv > 1, or

(b) L is semi-ample and X" is X"~ x D-split compatibly with Y x X"~1, Z x XV~1,
A12,...,Ay_1, forany v > 1, where D is an ample effective Cartier divisor on X.
Moreover, Z is not contained in Supp(D).

Then, R(X, L) is a Koszul algebra, and R(Y, L), R(Z, L) are Koszul modules over
R(X, L). Thus, the algebras R(Y, L), R(Z, L) and the R(Y, L)-module R(Z, L) are
Koszul as well.

Proof. By Proposition 1.5.8, the algebra R := R(X, L) is quadratic, and the R-modules
S := R, L), T := R(Z, L) are quadratic as well. Further, case (b) reduces to the
case (a), as in the proof of that Proposition.

We now show that the algebra R is Koszul. For this, we will apply Lemma 1.5.14
to the scheme X", the invertible sheaf ﬁﬁ", and the smallest subset S of closed
subschemes of X" which contains X", ¥ x X"~!, A1, ..., Ay_1,y, and which is
stable under finite unions and finite intersections. By our assumptions and Propo-
sition 1.2.1, all subschemes in S are compatibly split, and hence reduced. Further,
HY(Y,, Iy, ® va) = 0 forany Y| C Y3 in &, by Theorem 1.2.8. Thus, the assump-
tions of Lemma 1.5.14 are satisfied.

By this lemma, the subspaces V&~ @ W @ V"7~ of V®" generate a distributive
lattice, where V := HO(X, £)and W := ker(HO(Xz, ﬁxz) — HYA, Ez)). Together
with Lemma 1.5.12, this implies that the algebra R is Koszul.

Since the small diagonal in Y equals (Y x X"_l) NA2N---NA,_1,y, the same
arguments show that the R-module § = R(Y, £) is Koszul as well. Likewise, the
R-module T is Koszul. By Lemma 1.5.13, it follows that the algebras S, T and the
S-module T are Koszul. O

1.5.E Exercises

(1) Let X be acomplete variety and £ a globally generated invertible sheaf on X. Then,
if X x X is split compatibly with its diagonal, show that the ring R(X, £) is generated
in degree 1. In particular, if X is normal, then its image in P(I" (X, £)*) is projectively
normal.

Hint: Reduce to the case where L is ample by using the construction of Lemma
1.1.13.
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In the following exercises, let Ly, ..., L, be ample invertible sheaves on a com-
plete variety X and let Z C Y C X be closed subvarieties. Let R(X; Ly, ...,
L,) be the algebra introduced in Exercise 1.1.E.2. This algebra is multigraded by
r-tuples of nonnegative integers (vy, ..., v,); we will consider its grading by the total
degree vi + - - + ;.

(2) If X x X is split compatibly with A and Y x X, then show that the algebra
R(X; Ly, ..., L) is generated in degree 1 and that the restriction map

R(Xv £1a~'-7£r) — R(Yvﬁlv»‘cr)

is surjective.

(3) If X3 is split compatibly with ¥ x X2, A1y and A3, then show that the alge-
bra R(X; L1, ..., L;) is quadratic, and R(Y; Ly, ..., L,) is a quadratic module over
R(X:Ly,...,Lp).

(4) If XV is split compatibly with ¥ x xv-1 Ajp,...,and A,y , forall v > 1, show
that the algebra R(X; L1, ..., £,) isKoszul,and R(Y; Ly, ..., L) is a Koszul module
over R(X; Ly,...,L,).

(5) Adapt the preceding exercises to semi-ample invertible sheaves and splitting relative
to an ample effective Cartier divisor.

1.6 From characteristic p to characteristic O

In this section, we collect some results which will allow one to apply the positive
characteristic techniques of Frobenius splitting to certain schemes in characteristic zero.
Contrary to our assumption in earlier sections, by schemes in this section we will mean
separated schemes of finite type over Spec(Z), or, more generally, over Spec(Z[S™']),
where S denotes a set of prime numbers.

Given a scheme X" over Spec(Z[S _1]), we will often assume that quasi-coherent
sheaves over X are flat over Spec(Z[S~']). This assumption is not very restrictive, as
shown by the following.

1.6.1 Remarks. (i) Since Z[S~!] is a principal ideal domain, flatness is equivalent to
being torsion-free.

(ii) If F is coherent, then there exists a finite set S’ of primes such that the sheaf
Fzsus)-11 (obtained by base change) is flat, cf. [Eis—95, Theorem 14.4].

If S consists of all the primes except a unique one p, then we denote Z[S~!] = Z(py,
the ring of rational numbers with denominators prime to p. The spectrum of this
discrete valuation ring consists of two points: the closed point pZ,) with residue field
F, := Z/ pZ, and the generic point 0 with residue field Q.

Thus, given a scheme X over Z,) and a quasi-coherent sheaf 7 on X', we have the
special fiber F, (also called the reduction mod p), resp. the generic fiber Fq; these
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are quasi-coherent sheaves over X, resp. Xy. By the base change with the algebraic
closure I, resp. Q, we obtain the geometric fiber F, resp. ]—"@.
By [Har—77, Chap. III, Proposition 9.3], we have for any i > 0:

H'(X,. Fp) ®r, F) = H (X5, Fjp).

and a similar statement holds over Q. Together with the semicontinuity theorem [Har—
77, Chap. III, Theorem 12.8], this implies the following.

1.6.2 Proposition. Let X’ be a projective scheme over Zp), let F be a coherent sheaf
on X, flat over Zp), and let i > 0. If H' (X}, Fp) = 0, then H' (XQ, }"@) =0.

In particular, for a scheme X which is projective and flat over Zp), together with
a coherent, O x-torsion-free sheaf F, if H' (X5, F;) = 0, then H' (X, f@) =0.

Applying the above proposition to the sheaf ' = 7y ® L, we obtain the following.

1.6.3 Corollary. Let X be a projective and flat scheme over Zp), let Y C X be a closed
subscheme and let L be an invertible sheaf over X such that the following conditions
are satisfied:
(a) H' (X5, L) = 0.
(b) The restriction map HO(XI;, Lp) — Ho(y,;, Lp) is surjective.

Then, the restriction map H° (XQ, E@) — HO())@, E@) is surjective.

1.6.4 Proposition. Let X be a closed subscheme of P%@)’ flat over Zpy. If Xj is
equidimensional, then X is equidimensional of the same dimension.

If, in addition, X; is Cohen—-Macaulay, resp. arithmetically Cohen—-Macaulay, then
X@ is Cohen—Macaulay, resp. arithmetically Cohen—Macaulay.

Proof. The assertion on equidimensionality follows from the theorem on fiber dimen-
sions of flat morphisms [Eis—95, Theorem 10.10].

If X5 is equidimensional and Cohen-Macaulay, then H X 5, O(v)) = 0 for any
i < dim(X3) and v < 0, cf. [Har-77, Chap. III, Theorem 7.6]. Thus, the same
vanishing holds over Q by Proposition 1.6.2. Now, the proof of [Har—77, Chap. III,
Theorem 7.6] implies that XQ is Cohen—Macaulay.

Next, by the criterion after Corollary 1.5.3, X is arithmetically Cohen—Macaulay
if and only if the natural map

Fplto. ...t/ Ix, — €D H (X5, O(v))
VEZ

is surjective, and Hi(XI;, O@)) =0forall 1 <i < dim(X}) and all v. The first
condition is equivalent to the vanishings: H O(Xl—,, OW)) = 0 forall v < 0, and
H' (P ,IXﬁ (v)) = 0 for all v > 0. By Proposition 1.6.2 again, it follows that X@ is

arithmeftically Cohen—Macaulay. O
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1.6.5 Proposition. Let X be a scheme over Z[S™'], where S is a finite set of primes.
If X is reduced for all p > 0, then X@ is reduced.

Proof. We may assume that X is affine, and (enlarging S) that it is flat over Z[S~!]
and X; is reduced for all p ¢ §; then, X, is reduced as well. Let X' = Spec(A); then,
A is finitely generated as a Z[S~']-algebra, and hence as a ring. Moreover, A/pA is
reduced for all p ¢ S. Let N be the ideal of A consisting of all the nilpotent elements.
Then, N C pA forany p ¢ S; thus, N = pN since p is a nonzero divisor in A.

If N # 0, then N contains a proper subideal N’ such that the A-module N/N' is
isomorphic to A/I, for some proper ideal /. Then, A/I is a Q-algebra, sinceany p € S
is invertible in A, and any p ¢ S satisfies N = pN. On the other hand, since [ is a
proper ideal of A, it is contained in some maximal ideal M. Now, A/M is a finitely
generated ring and also a Q-algebra. But, this is impossible in view of the general form
of the Nullstellensatz [Eis—95, Theorem 4.19]. Thus, N = 0, that is, X" is reduced.
Hence, X[y is reduced, and since Qis separable over Q, XQ is reduced as well. ]

1.6.6 Corollary. Let X be a scheme over Z[S™'), where S is a finite set of primes; let
Y, Z be closed subschemes. If the scheme-theoretic intersection V5 N Zj is reduced
forall p > 0, then y@ N Z@ is reduced.

Proof. Again, we may assume that & is affine. Put X = Spec(A) and let I, J be the
ideals of A corresponding to V, Z. Then, X, := Spec(A/pA), Y, = Spec(A/I+pA)
and Z, = Spec(A/J + pA),sothat (YN Z), =V, NZ,. Itfollows that Y NZ); =
Yp N Zp, and likewise for Q. Now, applying Proposition 1.6.5 to J) N Z completes the
proof. O

1.6.E Exercises

In the following exercises, X denotes a scheme of finite type over a field K of charac-
teristic 0.

(1) Show that there exists a subring R of K, finitely generated as a Z-algebra, and a
scheme X of finite type over Spec(R), such that

X =Xgrp x Spec(K).
Spec(R)

(2) Let X, R be as above and let m be a maximal ideal of R. Show that the field R/m
is finite. Show also that any sufficiently large prime number p is the characteristic of
R /m for some maximal ideal m.

Then, X S X(R) Spec(R/m) is called a reduction mod p of X, and denoted by X ,.

pec

(3) Let X be a nonsingular projective variety of dimension n over K and let £ be
an ample invertible sheaf on X. Show that X, is a nonsingular projective variety of
dimension n for all p > 0. Show also that (for suitable R) £, exists and is an ample
invertible sheaf on X, for p > 0.
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(4) Let X, n, L be as in the above exercise (3). Show that the map
F*:H"(Xp, L") = H" (X, £,")

is injective for p > 0.
Hint: Using the notation of Section 1.3, show that there are exact sequences of
coherent sheaves on X, fori =0,1,...,n:

(a) 0 —> F.Zi — F,.Q 5 F,B 0,
(b) 0 > FyB' - F,Z! — Q! — 0, where Q' := Q"Xp.

Further, show that (a) for i = 0 may be identified with

#
(© 0 Ox, 5 F.Ox, % F.B' > 0.

Using (c), show that the desired result follows from the vanishing of
H" ! (Xp, E;l ® F*Bl). Using (b), the latter follows in turn from the vanishings of
H"2(X,, £;1 ® Q') and H"71(X,, E;l ® F.Z"). Deduce from the Kodaira—
Akizuki—Nakano theorem [EsVi-92, Corollary 6.4] that

H" (X, £,;'®Q") =0 for p>>0.

Also, show that the vanishing of H"’I(Xp, £;1 ® F.ZY) follows from those of
H" Y (Xp, £,' @ FQY ~ H' (X, £,” @ Q") and H"*(X), £,,' ® F.B?).
Complete the argument by induction.

(5) Recall that a nonsingular projective variety X over K is called Fano if a);(l is ample.
Under this assumption, deduce from the above exercise that X, is split for all p > 0.
Hint: Use Remark 1.3.9 (ii).

1.C. Comments

The notion of Frobenius splitting was introduced by Mehta—Ramanathan in their sem-
inal article [MeRa—85]. Ramanan—Ramanathan [RaRa—85] refined it further by intro-
ducing the notion of splitting relative to a divisor.

By [Kun-69], a Noetherian local ring A of characteristic p is regular if and only
if it is reduced and flat over A”. This yields a stronger version of Lemma 1.1.1; the
present version is sufficient for our purposes. Most of the subsequent results in Section
1.1 are due to Mehta—Ramanathan [MeRa-85], although we have not seen Proposition
1.1.6 and Lemma 1.1.14 explicitly stated in the literature.

Proposition 1.2.1 is due to Ramanathan [Ram—85]; Proposition 1.2.5 was first for-
mulated in [Mat—89a]. It is an immediate consequence of the following result of Itoh
[Ito—83] and Yanagihara [Yan—83]. A reduced affine scheme X = Spec(A) with nor-
malization Y = Spec(B) is weakly normal if and only if: b € B and b” € A imply that
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b € A. But, the proof presented here yields more information on the normalization of
split schemes, see the result in Exercise 1.2.E.4 (due to J.F. Thomsen).

The cohomology vanishing results 1.2.7, 1.2.8 and 1.2.9 are due to Mehta—Ramana-
than [MeRa-85]. Kodaira obtained his vanishing theorem for ample invertible sheaves
on complex projective manifolds; this theorem fails for certain (nonsplit) nonsingular
projective varieties in positive characteristic, cf. [Ray—78], [Lau-92] and [LaRa-97]
for specific examples.

A slightly weaker form of Lemma 1.2.11 is due to Mehta—Srinivas [MeSr—89]; and
Theorem 1.2.12 is due to Mehta—van der Kallen [MeVa-92b]. The result of Exercise
1.2.E.3 was obtained by Mehta—Srinivas [MeSr—87] in their proof of the normality of
Schubert varieties.

The criterion for Frobenius splitting in terms of the sections of a);(_p (as in Theorem
1.3.8) was first obtained in [MeRa—-85], via Serre duality for projective nonsingular
varieties. Our approach via duality for the Frobenius morphism follows [Van—93]; it is
valid for any nonsingular (not necessarily projective) variety. The results 1.3.2-1.3.5
on differential calculus in positive characteristic are due to Cartier [Car—57]. They play
a fundamental role in several other applications of positive characteristic methods in
algebraic geometry. See, e.g., [Dell-87].

The role of the Cartier operator may be replaced with a version of the change
of variables formula in positive characteristic obtained by Mathieu in [Mat—87]; this
is developed in [Mat-00]. Remark 1.3.9 and Proposition 1.3.11 are due to Mehta—
Ramanathan [MeRa-85]. Lemma 1.3.13 was first obtained in [KuTh-01] as a crucial
step towards the splitting of certain Hilbert schemes; see Chapter 7.

Theorem 1.3.14, due to Mehta—van der Kallen [MeVa-92b], is a version for split
varieties of the Grauert-Riemenschneider vanishing theorem: R’ f,(wx) = 0 for all
i > 1 whenever f : X — Y isaproper birational morphism between complex algebraic
varieties and X is nonsingular. See, e.g., [EsVi-92, p. 59]. This result does not extend
to positive characteristic in general, as follows from the failure of the Kodaira vanishing
theorem. Likewise, Theorem 1.3.16 is a version of the Kawamata—Viehweg vanishing
theorem, see [loc cit., 5.12].

The study of splittings of hypersurfaces in projective spaces, sketched in Exercises
1.3.E.3, 1.3.E.5 and 1.4.E.1, is due to Kock [Koc-97]. He showed that any split com-
plete intersection in P is compatibly split, and arises as an intersection of irreducible
components of a hypersurface (f = 0) of degree n 4 1 such that f7*! splits P".

The result of Exercise 1.3.E.4 yields an inductive construction of a splitting of a
variety X, starting with a splitting of a complete intersection in X. This construction
has been used in several contexts, including the splittings of the moduli space of rank-2
vector bundles on a generic curve [MeRam—96] and of the wonderful compactifications
of certain homogeneous spaces [Str—87], [BrIn—94], [DeSp—99]. See also Chapter 6.

The notions and results of Exercises 1.3.E.10-13 are due to Lakshmibai-Mehta—
Parameswaran [LMP-98]. For further results in this direction for the flag varieties, see
the comments to Chapter 2.

The notion of splitting relative to a divisor was introduced in [RaRa—85] (also see
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[Ram—87]). Most of the exposition in 1.4 is taken from [Ram—87].

The first applications of diagonal splitting to syzygies (1.5.1)—(1.5.8) are due to Ra-
manathan [Ram-87]. They were developed further in [KeRa—87] and [InMe—94a,b] to
yield versions of Theorem 1.5.15 and Exercises 1.5.E. The present version was obtained
later in the unpublished e-print [Bez—95] from which our exposition is taken. Koszul
graded algebras appear in algebraic geometry (sometimes under the name “wonderful”),
cf. [Kem—90], [Kem—-92] and in representation theory [BGS0-96].

The results of Section 1.6 are quite standard though we could not locate them in the
literature explicitly stated.

There are examples of smooth projective Fano varieties X (i.e., a);(l is ample) such
that X is not split. Such examples are provided by G/ P, for some nonreduced parabolic
subgroup schemes P in a semisimple algebraic group G (cf. [Lau-93]). However, the
reduction mod p of any Fano variety is split for p >> 0, as shown in Exercises 1.6.E.

Finally, let us mention some recent developments based on the notions of F-
rationality, F-regularity and tight closure, which are closely related to the Frobenius
splitting. We refer to the exposition [Smi—01] for an excellent survey of these topics,
and for further references.



Chapter 2

Frobenius Splitting of Schubert
Varieties

Introduction

The main aim of this chapter is to prove that the flag varieties G/ P are split compatibly
splitting all the Schubert subvarieties. Similarly, it is proved that the product variety
G/ P x G/ Q is split compatibly splitting all the G-Schubert subvarieties. In fact, these
varieties are shown to have D-splittings for certain ample divisors D. More specifically,
the content of this chapter is as follows.

Section 2.1 is devoted to establishing the basic notation associated to semisimple
groups. By G we mean a connected, simply-connected, semisimple algebraic group
over an algebraically closed field k of characteristic p > 0. We fix a Borel subgroup
B, and a maximal torus T C B with the associated Weyl group W. Let B C P be
a parabolic subgroup. For any w € W, we have the Schubert variety X P and also
the opposite Schubert variety X! in X? := G/P. This notation will be followed
throughout the book.

Section 2.2 starts off with the definition and well known elementary properties of
the Bott—Samelson—Demazure—Hansen (for short, BSDH) varieties, including the de-
termination of their canonical bundles (Proposition 2.2.2). By using a general criterion
of splitting proved in Chapter 1 (Proposition 1.3.11), these BSDH varieties are proved
to be split compatibly splitting all the BSDH subvarieties (Theorem 2.2.3). As an im-
mediate consequence, one obtains the important result due to Mehta—Ramanathan that
the flag varieties X © are split (for any parabolic subgroup P) compatibly splitting all the
Schubert subvarieties X 5. In fact, as proved by Ramanan—Ramanathan, these varieties
are shown to be simultaneously (p — 1)~ X’ -split (Theorem 2.2.5), where 3~ X * is
the reduced divisor of X defined as the complement of the big open cell U~ P/P. As
another consequence of the splitting of the BSDH varieties, it is shown that the product
variety X € := X P x X € is split compatibly splitting all the G-Schubert subvarieties
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Xf '@ under the diagonal action of G, where P, Q are any parabolic subgroups of G
(Corollary 2.2.7).

Section 2.3 is devoted to determining all possible splittings of X = G/B is terms
of the Steinberg module St. There is the canonical multiplication map m : St ® St —
HO(X, w;{p ). Since St is self-dual, there exists a G-invariant nondegenerate bilinear
form x : St®St — k. Then, as proved by Lauritzen—Thomsen, it is shown that
m(f) splits X for f € St St iff x(f) # 0 (Corollary 2.3.5). To prove this, we first
show explicitly that m(fy ® f-) provides a ((p — 1)(0~ X + 9X))-splitting of X,
(p — 1)0~ X-splitting all the Schubert subvarieties Xy, and (p — 1)d X-splitting all the
opposite Schubert subvarieties X,, simultaneously (Theorem 2.3.1), where f (resp.
f—) is the highest (resp. lowest) weight vector of St and dX is the complement of
Bw,B/B (w, being the longest element of W).

If we take f € St ® St such that x (f) # 0 and m(f) = o?~! for a section & of an
appropriate homogeneous line bundle on X, then the splitting of X provided by m( f) is
a (p—1)Z(o)-splitting, compatibly splitting Z (o), where Z (o) is the zero scheme of o
(Proposition 2.3.7). This simple result immediately gives that ¥ = X x X is (p —1)D’-
split such that all the G-Schubert subvarieties X, are compatibly (p — 1) D’-split, D’
being the reduced divisor X x X U X x 9~ X (Theorem 2.3.8). In fact, a slightly
sharper result is proved in Theorem 2.3.8.

Similar results are obtained for X* and X% € by considering the canonical mor-
phisms X — X? and X — X (Theorem 2.3.2 and Corollary 2.3.9). As an
immediate consequence of the above, one obtains that any subscheme of X P obtained
by taking unions and intersections of the Schubert subvarieties and opposite Schubert
subvarieties of X”, is reduced (Corollary 2.3.3). Also, one obtains a certain analogue
of these results for the n-fold products (G/P)" (Theorem 2.3.10).

In Exercise 2.3.E.3, a proof is outlined to show that St is an irreducible self-dual
G-module.

2.1 Notation

We begin by fixing notation and reviewing some known facts on algebraic groups; we
refer the reader to [Bor—91], [Spr—98] for details.

Let H be an affine algebraic group over k. A scheme X together with an action
of H is called an H-scheme if the action map 6 : H x X — X is algebraic. By an
H-linearized sheaf (also called H-equivariant sheaf) on X we mean a quasi-coherent
sheaf S of Ox-modules on X together with an isomorphism ¢ : 6*(S) ~ 75 (S) of
Opxx-modules, where 7 : H x X — X is the projection onto the second factor.
The isomorphism ¢ must be “associative” in the sense that it satisfies the usual cocycle
condition

(33¢) o (I x 0)*¢) = (m x I)*¢

on H x H x X, where [ is the identity map, m : H x H — H is the multiplication
map, and 3 is the projection onto the second and third factor.
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For a finite-dimensional vector space V over k, a morphism of algebraic groups
p : H — AutV is called a rational (or algebraic) representation of H in V. More
generally, an abstract representation of H in a (not necessarily finite-dimensional) k-
vector space V is called rational if, for any v € V, there exists a finite-dimensional
H -stable subspace M, C V containing v such that the representation )y, is rational.

Also, recall the definition of the hyperalgebra of H from [Jan—03, Part I, §7.7],
which we will denote by 4. (In [loc cit.] it is called the algebra of distributions of H
and denoted by Dist (H).)

We now consider a connected, simply-connected, semisimple algebraic group G
over an algebraically closed field k and denote B C G, resp. T C B, a fixed Borel
subgroup, resp. a maximal torus. Let U be the unipotent radical of B, sothat B = T U.
Let W := N(T)/T be the Weyl group of G, where N(T) is the normalizer of T in
G. We denote the Lie algebras of G, B, T, U respectively by g, b, t, u. In fact, we will
denote the Lie algebra of any closed subgroup of G by the corresponding lower case
Gothic character.

For the hyperalgebra s of G, there is a canonical isomorphism

U ~ k ®z Uz(g®).

where UZ(g(C) is the Kostant Z-form of the enveloping algebra U (gC) over C, and gC
is the Lie algebra over C of the corresponding complex algebraic group G (C).

Let X*(T) denote the group of characters of T, i.e., the group of algebraic group
morphisms T — G,,. Similarly, let X.(T) denote the group of cocharacters of T , i.e.,
the group of algebraic group morphisms G,, — 7. Then, X*(T) and X, (T') are both
free abelian groups of rank ¢, where ¢ is the dimension of 7T (which is called the rank
of G). Moreover, the standard pairing (-, -) : X*(T) x X4(T) = Z, (Ao u¥)(z) =
221D for 7 € G, A € XH(T), u € Xo(T), is perfect, i.e., identifies X*(T) with
Homy (X, (T), Z).

Let A C X*(T) be the set of roots (i.e., the set of nonzero weights for the adjoint
action of 7 on g) and A* C A the set of positive roots with respect to the choice
of B, i.e., At is the set of weights for the action of 7 on u. The set of negative
roots is A~ := —A™, associated with the opposite Borel subgroup B~ = TU ™. For
any o € A*, we have the root subgroup U, C U? normalized by T, together with
an algebraic group isomorphism g, : G, — U, such that te,(2)t ™! = eq(a(t)2),
fort € T and z € G,. Moreover, the multiplication map [[,cp+ Ue — U fisa
T-equivariant isomorphism of varieties for any prescribed ordering of A*.

Let {1, ..., ¢} C AT be the set of simple roots, and {s1,...,s,} C W the
corresponding set of simple reflections. These generate the group W; given w €
W, a decomposition w = s;, ---s;, into a product of simple reflections is called a
reduced expression also called a reduced decomposition if n is minimal among all such
decompositions. Then, n is called the length of w and denoted £(w). Moreover,

(1) AT N w (A7) = {ai,, 5, (@, )y -y 80y - Sip (@)},

and these roots are distinct. There exists a unique element w, of maximal length,
characterized by w,(A1) = A™.
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For any w € W with a representative w in N (T'), the double coset Bw B depends
only on w; we denote it by Bw B. By the Bruhat decomposition, G is the disjoint union
of the locally closed subsets Bw B, where w € W; moreover, the map

) WUNwU w ) x B—> BwB, (u,b) > ub
is an isomorphism, and the multiplication map

3) [[] UVe—Unwu v
acAtNw(A™)

under any ordering of AT N w(A™), is an isomorphism as well. In particular, Bw, B
is an open subset of G, isomorphic to U x B. Recall that for any simple reflection s;
and w € W, we have

Bs;wB, if £(s;
@ BB -Bup) =1 " ) =
(BsjwB)U (BwB), otherwise.

Any subgroup P of G which contains B is called a standard parabolic subgroup, and
any subgroup of G which is conjugate to a standard parabolic subgroup is called a
parabolic subgroup. It is well known that any parabolic subgroup is closed. Moreover,
the standard parabolic subgroups are in bijective correspondence with the subsets I of
{1, ..., ¢}, under

(5) [~ P = |_| BwB,

weWy

where W; denotes the subgroup of W generated by the s;, i € I. In particular, Py = B,

Py, 5y = G and there are exactly 2¢ standard parabolic subgroups of G. For any
1 < i < {, the subgroup P; = Py := B U Bs;B is called a standard minimal
parabolic subgroup of G.

For any closed subgroup H of G, the coset space G/H acquires a natural structure
of a quasi-projective variety such that the action of G on G/ H via the left multiplication
is algebraic and the projection map 7y : G — G/H is a smooth morphism. Under
this structure, the parabolic subgroups are precisely those closed (reduced) subgroups
such that G/ P is a projective variety.

In particular, G/ B is a projective variety, the (full) flag variety of G, parametrizing
all the Borel subgroups. By the Bruhat decomposition, G/ B is the disjoint union of the
Bruhat cells C,, :== BwB/B; by (2)-(3), Cy, is a locally closed subset isomorphic to
UNwU~w™!, an affine space of dimension £(w). The closure of Cy, in G/ B equipped
with the reduced subscheme structure is called the Schubert variety X,,. This closed
B-stable subvariety of G/B is the disjoint union of the Bruhat cells C,, with x < w,
where < denotes the Bruhat—Chevalley order on W. Let w = s;, ...s;, be a reduced
expression. Then, x < w iff x is obtained from w by deleting some s; i ’s, 1.e., there
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exists 1 < j; < --- < jp < n such that x = Sijy - Sij, (cf. [Spr-98, Proposition
8.5.5]). The “boundary”
(6) Xy ==Xy \Cw=| | C

x<w

is the union of all the Schubert subvarieties of codimension one in X,,. In particu-
lar, G/B = X,,, and its boundary dG/B is the union of all the Schubert divisors
Xuwysys -+ s Xwyse- On the other hand, the Schubert curves (i.e., the one-dimensional
Schubert varieties) are the X, = P; /B, isomorphic to the projective line.

Likewise, we have the opposite Bruhat cell Cw := B~ wB/B, with closure the
opposite Schubert variety Xw, and boundary 9~ Xw = X \C Since B~ = w,Bw,,
each Cy, is an affine space C of codimension £(w) in G/B, and X,, = |_|x>w Cx, 0~ Xy =
Lo Cx. In particular, C1 =U"B/B>~U"isopeninG/B,sothatnrg : G - G/B
is a locally trivial principal B-bundle. Moreover, 3~ G/B = 9~ X is the union of the
opposite Schubert divisors Xy, ..., Xg,.

More generally, for any standard parabolic subgroup P and any w € W, we define
the Bruhat cell CID = BwP/P C G/ P, the Schubert variety XID = CP, its boundary
X 5 =X 5 \ C , and 51m11arly the opposite Bruhat cell C,; P .= B~wP/P, opposite

Schubert variety X© := CE and boundary 3~ X 2. Then, CP = B~ P/ P is isomorphic
to the unipotent radical of the opposite parabolic subgroup P~. As above, it follows
that mp : G — G/ P is alocally trivial principal P-bundle. Moreover, the morphism

fp:G/B— G/P

is a locally trivial fibration with fiber P/B, and each X[ (resp. X XP) is the scheme-
theoretic image of X, (resp. X w) under fp.

The set of simple coroots {oz1 e } C X.(T) forms a basis of X,.(T)
(cf. [Spr-98, 7.4.3] for the definition of coroots). The dual basis of X*(7T) is, by
definition, the fundamental weights {x;}i<i<e. A weight . € X*(T) is called dominant
if (A, al.v) > (0 for all the simple coroots al.v; equivalently, if all the coefficients of A in
the basis of fundamental weights are nonnegative. The set of dominant weights will be
denoted by X*(T)*. We put p := x1 + - - - + x¢; then p equals the half sum of all the
positive roots.

The group of characters X*(B) can be identified with X*(7") under the restriction
map. Thus, any character A of T can uniquely be extended to a character (still denoted
by) A of B. Let k; be the associated one-dimensional representation of B. Then, we
have the G-equivariant line bundle

7) LO) =G xpk_s — G/B

associated to the locally trivial principal B-bundle 7p : G — G/B via the representa-
tion k_, of B. (We use the additive notation for X*(7'), thus —\ denotes the character
A~1) In fact, any (not necessarily G-equivariant) line bundle on G/B is isomorphic
to L(A), for some A € X*(T). More generally, for any rational B-module V, by L(V)
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we mean the G-equivariant vector bundle G xp V — G/ B associated to the principal
B-bundle 75 : G — G/B. Thus, in this notation, £L(A) = L(k_;). It is easy to see
that, as a G-equivariant line bundle,

(®) wc/p > L(—2p).

For an arbitrary %, the space of global sections H%(G /B, £(1)) is a finite-dimen-
sional rational G-module, which is nonzero if and only if A is dominant; then this space
contains a unique B-stable line, and the corresponding weight is —w, (1) (since any U -
invariant section is determined by its value at the point w, B). Moreover, all the weights
of H(G/B, L(})) are < —w,()). Recall that, for A, u € X*(T), by definition, A <
ifandonlyif u—2 € Zle Na;. The dual module V (1) := H%(G/B, £()))* contains
a B-stable line with weight A and all the weights of V(1) are < A. This module is called
the Weyl module with highest weight A.

2.2 Frobenius splitting of the BSDH varieties Z,,

We follow the notation as above. In particular, G is a connected, simply-connected,
semisimple algebraic group over an algebraically closed field k of any characteristic
p > 0. For subsections 2.2.1-2.2.2, we could take p = 0 as well. Varieties are reduced
and irreducible schemes as earlier.

Let w € W and choose a reduced expression w = s;,;, - - - 5;,. Then, we have by
2.14, BwB = (Bs; B) - (Bsj,B)--- - (Bs;,B) = Bs;, Bsj, B - - - Bs;, B, and it follows
(cf. [Spr-98, p. 150]) that

Xy=PF,P,---P;,/B.

Further, the product map P;, x P;, x --- x P;, — X,, is invariant under the action of
B from the right via

() (Pl Pa) © (b1, bu) = (P11, by ' paba, . by L pubn).
This motivates the following.

2.2.1 Definition. (Bott—Samelson—-Demazure—Hansen variety) Let to = (s,- Lo sin)
be any ordered sequence of simple reflections in W, called a word in W.

Define the Bott—Samelson—Demazure—Hansen (for short BSDH) variety Zy, as the
orbit space

(D Zy = Pn/B",

where B" acts on the product variety Py, := P;; x --- x P;, via (%) as above.

Now, we put a smooth projective variety structure on Zy, such that the orbit map
Ty : Pw — Zy is a locally trivial principal B"-bundle. Define the B"-equivariant
morphism of varieties ¢, : G — G" by

() (81,..-,8n) > (81,8182, .-, 81" gn—18n)>
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where B" acts on the domain via

3) 81y, 80) O (b1, ..., by) = (g1b1,b] 'g2ba, ..., b, " gubn)

and on the range via the right multiplication componentwise:

4 &1,---,80) - (b1, ..., by) = (g1b1, g2b2, ..., gnby),
forg; € Gandb; € B.

It is easy to see that ¢, is an isomorphism with the inverse given by
(hi, ..., hy) — (hy, hl_lhg, h;1h3, el hn__llhn). We put the unique reduced scheme
structure on Zy, so that the horizontal maps in the following diagram are closed em-
beddings:

¢n\Pm

Py —2  Gn

[ l

Zn ¢—> (G/B)",
where

@) Owlpis ..., Pl = (P1B, p1p2B, ..., p1-- - puB)

and [py, ..., py] denotes the B"-orbit through (py, ..., p,). Thus, Z, is a projective
variety and 1y, is the pullback of the locally trivial principal B"-bundle G" — (G/B)".
In particular, 7y, is a locally trivial principal B”-bundle. Thus, Z, is smooth, since Py,
is smooth. The left multiplication of P;, on the first factor makes Z, into a P;, -variety.
The projection of ¢y, on the last factor gives rise to the P; -equivariant morphism
bw : Zw — G/B,ie.,

(6) Owlpis---s Pul = p1---puB.

Since P, = B U Bs;B and the map Uy, x B — Bs;B, (u,b) — us;b is an
isomorphism by (2.1.2), we see that

79 := ((Bsy,B) x --- x (Bs;, B))/B"

is an open subset of Zy, isomorphic to ]_[';Zl Uaij , an affine n-space.
For any subsequence J : 1 < j; < j» < -+ < j, < n,thereis aclosed embedding

(7) izimj’m:zmj—)Zm,
[pjl,...,pjm]l—> [1,...,l,pjl,...,pjm,l,...,l],
where tv; is the subsequence (si jio e Si jm) of o, p Ja is put in the j,-th slot and the

remaining slots are filled by 1. Clearly, i is a morphism and it is easy to see that it is
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injective. Moreover, since Zy,, is a projective variety, Im i is closed [Har—77, Chap.
II, Theorem 4.9]. Finally, to prove that i : Zy,, — Imi is an isomorphism with the
closed subvariety structure on Im i, it suffices to consider the morphism

leil X Pijl X szi]lil X Pijz X oo X B.]m*]m—lfl % Pijm X Bn*]m

— Pi,-] X -0 X P,~jm,

(P]w--,pn) = (p] "'pjlvpj]+1 "'pj1+j29‘~-’pjm—]+1 p]m)y
which descends to give the inverse of i on Im .

For any 1 < m < n, consider the subsequence to[m] := (sil, AU sim) of to. Then,
there is a morphism Yo m : Zw — Zw(m], given by [p1, ..., pul = [p1, ..., Dml.
Form = n — 1, we abbreviate Y ,» by Y. Thus,

3 Yrom = Yro[m+1]° -+ © Yron—2] © Yro[n—1] © Vo-

We next show that ¥y, is a locally trivial P!-fibration: Let v := ro[n — 1]. Consider
the locally trivial principal B-bundle

Po/(B" 2 x 1) 2 Zy, = Py/B" L.

Then, we have an isomorphism y from the associated fiber bundle (with fiber P;, /B)
to Zy, making the following diagram commutative:

(ﬂ,/(B”—2 x 1)) xp P, /B ——> Zy

Zy,

where 7, is induced from 7)) and y is induced from the map

((p]a"'apl‘lfl) mOd Bn_z,ﬁn)'_)[leu,pn]y

for (p1, ..., pu—1) € Py and p, € P;,/B. By constructing the inverse of y explicitly,
it is easy to see that y is an isomorphism. Thus, ¥y, is a locally trivial P!-fibration
since so is ,. Hence, by (8), ¥ m is a smooth morphism. Furthermore, we have the
following commutative diagram:

Zw — 5 G/B

(D) wml y

finogu
Zo 2% G/P;

n

where v := to[n — 1] and f; = fp, : G/B — G/P; is the canonical morphism.
In fact, by Exercise 2.2.E.1, Zy, is the fiber product Z, x¢/ P, G /B via the above
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diagram (D). The fibration v, admits a section oy : Zy — Zyw, [P1s---s Pn—1]
= [p], cees Pn—1, 1].

For any A € X*(T), define the line bundle L, (A) on Zy, as the pullback of the
line bundle £(1) on G/B via the morphism 6,,. More generally, for any algebraic
B-module V, let Ly, (V) be the vector bundle on Z,, obtained as the pullback of the
homogeneous vector bundle £(V) on G/B via Oy,.

We define the “boundary” 9Z, of Z, by

n
(9) 8Zm = U Zm(j)
j=1

equipped with the closed reduced subscheme structure, where to(j) is the subsequence
(s,-l, el §,~j, e, sin) and Zy, ;) is identified with a divisor of Zy, via the embedding
iv(j),w Of Zw(jy. Then, Zy (1, ..., Zw ) are the irreducible components of 0Zy;
they are nonsingular prime divisors with normal crossings in Zy,; and, as schemes,

(10) Zvo, ﬂ Zw(j), for any J C {l,...,n}.
J¢d

This can be proved by considering the pullback via the smooth morphism 7y, : Py —
Z . In particular,

(11 () Zwai) = 1I1..... 11}
i=1

Moreover, Z0) = Zy \ 0Zyy.

If 1o is a reduced sequence, i.e., if s;, ---s;, is a reduced expression in W, then
O (Zw) = Xy, where w := s, ---s;,. Moreover, 6 (Z7) = Bs;B---Bs;,B/B
equals the Bruhat cell Cy,, and 6y, restricts to an isomorphism Z{, — C,,. Thus, 0y, is
a desingularization of the Schubert variety X,,.

The following proposition is crucially used to show that Zy, is split.

2.2.2 Proposition. Let 1o = (sil, ceey Si,,) be any sequence of simple reflections of W.
Then, the canonical bundle wz,, of Zy, is given by

(1) 071y = 07,y (~0Z1) ® Lo (—p).
In fact, as B-equivariant line bundles,
@) 07y = Oz, (=0Z10) ® Lio(—p) @ K_p,

whereK_, is the trivial line bundle on Zy, equipped with the B-equivariant line bundle
structure coming from the representation k_, of B.
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Proof. We prove (1) by induction on £(tv) := n. Forn =1, Z, = P;;/B =~ P! and
hence wz,, >~ Opi(—2x,), for any point x, € P! (cf. [Har-77, Chap. II, Example
8.20.1]). It can easily be seen that L, (—p) =~ Opi (—x,). So, (1) follows in this case.

Recall the P!-fibration ¥, @ Zyp — Zw ) and the section oy, from 2.2.1. By
induction, we assume the validity of (1) for Zy; (. Further, it is easy to see that the line
bundle Ly, (p) is of degree 1 along the fibers of 1. Now, (1) follows from [Kum-02,
Lemmas A.18 and A.16] by observing that

3) O Lro(P) = Lo (0)-

Since Zy, is projective, it is easy to see that for any two B-equivariant line bundles £
and £; such that £ and £, are isomorphic as nonequivariant line bundles, there exists
a character A € X*(T) such that £; >~ £, ® k; as B-equivariant line bundles. So, to
prove (2), it suffices to show that the actions of T on the fibers of the two sides of (2)
over [1, ..., 1] are given by the same character. The latter is easy to verify from the
definition of the T -actions on the two sides of (2). O

As a corollary of the above proposition, we obtain the following.

2.2.3 Theorem. With the notation as in Proposition 2.2.2, Zy, is split by o=, where
o€ HO(Zm, wgi) vanishes on all the divisors Zyjy, 1 < j < n.

Thus, for any subsequence 1oy of v, Zy, , is compatibly split by o P!, where Zy,
is identified with its image in Zy, via the closed embedding iy ; vo.

Proof. Let o’ € HO (Zm, Oz, (8Zm)> be the canonical section [Har—77, Chap. 1II,
§7], with divisor of zeros
(0o = 0Zy.

Since H(G/B, L(p)) # {0}, by choosing a G-translate if needed, we get a section
o” € H(G/B, L(p)) such that 0”(1 B) # 0. Now, by Proposition 2.2.2, the section
o’ ® 60" provides a section of a)Z Thus, the first part of the theorem follows from
Proposition 1.3.11 together with (2. 21 11).

Let tv; be the subsequence (s,jl e, sljm). Then, by (2.2.1.10) and Proposition
1.2.1 we conclude that Z,, is compatibly split. (We can also use Proposition 1.2.1
to conclude that the scheme-theoretic intersection of the right side of (2.2.1.10) is
reduced.) O

2.2.4 Remark. Leto” € H(G/B, L(p)) be a section such that o’ (1 - B) # 0 and let
(6”0 be the associated divisor of zeros. Let D, be the pullback divisor 6% ((6”)o).
Then, by Proposition 1.4.12, Lemma 1.4.6, and the above proof, we see that Z, is
(p — 1) Dyr-split compatibly (p — 1) Ds»-splitting all the Zyy .

As a consequence of Theorem 2.2.3, we get the following important result. We will
study all possible splittings of G/ P in the next section.
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2.2.5Theorem. Let P C G be any standard parabolic subgroup. Then, the flag variety
G/P is (p — 1)0~ G/ P-split compatibly (p — 1)0~ G/ P-splitting all the Schubert
subvarieties Xf; (for any w € W).

Proof. We first consider the case P = B. Take a reduced expression w, = s;; - - - Sy
Let tv, be the sequence (S,'l, ...,siN). Then, by 2.2.1, b, : Zw, — G/Bisa
(surjective) birational morphism. Thus, by Zariski’s main theorem [Har-77, Chap. III,
Proof of Corollary 11.4],

(D 0v0,+02y, = OG/B-

Moreover, for any w € W, there exists a subsequence tv = (sij1 +...0 81, ) of w, such
that w = Sij, e Sig, is a reduced expression (as w < w,). Hence, by 2.2.1,

(2) O, (Zro) = Xu,

where Z, is identified with a subvariety of Zy,,, via the embedding iy v,

Thus, the theorem for P = B follows from (1)—(2) together with Exercise 2.2.E.4,
Theorem 2.2.3, Remark 2.2.4 and Lemma 1.4.5. Now, the theorem for an arbitrary P
follows from that for B by using Lemma 1.4.5 again and observing the following: For
the projection f = fp : G/B — G/P,

(3) f+Oc/ = Og/p.

This follows easily since f is a locally trivial fibration with fiber the projective vari-
ety P/B. Moreover, f being a smooth morphism, f*(d~G/P) is the reduced divisor
f~Y%G/P) c 98-G/B. In particular, by Remark 1.4.23i), G/B is
(p—1) f*(0~G/P)-split. O

2.2.6 Definition. Consider the flag variety G/P x G/Q for any standard parabolic
subgroups P, Q. Then, it is a G-variety under the diagonal action of G. Moreover,
there is a G-equivariant isomorphism

(D £:Gxp(G/Q)—> G/PxG/Q, (8.80) (gP.gg' Q).

From this it is easy to see that any G-stable closed irreducible subsetof G/P x G/ Q
is givenby £(G x pY), for a closed irreducible P-stable subset Y of G/ Q. In particular,
taking P = Q = B, the closedirreducible G-stable subsets of G/ B x G/ B are precisely
of the form {£(G xp Xy)}wew. Denote, for any w € W,

Xw = ";‘_(G XB Xw)

equipped with the structure of a closed subvariety of G/B x G/B. Then, any closed
irreducible G-stable subset of G/P x G/Q is of the form fp o(X,), for some (but
not necessarily unique) w € W, where fp o : G/B x G/B — G/P x G/Q is the
projection. Observe that X, is the diagonal in G/B x G/B. We denote Xuf)’Q =
fp,0(Xy) again equipped with the structure of a closed subvariety of G/P x G/Q.
These are called G-Schubert varietiesin G/P x G/Q.
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2.2.7 Corollary. For any standard parabolic subgroups P, Q C G, the variety
G/P x G/Q is split compatibly splitting all the G-Schubert varieties Xf’Q, we W.

Proof. We first consider the case P = Q = B. Fix a reduced decomposition w, =

i, - - - Siy and let to, be the word (s,-l, e, siN). Let Z{no be the pullback principal
B-bundle

Z;n,, —s G

| =

Zw, —> G/B.

o

Since 6y, is birational (2.2.1), so is 9;00. Consider the morphism
0:Z— G xpG/B, 0(z,2) = (0,2, O, (2)),
where Z := anu x B Zy,. Then, 0 is a birational (surjective) morphism and hence
(D 0:(Oz) = OGx5G/B-

Further, it is easy to see that there is a canonical isomorphism

2) Z > Z(v,,1,)

where (10,, 19,) is the word (s;,, ... Siy. Sijs - - -, Siy)-

By Theorem 2.2.3, Z is split compatibly splitting all the subvarieties Zy,,, for
any subsequence to; of (tv,, tv,). Since any Schubert variety X,, is the image of a
subvariety Zy,, C Zy, under 0y, for some subword v, of 1w, (2.2.5.2), we obtain
from Lemma 1.1.8 that G x p G/ B is split compatibly splitting each G x p X,,. Now,
using the isomorphism

£:GxpG/B~G/BxG/B  (226.1),

we get the corollary for the case P = Q = B. The general case follows from this case
by using Lemma 1.1.8 again. O

2.2.E Exercises

For the following exercises, the characteristic of k is arbitrary (including 0).

(1*) With the notation as in 2.2.1, show that for any sequence tv = (s;,, ..., s;,) of
simple reflections, Zy, is the fiber product Zw[,—17 X, P G/ B via the diagram (D) of
2.2.1.

(2) Show that any opposite Schubert divisor )?Si intersects the Schubert curve Xj;
transversally at the unique point s; B, and intersects no other Schubert curve. Show
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~

also that the Picard group Pic(G/B) is freely generated by the classes [ X, 1, ..., [)N( 5ol
of the opposite Schubert divisors. Deduce the equality in Pic(G/B):

(L] = (L X)X 14 -+ (L X)X, ]

for the class of any line bundle £ on G/B, where (L - X;;) denotes the degree of the
restriction of £ to X, =~ Pl

(3) Deduce from Exercise (2) the equality
[LOO] = (@)X 1+ + (b, @)X, ]

in Pic(G/B). Show that this group is isomorphic to X*(7T) via A — [L(A)]. If A is
dominant, show that any nonzero o € H 0(G/B, L(})) satisfies

[(0)0] = (hy &) [Xg 14 -+ - + (@) [Xs, ],

where (o) is the divisor of zeroes of 0.
In fact, if o is an eigenvector with respect to the action of B™, then show that the
above equality holds as divisors (not merely as divisor classes).

(4*) Let P = P; be a standard parabolic subgroup of G. Generalize the results of
Exercises (2) and (3) to G/P.
Define pp € X*(T) by pp(e;) = 0if o; € I, and pp(e;”) = 1 for all the other
simple coroots. Then, show that pp extends to a character of P. Observe that pp = p.
Show further that the divisor of any B~ -eigenvector in H %G /P, L (pp)) is pre-
cisely equal to =G/ P, where L (pp) is the line bundle on G/ P associated to the
character —pp.

(5*) Let P be any standard parabolic subgroup of G. Show that, for the divisor 9~ G/ P
c G/P,
Og/p(@~G/P) = L  (pp),

where pp € X*(P) is defined above. Similarly,

Oc/p(3G/P) = L  (pp).

(6*) Let A € X*(T) be a dominant weight. Show that the tensor product
H%(G/B, L(})) ® H°(G/B, L(—w,1)) has a unique nonzero G-invariant vector (up
to nonzero scalar multiples).

Hint: Use the Frobenius reciprocity [Jan—03, Part I, Proposition 3.4] and [Jan—03,
Part I, Proposition 5.12(a)] to conclude that

Homg (HO(G/B, LGY)*, HY(G/B, E(—wok)))
~ Homg (H*(G/B, LM)*, ku,».)-
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(7*) For any G-module M and B-module V, show that there is a G-module isomorphism
£:M®HYG/B,L(V)) - H(G/B, LM ®V)),

Emeo)(gB) =Ig.¢ 'mea),
form € M and o € HY(G/B, L(V)), where o (gB) = [g, 5(2)].

2.3 Some more splittings of G/B and G/B x G/B

We give a self-contained and an entirely different proof of Theorem 2.2.5 in this section.
In fact, we determine all possible splittings of G/B.

We continue to follow the same notation as in the beginning of this chapter. In
particular, G is a connected, simply-connected, semisimple algebraic group over an
algebraically closed field k of characteristic p > 0. But we abbreviate G/B, resp.
G/P,by X, resp. X¥', and H(G/B, L(})) by HO(%) in the rest of this chapter.

The G-module HO((p — 1)p) is called the Steinberg module, denoted by St. Let
S+, resp. f_, be a nonzero highest, resp. lowest, weight vector of St; then the weight
of frisx(p — 1)p.

Observe that the multiplication of sections gives rise to the morphism of G-modules

m:H'(O) ® HO(w) — HOO + ),
for A, u € X*(T)™. In particular, we have a map
m:SteSt — H°Q2(p — p).

Furthermore, .
H°2(p — Dp) = H' (X, 0y )

by (2.1.8). Thus, the splittings of X are elements of this space, by Theorem 1.3.8.

2.3.1 Theorem. The section m(fy ® f—) provides, up to a nonzero scalar multiple, a
((p - DO~ X+ 8X))-splitting of X.

Further, this splitting compatibly (p — 1)d~ X-splits all the Schubert subvarieties
Xy and (p — 1)0X-splits all the opposite Schubert varieties X, (w € W).

Proof. Let f := fy ® f—. Then, the section m(f) is given by

(1) m(f)(gB) = (g, f+(gvy) - f-(gvy)) mod B,

for gB € X, where v is a highest weight vector of the Weyl module V((p — 1)p) :=
*

> 'For g € U7, (1) simplifies to

2) m(f)(gB) = (g. f+(gvy)) mod B.
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Order the positive roots AT = {8y, ..., Bx} and choose isomorphisms &; = e_p
G4 — U_g, as in Section 2.1. Then, there exists a root vector fg, € g_g, (called a
Chevalley generator) such that for any algebraic representation V of G, v € V and
z € Gy,

3) g@v=Y "(f5" ).

m=>0

where f’ ™ denotes the m-th divided power of f3, (cf. Jan-03, Part I, §§7.8-7.12]).
Recall the variety isomorphism (2.1.3):

e kN — U™, e(z1, ..., 2n) = e1(z1) - en(an).

Thus, under the identification ¢, m(f)|y- p/p) can be written as

m(f)(z1,...,2N)

= (8(Z1,...,ZN),f+( Z k' kN f(k]) f(kN) )) mod B.

(k1,....kn)€ZY

Thus, trivializing the line bundle L(2(p — 1)p) over U~ B/ B, the section m( f) corre-
sponds to the function

e D Ay £ (A ).

By Exercise 2.3.E.2,

1 1
f(P ) f(P ) vy =v_,

up to a nonzero scalar multiple, where v_ is a lowest weight vector of V((p — 1)p).
Thus, the coefficient of zf - zZ_l in the above function is nonzero and hence, by
Theorem 1.3.8, m( f) provides a splitting of X (up to a scalar multiple).

We next calculate the divisor Z of the zeroes of the section m(f).

Under the multiplication map

¢ H ()" — H((p — Dp) = St,
) e ) = fr and (@27 = £,
for a highest, resp. lowest, weight vector v, resp. v_, of Ho(p). From (1),
m(f)s-xuax = 0.
Moreover, from (4),

(5) m(f) =aP7 !,
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for a section o € H(2p).

Hence, the divisor Z — (p — 1)(0~ X + 0 X) is effective. Thus, by Theorem 1.4.10,
m(f) provides a (p — 1)(3~ X + 9X)-splitting of X.

We now prove the compatible splitting of X,,. By Proposition 1.3.11, the zero
scheme of o is compatibly split and thus reduced. In particular, by Proposition 1.2.1,
each Schubert divisor X, 5, (for any simple reflection s;) is compatibly split. Now,
let X, be a Schubert variety of codimension > 2. By [BGG-75, Lemma 10.3] there
exist distinct vy, vp in W such that w < vy, w < v and £(v) = £(vy) = £(w) + 1.
It follows that X,, set-theoretically is an irreducible component X/, of the intersection
Xy, N Xy,. Thus, by decreasing induction on £(w) using Proposition 1.2.1 again, X/,
is compatibly split and hence reduced. Since X, is reduced by definition, the schemes
Xy and X/, coincide. This proves the compatible splitting of X,,. Since no X w18
contained in Supp 0~ X, each Xy, is compatibly (p — 1)d~ X-split. The proof for X,
is the same. O

We now get the following parabolic analogue of Theorem 2.3.1, which is a slight
strengthening of Theorem 2.2.5.

2.3.2 Theorem. For any standard parabolic subgroup P of G, the flag variety X¥ is
((p — DO XxP + E)XP))—split, compatibly (p — 1)~ X P -splitting all the Schubert
varieties X£ and (p — 1)d X P -splitting all the opposite Schubert varieties X£ (for any
we W)

Proof. The theorem follows by applying Lemma 1.4.5 and Theorem 2.3.1 to the mor-
phism X — X% (see the last part of the proof of Theorem 2.2.5). O

As an immediate consequence of Theorem 2.3.2 and Proposition 1.2.1, we get the
following.

2.3.3 Corollary. Let P C G be a standard parabolic subgroup. Let {Y;}1<i<m and
{Zj}1<j<n be any collections of Schubert varieties and opposite Schubert varieties
in XP ie, (Yi,Zj;1 <i <m,1 <j<n) Cc{XP XP;iv,we W}, and let
Y=Y1U---UYy,, Z =21 U---UZ, be their unions equipped with the reduced
scheme structures. Then, the scheme-theoretic intersection Y N Z is reduced.

This corollary remains true in characteristic O by Corollary 1.6.6.

2.3.4 Definition. Recall from [Jan—03, Part II, §§3.18 and 10.1] that the Steinberg
module St is irreducible and self-dual (see also Exercise 2.3.E.3). Fixing a G-module
isomorphism j: St — St*, which is unique up to a scalar multiple, we get a G-invariant
nondegenerate bilinear form

(D) X :St®St—k, x(wv®w)=yxwuw.

As another corollary of Theorem 2.3.2, we determine all possible splittings of X.
Analogous splittings of X will be given in Chapter 5.
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2.3.5 Corollary. Forany f € St St, m(f) splits X up to a nonzero scalar multiple
iff x(f) #0.

Proof. Recall from Section 1.3 the natural isomorphism

(1) Hom(F,Ox, Ox) ~ F,H(X, wy *).
This yields a natural k-linear isomorphism

2) Hom(F,Ox, 0x)!™11 =~ H°2(p — 1)p),

where, for a k-vector space V, VIl denotes the k-vector space with the same under-
lying abelian group as V, whereas the k-linear structure is twisted as

3) z0v=2zYPy, forzekandveV.

Since the isomorphism (1) is natural, it is easy to see that under the canonical G-
structures on F, Oy and Oy, the isomorphism RI=!1 ~ HO2(p — 1)p) (as in (2)) is
G-equivariant, where R := Hom(F,Oyx, Ox). Define the k-linear G-module map

e: RN 5k, e(0)=0(1)?, foro € R,

where o (1) € k is the constant function 010, : Ox — Ox. (This is the p-th power
of the evaluation map € considered in Section 1.3.) By the definition of splitting, any
o € R splits X up to a nonzero scalar multiple iff e(o) # 0.
Under the above identification (2), composing m with e, we get a k-linear G-module
map
x' :St® St — k.

Thus, ¥’ = z,x, for some z, € k. Moreover, by Theorem 2.3.1, z, # 0. (An
alternative proof for the surjectivity of x’ is outlined in Exercise 2.3.E.1.) This proves
the corollary. O

2.3.6 Remark. As we will see in the next chapter, the map m is surjective (Theorem
3.1.2(c)). Thus, all possible splittings of X are provided by Corollary 2.3.5.

2.3.7 Proposition. Let f € St® St be such that x(f) # 0 and m(f) = o?~! fora
section o € H'Q2p) (e.g., f = ﬁi_l ® ﬁf_l, where Uy is as in (2.3.1.4)). Then, the
splitting of X provided by m(f) up to a nonzero scalar multiple (Corollary 2.3.5) is, in
fact, a (p — 1)Z(o)-splitting, where Z (o) is the divisor of zeroes of o.

Moreover, Z (o) is compatibly split. In particular, it is a reduced scheme.

Proof. By Corollary 2.3.5, m(f) splits X. By Theorem 1.4.10, m(f) provides a
(p — 1)Z(o)-splitting and, by Proposition 1.3.11, Z(o) is compatibly split. O

Recall the definition of the map £ from (2.2.6.1). As a corollary of Proposition
2.3.7, we get the following.
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2.3.8 Theorem. The product variety X := X x X is (p — 1)D-split, where D is
the reduced divisor (G xp dX)U (0X x X)U (X x 0~ X). Further, this splitting
compatibly splits the reduced subscheme D.

Moreover, all the G-Schubert varieties X,,, w € W, are compatibly (p — 1) D’-split,
where D' is the reduced divisor (0X x X) U (X x 7 X).

In particular, X is (X x 0~ X)-split compatibly with the diagonal A.

Proof. Let G? be the product group G x G with the Borel subgroup B> := B x B.
We apply Proposition 2.3.7 with G replaced by G2. The Steinberg module St> for G2
is given by

St = HO(X, L((p— D p R (p — 1)p)) = St St,

where £(A X ) denotes the line bundle £(A) X L(w) on X.

By Exercise 2.2.E.6, St? has a unique G-invariant nonzero vector f, up to scalar
multiples. In fact, f,, is the (p — 1)-th power of a G-invariant fo e HY(X, L(p K p)).
Also, consider f ® f_ € St%, where fy is defined just before Theorem 2.3.1. Then,
it is easy to see that

(1) X2 (fo® (f+® f2)) #0,

where x2 : St? ® St> — k is the G2-invariant pairing. In particular, by Corollary 2.3.5,
o splits X, where o := m?(f, ® (f+ ® f-)) and

m?  HO(X, L(p — Dp B (p — 1) > HO(X. LQ(p — DpR2(p — 1)p))

is the standard multiplication map. Also, by (2.3.1.4), f4, resp. f_,isa (p — 1)-th
power of a section v, resp. 1_, € H(p).
We next calculate the zero set of o: By an analogue of (2.3.1.1), the zero set

) Z(f+® f-) =X x X)U (X x 9~ X) set-theoretically.
Also, clearly Z(f,) is a G-stable subset of X'. We next show that (1, w) € Z(f,) for

any w # w,, w being a representative of w in N(7T):
Foranyr e T,

(t - fo) (L) =1 - (fo(l, b))
3) = =P (1) (1, 1),

But since f, is G-invariant, we get
4) e~ P=Drwo) 1y £ (1, w) = f,(1, w), foralls e T.
Since the W-isotropy of p is trivial and w,p = —p, (4) forces

fo(l,w) =0, forall w # w,.
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The G-orbit closure of (1, w) being X, we get that

5) Z(fo)2 | X
wWHW,
Moreover, f,(1, w,) # 0. Otherwise, Z(f,) 2 X, = &, forcing f, = 0, a contra-
diction. Thus, we have equality:
(6) Z(fo)= |J X =8(G x5 dX) (set-theoretically).
WHW,

Combining (2) and (6), we get

(7) Z(o) = D (set-theoretically).

Since 0 = o/~ for a section o, € H® (X, a);{l), and o splits X', by Proposition
1.3.11, the zero scheme Z(o,) of o, is reduced. Thus, as divisors,

(0)o=(p—DD.

Now, by Theorem 1.4.10, o provides a (p — 1) D-splitting of X’ and, by Proposition
1.3.11, o compatibly splits D. Thus, by Proposition 1.2.1, each &, is compatibly split
(see the proof of Theorem 2.3.1). Finally, since no X, is contained in D', X,,’s are
compatibly (p — 1) D’-split. O

As animmediate corollary of Theorem 2.3.8 and Lemma 1.4.5, we get the following.

2.3.9 Corollary. For any standard parabolic subgroups P, Q C G, the variety
XP x X2 is (p — D(@XP x X9) U (XP x 97X9))-split, compatibly

(p — D(OXP x X)) U (XP x 9~ X2))-splitting all the G-Schubert varieties X2,
weW.

To study the defining ideal of the Schubert varieties in Section 3.5, we will need
the following.

2.3.10 Theorem. Let P C G be any standard parabolic subgroup. Then, foranyn > 1,
XPyis (p — DAXPY=1 x 9= XP)-split, compatibly (p — 1)(XF)"~! x 9= XP)-
splitting all the following subvarieties:

(XD < (xPy=1 (xPyt x X[ P x (xPy 1 we W, 0<qg <n—2}.

Proof. We first consider the case P = B and use Proposition 2.3.7 for G replaced by
G". The idea of the proof is similar to that of the proof of Theorem 2.3.8, so we will
be brief. Similar to the pairing x (see (2.3.4.1)), consider the G”-invariant pairing
Xn : St ®@St®" — k,  defined by
(1@ ® fn, 81 @@ gn) = x (1 ®81) - X(fn @ &n)-
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Similarly, consider the multiplication map

my : S @St = HO(X", L((p— DpR--- K (p— 1)p)** —
HO(X", LQ(p — Dp B - R2(p — D)p)).

Now, we define an element 6, € St®" ® St®". Its definition depends upon whether
n is even or odd. If n = 2m, define the element

O = 2" ® (f+ ® f2" ' ® f-) € St @ St®",
where f,, f+ are as in the proof of Theorem 2.3.8. If n = 2m + 1, define
O =(f2"® ) ® (f+ ® [2™) € St @ St¥".

In either case, the zero set of m, (6,,) is equal to the following closed subset of X":

Zy = ( U X9 X X5, X x”—2—q) UX" 'x9 X)Uu@Xx x X" 1.

I<i<t,
0=<g=n-2

It is easy to see that x,(6,) # 0 and, moreover, m,(0,) = oF -1 for some sec-
tion 6, € H(X", L(2p K --- X 2p)). Thus, by Proposition 2.3.7, m,,(6,) provides a
(p— 1) Z(6,)-splitting of X", where Z(6),) is the zero scheme of the section 6,. More-
over, Z(6,) is a reduced subscheme of X". Thus, m,(6,) provides a
(p — 1)()(”*1 X B’X)—splitting of X" compatibly (p — 1)()(”*1 X B*X)—splitting
all the (reduced) subvarieties X9 x Xy, x X" 279 and X, x X", w e W.

Now, the case of an arbitrary P follows from that of B, by considering the morphism
X" — (X" and applying Lemma 1.4.5. O

2.3.E Exercises

(1*) Use the following result (x) of [And—80a], [Hab—80] to give an alternative proof
for the surjectivity of the map x’ : St ® St — k defined in the proof of Corollary 2.3.5.
As G-equivariant Ox-modules, for X = G/B,

() F(L((p — 1)p)) = St&4Ox.

Hint: Consider the maps

St = Homo, (Ox. L((p — Dp)) 2>
Homo, (F.Ox, Fx(L((p = Dp))), 0 = Fyo,
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and
B
St* % Homo, (F«(L((p — 1)p)), Ox) = Homo, (St®Ox, Ox).
Now, define the k-linear G-module map

2:SteSt* - RN f@ v Ba(v) o Bi(f),

where R := Hom(F,Oyx, Ox) is as in the proof of Corollary 2.3.5. Show that for
any nonzero f € St, there exists v € St* such that ¥ (f ® v)|0, is nonzero. Prove
the uniqueness of x by using (2.3.5.2) and the Frobenius reciprocity. Finally, use the
uniqueness of ¥ to show that, under the identification (2.3.5.2), x = m up to a nonzero
scalar multiple, where m is the multiplication map.

(2%) Let w, = siy - - - 5i, be a reduced decomposition of the longest element of the
Weyl group W. This gives an enumeration of the positive roots {81, ..., Bn}, where
Bj = siy -~ si;, ;. Let fp be a Chevalley generator of the negative root space g—g
(see the proof of Theorem 2.3.1). Then, for any m > 1, show that in the Weyl module
V(mp) := H%(mp)*,

up to a nonzero scalar multiple, Where V4, resp. v_,is a highest, resp. lowest, weight
vector of V (mp).
Prove further that fg (m) - f ﬂ(';) -v4 is independent of the ordering of positive roots
form =p — 1.
Hint: Show by induction on j that (up to a nonzero scalar multiple)
(si; - sip)vy = f(m) sy, f(m) f(m)

S,z 0[,2

(3*) Using Frobenius splitting of G/B, show that the Steinberg module St :=
HO(( p — D) p) is an irreducible, self-dual G-module.

More generally, show that H O0((p" = 1)p) is an irreducible, self-dual G-module,
forany r > 1.

Hint: Use the identification for any smooth variety X (as in Section 1.3):
Hom(F,.Oyx, Ox) ~ F.H(X, a);;p), and the multiplication map m : St® St —
H°(G/B, wé;_/g) to get a G-invariant pairing x : St ® St — k. Show that this pairing
is nondegenerate by showing that, for a nonzero highest, resp. lowest, weight vector
f+.resp. f—, m(fy ® f-) splits G/B. Finally, to prove the irreducibility of St, use
the isomorphism (induced by x) St — St* and the fact that St* is generated, as a

G-module, by its highest weight vector (cf. [Jan—03, Part II, Lemma 2.13(b)]).

2.C. Comments

The most important contributions to the results in this chapter are due to Mehta, Ra-
manan and Ramanathan.
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The Bott—Samelson—-Demazure-Hansen varieties were first introduced by Bott—
Samelson [BoSa—58] in a differential geometric and topological context; Demazure
[Dem—74] and Hansen [Han—73] adapted the construction in algebro-geometric situa-
tion and used it to desingularize the Schubert varieties and to determine the Chow group
of G/B. Proposition 2.2.2 for the case when v comes from a reduced decomposition of
the longest element of W is due to Mehta—Ramanathan [MeRa—85]. This proposition,
in general, is due to Ramanathan [Ram-85] (though he only determined it nonequiv-
ariantly). Theorem 2.2.3 is due to Mehta—Ramanathan [MeRa—85]. The splitting of
G/ P compatibly splitting the Schubert subvarieties was proved by Mehta—Ramanathan
[MeRa-85]. The (p — 1)a~ G/ P splitting as in Theorem 2.2.5 is due to Ramanan—
Ramanathan [RaRa-85]. Corollary 2.2.7 is due to Mehta—Ramanathan [MeRa—88],
though the proof given here is slightly different and is due to Mathieu [Mat-89b]. A
special case of Corollary 2.2.7 was earlier obtained by Ramanathan [Ram-87]. For
Exercise 2.2.E.7, see, e.g., [Jan—03, Part I, Proposition 3.6].

Theorems 2.3.1 and 2.3.2, apart from providing an explicit splitting, are slightly
stronger than Theorem 2.2.5. In their present form they are proved in [Ram—-87]. How-
ever, the very simple and direct proof we give here is new (as far as we know). Corollary
2.3.3 is due to Ramanathan [Ram—85]. This was conjectured earlier by Lakshmibai—
Seshadri [LaSe—86] and proved by them for classical groups. For arbitrary groups but
for “special” Schubert varieties it was proved by Kempf [Kem—76a]. Corollary 2.3.5
and Proposition 2.3.7 are due to Lauritzen—-Thomsen [LaTh-97] (see also the works
[Kan-94b, 95]). Both of these results play a crucial role in the proofs of Theorems
2.3.8 and 2.3.10. Theorem 2.3.8 and its Corollary 2.3.9 in their full strength do not
seem to be available in the literature. However, as mentioned above, slightly weaker
results are available in [Ram—87] and [MeRa—88]. Theorem 2.3.10 for an arbitrary n
is essentially contained in [LaTh—97]; the case n = 3 is due to Ramanathan [Ram—87]
(see also [InMe—94a] for a weaker result). A version of Theorem 2.3.10 can also be
found in [Bez-95].

The alternative proof of the surjectivity of x’ outlined in Exercise 2.3.E.1 is due to
Lauritzen—-Thomsen [LaTh-97]. Of course, the fact that St is a self-dual and irreducible
G-module is well known, and has played a fundamental role in several important
problems (cf. [Jan—03, Part I, Chap. 10]). However, the proof outlined in Exercise
2.3.E.3 using Frobenius splitting is due to Mehta—Venkataramana [MeVe-96].

Recently most of the results of this chapter have been obtained purely algebraically
using quantized enveloping algebras at a p-th root of unity by Kumar—Littelmann
[KuLi-02].

It may be mentioned that Mehta—Ramadas [MeRam—96] proved that for a generic
irreducible projective curve X of genus g over an algebraically closed field of charac-
teristic p > 5, the moduli space of rank—2 parabolic bundles on X is split.

For any line bundle £ on a smooth toric variety, Thomsen [Tho-00a] has proved
that the direct image Fi (L) is a direct sum of some explicitly determined line bundles
(see also [Bog-98] for some generalizations of this result).

It is conjectured in [LMP-98] that for any parabolic subgroup P of G, G/P x G/ P
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admits a splitting which has the “maximum” multiplicity, (p — 1)dim G/ P, along the
diagonal A. By Exercise 1.3.E.12, this conjecture is equivalent to the conjecture that the
blowing-up of G/ P x G/ P along its diagonal is split compatibly with the exceptional
divisor. This conjecture implies Wahl’s conjecture in characteristic p > 0, which
asserts that the restriction map

HY(G/P x G/P,In ® (L") R LF (W) - H(G/P.Qg,p ® LY.+ )

is surjective for any ample line bundles £F (1) and £LF (i) on G/ P, where Z, is the
ideal sheaf of A in G/P x G/P and Q};/P is the sheaf of differential 1-forms on
G/ P. This conjecture in characteristic O for an arbitrary G/ P was proved by Kumar
[Kum-92]; and in an arbitrary characteristic by Mehta—Parameswaran [MePa—-97] for
G/ P the Grassmannians.

Also, it is an open question whether the Schubert varieties X are diagonally split.

Further, it is not known if all the homogeneous spaces G/H are split, where G is
any connected linear algebraic group and H is a closed connected subgroup which is
reduced as a subscheme.



Chapter 3

Cohomology and Geometry
of Schubert Varieties

Introduction

The main aim of this chapter is to derive various algebro-geometric and representation-
theoretic consequences of the Frobenius splitting results proved in the last chapter.

By the general cohomological properties of a D-split projective variety Y, where D
is an ample divisor on Y, and compatibly D-split subvariety Z C Y proved in Chapter
1, together with the Frobenius splitting properties of the flag varieties X” := G/ P and
their double analogues X -2 := G/P x G/Q obtained in Chapter 2, we immediately
obtain the following fundamental result. For dominant characters A, wof Pandw € W,
one has the cohomology vanishing: H' (X%, L5 (W) = H' (X,f’Q, chlox w) =0
for all i > 0. Moreover, the restriction maps

HO(G/P, L") — HO(XL, £E () and
H(G/P x G/Q, LY 2R p) — HO (X2, LD B w)

are both surjective (Theorems 3.1.1 and 3.1.2). We also prove that for any sequence of
simple reflections to = (s;;, ..., s;,) andany 1 < g < r < n such that the subsequence
(i, - - » i) isreduced, the cohomology H' (Zy, E(Z;zq —Zw(jy)) = Oforalli > 0
and any globally generated line bundle £ on the BSDH variety Zy,, where Zy, () is the
Jj-th divisor defined in 2.2.1 (Theorem 3.1.4). A systematic study of line bundles on
Zy, is made in Exercise 3.1.E.3.

In Section 3.2 we prove that any Schubert variety X! is normal by making use of
the splitting of X 5 (Theorem 3.2.2). We give two other proofs of normality of X 5, one
using the H-surjectivity result mentioned above (Remark 3.2.3) and the other outlined
in Exercise 3.2.E.1 which does not use Frobenius splitting. We also prove that the linear
system on X 5 , given by any ample line bundle, embeds X £ as a projectively normal
variety (Theorem 3.2.2), the proof of which uses the H°-surjectivity mentioned above.
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Section 3.3 is devoted to the proof of the Demazure character formula (Theo-
rem 3.3.8). Recall that the Demazure character formula gives the T-character of
H(X,, LX) for any dominant character A in terms of the Demazure operators
(defined in 3.3.6). This is achieved by showing that, for a reduced decomposition
w = s, - -$;, with the associated word to = (s;;, ..., s;,), the canonical morphism
b : Zw — Xy is rational (Theorem 3.3.4(b)). In addition, we need to use the co-
homology vanishing result for X,, proved in Section 3.1 (mentioned above). We also
show that the canonical morphism 7 : X, - X 5 is rational; in particular, for a locally
free sheaf S on Xi, H' (Xi, S)~ H!(X,, 7*S) (Theorem 3.3.4(a)). The same result
is true for the canonical morphism between G-Schubert varieties (Exercise 3.3.E.3).
Moreover, it is proved that the B-module H 0(X .y, LX) is isomorphic to the dual of
the Demazure submodule V,, (1) of the Weyl module V (1), where V,,()) is generated
as a B-module by a weight vector of weight wA.

In Section 3.4 we show, by using the Frobenius splitting of Z, proved in Section 2.2,
that the morphism 6y, : Zy, — Xy, (as in the above paragraph) is a rational resolution
(Theorem 3.4.3). Moreover, if X,, — X 5 is birational, then the composite map
Zpw & X 5 is again a rational resolution. In particular, any X 5 is Cohen—Macaulay.
In addition, X ” is projectively Cohen-Macaulay in the projective embedding given by
any ample line bundle (Corollary 3.4.4). As another consequence of the result that 6y,
is a rational resolution, we prove that for any dominant characters Aq, ..., A, of P, the
multicone C(XS; Ei A1), ..., /35 (A,)), defined in Exercise 1.1.E.2, admits a rational
resolution (Theorem 3.4.7). An expression for the canonical sheaf of X, is given in
Exercise 3.4.E.1.

Finally in Section 3.5, we study the defining ideals of Schubert varieties X2 with
respect to any line bundle Ei (A). Itis shown that for any dominant character A of P and
any v < w € W, the line bundle Ei (M) onX 5 is normally presented and X 5 is linearly
defined in X 5 with respect to Ei (A) (Theorem 3.5.2). Similar results are available for
G-Schubert varieties Xuf 0 (Exercise 3.5.E.2). Further, the homogeneous coordinate
ring R(Xi, ﬁi ) == B,,-0 HO(XIJZ, Ei (mA)) is shown to be Koszul and, for any
v < w, R(XP, LP () is a Koszul module over R(X2, £F (1)) under the standard
restriction (Theorem 3.5.3). The main ingredient in the proof of both of these results is
the Frobenius splitting property of the n-fold product (G/P)" obtained in Chapter 2,
specifically Theorem 2.3.10. Analogues of both of these results are true for multiho-
mogeneous coordinate rings of X 5 with respect to line bundles Ei A1), .-, Ei (Ar)
for dominant characters A1, ..., A, of P (Exercise 3.5.E.1).

Notation. We continue to follow the notation from Section 2.1. In particular, G is a
semisimple, connected, simply-connected algebraic group over an algebraically closed
field k of characteristic p > 0.

Let X*(P) be the character group of P = P; which can canonically be identified,
under the restriction, as the subgroup of X*(T') consisting of those A such that (A, ') =
0, for all i € I. For any rational P-module V, by £L” (V) we mean the G-equivariant
vector bundle G xp V — G/ P associated to the locally trivial principal P-bundle
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np : G — G/P. For » € X*(P), we denote LF (k_;) by £LF(1). Then, any (not
necessarily G-equivariant) line bundle on G/ P is isomorphic to £F (1), for some A €
X*(P). As in Section 2.1, we shall abbreviate £LZ (V) by L(V).

The restriction of £(1), resp. LE ), to Xy, resp. XS, is denoted by L, (1), resp.
LP (). Then, any line bundle on X[ is isomorphic to £F (1), for some A € X*(P).

For A € X*(P), u € X*(Q), and w € W, let L5 (% X 1) be the line bundle
LP (k—3) R L2 (k—,) restricted to xPC 1f P = 0 = B, we abbreviate L5 ¢ (A K )

by LA K ). If w = w,, we abbreviate L5 (% K 1) by LF-2 (A K ).

3.1 Cohomology of Schubert varieties
For any standard parabolic subgroup P = P; of G, define
sp=p+wlpeX*(P)c X*(T),
where wf is the longest element of the Weyl group Wp := W, of P. Then,
wGp = LY (=8p).

Clearly, §p — 2pp is a dominant weight, where pp € X*(P) is defined in Exercise
2.2.EA4.
We have the following important result on the cohomology of Schubert varieties.

3.1.1 Theorem. Let P be any standard parabolic subgroup of G. Then, for any
dominant A € X*(P) and w € W,

(a) H(XE, £LE(O)) =0, foralli > 0.
(b) The restriction map HO(G/P, ,CP(X)) — HO(ij, /js (k)) is surjective.
For X 5 = G/ P, we have the following stronger vanishing:

(c) Forany X € X*(P) such that . + p, is dominant, Hi(G/P, L) = 0, for all
i>0.

Proof. By Theorem 2.2.5, G/P is (p — 1)~ G/ P-split, compatibly (p — 1)0~ G/ P-
splitting all the Schubert subvarieties X . Moreover, by Exercises 2.2.E.5 and 3.1.E.1,
9~ G/ P isanample divisoron G/ P. By Exercise 3.1.E.1, for any dominant A € X*(P),
LP (W) is semi-ample. So, the statements (a) and (b) of the theorem follow from Theorem
1.4.8.
We now prove the (c) part. By Serre duality,
H (G/P, c (x)) ~ g (G/P, LP(=n — ap)) ,

where n :=dim G/ P. Since A + pp is dominant by assumption, £ (A +2pp) is ample
and hence so is £LF (A + 8p). Thus, the (c) part follows from Theorem 1.2.9. O
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3.1.2 Theorem. Let P, Q be two standard parabolic subgroups and let A € X*(P),
w € X*(Q) be dominant weights. Then, for any w € W,

(@) H (X2, Loy ¢ R w) = 0, forall i > 0.
(b) The restriction map
HY(G/P xG/Q, L2 B p) — HO (X2, L2 R w)
is surjective.
(c) In particular, for dominant A, u € X*(P), the product map
HY(G/P, L") ® H*(G/P, LP (w)) — H*(G/P, LV (A + )
is surjective.

Proof. By Corollary2.3.9,G/P xG/Q1is (p— 1)(8G/P xG/Q U G/P x B_G/Q)-
split, compatibly (p —1)(0G/P xG/Q U G/P x93~ G/ Q))-splitting any G-Schubert
variety X,f 2 Thus, the (a) and (b) parts of the theorem follow from Theorem 1.4.8
coupled with Exercises 2.2.E.5 and 3.1.E.1.

The (c) part is a special case of the (b) part by taking Q = P and w = e. O
3.1.3Remark. (a)Let P be any standard parabolic subgroup of G and let X P e X 5q
be a collection of Schubert subvarieties of G/ P. Let Y := [J!_, X 51, be the union taken

with the reduced scheme structure. Then, the same proof as that of Theorem 3.1.1 gives
that for any dominant A € X*(P),

(1) H' (Y, £ (W) =0, foralli > 0,and

) H%G/P, LY (M) — HO(Y,LP (W\)y) is surjective.

(b) Similarly, for any standard parabolic subgroups P, Q C G and any dominant
weights & € X*(P), u € X*(Q), we have

3) H (Y, P2 R pu)y) =0 foralli > 0and

@  HYG/PxG/Q, LM 2R w) — HO(V, L7C( K p)py) is surjective,

where ) is any union (with the reduced scheme structure) of G-Schubert subvarieties
of G/P x G/Q.

3.1.4 Theorem. Letto = (s, ...,s;,) beanywordandlet1 < q <r < n be integers
such that the subword (si,, ..., si,) is reduced. Then, for any globally generated line
bundle L on Z,,

(1) H (zm, c(Z —zm(,-))) =0, foralli >0,
j=q
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where Zy, is the BSDH variety and Zjy are its divisors (2.2.1).
Also,

) H (Zw, L) =0, foralli > 0.
Before we prove the theorem, we need the following lemma.

3.1.5 Lemma. With the notation and assumptions as in the above theorem, there exist
integers mi, ..., m, and m > 0 such that

(a) mj >0forjé&i{qg,qg+1,...,r}
(b) mj <0forjei{q,q+1,...,r}andm, = —1, and

(c) the line bundle O(ZI;‘=1 m;j Zw(j)) ® L (mp) is globally generated, where we
have abbreviated Oz, by O.
Proof. Let v := w[n — 1] = (s;y,...,s8;,_,) and let ¥ = ¥ : Zyy — Z, be the
P'-fibration as in 2.2.1.
We first show that for any s > 4, the line bundle
Fs = L (5p) QO (Zro(n)) @Y™Ly (—p) is globally generated. Since  is the pullback
(Exercise 2.2.E.1)

the relative tangent bundle T, of ¢ is given by L, (@;,). On the other hand,
(1) Lula,) =Ty =0 @Yoy,
~ Liw(P) @ O(Znyn)) @ ¥*(Lu(—p)), by Proposition 2.2.2.

Now, for s > 4, (s — 1)p + «;, is dominant, thus F (s > 4) is globally generated by
(1).

Now, we come to the proof of the lemma. Assume first that r < n. By in-
duction on n, we can choose integers m1, ..., m,_1, m satisfying all three properties
(a)—(c) of this lemma for tv replaced by v. In particular, the pullback line bundle
O(Z'};% m;j Zm(j)) ®Y* Ly (mp) is globally generated. Now, choose s > 0 such that
Lo (50) @ O(Zsny) @Y™Ly (—p) is globally generated. Since L(p) is ample on G/B
(Exercise 3.1.E.1), this is possible. Thus, O(Z’}zl mj Zuo ,-)) ® Lo (smp) is globally
generated, where m,, := m. So, this case is taken care of.

Now, consider the case r = n. We freely follow the notation and results from
Exercise 3.1.E.3. Since the line bundles Oy, (§,) and O(Zy,)) both are of degree 1
along the fibers P! of Y, we can write

n—1

2 Lo (Xi,) = Or (8n) = O<Zm(n) + ijzm(j)>'
j=1
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Considering the restriction of the equation (2) to the fibers of Yy g1 : Zp —
Zo[g—11, We get

n—q
Ly(xi,) = Oz, (Zu(n—q+1) +y b./+q—12u<j>>v
j=1

where u is the subword (siq, ..., Si,). Thus, from Exercise 3.1.E.3(e), we get b; > 0
for g < j < n — 1. This is the place where we have used the assumption that u is a
reduced word.

Now, the line bundle

n—1

Lo (p = Xiy) = Lio(p) ® @<—Zm<n> - b Zm(j))
j=1

is globally generated since it is the pullback of globally generated line bundle

L(p — xi,). Finally, by Exercise 3.1.E.3(f), there exist integers ay,...,a;—1 > 0
such that Oz, (Z;I;l aj Zy( j)> is ample on Z,; in particular, it is globally generated,
where ¢ := (s, ..., si,_,). Now, taking a large enough b > 0 such that ba; > b; for
all 1 < j <¢g — 1, we get the lemma in this case as well. O

Now, we are ready to prove Theorem 3.1.4.

3.1.6 Proof of Theorem 3.1.4. We firstprove (3.1.4.2),1.e., H (Zw, L) =0, fori > 0.
By the proof of Theorem 2.2.3, there exists a sectiono € H° (Zm , a)gi) such that o7 ~!
splits Zy, and the zero scheme Z (o) of o is given by

(1 Z(0) =Y Zw(j)+ D,
j=I1

where D is the divisor of a section of Ly, (p). By Exercise 3.1.E.3(f), there exist integers
ai,...,a, > 0such that S := O(Z?_l aj Zm(j)> is ample on Zy,. Take m > 0

such that each a; < p™. Then, by (1) and Lemma 1.4.11, there exists an injection of
abelian groups

@) H(Zy. L) < H' (zm, £’ @ 3).

Since £ is globally generated and S is ample, £" ® S is ample as well. Thus, by
Theorem 1.2.8, H'(Zy, £" ® S) = 0 foralli > 0, and hence H' (Zy,, £) = 0 for
i > 0,by (2).

Now, we come to the proof of (3.1.4.1). Let m ; and m be the integers as in Lemma

3.1.5. Choose ¢t > 0 such that |my],...,|m,|, m < p’. Then, by (1) and Lemma
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1.4.11, we have an injection of abelian groups:
r r—l
3) H (zm,£<—sz<j>)) < H' <Zm,M(_ZZm(j)))’
j=q J=q

where M = LP' ® Ly (P —1—m)p) ® [O(Z?Zl ijm(j)) ® L (m,o)].

By Lemma 3.1.5, M is globally generated (since L, ((p' — 1 — m)p) is globally
generated, being the pullback of a globally generated line bundle). Thus, by induction
on r — g, the right side of (3) is O for any i > 0. This proves that the left side of (3) is
0 as well, thus completing the proof of the theorem. O

3.1.7 Remark. Taking to = (s;,s;) and ¢ = 1, r = 2, it is easy to see that the
assumption in Theorem 3.1.4 that (s; REEES s;,) be reduced is essential in general.

3.1.E Exercises

For the following exercises (1), (3) and (4), the characteristic of k is arbitrary.

(1*) Show that the homogeneous line bundle £ (1) on G/ P, for » € X*(P), is ample
if and only if . — pp is a dominant weight. Moreover, in this case, it is very ample.
Further, for A € X*(P), L ()) is globally generated if and only if A is dominant.

(2) For a vector space V over a field k of characteristic p > 0, recall the definition of
V=11 from the proof of Corollary 2.3.5. For any dominant A € X*(T), show that the
k-linear map

¢t H(G/B, Lo ® H(G/B, L(p — 1)p))
— HY(G/B, L(pr+ (p—1)p), o' ®c" > o'Pc”,

is an isomorphism of G-modules.

Hint: Show first, by the Weyl dimension formula, that the domain and the range of
¢, have the same dimensions. Next, if A is of the form (p” — 1) p for some r > 1, then
show that ¢, is an isomorphism by using the irreducibility of H O(G/ B, L((p ! —
l),o)) (Exercise 2.3.E.3). Now, for any dominant XA, choose r large enough such
that (p” — 1)p — A is dominant. Take a nonzero section s € HO (G/B,

LU(p" = Dp — A)). Tensoring with s? gives an injection HO(G/B, E(A))[_l] —

H° (G/B, LU(p" — 1),0))[_1]. Use this to conclude that ¢, is injective and hence an
isomorphism.

(3*) Line bundles on Zy,: Letvwo = (s;,, ..., s;,) be any word. Recall the definition of
the BSDH variety Zy, and the morphism Yw n : Zyy = Zw[m], forany 1 <m <n
from 2.2.1, where to[m] is the subword (s;,, ..., s;,). Define the line bundle

(1) O (8) = wt’;,m(ﬁm[m]()([m)), forany 1 <m <n,
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where y; is the i,-th fundamental weight (as in Section 2.1). Thus, Ow(8,) =

Ly (Xin)~
Now, for any (ji, - .., jn) € Z", define the line bundle

n

2) Ow (1, -+ Jn) i= ®(Om(5m)®j’”).

m=1
Also, recall the definition of the divisors Zyu) of Zw, 1 < m < n, from 2.2.1.
Prove the following:
(a) The line bundles O (3,,), 1| < m < n, are globally generated. Moreover,
Ow(8,) is of degree 1 along the fibers P! of Yion—1-
Also, the divisor Zy, () has degree 1 along the fibers of ¥y ,—1.

(b) By induction on n, show that

n
Pic Zy, = @ Z Ow(8y), andalso

m=1

n
Pic Zw = P Z Oz, (Zro(m))-
m=1
(c) Show that Oy, (j1, - .., ju) is very ample on Zy, iff each j,, > 0.
Thus, ample line bundles on Zy, are very ample.
Hint: Consider the morphism fyn : Zw — G/Q; X ... x G/Q;,,

[pi.--.. Pnd = (P1Qiy, P1P2Qiys -, P1 -+ PnQi,), Where Q;; is the max-
imal parabolic subgroup of G such that s;; ¢ WQ[./_. Then, fy is a closed
embedding.

Show now that for any (ji, ..., j,) € Z",

Fos (L9 Gt B 8L (i) = O it ).

Thus, conclude that for ji, ..., j, > 0, Ow(j1, - ., jn) is very ample on Zy,.

For the converse part, prove that the restriction O (ji, ..., ju)| Zwa) =
Ow)(j2, - - -, Ju). Thus, by induction on n, ja, ..., j, > 0. Also, if 5;;, # s4,,
prove that Ow (j1, - - - » jn)|Zwe = Ow@ (1, 35 -+ -5 Ju)- Thus, j1 > 0 as well.
Finally, if 5;, = s;,, use the decomposition Zy, 2~ (P;;/B) X Z(1) to conclude
that j; > 0.

(d) Use (c) to show that the line bundle Oy, (ji, . - ., ju) on Zy, is globally generated
iff each j,, > 0.

Hint: Use the fact that the tensor product of an ample line bundle with a globally
generated line bundle is ample.
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(e) Let to be a reduced word. Then, the line bundle £ := Oy, (ZZ;:] Jm Zm(m)>
is effective iff each j,, > 0.
Hint: If each j,, > 0, L is clearly effective. Conversely, if L is effective, take a

B-invariant line M in H*(Zy,, £). Conclude that the zero scheme Z (o) of any
nonzero o € M satisfies Z(0) = Z;Zl Jm Zro(my, for some j,, > 0.

(f) Show that there exist integers ji, ..., j, > 0 such that Oz (an:l Jm Zm(m)>
is ample on Zy,.

Hint: Letv = w[n —1]. By induction, Oz, (Zﬁ:l Jm Zu(m)> is ample for some

Jis oo, jn=1 > 0. Now, Zy(,) has degree 1 along the fibers of ¥ ,—1. Thus,
for ¢ > O sufficiently large, Oz, (Z:;:ll Jmq Zro(m) + Zm(n)) is ample on Z,.

(4) Prove the analogue of Theorem 3.1.4 for Z, := G X p Zy,. More specifically, for
any word tv = (s;, ..., s;,) and I < g <r < n such that the subword (s[q, coes i) s
reduced, prove that

Hi (Zm, L® (’)(Z —Zm(j))) —0, foralli >0,
Jj=q

and any globally generated line bundle £ on Zy,, where Zy(j) := G XB Z(j)-

3.2 Normality of Schubert varieties

We continue to follow the notation as in 2.1. As preparation for the proof of Theorem
3.2.2, we begin with the following.

3.2.1 Proposition. Letv € W, s a simple reflection, and P = BU Bs B the correspond-
ing standard minimal parabolic subgroup. Then, the product morphism
f 1+ P xp Xy, = PX, has connected fibers, and satisfies R' f,Opx,x, = 0 for
alli > 1.

Proof. If sv < v, then PX, = X,, P xp Xy, =~ P/B x X,, and f identifies with the
projection P/B x X, — X, with fiber P/B ~ P!. Both the assertions are clear in
that case; thus, we may assume that sv > v. Then, by equation (2.1.4), PX, = Xy,
where w := sv.

For the first assertion, let x € X,,. Then,

')y ={peP|p'xeX,)/B,

where the right action of B is given by p - b = pb. In particular, f~!(x) is a closed
subscheme of P/B ~ P!. By the P-equivariance of f, to prove the connectedness of
f_l(x), we may assume that x € W and, moreover, x < sx < w. Then, f‘l(x) is
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stable under the standard action of 7 on P/B. So, if this fiber is not connected, then it
consists of the T'-fixed points B and s B in P/B. Thus,x < sx < v, so that x 1 (a) >0
(where « is the simple root corresponding to s), and hence sU,x is contained in X,.
Hence, f -1 (x) also contains Uys B, a contradiction.

For the second assertion, since all the fibers of f have dimension < 1, we may
assume that i = 1. Now, factor f as

t: P xpXy— P/B x Xy, (p,x)B+— (pB, px)

(a closed immersion) followed by the projection & : P/B x X,, — X,. Then,
R' £.0pxyx, = R'm.(t:Opyx ,4x,), by [Har—77, Chap. III, Exercise 4.1]. Further, the
surjection Op/pxx, — t+Opxpx, and the vanishing of R%7, F for any coherent sheaf
Fon P/B x X, yield a surjection

Rlﬂ*(OP/Bxxw) — R'7.(t.0px px,).
Now, R'7,.(Op/pxx,) = 0, since H' (P!, Op1) = 0. O

Recall the notion of projectively normal subvarieties X C PV from Section 1.5.
Observe that, by Exercise 3.1.E.1, L” (A + pp) is very ample on G/ P for any dominant
A € X*(P). In particular, LY (. + pp) is very ample on X©.

3.2.2 Theorem. For any standard parabolic subgroup P of G, and any w € W, the
Schubert variety X 5 is normal.

Moreover, for any dominant A € X*(P), the linear system on Xf; given by
Ei (A + pp) embeds X 5 as a projectively normal variety. In particular,

Xy ~Proj(R(X}, Ly (L + pp))).

Proof. We first prove the normality of X 5 . From the fibration 7 : G/B — G/P with
smooth fiber P/B, the normality of X 5 is equivalent to the normality of 71 (X 5 ).
Since 7! (Xf;) is a B-stable closed subvariety of G/ B, it is of the form X, for some
v € W. Thus, it suffices to prove the normality of X,,. We prove this by induction on
£(w). Of course, for £(w) = 0, since Xy, is a point, it is normal. So, takeaw € W with
£(w) > 0 and let s; be a simple reflection such that s;w < w. Let P, = B U Bs; B be
the corresponding standard minimal parabolic subgroup. Then, the product morphism

[P xg Xguw—> Xy

is birational; and by Proposition 3.2.1, ithas connected fibers. Moreover, X,y is normal
by the induction assumption. Thus, the normalization 6 : X — Xy is bljectlve (use
[Har-77, Chap. II, Exercise 3.8]). But, X,, is split, and hence weakly normal by
Proposition 1.2.5. So, 8 is an isomorphism, and X, is normal.

The second part of the theorem means that the embedding X? — P(E*), x >
HOx, Ei(k + pp)ix)*, is projectively normal, where E := HO(Xi, Ei(k + pp)).
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By the normality of X 5 and the characterization of projectively normal varieties given
before Corollary 1.5.4, it suffices to show that the product map

HO(X, Liy(n) ® HO(X, L mp) — HO (X, L3 (1 +m)p)

is surjective for all n,m > 0, where u := A 4+ pp. But this follows from Theorem
3.1.2(c) coupled with Theorem 3.1.1(b). O

3.2.3 Remark. An alternative proof of the normality of the Schubert varieties X,,,
w € W, can be given as follows.

Let s; be a simple reflection such that ws; < w. Consider the fibration 7; :
G/B — G/P;, where P; is the minimal parabolic subgroup corresponding to the
singleton / = {i}. Then, ;, — Xf;i is a P!-fibration and Ty, Xws; = X,ﬁ" isa
birational (surjective) morphism (cf. [Kem—76a, §2, Lemma 1]). Thus, X,, is normal
iff X 5" is normal. By induction, X, is normal, so the normality of X 5" is equivalent
to

M (7)+0x,,, = On,

where 7; := i s *
For any dominant A € X*(P;), the map
)" HO(X

w

Esi (k)) - HO(st;a Ews; ()&))

is surjective since we have the commutative diagram:

HY(G/P;, LT () T, H(G/B, L))

l !

P pP &
HO(Xy', Ly (W) —— H(Xus;, Lus, (L)),
where the vertical maps are the canonical restriction maps, which are surjective by
Theorem 3.1.1(b). Moreover, 7;* is an isomorphism, since the fibration 7z; has connected
projective fibers. Thus, 77" is surjective, and hence an isomorphism (for any dominant
A € X*(P;)). Hence, (1) follows from Lemma 3.3.3(b), proving the normality of X,,.

3.2.E Exercises

(1) Let k be an algebraically closed field of arbitrary characteristic. We give here the
outline for an alternative proof of the normality of the Schubert varieties X,, without
using the Frobenius splitting methods.

Pﬁgove the normality of X,, w € W, by downward induction on ¢(w). Let
0 : Xy — X, be the normalization of X,,. For any simple reflection s; such that
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v := sjw > w, consider the product map f : Z = P; xp Xy — Xy, which is a bira-
tional morphism. Also, let® : Z = P; x g X, = Z be the morphism induced from 6.
Set f := fo®. For any B-equivariant sheaf S on X, let Indg" S be the P;-equivariant
sheaf on Z induced from S. The exact sequence of B-equivariant sheaves:

0— Ox, — B*ng — Q= (04 (’);(w)/(’)xw -0
gives rise to an exact sequence of P;-equivariant sheaves on Z:
0— Oz - 0,05 — Ind5 (Q) — 0.
Then, we have the following property (a) by Proposition 3.2.1.

(@) R f,O7 =0, foralli > 1.

Thus, we get an exact sequence of P;-equivariant sheaves on X, :

0= f:07 = fu(©,0%) — fu(Ind} (Q)) — 0.

(b) Show that f; (Indg" (Q)) = 0, by showing that .0z = f.(0.,03) = Ox,.
(Use the normality of X, by induction.)
Let ¥ C Xy be the locus of nonnormal points of X,,. Then, X is the support of

the sheaf Q; it is B-stable. Let X,, be an irreducible component of ¥. Define a
subsheaf Q,, C Q on X, by

I(V,Q,) :={o el(V,Q):I'(V,Iy,) -0 =0},

for any open subset V C X,,, where Ty, is the ideal sheaf of X, in X,,. By
definition, the sheaf Q,, is killed by Zy, , so that it may be regarded as a sheaf on
Xy-

Choose a standard minimal parabolic subgroup P; such that P; X, # X, i.e.,
sju > u. Then, show that

u?

(c) sjw > w, and thus we could take s; = s;.
By the (b) part and the exactness of Indg'" , show that
(d) for the morphism f": P; xp X, — Xsjus
/ P;
f*(IndB (Qu)) =0.
Finally, show that

(e) the support of Ind? (Qu) is the whole of P; xp X,,.
This contradicts (d) and thus ¥ is empty, proving that X,, is normal.
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3.3 Demazure character formula

3.3.1 Definition. Let f : X — Y be a morphism of schemes. Following [Kem—76a,
page 5671, f is called a rational morphism if the induced map Oy — f,Oyx is an
isomorphism and the direct images R’ f,Ox vanish for i > 0. (Kempf calls it a trivial
morphism, but we prefer to call it a rational morphism.)

The following lemma follows immediately from the Leray spectral sequence [God—
58, Chap. II, Theorem 4.17.1] and the projection formula [Har—77, Chap. III, Exercise
8.3].

3.3.2 Lemma. Let f : X — Y be a rational morphism between schemes. Then, for
any locally free sheaf S on Y,

Hi(Y,8) 5> H'(X, f*S), foralli > 0.

If, in addition, g : Y — Z is another rational morphism, then g o f : X — Z is
rational as well.

The next lemma is very useful in proving that certain morphisms are rational.

333 Lemma. Let f : X — Y be a morphism between projective schemes and let L
be an ample invertible sheaf on Y.

(a) Assume that H1(X, f*L") = 0, for all g > 0 and all sufficiently large n. Then,

R1f,0Ox =0, forallq > 0.

(b) Assume that f is surjective and
HO(Y, L") — HO(X, £*C")

is an isomorphism for all sufficiently large n. (We do not impose the assumption
as in (a).) Then,
[:Ox = Oy.

Proof. (a) The Ef "1 term of the Leray spectral sequence for the morphism f and the
sheaf f*L" on X is given by

EV? = HP (Y, RI £ (f*L™)
~ HP(Y, (RY f:0x) ® L"),

by the projection formula. Thus, by [Har—77, Chap III, Theorem 8.8 and Proposition
5.3], Eé”q = 0 for all p > 0 provided n >> 0. In particular, for n > 0,

HI(X, f*L") = H(Y, (R f.0x) ® L"),
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which is O for ¢ > 0 (by assumption). By the definition of an ample invertible sheaf (cf.
[Har—77, Definition on page 153]), for any coherent sheaf S on Y, S ® L" is globally
generated for large enough n. Thus,

R1f,Ox =0 for g > 0.
(b) Consider the sheaf exact sequence on Y:
0— Oy — f,Ox - Q— 0,

where Q, by definition, is the quotient sheaf f,Ox/Oy. Tensoring this sequence over
Oy with the locally free sheaf £" and taking cohomology (and using the projection
formula), we get

0— H(Y, " - H'X, f*" - HO(Y, Q@ L") — H'(Y, L") — ...

But, since £ is ample, H' (Y, £") = 0, for all n >> 0. In particular, by the assumption,
HO(Y, Q® L") =0forall n > 0. Now, by [Har—77, Chap. III, Theorem 8.8], fOx,
and hence Q, is a coherent sheaf on Y. But then, since £ is ample, we conclude that O
itself is 0, i.e., Oy = f,Ox, proving the lemma. O

3.3.4 Theorem. (a) For any standard parabolic subgroup P of G and any w € W, the
canonical morphism w : X, — X£ is rational.
In particular, for any locally free sheaf S on X 5, and anyi > 0,

7 H (XP,8) — H (X, 7*S)

is an isomorphism.
(See Exercise 3.3.E.3 for the corresponding result for XUIJD’Q.)

(b) Letvwo = (s;,, ..., Si,) be areduced word and let a(w) :=s;, ---s;, € W. Then,
the standard morphism 6y, : Zw — Xy ((2.2.1.6)) is rational, where w := a(vvo). Thus,
for any locally free sheaf S on X, and any i > 0,

0F : H (X, S) = H (Zw, 65S)
is an isomorphism.

Proof. (a) By the argument used in Remark 3.2.3, for any dominant 1 € X*(P),

7 HOXE, LD ) — HY (X, Lo (V)

w? I

is surjective and, 7 being surjective, of course it is injective. Moreover, by Theorem
3.1.1(a), H (X4, Ly (X)) = 0 for all i > 0. Thus, the (a) part follows from Lemmas
3.3.2 and 3.3.3.

(b) We argue by induction on n = £(w); if n = 1, then 6y, is an isomorphism. For
an arbitrary reduced tv, let v = (s;,, ..., s;,) and v = a(v). Then, v is a reduced word,
and 6, factors as

Py xp0y: Py xpZy—> P xpX,
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followed by the product morphism f : P;, xp X, — X,,. By induction, the morphism
Oy is rational; thus it follows easily that P;, x g 6y is rational as well. On the other
hand, f is rational by normality of X,, and Proposition 3.2.1. Thus, 6y, is rational by
Lemma 3.3.2. O

3.3.5 Remark. Theorem 3.3.4(b) can also be obtained immediately by using (3.1.4.2)
and Lemma 3.3.3(a). But we still need to use the normality of X,,.
Moreover, Theorem 3.3.4(b) is true for an arbitrary tv by Exercise 3.3.E.2.

3.3.6 Definition. (Demazure operators) For any simple reflection s;, 1 < i < £,
following Demazure, define the Z-linear operator Dy, : A(T) — A(T) by
e}» _ es,')\—a,'

= for et e X*(I),
— e 1

Dy (e") =
where A(T) := Z[X™*(T)] is the group algebra of the character group X*(T) and «; is
the i-th simple (positive) root. It is easy to see that Dy, (") € A(T). In fact, one has
the following simple lemma.

3.3.7 Lemma.
6A+ek—a;+“_+esik’ lf<)»,(¥lv>20
Dy, (e") = {0, if (L) =—1
— (M 4 etk if (L, o) < —1.
Now, for any word v = (s;;, ..., s;,), define Dy, = DXI.1 o---oDy : A(T) —
A(T).

The ring A(T') admits an involution defined by e* = ¢~*. We denote Dy, (e*) by
Dy (e*).

Now, we are ready to prove the following Demazure character formula. For any
finite-dimensional representation M of B, by L, (M) we mean the pullback vector
bundle 6, (L(M)).

3.3.8 Theorem. For any (not necessarily reduced) word 1o and any finite-dimensional
representation M of B, we have

(1) X (Zw, Lro(M)) = Dy (ch M), as elements of A(T),

where x(Zy, Lo (M)) := Zp(—l)p ch HP(Zy, Lw(M)) € A(T) and, for any finite-
dimensional T-module N, ch N denotes its formal T -character.
In particular, for . € X*(T) and any reduced word o with w = a(t),

2) X (X, LX) = Dy (eh).
Hence, if . € X*(T)™,

3) ch H%(X ), £,,(1)) = Dy (e™).
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Proof. For any exact sequence
4) O—-> M - M—> M, —0

of finite-dimensional representations of B we have, from the corresponding long exact
cohomology sequence (L, being an exact functor),

) X(Zw, Lo(M)) = x(Zw, Loo(M1)) + x(Zro, Lro(M?2)).

We prove (1) by induction on the length n of o = (s;,...,s;,). If n =1, (1)
follows for any one-dimensional representation M of B from Exercise 3.3.E.1. Now,
by (5), we get the validity of (1) for general M (in the case n = 1), since any nonzero
B-module M has a B-fixed line by using the Borel fixed point theorem (cf. [Spr-98,
Theorem 6.2.6]). Assume the validity of (1) for to[n — 1] by induction (and any M).
The Leray spectral sequence for the fibration ¥ = ¥/ n—1 : Zw — Zw[n—1) takes the
form

EY? =HP (Zm[n1]»£m[n1](Hq(Pi,,/B, Ly, (M)))),

and it converges to H? 19 (Zy,, L1 (M)).
From this it is easy to see that

> (=Pt ch HP (Zm[nl], Lion-11(HY(P;, /B, Ly, (M)))>

p.q
(6) =X (Zw, Lo (M)).

But, by the induction hypothesis and the case n = 1, the left side of (6) is given by

Z(—l)q X (Zm[n—l], Lroin-11(H(P;, /B, Ly, (M)))>
q

= Dron—11(Dy,, (ch M))

= Dy, (ch M).

This, together with (6), proves (1) for tv and thereby completes the induction.
(2) follows from (1) by Theorem 3.3.4(b) and (3) follows from (2) by Theorem
3.1.1(a). O

The following corollary follows immediately from (3.3.8.2).

3.3.9 Corollary. For any reduced word vo, the operator Dy, : A(T) — A(T) depends
only on the Weyl group element a(1v).
For w € W, we set Dy, = Dy, for any reduced word 1o with a(1v) = w.

(This corollary also admits a purely algebraic proof.)
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3.3.10 Definition. For A € X*(T)7 recall some elementary properties of the Weyl
module V() := HO(G/B, L(1))* from Section 2.1. For w € W, define the Demazure
module V(1) as the B-submodule of V(1) generated by a nonzero vector of weight
wA in V (X). Observe that, since the A-weight space V (1), of V(1) is one-dimensional,
S0 is

(1) dim V(W) = 1.

Thinking of the line bundle £(1) as G x g (Hom(ky, k)), the identification 6 : V (3)* —
H°(G/B, L(})) is explicitly given by

2) 6(f)(gB) = (g, fg) mod B, forg € Gand f € V(L)¥,
where fg 1 k) = V(A); — kis defined by fg(vx) = f(guy).
The following corollary follows from Theorems 3.3.8 and 3.1.1(b) for P = B.

3.3.11 Corollary. For » € X*(T)* and w € W, as B-modules,
(1) HO(Xy, L))" = V().
In particular, for any reduced word 1o with w = a (1),
2) ch Vyy(h) = Dy (™).
Proof. By Theorem 3.1.1(b), the restriction map (under the identification 6)
y VO — HY (X, Lu()
is surjective. Since B - w C Xy, is a dense (open) subset, where w is the coset wB,

Kery ={f e VIO)* : y()|p., =0}
={feVW*: fiv,n =0}

From this (1) follows and (2) follows from (3.3.8.3). O

3.3.E Exercises

For the following exercises, the characteristic of k is arbitrary.

(1*) Let P; be any minimal parabolic subgroup of G and let A € X*(T) = X*(B).
Then, show that with the notation as in Theorem 3.3.8,

X (Pi/B, L(ky)) = Dy;(e™").
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(2*) Let to be any, not necessarily reduced, word. Then, the image of the morphism
6w : Znw — G/B is an irreducible, closed, B-stable subset of G/B. Thus, Im 6y, =
X, for some w € W. Show that

Ow : Zw — X, is arational morphism.

Hint: Consider the fibration Z, — P;; /B with fiber Z,,/, where to = (s, ..., s;,)

and ' := (sj,, ..., ;,). Assume the validity of the exercise for o’ by induction on the
length n of tv.
(3*) Prove the analogue of Theorem 3.3.4(a) for X, replaced by X,,. More specifically,
show that for any standard parabolic subgroups P and Q of G and any w € W, the
canonical morphism 7 : &, — Xlﬁ) ‘@ is rational. In particular, for any locally free
sheaf S on Xf’Q and any i > 0,

o H (x5, 8) — H (X, n*S)

is an isomorphism.

3.4 Schubert varieties have rational resolutions

3.4.1 Definition. A proper birational morphism f : X — Y of varieties is called a
rational resolution if X is nonsingular, f,Ox = Oy and

R' f.(Ox) = R f(wx) =0, foralli > 0.

If such a resolution exists, then Y is said to admit a rational resolution. Recall that
in characteristic 0, the requirement R f,(wx) = 0 is automatically satisfied by the
Grauert—Riemenschneider vanishing theorem, cf. [GrRi—70] or [EsVi-92, p. 59].

A fundamental property of such resolutions is the following well known result (cf.
[KKMS-73, p. 50-511]).

3.4.2 Lemma. Let f : X — Y be a rational resolution. Then, Y is Cohen—Macaulay
with dualizing sheaf f.wx.

Proof. The assertion being local in Y, we may assume that Y is a closed subvariety of a
nonsingular affine variety Z. Lett : Y — Z be the inclusion, and put g = to f. Then,
2+0x = 1,0y, and Rig*Ox = 0O forall i > 1. Applying the local duality theorem
[Har—66] to the proper morphism g and the sheaves Ox and wz, we obtain

RHom(1,Oy, wz) = RHom(Rg,Ox, wz) = Rg.RHom(Oyx, g'wz)
= Rg.g'wz = Rgox[—d] = guox[—d],

that is, Exté(t*Oy, wz) = 0 for all i # d, and Ext‘Zi(L*(’)y, wz) = gy,
where d := codim Y = dim X — dim Z. This means that Y is Cohen—-Macaulay with
dualizing sheaf f,wx. O
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3.4.3 Theorem. For any reduced o, the resolution 6y, : Zw — Xy, is rational, where
w = a(). If, in addition, the natural map X,, — Xg is birational for a standard
parabolic subgroup P of G, then the composition 9£ P Zw — X5 is a rational
resolution as well.

Proof. By Theorem 3.3.4, it suffices to show the vanishing of R! Oz, , and likewise
for 9{;, fori > 0. Butby Theorem 2.2.3, Zyy, is split by oP~! whereo € HO(Zm , w}l )
vanishes identically on the exceptional loci of 6y, and of 9£. So, the desired vanishing
follows from Theorem 1.3.14. O

3.4.4 Corollary. Any Schubert variety X 5 C G/ P is Cohen—Macaulay.

Moreover, for any ample line bundle L = LF (L) on G/P, X,f: is projectively
Cohen-Macaulay in the projective embedding given by L, := L, xP- In particular, for
any such L, Hi (Xl‘z, E;l) =0, foralli < dim XII;.

Proof. The first assertion follows from Lemma 3.4.2 and Theorem 3.4.3.
To prove the second assertion, since X £ is projectively normal by Theorem 3.2.2,
it suffices to show (by the discussion before Corollary 1.5.4) that

H (XP, £r)y=0, forall0 <i < dim X’ andalln € Z.

Since X 5 is Cohen—Macaulay, this holds for all 0 < i < dim X 5 and all n < 0 (by

[Har-77, Chap. III, Theorem 7.6(b)]) and hence for all n < 0, by the splitting of X ,I; .
For n > 0, this follows from Theorem 3.1.1(a).

The “In particular” statement follows from Theorem 1.2.9. This proves the corollary.

O

3.4.5 Remark. The assertion that for any w € W and dominant regular > € X*(T),
H (X, Lop(=2)) =0, foralli < £(w),

can also be obtained immediately from Theorems 3.1.4 and 3.3.4(b) as follows. By
Theorem 3.3.4(b),

H' (X, Lo(=1) = H'(Ziy, Lro (=),
where tv is a reduced word with a(tv) = w. By Serre duality and Proposition 2.2.2,

H (Zw, Lo (1) = H™7H(Zy, LM ® w07,,)"
. n *
= gt (Zm, Lo(A—p)® O(— Z Zm(j))>
Jj=1
=0, by (3.1.4.1).

Let X be a complete variety and let L, ..., L, be semi-ample line bundles
on X. Then, recall the definition of the multicone C(X; Ly,..., L) :=
Spec R(X; Ly, ..., L) from Exercise 1.1.E.2.
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3.4.6 Proposition. Let X be a projective variety admitting a rational resolution and

let Ly, ..., L, be semi-ample line bundles on X such that L1 ® --- @ L, is ample.
Then, the multicone C(X; Ly, ..., L) admits a rational resolution if the following
conditions (a)-(b) are satisfied for allmy, ..., m, > Q.

(@) H(X, L' ® -~ Q@ L") =0, foralli > 1.
(b) H'(X, El_l_ml R ® Er_l_m’) =0, foralli < dim X.

Proof. Let V be the total space of the vector bundle El_l ®--- 6 E;] on X, with the
projection map
f: V- X,

Then,
KOy= P rLl'e---eLr

mi,..., m;>0

sothat ' (V, Oy) = R(X; Ly, ..., L;). This yields a dominant morphism
7:V—>CX;Ly,....,L ).

Observe that 7 is projective (hence surjective) and satisfies 7. Oy = Oc(x.z,,....2,)» bY
Exercise 1.1.E.3. Thus, the fibers of 7 are connected by [Har—77, Chap. III, Corollary
11.3]. On the other hand, the assumption that £; ® - - - ® L, is ample easily implies
that dimV = dim C(X; Ly, ..., L,). It follows that 7 is birational.

The assumption (a) amounts to H'(V,Oy) = 0 for all i > 1. Since
C(X; L1,...,L,) is affine, it follows that Rin*OV = 0 for all i > 1. Moreover,
since X is Cohen—Macaulay (Lemma 3.4.2), V is Cohen—Macaulay as well, with dual-
izing sheaf

oy = fox®L1® - ®L).

Now, (b), together with Serre duality, implies that Rin*a)V =0foralli > 1.

On the other hand, any rational resolution ¢ : X—>X yields a rational resolution
¥ 9*V — V. By Lemma 3.4.2 and the Grothendieck spectral sequence [Gro-57],
Toy @V — C(X;Ly,...,L,)Iisarational resolution. O

As a consequence of the above proposition and Theorem 3.4.3, we obtain the fol-
lowing.

3.4.7 Theorem. Let P be any standard parabolic subgroup of G and let X 5 c G/P
be a Schubert variety. Then, for any dominant Ay, ..., A, € X*(P), the multicone
C(Xi; Ei A, ..., L'i (A,)) admits a rational resolution.

Proof. By taking a larger parabolic Q O P (if needed) and using Theorem 3.3.4(a), we
can assume that A; +- - - + A, — pp is dominant, where pp is as in Exercise 2.2.E.4. In
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view of Proposition 3.4.6 and Theorem 3.4.3, it suffices to show that for any dominant
A € X*(P), the following are satisfied.

(1) HY (X[, £E()) =0, fori>0,and
) H (XL, L (—=x—pp)) =0, foralli <dimX}.

Now, (1) is nothing but Theorem 3.1.1(a) and (2) follows from Corollary 3.4.4. [

3.4.E Exercises

For the following exercises, the characteristic of k is arbitrary.
(1) Let Xy, C G/B be any Schubert variety. Then, show that the canonical sheaf of

Xy 18 given by Oy, (—9Xy,) ® L4,(—p), where d X, is the union of codimension one
Schubert subvarieties of X,,.

(2) Show that forany w € W, standard parabolic subgroups P, Q of G and any dominant
A € X*(P), w € X*(Q), the linear system on XUI,J’Q given by
L'S’Q(()\ + op) X (u + pQ)) embeds Xf Casa projectively normal and projectively
Cohen—Macaulay variety.

3.5 Homogeneous coordinate rings of Schubert
varieties are Koszul algebras

3.5.1 Definition. Let £ be a line bundle on a scheme X. Then, consider the Z . -graded
algebra
R(X, L) := @ HO(X, £™)
m=>0
with respect to the line bundle £. The line bundle £ on X is said to be normally
presented if the canonical Z -graded algebra homomorphism

£ P S"H (X, L) > R(X. L)

m=>0

is surjective and the kernel Ker(§) is generated as an ideal in the symmetric algebra
S(H O(X , £)) by its elements of degree 2; that is, R(X, £) is a quadratic algebra in the
sense of Definition 1.5.5.

If Y is a closed subscheme of X, then Y is said to be linearly defined in X with
respect to L if the restriction map

R(X,L) = R, Lyy)

is surjective and its kernel is generated by its degree 1 elements. If H%(Y, Oy) is one-
dimensional, Y is linearly defined in Xwith respect to £ if and only if R(Y, L}y) is a
quadratic R(X, £)-module in the sense of Definition 1.5.5.
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3.5.2 Theorem. Let P C G be any standard parabolic subgroup and letv < w € W.
Then, for any dominant A € X*(P), the line bundle [:5 (A) on X P is normally presented.

w
Moreover, X is linearly defined in XE with respect to LE (1.).

Proof. By Proposition 1.5.8, it suffices to show that (G/P)3 is ((G/P)2 X B’G/P)—
split compatibly splitting X2 x (G/P)2, XP x (G/P)2, XI'F x G/P,G/P x xXF'F.
Now, applying Theorem 2.3.10, we get such a splitting of (G/P)>. Since X P and XP
are both linearly defined in G/ P, X? is linearly defined in X (Remark 1.5.6(iii)). O

As another consequence of Theorem 2.3.10, we get the following strengthening of
Theorem 3.5.2. Recall that the Koszul algebras and Koszul modules are defined in
1.5.9.

3.5.3 Theorem. Let P C G be any standard parabolic subgroup. Then, for any
v < w € W and dominant . € X*(P), the algebra R(XLIZ, 115()»)) is Koszul. In
particular, R(G/ P, LP(A)) is a Koszul algebra. Moreover, R(Xf, Ef (A)) is a Koszul
module over R(XS, Ei Q).

Proof. Apply Theorem 1.5.15 together with Theorem 2.3.10. O

Even though the results in this chapter were obtained under the assumption of
positive characteristic, most of them remain true in characteristic 0 and follow from the
corresponding results in positive characteristic by applying the semicontinuity theorems
from Section 1.6 (specifically Proposition 1.6.2 and Corollary 1.6.3). More precisely,
we state the following.

3.5.4 Theorem. Theorems 3.1.1, 3.1.2, 3.1.4, 3.2.2, 3.3.4, 3.3.8, 3.4.3 and 3.4.7; Re-
mark 3.1.3; and Corollaries 3.3.11 and 3.4.4 remain true over an algebraically closed
field of an arbitrary characteristic.

Proof. For Theorems 3.1.1, 3.1.2 and Remark 3.1.3, use these results in characteristic
p > 0 and Proposition 1.6.2 and Corollary 1.6.3. Similarly, for Theorem 3.1.4 use this
result in characteristic p > 0 and Proposition 1.6.2 together with Exercise 3.1.E.3(d).
For the normality of X 5 (Theorem 3.2.2), follow the same argument as in Remark 3.2.3;
alternatively the proof outlined in Exercise 3.2.E.1 works over any k. The projective
normality of X 5 (Theorem 3.2.2) follows by the same argument. Theorem 3.3.4 follows
by the same argument since Proposition 3.2.1, Lemmas 3.3.2 and 3.3.3 are characteristic
free. Theorems 3.3.8, 3.4.3 and Corollary 3.3.11 follow by the same proof; observe that
R} Oz, 1s automatically zero in characteristic O (Definition 3.4.1). Corollary 3.4.4,
first part, follows by the same argument since Lemma 3.4.2 is characteristic free; and
the second part follows by the same argument once we use Proposition 1.6.2. Theorem
3.4.7 follows by the same argument since Proposition 3.4.6 is characteristic free. [

3.5.5 Remark. All the above results (with possibly an exception of Remark 3.1.3) in
characteristic 0 can also be proved directly by characteristic 0 methods (cf. [Kum-87,
88, 02]).
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3.5.E Exercises

(1)Let Ly, ..., L, be line bundles on a scheme X. Then, the Zi-graded algebra

RX:L1.....L)= @ H'&X.L'"® LM

is called the multihomogeneous coordinate ring of X with respect to the line bundles
Li,...,Lr. Any nonzero element of HO(X, L' ® --- ® L") is said to be of total
degree ) m;. Consider the canonical 7/, -graded algebra homomorphism

v: P smEHE. L)) @S (HUX. L)) > RX: L. .... L)

Then, the line bundles Ly, ..., L, on X are said to be normally presented, if  is
surjective and its kernel is generated by its elements of total degree 2.

Let Y be a closed subscheme of X. If the restriction map R(X; Ly, ..., L;) —
R(Y; Ly, ..., Ly) is surjective and its kernel is generated as an ideal by its elements
of total degree 1, then Y is said to be linearly defined in X with respect to the line bundles
Li,..., L.

Let P C G beastandard parabolic subgroup andlet iy, ..., A, be dominant weights
in X*(P). Then, for any v < w € W, prove the following:

(a) The line bundles £% (A1), ..., LE () on XI are normally presented.
(b) XP»islinearly defined in X/ withrespect to the line bundles £F (A1), ..., LE ().

(c¢) Thering R(XZ; L5 (1), ..., LI (X)) is Koszul, and it is a Koszul module over
R(XD: £EGw), .., LD G)).

Hint: Use the Exercises 1.5.E.

(2) Show that for any standard parabolic subgroups P, Q of G and any dominant
A€ X*(P), u € X*(Q), the line bundle ES’Q(A X ) on X,f’Q is normally presented
for any w € W. Moreover, for v < w, XUP’Q is linearly defined in XUI)J @ with respect
to [,i’Q()» X w).

Hint: Take an appropriate splitting of X> and use Proposition 1.5.8, where X =
G/P x G/Q. This splitting is slightly different from that of Theorem 2.3.10, but
obtained by a similar method.

(3) Show that for X = G/B, X> does not admit a splitting such that all the partial
diagonals are compatibly split.

Hint: Take X = P! and consider the ample line bundle £ on X> with multidegree
(1, 1, 1). Then, show that the restriction map H%(X3, £) — HO(Y, L) is not surjective,
where Y is the union of the three partial diagonals.

Alternatively, show that the intersection of any partial diagonal with the union of
the remaining two partial diagonals is not reduced.
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3.C. Comments

In their full generality Theorems 3.1.1(a)—(b) and 3.1.2(c) are due to Andersen [And—
85] and Ramanan—-Ramanathan [RaRa—85]; and Remark 3.1.3(a) is due to Ramanathan
[Ram—85]. For an alternative proof of Theorem 3.1.2(c), see [Ram—87]. Theorem
3.1.1(a)—(b) in the case when £ (1) is ample was earlier obtained by Mehta—Ramanathan
[MeRa-85] and Theorem 3.1.1(c) follows readily from [loc cit.]. Also recall that
Theorem 3.1.1(a)—(b) for “special” Schubert varieties was obtained by Kempf [Kem—
76a] and so was their normality and Cohen—Macaulayness; and different (from that of
Kempf) proofs of Theorem 3.1.1(a) for X 5 = G/ B were given by Andersen [And—80a]
and Haboush [Hab—80]. Theorem 3.1.2 in characteristic 0 was obtained first by Ku-
mar [Kum-88] and over an arbitrary characteristic it can be deduced from [MeRa—88].
Theorem 3.1.4 in characteristic O (and for line bundles £ on Z, which are pullback
from the globally generated line bundles on G/B) is due to Kumar [Kum-87]. In its
present form (in an arbitrary characteristic) it is due to Lauritzen—-Thomsen [LaTh—04].
Exercise 3.1.E.3 is taken from [loc cit.] and Exercise 3.1.E.1 is taken from [Jan—03,
Part I1, §§ 4.4 and 8.5].

Theorem 3.2.2 inits full generality is due to Ramanan—Ramanathan [RaRa—85]. The
normality of X was also proved by Andersen [And-85]. The proof of the normality of
X P givenin3.2.2is influenced by the proof due to Mehta—Srinivas [MeSr—87]; the proof
given in [RaRa—85] is outlined in 3.2.3; and yet another proof of the normality of X 1’; in
an arbitrary characteristic due to Seshadri [Ses—87] (though with some simplifications)
is outlined in Exercise 3.2.E.1. This proof of Seshadri predates all the other proofs of
normality in an arbitrary characteristic. It can be modified to prove the normality and
Cohen—Macaulayness of a certain class of subvarieties of G/ P which includes all the
Schubert subvarieties (cf. [Bri—03b]).

As is well known (and pointed out by V. Kac), the original proof of the Demazure
character formula (3.3.8.3) as in [Dem—74] has a serious gap. Subsequently, Joseph
[Jos—85] proved the Demazure character formula in characteristic 0 for “large” dom-
inant weights. Since the validity of the Demazure character formula over k (for any
algebraically closed field k) for large powers of an ample line bundle on G/ B is equiva-
lent to the normality of the Schubert varieties over k, Joseph’s above cited work provided
the first proof of the normality of Schubert varieties over k of characteristic 0. Now,
Theorem 3.1.1(a)-(b) over any k for P = B implies the Demazure character formula
over k and thus the results of Ramanan—Ramanathan [RaRa—85] provide a proof of the
Demazure character formula in an arbitrary characteristic. Similarly, the normality of
the Schubert varieties over k together with the validity of Theorem 3.1.1(a)—(b) over k
for P = B and only for ample line bundles £() again imply the Demazure character
formula over k. Thus, the works [Ses—87] and [MeRa—85] together provide another
proof of the Demazure character formula. Yet another proof of the Demazure character
formula is due to Andersen [And—85]. Still another proof of the Demazure character
formula in characteristic 0 was given by Kumar [Kum—87] crucially using Theorem
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3.1.4. Lemma 3.3.3(a) is due to Kempf (cf. [Dem—74]) and 3.3.3(b) is taken from
[Kum-87].

Theorem 3.4.3 and Corollary 3.4.4 in their full generality are due to Ramanathan
[Ram-85]; Theorem 3.4.3 in characteristic O was also obtained by Andersen [And—85].
([Mehta—Srinivas [MeSr—89] gave a different proof of the Cohen—Macaulayness of X £ )
Such results were proved earlier by Hochster [Hoch—73], Kempf [Kem—76a,b], Laksov
[Lak—72], Musili [Mus—72] for Schubert varieties in Grassmannians; by de Concini—
Lakshmibai [DeLa-81] for the Schubert varieties X for P of “classical” type; by
Musili-Seshadri [MuSe-83] for X,, C SL,/B. Proposition 3.4.6 and Theorem 3.4.7
are due to Kempf—-Ramanathan [KeRa—87] and so is Exercise 3.5.E.1(a)—(b). Theorem
3.5.2 and Exercise 3.4.E.1 are due to Ramanathan [Ram-87], however his proof of
Theorem 3.5.2 is different. Recall that by a well known result of Kostant, the full ideal of
G/ P inside IP’(HO(G/P, LP(0)*), for an ample line bundle LP ), is generated by an
“explicit” set of quadratic equations generalizing the Pliicker equations (cf. [Gar—82],
[Kum-02, §10.1]). Theorem 3.5.3 and Exercise 3.5.E.1(c) are due to Inamdar—-Mehta
[InMe—94a,94b]. For Theorems 3.5.2 and 3.5.3, also see [Bez—95]. Earlier, Kempf
[Kem—90] had proved that the homogeneous coordinate ring of a Grassmannian in its
Pliicker embedding is Koszul.

Several of the results of this chapter for the case of classical groups were obtained
earlier by the Standard Monomial Theory developed by Seshadri-Lakshmibai—Musili
(cf. the survey article [LaSe-91]).

It may be mentioned that Kashiwara [Kas—93] has given a proof of the Demazure
character formula using his crystal base and Littelmann [Lit-98] has given another
proof using his “LS path model.” Many of the results of this chapter have been obtained
algebraically via the quantum groups at roots of unity by Kumar—Littelmann [KuLi—02].

It will be very interesting to see if the results of the Standard Monomial Theory
(as completed by Littelmann [Lit-94, 95, 98]) can be recovered by Frobenius splitting
methods. Some results in this direction have been obtained by Brion-Lakshmibai
[BrLa—03], where the classical groups are handled.



Chapter 4

Canonical Splitting and
Good Filtration

Introduction

This chapter is devoted to the study of B-canonical splittings of a B-scheme and its
various consequences, including the existence of good filtrations for the space of global
sections of G-linearized line bundles on G-schemes admitting B-canonical splittings.
In addition, we prove the Parthasarathy—Ranga Rao—Varadarajan—Kostant (for short
PRVK) conjecture and its refinement (proved by Kumar in characteristic 0 and Mathieu
in characteristic p).

Section 4.1 is devoted to the study of B-canonical splittings. We begin by defin-
ing the notion of a B-canonical Frobenius-linear endomorphism of a commutative
B-algebra R over k. Let Endp(R) be the additive group of all the Frobenius-linear
endomorphisms of R. Then, it is canonically an R-module with an action of B. It
is shown that the B-canonical Frobenius-linear endomorphisms ¢ of R arise from B-
module maps St ®k(,—1), — Endr(R) (Lemma 4.1.2). Further, as shown in Proposi-
tion 4.1.8, any B-canonical ¢ € Endr(R) takes B-submodules of R to B-submodules.
In fact, if R is a G-algebra, it is shown that any B-canonical ¢ takes G-submodules of
R to G-submodules (Proposition 4.1.10). The notion of B-canonical Frobenius-linear
endomorphism of a B-algebra can easily be “sheafified” to allow one to define the no-
tion of B-canonical splittings of a B-scheme X. It is shown that the flag varieties G/ P
admit a unique B-canonical splitting. Moreover, this compatibly splits all the Schubert
subvarieties X 2.

Further, it ii shown that for a B-scheme X which admits a B-canonical splitting o,
the G-scheme X := G x p X admits a B-canonical splitting & extending the original B-
canonical splittingon X = e x X C X (Proposition 4.2.17). Moreover, if o compatibly
splits a closed B-subscheme Y of X, then & compatibly splits all the closed subschemes
{BwB xp X,G xp Y:w € W} (Exercise 4.1.E.4). In Exercise 4.1.E.2, the BSDH
varieties are asserted to admit B-canonical splittings compatibly splitting the BSDH
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subvarieties. Also, for any B-equivariant morphism f : X — Y between B-schemes
such that X admits a B-canonical splitting and f,Ox = Oy, then the induced splitting
of Y is B-canonical (Exercise 4.1.E.3). Let X, Y be two G-schemes which admit B-
canonical splittings. Then, so is their product X x Y (Exercise 4.1.E.5). In particular,
for any parabolic subgroups P;, 1 <i <n,G/P; x --- x G/ P, admits a B-canonical
splitting under the diagonal action of B.

Recall that a filtration FO = (0) ¢ F! c --- of a G-module M by G-submodules
F' is called a good filtration if the successive quotients are isomorphic to direct sums
of dual Weyl modules H oG /B, L(1)). The relevance of this property is, of course, in
characteristic p > 0. The modules which admit a good filtration have many features
akin to characteristic 0 theory. This makes such modules “easier” to handle. Itis shown
that the G x G-module k[G] admits a good filtration for the G x G-action (Theorem
4.2.5). This is used to give the most useful cohomological criterion to decide when a
G-module M admits a good filtration. It is shown that M admits a good filtration iff
Exté; (V(X), M) = 0 for all the Weyl modules V (1) (Theorem 4.2.7 and Remark 4.2.8).

We now come to the most important representation-theoretic result for G-schemes X
which admit B-canonical splittings, proved by Mathieu. This result asserts that for any
such X (i.e., X is a G-scheme admitting a B-canonical splitting), and any G-linearized
line bundle £ on X, the G-module H(X, £) admits a good filtration (Theorem 4.2.13).
In fact, it is this result which makes the notion of B-canonical splittings a very useful
tool in characteristic p > 0 representation theory.

For the reader’s convenience, we break the proof of this theorem into several
steps. The basic idea of the proof is as follows. We first take the product G-scheme

Y := G/B x X under the diagonal action of G and consider its open subset ¥ :=
Bw,B/B x X. Let £ be the line bundle & K £ on Y, e bemg the trivial line bundle

on G/B. Let C be the graded B-algebra @n>0 Cn, where C = HO(Y L") and C

its graded subalgebra @n>0 C,, where C, := HO(Y, E"), Wthh actually is a graded
G-algebra. Fix a height function 4 : X*(T) — R (asin 4.2.1) and A € X*(T)*
and let F;,,(Cy), resp. F,, (Cp), be the largest B-submodule of C, such that each
Weight w of an(C ), resp. F - (Cy), satisfies h(u) < h(nd), resp. h(u) < h(nd);

nA(C ) and F, /\(C ) are defined similarly. Now, consider the graded G-subalgebra
Ch =, .7-'“((,’ ) of C and G-stable graded ideal C(1)™ = @, F,; (Cp) of C(1);
E(A) and (03()»)_ are defined similarly. Finally, consider the quotient algebras C(X) :=
C(A)/C(A)~ and E'(A) = E(A)/é(k)_. Then, C(A) is a graded G-algebra such that
the component C (1), is nA-isotypical as a B-module. Similarly, 8’ (1) is a graded

(Ug, B)-algebra such that C (1), is ni-isotypical, where i is the hyperalgebra of
G. We next show, using the B-canonical splitting of X, that the algebras C (1) and

C()) are reduced (i.e., they do not contain nonzero nilpotent elements). Further, we
show that C(A) is an injective B-module. Finally, we show that C(1); = D, (C(A)1)
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= H%(G/B, L(C(\); )w,2)). This shows that C; has a filtration such that the succes-
sive quotients are isomorphic to {D;(C(A)1)},ex+(ry+, proving that C; admits a good
filtration, thereby finishing the proof of the theorem.

As an immediate consequence of the above result, one obtains that the tensor prod-
uct G-module H(G/B, £L(1)) ® H*(G/B, L()) admits a good filtration (Corollary
4.2.14), originally proved (in almost all the cases) by Donkin by long case-by-case
analysis. Similarly, for a parabolic subgroup P of G with the Levi subgroup L p, the
G-module H°(G/B, £())) admits a good filtration as a L p-module (Corollary 4.2.15).

Section 4.3 is devoted to the proof of the PRVK conjecture (proved by Kumar in char-
acteristic 0 and Mathieu in characteristic p). It asserts that for A, u € X*(T)* and w €
W, there exists a unique nonzero G-module homomorphism (unique up to scalar mul-
tiples) V(—A — wn) — HO(X,, Lo(n X w)), where —A — wu is the unique dominant
weightin the W-orbitof —A—wp and &, C G/B x G/ B isthe G-Schubert variety asin
Section 2.2 (Theorem 4.3.2). Moreover, the dual
HO(X,,, £L(x X w))* is canonically isomorphic to the G-submodule of V(1) ® V (1)
generated by v; ® vy,,. Apart from the above identification, which relies on the H 0.
surjectivity result of Section 3.1, the main ingredients of the proof are: (1) The iden-
tification of HO(X,,, L, (A K p)) with H(G/B, L(k_;. ® Viy(11)*)), Vi (1) C V(1)
being the Demazure submodule, and (2) a result of Joseph and Polo on the annihilator
of the B-module V,,(t) (Proposition 4.3.1).

In fact, we prove a refinement of the above result due to Kumar asserting that for
A, i and w as above, let {Wyw W, Wowa W, ..., Wyw, W,} be the distinct double
cosets in W such that > + w;u = A + wu for all i. Then,

m
dim Homg (V(—A —wp), HO<U )(15.'\’[)“, LPPen R M))) =m,

i=1
for all 1 < m < n, where W, is the isotropy of A and P, is the parabolic subgroup
BW, B (Theorem 4.3.5). Thus, the dual Weyl module HY(G/B, L(—x —wp)) appears
in VOO)* @ V(w)* with multiplicity at least n. These results immediately imply the
corresponding results in characteristic 0 by semicontinuity (Theorem 4.3.8). In Exercise
4.3.E.1, a formula for the Euler—Poincaré characteristic of &, with coefficients in any
line bundle £, (A X u) is given in terms of the Demazure operators generalizing a
well-known result of Brauer.

4.1 Canonical splitting

We follow the notation as in Section 2.1. In particular, G is a connected, simply-
connected, semisimple algebraic group over an algebraically closed field k of charac-
teristic p > 0, B is a Borel subgroup of G and T C B a maximal torus. For any root
B, let Ug be the corresponding root subgroup. Then, as in 2.1, there exists an algebraic
group isomorphism g : G, — Up satisfying

tsﬂ(z)fl = ¢eg(B(1)z2),
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forz € G, and 7 € T. For any B € A™T, similar to the root vector fg € g_g (as in
(2.3.1.3)), there exists a root vector eg € gg such that for any algebraic representation
VofG,ve Vandz e G,

ep(2)v = Z zm(e/(gm) ‘),

where el(gm) denotes the m-th divided power of eg. If § is a simple root ¢;, we abbreviate
ep by e;. Similarly, we abbreviate fg by f;.

4.1.1 Definition. Let R be a (not necessarily finitely generated) commutative associa-
tive k-algebra with multiplicative identity 1. Then, an additive map ¢ : R — R is
called a Frobenius-linear endomorphism if it satisfies the following:

(D ¢(aPb) = a¢p(b), fora,b € R.

Let Endfr (R) be the additive group of all the Frobenius-linear endomorphisms of
R. Then, Endf(R) is an R-module under

2) (a x¢)(b) = ¢(ab), fora,b € R and ¢ € Endr(R).
In particular, k acts on Endr(R) via

3) (z % ) (b) = p(zb) = /P ().

Assume now that R is a B-algebra, i.e., B acts algebraically on R via k-algebra
automorphisms (in particular, B acts locally finitely on R). Then, B acts k-linearly on
Endg(R) via

@) xx¢)(a) = x(qﬁ(x_la)), forx € B,a € R and ¢ € Endr(R).
A Frobenius-linear endomorphism ¢ € Endr(R) is called B-canonical if the fol-
lowing two conditions are satisfied:

(c1) tx¢p=¢, forallt € T,and

(c2) For any simple root o, 1 < i < ¢, there exist ¢; ; € Endp(R),0<j <p—1,
such that

p—1
©) fo; () k=) 2/ ¢y, forallz €k
j=0

In fact, if we only require that ¢; ; : R — R are additive maps satisfying (5), then
automatically ¢; ; € Endp(R). It is easy to see from (cy) that ¢(R;) C Ry, for
any A € X*(T), where R, is the weight space of R corresponding to the weight A. In
particular,

(6) ¢(R;) =0 unless % € X*(T).
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4.1.2 Lemma. Let R be a B-algebra and let ¢ € Endp(R). Assume further that the
B-submodule of Endr (R) generated by ¢ is a finite-dimensional algebraic B-module.
(D Then, ¢ is B-canonical iﬁel.(") x¢p =0 foralll <i <fandn > p

and, moreover, ¢ is T -invariant,

where ef") * ¢ denotes the action of e

Eq; (Gy) on ¢.

Thus, ¢ is B-canonical iff there exists a B-module (k-linear) map

0p : St®k(p—1)p — Endp(R) such that 0y(f- ® f1) = ¢,

(n)

i

on ¢ obtained by differentiating the action of

where ky, (for any A € X*(T)) is the one-dimensional B-module as in Section 2.1
associated to the character ), f_ is a nonzero lowest weight vector of Stand 0 # f €
k(p-1)p-

Proof. Forany 1 <i </{,¢ € Endr(R) and 7 € k,

) () k=D 2" x (e % 9).
n>0
From this (1) follows.
Let Uy be the hyperalgebra of the unipotent radical U of B, i.e., it is the subalgebra
of s generated by {eg'); BeAT,ne Z4}. Then, themapy : Uy — St,a > a- f—,
(n)

i

is a surjective Ly -module map with kernel precisely equal to the left ideal Z Hy-e

I<i<¢
nzp
From the above description of Ker y, the second part of the lemma follows.
(Observe that f— ® f4 is T-invariant.) O

4.1.3 Remarks. (a) In the above lemma, assume that R is a finitely generated k-
algebra. Then, for any ¢ € Endr(R), the B-submodule of Endr(R) generated by
¢ is automatically a finite-dimensional algebraic B-module. To see this take a finite-
dimensional B-submodule V of R such that the multiplication map R” ®; V — R is
surjective for the subalgebra R” := {a” : a € R}. This is possible since R is a finitely
generated k-algebra and hence a finitely generated R”-module (Lemma 1.1.1). Thus,
under the restriction map, Endr(R) is a B-submodule of Homy (V! R)Y. From
this the remark follows.

(b) By the identities (4.1.2.1)—(4.1.2.2), for any B-canonical ¢ € Endr(R) such
that the B-submodule of Endr(R) generated by ¢ is a finite-dimensional algebraic
B-module (for a B-algebra R),andany 1 <i </¢,0<j <p—1,

M dj=¢ 9.

where ¢; ; is as in Definition 4.1.1.
Moreover,

) e xp =0, forj>p.
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We now “sheafify” the Definition 4.1.1 for any B-scheme X as follows.

4.1.4 Definition. Recall from 1.1.2 that for any scheme X, the absolute Frobenius
morphism F : X — X gives rise to an Ox-module structure F* : Oy — F,Ox.
Let Endr(X) := Hom(F,.Ox, Ox) be the additive group of all the Ox-module maps
F,.Ox — Oyx. Asin 1.1.2, F,Ox can canonically be identified with Oy as a sheaf
of abelian groups on X. Under this identification, however, the Ox-module structure
is given by f © g := fPg, for f,g € Ox. We define the Ox-module structure on
Endp(X) by (f *¥)s = ¥ (fs), for f,s € Ox and ¥ € Endp(X). In particular, the
k-linear structure on Endr (X) is given by

(zxY)s = Y (zs) = 2/PY(s),

for z € k, ¥ € Endp(X) and s € Oy.
If X is an H-scheme for an algebraic group H, then H acts k-linearly on Endr (X)
by
(hsy)s = h(y(h~'s)), for h € H 4 € Endp(X) and s € F,Oyx,

where the action of H on F,(Oyx is defined to be the standard action of H on Oy
under the identification F,Oyxy = Oy (as sheaves of abelian groups). Moreover, for
he H, f e Oxand ¢ € Endr(X),

hos (f *§) = (hf) * (h* ).

Let X be a B-scheme and let ¢ € Endr(X). Then, ¢ is called B-canonical if it
satisfies the following:

(a) ¢ is T-invariant, i.e.,
tx¢p=¢, forallreT.

(b) For any simple root o;, 1 <i < ¢, there exist ¢; ; € Endp(X),0<j < p—1,
such that

p—1
(D Eai(Z)*¢=ZZJ*¢,~,j, forall z € G,.
=0

In fact, as in 4.1.1, if we only require that ¢; ; : Ox — Ox are additive maps
satisfying (1), then automatically ¢; ; € End(X).

A splitting ¢ € Endp(X) (see Remark 1.1.4(1)) is called a B-canonical splitting if
¢ is B-canonical.

As in 4.1.1, it is easy to see from (a) that, under the identification F,Ox = Oy,
o(Ox(A) C OX(%), for any A € X*(T), where Ox(A) C Oy denotes the subsheaf
of T-eigenfunctions corresponding to the weight A, i.e., on any 7 -stable open subset
Vof X, Ox(M(V)={f € Ox(V) :t- f = A(t) f, forallt € T}. In particular,

A
2) ¢(Ox())) =0, unless ; € X*(T).
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4.1.5 Remark. Instead of the terminology “B-canonical,” the term “semi- B-invariant”
would have been more appropriate.

Recall [Kem-78, §11] that for a B-scheme X and a B-linearized quasi-coherent

sheaf S on X, there is a natural action of the divided power eg') on S forany n > 0 and

any root vector ey € gy (fora € AT).

Since Endr (X) is an algebraic B-module by [Har-77, Chap. III, Exercise 6.10(a)]
and [Kem—78, Theorem 11.6(a)], following the same proof as that of Lemma 4.1.2, we
get the following.

4.1.6 Lemma. Let X be a B-scheme and let ¢ € Endp(X).
D Then, ¢ is B-canonical iﬁ‘ei(") x¢p =0 foralll <i <landn > p
and, moreover, ¢ is T -invariant.
Thus, ¢ is B-canonical iff there exists a B-module (k-linear) map

04 : StQk(p—1)p — Endr(X)
such that 04 (f— ® fy) = ¢.
4.1.7 Remark. Similarto Remark4.1.3(b), we see that fora B-canonical ¢ € Endr(X),
(1) ¢ij=e’ xp, foranyl <i<f,0<j<p—1and
) e xp =0, forall j > p,
where ¢; ; is as in Definition 4.1.4(b).

4.1.8 Proposition. Let R be a B-algebra and let ¢ € Endfr(R) be B-canonical. Then,
foranyn >0and1 <i <{,

M ¢(e§pn)s) = e,-(n)fb(s), foralls € R.
In particular, ¢ takes B-submodules to B-submodules.

Proof. Since ¢ is B-canonical, forany z € k and s € R,

p—1
) (ea; (=2P) % p)s = Y (=) i j (s),

Jj=0
for some ¢; ; € Endr(R). On the other hand

(g0, (=2P) % @)s = &a; (—2") (P (60, (2P)s))
= Z (=1 zpm efm)(qﬁ(z”"ef")s))
m,n>0

D (=" ™ (pes)).

m,n>0

3)



116 Chapter 4. Splitting and Filtration

Since the highest power of z in the right side of (2) is p — 1, we see from (3) (by
collecting terms involving z¢ for d € pZ, ) that

) B(s)= Y (=D (p(ef"s)).

m,n>0

Moreover, by (2)-(4), forany0 < j < p — 1,

(5) (=) ¢ j(s) = p(es).

Now,

(©) sai(—z”><2¢(<z”)”” el-(”’”s)> = 0 D" (p(e"s)).

n>0 m,n>0

Combining (6) with (4) we get

Y P p(ef"™s) = £q,P) B (5)

n>0

=Y e (@ (s)).

n>0

Equating the coefficients of the above equality, we get
¢(€§pn)s) = E,gn)(fﬁ(S)), forall n > 0.

This proves (1).

By (1), we see that the image of any B-submodule N of R under ¢ is closed under
each ei(") and thus under g4, (z), for any z € k. Moreover, ¢ being T-equivariant,
¢ (N) is stable under 7. Thus, ¢ (N) is stable under B; B being generated by 7" and
{eq;(z); z € k, 1 <i < ¢£}. This proves the proposition. O

4.1.9 Remarks. (a) For any B-algebra R and B-canonical ¢ € Endr(R), we have, by
the identity (4.1.8.5),

(1) ¢ij(s) = (1) p(es), foranyl<i<t,1<j<p—1landseR,

where ¢; ; is asin (4.1.1.5).

(b) We have the following converse of Proposition 4.1.8. Let R be a B-algebra
and let ¢ € Endp(R) be a T-invariant element such that ¢ satisfies (4.1.8.1) for all
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1 <i <{andalln > 0. Then, ¢ is B-canonical. To show this, by (4.1.8.3),

(=P % @)s = 30 (1) P (P D))
m,n>0
0<j=<p-1

= 2" e (g es)

d d p—1 ]
(G @) G
d>0 “m=0 j=0
p—1
= sz qb(ei(j)s).
j=0

This proves that ¢ is B-canonical.

As in Section 2.1, let B~ be the Borel subgroup of G opposite to B containing
the maximal torus 7. Then, similar to the notion of a Frobenius-linear endomorphism
¢ € Endr(R) of a B-algebra R to be B-canonical, we have the notion of B~ -canonical
¢ € Endr(R) of a B~ -algebra R.

4.1.10 Proposition. Let R be a G-algebra and let ¢ € Endr(R) be B-canonical. As-
sume further that the G-submodule of Endp (R) generated by ¢ is a finite-dimensional
algebraic G-module. (This condition is redundant if R is a finitely generated k-algebra,
(see Remark 4.1.3(a).)) Then, ¢ is automatically B~ -canonical.

In particular, ¢ takes G-submodules to G-submodules.

Proof. By (4.1.3.2),for1 <i <¢,

(D ei(j)*¢=0, for any j > p.

Moreover, since ¢ is T-invariant, by Exercise 4.1.E.1,
fl.(j) *¢ =0, forany j > p.

Thus, by (4.1.2.1), ¢ is B~ -canonical.
Since the group G is generated by its subgroups B and B, by Proposition 4.1.8,
¢ takes G-submodules to G-submodules. O

The following example provides an important class of B-algebras.

4.1.11 Example. Let X be a scheme and let £ be a line bundle on X. Consider the
Z.-graded algebra (as considered in 1.1.12):

(1) R =R(X, L) = EBHO(X, £

n>0

under the standard product obtained by the multiplication of sections.



118 Chapter 4. Splitting and Filtration

If X is a H-scheme and £ is a H-linearized line bundle on X, then each HO(X, £")
is an algebraic H-module (cf. [Kem—78, Theorem 11.6]) and thus R, is a H-algebra,
where H is any affine algebraic group.

4.1.12 Definition. Let X be a scheme and let ¢ € Endr(X). Then, for any line bundle
L on X, ¢ gives rise to an additive map ¢ : Rz — Rg as follows. (In fact, ¢ is
obtained from a sheaf morphisms ¢,m : LP — L™ of sheaves of abelian groups by
taking global sections.)

If n is not divisible by p, we set

(D or =0.

1HO(x, £)
On the other hand if n = pm, as in Section 1.2, there is an isomorphism of sheaves of
abelian groups on X

Epm i FoOx @0y L™ = LP", f Qs> fsP,

for f € F,Ox ~ Ox and s € L™. Thus, the Frobenius-linear endomorphism ¢ :
F.Ox — Ogx gives rise to the Ox-module map

¢) ® Iﬁm N F*OX ®OX Lm —> Lm

and thus using the isomorphism &, of sheaves of abelian groups, we get a sheaf
morphism (of sheaves of abelian groups)

aﬁm . Epm — ﬁm

Taking the global sections, we get a homomorphism of abelian groups
HO(X, L£rmy — HO(X, L™). This is, by definition, the map qb[;‘HO(X comy*

As we will see in the proof of Lemma 4.1.13, ¢, € Endp(Ry).

4.1.13 Lemma. Let X be a B-scheme and let L be a B-linearized line bundle on
X. Then, for any B-canonical ¢ € Endp(X), the induced map ¢y : Ry — R is
B-canonical.

Moreover, if ¢ is a splitting, then so is ¢ (i.e., po(1) = 1).

Proof. We first prove that ¢, is Frobenius-linear, i.e., for a € HO(X, L"), b €
HO(X, £™),

(1) ¢r(al’b) = adr(b).
If m is not divisible by p, then ¢, (a’b) = 0 = ¢, (b) and thus (1) is satisfied. So,

assume that m is divisible by p. Take a nowhere vanishing section s of £ on a small
enough openset V C X. Then, any section a of H O(V, L") can be writtenasa = fs",
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for some f € HO%(V, Ox), and also b € H°(V, £™) can be written as b = gs™, for
some g € HO(V, Ox). Thus, denoting Ly by Ly,

bry(@’b) = ¢, (fPgsP"™™)
= p(frg)s" "
= fp(g)s"tr
=adc, (D).

This proves (1).

Since ¢ is B-canonical (in particular, T-invariant), it is easy to see that ¢ is T-
invariant. So, we just need to check the property (c2) as in 4.1.1. As above, take a
nowhere vanishing section s of £ on a small enough open set V. C X. Then, any
section a € HO(V, L™P) can be written as a = fs™”, for some f € HO(V, Ox).
Thus, forany 1 <i < ¢ and 7 €k,

(e0;(2) % pr)a = €q, (2) (P (q; (—2)a))
= o0, ()@ ((6ay (=) ) e (=2)9)"™) )
= 0, (@) ((# 60 (=2) 1)) 6w (=2)9)" )
= (6o () % 9) ) ™

p—1
= Z((bi,j(zj f))s™, since ¢ is B-canonical
Jj=0

p—1
=Y of @),
=0

where the Frobenius-linear endomorphism d)fj : Rz — Rp is, by definition, (¢;, ;) 2.
This proves the lemma. O

4.1.14 Lemma. Let X be a smooth H-scheme for an algebraic group H. Then, the
isomorphism (defined in 1.3.7)

7: H'(X, wy ) — Endp(X)

is a k-linear H-module isomorphism, where the notation Endr(X) is as defined in
4.14.

Proof. Let{t1, ..., t,} be a system of local parameters on an open set V C X and let
dT be the volume form df; A --- A dt, on V. Then, for any s € HO(X, a)}(_‘"), by

definition
T(f6,dT)

is) f = T

, for f e T(V, Ox),
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where sjy = 6 (dT)'~P and 7 is the trace map defined in 1.3.5 (see also Lemma 1.3.6).
By the definition of 7, it is easy to see that ((s) € Endr(X). Moreover, from the
definition of z, it follows easily that it is a k-linear H-module map. O

4.1.15 Theorem. For any standard parabolic subgroup P C G, there exists a unique
(up to nonzero scalar multiples) nonzero B-canonical ¢ € Endp(G/P).

Moreover, this ¢ is a splitting of G/ P (up to scalar multiples) compatibly splitting
all the Schubert subvarieties and the opposite Schubert subvarieties { X ,I;, X 5 Ywew.

Proof. As in the beginning of Section 3.1,
(D) wG/p = cP (—BP), as G-equivariant bundles,

where §p :=p +w f 0, wf being the longest element of the Weyl group Wp of P.
Thus, by Lemmas 4.1.6 and 4.1.14, it suffices to prove (for the first part of the
theorem) that the dimension of the B-module maps

) dimHomB(St ®k(p—1)p» HO(G/P, EP((p — 1)8p))) =1.
Now,

Hom g (St ®k(p—1)p, HX(G/P, LF ((p — 13p)))
~ Hompg (St, HG/P, LY (p — 1)ép)) ® k_(,,_l)p)
~ Homg (St, H*(G/P, L ((p — 3p)) ® St),
by [Jan—03, Part I, Propositions 3.4 and 3.6]
3) >~ Homp (St, k_(p—1)5, ® St), again by [loc cit.].

But St is generated as a B-module; in particular, as a P-module, by its lowest weight
vector f_ of weight —(p — 1)p. Moreover, the weight space of St corresponding to
the weight (p — 1)ép — (p — 1) p is one-dimensional since

(p—-D8p—(p—Dp=(p-buwlp.
Thus, by (3), we get
4) dim Hom g (St ®k(p—1)p, H(G/P, LT (p — DSp))) < 1,

proving the uniqueness of ¢.

To prove the existence of ¢, we first take P = B. By Theorem 2.3.1 and Lemmas
4.1.6 and 4.1.14, there exists a B-canonical splitting of G/ B compatibly splitting all the
Xw, Xw. Butthen, by Exercise 4.1.E.3, G/ P admits a B-canonical splitting compatibly
splitting all the X©, XP by Lemma 1.1.8. This proves the reverse inequality in (4) and
so the theorem is fully established. O



4.1. Canonical splitting 121

4.1.16 Definition. Let X be a scheme and let Y C X be a closed subscheme. Then,
¢ € Endp(X) is said to be compatible with Y if

(1 ¢(F:Zy) C Iy,

where Zy C Oy is the ideal sheaf of Y. Clearly such a ¢ induces ¢y € Endp(Y).

Assume further that X is a B-scheme and Y C X a (closed) B-stable subscheme.
Then, for a B-canonical ¢ € Endr(X) which is compatible with Y, the induced en-
domorphism ¢y € Endr(Y) is again B-canonical. To see this, let End g (X, Y) be the
B-submodule of End f (X) consisting of those ¢ € Endr(X) such that ¢ is compatible
with Y. Then, the induced map

Endr(X,Y) — Endp(Y), ¢ — ¢y,

is a B-module map. Thus, if ¢ € Endp (X, Y) is B-canonical, so is ¢y by Lemma
4.1.6.

For a B-scheme X, let End#"(X) be the linear subspace of End z(X) consisting of
B-canonical Frobenius-linear endomorphisms of X.

4.1.17 Proposition. Let X be a B-scheme. Then, there exists a “natural” injective
map (described in the proof below)

® : End$™"(X) — End$¥"(X),

where X = G x B X.

Moreover, © takes a B-canonical splitting o of X to a B-canonical splitting & of
X which compatibly splits X = e x X C X and such that 6\x = o.

In fact, for any o € End$@"(X), © (o) is compatible with X and ® (o) x = 0.

Proof. By Lemma 4.1.6, we have the isomorphism
End%‘n(X) >~ Homp(St, Endr(X) ®@ k_(p—1)p),

taking ¢ > 6, such that 65(f_) = ¢ ® 1, where f_ € St is a nonzero lowest weight
vector, 1 is a nonzero element of k_(,_1), and Homp (M, N) denotes the space of all
the k-linear B-module homomorphisms from M to N. Together with the Frobenius
reciprocity, this yields the isomorphism

End$¥"(X) ~ Homg (St, Ind§ (End  (X) ® k—(p—1)p)),

where, for a B-module M, Indg(M) denotes the space of global sections
HY(G/B, L(M)). Composing the above isomorphism with the evaluation at f_, we
obtain the injective map

@ : End$"(X) — Ind§ (Endr(X) ® k—(p—1)p)

of weight —(p — 1)p with respectto T.
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We provide a geometric interpretation of @ as follows. Let X' be the scheme
associated with the ringed space (X, O)’}). Then, X’ is a B-scheme; we put X’ :=
G xp X'. This is a G-scheme, equipped with the projection 7 : X — G/B and the
inclusion i : X " — X’. We may regard X’ as the scheme associated with the ringed
space (X, Og/p ®O§/B (’)4;). (Indeed, both are G-schemes mapping to G/ B, with fiber
at the base point the B-scheme X'.) So, the structure sheaf O, strictly contains Og.

Note that i* yields an equivalence from the category of G-linearized coherent
sheaves on X', to the category of B-linearized coherent sheaves on X'. This is proved in
[Bri—03b, Lemma 2]. Here is the construction of its inverse. Consider the pullback G of
a B-linearized coherent sheaf F on X’ to G x X’ under the second projection. Then, G
is G x B-linearized, for the action of G x B on G x X'by (g, b)(h,x) = (ghb™", bx).
Since the quotient G x X’~—> G x g X' = X’is alocally trivial B-bundle, G descends to
a G-linearized sheaf on X’. One checks that the pullback of this sheaf to X’ (identified
with B x g X') is the original sheaf F. The inverse of i* will be denoted 1 na’g; then

I'(X', Ind§ F) = nd§ T (X', F),

for any B-linearized coherent sheaf F on X’. -
Put £ := n*L((p — 1)p); this is a G-linearized line bundle on X’. Further,
i*L = Oxf X k—(p—l)p = O§ [ k—(p—])p- Thus,

i*Hom@)? (O, L) = Homo,, (Ox, i*L) = Endr(X) Q k—(p—1)p,

and hence
Homo (O, L) = Ind§ (Endr(X) ® k—(p—1)p)-

Taking global sections, we obtain an isomorphism
Homo_ (O, L) = Ind§ (End f (X) ® k—(p—1)p)-
Thus, we may regard ® as an injective map
End@"(X) — Hom@;, (O3, L),

still denoted by ®. For any o € End%"(X), its image ® (o) is a T-eigenvector of
weight —(p — 1)p, killed by all ¢, n > p. This follows from the definition of ®,

since e}")f_ =0in Stforalln > p.

Next, recall that the canonical map Og,p ®; St — L((p — 1)p) (obtained from
the definition St := I'(G/B, L((p — 1)p)) restricts to an isomorphism of sheaves of
OZ/B-modules (’)g/B ®St >~ L((p — 1)p) (this is a reformulation of Exercise 2.3.E.1).

This yields an isomorphism of G-linearized sheaves of O%—modules:
p ~
O)? ®Stx~ L.

Let u be a T -eigenvector of weight 2(p — 1) p in the restricted enveloping algebra of U.
Then, u is unique up to scalars; it is U-invariant, and maps f_ to f, (see, e.g., Exercise
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2.3.E.2 for the latter assertion). Thus, u acting on £ maps (’); ® St to (’);ﬁf ® kfy
yielding the map

Hom@;/ O3,L) — Homo§ O3, O;i( Rkfy) = EndF()?) ® k(p—1)p-

(Here we have used the fact that the action of u on L is O%-linear since any root vector
kills Og .) We thus obtain a map

¥ : Homo, (O3, £) — Endy(X)

which is U-invariant, of weight (p — 1)p. So, ® := ¥ o ® maps End3"(X) to
End$* (X).

Now, let 0 € End?"(X) be a splitting of X, that is, 0 (1) = 1. Then, one checks
that ® (o) (1) = f—, where f_ € St =T'(G/B, LU(p—1p))is regarded as an element
of F(X’ L). It follows that ®(c)(1) = 1. Thus, ® (o) is a splitting of X.

Further, by construction, ® (o) : O — L maps the ideal sheaf Ty to Zx- L, and the
map induced from ® (o) on Oy identiﬁes witho® f— : Ox — i*L = (9§ ®k_(p—1)p-
Finally, as Zx- L is stable under U, and u is in the restricted enveloping algebra of U,
we have that u maps Zy’ L to the kernel of the induced map u (L) — u(i*L) = i*u(L),
that is, to the kernel of the map O;i{ Rkfy — (9§ ®kf+. It follows that ® (o) maps Zx

to Iﬁ, and restricts to o on X. In particular, ® is injective, proving the proposition. [

4.1.18 Remarks. (i) Even though we do not prove it, the map ® induces a bijection
between the B-canonical splittings of X and those B-canonical splittings of X which
compatibly split e x X C X (cf. [Mat-00, §5]).

(i1) There is a different proof of Proposition 4.1.17 given in [Van-01, §4], which
relies on representation-theoretic methods.

4.1.E Exercises

(1*) Let V be an algebraic representation of SLy (k), where k is any algebraically closed
field. Let v, € V be fixed under the maximal torus T := {(Z 0 ) 1z € k*}. Assume

0z
that e™v, = 0 for all n > m (for a fixed positive integer m). Then, prove that
f(")v,, =0, for all n > m, where e := ( ) f = ( ) € sh(k).
(2) For any sequence tv = (s;,, ..., s;,) of simple reflections, show that the BSDH va-

riety Zy, admits a unique B-canonical splitting, compatibly splitting all the subvarieties
Zy,, for any subsequence o of tv.

Hint: This exercise can be obtained easily by using Proposition 4.1.17 and Remark
4.1.18(i). However, we outline a direct proof. For the existence, by Lemmas 4.1.6 and
4.1.14, it suffices to construct a B-module map

¢ : St@k(p 1)p—>H (Zm, 'n),
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suchthat¢ (f-® f)isasplitting of Z\,, where f isasinLemma4.1.2. By Proposition
2.2.2, as B-linearized line bundles,

wy " 2 07, [(p = DZn]| ® L ((p — 1)p) ® K(p—1)p-
The map 6y, : Zny, — G/ B, defined by (2.2.1.6), induces the B-module map
O+ St = H(Zwn, Lo ((p — 1)p)).

Also, consider the canonical section o € H%(Zy,, Oz.,[(p — 1)0Z,]) (with the asso-
ciated divisor of zeroes (0)g = (p — 1)0Zy). It is easy to see that o is B-invariant.
Combine 63, and the section o to construct ¢. Now, show that ¢ (f_ ® f4) is a splitting
of Z, compatibly splitting all the subvarieties Zy,, by using Proposition 1.3.11. To
prove the uniqueness assertion, use Exercises 1.3.E.3, 3.3.E.2 and Proposition 2.2.2.

(3*)Let f : X — Y bea B-equivariant morphism of B-schemes such that /,Oy = Oy.
Assume that X admits a B-canonical splitting. Then, show that the induced splitting
of Y given by Lemma 1.1.8 is again B-canonical.

(4) With the notation and assumptions as in Proposition 4.1.17, show that for any
B-canonical splitting o of X, which compatibly splits a closed B-stable subscheme
Y C X, the induced B-canonical splitting & := ®(c) of X := G x g X compatibly
splits the closed subschemes {BwB xp X, G Xp Y}yew.

(5) Let X, Y be two G-schemes which admit B-canonical splittings. Then, show that
the product G-scheme X x Y also admits a B-canonical splitting. (This, in general, is
false for B-schemes.)

Hint: Construct a G-module map St ® St — St®? ® St®2 under the diagonal action
of G.

(6*) Analogous to Theorem 4.1.15, show that, for any parabolic subgroups P, Q of G,
G/P x G/Q admits a B-canonical splitting, compatibly splitting all the G-Schubert
subvarieties {Xj’Q}weW.

(7) Letn > 1. Show that the splitting of (G/B)" given by m, (6,) in the proof of Theo-
rem 2.3.10 is a B-canonical splitting. Recall from the proof of Theorem 2.3.10 that this
splitting compatibly splits all the subvarieties { X, x X", X7 x X, x X"7279; w €
W,0<qg <n-— 2}.

Hint: Construct a G-module map St ® St — St®" @ St®” under the diagonal action
of G.

4.2 Good filtrations

We continue to follow the notation from Section 2.1. In particular, G is a connected,
simply-connected, semisimple algebraic group over an algebraically closed field & of
characteristic p > 0, B C G a Borel subgroup with the unipotent radical U and let
T C B be a maximal torus.
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All the modules in this section will be assumed to be rational, so we will abbreviate
rational H-modules simply by H-modules, for any affine algebraic group H.

4.2.1 Definition. For any dominant > € X*(T), define the (rational) G-module

(1) V(1) := H(G/B. L(=w,})),

and recall the definition and elementary properties of the Weyl module

2) V() = V(—woh)",

from Section 2.1, where w, is the longest element of W. We have by Theorem 3.3.8,
3) ch V(1) = ch V() = Dy, ("),

where tv,, is a reduced word with a(tv,) = w,.
A filtration of a G-module V by G-submodules:

FO=O) cF'cF>c...

is called a good filtration of V if
(c1) Uj F/ =V, and
(c2) Forany j > 1, as G-modules,

(4) Fl/Fi~! :@V(X) Qk A%, j),
]

for some trivial G-modules A (A, j), where the summation runs over the set of dominant
integral weights X*(T)*.

Choose an injective additive map, called a height function, h : X*(T) — R such
that

5 h(a;) > 0 for all the simple roots ;.

Since the root lattice @f: | Za; is of finite index (say d) in X*(T), the injectivity of
h is equivalent to the condition that {h (o), ..., h(cg)} are linearly independent over
Q. Since h(a;) > 0,

(6) h(A) < h(u) fori < .

Moreover, since for any » € X*(T)", dA = Y n;a; with n; € Z (Exercise 4.2.E.4),
we get that £(X*(T)™) is a discrete subset of R,.. This allows us to totally order the
set X*(T)T as

7 {Ax1 =0, A2, A3, ...} such that h(A;) < h(Aj4+1), fori > 1.

For any B-module M, define a filtration of M (depending upon the choice of the
height function £) as follows:

(8) M=oy cM cMm?c..-,
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where M/ = M/ (h) is the largest B-submodule of M such that any weight A of M/
satisfies:

9 h(A) = h(2j).

Clearly, | M J = M. The filtration (M7) j=0 is called the h-canonical filtration of M.
When the reference to the height function 4 is clear, we simply write the canonical
filtration and drop the adjective “h.”

For any B-module M and A € X*(T), let M}fB) be the B-eigenspace of M with
weight A, i.e.,

(10) MP = {m € M : bm = A(bym, forall b € B}.

Then, for a G-module M and A € X*(T)™, by the Frobenius reciprocity, there exists a
k-linear isomorphism

(11) i) : Homg(V(h), M) > MP | ¢ ¢(vp),

where v;, is a nonzero B-eigenvector of V (A) with weight A.
For any A € X*(T)™ and G-module M, set

(12) hO(M, 1) := dim M® = dim Homg (V (1), M), and
(13) RY(M, ) := dim Ext5(V(}), M),

where the k-space Exth (N, M), for G-modules N, M, has for its underlying set the set
of isomorphism classes of extensions of rational G-modules:

O—>M—>1\7[—>N—>O.

Equivalently, it is the “Ext!” functor in the category of rational G-modules. We allow
hO(M, ») and h' (M, 1) to be oo.
Define a partial order < in the group algebra A(T) := Z[X™*(T)] by declaring

(14) Z aAe)“ < Z b;LeA & ay < by forall &.
reX*(T) reX*(T)

A (rational) T-module M is called an admissible T -module if all the weight spaces
of M are finite-dimensional. For an admissible 7-module M, we define its formal
character ch by

(15) chM = Z (dim M;)e* € A(T),
AEX*(T)

where M, is the weight space of M corresponding to the weight A and A(T) is the
set of all the formal linear combinations ) rex*() N se* with ny, € Z (where we allow
infinitely many of n,’s to be nonzero).
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4.2.2 Lemma. Let M be a G-module and let . € X*(T)T.
(a) IfEthG(V(A), M) # 0, then there is a weight i of M such that (v > A.

(b) IfEXt}; (M, V(X)) # 0, then again there is a weight i of M such that ;1 > X.
In particular, for any A, i € X*(T)™, we have

(¢) Extg(V(3), V(W) = 0.

Proof. (a) Consider a nontrivial extension in the category of rational G-modules:
(1) 0> M- Vi) S v — 0.

Take a preimage v, € \76\/) of the highest weight vector v, € V(X) such that v is

a weight vector (of weight 1). Then, v, can not be a B-eigenvector; for otherwise,

the sequence (1) would split. Thus, the B-submodule of ‘7()6 generated by U, must

contain nonzero weight vectors v of weight u > A. Of course, v € i (M), proving (a).
To prove (b), take a nontrivial extension

) 0— V() —> M — M — 0.

Choose a T-module projection S8 : M — ku,» suchthat foi # 0. Assume, if possible,
that there does not exist any weight p of M such that 4 > A. Then, it is easy to see
that 8 is a B-module map. On inducing g, it gives rise to a G-module map /3 M —
V(A). By the Frobenius reciprocity, Homg (V(4), V(1)) =~ Hompg(V (L), ky, ) is one-
dimensional and hence /§ oi = Iy, (up to a nonzero scalar multiple), splitting (2).
This is a contradiction, proving (b). (Observe that, if M is finite-dimensional, (a) and
(b) are equivalent by the duality of the Ext functor.)

(c) Assume, if possible, that Extlc;(V(k), V(w)) # 0. Then, by the (a) part, & > A
and, by the (b) part, A > w. This is a contradiction, proving (c). O

4.2.3 Proposition. Let M be a G-module. Then, for the canonical filtration (M) >0
of M, we have the following.
(a) Each M/ is a G-submodule of M.
(b) There is a G-module embedding, for any j > 1,
J

B)
T VO @ My

Ty
where M )(f) is equipped with the trivial G-module structure.
In particular, if M is finite-dimensional,

(1) chM < > KM, 2)chV().
rex*(T)+

(c) The filtration (Mj)j is a good filtration of M iff each 7 is an isomorphism.
In particular, if M is finite-dimensional, (M) j is a good filtration of M iff we have
equality in (1).
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Proof. (a) Let g, Upg, Uy— be the hyperalgebras over k of G, B and U™ respectively
(Section 2.1). By an analogue of the Poincaré—Birkhoff—-Witt theorem (cf. [Jan—03,
Part II, §1.12]),

Ug = Uy~ - Usp,

and thus, M/ being a B-submodule,
U - MT = 8ly,-
Since h(a;) > 0, any weight A of - - M/ satisfies
hr)) <h(O)) < h(2;), for some weight A of M.

Moreover, since il_G -MJisa _G-submodu_le of M;in pa_rticular, a B-submodule, by the
maximality of M/ we get M/ = g - M/ and thus M/ is a G-submodule of M.
(b) Consider the T-module projection onto the w,A j-weight space 7; : M/ —

Mz{;,,xj' Since M/ is a G-module and no weight of M/ is > Aj by (4.2.1.9), we get
that 77; is a B-module map, where the range ML{) A is equipped with the B-module
structure via the character w,A ; of B. Moreover, as vector spaces,

I~ ) iN(B) _ s(B)
2) Mw,,x ~ M (M/)Aj = M)\j .
Thus, oninducing frj, we geta G-module map 7 : M/ — V()& Mif), where M)(f)

J

is equipped with the trivial G-module structure. It is easy to see that 77| ok
M o

uvg)Lj

— V(&; )w(,k Rk M( ) is bijective and hence so is JT]| Mj — V(A ')A. R M(B)

Let K := Kerm;. Let u be a weight of K and let ut be the dominant weight in the
W-orbit of . Then, K being a G-module, u™ also is a weight of K. Since n” is

injective, u* # A;j and thus h(pt) < h(X;). From this we get that 2 (1) < h()‘/ 1)
proving that K C M J-1

Conversely, if p0551ble, assume that M/ _1¢K . Then, 7;(M J _1) # 0. Choose a
B-eigenvector of weight A in 7;(M/~!). Then, by the definition of M/~!,

3) h(X) < h(xj-1) < h(%)).

But, as observed in Section 2.1, V() has a unique B-eigenvector (up to scalar multi-
ples) and it is of weight A ;. This contradicts (3), showing that M/ —! ¢ K. Thus,

Kerm; = Mt

proving (b).
(c) If each 7 is an isomorphism, (M 7Y is a good filtration of M by definition.
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Conversely, assume that (M 7Yisa good filtration of M. Since V(A ;) has a unique
B-stable line and it has weight A j, we get from the injectivity of 77 ; that, as G-modules,
M
“4) ik V(Aj)® Aj, for some trivial G-modules A ;.
Moreover, from the isomorphism 7 I M {/ = V)  ® M?(»f) proved in the

(b) part and (2), it is easy to see that 7; induces an isomorphism between B-eigen
spaces:

(B
M (B)

- , (B)
(5) ( H)x, _(V(A,)(XJMM )x,- .

By Lemma 4.2.2(b) together with (4) and [Jan—03, Part I, Lemma 4.17], the image of
7 is a G-module direct summand in V(4;) ® M)(Lf). But, since 7; is injective, by
using (5) we get that 77; is an isomorphism. This proves the proposition. O

4.2.4 Definition. (a) Forany A € X*(T)" and G-module M admitting a good filtration,
the dimension of M " is called the mudltiplicity of V(3.) in M. The multiplicity of V()
in M is the number of times it occurs in any good filtration of M (Exercise 4.2.E.5); in
particular, this number is independent of the choice of the good filtration of M.

(b) For any algebraic group H, define the H x H-module structure on the affine
coordinate ring k[ H] as follows:

(1) ((h1, ha)-f)(h) = f(hy hhy), forh, hy, hy € H and f € k[H].

The restriction of this action to H x 1, resp. 1 x H, is called the left, resp. right,
regular representation of H, and denoted respectively by k[H], and k[H],. Thus,
k[H], denotes the representation of H in k[ H] defined by

2 (h1 - () = [y 'h).

Let M be a (rational) H-module and let M"Y be the trivial H-module with the
same underlying vector space as M. Then, there exists an H-module embedding ¢ :
M — k[H]; @M 1V defined as follows. View k[H]; @M iV a5 the space of morphisms
¢ : H — M under the H-module structure given by

(h1-¢)h = ¢p(hy '), forh, hy € H.

Now, define ¢ by
e(m)h = hilm, forhe Hom e M.

Clearly, ¢ is an H-module embedding.

In the following, G is as in the beginning of this section.
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4.2.5 Theorem. The G x G-module k[G] admits a filtration by G x G-submodules:
F=0cF' cFc .,

such that | J; Fi =k[G] and, forall j > 1,

T >~ V() @ V(—wouj), as G x G-modules,

where the first copy of G acts only on the first factor V(i ;) and the second copy of G
acts only on the second factor and {j} is some bijective enumeration of X T+,
In particular, {F}; is a good filtration of the G x G-module k[G].

Proof. We apply Proposition 4.2.3 for the group G replaced by G x G. We take B x B,
resp. T x T, for the Borel subgroup, resp. maximal torus, of G x G. Choose a height
function i : X*(T) x X*(T) — Rasin4.2.1. This gives rise to the canonical filtration
of the G x G-module M = k[G] by G x G-submodules

M=) cM cM>cC---.
Then, by Proposition 4.2.3(b), we have a G x G-module embedding
M (BxB)
(D T — [V()»j)@)v(ﬂj)]@M(kj’Mj),
where {(Aj, 1)} j>1 is the enumeration of X*(T)* x X*(T)™" given by (4.2.1.7).
We next prove that for any (A, u) € X*(T)™ x X*(T) T,
) hOM, (A, ) =0 if u # —w,A, and
3) RO(M, (h, —woh)) = 1.

Since UTw,U C G is an open (dense) subset, M — k[UT w,U], where T w, denotes
T w, for any coset representative w, of w, in N(T'). Thus, the U x U-invariants

B
MYV < HUTw,U1Y*Y ~ k[Tw,] = k[T] = @ k.,
reX*(T)

where the isomorphism g is induced from the variety isomorphism 7 — Tw,, t >
tw,. Observe next that, for the character A : T — k*, ,3’1 () is an eigenvector for the
action of T x T with weight (—X, w,)) since
((t1.12) - (B™'2)) (s3b) = (B~ W) (t] " s1ibota)
= (B~'0@1  sibotaib, i)
= At (BT W) (s1b,) (o) (£2).
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This shows that, for (A, u) € X*(T)* x X*(T)™,

4@ dim M((f:)B) =0 unless 4 = —wyA, and
. BxB
(5) dimMZD <1

For A € X*(T)T, let vy, be anonzero highest weight vector of the Weyl module V (1)
and let f_,, , € V(1)* be a nonzero B-eigenvector (of weight —w,A). Consider the
function 6, : G — k defined by g — f_y,2 (g_lvk). Then, 6, is a B x B-eigenvector
of weight (A, —w,A) and thus we have equality in (5), i.e.,

(BxB)

(6) dim Mg sy =

1 forany A € X*(T)™.

Taking the associated Chevalley group scheme G7, over Z (i.e., the split form of G over
7)), we have, for any ring R,

RIGR] =Z[Gz]®z R,

where G is the group of R-rational points of G7 and R[Gg] is its affine coordinate
ring over R. Thus, in our notation, Gy = G.

Analogous to the filtration {M/} ;>0 of k[G], we have the filtration {M/(Q)}; of
Q[Gg]. Now, for any j > 0, set

(7 M (Z) := M) (Q NZIGz].

Then, M/ (Z) is a finitely generated (and hence free) Z-module with

(8) rank M/ (Z) = dimg M7 (Q).

Clearly, Z[G7]/M J (Z) is torsion free and thus we have a canonical injection
M/ (Z) ®; R < RIGkgl.

In particular,

9) M (Z) ®z k — M.

By (1), (4) and (6), for any j > 1,

(10) M7 %M = pj = —wohj,

and, similarly,

(11) M/(Q) # M Q) & pj = —woh;.

Let 7(1) be the smallest integer such that M”(1) £ 0, (2) be the smallest integer such

that M"® D M"D and so on. Set F/ = M”() for any j > 1. Then, by (1), (4), (6),
Fi

(12) 7t < V) ® V=won)).
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where {{t1, 2, ...} is a bijective enumeration of X*(7)™.
Similarly, letting ‘ '
F(Q =M,

by (10), (11),
(13) FI=HQ) ¢ F(Q,

and, moreover, we have a G@ X GQ—module injection

0. F @

— VOuj) @ Ve(—w,pu;),

where VQ(uj) isthe same as V(u ;) over the base field Q. Since V@(Mj)(X)VQ(—wuuj)

is an irreducible Gg x Gg-module, by (13), JT;@ is an isomorphism for all j > 1.
Assume now by induction that 7! = M")(Z) ®z k, and 7; is an isomorphism

foralli < j — 1. Thus, n;.@ being an isomorphism, by (8), (9) and (12), we get that

Fi = M"9(Z) ®z k, and 7 j is an isomorphism. This completes the induction and
proves the theorem. O

4.2.6 Corollary. For any finite-dimensional G-module M,

(1) chM > Z (h°(M, 2) — ' (M, 1)) ch V().
reX*(T)+

Observe that, since M is finite-dimensional, h°(M, 1) is nonzero only for finitely many
A € X*(T)T and also, by Lemma 4.2.2(a), h' (M, ) is nonzero only for finitely many
A. Moreover, for any A, hO(M, 1) is clearly finite and hY(M, 1) is finite by (2)—(3)
below.

Proof. By 4.2.4, there is a G-module embedding ¢ : M — k[G], ® M™Y. Since M
is finite-dimensional, there exists a large enough F/ such that e(M) C F}* @ M"",

where {F/} is the filtration as in Theorem 4.2.5 and F ej denotes F/ considered only as
a G = G x e-module.
The exact sequence

0—>M—>.7-"Z"®Mtriv—>Q—>(),

where Q = (.7-';“’ ® M"Y /e(M), gives rise to the exact sequence (for any A €
X*(T)*):
@ |
0 — Homg(V (1), M) — Homg(V(A), F)* @ M™) —
Homg (V (1), Q) — Ext5(V(h), M) — Extl(V(), FP* @ M™) — ...
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By Theorem 4.2.5 and Lemma 4.2.2(c),

3) ExtL(V(L), Fr @ M) = 0.
Thus,
4) KoM, 2y — hO(F © M, 0) + h°(Q, %) — h' (M, 2) = 0.

Since {F/} is a good filtration of the G x G-module k[G] and also it is part of the
canonical filtration of k[G] (see Theorem 4.2.5 and its proof), we get by Proposition
4.2.3(c),
(5) chFlr oM™= 3" WFeM™ ) ch Vi),

reXH(T)+
and, by Proposition 4.2.3(b),
(©) chg< D h%Q.1)chV).

rex*(T)+

Combining (4)—(6), (1) follows. O

The following cohomological criterion for the existence of good filtrations is very
useful.

4.2.7 Theorem. For any finite-dimensional G-module M, the following are equivalent:

(a) The canonical filtration of M is a good filtration.
(b) There exists a good filtration of M.
(c) ExtL(V(W), M) =0, forall A € X*(T) ™.

Thus, for two finite-dimensional G-modules My, My, My & My admits a good
filtration iff both of M and M, admit good filtrations.

Proof. Of course (b) is a particular case of (a).
(b)=(c): Let FO ' = (0) c F'l c F> C --- bea good filtration of M. Then,
considering the long exact Ext sequence associated to the short exact sequence:

0 FI' 5 Fi & Fj/Fj*1 — 0,
and using Lemma 4.2.2(c), we get that
Ext5(V()), F/) =0 forall j and any » € X*(T)".

Thus, (c) follows by taking large enough j such that F/ = M.
(c)=(a): By Corollary 4.2.6, since hl(Mm, A) = 0 by assumption,

chM > Z hO(M, %) ch V().
reX*(T)+

Thus, (a) follows by applying Proposition 4.2.3 (b)—(c). O
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4.2.8 Remark. The above theorem continues to hold for an arbitrary (rational) G-
module M. The implication (b) = (c) follows by the same proof given above together
with [Jan—03, Part I, Lemma 4.17]. For the proof of the implication (c)=>(a), consider
the canonical filtration (M/) j=0 of M. Itis easy to see that for any j > O and A €
X*(T)*,

Homg (V (1), M) — Homg (V (1), M/M/)

is surjective. Thus, we get Extlc;(V()\), Mj) =0.
Consider the embedding, as in Proposition 4.2.3(b),
M B
7)o = V) ®M§j)

and let Q; be the cokernel. By (4.2.3.5) and (4.2.1.11), the induced map

M/
Home (V (1), W> — Homg (V (1), V0.)) © M}

is surjective and thus

M/
1
(1) Homg (V (1), Q) < ExtG(V(,\), W)
Assume by induction that 7, is an isomorphism for all 1 < m < j — 1 and use the
following vanishing for any A, u € X*(T)™:

) Extz;(V(k), V(u)) =0 forallg >0

(cf. [Jan—03, Part II, Proposition 4.13]) to show that

1 M/
3) Ext). (V(A), W) ~0.
To prove (3), consider the long exact Ext sequence corresponding to the short exact
sequence: _ ‘ o
0—> M~ M - M /M50,

Thus, from (1), we get that Homg (V (1), Q) = 0 and thus 7 is an isomorphism. This
proves that (M) is a good filtration of M.

4.2.9 Definition. Recall the definition of hyperalgebra !z from Section 2.1. A ${5-
module M is called a (g, B)-module if the g-action on M “integrates” to a rational
B-module structure on M, i.e., M is a B-module such that the associated action of {p
coincides with the restriction of the {{s-action. Fora ({g, B)-module M, let Mi, e C M
be the subspace of ig-finite vectors of M, i.e.,

(D) Mt :={v € M : dim(ig - v) < 00}.
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Then, by Verma’s conjecture proved in [CPS—80] and [Sul-78], Mjy, is the biggest
$g-submodule such that the $lg-action integrates to a rational G-action.

Fora B-module M and A € X*(T'), M is called A-isotypical if all the B-eigenvectors
of M have A as their weight.

For A € X*(T), define the tensor product B-module

2 I(A) =k[B/T]® ky,

where k[ B/ T]is a B-module under the left multiplication of B on B/T. Then, I (1) has
a unique line k; of B-eigenvectors. In particular, it is an indecomposable B-module.
Moreover, from the B-equivariant fibration B — B/ T, we get

3) kKiBl= € Iw).

neX*(T)

Further, for any algebraic group H, k[H] is an injective H-module in the category of
rational H-modules (cf. [Jan—03, Part I, Proposition 3.10]). This follows since, by the
Frobenius reciprocity [Jan—03, Part I, Proposition 3.4(b)], for any H-module M,

Hompygy (M, k[H]) >~ Homy (M, k)

under 6 +— e o6, where e : k[H] — k is the evaluation at 1. Thus, 7 (A) is an injective
B-module, and hence it is the injective hull (cf. [Jan—03, Part I, §§3.16-3.17]) in the
category of rational B-modules of the one-dimensional B-module k;, .

In fact, I (1) acquires the structure of a (g, B)-module by identifying

1) ~ H(Bw,B/B, L(—w,)))
under B/T — Bw,B/B,b mod T — bw, mod B and applying [Kem-78, §11].

4.2.10 Lemma. Let A € X*(T) and let M, N be two A-isotypical (8¢, B)-modules
(i.e., M, N are A-isotypical as B-modules). Then, any B-module map f : M — N is
automatically a {g-module map.

In particular, a A-isotypical B-module M admits at most one (L, B)-module struc-
ture extending the original B-module structure.

Proof. Since M, N are Ug-modules and g is a Hopf algebra, the space of all the
k-linear maps Homy (M, N) is canonically a {{g-module. Let f be a B-module map
and assume that it is not a ${g-module map. Then, f being a B-module map, there

exists a negative simple root vector f; = f, such that fl.(m) - f # 0 for some m > 1.
Take the smallest m, > 1 such that f, := fl.(m") - f # 0. Then, since fi(m) commutes
with eg;.) forany i # j,

(1) eg;;).f,,:o foralln > 1and j #i.

Moreover, by the s¢; commutation relation [Hum-72, Lemma 26.2],

2) egl_‘) - fo, =0 foralln > 1.
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Thus, f, is U-invariant and has weight —m,o;, where U is the unipotent radical
of B. Take a nonzero B-eigenvector v, € f,(M) (of weight A). Then, fo_l(kv(,)
contains a nonzero B-eigenvector of weight A + m,«;. This is a contradiction since
each B-eigenvector of M has weight A. Thus, f is a {{g-module map. O

4.2.11 Definition. Let A € X*(T)*. For a G-module M which is A-isotypical as a
B-module, define
Di(M) := H°(G/B, L(My,1)),

where the w,A-weight space My, ; of M is regarded as a B-module under the trivial
action of U. Then,
D, (M) ~ V() Q% Mgiavk, as G-modules,

where M}E)VA is the space My, with the trivial G-module structure. Thus, D, (M) is
A-isotypical. Moreover, the projection onto the w,A-weight space w : M — My, »
induces a G-module map iy : M — D; (M) (since M is A-isotypical, 7 is a B-module
map). Further, i)/ is injective. Otherwise, Ker iy, would contain a nonzero vector of
weight w, A (since Ker iy would contain a B-eigenvector of weight 1), a contradiction.
Since the G-module map i restricted to the weight spaces corresponding to the weight
W, A is an isomorphism, we get that iy, restricts to an isomorphism

() M, ~ (Dr(M)), .
Thus, i3 induces an isomorphism between U -invariants:
) MY ~ D, (M)Y.

4.2.12 Proposition. Let A € X*(T)" and let R = @nzo R, be a commutative asso-
ciative reduced graded G-algebra. Assume further that each R, is ni-isotypical as a
B-module and that

(1) R1 # D, (Ry).

Then, there exists y € Dp; (R,)\R, for some n > 0 such that y? € R,,.
(Observe that DR = @nzo Dy (Ry) is canonically a graded G-algebra canoni-
cally containing R as a graded G-subalgebra. Moreover, DR is a reduced algebra.)

Proof. Writing (R1)y,, as a direct sum of one-dimensional spaces, decompose Dj (R1)
as a direct sum of G-submodules each isomorphic with V(1). By the assumption (1),
there exists a G-submodule N C D, (R1) such that N >~ V(L) and N is not contained
in Ry. Take a nonzero x € Ny, C Rj. Since R is reduced, the subalgebra R*
of R generated by x is the polynomial algebra k[x] on one generator x. Let DR*
be the graded subalgebra ,., H°(G/B, L(R2)) of DR, where R} is regarded as a
B-module under the trivial action of U. Then, (DR¥); = N and

2) DR* ~ @ V(nA), as graded algebras.

n>0
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Consider the subalgebra $* := DR* N R of R. Then, we claim that the algebras
DR* and S* are finitely generated and the morphism 6 : Spec(DR*) — Spec S¥,
induced from the inclusion $* < DR*, is finite and bijective. Let A C DR be the
subalgebra generated by @,y Nws. and let Ay be the irrelevant ideal of LA. Since
L(}) is semi-ample (Exercise 3.1.E.1), by Lemma 1.1.13(i), the algebra DR* is a
finitely generated domain.

Moreover, the spectrum Spec (DR”) can be identified with the subset G - vy U{0} C
V(A)*, the affine cone over the image of G/B — P(V(L)*), gB +— g[v4], where
vy is a highest weight vector of V(A)*. Using the following variant of the Bruhat
decomposition:

G=|JwU B,
weW
for any ¢ € G we can find w = w, € W such that

guy(wx) # 0.

Since wx € Ay, the radical /A; - DR* = DR, where DR is the irrelevant ideal
of DR*. Since DR* is a finitely generated algebra; in particular, noetherian, we get
that ( Ay - DRY)" C Ay - DR* forsome n > 1. Thus, DR /(A4 - DR¥) is a finite-
dimensional vector space over k. This proves that DR is a finite .4-module. Since
Ny, C Ry, we have A C S*. In particular, DR” is a finite S*-module and thus S*
is a finitely generated algebra. This shows that the canonical map 6 : Spec (DR*) —
Spec S* is finite and surjective. To show that 0 is injective, it suffices to observe that
the stabilizers of the lines kv, and kv/, in G are the same parabolic subgroups, where
v/, is a highest weight vector of (N N Ry)*.

We first prove the proposition assuming that the algebra S* is not normal. Take its
normalization S*. Since DR is normal (Theorem 3.2.2), we get

S$* c §* c DR".

Moreover, from the bijectivity of 6 and since DR* is a finite $*-module, we get that
the induced map i : Spec (§*) — Spec (S*) is bijective and, of course, i (being
the normalization) is an isomorphism on a nonempty open subset. In fact, by the G-
equivariance, i is an isomorphism outside {0}. Thus, we get S; = S’f; for all large
enough n. Take a homogeneous y € S§¥\S* of maximal degree. Then, y” € R and
y € DR\R, proving the proposition in the case $* # S*.

So, assume now that S* is normal, i.e., $* = §* and consider the field K¢+ and
Kppg~ of fractions of the domains S$* and DR” respectively. Since (DR*); = N and N
is not contained in Ry, S* # DR*,so0is Kgx # Kppg«. Butthe extension Kgx C Kpp»
is purely inseparable, since 6 is a bijection. In particular, there exists a power g of p
with K%Rx C Kgx. Thus, we can find y € DR*\ S* such that y” € Kgx. But $* being
normal, we have y” € S§¥, proving the proposition in this case as well. O

4.2.13 Theorem. Let X be a G-scheme which admits a B-canonical splitting. Then, for
any G-linearized line bundle £ on X, the G-module H*(X, L) admits a good filtration.
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Proof. Let Y be the product space G/B x X under the diagonal action of G. Then,
Y has an open dense B-stable subset Y’ := Bw,B/B x X. Moreover, there is a
B-equivariant biregular isomorphism

(1) B/T — Bw,B/B, bT — bw,B.

Consider the G-linearized line bundle £ := ¢ X £ on Y , Where ¢ is the trivial line
bundle on G/B. Then, of course,

2) HOX, £") ~ HO(Y, £), as G-modules.
Define the graded B-algebra
C:= @ C,, where C, := HO(Y°, L"),
n>0

and the graded G-algebra

C:= @ C,, where C, := H(Y, Z").

n>0

Then, of course, C is a graded subalgebra of C. By [Kem-78, §11], C is a ({g, B)-
algebra.
We now break the proof of the theorem in several steps.

Step 1: Construction of the algebras C () and C ().
Fix a height function # : X*(T) — R asin 4.2.1. For any A € X*(T)™" define the
following graded subalgebras of C and C respectively.

() =P Fun(Cy). and
0 = FunCo),

where F;,, (Cp) is the largest B-submodule of C,, such that each weight u of F,; (Cy,)
satisfies
h(u) < h(nd),

and F,,(C,) is defined similarly. We define the B-stable ideals C(A)~ of C(}) and
C(A)~ of C(1) by

cn” =EP 7,;(Cy). and

Co)™ =@ F.Co),
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where F  (Cy) is the largest submodule of C, such that each weight u of F, (C,)
satisfies
h(un) < h(ni)

and similarly for ¥, (5 ).

By Proposition 4.2.3(a), C(X) is a graded G-algebraand C(1)~ 1s a G-stable graded
ideal. Moreover by Exercise 4.2.E.1, C (M) isa (Mg, B)-algebra andC (M)~ isa(Mg, B)-
stable ideal of C (1). Consider the quotient algebras

C(A):=C()/C(A)~, and

C() = C0)/CON.
Then, C()) is a graded G-algebra such that the homogeneous component C(A), of
C(A) of degree n is ni-isotypical as a B-module. Similarly, E‘ (1) is a graded (g, B)-
algebra such that E‘ (M), is nA-isotypical as a B-module. Clearly, C(}) is a graded
subalgebra of E(A).

Step 2: The algebras C (L) and E (A) are reduced.

Let ¢ be a B-canonical splitting of X. Then, ¢ induces a B-canonical Frobenius-
linear endomorphism ¢80\) of the B-algebra E’(A) keeping the subalgebra C (1) stable.
To see this, observe first that, by Proposition 4.1.17, Y admits a B-canonical splitting.
Thus, by Lemma 4.1.13, ¢ induces a B-canonical qbé € Endp(é). Since qb(o: is T-
invariant and takes B-submodules to B-submodules (Proposition 4.1.8), it induces
a B-canonical ¢>o € Endp(g‘(k)). Moreover, d)é(k)(l) = 1. It is easy to see

that qb (C(A)) C C(A). Let ¢cy = (¢C(A))‘CO‘)' Using the Frobenius-linear

endomorphlsm ¢é(k)’ we immediately obtain that C () is reduced and hence so is
C(A).

Step 3: C()) is an injective B-module.

We prove that, for any n > 0, the n-th graded component C (1), is an injective

B-module (which is nA-isotypical).
For any B-module M, there is a B-module isomorphism

£:k[B/T1® M™ ~k[B/T1® M

deﬁned as follows, where MMV is the same as M as a T-module, but U acts trivially on
M"Y, Form € M, let M,, be the (finite-dimensional) B-submodule of M generated
by m. Take a basis {m;} of M,, and the dual basis {m} of M. Now, define

3) Efem=Y) f-6"em,
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where 0" (u) = m}(um), foru € U ~ B/T. Since k[Bw,B/B] ~ k[B/T]
((4.2.13.1)) has a unique B-eigenvector, from the isomorphism & we conclude that

4) mén):s(k[BwoB/BJ@( &y (C,E”'V),L))-

neX*(T)
h(u)<h(ni)
Thus,
5) C(n = §(KBw,B/BI® (C}1),,)-

In particular, by 4.2.9 and the isomorphism &, C (1), is an injective B-module.

Thus, the B-module inclusion C(4), C C(X), extends to a B-module map 6 :

Dup(C(X),) — C(X),, where we identify C(A), < D, (C(X),) via ic), (as in
4.2.11). In fact, 6 is unique. For let 8, ” be two such extensions. Then, 8’ — 0" is a
B-module map which is identically zero on C(4),. By (4.2.11.1), the nA-weight space

(COInIni = (Dpa(C(Mn))na- Thus, Im(@’ — 6") N ((C(A)n)na) = (0). Since C(A),
is nA-isotypical, this forces 8’ = 6”. Further, 6 is injective by using (4.2.11.2).
By Lemma 4.2.10, 6 is a {{g-module map. So, we can canonically identify

COYn € Dn(COI) € CO.
Step 4: We have the following:
(6) C(AM)1 = Dr(C(M)1).

If (6) were false, there exists an element x € D, (C(A),)\C (1), by Proposition
4.2.12 for some n > 0 such that x” € C(}),,. Applying ¢8(>~) we get ¢E‘(A) (xP) =

x € C(A),, which is a contradiction to the choice of x. Thus, (6) is proved.

This shows that C; has a filtration such that the successive quotients are isomorphic
with {D; (C(AM)1)}rex*cr)+- Thus, C1 admits a good filtration, proving the theorem by
using the identification (2). O

4.2.14 Corollary. For A, u € X*(T)™, the tensor product V(L) ® V(i) admits a good
filtration, where V (1) is defined by (4.2.1.1). More generally, for any w € W, the
G-module H® (Xw, Loy(AX u)) admits a good filtration.

Proof. By Theorem 4.1.15, there exists a B-canonical splitting of G/B and thus, by
Proposition 4.1.17, there exists a B-canonical splitting of G xp (G/B) =~
G/B x G/B (alternatively use Exercise 4.1.E.6). Now, apply Theorem 4.2.13 to the
G-variety G/B x G/B under the diagonal action of G together with the G-linearized
line bundle L((—wok) X (—wou)). This proves the first part of the corollary.

The more general statement follows by the same argument. Use Exercise 4.1.E.6
and Theorem 4.2.13. O
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Even though we defined earlier the notion of good filtration of a G-module for a
semisimple, simply-connected G, the same definition works for any connected reductive
G. Similarly, the definition of B-canonical splittings extends without change to a Borel
subgroup of any reductive G. Then, Theorem 4.2.13 remains true (with the same proof)
for any reductive G.

As another consequence of Theorem 4.2.13, we obtain the following.

4.2.15 Corollary. Let P be a standard parabolic subgroup of G with the Levi component
Lp D T. Then, for any A € X*(T)", the G-module V (\) admits a good filtration
considered as a module for the reductive group Lp.

More generally, for any P-stable closed reduced subscheme Y C G/B,
HO(y, L(X)|y) admits a good filtration considered as a module for the group L p.

Proof. By Theorem 4.1.15, there exists a B-canonical splitting of G/B compatibly
splitting Y. Of course, a B-canonical splitting is in particular a By, , -canonical splitting,
where By, C B is a Borel subgroup of L p. Thus, the corollary follows from Theorem
4.2.13. O

4.2.E Exercises

(1*) Let & : X*(T) — R be a height function as in 4.2.1 and let M be a (g, B)-
module. For any A € X*(T)™, consider the largest B-submodule F; (M) of M such
that each weight u of F, (M) satisfies

h(u) = h(2).

Then, show that 7, (M) is a (L, B)-submodule of M.

(2*) Let X be a G-scheme and Y C X a closed G-stable subscheme. Assume that
X admits a B-canonical splitting compatibly splitting Y. Then, show that for any
G-linearized line bundle £ on X, the kernel of the restriction map H 0%, L) —
HO(Y, L)y) admits a good filtration.

Hint: Follow the proof of Theorem 4.2.13.

(3) Show that if M admits a good filtration then, for any A € X*(T)™,
ExtL(V(1), M) =0, forallg > 0.
Use this to prove that for an exact sequence of G-modules:
0>V V>V -0,

such that V/ and V admit good filtrations, then so does V”. Similarly, if V' and V"
admit good filtrations, then so does V.

(4*) Show that forany A € X*(T)",dA = )", n;a; withn; € Z,., where d is the index
of the root lattice ; Ze; in X*(T).
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(5%) Let M be a G-module admitting a good filtration. Show that, for any A € X*(T)™,
dim MiB) (= dim Homg (V (1), M) by (4.2.1.11)) is the number of times V (1) appears
in any good filtration of M.

4.3 Proof of the PRVK conjecture and its refinement

In this section k is taken to be an algebraically closed field of any characteristic (in-
cluding 0). We follow the notation as in Section 2.1. In particular, G is a connected,
simply-connected, semisimple algebraic group over k, B C G a Borel subgroup with
the unipotentradical U, T C B amaximal torus and W the associated Weyl group. Also
recall that U denotes the hyperalgebra of G. Forany B € AT, eg € gg is aroot vector
as in the beginning of Section 4.1. For any » € X*(T)*, V(1) := H%(G/B, L(1))* is
the Weyl module. For § € X*(T), there exists a unique & € X*(T)* in the W-orbit of
0,1i.e.,
W-0nNXYT)" = {6)}.

In this section, when we refer to a specific result from Chapter 3, we also mean to
use the corresponding result in characteristic 0 as given in Theorem 3.5.4. Also, in char-
acteristic 0, any filtration of a G-module by G-submodules is, of course, automatically
a good filtration.

We begin by recalling the following result on the structure of the Demazure module
Vi () (Definition 3.3.10) as a {y-module, where L is the hyperalgebra of U.

4.3.1 Proposition. For u € X*(T)" and w € W, consider the 3y -module map
E:Uy - Vy(u), a—a- Vwws

where vy, is a nonzero vector of Vi, () of weight wi. (Recall from (3.3.10.1) that
Vyy IS unique up to scalar multiples.) Then, & is surjective and Ker § is generated as

a left Uy-ideal by the elements {e/(sm); BeAt,m> dg(wp)}, where 8g(v) for any
v € X*(T) is defined by

(1) 8g(v) = 1 +max{—(v, ), 0}.
In particular, for any B-module N, we have a k-linear isomorphism

(2) Hompg(Viy(n), N) =

{x € Ny : e/(gm)x =0forallp € AT andm > Sg(w)}, f = f(vww)-

Proof. (an indication) Since, by definition, V,,(u) is generated by the vector v, as
a U-module, by [Jan—03, Part I, Lemma 7.15], the map £ is surjective. Moreover, for
any B € A" and any m > 8g(wp), it is easy to see that

(wp +mB, w +mB) > (u, 1).
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But, any weight A of V (u) satisfies (A, L) < (u, u). Thus, the elements efgm) do belong
to Ker &.

Let Z be the left ideal of L{y; generated by the elements e ) as B runs over A"
and m runs over m > dg(wu), and let Q be the quotient {yy-module Uy /Z. Then, &
induces the (surjective) Uy -module map & : Q — V,,(u). In particular,

(m

3) dim Q > dim Vi, ().

Moreover, it is easy to see that Q is a finite-dimensional vector space over k and it is
a (Uy, T)-module under the adjoint action of T'. Thus, the {{;y-module structure on Q
“integrates” to give a U-module structure (cf. [CPS—-80, Theorem 9.4]). Let 1 denote
the coset 1 + Z of Q. Then, 1 generates Q as a {lyy-module, and thus as a U-module.
Further, since e;}m) e Zforall B € At Nw(AT) and m > 1, it follows that 1 is fixed

by the subgroup U N wUw ™! of U.
We next construct an injective y;-module map

6: 0% — HCy, L(W)c,)

as follows. Recall from Section 2.1 that Cy,, denotes the Schubert cell Bw B/ B, isomor-
phicto U/UNwUw ™" under u — uw B. Fix arepresentative w of w in N (T). For any
f e O andx = uwb € BwB foru € U and b € B, define 6(f)(x) = u(b) f(u - 1).
Then, 0(f) is well defined (i.e., it does not depend on the choices of u and b) and,
moreover, from its equivariance properties it gives a section of £(u) over C,. Since 1
generates Q as a U-module, the map 6 is injective.

Finally, one proves that for any f € Q¥, the section 6(f) extends to a section of
Ly (u) on the closure X,, of Cy,. One checks that 6(f) extends to any Schubert cell
C, of codimension 1 in X, and hence 6 ( f) extends to X, by the normality of X,, (cf.
[Pol-89, Proof of Proposition 2.1] for the details). In particular,

“4) dim Q = dim Q* < dim H°(X,, L,,(1)) = dim V,, (),

where the last equality follows from Corollary 3.3.11. .
Combining (3) and (4), we get that dim Q = dim V,,(u). Thus, £ is forced to be an
isomorphism, proving the proposition. O

We come to the proof of the Parthasarathy—Ranga Rao—Varadarajan—Kostant (for
short PRVK) conjecture.

4.3.2 Theorem. Let A, u € X*(T)" and w € W and let M := Ug - (v3 ® vyy) be
the G-submodule of the tensor product V(1) ® V(1) generated by v ® vyy,. Then,
setting 0 = A + wu, and 8 = (—0),

(1) dim Homg (V (6'), M*) = 1.

In fact, this G-module map is induced from a surjective G-module map  : M —
V (0), composed with the G-module map q : 'V (0) — V(8')* (constructed in the proof
below) and then taking duals.
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Proof. Assertion 1. Analogous to Corollary 3.3.11, we first make the identification
2) M* ~ HO (Xw, Ly(AX u)), as G-modules.
By Theorem 3.1.2(b), the restriction map

yiV*®V(w* = H(G/B x G/B, LAK 1)) — H° (X, LA K )

is surjective. Since G - (1, w) C X, is a dense (open) subset, where G acts diagonally
on G/B x G/B and w is the coset wB,

Kery ={f e V)" @ VW" : ¥(Nig.aa =0}
={fe (V) ®Vuw)*: fi,, =0} by(3.3.10.2).

Thus, we get an exact sequence

(V(A) ® V()
M

0— )* S (V) ® V()* = H(Xy, L,,(A B 1)) — 0.

From this we get (2).

Assertion II. There is a canonical G-module isomorphism
3) HO (X, Lo R w) = H(G/B, Lk-1. ® Vu()").

From the fibration 7| : X, — G/B obtained from the projection onto the first
factor: X, C G/B x G/B — G/B, we get that

HO(Xy, LB p) =~ HY(G/B, 71 (L (A B p))).

But since m; is a G-equivariant morphism under the diagonal action of G on X,
T1+(Lyw (A X p)) is a G-equivariant vector bundle on G/B associated to the tensor
product B-module k_) ® HO(Xy, Lo (m)). So, the assertion (3) follows from Corollary
3.3.11.

Assertion III. For any § € X*(T) ™,
“4) Homg (V (8), M*) >~ Hompg (kx ® Vi(n), V(8)*).
Combining (2)—(3), we get

Homg (V (8), M*) =~ Homg (V (8), H*(G/B, L(k—5 ® Vi (11)*)))
~ Homp(V(8), k-5 ® Viy(1)*),
by Frobenius reciprocity
~ Hompg (k; ® Vi (), V(§)™).

This proves (4).
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Assertion IV.
(5) dim Homp (ky ® Vi (n), V(0')*) = 1.
By (4.3.1.2), we get

Homy (k. ® V(). V(©')*) = Homp (Vay(11). k5 ® V(©)")
(6) ~{ve (V®)):ef’v=0forall p € AT andm > 85(wp)}.

Since the 6-weight space of V (9")* is one-dimensional, so is
@) dim(V(6")*)y = 1.

Consider the quotient map ggr : V(') — L(8’), where L(¢’) is the irreducible
G-module with highest weight 6’. Now, L(0")* >~ L(0). Thus, we get the G-module
maps

V(@) 5 L@) ~ LEO) — V©)*
where the last map is the dual of gg. Let g : V(6) — V(8')* be the composite map.
Then, being extremal weight, g induces an isomorphism of one-dimensional 7-modules

V(@) — (V).

Now, applying Proposition 4.3.1 to the G-module V (@) and extremal weight vector

m)

vy € V(G_)g, we get eg Vg = Oforall B € AT andm > 35(0). In particular, by virtue
of the G-module map ¢ and the above isomorphism, for v € (V (6")*)g,

(8) eg’v =0 forall € AT andm > 64(0).
Next, for any 8 € A7 such that (9, 8V) <0,

8(0) :=1—1(0,B8")

=1—(A4+wpu,BY)
=1—(wu,B”) = B")
= Sp(wp) — (i V).

Thus, forany 8 € AT,

9 8p(0) < dg(wp).

Combining (6)—(9), we get
dim Hom (k;, ® Vi (1), V(6))*) = dim(V(0')*)g = 1,

proving (5).
Finally, the assertions III-IV put together prove (1). The “In fact” part of the
theorem follows from the above proof of Assertion IV. O
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4.3.3 Remark. By (4.3.2.2),
(UG - (2 ® vup))™ = HO(Xy, LW K ).

Moreover, by Corollary 4.2.14, the G-module H O( Xy, LA X)) admits a good filtra-
tion.  From the above theorem we see that the multiplicity of V(6') in
HO(X,y, Lo K @) is exactly one (Exercise 4.2.E.5). In particular, by Exercise
4.2.E.2, the multiplicity of V(A 4+ wu) in V(L) ® V(w) is at least one. This mul-
tiplicity is often more than 1, as we will see in the refinement of Theorem 4.3.2 proved
below.

4.3.4 Definition. Fix A, u € X*(T)™ and let W, resp. W,., be the stabilizer of A, resp.
W, in W. Then, the map W — X*(T)*, w — A + wp, factors through the double
coset set to give the map

n:Wi\W/W, — X*(T)".

As is well known (cf. [Bou-81, Chap. V, Proposition 3.3.1]), W, is generated by
the simple reflections it contains. Let P, be the parabolic subgroup BW, B. Then, the
double coset set W3 \W /W, bijectively parametrizes the G-orbits in G/P) x G/P,
under the diagonal actional of G. The correspondence is given by

W, wW, — G - (1mod P, wmod P,,).

From the Bruhat decomposition and the product formula (2.1.4) together with the
isomorphism (2.2.6.1) we indeed see that the above correspondence is bijective.

The following theorem provides a refinement of Theorem 4.3.2.

4.3.5 Theorem. For A, e X*(T)T, we Wand1 <m <n,

(1) dim Homg<V(9/), Ho(ym, L£hPun= Wy, )) =m,

where n’l(n(WkaM)) = (Wawi Wy, ..., Ww, W}, Vo == UL, Xu?’P“, and
0" = —(A + wp) (in particular, n = #17_1 (n(W;LwWM))).

Moreover, the G-module L, = Ho(ym, LPPu(n ¥ “)lym) admits a good filtra-
tion. Thus, V(0') appears in L,, with multiplicity exactly equal to m.

Observe that Ly, is a G-module quotient of the tensor product G-module
V(—wor) @ V(—wou) by (3.1.3.4) and Theorem 3.3.4(a).

As a preparation for the proof of the above theorem, we first prove the following.

4.3.6 Lemma. Take any A, € X*(T)", w € W and assume that w is of minimal
length in its double coset Wy wW,, (even though we do not need it, such a w is unique).
Then, for any u < w,

Homg (V(0"), H*(X,, L,(x B p)) =0,

where (as in the above theorem) 0’ := (—0) and 6 := A + wi.
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Proof. Consider the exact sequence of G-modules

0— K — H(Xy, L,(A R 1) - HO(X,, L,0. R 1)) — 0,

where K is, by definition, the kernel of the restriction map y. For any § € X*(T)¥,
considering the corresponding long exact Extg; (V (8), —) sequence and the Extlc van-
ishing result as in Theorem 4.2.7, together Wlth Exercise 4.2.E.2, we get that the induced
map

(1) f:Homg(V(8), H'(Xy, Lu(A B w))) — Homg (V(8), H(X,, L. (A K p)))

is surjective.
By (4.3.2.2) and (4.3.2.4),

2) Homg (V (8), HO(X,y, Loy () 1)) =~ Homp (ks ® Vi (), V(8)"),

and a similar statement with w replaced by u. Moreover, by Assertion IV of the proof
of Theorem 4.3.2, there exists a unique B-module map (up to scalar multiples)

£k ® Viw(p) — V("

Of course, £ takes the B-module generator 1, ® vy, of k; ® Vi, (1) to the unique vector
(up to scalar multiples) in (V (6")%)g.

Assume now that u — w (i.e., £(u) = £(w) — 1 and u < w). Let B be the positive
root such that sgu = w. In this case,

3) e/(sa)ku = vy, wherea := (uu, V).
(Observe that a > 0 by [Bou—81, Chap. VI, Proposition 1.6.17], since u_l,B e A1)
To prove (3), we first observe that for any i > 0,

f(l) Vuyp = w(egﬂ—lﬂvu) =0, sincew™'f=-u"'peA,

where fz € g_g is a negative root vector as in the proof of Theorem 2.3.1.

Now, using the hyperalgebra sy, corresponding to the root S, (3) follows since
wu +af = upu.

In view of (1)-(3), the lemma is equivalent to the following assertion:

(4) el - ((V(©))) =

From the G-module map ¢ : V) — V(0')* defined in the Assertion IV of the
proof of Theorem 4.3.2, to prove (4), it suffices to show that

(5) el - (V(@)9) =0.

Since w is of smallest length in its double coset WywW,,, sg ¢ W, and thus
(A, BYY > 1. Also, since ulw ¢ W,, we get a > 0. Thus, (5) follows from
Proposition 4.3.1. Now, for any u < w, there exists u < u’ — w. Thus, the lemma
follows for u from u’ and (1). (Use (1) for w replaced by u’.) O
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4.3.7 Corollary. (of the above proof) For any A, i, 0 € X*(T)" andu < w € W, the
restriction map

Homp (ky ® Viy(n), V(0)) — Homp(ky ® Vi (1), V(0))
is surjective.
Proof. We get the corollary from (4.3.6.1) and the identification (4.3.6.2). O
We now come to the proof of Theorem 4.3.5.

Proof. By Exercise 4.1.E.6, ), admits a B-canonical splitting. Thus, by Theorem
4.2.13, the G-module L,,, admits a good filtration.

We next prove (1) of Theorem 4.3.5 by induction on m. The case m = 1 follows
from Theorem 4.3.2 together with (4.3.2.2) and Exercise 3.3.E.3. We assume now the
validity of (1) for ),, by induction on m and prove the same for V4.

We have the sheaf exact sequence on V,,41:

(1) 0 e Iym (ym+l) g Oym-H - Oym - 0’

where Ty, (Vin+1) is the ideal sheaf of the closed subscheme ), in V;,11. Abbreviate
the line bundle £*Fi (L X ) on G/ Py x G/P, by L. Then, tensoring the sequence
(1) with the line bundle £ Vs and taking cohomology, we obtain the following long
exact sequence:

(2) 0— H0<37m+1a1ym In+1) ® Lly,,m) - H()(y’"“’ £|3/m+1)
AN Ho(ym,ﬁb,m) — 0,

where the surjectivity of the restriction map y follows from (3.1.3.4).
But, as is fairly easy to see,

Ty, (Vm+1) = IX,{,’mH 2 (i)

. PP, . . . .
where we abbreviate X, f “ by XIZ , the intersection ), ﬂanl+ ,is the scheme theoretic

, which is defined on X'* is extended

Wm+1’

. . P
intersection and the sheaf 7, xp W (meﬂ )

to the whole of ), 1 by defining it to be zero on the open set YV, 11 \Xu‘?erl . In particular,

3) H° (y,,,+1, Ly, Unt1) ® Ly, | )

~ 0 P P
~H (me+l ’ IXP mij (me-H) ® L‘X£n+] )

Wm+1
Similarly, the sheaf exact sequence

P
0— I/'\—’fmﬂﬂym (X ) e OXP —> OXP NV -0

Wmn+1 Wy 4] W41
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gives rise to the long exact sequence

@ 0 (X Tap oy, (X )@l ) (X L, )

Win+1" Wm+1 b1 W12 b1
V' 03P
5> H (meH NV, £‘XP o ) — 0.
W1 M

Again the surjectivity of the restriction map y’ follows from (3.1.3.4).
We further claim that

(%) xP

. . . P . .
w; 18 not contained in ij fori # j.

If possible, assume that
le: C X,fl_ for some i # j.

We can of course take w; to be of minimal length in its double coset. Then, under the
canonical mapr : G/B x G/B - G/P, x G/P,,

7T (Xy;) = Xui, and (X)) = Xu]}:

for some u < w;. Moreover, u # wj since X, # X,fj, as W, \W/W, bijectively
parametrizes the G-orbits in G/ P, x G/ P, (4.3.4).
By Exercise 3.3.E.3,

(5) HO(X,, Lo(L K 1)) ~ H°<Xu‘;, Lk ow u)).

Thus, by the (already established) case m = 1 of this theorem,
Homg (V ©", HY(X,, £,(A\K M))) is nonzero, contradicting Lemma 4.3.6 foru < w;.
Thus, the claim (%) is established.

Thus, X NV, being reduced and G-stable,

Win+1
P _ P
me+1 N ym - U Xu ’

where the above union is taken over some u € W with u < wy,4+1 and wy, 4 is chosen
to be of smallest length in its double coset Wj wy,+1 W,,. In particular,

H()()(u’fm+I N Vs £ +lnym) = @HL L),
mn u
Thus, by Lemma 4.3.6 and Exercise 3.3.E.3,
0 P
©6) Homg (V(©), HO(X ., 0V, c‘Xu[),mem)) = 0.

From the exact sequence (4), using (6) and Theorem 4.2.7, we get

M Homg (V@) H(Xh  Tap oy, (X5 )@ L, )

Wm+1 Wy 41

~ Homg (V(Q/), H° (Xu[)3m+l’ £|XP ))’
Wyt 1
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and
1 1 0 P P _
) Extl. (V(e ), H (me+1 T o (V) ® L1y )) =0.
Hence, from the exact sequence (2), using (3) and (7)—(8), we get the exact sequence:

0 Homg (V@) HO(x] . £, )~
Win+1

Wm+1"
Homg (V(0"), H*(Vm+1, Ly, )) = Homg (V(0"), H* (V. L}y, ) — O.

By induction on m, the last space is m-dimensional and the first space is one-dimensional
(for the case m = 1 of the theorem). Thus,

dim HomG(V(e’), H Vi1, Ly, )) —m4+1,

proving (1) of Theorem 4.3.5.
The assertion that V(9’) appears in H O(J}m, Ly, ) with multiplicity m follows
immediately from (1) and Exercise (4.2.E.5). This completes the proof of the theorem.
O

Specializing Theorems 4.3.2 and 4.3.5 in characteristic 0, we obtain the following
result proving the original PRVK conjecture and its refinement. We follow the same
notation as in Theorems 4.3.2 and 4.3.5; U (g) denotes the enveloping algebra of the
Lie algebra g of G, which is the same as i in characteristic 0.

4.3.8 Theorem. Let the base field be any algebraically closed field of characteristic 0.
Forany A, u € X*(T)F, and w € W, the G-submodule U(g) (v), ® Vywy) Of the tensor
product G-module V (A) ® V () contains a unique copy of V(A + wu).

In fact, forany 1 <m <n, HO (ym, LPwPu AKX ,u)b,m)*, which is a G-submodule
of V(X)) ® V (), contains exactly m copies of V(A + wpu).

In particular, the multiplicity my, (A, ) of V(A + wp) in V(L) ® V() satisfies

(1) MOy 1) = #07 (N(WawW,)).

Thus, the total number m(X., i) of irreducible componentsin V(L) Q® V (1) (counted
with multiplicities) satisfies

2 mh, ) = #W,\W/W,.

4.3.9 Remark. The inequality (4.3.8.1) is often strict and hence so is (4.3.8.2). This
is illustrated by the following example of G = G, and A = u = p. In this case, the
full decomposition of the tensor product (over C):

VeV = @ mve)
veX*(T)*

is given by the following table. We follow the convention of indexing the simple roots
as in [Bou—81, Planche IX].



4.3. PRVK conjecture 151

v 20 |32 | Sx1 | 3xi+x2 | x1+2x | 4 | 2x+x
m, 1 1 1 2 1 2 3
#0 T | 1 1 1 2 0 1 0
222 [3x1 e | 2x1 | x2 | x1 |0
2 3 (21 221171
1 0 [2] 0 1|11

The above chart also shows that there are some components in V (p) ® V (p) which
are not of the form p + wp.

To generate many more examples where the inequality (4.3.8.2) is strict (and for an
arbitrary g), take any u € X*(T)* and A = nA’, with A’ regular and n a large enough
integer (depending upon ).

4.3.E Exercises
orany A, U € not necessarl ominant), and any w € W, prove that
(1) For any A X*(T) ( ily dominant), and any W,p h
X (X, Lo (B ) = Dy, (" - Dyy(e)),

where w, is the lo_ngest e_lement of W, Dy, isasin Corollary 3.3.9 and x (X, L, (AXw))
denotes Y ;(—1)' ch H (X, L,y(A ¥ w)). In particular, for A, u € X*(T)*, this
specializes to the following result due to Brauer:

ch(V() ® V() = Dy, (" - Dy, e").

4.C. Comments

The notion of canonical splitting was introduced by Mathieu and most of the results
in Section 4.1, including Exercises 4.1.E.2—4, are due to him [Mat-90a] (see also
[Mat-00]). However, Mathieu takes the characterization (4.1.6.1) as the definition of a
B-canonical splitting. The definition of B-canonical splitting we give in 4.1.1 is taken
from [Van-93, Definition 4.3.5]. In [loc cit.] van der Kallen has studied filtrations of
B-modules (including the notion of excellent filtrations) in relation to the F-splitting.
However, in our book we focus on filtrations of G-modules. For a slightly different
exposition of some of the results in Sections 4.1 and 4.2, we refer to [Jan—03, Chap.
G].

Lemma 4.2.2 and Exercise 4.2.E.3 are due to Cline—Parshall-Scott—van der Kallen
[CPSV=T77]. Theorem 4.2.5 is due independently to Donkin [Don—88] and Koppinen
[Kop-84]. The equivalence of (b) and (c) in Theorem 4.2.7 is due to Donkin [Don—81]
and its extension to an arbitrary G-module as in Remark 4.2.8 is due to Friedlander
[Fri-85] who also introduced the canonical filtration. Proposition 4.2.3, Corollary
4.2.6, the equivalence of (a) and (b) in Theorem 4.2.7, Lemma 4.2.10, Proposition
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4.2.12 and Theorem 4.2.13 are all due to Mathieu [Mat-90a, 00]. The first part of
Corollary 4.2.14 is due to Wang [Wan—-82] for p = char. k large, and, in general, due
to Donkin [Don—85] except for p = 2 if G has a component of type E7 or Eg. Also,
the first part of Corollary 4.2.15 is due to him [loc cit.] under the same restriction on
p. His proof involves an elaborate case-by-case analysis. In contrast, both the parts
of Corollaries 4.2.14—15 follow immediately from Mathieu’s uniform result Theorem
4.2.13. For other accounts of Mathieu’s proof of Corollaries 4.2.14—15 we refer to
[Van—-93] and [Kan-94a]. Exercise 4.2.E.5 is taken from [Don—85, 12.1.1]. There are
other subsequent proofs via quantum groups: by Paradowski [Par-94] using Lusztig’s
canonical basis; and Kaneda [Kan—98] using Lusztig’s results on based modules.

In the nineteen sixties, Parthasarathy—Ranga Rao—Varadarajan (for short PRV) con-
jectured (unpublished) that for any A, u € X*(T)* and w € W, the irreducible G-
module over complex numbers V (A 4+ wpu) occurs in the tensor product V(L) @ V (w).
They proved this in the case where w is the longest element of the Weyl group [PRV-
67]. Then, Kostant (in the mid eighties) came up with a more precise form of their
conjecture suggesting that V(A + wu) should occur with multiplicity exactly one in
the G-submodule of V(1) ® V(1) generated by the vector v; ® v, (again over C),
to which we refer as the Parthasarathy—Ranga Rao—Varadarajan—Kostant (for short
PRVK) conjecture. Theorems 4.3.2 and 4.3.8 prove this conjecture and its analogue
in an arbitrary characteristic. It was proved by Kumar [Kum-88] in characteristic 0
using characteristic 0 methods and was extended by Mathieu [Mat—89b] to an arbitrary
characteristic. Proposition 4.3.1 is due to Joseph [Jos—85] in characteristic 0 and was
extended to an arbitrary characteristic by Polo [Pol-89].

The refinement of Theorem 4.3.2 as in Theorem 4.3.5 was proved by Kumar [Kum-—
89] in characteristic 0. This refinement in characteristic 0 was conjectured by D.N.
Verma (unpublished) after the work [Kum-88] appeared. Its extension to characteristic
p (as in Theorem 4.3.5) appears here for the first time (to our knowledge). The proof
given here is a slight modification of the original proof given in [Kum—89]. The table
as in Remark 4.3.9 is taken from [Kum—88]. Exercise 4.3.E.1 is taken from [loc cit.].

Subsequently, other proofs of the original PRV conjecture appeared. Lusztig men-
tioned in 1989 that his results on the intersection homology of generalized Schubert
varieties associated to affine Kac—-Moody groups give a proof of the PRV conjecture.
Rajeswari [Raj—91] gave a proof for classical G using Standard Monomial Theory;
Littelmann [Lit-94] gave a proof using his LS path models.

Let G be a connected semisimple group and H a closed connected reductive sub-
group. Then, (G, H) is called a Donkin pair if any G-module with a good filtration
admits a good filtration as an H-module. Brundan [Bru—98] conjectured that if G is
simply-connected and either H is the centralizer of a graph automorphism of G; or H
is the centralizer of an involution of G and characteristic is at least three, then (G, H)
is a Donkin pair. Combining Corollaries 4.2.14, 4.2.15 and [Bru-98], the conjecture
was proved by van der Kallen [Van—-01] by some case-by-case analysis. It is desirable
to give a case-free proof of Brundan’s conjecture.




Chapter 5

Cotangent Bundles of Flag Varieties

Introduction

The main aim of this chapter is to give a family of Frobenius splittings of the cotangent
bundle 7*(G/ P) of any flag variety G/ P due to Kumar—Lauritzen—Thomsen and thus
obtain a cohomology vanishing result for 7*(G/ P) with coefficients in the line bundles
obtained by pullback from G/ P. This cohomology vanishing result is applied to study
the geometry of nilpotent and subregular cones.

Let P C G be any parabolic subgroup with unipotent radical Up. We begin by
showing that the canonical bundle of the G-variety Xp := G x p Up is G-equivariantly
trivial, where P acts on Up via conjugation. Thus, a splitting of Xp can be thought
of as a regular function on X p. If the characteristic p of k is a good prime for G (for
the classical groups all the odd primes are good; see 5.1.8 for a complete list of good
primes), then by Proposition 5.1.9 and Corollary 5.1.11, the cotangent bundle 7*(G/ P)
is G-equivariantly isomorphic to Xp. Now, consider the map ¥p : St® St — k[Xp],
defined by ¥ p (v @ v2)(g, u) = x(v1 ®gug_1v2) forvy, v € St,g € Gandu € Up,
where x : St ® St — k is a G-invariant nondegenerate bilinear form. Then, the main
result of this section, Theorem 5.1.3, asserts that for any f € St ® St, ¥ p(f) splits X p
iff x (f) # 0. This result is obtained by comparing the splittings of G/ P with those of
Xp (Lemma 5.1.5) and then studying the splittings of G/P. As an immediate corollary
of this result (Theorem 5.1.3), one obtains that for any p which is a good prime for
G, the cotangent bundle T*(G/ P) is split. In Example 5.1.15, we explicitly work out
the example of G = SL,, (k) recovering in this case the splitting of 7*(G/B) given by
Mehta—van der Kallen. This splitting compatibly splits the subvarieties G x p up for
any parabolic subgroup P, where up = Lie Up (Exercise 5.1.E.6). In Exercises 5.1.E,
we assert that the varieties G, G x p B and G X g b are B-canonically split; in fact, G is
B x B-canonically split. (The canonical splitting of the first two can also be obtained
from Theorem 6.1.12 in the next chapter.)

For any parabolic subgroup P C G, let rp : T*(G/P) — G/P be the standard
projection. For the Borel subgroup B, we abbreviate 7p by 7. In Section 3.2 we prove
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that if the characteristic p of k is a good prime for G, then Hi (T*(G/B),n*L(Ax)) =0
foralli > 0Oand A € C := {u € X*(T) : (1, BY) > —1 for all the positive roots 8}
(Theorem 5.2.1). This is the main result of this section. Here is an outline of its proof.
Since the morphism 7 is affine, we can make the identification

H'(T*(G/B), m*L(\) ~ H'(G/B, L(S(*)) ® L)),

where u = Lie Up. Assume first that A is dominant. By using the Koszul resolution
corresponding to the exact sequence of B-modules:

0— (b/w* = b* > u* -0,

we show that the vanishing of H (G /B, L(S(u*))®L(1)) follows provided we show the
vanishing of H(G/B, L(S(b*))®L(1)). Now, the vanishing of the latter (for dominant

1) follows from the diagonality of the Hodge cohomology: H' (G /B, Qé; / B) = 0 for
i # j; splitting of T*(G/B); and the Koszul resolution corresponding to the exact
sequence:

0— (g/b)* - g* = b* = 0,

where QJG /B is the sheaf of j-forms in G/B. Now, the result for general A € C follows
from the dominant case by using the following simple result (Lemma 5.2.4). For a
simple root « and any A € X*(T) such that (A, a¥) = —1,

H'(G/B,L(V)® L(})) =0, forany i > 0 and any P,-module V.

We prove a slightly weaker P-analogue of the above main theorem. For any
parabolic subgroup P C G and any ample line bundle £ (1) on G/ P,

H'(T*(G/P),n}L"(2)) =0, foranyi > 0 (Theorem 5.2.11).

It is natural to conjecture that this vanishing remains true for any dominant A € X*(P).

As a consequence of the above vanishing theorem for B and making use of the
above two Koszul resolutions, we obtain the Dolbeault vanishing (Theorem 5.2.9). For
any A € C and p a good prime for G,

Hi(G/B, Qé/B ®£(A)) =0 foranyi > j.

Finally, in Section 5.3, we use the main cohomology vanishing result of Section
5.2 to show that the nilpotent cone and the subregular cone of g are normal Gorenstein
varieties with rational singularities (again under the assumption that p is a good prime
for G). Also, by Exercises 5.3.E, the closure of SL,, (k)-conjugacy class of any nilpotent
matrix N € s¢, (k) is a normal Gorenstein variety with rational singularities.

Notation. We follow the notation from Section 2.1. In particular, G is a connected,
simply-connected, semisimple algebraic group over an algebraically closed field k of
characteristic p > 0. We fix a Borel subgroup B C G and a maximal torus T C B
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and let U C B be the unipotent radical of B. Let B C P be a (standard) parabolic
subgroup with the unipotent radical Up and the Levi component L p containing 7'; so
that P is the semidirect product P = Lp x Up. Let U be the unipotent radical of the
opposite parabolic P~. We denote the Lie algebras of G, P, B, T, U, Up, L p by the
corresponding Gothic characters: g, p, b, t, u, up, [p, respectively.

By a volume form on a smooth variety X, we mean a nowhere vanishing differential
form of top degree on X.

5.1 Splitting of cotangent bundles of flag varieties

We begin with the following lemma valid in any characteristic (including 0).

5.1.1 Lemma. Let P be any parabolic subgroup of G and let P act on Up by the
conjugation action and on up by the adjoint action. Let G act on G xp Up and
G X p up via the left multiplication on the first factor. Then, the canonical line bundles
of the G-varieties G x p Up and G x p up are G-equivariantly trivial.

Proof. Abbreviate G xp Up by Xp andletwp : Xp — G/ P be the projection. Then,
the canonical bundle wx, of Xp is G-equivariantly isomorphic to the tensor product
of (wp)*wg,p with the relative canonical bundle wz, of the fibration 7p. Now, as in
the beginning of Section 3.1, as G-bundles,

) wg/p = LT (=8p).
Also, as G-bundles,

2) wip =G Xp Oyp.
But, as P-bundles,

3) wup = K_sp,

where K_;,, denotes the trivial line bundle on Up together with the action of P via its
character —8p. Thus, as G-bundles,

4) G xp wyp = (7@p) (LY 6p)).

Combining (1), (2) and (4), we get the lemma for G x p Up. The proof for G x p up
is similar. O

5.1.2 The map v p. As earlier in 2.3.4, the Steinberg module
St:= H(G/B, L((p — D)p))
has a G-invariant nondegenerate bilinear form

(1) X St®St — k,
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which is unique up to a scalar multiple.
Define a k-linear G-module map

) Up St St — k[Xp]

by vp(v1 ® v2)(g,u) = x(v1 ® gug_lvz), forg € G,u € Up and vy, vy € St,
where Xp := G xp Up. Clearly, ¥p(v] ® vy) is a well defined regular function on
the quotient variety Xp.

By Lemma 5.1.1, there exists a G-invariant (nowhere vanishing) volume form 6%,
on the (smooth) variety X p. In fact, any two volume forms on X p are nonzero scalar
multiples of each other, since there are no nonconstant regular functions Xp — k*.
(Use, e.g., the fact that U, x Up is dense open in Xp.) Thus, the map St® St —

H0<xp, w;gpp>, f > wp(f)6y,", is a k-linear G-module map. Recall from 1.3.7

that there is a canonical identification H(X, a);_” ) =~ Endp(X), for any smooth
scheme X.

5.1.3 Theorem. Forany f € St® St, ¥p(f) '9316::,) € HO<.’{p, a);,p) splits Xp up to

a nonzero scalar multiple iff x (f) # 0.
In particular, X p admits a B-canonical splitting.

Before we come to the proof of the theorem, we need the following preparatory
work.

5.1.4 The map ¢p. Let the standard parabolic subgroup P be given by P = P; for
asubset I C {1,..., ¢}, and set Ali = AT N (@iel Zozi). Recall the definition of
dp € X*(P) from the beginning of Section 3.1. Then,

(1) Sp= Y a.

+
aeAH\A]

Choose T-eigenfunctions {xy }aeA+\A;“ C k[Up] with x4 (1) = 0 and x,, of weight
—a such that, as T-algebras over k,

2 k[Up] ~ k[xU]aeA‘*'\A;r'

Similarly, choose T'-eigenfunctions {ya}weAﬂA?r C k[Up ] with y,(1) = 0 and y, of
weight o such that, as T-algebras over k,

3) KU1 = KlYalyenrias-

These are guaranteed by [Spr-98, Lemma 8.2.2], also see Section 2.1. It is easy
to see that the ideal (x2) weAT\AT C k[Up] is P-stable under the conjugation action

of P on Up. Moreover, by (1)—(2), the P-module k[Up]/(x%) has all its weights >
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—(p—1)8p and the weight space of k[Up]/(x& ) corresponding to the weight —(p—1)8p
is one-dimensional spanned by ]_[a cat\AT xb -1 (Observe that k[Up]/ (xFy is the
coordinate ring of the first Frobenius kernel of Up, cf. [Jan—03, Part I, Chap. 9].) Let

“4) ¢p  k[Up] = k—(p-1)sp

be the composition of the quotient map k[Up] — k[Up]/ (xf) with the T -equivariant
projection onto the lowest weight space spanned by the vector [ ], ¢+ A x271 Fur-
ther, the above map ¢p is a P-module map since the sum ¥ of the weight spaces in
k[Up1/(x¥) of weight > —(p — 1)8p is stable under the action of P. (Clearly, X is
stable under the action of B. Further, any simple reflection s;, for i € I, fixes § p, thus
keeps X stable. By (2.1.5) this shows that X is P-stable.)

Inducing the map ¢ p, we get the G-module map

H(¢p) : kiXpl = H*(G/P, LUPD) - H'(G/P, L" (p — D3p)).
Also, define the G-module map
(5) ¥ St St — k[G], ¥ (v ® v2)g = x(v1 ® gv2),

where G acts on k[G] via the conjugation action. Restricting i to Up, we get the
P-module map

(6) Yp :St®St — k[Up].

Inducing v p we get the G-module map (see Exercise 2.2.E.7)

(7 H(p) : St@ St — HY(G/P, LKIUPY)) = k[Xp].
By Exercise 5.1.E.3, the above map

(8) H(Wp) = ¥p,

where ¥ p is the map as in (5.1.2.2).
The composite P-module map ¢p o Yp : St®St — k_(,_1)5, induces the G-
module map

9) Ny = H%¢p o ¥p) : St®St - HY(G/P, LY ((p — 1)8p)).
Recall from the beginning of Section 3.1 that L (—=8p) ~ wg/p.

5.1.5 Lemma. Forany f € St® St, n, (f) splits G/ P up to a nonzero scalar multiple

iff vp(f) 9316;12 splits X p up to a nonzero scalar multiple, where p is the map defined
in(5.1.2.2).
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Proof. For any f € St® St, write

() V(G = Y camy"x™,

Ny
nmeZ,

for (y,x) € Up xUp, wherecnm = cam(f) € k, N; := |AT\AT|,n = (na)aeA+\AI+,

m = (mg) and y" =[], Voo, x™ = Il X', Then, l/fp(f)Ole;p splits Xp up to a
nonzero scalar multiple iff

(2 Cp—1+pn,p—1+pm = 0

if at least one of n or m is nonzero and

3) cp1p-1 £ 0,

where, as in Chapter 1, p — 1 is the constant sequence (p — 1, p —1,...,p— 1) €

Zﬁ’ (use Lemma 1'117(ii) and Example 1.3.1). Since ¥p(f) lies in the image of
IQyp

K[G] ® (St®St) —% k[G] ® k[Up] (by (5.1.4.8)) and any weight of St® St is
> —2(p — 1)p, cn,m = O unless

—wt(m) = =2(p — I)p, ie., wt(m) < 2(p — D)p,

where
wt(m) = Z M.
aeAT\AT
Thus,
4) Cn,p—1+pm = 0, if m is nonzero

(since wt(p — 1 + pm) ﬁ 2(p — 1)p if m is nonzero).

Assume first that 5, (f) splits G/P and consider the coefficients ¢y p—1. Since
n, (f) splits G/ P; in particular, n, (f )| U, splits Up, . By the definition of the map 7,
as in (5.1.4.9) and Example 1.3.1, for nonzero n,

@) Cp—1+pn,p-1 = 0, and Cp—1,p—1 # 0.

(Use the composite map k[G]® (St @ St) I&W)P k[GI®k[Up] I% k[G]®k_(p—1)sp-)
Thus, (2) and (3) are established, proving that ¥p (f) 93;[7 splits X p up to a nonzero
scalar multiple.

Conversely, assume that {p(f) 0316;” splits X p. Then, (2) and (3) are satisfied; in
particular, (5) is satisfied. Thus, n,(f )| U; splits U, up to a nonzero scalar multiple
and hence 71, (f) splits G/ P up to a nonzero scalar multiple by Lemma 1.1.7¢i1). [
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5.1.6 Theorem. Forany f € St® St, np(f) splits G/ P up to anonzero scalar multiple
iff x(f) #0.

Proof. We first consider the case P = B and show that n = 5p is nonzero. To show
this, it suffices to show that the composite map ¢p o 1/_1‘3 :St®St — k_z(p—1)p (see
5.1.4) is nonzero.

By Theorem 2.3.1, m(f+ ® f—) splits X = G/B up to a nonzero scalar multiple,
where f_, resp. fi, is a lowest, resp. highest, weight vector of St and m is the
multiplication map St ® St — HO(G/B, L2(p— 1),0)) as in the beginning of Section
2.3. Now, by (2.3.1.2), under the standard trivialization of £(2(p — 1)p) over U,
m(fy ® f-)y- is given by

ey g x(gf+® fy), forgelU™.

(Observe that, by the definition of x asin 2.3.4, x(gf+ ® f+) = f+(gvy), where f
corresponds to vy under the identification ¥ : St — St*.) Since m(fy ® f_) splits
X in particular, m(fy ® f-) y- splits the open subset U™ C X. Thus, the monomial
yP~1 occurs with nonzero coefficient in m (f1 ® Sf-)u- (where the notation yP~1is as
in the proof of Lemma 5.1.5). Conjugating this by the longest element w, of the Weyl
group W, we get that xP~! occurs with nonzero coefficient in the function

g x@f~-®f). gel.
This proves that
2) ¢ oYp(f-® f-) #0.

Thus, the G-module map 1 : St ® St — HO(G/B, L2(p — 1)p)) is nonzero.
By the Frobenius reciprocity,

3) dim Homg (St®St, HY(G/B, LQ(p — 1),0)))

= dim; Homp (St ® St, k—2(p—l)p): 1,

since the weight space of St ® St corresponding to the weight —2(p — 1)p is one-
dimensional and it is of smallest weight.
Thus,

4) m=n up to a nonzero scalar multiple.

Thus, the proposition for P = B follows from Corollary 2.3.5.
We now come to the general P. By the above case (i.e., P = B) and Lemma 5.1.5,
vp(f+ ® fo) 932[7 splits Xp := G xp U up to a nonzero scalar multiple. We claim,

in fact, that ¥p(f4+ ® f-) 9316;” splits X p for any P up to a nonzero scalar multiple.
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For any root B, as in Section 2.1, there exists an algebraic group isomorphism
ep : G4 — Upg onto the root subgroup Ug satisfying

(5) teg(2)t ™! = ep(B(1)z), forallt € T,z € Gy.

Order the roots AT\AT = {B1,.... Bn, }-
Now, define the variety isomorphisms (Section 2.1)

(6) e kN > Up, e(ti,....ty)) = ep, (11) -+~ &gy, (Iny),
and
(7) E kN - UL, E(s1,....sn,) =6op(s1) - e-py, (sN).

For g = £(s) € Up, write

3 g fy = Z s"vp, for some vp € St,

neZlJ\:I
where s := (sl, R sN,) and s" ;= s'l” .. -sZ,}:’. For a T-eigenvector v, let weight(v)
denote its weight. Then, it is easy to see that vy is a weight vector with
Ny
©) weight(va) = (p — Dp — Y nifi.
i=1

Similarly, write for u = ¢(t) € Up,

(10) uf = Z t™wpm, for some wy, € St.
mer’
Then,
Ny
(11) weight(wm) = —(p — Dp + ) mifi.

i=1

Thus, for g € U, andu € Up,

(12)  x(f+®@gug™ f) = x(& ' fr@uf-) =) " " x(vn © wm).

n,m
We claim that, for the constant sequencep—1=(p—1,...,p—1) € Zﬁ’,

(13) Vp—tipn =0 = wp_14pn  ifn#£0.
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By (9) and (5.1.4.1),

Ny
weight (Up—11pn) = (p — Dp — (p — DSp — Y pnif;

i=1

Ny
=—(p—Dwp=) pnif;,

i=1

where w!" is the longest element of the Weyl group Wp of P. Since w! permutes the
roots in At\AT, the weight space of St corresponding to the weight
—(p—=1 wf o — ZlN:’] pn;pB; is zero-dimensional. This proves the first equality of
(13). The second equality follows similarly. We next show that v,_1 and wp_1 are both
nonzero; thus they are the unique (up to nonzero multiples) extremal weight vectors of
St corresponding to the weights —(p — 1) w(f pand (p — 1) wf p respectively.

Analogous to &, define a variety isomorphism &’ : kN~ — U(Lp), where N :=
|AT|and U(Lp) := U N Lp is the unipotent radical of the Borel subgroup B N L p of
Lp. Similarly, define

g kNN S U

For g = 8(s)&'(s') € U™, where 8’ = (sy,+1,....5n), and s € k™7, write
(14) g =) s"(FE) " w),
Ny
nez,

for some vy, € St. Similarly, for u = &'(t)e(t) € U, write

(15) uf-= Yy t™(&'t) wm).

Ny
meZ,

for some wy, € St. Since ¥p(f+® f-) 9316;” splits X p up to a nonzero scalar multiple,

the coefficient of sP~1 /P~ 1 p—1¢P~ 1y x (g~ fL ®uf_) is nonzero (see the proof of
Lemma 5.1.5). This is possible only if vp 1 and wp_1 are both nonzero (use (14) and
(15)). Thus, x (vp_l ® wp_l) # 0 (since vp_1 and wp_1 are extremal weight vectors
of opposite weights). This proves (by virtue of (12)) that the monomial sP~1 P~1
occurs with nonzero coefficient in the function (g,u) — x(fy ® gug™'f_), for
(g,u) € Up x Up. Combining this with (13), we get that ¥p(f+ ® f-) 9315;17 splits
X p up to a nonzero scalar multiple (see the proof of Lemma 5.1.5). Thus, by Lemma
5.1.5, np(f+ ® f—) splits G/ P up to a nonzero scalar multiple.

To complete the proof of the theorem, we follow the argument as in the proof of
Corollary 2.3.5. As in (2.3.5.2), since wy =~ LP(=8p) (see the beginning of Section
3.1), identify (via a k-linear G-module isomorphism)

H0<Y7 £P(p - 1)5P)) ~ Hom(F*(’)y, OY>H],
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where Y = G/ P. Further, consider the k-linear G-module map
e : Hom(F,Oy, Op)I=1 = &

defined by e(0’) = o (1)”. Then, since Y is irreducible and projective, we have thato €
Hom(F,Oy, Oy) splits Y (up to a nonzero scalar multiple) iff e(¢) # 0. Combining
the above two maps, we get a k-linear G-module map

0:HO(Y, LP ((p— Dp)) — k
and thus a k-linear G-module map
Oonp:St®St — k.

Moreover, since np (f+® f—) splits Y up to anonzero scalar multiple, Qonp (f+ & f—) #
0. Thus, 8 onp = x (up to anonzero scalar multiple) and hence np (f) splits G/ P up to
a nonzero scalar multiple iff x (f) #% 0. This completes the proof of the theorem. [

5.1.7 Proof of Theorem 5.1.3. Combining Lemma 5.1.5 and Theorem 5.1.6, the first
part of Theorem 5.1.3 follows immediately. For the “In particular” statement, the
splitting of Xp given by ¥p(f- ® f+)631€;p provides a B-canonical splitting of X p (up
to a nonzero scalar multiple) by Lemmas 4.1.14 and 4.1.6. O

5.1.8 Definition. Let G be a connected, simply-connected, simple algebraic group.
Then, a prime p is said to be a good prime for G if p is coprime to all the coefficients
of the highest root of G written in terms of the simple roots. A prime which is not
a good prime for G is called a bad prime for G. A prime p is called good for a
connected, simply-connected, semisimple algebraic group if p is good for all its simple
components.

For simple G of type A; no prime is bad; for G of type B, C¢, Dy only p = 2 is
a bad prime; for G of type E¢, E7, F4, G only p = 2, 3 are bad primes; and for G of
type Eg only p = 2, 3, 5 are bad primes.

5.1.9 Proposition. Let G be a connected, simply-connected, semisimple algebraic
group over any algebraically closed field k. Assume that the characteristic of k is O
or a good prime for G. Then, there exists a B-equivariant isomorphism of varieties
E:U = u which restricts to a P-equivariant isomorphism &p : Up > up, for any
standard parabolic subgroup P of G.

Proof. The existence of a B-equivariant isomorphism & taking 1 to 0 is proved in [Spr—
69, Proposition 3.5]. We now prove that & restricts to an isomorphism £p. By [Spr-98,
Exercise 8.4.6(5)], there exists a one-parameter subgroup y : G, — B such that:

(1) Up is the set of those g € G such that ¥ (z)gy (z) ! has limit 1 when z tends to
zero, and

(2) up is the set of those x € g such that Ad(y (z))x has limit O when z tends to 0.
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Using (1)—(2) and the B-equivariance of &, it follows easily that & takes Up surjec-
tively onto up. From this, of course, we get that £p is an isomorphism. Since &p is a
B-equivariant morphism between affine P-varieties, it is automatically P-equivariant
(because P/B is projective). O

A proof for the following can be found in [Spr—69, Lemma 4.4].

5.1.10 Proposition. Let G and k be as in the above proposition. Assume, in addition,
that G does not have simple components of type A¢. Then, there exists a nondegenerate
symmetric G-invariant bilinear form on g.

Also, there exists a nondegenerate symmetric G L, (k)-invariant bilinear form on
M, (k) = Lie GL, (k), for any k.

As an immediate consequence of the above proposition, we get the following.

5.1.11 Corollary. Let G and k be as in Proposition 5.1.9. Then, for any parabolic
subgroup P C G, the cotangent bundle T*(G/P) is G-equivariantly isomorphic to
the homogeneous vector bundle G X p up.

As a corollary of Theorem 5.1.3, we get the following.

5.1.12 Corollary. Let G be as in the beginning of this chapter and assume that the
characteristic of k is a good prime for G. Then, for any standard parabolic subgroup
P C G, the cotangent bundle T*(G/ P) is B-canonically split.

Proof. By Corollary 5.1.11, T*(G/P) >~ G X p up. Further, by Proposition 5.1.9,
(1) GXPuPZGXPUp.

Thus, the corollary follows from Theorem 5.1.3. O
Letwp : Xp — G/P and wp : T*(G/P) — G/P be the canonical projections.

Then, both of these morphisms are G-equivariant. The following corollary follows
immediately by combining Theorems 5.1.3 and 4.2.13.

5.1.13 Corollary. For any (not necessarily dominant) » € X*(P), the G-module
HO (%p, fr;‘,ﬁp(k)) admits a good filtration.

In particular, if the characteristic of k is a good prime for G, then
HO(T*(G/P), n;ﬁp(k)) admits a good filtration.

5.1.14 Homogeneous splittings of 7*(G/P). With the notation and assumptions of
Corollary 5.1.11, the ring of functions

(1) K[T*(G/P)] ~ k[G x p up] ~ [K[G] ® S(up)]”,
where P acts on k[G] via the right regular representation.

2 (p-fg = f(gp), for f €k[G],pe Pand g € G,
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and the action of P on § (u]’i,) is induced from the adjoint action.

Taking the standard grading S(u}) = @ 40 sd (wp), we get a grading on
k[T*(G/P)] via the isomorphism (1) declaring k[G] to have degree 0. For any d > 0,
let

kq - k[T*(G/P)] — [kK[G]® S (up)]”

be the projection onto the d-th homogeneous component.

Let Y be a smooth variety together with a (nowhere vanishing) volume form 6y.
Of course, in general, fy does not exist. Then, a function f € k[Y] is called a splitting
Sfunction (with respect to 0y) if f 9)1,_[) e H° (Y , a)i,_p ) splits Y up to a nonzero scalar
multiple. In the case 6y is unique up to a scalar multiple (e.g., T*(G/P) by 5.1.2), we
can talk of a splitting function (without any reference to y).

If f € k[T*(G/P)] is a splitting function, then so is «(,—1)n, f, Where Ny :=
dim G/P (as earlier), since (k(p—1)n; f )|U;xup is a splitting function by Example
1.3.1. In particular, by Theorem 5.1.3, for any f € St® St such that x(f) # O,
the function «(,—1)n, (¥ p(f)) is a splitting function of 7*(G/P), where we consider
the function ¥p(f) € k[G x p Up] as a function on T*(G/P) via the identification
G xp Up >~ T*(G/P) given by (5.1.12.1) and Corollary 5.1.11. These splitting func-
tions «(p—1)n; (WP (f)) have an advantage of being homogeneous in the fiber direction;
thus they give rise to a splitting of the projectivized cotangent bundle P(T*(G/P))
consisting of lines in 7*(G/ P) (Example 1.1.10(3)).

5.1.15 Example. We consider the example of G = SL,4(k), where k is an alge-
braically closed field of an arbitrary characteristic p > 0. In this case, the Springer
isomorphism (Proposition 5.1.9)

E:U—u is explicitly given by A A—1,

where U, resp. u, is the set of upper triangular unipotent matrices, resp. upper triangular
nilpotent matrices, and [/ is the identity (n 4+ 1) x (n + 1) matrix. We consider the
element f_ ® fi € St ® St. Then, the function ¥'5( f— ® f), under the identification
G xp U ~ G xp u,is given by

(1) Up(f-® f1)(g, A) = x(f-® g+ A)g ' f}), forg € G, A e .

We identify the above function more explicitly as follows. Let V = k"*! be the
standard representation of SL, (k) with standard basis {eq, ..., e,+1}. Then, for
any 1 <i < n, AV is a Weyl module with the i-th fundamental weight y; as its
highest weight and highest weight vector ej A - - - A e;. Moreover, we have a G-module
embedding (St sitting as the “Cartan” piece)

) St (VRAV®-- @ A"V)®

taking fy — (el R Ne)® - Qeg A+ A e,,))®p—1. The existence of i follows
from the self-duality of St and [Jan—03, Part II, Lemma 2.13(a)]. Moreover, since St is
irreducible (Exercise 2.3.E.3), i is an embedding.
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Similarly, replacing B by the opposite Borel B™, there is a G-module embedding
St (VIR AZ(VH) @ @ AT(VH)EP!

taking f_ +— (ei‘ R(EFAES)® @ (ef A A e:))@’p_l, where {e], ..., e;:H} is
the dual basis of V* : ef(e;) = §; ;. Further, the G-invariant pairing x : St® St — k
is the restriction of the pairing

(Vo2 (VH® - @AV @ (Verve---ea V) » ik
induced by the standard pairing V* ® V — k. So,

YE(f-® f1)(g. A) = x(f- ® gl + A)g™ " f1)
(3) = (det M, det M5 - - - det M,,)? ™,

where M = M(g, A) is the matrix g(I + A)g’1 and, forany 1 < i < n, M; is the
matrix obtained from M by taking the first i rows and the first i columns.

For any fixed g, by (3), the map A — ¥p(f- ® f+)(g, A) is a (not necessarily
homogeneous) polynomial on u of degree (p — 1)(1+2+---+n) = (p — l)w =
(p — )dim G/B. The splitting function x(p,—1yn (YB(f- @ f+)) (where N :=
dim G/B) on T*(G/B) was originally used by [MeVa-92a] to split 7*(SL,+1 /B).

5.1.E Exercises

In the following exercises (1), (2) and (5), k is of arbitrary characteristic p > 0. More-
over, unless otherwise stated, G denotes a connected, simply-connected, semisimple
algebraic group.

(1) Show that there are no nonconstant regular maps G — k* for any connected,
semisimple algebraic group over k. In particular, up to a nonzero scalar multiple, there
exists a unique volume form on G.

Hint: Any (connected) unipotent subgroup H being isomorphic, as a variety, to an
affine space, there are no nonconstant regular maps H — k*.

(2) More generally, for any connected algebraic group G, any regularmap f : G — k*
with f(1) = 1 is a character.
This is a result due to Rosenlicht.

(3*) Show that the map H?(y/p) asin (5.1.4.7) is the same as the map yp asin (5.1.2.2).

(4) Show that the function ¢ : G — k defined by g — x(f+ ® gf-) x(f+ ® g~ f-)
is a splitting function, where f., f_ are highest and lowest weight vectors respectively
of St and y is the pairing as in (5.1.2.1). (By Exercise (1), there exists a unique volume
from 6 on G up to a nonzero scalar multiple.) Moreover, the associated splitting of
G is B x B-canonical under the action (b1, by) - g = blgbz_l.
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Hint: First show that g, v-ur = t=P0y- A By A Or, where Or is the volume form
dti A- - - Adty; t; being the function # X7 for the i-th fundamental weight ;. In particular,
foru_ e U, uy eUandt e T,

(@05 DY u_uit) = x =" fy @ uy f 1PV (By—(u_) A0y uy) Aor@)® 7.

Now, use Theorem 5.1.3.
In fact, consider the linear function ® : (St X St) ® (StX St) — k[G] defined by

PNV WNRW)=xv®g)x(w® gw).

Then, show that ® (v X v’ ® w X w’) is a splitting function iff x (v @ w) x (v @ w’) # 0.

(5) Let P be any parabolic subgroup of G. Show that the canonical bundle of G x p P
is G-equivariantly trivial, where P acts on P via the conjugation. Prove the same result
for G xp p.

Show further that G x pp has a unique volume form (up to a nonzero scalar multiple),
but it is false for G x p P for any parabolic subgroup P & G.

Hint: For the first part use ideas similar to the proof of Lemma 5.1.1. For the
nonuniqueness part, observe that any nontrivial character x of P induces a nonconstant
regular function on G x p P (as y is invariant under conjugation).

(6) Let G = SL,4+1(k), where k is an algebraically closed field of any characteristic
p > 0. Show that the splitting of 7*(G/B) given by the function h =
k(p—1yNn(WB(f— ® f1)) (as in 5.1.15), i.e., the splitting h@}:("G/B) of T*(G/B) com-
patibly splits all the subvarieties G xp up C G xp u =~ T*(G/B), for any standard
parabolic subgroup P C G.

(7) By Exercise (5), there exists a volume form 6 on G xp B such that 0y- .7y =
Oy~ A Or A Oy. Show that «f!~P provides a B-canonical splitting of G xp B upto a
nonzero scalar multiple, where « is the function given by a (g, b) = x (f-®gbg ™' f1),
forg € G,b € B.

In fact, for any f = Y v; ® w; € St® St such that x(f) # 0,a/(g,b) =
Yixwi® gbg™'w;) is a splitting function on G x g B with respect to the volume
form 6.

Hint: Use Theorem 5.1.3.

(8) Assume that p is a good prime for G and, moreover, G does not have any components
of the form SL,, (k). Recall that there exists a G-equivariant morphism (cf. [BaRi-85,
Proposition 9.3.3]) &6 : G — g, taking 1 +— 0, such that the differential

(%) (déG)1:9— @

is the identity map. By [Spr-98, Proposition 8.4.5], there exists a one-parameter sub-
group y : G, — B such that B, resp. b, is the set of those g € G, resp. x € g, such
that y (z)gy (z) ™', resp. Ad(y(z))x, has a limit when z tends to zero. Using such a y,
show that &g restricts to a morphism & = &g : B — b.
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Then, & induces a map at the level of the top degree forms
£ H(b, wp) — H'(B, wp),

where w denotes the canonical bundle. Fix a volume form 6, on b and a volume form
Op = 070y on B = TU. Then, §*(6y) = ®0Op, for some ® € k[B]. Moreover,
@ (1) # 0, by (x).

The map & induces an isomorphism of algebras

£ : k[b] > K[BI,

where k/[F], resp. kTE], is the completion of k[b] at the maximal ideal corresponding
to 0, resp. of k[B] at 1.
Write

a(g,b) =) aji(g)a}b),
J

for some oz} € k[G] and oz;./ € k[B], where @ : G xp B — k is as in Exercise (7).
Define the regular function @ : G x b — k by

i=Y e (E) er),

o

where (-), denotes the homogeneous component of degree (p — 1) dim B. Now, prove
the following.

(a) & descends to a function on G x g b.
Hint: Show that ® is B-invariant under the adjoint action.

(b) & provides a B-canonical splitting of G x g b with respect to the unique (up to a
nonzero scalar multiple) volume form on G x g b.

(c) This splitting of G x p b descends to a splitting of g under the map G xp b — g,
(g, x) — (Ad g)x.

Hint: Use the arguments in [MeVa-92a, Proof of Theorem 4.3] to show that it
suffices to prove that & descends to a function on g. To prove the latter assertion,

show that the composite map G x B ™8 B 2 k descends to a map on G via
the map G x B — G, (g,b) — gbg‘l, where 7p is the projection onto the
B-factor.

(d) Let P C G be any standard parabolic subgroup. Give a construction similar to
that given above to split G x p up using the splittings of G x p Up provided by
Theorem 5.1.3.

(e) The splitting of G x g B given by a6'~7 (up to a nonzero scalar multiple) as in
Exercise (7) descends to a splitting of G via the map G xp B — G, (g,b) —

gbg™!.
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(9) Show the following negative results.

(a) Let U; C U be the unipotent radical of a standard minimal parabolic subgroup
P; of G. Then, none of the splittings of G xp U provided by Theorem 5.1.3
compatibly split G x g U;.

Hint: Show that, for any f € St® St such that x(f) # 0, ¥p(f) does not
identically vanish on G x x, for any x € U. Now, use Exercise 1.3.E.3.

(b) For any simple reflection s;, 1 < i < ¢, let D; C G/B be the corresponding
Schubert divisor Bw,s; B/B. Then, none of the splittings of G x g U provided
by Theorem 5.1.3 give a D, -splitting of G x p U, where Dj=n"! (D;); m being
the quotient map G xp U — G/B.

Hint: Show that, for any f € St ® St, if Y p(f) vanishes identically on Dj then
it vanishes identically on G x p U; as well. Now, use the (a) part.

(10) Let p # 2. Then, show that for G = SO,,(k) and Spy, (k), the Cayley transform
C:U — u,gr— (1-g)(1+4g~', isa B-equivariant isomorphism. So, C provides
an explicit Springer isomorphism in these cases.

Hint: In fact, C is defined on square matrices x such that 1 4 x is invertible.
Moreover, for such an x, 1 + C(x) is again invertible and C%x = x.

(11)Let B & P C G be a parabolic subgroup. Fix a volume form 6 on G x p P (which
exists by Exercise (5)). Then, show that (up to a nonzero scalar multiple)
— Bi—p
‘u;x@;xum =t"t 9(/;, A QL; A 6Oy A Or,
for some character t? of T which extends to a character of L p, where Ly, :=LpNU".

Show further that, for any f € St® St, ¥ (f)0' =P is not a splitting of G xp P,
where ¥ (v @ w)(g, p) = x (v ® gpg~'w).

Hint: For the first part, take the right invariant volume form 6p on P. Then,
Q‘U,XP =y GU; A Op, where y is a nowherevanishing function on P, thus descends to
a fllinction on P/Up. Now, use Exercise (1).

For the second part, take weight vectors v, w € St. Then, for g € Uy, h € L,
uelU,teT,

Y (v @ w) (g, hut) = x (g~ v ® hut g~ w).

The coefficient of the monomial # P ~D? in (Y (v @ w)(g, hut)) -t P~D@=P) is given by

X (g_lv ® hu(g_lw)(p,1)5>, where (g_lw)(p,l)ﬂ denotes the component of g~ 'w

in the weight space corresponding to the weight (p — 1)B8. Now, the monomial
[Tyent x& ! (5.1.4) would occur in x(¢7"v ® hu(g~'w)(p—1)) with nonzero co-
efficient only if the weight spaces in St corresponding to the weights (p — 1)8 and
(p — DB +2(p — 1)p are both nonzero. This is possible only if 8 = —p. But =" is
not a character of L p unless P = B.
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5.2 Cohomology vanishing of cotangent bundles of flag
varieties

We continue to follow the same notation as in the beginning of this chapter.
Let 7 : T*(G/B) — G/B denote the projection and let

C:={ueX"T): (u,pY)>—1, forall B € AT}.
We begin with the statement of one of the main results of this section.
5.2.1 Theorem. Let the characteristic of k be a good prime for G. Then, forany ) € C,
H'(T*(G/B),n*L(})) =0, foralli > 0.
Before we come to the proof of the theorem, we need several preparatory results.

5.2.2 Lemma. Let the characteristic of k be a good prime for G, or 0. Then, for any
parabolic subgroup P C G and any vector bundle V on G/ P, there is a canonical
isomorphism

H (T*(G/P),n}V) ~ H' (G/P, LF(Swp)) ® V), foralli >0,

where S(-) denotes the symmetric algebra and wp : T*(G/P) — G/ P is the projec-
tion.

Proof. By Corollary 5.1.11, the cotangent bundle
(D) T*(G/P) ~ G xp up, as G-equivariant vector bundles.

(Here we have used the assumption that the characteristic of k is a good prime for G,
or0.)

The projection wp : T*(G/P) — G/P is clearly an affine morphism. Now, we
use the projection formula [Har—77, Chap. II, Exercise 5.1(d)] and a degenerate case
of the Leray spectral sequence [Har—77, Chap. III, Exercise 8.2] to get

Hi(T*(G/P), N;ZV) ~ H! (G/P, ﬂp*(OT*(G/P)) X V)
The fiber of 7 p at the base point e P can be identified with up (under the identification
(1)). Thus, from the G-equivariance, the sheaf 7 p= (OT*(G / p)) can be identified with
the homogeneous vector bundle £ (S (uh)). O

5.2.3 Definition. (Koszul resolution) Let

0>V EBvEy o
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be a short exact sequence of vector spaces (over any field k). For any n > 0, consider
the sequence:

0= AT(V) > e STV @ ALV 22 st (V) @ ALV

(1) NN Sn_l(V) [ 174 i) Sn(V) £> Sn(v//) — 0,

where D2 is induced by the map p, and &1 STHVY @ ANV —
StV @ AIT1(V') is defined by

@ Si(f@®uiA-Av) =) (DTS @A A A A
j=1

Then, as is well known, the above sequence (1) is an exact complex called the Koszul
complex (cf. [Ser—89, Chap. IV.A]). The direct sum of the resolutions (1) overalln > 0
provides a resolution of the S(V)-module S(V") >~ S(V)/ V' S(V), called the Koszul
resolution of the S(V)-module S(V").

5.2.4 Lemma. Let k be a field of an arbitrary characteristic (including 0). Let P,
be the standard minimal parabolic subgroup corresponding to a simple root a and let
A € X*(T) satisfy (,,a") = —1. Then, for any Py-module V,

H/(G/B,L(V)® L)) =0, forallj>O0.

Proof. For the projection f : G/B — G/Py, since f*LF*(V) ~ L(V), by the
projection formula [Har—77, Chap. III, Exercise 8.3],

(1) R/ F(L(V)® L)) =~ LI (V) ® RT f.(L(L)).

But, from the G-equivariance, R{ f+«(L(1)) is the homogeneous vector bundle on G/ Py
associated to the P,-module H’/(P,/B, E(A)|Pa/3). Since E(A)|Pa/3, by assumption,
is a line bundle of degree —1 on the projective line P! ~ P, /B,

Hj(Pa/Bv ‘C()\)lpa/g) =0, forallj=>0.

Thus, by (1), .
R f(L(V)® L(A) =0, forall j > 0.

Hence, the lemma follows from the Leray spectral sequence associated to the morphism

f- O
5.2.5 Corollary. Let k be a field of an arbitrary characteristic. Suppose that A € C
and (L, «") = —1 for a simple root a. Then, sy} € C and

(1) H'(G/B, L(S"W")) ® L)) = H'(G/B, L(S"™ ")) ® L(so1))

foralli > 0andn > 0.
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Proof. As s, permutes A1\ {a} and sq,a = —a, we get that s, A € C.
For the isomorphism (1), apply the Koszul resolution (5.2.3.1) to the short exact
sequence of B-modules:

0—>k_a—>u*—>u’;,a—>0,
to obtain the exact sequence of B-modules:
0— 8" W) ® kg > " (W) > §"(uf) — 0.
Thus, we get an exact sequence of homogeneous vector bundles on G/ B:
0— L") @ LO + @) = LIS" W) @ LO) - L(S"(wh,) ® L) — 0.

Now, taking the associated long exact cohomology sequence and applying Lemma 5.2.4
(to get the vanishing H/ (G/B, L(S"(wp ) ® E()»)) = 0, forall j > 0), we obtain (1).
(Observe that, by assumption since (A, V) = —1, s4A = A + @.) O

5.2.6 Relative Kéhler Differentials. For a scheme over any field &, recall the definition
of the sheaf of Kahler differentials Q}( = Qy/y from [Har-77, Chap. II, §8]. For any
k-morphism f : X — Y between schemes, the sheaf of relative Kdhler differentials
Q ; Y (which we will abbreviate as 2 ;) is defined as the quotient sheaf 2 §( Ji(f *Q%,),
wherei : f *Q; — Q& is the canonical map. Thus, these fit into an exact sequence of
sheaves on X:

1

(1) 5y — Q@ - Qf —o0.

Assume further that X and Y are smooth varieties and f is a smooth morphism.

In this case, i is injective and Q}( and Qlf are locally free Ox-modules (cf. [Har-77,

Chap. III, Proposition 10.4]). Fix j > 0 and let QL = A{?x (Q}() be the sheaf of
differential j-forms on X. Then, by_ (1) and [Har—77, Chap. II, Exercise 5.16], there

exists a decreasing filtration {.7-'lf (%) }izo of Q4 by locally free Ox-submodules such
that the associated graded sheaf

2) Gr(F (@) ~ P 1@ @ @)
i>0
S . AS 1
where Qf = Aoy (Qf).

For dominant regular A, the following lemma is a special case of the Serre vanishing
theorem [Har—77, Chap. III, Proposition 5.3].

5.2.7 Lemma. Let A be a dominant weight. Then, there exists m, = m,(\) such that
foranyi > j,

(1) H'(G/B, Q{;/B ® L(mA)) =0, forallm > m,.
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Proof. For A = 0, from the diagonality of the Hodge cohomology [Jan—03, Part II,
Proposition 6.18],

2) H'(G/B, QG/B) =0 foralli # .

Thus, (1) is true in this case.

For A # 0,let B C P C G be the (unique) parabolic subgroup such that £(1) is the
pullback of an ample line bundle £ (1) on G/ P via the projection f : G/B — G/P.
(Of course, P = Pj,where [ :={1 <g <¢: )L(aqv) = 0}.) Applying (5.2.6.2) to the
(smooth) morphism f, to prove (1), it suffices to show that fori > j,

(3) H'(G/B, f* /P®Q/ "®L(m1)) =0, forall0<r < jandallm > m,.

By the projection formula, the EE’[ term of the Leray spectral sequence for the fibration
f may be written as

Ey' = H'(G/P.QG,p ® L (m1) ® R' £.2}7),

which converges to H*(G/B, f*Q,p ® Q " ® L(md)).
Since £ (1) is an ample line bundle on G/P, by the Serre vanishing theorem
[Har-77, Chap. III, Proposition 5.3], there exists m, such that for all m > m,,

) H*(G/P, Qp ® L7 (i) @ R' f, 2}7") =0,

forall s > 0, and all'j, r,t > 0.
Further, R’ f, Q’ ~" is the homogeneous vector bundle on G/P associated to the

P-module H' (P /B, b/p)- Again, the diagonality of the Hodge cohomology (this
time for P/B) gives

) H'(P/B, QP/B) 0, wunlesst =j—r.
Combining (4) and (5), we obtain
H*(G/P,,p ® L' (m)) @ R’ f*szf ") =0,
unless s = 0and ¢t = j — r. Thus,
E;” =0, unlesss=0andt=j—r.

Hence,
H'(G/B, f*Q Gp® sz/ " ® L(m))) =0,

for all m > m,, unless i = j — r. This proves (3) and thus (1) for any i > j. O

With this preparation, we are ready to prove Theorem 5.2.1.
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5.2.8 Proof of Theorem 5.2.1. We begin by proving the following for any dominant
A.

(1) H'(G/B, L(SW*) ® L(X)) =0, foralli > 0.

Consider the Koszul resolution (5.2.3.1) for any n > 0O:

@ 0= AW > - ST ® A0/
- 510N ® (b/w)* > §'(6*) > S"W) — 0,
corresponding to the short exact sequence of B-modules:
0— (b/w* — b* - u* — 0.

Let K, := Image &5. Then, the exact sequence (2) breaks up into several short exact
sequences of B-modules (for any s > 1):

3), 0 K, — S" (6% & A ((b/w)*) 223 K, — 0, and

4) 0— Koy — S"(b*) = §"(u*) = 0.
Fix a dominant A and assume that
5) Hi(G/B, LSO QL) =0 foralli > 0.

Considering the long exact cohomology sequences corresponding to the short ex-
act sequences (3); and (4) of B-modules tensored with the B-module k_, and using
assumption (5) and the fact that b/u is a trivial B-module, we see that for any i > 0
andany s > 1,

H*Y(G/B, L(Ks) ® L(1)) ~ H(G/B, L(Ks_1) ® L(})), and
HYY(G/B, L(Ko) ® L(L)) ~ H' (G/B, L(S" (1)) ® L()).
Thus, by iteration, for any s > 0,
(6) H'(G/B, L(S"(W¥) ® L(L)) ~ HTYG/B, L(Ks) ® L(V)).
Since K = 0 for large enough s, from (6), we deduce that
(7) H'(G/B, L(S"(W*)) ® L(1)) =0, foranyi > 0.

Thus, (1) follows for (dominant) A if we prove (5), which we prove now.
Again, fix any n > 0 and consider the Koszul resolution:

® 0= A((8/6)) = - — S (g%) ® A*((a/6)") = -

— 5" (g") ® (g/b)" b, §"(g") — $"(b") — 0,
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corresponding to the short exact sequence of B-modules:
0— (g/b)* - g* —> b* — 0.
By Lemma 5.2.7, there exists m, such that
9) H'(G/B. 2,5 ® L(mA)) =0, fort > j andallm > m,.
Thus, by [Jan—03, Part I, Proposition 4.8],
(10) H'(G/B, L(S@") ® A ((8/)) ® L(m1)) =0,
for all ¢ > j and m > my, since

(11) Q{;/B ~ L(A ((g/0)")).

Considering the short exact sequences similar to (3); and (4) (obtained from the Koszul
resolution (8)) and using (10) we obtain (similarly to (6)), for any s > 0 and i > 0,

(12)  H'(G/B, L(S"(6*)) ® L(mA)) ~ H'TTY(G/B, LK,) ® L(m1)),
where K, := Image 8. Taking s large enough, we obtain (for any n > 0)
(13) H'(G/B, L(S"(b*) ® L(mA)) =0, foralli > 0andm > m,.

The above vanishing for n = 0 is a particular case of (9).
This proves (5) for A replaced by mA (for any m > m,) and thus we obtain

(14) H' (G/B, LSW) ® E(m)»)) =0, foralli > 0and m > m,.

(Observe that, so far, we have not used the assumption that the characteristic of k is a
good prime for G, which we use now.) By Lemma 5.2.2,

(15) H'(T*(G/B), n*L(m))) ~ H' (G/B, L(SU*)) ® L(m})).

Thus, by (14), H (T*(G/B), n*L(mA)) = 0, forall i > 0 and m > m,. Since
T*(G/B) is split (Corollary 5.1.12), by Lemma 1.2.7(i),

H'(T*(G/B), n*L(})) = 0.

This proves the theorem for dominant .

Finally, we prove the theorem for an arbitrary A € C. Take n > 0 and assume by
induction that H'(G/B, L(S/ (u*)) ® L()) = 0, forall i > 0 and j < n. If A is
dominant, then (as proved above) H' (G/ B, L(S"(u*) ® £()»)) = 0. So, assume that
A € C is not dominant. Then, there exists a simple root « such that (A, «") = —1. For
n=20, Hi(G/B, L)) = 0 by Lemma 5.2.4. For n > 0, by Corollary 5.2.5,

H'(G/B, L(S"(w*) ® L) = H (G/B, LIS" ' (")) ® L(s¢1)),

and sy A € C. Thus, by induction, H'(G/B, L(S"(u*)) ® L())) = 0.
This finishes the proof of the theorem by Lemma 5.2.2. O
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As a consequence of Theorem 5.2.1 and its proof, we obtain the following Dolbeault
vanishing.

5.2.9 Theorem. Let the characteristic of k be a good prime for G. Then, for any A € C,
(1) H'(G/B.Qf,p ® L) =0, foralli > j.
Proof. We first show that
) H'(G/B, L(5(6%) ® L(1)) =0, foralli > 0.
As in the proof of Theorem 5.2.1, consider the exact sequence of B-modules:
0— (b/w* - b* - u* — 0.

Associated to the above sequence, for any r > 0, there is a decreasing filtration (by
B-submodules):

Sr(b*)Z}—onl D+ DF DFr41=(0)
such that

GrF =P s (b/w") @ 5 )
j=0

(cf. [Har—77, Chap. II, Exercise 5.16]).
Thus, to prove (2), it suffices to show that

3) H'(G/B, L(S((b/u)*) ® L(SW*)) ® L(A)) =0, foralli > 0.

But since b/u is a trivial B-module, (3) follows from Theorem 5.2.1 and Lemma 5.2.2.
Fix n > 1 and assume by induction that

4) H'(G/B, LN ((8/6)) ® L(A)) =0 foralli > jand j < n.

(Observe that Hi(G/B, L)) =0, fori > 0, as this is a particular case of (3).)
Recall the Koszul resolution from (5.2.8.8):

O—)/\n((g/b)*)_) .._)Sn*A(g*)®/\S((g/b)*)85_*l> N
$"1(g") ® (g/6)" = §"(g") — S"(6%) — 0.

As in 5.2.8, break this into short exact sequences (for any s > 1):

(5)s 0— Ky — $"(g") ® A°((g/0)") 2= Ry_y — 0, and
(6) 0— I%o — S"(g*) — S"(b*) - 0,
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where Ies := Image SS. Then,
K,=0 and K,_1 >~ A"((g/b)").

From the long exact cohomology sequences associated to (5); tensored with k_; (for
1 <5 < n — 1), and using the induction hypothesis (4), we get (for any i > n):

H'(G/B. LA"((8/0)") ® L)) = H'™(G/B, L(Ku-2) ® L(V)) =
-~ H'™"Y(G/B, L(Ko) ® L)) = H™"(G/B, L(S"(6") ® L(V)),

where the last isomorphism is obtained from (6). The last term is O by (2) and hence
so is the first term. This completes the induction and we get

H'(G/B, LN ((8/6)") ® L) =0, foralli > j.
Now, the theorem follows from (5.2.8.11). O

5.2.10 Remark. We obtained the Dolbeault vanishing Theorem 5.2.9 from Theorem
5.2.1 and its proof. We can reverse the steps in the proof of Theorem 5.2.9 and obtain
Theorem 5.2.1 as a consequence.

We extend a slightly weaker version of Theorem 5.2.1 to an arbitrary parabolic
subgroup.

5.2.11 Theorem. Assume that the characteristic of k is a good prime for G. Then,
for any standard parabolic subgroup P C G and a dominant weight ). € X*(P) such
that LF (1) is ample on G| P (equivalently, if » — pp remains dominant; see Exercise
3.1.E.1),

(1) H (T*(G/P), 7} LP W) ~ H(G/P, L (S(wp)) ® LT (W) =0,
foralli > 0.

Proof. The first isomorphism in (1) of course is a particular case of Lemma 5.2.2.
Regard T*(G/P) ~ G x p up (Corollary 5.1.11) as a closed subvariety of

2) Gxpg~G/P xg,

where the last isomorphism is given by (g, x) — (g P, Ad g(x)). Then, the projection
onto the second factor gives rise to a proper morphism « : 7*(G/P) — g. Let €4 be
the trivial line bundle on g. Then, n;‘,ﬁp (A) can be identified with the restriction of the
product line bundle £ (1) X €g to T*(G/ P) under the identification (2). In particular,
% LF (1) isample on T*(G/ P). Thus, the vanishing of H' (T*(G/P), 7} LF (1)), for
i > 0, follows from Theorem 1.2.8(i) and Corollary 5.1.12. This proves the theorem.

O

The following result follows from the corresponding result in characteristic p > 0
and the semicontinuity theorem.
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5.2.12 Theorem. Theorems 5.2.1, 5.2.9 and 5.2.11 remain true over an algebraically
closed field of characteristic 0.

Proof. For Theorem 5.2.1, resp. 5.2.11, in characteristic 0, use Lemma 5.2.2, Theorem
5.2.1,resp. 5.2.11, and Proposition 1.6.2. For Theorem 5.2.9 in characteristic 0, use the
same proof as that of Theorem 5.2.9 (and use Theorem 5.2.1 in characteristic 0).  [J

5.2.E Exercises

(1) Let X be a smooth projective variety over any field k and let Tx be its tangent
bundle. Assume that there is an exact sequence of vector bundles:

0> K—>¢ex—>Tx —0,

where ey is a trivial vector bundle on X (for some vector bundle K on X). Then, for
any vector bundle S on X, prove that the following two assertions are equivalent for
any fixed r > 0.

(a) H1(X, Q‘; ®S8) =0,forallg — p > t.
(b) H1(X, S/ (K*) ® S) =0, forall j > 0and g > 1.

Hint: Use an appropriate Koszul resolution and ideas similar to those used in the
proofs of Theorems 5.2.1 and 5.2.9.

(2) Give an alternative proof of Theorem 5.2.11 along the following lines.
Considering the Koszul resolution corresponding to the short exact sequence of
P-modules:

0— (g/up)* — g —> up — 0,
first show that, for any fixed i > O, if
H'™(G/P, LN ((g/up)™)) ® £F (1)) =0, forall j > 0,

then so is
H (T*(G/P), 7} LE (1) = 0.
Now, since _EP (4) is an ample line bundle on G/P, there exists a large enough
m, such that H’(G/P, LN ((g/up)*) ® ﬁP(mA)) =0, foralli >0, j > 0and
m > m,. Thus, we get the vanishing

H(T*(G/P), w3 LT (mnr)) =0, foralli > 0.

Finally, use the splitting of 7*(G/ P) to complete the proof.
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5.3 Geometry of the nilpotent and subregular cones

In this section we assume that G is a simple (connected, simply-connected) group and
the characteristic of & is a good prime for G or 0. Recall that by a desingularization,
or resolution, of a variety Y, we mean a nonsingular variety Y together with a proper
birational morphism ¥ — Y. We will also use the notion of a rational resolution,
defined in 3.4.1.

We now review basic definitions and properties of the unipotent, resp. nilpotent
varieties and their subregular varieties as given in, e.g., [Hum-95b, Chapter 6]. Let I/
be the unipotent variety of G, i.e., the closed subset of G (with the reduced scheme
structure) consisting of all the unipotent elements of G. Then, U/ is irreducible, and
normal by [Spr—69, §1]. Further, the map

¢:GxgU—U, (gu)r gug ",

is a G-equivariant desingularization, called the Springer resolution, where G acts on U
via conjugation. The unipotent variety I/ contains a dense open G-orbit /"€ consisting
of the regular unipotent elements. Moreover, the complement & := U \ U™® is an
irreducible closed subset of ¢/, which we endow with the (reduced) subvariety structure.
The subvariety G is called the subregular variety. It contains a dense open G-orbit G™¢.

Similarly, let N C g be the nilpotent cone consisting of all the nilpotent elements.
Then, N is closed, irreducible, and invariant under scalar multiplication. We endow N
with the closed subvariety structure; then, A/ is normal as well. In fact, &/ and N are
isomorphic as G-varieties under the adjoint actions (cf. [BaRi-85, Corollary 9.3.4]).
As a consequence, the map

¢:Gxpu—N, (g.X)— Adg-X,

is a G-equivariant resolution, called the Springer resolution. Further, N contains a
dense open G-orbit A/™¢ consisting of the regular nilpotent elements. Moreover, the
complement S := A\ A'™8 is an irreducible closed subset of A\, invariant under scalar
multplication, and containing a dense open G-orbit S™¢. Endowed with the (reduced)
subvariety structure, S is called the subregular cone. By [BaRi—85, Corollary 9.3.4]
again, G and S are isomorphic as G-varieties.

Let P = P, be the minimal parabolic subgroup associated to a short simple root
. Then, ¢, ., factors through

¢aZGXpUp—>M,

with image exactly equal to &. _
Similarly, the restriction of ¢ to G x p up factors through G x p up to give the map

bo: G xpup—> N,

with image exactly equal to S.
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5.3.1 Lemma. Let o be a short simple root. Then, all the maps ¢, ¢, d~> and ¢~>a are
projective morphisms.
Further, ¢y and ¢y are both birational onto their images & and S respectively.

Proof. The map ¢ is the composition
GxgU<>GxpG~G/BxG -G,

where the first map is the standard closed embedding, the second isomorphism is defined
by (g1, g2) — (g1B, glgzgl_l) and the last map 77 is the projection onto the second
factor. Since 73 is a projective morphism, so is ¢. The assertion that the maps ¢, ¢
and ¢,, are projective morphisms can be proved similarly.

It is a consequence of [Ste—74, Theorem 2 on page 153] that ¢, is bijective over
G™¢. Indeed, by [loc cit.], any element g € G&™ lies in the unipotent radical of a
unique conjugate of P,. Now, to show that ¢, is birational, it suffices to recall from
[SpSt=70] that the orbit maps are separable for unipotent conjugacy classes. The proof
for ¢, is similar. O

5.3.2Theorem. The nilpotent cone N  and the subregular cone S are normal Gorenstein
varieties. Further, ¢ and ¢, are rational resolutions, where « is any short simple root.

Proof. As mentioned above, the unipgtent variety U, and hence the nilpotent cone N,
is normal. We begin by proving that ¢ is a rational resolution. In characteristic 0, this
follows at once from the triviality of the canonical bundle of G x p u (Lemma 5.1.1)
together with the Grauert—-Riemenschneider vanishing theorem (cf. [GrRi—70]). In
positive characteristics, by Lemma 5.1.1 again, it suffices to show that R! 5* (OGxzu) =
0 for all i > 0. Since N is affine, this is equivalent to

H'(G xpu, Ogxyu) =0, foralli > 0,

cf. [Har-77, Chap. III, Proposition 8.5]. But, G xp u = T*(G/B) by Corollary
5.1.11; thus, Theorem 5.2.1 yields the desired vanishing. This completes the proof of
the rationality of the resolution ¢. Together with Lemma 3.4.2 and the triviality of the
canonical bundle of G x p u again, it follows that the nilpotent cone A is Gorenstein.

Next, we turn to the subregular cone. We first show that the natural restriction map

(D k[G xp u] — k[G x g up] is surjective,

where P = P, is the minimal parabolic subgroup corresponding to any short simple
root .
Fix n > 0 and consider the exact sequence of B-modules (proof of Corollary 5.2.5):

0— ") @ k_g — S"(W") > §"(u}) — 0.
This gives rise to the long exact cohomology sequence:
20— H°(G/B,L(S" (") ® L) — H(G/B, L(S" (")) —
H°(G/B, L(S"(w}))) — H'(G/B, L(S" ' () ® L(@)) — -~
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By [Bou-81, Page 278], any positive short root belongs to C, where C is defined in
the beginning of Section 5.2. By Theorem 5.2.1 in characteristic p > 0 and Theorem
5.2.12 in characteristic 0, and Lemma 5.2.2, for any i > O,

3) H'(G/B, L(S(u*) ® L(a)) = 0, since « € C.
In particular, we get the surjection
H(G/B, L(S(w*))) - H(G/B, LISW}))).

Using a degenerate case of the Leray spectral sequence for the affine morphisms
G xpu— G/Band G xp up — G/B (see the proof of Lemma 5.2.2), we get (1).

We now show that § is normal. Considering the P!-fibration G x5 up — G X p up,
we get

4) k[G xpup] = k[G xpup].

Consider the commutative diagram:

el

k[G xp u] <¢N— kIN]

| |

*

KIG xpup] <2 k(S

where the left vertical map is induced from the natural restriction followed by the
isomorphism (4) and thus is surjective (by (1)), and the right vertical map is induced
from the inclusion. The map ¢* is an isomorphism since Vi is normal and ¢> is birational.
Thus, ¢* is surjective, and, of course, it is injective since ¢>a is surjective. Now, the
affine variety G x up being normal, k[G x up] is integrally closed in its quotient field.
In particular, k[G xp up] ~ k[G x up]? is integrally closed in its quotient field,
proving that the affine variety S is normal.

Finally, we prove that qba is arational resolution. As in the case of ¢ in characteristic
0, this follows from the Grauert-Riemenschneider vanishing theorem. Thus, we may
assume that the characteristic is positive. As for ¢ again, it suffices to prove that

5) H'(G xpup, Ogxpup) =0, foralli > 0.
Further, by Corollary 5.1.11 and Lemma 5.2.2,

(6) H' (G xpup, Ogxpup) = H (G/P, LT (S(}p)))
~ H'(G/B, L(Su}))).

where the last isomorphism follows from Theorem 3.3.4(a). Now, the vanishing

7) H'(G/B, L(S(}))) = 0, foralli > 0,
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follows from the long exact sequence (2) and the vanishing (3) and using the following
consequence of Theorem 5.2.1 and Lemma 5.2.2:

(8) H'(G/B, L(S*))) =0, foralli > 0.

Thus, we obtain (5) (from (6) and (7)), thereby showing that ¢N>a is a rational resolution.
Finally, the assertion that S is Gorenstein follows again from Lemma 3.4.2, since the
canonical bundle of G X p up is trivial by Lemma 5.1.1. O

5.3.3 Remark. Let {«;,, ..., o;,} be a set of mutually orthogonal short simple roots
and let P = Pj be the standard parabolic subgroup corresponding to the subset I :=
{i1, ..., im}. Then, Thomsen [Tho—00b] has proved that, if the characteristic of k is
a good prime for G, the closure G - up is a normal, Gorenstein variety which admits
a rational resolution. This generalizes the corresponding result in characteristic 0 by
Broer [Bro—-94].

5.3.E Exercises

(1) Let G = SL, (k). Take any nilpotent matrix N € s£,(k) and let C(N) be its
G-conjugacy class under the adjoint action.

(a) Using the normality of the full nilpotent cone N” C s#£,,(k), show that the closure
C(N) C sy, (k) is a normal variety.

Also, show that the ring of regular functions k[C(N)] admits a good filtration as a
G-module.

Hint: Use the fact that there exists a parabolic subgroup P = Py such that ¢p :
G xpup — C(N), (g,x) — Adg(x), is a proper birational morphism (cf. [Hum—
95b, Proposition 5.5]). Moreover, by a result of Spaltenstein (cf. [MeVa-92a, Theorem
4.8)), all the fibers of ¢ p are connected. Now, use Exercises 5.1.E.6 and 1.2.E.3.

(b) Show that the above map ¢p : G xXp up — m is a rational resolution.
Hence, prove that C(N) is Gorenstein.

Hint: Consider the splitting of G x p up given by Exercise 5.1.E.6, which of course
descends to give a splitting of G x p up. Now, apply Theorem 1.3.14 to the morphism
¢ p by showing that the above splitting satisfies the hypotheses of the theorem. Finally,
use Lemma 5.1.1 and the normality of C (N) to conclude that ¢ p is a rational resolution.
To prove that C(N) is Gorenstein, use Lemmas 3.4.2 and 5.1.1.

5.C. Comments

All of the results of Section 5.1 are due to Kumar—Lauritzen—Thomsen [KLT-99], except
for Propositions 5.1.9 and 5.1.10 which are due to Springer [Spr—69] and the explicit
splitting of the cotangent bundle 7*(G/B) for G = SL, (k) given in Example 5.1.15
which is due to Mehta—van der Kallen [MeVa-92a]. Lemma 5.1.1 in the special case
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G = SL, (k) and P = B, and Exercise 5.1.E.6 are also due to Mehta—van der Kallen
[MeVa-92a]. Exercises 5.1.E.4 (the first part), 7, 8 (except for (d), (e)) are taken from
[KLT-99] and we have learnt of Exercises 5.1.E.4 (the “in fact” part) and 5.1.E.8(e)
from Thomsen.

Theorem 5.2.1 was obtained by Andersen—Jantzen [AnJa—84] by some case-by-case
analysis for the case where p > & (h being the Coxeter number of G) and either A = 0
or A is strongly dominant (i.e., (A, ;") > h — 1 for all the simple coroots ,"). For
p > h—1and all the components of G classical or G, they proved this theorem for any
dominant A. Theorem 5.2.1 in full generality in characteristic 0 was proved by Broer
[Bro-93]. In fact, Broer showed that C is precisely the set of weights for which the
vanishing as in Theorem 5.2.1 holds (in characteristic 0). Lemma 5.2.4 is the simple key
lemma in Demazure’s very simple proof of the Borel-Weil-Bott theorem [Dem—-76].
Corollary 5.2.5 is essentially due to Broer [Bro—94]. Theorem 5.2.9, which is equivalent
to Theorem 5.2.1 by using an appropriate Koszul resolution (see Remark 5.2.10), is
due to Broer [Bro—97] in characteristic 0 and Kumar—Lauritzen—-Thomsen [KLT-99] in
characteristic p. In fact, Broer proved the corresponding result in characteristic 0 for
an arbitrary G/ P and for an arbitrary A € X*(P) N C. Theorem 5.2.11 is again due to
Broer [Bro-94] in characteristic O (in fact he proves it for an arbitrary A € X*(P)™)
and Kumar-Lauritzen—-Thomsen [KLT-99] in characteristic p, although the proof given
here is new.

Theorem 5.3.2 for the subregular cone in characteristic 0 is due to Broer [Bro-93].
As observed in [KLT-99], his proof carries over to give the same result in characteristic
p once one uses the cohomology vanishing Theorem 5.2.1. The normality of the
nilpotent cone N in characteristic~0 is a classical result due to Kostant [Kos—63]; and
Hesselink [Hes—76] proved that ¢ is a rational resolution of A in characteristic O.
Exercise 5.3.E.1 is taken from [Don-90], [MeVa-92a]. In characteristic O this was
proved by Kraft—Procesi [KrPr—79].

We believe that Theorem 5.2.11 should remain true for any dominant A € X*(P).
This will follow if, e.g., we can prove that the cotangent bundle 7*(G/P) of the flag
variety G/ P is split relative to an ample divisor.



Chapter 6

Equivariant Embeddings
of Reductive Groups

The main result of this chapter asserts that any equivariant embedding of a connected
reductive group G admits a canonical splitting which compatibly splits all the G x G-
orbitclosures. Here, by an equivariant embedding of G we mean a normal G x G-variety
containing an open orbit isomorphic to G itself, where G x G acts on G by left and
right multiplications.

This result is first established for a special class of embeddings: the wonderful com-
pactifications of adjoint semisimple groups. Any such group G,q admits a projective
nonsingular equivariant embedding X such that the complement of the open orbit is a
union of nonsingular prime divisors, the boundary divisors, intersecting transversally.
Further, the G,q x Gag-orbit closures in X are the partial intersections of boundary
divisors, and the intersection of all of these divisors is the unique closed orbit. The
construction and main properties of X, due to de Concini—Procesi in characteristic 0,
were extended to positive characteristic by Strickland who also obtained its splitting.

Another special class of embeddings consists of toric varieties, which are precisely
the equivariant embeddings of tori. For these, the existence of an invariant splitting
compatible with all the orbit closures is easily established (Exercise 1.3.E.6). The
case of arbitrary equivariant embeddings of reductive groups combines the features of
wonderful embeddings and those of toric varieties, as will be made more precise in this
chapter. We assume some familiarity with the theory of toric varieties, for which we
use [Ful-93] as a general reference.

Section 6.1 begins by constructing the wonderful compactification X and studying
its line bundles. In particular, the Picard group of X is shown to be isomorphic to
the weight lattice of G,q such that the globally generated, resp. ample, line bundles
correspond to the dominant, resp. regular dominant, weights. Then, it is shown that X
admits a canonical splitting, compatible with all the boundary divisors and also with the
Schubert divisors and opposite Schubert divisors (Theorem 6.1.12). As consequences,
the vanishing of the higher cohomology groups of globally generated line bundles is
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obtained (Corollary 6.1.13), and good filtrations for the spaces of global sections of
line bundles over X are constructed (Corollary 6.1.14).

Section 6.2 is devoted to some results of Rittatore on equivariant embeddings of a
connected reductive group G. A special role is played by those embeddings that admit
an equivariant morphism to the wonderful compactification of the associated adjoint
group. Such embeddings are called toroidal, as their G x G-orbit structure turns out to
be that of a toric variety (Proposition 6.2.3). A combinatorial classification of toroidal
embeddings by fans with support in the negative Weyl chamber is obtained (Proposition
6.2.4). Also, itis shown that any equivariant embedding admits an equivariant resolution
of singularities by a toroidal embedding (Proposition 6.2.5). Then, it is shown that any
equivariant embedding X of G admits a canonical splitting (Theorem 6.2.7), compatible
with the boundary divisors, the Schubert divisors and the opposite Schubert divisors.
An important consequence is the rationality (in the sense of Definition 3.4.1) of any
toroidal resolution 7 : X — X (Corollary 6.2.8). In particular, X is Cohen—Macaulay.

In Subsection 6.2.C, these results are applied to the normal reductive monoids,
i.e., to the normal varieties endowed with an associative multiplication and with a unit
element such that the group of invertible elements is reductive. Indeed, the normal
(reductive) monoids M with unit group G turn out to be exactly the affine equivariant
embeddings of G (Proposition 6.2.12). Since these admit a canonical splitting, Theorem
4.2.13 implies that the coordinate ring k[M] has a good filtration as a G x G-module.
The associated graded module is shown to be the direct sum of V(1) X V(—w,)),
where A runs over the weights of T in the coordinate ring k[T], T being the closure in
M of the maximal torus 7' (Theorem 6.2.13). Again, these results are due to Rittatore,
generalizing earlier works of Doty, Renner, and Vinberg.

When applied to M = G, this yields an alternative proof of the existence of a
good filtration of the G x G-module k[G] with the associated graded module being the
direct sum of all the V(1) X V(—w,A) (Theorem 4.2.5). As another application, it is
shown that the closure of a maximal torus in any equivariant embedding of G is normal
(Corollary 6.2.14).

6.1 The wonderful compactification

6.1.A Construction

We follow the notation as in Section 2.1. In particular, G denotes a connected, simply-
connected, semisimple algebraic group over an algebraically closed field k of charac-
teristic p > 0. Let G4 be the corresponding adjoint group. We have a homomorphism
of algebraic groups m : G — G,q Which is the quotient by the scheme-theoretic cen-
ter Z of G, a finite (possibly non-reduced) subgroup-scheme of G. In fact, Z is the
subgroup-scheme of T obtained as the intersection of the kernels of all the simple roots;
the Lie algebra 3 of Z is the center of g. Further, Z is reduced if and only if p does not
divide the index of the root lattice in the weight lattice of G.

We shall construct a “nice” compactification X of G,q equipped with an action of
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the group Gaq X Gaq extending its action on G,q by left and right multiplication. In
other words, X is an equivariant compactification of the homogeneous space

Gad = (Gag X Gag)/ diag(Gaa) = (G x G)/((Z x Z) diag(G)),

where diag(G,q) denotes the diagonal in G,q X Gag, and similarly for diag(G).

The idea is to embed G,q into the projective linear group PGL(M), where M is a
suitable G-module, and to regard PGL(M) as an open stable subset of the projective
space PEnd(M) of the space of endomorphisms of M, equipped with the action of
PGL(M) x PGL(M) via left and right composition. Thus, the closure of G, in
P End(M) is an equivariant projective compactification of G,q.

Our first result specifies the properties of M that we will use.

6.1.1 Lemma. Given a regular dominant weight A, there exists a rational, finite-
dimensional G-module M = M (A) satisfying the following properties:

(i) The T -eigenspace M), of weight A is a line of B-eigenvectors. All the other weights
of M are < .

(ii) g—o M) # O forall the positive roots a. The morphism G/B — P(M), gB +— g-M,,
is a closed immersion.

(iii) Let M*, be the T -eigenspace of weight —\ in the dual module M*. Then, M*
is a line of B~ -eigenvectors. The morphism G/B~ — P(M*), gB~ + g-M*, isa
closed immersion.

(iv) The action of G, resp. g, on P(M) factors through a faithful action of G ag, resp. gad-

Proof. Recall that a rational, finite-dimensional G-module M is called tilting if both M
and M* admit good filtrations. By [Don-93] (cf. also [Mat-00]), there exists a unique
indecomposable tilting module M (1) with highest weight A. Further, M (1) satisfies
(i) and (ii), and M (L)* =~ M(—w,A). In particular, the highest weight line in M (A)*
satisfies (ii). Applying w, to this line yields (iii).

Since all the weights @ of M (A) are such that & — A is in the root lattice, the group
scheme Z acts trivially on P(M). Thus, the action of G factors through an action of
Gag. This action is faithful, since P(M) contains a G-orbit isomorphic to G/B. The
Lie algebra assertion is proved similarly. This completes the proof of (iv). O

6.1.2 Remark. In characteristic 0, we may take for M (i) the simple G-module with
highest weight A. In characteristic p > 0, we may take for M ((p — 1) p) the Steinberg
module St, which is a tilting module by 2.3.4.

Fix A, M as in Lemma 6.1.1, and consider the G x G-module End(M) ~ M*Q M.
Let 4 € End(M) be the identity, with image [£] in the projectivization P End(M).

6.1.3 Lemma. The orbit (G x G) -[h] (with its structure of locally closed reduced sub-
scheme of PEnd(M)) is isomorphic to the homogeneous space
G X G/((Z x Z)diag(G)) =~ Gyg.
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Proof. The isotropy group (G x G)|p) consists of those pairs (g1, g2) such that g; g, !
acts on M by a scalar. By Lemma 6.1.1 (iv), this is equivalent to glggl € Z, ie.,
(81, 82) € (Z x Z) diag(G). Likewise, the isotropy Lie algebra (gaq X gad)[n] (for the
induced action of Gag x Gaq) consists of those pairs (x1, x3) such that x; —x, acts on M
by ascalar. By Lemma6.1.1 (iv) again, this is equivalent to x| = x». Thus, the orbit map
G x G — (G x G) - [h] factors through an isomorphism G x G/((Z x Z) diag(G)) =~
(G x G) -[h]. O

Next, we put P := PEnd(M) and we denote by X the closure in P of (G x G) - [].
By Lemma 6.1.3, X is a projective compactification of G,q, equivariant with respect
to Gag X Gaq. To study the structure of X, we begin by analyzing the closure of the
orbit (T x T) - [h]. This is motivated by the following result, where G is any connected
reductive group.

6.1.4 Lemma. Let X be a G x G-variety and let x € X. Assume that the orbit
(G x G) - x is open in X and that the isotropy group (G x G)y contains diag(G). Put
X' := (T x T) - x. Then, the following hold:

(i) Any G x G-orbit in X meets X'.
(ii) X contains only finitely many G x G-orbits.
(iii) X is complete if and only if X' is complete.

Proof. (i) We follow the argument as in the proof of the Hilbert—-Mumford criterion in
[MFK-94]. Themap¢ : G — X, g — (g, 1) - x, is a G x G-equivariant dominant
morphism since diag(G) C (G x G),. Further, ¢ restricts to a dominant 7 x T-
equivariant morphism 7' — X'.

Given any point y € X, we can find a nonsingular irreducible curve C, apointz € C,
and a morphism v : C \ {z} — G such that the composition g o ¢ : C \ {z} - X
extends to a morphism C — X sending z to y. This yields a commutative diagram

c\iz) —— ¢

l d

Choose a local coordinate ¢ of C at z. This defines an isomorphism of the completion
of the local ring O¢_, with the power series ring k[[¢]] and, in turn, a commutative
diagram

Speck((t)) —— C\ {z} L) G

! l ‘|

Speck[[t]] —— c — X.
Thus, we obtain a point g(¢) € G(k((¢))) such that ¢(g(¢)) is defined at + = 0 and
¢(g(0)) = y. Now, recall the decomposition

(D G k(1)) = GI[2]) T (k((1))) G (k[[£]D),
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cf. [ITwMa—-65]. Write accordingly g(t) = g1 (t)h(t)gz(t)_l. Then, (g1(0), g2(0))
arein G x G, and y = (g1(0), g2(0)) - ¢(h(0)). Thus, the G x G-orbit of y meets
o(T) =X'.

(ii) By (i), it suffices to show that X’ contains only finitely many 7'-orbits (for the
left action of T'). But, this follows from the fact that the normalization of X’ is a toric
variety for a quotient of T'.

(iii) Since X’ is closed in X, the completeness of X implies that of X’. For the
converse, by the valuative criterion of properness (cf. [Har—77, Chap. II, Theorem 4.7
and Exercise 4.11]), it suffices to show that every morphism Spec k((¢)) — X extends
to a morphism Spec k[[t]] — X. But, this follows from (1) as in the proof of (i). O

Returning to our simply-connected, semisimple group G, we put Taq := 7 (T), this
is the quotient of T by its subgroup-scheme Z. Then, the simple roots «1, . .., &g form
a basis of the character group X*(7T,q). We may identify T,q with the orbit (T x T') - [h]
by Lemma 6.1.3; let T,q be the closure in X of this orbit. Write & = > u h,,, where
each h, is a T-eigenvector of weight u for the action of 1 x T on End(M). If (m;) is a
basis of T-eigenvectors of M, and (m) is the dual basis of M*, thenh, = > m} @m;
(the sum over those i such that m; has weight u). Together with Lemma 6.1.1, this
immediately implies the following.

6.1.5 Lemma. (i) hy = m} ® m;, where m) € M) andm} € M*, satisfy (m}, m,) =
1. In particular, h), # 0.

(ii) h)—q #~ O for all the positive roots .

(iii) If hy, # 0 then pu < A.

Note that m; ®m}, regarded as an element of M @ M* = End(M)*, is an eigenvector
of B x B™. As earlier, put PEnd(M) =: P and denote by Py the complement in P
of the hyperplane (m; ® m} = 0). Then, [Py is isomorphic to the affine hyperplane
(m; @ m} = 1) of End(M). Also, put

(1) Xo := X NPy and Tyg,0 = Toa N Pp.

These are affine open subsets of X and T,q respectively; stable under Bx B~ and T x T
respectively.

6.1.6 Lemma. (i) Embed T,q into affine space At by
t (™Y, e ).
Then, the inclusion of Ty into Td,() extends to an isomorphism
y  AY > Tad.0-

(ii) The diagonal subgroup diag(W) of W x W acts on Tog, and Tog = diag(W) - Tag,0.
In particular, Tyq is a nonsingular toric variety (for Tag) with fan consisting of the Weyl
chambers and their faces.
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Proof. (i) Foranyt e T,

AxDh=> " p®Ohy=r6) > o1t etV ma——na
"

(n1,..., ne)eN¢

by Lemma 6.1.5. Thus, the surjective map T — (T x T)[h], t — (1, t)[h] induces a
morphism y : Al — Td,o- Since each hj_, is nonzero, y is an isomorphism.

(i1) By (i), Taq,0 is the toric variety associated with the negative Weyl chamber. On
the other hand, the Weyl group W acts diagonally on T,q and hence on T,q. It follows
that T, contains the toric variety associated with the fan of Weyl chambers. The latter
toric variety being complete, it equals Toq. O

The main ingredient in the analysis of X is the following description of the B x B~ -
action on Xg.

6.1.7 Proposition. The map
F:UxU" xA' > Xg, (u,v,2)— (u,v)y(2),

is a U x U™ -equivariant isomorphism, where y is the isomorphism of Lemma 6.1.6,
and U x U™ acts on U x U~ x A via multiplication componentwise on the first two
factors. As a consequence, Xy is isomorphic to an affine space.

Proof. Note that the restriction U x U™ x Tog — Xg of I' is just the product map
(u,v,t) — utv—lin Gaq. By the Bruhat decomposition, this restriction is an isomor-
phism onto the open cell in G4q. In particular, I' is birational.

To show that I" is an isomorphism, it suffices to construct a U x U~ -equivariant
morphism S : Xg — U x U™ such that

(D) BoD)(u,v,t) =, v)onU x U™ X Tyq.

Indeed, this equality, together with the U x U ~-equivariance of 8, implies that I" induces
an isomorphism U x U™ x ,3_1(1, 1) — Xp. In particular, the scheme-theoretic fiber
(1, isa variety (since Xy is), of dimension dim Xo —dim U —dim U~ = ¢. By
(1), this fiber contains I'(1 x 1 x Az) = y(AZ) = Tad,0 as a closed subset. But, both
have the same dimension ¢, so that 8~1(1, 1) = Tad,0-

To construct 8, we regard P as a space of rational maps

¢ :P(M)— — — P(M).

Then, Py consists of those rational maps in P that are defined at [m,] and, moreover,
send this point to a point of P(M)o := (m] # 0). Now, any ¢ € Gy is a regular
self-map of P(M) preserving the subvariety G - [m;] >~ G/B. Thus, each element of
X defines a rational self-map of G/B. Note that

G- mINPM)=U"-[m]=U",



6.1. The wonderful compactification 189

by the Bruhat decomposition again. Hence, any ¢ € Xy maps [m,] to u™ - [m,] for
aunique u~ = u (¢) € U™, and the map ¢ — u™ (¢) is a morphism. Likewise,
regarding P = PEnd(M) = PEnd(M*) as a space of rational self-maps of P(M*)
yields a morphism X9 — U. The product morphism g : Xg — U x U~ is clearly
U x U™ -equivariant and sends any ¢ € T,q to (1, 1). Thus, g satisfies (1). O

We now come to the main result of this section.

6.1.8 Theorem. (i) X is covered by the G x G-translates of Xo. In particular, X is
nonsingular.
(ii) The boundary 0X := X\ G4 is the union of £ nonsingular prime divisors X1, . .., X¢
with normal crossings.
(iii) For each subset I C {1, ..., £}, the intersection Xj := ﬂie] X is the closure of
a unique Gyq X Gag-orbit Op. Conversely, any Gaq X Gyq-orbit in X equals Oy for a
unique 1. Further, O; 2 Oy ifand only if I C J.

In particular, X contains a unique closed orbit

Y = O{l’“_,g} =X;N---NXy,

which is isomorphic to G/B x G/B.
(iv) X is independent of the choices of A and M.

The variety X is called the wonderful compactification of the semisimple adjoint
group Gagq.

Proof. (i) By Lemma 6.1.6 (ii), Tag = U,y ey (W, w) - Toq,0- Further, X = (G x G) - Tq
by Lemma 6.1.4 (i). Thus, X = (G x G) - Xp.

For (ii) and (iii), notice that the complement of Tq in A¢, under the embedding of
Lemma 6.1.6 (i), is the union of the coordinate hyperplanes. Thus, it is the disjoint
union of the orbits Tyq - [A], where I C {1, ..., £} isnotempty, and [A] € A¢ has i-th
coordinate 0 if i € I, and 1 otherwise. Further, #; € End(M) is the projection to the
sum of those weight subspaces M,,, where A — . € Zi¢ ; Na;. In particular, [h] ¢
Gaq. Together with Proposition 6.1.7, it follows that I restricts to an isomorphism
U x U™ x (AY\ Tyq) — 3X N X,. This readily implies our assertions.

(iv) Let X/, X” be two compactifications of G,q associated with different choices
of . and M. Let X be the closure of G,q embedded diagonally in X’ x X”. Then, X is
a projective Gq X Gag-equivariant compactification of G,q equipped with equivariant
projections 7’ : X — X/, 7”7 : X — X”. By Lemma 6.1.6 (ii), the closures of T,q in
X', X" are isomorphic, so that the closure of Tyq in X is mapped isomorphically to both.
Let X be the preimage of X{, under 7’. Then, using Proposition 6.1.7, we obtain an
isomorphism Xo =~ U x U~ x Taq.0. Thus, 7’ is an isomorphism over X Since this
open subset meets all the G,q X Gg-orbits in X', 7’ is an isomorphism everywhere. ]

6.1.B Line bundles

We begin with a very simple description of the Picard group Pic(X), regarded as the
group of linear equivalence classes of divisors on X.
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6.1.9 Lemma. The irreducible components of X \ X¢ are the prime divisors Bs; B~,
where, as in 2.1, s; € W denotes the simple reflection associated with «;. Further, the
abelian group Pic(X) is freely generated by the classes of these divisors.

Proof. Since X is affine, X\ X has pure codimension 1 by [Har—70, Chap. II]. Further,
X\ Xg contains no Gy X Gag-orbit by Theorem 6.1.8(i). Thus, G4 \ X is dense in
X\ Xp. But, G4gNXo = UT,qU ™ by Proposition 6.1.7. Now, the Bruhat decomposition
of G,q yields the first assertion.

Let D be a divisor in X, then D N Xj is principal as Xy is an affine space. Thus, D
is linearly equivalent to a combination of the Bs; B~. The corresponding coefficients
are unique, since any regular invertible function on X is constant. O

6.1.10 Definition. We put

(1) D; := Bsjw,B = (1, w,) - BsiB~
and
2) D; := (wy, wo) - D; = (wo, 1) - Bs; B~ = B~ wosi B—.

WecallDy, ..., D the Schubert divisors and ]31, e, ﬁg the opposite Schubert divisors
in X.

Note that D; and ]~)i are both linearly equivalent to Bs; B—, since Gaq X Gaq acts
trivially on Pic(X). Thus, the classes of the (opposite) Schubert divisors form a basis
of Pic(X).

We now obtain another description of Pic(X), regarded as the group of isomorphism
classes of invertible sheaves on X. Since G is semisimple and simply-connected, and X
is nonsingular (and hence normal), any invertible sheaf £ over X admits a unique G x G-
linearization (cf. [Dol-03, Theorem 7.2]). Thus, the restriction of £ to the (unique)
closed Gyq X Gyg-orbitY >~ G /B x G/ B is isomorphic as a G x G-linearized invertible
sheaf to £L(A) X L(w), where A, u € X*(T) are uniquely determined. We put

3) Ly ) := L(—wor) K L(A).

Also, we denote by t; the canonical section of the invertible sheaf Ox(D;) and by o;
the canonical section of Ox (X;), where X; is the boundary divisor defined in Theorem
6.1.8 (ii). Then, 7; is a B x B-eigenvector (for the action of G x G on I'(X, Ox(D;));
whereas o; is G x G-invariant. We may now state the following.

6.1.11 Proposition. (i) The restriction map resy : Pic(X) — Pic(Y) is injective, and
its image consists precisely of the classes Ly(L), . € X*(T).

For ) € X*(T), let Lx()\) be the unique element of Pic(X) such that resy Lx(1) =
Ly (). Thus, the map X*(T) — Pic(X), A — Lx(A) is an isomorphism of groups.
(ii) Ox(D;) = Lx(xi) and Ox(X;) = Lx(aj), fori, j =1,..., £ where {x;i}1<i<¢
are the fundamental weights (Section 2.1).
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(iii) For . € X*(T), Lx(A) is globally generated, resp. ample, if and only if A is
dominant, resp. regular dominant.

(iv) For any dominant . € X*(T), Lx()) has a nonzero global section t, such that
T, is a B x B-eigenvector of weight (A, —w,A). Further, T, is unique up to nonzero
scalar multiples; and its divisor is given by

14
) (t)o = Y (A, &)D;.
i=1
In particular, Ty, = T; (up to a nonzero scalar multiple).

(v) A canonical divisor Kx for X is given by

V4 14
) KX=—2ZDi—ZXj.
i=1 j=1

Equivalently,
3) wx = Lx(—2p —a; — -+ —ap).

Proof. Note that the closure in G of Bs; w, B is the divisor of a nonzero regular function
on G, whichis unique (up to a nonzero scalar multiple) and which is a B x B-eigenvector
of weight (x;, —w, x;). Thus, the canonical section t; of Ox(D;) is a B x B-eigenvector
of the same weight. It follows that (see Section 2.1)

resy Ox(D;) = Ly (x;).

Together with Lemma 6.1.9, this implies (i) and the first assertion of (ii). The second
assertion of (ii) follows from the structure of Xq (Proposition 6.1.7).

We now prove (iii) and (iv) simultaneously. Let A € X*(T). If Lx (1) is globally
generated, resp. ample, then so is its restriction to Y. Thus, A is dominant, resp. regular
dominant (Exercise 3.1.E.1). For the converse, note first that since D; contains no
G x G-orbit, the G x G-translates of the canonical section 7; have no common zeroes.
Thus, Ox (D;) is globally generated. Now, write A as

L
A=) (ko di)xi
i=1

In particular, for dominant A, all the coefficients are nonnegative. It follows that Lx (1)
is globally generated and admits a global section

L
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which is a B x B-eigenvector of weight (A, —w,1), satisfying (1). If r € T'(X, Lx (1))
is another B x B-eigenvector of the same weight, then the quotient T, ! is a rational
function on X which is B x B-invariant. Since X contains an open B X B-orbit, this
rational function must be constant, i.e., T is a scalar multiple of 7,. This proves (iv).

To complete the proof of (iii), it remains to show that Lx()) is ample for regular
dominant A. For this, choose a very ample invertible sheaf £ = Lx (). Then, NA —
is dominant for N > 0. Thus, Lx(1)®" ® £7! is globally generated, so that Lx (1)®V
is very ample.

For (v), note that Y is the transversal intersection of X1, ..., Xy (Theorem 6.1.8).
Thus, the normal bundle of Y in X equals Oy(X| + - - - + X¢) = Ly (o) + - -+ + ay).
So, the adjunction formula [Har—77, Chap. II, Proposition 8.20] yields

resy wx = oy @ Ly(—oy — -+ — ay).

Since wy = Ly(—2p) (by 2.1.8), this proves (3) and hence (2). O

6.1.C Canonical splitting

By Theorem 4.1.15, the flag variety G/B admits a B-canonical splitting which is
compatible with all the Schubert subvarieties and all the opposite Schubert subvarieties.
We generalize this to the wonderful compactification X of Gaq.

6.1.12 Theorem. The wonderful compactification X admits a B x B-canonical split-
ting given by the (p — 1)-th power of a global section of wil. This splitting can be
chosen to be compatible with all the boundary divisors X; and with all the D; and l~)l-
simultaneously.

Proof. By Proposition 6.1.11 (iv), the G x G-module HO(X, Lx((p — 1)p)) contains
aunique line of B x B-eigenvectors of weight ((p — 1)p, (p — 1) p). By the Frobenius
reciprocity and self-duality of St (Exercise 2.3.E.3), this yields a G x G-module map

y i StRSt — HY(X, Lx((p — 1)p))

such that y (f* & f*) = 7(,_1)p, where f € St is a highest weight vector, and
T(p—1)p 18 a section as in Proposition 6.1.11 (iv). We thus obtain a homomorphism of
G x G-modules

y2: (St St)®2 —  HYX, LxQ2(p — 1p))
1 Xy) @ (2 Wy2) =y Xy -yl Xy),

where the dot denotes the multiplication of sections. Let f_ := w, fT be a lowest
weight vector in St and put 7 := y>((f~ X f7) ® (f* & fT)). Then,

t=y(fT R y(FTR D =1 (p—1)p * Tp—1)ps

where 1_(,_1), 1= (Wo, Wo) - T(p—1)p- In particular, T is nonzero; by Proposition 6.1.11
(iv), its divisor is (p — 1) YF_, (D; + D;).
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Now, consider ]—]f=1 ol ~!,a G x G-invariant global section of the invertible sheaf

Ox((p—DXq+---+Xp) = Lx((p — D(ay +- - -+ ag)). The composition of the
multiplication by this section with y? is a homomorphism of G x G-modules

0: (StRSH®? — HOX, Lx((p — DQ2p + a1 + -+ ap)))
= H'X, oy ") = Endf(X),

where the last equality follows from Lemma 4.1.14. Further,

¢
- - -1
o =0((f RfHQU TR =1]]0
i=1
isnonzero; thus, o € Endr(X) is B x B-canonical (use Lemma4.1.6) and itis a splitting
(up to a nonzero scalar multiple) by successively using Exercise 1.3.E.4. Regarding o
as a global section of a);{p , its divisor is

4
@o=(p—1Y (Xi +D; + D).

i=1

Thus, o is the (p — 1)-th power of a section of wgl. Hence, the splitting given by o is
compatible with X;, D; and D; by Proposition 1.3.11. O

6.1.13 Corollary. Let Y be a closed Gaq x Gag-stable reduced subscheme of X and let
A be a dominant weight. Then, the restriction map

resy : H(X, Lx(1)) — HO(Y, Lx(M)y)
is surjective. Further, H (Y, Lx(M)y) =0foralli > 1.

Proof. By Theorems 1.4.10 and 6.1.12, X is split relative to the divisor Zf: 1 D;. This
divisor is ample by Proposition 6.1.11 (ii) and (iii), and contains no irreducible com-
ponent of Y since it contains no Gag X Gaqg-orbit. Further, since each X; is compatibly
split, then so is ¥ by Theorem 6.1.8 (iii). Now, the assertions follow from Theorem
1.4.8. O

Another consequence of Theorem 6.1.12 is the existence of a good filtration for the
G x G-module H O(X, Lx (X)), where A is an arbitrary weight (Theorem 4.2.13). In
fact, such a filtration may be constructed from the geometry of X as follows.

Let Zy be the ideal sheaf of the closed orbit Y, with positive powers Zy,. Put

F,HY(X, Lx(3) == HO(X, Lx(\) ® T4),

the subspace of sections that vanish with order > » along Y. This yields a decreasing
filtration of H(X, Lx (1)) by G x G-submodules; furthermore, F,, H 0X, Lx(1) =0
for n > 0 (depending on 1).
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We now construct a refinement of this filtration. Since Y is the transversal in-
tersection of the boundary divisors X1, ..., Xy (Theorem 6.1.8), the Ox-module Zy
is generated by o1, ..., 0. Further, these are G x G-invariant and form a regular
sequence. Thus, Zy is generated by the monomials

4
n . ni
o = l_[al. ',
i=1

where n = (n1,...,n¢) € Nl andn = n| = Zf=1 n;. The multiplication by o™
defines an injective map of G x G-modules

o™ HOX, Lx (A — Znia;)) — HY%X, Lx(L).

Let F HO(X, £x (1)) be the image of o™; this is a G x G-submodule of F, H*(X, Lx (1)),
where n = |n|.

6.1.14 Corollary. With the notation as above,

) FuHOX, Lx(0) = Y FaH(X, Lx(1).

In|=n
Furthermore, the associated graded of the filtration {F, H*(X, Lx (M) >0 satisfies

@ e, H'X, Lx(0) = P H(G/B, L(—won)) B H(G/B, L(1))
)73

as G x G-modules, where the sum is taken over those dominant weights i = A—Y_ n;a;
such that (ny, . ..,ng) € Nt and > n; = n. In particular, as G x G-modules,

gr HOX, Lx (1) = @D H*(G/B, L(—wop)) R H(G/B, L(1)).
H=A

Proof. From the exact sequence of sheaves on X:

0— Lx(M) @Iy — Lx(W) @ T4 — Lx(M) ® Ty /Ty — 0,

we see that gr, HO(X, Lx (1)) injects into HO(Y, Ly(L) ® I{’(/Ig’(ﬂ). Since Zy is

generated by the regular sequence {o1, ..., 0/}, we obtain
o/t = @ (1_[ o/") Ly (— Zniai)v
> ni=n
so that

3 HY.LyWeLy/Iyh = @ (Jo/HY, Ly — ) nici)).
> nj=n
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Furthermore, since Y >~ G/B x G/B and Ly (u) >~ L(—w,u) X L(u) for any weight
u (6.1.10), the space H 0Y, Ly (w)) is nonzero if and only if i is dominant; then,

resy : HO(X, Lx(1)) — H(Y, Ly (1))
is surjective by Corollary 6.1.13. Therefore, for any n = (ny, ..., ng) € N¢,
resy : Fa H(X, Lx(2) — H(Y, Ly(h — Y mie))

is surjective, where Fy H*(X, £x (1)) is identified with HO(X, Lx(A — 3 n;a;)) via
o™. This implies

FyHOX, Lx(W) = Foy 1 HOX, Lx(W) + ) FaH(X, Lx(2)).

[n|=n

Replacing n by n + 1, n + 2, ... and using the inclusion Fn/HO(X, Lx(A) C
FoH(X, Lx())) if n’ > n for the product ordering of N, we obtain

FuHO(X, Lx(W) = Fup HOX, Lx() + ) FaHO(X, Lx(0))

In|=n

for any r > 1. Since Fn+,H0(X, Lx(2)) = 0 forz > 0, this implies (1).
To prove (2), using (1), we obtain a surjective map

P H'X. Lx(t =) miei) — gr, H'X, Lx(3)),
> nj=n

and, by (3), an injective map

egr, HOX, Lx() — @) HOY. Ly = > niai)).
> ni=n

The composition of these two maps is the direct sum of the restriction maps

resy : HO(X, Lx(t — ) mia;)) — HO(Y, Ly(h = ) miai),
which are all surjective. Thus, ¢, is an isomorphism. O

6.1.15 Remark. The wonderful compactification X is not always diagonally split. For
example, consider the group G = SL, (k) over k of characteristic p = 2 and any n > 4.
Then, for the line bundle £ = £Lx(x2), H*(X, £) can be identified with the subspace
V of the polynomial ring k[x; ;j]i<;, j<» spanned by all the 2 x 2 minors of the matrix
(xi, ) 1<i, j<n. Moreover, the algebra R(X, £) can be identified with the integral closure
of the subalgebra of k[x; j]1<; j<n generated by V. Let S be the subalgebra generated
by V. Then, by [Brun-91, Remarks 5.2], the ring § is not normal; in particular, S is a
proper subring of R(X, £). Thus, by Exercise 1.5.E.1, X is not diagonally split.
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We learnt from de Concini that, for k of arbitrary characteristic p and for the group
G = SL;,(k), the product map

HX, Lx(xp)®* — H'(X, Lx(2xp))

is not surjective. In particular, in this case, X is not diagonally split (use Exercise
1.5.E.1).

It may be mentioned that Kannan [Kann—02] shows that, for any dominant weights
A and p, the product map

H(X, Lx(0) ® HO(X, Lx(n)) — H(X, Lx (A + 1))

is surjective in characteristic 0. However, his claim of the same result in characteristic
p is incorrect, as the above examples show.

6.1.E Exercises

(1) Let M be the submonoid of X*(T) generated by the simple roots «j, ..., o and
the fundamental weights x1, ..., x¢. Show that the invertible sheaves on X admitting
nonzero global sections are precisely those £x(A), where A € M.
(2) Define
RX):= @ H'X. Lx().
AeX*(T)

Then, by the above exercise, R(X) is a k-algebra graded by the monoid M. We may
regard R(X) as the multihomogeneous coordinate ring of X (see Exercise 3.5.E.1).

Now, show that the sections oy, ..., oy, regarded as homogeneous elements of

R(X) of degrees «1, ..., «g, form a regular sequence in R(X), and that the quotient
R(Y) := RX)/(o1, ..., 0¢) satisfies

R(Y) =~ @D H (Y, Ly (),
"

where the sum runs over all the dominant weights 1.

(3) Put £; := Lx(x;) for 1 < i < €. Show that the algebra R(Y) is generated by
its subspaces HO(Y, L1y)s .-y HOY, Ly|y). Deduce then that the algebra R(X) is
generated by its subspaces HO(X, L1),..., HO(X, Ly), together with o1, ..., 0. In
particular, the algebras R(X), R(Y) are finitely generated.

(4) Let Y be the affine scheme corresponding to R(Y). Show that Y is the multicone
over Y associated with £ [Y> s £5|Y (as defined in Exercise 1.1.E.2). This yields a
proper birational morphism 7 : Ll_1 ©---®L, ! Y, where L; is the line bundle
corresponding to the invertible sheaf £;y. Show that 7 is a rational resolution.

(5) Deduce from (4) that the rings R(Y) and R(X) are Cohen—Macaulay.

(6) For any subset I of {1, ..., £}, show that the ideal of R(X) generated by o;,i € I,
is prime. In particular, R(X) is a domain; show that it is normal.
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(7) Show that the localization R(X)[of1 e, a[l] is isomorphic to the ring of regular
functions on G x z T, the quotient of G x T by the diagonal action of the center Z of
G.

6.2 Reductive embeddings

In this section, G denotes a connected reductive algebraic group, Z its scheme-theoretic
center, and G,q := G/Z the corresponding adjoint semisimple group. Let7w : G —
Gq be the quotient map and put 7' := n’l(Tad), B = n’l(Bad), etc. Then, T,q =
T/Z, By = B/Z, etc.

6.2.A Toroidal embeddings

6.2.1 Definition. An equivariant embedding of G is a normal variety X equipped with
an action of G x G and containing the homogeneous space G = (G x G)/ diag(G) as
an open orbit.

In other words, X is anormal G x G-variety containing a point x such that the orbit
(G x G)x is open and isomorphic to G via the orbit map. For brevity, we say that X
is a reductive embedding, or a G-embedding if we wish to specify the group G.

Since G is an affine open subset of X, the complement X := X \ G has pure
codimension 1, cf. [Har—70, Chap. II]. Thus, all the irreducible components of 0 X :=
X \ G are prime divisors in X, called the boundary divisors.

If G = T is atorus, then the left multiplication by any ¢ € T equals the right multi-
plication by #~!. Thus, the T-embeddings are just the toric varieties for 7. Returning
to an arbitrary G, we now introduce a class of G-embeddings which turn out to be
closely related to toric varieties.

6.2.2 Definition. A G-embedding X is foroidal if the quotient map 7 : G — Gy
extends to a morphism from X to the wonderful compactification X of Gq.

Then, this extension 7 : X — Xisunique and G x G-equivariant, where G x G acts
on X through its quotient Gaq X Gaq. We put Xg := 7~ 1(Xy); thisis a B x B~ -stable
open subset of X. Also, put X' := (T x T) - x (i.e., X' is the closure of T in X), and
X = 771 (Taq.0). We may now formulate the following generalization of Proposition
6.1.7 and Theorem 6.1.8.

6.2.3 Proposition. Let X be a toroidal G-embedding. Then, the following properties
hold.

(i)Themap U xU ™ XX6 — Xo, (u, v, z) — (u, v)-zisanisomorphism. Furthermore,
the irreducible components of X \ X are precisely Bs;B~, wherei = 1,...,£; they
contain no G x G-orbit.

(ii) X(, meets any G x G-orbit in X along a unique T x T-orbit. Furthermore, X' =
diag(W) - X, so that X' is a toric variety for T, with a compatible action of W.
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(iii) Any G x G-orbit closure in X is the intersection of the boundary divisors which
contain it.

(iv) X is nonsingular (resp. complete, quasi-projective) if and only if X' is.

(v) If X is complete, then any closed G x G-orbit is isomorphic to G/B x G/B.

Proof. (i) The first assertion follows from the corresponding statement for X (Propo-
sition 6.1.7). It implies that X \ X( contains no G x G-orbit. As X \ X is of pure
codimension 1, it follows that X \ Xy is the closure of G \ Xp. On the other hand,
GNXy=UTU™, since Gyg N X9 = UTyyU™ and m extends the quotient map
G — Gyq. By the Bruhat decomposition of G, the irreducible components of G \ Xg
are the closures of Bs; B~ in G. This completes the proof of (i).

(ii) Since X is normal, then so is X, by (i). Furthermore, diag(W) acts on X', and
by Lemma 6.1.6(ii),

X' 771 (Ty) = diag(W)X}.

Thus, X’ = diag(W)X{,. It follows that X’ is normal, and hence it is a toric variety for
T.

By (i), X meets all the G x G-orbits in X. Furthermore,

X NXo= (U x U7)dX,

where X, := dX N X|,. Hence, each boundary divisor of X meets 3 X{, along a unique
boundary divisor of X{,. Since every orbit closure in a toric variety is the intersection of
the boundary divisors which contain it, it follows readily that X{; meets any G x G-orbit
along a unique 7 x T-orbit.

(iii) follows from (i) and (i), together with the corresponding result for toric vari-
eties.

(iv) By (i) and (ii), X is nonsingular if and only if X’ is. On the other hand, X is
complete if and only if X’ is, by Lemma 6.1.4 (iii).

If X is quasi-projective, then so is its closed subset X’. Conversely, if X’ is quasi-
projective, then so is X{,. Thus, a positive linear combination of the boundary divisors
of X, is ample. Now, the same linear combination of the corresponding boundary
divisors of X is a G x G-invariant divisor, and, moreover, by (i) and (ii), it is ample
relative to . Since X is projective, it follows that X is quasi-projective.

(v) follows easily from the corresponding assertion for X (Theorem 6.1.8). O

Next, we obtain a classification of toroidal G-embeddings in terms of toric varieties
equipped with a compatible action of the Weyl group.

6.2.4 Proposition. (i) Any toroidal G-embedding X is uniquely determined by its
associated toric variety X'. The latter admits a morphism to Taq, which is equivariant
with respect to the actions of T and W.

(ii) Any toric variety for T, equipped with a compatible action of W and with an
equivariant morphism to Taq, arises from a toroidal G-embedding.

(iii) The toroidal G-embeddings are classified by the fans in X (T)r := X4«(T) Q7 R
with support in the negative Weyl chamber. The nonsingular embeddings correspond
to those fans whose all the cones are generated by subsets of bases of X «(T).
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Proof. (i) follows from Proposition 6.2.3 (i) by arguing as in the proof of the uniqueness
of wonderful compactification (Theorem 6.1.8 (iv)).

(ii) may be deduced from the embedding theory of spherical homogeneous spaces,
cf. [Kno-91]. However, we sketch a direct proof as follows.

Let X’ be a toric variety for T equipped with a compatible action of W and with
an equivariant morphism to T,q. Let X o be the preimage of T,q,0 under this morphism.
Then, X' = W - X{), and X, is a toric variety whose fan X is contained in the negative
Weyl chamber; the fan of X’ consists of all the cones wo, where w € W and o € .
Fix such a o and denote by T, the corresponding affine toric variety. Then, the ring
k[T, regarded as a subring of k[T], is generated by a finite set F' of characters; these
also generate the dual cone C of o. Since o is contained in the negative Weyl chamber,
C contains all the negative roots.

Choose aregular dominant weight A such that A4-¢ is regular dominantforallp € F.
Choose G-modules M (1), M(A+¢) (¢ € F)satisfying the properties of Lemma 6.1.1.
(This lemma, though stated for semisimple groups, holds for all connected reductive
groups, cf. [Don-93].) Let h(A) € End(M (X)) be the identity and define likewise
h(x 4+ ¢) € End(M (A 4 ¢)). Consider the point

h:=h)+ > h(A+¢)
geF

of the G x G-module
End(M(1) & @D MO + ¢)).
peF

and the orbit closure (G x G)[h] in the projectivization of this module. Let X, be the
open subset of (G x G)[h], where the projection to PEnd(M (1)) is defined. Clearly,
X, is a quasi-projective G x G-variety equipped with an equivariant morphism 7 :
X, — X via the projection to P End(M (1)). Usmg the fact that C contains all the
negative roots, one checks that 71 (Xo) > Ux U~ xT,. As aconsequence, 7 “1(Xp)
is normal; hence, so is X, since ](Xo) contains no G x G-orbit. Thus, X, is a
toroidal G-embedding. The fan of its associated toric variety consists of the cones wo
(w € W) and their faces.

Finally, one checks that X,, 0 € X, can be glued into the desired toroidal G-
embedding.

(iii) follows from (i) and (ii), together with the classification of toric varieties. [

Next, we show that any G-embedding admits a toroidal resolution.

6.2.5 Proposition. Forany G-embedding X, there exists a nonsingular quasi-projective
toroidal G-embedding X and a projective morphism f : X — X extending the identity
map of G.

Proof. The quotient w : G — G4q may be regarded as a rational map X — — — X.
The normalization of the graph of this rational map yields a toroidal G-embedding
K equipped with an equivariant projective morphism to X. Now, the toric variety



200 Chapter 6. Equivariant Embeddings

K, admits an equivariant resolution by a (nonsingular) quasi-projective toric variety.
Together with Proposition 6.2.4, this yields the desired resolution X of X. O

We now extend the description of the canonical divisor of X (Proposition 6.1.11
(v)) to any G-embedding.

6.2.6 Proposition. Let X be a G-embedding, X1, ..., X, its boundary prime divisors,
and put D; = Bs;jw,B fori =1, ..., L. Then, a canonical divisor for X is given by

2 n
(1) Kx=-2)"Di—) Xj.
i=1 j=1

Proof. We may replace X with any open G x G-stable subset with complement of
codimension > 2; hence, we may assume that X is nonsingular. Next, observe that
the indeterminacy locus of the rational map X — — — X is G x G-stable and has
codimension > 2 in X. (Indeed, consider the graph Z of this rational map, with
projection 7 : Z — X. Then, 7 is a projective birational morphism ; since X is
normal, the exceptional locus of 7 has codimension > 2 by Zariski’s main theorem.)
Hence, we may also assume that X is toroidal.

Now, consider the open subset
UTU >~UxT x U™

of G C X. Its dualizing sheaf is freely generated by o := 0y AO7. A0y —, where Oy, Oy -
are the unique (up to nonzero scalar multiples) volume forms on U, U~ respectively,
and G’T = % Herety, ..., t, are the coordinate functions on T =~ (G,,)". Note
that o is a volume form on UT U ~, invariant under (U x U ™) diag(T'), where diag(T)
denotes the diagonal subgroup of 7 x T. We may regard o as a rational section of wy
with zeros and poles along the irreducible components of X \ UTU , i.e., along X;
and Bs; B~ = (1, w,) - D;.

By Proposition 6.2.3 and the structure of the dualizing sheaf of a toric variety, o
has poles of order 1 along each of X1, ..., X, (see Exercise 1.3.E.6). To complete the
proof, it suffices to check that o has a pole of order 2 along any divisor (1, w,) - D;. To
prove this, denote by P; the minimal parabolic subgroup BU Bs; B, by Q ; the opposite
parabolic subgroup containing 7', and by L ; their common Levi subgroup. Then, the
multiplication map R, (P;) x L; x R,(Q;) — G is an open immersion, and its image
meets D;. Using the U x U™ -invariance of o, we may replace G with L ;, and hence
assume that G has semisimple rank 1. Then, G/B~ = P! and o = t ® 7*n under the
decomposition wg = w; ® 7*wg,p-, where 7 : G — G/B™ is the projection,  is a

nowhere vanishing section of w,, and 7 is a rational differential form on P! having a
pole of order 2 at the U-fixed point. O
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6.2.B Canonical splitting

We begin by generalizing Theorem 6.1.12 to all the (normal) G-embeddings. Since
these are possibly singular, we use the notation and results of Remark 1.3.12 concerning
splittings of normal varieties.

6.2.7 Theorem. Any G-embedding X admzts a B x B-canonical splitting given by the
(p — D)-th power of a global section of wX This splitting is compatible with all the
G x G-orbit closuﬂrﬂes and with the Schubert divisors D; := Bs;w, B and the opposite
Schubert divisors D; = (w,, w,) - Dj.

Proof. By Lemma 1.1.8 and Proposition 6.2.5, we may assume that X is nonsingular,
toroidal, and quasi-projective. Then, Proposition 6.2.4 implies that X admits an equiv-
ariant completion by a nonsingular toroidal projective G-embedding; thus, we may also
assume that X is projective.

Let X1, ..., X,, be the boundary divisors of X and let o1, ..., 0, be the canoni-
cal sections of the associated invertible sheaves Ox (X1), ..., Ox(X,), respectively.
Lett € HO(X, Lx(2(p — 1)p)) be as in the proof of Theorem 6.1.12. Since (t)g =
Zl (p — H(D; + D; ) T lifts to a global sectlon T of the invertible sheaf

OX(Z[:l(P — 1)(D; + D;)). Puts =% 711, ol.p . Then, by Proposition 6.2.6, &

is a nonzero section of a);;p . Arguing as in the proof of Theorem 6.1.12, one checks
that & yields the desired splitting of X. O

6.2.8 Corollary. Let X be a G-embedding and let f : X — X be a toroidal resolution
as in Proposition 6.2.5. Then, f,(O%) = Ox and R' f,(O%) = R' fi(wg) =0 for all
i > 1, ie., fisarational resolution.

Proof. Since X is normal, f,.(O3) = Ox. To show the remaining assertions, we begin
by reducing to the case where X is projective. For this, note that the normal G x G-
variety X is covered by G x G-stable open subsets admitting locally closed embeddings
into projectivizations of G x G-modules. Further, since the assertions are local on X,
we may replace X by any of these open subsets, and then by the normalization of its
closure. Thus, we may assume that X is projective.

We now show that £ H' (X £) = Oforanyi > 1 and any semi-ample invertible sheaf
L. For this, note that X is projective (since X and f are projective), so that it admits an
ample effective B x B~ -invariant divisor A. Then, A must have support in X \UTU™,
the complement of the open B x B~ -orbit. Now, X is split compatibly with its reduced
divisor X \ UTU ™, as a consequence of Theorem 6.2.7. Write A = Z’} 1ajAj,
where the a; are nonnegative integers and the A ; are certain irreducible components of
X\UTU Then, we have a split injection H' (X ,C) — Hi (X Lr' _(A)), whenever
ai,...,a, < p” (Lemma 1.4.11). Further, cr' (A) is ample, since L is semi- ample
and A is ample. So, Theorem 1.2.8 yields the desired vanishing.

Taking £ = f*L, where L is an ample invertible sheaf on X, and using Lemma
3.3.3(a), we obtain that R’ f;, (Og) =0foralli > 1.
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Further, X is splitby o7~ where o is a global section of 03! vanishing identically
on all the boundary divisors; and the exceptional locus of f is contained in the union
of these divisors. Thus, we may apply Theorem 1.3.14 which yields R’ fi(w%) = O for
i>1. O

The preceding corollary, combined with Lemma 3.4.2, implies the following.

6.2.9 Corollary. Any G-embedding is Cohen—Macaulay.

6.2.C Reductive monoids

We begin with a brief discussion of linear algebraic monoids, referring to [Put—88] for
details.

6.2.10 Definition. A linear algebraic monoid is an affine variety M endowed with
amorphismm : M x M — M, (x,y) — x -y, such that the multiplication m is
associative and admits a unit element.

The unit group of M is the group G (M) consisting of all the invertible elements;
this is a linear algebraic group, open in M. In particular, G(M) is irreducible and hence
connected.

For example, the space End (V) of all linear endomorphisms of a finite-dimensional
vector space V is a linear algebraic monoid with unit group GL(V). In fact, any linear
algebraic monoid M admits a closed embedding into some End (V') which is compatible
with the multiplication and satisfies G(M) = M N GL(V).

6.2.11 Definition. A linear algebraic monoid M is called reductive if its unit group
G (M) is reductive; M is called normal if its underlying variety is normal.

6.2.12 Proposition. The normal (reductive) monoids with unit group G are precisely
the affine G-embeddings.

Proof. Let X be an affine G-embedding; we regard its coordinate ring k[ X] as a subring
of k[G], stable under the G x G-action. The multiplicationm : G x G — G yields an
algebra homomorphism

m" : k[G] — k[G x G] ~ k[G] ® k[G],

the comultiplication. Since m extends to morphisms G x X — X andto X x G — X,
the map m* restricts to an algebra homomorphism

k[X] — (k[G] ®@ k[X]) N (k[X] ® k[G]) C k[G] ® k[G].

But, (k[G] ® k[X]) N (k[X] ® k[G]) = k[X] ® k[X] by Exercise 6.2.E.1. Thus, m*
restricts to a morphism k[ X] — k[X x X], i.e., m extends to a morphism X x X — X.
It follows that X is a linear algebraic monoid and that G is an open subgroup of its unit
group G(X). Thus, G is also closed in G(X). Since G (X) is irreducible, we conclude
that G = G(X).
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Conversely, any normal (reductive) monoid M with unit group G is clearly an affine
G-embedding for the action of G x G by left and right multiplication. O

Next, we obtain a structure theorem for normal monoids with unit group G and a
description of their coordinate rings as G x G-modules.

6.2.13 Theorem. Let M be a normal (reductive) monoid with unit group G, let T be the
closure of T in M and let C = Cy be the convex cone in X*(T )R generated by all the
weights of T in the coordinate ring k[T, where T acts on T via the left multiplication.
Then, the following hold.

(i) T is an affine toric variety for T, and C is a W -stable rational polyhedral cone with
nonempty interior.

(ii) The G x G-module k| M admits a filtration with associated graded

(D @ HG/B. L(~wod) RH(G/B. L()).
reCNX*(T)*+

(iii) The assignment M +— C)y yields a bijection from the isomorphism classes of
normal (reductive) monoids with unit group G, to the W-stable rational polyhedral
cones in X*(T)r with nonempty interior.

Proof. We prove (i) and (ii) simultaneously. By Theorems 4.2.13 and 6.2.7 and Propo-
sition 6.2.12, the G x G-module k[M] admits a good filtration. Write the associated
graded as a direct sum of tensor products

HY(G/B, L(~w,») K HY(G/B, L(w))

with corresponding multiplicities m,_,. Then, by Exercise 4.2.E.5, m;_, is the dimen-
sion of the space of B x B~ -eigenvectors in k[M] with weight (A, —p); i.e., my , is
the multiplicity of the weight (A, —u) in the invariant subalgebra k[ M 1Y*U™ of k[ M.

We determine these multiplicities in terms of the geometry of M as follows. Let
01, ..., O, bethe G x G-orbits of codimension 1 in M. Together with G, they form an
open G x G-stable subset X C M whose complement has codimension > 2. Further,
X is a toroidal G-embedding, since the rational map M — — — Xisclearly G x G-
equivariant and is defined in codimension 1 (see the proof of Proposition 6.2.6). Let
X0 be the open subset of the toroidal G-embedding X defined in 6.2.2. Then, G U Xy
is a B x B~ -stable open subset of X whose complement has codimension > 2. Thus,
k[M] ~ k[G UX,] via restriction. It follows that k\[M]Y >V consists of those elements
of k[G]Y*V" that extend to X or, equivalently, to X, since Xo ~ U x U™ x X|, by
Proposition 6.2.3 (i).

The fan of the toric variety X, consists of n rays (1-dimensional cones), generated
by indivisible one-parameter subgroups 61, . . ., 6, lying in the negative Weyl chamber.
On the other hand, any 7 x T-eigenvector f € k[G]Y*Y" has weight (A, —A) for
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some dominant weight A, and f is determined by A up to a scalar multiple, by Theorem
4.2.5. Then, f extends to X, if and only if

) (A, 6;)>0fori=1,...,n.

Thus, we have proved that the weights of k[ M 1Y*U" are the pairs (A, —X), where
A is a dominant weight satisfying (2); all such weights have multiplicity 1. Let o be the
cone of X*(T')r generated by these weights A. Then, o is a finite intersection of closed
rational half-spaces, and hence a rational polyhedral convex cone. Further, the interior
of o is nonempty. Indeed, the algebras k[ M] and k[G] have the same quotient field, so
that the subalgebras k[M]Y>*V" and k[G]Y*Y" have the same quotient field as well.
Thus, any dominant weight is a difference of two weights in 0. Next, let C = Wo; this
is also a rational polyhedral convex cone (Exercise 6.2.E.2) with nonempty interior.

We now show that C N X*(T) is the set of weights of T x 1 in k[T]. Indeed, any such
weight lies in C, as the T x T-module k[T]isa quotient of k[M], and all the T -weights
of H'(G /B, L(—w,A)) lie in the convex hull of the orbit WA. On the other hand, any
weight A € o is also a weight of k[T, since the restriction map k[M]Y*V" — k[T]is
injective (Proposition 6.2.3(i)). Since T is diag(W)-stable, it follows that any weight
A € C occurs in k[T]. In particular, T is normal; it is the affine toric variety with cone
the dual of the cone C. This completes the proof of (i) and (ii).

For (iii), note that M is uniquely determined by C as k[M] = k[X], where X
is the toroidal G-embedding associated with the extremal rays of the intersection o
of C with the positive Weyl chamber. Further, given a W-stable rational polyhedral
cone C C X*(T)gr with nonempty interior, let o be its intersection with the positive
Weyl chamber and let X be the toroidal G-embedding defined as above. Then, k[X]
is an integrally closed G x G-stable subalgebra of k[G]; by the preceding arguments,
this subalgebra admits a good filtration whose associated graded is given by (1). It
follows that the algebra k[X] is finitely generated with quotient field k(G); thus, the
corresponding affine variety is a normal reductive monoid with unit group G and cone
C. O

6.2.14 Corollary. For any G-embedding X, the closure of T in X is normal.

Proof. In the case where X is affine, the assertion follows from Proposition 6.2.12 and
Theorem 6.2.13. We now show how the general case reduces to this one.

First, arguing as in the proof of Corollary 6.2.8, we may reduce to the case where
X is projective. Then, we can find a very ample, G-linearized invertible sheaf £ on
X such that X is projectively normal in the corresponding projective embedding. The
connected reductive group G:=G x G,, acts on the affine cone X , which, in fact, is
an affine G—embedding. Therefore, the closure in Xof T :=T x G,, (a maximal torus
of G) is normal. In other words, the closure of 7' in X is projectively normal in the
embedding associated with L. O
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6.2.E Exercises

(1*) Let E be a vector space over a field K and let F C E be a subspace. Show that
(E®x F)N(F ®k E) = F ®k F, where the intersection is taken in £ Qg E.

(2*) Let 0 C X*(T)R be the intersection of the positive Weyl chamber with finitely
many closed half-spaces 6; > 0, where 8; € X, (T) lies in the negative Weyl chamber.
Show that the subset Wo C X*(T')R is a rational polyhedral convex cone.

(3) Let X be the affine variety associated with the algebra R (X) considered in Exercises
6.1.E; we may regard X as the “universal” multicone over X.

Show that X is a normal reductive monoid with unit group G xz T (the quotient
of G x T by the center Z of G embedded diagonally).

Hence, Corollary 6.2.9 yields another proof for the Cohen—Macaulayness of X
(Exercise 6.1.E.5).

@) ]A_,et 7 :X — A’ be the morphism associated with the regular functions o1, ..., oy
on X (defined in 6.1.10). Show that 7 is flat with reduced and irreducible fibers; the
fibers over Tpq C A! (embedded via the characters «q, . .., ) are all isomorphic to
G.

(5) Regarding A’ as a monoid under the pointwise multiplication, show that 7 is a
morphism of linear algebraic monoids. Also, show that 7 is universal for morphisms
from A’ to commutative algebraic monoids, i.e., for any morphism of linear algebraic
monoids ¢ : X - A, where A is commutative, there exists a unique morphism of
linear algebraic monoids ¢ : A* — A such that ¢ = @ o 7.

6.C. Comments

In characteristic 0, the results of 6.1 (except for Theorem 6.1.12) were obtained by
de Concini—Procesi [DePr—83] for the wonderful compactification of any adjoint sym-
metric space, i.e., of any homogeneous space G4/ ng, where 6 denotes an involutive
automorphism of G,q and G(Zd denotes its fixed point subgroup. This includes the
space Gaqd = (Gad X Gag)/ diag(Gag), since diag(G,q) is the fixed point subgroup of
the involution of G,9 X G,q exchanging the two factors.

Then, Strickland [Str—87] extended these results to positive characteristics and ob-
tained the existence of a splitting which is compatible with all the boundary divisors for
the wonderful compactification of G,q. This was generalized by de Concini-Springer
[DeSp-99] to all the adjoint symmetric spaces in characteristic p # 2 (cf. also [Fal—
97)).

The exposition in 6.1.A and 6.1.B follows rather closely [DeSp—99]. The arguments
of 6.1.C are adapted from [BrPo—00]. In [loc cit.], it is observed that the splitting of
Theorem 6.1.12 is also compatible with the closures BwB, w € W, called the large
Schubert varieties. Further, the description of line bundles over X and the structure of
their spaces of global sections are generalized to all the large Schubert varieties, which
are shown to be normal and Cohen—Macaulay.
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It is tempting to extend these results to the wonderful compactification X of an
arbitrary adjoint symmetric space, by replacing the large Schubert varieties with the
orbit closures of a Borel subgroup B. However, examples show that X may not be
split compatibly with B-orbit closures, and that some of these are neither normal nor
Cohen—Macaulay. We refer to [Bri—01] and [Pin—01] for such examples, and to [Bri—
03b] for some positive results concerning a class of varieties that includes Schubert
varieties and large Schubert varieties.

All the results of Section 6.2 are taken from [Rit—98] and [Rit—03], where these
results are deduced from the Luna-Vust theory (generalized by Knop [Kno-91] in an
arbitrary characteristic) of equivariant embeddings of spherical homogeneous spaces
(i.e., those homogeneous spaces under a connected reductive group G that contain an
open orbit of a Borel subgroup). Actually, in characteristic 0, the results of Section 6.2
(except for Theorem 6.2.7) extend to equivariant embeddings of spherical homogeneous
spaces, cf. [BrIn-94], where it is also shown that the reduction mod. p of any such
embedding is split for p >> 0, compatibly with all the G-orbit closures. Here, we have
attempted to give self-contained proofs in the setting of reductive group embeddings.

The classification of reductive monoids M (Theorem 6.2.13 (iii)) was obtained by
Renner [Ren—85] under the additional assumption that M has a 1-dimensional center;
whereas the structure of their coordinate ring as a representation (Theorem 6.2.13 (ii))
is due to Doty [Dot—99] under the same assumption. In characteristic 0, Proposition
6.2.12 and a different version of Theorem 6.2.13 (iii) are in [Vin—95]. The “univer-
sal” multicone X studied in Exercises 6.1.E and 6.2.E is nothing but the “enveloping
semigroup” of [loc cit.], as proved in [Rit-01].

Given a flag variety X = G/B and an orbit closure Y C X of a spherical subgroup
of G, it is not known under what conditions is X split compatibly with Y. Similarly, it
is not known when Y is normal or Cohen—Macaulay.



Chapter 7

Hilbert Schemes of Points on Surfaces

Introduction

The main aim of this chapter is to prove the following result of Kumar—Thomsen.
For any nonsingular split surface X, the Hilbert scheme X" (parametrizing length-n
subschemes of X) is split as well. Here, as earlier in this book, by split we mean
Frobenius split. The proof relies on some results of Fogarty on the geometry of X!
and a study of the Hilbert—Chow morphism y : X"l — X where X denotes
the n-fold symmetric product of X (parametrizing effective O-cycles of degree n), and
y maps any length-n subscheme to its underlying cycle.

In Section 7.1, some fundamental properties of symmetric products X are estab-
lished, where X is an arbitrary quasi-projective scheme. In particular, it is shown that
X® is a Gorenstein, Q-factorial variety of dimension nd, if X is a nonsingular variety
of dimension d (Lemmas 7.1.7 and 7.1.9). Further, the singular locus of X ™) is the
complement of the locus X i’fk) of sum of n distinct points of X, ifd > 2 (Lemma 7.1.6).
On the other hand, every X ™) g nonsingular if d = 1 (Exercise 7.1.E.5).

Section 7.2 presents some general results on Hilbert schemes of points on quasi-
projective schemes: their existence (Theorem 7.2.3) and the description of their Zariski
tangent spaces (Lemma 7.2.5). Also, the punctual Hilbert scheme X )[C"] (parametrizing
length-n subschemes supported at a given point x) is introduced, and it is shown that
X£"] is projective and connected (Proposition 7.2.9).

The Hilbert—Chow morphism is introduced and studied in Section 7.3, again in the
setting of quasi-projective schemes. The existence of a projective morphism of schemes
y : X"l — X which yields the cycle map on closed points is deduced from work
of Iversen (Theorem 7.3.1). The fibers of y are products of punctual Hilbert schemes;
their connectedness implies that X (7] is connected if X is (Corollary 7.3.4). Then, the
loci ngk] resp. XL"], consisting of subschemes supported at n distinct points, resp.
at least n — 1 distinct points, are considered. In particular, it is shown that XL"] is a
nonsingular variety of dimension nd, and the complement X L"] \ X L’ﬂ is a nonsingular
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prime divisor, if X is a nonsingular variety of dimension d (Lemma 7.3.5).

Section 7.4 is devoted to Hilbert schemes of points on a nonsingular surface X.
Each X! is shown to be a nonsingular variety of dimension 2n (Theorem 7.4.1) and
the Hilbert—-Chow morphism is shown to be birational, with exceptional set being a
prime divisor (Proposition 7.4.5). Finally, the Hilbert—-Chow morphism is shown to be
crepant (Theorem 7.4.6), a result due to Beauville in characteristic 0 and to Kumar—
Thomsen in characteristic p > 3.

Section 7.5 begins with the observation that any symmetric product of a split quasi-
projective scheme is split as well (Lemma 7.5.1). Together with the crepantness of the
Hilbert-Chow morphism, this implies the splitting of X", where X is a nonsingular
split surface (Theorem 7.5.2). In turn, this yields the vanishing of higher cohomology
groups of any ample invertible sheaf on X, if X is split and proper over an affine
variety (Corollary 7.5.4). This applies, in particular, to the nonsingular projective split
surfaces and also to the nonsingular affine surfaces (since these are split by Proposition
1.1.6). Further, we obtain a relative vanishing result for the Hilbert—-Chow morphism
(Corollary 7.5.5).

Notation. Throughout this chapter, X denotes a quasi-projective scheme over an alge-
braically closed field k of characteristic p > 0, and n denotes a positive integer. By
schemes, as earlier in the book, we mean Noetherian separated schemes over k; their
closed points will just be called points.

7.1 Symmetric products

The symmetric group S, acts on the n-fold product X” = X x --- x X by permuting
the factors. Let
XM = Xx"/8,

be the set of orbits, with quotient map
T X" — XM,

We endow X with the quotient topology, i.e., a subset is open if and only if its
preimage under 7 is. In particular,  is continuous. On the topological space X ™, we
have the sheaf of rings 7, Oxr = 7, (O%"). Since 7 is invariant, S, acts on this sheaf.
Let

Ox(n) = (ﬂ*OX”)Sn

be the subsheaf of S,-invariants, then (X, Oxm) is aringed space.
More generally, any sheaf F on X yields a sheaf F X on X" endowed with an
action of §,;, and hence a sheaf

_7:(11) = (714 (_7_-&1))5,,

of Oy -modules.
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7.1.1 Lemma. (i) With the preceding notation, (X", Oxw) is a quasi-projective
scheme, and m is a finite surjective morphism. Moreover, 7 satisfies the following
universal property:

For any S, -invariant morphism ¢ : X" —> Z, where Z is a scheme (with trivial
action of Sy), there exists a unique morphism  : X" — Z such that ¢ = ¥ o 7.
(ii) If Y is an open, resp. closed, subscheme of X, then Y™ is an open, resp. closed,
subscheme of X™.

(iii) If F is a coherent sheaf on X, then the sheaf F™ on X" is coherent.
(iv) If; in addition, F is invertible, then so is F M and

FR ~ )
Further, if F is ample, resp. very ample, then so is F™.

Proof. (i) First we consider the case where X is projective. Then, let £ be a very ample
invertible sheaf on X. Then, £ s a very ample invertible sheaf on X", and S, acts
on the graded algebra

R = R(X",ﬁ‘z") — @F(Xn, (£|Z|n)11)
v=0

by automorphisms. The invariant subalgebra
S := RS

is also graded. Since the algebra R is finitely generated (Lemma 1.1.13(i)), then so is
S, and the S-module R is finite, cf. [Eis—95, Exercise 13.2 and Theorem 13.17]. This
yields a finite surjective morphism

7 : X" = Proj(R) —> Proj(S).

We claim that 7 may be identified with this morphism.

To see this, let o be a nonzero global section of £. Then, T := ¢ is a nonzero
S, -invariant global section of LB thus, an element of degree 1 in S. The open affine
subset Proj(S); is the spectrum of the subring S[z ']y of homogeneous elements of
degree 0 in the localization S[z~1]. Moreover,

Xin

771 (Proj(8);) = Proj(R); = (X"); = (X4)",

where X, denotes the complement of the zero subscheme of o. Therefore, the natural
map
Orroj(s)e. —> (@ Opx, )™

is an isomorphism. Thus, by [Eis—95, Proposition 13.10], it follows that the topological
space Proj(S); is the orbit space (X");/S,. To complete the proof (in the case where
X is projective), observe that X" is covered by its open affine S,,-stable subschemes
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(X" = (X4)". Indeed, any finite subset of a projective space is contained in the
complement of some hyperplane.

By the above proof, X" is a projective scheme, and 7 is a finite surjective mor-
phism; its universal property is evident. Note that the twisting sheaf Opj(s)(1) is
invertible, and that

[En ~ JT*Oproj(_g)(l).

Next, let Y C X be a closed subscheme, where X is still assumed to be projective;
then, we obtain an injective morphism ¥ ™ — X We check that this morphism is
a closed immersion. For this, by taking an affine open cover, we may reduce as above
to the case where X = Spec(A) is affine. Then, Y = Spec(B), where B = A/I for
some ideal I of A. Therefore, X = Spec((A®")5") and Y = Spec((B®")S"). We
may write A = C @ I, where C > B is a subspace of A. Then,

A =C® @ I,

where I, 1= @—4 A® @ I ® A®" =1 is an §,-stable subspace of A®". Thus, the
map
(A®n)Sn _— (B®H)Sn

is surjective, as desired.

In the case where X is quasi-projective, we may write X = X \ ¥, where X is
projective and ¥ C X is a closed subscheme. Then, one checks that X" = X\ y®
(as ringed spaces).

(i1) The assertion for open subschemes follows from the definition and universal
property of r; the assertion for closed subschemes has been established in the proof of
).

(iii) Since 2" is coherent on X" and 7 is finite, 7, (.7-'@”) is a coherent sheaf on
X™ . Thus, its subsheaf of S,-invariants is coherent as well.

(iv) Let again £ be a very ample invertible sheaf on X. Then, by [Har—77, Chap. II,
Theorem 7.6], there exists a positive integer m such that the invertible sheaf 7 ® 0, L™
is very ample. As observed in the proof of (i), both £ and (F ®oy £m)®" are
pullbacks of invertible sheaves on X ). Thus, there exists an invertible sheaf G on X ™
such that

FR ~ 715G,

By the projection formula, it follows that 7, (F My ~ g ®o.  7«Oxn. Taking S,-

x(n)
invariants, we obtain ™ ~ G, which completes the proof of the first part of (iv).

If F is very ample, then so is 7 by the proof of (i). Now, if F is ample, then F”
is very ample for some v > 1. But, (F")™ ~ (F®)V by the preceding argument, so
that £ is ample as well. O

7.1.2 Definition. The scheme X ™ is called the n-fold symmetric product of X.

The points of X may be regarded as O-cycles on X as follows. Recall that the
group of 0-cycles on X, denoted Zy(X), is the free abelian group on all points. In other
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words, a O-cycle on X is a finite formal sum z = Y_ n;x;, where the x; are points of X,
and the n; are integers. The degree of z is, by definition, Y n;, and z is effective if all
n; are nonnegative. Now, for any point (x1, ..., x,) of X", its S,-orbit 7w (xy, ..., x,)
is uniquely determined by x1 + - - - +x, € Zp(X). This allows us to identify the points
of X™ with the effective O-cycles of degree n on X.

7.1.3 Lemma. Let ny,...,n, be positive integers with sum n and let x1, ..., x, be
distinct points of X. Then, the map w : X" —> X" factors through a morphism
X0 x .ox XU s XW) which is étale at the pointnixy + -+ nyxp.

Proof. This follows from the argument in [Mum-70, pp. 68-69]. Specifically, as
in the proof of Lemma 7.1.1, we may reduce to the case where X is affine. Then,
" = Spec(R) for some k-algebra R and X = Spec(S), where S := RS". Let
z := nix; + -+ + n,x, and M the corresponding maximal ideal of §; let ﬁ, S be
the completions of R, S respectively, for the M-adic topology. Then, S = @X“),z by
definition, and the map S ®Xs R — R is an isomorphism, since R is finite over S.
The assumption that S is the ring of S, -invariants in R is equivalent to S being the
kernel of the (S-module) map

R —> ]_[ R, fr— (0(f)— foes,-

og€es,

Since S'i is flatover S, it follows that S is the kernel of the corresponding map S®sR —
I, es, S®s R. Asa consequence, the isomorphism S ®s R ~ R restricts to an
isomorphism

S~ RS,

The prime ideals of R containing M are exactly the maximal ideals of the points of the
set-theoretic fiber 7 ! (z); this yields an isomorphism

R~ l_[ Oxn y,

yer~l(z)

which is equivariant for the action of S, by permuting the points of 7 ~!(z). Moreover,
the isotropy group of

y = (x1 (n] times), ..., x, (n, times))

is the product S,,; x --- x S,,. Thus, taking S,-invariants in R yields an isomorphism

S ASny XX Sy,
S ~ OXn’y
Since s s
i X XSy
Oxn = Ox 00 sex X0, (nyx1,cor )

the proof is completed. O
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We shall apply this lemma to describe the loci of X where all the points are
distinct, or at most two may coincide. Specifically, for 1 <i < j < n, let A; ; be the
partial diagonal (x; = x;) in X", and put

X) = UA,‘J.

i<j
This is a closed S, -stable subscheme of X”; we put
XL, =X"\ X},

an open Sy-stable subscheme of X". The points of X, are the n-tuples of distinct
points of X. The image of X", in X" will be denoted X i’i); this is an open subscheme

of X™ . Likewise, we denote X§") the image of X{ in X ™ a closed subscheme of
X™ . Now, Lemma 7.1.3 implies the following.

7.1.4 Lemma. With the preceding notation, i restricts to an étale surjective morphism
() (n)

X!, — Xi. Thus, if X is nonsingular, then so is Xy .

Likewise, consider the partial diagonals A; jx = (x; = x; = xi), where 1 <
i < j <k <n. Let X! be the complement of their union, which is a S,-stable open
subscheme of X", containing X”,. Put X "= p(x ); this is an open subscheme of
X® with points being the O-cycles x; + x2 + - - - + x,, where only x; and x, may
coincide. Also, put X s(i) =X in) nx 5”), a closed subscheme of X in), with points being
the O-cycles 2x; + x3 + - - - + x,,, where x1, x3, ..., x, are pairwise distinct.

For example, if n = 2 then X2 = X2, and st* = st is just the diagonal.

Finally, let (X® x X®=2)_ be the image in X® x X"=2 of the open sub-
scheme X" \ U(i’j)#(l’z) A; j. Since this subscheme is invariant under S> x S,_2,
(XP x X7=2), is open in X® x x¢=2), Its points are the pairs
(x1 + x2, x3 + - - - + x,,), where only x; and x, may coincide.

7.1.5 Lemma. The quotient morphism X!! — X ,(F”) factors through an étale surjective
morphism

(XP x XDy, — X, (20, %3+ -+ X) > X1+ X,
which restricts to an isomorphism

(X(2) % X(H—Z))* ~ X('jk)
s — sk

where (Xsa) xX=2) = (X§2) x X =N (XD x XD Moreover; the restriction
of the quotient X*> — X® to the diagonal induces a bijective morphism X —> X §2),
which is an isomorphism if p # 2, and which may be identified with the Frobenius
morphism F : X — X if p = 2.
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Proof. By Lemma 7.1.3, the quotient map = : X" —> X® factors through a sur-
jective morphism X@ x X2 — x® et (X® x X"~2), be the preimage of
(X@ x X?=2),in X® x X"~2. Then, by Lemmas 7.1.4 and 7.1.3, the morphisms
(X@ x X772y, — (X@ x X2, and (X® x X" 2), —> X" are étale and
surjective. Thus, the morphism (X x X@=2), — x™ is étale and surjective as
well. Its pullback to X s(:) yields an étale morphism
(X x X)), — XD Qx;,x34 4 x0) —> 2x1+x3+ -+ x
s * » A3 n 1 3 n»

Sk 0

which is bijective on points, and hence an isomorphism.

Clearly, the quotient map 7 : X> —> X maps the diagonal A bijectively to X §2).
If p # 2, then the restriction A —> X§2) is an isomorphism by Exercise 7.1.E.1. To
check the assertion for p = 2, we may reduce to the case where X = A by using
Lemma 7.1.1 (ii). Then, X2 = A% with coordinates 11, . .., tg, Ui, - . ., ug such that
the nontrivial element o € S, exchanges each t; with u;. Now, the S>-invariants in the
polynomial ring k[#1, ..., t4, u1, ..., uq] are spanned by the invariant monomials (that
is, by the monomials in the products #;u;), together with the sums M + o (M) where M
is a non-invariant monomial. So, the restrictions of these S,-invariants to the diagonal
(t1 = uy,...,tq = uy) are just the polynomials in tlz, R tﬁ. O

Note also that 7 restricts to a finite surjective morphism Ay — X §n). Together
with Lemma 7.1.5 and purity of the branch locus, this yields the following.

7.1.6 Lemma. If X is a variety of dimension d, then X is a variety of dimension nd,

and X s(”) is a subvariety of codimension d, containing X 5’}2 as a dense open subset.

If, in addition, X is nonsingular, then so is X §’:3 but Xin) is singular along X S(ﬁ)
when d > 2. In fact, the singular locus of X™ is then X§").

(If X is nonsingular of dimension 1, then X ™) jg nonsingular as well (Exercise
7.1.E.5).)

Next, we assume that X is a normal variety. Recall from 1.3.12 that the canonical
sheaf wy is defined as the sheaf i, wyxrez, where i : X™ — X denotes the inclusion of
the nonsingular locus, and wyrg denotes the sheaf of differential forms of top degree.
Then, wy is divisorial, i.e., it is the sheaf of local sections of a Weil divisor (the
canonical divisor, uniquely defined up to linear equivalence). Recall from 1.3.12 that
X is Gorenstein if wy is invertible, that is, if the canonical divisor is Cartier.

Note that each X" is normal with canonical sheaf a)?”; as a consequence, X" is
Gorenstein if and only if X is.

7.1.7 Lemma. (i) If X is a normal variety, then X" is a normal variety as well.
Moreover, for any divisorial sheaf F on X, the sheaf F™ is divisorial.

(ii) If, in addition, dim(X) > 2, then wym == (wx)™.

(iii) If X is Gorenstein, then so is X™.
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Proof. (i) For the normality of X ™ we may assume that it is affine; then X is affine,
since 7 is finite. Now, the assertion follows from Exercise 7.1.E.2.

Let F be a divisorial sheaf on X. Then, there exist an open subscheme U of
X, and an invertible sheaf £ on U such that X \ U has codimension at least 2 and
F = ixL, where i : U —> X denotes the inclusion. This yields open immersions
i":U" — X"andi®™ : U™ — X and (by Lemma 7.1.1) an invertible sheaf
M on U™ such that L2 ~ 7* M. Moreover, FX" = (i")*ﬁg”, so that

T (FRY = (D), 7, (LB = (™M), (M @0 . Oyn).

un)
Therefore, F™ = (i™), M. Since X™ \ U™ has codimension at least 2 in X it
follows that F™ is divisorial.

(ii) To check this isomorphism between divisorial sheaves, we may replace X
with any open subset U such that the codimension of X ™ \ U is at least 2. By Lemma
7.1.6 and the assumption on dim(X), we may take U = (X reg)f:i); in particular, we may
assume that X is nonsingular. Then, the restriction X, = 7~ !(U) — U is étale by
Lemma 7.1.4. Thus, we have an isomorphism 7*wy >~ wxn . Applying . and taking
Sy -invariants yields the desired isomorphism.

(iii) follows from Lemma 7.1.1 (iv) and the second part of this lemma. O

7.1.8 Definition. A normal variety X is called Q-factorial at a point x, if the divisor
class group of the local ring Oy is torsion. If this holds at all points, then X is called
Q-factorial. This is equivalent to the following condition:

For any divisor D of X, there exists a positive integer N such that the divisor N D
is Cartier.

7.1.9 Lemma. If X is nonsingular, then X" is Q-factorial.

Proof. We may assume that dim(X) > 2. As in the proof of Lemma 7.1.3, we consider
apoint y of X", and its image z = n1x{ +- - - +n,x, in X", where the points x1, . .., x,
are distinct. WeputI' :=§,, x --- x S,, and N := [['| = ny!---n,!. Then, the ring
OE(,,, y is étale over its subring OX(”), .» and both are normal. Thus, the divisor class
group of Oy , injects into that of oL "y by [Bou-98, Chap. VII, §1.10]. Further,

ok, = Ox00 s x0) (nyxy...ny )+ THUS, it suffices to show that X)) x ... x X0
is Q-factorial at (nyxyq, ..., nyx).
Let
0 X" — X0 xox x0)

be the quotient map. Let D be a prime divisor in X®) x ... x X containing the
point (n1x1, ..., n,x,). Since ¢ is étale in codimension 1, we may define the pullback
©*(D), a multiplicity-free sum of prime divisors in X". Clearly, ¢*(D) is invariant
under I'. Let f € Oxn y be a local equation of ¢*(D). Then, HyeF(V - f) is alocal
equation of N¢*(D), and belongs to O}r(,l’ ) Thus, N D admits a local equation at
(nix1, ..., n.xp). O
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7.1.10 Remarks. (i) More generally, for any quasi-projective scheme Y endowed with
an action of a finite group G, we may consider the quotient map n : ¥ — Y /G
and the quotient topology on ¥/G. Then, the ringed space (Y/G, (7.Oy)%) is again
a quasi-projective scheme. Further, 7 is a finite, surjective morphism, universal for
G-invariant morphisms with source Y.

If, in addition, Z is an open G-stable subscheme of Y, then Z/G is an open sub-
scheme of Y/ G (for these results, see, e.g., [Mum-70, Chap. II, §7]).

On the other hand, if Z is a closed G-invariant subscheme of Y, then the map
Z/G — Y/G is a closed immersion when the order of G is prime to p, but not in
general (Exercise 7.1.E.1).

(ii) For G, Y, 7 as above, and a point y of ¥ with isotropy group Gy, the map 7 factors
through a morphism Y /G, —> Y /G which s étale at the image of y (as may be shown
by the argument of Lemma 7.1.3). In particular,  is étale at the points with trivial
isotropy group.

(iii) For G, Y, 7 as above, if Y is a normal variety, then so is Y /G (Exercise 7.1.E.2).
If, in addition, Y is Q-factorial and 7 is étale in codimension 1, then Y/ G is Q-factorial
by the proof of Lemma 7.1.9.

7.1.E Exercises

(1*) Let R be a ring, I an ideal, and G a finite group of automorphisms of R that
leaves [ stable. If the order of G is prime to the characteristic of R, show that the map
RY — (R/I)Y is surjective.

Deduce that the map Z/G — Y /G is a closed immersion, for a quasi-projective
scheme Y endowed with an action of a finite group G and a closed G-stable subscheme
Z C Y, if the order of G is prime to p. Show by examples that the latter assumption
cannot be omitted.

(2*) Let R be a normal domain and let G be a finite group of automorphisms of R.
Show that the invariant subring R¢ is a normal domain.

(3) Regarding the affine n-space as the space of polynomials in one variable ¢ of degree
at most n and constant term 1, show that the map

7 (AN — A" (x1, .. xn) — (L4 1x1) - (1 + 1xp)
factors through an isomorphism (A" ~ A",
(4) Likewise, show that the map
(e vl oo [, v ) V= [+ 2x1) - (v +1x0)]
factors through an isomorphism (P')® ~ P",

(5%) Let X be a nonsingular curve (in particular, X is quasi-projective). Show that X ")
is nonsingular; deduce that 7 : X" — X ™) is flat. Also, show that

wxm = (Te(@xn (—X7)))5".
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7.2 Hilbert schemes of points

7.2.1 Definition. A length-n subscheme of X is a finite subscheme Y such that the
k-vector space I'(Y, Oy) has dimension 7.

Examples are the reduced unions of » distinct points x1, . .., x, of X. More gener-
ally, we associate to any length-n subscheme Y its connected components Y1, ..., ¥;;
then each Y; is a subscheme of finite length, supported at a unique point x;. We say that
the length n; of Y; is the multiplicity of Y at x;. Then, I'(Y, Oy) = Oy x; X --- x Oy,
and n; = dimg(Oyy,) for 1 <i <r;thus,n =ny+--- +n,.

Next, we define a relative version of length-n subschemes.

7.2.2 Definition. A flat family of length-n subschemes of X over a scheme S is a closed

subscheme Y C X x S, finite over S via the restriction 7 : JJ — S of the projection

X x § — §, and such that 7,0y is a locally free Os-module of rank n.
Equivalently, 7 is finite and flat, with fibers being length-n subschemes of X.

Given such a family )V C X x S and a morphism of schemes f : § —> S, we can
form the cartesian square

Y xsS§ L S’

/| /|

Then, 7’/ : Y x5 S’ —> §' is a flat family of length-n subschemes of X over §’, called
the pullback of 7 under f.

We may now formulate the following fundamental result, which is a special case
of the existence of the Hilbert scheme of a quasi-projective scheme [Gro—62]. For the
proof, we refer to loc cit.

7.2.3 Theorem. Fixn > 1and let X be a quasi-projective scheme. Then, there exists
a unique scheme X", together with a flat family m, : X"l — X1 of length-n
subschemes of X, satisfying the following universal property:

For any flat family & : Y —> S of length-n subschemes of X, there exists a unique
morphism f : S — X [”lsuch that i is the pullback of m, under f.

Further, X" and X" are quasi-projective. In fact, if X —> X is an open
immersion into a projective scheme, then X" is projective, and X! can be identified
with the open subscheme of X" parametrizing length-n subschemes with support in
X.

7.2.4 Definition. The scheme X! is called the Hilbert scheme of n points on X. The
morphism 7, : X"l — X1 is called the universal family.

The universal property of X"l implies that its points are precisely the length-n
subschemes of X. This property also allows to determine its Zariski tangent spaces as
follows.



7.2. Hilbert schemes of points 217

7.2.5 Lemma. For any point Y of X", the Zariski tangent space Ty X"V equals
Homoy (Zy, Oy) = Homo, (Zy /Zj. Oy).

As a consequence,
TyX["] — Tylx[’ll] DD TYYX[H’],

where Yy, ..., Y, are the connected components of Y, andny, . . ., n, the corresponding
multiplicities.

Proof. Let S := Spec(k[e]/ (€2)) with (unique) point s. Then, the Zariski tangent space
Ty X" consists of those morphisms S — X! that map s to Y. By Theorem 7.2.3,
these morphisms may be identified with the closed subschemes Y C X x §, finite
and flat over S, with fiber Y at s. These are the infinitesimal deformations of Y in X,
classified by Homy (Zy, Oy), cf. [Har-77, Chap. III, Exercise 9.7]. O

Next, we study the connected length-n subschemes. We begin with the following
easy result.

7.2.6 Lemma. Let Y be a length-n subscheme of X, supported at a unique point x.
Then,

ML C Iy € My,

where M denotes the maximal ideal of the local ring Ox x of X at x.

Proof. Clearly, Zy C M. To show the other inclusion, consider the local algebra
R :=T(Y, Oy) = Ox /Ly, its maximal ideal M := M, /Zy, and its positive powers
M; these form a decreasing sequence of subspaces of R. By Nakayama’s lemma,
MPFL £ MY unless MY+ = 0. Since the dimension of R as a k-vector space is n, it
follows that M" = 0. O

7.2.7 Definition. Let x be a point of X and let X, := Spec(Oyx,,/M?) (a finite-length
subscheme of X, supported at x). The n-th punctual Hilbert scheme of X at x is defined
to be the Hilbert scheme X",

In the case where n = 2, Lemma 7.2.6 readily implies a complete description of
[n]
Xy

7.2.8 Lemma. The ideal sheaves of length-2 subschemes of X supported at x are
exactly the preimages in My of hyperplanes in M / M% Thus, X)[CZ] is isomorphic to
P(Tx X), the projective space of lines in Ty X.

Returning to arbitrary lengths, we have the following.

7.2.9 Proposition. X)[C"] is projective and connected.
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Proof. LetR := Ox ,/M?Z, alocal k-algebra with maximal ideal M := M, /M. By
Lemma7.2.6, the ideals of length-n subschemes of X, are exactly those linear subspaces
I C M of codimension n — 1 such that M1 C I. Since 1 + x is invertible for any
x € M, the latter condition amounts to (1 + M)I = I. This realizes the underlying
set of X)[C”] as the subset of the Grassmannian variety, Grass"~ (M), consisting of
the subspaces of codimension n — 1, fixed by the action of the group 1 + M via
multiplication in R. Since Grass" ! (M) is projective, X,[c"] is projective as well.

To show that X)[C"] is connected, note that the group 1 + M is abelian and has a
decreasing filtration by the subgroups 1 + M". Since M" = 0, this filtration is finite;
its successive quotients

(1+MU)/(1+MV+1) :MV/MU+1

are finite-dimensional k-vector spaces, thus, products of copies of the additive group
Gy So, the proof will be completed by the following result.

7.2.10 Lemma. Let X be a complete connected scheme equipped with an action of the
additive group G. Then, the fixed point subscheme X Ga is connected.

Proof. By the Borel fixed point theorem (cf. [Bor-91, Theorem 10.4]), any non-empty
complete scheme with an action of G, contains fixed points. Thus, we may reduce to
the case where X is irreducible. We argue by induction on the dimension d of X.

If d = 1, consider the normalization

f)?—)X

Then, Xisa complete nonsingular irreduciblg curve, and the a~ction of G, lifts to X so
that f is equivariant. Hence, either G, fixes X pointwise, or X is a projective line and
Gy acts by translations. In both cases, XGa is connected. Since XCe equals f ()N( Ga),
it is connected as well.

If d > 1, then there exists a nonconstant G,-invariant rational function I on X.
Let G, act on X x P! via its action on X and the trivial action on P!, and let X be the
closure in X x P! of the subset of pairs (x, ¢) such that: f is defined at x, andf = f(x).
Then, X is a complete variety, stable under G,; the first projection X — Xis
Gg-equivariant, surjective and birational, and the second projection

f: X — P!
is a surjective G,-invariant morphism. Consider the Stein factorization

¥ c—,p

of f, where C := SpecO[Pl ( f:Og). Then, ¥ is finite and surjective. Further, all the

fibers ¢ ~! (c) are non-empty and connected of dimension d — 1. Note that G, acts on C
and that both ¢ and v are equivariant (with the trivial action of G, on P!). But, since
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is finite and f Y o ¢ is invariant, it follows that G, fixed C pointwise. Thus, ¢ maps
XGa onto C with fibers ® ~1(¢)Ge; these are connected by the 1nduct10n assumptlon
By Exercise 7.2.E.1, it follows that XCa is connected. Hence, XGa = rr(X a) is
connected as well. O

7.2.E Exercises

(1*) Let f : X — Y be a proper surjective morphism of schemes. Assume that ¥ and
all the fibers of f are connected. Then, show that X is connected.
Hint: Use the Stein factorization.

In the exercises below, we shall sketch a description of the punctual Hilbert schemes
in terms of linear algebra; the case where X is a surface will be developed further in
Exercises 7.4.E.

(2*) Let x be a nonsingular point of X. Show that X ] i isomorphic to (A? )[”] where
d denotes the dimension of X at x, and 0 denotes the origin of the affine space A?.

(3*) Let Y be a point of (Ad)on . Then, I'(Y, Oy) is a module of length n over the local
ring
R:=k[x1,...,xq)/(x1, ..., xa)",

generated by one element (for example, the identity); we say that this module admits a
cyclic vector. Moreover, the annihilator of this vector is the ideal of Y.

Conversely, let V be an R-module of length n admitting a cyclic vector v. Show
that the annihilator of v is the ideal of a point of (Ad )[O"].

(4%) Let Ny, be the subset of M, (k)4 consisting of d-tuples of nilpotent, pairwise
commuting n X n matrices, where M, (k) is the space of all the n x n matrices over
k. For any (A, ..., Ag) € Ny, note that the subring k[Ay, ..., Ag] C M, (k) is a
quotient of R, where R is as in the above exercise; this yields an R-module structure
on k". Let Z;,, C Ny.n x k" be the subset of those (A1, ..., Ag; v) such that v is a
cyclic vector for the R-module k”.

Show that Ny, is closed in M, (k)¢, and that Z, , is open in N, x k™. Also,
show thatthe map f : Z;, — (Ad)g"], which takes any (Aq, ..., Ag; v) to the zero
subscheme of the annihilator of v in R, is a morphism.

(5*) The group GL,, (k) acts in M, (k)d x k" by

g- (AL, ...,Azsv) = (gA1g7), ..., gAug™"; g),

and this action leaves Z; , stable. Show that f is invariant under GL, (k), with its
(set-theoretic) fibers being exactly the orbits.

(6%) Show that the isotropy group of any point of Z; , is trivial; prove the same for
the isotropy Lie algebra. Deduce that the quotient Z;, —> Zg4.,/ GL,(k) exists
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and is a principal GL, (k)-bundle, and that f factors through a bijective morphism
Zan/ GLy (k) —> (AU Conclude that

dim(X!") = dim(Z4.,) — n°,

for any nonsingular point x € X.

7.3 The Hilbert—-Chow morphism

Any length-n subscheme Y of X defines an effective O-cycle of degree n,
(Y] =nix;+-- -+ nex,,

where x1, . . ., x, are the (distinct) points of Y, with respective multiplicities ny, . .., n,.
This yields a cycle map
X x™ Y s [y,

a surjective map of sets.

7.3.1 Theorem. There exists a canonical morphism of schemes
y=vyn: XM — x®
having the cycle map as underlying map of sets. Further, y is projective.

Proof. The first assertion follows from [Ive-70, 1.2, I1.3]. Specifically, any flat family
Y C X x S of length-n subschemes is a n-fold section of the projection X x § — S,
in the sense of [loc cit., Definition II.3.1]. So, by [loc cit., I1.2], this family yields a
canonical morphism from S to the n-fold symmetric product yé”), the image of the
n-fold product

VxsYxs--xsYCX"x8

in X™ x S. Since y;”) is a closed subscheme of X™ x S, we obtain a canonical
morphism § —> X ™. Taking § = X" yields y : X"l — X On the other hand,
taking S to be a point yields a length-n subscheme Y of X, and a point of X ™, which
is nothing but [Y] by [loc cit., I1.4. Appendix]. It follows that y(Y) = [Y], by the
compatibility property of [loc cit., 11.2.3].

If X is projective, then so is y, since X! is projective in this case. For an arbitrary
X, let X —> X be an open immersion into a projective scheme. By [loc cit., I.2], this
yields a Cartesian diagram

xl o xlnl

d 7|
xXm 5 xm

where y is projective; thus, so is y. O
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7.3.2 Definition. The morphism y of Theorem 7.3.1 is called the Hilbert—Chow mor-
phism.

Now, Proposition 7.2.9 and Theorem 7.3.1 imply the following.

7.3.3 Lemma. Let ny,...,n, be positive integers with sum n, and let x1, ..., x, be
distinct points of X. Then, the fiber of y at the point nix| + --- + n,x, equals
X ,[C'l"] XX X )[C':’]. As a consequence, all the fibers of y are connected.

If X is connected, then X™ is connected as well. Combined with Lemma 7.3.3
and Exercise 7.2.E.1, this yields

7.3.4 Corollary. If X is connected, then so is X"

Taking the preimages under y of X i':k) X i") X A(”) , X S('l) , we obtain open subschemes
x  x!M of X", a closed subscheme X, and a locally closed subscheme X! :=
X" X! respectively. Likewise,

(XBLe X220, = g % y2) THX® X079,

is an open subscheme of X2 x X["=2I its points consist of the pairs (Y, Z) where
YeXxPandZeXx }[:;—2] have disjoint supports.
We now obtain an analogue of Lemmas 7.1.4, 7.1.5 and 7.1.6 for these subschemes.

7.3.5 Lemma. Let X be a nonsingular variety of dimension d. Then, we have the
following.

iy X E:fk] — X i’,i) is an isomorphism, where y' is the restriction of y. As a
consequence, X ﬂ] is a nonsingular variety of dimension nd.

(ii) XL"] is also a nonsingular variety of dimension nd. In particular, X'®' is a nonsin-
gular variety of dimension 2d.

(iii) The map

w: (X xtn=2hy o xI (v, 2y — vYuUZ,
is an étale surjective morphism, which restricts to an isomorphism
(X2 5 xIn=2l ~ x[n

compatible with the isomorphism (X§2) x X"y~ X A(Z) (Lemma 7.1.5), where
(X2 xn=21y o (x I x x[n21)  (x (21« xIn-20)

(iv) X Erfk] is a nonsingular prime divisor of XL"], and —XEZ] is ample relative to the
restriction y|X£n] : XL"] — Xin). Moreover, any (set-theoretic) fiber F ofy|X§11 is

isomorphic to P4\, Under this isomorphism, the determinant of the normal sheaf

NF,XL"] becomes Opa-1(—2).
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Proof. (i) Clearly, v’ is bijective. Moreover, X ,(F'Q is a nonsingular variety of dimension
nd by Lemma 7.1.4; and the Zariski tangent space of X L’i] at any point has dimension
nd as well by Lemma 7.2.5. Thus, X L{'k] is also a nonsingular variety of dimension nd.
To complete the proof, we construct the inverse of ¥’ as follows.

Let Y C X x X" be the union of the partial diagonals (x = x1), ..., (x = x,).
Clearly, ) is finite over X", and the intersection Vi, := Y N (X x X[, is a flat family
of length-n subschemes of X. This yields a morphism « : X?, — X" which is
S,-invariant, with image X!, and hence a morphism 8 : X M 5 xI"1 which is the
desired inverse.

(i) Since X i") is connected and y is proper with connected fibers, X L"] is connected
by Exercise 7.2.E.1. Thus, it suffices to show that Ty X ("] has dimension nd, for any
point Y of X"!. By (i), we may assume that Y € X, Write [Y] = 2x| +x34+ - - +Xp,
where x1, x3, ..., X, are distinct. Then, by Lemma 7.2.5,

X" =1x"eor. X0 - 0®T,X,

where Z is a point of X)[czl]. By Lemma 7.2.8, there exist local coordinates 1, ..., #y
at x1 such that 77 is generated by #1, ..., 51, tj. Since the latter form a regular se-
quence, their classes modulo I% form a basis of the I'(Z, Oz)-module 7, /I%. Further,
since the vector space I'(Z, Oz) has dimension 2, it follows that the k-vector space
Homop, (Z7 /I%, Oz)=T7X (2] has dimension 2d. This completes the proof.

(iii) Let Y C X x S, resp. Z2 C X x T, be a flat family of length-2, resp. length-
(n — 2), subschemes. Let YV, Zg be their pullbacks to S x T. If Yr N Zg is empty,
then Vr U Zg is a flat family of length-n subschemes. It follows that the map u is a
morphism. By construction and Lemma 7.2.5, the differential of u at any point is an
isomorphism. Therefore, u is étale, since its source and target are nonsingular by (ii).
Over X £’;', u induces a bijective map, and hence an isomorphism. The compatibility
follows from the construction.

(iv) By using (iii), we may reduce to the case where n = 2. Then, X ﬁ] = XLZI =
y! (XAEZ)); its pullback along the morphism X — X§2) parametrizes the pairs (Y, x)
where Y is a length-2 subscheme of X supported at x. By Lemma 7.2.8, this pullback
is isomorphic to P(Tx), the projective bundle of lines in the Zariski tangent space to
X. Together with Lemma 7.1.5, it follows that X Ez] is a nonsingular prime divisor in
X'21 and that the (set-theoretic) fibers of y over X §2) are isomorphic to Pt

By (i), (ii) and Theorem 7.3.1, y : X2l — X is a projective, birational mor-
phism. Thus, it is the blowing-up of X ® along a closed subscheme Z, and the ideal
sheaf of y~1(Z) is a relatively ample invertible sheaf, by (i), (ii) and [Har-77, Chap.
11, §7]. But, the exceptional divisor y_l (Z) must be a positive multiple of X£2], so that
-X _Ez] is relatively ample.

Let x € X with local coordinates t1, .. ., #; and consider the point

Y :=Spec(Ox . /(t1, ... ta—1,13))
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of X EQ]. Let F = P(T,X) ~ P?~! be the corresponding fiber of y; we may regard
f1, ..., tqy as homogeneous coordinates on F. Consider the family

Y = Spec(Ox «lai, ..., aq, b1, ...,b41/L),
where 7 is the ideal generated by
tt+aitg+br, ..., tg—1+ag-1tqg + bi—1, tj + agty + by

together with all the monomials of degree 2 in ¢; and b;. This is a flat family of length-2
subschemes of X over Spec(k[a;, b;l/(a;a;j, a;bj, b;b;)), with fiber Y at the (unique)
point. Further, the differential of the induced morphism

Spec(kla;, bjl/(ajaj, a;ibj, bib;)) — X

at the unique point yields anisomorphism k>¢ ~ Ty X2, where a;, b are the coordinate
functions on k>, Under this identification, the tangent subspace to the fiber F is given
by (b1 =--- =bg—1 = by = a4 = 0). This shows that the normal bundle to F =~ pd-1
is homogeneous, and that its determinant is isomorphic to Opa-1(—2). O

7.3.E Exercises

(1) Let X be a nonsingular curve. Show that the Hilbert-Chow morphism y : X" —
X is an isomorphism, and that the quotient morphism 7 : X" — X can be
identified with the universal family.

In the following sequence of exercises, we assume that X is a nonsingular variety,
and p # 2. The aim behind the following exercises is to study the geometry of X L"] in
more detail, beginning with X%,

(2) Let s : X121 — X121 be the universal family. Show that X?isa variety, and that
7, is separable. Thus, we may write

12405121 = Ox21 @ L,

where L is the kernel of the trace map ; this is an invertible sheaf over X (2], We define
an action of Sy on the sheaf 77, Oz by letting the nontrivial element o act by 1 on
Oxi21, and —1 on £. Show that S, acts by automorphisms of the sheaf of algebras
m2+O%21. In other words, S> acts on X (21 and 77 is the quotient morphism.

(3) Let 711 : X2 —> X be the standard projection and let
Yo = (M, M 00): X2 x2,

Show that the diagram

X2 2 x2

nl nl
x2l Y o x®
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commutes, and that y» is an isomorphism above the complement of the diagonal A C
X2

(4) Show that the square of the ideal sheaf Ii C Oyo is generated by IX@ C Oxa).
As the pullback of Z, ¢ in X!? via y is invertible (Lemma 7.3.5), it follows that the
pullback of ZA in X2 is invertible as well, so that y» factors through a morphism

B : Xl — BIA(X?) (the blowing-up of X? along the diagonal). Using Zariski’s
main theorem, show that g is an isomorphism.

(5) Show that y : X2l — X@ is the blowing-up of X® along X*. Deduce that
the restriction of the Hilbert-Chow morphism X! — X is the blowing-up of X"

along X s(f’k)

7.4 Hilbert schemes of points on surfaces

In this section, X denotes a nonsingular surface, i.e., a nonsingular variety of dimension
2; then, X is quasi-projective (cf. [Har—77, Chap. II, Remark 4.10.2] and the references
therein).

7.4.1 Theorem. X! is a nonsingular variety of dimension 2n.

Proof. By Corollary 7.3.4, X" is connected; and by Lemma 7.3.5, it contains an open
subvariety X L"] of dimension 2n. Thus, it suffices to show that the dimension of the
Zariski tangent space Ty X' at any point ¥ of X! is at most 2n. By decomposing Y
into connected components and using Lemma 7.2.5, we reduce further to proving the
following.

7.4.2 Lemma. Let (R, M) be a regular local ring of dimension 2 and let I be an ideal
of R such that the R-module R/ has finite length. Then,

¢(Hompg(I, R/1)) < 2L(R/1),
where £(M) denotes the length of an R-module M.

Proof. Since the R-module R/ is Artinian, its depth at M is zero. By the Auslander-
Buchsbaum formula [Eis—95, Theorem 19.9], it follows that R /I has projective dimen-
sion 2. So, the surjection R — R/I fits into an exact sequence of R-modules

0—R —R —R— R/I — 0,

where r and s are positive integers. Considering ranks, we obtain s = r + 1, whence
an exact sequence

0— R — Rt 150
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It yields an exact sequence

0 —> Homg (I, R/I) —> Homg(R" ™', R/I) —> Homg(R", R/I)
— Exth(I, R/I) —> Exth(R"™', R/ D),

that is,
0 — Homg(/, R/I) — (R/I)rJrl — (R/) — Ext}e(l, R/1) — 0.

Therefore, the R-module Ext}e (I, R/I) has finite length, and we obtain by the additivity
of the length function:

¢(Hompg(I, R/I)) = L(R/I) + E(Ext}e(l, R/D)).

Likewise, the exact sequence

0—I—R—R/I—0
and the vanishing of Ext’k(R, —) fori > 1 yield an isomorphism

Exth(I, R/I) ~ Ext%(R/I, R/I).

Thus, it suffices to show the inequality

C(Exth(R/I, R/D)) < L(R/]).
For this, we use the exact sequence

Extk(R/I, R) —> Ext%(R/I, R/I) —> Extyx(R/I, I)

together with the vanishing of Ext%(R /1, —) (since R/I has projective dimension 2)
to obtain
C(Ext%(R/1, R/I)) < £(Extk(R/I, R)).

Further, Ext%(R/M, R) ~ R/M and Ext"R(R//\/l, R) = 0 fori # 2 (as seen from
the Koszul resolution of the R-module R/ M). Therefore, by induction on £(M), any
R-module M of finite length satisfies

L(Exth(M, R)) < L(M).
Taking M = R/I yields the desired inequality. O

Next, we determine the dimensions of the fibers of the Hilbert—-Chow morphism;
for this, we first record the following result proved in [lar—77] (an alternative proof is
sketched in Exercises 7.4.E.1-3).

7.4.3 Lemma. For any point x of X, the n-th punctual Hilbert scheme X )[C"] has dimen-
sionn — 1.
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Together with Lemma 7.3.3, this readily implies the following.

7.4.4 Lemma. (i) The fiber y_l(nlxl + -+ + n,yx;), where xy, ..., x, are distinct
points of X, has dimensionn — r.
(i) X"\ X" has codimension 2 in X",

In turn, this lemma has important geometric consequences:

7.4.5 Proposition. y : X"l — X® js birational, with exceptional set X L"]. The
latter is a prime divisor of X, and its negative is y-ample.

Proof. The first assertion follows from Lemmas 7.3.5(i), 7.4.4, and the irreducibility
of X" (which is a consequence of Theorem 7.4.1).

Since X"l is nonsingular and X is Q-factorial (Lemma 7.1.9), the exceptional
set of y has pure codimension 1, cf. [Deb—01, 1.40]. Together with Lemma 7.4.4 (ii),
it follows that X' is dense in X™. But, X" is irreducible by Lemma 7.3.5, so that

X‘g"] is irreducible as well. Finally, the y -ampleness of —XE"] is obtained by the proof
of Lemma 7.3.5 (iv). U

Recall from 1.3.12 that a proper, birational morphism f : ¥ — Z between
Gorenstein varieties is called crepant if f*wz; ~ wy. Now, X is Gorenstein by
Lemma7.1.7, and X is nonsingular by Theorem 7.4.1, so that the following statement
makes sense.

7.4.6 Theorem. The morphism y : X" —s X" js crepant.

Proof. By Lemma 7.4.4 (ii), it suffices to check that the restriction y |, is crepant.

Now, by Lemma 7.3.5, this restriction is an isomorphism outside X Eﬁ], which is a
nonsingular prime divisor of X i"]. So, there exists an integer ¢ such that

Wyln] ~ (y*wxi”))(txglk])'

To determine 7, we restrict both sides to an exceptional fiber F, i.e., to a (set-theoretic)
fiber at a point of X §’:3 : recall from Lemma 7.3.5 (iv) that F ~ P'. We have the equality
of degrees:

deg (@ yim) = degF((y*inn))(tXEZ])) = degp(y o m) +1 (X" F).
Further, degr (y*w X(n)) = 0 since y maps F' to a point; and the intersection number

(X £’L], F) is negative since —X E’;] is relatively ample (by Lemma 7.4.5). On the other
hand, by [Har—77, Chap. II, Proposition 8.20],

2n—1
degp(@ym) = degp(wr) — degp( /\ Ny ym),
where N 7y denotes the normal sheaf. Moreover, degp(wr) = —2 as F =~ P!, and

degF(/\Z"_1 NF X“”) = —2 by Lemma 7.3.5 (iv). It follows that degF(a)X[n]) =0, so
thatt = 0. ' O
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7.4.E Exercises

(1*) Let A be a nilpotent n x n matrix with coefficients in k. Let t4!, ..., 1% be the
elementary divisors of k" as a k[¢]-module, where ¢ acts on k" as A. For any exponent
i, let r; be the number of d;’s equal to i.

Show that the centralizer of A in M, (k) is isomorphic to the direct product of a
nilpotent ideal of dimension ) ; (3 -, 7; )2 —riz, with the product of the matrix algebras
M, (k).

Jj=i

(2*) Let V3., (A) be the set of those pairs (A}, A2) of commuting nilpotent n X n ma-
trices, such that A; is conjugate to A. Show that A, , (A) is a locally closed subvariety
of M,, (k) x M,(k), of dimension n% — it

(3*) With the notation of Exercise 7.2.E.4, show that dim(Z, ,) = n?+n—1. Using

Exercise 7.2.E.6, this immediately gives dim(X L"]) = n — 1, for any nonsingular point
x in a surface X.

7.5 Splitting of Hilbert schemes of points on surfaces

In this section, k denotes an algebraically closed field of characteristic p > 0.

7.5.1 Lemma. Let X be a quasi-projective scheme. If X is split, then any symmetric
product X™ is split.

Proof. Let ¢ : F,Ox —> QOgx be a splitting. Then, q)&n : FOxn —> QOxn is
a splitting of X", equivariant for the action of S,. Thus, (p@" restricts to a map
(FLOxn)S —> O3, that yields a splitting of X ). O

Next, recall from Lemma 1.3.13 that for any crepant morphism f : Y — Z, Y is
split if Z is. Together with Theorem 7.4.6, this yields the following main result of this
section.

7.5.2 Theorem. Let X be a nonsingular surface. If X is split, then X" is split as well.

7.5.3 Remarks. (i) The list of split surfaces includes:

e the nonsingular affine surfaces (Proposition 1.1.6),

o the toric surfaces (Exercise 1.3.E.6); in particular, all rational ruled surfaces,

e those projective nonsingular surfaces with trivial canonical class that are ordinary,
i.e., the map F* : H*(X, Ox) — HZ?*(X, Oyx) is nonzero (Remark 1.3.9 (ii)). In
particular, all ordinary K3 or abelian surfaces are split.

On the other hand, non-ordinary projective surfaces with trivial canonical class are
not split, as well as the projective surfaces with Kodaira dimension at least 1 (Remark
1.3.9 (i)).

(ii) For split X, one would like X" to be split compatibly with its exceptional divisor

X£"]. But, this does not always hold. Consider, for example, X = C x C where C
is an ordinary elliptic curve. Then, X is split, but X[?! is not split compatibly with
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X!, Otherwise, X would be split compatibly with X'* (Lemma 1.1.8). Thus, the
restriction map H 0x@, £@y — HOYX §2), £?) would be surjective for any ample
invertible sheaf £ on X (Theorem 1.2.8). As a consequence, the multiplication map

H'X, L)@ H (X, £) — H(X, £%)

would be surjective as well. But, this fails for £ = OC(D)&Z, where D is a divisor of

degree 2 on C.
Theorem 7.5.2 implies the following global vanishing result.

7.5.4 Corollary. Let X be a nonsingular surface which is split and which is proper over
an affine variety. Then, H (X" L) = 0 for any i > 1 and for any ample invertible
sheaf £ on X',

Proof. By assumption, there exists a proper morphism f : X —> Y, where Y is an
affine variety. Then, f" : X" — Y" is also proper, so that the induced morphism
F X Y™ s proper as well (since the quotient maps X" —> X, y" —
Y™ are finite and surjective). Since the Hilbert—-Chow morphism y : X"l — x®
is proper, it follows that X[™! is proper over the affine scheme Y ™. Now, the corollary
is a consequence of Theorems 1.2.8 and 7.5.2. O

Another consequence of Theorem 7.5.2 is the following relative vanishing result
for the Hilbert—Chow morphism.

7.5.5 Corollary. RiV*OX[n] (—vXE"]) = 0 for any nonsingular surface X and alli > 1,
v>1.

Proof. Since X is quasi-projective, any finite subset is contained in some open affine
subset. Therefore, X is covered by its open affine subsets U ) where U runs
over the open affine subsets of X. Thus, we may assume that X is affine, and hence
split. Further, X"l is proper over the affine variety X" by Theorem 7.3.1, and
the divisor —XE"] is ample by Proposition 7.4.5. Hence, Theorem 1.2.8 (i) yields:
HI (X" Oy (—vX")) = 0 forany i > 1and v > 1, which is equivalent to the
desired vanishing, since X () ig affine. O

7.5.6 Remark. In characteristic 0, Corollary 7.5.5 is a direct consequence of Theorem
7.4.6, Lemma 7.1.7(iii) and the Grauert—-Riemenschneider vanishing theorem (since
—X£"] is a y-ample divisor by Proposition 7.4.5), which imply also that Ry, O yim = 0
foranyi > 1.
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7.C. Comments.

The results of Section 7.1 are classical, and many of them extend to quotients by arbi-
trary finite groups, at least in characteristic 0. But, we could not locate an appropriate
reference for the symmetric products in positive characteristics, thus we have endeav-
oured to give a detailed exposition.

The construction of Hilbert schemes is due to Grothendieck [Gro—62]. He obtained
the existence of a universal flat family of subschemes of a fixed projective space P",
having a fixed Hilbert polynomial P; the base of this family is a projective scheme,
the Hilbert scheme Hilb” (P"). Taking P to be the constant polynomial equal to n
yields the existence of the Hilbert scheme Hilb"” (P") = (P")"] parametrizing length-n
subschemes of " and, in turn, the existence of X!"! for an arbitrary quasi-projective X
(Theorem 7.2.3).

The description of the Zariski tangent spaces to X"l (Lemma 7.2.5) is also a special
case of a result of Grothendieck [Gro—62]. The subsequent results of Section 7.2 are
due to Fogarty [Fog—68] and [Fog—73]; a stronger version of Lemma 7.2.10 is due to
Horrocks [Hor-69].

The approach to punctual Hilbert schemes of affine spaces in terms of linear algebra,
sketched in Exercises 7.2.E, is developed by Nakajima in [Nak-99].

Our definition of the Hilbert—Chow morphism is based on results of Iversen [Ive-
70]; it yields a refinement of the morphism constructed in [Fog—68], which had for
its source the reduced subscheme of the Hilbert scheme, and for its target the Chow
variety of effective O-cycles. See [Nee—91] for another construction of the Hilbert—
Chow morphism, in the case of a projective space.

Lemma 7.3.3 and Corollary 7.3.4 are originally in [Fog—68]; Lemma 7.3.5 is a
version of Lemma 4.4 in [Fog—73], but some details in [loc cit.] are not clear to us.

The fundamental Theorem 7.4.1 is again due to Fogarty [Fog—68]; our presentation
follows the original proof closely. In characteristic 0, Lemma 7.4.3 was obtained
by Briancon [Bria—77] in a stronger form: the n-th punctual Hilbert scheme X)[C"] is
irreducible, of dimension n — 1 (cf. also [Gran—83]). This stronger result continues
to hold in characteristic p > n, cf. [lar—77]; where it is also shown that Lemma 7.4.3
holds in an arbitrary characteristic (without the irreducibility of X )[C"]).

As shown by Baranovsky [Bar—01], the irreducibility of X! (in an arbitrary char-
acteristic) is equivalent to the irreducibility of the space N, of pairs of commuting
nilpotent n x n matrices. Basili [Bas—03] established directly the irreducibility of N3 ,,
in characteristic 0 and in characteristic p > n/2. The case of an arbitrary characteristic
is due to Premet [Pre—03]; in fact, his main result describes all the irreducible compo-
nents of the space of pairs of commuting nilpotent elements of the Lie algebra of any
semisimple group G in good characteristic.

Proposition 7.4.5 is stated in [Fog—73]. Theorem 7.4.6 is classical in characteristic
0; in fact, symmetric products of nonsingular surfaces admit a unique crepant resolution
given by the Hilbert—-Chow morphism, cf. [FuNa—04]. Theorem 7.4.6 in positive char-
acteristic is due to Kumar—Thomsen [KuTh-01]; the proof presented here is somewhat
different from theirs.
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The results of Section 7.5 are all taken from [KuTh-01], except for Corollary
7.5.5. Haiman [Hai-98] conjectures the vanishing of higher cohomology groups of
all the tensor powers of the tautological vector bundle (i.e., the image of the structure
sheaf of the universal family) on (A1 and he presents remarkable combinatorial
consequences of this conjecture. He proved his conjecture in characteristic 0 [Hai—02].
Further cohomology vanishing results for Hilbert schemes of points on nonsingular
projective surfaces are due to Danila [Dan—01, 04], again in characteristic 0.

It is not known if the Hilbert—-Chow morphism for a nonsingular surface is a rational
morphism. (This would, in particular, imply that symmetric products of nonsingular
surfaces are Cohen—Macaulay.) Further, it is not known if the total space of the universal
family over the Hilbert scheme of a smooth split surface is again split. This question is
motivated by the vanishing theorems of Danila and Haiman mentioned above.
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