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PREFACE

This book presents the mathematics of finite-dimensional optimization, featur-
ing those aspects of convexity that are useful in this context. It provides a basis
for the further study of convexity, of more general optimization problems, and
of numerical algorithms for the solution of finite-dimensional optimization
problems. The intended audience consists of beginning graduate students in
engineering, economics, operations research, and mathematics and strong
undergraduates in mathematics. This was the audience in a one-semester
course at Purdue, MA 521, from which this book evolved.

Ideally, the prerequisites for reading this book are good introductory
courses in real analysis and linear algebra. In teaching MA 521, I found that
while the mathematics students had the real analysis prerequisites, many of the
other students who took the course because of their interest in optimization
did not have this prerequisite. Chapter I is for those students and readers who
do not have the real analysis prerequisite; in it I present those concepts and
results from real analysis that are needed. Except for the Weierstrass theorem
on the existence of a minimum, the ‘‘heavy’’ or ‘‘deep’’ theorems are stated
without proof. Students without the real variables prerequisite found the
material difficult at first, but most managed to assimilate it at a satisfactory
level. The advice to readers for whom this is the first encounter with the
material in Chapter I is to make a serious effort to master it and to return to
it as it is used in the sequel.

To address as wide an audience as possible, I have not always presented the
most general result or argument. Thus, in Chapter II I chose the ‘‘closest point’’
approach to separation theorems, rather than more generally valid arguments,
because I believe it to be more intuitive and straightforward for the intended
audience. Readers who wish to get the best possible separation theorem in
finite dimensions should read Sections 6 and 7 of Chapter II. In proving the
Fritz John Theorem, I used a penalty function argument due to McShane
rather than more technical arguments involving linearizations. I limited the
discussion of duality to Lagrangian duality and did not consider Fenchel
duality, since the latter would require the development of more mathematical
machinery.

ix



The numbering system and reference system for theorems, lemmas, remarks,
and corollaries is the following. Within a given chapter, theorems, lemmas, and
remarks are numbered consecutively in each section, preceded by the section
number. Thus, the first theorem of Section 1 is Theorem 1.1, the second,
Theorem 1.2, and so on. The same applies to lemmas and remarks. Corollaries
are numbered consecutively within each section without a reference to the
section number. Reference to a theorem in the same chapter is given by the
theorem number. Reference to a theorem in a chapter different from the current
one is given by the theorem number preceded by the chapter number in Roman
numerals. Thus, a reference in Chapter IV to Theorem 4.1 in Chapter II would
be Theorem II.4.1. References to lemmas and remarks are similar. References
to corollaries within the same section are given by the number of the corollary.
References to corollaries in a different section of the same chapter are given by
prefixing the section number to the corollary number; references in a different
chapter are given by prefixing the chapter number in Roman numerals to the
preceding.

I thank Rita Saerens and John Gregory for reading the course notes version
of this book and for their corrections and suggestions for improvement. I thank
Terry Combs for preparing the figures. I also thank Betty Gick for typing
seemingly innumerable versions and revisions of the notes for MA 521. Her
skill and cooperation contributed greatly to the success of this project.

L D. B
West Lafayette, Indiana
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I
TOPICS IN REAL ANALYSIS

1. INTRODUCTION

The serious study of convexity and optimization problems in R� requires some
background in real analysis and in linear algebra. In teaching a course based
on notes from which this text evolved, the author and his colleagues assumed
that the students had an undergraduate course in linear algebra but did not
necessarily have a background in real analysis. The purpose of this chapter is
to provide the reader with most of the necessary background in analysis. Not
all statements will be proved. The reader, however, is expected to understand
the definitions and the theorems and is expected to follow the proofs of
statements whenever the proofs are given. The bad news is that many readers
will find this chapter to be the most difficult one in the text. The good news is
that careful study of this material will provide background for many other
courses and that subsequent chapters should be easier. If necessary, the reader
should return to this chapter when encountering this material later on.

2. VECTORS IN R�

By euclidean n-space, or R�, we mean the set of all n-tuples x� (x
�
, . . . , x

�
),

where the x
�
, i� 1, . . . , n are real numbers. Thus, R� is a generalization of the

familiar two- and three-dimensional spaces R� and R�. The elements x of R�

are called vectors or points. We will often identify the vector x� (x
�
, . . . , x

�
)

with the n� 1 matrix

�
x
�
�
x
�
�

and abuse the use of the equal sign to write

x� �
x
�
�
x
�
� .
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In this case we shall call x a column vector. We shall also identify x with the
1� n matrix (x

�
, . . . , x

�
) and write x� (x

�
, . . . , x

�
). In this case we shall call x

a row vector. It will usually be clear from the context whether we consider x
to be a row vector or a column vector. When there is danger of confusion, we
will identify x with the column vector and use the transpose symbol, which is
a superscript t, to denote the row vector. Thus x�� (x

�
, . . . , x

�
).

We define two operations, vector addition and multiplication by a scalar. If
x� (x

�
, . . . , x

�
) and y� (y

�
, . . . , y

�
) are two vectors, we define their sum x� y

to be

x� y� (x
�
� y

�
, . . . , x

�
� y

�
).

For any scalar, or real number, � we define �x to be

�x� (�x
�
, . . . , �x

�
).

We assume that the reader is familiar with the properties of these operations
and knows that under these operations R� is a vector space over the reals.

Another important operation is the inner product, or dot product, of two
vectors, denoted by �x, y� or x�y and defined by

�x, y��
�
�
���

x
�
y
�
.

Again, we assume that the reader is familiar with the properties of the inner
product. We use the inner product to define the norm � ·� or length of a vector
x as follows:

�x�� �x, x����� �
�
�
���

x�
� �

���
.

This norm is called the euclidean norm. In R� and R� the euclidean norm
reduces to the familiar length. It is straightforward to show that the norm has
the following properties:

�x�� 0 for all x in R�, (1)

�x�� 0 if and only if x is the zero vector 0 in R�, (2)

��x�� ��� �x� for all real numbers � and vectors x in R�. (3)

The norm has two additional properties, which we will prove:

For all vectors x and y in R�

��x, y��	�x� �y� (4)
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with equality holding if and only if one of the vectors is a scalar multiple of
the other.

For all vectors x and y in R�

�x� y�	�x�� �y� , (5)

with equality holding if and only if one of the vectors is a nonnegative scalar
multiple of the other.

The inequality (4) is known as the Cauchy—Schwarz inequality. The reader
should not be discouraged by the slickness of the proof that we will give or by
the slickness of other proofs. Usually, the first time that a mathematical result
is discovered, the proof is rather complicated. Often, many very smart people
then look at it and constantly improve the proof until a relatively simple and
clever argument is found. Therefore, do not be intimidated by clever argu-
ments. Now to the proof.

Let x and y be any pair of fixed vectors in R�. Let 
 be any real scalar. Then

0	�x� 
y����x� 
y, x� 
y�

� �x��� 2
(x, y�� �y��
� for all 
. (6)

This says that the quadratic in 
 on the right either has a double real root or
has no real roots. Therefore, by the quadratic formula, its discriminant must
satisfy

4�x, y��� 4�x���y��	 0.

Transposing and taking square roots give

��x, y��	�x� �y�.

Equality holds if and only if the quadratic has a double real root, say 
��.
But then, from (6), �x��y�� 0. Hence by (2) x��y� 0, and x���y.

To prove (5), we write

�x� y����x� y, x� y�� �x�� � 2�x, y�� �y��

	�x��� 2�x� �y�� �y�� � (�x�� �y�)�, (7)

where the inequality follows from the Cauchy—Schwarz inequality. If we now
take square roots, we get the triangle inequality. We obtain equality in (7), and
hence in the triangle inequality, if and only if �x, y� is nonnegative and either
y is a scalar multiple of x or x is a scalar multiple of y. But under these
circumstances, for �x, y� to be nonnegative, the multiple must be nonnegative.
The inequality (5) is called the triangle inequality because when it is applied to
vectors in R� or R� it says that the length of a third side of a triangle is less
than or equal to the sum of the lengths of the other two sides.

VECTORS IN R� 3



Exercise 1.1. For any vectors x and y in R�, show that �x� y��� �x�y �� �

2�x��� 2�y��. Interpret this relation as a statement about parallelograms in
R� and R�.

In elementary courses it is shown that in R� and R� the cosine of the angle
�
 , 0	�
 	�, between two nonzero vectors x and y is given by the formula

cos �
 �
�x, y�
�x� �y�

.

Thus, x and y are orthogonal if and only if �x, y�� 0. In R�, the Cauchy—
Schwarz inequality allows us to give meaning to the notion of angle between
nonzero vectors as follows. Since ��x, y��	�x��y�, the absolute value of the
quotient

�x, y�
�x� �y�

(8)

is less than or equal to 1, and thus (8) is the cosine of an angle between zero
and �. We define this angle to be the angle between x and y. We say that x
and y are orthogonal if �x, y�� 0.

3. ALGEBRA OF SETS

Given two sets A and B, the set A is said to be a subset of B, or to be contained
in B, and written A�B, if every element of A is also an element of B. The set
A is said to be a proper subset of B if A is a subset of B and there exists at least
one element of B that is not in A. This is written as A�B. Two sets A and B
are said to be equal, written A�B, if A�B and B�A. The empty set, or null
set, is the set that has no members. The empty set will be denoted by �.
The notation x �S will mean ‘‘x belongs to the set S ’’ or ‘‘x is an element of
the set S.’’

Let �S���	� be a collection of sets indexed by an index set A. By the union
of the sets �S���	� , denoted by ��	�S� , we mean the set consisting of all
elements that belong to at least one of the S� . Note that if not all of the S� are
empty, then ��	� S� is not empty. By the intersection of the sets �S���	� ,
denoted by ��	�S� , we mean the set of points s with the property that s
belongs to every set S� . Note that for a collection �S���	� of nonempty sets, the
intersection can be empty.

Let X be a set, say R� for example, and let S be a subset of X. By the
complement of S (relative to X), written cS, we mean the set consisting of those
points in X that do not belong to S. Note that cX is the empty set. By
convention, we take the complement of the empty set to be X. We thus always
have c(cS) �S. Also, if A�B, then cA� cB. The reader should convince
himself or herself of the truth of the following lemma, known as de Morgan’s
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law, either by writing out a proof or drawing Venn diagrams for some simple
cases.

L 3.1. L et �S���	� be a collection of subsets of a set X. T hen

�
�	�

S�� c ���	� (cS�)� ,
�
�	�

S�� c ���	� (cS�)� .

4. METRIC TOPOLOGY OF R�

Let X be a set. A function d that assigns a real number to each pair of points
(x, y) with x � X any y �X is said to be a metric, or distance function, on X if it
satisfies the following:

d(x, y)� 0, with equality holding if and only if x� y, (1)

d(x, y)� d(y, x), (2)

d(x, y)	 d(x, z) � d(z, y) for all x, y, z in X. (3)

The last inequality is called the triangle inequality.
In R� we define a function d on pairs of points x, y by the formula

d(x, y) � �x� y���
�
�
���

(x
�
� y

�
)��

���
. (4)

Exercise 4.1. Use the properties of the norm to show that the function d
defined by (4) is a metric, or distance function, on R�.

A set X with metric d is called a metric space. Although metric spaces occur
in many areas of mathematics and applications, we shall confine ourselves to
R�. In R� and R� the function defined in (4) is the ordinary euclidean distance.

We now present some important definitions to the reader, who should
master them and try to improve his or her understanding by drawing pictures
in R�.

The (open) ball centered at x with radius r� 0, denoted by B(x, r), is defined
to be the set of points y whose distance from x is less than r. We write this in
symbols as

B(x, r) � �y : �y� x�� r�.

The closed ball B(x, r) with center at x and radius r� 0 is defined by

B(x, r) � �y : �y� x�	 r�.

METRIC TOPOLOGY OF R� 5



Let S�R�. A point x is an interior point of S if there exists an r� 0 such
that B(x, r) �S. A set S need not have any interior points. For example,
consider the set of points in the plane of the form (x

�
, 0) with 0�x

�
� 1. This

is the interval 0� x
�
� 1 on the x

�
-axis. It has no interior points, considered

as a set in R�. On the other hand, if we consider this as a set in R�, every point
is an interior point. This leads to the important observation that for a given
set, whether or not it has interior points may depend on in which euclidean
space R� we take the set to be lying, or embedded.

If the set of interior points of a set S is not empty, then we call the set of
interior points the interior of S and denote it by int(S).

A set S is said to be open if all points of S are interior points. Thus an
equivalent definition of an open set is that it is equal to its interior. If we go
back to the definition of interior point, we can restate the definition of an open
set as follows. A set S is open if for every point x in S there exists a positive
number r� 0, which may depend on x, such that the ball B(x, r) is contained
in S. The last definition, while being wordy, is the one that the reader should
picture mentally.

A point x is said to be a limit point of a set S if for every �� 0 there
exists a point x� �x such that x� belongs to S and x� �B(x, �). The point x� will
in general depend on �. A set need not have any limit points, and a limit
point of a set need not belong to the set. An example of a set without a
limit point is the set N of positive integers, considered as a set in R�. For an
example of a limit point that does not belong to a set, consider the set S�

�x : x� 1/n, n� 1, 2, 3, . . .� in R�. Zero is a limit point of the set, yet zero does
not belong to S. We shall denote the set of limit points of a set S by S�.

Exercise 4.2. (a) Sketch the graph of y� sin(1/x), x� 0.
(b) Consider the graph as a set in R� and find the limit points of this set.

The closure of a set S, denoted by S� , is defined to be the set S�S� ; that is,
S� �S�S�. A set S is said to be closed if S contains all of its limit points; that
is, S��S. A set S is closed if and only if S� S� . To see this, note that S�S�
and the definitions S� �S�S� imply that S�S�S�. Hence S��S. On the
other hand, if S��S, then S�S��S, and so S� �S� S��S.

A set can be neither open nor closed. In R� consider B(0, 1), the ball with
center at the origin and radius 1. It should be intuitively clear that all points
x in R� with �x�� 1 are limit points of B(0, 1). Now consider the set

S�B(0, 1)��x� (x
�
, x

�
) : �x�� 1, x

�
� 0�.

(The reader should sketch this set.) Points x� (x
�
, x

�
) with �x�� 1 and

x
�
� 0 are not interior points of S since for such an x, no matter how small

we choose �� 0, the ball B(x, �) will not belong to S. Hence S is not open. Also,
S is not closed since points x� (x

�
, x

�
) with �x�� 1 and x

�
� 0 are limit

points of S, yet they do not belong to S.
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It follows from our definitions that R� itself is both open and closed. By
convention, we will also take the empty set to be open and closed.

T 4.1. Complements of closed sets are open. Complements of open sets
are closed.

Proof. If S��, where � denotes the empty set, or if S�R�, then there is
nothing to prove. Let S��, S�R� and let S be closed. Let x be any point
in cS. Then x �S and x is not a limit point of S. If we recall the definition of
‘‘x is a limit point of S,’’ we see that the statement ‘‘x is not a limit point of S’’
means that there is an �



� 0 such that all points y�x with y �B(x, �



) are in

cS. Since x � cS, this means that B(x, �


) � cS, and so cS is open. Now let

S��, S�R� and let S be open. Let x be a limit point of cS. Then for every
�� 0 there exists a point x� �x in cS such that x� �B(x, �). Since x� � cS, the
ball B(x, �) does not belong to S. Thus x cannot belong to the open set S, for
then we would be able to find an �



such that B(x, �



) did belong to S. Hence

x � cS, so cS is closed.

Exercise 4.3. Show that for x �R� and r� 0 the set B(x, r) is open; that is, show
that an open ball is open.

Exercise 4.4. Show that for x �R� and r� 0 the closed ball B(x, r) is closed.

Exercise 4.5. Show that any finite set of points x
�
, . . . , x

�
in R� is closed.

Exercise 4.6. Show that in R� no point x with �x�� 1 is an interior point of
B(0, 1).

Exercise 4.7. Show that for any set S in R� the set S� is closed.

Exercise 4.8. Show that for any set S the closure S� is equal to the intersection
of all closed sets containing S.

T 4.2. (i) L et �O���	� be a collection of open sets. T hen��	�O� is open.
(ii) L et O

�
, . . . ,O

�
be a finite collection of open sets. T hen ��

���
O

�
is open.

(iii) L et �F���	� be a collection of closed sets. T hen ��	�F� is closed.
(iv) L et F

�
, . . . , F

�
be a finite collection of closed sets. T hen��

���
F

�
is closed.

Note that an infinite collection of open sets need not have an inter-
section that is open. For example, in R�, for each n� 1, 2, 3, . . . , let

O
�
� (1 � 1/n, 1� 1/n) � �x �R� : 1� 1/n�x� 1� 1/n�.

In R� each O
�
is open, and ��

���
O

�
� �1�, a point. By Exercise 4.5, the set

consisting of the point x� 1 is closed. Similarly, the union of an infinite
number of closed sets need not be closed. To see this, for each n� 1, 2, 3, . . . let
F
�
� [0, 1�1/(n�1)] � �x �R� : 0	x	 1�1/(n�1)�. Each F

�
is closed, and
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��
���

F
�
� [0, 1) � �x �R� : 0	 x� 1�, which is not closed since it does not

contain the limit point x� 1.
We now prove the theorem. To establish (i), we take an arbitrary element

x in ��	�O� . Since x is in the union, it must belong to at least one of the sets
�O���	� , say O��

. Since O��
is open, there exists an r



� 0 such that B(x, r



)�

O��
. Hence B(x, r



)���	�O� , and thus the union is open. To establish (ii), let

x be an arbitrary point in��
���

O
�
. Then x �O

�
for each i� 1, . . . , n. Since each

O
�
is open, for each i� 1, . . . , n there exists an r

�
� 0 such that B(x, r

�
)�O

�
.

Let r�min�r
�
: i� 1, . . . , n�. Then B(x, r)�B(x, r

�
)�O

�
for each i� 1, . . . , n.

Hence B(x, r) ���
���

O
�
, and thus the intersection is open.

The most efficient way to establish (iii) is to write

�
�	�

F�� �
�	�

c(cF�) � c ���	� (cF�)� ,
where the second equality follows from Lemma 3.1. Since F� is closed, cF� is
open and so is ��	� (cF�). Hence the complement of this set is closed, and
therefore so is ��	�F�

. To establish (iv), write

�
�
���

F
�
�

�
�
���

c(cF
�
) � c �

�
�
���

(cF
�
)� .

Again, cF
�
is open for each i� 1, . . . , n. Hence the intersection ��

���
(cF

�
) is

open and the complement of the intersection is closed.
The reader who wishes to test his or her mastery of the relevant definitions

should prove statements (iii) and (iv) of the theorem directly.

5. LIMITS AND CONTINUITY

A sequence in R� is a function that assigns to each positive integer k a vector
or point x

�
in R�. We usually write the sequence as �x

�
��
���

or �x
�
�, rather than

in the usual function notation. Examples of sequences in R� are

(i) �x
�
�� �(k, k)�,

(ii) �x
�
����cos

k�
2
, sin

k�
2 �� ,

(1)
(iii) �x

�
����

(�1)�
2�

,
1

2��� ,
(iv) �x

�
����(�1)��

1

k
, (�1)��

1

k�� .
The reader should plot the points in these sequences.
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A sequence �x
�
� is said to have a limit y or to converge to y if for every �� 0

there is a positive integer K(�) such that whenever k�K(�), x
�
�B(y, �). We

write

lim
���

x
�
� y or x

�
	 y.

The sequences (i), (ii), and (iv) in (1) do not converge, while the sequence (iii)
converges to 0� (0, 0). Sequences that converge are said to be convergent ;
sequences that do not converge are said to be divergent. A sequence �x

�
� is said

to be bounded if there exists an M� 0 such that �x
�
��M for all k. A sequence

that is not bounded is said to be unbounded. The sequence (i) is unbounded;
the sequences (ii), (iii), and (iv) are bounded.

The following theorem lists some basic properties of convergent sequences.

T 5.1. (i) T he limit of a convergent sequence is unique.
(ii) L et lim

���
x
�
� x



, let lim

���
y
�
� y



, and let lim

���
�
�
� �, where ��

�
�

is a sequence of scalars. T hen lim
���

(x
�
� y

�
) exists and equals x



� y



, and

lim
���

�
�
x
�
exists and equals �x



.

(iii) A convergent sequence is bounded.

Exercise 5.1. Prove Theorem 5.1.

Let �x
�
� be a sequence in R� and let r

�
� r

�
� r

�
�	� r



�	 be a strictly

increasing sequence of positive integers. Then the sequence �x
�
�

��

��

is called
a subsequence of �x

�
�. Thus, �x

��
��
���

� �(2k, 2k)� is a subsequence of (i). The
sequence �x

��
��
���

� �(cos k�, sin k�)��
���

is a subsequence of (ii). Each of the
sequences �x

��
�� �((�1)���1/2k, (�1)���1/2k)� � �(1�1/2k, 1�1/2k)� and

�x
����

�� �(�1� 1/(2k� 1), �1� 1/(2k� 1))� is a subsequence of (iv). The
reader should plot the various subsequences.

We can now formulate a very useful criterion for a point to be a limit point
of a set. (The reader should not confuse the notions of limit and limit point.
They are different.)

L 5.1. A point x is a limit point of a set S if and only if there exists a
sequence �x

�
� of points in S such that, for each k, x

�
� x and x

�
	 x.

Proof. Let x be a limit point of S. Then for every positive integer k there is
a point x

�
in S such that x

�
�x and x

�
�B(x, 1/k). For every �� 0, there is a

positive integer K(�) satisfying 1/K(�)��. Hence for k�K(�), we have 1/k��
and B(x, 1/k) �B(x, �). Hence the sequence �x

�
� converges to x. Conversely, let

there exist a sequence �x
�
� of points in S with x

�
� x and x

�
	x. Let �� 0 be

arbitrary. Since x
�
	 x, there exists a positive integer K(�) such that, for

k�K(�), x
�
�B(x, �). Since by hypothesis x

�
� x for all k, it follows that we

have satisfied the requirements of the definition that x is a limit point of S.

LIMITS AND CONTINUITY 9



Remark 5.1. Let �x
�
� be a sequence of points belonging to a set S and

converging to a point x. Then x must belong to S� . If x is in S, there is nothing
to prove. If x were not in S, then since x

�
�S for each k, it follows that x

�
�x.

Lemma 5.1 then implies that x is a limit point of S. Thus x � S� . If S is a closed
set, then since S�S� , the point x belongs to S.

Remark 5.2. Let S be a set in R�. If x belongs to S� , then there is a sequence of
points �x

�
� in S such that x

�
	x. To see this, note that if x is in S� , then x

belongs either to S or to S�. If x � S �, the assertion follows from Lemma 5.1. If
x �S and x �S�, we may take x

�
�x for all positive integers k.

Let S be a subset (proper or improper) of R�. Let f be a function with
domain S and range contained in R
. We denote this by f :S	R
. Thus,
f� ( f

�
, . . . , f



), where each f

�
is a real-valued function.

Let s be a limit point of S. We say that ‘‘the limit of f(x) as x approaches s
exists and equals L’’ if for every �� 0 there exists a �� 0, which may depend
on �, such that for all x �B(s, �)�S, x� s, we have f(x) �B(L, �). We write

lim
x	s
f (x) �L.

It is not hard to show that, if L� (L
�
, . . . , L



), limx	s f(x) �L if and only

if, for each i� 1, . . . ,m, limx	s f�
(x) � L

�
.

It is also not hard to show that if a limit exists it is unique and that the
algebra of limits, as stated in the next theorem, holds.

T 5.2. L et limx	s f(x) �L and let limx	s g(x) �M. T hen

lim
x	s

[f(x) � g(x)]

exists and equals L�M. Also limx	s [�f(x)] exists and equals �L.

A useful sequential criterion for the existence of a limit is now given.

T 5.3. Limx	s f(x) �L if and only if for every sequence �x
�
� of points in

S such that x
�
� s for all k and x

�
	 s it is true that lim

���
f(x

�
) �L.

Proof. Let limx	s f(x) �L and let �x
�
� be an arbitrary sequence of points in

S with x
�
� s for all k and with x

�
	 s. Let �� 0 be given. Since limx	s f(x)�L,

there exists a �(�)� 0 such that, for all x� s and in B(s, �)�S, f(x) �B(L, �).
Since x

�
	 s, there exists a positive integer K(�(�)) such that whenever

k�K(�(�)), x
�
�B(s, �). Thus, for k�K(�(�)), f(x

�
) �B(L, �), and so f (x

�
) 	L.

We now prove the implication in the other direction. Suppose that
limx	s f(x) does not equal L. Then there exists an �



� 0 such that for every

�� 0 there exists a point x
 in S satisying the conditions x
 � s, x
 �B(s, �),
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and f(x
) �B(L, �


). Take � through the sequence of values �� 1/k, where k

runs through the positive integers. We then get a sequence �x
�
�, with x

�
�S,

x
�
� s, and x

�
	 s, with the further property that f(x

�
) �B(L, �



). Thus f(x

�
)

does not converge to L, and the theorem is proved.

Let x


be a point of S that is also a limit point of S ; that is, x



� S�S�. We

say that f is continuous at x


if

lim
x	x




f(x) � f(x


).

If x


�S and x



is not a limit point of S, we will take f to be continuous at x



by convention.

From the corresponding property of limits it follows that f is continuous at
x


if and only if each of the real-valued functions f

�
, . . . , f



is continuous at x



.

It follows from Theorem 5.2 that if f and g are continuous at s, then so are
f� g and �f.

The function f is said to be continuous on S if it is continuous at every point
of S.

Exercise 5.2. Show that if limx	s f(x) �L, then L is unique.

Exercise 5.3. Prove Theorem 5.2.

Exercise 5.4. Let f be a real-valued function defined on a set S in R�. Show
that if f is continuous at a point x



in S and if f (x



)� 0, then there exists a

�� 0 such that f (x)� 0 for all x in B(x


, �)� S.

Exercise 5.5. Show that the real-valued function f :R� 	R� defined by
f (x) � �x� is continuous on R� (i.e., show that the norm is a continuous
function). Hint: Use the triangle inequality to show that, for any pair of vectors
x and y, � �x�� �y� �	�x� y�.

6. BASIC PROPERTY OF REAL NUMBERS

A set S in R� is said to be bounded if there exists a positive number M such
that �x�	M for all x �S. Another way of stating this is S�B(0,M). The
number M is said to be a bound for the set. Note that if a set is bounded, then
there are infinitely many bounds.

We now shall deal with sets in R� only. In R� a set S being bounded means
that, for every x in S, �x�	M, or �M	x	M. A set S in R� is said to be
bounded above if there exists a real number A such that x	A for all x in S. A
set S is bounded below if there exists a real number B such that x�B for all x
in S. The number A is said to be an upper bound of S, the number B a lower
bound.
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A number U is said to be a least upper bound (l.u.b.), or supremum (sup), of
a set S

(i) if U is an upper bound of S and

(ii) if U� is another upper bound of S and then U��U.

If a set has a least upper bound, then the least upper bound is unique. To
see this, let U

�
and U

�
be two least upper bounds of a set S. Then since U

�
is

an upper bound and U
�
is a least upper bound, U

�
�U

�
. Similarly, U

�
�U

�
,

and so U
�
�U

�
.

Condition (ii) states that no number A�U can be an upper bound of S.
Therefore condition (ii) can be replaced by the equivalent statement:

(ii�) For every �� 0 there is a number x� in S with U�x��U� �.

Let S be the set of numbers 1� 1/n, n� 1, 2, 3, . . . .Then one is the l.u.b. of
this set. Note that one does not belong to S. Now consider the set S

�
�S��2�.

The number 2 is the l.u.b. of this set and belongs to S
�
. The reader should be

clear about the distinction between an upper bound and a supremum, or l.u.b.
A number L is said to be a greatest lower bound (g.l.b.), or infimum (inf), of

a set S

(i) if L is a lower bound of S and

(ii) if L � is another lower bound of S and then L �	 L .

Observations analogous to those made following the definition of l.u.b. hold
for the definition of g.l.b. We leave their formulation to the reader.

Exercise 6.1. Let L � g.l.b. of a set S. Show that there exists a sequence of
points �x

�
� in S such that x

�
	 L . Show that the sequence �x

�
� can be taken to

be nonincreasing, that is, x
���

	x
�
for every k. Does L have to be a limit point

of S?

Exercise 6.2. Let S be a set in R�. We define �S to be �x :�x � S�. Thus �S
is the set that we obtain by replacing each element x in S by the element �x.
Show that S is bounded below if and only if �S is bounded above. Show that
� is the g.l.b. of S if and only if �� is the l.u.b. of �S.

We can now state the basic property of the real numbers R�, which is
sometimes called the completeness property.
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Basic Property of the Reals

Every set S�R� that is bounded �
above

below� has a �
l.u.b.

g.l.b.� .
It follows from Exercise 6.2 that every set in R� that is bounded above has

a l.u.b. if and only if every set that is bounded below has a g.l.b. Thus, our
statement of the completeness property can be interpreted as two equivalent
statements.

Not every number system has this property. Consider the rational numbers
Q. They possess all of the algebraic and order properties of the reals but
do not possess the completeness property. We will outline the argument
showing that the rationals are not complete. For details see Rudin [1976].
Recall that a rational number is a number that can be expressed as a quotient
of integers and recall that �2 is not rational. (The ancient Greeks knew that
�2 is not rational.) Consider the set S of rational numbers x defined by S�

�x : x rational, x�� 2�. Clearly, 2 is an upper bound. It can be shown that for
any x in S there is an x� in S such that x�� x. Thus no element of S can be an
upper bound for S, let alone a l.u.b. It can also be shown that for any rational
number y not in S that is an upper bound of S there is another rational number
y� that is not in S, that is, also an upper bound of S and satisfies y�� y. Thus
no rational number not in S can be a l.u.b. of S. Hence, there is no l.u.b. of S
in the rationals. The number �2 in the reals is the candidate for the title of
l.u.b., but �2 is not in the system of rational numbers.

Exercise 6.3. Let A and B be two bounded sets of real numbers with A�B.
Show that

sup�a :a �A�	 sup�b : b �B�,

inf�a : a �A�� inf�b : b �B�.

Exercise 6.4. Let A and B be two sets of real numbers.

(i) Show that if A and B are bounded above, then

sup�(a� b) : a �A, b �B�� sup�a : a �A�� sup�b : b �B�.

(ii) Show that if A and B are bounded below, then

inf�(a � b) : a �A, b �B�� inf�a : a �A�� inf�b : b �B�.

Exercise 6.5. Let a and b be real numbers and let I� �x : a	x	 b�. A real-
valued function f is said to have a right-hand limit � at a point x



, where

a	x


� b, if for every �� 0 there exists a �(�) such that whenever 0�x�x
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��(�) the inequality � f (x) � ���� holds. We shall write

f (x


�) � lim


�
��

f (x) ��.

(i) Formulate a definition for a left-hand limit at a point x


, where

a� x


	 b. If 
 is the left-hand limit, we shall write

f (x


�) � lim


�
��
f (x) � 
.

(ii) Show that f has a limit at a point x


, where a�x



� b, if and only if

f has right- and left-hand limits at x


and these limits are equal.

Exercise 6.6. Let I be as in Exercise 6.5. A real-valued function f defined on I
is said to be nondecreasing if for any pair of points x

�
and x

�
in I with x

�
�x

�
we have f (x

�
)� f (x

�
).

(i) Formulate the definition of nonincreasing function.

(ii) Show that if f is a nondecreasing function on I, then f has a right-hand
limit at every point x, where a	x� b, and left hand limit at every
point a� x	 b.

(iii) Show that if I is an open interval (a, b) � �x : a�x� b� and if f is
nondecreasing and bounded below on I, then lim


���
f (x) exists. If f

is bounded above, then lim

���

f (x) exists.

7. COMPACTNESS

A property that is of great importance in many contexts is that of compactness.
The definition that we shall give is one that is applicable in very general
contexts as well as in R�. We do this so that the reader who takes more
advanced courses in analyis will not have to unlearn anything. After presenting
the definition of compactness, we will state, without proof, two theorems that
give necessary and sufficient conditions for a set S in R� to be compact. We
frequently shall use the properties stated in these theorems when working with
compact sets.

Let S be a set in R�. A collection of open sets �O���	� is said to be an open
cover of S if every x � S is contained in some O� . A set S in R� is said to be
compact if for every open cover �O���	� of S there is a finite collection of sets
O

�
, . . . ,O



from the original collection �O���	� such that the finite collection

O
�
, . . . ,O



is also an open cover of S. In mathematical jargon this property is

stated as ‘‘Every open cover has a finite subcover.’’
To illustrate, consider the set S in R� defined by S� (0, 1) � �x : 0�x� 1�.

For each positive integer k, let O
�
� (0, 1� 1/k) � �x : 0� x� 1� 1/k�. Then

�O
�
��
���

is an open cover of S, but no finite collection of sets in the cover will
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cover S. Thus, (0, 1) is not compact. It is difficult to give a meaningful example
of a compact set based on the definition, since we must show that every open
cover has a finite subcover.

T 7.1. In R� a set S is compact if and only if every sequence �x
�
� of points

in S has a subsequence �x
�
�

� that converges to a point in S (Bolzano—Weierstrass
property).

T 7.2. In R� a set S is compact if and only if S is closed and bounded.

We refer the reader to Bartle and Sherbert [1999] or Rudin [1976] for
proofs of these theorems.

We emphasize that the criteria for compactness given in Theorems 7.1 and
7.2 are not necessarily valid in contexts more general than R�.

Theorem 7.2 provides an easily applied criterion for compactness. Using
Theorem 7.2, we see immediately that S� (0, 1) � �x : 0�x� 1� is not com-
pact in R�. (S is not closed.) We also see that S

�
� [0, 1]� �x : 0	x	 1� is

compact, since it is closed and bounded.
We conclude with another characterization of compactness that is valid in

more general contexts than R�. A set S is said to have the finite-intersection
property if for every collection of closed sets �F�� such that �F�� cS there
is a finite subcollection F

�
, . . . , F

�
such that ��

���
F

�
� cS. We shall illustrate

the definition by exhibiting a set that fails to have the finite-intersection
property. The set (0, 1) � �x : 0� x� 1� in R� does not have the finite-
intersection property. Take F

�
� [1�1/n,�), n� 2, 3, 4, . . . . Then ��

���
F
�
�

[1,�) � c(0, 1), yet the intersection of any finite subcollection of the F
�
’s has

nonempty intersection with (0, 1) and so is not contained in c(0, 1).

T 7.3. A set S is compact if and only if it has the finite-intersection
property.

The proof is an exercise in the use of Lemma 3.1. Let S have the finite-
intersection property. Let �O�� be an open cover of S. Then S��O��
c� (cO�), and so cS� c(c� (cO�)) �� (cO�). Each set cO� is closed, so
there exist a finite number of sets O

�
, . . . ,O

�
such that cS���

���
(cO

�
). Hence

S� c (��
���

(cO
�
)) ���

���
O

�
, and so �O�� has a finite subcover O

�
, . . . ,O

�
.

Thus we have shown that S is compact. Now let S be compact. Let �F�� be a
collection of closed sets such that �F�� cS. Then c(� (cF�)) � cS, and so
� (cF�)�S. Thus �(cF�)� is an open cover of S. Since S is compact, there exist
a finite subcollection of sets F

�
, . . . , F

�
such that ��

���
(cF

�
)�S. Therefore

��
���

F
�
� c��

���
(cF

�
)� cS, and thus S has the finite-intersection property.

Remark 7.1. Note that the finite-intersection property can be stated in the
following equivalent form. Every collection of closed sets �F�� such that
(��F�)�S�� has a finite subcollection F

�
, . . . , F

�
such that (��

���
F
�
)�S��.
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8. EQUIVALENT NORMS AND CARTESIAN PRODUCTS

A norm on a vector space D is a function �( ·) that assigns a real number �(v)
to every vector v in the space and has the properties (1)—(3) and (5) listed in
Section 2, with �·� replaced by �( ·). Once a norm has been defined, one can
define a function � by the formula �(v, w) � �(v�w). Properties (1)—(3) and
(5) of the norm imply that the function � satisfies the properties (1)—(3) of a
metric and therefore is a metric, or distance function. Once a distance has been
defined, open sets are defined in terms of the distance, as before. Convergence
is defined in terms of open sets.

To illustrate these ideas, we give an example of another norm in R�, defined
by

�(x) � �x�
�

�max��x
�
�, . . . , �x

�
��.

The corresponding distance is defined by

�(x, y) � �x� y�
�

�max��x
�
� y

�
�, . . . , �x

�
� y

�
��.

Since a norm determines the family of open sets and since the family of open
sets determines convergence, the question arises, ‘‘Given two norms, �

�
and �

�
,

do they determine the same family of open sets?’’ The answer, which is not
difficult to show, is, ‘‘If there exist positive constants m and M such that for all
x in R�,

m�
�
(x)	�

�
(x)	M�

�
(x), (1)

then a set is open under the �
�
norm if and only if it is open under the norm

�
�
.’’ Two norms �

�
and �

�
that satisfy (1) are said to be equivalent norms.

An extremely important fact is that in R� all norms are equivalent. For a
proof see Fleming [1977]. In optimization theory, and in other areas, it may
happen that the analysis of a problem or the development of a computational
algorithm is more convenient in one norm than in another. The equivalence of
the norms guarantees that the convergence of an algorithm is intrinsic, that is,
is independent of the norm.

Let A
�
, . . . ,A



be m sets with A

�
�R�

�
, i� 1, . . . ,m. By the cartesian product

of these sets, denoted by



�
���

A
�

or A
�
�A

�
�	�A



,

we mean the set A in R������ 
 
 
�
�
consisting of all possible points in R��� 
 
 
��

�

obtained by taking the first n
�
components from a point in A

�
, the next n

�
components from a point in A

�
, the next n

�
components from a point in A

�
,
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and so forth, until the last n


components, which are obtained by taking a

point in A


. For example, R� can be considered to be the cartesian product of

R� taken n times with itself :

R� �R��R��	�R�.

� �����

If A
�
is the set in R� consisting of points on the circumference of the circle with

center at the origin and radius 1 and if A
�
� [0, 1] in R�, then A

�
�A

�
is the

set in R� that is the lateral surface of a cylinder of height 1 whose base is the
closed disk in the (x

�
, x

�
) plane with center at the origin and radius equal to 1.

Let X �R���	�R�
�
. Let x be a vector in X. Then x� (x

�
, . . . , x



),

where x
�
� (x

��
�

, . . . , x
��
�

), i� 1, . . . ,m. If for vectors x and y in X and scalars

 �R� we define

(x� y) � (x
�
� y

�
, . . . , x



� y



), 
x� (
x

�
, . . . , 
x



)

and let n� n
�
� n

�
�	� n



, then X can be identified with the usual vector

space R�. The euclidean norm in X would then be given by

�x�� [�x
�
���	� �x



��]�����



�
���

�
��

���

(x
��
)��

���
. (2)

On the other hand, in keeping with the definition used in more general
contexts, the norm on X is defined by

�x�
�


�
���

�x
�
�, (3)

where �x
�
� is the euclidean norm of x

�
in R�

�
, defined by �x

�
���x

�
, x

�
�����

[ �
�

���
(x

��
)�]���. Since all norms on R� are equivalent, the norm defined by (3)

is equivalent to the euclidean norm defined by (2).
The following lemma is an immediate consequence of the definition of � ·�
 .

L 8.1. A sequence x
�
� (x

��
, . . . , x

�

) of points in X converges to a point

x


� (x


�
, . . . , x




) of X in the metric determined by � ·�
 if and only if for each

i� 1, . . . ,m the sequence �x
��
� converges to x


�
in the euclidean norm on R�

�
.

The next theorem can be proved by using Lemma 8.1 and Theorem 7.1 and
by selecting appropriate subsequences.

T 8.1. L et A
�
, . . . ,A



be m sets with A

�
�R�

�
and let each A

�
be compact,

i� 1, . . . ,m. T hen !

���

A
�
is compact in R�, where n� n

�
� n

�
� 	� n



.
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Exercise 8.1. (a) In R� sketch the set B
�

(0, 1) � �x : �x�
�
� 1�.

(b) Show that � �
�

is a norm [i.e., that it satisfies (1)—(3) and (5) of Sec-
tion 2].

(c) Can you draw a sketch in R� that would indicate that a set is open under
the metric d(x, y) � �x� y� if and only if it is open under the metric �(x, y) �

�x� y�
�
?

(d) Is it true that �x� y�
�

� �x�
�

� �y�
�
if and only if y��x, �� 0?

Exercise 8.2. (a) Show that the function � ·�
 defined by (3) is a norm on X ;
that is � ·�
 satisfies (1)—(3) and (5) of Section 2.

(b) If X�R� �R� �R�, sketch the set B
(0, 1) � �x : �x�
	 1�.

Exercise 8.3. Without using the fact that all norms in R� are equivalent, show
that � ·� and � ·�
 defined by (2) and (3), respectively, are equivalent norms
on X.

Exercise 8.4. Show that the following functions are continuous:

(a) f :R� �R� 	R�, where f (x, y) � (x� y) (addition is continuous);

(b) f :R� �R� 	R�, where f (
, x) � 
x (scalar multiplication is continu-
ous); and

(c) f :R� �R� 	R�, where f (x, y) ��x, y� (scalar product is continuous).

Exercise 8.5. Prove Theorem 8.1.

Exercise 8.6. Show that if Q is a positive-definite real symmetric matrix, then
�(x) � �x,Qx���� defines a norm on R�. Hint: Look at Section 1.

9. FUNDAMENTAL EXISTENCE THEOREM

The basic problem in optimization theory is as follows: Given a set S (not
necessarily in R�) and a real-valued function f defined on S, does there exist
an element s

*
in S such that f (s

*
)	 f (s) for all s in S, and if so find it. The

problem as stated is a minimization problem. The point s
*
is said to be a

minimizer for f, or to minimize f. We also say that ‘‘f attains a minimum on S
at s

*
’’ The problem of ‘‘maximizing f over S,’’ or finding an s* in S such that

f (s*) � f (s) for all s, can be reduced to the problem of minimizing the function
� f over S. To see this, observe that if � f (s*)	� f (s) for all s in S, then
f (s*) � f (s) for all s in S, and conversely.

The first question that we address is, ‘‘Does a minimizer exist?’’ To point
out some of the difficulties here, we look at some very simple examples in R�.
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Let S� �x : x� 1� and let f (x) � 1/x. It is clear that inf� f (x) : x� 1�� 0, yet
there is no x

*
�S such that f (x

*
) � 0. Thus a minimizer does not exist, or f

does not attain its minimum on S. As a second example, let S� [1, 2) and let
f (x) � 1/x. Now, inf( f (x) : 1	x� 2���

�
, yet for no x

*
in S do we have

f (x
*
) � �

�
, Of course, if we modify the last example by taking

S� [1, 2]� �x : 1	x	 2�, then x
*
� 2 is the minimizer. For future reference,

note that if S� (1, 2]� �x : 1� x	 2�, then x
*
� 2 is still the minimizer.

We now state and prove the fundamental existence theorem for minimiz-
ation of functions with domains in R�.

T 9.1. L et S be a compact set in R� and let f be a real-valued continuous
function defined in S. T he f attains a maximum and a minimum on S.

Before taking up the proof, we point out that the theorem gives a sufficient
condition for the existence of a maximizer and minimizer. It is not a necessary
condition, as the example in R�, S� (1, 2], f (x) � 1/x, shows. In more
advanced courses the reader may encounter the notions of upper semicontinu-
ity and lower semicontinuity and learn that continuity can be replaced by
upper semicontinuity to ensure the existence of maximizers and that continuity
can be replaced by lower semicontinuity to ensure the existence of minimizers.
Finally, the reader should study the proof of this theorem very carefully and
be sure to understand it. The proof of the theorem in R� is the model for the
proofs of the existence of minimizers in more general contexts than R�.

Proof. If f is continuous on S, then so is � f. If � f attains a minimum on
S, then f attains a maximum on S. Thus we need only prove that f attains a
minimum.

We first prove that the set of values that f assumes on S is bounded below,
that is, that the set R� �y : y� f (x), x �S� is bounded below. To show this,
we suppose that R were not bounded below. Then for each positive integer k
there would exist a point x

�
in S such that f (x

�
)��k. Since S is compact, the

sequence �x
�
� of points in S has a subsequence �x

�
�

� that converges to a point
x

*
in S. The continuity of f implies that lim

���
f (x

�
�

) � f (x
*
). Thus, by the

definition of limit (taking �� 1) we have that there exists a positive integer K
such that, for j�K, f (x

�
�

)� f (x
*
) � 1. This contradicts the defining property

of �x
�
�, namely that, for each k, f (x

�
)��k.

Since the set R is bounded below, it has an infimum, say L . Therefore, by
definition of infimum, for each positive integer k there exists a point x

�
in S

such that

L 	 f (x
�
)� L �

1

k
. (1)

Since S is compact, the sequence �x
�
� has a subsequence �x

�
�

� that converges
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to a point x
*
in S. The continuity of f implies that lim

���
f (x

�
�

) � f (x
*
).

Therefore, if we replace k by k
�
in (1) and let j	�, we get that L 	 f (x

*
)	 L .

Hence

f (x
*
) � L 	 f (x) for all x � S.

This proves the theorem.

If the reader understands the proof of Theorem 9.1 and understands the use
of compactness, he or she should have no trouble in proving the following
theorem. Actually, Theorem 9.1 is a corollary of Theorem 9.2.

T 9.2. L et S be a compact subset of R� and let f� ( f
�
, . . . , f



) be a

continuous function defined on S with range in R
. T hen the set

f(S) �R� �y : y� f (x), x �S�

is compact.

In mathematical jargon this result is stated as follows: The continuous image
of a compact set is compact.

Exercise 9.1. Prove Theorem 9.2.

Exercise 9.2. Let A be a real n� n symmetric matrix with entries a
��
and let

Q(x) be the quadratic form

Q(x) �x�Ax��x,Ax��
�
�

�����

a
��
x
�
x
�
.

Show that there exists a constant M� 0 such that, for all x, Q(x)	M�x��.
Show that if Q(x)� 0 for all x� 0, then there exists a constant m� 0 such
that, for all x, Q(x)�m�x��. Hint: First show that the conclusion is true for
x �S(0, 1) � �x : �x�� 1�.

Exercise 9.3. Let f be a real-valued function defined on R� such that

lim
�x�	�

f (x) ���.

By this is meant that for eachM� 0 there exists an R� 0 such that if �x��R,
then f (x)�M. Such a function f is said to be coercive. Show that if f is
continuous on R� and is coercive, then f attains a minimum on R�.
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10. LINEAR TRANSFORMATIONS

A linear transformation from R� to R
 is a function T with domain R� and
range contained in R
 such that for every x, y in R� and every pair of scalars
�, "

T (�x� "y) � �T (x) �"T (y).

Example 10.1. T :R� 	R�: Rotate each vector in R� through an angle �
 .

Example 10.2. T :R� 	R� defined by

T (x
�
, x

�
, x

�
) � (x

�
, x

�
, 0).

This is the projection of R� onto the x
�
x
�
plane.

Example 10.3. Let A be an m� n matrix. Define

T x�Ax. (1)

In the event that the range space is R�, that is, we have a linear transfor-
mation from R� to R�, we call the transformation a linear functional. The
following is an example of a linear functional L . Let a be a fixed vector in R�.
Then

L (x) ��a, x� (2)

defines a linear functional.
We now show that (1) and (2) are essentially the only examples of a

linear transformation and linear functional, respectively. Recall that the
standard basis in R� is the basis consisting of the vectors e

�
, . . . , e

�
, where

e
�
� (0, 0, . . . , 0, 1, 0, . . . , 0) and 1 is the ith entry.

T 10.1. L et T be a linear transformation from R� to R
. T hen relative to
the standard bases in R� and R
 there exists an m� n matrix A such that
T x�Ax.

Let x �R� ; then x� �
���

x
�
e
�
. Hence

T x� T �
�
�
���

x
�
e
���

�
�
���

x
�
(T e

�
). (3)

For each j� 1, . . . , n, T e
�
is a vector in R
, so if e*

�
, . . . , e*



is the standard basis

in R
,

T e
�
�



�
���

a
��
e*
�
. (4)
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Substituting (4) into (3) and changing the order of summation give

T x�
�
�
���

x
� �



�
���

a
��
e*
� ��



�
���
�

�
�
���

a
��
x
�� e*� .

Therefore if A is the m� n matrix whose jth column is (a
��
. . . a


�
)�, then T x

expressed as an m-vector (y
�
, . . . , y



)� is given by

�
y
�
�
y


�� T x�Ax.

From (4) we get that the jth column of A gives the coordinates of T e
�

relative to e*
�
, . . . , e*



.

In the case of a linear functional L , the matrix A reduces to a row vector a
in R�, so that

L (x) ��a, x�.

Exercise 10.1. Show that a linear functional L is a continuous mapping from
R� to R .

11. DIFFERENTIATION IN R�

Let D be an open interval in R� and let f be real-valued function defined on
D. The function f is said to have a derivative or to be differentiable at a point
x


in D if

lim
��


f (x


� h) � f (x



)

h
(1)

exists. The limit is called the derivative of f at x


and is denoted by f �(x



).

The question now arises as to how one generalizes this concept to real-
valued functions defined on open sets D in R� and to functions defined on open
sets in R� with range in R
. In elementary calculus the notion of partial
derivative for real-valued functions defined on open sets D in R� is introduced.
For each i� 1, . . . , n the partial derivative with respect to x

�
at a point x



is

defined by

#f
#x

�

(x


) � lim

��


f (x

�
, . . . , x


����
, x


��
� h, x


����
, . . . , x


��
) � f (x


�
, . . . , x


��
)

h
(2)

provided the limit on the right exists. It turns out that the notion of partial
derivative is not the correct generalization of the notion of derivative.
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Figure 1.1.

To motivate the correct generalization of the notion of derivative to
functions with domain and range in spaces of dimension greater than 1, we
reexamine the notion of derivative for functions f defined on an open interval
D in R� with range in R�.

We rewrite (1) as

f �(x


) �

f (x


� h) � f (x



)

h
� �(h),

where �(h) 	 0 as h	 0. This in turn can be rewritten as

f (x


� h) � f (x



) � f �(x



)h � $(h), (3)

where $(h)/h 	 0 as h	 0. The term f �(x


)h is a linear approximation to f near

x


and it is a ‘‘good approximation for small h’’ in the sense that $(h)/h 	 0 as

h	 0. See Figure 1.1.
If we consider h to be an arbitrary real number, then f �(x



)h defines a linear

functional L on R� by the formula L (h) � f �(x


)h. Thus if f is differentiable at

x


, there exists a linear functional (or linear transformation) on R� such that

f (x


� h) � f (x



) � L (h) � $(h), (4)

where $(h)/h 	 0 as h	 0. Conversely, let there exist a linear functional L on
R� such that (4) holds. Then L (h) � ah for some real number a, and we may
write

f (x


� h) � f (x



) � ah� $(h).
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If we divide by h� 0 and then let h	 0, we get that f �(x


) exists and equals

a. Thus we could have used (4) to define the notion of derivative and could
have defined the derivative to be the linear functional L , which in this case is
determined by the number a. The reader might feel that this is a very
convoluted way of defining the notion of derivative. It has the merit, however,
of being the definition that generalizes correctly to functions with domain in
R� and range in R
 for any n� 1 and any m� 1.

Let D be an open set in R�, n� 1, and let f� ( f
�
, . . . , f



) be a function

defined on D with range in R
, m� 1. The function f is said to be differentiable
at a point x



in D, or to be Fréchét differentiable at x



, if there exists a linear

transformation T (x


) from R� to R
 such that for all h in R� with h sufficiently

small

f (x


� h) � f (x



) �T (x



)h��(h), (5)

where ��(h)�/�h�	 0 as �h�	 0.
We now represent T (x



) as a matrix relative to the standard bases e

�
, . . . , e

�
in R� and e*

�
, . . . , e*



in R
. Let � be a real number and let h� �e

�
for a fixed j

in the set 1, . . . , n. Then �e
�
� (0, . . . , 0, �, 0, . . . , 0), where the � occurs in the jth

component. From (5) we have

f(x


� �e

�
) � f(x



) �T (x



)(�e

�
) ��(�e

�
).

Hence for �� 0

f(x


� �e

�
) � f(x



)

�
�T (x



)e

�
�

�(�e
�
)

�
.

Since ��e
�
�� ��� and for i� 1, . . . ,m,

f
�
(x



��e

�
)� f

�
(x



)� f

�
(x


�
, . . . , x


����
, x


�
��, x


����
, . . . , x


��
)

� f (x

��

, . . . , x

��
),

it follows on letting �	 0 that for i� 1, . . . ,m the partial derivatives #f
�
(x



)/#x

�
exist and

T (x


)e

�
� �

#f
�

#x
�

(x


)

�
#f



#x

�

(x


)� .
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Since the coordinates of T (x


)e

�
relative to the standard basis in R
 are given

by the jth column of the matrix representing T (x


), the matrix representing

T (x


) is the matrix

�
#f

�
#x

�

(x


)� .

If we define %f
�
to be the row vector

%f
�
��

#f
�

#x
�

, . . . ,
#f

�
#x

�
� , i� 1, . . . , n,

and %f to be the matrix

�
%f

�
�
%f



� ,

then we have shown that

T (x


) �%f(x



).

The matrix %f(x


) is called the Jacobian matrix of f at x



. It is sometimes also

written as J(f ; x


). Note that we have shown that if f is differentiable at x



, then

each component function f
�
has all first partial derivatives existing at x



.

T 11.1. L et D be an open set in R� and let f be a function defined on D
with range in R
. If f is differentiable at a point x



in D, then f is continuous at

x


.

This follows immediately from (5) on letting h	 0.
We will now show that the existence of partial derivatives at a point does

not imply differentiability. We shall consider real-valued functions f defined on
R�. For typographical convenience we shall represent points in the plane as
(x, y) instead of (x

�
, x

�
).

Example 11.1. Let

f (x, y) � �
xy

x�� y�
, (x, y) � (0, 0),

0, (x, y) � (0, 0).

Since f (x, 0) � 0 for all x, #f /#x exists at (0, 0) and equals 0. Similarly
#f /#y�

�
�
�
� 0. Along the line y� kx, the function f becomes

f (x, kx) �
kx�

x�� k�x�
�

k

1� k�
, x� 0,
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and so lim

�


f (x, kx) � k/(1 � k�). Thus lim
�
�����
�
�

f (x, y) does not exist.
Therefore f is not continuous at the origin and so by Theorem 11.1 cannot be
differentiable at the origin.

One might now ask, what if the function is continuous at a point and has
partial derivatives at the point? Must the function be differentiable at the
point? The answer is no, as the next example shows.

Example 11.2. Let

f (x, y) � �
xy

�x�� y�
(x, y) � (0, 0),

0, (x, y) � 0.

As in Example 11.1, #f /#x and #f /#y exist at the origin and are both equal
to zero. Note that

0	 (�x�� �y�)� � �x��� 2�x� �y�� �y��

implies that x� � y�� 2�x� �y�. Hence for (x, y) � 0

� f (x, y)��
�xy�

�x�� y�
	

1

2

(x� � y�)

�x�� y�
�

1

2
�x�� y�.

Therefore lim
�
�����
�
�

f (x, y) � 0, and so f is continuous at (0, 0).
If f were differentiable at (0, 0), then for any h� (h

�
, h

�
)

f (0� h) � f (0) � (%f(0), h�� $(h),

where $(h)/�h�	 0 as h	 0. Since %f (0) � ((#f /#x)(0), (#f /#y)(0)) � (0, 0) and
since f (0) � 0, we would have

f (h) � $(h), h� 0.

From the definition of f we get, writing (h
�
, h

�
) in place of (x, y),

$(h) �
h
�
h
�

�(h
�
)� � (h

�
)�
.

We require that $(h)/�h�	 0 as h	 0. But this is not true since

$(h)
�h�

�
h
�
h
�

(h
�
)� � (h

�
)�
,

and by Example 11.1, the right-hand side does not have a limit as h	 0.
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A real-valued function f defined on an open set D in R� is said to be of class
C��� on D if all of the partial derivatives up to and including those of order k
exist and are continuous on D. A function f defined on D with range in R
,
m� 1, is said to be of class C��� on D if each of its component functions
f
�
, i� 1, . . . ,m, is of class C��� on D.
We saw that if � is a real-valued function defined on an open interval D�

�t : ��t�"� in R�, then ��(t


)h is a ‘‘good’’ approximation to �(t



�h)��(t



)

for small h at any point t


in D at which � is differentiable. If � is of class C���

in D, then a better approximation can be obtained using Taylor’s theorem from
elementary calculus, one form of which states that for t



in D and h such that

t


� h is in D

�(t


� h) ��(t



) �

���
�
���

����(t


)

i !
h� �

����(t� )h�
k !

, (6)

where ���� denotes the ith derivative of � and t� is a point lying between t


and

t


� h. If k� 1, then the summation term in (6) is absent and we have a

restatement of the mean-value theorem. Since ���� is continuous,

����(t� ) �����(t


) � �(h),

where �(h) 	 0 as h	 0. Substituting this relation into (6) gives

�(t


� h) ��(t



) �

�
�
���

����(t


)h�

i !
� $(h), (7)

where $(h) � �(h)h�/k ! . Thus $(h)/h� 	 0 as h	 0. For small h, the polynomial
in (7) is thus a ‘‘good’’ approximation to �(t



� h) ��(t



), in the sense that

the error committed in using the approximation tends to zero faster than h�.
We now generalize (7) to the case in which f is a real-valued function of

class C��� or C��� on an open set D in R�. We restrict our attention to functions
of class C��� or C��� because for functions of class C��� with k� 2 the statement
of the result is very cumbersome, and in this text we shall only need k� 1, 2.

T 11.2. L et D be an open set in R�, let x


be a point in D, and let f be a

real-valued function defined on D. L et h be a vector such that x


� h is in D.

(i) If f is of class C��� on D, then

f (x


� h) � f (x



) ��%f (x



), h�� $

�
(h), (8)

where $
�
(h)/�h� 	 0 as h	 0.

(ii) If f is of class C��� on D, then

f (x


� h) � f (x



) ��%f (x



), h�� �

�
�h,H(x



)h�� $

�
(h), (9)
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where $
�
(h)/�h��	 0 as h	 0 and

H(x


) ��

#�f
#x

�
#x

�

(x


)� . (10)

Proof. Let �(t) � f (x


� th). Then

�(0) � f (x


) and �(1) � f (x



� h). (11)

It follows from the chain rule that � is a function of class C��� on an open
interval containing the closed interval [0, 1]� �t : 0	 t	 1� in its interior
whenever f is of class C���. If f is of class C���, then using the chain rule, we get

��(t) �
�
�
���

#f
#x

�

(x


� th)h

�
��%f (x



� th), h�. (12)

If f is of class C���, we get

�&(t) �
�
�
���

�
�
���

#�f
#x

�
#x

�

(x


� th)h

�
h
�
��h,H(x



� th)h�, (13)

where H is the matrix defined in (10).
Let f be of class C���. If we take k� 1, t



� 0, and h� 1 in (6), recall that

the summation term in (6) is absent when k� 1, and use (11) and (12), we get

f (x


� h) � f (x



) � �(1) ��(0) ��%f (x



� t� h), h�, (14)

where 0� t� � 1. Since f is of class C���, the function %f is continuous and thus

%f (x


� t� h) �%f (x



) � �

�
(h),

where �
�
(h) 	 0 as h	 0. Substituting this relation into (14) and using the

Cauchy—Schwarz inequality

���
�
(h), h��	��

�
(h)� �h�

give (8), with $
�
(h) ���

�
(h), h�.

If f is of class C���, we proceed in similar fashion. We take k� 2, t


� 0, and

h� 1 in (6) and use (11), (12), and (13) to get

f (x


� h) � f (x



) � �%f (x



), h���

�
�h,H(x



� t� h)h�, (15)
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where 0� t� � 1. Since f is of class C���, each entry of H is continuous. Hence

H(x


� t� h) �H(x



) �M(h),

where M(h) is a matrix with entries m
��
(h) such that m

��
(h) 	 0 as h	 0.

Substituting this relation into (15) and using the relations

��h,M(h)h�� 	�h� �M(h)h�	m(h)�h��,

where m(h) 	 0 as h	 0, give (9) with $
�
(h) ��h, M(h)h�.

C 1 (T’ T). L et D be an open set in R� and let f be a
real-valued function defined in D. If f is of class C��� in D, then for each x



in D

and h such that x


� h is in D

f (x


� h) � f (x



) � �%f (x



� t� h), h�, (16)

where 0� t� � 1. If f is of class C���, then

f (x


� h) � f (x



) � �%f (x



), h���

�
�h,H(x



� t� h)h�, (17)

where 0� t� � 1.

Proof. Equation (16) follows from (14) and equation (17) from (15).

We now give a condition under which the existence of partial derivatives
does imply differentiability.

T 11.3. L et D be an open set in R�, let f be a function defined on D with
range in R
, and let x



be a point in D. If f is of class C��� on some open ball

B(x


, r) centered at x



, then f is differentiable at x



.

Proof. Since each component function f
�
, i� 1, . . . ,m, is of class C���, from

(8) of Theorem 11.2 we have that

f
�
(x



� h) � f

�
(x



) ��% f

�
(x



), h�� $

�
(h),

where $
�
(h)/�h� 	 0 as h	 0.

Let �(h) � ($
�
(h), . . . , $



(h)). Then

f(x


� h) � f(x



) �%f(x



)h��(h),

where �(h)/�h�	 0 as �h�	 0. Therefore f is differentiable at x


.
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II
CONVEX SETS IN R�

1. LINES AND HYPERPLANES IN R�

Convex sets and convex functions play an important role in many optimization
problems. The study of convex sets in R�, in turn, involves the notions of line
segments, lines, and hyperplanes in R�. We therefore begin with a discussion of
these objects.

In R� and R� the vector equation of a line and in R� the vector equation of
a plane are obtained from geometric considerations. In R� we shall reverse this
process. We shall define a line to be the set of points satisfying an equation
which in vector notation is the same as that of a line in R� or R�. We shall
define a hyperplane in R� in similar fashion.

In R� and R� a vector equation of the line through two points x
�
and x

�
is

given by (see Figure 2.1)

x�x
�
� t(x

�
�x

�
), ��� t��. (1)

The closed oriented line segment [x
�
, x

�
] with orientation from initial point

x
�
to terminal point x

�
corresponds to values of t in [0, 1]. The positive ray

from x
�

corresponds to values of t� 0, and the negative ray from x
�

corresponds to values of t� 0.
In R� we define the line through two points x

�
and x

�
to be the set of points

x in R� that satisfy (1). Thus:

Definition 1.1. The line in R� through two points x
�
and x

�
is defined to be

the set of points x such that x�x
�
� t(x

�
�x

�
), where t is any real number,

or in set notation

�x : x�x
�
� t(x

�
�x

�
), ��� t���. (2)

The set in (2) can also be written as

�x : x� (1� t)x
�
� tx

�
, ��� t���, (3)

30

Convexity and Optimization in �n. Leonard D. Berkovitz
Copyright 2002 John Wiley & Sons, Inc.

ISBN: 0-471-35281-0



Figure 2.1.

and, on setting �� (1� t), �� t,

�x :x� �x
�
� �x

�
, �� �� 1�. (4)

Definition 1.2. The closed line segment joining the points x
�
and x

�
is denoted

by [x
�
, x

�
] and is defined by

[x
�
, x

�
]� �x : x� (1� t)x

�
� tx

�
, 0� t� 1�,

or equivalently,

[x
�
, x

�
]� �x : x� �x

�
��x

�
, �� 0, �� 0, ���� 1�.

Definition 1.3. The open line segment joining the points x
�
and x

�
is denoted

by (x
�
, x

�
) and is defined by

(x
�
, x

�
) � �x :x� (1� t)x

�
� tx

�
, 0� t� 1�,

or equivalently,

(x
�
, x

�
) � �x : x� �x

�
��x

�
, �� 0, �� 0, �� �� 1�.

The half-open segment which includes x
�
but not x

�
will be denoted by

[x
�
, x

�
) and is obtained by restricting t to the half-open interval 0� t� 1, or

equivalently by restricting � and � to satisfy �� 0, �� 0, �� �� 1. Similarly,
the half-open line segment which includes x

�
but not x

�
will be denoted by

(x
�
, x

�
] and is obtained by restricting t to the half-open interval 0� t� 1, or

equivalently by restricting � and � to satisfy �� 0, �� 0, ���� 1.
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Figure 2.2.

Let y be a point in the open line segment (x
�
, x

�
). Then y� �x

�
��x

�
,

�� 0, �� 0, �� �� 1, and y� x
�
� �x

�
� (1� �)x

�
��(x

�
� x

�
). Similarly

y�x
�
� �(x

�
� x

�
). Hence

	y� x
�
	

	y� x
�
	
�

�
�
. (5)

This observation will be useful in the sequel.
In R� a plane through the point x

�
with normal a consists of all points x

such that x�x
�
is orthogonal to a. Thus, the plane is the set defined by (see

Figure 2.2)

�x :
a, x� x
�
�� 0�.

If a� (a
�
, a

�
, a

�
) and x

�
� (x

��
, x

��
, x

��
), we can describe the plane as the set

of x� (x
�
, x

�
, x

�
) satisfying

a
�
(x

�
� x

��
) � a

�
(x

�
� x

��
) � a

�
(x

�
� x

��
) � 0

or

a
�
x
�
� a

�
x
�
� a

�
x
�
� �,
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where �� a
�
x
��

� a
�
x
��

� a
�
x
��
. These are the familiar forms of the equation

of a plane in R�. In vector notation these equations can be written as


a, x� x
�
�� 0 or 
a, x�� �, (6)

where ��
a, x
�
�. Conversely, every equation of the form (6) is the equation

of a plane with normal vector a. To see this, let x
�
be a point that satisfies (6).

Then 
a, x
�
�� �, so if x is any other point satisfying (6), 
a, x��
a, x

�
�.

Hence 
a, x� x
�
�� 0 for all x satisfying (6). But 
a, x� x

�
�� 0 is an

equation of the plane through x
�
with normal a.

In R� we take (6) to define a hyperplane.

Definition 1.4. A hyperplane H�a in R� is defined to be the set of points that
satisfy the equation 
a, x�� �. Thus

H�a� �x :
a, x�� ��.

The vector a is said to be a normal to the hyperplane.

As was the case in R�, H�a� �x :
a, x�� �� can be written as

�x : 
a, x�x
�
��0�

for any x
�
satisfying 
a, x

�
�� �, or equivalently for any x

�
in H�a. Thus we may

say that an equation of the hyperplane in R� through the point x
�
with normal

a is


a, x�x
�
�� 0. (7)

Note that in R� a hyperplane is a line.
Recall that an (n � 1)-dimensional subspace of R� can be represented as the

set of vectors x� (x
�
, . . . , x

�
) whose coordinates satisfy a

�
x
�
��� a

�
x
�
� 0

for some nonzero vector a� (a
�
, . . . , a

�
). Thus, if �� 0 and a� 0, then the

hyperplane H�a passes through the origin and is an (n � 1)-dimensional
subspace of R�.

In Section 10 of Chapter I we saw that for a given linear functional L on
R� there exists a unique vector a such that L(x) �
a, x� for all x in R�. This
representation of linear functionals and the definition of the hyperplane H�a
show that hyperplanes are level surfaces of linear functionals. This interpreta-
tion will prove to be very useful.

Let A be any set in R� and let x
�
be any vector in R�. The set A� x

�
is

defined to be

A� x
�
� �y : y� a�x

�
, a �A�
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and is called the translate of A by x
�
.

L 1.1 For any a in R� and scalar �, the hyperplane H�a is the translate of
H�a , the hyperplane through the origin with normal a, by any vector x

�
in H�a.

Proof. Fix an x
�
in H�a. Let x be an arbitrary point in H�a and let u�x�x

�
.

Then

��
a, x�� 
a, u� x
�
�� 
a, u�� �.

Thus 
a, u�� 0 and so u �H�a . Since x�x
�
� u, we have shown that

H�a
H�a � x
�
, x

�
�H�a. (8)

Now let u be an arbitrary vector in H�a . Then u� x
�
�H�a �x

�
and


a, u�x
�
��
a, x

�
�� �.

Thus we get the inclusion opposite to the one in (8), and the lemma is proved.

Two hyperplanes H�
�a
�
and H�

�a
�
are said to be parallel if their normals are

scalar multiples of each other. Thus two hyperplanes are parallel if and only if
they are translates of the same hyperplane through the origin. The parallel
hyperplane through the origin is called the parallel subspace.

Exercise 1.1. (a) Draw a sketch in R� and R� that illustrates Lemma 1.1.
(b) In R� sketch the hyperplane x� 2y� 1 and the parallel subspace.

Exercise 1.2. (a) In R� find an equation of the hyperplane through the points
(1, 1, 1, 1), (2, 0, 1, 0), (0, 2, 0, 1), and (1, 1, �1, 0).

(b) Let x
�
, . . . , x

�
be n points in R�. Find a sufficient condition for the

existence of a unique hyperplane containing these points.

Exercise 1.3. Show that a hyperplane is a closed set.

Exercise 1.4. Given a hyperplane H�a show that a is indeed normal to H�a in the
sense that if x

�
and x

�
are any two points in H�a, then a is orthogonal to

x
�
�x

�
.

Exercise 1.5 (Linear Algebra Review). Let V be an (n � 1)-dimensional sub-
space of R�. Let y be a vector in R� not in V. Show that every x in R� has a
unique representation x� v� �y where v �V and � �R.
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2. PROPERTIES OF CONVEX SETS

A subset C of R� is said to be convex if given any two points x
�
, x

�
in C the

line segment [x
�
, x

�
] joining these points is contained in C. We now formulate

this definition analytically.

Definition 2.1. A subset C of R� is convex if for every pair of points x
�
, x

�
in

C the line segment

[x
�
, x

�
]� �x : x� �x

�
� �x

�
, �� 0, �� 0, ���� 1�

belongs to C.

At this point the reader may find it helpful to do the following exercise.

Exercise 2.1. Sketch the following sets in R� and determine from your figure
which sets are convex and which are not:

(a) �(x, y) :x�� y�� 1�,
(b) �(x, y) : 0�x� � y�� 1�,
(c) �(x, y) : y�x��,
(d) �(x, y) : �x�� �y�� 1�, and
(e) �(x, y) : y� 1/(1�x�)�.

In R� a plane determines two sets, one on each side of the plane. We extend
this notion to R�. The positive half space determined by H�a and denoted by H��a
is defined to be

H��a � �x : 
a, x����. (1)

The negative half space H�	a is defined to be

H�	a � �x : 
a, x����. (2)

The closed positive half space, denoted by H� ��a , is defined to be the closure of
H��a . The closed negative half space H� �	a is defined to be the closure of H�	a .

Note that a half space is not a subspace of R�, since there exist points x in
a half space such that not all scalar multiples of x are in the half space.

Exercise 2.2. Show that

H� ��a � �x : 
a, x����, H� �	a � �x :
a, x����.
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Figure 2.3.

If x
�
�H�a, then 
a, x

�
�� �. Hence, for x �H��a , we have 
a, x����


a, x
�
�. Therefore


a, x�x
�
�� 0 for all x �H��a .

Thus, vectors x in H��a are such that the angle between a, the normal to H�a,
and x�x

�
lies between 0 and �/2. In R� and R� this says that a and x�x

�
point in the same direction or have the same orientation. See Figure 2.3.

Half spaces are convex sets. Although this and other properties of convex
sets are ‘‘geometrically obvious’’ in R� and R�, they require proof in R�. To
show that H��a is convex, we must show that if x

�
and x

�
are in H��a , then so

is [x
�
, x

�
]. Let x � [x

�
, x

�
]. Then there exist scalars �� 0, �� 0 with �� �� 1

such that x� �x
�
��x

�
. Hence


a, x��
a, �x
�
��x

�
�� �
a, x

�
�� �
a, x

�
�������� �,

and so x �H��a . Similar arguments show that H�	a , H� ��a , H� �	a and the
hyperplane H�a are convex sets.

In the series of lemmas that follow we list some elementary properties of
convex sets. We shall provide proofs to show the reader how one ‘‘proves the
obvious.’’ When speaking of a convex set, we shall always assume that the
convex set is not empty.

L 2.1. L et �C�� be a collection of convex sets such that C���C� is not
empty. T hen C is convex.

Proof. Let x
�
and x

�
belong to C. Then for each � the points x

�
and x

�
belong to C� . Since for each � the set C� is convex, for each � the line segment
[x

�
, x

�
] belongs to C� . Hence [x

�
, x

�
]
C, so C is convex.
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Let A be an m� n matrix with ith row a
�
� (a

��
, . . . , a

��
) and let b�

(b
�
, . . . , b

�
) be a vector in R�. Let S denote the solution set of Ax� b. Then S

is the intersection of half spaces �x : 
a
�
, x�� b

�
�, so if S is nonempty, then S

is convex.
Note that if A and B are convex sets, then A�B need not be convex.
If A and B are two sets in R� and if � and � are scalars, we define

�A� �B� �x :x� �a� �b, a �A, b �B�.

L 2.2. If A and B are convex sets in R� and � and � are scalars, then
�A� �B is convex.

Proof. Let x
�
and x

�
belong to �A� �B. We must show that [x

�
, x

�
]

belongs to �A� �B. We have x
�
� �a

�
��b

�
for some a

�
�A and b

�
�B and

x
�
� �a

�
��b

�
for some a

�
�A and b

�
�B. If x � [x

�
, x

�
], then there exist

scalars �� 0, �� 0 with ���� 1 such that x� �x
�
��x

�
. Hence

x� �x
�
� �x

�
� �[�a

�
��b

�
]��[�a

�
��b

�
]

� �(�a
�
��a

�
) � �(�b

�
��b

�
).

Since A and B are convex, the first term in parentheses on the right is an
element a

�
in A and the second term in parentheses on the right is an element

b
�
in B. Hence for arbitrary x � [x

�
, x

�
],

x� �a
�
��b

�
,

so [x
�
, x

�
]
�A� �B as required.

L 2.3. L et A
�

R��, A�


R��, . . . , A�

R�

�
and let A

�
, . . . ,A

�
be convex.

T hen A
�
���A

�
is a convex set in R��� 
 
 
��

�
.

We leave the proof as an exercise for the reader.

L 2.4. If A is convex, then so is A� , the closure of A.

Proof. Let x and y be points of A� . Let z � [x, y], so z� �x��y for some
�� 0, �� 0, �� �� 1. By Remark I.5.2, there exist sequences �x

�
� and �y

�
�

of points in A such that lim x
�
�x and lim y

�
� y. Since A is convex,

z
�
� �x

�
��y

�
�A for each k. Letting k��, we get that lim z

�
� z. From

Remark I.5.1 we have that z �A� .

The next lemma and its corollaries are fundamental results.

L 2.5. L et C be a convex set with nonempty interior. L et x
�
and x

�
be two

points with x
�
� int(C) and x

�
�C� . T hen the line segment [x

�
, x

�
) is contained in

the interior of C.
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Figure 2.4.

We first assume that x
�
�C. The proof of the lemma in this case is based on

Figure 2.4, which illustrates how one uses geometry to motivate analytical
proofs. In the figure we have normalized the dimensions so that 	x

�
�x

�
	� 1.

Let x be an arbitrary point in (x
�
, x

�
). Then x� �x

�
��x

�
with �� 0, �� 0,

and �� �� 1. We must show that x � int(C). Since the point x
�
is in int(C),

there exists a circle of radius r� 0 centered at x
�
that is contained entirely

within C. From x
�
draw tangents to the circle. Since 	x

�
�x	� �	x

�
�x

�
	,

by similar triangles we would expect the circle with center at x and radius �r
to lie in C. This would show that x � int(C).

We now verify analytically that the suggested argument is indeed valid. To
prove the lemma, we must show that any point x � [x

�
, x

�
) is in int(C). By

hypothesis, x
�
� int(C), so we need only consider x � (x

�
, x

�
).

Since x
�
� int(C), there exists an r� 0 such that B(x

�
, r) �C. If x � (x

�
, x

�
),

then x� �x
�
��x

�
for some �� 0, �� 0, �� �� 1. We shall show that

B(x, �r) �C, and so x � int(C). Let y �B(x, �r) and let

z�x
�
�
y�x

�
.

Then,

	z� x
�
	�

	y�x	
�

�
�r
�

� r.

Hence z �B(x
�
, r) and therefore in C. Now,

y� �(z� x
�
) �x� �(z�x

�
) � �x

�
� �x

�
� �z��x

�
.

Since C is convex, y �C.
We now suppose that x

�
�C� and x

�
�C. Figure 2.5 will illustrate the idea of

the proof. In the figure we again take 	x
�
�x

�
	� 1.
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Figure 2.5.

Since x
�
� int(C), there exists an r� 0 such that B(x

�
, r) �C. To prove the

lemma, we must show that if x � (x
�
, x

�
), then x � int(C). If x � (x

�
, x

�
), there

exist �� 0, �� 0, ���� 1 such that x� �x
�
� �x

�
. Also by relation (5) in

Section 1, 	x�x
�
	/	x� x

�
	��/�. Since x

�
�C� , there exists a z

�
in C such

that 	z
�
�x

�
	� r(�/�). Define

z
�
�x

�
�

�
�
(z

�
�x

�
).

Hence 	z
�
�x

�
	� r, and so z

�
� int(C). Also,

x� �x
�
� �x

�
� � �z��

�
�
(z

�
� x

�
)�� �x

�

� �z
�
� �z

�
.

Since z
�
� int(C) and z

�
� (C), by the case already proved, x � int(C).

C 1. If C is convex, then int(C) is either empty or convex.

C 2. L et C be convex and let int(C) ��. T hen (i) int(C) �C� and (ii)
int(C) � int(C� ).

Before proving Corollary 2, we note that its conclusion need not be true if
C is not convex. To see this, take C� �rational points in [0, 1]�� [1, 2].
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Proof. Since for any set C int(C)
C, it follows that int(C)
C� . Let x �C� .
Then for any y in int(C), the line segment [y, x) belongs to int(C). Hence
x � int(C), and so C� 
 int(C).

Since, for any set C, C
C� , it follows that int(C)
 int(C� ). Let x � int(C� ).
Then there exists an r� 0 such that B(x, r) �C� . Now let y � int(C) and
consider the line segment [y, z), which is the extension of the segment [y, x] a
distance less than r beyond x. Then z �C� , and since y � int(C), we get that
[y, z) � int(C). In particular, x � int(C). Thus (ii) is proved.

For each positive integer n, define

P
�
��p� (p

�
, . . . , p

�
) : p

�
� 0,

�
�
���

p
�
� 1� .

For n� 1, P
�
is the point 1. For n� 2, P

�
is the closed line segment joining

(0, 1) and (1, 0). For n� 3, P
�
is the closed triangle with vertices (1, 0, 0),

(0, 1, 0), and (0, 0, 1). It is easy to verify that, for each n, P
�
is a closed convex

set.

Definition 2.2. A point x in R� is a convex combination of points x
�
, . . . , x

�
if

there exists a p� (p
�
, . . . , p

�
) in P

�
such that

x� p
�
x
�
� p

�
x
�
�� � p

�
x
�
.

L 2.6. A set C in R� is convex if and only if every convex combination of
points in C is also in C.

Proof. If every convex combination of points in C is in C, then every convex
combination of every two points in C is in C. But for any fixed pair of points
x
�
and x

�
in C, the set of convex combinations of x

�
and x

�
is just [x

�
, x

�
]. In

other words, for every pair of points x
�
and x

�
in C, the line segment [x

�
, x

�
]

belongs to C, and so C is convex.
We shall prove the ‘‘only if ’’ statement by induction on k, the number of

points in the convex combination. If C is convex, then the definition of
convexity says that every convex combination of two points is in C. Suppose
that we have shown that if C is convex, then every convex combination of k
points is in C. We shall show that every convex combination of k� 1 points
is in C. Let

x� p
�
x
�
� �� p

�
x
�
� p

���
x
���

, p �P
���

.

If p
���

� 1, then there is nothing to prove. If p
���

� 1, then ��
���

p
�
� 0. Hence,

x� �
�
�
���

p
���

p
�

��
���

p
�

x
�
���

p
�

��
���

p
�

x
��� p

���
x
���

.
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The term in square brackets is a convex combination of k points in C and so
by the inductive hyotheses is in C. Therefore x is a convex combination of two
points in C, and so since C is convex, x belongs to C. This proves the lemma.

For a given set A, let K(A) denote the set of all convex combinations of
points in A. It is easy to verify that K(A) is convex. Clearly, K(A) �A.

Definition 2.3. The convex hull of a set A, denoted by co(A), is the intersection
of all convex sets containing A.

Since R� is convex, co(A) is nonempty, and since the intersection of convex
sets is convex, co(A) is convex. Also, since we have co(A) 
C for any convex
set C containing A, it follows that co(A) is the smallest convex set containing A.

T 2.1. T he convex hull of a set A is the set of all convex combinations of
points in A; that is, co(A) �K(A).

Proof. Let �C�� denote the family of convex sets containing A. Since
co(A) ��C� and K(A) is a convex set containing A, co(A) 
K(A). To prove
the opposite inclusion, note that A
C� for each � and Lemma 2.6 imply that
for each � all convex combinations of points in A belong to C� . That is, for
each �, K(A) 
C� . Hence K(A) 
�C�� co(A).

Lemma 2.6 states that a set C is convex if and only if K(C) 
C. Since
C
K(C) for any set C, Lemma 2.6 can be restated in the equivalent form that
a set C is convex if and only if K(C) �C. Since, for any set A, K(A) � co(A),
we have the following corollary to Theorem 2.1.

C 3. A set A is convex if and only if A� co(A).

T 2.2 (C́). L et A be a subset of R� and let x � co(A). T hen
there exist n� 1 points x

�
, . . . , x

���
in A and a point p in P

���
such that

x� p
�
x
�
��� p

���
x
���

.

Note that since some of the p
�
’s may be zero, the result is often stated that

a point x � co(A) can be written as a convex combination of at most n� 1
points of A.

Proof. If x � co(A), then by Theorem 2.1,

x�
�
�
���

q
�
x
�
, x

�
�A, i� 1, . . . ,m, q� (q

�
, . . . , q

�
) �P

�
, (3)

for some positive integer m and some q in P
�
. If m� n� 1, then there is

PROPERTIES OF CONVEX SETS 41



nothing to prove. If m� n� 1, we shall express x as a convex combination of
at most m� 1 points. Repeating this argument, a finite number of times gives
the desired result.

Let us then suppose that in (3) m� n� 1. Consider the m� 1� n vectors
in R�, (x

�
�x

�
), (x

�
�x

�
), . . . , (x

�	�
�x

�
). Since m� 1� n, these vectors are

linearly dependent. Hence there exist scalars �
�
, . . . , �

�	�
, not all zero such that

�
�
(x

�
�x

�
) � �

�
(x

�
�x

�
) � �� �

�	�
(x

�	�
�x

�
) � 0.

Let �
�

��(�
�
�� � �

�	�
). Then

�
�
x
�
��� �

�	�
x
�	�

� �
�
x
�
� 0 (4)

and

�
�
���

�
�
� 0. (5)

From (3) and (4) it follows that for any t

x�
�
�
���

(q
�
� t�

�
)x

�
. (6)

We shall show that there is a value of t such that the coefficients of the x
�
are

nonnegative, have sum equal to 1, and at least one of the coefficients is zero.
This will prove the theorem.

Let I� �i : i� 1, . . . ,m, �
�
� 0�. Since �

�
, . . . , �

�
are not all zero, it follows

from (5) that I��. Let i
�
denote an index in I such that

q
��
�
��

�min�i� I : q
�
/�

�
�.

Now take t� q
��
/�

��
. Then t� 0, and for i � I

(q
�
� t�

�
) � �

� �
q
�
�
�

�
q
��
�
��
�� 0,

with equality holding for i� i
�
. If i � I, then �

�
� 0, so q

�
� t�

�
� 0 whenever

t� 0. Thus, if t� q
��
/�

��
, then

q
�
� t�

�
� 0, i� 1, . . . ,m with q

��
� t�

��
� 0.

Upon comparing this statement with (6), we see that we have written x as a
nonnegative linear combination of at most m� 1 points. This combination is
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also a convex combination since, using (5), we have

�
�
���

(q
�
� t�

�
) �

�
�
���

q
�
� t

�
�
���

�
�
�

�
�
���

q
�
� 1.

L 2.7. If A is a compact subset of R�, then so is co(A).

If A is closed, then co(A) need not be closed, as the following example
shows. Let

A
�
� �(x

�
, x

�
) :x

�
� 0, x

�
� 0, x

�
x
�
� 1�

and let

A
�
� �(x

�
, x

�
) :x

�
� 0, x

�
� 0, x

�
x
�
��1�.

Let A�A
�
�A

�
. Then A is closed, but co(A) � �(x

�
, x

�
) : x

�
� 0� is open.

We now prove the lemma. By Theorem 2.2

co(A) ��x : x�
���
�
���

p
�
x
�
x
�
�A p� (p

�
, . . . , p

���
) �P

���� .
Let

��P
���

�A���A

��� �����

Since A is compact and P
���

is compact, by Theorem I.8.1 the set � is
compact in R�, where m�(n�1)�n(n�1)�(n�1)�. The mapping � :R� �R�

defined by

�(p, x
�
, . . . , x

�
) �

���
�
���

p
�
x
�

is continuous. Since � is compact, it follows from Theorem I.9.2 that �(�) is
compact. By Theorem 2.2, �(�) � co(A), so co(A) is compact.

L 2.8. If O is an open subset of R�, then co(O) is also open.

Proof. Since O
 co(O), the set co(O) has nonempty interior. Therefore, by
Corollary 1 of Lemma 2.5 int(co(O)) is convex and O
 int(co(O)). (Why?)
Since co(O) is the intersection of all convex sets containing O, we have
co(O) 
 int(co(O)). Since we always have the reverse inclusion, we have that
co(O) � int(co(O)).
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Exercise 2.3. Using the definition of a convex set, show that (a) the non-
negative orthant in R� � �x :x� (x

�
, . . . , x

�
), x

�
� 0 i� 1, . . . , n� is convex and

(b) a hyperplane H�a is convex.

Exercise 2.4. A mapping S from R� to R� is said to be affine if Sx�T x� b,
where T is a linear map from R� �R� and b is a fixed vector. (If b� 0,
then S is linear.) Show that if C is a convex set in R�, then S(C) �

�y : y�T x� b, x �C� is a convex set in R�. In mathematical jargon, you are
about to show that under an affine map convex sets are mapped onto convex
sets or under an affine map the image of a convex set is convex.

Exercise 2.5. Show that the sets P
�
are compact and convex.

Exercise 2.6. Show that for any set A the set K(A) of all convex combinations
of points in A is convex.

Exercise 2.7. Show that the open ball B(0, r) is convex.

Exercise 2.8. Consider the linear programming (LP) problem: Minimize 
c, x�
subject to Ax� b, x� 0. Let S� �x : x is a solution of the problem LP�. Show
that if S is not empty, then it is convex.

Exercise 2.9. Let C
R�. Show that C is convex if and only if �C� �C�

(� ��)C for all �� 0, �� 0.

Exercise 2.10. A set C is said to be a cone with vertex at the origin, or simply
a cone, if whenever x �C, all vectors �x, �� 0, belong to C. If C is also convex,
C is said to be a convex cone.

(a) Give an example of a cone that is not convex.

(b) Give an example of a cone that is convex.

(c) Let C be a nonempty set in R�. Show that C is a convex cone if and
only if x

�
and x

�
�C implies that �

�
x
�
� �

�
x
�
�C for all �

�
� 0, �

�
� 0.

Exercise 2.11. Show that if C
�
and C

�
are convex cones, then so is C

�
�C

�
and that C

�
�C

�
� co(C

�
�C

�
).

Exercise 2.12. Show that if A is a bounded set in R�, then so is co(A).

Exercise 2.13. Let X be a convex set in R� and let y be any vector not in X.
Let [y,X] denote the union of all line segments [y, x] with x in X.

(a) Sketch a set [y,X] in R�.

(b) Show that [y,X] is convex.
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Exercise 2.14. Let C be a proper subset of R�. For each �� 0 define a set �	(C),
the �-neighborhood of C, by �	(C) ��x �CB(x, �). Show that

�	(C) � �y : 	x� y	�� for some x �C�

� �
x �C

(B(0, �) � x).

Show that �	 (C) is open. Show that if C is convex, then so is �	 (C).

Exercise 2.15. Show that if a vector x in R� has distinct representations as
a convex combination of a set of vectors x

�
, x

�
, . . . , x

�
, then the vectors

x
�
�x

�
, . . . , x

�
�x

�
are linearly dependent.

Exercise 2.16. Let X be a set contained in the closed negative half space
determined by the hyperplane H�a. Show that if x � int(X), then 
a, x)��.

Exercise 2.17. Let X be a convex set and let H�a be a hyperplane such that
X�H�a��. Show that X is contained in one of the open half spaces
determined by H�a.

3. SEPARATION THEOREMS

This section is devoted to the establishment of separation theorems. In some
sense, these theorems are the fundamental theorems of optimization theory.
The validity of this assertion will be made evident in subsequent chapters of
this book.

We have seen that a hyperplane H�a divides R� into two half spaces, one on
each side of H�a. It therefore seems natural to say that two sets X and Y are
separated by a hyperplane H�a if they are contained in different half spaces
determined by H�a. There are various types of separation, which we will now
define precisely and discuss. The reader should draw sketches in R�. (Recall
that in R� a hyperplane is a line.)

Definition 3.1. Two sets X and Y are separated by the hyperplane H�a if, for
every x �X, 
a, x��� and, for every y �Y, 
a, y���.

This type of separation does not always correspond to what one intuitively
considers a separation. For example, in R�, let

X
�
� �(x

�
, x

�
) : x

�
� 0, 0� x

�
� 2�

and let

Y
�
� �(x

�
x
�
) :x

�
� 0, 1�x

�
� 3�.
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According to Definition 3.1, these sets are separated by the hyperplane x
�
� 0.

On the other hand, one would not consider these sets as being separated in
any reasonable way. This example illustrates that two sets which intuitively
should not be considered as being separated can be separated by a hyperplane
H�a according to Definition 3.1 if the sets both lie in H�a. To rule out the
possibility just discussed, the notion of proper separation is introduced.

Definition 3.2. Two sets X and Y are properly separated by a hyperplane H�a
if, for every x �X, 
a, x���, for every y in Y, 
a, y���, and at least one of
the sets is not contained in H�a.

Geometrically, the definition requires that X and Y be in opposite closed
half spaces and at least one of the sets not be contained in H�a. Note that the
sets X

�
and Y

�
are not properly separated by the hyperplane x

�
� 0 and that

they cannot be properly separated by any hyperplane.
Proper separation of two sets X and Y does not require that the sets be

disjoint. The sets

X
�
� �(x

�
, x

�
) : 0�x

�
� 1, 0�x

�
� 1�

and

Y
�
� �(x

�
, x

�
) : 0� x

�
� 1, �1�x

�
� 0�

are not disjoint but are properly separated by the hyperplane x
�
� 0. A set may

be a subset of another set, yet the two sets can be properly separated. To see
this, let X*

�
�X

�
and let Y *

�
� �(x

�
, x

�
) : 0�x

�
� 1, x

�
� 0�. Then Y *

�

X*

�
and the sets are properly separated by the hyperplane x

�
� 0. To rule out the

possibilities just described, the notion of strict separation is introduced.

Definition 3.3. Two sets X and Y are strictly separated by a hyperplane H�a if,
for every x in X, 
a, x��� and, for every y in Y, 
a, y���.

Geometrically, the definition requires that X and Y be in opposite open half
spaces determined by H�a. Note that the sets X

�
and Y

�
cannot be strictly

separated by any hyperplane. The sets

X
�
� �(x

�
, x

�
) : 0�x

�
� 1, 0�x

�
� 1�

and

Y
�
� �(x

�
, x

�
) : 0� x

�
� 1, �1�x

�
� 0�

are strictly separated by the hyperplane x
�
� 0. Note that X�

�
and Y�

�
are

properly separated but are not strictly separated by the hyperplane x
�
� 0.
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Finally, note that the sets X
�

and Y
�

are not strictly separated by the
hyperplane x

�
� 0.

Definition 3.4. Two sets X and Y are strongly separated by a hyperplane H�a if
there exists an �� 0 such that the sets X� �B(0, 1) and Y � �B(0, 1) are strictly
separated by H�a.

The sets X
�
and Y

�
are not strongly separated by the hyperplane x

�
� 0 and

cannot be strongly separated by any hyperplane. Let 0��� 1 be fixed. Then
for each such � the sets

X
�
� �(x

�
, x

�
) : 0� x

�
� 1, ��x

�
� 1�

and

Y
�
� �(x

�
, x

�
) : 0�x

�
� 1, �1� x

�
����

are strongly separated by the hyperplane x
�
� 0.

It is clear from the definitions that strong separation implies strict separ-
ation, which implies proper separation.

Exercise 3.1. Sketch the pairs of sets (X
�
, Y

�
), (X

�
, Y

�
), (X*

�
, Y *

�
), (X

�
, Y

�
), and

(X
�
 , Y�
).

The next lemma gives two conditions, each of which is equivalent to strong
separation as given in Definition 3.4.

L 3.1. T he following statements are equivalent:

(i) Two sets X and Y are strongly separated by a hyperplane H�a.
(ii) T here exists an �� 0 such that 
a, x���� � for all x in X and


a, y���� � for all y in Y.
(iii) T here exists an ��� 0 such that

inf�
a, x� : x �X���� ��

and

sup�
a, y� : y � Y ���� ��.

Proof. The equivalence of (ii) and (iii) is clear, so we need only prove the
equivalence of (i) and (ii). We note that z �B(0, 1) if and only if �z �B(0, 1).
SupposeX and Y are strongly separated by H�a. Then there exists an �� 0 such
that, for all x in X and all z in B(0, 1), 
a, x� �z���. Thus for all x in X and
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all z �B(0, 1),

��
a, z����
a, x�.

If we take z� (�� a)/	a	, 0��� � 1, and then let �� � 1, we get ��	a	�
��
a, x�, or


a, x���� �	a	,

for all x in X. A similar argument shows that


a, y���� �	a	

for all y in Y. Hence (ii) holds for any positive number � strictly less than �	a	.
We now suppose that there exists an �� 0 such that 
a, x���� � for all

x in X. Let z be an arbitrary element of B(0, 1). Since 	z	� 1, from the
Cauchy—Schwarz inequality we get that 
a, z��	a	, and consequently


a, x� �z��
a, x�� �
a, z���� �� �	a	.

Similarly, for all y in Y and z �B(0, 1),


a, y� �z���� �� �	a	.

Hence if we take ���/	a	, we have that 
a, u��� for all u in X� �B(0, 1) �

X� �B(0, 1) and that 
a, v��� for all v in Y � �B(0, 1). This proves (i).

Remark 3.1. From the preceding lemma it should be clear that a necessary and
sufficient condition for two sets X and Y to be strongly separated is that there
exists a vector a such that

inf�
a, x� : x �X�� sup�
a, y� : y � Y �.

Our principal objective in this section is to prove Theorem 3.4. Although
this theorem is not the best possible separation theorem in R�, it is the one that
is valid in infinite-dimensional spaces and it does cover the situations that
occur in optimization problems. The best possible separation theorem in R�

will be discussed in Section 7. Our proof of Theorem 3.4 will not be the most
economical one but will be one that is suggested by rather obvious geometric
considerations.

The principal step in the proof is to show that if C is a convex set and y is
a point not in C, then y and C can be properly separated. If C is not convex,
then it may not be possible to separate y and C, as can be seen by taking, in
R�, y� 0 and C to be the circumference of any circle with center at the origin.

48 CONVEX SETS IN R�



Figure 2.6.

We first show that if C is closed and convex, then strong separation is
possible.

T 3.1. L et C be a closed convex set and y a vector such that y �C. T hen
there exists a hyperplane H�a that strongly separates y and C.

To motivate the proof, we argue heuristically from Figure 2.6, in which C is
assumed to have a tangent at each boundary point.

Draw a line from y to x
*
, the point of C that is closest to y. The vector

y�x
*
will be perpendicular to C in the sense that y�x

*
is the normal to the

tangent line at x
*
. The tangent line, whose equation is 
y�x

*
, x�x

*
�� 0,

properly separates y and C. The point x
*
is characterized by the fact that


y�x
*
, x�x

*
�� 0 for all x �C. To obtain strong separation, we merely

move the line parallel to itself so as to pass through a point x
�
� (x

*
, y). We

now justify these steps in a series of lemmas, some of which are of interest in
their own right.

If X is a set and y is a vector, then we define the distance from y to X,
denoted by d(y, X), to be

d(y, X) � inf�	y� x	 : x �X�.

A point x
*
in X is said to attain the distance from y to X, or to be closest to

y, if d(y, X) � 	y�x
*
	.

L 3.2. L et C be a convex subset of R� and let y �C. If there exists a point
in C that is closest to y, then it is unique.
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Proof. Suppose that there were two points x
�
and x

�
of C that were closest

to y. Then since C is convex, (x
�
�x

�
)/2 belongs to C, and so

d(y, C)�	(x
�
� x

�
)/2� y	��

�
	(x

�
� y) � (x

�
� y)	

� �
�
(	x

�
� y	� 	x

�
� y	) � d(y, C).

Hence equality holds in the application of the triangle inequality, and so by (5)
of Section 2 in Chapter I, we have that, for some  � 0, (x

�
� y) �  (x

�
� y).

Suppose  � 0. Since 	x
�
� y	� 	x

�
� y	� d(y, C), we get that  � 1, and so

x
�
�x

�
. If  � 0, we get x

�
� y, contradicting the assumption that y �C.

L 3.3. L et C be a closed subset of R� and let y �C. T hen there exists a
point x

*
in C that is closest to y.

Proof. Let x
�
�C and let r�	x

�
� y	. Then C

�
�B(y, r)�C is nonempty,

closed, and bounded and hence is compact. The function x� 	x� y	 is
continuous on C

�
and so attains its minimum at some point x

*
in C

�
. Thus,

for all x �C
�
, 	x� y	�	x

*
� y	. For x �C and x �C

�
we have

	x� y	� r�	x
�
� y	�	x

*
� y	,

since x
�
�B(y, r).

Lemmas 3.2 and 3.3 show that if C is a closed convex set and y �C, then there
is a unique closest point in C to y.

The next lemma characterizes closest points.

L 3.4. L et C be a convex set and let y �C. T hen x
*

�C is a closest point
in C to y if and only if


y�x
*
, x�x

*
�� 0 for all x �C. (1)

Note that if C is not convex, then the above characterization of closest point
need not hold. To see this, let y be the origin in R� and let C be the
circumference of the unit circle. Let x

*
be a fixed point in C. Then it is not true

that 
0� x
*
, x�x

*
�� 0 for all x in C.

Proof. Let x
*
be a closest point to y and let x be any point in C. Since C

is convex, the line segment [x
*
, x]� �z(t) : z(t) � x

*
� t(x� x

*
), 0� t� 1�

belongs to C. Let

�(t) � 	z(t) � y	�� 
x
*
� t(x�x

*
) � y, x

*
� t(x� x

*
) � y�. (2)

For 0� t� 1, �(t) is the square of the distance between the point z(t) � [x
*
, x]

and y. If t� 0, then z�x
*
. Since � is continuously differentiable on (0, 1] and
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x
*
is a point in C closest to y, we have ��(0�) � 0. Calculating ��(t) from (2)

gives

��(t) � 2[�
y�x
*
, x�x

*
�� t	x�x

*
	�]. (3)

If we now let t� 0� and use ��(0�)� 0, we get (1).
We now suppose that (1) holds. Let x be any other point in C. It follows

from (3) that ��(t) � 0 for 0� t� 1. This � is strictly increasing function on
[0, 1], and so for any point z(t) in (x

*
, x]. We have 	z(t) � y	�	x

*
� y	 . In

particular, this is true for z�x, and so x
*
is a closest point to y.

We can now complete the proof of Theorem 3.1. Let x
*
be the closest point

in C to y and let a� y�x
*
. Then for all x �C, 
a, x�x

*
�� 0, and so 
a, x��


a, x
*
�, with equality occurring when x�x

*
. Therefore sup�
a, x� :x �C��


a, x
*
�. On the other hand, 
a, y� x

*
�� 	a	�� 0, so


a, y�� 
a, x
*
�� 	a	�� sup�
a, x� : x �C�.

The conclusion of the theorem now follows from Remark 3.1 with X� �y� and
Y �C.

We now take up the separation of a point y and an arbitrary convex set;
that is, we shall no longer assume that C is closed. We shall obtain separation,
but shall not be able to guarantee proper separation unless we assume that C
has nonempty interior.

T 3.2. L et C be a convex set and let y �C. T hen there exists a hyperplane
H�a such that for all x in C


a, x��� and 
a, y�� �. (i)

If int(C) ��, then for all x in int(C)


a, x���. (ii)

Proof. We first suppose that y� 0. Then to establish (i), we must find an
a� 0 such that


a, x�� 0 for all x in C. (4)

For each x in C define

Nx� �z : 	z	� 1, 
z, x�� 0�.

The set Nx is nonempty since it contains the element �x/	x	.
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To establish (4), it suffices to show that

�
x �C

Nx��.

Each Nx is closed and is contained in S(0, 1) � �u : 	u	� 1�. Thus we may
write the last relation as

�
x �C

Nx�� �x �C
Nx��S(0, 1) � �. (5)

Since S(0, 1) is compact, it has the finite-intersection property. Thus, if
the intersection in (5) were empty, there would exist a finite subcollection
Nx

�
, . . . ,Nx

�
that is empty. Therefore, we may establish (5) by showing that

every finite subcollection Nx
�
, . . . ,Nx

�
has nonempty intersection.

Now consider any finite collection of sets Nx
�
, . . . ,Nx

�
and the corre-

sponding k points x
�
, . . . , x

�
in C. Let co[x

�
, . . . , x

�
] denote the convex hull

of x
�
, . . . , x

�
. Then co[x

�
, . . . , x

�
] is compact and convex. Since C is convex,

co[x
�
, . . . , x

�
]
C. Thus, since 0 �C, we have 0 � co[x

�
, . . . , x

�
]. Hence, by

Theorem 3.1, there exists a vector w� 0 such that

0� 
w, 0��
w, x�, x � co[x
�
, . . . , x

�
]. (6)

We may divide through by 	w	� 0 in (6) and so assume that 	w	� 1. Thus,
(6) says that

w ��
�
�
���

Nx
���S(0, 1),

and we have shown that the intersection of any finite subcollection Nx
�
, . . . ,Nx

�
of the closed sets �Nx�x �C has nonempty intersection with S(0, 1). Hence (5)
holds.

We now remove the restriction that y� 0. We have

y �C if and only if 0 �C� y� �x� :x��x� y, x �C�.

Therefore, there exists an a� 0 such that 
a, x��� 0 for all x� in C� y. Hence
for all x in C,


a, x� y�� 0,

and so


a, x��
a, y� for all x in C.
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If we now let �� 
a, y�, we get the first conclusion of the theorem. The second
follows from Exercise 2.16.

Our first separation result for convex sets will follow from Theorem 3.2.

T 3.3. L et X
�
and Y be two disjoint convex sets. T hen there exists a

hyperplane H�a that separates them.

Note that the theorem does not assert that proper separation can be
achieved. Theorem 7.2 in the sequel will allow us to conclude that the
separation is proper. Our proof of Theorem 3.3 does not yield this fact.

To prove the theorem, we first note that

X
�
�Y � � if and only if 0 �X

�
�Y.

Let

A�X
�
�Y �X

�
� (�1)Y.

SinceX
�
and Y are convex, by Lemma 2.2, so is A. Since X

�
and Y are disjoint,

0 �A. Hence by Theorem 3.2, there exists an a� 0 such that


a, z�� 0 all z in A.

Let x be an arbitrary element of X
�
and let y be an arbitrary element of Y.

Then z� x� y is in A and


a, x��
a, y�. (7)

Let �� sup�
a, x� : x �X
�
� and let �� inf�
a, y� : y �Y �. Then from (7) we

get that � and � are finite, and for any number � such that �����,


a, x����
a, y�

for all x in X
�
and all y in Y. Thus the hyperplane H�a separates X�

and Y.

T 3.4. L et X and Y be two convex sets such that int(X) is not empty and
int(X) is disjoint from Y. T hen there exists a hyperplane H�a that properly
separates X� and Y� .

To illustrate the theorem, let X� �(x
�
, x

�
) :x

�
� 0, �1�x

�
� 1� and let

Y� �(x
�
, x

�
) :x

�
� 0, �1� x

�
� 1�. The hypotheses of the theorem are ful-

filled and x
�
� 0 properly separates X� and Y� and hence X and Y. Note that

strict separation of X and Y is not possible.
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Proof. Since int(X) is convex and disjoint from Y, we can apply Theorem
3.3 with X

�
� int(X) and obtain the existence of an a� 0 and an � such that


a, x����
a, y� (8)

for all x in int(X) and all y in Y.

Let x �X� . By Corollary 2 to Lemma 2.5, X� � int(X) . Hence x � int (X) . By
Remark I.5.2 there exists a sequence of points �x

�
� in int(X) such that x

�
�x.

It then follows from (8) and the continuity of the inner product that (8) holds
for all x in X� and all y �Y� . Thus, the hyperplane H�a separates X� and Y� . By
Corollary 2 to Lemma 2.5, int(X� ) � int(X). By Exercise 2.16, for x � int(X� ),

a, x���, so the separation is proper.

T 3.5. L et K be a compact convex set and let C be a closed convex set
such that K and C are disjoint. T hen K and C can be strongly separated.

Proof. Let

K	 �K�B(0, �) � �u : u�x� z, x �K, 	z	���,

C	 �C�B(0, �) � �v : v� y� z, y �C, 	z	� ��.

Since K	��x �K (B(0, �) � x), it is a union of open sets and hence is open. It
is also readily verified that K	 is convex. Similarly, the set C	 is open and
convex. (See Exercise 2.14.)

We now show that there exists an �� 0 such that K	�C	��. If the
assertion were false, there would exist a sequence ��

�
� with �

�
� 0 and �

�
� 0

and a sequence �w
�
� such that, for each k, w

�
�K	

�

�C	
�

. Since w
�
� u

�
� z

�
with u

�
�K, 	z

�
	��

�
and w

�
� v

�
� z�

�
with v

�
�C and 	z�

�
	��

�
, we have a

sequence �u
�
� in K and a sequence �v

�
� in C such that

	w
�
� u

�
	��

�
, 	w

�
� v

�
	��

�
.

Hence

	u
�
� v

�
	� 	(u

�
�w

�
) � (w

�
� v

�
)	�	u

�
�w

�
	� 	v

�
�w

�
	� 2�

�
. (9)

Since K is compact, there exists a subsequence �u
��
� that converges to an

element u
�
in K. It follows from (9) that v

��
� u

�
. Since C is closed, u

�
�C. This

contradicts the assumption that C and K are disjoint, and so the assertion is
true.

We have shown that there exists an �� 0 such that K	 and C	 are disjoint
open convex sets. Hence by Theorem 3.4 there is a hyperplane that properly
separates K	 and C	 . Since both K	 and C	 are open sets, it follows from
Exercise 2.16 that K	 and C	 are strictly separated. According to Definition 3.4,
this says that K and C are strongly separated.

54 CONVEX SETS IN R�



We now apply the separation theorems to obtain an additional character-
ization of convex sets.

T 3.6. L et A be a set contained in some half space. T hen the closure
of the convex hull of A, co(A) , is the intersection of all closed half spaces
containing A.

Proof. We orient the hyperplanes that determine the closed half spaces
containing A to be the negative closed half spaces. If H� �	a is a closed half space
containing A, then co(A) is contained in H� �	a and hence in the intersection of
all such half spaces. Now let x be a point in the intersection. If x were not in
co(A) , then by Theorem 3.1, there would exist a hyperplane H�a such that


a, z����
a, x�, z � co(A) .

Hence x would not be in the closed half space by H� �	a which contains A.
Therefore x is not in the intersection of all negative closed half spaces
containing A, which contradicts the assumption that x is in the intersection.
Thus the intersection is contained in co(A) , and the theorem is proved.

The following corollary follows from the theorem and the fact that a closed
convex set not equal to R� is contained in some closed half space.

C 1. If A is a closed convex set not equal to R�, then A is the
intersection of all closed half spaces containing A.

Note that the theorem is false if we replace co(A) by co(A). To see this,
consider the set A in R� defined by

A� �(x
�
, x

�
) : x

�
� 0, x

�
x
�
� 1�� �(x

�
, x

�
) : x

�
� 0, x

�
x
�
��1�.

Then co(A) � �(x
�
, x

�
) :x

�
� 0�, and the intersection of all closed half spaces is

�(x
�
x
�
) : x

�
� 0�.

Exercise 3.2. Let V be a linear subspace and let y � V. Show that x
*
in V is the

closest point in V to y if and only if y�x
*
is orthogonal to V ; that is, for every

w in V, y�x
*
is orthogonal to w.

Exercise 3.3. Let C be a closed convex set and let y �C. Show that x
*
in C is

closest to y if and only if 
x� y, x
*
� y��	x

*
� y	� for all x in C.

Exercise 3.4. In reference to Theorem 3.5, show that if K is assumed to be
convex and closed, then it may not be possible to separate K and C strictly,
let alone strongly.
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Exercise 3.5. Show that if F is closed and K is compact, then K�F is closed.
Give an example in which F and K are closed yet F�K is not.

Exercise 3.6. Let A and B be two compact sets. Show that A and B can be
strongly separated if and only if co(A)� co(B) ��.

Exercise 3.7. Prove Theorem 3.5 using Theorem 3.1 and Exercise 3.5.

Exercise 3.8. Let A be a bounded set. Show that co(A� ) is the intersection of all
closed half spaces containing A. Show that the statement is false if A is not
bounded and a proper subset of R�.

Exercise 3.9. Let A be a closed convex set such that cA (the complement of A)
is convex. Show that A is a closed half space.

Exercise 3.10. Let C
�
and C

�
be two convex subsets of R�. Show that there

exists a hyperplane that strongly separates C
�
and C

�
if and only if

inf�	x� y	 : x �C
�
, y �C

�
�� 0.

4. SUPPORTING HYPERPLANES: EXTREME POINTS

In studying convex sets we do not wish to restrict ourselves to sets with smooth
boundaries, that is, sets such that every boundary point has a tangent plane.
The concept that replaces that of tangent plane is that of supporting hyper-
plane. It is a concept that has many important consequences, as we shall see.

We first define what is meant by a boundary point of a set. A point z is said
to be a boundary point of a set S if for every �� 0 the ball B(z, �) contains a
point x �S and a point y �S. Note that the definition allows us to have y� z
or x� z. For example, in R� let S� �x� (x

�
, x

�
) : 0�	x	� 1�. Then 0 is a

boundary point of S, and for every 0��� 1 the only point in B(0, �) that is
not in S is 0. The other boundary points of S are the points x with 	x	� 1. If
there exists an �� 0 such that the only point in B(z, �) that is in S is z itself,
then we say that z is an isolated point of S.

Definition 4.1. A hyperplane H�a is said to be a supporting hyperplane to a set
S if, for every x �S, 
a, x��� and there exists at least one point x

�
�S� such

that 
a, x
�
�� �. The hyperplane H�a is said to support S at x

�
. The hyperplane

H�a is a nontrivial supporting hyperplane if there exists a point x
�
in S such that


a, x
�
���.

To illustrate this definition, consider the set S in R� defined by

S� �x : 0�x�
�
� x�

�
� 1, x

�
� 0�.
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As a set in R�, every point of S is a boundary point. The only supporting
hyperplane at a point of S is the trivial one, x

�
� 0. Every point in the set

E� �x :x�
�
� x�

�
� 1, x

�
� 0� is also a boundary point of S. At every point of

E there is a nontrivial supporting hyperplane with equation ax
�
� bx

�
� 1 for

appropriate a and b.

Remark 4.1. Let K be a compact set in R�. Then for each a in R� there exists
an � such that the hyperplane H�a with equation 
a, x�� � is a supporting
hyperplane to K. To see this, note that the linear functional L defined by
L (x) �
a, x� is continuous on K and so attains its maximum at a point x

*
in

K. Then 
a, x��
a, x
*
� for all x �K. The desired hyperplane is obtained by

taking �� 
a, x
*
�.

T 4.1. L et C be a convex set and let z be a boundary point of C. T hen
there exists a supporting hyperplane H�a to C such that z �H�a. If int(C) ��, the
supporting hyperplane is nontrivial.

Proof. If z �C, then by Theorem 3.2 with y� z there exists a hyperplane H�a
such that for all x in C


a, x��� and 
a, z�� �.

Since z �C and z is a boundary point of C, it follows that z �C� . Thus, H�a is a
supporting hyperplane to C with z �H�a.

If z �C, then from the definition of boundary point it follows that there
exists a sequence of points �y

�
� with y

�
�C such that y

�
� z. It follows from

Theorem 3.2 that for each positive integer k there exists a vector a
�
� 0 such

that


a
�
, x��
a

�
, y

�
� for all x in C. (1)

If we divide through by 	a
�
	� 0 in (1), we see that we may assume that

	a
�
	� 1. Since S(0, 1) is compact, there exists a subsequence of �a

�
� that we

again label as �a
�
� and a vector a with 	a	� 1 such that a

�
� a. If we now let

k�� in (1), we get that


a, x��
a, z� for all x in C.

If we set ��
a, z�, we see that the hyperplane H�a contains z and is a
supporting hyperplane to C.

It follows from Exercise 2.16 that the supporting hyperplane is nontrivial if
int(C) ��.

Definition 4.2. A point x
�
belonging to a convex set C is an extreme point of

C if, for no pair of distinct points x
�
, x

�
in C and for no ��0, ��0, ����1,

is it true that x
�
� �x

�
��x

�
.
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In other words, a point x
�
in a convex set C is an extreme point of C if x

�
is interior to no closed interval [x

�
, x

�
] in C. We leave it as an exercise for the

reader to show that an extreme point is a boundary point.
Let

C
�
� �(x

�
, x

�
) : x�

�
�x�

�
� 1�.

The set of extreme points of C
�
is �(x

�
, x

�
) :x�

�
�x�

�
� 1�.

Let

C
�
� �(x

�
, x

�
) :x�

�
�x�

�
� 1�, C

�
� �(x

�
, x

�
) : x�

�
� x�

�
� 1, x

�
� 0�,

and let C
�
�C

�
�C

�
. Then the set of extreme points of C

�
is C

�
.

A convex set need not have any extreme points, as evidenced by C
�
. Another

example of a convex set without any extreme points is �(x
�
, x

�
) : x

�
� 0�.

T 4.2. L et C be a compact convex set. T hen the set of extreme points of
C is not empty, and every supporting hyperplane of C contains at least one
extreme point of C.

The following observation will be used in the proof of the theorem.

L 4.1. L et C be a convex set and let H be a supporting hyperplane to C. A
point x

�
in H�C is an extreme point of C if and only if x

�
is an extreme point

of H�C.

Proof. Let x
�
in H�C be an extreme point of C. If x

�
were not an extreme

point of H�C, then x
�
would be an interior point of some closed interval

[x
�
, x

�
] contained in H�C. But then [x

�
, x

�
] would be contained in C, and

x
�
would not be an extreme point of C. Thus, if x

�
is an extreme point of C,

then it is also an extreme point of H�C.
Let x

�
be an extreme point of H�C. If x

�
were not an extreme point of C,

then there would exist points x
�
and x

�
in C with at least one of x

�
and x

�
not

in H such that for some 0� t� 1

x
�
� tx

�
� (1� t)x

�
.

Suppose that H�H�a, that 
a, x��� for x in C, and that x
�
�H�a. Then


a, x
�
��� and

�� 
a, x
�
�� t
a, x

�
�� (1� t)
a, x

�
�� t�� (1� t)�� �.

This contradiction shows that x
�
must be an extreme point of C.

We now show that the set of extreme points of a compact convex set is not
empty.
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L 4.2. T he set of extreme points of a compact convex set C is not empty.

Proof. If C is a singleton, then there is nothing to prove. Therefore we may
suppose that C is not a singleton. Since C is compact and the norm is a
continuous function, there exists a point x* in C of maximum norm. Thus
	x	�	x*	 for all x in C and 	x*	� 0.

We assert that x* is an extreme point of C. If x* were not an extreme point,
there would exist distinct points x, and x

�
in C different from x* and scalars

�� 0, �� 0, ���� 1 such that

x*� �x
�
��x

�
.

Since

	x*	� 	�x
�
� �x

�
	��	x

�
	��	x

�
	,

we see that if either 	x
�
	 or 	x

�
	 were strictly less than 	x*	, we would have

	x*	� (���)	x*	� 	x*	.

This contradiction implies that

	x
�
	� 	x

�
	� 	x*	. (2)

But then,

	x*	�� 	�x
�
��x

�
	�� ��	x

�
	�� 2��
x

�
, x

�
����	x

�
	�

���	x
�
	�� 2��	x

�
	 	x

�
	���	x

�
	�

� (� ��)�	x*	� � 	x*	�.

Hence we must have

2��
x
�
, x

�
�� 2��	x

�
	 	x

�
	.

Since �� 0, �� 0, we have 
x
�
, x

�
�� 	x

�
	 	x

�
	. Therefore x

�
� x

�
for some

 � 0. The relation (2) implies that  � 1, and so x
�
�x

�
. This contradicts the

assumption that x
�
and x

�
are distinct. Thus x* is an extreme point.

We now complete the proof of the theorem. Let H�a be a supporting
hyperplane to C. Since C is compact, the point x

�
in C� such that 
a, x

�
�� �

is also in C. Hence H�a�C is nonempty and is compact and convex. By Lemma
4.2, H�a�C contains an extreme point x

	
. By Lemma 4.1, x

	
is also an extreme

point of C.

SUPPORTING HYPERPLANES: EXTREME POINTS 59



T 4.3. L et C be a compact convex set. L et C
	
denote the set of extreme

points of C. T hen C� co(C
	
).

We first note that by Theorem 4.2 the set C
	
is not empty.

Since C
	

C and C is convex, we have that co(C

	
)
 co(C) �C. Since C is

compact, we have that co(C
	
)
C� �C.

We now assert that C
 co(C
	
). If the last assertion were not true, then there

would exist an x
�
� co(C

	
) and in C. Since co(C

	
) is closed and convex, it

follows from Theorem 3.1 that there exists a hyperplane H�a such that for all
x � co(C

	
)


a, x����
a, x
�
�. (3)

Let

��max�
a, x� :x �C�. (4)

Since C is compact, the maximum is attained at some point x
*
in C, and thus

H�a is a supporting hyperplane to C at x
*
. By Theorem 4.2, H�a contains an

extreme point x
�
of C. Thus, x

�
�H�a � co(C

	
), and so by (3),

��
a, x
�
���.

Since x
�
�C, it follows from (3) and (4) that

��
a, x
�
���.

Combining the last two inequalities gives ���. This contradiction shows that
C
 co(C

	
).

In more general contexts Theorem 4.3 is known as the Krein—Milman
theorem. We shall see in Section 7 that in R� the conclusion of Theorem 4.3 can
be strengthened to C� co(C

	
).

We conclude this section with an example of a compact convex set whose
set of extreme points is not closed. In R� let

C
�
� �x : (x

�
� 1)��x�

�
� 1, x

�
� 0�,

C
�
� �x : x

�
� 0, x

�
� 0, �1�x

�
� 1�,

and let C� co(C
�
�C

�
). Then C

	
is the union of the points (0, 0, 1), (0, 0,�1)

and all points other than the origin that are on the circumference of the circle
in the plane x

�
� 0 whose center is at (1, 0, 0) and whose radius is 1. The origin

is a limit point of this set yet is not in the set.
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Exercise 4.1. Let S be a convex set. Show that a point x
�
in S is an extreme

point of S if and only if the set S
 �x
�
�� �x :x � S, x� x

�
� is convex.

Exercise 4.2. Show by examples that Theorem 4.3 fails if the convex set C has
a nonempty set of extreme points and is merely assumed to be closed or is
merely assumed to be bounded rather than closed and bounded.

Exercise 4.3. Let S be a set in R�. Show that every point of S is either an
interior point or a boundary point. Show that if S is compact, then the set of
boundary points of S is not empty. Show that if x

�
is an extreme point of S,

then it is a boundary point of S.

Exercise 4.4. Let C be a convex subset of R� with nonempty interior. Show
that C

	
� int(C) is empty.

Exercise 4.5. Show directly, without using Lemma 4.2, that the set of extreme
points of a closed ball is the set of its boundary points. Hint: To simplify
notation, take the center of the ball to be the origin.

Exercise 4.6. Let C be a closed convex set in R� not equal to R�. Show that C
is the intersection of all closed half spaces containing C that are determined by
the supporting hyperplanes of C.

Exercise 4.7. Let x
�
be a point in R�. Let C� denote the closed cube with center

at x
�
and length of side equal to 2!. Thus

C�� �x : �x
�
�x

��
��!, i� 1, . . . , n�.

The vertices of the cube are the 2� points of the form (�
�
, �

�
, . . . , �

�
) where the

�
�
take on the values �1.

(a) Show that the set of 2� vertices is the set of extreme points of C� .
(b) Show directly, without using Theorem 4.3, that C� is the convex hull of

the set of vertices. (Hint: Use induction on n.)

5. SYSTEMS OF LINEAR INEQUALITIES:
THEOREMS OF THE ALTERNATIVE

In this section we shall use the separation theorems to obtain so-called
theorems of the alternative. Theorems of the alternative have the following
form. Given two systems of inequalities, I and II, either system I has a solution
or system II has a solution but never both. Necessary conditions for many
optimization problems follow from these theorems.

SYSTEMS OF LINEAR INEQUALITIES: THEOREMS OF THE ALTERNATIVE 61



The following definitions and lemma are needed in our discussion. A vector
x� (x

�
, . . . , x

�
) in R� is said to be nonnegative, or x� 0, if, for every

i� 1, 2, . . . , n, x
�
� 0. A vector x in R� is said to be positive, or x� 0, if, for

every i� 1, 2, . . . , n, x
�
� 0.

L 5.1. L et A be an m� n matrix and let

C� �w :w�Ax, w �R�, x �R�, x� 0�.

T hen C is a closed convex cone.

Proof. A straightforward calculation verifies that C is a convex cone.

To show that C is closed, we first consider the case in which the columns of
A are linearly independent. Let w

�
be a limit point of C, and let �w

�
� be a

sequence of points in C converging to w
�
. Then there exists a sequence of

points �x
�
� in R� with x

�
� 0 such that Ax

�
�w

�
.

We show that �x
�
� is bounded. If �x

�
� were unbounded, there would exist a

subsequence, again denoted by �x
�
�, such that 	x

�
	� �. All points in the

sequence �x
�
/	x

�
	� have norm 1, so there exists a subsequence and a point x

*
of norm 1 such that x

�
/	x

�
	� x

*
. From

	x
�
	A(x

�
/	x

�
	) �w

�
, 	x

�
	��,

we see that we must have A(x
�
/	x

�
	) � 0. On the other hand, x

�
/	x

�
	�x

*
implies that A(x

�
/	x

�
	) �Ax

*
. Hence Ax

*
� 0. Recall that 	x

*
	� 1, so that

x
*
� 0. Therefore the relation Ax

*
� 0 contradicts the linear independence of

the columns of A.
Since �x

�
� is bounded, �x

�
� has a convergent subsequence, which we denote

again by �x
�
�. Let x

�
�lim x

�
. Then x

�
�0. Also, Ax

�
�Ax

�
, so that Ax

�
�w

�
.

Thus w
�
�C, and C is closed.

If the columns of A are not linearly independent, we first show that any
point z in C can be expressed as a nonnegative linear combination of p� n
linearly independent columns of A. Let A

�
, j� 1, . . . , n, denote the jth column

of A. Then there exists an x� 0 such that

z�
�
�
���

x
�
A

�
, x

�
� 0.

Since the columns of A are linearly dependent, there exists a �� (�
�
, . . . , �

�
)�0

such that

�
�
A

�
��

�
A

�
����

�
A

�
� 0.

Therefore, for any " �R,

z�
�
�
���

(x
�
� "�

�
)A

�
� �



�
��

(x
�
�"�

�
)A

�
� �



�
��

x
�
A

�
.
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Since �� 0, the first sum on the right exists. If �
�
� 0, then x

�
�"�

�
� 0

whenever "�x
�
/�

�
. In particular, since x

�
� 0, we have x

�
�"�

�
� 0 whenever

"� 0. If �
�
� 0, then x

�
/�

�
� 0 and x

�
�"�

�
� 0 if and only if "�x

�
/�

�
. If

there exist indices j such that �
�
� 0, set

"� �min �
x
�
�
�

:�
�
� 0� .

If �
�
� 0 for all indices j for which �

�
� 0, set

"� �max �
x
�
�
�

:�
�
� 0� .

Then x
�
�"� �

�
� 0 for all j� 1, . . . , n and x

�
�"� �

�
� 0 for at least one value of

j. We have now expressed z as a nonnegative linear combination of q� n
columns of A. We continue the process until we express z as a nonnegative
linear combination of p� n linearly independent columns of A.

Let # denote a choice of p� n linearly independent columns of A and let
A(#) denote the corresponding m� p matrix. There are a finite number of such
choices. Let

C(#) � �w :w�A(#)y, w �R�, y �R�, y� 0�.

We have shown that each set C(#) is closed and that

C
�
�
C(#).

We now show the opposite inclusion. Let w �C(#) for some #. By relabeling
columns of A, we can assume without loss of generality that # selects the first
p columns of A. Then there exists a y �R�, y� 0 such that

w�
�
�
���

y
�
A

�
�

�
�
���

y
�
A

�
�

�
�

�����

(0)A
�
, y

�
� 0, j� 1, . . . , p.

Let x� (y
�
, . . . , y

�
, 0, . . . , 0). Then w�Ax, and so w �C.

We have expressed C as the union of a finite number of closed sets. Hence
C is closed and Lemma 5.1 is proved.

T 5.1 (F’ L). L et A be an m� n matrix and let b be a vector
in R�. T hen one and only one of the systems

I: Ax� 0, 
b, x�� 0, x �R�,

II: A
y� b, y� 0, y �R�,

has a solution.
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Figure 2.7.

The conclusion of the theorem is sometimes stated in the logically equival-
ent form: Either I has a solution or II has a solution but never both. It can
also be stated in the following form: System I has a solution if and only if
system II has no solution.

Figure 2.7 illustrates Farkas’s lemma when A is a 2� 2 matrix with rows
a
�
and a

�
. Any vector x in the cross-hatched region satisfies Ax� 0. Thus, if b

does not lie in the acute angle determined by a
�
and a

�
, then I has a solution.

(Draw the hyperplane 
b, x�� 0 for such a b.) If we write II in the equivalent
form y
A� b
, y
� 0, we see that for II to have a solution b must lie in the
angle determined by a

�
, a

�
. The vector b is given, so its position is fixed. It

either lies in the angle or does not. Thus, precisely one of the systems I and II
has a solution.

We now prove the theorem. The reader will get an appreciation of the
efficiency and esthetic appeal of convexity arguments by looking up the
original proof [Farkas, 1901].

We first suppose that II has a solution y
�
. We shall show that I has no

solution. If Ax� 0 for all x in R�, then I has no solution. Suppose there exists
an x

�
in R� such that Ax

�
� 0. Then


b, x
�
�� b
x

�
� (A
y

�
)
x

�
� y


�
Ax

�
�
y

�
,Ax

�
�.
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Since y
�
� 0 and Ax

�
� 0, it follows that 
b, x

�
�� 0. Hence I has no solution.

We now suppose that II has no solution. Let

C� �z : z�A
y, y �R�, y� 0, z �R��.

The statement that II has no solution is equivalent to the statement that b �C.
By Lemma 5.1, C is closed and convex. Therefore, by Theorem 3.1 there exists
a hyperplane H�x

�
that strongly separates b and C. Thus x

�
� 0 and


x
�
, b����
x

�
, z�

for all z in C. Since 0 �C, we get that �� 0. Thus


x
�
, b�� 0. (1)

For all z in C we have


x
�
, z��
x

�
, A
y�� y
Ax

�
��,

the last inequality now holding for all y in R� satisfying y� 0.
We claim that the last inequality implies that

Ax
�
� 0. (2)

If (2) were false, there would exist at least one component of Ax
�
, say the jth

component, that is positive. Let $
�
denote this component. Let y

�
� �e

�
�

�(0, . . . , 0, 1, 0, . . . , 0), where �� 0. Then 
y
�
,Ax

�
�� �$

�
��. Since $

�
� 0, if

we take � to be sufficiently large, we get a contradiction. Thus (2) is true. But
(1) and (2) say that x

�
is a solution of I.

T 5.2 [G 1873]. L et A be an m� n matrix. T hen one and only
one of the following systems has a solution:

I: Ax� 0, x �R�,

II: A
y� 0, y �R�, y� 0, y� 0.

The reader should draw a figure which illustrates this theorem when A is a
3� 2 matrix with rows a

�
, a

�
, a

�
.

Proof. We shall show that the system I has a solution if and only if the
system

I�: Ax�%e, %� 0,

has a solution, where e in the vector in R� all of whose entries equal 1. Let
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(x
�
, �

�
) be a solution of I�. Then

Ax
�
�%

�
e� 0,

so I has a solution. Now let x
�
be a solution of I and let $�Ax

�
. If $�

($
�
, . . . , $

�
), then $

�
� 0 for i� 1, . . . ,m. Let %

�
�max�$

�
, . . . , $

�
�. Then (x

�
, %

�
)

is a solution of I�.
The system I� has a solution if and only if the system

I&: (A, �e)�
x

%�� 0, 
(0
�
,�1), (x, %)�� 0,

where 0
�
is the zero vector in R�, has a solution. By Farkas’s lemma, either I&

(and hence I) has a solution or

II&: �
A


�e
� y��
0

�1� , y� 0, y �R�,

has a solution but never both. System II& can be written as

II�: A
y� 0, 
e, y�� 1, y� 0.

From 
e, y�� 1 it follows that y� 0. Hence if II� has a solution, so does

II: A
y� 0, y� 0, y� 0.

If II has a solution, then 
e, y�� 0. If we set y�� y/
e, y�, then II� will have a
solution. Hence either I has a solution or II has a solution but never both.

T 5.3 [M 1936]. L et A, B, C be given matrices with n columns
and let A�O. T hen one and only one of the following systems has a solution:

I: Ax� 0, Bx� 0, Cx� 0, x �R�,

II: A
y
�
�B
y

�
�C
y

�
� 0, y

�
� 0, y

�
� 0, y

�
� 0.

Proof. Let e� (1, 1, 1, . . . , 1) be a vector all of whose entries equal 1 and
whose dimension is the row dimension of A. We assert that the system I has a
solution if and only if the system I� has a solution, where

I�: Ax�%e, Bx� 0, Cx� 0, %� 0.

Here % is a real scalar. It is clear that if I� has a solution, then I has a solution.
If I has a solution x

�
, let �� ($

�
, . . . , $

�
)
 �Ax

�
. Let %�min�$

�
, . . . , $

�
�. Then

%� 0 and Ax
�
�%e, and so I� has a solution.
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Since I has a solution if and only if I� has a solution, I has no solution if
and only if I� has no solution. Now I� has no solution if and only if the system

I&: �
�A e

�B 0

�C 0

C 0� �
x

%�� �
0

0

0

0� , 
(0
�
, 1), (x, %)�� 0,

where 0
�
is the zero vector in R�, has no solution.

By Farkas’s lemma I& has no solution if and only if the system II& has a
solution, where

II&: �
�A


e


�B


0

�C


0

C


0 � �
y
�
y
�

�
�

�
�
���

0
�
1� , (y

�
, y

�
, �

�
, �

�
)� 0.

But II& having a solution is equivalent to the system

II�: A
y
�
�B
y

�
�C
(�

�
��

�
) � 0, 
e, y

�
�� 1,

having a solution y
�
� 0, y

�
� 0, �

�
� 0, �

�
� 0. If we let y

�
� (�

�
��

�
), we

see that if II� has a solution as indicated, then

II: A
y
�
� B
y

�
�C
y

�
� 0, y

�
� 0, y

�
� 0, y

�
� 0,

has a solution. In summary, we have shown that if I has no solution, then II
has a solution.

Now suppose that II has a solution (y
�
, y

�
, y

�
). Then 
e, y

�
�� 0. Hence if

we set

y�
�
�

y
�


e, y
�
�
, y�

�
�

y
�


e, y
�
�
, y�

�
�

y
�


e, y
�
�
,

then (y�
�
, y�

�
, y�

�
) is a solution of II with 
e, y�

�
�� 1. Thus we may assume that

II has a solution (y
�
, y

�
, y

�
) with 
e, y

�
�� 1.

Let �
�
be a vector whose dimension is that of y

�
and whose ith component

is equal to y
��
, the ith component of y

�
, if y

��
� 0 and zero otherwise. Let �

�
be a vector whose dimension is that of y

�
and whose ith component is equal

to �y
��
� if y

��
� 0 and zero otherwise. Then �

�
� 0, �

�
� 0, and y

�
� (�

�
��

�
).

Hence if II has a solution, then so does II�. Therefore, I has no solution.

Remark 5.1. Theorem 5.3 is valid if either B or C or both are zero. In fact, if
both B and C are zero, the lemma becomes Gordan’s theorem.
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T 5.4 [G 1960]. L et A be an m� n matrix and let c� 0 be a vector
in R�. Then one and only one of the following systems has a solution:

I: Ax� c,

II: A
y� 0, 
c, y���1, y� 0

Proof. The system Ax� c has a solution if and only if the system %� 0,
Ax�%c has a solution. Thus the system I is equivalent to the system

I�: (A, �c)�
x

%�� 0, 
(0
�
, 1), (x, %)�� 0,

where 0
�
is the zero vector in R�. By Farkas’s lemma I� has a solution if and

only if the system II�:

�
A


�c� y
 ��
0
�
1� , y� 0, y �R�,

has no solution. But system II� is the same as


c, y���1, A
y� 0, y� 0,

which is system (II).

C 1. L et A be an m� n matrix and let c� 0 in R� be such that, for
all x �R�, Ax� c� 0. T hen there exists a vector y �R� such that y� 0, A
y� 0,
and 
c, y���1.

To prove the corollary, we need only note that if Ax� c� 0 for all x in R�,
then Ax� c has no solution in R�.

Exercise 5.1. Show that the set C of Lemma 5.1 is a convex cone.

Exercise 5.2. Let A be an m� n matrix and b a vector in R�. Show that one
and only one of the following systems has a solution:

I: Ax� 0, x� 0, 
b, x�� 0

II: A
y� b, y� 0.

Exercise 5.3. Let A be an m� n matrix and let c� 0 be a vector in R�. Show
that one and only one of the following systems has a solution:

I: Ax� c, x �R�,

II: A
y� 0, 
c, y�� 1.
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6. AFFINE GEOMETRY

Consider a plane II in R� and a line ' in R�. Let C be a subset of ( and let
S be a subset of '. Although C and S are subsets of R�, it is natural to consider
C as a two-dimensional object and S as a one-dimensional object. In this
section we shall make these ideas precise for subsets of R�.

Let V
�
denote an r-dimensional vector subspace of R�. When we do not wish

to emphasize the dimension of the subspace, we shall write V. The reader will
recall from linear algebra that an (n � 1)-dimensional subspace V

�	�
of R� can

be expressed as

V
�	�

��x :
�
�
���

a
�
x
�
� 0�� �x : 
a, x�� 0�,

where a is a nonzero vector. Thus V
�	�

is a hyperplane through the origin.
Also, given a subspace V

�	�
, there exist k linearly independent vectors

a
�
, . . . , a

�
such that

V
�	�

� �x :
a
�
, x�� 0, i� 1, . . . , k�.

Thus V
�	�

, a subspace of dimension n� k, is the intersection of k hyperplanes
through the origin.

Definition 6.1. A linear manifold M is a subset of R� of the form

M�V � b� �x :x� v� b, v �V �,

where V is a subspace and b is a vector in R�.

Note that since b� 0� b and 0 � V, it follows that b �M.
Thus a linear manifold is a translate of a subspace. Since subspaces are

closed sets in R�, linear manifolds are closed sets. Note that R� is a linear
manifold, since R� �R� � 0, and that a subspace V is a linear manifold, since
V � V � 0. In Section 1 we saw that a hyperplane is the translate of a hyper-
plane through the origin and thus the translate of an (n � 1)-dimensional
vector space. Therefore, hyperplanes are linear manifolds. In R� the linear
manifolds are planes, lines, and points. (A point is the translate of the zero-
dimensional subspace consisting of the origin.)

Linear manifolds are also called flats or affine varieties or affine sets.

L 6.1. L et M be a linear manifold, M�V � b. T hen the subspace V is
unique.
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To prove the lemma, we suppose that M has another representation M�

V �� b� and show that V ��V. Since b �M, from M�V �� b�, we have that
b� v�� b� for some v� �V �. Hence b�� b� �v�� V �. Now let x �V. Then
x�m� b for some m �M. But m� y� b� for some y � V �, and so

x� (y� b�) � b� y� (b�� b) �V �.

Thus V 
V �. A similar argument shows that V �
V.
If M�V � b, then the vector b is not unique. In fact, M� V � b� for any

b� �M. To see this, let b� be any vector in M and let M�� V � b�. Let m �M,
so m� v� b for some v � V. Since b� �M, we have b�� v�� b for some v� �V.
Hence m� (v� v�) � b�, which is an element of M�. Thus, M
M�. A similar
argument shows that M�
M.

On the other hand, if b is fixed and M�V � b, then the representation of
an element x in M as x� v� b is unique. For if x� v�� b, then v� x� b
and v�� x� b.

If M is a linear manifold, then the unique subspace V such that M�V � b
for some b is called the parallel subspace of M.

Definition 6.2. The dimension of a linear manifold M is defined to be the
dimension of the parallel subspace V.

IfM
�
andM

�
are two linear manifolds with the same parallel subspace, then

M
�
and M

�
are said to be parallel.

The next lemma characterizes linear manifolds as sets having the property
that if x

�
and x

�
belong to the set, then the entire line determined by these

points lies in the set.

L 6.2. A set M is a linear manifold if and only if, for every x
�
, x

�
in M and

�
�
, �

�
real with �

�
� �

�
� 1, the point �

�
x
�
� �

�
x
�
belongs to M.

Proof. LetM be a linear manifold,M�V � b. Let x
�
and x

�
be in M. Then

x
�
� v

�
� b and x

�
� v

�
� b, where v

�
and v

�
are in V. Hence for �

�
, �

�
with

�
�
� �

�
� 1,

�
�
x
�
� �

�
x
�
� �

�
(v

�
� b) � �

�
(v

�
� b) � (�

�
v
�
� �

�
v
�
) � b.

Since V is a subspace, �
�
v
�
� �

�
v
�
�V, and so �

�
x
�
� �

�
x
�
�M.

We now prove the reverse implication. Let M be a set such that if x
�
and

x
�
are in M and �

�
, �

�
are scalars such that �

�
� �

�
� 1, then �

�
x
�
� �

�
x
�
is

in M. Let x
�
�M and let W �M� x

�
. We shall show that W is a subspace,

and thus show that M is a linear manifold, since M�W �x
�
. Let y

�
and y

�
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belong to W and let � and � be arbitrary scalars. Then

�y
�
��y

�
�x

�
� [�(y

�
�x

�
) � (1� �)x

�
]� [�(y

�
�x

�
) � (1��)x

�
]� x

�
.

Since y
�
�x

�
and y

�
�x

�
belong to M, each of the expressions in square

brackets belongs to M. If we denote the expression in the first bracket by m
�

and the expression in the second bracket by m
�
, we may write

�y
�
��y

�
�x

�
� 2��

�
m

�
��

�
m

�
�� x

�
� 2m

�
�x

�
,

where m
�
denotes the expression in curly braces. Since m

�
and x

�
are in M

and the sum of the coefficients on the extreme right is 1, we get that �y
�
��y

�
�x

�
�M. Thus, �y

�
��y

�
�W, and so W is a subspace.

C 1. If M
�
and M

�
are linear manifolds, then so is M

�
�M

�
�

�x : x�m
�
�m

�
, m

�
�M

�
, m

�
�M

�
�.

C 2. If �M�� is a family of linear manifolds, then so is ��M� .

We leave the proofs of these corollaries as exercises for the reader.

Definition 6.3. A point x is said to be an affine combination of points x
�
, . . . , x

�
if there exists a vector q� (q

�
, . . . , q

�
) in R� such that

x� q
�
x
�
� �� q

�
x
�

and
�
�
���

q
�
� 1.

C 3. A set S is a linear manifold if and only if every affine combination
of points in S is in S.

The proof is similar to that of Lemma 2.6.

Definition 6.4. A finite set of points x
�
, . . . , x

�
is affinely dependent if there

exist real numbers �
�
, . . . , �

�
, not all zero such that �

�
� · · ·� �

�
� 0 and

�
�
x
�
��� �

�
x
�
� 0. If the points x

�
, . . . , x

�
are not affinely dependent, then

they are affinely independent.

L 6.3. A set of points x
�
, x

�
, . . . , x

�
is affinely dependent if and only if the

vectors (x
�
�x

�
), (x

�
� x

�
), . . . , (x

�
�x

�
) are linearly dependent.

Proof. Let x
�
, . . . , x

�
be affinely dependent. Then there exist real numbers

�
�
, . . . , �

�
not all zero such that

�
�
x
�
� �

�
x
�
� �� �

�
x
�
� 0,

�
�
���

�
�
� 0. (1)
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Hence

�
�
��(�

�
� �� �

�
). (2)

Not all of �
�
, . . . , �

�
are zero, for if they were, �

�
would also be zero,

contradicting the assumption that not all of �
�
, . . . , �

�
are zero. Substituting (2)

into the first relation in (1) gives

�
�
(x

�
�x

�
) � �

�
(x

�
�x

�
) �� � �

�
(x

�
� x

�
) � 0,

where �
�
, . . . , �

�
are not all zero. Thus the vectors (x

�
�x

�
), . . . , (x

�
�x

�
) are

linearly dependent.

To prove the reverse implication, we reverse the argument.

Remark 6.1. Clearly, an equivalent statement of Lemma 6.3 is the follow-
ing. A set of points x

�
, . . . , x

�
is affinely independent if and only if the vectors

x
�
�x

�
, . . . , x

�
�x

�
are linearly independent.

L 6.4. L et M be a linear manifold. T hen the following statements are
equivalent:

(i) T he dimension of M equals r.

(ii) T here exist r� 1 points x
�
, x

�
, . . . , x

�
in M that are affinely independent

and any set of r� 2 points in M is affinely dependent.

(iii) T here exist points x
�
, x

�
, . . . , x

�
that are affinely independent and such

that each point x in M has a unique representation

x�
�
�
���

�
�
x
�
,

�
�
���

�
�
� 1 (3)

in terms of the x
�
’s.

Proof. We first show that (i) implies (ii). If (i) holds, then we may write
M�V

�
� x

�
, where V

�
is a subspace of dimension r and x

�
is an arbitrary point

in M. Let v
�
, . . . , v

�
be a basis for V

�
and let

x
�
� v

�
�x

�
, i� 1, . . . , r.

Then the vectors x
�
� x

�
, i� 1, . . . , r, are linearly independent and the r� 1

points x
�
, x

�
, . . . , x

�
are affinely independent.

Let y
�
, y

�
, . . . , y

�
, y

���
be any set of r� 2 points in M. If we write M�

V
�
� y

�
, then each of the vectors y

�
� y

�
, i� 1, . . . , r� 1, is in V

�
. Therefore the

r� 1 vectors in this set are linearly dependent, and hence y
�
, y

�
, . . . , y

�
, y

���
are affinely dependent.
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Next we show that (ii) implies (iii). SinceM is a linear manifold and x
�

� M,
we may write M�V �x

�
, where V is a subspace. We assert that V has

dimension r. To see this, let

v
�
�x

�
�x

�
, i� 1, . . . , r.

Since the points x
�
, x

�
, . . . , x

�
are affinely independent, the vectors v

�
, . . . , v

�
are

linearly independent. Now let w
�
, . . . ,w

���
be a set of r� 1 distinct nonzero

vectors in V. Then there exist points y
�
, . . . , y

���
in M such that

w
�
� y

�
�x

�
, i� 1, . . . , r� 1.

Since the w
�
are distinct and none of the vectors w

�
is zero, the r� 2 points

x
�
y
�
, . . . , y

���
are distinct. By hypothesis, they are affinely dependent. Hence

the vectors w
�
, . . . ,w

���
are linearly dependent. Thus, V has dimension r, we

may write V � V
�
, and the vectors v

�
, . . . , v

�
are a basis for V

�
.

For arbitrary x in M we have x� v�x
�
uniquely for some v in V

�
. Hence

there exist unique real numbers �
�
, . . . , �

�
such that

x�
�
�
���

�
�
v
�
� x

�
�

�
�
���

�
�
(x

�
�x

�
) � x

�
��1�

�
�
���

�
�� x��

�
�
���

�
�
x
�
.

We obtain the representation (3) by setting �
�
� (1� �

�
�� � �

�
).

To show that the representation is unique in terms of the x
�
’s, we suppose

that there were another representation

x�
�
�
���

��
�
x
�
,

�
�
���

��
�
� 1.

Then

0�
�
�
���

(��
�
� �

�
)x

�
,

�
�
���

(��
�
� �

�
) � 0,

with not all of the coefficients (��
�
� �

�
) equal to zero. But then the points x

�
,

i� 0, . . . , r, would be affinely dependent, contrary to assumption.
We conclude the proof by showing that (iii) implies (i). Let x be an arbitrary

point in M. Then by virtue of (3)

x�
�
�
���

�
�
x
�
��1�

�
�
���

�
�� x��

�
�
���

�
�
x
�
�

�
�
���

�
�
(x

�
�x

�
) � x

�
. (4)

Since x
�
, x

�
, . . . , x

�
are affinely independent, the vectors

x
�
�x

�
, x

�
�x

�
, . . . , x

�
� x

�

are linearly independent.
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Let V
�
denote the r-dimensional vector space spanned by x

�
�x

�
, . . . , x

�
�x

�
.

It follows from (4) that x �V
�
� x

�
. Thus M
V

�
�x

�
.

To prove the opposite inclusion, we let W �M�x
�
. We saw in the proof

of Lemma 6.2 that W is a subspace. Moreover, since x
�
�x

�
, . . . , x

�
�x

�
belong to W, we have that V

�

W. Hence

V
�
�x

�

W � x

�
�M

and so M�V
�
�x

�
. This concludes the proof of Lemma 6.4.

Points x
�
, x

�
, . . . , x

�
as in Lemma 6.4 are said to be an affine basis for M.

The numbers �
�
, i� 0, 1, . . . , r, are called the barycentric coordinates of x

relative to the affine basis x
�
, x

�
, . . . , x

�
.

Definition 6.5. Let A be a subset of R�. The affine hull of A, denoted by '[A],
is defined to be the intersection of all linear manifolds containing A. The
dimension of A is the dimension of '[A].

Since A
R�, since R� is a linear manifold, and since the intersection of
linear manifolds is a linear manifold, it follows that, for any nonempty set A,
'[A] is not empty. Thus the dimension of A is well defined.

For any linear manifold M, the relations M
'[M] and '[M]
M hold,
so M�'[M]. Thus, for a linear manifold M, the dimension of M as defined
in Definition 6.2 coincides with that of Definition 6.5.

We shall often write dimA to refer to the dimension of A.

L 6.5. L et A be a subset of R� and let M(A) denote the set of all affine
combinations of points in A. T hen

(i) '[A]�M(A) and

(ii) if there exist "� 1 points x
�
, x

�
, . . . , x� in A that are affinely independent

and if any set of "� 2 points in A is affinely dependent, then dimA�".

Remark 6.2. Statement (i) is the analog for affine hulls of Theorem 2.1 for
convex hulls.

Proof. It is readily verified that if x and y are two points in M(A), then each
affine combination of these points is in M(A). Hence, by Lemma 6.2, M(A) is
a linear manifold. Since M(A) �A, it follows from the definition of '[A] that
'[A]
M(A). On the other hand, it follows from Corollary 3 to Lemma 6.2
that M(A) is contained in every linear manifold containing A. Thus '[A]�
M(A). Hence '[A]�M(A).

We now establish (ii). Let x
�
, x

�
, . . . , x� be "� 1 affinely independent points

in A and suppose that any set of "� 2 points is affinely dependent. Since the
points x

�
, x

�
, . . . , x� are in '[A], it follows from Lemma 6.4 that dim'[A]�".
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On the other hand, for arbitrary x in A the vectors

x
�
�x

�
, x

�
� x

�
, . . . , x��x

�
, x�x

�

are linearly dependent, and the first " vectors are linearly independent. Hence
for arbitrary x in A there exist unique scalars �

�
, . . . , �� such that

x�x
�
�

�
�
���

�
�
(x

�
�x

�
).

On setting �
�
� 1� (�

�
��

�
� ����), we get, uniquely,

x�
�
�
���

�
�
x
�
,

�
�
���

�
�
� 1.

Hence A is contained in the linear manifold '[�x
�
, x

�
, . . . , x��] and so

dimA)dim'[�x
�
, x

�
, . . . , x��].

To complete the proof of (ii), it suffices to show that '[�x
�
, x

�
, . . . , x��] has

dimension ". For then dimA�", and since we have already shown that
dimA�", statement (ii) will follow.

We now show that dim'[�x
�
, x

�
, . . . , x��]�". Since x

�
, x

�
, . . . , x� are

affinely independent to show that dim'[�x
�
, x

�
, . . . , x��]�", we must show

that any set y
�
, y

�
, . . . , y� , y���

of "� 2 vectors in '[�x
�
, x

�
, . . . , x��] is affinely

dependent. From (i), we have that M(�x
�
, . . . , x��) �'[�x

�
, . . . , x��]. Thus for

i� 0, 1, . . . , "� 1 we have

y
�
�

�
�
���

q
��
x
�
,

�
�
���

q
��
� 1.

Since q
��

� 1� q
��

� q
��

��� q
�� , we have

y
�
�

�
�
���

q
��
(x

�
�x

�
) �x

�
, i� 0, 1, 2, . . . , "� 1.

Hence,

y
�
� y

�
�

�
�
���

(q
��
� q

��
)(x

�
�x

�
), i� 1, . . . , "� 1. (5)

Thus, the "� 1 vectors y
�
� y

�
in (5) are in the vector space spanned by the

" linearly independent vectors x
�
�x

�
, . . . , x�� x

�
. Hence the vectors y

�
� y

�
in (5) are linearly dependent and the corresponding points y

�
, y

�
, . . . , y���

are
affinely dependent.
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C 4. T he points x
�
, x

�
, . . . , x� are an affine basis for '[A].

Proof. In the proof of Lemma 6.5 we showed that A
'[�x
�
, x

�
, . . . , x��].

Hence '[A]
'[�x
�
, x

�
, . . . , x

�
�]. Since the opposite inclusion clearly holds,

we have '[A]�'[�x
�
, x

�
, . . . , x��]. The corollary then follows from the

uniqueness of the representation (3) of a point x in '[�x
�
x
�
, . . . , x��].

Let x
�
, x

�
, . . . , x

�
be affinely independent. We call co�x

�
, x

�
, . . . , x

�
� the

simplex spanned by x
�
, x

�
, . . . , x

�
. The points x

�
, x

�
, . . . , x

�
are called the vertices

of the simplex.
We leave it as an exercise for the reader to show that any r� 2 points

in the simplex are affinely dependent. Thus the dimension of the simplex
co�x

�
, x

�
, . . . , x

�
� is r.

C 5. T he dimension of a convex set C is the maximum dimension of
simplexes in C.

This corollary is a restatement of Lemma 6.5 when C is a convex set.
Intuitively, in R� one would expect that a convex set that is not contained

in a plane or in a line to have nonempty interior. In terms of our definition of
dimension of a set, we would expect a three-dimensional convex set to have
nonempty interior. This is indeed the case, not only in R�, but also in R�, as
the following theorem shows.

T 6.1. A convex set C in R� has dimension n if and only if C has nonvoid
interior.

Suppose C has nonempty interior. Let x
�
be an interior point of C and let

e
�
, . . . , e

�
denote the standard basis vectors in R�. Then there exists an �� 0

such that each of the n� 1 points x
�
, x

�
� �e

�
, . . . , x

�
� �e

�
lies in C. These

points are affinely independent. Since in R� any n� 2 points are affinely
dependent, it follows from (ii) of Lemma 6.5 that C has dimension n.

Now suppose that C has dimension n. Then '[C]�R�, and by Corollary
4 of Lemma 6.5 there exist points x

�
, x

�
, . . . , x

�
in C that form an affine basis

for '[C]�R�. Thus each x in R� can be written uniquely as

x�
�
�
���

�
�
x
�
,

�
�
���

�
�
� 1. (6)

Since C is convex, all points x in R� with �
�
� 0, i� 0, 1, . . . , n, lie in C. In

particular,

x
*
�

1

n� 1
(x

�
�x

�
��� x

�
),

the centroid of the simplex co�x
�
, x

�
, . . . , x

�
�, is in C.
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We can also write x uniquely as

x�
�
�
���

�
�
(x

�
�x

�
),

with the �
�
as in (6). Since the vectors x

�
�x

�
, . . . , x

�
�x

�
are linearly

independent, they form a basis for R�, and the linear transformation T from R�

to R� defined by

T (x) � (�
�
, . . . , �

�
)

is nonsingular and continuous. Let f be the mapping from R� to R��� defined
by

f(x) � f �
�
�
���

�
�
x
��� (�

�
, �

�
, . . . , �

�
),

where the �
�
are as in (6). The mapping f can be viewed as a composite map

h °T, where

h(�
�
, . . . , �

�
) � (�

�
, �

�
, . . . , �

�
), �

�
� 1�

�
�
���

�
�
.

Thus, f is continuous.
Since f is continuous and since

f(x
*
) ��

1

n� 1
,

1

n� 1
, . . . ,

1

n� 1� ,

there exists a !� 0 such that for x �B(x
*
, !) all components �

�
of f (x) will be

strictly positive. Thus, all x �B(x
*
, !) lie in C, and so x

*
is an interior point

of C.
By experimenting with a sheet of cardboard, if necessary, the reader should

find it plausible that an arbitrary plane in R� can be put into coincidence with
the plane x

�
� 0 by means of an appropriate sequence of rotations followed by

a possible translation. The plane x
�
� 0 consists of those points in R� of the

form (x
�
, x

�
, 0) and thus is essentially R�. Thus, in some sense a plane in R� is

equivalent to R�. Similarly, any line in R� can be made to coincide with any
one of the coordinate axes by means of an appropriate sequence of rotations
followed by a possible translation.

We shall now show that any r-dimensional manifold M in R� is equivalent,
in a sense to be made precise, to R�.
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Definition 6.6. An affine transformation T from R� to R� is a mapping of the
form T x�Sx� a, where a is a fixed vector in R� and S is a linear transfor-
mation from R� to R�.

Since relative to appropriate bases in R� and R� a linear transformation S
from R� to R� is given by Sx�Ax, where A is an m� n matrix, we have
Tx�Ax� a.

L 6.6. A mapping T from R� to R� is affine if and only if for each � �R and
each pair of points x

�
and x

�
in R�

T [(1 � �)x
�
� �x

�
]� (1� �)T x

�
� �T x

�
. (7)

It is a straightforward calculation to show that if T is affine, then (7) holds.
Now suppose that (7) holds. Let a� T (0), and let Sx�Tx� a. To show that
T is affine, we must show that S is linear.

For any � in R and x in R�,

S(�x) �T [�x� (1� �)0]� a� �T (x) � (1� �)T (0) � a

� �[T (x) � a]� �S(x).

For any x
�
and x

�
in R� we have

S(x
�
�x

�
) � S[2(�

�
x
�
��

�
x
�
)]� 2S(�

�
x
�
� �

�
x
�
) � 2T (�

�
x
�
��

�
x
�
) � 2a

� [T (x
�
) � a]� [T (x

�
) � a]� S(x

�
) �S(x

�
).

Thus S is linear.
From (7) we see that under an affine map lines are mapped onto lines. Thus

under an affine map linear manifolds are mapped onto linear manifolds. By
taking 0��� 1 in (7), we see that under an affine map convex sets are
mapped onto convex sets.

T 6.2. L et x
�
, x

�
, . . . , x

�
and y

�
, y

�
, . . . , y

�
be two affinely independent sets

in R�. T hen there exists a one-to-one affine transformation T from R� onto itself
such that T x

�
� y

�
, i� 0, 1, . . . , r. If r� n, then T is unique.

If r� n, obtain two affinely independent sets x
�
, . . . , x

�
, x

���
, . . . , x

�
and

y
�
, . . . , y

�
, y

���
, . . . , y

�
of n� 1 points by adjoining appropriate points to the

original sets. The vectors x
�
�x

�
, . . . , x

�
� x

�
constitute a basis for R�, as do

the vectors y
�
� y

�
, . . . , y

�
� y

�
. Thus, there exists a unique one-to-one linear

transformation S of R� onto itself such that S(x
�
�x

�
) � y

�
� y

�
, i� 1, . . . , n.

Let T x� Sx� a for a fixed a to be determined. Then for i� 0, 1, . . . , n,

T (x
�
) �S(x

�
) � a�S(x

�
�x

�
) � S(x

�
) � a� y

�
� y

�
�S(x

�
) � a.
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Therefore, if we take a� y
�
� S(x

�
), we will have Tx

�
� y

�
, i� 0, 1, . . . , n.

C 6. L et M
�
and M

�
be two linear manifolds of the same dimension.

T hen there exists a one-to-one affine transformation T of R� onto itself such that
TM

�
�M

�
.

By Lemma 6.4, M
�
has an affine basis x

�
, x

�
, . . . , x

�
and M

�
has an affine

basis y
�
, y

�
, . . . , y

�
. By Theorem 6.2 there exists a one-to-one transformation T

from R� onto itself such that T x
�
� y

�
, i� 1, . . . , n. The corollary now follows

from the facts that each x in M
�
is a unique affine combination of x

�
, x

�
, . . . , x

�
,

each y in M
�
is a unique affine combination of y

�
, y

�
, . . . , y

�
, and T maps affine

combinations onto affine combinations.

Remark 6.3. If M is a linear manifold of dimension r, then there exists a
one-to-one affine transformation T of R� onto itself that maps M onto the
manifold

V *
�

� �y : y� (y
�
, . . . , y

�
), y

���
� y

���
��� y

�
� 0�.

The manifold V *
�

can be identified with R� by means of the one-to-one
mapping. ( from V *

�
onto R� given by

( : y� (y
�
, . . . , y

�
, 0, . . . , 0) � (y

�
, . . . , y

�
).

Denote the restriction of T to M by T
�
, and define a mapping * from M to R�

by the formula

x �M : *(x) �((T
�
x).

Then * is one-to-one onto, is continuous, and has a continuous inverse, *	�.
Note that * and *	� map convex sets onto convex sets and linear manifolds
onto linear manifolds of the same dimension.

Exercise 6.1. Let k be a positive integer, 1� k� n� 1. Show that for a given
subspace V

�	�
of R�, there exist k linearly independent vectors a

�
, . . . , a

�
such

that

V
�	�

� �x �R�, 
a
�
, x�� 0, i� 1, . . . , k�.

Exercise 6.2. Show that a set of points x
�
, . . . , x

�
is affinely dependent if and

only if one of the points is an affine combination of the other points.

Exercise 6.3. In R� consider the plane 2x� y� z� 5.
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(a) Find an affine basis for this plane that does not include the point x�

(�1,�2, 9).
(b) Express x� (�1,�2, 9) in barycentric coordinates relative to your

basis.

Exercise 6.4. Let x
�
, x

�
, . . . , x

�
be affinely independent. Show that any r� 2

points y
�
, y

�
, . . . , y

�
, y

���
in co�x

�
, x

�
, . . . , x

�
� are affinely dependent.

Exercise 6.5. Show that an affine map T maps affine combinations of points
onto affine combinations of points.

Exercise 6.6. In Theorem 6.2, why is T unique if r� n?

7. MORE ON SEPARATION AND SUPPORT

Although the separation and support theorems of Sections 3 and 4 are
adequate for most applications to optimization problems, they are not appli-
cable in some situations where proper separation and nontrivial support of
convex sets do occur. To illustrate this, let

C
�
� �x �R� : x

�
� 0, x

�
� 0, x

�
� 0�

C
�
� �x �R� : x

�
� 0, x

�
� 0, x

�
� 0�.

These two sets are properly separated by the plane (hyperplane in R�)
x
�
�x

�
� 0. These sets are convex, are not disjoint, and have empty interiors

so that neither Theorem 3.3 nor Theorem 3.4 can be applied to deduce
separation.

Let C� �x �R� :x�
�
�x�

�
� 1, x

�
� 0�. At each boundary point x

�
with

x�
��

�x�
��

� 1 there exist a nontrivial supporting hyperplane, namely the plane
that is orthogonal to the plane x

�
� 0 and whose intersection with this plane

is the tangent line to the circle x�
�
� x�

�
� 1, x

�
� 0 at x

�
. Again, since the

convex set C has empty interior, Theorem 4.1 does not give us the existence of
this nontrivial supporting hyperplane.

The sets C
�
, C

�
, and C, considered as sets in R�, do have interiors. It turns

out that this observation is the key to theorems that are applicable to examples
such as those described above. We introduce the notion of relative interior of
a convex set C of dimension r. The relative interior is the interior of a convex
set C considered as a set in '[C]. In other words we consider the set C as a
set in R� rather than a set in R�.

Definition 7.1. Let A be a set of dimension r� n and let M�'[A]. A point
x
�
in A is said to be a relative interior point of A if there exists an �� 0 such

that B(x
�
, �)�M
A. The set of relative interior points of A is called the
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relative interior of A and will be denoted by ri(A). A set A is said to relatively
open if ri(A) �A, that is, if every point of A is a relative interior point of A.

Note that if dimM� n, then a relative interior point is an interior point
and a relatively open set is an open set.

Since a linear manifold M is a closed set, any limit point of A will also be
in M. Thus the closure of A as a subset of M is the same as the closure of A
as a subset of R�.

If A is contained in M and dimM� n, then every point of A is a boundary
point of A. We define the relative boundary of A to be the set A� 
 ri(A), that
is, those points of A� that are not relative interior points of A. If dimM� n,
then the relative boundary of A is the boundary of A.

Let M be a linear manifold of dimension r� n and let * be the mapping
defined in Remark 6.3. We noted there that * and *	� are one to one and
continuous.

L 7.1. If O is an open set in R�, then *	� (O) is a relatively open set in M.
If O� is a relatively open set in M, then *(O�) is an open set in R�.

Proof. Let O be an open set in R� and let x
�
� *	�(O). Then there is a unique

y
�
in O such that *	�(y

�
) �x

�
, or equivalently, y

�
� *(x

�
). Since y

�
�O, there

exists an ��O such that the open ball B
�
(y

�
, �) in R� is contained in O. Since

* is continuous, there exists a !� 0 such that for x �B(x
�
, !)�M we have

*(x) �B(y
�
, �) � 0. But this says that B(x

�
, !)�M
*	�(O). Hence x

�
is a

relative interior point of *	�(O), and so *	�(O) is relatively open. Since
*� (*	�)	�, a similar argument with * replaced by *	� shows that if O� is
relatively open, then *(O�) is open in R�.

Let C be a convex set in R� of dimension r� n. As a consequence of the
one-to-one relationship between M�'[C] and R� that preserves open sets,
convexity, dimension of convex sets, and linear manifolds, we can obtain many
properties of C by establishing these properties for convex sets of full dimen-
sion. These properties then hold for the set *(C) considered as a set of full
dimension in R� and hence for C� *	�(*(C)). In particular, we obtain the
following results in this fashion.

T 7.1. A convex set of dimension r has nonempty relative interior.

This theorem follows from Theorem 6.1 and Lemma 7.1.

L 7.2. L et C be a convex set and let x
�
and x

�
be two points with x

�
� ri(C)

and x
�
�C� . T hen the line segment [x

�
, x

�
) is contained in ri(C).

C 1. If C is convex, then ri(C) is convex.
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C 2. L et C be convex. T hen

(i) ri(C) �C� and
(ii) ri(C) � ri(C� ).

Lemma 7.2, Corollary 1 and (i) of Corollary 2 follow from Lemma 2.5 and
the corresponding corollaries. In proving (ii) of Corollary 2 to Lemma 2.5, we
argued that since C
C� , it follows that int(C) 
 int(C� ). In general, it is not
true that if A and B are convex sets with A
B that ri(A) 
 ri(B), as the
following example shows. Take B to be a closed unit cube in R�. Let A be any
closed face of B. Then A
B, but it is not true that ri(A) 
 ri(B). In fact, ri(A)
and ri(B) are disjoint. Since '[C]�'[C� ], it does follow that ri(C) 
 ri(C� ).
The proof of the opposite inclusion given in Section 2 is valid if we replace
interiors by relative interiors.

We now state and prove the best possible separation theorem in R�.

T 7.2. L et X and Y be two convex subsets of R�. T hen X and Y can be
properly separated if and only if ri(X) and ri(Y ) are disjoint.

To prove the ‘‘only if’’ part of the theorem, we shall need to define what is
meant by hyperplane cutting a convex set and to develop conditions under
which cutting occurs.

Definition 7.2. A hyperplane H�a is said to cut a convex set C if there exist
points x

�
and x

�
in C such that 
a, x

�
��� and 
a, x

�
���. A hyperplane that

does not cut C is said to bound C.

L 7.3. A hyperplane H�a cuts a convex set C if and only if the following two
conditions hold:

(i) H�a does not contain C and

(ii) H�a� ri(C) ��.

Proof. Let H�a cut C. Then there exist points x
�
and x

�
in C such that


a, x
�
��� and 
a, x

�
���. Since for y �H�a we have 
a, y�� �, conclusion (i)

follows. Now let z � ri(C). Then by Lemma 7.2 the line segments (x
�
, z] and

[z, x
�
) belong to ri(C). Let

y(t) ��
z� t(z� x

�
), �1� t� 0,

z� t(x
�
� z), 0� t� 1.

Then y(t) �C for �1�t� 1 and y(t) � ri(C) for �1�t�1. Let �(t)�
a, y(t)�.
Since � is continuous on [�1, 1] with �(�1)��, and �(1)��, there exists a
t
�
with �1� t

�
� 1 such that �(t

�
)��. But then y(t

�
) � ri(C) and 
a, y(t

�
)���,

which establishes (ii).
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Figure 2.8.

Now suppose that (i) and (ii) hold. Then there exist a point x
�
in ri(C)�H�a

and a point x
�
in C and not in H�a. Suppose that 
a, x

�
���. Since x

�
� ri(C),

there exists a !� 0 such that x
�
�x

�
� !(x

�
� x

�
) �C. Then


a, x
�
�� �� !(
a, x

�
�� �)��.

If 
a, x
�
���, then 
a, x

�
���.

We now prove Theorem 7.2.
If a hyperplane properly separates the convex sets X and Y, then it certainly

properly separates ri(X) and ri(Y ). Conversely, if a hyperplane properly
separates ri(X ) and ri(Y ), then since ri(X) �X� and ri(Y ) � Y� , it follows that
the hyperplane properly separates X and Y. Thus a hyperplane properly
separates X and Y if and only if it properly separates ri(X) and ri(Y ). Thus we
may assume without loss of generality that X and Y are disjoint relatively open
convex sets. The proof of separation will be carried out by a descending
induction on d�max(dimX, dim Y ).

If dimX� n, then the separation follows from Theorem 3.4. We now
assume that proper separation occurs if d� k, where 1� k� n. We now
suppose that dimX� k� 1 and dim Y � k� 1. To simplify the notation, we
assume that 0 �X. There is no loss of generality in assuming this, since this can
always be achieved by a translation of coordinates. Since 0 �X, the manifold
'[X] is a subspace of dimension k� n� 1. Let w be a point in R� that is not
in '[X]. Let

A� co�X� (X �w)�, B� co�X� (X �w)�.

We assert that Y cannot intersect both A and B. See Figure 2.8.
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By Theorem 2.2 points � in A can be written

��
���
�
���

�
�
(x

�
� !

�
w),

where x
�
�X for i� 1, . . . , n� 1, the vector � � (�

�
, . . . , �

���
) �P

���
, and !

�
is

either zero or 1. Thus, if � �A, then there exists an x �X such that

�� x� �� w, 0��� � 1. (1)

Since

�� x� �� w� (1� �� )x� �� (w�x),

every point � given by (1) is in A. A similar argument shows that

B� �� :� �x� �� w, x �X, 0��� � 1�.

Thus if A�Y �� and B� Y � �, then there exist points y
�
and y

�
in Y such

that

y
�
�x

�
� �� �

w, y
�
�x

�
� �� �

w,

where x
�
, x

�
�X, 0��� �

� 1, 0��� �
� 1. The inequalities �� �

� 0 and �� �
� 0

follow from X� Y ��.
Let �� �� �

/(�� �
� �� �

) and let �� �� �
/(�� �

� �� �
). Then �� 0, �� 0, ���� 1,

and

�y
�
��y

�
� �x

�
� �x

�
. (2)

Since X and Y are convex, the left-hand side of (2) belongs to X and the
right-hand side belongs to Y. This contradicts X�Y ��, and so Y cannot
intersect both A and B.

For the sake of definiteness, suppose that A� Y ��. Since dimA� k
(why?) and dim Y � k� 1, by the inductive hypothesis there exists a hyper-
plane H that properly separates A and Y. Since X
A, the hyperplane H
properly separates X and Y.

To prove the ‘‘only if’’ assertion, suppose that there exists a hyperplane H
that properly separates X and Y and that there exists a point z in ri(X) � ri(Y ).
Then z �H, and thus H� ri(X) �� and H� ri(Y ) � �. Since the separation
is proper, at least one of the sets, say X, is not contained in H. Hence by
Lemma 7.3, H cuts X, which contradicts the assumption that H separates X
and Y.
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We conclude this section with results that are stronger than Theorems 4.1
and 4.3.

T 7.3. L et C be a convex set and let D be a convex subset of the relative
boundary of C. T hen there exists a nontrivial supporting hyperplane to C that
contains D.

Proof. Since ri(C) �D� �, we have ri(C) � ri(D) ��. Hence by Theorem
7.2 there exists a hyperplane H�a that properly separates C and D. Thus


a, x��� for x �C and 
a, y��� for y �D. (3)

Since each y in D is a relative boundary point of C, for each y in D there exists
a sequence �x

�
� of points in C such that x

�
� y. For this sequence we have


a, x
�
��� and 
a, x

�
��
a, y�. Thus 
a, y���. From this and from (3) we

get that 
a, y�� �. Thus, each y in D is in H�a. Since D
C� , it follows that H�a
is a supporting hyperplane to C that contains D. Since the separation of C and
D is proper and since D
H�a, there is an x

�
in C such that 
a, x

�
���. Thus

the supporting hyperplane is nontrivial.

The next theorem is stronger than Theorem 4.3 but is only valid in finite
dimensions.

T 7.4. L et C be a compact convex subset of R�. T hen C is the convex
hull of its extreme points.

Proof. Let C
	
denote the set of extreme points of C. By Theorem 4.2 the set

C
	
��. Since C

	

C and co(C

	
)
 co(C) �C, to prove the theorem, we must

show that

C
 co(C
	
). (4)

The proof of (4) proceeds by induction on the dimension k of C.
If k� 0, then C is a point, and if k� 1, then C is a closed line segment. Thus

(4) holds in these cases. Now suppose that (4) holds if dimC� k� 1, where
1� k� n.

Let dimC� k and let x �C. By Theorem 7.1, either x � ri(C) or x belongs
to the relative boundary of C. If x belongs to the relative boundary of C, then
by Theorem 7.3, there exists a supporting hyperplane to C that contains x. This
hyperplane will intersect '[C] in a manifold H

�	�
that is a hyperplane of

dimension k� 1 in '[C] and that supports C at x. The set H
�	�

�C is
compact and convex and has dimension �k� 1. By the inductive hypotheses
x is a convex combination of the extreme points of H

�	�
�C. By Lemma 4.1

the extreme points of H
�	�

�C are extreme points of C. Thus x � co(C
	
)

whenever x is a relative boundary point of C.
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If x � ri(C), let L be a line in '[C] through the point x. Then L �ri(C) is
a line segment (y, z) whose end points y and z are in the relative boundary of
C. Since C is compact, y �C and z �C. Since x is a convex combination of y
and z and since y and z are in co(C

	
), it follows that x � co(C

	
), and (4) is

established.
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III
CONVEX FUNCTIONS

1. DEFINITION AND ELEMENTARY PROPERTIES

The simplest class of functions are real-valued functions that are translates of
linear functions, or affine functions, f defined by the formula f (x)��a, x�� b.
One could consider the next class of functions in order of complexity to be the
translates of the functions y� �x��, p� 1. In R� � (x, y), where x �R�, the
graph of y� �x� is the upper nappe of a right circular cone with vertex at the
origin and the graph of y� �x�� is a paraboloid of revolution. The graphs of
such functions are axially symmetric about a line parallel to the y-axis.
Intuitively, it appears that all of the above functions have the property that the
set of points (x, y) in R��� that lie on or above the graph is a convex set. It is
therefore reasonable to consider the next level of functions to be the functions
with this property. Such functions are called convex functions. It turns out that
convex functions are important in optimization problems as well as in other
areas of mathematics. We shall define convex functions using a different
property and then show in Lemma 1.1 below that our definition is equivalent
to the one suggested.

Definition 1.1. A real-valued function f defined in a convex set C in R� is said
to be convex if for every x

�
and x

�
in C and every �� 0, �� 0, ���� 1,

f (�x
�
��x

�
)��f (x

�
) ��f (x

�
). (1)

The function f is said to be strictly convex if strict inequality holds in (1).

The geometric interpretation of this definition is that a convex function is a
function such that if z

�
and z

�
are any two points in R��� on the graph of f,

then points of the line segment [z
�
, z

�
] joining z

�
and z

�
lie on or above the

graph of f.
Figure 3.1 illustrates the definition. Let C� (x

�
, w), where x

�
� �x

�
� �x

�
,

�� 0, �� 0, ���� 1, be a point on the line segment joining the points
A� (x

�
, f (x

�
)) and B� (x

�
, f (x

�
)) on the graph of f. Let D� (x

�
, w) and let
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Figure 3.1.

E� (x
�
, f (x

�
)). Then

f (x
�
) �w

��x
�
� x

�
�
�
�BD�
�CD�

�
�BE�
�AE�

�
f (x

�
) � f (x

�
)

�x
�
�x

�
�

.

From the extreme terms of these equalities we get that

w� �f (x
�
) � (1 � �) f (x

�
) � �f (x

�
) ��f (x

�
).

Thus (x
�
, w) lies above or on the graph if and only if (1) holds.

Note that if the domain of f is not convex, then the left-hand side of (1)
need not be defined. Therefore, when defining convex functions, it only makes
sense to consider functions defined on convex sets. Henceforth we shall not
repeat the term real-valued when considering convex functions; it shall be
tacitly assumed that f is real valued.

Definition 1.2. A function f defined on a convex set C is said to be concave if
�f is convex.

Definition 1.3. Let f be a real-valued function defined on a set A. The epigraph
of f, denoted by epi( f ), is the set

epi( f ) � 	(x, y) : x �A, y �R, y� f (x)
.

In Figure 3.2 the hatched areas represent the epigraphs of y�x�, �1�
x� 1, and y�x�, �1�x� 1.

The epigraph of a function is the set of points (x, y) in R��� that lie on or
above the graph of f.
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Figure 3.2.

L 1.1. A function f defined on a convex set C is convex if and only if epi( f )
is convex.

Proof. Suppose that epi( f ) is convex. Let x
�
and x

�
belong to C. Then

(x
�
, f (x

�
)) and (x

�
, f (x

�
)) belong to epi( f ). Since epi( f ) is convex, for any

(�, �) �P
�

�(x
�
, f (x

�
)) � �(x

�
, f (x

�
)) � (�x

�
� �x

�
, � f (x

�
) �� f (x

�
))

belongs to epi( f ). By the definition of epi( f ),

�f (x
�
) �� f (x

�
)� f (�x

�
��x

�
),

and so f is convex.
Now suppose f is convex. Let (x

�
, y

�
) and (x

�
, y

�
) be any two points in

epi( f ). Then y
�
� f (x

�
) and y

�
� f (x

�
). For any (�, �) in P

�
let

(x
�
, y) � �(x

�
, y

�
) � �(x

�
, y

�
) � (�x

�
� �x

�
, �y

�
� �y

�
).

Since (x
�
, y

�
) and (x

�
, y

�
) are in epi( f ), and since f is convex, we have

y� �y
�
� �y

�
�� f (x

�
) �� f (x

�
)� f (�x

�
��x

�
) � f (x

�
).

Thus, (x
�
, y) � epi( f ), and so epi( f ) is convex.

L 1.2. If f is a convex function defined on a convex set C in R�, then for
any real � the set 	x : f (x)��
 is either empty or convex.

We leave the proof of this lemma as an exercise for the reader.
The converse to this lemma is false, as can be seen from the function

f (x) �x�.
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L 1.3. L et 	 f�
 be a family of convex functions defined on a convex set
C in R� and let there exist a real-valued function M with domain C such that, for
each �, f�(x)�M(x) for all x in C. T hen the function f defined by f (x) �

sup	 f�(x) : �
 is convex.

Proof. Since for each x in C f�(x)�M(x) for all �, it follows that
f (x)�M(x), and so f is real valued. Also epi( f ) ��� epi( f�), so epi( f ), being
the intersection of convex sets, is convex. Therefore f is convex.

T 1.1 (J’ I). L et f be a real-valued function defined on
a convex set C in R�. T hen f is convex if and only if for every finite set of points
x
�
, . . . , x

�
in C and every �� (


�
, . . . , 


�
) in P

�

f (

�
x
�
�� � 


�
x
�
)�


�
f (x

�
) ��� 


�
f (x

�
). (2)

Proof. If (2) holds for all positive integers k, then it holds for k� 2. But for
k� 2, the relation (2) is the definition of convex function.

Now suppose that f is convex. We shall prove (2) by induction on k. For
k� 1 the relation is trivial. For k� 2 the relation follows from the definition
of a convex function. Suppose that k� 2 and that (2) has been established for
k� 1. We shall show that (2) holds for k. If 


�
� 1, then there is nothing to

prove. If 

�
� 1, set ������

���


�
. Then

�� 0, �� 

�
� 1,

���
�
���



�
�

� 1,

and we may write (compare the proof of Lemma II.2.6)

f �
�
�
���



�
x
��� f �� �

���
�
���
�


�
�� x��� 


�
x
��

�� f �
���
�
���
�


�
�� x��� 


�
f (x

�
)

�

�
f (x

�
) ��� 


���
f (x

���
) � 


�
f (x

�
),

where the first inequality follows from the convexity of f and the second
inequality follows from the inductive hypothesis.

The next lemma in conjunction with other criteria is sometimes useful in
determining whether a given function is convex.

L 1.4. L et f be a convex function defined on a convex set C in R�. L et g
be a nondecreasing convex function defined on an interval I in R. L et f (C)� I.
T hen the composite function g ° f defined by (g ° f )(x) � g( f (x)) is convex on C.
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We leave the proof as an exercise.
Let C be a convex set. Choose an x in C and a v in R�. Let

�� 	
 : 
 �R, x� 
v �C
.

Let l
�
� sup	
 : 
 ��
 and let l

�
� inf	
 : 
 ��
. Then l

�
� 0� l

�
. If l

�
� l

�
,

then since C is convex, x� 
v �C for all 
 in the open interval (l
�
, l

�
). Note

that, depending on the structure of the set C, x� 
v can belong to C for all 

in [l

�
, l

�
) or [l

�
, l

�
] or (l

�
, l

�
].

Let f be a convex function defined on a convex set C. From the discussion
in the preceding paragraph it follows that for each x in C and each v in R�

there is an interval I�R that depends on x and v such that the function
�( ; x, v) defined by

�(
 ; x, v) � f (x� 
v) (3)

has I as its domain of definition. The interval I always includes the origin and
can degenerate to the single point 	0
; it can be open, half open, or closed. The
function �( ; x, v) gives the one-dimensional section of the function f through
the point x in the direction of v. The next lemma states that f is convex if and
only if all the nondegenerate one-dimensional functions �( ; x, v) are convex.

L 1.5. A function f defined on a convex set C is convex if and only if for
each x in C and v in R� such that �( ; x, v) is defined on a nondegenerate interval
I the function �( ; x, v) is convex on I.

Proof. Suppose that f is convex. Then for any 

�
, 


�
in I and (�, �) in P

�
,

�(�

�
��


�
; x, v) � f (x� (�


�
��


�
)v)

�
�

�����

f (�(x� 

�
v) ��(x� 


�
v))

�
�

� ������

�f(x� 

�
v) ��f (x� 


�
v)

�
�

��� �

��(

�
; x, v) � ��(


�
; x, v).

This proves the convexity of �( ; x, v).
Now suppose that for each x in C and v in R� such that I� 	0
, �( ; x, v)

is convex. Let x
�
and x

�
be in C and let (�, �) be in P

�
. Then

f (�x
�
��x

�
) � f ((1 ��)x

�
��x

�
)

� f (x
�
��(x

�
� x

�
)) ��(� ; x

�
, x

�
�x

�
)

��(� · 0� � · 1; x
�
, x

�
�x

�
). (4)
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Since

�(
; x
�
, x

�
�x

�
) � f (x

�
� 
(x

�
� x

�
))

and since C is convex, �(
; x
�
, x

�
�x

�
) is defined for 0�
� 1 and

�(0; x
�
, x

�
�x

�
) � f (x

�
), �(1; x

�
, x

�
�x

�
) � f (x

�
). (5)

From the convexity of �( ; x
�
, x

�
�x

�
) and (5) we get that the rightmost side

of (4) is less than or equal to

��(0; x
�
, x

�
�x

�
) ���(1; x

�
, x

�
�x

�
) � �f (x

�
) ��f (x

�
).

Hence f is convex.

Remark 1.1. An examination of the proof shows that f is strictly convex if and
only if, for each x and v, �( ; x, v) is strictly convex.

We now present some results for convex functions defined on real intervals.
The first result is the so-called three-chord property.

T 1.2. L et g be a convex function defined on an interval I�R. T hen if
x� y� z are three points in I,

g(y) � g(x)

y� x
�

g(z) � g(x)

z� x
�

g(z) � g(y)

z� y
. (6)

If g is strictly convex, then strict inequality holds.

Figure 3.3 illustrates the theorem and shows why the conclusion of the
theorem is called the three-chord property.

Proof. Since x� y� z, there exists a 0� t� 1 such that y�x� t(z �x).
Since g is convex,

g(y) � g(x) � g((1 � t)x � tz) � g(x)

� (1 � t)g(x) � tg(z) � g(x)

� t(g(z) � g(x)). (7)

If in (7) we now divide through by t(z �x)� 0 and note that y�x� t(z �x),
we get that

g(y) � g(x)

y�x
�

g(z) � g(x)

z�x
.
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Figure 3.3.

To obtain the second inequality, we write

g(z) � g(y) � g(z) � g(x� t(z �x))

� g(z) � (1� t)g(x) � tg(z)

� (1 � t)[g(z) � g(x)].

If we now divide through by z� y� 0 and note that z� y� (1 � t)(z �x),
we obtain the second inequality.

C 1. For each c in I the slope function s( ; c) defined by

s(w ; c) �
g(w) � g(c)

w� c
, w� c, w � I,

is an increasing function. If g is strictly convex, then s( ; c) is strictly increasing.

Proof. We must show that if w
�
�w

�
, then

s(w
�
; c)� s(w

�
; c). (8)

For two points w
�
and w

�
such that c�w

�
�w

�
, inequality (8) follows from

(6) by taking x� c, y�w
�
, and z�w

�
. For two points w

�
and w

�
such that

w
�
�w

�
� c, inequality (8) follows from (6) by taking z� c, x�w

�
, and

y�w
�
. Lastly, if w

�
� c�w

�
, the inequality (8) follows from (6) by taking

y� c, x�w
�
, and z�w

�
.
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Let f be a real-valued function defined on an interval I. If at a point c in I

lim
��	�

f (c � h) � f (c)

h

exists, then f is said to have a right-hand derivative at c whose value f �
�
(c) is

the value of the above limit. Similarly, the left-hand derivative of f at c, denoted
by f �

�
(c), is

lim
��	�

f (c� h) � f (c)

h

provided the limit exists.

C 2. At each point c in int(I) the right- and left-hand derivatives g�
�
(c)

and g�
�
(c) exist and g�

�
(c)� g�

�
(c). Moreover, g�

�
and g�

�
are increasing

functions.

Proof. In (6) take y� c. Then for x� c� z we have

g(x) � g(c)

x� c
�

g(z) � g(c)

z� c
.

It follows from this relation, from Corollary 1, and from Exercise I.6.6. that
g�
�
(c) and g�

�
(c) exist and g�

�
(c)� g�

�
(c).

Now let c� d be two points in int(I) and let h� 0 be such that c� h� d
and d� h� c. Then by Theorem 1.2

g(c � h) � g(c)

h
�

g(d) � g(c)

d� c
�

g(d � h) � g(d)

�h
.

If we now let h	 0�, we get g�
�
(c)� g�

�
(d). Combining this with g�

�
(x)� g�

�
(x)

for any x in int(I), we get

g�
�
(c)� g�

�
(c)� g�

�
(d)� g�

�
(d),

which gives the desired monotonicity properties.

Remark 1.2. If c is a left-hand end point of I and g is defined at c, then from
the monotonicity of s( ; c) it follows that g�

�
(c) always exists if we permit the

value �	.

The next corollary is an immediate consequence of Corollary 2 and is a
result that the reader encountered in elementary calculus.
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C 3. If g is convex and twice differentiable on I, then g� is an increasing
function on I and g�(x)� 0 for all x in I.

We can now return to functions defined on R�.

Definition 1.4. Let f be a real-valued function defined on a set S in R�. Let x
be a point in S and let v be a vector in R� such that x� 
v belongs to S for 

in some interval [0, l). Then f is said to have a directional derivative at x in the
direction v if

lim

�	�

f (x� 
v) � f (x)



exists. We denote the directional derivative by f �(x ; v).

L 1.6. L et f be a convex function defined on a convex set C and let x be a
point of C. If x is an interior point, then f �(x ; v) exists for every v in R�. If x is
a boundary point and v is a vector in R� such that x� 
v belongs to C for
sufficiently small 
� 0, then f �(x ; v) exists if we allow the value �	.

Proof. If x is an interior point of C, then for each v in R� there exists a
positive number 


	
� 


	
(v) such that for �
��


	
the point x� 
v is in C.

Hence the function �( ; x, v) of (3) is defined for �
��

	
. By Lemma 1.5,

�( ; x, v) is convex, and so by Corollary 2 of Theorem 1.2, ��
�

(0; x, v) exists. But

�(
 ; x, v) ��(0; x, v)



�
f (x� 
v) � f (x)



,

and so f �(x, v) exists and equals ��
�

(0; x, v). If x is a boundary point of C, the
assertion follows from similar arguments and Remark 1.1.

In the next lemma we record a useful inequality.

L 1.7. L et f be a convex function defined on a convex set C. L et x and y be
points in C and let z�x� t(y�x), 0� t� 1. T hen

f (y) � f (x)�
f (z) � f (x)

t
. (9)

Proof. The function ��( ; x, y�x) in (3) is defined for 0� t� 1, with
�(1; x, y� x) � f (y), �(0; x, y� x) � f (x) and �(t ; x, y�x) � f (z) for 0�
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t� 1. By Corollary 1 to Theorem 1.2,

�(1; x, y�x) ��(0; x, y� x)�
�(t ; x, y� x) ��(0; x, y�x)

t
,

which is the same as (9).
We note that (9) can also be established directly from the definition of a

convex function.

We next show that a convex function is continuous on the interior of its
domain of definition.

T 1.3. L et f be a convex function defined on a convex set C in R�. If x is
an interior point of C, then f is continuous at x.

If x is not an interior point of C, then f need not be continuous at x, as
the following example shows. Let C� [�1, 1]�R and let f (x) �x� for
�1�x� 1 and f (�1) � f (1) � 2. The function f is convex on [�1, 1] since
epi( f ) is convex, but f is discontinuous at 
1.

We now prove the theorem.
If x is an interior point of C, then there exists a �� 0 such that B(x, �) �C.

Let �� �/�n. Let C� denote the cube with center at x and length of side equal
to 2�; that is,

C�� 	y : �y
�
�x

�
���, i� 1, . . . , n
.

Since

�y�x���
�
�
���

�x
�
� y

�
���

���
,

it follows that if �x
�
�y

�
���/�n for each i, then �y�x���. Thus C��B(x, �).

On the other hand, if �y�x���, then we cannot have �y


� x



��� for any

index j in set 1, . . . , n. Hence B(x, �)�C� .
The first step in the proof is to show that f is bounded above on B(x, �). It

is easier to show that f is bounded above on the larger set C� than to work
directly with B(x, �). Let C�� denote the set of 2� vertices of C� . By Exercise
II.4.7(a), the set C�� is the set of extreme points of C�. By Theorem II.4.3,
C�� co(C��). But C�� is compact, so by Lemma II.2.7, co(C��) is compact.
Hence

C�� co(C��) � co(C��).

[We could also conclude this directly from Exercise II.4.7 (b).] Thus, for each
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Figure 3.4.

y in C� , there exists a p in P
��

such that

y�
��
�
���

p
�
v
�
,

where the v
�
are the vertices of C� .

Let

M�max	 f (v) : v �C��
.

Then by the convexity of f and Theorem 1.1 (Jensen’s inequality), for each y
in C�

f (y)�
��
�
���

p
�
f (v

�
)�

��
�
���

p
�
M�M.

Thus, since B(x, �)�C� ,

f (y)�M for y in B(x, �). (10)

Let z� x be an arbitrary point in B(x, �), and consider the line determined
by x and z. This line will intersect the surface of B(x, �) at two points, x� u
and x� u, where u� t(z�x) for some t� 1 and �u�� �. See Figure 3.4.

We shall use the bound on f and the convexity of f to estimate

� f (z) � f (x)�

in terms of �z� x� and thus prove the continuity of f at x. To this end, we
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first express z as a convex combination of x and x� u. Thus

z� (1� 
)x� 
(x� u) � x� 
u, 0�
� 1. (11)

Therefore, 
� �z�x����. We next express x as a convex combination of z
and x� u. Thus

x� (1� t)(x � u) � tz, 0� t� 1.

Recalling relation (1) in Section 1 of Chapter II and using the relation 
�

�z�x����, we see that

t(1 � t)�� � ��z�x���� 
��,

and so t� (1 � 
)��. Therefore,

x�
1

1� 

z�



1� 


(x� u). (12)

Since f is convex, we have, using (10), (11), and (12),

f (z)� (1� 
) f (x) � 
f (x� u)� (1� 
) f (x) � 
M,

f (x)�
1

1� 

f (z) �



1� 


f (x� u)�
1

1� 

f (z) �



1� 


M.

From these inequalities we get

�
[M� f (x)]� f (z) � f (x)�
[M� f (x)].

Hence, for z �B(x, �)

� f (z) � f (x)�����[M� f (x)]�z�x�, (13)

from which the continuity of f at x follows.

Remark 1.3. A function f defined on a set D in R� with range in R� is said to
be L ipschitz continuous on D if there exists a constant K� 0 such that

�f(x) � f (y)��K�y�x�

for all x, y in D. Since a real-valued continuous function defined on a compact
set is bounded above and below, relation (13) implies that a convex function
defined on an open convex set C is Lipschitz continuous on every compact
subset contained in C.
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Remark 1.4. The proof of Theorem 1.3 can easily be modified to show that if
f is convex on a convex set C, then f is continuous on ri(C).

In Section 11 of Chapter I we saw that the existence of partial derivatives
at a point does not imply differentiability. For convex functions, however, the
existence of partial derivatives at a point does imply differentiability.

T 1.4. L et f be a convex function defined on a convex set C. If the partial
derivatives of f with respect to each variable exist at an interior point x of C, then
f is differentiable at x.

Proof. Define the function � on R� by

�(h) � f (x� h) � f (x) �
�
�

��

�f
�x




(x)h


.

To prove that f is differentiable at x, we must show that

�(h)
�h�

	 0 as �h�	 0. (14)

Let

�
�
�

f (x� nh
�
e
�
) � f (x)

nh
�

�
�f
�x

�

(x).

Since f is convex and a linear function is concave and convex, the function �
is convex. Thus

�(h) � � �
�
�
���

nh
�
e
�

n ��
1

n

�
�
���

�(nh
�
e
�
)

�
�
�
���

�
�
h
�
�

�
�
���

��
�
� �h

�
���

�
�
���

��
�
�� �h� (15)

for i� 1, . . . , n. The existence of the partial derivatives implies that each of the
�
�
	 0 as �h�	 0. Also,

0� �(0) � � �
h� (�h)

2 ��
�(h) � �(�h)

2
.

Hence

�(h)���(�h)� � �
�
�
���

���
�
�� �h�, (16)
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where, for each i� 1, . . . , n, ��
�
	 0 as �h�	 0. We now obtain (14) from (15)

and (16).

Exercise 1.1. Show that if f and g are convex functions defined on a convex
set C, then for any 
� 0, �� 0, the function 
f � �g is convex.

Exercise 1.2. Let 	 f
�

 be a sequence of convex functions defined on a convex

set C. Show that if f (x) � lim
���

f
�
(x) exists for all x �C, then f is convex.

Exercise 1.3. Prove Lemma 1.2.

Exercise 1.4. Prove Lemma 1.4.

Exercise 1.5. Let I� [a, b] be a real interval and let C be a convex set in R�.
Let f : (t, x) 	 f (t, x) be a real-valued function defined on I
C that is
continuous on I for each fixed x in C and is convex on C for each fixed t in I.
Show that

F(x) ��



�

f (t, x) dt

is defined for each x in C and that F is convex on C.

Exercise 1.6. (a) Show that any norm � on R� is convex on R�.
(b) Let S be a nonempty convex set, and let � · � denote the euclidean norm

in R�. Let f be the distance function to S defined by

f (y) � inf	�y� x� : x �S
.

Show that f is convex on R�.
(c) Show that f is Lipschitz continuous on compact subsets of R�.

Exercise 1.7. Let f be a convex function defined on R�. Let x
	
be a fixed point

in R�. Show that the function d( ·) :R� 	R defined by d(v) � f �(x
	
; v) is (a)

positively homogeneous [i.e., for 
� 0, d(
v) � 
d(v)] and (b) convex.

Exercise 1.8. Let g be a concave function defined on R�. Let S� 	x : g(x)� 0

be nonempty.

(a) Show that S is convex.

(b) Show that if f (x) � 1/g(x) for x in S, then f is convex on S.
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Exercise 1.9. Let C be a convex cone (see Exercise II.2.10 for the definition).
A real-valued function g defined on C is said to be a gauge function on C if

(a) g(�x) ��g(x) for all x in C and �� 0 and

(b) g(x� y)� g(x) � g(y) for all x, y in C.

Show that g is convex.

Exercise 1.10. Let C be a convex set. The support function s of C is the
real-valued function defined by

s(u) � sup	�u, x� : x �C


for all u such that the supremum is finite.

(a) Show that if the domain D of s is nonempty, then D is in a convex cone.

(b) Show that s is a gauge function on D.

Exercise 1.11. Let C be a compact convex set with 0 � int(C). The Minkowski
distance function p determined by C is defined by

p(x) � inf	
 : 
� 0, x � 
C
.

Show that p is a gauge function.

Exercise 1.12. Let C be a compact convex set and let s be its support function.
Show that the following statements hold:

(a) The domain of s is R�.

(b) For each u� 0 there exists a point xu in C such that s(u) ��u, xu�.
(c) The hyperplane Hu� 	x : �u, x�� s(u)
 supports C at xu .

(d) The distance from Hu to 0 is equal to s(u/�u�).

Exercise 1.13. Let C be a nonempty closed convex set C�R�. Let s be the
support function of C with nonempty domain D. Show that

C� 	x : �u, x�� s(u) for all u in D
.

Hint: An alternate definition of C is

C� �
u �D
	x : �u, x�� s(u), u fixed in D
,

and see Exercise II.4.6.

DEFINITION AND ELEMENTARY PROPERTIES 101



2. SUBGRADIENTS

If f is a real-valued function defined on a set C in R�, then the graph of f is
the set of points (x, z) in R��� of the form (x, f (x)), where x �C. If f is a
differentiable function, then given a point x

	
in the interior of C, the graph of

f has a tangent plane at (x
	
, f (x

	
)) whose normal vector is (� f (x

	
),�1).

If C is convex and f is convex, f need not be differentiable at an interior
point of C, as the function f defined by f (x) � �x� shows. In this section we
shall introduce a generalization of the gradient vector, called the subgradient,
that exists at points (x, f (x)) of the graph of a convex function f, where x is
an interior point of C. We shall show that if f is a convex function defined
on C and x is an interior point of C, then epi( f ) has a supporting hyperplane
at the point (x, f (x)). The supporting hyperplane need not be unique. In
the next section we shall show that f is differentiable at x if and only if f has
a unique subgradient at x. This subgradient turns out to be � f (x). Thus, if f
is differentiable at x, there is a unique supporting hyperplane to epi( f ) at
(x, f (x)). This hyperplane is the tangent plane to the graph at (x, f (x)). If
(�,�1) is a normal vector to a supporting hyperplane, then � has some of the
properties that the gradient vector would have.

We now define the notion of subgradient.

Definition 2.1. A function f defined on a set C is said to have a subgradient at
a point x

	
in C if there exists a vector � in R� such that

f (x)� f (x
	
) ���, x�x

	
�

for all x �C. The vector � is called a subgradient.
Geometrically, � is a subgradient of f at x

	
if the graph of f in R��� lies on

or above the graph of the hyperplane y� f (x
	
)���, x�x

	
�. Since (x

	
, f (x

	
))

is in this hyperplane, this hyperplane will be a supporting hyperplane to epi( f )
at (x

	
, f (x

	
)). Thus, the existence of a subgradient is a statement about the

existence of a nonvertical supporting hyperplane to epi( f ). In Figure 3.5 we
illustrate the definition with the function f (x) � �x� at x� 0.

Any line through the origin with slope � satisfying �1��� 1 has the
property that

�x���x� �0�� �(x� 0)

for all x. Thus any � in the interval [�1, 1] is a subgradient of �x� at x� 0. If
x
	
� 0, then �� 1 is the only subgradient of �x� at x

	
; if x

	
� 0, then �� �1

is the only subgradient of �x� at x
	
.

Definition 2.2. The set of subgradients of a function f at a point x
	
is called

the subdifferential of f at x
	
and is denoted by �f (x

	
).
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Figure 3.5.

The subdifferential of �x� at x� 0 is the interval [�1, 1]. The subdifferential
of �x� at x

	
� 0 is the singleton 	1
, and the subdifferential at x

	
� 0 is 	�1
.

Example 2.1. The subdifferential will be the empty set if no subgradient exists.
This may happen, as the following example shows. Let C� [�1, 1] and let
f (x) ���1�x�. (Sketch the graph.) The graph of f has a nonvertical
tangent line at any point x

	
in (�1, 1). From the graph it appears that for such

x
	
the graph lies above the tangent line, and so �f (x

	
) � 	 f �(x

	
)
. Although

this can be verified in this example by relatively straightforward calculations,
we shall not do so. The validity of the statement will follow from general
theorems that we will prove. At the points x�
1, the graph has a vertical
tangent line, but the tangent line does not lie below the graph. Thus it appears
that f does not have a subgradient at these points. We now show this
analytically.

A number � is a subgradient of f at x��1 if and only if

��1� x���(x � 1) for all x in [�1, 1].

For x in (�1, 1] this inequality is equivalent to

��
1�x

1�x�
���
�� x in (�1, 1].
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If we let x in (�1, 1] tend to �1, the left-hand side of this inequality tends to
�	. Hence there is no � �R such that the subgradient inequality holds for all
x in [�1, 1].

A similar argument shows that �f (1) � �.

T 2.1. L et f be a convex function defined on a convex set C. T hen at
each point x

	
in int(C) there exists a vector � in R� such that

f (x)� f (x
	
) ���, x�x

	
� (1)

for all x in C. In other words, �f (x
	
) �� at every interior point x

	
of C.

Example 2.1 shows that the requirement x
	
� int(C) is essential.

Proof. We shall show that the conclusion of the theorem is a consequence
of the existence of a supporting hyperplane to epi( f ) at (x

	
, f (x

	
)).

The point (x
	
, f (x

	
)) is a boundary point of epi( f ). Since epi( f ) is convex,

we may apply Theorem II.4.1 with C� epi( f ) and get that there exists a vector
(a, �) � (0, 0) in R��� such that

�(a, �), (x, y)���(a, �), (x
	
, f (x

	
))�

for all (x, y) in epi( f ). This relation is equivalent to

�a, x���y��a, x
	
���f (x

	
) (2)

for all (x, y) in epi( f ), that is, for all x in C and y� f (x).
Since the right-hand side of (2) is a constant, if � were strictly positive, we

could obtain a contradiction by letting y become arbitrarily large. Hence �� 0.
If �� 0, then a� 0 and (2) becomes

�a, x���a, x
	
� all x �C. (3)

Since x
	
� int(C), there exists an �� 0 such that x

�
� x

	
� �a belongs to C.

Setting x�x
�
in (3) gives ��a, a�� 0, which is a contradiction. Thus, �� 0.

In (2) we now divide through by �� 0 and set y� f (x) to get

f (x)� f (x
	
) ��a� , x	� x�

for all x �C. Now set ���a/� to get (1).

C 1. If f is strictly convex, then strict inequality holds in (1).

We leave the proof as an exercise.
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The converse of Theorem 2.1 is false. To see this, let C be the square in R�,
	x : 0� x

�
� 1, 0� x

�
� 1
. Let f (x) � 0 for x such that 0�x

�
� 1 and

0�x
�
� 1. Let f (x) ��

�
� �x

�
��

�
� for x such that 0�x

�
� 1 and x

�
� 0. The

function f has a unique subgradient �� 0 at every point in int(C), yet f is not
convex on C. The function f, however, is convex on int(C), and this phenom-
enon illustrates the general state of affairs.

T 2.2. L et C be a convex set in R�. If at each point x
	
in C f has a

subgradient, then f is convex on C.

Remark 2.1. If we merely assume that at each point in int(C) the subdifferential
is not empty, then we can only conclude that f is convex on int(C).

Proof. Let x and y be two points in C and let z� �x��y, �� 0, �� 0,
���� 1. Since f has a subgradient at z, say �,

f (x)� f (z) � ��, x� z�� f (z) ����, x� y�,

f (y)� f (z) ���, y� z�� f (z) � ���, x� y�.

If we now multiply the first inequality by �� 0, the second inequality by �� 0,
and add the results, we get

�f (x) ��f (y)� f (z) � f (�x� �y).

Hence f is convex.

Remark 2.2. The proof of the theorem shows that if at each x
	
in C there exists

a subgradient � such that f (x)� f (x
	
) ���, x�x

	
�, for x�x

	
, x in C, then

f is strictly convex on C.

Exercise 2.1. Show that if �f (x
	
) is not empty, then �f (x

	
) is closed and convex.

Exercise 2.2. Prove Corollary 1 to Theorem 2.1.

Exercise 2.3. Let f be a convex function defined on a convex set C and let
x
	
� int(C). Show that � � �f (x

	
) if and only if f �(x

	
, v)���, v� for all v in R�.

Exercise 2.4. Let f be convex and concave on R�. Show that f is affine, that
is, f (x) ��a, x�� b.

Exercise 2.5. Let f (x)��x� . Show that �f (0)�	� : ����1
. F (From Theorem
3.1 we will get that, for x� 0, �f (x) � 	x/�x�
).
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Exercise 2.6. Let f (x
�
, x

�
) � �x

�
�x

�
�. Show that f is convex and calculate

�f ((0, 0)).

3. DIFFERENTIABLE CONVEX FUNCTIONS

We first show that if f is a convex function and differentiable [in the sense of
relation (5) in Section 11 of Chapter I] at an interior point of its domain, then
there is a unique subgradient at the point and the subgradient is the gradient
vector, and conversely, if f has a unique subgradient at x, then f is differenti-
able at x.

T 3.1. L et f be a convex function defined on a convex set C in R�, and let
x be an interior point of C. T hen f is differentiable at x if and only if f has a
unique subgradient at x. Moreover, the unique element in the subgradient is
�f (x).

Proof. Let f be differentiable at x. Since f is convex and x � int(C), by
Theorem 2.1 the subgradient �f (x) is not empty. Let � � �f (x). Then for any h
in R� and sufficiently small t� 0

f (x� th)� f (x) ���, th�.

Since f is differentiable at x, we have that for h� 0

f (x� th) � f (x) ���f (x), th�� �(th),

where �(th)/t�h�	 0 as t	 0. If we subtract the second relation from the first,
we get

0� t[��, h����f (x, h�� �(th)�h�/t�h�].

If we now divide by t� 0 and then let t	 0, we get that ����f (x), h�� 0
for all h� 0 in R�. In particular, if � ��f (x) � 0, then this inequality holds for
h� � ��f (x), whence ����f (x)��� 0. Thus, ���f (x).

We now suppose that the subgradient �f (x) consists of a unique element �.
We will show that all the first-order partial derivatives of f exist at x. The
differentiability of f at x will then follow from Theorem 1.4.

To simplify the notation, we assume tha x� 0 and that f (x) � 0. There is
no loss of generality in making this assumption, since this amounts to a
translation of the origin in R� 
R to (x, f (x)). Let us now suppose that at least
one partial derivative of f at 0 does not exist. For definiteness let us assume
that it is the partial with respect to x

�
. Let

g(t) � f (0� te
�
),
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where e
�
is the first standard basis vector (1, 0, . . . , 0). Since f is convex and

0 � int(C), the function g is defined and convex on some maximal interval I
containing 0 in its interior. Moreover, �f /�x

�
does not exist at 0 if and only if

g�(0) does not exist. Since g is convex, it follows from Corollary 2 to Theorem
1.2 that g�

�
(0) and g�

�
(0) exist and that g�

�
(0)� g�

�
(0). Therefore, if g�(0) does

not exist, then g�
�

(0)� g�
�

(0).
Let �

�
be any number satisfying

g�
�

(0)��
�
� g�

�
(0). (1)

We shall show that corresponding to each such �
�
we can find a � in �f (0),

with distinct �
�
determining distinct �. This will contradict the hypothesis that

�f (0) consists of a unique element, and the proof will be accomplished.
It follows from (1) and Corollary 1.1 that for h� 0

g(�h) � g(0)

�h
� g�

�
(0)��

�
� g�

�
(0)�

g(h) � g(0)

h
.

Since g(0) � f (0) � 0, we get from the preceding inequalities that for all h in I
�

f (he
�
) � g(h)��

�
h, (2)

with equality holding only if h� 0. Let V
�
denote the one-dimensional sub-

space spanned by e
�
. Thus V

�
� 	x :x� te

�
, t �R
. Define a linear functional

L
�
on V

�
by the formula

L
�
(x) � L

�
(te

�
) � �

�
t. (3)

Since the representation x� te
�
is unique for x in V

�
, the linear functional L

�
is well defined. Note that L

�
depends on �

�
. Combining (2) and (3), we get that

for x in V
�
 C

f (x)� L
�
(x) � �

�
t. (4)

If n� 1, we are through. Otherwise, let V
�
denote the two-dimensional

subspace spanned by e
�
and e

�
. Thus,

V
�
� 	y : y� te

�
� ue

�
, t, u �R
� 	y : y�x� ue

�
, x �V

�
, u �R
.

We shall extend L
�
to a linear functional L

�
defined on V

�
and shall find a

number �
�
such that for all y in V

�
 C

f (y)� L
�
(y) � �

�
t� �

�
u. (5)
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Let x and z belong to V
�
 C and let �� 0, �� 0. It then follows from the

linearity of L
�
, from the convexity of V

�
 C, from (4), and from the convexity

of f that

�
���

L
�
(x) �

�
���

L
�
(z) � L

� �
�

���
x�

�
�� �

z�
�

��

f �
�

���
x�

�
�� �

z�
� f �

�
�� �

(x��e
�
) �

�
���

(z� �e
�
)�

�
� ������

�
(���)

f (x��e
�
) �

�
���

f (z� �e
�
).

Multiplying through by ��� gives

�L
�
(x) ��L

�
(z)��f (x� �e

�
) ��f (z� �e

�
),

and so

L
�
(x) � f (x��e

�
)

�
�

f (z� �e
�
) � L

�
(z)

�
. (6)

Denote the left-hand side of (6) by 
(x, �) and denote the right-hand side of (6)
by �(z, �). Hence

sup	
(x, �) : x � V
�
 C, �� 0
� inf	�(z, �) : z �V

�
 C, �� 0


and both the supremum and infimum are finite. Hence there exists a number
�
�
such that

L
�
(x) � f (x��e

�
)

�
��

�
�

f (x� �e
�
) � L

�
(x)

�
(7)

for all x � V
�
 C, �� 0, �� 0.

Now let y be an element in V
�
 C that is not in V

�
. Then y� x� ue

�
with

x� te
�
and u� 0. If u� 0, take �� u in (7); if u� 0, take ���u in (7). Then

from (7) and (3) we get that for all y in V
�
 C

f (y) � f (x� ue
�
)� L

�
(x) � �

�
u� �

�
t� �

�
u,

which is (5).
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Proceeding inductively, we get that for each �
�
satisfying (1) there exists a

vector �� (�
�
, �

�
, . . . , �

�
) such that if x� (x

�
, . . . , x

�
) is in C, then

f (x)���, x�

Since f (0) � 0, this says that � � �f (0).

The next theorem is an immediate consequence of Theorems 2.1, 2.2, and
3.1.

T 3.2. L et C be an open convex set in R� and let f be real valued and
differentiable on C. T hen f is convex if and only if for each x

	
in C

f (x)� f (x
	
) ���f (x

	
), x�x

	
�

for all x in C. Also, f is strictly convex if and only if for each x
	
in C and all

x�x
	
in C

f (x)� f (x
	
) ���f (x

	
), x�x

	
�.

Remark 3.1. If n� 2 and f is differentiable at x
	
, then the surface in R� defined

by y� f (x) has a tangent plane at x
	
whose equation can be written as

y� f (x
	
) � �� f (x

	
), x�x

	
�.

Thus, the geometric interpretation of Theorem 3.2 is that a function f that is
differentiable on C is convex on C if and only if for each point x

	
in C the

surface defined by y� f (x) lies above the tangent plane to the surface at x
	
.

This is not surprising since we obtained the result in Theorem 3.2 by
considering the supporting hyperplanes to epi( f ), and for differentiable f, these
are the tangent planes to the surface.

Let f be a real-valued function defined and of class C
�� on an open set D
in R�. (See Section 11 in Chapter I for the definition of class C
��.) For such
functions we have a computationally feasible criterion for convexity. In the
ensuing discussion recall that, by Theorem I.11.3, f is differentiable at each
point x

	
in D.

We first develop our criterion if D is an interval I�R.

L 3.1. L et f be of class C
�� on an open interval I�R. T hen f is convex on
I if and only if f �(x)� 0 for all x in I. If f �(x)� 0 or all x in I, then f is strictly
convex.

Note that if f is strictly convex, then we cannot conclude that f �(x)� 0 for
all x, as the example f (x) � x� shows. The function f is strictly convex, yet
f �(0) � 0.
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Proof. If f is convex on I, then by Corollary 3 to Theorem 1.2, f �(x)� 0
on I. Conversely, suppose f �(x)� 0 on I. Let x

	
be a fixed point in I and let

x be any other point in I. Then by Taylor’s theorem

f (x) � f (x
	
) � f �(x

	
)(x �x

	
) � �

�
f �(x

*
)(x �x

	
)�� 0,

where x
*
is a point between x

	
and x. It now follows from Theorem 3.2 that

f is convex on I. If f �(x)� 0 on I it follows from Theorem 3.2 that f is strictly
convex.

Recall that a symmetric n
 n matrix A with entries (a
�

) is said to be positive

semidefinite if the quadratic form

x�Ax� �x,Ax��
�
�

��
��

a
�

x
�


is nonnegative for all x in R�. The matrix A is said to be positive definite if
�x,Ax� is positive for all x� 0 in R�.

T 3.3. L et f be of class C
�� on an open convex set D. T hen f is convex
on D if and only if the Hessian matrix

H(x) ��
��f
�x



�x

�

(x)�
is positive semidefinite at each point x in D. If H(x) is positive definite at each x,
then f is strictly convex.

Proof. Let x be a point in D. Since D is open, for each vector v in R�, v� 0,
there exists an �� 0 such that the line segment (x� �v, x� �v) is in D. Hence
the function �( ; x, v) in relation (3) in Section 1 is defined on (��, �). Also,
since f is of class C
�� on D, ��f (x)/�x



�x

�
� ��f (x)/�x

�
�x



at each x in D, and

so H(x) is symmetric.
If f is convex, then by Lemma 1.5, the function �( ; x, v) is convex on the

interval (��, �). By Lemma 3.1, ��(0; x, v)� 0. If v� (v
�
, . . . , v

�
), then straight-

forward calculations as in relations (12) and (13) in Section 11 of Chapter I
give

��(t ; x, v) �
d

dt
f (x� tv) �

�
�
���

�f
�x

�

(x� tv)v
�
,

��(t ; x, v) �
�
�
���

�
�

��

��f
�x



�x

�

f (x� tv)v
�
v


��v,H(x� tv)v�. (8)
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Setting t� 0 gives

�v,H(x)v����(0; x, v)� 0. (9)

Since (9) holds for all v, H(x) is positive semidefinite.
Conversely, suppose now that H(x) is positive semidefinite for each x in D.

Then from (8), for each x in D and for each v in R�, ��(t ; x, v)� 0 for all t in
(��, �). Hence by Lemma 3.1, �( ; x, v) is convex. Since x and v are arbitrary,
it follows from Lemma 1.5 that f is convex on D. The argument also shows
that if H(x) is positive definite for all x in D, then f is strictly convex.

We assume that the reader is familiar with the following facts. Given a
symmetric matrix A, there exists an orthogonal matrix P such that P�AP�D,
where D is a diagonal matrix whose diagonal elements are the eigenvalues of
A. Thus A is positive definite if and only if all the diagonal entries of D
(eigenvalues of A) are positive and A is positive semidefinite if and only if they
are nonnegative. For a survey of numerical methods for obtaining the eigen-
values of a symmetric matrix see Golub and Van Loan [1996].

Let A be an n
 n matrix with entries a
�

. Let

!
�
� a

��
, !

�
�det �

a
��

� a
��

" � "
a
��

� a
��
� , k� 2, 3, 4, . . . , n.

The determinants !
�
are called the principal minors of A. Another criterion for

positive definiteness of a symmetric matrix A with entries a
�

is the following.

L 3.2. T he symmetric matrix A is positive definite if and only if !
�
� 0 for

k� 1, . . . , n and is negative definite if and only if (�1)�!
�
� 0 for k� 1, . . . , n.

We shall prove this lemma in Exercise IV.2.10.
If we assume that !

�
� 0 for all k� 1, 2, . . . , n and not all the !

�
� 0, then

there is difference between n� 3 and n� 2.
For n� 3, if !

�
� 0, k� 1, . . . , n, and not all !

�
� 0, then A need not be

positive semidefinite. To see this, consider the matrix

A� �
1 0 � 0

0 0 � 0

" " � "
0 0 � �1� .

Then �x,Ax��x�
�
� x�

�
, which is not nonnegative for all x.
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For n� 2, however, if !
�
� 0, !

�
� 0, and not both !

�
and !

�
are zero,

then the symmetric matrix A is positive semidefinite. To see this, let

A� �
a
��
a

a

a
��
� .

If !
�
� 0, then !

�
� �a�. Then to have !

�
� 0, we must have a� 0. But then

!
�
� 0. Hence we must have a

��
� 0. Thus !

�
� 0. Since !

�
� 0,

a
��
a
��
� a�. (10)

Since a
��
� 0, it follows that a

��
� 0. For x� (x

�
, x

�
)

�x,Ax�� a
��
x�
�
� 2ax

�
x
�
� a

��
x�
�
.

If x� (x
�
, 0) with x

�
� 0, we get

�x,Ax�� a
��
x�
�
� 0.

If x� (x
�
, x

�
) with x

�
� 0, we have x

�
� tx

�
for some �	� t�	 and

�x,Ax�� [a
��
t�� 2at� a

��
]x�

�
.

Denote the term in square brackets by q(t). From (10) we get that the dis-
criminant of q, which equals 4a�� 4a

��
a
��
, is nonpositive. Thus the quadratic

q either has a double root or has no real roots. Since a
��
� 0, it follows that

q(t)� 0 for all t. Hence, �x,Ax�� 0 for all x.

Exercise 3.1. Determine whether or not the following functions are convex on
R�:

(i) f (x, y, z) �x� � 2xy� 4xz� 3y�� yz� 7z�,

(ii) f (x, y, z) �x� � 4xy� 4y�� 2xz� 4yz.

Exercise 3.2. Determine the convex set in R� on which the function

f (x, y) �x� � 2xy��
�
y�� 3y

is (i) convex and (ii) strictly convex.

Exercise 3.3. For what values of r is the function f (x) � x�� r ln x convex on
(0,	).

Exercise 3.4. Show that f (x) �x�	�
���x��

�
, r

�
� 1, is convex on 	x : x� 0
.
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Exercise 3.5. Show that the n-dimensional ellipsoid

�x :
�
�
���
�
x
�
a
�
�
�
� 1	

is convex. Hint: There is a very easy solution.

Exercise 3.6. For what values of p is f (x) � �x�� convex on R�. Hint: Use
Lemma 1.4.

Exercise 3.7. Show that if c
�
� 0, i� 1, . . . , 4, the function

f (x) � exp(c
�
x�
�
� c

�
x��
�

� c
�
x�
�
� c

�
x��
�

)

is convex on S� 	(x
�
, x

�
) : x

�
� 0, x

�
� 0
.

Exercise 3.8. Show that the function f (x) � (1� �x��)���, p� 1, is convex on
R�.

Exercise 3.9. Show that the function f (x) ��(x
�
�x

�
�� �x

�
)���, n� 1, is

convex on S� 	x : x� 0
.

Exercise 3.10. A function f that is positive on a convex set C in R� is said to
be logarithmically convex if the function g(x) � ln f (x) is convex on C :

(i) Show that if f is logarithmically convex, then f is convex.

(ii) Is it true that every positive convex function is logarithmically convex?

Exercise 3.11. Let f be differentiable on an open convex set X. Show that if f
is strictly convex, then �f (x) ��f (y) for all distinct pairs of points x, y in X.

Exercise 3.12. Let C be an open convex set and let f be real valued and
differentiable on C. Prove that f is convex on C if and only if for each pair of
points x

	
and x

�
in C

��f (x
�
) ��f (x

	
), x

�
�x

	
�� 0.

Show that f is strictly convex if and only if strict inequality holds.

4. ALTERNATIVE THEOREMS FOR CONVEX FUNCTIONS

The theorems of this section are alternative theorems for systems of inequalities
involving convex and affine functions. They find application in optimization
problems involving such functions.
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Definition 4.1. A vector-valued function f� ( f
�
, . . . , f

�
) with domain a convex

set C in R� and range in R� is said to be convex if each of the real-valued
component functions f

�
, i� 1, . . . ,m, is convex.

Affine functions or affine transformations were defined in Definition II.6.6.
It was shown there that an affine function h with domain R� and range R� has
the form

h(x) �Ax� b,

where A is an m
 n matrix and b is a vector in R�.
Note that h� (h

�
, . . . , h

�
), where h

�
��a

�
, x�� b

�
, and a

�
is the ith row of A.

T 4.1. L et C be a convex set in R� and let f� ( f
�
, . . . , f

�
) be defined and

convex on C. L et h� (h
�
, . . . , h

�
) be an affine mapping from R� to R�. If

f(x)� 0, h(x) � 0 (1)

has no solution x in C, then there exist a vector p in R� and a vector q in R� such
that p� 0, (p, q) � 0, and

�p, f(x)�� �q, h(x)�� 0 (2)

for all x in C.

Proof. For each x in C define the set

S(x) � 	(y, z) : y �R�, z �R�, y� f(x), z� h(x)
.

For each x in C, the set S(x) is the set of solutions (y, z) in R��� of the system

y� f(x), z� h(x). (3)

Thus for each x, the origin in R��� is not in S(x). Let

S� #
x �C

S(x).

Since the origin in R��� belongs to none of the sets S(x), it does not belong to
S. It is readily verified that S is convex. Hence by Theorem II.3.2 there is a
hyperplane that separates S and 0 in R���. That is, there exist vectors p in R�

and q in R� such that (p, q) � 0 and

�p, y���q, z�� 0 (4)

for all (y, z) in S.
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If (y, z) belongs to S, then y� f(x) for some x in C. Hence if some
component of p, say p

�
, were negative, we could take y

�
to be arbitrarily large

and obtain a contradiction to (4). Hence p� 0.
Now let �� 0 and let e denote the vector in R� all of whose components

are equal to 1. Then for x �C the vector (f(x) � �e, h(x)) belongs to S, and so

�p, f(x)�� �q, h(x)����(�p, e�).

We obtain (2) by letting �	 0.

Remark 4.1. From the proof it is clear that if the affine function h is absent,
then the conclusion is that there exists a p� 0, p� 0 such that �p, f(x)�� 0
for all x in C.

Remark 4.2. This theorem is not a true alternative theorem, as it does not
assert that either the inequality (1) has a solution or the inequality (2) has a
solution, but never both. If we strengthen the hypotheses of the theorem by
assuming C�R� and the rows of A to be linearly independent, then we do get
a true alternative theorem. This is taken up in Exercise 4.2.

The next two theorems are corollaries of Theorem 4.1.

T 4.2. L et f be a vector-valued convex function defined on a convex set
C in R� and with range in R�. T hen either

I: f(x)� 0

has a solution x in C or there exists a p in R�, p� 0, p� 0, such that

II: �p, f(x)�� 0

for all x in C, but never both.

Proof. Suppose I has a solution x
	
. Then for all p� 0, p� 0, we have

�p, f(x
	
)�� 0, so II cannot hold.

Suppose now that I has no solution. Then by Theorem 4.1 and Remark 4.1
following the theorem, there exists a p� 0, p� 0 such that II holds for all x.

Theorem 4.2 is a true generalization of Gordan’s theorem, Theorem II.5.2.
To see that this is so, let C�R� and let f(x) �Ax. Then Ax� 0 has no
solution x

	
if and only if there exists a vector p in R�, p� 0, p� 0, such that

�p,Ax�� 0 for all x. If we take x�A�p, we get �A�p,A�p�� 0. If we take
x��A�p, we get �A�p,A�p�� 0. Hence A�p� 0. In other words we have
shown that Ax� 0 has no solution if and only if there exists a p� 0, p� 0
such that A�p� 0, which is Gordan’s theorem.
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T 4.3. L et C be a compact convex set in R� and let 	 f�
��� be a possibly
infinite family of real-valued convex functions that are continuous on C. If the
system

f�(x)� 0, � �A, (5)

has no solution in C, then there exists a finite subfamily f�	
, . . . , f�

�

and a vector
p� (p

�
, . . . , p

�
) such that p� 0, p� 0 and such that the real-valued function F

defined by

F(x) �
�
�
���

p
�
f�
�

(x) (6)

satisfies

min
x �C

F(x)� 0. (7)

The proof will be carried out by translating the statement of the nonexist-
ence of solutions to the system (5) to a statement about the empty intersection
of a collection of closed subsets of a compact set. The finite-intersection
property will then be used to obtain a statement about the empty intersection
of a finite collection of sets. The last statement will then be translated to a
statement about the nonexistence of a solution to the system (1). An applica-
tion of Theorem 4.1 will then yield (7).

Proof. Since for each � �A the function f� is continuous, it follows that for
each � �A and �� 0 the set

C���� 	x : x �C, f�(x)��


is closed and is contained in C. If the intersection of the closed sets 	C���
,
where � �A and �� 0, were not empty, there would exist an x

	
in C such that

f�(x
	
)�� for all � �A and all �� 0. Hence f�(x

	
)� 0 for all � �A, contradic-

ting the hypothesis that f�(x)� 0 has no solution in C. Thus the intersection
of the sets C��� is empty. Since C is compact, by Remark I.7.1 and Theorem
I.7.3 there exists a finite subcollection C�	��	

, C�
��

, . . . ,C�

�
��
�

of 	C���
 whose
intersection is empty. That is, the system f�

�

(x) � �
�
� 0, i� 1, . . . ,m, has no

solution x in C. Therefore the system

f�
�

(x) � �
�
� 0, i� 1, . . . ,m,

has no solution x in C. Therefore, by Theorem 4.1 and Remark 1, there exists
a vector p� (p

�
, . . . , p

�
) with p� 0 and p

�
� 0, i� 1, . . . ,m, such that

�
�
���

p
�
f�
�

(x)�
�
�
���

p
�
�
�
� 0 (8)
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for all x in C. The function F defined in (6) is continuous on the compact set
C and hence attains a minimum on C. From this and from (8) the conclusion
follows.

Remark 4.3. The reader who is familiar with the notion of semicontinuity will
see that the requirement that the functions f� be continuous can be replaced
by the less restrictive requirement that they be lower semicontinuous.

Exercise 4.1. Verify that the set S in Theorem 4.1 is convex.

Exercise 4.2. Prove the following corollary to Theorem 4.1. Let f� ( f
�
, . . . , f

�
)

be defined and convex on R�. Let h�Ax� b be an affine mapping from R� to
R� and let the rows of A be linearly independent. Then either

I: f(x)� 0, Ax� b� 0

has a solution x in R� or

II: �p, f(x)���q,Ax� b�� 0 all x �R�

has a solution (p, q) � 0, p �R�, p� 0, q �R�, but never both.

5. APPLICATION TO GAME THEORY

In this section we use Theorem 4.3 to prove the von Neumann minimax
theorem and then apply the minimax theorem to prove the existence of value
and saddle points in mixed strategies for matrix games. Our proof will require
the concept of uniform continuity and a sufficient condition for uniform
continuity.

Definition 5.1. A function f defined on a set S in R� with range in R� is said
to be uniformly continuous on S if for each �� 0 there exists a �� 0 such that
if x and x� are points in S satisfying �x�x����, then �f(x�) � f(x)���.

T 5.1. L et S be a compact set in R� and let f be a mapping defined and
continuous on S with range in R�. T hen f is uniformly continuous on S.

For a proof we refer the reader to Bartle and Sherbert [1999] or Rudin
[1976].

T 5.2 (V N M T). L et X�R� and Y �R� be
compact convex sets. L et f :X
Y 	R be continuous on X
 Y. For each x in
X let f (x, ) : Y 	R be convex and for each y � Y let f ( , y) :X	R be concave.
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T hen

max
x �X

min
y �Y

f (x, y) �min
y �Y

max
x �X

f (x, y), (1)

and there exists a pair (x
*
, y
*
) with x

*
in X and y

*
in Y such that for all x in

X and all y in Y

f (x, y
*
)� f (x

*
, y
*
)� f (x

*
, y). (2)

Moreover, if v denotes the common value in (1), then f (x
*
, y
*
) � v.

A pair (x
*
, y
*
) as in (2) is called a saddle point of the function f.

The relation (1) is not true in general for continuous functions f defined in
X
Y, where X and Y are compact and convex. To see this, let X� [0, 1], let
Y � [0, 1], and let f (x, y) � (x� y)�. Then for fixed x, min	 f (x, y) : y � Y 
 is
achieved at y�x and equals zero. Hence in this example the left-hand side of
(1) equals zero. On the other hand, for fixed y in the interval [0, �

�
]

max
�

	 f (x, y) : x �X
� (1� y)�,

and for fixed y in the interval [�
�
, 1]

max
�

	 f (x, y) :x �X
� y�.

Hence in this example the right-hand side of (1) equals �
�
.

The concavity in X and convexity in Y is a sufficient condition but not a
necessary condition, as the example X� [0, 1], Y � [0, 1], and f (x, y) � e�e�
shows.

Before we take up the proof of Theorem 5.2, which will be carried out in
several steps, we observe the following. If A and B are arbitrary sets and g is
a real-valued bounded function defined on A
B, then the quantities

sup
a �A

inf
b �B

g(a, b) and inf
b �B

sup
a �A

g(a, b)

are well defined, while the quantities

max
a �A

min
b �B

g(a, b) and min
b �B

max
a �A

g(a, b)

need not be. For a simple example, take A� (0, 1), B� (0, 1), and g(a, b) � ab.
Thus, implicit in (1) is the statement, which must be proved, that the left- and
right-hand sides of (1) exist. The proof of this statement will constitute the
second step of our proof. The first step is the general observation given in
Lemma 5.1.
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L 5.1. L et A and B be arbitrary sets and let g :A
B	R be bounded.
T hen

sup
a �A

inf
b �B

g(a, b)� inf
b �B

sup
a �A

g(a, b).

Proof. Choose an element b
�
�B. Then for each a �A,

g(a, b
�
)� sup

a �A
g(a, b

�
).

Since the choice of b
�
was arbitrary, this relationship holds for each a in A and

each b in B. Hence, for each a �A

inf
b �B

g(a, b)� inf
b �B

sup
a �A

g(a, b).

The right-hand side is a fixed real number, so

sup
a �A

inf
b �B

g(a, b)� inf
b �B

sup
a �A

g(a, b).

We now proceed to the second step of the proof and show that the left- and
right-hand sides of (1) exist.

For fixed x in X, the function f (x, ) : Y 	R defined by f (x, y) is contin-
uous on the compact set Y. Hence

$(x) �min
y �Y

f (x, y)

is defined for each x in X. We assert that the function $ is continuous on X.
To prove the assertion, let �� 0 be given. Since f is continuous on the compact
set X
Y, it is uniformly continuous on X
 Y. Hence there exists a �� 0 such
that if �x

�
� x

�
���, then

f (x
�
, y) ��

�
�� f (x

�
, y)� f (x

�
, y) ��

�
�

for all y in Y. Upon taking the minimum over Y, we get that

$(x
�
) ��

�
��$(x

�
)�$(x

�
) � �

�
� ,

or �$(x
�
) �$(x

�
)�� � whenever �x

�
�x

�
���. This proves the continuity

of $.
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Since $ is continuous on the compact set X, there exists and x
*
in X such

that

$(x
*
) �max

x �X
$(x) �max

x �X �min
y �X

f (x, y)� . (3)

It follows from (3) that the left-hand side of (1) is well defined.
From the definition of $ we have

$(x
*

) �min
y � Y

f (x
*
, y). (4)

Similarly, for each y in Y we can set

�(y) �max
x �X

f (x, y)

and then obtain the existence of a y
*
in Y such that

�(y
*
) �min

y �Y
�(y) �min

y � Y �max
x �X

f (x, y)� (5)

and

�(y
*
) �max

x �X
f (x, y

*
). (6)

Thus the right-hand side of (1) is well defined.
The third step in the proof is to establish the equality in (1). Let

��max
x �X

min
y �Y

f (x, y), ��min
y �Y

max
x �X

f (x, y).

By Lemma 5.1 with X�A, Y �B, f � g and by the second step, we have that
���. Hence to prove (1), we must show that ���.

Let �� 0 be arbitrary. We assert that there does not exist a y
	
in Y such

that for all x in X

f (x, y
	
)��� �.

For if such a y
	
did exist, we would have

��min
y �Y

max
x �X

f (x, y)�max
x �X

f (x, y
	
)��� �,

which is not possible.

120 CONVEX FUNCTIONS



Let 	gx
x �X be the family of functions defined on Y by the formula

gx(y) � f (x, y), x �X.

Then for each x �X, the function gx is continuous and convex on Y. Moreover,
for arbitrary �� 0 the system

gx(y) ��� �� 0, x �X, (7)

has no solution y in Y.
Since (7) has no solution, it follows from Theorem 4.3 that there exist points

x
�
, . . . , x

�
in X, a vector p �R�, p� 0, p� 0, and a �� 0 such that

G(y) �
�
�
���

p
�
[ f (x

�
, y) ��� �]��� 0 (8)

for each y in Y. Since ��
���

p
�
� 0, we may divide through by this quantity in

(8) and assume that p �P
�
. Therefore, since X is convex, ��

���
p
�
x
�
is in X.

Using (8) and the concavity of f ( , y) for each fixed y, we may write

f �
�
�
���

p
�
x
�
, y��

�
�
���

p
�
f (x

�
, y)��� �

for each y in Y. Therefore,

��max
x �X

min
y � Y

f (x, y)�min
y �Y

f �
�
�
���

p
�
x
�
, y�

�min
y �Y

�
�
���

p
�
f (x

�
, y)��� �.

Since �� 0 is arbitrary, we get that ���, and (1) is established.
The final step in the proof is to show that v� f (x

*
, y
*
) and that (2) holds.

It follows from (1), (3), and (5) that

$(x
*
) ��(y

*
) � v.

It now follows from (4) and (6) that

f (x, y
*

)� v� f (x
*
, y) (9)

for all x in X and y in Y. In particular, (9) holds for x�x
*
and y� y

*
, so that

v� f (x
*
, y

*
). The relation (2) now follows from (9).
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The simplest two-person zero-sum games are matrix games. These games
are played by two players that we shall call Blue and Red. Blue selects a
positive integer i from a finite set I of positive integers 	1, . . . ,m
. Red,
simultaneously and in ignorance of Blue’s choice, selects a positive integer j
from a finite set J of positive integers 	1, . . . , n
. The ‘‘payoff ’’ or ‘‘reward’’ to
Blue in the event that he chooses i and Red chooses j is a predetermined real
number a(i, j). The payoff to Red is �a(i, j). Hence the name zero-sum game.
A strategy for Blue is a rule which tells Blue which positive integer i in I to
select. A strategy for Red is a rule which tells Red which positive integer j in J
to select. Blue’s objective is to choose i in I so as to maximize a(i, j). Red’s
objective is to choose j in J so as to minimize a(i, j), that is, to maximize
�a(i, j). If the strategy for Blue is to choose the number i

	
in I, then we call

the strategy a pure strategy for Blue. Similarly, if the strategy for Red is to
choose the number j

	
in J, then we call the strategy a pure strategy for Red.

Later we shall consider strategies that are not pure.
Another way of describing a matrix game is as follows. An m
 n matrix A

with entries a(i, j), i� 1, . . . ,m, j� 1, . . . , n, is given. Blue selects a row i and
Red selects a column j. The choices are made simultaneously and without
knowledge of the opponent’s choice. If Blue selects row i and Red selects
column j, then the payoff to Blue is a(i, j) and the payoff to Red is �a(i, j).
Blue’s objective is to maximize the payoff, while Red’s objective is to minimize
the payoff.

At this point, the formulation of a matrix game may strike the reader as
rather artificial and uninteresting. It turns out, however, that many decision
problems in conflict situations can be modeled as matrix games. As an
example, we shall formulate a tactical naval problem as a matrix game. The
reader will find many additional interesting examples elsewhere [Dresher,
1961]. The naval game appears there as a land conflict game called Colonel
Blotto.

Two Red cargo ships are protected by three escort frigates under the
command of Captain Pluto. The entire convoy is subject to attack by a pack
of four Blue submarines under the command of Captain Nemo. The ships carry
a hazardous cargo and thus maintain a separation such that one submarine
cannot attack both ships. Captain Nemo’s problem is to allocate his submar-
ines to attack the two ships. Thus, he may allocate all four of his submarines
to attack one of the ships and none to attack the second ship. Or, he may
allocate three submarines to attack one ship and one submarine to attack the
second ship. Or, he may allocate two submarines to attack each of the ships.
We may summarize the choices, or strategies, available to Captain Nemo by
five ordered pairs, (4, 0), (0, 4), (3, 1), (1, 3), (2, 2), where (�, �) indicates that he
has allocated � submarines to attack ship 1 and � submarines to attack ship 2.
Captain Pluto’s problem is to allocate his frigates to defend the ships. He has
four choices, or strategies, each of which can be denoted by an ordered pair
(�, �), 0��� 3, 0��� 3, �� �� 3, where � frigates are allocated to defend
ship 1 and � frigates are allocated to defend ship 2. We assume that conditions
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are such that when Captain Nemo allocates his submarines, he cannot
determine the disposition of the escort frigates, and that when Captain Pluto
allocates his escort frigates, he cannot determine the disposition of the
attacking submarines.

If at a given ship the number of attacking submarines exceeds the number
of defending frigates, then the payoff to Blue at that ship equals the number of
Red frigates at that ship plus 1. The ‘‘plus 1’’ is awarded for the cargo ship that
is assumed to be sunk. If at a given ship the number of attacking submarines
is less than the number of defending frigates, then the payoff to Blue at the
ship is

�(Number of attacking submarines� 1).

The ‘‘plus 1’’ is deducted for allowing the cargo ship to proceed to its
destination. If at a given ship the number of attacking submarines equals the
number of defending ships, then the encounter is a draw, and the payoff to Blue
at that ship is zero. The total payoff to Blue resulting from given choices by
the two antagonists is the sum of the payoffs at each ship. The payoff to Red
is the negative of the payoff to Blue.

The game just described can be cast as a matrix game with payoff matrix

Captain Pluto’s strategies

Captain Nemo’s
strategies

(4, 0)
(0, 4)
(3, 1)
(1, 3)
(2, 2)

�
(3, 0) (0, 3) (2, 1) (1, 2)

4 0 2 1

0 4 1 2

1 �1 3 0

�1 1 0 3

�2 �2 2 2
� .

A strategy for Blue (Captain Nemo) is a choice of row; a strategy for Red
(Captain Pluto) is a choice of column.

If Captain Nemo chooses row i, he is guaranteed a payoff of at least

min	a(i, j) : j� 1, . . . , 4
.

If he picks the row that will give the payoff

v��max
�

min



a(i, j),

then he will be guaranteed to obtain v�. Captain Nemo can thus pick either
row 1 or row 2 and be guaranteed a payoff of at least zero. Thus v�� 0.
On the other hand, if Captain Pluto chooses column j, he will lose at most

APPLICATION TO GAME THEORY 123



max	a(i, j) : i� 1, . . . , 5
. If Captain Pluto picks the column that gives Blue the
payoff

v� �min



max
�

a(i, j),

then he is guaranteed to lose no more than v�. Captain Pluto can thus pick
either column 3 or 4 and be guaranteed to lose no more than three. Thus
v�� 3.

Note that if Captain Nemo knows beforehand that Captain Pluto will pick
column 3, then he can pick row 3 and obtain a payoff of 3, which is greater
than v� � 0. On the other hand, if Captain Pluto knows beforehand that
Captain Nemo will pick row 2, then he can pick column 1 and lose zero units,
which is less of a loss than three units (v�� 3). An examination of the payoff
matrix shows that if one of the commander’s choice is known in advance by
the second commander, than the second commander can usually improve his
payoff if he bases his choice on this information. Thus, in the submarine—
convoy game secrecy of choice is essential. The open question, however, in the
submarine—convoy game is, ‘‘What is the best strategy for each player?’’

In contrast to the submarine—convoy game, consider the game with payoff
matrix

�
3 7 4 3

13 10 7 8

10 4 1 9

3 5 6 7� .
Here

max
�

min



a(i, j) �min



max
�

a(i, j ) � 7.

The strategies i� i
*
, where i

*
� 2, and j� j

*
, where j

*
� 3, have the

properties that a(i
*
, j
*
) � 7 and

a(i, j
*
)� a(i

*
, j
*
)� a(i

*
, j)

for all i� 1, . . . , 4 and j� 1, . . . , 4. We say that the value of the game is 7, that
i
*

� 2 is an optimal (pure) strategy for Blue, and that j
*

� 3 is an optimal
(pure) strategy for Red. If Blue chooses his optimal strategy i

*
� 2, then the

best that Red can do is to also choose his optimal strategy j
*
� 3. Also, if Red

chooses his optimal strategy j
*

� 3, then the best that Blue can do is to choose
his optimal strategy i

*
� 2. Thus, if either player announces beforehand that

he will choose an optimal strategy, the opponent cannot take advantage of this
information, other than to choose an optimal strategy.
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We now consider the general matrix game with m
 n payoff matrix A with
entries a(i, j), i� 1, . . . ,m, j� 1, . . . , n. We always have

v��max
�

min



a(i, j)�min



max
�

a(i, j) � v�.

If the reverse inequality v�� v� holds, then we set

v�min



max
�

a(i, j) �max
�

min



a(i, j)

and say that the matrix game has a value v in pure strategies. It is easy to show
that if the matrix game has a value v in pure strategies, then there exists a pair
(i
*
, j
*
) such that

v� a(i
*
, j
*
), (10)

and for all i� 1, . . . ,m, j� 1, . . . , n,

a(i, j
*
)� a(i

*
, j
*
)� a(i

*
, j ). (11)

The strategies i
*
and j

*
are called optimal (pure) strategies. We point out that

optimal strategies need not be unique. A pair of strategies (i
*
, j
*
) such that (11)

holds is called a saddle point in pure strategies. It is also easy to show that if
a matrix game has a saddle point in pure strategies, then the game has value
v and (10) holds.

If the matrix game has a value, then each player should use an optimal
strategy. For then, Blue, the maximizer, is guaranteed a payoff of v and Red,
the minimizer, is guaranteed to lose at most �v. If one player, say Blue, uses
an optimal strategy and Red does not, then the payoff to Blue, who plays
optimally, will, in general, be more favorable than it would be had Red played
optimally. This is the content of (11).

The question that still thrusts itself upon us is, ‘‘How does one play if the
game does not have a saddle point, as in the submarine—convoy game?’’ To
answer this question, we introduce the notion of mixed strategy.

Definition 5.2. A mixed strategy for Blue in the game with m
 n payoff matrix
A is a probability distribution on the rows of A. Thus, a mixed strategy is a
vector x� (x

�
, . . . , x

�
) with x

�
� 0, i� 1, . . . ,m, and ��

���
x
�
� 1.

A mixed strategy for Red is a probability distribution on the columns of A.
Thus, a mixed strategy for Red is a vector y� (y

�
, . . . , y

�
) with y

�
� 0, i�

1, . . . , n, and ��
���

y
�
� 1.

The set of pure strategies for a player is a subset of the set of mixed
strategies. For example, the pure strategy for Blue in which row i is always
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chosen is also the mixed strategy in which row i is chosen with probability 1,
that is, the vector e

�
� (0, . . . , 0, 1, 0, . . . , 0), where the ith entry is 1 and all

other entries are zero.
In actual play, Blue will select his row using a random device which

produces the value i with probability x
�
, i� 1, . . . ,m. Blue chooses row i if the

random device produces the value i. Red chooses column j in similar fashion.
If mixed strategies are used, neither player tries to outguess his opponent and
both trust to luck. Moreover, if Blue uses a mixed strategy, Red cannot
determine Blue’s choice beforehand and take advantage of this information. A
similar statement holds if Red uses a mixed strategy.

If mixed strategies are allowed, then it is appropriate to define the payoff of
the matrix game with mixed strategies as the expected value of the payoff. Thus,
if we denote the payoff resulting from the choice of strategies (x, y) by P(x, y),
we have

P(x, y) � x�Ay��x,Ay�. (12)

We define the matrix game with matrix A in which mixed strategies are used
as follows. Blue selects a vector x in P

�
, and Red selects a vector y in P

�
. The

payoff to Blue is given by (12), and the payoff to Red is �P(x, y). We say that
the matrix game with mixed strategies has a value if

max
x �P

�

min
y �P

�

P(x, y) �min
y �P

�

max
x �P

�

P(x, y). (13)

We denote the number in (13) by v and call it the value of the game. We say
that the game has a saddle point (x

*
, y

*
), that x

*
is an optimal mixed strategy

for Blue, and that y
*
is an optimal mixed strategy for Red if

P(x, y
*
)�P(x

*
, y

*
)�P(x

*
, y) (14)

for all x in P
�
and y in P

�
.

T 5.3. A matrix game has a value and a saddle point in mixed strategies.

This theorem is a corollary of Theorem 5.2. Take X�P
�
, Y �P

�
, and

f �P. The function P is continuous on P
�


P
�
. The sets P

�
and P

�
are

compact and convex. Since P is bilinear, it is concave in x and convex in y.
Theorem 5.3 follows by applying Theorem 5.2 to P.

Note that the saddle point condition (13) implies that

v�P(x
*
, y

*
).
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Exercise 5.1. Verify that in the submarine—convoy game the value in mixed
strategies is ��

�
and that

x
*
� (�

�
, �
�
, 0, 0, �

�
), y

*
� ( �

��
, �
��
, �
�
, �
�
)

is a saddle point.

Exercise 5.2. Show that if a matrix game has a value in pure strategies, then
(10) and (11) hold. Conversely, show that if a matrix game has a saddle point
in pure strategies, then the game has a value v and (10) holds.

Exercise 5.3. Let X
*
denote the set of optimal mixed strategies for Blue and

let Y
*
denote the set of optimal mixed strategies for Red. Show that X

*
and

Y
*
are compact convex sets.
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IV
OPTIMIZATION
PROBLEMS

1. INTRODUCTION

In Section 9 of Chapter I we stated the basic problem in optimization theory
as follows: Given a set S (not necessarily in R�) and a real-valued function f
defined on S, does there exist an element s

*
in S such that f (s

*
)� f (s) for all

s in S, and if so find it. We also showed that the problem of maximizing f over
S is equivalent to the problem of minimizing � f over S. Thus, there is no loss
of generality in only considering minimization problems, as we shall do
henceforth.

If S is a set in R� and f is a real-valued function on S, we say that a point
s
�
in S is a local minimizer or that f has a local minimum at s

�
if there exists a

�� 0 such that f (s
�
)� f (s) for all s in B(s

�
, �)� S. If the strict inequality

f (s
�
)� f (s) holds, then s

�
is said to be a strict local minimizer. If S is open,

then B(s
�
, �)�S is an open set contained in S. Hence there exists a ��� 0 such

that, for all s in B(s
�
, ��), f (s

�
)� f (s). Therefore, if S is open, for s

�
to be a local

minimizer, we need to find a �� 0 such that f (s
�
)� f (s) for all s in B(s

�
, �)

and can omit the intersection with S. A point s
*
that is a minimizer is also a

local minimizer. A point s
�
that is a local minimizer need not be a minimizer.

In this chapter we shall develop necessary conditions and sufficient condi-
tions for a point s

*
to be a minimizer or local minimizer for various classes of

problems. The determination of the set E of points that satisfy the necessary
conditions does not, of course, solve the optimization problem. All we learn is
that the set of solutions is to be found in this set. The determination of those
points in E that are solutions to the problem requires further analysis.
Sufficient conditions, if applicable to the problem at hand, are useful in this
connection.

If S is an open set in R�, the optimization problem is often called an
unconstrained problem.

A programming problem is a problem of the following type. A set X
�
in R�

is given as are functions f and g with domain X
�
and ranges in R� and R�
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respectively. Let

X� �x : x � X
�
, g(x)� 0�.

Problem P

Minimize f over the set X. That is, find an x
*
in X such that f (x

*
)� f (x) for

all x in X.
The set X is called the feasible set, and elements of X are called feasible

points or feasible vectors.
The problem is sometimes stated as follows: Minimize f (x) subject to

x � X
�
and g(x)� 0.

If X
�
�R�, A is an m�n matrix, and

f (x) �	�b, x
, g(x) ��
Ax� c

�x �, (1)

the problem is said to be a linear programming problem. We have written �b
rather than b because in the linear programming literature the problem is
usually stated as follows: Maximize 	b, x
 subject to Ax� c and x� 0.

If X
�
is convex and the functions f and g are convex, the problem is said

to be a convex programming problem.

2. DIFFERENTIABLE UNCONSTRAINED PROBLEMS

We will now denote the set on which the function f is defined by X rather than
S. We first assume that X is an open interval in R� and that f is differentiable
on X. We will derive necessary conditions and sufficient conditions for a point
x
�
in X to be a local minimizer. Although the reader surely knows these

conditions from elementary calculus, it is instructive to review them.
Let x

�
in X be a local minimizer of f and let f be differentiable at x

�
. Then

there exists a �� 0 such that f (x)� f (x
�
) for x in (x

�
� �, x

�
� �). Therefore,

for x
�
� x� x

�
� �

f (x) � f (x
�
)

x�x
�

� 0, (1)

and for x
�
� ��x�x

�

f (x) � f (x
�
)

x�x
�

� 0. (2)

Since f is differentiable at x
�
,

lim
����

�

f (x) � f (x
�
)

x� x
�

� lim
����

�

f (x) � f (x
�
)

x�x
�

� f �(x
�
).
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From this and from (1) we get f �(x
�
)� 0, while from (2) we get f �(x

�
)� 0.

Hence f �(x
�
) � 0.

Let us now assume further that f is of class C��� on (x
�
� �, x

�
� �). By

Taylor’s theorem, for each x� x
�
in (x

�
� �, x

�
� �) there exists a point x� that

lies between x
�
and x such that

f (x) � f (x
�
) � f �(x

�
)(x �x

�
) ��

�
f 
(x� )(x � x

�
)�. (3)

Since x
�
is a local minimizer, f �(x

�
) � 0 and therefore

�
�
f 
(x� )(x �x

�
)� � f (x) � f (x

�
)� 0.

Thus

f 
(x� ) � 2
f (x) � f (x

�
)

(x�x
�
)�

� 0.

If we now let x�x
�
, then x� �x

�
and f 
(x� ) � f 
(x

�
). Hence f 
(x

�
)� 0.

We have proved the following theorem.

T 2.1. L et X be an open interval in R, let f be a real-valued function
defined on R, and let x

�
in X be a local minimizer for f. If f is differentiable at

x
�
, then f �(x

�
) � 0. If f is of class C��� on some interval about x

�
, then

f 
(x
�
)� 0.

A point c in X such that f �(c) � 0 is called a critical point of f . We have
shown that for a differentiable function a local minimizer is a critical point.

If we replace the necessary condition f 
(x
�
)� 0 by the stronger condition

f 
(x
�
)� 0, we obtain a sufficient condition for a critical point to be a local

minimizer.

T 2.2. L et X be an interval in R and let f be real-valued and of class
C��� on some interval about a point x

�
in X. If f �(x

�
) � 0 and f 
(x

�
)� 0, then

x
�
is a strict local minimizer for f .

Proof. Since f 
 is continuous on some interval about x
�

and since
f 
(x

�
)� 0, there exists a �� 0 such that f 
(x)� 0 for all x in (x

�
� �, x

�
� �)

(See Exercise I.5.4.) By Taylor’s Theorem, for each x�x
�
in (x

�
� �, x

�
� �)

there exists an x� lying between x
�
and x such that (3) holds. Since f �(x

�
) � 0,

we get that for each x�x
�
in (x

�
� �, x

�
� �)

f (x) � f (x
�
) ��

�
f 
(x� )(x �x

�
)�� 0. (4)

Thus x
�
is a strict local minimizer.
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In elementary calculus texts Theorem 2.2 is often called the second derivative
test.

We must have f 
(x
�
)� 0 rather than f 
(x

�
)� 0 for the conclusion of

Theorem 2.2 to hold. To see this, take X�R and take f (x) � x	. Then
f �(0) � 0, f 
(0) � 0, but zero is not a local minimizer. If, however, we assume
that f 
(x)� 0 for all x in X, then all the statements in the proof of Theorem
2.2 hold for each x in X, except that (4) now reads

f (x) � f (x
�
) ��

�
f 
(x� )(x �x

�
)�� 0.

Thus x
�
is a minimizer. If we assume that f 
(x)� 0 on some interval about

x
�
, then x

�
is a local minimizer. Also, if we assume that f (x)� 0 on all of X,

then x
�
is a strict minimizer.

We summarize this discussion in the following corollary to Theorem 2.2

C 1. L et f �(x
�
) � 0. If f 
(x)� 0 on X, then x

�
is a minimizer. If

f 
(x)� 0 on X, then x
�
is a strict minimizer. If f 
(x)� 0 on some interval about

x
�
, then x

�
is a local minimizer.

We now take X to be an open set in R�. The next two theorems are the
n-dimensional generalizations of Theorems 2.1 and 2.2.

T 2.3. L et X be an open set in R�, let f be a real-valued function defined
on X, and let x

�
be a local minimizer. If f has first-order partial derivatives at

x
�
, then

� f
�x

�

(x
�
) � 0, i� 1, . . . , n. (5)

If f is of class C��� on some open ball B(x
�
, �) centered at x

�
, then

H(x
�
) ��

�� f
�x

�
�x

�

(x
�
)�

is positive semidefinite.

Proof. Since X is open, there exists a �� 0 such that for each i� 1, . . . , n
the points

x
�
� te

�
� (x

�
�
, . . . , x

�
���
, x

�
�
� t, x

�
���
, . . . , x

�
�
)

are in X whenever �t���. Therefore for each i� 1, . . . , n the function �
�

defined by

�
�
(t) � f (x

�
� te

�
), �t���,
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is well defined and has a local minimum at t� 0. Since the partial derivatives
of f exist at x

�
, the chain rule implies that for each i� 1, . . . , n the derivative

��
�
(0) exists and is given by

��
�
(0) �

� f
�x

�

(x
�
).

Since each �
�
has a local minimum at t� 0, ��

�
(0) � 0. Thus (5) holds.

Now suppose that f is of class C��� on some open ball B(x
�
, �). Then for

each unit vector u in R� the function �( ; u) defined by

�(t; u) � f (x
�
� tu), �t���,

is well defined, is of class C���, and has a local minimum at t� 0. By Theorem
2.1, ��(0, u) � 0 and �
(0; u)� 0. By a straightforward calculation as in relation
(13) in Section 11 of Chapter I, we get

�
(t; u) �	u, H(x
�
� tu)u
.

Setting t� 0, we get that 	u,H(x
�
)u
� 0. Since u is an arbitrary unit vector,

we get that H(x
�
) is positive semidefinite.

In R� points c such that � f (c) � 0 are called critical points of f.

T 2.4. L et X be an open set in R� and let f be a real-valued function of
class C��� on some ball B(x

�
, �

�
). If H(x

�
) is positive definite and � f (x

�
) � 0, then

x
�
is a strict local minimizer. If X is convex, f is of class C��� on X, and H(x)

is positive semidefinite for all x in X, then x
�
is a minimizer for f. If H(x) is

positive definite for all x in X, then x
�
is a strict minimizer.

Proof. We shall only prove the local statement and leave the proof of the
last two to the reader.

If H(x
�
) is positive definite at x

�
, then it follows from the continuity of the

second partial derivatives of f and Lemma III.3.2 that there exists a �� 0 such
that H(x) is positive definite for all x in B(x

�
, �). Let x be any point in B(x

�
, �)

and let v�x�x
�
. Then the function �( ; v) defined by

�(t; v) � f (x
�
� tv)

is well defined and is C��� on some real interval (�1� �, 1� �), where �� 0.
Moreover

�(0; v) � f (x
�
), �(1; v) � f (x). (6)
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By Taylor’s theorem, there exists a t� in the interval (0, 1) such that

�(1; v) ��(0; v) ���(0; v) � �
�
�
(t� ; v). (7)

Again, straightforward calculations as in relations (12) and (13) in Section 11
of Chapter I give

��(t; v) �	� f (x
�
� tv), v
,

�
(t; v) � 	v, H(x
�
� tv)v
, �1� �� t� 1� �.

If we set t� 0 in the first of these relations, we get that ��(0; v) �	� f (x
�
), v
.

If we then set t� t� in the second of these relations, use the hypothesis
� f (x

�
) � 0, and substitute into equation (7), we get

�(1; v) ��(0; v) ��
�
	v, H(x

�
� t� v)v
.

From this relation, from (6), and from the fact that H(x) is positive definite for
all x in B(x

�
, �), we get that

f (x) � f (x
�
) � �

�
	v, H(x

�
� t� v)v
� 0

for all x in B(x
�
, �) Hence x

�
is a strict local minimizer.

Remark 2.1. Theorems 2.1 and 2.3 suggest the well-known strategy of solving
unconstrained optimization problems by first finding the critical points. Some
of these critical points can then be eliminated by considering the second
derivative or Hessian at these points. By then considering strengthened
conditions on the second derivative or the Hessian as in Theorems 2.2 and 2.4,
one can show in some cases that a critical point is indeed a local minimizer or
minimizer.

Exercise 2.1. Let X be a closed interval [a, b] in R� and let f be a real-valued
function defined on X. Show that if x� a is a local minimizer for f and if the
right-hand derivative f �

�
(a) exists, then f �

�
(a)� 0. Show that if x� b is a local

minimizer and the left-hand derivative f �
�
(b) exists, then f �

�
(b)� 0.

Exercise 2.2. Find local minimizers, local maximizers, minimizers, and maxi-
mizers, if they exist, for the following functions. Exercise I.9.3 may be useful in
some cases:

(a) f (x
�
, x

�
) �x�

�
� 4x

�
� 2x�

�
� 7,

(b) f (x
�
, x

�
, x

	
) � 3x�

�
� 2x�

�
� 2x�

	
� 2x

�
x
�
� 2x

�
x
	
� 2x

�
x
	
,

(c) f (x
�
, x

�
) �x

�
x
�
� 1/x

�
� 1/x

�
, (x

�
, x

�
) � (0, 0), and

(d) f (x
�
, x

�
) � (x

�
�x

�
)(x

�
x
�
� 1).
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Exercise 2.3. Let

f (x
�
, x

�
) �x�

�
�x	

�
, g(x

�
, x

�
) �x�

�
�x�

�
.

Show that � f (0) ��g(0) � 0 and that both f and g have positive semidefinite
Hessians at 0, but 0 is a local minimizer for g but for for f. This shows that
the condition of positive definiteness of H(x

�
) in Theorem 2.4 cannot be

replaced by positive semidefiniteness.

Exercise 2.4. Complete the proof of Theorem 2.4 by proving the last two
statements.

Exercise 2.5. Let

f (x, y) �x�� y�� 32y�.

Minimize f on R�. (Hint: See Exercise I.9.3.)

Exercise 2.6. (a) Show that for no value of a does the function

f (x, y) �x	� 3axy� y	

have a minimizer.
(b) For each value of a find local minimizers and local maximizers, if any

exist, of this function.

Exercise 2.7. Let f be defined on R� by

f (x, y) � x	� e		� 3xe	.

Show that there is a unique point (x
�
, y

�
) at which � f (x, y

�
) � 0 and that this

point is a local minimizer but not a minimizer.

Exercise 2.8 (Linear Regression). In the linear regression problem n points
(x

�
, y

�
), (x

�
, y

�
), . . . , (x

�
, y

�
) are given in the xy-plane and it is required to ‘‘fit’’

a straight line y� ax� b to these points in such a way that the sum of the
squares of the vertical distances of the given points from the line is minimized.
That is, a and b are to be chosen so that

f (a, b) �
�
�
�
�

(ax
�
� b� y

�
)�
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is minimized. The resulting line is called the linear regression line for the given
points.

Show that the coefficients a and b of the linear regression line are given by

b� y� � ax� , a�
nx� y� ���

�
�
x
�
y
�

n(x� )� ���
�
�

x�
�

,

where

x� �
1

n

�
�
�
�

x
�
, y� �

1

n

�
�
�
�

y
�
.

Exercise 2.9 (Best Mean-Square Approximation by Orthogonal Functions). Let
�
�
, . . . , �

�
be continuous and not identically zero on an interval [a, b] and such

that

�



�

�
�
(x)�

�
(x) dx� 0 if j� k.

Given a piecewise continuous function f on [a, b] show that the values of
c
�
, . . . , c

�
that minimize

F(c) ��



�
� f�

�
�
�
�

c
�
�
� �
�
dx

are given by the formulas

c
�
�

	�
�
, f 


	�
�
, �

�


, i� 1, . . . , n,

where

	�, �
��



�

�(x)�(x) dx.

Exercise 2.10. In this exercise we shall establish a series of results, some of
which are of interest in their own right, that lead to a proof of Lemma III.3.2.

(a) Let Q(x) �	x,Ax
, where A is a symmetric matrix. Show that if Q is
positive definite, then A is nonsingular. Hint: If A were singular, there would
exist an x

�
� 0 such that Ax

�
� 0.

(b) Show that if Q is positive semidefinite and A is nonsingular, then Q is
positive definite. Hint: If A is positive semidefinite, then there exists an x

�
� 0

that minimizes Q.
(c) If Q is positive definite, then detA� 0. Hint: Let I denote the identity

matrix and let 0��� 1. For each 0��� 1 consider the quadratic form
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P(x, �) � (1� �)�x��� �Q(x) �	x, [(1� �)I� �A]x
.

Let d(�) �det[(1� �)I� �A]. Show that d is a continuous function, that
d(�) � 0, and that d(0) � 1.

(d) Let the function f with domain R� be defined by

f (x) �	x, Ax
� 2	b, x
� c,

where A is an n�n positive-definite matrix and b is an n-vector. Show that
x
�
��A��b in the unique minimizer of f and that

f (x
�
) �	b, x

�

� c�

det �
A

b


b

c�
detA

Hint:

det�
A

b


b

c�� det�
A

b


Ax
�
� b

	b, x
�

� c�.

Why?
(e) Let

g(x, y) �	x, Ax
� 2y	b, x
� cy�� (x, y)
B(x, y),

where

B��
A

b


b

c�.
Show that the quadratic form g is positive definite if and only if A is positive
definite and detB� 0. Hints:

(i) Since g(x, 0) �	x,Ax
, if g is positive definite, then A is positive
definite.

(ii) For y� 0,

g(x, y) � y�g �
x

y
, 1�

(iii) If A is positive definite, then

g(x, 1) � f (x)� f (x
�
).

(f ) Prove Lemma III.3.2. Hint: If A is positive definite, use (e) and
induction. If A is negative definite, then �A is positive definite.
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3. OPTIMIZATION OF CONVEX FUNCTIONS

The points at which a convex function attains a maximum or minimum have
important properties not shared by all functions.

T 3.1. L et f be a convex function defined on a convex set C.

(i) If f attains a local minimum at x
�
, then f attains a minimum at x

�
.

(ii) T he set of points at which f attains a minimum is either empty or convex.

(iii) If f is strictly convex and f attains a minimum at x
*
, then x

*
is unique.

(iv) If f is not a constant function and if f attains a maximum at some point
x in C, then x must be a boundary point of C.

Proof. (i) Since f attains a local minimum at x
�
, there exists a �� 0 such

that for all z in B(x
�
, �)�C

f (z) � f (x
�
)� 0. (1)

Let y be an arbitrary point in C. Then [x
�
, y] belongs to C. Hence for

0� t��/�y�x
�
� the point z�x

�
� t(y� x

�
) belongs to B(x

�
, �)�C.

Hence, from Lemma III.1.7 and (1) we get

f (y) � f (x
�
)�

f (z) � f (x
�
)

t
� 0.

(ii) If f attains a minimum at a unique point, then there is nothing to prove.
Suppose that f attains a minimum at two distinct points x

�
and x

�
. Let

�� f (x
�
) � f (x

�
) �min� f (x) : x � C�. Then for any (�, �) in P

�
with �� 0,

�� 0,

�� f (�x
�
��x

�
)�� f (x

�
) �� f (x

�
) � (���)���.

Hence f attains a minimum at each point of [x
�
, x

�
].

(iii) Suppose that f attains a minimum at two distinct points x
�
and x

�
. Let

� be as in (ii). Then for any (�, �) in P
�
,

�� f (�x
�
� �x

�
)�� f (x

�
) � � f (x

�
) ��.

Thus, we get a contradiction, ���, and so x
�
and x

�
cannot be distinct.

(iv) Suppose f attains a maximum at x. If x were not a boundary point,
then x would be an interior point. Since f is not a constant function, there
exists a point y in C such that f (y)� f (x). Since C is convex, the line segment
[x, y] belongs to C. Since x is an interior point, there is a line segment [z, y]
such that x is an interior point of [z, y]. Then x� �z��y for some (�, �) in
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P
�
with �� 0, �� 0, and

f (x)�� f (z) �� f (y)�� f (x) �� f (x) � f (x).

Thus we have the contradiction f (x)� f (x).

The next theorem and its corollary characterize points x
*

at which a
function attains a minimum.

T 3.2. L et f be a real-valued function defined on a set C. T hen f attains
a minimum at x

*
in C if and only if 0 � � f (x

*
).

Proof. If f attains a minimum at x
*
, then for all x in C,

f (x)� f (x
*
) � f (x

*
) � 	0, x�x

*

. (2)

Hence 0 � � f (x
*
). Conversely, if 0 � � f (x

*
), then (2) holds and f attains a

minimum at x
*
.

Note that the theorem does not require f or C to be convex. If, however, f
is not convex, it can fail to have a subgradient at all points of its domain. Such
a function therefore cannot attain a minimum. The logarithm function ln x, or
any other logarithm function, is an example. The next corollary does require f
and C to be convex.

C 1. L et f be convex and differentiable on an open convex set C. T hen
f attains a minimum at x

*
in C if and only if � f (x

*
) � 0.

Proof. Let f attain a minimum at x
*
. That � f (x

*
) � 0 follows from

Theorem 2.3, whether or not f and C are convex. If f is convex and
differentiable on an open convex set C and � f (x

*
) � 0, then by Theorem

III.3.1

�0�� �� f (x
*
)�� � f (x

*
).

Thus, by the theorem, f attains a minimum at x
*
.

Remark 3.1. In geometric terms, Theorem 3.2 states that for a convex function
f defined on a convex set C, a point x

*
in C furnishes a minimum if and only

if the epigraph of f has a horizontal supporting hyperplane at (x
*
, f (x

*
)). The

corollary states that for a differentiable convex function defined on an open
convex set C, a point x

*
furnishes a minimum if and only if the tangent plane

to the graph of f at x
*
is horizontal.

The corollary also points out the true content of Theorem 2.4. By Theorem
III.3.3, the positive definiteness or semidefiniteness of H(x) on X implies that
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f is convex. It is the convexity of f that is the important element in Theorem
2.4. The alert reader may have observed that much of the proof of Theorem
2.4 was a repetition of the proof of Theorem III.3.3.

Exercise 3.1. Show that f (x) �x�
�
�x�

�
� 3x

�
� 7x

�
attains a minimum on R�

at a unique point and find the minimum.

Exercise 3.2. Maximize f (x) �x�
�
�x

�
x
�
�x�

�
subject to

�3x
�
� 2x

�
� 6� 0, �x

�
�x

�
� 3� 0, x

�
� 2� 0.

(a) Sketch the feasible set.

(b) Show that a solution exists.

(c) Find the solution.

4. LINEAR PROGRAMMING PROBLEMS

Linear programming is used extensively in resource allocation problems. To
illustrate, we formulate a simple job-scheduling problem.

An office furniture manufacturer makes n different types of desks. His profit
per desk of type j is b

�
. Thus, if each week he produces x

�
desks of type j, then

his profit for the week is

b
�
x
�
�� � b

�
x
�
.

The manufacturer’s objective is to maximize his profit. The number of desks
that he can produce per week is not unlimited but is constrained by the
capacity of his plant. Suppose that the manufacture of a type 1 desk requires
a
��

hours per week on machine 1, that the manufacture of a type 2 desk
requires a

��
hours of time on machine 1, and the manufacture of a type j desk

requires a
��

hours per week of time on machine 1. If x
�
, j� 1, . . . , n, denotes

the number of desks of type j manufactured per week, then the number of hours
that machine 1 is used per week is

a
��
x
�
� a

��
x
�
��� a

��
x
�
.

Because of maintenance requirements, readjustments, and the number of shifts
employed, the total time that machine 1 is in operation cannot exceed some
fixed preassigned number c

�
. Thus we have a constraint

a
��
x
�
�� � a

��
x
�
� c

�
.

Similarly, if the manufacture of one desk of type j requires a
��
hours per week
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on machine i and the total number of hours per week that machine i can
operate is c

�
, then

a
��
x
�
�� � a

��
x
�
� c

�
, i� 2, 3, . . . , n.

Also the number of disks of type j made is nonnegative, so x
�
� 0.

The problem for the desk manufacturer is to manufacture x
�
desks of type

j so as to maximize

�
�
�
�

b
�
x
�

subject to

�
�
�
�

a
��
x
�
� c

�
, i� 1, . . . ,m, x

�
� 0, j� 1, . . . , n.

This is a linear programming problem in standard form.
For a brief account of the origin and early days of linear programming by

a pioneer in the field, see Dantzig [1963]. Some early applications are also
discussed there.

In this section we shall derive a necessary and sufficient condition that a
point x

*
be a solution to a linear programming problem. In practice the use

of this condition to solve the problem is precluded by the dimension of the
space R�. Instead, a direct method, the simplex method, is used. The simplex
method will be discussed in Chapter VI. Nevertheless, we derive the necessary
conditions for linear programming problems to illustrate the simplest case of
the use of Farkas’s theorem (and hence separation theorems) to derive
necessary conditions in constrained optimization problems. The basic idea in
this proof is a theme that runs throughout much of optimization theory.

The linear programming problem in standard form (SLP) is given as

Minimize 	�b, x


subject to Ax� c, x� 0,

where x � R�, A is an m�n matrix, b� 0 is a vector in R�, and c is a vector in
R�.

The linear programming problem SLP can also be written as follows:
Minimize 	�b, x
 subject to

�
A

�I� x��
c

0�, (1)
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where I is the n�n identity matrix and 0 is the zero vector in R�. If we denote
the matrix on the left in (2) by A� and the vector on the right by c� and then
drop the tildes, we can state the linear programming problem (LPI) as

minimize 	�b, x


subject to Ax� c,

where A is an m�n matrix, b � R�, and c � R�. Here, we have incorporated the
constraint x� 0 in the matrix A and the vector c.

T 4.1. L et x
*
be a solution of L PI. T hen there exists a �� 0 in R� such

that (x
*
, �) satisfies the following:

(i) Ax
*
� c, (ii) A
�� b,

(iii) �� 0, (iv) 	Ax
*
� c, �
� 0,

(v) 	b, x
*

�	c, �
.

(2)

If there exist an x
*

� R� and a � � 0 in R� that satisfy (i) — (iv), then x
*
is a

solution of L PI.

Proof. The feasible set for LPI is X� �x :Ax� c�. Since x
*
is a solution to

LPI, x
*

� X, and so (i) holds.
We now prove (ii) and (iii). If x

*
in X is a solution to LPI, then

	�b, x
*

�	�b, x
 for all x in X. Hence 	b, x
�	b, x

*

 for all x in X. If

we set ��	b, x
*

, then we have that X is contained in the closed negative half

space determined by the hyperplane H�b . By Exercise II.2.16, for x in int(X ), we
have 	b, x
��, and so x

*
cannot be an interior point of X.

Let a
�
denote the ith row of the matrix A. Let

E� �i :	a
�
, x

*

� c

�
�, I� �i :	a

�
, x

*

� c

�
�.

Since x
*
is not an interior point of X, the set E� �. Let A

�
denote the

submatrix of A consisting of those rows a
�
with i in E, and let A

�
denote the

submatrix of A consisting of those rows a
�
with i in I.

We claim that the system

A
�
x� 0, 	b, x
� 0, (3)

has no solution x in R�.
Intuitively this is clear, for if x

�
would be a solution, then so would �x

�
for

�� 0, and we would have A
�
(x
*
� �x

�
)� c

�
. Also for � sufficiently small, by

continuity, we would have A
�
(x
*
� �x

�
)� c

�
. Thus, if (3) had a solution, we

would be able to move into the feasible set and at the same time increase
	b, x

*

 or decrease 	�b, x

*

. This would contradict the optimality of x

*
.
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We now make this argument precise. Again, if x
�
were a solution of (3), then

�x
�
would be a solution of (3) for all �� 0, and

	�b, x
*

� �x
�

�	�b, x

*

� �	b, x

�

�	�b, x

*

 (4)

for all �� 0. Also,

A
�
(x
*
� �x

�
) � c

�
� �A

�
x
�
� c

�
, �� 0, (5)

and

A
�
(x
*
� �x

�
) �A

�
x
*
� �A

�
x
�
� (c

�
� p) � �A

�
x
�
,

where p� 0 (Recall that p� 0 means that all components of p are strictly
positive.) By taking �� 0 to be sufficiently small, we can make �A

�
x
�
� p� 0.

Hence for �� 0 and sufficiently small

A
�
(x
*
� �x

�
) � c

�
� (�A

�
x
�
� p)� c

�
. (6)

In summary, from (5) and (6), we get that for sufficiently small �� 0 the
vectors x

*
� �x

�
are in X. From this and from (4), we get that x

*
is not a

solution to the linear programming problem. This contradiction shows that x
�

cannot be a solution of (3).
Since the system (3) has no solution, it follows, from Theorem II.5.1

(Farkas’s lemma) that there exists a vector y in R��, where m
�
is the row

dimension of A
�
, such that

A

�
y� b, y� 0.

Therefore, if m
�
is the row dimension of A

�
, then

A

�
y�A


�
· 0� b,

where 0 is the zero vector in R��. If we now take � � (y, 0), then � is in R� and
satisfies

A
�� (A

�
, A


�
) �
y

0�� b, �� 0. (7)

Thus, (ii) and (iii) are established.
From (7) we see that those components of � corresponding to indices in I

are zero. By the definition of E, A
�
x
*
� c

�
� 0. Hence

	Ax
*
� c, �
� 	(A

�
x
*
� c

�
, A

�
x
*

� c
�
), (y, 0)
� 0, (8)

which is (iv).
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From (iv) and (ii) we get

	c, �
�	Ax
*
, �
� 	x

*
, A
�
� 	x

*
, b
,

which is (v).
The proof of sufficiency is elementary and does not involve separation

theorems. Let x be any feasible point. Then

	�b, x
�	�b, x
*

�	�A
�, x
�	c, �


�	�, �Ax� c
��	Ax� c, �
� 0.

Hence x
*
is a solution to LPI.

Remark 4.1. An alternate proof of (iv) and (v) is to establish (v) first and then
use (v) to establish (iv). Thus

	b, x
*

� 	A
�, x

*

�	�, Ax

*

��(y, 0), �

A
�

A
�
� x*�

� 	y, A
�
x
*

�	y, c

�

�	(y, 0), (c

�
, c

�
)


� 	�, c
,

which is (v). To establish (iv), we write

0�	b, x
*

�	c, �
� 	A
�, x

*

�	c, �


�	�, Ax
*

�	c, �
�	Ax

*
� c, �
.

Remark 4.2. It follows from (i) and (iii) that (iv) holds if and only if for each
i� 1, . . . ,m

(	a
�
, x

*

� c

�
)�

�
� 0. (iv)�

That is, (iv)� is equivalent to (iv). The condition (iv)� is sometimes called the
complementary slackness condition. It states that if there is ‘‘slack’’ in the ith
constraint at x

*
, that is, if 	a

�
, x
*

� c

�
, then �

�
� 0.

Remark 4.3. Let the linear programming problem be reformulated with X
�

taken to be an arbitrary open set instead of R�. It is clear from the proof that
if x

*
is a solution to this problem, then the necessary conditions hold.

Conversely, if there is a point x
*
in X

�
at which the necessary conditions hold,

then x
*
is feasible and the minimum is achieved at x

*
.
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The inequality constraints Ax� c can be converted to equality constraints
by introducing a nonnegative vector � whose components are called slack
variables and writing

Ax� �� c, �� 0.

Thus the linear programming problem formulated in (1) can be written as

Minimize 	(�b, 0), (x, �)


subject to (A, I) �
x

��� c, x� 0, �� 0.

That is, the problem LPI can be written as a canonical linear programming
(CL P) problem:

Minimize 	�b, x


subject to Ax� c, x� 0.

The simplex method is applied to problems in canonical form.
Conversely, the problem CLP can be written as a problem LPI by writing

the equality constraint Ax� c as two inequality constraints, Ax� c and
�Ax��c, and then incorporating the constraint x� 0 in the matrix. That
is, we write CLP as

Minimize 	�b, x


subject to �
A

�A

�I� x��
c

�c

0�.
Remark 4.4. We warn the reader that the definitions ‘‘standard form’’ and
‘‘canonical form’’ are not uniform throughout the linear programming litera-
ture. Problems that we have designated as being in canonical form are
designated as being in standard form by some authors who use the designation
‘‘canonical form’’ differently from ours. In consulting the literature the reader
should always check the definitions used.

Exercise 4.1. Prove the following corollaries to Theorem 4.1.

C 1. L et x
*
be a solution of the standard linear programming problem

SL P. T hen there exists a vector �� 0 in R� such that (x
*
, �) satisfies
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(i) Ax
*
� c, x

*
� 0;

(ii) ��
�
�

�
�
a
��
� b

�
, j� 1, . . . , n, with equality holding if x

*�
� 0;

(iii) �� 0;
(iv) 	Ax

*
� c, �
� 0; and

(v) 	b, x
*

�	c, �
.

If there exist an x
*
in R� and a �� 0 in R� such that (i) — (v) hold, then x

*
is a solution of SL P.

C 2. L et x
*
be a solution of the canonical linear programming problem

CL P. T hen there exists a vector � � 0 in R� such that (x
*
, �) satisfies

(i) Ax
*
� c, x

*
� 0;

(ii) ��
�
�

�
�
a
��
� b

�
, j� 1, . . . , n, with equality holding if x

*�
� 0;

(iii) 	Ax
*
� c, �
� 0; and

(iv) 	b, x
*

�	c, �
.

If there exist an x
*
in R� and a � � 0 in R� such that (i) — (iv) hold, then x

*
is a solution of CL P.

Note that in Corollary 2 the condition �� 0 is absent.

Exercise 4.2. Show that the problem LPI can be written as a problem in
standard form.

5. FIRST-ORDER CONDITIONS FOR DIFFERENTIABLE
NONLINEAR PROGRAMMING PROBLEMS

In this section we shall derive first-order necessary conditions for differentiable
programming problems. As noted in the introduction of this chapter, the set of
points that satisfy the necessary conditions need not furnish a solution to the
programming problem. If a solution exists, then it belongs to this set. Solution
of the necessary conditions corresponds to ‘‘bringing in the usual suspects’’ in
a criminal investigation. Further investigation is required to determine which,
if any, of these points, or ‘‘suspects,’’ furnish a solution. In this vein, we shall
show that if the data of the problem are convex, then a point that satisfies the
necessary conditions is a solution.

Problem PI

LetX
�
be an open convex set in R�. Let f, g, and h be C� functions with domain

X
�
and ranges in R�, R�, and R�, respectively. Let

X� �x :x � X
�
, g(x)� 0, h(x) � 0�.

Minimize f over X.
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The problem is often stated as

Minimize f (x)

subject to g(x)� 0, h(x) � 0.

If the constraints g(x)� 0 and h(x) � 0 are absent, the problem becomes an
unconstrained problem, which was treated in Section 2. We saw there that a
necessary condition for a point x

*
to be a solution is that all first-order partial

derivatives of f vanish at x
*
. For n� 2, 3 and 1� k� n, the problem with

equality constraints and no inequality constraints is also usually treated in
elementary calculus courses. It is stated there, with or without proof, that if x

*
is a solution of the problem and if the k gradient vectors �h

�
(x
*

) are linearly
independent, then there exist scalars �

�
, j� 1, . . . , k, such that for each

i� 1, . . . , n

� f
�x

�

(x
*
) �

�
�
�
�

�
�

�h
�
(x
*

)
�x

�

� 0

and

h
�
(x
*
) � 0, j� 1, . . . , k.

This is the Lagrange multiplier rule.
We now give a first-order necessary condition that is satisfied by a solution

of problem PI. The condition includes a more general version of the Lagrange
multiplier rule in the case that inequality constraints are absent.

We recall the notation established in Section 11 of Chapter I. If f is a
real-valued function and g� (g

�
, . . . , g

�
) is a vector-valued function that is

differentiable at x
�
, then

� f (x
�
) ��

� f
�x

�

(x
�
),
� f
�x

�

(x
�
), . . . ,

� f
�x

�

(x
�
)�

and

�g(x
�
) ��

�g
�
(x

�
)

�g
�
(x

�
)

�
�g

�
(x

�
)���

�g
�
(x

�
)

�x
�
�.

T 5.1. L et x
*
be a solution of problem PI. T hen there exists a real number

�
�
� 0, a vector �� 0 in R�, and a vector � in R� such that

146 OPTIMIZATION PROBLEMS



(i) (�
�
, �, �) � 0,

(ii) 	�, g(x
*
)
� 0, and

(iii) �
�
� f (x

*
) � �
�g(x

*
) ��
�h(x

*
) � 0.

Vectors (�
�
, �, �) having the properties stated in the theorem are called

multipliers, as are the components of these vectors.

Definition 5.1. A point x
*
at which the conclusion of Theorem 5.1 holds will

be called a critical point for problem PI.

Thus, Theorem 5.1 says that a solution x
*
of problem PI is a critical point.

Remark 5.1. The necessary condition asserts that �
�
� 0 and not the stronger

statement �
�
� 0. If �

�
� 0, then we may divide through by �

�
in (ii) and (iii)

and relabel �/�
�
and �/�

�
as � and �, respectively, and thus obtain statements

(i)—(iii) with �
�
� 1. In the absence of further conditions that would guarantee

that �
�
� 0, we cannot assume that �

�
� 1. We shall return to this point later.

Remark 5.2. If g� 0, that is, the inequality constraints are absent, Theorem
5.1 becomes the Lagrange multiplier rule.

Remark 5.3. Since �� 0 and g(x
*
)� 0, condition (ii) is equivalent to

�
�
g
�
(x
*
) � 0, i� 1, . . . ,m. (ii)�

Condition (iii) is a system of n equations

�
�

� f
�x

�

(x
*

) �
�
�
�
�

�
�

�g
�
(x
*

)
�x

�

�
�
�
�
�

�
�

�h
�
(x
*
)

�x
�

� 0, j� 1, . . . , n. (iii)�

Remark 5.4. The necessary conditions are also necessary conditions for a local
minimum. For if x

*
is a local minimum, then there exists a �� 0 such that

f (x
*
)� f (x) for all x that are in B(x

*
, �)�X

�
and that satisfy the constraints

g(x)� 0 and h(x) � 0. Thus, x
*
is a global solution to the problem in which

X
�
is replaced by X

�
�B(x

*
, �).

Remark 5.5. Theorem 5.1, under additional hypotheses guaranteeing that
�
�
� 0, was proved in Kuhn and Tucker [1951]. This paper had great impact

since interest in nonlinear programming was developing at that time in
economics and other areas of application. The theorem with �

�
� 0 had been

proved in John [1948], and prior to that, again under conditions ensuring that
�
�
� 0, in Karush, [1939]. The results of John and of Karush were unnoticed

when they appeared, probably because interest in programming problems had
not yet come about. These papers were looked upon only as mathematical

DIFFERENTIABLE NONLINEAR PROGRAMMING PROBLEMS 147



generalizations of the Lagrange multiplier rule. In the literature, Theorem 5.1,
with additional hypotheses guaranteeing that �

�
� 0, is often referred to as the

Karush—Kuhn—Tucker Theorem. Theorem 5.1, as stated here, is referred to as
the Fritz John theorem. We shall adopt this terminology and refer to Theorem
5.1 as the FJ theorem and call the multipliers (�

�
, �, �) FJ multipliers.

The next example, due to Fiacco and McCormick [1968], illustrates the use of
Theorem 5.1 and will be used to illustrate some subsequent theorems.

Example 5.1. Let X
�
�R�, let

f (x) � (x
�
� 1)� �x�

�
,

and let

g(x) � 2kx
�
� x�

�
� 0, k� 0.

For each value of k� 0 we obtain a programming problem �
�
. The feasible set

X
�
for problem �

�
is the set of points on and exterior to the graph of the

parabola x�
�
� 2kx

�
, and the function to be minimized is the distance from x

to the point (1, 0). In Figure 4.1 we have sketched some level curves of f and
the parabolas for two values of k. Although the solution can be read from
Figure 4.1, we will apply the appropriate theorems in this section and in the
next section to solve this problem.

By straightforward calculation

� f � (2(x
�
� 1), 2x

�
), �g� (2k, �2x

�
).

From Theorem 5.1 we get that if a point x is a solution to the programming
problem �

�
, then there exist a �

�
� 0 and a �� 0 with (�

�
, �) � (0, 0) such that

(�
�
, �) and x satisfy

�
�
(2(x

�
� 1), 2x

�
) � �(2k, �2x

�
) � (0, 0), (1)

�(2kx
�
�x�

�
) � 0. (2)

If �
�
� 0, then since �� 0, equation (1) would imply that k� 0, contradic-

ting the assumption that k� 0. Hence we may take �
�
� 1. If �� 0, then (1)

would imply that x
�
� 1 and x

�
� 0. The point (1, 0) is not feasible for any

value of k� 0, so we may assume that �� 0 in (1). It then follows from (2)
that 2kx

�
�x�

�
� 0; that is, the point x must lie in the parabola. Thus we may

replace (1) and (2) by

((x
�
� 1), x

�
) � �(k, �x

�
) � (0, 0), x�

�
� 2kx

�
. (3)
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Figure 4.1.

If x
�
� 0, then we must have �� 1, and so

x
�
� 1� k, x

�
���2k(1 � k), 0� k� 1.

If x
�
� 0, then from the second equation in (3) we get that x

�
� 0, and

consequently �� 1/k.
In summary, we have shown that if 0� k� 1, then the only points

x� (x
�
, x

�
) and multipliers (1, �) that satisfy the necessary conditions for

problem �
�
are

�� 1, x
�
� 1� k x

�
� ��2k(1 � k) , (4)

��
1

k
x
�
� 0 x

�
� 0. (5)
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If k� 1, the necessary conditions are only satisfied by (5). Note that if k� 1,
then (4) and (5) both give �� 1 and x

�
� x

�
� 0.

We emphasize that Theorem 5.1 is a necessary condition, so that without
further arguments we cannot determine which, if any, of the points (4) and (5)
furnish a minimum In the problem �

�
we are minimizing the distance from the

point (1, 0) to the closed set X
�
. By Lemma II.3.3 a solution to this problem

exists. Since for k� 1 the only point that satisfies the necessary conditions is
the origin, this point is the solution to problem �

�
for k� 1. If we denote the

two points in (4) by x
�
and x

�
, then

f (x
�
) � f (x

�
) ��k�� 2k.

The point in (5) is the origin, and f (0) � 1. Since �k�� 2k� 1 for k� 1, a
solution to problem �

�
for 0� k� 1 is given by each of the points x

�
and x

�
.

Before we present our proof of Theorem 5.1, we shall present the principal
idea of a proof which, with variations, is popular in the literature. We suppose
that the equality constraints have been converted into inequality constraints,
h(x)� 0 and �h(x)� 0, so that the only constraints are g(x)� 0. By a trans-
lation of coordinates, we can assume that x

*
� 0 and that f (x

*
) � f (0) � 0.

We also assume that � f (0) � 0.
As in the linear programming problem, let

E� �i : g
�
(0) � 0�, I� �i : g

�
(0)� 0�. (6)

The constraints g
�
(c) � 0 with i in E are said to be active or binding at 0; those

with i � I are said to be inactive at 0.
Since f and g are C�, they are differentiable by Theorem I.11.2. Therefore,

since f (0) � 0 and g
�

(0) � 0,

f (x) �	� f (0), x
� o(�x�),

g
�

(x) ��g
�

(0)x� o(�x�),

where o(�x�) and o(�x�) represent terms such that o(�x�)/�x�� 0 and o(�x�)/
�x�� 0 as �x�� 0. Thus, o(�x�) and o(�x�) represent higher order terms.

Since g is continuous and g
�
(0)� 0, there exists a �� 0 such that g

�
(x)� 0

whenever �x���. The origin is therefore a solution of the local problem:
Minimize f (x) subject to g

�
(x)� 0 and �x���. If we drop the terms o(�x�)

and o(�x�), that is, if we linearize the problem about the solution 0 and assume
that the problem is the linearized problem, then x

*
� 0 is the solution of the

linear programming problem:

Minimize 	� f (0), x
�	�(�� f (0)), x
,

subject to �g
�

(0)x� 0, �x���. (7)
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By Remark 4.3, we can now apply Theorem 4.1 with A��g
�

(0) and
b��� f (0) to the linearized problem and obtain the existence of a vector
�
�
� 0 in R�� such that �

�
� 0 and

�

�
�g

�
(0) ��� f (0).

If we now set �� (�
�
, 0

�
), then �� 0 and we can rewrite this equation as

� f (0) � �

�
�g

�
(0) � 0


�
�g

�
(0) �� f (0) ��
�g(0) � 0.

The rightmost equation is statement (iii) of Theorem 5.1 with �
�
� 1. (Recall

that we are taking all the constraints to be inequality constraints.) Since �
�
� 1,

(�
�
, �) � 0. Also

	�, g(0)
�	(�
�
, 0

�
), (g

�
(0), g

�
(0))
� 0,

which is (ii). Note that if the linearization is valid, then we can get a set of
multipliers (�

�
, �) with �

�
� 1.

To complete the proof, one must show that the terms o(�x�) and o(�x�) can
indeed be neglected. That is, it must be shown that if the terms represented by
o(�x�) and o(�x�) are absent, then 0 is a solution of (7). This part of the proof
becomes quite technical and is carried out in different ways by different authors
depending on the additional assumptions that are made. In Exercise 5.10 below
the reader will be asked to carry out one such proof, the original proof by
Kuhn and Tucker.

Our proof of Theorem 5.1, which we now present, will be a ‘‘penalty
function’’ proof and is due to McShane [1973].

Proof. As noted in the preceding discussion, we may assume that x
*
� 0

and that f (x
*

) � 0.
Let E and I be as in (6). To simplify the notation, we assume that E� �1,

2, . . . , r� and that I� �r� 1, . . . ,m�. Since E or I can be empty, we have
0� r�m.

Let  be a function from (��, �) to R� such that (i)  is strictly increasing
on (0,�), (ii)  (u) � 0 for u� 0, (iii)  is C�, and (iv)  (u)� 0 for u� 0. Note
that  �(u)� 0 for u� 0.

Since g is continuous and X
�
is open, there exists an !

�
� 0 such that

B(0, !
�
) �X

�
and g

�
(x)� 0 for x � B(0, !

�
).

Define a penalty function F as follows:

F(x, p) � f (x) � �x��� p �
�
�
�
�

 (g
�
(x)) �

�
�
�
�

[h
�
(x)]��, (8)
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where x � X
�
and p is a positive integer. We assert that for each ! satisfying

0�!�!
�
, there exists a positive integer p(!) such that for x with �x�� !

F(x, p(!)) � 0. (9)

We prove the assertion by assuming it to be false and arriving at a
contradiction. If the assertion were false, then there would exist an !� with
0�!��!

�
such that for each positive integer p there exists a point x

�
with

�x
�
�� !� and F(x

�
, p)� 0. Hence, from (8)

f (x
�
) � �x

�
����p �

�
�
�
�

 (g
�
(x

�
)) �

�
�
�
�

[h
�
(x

�
)]��. (10)

Since �x
�
�� !� and since S(0, !�) � �y : �y�� !�� is compact, there exist sub-

sequences, which we relabel as x
�
and p, and a point x

�
with �x

�
�� !� such

that x
�
�x

�
. Since f, g, and h are continuous,

f (x
�
) � f (x

�
), g

�
(x

�
) � g

�
(x

�
), h(x

�
) � h(x

�
).

Therefore, if in (10) we divide through by �p and then let p��, we get

0�
�
�
�
�

 (g
�
(x

�
)) �

�
�
�
�

[h
�
(x

�
)]�� 0.

Hence for each i� 1, . . . , r we have g
�
(x

�
)� 0, and for each i� 1, . . . , k we

have h
�
(x

�
) � 0. Since �x

�
�� !�� !

�
, we have g

�
(x

�
)� 0. Thus x

�
is a feasible

point and so

f (x
�
)� f (0) � 0. (11)

On the other hand, from (10) and from �x
�
�� !� we get that f (x

�
)��(!�)�,

and so

f (x
�
)��(!�)� � 0,

which contradicts (11). This proves the assertion.
For each ! in (0, !

�
) the function F( , p(!)) is continuous on the closed ball

B(0, !). Since B(0, !) is compact, F( , p(!)) attains its minimum on B(0, !) at
some point x	 with �x	��!.

Since F(x, p(!)) � 0 for x with �x�� !, and since F(0, p(!)) � f (0) � 0, it
follows that F( , p(!)) attains its minimum on B(0, !) at an interior point x	 of
B(0, !). Hence,

�F
�x

�

(x	 , p(!)) � 0, j� 1, . . . , n.
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Calculating �F/�x
�
from (8) gives

� f
�x

�

(x	) � 2x	
�

�
�
�
�
�

p(!) �(g
�
(x	))

�g
�

�x
�

(x	)

�
�
�
�
�

2p(!)h
�
(x	)

�h
�

�x
�

(x	) � 0 for j� 1, . . . , n. (12)

Define

L (!) � 1�
�
�
�
�

[p(!) �(g
�
(x	))]� �

�
�
�
�

[2p(!)h
�
(x	)]�,

�
�
(!) �

1

�L (!)
,

�
�
(!) �

p(!) �(g
�
(x	))

�L (!)
, i� 1, . . . , r,

�
�
(!) � 0, i� r� 1, . . . ,m,

�
�
(!) �

2p(!)h
�
(x	)

�L (!)
, i� 1, . . . , k.

Note that

(i) �
�
(!)� 0,

(ii) �
�
(!)� 0, i� 1, . . . , r,

(iii) �
�
(!) � 0, i� r� 1, . . . ,m,

(iv) �(�
�
(!), �(!), �(!))�� 1,

(13)

where �(!) � (�
�
(!), . . . , �

�
(!)) and �(!) � (�

�
(!), . . . , �

�
(!)).

If we divide through by �L (!) in (12), we get

�
�
(!)

� f
�x

�

(x	) �
2x	

�

�L (!)
�

�
�
�
�

�
�
(!)
�g

�
(x	)
�x

�

�
�
�
�
�

�
�
(!)
�h

�
(x	)
�x

�

� 0. (14)

Now let !� 0 through a sequence of values !
�
. Then since �x	��!, we have

that

x	
�

� 0. (15)

Since the vectors (�
�
(!), �(!), �(!)) are all unit vectors [see (13)], there exists a

subsequence, that we again denote as !
�
, and a unit vector (�

�
, �, �) such that

(�
�
(!

�
), �(!

�
), �(!

�
)) � (�

�
, �, �). (16)

Since (�
�
, �, �) is a unit vector, it is different from zero.
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From (14), (15), (16), and the continuity of the partials of f , g, and h, we get

�
�

� f
�x

�

(0) �
�
�
�
�

�
�

�g
�
(0)

�x
�

�
�
�
�
�

�
�

�h
�
(0)

�x
�

� 0. (17)

From (13) and (16) we see that �
�
� 0 for i� 0, 1, . . . , r and �

�
� 0 for

i� r� 1, . . . ,m. Thus, �
�
� 0 and �� 0. Since g

�
(0) � 0 for i� 1, . . . , r and

�
�
� 0 for i� r� 1, . . . ,m, we have that �

�
g
�
(0) � 0 for i� 1, . . . ,m. Also, we

can take the upper limit in the second term in (17) to be m and write

�
�

� f
�x

�

(0) �
�
�
�
�

�
�

�g
�
(0)

�x
�

�
�
�
�
�

�
�

�h
�
(0)

�x
�

� 0.

This completes the proof of the theorem.

We now present conditions that ensure that �
�
� 0 cannot occur in

Theorem 5.1. Such conditions are called constraint qualifications and are
statements about the geometry of the feasible set in a neighborhood of x

*
.

There are many constraint qualifications in the literature. We have selected two
that are relatively simple and easy to apply. The second is easier to apply, but
the first, given in Definition 5.2 below, will capture more points at which �

�
� 0

cannot occur. All of the constraint qualifications that are appropriate to
problem PI have the defect that, in general, they require knowledge of the point
x
*

rather than requiring knowledge of global properties of the functions
involved. The reader who is interested in other constraint qualifications and
the relationships among them is referred to Bazzara, Sherali, and Shetty [1993]
and Mangasarian [1969].

Definition 5.2. The functions g and h satisfy the constraint qualification CQ at
a feasible point x

�
if

(i) the vectors �h
�
(x

�
), . . . ,�h

�
(x

�
) are linearly independent and

(ii) the system

�g
�

(x
�
)z� 0, �h(x

�
)z� 0, (18)

has a solution z in R�. Here, E� �i : g
�
(x

�
) � 0�.

If the equality constraints are absent, then the statements involving �h(x
�
)

are to be deleted.
Condition (ii) of the constraint qualification says that ‘‘to first order’’ we can

move from x
�
into the feasible set by moving along the surface defined by the

equality constraints h(x) � 0 and into the interior of the set defined by
g(x)� 0. It turns that this implies that we can actually move from x

�
into the
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feasible set in this fashion. We shall prove this in the corollary to Lemma 6.1
below.

Note that CQ does not impose any condition on the point x
�
other than

that it be feasible. Also note that z� 0 cannot be a solution of (18).
The constraint qualification CQ of Definition 5.2 was introduced by

Mangasarian and Fromovitz [1967].

T 5.2. L et x
*
be a solution of problem PI and let CQ hold at x

*
. T hen

�
�
� 0 and there exists a vector �� 0 in R� and a vector � in R� such that

(i) 	�, g(x
*
)
� 0 and

(ii) � f (x
*
) � �
�g(x

*
) ��
�h(x

*
) � 0.

We shall refer to the necessary conditions of Theorem 5.2 as the Karush—
Kuhn—Tucker (KKT) conditions and to the multipliers of Theorem 5.2 as the
KKT multipliers.

We now prove the theorem. First we will show that if CQ holds at x
*
, then

�
�
in Theorem 5.1 cannot be zero. Hence if (�

�
, �, �) is as in Theorem 5.1, so

is (1, �/�
�
, �/�

�
) and Theorem 5.2 follows. Note that once we have �

�
� 0, then

(�
�
, �, �) � (0, 0

�
, 0

�
).

We now show that �
�
� 0 cannot occur. If �

�
� 0 did occur, then by (iii) of

Theorem 5.1

�
�g(x
*
) � �
�h(x

*
) � 0. (19)

If � � 0, then � � 0, since (�
�
, �, �) � (0, 0, �) � 0. But then �
�h(x

*
) � 0,

contradicting the linear independence of �h
�
(x
*
), . . . , �h

�
(x
*

). Thus, � � 0.
Since � � (�

�
, �

�
) and �

�
� 0

�
, we have that �

�
� 0. We may therefore

rewrite (19) as

�

�
�g

�
(x
*
) ��
�h(x

*
) � 0. (20)

Multiplying on the right by a vector z that is a solution of (18) gives

�

�
�g

�
(x
*
)z� 0.

Since �
�
� 0, �

�
� 0, and �g

�
(x
*
)z� 0, we have a contradiction. Thus �

�
� 0.

C 1. L et x
*
be a solution of problem PI such that the set E defined in

(6) is �1, . . . , r� and such that the vectors

�g
�
(x
*

), . . . , �g
�
(x
*
), �h

�
(x
*
), . . . , �h

�
(x
*
) (21)

are linearly independent. T hen the conclusion of T heorem 5.2 holds.
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Proof. If �
�
� 0 in Theorem 5.1, then (20) holds. Since the vectors in (21)

are linearly independent, this implies that (�
�
, �) � 0. Hence (�

�
, �, �) � 0,

which cannot occur, and so �
�
� 0.

We leave to the reader the modifications of the arguments in the proofs of
Theorem 5.2 and Corollary 1 if the equality constraints are absent.

Remark 5.6. We noted in Remark 5.3 that the necessary condition (i) of
Theorem 5.2 is equivalent to the m equations

�
�
g
�
(x
*
) � 0, i� 1, . . . ,m. (i)�

Condition (ii) in component form gives the system of n equations

� f
�x

�

(x
*
) �

�
�
�
�

�
�

�g
�
(x
*

)
�x

�

�
�
�
�
�

�
�

�h
�

�x
�

� 0, i� 1, . . . , n. (ii)�

Since x
*
is a solution, it is feasible, and so we obtain an additional k equations

h
�
(x
*
) � 0, i� 1, . . . , k.

Thus we have a system of m� n� k equations in the m� n� k unknowns

� � (�
�
, . . . , �

�
), x

*
� (x

*�
, . . . , x

*�
), � � (�

�
, . . . , �

�
).

Remark 5.7. If the inequality constraints are absent and we only have the
equality constraints h(x) � 0, then CQ becomes ‘‘�h

�
(x

�
), . . . , �h

�
(x

�
) are

linearly independent.’’ The constraint in Corollary 1 reduces to the same
statement. Under these circumstances, the multiplier (1, �) is unique. This
follows from the observation that if (1, ��) with � ��� is another multiplier,
then (0, ����) will be a multiplier. This, however, is impossible since �

�
� 0

cannot be. A similar argument shows that if all the inequality constraints
g
�
(x)� 0 are inactive at x

*
, then the multiplier (1, 0, �) is unique.

In Remark 5.7 we have established the form of the Lagrange multiplier rule
that is usually given in multivariate calculus courses. We state it as a corollary
to Theorems 5.1 and 5.2.

C 2. L et x
*
be a solution to the problem of minimizing f (x) subject to

the equality constraints h(x) � 0 and such that the vectors �h
�
(x
*
), . . . , �h

�
(x
*
)

are linearly independent. T hen there exists a unique vector � in R� such that

� f (x
*
) � �
�h(x

*
) � 0
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Figure 4.2.

or, in component form,

� f
�x

�

(x
*
) �

�
�
�
�

�
�

�h
�
(x
*
)

�x
�

� 0, j� 1, . . . , n.

The following example illustrates CQ by showing what happens when it is
not fulfilled. Also, the vectors in (21) are linearly dependent in this example.

Example 5.2. Let X
�
�R�, let f (x) � �x

�
, and let

g(x) ��
�x

�
�x

�
x
�
� (x

�
� 1)	���

0

0

0�.
The feasible set X is sketched in Figure 4.2.
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The minimum is attained at x
*
� (1, 0), and so

g
�

(x) ��
�x

�
x
�
� (x

�
� 1)	�.

Hence

�g
�

(x
*
)z��

0 �1

0 1��
z
�
z
�
�� �

�z
�
z
�
���

0

0�
has no solution in R�. Thus neither CQ nor the linear independence of the
vectors in (21) holds at x

*
� (1, 0).

The necessary condition with �
�
� 1 would imply

� f (x
*
) � (�

�
, �

	
) �

0 �1

0 1�� (0, 0)

or

(�1, 0) � (0, ��
�
� �

	
) � (0, 0),

which is impossible. On the other hand, if we took �
�
� 0, then any (�

�
, �

	
)

with �
�
� �

	
� 0 would satisfy the conditions of Theorem 5.1.

Example 5.3. In this example we consider a problem with equality constraints
only in which CQ does not hold at the minimum point. Let X

�
�R�, let

f (x) � 2x�
�
�x�

�
, and let h(x) � x�

�
x
�
� x	

�
. The constraint set X consists of the

lines x
�
� 0 and x

�
� �x

�
. The level curves of f are the two branches of the

hyperbolas 2x�
�
� x�

�
� c and the asymptotes of this family, the lines

x
�
���2x

�
. See Figure 4.3.

From the figure we see that the point x
*
� (0, 0) furnishes a minimum. Since

� f (x) � (4x
�
,�2x

�
) and �h(x) � (2x

�
x
�
, x�

�
� 3x�

�
), we get that

� f (x
*
) �� f (0, 0) � (0, 0), �h(x

*
) � (0, 0).

Since �h(x
*
) � 0, the constraint qualification CQ does not hold at x

*
. Any

(�
�
, �) of the form (0, �), � arbitrary, will serve as a Lagrange multiplier, as will

any (1, �), � arbitrary.

Example 5.1 (Continued). In this example CQ holds at a point x
�
if g(x

�
) � 0

and there exists a solution z to the equation

	�g(x
�
), z
� 	(2k, �2x

��
), (z

�
, z

�
)
 � 0.

Clearly, z� (�k, 0) is a solution. Thus CQ holds at all boundary points of the
constraint set. This is consistent with our being able to rule out �

�
� 0 at the

outset in our first treatment of this example.
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Figure 4.3.

Our next theorem is a sufficiency theorem which states that if X
�
, f , and g

are convex and if the KKT necessary conditions hold, then x
*
is a solution.

T 5.3. L et f and g be as in the statement of problem PI and let X
�
, f ,

and g be convex. L et x
*

� R� and � �R� be such that

(i) g(x
*
)� 0,

(ii) �� 0,
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(iii) 	�, g(x
*
)
� 0, and

(iv) � f (x
*
) ��
�g(x

*
) � 0.

T hen x
*
is a solution of problem PI.

Remark 5.8. The sufficiency theorem can also be applied to problems with
equality constraints h(x) � 0 provided the function h is affine, that is, has the
form h�Ax� b. For then we can write the equality constraint h(x) � 0 as a
pair of inequality constraints h(x)� 0 and �h(x)� 0, with both h and �h
convex. The function g in the theorem is to be interpreted as incorporating this
pair of inequality constraints.

Remark 5.9. Under the assumptions of the theorem the feasible set X is
convex. To see this, let X

�
� �x : x � X

�
, g

�
(x)� 0�. Since each g

�
is convex,

each set X
�
is convex. Since X���

�
�
X

�
, we get that X is convex.

Proof. Condition (i) states that x
*

� X. Since f is convex,

f (x) � f (x
*
)�	� f (x

*
), x�x

*

, x �X.

Substituting (iv) into this inequality gives

f (x) � f (x
*
)�	��
�g(x

*
), x�x

*



��	�, �g(x
*
)(x�x

*
)
, x �X. (22)

Since g is convex,

g(x) � g(x
*
)��g(x

*
)(x� x

*
).

Therefore, since �� 0,

	�, g(x) � g(x
*
)
�	�, �g(x

*
)(x�x

*
)
.

Substituting this inequality into (22) and then using (iii) give

f (x) � f (x
*
)�	�, g(x

*
) � g(x)
� �	�, g(x)
.

Since �� 0 and since for x in X we have g(x)� 0, it follows that
�	�, g(x)
� 0. Hence f (x)� f (x

*
) for all x in X, and so x

*
is a solution to

problem PI.

The function g in Example 5.1 is not convex, as a calculation of the Hes-
sian matrix of g shows. Therefore Theorem 5.3 cannot be used to analyze
Example 5.1.

160 OPTIMIZATION PROBLEMS



Exercise 5.1. State and prove the form of Theorem 5.3 that results when affine
equality constraints h(x) � 0 are also present.

Exercise 5.2. Use the following to complete the exercise:

(a) Sketch the feasible set.

(b) Use an appropriate theorem to show that a solution exists.

(c) Find all critical points and associated multipliers.

(d) Without using the second-order criteria of the next section determine, if
possible, whether a given critical point furnishes a solution.

(i) Minimize f (x) �x�
�
� (x

�
� 1)� subject to

x�
�
� x�

�
� 4, x�

�
� x

�
� 1, �2x

�
�x

�
� 1.

(ii) Minimize f (x) � x�
�
� x�

�
subject to

x�
�
�x�

�
� 4, x�

�
� x

�
, �2x

�
�x

�
� 1, �2x

�
�x

�
� 2.

(iii) Minimize (x
�
� 5)� � x�

�
subject to

x�
�
� x�

�
� 4, x�

�
� 2x

�
� x�

�
� 0, x

�
�x�

�
� 2.

(iv) Minimize f (x) � �x��, where x �R�, subject to

x
�
x
�
� 1, x

�
� 0, x

�
� 0.

(v) Maximize f (x) �x�
�
�x�

�
� ax

�
x
�
, a� 0, subject to x�

�
�x�

�
� 1. What

can you say about minimizing f (x) subject to x�
�
�x�

�
� 1. [In the mini-

mization problem you need not answer questions (c) and (d)].

Exercise 5.3. Minimize f (x) � (x
�
� 2)� � (x

�
� 1)� subject to

x�
�
� x

�
� 0, x

�
� x

�
� 4� 0, �x

�
� 0, �x

�
� 0.

Give a full justification of your answer. You may use geometric considerations
to assist you in finding critical points.

Exercise 5.4. Maximize f (x) �x�
�
�x

�
x
�
�x�

�
subject to

�3x
�
� 2x

�
� 6� 0, �x

�
� x

�
� 3� 0, 4(x

�
� 2)� � 4(x

�
� 3)�� 25.

Hint: Compare with Exercise 3.2.
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Exercise 5.5. Minimize f (x) � e�������� subject to e��� e��� 20.

Exercise 5.6. Minimize f (x) ���
�
�

c
�
/x

�
subject to

�
�
�
�

a
�
x
�
� b, x

�
� 0, i� 1, . . . , n,

where c
�
, a

�
, i� 1, . . . , n, and b are positive constants.

Exercise 5.7. Let A be a positive-definite n�n symmetric matrix and let y be
a fixed vector in R�. Show that the maximum value of f (x) �	y, x
 subject to
the constraint 	x,Ax
� 1 is 	y,A��y
���. Use this result to establish the
generalization of the Cauchy—Schwarz inequality

�	x, y
���	x, Ax
	y, A��y
.

Exercise 5.8. Use the Lagrange multiplier rule to show that the distance "(x
�
)

from the point x
�
to the hyperplane H�a� �x : 	a, x
� �� is given by

"(x
�
) � �

	a, x
�

� �

�a� �.

(Hint: In problems involving the minimization of a norm or of a distance it is
often simpler to minimize the square of the norm or distance.)

Exercise 5.9. In this problem we will use the Lagrange multiplier rule to
deduce important properties of eigenvectors and eigenvalues of a real n�n
symmetric matrix A.

(a) Show that the maximum of f (x) �	x,Ax
 subject to �x�� 1 is attained
at a unit eigenvector x

�
and that f (x

�
) is the largest eigenvalue �

�
of A.

(b) Suppose m� n mutually orthogonal unit eigenvectors x
�
, . . . , x

�
of A

have been determined. Show that the maximum of f (x) �	x,Ax
 subject to
�x�� 1 and 	x, x

�

� 0, j� 1, . . . ,m, is attained a point x

���
that is an

eigenvector of A and that f (x
���

) is the corresponding eigenvalue.
(c) Use (a) and (b) to show that a real n�n symmetric matrix has a set of

n orthonormal eigenvectors x
�
, . . . , x

�
with corresponding eigenvalues

�
�
��

�
����

�
.

Exercise 5.10. In this exercise we will use Farkas’s lemma and a constraint
qualification introduced by Kuhn and Tucker [1951] that is different from CQ
to establish the conclusion of Theorem 5.2 without using Theorem 5.1. The
Kuhn—Tucker constraint qualification KTQ is said to hold at a point x

�
if there
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exists a vector z such that

�g
�

(x
�
)z� 0, �h(x

�
)z� 0

and if for each such z there exists a C��� function �( · ) defined on an interval
[0, #) such that

�(0) �x
�
, ��

�
(0) � z,

g(�(t)) � 0, h(�(t)) � 0 for all t in [0, #).

The Kuhn—Tucker constraint qualification is difficult to check. In Lemma 6.1
we give a verifiable condition that implies KTQ.

Let x
*
be a solution of problem PI and let KTQ hold at x

*
. Show that the

conclusion of Theorem 5.2 holds without invoking Theorem 5.1. Hint: What
can you say about the right-hand derivatives at t� 0 of the mappings
t� f (�(t)), t� g

�
(�(t)), and t� h(�(t)) in relation to Farkas’s theorem?

6. SECOND-ORDER CONDITIONS

In this section we first obtain second-order necessary conditions. Points that
satisfy the first-order necessary conditions but fail to satisfy the second-order
conditions cannot solve the programming problem. We conclude this section
with a presentation of some second-order sufficiency conditions. Points that
satisfy the first-order necessary conditions and these sufficiency conditions are
solutions to the programming problem.

Since second-order conditions involve second derivatives, in this section we
assume that the functions f , g, and h that occur in the statement of problem
PI are of class C��� on X

�
.

The derivation of our second-order necessary condition will require an
application of the implicit function theorem, which we now discuss.

Consider the system of equations

u
�
(x

�
, . . . , x

�
, y

�
, . . . , y

�
) � 0,

�
u
�
(x

�
, . . . , x

�
, y

�
, . . . , y

�
) � 0,

(1)

where the real-valued functions u
�
, i� 1, . . . ,m, are defined on an open set

D�D
�
�D

�
, where D

�
is open in the x-space R� and D

�
is open in the y-space

R�. Equation (1) asks us to find all (x, y) in D such that (1) is satisfied. For a
given x in D

�
, the system (1) can therefore be interpreted as a system of m

equations for the m unknowns (y
�
, . . . , y

�
). If for each x in some subset S of

D
�
we can find a unique solution y(x) � (y

�
(x), . . . , y

�
(x)), then in this fashion

we obtain a function y( · ) with domain S. In this event, we say that (1) defines
y as a function of x implicitly.
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Let (x
�
, y

�
) be a point in D that satisfies (1). The implicit function theorem

gives conditions ensuring that (1) has a unique solution for points x sufficiently
close to x

�
. The resulting function y( · ) will inherit the regularity properties of

the functions u
�
, . . . , u

�
.

To illustrate these ideas, take D
�
�R�, D

�
�R�, and D�R	 �R��R�.

Consider

u(x
�
, x

�
, y) �x�

�
�x�

�
� y�� 1� 0. (2)

The set of points (x, y) � (x
�
, x

�
, y) in R	 that satisfy (2) is the surface of the

ball with center at the origin and radius 1.
Given any point (x

�
, y

�
) � (x

��
, x

��
, y

�
) with y

�
� 0 that satisfies (2), we can

find an �� 0 and a �� 0 such that

y��1� x�
�
� x�

�

is the unique solution of (2) for x in B(x
�
, �) having range in B(y

�
, �) The point

(x
�
, �y

�
) also satisfies (2), and

y���1� x�
�
� x�

�

is the unique solution of (2) for x in B(x
�
, �) having range in B(�y

�
, �).

Although all points of E� �(x, y) : x�
�
� x�

�
� 1, y� 0� are solutions of (2),

equation (2) does not define y as a function of x on any ball about a point x
�

such that �x
�
�� 1. Since � f /�y� 2y, we see that at any point (x

�
, y

�
) that

satisfies (2) we have � f /�y� 0 if y
�
� 0 and � f /�y� 0 if y

�
� 0. Thus at all

points of E, � f /�y� 0. The reader should return to this paragraph after
reading Theorem 6.1.

Equation (1) in vector form is

u(x, y) � 0.

T 6.1 (I F T). L et D
�
be an open set in R� and

let D
�
be an open set in R�. L et D�D

�
�D

�
. L et

u : (x, y) � u(x, y), x �D
�
, y �D

�
,

be a mapping that is of class C��� on D and with range in R�. L et (x
�
, y

�
), x

�
�D

�
,

y
�
�D

�
, be a solution of

u(x, y) � 0
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and suppose that the m�m matrix

J(x
�
, y

�
) ��

�u
�

�y
�

(x
�
, y

�
)�, i� 1, . . . ,m, j� 1, . . . ,m, (3)

is nonsingular. T hen there exist an �� 0, a �� 0, and a function y( � ) defined
on B(x

�
, �) �D

�
with range in B(y

�
, �) �D

�
such that

y( · ) is of class C�, (i)

y(x, y(x)) � 0 for all x �B(x
�
, �). (ii)

Moreover, for x in B(x
�
, �), y(x) is the only solution of u(x, y) � 0 such that

y(x) �B(y
�
, �).

For a proof of this theorem we refer the reader to Rudin [1976] or Fleming
[1977].

Definition 6.1. Let x
�
be a point of X

�
. The vector z� 0 in R� is said to satisfy

the tangential constraints at x
�
if

�g
�

(x
�
)z� 0, �h(x

�
)z� 0, (4)

where E� �i : g
�
(x

�
) � 0�.

For definiteness we shall henceforth suppose that E� �1, . . . , r�. Let
I� �r� 1, . . . , m�. Since either E or I can be empty, 0� r�m.

Let z be a vector that satisfies the tangential constraints. Let

E
�
� �i : i �E, 	�g

�
(x

�
), z
� 0�,

E
�
� �i : i �E, 	�g

�
(x

�
), z
� 0�.

Then E�E
�
$E

�
,

�g
��

(x
�
)z� 0, �h(x

�
)z� 0, (5)

and

�g
��

(x
�
)z� 0. (6)

For the sake of definiteness suppose that E
�
� �1, . . . , q�. Since E

�
may be

empty, 0� q� r. If q� 0, statements involving E
�

in (5) in the ensuing
discussion should be deleted. The reader should keep in mind that the sets E

�
and E

�
depend on z and x

�
.
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The next lemma gives a condition under which, given a vector z that satisfies
the tangential constraints, we can construct a curve �( · ) emanating from x

�
and going into the feasible set in the direction given by z.

L 6.1. L et g and h be of class C ��� on X
�
, p� 1. L et x

�
be feasible and let

z satisfy the tangential constraints at x
�
. Suppose that the vectors

�g
�
(x

�
), . . . ,�g

�
(x

�
), �h

�
(x

�
), . . . ,�h

�
(x

�
) (7)

are linearly independent. T hen there exists a #� 0 and a C��� mapping �( · ) from
(�#, #) to R� such that

�(0) � x
�
, ��(0) � z,

g
��

(�(t)) � 0, h(�(t)) � 0, g
�
(�(t)) � 0

g
��

(�(t)) � 0 for 0� t�#.

Proof. Let "� q� k. In view of (7), "� n. If "� n, then again in view of
(7) the only solution of (5) is z� 0. Hence, E

�
� � and E

�
�E. The mapping

�( · ) is then the constant map �(t) � x
�
.

We now suppose that "� n. Let % denote the "�n matrix whose rows are
the vectors in (7). Thus

%��
�g

��
(x

�
)

�h(x
�
) �,

and % has rank ". By relabeling the coordinates corresponding to " linearly
independent columns of %, we may suppose without loss of generality that the
first " columns of the matrix % are linearly independent. Thus the "�" matrix

%
� �
�g

�
(x

�
)

�x
�

�h
�
(x

�
)

�x
�
� i� 1, . . . , q, s� 1, . . . , k, j� 1, . . . , ",

is nonsingular.
The system of equations

g
��

(x) � 0,

h(x) � 0,

x
��
� x

�

��
� tz
��

� 0, (8)

�

x
�
�x

�
�
� tz

�
� 0,
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where z
��
, . . . , z

�
are the last n� " components of the vector z, has a solution

(x, t) � (x
�
, 0). We shall use the implicit function theorem to show that the

system (8) determines x as a function of t near t� 0.
For the system (8), viewed as defining x implicitly as a function of t, the

matrix J defined in (3) becomes

J��
%


0
��




%
��

I
��
�,

where %
��
 is the "�(n�") matrix whose columns are the last n� " columns

of %, the matrix 0
��


 is the (n�")�" zero matrix, and I

��
 is the
(n �")�(n �") identity matrix. Since %
 is nonsingular, so is J. Hence by
Theorem 6.1 there exists a #� 0 and a C��� function �( · ) defined on the interval
(�#, #) and with range in R� such that

�(0) �x
�
,

g
��

(�(t)) � 0, h(�(t)) � 0,

&
�
(t) �x

�
�
� tz

�
, i� "� 1, . . . , n.

(9)

Differentiation of the equations in (9) with respect to t and then setting t� 0
give

�
%

0
��


 I

��
� ��(0) ��
0

z' �,
where z' � (z
��

, . . . , z
�
). The matrix on the left is the matrix J for the system

(8) and is nonsingular. Therefore the system

�
%

0
��


 I

��
� w��
0

z' �
has a unique solution. Since ��(0) and z are both solutions, we get that
��(0) � z.

Since g
�
(x

�
)� 0 and �(0) � x

�
, it follows from the continuity of g and � that

for # sufficiently small we have g
�
(�(t)) � 0 for �t��#.

Since

dg
��

(�(t))
dt

��g
��

(�(t))��(t)

and since �(0) � x
�
and ��(0) � z, it follows from (6) that dg

��
(�(0))/dt� 0. It

then follows from continuity that by taking # to be smaller, if necessary, there
is an interval [0, #) on which all of the previous conclusions hold and on which
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dg
��
(�(t))/dt � 0. Since g

��
(�(0)) � g

��
(x

�
) � 0, we have g

��
(�(t)) � 0 on (0, #).

This completes the proof.

C 1. L et CQ hold at a point x
�
. T hen for every z satisfying relation

(18) in Section 5 there exists a C��� function �( ) such that �(0) �x
�
, ��(0) � z

and �(t) is feasible for all t in some interval [0, #). Moreover, g(�(t)) � 0 on (0, #).

Proof. A vector z satisfying relation (18) in Section 5 satisfies the tangential
constraints, and the set of indices E

�
corresponding to z is empty.

Example 5.2 (Continued). At the point x
*
� (1, 0)

�g
�

(x
*

)z��
0 �1

0 1��
z
�
z
�
�� �

�z
�
z
�
�.

Therefore, since there are no equality constraints, every vector of the form
(z

�
, 0) satisfies the tangential constraints. Clearly, there exists no curve �( · )

emanating from x
*
� (1, 0) with tangent vector (1, 0) at x

*
such that �(t) is

feasible for t in some interval [0, #). Lemma 6.1 is not contradicted, since we
have E

�
�E and the rows of �g

�
(x
*
) are linearly dependent. Also, the

conclusion of the corollary is not contradicted since CQ does not hold at (1, 0).

We now present a second-order necessary condition.

Definition 6.2. Let (x
*
, �, �) be as in Theorem 5.2. Let z be a vector that

satisfies the tangential constraints (4) at x
*
. Let

E
�
�E

�
(z) � �i : i �E, 	�g

�
(x
*
), z
� 0�,

E
�
�E

�
(z) � �i : i �E, 	�g

�
(x
*
), z
� 0�.

The vector z will be called a second-order test vector if (i) �
�
� 0 for i �E

�
and

(ii) the rows of the matrix

�
�g

��
(x
*
)

�h(x
*
) �

are linearly independent.

T 6.2. L et f, g, and h be of class C��� on X
�
. L et x

*
be a solution to

problem PI. L et � and � be KKT multipliers as in T heorem 5.2 and let F( , �, �)
be defined by

F(x, �, �) � f (x) � 	�, g(x)
�	�, h(x)
.
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T hen for every second-order test vector z,

	z, Fxx(x*
, �, �)z
� 0, (10)

where

Fxx��
��F
�x

�
�x

�
�, i� 1, . . . , n, j� 1, . . . , n.

We first establish an elementary result.

L 6.2. L et � be a C��� function defined on an interval (�#, #) such that
��(0) � 0 and �(t)��(0) for all t in [0, #). T hen �
(0)� 0.

Proof. By Taylor’s theorem, for 0� t�#

�(t) ��(0) ��
�
�
((� t)t�,

where 0�(� � 1. If �
(0) were negative, then by continuity there would exist
an interval [0, #�) on which �
 would be negative. Hence �(t)��(0) on this
interval, contradicting the hypothesis.

Proof (Theorem 6.2). Let z be a second-order test vector. Since �
�
� 0 for

i �E
�
and

� � (�
�
, �

�
) � (�

��
, �

��
, �

�
) � (�

��
, 0, 0),

we have

F(x, �, �) � f (x) �	�
��
, g

��
(x)
� 	�, h(x)
.

Let �( · ) be the function corresponding to z as in Lemma 6.1, with x
�
�x

*
.

Since g
��
(�(t)) � 0 and h(�(t)) � 0 for �t�� #, we have

f (�(t)) �F(�(t), �, �) for �t�� #.

Since for 0� t�#, all points �(t) are feasible, and since �(0) �x
*
, the

mapping t� f (�(t)), where 0� t�# has a minimum at t� 0. Hence, so does
the mapping �( · ) defined on [0, #) by

�(t) �F(�(t), �, �).
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Straightforward calculation gives

��(t) �	�F(�(t), �, �), ��(t)


�
(t) � 	��(t), Fxx(�(t), �, �)��(t)
 �	�F(�(t), �, �), �
(t)
.

Setting t� 0 in the first equation and using the relations �(0) � x
*

and
�F(x

*
, �, �) � 0 give ��(0) � 0. Hence by Lemma 6.2 we have �
(0)� 0.

Setting t� 0 in the second equation and using �(0) �x
*
, �F(x

*
, �, �) � 0, and

��(0) � z give the conclusion of the theorem.

The following corollary requires that (10) holds for fewer z than the theorem
does and thus is more restrictive than the theorem but easier to apply.

C 2. L et the functions f , g, and h be as in T heorem 6.2 and let x
*
be

a solution to problem PI. Suppose that the vectors

�g
�
(x
*
), . . . , �g

�
(x
*
), �h

�
(x
*
), . . . , �h

�
(x
*
)

are linearly independent. T hen there exist KKT multipliers �, � as in T heorem
5.2, and (10) holds for every vector z satisfying

�g
�
(x
*
)z� 0, �h(x

*
)z� 0. (11)

Proof. The existence of KKT multipliers follows from Corollary 1 of
Theorem 5.2. The second conclusion follows from the theorem by taking
E
�
�E, in which case E� �1, . . . , r� and E

�
� �.

If the inequality constraints are absent, then the linear independence
hypothesis of Theorem 6.2 and Corollary 2 becomes ‘‘the vectors
�h

�
(x
*
), . . . , �h

�
(x
*
) are linearly independent,’’ which is also the constraint

qualification CQ for this problem. Thus, we get the following corollary.

C 3. L et f and h be as in T heorem 6.2, let the inequality constraints
be absent, let x

*
be a solution of problem PI and let CQ hold at x

*
. T hen there

exists a unique vector � in R� such that the function H( , �) defined by

H(x, �) � f (x) �	�, h(x)


satisfies

(i) � f (x
*
) ��
�h(x

*
) � 0
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and

(ii) 	z, Hxx(x*
, �)z
� 0

for all z in R� satisfying

�h(x
*
)z� 0.

Corollary 3 is the classical second-order necessary condition for equality-
constrained problems.

Example 5.1 (Continued). The reader will recall that for 0� k� 1 the first-
order necessary conditions were satisfied by three points and corresponding
multipliers given by

x
�
� 1� k, x

�
���2k(1 � k), �� 1

x
�
� 0, x

�
� 0, �� 1/k.

We will use the second-order necessary condition as given in Corollary 2 to
rule out the origin as a candidate for optimality when 0� k� 1.

Recall that for any x we have �g(x) � (2k, �2x
�
). At x

*
� (0, 0),

�g(x
*
) � 0, so the linear independence requirement of Corollary 2 holds. Thus

for z to satisfy (11) we require that

	�g(x
*
), z
�	(2k, 0), (z

�
, z

�
)
� 0.

This is satisfied by all vectors (z
�
, z

�
) of the form

z
�
� 0, z

�
arbitrary. (12)

The function F with �� 1/k becomes

F� (x
�
� 1)� � x�

�
�

1

k
(2kx

�
� x�

�
).

Condition (10) with x
*

� (0, 0) becomes

(z
�
, z

�
) �

2

0

0

2(1 ��
�
��

z
�
z
�
�� 2z�

�
� 2z�

� �1�
1

k�� 0

for all (z
�
, z

�
) satisfying (12). Since z

�
� 0 and for 0� k� 1 the coefficient of

2z�
�
is negative; the last relation only holds for z

�
� 0. Thus (10) fails to hold

for all (z
�
, z

�
) satisfying (12), and so x

*
� (0, 0) is not optimal if 0� k� 1.
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For k� 1 the only critical point is x
*

� (0, 0) with �� 1/k. We now have
	z,Fxxz
� 0 for all z, so the second-order conditions of Theorem 6.2 and
Corollary 2 both hold at (0, 0).

We now show that for 0� k� 1 the second-order condition (10) holds at

the two points (1� k, ��2k(1 � k)). At these points �� 1. Thus, for a
second-order test vector z we have E

�
�� and E

�
�E. Hence (5) and (6)

reduce to �g
�

(x
*
)z� 0 at these points. Thus a test vector z satisfies

	(2k, �2�2k(1� k)), (z
�
, z

�
)
� 2kz

�
� 2z

�
�k(1 � k) � 0. (13)

The function F with �� 1 becomes

F� (x
�
� 1)� �x�

�
� (2kx

�
�x�

�
)

and condition (10) becomes

(z
�
, z

�
) �

2 0

0 0��
z
�
z
�
�� 2(z

�
)�� 0.

This inequality is satisfied for all z and hence for all z satisfying (13).

We now state and prove a second-order sufficiency theorem [Han and
Mangasarian, 1979]. This theorem is more useful and easier to apply than the
second-order necessary conditions.

T 6.3. L et (x
*
, �

�
, �, �) satisfy the FJ necessary conditions of T heorem

5.1. Suppose that every z� 0 that satisfies the tangential constraints (4) at
x
�
�x

*
and the inequality 	� f (x

*
), z
� 0 also satisfies

	z, F�xx(x*
, �, �)z
� 0, (14)

where

F�(x, �, �) � �
�
f (x) �	�, g(x)
�	�, h(x)
.

T hen f attains a strict local minimum for problem PI at x
*
.

Note that strict inequality is required in (14), while equality is allowed in
the necessary condition (10).

Proof. To simplify notation, we assume that x
*

� 0 and that f (0) � 0. For
any real-valued function ) :X

�
�R, the symbol )xx will denote the Hessian

matrix whose (i� j )th entry is ��)/�x
�
�x

�
.

If f did not attain a strict local minimum at 0, then for every positive integer
q there would exist a feasible point v

�
� 0 such that v

�
�B(0, 1/q) and f (v

�
)� 0.
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Thus there would exist a sequence of points �v
�
� in X such that

v
�
� 0, lim

���
v
�
� 0, f (v

�
)� 0, g(v

�
)� 0, h(v

�
) � 0.

Let E� �1, . . . , r�. It then follows from Taylor’s theorem (Corollary 1,
Theorem I.11.2) and our assumption that x

*
� 0 and f (0) � 0 that

f (v
�
) � 	� f (*

�
v
�
), v

�

� 0 (15i)

and that for i� 1, . . . , r and j� 1, . . . , k

g
�
(v

�
) �	�g

�
(*

�
v
�
), v

�

� 0,

h
�
(v

�
) �	�h

�
(*

�
v
�
), v

�

� 0, (15ii)

where the *� are numbers in the open interval (0, 1).
It also follows from Taylor’s theorem that

f (v
�
) �	� f (0), v

�

��

�
	v

�
, f xx ((� �

v
�
)v

�

� 0 (16i)

and that for i� 1, . . . , r and j� 1, . . . , k

g
�
(v

�
) �	�g

�
(0), v

�

��

�
	v

�
, gixx((� �

v
�
)v

�

� 0,

h
�
(v

�
) �	�h

�
(0), v

�

��

�
	v

�
, hjxx((� �

v
�
)v

�

� 0, (16ii)

where the (� � are real numbers in the open interval (0, 1).
Since v

�
� 0, the sequence v

�
/�v

�
� is a sequence of unit vectors. Hence there

exists a unit vector v and a subsequence that we relabel as �v
�
� such that

v
�
/�v

�
�� v.

Now suppose that the sequence �v
�
� in (15) and (16) is the subsequence. If

we divide through by �v
�
� in the rightmost inequalities and the equalities in

(15) and then let q���, we get that v satisfies

	� f (0), v
� 0, �g
�

(0)v� 0, �h(0)v� 0.

Thus v satisfies the tangential constraints (4).
Next, multiply the first inequality in (16) by �

�
� 0, the ith inequality in (16)

by �
�
� 0 (the ith component of �), and the jth equation in (10) by �

�
(the jth

component of �) and then add the resulting equations and inequalities. Since
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�� (�
�
, �

�
) and �

�
� 0, we get

	�
�
� f (0) ��
�g(0) ��
�h(0), v

�

��

�
	v

�
, F�xx((� v�

)v
�

� 0,

where

F�xx((� v�
) � �

�
fxx((� �

v
�
) �

�
�
�
�

�
�
gixx((� �

v
�
) �

�
�
�
�

�
�
hjxx((� �

v
�
).

Since (0, ��, �, �) satisfies the FJ necessary conditions of Theorem 5.1, we get
that

�
�
	v

�
, F�xx((� v�

)v
�

� 0.

If we now divide both sides of this inequality by �v
�
�� and then let q��, we

get that 	v,F�xx(0)v
� 0 for a nonzero vector that satisfies the tangential
constraints (4) and 	� f (0), v
� 0. This contradicts the assumption that (14)
holds for all such z.

If there exists a set of multipliers at x
*
with �

�
� 1, we have a slightly

different version of the sufficient conditions.

C 4. L et (x
*
, �, �) satisfy the KKT necessary conditions of T heorem

5.2. Suppose that every z� 0 in R� that satisfies the tangential constraints (4) at
x
�
�x

*
and the equality 	� f (x

*
), z
� 0 also satisfies

	z, Fxx(x*
, �, �)z
� 0, (17)

where

F(x, �, �) � f (x) � 	�, g(x)
�	�, h(x)
. (18)

T hen f attains a strict local minimum for problem PI at x
*
.

The corollary differs from the theorem in that the condition 	� f (x
*
), z
� 0

is replaced by 	� f (x
*
), z
� 0.

Proof. If (x
*
, �, �) satisfies the conditions of Theorem 5.2, then

� f (x
*
) ��
�g(x

*
) � �
�h(x

*
) � 0.

Since �
�
� 0,

� f (x
*
) ���


�
�g

�
(x
*

) � �
�h(x
*
).
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Hence, for any z �R�

	� f (x
*
), z
��	�

�
, �g

�
(x
*
)z
� 	�, �h(x

*
)z
.

Since �
�
� 0, it follows that for any z satisfying the tangential constraints (4)

we have 	� f (x
*
), z
� 0. Hence the condition 	� f (x

*
), z
� 0 reduces to

	� f (x
*
), z
� 0.

If the inequality constraints are absent, then a vector z satisfies the
tangential constraints at a point x

�
if and only if �h(x

�
)z� 0. Thus, if at a

point x
*
the necessary conditions of Corollary 2 of Theorem 5.2 are satisfied,

the proof of Corollary 4 shows that for every vector z such that �h(x
*
)z� 0

we have 	� f (x
*
), z
� 0. Therefore the following corollary holds.

C 5. L et (x
*
, �) satisfy the necessary condition of Corollary 2 of

T heorem 5.2. Suppose that for every z such that �h(x
*
)z� 0

	z, Hxx(x, �)z
� 0,

where

H(x, �) � f (x) �	�, h(x)
.

T he f attains a strict local minimum for the problem of minimizing f subject to
h(x) � 0.

There is a sufficient condition due to Pennisi [1953] which is not as
convenient to apply as Corollary 4 but is equivalent to it. We now state this
condition and prove its equivalence to Corollary 4.

C 6. L et (x
*
, �, �) satisfy the KKT necessary conditions of T heorem

5.2. L et E*� �i : i �E and �
�
� 0�. Suppose that for every z� 0 �R� that satisfies

	�g
�
(x
*
), z
� 0, i �E*, 	�g

�
(x
*
), z
� 0, i �E, i �E*,

�h(x
*
)z� 0, (19)

the inequality

	z, F
��
(x
*
, �, �)z
� 0

holds, where F is as in (18). T hen f attains a strict local minimum for problem
PI at x

*
.

Proof. To prove the corollary it suffices to show that the set V
�
of vectors

that satisfy (19) is the same as the set V
�
of vectors that satisfy the tangential
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constraints (4) and the equality 	� f (x
*
), z
� 0, and then invoke Corollary 4.

We first show that V
�
+V

�
. If V

�
� �, there is nothing to prove, so we

assume that V
�
��. From (ii) of Theorem 5.2 we get that for z in R�

	� f (x
*
), z
�	�, �g(x

*
)z
�	�, �h(x

*
)z
� 0. (20)

Now let z � V
�
. Then �g

�
(x
*
)z� 0, and �h(x

*
)z� 0. Thus z satisfies the

tangential constraints (4). Moreover, since �
�
� 0 for i � I, we have that �

�
� 0

for i �E*. Thus (20) becomes

	� f (x
*
), z
� �

����

�
�
	�g

�
(x
*
), z
� 0

for all z in V
�
. For such z and for i �E* we have 	�g

�
(x), z
� 0. Hence

	� f (x
*
), z
� 0, and so V

�
+ V

�
.

We now show that V
�
+V

�
. We assume that V

�
��. Since �

�
� 0 for i �E*

and 	� f (x
*
), z
� 0, it follows that, for z �V

�
, (20) becomes

�
����

�
�
	�g

�
(x
*
), z
� 0.

Since for any vector z that satisfies the tangential constraints (4) we have
	�g

�
(x
*
), z
� 0, and since �

�
� 0 for i �E

*
, the last equality implies that

	�g
�
(x
*
), z
� 0 for i �E* Since �g

�
(x
*
)z� 0 for any vector satisfying the

tangential constraints, we get that V
�
+V

�
.

Example 5.1 (Concluded). We now apply Corollary 4 to show that the points
given in relation (4) in Section 5 furnish local minima for problems �

�
when

0� k� 1 and that the origin furnishes a local minimum for problems �
�
when

k� 1.
We first consider the problem �

�
for 0� k� 1. At the point x

�*
�

(1� k,�2k(1 � k)), the condition 	� f (x
*
), z
� 0 becomes

	,�2k, 2�2k(1 � k) -, (z
�
, z

�
)
� 0.

At the point x
�*

� ,1� k, ��2k(1 � k) - the condition 	� f (x
*
), z
� 0 be-

comes

	,�2k, �2�2k(1 � k) -, (z
�
, z

�
)
� 0.

Thus at x
�*

and x
�*

we require that

x
�*

: z
�
� z

� 	
2(1 � k)

k
, x

�*
: z

�
��z

�	
2(1 � k)

k
. (21)
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The tangential constraints at the points x
�*

and x
�*

become

x
�*

:	(2k, �2�2k(1 � k)), (z
�
, z

�
)
� 0,

x
�*

: 	(2k, 2�2k(1 � k)), (z
�
, z

�
)
� 0

or

x
�*

: z
�
� z

�	
2(1 � k)

k
, x

�*
: z

�
��z

�	
2(1 � k)

k
.

Hence at x
�*

the vectors z� (z
�
, z

�
) that satisfy (� f (x

�*
, z
� 0 and the

tangential constraints are given in (21). Similarly, at x
�*

the vectors that satisfy
	� f (x

*
), z
� 0 and the tangential constraints are given in (21). Since �� 1 at

x
�*

and x
�*
, the function F in (18) becomes

F� (x
�
� 1)� �x�

�
� (2kx

�
�x�

�
).

Thus

	z, Fxx(x, 1, �)z
� (z
�
, z

�
) �

2 0

0 0��
z
�
z
�
�� 2(z

�
)�. (22)

At x
�*

and at x
�*

vectors z� 0 at which (21) holds have z
�
� 0. It therefore

follows that the hypotheses of Corollary 4 hold at x
�*

and x
�*

, and so both
of these points furnish local minima. We leave it as an exercise to show that
these points furnish minima for problem �

�
, with 0� k� 1.

We now consider the problem �
�
, k� 1. The origin is the only point that

satisfies the conditions of Theorem 5.2. Since � f (0) � (�2, 0), all vectors z of
the form (0, z

�
), with z

�
arbitrary, satisfy 	� f (0), z
� 0. Since �g(0) � (2k, 0),

all vectors z of the form z� (z
�
, z

�
), with z

�
� 0, and z

�
arbitrary, satisfy the

tangential constraint 	�g(0), z
� 0. Hence the vectors that satisfy the tangen-
tial constraints and 	� f (0), z
� 0 are vectors of the form (0, z

�
), where z

�
is

arbitrary.
The function F with �� 1/k becomes

F� (x
�
� 1)� �x�

�
�

2kx
�
� x�

�
k

.

Thus (17) with z� (0, z
�
) becomes

(0, z
�
) �

2

0

0

2(1 ��
�
)��

0

z
�
�� 2 �1�

1

k� (z
�
)�� 0, z

�
� 0.
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V
CONVEX PROGRAMMING
AND DUALITY

1. PROBLEM STATEMENT

In the preceding chapter we studied programming problems with differentiable
data. In this chapter we shall replace the assumption that the data are
differentiable by the assumption that the data are convex. This assumption will
enable us to obtain much more detailed information about the behavior of
solutions. In Section 1 of Chapter IV we defined a convex programming problem
to be a programming problem in which the underlying set X

�
is convex, the

functions f and g are convex, and there are no equality constraints.

Convex Programming Problem I (CPI)

Let X
�
be a convex set and let f :X

�
�R and g:X

�
�R� be convex.

Minimize � f (x) :x �X�,

where

X� �x : g(x)� 0�.

The problem is often stated as

Minimize f (x) subject to g(x)� 0.

Remark 1.1. A convex programming problem with the additional equality
constraint h(x) � 0 can be cast in the format CPI if the function h is affine. One
replaces the constraint h(x) � 0 by the two inequality constraints h(x)� 0 and
�h(x)� 0. Since h is affine, both h and �h are convex.

In Remark IV.5.9 we pointed out that if the feasible set X in CPI is not
empty, then it is convex. Thus in CPI we are minimizing a convex function
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defined on the convex set X. Therefore, the properties of solutions listed in
Theorem IV.3.1 are valid for CPI.

If the functions f and g are differentiable on X
�
, then CPI is a special case

of the programming problem PI. Hence Theorem IV.5.1 (the Fritz John
necessary conditions), Theorem IV.5.2 (the KKT necessary conditions), and
the sufficiency theorem IV.5.3 are all valid.

It turns out that in many problems involving affine equality constraints
h(x) � 0, sharper results can be obtained if we retain the equality constraints
as such rather than replace them by two sets of inequality constraints. It will
also be convenient to take X

�
�R� when affine constraints are present. We

therefore formulate the convex programming problem with affine constraints
as follows.

Convex Programming Problem II (CPII)

Let f :R� �R be convex, let g:R� �R� be convex and let h:R� �R� be affine.
Minimize

� f (x) : x �X�,

where

X� �x : g(x)� 0�� �x : h(x) � 0�.

If the feasible set X is not empty, the problem is said to be consistent.

Remark 1.2. The components of the affine equality constraints h(x) � 0 can be
written as

�a
�
, x�� b

�
� 0, i� 1, . . . , k. (1)

Thus, if the problem is consistent, then the system

Ax� b, (2)

where A is the k�n matrix whose ith row is a
�
and b� (b

�
, . . . , b

�
)� has

solutions. We recall from linear algebra that for (2) to have solutions the rank
of A must equal the rank of the augmented matrix (A, b). If the system (2) has
solutions and if the rank of (A, b) were less than k, then one of the equations
in (1) could be written as a linear combination of the others and thus
eliminated from the system. Since we are only interested in problems that are
consistent, there is no loss of generality in assuming that A has maximum
possible rank, namely k. In that event the ranks of A and (A, b) both equal k.
If the feasible set consists of only one point, then the programming problem is
trivial. Therefore, we further assume that k� n. For if k� n and A has rank
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k� n, then (2) has a unique solution and the feasible set consists of a single
point. The assumptions that A has rank k and that k� n will be in force
henceforth.

In the next section we shall develop necessary conditions and a sufficient
condition for a point x

*
to be a solution of CPII without assuming differentia-

bility.

2. NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS

Our first necessary condition will involve a function � with domain
R��R�R��R� and range in R defined by

�(x, 	
�
, �, �) � 	

�
f (x) ���, g(x)����, h(x)�. (1)

The function � is sometimes called a generalized Lagrangian.

T 2.1. L et f and g be convex on R� and let h be affine. L et x
*
be a

solution of CPII. T hen there exist a real number 	
�*
, a vector �

*
in R�, and a

vector �
*
in R� with (	

�*
, �
*
)
 (0, 0) and (	

�*
, �
*
, �
*
) � (0, 0, 0) such that

��
*
, g(x

*
)�� 0 (2)

and such that for all x in R�, all �
 0 in R�, and all � in R�

�(x
*
, 	

�*
, �, �)��(x

*
, 	

�*
, �
*
, �

*
)��(x, 	

�*
, �
*
, �
*
). (3)

Moreover,

�(x
*
, 	

�*
, �

*
, �
*
) � 	

�*
f (x

*
). (4)

Proof. Since x
*
is a solution of CPII, the system

f (x) � f (x
*
)� 0,

g(x)� 0, h(x) � 0,

has no solution in R�. Hence by Theorem III.4.1 there exists a vector
(	

�*
, �
*
, �
*

) � (0, 0, 0) with (	
�*
, �
*
)
 0 such that

	
�*

( f (x) � f (x
*
)) ���

*
, g(x)� ���

*
, h(x)�
 0
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for all x in R�. Hence

	
�*

f (x
*
)�	

�*
f (x) ���

*
, g(x)� � ��

*
, h(x)� (5)

for all x in R�. In particular, (5) holds for x�x
*
. Since h(x

*
) � 0, we get that

��
*
, g(x

*
)� 
 0. On the other hand, since x

*
is feasible, g(x

*
)� 0. But �

*

 0,

so ��
*
, g(x

*
)�� 0. Hence, ��

*
, g(x

*
)�� 0, and (2) is established.

From (2), (5), and h(x
*
) � 0 we now get

	
�*

f (x
*
) ���

*
, g(x

*
)� ���

*
, h(x

*
)�

� 	
�*

f (x
*
)�	

�*
f (x) � ��

*
, g(x)� ���

*
, h(x)�

for all x. This establishes (4) and the rightmost inequality in (3). From (2) and
from g(x

*
)� 0 it follows that for �
 0

��, g(x
*
)� � 0���

*
, g(x

*
)�.

From this and from h(x
*
) � 0 we get that

	
�*

f (x
*
) � ��, g(x

*
)� � ��, h(x

*
)� �	

�*
f (x

*
) � ��

*
, g(x

*
)� ���

*
, h(x)�,

which is the leftmost inequality in (3).

Remark 2.1. Since �
*

 0 and g(x

*
)� 0, condition (2) is equivalent to

	
*�
g
�
(x
*
) � 0, i� 1, . . . ,m. (2�)

Remark 2.2. Although (3) is written as a saddle point condition for the
function �, the leftmost inequality does not involve � since h(x

*
) � 0.

Remark 2.3. If the functions f and g are differentiable, then since x
*
minimizes

the function �( · , 	
�*
, �

*
, �

*
) on R�, where

�(x, 	
�*
, �
*
, �
*
) � 	

�*
f (x) ���

*
, g(x)� ���

*
, h(x)�,

we have

��
�x

�

(x
*
, 	

�*
, �
*
, �
*
) � 0, i� 1, . . . , n.

Thus, if A is the matrix in (1.2),

	
�*


 f (x
*
) ���

*

g(x

*
) ���

*
A� 0,

which together with (2) and the condition (	
�*
, �
*
, �
*
) � (0, 0, 0) constitute the

FJ necessary condition of Theorem IV.5.1.
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Remark 2.4. In the proof of Theorem 2.1, the optimality of x
*
is shown to

imply the existence of a vector (	
�*
, �
*
, �
*
) � (0, 0, 0) with 	

�*

 0 and �

*

 0

such that relation (5) holds. All the conclusions of the theorem then follow from
(5) and the feasibility of x

*
. We shall use this observation in the sequel.

As in the study of differentiable problems, we seek a constraint qualification
that guarantees that 	

�*
� 0, for then we can take 	

�*
� 1. For the convex

programming problem the following simple constraint qualification suffices.

Definition 2.1. The problem CPII is said to be strongly consistent, or to satisfy
the Slater condition, if there exists an x

�
such that g(x

�
)� 0 and h(x

�
) � 0.

T 2.2. L et x
*
be a solution of CPII and let the problem be strongly

consistent. T hen there exists a �
*

 0 in R� such that

��
*
, g(x

*
)� � 0 (6)

and a vector �
*
in R� such that for all x, all �
 0 in R�, and all � in R�

L (x
*
, �, �) � L (x

*
, �

*
, �
*
)� L (x, �

*
, �

*
), (7)

where

L �x, �, �) ��(x, 1, ��) � f (x) � ��, g(x)� � ��, h(x)�. (8)

Moreover,

f (x
*
) � L (x

*
, �
*
, �
*
). (9)

Proof. Since x
*
is a solution of CPII, the conclusion of Theorem 2.1 holds.

If 	
�*

� 0, then since (2) holds and h(x
*
) � 0, the rightmost inequality in (3)

becomes

0���
*
, g(x)� ���

*
, h(x)� (10)

for all x. If we also have �
*
� 0, then the condition (	

�*
, �
*
, �
*

) � (0, 0, 0)
implies that �

*
� 0. Since h(x) �Ax� b, the inequality (10) and �

*
� 0 imply

that

���
*
A, x�
��

*
, b�. (11)

for all x. The standing hypothesis made in Section 1 that A has rank k and the
condition �

*
� 0 imply that ��

*
A� 0. Hence if we take x� y��

*
A and then let

y���, we see that (11) cannot hold for all x. Hence �
*

� 0.
Since the problem is strongly consistent, there exists an x

�
such that

g(x
�
)� 0 and h(x

�
) � 0. Thus, from (10), ��

*
, g(x

�
)�
 0. On the other hand,
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�
*

 0 and �

*
� 0 imply that ��

*
, g(x

�
)�� 0. This contradiction shows that

	
�*

� 0. Therefore, we can divide through by 	
�*

� 0 in (2), (3), and (4), relabel
�
*
/	

�*
as �

*
, and relabel �

*
/	

�
as �

*
to get the conclusion of Theorem 2.2.

Remark 2.5. The rightmost inequality in (7) and equation (9) give

f (x
*
) � L (x

*
, �

*
, �
*
)� f (x) � ��

*
, g(x)� � ��

*
, h(x)�

for all x. Therefore, if we assume that CPII has a solution x
*
and if we know

the multipliers �
*
and �

*
, then the solution x

*
of the constrained problem

min� f (x) : x �X�, X� �x : g(x)� 0, h(x) � 0�

will be a solution of the unconstrained problem

min� f (x) ���
*
, g(x)� ���

*
, h(x)��. (12)

The set S of solutions of the unconstrained problem (12) may contain points
that do not satisfy the constraints. To find solutions of the constrained
problem, one must determine those points of S that satisfy the constraints. It
follows from the rightmost inequality in (7) that if (12) has a unique solution,
then it must be a solution of the constrained problem.

One sometimes finds the statement that we may replace the constrained
problem by the unconstrained problem of minimizing a Lagrangian. This
statement is only true in the sense described in the preceding paragraph.

It is conceivable that there exist vectors (�, �) with �
 0 such that the
unconstrained problem (12) with (�

*
, �
*
) � (�, �) has the same infimum as

constrained problem. Such a vector will be called a Kuhn—Tucker vector. The
multiplier vectors (�

*
, �
*

) of Theorem 2.2 are Kuhn—Tucker vectors. In the
next theorem we show that if CPII has a solution, then a Kuhn—Tucker vector
for CPII is a multiplier vector as in Theorem 2.2.

T 2.3. L et CPII have a solution x
*
. T hen a Kuhn—Tucker vector (�� , �� )

for CPII is a multiplier vector (�
*
, �
*
) as in T heorem 2.2.

Proof. Since x
*
is a solution of CPII and since (�� , �� ) is a Kuhn—Tucker

vector,

f (x
*
) � inf� f (x) � ��� , g(x)� ���� , h(x)� :x �R��.

Thus (5) holds with 	
�
� 1. Hence by the italicized statement in Remark 2.4,

the vector (�� , �� ) is a multiplier vector as in Theorem 2.2.

Theorems 2.2 and 2.3 imply the following:
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C 1. L et CPII have a solution x
*
. L et M denote the set of multipliers

associated with x
*
as in T heorem 2.2 and let K denote the set of Kuhn—Tucker

vectors for CPII. T hen M�K.

Remark 2.6. The hypothesis of strong consistency in Theorem 2.2 guaranteed
that the set M is not empty. Thus if CPII is strongly consistent and has a
solution, then K is also nonempty.

We now give an example of a problem, taken from Rockafellar [1970], for
which no Kuhn—Tucker vector, and hence no vector in M, exists.

Example 2.1. Consider R�, and let

f (x
�
, x

�
) � x

�
, g

�
(x

�
, x

�
) � x

�
, g

�
(x

�
, x

�
) �x�

�
� x

�
.

Then the only point in R� satisfying g(x
�
, x

�
)� 0 is (0, 0), and the value of the

minimum is zero. Thus, a Kuhn—Tucker vector � � (	
�
, 	

�
) would have to

satisfy 	
�

 0, 	

�

 0 and

0� x
�
� 	

�
x
�
� 	

�
(x�

�
� x

�
) �x

�
� (	

�
� 	

�
)x

�
� 	

�
x�
�

for all x. We leave it to the reader to check that this is impossible.
Note that the problem in this example is not strongly consistent.

Condition (3) of Theorem 2.1 and condition (7) of Theorem 2.2 are called
saddle point conditions. The points (x

*
, 	

�*
, �

*
, �

*
) in (3) and (x

*
, �

*
, �

*
) in

(7) are called saddle points. We previously encountered saddle point conditions
and saddle points in our discussion of game theory in Section 5 of Chapter III.
If the convex programming problem CPII has a solution and if the problem is
strongly consistent, then the saddle point condition (7) gives us a method of
computing f (x

*
), the value of the minimum, without finding the optimal point

x
*
, as is shown in the following theorem. We shall return to this point in our

study of duality in Section 4.

T 2.4. L et CPII be strongly consistent, let x
*
be a solution, let � denote

the value of the minimum, and let �
*
, �
*
be the multipliers associated with x

*
as

in T heorem 2.2. T hen

�� L (x
*
, �
*
, �
*
) �min

x
L (x, �

*
, �
*
)

� sup
(�,�)

inf
x
L (x, �, �) � inf

x
sup
(�,�)

L (x, �, �), (13)

where � �R�, �
 0, � �R�, x �R�.
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Proof. By a slight modification of the argument in Lemma III.5.1 to take
into account the possible value of �� for a supremum and �� for an
infimum, we have that

sup
(�,�)

inf
x
L (x, �, �)� inf

x
sup
(�,�)

L (x, �, �). (14)

From (7) of Theorem 2.2 we get

sup
(�,�)

L (x
*
, �, �) � L (x

*
, �

*
, �
*
) � inf

x
L (x, �

*
, �
*
). (15)

Hence

inf
x

sup
(�,�)

L (x, �, �)� L (x
*
, �
*
, �
*
)� sup

(�,�)
inf
x
L (x, �, �). (16)

We also note that by (7) of Theorem 2.2 we can replace the infimum in (15)
by a minimum. This observation and (14) and (16) establish all the equalities
in (13) except the first, which follows from (9) of Theorem 2.2.

Remark 2.7. It follows from Remark 2.6 and the proof of Theorem 2.4 that the
hypothesis of strong consistency in the theorem can be replaced by the
hypothesis that M is not empty.

Theorem 2.2 states that if CPII is strongly consistent and x
*
is a solution,

then we may take 	
�
� 1. Hence, if the functions f and g are differentiable, we

may take 	
�
� 1 in Remark 2.3. Theorem IV.5.3 states that, for differentiable

convex problems, if the KKT conditions hold at a feasible point x
*
, then x

*
minimizes. Thus, we have the following theorem.

T 2.5. L et f and g be convex and differentiable and let h be affine. L et
CPII be strongly consistent. A necessary and sufficient condition that a feasible
point x

*
be a solution to CPII is that there exist multipliers �

*
�R�, �

*

 0, and

�
*
in R� such that


 f (x
*
) ���

*

g(x

*
) ���

*
A� 0,

��
*
, g(x

*
)� � 0.

In the next theorem we shall show that, with no restrictions placed on f and
g, the saddle point condition (7) is a sufficient condition that x

*
be a solution

to the programming problem P: Minimize f over the set X, where
X� �x :x �X

�
, g(x)� 0�.

Note that since we place no conditions on the constraints, equality con-
straints can be replaced by inequality constraints. We assume that this has been
done, and so h� 0.
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T 2.6. L et X
�
be a set in R�, let f be a real-valued function defined on

X
�
, and let g be a function from X

�
to R�. L et x

*
be a point in X

�
and let �

*

 0

be a vector in R� such that the saddle point condition (7) holds for all x in X
�

and all �� 0 in R�. T hen x
*
is a solution to problem P.

Proof. We first show that x
*
is feasible. The leftmost inequality in (7) is

f (x
*
) ���, g(x

*
)� � f (x

*
) ���

*
, g(x

*
)�, �
 0.

Hence

�� ��
*
, g(x

*
)� � 0. (17)

Now fix a value j in the set �1, . . . ,m�. Let

�
	
� (	

*�
, . . . , 	

*	��
, 	
*	

� 1, 	
*	
�

, . . . , 	
*�

).

If for each j� 1, . . . ,m we take �� �
	
in (17), we get

g
	
(x
*
)� 0, j� 1, . . . ,m.

Thus x
*
is feasible.

We next show that (6) holds. If we take �� 0 in (17), we get that
��

*
, g(x

*
)� 
 0. On the other hand, g(x

*
)� 0 and �

*

 0 imply that

��
*
, g(x

*
)� � 0. Hence ��

*
, g(x

*
)� � 0, which is (6).

From the rightmost inequality in (7) and from (6) we get that

f (x
*
)� f (x) � ��

*
, g(x)�, x �X

�
.

For x feasible, g(x)� 0. Hence for x feasible

f (x
*
)� f (x),

and so f (x
*
) �min� f (x) : x �X�.

Remark 2.8. Note that the proof of Theorem 2.6 only involves very elementary
arguments.

The next theorem emphasizes some of the points implicit in the material
presented in this section.

T 2.7. A necessary and sufficient condition for a point (x
*
, �
*
, �
*
) to be

a saddle point for the L agrangian L defined in (8) on the domain

D� �(x, �, �) : x �R�, � �R�, �
 0, � �R��
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is that

(i) L (x
*
, �

*
, �

*
) �min�L (x, �

*
, �

*
) :x �R��;

(ii) g(x
*
)� 0, h(x

*
) � 0;

(iii) ��
*
, g(x

*
)� � 0.

(18)

Moreover, if (18ii) and (18iii) hold, then

f (x
*
) � L (x

*
, �
*
, �
*
). (19)

Proof. It follows from the definition of L that if (18ii) and (18iii) hold, then
(19) holds.

Let (x
*
, �

*
, �

*
) be a saddle point for L . Then (18i) follows from the

definition of saddle point. The inequality in (18ii) and the equation (18iii) were
established in the course of proving Theorem 2.6. The equality in (18ii) also
follows from Theorem 2.6, since there we converted the equality constraints to
two inequality constraints, h(x)� 0 and �h(x)� 0, and thus h(x

*
)� 0 and

�h(x
*
)� 0. Now suppose that (18) holds. Condition (18ii) states that x

*
is

feasible. Conditions (18i) and (19) imply that (5) holds. It now follows from
Remark 2.4 that (x

*
, �
*
, �
*
) is a saddle point for L (x, �, �).

3. PERTURBATION THEORY

In problems arising in applications the values of various parameters are usually
not known precisely but are known to lie in certain ranges of values. Thus one
might assign a value to the parameters and then study the effect of perturbing
the parameters. We shall assume that this is modeled by perturbing the
constraints and shall study the effect of perturbations on the value of the
infimum of the problem. Given the uncertainty in the parameter values, one
would hope for a certain stability of the problem in the sense that small
perturbations in the constraints will not lead to large changes in the value of
the infimum. We shall show that if the unperturbed convex programming
problem is strongly consistent and has a solution, then the change in the value
of the infimum is bounded below by a linear function of the perturbations. In
the preceding section we showed that under reasonable assumptions the set M

of multipliers and the set K of Kuhn—Tucker vectors are nonempty and equal.
In this section we shall show that the vectors in K and M are the coefficient
vectors of the aforementioned linear function of the perturbations. Moreover,
the sets K and M are the negative subdifferential of the infimum as a function
of the perturbation, evaluated at the unperturbed value. Thus, in a sense, the
multipliers measure the rate of change of the value of the infimum as we
perturb the constraints. We shall also give an economic interpretation of the
multipliers. These statements will be made precise in this section.
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Throughout this section we assume that the problem CPII is consistent, that
is, it has a nonempty feasible set. For each z� (z

�
, z

�
) with z

�
�R� and z

�
�R�

we define a perturbed programming problem CPII(z) as follows.

Problem CPII(z)

Minimize f (x) subject to x in X(z), where

X(z) � �x : g(x)� z
�
, h(x) � z

�
�,

the function f is a convex function from R� to R, the function g is a convex
function from R� to R�, and the function h is an affine function from R� to R�.

The constraint set X(z) can also be described by

X(z) � �x : g(x) � z
�
� 0, h(x) � z

�
� 0�.

For each fixed z the function g(x) � z
�
is convex and the function h(x) � z

�
is

affine. Thus, each problem CPII (z) is a convex programming problem. Note
that the problem CPII is the problem CPII(0).

For each z in R�
� the feasible set X(z) is either empty or convex. For each
z such that X(z) ��, let

�(z) � inf� f (x) :x �X(z)�.

Thus we have a function � whose domain is the set of z such that X(z) is not
empty and which can assume the value ��. We shall designate the domain
of � by dom(�) and shall call � the value function of the family of perturbed
problems CPII(z), or simply the value function. For z in dom(�) we shall call
�(z) the value of CPII(z). We shall denote the infimum of the unperturbed
problem CPII by �. Thus

�� inf� f (x) : g(x)� 0, h(x) � 0�,

so ���(0).
Since �(z) ��� is possible, we shall adjoin �� to the reals R. Although

we shall not need to do so in this section, we shall also adjoin �� to R. To
work with �� and �� in a consistent way, we define the following
operations:

(��) � (��) ���,

(��) � (��) ���,

(��)� x���, x real,

x(��) ���, x real x� 0,

x(��) ���, x real x� 0,

���x���, x real.

The operation (��) � (��) is not defined.
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For functions f defined on a convex set C and taking on either real values
or the value of ��, the definition of convexity is unchanged. Namely, f is said
to be convex on C if for every x

�
, x

�
in C and every (�, �) in P

�

f (�x
�
� �x

�
)�� f (x

�
) � � f (x

�
),

where the values of �� are to be operated on as in (1). As in Chapter 3, an
equivalent definition of f convex is that the set

epi( f ) � �(x, y) :x �C, y �R, y
 f (x)�

is convex.

L 3.1. T he domain of the value function � is a convex set and � is a convex
function on dom(�). If the problem CPII is strongly consistent, then 0 is an
interior point of dom(�).

Proof. We first show that dom(�) is a convex set. We shall suppose that the
affine equality constraints have been written as pairs of inequality constraints.
Since we assume that CPII is consistent, 0 is in dom(�) and thus dom(�) ��.
We must show that if w

�
and w

�
are two points in dom(�), then so is

�w
�
� �w

�
for all (�, �) in P

�
. Since w

�
and w

�
are in dom(�), there exist points

x
�
and x

�
in R� such that

g(x
�
)�w

�
and g(x

�
)�w

�
.

Since g is convex, for any (�, �) in P
�

g(�x
�
� �x

�
)��g(x

�
) � �g(x

�
)��w

�
��w

�
.

Thus, �x
�
� �x

�
is in X(�w

�
��w

�
) and �w

�
� �w

�
is in dom(�).

To show that � is convex, again let w
�
and w

�
be two points in dom(�) and

let (�, �) be in P
�
. Let x

�
�X(w

�
) and let x

�
�X(w

�
). Then as in the preceding

paragraph �x
�
��x

�
is in X(�w

�
��w

�
). Hence

�(�w
�
� �w

�
) � inf� f (x) : g(x)��w

�
��w

�
)�

� inf� f (x) : x� �x
�
� �x

�
, g(x

�
)�w

�
, g(x

�
)�w

�
�

� inf� f (�x
�
��x

�
) :x

�
�X(w

�
), x

�
�X(w

�
)�.

�
� ������

inf�� f (x
�
) � � f (x

�
) : x

�
�X(w

�
), x

�
�X(w

�
)�. (1)

If �(w
�
) and �(w

�
) are both finite, then by Exercise I.6.4 the rightmost

expression in (1) is equal to

inf�� f (x
�
) :x

�
�X (w

�
)�� inf�� f (x

�
) :x

�
�X(w

�
)�� ��(w

�
) ���(w

�
).
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If either �(w
�
)��� or �(w

�
) ���, then the rightmost expression in (1) is

equal to ��. Thus,

�(�w
�
��w

�
)���(w

�
) � ��(w

�
), (2)

and the convexity of � is established.
We now suppose that the problem CPII is strongly consistent and shall

show that 0 is an interior point of dom(�). We shall not incorporate the affine
equality constraints into the inequality constraints. Recall that we are writing
the vector z which is the perturbation of the constraints as z� (z

�
, z

�
), where

z
�
�R� is the perturbation of the inequality constraints and z

�
�R� is the

perturbation of the equality constraints.
Since CPII is strongly consistent, there exists an x

�
such that

g(x
�
)� 0 and h(x

�
) � 0. (3)

Let z
�
� (z

��
, . . . , z

��
). For each i� 1, . . . ,m, the function G

�
defined on R��R

by

G
�
(x, z

��
) � g

�
(x) � z

��

is continuous. This holds because G
�
is convex and a convex function is

continuous on the interior of its domain of definition, which in this case is
R��R. From (3) we get that G

�
(x

�
, 0)� 0. Hence, by the continuity of G

�
, there

exist a �
�
� 0 and a �

�
� 0 such that whenever �z

��
��� and �x� x

�
���

�

g
�
(x) � z

��
� 0.

Let �
�
�min��

�
: i� 1, . . . ,m� and let �

�
�min��

�
, . . . , �

�
�. Then

g(x)� z
�

(4)

when �z
�
���

�
and �x�x

�
���

�
.

We now consider the perturbed equality constraints, which in accordance
with (1.2) we write as

Ax� b� z
�
. (5)

Recall that in Remark 1.1 we assumed that A has rank k. We assume that the
square matrix A

�
consisting of the first k columns of A is nonsingular. There

is no loss of generality in this assumption since we can relabel the components
to achieve this. Let A

���
be the matrix consisting of the last n� k columns of

A. Let x� (x
�
, x

���
), where x

�
is the vector consisting of the first k components

of x and x
���

is the vector consisting of the last n� k components of x. Then
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we may write (5) as

A
�
x
�
�A

���
x
���

� b� z
�
.

From this equation and the equation Ax
�
� b we get that

(x
�
� x

���
) �A��

�
[�A

���
(x

���
�x

�����
) � z

�
], (6)

where x
���

� (x
���

, . . . , x
���
) and x

�����
� (x

���
�
, . . . , x

���
). It follows from

(6) that there exist a ��� 0 and a 0����
�
such that if �x

���
�x

�����
�� �

�
�

and �z
�
����, then �x

�
�x

���
�� �

�
�
�
. Since for any x we have �x���

�x
�
��� �x

���
��, it follows that for every vector x

���
satisfying

�x
���

�x
�����

�� �
�
� and for every vector z

�
satisfying �z

�
���� the vector

x� (x
�
, x

���
), where x

�
is given by (6), is such that �x�x

�
���

�
/�2 and (5)

is satisfied. The last statement together with (4) show that for every z� (z
�
, z

�
)

with �z��min(�
�
, ��) there exists a vector xz that is feasible. Thus 0 is an

interior point of dom(�).

Lemma 3.1 guarantees that dom (�) is a convex set and � is a convex
function. It also guarantees that if CPII is strongly consistent, dom(�) has
nonempty interior. There is no guarantee, however, that in general dom(�) will
have a nonempty interior. To state two important corollaries to Lemma 3.1, it
will therefore be necessary to consider the notions of relative interior and
relative boundary, which were introduced in Section 7 of Chapter II.

C 1. If �(w
�
) ��� at some point w

�
in dom(�), then �(z) ���

at all points of dom(�) with the possible exception of relative boundary points.

Proof. It follows from (2) that if �(w
�
)��� at some point w

�
in dom(�),

then �(z) ��� at all points of the half open line segment [w
�
, w

�
), where

w
�
�w

�
is another point of dom(�).

Let w
�
be a point of dom(�) that is not a relative boundary point. Then w

�
is a relative interior point of dom(�). Hence the line segment [w

�
, w

�
], which

lies in dom(�), can be extended to a line segment [w
�
, w

�
] that lies in dom(�).

The point w
�
is interior to [w

�
, w

�
], and so �(w

�
) ���.

C 2. If � is finite at a relative interior point of its domain, then � is
finite over its entire domain.

This follows from Corollary 1, for if � were not finite at some point, it would
have to be infinite at all relative interior points of its domain.

Remark 3.1. The only property of � that was used in the proof of Corollary 1
was the convexity of �. Thus Corollaries 1 and 2 are valid for all convex
functions admitting �� as a value.
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L 3.2. L et problem CPII be strongly consistent and let ���(0) be finite.
T hen � is finite on dom(�), the subdifferential ��(0) �� and each � in ���(0)
can be written as � � (�, �), where � �R�, �
 0, � �R� and such that for all
z� (z

�
, z

�
) in dom(�)

�(z)
�(0) ���, z���(0) � ��, z
�
����, z

�
�. (7)

Proof. It follows from Lemma 3.1 that 0 is an interior point of dom(�) and
that � is a convex function on the convex set dom(�). Since �(0) is finite, it
follows from Corollary 2 to Lemma 3.1 that � is finite at all points of dom(�).
Therefore, by Theorem III.2.1, the set of subgradients of � at 0 is not empty.
Relation (7) then follows by taking � ���, where � is any element in ��(0).

We now show that �
 0. Since the problem is consistent, �x : g(x)� 0,
h(x) � 0� is nonempty. Hence the set X(z) is nonempty for any vector
z� (z

�
, z

�
) with z

�

 0 and z

�
� 0. Thus, all such vectors are in dom(�).

If � were not nonnegative, then at least one component of �, say 	
�
, would

be negative. Let z
�
� (z

��
, 0

��
) where z

��
� e

�
, the vector in R� all of whose

components except the ith are zero and whose ith component is 1. Then z
�
is

in dom(�) and

�(z
�
)
�(0) ���, z

��
����, 0���(0) � 	

�
��(0), (8)

the last inequality holding because 	
�
� 0.

Since z
��

 0 and z

�
� 0, we have X(0) �X(z

�
). Therefore,

�(z
�
) � inf� f (x) : x �X (z

�
)�� inf� f (x) :x �X(0)���(0),

which contradicts (8). Thus �
 0.

Remark 3.2. The vector �� is any vector in ��(0) and so need not be unique.
By Theorem III.3.1 the vector �� is unique if and only if � is differentiable at
0, in which case �� �
�(0). Thus, �� gives the direction of maximum rate
of increase at 0 of the value function �.

If � is not differentiable, then by Exercise III.2.3,

��(0, v)
���, v� for all v in R�
�,

where ��(0, v) is the directional derivative of � at 0 in the direction v. Thus,
�� again in a sense measures the changes in � as we move away from the
origin. The vector � is therefore called a sensitivity vector.

We noted in Remark 2.5 that if we know the multipliers (�
*
, �
*

) of Theorem
2.2, then we may replace the constrained problem by an unconstrained
problem. In other words, the multipliers (�

*
, �
*
) of Theorem 2.2 are Kuhn—

Tucker vectors. By Corollary 1 to Theorem 2.3, if CPII has a solution, then
the set K of Kuhn—Tucker vectors is equal to the set M of multiplier vectors.
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In the next lemma we shall show that if �(0) is finite, then every vector in
���(0) is a Kuhn—Tucker vector.

L 3.3. L et

�(0) � inf� f (x) :x �X�,

where X� �x : g(x)� 0, h(x) � 0�, be finite and let ��(0) ��. T hen for each
�� (�, �) such that �� � ��(0) the vector � is nonnegative and

�(0) � inf� f (x) ���, g(x)� ���, h(x)� : x �R��.

Proof. Since �� � ��(0), for each z in dom(�)

�(z)
�(0) ���, z�. (9)

From the proof of Lemma 3.2 we get that �
 0. For all x in R�, g(x)� g(x)
and h(x) � h(x). Therefore z� (g(x), h(x)) is in dom(�). Taking z� (g(x), h(x))
in (9) gives

�(g(x), h(x)) � ��, g(x)� ���, h(x)�
�(0) (10)

for all x in R�. Now

�(g(x), h(x)) � inf� f (y) : y �X(g(x), h(x))�,

whereX(g(x), h(x)) � �y : g(y)� g(x), h(y) � h(x)�. But x �X(g(x), h(x)). Hence

f (x) 
�(g(x), h(x)).

Substituting this into (10) gives

f (x) � ��, g(x)� ���, h(x)� 
�(0)

for all x. Hence

�(0)� inf� f (x) ���, g(x)� ���, h(x)��.

We now establish the reverse inequality and thus prove the lemma. We have

inf� f (x) ���, g(x)� � ��, h(x)� : x �R��

� inf� f (x) ���, g(x)� ���, h(x)� : g(x)� 0, h(x) � 0�.
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Since �
 0, g(x)� 0, and h(x) � 0, the right-hand side of this inequality is less
than or equal to

inf� f (x) : g(x)� 0, h(x) � 0���(0).

Remark 3.3. Because of relationships (7) and (9), which bound the change in
� from below by a linear function, problems with ��(0) �� are said to be
stable.

The next theorem is an immediate consequence of Lemmas 3.2 and 3.3.

T 3.1. L et the programming problem CPII be strongly consistent and let
�(0) be finite. T hen ��(0) is nonempty and for every � � (�, �) such that
�� � ��(0) the vector � is nonnegative and

�(0) � inf� f (x) ���, g(x)� ���, h(x)) :x �R��.

The next theorem summarizes the relationships among the set ��(0), the
multiplier vectors, and the Kuhn—Tucker vectors.

T 3.2. L et the programming problem CPII be strongly consistent and let
it have a solution. T hen the set M of multiplier vectors, the set K of
Kuhn—Tucker vectors, and the set ���(0) are all nonempty and equal.

Proof. That M and K are nonempty and equal was noted in Corollary 1
of Theorem 2.3 and Remark 2.6. Theorem 3.1 states that if CPII is strongly
consistent and �(0) is finite, then ��(0) is nonempty and every vector in
���(0) is a Kuhn—Tucker vector.

To complete the proof of the theorem, we must show that each Kuhn—
Tucker vector is an element of ���(0). Let �

*
� (�

*
, �
*

) be a Kuhn—Tucker
vector. Since CPII is consistent, 0 �dom(�) and hence dom(�) ��. For any
z in dom(�)

�(0) � inf� f (x) ���
*
, g(x)� � ��

*
, h(x)� : x in R��

� inf� f (x) ���
*
, g(x)� � ��

*
, h(x)� : x �X(z)�.

Since g(x)� z
�
and h(x) � z

�
for x in X(z) and since �

*

 0, we get that

�(0)� inf� f (x) � ��
*
, z

�
����

*
, z

�
� :x �X(z)�

��(z) ���
*
, z

�
����

*
, z

�
�.

Hence

�(z)
�(0) ���
*
, z

�
�� ��

*
, z

�
�

for all z in dom(�). Thus �
*
����(0).

PERTURBATION THEORY 195



The assumption of strong consistency in Theorem 3.2, as already noted,
guarantees that the sets M and ���(0) are nonempty. In any specific problem,
the validity of the strong consistency assumption is easily verified a priori from
the data of the problem. In the next theorem we show that if we drop the
assumption of strong consistency but assume that one of the sets K, M, or
���(0) is nonempty, then all of the sets are nonempty and are equal. This
assumption, however, is not verifiable a priori.

T 3.3. L et the programming problem CPII have a solution. L et one of the
sets ���(0), the set K of Kuhn—Tucker multipliers, or the set M of multipliers
as in T heorem 2.2 be nonempty. T hen all of the sets M, K, and ���(0) are
nonempty and

M�K����(0).

Proof. By Corollary 1 to Theorem 2.3, the sets M and K are equal. By
Lemma 3.3, if ��(0) is not empty, then ���(0)�K. Of course, if ��(0) ��,
this is also true. In proving Theorem 3.2, we showed that K����(0). Thus,
K����(0), and the theorem is proved.

Remark 3.4. The relationship between perturbations and multiplier vectors
has an interesting economic interpretation. We can consider the function f as
giving the cost of an activity described by a vector x, where x is subject to
constraints g(x)� 0 and h(x) � 0. Our objective is to minimize f subject to the
constraints. We perturb the constraints by a vector z� (z

�
, z

�
) in the hope of

reducing the optimal cost �(z). If we must pay a price � � (�
�
, �

�
) per unit

change in the constraints, then the total cost of the perturbed process with
constraints g(x)� z

�
and h(x) � z

�
is

�(z) ���, z�.

Thus it will be advantageous to purchase a change in the constraints if and
only if

�(z) ���, z���(0).

But

�(z)
�(0) ���, z
�
����, z

�
�, (�, �) �M, (z

�
, z

�
) �R�
�,

and so

�(z) � ��, z
�
�� (�, z

�
)
�(0).

Also, any (�, �) for which the last inequality holds is in ���(0), and so is in
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M. Thus we can consider a multiplier vector (�, �) to be a price such that the
purchase of a perturbation at that price will not result in a lowering of the cost.
Since at these prices no perturbation is worth buying, We may consider the
cost to be at equilibrium at these prices. Therefore, such prices are called
equilibrium prices.

We now illustrate the results of this section by several examples.

Example 3.1. Minimize

f (x) � e�	��
��


subject to

e��� e��� 20� z.

This problem is a perturbation of the problem in Exercise IV.5.5. Since f
and the constraint function g(x) � e��� e��� 20 are convex, the nonperturbed
problem is a convex programming problem, as are the perturbed problems.
The problem is strongly consistent since g(0)� 20.

Let

L (x, 	, z) � e�	��
��
 � 	(e��� e�� � 20� z).

It follows from Theorem 2.5 that a solution � � (�
�
, �

�
) is characterized by the

existence of a positive number 	� such that 	� (g(�) � z) � 0 and �L /�x
�
�

�L /�x
�
� 0, where the partial derivatives are evaluated at (�, 	� ). Thus

�e�	��
��
� 	� e�� � 0, �e�	��
��
 � 	� e��� 0. (11)

From this it follows that 	� � 0 and that

	� e��� 	� e��.

Hence �
�
� �

�
. From 	� � 0 and 	� (g(�) � z) � 0 it follows that

e��� e��� 20� z.

Let � denote the common value of �
�
and �

�
. Then

2e�� 20� z, (12)

and so �� ln(10��
�
z). It follows from (11) and (12) that

	� � e���� (10 � �
�
z)��. (13)
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It also follows from (12) and from the relation f (�) � e�� that

�(z) � e���� (10 � �
�
z)��.

Hence

��(z) � �(10 ��
�
z)��.

From (13) we get that the value of the multiplier 	
*
for the unperturbed

problem is 10��. Also, ��(0) ��10�� and so ��(0) ��	
*
, in agreement with

the theory.
We now show that the solution of the constrained problem can be obtained

by solving the unconstrained problem of minimizing F(x), where

F(x) � e�	��
��) � 	
*
(e��� e��� 20).

Substituting the value of 	
*
in the preceding expression gives

F(x) � e�	��
��
� 10��(e��� e��� 20).

Since F is convex, any critical point furnishes a minimum. Setting �F/�x
�
and

�F/�x
�
equal to zero gives

�e�	��
��
� 10��e�� � 0, �e�	��
��
 � 10��e��� 0.

Hence x
�
�x

�
. Setting x�x

�
�x

�
gives

e�� 10�e���,

whence x� ln 10. This is in agreement with the solution of the constrained
problem given by (12) with z� 0.

Example 3.2. Find the point in the half space defined by x
�
� x

�
� z that is

closest to the origin. This problem has a solution. (Why?)
We may formulate this problem analytically as follows: Minimize �x��

subject to x
�
�x

�
� z. Thus the problem is a problem of type CPII(z). If we

take z� 0, we see that CPII is strongly consistent. On sketching the feasible
sets for z
 0, it becomes clear that for z
 0 the solution is the origin and that
�(z) � 0. For z� 0 the minimum is the point of intersection of the line x

�
�x

�
and the line x

�
� x

�
� z. Thus the minimum is achieved at (�

�
z, �

�
z) and

�(z) ��
�
z� for z� 0. The function � is differentiable at all points and ��(0) � 0.

Therefore 0 is the unique Kuhn—Tucker vector, and the constrained problem
CPII can be replaced by the problem of minimizing �x��. The conditions of
Theorem 2.5 are clearly satisfied if we take x

*
� (0, 0) and 	

*
� 0.
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We may also formulate the problem analytically as follows: Minimize �x�
subject to x

�
� x

�
� z. Again, the solution is the origin if z
 0 and the point

(�
�
z, �

�
z) if z� 0. The function � is now given by �(z) � 0 for z
 0 and

�(z) ��z/�2 for z� 0. Thus, � is not differentiable at the origin. It is a

straightforward calculation to show that ��(0) is the interval [�1/�2, 0].
Hence by Theorem 3.2 the Kuhn—Tucker vectors and multiplier vectors are all

points in the interval [0, 1/�2]. We now verify this assertion independently.
For 	 to be a Kuhn—Tucker vector, we must have

inf��x�� 	(x
�
�x

�
)�� 0.

When x� 0, the quantity in brackets is clearly zero. Therefore, for 	 to be a
Kuhn—Tucker vector, we require that 	
 0 and

�x�
�
�x�

�
� 	(x

�
�x

�
)
 0 for all x �R�.

To see what requirement this places on 	, we introduce polar coordinates. The
preceding inequality is then satisfied at the origin and whenever

	(cos �� � sin �� )
�1, 0��� � 2�. (14)

The function �(�� ) � cos �� � sin �� achieve its minimum on the interval [0, 2�]
at �� � 5�/4 and the value of the minimum is ��2. Hence we must have
	� 1/�2 as well as 	
 0.

We can replace the constrained problem by the unconstrained problem.

min��x�� 	(x
�
�x

�
)�,

where 	 is any point in [0, 1/�2]. The preferred choice of 	 is clearly 	� 0.
We leave it to the reader to verify that any 	 in [0, 1/�2] will serve as a
multiplier 	

*
as in Theorem 2.2.

Example 3.2 furnishes another illustration of the advantage of minimizing
the square of the distance rather than the distance itself.

Example 3.3. Minimize f (x) �x
�
subject to

g
�
(x) �x

�
� z

�
, g

�
(x) � x�

�
� x

�
� z

�
.

When z� 0, the problem reduces to the problem considered in Example 2.1.
We saw there that when z� 0, there exists no Kuhn—Tucker vector. By draw-
ing an appropriate figure, the reader can see that dom(�) � �z : z

�
� z

�

 0�

and that �(z)���z
�
� z

�
. We leave the proof of this assertion as an exercise.

Thus neither 0 nor any point on the line z
�
� z

�
� 0 are interior to dom(�).

It is easy to verify that ��(z) �� at each z on the boundary of dom(�).
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The next example has discontinuous value function at the origin.

Example 3.4. Minimize e��� subject to �x�
�
� x�

�
� x

�
� z. For z� 0, the

feasible set is �x� (x
�
, x

�
) :x

�

 0, x

�
� 0�. The minimum is attained at each

point of the feasible set since e���� e��� 1. Hence �(0) � 1. If z� 0, the
feasible set X(z) is empty. If z� 0, points x of the feasible set satisfy

x�
�
� 2x

�
z� z�.

Thus the feasible set is the set of points on and ‘‘inside’’ the parabola x�
�
�

2x
�
z� z�. This parabola is symmetric with respect to the x

�
-axis, has vertex

at (��
�
z, 0), and opens to the right. Hence inf�e��� :x �X(z)� � 0, and so

�(z) � 0 for z� 0. Thus, dom(�) � [0, �), and � is discontinuous at z� 0.
Also, ��(0) ��. Note that if z� 0, then the infimum is never attained at any
point of X(z). Thus the problem CP(z) has no solution if z� 0.

Exercise 3.1. Prove the assertions in Example 3.3 that

(i) dom(�) � �z : z
�
� z

�

 0�,

(ii) �(z) ���z
�
� z

�
, and

(iii) ��(z) �� at each z on the boundary of dom(�).

Exercise 3.2. In each of the following problems find �, dom(�), and ��(0) if it
is not empty:

(i) Minimize e�� subject to �x� 0.

(ii) Minimize x
�
subject to x�

�
� x�

�
� 1.

(iii) Minimize x�
�
�x�

�
� 2x

�
� 2x

�
subject to x

�
�x

�

 2.

(iv) Minimize x
�
subject to e��� �x

�
� 0.

Exercise 3.3. Show directly that there are no Kuhn—Tucker vectors for the
problem with z� 0 in Example 3.4.

4. LAGRANGIAN DUALITY

If CPII has a solution and is strongly consistent, then Theorem 2.4 suggests a
method for computing the value of the minimum. Let

Y
�
� �� :� � (�, �) :� �R�, �
 0, � �R��, (1)
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and for each � � Y
�
let

�� (�) � inf� f (x) ���, g(x)����, h(x)� :x �R��. (2)

Let

�� sup��� (�) : � �Y
�
�. (3)

Then by Theorem 2.4, �� �, where

�� inf� f (x) : g(x)� 0, h(x) � 0�. (4)

A possible procedure for finding x
*
, a point at which the minimum is achieved,

is to first find all solutions to the equation f (x
*
) � � and then retain those

solutions that satisfy the constraints.
This discussion suggests that it might be fruitful to consider the following

problem, which we call the problem dual to CPII, or simply the dual problem,
and denote by DCPII.

Problem DCPII

Let

Y � �� :� � Y
�
, �� (�)����, (5)

where Y
�
is defined in (1) and �� (�) in (2). Then

Maximize ��� (�) : � � Y �.

Note that in formulating the dual problem it is not assumed that CPII has
a solution or is strongly consistent. The set Y is the feasible set for DCPII. If
Y ��, then the dual problem is said to be consistent. The original problem
CPII is often referred to as the primal problem.

The next theorem indicates how the dual problem gives information about
the primal problem and vice-versa.

T 4.1 (L D T  C P).

(i) If X�� and Y ��, then for each x �X and � � Y

�� (�) � f (x). (6)

Moreover, if � and � are as in (3) and (4), then both are finite and ���.

(ii) L et Y ��. If �� (�) is unbounded above on Y, then X��.
(iii) L et X��. If f (x) is unbounded below on X, then Y � �.
(iv) If there exists an �

*
�Y and an x

*
in X such that f (x

*
) � �� (�*

), then

�� �� (�*
) � f (x

*
) � �.

T hus x
*
is a solution of CPII and �

*
is a solution of DCPII.
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Proof. The key to the proof of the theorem is the observation that since
�
 0 for � �Y and since g(x)� 0 and h(x) � 0 for x �X, it follows that for
x �X and � � Y,

f (x) � ��, g(x)����, h(x)�� f (x). (7)

In (2) we take the infimum over all x in R�. This infimum is less than the
infimum in (2) taken over all x �X. From these observations and from (7) the
inequalities (6) and ��� follow. Assertion (ii) follows from (6), for if X were
not empty, then �� (�) would be bounded above. Also, (iii) follows from (6) by
a similar argument. Statement (iv) follows from the chain

�� (�*
)����� f (x

*
) � �� (�*

).

We now see how the dual problem gives useful information about the primal
problem and vice-versa. Statement (i) shows how a feasible point for the dual
problem gives a lower bound for the value of the primal problem and how a
feasible point for the primal problem gives an upper bound for the value of the
dual problem. Statement (ii) gives a way of checking whether X� � in the
absence of more direct checks. Statement (iii) gives a condition under which
the dual problem cannot be formulated.

Definition 4.1. Problems CPII and DCPII are said to exhibit a duality gap if
���.

The next theorem gives a sufficient condition for the absence of a duality
gap and relates the multipliers �

*
� (�

*
, �

*
) to the solutions of the dual

problem.

T 4.2. L et the primal problem CPII be strongly consistent and have a
solution. T hen:

(i) T here is no duality gap.

(ii) If �
*
� (�

*
, �

*
) is a multiplier for CPII, then �

*
is a solution of the dual

problem.

(iii) If �
�
� (�

�
, �

�
) is a solution of the dual problem, then �

�
is a multiplier

vector for the primal problem.

Proof. Let x
*
denote the point at which CPII achieves its minimum. Since

the problem is strongly consistent by Theorem 2.2, there exists a multiplier
vector �

*
� (�

*
, �

*
) for CPII. Thus,

f (x
*
)� f (x) � ��

*
, g(x)����

*
, h(x)� (8)

for all x in R�. Hence, from (2), �� (�*
)
 f (x

*
). By Theorem 4.1, �� (�*

)� f (x
*
),

so �� (�*
) � f (x

*
). Conclusions (i) and (ii) now follow from (iv) of Theorem 4.1.
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Now let �
�
� (�

�
, �

�
) be a solution of the dual problem. From (2) and from

the absence of a duality gap we get that

inf� f (x) ���
�
, g(x)�� ��

�
, h(x)� : x �R�� � �� (��

) � f (x
*
).

Thus (�
�
, �

�
) is a Kuhn—Tucker vector, and so by Theorem 2.3, (�

�
, �

�
) is a

multiplier vector for the primal problem.

We now present several examples to illustrate the theory developed in this
section.

Example 4.1. We take the primal problem to be the problem in Exercise IV.5.5
or the problem in Example 3.1 with z� 0. The primal problem is

Minimize f (x) � e�	��
��


subject to e��� e��� 20.

Let

L (x, 	) � e�	��
��
 � 	(e��� e�� � 20).

Then for each 	
 0 define

�� (	) � inf�L (x, 	) : x �R��.

The dual problem is to maximize �� (	).
We saw in Example 3.1 that the primal problem is strongly consistent and

that it has a solution at x
*

� (�, �), where �� ln 10. The value of the minimum
is 10�� and the value of the multiplier 	

*
is 10��. Thus we would expect the

value of the maximum of �� to be 10�� and for �� to assume this value at
	
�
� 10��. We now show that this is indeed so.
We first determine the function �� . For each 	
 0, the function L ( , 	) is

readily seen to be a strictly convex function of x. Hence a necessary and
sufficient condition that L ( , 	) attain a unique minimum at � � (�

�
, �

�
) is that

�L /�x
�
and �L /�x

�
both equal zero at �. As in Example 3.1 we see that for

	� 0 this implies that �
�
� �

�
. Denoting this common value by �, we get that

�� (	) � inf��(�, 	) : � �R�, (9)

where

�(�, 	) � e���� 2	(e� � 10).

For fixed positive 	, �( , 	) is a strictly convex function of �. A necessary and
sufficient condition that �( , 	) attain a unique minimum at a point �

�
is that
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d�/d� vanish at �
�
. Now

d�

d�
� �2e���� 2	e�.

Setting d�/d�� 0, we get that exp(��
�
) � 	���. Substituting this into (9) gives

�� (	) � 3	���� 20	, 	� 0.

Since �� (	) � 0 when 	� 0, the preceding formula is valid for all 	
 0. An
elementary calculus argument shows that �� is maximized at the unique point
at which �� �(	) � 0. This value of 	 is readily seen to be 10�� and the
corresponding value of �� is 10��. These values are as required.

Example 4.2. Let the primal problem be as follows: Minimize �x� subject to
x
�
�x

�
� 0. This problem was analyzed in Example 3.2 with z� 0. This

problem is strongly consistent and has x� 0 as its solution. The value of the
minimum is clearly zero. Any 	 in the interval [0, 1/�2] is a multiplier vector.

The dual problem is as follows: Maximize ��� (	) : 	
 0, �� (	)����, where
�� (	) � inf��x��	(x

�
� x

�
) :x �R��. We introduce polar coordinates (r, �) and

obtain

�� (	) � inf�r(1 � 	(cos� � sin �)) : r
 0, 0��� 2��.

Let

�(�, 	) � 1� 	(cos� � sin �).

Then �� (	) � 0 if �(�, 	)
 0 for all 0��� 2�, and �� (	) ��� if this is not so
and r� 0. The argument used in Example 3.2 shows that �(�, 	)
 0 for all �
in [0, 2�] if and only if 0�	� 1/�2. Thus �� (	) � 0 for 	 in [0, 1/�2] and
�� (	)��� otherwise. Hence max��� (	) : 	 �Y ��0 and the maximum is attained
at each 	 � [0, 1/�2]. Comparison with the solution to the primal problem
shows that there is no duality gap and the points at which the dual problem
attains its maximum are the multipliers for the primal problem.

Example 4.3. Let the primal problem be the problem treated in Example 2.1
and in Example 3.3 with z� 0. The primal problem has the origin as the only
feasible point. This point furnishes the solution and the value of the minimum
is zero. This problem is clearly not strongly consistent.

The dual problem is as follows: Maximize ��� (�) :� �Y �, where

Y � �� :�
 0, �� (�)���� and �� (�) � inf(x
�
�	

�
x
�
�	

�
(x�

�
�x

�
) :x �R�.
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If we write

x
�
� 	

�
x
�
� 	

�
(x�

�
� x

�
) �x

�
� 	

�
x�
�
� (	

�
� 	

�
)x

�
,

we see that if 	
�
� 	

�
, then �� (�) � ��. For � � 0 with 	

�
� 	

�
, we have

	
�
� 0 and

�� (�) � inf�x
�
� 	

�
x�
�
:x

�
�R�.

The function inside the curly brackets attains its minimum at x
�
� �1/2	

�
and

�� (�) ��1/4	
�
. (10)

For �� 0 we have

�� (0) � ��.

Thus Y � ��� (	
�
, 	

�
) : 	

�
� 	

�
, �� 0�. Since 	

�
� 0, it follows from (10) that

sup��� (�) :� �Y �� 0. The supremum is not attained in the dual problem, even
though there is no duality gap. Thus we have an example in which there is no
duality gap; the primal problem has a solution but the dual problem has no
solution. We also recall from Example 3.3 that ��(0) �� and there are no
Kuhn—Tucker vectors.

Example 4.4. In this example we will exhibit a duality gap. Let the primal
problem be the problem in Example 3.4 with z� 0. We saw there that the
minimum is attained at every point of the feasible set and that the value of the
minimum is 1.

The dual problem is to maximize ��� (	) : 	
 0, �� (	)����, where

�� (	) � inf�e���� 	(�x�
�
� x�

�
� x

�
) : x �R��.

Let

L (x, 	) � e���� 	(�x�
�
�x�

�
�x

�
).

Then L (x, 	)
 0 for all x in R�. We shall show that �� (	) � 0.
Let x

�
� 0 and let x

�
� 0. Then

L (x, 	) � e����
	x�

�
�x�

�
�x�

�
�x

�

� e���� 	
x�
�

x
� ��1��

x
�
x
�
�
�
� 1�

.
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Now let x
�
� (x

�
)� and then let x

�
��. We see that L (x, 	) � 0 along this

curve. Thus �� (	) � 0 for all 	
 0 and max��� (	) : 	
 0�� 0. Thus �� 0, and
since �� 1, we have a duality gap.

Theorem 4.2 states that if a solution to the primal problem exists, then
strong consistency is a sufficient condition for the absence of a duality gap and
the existence of a solution to the dual problem. The following example shows
that strong consistency is not a necessary condition for the absence of a duality
gap and for the existence of a solution to the dual problem.

Example 4.5. Minimize f (x) �x
�
subject to

g
�
(x) � (x

�
� 1)�� (x

�
)�� 1� 0, g

�
(x) � �x

�
� 0.

The problem is clearly a convex programming problem. The feasible set
consists of the origin 0 in R�, and the problem is not strongly consistent. The
solution to the primal problem is x

*
� 0 and �� 0.

The dual objective function is given by

�� (�) � inf�x
�
� 	

�
[(x

�
� 1)�� (x

�
)�� 1]� 	

�
x
�
: x �R��,

where �
 0. If we take � ��
*
� (0, 1) we get that �� (�*

) � 0. If then follows
from (iv) of Theorem 4.1 that there is no duality gap and that �

*
is a solution

of the dual problem.

We will now obtain two necessary and sufficient conditions for the absence
of a duality gap and the existence of a solution to the dual problem.

T 4.3. L et problem CPII have a solution x
*
. T hen a necessary and

sufficient condition for the absence of a duality gap and for �
*

� (�
*
, �
*
), 	

*

 0,

to be a solution of the dual problem is that (x
*
, �
*
, �
*
) is a saddle point for L .

Proof. Let (x
*
, �
*
, �
*
) be a saddle point for L . Then (2.18i) and (2.19) of

Theorem 2.7 hold. Thus (8) of Theorem 4.2 holds. That there is no duality gap
and that (�

*
, �
*
) is a solution to the dual problem follows by the same

arguments used to establish (i) and (ii) in Theorem 4.2.
Now let �

*
� (�

*
, �
*

) be a solution of the dual problem and let there be no
duality gap. Then, as in the proof of statement (iii) in Theorem 4.2 with
�
�
��

*
and �

�
� �

*
, we get that (�

*
, �
*
) is a multiplier as in Theorem 2.2 for

the primal problem. But (7) of Theorem 2.2 states that (x
*
, �

*
, �

*
) is a saddle

point for L .

T 4.4. L et CPII have a solution x
*
. Then a necessary and sufficient

condition for the absence of a duality gap and the existence of a solution to the
dual problem is that ��(0) ��. In this event every vector � in ���(0) is a
solution of the dual problem.
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Proof. We first prove the sufficiency of the condition ��(0) � �. Since the
primal problem has a solution, �(0) is finite. By hypothesis, ��(0) ��. Hence
by Lemma 3.3 each vector � � (�, �) such that �� � ��(0) is a Kuhn—Tucker
vector, and such vectors exist. By Theorem 3.3 each such vector is in M, the
set of multiplier vectors, as in Theorem 2.2. Thus (x

*
, �, �) is a saddle point

for L , and so by Theorem 4.3 there is no duality gap and (�, �) is a solution
to the dual problem. Now suppose that there is no duality gap and that the
dual problem has a solution �

*
� (�

*
, �

*
). Then by Theorem 4.3 the point

(x
*
, �

*
, �

*
) is a saddle point for L . By Theorem 2.7, (�

*
, �

*
) is a Kuhn—Tucker

vector. It then follows from Theorem 3.3 that (�
*
, �

*
) ����(0).

C 1. L et CPII have a solution x
*
. T hen a necessary and sufficient

condition for the absence of a duality gap and the existence of a solution to the
dual problem is that one of the sets ��(0), K, or M be nonempty.

The corollary is an immediate consequence of Theorems 4.4 and 3.3.

Remark 4.1. In Remark 3.4 we indicated an economic interpretation of the
multiplier vectors as equilibrium prices. In view of the preceding corollary, we
see that the solution of the dual problem gives the equilibrium price.

Exercise 4.1. Formulate, and solve whenever possible, the problems dual to the
problems in Exercise 3.2. Discuss your results as they relate to Theorem 4.2.

Exercise 4.2. The problem posed in Exercise IV.5.8 is a convex programming
problem. Solve this problem by formulating the dual and solving the dual.
Hint: To simplify the algebra involved, first solve the problem for x

�
� 0. Then

use a translation of coordinates to obtain the result for general x
�
.

Exercise 4.3. Show that the function �� defined by (2.2) is concave.

5. GEOMETRIC INTERPRETATION

In this section we present a geometric interpretation of the duality and
perturbation results. We shall assume that all the constraints are inequality
constraints and that we are considering CPI: Minimize f (x) subject to
g(x)� 0.

The mapping

 � f (x), z� g(x),

is a mapping from R� to R�
�. We have indicated two image sets,

I� �(z,  ),  � f (x), z� g(x) :x �R��, (1)
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Figure 5.1.

schematically for m�1 as the hatched areas in Figures 5.1 and 5.2. In geometric
terms, to solve CPI, we must find a point in the intersection of I and the closed
half space z� 0 with smallest  coordinate if such a point exists. In Figure 5.1
this is the point M

�
with coordinates (z*,  *

�
). In Figure 5.2 this is the point M

�
with coordinates (0,  *

�
).

Let �
 0. The dual problem is to maximize �� (�), where �� is defined in
relation (2) of Section 4. We may therefore also write

�� (�) � inf� � ��, z) :  � f (x), z� g(x)�

� inf�� : ��  � ��, z� : (z,  ) � I�.
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Figure 5.2.

Thus, for all ( , z) in I

�(��, �1), (z,  )����� (�),

and so the hyperplane

�(��,�1), (z,  )����� (�) (2)

is a supporting hyperplane for the set I. The equation of this hyperplane can
also be written as

 ����, z�� �� (�). (3)

Hence �� (�) is the  -intercept of the hyperplane (2). See Figures 5.1 and 5.2. The
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geometric interpretation of the dual problem is to find, among supporting
hyperplanes (3) to I with �
 0, those whose  -intercept in maximized provided
such hyperplanes exists.

In Figure 5.1 the supporting hyperplane to I at any point P with z-
coordinate greater than z* has 	� 0. Thus these hyperplanes do not enter into
the competition. The unique hyperplane through M

�
with normal (0,�1) is

the required hyperplane. The  -intercept of this horizontal hyperplane is  *
�
.

Thus there is no duality gap and the dual problem has a solution. The point
M

�
corresponds to a point x

*
such that g(x

*
)� 0. Therefore, from the

complementary slackness condition ��
*
, g(x

*
)�� 0, we have that �� 0. This

is in agreement with the geometry.
In Figure 5.2 any hyperplane through M

�
whose normal lies in the angle

formed by n and the vector (0,�1) is a supporting hyperplane with 	
 0
having maximal  -intercept equal to  *

�
. Thus, again there is no duality gap and

the dual problem has a solution.
From Figure 5.1 and the definition of the function � we see that the graph

of � is the lower boundary curve of I for z� z*
�
and then the straight line

 �  *
�
for z
 z*

�
. At M

�
the function � is differentiable and ��(0) � 0. The

dual problem has the unique solution 	
*
� 0, and so ��(0) � 	

*
.

In Figure 5.2 the graph of � is the lower boundary curve of I for z� 0 and
then the straight line  �  *

�
for z
 0. At M

�
the function � is not differenti-

able. The set of vectors �
*

 0 such that (�	

*
,�1) lies in the angle formed

by n and (0,�1) is the set ��(0). The dual problem attains its solution at any
vector in ���(0).

Exercise 5.1. In Exercises 3.1(i), (ii), and (iv) sketch the sets I and carry out the
geometric arguments of this section in these specific problems, whenever
possible. For problems in which the arguments made in connection with
Figures 5.1 and 5.2 seem to fail, explain why.

6. QUADRATIC PROGRAMMING

Quadratic Programming Problem (QP)

Let Q be a positive semidefinite n� n matrix, let b be a vector in R�, let A be
an m� n matrix, and let c be a vector in R�. Minimize

f (x) ��
�
�x,Qx���b, x�

subject to

Ax� c.

The formulation just given includes equality constraints of the form Hx� d.
This is achieved by the device already used of writing each equality constraint
�h

�
, x�� d

�
, where h

�
is the ith row of H as two equality constraints.
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Because Q is positive semidefinite, the function f is convex. The constraints
are affine. Hence the problem is a convex programming problem. We leave it
as an exercise to show that if the matrix Q is positive definite, the problem does
have a solution, while the problem need not have a solution if Q is only positive
semidefinite. If Q is positive definite, then f is strictly convex. Since in this case
we are minimizing a strictly convex function over a convex set, the minimum
is achieved at a unique point x

*
.

For the quadratic programming problem the Lagrangian L is defined by

L (x, �) ��
�
�x,Qx���b, x�� ��,Ax� c�. (1)

T 6.1. A necessary and sufficient condition for a point x
*
to be a solution

of QP is that

Ax
*
� c (2)

and there exist a vector �
*

 0 in R� such that

Qx
*
� b�A��

*
� 0, (3)

��
*
,Ax

*
� c�� 0. (4)

Proof. We first prove the necessity of the conditions. If x
*
is a solution of

QP, then x
*
is feasible, so (2) holds. By Theorem IV.5.1 or by Remark 2.3,

there exists a real number 	
�

 0 and a vector �

*

 0 in R� such that

(	
�
, �
*
) � (0, 0),

	
�
(Qx

*
� b) �A��

*
� 0, (5)

and (4) holds. We shall show that 	
�
� 0 is not possible. Hence we may take

	
�
� 1 and get (3).
If 	

�
� 0, then �

*
� 0, and from (5) we get that A��

*
� 0. It then follows

from (4) that ��
*
, c�� 0. Thus the system

�
A�

c�� y� 0, y
 0, y� 0, y �R�,

has a solution y��
*
. It then follows from Gordan’s theorem (Theorem II.5.2)

that

(A, �c) �
x

��
 0

for all x �R�, � in R. Hence Ax
�c for all x in R� and � in R. In particular,
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this inequality holds for �� 0. Hence Ax
 0 and A(�x) 
 0 for all x in R�.
Thus Ax� 0 for all x in R�, which is not possible since A is not the zero matrix.

The sufficiency of the conditions follows from Theorem IV.5.3 with f (x) �
�
�
�x,Qx� and g(x) �Ax� c.

Remark 6.1. In Theorem 6.1 we showed that in the quadratic programming
problem the KKT condition is a necessary condition for a minimum without
assuming a priori that a constraint qualification holds. The linearity of the
constraints, however, played a crucial role.

Theorem 6.1 suggests the following procedure for solving QP. Solve the
linear system (3) and then reject all solutions of (3) that do not satisfy (2) and
(4). In actual practice, however, various computational algorithms related to
the simplex method have been devised to solve quadratic programming
problems. For a discussion of these see Bazzara, Shetty, and Sherali [1993].

An alternate, and possibly more fruitful, approach is through the dual
problem, which is

max��� (�) : �
 0, �� (�)����, (6)

where

�� (�) � inf�L (x, �) : x �R�� (7)

and L is defined in (1). A justification for this procedure is provided by the
following theorem.

T 6.2. L et Problem QP have a solution x
*
. T hen there is no duality gap

between QP and the dual problem, the dual problem has a solution, and the
solution is given by the multipliers �

*
of T heorem 6.1.

Proof. For fixed �
 0, the function L ( · , �) defined in (1) is convex on R�.
Therefore, by the corollary to Theorem IV.3.2, a necessary and sufficient
condition for a point x

�
to minimize L is that 
xL (x�

, �) � 0, where 
x denotes
the gradient with respect to x. Since x

*
is a solution to QP, it follows from (3)

of Theorem 6.1 that 
xL (x*
, �
*
) � 0. Hence,

L (x
*
, �

*
) �min�L (x, �

*
) :x �R��.

From this and from (2) and (4) we see that (2.18) of Theorem 2.7 holds, where
h is the zero function. Thus, (x

*
, �
*
) is a saddle point for L . The conclusion of

the theorem now follows from Theorem 4.3.

Remark 6.2. Note that we have not assumed strong consistency, but we have
assumed that QP has a solution. We have already remarked that a sufficient
condition for the existence of a solution is that Q be positive definite.
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In determining the explicit form of the dual problem, it is useful to consider
the unconstrained quadratic programming problem. Minimize

f (x) ��
�
�x,Qx���b, x�, x �R�. (8)

Since Q is positive semidefinite, there exists an orthogonal matrix P such that
PAP� is a diagonal matrix. Under the transformation of coordinates y�Px,
(8) becomes

F(y) � f (P�y) ��
�
y�PQP�y� b�P�y��

�
(�

�
y�
�
��� �

�
y�
�
) �

�
!
�
�

d
�
y
�
,

where the �
�
are the positive eigenvalues of Q. If k is positive definite, then

k� n ; if k is positive semidefinite, then k� n. If a coefficient d
�
with i� k is

different from zero, then by considering vectors �e
�
, where � is a scalar and e

�
is the vector whose ith component is 1 and whose other components are zero,
we see that inf�F(y) : y �R�� ���. If d

�
� 0 for all i� k, then 
F(y

�
) � 0 at

any point y
�
� (y

��
, . . . , y

��
) with

y
��

� �
d
�

�
�

, i� 1, . . . , k,

arbitrary, i� k� 1, . . . , n.

Since F is convex, it follows from the corollary to Theorem IV.3.2 that F
attains a minimum at any such point y

�
. If Q is positive definite, then k� n

and the point y
�
is unique. We summarize this discussion in the following

lemma.

L 6.1. T he unconstrained programming problem either has infimum equal to
�� or attains a minimum at a finite point.

We return to the determination of the explicit form of the dual problem. For
fixed �
0, the problem of minimizing L (x, �� over all x in R� is an uncon-
strained quadratic programming problem, since

L (x, �) ��
�
�x,Qx���b, x����,Ax� c�

��
�
�x,Qx���b�A��, x�� ��, c�

��
�
�x,Qx���d, x����, c�,

where d� b�A��. It then follows from Lemma 6.1 that if �� (�) is finite, then
we may replace the infimum in (7) by a minimum. Thus, for fixed � such that
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�� (�)���, if we denote a point at which min L ( · , �) is attained by x� , then

�� (�) � L (x� , �) ��
�
�x� , Qx��� �b, x��� ��,Ax� � c�. (9)

Since for fixed � the function L ( · , �) is convex on R�, it follows from the
corollary to Theorem IV.3.2 that the minimum is attained at a point x� if and
only if 
xL (x� , �) � 0. A straightforward calculation shows that 
xL (x� , �) � 0
if and only if

Qx� � b�A�� � 0. (10)

If we take the inner product of each side of (10) with x� , we get

�x� , Qx����b, x�����,Ax��� 0.

Substitution of this equation into (9) gives

�� (�) ���
�
�x� , Qx�����, c�.

Thus the explicit formulation of the dual problem is as follows.

Dual Quadratic Programming Problem (DQP)

Maximize

��
�
�x,Qx�� ��, c� (11)

subject to

Qx�A�� � b, �
 0. (12)

If Q is positive definite, then the dual problem can be simplified. From (12)
we get that

x�Q��(b�A��). (13)

If we substitute this into (11), then a straightforward calculation, using the fact
that Q�� is symmetric, gives

�� (�) ���
�
��, R��� (d, ��� a, (14)

where

R�AQ��A�, d� b�Q��A�� c, a� ��
�
�b,Q��b�.
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Thus the dual problem becomes the following: Maximize �� (�) subject to �
 0,
where �� (�) is given by (14).

This problem is a quadratic programming problem whose constraint set has
a simple structure, namely �� :� �R�, �
 0�. By Theorem 6.2 there is no
duality gap and this problem has a solution �

*
, where �

*
is a multiplier as in

Theorem 6.1. Thus, from (3) we get that the solution of QP is

x
*
�Q��(b�A��

*
).

Exercise 6.1. Show that if Q is positive definite, then the quadratic program-
ming problem has a unique solution. Does your proof apply to the uncon-
strained problem?

Exercise 6.2. The problems posed in Exercise IV.5.8 and Exercise 3.2(iii) are
quadratic programming problems. Use the duality developed in this section to
solve these problems. Compare with the duality in Exercises 4.1 and 4.2.

7. DUALITY IN LINEAR PROGRAMMING

The linear programming problem LPI formulated in Section 1 in Chapter IV
can be viewed as a convex programming problem with f (x) ���b, x� and
g(x) �Ax� c. Thus all of the results of this chapter hold for the linear pro-
gramming problem. The linear nature of LPI, however, results in a much
stronger duality than that of Theorem 4.1. We proceed to determine this
duality.

To maintain a symmetry in the duality, we shall not incorporate the
constraint x
 0 in the matrix A and the vector c, as was done in Chapter IV,
but shall write our primal problem (P) as

Minimize ��b, x� subject to �
A

�I
�
� x� �

c

0
�
� , (P)

where I
�
is the n� n identity matrix and 0

�
is the zero vector in R�.

We now formulate the dual problem. Let � � (�, �), where � �R�, �
 0,
� �R�, �
 0. Let

�� (�) � inf���b, x����,Ax� c�� ��, x� : x �R��

� inf��(�b�� �A��), x�� ��, c� : x �R��.

The expression inside the curly braces is linear in x. Therefore, for it to have a
finite infimum over all x in R�, the coefficient of each component of x must be
zero, and so

A�� � b��� 0. (1)
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Since �
 0, equation (1) is equivalent to

A��� b
 0.

If (1) holds, then �� (�) � ��c, ��. Thus the problem dual to P is

Maximize ��c, �� subject to �
A�

I
�
� �
�

b

0
�
� , (D)

where I
�
is the m�m identity matrix and 0

�
is the zero vector in R�.

The dual problem (D) can be written as a linear programming problem:

Minimize ��(�c), �� subject to �
�A�

�I
�
� �� �

�b

0
�
� .

The dual of this problem is

Maximize �b, y� subject to �
�A

I
�
� y
 �

�c

0
�
� .

If we write this problem as a minimization problem and relabel the vector
y �R� as x, we see that the dual of the dual problem is the primal problem. We
summarize this discussion in the following lemma.

L 7.1. T he dual of the linear programming problem

Minimize ��b, x� subject to �
A

�I
�
� x��

c

0
�
� (P)

is

Maximize ��c, �� subject to �
A�

I
�
� �
 �

b

0
�
� . (D)

T he dual of the dual problem (D) is the primal problem (P).

T 7.1 (D T  L P). L et X denote the
feasible set for the primal problem and let Y denote the feasible set for the dual
problem. T hen:

(i) For each x in X and � in Y,

��c, �����b, x� (weak duality)
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(ii) L et Y be nonempty. T hen X is empty if and only if ��c, �� is unbounded
above on Y.

(iii) L et X be nonempty. T hen Y is empty if and only if ��b, x� is bounded
below on X.

(iv) (Strong duality). L et the primal problem (P) have a solution x
*
. T hen the

dual problem (D) has a solution �
*
and �c, �

*
�� �b, x

*
�.

Remark 7.1. Since problem P is also a convex programming problem, all of
the conclusions of Theorem 4.1 apply to the linear programming problem.
Thus, (i) is a special case of (i) of Theorem 4.1. In (ii) the statement that if
��c, �� is unbounded above then X is empty is a special case of (ii) of
Theorem 4.1. In the linear programming problem the stronger ‘‘if and only if’’
statement holds. Analogous comments hold for (iii).

Also note that the phenomenon exhibited in Example 4.3 in which there is
no duality gap, yet the dual problem has no solution, cannot occur.

We now prove the theorem. We pointed out in Remark 7.1 that (i) follows
from (i) of Theorem 4.1.

From the discussion of (ii) in Remark 7.1 it follows that to establish (ii) we
must show that if X is empty then ��c, �� is unbounded above. We first note
that if X is empty, then we must have c� 0. For if c� 0, then x� 0 would be
feasible and X would be nonempty.

If X is empty, then the system

�
A

�I
�
� x��

c

0
�
�

has no solution. It then follows from Theorem II.5.4 that if X is empty, then
there exists a vector y� (y

�
, y

�
), where y

�
�R�, y

�

 0, y

�
�R�, y

�

 0, such

that

�(c, 0
�
), (y

�
, y

�
)���1, (A�, �I

�
) �
y
�
y
�
�� (0

�
, 0

�
). (2)

Hence (2) becomes

�c, y
�
���1, A�y

�
� 0

�
, y

�

 0

�
.

Since Y��, there exists a �
�

 0 such that A��

�

 b. Then for any real "� 0,

the vector �
�
�"y

�
is in Y and

��c, �
�
� "y

�
�� ��c, �

�
��".

Thus, since " can be taken to be arbitrarily large, ��c, �� is unbounded above.
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We view the primal problem as the dual to the dual and view the dual
problem as primal. Then from (ii) we conclude that if X is nonempty, then Y
is empty if and only if �b, x� is unbounded above, or equivalently that ��b, x�
is unbounded below. Thus, (iii) is proved.

We now take up the proof of (iv). Since the primal problem has a solution,
there exists a vector � in R� as in Theorem IV.4.1. It is readily seen that this
vector is a multiplier as in the KKT conditions of Theorem IV.5.2. The set M

is thus nonempty. The absence of a duality gap and the existence of a solution
follow from Corollary 1 to Theorem 4.4. Since there is no duality gap and both
the primal and dual have a solution, ��c, �

*
����b, x

*
�.

C 1. A necessary and sufficient condition that a point x
*
in X and a

point �
*
in Y be solutions of the primal and dual problems respectively is that

�b, x
*
�� �c, �

*
�.

Proof. The necessity of the condition follow from (iv) of Theorem 7.1 and
the sufficiency from (iv) of Theorem 4.1.

C 2. Necessary and sufficient conditions that a point x
*
in X and a

point �
*
in Y be solutions of the primal and dual problems respectively are

(i) �Ax
*
� c, �

*
�� 0 and

(ii) �A��
*
� b, x

*
�� 0.

Proof. Let x
*
be optimal for the primal problem and let �

*
be optimal for

the dual problem. Then Ax
*
� c and �

*

 0. Hence

�Ax
*

� c, �
*
�� 0. (3)

Since �
*
is feasible for the dual problem, A��

*

 b. Since x

*

 0, we have

�A��
*
� b, x

*
�
 0. (4)

By Corollary 1, �b,x
*
���c,�

*
�, so �A��

*
, x
*
�� �c, �

*
�
0. Therefore

�Ax
*
�c,�

*
�
0. Comparing this with (3) gives (i). Also,

�Ax
*
� c, �

*
�� �Ax

*
, �
*
���c, �

*
�� �A��

*
� b, x

*
�;

and so from (3) we get that �A��
*
� b, x

*
�� 0. This inequality and (4) give

(ii).
To prove the sufficiency, note that (i) and (ii) give

�c, �
*
���Ax

*
, �
*
�� �A��

*
, x
*
���b, x

*
�.
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It then follows from the equality of the outermost quantities and Corollary 1
that x

*
is a solution of the primal problem and that �

*
is a solution of the dual.

The next theorem is a stronger version of the strong duality statement (iv)
of Theorem (7.1) in that we obtain strong duality by merely assuming the
feasible sets X and Y to be nonempty.

T 7.2. T he feasible sets X and Y for the primal and dual problems
respectively are nonempty if and only if there exists a solution x

*
to the primal

problem and a solution �
*
to the dual problem. In this event

�c, �
*
�� �b, x

*
�. (5)

Proof. If the primal and dual problems have solutions, then the sets X and
Y are clearly nonempty.

To show that X�� and Y �� imply that both the dual and primal
problems have solutions and that (5) holds, it suffices to show that the primal
problem has a solution. For then by (iv) of Theorem 7.1, the dual problem has
a solution and (5) holds.

In Remark IV.4.1 we noted that relation (2iv) of Theorem IV.4.1 is a
consequence of (i), (ii), (iii), and (v). Thus in Corollary IV.4.3 the same
observation holds. Hence a necessary and sufficient condition for a vector x

*
to be a solution of P is that there exist a vector �

�
in R� such that

�
A

�I
�
� x*��

c

0� , �
A�

I
�
� �

�

�

b

0� , (6)

�b, x
*
���c, �

�
�.

Since the existence of vectors x
*
in R� and vector �

�
in R� that satisfy (6) is a

necessary and sufficient condition that x
*
be a solution of P, it follows that if

P has no solution, then the system

(i) �
A

�I
�
� x��

c

0� ,
(7)

(ii) �
�A�

�I
�
� u��

�b

0 � ,
(iii) ��b, x���c, u�� 0

has no solution (x, u), x �R�, u �R�. Condition (7i) is the condition that x be
feasible for P and condition (7ii) is the condition that u be feasible for the
dual problem. By assumption, there exist feasible vectors x �X and u �Y. By (i)
of Theorem 7.1, for such vectors we have ��b, x�
��c, u�, and thus
��b, x���c, u�
 0. Hence for a vector (x, u) that satisfies (7i) and (7ii) to
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fail to satisfy (7iii), it must fail to satisfy

��b, x���c, u�� 0, (7iii�)

so we may replace (7iii) by (7iii�) in (7).
Now consider the system

 � 0,  �R,

�
A

�I
�
� x��

 c
0 � , �

�A�

�I
�
� u��

� b
0 � , (8)

��b, x���c, u�� 0.

If (7) has a solution (x
�
, u

�
), then (8) has a solution ( 

�
, x

�
, u

�
) � (1, x

�
, u

�
).

Conversely, if (8) has a solution ( 
�
, x

�
, u

�
), then (x

�
, u

�
) � (x

�
/ 

�
, u

�
/ 

�
) is a

solution of (7). Therefore (7) has no solution if and only if (8) has no solution.
System (8) can be written as

�(0
�
, 0

�
, 1), (x, u,  )�� 0,

�
A O �c

�I
�

O 0
�

O �A� b

O �I
�

0
�

�b� c� 0 � �
x

u

 �� 0
��
��
�

,
(9)

where O represents a zero matrix of appropriate dimension and 0
�
is the zero

vector in R�. Since this system has no solution, it follows from Theorem II.5.1
(Farkas’s lemma) that there exists a vector (p

�
, p

�
, q

�
, q

�
, ")
 0

��
��
�
with

p
�
�R�, p

�
�R�, q

�
�R�, q

�
�R�, and " �R such that

�
A� �I

�
O O �b

O O �A �I
�

c

�c� 0
�

b� 0
�

0 � �
p
�
p
�
q
�
q
�
" �� �

0
�
0
�
1 � .

Thus

A�p
�
� p

�
�"b� 0

�
,

�Aq
�
� q

�
�"c� 0

�
, (10)

��p
�
, c�� �q

�
, b�� 1.
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We shall show that this system cannot have a solution (p
�
, p

�
, q

�
, q

�
, ") 


0
��
��
�

. This contradiction will prove that the primal problem has a
solution, since we arrived at (10) by assuming that it did not.

Let x
�
�X and let y

�
�Y. Such points exist since X�� and Y ��.

Suppose first that "� 0. Then A�p
�
� p

�
and Aq

�
��q

�
. Since x

�
�X, we

have Ax
�
� c. Thus, since p

�

 0,

��p
�
, c����p

�
,Ax

�
����A�p

�
, x

�
����p

�
, x

�
�� 0, (11)

where the last inequality follows from p
�

 0, x

�

 0. Similarly,

�q
�
, b���q

�
, A�y

�
���Aq

�
, y

�
����q

�
, y

�
�� 0. (12)

From (11) and (12) we get

��p
�
, c���q

�
, b�� 0, (13)

which contradicts the last equation in (10).
Suppose now that "� 0. The first equation in (10) implies that p

�
/" is

feasible for the dual problem. The second equation in (10) implies that q
�
/" is

feasible for the primal problem. By the weak duality, ��b, q
�
/"�
��c, p

�
/"�.

Hence we again arrive at (13), which contradicts the last equation in (10).
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VI
SIMPLEX METHOD

1. INTRODUCTION

In Section 4 of Chapter IV we formulated the linear programming problem and
derived a necessary and sufficient condition that a point x

*
be a solution to a

linear programming problem. In Section 7 of Chapter V we presented the
duality theorems for linear programming. We remarked in Section 4 of Chapter
IV that in practice the dimension of the space R� precluded the use of the
necessary and sufficient conditions to solve linear programming problems and
that instead a method known as the simplex method is used. In this chapter
we shall present the essentials of the simplex method, which is an algorithm for
solving linear programming problems.

To motivate the rationale of the simplex methods, we consider several
examples in R�.

Example 1.1. Minimize f (x) �x
�
� 2x

�
subject to

�x
�
� x

�
��1,

�x
�
�x

�
� 0,

(1)
x
�
� 2x

�
� 4,

x
�
� 0, x

�
� 0.

The feasible set is indicated by the hatched area in Figure 6.1. The level curves
f (x) � 0 and f (x) ��1 are indicated by dashed lines; the arrows indicate the
directions of the gradient vectors of f. Since the gradient vectors indicate the
direction of increasing f, we see from the figure that f attains a minimum at
the extreme point (�

�
, �
�
) of the feasible set.

Example 1.2. This example differs from Example 1.1 in that we take the
function f to be f (x) �x

�
�x

�
. The level curves are lines parallel to the line

x
�
�x

�
� 1, a segment of which is part of the boundary of the feasible set.

Since the gradient vector of f is (1, 1) and this is the direction of increasing f,
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Figure 6.1.

it follows that f attains its minimum at all boundary points of the feasible set
that lie on the line x

�
� x

�
� 1. In particular, the minimum is attained at the

two extreme points (�
�
, �
�
) and (1, 0).

Example 1.3. Minimize f (x) ��x
�
� x

�
subject to

�x
�
� x

�
� 0,

x
�
� 2x

�
��2,

x
�
� 0, x

�
� 0.

The feasible set is the hatched area in Figure 6.2. The level curve f (x) � �6
is indicated by a dashed line. Since the gradient of f is (�1,�1), it follows
from the figure that this problem has no solution. The feasible set in this
example is unbounded. An unbounded feasible set, however, does not imply
that a linear programming problem has no solution. If we modify this example
by taking f (x) �x

�
�x

�
, then the problem does have a solution at the extreme

point (2, 2).

In the examples that we considered either the problem had no solution or
the problem had a solution and there was an extreme point of the constraint
set at which the solution was attained. There is, of course, a third possibility,
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Figure 6.2.

namely that the feasible set is empty. In the next section we shall show that in
a linear programming problem these are the only possibilities.

The simplex method is applied to problems in canonical form, CLP (see
Section 4 of Chapter IV for definitions). To put the problem in Example 1.1 in
canonical form we introduce additional slack variables x

�
, x

�
, x

�
and write the

problem as

Minimize f (x) � x
�
� 2x

�
subject to �x

�
� x

�
� x

�
��1,

�x
�
�x

�
�x

�
� 0,

(2)

x
�
� 2x

�
�x

�
� 4.
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Since the variables x
�
, x

�
, x

�
do not appear in the formula for f, the problem

with feasible set defined by (2) has its minimum attained at

x
�
��

�
, x

�
� �

�
x
�
��

�
, x

�
� 0, x

�
� 0.

It is readily verified that this point is an extreme point of the set defined by (2).
We shall leave it to the reader to show that the extreme points of the constraint
set in problem SLP corresponds to the extreme points in the problem CLP
obtained by introducing slack variables.

Exercise 1.1. Solve the following linear programming problem graphically.
Maximize f (x) �x

�
� 2x

�
subject to

x
�
� x

�
� 5,

�x
�
�x

�
� 1,

x
�
�x

�
� 0,

�3x
�
�x

�
� � 1,

x
�
� 0, x

�
� 0.

Exercise 1.2. Let x
	
be a feasible point for problem SLP and let (x

	
, �

	
) be the

corresponding feasible point for the related problem CLP; then

Ax
	
� c, Ax

	
� I�

	
� c,

x
	
� 0, �

	
� 0.

Show that x
	
is an extreme point of the feasible set for problem SLP if and

only if (x
	
, �

	
) is an extreme point for problem CLP.

Exercise 1.3. In problem LPI, which is Minimize ��b, x� subject to Ax� c,
show that if the feasible set is compact, then the problem has a solution and
there exists an extreme point of the feasible set at which the minimum is
attained.

2. EXTREME POINTS OF FEASIBLE SET

In this section we shall show that if a linear programming problem has a
solution, then there exists an extreme point at which the minimum is attained.
We shall prove this for problems in canonical form without assuming that the
feasible set is compact, as was done in Exercise 1.3. By virtue of Exercise 1.2
this also holds for problem SLP. We shall also give an analytic characterization
of the extreme points of the feasible set for CLP problems. The significance of
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these results is that in looking for a solution to a linear programming problem
we can confine ourselves to the extreme points of the feasible set, points for
which we have an analytic characterization. The simplex method is an
algorithm for efficiently determining whether a solution exists and, if so, for
finding an extreme point which solves the problem.

We now consider the linear programming problem in canonical form:

Maximize �b, x�

subject to Ax� c, x� 0.
(1)

In keeping with much of the linear programming literature we have replaced
the objective of minimizing ��b, x� by the equivalent objective of maximizing
�b, x�. We assume that x and b are in R�, that c is in R�, that A is m� n, and
that

(i) m� n, (ii) rankA�m. (2)

The rationale for the assumption (2) is precisely the same as given in Remark
V.1.2 for the assumption that the k� n matrix A defining the affine constraints
in the convex programming problem CPII has rank k and that k� n.

Before presenting the principal results of this section, we emphasize that the
reader should keep in mind that the constraint x� 0 implies that the
components x

�
of x are either positive or zero.

T 2.1. A feasible point x
	
is an extreme point of the feasible set if and

only if the columns A
�
of the matrix A that correspond to positive components of

x
	
are linearly independent.

Proof. Suppose that the columns A
�
of A that correspond to positive

components of x
	
are linearly independent. We shall show that x

	
is an extreme

point of the feasible set.
If x

	
were not an extreme point of the feasible set, there would exist two

distinct feasible points x
�
and x

�
and a scalar � such that 0��� 1 and

x
	
� �x

�
� (1� �)x

�
. (3)

Let B denote the submatrix of A formed by the columns of A that correspond
to positive components of x and let N denote the submatrix of A formed by
the columns of A corresponding to zero components of x. To simplify notation,
let us assume that B consists of the first k columns of A and that N consist of
the remaining n� k columns. There is no loss of generality in making this
assumption since it can be achieved by a relabeling of the coordinates. Since
the columns of B are linearly independent, it follows from (2) that k�m. It
then further follows from (2) that n� k� 0. For x in R�, let

x
�
� (x

�
, . . . , x

�
), x

�
� (x

���
, . . . , x

�
).
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Then

x
	
� (x

	�
, x

	�
) � (x

	�
, 0

�
)

x
�
� (x

��
, x

��
), i� 1, 2,

where x
	
, x

�
, and x

�
are as in (3) and 0

�
is the zero vector in R�
�.

Since �� 0 and 1� �� 0, it follows from (3) that a component of x
	
is

equal to zero if and only if the corresponding components of x
�
and x

�
are

zero. Hence x
	�

�x
��

�x
��

� 0
�
and we may write

x
�
� (x

��
, 0

�
), i� 0, 1, 2.

Since x
�
is feasible,

c�Ax
�
� (B, N) �

x
��
0
�
��Bx

��
.

Similarly, we get that c�Bx
��
. Hence

B(x
��

�x
��

) � 0. (4)

Since x
�
� x

�
and x

��
� x

��
, we have that x

��
�x

��
� 0. But this cannot be,

since the columns of B are linearly independent. This contradiction shows that
x
	
is an extreme point.
Now let us suppose that x

	
is an extreme point of the feasible set. To

simplify notation, we suppose that the first k components of x
	
are positive and

the remaining components are zero. We shall show that the first k columns
A

�
, . . . ,A

�
of A are linearly independent. If these columns were not linearly

independent, there would exist constants �
�
, . . . , �

�
not all zero such that

�
�
A

�
�� � �

�
A

�
� 0.

Let the n-vector a be defined by

a� (�
�
, . . . , �

�
, 0, . . . , 0).

Then for any real 	,

	Aa� 	
�


���

�
�
A

�
� 0. (5)

For 	� 0 and sufficiently small the vectors x
	
� 	a and x

	
� 	a have their first

k components positive and the remaining n� k components equal to zero.
Also

A(x
	
� 	a) �Ax

	
� 	Aa� c,
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where the last equality follows from (5) and the feasibility of x
	
. Thus for

sufficiently small 	� 0 the vectors x
	
�	a and x

	
�	a are distinct and feasible.

But then the relation

x
	
��

�
(x

	
� 	a) ��

�
(x

	
� 	a)

contradicts the hypothesis that x
	
is an extreme point. Hence the vectors

A
�
, . . . ,A

�
are linearly independent.

The following corollary is an immediate consequence of the theorem and
the fact that A has rank m.

C 1. An extreme point of the feasible set has at most m positive
components.

C 2. T he number of extreme points of the feasible set is less than or
equal to

�
n

m��
n !

m!(n�m)!
.

Proof. If x is an extreme point of the feasible set, then x has k�m positive
components. These k positive components correspond to k linearly indepen-
dent columns of A. We assert that if x� is another extreme point with the same
nonzero components as x, then x�x�. To see this, let B denote the submatrix
of A corresponding to the nonzero components of x and x�, let x� (x

�
, 0), and

let x�� (x�
�
, 0). Then by the argument used to establish (4), we get that

B(x
�
�x�

�
) � 0. Since the columns of B are linearly independent, x

�
�x�

�
, and

so x�x�.
If k�m, then since rankA�m, we can adjoin an additional m� k columns

of A to obtain a set of m linearly independent columns associated with x. If
k�m, then this certainly holds. Hence the number of extreme points cannot
exceed the number of ways in which m columns can be selected from among n
columns.

T 2.2. L et the canonical linear programming problem as stated in (1) have
a solution x

	
. T hen there exists an extreme point z of the feasible set that is also

a solution.

Proof. By Theorem 2.1, if the columns of A that correspond to positive
components of x

	
are linearly independent, then x

	
is an extreme point of the

feasible set and we let z�x
	
.

Let us now suppose that the columns of A that correspond to the positive
components of x

	
are linearly dependent. To simplify notation, we suppose that

the first p components of x
	
are positive and that the remaining n� p com-
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ponents are equal to zero. Then the first p columns of A are linearly dependent
and there exist scalars �

�
, . . . , �

	
not all zero such that

	


���

�
�
A

�
� 0. (6)

For each real number 
 define a vector z(
) as follows:

z
�
(
) ��

x
	�

� 
�
�
,

0,

j� 1, . . . , p,

j� p� 1, . . . , n.
(7)

Then, from the fact that x
	�

� 0 for j� p� 1, . . . , n, from the feasibility of x
	

and from (6) we get that

Az(
) �Ax
	
�


	


���

�
�
A

�
� c.

Let



	
�min �

x
	�
��
�
�
: j� 1, . . . , p and �

�
� 0� . (8)

It follows from (7) that z(
)� 0 whenever �
��

	
. Hence z(
) is feasible

whenever �
��

	
. Thus,

�b, x
	
���b, z(
)���b, x

	
��


	


���

b
�
�
�

for all 
 such that �
��

	
. Hence

	


���

b
�
�
�
� 0 and �b, x

	
���b, z(
)�.

Thus, z(
) is a solution whenever �
��

	
. Let the minimum in (8) be attained

at the index r. Let 

�
�x

	

/�



. Then 


�
�


	
if �



� 0 and 


�
��


�
if �



� 0.

Hence z(

�
) is feasible and is a solution. Moreover z(


�
) has fewer then p

positive components. If the corresponding columns of A are linearly indepen-
dent, then z(


�
) is an extreme point. If the columns are not linearly indepen-

dent, we repeat the process, taking x
	
to be z(


�
). In a finite number of

iterations we shall obtain a solution such that the column vectors correspond-
ing to the positive components are linearly independent. This solution will be
an extreme point of the feasible set.

EXTREME POINTS OF FEASIBLE SET 229



3. PRELIMINARIES TO SIMPLEX METHOD

In the last section we showed that if a solution to the canonical linear
programming problem exists, then it exists at an extreme point of the feasible
set. We also showed that there are at most n !/m!(n �m)! such points. For a
moderate system of 6 constraint equations and 30 variables, there can be as
many as

�
30

6 ��
30!

6!24!
� 593,775

extreme points. Thus the simple-minded scheme of evaluating the objective
function at all possible extreme points and then selecting the point at which
the largest value of the objective function is attained is not practical. The
simplex method is an algorithm for finding a solution by going from one
extreme point of the feasible set to another in such a way that the objective
function is not decreased.

We now introduce the notation and definitions that will be used. Consider
the system

Ax� c (1)

that defines the feasible set for CLP, the canonical linear programming
problem. Thus, A is m� n and of rank m. Let B denote an m�m submatrix
of A obtained by taking m linearly independent columns of A and let N denote
the submatrix of A consisting of the remaining n�m columns. We can write
a vector x in R� as

x� (x
�
, x

�
),

where x
�
consists of those components of x corresponding to the columns in

B and x
�
consists of those components of x corresponding to the columns inN.

Definition 3.1. The columns of B are called a basis. The components of x
�
are

called basic variables. The components of x
�
are called nonbasic variables or

free variables.

We may write the system (1) as

(B, N) �
x
�
x
�
�� c. (2)

Any vector of the form (�
�
, x

�
), where x

�
is arbitrary and

�
�
�B
�c�B
�Nx

�
,
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will be a solution of (2). (This is why the components of x
�
are called free

variables.) There is a unique solution of (2) with x
�
� 0

�
, namely

�� (�
�
, 0

�
), �

�
�B
�c. (3)

Definition 3.2. (i) A solution of (1) of the form (3) is called a basic solution.
(ii) If �

�
� 0

�
, then � is feasible and is called a basic feasible solution. (iii) If

some of the components of �
�
are zero, then � is called a degenerate basic

solution.

We emphasize the following aspects of our notation. By x
�
we mean the

vector consisting of those components of x that correspond to the columns of
B. By x

�
we mean the vector consisting of those components of x that

correspond to the columns of N. By �
�
we mean the value of the basic variables

in a basic solution. By � we mean the value of a solution of (1) and by �
�
we

mean the value of a particular x
�
.

We also call attention to a change in terminology. Up to now we have used
the term solution to mean a solution of the linear programming problem. We
are now using it to mean a solution of (1). Henceforth we shall use the term
optimal solution to designate a solution of the linear programming problem,
that is, a feasible point at which the maximum is attained.

Remark 3.1. It follows from the preceding and from Theorem 2.1 that a basic
feasible solution is an extreme point and conversely. It follows from Theorem
2.2 that if an optimal solution exists, then there exists a basic feasible solution
that is an optimal solution. Therefore, we need only consider basic feasible
solutions in our search for the optimal solution.

To apply the simplex method, we reformulate the problem stated in (1) of
Section 2 by introducing a scalar variable z and writing the problem as

Maximize z

subject to Ax� c,
(4)

�b, x�� z� 0,

x� 0.

The simplex method consists of two phases. In phase I the method either
determines a basic feasible solution or determines that the feasible set is empty.
In phase II the method starts with a basic feasible solution and either
determines that no optimal solution exists or determines an optimal solution.
In the latter case it does so by moving from one basic feasible solution to
another in such a way that the value of z is not decreased.
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We conclude this section with a review of some aspects of linear algebra
involving the solution of systems of linear equations and the calculation of
inverse of matrices. These aspects of linear algebra arise in the simplex method.

Consider a system of linear equations

My� d, (5)

where M is a k� n matrix of rank k, y is a vector in R�, and d is a vector in
R�. A system of linear equations M�y� d� is said to be equivalent to (5) if the
solution sets of both equations are equal. We define an elementary operation
on the system (5) to be any one of the following operations.

(i) Interchange two equations.

(ii) Multiply an equation by a nonzero constant.

(iii) Add a nonzero multiple of an equation to another equation.

Any sequence of elementary operations applied to (5) will yield a system
equivalent to (5).

Let R denote a k� k submatrix of M that has rank k and let S denote the
submatrix of M formed by the remaining n� k columns. Then we may write
(5) as

(R, S) �
y


y
�
�� d, (6)

where y


is the vector obtained from y by taking the components of y that

correspond to the columns in R and y
�
has an analogous meaning. By an

appropriate sequence of elementary operations, we can obtain a system
equivalent to (6) having the form

(U, V ) �
y


y
�
�� d�, (7)

where U is a k� k upper triangular matrix with diagonal entries equal to 1
and V is a k� (n � k) matrix. To simplify notation, assume that R consists of
the first k columns of M. Then (7) in component form reads

y
�
� �

��
y
�
� �� �

��
y
�
� �

�
���
y
���

��� �
��
y
�
� d�

�
,

y
�
��� �

��
y
�
� �

�
���
y
���

�� � �
��
y
�
� d�

�
,

�
(8)

y
�
� �

�
���
y
���

��� �
��
y
�
� d�

�
.

The last equation in (8) expresses y
�
in terms of y

���
, . . . , y

�
. Proceeding
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upward through the system (8) by backward substitution, we can express
y
�
, . . . , y

�
in terms of y

���
, . . . , y

�
and thus obtain the general solution of (7)

and hence of (5). The method of solving (5) just described is called Gauss
elimination.

In solving the system (5) or (6) we need not write down the equations and
the variables. We need only to write down the augmented matrices (M, d) or
(R, S, d) and apply the elementary operations to the rows of the augmented
matrices. In so doing we speak of elementary row operations. The reader will
recall, or can verify, that an elementary row operation on a k� n matrix M
can be effected in the following fashion. Perform the elementary operation on
the k� k identity matrix to obtain a matrix E. Then premultiply the matrix M
by E. The matrices E are called elementary matrices. In computer programs for
solving systems of linear equations by Gauss elimination, elementary row
operations are executed by premultiplications by elementary matrices. Such
computer programs also incorporate rules for choosing the components y



of

y so as to increase accuracy and speed of computation. We shall not take up
these questions here.

By an additional sequence of elementary row operations, we can obtain a
system equivalent to (7) having the form

(I
�
,W ) �

y


y
�
�� d�, (9)

where I
�
is the k� k identity matrix. We can rewrite (9) as

I
�
y


� d��Wy

�
(10)

and thus obtain y


in terms of y

�
directly, without backward substitution. The

method of solving (5) by reducing it to the equivalent system (9) is known as
Gauss—Jordan elimination. For most large systems, computer implementations
of Gauss elimination are superior to those of Gauss—Jordan elimination.

We next recall an effective way of calculating the inverse of a nonsingular
matrix R. We first note that an elementary matrix E is nonsingular. Since R is
nonsingular, we can reduce R to the identity matrix by applying a sequence of
elementary row operations. But each elementary row operation is effected by
a premultiplication by an elementary matrix. Thus, we have a sequence E

	
,

E
	
�

, . . . , E
�
of elementary matrices such that

E
	
. . . E

�
E
�
R� I.

Multiplying this equation through on the right by R
� gives

E
	
. . . E

�
I�R
�. (11)
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This is the justification for the following method of calculating R
� for
matrices of low dimension. Reduce the matrix (R, I) to the form (I, T ) by a
sequence of elementary operations. Then T �R
�. The so-called product form
of the inverse will also be used in the simplex method.

Remark 3.2. In reducing (6) to (9), we performed a sequence of elementary
operations, which in effect was a sequence of premultiplications of (6) by
elementary matrices. Thus,

E
	
. . . E

�
(R, S, d) � (I

�
,W, d�). (12)

Since the sequence of elementary operations reduced R to I
�
, we have that

R
��E
	
, . . . , E

�
I. Hence, from (12) we have

W �R
�S and d��R
�d.

Substituting this into (10) gives

y


�R
�d�R
�Sy

�
.

4. PHASE II OF SIMPLEX METHOD

Our aim in this and the next section is to explain the essentials of the simplex
method; it is not to present the most current computer implementations of the
simplex method. In Section 7, where we discuss the revised simplex method, we
shall go into greater detail concerning the computations in current computer
codes. For more complete discussions of computational questions see Dantzig
[1963], Chvátal [1983], and Gass [1985].

We suppose that the problem is formulated as in relation (4) of Section 3.
Phase I of the simplex, which we will describe in Section 6, either determines
that the feasible set is empty or determines a basic feasible solution. We begin
our discussion of phase II with the assumption that by means of phase I, or
otherwise, we have obtained a basic feasible solution �� (�

�
, 0

�
), where 0

�
is

the zero vector in R�
�. We denote the value of the objective function at � by
�. Thus, �� �b

�
, �

�
�. We call �� (�

�
, 0

�
) the current basic feasible solution, the

matrix B associated with �
�
the current basis, and � the current value of the

objective function. We abuse the precept for good terminology and also call
the components of �

�
the current basis. The simplex method consists of a

sequence of iterations. In a given iteration we determine either that the current
basic feasible solution is optimal or that there is no optimal solution or we
determine a new basic feasible solution that does not decrease the value of the
objective function. In the last event, we repeat the iteration, with the new basic
feasible solution as the current one. Each iteration consists of four steps. We
shall illustrate the process using Example 1.1.
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Step 1. Express z and the basic variables x
�
in terms of the nonbasic variables

x
�
.

The equation in (4) of Section 3 can be written as

�
B

b�
�

N

b�
�

0
�

�1��
x
�
x
�
z ���

c

0� , (1)

where 0
�

is the zero vector in R�. If we multiply the augmented matrix
corresponding to the first m equations in (1) by B
� on the left, we see that (1)
is equivalent to

�
I
�
b�
�

B
�N

b�
�

0
�

�1� �
x
�
x
�
z ���

B
�c

0 � , (2)

where I
�
is the m�m identity, Setting x

�
� �

�
and x

�
� 0

�
in (2) gives

�
�
�B
�c. (3)

From (2) and (3) we get that

x
�
� �

�
�B
�Nx

�
. (4)

From (2) and (4) we get that

z��b, �
�
���b

�
� b�

�
B
�N, x

�
�.

Setting x
�
� 0

�
gives

�� �b
�
, �

�
� (5)

and so

z� �� �b
�
� b�

�
B
�N, x

�
�. (6)

Equations (4) and (6) express x
�
and z in terms of x

�
.

Let

d
�

� b
�
� b�

�
B
�N� (d

����
, . . . , d

��
), (7)

where j
���

, . . . , j
�
are the indices of the components of x that constitute x

�
.

Then we may write (6) as

z� ���d
�
, x

�
�� ��

�



	����

d
�
�

x
�
�

. (8)
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Remark 4.1. Note that by virtue of (3) the right-hand side of (2) can be written
as (�, 0)�.

The difficult calculation in (4) and (6) is the calculation of B
�. The other
calculations involve straightforward matrix and vector—matrix multiplications.
We now present a second, seemingly different, method of obtaining x

�
and z

in terms of x
�
. Computer implementation of the second method turns out in

essence to be the same as the computer implementation of the previous
method. Our use of the second method is didactic. For small-scale problems
solved by hand this method is advantageous and will be the one used in our
illustrative example. The tableau method is a method that systematically
records the sequence of steps and calculations that we shall describe.

We again start with the augmented matrix of (1). By a sequence of
elementary operations applied to the first m rows of (1), we can transform this
matrix to an equivalent matrix

�
I
�
b�
�

D

b�
�

0
�

�1

c�
0� . (9)

Each of these operations can be effected by a premultiplication by an elemen-
tary matrix E

�
. Since the sequence of operations transforms B to I, the product

of the elementary matrices associated with these transformations is equal to
B
�, as was shown in the preceding section. Thus, the matrix (9) can also be
obtained by a premultiplication of the first m rows of the augmented coefficient
matrix (1) by the matrix B
�. Hence, D�B
�N and c��B
�c, and we have,
as before, that (1) is equivalent to a system with augmented matrix

�
I
�
b�
�

B
�N

b�
�

0
�

�1

c�
0� , (10)

where c��B
�c. From (10) we again get (3) and (4). Let us now suppose that
the columns of B are the columns j

�
, . . . , j

�
of A. If we successively multiply

row 1 of (10) by �b
��
and add the result to the last row, multiply row 2 of (10)

by �b
��
and add the result to the last row, and so on, then we transform (10)

into

�
I
�
0
�

B
�N

b�
�
� b�

�
B
�N

0
�

�1

c�
��b

�
, c��� . (11)

From the last row of this matrix and from the relation c��B
�c, we
immediately obtain

z��b
�
, B
�c���b�

�
� b�

�
B
�N, x

�
�.
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Remark 4.2. From (11) and c��B
�c we again get (3) and (5). Consequently,
the right-hand side of (11) can be written as (�,��)�. From this relation and
from (3) and (5) we again get (6).

We illustrate the preceding description of Step 1 using the second method.

Example 4.1. We first introduce slack variabless x
�
, x

�
, x

�
and write the

problem as in (2) of Section 1. We then write the problem as a maximization
problem in the format of (4) of Section 3.

Maximize z subject to

�x
�
�x

�
�x

�
��1,

�x
�
�x

�
� x

�
� 0,

x
�
� 2x

�
�x

�
� 4,

�x
�
� 2x

�
� z� 0.

(12)

It is readily verified that �� (1, 0, 0, 1, 3), which corresponds to the point (1, 0)
in Figure 6.1, is a basic feasible solution. The value of z at this point is �1.
Thus, x

�
, x

�
, x

�
are the basic variables and x

�
, x

�
are the nonbasic variables.

The augmented coefficient matrix of (12) is

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z c

�1 �1 1 0 0 0 �1

�1 1 0 1 0 0 0

1 2 0 0 1 0 4

�1 2 0 0 0 �1 0� . (13)

Above each column of the matrix we have indicated the variable corresponding
to the column. At the left of the matrix we have listed the current basic
variables. The last column is the column of right-hand sides of (12). In the
tableau description of the simplex method the matrix (13) is the initial tableau.
The matrix B in (13) is the submatrix formed by the first three rows and
columns 1, 4, and 5. Thus

B� �
�1 0 0

�1 1 0

1 0 1�
To obtain the matrix corresponding to (11), we must first transform B to

the identity matrix by a sequence of elementary row operations on (13). From
the form of B it is clear that the most effective sequence of operations is the
following. (i) Multiply row 1 by �1. (ii) Add the transformed row 1 to row 2.
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(iii) Add the negative of the transformed row 1 to row 3. To obtain the row
corresponding to the last row of (11), add the transformed row 1 to row 4. We
thus obtain

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 1 �1 0 0 0 1

0 2 �1 1 0 0 1

0 1 1 0 1 0 3

0 3 �1 0 0 �1 1� . (14)

From this we read off

x
�
� 1� x

�
�x

�
,

x
�
� 1� 2x

�
�x

�
, (15)

x
�
� 3� x

�
�x

�
,

and

z��1� 3x
�
�x

�
, (16)

which are (4) and (6) for this example. Note that the last column of (14) gives
the current values of �

�
, �

�
, �

�
� � in agreement with (4) and (6) and Remark

4.2.

Step 2. Check the current basic feasible solution for optimality.
If every component of the vector d

�
defined in (7) is nonpositive (i.e., �0),

then the current basic feasible solution is optimal and the process terminates.

To see that this is so, recall that by Remark 3.1 we need only consider basic
feasible solutions in our search for the optimal solution. The current basic
feasible solution is the unique basic feasible solution with x

�
� 0

�
. Thus any

other basic feasible solution will have at least one of the components of x
�

positive. But since d
�
� 0, we have from (8) that the value of the objective

function will either decrease or be unchanged. Thus the current basic feasible
solution is optimal.

In our example, we see from (16) that the current solution is not optimal.

Step 3. If the current basic feasible solution is not optimal, either determine a
new basis and corresponding basic feasible solution that does not decrease the
current value of z or determine that z is unbounded and that therefore the
problem has no solution.

We first motivate Step 3 using Example 4.1.

238 SIMPLEX METHOD



From (16) we see that if we keep the value of x
�
at zero and increase the

value of x
�
, then we shall increase the value of z. The variables x

�
, x

�
, x

�
, x

�
,

x
�
must satisfy (15) and the condition x

�
� 0, i� 1, . . . , 5, for feasibility. Setting

x
�
� 0 in (15) and taking into account the requirement that x

�
, x

�
, and x

�
must

be nonnegative give the following inequalities that x
�
must satisfy:

1�x
�
� 0, 1� 2x

�
� 0, 3�x

�
� 0.

For all three of these inequalities to hold we can only increase the value of x
�

to �
�
. If x

�
��

�
and x

�
� 0, then from (15) we get that x

�
��

�
, x

�
� 0, and

x
�
��

�
. We now have another feasible solution (�

�
, �
�
, 0, 0, �

�
). This corresponds

to the point (�
�
, �
�
) in Figure 6.1. The value of z is increased from �1 to �

�
.

We next show that this solution is basic. The matrix corresponding to the
system (15) is the submatrix of (14) consisting of the first three rows of (14).
The matrix B corresponding to (�

�
, �
�
, 0, 0, �

�
) is the matrix formed by taking

columns 1, 2, and 5 of this submatrix. Thus

B� �
1 1 0

0 2 0

0 1 1� .
Since the columns of B are linearly independent, the point (�

�
, �
�
, 0, 0, �

�
) is a

basic feasible solution.
In summary, the original basic variable x

�
whose value was 1 is now a

nonbasic variable and the original nonbasic variable x
�
is now a basic variable

with value �
�
. The variable x

�
is said to be the leaving variable or to leave the

basis and the variable x
�
is said to be the entering variable or to enter the basis.

Before presenting Step 3 in general, we call attention to another possible
situation. Suppose that we have an example such that instead of (15) we arrived
at a system

x
�
� 1� �x

�
�x

�
,

x
�
� 1��x

�
�x

�
,

x
�
� 3� �x

�
�x

�
,

with z as in (16) and where �, �, and � are all nonnegative. If we set x
�
� 0 and

let x
�
� t, then we obtain feasible solutions for all t� 0. If we let t
 �, we

get that z
�. Thus, the objective function is unbounded and the problem has
no solution.

We now describe Step 3, which we break up into two substeps, for the
general problem.

Step 3(i). Choose the nonbasic variable that will enter the new basis.
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Let d
�
be as in (7). Since the current basic feasible solution is not optimal,

at least one of the components of d
�
is positive. Choose the component of d

�
that is the largest. If there is more than one such component, choose the one
with the smallest index. Suppose that the component of d

�
that is chosen is the

qth component of x� (x
�
, . . . , x

�
). The variable x

�
will enter the basis. The

column of A corresponding to x
�
is A

�
.

Step 3(ii). Determine that the problem has no solution or choose the basic
variable that will leave the basis.

Let v
�
be the column of B
�N corresponding to x

�
. Then v

�
�B
�A

�
. Let

x
�
� (x

��
, . . . , x

�
�

) �
�
� (�

��
, . . . , �

�
�

) (17)

and let v
�
� (v

��
, . . . , v

��
). Set x

�
� t, where t� 0 and let the other components

of x
�
remain at zero. For the resulting vector to be a feasible solution, x

�
must

satisfy the conditions (4) and x
�
� 0. Equation (4) becomes

x
�
� �

�
� tv

�
. (18)

Thus, the condition x
�
� 0 imposes the restrictions

tv

�
��

�
�

, r� 1, . . . ,m. (19)

From (8) we get that

z� �� d
�
t. (20)

Since � is feasible, �
�
� 0, and so �

�
�

� 0 for all r� 1, . . . ,m. Hence if v

�
� 0

for all r� 1, . . . ,m, then (18) and (19) hold for all t� 0. Since d
�
� 0, it follows

that z is unbounded above and the problem has no solution.
If not all of the v


�
are nonpositive, let

t*�min �
�
�
�v

�

: r� 1, . . . ,m and v

�
� 0� . (21)

Let � denote the smallest index r at which the minimum is achieved. Let
x
�
� t* and let

��
�
�

� �
�
�

� t*v

�
, i



� i� ,

��
�
� t*

(22)
��
��
� 0,

��
�
� 0 all other indices.
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Let �� denote the vector whose coordinates are given by (22). Thus

��� (� �
��
, . . . , ��

��
�
, 0, ��

����
, . . . , ��

�
�

, 0, . . . , 0, t*, 0, . . . , 0),

where t* is the qth coordinate of ��. It follows from the way �� was constructed
that �� is a feasible solution. We shall show that �� is also basic.

We can write �� as ��� (��
��
, ��

�
) with

��
��

� (� �
��
, . . . , ��

��
�
, t*, ��

����
, . . . , ��

�
�

), �
��

� 0.

We shall show that the coordinate variables of

x
��

� (x
��
, . . . , x

��
�
, x

�
, x

����
, . . . , x

�
�

) (23)

are a basis. Since x
��
is obtained from x

�
by replacing x

��
by x

�
, this will also

justify our saying that x
�
enters the basis and x

��
leaves the basis.

From (17) we get that the matrix I
�
in (2) and (9) is

(e
��
. . . e

��
�
e
��
e
����

. . . e
�
�

),

where e
�
�

is the vector whose i
�
th component is 1 and whose other components

are zero. Let

B�� (e
��
. . . e

��
�
v
�
e
����

. . . e
�
�

).

That is, B� is the matrix obtained from I
�
by replacing the i�th column by v

�
.

Let N� be the matrix obtained from B
�N by replacing column v
�
by e

�
�

. Let
x
��
be as in (23) and let x

��
be the vector obtained from x

�
by replacing x

�
by

x
��
. Let d

�
denote the qth coordinate of the vector d

�
defined in (7) and let d

��
denote the vector obtained from d

�
by replacing the qth coordinate of d

�
by

0. The system of equations

�
e
��0

�
�

e
�	
�
0

v
�
d
�

e
�	��
0

�
�

e
�
�0

N�
d
��

0
�

�1� �
x
��
x
��
z ���

B
�c

�� � (24)

is equivalent to the system whose augmented matrix is (11), since (24) is
obtained from (11) by a reordering of the variables.

We assert that the matrix B� is a basis and hence that the variables x
��

are
basic. To prove this, we must show that the columns of B� are linearly
independent. By (21) and the definition of the index �, the i�th component of
v
�
is positive. The i�th component of each of the other columns of B� is zero.

Hence v
�
cannot be written as a linear combination of the other columns of B�.

Since the remaining columns of B� are linearly independent, it follows that all
the columns of B� are linearly independent. Hence the coordinate variables of
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x
��
are a basis, and the vector �� is a basic feasible solution. From (20) we get

that

��� �� d
�
t*.

Since d
�
� 0 and t� 0, it follows that the value of the objective function is not

decreased.
We say that in Step 3 we have updated the unprimed quantities to the

primed quantities. The primed, or updated, quantities are the ‘‘new’’ or
‘‘updated current’’ quantities.

Remark 4.3. In Step 3(i) we choose the entering variable x
�
to be the variable

corresponding to the largest component of d
�
. Upon examining Step 3, it

should be clear that the choice of entering variable could be any variable
corresponding to a positive component of d

�
. The choice of largest component

was motivated by the fact that at a given iteration this choice would appear to
result in the largest increase in the value of z.

Step 4. Return to Step 1 using the updated current quantities and start the
next iteration.

We now illustrate Steps 3 and 4 using Example 4.1.

Step 3(i). From (14) we see that d
�
� (d

�
, d

�
) and that d

�
� 0 and d

�
� 0. Thus,

we take x
�
as the entering variable. The entering column v

�
is the second

column of (14), and d
�
� d

�
� 3.

Step 3(ii). By Remark 4.2, the entries in the last column of (14) give

(�
�
, �

�
, �

�
) � (�

��
, �

��
, �

��
) � (1, 1, 3), ���1.

From this and the fact that the first three entries in column 2 are positive, we
get that

�
��v
�

�
�
�
v
�

� 1,
�
��v
�

�
�
�
v
�

�
1

2
,

�
��v
�

�
�
�
v
�

� 3.

Hence t*� �
�
and x

�
is the leaving variable. The new, or updated, basic

variables are (x
�
, x

�
, x

�
) and the updated nonbasic variables are x

�
and x

�
.

From (22) we get the updated basic feasible solution:

��
��

� ��
�
� 1��

�
(1) ��

�
, ��

�
� ��

�
��

�

��
�
� 0, ��

��
� ��

�
� 0, ��

��
� ��

�
� 3��

�
(1) ��

�
.
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From (20) we get

��� (�1) � 3(�
�
) � �

�
.

These calculations, however, are unnecessary as we will get them automatically
in Step 1 of the next iteration.

Step 4. We go to Step 1 and start the next iteration using the updated data.
We do so dropping the primes that indicated updated data. The variables
x
�
, . . . , x

�
, z satisfy the system of equations represented by (14). We rewrite (14)

with the labeling of the new basic variables:

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 1 �1 0 0 0 1

0 2 �1 1 0 0 1

0 1 1 0 1 0 3

0 3 �1 0 0 �1 1� . (25)

Step 1 requires us to transform (25) into a form corresponding to (11). The
matrix B is now

B� �
1 1 0

0 2 0

0 1 1� .
Thus, to achieve the desired result, we apply the following sequence of
transformations to (25).

(i) Multiply row 2 by �
�
.

(ii) Add the negative of the new row 2 to row 1.
(iii) Add the negative of the new row 2 to row 3.
(iv) Multiply the new row 2 by �3 and add the resulting row to row 4.

We get

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 0 ��
�

��
�

0 0 �
�

0 1 ��
�

�
�

0 0 �
�

0 0 �
�

��
�

1 0 �
�

0 0 �
�

��
�

0 �1 ��
�
� . (26)

From (26) we can read off, if we desire, the basic variables (x
�
, x

�
, x

�
) �

(x
��
, x

��
, x

��
) and z in terms of the nonbasic variables (x

�
, x

�
). By Remark 4.3

the last column of (26) gives

�
�
� �

�
, �

�
��

�
, �

�
��

�
, ���

�
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for �
�
, the current basic feasible solution, and �, the current value of the

objective functions. Note that we have agreement with the previous calculation
of these quantities. The current basic feasible solution corresponds to the point
(�
�
, �
�
) in Figure 6.1. The current value ���

�
is greater than the previous current

value of �1.
Before proceeding to Step 2, we introduce some terminology and comment

on the carrying out of Step 1 in general. The entry a
��

in row 2, column 2 in
this example is called the pivot and the position in the matrix is called the pivot
position. In performing the sequence of elementary operations used to obtain
(26) from (25), we say that we have pivoted on the element a

��
.

In our example the pivot was the entry in the row and column of the
entering variable. We now show that in each iteration after the initial iteration
we always pivot on the element in the row and column of the entering variable.
The system (24) gives the relationship among the variables x

��
, x

��
, and z at

the end of Step 4 of each iteration. It expresses z and each component of

x
��

� (x
��
. . . x

�	
�
, x

�
, x

�	��
. . . x

�
�

)

except x
�
in terms of the components of x

��
and the variable x

�
. Step 1 of the

current iteration requires that x
��

and z be expressed in terms of the compo-
nents of x

��
. This will be achieved if we express x

�
in terms of the components

of x
��

and do so in a way that does not destroy the already established
expressions of z and the x

�
�

, j� 1, . . . ,m, j� �, in terms of x
�
and x

��
. We

assert that pivoting on row i� , the entering row, and on column i� (column v
�
),

the entering column, achieves this.
By the definition of � and (21), we have that v

��
� 0. Hence in (24) we may

multiply row i� by 1/v
��
and obtain a row with entry 1 in the (i� , i�) position.

If we now multiply row i� by �v
��

and add to row 1, the resulting first row
will have a zero in the i�th position; that is, the column vector v

�
now has a 1

in the i� entry and a zero in the first position. Since each of the vectors e
�
�

,
j� 1, . . . ,m, j� �, has a zero in the i�th entry, the first entries of these vectors
are not changed. Similarly, if for each i� 2, . . . ,m, i��, we multiply row i� by
�v

��
and add the resulting row to row i, then the resulting ith row will have

a zero in the i�th position. Each of the vectors e
�
�

, j� 1, . . . ,m, j��, will have
ith entries unchanged. Finally, if we multiply row i� by �d

�
and add the

resulting row to the last row of (24), then we shall get a system

�
I
�
0
��

N�
d�
�

0
�

�1� �
x
��
x
��
z ���

c�
���� .

This system expresses x
��

and z in terms of x
��
.

We now return to Step 2 and (26) of the current iteration. Since d
�

�

(�
�
,��

�
), the current basic feasible solution is not optimal. The current value

���
�
is an improvement, however.
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Step 3(i). Since d
�
� 0 and d

�
� 0, we take x

�
to be the entering variable.

Step 3(ii). The column corresponding to x
�
is the third column of (26). Since

the only positive entry in this column is the entry in row 3 corresponding to
x
�
, the variable x

�
will be leaving variable. We rewrite the matrix (26) with the

updated basic variables indicated on the left:

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 0 ��
�

��
�

0 0 �
�

0 1 ��
�

�
�

0 0 �
�

0 0 �
�

��
�

1 0 �
�

0 0 �
�

��
�

0 �1 ��
�
� .

We now follow Step 4 and begin another iteration with Step 1. We follow
our pivot rule and pivot on �

�
in row 3, column 3. This will result in a matrix

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 0 0 ��
�

�
�

0 �
�

0 1 0 �
�

�
�

0 �
�

0 0 1 ��
�

�
�

0 �
�

0 0 0 ��
�

��
�

�1 ��
�
� .

Step 2. d
�
� (��

�
, ��

�
). All components of d

�
are negative, so the current basic

feasible solution is optimal. From the last column we get that

�
�
� (�

�
, �

�
, �

�
) � (�

�
, �
�
, �
�
)

and that the value of the objective function is �� �
�
. This solution corresponds

to the point (�
�
, �
�
) in Figure 6.1.

5. TERMINATION AND CYCLING

In Section 4 we showed that each iteration of the simplex method results in a
value of the objective function that is greater than or equal to the value of the
objective function at the preceding iteration. If we could show that each
iteration produces a value of the objective function that is strictly greater than
the value at the preceding iteration, then the simplex method would terminate
at an optimal solution in a finite number of steps, for then no basic feasible
solution could appear in different iterations and there are a finite number of
basic feasible solutions. Unfortunately, it is not true that each iteration
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produces a value of the objective function that is strictly greater than the
preceding value, as the following simple example shows.

Let us suppose that at the end of Step 2 of an iteration we had arrived at a
system given by

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 1 1 0 0 0 1

0 2 �1 1 0 0 0

0 1 1 0 1 0 3

0 3 �1 0 0 �1 1� .
Then the entering variable is x

�
and the entering column v

�
is the second

column. Recalling that the last column gives (�
�
,��), we get that

�
��v
�

�
�
�
v
�

�
1

1
,

�
��v
�

�
�
�
v
�

�
0

2
� 0,

�
��v
�

�
�
�
v
�

�
3

1
. (1)

Thus t*� 0 and the leaving variable is x
�
. It then follows from (4.20) that

��� � and the updated value of z is not changed. From (4.22) we get that the
updated basic feasible solution is

�
��

� (� �
��
, ��

��
, ��

��
) � (� �

�
, ��

�
, ��

�
) � (1, 0, 3).

Looking at (1), we see that t*� 0 because �
�
� 0. In other words, t*� 0 is a

consequence of the current basic feasible solution being degenerate. In this
example, the updated basic solution is also degenerate. In the next example we
show that a degenerate basic solution need not lead to another degenerate
solution with no increase in the value of z.

Let us now suppose that at the end of Step 2 we arrived at the system
described by

x
�
x
�
x
� �

x
�

x
�

x
�

x
�

x
�

z

1 1 0 0 0 0 1

0 �2 �1 1 0 0 0

0 1 1 0 1 0 3

0 3 �1 0 0 �1 1� .
The current basic feasible solution (�

�
, �

�
, �

�
) � (1, 0, 3) is again degenerate.

The entering variable is again x
�
. Now, however, the ratios used to determine

t* are

�
��v
�

�
�
�
v
�

� 1,
�
��v
�

�
�
�
v
�

� 3.

246 SIMPLEX METHOD



Thus t*� 1 and the leaving variable is x
�
. Since d

�
� 3, ����1, and t*� 1,

from (4.20) we get

����1� 3(1) � 2.

Thus the value of z is increased. From (4.22) we calculate the new basic feasible
solution to be

�
��

� (� �
��
, ��

��
, ��

��
) � (� �

�
, ��

�
, ��

�
) � (1, 2, 2),

which is nondegenerate.
We now consider the general situation. Let �

�
be a basic degenerate feasible

solution with zero component �
�
�

. If the corresponding component v
	
of the

leaving column v is positive, then t*� 0, the updated basic feasible solution
will be degenerate, and the updated value of the objective function will be
unchanged. This follows from (4.21), (4.22), and (4.20).

The following question now arises: Can there exist a sequence of iterations
I
�
, I

���
, . . . , I

��	
such that the basic feasible solutions �

�
���
, j� 0, 1, . . . , p, are

all degenerate and such that �
�
��	

� �
�
�

? If this occurs, then all current values
�
�
, �

���
, . . . , �

��	
of the objective will be equal and the sequence of degenerate

basic solutions �
�
�

, �
�
���

, . . . , �
�
��	

will repeat infinitely often. Thus, the
simplex method will not terminate. The phenomenon just described is called
cycling and the simplex method is said to cycle.

The bad news is that cycling can occur. The good news is that cycling
appears to be extremely rare in problems arising in applications, and there are
modifications to the simplex method that prevent cycling.

The following example due Beale [1955] cycles in six iterations.

Example 5.1. Minimize z� 22x
�
� 93x

�
� 21x

�
� 24x

�
subject to

� 4x
�
� 8x

�
� 2x

�
�x

�
� 9x

�
� 0,

�
�
x
�
� �

�
x
�
� �

�
x
�
� x

�
� x

�
�x

�
� 0,

x
�

�x
�
� 1,

x
�
� 0, i� 1, . . . , 7.

From the preceding discussion and from Section 4 we have the following:

L 5.1. Phase II of the simplex method does one of the following:

(i) determines an optimal solution in a finite number of steps,

(ii) determines that no solution exists in a finite number of steps, or

(iii) cycles.
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We shall present a very simple rule for the selection of entering and leaving
variables that makes cycling impossible. This rule is the smallest index rule or
Bland’s rule, named after its originator R. G. Bland [1977]. Other methods for
preventing cycling are the perturbation method and the related lexicographic
ordering rule. For a discussion of these methods see Chvátal [1983], Dantzig
[1963], and Gass [1985].

Before stating the smallest index rule, we recall that we pointed out in
Remark 4.3 that the choice of entering variable could be any variable
corresponding to a positive component of d

�
. Also, it is possible to choose any

variable x
�
�

at which t* in (21) of Section 4 is attained.

Definition 5.1 (Smallest Index Rule). From among all possible entering
variables, choose the one with smallest index. From among all possible leaving
variables, choose the one with smallest index.

Remark 5.1. According to the smallest index rule, the choice of entering
variable will, in general, be different from the choice of index such that d

�
is a

maximum. The choice of leaving variable is the same as that previously used.

T 5.1. If at each iteration of the simplex method the smallest index rule
is used, then cycling will not occur.

Proof. We shall prove the theorem by showing that the use of the smallest
index rule and the assumption of cycling lead to a contradiction. The argument
that we shall give follows the one by Chvátal [1983].

Let us assume that cycling occurs and that B
�
, B

���
, . . . ,B

��	
is a sequence

of bases corresponding to iterations I
�
, I

���
, . . . , I

��	
and such that B

��	
�B

�
.

Since cycling occurs, all of these bases are degenerate.
Let J denote the set of variables that are basic in some iterations and

nonbasic in others. Let x
�
denote the variable in J with the greatest index. If

x
�
is basic in I

�
, then there must exist an iteration I

���
with 0� i� p such that

x
�
leaves B

���
and is nonbasic at the next iteration. If x

�
is nonbasic in I

�
, then

there must exist a basis B
���

with 0� i� p such that x
�
enters B

���
. Since

B
��	

�B
�
, there exists a basis B

���
with i� j� p such that x

�
leaves B

���
and

is nonbasic at the next iteration. In conclusion, we have shown that there is a
basis B in the sequence B

�
, . . . , B

��	
such that x

�
leaves B at the iteration I

corresponding to B and becomes nonbasic in the next basis. Let x
�
denote the

entering variable at the iteration I. Thus, x
�
�B and x

�
is in the next basis. Since

cycling occurs, there is basis B* at an iteration I* beyond I and in the sequence
B
�
, B

���
, . . . , B

��	
, B

��	��
, . . . ,B

���	
such that x

�
enters the basis at I*. That

is, x
�
is not in B* but is in the succeeding basis.

We shall write i �B to mean that x
�
is a basic variable in the basis B and

i �B to mean that x
�
is nonbasic. If we denote the elements of the matrix B
�N

248 SIMPLEX METHOD



in relation (4) of Section 4 by v
��
, then we can write (4) and (8) of Section 4 as

x
�
� �

�
� 


���

v
��
x
�
, i �B,

(2)
z� �� 


���

d
�
x
�
.

Since x
�
enters at B, s �B. A solution of (2) is then given by

x
�
� y, y arbitrary,

x
�
� 0, i �B, i� s,

(3)
x
�
� �

�
� v

��
y, i �B,

z� �� d
�
y.

For the basis B* equations (4) and (8) in Section 4 become

x
��

� �
��

� (B*)
�N*x*
�
,

(4)
z� �*�

�


���

d*
�
x
�
,

where d*
�
� 0 for j �B*.

The systems (2) and (4) are equivalent; that is, they have the same solution
sets. In particular, (3) is a solution of (4). Since all of the bases from B to B*
are degenerate, the value of the objective function does not change from
iteration to iteration. Hence, �*� �. Equating the expressions for z in (2) and
(4) and using (3) and �*� � give

�� d
�
y� �� d*

�
y� 


���

d*
�
(�

�
� v

��
y).

Hence

�d�� d*
�

� 

���

d*
�
v
��� y� 


���

d*
�
�
�

for all y.

Since the right-hand side is constant and the left-hand side holds for all y, we
must have

d
�
� d*

�
� 


���

d*
�
v
��
� 0. (5)

Since x
�
enters B at iteration I, d

�
� 0. Also, since x

�
is leaving, s� t. Hence

s� t. Since x
�
is not entering at I* and s� t, it follows that d*

�
� 0. For
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otherwise, by the smallest index rule, x
�
would not be the entering variable at

I*. It then follows from (5) that there exists an index r in B such that

d*


v

�
� 0. (6)

Since d*


� 0, the variable x



is not in the basis B*. But r �B, so x



� J. Hence

r� t.
It follows from (21) in Section 4 that since x

�
is leaving in B and x

�
is

entering, v
��
� 0. Since x

�
is entering at B*, it follows that d*

�
� 0. Hence

d*
�
v
��
� 0. Comparing this with (6) shows that r� t. Hence r� t. Since r� t,

since the variable x


is not in B*, and since x

�
enters B*, we conclude from the

smallest index rule that d*


� 0. From (6) we conclude that d*



� 0 and

v

�
� 0.

Since x


�B*, the basic feasible solution �* at B* has component �*



� 0. Let

�


denote the rth component of the basic feasible solution � corresponding to

the basis B. We assert that �


� 0. To prove this assertion, we note that because

all the bases B . . .B* are degenerate, it follows from (21) of Section 4 that t*� 0
at all the iterations I . . . I*. Hence if �



� 0, then x



would not leave any of the

bases B . . .B*. This contradicts the fact that x


�B*, and this proves the

assertion.
Since v


�
� 0 and �



� 0, it follows from (21) of Section 4 that x



is a

candidate for leaving the basis B. Yet, we chose x
�
with t� r to leave the basis,

in contradiction to the smallest index rule.

Remark 5.2. Computational experience indicates that using the smallest sub-
script rule or the lexicographic rule instead of the max d

�
rule considerably

increases the time required for the simplex method or the revised simplex
method to find an optimal solution. Since very few instances of cycling have
been reported, some computer codes do not incorporate any anticycling
routines. Other computer codes introduce an anticycling routine only after a
sequence of specified length of degenerate bases occurs. The anticycling routine
will then lead to a nondegenerate basis, at which point the use of the largest
coefficient rule can be resumed.

Exercise 5.1. Carry out the iterations of the simplex method for Example 5.1
and show that cycling occurs at the sixth iteration. Note: �

�
� (�

�
, �

�
, �

�
) �

(0, 0, 1) is a basic feasible solution.

Exercise 5.2. Solve the problem in Example 5.1 using the simplex method and
Bland’s rule.
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6. PHASE I OF SIMPLEX METHOD

As noted in Section 3, phase I of the simplex method either determines a basic
feasible solution or determines that none exists, in which case the problem has
no optimal solution.

We begin with the linear programming problem in standard form (SLP):

Maximize �b, x�
(1)

subject to Ax� c, x� 0.

Let us first suppose that the vector c is nonnegative. We then put the problem
in canonical form (CLP) by adjoining a vector of slack variables,

x
�
� (x

���
, . . . , x

���
), x

���
� 0, i� 1, . . . ,m,

and write the problem as

Maximize �b, x�

(2)
subject to (A, I) �

x

x
�
�� c, x� 0, x

�
� 0.

Since c� 0, the vector (x, x
�
) � (0

�
, c), where 0

�
is the zero vector in R�, is a

basic feasible solution for the problem in (2). We then immediately pass to
phase II with initial basic feasible solution (�, �

�
) � (0

�
, c).

If some of the components of c are negative, the vector (0
�
, c) is still a basic

solution of the system of equations in (2), but it is not feasible. We therefore
resort to another device and introduce an auxiliary problem.

Auxiliary Problem

Minimize x
	
subject to

(A, I,�e) �
x

x
�

x
	
�� c

(3)

x� 0, x
�
� 0, x

	
� 0,

where e� (1, . . . , 1) and I is the m�m identity matrix.
In component form the system in (3) is

�


���

a
��
x
�
� x

���
�x

	
� c

�
, i� 1, . . . ,m,

x
�
� 0, j� 0, 1, . . . , n�m.
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A vector (�, �
�
) is feasible for relation (2) if and only if (�, �

�
, 0) is feasible for

the auxiliary problem. Therefore, (�, �
�
) is feasible for relation (2) if and only if

(�, �
�
, 0) is optimal for the auxiliary problem.

If we write the objective function of the auxiliary problem as ‘‘Maximize
w� �x

	
,’’ then the auxiliary problem becomes a linear programming problem

in canonical form to which we can apply phase II of the simplex method,
provided we can get an initial basic feasible solution. A basic solution to the
system (3) is (�, �

�
, �

	
) � (0, c, 0). This solution, however, is not feasible since

some components of c are negative. We can obtain a basic feasible solution
from this solution by replacing an appropriate basic variable by x

	
. Before we

do this in general, we shall illustrate using Example 4.1.
In solving Example 4.1, we obtained an initial feasible solution from Figure

6.1. We now ignore the figure and write the auxiliary problem in canonical
form: Maximize w��x

	
subject to

�x
�
� x

�
� x

�
�x

	
��1,

�x
�
� x

�
�x

�
�x

	
� 0,

x
�
� 2x

�
�x

�
�x

	
� 4,

(4)

x
�
� 0, i� 0, 1, . . . , 5.

The vector (�
	
, �

�
, �

�
, �

�
, �

�
, �

�
) � (0, 0, 0, �1, 0, 4) is a basic solution but is

not feasible. The only negative entry on the right-hand side is �1 and occurs
in the first equation. Therefore, if in the augmented coefficient matrix of (4) we
pivot on x

	
in row 1, then the right-hand side of the resulting system should

be positive. Performing the indicated pivot gives

�
x
�

x
�

x
�

x
�

x
�

x
	
c

1 1 �1 0 0 1 1

0 2 �1 1 0 0 1

2 3 �1 0 1 0 5� (5)

Thus, (�
	
, �

�
, �

�
, �

�
, �

�
, �

�
) � (1, 0, 0, 0, 1, 5) is a basic feasible solution. From

(5) we also get that

w��x
	
��1� x

�
�x

�
�x

�
. (6)

We can now start phase II for the problem of minimizing (6) subject to the
constraining equations given by (5). We leave this to the reader and return to
the general situation.

We now obtain a system equivalent to (3) and having a basic feasible
solution. Let c

	
denote the most negative component of c. Thus,

c
	
�min�c

�
: i� 1, . . . ,m�.
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If there are more than one such components, choose the one with smallest
index. Next, pivot on x

	
in the pth row of the system (3). The result will be an

equivalent system

(A�, e
�
, . . . , e

	
�
, �e, e

	��
, . . . , e

�
, e

	
) �
x

x
�

x
	
�� c�, (7)

where e� (1, . . . , 1) and

c�
	
��c

	
� 0, c�

�
� c

�
� c

	
� 0, i� 1, . . . , p� 1, p� 1, . . . ,m.

The system (7) in component form is

�


���

a�
��
x
�
�x

��	
� x

���
� c�

�
, i� p,

�


���

a�
	�
x
�
�x

��	
� x

	
� c�

	
.

Thus a basic feasible solution to (7) is

�
	
� c�

	
, �

���
� c�

�
, i� 1, . . . , p� 1, p� 1, . . . ,m,

(8)
�
�
� 0, i� 1, . . . , n, n� p,

and

w� �x
	
��c�

	
�x

��	
�

�


���

a�
	�
x
�
. (9)

The basic variables are

x
���

, . . . , x
��	
�

, x
	
, x

��	��
, . . . , x

���
. (10)

We have transformed the auxiliary problem (3) to the following problem.
Maximize w as given in (9) subject to (8) and x

�
� 0, i� 0, 1, . . . , n�m. For

this problem we have determined a basic feasible solution given by (8) with
basic variables given by (10). We can now apply phase II to the problem in
this form. If we incorporate an anticycling subroutine in our implementation
of Phase II, then according to Lemma 5.1, we shall, in a finite number of steps,
determine that the auxiliary problem either has no solution or determine an
optimal solution to the auxiliary problem. If the auxiliary problem has no
solution, then the original linear programming problem (1) has no feasible
solution. For, as we saw, a vector (�, �

�
) is feasible for the original problem if

and only if (�, �
�
, 0) is optimal for the auxiliary problem.

The remaining alternative is that the auxiliary problem has a solution. We
now explore the possibilities for this alternative. The variable x

	
is basic

initially. In applying phase II of the simplex method to the auxiliary problem,
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we note that our rule for choosing the leaving variable is such that if at some
iteration x

	
is a candidate for leaving the basis, then x

	
will be chosen to be

the leaving variable. If at some iteration I
�
the variable x

	
leaves the basis, then

at the iteration I
���

, the variable x
	
will have the value zero. The solution

(�, �
�
, �

	
) of the constraining equations at I

���
will also be a solution of (3).

Hence if �
	
� 0, then w� 0 and (�, �

�
) is optimal for relation (1). Thus, if x

	
ever leaves the basis at an iteration I

�
, at the next iteration I

���
, we will have

a solution to the auxiliary problem and hence a basic feasible solution for
relation (2). We can then begin phase II with this basic feasible solution.

An optimal solution could also conceivably occur under the following
circumstances:

(i) x
	
basic, w� 0, and

(ii) x
	
basic, w� 0.

If (ii) occurs, then the original problem has no feasible solution. We now show
that (i) is impossible. If (i) did occur, then x

	
��w� 0. Since the previous

iteration did not end in an optimal solution, x
	
� 0 at the start of the previous

iteration and became zero in the previous iteration. If this happened, then x
	

was a candidate for leaving the basis but did not do so. This contradicts the
rule for determining whether x

	
leaves the basis.

The next lemma follows from the discussion in this section.

L 6.1. If an anticycling routine is included, then phase I of the simplex
method either determines that no feasible solution exists or determines a basic
feasible solution.

Lemmas 5.1 and 6.1 imply the following.

T 6.1. T he simplex method incorporating an anticycling routine applied
to a linear programming problem determines one of the following in a finite
number of iterations:

(i) No feasible solutions exist.

(ii) T he problem does not have an optimal solution.

(iii) An optimal solution.

Exercise 6.1. Complete the solution of the illustrative example.

Exercise 6.2. Let the linear programming problem be given originally in
canonical form:

Maximize �b, x�

subject to Ax� c, x� 0.
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Show that an appropriate auxiliary problem for phase I is

Maximize w��
�


���

y
�

subject to (A, I) �
x

y�� c, x� 0, y� 0.

Show how one obtains an initial basic feasible solution for the auxiliary
problem.

Exercise 6.3. Solve the following linear programming problems using the
simplex method:

(a) Maximize x
�
� 3x

�
subject to

x
�
� 2x

�
� 7x

�
� 4,

x
�
� 3x

�
� x

�
� 5,

x
�
� 0, i� 1, 2, 3.

(b) Maximize 3x
�
�x

�
subject to

x
�
� 2x

�
� 2,

3x
�
� x

�
� 3,

x
�
� 4, x

�
� 0. i� 1, 2, 3, 4.

(c) Maximize �2x
�
� x

�
�x

�
�x

�
subject to

x
�
�x

�
� 2x

�
� x

�
� 2,

2x
�
�x

�
� 3x

�
� x

�
� 6,

x
�
�x

�
� x

�
� x

�
� 7.

7. REVISED SIMPLEX METHOD

The revised simplex method does not differ from the simplex method in
principle, that is, in going from one basic solution to another in such a way
that the objective function is not decreased but differs in the manner in which
some of the computations are carried out. In describing the revised simplex
method, we assume, as we did in our description of the simplex method in
Section 4, that the problem has been formulated as in (4) of Section 3. The
reader will recall from Section 4 that at each iteration a basis B is determined
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and the calculation of B
�N is used to determine the entering and leaving
variable. The revised simplex method differs from the version of the simplex
method given in Section 4 in that a system (1) in Section 4 with current B is
not reduced to (11) in Section 4 and the current basis not given by (22) in
Section 4. In the revised simplex method the entering variable x

�
is chosen as

before. If A
�
is the column of A corresponding to x

�
, then the updated basis B�

is obtained from B by replacing the column A
��
of the leaving variable x

��
by

A
�
. This procedure enables us to calculate (B�)
� from B
� very easily and

expedites other calculations, as we shall show.
Before we present the steps in an iteration of the revised simplex method,

we take up the calculation of (B�)
�, the updated inverse. At the current
iteration I let the basis B be given by

B� (A
��
. . .A

�
�

), (1)

where the A
�
�

are columns of B. We then write

N� (A
����

. . .A
�
�

).

Let x
�
be the entering variable at I, determined as in Section 4, and let A

�
denote the column of N corresponding to x

�
. Let the leaving variable x

��
be

determined as in Section 4. Let B� denote the matrix obtained from B by
replacing the column A

��
by A

�
and let N� denote the matrix obtained from N

by replacing column A
�
by A

��
. Thus

B�� (A
��
. . .A

��
�
A

�
A

����
. . .A

��
),

(2)
N�� (A

����
. . .A

��
�
A

��
A

����
. . .A

��
).

Hence

B
�B��B
�(A
��
. . .A

��
�
A

�
A

����
. . .A

��
)

� �
1 0 � 0 v

��
0 � 0

0 1 � 0 v
��

0 � 0

� � � � � � � �
0 0 � 0 v

��
0 � 1� (3)

� (e
�
. . . e�
�

v
�
e���

. . .e
�
),

where v
�
�B
�A

�
. Note that v

�
is the qth column of B
�N associated with x

�
and thus is as in Step 3(ii) of an iteration in the simplex method. From the way
� is determined we have that v��� 0, and hence the matrix on the right in (3)
is nonsingular. If we multiply both sides of (3) by B on the left, we get that

B��B(e
�
. . . e�
�

v
�
e���

. . . e
�
).
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Since B� is the product of nonsingular matrices, it is nonsingular and so is a
basis. We also get

(B�)
� � (e
�
. . .e�
�

v
�
e���

. . . e
�

)
�B
�. (4)

It is readily verified that multiplying the matrix on the right-hand side of the
following by the matrix on the right-hand side of (3) gives the m�m identity
matrix. Hence

�
1 0 � 0 v

��
0 � 0

0 1 � 0 v
��

0 � 0

� � � � � �
0 0 � 0 v

��
�

col �
�

�

� �
1 0 � 0 �

��
0 � 0

0 1 � 0 �
��

0 � 0

� � � � � � �
0 0 � 0 �

��
0 � 1

�
col �

� ,
(5)

where

�
��

��
v
��
v��

, i� 1, . . . , m, i��, ����
1

v��
.

The matrix on the right in (5) is called an eta matrix and will be denoted by
E
�
. Thus we may write (4) as

(B�)
� �E
�
B
�, (6)

which updates B
� for the next iteration.
We summarize this discussion in the following lemma

L 7.1. L et B be a basic matrix as in (1) and let B� be a matrix as in (2).
T hen B� is basic and (6) holds, where E

�
is the matrix on the right in (5).

Remark 7.1. In the various calculations in the simplex method the essential
matrix is B
�, not B. The matrix B is needed, in principle, only to calculate
B
�. Equation (6) enables us to calculate (B�)
� from B
� without knowing B
or B�. It is this fact that underlies the revised simplex method. Also note that
an eta matrix differs from an identity matrix in one column.

We now present a generic revised simplex method. Most computer codes for
solving linear programming problems use the revised simplex method. Codes
used in practice incorporate various modifications to improve accuracy, reduce
the number of iterations needed, decrease the running time, and so on. For
details the reader is referred to Chvátal [1983], Dantzig [1963], Gass [1985],
and Murtagh [1981].
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As in our presentation of the simplex method we assume that the problem
is in canonical form: Maximize z subject to

Ax� c, �b, x�� z� 0, x� 0. (7)

Let the initial stage or iteration of phase II be called the zeroth iteration. At
the kth iteration, k� 0, 1, 2, . . . , let B(k) denote the basis, let N(k) denote the
submatrix of A complementary to B(k), let x

����
denote the vector of basic

variables, let x
����

denote the vector of nonbasic variables, let �(k)�(�
����

, 0
����

)
be the corresponding basic feasible solution, and let �(k) be the current value
of the objective function. Equations (4)—(6) from Section 4 yield, for k�

0, 1, 2, . . . ,

x
����

� �
����

� [B(k)]
�N(k)x N(k) ,

�(k) � �b
����

, �
����
�, (8)

z� �(k) � �b
����

� b�
����

[B(k)]
�N(k), x
����
�.

From Lemma 7.1 we get that

[B(k� 1)]
� �E
���

[B(k)]
�, k� 0, 1, 2, . . . ,

where E
���

is an approximate eta matrix. Proceeding inductively, we get

[B(k� 1)]
� �E
���

(E
�
(. . . E

�
(E

�
[B(0)]
�) . . .)). (9)

A sequential file in the computer storing the matrices E
���

, E
�
, . . . , E

�
is called

an eta file. The calculation as indicated in (9) (from right to left) is called a
forward transformation. The matrix [B(0)]
� is calculated using elementary
matrices as in (11) from Section 3.

We now present the steps in the kth iteration, k� 1, of our generic revised
simplex algorithm. In essence, the steps mirror the steps of the simplex
method as presented in Section 4. Some of the calculations are different and
Step 1 of the simplex method is deleted. For typographical convenience we will
replace the designations B(k), N(k), x

����
, x

����
, . . . of the current quantities by

B,N, x
�
, x

�
, . . . . The updated quantities B(k � 1), N(k� 1), x

������
, x

������
, . . .

will be designated as B�, N�, x
��
, x

��
, . . . . As in (7) from Section 4 let

d
�
� b

�
� b�

�
B
�N� (d

����
. . . d

��
), (10)

where i
���

, . . . , i
�
are the components of x that constitute x

�
. We may then

write the last equation in (8) as

z� ���d
�
, x

�
�� ��

�



	����

d
�
�

x
�
�

.
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Step 1. Calculate d
�
. This is done in two steps.

(i) Calculate

�� b�
�
E

�
E
�
�

. . .E
�
[B(0)]
�

from left to right, that is, as

(. . . ((b �
�
E
�
)E

�
�
) . . .)E

�
)[B(0)]
�.

This backward transformation involves repeated multiplications of a vector by
a matrix, whereas the forward calculation (from right to left) involves
repeated multiplications of matrices. Clearly, the backward transform-
ation involves fewer operations.

(ii) Calculate

d
�
�

� b
�
�

� ��,A
�
�

�, j�m� 1, . . . , n,

where the i
�
are the indices of the nonbasic variables at the kth stage and the

A
�
�

are the corresponding columns of N.

Step 2. If all the d
�
�

are less than or equal to zero, the current basic feasible
solution is optimal and the algorithm terminates. If the algorithm terminates,
then we use (8) to calculate �, the optimal value.

If the algorithm does not terminate at Step 2, we go to Step 3.

Step 3. Choose an entering variable.

Choose an index i
�
such that d

�
�

� 0. This may be done according to the
smallest index rule, the max d

�
�

rule, or any other rule, as long as d
�
�

� 0. We
denote the index i

�
by q and take x

�
to be the entering variable. The column

A
�
will be the entering column for the basis at the (k � 1)st iteration.

Step 4. Either determine that the problem is unbounded or determine the
leaving variable.

(i) Calculate

v
�
�E

�
E

�
�
. . .E

�
[B(0)]
�A

�

from right to left. Note that v
�
is as in Section 4.

(ii) If all components of v
�
are nonpositive, then the problem is unbounded

and no solution exists. The justification for this conclusion is the same
as the one given in Step 3(ii) of Section 4.
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(iii) If v� (v
��
. . . v

��
) has at least one positive component, then as in (21)

of Section 4 let � denote the smallest index r at which

t*�min �
�
�
�v


�

: v


�

� 0�
is attained. Choose x

��
to be the leaving variable.

Step 5. Calculate E
���

as given by the matrix on the right in (5).

Step 6. Update the data for the (k � 1)st iteration.

(i) Update x
�
to x

��
by replacing x

�
�

by x
�
.

(ii) Update x
�
to x


�
by replcing x

�
by x

�
�

.

(iii) Update B to B� by replacing A
��
by A

�
.

(iv) Update N to N� by replacing A
�
by A

��
.

(v) Update (�
�
, �

�
) to (�

��
, �

��
) using (22) from Section 4.

(vi) Update B
� to (B�)
� using (9).
(vii) Update b

�
and b

�
to b

��
and b

��
.

Step 7. Begin iteration k� 1 using the updated quantities.

Remark 7.2. If the initial basis consists of the slack variables, then B(0) � I
and (9) becomes

[B(k� 1)]
��E
���

E
�
. . . E

�
I.

Remark 7.3. The eta file can become very long. In some computer codes, once
the eta file reaches a predetermined length, say k� 1, then B(k� 1) is set as
the initial basis B(0), the matrix [B(k� 1)]
� is set as [B(0)]
�, and a new eta
file is constructed.

Exercise 7.1. Solve the linear programming problem in Example 1.1 using the
revised simplex method. Start with phase I.

Exercise 7.2. Solve the linear programming problem in Exercises 6.3(a), (b),
and (c) using the revised simplex method.
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Motzkin, T. S., ‘‘Béitrage zur Theorie Linearen Ungleichungen,’’ Inaugural Dissertation, Basel,
Jerusalem, 1936.

Murtagh, B. A., Advanced L inear Programming: Computation and Practice, McGraw-Hill, New
York, 1981.

Pennisi, L. L., ‘‘An Indirect Sufficiency Proof for the Problem of Lagrange with Differential
Inequalities as Side Conditions,’’ Transactions of the American Mathematical Society 74 (1953),
177—198.

Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, N.J., 1970.

Rudin, W., Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976.

262 BIBLIOGRAPHY



INDEX

Affine hull, 74
Affine transformations, 78—114
Algebra of sets, 4—5
Alternative theorems
convex functions, 113—117
convex sets, linear inequalities, 61—68
Farkas’s lemma, 63—65, 67—68
Gale’s theorem, 68
Gordan’s theorem, 65—67
Motzkin’s theorem, 66—67

Anticycling routine, simplex method
phase I procedure, 254
termination and cycling, 250, 254

Backward transformation, revised simplex
method, 259

Barycentric coordinates, 74
Basic solution, simplex method, 231
Basic variables
phase II procedure, 235—245
simplex method, 230

Bland’s rule, simplex method, termination and
cycling, 248—250

Bolzano—Weierstrass property, 15
Boundary points
convex function optimization, 137
supporting hyperplanes, 56—57

Canonical linear programming problem,
234—260

optimization, 144
simplex method, 224—225
extreme points, feasible sets, 225—229
phase I, 251—255
revised simplex method, 258—260
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Euclidean n-space (R�)
defined, 1
metric topology, 5—8
vectors, 1—4

Extreme points
convex sets, 56—61, 85
simplex method, feasible sets, 225—230

Farkas’s lemma
differentiable nonlinear programming,

162—163
linear inequalities, 63—64, 67—68
linear programming, 142
linear programming duality, 220

Feasible sets
optimization problems, 129
simplex method
auxiliary problem, 251—255
extreme points, 225—229

Finite-intersection property, 15
First-order conditions, differentiable nonlinear

programming, 145—163
Forward transformation, revised simplex

method, 258—260
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Farkas’s lemma, 63—65, 67
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Submarine-convoy game, 124—127
Subsequences, continuity, 9—11
Sufficient conditions
convex programming, 181—187
for absence of duality gap, 206—207
quadratic programming, 211

differentiable nonlinear programming,
159—160

second-order conditions, 172—178
linear programming duality, 218—219

Support function, 101
Supporting hyperplanes, 56—57, 85
Supremum, 12—14

Tableau method, 236
Tangential constraints, differentiable nonlinear

programming, 165—178
second-order sufficiency theorems, 172—178

Termination, simplex method, 245—250
Theorems of the alternative, linear inequalities,

61—68
Farkas’s lemma, 63—65, 67—68
Gale’s theorem, 68
Gordan’s theorem, 65—67
Motzkin’s theorem, 66—67

Three-chord property, convex functions,
92—94

Triangle inequality, 3
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