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PREFACE

Since 1965, when the Committee on the Undergraduate Program in
Mathematics (CUPM) of the Mathematical Association of America recom-
mended that linear algebra be taught as part of the introductory calculus
sequence, it has become quite common to find substantial amounts of linear
algebra in the calculus curriculum of all students at the sophomore level.
This is a natural development because it is now pretty well conceded that
not only is linear algebra indispensable to the mathematics major, but that
it is that part of algebra which is most useful in the application of math-
ematical analysis to other areas, e.g., linear programming, systems analysis,
statistics, numerical analysis, combinatorics, and mathematical physics. Even
in nonlinear analysis, linear algebra is essential because of the commonly used
technique of dealing with the nonlinear phenomenon as a perturbation of the
linear case. We also find linear algebra prerequisite to areas of mathematics
such as multivariable analysis, complex variables, integration theory, functional
analysis, vector and tensor analysis, ordinary and partial differential equations,
integral equations, and probability. So much for the case for linear algebra.
The other two general topics usually found in the sophomore program
are multivariable calculus and differential equations. In fact, modern calculus




X PREFACE

texts have generally included (in the second volume) large portions of linear
algebra and multivariable calculus, and, to a more limited extent, differential
equations. 1 have written this book to show that it makes good sense to package
linear algebra with an introductory course in differential equations. On the
other hand, the linear algebra included here (vectors, matrices, vector spaces,
linear transformations, and characteristic value problems) is an essential pre-
requisite for multivariable calculus. Hence, this volume could become the
text for the first half of the sophomore year, followed by any one of a number
of good multivariable calculus books which either include linear algebra or
depend on it. The prerequisite for this material is a one-year introductory
calculus course with some mention of partial derivatives.

I have tried throughout this book to progress from familiar ideas to the
more difficult and abstract. Hence, two-dimensional vectors are introduced
after a study of complex numbers, matrices with linear equations, vector spaces
after two- and three-dimensional euclidean vectors, linear transformations after
matrices, higher order linear differential equations after first order linear
equations, etc. Systems of differential equations are left to the end after the
student has gained some experience with scalar equations. Geometric ideas
are kept in the forefront while treating algebraic concepts, and applications are
brought in as often as possible to illustrate the theory. There are worked-out
examples in every section and numerous exercises to reinforce or extend the
material of the text. Numerical methods are introduced in Chap. 5 in connec-
tion with first oider equations. The starred sections at the end of each chapter
are not an essential part of the book. In fact none of the unstarred sections
depend on them. They are included in the book because (1) they are related to
or extend the basic material and (2) I wanted to include some advanced
topics to challenge and stimulate the more ambitious student to further study.
These starred sections include a variety of mathematical topics such as:

~

Analytic functions of a complex variable.
Power series.

Existence and uniqueness theory for algebraic equations.
Hilbert spaces.

Jordan forms.

Picard iteration.

Green’s functions.

Integral equations.

Weierstrass approximation theorem.
Bernstein polynomials.

Lerch’s theorem.

O Co NN

~
~ QO




PREFACE Xxi

12 Power series solution of differential equations.
13 Existence and uniqueness theory for systems of differential equations.
14 Gronwald’s inequality.

The book can be used in a variety of different courses. The ideal situation
would be a two-quarter course with linear algebra for the first and differential
equations for the second. For a semester course with more emphasis on linear
algebra, Chaps. 1-6 would give a fairly good introduction to linear differential
equations with applications to engineering (damped harmonic oscillator). If
one wished less emphasis on linear algebra and more on differential equations,
Chap. 4 could be skipped since the characteristic value problem is not used in
an essential way until Chap. 9. Chapters 7, 8, and 9 are independent so that a
variety of topics could be introduced after Chap. 6, depending on the interests
of the class. For a class with a good background in complex variables and
linear algebraic equations, Chaps. 1 and 2 could be skipped.

About half of the book was written during the academic year 1970-71
while I was a Senior Research Fellow at the University of Glasgow. I want to
thank Professors Ian Sneddon and Robert Rankin for allowing me to use the
facilities of the University. I also wish to thank Mr. Alexander McDonald and
Mr. Iain Bain, students at the University of Glasgow, who checked the exercises
and made many helpful suggestions. The first six chapters have been used in a
course at Oakland University. I am indebted to these students for their patience
in studying from a set of notes which were far from polished. Finally, I want
to thank my family for putting up with my lack of attentiveness while I was in
the process of preparing this manuscript.

JOHN W. DETTMAN
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COMPLEX NUMBERS

1.1 INTRODUCTION

There are several reasons for beginning this book with a chapter on complex
numbers. (1) Many students do not feel confident in calculating with complex
numbers, even though this is a topic which should be carefully covered in the
high school curriculum. (2) The complex numbers represent a very elementary
example of a vector space. We shall, in fact, use the complex numbers to
introduce the two-dimensional euclidean vectors. (3) Even if we were to attempt
to avoid vector spaces over the complex numbers by using only real scalar
multipliers, we would eventually have to deal with complex characteristic
values and characteristic vectors. (4) The most efficient way to deal with the
solution of linear differential equations with constant coefficients is through
the exponential function of a complex variable.

We shall first define the algebra of complex numbers and then the
geometry of the complex plane. This will lead us in a natural way to a treat-
ment of two-dimensional euclidean vectors. Next we shall introduce complex-
valued functions, both of a single real variable and of a single complex variable.
This will be followed by a careful treatment of the exponential function. The
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last section (which is starred) is intended for the more ambitious students. It
discusses power series as a function of a complex variable. Here we shall justify
the properties of the exponential function and lay the groundwork for the
study of analytic functions of a complex variable.

1.2 THE ALGEBRA OF COMPLEX NUMBERS

We shall represent complex numbers in the form z = x + iy, where x and y
are real numbers. As a matter of notation we say that x is the real part of
z[x = Re (z)] and y is the imaginary part of z [y = Im (z)]. We say that two
complex numbers are equal if and only if their real parts are equal and their
imaginary parts are equal. We could say thati = N except that for a person
who has experience only with real numbers, there is no number which when
squared gives —1 (if a is real, @*> > 0). It is better simply to say that i is a
complex number and then define its powers; 7, iZ = —1, i3 = —j, i* = 1,
etc. We can now define addition and multiplication of complex numbers in a
natural way:

Zy 4+ zp = (xy +iy) + (63 + 3) = (x; + %) + i(y, + y2)

212y = (X1 + )X + i) = X%, + P2y y; + Xy + iy,
= (X1X3 — y1¥2) + i(x1y2 + y1x3)

With these definitions it is easy to show that addition and multiplication are
both associative and commutative operations, that is,

(Z +2) + 23 =2, + (z; + z3)
Zy + 2, =2, + 24
2)(2323) = (2125)23

2,2, = 2,2,

If a is a real number, we can represent it as a complex number as follows:
a = a + i0. Hence we see that the real numbers are contained in the complex
numbers. This statement would have little meaning, however, unless the
algebraic operations of the real numbers were preserved within the context
of the complex numbers. As a starter we have

a+b=(@+i0)+ b +i0) =(a+b) +i0
ab = (a + i0)}b + i0) = ab + i0

We can, of course, verify the consistency of the other operations as they are
defined for the complex numbers.
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Letaberealandletz = x + iy. Thenaz = (a + i0)(x + iy) = ax + iay.
In other words, multiplication of a complex number by a real number a is
accomplished by multiplying both real and imaginary parts by the real number
a. With this in mind, we define the negative of a complex number z by

—z=(-Dz=(-x) + (=)

The zero of the complex numbers is 0 + i0 = 0, and we have the obvious
property

z+ (-2)=x+iy + (—=x) + i(—y)
0+i0
=0

We can now state an obvious theorem, which we put together for a reason which
will become clear later.

Theorem 1.2.1
(i) For all complex numbers z, and z,, z; + z, = z, + z,.
(ii) For all complex numbers z,, z,, and z;,

zZy + (2 + 23) = (2, + 25) + 23

(iii) For all complex numbers z, z + 0 = z.
(iv) For each complex number z there exists a negative —z such that
z4+ (-2)=0.

We define subtraction in terms of addition of the negative, that is,

2y —z;=2; + (—23) = (x; + iyy) + (—=x3) + i(-y5)
= (x; — X3) + iy, — ¥2)

Suppose z = x + iy, and we look for a reciprocal complex number
z™! = u + iv such that zz=! = 1. Then

(x + )(u + iv) = (xu — yv) + i(xv + yu) = 1 + i0

Then xu — yv = 1 and xv + yu = 0. These equations have a unique solution
if and only if x* + y* # 0. The solution is
X -y

u =
x2+y2 x2+y2

Therefore, we see that every complex number z, except zero, has a unique
reciprocal,

- x ,
51 i Yy

_x2+y2_ X2 4 y?
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We can now define division by any complex number, other than zero, in
terms of multiplication by the reciprocal; that is, if z, # 0,

Zy -1 . X2 ; Y2
L =1zz = (x; + iy,) — i
) e ' ! (x22 + 2 x,% + .sz)
=XiX2 ¥ YiYa | XV = XY,
X2 + y,? X2 + y,?

As a mnemonic, note that (x, + iy,)(x, — iy,) = x,2 + y,* and hence

2y _ Xy + iy x; — iy, _ XXy + )iy + Xy — x,y,)

- . . 2 2
Zy X3 + iy, X3 — iy, X"+ ¥y,

EXAMPLE 1.2.1 Let zy =2+ 3i and z, = —1 + 4;. Then z2i + 2z, =
(2~—l)+(3+4)i=1+7i,zl—22=(2+1)+(3—4)i=3—-i,zlz2
(-2 -12) +i8 - 3) = —14 + 5i, and

z 2+3i -1 -4 -2+412-3i-8i 10 11,

= = e —__1
z; —1+4+4i-1-4i 1+ 16 17 17

The reader should recall the important distributive law from his study
of the real numbers. The same property holds for complex numbers; that is,

223 + 23) = 212, + zy2z4
The proof will be left to the reader.

We summarize what we have said so far in the following omnibus theorem
(the reader will be asked for some of the proofs in the exercises).

Theorem 1.2.2 The operations of addition, multiplication, subtrac-
tion, and division (except by zero) are defined for complex numbers. As
far as these operations are concerned, the complex numbers behave like
real numbers.t The real numbers are contained in the complex numbers,
and the above operations are consistent with the previously defined
operations for the real numbers.

There is one property of the real numbers which does not carry over to the
complex numbers. The complex numbers are not ordered as the reals are.

t In algebra we say that both the real and complex numbers are algebraic fields. The
reals are a subfield of the complex numbers.
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Recall that for real numbers 1 and —1 cannot both be positive. Also if a # 0,
then a” is positive. If the complex numbers had the same properties of order,
both 12 = 1 and i2 = —1 would be positive. Therefore, we shall not try to
order the complex numbers andfor write inequalities between complex
numbers.

We conclude this section with two special definitions which are important
in the study of complex numbers. The first is absolute value, which we denote
with the symbol |z|. The absolute value is defined for every complex number
zZ=x+iyas

lz| = Vi + »?
It is easy to show that |z| > 0 and |z|] = 0 if and only if z = 0.
The other is the conjugate, denoted by Z. The conjugate of z = x + iy

is defined as
Z=x-1y

The proof of the following theorem will be left for the reader.

Theorem 1.2.3

(i) Zy + Zy = 21 + 22.

(ii) Zy — Zp = 21 - 22.
(i) zyz, = Z,2,.

(V) zy/z, = Z,/2,.

) zz = |z]*

EXERCISES 1.2

1 Letz, =2+ iand z; = —3 + 5i. Compute z; + z3, z; — 2, 2,25,21/23, 24,
Z,, |z4), and |z;].
2 Letz; = —1+ 3iand z; = 2 — 4i. Compute z; + 2;, 2z, — 2;, 2y2,, 2;/2,,

2y, 2, Izl|’ and lzzl-

Prove that addition of complex numbers is associative and commutative.

Prove that multiplication of complex numbers is associative and commutative.
Prove the distributive law.

Show that subtraction and division of real numbers is consistent within the
context of complex numbers.

Show that the equations xu — yv = 1 and xv + yu = 0 have a unique solution
for u and v if and only if x2 + y* # 0.

N N VY

~N
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10
11

12

13

14
15

16

&, »)

FIGURE 1 0,0)

Let a and b be real and z, and z, be complex. Prove the following:
@ alz, + z,) = az, + az, ®) (a+ bz = az; + bz,
© a(bzy) = (ab)z, @ 1z = z,

Show that |z] = Oand |z] = Oif and only if z = 0.

Prove Theorem 1.2.3.

Show that

Re (z) = #(z + %) Im(z)=2-1—_(z—z')
i

Show that the definition of absolute value for real numbers is consistent with
that for complex numbers.

Let z = x + iy and w = u + iv. Prove that (xu + yv)? < |z|2|w|? and hence
that [xu + yo| < [z] |w|.

Use the result of Exercise 13 to show that |z + w| < |z] + |w].

Use the result of Exercise 14 to show that

lzs + 23 + oz Sz + |z + -+ |z,

Show that |z — w| > I]zl - |w[|.

1.3 THE GEOMETRY OF COMPLEX NUMBERS

It will be very useful to give the complex numbers a geometric interpretation.
This will be done by associating the complex number z = x + iy with the
point (x,y) in the euclidean plane (see Fig. 1). It is customary to draw an arrow
from the origin (0,0) to the point (x,y). For each complex number z = x + jy
there is a unique point (x, y) in the plane and (except for z = 0) a unique arrow
from the origin to the point (x, ).

There is also a polar-coordinate representation of the complex numbers.

Let r equal the length of the arrow and 6, be the minimum angle measured
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—————————————— 1t xy,7,ty3)

-
—
—

(xz,}’ﬂ

FIGURE 2 x

from the positive x axis to the arrow in the counterclockwise direction. Then
r=+x% +3? = |z

6y = tan™! 4
x
where 6, is that value of the inverse tangent such that 0 < 6, < 2r, where
cos 0, = x/|z| and sin 8, = y/|z]. Then

z=x 4+ iy = r(cos 0, + isin 0,)

According to the convention we have adopted, r and 6, are uniquely defined
except for z = 0 (6, is not defined for z = 0). However, we note that

cos 0y + isin 8, = cos (8, + 2km) + isin (8, + 2kn)

for any positive integer k. Therefore, we shall let 6 = 0, + 2kn,
k=0,123,...,and thenz = r(cos § + i sin 8), and we call 6 the argument
of z (0 = arg z), realizing full well that arg z is defined only to within multiples
of 2.

The algebraic operations on complex numbers can now be interpreted
geometrically. Let us begin with addition. Let z, = x, + iy, and z, =
Xy + iy;. Then z; + z; = (x; + x;) + i(y; + y,). Referring to Fig. 2, we
see that the arrow which corresponds to the sum z; + z, is along the diagonal
of a parallelogram formed with the sides corresponding to z;, and z,. Thus
the rule to form the sum of two complex numbers geometrically is as follows:
construct the parallelogram formed by the two arrows corresponding to the
complex numbers z, and z,; then the sum z; + z, corresponds to the arrow
from the origin along the diagonal to the opposite vertex. If the arrows lie
along the same line, obvious modifications in the rule need to be made.

The difference between two complex numbers, z, — z,, can be formed
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Yy _- (x1,1)

A
-

-
(Xl"xzy}ﬂ—}’z) (xhyz)

FIGURE 3 (=x3, —¥2)

geometrically by constructing the diagonal of the parallelogram formed by
z, and —z, (see Fig. 3).

To interpret the product of two complex numbers geometrically we use
the polar-coordinate representation. Let z, = ry(cos 8, + isin8,) and
2z, = ry(cos 8, + isin 6,). Then

zyz, = ryry(cos 0y + isin 6)(cos 8, + isin 6,)
rir;[(cos 8, cos 8, — sin 6, sin 0,)

+ i(sin 8, cos 8, + cos 0, sin 6,)]
ryry[cos (8; + 6,) + isin (6, + 6,)]

Figure 4 shows the interpretation of this result geometrically. This result also
gives us an important theorem.

Theorem 1.3.1 For all complex numbers z; and z,, |z,z,| = |z,| [z,].
For all nonzero complex numbers z, and z,, arg z,z, = arg z; + arg z,.

The quotient of two complex numbers can be similarly interpreted. Let
z, # 0and zy/z, = z;. Thenzy = z,zyand |z,| = |2,] |24, arg z;, = arg z, +
arg z3. Since [z, # 0, [z3] = [z,l/|z,]; and if z; # 0, z; 5 O, then arg z; =
arg z, — arg z,.

Y (1 Xy = VY2, X1V + X3¥¢)
nry
(xz,J’2)
r
8,
A xy,1)
2 1
6

FIGURE 4
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This proves the following theorem:

Theorem 1.3.2 For all complex numbers z, and z, # 0, |z,/z,| =
|z4)/|zl. For all nonzero complex numbers z, and z,, arg(z,/z;) =
arg z; — arg z,.

Powers of a complex number z have the following simple interpretation.
Let z = r(cos 8 + i sin 6); then z2 = r?(cos 20 + i sin 26), and by induction
z" = r"(cos n@ + i sin n0) for all positive integers #n. For all z # 0 we define
2% =1, and of course z7!' = r ™ ![cos (—@) + isin (—0)]. Then for all
positive integers m, z~™ = r ~™[cos (—m0) + isin (—mf)]. Therefore, we
have for all integers n and all z # 0
z" = r"(cos nf + isin no)

Having looked at powers, we can study roots of complex numbers. We
wish to solve the equation z" = ¢, where n is a positive integer and ¢ is a com-
plex number. If ¢ = 0, clearly z = 0, so let us consider only ¢ # 0. Let
|| = p and arg ¢ = ¢, keeping in mind that ¢ is multiple-valued. Then

z" = r%cos nf + isin nf) = p(cos ¢ + isin ¢)
and r" = p, n = ¢. Let ¢ = ¢y + 2kn, where ¢, is the smallest non-
negative argument of ¢. Then 8 = (¢, + 2kn)/n and r = p'/", where k is any

integer. However, not all values of k£ will produce distinct complex roots z.
Suppose k = 0,1,2,...,n — 1. Then the angles

4194)04‘211 ¢0+47I ¢0+(2n—-2)n:
n’ n ’ n U n

are all distinct angles. However, if weletk =n,n+ 1,n + 2,...,2n — 1,
we obtain the angles

oy og ot | oy b0t bn o ot Cn=Dm, o
n n n n

which differ by 2n from the angles obtained above and therefore do not produce
new solutions. Similarly for other values of k we shall obtain roots included for
k=20,1,2,...,n — 1. We have proved the following theorem.

Theorem 1.3.3 For ¢ = p(cos ¢, + isin ¢,), p # 0, the equation
z" = ¢, n a positive integer, has precisely »n distinct solutions

z = plin <cos $o + 2kn + isin b0 + 2kn>
n n

k=0,1,2,...,n — 1. These solutions are all the distinct nth roots of c.
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FIGURE 5

EXAMPLE 1.3.1 Find all solutions of the equation z* + 1 = 0. Since
z* = —1 = cos (m + 2km) + isin(n + 2kn)

according to Theorem 1.3.3, the only distinct solutions are

T . .. T
cosz+lsm—=

1 i
—_—+ —
4 2 2

cos§—+ 1sin3—n= ——1—_+L_
4 4 V22
coss—n+ isins—n= ——lz—i_
4 4 V22

cos7—4-+tsm7—n—-——

i
TENCIING

These roots can be plotted on a unit circle separated by an angle of 2n/4 = 7/2
(see Fig. 5).

EXAMPLE 1.3.2 Find all solutions of the equation z? + 2z + 2 = 0.
This is a quadratic equation with real coefficients. However, we write the
varijable as z to emphasize that the roots could be complex. By completing
the square, we can write z> + 2z + 1 = (z + 1)> = —1. Then taking the
square root of —1, we get z + 1 = cos (n/2) + isin(n/2) = iand z + 1 =
cos (3n/2) + isin 3n/2) = —i. Therefore, the only two solutions are
z= —1+iand z = —1 — i. Note that if we had written the equation as
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az> +bz+c=0,a=1,b=2¢=2and applied the quadratic formula

z_—bi\/bz-4ac

2a

we would have got the same result by saying + \/ :—l- = +i. The reader will
be asked to verify the quadratic formula in the exercises in cases where a, b,
and c are real or complex.

We conclude this section by proving some important inequalities which
also have a geometrical interpretation. We begin with the Cauchy-Schwarz
inequality

|x1x + y1yal < lzy] |2l

where z; = x; + iyy and z, = x, + iy,. Consider the squared version
(12 + y132) = x2%% + 2,0, 9, + yi7)?
(x1%2 + 1¥2)* < [z12)2,1% = (x4 + 3,7 + %)
(12 + y132)° < x2%,7 + p2a? 4 %7907 + py gt
This inequality will be true if and only if
2x1%, 192 < X795 + y2x,?

But this is obvious from (x, y, — x,y,)> > 0. This proves the Cauchy-Schwarz
inequality.

We have the following geometrical interpretation of the Cauchy-Schwarz
inequality. Let 6, = argz, and 6, = argz,. Then x; = |z,| cos 8,
Y1 = lzy] sin 04, x, = |z,| cos 8,, y, = |z,| sin ,, and

X1X; + Y1V, = |z4] |z,5)(cos 84 cos 8, + sin 0, sin 6,)
= |z4| |z5| cos (8, — 6)
and hence the inequality merely expresses the fact that |cos (8, — 8,)] < 1.
Next we consider the triangle inequality
Jdzy + 2] <zl + |z,
Again we consider the squared version

(x1 + x2)* + (3 + »,)?
= X2+ y2 + X7+ yR 4 2x0x, + 2000,

lzy + 2,

2y + 2212 < |z, + |z,0* + 2xyx, + py 2l
<zl + 1zl + 2z |zy] = (Iz4) + |z,))?

o



12 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

FIGURE 6 p

making use of the Cauchy-Schwarz inequality. The triangle inequality follows
by taking the positive square root of both sides. The geometrical interpretation
is simply that the length of one side of a triangle is less than the sum of the lengths
of the other two sides (see Fig. 6).

Finally, we prove the following very useful inequality:

lzy — 23} 2 “zll - lzz”

Consider |z,] = |z, — z; + 25| < |21 — 2| + |z;]and |z, = |z, — z; + 2] <
[z1 — z3| + |z,]. Therefore, |z, — z,| = |z,| — |2,) and |2, — z,| = |z,] — |z,].
Since both inequalities hold, the strongest statement that can be made is

2y = 23] 2 max (Izy] = |zal, lzal = 24} = |Iz4] = I2.]]|

EXERCISES 1.3

1 Draw arrows corresponding to z; = ~1 + i, z, = NE I, 2y + 25, 2y — 2,
z,2,, and z,/z,. For each of these arrows compute the length and the least
positive argument.

2 Draw arrows corresponding to z; = 1 + 4, z, = 1 — V3 i, 2y + 23, 2y — 2z,
2,25, and z,/z,. For each of these arrows compute the length and the least positive
argument.

3 Give a geometrical interpretation of what happens to z # 0 when multiplied by
cos a + Isina.

4 Give a geometrical interpretation of what happens to z # 0 when divided by
cos & + I sin a.

5 Give a geometrical interpretation of what happens to z # 0 when multiplied
by —1.

6 Give a geometrical interpretation of what happens to z # 0 under the operation
of conjugation.
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7 Give a geometrical interpretation of what happens to z # 0 when one takes its
reciprocal. Distinguish between cases |z| < 1, |z[ = 1, and |z| > 1.

8 How many distinct powers of cos ar + isin an are there if a is rational?
Irrational? Hint: If ais rational, assume @ = p/q, where p and g have no common
divisors other than 1.

9 Find all solutions of z° + 8 = 0.

10 Find all solutions of z2 + 2(1 + i)z + 2i = 0.

11 Show that the quadratic formula is valid for solving the quadratic equation
az? + bz + ¢ = 0 when a, b, and ¢ are complex.

12 Find the nth roots of unity; that is, find all solutions of z" = 1. If w is an nth
root of unity not equal to 1, show that 1 + w + w? + ... + w" 1 = 0.

13 Show that the Cauchy-Schwarz inequality is an equality if and only if z;z, = 0
or z, = az,, « real.

14 Show that the triangle inequality is an equality if and onlyif z,z, = O or z, = az,,
@ a nonnegative real number.

I5 Show that |z; — z,] is the euclidean distance between the points z, = x, + iy,
and z; = x; + iy,. If d(zy,2;) = |z; — z,|, show that:
(@) d(zy,2;) = d(z;,2;) b)) d(z4,2,) 20
(¢) d(z4,z;) =0ifandonlyifz;, = z,
d) d(zy,2;) < d(zy,z3) + d(z,,z5), where z; is any other point.

16 Describe the set of points z in the plane which satisfy |z — z,| = r, where z,
is a fixed point and r is a positive constant.

17  Describe the set of points z in the plane which satisfy |z — z,| = |z — z,], where
z, and z, are distinct fixed points.

18 Describe the set of points z in the plane which satisfy |z — z;| < [z — z,|, where
z, and z, are distinct fixed points.

19 Describe the set of points z in the plane which satisfy |z — z;| < 2|z — z,),
where z; and z, are distinct fixed points.

1.4 TWO-DIMENSIONAL VECTORS

In this section we shall lean heavily on the geometrical interpretation of com-
plex numbers to introduce the system of two-dimensional euclidean vectors.
The algebraic properties of these vectors will be those based on the operation
of addition and multiplication by real numbers (scalars). For the moment we
shall completely ignore the operations of multiplication and division of complex
numbers. These operations will have no meaning for the system of vectors
we are about to describe.

We shall say that a two-dimensional euclidean vector (from now on we
shall say simply vector) is defined by a pair of real numbers (x, ), and we shall
write v = (x,y). Two vectors v; = (x,,»,) and v, = (x,,»,) are equal if and
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,d)

(a,b)

FIGURE 7

only if x;, = x, and y, = y,. We define addition of two vectors v; = (x,y,)
and v, = (x3,5,) by v, + v, = (x; + X3, y; + ¥,). We see that the result is
a vector and the operation is associative and commutative. We define the
zero vector as 0 = (0,0), and we have immediately that v + 0 = (x,») +
(0,0) = (x,y) = vforall vectorsv. The negative of a vectorvis —v = (—x,—y),
and the following is obviously true: v + (—v) = 0 for all vectors v.T

We define the operation of multiplication of vector v = (x,y) by a real
scalar a as follows: av = (ax,ay). The result is a vector, and it is easy to verify
that the operation has the following properties:}

1 a(vy + v,) = avy + av,.
2 (a+ b)v=av + bv.

3 a(bv) = (ab)v.

4 lv=y.

The geometrical interpretation of vectors will be just a little different from
that for complex numbers for a reason which will become clearer as we proceed.
Consider a two-dimensional euclidean plane with two points (a,b) and (c,d)
(see Fig. 7). Let x = ¢ — aand y = d — b. A geometrical interpretation of
the vector v = (x,y) is the arrow drawn from (a,b) to (c,d). We think of this
vector as having length |v] = /x* + y* = J(c — @? + (d — b)* and direc-
tion (if |v| # 0) specified by the least nonnegative angle 8 such that x = |v| cos §
and y = |v| sin 6. There is a difficulty in this geometrical interpretation, how-
ever. Consider another pair of points (a',b’) and (¢’,d’) such that ¢ — a =
¢ —a and d — b =d’ — b. According to our definition of equality of
vectors, the vector (¢’ — a', d' — b') is equal to the vector (¢ — a, d — b).
In fact, it is easy to see that both vectors have the same length and direction.

+ Compare these statements with Theorem 1.2.1 for complex numbers.
} Compare with Exercise 1.2.8.
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FIGURE 8

This forces us to take a broader geometrical interpretation of vectors. We shall
say that a vector (x,y) # (0,0) can be interpreted geometrically by any arrow

which has length |v| = \/ x* + y? and direction determined by the least non-
negative angle 0 satisfying x = |[v] cos 8 and y = |v| sin 8. The zero vector
(0,0) has no direction and therefore has no comparable interpretation.

The geometrical interpretation of vector addition can now be made as
follows. Consider vectors v, = (x;,y,) and v, = (x,,5,). Then v, + v, =
(x; + x5, ¥y + »,). See Fig. 8 for a geometrical interpretation of this result.
The rule can be stated as follows. Place v, in the plane from a point P to a
point Q so that v, has the proper magnitude and direction. Place v, from
point Q to point R so that v, has the proper magnitude and direction. Then
the vector v, + v, is the vector from point P to point R. If P and R coincide,
vy + vy, =0.

An immediate corollary follows from this rule of vector addition and the
triangle inequality:

Vi + Vol < vl + [vy

Next let us give a geometrical interpretation of multiplication of a vector
by a scalar. Letabe ascalar and v = (x,y) a vector. Thenav = (ax,ay) and

lav] = Va?x? + @) = V& Jx? +:y* = la| |v|

since va* = lal. Therefore, multiplication by a modifies the length of v if
la| # 1. If |a] < 1, the vector is shortened, and if |a] > 1, the vector is length-
ened. If a is positive, ax and ay are the same sign as x and y and hence the
direction of v is not changed. However, if a is negative, ax and ay are of the
opposite sign from x and y and, in this case, av has the opposite direction from v.
See Fig. 9 for a summary of the various cases. Notice that —v = —1v has the
same length as v but the opposite direction. Using this, we have the following
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(1<a)
av
v
( < 1) av
<
el
- ay,
//‘ ©<a<)
av,
ACi<a<0)
FIGURE 9

interpretation of vector subtraction v, — v, = v; + (—v,) (see Fig. 10).
Alternatively, v, — v, is that vector which when added to v, gives v, (see
triangle POR in Fig. 10).

There is another very useful operation between vectors known as scalar
product (not to be confused with multiplication by a scalar). Consider Fig. 11.

Vi = (x,71) = (Iv,] cos 8, |v4| sin 6,)
vy = (X2,52) = (|v,| cos 05, |v,| sin 6))
Then

X1%; + y1Y2 = |vq] |[v;}(cos 8, cos 0, + sin 6, sin 0,)
= |v,] [v,f cos (8, — 0,)

This operation, denoted by v, * v,, is called the scalar product, and the result,
as we have already seen, is a scalar quantity given by the product of the lengths
of the two vectors times the cosine of the angle between the vectors. If either
or both of the vectors are the zero vector, then v, * v, = 0.

The reader should verify the following obvious properties of the scalar
product:

1 virvy =v,°v,.

2 VetV + va) = (vt V) + (Vg0 v).

3 avy vy, = a(vy*v,).

4 vev =]

5 vyt vyl < (vl fval.

6 If [v;] # Oand |v,| # O, then v, - v, = O if and only if v, and v, are
perpendicular.f

t1If |vy| # O and |vy] # 0 and vy« v, = 0, we say that v; and v, are orthogonal.
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2N

FIGURE 10

EXAMPLE 1.4.1 Find the equation of a straight line passing through the
point (x4,y,) in the direction of the vector (a,b). Let (x,y) be the coordinates
of a point on the line. Then the vector from (0,0) to (x,y) is the vector (x,y).
This vector is the sum of the vector (x,,y,) and a multiple of (a,b) (see Fig. 12).
Hence the equation of the line is (x,)) = (xo,¥0) + t(a,b). We usually refer
to ¢ as a parameter and to this representation as a parametric representation of
the line. The parameter ¢ clearly runs between — oo and oo.

EXAMPLE 14.2 What geometrical figure is represented parametrically by
(x,y) = (xg,¥0) + (r cos 8, r sin §), where r > 01is constant and the parameter
0 runs between 0 and 27? In this case, (x — xo, ¥ — yo) = (r cos 8, r sin 6)
and [(x — xo, ¥ — yo)l = r. The figure is therefore a circle with center at
(x9,¥0) and radius r (see Fig. 13).

The two examples illustrate the usefulness of the concept of vector-valued
Sunctions. Suppose for each value of 7 in some set of real numbers D, called the
domain of the function, a vector v(¢) is unambiguously defined; then we say

FIGURE 11
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(x, )
(xo*tta, yo+tb)
(xg0)

/ (@, b)

0,0) *

FIGURE 12

that v is a vector-valued function of ¢; ¢ is called the independent variable, and
v is called the dependent variable. The collection of all values of v(¢) taken on
for ¢ in the domain is called the range of the function.

In Example 1.4.1, if vy = (x0,¥,) and u = (a,b), then we can write
(x,y) = ¥(f) = Vo + tu, where —00 < ¢ < 0. Then v is a vector-valued
function of 7. The domain is the set of all real ¢, and the range is the set of all
vectors from the origin to points on the line through (x,,,) in the direction
of u.

In Example 1.4.2, if vy = (x0,¥) and 0 < 6 < 2m, then (x,3) = v(§) =
Vo + (r cos 0, r sin §). The domaint is {6 | 0 < 6 < 2n}, and the range is the
set of vectors from the origin to all points on the circle with center at (x,,,)
and radius r.

The concept of derivative of a vector-valued function is very easy to define.
Suppose for some #, and some & > 0, all ¢ satisfying t, — 6 <t < 1, +
are in the domain of v(¢) and there is a vector v'(#,) such that

e YO = Yo _
t-+to t— 1

vV(ty)l = 0

then v'(¢,) is the derivative of v(¢) at ¢,. Since the length of the vector

¥(1) — v(to)

V(1)
t—t, 0

goes to zero as t — t,, it follows that if v(t) = (x(2),y(¢)) and v'(t;) =
(x'(25),¥'(20)), then the above limit is zero if and only if

fim [M - x’(to)] -0

t~to t— 1
lim [y(t) - J’(to) - yl(to)] =0
t—~to t - to

1 We are using the usual set notation: {9| 0 < 8 < 2n} is read “the set of all 8 such
that 0 < 6 < 2a.”
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x, y)

(xg,%0)

FIGURE 13

which imply that x'(¢,) and y'(t,) are, respectively, the derivatives of x(¢) and
¥(t) at t,. We have therefore proved the following theorem.

Theorem 1.4.1 The vector-valued function v(¢) = (x(z),y(t)) has the
derivative v'(t5) = (x'(t,),)'(fo)) at #, if and only if x(¢) and y(¢) have the
derivatives x'(7,) and y'(t,) at .

In Example 1.4.1,
V(l) - V(to) = (a b)
t—t, ’
Therefore,

lim [M - (a,b)] -0

o

and hence v'(t) = (a,b). Notice that the derivative (a,b) is tangent to the line.
This will also be the case if we take the derivative in Example 1.4.2. Using
Theorem 1.4.1, we have

V(@) = (—rsin 6, r cos 0)

and [v — (x9,¥0)] * V' = 0, which shows by property 6 for the scalar product
that v’ is perpendicular to the vector drawn from the center of the circle to the
point where v'(6) is calculated. Therefore, v’ is tangent to the circle. This result
is true in general. In fact, it is easy to see from Fig. 14 why this should be the
case.

If v(t) = (x(2),(2)) is a vector from the origin to a point on the curve C
with a tangent line L at v(t,) = (x,,),), then it is clear that the direction of

¥(1) — v(to)
t - to
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(xo, J’o)

v(©) - ¥(ty)

A v(tg)
0
./

V(1)

FIGURE 14

approaches the direction of the tangent line as t — ¢y, provided v'(z,) exists
and is not the zero vector. We shall, in fact, use this limit to define the tangent
to the curve.

Let v(z) be the vector from the origin to a point on the curve C. The point

moves along the curve as the parameter ¢ varies. If v(¢) has a nonzero derivative

v'(fo) at v(t,), then C has a tangent line at v(,) and a tangent vector v'(f,) and
the equation of the tangent line is

(x’y) = V(’o) + (t - to) V'(to) —0 <t <

EXERCISES 1.4

1

2

Let v, = (1,-2) and v, = (—3,5). Find and draw sketches of v, + v,,
Vi — V3, 2Vy + V,, and 4(v, — vy).

A man is walking due east at 2 miles per hour and the wind seems to be coming
from the north. He speeds up to 4 miles per hour and the wind seems to be from
the northeast. What is the wind speed, and from what direction is it coming?
An airplane is 200 miles due west of its destination. The wind is out of the north-
east at 50 miles per hour. What should be the airplane’s heading and airspeed
in order for it to reach its destination in 1 hour?

Let v=(1,- v 3). Find |v| and the least nonnegative angle 6 such that
x = |v|cos 8, y = |v|sin 0.

Find the vector equation of the straight line passing through the points (—1,2)
and (3,4). Find a vector perpendicular to this line.

Find the vector equation of the circle with center at (1,3) passing through the
point (4,7). Find the equation of the tangent line to this circle at (4,7).

A curve is given by (x,y) = (3t2 — t, 3 — 2t?), 0 < ¢t < 4. Find a tanger
vector to this curve at the point (10,0).
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8 Verify the six properties of the scalar product listed in this section.
9 Assuming that v(¢), v,(¢), v,(¢) are differentiable vector functions and a(t) is a
differentiable scalar function, show that
@ [vi(e) + v (D) = vi(®) + v3()
®  [a@)@) = a'()v@) + alt)v(e)
© @) v ) = [vi(©) - vz()] + [vi(t) - va(0)]
@ [vOPT = 2[v() - v(1)]

10 Using part (d) of Example 9, prove that if v(f) has constant nonzero length
and v'(¢) # 0, then v(¢) is orthogonal to v'(¢).

11 Let v(2) = (x(+),y(t)) represent a curve parametrically. If V() # 0, then
T(¢) = v'(t)/]v'(t)] is a unit tangent vector [|T| = 1]. Show that T’ is normal to
the curve, thatis, T+ T’ = 0.

12 Ifaphysical particle moves along a curve given parametrically by r(¢) = (x(2), (1)),
where ¢ is time, then v(t) = r’(¢) is called the velocity, s(t) = |[v(2)] is called the
speed, and a(t) = v'(t) is called the acceleration. If the speed is never zero, show
that a(r) = s’(t)T + s(t)|T’|n, where T is the unit tangent and n is a unit normal.

1.5 FUNCTIONS OF A COMPLEX VARIABLE

We now return to our study of complex numbers to consider functions of a
complex variable. We do not need an extensive treatment of this subject,
concentrating on the things we shall need for our study of differential equations.
However, the reader should be aware that there is a vast literature on the
subject.t

Suppose that for each complex number z in some set D (domain of the
function) of the complex plane there is assigned a complex number f(z); then
we say that we have a complex-valued function f of the complex variable z
defined in D. The set of values f(z) is called the range of S Letz=x+iy
and f(z) = u + iv, where x, y, u, v are all real. Then clearly u(x,y) and v(x,y)
are real-valued functions of two real variables x and y defined for z in D.

EXAMPLE 1.5.1 Let f(z) = z? and D be the entire complex plane. Then
f(2) = u(x,y) + iv(x,y) = x* — y* + i(2xy). Particular values are, for
example, f(1 + i) = 2i, f(—i) = —1.

EXAMPLE 1.5.2 Let f(z) = vz = Iz|*/*[cos (} arg z) + i sin (} arg z)],
0 < argz < 2m, f(0) = 0. This function is defined for all z in the complex

1See, for example, J. W. Dettman, “Applied Complex Variables,” Macmillan, New York, 1965
(rpt. Dover, New York, 1984),
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plane. For each z # 0 there are two distinct square roots. The function in this
example defines one of these square roots. To describe the other square root
we could define g(z) = —f(2).

There are two concepts of derivative of a function of a complex variable
which we shall introduce, derivative along a curve and derivative at a point.
These two notions of derivative are closely related, and as these relations are
pointed out, we shall see that our definitions are quite consistent.

Suppose that the domain of f contains a curve C parameterized as follows:
z(t) = x(t) + iy(t),a <t < b. Then

J@)

u(x(8), (1)) + iv(x(t),¥(t))
U@) + iv(y)

so the real and imaginary parts of f are defined along C as functions of the real
parameter ¢. If U and V are differentiable as functions of ¢, then the derivative
of falong C is defined by

af
= =U'(t) + iV'(¢
o O+ V'@
If x’(t) and y'(¢) exist and the partial derivatives du/0x, du/dy, dv]dx, and dv/dy

are continuous as functions of x and y at points on C, then by the chain rule

a _ .

o 8x (t)+a—y(t)+la—x(t)+t y(t)
Suppose that for some 6 > 0 all z satisfying |z — zy] < J are in the domain
of f. Further, suppose that for all z satisfying this inequality ou/dx, du/ody,
dv/dx, and 0v/dy are continuous and the Cauchy-Riemann equations
0u/dx = &v/0y and dujdy = —(0v/Ox) are satisfied at z,. Then we say that f'is
differentiablet at z, and the derivative is

, ou . 0v
Zo) = — + | —
(o) o ,ax
Jy dy

where the partial derivatives are evaluated at z, = xo + iy,. This seems like a
rather arbitrary definition of derivative, but we shall show that it is consistent
with our definition of derivative along a curve.

1 If f is differentiable for all z satisfying |z — zo| < &, for some & > 0, then we say
that f is analytic at z,.



COMPLEX NUMBERS 23

Let f be differentiable at zy = x(#;) + i¥(¢;) on a curve C, where the
derivative along C at ¢, exists. Then at 7,

daf _ <‘3_“ + iﬁ) [x'(te) + iy'(te)]
ox

dr \ox
- (ai; - i%;f) [x'(to) + i¥'(t0)]
= f'(z0)2'(t0)

where z'(t;) = x'(t,) + iV'(¢,). Hence, we see that our definition of derivative
at a point is a natural one in that it leads to a natural chain-rule result for the
derivative of a function along a curve C. Also the value of the derivative at a
point does not depend on the definition of any particular curve passing through
the point.t

EXAMPLE 1.5.3 The function of Example 1.5.1 has a derivative at
every point. Since f(z) = x* — y* + i(2xy), 0u/dx = 2x = dv/dy and
Ou/dy = —2y = —(0v/0x) and these partial derivatives are continuous every-
where. We have f'(z) = 2(x + iy) = 2z. Notice the similarity with the dif-
ferentiation formula

d .,
=z =2
dx(x) X

This is not just a coincidence.

EXAMPLE 1.54 Consider the function defined by f(z) = |z|? = x? + )2
Here u = x*> + )%, v =0. Then 0u/dx = 2x, du/dy = 2y, dvfox = 0,
0v/8y = 0. These partial derivatives are all continuous. However, du/dx = dv/dy
and Ju/dy = —(dv/0x) at only one point: x = y = 0. This function is dif-
ferentiable at the origin (where the derivative is zero) and at no other point.

EXAMPLE 1.5.5 Consider the function defined by f(z) = |z| = \/ x2 + Y.
Here u = Vx* + ¥%, v = 0. Therefore,

ou _ x ou _ y v Ov

x  xT 4y Gy Jx? gy y2  Ox 0y

t For the more conventional approach using limits of difference quotients see
Dettman, op. cit.
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The Cauchy-Riemann equations are never satisfied when x and y are different
from zero, and when x = y = 0, the du/0x and du/dy do not exist. Therefore,
this function is never differentiable.

Later on we shall want to discuss complex-valued solutions of differential
equations. Suppose, for example, that we wish to show that f(t) = cos ¢t +
isin ¢ is a solution of the equation d*f/dt> + f = 0. We can interpret this
to mean we have some function f defined on the x axis parameterized by
z(t) = t + i0. We wish to differentiate f along the x axis, and using our above
definition, we have

a

= —~sint + icost

Differentiating again, we have
d¥f

= —cost — isint = ~f
dr?

Therefore, d2f/dt* + f = 0, where the equality is to be interpreted in the sense
that both the real and imaginary parts of the left-hand side are zero.

On the other hand, we may wish to show that a function satisfies a dif-
ferential equation where the derivatives are to be interpreted in terms of the
complex variable z. For example, f(z) = z? is differentiable everywhere in
the complex plane, and it satisfies the differential equation zf” — 2f = 0. In
any given situation the context of the problem will indicate which interpretation
should be put on the differential equation.

EXERCISES 1.5

1 Consider the function defined by f(z) = z3. What is its domain? Find its real
and imaginary parts. Where is it differentiable? What is its derivative?
2 Show that f(z) = Re (z) and g(z) = Im (z) are nowhere differentiable.
3 Assuming that f(z) and g(z) are both differentiable at z,, prove:
@ (f+ 9)(z0) = f'(z0) + g'(z0)-
(b) (¢f)(20) = ¢f'(z0), where ¢ is a complex constant.
(© (f9)(20) = f(20)9'(20) + 9(z0)f (z0).
d) (e f + ¢39)(20) = ¢1f(20) + c29'(20) where ¢; and ¢, are complex con-
stants.
4 Using part (c) of Exercise 3 and mathematical induction, prove that
d

— 2" = nz"! n=20,1,273,...
dz
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5 What is the derivative of the polynomial
PE)=azz" + ap_ 2" + oo  + a2 + a,

where the a’s are complex constants?

6 Consider the function defined by f(z) = e*cos y + ie* sin y. What is its
domain? Where is it differentiable? What is its derivative?

7 Consider the function defined by f(z) = cos x cosh y — i sin x sinh y. What is
its domain? Where is it differentiable? What is its derivative?

8 Consider the function defined by f(z) = 1/z. What is its domain? Where is it
differentiable? What is its derivative?

9 Let f(z) = u(x,y) + iv(x,y) be differentiable at zo. Show that u and v are

continuous at zy = xo + iy,. Hint: Use the mean-value theorem for functions
of two real variables.

10 Use the result of Exercise 9 to show that the function of Example 1.5.2 is not
differentiable on the positive x axis. Where is this function differentiable? What
is its derivative?

11 Consider the function defined by f(z) = In |z| + iargz, 0 < arg z < 2n. What
is the domain? Where is it differentiable? What is its derivative?

12 Show that f(¢) = € cos bt + ie® sin bt satisfies the differential equation
S — 2af’ + (@®> + b*)f = 0. Here prime means derivative with respect to ¢,
and a and b are real constants.

13 Show that the function f(z) = &*(cos ky + i sin ky), where k is a real constant,
satisfies the equation df/dz = kf.

1.6 EXPONENTIAL FUNCTION

In this section we discuss the exponential function of the complex variable z.
As our point of departure we begin with the power-series definition of the real
exponential function

2 3 ) k
e"=]+i+x_+x_+---=zx_
121 31 & k!
A natural way to extend this to the complex plane is to define ¢ as follows:t
3 L k
=1+ z z + z + = Z z
o2t 3 !

Of course, we must define what we mean by the infinite series of complex
numbers. Consider the partial sum

- Z* - Re (z9 | . < Im(zH
— = _— 4 —_—
k-Zo k! ; k! ‘Z) k!

T We shall also use the notation exp z.
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The two series

i Re (z") and i Im (z")

both converge, as can be seen by comparison with the series

which converges for all |z|. The necessary inequalities to see this are
Re (M) < |2 = |zf*  m &)} < |2¥ = |z)*
w0 ok
We shall say that the series of complex numbers z o converges if and

k=0

only if the real series

el k © k
ZRe(z) and Im (Z%)
k! k!

k=0 k=0

both converge and has the sum S = U + iV, where U is the sum of the real
parts and V is the sum of the imaginary parts. In this case, it is clear that the
complex series converges for all z.

Now let z = iy. Then the (27 + 1)st partial sum is

zi‘(iyl"=1_zf+£_...+(_—_l)izﬁ
& K 2t 4 (2n)!
wily o 2y
3! 5! 2n + D!

The series of real parts converges to cos y, and the series of imaginary parts
converges to sin y. This proves the important Euler formula:

e” =cosy + isiny
We shall prove in the next section that the complex exponential function
has the usual property
efr a2 — eF1e%2
Assuming this for the moment, we now have
& = &t = % = e*cosy + ie*siny

It is now clear that the exponential function is analytic for all z, because
u(x,y) = €* cos y and v(x,y) = €*sin y are continuously differentiable and
satisfy the Cauchy-Riemann equations for all z.

Many of the common transcendental functions of a real variable can now
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be defined for the complex variable z using the exponential function. For
example, from ¢” = cos y + isiny and e™” = cos y — isin y it is easy to
show that

cosy = &+ et
2
. v — e
siny = ————
Y 2i
We then generalize for the complex variable case to
elz + e—zz
cos z =
2
iz _ g-iz
sin z = -
2i
Recalling the definitions of the hyperbolic functions
X X
coshx = £+ ¢
2
& — e *

sinh x =

we can express cos z and sin z as follows:
cos z = Y(e7Ve” + e )

= }e™7(cos x + isin x) + }e’(cos x — i sin x)
= cos x cosh y — isin x sinh y

]

sin z %’ (e77e™ ~ ePe™i®)

—i . i .
= Y e ¥(cos x + isin x) + Ee"(cos X — isin x)

= sin x cosh y + i cos x sinh y

It is now clear that cos z and sin z are analytic everywhere.
In the case of the real variable x, tan x = (sin x)/(cos x). Hence, we
generalize to the complex variable case as follows:

sin z _ sin x cosh y + i cos x sinh y
tan z = =

€osz  cos x cosh y — isin x sinh y

_ (sin x cosh y + i cos x sinh y)(cos x cosh y + i sin x sinh y)
cos® x cosh? y + sin® x sinh? y

sin x cos x + i sinh y cosh y
cos? x + sinh? y
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tan z is analytic everywhere except where cos? x + sinh? y = 0. Butsinh y = 0
only when y = 0, and cos x = 0 only when x is an odd multiple of #/2. There-
fore, the points where tan z is not analytic are

2n + 1

n n=0, 1, +2,...
2 +

The other trigonometric functions are defined as follows:

€os z _ cos x sin x — i cosh y sinh y

cotz = — = — —
sin z sin® x + sinh?® y
1 cos x cosh y + isin x sinh
sec z = = 3 y — y
cos z cos* x + sinh® y
cscz = 1 _ sinxcoshy — icos xsinh y
sin z sin? x + sinh? y

sec z is analytic everywhere except where cos z = 0 while cot z and csc z are
analytic everywhere except where sin z = 0.

The hyperbolic functions are similarly defined in terms of the complex
exponential function:

? + e * . e — e’ *
coshz=5F¢ gnhz=2"2¢_
2
inh z cosh z
tanh z = 31 coth z = —
cosh z sinh z
1
sech z = 1 csch z = —
cosh z sinh z

We normally think of the logarithmic function as the inverse of the
exponential function. However, in the case of the complex exponential function
we have difficulty defining the inverse because of the property e**?™ = ¢* for
any integer k (see Exercise 1.6.6). Therefore, if we wish to define an inverse
of the exponential function, we must restrict the imaginary part of the dependent
variable. We begin with the equation

et = e¥cosv + isinv) =z =x + iy
Therefore, x = € cos v and y = €* sin v, from which we derive

u

il

31In(? + y*) = In|z|

p=tan1% = argz
x
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However, in order to make this single-valued we must restrict arg z to some
interval of length 2z, say 0 < arg z < 2rn. With this restriction we can then
write

u+iv=1logz=Inj|z| + iargz

This function is analytic everywhere except at the origin and on the positive
x axis. Where it is differentiable,

dlo z—]
dz g z

EXERCISES 1.6

N~

N AW

o

10

11
12
13

14
15

Starting with the definition e = e*(cos y + isin y), prove that e*1772 = ¢%1¢22,
Show that the real and imaginary parts of e satisfy the Cauchy-Riemann equations
everywhere.

Show that e? is never zero.

Show that e = €7,

Show that e™* = 1/é”.

Show that e+ 2¥* = ¢7 for every integer k.

Show that e% satisfies the differential equation f* = af for any complex constant
a.
Letting z = r(cos 8 + i sin 6), show that

el = exp (1 cos 0) [cos (1 sin 0) — isin (1 sin 0)]
r r r

Prove that e!'/* takes on every complex value except zero within every circle
centered on zero.

Show that e?™i/" k = 0,1,2,...,n — 1, are the only distinct solutions of

"= 1.

Prove that cos z and sin z are analytic everywhere and obtain the formulas
d . d .
—cOos z = —sin z — sin z = cos z
dz dz

Show that cos z and sin z satisfy the differential equation f” + f = 0.
Show that |cos z| and |sin z| are not bounded in the complex piane.
Prove that cosh z and sinh z are analytic everywhere and obtain the formulas

d . d .
— cosh z = sinh — sinh z =
pr z z = sinh z = cosh z

Find all the points where cosh z = 0.
Find all the points where sinh z = 0.
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16 Determine where tanh z is analytic.

17 Determine where coth z is analytic.

18 Show that cosh z and sinh z satisfy the differential equation f” — f = 0.

19 Obtain the formulas cosh i z = cos z and sinh 7 z = i sin z.

20 Determine where logz = In |z] + fargz, 0 < arg z < 2r, is analytic and
obtain the formula d/dz log z = 1/z.

21 Define z° = exp (a log z), log z defined as in Exercise 20. Where is this function
analytic, and what is its derivative? Assume a is complex.

22 Define a* = exp (zlog a), a # 0. Where is this function analytic, and what is
its derivative?

*1.7 POWER SERIES

The purpose of this section is to develop further the theory of series of complex
numbers and, in particular, the theory of power series of the form

L

Z a(z — z,)*, where z, is a fixed complex number and the a’s are complex
k=0
constants. The reader will recall that we used a power series to define the

exponential function
x k
R SN
2

One of our goals in this section will be to prove the validity of the formula

zy+ 21,2
g1tz = pf1pf2

We begin by defining the general concept of convergence of a series of

complex numbers Z Wy We define the partial sums S, = 2 w,. We
k=0

say that the series Z w; converges to the sum S if lim S, = S. If the

n—=wo
limit does not exist, then we say that the series diverges. The limit of a sequence
of complex numbers {S,} exists and is equal to S if and only if, given any ¢ > 0,
there exists an N such that |S, — S| < ¢ whenever n > N.

EXAMPLE 1.7.1 Consider the series Z ¢*, where ¢ is a complex number.
The partial sums are

n
=>d=1l+c+ct+ 4
k=0
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Multiplying by ¢, we have
eS,=c+ct+c+ -+ M
Subtracting, we obtain
(1 —-0S,=1-c"*

Ifc# 1,then S, = (1 — ¢**)/(1 — ¢). If |c| < 1, then [¢"*!| tends to zero
as n - o. Hence, we conjecture that for |c] < 1 lim S, = 1/(1 — ¢). Let
us prove this from the definition. "= o

1

|c|n+1
1 —-c

T

Given ¢ > 0, we wish to show that [c|""! < ¢]l — ¢| for n sufficiently large,
or (n+ 1)Injcl <Ine + In|l — ¢|. Dividing by In |c[, which is negative,
we wish to show that for sufficiently large n,

Ing +In|l - ¢

n+1>
In |c|

It is now clear that if n is greater than the largest integer in

Ing + In|l — ¢
In |c]|

then n + 1 will be greater than (In¢ + In |1 — c{)/In |c|]. Therefore, for

each ¢ > 0 we can find
N = [lne +In|l - cl:I
In jc|

where the bracket stands for the “largest integer in,” and when n > N,

S, —

<&

1-c¢

This proves our conjecture. It is clear that when |c| > 1, then |c|**! tends to
o as n— . Hence |S, — 1/(1 — ¢)| cannot be made small for large n.
This shows that the series diverges for [¢| > 1. This still leaves the case [¢[ = 1
to be considered. If ¢ = 1, then

S,= 2> 1*=n+1
k=0

In this case, S, — o as n — 00, and the series diverges. If [c] = 1 and ¢ # 1,
thenc = cos @ + isin 0, 6 # 0, and

1 __cn+l
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cannot remain arbitrarily close to some fixed point for all sufficiently large n
because ¢**! = cos (n + 1)@ + isin (n + 1)0 moves around the unit circle
in jumps of arc 6. Therefore, the series diverges for [¢| = 1. In summary,

1
k

c=
0 1—c¢

[\t

ifle] < 1

k

and the series diverges for |¢] >

The convergence of a series of complex numbers is equivalent to the con-
vergence of both the series of real parts and the series of imaginary parts. Let
W, = w, + iv, 4, = Re (W), v, = Im (w,), and

n n
S, = >u +in,‘=U,,+iV,,
k=0 k=0
Ifim S, = 8 = U + iV, then lim U, = Uand lim ¥, = V. This is because

n=o nao n=o
U, — Ul <|[S, — S
Ve=Vi<|S, — S|

and given any ¢ > 0, there is an N such that |S, — S| < & for » > N and

therefore |U, — U| < ¢ and |V, — V| < & for n > N. Conversely, suppose
lim U, = U and lim ¥, = V. Then, by the triangle inequality with

n—=+w n—o

S=U+iV

Given ¢ > 0, there is an N such that |U, — U| < &2 and |V, — V| < ¢/2,
and hence |S, — S} < ¢for n > N. We have then proved the following theorem.

Theorem 1.7.1 Let u, = Re (w,) and vk = Im (wk) Then the series

z w, converges if and only if both Z u, and Z v, converge, and
= 2N

Next we define absolute convergence. A series of complex numbers

Ms

V.

77[\/]8!

k=0

[

0 00
> w, is said to converge absolutely if the series of real numbers > Iwil
k=0 k=0

converges. Absolute convergence implies convergence, as we see in the next

theorem. However, the converse is not true, as is illustrated by the series

— " o ]
Z ( ) , which converges although Z % diverges.
k=1
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0

Theorem 1.7.2 If the series z |w,| converges, then so does Wy
k=0 k=0
PROOF Let #, = Re (w,) and v, = Im (w,). Then || < |w,| and

o0 o0
[vdl < Iwil, and hence the series > |u] and > || converge by com-
= k=
k o:? [
parison with the convergent series Z lw,]. Now
k=0
0 < || — wp < 2y

0< Ivkl -y < 2lvk|
Then again by comparison, > (ju] — %) and > ([v] — v,) converge,
k=0 k=0

and therefore by subtraction

I\Y%E]

€
[uy| — Z (lug] — ) = U
k=0 k

b
Il

0

Uy

Ms Itvis

od = 3 (ol = v) =

[ k=0 k=0

N8

the series of real parts and imaginary parts both converge and, by

Theorem 1.7.1, the series > w, converges.
k=0

Before we consider power series, we need one more theorem which gives
us a necessary condition for convergence. The failure of this condition gives
us a test for divergence.

0
Theorem 1.7.3 If > w, converges, then lim [w,| = O.
k=0

n— oo

o0
PROOF  Since z w, converges, the limit of the partial sums exists

k=0

and lim S, = lim §,_; = S. Therefore, lim (S, — S,_,) = 0, and
n—* o n—=oo n- o

lim |w,) = lim |S, — S,_,] = 0.

n-+ oo n—+o

[ o]
EXAMPLE 1.7.2 The divergence of the series Z c* for |c| = 1 follows
k=0

directly from Theorem 1.7.3. For suppose the series converged; then lim le|”
would be zero. However, |c|* > 1. no®
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That the condition lim |w,| = 0 is not a sufficient condition for conver-

n= oo 1
gence is shown by the divergent series Z R although lim (1/n) = 0.
k= l n—oo

o0
We can now begin our study of power series of the form > ayz — z,)%,
k=0

where z, is a fixed complex number and the a,’s are complex constants. By
introducing the variable { = z — z, we can always put the series in the form

o0

2. al*. Hence, without loss of generality we study series only of the form

@z,

x
Msd

k

o]

90

Theorem 1.7.4 If the power series > a,z* converges for z = ¢, then
k=0

it converges absolutely for all z such that |z| < |c|. If the power series

diverges for z = c, then it diverges for all z such that |z| > ||.

PROOF Assume that z a,c* converges, ¢ # 0. Then llm layc¥| =
k=0
Therefore, there is a constant M such that {a,ct| < M for all k Now let

o
lz] < lel, and consider the series > |a,z*|. We have |gz" = |a,c¥| x

k=0
0 z|*
lz/cl* < M|z/c|*. But the series > M |~| converges since |z/c| < 1.
© k=0 4 ©
Therefore, by comparison > |a,z*| converges, and Z az* converges
k=0 k=0

absolutely for |z| < |c¢|. This completes the first part of the proof. For

the second part assume that z a;c* diverges but that Z a,z* converges
k=0 k=

for {z| > |¢|. But then Z |a,c*| converges and z a,c* converges, which

is a contradiction. k=0

There are power series which converge for all z. The series used to define
the exponential function is a good example. There are power series which
converge only for z = 0 (all power series converge for z = 0). An example

of such a seriesis > k! z* forif z # 0, lim [k!z*| = oo,
k=0 k-
If a power series does not converge for all z but does converge for some

z # 0, then Theorem 1.7.4 implies that there is a positive number R such that
the power series converges for |z| < R and diverges for |z|] > R. In this case,
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R is called the radius of convergence of the power series, and the circle [z] = R
is called the circle of convergence. The next two theorems give methods for
determining the radius of convergence of a power series.

Theorem 1.7.5 Let lim |a,,,/a,] = L # 0. Then the radius of con-

n—w

vergence of > a,z*is 1/L.
k=0

PROOF Consider

n+1
lim |Znt1Z

n—rao

l = Ljz|

a,z

Suppose L|z| < 1. Then there is an r such that 0 <r < 1 and an N
such that |a,, ;2**!/a,2"| < rforalln > N. Hence |ay,z"*!| < rlayz"|,
lay+22" 12 < rlayy 2Vt < rPlayz®), ete. In general,

|a~+jZN+j| < rJIaNZNl j = 1, 2, 3, “e

o0
The series Z r? converges since 0 < r < 1. Hence, by comparison the
i=1

@ o0
series > |a,z*| converges, and so does > @z*. We have then proved
k=0 k=0
that the power series converges for |z < 1/L.
Now suppose L|z| > 1. Then there is a constant p > 1 and an M

such that

n+1
Gt1? | > p  foralln> M

a,z"

By an argument like the one above we have forj = 1, 2, 3,...
|aM+szH| = Pj|aMZM|

But since p > 1, p/ » o0 as j — oo and therefore

IaM+sz+j| -+ ®©

as j — oo, which shows that the series diverges for |z| > 1/L.

Theorem 1.7.6 Let lim |q,|'/" = L # 0. Then the radius of conver-

n-w

gence of > az*is 1/L.
k=0

PROOF The proof, which is very similar to that of Theorem 1.7.5,
will be left for the reader.
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EXAMPLE 1.7.3 Find the radius of convergence of the power series

© (=1 Kk

> ( k)z . Here the g, = (—1)"/k, and

k=1
lim |[Z2+4} _ fim =
o | a, nvon + 1

Therefore, the radius of convergence is 1. This example shows that on the
circle of convergence we may have either convergence or divergence. For
example, at z = 1 the series converges, but at z = —1 the series diverges.

k
EXAMPLE 1.7.4 Determine where the power series Z ( k) converges.

Consider
n _I.EI_ "’ =ﬂ_)0 asnh = oo
\/ Inn Inn

It is clear that thereisanr, 0 < r < 1, and an N such that

n\/(—lil—)' <r foralln > N
Inn

Hence, [|z|/Inn]" < r*. Then by comparison with the convergent series
o0

Z r* we have absolute convergence for all z.
k=0

o
If we formally differentiate a power series > a,z¥, we obtain the power
k=

series > ka,z*~'. Suppose
k=1

lim |%ttf = L 20
n- o a,,
Then
fim 2F 1 (Gnes| _
n— o n a,

Therefore, the differentiated series has the same radius of convergence as the
original series. In fact, it can be shown in general that the differentiated series
has the same radius of convergence as the original. Moreover, if f(z) =

0
z az*, |z} < R, then f(2) is differentiablet inside the circle of convergence
k=0

and

(2 = i ka,z*™!

k=1

1 For proofs see Dettman, op. cit., pp. 146 and 147.
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By induction we can then differentiate as many times as we please and obtain
forn=1,2,3,...

PG = S k(= 1) (k — n + Daz*
k=n

valid for |z| < R. Evaluating f®0) we have, since all the terms are zero
except for k = n,

F%0) = n!a,
and hence, a, = f™(0)/n!.

We conclude this section by showing that in a certain sense, which we shall
define presently, we may multiply two power series together within their common
circle of convergence. If we multiplied two polynomials

P2) =ay + a;z + 2> + -+ + a2
q(z) = by + byz + byz* + -+ + b2
together, we would have
P(2)q(2) = agho + (aohy + aibo)z + (ach, + a;b; + aybo)z*
+ o0+ (aby + @b,y + 00t + @y 1by + @bo)" + 0

We use this formula to motivate the definition of the Cauchy product of two series

L a0
> w,and > yas
k=0 k=0
( “k”n—k)
0 \k

Theorem 1.7.7 The Cauchy product of two absolutely convergent
series converges absolutely to the product of the two series.

N8
I

n

We prove the following theorem.

PROOF We first show that the Cauchy product converges absolutely.

k
Leta, = lul, b, = lol, and ¢, = |wy| = | > ww,_;|. Then
j=o

n
2 %=
k=0

M= M=

x
L}
o
.
L}
(=)

o0 @ n
where A = 3 |u4] and B = 3 |v]. Therefore, since the > |w,| are
k=0 k=0

00

bounded above, the series Z w, converges absolutely.
k=0
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If a series converges, then the average of its partial sums converges
to the sum of the series. We shall prove this fact and then use it to find the
sum of our absolutely convergent Cauchy product. Suppose lim S, = S

n"wl .
where S, is the partial sum of a convergent series. Let 6, = - Z S
n k=0

Then o, -S——Z(Sk—S)andla —S|<—Z|S,,—S| Given

n k=0
& > 0, there is an M such that |S, — S| < &2 whcn k > M. Therefore,
ifn> M,

n

1< 1
—_ < - — Y — —
o, S| < n ; ISk 51 + n 2 ISk S|

k=M+1

Having chosen ¢, we fix M, and then Z IS, — S| = Lisfixed. We choose

n so large that L/n < ¢/2. Then Ia —SI<Lin+(n— Mef2n < e
This shows that lim ¢, = S.

n— o

Now let U, = z u, V, = z v, and W, = Z wy. We have that
=0
U, - U, the sum of the first serles, that V,->V, the sum of the second

series, and we wish to show that W, - UV. To do this we consider the

average
i

We leave it to the reader to show by a simple induction argument on m
that

§(~—

[\%E!
S

=S u.
n k=0

Nowlet U, = U + o, and ¥, = V + B,. Then

0

IN=

Om (U + ak)(V + ﬁm-k)

1
m g

]

0

2 %2 zﬂk"‘;l;i B

As m — oo, the first term approaches UV, the second term approaches
zero since o, ~ 0, the third term approaches zero since f;, — 0, and it can
be shown that the last term approaches zero. In fact, given & > 0, there
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is an N such that jo,| < ¢ and |B,} < ¢ for kK > N and || < M and
|Bxl < M for all k. Then for m > 2N

1 m . 1 m
- B -] < *Z Jotel 1Bm—sl
m [x=0 m &y
1 N m—-N m
s+ 4 3 )la.,l Bl
m\x=0o k=N+1  k=m=N+1

(2N + 1)Me (m — 2N)é?
m

<

which can be made less than &2 for m sufficiently large. This completes
the proof of the theorem since we have shown that lim ¢, = UV.

m—

EXAMPLE 1.7.5 Prove that e*'e®? = ¢°**?2, We have defined e* by a power
series, that is,
& k!

and we now know that the series converges absolutely for any z. Hence, we may
multiply e*'e** as a Cauchy product. Therefore,

o n n—k

-
“er=2 2 %(nzz— 1!

n=0 k=0

We conclude this section with an obvious theorem about multiplying
two power series together.

Theorem 1.7.8 Let f(z) = > a2* and g(z) = D b2* for |z] < R.
k=0 k=0

Then f(z)g(z) = i (i akb,,_k> z" for |z] < R.

n=0 \ k=0
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EXERCISES 1.7

1

10

11

Prove that a convergent series can have but one sum; that is, if lim S, exists, the
limit is unique, n o

00
Show that Z k™% converges absolutely for Re (z) > 1.

K=1 2*
Find the radius of convergence of the power series z — . Does the series

converge on the circle of convergence?
Let a;, k = 0,1,2,..., be a sequence such that lim a4, = a # 0. What is

k— o0

00
the radius of convergence of > a;z*?
K=o

© 2k
Find the radius of convergence of the power series 2 EZT . Hint: Letw = z%/2.
k=0

Prove that absolute convergence of a power series on the circle of convergence
holds either everywhere or nowhere.
Find the radius of convergence of the power series

g_z+ ofe — 1)22 + a(e — D(a — 2)13 4.

1+
1! 2! 3!

where a is complex.

Prove Theorem 1.7.6. ©

Let lim v/|a,] = L # 0. Show that the radius of convergence of > kaz*?
k=1

n—+ow

is 1/L.
0 0
Prove that if f(z) = z azt = z biz*for|z] < R,thena, = b,k =0,1,2,....
k=0

This exercise shows that a power-series representation of a function is necessarily

unique.
Verify the formula Z W, = z UiV, in the proof of Theorem 1.7.7.
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LINEAR ALGEBRAIC EQUATIONS

2.1 INTRODUCTION

There are at least two main approaches to the study of linear algebra. The more
abstract is to introduce the general discussion of vector spaces first. In this
approach matrices come up in a natural way in the discussion of linear trans-
formation, and the usual theorems about the solvability of systems of linear
equations come out in due course. The other approach, which is more concrete,
is to begin the discussion with matrices and linear algebraic equations. The
advantage of this direction is that it introduces the general concepts with
examples in a more familiar setting. We can then build up to the abstract
concept of a vector space with a set of concrete examples to guide and motivate
the student. This is the approach we shall take in this book.

We first introduce the algebra of matrices and show how to write systems
of linear algebraic equations in compact notation. We shall discuss the solution
of such systems by elimination methods and obtain the usuval existence and
uniqueness theorems for solutions. We introduce the concept of determinant
of a square matrix and obtain the usual properties. This leads into a discussion
of the inverse of a square matrix, where we teach the reduction method of
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inverting a matrix. The last section (which is starred) takes up rank of a matrix
and collects all the existence and uniqueness theorems we shall need for the
discussion of linear algebraic equations.

2.2 MATRICES

One of the most important applications of matrices is the treatment of linear
algebraic equations. Therefore, we shall use this application to introduce the
concept of a matrix, and in the process the algebra of matrices will come out
in a very natural way. We begin with an example.

Consider the linear algebraic equations

X, +2x, —3x;, =0

2x1 + X3 = 3
—xl + Xy = 0
bl ZXZ + 4X3 = 2

We shall leave aside for the moment the question of whether these equations
have a solution. Our immediate objective is to obtain a compact notation
for this set of equations and others like it. Let A be the rectangular array of
numbers with four rows and three columns

1 2 -3
2 0 1
=11 1 o
0 -2 4
Let B be the array with four rows and one column
0
3
B=1o
2

and let X stand for the unknowns x,, x,, and x;, as follows:

A, B, and X are all examples of matrices; 4 is a 4 x 3 array, Bisa 4 x 1
array, and X'is a 3 x 1 array. We shall now define a multiplication operation
between pairs of matrices so that it will be possible to write the system of
algebraic equations in the compact form AX = B.
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First, we should define what we mean by equality of matrices. Two
matrices are said to be equal if they have the same number of rows and columns
and each entry (element) of the one is equal to the corresponding entry (element)
of the other. For example, if

1 0 -3 7

-1 2 0 5

C= 0 3 -1 -6
4 -2 0 6

8 1 -3 9

and D = C, then we know that D has five rows and four columns and

1 0 -3 7
-1 2 0 5

D= 0 3 -1 -6
4 -2 0 6
8 1 -3 9

The multiplication will be defined only in the case where the first factor
has the same number of columns as the second factor has rows. Suppose the
first factor has / rows and m columns while the second factor has m rows and
ncolumns. We define the product to have / rows and » columns obtained by the
following rule. To obtain the element in the ith row and the jth column of the
product we multiply the elements of the ith row of the first factor by the corre-
sponding elements of the jth column of the second factor and sum. In other
words, suppose the elements of the ith row of the first factor are p,,
k =1,2,..., m, while the elements of the Jth column of the second factor are
9y k =1, 2,..., m; then the element in the ith row, jth column of the product
is defined to be

Puq1j + Piadzy + 00t Pimlmj

Since 7 can take on / different values and j can take on # different values, this
definition defines In elements for the product. If the first factor is ! x m and
the second factor is m x n, then the product is / x ».

Using this definition of the product of two matrices and the above definition
of equality of matrices, we have for the example

1-x; + 2%y + (—3)-x3
2-x, + 0-x, + 1:x,
(=D-x + l-x; + 0-x;
O %y +(=2):x,+ 4-x;

NO WwWo
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so we have achieved our compact notation. In fact, for any system of m linear
algebraic equations in » unknowns

ay1xy + ayax, + 000+ agx, = by

alel + azzxz + - 4 aznx" = bz

A1 Xy + paXy + 000+ QpeX, = b,

we can use the compact matrix notation 4X = B, where

A1y Q3 """ Ay, X1 b,

a a, " "-a X b
A= 21 22 2n X = 2 B = 2

Gy Qw2 " " Oy Xn bm

In this case, we usually call 4 the coefficient matrix of the system. There is
another matrix which plays an important role in the study of systems of linear
equations. This is the augmented matrix, which is formed by inserting
by, by, ..., b, as a new last column into the coefficient matrix. In other words,
the augmented matrix is

a3 Gty by

Ayy Q33" Ay by

Om1 Gm2 """ Qmn bm

If the coefficient matrix is m x n, then the augmented matrix is m x (n + 1).
Next we introduce the concepts of addition and subtraction of matrices.
Suppose a certain set x4, x5, ..., X, satisfies two systems of equations

Ayix; + A%y + 000+ ax, = ¢

Xy + QX + 00t + AX, = €

A1 Xy + poXy + °° + QX = Cp
and

biaxy + byaxy + 00+ by, = dy

baixy + byyxy + 0 + byx, = d,

bmlxl + bm2x2 + 0+ bmuxn = dm
If we add or subtract the corresponding ¢’s and d’s, we have the following
results

(@yy £ bydxy + (a2 £ byg)xs + -+ + (@1 £ bydx, = ¢; £ d;

(@21 £ ba)xy + (@23 £ ba))xy + - + (@2, £ b2)x, = ¢, £ d,
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We can state this in the compact matrix notation: 4AX = C, BX = D implies
(4 + B)X = C * Dprovided we define addition and subtraction in a consistent
manner. A definition which makes this work is the following: to add (subtract)
an m x n matrix B to (from) an m x n matrix 4, form the m x n matrix
A + B (A — B) by adding (subtracting) elements of B to (from) corresponding
elements of 4.

Finally, we define the operation of multiplication of a matrix by a number
(scalar). Suppose we multiply every equation of the system AX = C by the
same number a. Then the system becomes

aa,1x; + aag;px; + 00+ aagx, = acy
aas X, + ads Xy B aa,xX, = ac,

This can be written as (a4)X = aC provided we define the matrices a4 and aC
properly. This can be done as follows: the matrix formed by multiplying a
matrix A by a scalar a is obtained by multiplying each element of 4 by the same
scalar a.

Let us summarize all the definitions we have made so far in a more precise
manner.

Definition 2.2.1 A matrix is a rectangular array of numbers (real or
complex). If the matrix has m rows and 7 columns, the matrix is said to
be m x n. If m = n, the matrix is said to be square and of order m.
The number in the ith row and the jth column is called the (i,j)th element;
in the double-subscript notation for elements the first subscript is the row
subscript, and the second subscript is the column subscript.

Definition 2.2.2 Two m x n matrices 4 and B are equal if the (i,j)th
element of A4 is equal to the corresponding (i,j)th element of B for all
possible 7 and j.

Definition 2.2.3 If 4 is an m x n matrix with elements q;; and a is a
scalar (real or complex), then a4 is the m x n matrix with elements ag, ;.

Definition 2.2.4 If A and B are m x n matrices with elements a;; and
b;j, then 4 + Bis the m x n matrix with elements a;; + b,; and 4 — B

is the m x n matrix with elements a;; — b;;.

Definition 2.2.5 1If 4 is the m x n matrix with elements a,; and B is
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the n x p matrix with elements b, then AB is the m x p matrix with

n
elements > a;bj.
j=1

Definition 2.2.6 The m x n zero matrix, denoted by 0, is the m x n
matrix all of whose elements are zero.

Definition 2.2.7 The mth order identity matrix, denoted by 1, is the
mth order square matrix whose elements are 1 on the principal diagonal
(upper left to lower right) and O elsewhere.

We conclude this section with some theorems whose proofs are straight-
forward applications of these definitions. The only part which is particularly
hard is associativity of matrix multiplication (Theorem 2.2.4). In this case the
reader should at least see what the calculations involve by multiplying out some
small (but general) matrices.

Theorem 2.2.1 If A and B are m x n matrices and a@ and b are scalars,
then:

() (a £ b)A = ad + bA.
(ii) a(4 + B) = aAd + aB.
(iii) (ab)4 = a(bA) = b(aA).

Theorem 2.2.2 If A is an m x n matrix, B is an n X p matrix, and a
is a scalar, then a(4B) = (aA)B = A(aB).

Theorem 2.2.3 If 4, B,and Carem x nmatrices,then4 + B=B + A
andAd+ B+ C)=(4+ B) + C.

Theorem 2.2.4 If A is an m x n matrix, B is an n x p matrix, and C
isa p X g matrix, then A(BC) = (4B)C.

Theorem 2.2.5 If A is an m x n matrix and B and C are n x p
matrices, then A(B + C) = 4B + 4C.

The reader may be wondering at this point why no mention has been
made of division. Actually, we shall be able later to define a kind of division
by a certain type of square matrix. However, for the moment the reader should
ponder the implication, as far as division is concerned, of the following product

G ) -)=6 o)

Here we have a product AB = 0 where neither A nor B itself is a zero matrix.
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EXERCISES 2.2

1 Consider the system of linear algebraic equations

Xy — 2%y + 3x5 =7
2x;, + x4 + Sx5 = —6
X;— X3+ x4=0

Identify the coefficient matrix and the augmented matrix of the system.

Let
1 0 -3 2 -2 6 1 5
A=10 -1 7 5 B=( 2 0 -3 4

2 3 -4 0 1 -5 0 1

Compute A + B, A — B, 34, —2B, 54 — 1B.

Let
1 2
C=|{|-1 0
3 -2
0 5

Compute AC and BC, where A and B are defined in Exercise 2.

Let
101 0o 2 3
A=1|-1 2 0 B=|1 -2 4
035 5 0 -

Compute AB and BA. Is AB = BA?

Let A be an m x n matrix, and let 0 be an m x n zero matrix. Show that
A+0=0+A4=Aandthat4 + (—1)4 = 0.

Let A be an m x n matrix, and let 0 be an n x p zero matrix. Find A40.

Let 4 be an mth order square matrix and I the mth order identity. Show that

Al =Id = A,
11
= (1)

Let
Find a 2 x 2 matrix B such that AB = I. Compute BA. Can the same thing be
done if
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Compute E A4, E; A, E;A where

Qi1 @12 Qg3 Gy,
A= \az ay; a3 ay
d31 Q33 Q433 4z,

Generalize. Hint: E; is obtained from I by multiplying the second row by &,
E, is obtained from I by interchanging rows 1 and 3, and E, is obtained from I
by adding the second row to the first row.
Powers of square matrices are defined as follows: 4' = A, 4% = 44, A> = 44?,
etc. Provethat A2 — T =(Ad —IXA+ D =@+ 1A —-T)and 42 — I =
A-DA2+A+D=UA*+A4+DA-D.
Let

Y1 = ay1%1 + Gy2%; + @33X3

Y2 = Gz3X1 + a33%X; 1 a33X3

xy = by1zy + bypzy

Xy = by1zy + b3z,

x3 = b31z; + bsyz,

Find ¢y, ¢y3, €23, and ¢,,, where
Y1 = €112y + €122

Y2 = €121 + €232

and verify the following matrix notation: ¥ = AX, X = BZ, Y = CZ where
C = AB.

2.3 ELIMINATION METHOD

In this section, we shall take up an elimination method which is general enough
to find all solutions of a system of linear algebraic equations (if it has any)
and which will, in fact, tell us whether a given system has solutions. The idea
is quite simple. We try to eliminate the first variable from all but the first
equation, the second variable from all but the first and second equations, the
third variable from all but the first, second, and third equations, etc. This
will not always be possible, but in the attempt we shall find out what is possible,
and it will turn out that this is good enough to achieve our purpose.

Let us return to the example of Sec. 2.2:

Xy + 2%, —3x3=0
—2x — X3 = -3
—x; + X3 =0

—2x; + 4x; = 2
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If we add 2 times the first line to the second line and then add the first line to the
third line, we have

x1+ 2.X2""3X3=0

4x, — Tx3 = =3
3x2 - 3X3 = 0
—2x2 + 4X3 = 2

and we have eliminated x, from all but the first equation. Next we multiply
the fourth equation by (—1) and interchange it with the second equation. This
leads to the system
X+ 2%, —3x3=0
Xy — 2x3 = —1
3, —3x; =0
4x, — Txy = =3

Next we add (—3) times the second equation to the third equation and (—4)
times the second equation to the fourth equation, and we have

X3 +2x, —3x3; =0

X, — 2x3 = —1
Ixy =3
xy =1

Finally, we can multiply the third equation by (—1) and add it to the fourth
equation. The result is

Xy 4+ 2x3 = 3x3; =0
Xy — 2x53 = —1

x3 =1

0=0

We call this the reduced system. It is now apparent that x; = 1, and substituting
this value into the second equation, we find that x, = 1. Finally, substituting
these values into the first equation, we have x, = 1. This is obviously the only
solution of the reduced system. We can substitute it into the original system
and verify that it is a solution. However, are there other solutions of the original
system which we have not uncovered? The answer is no, and we shall prove this
later when we show that any solution of the original system is a solution of the
reduced system and vice versa.

We notice in the above example that there is redundancy in the system.
This became apparent at the third stage of reduction, when we had two
equations x; = 1and 3x; = 3, and it showed itself further in the fourth stage,
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when the last equation dropped out altogether. This redundancy was not
obvious in the original system, and it became so only as we reduced the system.
In this case, it did not keep us from having a solution. However, suppose the
fourth equation in the original system had read —2x, + 4x; = 4. Then the
reduced system would have been

X1+2x2—3x3=0

Xy =~ 2x3 = =2
X3=2
0=3

Since this is impossible, we would have to conclude that there are no solutions
of the reduced system and therefore that there are no solutions of the original
system. Hence, we can expect that the reduction method will uncover redun-
dancy in a system of equations and will also tell us when a system has no
solutions.

Now let us go back over the original example again for further insight
and possible simplification. First we note that there were only three basic
operations involved in the reduction: (1) multiplication of an equation by a
nonzero constant, (2) interchange of a pair of equations, and (3) addition of one
equation to another. Second, we note that all the information contained in the
various systems obtained in the process is contained in their respective aug-
mented matrices. In other words, writing down a sequence of augmented
matrices is just as good as writing down the various systems of equations.
Finally, as operations on matrices our three basic operations are respectively
(1) multiplication of a row by a nonzero constant, (2) interchange of a pair of
rows, and (3) addition of one row to another.

To make this all clear let us review the example again, this time working
with the augmented matrices. The original augmented matrix is

1 2 -3 0
-2 0 -1 -3
-1 1 0 0

0 -2 4 2

Adding 2 times the first row to the second and adding the first row to the third,
we obtain

1 2 -3 0
0 4 -7 -3
0 3 -3 0
0 -2 4 2
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Multiplying the fourth row by (—%) and interchanging it with the second row,
we have

1 2 -3 0
0 1 -2 -1
0 3 -3 0
0 4 -7 -3

Adding (- 3) times the second row to the third and (—4) times the second to the
fourth, we obtain

1 2 -3 0
0 1 -2 -1
0 0 3 3

0 0 1 1

Finally, we multiply the third row by (—1) and add it to the fourth and obtain
the augmented matrix of the reduced system

1 2 -3 0
0 1 -2 -1
0 0 1 1

0O 0 0 o

At this point we can reconstruct the reduced system from its augmented matrix
and solve as we did above.

In making such calculations we shall want to write down the original
augmented matrix, the final augmented matrix, and the various intermediate
matrices with some kind of connective symbol to indicate that we go from one
to the other by some combination of the three basic row operations. Of course
these matrices are not equal, so we should not use an equal sign. We shall
instead use an arrow to mean that one is obtained from the other by row
operations. Hence,t

1 2 -3 0 1 2 -3 0 1 2 -3
-2 0 -1 -3 0 4 -7 -3 0 1 -2 -1
— —
-1 1 0 0 0 3 -3 0 0 3 -3
0 -2 4 2 0 -2 4 2 0 4 -7 -3
1 2 -3 0 1 2 -3
0 1 -2 -1 0 I -2 -1
e -
0 0 3 3 0 0 1
0 0 1 1 0 0 0

1 Actually, a double arrow <+ would make perfectly good sense because one can go
either way by basic row operations. The relation is, in fact, an equivalence relation
(see Exercise 2.3.5).
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Before we state the general method, let us consider one more example to
illustrate what may happen in other cases. Consider the system of linear equa-
tions

Xy 4+ 2x; — 5x3 — X4+ 2xg = —3
X —2x3+ X4 —4x5=1
2%3 — 3x; +4x3 +2x4 — x5 =9

The augmented matrix of the system is
1 2 -5 -1 2 -3
(0 1 -2 1 -4 1)
2 -3 4 2 -1 9
If we add (—2) times the first row to the third, we have
1 2 -5 -1 2 -3
(0 1 -2 1 -4 1)
0 -7 14 4 -5 15

Next we add 7 times the second row to the third, to obtain

1 2 =5 -1 2 -
(0 1 -2 1 -4 1)
o 0 0 11 -33 22

Notice that this last step eliminated both the second and third variables from

the last equation (as indicated by the zeros in the second and third columns),

showing that the process may proceed faster than one variable per row.
Finally, we may multiply the last row by 7, and we have

1 2 -5 -1 2 -3
(0 1 -2 1 -4 l)
o 0 0 1 -3 2

This is as far as the reduction can be carried, and it leads to all solutions of the
original system. The reduced system is

x1+2x2—5x3—x4+2x5=—3
Xy —2x3 +X4 "‘4x5 =1
Xg — 3x5

]
)

The last equation tells us that x, = 2 + 3x;. Substituting this into the second
equation yields x, = —1 + 2x; + x,. Finally, substituting x, and x, into
the first equation yields x; = 1 + x; — x;. Hence, we see that x,, x,, and x,
can be expressed in terms of x; and x,, which are completely arbitrary. Any
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particular values of x; and x, will lead to a solution of the system, and any
solution can be obtained by some special values of x, and Xs.

We are now ready to state the elimination method in general terms. Given
any coefficient matrix, at least one of the elements of the first column is nonzero
(otherwise x; would not have appeared in the equations). By an interchange of
rows this nonzero element can be put in the first row, and it can be made 1
by multiplying the first row by its reciprocal. Next, by a series of multiplications
of the first row by nonzero constants and additions to other rows the rest of the
first column can be made zero. By row operations alone, we have eliminated
x, from all but the first equation.

The next step is to look at the second column. If all of the elements below
the first row are zero, we go on to the third column. If not, some element of the
second column (below the first row) is nonzero. By an interchange we put
this element in the second row and make it 1 by multiplying the second row by
its reciprocal. Next we make all elements of the second column below the
second row zero by a series of multiplications and additions. At this stage
we have eliminated x, from all but possibly the first and second equations.

We then go on to the third column and proceed as above until either we
run out of rows or find that all the rows below a certain point consist entirely
of zeros. It is clear that any coefficient matrix can be reduced to the following
form:

1 The element in the first row first column is 1.

2 The first nonzero element in each row is 1.

3 The first nonzero element of any row is to the right of the first nonzero
element of the row above.

4 Any row consisting entirely of zeros is below all rows with nonzero
elements.

We shall call a matrix in this form a reduced matrix. We can now state the
elimination method in precise terms.

Elimination Method of Solving Linear Algebraic Equations

1 Write down the augmented matrix of the system.

2 Using only the three basic row operations on the augmented matrix,
change the coefficient matrix to a reduced matrix.

3 The equations will have a solution if and only if for every row of the
coefficient matrix, consisting entirely of zeros, the corresponding row of
the augmented matrix of the reduced system consists entirely of zeros.

4 If the equations have solutions, solve the reduced system by starting




54 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

with the last nontrivial equation (not of the form 0 = 0). Solve this
equation for the variable with minimum subscript. Substitute this value
into the next equation above and solve it for the variable with minimum
subscript. Proceed in this way upward until x, is obtained from the first
equation.

A proper understanding of the elimination method leads to several
theorems about the solution of systems of linear algebraic equations, but first
let us settle the question of the equivalence of the original and reduced systems of
equations.

Theorem 2.3.1 A system of linear algebraic equations has a solution
if and only if the corresponding reduced system has the same solution.

PROOF It is clear from the way we reduce the system that if a certain
set of numbers x,, x,, ..., X, satisfies the original system, then they also
satisfy the reduced system. Now turn the roles of original and reduced
systems around. If we start with the reduced system, the original system
can be obtained from it by some combination of the three basic operations.
Now it is clear that any solution of the reduced system is also a solution
of the original. This completes the proof.

A system of linear algebraic equations AX = B, where B # 0, is said to
be nonhomogeneous. If B = 0, then the equations are said to be homo-
geneous. The homogeneous equations AX = 0 always have the trivial solution
X = 0. If there is a solution X 0 of the homogeneous equations, then it is
called a nontrivial solution.

Theorem 2.3.2 A homogeneous system of m linear algebraic equations
in » unknowns has nontrivial solutions if n > m.

PROOF When the coefficient matrix has been reduced, the aug-
mented matrix of the reduced system has a last column consisting entirely
of zeros. Therefore, the system has a solution, but there may be no non-
trivial solutions. However, consider the elements a;;, i = 1,2,...,m, of
the reduced coefficient matrix. They are either O or 1. Suppose g, = 0
for some k and k is the smallest integer for which this occurs. Then the
solution can be written in terms of x; and possibly some other variables.
But these variables are arbitrary, and so by picking x, # 0, we have a
nontrivial solution. If all the a;;, i = 1,2,..., m, are 1, then the last
row of the augmented matrix of the reduced system is

03 05 vy 0’ 1: am,m+ 1 am,m+2: vees Qupy 0
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and

Xm = _am,m+1xm+l - am,m+2xm+2 T QX

while X, 41, X432, - - ., X, are arbitrary. Picking x,,,, # 0 will give us a
nontrivial solution.

Theorem 2.3.3 A homogeneous system of  linear algebraic equations
in m unknowns has no nontrivial solutions if and only if the reduced
coefficient matrix has no row consisting entirely of zeros.

PROOF Consider the elements a;;, i = 1, 2, ..., m, of the reduced

coefficient matrix. If a; = I for all i, then the augmented matrix of the
reduced system looks like

1 ay, 0
0 1 ay - 0
0 0 1 Az, 0
0 0 o 1 0
and the only solution is x; = x, = x; = -** = x,, = 0. Some of the

a;; are zero if and only if the last row of this matrix consists entirely of
zeros. Thus the system has nontrivial solutions if and only if the last
row of the reduced coefficient matrix consists entirely of zeros.

Theorem 2.3.4 A solution of a system of linear algebraic equations
AX = B is unique if and only if the homogeneous equations AX = 0
have no nontrivial solutions.

PROOF Suppose X and Y are both solutions. Then AX = B and
AY = B, and by subtraction 4(X — ¥) = 0. However, if the homo-
geneous equations have no nontrivial solutions, then X — ¥ = 0 and
X = Y. This shows uniqueness. Conversely, suppose Z 5 0 is a solution
of the homogeneous equations, that is, AZ = 0, while X is a solution of
AX = B. But then X + Z is also a solution, since A(X + Z) = AX +
AZ = B + 0 = B. This is a contradiction to uniqueness and completes
the proof.

Theorem 2.3.5 A nonhomogeneous system of m linear algebraic equa-
tions in m unknowns has a unique solution if and only if the reduced
coefficient matrix has no row consisting entirely of zeros.
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PROOF The coefficient matrix of the reduced system has no row
consisting entirely of zeros if and only if the corresponding augmented
matrix looks like

1 Qyp e e e b1
0 1 a3 tee b2
0 0 1 asy b3
0 0 0 1 b,

Clearly the system has a solution, and it is unique. If the last row of the
reduced coefficient matrix were entirely zeros, the system would have no
solution unless b,, = 0. However, in this case the solution would not be
unique since, by Theorem 2.3.3, the corresponding homogeneous system
would have nontrivial solutions. This completes the proof.

As we have seen, when a system of equations has solutions, it may have
many solutions. In fact, the general situation (when solutions are not unique)
is that certain of the variables can be written in terms of the others, which are
completely arbitrary. We may think of these arbitrary variables as parameters
which can be varied to generate various solutions. We shall say that we have
the general solution of a system if we have all the variables expressed in terms of
certain parameters, such that every possible particular solution can be obtained
by assigning appropriate values to these parameters. For example, in the second
example of this section we were able to express the general solution as

x4 1+ a =5 1 /

1 -1
X, -1+ 2a +5b -1 2 1
X3 |= a =1 0 g+l 1 j+5f O
Xq 2+ 3b 2 0 3
X b 0 0 1

where @ and b are arbitrary parameters. The numbers (1,—1,0,2,0) form a
particular solution corresponding to the choice of values @ = b = 0. Let us
substitute the values (1,2,1,0,0) into the left-hand sides of the equations. Then

1 +22) =51 — 0 +20) =0
2 -2+ 0 —40) =0
21) ~3Q2) +4(1) +20)— 0 =0

This shows that the numbers (1,2,1,0,0) form a solution of the corresponding
homogeneous equations. The reader should also verify that the numbers
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(—1,1,0,3,1) satisfy the homogeneous equations. In fact, the part of the general
solution of the nonhomogeneous equations

+b

(=2 S
— ) O =

0

is the general solution of the homogeneous equations. This is the situation,
in general, as indicated by the next theorem. This theorem shows that finding
the general solution of the homogeneous system goes a long way toward solving
the nonhomogeneous system.

Theorem 2.3.6 The general solution of the nonhomogeneous system of
equations, AX = B, can be obtained by adding the general solution of the
homogeneous system AX = 0 to any particular solution of the non-
homogeneous system.

PROOF Suppose Z is a particular solution of the nonhomogeneous
system; then AZ = B. Suppose X is any other particular solution. Then
AX = B, and

AX —Z)=AX — AZ=B—-B=0

Therefore, Y = X — Z is a solution of the homogeneous equations and
so can be obtained from the general solution of the homogeneous equa-
tions by the appropriate choice of certain parameters. Hence, X = Z + ¥,
and since X was any particular solution, we can obtain the general solution
of the nonhomogeneous system by adding the general solution of the
homogeneous system to a particular solution of the nonhomogeneous
system.

EXERCISES 2.3

1 Which of the following matrices are in reduced form?
1 2 3 4
(a)((l) ?) ® (‘1) é) @lo o010
00 00

@ (e) N

S OO
_0 = O
o = O =
-0 = O
O = O -
OO OO
(= = e
SO =N
SO N W
O - W oA
S OO -~
QO =N
SO NV W
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2 Using the three basic row operations only, change the following matrices to

reduced form:
1 2 3 4 5
@{-2 0o 1 2 3
BN

0 1 -2 4
1 2 3 1 2 3 4
304 5 6 7 8
O ;115 @l 1011 12
-2 0 7 13 14 15 16
3 The following matrix is in reduced form:
1 2 3 4 5
0 1 -1 0 2
0 0 0 1 1
0 0 0 0 1

Show that by using the basic row operations only, the matrix can be changed

to the form
1 0a 00
01 b5 00
00010
00001
Find a and b.

4 (a) If Bcan be obtained from 4 by multiplying a row of A by k # 0, can 4 be
obtained from B by a basic row operation?
(b) If B can be obtained from A by interchanging two rows, can A be obtained
from B by a basic row operation?
(c) If Bcan be obtained from A4 by adding one row to another, can A4 be obtained
from B by basic row operations?

5 Let A — B stand for the property “B can be obtained from A by basic row
operations.” Prove that this is an equivalence relation. In other words, prove
that:

@ A- A
(b) If A > B,then B> A.
(¢) If 4> Band B— C,then A - C.
6 Find all possible solutions of the following systems of equations:

(a) Xy — 2x3 + 3x3 — x4 =0 B x1+x3— x3=1
- X + ZX3 + Xq = 0 le + X2 + BX3 =2
2x1 + X3 b 2X4 =0 Xy — 5x; =1

© x +2x3— x,=0
2x; + X3 — X3 =5

3
1

—Xx1 + 2%, + X3 + 2x4
3x, — 2x35 + 5x4
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@ xi =24+ x3— x4+ x5=1

2%, — x3 + 3x, =2

3x; + x5 + 2x5 - 2xs = —1
4%, + X3 4+ 2x3 + 2x4 — x5 =2
€ x; —2x3 + x3 — x4+ 2x5=—7
X+ X3+ 2x4— x5=15

Xy — X3+ 2x3 4+ 2x4 + 2x5 = —1

For parts (d) and (e) of Exercise 6 find the general solutions of the corresponding
homogeneous equations, and then find the general solution of the nonhomo-
geneous equations by adding the general solution of the homogeneous system
to a particular solution of the nonhomogeneous system.

Let

© O =
oS =N
O N W

4
3
1

[N V]

00000

be the reduced coefficient matrix of a system of homogeneous equations. Find
the general solution of the system. How many arbitrary parameters are there in
the solution?

Let AX = 0 stand for a homogeneous system of linear algebraic equations.
Show that if X; and X, are solutions, then aX; + bX, is a solution for any
scalars @ and b.

Referring to Exercise 3, suppose a reduced system is

Xy + 2x; + 3x3 + 4xq + 5x5 =1
X3 — X3 + 2x5 = 0
X4+ x5 =2

x5 = —1

Solve the system by changing (by row operations only) the coefficient matrix to the
form given in Exercise 3.

The following are reduced coefficient matrices of systems of linear algebraic
equations. Which has a unique solution?

23

@ ®

[ R R
- N W S
OO O =
S O =N
SO NwW
O = WA

1 2
01
00

24 DETERMINANTS

Consider a system of two equations in two unknowns:

a;xy + a;x; = by
X1 + Gy%; = b,
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If a,,a,, — a;,8;; # O, then we can solve them by elimination, as explained

in Sec. 2.3, and we have

_ biay; — biay,

X, = —=—= =

431822 — 84203,

_ byay — byay,

X, = =———"
;1833 — 342033

The quantity a,,a,, — a,,a,,, which is associated with the 2 x 2 coefficient

matrix of the system, has a special significance in the solution. In fact, we shall

define the determinant of the coefficient matrix as

a1 412

= 4,143, — 41243,
azy a4z

The numerators b,a,, — b,a,, and b,a,, — ba,, are also determinants. We
shall discuss this solution later as a special case of Cramer’s rule, but first we
shall define determinants of square matrices in general.

A permutation of the integers 1,2,...,n is an arrangement of the n
integers. For example, there are six different permutations of the integers
1,2,3; that is, 1,2,3; 2,3,1; 3,1,2; 1,3,2; 2,1,3; and 3,2,1. If we
interchange any pair of integers in a given permutation, we shall have changed
the permutation. We call this process inversion. Given any permutation, by a
finite number of inversions, we can put the n integers in normal order
1,2, 3,..., n. Weclassify permutations as even or odd according to whether it
takes respectively an even or odd number of inversions to put them in normal
order. From this definition, the permutations 1,2,3; 2,3,1; and 3, 1,2 are
even while 1,3,2; 2,1, 3; and 3,2, 1 are odd. It can be shown that evenness
or oddness of a permutation is independent of the particular set of inversions
used to put the permutation in normal order.

Definition 2.4.1 The determinant of a 1 x 1 matrix with element
a,, is a;;. To compute the determinant of an » x n matrix, form all
possible products of elements one from each row and no two of which
come from the same column. To each such product affix a plus or minus
sign according to whether the column subscripts form respectively an
even or odd permutation of 1, 2, 3,..., n when the factors are arranged
so that the row subscripts are in normal order. Finally, form the sum
of the terms so determined.

According to this definition, for a 2 x 2 matrix, the various products
which can be formed are a,,a,, and a,,a,;. With the row subscripts in normal
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order in each case, the permutations of the column subscripts are 1, 2 and 2, 1.
Therefore the first product is introduced with a plus sign and the second with a
minus sign. Hence,

agy ai2
= Q11433 — Q1503

azy a4z

For a 3 x 3 matrix the possible products are a;,a,,a33, a,,a,3a;,,
Q43031033, 0102303;, 1,0,1033, @y30,,d3;, With the row subscripts in normal
order. The permutations of the column subscripts are respectively even, even,
even, odd, odd, odd. Therefore, the determinant of the 3 x 3 matrix is
B Q11832033 + Q420,303 + (302,45,
G21 Gz2 Qi3

— A4103303; — A130;,033 — 4y30,,03,
a3y Qz; asz;

Of course, the expansion of the determinant of a 4 x 4 matrix will have
24 terms in it, while for a 5 x 5, we shall have 120 terms. However, as we shall
see, one seldom uses Definition 2.4.1 to compute determinants of large order
matrices. In fact, one of the main purposes of this section is to find alternative
ways of computing determinants. We shall first need, for the purpose of proving
theorems, a more compact way of writing our basic definition. We define a
function which takes on the values 0, 1, —1 as follows, depending on the »
integers i, j, k, . . ., p, which can each take on the values 1, 2, ..., n:

0 if any pair of subscripts are equal
1 if the n integers i, j, k, . . ., p form an even
€k .p = permutationof 1,2,3,...,n
-1 if the » integers i, j, k, ..., p form an odd
permutation of 1, 2,3,...,n

We can now write, in general,

Ayy Q12 "7 Gy,
azy 4z azp <
= 2 €. 018203 " " Gyy
................. i
Ay ay2 arm

where the sum is to be taken over all possible values of i, j, k, .. ., p.

We are now ready to prove several theorems about determinants. In some
cases, the proofs are self-evident from the definition. In other cases, where the
proofs are more complicated, we shall do the 3 x 3 case, which is sufficiently
complex to show what is involved and yet keep the details down to a level where
the reader can see the basic idea in the general case.
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Theorem 2.4.1 If every element in a given row of a square matrix is
zero, its determinant is zero.

PROOF  Since every term in the expansion contains a factor from the
given row of zeros, every term in the expansion is zero.

Theorem 2.4.2 If every element in a given row of a square matrix is
multiplied by the same number «, the determinant is multiplied by .

PROOF  Since every term in the expansion contains a factor from the
given row, if the row is multiplied by @, every term in the expansion
contains a, which can be factored out as a common multiplier.

Theorem 2.4.3 If two rows of a square matrix are interchanged, the
sign of the determinant is changed.

PROOF Consider the 3 x 3 case. Let

ayy Qy; ay3 431 Q33 Q433
A=\a; ay a; B =\ay; a); ay;
31 Q3 4s; a1y G412 4y;

The expansiont of | B is
3

[B| = .Zk €;jkd3i2 %1k
i,

3
= z €ijkl1x32,;03;
i,jk

3
= Z €;jiG1i02A3k
6
The last step is possible because in summing over all possible values of
i, j, and k the expression is not changed if we formally change the names
of the summation indices; for example,

m

2 %

i=1 J

m
= > o

1 k=1

[\t

]

Now compare e;; with e, for the same values of i, j, and k. The values
of both are zero if any pair of indices are the same. If not both zero, the
values are of opposite sign. This is because if 4, j, k is an even permutation,
then k, j, i is an odd permutation or vice versa, since the one permutation

+ We use the symbol | B| to denote the determinant of B. Note that this is not absolute
value, even when Bisa 1 x 1 matrix.
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is one inversion away from the other. This shows that

3

3
[B| = Z €rjid1i02j83 = — Z €;jx@1:02A3, = —|4]
ijk ik

The same general principle is involved in the interchange of any pair of

rows of a matrix.

Theorem 2.4.4 If two rows of a square matrix are proportional, then
the determinant of the matrix is zero.

PROOF Proportional in this case means that we can obtain one row
from the other by multiplying the whole row by a constant. From Theorem
2.4.2, the value of the determinant is a constant times the value of the
determinant of a matrix in which two rows are equal. If we interchange
two equal rows, we do not change the value of the determinant. However,
Theorem 2.4.3 tells us that the sign of the determinant is changed and the
only real or complex number which remains unchanged when its sign is
changed is zero.

Theorem 2.4.5 If each element of a given row of a square matrix can
be written as the sum of two terms, then its determinant can be written
as the sum of two determinants of matrices each of which contains one
of the terms of the corresponding row but is otherwise like the original
matrix.

PROOF We again do the 3 x 3 case. Let

411 412 43 by bz by
A= \ay a; ax B =\ay, ay a5
d31 Q32 4s; d3y Q32 4s3

ay + by @y + by as + by
C= Qa1 Qazz aszs
Qaszy Qs> ass
We shall show that |C| = |4] + |B|. Now

3
[C] = Z eay + biasjay,

\J K
3
Z (eu@1:a25a3 + €yb1a2;a3:)

i,J.k

|4} + |B|

The same general principles are involved with other rows.
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Theorem 2.4.6 If to each element of a given row of a square matrix is
added o times the corresponding element of another row, the value of its
determinant is unchanged.

PROOF From Theorem 2.4.5 we see that after the addition has been
performed, the determinant of the new matrix can be written as the sum
of two determinants, one of which is the determinant of the original
matrix and the other of a matrix with two rows proportional. However,
by Theorem 2.4.4 the second of these is zero.

EXAMPLE 2.4.1 Evaluate the determinant

— N W N
N = = W
W H W H
B W =

To avoid writing out the 24-term expansion, we use the above theorems to
change the matrix without changing the value of the determinant. It is generally
to our advantage to introduce zeros. Therefore, we add (—2) times the fourth
row to the first, we add (—3) times the fourth row to the second, and we add
(—2) times the fourth row to the third. Hence,

2 3 45 0 -1 -2 -3 01 2 3
3131 [0 -5 —-6~11 - (=1 0 5 611
21 4 3 0 -3 -2 -5 03235
1 2 3 4 1 2 3 4 1 2 3 4

Next we add (-~ 5) times the first row to the second and (— 3) times the first row
to the third. We have

2345 o 1 2 3
3131 0 0 -4 —4
21 4 3 =Dy 0 —4 —4 =0
1 23 4 1 2 3 4

We have immediately concluded that the determinant is zero because we have
obtained two rows proportional,

The next theorem shows that the value of the determinant of a square
matrix is unchanged if the rows and columns are interchanged. This makes it
possible to restate Theorems 2.4.1 to 2.4.6 with the word “row” replaced by
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the word “‘column’” everywhere and means that we can use column properties
as well as row properties to evaluate determinants.

Theorem 2.4.7 The value of the determinant of a square matrix is
unchanged if the rows and columns of the matrix are interchanged.

PROOF We do the 3 x 3 case. Let

aj; Qg2 a3 ayy 4y a4z
A= \az; a ax B = |a;; a5 as
431 Q32 QAis di3 dz3 Q3
Then
3
|Bl = g:k €;jx 3114203

For the terms in this expansion which are not zero, i, j, and k are different.
Therefore, 1, 2, and 3 are all represented as row subscripts in these terms.
By rearranging the order of the factors, the row subscripts can be put in
normal order, that is,

;185203 = 119,93,

where I, m, n is the permutation of 1, 2, 3 induced by the inversions
needed to put i, j, k into normal order. Clearly i, j, k and /, m, n are even
or odd together as permutations. There is a term a,,a,,4as, in the expan-
sion of the determinant of A for each and every term ag;;a;,a;; in the
expansion of the determinant of B, and vice versa. These terms appear
with the same sign. Therefore,

3 3
|B| = 2 €;jkdi10j20k3 = z Clmn@1192mA3n = |A|
i, j.k Lm,n

This completes the proof.

Consider the expansion of the determinant of a 3 x 3 matrix

A1 Gy 4y 3

4y Gz3 A3 =.; €ijxd1i82;93;
2

31 432 Qi3

3

3

ES

3
= z ayi Z‘:eijkana?ok
Js

'R

E a1iC1i

i
i=1

3
where ¢;; = Ze, 18283 The quantity ¢y, is called the cofactor of a;;. Let us

Jk
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look at the cofactors ¢,;:

3
G2 43
C11 = 2,€1jd3503;, = G33033 — Q3d3; =
j.zk: g a4z, Qas3
S dzy dzs
Ci2 = Ze2ika2ia3k = 433437 — (31033 =
ik a3y 4sz;
3
az, 4a;
C13 = 2 €3jd2jd3, = 31035 — G343, =
j,zk w2 as; a3,
Therefore, we can expand the determinant as follows
ay1 Az a3
_ Qz; a3 ay; 4az; Ay a;
Q31 Q3 Q3| = Gy - a;; +a
a3; daz; a3y 4as; asz; a4z

A3y Q3; az3

Notice that the 2 x 2 determinants appearing in this expansion are obtained
by striking out the first row of the original and respectively the first, second, and
third columns. In the general case, we define the cofactors of a,; as (—1)!*¢
times the (n — 1) x (n — 1) determinant formed by striking out the first row
and ith column of the original. It is easy to verify that

n n

ayu _kz €ijk- - -p2j03r """ A
PR

€. . .pal,-a2j M a,,P =
isjkyo . op

e

L]
fon

I
v

(]
-

a4iC1;

L
where c; are the cofactors of a,;. We call this the cofactor expansion by the first
row,

Suppose we wish to expand a determinant using a row other than the
first, say the jth row (j # 1). Then, using Theorem 2.4.3, we can interchange
the first and jth row and then use the above expansion. We must remember
that the interchange of two rows has changed the sign of the determinant.
With this method the elements of the original first row will not appear in the
first row of the determinants in the cofactors. However, by interchanging the
elements from the original first row [now appearing in the (j — 1)st row of
the cofactor determinants] with the j — 2 rows above it, we have the rows in
the natural order except for the missing jth row. Keeping track of all the
sign changes, we find we have the factor

(_1)1+i+1+j—2 — (_1)j+i
in front of the ( — 1) x (n — 1) determinants appearing in the expansion.

We summarize this in the following theorem. The expansion obtained is called
the cofactor expansion by rows.
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Theorem 2.4.8 If we define the cofactor c;; of the (i,j)th element a;;
of a square n x n matrix 4 as (—1)'*J times the (n — 1) x (n — 1)
determinant formed by striking out the ith row and jth column, then

|4] = z a;iCij
j=1

The next theorem follows immediately from Theorem 2.4.7. The resulting
expansion is called the cofactor expansion by columns.

Theorem 2.4.9 If ¢;; is the cofactor of the (7,f)th element g;; of a square
n x n matrix A4, then

n
(Al = 21 a;iCij
is

EXAMPLE 2.4.2 Evaluate the determinant

1 2 3 4 5
2 -1 3 =2 0
4 =10 3 -1 4 2
3 01 2 5 -2
1 0 5 12 3

We try to put zeros into the determinant in a systematic manner, beginning
with the first column, by adding multiples of the first row to the other rows.
We obtain

1 2 3 4 5 1 2 3 4 5
0 -5 -3 —10 —10 0 1 -1 -4 1
4 =0 3 -1 4 2/=2/0 3 -1 4 2
0 -5 -7 -7 -17 o 5 7 1 17
0 -2 2 8§ -2 0 5 3 10 10

In the last step we have interchanged the second and fifth rows and taken out
common factors from the second, fourth, and fifth rows. Next we add (—1)
times the fourth row to the fifth and multiples of the second row to the third and
fourth rows. We obtain

1 2 3 4 5 1 2 3 4 5
0 1 -1 -4 1 0 1 -1 -4 1
4| =210 0 2 16 —-1l=60 0 2 16 -1
0 0 12 27 12 0o 0 0-23 6
0o 0 -4 3 -7 o 0 o0 12 -3
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where we have taken a factor of 3 out of the fourth row, added the fourth to the
fifth, and added (—2) times the third row to the fourth. Finally, we take a factor
of 3 out of the fifth row and add 4 times the fifth column to the fourth column,
We obtain

1 2 3 24 5
0 1 -1 0 1
[4=18l10 0 2 12 -1
0 0 0 1 6
0 0 0 0 —1

The last determinant is easy to evaluate. In fact, if we expand by the first
column, expand the first cofactor by the first column, etc., we soon see that the
value of the determinant is just the product of the elements along the principal
diagonal. Therefore, |4] = —36.

Let A be a 3 x 3 matrix with elements a;;, i,j = 1,2, 3. Consider the
quantities

3
Dimn = i;:u € k110 jAnk

forl,mn=1,2,3 Ifl=1,m=2,n =23, then

3
9123 = i% €k yd2;a3, = |A|

If any pair of /, m, and » are equal, then g,,, represents the expansion of a
determinant in which two rows are equal. Hence, the value is zero. If Lmn
is an even permutation of 1, 2, 3, then we have the expansion of | 4] but with the
rows not necessarily in normal order. However, the rows can be put in
normal order by an even number of interchanges, and by Theorem 2.4.3 the
value is |4]. If /, m, n is an odd permutation, then it takes an odd number of
interchanges of rows to put them in normal order. Therefore, the value is — |4|.
In summary,

3
Dimn = iz;‘ €ijk01i0mj0n = |Aleim
s J
Similarly, using Theorem 2.4.7,

3
> €k jmAiy = |Aleim,
i.jk

Now consider two 3 x 3 matrices 4, with elements a;;, and B, with

3

elements b;;. Then if D = 4B, the elements of D are d;; = > aub,;. Now
=1

we consider the product of the determinants of 4 and B.
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= |4B|
It is easy to see that the same type of proof will go through in the general case.
Therefore, we have the following theorem.
Theorem 2.4.10 If A and B are n x n matrices, then
|4B| = |A| |B| = |BA|

We conclude this section with one more definition which we shall need
in the next section.

Definition 2.4.2 The transpose of an m x n matrix A4 is the n x m
matrix obtained from 4 by interchanging the rows and columns. We
denote transpose of 4 by 4.

If A is square, then A4 is also square and Theorem 2.4.7 gives us the
following theorem immediately.

Theorem 2.4.11 If 4 is a square matrix, then |4] = |4].

Another important theorem has to do with multiplication of the transposes
of two matrices.

Theorem 2.4.12 If 4 is an m x n matrix and B is an n X p matrix,
then 4B = BA.

PROOF Since A ism x n, Ais n x m. Also Bis p x n. Hence,
BA can be computed. If a;; is the (i,j)th element of 4, then 4;; = a;; is
the (j,i)th element of 4. If b;; is the (i, j)th element of B, then b is the
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(i)th element of B. Also > aub,, is the (i,j)th element of AB. The
k=1
(i,/)th element of 4B is

i

n n
Z ajkbki = dkjgik = z Eihﬁkj
k=1 1 k=1

which is the (i,/)th element of BA. This completes the proof.

k

EXERCISES 2.4

1

2

Show that there are n! = n(n — 1)(n — 2)--- 2 - 1 different permutations of the
integers 1,2,3,...,n

Given a permutation P, of n integers. Obtain P, from P, by one inversion.
Obtain P; from P, by one inversion. Show that P; can be obtained from P,
by an even number of inversions. Use this to show that evenness or oddness ofa
permutation is independent of the particular set of inversions used to put it in
normal order.

Show that a permutation is even or odd according to whether it takes respectively
an even or odd number of inversions to obtain it from the normal order.

Write out all permutations of 1, 2, 3, 4, and classify them according to whether
they are even or odd.

Write out the complete expansion of the determinant of a general 4 x 4 matrix.
There should be 24 terms.

Evaluate the following determinants

1 3 -1 2

12 123 2 1 3 1
(a) @14 5 6 ©)

3 4 M -1 2 -1 3

2 1 2 -3

Evaluate the following determinant by showing that it is equal to an upper-
triangular determinant (one in which all elements below the principal diagonal
are zero).

1 2 -1 3 -2
2 0 4 -5 1
-3 1 6 0o -7
0 3 1 -5 2

-2 6 3 -1 2

Consider the three basic row operations of Sec. 2.3. Show that if a square matrix
has a zero determinant, after any number of basic row operations the resulting
matrix will have a zero determinant. Also show that if a square matrix has a
nonzero determinant, after any number of basic row operations the resulting
matrix will have a nonzero determinant.
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Prove that a square matrix has a zero determinant if and only if it can be reduced
to upper-triangular form with at least one zero element on the principal diagonal.
Restate Theorems 2.3.3 and 2.3.5 in terms of the vanishing or nonvanishing of
the determinant of the coefficient matrix.

Determine whether or not the following system of equations has'a unique solution
by evaluating the determinant of the coefficient matrix:

2%, + X — X3+ x4 = -2
Xy — Xp— X3+ x4=1

Xy — 4x; — 2x3 + 2x4
4x; + x5 — 3x3 + 3x, = —1

Determine the values of A4 for which the following system of equations has a
nontrivial solution:
9x; — 3x, = Axy
—3x; + 12x, — 3x3 = Ax,
- 3x2 + 9X3 = lx3

Determine the values of A for which the following system of equations has a
nontrivial solution:
X) + Xy = Ax;
—x; + X = Axy

For what values of 4 is there a real nontrivial solution?
Let A and B be m x n matrices. Show that

@ A=A G ATB=A+5
¢ A-B=A- B d @A =ad

2.5 INVERSE OF A MATRIX

One of the most important concepts in the matrix theory is the notion of
inverse of a square matrix.

Definition 2.5.1 If 4 is ann x n matrix, then 4 has an inverse if there
exists an # x n matrix A~ ! such that 474 = A4~ = I, where I is
the nth order identity.

Theorem 2.5.1 If a square matrix has an inverse, it is unique.

PROOF Suppose B # A™! was also an inverse for 4. Then
BA = AB = 1. But then

A1 = A" = A"Y4B) = (A" '4)B = IB = B
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which is a contradiction, proving that there can be only one inverse for a
given matrix.

One way to construct the inverse of a square matrix 4 (if it has one) is to
work with the cofactor expansion of the determinant of 4. Let the elements of
4 be a;; and the cofactors of a;; be ¢;;. Consider the quantities

n
4 = 2 age
k=1

If i = j, then g;; is the cofactor expansion of |4] by the ith row and so

= |A4|. If i # j, then g;; = 0. This is because the expansion then in-
volves the elements of the ith row and the cofactors of a different row, and
what we have, in effect, is the expansion of a determinant in which two rows
are the same. Therefore,

n
2 aucy = |AlS;
k=1

where 8;; = 1 if i = jand d;; = 0if / # j. Let C be the matrix of cofactors
with elements ¢;;. Then C, the transpose of C, has elements &, j = ¢ji. There-
fore,

nM:

n
. Ay Cip = _Z aglr; = |Ald;;

or, in other words, AC = |A|I Simllarly, using the cofactor expansion of | 4|
by columns, we have

uM:

. AgiCrj = Z Cpnts = A0
or CA = |A|I Therefore, if |4| # 0, we have

—1—CA=A-1-C‘=1
|4 |4]

This proves the following theorem.

Theorem 2.5.2 Let 4 be a square matrix with nonzero determinant.
Let C be the matrix of cofactors; that is, ¢;; is the cofactor of a;;. Then

a_ L

|

Theorem 2.5.3 A square matrix has an inverse if and only if it has a
nonzero determinant.
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PROOF The first part of the theorem is covered by Theorem 2.5.2.
On the other hand, suppose A4 has an inverse 4~ 1. Then A4™! = 7, and

[AA™Y = 4| |47 = |I| = 1
Therefore, [A| # 0. Incidentally, we have also shown that

1
A7 = —
1477 i

Definition 2.5.2 A square matrix is said to be nonsingular if it has an
inverse (nonzero determinant). If it does not have an inverse (has a zero
determinant), then it is said to be singular.

EXAMPLE 2.5.1 Find the inverse of the nonsingular matrix

1 21
A= (—l 0 1)
1 23

First,
1 21 1 21
|4 =1-1 0 1] =10 2 2| =4
1 23 00 2
The matrix of cofactors is
-2 4 -2
C= (—4 2 0
2 =2 2
Then
-2 -4 2
c =( 4 2 -2
-2 0 2
and
-3 -1 %
471 ( 1 3 -3
-3 0 %

There are, of course, other methods of computing inverses. We shall
now take up one which is very closely connected with the methods of Sec. 2.3.
We have already seen (see Exercise 2.2.9) that we can perform any one of
the three basic row operations on a matrix by multiplying it on the left by a
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matrix obtained from the identity by the same row operation. Suppose E is
obtained from the identity by (1) multiplication of a row by a nonzero constant,
or (2) interchange of a pair of rows, or (3) addition of one row to another.
Clearly since |I} = 1, then |E| # 0, so E is nonsingular. Now EA is obtained
from A4 by one of the basic row operations, and since |E4A| = |E | |4}, we have
that E4 is nonsingular if and only if 4 is nonsingular. The same goes for any
number of basic row operations, which shows that if 4 is reduced to B by
basic row operations, then 4 is nonsingular if and only if B is nonsingular.
Let us reconsider Example 2.5.1 in the light of these comments. Let

RN

1
E2E1A—(
100
00 1

)
2
E4E3E2E1A = (0

10
11

;

1
0
1

0
1
0

E

Then

[\

Then

s
—

0
0)
1
1
l)

0 1

This is in reduced form (as defined in Sec. 2.3), but for the present purposes

we go further. Let

1 -2 0 1 0 0
Es.:(o 1 o) E6=(o | _1)
0 0 1 0 0 1
1 01
E; = (0 1 0)
0 01
Then
1 00
EJE¢EsE,FEsE,EA = (0 1 0) =]
0 01
or

E,E4EsE, E,E,E,IA

=A"4




and multiplying on the right by 471, we have
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E7E6E5E4E3E2E11 = A-l

This tells us that if we perform the same basic row operations on the identity,
we shall produce 4~*. It will not be necessary to write out the E’s if we arrange

the calculation as follows:

1 2 111 o0
(-101:010
1 2 3,0 0 1

1
—-)(0
0

O = O O= 0O O=N O

L S

(=]

- O O

|
Ok m OO OO

0

|
O O Q9 —mOoQ

3

We display 4 on the left and the identity on the right. We then change 4 into
I by a sequence of basic row operations. Performing these same operations on
the identity, we obtain 4!, which appears in the last step on the right with the

identity on the left.

If the coefficient matrix of a system of » linear homogeneous equations in
n unknowns is nonsingular, then the equations have only the trivial solution.
Conversely, if the coefficient matrix is singular, the equations have nontrivial
solutions. These results follow from Theorem 2.3.3 (see Exercise 2.4.10).

Theorem 2.5.4 A system of n linear homogeneous algebraic equations
in » unknowns has nontrivial solutions if and only if the determinant of the

coefficient matrix is zero.

Theorem 2.5.5 A system of n linear algebraic equations in » unknowns
has a unique solution if and only if the coefficient matrix is nonsingular.
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PROOF This follows from Theorem 2.3.5 and our above remarks
about the singularity or nonsingularity of the reduced coefficient matrix.

In the case covered by Theorem 2.5.5, we can find a formula for the
solution. We can write the equations as 4X = B, with 4 nonsingular. There-
fore, A~ exists, and

A" 4X)=IX=X=A"'B

If C is the matrix of cofactors of elements of A, then

at=Lle ad x-Les
(4l (Al

The product CB has elements > &by = > c;b;. Therefore,

j=1 i=1
x-L "c-b
i IAIZ]:J

Jj=1

But the sum is just the expansion by columns of a determinant formed from the
coefficient matrix 4 by replacing the ith column by the b’s. This gives us
Cramer’s rule: if the coefficient matrix 4 of the system of n equations in n
unknowns, AX = B, is nonsingular, then the value of the ith variable is given
by 1/|4| times the determinant of the matrix formed by replacing the ith column
of Aby by, b,,..., b,

In terms of total calculations, Cramer’s rule is not very practical. It
involves the calculation of n + 1 determinants of order n. Compared with the
elimination method it is marginal for n = 3 and is at a disadvantage for n > 4.
However, if the value of only one of the unknowns is needed, only two deter-
minants need be calculated.

We conclude this section with a couple of definitions of special non-
singular matrices which involve the concept of inverse.

Definition 2.5.3 Let 4 be an n x n matrix with real elements. Then
A is said to be orthogonal if A= = A.

Definition 2.5.4 Let A be a matrix with complex elements. Then the
conjugate of A (written A) is the matrix formed from 4 by taking the
conjugate of each of its elements.

Definition 2.5.5 Let 4 be an n x n matrix with complex elements.
Then A is said to be unitary if 47! = 4.
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EXERCISES 2.5

I Which of the following matrices have inverses?

1 0 1

@ (; f) ®) (} :) @lo -1 o

1 0 -1

12 3 2 131
@io -1 0 (e)

L o -1 2 -4 1

-2 1 2 -3

1 2 3 4

012 3

o) 0 01 2

0 0 01

Find inverses of matrices in Exercise 1 which are nonsingular.
Find the inverse of the diagonal matrix}

S oo

0 0 0 4

When does a diagonal matrix have an inverse? State a general rule for finding the
inverse of a diagonal matrix.

Show that an upper-triangular matrix with nonzero elements on the principal
diagonal has an inverse which is upper-triangular.

Solve the following system of equations using Cramer’s rule.

X; + Xy~ X3=17
—Xx3 + 2%, + x3= -3
2% — x, +3x3 =5
Solve the matrix equation 4B = C for B if
1 1 -1 2 0 1
A=1]-1 2 1 and C=1|3 -1 4
2 -1 3 1 5 -1

Let AX = B be a system of n equations in » unknowns with |4] = 0. Show
that there are no solutions unless all » determinants of matrices formed from A
by inserting B in the n columns of A are zero. If solutions exist, are they unique?
Hint: Multiply both sides of AX = B on the left by C, the transpose of the matrix
of cofactors of A.

t A diagonal matrix is a square matrix with zero elements off the principal diagonal.
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8 Let
A= cos @ —sin 6
“ \sin@ cosé
Find A~1. Is A4 orthogonal?

9 If A and B are nonsingular, show that 4B is nonsingular. Show that
(4B)~! = B-14-1

10 Let A be nonsingular. Show that A% = (4)~1.

11 Let 4 be nonsingular. Show that (4~1)~! = 4.

12 If AB = 0, B # 0, is A nonsingular?

13 If 4% = 0, is A nonsingular?

14 If A is orthogonal, what are the possible values of [4]?

15 If A and B are orthogonal, is 4B orthogonal? Is 4~ orthogonal?

16 1If 4 and B are unitary, is AB unitary? Is 4! unitary?

17 Define A° = I and 4™" = (A~1)", n a positive integer. Let A4 be nonsingular.
Prove the general exponential formulas (A7) = A?® and 4”49 = AP*9, where
p and q are integers.

18 1If Cis the matrix of cofactors of the elements of 4, what is the value of |C|?

*2.6 EXISTENCE AND UNIQUENESS THEOREMS

The two main questions concerning systems of linear algebraic equations
(other than methods of finding explicit solutions) are (1) whether solutions
exist (existence) and (2) if a solution exists, is it unique (uniqueness)? We have
dealt with these questions to some extent in Sec. 2.3. In this section, we shall
give a more systematic discussion of these two questions, but first we must
introduce a new concept about matrices which can be defined in terms of
determinants.

Every matrix, whether square or not, has square matrices in it which can
be obtained by deleting whole rows and/or whole columns. There are of course
only a finite number of such square matrices. Suppose we compute the deter-
minants of all these matrices. We define the rank of the original matrix in
terms of these determinants.

Definition 2.6.1 The rank of a matrix A is the order of the largest order
nonsingular matrix which can be obtained from A by deleting whole rows
and/or whole columns. We denote this number by rank (4); rank (0) = 0.
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EXAMPLE 2.6.1 Find the rank of the matrix

1 2 3 4
A=(l -1 0 l)
2 1 3 5

Since A has some nonzero elements, rank (4) > 1. Also, since there are no
4 x 4 matrices, rank (4) < 3. It is easy to find a 2 x 2 matrix with nonzero
determinant, so rank (4) > 2. Now the 3 x 3 matrices are all singular since

1 3 1 2 4
1 -1 0f=0 1 -1 =0
2 1 3 2 1 5
1 3 4 23 4
1 0 1I{=0 -1 0 1 =0
2 35 1 3 5

Therefore, rank (4) = 2.

The proofs of the next two theorems are left to the reader.
Theorem 2.6.1 If Aisanm x nmatrix, then0 < rank (4) < min [m,n].

Theorem 2.6.2 If Ais ann x n matrix, then rank (4) = » if and only
if 4 is nonsingular.

Let us consider the effect, if any, on the rank of a matrix 4 when one of the
basic row operations is performed on 4. We shall consider each operation
separately. Suppose rank (4) = r, and suppose the jth row of 4 is multiplied
by k # 0 to form a new matrix B. There is some r x r matrix C in 4 such that
|Cl # 0. Now, if C contains all or part of the jth row of 4, then there is a
r x r matrix in B whose determinant is k|C| # 0. If C does not involve the
Jjth row of 4, then C'is also in B and B again contains an rth order nonsingular
matrix. If 4 contains any square matrix D of order larger than r, |D| = 0.
Any square matrix in B of order larger than r either does not involve the jth
row of 4, and is therefore already in 4, or it does involve the jth row of 4, in
which case its determinant is zero because it is k times a zero determinant from
A. Therefore, multiplication of a row of a matrix by a nonzero constant does
not change the rank.

Next we consider the interchange of two rows. Suppose B is obtained
from A4 by an interchange of the ith and jth rows of 4. Suppose rank A4) =r.
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Then there is an r x r matrix Cin A such that |C| # 0. If C involves both the
ith and jth rows of A4, then there is an r x r matrix C* in B such that |C¥*| =
—|C[ # 0. If C involves neither the ith nor jth row, then C is also contained
in B. If C involves the ith but not the jth row, then there is an r x » matrix
in A with the ith row deleted and containing the jth row, which after the inter-
change becomes C except for the order of the rows. This matrix is obviously
nonsingular. If 4 contains any square matrices of order larger than r, they
are singular. This is also true of B because any square matrix of order larger
than r in B is either in 4 or can be obtained from such a matrix in 4 by an
interchange of rows. Hence, interchanging two rows of a matrix does not alter
the rank.

Finally, we consider the operation of adding one row of 4 to another
row. Suppose B is obtained from 4 by adding the ith row to the jth row. If
rank (4) = r, then there is a nonsingular matrix C of order r in 4. If C involves
both the ith and jth rows of 4, then there is a matrix C* in B obtained from C
by adding two rows. Hence, |C*| = |C| # 0. If C involves neither the
ith nor the jth row, then C is also in B. If C involves the ith row but not the
Jth row, then C is also in B. If C involves the jth row but not the ith row, then
there is an r x r matrix in B whose determinant is |C| + [C*|, where C* is
obtained from C by replacing those elements from the jth row of 4 by the
corresponding elements from the ith row. If |C| + |C*| = 0, then |C*| # 0
and C* is an rth order nonsingular matrix in B. Any matrix in B of order
larger than r will either already be in 4, and hence be singular, or will have a
determinant which is the sum of determinants of singular matrices in 4. We
have shown that none of the three basic row operations will change the rank
of a matrix. We summarize this in the following theorem.

Theorem 2.6.3 Let A and B be m x n matrices, where B can be ob-
tained from 4 by a sequence of basic row operations. Then rank (4) =
rank (B).

We are now ready to state the fundamental existence theorem for systems
of linear algebraic equations. However, first for convenience we shall consider
one additional operation on matrices, the interchange of two columns. It
is clear that this operation does not change the rank of a matrix. Now let us
consider the effect on a system of equations if two columns of the coefficient
matrix are interchanged. Suppose the ith and jth columns are interchanged.
Then the coefficients of the x; unknown become the coefficients of the x;
unknown and vice versa. So this has the effect of just relabeling the x; and x;
unknowns.
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Theorem 2.6.4 A system of linear algebraic equations has a solution
if and only if the rank of the coefficient matrix is equal to the rank of the
augmented matrix.

PROOF By reducing the coefficient matrix using basic row opera-
tions and possibly the interchange of columns (relabeling of unknowns),
we can develop the equivalent system

/1 Ay Q3 "t 4y Gypyy a,,} ( b, }
10 1 ayy -+ ay a4, + ay X b,
0 0 1 Qs Q3p41 as, x: b3
0 0 o 1 gy, all 2] 7 |
0 0 0 0 0 cee 0 ; b,.+1
Ko 0 0 0 0 - 0 ) \ by }

We should keep in mind that the a’s and b’s are not the numbers in the
original system, which have been changed in the reduction process.
However, the right-hand sides are affected only by row operations. The
last column of the augmented matrix is never interchanged with columns
of the coefficient matrix. It is now clear that the rank of the reduced
coefficient matrix is r. It is also clear that the system will have a solution
if and only if b4y = b,,, =--- = b, = 0. In this case, and only in
this case, the rank of the augmented matrix of the system will be r. By
Theorem 2.6.3 and the comment about interchanging columns, the state-
ments about equality of rank will hold for the original coefficient and
augmented matrices. This completes the proof.

Since any solution of the original system can be found as a solution of the
reduced system, in the case where the equations have solutions we can find the
general solution from the reduced system. Let us examine this general solution.
The rth reduced equation is

Xp + Qrr 1%, 41 L AenXy = br

We can assign arbitrary values to X, , X,1,, ..., x, and obtain a value for X,.
Substituting this into the (+ — 1)st equation, we can obtain a value for X1
Working up to the first equation, we can finally determine xy. Generally, the
values of x,, x,, ..., x, depend on our choice of Xps1s Xps2s -+ Xy, DUt in any
case, the choice of the last n — r variables is completely arbitrary. Therefore,
the general solution will contain n — r arbitrary parameters. From this we can
conclude the fundamental uniqueness theorem.
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Theorem 2.6.5 A solution of a system of m linear algebraic equations
in 7 unknowns is unique if and only if the rank of the coefficient matrix is

n.

The final theorem follows from Theorems 2.6.5 and 2.6.1.

Theorem 2.6.6 A solution of a system of m linear algebraic equations

in 7 unknowns is never unique if » > m.

PROOF If A is the coefficient matrix, rank (4) < m < n.

EXAMPLE 2.6.2 Determine whether the following system of equations has a
solution; if so, is it unique?

The augmented matrix of the system is

Using row operations, we have

W W o N -

-1 2 -1 1
1 -1 1 -2
2 1 -3 1
0 1 0 -1
2 2 -3 0
1 -1 2 ~1
0 3 -5 3
-0 2 1 -3
0 3 -5 3
0 5 -4 0

Xy — X3+ 2x3 — x5, =1
2% + X3 — X3+ Xx4= =2

2%, + x3 —3xs =1
3x, + X3 = —1

3x; + 2xy + 2x3 — 3x, =0

1 1 2 -1 1

2 1 —1 1 -2

0 2 1 -3 1

3 0 1 0 -1

3 2 2 -3 0
1 1 -1 2 -1 1
-4 0 2 1 -3 1
1)]-f{0 3 -5 3 -4
-4 o o0 o o O
-3 0 5 -4 0 -3
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1 -1 2 -1 1 1 -1 2 -1 1
o 2 1 -3 1 0 2 1 -3 1
-1 0 3 -5 3 -4})-]0 3 -5 3 -4
0 3 -5 3 -4 0 0o o0 o0 O
o 0 0 o0 o o 0 0 o0 o

It is apparent that the rank of the coefficient matrix equals the rank of the
augmented matrix, which is 3. Therefore, the system has a solution, but it is
not unique because 3 < 4, the number of unknowns. The general solution
of the system will contain one arbitrary parameter.

EXERCISES 2.6

1 Prove that the rank of the augmented matrix of a system of linear algebraic
equations cannot be less than the rank of the coefficient matrix.

2 Consider the three basic column operations on matrices: (1) multiplication of a
column by & # 0, (2) interchange of two columns, (3) addition of one column
to another. Prove that these column operations cannot change the rank of a
matrix.

3 State Theorem 2.3.3 in terms of the rank of the coefficient matrix. Prove your
version.

4 State Theorem 2.3.5 in terms of the rank of the coefficient matrix. Prove your
version.

5 Determine whether the following systems of equations have solutions; if so,
are they unique?

@ x +x,— x3=1 () x; + +2x3— x4=0
2% + X3 + 3x3 =2 2x1 + X3 — X3 =35
xz—SX3=1 "x1+2x2+ X3+2x.‘_=3
3x2—-2x3+5x4=1

© 2x; — x4+ x3=1 @) Xy = 2%, +3%3 — x4+ x5=25

Xy +2x; —3x3=0 =Xy + 3x; + 4x3 + x4 =2

—X; + 3x; — x3=2 2x, + X3 — 2x4 + 2x5 = —1

Xy — Xg — 2x3 = -3 Xy + 5x3 — 2x4 — x5 =0

6 Consider the system of equations AX = B, where 4 is m x m. Suppose that
rank (4) = m — 1. Prove that the system has a solution if and only if the m
matrices formed from A by replacing the columns by B are all singular.
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VECTOR SPACES

3.1 INTRODUCTION

We have already seen two examples of vector spaces, the complex numbers and
the two-dimensional vectors of Sec. 1.4. There are many more examples, and
one of the objectives of this chapter is to give some idea of the scope of this
subject. Before introducing the abstract concept of a vector space, we take up
the three-dimensional euclidean vectors, partly because of their intrinsic impor-
tance in applications and partly to give the reader one more concrete example
before we begin the general discussion of vector spaces. After introducing the
axioms of a vector space and proving some basic theorems, we take up the very
important concepts of dependence and independence of vectors. We then
define basis and dimension of vector spaces. The scalar product is then intro-
duced, and this leads to a discussion of orthonormal base. The last section
(which is starred) takes up some of the fundamental properties of infinite-
dimensional vector spaces.
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3.2 THREE-DIMENSIONAL VECTORS

We shall define the three-dimensional euclidean vectors (from now on we shall
say simply vector) by a simple extension of the two-dimensional vectors of
Sec. 1.4. A three-dimensional vector is defined by a triple of real numbers
(x,y,2), and we shall write v = (x,y,z). Two vectors vy = (x4,71,2;) and
V2 = (X2,),,2,) are equal if and only if x; = x,, y; = y,, and z, = z;. We
define addition of two vectors v, = (x,,y,,z,)andv, = (X2,72,2,) by vy + v, =
(xy + X3, ¥; + 2,2, + 2,). We see that the result is a vector and the oper-
ation is associative and commutative. We define the zero vector as 0 = (0,0,0),
and it follows immediately that v + 0 = (x, »2) + (0,0,0) = (x,y,z) = v for
all vectors v. The negative of a vector v = (x,,z) is defined by —v =
(—x,—y,~2) and the following is obviously true: v + (=v) = 0 for all
vectors v.

We define the operation of multiplication of a vector v = (x,»,2) by a
real scalar a as follows: av = (ax,ay,az). The result is a vector, and it is easy
to verify that the operation has the following properties:

1 a(vy + v,) = av; + av,.
2 (a+ byv =av + bv.

3 a(bv) = (ab)v.

4 lv=y,

The geometrical interpretation of three-dimensional vectors is similar
to that for the two-dimensional vectors of Sec. 1.4. Consider a three-dimensional
euclidean space with two points (a,b,c) and (d,e,f) (see Fig. 15). Letx=d — q,
y=-e—b,z=f— c A geometrical interpretation of the vector v = (x,5,2)
is the arrow drawn from the point (a,b,c) to the point (d,e, Jf). The length of the
vector is defined as

M=V +P +22=Vd—~a + (e - b + (f — )

The direction of the vector (if [v| # 0) is specified by the least nonnegative
angles (6,,0,,0,) from the positive coordinate axes to the arrow of the vector.
The cosines of these angles are given by

X z
cos 0, = I—I cos 8, = L cos 0, = =
Al

vl vl

These cosines are usually called direction cosines. Since

x* + 3 + 2% = |v|*(cos? 0, + cos? 8, + cos? 05)

then cos? 0, + cos? 8, + cos? 0, = 1
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If there is another pair of points (a’,b',¢’) and (d’,e’,f") such that x = d’ — &',
y=¢€ —0b,z=f" -, then the arrow from (a’,b',c’) to (d’,¢’,f’) has the
same length and direction as that from (a,b,c) to (d,e,f). Therefore, we say
that the vector v = (x,y,z) is represented by any arrow with length |v| and
direction specified by (8,,6,,0;). The zero vector has no direction and so has no
arrows associated with it.

The geometrical interpretation of vector addition is as follows (see Fig.
16). Place an arrow representing v, from point P to point Q. Place an arrow
representing v, from point Q to point R. Then the arrow from P to R represents
the sum v, 4 v,. If P and R coincide, then v; + v, = 0. Since the points
P, Q, and R determine a plane, if they are distinct and not collinear, the triangle
inequality simply states that

[¥y + va| < |vy| + Ivy

It is easy to see that the inequality continues to hold if P, Q, and R are not all
distinct or are collinear.

Next let us give a geometrical interpretation of the operation of multi-
plication of a vector by a scalar. Let a be a scalar and v = (x,y,z) a vector.
Then av = (ax,ay,az) and

lavl = Va?x* + a®® + a*2% = |a| |v|

Therefore, multiplication by a modifies the length by a factor of |a| if |a] # 1.
Suppose cos 8, = x/lv|, cos 8, = y/|v|, cos 8; = z/|v]. The new direction
cosines are

a a a
cos 0} = — cos 0, cos 5 = — cos 8, cos 03 = — cos 0,
lal lal ]

If a > 0, the direction is unchanged. If a < 0, the direction is reversed. If
= 0, av = 0, which has no direction. The vector —v = (—1)v is the negative
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of v, and we sce that it has the same length as v but has the opposite direction
(provided v # 0). The geometrical interpretation of subtraction of two vectors
can be obtained from that for addition by writing v; — v, = v, + (—V,).
We also have the notion of scalar product for three-dimensional vectors.
Let v, = (x1,51,2,) and v, = (x,,,,2,). Then we define the scalar product
(dot product) as
Vit¥2 = XX + y1¥2 + 212,

We see immediately that this definition leads to the following properties:

1 vitv, =v,0v,.

2 vy (V2 + V3) = (V" V2) + (Vg * V3).
3 avy vy, = a(vy *v,).

4 viv=p?% >0

5 vev=_0ifand onlyif v = 0.

Let us look for a geometrical interpretation of the scalar product. Suppose
v; and v, are not zero and do not have the same or opposite directions. We
place arrows representing the two vectors starting from the origin (see Fig. 17).
The points O, P, @ determine a plane. Consider the triangle OPQ. The law
of cosines gives the cosine of the angle 8 between v, and v,:

vy — V2|2 - |V1,2 - "’2'2
=2|v,| v,

cos 8 =

Using the properties of the scalar product, we can evaluate the numerator

Vi — vo)* — vi? — |v2|2

=V — V) (Vg = V) — V"V — V'V,
VitV VoV, — 2V V) — VitV — V0V,
=2(vy*vy)
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FIGURE 17

This gives us the formula we are seeking
vyt vy = |vi] |[v,] cos 6

If v; and/or v, are zero, it continues to hold because then both sides are zero.
If v; and v, are parallel, then v, = av, for some scalar a and

a
ajvy|®> = la| lvy| lvg| —

ViV,
|al

[v4] V2] cos 6

where cos@ =1 if a> 0@ =10° or cosf = —1 if a < 0(0 = 180°).
Therefore, the formula holds in all cases. Two immediate consequences follow.

Theorem 3.2.1 |v, *v,| < |v,] vy

Theorem 3.2.2 If |v4] # O and |v,| # O, thenv, - v, = 0if and only if
v, and v, are perpendicular.

One of the important applications of the three-dimensional vectors is the
representation of lines and planes in space. Let us begin with lines.

EXAMPLE 3.2.1 Find an equation of the line through the point (xo,0,20)
having the direction of the vector (e,b,c). Let the vector v = (x,y,z) be the
vector from the origin to the point (x,y,z) on the line (see Fig. 18). Clearly
v = (x,,2) = (Xg,Y0:20) + 2(a,b,c), where ¢ is a parameter. If ¢ varies from
— o0 to oo, we shall obtain the whole line.
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FIGURE 18 x

EXAMPLE 3.2.2 Find an equation of the line passing through the two points
(X1, ¥1,21) and (x3,¥,,2,). A vector which specifies the direction of the line is
(@b,c) = (x2,2,22) ~ (¥1,¥1,21) = (X2 — X1, Y3 — V1, 2, — z,). Therefore,
following Example 3.2.1, an equation for the line is

(x,y,z) = (x1,y1,21) + t(xz — X1 V2 — V1522 — zl) -0 <f<®©

To discuss planes effectively we need the notion of linear combinations
of two vectors. Let v, = (a,,b;,¢,) and v, = (a,,b,,c,) be nonzero vectors
which are not parallel (v, is not a scalar times v, or vice versa). Let 5 and ¢
be scalars. Consider arrows representing v, and v, starting from the origin
(see Fig. 19). If all arrows originate from the origin, then sv, is collinear with
Vi, 1V, is collinear with v,, and sv, + #v, is in the plane determined by v, and
V2. As s and f vary, we obtain different points in the plane determined by v,
and v,.

EXAMPLE 3.2.3 Find an equation of the plane containing the point (X, yo,2o)
and parallel to the two vectors v; = (a;,b;,¢,) and v, = (as,b,,¢,), which are
not parallel to each other. Let (x,y,z) be the vector from the origin to a point
on the plane. Then

(x,ysz) = (xO’yOaZO) + s(ahblacl) + t(a29b2962)

As s and ¢ range through values from — oo to o0, we obtain all possible points
in the given plane.

EXAMPLE 3.24 Find an equation of the plane containing three distinct
noncollinear points (xo,¥¢,20), (X1,¥1,2,), and (x,,¥,,2,). Since the points are
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FIGURE 19

distinct and noncollinear, the vectors (x; — xo, ¥4 — Yo» Z; — Zo) and
(xy — X9, Y2 — Yo» Z3 — Zp) are nonzero and not parallel. Therefore, if
(x,y,z) is the vector from the origin to a point on the plane, an equation is

(x.3,2) = (X0,¥0,20) + 5(x1 — X0, ¥1 — Yo, 21 — Zo)

+ t{xy — X0, Y2 — Yos 22 = Zo)

where —o0 < s < wand —w0 < f < .

The equations given in Examples 3.2.1 to 3.2.4 are all parametric equations,
where we have given the three coordinates of points on the geometrical figure
in terms of one or two parameters. The fact that it took one parameter for the
line and two parameters for the plane reflects the fact that the line is essentially
a one-dimensional figure whereas the plane is essentially two-dimensional.
There are also implicit representations for lines and planes. In the implicit
representation we state one or more equations which the coordinates of a point
on the figure must satisfy, while points not on the figure will not satisfy these
equations.

EXAMPLE 3.2.5 Find an implicit representation of the plane containing the
point (xo,0,Z0) perpendicular to the vector (a,b,c). Let (x,y,z) be the displace-
ment vector from the origin to a point in the plane (see Fig. 20). The vector
(x — X0, ¥ — Yo, 2 — Z,) is parallel to the plane and hence the scalar product

(a,b,c)'(x - xo,y — Yo 2 — ZO) = a(x - xO) + b(y - yO) + C(Z - ZO) =0
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FIGURE 20 %

This is an implicit equation for the plane since the coordinates of all points
on the plane will satisfy it, while the coordinates of points off the plane will not
satisfy it. The equation can be put in the form

ax + by + cz =axy + byy + czo = d

Conversely, every equation of the form ax + By + yz = 8, where (,8,y) # 0,
is the equation of some plane. There is at least one point (X, yo,2,) such that
axo + Byo + yzo = 4. But then ax + By + yz = ax, + By, + yz, and
alx — xo) + B(¥ — yo) + y(z — zo) = O states the geometrical fact that the
vector (x — Xo, ¥ — Yo, Z — Zo) is perpendicular to (a,8,7).

EXAMPLE 3.2.6 Suppose two planes given implicitly by ax + by + ¢z = d
and ax + By + yz = J intersect in a single line L. Find an equation for L.
We must find the coordinates of all points which satisfy both equations simul-
taneously. The two equations do not represent the same plane or parallel
planes; hence the vectors (a,b,c) and («,f,y) are not proportional. Therefore,
at least one of the determinants

a b b ¢
a« B B v

is different from zero. Suppose, for the sake of the argument, it is the first.
Then we can solve the equations

a c
« 7

or

ax + by =d — cz
ax + By

6 — vz
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for x and y in terms of z. Whenz = 0

d b a d
sa
Yo = a b ? ab
a B a B
and the general solution is
X = Xo + tu whereu = 22— B
af — ba
= Yo+ tv _ cx— ay
z=t B aff — ba

In other words, (x,y,2) = (x¢,¥0,0) + #(u,0,1), —00 < ¢ < o0, and we have
the equation of a line passing through (x,,7,,0) and having the direction of
(u,,1).

The concepts of a vector-valued function and derivative of a vector-valued
function follow as extensions of the two-dimensional case of Sec. 1.4.

Definition 3.2.1 Suppose for each value of 7 in some set of real numbers
D, called the domain of the function, a vector v(?) is unambiguously
defined; then we say that v is a vector-valued function of ¢; ¢ is called the
independent variable, and v is called the dependent variable. The collection
of all values of v(¢), taken on for ¢ in the domain, is called the range of the
function.

EXAMPLE 3.2.7 Letv(t) = (x,y,z) = (acost,asint, bt),0 < ¢t < 2n, where
a and b are real constants. Then v is a vector-valued function of . The domain
is the interval {#| 0 < ¢ < 2x}. If we think of v as the vector from the origin
to a point in the three-dimensional space, then the range of the function is a
spiral of radius @ = v/x? + »* joining the initial point (2,0,0) and the final
point (a,0,27b) (see Fig. 21).

Definition 3.2.2 Suppose for some ¢, and some é > 0, all ¢ satisfying
to — 0 <t <1ty + & are in the domain of v(¢) and there is a vector
v'(t,) such that

lim M - V()| =0
t—=to t — to

then v'(¢,) is the derivative of v(z) at #,.
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Just as in the two-dimensional case, we have the following theorem.

Theorem 3.2.3 The vector-valued function v, with values v(t) =
(x(#),»(2),2(t)), has a derivative v'(¢,) = (a,b,c) if and only if x(¢), y(¢),
and z(¢) have derivatives at t, such that x'(t;) = 4, y'(t;) = b, and
Z’(to) = C.

EXAMPLE 3.2.8 The vector-valued function of Example 3.2.7 has a derivative
at ¢y such that 0 < ¢, < 27, In fact,

V'(ty) = (—asin ty, a cos ¢y, b)

Similarly, we have the notion of tangent to a curve in three-dimensional
space.

Definition 3.2.3 Suppose a curve is given parametrically by the vector
from the origin v(t) = (x(¢),y(t),2(¢)), « < t < B. If v(¢) has a nonzero
derivative v'(¢,) at t,, then v'(,) is a tangent vector at the point v(z,).
The tangent line at v(z,) is given parametrically by the equation

w(t) = ¥(tg) + (t — 1)V (to) -0 <t< ©

EXAMPLE 3.29 The tangent vector to the spiral of Example 3.2.7 at
to = nf2 is V(n/2) = (—a,0,b). The tangent line at the point v(n/2) =

(0,a,7b/2) is given by
w(t) = (O,a, 7t2_b) + (t - g) (—a,0,b)
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EXERCISES 3.2

10

Let w = (1,-2,1) and v = (3,1,—4). Compute u + v, u — v, 2u, —3v, and
—u + 2v. Make sketches of arrows representing each of these vectors.

Letu = (1,—2,1). Compute |u| and 8,, 6, 85, the minimum nonnegative angles
from the positive coordinate axes to the arrow of the vector.

A force in pounds is exerted on a body as designated by the vector (3,1,-2).
Find the magnitude and direction of this force. Another force of (—4,5,3), also
measured in pounds, is exerted on the same body. Find the combined effect
(resultant) of the two forces acting together. Find the magnitude and direction
of the resultant. Hint: The resultant is the vector sum of the two forces.

Let u = (2,0,~3) and v = (—1,4,5). Find the cosine of the angle between the
two vectors. If cos 8, cos 8,, cos 85 are the direction cosines of u and cos '
cos #,, cos @5 are the direction cosines of v, show that cos § = cos 0, cos ¢, +
cos 0, cos ¢, + cos 63 cos ¢, where 8 is the angle between the two vectors.
Consider a nonzero vector u represented by the arrow from O to P. Consider
the vector v represented by the arrow from O to Q. The projection of v on u is
defined to be the vector O to N, where N is the foot of the perpendicular drawn
from Q@ to the line of u. Show that this projection is given by

W u
Compute the projection of (1,—2,1) on (3,1, —4).
Consider a plane represented implicitly by ax + by + cz = d. Consider a
vector v represented by an arrow from the point (x,,¥0,25) in the plane to the
point Q. The projection of v on the plane is defined to be the vector from
(x0,¥0,20) to N, the foot of the perpendicular drawn from Q to the plane. Let
u = (a,b,c). Show that the projection of v on the plane is given by

L

[u?
Compute the projection of (2,3,— 1) on the plane given by x — 3y +2z=1.
Show that the distance from the point (x;,,,z;) to the plane represented by
ax + by + ¢z = dis given by
lax; + by, + cz; — d|
Var + b + 2

Compute the distance from (1, 2,3) to the plane represented by 2x — y + 3z = 7.
Find an equation of the line through the point (1,2,~3) in the direction of the
vector (—2,3,5).

Find an equation of the line through the two points (3,—5,7) and (—2,1,4).
Find an equation of the line through the point (4,3, 5) and perpendicular to the
plane given by 2x + 3y + 4z = 3.
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Find an equation of the line of intersection of the two planes given by
2x + 3y —4z=5and —x + Ty + 5z = 2.

Find an equation of the plane through the origin and parallel to the vectors
,-2,3) and (5,0,7).

Find an implicit representation of the plane containing the three points (1,—3,4),
2,5,—1), (0,7,—4).

Find an equation of the plane containing the two lines (x,y,z) = (1,—-3,4) +
1(2,5,—1) and (x,3,2z) = (1,-3,4) + 5(0,7,—4).

Find an equation of the plane containing the point (1,2,3) and perpendicular
to the line (x,y,z) = (1,—3,4) + £(2,5,-1).

One way to compute a three-dimensional vector perpendicular to two given
vectors is to use the vector product. Let u = (uy,u,,u3) and v = (v4,0,,03) be two
nonzero and nonparallel vectors. Show that

W= u X V= (U03 — Usvy, UsDy — Ug¥3, UsDy — U3D1)

is a vector perpendicular (orthogonal) to both u and v. The vector product has
no counterpart in other spaces.
Show that |u x v| = |u| |v] |sin 8], where 8 is the angle between u and v. Hint:
Write u = |u|(cos 6, cos 6,, cos 6;) and v = |v|(cos ¢;, cOs @,, cOs @3).
Repeat Exercise 13, using the vector product to compute a vector perpendicular
to the required plane.
Let u, v, w be three vectors whose arrow representations from the origin form the
three edges of a parallelepiped. Show that |u- (v X W)| is equal to the volume
of the parallelepiped.
Show that:

Uy U, Uz
(@ u-(vXWw=|[v; vy v;

W, Wy W

B u(vxw=w-(uxv)=v-(wxu.
(© u-(wWxv)=—u-(vxw.
Consider three planes given implicitly by

ay1x + a5,y + a3z = by
az1X + a3¥ + ax3z = b,
a3,X + @32y + azsz = by

The intersection of these three planes could be (1) empty, (2) a line, (3) a plane,
or (4) a point. In terms of the solutions of the three equations in three unknowns
give an algebraic condition for each of the cases.

A point moves along a curve in three-dimensional space with its displacement
vector from the origin given by the vector-valued function of time r(r) =
(x(2),¥(2),z(2)), where x, y, and z have first and second derivatives. The first deriv-
ative r'(f) = v(z) = (x'(2),y'(¢),2'(¢)) is called the velocity of the point, and the
second derivative a(z) = r"(¢) = v'(¢) = (x"(¢),y"(¢),z"(t)) is called the acceleration.
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If v(r) # 0, show that the velocity is tangent to the curve. The magnitude of the
velocity is called the speed. If the speed is constant and positive, show that the
acceleration is normal to the curve (perpendicular to the tangent vector).

23 Ifthespeeds() = |v(¢)| of a pointis not zero, show thata(f) = s'(*)T + s(6)|T'|n,
where T is a unit tangent vector and n is a unit normal vector.

3.3 AXIOMS OF A VECTOR SPACE

We have already seen several examples of algebraic systems which, at least in
certain respects, behave similarly. We have in mind those properties of complex
numbers, two-dimensional euclidean vectors, three-dimensional euclidean
vectors, and matrices with respect to addition and multiplication by a scalar.
We now take the modern mathematical point of view and define abstract
systems with those properties we wish to study. These systems we shall call
vector spaces. This approach will have the distinct advantage that any properties
we derive from this definition will be true of all vector spaces, and we shall not
have to study each system separately as it comes up. We begin with the axioms
for a vector space.

Definition 3.3.1 Consider a system ¥ of objects, called vectors, for
which we have defined two operations, addition and multiplication by a
scalar, either real or complex. Then V is a vector space if these operations
satisfy the following properties:

Al Ifuandvarein V, thenu + visin V.

A2 u+v=v+au

A3 w4+ (v+w=(@+vV) +w

A4 There is a zero vector 0 in ¥ such thatu + 0 = uforalluin V.
A5 Ifuisin V, then there is a vector —u in ¥, called the negative
of u, such thatu + (—u) = 0.

M1 Ifaisascalar and uisin V, then euis in V.

M2 a(u + v) = aqu + av.

M3 (a + bju = qu + bu.

M4 (ab)u = a(bu).

M5 la=u

If the set of scalars is the set of all real numbers, then we say that Vis a
real vector space. If the set of scalars is the set of all complex numbers,
then we say that V is a complex vector space.
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The reader should verify that the system of complex numbers is a real
vector space. Here the vectors are complex numbers of the form x + iy and the
scalars are real numbers. Addition is the ordinary addition of complex numbers,
and multiplication by a scalar is defined by a(x + iy) = ax + iay.

The reader should also verify that the systems of two-dimensional and
three-dimensional euclidean vectors are real vector spaces.

EXAMPLE 3.3.1 Show that the system of m x n matrices with real elements
is a real vector space, where addition is defined as ordinary matrix addition and
multiplication by a real scalar is defined as in Sec. 2.2. Let 4, B, and C be
m x n matrices with real elements. Then clearly sums are defined, and the
result is an m x n matrix with real elements. This verifies Al. A2 and A3
follow immediately from Sec. 2.2. A zero is the m X n zero matrix all of whose
elements are zero. If Aisanm x n matrix with real elements a;;, then a negative
—A is an m x n matrix with real elements —a;;. Then A4 and A5 follow at
once. If A is an m x n matrix with real elements a;;, then ad isan m X n
matrix with elements aa;;. Properties M2 to M5 follow easily.

EXAMPLE 3.3.2 Consider a system of n-tuples of real numbers
Uy, gy Uz, ... u,). Ifa = (uy, uy, us,...,u)andv = (v, vy, v3,..., v,) and
a is a real scalar, then we define addition and multiplication by a real scalar as
follows:t
W4 v=(u + v, u +0,u+ 03,8+ 0,)
an = (auy, au,, aus, . . . , au,)

Show that this is a vector space. Itis clear that Al and M1 are already satisfied.
For A2 we have
w+V=(u + v, + vy..., U + 1)
= (Vg + Uy, 0y + Ugy.o.y Uy + U,)
=v+au
For A3 we have

u+(v+w
=y + (U + wy)uy + (U + Wy)yoo sty + (U, + W)
= ((uy + v9) + wy, (U + 0v3) + Wy, (U, +0,) +w,)
=@+VvV)+w

t It is understood that in each vector space the equality of two vectors is defined. In
this case, u = vifandonlyifu; = v, i=1,2,...,n
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A zero vector is defined to be 0 = (0, 0,. . ., 0), and A4 follows immediately:

u+0=(u1 +0,u2+0,-"’un+0)
=(u1,u2,...,u,,)=ll

Ifu = (uy, u,, . .., u,), then a negative —uisdefinedtobe (—u;, —u,,..., —u,)
and AS follows:
ut(~w) = (uy —u, Uy — y,...,u, —u)
=(0,0,...,00=0

The rest of the properties, M2 to MS5, follow easily:

M2: a( + v) = (au; + vy), a(u, + v,), ..., a(w, + v,)
= (au; + avy, au, + av,,..., au, + av,)
= aqu + av

Ms3: (@ + bu = (@ + buy, (a + by, ..., (a + bu,)

= (au, + buy, au, + bu,, ..., au, + bu,)
= au + bu

M4: (abyu = ((ab)u,, (ab)u,, ..., (abu,)

= (a(buy), a(buy), . . ., a(bu,)) = a(bu)
MS: lu = (u, u3,...,u) =u

The vector space of this example is called R".

The reader will be asked to show (see Exercise 3.3.3) that the system of
n-tuples of complex numbers is a complex vector space, where addition and
multiplication by a complex scalar is defined as in Example 3.3.2. This vector
space we shall refer to as C”.

EXAMPLE 3.3.3 Consider the collection P, of all polynomials in the real
variable x with real coefficients of degree n or less. If P,(x) = a, + a,x +
a)x* + - + ax" and q,(x) = by + by;x + byx* + -+ + b,x" are two such
polynomials and a is a real scalar, we shall define addition and multiplication
by a scalar as follows:

P + gu(x) = (a0 + bo) + (@, + b)x + (8, + b)x* + -+ + (a, + b)x"
ap,(x) = aay + (aa))x + (aa)x* + -+ + (ag)x"

Show that P, is a real vector space. Before checking the axioms we must agree
on the definition of equality. There are at least two definitions of equality which
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make good sense. One would be to say that two polynomials are equal if
coefficients of like powers of x are equal. The other, since polynomials are
functions, would be to say that polynomials are equal if their values are the same
for every value of x. It turns out that these two definitions are equivalent.
Clearly if coefficients of like powers of x are equal, then the two polynomials
are equal for all values of x. Conversely, we can show that if the two poly-
nomials are equal for all values of x, then coefficients of like powers of x are
equal. Suppose p,(x) = g,(x) for all x. Then p,0) = a, = ¢,(0) = b,.
Polynomials are differentiable everywhere, so p,(x) = g,(x). Hence, p,(0) =
a, = ¢,(0) = b,. Similarly, for

*) ®
k=230, 0_,_4"0_,
k! k!

k

We may now complete the example. Clearly Al and M1 are satisfied.
A zero polynomial is the constant function with the value zero everywhere.
If p,(x)=ay + ax + -+ ax", then a negative —pyx) = (—ap) +
(—a)x + -+ + (—a,)x". The rest of the axioms clearly follow from our
definition.

EXAMPLE 3.3.4 Consider the collection of all real-valued continuous
functions of the real variable x defined on the interval {x | 0<x<1} By
equality we shall mean that two such functions are equal if their values agree
for all values of x in the interval; that is, f = g if f(x) = g(x) for all x satisfying
0 < x < 1. By addition of two functions we shall mean the pointwise addition
of their values; thatis, f + g = Aif i(x) = f(x) + g(x) for all x in the interval.
By multiplication by a real scalar a we shall define the function af to have the
values af(x). We can show that this is a real vector space. It is clear that the
operations of addition and multiplication by a real scalar will yield real-valued
functions defined on the interval. That these functions are also continuous
follows from two of the basic theorems of the calculus. This verifies Al and M1.
For A2 we simply have

J) + 9(x) = g(x) + f(x)

and for A3 we have

S@) + (gx) + A(x) = (f(x) + 9(x)) + h(x)

A zero function is simply the constant function with value zero everywhere in
the interval. Then for A4 we have f(x) + 0 = f(x). If f has the value f(x),
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then a negative —f has the value —f(x). A5 follows at once; f(x) + (—f(x)) =0
for all x in the interval. For M2 to M5, we have

M2:
M3:
M4:
Ms5:

a(f(x) + g(x)) = af (x) + ag(x)
(@ + 5)f(x) = af (x) + bf (%)
(ab)f(x) = a(bf(x))

1f(x) = f(x)

Vector spaces of functions, as in this example, are sometimes called JSunction
spaces.

By now it should be clear that the concept of a vector space is very useful

because of the many examples of vector spaces which occur in mathematics.
Therefore, it is appropriate that we study abstract vector spaces in some detail.
We begin by proving some basic theorems.

Theorem 3.3.1 There is only one zero vector in a given vector space V.

PROOF Suppose 0 and 0* are both zero vectors. Then, by A4,
0=0+ 0% = 0%,

Theorem 3.3.2 Corresponding to a given vector u in a vector space V,
there is a unique negative.

PROOF Suppose v and w were both negatives foru. Thenu + v = 0
andu + w = 0. However,(Ww + u) + v=w + 0 =w. Butw + u = 0
and 0 + v = v. Hence,v = w.

Theorem 3.3.3 For all vectors u in a vector space V, Ou = 0.

PROOF By M3 and MSwehaveu = lu = (1 + O)u = lu + Ou =
u + Ou. Then adding —wu to both sides, we have 0 = u + (—u) =
u+ (—u) + Ou = Ou.

Theorem 3.3.4 For all vectors u in a vector space V, (—1)u = —u.

PROOF By M3, M5, and Theorem 3.3.3, we have 0 = Ou =
(1~ Du=1lua+ (~1u =u+ (—1u. Now adding —u to both sides,
wehave ~u = ~u+u+ (~Du=0+ (—Du = (—Du.

Theorem 3.3.5 For all vectors u in a vector space ¥ and all scalars a,
—(a) = (—au.
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PROOF By Theorem 3.3.4 and M4, we have —(au) = (—1)(am) =
(—a.

Theorem 3.3.6 For all scalars a, a0 = 0.

PROOF Let u be any vector in the vector space. Then au + a0 =
a(u + 0) = au. Then by Theorem 3.3.5, au + (—@u =0 = au +
(—au + a0 = 0 + a0 = a0.

We conclude this section with a discussion of subspaces.

Definition 3.3.2 Let U be a nonempty set of vectors from a vector
space V. Then U is a subspace of ¥ if whenever u and v belong to U, then
au + bv belongs to U for all scalars @ and b. If U is not all of V, then we
say that U is a proper subspace of V.

There are two trivial subspaces in every vector space. One is the whole
space, and the other is the zero subspace consisting of the zero vector alone.}
In any case, a subspace is a vector space in its own right with the operations
of addition and multiplication by a scalar inherited from the vector space V.
Axioms Al and M1 follow from the definition of subspace. A2 and A3 are
inherited from V. The zero must be in U; and given u in U, the negative
—u = (—1)u must be in U. The rest of the axioms M2 to M5 are inherited
from V.

EXAMPLE 3.3.5 Characterize all the subspaces of R®. We shall visualize R?
as points (x,y,z) in a three-dimensional euclidean space (or alternatively as
vectors from the origin to points in the three-dimensional space). As we have
already observed, the origin (0,0,0) and the whole space are subspaces. Also
lines through the origin, that is, points of the form (xz,ft,yt), form a subspace.
Let us check this. Suppose u = (az,,f¢,,7¢,) and v = (at,,Bt,,yt,); then

au + bv = (a(at, + bt,),f(at, + bt,)y(at; + bt,))
is also on the line. Another type of subspace is a plane through the origin.
Suppose such a plane is given implicitly by the equation ax + By + yz = 0.
Ifu = (x,y,,2;) and v = (x,,y,,2,) are points in the plane, then
ax; + Byy +yz, =0
axy + By, + 9z, =0

1 Every subspace must contain the zero vector since U must be nonempty and
Ou + Ov = 0 must be in U.
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Multiplying the first equation by a and the second by b and adding, we have
a(axy + bx) + Blay; + byy) + yazy + bz,) = 0

Therefore, au + bv is in the plane. We argue geometrically to show that these
are all the subspaces. If there is a point (xo,70,2,) # 0 in the subspace,
then the whole line (tx,,y0,22,), ~c0 < t < o0, is in the subspace. If these
are all the points in the subspace, then we have a line through the origin. If
there are two points u = (x,,y,,z,) and v = (x3,¥2,2,), such that 0, u, and v
are noncollinear, then the subspace contains the plane through the origin given
by au + bv, where a and b are any real numbers. If these are all the points, then
we just have a plane through the origin. If there is a point w off the plane in the
subspace, then we have the whole space because the subspace then contains all
points of the form au + bv + cw, where a, b, and ¢ are any real numbers.

EXAMPLE 3.3.6 Letuy, uy, ug,..., u, be a finite number of vectors from a
vector space V. Consider the subset U of all vectors of the form

u=cu + cuy + cauy + 00+ cu,

where ¢;, ¢;, ¢3,..., ¢, is any set of scalars (real if V is a real vector space
or complex if V is a complex vector space). Show that U is a subspace. Let
u be as shown above and

V=70 4 ol + yals + 00 4 oy,
Then
au + bv = (ac; + by,)u, + (ac, + byu, + -+ + (ac, + by)u,

so that au + bv is in V. In this case, we say that the set Uy, Uy, Uy, ..., W,
spans the subspace U.

EXERCISES 3.3

1 (a) Consider a vector space consisting of one vector 0 with addition and multi-
plication defined by (i) 0 + 0 = 0 and (i) a0 = 0. Prove that this space
(the zero space) is a vector space.
(b) Show that all other vector spaces contain an infinite number of vectors.
2 Show that the system of m x n matrices with complex elements is a complex
vector space where addition and multiplication by complex scalars are the usual
matrix operations.
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3 Show that the system of n-tuples of complex numbers is a complex vector space
where addition and multiplication by a scalar are defined as in Example 3.3.2.

4 Show that the collection of all polynomials of degree n or less in the complex
variable z with complex coefficients is a complex vector space, with addition and
multiplication by a complex scalar as defined in Example 3.3.3.

5 Consider the collection of all real-valued Riemann-integrable functions of the real
variable x defined on the interval {x | 0 < x < 1}. Show that this is a real vector
space with addition and multiplication by a scalar as defined in Example 3.3.4.
Is the space of Example 3.3.4 a subspace of this space? Is it a proper subspace?

6 Consider the collection of all real-valued differentiable functions of the real variable
x defined on the interval {x | a < x < b}. Show that this is a real vector space
with addition and multiplication by a scalar as defined in Example 3.3.4. Is this a
subspace of real-valued continuous functions on {x | a < x < b}? Isit a proper
subspace?

7 Given a vector space V. Prove thatin V, qu = 0 implies ¢ = 0, u = 0, or both.

Characterize all the subspaces of R2.

9 Consider the system of homogeneous linear algebraic equations 4X = 0 in the
real variables (x4, x5,...,x,) with real coefficients a;;, i=1,2,...,m;
j=1,2,...,n Any solutions will be found in R". Prove that the set of all
solutions is a subspace of R".

o

3.4 DEPENDENCE AND INDEPENDENCE OF VECTORS

We now come to the important concepts of dependence and independence of
vectors. Suppose uy, u,, ..., u, is some finite set of vectors from a vector
space V. A linear combination of these vectors is a sum of the form

k
clly + Uy + Gl = D> o
i=1

where ¢, ¢;,..., ¢, are scalars. Obviously such a linear combination is 0
k

if all the ¢’s are zero. We say that u, u,, .. .,u, are dependent if > cu; = 0 for
i=1

some set of scalars, not all zero. If this is impossible, then we say that the set

of vectors is independent.

Definition 3.4.1 A set of vectors u,, u,,..., u, in ¥ is dependent if
k

there is a linear combination > cu; = 0 with the scalars ¢y, 5, .. ., ¢
k i=1
not all zero. If 3 c;u; = 0 only for ¢y = ¢, = -++ = ¢, = 0, then the
i=1

set of vectors is independent.
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EXAMPLE 34.1 Determine whether the set of vectors u = (1,1,1),
u, = (0,1,1), u; = (0,0,1) is dependent or independent in R®. We write the
linear combination
cuy + Couy + czuy =0
and see if we can determine possible values of ¢;, c,, and c;. The three equations
determined are
¢+ ea+e3=0
e+ ¢33 =0
c3 =0
We immediately see that the only solution of these equationsisc; = ¢, = ¢3 = 0.
Therefore, the set u,, u,, u, is independent.

EXAMPLE 3.4.2 Determine whether the set of vectors u = (1,—-L1,-1),
u, = (2,3,—4,1), u; = (0,—5,6,—3) is dependent or independent in R*. Let
us represent the given vectors as column matrices:

1 2 0
-1 3 -5
1 —4 6
-1 1 -3
Then the equation c¢;u; + c,u, + cyu; = 0 becomes
1 2 0 0
(] i + ¢, _i + c3 : = g
-1 1 -3 0
or
1 2 0
-1 3 =s)| () _ g
1 -4 6 02 0
-1 1 =3/ 7

or AC = 0, where A is the 4 x 3 matrix formed by placing the given vectors
in columns and C is the column matrix of the unknowns ¢;, c,, and c;. The
question of dependence and independence of the vectors then becomes a question
of whether these homogeneous equations have nontrivial solutions or not.
We reduce the coefficient matrix 4 using row operations:

1 2 0 1 2 0 1 2 0

-1 3 -5 0 5 -5 0 1 -1
- -

1 -4 6 0 -6 6 0 0 0

-1 1 -3 0 3 -3 0 0 0




VECTOR SPACES 105

The reduced system of equations is then ¢; + 2¢, = 0, ¢, — ¢3 = 0. Let
¢; = 1,thenc¢, = 1 and ¢, = —2. We have found a nontrivial sofution so the
given set of vectors is dependent.

Theorem 3.4.1 Any set of m vectors in R" is dependent if m > n.

PROOF The m vectors are in the form of n-tuples of real numbers.
Placing these m n-tuples in the columns of a matrix 4, as in Example 3.4.2,
we have a system AC = 0, where Aisn x mand Cism x 1. We have
a system of » homogeneous equations in m unknowns with m > n.
Therefore, by Theorem 2.3.2, the system has nontrivial solutions. There-
fore, the set of vectors is dependent.

Theorem 3.4.2 Let u, u,,...,u, be an independent set of vectors in
R". Then any vector u in R" can be written as a linear combination of
U, Uy, ..., U,

PROOF Consider the set u,, u,,...,u,, u. This is a set of n + 1
vectors in R". By Theorem 3.4.1, this set is dependent, and hence

ST + r1 + ot ou, + G0 = 0

where the ¢’s are not all zero. If ¢,,; = 0, then the set u;, u,,...,u,is
dependent, contrary to assumption. Therefore, ¢,,; # 0, and

—c —c —c
u=—lu +—2u+- -+ —u,
Cn+1 Cnt 1y Cnt1
as we wished to prove.
Theorem 3.4.3 In a vector space ¥V, a set U, U,,..., W, k = 2, is

dependent if and only if at least one of the vectors in the set can be written
as a linear combination of the others.

PROOF Suppose u; can be written as a linear combination of
uy, Uy, ..., . If notu,, then we can make it u, by relabeling the vectors.
Then

Uy = CUy + C3uy + *°° + U
and we have for ¢, = —1
cuy +cuy + -+ ou =0

showing that the set is dependent.
Conversely, suppose the set is dependent. Then

cyuy + CoUy + 4 C Uy =0
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where the ¢’s are not all zero. Suppose ¢; # 0. If not ¢,, then by re-

labeling we can make it ¢,. Hence,
—C, —c3 c

u = —32u, + u; + -+ —% g,
Cq ¢y Cq

which completes the proof.

EXAMPLE 3.4.3 Consider the vector space of continuous real-valued
functions defined on the interval {xl —1 < x < 1}. Determine whether the
functions 1, x, x*> are dependent or independent. We shall do the example two
ways. We write ¢; + ¢;x + c3x* = 0, where the equality is to hold every-
where in the interval. Putting x = 0, we have ¢, = 0. Putting x = 1, we have
€2 + ¢;3 = 0. Putting x = ~1, we have —¢, + ¢; = 0. But these equations
have the unique solution ¢; = ¢, = ¢; = 0. Therefore, the functions are
independent. Alternatively, since the functions 1, x, x? are differentiable on the
given interval, we can proceed as follows. Let p(x) = ¢; + ¢,x + ¢3x% = 0.
Then p(0) = ¢; = 0, p’(0) = ¢, = 0, and p"(0) = 2¢; = 0.

In dealing with function spaces, the question of dependence and in-
dependence of sets of functions is related to the interval over which the space is
defined. Consider the same interval as in Example 3.4.3, and consider the
functions f, g, and 4 defined as follows:

/=1 ~l1<x<1
0 -1<x<0 0 ~-1<x<0

= h =
o(x) {x 0<x<1 ) {x’ 0<x<l1

These functions are independent. Let p(x) = ¢,f(x) + c,9(x) + c3h(x) = 0.
Then p(0) = ¢; = 0, p(1) = ¢, + ¢; = 0, and p(}) = }c, + 4¢3 = 0. These
equations have only the trivial solution ¢, = ¢, = ¢; = 0. Therefore, the
functions are independent. However, if we restrict these same functions to the
interval {x | —1 < x < 0}, then they are dependent because

0-f(x) +1-g(x) + 1-h(x) =0
for -1 <x<0.

In dealing with sets of functions which have a certain number of derivatives
on the interval of definition, the concept of the Wronskian is very useful.
Suppose the set of real-valued functions f,(x), (%), . .., fi(x) are all defined
and are differentiable} ¥ — 1 times on the interval {x|a < x < b}. The

t We require only one-sided differentiability at the end points of the interval.
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Wronskian of the set of functions is defined on the interval to be the determinant

1) Hx) o L)
f1(%) fax) o fil®)
W) =| fix) i) o fit)

.................................

SEO@ 5T e S0

Theorem 3.4.4 A set of real-valued functions f;(x), f2(%),--., fi(x),
differentiable ¥ — 1 times on the interval {x | a < x < b}, are independent
if W(x,) # 0 at some point x, in the interval.

PROOF We write ¢, fi(x) + ¢, /5(x) + "+ + ¢ fi(x) = O, where
this is to hold everywhere in the interval. Differentiating k¥ — 1 times,
we have

e fi®) + 2 fps(®) + 0+ afilx) =0
1 f1%) + e2f20) + - + afix) =0
e f10) + e f3(x) + - + afi(x) =0

.....................................

fE0E) + ef SO + e+ affTI) = 0

If we put x = x,, then we have a system of homogeneous linear equations
such that the coefficient matrix W(x,) is nonsingular. This implies that
¢; = ¢, =+ = ¢, = 0 is the only solution, which implies that the set
of functions is independent. Another way to state this theorem is to say
that if the given set of functions is dependent, then W (x) = 0.

The converse of Theorem 3.4.4 is not true. In other words, the Wronskian
of an independent set of functions may be identically zero. Consider the
interval {x| ~1 < x < 1}, and consider the two functions defined by

(] -1<x<0 ¥ ~1<x<0
f(x)_{xz 0<x<1 g(x)_{o 0<x<1
These functions are both differentiable, but the Wronskian is given by
2

0 x -1<x<0
We) 0 2x
X) =
x2 0 0 < )
2x 0 sx=

So W(x) = 0, and yet the set of functions is independent.
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EXAMPLE 3.4.4 Show that the functions 1, x, x%,..., x* are independent
in the vector space of continuous real-valued functions on the interval

{x ) 0 < x < 1}. We use Theorem 3.4.4. The Wronskian of the set of functions
is

1 x x*2 .- x*
01 2x --- kxkt
W =0 0 20 - k(k — I)t-2
00 O k!
= @)3Y -+ (kY

Since W(x) # 0, the functions are independent. We note that the result is the
same no matter how large the value of k. We shall see in the next section that
this implies that this space of functions is infinite-dimensional.

EXAMPLE 3.4.5 Show that the functions sin x, sin 2x, sin 3x,..., sin kx
are independent in the vector space of continuous real-valued functions on the
interval {x | 0 < x < 2rn}. We could use the Wronskian again, but this time,
because of a special property of the trigonometric functions given, there is
another method available. We write

cysinx + ¢, sin2x + ¢38in3x + - + ¢ sinkx =0

Multiplying by sin x and integrating, we have
2n 2z . 2r

clj sinzxdx+czj sinxsm2xdx+-~+c,,j sin x sin kx dx = 0
0 (1] [1]

Now

2 1 2n
J. sinzxdx=-J’ (1 —cos2x)dx ==
) 2 Jo

On the other hand, if n # m,

2 2%
f sin nx sin mx dx = %j [cos (n — m)x — cos (n + m)x] dx = 0
0 0

Therefore, all the integrals are zero except the first, and this implies that ¢, = 0.
Similarly, multiplying by sin nx, n = 2, 3,..., k and integrating shows that
¢, = ¢3 =+ = ¢, = 0. Again k is an arbitrary positive integer.
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EXERCISES 3.4

1

2

10

1

12

13

Show that any set of vectors from a vector space ¥ is dependent if the set contains
the zero vector.

Show that in R3 a set of two nonzero vectors is dependent if and only if they are
parallel.

Show that in R a set of three nonzero vectors is dependent if and only if they are
all parallel to a given plane.

Show that in R3 any set of three mutually perpendicular vectors is independent.
This shows by Theorem 3.4.2 that any vector in R? can be written as a linear
combination of a given set of three mutually perpendicular vectors.

Determine whether the vectors (1,0,1), (0,1,1), (1,—1,1) are dependent or in-
dependent in R3. Can the vector (1,2,3) be expressed as a linear combination of
these vectors?

Determine whether the vectors (1,—1,1,-1), (2,0,—3,1), (0,1,2,- 1), 4,—3,-3,0)
are dependent or independent in R*. Can the vector (1,2,3,4) be expressed as a
linear combination of these vectors?

Determine whether the vectors (1,0,1,0), (0,2,—1,3), (1,4,2,—1) are dependent or
independent in R*. Can the vector (4,6,7, — 5) be expressed as a linear combination
of these vectors?

Determine whether the vectors (1,;,—1), (1 + 40,1 —§), (,—1,—i) are
dependent or independent in C3.

In the space of continuous real-valued functions defined on the interval
{x [ 0 < x < 1}, are the functions x, x> — 1, and x? + 2x + 1 dependent or
independent?

In the space of real-valued polynomials of degree 3 or less, show that the
polynomials

Po(x) = —3(x — Dx — D(x — 3)
p1(x) = ¥x(x — 2)(x — 3)

P2(%) = —3x(x — 1)(x — 3)
P3(x) = ¥x(x — D(x — 2)

are independent. Show that any real-valued polynomial p(x) of degree 3 or less
can be expressed uniquely by

P(x) = p(O)po(x) + p()pi(x) + p(2)ps(x) + p(3)p3(x)
Let A be an n x n matrix with real elements. Show that the following statements
are all equivalent:
(a) A is nonsingular.
(b) AX = 0 has only the trivial solution.
(¢) The columns of A4 are independent in R".
(d) The rows of A are independent in R
Show that the functions 1, x + I, x2 + x + I,...,xX* + ¥* 1 + ... + x + 1
are independent on the interval {x | 0 < x < 1}. Does the result depend on k?
Show that the functions e*, e2*, 3* are independent on the interval {x ] 0<x=<1}.
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14 Are the functions e*, xe*, x?¢* dependent or independent on the interval
{x|o<x<1}?

15 Are the functions sin x, cos x, x sin x, x cos x dependent or independent on the
interval {x |0 < x < 27}?

16 Suppose f(x) and g(x) satisfy the differential equation y” + p(x)y = 0 on the
interval {x I 0 < x < 1}, where p(x) is continuous. All functions are real-valued.
Show that the Wronskian of fand g is constant. X £(0) = 1, f(0) = 0, g(0) = 0,
g'(0) = 1, are f and g independent? Hint : Compute (f'g — g’f)’.

3.5 BASIS AND DIMENSION

We have already seen several examples of vector spaces in which every vector
can be expressed as a linear combination of some finite set of vectors. The
collection of polynomials of Example 3.3.3 can all be expressed as linear
combinations of the polynomials 1, x, x, ..., x*. Theorem 3.4.2 shows that
any vector in R” can be expressed as a linear combination of some independent
set of n vectors. In Example 3.3.6, we showed that the collection of all linear
combinations of a given set of vectors in ¥ forms a subspace of V. But a sub-
space is a vector space, so this is another example of a vector space with such a
representation. We formalize this situation by giving the following definition.

Definition 3.5.1 A given set u;, u,. .., u, from a vector space V is
said to span V if every vector in ¥ can be written as a linear combination
of uj, uy,..., u,.

Theorem 3.5.1 If V is not the zero space and is spanned by a set
Uy, Uy, ..., W, then there is an independent subset which also spans V.

PROOF If V'is not the zero space (consisting of the zero vector only),
there is at least one nonzero vector in V. Therefore, there is at least one
nonzero vector in the given spanning set. Hence, there are subsets of the
spanning set which are independent. Now suppose the given set
Uy, Uz, ..., W, is dependent. Then cju;, + cu, + -+ 4+ ¢u, = 0 with
the ¢’s not all zero. Suppose ¢, # 0 (if ¢, = 0, we can relabel the vectors
so that the kth scalar is different from zero). Then

wo= S+ T2y, g Tty
Ck ¢ Ck
Now since any vector in V¥ can be written as a linear combination of
uy, Uy, . . ., W, and since u, can be written in terms of w;, u,, ..., u,_,, the
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latter set actually spans V. In this way, if the original set is dependent,
we can reduce by 1 the number of spanning vectors. Next, if the set
ug, Uy, ..., u_, is dependent, we can proceed in the same way to reduce
the number of spanning vectors by 1. This process will continue until
we obtain an independent subset of spanning vectors from the original
set. This subset must contain at least one vector since V is not the zero
space. This completes the proof.

We have a special name for an independent spanning set.

Definition 3.5.2 If a vector space ¥ has an independent spanning set,
we call such a set a basis for V.

EXAMPLE 3.5.1 Show that the set of vectors

e, =(1,0,0,...,0)
e, =(0,1,0,...,0)
e; =(0,0,1,...,0)

..................

is a basis for R". Clearly these vectors span the space since

(X1, Xgy ooy X)) = Xy + Xpey + 000 + X,€,
Also, they are independent since
i€ + €€, + -+ Cu€p = (Cla [T C,,) = 0

implies that ¢; = ¢, = -+ = ¢, = 0. This basis is called the standard basis
for R".

EXAMPLE 3.5.2 Show that the set of vectors
wy=((,1LL1) uw=(1,-11,-1)
u; = (1,2,34) u, = (1,0,2,0)
spans R*. Consider an arbitrary vector in R*, v = (b;,b,,b03,b,). We attempt

to find a linear combination of the w’s equal to v. Hence, we look for ¢;, ¢,
¢3, ¢4 such that

cU; + Ccuy + c3Uuy + Culy =V
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Representing uy, u,, u;, u,, and v as column matrices, we have

1 1 1 1 b,
1 -1 2 0 b

Cy 1 + ¢, 1 + c5 3 + ¢4 5 = b;

1 -1 4/ 0 be

1 1 1 1 ¢y b1

1 -1 2 0 Cy - bz

11 3 2] by

1 -1 4 0 \g by

If the determinant of the coefficient matrix is not zero, there will be a unique
solution for the ¢’s for a given v.

1 1 1 1 1 1

11
1 -1 2 0o_{1 -1 2 °=(—1)-i :i f
1 1 3 2/ -1 -1 1 o0 1 -1 4
1 -1 4 0 1 -1 4 0
1 0 2
=(-1)|-1 -2 1=2Ii il=4
1 o 4

This shows that the set uy, u,, us, u, spans R*. The fact that the coefficient
matrix is nonsingular shows that the set is independent, since if v = 0, there is
only the trivial solution ¢; = ¢, = ¢; = ¢, = 0.

EXAMPLE 3.53 Consider the space of m x n matrices with complex
elements. Show that the set of matrices E;;, with 1 as the (i,j)th element and 0
everywhere else, is a basis for the space. Clearly these matrices span the space,
since

Qi 4y "t a4y,

Ay Gy " Gy,

= aufyy + apEp + 00+ paEy,

Any Qmz """ Oy
Also if ¢y Eyy + ¢13E1; + ** + CopEn = 0, then

€11 Cia ' Cip 00 --- 0
€21 €33 Can _ 00 0
Cmi Cma ' Com 00 --- 0

and so all the ¢’s are zero, showing that the given set of matrices is independent.
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EXAMPLE 3.54 Show that the polynomials p,(x) = 3x(x — 1), p,(x) =
—(x = 1)(x + 1), p3(x) = 3x(x + 1) form a basis for the space of real-valued
polynomials of degree 2 or less. We first note that p,(—1) = 1, p,(0) = 0,
pi(1) =0, py(=1) =0, py(0) = 1, py(1) = 0, ps(~1) = 0, p3(0) = 0, and
pi(l) = 1. Let p(x) = a + bx + cx*. We wish to find scalars ¢;, ¢,, ¢; such
that
c1p1(x) + ¢2p3(xX) + c3p3(x) = a + bx + cx?

Substituting x = —~1, then x = 0, then x = 1, we have ¢, = a — b + ¢,
¢, = a,and ¢; = @ + b + c¢. This shows the given set spans the space because
if two quadratic polynomials agree at three distinct points, they agree every-
where. If a = b = ¢ = 0, then ¢; = 0, ¢, = 0, ¢; = 0, showing that the set
is independent.

Theorem 3.5.2 The representation of a given vector v in the vector
space ¥V in terms of a given basis is unique.

PROOF Let uj, u,,...,u, be the given basis. Let v be a given
vector v. Then v can be expressed as a linear combination

v=ocu + cu + -+ ¢,
Suppose v has another representation
V=940 + poUp + 00+ 4,
Subtracting, we have
0 =(c; — youy + (2 — 72Uy + - + (¢ — P U,

But this implies that ¢, — y; = ¢, — y, =+ = ¢, — 7, = 0 since the
set uy, U, ..., w, is independent.

Definition 3.5.3 If V is a vector space with a basis uj, u,, ..., u, and
v is a vector in ¥ such that v = cu; + cu; + * - + c,u,, then ¢,
J=1,2,..., n,is the jth coordinate of v with respect to the given basis.

EXAMPLE 3.5.5 Find the coordinates of the vector (—2,0,3,1) in R* with
respect to the basis of Example 3.5.2. Representing the vectors as column
matrices, we have

1 1\

¢y

—— W O N

1
2
3
4

1
1
1
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or
1 1 1 1\ /e -2
1 =1 2 0)fe) | ©
1 1 3 2)\le] 3
1 -1 4 0/ \e 1

We know that these equations have a unique solution since the coefficient matrix

is nonsingular. Solving by the method of Sec. 2.3, we change the augmented
matrix by basic row operations:

1 1 1 1 -2
1 -1 2 0 0
1 1 3 2 3
1 -1 4 0 1
1 1 1 1 -2 1 1 1 1 =2
0 -2 1 -1 2 0 -2 1 -1 2
- -
0o 0 2 1 5 0o 0 2 1 5
0 -2 3 -1 3 o 0 2 o0 1
1 1 1 1 =2 1 1 1 1 -2
[0 -2 1 -1 2) (o 1 -3 3 -1
0o o0 2 1 5 0 0 1 3 3
0 0 o0 -1 -4 0O 0 0 1 4
Hence, the coordinates are ¢, = —15/4, ¢, = —11/4,¢; = %, ¢, = 4.

Theorem 3.5.3 If a vector space ¥ has a basis consisting of n vectors,
then any other basis will also contain n vectors.

PROOF Suppose there are two bases in V, w;,u,,...,u, and
Vi, V2,..., V. Now v, can be expressed as a linear combination
Vi =6y + cuy + 00 4+ o,
with at least one of the ¢’s not zero. Suppose ¢; # 0 (if not we can relabel
the w’s). Then

—C —Ca

ll1=——V1+ u2+"'+

u'l
(51 €y €1

Therefore, in any linear combination of the w’s used to represent a vector
we can substitute for u, in terms of vy, u,, us,..., uw,. This shows that
the vectors vy, u,, us, . .., u, span the space. Hence, v, can be written as
a linear combination

V2 = P1Va + P22 + 000+ oy,
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with at least one of the y’s not zero. If y, # 0 while y, = y, = ++- =
¥» = O, then v, = 7,v, and the set of v’s would be dependent, contradict-
ing the fact that the v’s form a basis. Therefore, at least one of
Y25 Y35 - - + » Pp is DOt zero. Suppose y, # 0, then
wyo= Ly, Uy, TV, ey D
Y2 Y2 Y2 72

and hence, the set vy, v,, u3,..., u, spans the space. We continue this
process. If m > n, we shall eventually cast out all of the u’s and end up
with some v expressed as a linear combination of a subset of the v’s. But
this is impossible since the v’s are independent. Therefore, m < n.

Reversing the roles of the w’s and the v’s in the above discussion, we prove
that n < m. Hence, m = n, as we wished to prove.

u,

Since the number of basis vectors (when a vector space has a basis) is a
characteristic of the space which does not depend on the particular basis chosen,
we can use this number to define the dimension of the space.

Definition 3.5.4 The zero space or any vector space with a basis is
said to be finite-dimensional. The zero space has dimension zero. The
dimension of any vector space with a basis is the number of basis vectors.

From this definition it is clear that the dimension of R” is n since the
standard basis consists of n vectors. The space of real-valued polynomials of
degree n or less has the dimension n + 1. The space of m x n matrices with
complex elements is mn (see Example 3.5.3). We have not mentioned the
dimension of the function space of Example 3.3.4 for a very good reason;
it is not finite-dimensional. This will be implied by the next theorem.

Theorem 3.5.4 In a finite-dimensional vector space of dimension n,
any set of m vectors with m > n is dependent.

PROOF The proof is similar to that of Theorem 3.5.3. The given
vector space V has a basis u, u,,..., u,. Suppose the set v;, v,,..., v,
in ¥V is independent, where m > n. We can represent v, as a linear
combination of the w’s,

Vi =y + cuy + 000+ cu,
with the ¢’s not all zero. Suppose ¢; # 0 (we can relabel if necessary).
Then
—c,

1 —c
u1=—vl+_2n2+...+
€y ¢y €y
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which shows that v, u,, u3,..., u, span V. Proceeding as in the proof
of Theorem 3.5.3, casting out w’s and replacing them with v’s, we even-
tually end up with n of the v’s as a spanning set. But then, since m > n,
there are v’s which can be expressed as linear combinations of » of the v’s,
contradicting the independence of the v’s. This completes the proof.

There are vector spaces with arbitrarily larget independent sets of vectors
(see Examples 3.4.4 and 3.4.5). These vector spaces cannot be finite-dimensional.
We simply say that such spaces are infinite-dimensional.

Definition 3.5.5 A vector space with independent sets of arbitrarily
many vectors is said to be infinite-dimensional.

We conclude this section with a theorem which will simplify the search
for bases of finite-dimensional vector spaces.

Theorem 3.5.5 In an n-dimensional vector space (n = 1) a set of n
vectors is a basis if (i) it spans the space or (ii) it is independent.

PROOF (i) If a set of vectors spans the space but is dependent, then
there is a subset of m vectors which spans the space and is independent
with m < n. But this implies that there is a basis with fewer than n
vectors, contradicting Theorem 3.5.3.

(i) If a set of n vectors my, u,, ..., u, is independent but does not
span the space, there is at least one vector v which cannot be written as a
linear combination of the w’s. Consider a linear combination

v+ cuy +cup + 0+ cu, =0
If ¢ # 0, then v is a linear combination of the w’s. Therefore, ¢ = 0.
If any of ¢y, ¢,, .. ., ¢, is not zero, then the u’s are dependent. Therefore,

the set v, uy, u,,..., u, is independent. But this contradicts Theorem
3.54. Hence, u;, u,,. .., u, span the space.

EXERCISES 3.5

1 Determine which of the following sets of vectors, if any, is a basis for R3:
(a) (1’]’])’ (l)_lyl)’ (0’190)
®) 1,2,3), 1,01, (0,—1,2)
(© ©,0,1), ©,1,-1),(©,-1,1)

1 Here “large” refers to the number of vectors in the set.
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Each of the following sets of vectors spans some subspace of R*. Find the dimen-
sion of the subspace in each case.

@ d,1,11), 1,0,1,0), (0,1,0,1), (1,—1,1,~1)

®» 1,234, (-1,0,1,3), (0,1,~1,2), (1,2,—1,4)

() (1,2,3,0), (1,0,1,0), (0,—1,2,0), (—1,1,3,0)

@ (-1,342),(1,-3,-4,-2), (-2,6,8,4), (2,—6,—8,~4)

Show that the vectors (1,1,1), (1,—1,1), (2,0,3) form a basis for R3. Find the
coordinates of (4,5,6) with respect to this basis.

The vectors (1,1,1,1), (1,0,1,0), (0,1,0,1), (1,—1,1,—1) span a subspace of R*.
Is the vector (4,—2,4,—~2) in that subspace? If so, express the vector as a linear
combination of the given vectors.

Which of the following sets of vectors is a basis for C*?

(@) (3,0,0,0), (0,4,0,0), (0,0,i,0), (0,0,0,i)

®) (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)

©) 1,11, (i), (0,1,0,1), (i,0,i,0)

Show that the space of differentiable real-valued functions defined on the interval
{x|0 < x < 1} is infinite-dimensional.

Show that the space of Riemann-integrable real-valued functions defined on the
interval {x | 0 < x < 1} is infinite-dimensional.

Prove that a vector space with an infinite-dimensional subspace is infinite-
dimensional. Is the converse true?

Show that the set of vectors (1,1,1,1), (0,1,0,1), (1,0,2,0) is independent in R*.
Construct a basis in R* containing the three vectors.

Let ¥ be an n-dimensional vector space. Given a set of vectors uy, us,.. ., Uy,
k < n, which are independent, prove that there is a basis for V containing the
given set.

3.6 SCALAR PRODUCT

We have already seen a couple of vector spaces in which it was useful to
introduce a kind of scalar-valued product between pairs of vectors. We did this
in the systems of two- and three-dimensional euclidean vectors when we defined
a scalar productt (dot product). The concept is, in fact, so useful that we shall
now postulate a set of properties for a scalar product in general and study
the properties of such a product. Then any particular vector space which has a
suitable scalar product will have these additional properties. It is not necessary
to have a scalar product defined in the space in order to have a vector space,
but in most cases of interest to us we shall have a scalar product.

t This is not to be confused with multiplication by a scalar, where the product is
between a scalar and a vector with the result a vector.
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We shall give the properties of a scalar product for a complex vector
space. Here the product is between a pair of vectors, and its value is a complex
number. The corresponding thing for a real vector space is for the scalar pro-
duct to have real values. The corresponding properties for real vector spaces
can be obtained by simply removing the conjugation symbol, since for real
numbers conjugation has no effect.

Definition 3.6.1 Let V be a complex vector space. Let u and v be
vectors in V. We define a complex-valued product (u - v) to be a scalar
product if it has the following properties:

N (@-v)=(v-u).
@) (@v+wy=(@'v)+ u-w.
(iii) (au-v) = au-v).
(iv) (u-w) > 0.
(V) (u-u) =0ifand onlyifu = 0.

EXAMPLE 3.6.1 Consider the complex vector space C” of n-tuples of complex
numbers. Let u = (¥, 4,,...,%,) and v = (vg, v5,...,0,). We define
(@-v) = uyby + u,5, + -+ + u,b,. Show that this is a scalar product. We
can easily verify the five required properties:

@i): (Veu) = vy + 0, + 0 + 1,0,
= Dyuy + DUy + - + D,
= w0y + Uyb, + 00 + U, = (@v)

u vy + wy) + vy + wy) + 0 + w0, + W)
(B + W) + (U + Wy) + 0 + w0, + W)
= Wy + Uty + - + Uy,

+ uy Wy o+ Uy + 0 U,

@-v)+ (u-w

@i): (v + w

(iii): (au+v) = au,b, + au,v, + --- + au,b,
= a(u By + U0y + -+ + u,,)
= a(u-v)

@iv): (w-w) = ugdfiy + uyii, + -+ + i,

lgf? + fugl® + o + (> 2 0

MIfu=0u =u ==u =0and @ u = jiy® + > +--
+ lu,|* = 0. Conversely, since |u;|*> = 0forj = 1,2,..., n and equal to zero
onlyifu; = 0,(u*u) = Oimpliesu, = u, =+ =u, = 0.
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If we consider, on the other hand, R" the space of n-tuples of real numbers,
we have a real-valued scalar product (u*v) = w0, + uv, + **+ + up, and
the verification of the properties is exactly like Example 3.6.1, where all con-
jugation symbols are removed.

EXAMPLE 3.6.2 Consider the vector space of real-valued continuous
functions defined on the interval {x | 0 < x < 1}. Define a real-valued product
by

mw=fﬂmmw
0

Show that this is a scalar product. The five properties are easily verified as
follows:

: (fw=JUman=IEMKwh=@¢>
0 0
(i): (ﬂg+m=waum+hMLu
0

=Jﬁmamh+fﬁvww“
0 °

=9+ (B

Gi): (dw%irdmﬂﬂh=aﬂﬂmmwx
= a:f'y)

(iv): (ﬁn=£ﬁﬂwrwzo

™) If f(x) = 0, then [g [f(x)]* dx = 0. Conversely, if [} [f(x)]>dx =0,
then f(x) = 0. This is because if [ f(x,)]> > 0, then there would be (by the
continuity) an interval containing x, where [f(x)]> > 0 and hence

§5 [fx)}? dx > o.

EXAMPLE 3.6.3 Consider the space P, of real-valued polynomials of degree
n ot less in the real variable x. If p,(x) = ap + a;x + a,x*> + *-+ + a,x" and
gu(x) = by + byx + b,x* + -+ + b,x", then we can define the product

(Py* @) = aghy + ab, + -+ + ab,
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Show that this is a scalar product. We verify the five properties as follows:

@: (Pn' dn) = aobo + albl + 0+ ab,
= bOaO + blal + o+ bnan = (qn pn)

@): (2a g0 + 1) = aglbo + co)

+ayby +¢)) + -+ a b, + c,)
aghy + aby, + -+ + a,b,

+ agco + aj¢y + 100 + ayc,
=g + (210

I

(i) : (apn - 4,) = (aao)bo + (aay)by + -+ + (aa,)b,

= a(aghy + a;b, + -+ + ab,)

= a(pn * qy)
(iV)Z (pn'pn) = a02 + alz + -+ anz = 0
() I p(x) =0, then @y = @¢; =+ = g, = 0 and (p,"p,) = ay* +
a,> + -+ a2 = 0. Conversely, if ap> + a;> + -+ + a,> = 0, then
ay =a; = =g, =0and p,(x) = 0.

We can add to the list of properties of the scalar product by proving some
theorems, assuming of course that we are dealing with a complex vector space
with a scalar product.

Theorem 3.6.1 (u + v'w) = (u-w) + (v-w).

PROOF  Using property (i) of the definition, we have

@+vw=@Wu+v=>W-u)+ W v)=(Qw+(vw

Theorem 3.6.2 (u-av) = a(u-v).

PROOF Using property (i) of the definition, we have

(m-agv) =(av-uw) =a(v-u) =alv-u) = au-v)

The quantity (u * u) is nonnegative and is zero if and only if u = 0. There-
fore, we associate with it the square of the length of the vector. In fact, we
define the length (or norm) of u to be (u - w)!/2 and designate it by the symbol
[ull. Some of the properties of the norm are given by the next theorem.

Theorem 3.6.3 If ¥ is a vector space with a scalar product (u - v) then
the norm [ju] = (u- u)!/? has the following properties:
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@ ] = 0.
(i) [u] = Oif and only ifu = 0.
(i) [au| = |a| [u].

@iv) |(m-v)| < Ju| |lv]| (Cauchy inequality).
W) flu+ v{ < |u]] + |v| (triangle inequality).
PROOF (i) This follows from property (iv) of the scalar product.
(ii) This follows from property (v) of the scalar product.
(iii) Jau|®> = (au* au) = ad(u-uw) = {a|* |u|. The result follows by
taking positive square roots.
(iv) For any complex scalar a

0<|u+av)? =@+ av-u + av)
= (u-u) + (@v-u) + (u-av) + (av-av)
= llul* + a(u-v) + a@-v) + la* Iv|?

If (u-v) = 0, then the inequality (iv) is satisfied. Therefore, assume
(u-v) # 0and let
_ AMa-v)
I(u - )]

where A is real. Then

full? + 24i@- )| + A*|v|?
=a 4+ 248 + A%y

0< |lu+ av|?

]

This is a nonnegative quadratic expression in the real variable 2. There-
fore, the discriminant 482 — 4y must be nonpositive. Therefore, since
o« = |u)% f = |(u-v)|,andy = ||v|?, we have

- ¥I* < fu)? v

and the Cauchy inequality follows when we take positive square roots.

) lu+vP=(@+v-u+v)

lof® + @-v) + @-v) + |v)?
= [u® + 2Re (u-v) + |v/?

< lul? + 2{-9)| + [v]?

< llali®* + 2[u vl + [v)?

< (fufl + fvi)?

The triangle inequality follows when we take positive square roots.

I
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EXAMPLE 3.6.4 Let fbe a complex-valued continuoust function of the real
variable x defined on the interval {x | a < x < b}. Prove that

J.bf(x) dx| < (b — a)M, where M = max |f(x)|

We can consider f as a vector in the complex vector space of complex-valued
continuous functions defined on the interval {x | a < x < b}. Thereader should
verify that this is a vector space. In this space we introduce the scalar product

g = f " F)9G) dx

The reader should check the five properties. Using this scalar product and the
Cauchy inequality for fand g = 1, we have

b 12 /b 1/2
< (I | f(2))? dx) <j dx)

< [(b — a)M?]V2(b — @)% = (b — )M

r £(x) dx

It is very common to refer to vectors in a vector space as points. For
example, in R* if we have a vector (x, y,z), we could consider the three numbers
as the coordinates of a point in three-dimensional euclidean space. Thinking,
in general, of vectors as points in a vector space V with a scalar product, we can
introduce the concept of distance between two points. Let u and v be in V;
then we define the distance between u and v as |u — v|. This distance function
has the following four desirable properties:

@ fa—vj|=
() flu—v] >

@iii) |u — vl = 0if and only ifu = v.

iv) Ju—v| < lu — w|| + |lw — v| (triangle inequality).

|

These properties follow easily from Theorem 3.6.3. For example, for (i),
o — vl == —w| =[-1] v —u] = v — uf. For (iv), we have

o —vi =@ —w + W -9 < Ju—w|+ |w-—v|

‘Whenever a vector space has a distance between pairs of points defined satisfying
properties (i) to (iv), we say it is a metric space. We have therefore shown that

} Continuous here means that both real and imaginary parts are continuous functions
of x. If f(x) = u(x) + iv(x), where u and v are real, then

P reyax = " uxydx + i 7 o) dx
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every vector space with a scalar product is a metric space. There are, however,
distance functions which are not derivable from a scalar product (see Exercise
3.6.11). There are even vector spaces which do not have a distance function,
but such discussions are beyond the scope of this book.

EXERCISES 3.6

1

2

10

11

Let u = (1,—2,3,0) and v = (—24,5,—1). Compute (u*v), (v*u), (2u-v), and
(u-4u + 3v).

Consider the space of continuous real-valued functions defined on the interval
{x|0 < x < 2a}. Let f(x) = sin x and g(x) = cos x. Compute (f- g), | /], and
lal.

Show that the space of Example 3.6.4 is a complex vector space. Show that the
product of this example is a scalar product. Let f(x) = ¢* and g(x) = ?!*.
Compute (f- g), where a = 0 and b = 2n.

Let ¥ be a complex vector space with scalar product (u-v). Let [u] = (u - u)!/?
be the norm. Show that [u — v| = ||1u|| - ]]v]l|. Hint: Apply the triangle
inequality tou = (u — v) + vandv = (v — u) + u

Let ¥ be a real vector space with scalar product (u-v). Let Ju] = (u-u)'/2 be
the norm. Prove the pythagorean theorem: |u + v|> = [Ju|? + |v|? if and only
if (w-v) = 0. Why is this called the pythagorean theorem?

Let ¥ be a complex vector space with scalar product (u-v). Let [ju] = (u-u)'/?
be the norm. Prove the parallelogram rule: fu + v} + u — v}> = 2Ju]? +
2|v[2. Why is this called the parallelogram rule?

Show that Cauchy’s inequality is an equality if and only if the two vectors are
proportional. Hint: Consider the proof for the case when the discriminant is
zero.

Show that the triangle inequality (Theorem 3.6.3) is an equality if and only if
the two vectors are proportional and the constant of proportionality is a non-
negative real number.

Let fbe a continuous real-valued function defined on the interval {x ‘ a < x < b}

Prove that
b b 1/2 b 1/2
f [P dx < ( f e dx) ( f 1P dx)

Let V be the vector space of n-tuples of real numbers. If u = (u, u,,. .., u,),
let Jul* = luy] + Juy| + -+ + |u,]. Show that |u — v||* satisfies the four
properties of a distance function.

Show that |jul|* of Exercise 10 cannot be derived from a scalar product. Hint:
See Exercise 6.
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12 Prove that a scalar product can be defined for any finite-dimensional vector space.
Hint: If the dimension is n = 1, there is a basis u,, u,, ..., w,. Then Vew) =

> v,W,; is a scalar product, where v; and w; are coordinates with respect to the
i=1

basis.

3.7 ORTHONORMAL BASES

In finite-dimensional vector spaces with a scalar product, we can select bases
with special properties. These are called orthonormal bases, and they have
many desirable properties, which we shall bring out in this section.

Definition 3.7.1 Let ¥ be a vector space with a scalar product (u - v).
‘Two nonzero vectors are orthogonal if (w* v) = 0. A vector u is normal-
ized if fJu = 1. A set of vectors u;, u,,...,u, is orthonormal if
Wwru)=96,;,i=12,...,k;j=12,...,k

Theorem 3.7.1 A set of orthonormal vectors is independent.

PROOF Let wu;,w,,...,w, be an orthonormal set. Consider
c Uy + Ccuy + -+ Gy = 0. Letl .<__] < k. Thel‘l

0=1(cyu; + cu; + - + U wy) = ¢

Theorem 3,7.2 Every finite-dimensional vector space which is not the
zero space has an orthonormal basis.

PROOF If ¥ has dimension » > 0, then it has a basis v;, v5,..., V,,
none of which is zero. We shall now discuss a process for constructing an
orthonormal basis from a given basis. We start withv,. Letu, = v,/||v,|.
Then [fu,|| = 1. Next let

Y2 — oy
, =2 11
vz — cqugll
where ¢, = (v, *u,). Then
(V2 wy) — cy(ug-wy) 0
vy — cquqll

(uzruy) =

and [u,| = 1. We must check that |v, — c;u|] # 0. If not, v, would
be a multiple of v, and the v’s would not be independent. We now have
u; and u, orthonormal. Next we let

V3 — Coly — €30y

u;

Ivs — comy — cauy|
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where ¢, = (v3*u,) and ¢3 = (v5*u,). Then

(45 u) = (varwy) — ¢ =0
v — comy — cam,l
(us - uy) = (v3+uy) — c; -
v — cuy — camyl
and |luz| = 1. Again if [[v; — cu; — c3u,f] = O, then v, is a linear

combination of v, and v, and that contradicts the independence of the
v’s. This process, which is known as the Gram-Schmidt process, is con-
tinued until all the v’s are used up and as many w’s are computed as there
were v's. The u’s have to form a basis because there are n of them and
they are independent (see Theorem 3.5.5).

EXAMPLE 3.7.1 The standard basis is an orthonormal basis in either R" or
C". Recall that the standard basisise, = (1,0,0,...,0),e, = (0,1,0,...,0),
e3=1(0,01,...,0,e=(0,0,0,...,1). Clearly Je;] =1,/ =1,2,...,n,
and (e;ce) = d;;,i=1,2,...,mj=1,2,...,n

EXAMPLE 3.7.2 Consider the basisv, = (1,0,0,...,0),v, = (1, 1,0,...,0),
vs=(,1,1,...,0),...,v,= (1,1, 1,..., 1) in R" Construct an orthonormal
basis from it by the Gram-Schmidt process. We let uw, = v, and then
[luy| = 1. Now

u, = V2 — Uy
lva — equgll
where ¢; = (v, *u;) = 1. Then
w,=(,140,...,00-(1,0,0,...,0)
=(0’1,0"‘ ,0)
Next
u, V3 — C,uy — C3U,y

Ilvs — cmy — camyl
where ¢; = (v;°uy) = 1 and ¢; = (v; - u,) = 1. Hence,

Uy = (1’ L 1’0""’0) —(1’0,0"",0)— (07 1,0,---’0)
=(0,0,1,0,...,0)
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In this case, the process leads us back to the standard basis. However, the
reader should not get the impression that in R" (or for that matter in C™) the
Gram-Schmidt process will always yield the standard basis (see Exercise 3.7.1).

The coordinates of a vector v relative to an orthonormal basis are partic-
ularly easy to calculate. In fact, if v = cou, + cuy + -+ 4+ cu,, where
Uy, U, ..., W, is an orthonormal basis, then

c; = (v-uy)
Also, since u; is a normalized vector,
cu; = (V- uu;
is just the projection of v onto u;, so that the vector v is just the sum of the
projections of v onto the basis vectors.

Let ¥V be any n-dimensional complex vector space with an orthonormal

basis u;, u,, ..., w,. Letvandw be two vectors in ¥ such that

V=ou; + 00, + 000 4+ v,
W=wiu +wu, + -+ wu,

so that v; is the jth coordinate of v and w is the jth coordinate of w with respect
to the given basis. Now let us compute the scalar product of v and w.

Vew) = (vuy + o0, + -0 + v, W, + wolly + 00+ wu,)
(uy * wiwy) + (020,  wowp) + -+ + (v,u, - Waa,)
= inl + U2W2 + e + U,,W,,

Also, since (v + w) does not depend on the particular basis used, the result must
be independent of the basis. Incidentally, we have also proved the following
theorem.

Theorem 3.7.3 If ¥V is an n-dimensional complex vector space (n > 1),
then ¥ has a scalar product (v:w) = v,W, + v,W, + - + v,#,, where
v; and w; are coordinates of v and w with respect to any orthonormal
basis in V. The result also holds without the conjugation symbol for real
vector spaces.

This discussion suggests that somehow C” characterizes all n-dimensional
complex vector spaces and R" similarly characterizes all n-dimensional real
vector spaces. This is indeed the case. The underlying concept is isomorphism,
which we shall now define.

Definition 3.7.2 Let ¥ and V* be two complex (real) vector spaces.
Then V and V* are isomorphic (V¥ < V*) if there is a one-to-one corre-
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spondence between the vectors v of ¥ and v* of V*(v < v¥) such that
(@ if v v* and w o w*, then v + w & V¥ + w* and (ii) if v & v¥%,
then av « av* for every complex (real) scalar.

EXAMPLE 3.7.3 Show that R**! and P, (the space of real-valued poly-
nomials of degree n or less in the real variable x) are isomorphic. Let p,(x) =
ay + a;x + ax* + -+ + ax" be in P, Then (ap, a1,a;...,8,) is an
(n + D)-tuple of real numbers in R**1. Conversely, if (bg, by, by ..., by) is
an (n + 1)-tuple of real numbers, there is a polynomial g,(x) = by + bx +
b,x* + -+ + bx" in P,. Therefore, there is a one-to-one correspondence
between the polynomials of P, and the (n + 1)-tuples of R**'. Now if

(aO’ Ay, Azy .- an) Hpn(x)

then (bos by, by, . . .5 By) © ()

(aO: 01, az’ crt an) + (bo’ bl’ b2, CRAE] bn)
= (@ + bo, ay + by,..., a8, + by)
o (ap + bo) + (ay + b)x + - + (g, + b,)x*
= pa(X) + g,(x)
Also

aay, ay, Gz, - - . » a,) = (aay, aay, aa,, . . ., ad,)
o aay + aa;x + aa,x* + + + agx"

= ap,(x)

il

Theorem 3.7.4 Every n-dimensional complex (real) vector space V is
isomorphic to C" (R"), n > 1.

PROOF By Theorem 3.7.2, V has an orthonormal basis u;, u,, . .. ,u,.
We set up the correspondence u; <> €;, Uy <> €,,..., U, <> ¢, between
the w’s and the standard basis. If visin ¥, then it has unique coordinates
(1, v3, ..., v,) Wwith respect to the basis uy, u,,...,u, The n-tuple
(v, vy, ..., 1,) is in C" (R"). Hence, v*¥ = (vy, 03, .- ., ,) is in C" (R),
and we set up the correspondence v «> v*. This is clearly one to one.
Also, av = avu, + avuy + -+ + avm, < (avy, av,,..., av,) = avk.
Ifw = wau, + wyu, + - + wau, in ¥, then

V+w= (0 + wn + (0 + wuy + 0 + (@, + WU,
(U + Wi, Uy + Wayo s Uy + W)
= v* + w*

where w* = (w,, w,,..., w,) is in C" (R"). This isomorphism also has
the advantage that it preserves scalar products (see Theorem 3.7.3).




128 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

EXERCISES 3.7

10

11

12

13

Test the following set of vectors in R? for independence and construct from it an
orthonormal basis: (1,0,1), (1,—1,1), (0,1,1).

Test the following set of vectors in R* for independence and construct from it an
orthonormal basis: (1,0,1,0), (1,—1,0,1), ©,1,-1,1), 1,-1,1,—1).

Consider the space of real-valued polynomials of degree 2 or less defined on the
interval {x| —1 < x < 1}. Using the scalar product (p - q) = {11 p(x)q(x) dx,
construct an orthonormal basis from the independent polynomials 1, x, x2.
Consider the r-dimensional real vector space V. Let uj,uy,...,u, and

n
Vi> ¥2,...,V, be two orthonormal bases for ¥ such that v, = z ay g,
k=1

i=1,2,...,n Prove that the matrix 4 with elements a;; is orthogonal.
Express the u’s in terms of the vs.
Consider the n-dimensional complex vector space V. Let up, uy,...,u, and

n
Vi, V2,...,V, be two orthonormal bases for ¥ such that e z auy,
k=1

i=12,...,n Prove that the matrix 4 with elements a;; is unitary. Express
the w’s in terms of the v’s.
Given two atbitrary bases u;, u,,. .., u, and Vi, V2,..., V, in a vector space V

n
such thatv, = Z a, . Prove that the matrix A with elements g, ;is nonsingular.
k=1

Express the v’s in terms of the v’s.

Consider the plane given implicitly by the equation x + ¥ + z = 0in euclidean
three-dimensional space R3. Construct an orthonormal basis as follows: select an
orthonormal basis for the subspace consisting of those points in the given plane
and then find a third unit vector orthogonal to the given plane.

Consider the subspace of R* spanned by the two vectors u = (1,0,1,0) and
u, = (1,—1,1,—1). Construct an orthonormal basis vy, v, for this subspace.
Now construct an orthonormal basis for R* containing v, and V.

Given any subspace U of dimension m > 1 in an n-dimensional vector space V'
(m < n), prove that ¥ has an orthonormal basis consisting of m vectors in U
and n — m vectors orthogonal to all vectors in U.

Given a vector v in an n-dimensional vector space ¥ and given a subspace U of
dimensionm (1 < m < n). Prove that v can be expressed uniquelyasv = u + w,
where u is in U and w is orthogonal to U (orthogonal to all vectors in U). uis
called the projection of v on U,

Find the projection of (1,2,3) on the plane given implicitly by x + y + z = 0
(see Exercise 7).

Find the projection of (1,2,3,4) on the subspace of R* spanned by u; = (1,0,1,0)
and u, = (1,—1,1,—1) (see Exercise 8).

Show that the space of m x n real matrices is isomorphic to R™. Exhibit a
one-to-one correspondence.
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14 Show that the space of m x n complex matrices is isomorphic to C™. Exhibit
a one-to-one correspondence.

15 Show that the space of complex-valued polynomials in the complex variable z
of degree n or less is isomorphic to C**1,

16 Prove that two finite-dimensional vector spaces which are isomorphic have the
same dimension.

*38 INFINITE-DIMENSIONAL VECTOR SPACES

We have already established the existence of infinite-dimensional vector spaces;
for example, the space of real-valued continuous functions defined on the
interval {x | 0 < x < 1}. However, we have not had much to say about such
spaces for a couple of good reasons. One is that our primary concern in this
book is with finite-dimensional vector spaces. The other is that the theory of
infinite-dimensional spaces is quite a bit more complicated than that for finite-
dimensional spaces. This theory is properly a part of the branch of mathematics
called functional analysis. However, it is possible to give a very brief introduction
to the subject, which we propose to do in this section.

One of the easiest ways to obtain an infinite-dimensional vector space is
to extend from R”, the space of n-tuples of real numbers, to the space of infinite
sequences of real numbers (infinite-tuples). Let w = (uy, up, u3,...) and
v = (v, 03, U3, .. .) be infinite sequences of real numbers. We shall say that
u = v if u; = v, for all positive integers i. We define the sum u + v =
(uy + vy, U + Uy U3 + v3,...) and multiplication by a real scalar a as
au = (au,, auy, aus, . ..). The zero vector we can define as 0 = (0,0,0,...)
and the negative by —u = (—u,, —u,, —us,...). Itis easy to verify that we
have a real vector space. However, since we shall want to have a scalar product
in this space, we shall restrict the sequences somewhat. We shall want to define
the scalar product

a0
(W V) = uy0; + U0y + Uy + = > U
i=1

full = (i uf)m
i=1

Since we are now dealing with infinite sequences, in order to ensure convergence

and hence the norm as

L
we shall restrict our sequences to those such that Zuiz < 0. Since we have
i=1
put a restriction on the sequences which we have in the space, we shall have to
recheck the axioms. The only ones which can cause trouble are Al and
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MI1. For Al, we have to show that if Z u? < oo and z v < 0, then
Z (4; + v)* < 0. Since 0 < (| — lvl)2 =u? + p? 2luv|, we have
that 2uwl < u? + v Therefore,

W + v = u? + 02 + 2up; < 2u? + v?)
and

00
u? +2 > v < oo

i=1

Ms

©
z (ui + U,')z <2
i=1

]
-
-

For M1, we have

00

2 (au)’ =a* > u? < 0

i=1 =1
Checking the other axioms is completely straightforward. We also have to
show that the scalar product is defined for a pair of vectors in the space. We
have that Juw;| < 3> + v%). Therefore,
PRI

8

I -

"'Me
| ot

i
which shows that Z u; converges absolutely. The five properties of a scalar
i=1

product are easily checked. Hence, we have shown that we have a real vector
space with a scalar product.

Consider the infinite set of vectors e, = (1, 0, 0, . . D), e, =(0,1,0,...),
e; =(0,0,1,0,...), etc. Thenifu = (uy, u,, us,...), we have that

[ o3
U= uje; + ue, + use; + = > uge

i=1

This is an infinite series of vectors, so we must define what we mean by con-

n
vergence of such a series. Let u, be the vector of partial sums u, = z ue;.

Then w 12
lu, — ui =( s u) =0

i=n+1
n

as n — oo, because the series z u;2 converges.
i=1
Definition 3.8.1 Let V be an infinite-dimensional vector space with a
norm.t Then a sequence of vectors {u,}, n = 1, 2, 3,. , converges to

uif lu, — u - 0 as n - 0. An infinite series 2 v; converges to v if
=1

the sequence of partial sums z v; converges to v.
i=1

t The norm is to have properties (i), (ii), (iii), and (v) of Theorem 3.6.3.
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In the above example, the vectors e,, €,, €;, ... are orthonormal because

(e;* ;) = 8;;. The coordinate of u with respect to e; is u; = (u-e;), and the
0

series 2 u;e; converges to u for all u. When these conditions all hold, we say

i=1

that we have an orthonormal basis.t

Definition 3.8.2 Let V be an infinite-dimensional vector space with a
scalar product. Then vy, V5, Vs, ... is an orthonormal basis for V if

o0
@ (vi'v) =08;i=1,23,...;j=123,..., (i) the series > wy;
i=1

converges to u for all uin ¥, where u; = (u* v;) is the coordinate of u with
respect to v,.

Definition 3.8.3 Let ¥ be an infinite-dimensional vector space with a
norm. A sequence of vectors {u,},n = 1, 2, 3, ..., is a Cauchy sequence if
lim |u, — u,|| = O; alternatively, given any & > O, there is an N such

n—* o
m=+ oo

that |uw, — u,|| < ¢ whenn > Nandm > N.

Theorem 3.8.1 Let ¥ be an infinite-dimensional vector space with a
norm. If a sequence of vectors {u,},n = 1,2, 3,..., converges touin V,
then the sequence is a Cauchy sequence.

PROOF We have for arbitrary ¢ > Oan N such that [u, — u| < e
for n > N. Therefore,

lu, — w4+ w — u,|
o, — ull + Ju, —uj <e

fu, — wy

A

forn > Nand m > N.

The converse of this theorem is not, in general, true. That is, we may have

a Cauchy sequence which does not converge to a vector in the space. For
example, if in the example of infinite sequences of real numbers we restrict
our space to infinite sequences of rational numbers, then we shall still have a
vector space with all the properties we have listed so far. However, it will
now be possible to have Cauchy sequences which do not converge to sequences
of rational numbers. Suppose {r™}, n = 1, 2, 3,..., is the Cauchy sequence
with r® = (r,™, r,™, r;®,...). Then

I = 1) < 1@ = £ - 0

1 It is possible to define more general bases, but for the sake of brevity we shall
restrict our attention to orthonormal bases.
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asn — oo and m - oo for each i. Therefore, {r,™} is a Cauchy sequence of
rationals for each coordinate. But there are Cauchy sequences of rationals
which converge to a real number, not a rational.

There are vector spaces in which every Cauchy sequence converges to a
vector in the space. Such spaces are called complete spaces.

Definition 3.8.4 Let ¥ be a vector space with a norm. Then V is a
complete space if every Cauchy sequence in ¥ converges to a vector in V.
A complete normed vector space is called a Banach space. If the norm is
derived from a scalar product, the space is called a Hilbert space.

Theorem 3.8.2 The space of infinite sequences of real numbers, that is,
0

w = (uy, uy, uy,...), where > u? < oo, with scalar product (u-v) =
i=1

0
2. uw, is complete.
i=1

PROOF Let {u™} be a Cauchy sequence such that
a® = (ul(n), uz(n)’ u}(n)’ ..2)

Then |4 — u™]| < [[u™ — u™| > 0as#n — oo and m — co. There-
fore, each coordinate sequence {u,™} is a Cauchy sequence of real num-
bers. It is a well-known property of real numbers that a Cauchy sequence
converges to a unique real number. Therefore, we can assume that

lim u,™ = u,

n—w
for each i. We now define u = (u,, u,, us,...) and prove that u is in the
space and that {u™} converges to uw. For some fixed M consider

M
> (u; — u ™). Then
i1

M M
21 (u — u™)? = Z (u — u™ + ™ ~ y ™2
S

i=1

M M
<2 Z (u; — ui(m))z + 2 Z (u™ — uM)?
i i=1

i=1
M
We can find an N such that > (™ — 4,™)* < 1¢? and (u; — u,™)? <
i=1 M
¢?/AM for n > N and some m > N. Then > — u™)? < g2 This

i=1

is possible for arbitrary M. Letting M — oo, we have

0
o — u®? = iZ (; — u, ™) < ¢
<1
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when n > N. This shows that {u®} converges to u. Finally,
S ure2 S (o u®P 42 3 @y <o
=1 =1 =1

which shows that u is in the space.

Now let us consider some infinite-dimensional function spaces. We can
find infinite sets of orthonormal functions.

EXAMPLE 3.8.1 Find a set of polynomials which are orthonormal in the
space of continuous real-valued functions on the interval {x|-1<x<1}
The scalar product is similar to the one introduced in Example 3.62,(f 9 =
j‘_ , f(x)g(x) dx. Starting with a constant function ¢,(x) = ¢, we determine ¢
so that [*; [¢,(x)]* dx = 1. The resultis ¢ = 1/ V2. Next we take a linear
function ¢,(x) = ax + b and determine @ and b from the two conditions
1, [200]% dx = 1 and (1 ¢,(x)$,(x) dx = 0. We have

1 1 2
j ax+bdx=\/—2b=0 and f azxzdx=2-1-=1
-1

-1 2 3

Hence,a = N 5/ N/ 2. Next we take a quadratic function $5(x) = ax? + px + y
and determine the constants «, f, and y from the three conditions

J‘l [D3(x)]* dx = 1 jl ¢ (x)ps(x)dx =0
i -1

and
[ dsopseaax =0
We have N _
jl a_____x’ +\/€x+7dx=\l-:2;—a+\/§y=0
and B ? _
J‘_ll\/Tix(azx2 + Bx + ) dx =:;—§B =0

Soa = —3p,andy? [L, 3x* — )2 dx = 7 = 1. Therefore,y = v/5/2v/2).
The first three polynomials are then
v3 V53x2 - 1

d1(x) = % ¢a(x) = ﬁ X ¢i(x) = \/_5 >
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This process can be continued indefinitely. At the nth step there are n constants
to determine from n — 1 orthogonality conditions plus a normalization con-
dition. The general polynomial is

$a) = \/2” - Lpo

where P,(x) is the Legendre polynomialt given by

1 an
= (x* — 1y

P(x) =
) 2"n! dx

n=2012....

EXAMPLE 3.8.2 Show that set of functions 1/v/2z, (1/x/7) cos x, (1//7) sin x,

(1 /\/ 1_1:) cos 2x, (1 /ﬁ) sin 2x, . .. is orthonormal on the interval {x]0 < x < 2n}.
We first check the normalization:

2z
i x=l
o 2n

1 2n 1 2n
-J cos* nxdx = — (1 + cos 2nx) dx
0 2r Jo

]

1 [2= 1 2n
—-I sin? nx dx = — (1 — cos2nx)dx = 1
7 Jo 2z J,

Next we check the orthogonality. If n % m,

]
=

2n 2r
'[ €OS nx cos mx dx = % f [cos (n + m)x + cos (n — m)x] dx
0 0

2n
f sin nx sin mx dx = —21._[ [cos (n — m)x — cos (n + m)x] dx = 0
)

2n
1}
2n 1 2=
f €Os nx sin mx dx = 5_[ [sin (n + m)x — sin (n — m)x] dx = 0
[ 0
2x 1 2n
j Sin nx cos nx dx = = f sin 2nx dx = 0
0 2 Jo
T See J. W. Dettman, “Mathematical Methods in Physics and Engineering,” 2d ed.,
p. 202, McGraw-Hill, New York, 1969.
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Consider the space of continuous real-valued functions on the interval
{x|a < x < b}. Suppose the set of functions ¢;(x), $o(x), ¢3(x),... is
orthonormal and f(x) is any function in the space. Consider the integral

[[reo-2 )] ax

where c; is the coordinate of f with respect to ¢;; that is,

¢ = j  F0b(x) dx

Then we have

(*b

0= [0 - 5 o[ - 5 cipin

Ja

0= [ ewrda-2[ 1w} cods + z 3, [ 600 dn

IlM:

0< * [fx)]? dx — 2 i ¢? +
i=1

i=

o< [ rorax - 3 e
=1

Ja

Therefore, > ¢ < {5 [f(x)]* dx and this holds for arbitrary n. Letting
i=1

=
n — oo, we obtain Bessel’s inequality

N8

: < f " T dx

i=1

0

This shows that the series > ¢ converges, which in turn implies that
i=1

lim ¢, = 0. This does not imply, however, that the series converges to

n—o

{2 [f()]? dx. Ifit were true that for all f(x) in the space Z ¢t =[P [f(0)] dx,
then we would have that

n 2
- Z adif =
i=1

and this would imply that the set of functions ¢;(x), §»(x), ¢3(x), ... is an
orthonormal basis for the space.

Whether a given orthonormal set of functions is an orthonormal basis
depends on the choice of the set and the function space being considered.
The sets of functions of Examples 3.8.1 and 3.8.2 are orthonormal bases for the

lim

n—oo

lim jb [f(x) - 21 ci¢i(x)]2 dx =0

n—+ow
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space of continuous real-valued functions defined on the appropriate interval.
This, however, is not easy to prove. Usually it is better to consider the given
space as a subspace of a larger complete space.t

Theorem 3.8.3 Suppose V is an infinite-dimensional space of real-
valued functions defined on the interval {x | a < x < b}, complete with
respect to the norm derived from the scalar product (- g) = [° f(x)g(x) dx.
Let ¢;(x), ¢2(x), #3(x),... be an orthonormal set in V. Let {c},

i=1,23,..., be a sequence of real numbers such that > ¢ < co.
i=1

Then > c;¢(x) converges{ to a function f(x) in ¥ such that ¢ =
i=1

Ja f()$i(x) dx.
PROOF Let f,(x) = > c;¢,(x). Thenifn > m,

- b n 2
f ['_Z c.~¢,-(x)] dx

= i ci2—>0

i=m+1

I£() = £l

a0
asn,m — oo, since the series > c;> < oo. Therefore, {f,(x)} is a Cauchy
i=1
sequence, and since V'is complete, f,(x) converges to a function f(x) in V.
Hence, [|f(x) — f,(x)Il - 0 as n - oo, and by the Cauchy inequality

If=f-dd < If=fI -0
so that

b
= lim o 4 = 040 = [ 19000 d»
This completes the proof.

Theorem 3.8.3 does not say that an arbitrary orthonormal set in a com-
plete space is a basis for that space. Consider an orthonormal set in a complete
space (Hilbert space), ¢,(x), (), ¢p3(x),.... If we delete ¢,(x), the set
02(x), P3(x), Py(x), ... is still orthonormal. However, for k = 2, 3, 4, ...

a= (P ¢ =0

T The space of continuous real-valued functions defined on the interval {x | a < x < b}
is not complete. It is possible to find Cauchy sequences of continuous functions
which do not converge to continuous functions.

1 Convergence here means in the sense of Definition 3.8.1.
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0 n

Now the function 0 = 3 c¢,$,(x) is in the space, but f,(x) = > c,¢,(x) does
k=2 k=2

not converge to ¢,(x). Therefore, the orthonormal set ¢,(x), ¢3(x), P4(x), ...

cannot be a basis. However, there is an alternative characterization of an

orthonormal basis.

Theorem 3.8.4 Let V be a Hilbert space. Then the orthonormal set
by, P32, ¢3,... in V is an orthonormal basis if and only if there is no
nonzero vector in V orthogonal to every member of the set.

PROOF Suppose || f|| > O0and (f-¢;) = ¢; =0fori=1,2,3,....
Now

lim

n— o

S Z i

2
l =1l %0

showing that the orthonormal set is not a basis. Conversely, suppose the
orthonormal set is not a basis. Then there is a vector f such that
n 2 0
lim | f — Zl adi| =177 - izl ¢t >0
= <

n— oo

n

where ¢; = (f- ¢;). However, the sequence g, = > ¢,¢; is a Cauchy

i=

sequence and, since the space is complete, converges to a vector g in V.
Now consider the vector # = g — f, which is orthogonal to the set

&1, G2, 3, ... since
Gh-d)=(g- )~ (fd)=¢ci—¢;,=0

However, Al = llg — fI = |lg — gull — IS — gal| > O since
lg — gull > 0and lim ||/ — g,| > 0. This completes the proof.

In Theorem 3.8.3, we did not state which definition of the integral we were
using. As a matter of fact, the Riemann integral is not good enough since
the space of Riemann-integrable functions is not complete. In order for the
theorem to be meaningful, we would have to use the Lebesgue definition of the
integral. Since the constant function g = 1 is in the space, we require that
(f+ 1) = [% f(x) dx exists as a Lebesgue integral for each fin the space. Also
we require that {° [f(x)]* dx exists as a Lebesgue integral. Therefore, the
proper setting for the theorem is the space of Lebesgue square integrable
functions, L,(a,b). A famous theorem of analysis, the Riesz-Fischer theorem,
asserts that L,(a,b) is a Hilbert space. If an orthonormal set is a basis for
Ly(a,b), then it is also a basis for any subspace of L,(a,b), say the space of
continuous functions defined on the interval {x l a<x<b}
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EXERCISES 3.8
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INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

Consider the space of infinite-tuples of complex numbers as an extension of C".
If u = (u, up, u3,...) and v = (vy, vy, v3,...), then define u + v =
(uy + vy, up + vy, U3 + v3,...). Also define au = (auy, au,, aus, ...) where a
is a complex scalar. Prove that this is a complex vector space. Restrict the space

to those sequences such that 2 || < 0. Prove that the restricted space is a

complex vector space with a scalar product (u-v) = Z u;v;.
i=1
Prove that the restricted space of Exercise 1 is complete.

Prove that the limit of a sequence (if it exists) in a normed vector space is unique.
Prove that R" is complete.

Prove that C” is complete.

Prove that any finite-dimensional vector space is complete. Hint : Make use of the
isomorphism with R" or C",

Consider the space of infinite-tuples of complex numbers, u = (i, u,, us,...)

0
such that z |t} < oo. Show that this is normed vector space with norm defined
i=1

0
by |u] = z [#;]. Prove that the space is complete with respect to this norm.
i=1

Consider the space of continuous real-valued functions defined on the interval
{x | a < x < b}, with the norm || f| = max [f(x)|. Prove that the space is
complete. as<xsb

Construct the first three of a set of orthonormal polynomials in the space of
continuous real-valued functions defined on the interval {x | 0 < x < 1} with the
scalar product

1
9= f (x)g(x) dx
[}
Let V be a complex Hilbert space with orthonormal basis ¢y, ¢,, ¢3,.... If

u; = (f ¢) and v; = (g- ¢,), then show that (f-g) = > wu;d,. Hint:
i=1

n

(o) = 3 un =g — 3 ub)

Starting from the formula

P = L L2y
2"n! dx"
prove that
" POPE) dr = G2
 (X)P,(x) dx =
Prove that (1/\/;) sinnx, n = 1,2, 3,..., is not an orthonormal basis for the

space of continuous real-valued functions defined on the interval {x] 0<x<2n}.
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LINEAR TRANSFORMATIONS

4.1 INTRODUCTION

A large part of linear algebra is the study of linear transformations from one
vector space to another. We begin the discussion with some concrete examples.
The next section takes up the fundamental theorem about representing a linear
transformation in terms of a matrix. Then we consider how the representation
depends on the bases used in the domain and range space of the linear trans-
formation. The notion of change of basis then leads to a discussion of similarity
and diagonalization of matrices. This will get us into a discussion of character-
istic values and characteristic vectors. Not all matrices are similar to diagonal
matrices. We shall prove some theorems which will tell us when they are.
This will include a discussion of symmetric and hermitian matrices. The last
section will take up (without complete proof) the Jordan form, which is the
“best you can do” in the general case when a matrix is not similar to a diagonal
matrix. This will be extremely important later, when we are discussing systems of
differential equations.
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4.2 DEFINITIONS AND EXAMPLES

A linear transformation is a linear function from a vector space U to a vector
space V. To be more specific we give the following definitions.

Definition 4.2.1 Suppose that for each vector u in some subset of a
vector space U (domain space of f) there is unambiguously defined a
vector v in a vector space ¥ (range space of f). Then we have a function
f defined from U to ¥ such that v = f(u). The subset of vectors u in U,
on which the function is defined, is called the domain of f. The subset of
vectors v in ¥, which are values of the function, is called the range of f.

Definition 4.2.2 A function f from U to V is a linear transformation
if:

(i) Uand V are both real vector spaces or both complex vector spaces.
(i) The domain of fis all of U.
(i) For all scalars a and & and all vectors u, and u, in U,

Sf(au; + buy) = af(u,) + bf(u,)

EXAMPLE 4.2.1 Let U be C” and ¥V be C™, and let f(u) = O for all uin U.
Then fis a linear transformation. The domain space is C", and the range space
is C™, both complex vector spaces. The domain is all of U, and

0 = f(au; + bu;) = ad + b0 = af(n,) + bf(u,)

The range of f'is the zero subspace of V.

EXAMPLE 4.2.2 Let Ube C"and ¥ be C", and let Sf() =uforalluin U.
Then fis a linear transformation. The domain and range spaces are both C”,
The domain is all of U, and f(au, + bu,) = au, + bu, = af(u,) + bf(uy).
The range of fis V.

EXAMPLE 4.2.3 Let U be R? and ¥ be R?, and let the value of fi (u) be the
vector which is obtained by rotating u through an angle 0 in the counterclockwise
direction. We can show that f is a linear transformation by arguing either
geometrically or algebraically. Consider Fig. 22. The geometric argument is
simply this: if u; and u, are rotated through an angle 6, then so are au, and bu,.
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au; + bu,

FIGURE 22

Therefore, the parallelogram formed by au, and bu, is rotated through the
angle 6, and so is the diagonal au; + bu, of that parallelogram. Hence,

Sf(au, + bay) = af(u;) + bf(uy)

since the left-hand side is the rotation of au; + bu, and the right-hand side
is the sum of the rotations of aqu,; and bu,. The algebraic argument is the follow-
ing (see Fig. 23). Let u = (x,y) and ' = (x’,)’), where w’ is the rotation of u
through the angle 8 in the counterclockwise direction. Then

x = |jul| cos a

y = |u|l sina

’

x" = Jlulf cos (8 + &) = {jul{ cos « cos & — |Ju| sin « sin §
= xcos — ysin @
¥y = |ju] sin (6 + «) = |lu]| cos & sin 6 + |ju|| sin « cos 6

xsinf + y cos 0

- R

FIGURE 23
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If 0 = (xliyl)’ u; = (styZ)s u'l = (x'1,}"1), and “,2 = (x;.:y'Z), then

ax} + bx, = a(x; cos 8 — y, sin 6) + b(x, cos & — y, sin 6)
(ax, + bx,)cos 0 — (ay, + by,)sin 0

ayy + by, = a(x, sin @ + y; cos 0) + b(x, sin 0 + y, cos §)
= (ax; + bx,)sin 0 + (ay, + by,) cos 0

which shows that the rotation of au, + bu, is equal to a times the rotation of
u, plus b times the rotation of u,. This calculation can be handled very nicely

if we introduce the matrix
4 = (co8 6 —sind
sin@ cos@

x"\ _ [cos@ —sin@) (x
y] \sin® cos6 J\y

Now let u stand for the column matrix (x) and v stand for the column matrix

Then

(;,) . Then the rotation is given by v = Au, and clearly
A(a“l + buz) = aAlli + bAnz = avl + bVZ

where v; = Au; and v, = Au,.

EXAMPLE 424 LetU = R"and ¥ = R™. Let A be anm x n matrix with
real elements. We shall represent a vector in U by a column matrix

X1
x.
u= "2
X

Now let v = f(u) = Au, where v is in R™, represented by a column matrix

Y1
v= |22
Ym
Let a and b be any real scalars. Then
f(aul + b“z) = A(alll + buz)
= aAu; + bAu,

af(u;) + bf(uy)
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FIGURE 24 x

This shows that the transformation given by f(u) = Au is linear. In fact, it
shows that any time we can represent a function in this way we have a linear
transformation.

EXAMPLE 4.2.5 Let U = R?> and ¥ = R2, Let u be any vector in R? and
Sf(u) be the projection of u on the line y = x in euclidean two-dimensional
space (see Fig. 24). Let z be a unit vector along the line x = y; then

z=(1/V2,1/2), and if u=(xy), f@) = @-2z = (x + )GL). Let

(x',») be coordinates of f(u) relative to the standard basis. Then

()-G 90

Therefore, by the result of Example 4.2.4, this is a linear transformation. The
reader should try to verify the same result by a geometric argument.

FIGURE 25
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EXAMPLE 4.2.6 Let U = R® and ¥ = R®. Let u be any vector in R® of
the form u = (x,y,z) and f(u) be the projection of u on the xy plane; that is,
J@ = (x,»,0). We can show that fis a linear transformation in at least two
ways. Arguing geometrically, we see that projection of au, is af(u,), where
JS(u,) is the projection of u,. Similarly, the projection of bu, is bf(u,), and finally
the projection of au, + bu, is af(u,) + bf1 (uy) (see Fig. 25). Algebraically, we

X
can represent the function as follows. u = ( y) ; then

Z
x"
Y = y' =
zl

ba 1 00
(J’) or v =fu = (0 1 0) u
0 0 0 O

and so the linearity follows from Example 4.2.4.

EXAMPLE 4.2.7 Let U= R® and ¥V = R®. Consider the linear trans-
formation represented as follows:

x' cosf —sinf 0O\ /x
V= (y’) = (sine cos 8 0) (y) = g(u)
¥ 2’ 0 0 1 z
where u = (y)
z

. Since X' = xcos @ — ysinf, ) = xsin @ + ycosh, z' =z,
this represents a rotation of the vector u about the z axis (see Example 4.2.3)
through the angle 0 in the counterclockwise direction. Now consider the
function from R* to R® given by w = g[ f(u)], where f is the linear transfor-
mation of Example 4.2.6. In other words, w is the vector obtained from u by
first projecting u onto the xy plane and then rotating the resulting vector about

the z axis through the angle 0 in the counterclockwise direction. Let w =
Then

3

X cosf —sinf 0O\ /x
( )7) = (sin & cosé@ 0) y’)
Z 0 0 1/ \z
cos® —sin® O\ /1 0 O\ /x
= (sinB cos 0 O) 01 0) (y)
0 0 1/ \0 0 0/ \z
cosf —sinfh 0O\ /x
= (sin 0 cos@ O) y)
0 0 0/ \z

il
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This example illustrates how two linear transformations can be composed. In
this case, it is obvious that the composition of two linear transformations is a
linear transformation. In fact, this is a special case of Theorem 4.2.6. This
example also illustrates the usefulness of the matrix algebra in composing a
couple of linear transformations.

EXAMPLE 4.2.8 Let U be the space of all real-valued functions of the real

variable x which are continuously differentiable on the interval {x [ 0<x< 1}

Let ¥ be the space of real-valued continuous functions on the same interval.

Consider the operation of differentiation. In other words, ifu = fand v = g,

then g(x) = f'(x) for all x satisfying 0 < x < 1. Obviously, fisin U and g is

in ¥, where U and V are real vector spaces. Also by a theorem from the calculus,
[afi(x) + bH(x)] = afi(x) + bf3(x)

which shows the linearity.

EXAMPLE 429 Let U be the space of real-valued Riemann-integrable
functions defined on the interval {x |a < x < b}. Let ¥ be R, and let the
function be the operation of computing the Riemann integral; that is, if u = £
then

v=fbf(x)dx

Obviously v is in R', and linearity follows from a basic theorem of the calculus,
that is,

f [en/i(0) + cafy)] dx = ¢, jbfl(x) dx + ¢ j ’ fux) dx

Now that we have seen several examples of linear transformations, we
can begin to study some of the important properties of these transformations.

Theorem 4.2.1 The range of a linear transformation is a subspace of
the range space.

PROOF We have to show that if v; and v, are in the range, then so is
avy + bv, for any pair of scalars. Now if v; and v, are in the range, then
there are vectors u; and u, in the domain such that v, = f(u,) and
v, = f(u,). Therefore,

avy + bv; = af(uy) + bf(w;) = f(au; + bu,)

and av, + bv, is in the range because au, + bu, is in the domain.
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An important role in the theory is played by the set of vectors in the domain
for which the value of the linear transformation is 0. We call this the null space
of the linear transformation. The null space is always nonempty since £(0) = 0
for any linear transformation (see Exercise 4.2.12).

Definition 4.2.3 Let f be a linear transformation from U to V. The
null space of fis the set of vectors u in U such that f(u) = 0.

Theorem 4.2.2 The null space of a linear transformation is a subspace
of the domain.

PROOF We have to show that if f(u,) = 0 and f(u;) = 0, then
f(au; + buy) = 0. This is obvious, since

Sflau; + buy) = af(u;) + bf(u,) = a0 4 50 = 0

Theorem 4.2.3 If the domain of a linear transformation is finite-
dimensional, then the dimension of the domain is equal to the dimension
of the range plus the dimension of the null space.

PROOF By Theorem 4.2.2, the null space is a subspace of the domain,
and therefore the null space is either the zero space or it has a finite basis
u;, u,,...,u. By Exercise 3.7.9, the domain has an orthonormal basis
Uy, Uy, ..., U, Wy, Wy,..., W, wWhere r + s = n, the dimension of the
domain. If the null space is the zero space, then there are no w’s and

r = 0. Let v be any vector in the domain. Then
V=10 + Gy + ot U+ Gy Wy F Gy Wy 0+ W,
Since the w’s are in the null space, f(u) = 0,i = 1, 2,..., r. Therefore,

SO) = creifW) + 02 f(Wy) + -+ + ¢,4.f(W,). Clearly any vector
in the range can be expressed as a linear combination of f(w,), f(w,), . . .,
S(wy). If these vectors are independent, then they form a basis for the
range. Consider a linear combination

VS + y2f (W) + o oo+ 9 f (W) = F(Wy + 7%, + -+ + yw) = 0
But this implies that y,w, + y,w, + -++ + y,w, is in the null space, and
therefore

ViWg + YaWy £ pW = oquy 4 apuy + 000 + o,

Now we use the orthogonality of the w’s and the w’s to show that
Y1 = 72 = - =y, = 0. Hence, f(w,), f(W,), ..., f(w,) are independent,
and the dimension of the range is s. This completes the proof.
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EXAMPLE 4.2.10 Find the null space of the linear transformation of
Example 4.2.5. We represent the transformation by

(x’ (% ¥\ (=x
2)=G3)0)
where (x,y) is the vector before projection and (x',y") is the vector after. To
find the null space we put (x’,y") = (0,0) and solve the homogeneous equations

(©)-6
)= ()
The null space consists of those vectors (x,y) such that x + y = 0. This is a
line through the origin perpendicular to the line of projection, x = y. In this
case, the range is the line x = y. The dimension of the domain is 2, the dimen-

sion of the null space is 1, and the dimension of the range is 1, in agreement with
Theorem 4.2.3.

If there is a one-to-one correspondence between the vectors of the domain
of a function and the vectors of the range, then the roles of the range and domain
can be interchanged and we shall have a new function, which we call the inverse.

Definition 4.2.4 If fis a function which sets up a one-to-one corre-
spondence between the vectors of its domain and range [for each v in the
range there is precisely one u in the domain such that v = f(u)], then f
has an inverse f ~! defined by u = £ ~(v) when v = f(u). The domain of
S~1 is the range of fand vice versa.

Theorem 4.2.4 A linear transformation has an inverse if and only if
the null space is the zero space.

PROOF Suppose that the vector u = 0 is the only vector such that
S(w) = 0. Suppose v is a vector in the range of f such that f(u,) =
S(@y) = v. Then 0 = f(uy) — f(u;) = f(u; — u,). Therefore, u; = u,,
and f has an inverse. Conversely, suppose f has an inverse. If there was a
nonzero w such that f(w) = 0, then f(u) = f(u) + 0 = f(u) + f(w) =
S(u + w) with u # u + w. This would contradict the assumption that f
has an inverse.

EXAMPLE 4.2.11 Show that the linear transformation of Example 4.2.3 has
an inverse. We represented the transformation by

x\ _ fcos@ —sinb\(x
y) \sin® cosé y




148 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

where (x,y) is the vector before rotation and (x’,') is the vector after rotation.
We look for the null space when we set (x,y') = (0,0). However, the homo-

geneous equations
0\ _ f(cosf —sinf)(x
0 sinf cosf /\y
have only the trivial solution x = y = 0, because

cosf —sin@

= 29 in? 9 =1
sinf cos@ cos” O + sl

Therefore, the transformation has an inverse. If

A= cos@ —sin @
sinf cos@
then

41 [cos0 sinb and x\ _[cos® sinf)[x
—sinf cosf y)  \—sin6 cosd/\y

and we have a representation of the inverse. This is a rotation through the

angle 0 in the clockwise direction.

Theorem 4.2.5 The inverse of a linear transformation is a linear
transformation.

PROOF If fis a linear transformation with inverse f~', then the
domain of f ™! is the range of f and vice versa. Therefore, conditions (i)
and (ii) of Definition 4.2.2 are met. To check condition (iid), let v, = f(u,)
and v, = f(u,). Then f(au, + buy) = af(u,) + bf(w) = av, + bv,,
and f 7Y (av, + bvy) = au, + bu, = af Tl vy + bf ().

We conclude this section with a definition of composition of two linear

transformations.

Definition 4.2.5 Suppose f is a linear transformation with domain U
and range V. Suppose g is a linear transformation with domain ¥ and
range W. The composition fog is defined as follows: if v = f(u) and
w = g(v), then [ fog](w) = w. The domain of fog is U, and the range of
Sfogis W.

Theorem 4.2.6 The composition of two linear transformations is a
linear transformation.
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PROOF Clearly fog is defined on all of U. Also, if U and V are
defined on the same scalars and so are ¥ and W, then the same is true of
U and W. Finally,

[fog)(au; + buy)

glf(au; + buy)]
glaf(u,) + bf(uy)]
aglf(u))] + bg[f(u;)]
alfog)y) + b[f>g](uz)

EXERCISES 4.2

1

Let U be R? and V be R2. Let f(u) be the reflection of u in the x axis; that is,
if u = (x,y), then f(u) = (x,—y). Show that fis a linear transformation. Find
the null space and range of f.

Let U be R? and ¥ be R2. Let f(u) be the orthogonal complement of u with
respect to the line x = y; that is, if z is a unit vector along the given line, then
(u « )z is the projection on the line and u — (u - z)z is the orthogonal complement.
Show that fis a linear transformation. Find the null space and range of /.

Let U be R3 and ¥ be R3. Let f(u) be the reflection of u in the xy plane; that is,
if u = (x,5,z), then f(v) = (x,y,—z). Show that f is a linear transformation.
Find the null space and range of f.

Let U be R3 and ¥ be R3. Let f(u) be the reflection of u in the z axis; that is,
if u = (x,,2), then f(w) = (—x,—y,z). Show that fis a linear transformation.
Find the null space and range of f.

Let U be R3 and ¥ be R3. Let f(u) be the orthogonal complement of u with respect
to the plane represented implicitly by x + y + z = 0. Show that fis a linear
transformation. Find the null space and range of f.

Let U be C"and V be C". Let f(u) = cu, where ¢ is a complex number. Show
that fis a linear transformation. Find the null space and range of f.

Let U = R* and ¥V = R3. Let (x;,x;,x3,%,) be coordinates of u relative to the
standard basis in U. Let (y4,5,,73) be the coordinates of f(u) relative to the
standard basis in ¥, and

Y= X1 - X2+ 2x3— X,

Y2 —-x; + 2x2 - 3x$ + X4

Y3 = X3 — 3x; + 4x;3 — x4

Show that fis a linear transformation. Find the null space and range of f.
Let U = C"and ¥V = C!. Letf(u) = u;. Show that fis a linear transformation.
Find the null space and range of f.
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9

10

11

12
13

I
15

16

17

18

19

20

Let U= C"and V = C*. Let f(u) = u; + up + -+ + u, Show that fis a
linear transformation. Find the null space and range of f;

Let U be the space of continuous real-valued functions defined on the interval
{x|0 < x < 1}. Let T[f] = f(xo), 0 < xo < 1, where x, is fixed. Show that
T'is a linear transformation. Find the null space and range of 7.

Find the null space and range of the linear transformations of Examples 4.2.8
and 4.2.9.

Prove that for any linear transformation f, (0) = 0.

Show that condition (jii) of Definition 4.2.2 can be replaced by the two conditions
flaw) = af(u) and f(u; + u;) = f(uy) + f(u,).

Find the most general linear transformation from R! to R!.

Let f be a linear transformation from R” to R" represented by f(u) = Au, where
Aisn x n,uis the column matrix of coordinates relative to the standard basis
in U, and f(u) is the column matrix of coordinates relative to the standard basis in
V. Show that the following statements are all equivalent by citing the appropriate
theorems:

(a) A is nonsingular.

®) 4] #o0.

(c) The null space of fis the zero space.

(d) The dimension of the range of fis ».

(e) A is invertible.

(f) fhas an inverse.

(9) The columns of 4 are independent.

(k) The rows of A are independent.

(i) The equations AX = B have a unique solution.

(/) The equations AX = 0 have only the trivial solution.

Let f be a linear transformation from R” to R™ represented by f(u) = Au, where
A is m x n. Prove that f is not invertible if n > m.

A linear transformation fis said to be onto if every vector in the range space is a
value of f(u) for at least one u in the domain. If the domain is finite-dimensional,
show that f is onto if and only if the dimension of the domain is equal to the
dimension of the null space plus the dimension of the range space.

Which of the linear transformations in Exercises 1 to 10 have inverses? Find the
inverses where they exist.

If the domain and range of a linear transformation are the same and S =y,
then f is called the identity transformation. Show that the composition of an
invertible linear transformation with its inverse (in either order) is the identity.
Find the compositions of the linear transformations of Example 4.2.5 and
Exercise 1 in both orders. Is the operation of composition commutative? Is the
operation of composition associative?




LINEAR TRANSFORMATIONS 151

4.3 MATRIX REPRESENTATIONS

We saw in many examples of the previous section that it was possible to rep-
resent linear transformations in terms of matrices. This was convenient
because we could then study the transformation using the methods developed
in Chap. 2. In fact, whenever we are dealing with a linear transformation from
a finite-dimensional vector space to another we can find a matrix representation.
We shall prove this fundamental theorem and then show how the various aspects
of the theory of linear transformations can be treated using matrix algebra.

Theorem 4.3.1 Let f be a linear transformation from C” to C™ (or
R" to R™). If X is the column matrix of coordinates of u relative to the
standard basis in U and Y is the column matrix of coordinates of f(u)
relative to the standard basis in ¥, then the transformation can be rep-
resented by Y = AX, where A4 is the m x n complex (real) matrix such
that the kth column of A is the set of coordinates of f(e,) referred to the
standard basis in V.

PROOF Let w = x5e; + x,e; +---+ xe, Then f(u) =
x1f(ey) + x;f(e;) + -+ + x,f(e,). Now suppose

fle) = ajeq + a8, + 0+ Apie,
fle)) = ag,eq + ays€; + 000 + ey

.................................

f(en) = Q1,€1 + ey t+ + GnnCm
Then
S@) = (a,%; + apx; + 000 + axe
+ (@yxy + ayoxy + 0 + ay)e, + o
+ (amlxl + Am2X2 + o+ amnxn)en

Therefore, if f(u) = y,e, + y,e, + ** + y,e,, then

Yi = a11X + X, + 000+ oagx,
Y2 = G Xy + Gy%; + 000+ ayX,

Ym = Qm1X1 + Qn2X2 + ot CnXn

or Y = AX, as we wished to show. Clearly if the domain and range
spaces are both complex vector spaces, then 4 will be complex. If the
domain and range spaces are both real vector spaces, then 4 will be real.

The proof of Theorem 4.3.1 was carried out in such a way as to illustrate
that the bases used in the domain and range spaces need not be the standard
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bases. In fact, the proof would be exactly the same if we substituted the basis
U, Uy,...,u, for e, e,...,e, in U and the basis v,,v,,..., v,, for
€5, €,..., e, in V. We therefore have the following theorem.

Theorem 4.3.2 Let f be a linear transformation from U to V. If X
is the column matrix of coordinates of u relative to the basis u,, 0,...,u,
in U and Y is the column matrix of coordinates of f(u) relative to the basis
Vi>V2,- .., ¥, in ¥, then the transformation can be represented by
Y = AX, where 4 is the m x n matrix such that the kth column of 4
is the set of coordinates of f(uw,) referred to the basis Vi, Vaseies ¥,
in V.

EXAMPLE 4.3.1 Let U= R*and ¥ = R% Let u be any vector in R? and
f(u) be the projection of u on the line y = x in euclidean two-dimensional
space. We showed in Example 4.2.5 that f is a linear transformation. If we
refer u and f(u) to the standard basis in R2, then the transformation can be

represented by
( ,> ( >
y Y

where the first column of 4 is f(e,) and the second column of A is f(ey) (see
Fig. 26). Clearly

1) = @) fle) = @ and A = @ i)

Next let us refer the transformation to a different basis, namely u, along the
line y = x and w, perpendicular to the line. Referred to this basis, f(u,) = u,
and f(u;) = 0. Therefore, the transformation can be expressed as

y1y _ {1 0\ [/x,

Y2 0 0 X5
where (x4,x,) and (y4,y,) are now coordinates relative to the new basis.
EXAMPLE 432 Let U = R*and ¥ = R®. Let u be any vector in R® and

f(u) be the projection of u on the plane given implicitly by x — 2y + z = 0.
The unit vector w = (1,-2,1)/ \/ 6 is perpendicular to the given plane, and if
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y=x
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N\,
fe)/ ™\
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N
i (1,0 x
FIGURE 26

u = (x,),z), then (u-w)w is the projection of u on w. Therefore, f(u) =
u — (u-w)w, and

Slau; + buy)

i

au; + bu, — (au; + bu, - wyw
au, — (au, - w)w + bu, — (bu, + w)w

af(u) + bf(uy)

This shows that the transformation is linear. To find a matrix representation,
let us refer all vectors to the standard basis. Then

fle) = (1,00) — G,—48) = GL-d
f(eZ) = (0,1,0) + (31"_%’%) = (%a%’%)
f(ea) = (0,0,1) - (%’—%9%) = (‘%a%a%)

and the transformation has the representation

x 3 -8 (/x>
b-( 1)
z -+ 1 ¥ \z

relative to the standard basis. Suppose we use the basis u; = (1,1,1),
u, = (1,0,—1), uy = (1,—2,1) in the domain and the standard basis in the
range space. Then

I

I

f@) = (1,L1)
f(llz) = (1’07_ 1)
f(u3) = (0,0,0)

x' 1 1 0\ /u,
z' 1 -1 0 Us

and
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is another representation, where (u,,u,,u;) are coordinates relative to the basis
uy, u,, uy in UL

EXAMPLE 4.3.3 LetU = P,, the space of real-valued polynomials of degree
3orlessinthereal variable x. Let ¥V = P;. If p(x) = ap + a;x + a,x* + azx®
in P,, then we shall define a linear transformation by differentiation, namely

T[p(x)] = a; + 2a,x + 3asx?

We shall find a matrix representation of 7 relative to the basis 1, x, x2, x* in
Uand 1, x, x* in V. Now

T[1] =0 =0-1+0-x+ 0-x2

T[x] =1 =1-140-x+0-x?

T(x*]=2x =0-1+2-x+0-x?
T[x*]=3x>=0-140x + 3-x?

Therefore, the desired representation is

vy 01 0 0 [%

(02)=(0 0 2 o) 1

vy 000 3 \|%

as

Now that we see the intimate connection between linear transformations
and matrices, we should try to exploit the matrix algebra in studying linear
transformations. The pertinent operations in matrix algebra are addition,
multiplication by a scalar, multiplication, and inversion, each of which has its
counterpart in the theory of linear transformations.

Definition 4.3.1 Let f and g be linear transformations from U to V.
The sum f + g is defined by [ f + g]() = f(u) + g(u).

Theorem 4.3.3 The sum of two linear transformations is a linear
transformation.

PROOF  Since f'and g have the same domain U and range space V,
S + g has domain U and range space ¥. Hence, conditions (i) and (i)
of the definition are met. To check (iii) we have
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[/ + gl(au; + buy) = f(au; + buy) + glau, + bu,)

af (uy) + bf(u;) + ag(uy) + bg(uy)
alf(uy) + g@)] + 5[/ (@) + g(u;)]
alf + glw,) + BLf + g](w,)

Theorem 4.3.4 Let f and g be linear transformations with finite-
dimensional domain U and range space V. If 4 is the matrix representation
of fwith respect to given bases in U and ¥, and if Bis the matrix representa-
tion of g relative to the same bases, then the matrix representation of f + g
isA + B.

PROOF If U has dimension n and ¥ has dimension m, then both
A and B are m x n and can be added. Let u have the coordinates X
relative to the given basis in U. Then f(u) and g(u) have the coordinates
Y, = AX and Y, = BX, respectively, with respect to the given basis in V.
Therefore, [f + g](u) has the coordinates Y, + Y, = AX + BX =
(4 + B)X.

Definition 4.3.2 Let f be a linear transformation from the complex
(real) vector space U to the complex (real) vector space V. The trans-
formation f can be multiplied by a complex (real) scalar c to give the new
function ¢f defined by [¢f J(w) = ¢f (u).

Theorem 4.3.5 The function cf is a linear transformation.

PROOF Clearly ¢f has the same domain and range space as f.
Therefore, conditions (i) and (ii) of the definition are met. To check
condition (iii) we have

[ef Nau; + buy) = cf(au, + buy)
claf(uy) + bf(uy))
acf(uy) + bef(uy)
alef](uy) + blcf1(my)

Theorem 4.3.6 Let f be a linear transformation with finite-dimensional
domain U and range space V. If A is the matrix representation of f relative
to given bases in U and V, then cA is the matrix representation of ¢f
relative to the same bases in U and V.

PROOF Let X be the coordinates of u relative to the given basis in
U. Then Y = AX are the coordinates of f(u) relative to the given basis
in V. Therefore, the coordinates of [¢f](u) relative to the same bases are
cY = (4X) = (cA)X.
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The difference between two linear transformations can be defined in the
obvious manner, combining the operations of addition and multiplication by a
scalar; that is, f — g = f + (—1)g. If f and ¢ have matrix representation
A and B, respectively, with respect to given bases in the domain and range spaces,
then the difference f — g will have the representation 4 + (-DB=A4-B
with respect to the same bases.

The next theorem, which deals with the collection of all linear trans-
formations from a given domain U to a given range space V, is one level of
abstraction beyond that of the basic definition of a vector space. No special
use will be made of it in this book, and therefore it may be omitted on the first
reading.

Theorem 4.3.7 Let U and V be complex (real) vector spaces. Then
W, the collection of all linear transformations from U to V, is a complex
(real) vector space. If U is of dimension » and ¥ is of dimension m, then
W is of dimension nm.

PROOF To define a vector space we need two operations, addition
and multiplication by a scalar. These operations in W are defined in
Definitions 4.3.1 and 4.3.2. The closure properties, Al and M1, are
verified by Theorems 4.3.3 and 4.3.5. We verify the other axioms as
follows:

A2 [f + gJW) = f(u) + g(w) = g() + f@) = [g + f]w)

A3 [f+ (g + h)](w)
=f) + [g + AlW) = f(@) + g@) + Au)
= [f + g](w) + A() = [(f + g) + Al(W)

A4: The zero transformation is the transformation which takes
every vector of U to the zero vector of ¥; that is, O(u) = 0 for all win U.
Clearly [f + 0](w) = f(u) + O(u) = f(u) + 0 = f(u).

A3S: The negative of f'is the linear transformation ~—f defined by the
following: if f(u) =v, then [—f]J(w) = —v. Then Lf + (=H]w =
S+ [—fJ@) =v —v=0foralluin U.

M2: alf + g]W) = a[f() + gw)] = af(w) + ag(u)

(o 1@) + [ag](w)

M3: @+ B)f]W) = (@ + bf (W) = af (W) + bf(u)
= [af]w) + [&f 1w

t By equality of two linear transformations we mean f=g if f() = g(u) for all
uin U.
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M4: [(@b)f @) = (ab)f(w) = a(bf(w)) = a[bf](w)
Ms: [1f]@) = 1-f(w) = f(w)

To verify the statement about dimension, we note that if U is n-dimensional
and V is m-dimensional, then for each linear transformation there is a
unique m X n matrix A, assuming given bases in U and V (see Theorem
4.3.2 and Exercise 4.3.11). Conversely, for each m x »n matrix 4 there
is a linear transformation f (see Example 4.2.4). Therefore, there is a
one-to-one correspondence between the collection of linear transforma-
tions and the collection of m x n matrices. Therefore, the vector space
of linear transformations from U to V has dimension nm (see Exercise
3.7.16).

Next we come to the correspondence between composition of two linear
transformations and the product of two matrices.

Theorem 4.3.8 Let fbe a linear transformation from the #-dimensional
space U to the m-dimensional space V, represented by the m x n matrix
A with respect to the basis u,, u,, ..., u, in U and the basis vy, v,, ..., v,
in V. Let g be a linear transformation from ¥ to the p-dimensional space
W, represented by the p x m matrix B with respect to the basis v, v, . ..,
v, in ¥ and the basis w,, w,, ..., w, in W. Then the composition fog
has the representation BA relative to the basis u;, u,,..., u, in U and
Wi, Wa, ..., W,in W.

PROOF Let u have coordinates X relative to the given basis in U
and f(u) have the coordinates ¥ = AX relative to the given basis in V.
If v has the coordinates ¥ with respect to the given basis in V, then Z = BY
are the coordinates of g(v) relative to the given basis in W. Therefore,
Z = B(AX) = (BA)X are the coordinates of g[ f(u)] with respect to the
given basis in W. But [ fog](u) = g[ f(u)], which completes the proof.

Finally, we come to the correspondence between the inverse of a linear
transformation and the inverse of a matrix. By Exercise 4.2.16, a linear trans-
formation from an n-dimensional vector space to an m-dimensional vector
space is never invertible if » > m. On the other hand, even if m > n, the
range cannot have dimension greater than » by Theorem 4.2.3. Therefore, if
we wish to study the invertibility of transformations with n-dimensional domains,
we may as well consider only n x n matrix representations. This does not mean,
of course, that every linear transformation from an n-dimensional space to an
n-dimensional space is invertible.
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Theorem 4.3.9 Let fbe a linear transformation from the n-dimensional
space U to the n-dimensional space ¥, represented by the # x n matrix 4
with respect to the bases uy, u,, ..., w, in U and vy, v,,...,v, in V.
Then f has an inverse f~! if and only if A4 is invertible. The matrix
representation of £ ! is 4~ ! with respect to the given bases in U and V.

PROOF Let X be the coordinates of u with respect to u;, u,, ..., u,
Then Y = AX are the coordinates of S() with respect to the basis
Vi, V2, .., V,. Furthermore, f is invertible if and only if the dimension
of the null space is zero. Therefore, fis invertible if and only if AY = 0
has only the trivial solution, and AX = 0 has only the trivial solution if
and only if 4 is invertible. Now suppose A~! exists. Then A~'Y —
A™Y(AX) = (A7'A)X = X. Therefore, X = A1y expresses the co-
ordinates of u in terms of the coordinates of v = JS(u). Therefore, 47! is
the matrix representation of f ! relative to the given bases in ¥ and U.

EXAMPLE 434 Let U= R*and ¥ = R®. Let f(u) be the vector obtained
from u by first rotating u about the z axis through an angle of 90° in the counter-
clockwise direction and then through an angle of 90° in the counterclockwise
direction about the x axis. We shall find a matrix representation of f with
respect to the standard bases in U and V.

fle) = (0,0,1)
Sflez) = (-1,0,0
f(e3) = (09_ 190)

x' 0 -1 0\ /x
z' 1 0 0/ \z

Now the matrix of the transformation is orthogonal and is therefore invertible.
The inverse of the transformation has the representation

X\ 0 0 1\ /x
z, 0 -1 0/ \z

In the next section, we study the question of how the representation of a
linear transformation changes when we change the bases in the domain and
range spaces.

Therefore, f has the representation
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EXERCISES 4.3

1

10

11

12

Find the matrix representation of the linear transformation of Example 4.2.1
with respect to the standard bases. Find the representation with respect to
arbitrary bases.

Find the matrix representation of the linear transformation of Example 4.2.2
with respect to arbitrary bases.

Let U = R3®and ¥V = R2. Letube any vector in R?, and let f(u) be the projection
of u on the xy plane. Find the matrix representation of f with respect to the stand-
ard bases.

Let U be the space of real-valued polynomials of degree n or less in the real
variable x. Let f'be the operation of integration over the interval {x | 0<x<1}.
Find the matrix representation of f with respect to the basis 1, x, x2,..., x"in U.
Find the matrix representation of the linear transformation of Exercise 4.2.1
with respect to the standard bases. Find the representation with respect to the
basis (1,1), (1,—1) in both domain and range spaces.

Find the matrix representation of the linear transformation of Exercise 4.2.2
with respect to the standard bases. Find the representation with respect to the
basis (1,1), (1,—1) in both domain and range spaces.

Find the matrix representation of the linear transformation of Exercise 4.2.4 with
respect to the standard bases. Find the representation of the inverse with respect
to the standard bases.

Find the matrix representation of the linear transformation of Exercise 4.2.7
with respect to the standard bases. Find a basis for the null space of the trans-
formation and a basis for the domain consisting of this basis and other vectors
orthogonal to the null space. Find a representation of the linear transformation
with respect to this new basis and the standard basis in the range space.

Find matrix representations of the linear transformations in Exercises 4.2.8 and
4.2.9 with respect to the standard bases in domain and range spaces.

Let U = R3and ¥ = R3. Let A be the representation of a linear transformation
S with respect to the standard bases. Which transformations are invertible? Find
the inverse if its exists.

111 1
@ 4={1 -1 1 ® A= 1 -1
2 0 3 -1 5 -1

Show that the representation of a linear transformation from a finite-dimensional
domain U to a finite-dimensional range space ¥ with respect to given bases in U
and ¥V is unique. Hint: If Y = AX and Y = BX, then 0 = (4 — B)X for all
vectors X,

Let f be a linear transformation from U with basis uy, u,, ..., u, to ¥ with basis
Vi, V2,..., V,. Let g be a linear transformation from ¥ to W with basis w,,
Wj,..., W,. If fhas the representation 4 and g has the representation B with
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respect to the given bases, where 4 and B are nonsingular, show that (fog)™!
has the representation A~1B1,

44 CHANGE OF BASES

In this section, we shall again consider linear transformation with a finite-
dimensional domain and range space. If we pick a basis in the domain and a
basis in the range space, we shall have a unique matrix representation of the
transformation. If we change the bases in the domain and the range spaces,
we shall, in general, change the representation. Our purpose is to find an easy
way to find the new representation. Our approach will be the following.
We shall first show that a change of basis in an s#-dimensional vector space can
be interpreted as an invertible linear transformation from C"to C"or R"to R",
depending on whether the space is complex or real. Then we shall show that
the change of representation of a linear transformation can be obtained by
composing three linear transformations.

Theorem 4.4.1 Let U be an n-dimensional vector space with a basis
Uy, Uy, ..., u, Letuj,u), ..., u, be another basis for U, such that

Uy = py Uy + pywy + -0 + pu,
Uy = pioUty + Pyl + *** + p,ou,

o, = plnull + poll; + 0 A+ Dl

If X is the column matrix of coordinates of u with respect toug, u,, ..., u,
and X’ is the column matrix of coordinates of u with respect to
uj, U, ..., W, then X’ = PX, where Pis the n x n matrix with elements

pij. Also, P is invertible and X = P~ 1x".
PROOF Letu = xu; + x,u, + ++* 4 x,u,. Then

u = x;(p;,u) + pyyuy + ** + p,u)
+ %(p120; + pooWy + +c¢ + p,ou)
+ 0+ xn(pln“,l + p2nu12 + 4+ pnn“r:)
= (p11X; + pox; + 100 + P1aX)0}
+ (P21X1 + p2sXy + *** + pyx)u)
+ -+ (pnlxl + Pn2X2 + -+ pnnxn)ur’l
= Xjuj + x3u; + -+ + x.u,
Therefore,

®
Y
|

= Pu1Xy + P1aXz + * + pux,
X2 = P21X1 + PaxXz + * 0 + poux,

...............................

Xy = PriX1 t PpaXy + 00t Pk,
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or X' = PX. To show that P is invertible, we show that PX = 0 has
only the trivial solution X = 0. Suppose there was a nontrivial solution
(71’ Yasevs 'Vn) 7& 0. Then

Pu; + U + o0 4y, = Ouj 4+ Ouy + -+ + Ou, =0

But w,, u,,...,u, is a basis, and therefore, y; =y, =+ =7, =0,
contrary to our assumption. Finally, solving for X in terms of X', we
have X = P71X".

EXAMPLE 4.4.1 Let U be R3, let uy, u,, u; be the standard basis, and let
u}, uy, u3 be the independent vectors (1,0,1), (1,—1,1), (1,1,~1). Find the
matrix P which represents the change of basis. Let us write

-1 -1 -1
u; = py; € + Pay €+ P31 €
-1 -1 -1
u, = p;, € + P2 € + D3z €3
-1 -1 -1
U3 = p;3” € + Pay € + P33 "€

Then it is clear that the first column of P~ is the set of coordinates (with
respect to the standard basis) of uj, the second column the coordinates of uj,
and the third column the coordinates of uj. Therefore,

1 1 1
Pl = (0 -1 1)
1 1 -1
0 1 1
49
3} 0 -~

Let u = (1,2,3) be a vector referred to the standard basis. Then

- 2 =)=

(15253) = 5(]7091) - 3(1"‘111) - (I’L_l)

Computing the inverse, we have

In other words,

Theorem 4.4.2 Let U be an n-dimensional real vector space with an
orthonormal basis u, u,,...,u, Let uj, u3,...,u, be another ortho-

normal basis for U such that w; = > p;mj, i = 1,2,..., n. Then the
Jj=1

matrix P with elements p;; is orthogonal.
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PROOF Since both bases are orthonormal, we have the following
computation:

i = (lli '“j) = (z Dt * Z pmi“"")
k=1 m=1
=> > Pri Dm0 * W;,)
= Z Pxi Prm ik
1 m=1

n
= Z DPxi Py j
k=1

which shows that the columns of the matrix P are orthonormal vectors in
R". This is enough to show that P is orthogonal and hence that P~ = P
(transpose). The corresponding theorem for complex vector spaces
results in the conclusion that P is unitary. The proof of this will be left
for the reader (see Exercise 4.4.3).

We now come to the most important theorem of this section, which shows
how the matrix representation of a linear transformation changes when we
change the basis in both the domain and the range space.

Theorem 4.4.3 Let f be a linear transformation from the n-dimensional
vector space U to the m-dimensional vector space V. Let 4 be the matrix
representation of f relative to the basis uy, u,, . . ., u, in U and the basis
Vi, ¥2,. .., ¥ In V. Let P be the matrix which represents the change of
basis in U from uy, u,, ..., u, to uj, wy,...,u,. Let Q be the matrix
which represents the change of basis in V from Vi, Voo, ¥y tO
Y1, V3, ..., Vi.. Then the matrix which represents f relative to the new
bases is Q4P 1.

PROOF  Let X be the column matrix of coordinates of u with respect
to the basis u, u,,. .., u,, and let ¥ be the column matrix of coordinates
of f(u) with respect to the basis v,, v,, ..., Vme Then ¥ = AX. Let X’
be the column matrix of coordinates of w with respect to the basis
up, U, ..., u,. Let ¥’ be the column matrix of coordinates of f(u) with
respect to the basis Vi, vj,...,v,. Then X’ = PX, X = P iy,
Y = QVY,and Y = Q"'Y". Therefore, QY = AP 'X) = (AP~ Hx,
and Y’ = (Q4P™1)X’. This completes the proof.
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EXAMPLE 4.4.2 In Example 4.3.2, we considered a linear transformation f
from R® to R® consisting of projection on the plane given implicitly by
x — 2y + z = 0. Relative to the standard basis in both domain and range

space, the representation of f was
x' 2 x
- e
z' -+ 3 ¥ \z

If we now change the basis in both domain and range space to (1,1,1), (1,0,—1),
(1,—2,1), we change the representation. In this case, @ = P, and

1 1 1
P—1=(1 )
1 -1 1
i
P=|3 -
& -3 3
The new representation of fis then
L T 3 0F -x A 1
SRR AR S
RS TR 720 Sk T S 7N Sl S
C O SR N2 T S
LRERE
0 0 0/ \1 -1 1
1 0 0
=(0 1 0)
0o 0 O

The case illustrated in this example will turn out to be especially important,
that is, the case where U = ¥, A is the representation of a linear transformation
with respect to some basis uy, u,, .. ., u, in both the domain and range space,
and P is the matrix which gives the change of coordinates when a new basis
W), Wy, ..., W, is introduced in both domain and range spaces. The new rep-
resentation of the linear transformation is B = PAP™'. In this case, all
the matrices are n X n, where n is the common dimension of the domain and
range spaces. The transformation of an# x n matrix according to the equation
B = PAP~! is called a similarity transformation, and we say that B is similar
to A.

(=]

Computing the inverse, we have

O v

O -
1
[ ]
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Definition 4.4.1 Let 4 and B be n x n matrices. If there exists an
invertible n x »n matrix P such that B = PAP™', then we say that B is
similar to A and B is obtained from A by a similarity transformation.

Theorem 4.4.41 Let A4, B, and C be n x n matrices. Then (i) A4 is
similar to A, for all 4, (ii) if 4 is similar to B, then B is similar to A4, and
(iii) if A is similar to B, and B is similar to C, then 4 is similar to C.

PROOF (i) The » x n identity matrix is invertible, and 4 = IAI™1,

(ii) If A4 is similar to B, there is an invertible matrix P such that
A = PBP~!. Butthen B = P™'AP = P 14(P™ Y.

(iii} If 4 is similar to B, there is an invertible matrix P such that
A = PBP™!, If Bis similar to C, there is an invertible matrix Q such that
B = QCQ™!. Then

A = PBP™!' = P(QCQ™HYP™! = (PQ)C(Q™'P™) = SCS™!
where S = PQ.

Some of the other important properties of similarity transformations are
given by the next theorem.

Theorem 4.4.5
(i) If A is similar to B, then |4] = |B].

(i) If A4, is similar to B, and 4, is similar to B, under the same
similarity transformation, then 4; + 4, is similar to B, + B,.

(iii) If A is similar to B, then 4* is similar to B* under the same similarity
transformation for any positive integer k.

(iv) If A is similar to B, then p(4) is similar to p(B) under the same
similarity transformation, where p is a polynomial.}

(v) If Ais similar to B and 4 is nonsingular, then B is nonsingular and
A~ is similar to B~ L.

PROOF (i) There exists a nonsingular matrix Psuch that 4 = PBP™1,

Hence |4| = |P| |B| |P™*| = |B| |P| |P™"| = |B|, since |P| |[P™!| =
|PP~Y = [I] = 1.

(i) There exists a nonsingular matrix P such that 4, = PB,P~!
and 4, = PB,P~'. Then

A, + A, = PBP~! + PB,P"! = P(B, + B,))P!

1 This theorem shows that similarity is an equivalence relation.
1 If A and B are real, p is to have real coefficients; while if 4 and B are complex,
p is to have complex coefficients.
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(iii) There exists a nonsingular matrix P such that 4 = PBP™!,
Then A2 = (PBP~Y)(PBP~') = PB(P~'P)BP~! = P(BB)P™' = PB*P™!
The rest follows by induction.

(iv) There is a nonsingular matrix P such that 4 = PBP~!. Let
¢ be a scalar. Then c4 = ¢«(PBP™') = P(cB)P~'. Therefore, similarity
is preserved under multiplication by a scalar. Now let p(4) = aol +
a,A + a,A® + -+ + a,4*. Then by (ii) and (iii) of this theorem,
Pp(B)P~! = a,PIP™' + a,PBP™! + a,PB?’P~! + -+ + q,PB'P™!

= ay] + a;A + a,4* + -+ + aq 4" = p(4)
(v) There is a nonsingular matrix P such that 4 = PBP~!. By (i),

|B| = |4| # 0. Therefore, B is nonsingular. Also A~! = (PBP™")™! =
PB~!'P~! showing that 4~ ! is similar to B™'.

EXERCISES 4.4

1

Let U = ¥V = R?, and let f(u) be the reflection of u in the line x = y. Find the

matrix representation of f:

(@) Relative to the standard basis in both U and V.

(b) Relative to the standard basis in U and the basis (1,1), 1,-1in V.

(¢©) Relative to the standard basis in ¥ and the basis (1,1), (1,— 1)in U.

(d) Relative to the basis (1,1), (1,—1) in both U and V.

Let U = V = R3, and let f(u) be the reflection of u in the plane given implicitly

by x + y + z = 0. Find the matrix representation of 1

(@) Relative to the standard basis in both U and V.

(5) Relative to the standard basis in U and the basis (1,0,— 1), (1,~2,1), 1,1,1)
in V.

(¢) Relative to the standard basis in ¥ and the basis (1,0,— 1, (1,-2,1), (1,1,1)
in U.

(d) Relative to the basis (1,0,—1), (1,—2,1), (1,1,1) in both U and V.

Show that the matrix representing the change of basis from one orthonormal set

to another in a complex vector space is a unitary matrix.

Consider the linear transformation of Example 4.3.4. Find a vector which is

transformed into itself. Use this vector and two other vectors orthogonal to it

and to each other as a basis. Find the representation with respect to the new basis

in both domain and range space.

Show that if A is similar to B and A is nonsingular, then 4 is similar to B* for all

integers k.

Suppose A is similar to a diagonal matrix D with diagonal elements 4, 4, ..., 44

such that |4 < 1fori=1,2,...,n Letp(d) =T+ A+ A> +.-- + A =

P+ D + D* + --- + D*P~!, since A = PDP~'. Consider lim py(4). Show

k- o0
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that this limit exists. If we denote the series I + 4 + A2 4 - .. by B, prove that
B = (I — A1, Hint: Consider lim (I - A)p(4) and lim p(A)I - A).
k=0 k-

7 Suppose A is similar to a diagonal matrix D with diagonal elements A, Aayevny Ay
Let

A A A
K
=P(1+2+2-+ +£)P“‘
r2! k!

o0 ... 0
S A P
0 o0 e

45 CHARACTERISTIC VALUES AND CHARACTERISTIC
VECTORS

In this section, we consider only linear transformations for which the domain
is a subspace of the range space. Suppose the range space of fis a complex
vector space, and suppose there is a complex number 4 and a nonzero vector
u such that f(u) = Au. Then we say that A is a characteristic value (eigenvalue)
of fand w is a characteristic vector (eigenvector) of f corresponding to A.

Definition 4.5.1 Let f be a linear transformation from the complex
(real) vector space U to ¥, where U is contained in V. Let A be a complex
(real) number and u be a nonzero vector in U such that f(u) = An. Then
A is a characteristic value of /> and u is a characteristic vector of f corre-
sponding to A.

EXAMPLE 4.5.1 Let f be the identity transformation from the complex
vector space U to U. Then f(u) = u, and clearly A = 1 is a characteristic
value of f with corresponding characteristic vector u 5 0. Therefore, every
nonzero vector is a characteristic vector of f

EXAMPLE 4.5.2 Let f be the zero transformation from the complex vector
space U to U. Then f(u) = 0 = Ou, and clearly 0 is a characteristic value of f
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with corresponding characteristic vector w # 0. Therefore, every nonzero
vector is a characteristic vector of f.

EXAMPLE 4.5.3 Let f be the rotation from R*> to R® of Example 4.2.3.
Since R? is a real vector space, any characteristic values must be real. However,
it is clear geometrically that there are no nonzero vectors which are rotated
into multiples of themselves unless 0 is a multiple of 180°. If 0 is an even multiple
of 180°, then every monzero vector is rotated into itself and is therefore a
characteristic vector corresponding to the characteristic value 1. If 8 is an odd
multiple of 180°, then every nonzero vector is reversed in direction and is a
characteristic vector corresponding to the characteristic value —1. For all
other values of @ there are no characteristic values or characteristic vectors.
We can reach the same conclusions algebraically by the following method.
Relative to the standard basis we have the representation

x"\ _ {cos8 ~—sinB\(x

y] \sinf cos@ y

x\ _ fcosf —sin@\ [ x

iy)  \sin@ cos® y

cosf — 1 —sind x\ _ (0
sin@ cos®—AJ\y/  \O

These equations have nontrivial solutions if and only if

Now if f(u) = Au, u = (x,y), then

or

cos —A —sinf | _
sin 0 cos9—1’~/1 2Acosf +1=0

or A =cosf + +/cos? & — 1. But cos? 0 < 1, and so all solutions will be
complex unless cos § = +1 or, in other words, 0 is a multiple of 180°. If @ is
an even multiple of 180°, then A = 1 is the only characteristic value. If 0 is an
odd multiple of 180°, then A = —1 is the only characteristic value. In either

case,
cosd —1 —sin@ \ (0 O
sin 0 cos 0 — A 00
and so (x, y) is arbitrary, confirming that every nonzero vector is a characteristic
vector.
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EXAMPLE 4.5.4 Let f be the linear transformation of Example 4.2.5. Find
all characteristic values and characteristic vectors of /. Here the representation

relative to the standard basis is
y 3 3\

If f() = Au, u = (x,), then

or

which has nontrivial solutions if and only if

P-4 4
P 31—

There are two characteristic values, 0 and 1. If A = 0, the equations reduce to
x + y = 0ory = —x. Hence, any nonzero multiple of (1,—1) is a character-
istic vector corresponding to A = 0. If 1 = 1, the equations reduce to
x —y = 0or x = y. In this case, any nonzero multiple of (1,1) is a character-
istic vector corresponding to A = 1.

=2 —l=MA-1)=0

EXAMPLE 4.5.5 Let U be the space of all real-valued continuous functions
of the real variable x with a continuous derivative. Let ¥ be the space of
continuous functions of x. Let T be the operation of differentiation; that is,
T[f(x)] = f/(%). Find all the characteristic values and characteristic vectors
of T. Let A be real and consider the equation T[f(x)] = f'(x) = Af(x).
Multiplying by e~**, we have

e™Hf'(x) = de™Hf(x)
or
[e™*f(0)] = e *f'(x) — Ae™*f(x) = 0
e f(x) = K

where K is a constant. Hence, f(x) = Ke*, for K # 0, is a characteristic vector
corresponding to the characteristic value A, where 1 is any real number.
Finally, we show that we have found all the characteristic vectors. Suppose that
corresponding to A there is a vector g(x) such that g'(x) = Ag(x). Let g(0) = c.
There is a K such that f(0) = K = g(0) = ¢ (for this part of the discussion K
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may be zero). Now consider2 = f — g. Thenh' = f' — g = AMf — g) = Ak,
and 4(0) = f(0) — g(0) = 0. Multiplying by e~**, we have

e M (x) — Ae”h(x) = [e *h(x)}) =0

and e~ **h(x) = y (a constant). Buty = 0 since #(0) = 0. Therefore, A(x) = 0
and f(x) = g(x).

Now let us consider the case where the domain and range space of the
linear transformation are the same and of dimension n. If we use the basis
u,, u,,...,u, in both domain and range space, then there is a matrix rep-
resentation Y = AX, where X is the column matrix of coordinates of u with
respect to the given basis and Y is the column matrix of coordinates of f(u).
Now suppose we look for characteristic values of f. Suppose f(u) = iu. Then
Y = AX = 4AX, or (A — ADX = 0. These equations have nontrivial solutions
if and only if

A — Al = co + e + 2> + -+ + (=1 =0

The polynomial p(A) = co + ¢4 + €47 + - + (—1)"A" is called the
characteristic polynomial of A, and the equation p(1) = 01is called the character-
istic equation. From the theory of such equations, we know that the character-
istic equation must have at least one solution and can have at most » distinct
solutions. We also know that p(1) can be factored as follows:

A = (b = MGy ~ D2 (4, = A

where 4, A,,..., A, are the r distinct roots of p(X) and the positive integers
ki, ks, ..., k, are the multiplicities of 4,, 4,,..., 4,, respectively. Also
k, + k, + -+ + k, = n. Therefore, if we can find the factorization of p(4),
we know all the distinct characteristic values of the linear transformation f with
representation 4. If A; is a characteristic value of f, with multiplicity k; in the
characteristic polynomial, we say that ; is a characteristic value with multi-
plicity &;.

Definition 4.5.2 Let 4 be an n x n complex matrix. Let p(4) =
|4 — AI| be the characteristic polynomial of 4. If 4; is a root of p(4)
with multiplicity k;, then we say that 4; is a characteristic value of A with
multiplicity k;. The nontrivial solutions of (4 — AI)X = 0 are called
characteristic vectors of 4.

It is important to note that, according to our definition, real matrices
can have complex characteristic values (see Example 4.5.8). After all, real
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numbers are just complex numbers with imaginary part zero. Furthermore, a
linear transformation defined on a complex vector space could have a real
representation with respect to some basis, and we would definitely be interested
in the complex characteristic values of the transformation. However, if the
linear transformation is defined on a real vector space, then it can have only
real characteristic values; and if its representative matrix 4 has a complex
characteristic value, it cannot be a characteristic value of the transformation
(see Example 4.5.3 for the case where 8 is not a multiple of 180°).

Theorem 4.5.1 Let f be a linear transformation from the n-dimensional
vector space U to U, with matrix representation A with respect to some
basis. All the characteristic values and characteristic vectors of f can be
found by finding the characteristic values and vectors of A. If Uis a com-
plex vector space, £ will have a characteristic value 2 if and onlyif lisa
characteristic value of 4. If U is a real vector space, f will have a character-
istic value 1 if and only if 1 is a real characteristic value of 4.

PROOF  The proof is included in the above discussion except for the
problem of showing that the characteristic values are independent of the
particular representation of the transformation. If we use a different basis,
the representation changes to B = PAP™', where P is nonsingular.
Consider the characteristic polynomial for B:

|B — AIl = |PAP™" — JPP™'| = |P||P™"[ |4 — AI| = |4 — il

This shows that 4 and B have the same characteristic polynomial, and so
the characteristic values are independent of the representation.

EXAMPLE 4.5.6 Find all the characteristic values and characteristic vectors
of the matrix

8 9 9
A= 3 2 3
-9 -9 -10
The characteristic equation is
8§ -4 9 9
3 2-2 3 = - +3+2=0A+1Q-1)=0

-9 -9 —10-3
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The characteristic values are 1, = 2, with multiplicity 1, and 1, = —1, with
multiplicity 2. If 2 = A; = 2, we can find characteristic vectors by solving

SE[UR

or2x + 3y + 3z = 0, x + z = 0. This system has a one-parameter family of
nontrivial solutions of the form u = a(3,1,—3). Therefore, we have a character-
istic vector u; = (3,1,—3), and any other characteristic vector corresponding to
Ay will be a multiple of u;. If A = A, = —1, we must solve the following system

52306

or x + y + z = 0. This equation has a two-parameter family of solutions,
which can be written asu = a(1,—1,0) + b(0,1,—1). Therefore, corresponding
to A, we have two independent characteristic vectors uw, = (1,—1,0) and
u; = (0,1,—1), and any other characteristic vector corresponding to A, will be
a linear combination of u, and u;.

EXAMPLE 4.5.7 Find all the characteristic values and characteristic vectors

of the matrix
1 2 3
A= (0 2 3)
0 0 2
1 -4 2 3

0 2-2 3 |=(0-XH2-22=0
0 0 2-2

The characteristic equation is

The characteristic values are A, = 1, with multiplicity 1, and A, = 2, with
multiplicity 2. If A = 4, = 1, we can find characteristic vectors by solving

00

or2y + 3z =0,y + 3z = 0,z = 0. This implies that y = z = 0. However,
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X is arbitrary, so any vector of the form u = a(1,0,0) is a characteristic vector
corresponding to A, if @ # 0. If A = A, = 2, we must solve

(2200

or —x + 2y + 3z =0, z=0. Therefore, x = 2y, and we have a one-
parameter family of solutions of the form u = a(2,1,0). Hence, any character-
istic vector corresponding to 4, will be a multiple of (2,1,0).

EXAMPLE 4.5.8 Find all the characteristic values and characteristic vectors

of the matrix
1 -
(i )

=P +1=0A-A+i)=0

The characteristic equation is

1-12 -2
1 -1-1

The characteristic values are A, = i and Ay = —i. If A = A, = i, we must

i (7700

or x = (1 + i)y. Therefore, characteristic vectors corresponding to A, are
of the formu = a(l + i,1),a # 0. If 1 = Ay = —i, we must solve

(' 5)0)-0)

or x = (1 — i)y. Therefore, characteristic vectors corresponding to A, are of
the formu = a(l — i,1),a # 0.

Let us return to Example 4.5.6. We found a set of three independent
characteristic vectors w, = (3,1,-3), n, = (1,—-1,0), and u; = (0,1,—1). Let

us assume for the moment that the matrix
8 9
A= ( 3 2 g)
-9 -9 —-10

is the representation of a linear transformation from R? to R® relative to the
standard basis. Suppose we introduce the basis Uy, Uy, u;. We wish to find the
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representation of f relative to this basis. Since u;, u,, u; are characteristic
vectors, we have

f(ll,) = lllll = 2llx + 0“2 + 0“3
f@y) = Au;, = O0uy — u, + Ouy
Sfuz) = Auy = Oug + Ou, — uy

Therefore, the representation we seek is given by the matrix

2 0 0
B=|0 -1 0
o 0 -1

which is diagonal. This is not just a coincidence, as we see from the next
theorem.

Theorem 4.5.2 Let f be a linear transformation from the n-dimensional
space U to U. Then f has a diagonal representation if and only if f has n
independent characteristic vectors.

PROOF Suppose relative to the basis w,, u,,...,u,, f has the
representation matrix

i, 0 0 0
0 A, 0 0
A=|lo o 1 0
0 0 0 I

where the A’s are not necessarily distinct. This means that f(u,) = Au,,
f(uy) = Au,,...,f(w,) = A,u, which means that w,u,,...,u, are
characteristic vectors corresponding to the characteristic values A,
Aas ...y A, Conversely, suppose uy, u,, . . ., u, are independent character-
istic vectors corresponding to characteristic values 4, 4,,..., 4, (not
necessarily distinct). We obtain the representation relative to u,, u,, ...,
u, as a basis.

Sf) = Ay = du, + Ou, + -+ + Ou,
Sf(uy) = Ayu, Ou; + Au, + -+ + Ou,

and so the representation is diagonal.
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Theorem 4.5.3 Let f be a linear transformation from the n-dimensional
space U to U. Then f will have a diagonal representation if fhas n distinct
characteristic values.

PROOF Let the distinct characteristic values be A, 1,,..., A, and
the corresponding characteristic vectors u, U,,...,u,. We shall show
that the u’s are independent. Suppose that the u’s are dependent. Then
there is an independent set u,, u,, . . ., w, such that

Wy = gy + Cuy + 00+ Crply
and

S@iy) = hpqmiy =

TN

k
1 cif(u) = zl Ajcju;
f=

k
Also Ay Wy = D A+ 1€ju;; subtracting, we have

i=1 .
0= ci(A; — Ar U
=1
But4; # Ay, =1,2,...,k,andsoc; = ¢, = -+~ = ¢, = 0 because
Uy, W, ..., W, are independent. Therefore, u,,, = 0, which is clearly
impossible since w,,, is a characteristic vector. Hence, uy, u,,...,u,

are independent and the theorem follows from Theorem 4.5.2.

EXAMPLE 4.59 Let f be a linear transformation from a three-dimensional
real vector space U to U. Suppose relative to some basis u;, Uy, us, f has the

representation
9 -3 0
A = ( -3 12 - )
0 -3 9

Find, if possible, a diagonal representation for . We look for the characteristic
values of A. The characteristic equation is
9-2 =3 0
-3 12~ =31=06-D9-NI5-H=0
0 -3 9~
The characteristic values are A; = 6, 1, = 9, A3 = 15. They are real and
distinct. Therefore, by Theorem 4.5.3, there is a diagonal representation

6 0 0
B=(O 9 0)
0 015
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Let us find the basis (characteristic vectors) relative to which this is the rep-
resentation. If 1 = A, = 6, we must solve

2230

orx —y =0,y —z=0. In other words, x = y = z and a characteristic
vectorisv, = u; + u, + u;. If 1 = 1, = 9, we must solve

2206

ory = 0,x + z = 0, and a corresponding characteristic vectoris v, = u; — u;.

If 2 = A; = 15, we must solve
-6 -3 0\ /x 0
0 -3 -6/ \z 0

or 2x + y =0, x + y + z = 0. A corresponding characteristic vector is
vy =u; — 2u, + u;.

In Example 4.5.7, we had two characteristic values and only two indepen-
dent characteristic vectors in R®. Therefore, it will not always be possible to
find a diagonal representation. On the other hand, Example 4.5.6 illustrates
that there may be n independent characteristic vectors even when there are not
n distinct characteristic values. Hence, Theorem 4.5.3 gives a sufficient but not
necessary condition for a diagonal representation. In the next section, we take
up a couple of special cases where it will always be possible to obtain a diagonal
representation.

EXERCISES 4.5

1 Find the characteristic values and characteristic vectors of the following matrices:

@ (f ;) ® ((1) ;) © ((1) ;) @ (_; f)
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10

11

12

13

Find the characteristic values and characteristic vectors of the following matrices:

3 10 2 1 2 5 1 1
@ {1 30 ®» {0 -1 3 © {-3 1 -3
00 2 o0 o0 3 -2 -2 =2

111
@ 10 1 1 (e)
0 0 2

Let U = ¥ = R? and let f(u) be the reflection of u in the line y = —x. Find all
the characteristic values and characteristic vectors of /. Find a representation of
Jf which is diagonal.

Let U = ¥ = R3, and let f(u) be the projection of u on the plane given implicitly
by x + 2y — z = 0. Find all the characteristic values and characteristic vectors
of £. Find a representation of f which is diagonal.

Let U = ¥ = R3 and let f be a linear transformation with the representation
matrix relative to the standard basis

4 -20 —10
A=|-2 10 4
6 —30 —13

Find a basis with respect to which the representation is diagonal.

If 2 is a characteristic value of a square matrix A, show that A" is a characteristic
value of 4", where 7 is a positive integer.

Show that a square matrix 4 is invertible if and onlyif A = 0is not a characteristic
value of 4.

Show that if 4 is a characteristic value of an invertible matrix A, then 1~ !is a
characteristic value of 4~1.

If 4 is a characteristic value of a square matrix 4, show that 13 — 342 +A-2
is a characteristic value of 43> — 342 + 4 — 2I.

If p(2) = 0 is the characteristic equation of the n x 7 matrix A and A4 has n
independent characteristic vectors Xy, X3, ..., X, prove that p(4) = 0. Hint:
Show that p()X; = Ofori = 1,2,...,n

Show that if wy, u,, ..., u, are a set of characteristic vectors of a linear trans-
formation f corresponding to the same characteristic value A, then they span a
subspace S such that for any uin S, f(u) = iu. Note: Such subspaces are called
invariant subspaces.

Let f be a linear transformation from U to U, where U is n-dimensional. Show
that f has a diagonal representation if and only if the sum of the dimensions of
its invariant subspaces is 7.

Suppose we want to find a matrix C such that C2 = A. (C might be called a
square root of 4.) Suppose A is similar to a diagonal matrix B with diagonal
elements 44, 4,,..., 4, with 4, > 0. Then B = PAP~!, Let D be a diagonal




14

15

16
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matrix with diagonal elements + \/).—1, + \//1_2, e, £ \/)._,‘. Then B = D2, Let
C = P~1DP. Show that C? = A. Use this method to find square roots of

1 21
A=1{0 2 1
0 0 3

Solve the following system of equations:

dx

— =2x +
dt Y
ii;}:= x + 2y

Hint: Letu = (;) , and write the equations as du/d¢ = Au. Find P such that

v = Pu. Hence, P~ dv/dt = (AP~ Y)v and dv/dt = (PAP ™ Y)v. If
A O
-1 ~ 1
PAP ( 0 lz)
then the equations are separated.
Solve the following system of equations:

ﬁ =3x+ z
dt
dy
— =3y + z
dt Y
dz
— = x+y+2z
ar 7
Consider the differential equation
2
x _ 3% 4o
dr? dt

Look for solutions of the form x = ¢*'. Show that 1 must be a root of the

equation A2 — 31 ~ 4 = 0. Show that the given equation is equivalent to the
system dx/dt = y, dy/dt = 4x + 3y. Compare with Exercise 14.

4.6 SYMMETRIC AND HERMITIAN MATRICES

We saw, in the last section, that an n x » matrix is similar to a diagonal matrix
if and only if it has n independent characteristic vectors. We also saw square
matrices which are not similar to diagonal matrices. In this section, we shall
study two types of matrices, real symmetric and complex hermitian, which are
always similar to diagonal matrices. We shall begin with real symmetric
matrices.
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Definition 4.6.1 Ann x n matrix 4 is symmetric if 4 = A.

Theorem 4.6.1 All the characteristic values of a real symmetric # X n
matrix A are real.

PROOF Let X be a characteristic vector of A corresponding to the
characteristic value 1. Then, if the bar stands for a complex conjugate,

AX = AX
AX =X
XAX =J18%X =1 > Ixl?

k=

o

XAX =iXX =1 3 |x?
Subtracting, we have

A =7 Z Ix? = XAX — RAX = 0

smceXAX X4x. Therefore, since Z Ix%/* > 0, 4 = , which proves
the theorem.

Theorem 4.6.2 Characteristic vectors corresponding to different
characteristic values of a real symmetric matrix 4 are orthogonal.

PROOF Let X; and X; be characteristic vectors corresponding to
characteristic values 4; and 4;, where 1, # 4;. We can assume that X;
and X; are real since 4 and A; and 4 ;j are all real. Then

AX.' = liXi
AX; = A;X;
XAX, = 3R X, = 2(X," X))

Xiax; = L,X.X; = A(X;- X))

where (X; - X)) is the scalar product of X; and X;. Now smceX AX; =
X iAX;, we have
(ﬂi - lj)(Xi : Xj) =0

But 4; — 4; # 0 and hence, (X; - X;) = 0.

Theorem 4.6.3 If a linear transformation f from R” to R" has a rep-
resentation 4 with respect to the standard basis which is symmetric,
then there is an orthogonal matrix P such that the representation PAP = D
is diagonal, with diagonal elements the characteristic values of A.
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PROOF We prove the theorem by induction on n. If n =1, 4 is
already diagonal and P = I. Let us assume that the theorem is true for
all spaces of dimension up to and including » — 1. Let X; be a unit
characteristic vector corresponding to the characteristic value A, (4 has
at least one characteristic value, and it is real). Then 4X, = 1,X].
Let S be the subspace of R" orthogonalto X;. ShasabasisZ,, Zs, ..., Z,
which we can assume is orthonormal. The change from the original basis
(with respect to which the representation is 4) to the basis X, Z,, Z3, .. .,
Z, is via the orthogonal matrix R. With respect to the new basis the
representation is

A, 0 0 - O

0 by, bys * ba
B = RAR = 0 b32 b33 tt b3,,

0 bnz bn3 bnn

i, 0 0 0

0

=10 B*
0

B is symmetric since B = RAR = RAR. The matrix B* is (n — 1) x
(n — 1) and is real and symmetric. By the induction hypothesis there is an
orthogonal change of basis in S, represented by Q*, which diagonalizes
B*. Therefore,

Az 0 et 0
om0 B 0
0 0 A

is an (n — 1) x (n — 1) diagonal matrix. Now consider the n x n
matrix
1 00 --+ 0
0
Q=10 o*
0
Q is orthogonal since Q¥ is orthogonal, and

QB0 = Q(RAR)J = (QR)A(QR) = PAP
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where P = QR is orthogonal, since P™! = (QR)™' = R™1Q"! =
RJ = OR = P. Now we multiply out 0B, and we find

. 0 0 -~ 0
0 4, 0 - 0
0B =00 0 4 - 0
0 0 0 A,

which proves the theorem.

Theorem 4.6.4 1If a linear transformation f from U to U, where U is an
n-dimensional real vector space, has a representation matrix 4 which is
symmetric, then f'has a diagonal representation with respect to n indepen-
dent characteristic vectors.

PROOF Let uy, u,,..., u, be the basis with respect to which the
representation matrix is 4. Let u = xqu; + xu, + + -+ + x,u, Then
X, the column matrix of coordinates of u, is in R”, Therefore, we can view
the transformation as a transformation from R" to R". Hence, Theorem
4.6.3 applies. If PAP = D, D diagonal, then AP = PD and the columns
of P are characteristic vectors of 4. They are independent since P is
orthogonal. Hence, 4 has n orthonormal characteristic vectors. Suppose
(x1s X3, ..., x,) is a characteristic vector of A. Then v = xju, +
XU, + r++ + xu, is a characteristic vector of f. Therefore, f has in-
dependent characteristic vectors, and, using these vectors as a basis, we
have a diagonal representation for f.

EXAMPLE 4.6.1 Letfbe a linear transformation from the three-dimensional
real vector space U to U with the representation matrix

7 -16 -8
A= (—16 7 8)
-8 8 -5

with respect to the basis u,, u,, u;. Find a basis with respect to which the
representation of fis diagonal. The characteristic equation of A4 is

7—-1 -—16 -8
[A—-AM=|-16 7-21 8 = —2% +92% + 4051, + 2,187 =0
-8 8 -5—-2
The characteristic values are 1, = 27, 1, = 1; = —9. To obtain a character-

istic vector corresponding to A, we must solve (4 ~ A,))X = O or 5x + 4y +
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2z = 0,4x + 5y — 2z = 0. A solutionis (2,—2,—1). To obtain characteristic
vectors corresponding to 4, = 13 = —9, we must solve (4 — A,1)X = 0, or
2x — 2y — z = 0. One solution is (1,0,2). Another solution orthogonal to the
first is (4,5,—2). Notice that both these vectors are orthogonal to (2,—2,—1).
A set of independent characteristic vectors of f is

vy =2u — 2u;, — u

u + 2u,

V2

v; = 4u; + Su, — 2u,

With respect to these vectors as a basis the representation of fis
27 0 0
B=|0 -9 0

0 0 -

Next we consider the case of hermitian matrices, where the situation is
quite similar.

o~

Definition 4.6.2 Ann x n matrix A is hermitian if 4 = A.

Theorem 4.6.5 All the characteristic values of a hermitian n x n
matrix A are real.

PROOF Let Z be a characteristic vector of 4 corresponding to the
characteristic value A. Then if the bar stands for a complex conjugate,

AZ = 1Z
az -1z
2AZ =122 =13 |al?

k=1
724z =22z = 2 3 |zl
k=1

Subtracting, we have

A=N > |zt =24z - ZAZ = 0

k=1

since 24Z = ZAZ = ZAZ. Therefore, since > |z >0, A=1
which proves the theorem. k=1

Theorem 4.6.6 Characteristic vectors corresponding to different
characteristic values of a hermitian matrix 4 are orthogonal.
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PROOF Let Z; and Z; be characteristic vectors corresponding to
characteristic values 4; and A;, where 4; # 1;. Then

AZi = A[Zt
2,4z, = 3(Z,- Z)
ZAZ; = i(Z,-Z)
where (Z; - Z;) is the scalar product of Z; and Z i+ Subtracting, we have
(= A)Z,-2Z) = Z,4Z, — Z,AZ; = 0

since Z,AZ; = Z,AZ, = Z,AZ, But 1, — J; # Oand hence, (Z; - Z;) = 0.
Theorem 4.6.7 If a linear transformation f from C* to C” has a rep-
resentation A with respect to the standard basis which is hermitian, then
there is a unitary matrix P such that the representation PAP = D is
diagonal, with diagonal elements the characteristic values of A.

PROOF The proof will be left to the reader. It can be done as an
induction on n very much like that for Theorem 4.6.3. The reader should
make the necessary changes in that proof.

Theorem 4.6.8 If a linear transformation f from U to U, where U is an
n-dimensional complex vector space, has a representation matrix 4 which
is hermitian, then f has a diagonal representation with respect to n
independent characteristic vectors.

PROOF The proof will be left to the reader.

2 i i
A= (—i 1 0)
—-i 0 1

is similar to a diagonal matrix with real elements. A is hermitian since 4 = 4.
Therefore, Theorem 4.6.7 applies. The characteristic equation of 4 is

EXAMPLE 4.6.2 Show that the matrix

2-1 i i
A—M=|-i 1-42 0 |=-AA~DA-3=0
i 0 1-—2
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The characteristic values are A, = 0, 2, = 1, 43 = 3. To find a characteristic
vector corresponding to 4; we must solve AZ = 0,

2 i i\ [z 0
- i 0 1 4 3 0

or 2z, + izy + iz3 = 0, —izy + z, = 0. A solution is u; = (1,5,i). We

must solve
1 i i\ [z 0
[ A6-¢
—i 0 0/ \z 0,

corresponding to A,, or z; = 0, z, + z3 = 0. A solution is u, = (0,1,—1).

We must solve
-1 i i\ [z 0
2 960
—i 0 - Z3 0

corresponding to A, or z; — iz, — iz3 = 0, izy + 2z, = 0. A solution is
us = (2i,1,1). If we normalize u,, u,, and u, and place them in columns, we
have a unitary matrix

Ly 2
V3 NG
pio| i L L
V3 N2 Ve
LA S
V3 V2 Ve
and its inverse
R
V3 3
P = 0 —

a= S Gl

1

J
2i L

NG

000
PAP™! = (0 1 0)
00 3

The diagonal matrix similar to 4 is
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We conclude this section with a couple of applications of the similarity
of symmetric matrices to diagonal matrices. The first of these is in the study of
quadratic forms. The most general quadratic form in two real variables is

g(x,y) = ax* + 2bxy + cy*. If we let X = <;) and A be the real matrix

6

then we can write ¢(x,y) = X4X. By analogy we shall define the general
quadratic form in # real variables as q(x,, x,,..., x,) = XAX, where 4 is a
real symmetric matrix. Since A is real and symmetric, Theorem 4.6.3 applies
and there is an orthogonal coordinate transformation Y = PX such that
PAP = D is diagonal. We have X = PY and

q(xy, X3, ..., x,) = XAX = Y(PAP)Y = ¥DY
=3+ ya® + 4 Ay,
where A, Z,,..., A, are the characteristic values of 4. We have reduced the
quadratic form to diagonal form.

EXAMPLE 4.6.3 Identify the figure in the xy plane defined by the equation
x? + 4xy — 2y* = 6. We have a quadratic form q(x,y) = x* + dxy —
29* = XAX = 6, where
1 2
=)

J=a—aa+n=o

The characteristic equation of 4 is

1-12 2
2 -2 -

The characteristic values are 4, = 2, 1, = —3. The diagonal form after the
change of coordinates to (x’,3") is
q(x,y) = 2(x)* = 3())* = 6
or
oy o
3 2

=1

This is the equation of a hyperbola. To locate the axes of symmetry of the
hyperbola we must examine the coordinate transformation X’ = PX, where
the rows of P (columns of P) are the normalized characteristic vectors u, and
u, of A4 corresponding respectively to 1, and 4,:
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FIGURE 27

The coordinate transformation is

2 1

x\ _ NERRVER v _ [ cos@ sin@\[x
y' ) y —sind cosf/\y
NEENG
where cos § = 2/ JSandsin 0 = 1 / v g, or § = tan~! }is in the first quadrant.
The positive x’ axis makes an angle of 6 with the positive x axis and points in

the direction of u,. The positive y’ axis points in the direction of u,. These
directions serve to locate the given hyperbola (see Fig. 27).

The second application is to the solution of certain systems of differential
equations. Let X(¢) be a column matrix with elements x,(), x5(2), - . . » X(¢).
Consider the system of differential equations X’ = AX, where A4 is real and
symmetric and the prime refers to differentiation with respect to . We wish to
find a solution such that X(0) = X,, a given column matrix. We make a
coordinate transformation ¥ = PX, where P is independent of z. Then Y’ =
PX', X' = P7'Y' = AP"'Y,and Y’ = (PAP™')Y. By Theorem 4.6.3, there
is a P such that PAP™! = D, a diagonal matrix. Hence, the new system is

dy, dy dy
= Ay =22 = L Yas s =2 = AVn
p7 1)1 it 2Y2 dt y
where A, A,, . . ., A, are the characteristic values of 4. A solution is y, = c,e*",
¥, = %%, ..y, = c.et, or
c et
Aot

X = Pt | ¢

= ¢ eX, + "X, + 0 + et X,

et
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At t = 0, we have
€1

Xo = X0 = P 2] =X, + X, + - + 6X,

C,

where X;, X,, ..., X, are characteristic vectors of 4. In this case, the character-
istic vectors are independent, and therefore they form a basis for R”. No matter
what initial vector X, is prescribed, we can always find constants ¢, ¢,, ..., ¢,
such that Xy = ¢, X; + c,X, + *+ + ¢, X,.

EXAMPLE 4.64 Find a solution of the following system of differential
equations

d—x—1-=2xl + 3x, + 3x;
dt

dx,

—% =3x; — x

dt 1 2

dX3

— = 3x; — X

i 1 3

satisfying the initial conditions x,(0) = 1, x,(0) = —2, x3(0) = 0. The
system can be written as X’ = A4X, where
2 3 3
A= (3 -1 0)
3 0 -1

is real and symmetric. The characteristic equation is

2 -2 3 3
3 -1 -2 0 =A+DA+H-2+5=0
3 0 -1-2
The characteristic values are A, = —1, 1, = —4, 13 = 5. The corresponding

characteristic vectors are

0
X1=(1 %
-1

Therefore, a solution is

() =

x,(t) = ~ce” " + 2c5¢°"
X)) = et + e + e’

(1) = —cie”t + ce”* + g’
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In order for X(0) = (1,—2,0), we must have

1 0 -1 2\ [ey
-2| = 1 1 1) |c,
0 -1 1 1/ \c3
Solving, we have ¢, = —1, ¢; = —1, ¢; = 0. Our solution satisfying the
initial conditions is
x(t) = e
X)) = —e "t —e ¥
X)) = ef—e¥

EXERCISES 4.6

1 Find similarity transformations which reduce each of the following matrices to
diagonal form:

301 4 10 4 -2
@ (0 2 0 % {1 40 (c) -2 1 -1
1 0 3 0 0 3 2 -1 1
2 Find solutions of the system of differential equations X’ = AX, where A is each
of the matrices of Exercise 1, subject to the initial conditions X(0) = (1,2,3).

3 Find similarity transformations which reduce each of the following matrices to
diagonal form:

2 0 2
1 2 2-2 s
o) w67 e (31

4 TFind a solution of the system of differential equations Z’ = AZ, where A4 is the
matrix of Exercise 3(c), subject to the initial conditions Z(0) = (;,0,i).

5 Xdentify the figure in the xy plane given by the equation 3x* + 2xy + 3y* = 1.
Find the axes of symmetry.

6 Identify the surface in R3 given by the equation

9x2 + 12y% + 922 — 6xy — 6yz = 1

Hint : An equation of the form 4,x? + 4,y? + 1322 = 1 represents an ellipsoid
if A, A2, A5 are all positive.

7 A quadratic form g(x;, X3, ..., Xp) = XAX, where A is rcal and symmetric, is
called positive-definite if ¢ > O for all X # 0. Prove that g = XAX is positive-
definite if and only if all the characteristic values of A are positive.

8 Let g = XAX be a positive-definite quadratic form. Show that (X - ¥) = XAY
is a scalar product for R".




188 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

9 A hermitian form h(z,, 23,...,2) = ZAZ, where A is hermitian, is called
positive-definite if & > 0 for all Z # 0. Prove that h = ZAZ is positive-definite
if and only if all the characteristic values of 4 are positive.

10 Let ZAZ be a positive-definite hermitian form. Show that (Z, - Z,) = §2AZI is
a scalar product for C™.

*4.7 JORDAN FORMS

Theorem 4.5.2 gives necessary and sufficient conditions for an n X n matrix
to be similar to a diagonal matrix, namely that it should have # independent
characteristic vectors. We have also seen square matrices which are similar
to no diagonal matrix. In this section, we shall discuss the so-called Jordan
canonical form, a form of matrix to which every square matrix is similar. The
Jordan form is not quite as simple as a diagonal matrix but is nevertheless
simple enough to make it very applicable, particularly in the solution of systems
of differential equations.

Before we embark upon the discussion of Jordan forms, it will be con-
venient to introduce the concept of partitioning of matrices. Suppose we write

A B
M =
where A is an m x n matrix, Bis an m x p matrix, C is a ¢ x n matrix, and
D is a g x p matrix. In other words, M is an (m + g) x (n + p) matrix
partitioned into blocks of matrices so that each block in a given row has the
same number of rows and each block in a given column has the same number

of columns. The reader should convince himself that the following product
rule is valid for partitioned matrices. Let

All AIZ Aln Bll Bll Blp
po|fn ) g (B P P
Aml Amz Amn Bnl Bn2 Bnp

Then
Cll C12 Cip
PQ= C21 C22 C2p
le sz Cmp

Ay has the same number of columns as B, ; has rows for all i, j, and k.
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Theorem 4.7.1 Every square matrix 4 is similar to an upper-triangular
matrix with the characteristic values of 4 along the principal diagonal.

PROOF Let A be an n x n matrix. We shall show that there exists
an invertible matrix P such that PAP~! = T, where T'is upper-triangular;
that is, t;; = 0 for i > j. We shall prove it by an induction on n. For
n = 1, A is already upper-triangular; and so P = L. Now let us assume
that the theorem is true for all (n — 1) x (@ — 1) matrices. We know
that A has at least one characteristic value A, and characteristic vector Xy
such that AX; = A, X;. We pick any basis for C" of the form X, Z,,
Zs, ..., Z, If Qis the matrix representing the coordinate transformation
from the standard basis to the new basis, we have

oro™ = (5 )
where Uis 1 x (n—1),0is(n—1) x 1,and Bis ( — 1) x (n— 1)

Now B is (n — 1) x (n — 1), and so there is an n—1Dx@m=~-1
nonsingular matrix R such that

Ay 023 Uzn
RBR™ 1 0 )'3 V3n
0 0 2

is upper-triangular. Now let

and P = SQ. We have
PAP™! = S(QAQ~HS!

(6 % 56 #)
E B o)

3, UR™!
0 RBR!

Ry Wiz Wiz " Wi

0 A a3 " Do
= 0 0 ).3 M U3

0 0 o - A




190 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

Since T is upper-triangular, its characteristic values are Ay, Ay, ..., A,
But A has the same characteristic values. This completes the proof.

Theorem 4.7.2 Every square matrix 4 is similar to an upper-triangular
matrix of the form

T, 0 0 0
0 T, 0 0
0 0 T, 0
0 0 o T,

where each T is upper-triangular with diagonal elements 1;, the order of
T, is the multiplicity of A, as a characteristic value of A, and k is the number
of distinct characteristic values.

PROOF Theorem 4.7.1 tells us that 4 is similar to an upper-triangular
matrix. In fact, we can assume that there is a P such that

Ty Ty, - Ty
PAP™! — 0 .Tzz 7?2& =T
0 o0 T

where T;; is upper-triangular with all of its diagonal elements A;. The
order of Ty; is the multiplicity of A; as a characteristic value of A, and
Aty Ay ...y Ay are all distinct. This assumption is justified by the proof
of Theorem 4.7.1. Clearly we can place any characteristic value A 1 in the
upper left-hand corner of T. If 1, has multiplicity greater than 1, we can
place A, in the upper left-hand corner of RBR™ L. If A, has multiplicity
greater than 2, we place it again in the third position along the diagonal
T. This process can be repeated as many times as the multiplicity of 4,,
then with 1,, 4,, etc. Consider a given nonzero element t,, for p < q.
Let Q = I + C, where C is a matrix all of whose elements are zero except
the (p,q)th element, which is ¢. The inverse of Qis 0~ = I — C. If we
multiply out Q70 !, we find that the element t,, has been changed to
tyg = €ty — 2,). If 1,, — 2, # 0, we can choose ¢ so that the (p,g)th
element is now zero. Otherwise the transformation QTQ™! affects only
the elements in the pth row to the right of t,, and in the gth column above
I, By using a finite sequence of such similarity transformations we can
reduce T to the form required by the theorem.
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We now define a special upper-triangular matrix known as a Jordan block.
A Jordan block is a matrix whose elements on the principal diagonal are all
equal, whose elements on the first superdiagonal above the principal diagonal
are all 1s, and whose elements otherwise are 0s.

EXAMPLE 4.7.1 The most general Jordan block of order four is

00

o O O >
OO o
(=2

0
1
A
where A is a complex number.

Theorem 4.7.3 Every upper-triangular matrix T all of whose diagonal
elements are equal to 1 is similar to an upper triangular matrix

J, 0 - 0
0 J, =+ 0
0 0 Jy

where J, is a Jordan block with diagonal elements 4, and [ is the number of
independent characteristic vectors of T.

PROOF We shall not prove this theorem.}

Theorem 4.7.4 Jordan canonical form Every square matrix 4 is
similar to an upper-triangular matrix of the form

J, 0 -+ 0
0 J, -+ 0
0 0 T

where J; is a Jordan block with diagonal element 1;, a characteristic
value of 4. A characteristic value A; may occur in more than one block,
but the number of blocks which contain A; on the diagonal is equal to the
number of independent characteristic vectors corresponding to 4;.

+The interested reader should consult a book like B. Noble and J. W. Daniel, “Applied Linear
Algebra,” 2d. ed., Prentice-Hall, Englewood Cliffs, N.J., 1977.
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PROOF By Theorem 4.7.2, there is a nonsingular matrix Q such

that
T, 0 0
T = 040" = 0 7, 0
0 0 T,

where T is upper-triangular with the diagonal elements A,, the order of
T; is the multiplicity of A; as a characteristic value of 4, and k is the
number of distinct characteristic values of A. By Theorem 4.7.3, there are
k nonsingular matrices R, such that

Jiy O 0
R.T.R,~! = 0 Ju 0
0 o0 Ju,

where J;y, Ji, .. ., Jyu, are Jordan blocks with diagonal elements A; and
/; is the number of independent characteristic vectors corresponding to

A;. Let
R, 0 0
R = 0 R, 0
0 0 R,
Then
R,™Y 0 0
R—l = RZ—I 0
0 0 R
We have
R(T\R, 0 0
1 0
noig e g - (0 REAT 0
0 0 R.TR,
k
Clearly RTR™* is in the form required by the theorem where m = >
i=1
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EXAMPLE 4.7.2 Find a matrix in Jordan canonical form which is similar to

2 1 0 1

1 3 -1 3
4=l 1 2 1
1 -1 -1 -1

The characteristic equation is |4 — Af| = A4 — 2)® = 0. The characteristic
values are 1, = 2 of multiplicity 3 and A, = 0 of multiplicity 1. To find
characteristic vectors corresponding to 1, = 2 we must solve

0 1 0 1 X4 0
1 1 -1 3 x) _ |0
o 1 o 1]lx] |0
1 -1 -1 -3 X4 0

The null space of the coefficient matrix has dimension 1. We can find a character-
istic vector X, = (1,0,1,0), but all other solutions will be a multiple of X; and
hence not independent. We must solve

2 1 0 1\ /x4 0
1 3 -1 3} f{x\_|oO
o 1 2 1)lx] \o
1 -1 -1 -1 X4 0

corresponding to 4, = 0. Again the dimension of the null space is 1, and we
have a characteristic vector X, = (0,1,0,—1). There are two independent
characteristic vectors, and therefore there are two Jordan blocks in the canonical
form which (except possibly for the order of the blocks) must look like

2100
0210
=100 20
0000

This answers the question posed in the example. However, let us continue to
demonstrate explicitly a similarity transformation which will produce J. Let
P! = (X,,X,5,X5,X,), where PAP~! = J. Then AP~ = P'J, or

AX(,X3,X3,Xy) = (AX1aAX2,AX3aAX4)
= (X1,X2,X3,X4)J
= (A Xy, Xy + X5, Xo + 41X, 2, Xy)

(A — 1, DX; = 0,(4 = DX, = Xy, (4 = 4DX3 = Xp,and (4 — 11X, = 0.
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The first and last of these equations we have already solved. The second equa-
tion takes the form

0 1 0 1\ /x 1
1 I -1 3V [x2] _ [0
0 1 0o 1)lx{ |1
1 -1 —1 -3/ \x, 0

A solution is ¥, = (0,3,0,—14). The third equation takes the form

0 1 0 1\ /x 0
11 -1 3){x]) _ 3
0 1 o 1)\x]" 0
1 -1 -1 =3/ \x, -1

and it has a solution X; = (0,—4,~4,3). Therefore,

1 0 0 o 1 0 0 o

i 0 3 -3 1 0 1 0 1
1 2 =

ol 1 0 -3 o0 =12 o -2 o

0 -3 3 -1 1 -4 -1 -3

and multiplying out PAP~!, we find that PAP~! = J.

There is a certain amount of ambiguity in Theorem 4.7.4. To illustrate
the problem, suppose 4 is a 4 x 4 matrix with a single characteristic value 1
of multiplicity 4. Also suppose that there are only two independent character-
istic vectors corresponding to 1. Then we know from Theorem 4.7.4 that there
are two Jordan blocks on the diagonal of J, the Jordan form similar to A.
However the Jordan form could look like (aside from the order of the blocks)

A0 0O A1 00
0 A 10 or 04200
0 0 11 00 11
0 0 0 2 0 00 2
On the other hand, if we write P! = (X1,X;,X3,X,), then we have from

AP™! = P7Y, A(X},X2,X,,X,) = (X1,X3,X3,X,)J. In the first case, we have
the equations (4 — ADX, =0, (4 — ADX, =0, (4 — ADX; = X,, and
(4 — ADX, = X;. Inthe second case, we have the equations (4 — ADX,; = 0,
(A4 — DX, = Xy, (4 — ADX; = 0, and (4 — ADX, = X;. Given 4, only
one of these sets of equations will have four independent solutions X, X,, X,
and X,. This will then determine the appropriate Jordan form.

We conclude this section with an application to the solution of systems
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of differential equations. Suppose we have a system of differential equations

which can be written in the form

g:AX

dt
where X = (x,(t), x5(t), ..., x,(t)) and 4 is an n x n matrix of constants.
We wish to find a solution of the system satisfying the initial conditions
X(0) = X, a given vector. Suppose we make a change of coordinates Y = PX,
where P does not depend on ¢. Then X = P~ 'Yand X' = P~'Y' = AP7'Y,
or Y’ = (PAP™Y)Y. Now suppose PAP™' = J, a Jordan canonical form;
then
Vi = A4y + WiYiss i=12..,n

where 1; is a characteristic valuet of 4 and y; is either 1 or 0 depending on J.
In every case, p, = 0, and the last equation is simply y, = A,Vn. Therefore,
¥, = c,e™, where ¢, is a constant; putting this into the (n — 1)st equation,
we can solve for y,_;. Working upward in the system, we can find all the y;.
Finally, we find X from Y = PX and evaluate the constants of integration
using the condition X(0) = X,. We shall show in Chap. 9 that such a system
always has a solution satisfying a given set of initial conditions and that the
solution is unique.

EXAMPLE 4.7.3 Find a solution of the system

dx,

L =2x 4+ x; + x

dt 1 2 4

d
—3‘-2—=x1+3x2—x3+3x4
di

dx,

3 =x, + 2x3 + x

dt 2 3 4
‘dx_4=x1"x2“‘x3_x4
dt

satisfying X(0) = X, = (1,0,0,0). We can write the system as X' = AX,
where A is the matrix of Example 4.7.2. We have already found a P such that

2100
0210

PAP™! =
P 0020
0000

t In general, the characteristic values are not all distinct. Therefore, it will be expected
that 2, is the same for different values of i.
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Under the change of variables ¥ = PX, the equations become y} = 2y, + y,,
Y2 = 292 + 73, ¥5 = 25, yi = 0. Therefore, we have y, = c,, y, = cse®,
and

d - -
Zt(}’ze = yie~¥ = C3
so that y, = c3te’ + c,e?”. Finally,
d -2 -2t
7 (1:1e™%) = ye™* = ¢5t + ¢,

and y; = (c3t?/2 + 5t + c,)e*. Let ¥, = $(0) = (c1,¢2,65,c4). Then

ez: te®* ‘}’2 et 0 ¢
0 & * 0)/c
Y(@r) = 2
® 0 o e 0)\e
0 0 0 1 Cs
If Yo = PXo, then

¢ 1 0 0 0 1 1
a)_|o 1 0 1 o} _|o
c; 2 0 -2 o])lo] {2
Cs 1 -4+ -1 -3 0 1

a + t)e*

31e?t — e + 1
1 + t¥He? — o2
—te? + e — |

X(¢t) = P7lY(r) =

EXERCISES 4.7

1 Let J be a Jordan block with 4 on the diagonal. Show that the null space of
J — Alis of dimension 1.

2 Show that a Jordan canonical matrix with k Jordan blocks on the diagonal has
exactly k independent characteristic vectors.

3 Show that if PAP~! = J, a Jordan canonical matrix, then 4 has the same number
of independent characteristic vectors as J.

4 Find Jordan canonical matrices similar to each of the following:

5 4 3 2 1 0 2 2 -1
@ (-1 0 -3 ® 11 -1 -1 ©@ -1 -1 1
1 -2 1 ( 1 2 -1 -2 2
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Solve each of the systems of differential equations X' * = AX, where A is one of the
matrices of Exercise 4, subject to the initial conditions 20 = %, = 1,23).
Show that a solution of X’ = JX, where Jisann x n Jordan block with 4 on the
diagonal, is

2 n—1
1 Bl )

2 =D\ /¢

n—-2 c

xo)=| o1 ¢ d 2y et

n - 2)!

---------------------- c’l

00 0 1

Show that the system has a solution for arbitrary X)) = (€1, €20+ 5 )
Let

2 k-1
s B
2! k- 1)
tk—z
;= 01 ¢ et
(k —2)!
0 0 O 1
Let
J, O 0
= |00
0 0 I

be a Jordan canonical matrix with J;ak; x k, Jordan block with diagonal elements
A;. Show that the system of differential equations X’ = JX has a solution

T, 0 -+ 0\ /e
xo= 0% " P
0 0 --- T,/ \ea

Show that the system always has a solution for arbitrary X©0) = (c1, €255 Co)-
Show that the system X’ = AX always has a solution for arbitrary X(0) =
(C1s €25+ -+ » Cn)-

Prove that every n x n matrix satisfies its own characteristic equation. Hint:
Show that (4 — 4,14 — 1) -+ - (4 — 41X, = 0 for a set of n independent
vectors X3, i =1, 2,...,1.
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FIRST ORDER DIFFERENTIAL EQUATIONS

5.1 INTRODUCTION

This chapter begins our study of ordinary differential equations with first order
equations. In a sense, the last section should come first because there we take
up the fundamental existence and uniqueness theorem for first order equations.
The proof is the traditional Picard iteration argument. However, because the
argument is more sophisticated than the general level of this book, this material
is more appropriately placed in a starred section for the more ambitious
students. After a section giving an elementary example of how differential
equations arise in, and are related to, applied mathematics, there is a section
on some of the basic definitions in the subject. Next we take up the solution of
first order linear equations. The following section deals with a few of the specific
types of nonlinear equations which can be solved in closed form. The last two
unstarred sections, Secs. 5.6 and 5.7, are on applications of first order equations
and numerical methods, in that order.
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52 AN EXAMPLE

The broad area of applied mathematics usually breaks down into four parts:

] Formulation of a mathematical model to describe some physical
situation.

2 Precise statement and analysis of an appropriate mathematical problem.
3 Approximate numerical calculation of important physical quantities.
4 Comparison of physical quantities with experimental data to check the
validity of the model.

The lines of demarcation are never clear, but generally parts 1 and 4 are
the province of the physicist or engineer while parts 2 and 3 are the province of
the mathematician. Part 1 is very difficult; at the very least it requires an intimate
knowledge of existing physical principles, and at the most it may require the
formulation of some new theory to cover the given situation. It requires great
insight into the question of which effects are the principal effects in the problem
and which are secondary, hence can be neglected. This is because nature is
usually too complicated to be described precisely, and even if we understood
completely all physical principles, we would probably not be able to solve the
resulting mathematical problems with enough precision to make this knowledge
pay off. Therefore, when a mathematical model is formulated, one must take
into account both the inability to describe the physical situation precisely and
also the inability to analyze the mathematical model which may be forthcoming.

In a sense, once the mathematical model has been formulated, the analysis
of part 2 has nothing to do with physics. The question of whether the problem
is well formulated, whether it has a solution, and how to find the solution are
purely mathematical in nature. The mathematician cannot, for example, argue
that the solution exists and is unique because the physical situation indicates
this, because by the time the problem reaches him, it is no longer a precise
description of nature but only an approximate model which at best retains only
the principal effects to be studied. Therefore, the mathematician must decide
questions of existence and uniqueness within the framework of the math-
ematical model, which will do what it is supposed to only if it has been well
formulated in part 1. This is not to say that physical intuition is never valuable
to the mathematician. It may suggest methods of analysis which would not
otherwise be apparent, but the mathematician must not rely on some sort of
vague physical intuition to replace sound mathematical analysis.

The mathematician’s work is not done when the mathematical model has
been analyzed to the extent of deciding that a solution exists and is unique. For
knowing that a unique solution exists is of little help to the physicist or engineer
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if he cannot find it. In many cases, a numerical approximation to some physical
quantity is the best that can be hoped for. In other cases, a more complete
description of a solution may be available, but not in a form from which data
can be quickly and easily extracted. Hence, in either case part 3 may involve
considerable numerical analysis before meaningful answers can be derived.
This will involve. finding algorithms from which data can be computed and
analyzing the degree of accuracy of these results compared with some analytical
solution which is known to exist.

Part 4 is the province of the experimentalist. It is his job to devise experi-
ments to check the data which the mathematical model has provided against the
physical situation. This book is a mathematics book and therefore will not
deal with parts 1 and 4 of this outline. We shall treat parts 2 and 3 especially
as they relate to those mathematical models which involve the solution of
ordinary differential equations. Before getting on with a systematic study of
ordinary differential equations, we shall illustrate some of the foregoing remarks
in relation to a simple mass-spring system.

Consider a physical system consisting of a mass of m slugst hanging on a
helical spring (see Fig. 28). We assume that the spring has a certain natural
length L. If the spring is stretched by a small amount ¢ to the length L + ¢,
there is a restoring force ke in the spring which opposes the extension. If the
spring is compressed by a small amount & to the length L — ¢, then there is a
force ke which opposes the compression. If we measure force in pounds and
length in feet, the spring constant & is measured in pounds per foot.

t One slug is a unit of mass such that a force of one pound exerted on it will produce
an acceleration of one foot per second per second.
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Suppose at a given time ¢ the spring has length L + Y(¢); then Y(¢) is
the amount the spring is stretched beyond the natural length. If Y (¢) is negative,
then the spring is under compression. There is a downward force of mg due to
gravity acting on the mass, where g is the acceleration of gravity measured in
feet per second per second. The spring exerts a force kY (¢) on the mass, which
is upward when Y(?) is positive and downward when Y (¢) is negative. Accord-
ing to Newton’s law of motion,

a2y

m
di?

=mg — kY
where d?Y/dt? is the acceleration of the mass m and time ¢ is measured in seconds.
We are neglecting any force due to air resistance, and we are assuming that the
mass has no horizontal motion. We see that the displacement Y(¢) satisfies a
differential equation.t

As is the case in many problems, the differential equation can be simplified
by introducing a new variable. Consider the equilibrium position of the mass
on the spring, that is, where the mass will hang without motion so that the
downward force of gravity is just balanced by the upward reaction of the spring.
If Y, is the amount the spring is stretched in the equilibrium position, then
kY, = mg. Now let p(z) be the displacement of the mass measured positively
downward from equilibrium. Then Y(¢) = y(t) + Y, and

d*y d?

ar_8ay
2 dr?
and the differential equation becomes
d?y
m?lt—z =mg — k[y(t) + Y.] = —ky(t)

Therefore, y(¢) satisfies § + w?y = 0, where w? = k/m and the two dots over
y stand for the second derivative of y with respect to ¢.

So far we have said nothing about how the mass will be set into motion.
Suppose at time ¢ = 0 the mass is given an initial displacement y, = y(0) from
equilibrium and an initial velocity y, = $(0), measured in feet per second.
Then the problem{ is to find a function y(¢) satisfying j + w?y = 0for¢ > 0
such that y(0) = y, and »(0) = y,. Since the displacement, the velocity, and

t We shall define more precisely in the next section what we mean by a differential
equation.

1 This type of problem is called an initial-value problem. All the data are given at a
single time ¢+ = 0. Later we shall consider boundary-value problems, where data
are given at more than one value of the independent variable.
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the forces acting on the mass cannot become infinite or change discontinuously,
we further specify that y(¢), y(r), and #(t) should be continuous for ¢ > 0.
In our terminology this means that these functions are all continuous for t > 0
and that lim y(z), lim j(s), and lim (t) all exist.
t~07* >0+ -0t
We now have a mathematical model to go with the mass-spring system
described above. To reemphasize that this only approximately describes the

physical situation let us list some of the assumptions we have tacitly made.

I The elastic behavior of the spring is such that the restoring force is
proportional to the displacement.

2 The displacement is small enough to ensure that the elastic limit of the
spring is not exceeded.

3 There is no air resistance.

4 The acceleration of gravity does not vary with height.

5 The motion is in a straight vertical line.

In addition to these, we could mention that Newton’s law is only an approximate
theory which assumes that relativistic effects are negligible. The point is that
the mathematical model is only an idealization of the actual physical system.
If it turns out to be a good approximation to the physical system, it is because
we have been clever enough to include all the major effects and have neglected
only secondary effects.

One of the first things we should do with the mathematical model is prove
that there exists a solution to the problem. In this case, we shall do so by
actually finding a solution.t Let z = dy/dt. Then

il_zz_dz_dzdy_zdz
dt> dt  dyd: dy
Hence,

zdz + @*ydy =0

zZ w2y2 cZ
zdz + w? dy = = + ==
| fy y -

2 2
where ¢? is a constant. Then

= +/e? — 0?)?

3

T This type of existence theorem is called constructive since it actually constructs a
solution. There are nonconstructive existence theorems where solutions are proved
to exist without showing how to find them.
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Ignoring, for the moment, the ambiguity in sign, we have

—'—‘z———___y____ = dt
\/cz — w¥y?
Y e
\/az —y?
sin! Y = ot + ¢

a
where a = c/w and ¢ is another constant of integration. Finally, we have
y = asin (ot + ¢)

where a and ¢ are constants of integration. We should go back and consider
the other sign. But we see that this is not necessary since

Yy = wacos (0t + ¢)
j = —w?asin (0t + ¢) = —w?y
and we see that this function satisfies the differential equation for arbitrary
a and ¢. Now
¥0) = asin ¢ =y,
7(0) = wacos ¢ = y,

2

2, Yo

‘\/“ i
¢=tan“%
Yo

can be satisfied by

Q
|

where 0 < ¢ < n. Therefore, we have found an explicit solution to our
problem.

Next we prove that the solution is unique. Suppose that there are two
solutions y,(f) and y,(f). Then j, + w?y, =0, j, + 0?y, = 0, y,(0) =
¥20) = o, y,(0) = y,(0) = yo. We form the difference w(t) = y,(f) — y,(¢).
Then w + w?*w = 0, w(0) = w(0) = 0. We compute

E(t) = tmw? + 3kw?
Then
E@) = mww + kww

I

. —k .
myv—w + kww =0
m
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This means that E(f) is constant. But E(0) = 0 and, therefore, E(t) = 0,
However, we notice that E(¢) is the sum of nonnegative quantities. Therefore,
w = 0and y,(t) = y,(¢t). This completes the proof.

Notice that in the proof of uniqueness we used the function E(t) =
3mw? + tkw?, which most readers will recognize as the energy—kinetic energy
plus potential energy of the spring. Then E (t) = O states the fact that energy
is conserved. We did not have to know this to complete the proof. On the other
hand, this illustrates how a knowledge of physical principles may aid the
mathematician in his analysis of the mathematical model.

EXERCISES 5.2

1 Show that y(t) = a cos (wt + ¢) and y(t) = A sin wt + B cos wt both satisfy
# + w?y = 0 for arbitrary constants a, ¢, A, and B. Does this contradict the
uniqueness theorem? Explain.

2 Find the solution of the initial-value problem j + w?y = 0, t > 0, y(0) = Yos
¥0) = y, in the form y(t) = A sin ot + B cos w.

3 Let f(¢) be a given function continuous for ¢ > 0. Prove that if there exists a
function 3(¢) which is continuous and has continuous first and second derivatives
for ¢ = Osatisfying j + w2y = f(¢), with HO0) = yo, H0) = ¥, then it is unique.

4 The differential equation satisfied by the angular displacement & of the plane
pendulum shown in the figure is /6 + gsin & = 0. Consider the total energy

E(t) = 4ml*6* + mgl(1 — cos 6). Show that energy is conserved, that is,
E(#) = 0. If the pendulum has no initial displacement and no initial velocity, can
it ever become displaced from equilibrium? Does this prove uniqueness of the
solution of the differential equation subject to specified initial displacement and
velocity in this case? Explain.

5 Assuming in Exercise 4 that [6] < 5°, so that sin6 ~ 6, @ in radians, find an
approximate solution to the initial-value problem. Find the approximate frequency
of the pendulum, that is, the number of complete cycles per second.
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6 Some people insist that an initial-value problem is not well formulated unless the
solution is a continuous function of the initial data; that is, small changes in the
initial data produce small changes in the solution. Prove that this is the case in
the mass-spring problem of this section.

5.3 BASIC DEFINITIONS

Before beginning a systematic study of differential equations, we shall define
some of the basic terms in the subject.

A differential equation is an equation which involves one or more in-
dependent variables, one or more dependent variables, and derivatives of the
dependent variables with respect to some or all of the independent variables.
If there is just one independent variable, then the derivatives are all ordinary
derivatives, and the equation is an ordinary differential equation. We saw the
ordinary differential equation

in the last section. Another example is Bessel’s equation

d’y . dy

2 2 2

X*—= 4+ x==4+(x*=—n9)y =0

dx? dx ( )y

where x is the independent variable, y is the dependent variable, and #? is a
constant. If there is more than one independent variable and partial derivatives
appear in the equation, the equation is called a partial differential equation.
Some common examples are the heat equation

2
ou _ Ou
ot ox
the wave equation
1% _

and Laplace’s equation

It is obvious in these cases which is the dependent variable and which are the
independent variables.

The order of a differential equation is the order of the highest derivative
which appears in the equation. Bessel’s equation is a second order ordinary
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differential equation. The heat, wave, and Laplace equations are examples of
second order partial differential equations. The general form of an nth order
ordinary differential equation, in which y is the dependent variable and ¢ is the
independent variable, is

F(t’y’j]""’y(")) = 0

where the nth derivative must actually appear in this function. Lower order
derivatives may be missing, however. If F is a linear function of the variables
Yy Vs Provr Y™, that is,

F(t, 3, s ¥™) = ao(®)y® + a,(0)y"™"
+ o+ @ () + a()y + f()

then the differential equation is said to be linear. The two ordinary differential
equations cited above are linear. On the other hand, the equation

0

is nonlinear. There are corresponding definitions for nth order and linear nth
order partial differential equations.

We have already indicated how a mathematical model may lead to a
problem in differential equations. Clearly, to define the problem we must
specify more than the differential equation. We must specify where the solution
is to be found, what continuity conditions must be met by the solution and its
derivatives, and also what values the solution and/or its derivatives must take
on at certain points in its domain of definition. We say that a solution exists
if there is at least one function which satisfies all these conditions. We say that
the solution is unique if there is no more than one function which satisfies all the
conditions. We usually say that the problem is overdetermined if there are no
solutions, that is, too many conditions to be met, and underdetermined if there
are solutions but the solution is not unique, that is, there are not enough
conditions to single out a unique solution.

In speaking of ordinary differential equations, we say we have an initial-
value problem if all the specified values of the solution and its derivatives are
given at one point. The mass-spring problem of the previous section was an
example. These problems are most frequently encountered in dynamical
problems where time is the independent variable and the data are given at some
initial time, say ¢ = 0. For this reason, when we are dealing with initial-value
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problems we shall usually use ¢ as the independent variable. On the other
hand, if data are given for the solution at more than one point, we say we have
a boundary-value problem. These problems occur most frequently when the
independent variable is a space variable. For example, a beam is loaded with
some static load (constant set of forces), and conditions are specified at the
ends of the beam. For this reason, when we are dealing with boundary-value
problems we shall generally use x as the dependent variable. Corresponding
definitions of initial-value and boundary-value problems occur in partial
differential equations, but descriptions become more complicated; we shall not
study partial differential equations in this book.

EXERCISES 5.3

1 Classify each of the following ordinary differential equations as linear or nonlinear.
Also determine the order of the equation.
@ ty+y=¢€
b ywry=¢
©@ y+y+y=0

@ yw=yvy
e 35y +ty+ty+y=1t*
. d
(€2 smy+xcosy’=0,y’=—y
dx

(9) A — x?)y” — 2xy" + n(n + 1)y = 0 (n = constant)
" ey’ +x3=0

2 Let u(x,y) be a function of two independent variables. Describe the general nth
order partial differential equation involving «.

3 Referring to Exercise 2, give the form of the general nth order linear partial dif-
ferential equation involving u.

4 Classify each of the following partial differential equations as linear or nonlinear,
Also determine the order of the equation.

(a)gz—‘z’+52’;=o (b)a_”=§2_“2. 5_2_”2.

X ay ot ox oy

© %25=227Z+g§+§2—‘; ) uf;—z+ug§:1
© 2_:”"% o) a.x%fo

(9) aizgy+u;—}g=0 (h) yZ—Z+x‘;—l;=sinxy
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5.4 FIRST ORDER LINEAR EQUATIONS

The general form of the first order linear ordinary differential equation is
a,(1)y + ao(t)y = f(r)

We shall consider the initial-value problem based on this equation, which

requires a solution continuous for0 < ¢ < b satisfying y(0) = y,. Ifa,(0) = 0,

we say that # = 0 is a singularity of the differential equation. We shall consider

singularities later, so for now we assume that a;(0) # 0. We assume that ay(?),

ay(?), and f(¢) are continuous for 0 < 7 < b, and therefore if a,(0) # 0, there

isaf > Osuchthata,(f) s O0for0 < ¢ < B. For simplicity let us assume that
B = b. Dividing through by ay(t), we can write the equation as

dy -
5 T a0y =1

where ¢(¢) and r(¢) are continuous for 0 < ¢ < b.
It is convenient to introduce the operator L, which by definition is

dy

Ly = == + g(t
v == q(t)y

We observe that L is linear, since

d
Lic;y; + c,¥,) = Z;(Clyl + e2¥2) + q(t)(c, vy, + c3¥,)

dy, dy,
-1 4 + =2
€1 <dt ‘I.V1) (%) (dt qy»

= ¢;Ly, + ¢,Ly,

where ¢, and ¢, are arbitrary constants.

The equation y + gy = 0 is called the associated homogeneous equation,
where y + gy = r is considered the nonhomogeneous equation if r £ 0. We
note that if y; is a solution of the associated homogeneous equation and y, is
any solution of the nonhomogeneous equation, then ¢y, + y, is a solution of
the nonhomogeneous equation for an arbitrary constant ¢. This is because

Lieys + y)) = cLy, + Ly, = r(¢)
since Ly, = 0 and Ly, = r. The function Y = ¢y; + y, is a one-parameter
family of solutions. From this family we can select one which satisfies the initial
condition y(0) = y,; that is,
Y0) = cy1(0) + »,(0) = yo
_ Yo = 10
»,(0)




FIRST ORDER DIFFERENTIAL EQUATIONS 209

provided y;(0) # 0. To prove existence of a solution of the initial-value problem
it then remains to show that y, exists with y,(0) # 0 and y, exists.

Let us consider the homogeneous equation first. Since y = —gy,
d
Yo g ar
y

Integrating, we have for0 < r < b

In 1yl = In |50)] = —f 4(c) de
y _ _ t
o] = o[- acr ]

It is not clear that we can remove the absolute-value sign. However, if we let

Y1 = exp [—Jt q(7) df]
[

we see that this is a continuously differentiable solution of the homogeneous
equation such that y,(0) = 1. Hence, we have proved the existence of y,.
Next we show that y,, a solution of the nonhomogeneous equation, exists.

Lett
t
0(t) = exp U o dr]
o
Then multiplying y, + qy, = r by Q, we have

0y, + qQp, = 1Q

%(Qm - rQ

Qy; = j HD)Q() dr
0
¥s = jt) f r()Q(0) de

This function is a solution of the nonhomogeneous equation. In fact, since
¥1(0) = 1 and y,(0) = 0, a solution of the initial-value problem is

Y =Yy + )2

Yo €Xp [—Jw q(7) dr:] + exp I:—Jt q(7) dr] j' r(t)Q(z) dt
0 0 0

T Q(t) is called an integrating factor because by multiplying the differential equation
through by O we make the left-hand side of the equation an exact derivative.

I
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To show that the solution to the initial-value problem is unique, we
assume that there are two solutions u(¢) and v(¢). Thensu + qu = r,u(0) = y,,
andv + qv = r,v(O) = yo. Letw = u — v. Thenw + gw = Oand w(0) = 0.
The function Q(t) > 0, since it is an exponential function. Also

Ow + qQw =0
2ow =0
dt W=

This implies that Q(z)w(¢) = const. But Q(O)w(0) = 0. Therefore, Q(1)w(z) =
0, which implies that w = «# — v = 0 since Q(t) > 0. Therefore, u = v. We
have therefore proved the following theorem.

Theorem 5.4.1 Let q(¢) and r(¢) be continuous for 0 < ¢ < b. Then
the initial-value problem y + gy = r, y(0) = Yo, has a unique solution
for 0 < ¢ < b, given by

¥(1) = yo exp [-— f ' 42) dr] T exp [— f o) dr] f " H©0() dr

0 0 0

0() = exp [ f e dr]

EXAMPLE 5.4.1 Solve the initial-value problem y(0) = 1.

where

1
Y+ —y=1-t 0<t<b<l

1 -1
exp I:f‘ (1 -1)"1 d‘t]
o
1

= €Xp [—ln (1 - Z)] = T—_t

The integrating factor is

o)

I

Multiplying by Q(¢), we have

1 . 1 d y
+ = — | —— =1
i T az dt(l—t)

Therefore,
y=tl—t)+cl -1

where ¢ is arbitrary. However, y(0) = 1 implies ¢ = 1, and so the unique
solution to the problem is
yo)y=1-12
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EXAMPLE 5.4.2 Radioactive matter is known to decay (change its form)
at a rate which is 