Coordination Games

Complementarities and Macroeconomics

This book studies the implications of macroeconomic complementarities
for aggregate behavior. The presentation is intended to introduce Ph.D.
students into this subfield of macroeconomics and to serve as a reference
for more advanced scholars. The initial sections of the book cover the
basic framework of complementarities and provide a discussion of the
experimental evidence on the outcome of coordination games. The subse-
quent sections of the book investigate applications of these ideas for
macroeconomics. The topics Professor Cooper explores include economies
with production complementarities, search models, imperfectly competi-
tive product markets, models of timing and delay and the role of govern-
ment in resolving and creating coordination problems. The presentation
goes into detail on a few models and uses them as a structure to integrate
related literature. The discussion brings together theory and quantitative
analysis.

Russell W. Cooper is Professor of Economics at Boston University and
previously held faculty positions at Yale University and the University of
Iowa. He has lectured on the material covered in this book at a number
of universities in Europe and in Israel. Professor Cooper has published
papers on macroeconomic theory, industrial organization and experimental
economics, among other topics, in journals such as American Economic
Review, Quarterly Journal of Economics, Journal of Monetary Economics,
Economic Journal, Review of Economic Studies, RAND Journal of Eco-
nomics, and Journal of Economic Theory. He was elected a Fellow of the
Econometric Society in 1997.






Coordination Games

Complementarities and
Macroeconomics

RUSSELL W. COOPER

= CAMBRIDGE

&5 UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Séo Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521570176

© Russell W. Cooper 1999

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1999
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Cooper, Russell W., 1955—

Coordination games : Complementarities and macroeconomics / Russell W.

Cooper.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-57017-4 (hardbound)-ISBN 0-521-57896-5 (pbk)

1. Macroeconomics—Mathematical models. 2. Equilibrium

(Economics)-Mathematical models. 1. Title.

HB172.5.C69 1998

339°.01'5118-dc21 98-20151
CIP

ISBN 978-0-521-57017-6 hardback
ISBN 978-0-521-57896-7 paperback

Transferred to digital printing 2008



01 QN A W=

Contents

Preface

Experimental Evidence and Selection

A Framework for Analysis

Technological Complementarities

Imperfect Competition and Demand Spillovers
Thick Markets: Search and Matching

Timing of Discrete Choices

Government Policy

Concluding Thoughts

References
Index

page vii

1
18
41
61
84

100
126
151
153
161






Preface

The goal of this book is to provide a synthesis of research on the topic
of complementarities in macroeconomics. Its primary goal is to isolate
the various sources of complementarity and then to explore their implica-
tions for the behavior of macroeconomies. The success of this approach
is seen through the numerous theoretical and empirical applications of the
basic structure inherent in model economies built upon the macroeconomic
complementarities structure.

As this is principally a book about applications in macroeconomics, it
has been necessary to leave aside a number of topics that relate to the
implications of complementarities for other branches of economics, such
as industrial organization. Still, the reader interested in applications outside
macroeconomics ideally will find the more general discussion of models
of complementarities as well as the presentation of experimental evidence
of some value.

The first two chapters as well as the next section of this Preface focus
on general issues arising in models of complementarities, thus providing
a framework for the more applied analysis that will follow. In particular,
the first two chapters discuss experimental evidence on coordination games
and theories of selection and put forth a general model of macroeconomic
complementarities.

The remaining chapters explore applications of the general structure by
investigating particular channels of interactions across agents. This in-
cludes the study of economies in which (i) externalities are present in the
technology of the individual agent, (ii) markets are imperfectly competitive,
(iii) agents come together through a search process and (iv) information

vii
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is imperfect. As we shall see, all of these deviations from the standard
general equilibrium model of Arrow and Debreu can give rise to macroeco-
nomic complementarities.

The structure of the presentation has two important aspects. First, as
much as possible, I have tried to blend theory and quantitative analysis.
This is mainly apparent in the more applied chapters, where specific models
of complementarity have been “taken to the data.” This blending of theory
and quantitative analysis is important since ultimately models are evaluated
in terms of their ability to “match” observations. Further, the presentation
makes clear that even though a model with complementarities is more
complex than, say, a representative agent structure, quantitative analyses
are possible. In fact, one might speculate that our ability to deal quantita-
tively with dynamic strategic interactions between heterogeneous agents
will only enrich the set of models with complementarities we can quantita-
tively investigate.

Second, each chapter is organized around a core model that is analyzed
in some detail. In addition, extensions of the basic model are examined,
though in less detail. The idea is to provide a sense of the literature through
a core model.

WHAT ARE COORDINATION GAMES?

This book studies a very special but rich class of games, called coordination
games. These games have a number of distinct characteristics that make
them quite interesting in many areas of economic research. As this is
essentially a book about macroeconomics, our focus will be mainly on
macroeconomic examples and implications of coordination games for the
aggregate economy.

In contrast to many strategic situations, coordination games do not rest
solely upon conflict between players. Instead, confidence and expectations
are critical elements in the types of coordination games that we will study.
In particular, the possibility of coordination failures, arising from self-
fulfilling pessimistic beliefs, is observed in equilibrium. The resulting
inefficiencies are, in turn, quite interesting in a variety of macroeco-
nomic contexts.

To motivate this, we begin purposefully with a game that is outside
macroeconomics. Consider the fascinating example discussed by Schelling
[1960] in which two individuals must independently decide where to



Preface ix

locate. Further, to emphasize the gains to coordination, suppose that these
players achieve positive utility only if their choices agree. So, the players
gain utility if and only if they choose the same location. Clearly, the gains
from interaction are derived solely from coordination rather than conflict.
In this setting, multiple noncooperative equilibria easily emerge since all
that matters is that players make similar choices. Still, there is a nontrivial
problem here: where should the players locate given that they must act
independently?

These types of situations can be embellished by supposing that certain
outcomes, in which players take the same action, bring higher payoffs than
others. So, in the location problem, suppose that there are two locations, A
and B. Further, assume that players are better off locating at point B than
not locating at the same point, but they are even better off if they locate
at point A. Thus, there are gains to coordinating at any point and further
gains to coordinating at point A instead of point B.

For this game, there are again multiple noncooperative equilibria. In
one both players go to A and in the other both go to location B. In this
situation, the multiple equilibria are Pareto-ranked. Still, a coordination
failure can easily arise: in the equilibrium in which all players locate at
point B, all players would be better off if they could coordinate their
choices and thus go to location A. Despite this, the outcome when both
go to location B seems to qualify as a legitimate noncooperative outcome
since both players are best responding to the (anticipated) action of the
other.

This book is devoted to the study of environments where coordination
games naturally emerge. Our focus is on the theoretical basis for these
coordination problems and the likely outcome in these strategic situations.
These games have a number of properties that make them particularly
applicable to macroeconomics and of special interest to game theorists
as well.

First, as in the preceding location example, coordination games may
exhibit multiple Pareto-ranked equilibria. This gives some content to the
theme, often expressed in macroeconomics, that an economy may be
“stuck” at an inefficient equilibrium. While all agents in the economy
understand that the outcome is inefficient, each, acting independently, is
powerless to coordinate the activities of other agents to reach a Pareto-
preferred equilibrium. So, from this perspective, a depression in aggregate
economic activity arises when the economy falls into the trap of a low
activity level Nash equilibrium. In addition, all of the equilibria may
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be Pareto-dominated by some other feasible outcome, as in the familiar
prisoner’s dilemma game. To this degree, externalities are not internalized
by individual agents.

Second, the nature of the strategic interactions underlying the multiple
equilibria of the game has implications for the behavior of economies
built around the repeated play of coordination games. In particular, the
actions of players in coordination games are strategic complements, imply-
ing that increases in the level of activity of other agents create an incentive
for increased activity by the remaining agent. These interactions may exist
both intra- and intertemporally and are interesting for macroeconomics as
they generate the positive correlation in activity levels across agents and
persistence over time which are characteristic of macroeconomic time
series.

Third, these games have captured the attention of game theorists, leading
to powerful results on the nature of equilibria for coordination games and
the process of attaining an equilibrium outcome. Developing these more
game theoretic topics requires us to explore a class of games, termed
supermodular games, into which the coordination games emphasized in
macroeconomics neatly fit. This is taken up in Chapter 2, while subsequent
chapters investigate these themes by analyzing macroeconomic applica-
tions in detail.

This overview introduces coordination games through a simple example.
We use this example to be more specific about the themes of this book.
Moreover, before delving into the details of conditions under which multi-
ple equilibria and thus coordination failures can occur, it is useful to
address a prior concern about evidence on outcomes of coordination games.
Thus, Chapter 1 builds upon the simple example to provide a discussion
of experimental evidence on coordination games and theories of selection
that have been proposed for this type of strategic interaction.

AN EXAMPLE

Consider a game between two players, A and B, both of whom provide
effort in a production process.! Assume that player i receives a payoff of
2¢; — e; from consumption (c;) and effort (¢;), i = 1, 2. Further suppose that

1. This is motivated by the discussion in Bryant [1983], which we return to in some detail in
Chapter 2.
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per capita consumption equals min(e,, ¢;) and that only two effort levels
are feasible, i.e., e; € {1, 2}. The payoff matrix for this coordination game
is given by

Player B
1 2
Player 1 1,1 1,0
A 2 0,1 2,2

Coordination game

There are two pure strategy Nash equilibria in this simultaneous move
game, the strategy profiles {1, 1} and {2, 2}, as well as a mixed strategy
equilibrium in which each player selects action 1 with probability 1/2.
These are Nash equilibria because each agent is acting optimally given
the choice of the other. Note, though, that the {2, 2} equilibrium Pareto-
dominates both the {1, 1} equilibrium and the mixed strategy equilibrium.
In this sense, neither the pure strategy equilibrium at {1, 1} nor the mixed
strategy equilibrium is socially optimal.

The multiplicity of Nash equilibria here has nothing to do with the large
number of equilibria that emerge in games of incomplete information. That
is, the various equilibria are not a consequence of assumptions regarding the
structure of beliefs off an equilibrium path since the coordination game
assumes complete information. Further, the equilibria of this coordination
game are regular (strict) in that under small perturbations of the payoffs,
the set of pure strategy equilibria does not change.’

Instead, the multiplicity of equilibria, and thus the possibility of a Pareto-
inferior equilibrium, derives from agents’ inability to coordinate their
choices in this strategic environment. As a consequence, realized equilib-
rium outcomes that are Pareto-suboptimal relative to other equilibria, such
as {1, 1}, are often termed coordination failures.

A key element in the structure of this game concerns the extra payoff
a player receives from taking a “high” action (strategy 2 in the game) as
a function of the action chosen by the other player. In the preceding
coordination game, the increased payoff for player A to switching from

2. That is, smaller variations in the payoffs of the game do not result in large changes in
the number of equilibria. This contrasts to the sensitivity of equilibria in the normal form
representations of signaling games.
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action 1 to action 2 is —1 when B chooses 1 but is 1 when B chooses 2.
Thus, higher action by player B increases the marginal return to higher
action by player A. This property of positive feedback, often termed strate-
gic complementarity, is central to the characterization of coordination
games and will form the centerpiece of the analysis that follows.

Further, the game exhibits positive spillovers in that the payoffs of one
player increase as the action chosen by the other increases. In particular,
if player A chooses 2, then A’s payoff is higher when B selects strategy
2 than if B selects strategy 1. Note that this property of a positive spillover
measures the effect of B’s action on A’s payoff given A’s action, in contrast
to the concept of strategic complementarity, which is informative about
the payoff consequences of changes in A’s action as a function of B’s action.

An important issue in this and other coordination games is the selection
of an equilibrium outcome. For this coordination game, what outcome
will arise? One might argue that the Pareto-dominant Nash equilibrium
in which both players select 2 is a natural focal point.> Alternatively, the
choice of strategy 2 is, for both players, “risky” in that if their opponent
does not also select action 2, the payoff loss is 1, while there is no
uncertainty from choosing strategy 1.* From this perspective, the likely
outcome might be {1, 1} since this leaves players exposed to no risk
whatsoever. To pursue these themes in more detail, Chapter 1 summarizes
experimental evidence on coordination games and some theories of equilib-
rium selection.

For macroeconomics, when the strategy, i.e., effort levels, are ordered,
the coordination game is a framework in which equilibria with low levels
of economic activity can arise. To provide this macroeconomic perspective,
we will discuss a number of economic examples that can be represented
as coordination games in subsequent chapters.

These economies, of course, must deviate from the Arrow—Debreu
model of perfect competition with complete contingent markets. In that
model, the choices of individual agents are completely coordinated through
the market mechanism: there are no missing markets. Further, traders
are costlessly matched by the auctioneer. Finally, in the spirit of perfect
competition, no traders have any influence on prices. The examples that

3. This point appears most recently in Harsanyi and Selten [1988, p. 356], who stress the role
of payoff dominance in selecting an equilibrium outcome. In this game, Harsanyi and Selten
would then argue that the {2, 2} outcome was focal as a result of its payoff dominance.

4. Harsanyi and Selten provide a formal treatment of strategic uncertainty, which they term risk
dominance and apply to games with multiple Nash equilibria which are not Pareto-ordered.
Their concepts and arguments are presented later.
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we explore provide insights into the roles of externalities in the production
process, matching and imperfect competition as important sources of dis-
tortions leading to coordination failures.

As described in the next chapters, one can associate levels of economic
activity with the strategies of the coordination game and discover that the
multiple equilibria correspond to high and low activity levels in which
equilibria with high levels of activity Pareto-dominate. Still, the economy
can become stuck in a low level, Pareto-inferior equilibrium, since each
agent, acting alone, cannot coordinate the activities of all agents.

Besides the multiplicity of equilibria, coordination games provide in-
sights into other macroeconomic phenomena. In particular, as a result of
the nature of the strategic interaction across agents, there is a natural
propagation mechanism inherent in these games. Changes in the underlying
parameters describing the payoffs to one agent (i.e., shocks to one player)
lead to similar responses in the behavior of all agents. In particular, if a
shock to one agent leads that agent to choose a higher level of activity,
then other agents will also choose higher levels of activity. In this case,
a shock that is not common to all agents will lead to positive comovement
in activity levels economywide, a feature that is important in business
cycles. Further, in dynamic versions of these models, these shocks can be
propagated over time as well.

PROGRAMS AND RESEARCH UPDATES

Research is an ongoing process. By the time this book is published, a
number of new advances will undoubtedly have been made. It is useful
then to have a source of information on research in this area.

Further, the discussion in this book often rests upon numerical results,
in the form of either simulated games or simulations of simple aggregate
economies. The interested reader might benefit from access to these pro-
grams. To facilitate that access, I have created a Website which will contain
research updates as well as relevant computer programs. The address is
http://econ.bu.edu/faculty/cooper/macrocomp.
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1  Experimental Evidence and Selection

The introductory discussion provides an example to illustrate the possibility
of coordination failure due to the presence of multiple Pareto-ranked Nash
equilibria. Of course, as remarked earlier, whether coordination failures
actually occur depends on the selection of an outcome from the set of
Nash equilibria. If, for instance, the Pareto-dominant Nash equilibrium is
anatural focal point, as suggested, for example, by Harsanyi—Selten [ 1988],
then understanding the macroeconomic implications of coordination fail-
ures would be somewhat less interesting.

This chapter first reviews some recent experimental evidence that bears
directly on equilibrium selection in coordination games.! The evidence
both concerns results on equilibrium selection and provides some insights
into the process of equilibration. The second part of this chapter describes
a variety of selection theories that bear directly on coordination games.

One conclusion of the experimental evidence is that coordination prob-
lems are not a pure theoretical curiosity. In particular, coordination failures
are routinely observed in experimental games.

EXPERIMENTAL EVIDENCE

The discussion of experimental evidence is partitioned into three parts.
First, evidence from simple coordination games is presented. Given the
frequency of coordination failures observed in these experiments, further

1. This discussion draws heavily upon Cooper et al. [1994].
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Player B
1 2
Player 1 800, 800 800, 0
A 2 0, 800 1000, 1000
CG—-2X2

Figure 1.1

treatments which explore possible remedies to coordination problems, such
as preplay communication, are presented.

Baseline Experiments

As a starting point, consider the coordination game in Figure 1.1. This
game was the focus of a study of experimental coordination games by
Cooper, DeJong, Forsythe and Ross [1992]. In this game, there are two
pure strategy Nash equilibria, {1, 1} and {2, 2}, and a mixed strategy
equilibrium. The equilibrium in which both players choose strategy 2
clearly Pareto-dominates the other equilibria. Thus, arguments for Pareto
domination as a selection criterion imply that the {2, 2} outcome should
be observed in the play of this game.

An interesting aspect of this game is the riskiness of the strategy profile
that leads to the Pareto-dominant Nash equilibrium at {2, 2}. In particular,
if player B has a significant doubt (in this case if B assigns a probability
less than .8) that player A will choose to play 2, his best action is to choose
1. By symmetry, the same goes for A. So, if there is significant doubt in
the minds of the players about the likely action of their opponent, they
might choose to play it safe and play 1.

Harsanyi and Selten formulate the concept of risk dominance, defined
later, to capture this idea of the relative riskiness of two strategies. While
they argue that Pareto dominance arguments are more forceful than risk
dominance arguments in selecting an outcome, the experiment allows us
to evaluate which of these two forces is more important in the play of
this coordination game. In particular, for this game the risk dominant
equilibrium is {1, 1} while the payoff dominant equilibrium is clearly
{2,2}.

In fact, Cooper et al. provide evidence that the outcome is dictated by
risk dominance. In their experiment, subjects played CG — 2 x 2 against
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a sequence of opponents. A cohort was composed of 11 players and
each played against the 10 others twice, though not in any observable or
predictable order. At no point in the experiment did the players know the
identity or the history of play of their opponent. In this sense, the outcomes
represent a sequence of one-shot games. Finally, the payoffs indicated in
the matrix refer to points players could earn in each period of play. After
the actions were simultaneously selected and the outcome determined, a
lottery was run in which players received a monetary payoff if and only
if (iff) the number of points they earned exceeded the number of the lottery
ticket. In this way, differences across players in attitudes toward risk
are eliminated since they all will maximize the probability of winning
the lottery.

The results reported by Cooper et al. indicate that coordination failures
can certainly arise in experimental settings. In other words, the view that
the Pareto-dominant outcome acts as a focal point is not supported by
observed outcomes. For the last 11 periods of play of Game CG, Cooper
et al. find that 97% of the play occurs at the {1, 1} equilibrium. There are
no observations of the {2, 2} equilibrium. Thus risk dominance provides a
better guide in this game than does Pareto dominance.

Other experimental coordination games are described in van Huyck,
Battalio and Beil [1990] and Cooper et al. [1990]. Van Huyck et al.
examine a finitely repeated coordination game. Following the coordination
model of Bryant [1983], a structure we consider in the following chapter,
the payoffs of each player are given by

T(e;, ;) = almin(e;, e_)] — be; o))

In these payoffs, e; is the choice of agent i and e_; is the vector of choices
by the other players. In their experiment, van Huyck et al. restrict the
strategy space of each agent to the set of integers between 1 and 7.
Assuming that a > b > 0, there are multiple Pareto-ranked Nash equilibria
for this coordination game. In particular, any strategy profile with ¢, =¢
foralliande € {1, 2, 3, 4, 5, 6, 7} is an equilibrium of the stage game with
the equilibrium in which all e¢; =7 for all i Pareto dominating the others.

Note that this game differs from those we have considered so far in
that dynamics are present through the play of finite repetitions of the stage
game. The set of equilibria for this finitely repeated coordination game
includes all of the Nash equilibria from the one-shot game. In fact, repeating
this coordination game does not expand the set of equilibrium outcomes.
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However, the repetitions do allow for learning about the actions of others
and thus the resolution of strategic uncertainty.

In their basic treatment, van Huyck et al. choose a = $0.2 and b = $0.1
to parameterize the payoff functions. These payoffs were presented to
the subjects through a payoff table rather than through any functional
relationship. There were between 14 and 16 subjects involved in these
treatments and play was repeated 10 times. After each period of play,
subjects were told the minimum of the actions selected by others in that
period of play. No other information about other players, such as which
one chose the minimum, was disclosed.

One important finding by van Huyck et al. is that the Pareto-dominant
Nash equilibrium is not observed. While there is some play of action 7
in early periods, these choices quickly disappear as players recognize that
others are choosing lower actions. In fact, over time play tends to converge
to the Nash equilibrium with the lowest effort level, ¢; = 1 for all i. Interest-
ingly enough, this outcome is the same as that which would occur if all
players chose their maximum action. That is, action 1 is the choice that
maximizes the payoffs of a player given that he believes others will select
an action that minimizes that player’s payoffs. The outcome ¢; =1 for all
i is thus termed the “secure outcome.”

Van Huyck et al. [1990] consider a number of variations of this basic
treatment. First, they alter the game by setting b =0 so that effort is
costless. In this case, there is a dominant strategy, which is e; =7 for all
i. After 15 periods, play converged to the dominant strategy equilibrium
though there is play of dominated strategies in earlier rounds.

A second variation concerned reducing the number of players. One might
argue that reducing the number of players would reduce the probability of
at least one player’s choosing the lowest action and thus make the secure
equilibrium less likely. When two players were paired to play the coordina-
tion game with a =$0.20 and b = $0.10, play converged to the Pareto-
dominant Nash equilibrium for 12 out of 14 pairs of players. This contrasts
with the results for two-player games reported by Cooper et al. [1992],
though, of course, there are important differences in the payoff matrices.

Coordination failures in yet another experimental environment are de-
scribed by Cooper et al. [1990]. In this experiment, there is a sequence
of one-shot games using the same design as in Cooper et al. [1992].
However, instead of a 2 X 2 coordination game, they study a symmetric
3 x 3 game in which strategy 3 supports the joint payoff maximum, given
in Figure 1.2 as CG -3 x 3. The variables x and y were varied across
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Player B
1 2 3
1 {350,350 | 350, 250 x,0
Player 2 | 250,350 { 550, 550 ¥,0
A 3 0,x 0,y 600, 600

CG—-3x3

Figure 1.2

treatments with the intent of understanding how variations in these parame-
ters influenced the equilibrium selection. In particular, consider two leading
cases: Case 1, in which (x, y) = (1000, 0), and Case 2, in which (x,y) =
(700, 1000). Note that for both of these parameterizations, strategy 3 is
dominated. In Case 1, strategy 1 dominates 3, and in Case 2, strategy 3
is dominated by both strategies 1 and 2. Yet, as in the prisoner’s dilemma
game, strategy 3 supports the joint payoff maximum in both cases. Thus
this game combines a coordination game with a prisoner’s dilemma.

Cooper et al. find that for all of the parameterizations, play is predomi-
nantly at one of the pure strategy Nash equilibria. For Case 1, the Pareto-
inferior Nash equilibrium is observed, while the Pareto-dominant Nash
equilibrium is played in Case 2. Interestingly enough, the equilibrium
selected in a given treatment depended on the returns to playing strategy
3, a dominated strategy. That is, the best response to strategy 3 is 1 in
Case 1 and 2 in Case 2. In this way, tracing the best response to the play
of the cooperative, though dominated, strategy leads to the selection of
the equilibrium outcome. This is further supported by the fact that in early
periods of the treatment, there is considerable play of the cooperative
strategy, as in experimental prisoner’s dilemma games. However, Cooper et
al. do find that for a third case, (x, y) = (700, 650), play eventually evolves
to the (2, 2) outcome even though the best response to 3 is strategy 1.

While no single explanation appears fully consistent with the observa-
tions, it should be noted that this game is quite complex in that it incorpo-
rates both the desires to cooperate and the concerns over strategic uncer-
tainty noted earlier. From that perspective, it is quite surprising that play
did in fact evolve to one of the Nash equilibria! Overall, this experiment
provides further evidence of the possibility of coordination failures and
points to the fact that variations in payoffs associated with an opponent’s
play of a dominated strategy can influence equilibrium outcomes.
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In addition to providing examples of coordination failures, these experi-
mental exercises have provided insights into conditions under which varia-
tions in the game may prevent these outcomes. Two such variations are
particularly relevant: preplay communication and the importance of out-
side options.

Preplay Communication

Suppose that, prior to the play of a coordination game, the row player
sends a message to the column player. Instead of allowing any form of
communication, suppose that the message in this communication stage is
constrained to be an element of row’s strategy space. Further, suppose
that this message does not bind row’s choice in the next stage of the game.
These are often called games with cheap falk since the messages are
costless to send and nonbinding.

Given this two-stage game, a number of important questions emerge.
What message should row send? How should the column player respond
to row’s message? Surely there are equilibria in which the actions chosen
correspond to those selected in the one-stage coordination game so that
row’s announcements have no influence on play. Interestingly enough,
there may be other equilibria in which cheap talk can matter.

Farrell [1987] argued that there is another, reasonable equilibrium, in
which announcements are taken at face value if (i) it will indeed be optimal
for the sender to keep his promise and (ii) he expects the receiver to
believe the message. In this fashion, one-way cheap talk permits row to
select the Nash equilibrium of his choice. For the coordination game
denoted as CG —2 x 2 earlier, the predicted outcome is (2, 2) as row
effectively chooses the equilibrium that will be played in the second stage
of the game. In this way, all coordination problems are resolved.

If communication is permitted in both directions, the story is slightly
more complicated. Again following Farrell [1987], assume the following:

a. If the announcements of both players constitute a pure-strategy Nash
equilibrium for the second-stage game, each player will play his
announced strategy, and

b. If the announcements of both players do not constitute a pure-strategy
equilibrium in the second-stage game, each player will behave as if
the communication had never happened and play strategy 1.

With these assumptions, two-way preplay communication will, at least
in theory, resolve coordination problems in CG — 2 x 2. Given the response
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to the combinations of announcements given earlier, announcing 2 is a
dominant strategy. To see this, note that if one player announces 2, the
other player should do so as well to guarantee the Pareto-dominant out-
come, which gives the highest payoffs to each of the two players. Further,
if one player announces 1, then the other cannot do any worse by announc-
ing 2.

Cooper et al. [1992] find that preplay communication is quite effective
in overcoming coordination problems when both players send announce-
ments. Under this two-way communication treatment, over 90% of the
outcomes during the last 11 periods of play were at the {2, 2} outcome.
Further, all of the announcements in the last 11 periods were of strategy 2.

For one-way communication, the effect of cheap talk was not nearly as
strong. Cooper et al. find that the Pareto-dominant equilibrium is achieved
about 53% of the time, but this falls far short of the outcome achieved
through two-way communication. In the one-way communication treat-
ment, the row player announces strategy 2 about 87% of the time but does
not always follow through on this suggestion, nor does column follow
with the play of 2.

One interpretation of these results corresponds to the idea that risk
dominance is the resource of the coordination problem. That is, given the
riskiness of playing strategy 2 in the coordination game, players need
sufficient confidence that the other will select this strategy as well. As a
consequence, the announcement of one player is simply not strong enough
to overcome the riskiness of strategy 2. It appears that both players must
announce 2 in order to support the Pareto-dominant outcome.

Outside Options and Forward Induction

A second variation on the basic coordination game is to allow one player
the option of receiving a sure outcome instead of playing the coordination
game. This creates another two-stage game in which the power of forward
induction, as described in Kohlberg and Mertens [1986], can be explored.

Suppose that the outside option is sufficiently high that it dominates
the payoffs from one of the strategies in the coordination game. In this
case, if row elects to play the game, then column should believe that row
will not play the strategy dominated by the outside option. Thus, if the
outside option in CG —2 % 2 exceeds 800, then by the logic of forward
induction, row should reject the outside option and both row and column
should select strategy 2 in the coordination game.
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Cooper et al. [1992] report that when the coordination game, CG — 2 X 2,
was played with a prior stage in which row had the choice of a “relevant”
outside option paying 900, play changed rather dramatically. Conditional
on row’s rejecting the outside option and selecting the subgame, 77% of
outcomes were at the Pareto-dominant equilibrium and only 2% at (1, 1).
These are consistent with forward induction. Contrary to the predictions
of forward induction, however, the outside option was selected almost
40% of the time.

Van Huyck et al. [1993] report results concerning the introduction of
an auction in which the rights to play a coordination game are traded so
that, through forward-induction-type arguments, the auction coordinates
outcomes. That is, consider a multiple-player coordination game, in which
the payoffs are given by

Tl:(e,», M) = aM - b(M - e,‘)2 (2)

where M is the median action chosen by the N (odd) players and e; € {1, 2,
... E} where E is the largest feasible integer value. This is a coordination
game in which there are multiple, Pareto-ranked equilibria since the best
response of each player is to choose an action equal to the median action
as long as 6> 0.

Prior to playing this game, suppose that an auction is held in which
more than N players participate in bidding for the right to play the coordina-
tion game. The equilibrium value associated with the auction ought, accord-
ing to the forward-induction logic, also influence play of the subsequent
coordination game. Players who intend to select “low effort” strategies
should not be willing to pay a very high price for playing the game. Put
differently, a high entry fee signals that players will not select strategies
that will lead them to be worse off than having not paid to participate in
the game at all.

Using a parameterization of a = $0.1 and » = $0.05, van Huyck et al.
[1993] find that when the coordination game is played by nine subjects
for 10 periods without a first-stage auction, the outcome was never the
payoff-dominant equilibrinm. As in the similar games reported in van
Huyck et al. [1991], coordination failures were observed.

The most interesting part of the experiment concerns the effects of
adding an auction stage prior to the play of the coordination game. In the
auction stage, 18 subjects bid for the right to be one of the 9 players
participating in the coordination game. Van Huyck et al. employed an
English Clock auction, in which initially the price is set low so that all
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subjects indicate they are willing to buy the asset. At a fixed time interval,
the price is increased by a fixed amount. As the price is increased, subjects
“exit” by indicating that they are unwilling to pay the posted price for a
seat in the coordination game. Once there are only 9 players remaining
in the auction, the auction stops and those players are selected for the
coordination game.

In their two-stage treatments, the auction stage was followed by the
play of the above coordination game in each period. This two-stage game
was repeated either 10 or 15 times with the same group of subjects. Van
Huyck et al. report that the price in the auction and the actions taken in
the coordination game were not independent. Most strikingly, play con-
verged to the payoff-dominant Nash equilibrium, and the price of a seat
in the game was bid up to the payoff from this equilibrium of the coordina-
tion game. In this sense, the auction served to coordinate activity.

Learning and Dynamics

One of the fascinating aspects of experimental games is the time series
of play. Yet, for the most part, the analysis of experimental data stresses
the outcomes observed over the last few periods of play. This is unfortunate
given the richness of play that underlies the “convergence” process.

For coordination games, the time series of play has begun to receive
attention. As we have noted already, the multiplicity of equilibria in these
games implies that agents face uncertainty (often termed strategic uncer-
tainty) over the actions of others. Thus, it is likely that the selection of
an equilibrium can be traced to the time path of play in an experimental
coordination game since agents may all be using the past to predict the
future behavior of others. Put differently, history matters in these games
and uncovering the influence of the past on the selection of an equilibrium
is important.

A useful starting point for this discussion is the analysis of the coordina-
tion games in Crawford [1991, 1995]. This paper lays out a specification
for behavior in these games and provides explicit links to the evidence
provided in van Huyck et al. [1990, 1991].

In the dynamic game, there are i=1, ... , [ players involved in a
repeated game. The basic model of behavior describes player i’s action
in period ¢ (x;) as

Xy = O + Btyz—l +(1- Bt)xit—l + & 3)
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where y,, is a summary statistic from play in period ¢. In this specification,
the parameters describing the behavior of the agents (o, B,) evolve over
time and are reflected in differences in the weights placed on the two
elements of past behavior. Finally, there are individual shocks allowed in
the specification so that “errors” are part of the model.

Crawford notes that this decision rule cannot be rationalized from opti-
mizing behavior. Instead, it is productive to think of it as a specification
of a decision rule that may capture some important aspects of the data:
principally the feedback from past aggregate (y,.,) and individual decisions
(x;—;) on current ones.

Crawford explores a version of this model, with actions in a discrete
set, to understand the observations generated by van Huyck et al. [1990,
1991]. For this empirical work, o, and B, were allowed to vary over time
and the variance of the “decision error” €; was assumed to fall over time
at a fixed rate (A). Thus the key parameters to estimate were o, B and A
along with the variances of the shocks.

Crawford estimates this model using the panel data provided from a
variety of the van Huyck experiments. The interested reader should con-
sult Crawford [1995] for a detailed discussion of the empirical approach
and fit.

Overall, the model does quite well in the versions of experimental games
where payoffs depend on the median efforts of others, as in (2), where
play tended to converge to the median play observed in the initial round.
So, for some of the treatments, the estimate of [ is quite close to 1. Further,
Crawford finds evidence of the dispersion in individual behavior needed
to sustain the theme that strategic uncertainty is an important aspect of
these games. The model does less well in terms of the mean effort games,
such as (1). In particular, in contrast to the median game, the estimated
variances of the shocks to behavior did not appear to fall over time.

EQUILIBRIUM SELECTION

This experimental evidence seems quite convincing in terms of dispelling
the view that coordination problems will not occur in simple strategic
interactions. Complementary to the accumulation of evidence on coordina-
tion games has been the development of theories concerning equilibrium
selection in these games. We turn to some of those theories now.
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Player B
1 2
Player 1 X, X x,0
A 2 0, x 4,4
Game g (x)

Figure 1.3

Risk Dominance

As argued by Harsanyi and Selten, one basis for selection is risk dominance.
The point of this concept is to make precise the intuition that playing certain
equilibrium strategies is riskier than playing others given the underlying
strategic uncertainty of a game. Of course, risky strategies may support
the Pareto-dominant equilibrium. If so, a tradeoff emerges between risk
and return.

To define and illustrate this concept we use the following game, bor-
rowed from Carlsson and van Damme [1993] and labeled Game g(x) in
Figure 1.3. The set of equilibria will depend on the value of x. For x <0,
the equilibrium in which each player chooses strategy 2 is a dominant
strategy equilibrium. Similarly, when x >4, strategy 1 is dominant for
both players. The coordination problems arise when x € (0, 4). In this case
there are multiple pure-strategy equilibria. Note that these equilibria are
Pareto-ordered. Following Carlsson and van Damme, let V(s) be the net
gain for a player from choosing action 1 rather than action 2 when the
other player is choosing action 1 with probability s. For this example, V(s) =
x— (1 —s)4. Let s* solve V(s) = 0 so that s* = (4 — x)/4 in this example. So
if a player attaches probability less than or equal to s* that his opponent
will choose action 1, then that player ought to select action 2. Likewise,
if the probability associated with an opponent’s choice of 1 exceeds s*,
then action 1 should be chosen. So a low value of s* implies a wider
range of beliefs that would justify the choice of action 1.

This observation is the critical link to the concept of risk dominance.
Suppose that agents enter into this strategic interaction with uniform priors
about the likely action of their opponent. The uniformity of priors implies
that they expect to face an opponent who selects strategy 1 with probability
.5. By symmetry, the other player thinks the same. So, if s* <.5, then
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each player, given these beliefs, should choose action 1 and the equilibrium
in which both players select 1 is said to be risk dominant. This occurs in
Game g(x) whenever x> 2. In this case, we see that risk dominance may
yield a different prediction than payoff dominance.

For the game labeled CG — 2 x 2 in Figure 1.1, V(s) = 800 — (1 — s)1000
so that s* = .2. Therefore the equilibrium in which players select strategy
1 is risk dominant. Note that in the 3 X 3 coordination game illustrated in
Figure 1.2, after deletion of the dominated strategy, the risk dominant
equilibrium is (2, 2) since s* = 2/3. Since this value of s* is independent
of the treatment variables (x, y), risk dominance alone is not sufficient to
explain the results of that experiment. Further, as discussed by Crawford
[1995], risk dominance does not accurately predict the outcome of the
van Huyck et al. [1990] experiments.

Games of Incomplete Information

In an ingenious paper, Carlsson and van Damme provide an argument for
selection of an equilibrium from a coordination game. Their idea is to
explore the equilibria of a nearby game of incomplete information. The
equilibrium for the coordination game is then the limit of the equilibrium
for the nearby game as the amount of incomplete information goes to
zero. In fact, they find that in the limit it is the risk-dominant equilibrium
that is selected.

Carlsson and van Damme study risk dominance through their creation of
a game of incomplete information that is close to Game g(x). In particular,
suppose that x is a random variable uniformly distributed on [x~, x*] with
[0, 4] lying inside this interval. Thus, the domain of x includes realizations
of g(x) in which there are multiple equilibria as well as realizations with
dominant strategy equilibria. The incomplete information arises because
players do not observe x. Rather, player i observes a signal, s’, which,
Carlsson and van Damme assume, is uniformly distributed on [x — €, x + €].
Thus the magnitude of € determines the informativeness of the signal.
Note that the signal is informative about both the underlying state (x) and
the signal of the other player, s, since the signals are correlated with x.
Once agents receive their signals, they are involved in a game of incomplete
information: they do not know exactly what payoff they will receive as a
function of the action they select.

Given this structure, one can informally see how the incomplete informa-
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tion “resolves” the coordination problem.” The idea is that the dominant
strategy aspect of the game when x < 0 and x > 4 will spill over to generate
a unique outcome when x is between 0 and 4 and the signal is very
informative. The point is that players conceive of the possibility that their
opponent has received a signal such that one or the other strategy is
dominant, thus pinning down the play. This is true for extreme signals
and, through the construction of the equilibrium, true for less extreme
signals as well.

To see this a bit more formally, suppose that € is less than —x7/2 and
player i observes s'< 0. As the signal is within € of the true value of x
and x~ <0, player i’s view must be that x is negative. In particular, note
that the conditional expectation of x given s’ is s'. Hence, the payoff to
action 1 is negative and thus selecting 2 is a dominant strategy.

Given this, what if player i observers s' = 0? Then player i realizes that
with probability .5 the other player (—i) has a signal that is negative, which,
from the previous argument, implies the play of the dominant strategy 2
by player —i. With s' = 0, the expected return to playing 1 is 0 and this is
less than the expected return from 2 given that player —i will select 2 with
probability at least .5. So, action 1 is dominated when player i receives
the signal s'. So, for any s; <0, the play of 2 is a dominant strategy.

What if s; is slightly bigger than 0? In this case, player i thinks that
player —i has received a negative signal with probability close to .5, and
thus the probability that —i will play 2 is, at least, very close to .5. Player
i, though, recognizes that player —i may have received a positive signal.
In that case, what will player —i choose?

To answer this question, we must consider the entire equilibrium: the
mapping from signals into actions. Carlsson and van Damme argue that
there is a critical value of the signal, call it s*, such that strategy 2 is a
dominant strategy for player i whenever s; < s*. So, if player i observes
the signal s*, he must assign at least probability .5 that player —i will
choose action 2. Therefore, choosing 2 will generate a payoff of at least
2. For 2 not to be a dominant strategy at s; = s*, it must be the case that
the expected payoff from playing 1 is at least 2. Further, since the expected
return from 1 is s*, then s* 22 is necessary for strategy 2 not to be
dominant when s; = s* is observed.

By a symmetric argument, one can start with signals above 4, in which

2. See Carlsson and van Damme for the formal argument.
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case strategy 1 is a dominant strategy. As the signal falls toward 2 from
above, there will be a point such that action 1 is no longer a dominant
strategy. As in the preceding argument, this critical signal cannot exceed
2; otherwise, the expected return from strategy 1 would be high enough
that strategy 2 would be dominated.

Putting these two pieces together, the critical signal for this game is
s* = 2. Each player will select action 1 if s > s* and 2 otherwise. Thus,
the players each select the strategy corresponding to the risk-dominant
equilibrium of the game, g(s))!

As noted by Carlsson and van Damme, this does not mean that the
equilibrium outcome of the game of incomplete information will always
be the risk-dominant equilibrium of the coordination game for the realized
value of x since the players’ signals may be on opposite sides of s*. Of
course, as € gets small, the chances this will occur are close to zero. The
main point of the Carlsson—van Damme paper is to formalize the intuition
from this example.

Learning and Dynamics

Another approach to equilibrium selection involves exploring the dynamics
of coordination games. Of course, to do so requires the specification of a
dynamic process describing the play of agents involved in such a game.
This means that we must go beyond the Nash equilibrium concept since
it does not specify a process of equilibrium.

One recent approach rests upon the work of Kandori, Mailath and Rob
[1993]. These authors stress three main aspects for their dynamic model:
inertia, myopia and mutation. Let’s explore these in turn. Inertia creates
some “stickiness” in the dynamics in that not all agents reoptimize every
period. It may be that agents react in a time dependent fashion (i.e.,
adjusting every few periods) or in a state dependent manner (i.e., adjusting
when the state is far enough from a target). The key is that all agents are
not reacting immediately to their environment.

Mpyopia implies that when agents do adjust their actions, they ignore
the dynamic consequences of their choices. This is a type of bounded
rationality view in that players are assumed to be unable to contemplate
the strategic implications of their actions. In many cases, myopia is modeled
by assuming that players best respond to the current actions of other
players.

Mutation is the basis for mistakes and, as we shall see, for movement
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away from certain pure strategy equilibria of the game. Put differently,
the possibility that players’ actions are not best responses adds noise to
the dynamical system. It is precisely this noise that creates a unique
outcome, in the form of a distribution across actions. Further, because of
mutation, it is possible to have multiple “defections” from an equilibrium
profile of strategies and thus for the agents to “move” away from an equi-
librium.

Kandori, Mailath and Rob provide further motivation for these compo-
nents. Clearly, though, the intent is to move beyond the Nash equilibrium
view of forward looking, completely rational agents and to substitute
certain behavioral rules that have the desired property of reproducing
some of the Nash equilibria at the limits of parameter space. That is, the
dynamical system does “select” one of the Nash equilibria as the mutation
rate becomes small.

Consider the following example, which is meant to illustrate these three
components.® There are N (assumed to be even) players involved in a
coordination game. In each period, the players are randomly matched and
each pair plays a coordination game such as g(x). Once the pairs are set,
with probability  a player can alter his strategy. Otherwise the player is
required to choose the same action as in the previous period. This is a
simple way to model inertia. Further, if a player can change his strategy,
it is assumed that the player best responds to the strategy profile of all
players from the period before. Thus the player does not respond in any
way to the actions of the player he is currently paired with, nor does the
player look forward to anticipate the consequences of this strategy choice.
Finally, with probability (1 — m) the action of the player is the one chosen
and with probability m the player makes a “mistake.” For games with two
actions, such as the coordination game under study, a mistake means that
the action of the player is the strategy that was not chosen.

So, in a given period, there are N/2 pairs that are formed. Let s, be the
strategy profile from period ¢ and p, represent the fraction of players
choosing action 1 in period . A fraction of the players is permitted to
adjust their strategies, and, by assumption, these players best respond to
p:. Further, by mutation, only a fraction (1 — m) play this best response.
The remainder end up playing the other strategy. The interaction of inertia,
myopia and mutation produces a strategy profile p,, and the stochastic
process continues. Note that the randomness in the profiles reflects both

3. This example is a bit more formal than that given in Section 2 of their paper.
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the probabilistic nature of the adjustment process (each agent can change
his strategy with probability 8) and the mutation process (m).

Intuitively, the equilibrium selection process reflects both (8, m). If § =
1 and m = 0, then players can adjust their strategy each period and do so
without making any mistakes. In this case, we are back to the multiple
equilibrium model since strategy profiles at either of the pure strategy
Nash equilibria will be steady states of this system. In particular, recall
that agents best respond to the profile in the previous period so that there
will never be any movement away from a pure strategy equilibrium. If
the strategy profile is not one of the pure strategy equilibria, then players
will best respond and in a single period drive the system to one of the
pure strategy equilibria.*

Here there is an issue of selection that reduces to knowing the basins
of attraction for the pure strategy equilibria. For the game g(x), if p, exceeds
s*, then players will best respond by selecting strategy 1, leading to the
{1, 1} equilibrium. Else, if p, is strictly less than s*, then the {2, 2} outcome
will be observed. Note the important role that is again played by s*, the
probability such that a player is indifferent between the two actions of
game g(x).

Once we no longer restrict 8 =1 and m = 0, then inertia and mutation
will play a role in the analysis. In particular, d < 1 and m > 0 will slow
the dynamics and add noise to the process. The role of noise is most easily
understood by considering an example.

Assume that x =3 in Game g(x) so that the {1, 1} equilibrium is risk
dominant. As suggested by Kandori, Mailath and Rob there is a strong
sense that the {1, 1} equilibrium is more robust to mutations than the
Pareto-superior Nash equilibrium. For any p,_, = s*, the best response of
those selecting actions in period ¢ is to select action 1. Since s* < .5, the
basin of attraction for the Pareto-inferior equilibrium is larger than that
for the Pareto-superior equilibrium. So, starting from the equilibrium in
which all players select action 1, the number of mutations needed to move
the state of the system, so that p,, is less than s*, is relatively large
compared to the number of mutations which would move the system away
from the Pareto-superior equilibrium. This is nor to say that play at the
(2, 2) equilibrium would not be observed but rather that it is much less
likely to be observed. As in the other selection theories, the key is again
the large basin of attraction associated with the risk dominant equilibrium.

4. Here we are ignoring the case where the strategy profile mimics the mixed strategy equilibrium.
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One could take this relatively simple structure and either analyze it
directly or create computer simulations of this process. The point would
be to understand the mapping between the key parameters (N, 8, m) and
the probability distribution of outcomes. In fact, one could then try to
match the implications of the theory with evidence from experiments built
upon this same structure.

SUMMARY

The point of this chapter was to introduce the basic theme of coordination
games and then to explore some of the theories of selection and some of
the experimental evidence. By now, the basic elements of the coordination
game should be clear. The key points relate to the multiplicity of Nash
equilibria and their Pareto ranking. In coordination games, the key element
is confidence rather than conflict.

Overall, the evidence points to the fact that Pareto domination does
not provide a natural focal point for coordination games. Put differently,
coordination failures can arise in experimental games.

At this stage, it is natural to develop further the theoretical basis of
coordination problems. This is done in two main stages. First, the next
chapter provides a basic framework of analysis, bringing to light, in a
more formal manner, the salient features of coordination games. Second,
the remaining chapters trace out a wide variety of examples of coordination
problems of interest to macroeconomists.
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The goal of the previous chapter was to provide an introduction to coordina-
tion games and some evidence on coordination failures. In the end, we
find that coordination failures can arise in fairly simple experimental
settings. While these experiments are certainly suggestive that coordination
problems may arise, they leave open an important question: what are the
underlying economic interactions that lead to coordination games?

The answer offered in this chapter takes the form of two abstract frame-
works for analysis. The first, drawing upon Cooper and John [1988],
stresses the interaction between agents in strategic settings where strategies
are simply scalars in a closed interval. This formulation leads to a relatively
straightforward equilibrium analysis, including conditions for multiple
equilibria and some welfare results. The main point is that coordination
games, such as those illustrated in the previous chapter, rest upon an
interaction between agents termed strategic complementarity. As suggested
already, this interaction implies that increased effort by other agents leads
the remaining agent to follow suit. Besides becoming the basis for multiple
equilibria, the strategic complementarity gives rise to multiplier effects.

The second part of the chapter looks at more general interactions. While
almost all current macroeconomic applications of coordination games can
be cast in the Cooper—John framework, the more general structure, investi-
gated most recently by Milgrom and Roberts [1990] and Vives [1990], is
quite powerful and worthy of study.

18
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COOPER-JOHN MODEL

Cooper and John [1988] consider a game which highlights the key theme
in this literature: the concept of strategic complementarity. Put in simple
words, this condition implies that higher actions by other players provide
an incentive for the remaining player to take a higher action as well. Making
precise the idea of a “higher action” and understanding the conditions under
which responses are monotonically increasing in the choices of others are
the central focuses of this class of games.

Formally, assume that agent i, i=1,2,...1 chooses a strategy e, in
the interval [0, 1]. Refer to ¢; as the activity level or effort of agent i. The
strategy set for each agent is completely ordered so that speaking of higher
effort levels is well defined. Here one can think of there being [ individual
agents or I coalitions of agents in an economy. The point is that these [
agents choose their activity levels in a noncooperative fashion.

Let o(e;, e, 0)) be the payoff of agent i from action e; where e, is the
vector of actions of other agents and 0, a scalar, parameterizes the payoffs
of agent i. Assume that these payoff functions are continuously differenti-
able, with 6,; <0 and G6;; > 0.! That is, payoffs are strictly concave in e;
and marginal returns to effort increase in 0> As we shall see, the critical
restrictions on payoffs concern the nature of the cross-partial derivatives,
which we leave unspecified for now.

To start the analysis, assume 0 = 0,. As all players are identical, it is
natural to focus on symmetric Nash equilibria in which all agents choose
the same action.® With this in mind, we denote payoffs when all agents
other than i choose action e by o(e,, e, 0).* Therefore, the set of interior,
symmetric Nash equilibria is given by

&) = {e € [0, 1]|Oy(e, e, 6) = 0}

This describes the set of Nash equilibria since the first-order condition for
an agent is satisfied at the same action chosen by all of the other agents.
Since o(-) is strictly concave, this first-order condition holds at a maximum.

An alternative means of characterizing the set of Nash equilibria is to
look at the reaction curve of an individual agent in this game. Let ¢(e, 6)

1. Unless noted otherwise, properties are assumed to hold over the entire domain of these functions.

2. This second property is just an ordering of 6.

3. However, one should keep in mind that symmetric games can have asymmetric equilibria.

4. There is a slight abuse of notation since the second argument of the function is now a scalar
rather than a vector.
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be the optimal action of a representative player if all others select action
e and the state if 6. That is, ¢(e, ) is the best response function and
satisfies the condition that 6,({¢(e, 0), ¢, 6) = 0. Clearly, the set of Nash
equilibria, £(0), is identical to

{e € [0, 1]19(e, 6) = e}

Assume that ¢,(0,0,0)>0 and (1,1,0)<0 for all 6 implying
$(0, 8) > 0 and (1, 6) < 1. That is, if all other agents chose effort levels
at one extreme or the other, the remaining agent has an incentive to choose
an effort level which is interior (relative to the choice of others). As 6(-)
is continuous by assumption, these conditions imply the existence of at
least one interior equilibrium. If these boundary conditions on G, were
not imposed, then an equilibrium at the extreme of the strategy set will
exist. Whether or not there are multiple, symmetric Nash equilibria will
depend upon the reaction of a player to variations in the choice of others,
i.e., in the sign and magnitude of Gj,.

When 6}, > 0 throughout the entire domain of the function, the game
exhibits strategic complementarity and if 61, < 0, then the game exhibits
strategic substitutability.’ Under strategic complementarity, the best re-
sponse of one agent to an increase in the activity of all others is to increase
e;. That is, reaction curves are upward sloping: ¢(e, 0) is increasing in e.
As we shall see, this strategic complementarity condition is necessary for
the existence of multiple symmetric Nash equilibria and is key to the
propagation of shocks across agents and across time. When strategy spaces
are convex and payoff functions are continuously differentiable, the as-
sumption of strategic complementarity is equivalent to the condition of
increasing first differences, a concept described by Milgrom—Roberts and
Vives and used in the following section.

Figure 2.1 illustrates a reaction curve that satisfies strategic complemen-
tarity in which there exist multiple equilibria, ¢, e, and e;. Note too that
these equilibria change only slightly with variations in 6. In particular,
except for very special cases, the number of equilibria is locally constant.
This is what we meant earlier by the assertion that the set of equilibria
was stable under small perturbations of the game.

The following propositions are from Cooper and John [1988]. They

5. At this point we have restricted attention to symmetric outcomes and hence to ¢, = ¢ for all j
# i. Hence we require these cross-derivative properties for this restricted part of the strategy
space. Unless specified otherwise, think of these as global properties: i.e., conditions that hold
over the entire domain.
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provide arelationship between strategic complementarity and the multiplic-
ity of symmetric Nash equilibria, a welfare ordering of the equilibria and
a characterization of multipliers in this environment.

Proposition 1 (Cooper-John [1988)): If the game exhibits strategic
substitutability globally, then there is a unique symmetric Nash equi-
librium.

Proof: Suppose, to the contrary, that there exist two symmetric Nash
equilibria, ¢, < e,. By definition of symmetric Nash equilibria, ¢, =
0(e;, 0) and e, = ¢(e;, 0). The existence of strategic substitutes implies
that ¢(e;, 0) > d(es, B) since e, < e;. This is in contradiction to the
statement that ¢; and e, are both Nash equilibria with ¢, < e;.

QED.

Intuitively, the proposition makes the simple point that the graph of a
downward sloping reaction curve will cross the 45-degree line once.
Clearly, strategic complementarity, an upward sloping reaction curve, is
necessary for multiple equilibria. However, even a positive slope is not
sufficient: the slope must exceed 1 at an equilibrium point for there to be
multiple crossings, as located in Figure 2.1. That is, a sufficient condition
for multiple symmetric Nash equilibria is that ¢,(e, 8) > 1 for some e in
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£(0). So, for example, if reaction curves have a slope that is always less
than 1, then an economy with strategic complementarity will not have
multiple Nash equilibria. The example economies that we turn to in the
following chapters provide cases in which the strategic complementarity
is sufficiently strong that multiple symmetric Nash equilibria result.

To understand the welfare implications in these models, assume that
G,(-) > 0. That is, increased effort by all other agents increases the payoffs
of the remaining agent so that positive spillovers are present.

Proposition 2 (Cooper-John [1988]): If there are multiple symmet-
ric Nash equilibria and the game exhibits positive spillovers, then
the equilibria are Pareto-ordered by the level of activity, e.

Proof: Let W(e, 0) be the payoff to an agent if all agents select action
e in state 0: i.e., W(e, 0) = 6(d(e, 0), ¢, 0). Let ¢, and ¢, be elements
Of C Wlth e, < ey

h n

Wie,, ) — W(e, 0) = jW](e, 0)de jcz(q)(e, 0), e, 0)de >0
el e,

By our assumption of positive spillovers, this last term is positive.

Note that here we integrate along the best response function and thus

use the fact that 6,(¢(e, 0), ¢, 6) = 0. QED.

This result is important in thinking about the welfare implications of
economies with spillovers and strategic complementarity. Figure 2.2 illus-
trates the payoff functions of a single agent for the two equilibrium levels
of effort. The presence of positive spillovers implies that the function in
which all other agents choose ¢, lies below the function in which they all
select e,.

From this proposition, we see that the economy can become stuck at a
Pareto-inferior Nash equilibrium. That is, coordination failures can arise
in this environment. Further, given the assumption of positive spillovers,
the Pareto-inferior Nash equilibria are associated with low economic ac-
tivity.

In addition to leading to the possibility of multiple, Pareto-ranked equi-
libria, strategic complementarity has implications for the propagation of
shocks. Consider first the impact on the economy of a change in 9, i.e.,
a common shock. Assume that the economy has a unique equilibrium.
The economy is said to have a multiplier if the equilibrium response of
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the activity level to a common shock exceeds the partial response by an
agent taking the actions of others as given.

Proposition 3 (Cooper—John [1988]): If there is a unique symmetric
Nash equilibrium, strategic complementarity is necessary and suffi-
cient for multipliers.

Proof: Total differentiation of the condition for a Nash equilibrium
and imposition of the requirement that all agents respond identically
to the common shock imply that

de ( 1 \ O3

de - (_012/011),“011

The first of these terms exceeds 1 since (—G,/G,)) is less than 1 at
the unique symmetric Nash equilibrium. This represents a multiplier
effect. The second term is the partial equilibrium response by agent
i to a change in O and is positive by assumption. An increase in 0
leads all agents to increase effort and, as a result of the strategic
complementarity, this induces agents to put forth even more effort.

If interactions are characterized by strategic substitutes (G, < 0),
then 1/(1 — (-0612/6))) is less than 1 so no multiplier effects are
present. QED.
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Thus, the existence of complementarity magnifies shocks to the system.
The initial response of players to the common shock is to increase their
effort levels. This is given by the expression —G3/G;;. This common re-
sponse creates an incentive for further increases as a result of the presence
of the strategic complementarity. Eventually the succession of best re-
sponses dies out, leading to a general equilibrium response that is a magni-
fication of the individual partial equilibrium response.

Figure 2.3 exhibits this multiplier effect. Starting at point A, the shock
(0 increases from 0, to 0,) initially raises the reaction curve of the represen-
tative agent so that, given actions of others, the single agent will increase
effort. As this is true for others, the aggregate level of activity increases
and the comparative statics lead from the initial equilibrium to point B.

Furthermore, as discussed in Cooper and John, if there is a shock to
agent i’s payoffs alone, the effect of the strategic complementarity will
be to increase the activity levels of all agents. This will, in turn, further
increase the activity level of agent i, and thus a multiplier effect for agent
i will result as well. The key point here is that models with strategic
complementarity produce positive comovement across the activity levels
of individual agents even if shocks are not common.

When there are multiple, symmetric Nash equilibria, the evaluation of
comparative statics is made more difficult by the issue of equilibrium
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selection. That is, if one starts at one of the equilibria and the parameter
6 changes, which element in the new set of equilibria will be the outcome?
In the absence of a selection criterion, no precise prediction can be made.
As we shall discuss in the next section of this chapter, fairly general
statements can be made about movements in the set of equilibria as a
parameter changes.

Returning to the themes of this chapter, this model gives us some
immediate insights into the potential role of coordination games for macro-
economics. In the event that the strategic complementarity gives rise to
multiple equilibria, the presence of positive spillovers will lead to a welfare
ordering of the Nash equilibria. This gives a specific structure for under-
standing how individual economies might become stuck in a Pareto-inferior
equilibrium with low levels of economic activity. Of course, a convincing
argument along these lines requires the discussion of macroeconomic
contexts which can be represented by a coordination game. That is the
goal of the next chapters. Before pursuing that theme, we continue the
presentation of coordination games by turning to a discussion of supermod-
ular games. In addition to discussing these games, the next section also
presents the results of simple learning rules and the process of iterative
deletion applied to coordination games.

SUPERMODULAR GAMES

In this part of the chapter, we study a general class of games called
supermodular games. The previous discussion from Cooper and John as
well as many macroeconomic coordination games fall into this more gen-
eral class. There were two key elements in the games discussed: the ability
to order elements in the strategy space of the players and the assumption
of strategic complementarity that implied upward sloping reaction curves.
Here we consider a more general class of games that place related restric-
tions on strategy spaces and payoff functions and lead to quite close
conclusions regarding the nature of best responses and the set of equilibria.

Definitions and Notation

We consider a class of games termed supermodular games by Topkis
[1978, 1979] and studied more recently by Vives [1985, 1990] and Mil-
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grom and Roberts [1990].° These games differ from more general noncoop-
erative games in that the restrictions on strategy spaces and payoffs give
rise to positive feedback effects: as other players select higher strategies,
the remaining player will as well. The basic characteristics of supermodular
games will give rise to ordered strategy sets and monotone best responses
that underlie this theme of positive feedback.

As in the previous subsection, consider a game between players indexed
i=1,2,...L Each player has a strategy set S; C R" and selects a strategy

s;ie S, Lets=(s,....... 5;) € S denote a strategy combination or profile,
where S is the set of joint strategies and is a subset of R™. Further, let
5 =81 .- Sp Suts - - - - ) € S denote the vector of strategies by players

other than i. Finally, the payoff to player i is given by o{s; s.) € R.

Each player takes the action of the others as given and selects a strategy
that maximizes his payoff. Let br(s;) C S; denote the best response corre-
spondence for player i given the actions of others, s e S That is,
x € br(s.) implies that oi(x, s_;) = o(s/, s_) for all 57 € ..

Using these concepts, we first define and then explain the three basic
components of supermodular games. A game is a supermodular game if,
for each i,

1. S; is a complete lattice
2. o; exhibits increasing first differences in s; and s;
3. ©; is supermodular in s; (given s_)

As was noted in our discussion of the simple bimatrix coordination
game, the gains to a higher action by one player increase with the strategy
taken by the other. For the coordination game given in the previous section,
the best response function was monotone in the common strategy of the
other players, as indicated in Figure 2.1. To formalize this idea for more
general games requires some restrictions on the strategy space so that it
is natural to talk of higher actions; this is the role of restricting the
strategy space to be a complete lattice. Further, best responses must have
a monotone structure. When strategies are simply scalars, instead of vec-
tors, the second property of supermodular games is all that is needed to
ensure monotone best responses. When actions are vectors, we need an
additional restriction to guarantee that all components of a player’s best

6. To be more precise, Topkis [1978, 1979] analyzed submodular games in which players acted
to minimize costs while Vives and Milgrom and Roberts consider supermodular games in
which payoff maximization is the objective.
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response vector move together. That, as we shall see, is the main role of
the third property.

The first restriction in this definition is that the strategy space is a
complete lattice. In the convectional analysis of Nash equilibrium, the
strategy set of each player is often assumed to be compact and convex.
That structure is not required in the analysis of supermodular games.
Instead, S; is restricted to be a complete lattice; that restriction, as described
later, implies that it is possible to partially order the feasible strategies.
This ordering of strategies, combined with the restrictions on payoffs,
substitutes for the conventional convexity restrictions to generate best
response correspondences which are “well-behaved” enough to obtain a
fixed point. To understand the meaning of the restriction placed on the
strategy sets, we define the concept of a lattice as well as the closely
related concepts of a complete lattice and a sublattice.

A lattice is a partially ordered set in which any two elements have a
greatest lower bound (inf) and a least upper bound (sup) in the set.” Thus,
a lattice requires the specification of a set, say L, and an ordering on that
set, denoted by <, such that the greatest lower and least upper bounds of
any two elements of the set exist in the set.

Given a set L, a partial order < and x, y € L, then z € L is the greatest
lower bound of x and y in L if z<x, z<y, and for all g€ L such that
g<x and g <y, it is the case that g <z. The least upper bound of two
points is defined in an analogous way. The least upper bound of (x, y) is
often denoted by x Vy and termed the join of x and y. Similarly, the
greatest lower bound of (x, y) is often denoted by x A y and termed the
meet of x and y.

The open interval (0, 1) is a lattice since it is ordered and any two points
in the interval have a meet and a join in that interval. The nonconvex set
0, 2) U (%4, 1) is also a lattice. However, the set {(0, 1), (1, 0)} is not a
lattice since these two points do not have either a least upper bound or a
greatest lower bound in the set under the product order.! However, adding
the points (0, 0) and (2, 2) to this set creates a lattice since the inf and
sup of any pairs of elements are now in the set. To see this, consider again
the two elements (0, 1) and (1, 0) of the larger set {(0, 0), (0, 1), (1, 0),
(2, 2)}. The inf, in the set, of these two elements exists and is (0, 0); the

7. Vives and Milgrom and Roberts provide relatively condensed mathematical summaries of
these concepts.

8. The product order is a partial order in which x <y iff x, < y, for each component i of the vectors.
Thus the two elements (0, 1) and (1, 0) do not have either an inf or a sup in the set.
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sup in the set also exists and is (2,2). A frequently used example of a
lattice, which is not composed of discrete points, is the set created as the
product of n compact subsets of the real line under the product order.

There are two related concepts which are important as well. First, a
lattice L is a complete lattice if all nonempty subsets of L, say S C L, have
an infimum and a supremum in L: i.e., infy(S) € L and sup,(S) € L. The
interval (0, 1) is a lattice but is not complete since the subset (.5, 1) has
no least upper bound in (0, 1). In contrast, the lattice [0, 1] is complete
since any subset of this set has an inf and a sup in the interval.

Second, a subset of a lattice, S C L, is a sublattice if for x € S and
y € S, the sup(x, ¥) and the inf(x, y) in L both belong to S. In other words,
a sublattice is closed under the meet and join operators.

For example, consider the set H = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 1),
(1, 2), (2,2)}. H is a lattice under the product order since H is partially
ordered and any two elements in the set have an inf and a sup in H. The
set S ={(0,0), (1, 0), (0, 1), (1, 1)} is a sublattice of H since the inf and
sup, in the set H, of any two points in S are elements of S. In contrast,
S ={(0,0), (1, 0), (0, 1), (2, 2)} is also a subset of H but is not a sublattice
of H since the join of (1, 0) and (0, 1) in H is (1, 1) and this is not in S".
Note, though, that S’ is itself a lattice since (2, 2) is the sup of (1, 0) and
(0, 1) in the set S’.

The second part of the definition of supermodular games relates to the
interactions across players. In general, if x, x’ € X and y € ¥, then fix, y)
exhibits increasing first differences if, for x > x’, fix, y) — Ax’, y) is (weakly)
increasing in y.° In a supermodular game, y represents the vector of strate-
gies by other agents and x and x” are strategies of agent i. So, requiring
that Gi(s;, s.;) exhibits increasing first differences implies that when all
other agents choose higher actions, the gain to player i from selecting a
higher action increases: i.e., G(s;, s.;) — G{s’, s.;) is increasing in s_; when
§; 2 7. If best responses were unique and payoff functions had increasing
first differences, then the best response function would be monotonically
increasing in the actions of other players. Thus this part of the definition
of a supermodular game captures the restriction on monotone best re-
sponses used in the Cooper—John model.

As for the third part of the definition of a supermodular game, a real-
valued function f:L — R is supermodular if for x,y € L,

9. 1f for x>, fix, y)— f(x', y) is strictly increasing in y, then f) exhibits strictly increasing
first differences.
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where L is a lattice.” In terms of the payoff functions for our game, this
condition implies that

Oi(s;, S) + s, s=) S Os; V &, 52) + Ofsi A 5, 52)

Figure 2.4 illustrates a supermodular function. Here we assume that the
choice space of an agent is a subset of R? given by the four points of the
square where s = (s, 5,) is an element of the choice set. Further, suppose
that utility simply depends on the action of this single agent. Payoffs are
indicated in brackets at each point in the choice set assuming that o(s) =
min(s;, 5,). The restriction of supermodularity is that the sum of the payoffs
from the strategies (0, 1) and (1, 0) must not exceed the sum of the payoffs
from the (1, 1) and (0, 0) strategies. In this case, 6(s) is clearly supermodu-
lar. Note, though, that if o(s) = max(s,, s,), then the payoff function is no
longer supermodular. Again, as supermodularity is being imposed as a
restriction on the nature of the interaction between elements of a player’s
strategy choice, it is not necessary to consider explicitly the interactions
across players in this example.

In a supermodular game, assuming that the payoff function for player

10. When x and y are ordered, the condition holds with equality. When they are not ordered, we
have strict supermodularity if the inequality is strict.
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i, G, is supermodular in s; given s_; means there is a complementarity in
the elements of player i’s choice vector. Given the choice of the other
player(s), a single player is better off combining high activity in one
dimension of choice with high activity in another. Put differently, consider
two feasible strategies for a player and suppose that payoffs from each
exceed the payoffs from the inf of the two strategies. Then, the condition
of supermodularity implies that the gain from taking the sup of the two
strategies relative to the inf is at least as large as the sum of the gain from
the two strategies relative to the inf.

In some cases, it is convenient simply to assume that G,(s) is supermodu-
lar in s, where s € § is a strategy profile and S, recall, is the product of
the strategy sets. As noted by Fudenberg and Tirole [1991], if G(s) is
supermodular in s, then G,(s;, s_;) is supermodular in s; and exhibits increas-
ing first differences.

In the event that the payoff function of an agent is continuously differen-
tiable and S; C R”, Topkis [1978] (see the discussion in Milgrom and
Roberts [1990] as well) states that supermodularity holds if and only if
the cross-partial of the payoff function with respect to two components
of a given agent’s strategy vector is positive: i.e., d°Ci(s;, s_; }/ds;0sy = O
for j # k. Further, the condition for increasing first differences is equivalent
to 0°Gi(s;, 5_)/0s;0s,; = O for i # m, which is a generalization of strategic
complementarity.

To understand the conditions for a supermodular game better, consider
a two-player game in which both players have identical strategy sets. In
particular, let S; = {(0, 0), (0, 1), (1, 0), (1, 1)} for i =1, 2. The strategy
set for each player is a complete lattice under the product order. The
payoff function for player i =1, 2 is a mapping from S, xS, to R. In a
supermodular game, given the action of the other player, the payoff function
must be supermodular in a player’s own strategy. Consider, for example,
o(s) = min (sf) where sj is the kth element of j’s strategy vector for j =
1, 2: i.e., payoffs equal the smallest element in the strategy profile. Suppose
player 2 chooses strategy z=(1,1)€ S, and let x=(1,0) and y=(0, 1)
be elements of S,. Then o, (x,2) = (¥, 2) = Gi(x Ay, 2)=0 while
Oi(x Vy, z)=1 so that the condition for supermodularity is met. This
condition can easily be checked at other points in §; X S,.

The final condition for a supermodular game is that 6,(s) exhibit increas-
ing first differences. Choose x =(0, 0) and x"=(1, 1) and z = (0, 0) and
7 =(1,1) where x, x" € S, and z, 7’ € S,. Clearly, x" 2 x and 7’ 2 7 so that
the primed actions are higher actions. In our example, G,(x, z) = 6,(x’, 2) =
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Gi(x, 7) = 0 while 6,(x’, 2') = 1 so that the change in payoffs from a higher
strategy is higher when player 2 chooses a higher action (z rather than z)
as required by increasing first differences. The reader can check that these
conditions are met at other points in the strategy space.

Existence of a Nash Equilibrium in Supermodular Games

The conventional approach to proving the existence of a Nash equilibrium
makes use of Kakutani’s fixed point theorem by restricting payoffs and
strategy spaces so that the best reply correspondence is convex and upper
semicontinuous." For supermodular games we do not impose the require-
ment that the strategy space is convex, so that the best reply correspondence
need not be convex either. As a consequence, an alternative approach is
used to prove existence which makes use of the monotone nature of the
best reply correspondence under the assumption that the payoff functions
are supermodular.'

The existence proof requires two types of results. The first is a theorem
about the nature of individuals’ best response to the actions of others. In
particular, do there exist optimal choices for a player given the actions of
others and how do these optimal choices respond to the actions of others?
Second, there is a fixed point theorem to guarantee the consistency of the
individual best responses determined in the first result.

Assuming that the game is supermodular, Topkis [1979, Theorem 3.1]
proves the existence of a Nash equilibrium using a fixed point theorem
of Tarski [1955]. The fixed point theorem is given by

Theorem 1 (Tarski [1955]): Let

(i) Z={S, <} be a complete lattice,
(ii) f an increasing function from S to S,
(iii) P be the set of all fixpoint of f,

then the set P is not empty and the system {P, <} is a complete
lattice; in particular, the least upper bound of P and the greatest lower
bound of P are in P.

11. Topkis [1978] discusses the relationship between supermodularity and convexity, emphasizing
that both are second-order properties.

12. Here we modify the approach taken by Topkis [1979] to outline the proof of the existence
of Nash equilibria for supermodular games. The interested reader should consult Fudenberg
and Tirole [1991] for a more complete proof of existence for supermodular games where
strategy sets are subsets of Euclidean space. See also Topkis [1978], Vives [1990] and Milgrom
and Roberts [1990] for existence results in other versions of supermodular games.



32 A Framework for Analysis

The key to using this theorem is finding a function (f) that maps from
the set of strategy profiles into itself whose fixed point will be a Nash
equilibrium. Topkis [1979] uses a selection from the best response corre-
spondence which maps from § to itself. Using the properties of best
responses of supermodular functions, one can show that this is an increasing
selection from this correspondence. This is, of course, the role of the first
type of theorem concerning the nature of the individual’s choice problem.
The existence of a Nash equilibrium for supermodular games then follows
as an application of Tarski’s theorem.

To see how this argument works, first consider some properties of
the best response correspondence, br(s). Topkis [1979, Theorem 1.2}
establishes that the set of optimal solutions to the minimization of a
submodular, upper semicontinuous function over a compact sublattice is
nonempty and contains both a least and a greatest element. Further, these
greatest and least elements are monotonically related to a variable (in our
case, this will be the strategy profile of other players) which parameter-
izes payoffs.

Formally, Topkis considers the problem of choosing x to minimize
f(x, y) subject to xe Lc R", where L is a lattice, R" is n-dimensional
Euclidean space and y € Y < R™. Let L*(y) be the set of optimal solutions
to this problem, for a given value of y. Topkis proves that if f(x, y) is
upper semicontinuous then (i) L*(y) is a nonempty compact sublattice
with a greatest (least) element and (ii) both the greatest and the least
elements of L*(y) are increasing in y.

To use these results for proving the existence of a Nash equilibrium
for a supermodular game, note that they directly apply to the maximization
of a supermodular function rather than the minimization of a submodular
function.” Further, the theorem requires that the objective function be
upper semicontinuous, implying that jumps of payoffs only in the upward
direction are allowed.'* Given this condition on the payoff functions for
the supermodular game, Topkis’s result implies that the best response
correspondences for each player are nonempty and form a sublattice.

The fact that the best response set is a sublattice is an almost immediate
consequence of the fact that the payoff function is assumed to be supermod-
ular. In particular, suppose x and y are both elements of player i’s best
response correspondence, br(s_). Then the supermodularity of the payoff
function implies that

13. The minimization of a submodular function is equivalent to the maximization of the negative
of that function, which is supermodular.
14. Formally, a function f(x) is upper semicontinuous at x if lim,n_n fx) < fx).
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The first and last inequalities hold since x and y are both elements of
the best response correspondence. The middle one holds, because of the
assumption of supermodularity. The consequence of this (as in Topkis
[1978, Theorem 4.1]) is that the best response correspondence must be a
sublattice of the strategy space. That is, if x and y are elements of br(s_;),
then so will their meet and their join.

Further, Topkis’s theorem implies that there are least and greatest ele-
ments in the best response correspondence which are monotone functions
of the actions of other players, s_..”> It is in this sense that the set of optimal
actions of one player are increasing in the strategies of the others. This
is an important property from the individual optimization side of the
equilibrium analysis since it will provide the basic function for the fixed
point argument.

To prove the existence of a Nash equilibrium, we combine the results
from Topkis with the fixed point theorem of Tarski. To proceed, let br(s_;)
be the least element of br(s_;), which we now know exists and is increasing
in s_; from Topkis’s theorem. Let br(s) € s for s € S be the vector of the
least element of best responses for each player. Since this is an increasing
function, we can immediately use this to prove the existence of a Nash
equilibrium by employing Tarski’s fixed point theorem. This gives the
minimal element in the set of Nash equilibria for the supermodular game.
One can also select the greatest element in the best response correspondence
for each player and use Topkis’s theorem to show that this is also monotone.
Again, employing Tarski’s fixed point theorem gives the maximal element
in the set of Nash equilibria.

Figures 2.5-2.7 illustrate the existence result. For the game in Figure
2.5, there are two elements in the strategy set, {(0, 0), (1, 1)}. To simplify,
assume that there are two players with identical payoffs and the same
strategy sets. Suppose that the best response of one player to (0, 0) is
{(0, 0), (1, )} while the best response to (1, 1) is (1, 1). By symmetry,
these are also the best responses of the other player. The arrows in these
figures indicate the maximal elements of the best response of one player
(the head of the arrow) to an action of the other (the base of the arrow).
So, in Figure 2.5, the maximal best response of the representative player
is (1, 1) for both (0, 0) and (1, 1). Note that this game satisfies the condition
for Tarski’s fixed point theorem as the strategy space for each player is

15. Formally, one can prove this by contradiction using the assumed property of increasing
first differences.
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a complete lattice and the maximal best response function is increasing.
In fact, (1, 1) is clearly a Nash equilibrium for this game. If instead we
had chosen the least element of the best response correspondence, then
(0, 0) would have been a fixed point.

Note too that if there is not a monotone selection out of the best response
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Figure 2.7

correspondence, then it is easy to see that an equilibrium may not exist.
In particular, suppose that the unique best response to (0, 0) is (1, 1) and
the unique best response to (1, 1) is (0, 0). In this case, the best response
function is not monotone and no pure strategy equilibrium exists.

Figure 2.6 illustrates a slightly more complicated strategy space to
illustrate further the fixed point argument. Again, we consider a symmetric
supermodular game with two players where the greatest elements of the
best response correspondence for a single player are shown in the figure.
Note that either (0, 0) is a fixed point or (0, 0) is never a best response,
a feature of these games that we return to later in our discussion of iterative
deletion in supermodular games. Similarly, (1, 1) either is a fixed point
or is never a best response. When (0, 0) and (1, 1) are not fixed points,
then the best responses to these strategies must be higher (lower) than
these points, as indicated by the arrows in Figure 2.6. As long as the best
responses satisfy the monotonicity property implied by Topkis’s theorem,
there will always exist a fixed point as indicated in the figure.'® Here, in
the symmetric equilibrium both players choose strategy (1, 0).

16. The key implication of the theorem is that, for example, the best response to (1, 1) must be
no less than the best responses to (0, 1), (1, 0) or (0, 0). Note that the point is not that the
best response to, say, (1, 0) must exceed (1, 0) but rather that the response to (1, 1) cannot
be less than that to (1, 0).
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Figure 2.7 illustrates the case where each player has a best response
function which maps from an interval of the real line, [0, 1], into that
same interval as in the Cooper—John model described earlier. The figure
displays the best response function for one of the two identical players.
Note that the best response of the player to O is to take an action greater
than O and the best response to 1 is less than 1. Further, the best response
function is not continuous but is still increasing as the jump is upward.
Clearly there are two pure strategy Nash equilibria for this game, E, and
E;, as well as a mixed strategy equilibrium.

One very important point is not covered by these results: the nature of
the equilibrium set. As stressed by Vives [1990], these results on the
existence of a Nash equilibrium are not informative about the structure
of the entire set of equilibria. The Tarski fixed point theorem told us only
that the set of fixed points was a complete lattice for some function f, for
which we took either the maximal or the minimal elements of the best
response correspondence. This result guarantees that an equilibrium will
exist, but it does not tell us that the set of equilibria has any particular
structure, such as being a lattice.

Suppose we strengthen the restrictions on payoffs to consider a strictly
supermodular game in which we assume strictly increasing first differences
and strict supermodularity. Then, according to Topkis, the reaction corre-
spondence for an individual player is ordered by the actions of others and
the set of Nash equilibria is a nonempty sublattice. Further, Vives [1990,
Theorem 4.1 and Theorem 4.2] argues that the set of Nash equilibria for
a strictly supermodular game is a complete sublattice.

Iterative Deletion and the Convergence of the
Best Response Dynamics

As noted by Milgrom and Roberts, equilibria of supermodular games have
an interesting relationship to the concept of dominance solvability and the
process of iteratively deleting strongly dominated strategies. A strategy
for player i, s;, is strongly dominated if, for all s_;, the payoff from selecting
s; is less than the payoff from selecting some other feasible strategy.
Consider an iterative process which, starting with the set of feasible
strategy combinations S, eliminates strongly dominated strategies for each
player in the set I of players. At each step in the process, a strategy is
eliminated for player i if it is strongly dominated by another strategy for
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i for all strategy combinations which have not been eliminated in previous
steps of the iteration process. Milgrom and Roberts prove the following:

Theorem 2 (Milgrom-Roberts [1990)). Let I be a supermodular
game. For each player i, there exist largest and smallest serially
undominated strategies x; and x;. Moreover, the strategy profiles (x;
ie I)and (x; i € I) are pure Nash equilibrium profiles.

In this theorem, serially undominated strategies are those that are not
eliminated through the iterative deletion process described. Since strategy
sets are ordered, the set of serially undominated strategies has largest and
smallest elements. The theorem is that the strategy profiles constructed
with these largest (smallest) strategies are Nash equilibria.

The games exhibited in Figures 2.6 and 2.7 provide some insights into
these results. To simplify the discussion, assume for both that best re-
sponses are unique and are as indicated in the figures. As discussed, in
the Figure 2.6 game, (1, 1) is not a best response to (1, 1). Hence, (1, 1)
must be a dominated strategy: otherwise the best response function would
not be increasing. Therefore, using symmetry, (1, 1) can be eliminated
from the strategy space under consideration for both players. By a similar
argument, (0, 0) can be eliminated as well. Finally, (0, 1) is dominated by
(1, 0). This leaves the unique equilibrium in which (1, 0) is chosen by
both players.

In the Figure 2.7 example, the first round of deletion will eliminate all
strategies below the point @, and all strategies above A, since elements
below and above these points, respectively, are dominated. After trimming
the strategy space to [a;, A;] we find that the strategies in the intervals
[ai, a;) and (A, A,] are dominated. Note that these strategies were not
eliminated in the first round as they were best responses to the strategies
in either [0, a,) or (A,, 1]. Continuation of this iterative deletion leads to
the elimination of strategies below E, and above E;, the greatest and least
elements in the set of Nash equilibria.

To see one important implication of iterative deletion, suppose that
there is a unique equilibrium for the supermodular game. In this case,
Milgrom and Roberts show that the equilibrium is dominance solvable:
i.e., the equilibrium outcome is the only strategy combination left after
the iterative deletion process. This is true for the example in Figure 2.6.
Is it reasonable to expect players to coordinate play on this equilibrium?
Since a dominance solvable equilibrium is achievable through the iterated
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deletion of dominated strategies, it is quite reasonable to think that players
will proceed to “find” such a equilibrium. In particular, one does not
require the common knowledge of rationality to achieve this equilibrium.

When there are multiple equilibria in a supermodular game, as in the
example at the start of this section and in Figure 2.7, then the dominance
solvability argument loses some strength. In this case, one can still proceed
to delete some strategies, but the outcome of iterative deletion will, of
course, not lead to a selection from the set of equilibria. The issues of
selection in supermodular games with multiple equilibria are discussed
further later.

The greatest and least elements in the set of Nash equilibria are also
the outcomes of a well-known process of best response dynamics, the
Cournot tatonnemont. In this process, the outcome in iteration n is a
selection from the best response correspondence to the vector of strategies
selected from the iteration n— 1 correspondence. That is, starting with
So € S, a, € br(a,.;) where br(s) is the best response correspondence to
s € S. Vives [1990, Theorem 5.1] proves that if the process starts with s,
greater (less) than the largest (smallest) Nash equilibrium, the Cournot
tatonnemont will converge to the greatest (smallest) Nash equilibrium.

Figure 2.7 again illustrates. For any s, below E,, the best response
exceeds so. Thus the iterative process is a strictly increasing function that
clearly converges to E,. A similar statement holds above the largest Nash
equilibrium E;.

Welfare

One of the important results in the Cooper—John analysis was the fact that
the Nash equilibria were Pareto-ordered by the level of activity. That type
of result carries over to supermodular games. The important condition for
this result is again positive spillovers: payoffs to any player increase if the
strategy choice by any other player is increased. In the case of differentiable
payoff functions, in contrast to the concept of supermodularity (strategy
complementaries), positive spillovers are a first derivative property of the
payoff function and not a restriction on the cross-partial of the payoff
function.

Suppose that both x and y are strategy combinations in S and are Nash
equilibria with x >y. Milgrom and Roberts ([1990], Theorem 7) prove
that if 6(s;, s_;) is increasing in s.; for all i € I, then o(x) > o(y) for all
players. Intuitively, start at equilibrium y and suppose that all players
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except i increase their strategy to x; (j # i). From the assumption of positive
spillovers, player i is better off. Since x; € br,(x;), player i must be better
off in the equilibrium where x is the strategy combination since he could
have chosen y;

Comparative Statics

A final important aspect of the Cooper—John example was the presence
of a multiplier effect and more generally the monotone nature of the
comparative statics. For a variety of macroeconomic applications, it is
important to see how the equilibrium (or set of equilibria) moves in
response to changes in the environment. As we see later, one macroeco-
nomic implication of this class of games is the propagation over time
and across agents of exogenous changes to the underlying environment.
Supermodular games, by their restrictions on payoff functions, have built
into them the basis for positive comovement in activity across agents,
which is also an important characteristic of business cycles.

To understand this, parameterize the game by 0 and suppose that 6 lies
in a partially ordered set. Then introduce 6 into payoffs so that G(s, 6)
and assume that this function exhibits increasing first differences in s; and
6 given s_;. Theorem 6 and its corollary in Milgrom and Roberts show
that the set of Nash equilibria varies in a particular way with changes in
0. In particular, they find that the largest and smallest pure Nash equilibria
are nondecreasing functions of 6. Note that this does not imply that all
of the Nash equilibria are increasing in 6. For example, in the economy
given in Figure 2.1, an increase in 0 such that the reaction curve shifts
upward will increase the lowest and highest but not the middle equilibrium.

SUMMARY

The goal of this chapter was to provide a general structure for coordination
games. The key characteristic of these games is the presence of strategic
complementarities, essentially a monotonicity property of best responses.
It is possible for supermodular games to have multiple equilibria which,
in the presence of positive spillovers, can be Pareto-ordered. This gives
some content to the notion of a coordination failure. The results from
Cooper and John [1988] supplement the more general results by focusing
on a special class of games.
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This discussion should provoke two key questions. First, are coordina-
tion failures a theoretical curiosity, or is there some evidence that they
actually might arise? This question has already been addressed in the
previous chapter, where we reported on some recent experimental evidence
concerning the possibility of coordination failures. This evidence suggests
that the Pareto-dominant Nash equilibrium does not serve as a focal point
for all coordination games.

Second, and from the perspective of macroeconomics this is the most
important question, are there economies that, at least qualitatively, can be
represented as a supermodular game? The goal of the next chapters is to
address this question in some detail.



3  Technological Complementarities

We begin the study of economic environments underlying coordination
games by considering the most direct form of interaction across agents:
through a production function. As we shall see, this simple structure forms
the basis for new insights into both aggregate economic fluctuations and
growth. Further, this source of complementarity is most tractable in terms of
quantitative analysis since it is most easily incorporated into the stochastic
growth model.

Consequently, the discussion in this chapter contains both theory and
quantitative evidence associated with the behavior of these economies.
This focus reflects, in fact, recent developments in quantitative analysis
which allow us to go beyond the stochastic growth model studied by
Kydland and Prescott [1982] and King, Plosser and Rebelo [1988] to
understand macroeconomic dynamics of economies with distortions.

INPUT GAMES AND TECHNOLOGICAL
COMPLEMENTARITY

Assume that I agents provide effort into a joint production process. The
per capita output of this process is fley, e,, . .., e;) where ¢; is the effort
level of agent i in the production process. We assume that e € [0, 1] so
that the strategy space is a complete lattice. Per capita output is also the
consumption for each agent. Implicit here is an assumption about the
nature of the compensation scheme: agents share equally in the output
from their joint production.

41
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Let U(c;) be the utility from goods consumption and g(e;) be the disutility
of effort for agent i. Hence

o(e, e) = Ufler, €5, ... s e)) — gle) 1)

Assume that U(-) is strictly increasing and concave and that g(-) is strictly
increasing and strictly convex.

In analyzing the game between agents, the key assumption will concern
the nature of their interaction through the joint production process. These
interactions may arise internally within a firm or through some form of
external economy. For the purposes of this discussion, it might be best to
think of this as a problem within a firm. We return to alternative interpreta-
tions and uses of this structure in macroeconomic models later in the
chapter.

Internal Returns to Scale

Suppose first that there are increasing returns which are internal to the
production process. That is, let per capita output equal f(2, e;) where f(-)
is strictly increasing and strictly convex. To simplify, assume U(c) = c.
The reaction curve for agent i, when all other agents choose effort level
E, is given implicitly by the effort level, e, that solves

fle+I—-1E)=ge)

As long as f"(e + (I — 1)E) — g”(e) < 0, so that the increasing returns in
production are offset by the curvature in the disutility of effort function,
the second-order condition will be met.

Strategic complementarities occur if the optimal effort level of an agent
is increasing in the effort levels of the others: i.e., iff (de/dE) > 0. From
the first-order condition, this derivative is given by

f"(e + U-DE)(I-1)
—(f"(e + I-DE) — g"(e))

So strategic complementarity, assuming the second-order condition is satis-
fied, is equivalent to increasing returns to scale in this model. In words,
increased effort by all other agents will increase the productivity of the
remaining agent, thus inducing more effort on his part as well.

The condition for a symmetric Nash equilibrium at effort level e is

f'Ue)-g'(e) =0 3

>0 (2)
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Assuming that g’(0) =0 and g’(1) = e, the conditions that f'(0) >0 and
f(I) < will ensure the existence of an interior Nash equilibrium. In
some cases, such as the example given later, multiple Nash equilibria are
possible. Since there are positive spillovers in this economy (when others
work harder, per capita consumption is higher), if there are multiple sym-
metric Nash equilibria, they will be Pareto-ranked.

External Returns

An alternative approach emphasizes returns to scale that are completely
external to a particular agent. In this case, the returns to scale are created
by the effects of other agents outside an internal constant returns to scale
production process.

To generate numerous examples, assume that U(c) = ¢, g(e) = (¢2Y)
and ¢ = ef(E) where E is the average level of output by the other agents.
So here there are constant returns to scale for the individual agent and,
assuming that f’(-) > 0, there are social increasing returns to scale. The
first-order condition for the individual’s choice of effort satisfies e = Yf(E).
From this, reaction curves with multiple crossings are quite easy to generate
using an appropriately chosen form for the function f(E).

The Min Example

An illuminating example which also emphasizes the possibility of multiple
equilibria comes from Bryant {1983], where fle, e, ...e¢;) = min
(e, €, . . . €7). In this technology, the level of effort by each agent is
important for the determination of per capita output. As in a production
line process, one “bad apple” can have a large impact regardless of the
length of the line.

Let @ solve U'(e) = g’(e). The level of effort e represents the cooperative
solution (the effort level that maximizes joint utility) to the team production
problem with this technology.

In this game, ¢;=¢ for all i is a symmetric Nash equilibrium. To see
why, first note that there is no additional production from increasing effort
due to the specific technology. Second, the agent’s utility falls from reduced
effort since e is the cooperative effort level. Hence, if all others choose &
so will an arbitrary agent. Note that this argument uses the fact that if an
agent chooses an effort level below all others, then that agent’s payoff is
determined by that action.
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As pointed out by Bryant, there is in fact a continuum of symmetric
Nash equilibria in this game. Any ¢;=e€ [0,¢] for i=1,2,...1is an
equilibrium. For any such e, agents cannot gain by increasing their own
effort and lose by reducing effort (since U’(e) > g’(e) for e <e). Again,
by putting forth less effort than others, the agent determines his payoffs,
and thus putting forth less effort is not desirable because of the strict
concavity of the function U(e) — g(e). Since U(e) — g(e) is strictly increas-
ing for e € [0, €], these equilibria are Pareto-ordered.

This represents a severe case of multiple equilibria in that the set of
Nash equilibria forms a continuum so that an equilibrium outcome is not
locally unique. The economy can become stuck at an inefficient equilib-
rium. All agents recognize that preferred equilibria exist but none, acting
alone, can coordinate economic activity.

Because of the simplicity of this team production problem, there are
ways out of this dilemma through changes in the incentive scheme. That
is, the coordination problems arising here are (partly) a consequence of
the rule that distributes output equally to all agents regardless of their
effort levels. In particular, if effort levels of all agents are observable, one
could design a contract with large penalties that would lead each agent to
choose effort level e. Even if individual efforts were not observed, since
there is no uncertainty in this environment, a contract which penalized
agents if per capita output did not equal € would be equally effective.'
The important point to recognize is that coordination problems emerge in
strategic settings where there are imperfections in the contracting process
and/or incompleteness of markets.

A discrete version of this economy underlies the experimental work of
van Huyck et al. cited in Chapter 1. From the perspective of that paper,
the multiple equilibria that emerge in a discrete version of the Bryant
model are not simply a technical curiosity: coordination failures can and
do arise in experimental settings.

One point raised in those experiments reemerges in this example: the
role of the number of agents.” Consider an economy with / = 2. Each agent
can choose e € {0, 1} and has preferences given by ¢ — (y/2)e’. Further,
assume that the technology combined with a distribution of output across
agents implies ¢ = min(e,, e,). So far, this is just a discrete version of the
Bryant example.

1. See Holmstrom [1982] for a more complete discussion of team incentive problems.
2. This discussion draws upon Jovanovic [1987].
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Suppose the disutility of effort, denoted by v, is random. In particular,
assume that with probability &, agent i =1, 2 has a value of vy, denoted
¥i» which exceeds 2. In this case, putting forth effort of O is a dominant
strategy. With probability (1 — &), the realized value of v, denoted v,, is
less than 2. Agents’ types are independently drawn and actions are selected
without knowing the other agent’s type.

For this economy of two agents, there are two equilibria. In one, both
agents choose effort level 1 whenever their realized value of v is y; and
choose zero effort otherwise. As long as &t is sufficiently low, this behavior
is optimal given that the other player is pursuing the same strategy. Of
course, the second equilibrium has zero effort for both agent types.

Now suppose that the number of agents increases. The equilibrium in
which all agent types choose zero effort will remain an equilibrium regard-
less of the number of agents. However, for a large enough set of agents,
the equilibrium in which an agent chooses effort of 1 when v, is realized
will no longer exist. The argument is simple. For fixed &, as the number
of agents increases the probability that one of the others will draw y=1y,
increases as well. Given the min technology, this makes the choice of the
high effort level untenable.

BUSINESS CYCLE IMPLICATIONS

In this section of the chapter, we discuss attempts to build stochastic,
dynamic versions of the more static coordination models. We begin by
discussing a paper by Baxter and King [1991] which, except for the
addition of a technological complementarity, bears a close resemblance
in structure, though not in results, to the standard real business cycle
model. We then examine recent work on sunspot equilibria and dynamic
complementarities.

Imagine an economy composed of a large number of infinitely lived indi-
viduals all solving for consumption, employment and capital accumulation
paths in the classical one-sector growth model. This model provides the basis
for the real business cycle model, explored by Kydland and Prescott [1982],
King, Plosser and Rebelo [1988] and numerous others. Suppose further that
the production function for each agent has the usual arguments of capital
and labor as well as an exogenous technological parameter and, most impor-
tantly, a technological external complementarity.

Formally consider the problem of a representative household:
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max Eyy Bu(c, + Ay, 1) @
0
subject to:
L+n<1 (5)
G+i Sy (6)
Ky = k(1-8) + i, (M
and
Y = AF(k, n)(Y)" )]

In the objective function, the period utility function is defined over
consumption and leisure and is strictly increasing and strictly concave and
the discount rate B lies between 0 and 1. The expectation is taken with
respect to the stochastic taste disturbance (A,) and the technology parameter
(A,). The variable A, is a parameter which influences the period  marginal
rate of substitution between consumption and leisure.

The first constraint indicates that the agent has a unit endowment of
time in each period which can be enjoyed as leisure or used as an input
into the production process (n,). The second constraint is the resource
constraint: output can either be consumed or be used as gross investment.
The third constraint is the capital accumulation condition that relates
the capital stock over time to gross investment where & is the rate of
capital depreciation.

Thus far, the model is quite standard.’ The novelty of the model lies
in the specification of the production function where the technological
complementarity is present. In this last constraint of the optimization
problem, output of the agent depends on the stock of capital, the labor
input, the current state of technology (4,), the current taste shock and a
measure of average economywide output in period ¢, Y,. The specification
captures a technological spillover along the lines suggested by the work
of Bryant [1983] and one that has appeared in growth models with external-
ities in the capital accumulation process. In contrast to the Bryant formula-
tion, the technological spillover does not depend on the inputs of others
but rather the level of output. This is taken to be a metaphor for the view
that individuals are more productive in periods of high economic activity.

3. There is also a government in the Baxter—King formulation which taxes net output at a fixed
rate, purchases a constant amount of goods and transfers goods back to agents. The government
is ignored in this presentation.
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Importantly, it is possible to estimate the magnitude of this spillover, as
described later.

The individual agent is assumed to be small and thus takes the actions
of others as given in his own optimization problem. Note that this is more
than the usual Nash equilibrium assumption: the agent thinks he has no
influence on the state of the economy in the future.

The first-order conditions for an individual agent are given by:

wlc, + A, L) =M )

uc, + A, 1) = MAF(k, n) (V) (10
and

BEAlAmF kit m)(Y)* + (1-8)] = A, an

The first two conditions ensure that the agent is optimizing in terms of
the static allocation of labor time in a given time period: i.e., these are
conditions of intratemporal optimality. The third condition is an intertem-
poral optimality condition relating the marginal utility of consumption in
period r to expected product of the return to holding capital and the
marginal utility of consumption in period ¢ + 1. Note that in deriving these
conditions, the agent takes the aggregate level of output as given. These
conditions along with the resource constraints and the condition for a
symmetric equilibrium, given later, describe the path of the economy.

Before proceeding further, we adopt some of the additional restrictions
used by Baxter and King. First, assume the F(k, n) is a Cobb--Douglas
function: i.e., F(k, n) = k* n"®. Second, assume that the utility function is
given by u(c + A, 1) =log(c + A) + ylog(l). These assumptions are made
to allow tractability and to ensure that the model matches up with some
key moments of U.S. data.!

This economy is a dynamic game in that the optimal choices of a single
agent, through the first-order conditions given, depend on the evolution
of aggregate output. But aggregate output itself is determined by the
average behavior of the agents. Thus solving this problem requires both
the solution of an individual’s dynamic optimization problem and the
characterization of an equilibrium in terms of decision rules. The symmetry
in the economy greatly aids the second of these operations, as we shall see.

4. In particular, King, Plosser and Rebelo point out that this specification is necessary to match
the observation that neither the real interest rate nor the average amount of hours worked
appears to have a trend.
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Let the state contingent level of per capia output be given by Y(A, A, K),
where K is the average capital stock in the economy. The evolution of K
is governed by some state dependent policy function, H(-), such that the
future value of K is given by H(A, A, K). Solution of the individual’s
intertemporal optimization problem will yield decision rules, y(A, A, k)
and h(A, A, k), for output and capital accumulation, respectively.

Since there are no differences across agents, an equilibrium arises when
the individual and aggregate decision rules coincide. That is, we use
YA, A k) =Y(A, A, K), h(A, A, k)=H(A, A, K) and K=k in all states as
conditions for a symmetric equilibrium. With the Cobb—Douglas produc-
tion function, y = Y implies that y = [Ak®n*]" where 1} = (1/(1 — €)). Thus
if 0<e< 1, then >1 and the economy will exhibit external returns
to scale.

With these specified functions, and using the condition of a symmetric
equilibrium, the necessary conditions given previously become

—=MA A (12)

llTn = MA, A, b)(1 — 8)[AKA-91n (13)
and

BEMA’, A, k’)[%(A’k’en"”’)" + (1~ 8)] = MA, A k) (14)

where the future variables are indicated by primes. A stationary equilibrium
is given by state contingent consumption, employment, investment deci-
sions plus a state contingent Lagrange multiplier that satisfies these condi-
tions as well as the resource constraint, for all (4, A, k).

From these conditions, it is critical to note that in equilibrium individual
marginal products of labor (13) and capital (14) have a social increasing
returns component. This comes about from the condition of symmetric
Nash equilibrium within any period so that y, = [A,F(k;, n)]}". These condi-
tions are quite similar to those emerging from the one-sector growth model,
as in King, Plosser and Rebelo, except for the i} multiplying the parameters
of the Cobb—Douglas technology.

These first-order conditions can be used to characterize a steady state
where both taste and technology shocks are absent. Then, as in King,
Plosser and Rebelo, Baxter and King use a log-linear approximation of
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these conditions for the stochastic economy around the steady state, yield-
ing a linear system in the state variables, s = (k, A, A), where these variables
should now be interpreted as percentage deviations from the steady state.’

With this linear approximation, the analysis is reduced to following the
progress of the state vector. To do so requires a specification of the
underlying stochastic processes for tastes and technology and, in order to
obtain quantitative predictions, the parameterization of the model. Once
the evolution of the state vector is known, other variables of interest (such
as consumption, employment, productivity, investment and output) are
computed using the linear decision rules.

The sector vector evolves according to 5" = Ms + & where § = [0, a, d]
represents the current innovations to the tastes and technology processes.
The first element of the innovation vector is zero since the capital accumula-
tion process is not stochastic. The matrix M reflects the decision rule which
relates the future capital stock to the state vector and the serial correlation
in the technology and taste shocks, p, and p,:

Kt Txa Tga
M=10 ps O (15)
0 0O pa

In this matrix, the first row relates the future value of k to the current values
of the state variable where the constants [, T, and Ty, are determined from
the equilibrium decision rules. It is precisely these coefficients that capture
the effects of preferences and technology on the evolution of the capital
stock and its response to the shocks.® Note that there is assumed to be
some serial correlation in the shocks to both technology and tastes, p, and
Pa, Tespectively.

The next step is parameterization of the model. Following the real
business cycle tradition, the parameters of preferences and some of the
parameters determining the technology are determined from long-run ob-
servations on the economy and related econometric studies. For example,
the parameters for the technology are set with capital’s share, ¢, at .42.
The processes for the exogenous technology shock are obtained as Solow

5. Consumption is effectively eliminated from the system using the condition for saddle path sta-
bility.

6. The interested reader can produce these elements of this matrix through the linearization
procedure. The appendix to King, Plosser and Rebelo is a very helpful source for this type
of exercise.
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residuals from the appropriate production function. In particular, one must
be careful to recognize that the inferred productivity series will be depen-
dent upon the existence of social returns to scale. Baxter and King find
that in the specification with external increasing returns the standard devia-
tion of the technology shock is only about 80% of that in the more standard
case of constant returns. For both cases, they are unable to reject the
presence of a unit root in the technology process.

The novel elements for this study are the technology spillover parameter
and the structure of the demand shock process. For the former, Baxter
and King use an instrumental variables estimation routine to identify the
spillover parameters using aggregate data. The instruments chosen are
arguably independent of any technology shock in the economy. From this,
they set € at .23 and hence M at 1.3, which is close to related estimates
provided by Caballero and Lyons [1992].

In contrast to the standard business cycle model, this construct includes
a disturbance to the marginal utility of consumption. In order to calibrate
the model, this process must be parameterized. To do so, Baxter and King
use the intratemporal first-order condition relating the marginal rate of
substitution between consumption and leisure to the marginal product of
labor. By assuming that the marginal product of labor is proportional
to the real wage, the taste shock can be inferred from observations on
consumption, employment and the real wage.?

Given this model, there are at least two interesting exercises. First, what
are the implications of demand shocks? Second, does the introduction of
technological complementarities into the basic growth model improve its
ability to mimic key features of the business cycle?

Using the model with external returns to scale and taste shocks alone,
Baxter and King report that the model produces (i) positively correlated
fluctuations in the key components of aggregate gross national product
(GNP), (ii) fluctuations which are persistent in terms of deviations from
trend and (iii) consumption which is less volatile than output, which is,
in turn, less volatile than investment. These are the same features that are

7. Cooper and Haltiwanger [1996] describe the estimation issues in some detail and discuss an
attempt by Braun and Evans [1991] to estimate this parameter using seasonal data. The use
of seasonal data is a natural way to identify the social returns to scale since one would generally
not argue that seasonal fluctuations are predominantly due to technology shocks. See also Basu
and Fernald [1995] for an argument that the estimated returns to scale reflect the use of value
added as an output measure. Cooper and Johri [1997] provide further evidence in support of
complementarities in the production process.

8. For the discussion that follows, it is important to note that the estimated taste shock is highly
serially correlated.
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prominently displayed by models which are driven by technology shocks.
The novelty of the Baxter—King exercise is that quite similar implications
arise in models with demand shocks if there are external increasing returns
to scale.

To understand this point better, Baxter and King feed the same demand
disturbances through the model in which there are no increasing returns
and no technology shocks. Not surprisingly, the predictions of the model
become inconsistent with central features of the business cycle. In particu-
lar, consumption becomes much more volatile than investment and invest-
ment is negatively correlated with output. This reflects the fact that in
periods of (temporary) high marginal utility, production and consumption
will increase and investment will fall to satisfy the intertemporal optimality
condition. Finally, output volatility is much less in the model with constant
returns since the external returns to scale model magnifies the effects of
the demand disturbance.

Despite these dimensions of success, both of these models produce
predictions concerning the relationship between productivity and output
which are counterfactual. Even in the presence of external returns to scale,
it appears that demand shocks give rise to countercyclical movements in
productivity. Given the specification of technology, the average product
of labor is given by

Ao (16)

Hence increases in n will cause the average product of labor to fall as
long as (1 — 0)n < 1, which is true for the parameterization of the model
with 0 = .42 and m = 1.3. Note that if (1 —0)n > 1, either because of a
larger labor share or a larger complementarity, then productivity will be
positively related to the level of employment. From society’s perspective,
itis as if labor demand were increasing in the level of employment, though,
of course, labor demand is downward sloping for each individual firm.
This is a point we return to in the discussion of sunspot equilibria.

In relation to the second exercise, Baxter and King consider a model
in which both technology and preference shocks are present. This also
permits an evaluation of the relative importance of preference and technol-
ogy shocks in their model.’

Baxter and King find that the model with increasing returns, combined
9. As Baxter and King point out, uncovering the Solow residual is influenced by the magnitude

of the increasing returns. This difference alone leads them to argue that the productivity shock
has a smaller variance in the increasing returns setting.
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with the inferred productivity and taste shocks, explains more of the
variations in output than does the constant returns model and matches better
the observations on relative variabilities of consumption and investment.'®
Further, the introduction of demand disturbances allows the models to
match the near zero correlation between hours and productivity better,
though, again, the increasing returns model is closer to the data.

Overall, this approach of introducing a strategic complementarity, in
the form of a production externality, into an otherwise standard real busi-
ness cycle model is promising from two perspectives. First, it indicates
possible directions of improvement for the modeling of aggregate fluctua-
tions. In particular, the results indicate that the addition of external returns
allows for the incorporation of preference variations without creating nega-
tive correlations between consumption and investment and without creating
excess volatility in consumption. This then opens up the possibility of
exploring the effects of more interesting “demand shocks.”

Second, this paper indicates that the approach to macroeconomics, build-
ing upon the presence of strategic complementarities, is promising as well
in that these models can be used for quantitative exercises. Baxter and
King identified a specific complementarity in the production process, and
their paper provides a vehicle for exploring the quantitative implications
of this complementarity for aggregate variables.

Note too that the quantitative contribution of complementarities was to
magnify preference shocks. This exercise did not make use of the possibil-
ity of multiple equilibria that may arise in models with complementarities.
Further, the linkages across agents were static not dynamic, though one
could argue, perhaps through a learning by doing model, that dynamic
spillovers are equally relevant. We discuss these points in turn.

Benhabib and Farmer [1994] and Farmer and Guo [1994] consider
versions of this economy in which the presence of social returns to scale
alters the dynamics of the economy." In particular, these papers argue
that if the social returns are sufficiently large and labor supply sufficiently
elastic, then the stability properties of the steady state dramatically change.
In particular, Benhabib and Farmer [1994] argue that a necessary condition
for indeterminacy is that the “labor demand” curve, taken to be the set of
wage and employment combinations that satisfies the firm’s first-order
condition in a symmetric equilibrium, is more steeply sloped than labor

10. Again, the model with constant returns predicts too much volatility in consumption relative
to investment.
11. Equivalently, they look at economies with large markups.
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supply. So returning to our discussion of the effects of taste shocks on
productivity, the condition for upward sloping “labor demand” is that
(1 —6)n > 1. Hence these models require large labor shares as well as
large complementarities in order to create the positive relationship between
employment and productivity.

For the basic real business cycle and the parameterizations investigated
by Baxter and King, the steady state was always saddle path stable.
However, for larger values of g, the steady state can become a sink. In
this case, there are multiple paths (sequences of consumption and capital
stocks) converging to the same steady state. In this event, it is then
possible to randomize across these self-fulfilling paths to create endogenous
uncertainty in the economy. The conditions for sunspot equilibria of this
type are discussed by Benhabib and Farmer [1994] and recently reviewed
by Farmer [1993] and Benhabib and Farmer [1997].

The contribution of Farmer and Guo [1994] is to investigate the quantita-
tive implications of these sunspot equilibria. Here they find that the basic
features of their economy mimic those found in actual data. In particular,
the basic patterns of consumption smoothing, volatile investment and
procyclical productivity emerge in their economy. This is true even though
fluctuations are driven by a zero mean “error” term added to the Euler
equation: i.e., a sunspot variable. Thus the underlying complementarity
produces procyclical productivity as well as persistent movement in these
variables. Moreover, for their economy, the roots of the matrix characteriz-
ing the evolution of the state vector are complex, implying that convergence
is oscillatory.

Durlauf [1991] considers a dynamic model with complementarities
which differs from the standard model in a couple of important respects.
First, the models are dynamic in nature, allowing Durlauf to study the
time series properties of his economies. Second, Durlauf introduces local
complementarities so that only “neighboring” agents influence each other.
Third, the interactions themselves are dynamic in that agents influence
others over time and not contemporaneously. Over time, however, local
links have more aggregate implications as the set of agents potentially
influenced by activity at one point expands. Fourth, Durlauf assumes that
agents have a discrete choice between two production possibilities. Durlauf
finds that these local complementarities can create multiple equilibria in
the absence of shocks. Further, he uses this structure to study the dynamic
patterns of activity as agents switch between techniques of production,
creating persistent effects of shocks.
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A crude version of this structure is used by Cooper and Johri [1997]
in a stochastic growth setting. In the Cooper—Johri model, the productivity
of an agent is influenced by the level of activity of other agents both
contemporaneously and in the previous period.

They consider an economy in which the representative agent solves the
following dynamic optimization problem:

max EY Bulc, — A, 1-n)
=0

sto+ i <y (17)
ki = (1—8)](, + i
¥ = AnkiYiYL,

where the notation is the same as in the earlier problem though the produc-
tion function allows two forms of interactions across agents. The first is
through the influence of current aggregate activity (Y,) on the output of
an individual producer (y,), parameterized by €. This is the complementarity
that forms the basis of Baxter and King [1991]. The second influence is
through lagged activity (Y,.;) and is parameterized by 7. As in the earlier
discussion, the agent takes all economywide variables as exogenous.

Note that in this formulation, the past level of output is another state
variable in the system. Interesting dynamics can emerge from the interac-
tion of the two state variables: physical capital and experience.

Cooper and Johri estimate the production function parameters using
both sectoral and plant level data. Further, they follow Burnside, Eichen-
baum and Rebelo [1995] by using electricity consumption as a proxy for
capital services. In addition, they use innovations to nonborrowed reserves
and the innovations to the federal funds rate as instruments for their
estimation of sectoral production functions. Overall, they find support for
both contemporaneous and dynamic complementarities. In particular, in
a specification imposing constant returns to scale in own inputs, they
estimate € = .24 and Y = .32.

With these dynamic complementarities, Cooper and Johri find that iid
shocks to both technology and taste can be propagated. As is well under-
stood, an economy with no complementarities produces very little serial
correlation in output when shocks are iid. However, when both complemen-
tarities are set at their estimated values, the standard deviation of output
increases by a factor of almost 5 and the serial correlation in output
increases to .95 from .02.
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INTERMEDIATION

A final example of a technological externality, which also has a macroeco-
nomics flavor, is associated with Bryant [1987] and Weil [1989]. As in
the second example given earlier in this chapter, consider an economy
with increasing returns external to the agent.

In particular, Weil considers a two-period model in which agents’ prefer-
ences over consumption today and tomorrow are given by u(c, ¢,), where
u(-) is strictly increasing and quasi-concave and u,(0, y) = for y>0.
Individuals have an endowment e, in each period of life and can store
commodities at a rate R between the first and second periods. The key to
the model is that while R is taken as given by an individual, it is assumed
to be an increasing function of the average level of savings in the economy.
As a consequence, the economy exhibits social increasing returns though
there are constant returns at the individual level. The assumption that R
is an increasing function is taken to capture the idea of some types of
technological spillovers in the economy. Alternatively, as in the related
paper by Bryant [1987], the process of intermediation may create social
returns to scale due to the presence of fixed costs in the intermediation tech-
nology.

The individual agent solves

max u(c,, ¢,)
Cyy Coy l (18)
S.t.

Cl+i=el, 02=32+iR and =20

where i represents the level of investment. Let i(R) be the solution to this
problem. Since R depends, through the storage technology, on the average
level of storage, denoted by I, the solution to the individual’s problem
may be written as a function, denoted ¢(/). The presence of strategic
complementarity depends on the relationship between / and i through R.
Since R is assumed to be increasing in I, as long as savings for the
individual is an increasing function of R, the economy will exhibit strategic
complementarities. As usual, symmetric Nash equilibria (denoted by i*)
will be fixed points of the function ¢(i).

Weil establishes two results. First, if savings is a decreasing function
of R, there will only be a unique equilibrium with i* > 0. This is a conse-
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quence of the fact that when savings is a decreasing function of the interest
rate, then the model exhibits strategic substitutability and thus uniqueness
of interior equilibria. This is an interesting case as many papers in the
literature on the existence of equilibria with sunspots in overlapping gener-
ations models, such as Azariadis [1981], require that savings fall as R
increases. Since Weil’s goal is to relate conditions for multiple equilibria
to those for sunspots, this is an important point.

Second, if at I = 0, the constraint that i > 0 is binding for the individual,
Weil finds that the economy will exhibit an even number of interior
equilibria.’? In this case, ¢(0) = 0 so there is always an autarkic equilibrium.
Further, since the marginal utility of consumption in the first period goes
to infinity as ¢, goes to 0, we know that ¢(e,) < e,. So, the best response
function equals O for I near O and lies below [ for I near ¢,. Hence, this
function crosses the 45° line an even number of times. In the event that
multiple equilibria exist, Weil would argue that animal spirits or sunspots
would play a role in selecting the outcome. From this perspective, models
which generate multiple equilibria from strategic complementarities pro-
vide an alternative setting for sunspot equilibria. For our purposes, the
example by Weil provides another interesting case of production external-
ities.

FINANCIAL FRAGILITY AND
THE GREAT DEPRESSION

Cooper and Ejarque [1995] extend these models to explore the Great
Depression period using a dynamic model with a complementarity in the
intermediation process. The point of the paper is to model the Great
Depression as a coordination failure arising from financial fragility. Besides
its attempt to understand this important historical episode, the paper also
provides a methodology for constructing the sunspot equilibria associated
with dynamic coordination games.

To study these issues, Cooper and Ejarque specify a model in which
confidence in the intermediation process plays a central role in the decision
making of optimizing agents. Because of complementarities in the interme-
diation process, the economy can have multiple steady states as in the

12. Alternatively, if $(R(0)) > 0, then i* = 0 will not be an equilibrium and generically there will
be an odd number of equilibria.
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Bryant and Weil static examples discussed earlier: there is either a relatively
active (thick) or an inactive (thin) financial system. Once multiple steady
states exist, it is relatively straightforward to construct sunspots as random-
izations between allocations in the neighborhood of the two steady states.
So, macroeconomic fluctuations are driven by periods of optimism and
pessimism associated with the returns from financial intermediation. The
resulting economy has a unique equilibrium in the given state of the
system: i.e., given the capital stock and the sunspot variable, the outcome
is completely determined.

Cooper and Ejarque characterize the equilibria of their model using a
dynamic programming approach. Given the inherent nonlinearity in the
underlying economy and the multiplicity of steady states, linearization is
not a productive approach. Note, though, that the dynamic programming
approach requires its own approximation since the state space must be dis-
crete.

Since agents are assumed to be identical, the Nash equilibrium of this
economy can be conveniently represented as the solution of a stochastic,
dynamic programming problem where the strategic uncertainty is repre-
sented by a sunspot variable. The realizations of this sunspot variable
provide a coordination mechanism for the agents. The fact that the sunspot
matters, of course, reflects the underlying indeterminacy of actions, as in
the Bryant and Weil papers.

Formally, let V(k, 0) represent the value function for a representative
agent with capital k when the realization of the sunspot variable is ¢. The
value function solves

Vik, ) = n}a}lx U(fik, n) — I, n) + BEypV(g(, 8) + k(1-5,), ")
where ’
g(1,9)={ I1+r) if 6=9,

(-F)(1+7) if 8=8, (19)

In this specification, the current utility payoff depends on current consump-
tion and employment. Consumption equals current output less the invest-
ment in the accumulation of capital. The evolution of the capital stock
reflects the undepreciated stock plus the new flows.

The effect of the sunspots, represented by 6, enters the problem through
the accumulation equation, g(Z, 8)."” If 8 = 6,, depositors are pessimistic,

13. Note that at this point the model is observationally equivalent to a model in which there are
fundamentals driving the returns to intermediated activities. We return to the point of how
one can distinguish these models later in our discussion of confidence building measures.
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deposit flows are low and the return from investment (in terms of future
capital) is (1 + r). If © = 6,, depositors are optimistic and deposits are large
enough that the coalition pays a per capita fixed cost of intermediation
(F) to obtain a marginal return (1 + T). Naturally, 7 > r so that the marginal
return on investment is higher in the technology with the fixed cost. Thus
it is new investment flows into physical capital that are influenced by the
current state of intermediation.

There are a couple of interpretations of the specification of the accumula-
tion technology. The first is that the specification is simply an approxima-
tion to the nonlinear relationship in the R(J/) function that is central to
the Weil model. The second is in terms of a technology choice for the
intermediation process. Here F is a fixed cost of project evaluation and
monitoring. If deposit flows are low, then the most profitable intermediation
process is to avoid the fixed cost and use an inefficient technique for
project evaluation. This yields a low marginal return and is self-fulfilling
if savings is an increasing function of the return to deposits. If deposit
flows are high, then it may be profitable to pay the fixed cost and utilize
the high return technology. Again, this can be self-fulfilling and a high
level equilibrium is created.

To study the dynamic coordination problem through this dynamic pro-
gramming approach, two points must be established. First, there must be
a solution to Bellman’s equation, (19). Cooper and Ejarque make reference
to arguments in Stokey and Lucas [1989] that there is a solution to (19).
This is not surprising given that the underlying economy is essentially the
standard growth model with shocks to the capital accumulation process.
The fact that these shocks are endogenous does not affect the solution to
the individual’s optimization problem.

The second issue is ensuring the existence of a sunspot equilibrium.
There are three parameters that are exogenously determined: the fixed cost
(F) and the two returns, T and r. The condition for the pessimistic steady
state equilibrium is immediate since, by assumption, no single agent can
establish the intermediation process without the participation of others.
Formally, this is simply a matter of selecting a large enough value for the
fixed cost. To guarantee the optimistic steady state, F' cannot be too large
and the gap between the returns must be large enough. Cooper and Ejarque
provide conditions such that this equilibrium exists as well, which include
some restrictions on the state space of the capital stock.! Once the parame-

14. Outisde this space, one or the other form of saving may become a dominant strategy.
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ters are such that multiple steady states exist, a sunspot equilibrium is
then constructed as a randomization in the neighborhood of the steady
states. That is, Cooper and Ejarque consider a transition matrix for the
sunspot variable with diagonal elements close to 1.

The first-order conditions for the individual agent are given by

Uf,=-Ur (20)

Ui(c, n) = BEypU(c’, n')[fk m](l + r(0)) @21

The first equation is the usual intratemporal optimality condition, which
equates the marginal rate of substitution between consumption and work
with the marginal product of labor. The second equation is the Euler
equation, which, through the sunspot variable, is directly influenced by
the state of expectations. Variations in confidence levels will directly
affect the returns to investment today as well as the expected value of
undepreciated capital in the next period.

To the extent that the return to investment influences the consumption/
savings decision, confidence will also influence the current level of employ-
ment, through the intratemporal optimality condition. In particular, with
a predetermined capital stock and no technology shock, consumption and
employment will generally move in opposite directions.

Further, for this economy, variations in confidence will lead consumption
and investment initially to move in opposite directions. Given the state of
confidence, the policy function of the agent will dictate the transitional
dynamics for capital. As in the more traditional growth model, if, say, the
capital stock is below its steady state (given the sunspot variable), then
the transition will entail high investment, high employment and low con-
sumption relative to the steady state. So, even in the transition, consumption
and investment are negatively related.”

Cooper and Ejarque undertake a quantitative analysis of their model by
calibrating the underlying parameters of tastes and technology. Further,
they set the returns on the investment activities such that the interest rate
differential is 3% and set F to ensure multiple steady states. Given this
parameterization, they numerically solve the dynamic programming prob-

15. Cooper and Corbae [1997] study an overlapping generations model in which intermediated
activity provides the funding for firms’ labor demand. In that model, some of this negative
comovement disappears.
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lem and simulate their economy. Finally, they compute statistics for their
economy and compare to data from the U.S. interwar period.

In some respects the model does quite well. If the data is pooled across
the regimes, the model’s properties are quite similar, in many respects, to
the standard real business cycle model: the major aggregate variables are
all positively correlated with output and productivity is procyclical. Further,
consumption is less volatile than output, while investment is more volatile
than output. Finally, the economy exhibits serial correlation in output close
to unity, reflecting persistence in the sunspot process.

Given the discussion earlier about the induced substitution between
consumption and investment, it is not surprising that the model produces
a negative correlation between these variables. Further, consumption and
employment are predicted to be negatively correlated. Neither of these
correlations is found in the data for this period. In this sense, the model
in which fluctuations are driven by variations in the productivity of the
intermediation process does not convincingly match observations over this
period. Nonetheless, this exercise indicates the possibility of exploring the
quantitative properties of models in which fluctuations are driven by self-
fulfilling regime shifts in confidence.

SUMMARY

The goal of this chapter was to explore one class of models which exhibits
complementarities. These contributions grow from Bryant [1983], in which
the productivity of a single agent is postulated to depend on the effort levels
of others. While Bryant’s original specification resulted in a continuum of
Nash equilibria, other specifications have been used to produce locally
unique equilibria. Further, the assumption of complementarities in the
production function has been used to study the intermediation process
as well.

A second element of this chapter was to highlight the quantitative aspects
of this research. Starting with the contributions of Baxter and King [1991]
and Klenow [1990], researchers are now able to study the quantitative
properties of model economies with complementarities. This is an impor-
tant step in that it introduces some element of discipline into the modeling
process (i.e., models must in some way confront the data).



4  Imperfect Competition and
Demand Spillovers

In this chapter we study models of imperfect competition. These economies
display complementarity from a very simple mechanism. If others in the
economy are producing more output, then they will be spending more as
well and this induces increased demand for the product of an individual
producer. Generally, the response of the producer will be to increase output
as well. The linkage across agents is thus the familiar income—expenditure
relationship common to many “Keynesian” style models of price rigidities.'
However, these interactions do not require price rigidities as they derive
simply from the assumed normality of goods. In fact, this type of linkage
across agents is present in general equilibrium models without any distor-
tions whatsoever. As we shall see, though, these interactions are much
more powerful in imperfectly competitive economies. In particular, the
income—expenditure linkages can create multipliers and, when combined
with nonconvexities in technology, can lead to multiple, Pareto-ranked
equilibria.

The exact specification of market structure is, of course, quite important
in any study of imperfect competition. Here we study two economies. The
first is a multisensor economy in which there are a small number of firms
producing an identical product in each sector. This is an interesting model
in that it combines strategic substitutability (across firms in a given sector)
with a complementarity across sectors.

The second economy is one of monopolistic competition. We use this

1. See Bénassy [1993a] and the references therein for a thorough review of the connections
between models of imperfect competition and wage/price rigidities.
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economy first to elaborate on the nature of welfare losses due to imperfect
competition and second to study the effects of money in the presence of
menu costs. The final section of the chapter discusses the quantitative
analysis of the monopolistic competition model.

MULTISECTOR COURNOT-NASH MODELS

The next class of models we consider deviates from the standard general
equilibrium model by allowing firms to have market power as sellers of
goods. In particular, we follow Hart [1982], Weitzman [1982] and others
and consider an economy with multiple sectors. Firms within a sector
produce an identical product and choose output, taking as given the position
of the industry demand curve, determined by the level of activity in other
sectors, and the output level of other firms in their own sector.

As there are multiple firms within each sector, this economy exhibits
a rich set of interactions. As in the partial equilibrium Cournot—Nash
model of imperfect competition, there is usually strategic substitutability
across sellers of identical products. As other sellers produce more, the
residual demand curve facing a single seller will shift in, thus inducing
that agent to produce less. In addition, the economy exhibits a form of
strategic complementarity across sectors.” The complementarity in this
economy arises through income effects: expansions in the level of activity
by producers in all other sectors increase the demand for products in the
remaining sector and thus create an incentive for output expansion. The
link across sectors is thus created by a relationship between current income
and current expenditures.

Because of the presence of strategic substitutability in the quantity
decisions of agents within a given sector, the model does not exactly
correspond to the Cooper—John formulation or even to the more general
structure described in the previous chapter. Nonetheless, the essential
implications of strategic complementarities are preserved in this frame-
work. Loosely speaking, the strategic substitutability across agents in a
given sector is dominated by the interactions across the sectors.

2. An alternative model using monopolistic competition, as summarized in Blanchard—-Kiyotaki
[1987], can generate many of these same aggregate demand externalities. This approach is
discussed later in this chapter.
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Basic Structure

For simplicity, suppose that there are two sectors in the economy with F
producers within a sector. For now we take F as given. There is also a
nonproduced good. All agents have an endowment of 7 units of this good.
Sector i agents have preferences given by

cim'™ — kq; (1)

So, a sector i producer consumes the good produced in the other sector
and the nonproduced good. The disutility of production is given by kg,
where ¢; is the output of good i and k < 1. Note that we do not index
producers since, in equilibrium, they will act identically. Of course, in
characterizing the Nash equilibrium, we allow sellers to choose different
output levels. The assumption that agents do not consume any of their
own output is not important, but the fact that they consume the output of
others is crucial: without this assumption there is no trade and thus no
scope for coordination failures.

As buyers, agents take their income and consume the goods produced
in other sectors. In this decision, they act as price takers. This is meant
to capture the idea, formalized in Hart [1982], that agents are large in
their own output sector but, in the presence of many sectors, are small in
the overall economy.

With these simple preferences, a share a of total income (revenues plus
the endowment of the nonproduced good) is spent on the good produced
in the other sector and the remainder of income is used to purchase the
nonproduced good. That is, demands are given by

cio=0ol/p, and m=(1- )l

where I; denotes the income of agent i. Ultility is directly expressed over
production (g,) as

Ap )l — kg 2

where z(p_) = (o/p_)*(1 — )" and /; equals the revenues from production,
P4, and the value of the endowment, m, which is also the numeraire
commodity. The function z(p_) is the utility per unit of numeraire.

A producer of good i will choose ¢; to maximize indirect utility taking
the output levels of other firms within the sector as given. Further, the
producer takes as given the overall level of spending on the sector. Both
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of these influences are implicit in the sectoral price, p;. This leads to the
usual first-order condition equating marginal revenue and marginal cost,

pz(p)[1 + (q/p)dpi/og) = k 3)

Note that the optimization problem of the producer reflects both strategic
and market interactions. The game arises between sellers of an identical
product, in the traditional Cournot—Nash fashion. However, once quantities
are determined, there is an auctioneer that appears to clear the markets
for each of the goods. Of course, the producers anticipate the price the
auctioneer will set to clear markets in making their individual quantity
decisions. See Jones and Manuelli [1992] and Roberts [1987] for analyses
of games of imperfect competition where prices and quantities are set strate-
gically.

Equilibrium Conditions

The price of sector i goods satisfies market clearing: i.e., p; = E;/Q; where
E, is total spending on sector i and Q, is the total output of good i.
From the optimization problem for sector —i agents, we know that E; =
op_ Q- + Fm). That is, a share o of the total income of agents in section
—i is spent on the goods produced by sector i agents.

Given that producers within a sector are identical, it is natural to focus
on symmetric Nash equilibria within a sector. Let g; be the output of good
i per firm in sector i. Further, define = (1 — (1/F)). Here | conveniently
summarizes the extent of imperfect competition in this market. As F gets
large, 1 tends to 1, while, in the case of a monopolist, 1 = 0.

Using the first-order condition for profit maximization given by (3) and
the condition for market clearing, in a symmetric Nash equilibrium the
price of sector i must satisfy

pzlp-m =k )

Note that as a result of constant returns to scale and the assumed prefer-
ences, there are no quantities in (4).

Since the economy is also symmetric across sectors, the equilibrium
price for sector —i satisfies the analogue of (4). In a symmetric equilibrium
pi=p* for i =1, 2 where, from (4), (p*)"™* = k/un, with p = o*(1 — o)™,

Using this price in the market clearing condition implies that per firm
output in sector i satisfies
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Figure 4.1

g; = olg + mip*] )

for i=1,2. The two equations given by (5) jointly determine the levels
of output in both sectors. They provide the link to the strategic complemen-
tarity model since “reaction curves,” linking the output per firm in sector
i with that in sector —i, are upward sloping. That is, expansions in one
sector create an incentive for producers in the other sector to expand as
well. They also bear a striking resemblance to the simple income—
expenditure model of Keynesian economics.?

Figure 4.1 illustrates the relationship between sectoral output levels
from (5). If sector —i output is zero, the demand per firm for good i is
generated from the endowment of the nonproduced good to agents in the
other sector, oim/p*. This represents the “autonomous” level of expenditure
on good i. Expansions of output per firm in sector —i then increase demand
for good i by o unit. This is the complementarity across sectors generated
by final demand linkages.*

3. Note that prices are determined independently of quantities because of the assumption of a
linear disutility of effort.

4. In some sense, there is nothing strategic per se about this linkage: it simply reflects the normality
of goods in the producers’ utility functions.
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The symmetric Nash equilibrium for this economy is the level of output
per firm in each sector, ¢*, where

_ (amip*)
RTT) ©)

*

Note that the level of output in this economy is unique. Given the linearity
of the “reaction curve” there will be a single crossing with the 45° line.
As noted later, the uniqueness reflects a variety of restrictions we have
placed on the technology and preferences.

As one would expect, the level of output lies below the competitive solu-
tion. If firms had no market power atall, thenn = 1 and p* = (k). Since
the price is a decreasing function of 1, as the economy becomes more
competitive, the symmetric equilibrium price falls and, from (6), the level
of production increases.

In terms of welfare, the equilibrium level of utility for a producer in
one of the sectors is

q*a;,;l.(l—a) — kq* (7)

The derivative of this function with respect to g is given by

m (1-00)
a(E) —k (8)

Using the condition for the equilibrium level of output, this derivative can
be rewritten as

Hp' — k )

From the equilibrium conditions, we know that pp*1-® exceeds k since
N < 1. Hence, as the economy becomes more competitive, ¢* and wel-
fare increase.

This is an interesting result because there are two effects present as the
economy becomes more competitive. First, there is a congestion effect
within a sector which decreases payoffs since a firm has more competitors.
On the basis of this effect alone, an increase in the number of firms in
any sector reduces the payoffs to those firms because of the increased
competitiveness. Second, there is a positive externality associated with
greater competition in the other sector of the economy: as consumers,
agents face lower markups as the number of sellers in the other sector
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increases. The fact that welfare increases with the number of firms implies
that the second effect is stronger than the first.

The Multiplier

There is a multiplier in this economy stemming from changes in the level
of real autonomous expenditure (m/p*) on a given sector equal to
1/(1 — o) > 1. The magnitude of this multiplier depends, of course, on the
strength of the demand linkage (measured by o) across the two sectors
of the economy. Increases in autonomous expenditure by sector —i shift
out the demand for good i and induce sector i firms to expand output.
This creates additional demand for sector —i firms and thus additional
revenues to be spent on sector i. These income—expenditure linkages form
the basis of the multiplier.

These multiplier effects are extreme as a result of the assumption of
constant marginal costs. Without that assumption, variations in the endow-
ment of the nonproduced good would create fluctuations in the relative
prices and quantities produced of the two goods. The relative magnitude
of the price and quantity movements would then reflect the curvature of
the function characterizing the disutility of work for an individual producer.

To what extent do these multiplier effects require imperfect competition?
It is entirely possible that a perfectly competitive economy could have an
equilibrium on a flat part of the marginal cost curve. In that case, the
comparative static effects of an increase in the endowment of the nonpro-
duced good could arise as well. Thus, the key to the multiplier in this
economy is the slope of the marginal cost curve and not imperfect competi-
tion per se. Imperfect competition creates a markup of price over cost and
thus reduces the level of employment. If marginal cost is convex, then
production occurs at a flatter part of the marginal cost schedule, thus making
multiplier effects more likely. This is particularly true if the economy has
flat marginal cost to a capacity and the presence of market power is to
move the economy from operating along the vertical part to the horizontal
part of the marginal cost curve.

An importance difference between this model and that explored in Hart

5. Chatterjee—Cooper [1988] and Chatterjee—Cooper—Ravikumar [1993] use this property to de-
velop models of multiple equilibria through the endogenous determination of the number of
firms in each sector. If agents must incur a cost of participating in imperfectly competitive
markets and this cost differs across the agents, there may exist thick (thin) market equilibria
with high (low) levels of participation.
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[1982] concerns labor markets and thus the possibility of underemploy-
ment. Hart assumes that labor markets are imperfectly competitive because
of the presence of labor unions of syndicates. These groups of workers
have market power while firms act competitively in the labor market.
Further, Hart simplifies the analysis by assuming that workers have no
disutility of work. Still, because of the market power on the supply side
of the labor market, he is able to obtain underemployment equilibria and
a multiplier.

Multiple Equilibria

Another aspect of these models is that the presence of imperfect competi-
tion creates the possibility of multiple, Pareto-ranked equilibria and thus
coordination failures. This is, of course, not possible in a competitive
environment, in which the First Fundamental Welfare Theorem holds. The
example given did not have multiple equilibrium because of two important
properties: the constant elasticity of demand and the linearity of the produc-
tion process.

Heller [1986] provides an example of multiple equilibria based on
variations in the elasticity of residual demand. The idea here is that for
some reasonable preference structures the elasticity of demand will be
relatively high at low levels of consumption and relatively low at higher
levels of consumption. Combined with imperfect competition, this implies
that markups will be relatively high (low) when output and consumption
are low (high).

Alternatively, multiplicity can arise from nonconvexities in the produc-
tion process. Consider a version of this multisector economy in which all
firms in sector 1 choose output and the method of production. The former
is a continuous choice, as earlier, while the latter is naturally discrete.

As in Cooper [1994], suppose that each firm can choose between two
technologies. Technology j has a fixed cost of operation denoted by K;
and an associated marginal product of labor, 6,, for j =L, H. Assume that
05> 6, and that Ky > K, so that technology H is more productive than
technology L but also has a higher fixed cost of operation.

Which technique will a firm use? If sales are sufficiently high, then a
firm should be willing to incur a high fixed cost to utilize the more
productive technique. Alternatively, if demand and sales are low, then it
may be more profitable for firms to use the less efficient technique to
reduce overhead costs of production. One interesting example of this might
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be the choice between single and multishift production, assuming that
starting a shift entails some fixed expenditures.

Of course, in an equilibrium model, sales are not exogenous but rather
result from the activities of others. In the two-sector model, the output of
sector 1 firms is sold to sector 2 producers, who, in turn, earn income
from the production and sale of their own output. This sets the stage for
multiple equilibria through the choice of technique by sector 1 firms.

Cooper [1994] proves that if o is sufficiently close to 1, so that the
linkages across the sectors are strong, then multiple equilibria can arise.
In one equilibrium, all of the sector 1 firms use the more productive
technology. This is individually optimal since the choice of this technique
by all firms leads to a lower sector 1 price, higher output from sector 2
firms and hence a lower sector 2 price as well. This lower price for sector
2 goods provides the inducement for the adoption of the high fixed cost
technique by a representative sector 1 firm. In the second equilibrium, firms
adopt the low fixed cost, low productivity technique, leading to high prices
and relatively low levels of activity, which rationalize this equilibrium.

Cooper uses this model to argue that in the face of “demand shocks,”
modeled as variations in the endowment of the nonproduced good, produc-
tivity and output will be positively correlated as a result of variations in
the choice of technique. The procyclical productivity is not the result of
new inventions but rather the endogenous utilization decision of exist-
ing techniques.

MONOPOLISTIC COMPETITION

An alternative model of imperfect competition, also used widely in macro-
economics, assumes monopolistic competition. Here the conception is that
each agent supplies a unique good to the market, so that, in contrast to
the model described, there is no competition between producers of an
identical product. Under the maintained assumption of a large number of
products, the individual producer of a good (either a final good, an interme-
diate good or even a distinct form of labor service) takes the state of
the aggregate economy as given when optimizing, though, as usual, the
aggregate state does matter for the individual. This limited form of interac-
tion simplifies the analysis greatly. As we shall see in the next section of
this chapter, this model also facilitates a study of price setting behavior.

The model we analyze here is a simple extension of that explored in
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the previous section. Other versions of this model abound in the literature:
Blanchard and Kiyotaki [1987] provides a rather thorough analysis of a
general version of the economy including market power in both goods
and labor markets.

Consider an economy in which there are J agents producing distinct
goods. Let j=1,..., J index the good and let i represent an arbitrary
agent. As earlier, each agent is endowed with 7 units of a numeraire
(nonproduced good) and some leisure time. In the monopolistic economy,
each good j is produced by a unique agent and each agent produces a
unique good. Preferences are given by

ctmi™ — kg, (10)

where ¢; is an index of consumption, m; is the consumption of the nonpro-
duced good and k is a parameter describing the disutility of work. The
production technology is quite simple: output (g;) equals labor input.
The difference between this model and the one above concerns the
index of consumption. Let the consumption index for agent i, ¢;, be given by

7= 0/(6-1)
= (2 cﬁ}*”’”) (11)
j=1

where 0 > 1 parameterizes the degree of substitutability between goods in
this CES specification. Note that an alternative, but equivalent formulation
would treat the consumption aggregate as the output of a competitive
production section, and the individual consumption goods would then be
inputs into the production of the final good.

Each individual producer maximizes utility subject to a budget con-
straint:

j=J

Epjci} +m; = pn; + m= Ii (12)

J=1

Here we use c; to denote the consumption of good j by agent i. Further,
m; is the consumption of the nonproduced good by that agent. Further, let
I; denote the income of agent i, which is composed of revenues from
production and the endowment 7 of the nonproduced good.

To ease the analysis, it is convenient first to represent the demand
functions for a representative agent and then to investigate the output
choice of a representative producer. Given income I, agent i chooses a
consumption bundle taking prices as given. In this way, the agent takes
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prices as given when acting as a consumer. The resulting demand functions
for agent i are given by

m; = (1-o)l; and c¢; = (al/P)(p;/P)™® (13)

where P is the CES price index given by

J=J 1/(1-8)
P= ((1/1)21;}-6) (14)
j=1

These demand functions have the usual property of Cobb—Douglas utility
that the budget shares are given by (1 — o) for the nonproduced good and
by o for the consumption index, i.e., Pc; = al.

Using the demand function for the produced good by a representative
agent, the aggregate demand for product j is

D= %I(p,-/P)*’ (15)

where I measures total income. As in the model of imperfect competition
explored in the previous section, part of the interaction across agents will
be determined, in equilibrium, by 7. Our assumption that 6 > 1 implies
that an increase in P will lead to an increase in the demand for product j
given I and p;. The increase in the aggregate price level reduces the real
value of income but also creates a substitution effect which dominates the
income effect.

We can now use D; to determine the optimal output level of an individual
producer taking both P and I as given. Using the fact that both ¢; and m;
are proportional to I, the individual producer maximizes

],LP‘“[p,n,« + M] - kn,~ (16)

where W is again a constant function of o as in the previous section. The
demand function for good i, from (15), is used in this optimization problem.
The first-order condition will generally express the relationship between
the price of product i, optimally set by the choice of output by producer
i, as a function of aggregate income (/) and the price level P. However,
with constant marginal costs and the constant elasticity of demand implied
by the CES preference structure, the first-order condition is independent
of the output level and is simply

pi = kP/[(1 = (1/6))p] )
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Thus the optimal price for an individual is an increasing function of
the aggregate price level since o is positive. Further, the markup of price
over marginal cost (k) is proportional to (1 — 1/8) so that large markups
are associated with low values of 0. This makes good economic sense. If
goods are not highly substitutable, then the producer has more market
power, which is reflected in a larger markup.

The equilibrium of the model is characterized by a vector of prices and
output levels for each product such that individuals are optimizing and all
markets clear. As in numerous examples already seen in this book, the
natural output is a symmetric equilibrium in which p = P = P*. The market
clearing price P* is given by

k (1/(1-oe)
B e [ —
P ‘(u(l—(l/e») (18)

Note that this is essentially the same equilibrium price as that given for
the multisector model of imperfect competition.

At these prices, the equilibrium output of a given sector, denoted by
y*, is determined from demand. Since all prices are set at P* and all
agents produce at the same level, total income in the economy must be
J[P*y*] + M so that
y* = aly* + M/P*] = o‘iMf”;*) (19)
where M is the aggregate endowment of the nonproduced good in the
economy.

The output effect of the monopolistic competition is to raise the equilib-
rium price level and thus to lower the equilibrium output. Perfect competi-
tion here occurs when products are perfectly substitutable so that 6 — co.
In this case, P* and output go to their competitive levels.

It is interesting to compare (18) and (19) with the Nash equilibrium of
the imperfectly competitive economy given by (4) and (6). Since both the
economy with quantity setting Cournot—Nash firms and the monopolistic
competition economy specified here assume constant marginal cost, it is
not very surprising that equilibrium prices can be determined independently
of the level of output. Note, though, that this property also rests on the
assumptions regarding preferences such that demand elasticities are con-
stant. Further, the two output expressions are identical: in both cases output
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is proportional to the real value of the stock of the nonproduced good. In
both cases, this outside good provides a basis for the expenditures of the
economy and, also, through the Cobb-Douglas preferences, provides a
leakage out of the expenditure stream.

One important difference between the two economies is the source of
market power. For the multisector Cournot—Nash model, market power
is created by the assumption of a small number of sellers of each particular
product. The degree of market power is thus parameterized by the number
of firms. In contrast, the key parameter for the model of monopolistic
competition is the degree of substitutability between products.

MONEY AND MENU COSTS

There are additional contributions of imperfect competition models. One
of them concerns the price setting behavior of firms when prices are costly
to adjust. Ball and Romer [1990] consider the set of Nash equilibria in a
price setting game between monopolistic competitors. As in the related
work of Blanchard and Kiyotaki [1987] and as discussed in the previous
section, the preferences are structured so that the best response of price
setter i to an increase in the aggregate price level is to increase his own
price as well. That is, these models of monopolistic competition have a
strategic complementarity in prices. If one then embeds this price setting
game into an aggregate model with changes in both the money supply
and menu costs, Ball and Romer show that multiple equilibria, in terms
of the response of prices to the stock of money, may arise. In one equilib-
rium, prices are flexible, and in another, as a result of the menu cost, no
agent, acting alone, wishes to change prices given that others are not
changing their prices. The point is simply that the gains to changing prices
are higher if others change them as well.

Of course, the model presented earlier must be amended to accommodate
an analysis of monetary shocks since the basic model of monopolistic
competition does not contain money. It is tempting to treat the nonproduced
good as money, but care must be taken to understand the demand for
money and the basis for its nonneutrality. In terms of money demand,
these extensions of the models of monopolistic competition take the simple
but direct approach of putting money into the utility function. This has
the desired effect of creating a demand for money, though the source of
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this demand is not made clear. One possibility would be to extend the
analysis to, say, a two-period overlapping generations model so that money
is held as a store of value.

With regard to the issue of money nonneutrality, the point of the analysis
is to create real effects of money based upon costs of adjusting prices.
One of the themes in this literature is that a small menu cost can create
“large” welfare effects in the presence of a distortion such as market
power. On this point, the standard reference is Mankiw [1985].

To see this somewhat more formally, we consider a fairly general model
of price setting behavior and then specialize it to understand the results
of Ball and Romer. The starting point of the analysis is the profit function of
a monopolistic competitor, as in the model of the previous section.

We denote the current profit flow by W(M/P, p/P) where P is a measure
of aggregate prices, M is the stock of fiat money and p is the current price of
the seller. Think of M as a stochastic variable, reflecting the policies of
the monetary authority. P is again a summary statistic for the decisions
of other sellers in the economy and is viewed as outside the control of
the individual seller. Thus M/P is an exogenous random variable from the
perspective of the individual seller. In contrast, the seller has an influence
on his relative price, p/P.

The profit function W(M/P, p/P) can be derived from the model of
monopolistic competition given earlier, recognizing that M/P, a measure
of aggregate expenditures, and p/P, the relative price, are the two arguments
in the demand curve facing an individual producer. Thus utility can be
written as a function of these two variables. Ball and Romer provide more
details on this point, and for now we can view this profit function as a
primitive object.

Assume that in each period, the seller can either leave his price at p or
change it. For simplicity, we assume that these changes take effect immedi-
ately, though the seller bears a fixed cost of price adjustment (a menu cost)
of F. Using the state vector s = (M/P, p/P), the optimization problem of
a seller can conveniently be expressed as a dynamic programming problem
where V(s) is the value function defined over the current state:

V(s) = max [W(MIP, p/P) + BEV(M'IP’, pIP’), (20)
max,.W(M/P, p*IP) — F + BEV(M'IP’, p*IP")]

So, in the first term, the seller doesn’t change his price and thus sells
goods at a relative price of p/P today. The stochastic evolution of M and
P is reflected in the expectation of the future value of being in state s’.
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For the second option, the seller incurs a cost of F to change the price of
some other, denoted by p*. Note that the optimization problem that yields
p* takes into account both the current and future effects of having this
new price. Further, as in the model described in the previous section, the
seller views P as independent of his action.

The qualitative properties of the solution to the single agent problem
is not difficult to understand.® The agent will adopt a strategy of inaction
as long as p/P is not too far from its optimal point given M/P. Once p/P
is outside the inaction set, then the agent will act.

Of course, the equilibrium analysis must go beyond this point since we
are interested in more than the optimization problem of a single agent.
To analyze the equilibrium we note that the variable P, while exogenous
to the single agent, reflects the joint decisions of all agents. Thus the
characterization of the state dependent equilibrium requires the solution
of the individual dynamic optimization problem and a fixed point type
argument to ensure the consistency of P with the individual state depen-
dent decisions.

Ball and Romer do not tackle this very difficult problem but instead
simplify it by considering an essentially static framework.” Their analysis
succeeds in bringing to light the possibility of multiple equilibria in this
and related environments. Suppose that in the previous period price changes
had occurred so that the economy was in an equilibrium in which all
agents charged the same price: p = P. Further, assume that M stock of fiat
money is such that M/P = 1. This is the equilibrium of the economy in
the event that F =0 and thus provides a useful initial condition.

Given this, a new value of M is randomly drawn. Price setters must
decide whether to change their price or not and do so to maximize static
profits alone. Thus, Ball and Romer essentially ignore the future effects
of changing prices today.

First, we consider the conditions such that sellers do not change their
prices. Given that all others keep their price fixed at P, a given seller will
do so as well as long as

WM, 1) 2 WM, p*/P) - F 1)

6. Important references include Caballero—~Engel [1993], Caplin~Leahy [1991, 1997], and Dotsey,
King and Wolman [1996]. One interesting aspect of these papers is the connection between
the magnitude of strategic complementarity and the nature of output and price fluctuations in
response to monetary shocks.

7. Caplin—Leahy [1997] finds the general equilibrium of a related economy without the emphasis
of Ball-Romer on multiplicity.
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Here W(M/P, p*/P) denotes the current period payoff from selecting p*
given the aggregate price level and the nominal money supply. According
to Ball and Romer, a second-order Taylor expansion of this around the
initial equilibrium point of (1, 1) implies that there exists an equilibrium
with price rigidity for values of M in the interval (1 —x*, 1 + x*). Put
differently, for values of M further away from 1 than x*, even if others
keep their price fixed, the representative seller will vary his price. In
their analysis,

—2 W, F
x* = q —= 22)
\J (W)
where Wy, and W, are the derivatives of the profit function evaluated
at (1, 1).
Alternatively, suppose that all others adjust prices to p**, the equilibrium

price given adjustment. Thus the aggregate price level is P** = p** in the
face of the money supply change. This is an equilibrium as long as

W(M/P**, 1) — F =2 W(M/P**, p/P**) (23)

where p represents the initial price of the representative seller. By not
adjusting, the seller incurs a relative price change but avoids the menu
cost. For this case, there is also a maximal absolute value change in M,
call it x**, such that adjustment is an equilibrium if M lies outside the
internal (1 — x** 1 + x*%*),

The issue of multiplicity is determined by the relative sizes of x* and
x**_ If x** < x*, then there exists a region of values of M such that agents
will change prices if others do but will keep their prices fixed if others
do not change theirs. Ball and Romer find that x*/x** = 1/x where &t = ~W,/
Wo,. Assuming that profits are strictly concave in the price level of a seller,
i.e., Wy <0, the sign of = is determined by the sign of Wy,. In fact, & is
equivalent to the derivative of the optimal relative price of seller i (p/P)
with respect to the aggregate level of real spending (M/P).

For x** < x*, it must be the case that T < 1. With this model, this is
equivalent to the condition that the reaction function, expressing the opti-
mal price of a seller as a function of the aggregate price, is increasing
and crosses the 45° line with a slope less than 1. That is,

Wi + Wy -

dp,/dP =
P Wa

1-7 (24)
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So, the condition of strategic complementarity in the price setting process
along with a stability condition implies that there are multiple equilibria
in the static version of the price setting game. This is an interesting result,
though questions about its robustness to a more dynamic setting remain
open to discussion.

QUANTITATIVE EVIDENCE ON DYNAMIC
MODELS OF IMPERFECT COMPETITION

The final point of this chapter is to make note of efforts to undertake a
quantitative analysis of the aggregate economy from the perspective of a
model with monopolistic competition. A useful starting point is the analysis
of Chatterjee and Cooper [1993], who investigate the basic model of
monopolistic competition in the stochastic growth model with capital
accumulation.® The Chatterjee—~Cooper model allows for the endogenous
determination of the number of products and thus extends the prior model
of Hornstein [1993]. In fact, the presentation of the Chatterjee—Cooper
model provides a vehicle for understanding the results of Hornstein as well.

Household and Firm Optimization

This section describes the decision problems for the many firms and the
single representative consumer of the economy. As in the basic model of
monopolistic competition, each of the firms produces a different good. In
contrast, for this economy that good can be either consumed directly or
used to produce an investment good which becomes capital in the future.
Thus there are two CES functions, which, respectively, describe the produc-
tion of composite consumption and investment goods from the specific
commodities. Further, for this economy, the number of products is endog-
enous.

Let N, denote the number of producing firms (equivalently, products)
in period ¢ with pJ and p] as the consumption and investment price of the
jth good,j e {1,2,...N;}. The consumer derives utility from leisure and
the consumption of each of the produced goods and earns income from
renting labor and capital to firms and also receives the profits of the firms.

8. Thus this discussion draws heavily upon this paper with Satyajit Chatterjee.
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The wage rate is denoted w;, and the rental price of a unit of capital is g,.
The optimization problem for a representative consumer is given by

max 2[3’14(0,, L)
r:O

N, N, N,
s.t. ol + 1< w(1-1) + gk, + 211:,

= =

ke = (1-8)k, + i, (25)

N v N
= (ZC{]N) s =(2 ) 0>1
Jj=1
¢ 20, 20, 121,20

Note that the consumption of each of the goods produced enters the utility
function through a symmetric CES aggregator with elasticity of substitution
given by v/(1 —v). Similarly, as in Kiyotaki [1988], investment in period
t is a symmetric CES aggregate with elasticity of substitution (8/(1 — 0).
The use of these two separate aggregators is meant to capture the impor-
tance of diversity for consumers as well as producers without straying too
far from the traditional one-sector model. This specification allows us to
capture imperfect substitutability within consumer goods as distinct from
the degree of substitutability of inputs into the investment process. From
the consumer’s side, the CES function represents a home production func-
tion in which consumption goods purchased in period ¢ are used to produce
a consumption aggregate, ¢, Similarly, the consumer purchases a variety
of investment goods which are combined to produce additional capital in
the following period.

Given ¢, and i, the consumption and investment demand for good j in
period ¢ is given by

8
o= (”—) : if,=i,(§"‘)” (26)
Pu it

where p,, and p, are price indices given by

N, . N, L1
P, = (Z,(p’&)m) Py = (Z,(p?t)m) 27)
= J=

1-v

These conditions for consumer demand, given ¢, are essentially identical
to those generated by the static economy. The intertemporal optimization
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1s, of course, reflected in the allocation of current income between con-
sumption and investment.

These price indices show the benefit of variety effects: if the price of
all types of consumption (investment) goods is the same, then, since v
and 0 exceed 1, the consumption (investment) price index is a decreasing
function of N, Therefore, an increase in the number of products lowers
the cost of consumption and investment relative to leisure. If v # 6, an
increase in N, also alters the cost of the consumption good relative to the
investment good; in particular, it falls if v < 6. Intuitively, these effects
arise because the produced goods are imperfect substitutes for each other.
As more of them become available it becomes easier (i.e., cheaper) to
satisfy a given level of demand. Note that the strength of these effects
depends on the degree to which v or 8 departs from 1; the number of
firms has no effect on the price indices when v and 0 are 1: i.e., the goods
are perfect substitutes for each other.

Using the price indices noted in (27), the budget constraint in the
consumer’s problem can be compactly written as

N,

Puc, + pids S w(1=1) + qk, + D) (28)
=1

Jj=

Thus, ignoring nonnegativity constraints, the intratemporal and intertempo-
ral efficiency conditions are

ul(c,, lt) w;

e 29

ules 1) Pa @

uc(ct’ lt)(%) = ﬁuc(ctﬂ’ lt+l) q“l + (1 - 8) 'pl_l”-) (30)
ct ct+l pcr+l

From the Euler equation, given by (30), the consumer’s loss from reducing
the consumption index by a unit in period ¢, purchasing some of the
investment index, equals the gain obtained by consuming the proceeds
from first renting the capital and then selling the undepreciated capital in
the following period.

Each of the N, firms active in the economy in period ¢ produces a single,
unique good. Good j, produced by seller j, can be sold to consumers either
as a consumption good (at a price pJ) or as an investment good (at a
price pj}). Thus, we assume that the firm can price discriminate between
consumption and investment goods markets.

Since the capital accumulation decision is made by the consumer, each
firm needs to solve a static profit maximization problem. Each firm takes
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factor prices as given but recognizes its market power in the commodity
market. The production function F(. . .), given more explicitly later, is
characterized by overhead labor () and overhead capital (k). The overhead
costs are important as they allow the existence of market power with no
excessive profits on average. Variations in the technology parameter, A,
will be a source of fluctuations in the economy.

Equilibrium Analysis

Since the output of each active firm appears symmetrically in the consump-
tion and investment aggregate, the equilibrium quantity and price of each
good will be the same. An equilibrium is then a sequence of consumption,
output, employment, investment and prices such that individuals optimize,
markets clear and firms earn zero profits (reflecting free entry).

As shown in Chatterjee and Cooper, the conditions for consumer and
firm optimization can be used to eliminate the price, wage and capital-
rental terms. Therefore, the conditions of equilibrium reduce to the follow-
ing equations:

ul(ct, 1- nr) = A,M_an(nr _ N,n, kt _ Nrk) (31)
uc(ct’ 1 - nt) Vv
0 -

ulc, 1 - nr);NY = Bulcur,1 — n4y) (32)
{Ar+l t:lle(nM - Nr+l’1; kit = Nuy ) +(1 - 8)% r+_le}
¢+ N\*¥{kyy = (1 - 8k} = ANY'F(n, ~ N, k, — Nk) (33)
6+ Nk — (1 - D)k} (34
AN {Fn(nr =N k= NF)  Fin = Nn, k = Nb),

t 1 V ] V t
limt—woBtuc(cr, nky =0 (35)

The first two are the familiar intratemporal and intertemporal efficiency
conditions. The third equation is the resource balance condition for the
firm (i.e., the constraint in the optimization problem of the firm) expressed
in terms of economywide variables. The fourth condition is the zero profit
condition of firms, also expressed in terms of economywide variables. The
final equation is the transversality condition.
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Note that this system of equations nests two interesting models. One is
the perfectly competitive neoclassical macroeconomic model analyzed in
King, Plosser and Rebelo [1988]. This basic model corresponds to the
case where v =0 =1 and 7 = k = 0. The second is the model explored
by Hornstein where monopolistic competition is present but there is no
entry or exit.

Relative to these other models, there are a couple of points worth noting.
First, the total factor productivity term A, in the basic model is replaced
by the composite term AN, on the right hand side of (31)—(35). Since
N, is an endogenous variable, the effective total factor productivity in our
model is endogenous and positively related to N, since v > 1.

Intuitively, we would expect an increase in A, to increase the equilibrium
number of firms in period ¢ so that a given exogenous shock to productivity
would be larger in the imperfectly competitive model than in the competi-
tive model: i.e., the imperfectly competitive model magnifies the impact
of productivity disturbances.

An increase in total effective factor productivity in period ¢ would also
encourage more accumulation of capital, which in turn increases the num-
ber of firms in future periods. Therefore, even if the original shock to A,
is purely temporary, effective factor productivity will be serially correlated:
i.e., the imperfectly competitive model provides additional propagation
of productivity disturbances.

A second important aspect of introducing imperfect competition is that
the presence of overhead labor and overhead capital influences the respon-
siveness of the economy to underlying shocks. As discussed in Hornstein
[1993] as well, the key to understanding the effects of monopolistic compe-
tition (leaving aside product space variations through entry and exit) con-
cerns the introduction of overhead costs, which are needed to absorb the
profits from markups.

Following the approach of King, Plosser and Rebelo, Chatterjee and
Cooper perform a quantitative analysis of their economy. Many aspects
of the parameterization are from the basic neoclassical model. However,
two key parameters for this study are 0 and v: the degrees of substitution
between consumption and investment goods. Chatterjee and Cooper look
at two cases.

The first, termed small markups, follows Hornstein [1993] and sets 6 =
v = 1.5 so that the markup of price over cost is 50%. This is a fairly
conservative estimate of markups given the estimates reported in Hall
[1988]. The ratio of production to nonproduction workers (a proxy for the
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overhead labor ratio) is set at .5, consistent with the evidence discussed
in Davis and Haltiwanger [1991].°

The second, termed large markups, sets 6 = v = 2, closer to the upper
range of Hall’s estimates. For these higher values of markups, the overhead
labor and capital ratios equal 1 so that labor’s technology coefficient
remains at .64.

Looking at the response to temporary technology shocks is useful since
this provides evidence on the response to shocks and their propagation.'°
The model with perfect competition has many features that we normally
associate with aggregate fluctuations: consumption is less volatile than
output, investment is more volatile than output and there are positive
contemporaneous correlations between key macroeconomic variables and
output. However, as the technology shocks which drive the economy are
transitory, there is little serial correlation in output fluctuations.

The addition of monopolistic competition without allowing for product
space variation over the business cycle slightly increases the volatility of
consumption and its correlation with output and somewhat reduces both the
volatility of investment and its correlation with output. More importantly,
employment fluctuations appear to be dampened by the introduction of
monopolistic competition.

Since the analysis is conducted using an approximation around the
steady state, one might think initially that adding in market power through
markups would have little impact on the time series properties. However,
this is not the case. By construction, the effects of monopolistic competition
are not due to different estimates of parameters in the Cobb-Douglas
technology. In fact, as explained earlier, the existence of markups implies
the presence of overhead labor and capital, which dampens the response
of firms to variations in the state of technology.

In the absence of entry, profits of firms are highly procyclical. The entry
treatment allows potential entrants to respond to profit opportunities in their
participation decisions. The propagation effects of the monopolistically
competitive environment with entry and exit are evident from the fact that
the serial correlation of output is .02, about four times that produced by
the competitive economy. This increased serial correlation in output comes

9. This estimate of the overhead labor ratio has the virtue of implying that our estimate of the
exponent on the labor input in our production function is the same as labor’s income share.
Note that we are calibrating the overhead capital and labor ratios and not the overhead capital
and labor requirements directly.

10. Details of these calculations appear in Chatterjee—Cooper.
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from the sources identified in our previous discussion: a temporary technol-
ogy shock induces a product space expansion, which fosters more capital
accumulation, and, in subsequent periods, the number of products remains
above its steady state value. Still, at these low levels of the markup, there
is relatively little internal propagation.

For the large markup treatment, there is substantially more endogenous
propagation of the shocks. The amount of serial correlation in output from
the transitory productivity shock is .13. There is also substantial serial
correlation in consumption (.31), though none in either investment or em-
ployment.

SUMMARY

This chapter presented another class of economies in which complementar-
ities were present. Here the departure from the Arrow—Debreu economy
arises from the presence of market power.

Two basic models were presented. In the first, firms were large in a
given market but small in the overall economy. For this economy, the
interaction across firms within a market was characterized as strategic
substitutability, while the interaction across sectors was one of strategic
complementarity. Here we found the possibility of underemployment,
multiple equilibria and multiplier effects. A second economy, one with
monopolistic competition, was also developed. In fact, except for the source
of market power, these two economies were analytically quite similar.

The monopolistically competitive economy was used to study two issues
in macroeconomics. The first concerned the relevance of menu costs and
money nonneutrality. Here we used a model from Ball and Romer to argue
that in the presence of menu costs there may exist multiple equilibria in
terms of the decisions of firms to change their prices.

The second exercise was to look at the quantitative properties of these
models. Here we found that the model of monopolistic competition with
entry and exit provided a vehicle for the magnification and propagation
of temporary technology shocks. Further development of these models
indicates that they can mimic many of the basic properties of U.S. data
though determining the magnitude of markups, and their cyclical sensitivity
is a continuing area of research."

11.1In a series of papers, Rotemberg and Woodford have also developed a theory of cyclical
variations in markups using a supergame approach.
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The next class of models stresses interactions between agents that reflect
various forms of trading externalities. Here the linkages between agents
do not arise directly in preferences or the production process but rather
in the way agents come together to trade. Thus, these models rest firmly
on the view that the Walrasian auctioneer does not function to bring
together traders. Instead, trade frictions arise from the process of search
and recruitment.

The complementarity in these models stems from the “thick market.”
This is essentially a restriction on the relationship between trading costs
and the level of economic activity. In particular, the economies we explore
have the property that if there are many agents in the market searching
for trading partners, then the returns to participating in the market are
higher as a result of reduced costs of search. Thus thick market effects
are just the opposite of congestion effects: the thicker the market the lower
are trading costs.

AN EXAMPLE

The flavor of these models can be seen through a simple example of a
participation complementarity.! Denote by Z(p) the return to an individual
from participating in an activity if a proportion, p, of others are participat-

1. This example comes from Chatterjee—Cooper [1988] and is similar to one presented in How-
itt [1991].

84
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ing. Assume that Z'(-) > 0 so that thicker markets are more desirable. The
economics underlying this assumption will be the focus of the discussion
to follow. Suppose that agent i’s opportunity cost of participating is k; and
that these costs are distributed across the population with a cumulative
distribution function given by H(k), for k € [0, 1]. Further, assume that
Z(0) > 0and Z(1) < 1. So, at zero participation, those with near 0 participa-
tion costs will choose to participate. Further, even if all others were
participating, those with high opportunity costs would choose not to partici-
pate. These assumptions play the same role of guaranteeing an interior
equilibrium as those made for the Cooper and John model developed
earlier.

In a participation equilibrium, agent i takes p as given and participates
if and only if Z(p) 2 k;. That is, agent i will participate iff the gain to
participation exceeds the cost.

An equilibrium is characterized by a critical participation rate, p*, and
a critical participation cost, k*, such that Z(p*) = k* and p* = H(k*). In
an equilibrium, if p* agents participate, then all agents with k; < k* = Z(p*)
will participate. If H(k*) = p*, then the participation rate is self-fulfilling.

Figure 5.1 shows equilibria in this type of participation game. Here,
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the variable k is on the horizontal axis, while p is measured along the
vertical axis. Thus the function H(k) is plotted as a cumulative distribution
function in the usual manner. The function Z(p) maps from points along
the vertical axis to values of k along the horizontal axis.

Since Z(-) and H(:) are independent, it is easy to construct examples of
multiple participation equilibria. This is shown in the figure by the multiple
crossings of the Z(-) and H(-) functions. As Z'(-) > 0 by assumption, these
equilibria will be Pareto-ranked by the level of market participation. Mar-
kets which are thick (p,) are Pareto-preferred to thin (p); markets because
of the positive externality associated with Z'(-) > 0.

The crucial assumption in this example is that Z'(-) > 0. The contribution
of the other papers in the participation complementarity literature is to
provide interesting economic contexts in which this condition is met. In
the work of Diamond [1982] and Howitt [ 1985], the returns to participation
increase with p since thicker markets reduce transaction costs, in particular
search costs. In Chatterjee and Cooper [1988] and Pagano [1989a, 1989b],
the entry decisions of firms in imperfectly competitive markets generate
a similar condition: agents would rather have market power as sellers in
a thick market equilibrium than in one with thin markets. This may appear
counterintuitive since firms with market power generally are better off as
the number of competitors falls. In general equilibrium, that effect is
present but, as argued in the previous subsection, is outweighed by the
fact that firms (i.e., their owners) must spend the proceeds from sales on
consumption goods and hence are affected by the market power of firms
as consumers too. We now turn to the development of these models.

DIAMOND MODEL

To begin, we consider the model analyzed in Diamond [1982]. This model
provides a simple framework to understand the notion of thick market
complementarities. As in the example given, the key is that the returns
to production are higher when many other agents are producing. This
complementarity arises through the matching process of individual agents.
This is also a useful model to study as it forms the basis of the Kiyotaki~
Wright {1993] search model with money that we study later in this chapter.

We illustrate the model through the time-honored tradition of casting
macroeconomics in terms of tropical islands. Suppose that individuals face
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a production decision: to climb a coconut tree and retrieve the fruit or
pass up the opportunity. Trees are of varying heights so that agents opti-
mally decide on a cutoff and climb trees iff they are shorter than the
cutoff. If the agent elects to climb the tree, he must then meet a trading
partner since, by assumption, agents do not consume the goods they
produce. The likelihood of meeting another agent is assumed to be an
increasing function of the number of agents looking to trade coconuts.
This creates an underlying trading complementarity in the model: when
markets are thick, trades are more likely. This is the basis of the multiple
equilibria: if markets are thick (thin), then agents will optimally choose
a high (low) cutoff, and, in a symmetric equilibrium, markets will be thick
(thin) since there are many (few) traders searching for a partner.

To be more specific, consider an environment in which agents have
production opportunities that have a stochastic cost ¢ = & with a cumulative
distribution function given by G(c).” Time is continuous and these produc-
tion opportunities arrive with probability o in each instant.’> The arrival
rate of production opportunities is exogenous and independent of the level
of activity in the economy. Agents searching for a production opportunity
are termed unemployed. Once a production chance is received, agents must
decide to incur the production cost ¢ or forgo the production opportunity. If
production occurs, the cost is incurred instantaneously and a unit of output
is produced.

Let e denote the proportion of agents (termed employed) with a unit of
a good in storage in search of a trading partner. By assumption, this unit
of output cannot be consumed by its producer so the agent must wait for
the arrival of a trading partner. The agent is assumed to meet another
agent with a unit of the good in storage with probability b(e) in every
instant of time, with 5(0) =0.

The key to this model, and the source of the trading complementarity,
is that the probability of meeting a trading partner is an increasing function
of the fraction of agents (e) in search of a trading partner. Diamond
assumes that goods are indivisible so that once two agents meet, they
simply swap the goods they each hold in inventory. Hence, thick markets
(high values of e) imply that the instantaneous probability of meeting a
trading partner is higher, thus increasing the returns to production. Thus,

2.& >0 places a lower bound on the costs of production.
3. Formally, the arrival of production activities is a Poisson process with an arrival rate of o.
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one can see that the possibility of multiple equilibria, indexed by the level
of trading activity, can emerge as a result of the presence of a strategic
complementarity induced by the search process.

Let W* be the lifetime return to an (employed) agent with a unit of the
good to trade. Likewise, let W* be the lifetime return to an (unemployed)
agent awaiting the arrival of a production opportunity. Then,

rWe = b(y — We + WY) 1

and
rW = (xj (We — W — ¢)dG(c) )

0

In these expressions, note that a steady state assumption is being imposed
since the value assigned to the states of employment and unemployment
are not indexed by time. Expression (1) says that the flow of utility from
employment equals the utility flow from consumption (y) plus the capital
gain from switching to the unemployment state. This flow occurs with
probability b. Likewise, (2) says that the flow from being unemployed is
the cost of production plus the capital gain from switching to the employ-
ment state, which occurs with probability o. These two conditions can be
derived from a discrete time model in which agents who meet a trading
partner obtain a utility flow and switch to searching for a production
opportunity with a one-period delay.

Implicit in the determination of W* is a critical cost of production, c*,
that plays the role of k* in the abstract participation complementarity
problem described earlier. Individual optimality requires that at the critical
production cost, the individual is just indifferent between producing or
waiting for another production opportunity: i.e., c* = W* — W*. Using this
condition, (1) and (2) can be solved simultaneously to yield a relationship
between c* and the fraction of traders with inventory, i.e.,

b(e)y + OLchG(c)

0

=TT 5@ + aG(e ©

With »°(-) > 0, this condition implies that the critical production cost is an
increasing function of e. An increase in e implies that the returns to
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production are higher, rationalizing a larger c*. A little bit of algebra
shows that ¢* is a concave function of e as long as b”(-) < 0. Further,
when e =0, ¢* =0 as well since b(0) =0.

This characterization of ¢* provides the basis for the complementarity
in the model. If all other agents in the economy select a high cutoff value,
then e will be high and this rationalizes a high value of ¢* for the remaining
agent. The responsiveness of e to variations in ¢* is governed by the
cumulative distribution function, G(-).

In addition to these conditions describing the individual choices, there
is an equation that describes the evolution of the e, the proportion of
traders searching for a partner. As we follow Diamond and concentrate
on steady states, the inflows and outflows from the employment state are
equal, implying

é=0o(l —e)G(c*) — eble) =0 4)

The inflows into the employed group are given by the fraction of agents
currently unemployed who find a production opportunity with a cost less
than c*, given by a1 — e)G(c*). The flow out of the employment group
is the fraction of employed traders finding a trading partner, eb(e). Figure
5.2 illustrates the flow of agents across states.



90 Thick Markets: Search and Matching

It is important to note that this condition implies a second positive
relationship between c¢* and e. An increase in ¢* implies that more agents
will be searching for trading partners. To offset this inflow into employ-
ment, more traders must be matched: hence e must rise to increase b. For
c* e [0, ¢], (4) is satisfied at e = 0.

Thus we are left with two equations, (3) and (4), and two unknowns,
c* and e. The simultaneous solutions of these equations characterize the
steady states for the model. They key issue is determining whether or not
there are multiple equilibria for this economy.

As in the participation complementarity example, these two upward
sloping curves can have multiple crossings. Hence, both thin and thick
market equilibria may arise. The ease in generating multiple equilibria is
partly due to the freedom in the model provided by the curvature of G(-),
which is imbedded in the condition for a steady state level of e.

In Diamond’s model, the multiple equilibria can be Pareto-ordered.*
For an individual agent, an increase in e, given ¢ = ¢*, increases utility in
both the employment (W¢) and unemployment (W) states. The fact that
the individual then finds it optimal to increase ¢ with e increases welfare
further. Hence, the equilibria with thick markets will Pareto-dominate
those with thin markets.

In equilibria with a low value of ¢*, many production opportunities will
be bypassed as they are “too costly” relative to the expected gains to trade.
Trading opportunities are, in fact, bleak since few agents are undertaking
production opportunities: they all view these opportunities as “too costly.”
Here there are certainly gains to trade if only agents could coordinate their
production decisions. The presumption of this model is that the costs of
this type of coordination are prohibitive. Further, there is no “Walrasian
auctioneer” to coordinate trades. The results are the possibility of multiple
Pareto-ranked equilibria and the consequent chance of coordination failure.

DYNAMICS AND TRADING COSTS

In a series of papers, Howitt [1985] and Howitt and McAfee [1988] study
economies in which there are explicit transaction costs associated with
trades in labor and goods. These costs are meant to represent the search

4. See eq. (20) in Diamond [1982].
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and recruiting processes stemming from transactions in these various mar-
kets. In keeping with the theme of complementarity, these papers generally
assume that the magnitude of these costs is influenced by the level of
aggregate activity. As a consequence, there are natural thick market effects
at work: the higher the level of activity, the lower the transaction costs.

Howitt [1985] studies a static economy where households and firms
expend effort to engage in market transactions. By assumption, the repre-
sentative firm faces lower transaction costs if the representative household
exerts more effort. Further, the representative firm faces higher transaction
costs if other firms exert more effort. Thus the economy exhibits both a
source of complementarity, between a firm and the households, and a
source of substitutability, between a firm and the other firms.

Howitt characterizes the equilibrium of the model assuming that the
effort of households is simply proportional to the level of their own activity.
This specification thus highlights the interaction between firms. Howitt
further assumes that the complementarity through the household effort
dominates the congestion effect of the interfirm interaction. As a conse-
quence, the technology describing the transaction costs implies that at
higher levels of economic activity, trading costs are lower. A similar
structure is used to describe the costs of trading in the labor market. Not
surprisingly, there are multiple, Pareto-ranked equilibria in Howitt’s
economy.

Howitt and McAfee [1988] take the analysis one giant step further by
looking at the stability properties of these equilibria in a dynamic version
of the model. In the dynamic model, there are again households and firms
and trade occurs each period in two markets, labor and goods. Firms incur
per unit transaction costs from goods market trades, which, again, are
assumed to be a decreasing function of the level of activity (measured in
terms of employment) in the production of goods. The firm also faces
costs of adjusting its labor force which also depend on the level of employ-
ment. Here there is a source of substitutability since higher levels of
employment economywide imply that the costs of recruitment for a firm
will rise. The interesting aspect of the model is how these two sources of
interaction come together to create the dynamics.

Given the adjustment cost function of the firm, it must solve a dynamic
optimization problem, taking as given the time path of aggregate activity.
This yields a first-order condition expressed in the form of a Euler equation.
The equilibrium condition, that the representative firm and the average
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over the firms are the same, is then imposed on this dynamic equation.
This is essentially the approach used in the Baxter—King model described
in Chapter 3.

Howitt and McAfee are then left with a second-order differential equa-
tion describing the equilibria of the economy. This then permits a character-
ization of the steady states of the system as well as an evaluation of the
local dynamics, a key point of this analysis. In fact, Howitt and McAfee
put some structure on the production and transaction cost technologies so
that there will generally be multiple steady states. But what are the stability
properties of these steady states?

Interestingly, they find that the low level equilibrium, in which there is
little employment so that transaction costs are high, may be locally stable.
So, for any value of employment in the neighborhood of the low level
steady state equilibrium, there will exist a continuum of paths leading
back to this steady state. This local stability apparently derives from the
dynamic interaction of firms since the gains to large expansions today
depend not only on the current level of activity but also on the expectations
of the future. Given the basic indeterminacy of future activity, the paths
of employment creating local stability can be self-fulfilling.

MONEY AND SEARCH

In Diamond’s model the emphasis is on the multiplicity of equilibria
created in a search environment. In a series of papers, Kiyotaki and Wright
[1989, 1993] use a related model to study the transaction role of fiat
money. This model provides another setting in which complementarities
are present since the usefulness of money as a medium of exchange depends
on the number of other agents using money for transactions. At one
extreme, money can have no value at all simply because no one believes
it will serve as a medium of exchange. At the other extreme, fiat money
can (almost) replace barter as a means of exchange. This monetary equilib-
rium is of considerable interest as this is one of the few environments
which can produce, in a general equilibrium setting, a demand for fiat
money. In particular, no constraints that money must be used in exchange
are employed. The value of money for exchange purposes is entirely an
endogenous outcome.

Our analysis of the value of money will follow Kiyotaki and Wright
[1993] by first exploring the structure of barter trades in an economy
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without fiat money. This is a useful starting point as it illuminates the
double coincidence of wants problem. In fact, the benefits from overcoming
this problem generate a role for fiat money. So, after discussing the barter
economy, fiat money is introduced and equilibria exist in which otherwise
useless pieces of paper have value.

Barter Economy

To motivate barter trade, it is necessary to have some heterogeneity in
tastes and endowments. Yet, for tractability, it is useful to stay close to
the representative agent structure by assumptions of symmetry. The basic
environment accomplishes these objectives. There is a continnum of com-
modities and agents distributed uniformly on a unit circle. All goods are
indivisible and appear in units of size 1. Following Kiyotaki and Wright,
let u be the utility an agent receives from consuming a good that is at
most a distance x from his location on the circle. Goods that are further
away than this critical distance provide no direct utility to the agent.
Assume that 0 < x < 1 so that individuals do not consume all goods but
derive utility from a measurable subset of the goods. In this way, x is a
measure of the dispersion or differentiation of tastes in the economy.

Individuals can be in one of two states. As in Diamond’s model studied
in the previous chapter, either they are traders searching for a trading
partner or they are searching for a production opportunity. For simplicity,
production while searching for a trading partner is precluded.

Let o represent the probability that an agent without any goods to trade
locates a production opportunity in a given period. Normalize utility so
that production is costless. We discuss later a model that integrates the
participation decision of the Diamond model with the more complex trading
environment studied by Kiyotaki and Wright. Finding a production oppor-
tunity implies that the agent will become a trader in the following period,
in search of a trading partner, as consumption of the good one produces
is again precluded.

An agent with a unit of the good to trade is assumed to match with a
trading partner with probability p. Kiyotaki and Wright assume that there
exists a trading cost of € with 0 < € < u. In this case, trades will rise only
between two agents who have a “double coincidence of wants.” This
occurs when two traders meet and each derives utility from the good the
other is holding. Since all goods are equally likely to be produced in this
economy and agents are uniformly distributed along the unit circle, two
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randomly matched traders will have gains to trade with probability x2
Thus the magnitude of the double coincidence of wants problem is neatly
parameterized in this economy.

Let V, be the value of lifetime utility of being a producer in search of
a trading opportunity, and let V; be the value of lifetime utility of being
atrader with goods in inventory.’ Then, in this economy without fiat money,

V, = BloVs + (1 — o)V, (5)
and

Vo=px(u—e+BV) + [pQ - + (1 - p)IPVs (6)

When an agent is in the production state, a production opportunity arises
with probability a, in which case the agent becomes a goods trader next
period; however, with probability (1 — o) no production opportunity ap-
pears. Once the agent has goods, a trading partner is found with probability
p and with probability x* there is a double coincidence of wants and a
trade occurs. The agent is then in the production state in the following
period. Otherwise, the agent searches again for a trading partner.

The equilibrium values associated with the two states can be ob-
tained by solving these two equations simultaneously. In the special case
where production opportunities always appear (oe=1), Vg = px*(u—¢)/
((1 = BX(1 + Bpx?) and V,=PBV,. Both V, and V;; are increasing in px°.

Note that in this economy, no single good serves as commodity money.
As Kiyotaki and Wright emphasize, the equilibrium characterized here
treats all commodities symmetrically. In fact, as argued in Kiyotaki and
Wright [1989], it is possible for one good to emerge as a commodity
money in this environment, thus facilitating exchange.

Fiat Money

In this economy there may be value in fiat money as it prevents the double
coincidence of wants problem that arises from x < 1. Money facilitates
exchange to the extent that trade can arise when two agents who lack a
double coincidence of wants will nonetheless be willing to trade. One

5. For the expressions that follow, we are using a discrete time approach and assuming that trades
occur in the period when two trading partners meet. This contrasts with the continuous time
formulation presentation of Diamond’s model in the previous chapter and in Kiyotaki-Wright.
We choose the discrete time formulation since it facilitates a more intuitive presentation of
the flows between states.
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agent will consume the good held by the other and will provide money
in exchange for this good. These trades are rational only if the agent
receiving money does so in anticipation of trading money for goods in
the future. So, as in the standard overlapping generations model, money
has value in this economy only to the extent that all agents believe it has
value. That is, the value of money is sustained solely through the beliefs
of the traders. The fragile nature of monetary equilibria is made clear by
the fact that in any economy with valued fiat money, there will always
exist an equilibrium in which money is worthless.

To characterize the monetary economy, assume that a fraction M of the
agents are initially holders of fiat money and the remainder are given a
unit endowment of the good. In order to prevent problems of bargaining
and inventory holdings of multiple goods, assume that money is also
indivisible so that all trades involve either the exchange of a unit of one
good for another or the exchange of a unit of money for a unit of the
200d.% Thus the price of goods in terms of fiat money is set at unity. In
contrast to barter exchange, there are no transaction costs associated with
exchanges involving money.

In a stationary equilibrium with valued fiat money, denote by v the
fraction of traders (those in search of a trading partner) who are holding
money and call these money traders. The remaining traders hold a unit
of some commodity and are consequently called commodity traders. In
contrast to the model without money, traders must decide what actions to
take in the event they meet another trader. The choice of whether to trade
or not depends on what the other trader has to offer, money or goods.
Since there is a transaction cost associated with the exchange of goods
for goods, the only nonmonetary exchanges that occur in a monetary
equilibrium will involve traders who are each willing to consume the
other’s good. Thus the only nontrivial choice occurs when a money trader
and a commodity trader meet. If the money trader values the good held
by the commodity trader, will an exchange occur? Denote by 7t the probabil-
ity that an arbitrary goods trader is willing to exchange goods for money
and let IT be the aggregate proportion of goods traders willing to make
that exchange.

Given I1, the value functions for an agent who accepts money for goods
with probability © are

6. Recent work by Trejos—Wright [1995] extends these models to incorporate bargaining so that
prices are not determined by these restrictions on inventory holding.
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V, = BlaVs + (1 - oyV,] @)

Ve =p(l = V[Xw -+ BV,) + (1 - x)HBVs] (8)
+ pv[Bx(nV, + (1 —m)Vp) + (1 —x)BVsl + (1 — p)Vs

Vi = p(1 = V[XII(u — € + BV,,) +((1 —x) + x(1 = TD)BVy] (€)]
+ pvBVy + (1 — p)Vy

The first expression indicates, as in the earlier model, that the value of
being in the production state is that with probability o there will be a
change in state to a goods trader in the next period.

The value of being a goods trader, the second expression, has three
terms which represent the three possible outcomes for such an agent. First,
the agent is matched with another goods trader with probability p(1 — v).
Given this, with probability x? there is a double coincidence of wants so
that trade occurs between the two agents. In this case, both receive (# — €)
from the exchange and the agent starts to search for a production opportu-
nity in the next period. If there is not a double coincidence of wants (which
happens with probability (1 — x%)), the goods trader remains in that state.
With probability pv the goods trader meets a money trader. Given this,
with probability x the goods trader has a product that the money trader
desires and a trade occurs with probability ©t. Otherwise, there is not even
a single coincidence of wants and no trade occurs. We will discuss the
determination of 7 in a moment. Finally, with probability (1 — p) the goods
trader meets no one so that there is no change in the state of the agent.

The value of being a money trader is given in the third expression.
With probability p(1 —v) the money trader meets a goods trader. With
probability x, the money trader desires the good held by the goods trader.
With probability I1, an aggregate variable, the goods trader will accept
money for goods. If an exchange occurs, the money trader enjoys the
consumption (less the transactions cost) and changes to the production
state. Otherwise, the money trader stays in the same state.

As noted earlier, one equilibrium in this model is for money to have
no value. That is, IT=n =0.” Clearly, if no other agents are accepting
money in exchange for goods (IT=0), then the optimal choice of an
individual agent is not to exchange goods for money either (1t = 0) since
fiat money has no value when it is not used for exchange purposes. This

7. Note, though, that the economy with money in which it has no value is not quite the same as
an economy without money unless those with the worthless money can discard it and find a
production opportunity.
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can be seen directly from the three expressions by noting that at IT=0,
Vu =0 is the only solution to (9).

An intermediate equilibrium obtains when 1 = I1 = x so that both money
and goods are equally likely to be exchangeable for a desired good.
Hence a trader is indifferent between holding goods and holding money
in searching for a trading partner. Formally, one can use (7) to (9) to see
that at Il = x, ©t is indeterminate.

A final equilibrium occurs when money is used for exchange whenever
a money trader and a goods trader meet, i.e., [ = 1. To verify that this is
an equilibrium, we must show that the best response of an individual agent
to I1=1is to set t=1. Clearly, x =1 if V,, =2 V;. From manipulation of
(7)—(9), one can see that V,,> V; when I1=1 since x < 1 by assumption.
Intuitively, a goods trader will exchange goods for money since the likeli-
hood of being able to exchange money for goods is larger than the likeli-
hood of exchanging goods for goods since the latter requires the double
coincidence of wants while the former does not.

From the viewpoint of coordination models and strategic complementar-
ities, this economy has upward sloping reaction curves. Consider the rela-
tionship between the economywide acceptability of money, I1, and the
individual optimal choice, nt*(I1). The preceding arguments indicate that
*(1) = 1 and nt* (0) = 0. Kiyotaki and Wright show that 7t*(I1) is a nonde-
creasing function: it is O for low values of I1, 1 for high values of Il and
there is indifference at the individual level for one value of I1.

In terms of coordination failures, Kiyotaki and Wright first consider the
extreme case of o = 1 so that production opportunities arise with certainty
and, in their continuous time version of the model, without delay. In this
case, the acceptability of money yields a Pareto improvement. In particular,
commodity traders and money traders are all strictly better off in an
equilibrium in which money is acceptable for all trades (t =11 =1) than
in the nonmonetary equilibrium.

Further, even in o < 1, Kiyotaki and Wright are able to make statements
about ex ante expected utility, i.e., the welfare of an individual prior to
the allocation of initial endowments of goods and money, as the stock of
money varies. For equilibria with t=1I1=0 and ® =I1 =x, increases in
the stock of money are not desirable since this crowds out commodity
traders (it is not feasible to hold money and goods) without providing a
lubricant for trade. In the =11 =1 equilibrium, the optimal proportion
of money traders in the economy depends on the extent of differentiation
in tastes. If x =%, then it is optimal not to introduce money into the
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economy. Otherwise, pure barter is not very efficient because of the low
probability of there being a double coincidence of wants so that the exis-
tence of some amount of money is desirable.

Money and Production

It is interesting to consider how the introduction of money impacts on
production decisions. Kiyotaki and Wright investigate the relationship
between specialization of labor and money. The idea here is that money
can provide an incentive for agents to become more specialized in the
type of good they produce. That is, as noted earlier, money is much more
valuable in facilitating exchange if x, a measure of the specificity of
commodities, is low. In the other direction, the returns to specialization
may be larger in a monetary economy since the double coincidence of
wants problem is not as strong. To model this, Kiyotaki and Wright assume
that the likelihood of finding a production opportunity (a proxy of the
cost) decreases with x. Hence goods that are more specialized, in that
they appeal to fewer agents, are less expensive to produce: specialized
production is less costly. They find that money facilitates the specialization
of production in that the degree of specialization is greatest in a mone-
tary economy.

Johri [1997] pursues the connection between money and aggregate
economy activity by considering a merger of the Diamond economy studied
earlier with that studied by Kiyotaki and Wright. In particular, suppose
that production opportunities arrive with probability o but that there is a
cost ¢ associated with production. Further, as in Diamond [1982], assume
that these costs are distributed according to a cumulative distribution
function, F(c). Otherwise, the model is as stated in Kiyotaki and Wright
so that the chance of meeting a trading partner, p, is independent of the
number of other agents searching for a trading partner.

For this economy, the value of searching for a production opportunity
is given by

v, = aJ(—c + BVe) dF(c) + [a(]l = F(c*)) + (1 — o)1V, (10)
0
Otherwise, the expressions for the values of being money and goods traders

given earlier do not change. The issue here is whether the existence of
money enhances production.



Summary 99

To investigate this, we know from the earlier analysis of the Diamond
model that there will exist a critical production cost, ¢*,, such that in the
economy without money, only production opportunities at or below this
cost will be undertaken. Similarly, for this economy there exists a cutoff
cost in which money is universally acceptable, c*,. Johri shows that the
presence of money excites economic activity. This is a consequence of
the fact that c*,> c¢*, for small quantities of money: more expensive
production opportunities are undertaken in the monetary economy.

SUMMARY

This chapter provided a series of models that emphasize complementarities
through the costs of trading. In some models, such as those pursued by
Howitt and Howitt and McAfee, there are specific trading cost functions
that include a “thick markets” effect: trading costs are lower the higher
is the volume of trade. The Diamond model puts more structure on the
problem by assuming a search environment in which trading probabilities
depend on the fraction of traders in different states. Building on this
environment, Kiyotaki and Wright have produced a search theoretic model
of money demand.

Relative to the production complementarities model, the search model is
unexplored territory. This is partly because there are no dynamic stochastic
versions of, say, the Diamond model which are analogous to the Baxter—
King extension of the basic stochastic growth model. Further, the estima-
tion of these thick market effects is not quite as easy as putting an extra
argument into a production function.

Yet, these models offer great promise since they rest upon a fundamental
trading friction: the spatial distribution of agents. With this friction comes
the need for a mechanism to bring agents together, and it is apparent that
coordination problems may emerge along the way.



6 Timing of Discrete Choices

One feature of aggregate behavior is the synchronization of discrete deci-
sions such as the purchase of durable capital by firms and durable goods
by households.! These expenditures are important to understand in that
they are extremely volatile elements of aggregate spending. Put differently,
these are the elements of total expenditure that display the most time
series variance. Introducing these discrete choices into traditional general
equilibrium models is somewhat difficult because of the nonconvexity
associated with lumpy expenditures on consumer and firm durables. One
means of dealing with these nonconvexities is to look for equilibria in
which there is some “smoothing by aggregation.” The effect of doing so,
however, is that these discrete choices are, by construction, no longer
synchronized so that their macroeconomic importance is dramatically re-
duced. In fact, this approach works only if agents have an incentive to
take actions at different points in time.

When, in contrast, agents have an incentive to synchronize their discrete
choices, then smoothing by aggregation is no longer possible. In this case,
synchronized discrete decisions can matter for the macroeconomy. They
can create endogenous fluctuations of the aggregate economy and magnify
underlying disturbances to that economy.

The focus of this chapter is on the basis for synchronization and, more
generally, the issue of the timing of economic activity. The first part of

1. Cooper, Haltiwanger and Power [1997] document the fact that large bursts of investment at
the plant level are a major fraction of overall manufacturing investment. See, for example,
Lam [1991] for evidence on durables.
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the chapter looks at incentives for the synchronization of activity. The
second part goes on to explore the issue of delay.

SIMPLE GAMES OF TIMING

We first describe two simple games of timing, presented in Cooper and
Haltiwanger [1992] and Cahuc and Kempf [1997], to understand better
the incentive to synchronize decisions. These two models reach rather
different conclusions and it is constructive to understand the distinct forces
at work.

Fluctuating Endowments

Consider an infinitely repeated noncooperative game played by two agents,
indexed by i = 1, 2. Player 1°s payoffs for period ¢ are given by ' (y(2), 2(2))
where y(f) is agent 1’s period ¢ endowment and z(¢) is the endowment of
player 2 in period . Player 2’s preferences are defined analogously. The
interaction between the endowments in the players’ payoffs is intended
to succinctly represent consumption complementarities, a trading comple-
mentarity or some form of demand spillover, as in the various models
presented in earlier chapters. At this stage, our focus is on the implications
rather than the source of the interaction.

Suppose that the endowment process fluctuates deterministically so that
each agent has a high quantity, H, in one period followed by a low quantity,
L, in the next, and then the process repeats. Agents are assumed to discount
the future at rate . Further, we assume that goods are not storable.

The agents play a game of timing in which they choose whether to have
their period of high endowment in even or odd periods. That is, the strategy
space for each agent is {E, 0}. For example, if both players select E, then
both receive their high endowments in even periods. This is a simple
device for modeling decisions to stagger or synchronize. These choices
are made simultaneously and prior to the first period. To maintain symmetry
between these choices, after the choices are made, nature flips a fair coin
to determine whether the first period will be even or odd. If the Nash
equilibrium entails both players’ having high endowment in even or odd
periods, then we term this a synchronized equilibrium. If one player chooses
high endowment in even (odd) periods and his opponent chooses to receive
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the high endowment in odd (even) periods, then a staggered equilib-
rium results.
Formally,

Proposition 1 (Cooper-Haltiwanger [1992]): If ©t;, >0 (w;, <0),
then the players will synchronize (stagger) high production.

Proof: Suppose that both players synchronize their production; then
the lifetime expected (because of nature’s coin flip) discounted util-
ity is

V¥ = {n(H, H) + m(L, L)}2(1 - P).

Alternatively, if the players stagger, then the lifetime expected dis-
counted utility for each is given by

V= {rn(H, L) + (L, H)}/2(1 - P).

The difference between the payofts from synchronization and stagger-
ing, V¥ — V= A, is given by

HH

jjnlz(x, 2)dx dz

LL

Hence if t;, > 0 (1, < 0), A> (<) 0 and the players will synchronize
(stagger) periods of high production. QED.

The intuition behind this result is straightforward. Strategic complemen-
tarities (1,, > 0) imply that each agent prefers to have a large value of the
endowment when the other does as well: i.e., the marginal payoff from
high endowment increases with the quantity given to the other agent. In
contrast, strategic substitutability implies that the marginal gain from high
endowment is lower when the other agent has high endowment as well.
Thus, the equilibrium is to stagger in this case.

From the perspective of macroeconomics, this example is relatively
uninteresting since it attributes all fluctuations to random variations in
endowments. However, as discussed later, it is possible to use this result
to provide some insights into discrete decisions on investment, production
runs, the introduction of new inventions, and so forth, which are important
aggregate variables. In all cases, the desire to synchronize is driven by
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the presence of strategic complements in the reduced form payoffs of
the players.

Dynamic Strategic Interactions

The example of the timing of random endowments highlights the gains
to synchronization in the presence of complementarity. However, the game
is quite simple in that the endowment process is itself exogenous, implying
that agents’ choices influence the timing but not the magnitude of their
consumption. Thus, the interaction concerns only the timing of the “high
action.” A richer structure is investigated by Cahuc and Kempf [1997]
along the lines of Maskin and Tirole [1987, 1988a, 1988b].

Consider an infinite horizon game played by two agents, i = 1, 2. Time
is discrete and indexed by =0, 1, 2, . ... Each player selects an action,
a;, from the interval [0, 1]. Preferences for player i = 1, 2 within period ¢
are given by v, =v(d', a';) where v(-) is strictly increasing and strictly
concave in its first argument. Here —i denotes the choice of the other
player. Lifetime utility for player i = 1, 2 is given by 2, d'v;, where 8 € (0, 1).
Note that the payoffs for the two agents are assumed to be the same.

Cahuc and Kempf consider the steady states of two alternative timing
structures. For both, agents choose an action that is in effect for two
periods. One can think of this as reflecting some form of adjustment
cost, though these costs generally imply state dependent rather than time
dependent policies.

Under aregime of synchronization, agents choose simultaneously; under
a regime of staggering, one agent chooses ahead of the other. Note that
the timing here has an implication not explored in the Cooper—Haltiwanger
structure: as there are only two agents, the agent choosing must internalize
the response of the other when actions are staggered.

Synchronized equilibria are relatively easy to characterize since agents
move simultaneously and their actions are in effect, by assumption, for
two periods. Let ¢(a_,) represent the best response of player i to the other’s
action. Assume that ¢(0) > 0, ¢(1) < 1 and that the slope of the reaction
function is everywhere less than 1 in absolute value. These conditions are
sufficient to guarantee the existence of a unique symmetric Nash equilib-
rium given by an action a* such that v,(a*, a*) = 0 or, equivalently, O(a*) =
a*. So in the steady state of the synchronized equilibrium, both players
choose a* each period.
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Staggered equilibria, in contrast, require agents to be forward looking
in their behavior. A player choosing an action this period must recognize
that the other player, who will choose an action in the next period, will
optimally respond to whatever action is taken today. Thus each player
must take into account the reaction function of the other. So, the reaction
function, which we denote by R(a), is the central element in the analysis.
Since the agents are identical and time has no direct effect on preferences
analysis, we search for a stationary symmetric equilibrium. Further, since
the choices are staggered we have imposed the restriction that the choice
of a player depends only on the current action (chosen in the previous
period) by the other player.

More formally, it is natural to look for equilibria that are termed Markov
perfect equilibria. The equilibria are Markov in the sense that the action
of the player that moves in the current period depends on the state of the
game, given by the action of the player moving in the previous period.
The criterion of perfection is met by requiring the agent to predict the
other player’s response to an action chosen in the current period correctly.

Following the presentation in Cahuc and Kempf, a symmetric Markov
perfect equilibrium is thus characterized by a reaction function R(a) and
two value functions, W(a) and V(a), such that

R(a)) = argmax,v(a;, a;) + SW(a) (1)

where player i is selecting an action (a;) given the choice of player j (a;)
from the previous period. Let V(a;) be the utility level from the solution
of the optimization problem in (1).

In this problem, W(qa;) represents the value to the player of the game
given his choice of action, g;. That is, this is the value to player i of
continuing the game when the other player chooses, given the choice of
a; in the previous period. So,

W(a) = v(a;, R(a)) + 8 V(R(a)) 2

where the function R(a;) represents the response of player j to the action
of i. Note that in the symmetric equilibria, this reaction function is the
same as that characterized in (1).

So, to make clear the nature of the interactions again, consider the
choice of player i in a period where it is player i’s turn to move. Player
Jj selected an action last period; call it a;. Given this action, player i chooses
a; to maximize the sum of utility from this period and from the continuation
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of the game next period, when player j moves. This is the point of (1),
where the function W() represents the value of the game starting next
period in state a;. This value, in turn, depends on the response of player
J to the action taken by i, i.e., the R(a;) in (2). Finally, the value of the
continuation depends on the utility flow to agent { when that agent moves
again. But this is simply the value of the optimization problem in (1) with
the state described by the best response of j to the action taken by i, R(a,).

Cahuc and Kempf assume that preferences are quadratic and prove that
the steady state symmetric equilibrium for this game is the action level a
that satisfies

(1+8v(d, a+ (1 +8Pdvad, d)=0 3)

Here B is the slope of the reaction curve at the equilibrium point which
is assumed to lie between —1 and 1.

To understand this condition, consider the effects on lifetime utility of
slightly changing the current action of a player. Since this change is in
effect for two periods, the direct utility effect is given by the first term of
(3). This change in the action will also lead the other player to alter his
action in the next period. The magnitude of this reaction is given by [.
From the one-period delay it is multiplied by & and multiplied again by
(1 + ) since the response of the other agent lasts for two periods. Finally,
the v, term captures the effect on utility of the other player’s response to
the deviation. The effect of this deviation is limited to these three periods
since the agent that initiated the deviation reoptimizes after two periods.

One interesting question concerns the relative levels of activity in the
two scenarios. As we shall see, the answer depends on the nature of both
the spillovers and the strategic interaction of the two players. Relatedly,
it will be useful to know which type of equilibrium yields higher payoffs
to the players.

To obtain and understand these results, we use the cooperative outcome
of the simultaneous move game as a benchmark. The cooperative effort
level A satisfies the condition

vi(A, A) + (A, A) =0 4)

This is directly comparable to the conditions for synchronized and stag-
gered equilibria as used in the construction of Table 6.1.2

2. These comparisons use the assumption that the reaction curve has a slope less than 1 in absolute
value at the unique equilibrium point in the synchronized game.
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Table 6.1
strategic complements strategic substitutes
positive spillovers A>d>a* A>a*>d
negative spillovers a*>d>A d>a*>A

The results of Cahuc and Kempf can be summarized in Table 6.1. To
understand this table, recall that a* is the synchronized equilibrium while
d is the equilibrium with staggering.

Consider first the case of strategic complements and positive spillovers.
In the synchronized equilibrium, each player would prefer (given the
positive spillovers) that the other take a higher action but neither has the
capacity to motivate the other to do so since they move simultaneously.
In the staggered equilibrium, they have an opportunity to provide this
incentive. By increasing their effort levels above the synchronized equilib-
rium, each player elicits increased effort by the other to take advantage
of the positive spillover effects. Of course each agent has an incentive to
reciprocate because of the strategic complementarity. Thus a higher action
is observed in the staggered equilibrium than in the synchronized equilib-
rium in the case of positive spillovers and strategic complements.

If spillovers were positive but interactions were strategic substitutes,
then each player would wish the other to put forth more effort. In the
staggering game, the players create this response by working less.

The welfare results under the two alternative timing structures basically
mirror the ordering of activity levels given in Table 6.1. Cahuc and Kempf
(see their Proposition 2) argue that welfare is higher under synchronization
iff the game exhibits strategic substitutability. From the table, we see that
the equilibrium under synchronization (a*) is closer to the cooperative
effort level iff the game is one of strategic substitutability. For example,
if there are positive spillovers and strategic substitutes, then action levels
with synchronization are too low relative to the cooperative solution. If
agents stagger, they will each try to motivate the other to take higher
action by lowering his action. Thus, a* > d and welfare is lower under
staggering. Evidently, the opportunity to influence the action of the other
implies that, in equilibrium, both players are worse off! Alternatively, if
there is strategic complementarity, then staggering brings the equilibrium
of the game closer to the cooperative outcome so that welfare is higher.



Implementation Decisions 107

Given this welfare ordering, Cahuc and Kempf allow players the oppor-
tunity to choose whether to move in, say, even or odd periods, as in the
discussion of the previous section. Not surprisingly, players will choose
to synchronize iff their interaction is characterized by strategic substitutes.

Interestingly, this analysis suggests almost exactly the opposite conclu-
sion from that of Cooper and Haltiwanger. The difference, of course, lies
in the nature of the strategic interaction across players and the choice sets
of the agents.

IMPLEMENTATION DECISIONS

Given the role of strategic complementarity in the synchronization result,
it is useful to recall that we have already seen numerous examples of
economies in which strategic complementarity naturally emerges. In one
case of interest the spending patterns of agents across sectors create these
complementarities, as in the models explored in Chapter 4.

We now turn to a fascinating model by Shleifer [1986] which uses these
demand linkages to create incentives for the bunching (synchronization)
of innovations. The model has the important feature that discrete activities
(the introduction of innovations) are synchronized even though the inven-
tions that underlie these innovations are staggered, so that, from the per-
spective of the aggregate economy, the exogenous process of invention
is completely smooth. Still, some of the equilibria of the model exhibit
endogenous cycles as a result of the synchronization of discrete activities.
In this way, cycles are not the consequence of the assumption of cyclical
inventions but rather emerge endogenously.

Shleifer [1986] considers a model in which there are S sectors of eco-
nomic activity. Within each sector, there are a large number of firms who
produce an identical product and compete using price as a strategy variable.
As agents are very small in this economy, the strategic interactions high-
lighted by Cahuc and Kempf do not appear in this analysis.

In each period, a single firm in a fraction of the sectors receives a new
invention. In particular, let » denote the number of sectors receiving an
invention in a given period. Thus, the time between inventions to a sector
will be S/n.

Three points are important here. First, only one firm in each of the
sectors receives the invention so that this single firm has the ability,
assuming no capacity constraints, to take over the market and use its
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technological advantage to exert monopoly power. Second, the fact that
only a fraction of the sectors receives new inventions in each period
implies that the underlying process of technological advance is partially
staggered by assumption. As a consequence, the bunching of innovations
will reflect the choice to synchronize rather than the presence of economy-
wide technological change. As we shall see, the interactions of the agents
in the economy can produce a solution in which innovations are more
synchronized than inventions as a result of the presence of complementari-
ties across sectors. Third, the order of the inventions is strictly exogenous:
the agents in the economy cannot time inventions to coincide with slumps
or booms in aggregate activity.

An invention in each sector increases the productivity of labor by p > 1
so that the firm receiving the invention can produce output with 1/ of
the labor that competitors in the same sector use. Once an innovation is
introduced to the market, the firm will price output slightly below the
common marginal cost of its rivals. In this way, the firm captures the
entire market. This is the profit maximizing price since, as we shall see,
the aggregate demand for any industry is unitary elastic so that a monopo-
list would have an incentive to charge an infinite price. Shleifer [1986]
assumes that immediately after innovation, the firm’s rivals in the indus-
try imitate the invention so that monopoly profits exist for only a single
period.

The key insight into the model is that firms have an incentive to time
the introduction of the new technique when aggregate demand is high so
that profit, which we shall see is proportional to aggregate demand, is
high as well. Further, as demonstrated below, aggregate demand depends
on the total level of profit in the economy. Subject to some conditions on
the behavior of interest rates, firms choose to synchronize innovations and
this gives rise to Shleifer’s implementation cycles.

Consumption and Savings Decisions

The complementarity in the model, and thus the basis for the synchroniza-
tion, is derived from the behavior of the representative consumer and the
implementation decision of the firm. In period ¢, the representative con-
sumer earns income (y;) from labor inelastically supplied to the market
(L) and receives all of the profits in the economy, I1.. Preferences of the
agents are given by
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where ¢, is an index of period ¢ consumption given by
o=Td ©)
j=1

and ¢, is the period ¢ consumption of good j and A = 1/S. Thus intratemporal
preferences are Cobb—Douglas while intertemporal preferences have the
familiar constant relative risk aversion (CRRA) formulation. The budget
constraint for intertemporal optimization is given by

(22 o ™
=1 Rt

where R, is the interest rate on a ¢-period loan.

The demand functions for these preferences take the usual constant
budget shares form: p,c; = Ay, Shleifer assumes that there is no capital or
any other store of value so that, in equilibrium, interest rates adjust to
ensure that desired savings is zero. In particular, the period ¢ interest
rate satisfies

147, =1()—]’f—l)
P\ ¥y

From this expression, variations in both total income and prices will
influence the real interest rate. Holding prices fixed, an increase in period
¢t + 1 income will induce a rise in the interest rate since consumers will
increase period ¢ consumption in response to a rise in anticipated future
income. Since there is no store of value in the economy, interest rates
must rise to induce savings. The rise of the interest rate is determined by
the curvature of the utility function, parameterized by p.

As we shall see, the interaction of the firms within a sector will determine
the price of each good in every period. Given those prices and the resulting
income, this equation will determine the interest rate. Of course, part of
the determination of output and prices involves a firm’s choice on the
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timing of implementing an invention, which, as discussed later, depends
on the pattern of interest rates.

Implementation Decisions

The key to the model is the choice of the timing of implementation by a
firm receiving an invention. Suppose that aggregate demand is Y and that
other firms in the sector produce at a cost (in labor terms) of w. Thus, the
cost per unit of output for the innovating firm is w/t. The innovating firm
will receive all of the spending on this sector by pricing goods at w.
Therefore, the profit for the innovating firm will be

AY - ()\’Z)(E) = )"(u—_l)Y =mY )
w\u M

where A was defined earlier as 1/, i.e., the fraction of total income spent
on each sector and m = A(u — 1)/

The important aspect of this expression is that the profit of the innovating
firm is proportional to the level of aggregate demand Y. Thus, factors that
increase aggregate demand in any particular period make the introduction
of inventions in that period more profitable. Since aggregate demand
depends on total profits, periods of high profits are also times of high
demand. Finally, since profits are high when firms are introducing innova-
tions, there is a gain to introducing new inventions when others are doing
so as this is a time of overall high aggregate demand. This is the incentive
for the synchronization of innovations. Of course, as aresult of discounting,
there are some costs to not introducing inventions immediately, and it is
this tradeoff we turn to next.

Equilibria

An equilibrium is a sequence of prices, interest rates, consumption and
implementation decisions such that all markets clear in every period. There
is one equilibrium in the model which does not display any synchronization
at all. In this equilibrium, all firms introduce inventions at the time they
are received. Along this equilibrium path, there are no booms in aggregate
demand so that the incentives for delaying innovations to synchronize
with others do not arise. That is, consider the decision of a firm in any
sector which has just received an invention. Since all other firms are
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implementing inventions immediately, the level of aggregate demand is
constant. So, this particular firm perceives no gain to delay since, being
small, it takes the level of aggregate demand in each period as given.
Thus, as long as the interest rate is positive, the firm will also choose to
implement inventions immediately.?

Other equilibria which display synchronization can exist. Consider cy-
cles of period T in which inventions are accumulated for at most 7 periods
and then are implemented simultaneously. Since another invention will
be introduced in a given sector after S/n periods, Shleifer looks for cycles
such that 7 < S/n. In the period after a boom (the period after implementa-
tion), there is massive imitation by producers in each sector and a new
cycle begins. For a T cycle to exist, it must be the case that firms receiving
inventions prior to a boom must have an incentive to delay the introduction
of new inventions and also have an incentive to introduce these inventions
when others are doing so rather than delaying further.

In the candidate T cycle, denote aggregate profits in the boom period
by Il;. From (9), the profit of an innovating firm is 7, = my; where m =
AMpP — 1)/ and yr is the level of aggregate demand in the boom. Since
there are n firms receiving inventions each period and 7T periods between
the booms, aggregate profits are given by Il; = nTnr, = nTmy;. Using the
budget constraint, y; = L + I, the level of aggregate spending in a boom
equals L/(1 —nTm) and nn; = mL/(1 — nmT) is the level of profit for each
innovating firm in the boom period of a candidate T cycle.

Given this level of profit, does a firm want to synchronize the introduc-
tion of its invention with others? Consider the choice of a firm that receives
an invention at the start of a 7 cycle. Should that firm delay innovation?
If it does, then others receiving inventions later in the cycle will choose
to delay as well since interest rates are positive.

Suppose that instead of delaying, the firm implements immediately. In
this case, profits will be mL since aggregate demand is L as all other firms
are delaying innovations. Delaying for anything less than T periods (when
the next boom occurs) is not desirable since the delay is costly as a result
of discounting. If, however, the firm delays for T periods, then the fact
that demand is high in a boom may outweigh the costs of waiting that are
due to discounting. The present value of the profits received in the boom
(T periods hence) in m;/R;, where is R;; discounts the flow from the

3. Condition (14) in Shleifer’s paper guarantees that the interest rate is positive in the steady
state where there is no delay in the introduction of new innovations.
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boom period back to the present along the equilibrium path. A necessary
condition for a T cycle is thus 7;/Ry_, > mL.

Using the market clearing condition and the individual’s first-order
condition, Shleifer shows that this condition reduces to

D) =p™(1 — nTm)** > 1 (10)

To understand this condition, note that there are two influences on the
incentives to delay the introduction of inventions. The first, which promotes
delay, is the fact that profits are much higher in a boom. The ratio of &,
to the profits from no delay, mL, is 1/(1 — nTm), which exceeds 1. The
second influence is the pattern of the short-term interest rates over the T
cycle, Rr.* In the T—2 periods prior to the boom, interest rates are
constant as there are no fluctuations in either prices or output. In the period
before the boom, however, the consumer will anticipate higher output and
consumption during the boom and will, without any adjustment in the
interest rate, wish to borrow against this higher future income to smooth
consumption. Since borrowing and lending are impossible, interest rates
must rise to offset this desire. This increase in the interest rate reduces
the profitability from delay. In order to have a T boom, this increase in
the interest rate must not be very big. In other words, savings must be
fairly sensitive to the interest rate. As the responsiveness of savings to
changes in the interest rate is partly determined by 7, the conditions for
a T cycle provide a restriction that ¥ not be too large. So for there to be
a T boom, p should be near 1, y not too large and | large so (1 —nTm)
will be small.

In addition to guaranteeing that no firms receiving an invention would
wish to innovate immediately, it is also necessary to check that no firm
wishes to wait until after the boom to introduce an invention. While
demand is high during a boom, there is a gain to waiting since, in the
period following a boom, there will be an economywide price reduction
due to the imitation of inventions by competitors.

Shleifer shows that a sufficient condition to prevent delay beyond T
periods is

puiP < 1 1D

This is a sufficient condition in that even if there is no possibility that a
future firm will innovate in its sector, a given firm will choose to implement

4. Recall that R, is the product of the one period interest rates from period 1 to period ¢, where
the one period rates were given earlier from the Euler equation at the point of zero saving.
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an invention in a 7-period boom rather than wait for a future boom. As
noted by Shleifer, this condition is equivalent to the transversality condition
for the consumer’s choice problem.

The main result on cycles is Shleifer’s proposition indicating that given
T < S/n, if (10) and (11) are satisfied, then there will exist a T cycle. As
noted earlier, a cycle with immediate introduction of inventions (7= 1)
will always exist. Shleifer illustrates the set of cyclical equilibria through
a characterization of (7). In particular both high and low frequency cycles
are possible. An interesting feature of the model is that as the length of
time between cycles increases, the booms that do occur are much more
intense since more inventions have been stored in anticipation of the burst
in aggregate behavior.

To summarize our findings thus far, we see that in addition to the
existence of equilibria with immediate innovation, there may also exist
equilibria in which inventions are saved so that innovations are bunched.
The gains to bunching arise from demand complementarities: since other
firms are synchronizing their innovations, profits and hence aggregate
demand are high. These equilibria with bunched innovations are more
interesting given that the cycles are created relative to an exogenous
process of staggered inventions. In this sense, the underlying interactions
between agents in the model produce endogenous cycles.

From a positive perspective, the model produces an interesting link
between cycles and growth. To the extent that underlying economic growth
is fueled by technological progress (rather than growth of the factors of
production), the model was one of the first to point out that cycles and
growth are not independent processes. This theoretical point was in accord
with empirical evidence that variations in output display a unit root. Hence
upturns in GNP were quite persistent in the data as they are in Shleif-
er’s model.

Given the multiplicity of equilibria, it is natural to ask about selection
and welfare properties. Shleifer argues that the equilibrium with immediate
introduction of inventions is the natural outcome of this economy because
the resulting allocation is best for both firms and consumers. Firms prefer
immediate implementation since discounted expected profits are highest.
As for consumers, Shleifer shows that as long as the rate of technological
progress is not too fast, consumers too will prefer the gains from immediate
introduction of new products to the equilibria with cycles. While the
equilibrium without cycles Pareto-dominates those with cycles, it is less
obvious that this will be the natural outcome of this economy. From the
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experimental evidence provided earlier we know that Pareto-dominant
equilibria are not always selected.

Further, Shleifer shows that if there are fixed costs to introducing innova-
tions, firm’s profits may actually be higher in a cycle. When fixed costs
are present, the magnitude of the burst of activity associated with a boom
is lower so that interest rates need not rise as much prior to a boom. Thus
discounted profits from delay are actually larger. This further reduces the
relevance of the argument that the acyclic outcome is natural in this envi-
ronment.

AN EXAMPLE OF AN INDUSTRY
COMPLEMENTARITY IN ACTION

The paper by Shleifer has led to related developments concerning the
timing of discrete choices relative to the business cycle, two of which are
described here. Cooper and Haltiwanger [1993b] investigate the timing of
the replacement of existing capital with a new machine. The gain from
this replacement is that a more productive machine is in use in the plant.
There is a cost of replacement associated with the reduced productivity
of the plant during the replacement process.

Formally, Cooper and Haltiwanger consider the following maximization
problem for a single agent:

max ;ﬁ'[u@ - g(n)]

{n}, {z}
s.t. (12)
¢ = zn0, z € {k, 1}, 6, =06* and
0, = pet—l lf Zag=1
T o* lf Za =k

In this problem, u(c,) is the utility in period ¢ from consumption (c;), g(n,)
is the disutility of work and B is the discount rate.The production process
for consumption is given in the first constraint. As there are no inventories
held, output and thus consumption are equal to the product of the labor
input, the productivity of the current machine (8,) and z,, a choice variable
that indicates whether machine replacement is occurring in period ¢. When
z, = k, machine replacement occurs in period ¢ and labor is less productive
during this period. In the following period a new machine with productivity
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0* is in operation. When z,= 1, no replacement occurs in period ¢ and
productivity falls by p € (0, 1) in the following period. Note that there
is no technological progress in this economy, just the replacement of
depreciated machinery.

The optimization problem of a single agent leads to endogenous cycles
with “procyclical” output, employment and productivity. Moreover, in a
stochastic version of the model, with iid shocks to tastes and the production
relation, replacement is more likely to occur during periods of low labor
productivity and/or low marginal utility of consumption. In this sense a
theme that downturns are a good time to replace existing machinery with
new, more productive equipment emerges.

Cooper and Haltiwanger then embed this problem in a multisector
economy and argue that the endogenous cycle associated with machine
replacement will cause similar fluctuations in other sectors of the economy.
Further, if there are multiple producers simultaneously solving this machine
replacement problem, then in the presence of either strategic complemen-
tarities or common shocks, individuals will have an incentive to synchro-
nize their choices, producing interesting macroeconomic effects.

Cooper and Haltiwanger produce some empirical support for the model
by investigating the seasonal pattern of production, particularly the annual
shutdowns, in the automobile industry. These shutdowns are a time in
which existing machinery is replaced to produce new models and to incor-
porate new technological advances. Cooper and Haltiwanger document
the synchronization of these shutdowns across producers and find that
machine replacement is more likely (and more severe) during economic
downturns, as predicted by the theory.

Finally, Cooper and Haltiwanger [1993b] use a version of this model
to understand the dramatic changes in the automobile industry that took
place during the 1930s. Prior to 1935, the seasonal pattern of production
and sales in the automobile industry included a shutdown period late in
the calendar year, an automobile show in January and then a burst of sales
and production in the spring. Automobile producers argued that this pattern
caused excessive (and expensive) seasonal fluctuations. However, acting
independently, they were apparently unable to break the seasonal pattern.
Cooper and Haltiwanger argue that this reflects a complementarity through
the automobile show that generated the observed synchronization. In 1935,
the pattern changed as a consequence of an automobile code generated
under the National Industrial Recovery Act (NIRA), which called on the
producers to alter their seasonal pattern of production. The interesting
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aspect of this code is that the dramatic changes in the automobile industry
occurred despite the fact that the NIRA had been ruled unconstitutional
6 months earlier.

DELAY

One interesting aspect of timing is the prospect of delay. Fluctuations in
the levels of durable expenditures by consumers and firms may reflect
their decision to delay an action until the future. This seems particularly
relevant for the behavior of a firm contemplating an investment. The
literature on delay is, of course, closely linked to our previous discussion
on the timing of decisions.

Two types of interactions that can lead to delay have been studied in
this literature. The first concerns information flows. Agents may wish to
delay their actions in order to learn from others who precede them. As
we shall see, this type of interaction adds to our list of sources of comple-
mentarity.’ The second interaction we look at derives from direct produc-
tion function interactions. Here delay arises because allowing others to
move first will make the agent who waits more productive in the future.
We look at these avenues for delay in turn.

Information Flows as a Source of Delay

This section draws upon an example in Gale [1996b] and the analysis in
Chamley and Gale [1994]. To begin consider the interaction between two
agents, i = 1, 2. Each has a discrete decision: to invest (@; = 1) or not (g; =
0). If agent i invests, then his payoftf is 8, + 6,. Assume that 6, is uniformly
distributed in the interval [-1, 1] and that 8, and 6, are independent. Any
player not investing receives a payoff of zero. Note that the payoffs from
investment do not depend directly on the action of the other agent.
Each agent i = 1, 2 observes his own signal 0,. Payoffs for each agent
are given by the sum 0, + 0,. So, each player receives a payoff relevant
signal but would value knowing the signal of the other player before
choosing whether or not to invest. If that signal is not directly observed,
as in the model under study, then the action of the other agent will convey

5. In fact, Vives mentions this source of complementarity as well. As Gale [1996b] emphasizes,
these models are closely linked to those of herd behavior and cascades explored recently by
Banerjee [1992] and Bikhchandani et al. [1992].
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valuable information. This specification of payoffs and the structure of
information jointly create the basis of interaction between agents.

Suppose player 1 moves first after receiving the signal 6,. Then, after
observing both 8, and the choice of player 1, player 2 decides whether to
invest or not. For now, we leave aside the question of the source of this
specific timing and simply study the outcome of this game.

Given that 0, is uniformly distributed between [—1, 1], player 1 will
move iff the realized value of 0, exceeds 0. Surely player 1 recognizes
that this decision will have an influence on the action of player 2, but that
isn’t important for player 1 since his payoff from action is 0; + £8, =0,
(as the 6, ’s have zero unconditional mean and are uncorrelated). Since
player 1 acts iff 0, > 0, the ex ante expected utility for player 1 is V4.5

The decision problem for player 2 is a bit more complicated. If player
2 observed the signal of player 1, then player 2 would invest iff 6, + 6, >
0. In this case, there would be no direct dependence of player 2 on the
choice of player 1. However, in Gale’s example, player 2 only observes
the action of player 1 and thus must infer the value of 6, from this
observation. Given the coarseness of the action space relative to the possi-
ble values of 6,, player 2 will be unable to infer 6, from the action of
player 1. Still, knowing whether or not player 1 invested is valuable to
player 2.

Suppose player 2 observes that player 1 invests. Then player 2 infers
0, > 0, so that player, upon observing 6,, will invest iff 6, + E[0; |a, = 1] >
0. Since E[0,]a, = 1] = ¥, player 2 will invest iff 6, > —'%. So, conditional
on player 1’s investing, player 2 will have an expected payoff of %is.”

In contrast, if player 1 does not invest, then player 2 will require that
0, > 4 before choosing a,=1. In this case, player’s 2 expected payoff
is Vie.®

Thus we see that player 2 is better off when player 1 invests. Further,
player 2 is more likely to invest when player 1 invests. In this sense the
game exhibits both positive spillovers and strategic complementarity.

One concern of course with this analysis is that the order of moves is

6. That is, the player’s expected payoff conditional on investing is %2, and the player invests with
probability V2.

7. If both players invest, then the expected payoff for player 2 is V2 + E[0, > —V4] = %. Player 2
invests iff 8, > Y4, which occurs with probability ¥4. Thus, given that player 1 invests, the
expected payoff to player 2 is 9/16.

8. Player 2 invests iff 8, > Y2, which happens with probability Y. Conditional on investing, the
mean of 8, is %. Further E[a, = 6] =-'2. Hence the expected payoff to player 2 if player 1
does not invest is Ya[¥% — 4] =1/16.
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exogenous. In this example, there is clearly an advantage to going second.
Specifically, the expected return to player 1 is ¥4 and the expected payoff
for player 2 is V1.

This observation brings us back to our discussion of timing and provides
a basis for delay. If these agents are not forced to stagger their decisions,
they would each prefer to go second and thus take advantage of the
information created by the other. In this case, delay might endoge-
nously arise.

To model this in a nontrivial fashion, we need to introduce a cost of
delay into the analysis. It is convenient to discount payoffs so that the
informational advantage of moving second is potentially offset by discount-
ing. Further, we need to specify the game of timing that is used to determine
the order of moves.

One possible extensive form is that the players, prior to observing the
realized values of 0;, simultaneously decide whether to go first or second.
This is similar to the structure used earlier where players decided on odd
or even as their period of action. Assuming that the discount factor, denoted
by 08, is close enough to 1, there is still some gain to going second.
However, we must consider the possibility that both players move in either
the first or second period, thus denying to both the benefit of the information
created by the action of the other.

First consider an equilibrium in which moves are staggered. If player
1 acts in the first period, then for & close enough to 1, player 2 will best
respond by acting in the second period. Given this, player 1’s best response
is to act first since there are no gains to joining player 2 and acting second.
Hence, by symmetry, there are two staggered pure strategy equilibria for
O near 1. In fact, the game has a battle of the sexes structure and so there
is also a mixed strategy equilibrium.

When players move simultaneously in the first period, they each have
an expected payoff of Y since they invest iff 8, exceeds 0. If they move
simultaneously in the second period, their expected payoff is simply &/4.
In both of these cases, there are no flows of information The candidate
equilibrium in which each player waits until period 2 is not an equilibrium
because of discounting. However, for sufficiently low values of 0, there
will be an equilibrium without delay. Otherwise, there are no equilibria
with simultaneous investment.

The problem with this extensive form game is that agents must commit
to the period of their move prior to observing their signal. Perhaps a more
compelling model of timing is one in which the agents decide whether or
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not to invest after receiving their signal, 0, In this case, for sufficiently
large values of the signal, the agent will surely invest, trading off the gain
to moving early from the information conveyed by the other’s choice. For
very low values of the signal, it is clear too that the agent will wait,
perhaps never investing for sufficiently low values of 0;. For intermediate
values of the signal, the agent will optimally wait for the other to invest
and then invest in the second period iff the other invests.

For this model, Gale [1996b] constructs such an equilibrium. There is
a critical value of 6, say 0*, such that if

1. 9; exceeds 0* player i invests in period 1 and
2. otherwise, player i will wait and invest in period 2 iff the expected
return, given that the other player invests in the first period, is positive.

Gale argues that there exists a unique value of 8* satisfying these condi-
tions.” Further, 6* > 0; the option value of waiting exceeds the slight
expected gain to investing early.

A very interesting feature of this equilibrium is that the player who
delays will invest iff the other agent invests in the first period. To see why,
suppose that the agent’s decision in the second period were independent of
the action of the other. Then there would be a cost to delay but no benefit
since actions are independent; this is not equilibrium behavior. Thus, in
equilibrium, delay arises because the actions of one player will influence
the other.

Since the equilibrium is symmetric, there is always the possibility that
both players delay their investment and, in equilibrium, never invest.
Further, as 6* > 0, this scenario, in which no agent undertakes investment,
may arise even if this investment is, ex post, profitable for both.

This discussion is, of course, made simple by the assumption of two
players and two periods. Still, the model gets across some important
intuition about the nature of the complementarity created by informational
linkages and the possibility of equilibria with delay. We now turn to a
brief overview of Chamley and Gale [1994] for further developments of
this theme.

Chamley and Gale consider a situation in which there are N players
and time is discrete though the horizon is infinite, i.e.,t=1, 2, .. . . Players
share a common discount factor 8. Of the N players, only n of them have
the option of undertaking an investment project. Further, n is a random

9. For a closely related economy, Chamley [1997] finds the possibility of muitiple equilibria.
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variable. While agents know whether they have the option on an investment
project, they do not know the realized value of n. Agents with a project
decide whether and when to invest. The other N — n agents do nothing.

If one of the n agents with an investment option exercises that option
in period ¢, then the lifetime utility of the agent is given by & 'v(n). The
key assumption in the Chamley—Gale model is that v(n) is an increasing
function of n: the more agents have an investment option, the more valu-
able, given the date of investment, is that activity.

To recap, some agents have investment projects. Those that do care
about the total number of projects in the economy. As in the examples
given earlier in this section, these agents infer the realized value of n from
observing the investment activity of others.

Chamley and Gale analyze the resulting game of incomplete information
in which the strategy of a representative agent is a mapping from the
history of play, represented here by the number of agents investing in the
past periods, to the probability of investing in the current period. Of course,
agents’ beliefs about the realized value of n are specified as well in a
manner consistent with Bayes law.

Chamley and Gale find that there exists a unique Perfect Bayesian
Equilibrium. Along the equilibrium path either some or all potential invest-
ors invest or no investment activity occurs at all. The case of partial
investment just reflects randomization by agents’ indifference between
making their investment now or delaying. Interestingly, if there is no
investment in any period, then no new information is created and thus
there will be no further investment. This is termed a collapse. They also
show that if § is large enough, there will be delay in that agents with
positive expected benefits to investment may not invest with probability 1.

Note that the Chamley and Gale model ignores the ongoing nature of
economic choice. Further, there is no real sense of a business cycle here,
rather just a model of delay. This is not to understate the importance of
this contribution but rather to point in the direction of further development.

Gonzalez [1997] takes a version of this model a step further. His model
has four key features. First, the structure is an overlapping generations
model in which agents live for two periods. Second, the payoffs of an
agent depend on a fixed (for two periods) specific shock, a common shock
and some noise. Third, agents must infer the value of their idiosyncratic
shock from their payoffs: i.e., information is not perfect. Fourth, the
inference process is influenced by the level of economic activity: the higher
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the level of activity, the more precise is information about the aggregate
state. Since agents’ idiosyncratic shock is fixed for their lifetime, they
have an incentive in youth to take actions that create information: i.e.,
there are learning and experimentation in the model that interact with the
aggregate level of activity. Overall, Gonzilez finds that the model economy
displays persistence and that cycles induced by an underlying Markov
process are asymmetric. In particular, the progress of the economy out of
a recession is slow because agents are unaware of the change in the
aggregate state from bad to good. In contrast, during good times, a change
in the state to bad is easily inferred and so downturns are rather abrupt.

Real Links

Instead of exploring the issue of timing using informational links, Gale
{1995, 1996a] considers a model in which the actions of agents directly
influence the returns of others. In particular, the model includes comple-
mentarity through the production process as in models we investigated in
Chapter 3.

As in the information problem described, there is still incentive for
delay since agents may wish to wait for others to act in order to gain a
return from the actions of others. Here, though, we can see that the nature
of the outcome of the interaction, and thus the prospects for delay, will
depend on the exact timing relationship specified in the model. Put differ-
ently, the distinction between dynamic and contemporaneous complemen-
tarities, again described in Chapter 3, may be quite important in games
of timing as well.

Consider a game with two players, two periods and a dynamic technolog-
ical complementarity. A player can produce either in period 1 or in period
2. The net gain to production in period 1 is 6, a nonstochastic constant
for each player. The discounted value to production in period 2 is &(6 + )
if the other player produced in period 1 and 86 otherwise. So delaying
production has a cost due to discounting (8 < 1) and a gain measured by
v> 0, the dynamic complementarity.

As before, agents simultaneously choose when to produce. Consider
first a candidate equilibrium in which both agents produce in period 1. A
player will choose to defect and produce in the second period iff
8(0+7v) 26, or 82 6/(0 + 7). So for low values of & and 7, there will be
an equilibrium in which both players produce in the first period. But for
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sufficiently high values of the discount factor and the technology parameter,
it is an equilibrium for agents to stagger their choices.” Further, this
staggering is perfectly efficient: the social gains from the external produc-
tion effect exceed the cost of delaying production for one period."

Consider, in contrast, a setting where the interaction between agents is
contemporaneous rather than lagged by one period. So, assume that the
productivity of an agent is enhanced by the number of other agents produc-
ing in thar period.” Further, suppose that there are N+ 1 agents with
production opportunities and two periods. Output from producing with
the N others is given by 0 + Ny.

Clearly, there is an equilibrium in which all agents produce in the initial
period. There is no incentive for delay if all agents produce in the first
period. However, there can also be an equilibrium with delay in which
all agents wait until period 2 to produce. Given that others delay, an
individual agent will wait as well, as long as 8(8 + Ny) > 0: i.e., the gains
to defection are offset by the discounted value of the complementarity.
So, we have an equilibrium with delay if the discount factor is not too
low and the production complementarity is large enough. For this model,
the production complementarity is, in turn, partly determined by a produc-
tion function parameter and partly by the number of agents. Apparently,
as the number of agents rises, delay becomes more likely. Note that here
delay is inefficient.

Gale [1995] goes well beyond this overly simple structure to study
these issues more formally. The theme, though, is delay in a setting with
production complementarities, and the main issues concern the likelihood
of delay as a function of the timing of the complementarities, the discount
factor and the number of agents.

In particular, Gale assumes that there are N players, each with an
investment activity which can be undertaken once. Thus, in contrast to
the Chamley and Gale specification, there is no uncertainty over the number
of agents with investment projects. The cost of investment is fixed at ¢
and this discrete activity creates a stream of benefits. As earlier, denote
the discount factor by &. Further, let x; be the state of player i in period
t, where x; € {0, 1} and x; =1 indicates investment either in or before

10. Clearly, it is never an equilibrium for both to wait until period 2 to produce since there is
no gain to delay unless the other agent moves first. So again the timing game has the same
structure of the battle of the sexes game.

11. This assumes society maximizes the discounted value of output.

12. Yet another alternative would have the interaction to anyone who had ever produced up to
and including the current period.
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period t. The investment decision is irreversible: if x; =1, then x;,, =1
for s> 0. Finally, define x,= X,.x,/N, which represents the fractions of
investors up to and including period .

Assuming that the complementarities in investment are contemporane-
ous, the return from investment at date ¢ is then given by

oo

Yolugx) - 8'c (13)
s=t
In this expression, the investor receives a payoff of u(x,) in period s where
x, is the cumulative investment at date s. Of course this state variable
evolves over time as more agents invest.” This is perfectly anticipated by
an investor in equilibrium.

Gale assumes that u(1)/(1 — 8) > c. So, ¢ is sufficiently low that if all
other agents invest, the remaining agent will do so. Further, Gale assumes
that u(0)/(1 — 8) < ¢ so that an individual will not invest alone if others
never invest. Finally, we assume that #(x) is an increasing function, imply-
ing the presence of strategic complementarities. Thus there will exist a
critical value of x, denoted x*, such that u(x*)/(1 — &) =c. So, at x = x*,
all players will invest without delay.

A static version of this model is quite close to the models of participation
complementarities presented at the start of Chapter 5. Here, though, the
dynamics alter the outcome and permit a study of delay. In fact, as in the
simpler production complementarity economy presented earlier, it is quite
easy to generate equilibria with delay.

For example, consider an equilibrium in which all players delay their
investment by one period so that x;; =0 and x, =1 for all i. Would an
agent defect and invest earlier? The gain would be to enjoy an extra period
of payoff from acting before the others of u(1/N). The cost of moving
early is that the entry cost of ¢ is borne one period earlier. So, if u(1/
N) < (1 = §)c, there will be an equilibrium with delay of one period. So,
given u(-), delay requires a relatively small value for the discount factor
and a relatively large number of players so that 1/N < x*.

Using this same logic it is possible to construct equilibria with even
further delay as long as the gain to investing alone, u(1/N), is not too large
relative to the cost of incurring the entry fee earlier. In constructing these
equilibria, care must be taken to describe the equilibrium strategies off
the equilibrium path completely. To construct an equilibrium with two

13. Yet another version of the model might fix x, at the time of investment.
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periods of delay, we suppose that any deviations will be “ignored” in
equilibrium: investment takes place in period 3 even if there is a deviation
in either period 1 or period 2. To check that this is an equilibrium strategy,
it must be the case that a deviation in, say, period 1 will not lead others
to invest in period 2. It is straightforward to show that if u(2/N) < (1 — d)c,
investment in the first period will not lead to investment in the second.
Since u(x) is increasing, this condition implies the previous one for an
equilibrium with one-period delay. In fact, if there is no investment in the
first period, then the continuation of the game is identical to the equilibrium
with one period of delay described earlier.

Gale uses the recursive nature of the equilibria to prove some results
on the importance of the discount factor and the number of players. First,
as the period length gets arbitrarily small, so that & becomes large, the
amount of delay, in terms of the period of inactivity, is trivial. As the length
of the time period becomes small, all equilibria are approximately efficient.

Second, as the number of players increases, delay becomes more likely.
In fact, Gale shows that there exists a subgame Perfect Nash Equilibrium
in which all players invest at date n*, where n* is the smallest integer
greater than Nx*. As the number of players increases, so does n* and
hence the length of delay in this particular equilibrium.

Gale also explores the case of lagging complementarities where the
previous investment activity of others influences current payoffs. Again
there is a cost here to the first mover and delay can arise.

SUMMARY

The point of this chapter was to explore issues of timing. Given the
importance of large expenditures on producer and consumer durables for
aggregate fluctuations, understanding the timing of these decisions is quite
useful. In some cases, these discrete choices at the individual level will
be washed away through aggregation. This seems more likely when these
discrete decisions are staggered. In contrast, synchronization implies that
many agents’ adjusting at the microlevel will imply large aggregate move-
ments.

The theme of this chapter is that the nature of strategic interactions will
influence the timing of these actions. In particular, in large macroeconomic
settings where agents are small, strategic complementarity implies synchro-
nization of discrete activities. Though not emphasized here, it is also the
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case that common shocks to the payoffs of agents will have the same
influence. Moreover, the discussion has highlighted the possibility of delay
arising from the interaction between agents.

Except for relatively few studies, the macroeconomic implications of
these timing issues have not been fully studied. In particular, the empirical
studies of discrete choices generally allow for common disturbances but,
for tractability, ignore strategic interactions. As always, distinguishing
shocks from these interactions will be critical in any empirical implementa-
tion of these models.



7  Government Policy

In this final section of the book we are interested in studying the problem
of policy determination between a government and a set of private agents.!
The inefficiencies created by the presence of external effects as well as
the prospects of multiple equilibria studied in the previous chapter set the
stage for a consideration of government intervention to resolve these
problems. Thus this topic is a natural conclusion to our study of macroeco-
nomic complementarities.

The starting point of the chapter is an illustration of the coordinating
power of the government. If coordination problems reflect the inability of
agents to select the Pareto-optimal (optimistic) Nash equilibrium, then the
government may be able to take actions to achieve the desired outcome.
As we shall see, the government’s actions can eliminate some undesirable
equilibria by turning the strategies that support them into dominated strate-
gies. These policies can be thought of as “confidence building measures”
that work by eliminating the pessimistic beliefs that support the Pareto-
inferior (pessimistic) Nash equilibria.

One important theme here is that in the optimistic equilibrium, the
government never takes an action. Instead, its commitment to an action
is sufficient for stabilization through removal of the pessimistic equilib-
rium. Thus governments may appear to be doing “nothing” when, in fact,
they are quite successful.

To illustrate, we study the Diamond and Dybvig [1983] model of bank

1. Discussions with Hubert Kempf about the structure and content of this chapter were greatly ap-
preciated.
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runs and the role of the government in supporting the Pareto optimal
equilibrium through the creation of deposit insurance. For this example,
the government’s promise to pay deposit insurance eliminates bank runs
by making the early withdrawal of deposits (the strategy that supports the
pessimistic equilibrium) a dominated strategy.

The second section of the chapter provides a contrasting perspective of
the government. In particular, we study situations in which the government
is a destabilizing influence as it creates rather than resolves strategic
uncertainty. Thus this discussion introduces a new source of complementar-
ity through government policy.

The final section of the chapter takes up the important topic of commit-
ment and the associated theme of time consistency. While this well-
known literature certainly has its origins outside the models of strategic
complementarity and multiple equilibria that form the core of this book,
there are numerous important connections between them.

First, the inability to commit to action is a powerful constraint on the
coordinating role of the government. Even in the context of the Diamond—
Dybvig model in which the government’s creation of deposit insurance
appears to resolve the coordination problem, it is assumed that the govern-
ment can commit to taking the actions necessary to prevent bank runs. If
this commitment is not present, it is no longer apparent that the govern-
ment’s stabilizing role remains. In fact, as we shall discuss, the destabilizing
role of the government can be related to its inability to commit to cer-
tain policies.

Second, the time consistency literature requires a “tension” between the
interests of the government and those of private agents. A critical theoreti-
cal issue is understanding and evaluating the basis for this tension. Using
the framework created by Chari, Kehoe and Prescott [1989], we focus on
two elements: (i) differences in tastes between the government and private
agents and (ii) the presence of externalities that create inefficiencies in
the private economy. It is when we consider the effects of externalities
that we return to many themes in the literature on macroeconomic comple-
mentarities.

The presentation of this material begins with the framework of Chari,
Kehoe and Prescott. This general structure is then used to study some
examples: the theory of inflation (as in Kydland and Prescott [1977] and
Barro and Gordon [1983]), the determination of capital income taxes (as
in Fischer [1980]) and the effects of government subsidies in an economy
with production complementarities.
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THE GOVERNMENT AS A SOURCE
OF CONFIDENCE

The existence of multiple, Pareto-ranked equilibria motivates government
intervention to eliminate the Pareto-inferior equilibria and thus support
the Pareto-superior equilibrium. In fact, the government may attempt to
use its powers further and thus achieve allocations that dominate even the
best equilibrium. But here we focus on public confidence building measures
that steer the economy away from the pitfalls of pessimism. In some cases,
along the equilibrium path active government intervention will not be
needed: a credible promise to act is sufficient. Still, the policy must be
credible so that agents believe that the government will live up to its
promises.

A leading example of this form of government intervention arises in
the design of deposit insurance to prevent bank runs. The starting point
is a model of multiple equilibria in the banking system which is broadly
consistent with the bank runs observed in the United States prior to the
introduction of deposit insurance in the mid-1930s. While the banking
system in the United States has since had financial problems, bank failures
have dramatically decreased since the introduction of deposit insurance.
Note that if this insurance is successful, no payments are needed. Again,
the power of the policy arises from a commitment by the government to
take an action in the event of a bank run.

Using the well-known model of Diamond and Dybvig [1983], we know
that uncertain, private liquidity needs by depositors can lead to instability
in the process of intermediation. In one equilibrium, lenders without current
liquidity needs leave their funds with an intermediary and only those
lenders with current needs withdraw funds. In a second equilibrium, all
lenders, regardless of their liquidity needs, attempt to withdraw funds from
the intermediary. Diamond and Dybvig show that this second equilibrium,
a bank run, exists as long as the commitment of the intermediary to
early withdrawers is large relative to the liquid resources available to
the intermediary.

To be more complete, consider an economy that lasts for three periods.
There is a large number of agents (&) at the start of time, period 1. Each
agent has an endowment of 1 unit of the single good in youth and can
live at most two more periods. With probability &, an agent will live for
only two periods and thus, by assumption, consume only in period 2.
These agents are termed early consumers. With probability (1 — 1), an



Government as a Source of Confidence 129

agent is a late consumer and, again by assumption, consumes only in
period 3. Agents learn their type at the start of period 2 and this may be
private information.

There is a simple institution, an intermediary, in this economy that
facilitates the transfer of resources over time. The intermediary offers
agents deposit contacts that provide for period 2 and period 3 consumption,
(c2) and (c;), per unit goods deposited in period 1. The intermediary has
access to a linear technology that uses goods in period 1 as inputs. The
technology can deliver either | unit of the good in period 2 or R > | units
in period 3, per unit deposited.? We also assume that agents have access
to a private technology that allows them to store (with a zero net return)
goods over time.

If agent types were observable, then the intermediary would offer a
contract in period 1 to maximize

Tu(cy) + (1 — mu(cy) (1
subject to a breakeven constraint that
(1 =mec; = (1 — )R )

where the period utility function u(c) is assumed to be strictly increasing
and strictly concave. The breakeven constraint (2) says that the late con-
sumers receive the return of R times the amount of the original deposit
not paid to the early consumers. In this way, the bank offers an optimal
contract that provides insurance to agents across their types and provides
some liquidity to the early consumers.

The optimal contract satisfies the breakdown constraint and the first-
order condition of

u'(c;) = Rl (c3) 3

Since R>1 and u(c) is strictly concave, c; > ¢, If u(c) =1In(c), then the
optimal contract will satisfy ¢, = 1 and ¢; = R. If u(c) has more curvature
than the natural log function, then ¢, > 1 and ¢, < R. Essentially the extra
curvature implies that the consumers receive more insurance and thus a
“flatter” consumption profile.

If agent types are not observable, then the deposit contract must be
incentive compatible and feasible. Without delving into the problem of

2. See Cooper—Ross [1998] and the references therein for a discussion of alternative models of
the intermediation process, particularly the specification of the intertemporal technology.
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finding an optimal contract, it is useful to see whether the full information
contract is incentive compatible.

One equilibrium is for agents to reveal their types truthfully.’ Clearly,
early consumers have no incentive to misrepresent their taste types since
they do not value consumption in period 3. If all later consumers announce
their true type, than a remaining late consumer will be honest as well
since ¢, < ¢; and storage yields a zero net return.* So, neither type has an
incentive to be dishonest if others are truthful.

Interestingly, there is another equilibrium if ¢, > 1. In this case, if all
agents claim to be early consumers, then the intermediary simply does
not have the resources to pay all agents, both early and later consumers,
the consumption level ¢,. To see the construction of this equilibrium, it
is necessary to demonstrate that if all other agents, both early and late
consumers, claim to be early consumers, then a remaining agent ought to
claim to be an early consumer as well. If this remaining agent is an early
consumer, there is clearly no benefit to misrepresenting, as argued before.
Further, if this remaining agent is a later consumer, then this agent is also
better off claiming to be an early consumer in hopes of being lucky enough
to obtain ¢, from the bank and using the storage technology to finance
late consumption. Given that the bank does not have sufficient resources
to meet the withdrawals of all the depositors, the late consumer is sure to
receive nothing by telling the truth.’ This second equilibrium is the bank
run described earlier.

When there are multiple equilibria of this type, there is a simple policy
for the government which eliminates the bank run. Under this policy, the
government promises to pay funds to all agents who are unable to withdraw
deposits from the intermediary. When this policy is in force, depositors
without current liquidity needs have no incentive to withdraw their funds
regardless of the behavior of other late consumers. So, the policy converts
truth telling into a dominant strategy and thus the bank runs equilibrium
is eliminated. Note that in equilibrium the government is never called
upon to provide insurance. Of course, the government policy of providing

3. Here we are adopting the language of the mechanism design literature, where agents announce
their types.

4. So, a late consumer acting as an early consumer would withdraw ¢, and store it for one period,
thus consuming less than c.

5. Here we are assuming that the bank cannot limit the withdrawals of the agents through a
suspension of convertibility. Diamond-Dybvig show that if there is aggregate uncertainty over
the fraction of early consumers, the suspension of convertibility will not be enough to prevent
a bank run.
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this insurance must be credible: that is, it must have a tax base to raise
the funds to pay the depositors in the event of a run and a will to do so
if needed.

In fact, this example is just the tip of the iceberg. There are numerous
examples of government guarantees that are presumably established to
overcome crises of confidence.® A recent example is the intervention of the
U.S. government in Mexico, where a financial guarantee was established to
restore confidence of lenders.’

THE GOVERNMENT AS A SOURCE
OF MULTIPLE EQUILIBRIA

The following example highlights the stabilizing role of the government.
Here a well intentioned government, committed to the bolstering of confi-
dence, takes actions to support a Pareto-dominant equilibrium. To do so,
it is necessary that the government have the interests of the agents as its
objective and also have the ability to commit. We return later to discussing
the consequences of alternative assumptions about the government’s objec-
tives and its commitment powers.

Another point that is hidden in the Diamond-Dybvig example is the
nature of the government’s ability to raise revenues to provide the deposit
insurance. If, for example, the government raises its revenue through some
form of distortionary taxes, then its taxation policies can by themselves
create multiple equilibria.® This is because the tax rates can become endoge-
nous variables and thus depend on “the actions of others.” In this manner,
we shall see that the government can indeed create rather than eliminate
strategic uncertainty. To make this point, we consider the taxation policies
of the government in isolation.

As a simple but illuminating example of this, consider a static economy
consisting of a large number of agents and a government.” Suppose that
agents put forth work effort (n) to maximize utility where consumption
(c) is financed from labor income once the government has taxed at a rate
of 1. Let u(c, n) represent the utility of a representative agent where the

6. Cooper—Ross [1997b] provide a framework for discussing a wide range of guaranty funds,
both public and private, that serve to bolster confidence.

7. See Obstfeld [1996] for a discussion of currency crises in a model with complementarities.

8. Cooper—Ross [1997b] raise a similar point in discussing the strategic uncertainty created by
the design of private guarantee funds.

9. The point of this example is also made by Eaton [1987] and by Persson and Tabellini [1990].
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budget constraint is ¢ = (1 — T)n.!° The agent takes the tax rate as given,
and optimal behavior leads to a labor supply of n*(t), suppressing the
wage rate in the notation. Assume that labor supply is increasing in the
real after-tax wage, so that n*(T) is a decreasing function.

The government has a budget balance constraint that total tax revenues
must finance its fixed per capita budget expenditures, G. Letting N(T) equal
the average supply of labor in the economy, budget balance implies that
T = G/N(7). Substituting this into the labor supply decision of an individual,
we find n=n*(G/N). Thus the budget balance condition creates a link
across agents. In fact, there is a complementarity at work here: if others
work more, the tax rate will fall, inducing the remaining agent to work
more as well.

With this insight, it is not difficult to construct examples of multiple
equilibria in this static tax problem. It is sufficient to search for tax rates
that satisfy the condition of T = G/N(t). Note that this version of the budget
balance condition incorporates both individual optimization and the fact
that all agents are identical since N(T) is the common level of labor supply
given the tax rate.

For example, assume that u(c, n) = ¢ — ¥4n" so that labor supply is given
by n=(1 —1). Hence the condition for an equilibrium tax rate is simply

M-7=G @)

Any value of the tax rate that satisfies (4) is an equilibrium. As long as
G < Va, there will be two solutions to (4). One solution will entail a high
tax rate and low employment, while the other will have a low tax rate
and therefore a high level of employment. In equilibrium, the utility of a
representative agent is given by %2 (1 — 1)? so that the low tax equilibrium
is Pareto-dominant.

Note that this multiplicity arises in the simultaneous game between the
government and the private agents. If the government moves before private
agents and sets the tax rate, then it will select the Pareto-dominant, low
tax rate equilibrium.

A similar theme appears in the work of Schmitt-Grohe and Uribe [1996],
who study the behavior of the stochastic growth model with a government
budget constraint.!! They investigate an economy in which the government
raises revenue, as in the preceding example, with a distortionary tax on

10. Implicitly there is a real wage of 1.
11. See also Guo and Lansing [1997].
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labor income. As the economy is dynamic, future taxes as well as current
ones influence the choices of agents. Assuming that labor supply is infi-
nitely elastic, they prove that the steady state equilibrium of their model
may be indeterminate.

In their economy, a representative agent works and rents capital to
competitive firms. The individual pays a tax on labor earnings and then
splits income between consumption and savings, through the accumulation
of capital. Thus the model is based upon the standard stochastic growth
model. Preferences are assumed to be separable between consumption and
leisure, and labor supply is perfectly elastic.

The action, as in the preceding static example of multiple equilibria
with government taxation of labor income, comes from the interaction of
the government and the private agents. Initially, they assume that the
government taxes labor income only. The government finances a fixed
level of expenditures from the labor income tax. The government budget
constraint is given by

G =twh, 5)

where T, is the tax rate, w, is the equilibrium wage before taxes and H, is
hours worked by the representative agent. Note that labor demand by the
firm will set the wage equal to the marginal product of capital, and thus
the level of the capital stock will enter into the relationship between taxes
and the labor input. Each agent takes this tax rate as given when optimizing,
though the tax rate must be determined as part of the overall equilibrium.

Schmitt-Grohe and Uribe analyze a continuous time economy and focus
on the dynamics in the neighborhood of a steady state. The economy is
reduced to two dynamic equations with the capital stock and the marginal
utility of consumption as state variables. As in the analysis of the production
complementarity models in Chapter 3, the key is the local stability of the
steady state. Since the model is cast in continuous time, the condition for
sunspot equilibria is that both eigenvalues of the system are negative.

Schmitt-Grohe and Uribe argue that the steady state is indeterminate
iff the tax rate on labor income lies between capital’s share, a parameter of
the Cobb—Douglas technology, and the tax rate that maximizes government
revenue, i.e., the tax rate at the peak of the Laffer curve. The authors
argue that these are not unreasonable conditions given that capital’s share
is less than 40%.

In this model, the indeterminacy again rests upon labor supply’s being
flatter than an upward sloping labor demand. By assumption, labor supply
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is completely elastic. Schmitt-Grohe and Uribe argue that in equilibrium
(i.e., after substituting out for the tax rate), there is a positive relationship
between the log deviation of the after tax wage rate from its steady state and
the log deviation of hours worked iff the tax rate exceeds capital’s share.

Put differently, higher tax rates anticipated for the future imply a de-
creased desire for the accumulation of capital. This implies that output in
the current period is lower and thus taxes today must be higher as well.
Alternatively, expectations of low taxes tomorrow can be self-fulfilling as
well, and thus an intertemporal complementarity is present.

A GENERAL STRUCTURE FOR
COMMITMENT PROBLEMS

The discussion thus far has highlighted the interactions of the government
with the theme of multiple equilibria. In particular, one example illustrates
the government’s role in coordinating the economy, and the other illustrates
the possibility that the government may create strategic uncertainty.

In the discussion of the government as a coordinator, we noted that it
was critical that the government’s promise to take action was credible.
One way to have credibility is to have the ability to commit to an action.
Further, in order for the government with commitment to adopt the policy
of deposit insurance, it was necessary that the government share the interest
of private agents in resolving the coordination problem. Thus in order to
stabilize, the government must have the interests of private agents as its
objective and must have the power of commitment.

In the discussion of the government as a destabilizing influence, the
issue of commitment arose again. If the government were able to move
first, then its taxation policies would not create any coordination problems.
The government created strategic uncertainty because agents had to fore-
cast its policy variable.

This section of the chapter takes up this fairly broad topic of commitment
and government objectives. There is a vast literature under the heading
of “political economy” in which the design of government policy, in terms
of both objectives and constraints, is studied.”> Our more narrow focus
here will be on the issue of commitment and the related topic of time

12. For a presentation of this material, Persson and Tabellini [1994] provide an extended set
of articles.
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consistency in the context of economies with externalities; we draw heavily
upon Chari, Kehoe and Prescott [1989] to develop a general representation
of the interactions between a government and a group of private agents.

In particular, we focus on the nature of a conflict between the agents
that leads to what has been termed a time consistency problem. Informally,
the idea is to take as a benchmark the equilibrium allocation that would
arise when the government takes actions before private agents. This is
often termed the solution with (government) commitment. Now, take the
actions chosen by the private agents as given and allow the government
to reoptimize. The critical question is, Will the government choose an
action different from that in the equilibrium where the government
moved first?

If the answer is “yes,” so that government chooses to act differently,
then there is a time consistency problem associated with the equilibrium
of the game in which the government moves first. This does not invalidate
the commitment solution. If the government has the ability to commit,
then the equilibrium computed for that extensive form game is certainly
the predicted outcome. But the time inconsistency of the commitment
solution does point to the fact that if the government can in some way
renege on its “move,” then it will want to do so.

As we shall see, the time consistency problem revolves around two
themes. In some cases, the time consistency problem arises simply as a
result of differences in objectives between private agents and the govern-
ment. In other envrironments, the problem results from the presence of
externalities that are not internalized by the private agents. The existence
of these externalities creates both a rationale for government intervention
and the basis for the time consistency problem.

From the perspective of macroeconomics, the study of the problem of
policy credibility (sometimes termed time consistency) has led to positive
theories of inflation (Kydland and Prescott [1977]) and taxation (e.g.,
Fischer [1980]). We take up these leading examples at the end of this
subsection. In addition, we consider an example built upon a model of
production complementarities.

The Role of Conflict and Externalities in the Time
Consistency Problem

To fix notation and some basic ideas, consider the interaction between a
large group of private agents and a government. Each private agent controls
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x and the government controls the policy variable . Suppose that the
preferences of the agents and the government are given by U(x, 1). So,
by assumption, there is no conflict whatsoever between the government
and the private agent.

Further, the payoff to each agent depends only on the action of that agent
and the action of the government. So, there are absolutely no interactions
between the private agents. Since agents are identical, it is sufficient to
consider the interaction between a single (representative) private agent
and the government.

As this section proceeds, we will allow for differences in objectives
and interactions across agents. For now, think of this model as a useful
building block.

In this example, one can generally consider four allocations. They differ
in terms of the nature of interaction between the agents and the government
(cooperative vs. noncooperative games) and in the order of moves in the
noncooperative games. Throughout this analysis we assume that there is
a unique equilibrium for each of these extensive forms.?

The first, which we will term the cooperative solution, involves the
optimization of U(x, m) jointly by the government and the representative
agent. The term cooperative solution is used since the government and
the agent jointly agree and commit to the choice of (x, w): there is no
possibility of deviations from the agreed upon actions. This serves as a
benchmark for the noncooperative equilibria since, by construction, this
solution yields the highest payoff to the agents. The other three allocations
refer to outcomes under different timing assumptions for the noncoopera-
tive game played between the government and the representative agent.

The second allocation is the simultaneous move solution. In this case,
all agents and the government move simultaneously, taking the actions of
others as given. Let ¢(x) denote the best response of the government to
the strategy x chosen by each representative agent and let Wy(r) denote the
best response of a representative agent to the choice of the government.
Hence an equilibrium for the simultaneous move game is a pair (x**, w**)
with the property that x** = y(**) and ©** = ¢(x**), the usual mutual
best response property.

The third allocation is termed the commitment solution. By this, we
mean the outcome of a noncooperative game in which the government

13. So at this point we are forced to eliminate the possibility of multiple equilibria from consider-
ation though externalities remain a key element.
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moves first: i.e., it can commit to the choice of policy (®) prior to the
choice of x by the agent. In selecting its policy, the government anticipates
the response of the private agents, given by the reaction function W(r).
So, the commitment solution is a pair (x*, n*) such that m* maximizes
U(y(w), m). Of course, the use of the term commitment to describe this
game assumes the perspective of the government.

The final allocation is termed the no-commitment solution. In this case,
it is the private agent that moves first and the government that follows.
Here, though, we make use of the fact that there are many private agents.
So each assumes the action of the government is independent of his/her
action: i.e., private agents act independently and take the (anticipated)
government’s policy as given. Hence, the simultaneous move and no-
commitment solutions are identical. So, we will ignore this solution.

Using this notation, we can restate the point of time consistency. Gener-
ally, we will be asking the following question to determine whether the
commitment solution is time consistent: Taking the action of the private
agent in the commitment solution as given (x*), what is the government’s
best response? If this is nor the same as the government action taken in
the commitment solution, then a time consistency problem exists. So, if
T* # ¢(x*), then a time consistency problem exists.

The relationship between these solutions and the time consistency prob-
lem is summarized in the following:

Proposition 1: The commitment and simultaneous move solutions
differ iff there is a time consistency problem.

Proof: To see why, recall our assumption that there is a unique
equilibrium for these games. We first show that if the solutions differ,
then there is a time consistency problem: i.e., if (x*, 7w¥) # (x**, {**),
then 7t* # ¢(x*). Suppose not, so that T* = d(x*). If so, then (x*, w*)
would be a Nash equilibrium of the simultaneous game since in the
commitment solution x* = y(r*). This contradicts the hypothesis that
(x*, T¥) # (x**, T**) given our uniqueness assumption.

We now show that if there is a time consistency problem, then the
solutions must differ: i.e., if w* # §(x*), then (x*, {*) = (x**, g**),
Suppose not, so that (x*, *) = (x**, w**): i.e., the commitment solu-
tion is the Nash equilibrium of the simultaneous move game. How-
ever, this requires ©* = ¢(x*) and thus contradicts the hypothesis.

QED.

So, to determine whether or not the commitment solution is time consis-
tent, we will simply look for differences between that solution and the
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simultaneous move solution. Further, since the simultaneous move solution
and the one in which the government moves after private agents are
identical, knowing that the commitment and simultaneous move solutions
differ implies that the government would want to change its decision if it
moves after the private agents.

In the simple example of the representative private agent and a benevo-
lent government, there is no time consistency problem. In fact, it should
be clear that all four solutions are identical since the government and the
private agent have exactly the same objective.

To see this, note first that the allocation from the cooperative solution
satisfies the conditions

Unx, ®) = Ufx, ®) =0 ©6)

This is obtained from directly choosing (x, ) to maximize U(x, &).

In the commitment solution, the government chooses ® given the choice
of agents that it anticipates, denoted by y(r). Thus the government solves
max, U(y(rn), nt), leading to a first-order condition of

Ui(x, TV, + Unx, ®) =0 @)

where V, is the derivative of the optimal response of the private agent to
7. Since individual optimization, given &, leads to U,(x, ®) =0, it is clear
that the cooperative solution is also the equilibrium of the game with com-
mitment.

For the simultaneous move game, the conditions for equilibrium are
exactly those from the cooperative solution given in (6). In fact the two
conditions given in (6) are those that characterize the mutual best response
properties necessary for a Nash equilibrium of the simultaneous move
game.

So the equilibria under all four concepts are the same. In particular,
this means that the solution with commitment is time consistent: even if
the government could move after private agents, it has no incentive to
change its action relative to the commitment solution. Formally, this is
seen by the fact that the commitment and simultaneous move outcomes
are the same.

The result that there is no time consistency problem stems partly from
the fact that without a difference in objectives between the government
and the agents, the government has no reason to use the first-mover
advantage it is granted in the commitment solution. Likewise, since there
is no source of inefficiency in the interaction between private agents, there
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is no reason for the government to use its power to influence the actions
of the private agents. Clearly, then, the origins of the problem must lie with
differences in objectives or, perhaps more interestingly, in the interaction of
agents in a multiple agent economy.

To study the case of divergent interests, suppose that the government
has an objective other than the maximization of U(x, &), say, V(x, &),
perhaps reflecting the private objectives of the bureaucrats. In this case, the
commitment solution and the simultaneous move solution will surely differ.

With commitment, the government will use its first-mover advantage
to attempt to influence the choice of x by the private agent. This leads to
the following set of first-order conditions

Ulx, m) =0 (®)
Vilx, My, + Vi(x, ) = 0

where again v, is the derivative of the optimal response of the private
agent to T.

In the simultaneous move case, the influence of T on x is gone as the
government takes the action of the representative agent as given. The
equilibrium to this game satisfies

Ulx,)=0, Vix,m)=0 ®

As long as there is some form of interaction between the government and
the private sector (so that y, is not 0) the solutions to these two systems
of first-order conditions will not be the same.

So, generally if there is a divergence in interests between the government
and the private agents, then the timing of moves of the extensive form
game matters. That is, there is a time consistency problem associated with
the commitment solution. Intuitively, the government initially chose an
action to meet it own objectives and to influence the choice of the agent,
as in (8). However, once x is chosen, the government cannot influence
the agent and thus wants to take a different action.

Interestingly enough, the time consistency problem can arise when there
is no divergence of interests between the government and the private
sector. This requires the specification of an economy with multiple private
sector agents along with a source of inefficiency in their interaction.

To illustrate this, Chari, Kehoe and Prescott present a single model of
interaction between agents, not unlike many of the models with externali-
ties and complementarities explored in earlier chapters of this book. Sup-
pose that there are I agents index i =1, 2, ... I where the payoff to i is
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given by U(x;, X, ). In this payoff function, X represents the mean value
of x over the agents. As before, m is the action of the government. The
government’s objective is to maximize 2, U(x;, X, 7). In a symmetric equi-
librium in the game between private agents, x; = X so that the government
is again maximizing the objective of a representative agent.

In the commitment solution, the private agents play a game given T
since their payoffs depend on the actions of others through X. Since the
payoff functions are the same for all players, we focus on symmetric Nash
equilibria given © and assume that a unique equilibrium exists. Denote
the equilibrium by x*(m) given implicitly by

U (x*(m), x*(m), m) = 0 (10)

Given x*(m), the government selects 7 to maximize >,U(x;, X, ®) with x =
X = x*(m). The first-order condition for the government’s problem, using
the agent’s first-order condition to delete a term, is

*,
Ue 5 D 4 Uxx = 0 an

These derivatives are all evaluated at x = x*(7).
In the simultaneous move solution, the optimal choice of government
policy satisfies

Ux, x, 1) = 0 (12)

assuming, as before, that the outcome of the interaction of the agents will
be a symmetric equilibrium in which all agents choose the same level of
x. Since each agent takes the actions of other agents and the government
as given, the first-order condition for a representative agent at the equilib-
rium is

Ulx, x, 1)y =0 13)

The commitment solution, (10)~(11), and the simultaneous move solu-
tion, (12)—(13), are clearly different. The time consistency problem arises
from the fact that with commitment the government has the ability to
influence the choice of the private agents while without commitment, this
opportunity is gone. Note, though, that if there were no externality, so
that U.(x, X, ) were always equal to O, then the time consistency problem
would disappear. Of course, in that case, we would simply be back to the
world of multiple agents without any conflict.
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Some Leading Examples

Here we discuss three leading examples of the policy credibility problem.
Much of the literature on policy games in macroeconomics builds upon
the first two examples. We also offer a third example, which discusses
the role of government intervention in an economy with complementarities
in the production process.

A Positive Theory of Inflation

As in Kydland and Prescott [ 1977] and Barro and Gordon [1983], consider
an economy composed of a government and many private agents. The
government, or monetary authorities, through their control of the money
supply, are assumed to control the actual rate of inflation. The objective
of the monetary authority is to minimize

AN, - N9 + (m)* (14)

where N* is the desired level of employment from the perspective of the
monetary authorities. In what follows, we consider N* to be the efficient
level of employment in the economy. Note that the monetary authority is
assumed to incur losses from variations of employment around the target
and from inflation differing from zero.

As a convenient short-cut, we view (private) agent i as choosing 7%,
the expected rate of inflation in the economy. All private agents incur
losses from deviations of actual inflation from their expectations. That is,
the payoff to agent i is simply (7¢, — )%

One should think of this as an economy in which there are many private
agents all attempting to forecast inflation in order to make employment
decisions. Alternatively, one can imagine an economy in which wages
reflect anticipated inflation and employment is determined ex post, reflect-
ing actual inflation. In this case, private agents might again, through a
reduced form, have preferences over the gap between actual and expected
inflation. The economywide expected rate of inflation (r%) is then the
average of the expected inflation rates of the individuals in the economy.

Without being specific at all about the microeconomic structure of this
economy, suppose that the aggregate level of employment in the economy
depends on both the actual and the expected rates of inflation and is given by

N;=N, +y(m - ) (15)
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Assuming that y> 0, employment expands beyond the natural rate (N,)
when the actual rate of inflation () exceeds that expected on average by
the private agents in the economy (7%,).

In terms of the discussion, a key issue in this example is the nature
of the extensive form. In particular, does the government move before,
simultaneously with or after the private agents? Does the timing matter
for the outcome and for the welfare of the agents in this economy?

First, suppose that the government chooses the rate of inflation prior to
the choice of private agents. That is, the government commits to an inflation
rate and then the private agents take actions (summarized by ‘,) given
the action of the government. Since private agents have the same objective,
they would all set their expected inflation levels equal to the inflation rate
selected by the government. From (15), this implies that N, = N, regardless
of the level of inflation selected by the government. Knowing this, the
optimal choice of inflation for the government is zero, thus minimizing
the loss from inflation. This yields an outcome of zero inflation and a
level of employment at the natural rate and is the commitment solution.

Given this solution, would the government wish to revise its choice of
inflation policy? That is, once private agents act on an expectation of zero
inflation, would the government wish to alter the actual rate of inflation?
To answer this, consider the best response of the government in its choice
of inflation to a given level of expected inflation by private agents. Call
this the best response function ¢(n°),'* which is given by

O(m) = a(N* — N,) + Yo (16)
where
_ Ay
“=U+ap

From this, we see that at %, =0, 7, > (<) 0 as N* > (<) N,. So if the
natural rate of employment is lower than the government’s target, then
the government has an incentive to create inflation when the private sector
expects zero inflation. In the presence of externalities in the labor market
associated with search and production activities, it might be that the natural
rate of employment is too low relative to the efficient level, as is generally
assumed in this literature.

The fact that the government would prefer to change its action once

14. This expression is just the first-order condition for the government’s choice of m given the
common inflation expectation of the agents.
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private agents have moved implies that the solution with commitment is
not time consistent. Of course, this does not tell us what the outcome of
the analysis is in the event that the government is unable to commit
since agents, moving prior to the government, will perfectly anticipate the
government’s reaction given in (16).

Suppose then that the government and private agents move simultane-
ously. In this case, the Nash equilibrium is given by the joint solution of
two equations: the best response function of the government, given in
(16), and the best response function of the representative agent, 1, = T,.
The level of inflation in the Nash equilibrium is therefore given by

_o(N* = N,)

i an

where oy < 1. So, as long as the natural rate of employment is inefficiently
low, there is positive inflation in the Nash equilibrium of this game. Note
that this inflation is perfectly understood by the private agents so that
employment remains at N, and there is simply a cost to society of positive
inflation. Nonetheless, an outcome with zero inflation is unattainable since
the government has an incentive to inflate when private agents anticipate
zero inflation.

The outcome of the game in which the government moves after the
private agents is exactly the same as the outcome of the simultaneous
move game. If all private agents set their expected inflation at ©*, then
the government has an incentive to choose exactly this level of inflation.

Overall, this example highlights a few important themes in this literature.
First, the order of moves does matter in terms of the outcome of these
policy games. Generally, we find that the outcome with government com-
mitment is not time consistent. Second, there is a welfare loss from the
inability to commit. In this inflation example, this is seen from the fact
that the outcome of the simultaneous move game has positive inflation
but the same level of employment as in the outcome with government com-
mitment.

The example can be reinterpreted to highlight the issue of the objectives
of the players and the basis for conflict discussed in the context of the
Chari, Kehoe and Prescott formulation. The inflation example rests on the
inefficiency of the outcome in the private economy, which provides a
tradeoff for the policymaker between the costs and benefits of surprise
inflation. In the absence of this inefficiency, there would be no gains to
surprise inflation and hence no time consistency problem. However, the
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preceding formulation of the problem, though traditional, actually obscures
the true source of the time consistency problem since the inefficiency in
the interaction of the private agents is too implicit.

Chari, Kehoe and Prescott provide a more explicit model. Let the payoff
toagenti,i=1,2,... 1 be given by

U=Uw, -7, w-T, %) (18)

In this payoff function, the first argument is the difference between the
wage growth set by agent i (w;) and the inflation rate, m. The second
argument is the difference between the economywide average wage growth
(w = X, w/I) and the inflation rate. This second argument is critical in the
inflation example, though the basis for its inclusion is not clear. Finally,
it is assumed that individuals’ payoffs depend on the rate of inflation
directly as well.

In the earlier discussion of the inflation example, we focused solely on
the first of these three arguments. Since agents take w and 7 as given once
I is large enough, only the first argument is relevant for decision making
at the level of the individual. However, these other arguments of payoffs
are quite important when we consider the choice of the policymaker.

In that regard, let the payoffs of the government be given by Y, U,. In
fact, using these objectives, one can go through the steps of characterizing
the conditions for an equilibrium in the game with commitment and in
the simultaneous move game. As long as U, # 0, i.e., as long as the external
effects are present, then a time consistency problem will exist in this
economy. Basically, in the presence of an externality, private agents do
not internalize the effects of their wage setting practices on the welfare
of others. This leads to an inefficient outcome. Can the government help
to deal with this inefficiency?

To answer this question, we need to place some additional restrictions
on the preferences of the private agents. These restrictions mirror those
that were implicitly imposed in the previous version of this example.
First, assume that the best response of the private agents in setting w; is
proportional to 7 (d w/d Tt = 1), reflecting the objectives of agents that
their wages grow at the rate of inflation. Second, suppose that U, =0 at
© = 0 so that from the perspective of private agents, given real wage growth
at the individual and economywide levels, zero inflation is desired.

In the solution with commitment, the government is unable to alter the
real wage growth in the economy since variations in 7 are reflected one-
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for-one by variations in private wage growth. The optimal policy for the
government is simply to set © =0, thus avoiding all costs of inflation.
Without commitment, once nominal wage growth is set, the government
can influence real wage growth, though at a cost since U;=0 at t=0.
The sole incentive for inflation is the presence of an externality: the
economywide real wage growth influences the welfare of each wage setter.
In equilibrium, the government can never correct this inefficiency: the
source of inflation is simply the government’s inability to stop itself from
trying. The source of inflation is not any divergence in preferences between
private agents and the government, though, as noted earlier, this divergence
is often sufficient.

Optimal Taxation of Capital and Labor

In this example, which builds upon Fischer [1980], we study the optimal
taxation policy of a government. A similar structure underlies the example
of multiple equilibria with government intervention introduced earlier in
this chapter. Here, though, the stress is on the issue of time consistency
rather than the strategic uncertainty alone.

Consider an economy with N private agents and a government. The
private agents are active for two periods: saving in youth to finance
consumption in old age. The government must finance an exogenously
given level of public expenditures from a tax on labor income and a tax
on capital income. The issue of time consistency arises from the fact that
the government’s incentive to tax capital income changes over time. Prior
to the savings decision of private agents (period 1), the government recog-
nizes that a high tax on capital income will have an adverse effect on
capital accumulation. However, once the savings decisions has been made
(period 2), the government has an incentive to tax capital more heavily since
it is inelastically supplied. In the absence of a government commitment not
to place a high tax on capital income in the second period, private agents
will anticipate high taxes and thus reduce savings in the first period. The
welfare of private agents will, of course, suffer as a consequence.

More formally, let private agents have preferences described by U(c), ¢;,
L — n) where ¢, is period ¢ consumption, L is the endowment of period 2
time and » is the amount worked in period 2. The function U(:) is strictly
increasing and strictly concave. Consumption in period 1 is financed by
an endowment ¢ of the single commodity that each individual has available
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in youth. Period 2 consumption is financed by the return from savings in
period 1 and the return from working in period 2 less taxes paid to the
government. The budget constraints are given by

cot+s=e (19)
Cy = SR(I - Tk) + n(l - Tn)

where 7T, is the tax on capital income, T, is the tax on labor income and
R is the gross return on savings (s).

The government chooses the tax rates to finance a fixed per capita level
of expenditures of G. The objective of the government is to maximize the
welfare of the representative agent.

First consider the case of commitment. If the government is able to set
taxes prior to the savings decision of the agent and is unable to alter these
decisions after the choices of the private agents, then the outcome is called
the Ramsey equilibrium. Let T = (T, T,) be the vector of taxes and denote
by (1) and n(t) the optimal choices of savings and period 2 labor supply
by the representative agent given the tax policy of the government. Further
let V(1) be the lifetime utility of the agent given the policy T. With the
ability to commit to a tax policy, the government chooses T to maximize
V(1) given the response of the private sector to its actions, as summarized
by the functions s(t) and n(t). In this problem, the government faces the
constraint of raising sufficient revenues to finance its expenditures as well.
Letting U, be the derivative of the utility function with respect to its jth
argument and denoting the multiplier on the government budget constraint
by A, the first-order conditions for the government’s problem are given by

UzSR = }b[SR + TkSkR + T,,nk] (20)
Unn = ANn + T, + T,n,]

where s5; and n; are the derivatives of the savings and employment decisions
to the tax rate on factor j = k, n. The allocation with commitment is thus
determined implicitly by these two first-order conditions for the govern-
ment and the choices of individual agents summarized by the two functions,
s(1) and n(1).

Suppose, in contrast to the preceding problem, that the government can
alter its taxes after the savings decision has been made but prior to the
choice of labor input by the agents. So, we again ask the question, Will the
government elect to utilize the policies it chose in the Ramsey equilibrium if
the private agents make the same choices too? We shall see that the
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answer to this question is no, and thus the Ramsey equilibrium is not
time consistent.

A theme in the optimal tax literature is that tax rates should be higher
as the supply of a good becomes less elastic. That theme reemerges here
as the source of time inconsistency. Once savings decisions are made, the
stock of capital in period 2 is predetermined and the government has an
incentive to raise tax rates on this inelastically supplied input. Thus, if the
government could renege on the taxes determined in the solution of the
Ramsey equilibrium, then it would do so by raising capital income taxes
and lowering labor income taxes. Of course, private agents would recognize
this incentive by the government and thus alter their savings behavior.
Therefore, once we open the door for the government to reset it taxes, we
must, of course, recompute the entire equilibrium.

To see the outcome without precommitment, consider the extensive
form in which private agents choose savings, the government selects tax
rates and finally the private agents choose employment levels. Working
backward, the employment rule of the private sector is given by n(t) as
before. In the second stage of this game, the government chooses T to
maximize V(t) given the level of per capita savings, s, and the function
n(t). In contrast to the problem with commitment, here there is no response
in savings to changes in government policy. The first-order conditions for
the government’s choice of T, and T, are

U,sR = M[sR + T, 2D
Uyn = AMn + 1,1,

Because these two first-order conditions do not include variations in s
from changes in the taxes on capital and labor income, the solutions to
the two problems (with and without commitment) will be different. In
particular, the tax on capital will be higher and the level of savings lower,
as we discuss later in more detail. As a consequence, welfare without
commitment will be strictly less than welfare with commitment.

A clear example of the difference in outcomes comes from the Chari,
Kehoe and Prescott [1989] formulation of this problem. Assume that U(c,,
¢, L—n)=u(c; + ¢, L —n) so that first- and second-period consumption
are perfect substitutes. Chari, Kehoe and Prescott show that the Ramsey
allocation has ¢; =0 and a capital tax rate of (R — 1)/R. At this tax rate,
agents are in fact indifferent about their level of saving and are assumed
to save their entire period 1 endowment. The remainder of the government
revenues are derived from the tax on labor income. To see that this is an
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optimal tax policy, note that for lower capital income taxes, agents will save
their entire endowment so that as the government raises taxes, decisions are
not distorted. A tax in excess of (R — 1)/R would yield no revenue at all
from savings and is undesirable.

In the absence of commitment, the government has a clear incentive to
tax all of the capital income since this is a nondistortionary tax once
the savings decision has been made. So, the outcome in the absence of
commitment is for the agent to have zero savings, the government to tax
all capital income (yielding zero revenue) and the labor income tax to be set
to finance government spending. Clearly, this outcome differs dramatically
from that with commitment and consumer utility is strictly lower.

Production Complementarities and Government Subsidies

As a final example we consider an economy in which there are strategic
complementarities between agents through a production function. In partic-
ular, we adopt a variant of the Bryant model in which the level of activity
of other agents influences the returns to work by a single agent. Denote
by Ule, E, m) the payoffs to choosing action ¢ when the average level of
employment (effort) is E and the current tax policy is denoted by 7. The
government has two policy variables: a subsidy given by s and a lump
sum tax of T so that t = (s, 7). Assume that the utility of the private agent
is linear in consumption,

Ule, E, ) = f(e)E'(1 + 5) = T — gle) 22)

where f(e) is a strictly increasing, strictly concave production function of
the individual’s own labor input and g(e) is a strictly increasing, strictly
convex disutility of labor function. The influence of the aggregate economy
is modeled by E". From this expression for payoffs, note that the subsidy
influences the marginal return to work while the lump sum tax has no
influence on work incentives because of the linearity assumption.

In the event the government moves first and sets (s, T), private agents
would choose employment levels. The Nash equilibrium level of effort
by all agents for given government policy is given by

file)el +5) - g'(e) =0 (23)

Denote the symmetric equilibrium level of effort by e*(s)."
Given e*(s), the government chooses (s, T) to maximize the utility of

15. Assume that y< ef”(e){f"(e) for all e so that multiple equilibria will not exist.
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arepresentative agent subject to a budget balance constraint that T = sf(e)e".
So revenues equal subsidies in the symmetric Nash equilibrium. The first-
order condition for the government’s problem is

f@e! + yfle)e! — g'(e) =0 (24)
Using the condition for a Nash equilibrium, this simplifies to

vfle) _

Fee™* =

evaluated at e = e*(s).

From this condition, the level of the subsidy will be positive when there
is a strategic complementarity in the economy, i.e., when y> 0. So, when
the government has the ability to commit to an action, it will subsidize
production to offset the production externality that is not internalized
by the private agents. The revenues for this subsidy come from lump
sum taxes.

When the government moves after the agents, then the government’s
choice of (s, 7) can have no impact on the employment decisions of the
private agents. Once private actions are taken, the welfare of the private
agents is independent of the (s, T) selected by the government since these
policies simply redistribute goods across the identical agents. If there were
any cost to redistribution, such as distortions or resource costs of collected
taxes and paying subsidies, then the government would set s=T=0 in
the second stage of the game. The private agents would recognize this,
and hence the government would be powerless to offset the production ex-
ternality.

SUMMARY

The point of this chapter was to introduce the government into our analysis
of the aggregate economy. Two sources of interaction were described.
First, there is the role of the government as a solution to a variety of
problems with private allocations arising from the presence of externalities.
The extent to which the government can resolve these problems depends
on its ability to commit itself to particular actions. In the case of full
commitment, we see that the government can act to support efficient
outcomes while these allocations may not be achievable when the power
to commit is lacking.
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Second, we emphasized the role of the government in models with
complementarities. Here we see that the government is called upon to play
a rather unique role: that of a confidence builder. A theme for much of
this book has been coordination failures arising from a crisis of confidence,
and thus it is not surprising that a large player, such as a government, can
play a positive role in supporting Pareto-efficient equilibria. A leading
example is that of deposit insurance, though other forms of government
guarantees to, for example, the Chrysler Corporation or the Mexican gov-
ernment have had similar effects of restoring confidence.

The final point is that sometimes the government is a source of rather
than a solution to coordination problems. Several examples given here
relate to the government’s need to balance a budget with exogenously
given spending. Thinking of the government as the source of multiplicity
has opened up a new area of research for economists interested in macro-
economic complementarities.



8 Concluding Thoughts

The goal of this book is to explore the macroeconomic implications of a
particular class of model economies: those built around the presence of
complementarities. These models stand in sharp contrast with more stan-
dard general equilibrium models, both in their structure and in their implica-
tions.

From the perspective of structure, interactions dominated by comple-
mentarities provide agents with an incentive to follow the behavior of
others. The chapters have been structured to present a wide range of
environments in which complementarities naturally emerge.

Informally, economic life is simply different in environments character-
ized by complementarities. In the usual general equilibrium model, there
is a sense that tradeoffs, such as moving along a production possibility
frontier, are of primary importance. Here the question is whether we should
produce more of some goods at the expense of others. Imbedded in this
class of models is a sense of conflict in the interest of the agents: more
for one means less for another.

In contrast, models of complementarities are really about life “inside
the production possibility frontier.” Here there is the distinct possibility
for producing more of all goods if activities can be properly coordinated.
So conflicting interests can become subordinate to the more general needs
of coordination.

In a related way, models with complementarity provide novel insights
into economic policy. First, the government can play a major role in
supporting confidence in an economy. For many countries, this is seen
through the wide range of public guarantee funds, such as those for deposits,
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pensions, etc.! In this way, the government can eliminate Pareto-dominated
equilibria. Second, the government may itself be a source of multiplicity,
as in the taxation example.

As for implications, the property of complementarity gives rise to the
possibility of multiple equilibria as well as the magnification and propaga-
tion of shocks. In some settings, the multiple equilibria can be Pareto-
ordered, giving specific content to the theme of coordination failure.

This book should be viewed as a progress report of an ongoing research
program. The dimensions for further work are rather clear. Thus far, we
have a set of environments in which complementarities arise and some,
often imprecise, quantification of their magnitude. To keep the material
cohesive, we have intentionally ignored the use of models with comple-
mentarities for understanding growth as well as the spatial aspects of
equilibrium. Clearly these models are structurally quite similar, though
the interactions are too often studied independently.

Future work will undoubtedly uncover more sources of complementarity
and confront the more difficult question of their quantification. Through
this process of model building and testing, these models with complemen-
tarities will become an even more useful structure for the evaluation of a
large number of economic phenomena.

1. Cooper and Ross [1997] provide an explicit model of guarantee funds in a model with multi-
ple equilibria.
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